Geotechnical Engineering

Environmental Engineering

Hydrogeology

Geological Engineering

Materials Testing

Building Science

Archaeological Services

Paterson Group Inc.

Consulting Engineers 154 Colonnade Road South Ottawa (Nepean), Ontario Canada K2E 7J5

Tel: (613) 226-7381 Fax: (613) 226-6344 www.patersongroup.ca

patersongroup

Phase II Environmental Site Assessment

473 Albert Street Ottawa, Ontario

Prepared For

InterRent No. 3 Limited Partnership

March 15, 2021

Report: PE4908-1

TABLE OF CONTENTS

EXEC	UTIVI	E SUMMARY	iii
1.0	INTR	ODUCTION	5
	1.1	Site Description	5
	1.2	Property Ownership	5
	1.3	Current and Proposed Future Uses	5
	1.4	Applicable Site Condition Standard	6
2.0	BAC	GROUND INFORMATION	6
	2.1	Physical Setting	6
	2.2	Past Investigations	7
3.0	SCO	PE OF INVESTIGATION	10
	3.1	Overview of Site Investigation	10
	3.2	Media Investigated	10
	3.3	Phase I Conceptual Site Model	11
	3.4	Deviations from Sampling and Analysis Plan	13
	3.5	Impediments	13
4.0	INVE	STIGATION METHOD	13
	4.1	Subsurface Investigation	13
	4.2	Soil Sampling	14
	4.3	Field Screening Measurements	14
	4.4	Groundwater Monitoring Well Installation	15
	4.5	Field Measurement of Water Quality Parameters	15
	4.6	Groundwater Sampling	16
	4.7	Analytical Testing	16
	4.8	Residue Management	20
	4.9	Elevation Surveying	20
	4.10	Quality Assurance and Quality Control Measures	20
5.0	REVI	EW AND EVALUATION	20
	5.1	Geology	20
	5.2	Groundwater Elevations, Flow Direction, and Hydraulic Gradient	21
	5.3	Fine-Coarse Soil Texture	21
	5.4	Soil: Field Screening	
	5.5	Soil Quality	22
	5.6	Groundwater Quality	27
	5.7	Quality Assurance and Quality Control Results	38
	5.8	Phase II Conceptual Site Model	41
6.0	CON	CLUSIONS	54
7.0	STAT	EMENT OF LIMITATIONS	56

List of Figures

Figure 1 - Key Plan Drawing PE4908-3 – Test Hole Location Plan & Groundwater Contour Plan Drawing PE4908-4– Analytical Testing Plan – Soil (Metals) Drawing PE4908-4A - Cross-Section A-A' – Soil (Metals) Drawing PE4908-4B - Cross-Section B-B' – Soil (Metals) Drawing PE4908-4C- Cross-Section C-C' – Soil (Metals) Drawing PE4908-4D - Cross-Section D-D' – Soil (Metals) Drawing PE4908-5– Analytical Testing Plan – Soil (VOCs) Drawing PE4908-5A - Cross-Section A-A' – Soil (VOCs) Drawing PE4908-5B - Cross-Section B-B' – Soil (VOCs) Drawing PE4908-5C - Cross-Section C-C' – Soil (VOCs) Drawing PE4908-5D - Cross-Section D-D' – Soil (VOCs) Drawing PE4908-6- Analytical Testing Plan - Soil (BTEX, PHCs, PAH, PCB) Drawing PE4908-6A - Cross-Section A-A' – Soil (BTEX, PHCs, PAH, PCB) Drawing PE4908-6B - Cross-Section B-B' – Soil (BTEX, PHCs, PAH, PCB) Drawing PE4908-6C - Cross-Section C-C' – Soil (BTEX, PHCs, PAH, PCB) Drawing PE4908-6D - Cross-Section D-D' – Soil (BTEX, PHCs, PAH, PCB) Drawing PE4908-7– Analytical Testing Plan – Groundwater (Metals) Drawing PE4908-7A - Cross-Section A-A' – Groundwater (Metals) Drawing PE4908-7B - Cross-Section B-B' – Groundwater (Metals) Drawing PE4908-7C- Cross-Section C-C' – Groundwater (Metals) Drawing PE4908-7D - Cross-Section D-D' – Groundwater (Metals) Drawing PE4908-8– Analytical Testing Plan – Groundwater (VOCs) Drawing PE4908-8A - Cross-Section A-A' – Groundwater (VOCs) Drawing PE4908-8B - Cross-Section B-B' – Groundwater I (VOCs) Drawing PE4908-8C - Cross-Section C-C' – Groundwater (VOCs) Drawing PE4908-8D - Cross-Section D-D' – Groundwater (VOCs) Drawing PE4908-9– Analytical Testing Plan – Groundwater (BTEX, PHCs, PAH, PCB) Drawing PE4908-9A - Cross-Section A-A' – Groundwater (BTEX, PHCs, PAH, PCB) Drawing PE4908-9B - Cross-Section B-B' – Groundwater I (BTEX, PHCs, PAH, PCB) Drawing PE4908-9C - Cross-Section C-C' – Groundwater I (BTEX, PHCs, PAH, PCB) Drawing PE4908-9D - Cross-Section D-D' – Groundwater (BTEX, PHCs, PAH, PCB) Drawing PE4908-10 – Contaminant Transport Diagram

List of Appendices

Appendix 1 Sampling and Analysis Plan Soil Profile and Test Data Sheets Symbols and Terms Laboratory Certificates of Analysis

Appendix 2 Remediation Report

EXECUTIVE SUMMARY

Assessment

A Phase II ESA was conducted for the property addressed 473 Albert Street, in the City of Ottawa, Ontario. The purpose of the Phase II ESA was to address potentially contaminating activities (PCAs) that were identified during the Phase I ESA and considered to result in areas of potential environmental concern (APECs) on the Phase I and Phase II Property.

An initial subsurface program was conducted by Pinchin in December of 2019 to address the APECs identified in the Phase I ESA. This program consisted of drilling ten (10) boreholes, eight (8) of which were completed as groundwater monitoring wells. The stratigraphy at the site consisted of a concrete floor slab over engineered fill material which consisted of primarily crushed stone, mixed with a sandy clay soil matrix at some locations. Limestone bedrock was present beneath the fill.

Soil and groundwater samples were submitted for a combination of BTEX, PHCs, PAHs, PCB, VOCs and/or metals (including Hg) analyses. Based on the laboratory results, barium and 1,4-Dichlorobenzene concentrations in excess of the selected MECP Table 7 Residential Standards were identified in soil Sample MW-4-SS1, while a cobalt concentration exceeding the MECP Table 7 standard was identified in Sample MW-5-SS1. Groundwater results identified PHC-F2 and/or -F3 exceedances at MW-5 and MW-6.

During the interim of May through December 2020, Paterson carried out additional drilling and groundwater sampling programs to confirm and delineate groundwater exceedances identified during the Pinchin field program. Four (4) boreholes were drilled for lateral delineation purposes (BH1-20, BH1A-20, BH2,-20 and BH3-20) and a fifth borehole (BH4-20) was drilled for vertical delineation purposes. Soil samples were not recovered at this time; it should be noted however that no visual or olfactory evidence of potential contamination was noted in the fill material.

Groundwater samples recovered from the 2020 boreholes were analysed for a combination of BTEX or VOC and PHC parameters. No detections of the parameters analysed were noted in any of the samples, with the exception of chloroform (7 μ g/L) at a concentration exceeding the MECP Table 7 standard of 2 μ g/L in the groundwater recovered from BH1A-20.

The chloroform was considered to have resulted from the use of municipally treated water during the bedrock coring process and complies with the standard of 10 μ g/L presented in Table A of the MECP document entitled "Guidance for Addressing Chloroform at a Record of Site Condition Property."

Based on the findings of the drilling program and sampling events in combination with re-sampling of the monitoring wells installed by Pinchin, it was considered likely that initial PHC F2 and F3 exceedances identified at MW-5 and MW-6 had resulted from sediment content in the groundwater samples. The most recent groundwater results indicate that no BTEX, VOC or PHC concentrations were detected above the laboratory method detection limits, with the exception of chloroform as noted above, and various metal parameters at concentrations below the MECP Table 7 Standards. As such, the groundwater beneath the Phase II Property complies with the MECP Table 7 Standards.

Conclusion

Based on the findings of the Pinchin field program and the initial Phase II ESA findings obtained by Paterson, a soil and groundwater remediation program was recommended and a soil remediation program was subsequently carried out. All impacted soil was removed from the property, as detailed in the Remediation Report provided in Appendix 2. Based on additional drilling and sampling events carried out in conjunction with the soil remediation program, no impacted groundwater was encountered or removed from the Phase II Property.

The findings of the Phase II ESA and Remediation Program indicate that the soil and groundwater beneath the Phase II Property comply with the MECP Table 7 standards. An RSC will be filed based on this Phase II ESA, to support the proposed change in land use.

It is expected that groundwater monitoring wells will be abandoned in accordance with O.Reg.903, at the time of building rehabilitation. It is recommended that they be maintained until this time, for possible future groundwater monitoring events.

1.0 INTRODUCTION

At the request of InterRent No. 3 Limited Partnership, Paterson Group (Paterson) conducted a Phase II Environmental Site Assessment for the property addressed 473 Albert Street, in the City of Ottawa, Ontario. The purpose of this Phase II ESA was to address areas of potential environmental concern (APECs) identified on the Phase II Property during the Phase I ESA conducted by Pinchin in December of 2019.

1.1 Site Description

Address:	473 Albert Street, Ottawa, Ontario.
Legal Description:	Part of Lots 23 and 24 and Lot 25, Plan 3922, N/S Albert Street, Numbering West, as in N418302, in the City of Ottawa.
Location:	The site is located on the north side of Albert Street, approximately 55 m east of Bronson Avenue, in the City of Ottawa, Ontario. Refer to Figure 1 - Key Plan in the Figures section following the text.
PIN:	04112-0053 (LT)
Latitude and Longitude:	45° 25' 1.16" N, 75° 42' 27.56" W
Configuration:	L-shaped
Area:	0.17 hectares (approximately)

1.2 Property Ownership

The subject property is currently owned by InterRent No. 3 Development Partnership. Paterson was retained to complete this Phase II ESA by Mr. Evan Johnson, of CLV Group in partnership with InterRent No. 3 Development. Mr. Johnson can be reached by telephone at (613) 806-7816.

1.3 Current and Proposed Future Uses

The Phase II Property is currently occupied by a vacant, eleven (11) storey commercial office building with 2 basement levels. It is our understanding that the existing building will be rehabilitated/retrofitted as a residential building with ground floor commercial uses.

Due to the proposed change to a more sensitive land use, the filing of a Record of Site Condition (RSC) in the Ministry of the Environment, Conservation and Parks (MECP) Environmental Site Registry (ESR) will be required for the Phase II Property.

1.4 Applicable Site Condition Standard

The site condition standards for the property were obtained from Table 7 of the document entitled "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act", prepared by the Ontario Ministry of Environment, Conservation and Parks (MECP), April 2011. The MECP selected Table 7 Standards are based on the following considerations:

- □ Coarse-grained soil conditions;
- □ Shallow Soil conditions;
- □ Non-potable groundwater conditions; and
- Residential land use.

Section 35 of O.Reg. 153/04 does apply to the Phase II Property in that the property is serviced with municipal drinking water.

Section 41 of O.Reg. 153/04 does not apply to the Phase II Property, as the property is not within 30m of an environmentally sensitive area and the pH of the soil is between 5 and 9.

Section 43.1 of O.Reg. 153/04 does apply to the Phase II Property in that the property is a Shallow Soil property.

The intended use of the Phase II Property is residential; therefore, the Residential Standards have been selected for the purpose of this Phase II ESA.

2.0 BACKGROUND INFORMATION

2.1 Physical Setting

The Phase II Property is situated in an urban area surrounded by various sized commercial and residential structures. Site topography is relatively flat and at the grade of Albert Street. Site drainage consists primarily of sheet flow to catch basins located along Albert Street. The regional topography slopes down in a westerly to northwesterly direction towards the Ottawa River. The Phase II Property is situated within a municipally serviced area.

2.2 Past Investigations

The following engineering report was reviewed as part of this assessment.

"Phase One Environmental Site Assessment," prepared by Pinchin, dated December 6, 2019.

Based on the findings of the Phase I ESA report, four (4) potentially contaminating activities (PCAs) were considered to result in areas of potential environmental concern (APECs) on the Phase I Property, as presented in Table 1.

Table 1: Potentially Contaminating Activities and										
Areas of Potential Environmental Concern										
Area of Potential Environmental Concern	Location of Area of Potential Environmental Concern	Potentially Contaminating Activity	Location of PCA (on- site or off- site)	Contaminants of Potential Concern	Media Potentially Impacted (Groundwater, Soil, and/or Sediment)					
APEC 1: Resulting from the presence of a 1,250-L diesel above ground storage tank (AST)	Northeastern portion of the Phase I Property (within the emergency generator room in the second basement level of the subject building).	PCA 28 – Gasoline and Associated Products Storage in Fixed Tanks	On-site	BTEX PHCs	Soil Groundwater					
APEC 2: Resulting from the presence of a former heating oil AST	South-central portion of the Phase I Property (within the 'tank room' in the second basement level of the subject building).	PCA 28 – Gasoline and Associated Products Storage in Fixed Tanks	On-site	BTEX PHCs	Groundwater					
APEC 3: Presence of a transformer vault	South-central portion of the Phase I Property (first basement level of the subject building above the 'tank room').	PCA 55 – Transformer manufacturing, processing and use	On-site	BTEX PHCs PCBs	Groundwater					

Table 1: Potentially Contaminating Activities and										
Areas of Potential Environmental Concern										
Area of Potential Environmental Concern	Location of Area of Potential Environmental Concern	Potentially Contaminating Activity	Location of PCA (on- site or off- site)	Contaminants of Potential Concern	Media Potentially Impacted (Groundwater, Soil, and/or Sediment)					
APEC 4: Resulting from the generation of hazardous wastes.	Within the footprint of the existing building (hazardous wastes inferred to be within the office portions of the site building).	Other – Hazardous waste generation	On-site	BTEX PHCs PAHs PCBs VOCs Metals As, Sb, Se Hg	Soil Groundwater					
APEC 5 ¹ : Resulting from the use of salt as a deicing agent	Northern portion of the RSC Property	Other – use of salt as a deicing agent for vehicular and pedestrian safety	On-site	EC, SAR Na, Cl-	Soil					
APEC 6: Resulting from fill material under the building slab	Central and southern portions of the Phase I Property within the footprint of the building	Item 30 – Importation of Fill Material of Unknown Quality	On-site	Metals, As, Sb, Se Hg	Soil					
APEC 7: Resulting from a potential former dry cleaning facility at 447 Albert Street.	Eastern portion of the RSC Property.	Item 37 – Operation of Dry Cleaning Equipment (where chemicals are used)	Off-site	VOCs	Groundwater					

Table 1: Potentially Contaminating Activities and									
Areas of Potential Environmental Concern									
Area of Potential Environmental Concern	Location of Area of Potential Environmental Concern	Potentially Contaminating Activity	Location of PCA (on-site or off-site)	Contaminants of Potential Concern	Media Potentially Impacted (Groundwater, Soil, and/or Sediment)				
APEC 8: Resulting from the former Ottawa Car Manufacturing facility (422-426 Slater Street) and former dry cleaner (200- 202 Bay Street).	Southern portion of the RSC Property.	Item 52 – Storage, Maintenance, Fuelling and Repair of Equipment, Vehicles and Material Used to Maintain Transportation Systems	Off-site	BTEX PHC PAH	Groundwater				
Notes:		Item 37- Operation of Dry Cleaning Equipment (where chemicals are used)	Off-site	VOCs	Groundwater				
110100.			4 = 0 / 0 / 1						

1 – In accordance with Section 49.1 of Ontario Regulation 153/04 standards are deemed to be met if an applicable site condition standard is exceeded at a property solely because the qualified person has determined, based on a phase two environmental site assessment, that a substance has been applied to surfaces for the safety of vehicular or pedestrian traffic under conditions of snow or ice or both. As further discussed in the Phase II CSM which accompanies the RSC submission, the exemption outlined in Section 49.1 is being relied upon with respect to the RSC Property.

A Phase II ESA was recommended to address these APECs and was subsequently carried out by Pinchin in December of 2019. The Phase II ESA field program consisted of drilling ten (10) boreholes, eight (8) of which were completed as groundwater monitoring wells. Soil and groundwater samples were submitted for BTEX, PHCs, PAHs, PCB, VOCs and/or metals (including As, Sb, Se, Hg and CrVI) analyses. Based on the laboratory results, barium and cobalt concentrations in excess of the selected MECP Table 7 Residential Standards were identified in soil Samples MW4-SS1 and MW5-SS1. Groundwater results identified PHC-F2 and -F3 exceedances in the groundwater recovered from MW-5 and MW-6.

It should be noted that the Pinchin report was not finalized, however drawings, borehole logs and laboratory Certificates of Analysis were provided to Paterson for review. Details of this initial subsurface program as well as the laboratory results are presented in this Phase II ESA report.

3.0 SCOPE OF INVESTIGATION

3.1 Overview of Site Investigation

The initial subsurface investigation was conducted by Pinchin on December 11, 2019 and consisted of drilling ten (10) boreholes, eight (8) of which were completed as groundwater monitoring wells (BH1, BH2 and MW3 through MW10). Boreholes were drilled to a maximum depth of 4.57 m below the existing ground surface.

The more recent subsurface investigation was conducted by Paterson on May 4 and 5, 2020, and consisted of drilling three (3) additional boreholes, all of which were completed as groundwater monitoring wells (BH1-20 through BH3-20).

Borehole BH1-20 was later determined to be dry; an additional borehole (BH1A-20) was subsequently drilled on June 2, 2020 and completed with a monitoring well installation. Boreholes were drilled to a maximum depth of 4.42 m below the existing ground surface (basement floor slab).

A fifth borehole was drilled on November 30, 3030, subsequent to the November 2020 soil remediation program (the Remediation Report is provided in Appendix 2). Borehole BH4-20 was completed with a monitoring well installation at a depth of approximately 6.14 m below grade.

3.2 Media Investigated

During the subsurface investigation, soil samples and groundwater samples were obtained and submitted for laboratory analysis. The rationale for sampling and analyzing these media is based on the Contaminants of Potential Concern identified in the Phase I ESA.

Contaminants of concern for soil and groundwater include benzene, toluene, ethylbenzene, and xylenes (BTEX), petroleum hydrocarbons (PHCs, fractions F1-F4), polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), volatile organic compounds (VOCs), and/or metals (including As, Sb, Se, Hg and CrVI).

3.3 Phase I Conceptual Site Model

Geological and Hydrogeological Setting

According to the Geological Survey of Canada website, the bedrock in the area of the Phase I Property is reported to consist of interbedded limestone and shale of the Verulam Formation.

The overburden is reported to consist of exposed bedrock with a drift thickness ranging from 0 to 1 m over the entire site. The previous subsurface investigation conducted by Pinchin confirms the reported geology.

Groundwater beneath the Phase I Property is expected to flow in a westerly to north westerly direction based on the regional topography.

Existing Buildings and Structures

The Phase I Property is occupied by a vacant, 11-storey commercial office building, which encompasses the majority of the subject land. No other above-grade structures are present on the site.

Subsurface Structures and Utilities

Subsurface structures on the Phase I Property include the basement and underground parking levels associated with the above-grade structure.

Buried utilities on the Phase II Property included sanitary and storm sewer lines, a municipal water service, electrical services and telephone lines. Based on standard practice for subsurface utility installation, service trenches are expected to be present approximately 1 to 2 m below grade.

Water Bodies and Areas of Natural Significance

No areas of natural significance or water bodies were identified on the Phase I Property or within a 250 m search radius.

Drinking Water Wells

There are no potable water wells on the Phase I Property or within the 250 m study area.

Neighbouring Land Use

Neighbouring land use in the Phase I Study Area consists of residential and commercial (offices, cafes, and retailers) properties.

Potentially Contaminating Activities (PCAs) and Areas of Potential Environmental Concern (APECs)

As per Section 7.4 of the Phase I ESA report by Pinchin, 4 on-site and 3 off-site PCAs were considered to result in 6 APECs on the Phase I Property. Upon reviewing the Pinchin report, it is the opinion of Paterson that 2 of the off-site PCAs identified by Pinchin are not considered to result in an APEC on the RSC property given their separation distances relative to the site.

Areas of potential environmental concern (APECs) on the subject property are summarized in Table 1 in Section 2.2. of this report, along with their respective locations on the Phase I Property, associated contaminants of potential concern (CPCs) and potentially impacted media.

Contaminants of Potential Concern (CPCs)

As per the APECs identified in Table 1, the contaminants of potential concern (CPCs) in soil and/or groundwater include:

- Benzene, Toluene, Ethylbenzene, and Xylenes (BTEX);
- Petroleum hydrocarbons (PHCs, Fractions F1-F4);
- Polycyclic aromatic hydrocarbons (PAHs);
- Polychlorinated Biphenyls (PCBs);
- □ Volatile organic compounds (VOCs);
- □ Metals;
- Arsenic (As), Antimony (Sb) and Selenium (Se); and
- □ Mercury (Hg).

The CPCs are expected to be present in the soil and/or groundwater at the Phase I Property.

Assessment of Uncertainty and/or Absence of Information

The information available for review as part of the preparation of the Phase I-ESA is considered to be sufficient to conclude that there are on-site PCAs that have resulted in APECs on the Phase I Property.

A variety of independent sources were consulted as part of this assessment, and as such, the conclusions of this report are not affected by uncertainty which may be present with respect to the individual sources.

3.4 Deviations from Sampling and Analysis Plan

The Sampling and Analysis Plan for this project is included in Appendix 1 of this report. Wells were purged dry and water quality parameters were not recovered due to the slow recovery and limited volume of groundwater available for sampling. Soil samples were not collected from all locations due to the absence of soil at some borehole locations. Otherwise, there were no deviations from the Sampling and Analysis Plan.

3.5 Impediments

Physical impediments encountered during the field portion of the Phase II ESA include buried services, and the presence of support columns in the vicinity of the drilling area, which influenced selected borehole locations. The recovery of soil samples was limited due to the granular nature of the fill material under the floor slab and the capability of portable drilling equipment. No other physical impediments were encountered.

4.0 INVESTIGATION METHOD

4.1 Subsurface Investigation

The initial subsurface investigation was conducted by Pinchin on December 11, 2019, and consisted of drilling ten (10) boreholes, eight (8) of which were completed as groundwater monitoring wells (BH1, BH2, MW-3 through MW-10). These boreholes were placed to address the APECs identified in the 2019 Phase I ESA report prepared by Pinchin.

The more recent subsurface investigation conducted by Paterson was carried out on May 4 and 5, 2020 and June 2, 2020. The investigation consisted of drilling three (3) additional boreholes (BH1 through BH3), all of which were completed as groundwater monitoring wells.

A fourth borehole (BH1A-20) was drilled due to insufficient water in BH1-20. These boreholes were placed to delineation PHC concentrations identified by Pinchin during the 2019 Phase II ESA field program.

Subsequent to the soil remediation program (the findings of which will be provided under separate cover, as noted above) a fifth borehole was drilled to a depth of approximately 6.14 m below the basement floor slab on November 30, 2020. Borehole BH4-20 was completed with a monitoring well installation. The purpose of the well was to confirm the quality of the groundwater beneath MW5.

All boreholes were drilled with a portable drilling equipment, provided by CCC Geotechnical and Environmental Drilling Ltd., of Ottawa, Ontario. Borehole locations are shown on Drawing PE4908-3 – Test Hole Location Plan, appended to this report.

4.2 Soil Sampling

A total of 5 soil samples were obtained from the Pinchin boreholes by means of split spoon sampling. The depths at which split spoon samples were obtained from the boreholes are shown as "**SS**" on the Soil Profile and Test Data Sheets, appended to this report.

Upon split spoon refusal, the boreholes were advanced into bedrock using a diamond coring system. An additional 21 rock core samples were recovered during the 2020 drilling programs and are shown as "**RC**" on the Soil Profile and Test Data Sheets. The borehole logs provided by Pinchin do not identify rock core samples recovered.

The stratigraphy at the borehole locations generally consisted of a concrete structure over sand and gravel fill material, underlain by limestone bedrock. The bedrock surface was encountered at depths ranging from approximately 0.15 to 1.19 m below grade.

4.3 Field Screening Measurements

All soil samples obtained during the 2019 field program underwent a preliminary screening procedure, which included visual screening for colour and evidence of deleterious fill, as well as combustible and organic vapour screening. According to the borehole logs provided to Paterson, soil vapour concentrations were measured using both an RKI Eagle 2 gastech equipped with a combustible gas indicator (CGI) and a photoionization detector (PID).

The soil vapours were measured by inserting the analyzer probe into the nominal headspace above the soil sample. Samples were then agitated, and the peak readings recorded. The CGI readings were generally less than 15ppm with the exception of an elevated reading of 80ppm for Sample MW4-SS-1. The PID readings were 1.0pppm. The readings were not indicative of significant combustible or organic vapours with the possible exception of Sample MW4-SS-1 which was submitted for analytical testing.

No visual or olfactory indications of potential contamination were noted on the borehole logs provided by Pinch. One soil sample was recovered from each BH-1, BH-2 and MW-4 through MW-7. Soil was not recovered in the remaining samples. Worst-case samples were submitted for analytical testing (based on vapour readings and visual observations).

Vapour readings are noted on the Soil Profile and Test Data Sheets in Appendix 1.

4.4 Groundwater Monitoring Well Installation

Twelve (12) groundwater monitoring wells were installed on the Phase II Property, at MW-3 through MW-10 and BH1-20, BH1A-20, BH2-20 and BH3-20. The monitoring wells consisted of 32 mm diameter Schedule 40 threaded PVC risers and screens. Monitoring well construction details are listed below in Table 2 and are also presented on the Soil Profile and Test Data Sheets provided in Appendix 1.

Table 2: Monitoring Well Construction Details										
Well ID	Ground	Total	Screened	Sand Pack	Bentonite	Casing				
	Surface	Depth	Interval	(m BGS)	Seal	Туре				
	Elevation	(m BGS)	(m BGS)		(m BGS)					
MW-3	62.24	3.81	1.21-3.81	0.86-3.81	0.15-0.86	Flushmount				
MW-4	62.26	4.57	1.57-4.57	1.20-4.57	0.15-1.20	Flushmount				
MW-5	62.26	3.66	1.20-3.66	0.86-3.66	0.15-0.86	Flushmount				
MW-6	62.25	3.81	1.25-3.65	0.86-3.65	0.15-0.86	Flushmount				
MW-7	62.27	3.96	1.96-3.96	1.20-3.96	0.15-1.20	Flushmount				
MW-8		3.66	1.26-3.66	0.86-3.66	0.15-0.86	Flushmount				
MW-9		3.66	1.26-3.66	0.86-3.66	0.15-0.86	Flushmount				
MW-10	62.24	3.66	1.26-3.66	0.86-3.66	0.15-0.86	Flushmount				
BH1-20	62.28	4.11	2.61-4.11	2.26-4.11	0.15-2.26	Flushmount				
BH1A-20	62.29	4.42	1.42-4.42	1.05-4.42	0.15-1.05	Flushmount				
BH2-20	62.26	4.43	2.25-4.05	2.20-4.05	0.15-2.20	Flushmount				
BH3-20	62.26	4.19	2.65-4.19	2.70-4.19	0.15-2.70	Flushmount				
BH4-201	62.26	6.14	3.70-6.14	3.40-6.14	1.95-3.40	Stickup				
Notes:	Notes:									
🗖 1 –	BH4-20 plac	ed within exc	avation; granu	lar backfill plac	ed from 1.95m	to original				
gra	de.									

4.5 Field Measurement of Water Quality Parameters

Groundwater sampling events were conducted by Pinchin on January 15, 2020. Water levels recorded during this sampling event were not provided on the Pinchin borehole logs. Information pertaining to the measurement of water quality parameters was not provided for review. Groundwater sampling events were conducted by Paterson on April 9, 2020, May 14, 2020, June 11, 2020 and November 24, 2020. Water levels were recorded during the sampling events however field measurement of water quality parameters was not conducted due to the limited amount of groundwater available.

4.6 Groundwater Sampling

Groundwater sampling protocols were followed using the MECP document entitled "Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario", dated May 1996. Groundwater samples were obtained from each monitoring well, using dedicated sampling equipment.

Standing water was purged from each well prior to sampling. Samples were stored in coolers to reduce analyte volatilization during transportation. Details of our standard operating procedure for groundwater sampling are provided in the Sampling and Analysis Plan in Appendix 1.

4.7 Analytical Testing

Based on the guidelines outlined in the Sampling and Analysis Plan appended to this report, the following soil and groundwater samples were submitted for analysis:

Table 3: Soil Samples Submitted										
	Sample Depth									
Sample ID	Stratigraphic Unit	втех	PHCs	PAHs	PCBs	vocs	Metals	Нg	Rationale	
December, 2	2019 (Pinchin)									
BH1-SS1	0.036-0.61m Fill	х	х	х					Assess the potential soil impact due to the diesel above ground storage tank.	
MW4-SS1	0.036-0.61m Fill	х	х	х	х	х	х	Х	Assess the potential soil impact due to the hazardous wastes	
MW5-SS1	0.036-0.61m Fill	х	х	х	х	х	х	х	produced on-site.	
MW6-SS1	0.0-0.46m Fill	х	Х	х	х	Х	х	х	Assess the potential soil impact due to the hazardous wastes produced on-site and delineation of soil impacst.	
DUP-1 (BH1-SS1)	0.036-0.61m Fill	Х	Х	Х					Duplicate sample for QA/QC.	
DUP-2 (MW4-SS1)	0.036-0.61m Fill				Х	Х			Duplicate sample for QA/QC.	
DUP-3 (MW5-SS1)	0.036-0.61m Fill						Х	Х	Duplicate sample for QA/QC.	

Table 4: Groundwater Samples Submitted										
		P	aram	eters	s An	alyze	ed			
Sample ID	Sample Depth & Stratigraphic Unit	ВТЕХ	PHCs	PAHs	PCBs	vocs	Metals , Hg	Rationale		
January 15, 2020 (Pinchin)										
MW3	1.21-3.81m	x	x	x		Х		Assess the potential groundwater impact due to the former above ground storage tank and transformer room.		
MW4	1.57-4.57m	x	х	x	х	Х	x	Assess the potential groundwater impact due to the hazardous wastes produced on-site.		
MW5	1.20-3.66m	х	х	х	х	х	x	Assess the potential groundwater impact due to the hazardous wastes produced on-site.		
MW6	1.25-3.65m	х	х	х	х	х	х	Assess the potential groundwater impact due to the diesel back up generator and associated AST.		
MW7	1.96-3.96m	х	х	х		х		Assess the potential groundwater impact due to the diesel back up generator and associated AST.		
MW8	1.26-3.66m	X				х		Assess the potential groundwater impact due to the diesel back up generator and associated AST.		
MW9	1.26-3.66m	X				х		Asses potential groundwater impacts associated with potential historical off-site dry cleaner to the east.		
MW10	1.26-3.66m	x	х	х		Х		Assess the potential groundwater impact due to the hazardous wastes produced on-site		
DUP-4 (MW4)	1.57-4.57m	Х	Х	х	х	х	х	Duplicate sample for QA/QC.		
February 1	2, 2020 (Pinchin)									
MW6 ¹	1.25-3.65m		Х					Monitor/confirm potential groundwater impact.		
February 2	0, 2020 (Pinchin)									
MW6 ¹	1.25-3.65m		Х					Monitor/confirm potential groundwater impact.		
April 9, 202	20 (Paterson)									
MW5- GW1	1.2-3.66m	X	Х					Monitor/confirm potential groundwater impact identified by Pinchin.		

Table 4 Continued: Groundwater Samples Submitted									
	Sample Depth	F	Param	neters	s Ana	lyzed	b		
Sample ID	and Stratigraphic Unit	втех	PHCs	PAHs	PCBs	vocs	Metals ²	Rationale	
MW6-GW1	1.25-3.65m	Х	х					Confirm previous impacts identified and test for full PHC Method Group (PHC, F1-F4).	
MW8-GW1	1.26-3.66m	Х	Х					Confirm previous results obtained by Pinchin.	
May 14, 2020) (Paterson)								
BH2-20- GW1	2.84-4.34m	Х	Х					Delineation of PHC impacts identified in MW5 (by Pinchin and Paterson).	
BH3-20- GW1	2.69-4.19m	Х	Х					Delineation of PHC impacts identified in MW5 (by Pinchin and Paterson).	
DUP1 (BH3-20- GW1)	2.69-4.19m	Х	Х					QA/QC	
June 2, 2020	(Paterson)							Confirm closer requite	
MW6-20	1.25-3.65m	Х	х					obtained in April monitoring and test for full PHC Method Group (PHC, F1-F4).	
June 11, 202	0 (Paterson)						1		
BH1A-20- GW	1.42-4.42m	Х	Х			Х		Delineation of PHC impacts identified in MW5 (by Pinchin and Paterson).	
November 5	, 2020 (Paterson)						1		
MW5-GW1	1.2-3.66m		Х			х		Monitor/confirm potential groundwater impact identified in MW5 (by Pinchin and Paterson).	
November 2	0, 2020 (Paterson)						I		
MW5-20- GW2	1.2-3.66m		Х			Х		obtained during November 5, 2020 sampling event.	
December 1	1, 2020 (Paterson)						r		
BH4-20- GW1	3.7-6.14	х	х					Confirm quality of groundwater at interval below MW5.	
March 12, 20	20 (Paterson)								
MW3-GW1	1.21-3.81m				Х			Supplement results obtained by Pinchin to fully assess	
MW8-GW2	1.26-3.66			х				APECs.	
Notes: 1 – only PHC F2-F4 parameters analysed 2 - Metals include mercury (Hg)									

Paracel Laboratories (Paracel), of Ottawa, Ontario, performed the laboratory analysis on the samples submitted for analytical testing. Paracel is a member of the Standards Council of Canada/Canadian Association for Laboratory Accreditation (SCC/CALA). Paracel is accredited and certified by SCC/CALA for specific tests registered with the association.

4.8 Residue Management

All excavated soil, purge water and fluids from equipment cleaning were retained on-site.

4.9 Elevation Surveying

The 2020 monitoring well locations were selected, located and surveyed in the field by Paterson. The 2019 monitoring wells were also surveyed by Paterson. The ground surface elevations at the monitoring well locations are referenced to a geodetic datum provided by Annis, O'Sullivan, Vollebekk Ltd. and are presented on Drawing PE4908-3 – Test Hole Location Plan appended to this report.

4.10 Quality Assurance and Quality Control Measures

A summary of quality assurance and quality control (QA/QC) measures, including sampling containers, preservation, labelling, handling, and custody, equipment cleaning procedures, and field quality control measurements is provided in the Sampling and Analysis Plan in Appendix 1.

5.0 REVIEW AND EVALUATION

5.1 Geology

Site soils beneath the concrete structure generally consisted of a granular fill material (sand and gravel), underlain by limestone bedrock. The site stratigraphy is shown on Drawings PE4908-4A-D through PE4908-9A-D – Cross Sections A-A' through D-D'.

Groundwater was encountered within the limestone bedrock at depths ranging from approximately 1.23 to 3.65 mbgs.

5.2 Groundwater Elevations, Flow Direction, and Hydraulic Gradient

Groundwater levels were measured during each of the groundwater sampling events using an electronic water level meter; those recorded during the April 9, 2020 and November 24, 2020 are summarized below in Table 5.

Table 5: Groundwater Level Measurements										
Borehole	Ground	Water Level Depth	Water Level	Date of						
Location	Surface	(m below grade)	Elevation	Measurement						
	Elevation (m)		(m ASL)							
MW-4	62.26	1.81	60.45	April 9, 2020						
MW-5	62.26	2.03	60.23	April 9, 2020						
MW-8	62.26	1.27	60.99	April 9, 2020						
MW-5	62.26	2.03	60.23	November 23, 2020						
MW-6	62.25	1.54	60.71	November 23, 2020						
MW-8	62.26	1.23	61.03	November 23, 2020						
BH1-20	62.28	3.63	58.65	November 23, 2020						
BH1A-20	62.29	3.65	58.64	November 23, 2020						
BH2-20	62.26	2.28	60.01	November 23, 2020						
BH3-20	62.26	1.59	60.67	November 23, 2020						
BH4-20	62.26	2.5	59.76	December 11, 2020						

Based on the groundwater elevations measured during the November 2020 sampling event, groundwater contour mapping was completed. Groundwater contours are shown on Drawing PE4908-3 – Test Hole Location Plan. Based on the contour mapping, groundwater flow beneath the Phase II Property appears to flow towards the west. A horizontal hydraulic gradient of approximately 0.25 m/m was calculated.

No free product was observed in the monitoring wells sampled at the Phase II Property. No visual or olfactory evidence of petroleum hydrocarbons was observed on the purge water at any of the monitoring well locations sampled by Paterson during any of the groundwater sampling events.

5.3 Fine-Coarse Soil Texture

Based on observations made in the field, the more stringent coarse-grained soil standards are applicable to the Phase II Property.

5.4 Soil: Field Screening

No field screening of the soil samples collected was conducted during the 2019 field program carried out by Pinchin. According to the borehole logs provided to Paterson, soil vapour concentrations were measured using both an RKI Eagle 2 gastech equipped with a combustible gas indicator (CGI) and a photoionization detector (PID).

The CGI readings were generally less than 15ppm with the exception of an elevated reading of 80ppm for Sample MW4-SS-1. The PID readings were 1.0pppm. The readings were not indicative of significant combustible or organic vapours, with the possible exception of Sample MW4-SS-1 which was submitted for analytical testing.

5.5 Soil Quality

A total of 4 soil samples and 3 duplicates were submitted for analysis of a combination of BTEX, PHCs (F1-F4), PAHs, PCBs, VOCs and/or metals. The results of the analytical testing are presented below in Tables 6, 7, 8, 9 and 10. The laboratory Certificates of Analysis are provided in Appendix 1.

Table 6: Analytical Test Results – Soil (BTEX and PHCs (F1-F4)										
	МП		MECP Table 7							
Parameter	(µg/g)	BH1- SS1	DUP-1	MW4- SS1	MW5- SS1	MW6- SS1	Residential Standards (µg/g)			
Benzene	0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.21			
Ethylbenzene	0.05	<0.02	< 0.02	<0.02	< 0.02	<0.02	2			
Toluene	0.05	0.1	0.024	0.033	0.028	< 0.02	2.3			
Xylene	0.05	0.14	0.046	0.10	0.095	<0.02	3.1			
PHC F1	7	11	10	<10	<10	<10	55			
PHC F2	4	<10	<10	<10	<10	<10	98			
PHC F3	8	<50	<50	<50	<50	<50	300			
PHC F4	6	<50	<50	<50	<50	<50	2800			
Notes:	Method Dete	ection Limit	1							

Concentrations of toluene, xylenes and/or PHC F1 were identified in soil Samples BH1-SS1, MW4-SS1, MW5-SS1 and DUP-1. No other parameters were identified in the remaining soil samples. The soil results are in compliance with the MECP Table 7 Residential Standards.

Table 7: Analytical Test Results – Soil (PAHs)										
Parameter	MDL (µg/g)		Soil Samples (µg/g) December 11, 2019							
		BH1- SS1	BH1- SS1DUP-1MW4- SS1MW5- SS1MW6- SS1							
Acenaphthene	0.02	nd	nd	nd	nd	nd	7.9			
Acenaphthylene	0.02	nd	nd	nd	nd	nd	0.15			
Anthracene	0.02	nd	nd	nd	nd	nd	0.67			
Benzo[a]anthracene	0.02	0.017	0.012	nd	0.0072	0.0076	0.5			
Benzo[a]pyrene	0.02	0.019	0.012	nd	0.0078	0.0088	0.3			
Benzo[b]fluoranthene	0.02	0.028	0.018	0.0072	0.015	0.013	0.78			
Benzo[g,h,i]perylene	0.02	0.014	0.0083	0.0054	0.0088	0.0097	6.6			
Benzo[k]fluoranthene	0.02	0.0096	0.0062	nd	0.005	nd	0.78			
Chrysene	0.02	0.018	0.012	nd	0.010	0.0072	7			
Dibenzo[a,h]anthracene	0.02	nd	nd	nd	nd	nd	0.1			
Fluoranthene	0.02	0.034	0.025	0.006	0.0078	0.011	0.69			
Fluorene	0.02	nd	nd	nd	nd	nd	62			
Indeno[1,2,3-cd]pyrene	0.02	0.014	0.0083	nd	0.0083	0.0084	0.38			
1-Methylnaphthalene	0.02	nd	nd	nd	nd	nd	0.99			
2-Methylnaphthalene	0.02	nd	nd	nd	nd	nd	0.99			
Naphthalene	0.01	nd	nd	nd	nd	nd	0.6			
Phenanthrene	0.02	0.023	0.027	0.006	0.009	0.0078	6.2			
Pyrene	0.02	0.031	0.021	0.0072	0.0093	0.011	78			
Notes: MDL – Method Detection nd – not detected ab	ction Limit	DL								

PAH parameter concentrations were identified in each of the soil samples analyzed. The analytical results comply with the selected MECP Table 7 Residential Standards.

Table 8: Analytical Test Results – Soil (PCBs)								
Parameter	MDL (µa/a)		MECP Table 7 Residential Standards					
	(13.3/	MW4-SS1	MW4-SS1 DUP-2 MW5-SS1 MW6-SS1					
PCBs	0.10	<0.10	<0.10	<0.10	<0.10	0.3		
MDL – Meth	od Detectior	n Limit						

No PCB concentrations were identified in any of the samples analysed. The results comply with the MECP Table 7 standards.

Table 9: Analytical	est Res	sults – Soi	I (VOCs)		
	MDI	Sol	I Samples (µ	g/g)	MECP Table /
Parameter		Dec	cember 11, 2	019	Residential
	(µg/g)	MW4-SS1	MW5-SS1	MW6-SS1	Standards
A +	0.50				(µg/g)
Acetone	0.50	nd	nd	na	0.01
Benzene	0.02	nd	nd	na	0.21
Bromodichioromethane	0.05	nd	nd	na	13
Bromotorm	0.05	nd	nd	na	0.27
Bromomethane	0.05	nd	nd	nd	0.05
Carbon Tetrachloride	0.05	nd	nd	nd	0.05
Chlorobenzene	0.05	nd	nd	nd	2.4
Chloroform	0.05	nd	nd	nd	0.05
Dibromochloromethane	0.05	nd	nd	nd	9.4
m-Dichlorobenzene(1,2)	0.20	nd	nd	nd	3.4
o-Dichlorobenzene (1,3)	0.05	nd	nd	nd	4.8
p-Dichlorobenzene (1,4)	0.05	0.083	<u>0.91</u>	nd	0.083
Dichlorodifluoromethane	0.05	nd	nd	nd	16
1,1-Dichloroethane	0.05	nd	nd	nd	3.5
1,2-Dichloroethane	0.05	nd	nd	nd	0.05
1,1-Dichlroethylene	0.05	nd	nd	nd	0.05
c-1,2-Dichloroethylene	0.05	nd	nd	nd	3.4
t-1,2-Dichloroethylene	0.05	nd	nd	nd	0.084
1,2-Dichloropropane	0.05	nd	nd	nd	0.05
c-1,3-Dichloropropene	0.05	nd	nd	nd	0.05
Ethylbenzene	0.05	nd	nd	nd	2
Ethylene Dibromide	0.05	nd	nd	nd	0.05
Hexane	0.05	0.18	0.26	nd	2.8
Methyl Ethyl Ketone	0.5	nd	nd	nd	16
Methyl Isobutyl Ketone	0.5	nd	nd	nd	1.7
Methyl tert-Butyl Ether	0.05	nd	nd	nd	0.75
Methylene Chloride	0.05	nd	nd	nd	0.1
Styrene	0.05	nd	nd	nd	0.7
1,1,1,2-Tetrachloroethane	0.50	nd	nd	nd	0.058
1,1,2,2-Tetrachloroethane	0.05	nd	nd	nd	0.05
Tetrachloroethylene	0.05	nd	nd	nd	0.28
Toluene	0.05	0.033	0.028	nd	2.3
1.1.1-Trichloroethane	0.05	nd	nd	nd	0.38
1.1.2-Trichloroethane	0.05	nd	nd	nd	0.05
Trichloroethylene	0.05	nd	nd	nd	0.061
Trichlorofluoromethane	0.05	nd	nd	nd	4
Vinvl Chloride	0.02	nd	nd	nd	0.02
Xvlenes	0.05	0.10	0.095	nd	3.1
Notes:					
MDL – Method Detect	ion Limit				
nd – not detected abo	ve the MDL				
Bold – concentration	exceeds ME	CP Table 7 star	ndard		

Concentrations of 1,4-Dichlorobenzene, hexane, toluene and xylenes were identified in soil Samples MW4-SS1 and MW5-SS1. No other parameters were identified in the samples analysed. The concentration of 1,4-Dichlorobenzene (0.91 μ g/g) identified in Sample MW5-SS1 exceeds the MECP Table 7 standard value. The remaining concentrations identified comply with the MECP Table 7 standards.

Table 10: An	alytical	Test Resu	lts – Soil (N	<i>l</i> letals)				
Parameter	MDL (µg/g)		Soil Samples (µg/g) December 11, 2019					
		MW4-SS1	MW5-SS1	DUP-3	MW6-SS1	Standards (µg/g)		
Antimony	1.0	<0.2	2.3	<0.2	<0.2	7.5		
Arsenic	1.0	3.6	1.9	2.4	3.3	18		
Barium	1.0	120	<u>430</u>	330	290	390		
Beryllium	1.0	0.21	0.31	0.26	0.25	4		
Boron	1.0	8.2	9.8	8.9	7.9	120		
Cadmium	0.5	<0.1	<0.1	<0.1	<0.1	1.2		
Chromium	1.0	8.8	10	9.6	9.4	160		
Cobalt	1.0	<u>28</u>	15	7.1	5.0	22		
Copper	1.0	57	29	13	8.1	140		
Lead	1.0	11	20	16	22	120		
Mercury	0.1	0.057	< 0.05	< 0.05	< 0.05	0.27		
Molybdenum	1.0	1.8	1.7	1.2	1.6	6.9		
Nickel	1.0	8.9	12	9.5	9.4	100		
Selenium	1.0	<0.5	<0.5	<0.5	<0.5	2.4		
Silver	0.5	<0.2	0.21	<0.2	<0.2	20		
Thallium	1.0	0.098	0.36	0.066	0.085	1		
Uranium	1.0	0.67	0.44	0.53	0.56	23		
Vanadium	1.0	7.8	6.9	9.8	8.6	86		
Zinc	1.0	15	26	22	23	340		
Notes: MDL – Meth nd – not det	od Detectio	on Limit ve the MDL						

Bold – parameter concentration exceeds the MECP Table 7 standard

Barium and cobalt concentrations in soil samples MW5-SS1 and MW4-SS1, respectively, exceed the selected standards. All other metal parameter concentrations identified in the soil samples analyzed comply with the MECP Table 7 Residential Standards.

The maximum concentrations of analyzed parameters in the soil at the site are summarized below in Table 11.

Parameter	Maximum	Borehole	Depth Interval
	Concentration		(m BGS)
	(µq/q)		(,
Toluene	0.033	MW4-SS1	0.036-0.61; Fill
Xylene	0.14	BH1-SS1	0.036-0.61; Fill
PHC F1	11	BH1-SS1	0.036-0.61; Fill
Benzo[a]anthracene	0.017	BH1-SS1	0.036-0.61; Fill
Benzo[a]pyrene	0.019	BH1-SS1	0.036-0.61; Fill
Benzo[b]fluoranthene	0.028	BH1-SS1	0.036-0.61; Fill
Benzo[g,h,i]perylene	0.014	BH1-SS1	0.036-0.61; Fill
Benzo[k]fluoranthene	0.0096	BH1-SS1	0.036-0.61; Fill
Chrysene	0.018	BH1-SS1	0.036-0.61; Fill
Fluoranthene	0.034	BH1-SS1	0.036-0.61; Fill
Indeno[1,2,3-cd]pyrene	0.014	BH1-SS1	0.036-0.61; Fill
Phenanthrene	0.027	DUP-1 (BH1-SS1)	0.036-0.61; Fill
Pyrene	0.031	BH1-SS1	0.036-0.61; Fill
1,4-Dichlorobenzene	<u>0.91</u>	MW5-SS1	0.036-0.46; Fill
Hexane	0.26	MW5-SS1	0.036-0.46; Fill
Toluene	0.033	MW4-SS1	0.036-0.61; Fill
Xylenes	0.10	MW4-SS1	0.036-0.61; Fill
Antimony	2.3	MW5-SS1	0.036-0.46; Fill
Arsenic	3.6	MW4-SS1	0.036-0.61; Fill
Barium	430	MW5-SS1	0.036-0.46; Fill
Beryllium	0.31	MW5-SS1	0.036-0.46; Fill
Boron	9.8	MW5-SS1	0.036-0.46; Fill
Chromium	10	MW5-SS1	0.036-0.46; Fill
Cobalt	28	MW4-SS1	0.036-0.61; Fill
Copper	57	MW4-SS1	0.036-0.61; Fill
Lead	22	MW6-SS1	0.0-0.46; Fill
Mercury	0.057	MW4-SS1	0.036-0.61; Fill
Molybdenum	1.8	MW4-SS1	0.036-0.61; Fill
Nickel	12	MW5-SS1	0.036-0.46; Fill
Thallium	0.36	MW5-SS1	0.036-0.46; Fill
Uranium	0.67	MW4-SS1	0.036-0.61; Fill
Vanadium	9.8	DUP-3 (MW5-SS1)	0.036-0.46; Fill
Zinc	26	MW5-SS1	0.036-0.46; Fill

All other parameter concentrations were below laboratory detection limits.

5.6 Groundwater Quality

Groundwater samples recovered from monitoring wells installed in MW3 through MW10, were submitted for analytical testing of a combination of BTEX or VOC, PHC, PAH, PCB, metals and mercury parameters by Pinchin (January, February 2020).

Groundwater samples recovered from MW5, MW6, MW8 and BH1A-20 by Paterson during subsequent 2020 sampling events, were submitted for analytical testing of a combination of BTEX or VOC and PHCs.

Groundwater samples were obtained from the screened intervals noted on Table 2. The results of the analytical testing are presented below in Tables 12, 13, 14 and 15. The laboratory Certificates of Analysis are provided in Appendix 1.

Table 12: Analytical Test Results (Pinchin) Groundwater (BTEX and PHCs)							
Parameter	MDL (µg/L)		Groundv Ja	vater Samp nuary 15, 2	oles (µg/L) 2020		MECP Table 7 Standards
	u 3 /	MW3	MW4	DUP-4	MW5	MW6	(µg/L)
Benzene	0.5	nd	nd	nd	nd	nd	0.5
Ethylbenzene	0.5	nd	nd	nd	nd	nd	54
Toluene	0.5	nd	nd	nd	nd	nd	320
Xylenes	0.5	nd	nd	nd	nd	nd	72
PHC F1	25	<25	<25	<25	120	<25	420
PHC F2	100	<100	<100	<100	<u>1,800</u>	120	150
PHC F3	100	<200	<200	<200	22,000	900	500
PHC F4	100	<200	<200	<200	<200	<200	500
Notes: MDL – nd – nc Bold –	Method De t detected	etection Lim above the l	iit MDL selected N	MECP Stand	ards		

Table 12 Co Groundwate	Table 12 Continued: Analytical Test Results (Pinchin) Groundwater (BTEX and PHCs)							
Parameter	MDL (µg/L)	G	roundwater Januar	Samples (µç y 15, 2020	j/L)	MECP Table 7 Standards		
		MW7	MW8	MW9	MW10	(µg/L)		
Benzene	0.5	nd	nd	nd	nd	0.5		
Ethylbenzene	0.5	nd	nd	nd	nd	54		
Toluene	0.5	nd	nd	nd	nd	320		
Xylenes	0.5	nd	nd	nd	nd	72		
PHC F1	25	<25	NA	NA	<25	420		
PHC F2	100	<100	NA	NA	<100	150		
PHC F3	100	<200	NA	NA	<200	500		
PHC F4	100	<200	NA	NA	<200	500		
Notes: MDL –	Method De	etection Limit						

not detected above the MDL

NA – parameter not analyzed

Petroleum hydrocarbon fractions F1, F2 and/or F3 were detected in groundwater Samples MW5 and MW6. The F2 and F3 concentrations identified in MW5 and the F3 concentrations identified in MW6 were in excess of the MECP Table 7 standards. The remaining concentrations identified in Samples MW5 and MW6 were in compliance with the MECP Table 7 standards. The remaining samples analysed were also in compliance with the remaining samples analysed.

Groundwat Parameter	Groundwater (PHCs, F2-F4)								
T uluiiotoi	(µg/L)	February 12, 2020	February 20, 2020	Standards					
		MW6	MW6	(µg/L)					
PHC F2	100	<100	<100	150					
PHC F3	100	<200	<200	500					
PHC F4	100	<200	<200	500					
PHC F4 100 <200 <200 500 Notes: Image: MDL – Method Detection Limit Image: MDL – Method Detection Limit Image: MDL – Method Detection Limit									

Groundwater samples were recovered from MW6 on two subsequent events (February 12 and February 20, 2020). Both samples were submitted for analysis of PHC (F2-F4) parameters for confirmatory purposes. Based on the analytical test results, PHC concentrations were not identified in either sample; the results comply with the MECP Table 7 Standards. It should be noted that these results cannot be relied upon as the full method group was not analysed (PHC, F1-F4).

Parameter	MDL (µg/L)	Ground	dwater Samples April 9, 2020	, (μg/L)	MECP Table 7 Standards			
		MW5-GW1	MW6-GW1	MW8-GW1	(μg/L)			
Benzene	0.5	nd	nd	nd	0.5			
Ethylbenzene	0.5	nd	nd	nd	54			
Toluene	0.5	nd	nd	nd	320			
Xylenes	0.5	nd	nd	nd	72			
PHC F1	25	nd	nd	nd	420			
PHC F2	100	200	nd	nd	150			
PHC F3	100	<u>2910</u>	nd	nd	500			
PHC F4	100	nd	nd	nd	500			
Notes: MDL – nd – no Bold– r	Notes: MDL – Method Detection Limit nd – not detected above the MDL Bold – parameter exceeds the selected MECP Standards							

As part of Paterson's field program, wells MW5 and MW6 were re-sampled to confirm the results obtained by Pinchin. Paterson also sampled MW8 as the Pinchin investigation did include the analysis of BTEX and PHCs for groundwater recovered from this location.

Based on the analytical test results, no BTEX or PHC parameters were identified in any of the samples analysed, with the exception of Sample MW5-GW1, in which concentrations of PHC F2 and PHC F3 exceeding the Table 7 standards were identified. Groundwater results obtained from MW6 and MW8 comply with the MECP Table 7 standards.

Table 12 Co Groundwate	Table 12 Continued: Analytical Test Results (Paterson) Groundwater (BTEX and PHCs)								
Parameter	MDL (µg/L)	<u> </u>	aroundwater S May 14, 2020	Samples (µg	/L) June 11, 2020	MECP Table 7 Standards			
		BH2-20- GW1	BH3-20- GW1	BH1A-20- GW1	(µg/L)				
Benzene	0.5	nd	nd	nd	nd	0.5			
Ethylbenzene	0.5	nd	nd	nd	nd	54			
Toluene	0.5	nd	nd	nd	nd	320			
Xylenes	0.5	nd	nd	nd	nd	72			
PHC F1	25	nd	nd	nd	nd	420			
PHC F2	100	nd	nd	nd	nd	150			
PHC F3	100	nd	nd	nd	nd	500			
PHC F4	100	nd	nd nd nd 5						
Notes: MDL – nd – nd	Method Do	etection Limit above the MDI							

No BTEX or PHC concentrations were identified in the samples analysed. Results comply with the MECP Table 7 Standards.

Table 12 Continued: Analytical Test Results – Paterson Groundwater (BTEX and PHCs)								
Parameter	MDL	Groun	dwater Samples	(µg/L)	MECP			
	(µg/L)	ıg/L) November 5, November 20, December 11,						
		2020	2020	2020	Standards			
		MW5-GW1	MW5-GW2	BH4-20-GW1	(µg/L)			
Benzene	0.5	nd	nd	nd	0.5			
Ethylbenzene	0.5	nd	nd	nd	54			
Toluene	0.5	nd	nd	nd	320			
Xylenes	0.5	nd	nd	nd	72			
PHC F1	25	nd	nd	nd	420			
PHC F2	100	nd	nd	nd	150			
PHC F3	100	nd	nd	nd	500			
PHC F4	100	nd	nd	nd	500			
Notes:								
🗖 MDL –	Method De	etection Limit						
🗖 nd – no	t detected	above the MDL						

Monitoring well MW5 was re-sampled in conjunction with the soil remediation and bedrock removal program which was implemented in November 2020 and is further discussed under separate cover. No BTEX or PHC parameters were identified either sample; the test results comply with the MECP Table 7 standards.

Groundwater from BH4-20 was sampled to confirm the quality of the groundwater below MW5. No BTEX or PHC concentrations were identified; the results comply with the MECP Table 7 standards

.

Table 13: Analytical Test Results – Pinchin							
Groundwater (PAHs)							
Parameter	MDL (µg/L)	Gro	oundwater Januar	Samples (y 15, 2020	µg/L)	MECP Table 7 Standards	
		MW3	MW4	DUP-4	MW5	(µg/L)	
Acenaphthene	0.05	nd	nd	nd	nd	17	
Acenaphthylene	0.05	nd	nd	nd	nd	1	
Anthracene	0.05	nd	nd	nd	0.18	1	
Benzo[a]anthracene	0.05	nd	nd	nd	nd	1.8	
Benzo[a]pyrene	0.01	nd	nd	nd	nd	0.81	
Benzo[b]fluoranthene	0.05	nd	nd	nd	nd	0.75	
Benzo[g,h,i]perylene	0.05	nd	nd	nd	nd	0.2	
Benzo[k]fluoranthene	0.05	nd	nd	nd	nd	0.4	
Chrysene	0.05	nd	nd	nd	nd	0.7	
Dibenzo[a,h]anthracene	0.05	nd	nd	nd	nd	0.4	
Fluoranthene	0.05	nd	nd	nd	nd	44	
Fluorene	0.05	nd	nd	nd	nd	290	
Indeno[1,2,3-cd]pyrene	0.05	nd	nd	nd	nd	0.2	
1-Methylnaphthalene	0.05	nd	nd	nd	nd	1500	
2-Methylnaphthalene	0.05	nd	nd	nd	nd	1500	
Naphthalene	0.05	nd	nd	nd	nd	7	
Phenanthrene	0.03	nd	nd	nd	nd	380	
Pyrene	0.05	nd	nd	nd	nd	5.7	
Notes:		imit					

MDL – Method Detection Limit

□ nd – not detected above the MDL

Table 13 Continued: Analytical Test Results – Pinchin Groundwater (PAHs)

Parameter	MDL		Groundwater Samples (µg/L)					
	(µg/L)	January 15, 2020		March 12, 2021	Table 7			
		MW6	MW7	MW10	MW8	Standards (µg/L)		
Acenaphthene	0.05	nd	nd	nd	nd	17		
Acenaphthylene	0.05	nd	nd	nd	nd	1		
Anthracene	0.05	nd	nd	0.18	nd	1		
Benzo[a]anthracene	0.05	nd	nd	nd	nd	1.8		
Benzo[a]pyrene	0.01	nd	nd	nd	nd	0.81		
Benzo[b]fluoranthene	0.05	nd	nd	nd	nd	0.75		
Benzo[g,h,i]perylene	0.05	nd	nd	nd	nd	0.2		
Benzo[k]fluoranthene	0.05	nd	nd	nd	nd	0.4		
Chrysene	0.05	nd	nd	nd	nd	0.7		
Dibenzo[a,h]anthracene	0.05	nd	nd	nd	nd	0.4		
Fluoranthene	0.05	nd	nd	nd	nd	44		
Fluorene	0.05	nd	nd	nd	nd	290		
Indeno[1,2,3-cd]pyrene	0.05	nd	nd	nd	nd	0.2		
1-Methylnaphthalene	0.05	nd	nd	0.23	nd	1500		
2-Methylnaphthalene	0.05	nd	nd	nd	nd	1500		
Naphthalene	0.05	nd	nd	0.07	nd	7		
Phenanthrene	0.03	nd	nd	nd	nd	380		
Pyrene	0.05	nd	nd	nd	nd	5.7		
Notes: MDL – Method I nd – not detecte	Detection I d above tl	Limit ne MDL						

Several PAH parameters were identified in groundwater Samples MW5 and MW10, at concentrations below the MECP Table 7 standards. Otherwise, no PAH concentrations were identified in the samples analysed. The results comply with the MECP Table 7 standards.

Parameter	MDL	Groundw	ater Samp	MECP Table 7	
	(µg/L)	Jan	uary 15, 2	Standards	
		MW3	MW4	DUP-4	(µg/L)
Acetone	5.0	nd	nd	nd	100000
Benzene	0.5	nd	nd	nd	0.5
Bromodichloromethane	0.5	nd	nd	nd	67000
Bromoform	0.5	nd	nd	nd	5
Bromomethane	0.5	nd	nd	nd	0.89
Carbon Tetrachloride	0.2	nd	nd	nd	0.2
Chlorobenzene	0.5	nd	nd	nd	140
Chloroform	0.5	nd	0.56	0.67	2
Dibromochloromethane	0.5	nd	nd	nd	65000
Dichlorodifluoromethane	1.0	nd	nd	nd	3500
1,2-Dichlorobenzene	0.5	nd	nd	nd	150
1,3-Dichlorobenzene	0.5	nd	nd	nd	7600
1,4-Dichlorobenzene	0.5	nd	nd	nd	0.5
1,1-Dichloroethane	0.5	nd	nd	nd	11
1,2-Dichloroethane	0.5	nd	nd	nd	0.5
1.1-Dichloroethylene	0.5	nd	nd	nd	0.5
cis-1.2-Dichloroethylene	0.5	nd	nd	nd	1.6
trans-1.2-Dichloroethylene	0.5	nd	nd	nd	1.6
1.2-Dichloropropane	0.5	nd	nd	nd	0.58
1.3-Dichloropropene, total	0.5	nd	nd	nd	0.5
Ethvlbenzene	0.5	nd	nd	nd	54
1. 2-dibromoethane	0.2	nd	nd	nd	0.2
Hexane	1.0	nd	nd	nd	5
Methyl Ethyl Ketone (2-Butanone)	5.0	nd	nd	nd	21000
Methyl Isobutyl Ketone	5.0	nd	nd	nd	5200
Methvl tert-butyl ether	2.0	nd	nd	nd	15
Methvlene Chloride	5.0	nd	nd	nd	26
Stvrene	0.5	nd	nd	nd	43
1.1.1.2-Tetrachloroethane	0.5	nd	nd	nd	1.1
1.1.2.2-Tetrachloroethane	0.5	nd	nd	nd	0.5
Tetrachloroethylene	0.5	nd	nd	nd	0.5
Toluene	0.5	nd	nd	nd	320
1.1.1-Trichloroethane	0.5	nd	nd	nd	23
1.1.2-Trichloroethane	0.5	nd	nd	nd	0.5
Trichloroethvlene	0.5	nd	nd	nd	0.5
Trichlorofluoromethane	1.0	nd	nd	nd	2000
Vinvl Chloride	0.5	nd	nd	nd	0.5
Xylenes, total	0.5	nd	nd	nd	72
Notes: MDL – Method Detection L	_imit			<u> </u>	

nd – not detected above the MDL

Table 14 Continued: Analytical Test Results – Pinchin Groundwater (VOCs)							
Parameter	MDL (µg/L)	Groundw Jar	MECP Table 7 Standards				
		MW5	MW6	MW7	(µg/L)		
Acetone	5.0	nd	nd	nd	100000		
Benzene	0.5	nd	nd	nd	0.5		
Bromodichloromethane	0.5	nd	nd	nd	67000		
Bromoform	0.5	nd	nd	nd	5		
Bromomethane	0.5	nd	nd	nd	0.89		
Carbon Tetrachloride	0.2	nd	nd	nd	0.2		
Chlorobenzene	0.5	nd	nd	nd	140		
Chloroform	0.5	nd	0.28	0.41	2		
Dibromochloromethane	0.5	nd	nd	nd	65000		
Dichlorodifluoromethane	1.0	nd	nd	nd	3500		
1,2-Dichlorobenzene	0.5	nd	nd	nd	150		
1,3-Dichlorobenzene	0.5	nd	nd	nd	7600		
1,4-Dichlorobenzene	0.5	nd	nd	nd	0.5		
1,1-Dichloroethane	0.5	nd	nd	nd	11		
1,2-Dichloroethane	0.5	nd	nd	nd	0.5		
1,1-Dichloroethylene	0.5	nd	nd	nd	0.5		
cis-1,2-Dichloroethylene	0.5	nd	nd	nd	1.6		
trans-1,2-Dichloroethylene	0.5	nd	nd	nd	1.6		
1,2-Dichloropropane	0.5	nd	nd	nd	0.58		
1,3-Dichloropropene, total	0.5	nd	nd	nd	0.5		
Ethylbenzene	0.5	nd	nd	nd	54		
1, 2-dibromoethane	0.2	nd	nd	nd	0.2		
Hexane	1.0	nd	nd	nd	5		
Methyl Ethyl Ketone (2-Butanone)	5.0	nd	nd	nd	21000		
Methyl Isobutyl Ketone	5.0	nd	nd	nd	5200		
Methyl tert-butyl ether	2.0	nd	nd	nd	15		
Methylene Chloride	5.0	nd	nd	nd	26		
Styrene	0.5	nd	nd	nd	43		
1,1,1,2-Tetrachloroethane	0.5	nd	nd	nd	1.1		
1,1,2,2-Tetrachloroethane	0.5	nd	nd	nd	0.5		
Tetrachloroethylene	0.5	nd	nd	nd	0.5		
Toluene	0.5	nd	nd	nd	320		
1,1,1-Trichloroethane	0.5	nd	nd	nd	23		
1,1,2-Trichloroethane	0.5	nd	nd	nd	0.5		
Trichloroethylene	0.5	nd	nd	nd	0.5		
Trichlorofluoromethane	1.0	nd	nd	nd	2000		
Vinyl Chloride	0.5	nd	nd	nd	0.5		
Xylenes, total	0.5	nd	nd	nd	72		
Notes: MDL – Method Detection Lim	iit						
\Box nd – not detected above the	MDL						

r

Parameter	MDL (µg/L)	Groundw Jar	MECP Table 7 Standards			
		MW8	MW9	MW10	(µg/L)	
Acetone	5.0	nd	nd	nd	100000	
Benzene	0.5	nd	nd	nd	0.5	
Bromodichloromethane	0.5	nd	nd	nd	67000	
Bromoform	0.5	nd	nd	nd	5	
Bromomethane	0.5	nd	nd	nd	0.89	
Carbon Tetrachloride	0.2	nd	nd	nd	0.2	
Chlorobenzene	0.5	nd	nd	nd	140	
Chloroform	0.5	0.81	0.79	0.32	2	
Dibromochloromethane	0.5	nd	nd	nd	65000	
Dichlorodifluoromethane	1.0	nd	nd	nd	3500	
1,2-Dichlorobenzene	0.5	nd	nd	nd	150	
1,3-Dichlorobenzene	0.5	nd	nd	nd	7600	
1,4-Dichlorobenzene	0.5	nd	nd	nd	0.5	
1,1-Dichloroethane	0.5	nd	nd	nd	11	
1,2-Dichloroethane	0.5	nd	nd	nd	0.5	
1.1-Dichloroethylene	0.5	nd	nd	nd	0.5	
cis-1.2-Dichloroethylene	0.5	nd	nd	nd	1.6	
trans-1.2-Dichloroethylene	0.5	nd	nd	nd	1.6	
1.2-Dichloropropane	0.5	nd	nd	nd	0.58	
1.3-Dichloropropene, total	0.5	nd	nd	nd	0.5	
Ethylbenzene	0.5	nd	nd	nd	54	
1, 2-dibromoethane	0.2	nd	nd	nd	0.2	
Hexane	1.0	nd	nd	nd	5	
Methyl Ethyl Ketone (2-Butanone)	5.0	nd	nd	nd	21000	
Methyl Isobutyl Ketone	5.0	nd	nd	nd	5200	
Methyl tert-butyl ether	2.0	nd	nd	nd	15	
Methylene Chloride	5.0	nd	nd	nd	26	
Styrene	0.5	nd	nd	nd	43	
1,1,1,2-Tetrachloroethane	0.5	nd	nd	nd	1.1	
1,1,2,2-Tetrachloroethane	0.5	nd	nd	nd	0.5	
Tetrachloroethylene	0.5	nd	nd	nd	0.5	
Toluene	0.5	nd	nd	nd	320	
1,1,1-Trichloroethane	0.5	nd	nd	nd	23	
1,1,2-Trichloroethane	0.5	nd	nd	nd	0.5	
Trichloroethylene	0.5	nd	nd	nd	0.5	
Trichlorofluoromethane	1.0	nd	nd	nd	2000	
Vinyl Chloride	0.5	nd	nd	nd	0.5	
Xylenes, total	0.5	nd	nd	nd	72	
Notes: MDL – Method Detection Lin nd – not detected above the	nit MDI					

With the exception of chloroform, no VOC parameters were identified in any of the samples analysed during the Pinchin field program. Chloroform concentrations detected are below the MECP Table 7 standard of 2 μ g/L.

Parameter		Gro	Groundwater Samples (µg/L)					
	(µg/∟)	Jan.15/20	Jun.11/20	Nov.5/20	Nov.20/20	Standards		
		Trip Blank	BH1A-20- GW1	MW5-20- GW1	MW5-20- GW2	(µg/L)		
Acetone	5.0	nd	nd	nd	nd	100000		
Benzene	0.5	nd	nd	nd	nd	0.5		
Bromodichloromethane	0.5	nd	nd	nd	nd	67000		
Bromoform	0.5	nd	nd	nd	nd	5		
Bromomethane	0.5	nd	nd	nd	nd	0.89		
Carbon Tetrachloride	0.2	nd	nd	nd	nd	0.2		
Chlorobenzene	0.5	nd	nd	nd	nd	140		
Chloroform	0.5	nd	<u>7.1</u>	nd	nd	2		
Dibromochloromethane	0.5	nd	nd	nd	nd	65000		
Dichlorodifluoromethane	1.0	nd	7.2	nd	nd	3500		
1.2-Dichlorobenzene	0.5	nd	nd	nd	nd	150		
1.3-Dichlorobenzene	0.5	nd	nd	nd	nd	7600		
1.4-Dichlorobenzene	0.5	nd	nd	nd	nd	0.5		
1.1-Dichloroethane	0.5	nd	nd	nd	nd	11		
1.2-Dichloroethane	0.5	nd	nd	nd	nd	0.5		
1.1-Dichloroethylene	0.5	nd	nd	nd	nd	0.5		
cis-1.2-Dichloroethylene	0.5	nd	nd	nd	nd	1.6		
trans-1.2-Dichloroethylene	0.5	nd	nd	nd	nd	1.6		
1 2-Dichloropropane	0.5	nd	nd	nd	nd	0.58		
1.3-Dichloropropene. total	0.5	nd	nd	nd	nd	0.5		
Fthvlbenzene	0.5	nd	nd	nd	nd	54		
1 2-dibromoethane	0.2	nd	nd	nd	nd	0.2		
Heyane	1.0	nd	nd	nd	nd	5		
Methyl Ethyl Ketone (2-Butanone)	5.0	nd	nd	nd	nd	21000		
Methyl Isobutyl Ketone	5.0	nd	nd	nd	nd	5200		
Methyl tert-butyl ether	2.0	nd	nd	nd	nd	15		
Methylene Chloride	5.0	nd	nd	nd	nd	26		
Styrene	0.5	nd	nd	nd	nd	43		
1.1.1.2-Tetrachloroethane	0.5	nd	nd	nd	nd	1.1		
1.1.2.2-Tetrachloroethane	0.5	nd	nd	nd	nd	0.5		
Tetrachloroethvlene	0.5	nd	nd	nd	nd	0.5		
Toluene	0.5	nd	nd	nd	nd	320		
1 1.1-Trichloroethane	0.5	nd	nd	nd	nd	23		
1 1 2-Trichloroethane	0.5	nd	nd	nd	nd	0.5		
Trichloroethylene	0.5	nd	nd	nd	nd	0.5		
Trichlorofluoromethane	1.0	nd	nd	nd	nd	2000		
Vinvl Chloride	0.5	nd	nd	nd	nd	0.5		
Village a tatal	0.0		nd	 	nd	72		

MDL – Method Detection Limit
 nd – not detected above the MDL
 Bold – parameter in excess of the selected MECP Table 7 standards
Chloroform and dichlorodifluoromethane parameters were identified in groundwater Sample BH1A-20-GW1. Otherwise VOC parameters were not detected above the laboratory method detection limits in any of the groundwater samples analyzed. The chloroform concentration of 7.1 μ g/gL identified in sample BH1A-20-GW1 exceeds the Table 7 standard of 2 μ g/L.

Based on the review of available historical information and the PCAs for the Phase II Property, chloroform is not a contaminant of potential concern (CPC) for the Phase II Property. Chloroform is considered to be in compliance with the applicable site condition standard as the source of chloroform is only associated with the use of water from a treated municipal water supply and all concentrations of chloroform in the groundwater samples on the Phase II Property are less than 10 μ g/L as listed in Table A of the MECP document entitled "Guidance for Addressing Chloroform at a Record of Site Condition Property."

The dichlorodifluoromethane concentration of 7.2 μ g/L is well below the MECP Table 7 standard of 3,500 μ g/L.

As such, the groundwater results comply with the MECP Table 7 standards for VOC parameters.

Parameter	MDL	Groundwater Samples (µg/L)					MECP Table
	(µg/L)		January 15, 2020 March 12, 2021				7 Standards
		MW4	DUP-4	MW5	MW6	MW3	(µg/L)
Antimony	0.5	nd	0.72	nd	nd	na	20000
Arsenic	1	nd	nd	nd	nd	na	1900
Barium	1	180	180	92	280	na	29000
Beryllium	0.5	nd	nd	nd	nd	na	67
Boron	10	84	86	97	75	na	45000
Cadmium	0.1	nd	nd	nd	nd	na	2.7
Chromium	1	nd	nd	nd	nd	na	810
Cobalt	0.5	4.3	4.3	19	nd	na	66
Copper	0.5	2.9	4.4	2.6	3.8	na	87
Lead	0.1	nd	nd	nd	nd	na	25
Mercury	0.1	nd	nd	nd	nd	na	0.1
Molybdenum	0.5	11	11	5.8	7.5	na	9200
Nickel	1	5.7	5.8	9.1	3.0	na	490
Selenium	1	nd	nd	nd	2.3	na	63
Silver	0.1	nd	nd	nd	nd	na	1.5
Sodium	200	1500000	1500000	1100000	1800000	na	2300000
Thallium	0.1	nd	nd	nd	nd	na	510
Uranium	0.1	1.8	1.9	2.2	3.1	na	420
Vanadium	0.5	nd	nd	nd	nd	na	250
Zinc	5	nd	5.9	nd	6.2	na	1100
PCBs	0.05	nd	nd	nd	nd	nd	0.2
Notes: MDL – Method Detection Limit na – not analyzed nd – not detected above the MDI							

Metals parameters were detected in each of the groundwater samples analysed. The detected concentrations comply with the MECP Table 7 standards. No PCB concentrations were detected in the samples analysed. The groundwater results for both metals and PCB parameters are in compliance with the MECP Table 7 standards.

The maximum concentrations of analyzed parameters in the groundwater at the site are summarized below in Table 16.

Table 16: Maximum Concentrations – Groundwater			
Parameter	Maximum Concentration (µg/L)	Borehole	Screened Interval (m BGS)
Anthracene	0.18	MW10	1.26-3.66
1-Methylnaphthalene	0.23	MW10	1.26-3.66
Naphthalene	0.07	MW10	1.26-3.66
Chloroform	<u>7.1</u>	BH1A-20-GW1	1.42-4.42
Dichlorodifluoromethane	7.2	BH1A-20-GW1	1.42-4.42
Antimony	0.72	DUP-4 (MW4)	1.57-4.57
Barium	280	MW6	1.25-3.65
Boron	97	MW5	1.2-3.66
Cobalt	4.3	MW4 (DUP-4)	1.57-4.57
Copper	4.4	DUP-4 (MW4)	1.57-4.57
Molybdenum	11	MW4 (DUP-4)	1.57-4.57
Nickel	9.1	MW5	1.2-3.66
Selenium	2.3	MW6	1.25-3.65
Sodium	1800000	MW6	1.25-3.65
Uranium	3.1	MW6	1.25-3.65
Zinc	6.2	MW6	1.25-3.65
Notes: Bold and underline	- parameter exceeds the	MECP Table 7 standard	

All other parameter concentrations were below laboratory detection limits. As discussed previously, chloroform is not considered to be a contaminant of concern.

5.7 Quality Assurance and Quality Control Results

All samples submitted during both the Pinchin and Paterson field programs and groundwater sampling events were handled in accordance with the Analytical Protocol with respect to holding time, preservation method, storage requirement, and container type.

As per Subsection 47(3) of O.Reg. 153/04, as amended, a Certificate of Analysis has been received for each sample submitted for analysis. The Certificates of Analysis are appended to this report.

Duplicate soil samples DUP-1 (BH1-SS1), DUP-2 (MW4-SS1) and DUP-3 (MW5-SS1) were analyzed for BTEX, PHCs, PCBs, VOCs and/or metals. Test results above the MDL for the duplicate soil samples and RPD calculations are provided below in Table 17.

TABLE 17: QA/QC Results –Soils (BTEX, PHCs, VOCs)					
Parameter	BH1-SS1	DUP-1	RPD (%)	QA/QC Results	
Toluene	0.1	0.024	123	Outside the acceptable range	
Xylene	0.14	0.046	101	Outside the acceptable range	
PHC F1	11	10	10	Within the acceptable range	
Benzo[a]anthracene	0.017	0.012	34	Outside the acceptable range	
Benzo[a]pyrene	0.019	0.012	45	Outside the acceptable range	
Benzo[b]fluoranthene	0.028	0.018	43	Outside the acceptable range	
Benzo[g,h,i]perylene	0.014	0.0083	51	Outside the acceptable range	
Benzo[k]fluoranthene	0.0096	0.0062	43	Outside the acceptable range	
Chrysene	0.018	0.012	40	Outside the acceptable range	
Fluoranthene	0.034	0.025	31	Outside the acceptable range	
Indeno[1,2,3-cd]pyrene	0.014	0.0083	51	Outside the acceptable range	
Phenanthrene	0.023	0.027	16	Within the acceptable range	
Pyrene	0.031	0.021	38	Outside the acceptable range	

TABLE 17 Continued: QA/QC Results –Soils (Metals)				
Parameter	MW5-SS1	DUP-3	RPD (%)	QA/QC Results
Arsenic	0.5	2.15	23	Outside the acceptable range
Barium	100	380	26	Outside the acceptable range
Beryllium	0.05	0.285	18	Within the acceptable range
Boron	0.9	9.35	10	Within the acceptable range
Chromium	0.4	9.8	4	Within the acceptable range
Cobalt	7.9	11.05	71	Outside the acceptable range
Copper	16	21	76	Outside the acceptable range
Lead	4	18	22	Outside the acceptable range
Molybdenum	0.5	1.45	34	Outside the acceptable range
Nickel	2.5	10.75	23	Outside the acceptable range
Thallium	0.294	0.213	138	Outside the acceptable range
Uranium	0.09	0.485	19	Within the acceptable range
Vanadium	2.9	8.35	35	Outside the acceptable range
Zinc	4	24	17	Within the acceptable range

All other parameters analysed were not detected above their respective method detection limits.

The majority of the RPD results for soil samples and their duplicates, are outside the acceptable range. It is not uncommon that very small or very high concentrations or values will yield higher RPD values; in these cases, the RPD values calculated can be unreliable.

A duplicate groundwater sample DUP-4 (MW4) was analyzed for BTEX, PHCs, PCBs, VOCs and/or metals. Test results above the MDL for the duplicate soil samples and RPD calculations are provided below in Table 18.

TABLE 18: QA/QC Results – Groundwater (Metals)				
Parameter	MW4	DUP-4	RPD (%)	QA/QC Results
Chloroform	0.56	0.67	18	Within the acceptable range
Barium	180	180	0	Within the acceptable range
Boron	84	86	2	Within the acceptable range
Cobalt	4.3	4.3	0	Within the acceptable range
Copper	2.9	4.4	41	Outside the acceptable range
Molybdenum	11	11	0	Within the acceptable range
Nickel	5.7	5.8	2	Within the acceptable range
Sodium	1500000	1500000	0	Within the acceptable range
Uranium	1.8	1.9	5	Within the acceptable range

All other parameters analysed were not detected above their respective method detection limits.

The majority of the RPD results within the acceptable range, with the exception of that calculated for copper. It is not uncommon that very small or very high concentrations or values will yield higher RPD values, and as such, the RPD value is not an accurate measure in these cases.

A duplicate groundwater sample was also collected from BH3-20-GW1 during the sampling event conducted by Paterson on May 14, 2020. The original and duplicate samples were analysed for BTEX and PHC parameters; no concentrations were detected in the original or duplicate sample.

Based on the analytical laboratory results, it is our opinion that the overall quality of the field data collected during this Phase II-ESA is considered to be sufficient to meet the overall objectives of this assessment.

5.8 Phase II Conceptual Site Model

The following section has been prepared in accordance with the requirements of O.Reg. 153/0, as amended by the Environmental Protection Act. Conclusions and recommendations are discussed in a subsequent section.

Site Description

Potentially Contaminating Activity and Areas of Potential Environmental Concern

As presented in Table 1 in Section 2.2 of this report, PCAs that are considered to result in APECs on the Phase II Property discussed below:

APEC 1 – Existing AST: Based on the findings of the Pinchin Phase I ESA, a 1,250 L diesel AST (manufactured in 2009) associated with an adjacent emergency generator, is located on the second basement level of the subject building. According to the Phase I ESA, the historical review did not identify any records of spills for the Phase I Property, and no visual or olfactory evidence of leaks or stains within the generator room was reported. The AST is an on-site PCA resulting in an APEC on the northeastern portion of the Phase I Property. The associated chemicals of potential concern (CPCs) included BTEX and PHCs (F1-F4).

APEC 2 – Former heating oil AST: Based on the findings of the Phase I ESA, a former 15,141 L heating oil AST was formerly located within a tank room on the second basement level of the subject building. The Pinchin Phase I ESA did not report any signs of leakage or staining on the interior of the subject building. Based on a photo of the former tank room provided in the Phase I ESA report, some staining appeared to be present on the concrete floor; the concrete floor appeared to be in good condition with no obvious signs of pitting or cracks. No other potential migratory pathways, such as floor drains were noted within the stained area. The former AST is a former PCA resulting in an APEC on the south-central portion of the Phase II Property. The associated chemicals of potential concern (CPCs) include BTEX and PHCs (F1-F4).

APEC 3 – Transformer Vault:

Based on the findings of the Phase I ESA, a Hydro transformer vault is present on the first basement level of the subject building, above the former tank room (noted above). The transformer vault was not accessed at the time of the Phase I ESA for safety purposes. The transformer vault represents an on-site PCA resulting in an APEC on the south-central portion of the Phase II Property. The associated chemicals of potential concern (CPCs) include PHCs (F1-F4) and PCBs.

APEC 4 – Hazardous Wastes:

Based on the ERIS report and MECP FOI search results reviewed as part of the Pinchin Phase I ESA, several waste generator numbers were identified for the subject property. Generator numbers were registered for photo-processing wastes, halogenated solvents, light fuels and polychlorinated biphenyls, considered to be associated with office activities within the subject building. The generation of hazardous wastes on-site is considered to a PCA resulting in an APEC across the central and southern portions of the site (within the footprint of the subject building). Associated CPCs include BTEX, PHCs, PAHs, VOCs, PCBs, metals (including hydride-forming compounds) and mercury (Hg).

APEC 5 – Application of deicing salts for vehicular and pedestrian safety: Based on the findings of the Phase I ESA, it is considered likely that road salt was applied to the surface of the parking lot and access lanes (on the northern portion of the Phase II Property) for the safety of vehicular and pedestrian traffic under conditions of ice and/or snow.

According to Section 49.1 of O.Reg. 153/04, if an applicable site condition standard is exceeded at a property solely because of the following reason, the applicable site condition standard is deemed not to be exceeded for the purpose of Part XV.1 of the Act: "The qualified person has determined, based on a phase one environmental site assessment or a phase two environmental site assessment, that a substance has been applied to surfaces for the safety of vehicular or pedestrian traffic under conditions of snow or ice or both."

In accordance with Section 49.1 of O.Reg. 153/04, any EC and SAR concentrations on the RSC Property that exceed the MECP Table 3 standards for a residential/institutional land use are deemed *not to be exceeded* for the purpose of Part XV.1 of the Act. This exemption is being relied up for APEC 5.

APEC 6 – Fill material: Based on the findings of the 2019 Pinchin Phase II ESA, fill material is present beneath the concrete slab of the building. The fill material is considered to have been imported for construction purposes and consists largely of engineered fill material mixed with clayey silty sand at some locations; at other locations, the fill material consists only of crushed stone with no soil matrix.

No visual or olfactory evidence of potential contamination (such as deleterious material or staining) was noted in the fill material during the field program. The importation of fill material of unknown quality is considered to be a PCA resulting in an APEC across the majority of the Phase II Property, primarily within the building footprint. Associated chemicals of potential concern (CPCs) are metals (including As, Sb, Se) and Hg.

APEC 7 – Former Dry Cleaning Facility: Based on the findings of the Pinchin Phase I ESA, a possible former dry-cleaning facility (where chemicals were used) was present on the adjacent property to the east (447 Albert Street). The former cleaners is an off-site PCA considered to result in an APEC along the eastern portion of the Phase II Property.

APEC 8 – Former Off-Site Manufacturing Facility and Dry Cleaner: Based on the findings of the Pinchin Phase I ESA, a former car manufacturing facility was present at 422-425 Slater Street and a former dry cleaner was present at 200-202 Bay Street. Although these properties are 95m and 125m away from the Phase I Property, they were considered by Pinchin to represent an APEC on the Phase II Property based on their up-gradient orientation relative to the subject land.

The off-site PCAs considered to result in APECs on the Phase II Property are shown in red on Figure 5 appended to the Pinchin Phase I ESA report.

Remaining off-site PCAs identified are not considered to result in APECs on the Phase I Property based on their respective separation distances and/or cross- or down-gradient orientations relative to the Phase II Property. These off-site PCAs are shown in green on Figure 5 appended to the Pinchin Phase I ESA report.

Contaminants of Potential Concern

Based on the APECs identified on the Phase II Property, the contaminants of potential concern (CPCs) are:

(CPCs) in soil and/or groundwater include:

- Benzene, Toluene, Ethylbenzene, and Xylenes (BTEX);
- Petroleum hydrocarbons (PHCs, Fractions F1-F4);
- Polycyclic aromatic hydrocarbons (PAHs);
- Polychlorinated Biphenyls (PCBs);
- □ Volatile organic compounds (VOCs); and
- □ Metals including Mercury (Hg).

Subsurface Structures and Utilities

The subject building has two (2) basement levels. Based on the findings of the Phase I ESA, the following pits were present on the lowest basement level of the subject structure:

- stormwater sump: present in the northwest portion of the basement and is inferred to capture storm water from a weeping tile system located around the subject building foundation;
- sanitary sump is located in the southwest portion basement;
- concrete pit in the former tank room on the lowest basement; and
- and elevator pit in the central portion of the basement.

No other subsurface structures were present on the Phase II Property.

Subsurface utilities on the Phase II Property include sanitary and storm sewers, a municipal water service, electrical services and telephone lines. Due to the shallow nature of the soil on the RSC Property, service trenches may have been excavated into the upper layer of the bedrock. In general, trench backfill may provide a preferential pathway for contaminant transport if the water table is at or above the base of the trenches.

Based on the findings of the Phase II ESA, underground services are not considered to have created preferential pathways for contaminant migration.

Physical Setting

Site Stratigraphy

The site stratigraphy, from ground surface to the deepest aquifer or aquitard investigated, is illustrated on Drawings PE4908-4A-D through PE4908-9A-D – Cross Sections A-A' through D-D'. Site stratigraphy consists of:

Engineered fill material was encountered beneath the concrete floor slab in boreholes BH1, MW-4, MW-5, MW-6, MW-7, BH1-20, BH2-20 and BH3-20. The fill material consisted largely of crushed stone mixed to varying degrees with clayey silty sand. The fill extended to depths ranging from 0.18 to 0.91 m below the ground surface (mbgs). Groundwater was not encountered in this stratigraphic layer. □ Limestone bedrock was encountered beneath the concrete slab (BH2, MW-3) and/or granular fill material. Boreholes were terminated in this layer at depths ranging from 3.66 to 6.14 mbgs. Groundwater was encountered in this stratigraphic unit.

Hydrogeological Characteristics

Groundwater at the Phase II Property was encountered in the bedrock. This unit is considered to a local.

Water levels recorded at the subject site on April 9, 2020 and November 24, 2020, measured between 1.23 to 3.65 m below the basement floor slab. Groundwater contour mapping was completed based on the findings of the November 24, 2020 sampling event, and the horizontal hydraulic gradient for the subject site was calculated. Groundwater flow at the subject site was in a westerly direction, with a hydraulic gradient of approximately 0.25 m/m.

Approximate Depth to Bedrock

Bedrock is present at depths ranging from approximately 0.15 to 0.91 m below basement floor slab.

Approximate Depth to Water Table

Depth to water table at the subject site varies between approximately 1.23 to 3.65 m below the basement floor slab.

Sections 41 and 43.1 of the Regulation

Section 41 of the Regulation (Site Condition Standards, Environmentally Sensitive Areas) does not apply to the subject site as the Phase II Property is not within 30m of an environmentally sensitive area. The pH of the shallow soil is between 5 and 9. As noted below, the site is a shallow soil property and therefore no subsurface soil was available for pH testing.

Section 43.1 of the Regulation does apply to the subject site in that the subject site is a Shallow Soil Property.

Proposed Buildings and Other Structures

It is our understanding that floors 2 through 11 of the existing subject structure are to be renovated/rehabilitated as residential units, while the ground floor units will remain commercial in nature. Based on the change to a more sensitive land use, a Record of Site Condition will be required.

Existing Buildings and Structures

The Phase II Property is occupied by a vacant, 11-storey commercial office building with and underpass to the underground parking garage. No other above grade buildings or structures are present on the Phase II Property.

Water Bodies and Areas of Natural Significance

There are no water bodies or areas of natural significance present on the Phase II Property or within the 250m study area.

Environmental Condition

Areas Where Contaminants are Present

Soil – APEC 5

Based on the findings of the Pinchin field program, 1,4-Dichlorobenzene and barium were identified at concentrations exceeding MECP Table 7 standards at MW-5 located on the northwest portion of the Phase II Property. Cobalt was identified at a concentration exceeding the MECP Table 7 standard at MW-4 on the central portion of the site. These exceedances were identified in the fill material; at these borehole locations the fill material consisted of crushed stone mixed with varying quantities of a sandy clay soil. The impacts are confined to the overburden, as determined by vertical delineation, and discussed in a following section of the CSM.

Groundwater – APEC 5 and APEC 6

Groundwater testing conducted by Pinchin in January of 2020 identified PHC (F2 and/or F3) concentrations exceeding the MECP Table 7 standards, in groundwater samples recovered from MW-5 and MW-6. Groundwater testing conducted by Paterson in June of 2020 identified a chloroform concentration exceeding the MECP Table 7 standard in a groundwater sample recovered from BH1A-20.

Monitoring Well MW-5

Pinchin test results identified concentrations of PHC F2 (1,800 μ g/L) and PHC F3 (22,000 μ g/L) in the groundwater recovered from MW-5 in January of 2020. It should be noted that field notes pertaining to Pinchin staff sampling observations were not provided to Paterson for review. Based on a review of the laboratory Certificates of Analysis sample matrix interference was noted for the sample recovered from MW-5, suggesting sediment was present in the sample.

To confirm the findings of the Pinchin results, Paterson recovered a groundwater sample from MW-5 on April 9, 2020. The groundwater sample was analysed for BTEX and PHC (F1-F4). The analytical test results identified concentrations of PHC F2 (200 μ g/L) and PHC F3 (2,910 μ g/L) at concentrations exceeding the MECP Table 7 standards, yet significantly below the initial concentrations obtained by Pinchin. No free product was identified during the sampling event and no evidence of PHC odour or sheen was noted on the purge water.

A Remedial Action Plan was implemented to address the soil impacts in the vicinity of MW-5 and MW-4. As part of the RAP bedrock trench was excavated to a depth of approximately 2m below the basement floor slab, to intercept the top of the groundwater table to observe and ultimately pump any impacted groundwater. In conjunction with the remediation program groundwater from MW-5 was sampled 2 additional times, on November 5 and 20th, 2020, and submitted for analytical testing of VOC and PHCs. Based on the analytical test results, no VOC or PHC concentrations were identified in the samples.

Given the sound quality of the bedrock, groundwater was not observed to infiltrate within the bedrock trench excavated adjacent to MW-5. To confirm the groundwater quality at a lower elevation, BH4-20 was drilled within the trench to a depth of approximately 6.15m below the basement floor slab, approximately 2.5m below MW. A groundwater sample recovered on December 11, 2020 was submitted for analytical testing VOC and PHC parameters; no parameters concentrations were identified above the laboratory method detection limits. No free product was identified during the sampling event. No visual or olfactory indications of petroleum hydrocarbon contamination were observed on the purge water during the sampling event.

For the reasons provided below, it is the opinion of the QP that the groundwater at MW-6 complies with the MECP Table 7 standards:

- The November and December 2020 analytical test results obtained by Paterson at MW-5 did not detect any PHC concentrations above the laboratory method detection limits;
- No visual or olfactory indications of potential petroleum hydrocarbon contamination were observed at MW-5 during any of the sampling events carried out by Paterson;
- PHC concentrations were not detected at concentrations exceeding the laboratory method detection limits at any of the nearby surrounding wells;
- □ The absence of a nearby source of PHCs;

The probability that sediment was present in the initial samples obtained from MW-5 in January and April of 2020. Sediment has been documented to affect PHC fractions identified in groundwater samples. Furthermore, it is the QPs opinion that if the concentrations of PHCs reported were present in the groundwater, visual and/or olfactory signs evidence of PHCs would have been observed on the purge water during the sampling events.

Monitoring Well MW-6

Pinchin test results identified concentrations of PHC F3 (900 µg/L) in the groundwater recovered from MW-5 in January of 2020. Pinchin conducted two additional rounds of groundwater sampling at MW6 in February of 2020; both groundwater samples were submitted for analytical testing of PHC F2 through F4. No concentrations were detected during either sampling event. Given the samples recovered from MW6 by Pinchin in February 2020 were not analysed for the full PHC Method Group (PHC F1-F4), Paterson carried out two subsequent sampling events on April 9, 2020 and June 2, 2020. The groundwater samples recovered from MW6 were analysed for BTEX and PHCs (F1-F4); no detectable concentrations were reported above the laboratory method detection limits. Given the analytical test results in combination with observations made at the time of the Paterson sampling events, during which no free product, hydrocarbon sheen or odour were noted on the purge water, it is the opinion of the QP that the January 2020 results obtained by Pinchin were not representative of the groundwater at MW6 at that time. The groundwater at MW6 is considered to comply with the MECP Table 7 standards.

Monitoring Well MW-1A-20

A concentration of chloroform (7.1 μ g/L) was identified in the groundwater recovered from BH1A-20; the concentration exceeds the MECP Table 7 standard of 2 μ /L.

The source of the chloroform concentration is considered to have been the use of municipal groundwater during the rock coring process for the installation of monitoring wells. Chloroform complies with the applicable site condition standard as the source of chloroform is only considered to be associated with the use of water from a treated municipal water supply and all concentrations of chloroform in the soil and groundwater samples on the Phase II Property are less than 3.1 μ g/g and 10 μ g/L as listed in Table A of the MECP document entitled "Guidance for Addressing Chloroform at a Record of Site Condition Property." **Chloroform is therefore not considered to be a contaminant of concern.**

The groundwater beneath the Phase II Property complies with the MECP Table 7 standards selected for the site. Analytical test results are presented in plan view on the following drawings:

- Drawing PE4908-7 Analytical Testing Plan Groundwater (Metals, Hg);
- Drawing PE4908-8 Analytical Testing Plan Groundwater (VOCs); and
- Drawing PE4980-9 Analytical Testing Plan Groundwater (BTEX, PHC, PAH and PCB).

Types of Contaminants

Based on the findings of the Phase II ESA, the following contaminants of concern (CPCs) are present in the fill (soil matrix) on the Phase II Property:

- **1**,4-Dichlorobenzene;
- Barium; and
- Cobalt.

The groundwater beneath the Phase II Property complies with the MECP Table 7 standards.

Contaminated Media

Based on the results of the Phase II ESA, the soil matrix within the fill material (crushed stone mixed with sandy clay) on the central and northeast portions of the Phase II Property are impacted with 1,4-Dichlorobenzene, barium and cobalt concentrations exceeding the MECP Table 7 standards.

The groundwater beneath the Phase II Property complies with the MECP Table 7 standards.

What Is Known About Areas Where Contaminants Are Present

APEC 5 and 6

The barium and cobalt concentrations identified in soil on the Phase II Property are considered to be associated with the fill material (APEC 5), and are most likely naturally occurring given the clayey nature of the soil matrix mixed with the crushed stone fill material.

The concentration of 1,4-Dichlorobenzene may be associated with the importation of fill material or with the past generation of limited quantities of hazardous wastes associated with past commercial offices tenants at the Phase II Property.

Distribution Contaminants

Impacted fill material was identified in two small pockets on the central and northeast portions of the Phase II Property. As shown on the following drawings, the lateral distribution of contaminants was limited:

- D PE4908-4 Analytical Testing Plan Soil (Metals, Hg); and
- □ PE4908-5 Analytical Testing Plan Soil (VOCs).

Soil impacts were considered to extend to the bedrock. The vertical distribution of contaminants is shown in the following drawings:

- □ PE4908-4A Cross Section A-A' Soil (Metals, Hg);
- □ PE4908-4B Cross Section B-B' Soil (Metals, Hg);
- □ PE4908-4C Cross Section C-C' Soil (Metals, Hg);
- □ PE4908-4D Cross Section D-D' Soil (Metals, Hg);
- □ PE4980-5A Cross Section A-A' Soil (VOCs); and
- □ PE4908-5B Cross Section B-B' Soil (VOCs).

Due to the shallow nature of the soil, vertical delineation of the soil impacts was not achieved at either MW-5 or MW-3. Based on the results of groundwater sampling at the MW-5 and MW-3, contaminants are not present in the groundwater at concentrations exceeding the MECP Table 7 standards. Contaminants are therefore not considered to have extended into the bedrock. Please refer to the following drawings:

- □ PE4908-7A Cross Section A-A' Groundwater (Metals, Hg);
- □ PE4908-7B Cross Section B-B' Groundwater (Metals, Hg);
- □ PE4908-7C Cross Section C-C' Groundwater (Metals, Hg);
- □ PE4908-7D Cross Section D-D' Groundwater (Metals, Hg);
- □ PE4980-8A Cross Section A-A' Groundwater (VOCs); and
- □ PE4908-8B Cross Section B-B' Groundwater (VOCs).

Discharge of Contaminants

The source of metal impacts is considered to be the imported fill material; it is expected that barium and cobalt concentrations are naturally occurring within the clayey soil matrix observed to be mixed with the crushed stone at MW-4 and MW-5. The 1,4-Dichlorobenze concentration identified in the soil at MW-5 may be associated with the hazardous wastes formerly generated on site or with the imported fill material.

Migration of Contaminants

Based on the results of groundwater sampling, contaminants exceeding the MECP Table 7 standards at the RSC Property for 1,4-Dichlorobenzene and metal parameters are confined to the soil mixed with the granular fill material. Groundwater beneath the Phase II Property complies with the MECP Table 7 standards. Based on the findings of the Phase II ESA, no significant migration of contaminants is considered to have occurred on the RSC Property.

Climatic and Meteorological Conditions

In general, climatic and meteorological conditions have the potential to affect contaminant distribution. Two (2) ways by which climatic and meteorological conditions may affect contaminant distribution include the downward leaching of contaminants by means of the infiltration of precipitation, and the migration of contaminants via groundwater levels and/or flow, which may fluctuate seasonally.

The RSC Property was largely covered with building structures or asphalt, significantly reducing the potential for precipitation infiltration and downward leaching. Based on the groundwater results, downward leaching and groundwater levels or flow are not considered to have affected contaminant distribution at the RSC Property.

Potential for Vapour Intrusion

While 1,4-Dichlorobenzene is a volatile substance, given the limited extent of the impacted soil and the concentrations detected (marginally above the standard), the potential for vapour instruction to have occurred at the Phase II Property is considered to be low.

All impacted soil has since been removed from the Phase II Property; soil and groundwater beneath the Phase II Property comply with the MECP Table 7 standards. As such, there is no anticipated potential for future vapour intrusion into future subsurface structures and utilities at the RSC Property.

Contaminant Transport Pathways

Physical transport – one potential contaminant transport pathway is the physical transport from one location to another of impacted soil, either intentionally or unintentionally, by earth moving equipment, vehicle traffic, or pedestrian traffic. The potential for physical transport of contaminants to have occurred on the RSC Property is considered to be low.

Precipitation/Infiltration/Leaching – As precipitation falls on the ground surface and subsequently infiltrates through the soil to the groundwater table, there is the potential for contaminants in the soil phase to enter the groundwater, depending on the solubility of the contaminants.

As the Phase II Property is largely covered with a building structure and parking garage with some paved areas, the potential for infiltration and leaching due to precipitation is very low.

Given that the groundwater beneath the RSC Property complies with the MECP Table 7 standards no significant contaminant transport is considered to have occurred at the RSC Property.

Human and Ecological Receptors

Human Receptors - Potential human receptors are considered to be limited to construction workers and environmental professionals who may contact the soil during the remediation and/or rehabilitation of the site. The site is located in a municipally serviced area.

Ecological Receptors – There are no significant potential ecological receptors are present on the Phase II Property as the property is entirely covered by a building, parking garage and paved areas. No significant potential ecological receptors are present downgradient of the Phase II Property given the downtown urban setting of the Phase II Property.

Receptor Exposure Points

Human Receptors – Exposure points for human receptors consist of remedial excavations.

Ecological Receptors – In general, the most likely exposure points for ecological receptors include the root zones of plants and the burrows of burrowing wildlife. As noted above there was limited potential for contact with ecological receptors on the Phase II Property.

Routes of Exposure

Human Receptors – Routes of exposure for human receptors (construction works and environmental professionals) include dermal contact, accidental ingestion and inhalation.

Ecological Receptors – Routes of exposure for ecological receptors include ingestion, dermal contact and inhalation. There are no potential ecological receptors as discussed above due to the site being covered with a building and parking garage structure as well as some paved areas, and situated in a downtown urban setting. Furthermore, groundwater at the RSC Property complies with the site standards.

Refer to Drawing PE4908-10 – Contaminant Distribution Diagram which illustrates and provides narrative notes explaining the contaminant release mechanisms, contaminant transport pathways, human and ecological receptors, receptor exposure points, and routes of exposure at the Phase II Property.

6.0 CONCLUSIONS

Assessment

A Phase II ESA was conducted for the property addressed 473 Albert Street, in the City of Ottawa, Ontario. The purpose of the Phase II ESA was to address potentially contaminating activities (PCAs) that were identified during the Phase I ESA and considered to result in areas of potential environmental concern (APECs) on the Phase I and Phase II Property.

An initial subsurface program was conducted by Pinchin in December of 2019 to address the APECs identified in the Phase I ESA. This program consisted of drilling ten (10) boreholes, eight (8) of which were completed as groundwater monitoring wells. The stratigraphy at the site consisted of a concrete floor slab over engineered fill material which consisted of primarily crushed stone, mixed with a sandy clay soil matrix at some locations. Limestone bedrock was present beneath the fill.

Soil and groundwater samples were submitted for a combination of BTEX, PHCs, PAHs, PCB, VOCs and/or metals (including Hg) analyses. Based on the laboratory results, barium and 1,4-Dichlorobenzene concentrations in excess of the selected MECP Table 7 Residential Standards were identified in soil Sample MW-4-SS1, while a cobalt concentration exceeding the MECP Table 7 standard was identified in Sample MW-5-SS1. Groundwater results identified PHC-F2 and/or -F3 exceedances at MW-5 and MW-6.

During the interim of May through December 2020, Paterson carried out additional drilling and groundwater sampling programs to confirm and delineate groundwater exceedances identified during the Pinchin field program. Four (4) boreholes were drilled for lateral delineation purposes (BH1-20, BH1A-20, BH2,-20 and BH3-20) and a fifth borehole (BH4-20) was drilled for vertical delineation purposes. Soil samples were not recovered at this time; it should be noted however that no visual or olfactory evidence of potential contamination was noted in the fill material.

Groundwater samples recovered from the 2020 boreholes were analysed for a combination of BTEX or VOC and PHC parameters. No detections of the parameters analysed were noted in any of the samples, with the exception of chloroform (7 μ g/L) at a concentration exceeding the MECP Table 7 standard of 2 μ g/L in the groundwater recovered from BH1A-20.

The chloroform was considered to have resulted from the use of municipally treated water during the bedrock coring process and complies with the standard of 10 μ g/L presented in Table A of the MECP document entitled "Guidance for Addressing Chloroform at a Record of Site Condition Property."

Based on the findings of the drilling program and sampling events in combination with re-sampling of the monitoring wells installed by Pinchin, it was considered likely that initial PHC F2 and F3 exceedances identified at MW-5 and MW-6 had resulted from sediment content in the groundwater samples. The most recent groundwater results indicate that no BTEX, VOC or PHC concentrations were detected above the laboratory method detection limits, with the exception of chloroform as noted above, and various metal parameters at concentrations below the MECP Table 7 Standards. As such, the groundwater beneath the Phase II Property complies with the MECP Table 7 Standards.

Conclusion

Based on the findings of the Pinchin field program and the initial Phase II ESA findings obtained by Paterson, a soil and groundwater remediation program was recommended and a soil remediation program was subsequently carried out. All impacted soil was removed from the property, as detailed in the Remediation Report provided in Appendix 2. Based on additional drilling and sampling events carried out in conjunction with the soil remediation program, no impacted groundwater was encountered or removed from the Phase II Property.

The findings of the Phase II ESA and Remediation Program indicate that the soil and groundwater beneath the Phase II Property comply with the MECP Table 7 standards. An RSC will be filed based on this Phase II ESA, to support the proposed change in land use.

It is expected that groundwater monitoring wells will be abandoned in accordance with O.Reg.903, at the time of building rehabilitation. It is recommended that they be maintained until this time, for possible future groundwater monitoring events.

7.0 STATEMENT OF LIMITATIONS

This Phase II - Environmental Site Assessment report has been prepared under the supervision of a Qualified Person in general accordance with O.Reg. 153/04 as amended and meets the requirements of CSA Z769-00. The conclusions presented herein are based on information gathered from a limited sampling and testing program. The test results represent conditions at specific test locations at the time of the field program.

The client should be aware that any information pertaining to soils and all test hole logs are furnished as a matter of general information only and test hole descriptions or logs are not to be interpreted as descriptive of conditions at locations other than those of the test holes themselves.

Should any conditions be encountered at the subject site and/or historical information that differ from our findings, we request that we be notified immediately in order to allow for a reassessment.

This report was prepared for the sole use of InterRent No. 3 Development and notification from InterRent No. 3 Development and Paterson Group will be required to release this report to any other party.

Paterson Group Inc.

Mandy Witteman, B.Eng., M.A.Sc.

Kaup Munch

Karyn Munch, P.Eng., QPESA

Report Distribution:

- □ InterRent No. 3 Development
- Paterson Group

FIGURES

Figure 1 - Key Plan

PE4908-3 – Test Hole Location Plan

Drawing PE4908-4– Analytical Testing Plan – Soil (Metals)

Drawing PE4908-4A - Cross-Section A-A' – Soil (Metals)

Drawing PE4908-4B - Cross-Section B-B' – Soil (Metals)

Drawing PE4908-4C - Cross-Section C-C' – Soil (Metals)

Drawing PE4908-4D - Cross-Section D-D' – Soil (Metals)

Drawing PE4908-5– Analytical Testing Plan – Soil (VOCs)

Drawing PE4908-5A - Cross-Section A-A' – Soil (VOCs)

Drawing PE4908-5B - Cross-Section B-B' – Soil (VOCs)

Drawing PE4908-5D - Cross-Section C-C' – Soil (VOCs)

Drawing PE4908-5D - Cross-Section D-D' – Soil (VOCs)

Drawing PE4908-6– Analytical Testing Plan – Soil (BTEX, PHC, PAH, PCB)

Drawing PE4908-6A - Cross-Section A-A' – Soil (BTEX, PHC, PAH, PCB)

Drawing PE4908-6B - Cross-Section B-B' – Soil (BTEX, PHC, PAH, PCB)

Drawing PE4908-6C - Cross-Section C-C' – Soil (BTEX, PHC, PAH, PCB)

Drawing PE4908-6D - Cross-Section D-D' – Soil (BTEX, PHC, PAH, PCB)

Drawing PE4908-7– Analytical Testing Plan – Groundwater (Metals)

Drawing PE4908-7A - Cross-Section A-A' – Groundwater (Metals)

Drawing PE4908-7B - Cross-Section B-B' – Groundwater (Metals)

Drawing PE4908-7C- Cross-Section C-C' – Groundwater (Metals)

Drawing PE4908-7D - Cross-Section D-D' – Groundwater (Metals)

Drawing PE4908-8– Analytical Testing Plan – Groundwater (VOCs)

Drawing PE4908-8A - Cross-Section A-A' – Groundwater (VOCs)

Drawing PE4908-8B - Cross-Section B-B' – Groundwater (VOCs)

Drawing PE4908-8C- Cross-Section C-C' – Groundwater (VOCs)

Drawing PE4908-8D - Cross-Section D-D' – Groundwater (Metals)

Drawing PE4908-9– Analytical Testing Plan – Groundwater (BTEX, PHC, PAH, PCB)

Drawing PE4908-9A - Cross-Section A-A' – Groundwater (BTEX, PHC, PAH, PCB)

Drawing PE4908-9B - Cross-Section B-B' – Groundwater (BTEX, PHC, PAH, PCB)

Drawing PE4908-9C- Cross-Section C-C' – Groundwater (BTEX, PHC, PAH, PCB)

Drawing PE4908-9D - Cross-Section D-D' – Groundwater (BTEX, PHC, PAH, PCB)

Drawing PE4980-10 – Contaminant Transport Diagram

APPENDIX 1

Sampling and Analysis Plan

Soil Profile and Test Data Sheets

Symbols and Terms

Laboratory Certificates of Analysis

APPENDIX 2

Remediation Report

FIGURES

Figure 1 - Key Plan

PE4908-3 – Test Hole Location Plan

Drawing PE4908-4– Analytical Testing Plan – Soil (Metals)

Drawing PE4908-4A - Cross-Section A-A' – Soil (Metals)

Drawing PE4908-4B - Cross-Section B-B' – Soil (Metals)

Drawing PE4908-4C - Cross-Section C-C' – Soil (Metals)

Drawing PE4908-4D - Cross-Section D-D' – Soil (Metals)

Drawing PE4908-5– Analytical Testing Plan – Soil (VOCs)

Drawing PE4908-5A - Cross-Section A-A' – Soil (VOCs)

Drawing PE4908-5B - Cross-Section B-B' – Soil (VOCs)

Drawing PE4908-5D - Cross-Section C-C' – Soil (VOCs)

Drawing PE4908-5D - Cross-Section D-D' – Soil (VOCs)

Drawing PE4908-6– Analytical Testing Plan – Soil (BTEX, PHC, PAH, PCB)

Drawing PE4908-6A - Cross-Section A-A' – Soil (BTEX, PHC, PAH, PCB)

Drawing PE4908-6B - Cross-Section B-B' – Soil (BTEX, PHC, PAH, PCB)

Drawing PE4908-6C - Cross-Section C-C' – Soil (BTEX, PHC, PAH, PCB)

Drawing PE4908-6D - Cross-Section D-D' – Soil (BTEX, PHC, PAH, PCB)

Drawing PE4908-7– Analytical Testing Plan – Groundwater (Metals)

Drawing PE4908-7A - Cross-Section A-A' – Groundwater (Metals)

Drawing PE4908-7B - Cross-Section B-B' – Groundwater (Metals)

Drawing PE4908-7C- Cross-Section C-C' – Groundwater (Metals)

Drawing PE4908-7D - Cross-Section D-D' – Groundwater (Metals)

Drawing PE4908-8– Analytical Testing Plan – Groundwater (VOCs)

Drawing PE4908-8A - Cross-Section A-A' – Groundwater (VOCs)

Drawing PE4908-8B - Cross-Section B-B' – Groundwater (VOCs)

Drawing PE4908-8C- Cross-Section C-C' – Groundwater (VOCs)

Drawing PE4908-8D - Cross-Section D-D' – Groundwater (Metals)

Drawing PE4908-9– Analytical Testing Plan – Groundwater (BTEX, PHC, PAH, PCB)

Drawing PE4908-9A - Cross-Section A-A' – Groundwater (BTEX, PHC, PAH, PCB)

Drawing PE4908-9B - Cross-Section B-B' – Groundwater (BTEX, PHC, PAH, PCB)

Drawing PE4908-9C- Cross-Section C-C' – Groundwater (BTEX, PHC, PAH, PCB)

Drawing PE4908-9D - Cross-Section D-D' – Groundwater (BTEX, PHC, PAH, PCB)

Drawing PE4980-10 – Contaminant Transport Diagram

FIGURE 1 KEY PLAN

patersongroup

autocad drawings\environmenta\\pe49xx\pe4908 - 473 albert\pe4908 phase 2(rev).dwo

0.036-0.46m	11-Dec-19
Results (ug/g)	Table 7 (ug/g)
430	390
als comply with Ta	ble 7 Standards

0.2-0.4m	10-NOV-20
ly with MEC	CP Table 7 Standards

0.45m	5-NOV-20
oly with ME	CP Table 7 Standards

LEGEND:

APPROXIMATE EXTENT OF SOIL IMPACTED WITH METALS EXCEEDING

ANALYZED SOIL GRAB SAMPLE

Scale:

ONTARIO Checked by:

Drawn by:

Approved by:

SOIL PARAMETERS COMPLY WITH MECP TABLE 7 STANDAR SOIL PARAMETERS EXCEED MECP TABLE 7 STANDARDS

Report No.:

Dwg. No.:

Revision No.:

01/2021

PE4908-2

PE4908-4A

Date:

AS SHOWN

RCG

MW

KM

SOIL F	PARAMETERS CO	MPLY WITH MECP TABLE 7 STANDARDS	3 - 473
SOIL F	PARAMETERS EX	CEED MECP TABLE 7 STANDARDS	9xx\pe4908
Scale:	AS SHOWN	Date: 01/2021	nental\pe4
Drawn by:	RCG	Report No.: PE4908-2	js\environr
Checked by: Approved by:	MW	Dwg. No.: PE4908-4B	autocad drawing
	КМ	Revision No.:	p:/

ANALYZED SOIL GRAB SAMPLE

APPROXIMATE EXTENT OF SOIL IMPACTED WITH METALS EXCEEDING MECP TABLE 7 STANDARDS

0.036-0.46m	11-Dec-19
Results (ug/g)	Table 7 (ug/g)
430	390
tals comply with Tab	le 7 Standards

5-NOV-20

20-NOV-20

390

LEGEND:

X

20-NOV-20

RESULT (ug/g) STANDARD (ug/g)

0.2-0.3m

0.2-0.3m

0.45m

ONTARIO

465

SOIL PARAME	TERS EXCEED	MECP TABLE 7 STANDARDS
Scale:	AS SHOWN	Date:
	At the month	01/2021
Drawn by:		Report No.:
	RCG	PE4908-2
Checked by:		Dwg. No.:
	MW	PF4908-4CD
Approved by:		
	KM	Revision No.:
	SOIL PARAME Scale: Drawn by: Checked by: Approved by:	Soil PARAMETERS EXCEED Scale: AS SHOWN Drawn by: RCG Checked by: MW Approved by: KM

	Results (ug/g)	Table 7 (ug/g)		
enzene	0.091	0.083		
Cs comply with Table 7 Standards				

11-Dec-19

0.036-0.46m

0.2-0.4m	10-NOV-20
oly with MECP	Table 7 Standards

0.45m	5-NOV-20
ply with MECP	P Table 7 Standards

LEGEND:

Scale:

ONTARIO Checked by:

Drawn by:

Approved by:

APPROXIMATE EXTENT OF SOIL

ANALYZED SOIL GRAB SAMPLE

IMPACTED WITH VOCs EXCEEDING MECP TABLE 7 STANDARDS

SOIL PARAMETERS COMPLY WITH MECP TABLE 7 STANDARDS

Date:

Report No.:

Dwg. No.:

Revision No.:

01/2021

PE4908-2

PE4908-5A

SOIL PARAMETERS EXCEED MECP TABLE 7 STANDARDS

AS SHOWN

RCG

MW

KM

0.036-0.46m		11-Dec-19	
	Results (ug/g)	Table 7 (ug/g)	
obenzene	0.091	0.083	
VOCs comply with Table 7 Standards			

0.2-0.3m	10-NOV-20
ly with MECF	P Table 7 Standards

5-NOV-20 0.45m VOCs comply with MECP Table 7 Standard

LEGEND:

ANALYZED SOIL GRAB SAMPLE

APPROXIMATE EXTENT OF SOIL IMPACTED WITH VOCs EXCEEDING

MECP TABLE 7 STANDARDS

SOIL PARAMETERS COMPLY WITH MECP TABLE 7 STANDARDS

SOIL PARAMETERS EXCEED MECP TABLE 7 STANDARDS

	Scale:		Date:
		AS SHOWN	01/2021
	Drawn by:		Report No.:
		RCG	PE4908-2
ONTARIO	Checked by:		Dwg. No.:
		MW	DE/008_5B
	Approved by:		FL4900-3D
		KM	Revision No.:

DATE

INITIAL

154 Colonnade Road South Ottawa, Ontario K2E 7J5 Tel: (613) 226-7381 Fax: (613) 226-6344

0

NO.

REVISIONS

INTERRENT NO.3 LIMITED PARTNERSHIP		Scale:		Date:
	l		AS SHOWN	01/2021
PHASE II - ENVIKUNMENTAL SITE ASSESSMENT		Drawn by:		Report No.:
473 ALBERT STREET	l		RCG	PE4908-2
	ONTARIO	Checked by:		Dwg. No.:
			MW	PE4908-5CD
CROSS SECTION C-C' AND D-D' - SOIL (VOCs)	l	Approved by:	:	I L4300-30D
			КМ	Revision No.:

SOIL PARAMETERS EXCEED MECP TABLE 7 STANDARDS

EXCAVATION (EX.2) LEGEND: xSt ANALYZED SOIL GRAB SAMPLE SOIL PARAMETERS COMPLY WITH MECP TABLE 7 STANDARDS

D

– APPROX. LIMIT OF REMEDIAL

5.0

0.0

MW5-SS10.036-0.46m11-Dec-19BTEX comply with Table 7 StandardsPHCs comply with Table 7 StandardsPAHs comply with Table 7 StandardsPCBs comply with Table 7 Standards

LEGEND:

SOIL PARAMETERS COMPLY WITH MECP TABLE 7 STANDARDS SOIL PARAMETERS EXCEED MECP TABLE 7 STANDARDS

	Scale:		Date:
		AS SHOWN	01/2021
	Drawn by:		Report No.:
		RCG	PE4908-2
ONTARIO	Checked by:		Dwg. No.:
		MW	
CBs)	Approved by:		FL4300-0A
		КМ	Revision No.:

INTERRENT NO.3 LIMITED PARTNERSHIP patersongroup **PHASE II - ENVIRONMENTAL SITE ASSESSMENT** consulting engineers **473 ALBERT STREET** OTTAWA, 154 Colonnade Road South Title: CROSS SECTION B-B' - SOIL (BTEX,PHCs,PAHs,P Ottawa, Ontario K2E 7J5 0 Tel: (613) 226-7381 Fax: (613) 226-6344 NO. REVISIONS DATE INITIAL

MW5-SS1 0.036-0.46m 11-Dec-19 BTEX comply with Table 7 Standards PHCs comply with Table 7 Standards PAHs comply with Table 7 Standards PCBs comply with Table 7 Standards

LEGEND:

SOIL PARAMETERS COMPLY WITH MECP TABLE 7 STANDARDS SOIL PARAMETERS EXCEED MECP TABLE 7 STANDARDS

	Scale:		Date:
		AS SHOWN	01/2021
	Drawn by:		Report No.:
		RCG	PE4908-2
ONTARIO	Checked by:		Dwg. No.:
		MW	DE1008-6B
CBs)	Approved by:		FL4300-0D
		КМ	Revision No.:

	Scale:		Date:
		AS SHOWN	01/2021
	Drawn by:		Report No.:
		RCG	PE4908-2
ONTARIO	Checked by:		Dwg. No.:
	1	MW	
s.PCBs)	Approved by:		FL4300-0CD
-,,		KM	Revision No.:

er of (No. 473) al (No. 473)					
er of e (No.473) 3 8 II (No. 473)					
a II (No. 473)					
ION ND SE TANK					
No. 415 12 STOREY Metals and mercury comply with Table 7 Standards					
BUILDING					
LEGEND:					
BOREHOLE WITH MONITORING WELL LOCATION, PATERSON GROUP					
APPROX. MONITORING WELL LOCATION,					
APPROX. BOREHOLE LOCATION, PINCHIN 2019					
GROUND SURFACE ELEVATION (m)					
(98.1) GROUNDWATER SURFACE ELEVATION (m)	~ ~				
	(mar)6 -				
GROUNDWATER PARAMETERS COMPLY WITH MECP TABLE 7 STANDARD	S				
GROUNDWATER PARAMETERS EXCEED MECP TABLE 7 STANDARDS	12 0 Th				
	ě				
	P on his				
0 1 2 3 4 5 10 15m Scale: Date:					
0 1 2 3 4 5 10 15m Scale: Drawn by: Comparison by:	in a state of the				
0 1 2 3 4 5 10 15m Scale: Date: 07/2020 Drawn by: Report No.: PE4908-2 ONTARIO Checked by: Dwg No.:	in color in the second se				
0 1 2 3 4 5 10 15m Scale: Date: 1:250 07/2020 Drawn by: MPG PE4908-2 ONTARIO Checked by: Dwg. No.: MW PE4908-7	and description intercent on the second				

natorcondroup					INTERRENT NO.3 LIMITED PARTNERSHIP
patersongroup					PHASE II - ENVIRONMENTAL SITE ASSESSMENT
consulting engineers					473 ALBERT STREET
					OTTAWA,
154 Colonnade Road South					Title:
Ottawa, Ontario K2E 7J5 Tel: (613) 226-7381 Fax: (613) 226-6344	0				CROSS SECTION A-A' - GROUNDWATER (METALS.H
101. (010) 220 700 1 ax. (010) 220-0044	NO.	REVISIONS	DATE	INITIAL	

WW5 1.2-3.66m 15-Jan-20 Metals and mercury comply with Table 7 Standards

		Scale:	AS SHOWN	Date: 01/2021
		Drawn by:		Report No.:
		-	RCG	PE4908-2
	ONTARIO	Checked by:		Dwg. No.:
			MW	PF4908-7A
<i>(</i> r		Approved by:		
3 /		-	КМ	Revision No.:

HORZONTAL DISTANCE (m)

patersongroup						Scale:	AS SHOWN	Date:	01/2021
pateroungroup					PHASE II - ENVIRONMENTAL SITE ASSESSMENT	Drawn by:		Report No.:	
consulting engineers					473 ALBERT STREET		RCG		PE4908-2
					OTTAWA, ONTARIO	Checked by:		Dwg. No.:	
154 Colonnade Road South					Title:	-	MW		
Ottawa, Ontario K2E 7J5	0				CROSS SECTION B-B' - GROUNDWATER (METALS Ha)	Approved by	y:	PE43	00-7B
Tel: (613) 226-7361 Fax: (613) 226-6344	NO.	REVISIONS	DATE	INITIAL	SINGE SECTION DED - SINGENATER (METALO, Hg)		KM	Revision No.:	

IW5 1.2-3.66m 15-Jan-20 Ietals and mercury comply with Table 7 Standards

p:\autocad drawings\environmental\pe49xx\pe4908 - 473 albert\pe4908 phase 2(rev).dwg

	Scale:		Date:
		AS SHOWN	01/2021
	Drawn by:		Report No.:
		RCG	PE4908-2
ONTARIO	Checked by:		Dwg. No.:
		MW	
TALS)	Approved by:		FL4300-7CD
1		KM	Revision No.:

:\autocad drawings\environmental\pe49xx\pe4908 - 473 albert\pe4908 phase 2(rev).dwg

HORZONTAL DISTANCE (m)

natorcongroup					INTERRENT NO.3 LIMITED PARTNERSHIP
patersongroup					PHASE II - ENVIRONMENTAL SITE ASSESSMENT
consulting engineers					473 ALBERT STREET
					OTTAWA,
154 Colonnade Road South					
Ottawa, Ontario K2E 7J5 Tel: (613) 226-7381 Eax: (613) 226-6344	0				CROSS SECTION A-A' - GROUNDWATER (VOCs
161. (013) 220-73011 ax. (013) 220-0344	NO.	REVISIONS	DATE	INITIAL	

s comp	1.2-3.66m ly with Table	15-Jan-20 7 <mark>Standards</mark>
-GW2	1.2-3.66m	5-Nov-20
<mark>s comp</mark>	ly with Table	7 Standards
-GW3	1.2-3.66m	23-Nov-20
<mark>s comp</mark>	ly with Table	7 Standards

		1	1	
		Scale:		Date:
			AS SHOWN	01/2021
		Drawn by:		Report No.:
			RCG	PE4908-2
	ONTARIO	Checked by:		Dwg. No.:
		1	MW	
		Approved by:		FL4300-0A
/		_	KM	Revision No.:

HORZONTAL DISTANCE (m)

patersongroup								Scale: AS S	HOWN	Date:	01/2021
9 1 1 1 1 1 1 1 1 1 1						PHASE II - ENVIRONMENTAL SITE ASSESSMENT		Drawn by:		Report No.:	
consulting engineers						473 ALBERT STREET		RC	G	•	PE4908-2
					OTTAWA,		ONTARIO	Checked by:		Dwg. No.:	
154 Colonnade Road South					Title:			MM	1		
Ottawa, Ontario K2E 7J5	0					CROSS SECTION B-B' - GROUNDWATER (VOCs)		Approved by:		PE4:	00-0D
Tel: (613) 226-7381 Fax: (613) 226-6344	NO.	REVISIONS	DATE	INITIAL				KM		Revision No.:	

MW5	1.2-3.66m	15-Jan-20
VOCs comp	ly with Table	7 Standards
MW5-GW2	1.2-3.66m	5-Nov-20
VOCs comp	ly with Table	7 Standards
MW5-GW3	1.2-3.66m	23-Nov-20
VOCs comp	ly with Table	7 Standards

Tel: (613) 226-7381 Fax: (613) 226-6344

NO.

REVISIONS

DATE

INITIAL

	Scale:		Date:
	oouloi	AS SHOWN	01/2021
	Drawn by:		Report No.:
		RCG	PE4908-2
ONTARIO	Checked by:		Dwg. No.:
		MW	
OCs)	Approved by:		FL4900-0CD
,	-	KM	Revision No.:

-GW1	2.69-4.19m	14-May-20
omply with	Table 7 Standa	ards
omply with	Table 7 Standa	ards
H3-20-GW	1) 2.69-4.19	m 14-May-20
omply with	Table 7 Standa	ards
omply with	Table 7 Standa	ards

r of	MW8 1.26-3.66m 15-Jan-20 BTEX comply with Table 7 Standards
(140.473)	MW8-GW1 1.26-3.66m 9-Apr-20
(No. 473)	BTEX comply with Table 7 Standards PHCs comply with Table 7 Standards
	MW8 1.26-3.66m 12-Mar-21 PAHs comply with Table 7 Standards

	MW5	1.2-3.66m	15-Jan-20
	Parameter	Results (ug/L)	Table 7 (ug/L)
	PHC (F2)	1800	150
N	PHC (F3)	22000	500
	Remaining	PHCs comply with	Table 7 Standards
ΤΔΝΚ	BTEX comp	ly with Table 7 Star	ndards
	PAHs comp	ly with Table 7 Star	ndards
	PCBs comp	ly with Table 7 Star	ndards
	MW5-GW1	1.2-3.66m	9-Apr-20
	Parameter	Results (ug/L)	Table 7 (ug/L)
No. 415	PHC (F2)	200	150
2 STOREY	PHC (F3)	2910	500
BUILDING	Remaining	PHCs comply with	Table 7 Standards
	BTEX comp	ly with Table 7 Star	ndards
	MW5-GW2	1 2-3 66m	5-Nov-20
	BTEX com	ly with Table 7 Star	ndards
	PHCs comp	y with Table 7 Sta	ndards
	MW5-GW3	1.2-3.66m	23-Nov-20
	BTEX comp	ly with Table 7 Star	ndards
	PHCs comp	ly with Table 7 Star	ndards

LEGEND:

100.03

(98.1)

B—**B**

- BOREHOLE WITH MONITORING WELL LOCATION, PATERSON GROUP
- APPROX. MONITORING WELL LOCATION, PINCHIN 2019
- APPROX. BOREHOLE LOCATION, PINCHIN 2019
- GROUND SURFACE ELEVATION (m)

GROUNDWATER SURFACE ELEVATION (m)

CROSS SECTION LOCATION

RSC PROPERTY BOUNDARY

GROUNDWATER PARAMETERS COMPLY WITH MECP TABLE 7 STANDARDS

GROUNDWATER PARAMETERS EXCEED MECP TABLE 7 STANDARDS

SCALE:	1:250 2 3 4 5	10	15m
	Scale:		Date:
		1:250	07/2020
	Drawn by:		Report No.:
		MPG	PE4908-2
ONTARIO	Checked by:		Dwg. No.:
		MW	PF4908-9
s.PCBs)	Approved by:		I L4300-3
=, =-,		MSD	Revision No.:

	1.2-3.000	15-Jan-20
neter	Results (ug/L)	Table 7 (ug/L)
(F2)	1800	150
(F3)	22000	500
ining	PHCs comply with 1	Fable 7 Standards
comp	ly with Table 7 Stan	dards
comp	ly with Table 7 Stan	dards
comp	ly with Table 7 Stan	dards
-GW1	1.2-3.66m	9-Apr-20
neter	Results (ug/L)	Table 7 (ug/L)
(F2)	200	150
(F3)	2910	500
ining	PHCs comply with 7	Fable 7 Standards
comp	with Table 7 Stan	dordo
	ny with rable 7 Stan	uarus
-GW2	1.2-3.66m	5-Nov-20
-GW2	1.2-3.66m ly with Table 7 Stan	5-Nov-20 dards
-GW2 comp	1.2-3.66m Ily with Table 7 Stan Ily with Table 7 Stan	5-Nov-20 dards dards
-GW2 comp comp	1.2-3.66m ly with Table 7 Stan ly with Table 7 Stan 1.2-3.66m	5-Nov-20 dards dards 23-Nov-20
-GW2 comp comp -GW3 comp	1.2-3.66m oly with Table 7 Stan oly with Table 7 Stan oly with Table 7 Stan 1.2-3.66m oly with Table 7 Stan	5-Nov-20 dards dards 23-Nov-20 dards
-GW2 comp comp -GW3 comp comp	1.2-3.66m Ily with Table 7 Stan Ily with Table 7 Stan Ily with Table 7 Stan 1.2-3.66m Ily with Table 7 Stan Ily with Table 7 Stan	5-Nov-20 dards dards 23-Nov-20 dards dards

20-GW1	2.84-4.34m	14-May-20
comply with	Table 7 Stand	lards
s comply with	Table 7 Stand	lards

	Scale:		Date:
		AS SHOWN	01/2021
	Drawn by:		Report No.:
		RCG	PE4908-2
ONTARIO	Checked by:		Dwg. No.:
		MW	
PCBs)	Approved by:		I L7300-3A
5,1 003/		KM	Revision No.:

MW5 Parameter Result PHC (F2) 1800 PHC (F3) 22000 Remaining PHCs BTEX comply with PAHs comply with PAHs comply with PCs	1.2-3.66m Its (ug/L) Comply with Table 7 Stan Table 7 Stan Table 7 Stan	15-Jan-20 <u>Table 7 (ug/L)</u> 150 500 Table 7 Standards dards dards dards
MW5-GW1 Parameter Resu PHC (F2) 200 PHC (F3) 2910 Remaining PHCs BTEX comply with	1.2-3.66m Its (ug/L) comply with ⁻ Table 7 Stan	9-Apr-20 <u>Table 7 (ug/L)</u> 150 500 Table 7 Standards dards
MW5-GW2 BTEX comply with PHCs comply with	1.2-3.66m Table 7 Stan Table 7 Stan	5-Nov-20 idards idards
MW5-GW3 BTEX comply with PHCs comply with	1.2-3.66m Table 7 Stan Table 7 Stan	23-Nov-20 dards dards
BH3-20-GW1 BTEX comply with PHCs comply with	2.69-4.19m Table 7 Stan Table 7 Stan	14-May-20 dards dards
DUP (BH3-20-GW	1) 2.69-4.1	19m 14-May-20

PHCs comply with Table 7 Standards

	Scale:		Date:
		AS SHOWN	01/2021
	Drawn by:		Report No.:
		RCG	PE4908-2
ONTARIO	Checked by:		Dwg. No.:
		MW	
PCBs)	Approved by:		I L7300-3D
5,1 003/		KM	Revision No.:

natorsongroup					INTERRENT NO.3 LIMITED PARTNERSHIP	Scale:	AS SHOWN	Date:	01/2021
pareisongioup					PHASE II - ENVIRONMENTAL SITE ASSESSMENT	Drawn by:	-	Report No.:	
consulting engineers					473 ALBERT STREET		RCG	-	PE4908-2
					OTTAWA, ONTARIO	Checked by:		Dwg. No.:	
154 Colonnade Road South					Title:		MW	DEIQ	
Ottawa, Ontario K2E 7J5	0				CROSS SECTION C-C' AND D-D' - GROUNDWATER (BTEX.PHCs.PAHs.PCBs)	Approved by	<i>ı</i> :	FL43	00-300
Tel: (613) 226-7381 FAX: (613) 226-6344	NO.	REVISIONS	DATE	INITIAL			KM	Revision No.:	

A CONTAMINANT RELEASE MECHANISMS

Volatile organic compound (1,4-Dichlorobenzene) and/or metal contaminants (Barium and Cobalt) are present in the fill on the northeastern and central portions of the RSC Property, beneath the pavement structure. Metal impacts are considered to be associated with the fill material imported to the RSC Property beneath the slab, while VOC impacts are considered to be related to the fill material or the former on-site generation of hazardous wastes.

B CONTAMINANT TRANSPORT PATHWAYS

- PHYSICAL TRANSPORT A potential contaminant transport pathway is the physical transport from one location to another of contaminants on the RSC Property is considered to be negligible.
- PRECIPITATION/INFILTRATION/INFI
- 3. DIFFUSION AND DISPERSION Upon entering the groundwater table, contaminants will move from an area of greater concentration toward an area where it is less concentration gradient exists (diffusion). When groundwater travels through bedrock it moves at different velocities resulting in mixing and dilution of the contamination at the advancing edge of flow (dispersion). Groundwater beneath the RSC Property is in compliance with the MECP Table 7 standards, therefore these processes of contaminant transport are not applicable.

C HUMAN AND ECOLOGICAL RECEPTORS

HUMAN RECEPTORS – The RSC Property is covered by a building structure and underground parking garage (concrete slab), greatly reducing the chance for humans to have acted as receptors. Potential human receptors were limited to construction workers and environmental professionals who may have contacted the soil during the site remediation or during future development. Futhermore, the site and surrounding area is municipally serviced. ECOLOGICAL RECEPTORS – Traditionally potential ecological receptors include plants whose root structures intercept contaminated soil, burrowing wildlife, and groundwater/surface water receptors downgradient of the subject site at groundwater discharge points. No plants or wildlife are present on the RSC Property. Additionally, due to the urban landscape, no

ECOLOGICAL RECEPTORS – Traditionally potential ecological receptors include plants whose root structures intercept contaminated soil, burrowing wildlife, and groundwater/surface water receptors downgradient of the subject site at groundwater discharge points. No plants or wild significant receptors are expected to be present downgradient of the RSC Property. Given the clean groundwater results there is no risk to potential ecological receptors.

D <u>ROUTES OF EXPOSURES</u>

HUMAN RECEPTORS – Routes of exposure for human receptors (construction workers and environmental professionals) include dermal contact, accidental ingestion and inhalation (PHC vapours or particulate dust containing metals). ECOLOGICAL RECEPTORS – Routes of exposure for ecological receptors include ingestion, dermal contact, and inhalation; as noted above, no significant receptors are expected due to the urban landscape setting of the RSC Property.

natorcongroup					INTERRENT NO.3 LIMITED PARTNERSHIP
patersongroup					PHASE II - ENVIRONMENTAL SITE ASSESSMENT
consulting engineers					473 ALBERT STREET
					LOTTAWA,
154 Colonnade Road South			<u> </u>		
Ottawa, Ontario K2E 7J5					CONTAMINANT DISTRIBUTION DIAGRAM
Tel: (613) 226-7361 Pax: (613) 226-6344	NO.	REVISIONS	DATE	INITIAL	

during the Phase I and Phase II ESA, physical transport of contaminants on the RSC rock. Furthermore, based on analytical testing, the groundwater beneath the site is in < it moves at different velocities resulting in mixing and dilution of the contamination at

	Scale:		Date:
		N.T.S.	03/2021
	Drawn by:		Report No.:
		RCG	PE4908-2
ONTARIO	Checked by:		Dwg. No.:
		KM	
	Approved by:		FE4900-10
		MSD	Revision No.:

APPENDIX 1

Sampling and Analysis Plan

Soil Profile and Test Data Sheets

Symbols and Terms

Laboratory Certificates of Analysis

patersongroup

Geotechnical Engineering

Environmental Engineering

Hydrogeology

Geological Engineering

Materials Testing

Building Science

Archaeological Services

Sampling & Analysis Plan

Phase II Environmental Site Assessment 473 Albert Street Ottawa, Ontario

Prepared For

InterRent No. 3 Limited Partnership

Paterson Group Inc.

Consulting Engineers 154 Colonnade Road South Ottawa (Nepean), Ontario Canada K2E 7J5

Tel: (613) 226-7381 Fax: (613) 226-6344 www.patersongroup.ca April 2020

Report: PE4908-SAP

Table of Contents

1.0	SAMPLING PROGRAM	1
2.0	ANALYTICAL TESTING PROGRAM	3
3.0	STANDARD OPERATING PROCEDURES	4
	3.1 Environmental Drilling Procedure	4
	3.2 Monitoring Well Installation Procedure	6
	3.3 Monitoring Well Sampling Procedure	7
4.0	QUALITY ASSURANCE/QUALITY CONTROL (QA/QC)	8
5.0	DATA QUALITY OBJECTIVES	9
6.0	PHYSICAL IMPEDIMENTS TO SAMPLING & ANALYSIS PLAN	10

1.0 SAMPLING PROGRAM

Paterson Group Inc. (Paterson) was commissioned by Mr. Evan Johnson of CLV Group, in partnership with InterRent No. 3 Development to conduct a Phase II Environmental Site Assessment (ESA) for the property addressed 473 Albert Street, in the City of Ottawa, Ontario. A geotechnical investigation was conducted concurrently with the environmental subsurface investigation. It should be noted that boreholes BH1, BH2, MW-3 to MW-10 were previously drilled by Pinchin in December of 2019. The borehole depths and rationale are included in the Table below for reference purposes.

Borehole	Location & Rationale	Proposed Depth & Rationale
Pinchin, 20)19	
BH1	Place borehole as close as possible to existing AST on northeast portion of Phase I Property to assess the potential for associated soil and/or groundwater impacts.	Drill to a depth of approximately 1.5m below the water table or bedrock refusal, whichever is encountered first; due to above-grade location of AST, shallow soil impacts would be expected.
BH2	Place borehole in the immediate vicinity of the former AST location; to assess potential impact from former AST and Hydro Vault (located above).	Drill to a depth of approximately 1.5m below the water table or bedrock refusal, whichever is encountered first; to assess potential for shallow soil impacts resulting from the former AST.
MW-3	Place borehole on the central south side of the Phase II Property in the immediate vicinity of the former AST and Hydro vault to assess potential soil and/or groundwater impacts associated with these PCAs.	Drill to a depth of approximately 3.8 mbgs to intercept the groundwater table for a monitoring well installation.
MW-4	Place borehole on the central north side of the Phase II Property to provide general coverage of the site to assess potential soil and/or groundwater impacts related to the former on-site generation of hazardous wastes.	Drill to a depth of approximately 4.5 mbgs to intercept the groundwater table for a monitoring well installation.
MW-5	Place borehole on the central north side of the Phase II Property to provide general coverage of the site to assess	Drill to a depth of approximately 3.6 to 3.9 mbgs to intercept the groundwater table for a monitoring well installation.
MW-7	potential soil and/or groundwater impacts related to the former on-site generation of hazardous wastes.	
MW-8	Place in immediate vicinity of existing AST to assess potential soil and groundwater impacts; place along eastern property boundary to assess potential impacts from a former off-site dry cleaner.	Drill to a depth of approximately 3.6 mbgs to intercept the groundwater table for a monitoring well installation.

pater	song	roup
Ottawa	Kingston	North Bay

Borehole	Location & Rationale	Proposed Depth & Rationale
MW-9	Place borehole along eastern property boundary to assess potential impacts from a former off-site dry cleaner.	Drill to a depth of approximately 3.6 mbgs to intercept the groundwater table for a monitoring well installation.
MW-10	Place borehole on the central north side of the Phase II Property to provide general coverage of the site to assess potential soil and/or groundwater impacts related to the former on-site generation of hazardous wastes.	Drill to a depth of approximately 3.6 mbgs to intercept the groundwater table for a monitoring well installation.
Paterson, 2	2020	
BH1-20	Place borehole north of MW-5 to delineate previously identified groundwater impacts.	Drill to the same depth as MW-5 for lateral delineation purposes.
BH1A-20	Place borehole to the west of BH1-20, to replace BH1-20 which was dry and to delineate previously identified groundwater impacts at MW-5.	Drill up to 0.5m deeper than MW-5/BH1- 20 deeper to intercept the groundwater table for lateral delineation purposes.
BH2-20	Place borehole south of MW-5 to delineation previously identified groundwater impacts.	Drill to the same depth as MW-5 for lateral delineation purposes.
BH3-20	Place borehole east of MW-5 to delineation previously identified groundwater impacts.	Drill to the same depth as MW-5 for lateral delineation purposes.
BH4-20	Place borehole in the immediate vicinity of MW-5 to confirm groundwater quality below the MW-5 screened interval.	Drill to a depth of approximately 6 mbgs to confirm groundwater quality below MW-5.

At each borehole, split-spoon samples of overburden soils will be obtained at 0.76 m (2'6") intervals until practical refusal to augering. All soil samples will be retained, and samples will be selected for submission following a preliminary screening analysis.

Following borehole drilling, monitoring wells will be installed in selected boreholes (as above) for the measurement of water levels and the collection of groundwater samples. Borehole locations are shown on the Test Hole Location Plan appended to the main report.

2.0 ANALYTICAL TESTING PROGRAM

The analytical testing program for soil at the subject site is based on the following general considerations:

- □ At least one sample from each borehole should be submitted, in order to delineate the horizontal extent of contamination across the site.
- □ At least one sample from each stratigraphic unit should be submitted, in order to delineate the vertical extent of contamination at the site.
- In boreholes where there is visual or olfactory evidence of contamination, or where organic vapour meter or photoionization detector readings indicate the presence of contamination, the 'worst-case' sample from each borehole should be submitted for comparison with MOECC site condition standards.
- In boreholes with evidence of contamination as described above, a sample should be submitted from the stratigraphic unit below the 'worst-case' sample to determine whether the contaminant(s) have migrated downward.
- Parameters analyzed should be consistent with the Contaminants of Potential Concern identified in the Phase I ESA.

The analytical testing program for groundwater at the subject site is based on the following general considerations:

- Groundwater monitoring wells should be installed in all boreholes with visual or olfactory evidence of soil contamination, in stratigraphic units where soil contamination was encountered, where those stratigraphic units are at or below the water table (i.e. a water sample can be obtained).
- Groundwater monitoring well screens should straddle the water table at sites where the contaminants of concern are suspected to be LNAPLs.
- At least one groundwater monitoring well should be installed in a stratigraphic unit below the suspected contamination, where said stratigraphic unit is waterbearing.
- Parameters analyzed should be consistent with the Contaminants of Concern identified in the Phase I ESA and with the contaminants identified in the soil samples.

3.0 STANDARD OPERATING PROCEDURES

3.1 Environmental Drilling Procedure

Purpose

The purpose of environmental boreholes is to identify and/or delineate contamination within the soil and/or to install groundwater monitoring wells in order to identify contamination within the groundwater.

Equipment

The following is a list of equipment that is in addition to regular drilling equipment stated in the geotechnical drilling SOP:

- **glass soil sample jars**
- □ two buckets
- □ cleaning brush (toilet brush works well)
- □ dish detergent
- methyl hydrate
- □ water (if not available on site water jugs available in trailer)
- □ latex or nitrile gloves (depending on suspected contaminant)
- RKI Eagle organic vapour meter or MiniRae photoionization detector (depending on contamination suspected)

Determining Borehole Locations

If conditions on site are not as suspected, and planned borehole locations cannot be drilled, **call the office to discuss**. Alternative borehole locations will be determined in conversation with the field technician and supervising engineer.

After drilling is completed a plan with the borehole locations must be provided. Distances and orientations of boreholes with respect to site features (buildings, roadways, etc.) must be provided. Distances should be measured using a measuring tape or wheel rather than paced off. Ground surface elevations at each borehole should be measured geodetically.

Drilling Procedure

The actual drilling procedure for environmental boreholes is the same as geotechnical boreholes (see SOP for drilling and sampling) with a few exceptions as follows:

- Continuous split spoon samples (every 0.6 m or 2') or semi-continuous (every 0.76 m or 2'6") are required.
- □ Make sure samples are well sealed in plastic bags with no holes prior to screening and are kept cool but unfrozen.
- If sampling for VOCs, BTEX, or PHCs F1, a soil core from each soil sample which may be analyzed must be taken and placed in the laboratory-provided methanol vial.
- □ Note all and any odours or discolouration of samples.
- □ Split spoon samplers must be washed between samples.
- If obvious contamination is encountered, continue sampling until vertical extent of contamination is delineated.
- As a general rule, environmental boreholes should be deep enough to intercept the groundwater table (unless this is impossible/impractical - call project manager to discuss).
- If at all possible, soil samples should be submitted to a preliminary screening procedure on site, either using a RKI Eagle, PID, etc. depending on type of suspected contamination.

Spoon Washing Procedure

All sampling equipment (spilt spoons, etc.) must be washed between samples in order to prevent cross contamination of soil samples.

- □ Obtain two buckets of water (preferably hot if available)
- □ Add a small amount of dish soap to one bucket
- □ Scrub spoons with brush in soapy water, inside and out, including tip
- **D** Rinse in clean water
- □ Apply a small amount of methyl hydrate to the inside of the spoon. (A spray bottle or water bottle with a small hole in the cap works well)
- □ Allow to dry (takes seconds)
- □ Rinse with distilled water, a spray bottle works well.

The methyl hydrate eliminates any soap residue that may be on the spoon, and is especially important when dealing with suspected VOCs.

Screening Procedure

The RKI Eagle is used to screen most soil samples, particularly where petroleum hydrocarbon contamination is suspected. The MiniRae is used when VOCs are suspected, however it also can be useful for detecting petroleum. These tools are for screening purposes only and cannot be used in place of laboratory testing.

Vapour results obtained from the RKI Eagle and the PID are relative and must be interpreted.

Screening equipment should be calibrated on an approximately monthly basis, more frequently if heavily used.

- □ Samples should be brought to room temperature; this is specifically important in colder weather. Soil must not be frozen.
- □ Turn instrument on and allow to come to zero calibrate if necessary
- □ If using RKI Eagle, ensure instrument is in methane elimination mode unless otherwise directed.
- Ensure measurement units are ppm (parts per million) initially. RKI Eagle will automatically switch to %LEL (lower explosive limit) if higher concentrations are encountered.
- Break up large lumps of soil in the sample bag, taking care not to puncture bag.
- □ Insert probe into soil bag, creating a seal with your hand around the opening.
- Gently manipulate soil in bag while observing instrument readings.
- □ Record the highest value obtained in the first 15 to 25 seconds
- Make sure to indicate scale (ppm or LEL); also note which instrument was used (RKI Eagle 1 or 2, or MiniRae).
- □ Jar samples and refrigerate as per Sampling and Analysis Plan.

3.2 Monitoring Well Installation Procedure

Equipment

- □ 5' x 2" [1.52 m x 50 mm] threaded sections of Schedule 40 PVC slotted well screen (5' x 1 ¼" [1.52 m x 32 mm] if installing in cored hole in bedrock)
- □ 5' x 2" [1.52 m x 50 mm] threaded sections of Schedule 40 PVC riser pipe (5' x 1 ¼" [1.52 m x 32 mm] if installing in cored hole in bedrock)
- □ Threaded end-cap
- □ Slip-cap or J-plug
- □ Asphalt cold patch or concrete
- Silica Sand
- Bentonite chips (Holeplug)
- □ Steel flushmount casing

Procedure

- Drill borehole to required depth, using drilling and sampling procedures described above.
- If borehole is deeper than required monitoring well, backfill with bentonite chips to required depth. This should only be done on wells where contamination is not suspected, in order to prevent downward migration of contamination.
- □ Only one monitoring well should be installed per borehole.
- Monitoring wells should not be screened across more than one stratigraphic unit to prevent potential migration of contaminants between units.
- Where LNAPLs are the suspected contaminants of concern, monitoring wells should be screened straddling the water table in order to capture any free product floating on top of the water table.
- Thread the end cap onto a section of screen. Thread second section of screen if required. Thread risers onto screen. Lower into borehole to required depth. Ensure slip-cap or J-plug is inserted to prevent backfill materials entering well.
- □ As drillers remove augers, backfill borehole annulus with silica sand until the level of sand is approximately 0.3 m above the top of the screen.
- Backfill with holeplug until at least 0.3 m of holeplug is present above the top of the silica sand.
- Backfill remainder of borehole with holeplug or with auger cuttings (if contamination is not suspected).
- □ Install flushmount casing. Seal space between flushmount and borehole annulus with concrete, cold patch, or holeplug to match surrounding ground surface.

3.3 Monitoring Well Sampling Procedure

Equipment

- □ Water level metre or interface probe on hydrocarbon/LNAPL sites
- □ Spray bottles containing water and methanol to clean water level tape or interface probe
- Peristaltic pump
- Polyethylene tubing for peristaltic pump
- □ Flexible tubing for peristaltic pump
- □ Latex or nitrile gloves (depending on suspected contaminant)
- □ Allen keys and/or 9/16" socket wrench to remove well caps
- Graduated bucket with volume measurements
- D pH/Temperature/Conductivity combo pen

□ Laboratory-supplied sample bottles

Sampling Procedure

- □ Locate well and use socket wrench or Allan key to open metal flush mount protector cap. Remove plastic well cap.
- Measure water level, with respect to existing ground surface, using water level meter or interface probe. If using interface probe on suspected NAPL site, measure the thickness of free product.
- □ Measure total depth of well.
- Clean water level tape or interface probe using methanol and water. Change gloves between wells.
- □ Calculate volume of standing water within well and record.
- Insert polyethylene tubing into well and attach to peristaltic pump. Turn on peristaltic pump and purge into graduated bucket. Purge at least three well volumes of water from the well. Measure and record field chemistry. Continue to purge, measuring field chemistry after every well volume purged, until appearance or field chemistry stabilizes.
- Note appearance of purge water, including colour, opacity (clear, cloudy, silty), sheen, presence of LNAPL, and odour. Note any other unusual features (particulate matter, effervescence (bubbling) of dissolved gas, etc.).
- Fill required sample bottles. If sampling for metals, attach 75-micron filter to discharge tube and filter metals sample. If sampling for VOCs, use low flow rate to ensure continuous stream of non-turbulent flow into sample bottles. Ensure no headspace is present in VOC vials.
- □ Replace well cap and flushmount casing cap.

4.0 QUALITY ASSURANCE/QUALITY CONTROL (QA/QC)

The QA/QC program for this Phase II ESA is as follows:

- □ All non-dedicated sampling equipment (split spoons) will be decontaminated according to the SOPs listed above.
- □ All groundwater sampling equipment is dedicated (polyethylene and flexible peristaltic tubing is replaced for each well).
- □ Where groundwater samples are to be analyzed for VOCs, one laboratoryprovided trip blank will be submitted for analysis with every laboratory submission.

- □ Approximately one (1) field duplicate will be submitted for every ten (10) samples submitted for laboratory analysis. A minimum of one (1) field duplicate per project will be submitted. Field duplicates will be submitted for soil and groundwater samples
- □ Where combo pens are used to measure field chemistry, they will be calibrated on an approximately monthly basis, according to frequency of use.

5.0 DATA QUALITY OBJECTIVES

The purpose of setting data quality objectives (DQOs) is to ensure that the level of uncertainty in data collected during the Phase II ESA is low enough that decision-making is not affected, and that the overall objectives of the investigation are met.

The quality of data is assessed by comparing field duplicates with original samples. If the relative percent difference (RPD) between the duplicate and the sample is within 20%, the data are considered to be of sufficient quality so as not to affect decision-making. The RPD is calculated as follows:

$$RPD = \left| \frac{x_1 - x_2}{(x_1 + x_2)/2} \right| \times 100\%$$

Where x_1 is the concentration of a given parameter in an original sample and x_2 is the concentration of that same parameter in the field duplicate sample.

For the purpose of calculating the RPD, it is desirable to select field duplicates from samples for which parameters are present in concentrations above laboratory detection limits, i.e. samples which are expected to be contaminated. If parameters are below laboratory detection limits for selected samples or duplicates, the RPD may be calculated using a concentration equal to one half (0.5 x) the laboratory detection limit.

It is also important to consider data quality in the overall context of the project. For example, if the DQOs are not met for a given sample, yet the concentrations of contaminants in both the sample and the duplicate exceed the MOE site remediation standards by a large margin, the decision-making usefulness of the sample may not be considered to be impaired. The proximity of other samples which meet the DQOs must also be considered in developing the Phase II Conceptual Site Model; often there are enough data available to produce a reliable Phase II Conceptual Site Model even if DQOs are not met for certain individual samples. These considerations are discussed in the body of the report.

Ditawa Kingston North Bay

6.0 PHYSICAL IMPEDIMENTS TO SAMPLING & ANALYSIS PLAN

Physical impediments to the Sampling and Analysis plan may include:

- □ The location of underground utilities
- Poor recovery of split-spoon soil samples
- □ Insufficient groundwater volume for groundwater samples
- Breakage of sampling containers following sampling or while in transit to the laboratory
- Elevated detection limits due to matrix interference (generally related to soil colour or presence of organic material)
- Elevated detection limits due to high concentrations of certain parameters, necessitating dilution of samples in laboratory
- Drill rig breakdowns
- □ Winter conditions
- □ Other site-specific impediments

Site-specific impediments to the Sampling and Analysis plan are discussed in the body of the Phase II ESA report

				Log	of Bor	ehole	: BH-1		
				Project	#: 248967	.001	Log	iged By: M	к
		D		Project	: Phase II E	Environme	ental Site Assessme	nt	
				Client:	Interrent No	o. 3 Limite	ed Partnership		
				Locatio	n: 473 Alb	ert Street	, Ottawa, Ontario		
				Drill Da	te: Decem	ber 11, 20	019		
			SUBSURFACE PROFIL	E			SAMP	PLE	
Depth	-	Symbol	Description	Measured Depth (m)	Monitoring Well Details	Recovery (%)	Sample ID	Soil Vapour Concentration* (ppm) CGI/PID	Laboratory Analysis
0 1	m - 0		Floor Surface	0.00	Ŧ				
1 1 2			Sand and Gravel Brown, some large gravels,	0.61	stalled	60	SS-1	5/1.0	PHCs, PAHs, BTEX
3			End of Borehole		sull				
4	- 1		Refusal at 0.61 mbfs on inferred		Me				
			bedrock.		oring				
					lonite				
	- 2				≥ of				
7 -					~				
8					<u> </u>				
9									
10	- 3								
11									
12									
13	- 1								
	- 5								
18-									
19									
20-	- 6								
С	ont	racto	r: Strata Drilling Group Inc.	Note: * Soil va	apour concent	rations	Grade Elevatio	on: NM	
D	rilli	ng Me	ethod: Direct Push	measur	ed using a Rk	(I Eagle 2 oustible das	Top of Casina	Elevation:	NA
		Casir	na Size: NA	indicato	r (CGI) and a nization detec	tor (PID).	Sheet: 1 of 1		
		54511				. /			

			Log	of Bor	ehole:	BH-2		
			Project	#: 248967.	001		Logged By: MK	
	P		Project:	Phase II E	Environmer	ntal Site Assess	sment	
			Client:		5. 3 Limited	o Partnersnip		
				n: 473 Albe	en Street,	Ollawa, Onland)	
		SUBSURFACE PROFIL	F	le. Decenn		SA		
						04		
Depth	Symbol	Description	Measured Depth (m)	Monitoring Well Details	Recovery (%)	Sample ID	Soil Vapour Concentration* (ppm) CGI/PID	Laboratory Analysis
ft m 0 - 0		Floor Surface	0.00	*				
		Concrete	0.10	·				
2		End of Borehole		Installed				
3 - 1 4		Refusal at 0.15 mbfs on inferred bedrock.		H− No Monitoring Well				
17 18 19 20 6 Conti Drillin Well	racto ng Me Casir	<i>r:</i> Strata Drilling Group Inc. ethod: Direct Push ng Size: NA	Note: * Soil va measure equippe indicator photoior	pour concent ed using a Rk d with a comt r (CGI) and a nization detec	rations I Eagle 2 pustible gas tor (PID).	Grade Elev Top of Cas Sheet: 1 of	ation: NM ing Elevation: N 1	A

			Log	of Bore	ehol	le: MW-3		
			Project	#: 248967.0	001	Log	iged By: <mark>M</mark> K	[
	D		Project	: Phase II E	nviron	mental Site Assessme	nt	
			Client:	Interrent No	. 3 Lin	nited Partnership		
			Locatio	on: 473 Albe	rt Stre	eet, Ottawa, Ontario		
			Drill Da	ite: Decemb	er 11-	-12, 2019		
		SUBSURFACE PROFIL	.E			SAMF	PLE	
Depth	Symbol	Description	Measured Depth (m)	Monitoring Well Details	Recovery (%)	Sample ID	Soil Vapour Concentration* (ppm) CGI/PID	Laboratory Analysis
$0 \frac{\pi}{1} 0$		Floor Surface	0.00					
1 1			0.25					
2 2 3 4 4 5 6 - 2 7 - 4 - - - - - - - - - - - - -		Fractured Limestone	3.81	Screen Riser				
104 14 15 165 17 18 19 206								
Conti Drillii	racto ng Me	r: Strata Drilling Group Inc. ethod: Direct Push	Note: * Soil va measur equippe indicato	apour concentr ed using a RK ed with a comb or (CGI) and a	ations Eagle ustible	Grade Elevatio 2 gas Top of Casing	on: NM Elevation: I	NM
Well	Casir	ng Size: 3.2 cm	photoio	nization detect	or (PID)). Sheet: 1 of 1		

			Log	of Bore	ehole	: MW-4		
			Project	t #: 248967.	001	Log	ged By: M	ĸ
	D		Project	: Phase II E	nvironm	ental Site Assessmer	nt	
			Client:	Interrent No	. 3 Limit	ed Partnership		
			Locatio	on: 473 Albe	ert Street	t, Ottawa, Ontario		
			Drill Da	ate: Decemb	oer 12, 20	019		
			E	1		SAMP	LE	
Depth	Symbol	Description	Measured Depth (m)	Monitoring Well Details	Recovery (%)	Sample ID	Soil Vapour Concentration* (ppm) CGI/PID	Laboratory Analysis
$0 \frac{\text{ft}}{1} 0$		Floor Surface	0.00					
		Sand and Gravel Brown, some large stone,	0.61	nite	50	SS-1	80/1.0	PHCs, VOCs, PAHs, Metals, PCBs, Mercury
2 3 4 4 5 1 4 5 1 6 1 2 7 4 1 4 1 2 7 4 1 1 1 1 1 1 1 1 1 1 1 1 1		Gamp. Fractured Limestone Refusal at 0.61 mbfs on inferred bedrock.	4.57	Screen Screen Branch Riser				
16 17 17 18 19 19 20 6		End of Borehole						
Cont	racto	r: Strata Drilling Group Inc.	Note:			Grade Elevatio	<i>n:</i> NM	
Drillin Well	ng Me Casir	ethod: Direct Push ng Size: 3.2 cm	measur equippe indicato photoio	apour concentr red using a RK ed with a comb or (CGI) and a nization detect	ations I Eagle 2 ustible gas or (PID).	Sheet: 1 of 1	Elevation:	NM

Project #: 248967.001 Logged By: MK Project: Phase II Environmental Site Assessment Project: Phase II Environmental Site Assessment Client: Interrent No. 3 Limited Partnership Location: 473 Albert Street, Ottawa, Ontario Drill Date: December 12-18, 2019 SUBSURFACE PROFILE SUBSURFACE PROFILE SAMPLE v §	ysis										
Project: Phase II Environmental Site Assessment Client: Interrent No. 3 Limited Partnership Location: 473 Albert Street, Ottawa, Ontario Drill Date: December 12-18, 2019 SUBSURFACE PROFILE Subsurface Subsurface	ysis										
Client: Interrent No. 3 Limited Partnership Location: 473 Albert Street, Ottawa, Ontario Drill Date: December 12-18, 2019 SUBSURFACE PROFILE SAMPLE	ysis										
Location: 473 Albert Street, Ottawa, Ontario Drill Date: December 12-18, 2019 SUBSURFACE PROFILE SAMPLE	ysis										
Drill Date: December 12-18, 2019 SUBSURFACE PROFILE SAMPLE vo S	ysis										
SUBSURFACE PROFILE SAMPLE	ysis										
s %) * tion*	ysis										
Depth Depth Symbol Symbol Symbol Symbol Monitoring Measured Monitoring Well Depth (m) Sample ID Soil Vapou Concentrat (ppm) Coll/PID Coll/PID	Labc Anal										
ft m Floor Surface 0.00											
1 Sand and Gravel 0.46 50 SS-1 15/1.0 PHC PCB Brown, damp. 0.46 0.46 0.46 0.46	s, VOCs, s, Metals, s, Mercury										
2 Fractured Limestone 3 1 Refusal at 0.46 mbfs on inferred bedrock. 6 2 7 2 8 3.66 9 3.66 9 3.66 11 10 12 10 13 4 14 1 15 16 16 5 17 6 20 6											
Contractor: Strata Drilling Group Inc. Note: * Soil vapour concentrations measured using a RKI Eagle 2 equipped with a combustible gas indicator (CGI) and a Grade Elevation: NM											
Well Casing Size: 3.2 cm photoionization detector (PID). Sheet: 1 of 1											
				Log	of Bore	ehole	e: MW-6				
--	--	--------	---	--	-----------------------------------	----------------	--	---	------------------------------	--	--
				Project	t #: 248967.	001	Log	ged By: M	к		
				Project	t: Phase II E	nvironn	nental Site Assessme	nt			
				Client:	Interrent No	. 3 Lim	ited Partnership				
				Locatio	on: 473 Albe	rt Stree	et, Ottawa, Ontario				
				Drill Da	ate: Decemb	er 12-1	16, 2019				
			SUBSURFACE PROFI	E		SAMPLE					
Depth		Symbol	Description	Measured Depth (m)	Monitoring Well Details	Recovery (%)	Sample ID	Soil Vapour Concentration* (ppm) CGI/PID	Laboratory Analysis		
ft 0	m • 0		Floor Surface	0.00	 						
		77	Concrete	0.20		60	SS-1	10/1.0	PHCs, VOCs, PAHs, Metals,		
			Sana ana Gravel Brown, damp.	0.46					PCBs, Mercury		
2 10 11 12 2 10 11 12 12 12 12 12 12 12 12 12	- 2 - 3		Fractured Limestone Refusal at 0.46 mbfs on inferred bedrock.	3.81	Screen Riser						
13 14 15	- 4		End of Borehole								
16 17 17 18	- 5										
19	6										
C D	Contractor: Strata Drilling Group Inc. Drilling Method: Direct Push		Note: * Soil v measu equippe	apour concentr red using a RK ed with a comb	ations l Eagle 2 ustible ga	Grade Elevatio	Grade Elevation: NM Top of Casing Elevation: NM				
и	Well Casing Size: 3.2 cm			photoionization detector (PID). Sheet: 1 of 1							

		LUY	UI DUIE	inole:	IVI V V - /		
		Project	#: 248967.0	001	L	ogged By: MK	
		Project	: Phase II E	nvironmer	tal Site Assessr	nent	
		Client:	Interrent No	. 3 Limited	Partnership		
		Locatio	on: 473 Albe	rt Street, (Ottawa, Ontario		
		Drill Da	te: Decemb	er 17, 201	9		
	SUBSURFACE PROFIL	_E			IPLE		
Depth Symbol	Description	Measured Depth (m)	Monitoring Well Details	Recovery (%)	Sample ID	Soil Vapour Concentration* (ppm) CGI/PID	Laboratory Analysis
$\begin{array}{c c} ft m \\ 0 \end{array} = 0 \end{array}$	Floor Surface	0.00					
	Concrete	0.10					
	Brown, damp.	0.46	lite				
2 3 4 4 5 - - - - - - - - - - - - -	Fractured Limestone Refusal at 0.46 mbfs on inferred bedrock.	3.96	Screen Riser				
10 10 10 5 17 18 19 20 6 Contractor Drilling Me	r: Strata Drilling Group Inc.	Note: * Soil va measur equippe indicato	apour concentr red using a RKI ad with a combo or (CGI) and a	ations Eagle 2 ustible gas	Grade Eleva Top of Casin	tion: NM ng Elevation: N	M

			Log	of Bore	ehol	e: MW-8				
			Project	t #: 248967.0	001	Log	ged By: <mark>M</mark> K			
	D		Project	: Phase II E	nviron	mental Site Assessme	nt			
			Client:	Interrent No	. 3 Lim	nited Partnership				
			Locatio	on: 473 Albe	rt Stre	et, Ottawa, Ontario				
			Drill Da	ate: Decemb	er 19,	2019				
		SUBSURFACE PROFIL	.E			SAMP	SAMPLE			
Depth	Symbol	Description	Measured Depth (m)	Monitoring Well Details	Recovery (%)	Sample ID	Soil Vapour Concentration* (ppm) CGI/PID	Laboratory Analysis		
$\begin{array}{c c} ft m \\ 0 - 0 \end{array}$		Floor Surface	0.00							
		Concrete No Recovery	0.30							
2		Fractured Limestone		nite						
		Refusal at 0.30 mbfs on		ser -						
				ă ă						
5										
6										
7										
8										
9				and						
				sa S						
				Scre						
			3.66							
		End of Borehole	0.00							
13 4										
14										
15										
16										
17-5										
19 + 6										
			Note [.]							
Cont	racto	r: Strata Drilling Group Inc.	* Soil v measu	apour concentr red using a RKI	ations Eagle 2	Grade Elevatio	on: NIVI			
Drilli	ng Me	ethod: Direct Push	equippe	ed with a comb or (CGI) and a	ustible g	gas Top of Casing	Top of Casing Elevation: NM			
Well	Well Casing Size: 3.2 cm			nization detect	or (PID)	Sheet: 1 of 1	Sheet: 1 of 1			
L										

			Log	of Bore	ehol	e: MW-9				
			Project	t #: 248967.0	001	Log	ged By: <mark>M</mark> K			
	D		Project	t: Phase II E	nviron	mental Site Assessme	ent			
			Client:	Interrent No	. 3 Lin	nited Partnership				
			Locatio	on: 473 Albe	rt Stre	et, Ottawa, Ontario				
			Drill Da	ate: Decemb	er 18-	19, 2019				
		SUBSURFACE PROFIL	.E			SAMF	SAMPLE			
Depth	Symbol	Description	Measured Depth (m)	Monitoring Well Details	Recovery (%)	Sample ID	Soil Vapour Concentration* (ppm) CGI/PID	Laboratory Analysis		
$\begin{array}{c c} ft m \\ 0 - 0 \end{array}$		Floor Surface	0.00							
		Concrete	0.30							
2 3 4 4 5 6 1 4 1 1 4 1 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1		No Recovery Fractured Limestone Refusal at 0.30 mbfs on inferred bedrock.	3.66	Screen Riser						
13 4 14 15 16 5 17 18 19 20 6 Conti Drillin Well	racto ng Mo Casir	r: Strata Drilling Group Inc. ethod: Direct Push ng Size: 3.2 cm	Note: * Soil v measu equippe indicato photoic	apour concentr red using a RK ed with a comb or (CGI) and a unization detect	ations Eagle 2 ustible g or (PID)	Grade Elevatio gas Top of Casing Sheet: 1 of 1	on: NM Elevation: N	٩M		

			Log	of Bore	ehole	: MW-10				
			Project	#: 248967.0		Log	iged By: MK			
	Ρ	INCHIN'	Project	: Phase II E	nvironm 2. Limit	ental Site Assessme	nt			
			Locatio	nterrent No	. 3 LIMIU	t Ottawa Optario				
				ite: Decemb	er 19 20	019				
		SUBSURFACE PROFIL	<u> </u>		01 10, 2	SAMPLE				
Depth	Symbol	Description	Measured Depth (m)	Monitoring Well Details	Recovery (%)	Sample ID	Soil Vapour Concentration ⁺ (ppm) CGI/PID	Laboratory Analysis		
ft m 0 - 0		Floor Surface	0.00							
		Concrete No Pocovory	0.30							
2		Fractured Limestone		nite -						
		Refusal at 0.30 mbfs on								
				B B						
5-										
7										
8				•						
9				Sanc						
10 3				reen lica (
				S						
12			3.66							
		End of Borehole								
$\begin{vmatrix} 16 \\ \pm 5 \end{vmatrix}$										
17-										
18-										
19										
20 = 6										
Cont	racto	<i>r:</i> Strata Drilling Group Inc.	Note: * Soil v	apour concentr	Grade Elevation: NM					
Drilli	ng Me	ethod: Direct Push	measur	ed using a RKI	Eagle 2 ustible gas	as Top of Casing Elevation: NM				
Well	Well Casing Size: 3.2 cm		indicato photoio	or (CGI) and a nization detect	or (PID).	Sheet: 1 of 1				
	Well Casing Size: 3.2 cm				、 /		Sneet: 1 01 1			

SOIL PROFILE AND TEST DATA

FILE NO.

PE4908

Phase II - Environmental Site Assessment 473 Albert Street Ottawa, Ontario

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

DATUM Geodetic

~		

REMARKS							_		HOLE NO. BH 1-20
BORINGS BY Portable Drill			D	ATE 2	2020 May	/ 5			
SOIL DESCRIPTION	РГОТ		SAN	IPLE		DEPTH	ELEV.	Photo I • Vola	tile Organic Rdg. (ppm)
	RATA	ХРЕ	MBER	% OVERY	/ALUE ROD	(11)	(11)	O Lowe	r Explosive Limit %
GROUND SURFACE	ST	H	NN	REC	N N			20	40 60 80 S
Concrete slab		≣ G	1			0-	-62.28		
FILL: Grusned stone0.18		RC	1	81	0				
		- BC	2	100	0	1-	-61 28		
		-	2	100			•••=•		
		- RC	3	100	44				
BEDROCK: Very poor to excellent quality, grey limestone		RC	4	100	100	2-	-60.28		
		RC	5	100	100				
		_							
						3-	-59.28		
		RC	6	100	100				
4 11						4-	-58.28		
End of Borehole		-							
(BH dry - May 20, 2020)									
								RKI E	Eagle Rdg. (ppm) as Resp. △ Methane Elim.

SOIL PROFILE AND TEST DATA

Т

Phase II - Environmental Site Assessment 473 Albert Street Ottawa, Ontario

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

DATUM Geodetic									FIL	E NO.	PI	E4908	8
REMARKS				-		2020 Jun	• ?		нс	DLE NO.	В	H 1A	-20
	E		SAN	/IPLE			62	Photo		zation	Detec	tor	
SOIL DESCRIPTION	DIO		-	к К	ы	DEPTH (m)	ELEV. (m)	Vola	atile C	Organic F	Rdg. (p	pm)	ng V uction
	TRATZ	ГYPE	UMBEF	COVER	VALU r RQD			O Lowe	er Ex	plosiv	e Lim	nit %	Constr
GROUND SURFACE	N		Ň	REC	z ö	0-	-62.29	20	40	60	8	0	ž
Concrete slab													
1.10						1-	-61.29						
1.13		RC	1	100	0								
		RC	2	100	74								
			3	100	100	2-	-60.29						
			5										
BEDROCK: Very poor to excellent quality, grey limestone		RC	4	100	100								
						3-	-59.29		<u>.</u>				
		RC	5	100	94								
						4-	-58.29						
4.42	2									<u></u>	<u> </u>		
(GWL @ 2.08m - June 11, 2020)													
								100 RKI	200 Eagl) 300 e Rdg.) 4((ppn	00 50 n)	00
								▲ Full G	as R	esp. 🛆 🛚	Nethar	ne Elim.	

SOIL PROFILE AND TEST DATA

FILE NO.

PE4908

Phase II - Environmental Site Assessment 473 Albert Street Ottawa, Ontario

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geodetic

DATUM

REMARKS BORINGS BY Portable Drill				C	ATE	2020 Mav	/ 4		HOLE NO.	BH 2-2	20
SOIL DESCRIPTION	LOT		SAN	IPLE		DEPTH	ELEV.	Photo I	onization D	etector	Well
	TRATA F	ТҮРЕ	UMBER	°° COVERY	VALUE r RQD	(m)	(m)	 Lowe 	r Explosive	Limit %	onstruc
GROUND SURFACE	ũ	_	ä	RE	zö	0	<u> </u>	20	40 60	80	ž
Concrete slab 0.09		= G	1			0-	-62.26				
FILL: Crushed stone 0.91											<u>նինինինինին</u> հնդերներին
		RC	1	100	93	1-	-61.26				<u>ինինինինինինի</u>
BEDROCK: Excellent quality, grey limestone		- RC	2	97	79	2-	-60.26				
		– RC	3	100	90	3-	-59.26				
4.04		_ RC	4	94	94	4-	-58.26				
End of Borehole	•										-
(GWL @ 1.85m - May 14, 2020)								100	200 300	400 51	00
								RKI E ▲ Full Ga	agle Rdg. (as Resp. △ M	(ppm) ethane Elim.	

SOIL PROFILE AND TEST DATA

FILE NO.

PE4908

Phase II - Environmental Site Assessment 473 Albert Street Ottawa, Ontario

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geodetic

DATUM

REMARKS BORINGS BY Portable Drill				C	ATE 2	2020 May	/ 4		HOLE NO.	BH 3-2	20
SOIL DESCRIPTION	LOT		SAN	IPLE	1	DEPTH	ELEV.	Photo I	onization E)etector	Well
	TRATA P	ТҮРЕ	UMBER	°° COVERY	VALUE r RQD	(m)	(m)	○ Lowe	r Explosive	Limit %	Onitoring
GROUND SURFACE	N N		Z	RE	z ^o	0-	-62.26	20	40 60	80	ΣŬ
Concrete slab		G	1				02.20				
		RC	1	100	0						
		RC	2	95	0						
						1-	-61.26				
		RC	3	90	0						
		RC	4	100	15						
BEDROCK: Very poor to excellent		_			_	2-	-60.26				
quality, grey limestone											
		BC	5	100	77						
		110									
						3-	-59.26				
		RC	6	100	100						
		_	_			1	59.06				
4.19)					4	50.20				
End of Borenole											
(GWL @ 1.35m - May 14, 2020)											
									200 200	400 50	00
								RKI	Eagle Rdg.	(ppm)	10
								▲ Full G	as Resp. 🛆 M	lethane Elim.	

SOIL PROFILE AND TEST DATA

Phase II - Environmental Site Assessment 473 Albert Street Ottawa, Ontario

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

DATUM Geodetic									FILE NO.	PE4908	8
REMARKS				-		2020 No.	(ombor 2	0	HOLE NO.	BH 4-2	20
BORINGS BY FOILable Drill				L							
SOIL DESCRIPTION	PLOT		SAN	/IPLE 건	M a	DEPTH (m)	ELEV. (m)	Photo I Vola	Ionization E atile Organic R	Detector dg. (ppm)	ng Wel uction
	STRATA	ТҮРЕ	NUMBER	COVER	I VALUI or RQD			• Lowe	er Explosive	e Limit %	lonitori Constr
GROUND SURFACE			-	8	ZŬ	0-	-62.26	20	40 60	80	≥ t=r=
FILL: Crushed stone with sand and gravel						1-	-61.26				<u>րիններին ներկերը կերություն։</u> Որիններին
<u>1.9</u> 5		-				2-	-60.26				יולידיולידיולידיולידיולידיולידיולידיולי
BEDROCK: Grey limestone						3-	-59.26				
						4-	-58.26				
						5-	-57.26				
						6-	-56 26				
End of Borehole	· · · · ·	-									
(GWL @ 2.10 m depth - December 11, 2020)								100 RKI I ▲ Full G	200 300 Eagle Rdg. as Resp. △ M	400 5 (ppm) lethane Elim.	

SYMBOLS AND TERMS

SOIL DESCRIPTION

Behavioural properties, such as structure and strength, take precedence over particle gradation in describing soils. Terminology describing soil structure are as follows:

Desiccated	-	having visible signs of weathering by oxidation of clay minerals, shrinkage cracks, etc.
Fissured	-	having cracks, and hence a blocky structure.
Varved	-	composed of regular alternating layers of silt and clay.
Stratified	-	composed of alternating layers of different soil types, e.g. silt and sand or silt and clay.
Well-Graded	-	Having wide range in grain sizes and substantial amounts of all intermediate particle sizes (see Grain Size Distribution).
Uniformly-Graded	-	Predominantly of one grain size (see Grain Size Distribution).

The standard terminology to describe the strength of cohesionless soils is the relative density, usually inferred from the results of the Standard Penetration Test (SPT) 'N' value. The SPT N value is the number of blows of a 63.5 kg hammer, falling 760 mm, required to drive a 51 mm O.D. split spoon sampler 300 mm into the soil after an initial penetration of 150 mm.

Relative Density	'N' Value	Relative Density %
Very Loose	<4	<15
Loose	4-10	15-35
Compact	10-30	35-65
Dense	30-50	65-85
Very Dense	>50	>85

The standard terminology to describe the strength of cohesive soils is the consistency, which is based on the undisturbed undrained shear strength as measured by the in situ or laboratory vane tests, penetrometer tests, unconfined compression tests, or occasionally by Standard Penetration Tests.

Consistency	Undrained Shear Strength (kPa)	'N' Value
Very Soft	<12	<2
Soft	12-25	2-4
Firm	25-50	4-8
Stiff	50-100	8-15
Very Stiff	100-200	15-30
Hard	>200	>30

SYMBOLS AND TERMS (continued)

SOIL DESCRIPTION (continued)

Cohesive soils can also be classified according to their "sensitivity". The sensitivity is the ratio between the undisturbed undrained shear strength and the remoulded undrained shear strength of the soil.

Terminology used for describing soil strata based upon texture, or the proportion of individual particle sizes present is provided on the Textural Soil Classification Chart at the end of this information package.

ROCK DESCRIPTION

The structural description of the bedrock mass is based on the Rock Quality Designation (RQD).

The RQD classification is based on a modified core recovery percentage in which all pieces of sound core over 100 mm long are counted as recovery. The smaller pieces are considered to be a result of closely-spaced discontinuities (resulting from shearing, jointing, faulting, or weathering) in the rock mass and are not counted. RQD is ideally determined from NXL size core. However, it can be used on smaller core sizes, such as BX, if the bulk of the fractures caused by drilling stresses (called "mechanical breaks") are easily distinguishable from the normal in situ fractures.

RQD % ROCK QUALITY

90-100	Excellent, intact, very sound
75-90	Good, massive, moderately jointed or sound
50-75	Fair, blocky and seamy, fractured
25-50	Poor, shattered and very seamy or blocky, severely fractured
0-25	Very poor, crushed, very severely fractured

SAMPLE TYPES

SS	-	Split spoon sample (obtained in conjunction with the performing of the Standard
		Penetration Test (SPT))

- TW Thin wall tube or Shelby tube
- PS Piston sample
- AU Auger sample or bulk sample
- WS Wash sample
- RC Rock core sample (Core bit size AXT, BXL, etc.). Rock core samples are obtained with the use of standard diamond drilling bits.

SYMBOLS AND TERMS (continued)

GRAIN SIZE DISTRIBUTION

MC%	-	Natural moisture content or water content of sample, %								
LL	-	Liquid Limit, % (water content above which soil behaves as a liquid)								
PL	-	Plastic limit, % (water content above which soil behaves plastically)								
PI	-	Plasticity index, % (difference between LL and PL)								
Dxx	-	Grain size which xx% of the soil, by weight, is of finer grain sizes These grain size descriptions are not used below 0.075 mm grain size								
D10	-	Grain size at which 10% of the soil is finer (effective grain size)								
D60	-	Grain size at which 60% of the soil is finer								
Сс	-	Concavity coefficient = $(D30)^2 / (D10 \times D60)$								
Cu	-	Uniformity coefficient = D60 / D10								
Cc and (Cc and Cu are used to assess the grading of sands and gravels:									

Well-graded gravels have: 1 < Cc < 3 and Cu > 4Well-graded sands have: 1 < Cc < 3 and Cu > 4Well-graded sands have: 1 < Cc < 3 and Cu > 6Sands and gravels not meeting the above requirements are poorly-graded or uniformly-graded. Cc and Cu are not applicable for the description of soils with more than 10% silt and clay (more than 10% finer than 0.075 mm or the #200 sieve)

CONSOLIDATION TEST

p'o	-	Present effective overburden pressure at sample depth
p'c	-	Preconsolidation pressure of (maximum past pressure on) sample
Ccr	-	Recompression index (in effect at pressures below p'c)
Сс	-	Compression index (in effect at pressures above p'c)
OC Ratio		Overconsolidaton ratio = p'_c / p'_o
Void Ratio	D	Initial sample void ratio = volume of voids / volume of solids
Wo	-	Initial water content (at start of consolidation test)

PERMEABILITY TEST

k - Coefficient of permeability or hydraulic conductivity is a measure of the ability of water to flow through the sample. The value of k is measured at a specified unit weight for (remoulded) cohesionless soil samples, because its value will vary with the unit weight or density of the sample during the test.

Slotted PVC Screen

Silica Sand

Your Project #: 248967.001 Site Location: 473 ALBERT Your C.O.C. #: 729720-30-01

Attention: Matt, Ryan, Mike

Pinchin Ltd Ottawa 1 Hines Road Suite 200 Kanata, ON CANADA K2K 3C7

> Report Date: 2019/12/24 Report #: R6018467 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: B9Z4584 Received: 2019/12/17, 10:19

Sample Matrix: Soil # Samples Received: 7

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Methylnaphthalene Sum (1)	5	N/A	2019/12/23	CAM SOP-00301	EPA 8270D m
1,3-Dichloropropene Sum (1)	1	N/A	2019/12/20		EPA 8260C m
1,3-Dichloropropene Sum (1)	2	N/A	2019/12/22		EPA 8260C m
1,3-Dichloropropene Sum (1)	1	N/A	2019/12/23		EPA 8260C m
Petroleum Hydro. CCME F1 & BTEX in Soil (1, 2)	2	N/A	2019/12/21	CAM SOP-00315	CCME PHC-CWS m
Petroleum Hydrocarbons F2-F4 in Soil (1, 3)	5	2019/12/21	2019/12/22	CAM SOP-00316	CCME CWS m
Strong Acid Leachable Metals by ICPMS (1)	4	2019/12/19	2019/12/20	CAM SOP-00447	EPA 6020B m
Moisture (1)	5	N/A	2019/12/19	CAM SOP-00445	Carter 2nd ed 51.2 m
Moisture (1)	1	N/A	2019/12/21	CAM SOP-00445	Carter 2nd ed 51.2 m
PAH Compounds in Soil by GC/MS (SIM) (1)	5	2019/12/20	2019/12/21	CAM SOP-00318	EPA 8270D m
Polychlorinated Biphenyl in Soil (1)	4	2019/12/23	2019/12/23	CAM SOP-00309	EPA 8082A m
pH CaCl2 EXTRACT (1)	1	2019/12/20	2019/12/20	CAM SOP-00413	EPA 9045 D m
Volatile Organic Compounds and F1 PHCs (1)	1	N/A	2019/12/19	CAM SOP-00230	EPA 8260C m
Volatile Organic Compounds and F1 PHCs (1)	2	N/A	2019/12/20	CAM SOP-00230	EPA 8260C m
Volatile Organic Compounds in Soil (1)	1	N/A	2019/12/20	CAM SOP-00228	EPA 8260C m

Remarks:

Bureau Veritas Laboratories are accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by BV Labs are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in BV Labs profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and BV Labs in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

BV Labs liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. BV Labs has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by BV Labs, unless otherwise agreed in writing. BV Labs is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope

Your Project #: 248967.001 Site Location: 473 ALBERT Your C.O.C. #: 729720-30-01

Attention: Matt, Ryan, Mike

Pinchin Ltd Ottawa 1 Hines Road Suite 200 Kanata, ON CANADA K2K 3C7

> Report Date: 2019/12/24 Report #: R6018467 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: B9Z4584

Received: 2019/12/17, 10:19

dilution methods.

Results relate to samples tested. When sampling is not conducted by BV Labs, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) This test was performed by Bureau Veritas Laboratories Mississauga

(2) No lab extraction date is given for F1BTEX & VOC samples that are field preserved with methanol. Extraction date is the date sampled unless otherwise stated. (3) All CCME PHC results met required criteria unless otherwise stated in the report. The CWS PHC methods employed by Bureau Veritas Laboratories conform to all prescribed elements of the reference method and performance based elements have been validated. All modifications have been validated and proven equivalent following "Alberta Environment's Interpretation of the Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil Validation of Performance-Based Alternative Methods September 2003". Documentation is available upon request. Modifications from Reference Method for the Canada-wide Standard for Petroleum Hydrocarbons in Soil-Tier 1 Method: F2/F3/F4 data reported using validated cold solvent extraction instead of Soxhlet extraction.

Encryption Key

Alisha Williamson Project Manager 24 Dec 2019 12:07:21

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Alisha Williamson, Project Manager Email: Alisha.Williamson@bvlabs.com Phone# (613)274-0573

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

O.REG 153 ICPMS METALS (SOIL)

BV Labs ID		LPA700	LPA702	LPA703	LPA704		
Sampling Date		2019/12/12	2019/12/11	2019/12/11	2019/12/11		
COC Number		729720-30-01	729720-30-01	729720-30-01	729720-30-01		
	UNITS	MW4-SS-1	MW5-SS-1	DUP-3	MW6-SS-1	RDL	QC Batch
Metals	-					·	
Acid Extractable Antimony (Sb)	ug/g	<0.20	0.23	<0.20	<0.20	0.20	6506156
Acid Extractable Arsenic (As)	ug/g	3.6	1.9	2.4	3.3	1.0	6506156
Acid Extractable Barium (Ba)	ug/g	120	430	330	290	0.50	6506156
Acid Extractable Beryllium (Be)	ug/g	0.21	0.31	0.26	0.25	0.20	6506156
Acid Extractable Boron (B)	ug/g	8.2	9.8	8.9	7.9	5.0	6506156
Acid Extractable Cadmium (Cd)	ug/g	<0.10	<0.10	<0.10	<0.10	0.10	6506156
Acid Extractable Chromium (Cr)	ug/g	8.8	10	9.6	9.4	1.0	6506156
Acid Extractable Cobalt (Co)	ug/g	28	15	7.1	5.0	0.10	6506156
Acid Extractable Copper (Cu)	ug/g	57	29	13	8.1	0.50	6506156
Acid Extractable Lead (Pb)	ug/g	11	20	16	22	1.0	6506156
Acid Extractable Molybdenum (Mo)	ug/g	1.8	1.7	1.2	1.6	0.50	6506156
Acid Extractable Nickel (Ni)	ug/g	8.9	12	9.5	9.4	0.50	6506156
Acid Extractable Selenium (Se)	ug/g	<0.50	<0.50	<0.50	<0.50	0.50	6506156
Acid Extractable Silver (Ag)	ug/g	<0.20	0.21	<0.20	<0.20	0.20	6506156
Acid Extractable Thallium (Tl)	ug/g	0.098	0.36	0.066	0.085	0.050	6506156
Acid Extractable Uranium (U)	ug/g	0.67	0.44	0.53	0.56	0.050	6506156
Acid Extractable Vanadium (V)	ug/g	7.8	6.9	9.8	8.6	5.0	6506156
Acid Extractable Zinc (Zn)	ug/g	15	26	22	23	5.0	6506156
Acid Extractable Mercury (Hg)	ug/g	0.057	<0.050	<0.050	<0.050	0.050	6506156
RDL = Reportable Detection Limit							
QC Batch = Quality Control Batch							

QC Batch = Quality Control Batch

O.REG 153 PAHS (SOIL)

BV Labs ID		LPA698	LPA699	LPA700	LPA702	LPA704		
Sampling Date		2019/12/11	2019/12/11	2019/12/12	2019/12/11	2019/12/11		
COC Number		729720-30-01	729720-30-01	729720-30-01	729720-30-01	729720-30-01		
	UNITS	BH1-SS-1	DUP-1	MW4-SS-1	MW5-SS-1	MW6-SS-1	RDL	QC Batch
Calculated Parameters	-				- 			
Methylnaphthalene, 2-(1-)	ug/g	<0.0071	<0.0071	<0.0071	<0.0071	<0.0071	0.0071	6500971
Polyaromatic Hydrocarbons								
Acenaphthene	ug/g	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	6509258
Acenaphthylene	ug/g	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	6509258
Anthracene	ug/g	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	6509258
Benzo(a)anthracene	ug/g	0.017	0.012	<0.0050	0.0072	0.0076	0.0050	6509258
Benzo(a)pyrene	ug/g	0.019	0.012	<0.0050	0.0078	0.0088	0.0050	6509258
Benzo(b/j)fluoranthene	ug/g	0.028	0.018	0.0072	0.015	0.013	0.0050	6509258
Benzo(g,h,i)perylene	ug/g	0.014	0.0083	0.0054	0.0088	0.0097	0.0050	6509258
Benzo(k)fluoranthene	ug/g	0.0096	0.0062	<0.0050	0.0055	<0.0050	0.0050	6509258
Chrysene	ug/g	0.018	0.012	<0.0050	0.010	0.0072	0.0050	6509258
Dibenzo(a,h)anthracene	ug/g	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	6509258
Fluoranthene	ug/g	0.034	0.025	0.0060	0.0078	0.011	0.0050	6509258
Fluorene	ug/g	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	6509258
Indeno(1,2,3-cd)pyrene	ug/g	0.014	0.0083	<0.0050	0.0083	0.0084	0.0050	6509258
1-Methylnaphthalene	ug/g	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	6509258
2-Methylnaphthalene	ug/g	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	6509258
Naphthalene	ug/g	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	6509258
Phenanthrene	ug/g	0.023	0.027	0.0060	0.0090	0.0078	0.0050	6509258
Pyrene	ug/g	0.031	0.021	0.0072	0.0093	0.011	0.0050	6509258
Surrogate Recovery (%)								
D10-Anthracene	%	99	99	98	97	101		6509258
D14-Terphenyl (FS)	%	93	92	92	89	91		6509258
D8-Acenaphthylene	%	90	90	89	88	90		6509258
RDL = Reportable Detection L	imit							
QC Batch = Quality Control Ba	atch							

O.REG 153 PCBS (SOIL)

3V Labs ID		LPA700	LPA701	LPA702	LPA704			
Sampling Date		2019/12/12	2019/12/12	2019/12/11	2019/12/11			
COC Number		729720-30-01	729720-30-01	729720-30-01	729720-30-01			
	UNITS	MW4-SS-1	DUP-2	MW5-SS-1	MW6-SS-1	RDL	QC Batch	
PCBs								
Aroclor 1242	ug/g	<0.010	<0.010	<0.010	<0.010	0.010	6511621	
Aroclor 1248	ug/g	<0.010	<0.010	<0.010	<0.010	0.010	6511621	
Aroclor 1254	ug/g	<0.010	<0.010	<0.010	<0.010	0.010	6511621	
Aroclor 1260	ug/g	<0.010	<0.010	<0.010	<0.010	0.010	6511621	
Total PCB	ug/g	<0.010	<0.010	<0.010	<0.010	0.010	6511621	
Surrogate Recovery (%)								
Decachlorobiphenyl	%	88	93	91	98		6511621	
RDL = Reportable Detection L	RDL = Reportable Detection Limit							
QC Batch = Quality Control Ba	atch							

O.REG 153 PHCS, BTEX/F1-F4 (SOIL)

BV Labs ID		LPA698		LPA699		
Sampling Date		2019/12/11		2019/12/11		
COC Number		729720-30-01		729720-30-01		
	UNITS	BH1-SS-1	QC Batch	DUP-1	RDL	QC Batch
Inorganics	·					
Moisture	%	3.7	6507168	4.4	1.0	6506972
BTEX & F1 Hydrocarbons						
Benzene	ug/g	<0.020	6510660	<0.020	0.020	6510660
Toluene	ug/g	0.10	6510660	0.024	0.020	6510660
Ethylbenzene	ug/g	<0.020	6510660	<0.020	0.020	6510660
o-Xylene	ug/g	0.033	6510660	<0.020	0.020	6510660
p+m-Xylene	ug/g	0.11	6510660	0.046	0.040	6510660
Total Xylenes	ug/g	0.14	6510660	0.046	0.040	6510660
F1 (C6-C10)	ug/g	11	6510660	10	10	6510660
F1 (C6-C10) - BTEX	ug/g	11	6510660	10	10	6510660
F2-F4 Hydrocarbons						
F2 (C10-C16 Hydrocarbons)	ug/g	<10	6510772	<10	10	6510772
F3 (C16-C34 Hydrocarbons)	ug/g	<50	6510772	<50	50	6510772
F4 (C34-C50 Hydrocarbons)	ug/g	<50	6510772	<50	50	6510772
Reached Baseline at C50	ug/g	Yes	6510772	Yes		6510772
Surrogate Recovery (%)						
1,4-Difluorobenzene	%	100	6510660	103		6510660
4-Bromofluorobenzene	%	104	6510660	104		6510660
D10-Ethylbenzene	%	107	6510660	108		6510660
D4-1,2-Dichloroethane	%	94	6510660	95		6510660
o-Terphenyl	%	87	6510772	87		6510772
RDL = Reportable Detection L	imit					
QC Batch = Quality Control Ba	atch					

O.REG 153 VOCS BY HS & F1-F4 (SOIL)

BV Labs ID		LPA700	LPA702	LPA704			
Sampling Date		2019/12/12	2019/12/11	2019/12/11			
COC Number		729720-30-01	729720-30-01	729720-30-01			
	UNITS	MW4-SS-1	MW5-SS-1	MW6-SS-1	RDL	QC Batch	
Inorganics	-						
Moisture	%	5.0	6.1	6.1	1.0	6507141	
Calculated Parameters	•						
1,3-Dichloropropene (cis+trans)	ug/g	<0.050	<0.050	<0.050	0.050	6500972	
Volatile Organics						•	
Acetone (2-Propanone)	ug/g	<0.50	<0.50	<0.50	0.50	6505767	
Benzene	ug/g	<0.020	<0.020	<0.020	0.020	6505767	
Bromodichloromethane	ug/g	<0.050	<0.050	<0.050	0.050	6505767	
Bromoform	ug/g	<0.050	<0.050	<0.050	0.050	6505767	
Bromomethane	ug/g	<0.050	<0.050	<0.050	0.050	6505767	
Carbon Tetrachloride	ug/g	<0.050	<0.050	<0.050	0.050	6505767	
Chlorobenzene	ug/g	<0.050	<0.050	<0.050	0.050	6505767	
Chloroform	ug/g	<0.050	<0.050	<0.050	0.050	6505767	
Dibromochloromethane	ug/g	<0.050	<0.050	<0.050	0.050	6505767	
1,2-Dichlorobenzene	ug/g	<0.050	<0.050	<0.050	0.050	6505767	
1,3-Dichlorobenzene	ug/g	<0.050	<0.050	<0.050	0.050	6505767	
1,4-Dichlorobenzene	ug/g	0.083	0.091	<0.050	0.050	6505767	
Dichlorodifluoromethane (FREON 12)	ug/g	<0.050	<0.050	<0.050	0.050	6505767	
1,1-Dichloroethane	ug/g	<0.050	<0.050	<0.050	0.050	6505767	
1,2-Dichloroethane	ug/g	<0.050	<0.050	<0.050	0.050	6505767	
1,1-Dichloroethylene	ug/g	<0.050	<0.050	<0.050	0.050	6505767	
cis-1,2-Dichloroethylene	ug/g	<0.050	<0.050	<0.050	0.050	6505767	
trans-1,2-Dichloroethylene	ug/g	<0.050	<0.050	<0.050	0.050	6505767	
1,2-Dichloropropane	ug/g	<0.050	<0.050	<0.050	0.050	6505767	
cis-1,3-Dichloropropene	ug/g	<0.030	<0.030	<0.030	0.030	6505767	
trans-1,3-Dichloropropene	ug/g	<0.040	<0.040	<0.040	0.040	6505767	
Ethylbenzene	ug/g	<0.020	<0.020	<0.020	0.020	6505767	
Ethylene Dibromide	ug/g	<0.050	<0.050	<0.050	0.050	6505767	
Hexane	ug/g	0.18	0.26	<0.050	0.050	6505767	
Methylene Chloride(Dichloromethane)	ug/g	<0.050	<0.050	<0.050	0.050	6505767	
Methyl Ethyl Ketone (2-Butanone)	ug/g	<0.50	<0.50	<0.50	0.50	6505767	
Methyl Isobutyl Ketone	ug/g	<0.50	<0.50	<0.50	0.50	6505767	
Methyl t-butyl ether (MTBE)	ug/g	<0.050	<0.050	<0.050	0.050	6505767	
Styrene	ug/g	<0.050	<0.050	<0.050	0.050	6505767	
1,1,1,2-Tetrachloroethane	ug/g	<0.050	<0.050	<0.050	0.050	6505767	
RDL = Reportable Detection Limit							
QC Batch = Quality Control Batch							

O.REG 153 VOCS BY HS & F1-F4 (SOIL)

BV Labs ID		LPA700	LPA702	LPA704		
Sampling Date		2019/12/12	2019/12/11	2019/12/11		
COC Number		729720-30-01	729720-30-01	729720-30-01		
	UNITS	MW4-SS-1	MW5-SS-1	MW6-SS-1	RDL	QC Batch
1,1,2,2-Tetrachloroethane	ug/g	<0.050	<0.050	<0.050	0.050	6505767
Tetrachloroethylene	ug/g	<0.050	<0.050	<0.050	0.050	6505767
Toluene	ug/g	0.033	0.028	<0.020	0.020	6505767
1,1,1-Trichloroethane	ug/g	<0.050	<0.050	<0.050	0.050	6505767
1,1,2-Trichloroethane	ug/g	<0.050	<0.050	<0.050	0.050	6505767
Trichloroethylene	ug/g	<0.050	<0.050	<0.050	0.050	6505767
Trichlorofluoromethane (FREON 11)	ug/g	<0.050	<0.050	<0.050	0.050	6505767
Vinyl Chloride	ug/g	<0.020	<0.020	<0.020	0.020	6505767
p+m-Xylene	ug/g	0.076	0.069	<0.020	0.020	6505767
o-Xylene	ug/g	0.025	0.026	<0.020	0.020	6505767
Total Xylenes	ug/g	0.10	0.095	<0.020	0.020	6505767
F1 (C6-C10)	ug/g	<10	<10	<10	10	6505767
F1 (C6-C10) - BTEX	ug/g	<10	<10	<10	10	6505767
F2-F4 Hydrocarbons	•					
F2 (C10-C16 Hydrocarbons)	ug/g	<10	<10	<10	10	6510772
F3 (C16-C34 Hydrocarbons)	ug/g	<50	<50	<50	50	6510772
F4 (C34-C50 Hydrocarbons)	ug/g	<50	<50	<50	50	6510772
Reached Baseline at C50	ug/g	Yes	Yes	Yes		6510772
Surrogate Recovery (%)						
o-Terphenyl	%	84	85	94		6510772
4-Bromofluorobenzene	%	99	98	95		6505767
D10-o-Xylene	%	104	98	114		6505767
D4-1,2-Dichloroethane	%	99	100	103		6505767
D8-Toluene	%	101	100	99		6505767
RDL = Reportable Detection Limit QC Batch = Quality Control Batch						

O.REG 153 VOCS BY HS (SOIL)

BV Labs ID		LPA701		
Sampling Date		2019/12/12		
COC Number		729720-30-01		
	UNITS	DUP-2	RDL	QC Batch
Inorganics			·	
Moisture	%	5.1	1.0	6508552
Calculated Parameters				
1,3-Dichloropropene (cis+trans)	ug/g	<0.050	0.050	6500972
Volatile Organics				
Acetone (2-Propanone)	ug/g	<0.50	0.50	6504104
Benzene	ug/g	<0.020	0.020	6504104
Bromodichloromethane	ug/g	<0.050	0.050	6504104
Bromoform	ug/g	<0.050	0.050	6504104
Bromomethane	ug/g	<0.050	0.050	6504104
Carbon Tetrachloride	ug/g	<0.050	0.050	6504104
Chlorobenzene	ug/g	<0.050	0.050	6504104
Chloroform	ug/g	<0.050	0.050	6504104
Dibromochloromethane	ug/g	<0.050	0.050	6504104
1,2-Dichlorobenzene	ug/g	<0.050	0.050	6504104
1,3-Dichlorobenzene	ug/g	<0.050	0.050	6504104
1,4-Dichlorobenzene	ug/g	0.074	0.050	6504104
Dichlorodifluoromethane (FREON 12)	ug/g	<0.050	0.050	6504104
1,1-Dichloroethane	ug/g	<0.050	0.050	6504104
1,2-Dichloroethane	ug/g	<0.050	0.050	6504104
1,1-Dichloroethylene	ug/g	<0.050	0.050	6504104
cis-1,2-Dichloroethylene	ug/g	<0.050	0.050	6504104
trans-1,2-Dichloroethylene	ug/g	<0.050	0.050	6504104
1,2-Dichloropropane	ug/g	<0.050	0.050	6504104
cis-1,3-Dichloropropene	ug/g	<0.030	0.030	6504104
trans-1,3-Dichloropropene	ug/g	<0.040	0.040	6504104
Ethylbenzene	ug/g	<0.020	0.020	6504104
Ethylene Dibromide	ug/g	<0.050	0.050	6504104
Hexane	ug/g	0.30	0.050	6504104
Methylene Chloride(Dichloromethane)	ug/g	<0.050	0.050	6504104
Methyl Ethyl Ketone (2-Butanone)	ug/g	<0.50	0.50	6504104
Methyl Isobutyl Ketone	ug/g	<0.50	0.50	6504104
Methyl t-butyl ether (MTBE)	ug/g	<0.050	0.050	6504104
Styrene	ug/g	<0.050	0.050	6504104
1,1,1,2-Tetrachloroethane	ug/g	<0.050	0.050	6504104
RDL = Reportable Detection Limit QC Batch = Quality Control Batch				

O.REG 153 VOCS BY HS (SOIL)

BV Labs ID		LPA701		
Sampling Date		2019/12/12		
COC Number		729720-30-01		
	UNITS	DUP-2	RDL	QC Batch
1,1,2,2-Tetrachloroethane	ug/g	<0.050	0.050	6504104
Tetrachloroethylene	ug/g	<0.050	0.050	6504104
Toluene	ug/g	0.051	0.020	6504104
1,1,1-Trichloroethane	ug/g	<0.050	0.050	6504104
1,1,2-Trichloroethane	ug/g	<0.050	0.050	6504104
Trichloroethylene	ug/g	<0.050	0.050	6504104
Trichlorofluoromethane (FREON 11)	ug/g	<0.050	0.050	6504104
Vinyl Chloride	ug/g	<0.020	0.020	6504104
p+m-Xylene	ug/g	0.093	0.020	6504104
o-Xylene	ug/g	0.031	0.020	6504104
Total Xylenes	ug/g	0.12	0.020	6504104
Surrogate Recovery (%)			-	
4-Bromofluorobenzene	%	97		6504104
D10-o-Xylene	%	108		6504104
D4-1,2-Dichloroethane	%	98		6504104
D8-Toluene	%	101		6504104
RDL = Reportable Detection Limit				
QC Batch = Quality Control Batch				

RESULTS OF ANALYSES OF SOIL

BV Labs ID		LPA698			
Sampling Date		2019/12/11			
COC Number		729720-30-01			
	UNITS	BH1-SS-1	QC Batch		
Inorganics					
Available (CaCl2) pH	рН	7.88	6508612		
QC Batch = Quality Control Batch					

Pinchin Ltd Client Project #: 248967.001 Site Location: 473 ALBERT Sampler Initials: MK

TEST SUMMARY

BV Labs ID:	LPA698
Sample ID:	BH1-SS-1
Matrix:	Soil

Sample ID: BH1-SS-1 Matrix: Soil				I	Shipped: Received: 2019/12/17
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	6500971	N/A	2019/12/23	Automated Statchk
Petroleum Hydro. CCME F1 & BTEX in Soil	HSGC/MSFD	6510660	N/A	2019/12/21	Abdi Mohamud
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	6510772	2019/12/21	2019/12/22	Prabhjot Gulati
Moisture	BAL	6507168	N/A	2019/12/19	Prgya Panchal
PAH Compounds in Soil by GC/MS (SIM)	GC/MS	6509258	2019/12/20	2019/12/21	Mitesh Raj
pH CaCl2 EXTRACT	AT	6508612	2019/12/20	2019/12/20	Kazzandra Adeva

BV Labs ID:	LPA699
Sample ID:	DUP-1
Matrix:	Soil

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	6500971	N/A	2019/12/23	Automated Statchk
Petroleum Hydro. CCME F1 & BTEX in Soil	HSGC/MSFD	6510660	N/A	2019/12/21	Abdi Mohamud
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	6510772	2019/12/21	2019/12/22	Prabhjot Gulati
Moisture	BAL	6506972	N/A	2019/12/19	Manpreet Kaur
PAH Compounds in Soil by GC/MS (SIM)	GC/MS	6509258	2019/12/20	2019/12/21	Mitesh Raj

BV Labs ID:	LPA700
Sample ID:	MW4-SS-1
Matrix:	Soil

Collected:	2019/12/12
Shipped:	
Received:	2019/12/17

Collected: 2019/12/11 Shipped: Received: 2019/12/17

Collected: 2019/12/11

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	6500971	N/A	2019/12/23	Automated Statchk
1,3-Dichloropropene Sum	CALC	6500972	N/A	2019/12/22	Automated Statchk
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	6510772	2019/12/21	2019/12/22	Prabhjot Gulati
Strong Acid Leachable Metals by ICPMS	ICP/MS	6506156	2019/12/19	2019/12/20	Daniel Teclu
Moisture	BAL	6507141	N/A	2019/12/19	Gurpreet Kaur
PAH Compounds in Soil by GC/MS (SIM)	GC/MS	6509258	2019/12/20	2019/12/21	Mitesh Raj
Polychlorinated Biphenyl in Soil	GC/ECD	6511621	2019/12/23	2019/12/23	Svitlana Shaula
Volatile Organic Compounds and F1 PHCs	GC/MSFD	6505767	N/A	2019/12/20	Manpreet Sarao

BV Labs ID:	LPA701
Sample ID:	DUP-2
Matrix:	Soil

Collected: 2019/12/12 Shipped: Received: 2019/12/17

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
1,3-Dichloropropene Sum	CALC	6500972	N/A	2019/12/23	Automated Statchk
Moisture	BAL	6508552	N/A	2019/12/21	Min Yang
Polychlorinated Biphenyl in Soil	GC/ECD	6511621	2019/12/23	2019/12/23	Svitlana Shaula
Volatile Organic Compounds in Soil	GC/MS	6504104	N/A	2019/12/20	Chandni Khawas

Pinchin Ltd Client Project #: 248967.001 Site Location: 473 ALBERT Sampler Initials: MK

2019/12/19

TEST SUMMARY

BV Labs ID:	LPA702
Sample ID:	MW5-SS-1
Matrix:	Soil

Sample ID: MW5-SS-1 Matrix: Soil				F	Shipped: Received: 2019/12/17
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	6500971	N/A	2019/12/23	Automated Statchk
1,3-Dichloropropene Sum	CALC	6500972	N/A	2019/12/22	Automated Statchk
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	6510772	2019/12/21	2019/12/22	Prabhjot Gulati
Strong Acid Leachable Metals by ICPMS	ICP/MS	6506156	2019/12/19	2019/12/20	Daniel Teclu
Moisture	BAL	6507141	N/A	2019/12/19	Gurpreet Kaur
PAH Compounds in Soil by GC/MS (SIM)	GC/MS	6509258	2019/12/20	2019/12/21	Mitesh Raj
Polychlorinated Biphenyl in Soil	GC/ECD	6511621	2019/12/23	2019/12/23	Svitlana Shaula
Volatile Organic Compounds and F1 PHCs	GC/MSFD	6505767	N/A	2019/12/20	Manpreet Sarao

BV Labs ID: LPA703 Sample ID: DUP-3 Matrix: Soil

Volatile Organic Compounds and F1 PHCs

Collected:	2019/12/11
Shipped:	
Received:	2019/12/17

Manpreet Sarao

2019/12/11

Collected:

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Strong Acid Leachable Metals by ICPMS	ICP/MS	6506156	2019/12/19	2019/12/20	Daniel Teclu

BV Labs ID: LPA704 Sample ID: MW6-SS-1 Matrix: Soil					Collected: 2019/12/11 Shipped: Received: 2019/12/17
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	6500971	N/A	2019/12/23	Automated Statchk
1,3-Dichloropropene Sum	CALC	6500972	N/A	2019/12/20	Automated Statchk
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	6510772	2019/12/21	2019/12/22	Prabhjot Gulati
Strong Acid Leachable Metals by ICPMS	ICP/MS	6506156	2019/12/19	2019/12/20	Daniel Teclu
Moisture	BAL	6507141	N/A	2019/12/19	Gurpreet Kaur
PAH Compounds in Soil by GC/MS (SIM)	GC/MS	6509258	2019/12/20	2019/12/21	Mitesh Raj
Polychlorinated Biphenyl in Soil	GC/ECD	6511621	2019/12/23	2019/12/23	Svitlana Shaula

6505767

N/A

GC/MSFD

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1 5.7°C

Results relate only to the items tested.

QUALITY ASSURANCE REPORT

	QA/QC		007						
-	Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
	6504104	СКН	watrix Spike	4-Bromofluorobenzene	2019/12/19		99	%	60 - 140
				D10-0-Xylene	2019/12/19		109	%	60 - 130
				D4-1,2-Dichloroethane	2019/12/19		96	%	60 - 140
				D8-Toluene	2019/12/19		101	%	60 - 140
				Acetone (2-Propanone)	2019/12/19		96	%	60 - 140
				Benzene	2019/12/19		93	%	60 - 140
				Bromodichloromethane	2019/12/19		90	%	60 - 140
				Bromotorm	2019/12/19		92	%	60 - 140
				Bromomethane	2019/12/19		121	%	60 - 140
				Carbon Tetrachloride	2019/12/19		93	%	60 - 140
				Chlorobenzene	2019/12/19		91	%	60 - 140
				Chloroform	2019/12/19		89	%	60 - 140
				Dibromochloromethane	2019/12/19		94	%	60 - 140
				1,2-Dichlorobenzene	2019/12/19		90	%	60 - 140
				1,3-Dichlorobenzene	2019/12/19		92	%	60 - 140
				1,4-Dichlorobenzene	2019/12/19		97	%	60 - 140
				Dichlorodifluoromethane (FREON 12)	2019/12/19		87	%	60 - 140
				1,1-Dichloroethane	2019/12/19		94	%	60 - 140
				1,2-Dichloroethane	2019/12/19		94	%	60 - 140
				1,1-Dichloroethylene	2019/12/19		101	%	60 - 140
				cis-1,2-Dichloroethylene	2019/12/19		88	%	60 - 140
				trans-1,2-Dichloroethylene	2019/12/19		95	%	60 - 140
				1,2-Dichloropropane	2019/12/19		88	%	60 - 140
				cis-1,3-Dichloropropene	2019/12/19		95	%	60 - 140
				trans-1,3-Dichloropropene	2019/12/19		100	%	60 - 140
				Ethylbenzene	2019/12/19		94	%	60 - 140
				Ethylene Dibromide	2019/12/19		93	%	60 - 140
				Hexane	2019/12/19		104	%	60 - 140
				Methylene Chloride(Dichloromethane)	2019/12/19		91	%	60 - 140
				Methyl Ethyl Ketone (2-Butanone)	2019/12/19		99	%	60 - 140
				Methyl Isobutyl Ketone	2019/12/19		94	%	60 - 140
				Methyl t-butyl ether (MTBE)	2019/12/19		86	%	60 - 140
				Styrene	2019/12/19		94	%	60 - 140
				1,1,1,2-Tetrachloroethane	2019/12/19		96	%	60 - 140
				1,1,2,2-Tetrachloroethane	2019/12/19		92	%	60 - 140
				Tetrachloroethylene	2019/12/19		88	%	60 - 140
				Toluene	2019/12/19		89	%	60 - 140
				1,1,1-Trichloroethane	2019/12/19		94	%	60 - 140
				1,1,2-Trichloroethane	2019/12/19		92	%	60 - 140
				Trichloroethylene	2019/12/19		95	%	60 - 140
				Trichlorofluoromethane (FREON 11)	2019/12/19		101	%	60 - 140
				Vinvl Chloride	2019/12/19		96	%	60 - 140
				p+m-Xvlene	2019/12/19		102	%	60 - 140
				o-Xvlene	2019/12/19		95	%	60 - 140
	6504104	СКН	Spiked Blank	4-Bromofluorobenzene	2019/12/19		101	%	60 - 140
I				D10-o-Xvlene	2019/12/19		99	%	60 - 130
l				D4-1.2-Dichloroethane	2019/12/19		101	%	60 - 140
I				D8-Toluene	2019/12/19		99	%	60 - 140
I				Acetone (2-Pronanone)	2019/12/19		101	%	60 - 140
l				Benzene	2019/12/19		90	%	60 - 130
I				Bromodichloromethane	2019/12/19		91	%	60 - 130
I				Bromoform	2019/12/19		96	%	60 - 130
l				Bromomethane	2019/12/19		114	%	60 - 140
1				Diomonicularic				/0	00 140

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC		007						
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			Carbon Tetrachloride	2019/12/19		8/	%	60 - 130
			Chlorobenzene	2019/12/19		8/	%	60 - 130
			Chloroform	2019/12/19		86	%	60 - 130
			Dibromochloromethane	2019/12/19		96	%	60 - 130
			1,2-Dichlorobenzene	2019/12/19		88	%	60 - 130
			1,3-Dichlorobenzene	2019/12/19		8/	%	60 - 130
			1,4-Dichlorobenzene	2019/12/19		93	%	60 - 130
			Dichlorodifluoromethane (FREON 12)	2019/12/19		79	%	60 - 140
			1,1-Dichloroethane	2019/12/19		90	%	60 - 130
			1,2-Dichloroethane	2019/12/19		95	%	60 - 130
			1,1-Dichloroethylene	2019/12/19		94	%	60 - 130
			cis-1,2-Dichloroethylene	2019/12/19		86	%	60 - 130
			trans-1,2-Dichloroethylene	2019/12/19		90	%	60 - 130
			1,2-Dichloropropane	2019/12/19		88	%	60 - 130
			cis-1,3-Dichloropropene	2019/12/19		95	%	60 - 130
			trans-1,3-Dichloropropene	2019/12/19		98	%	60 - 130
			Ethylbenzene	2019/12/19		87	%	60 - 130
			Ethylene Dibromide	2019/12/19		96	%	60 - 130
			Hexane	2019/12/19		96	%	60 - 130
			Methylene Chloride(Dichloromethane)	2019/12/19		90	%	60 - 130
			Methyl Ethyl Ketone (2-Butanone)	2019/12/19		107	%	60 - 140
			Methyl Isobutyl Ketone	2019/12/19		104	%	60 - 130
			Methyl t-butyl ether (MTBE)	2019/12/19		87	%	60 - 130
			Styrene	2019/12/19		91	%	60 - 130
			1,1,1,2-Tetrachloroethane	2019/12/19		93	%	60 - 130
			1,1,2,2-Tetrachloroethane	2019/12/19		98	%	60 - 130
			Tetrachloroethylene	2019/12/19		81	%	60 - 130
			Toluene	2019/12/19		84	%	60 - 130
			1,1,1-Trichloroethane	2019/12/19		90	%	60 - 130
			1,1,2-Trichloroethane	2019/12/19		94	%	60 - 130
			Trichloroethylene	2019/12/19		90	%	60 - 130
			Trichlorofluoromethane (FREON 11)	2019/12/19		94	%	60 - 130
			Vinyl Chloride	2019/12/19		88	%	60 - 130
			p+m-Xylene	2019/12/19		95	%	60 - 130
			o-Xylene	2019/12/19		90	%	60 - 130
6504104	СКН	Method Blank	4-Bromofluorobenzene	2019/12/19		100	%	60 - 140
			D10-o-Xylene	2019/12/19		95	%	60 - 130
			D4-1,2-Dichloroethane	2019/12/19		100	%	60 - 140
			D8-Toluene	2019/12/19		96	%	60 - 140
			Acetone (2-Propanone)	2019/12/19	<0.50		ug/g	
			Benzene	2019/12/19	<0.020		ug/g	
			Bromodichloromethane	2019/12/19	< 0.050		ug/g	
			Bromoform	2019/12/19	<0.050		ug/g	
			Bromomethane	2019/12/19	<0.050		ug/g	
			Carbon Tetrachloride	2019/12/19	<0.050		ug/g	
			Chlorobenzene	2019/12/19	< 0.050		ug/g	
			Chlorotorm	2019/12/19	< 0.050		ug/g	
			Dibromochloromethane	2019/12/19	<0.050		ug/g	
			1,2-Dichlorobenzene	2019/12/19	<0.050		ug/g	
			1,3-Dichlorobenzene	2019/12/19	< 0.050		ug/g	
			1,4-Dichlorobenzene	2019/12/19	< 0.050		ug/g	
			Dichlorodifluoromethane (FREON 12)	2019/12/19	< 0.050		ug/g	
			1,1-Dichloroethane	2019/12/19	<0.050		ug/g	

Bureau Veritas Laboratories 32 Colonnade Rd, Unit #1000, Nepean, ON K2E 7J6 Phone: 613 274-0573 Fax: 613 274-0574 Website: www.bvlabs.com

QUALITY ASSURANCE REPORT(CONT'D)

Batch Init QL type Parameter Date Maly200 Value Value <thvalue< th=""> <thvalue< th=""> <thvalue< th=""></thvalue<></thvalue<></thvalue<>	QA/QC	1	06.7	Deve weeker	Data Analyzard	Malina	Deserver		001
62.000 2019/21/19 4.0050 up? 1.10.0100rethylene 2019/21/19 4.0050 up? 1.10.0100rethylene 2019/21/19 4.0050 up? 1.10.0100rethylene 2019/21/19 4.0050 up? 1.10.0100rethylene 2019/21/19 4.0030 up? 1.10.0100rethylene 2019/21/19 4.0030 up? 1.10.0100rethylene 2019/21/19 4.0030 up? 1.10.0100rethylene 2019/21/19 4.0030 up? 1.1.1.0100rethylene 2019/21/19 4.0030 up? Hexane 2019/21/19 4.0030 up? Hexane 2019/21/19 4.0050 up? Methyl Hoshur/Metone 2019/21/19 4.050 up? Methyl Hoshur/Metone 2019/21/19 4.050 up? 1.1.1.11000rethylene 2019/21/19 4.050 up? 1.1.1.11000rethylene 2019/21/19 4.050 up? 1.1.1.11000rethylene 2019/21/19 4.050 up?	Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
63.1.4.2.0.1010/02019016 2019 20050 0025 1.3.2.0.01000000000 2019 2019 20050 0025 1.3.2.0.01000000000 2019 2019 20050 0025 1.3.2.0.01000000000 2019 2019 20050 0025 1.3.2.0.01000000000 2019 2019 20050 0025 1.1.3.0.01000000000 2019 2019 20050 0025 1.1.9.0.0100000000 2019 2019 20050 0025 1.1.9.1.01000000000 2019 2019 20050 0025 1.1.9.1.010000000000 2019 2019 20050 0025 Methyl Euboly Kerne (12 Sutanone) 2019 2019 20050 0026 1.1.2.7.1.2.1.2.1.2.1.1.1.1.1.1.1.1.1.1.				1,2-Dichloroethalle	2019/12/19	<0.050		ug/g	
65-12 Onlinitoerhytene 2019/12/19 0.050 ug/g trans: 1,2-0/chhoropropene 2019/12/19 0.030 ug/g trans: 1,3-0/chhoropropene 2019/12/19 0.030 ug/g Ethylene Dibronide 2019/12/19 0.030 ug/g Herane 2019/12/19 0.050 ug/g 1,1,2.7 Intrachiorentane 2019/12/19 0.050 ug/g 1,1,2.7 Intrachiorentane 2019/12/19 0.050 ug/g 1,1,1.7 interontane 2019/12/19 0.050 ug/g Tolusne 2019/12/19 0.050 ug/g I,1,1.7 interontane 2019/12/19 0.050 ug/g Tolusne 2019/12/19<				1,1-Dichloroethylene	2019/12/19	<0.050		ug/g	
1.2.001.0000000000000000000000000000000				trans_1,2-Dichloroethylene	2019/12/19	<0.050		ug/g	
654104 CH1 3-10-00 (0) (0) (0) (0) CH1 3-12-10 CH1 3-12-10 1111 CH1 3-10-00 (0) (0) (0) CH1 3-12-10 CH1 3-12-10 1111 CH1 3-10-00 (0) (0) CH1 3-12-10 CH1 3-12-10 1111 CH1 3-10-00 (0) CH2 CH1 3-12-10 CH1 3-12-10 1111 CH1 3-10-00 (0) CH1 3-12-10 CH1 3-12-10 CH1 3-12-10 1111 CH1 3-12-10-00 (0) CH1 3-12-10 CH1 3-12-10 CH1 3-12-10 1111 CH1 3-12-10-00 (0) CH1 3-12-10 CH1 3-12-10 CH1 3-12-10 1111 CH1 3-12-10-00 (0) CH2 CH1 3-12-10-00 (0) CH2 1111 CH1 3-12-10-00 (0) CH2 CH1 3-12-10-00 (0) CH2 1111 CH1 3-12-10-00 (0) CH2 CH1 3-12-10-00 (0) CH2 1111 CH1 3-12-10-00 (0) CH2 CH1 3-12-10-00 (0) CH2 1111 CH1 3-12-10-00 (0) CH2 CH1 3-12-10-00 (0) CH2 1111 CH1 3-12-10-00 (0) CH2 CH1 3-12-10-00 (0) CH2 1112-11-00-00 (0)				1.2 Dichleropropage	2019/12/19	<0.050		ug/g	
65041.9 C617.9 C01912/19 C020 Ug/2 Iman-1.9 201912/19 C020 Ug/2 Ethylenzene 201912/19 C030 Ug/2 Iman-1.9 C01912/19 C030 Ug/2 Iman-1.1 Iman-1.1 C01912/19 C030 Ug/2 Iman-1.1 Iman-1.1 C01912/19 C030 Ug/2 Iman-1.1 Iman-1.1 C01912/19 C030 Ug/2 Iman-1.1 C01912/19 C030 Ug/2 Iman-1.1 C01912/19 C030 Ug/2 Iman-1.1 C01912/19 C030				ric 1.2 Dichloropropane	2019/12/19	<0.030		ug/g	
E504104 CH RPD 203/12/19 CL000 Ug/g Ethylenzene 203/12/19 CL0050 Ug/g Hexane 203/12/19 CL050 Ug/g Hexane 203/12/19 CL050 Ug/g Hexane 203/12/19 CL050 Ug/g Hethylene Chorde(Dichloromethane) 203/12/19 CL050 Ug/g Methyl thylene (NTBE) 203/12/19 CL050 Ug/g Styrene 203/12/19 CL050 Ug/g 1,1,2.7 Tetrachloroethane 203/12/19 CL050 Ug/g Tatrachloroethane 203/12/19 CL050 Ug/g 1,1,1.7 Trichloroethane 203/12/19 CL050 Ug/g 1,1.7 Trichloroethane 203/12/19 CL020 Ug/g 1,1.7 Trichloroethane 203/12/19 CL020 Ug/g 1,1.7 Trichloroethane 203/12/19 CL020 Ug/g 1,1.7 Trichloroethane 203/12/19 NC % 50 Bromolorm 203/12/19 NC %				trans 1.2 Dichleronronone	2019/12/19	<0.030		ug/g	
6504101 CH PD 203/12/19 C0.020 UK Hexane 2013/12/19 C0.050 UK Hexane 2013/12/19 C0.050 UK Methylen Chloridd[Dichloromethane] 2013/12/19 C0.050 UK Methyl Ehvj Kelone (2. Butanne) 2013/12/19 C0.050 UK Methyl Ehvj Kelone (2. Butanne) 2013/12/19 C0.050 UK Styrene 2013/12/19 C0.050 UK 1,1,1,2.Tetrachloroethane 2013/12/19 C0.050 UK 1,1,2.Tetrachloroethane 2013/12/19 C0.050 UK 1,1,2.Tetrachloroethane 2013/12/19 C0.050 UK 1,1,2.Trichloroethane 2013/12/19 C0.020 UK Trichloroethane 2013/12/19				trans-1,3-Dichioropropene	2019/12/19	<0.040		ug/g	
6504104 CH RPD 203/12/19 0.000 Up/2 Hexane 203/12/19 0.050 Up/2 Methylene Chorde(Dichoromethane) 203/12/19 0.050 Up/2 Methyl Ehyl Ketone 203/12/19 0.050 Up/2 Methyl Lobuyl Ethor 203/12/19 0.050 Up/2 Styrene 203/12/19 0.050 Up/2 Styrene 203/12/19 0.050 Up/2 Tetrachoroethylene 203/12/19 0.050 Up/2 Tetrachoroethylene 203/12/19 0.050 Up/2 Toluene 203/12/19 0.050 Up/2 1.1.7.Trichloroethane 203/12/19 0.050 Up/2 1.1.7.Trichloroethane 203/12/19 0.050 Up/2 Trichloroethylene 203/12/19 0.020 Up/2 Trichloroethylene 203/12/19 0.020 Up/2 Trichloroethylene 203/12/19 0.020 Up/2 Vinyl Cholride 203/12/19 0.020 Up/2				Ethylona Dibramida	2019/12/19	<0.020		ug/g	
6504104 CH RPD 2019/12/19 -0.050 ug/g Methylen Chindle[Dichloromethane] 2019/12/19 -0.50 ug/g Methyl Exhlip (Kone) 2019/12/19 -0.50 ug/g Methyl Sobulyl (Kone) 2019/12/19 -0.50 ug/g J.1.1.2.7Errachioroethane 2019/12/19 -0.050 ug/g 1.1.1.2.7Errachioroethane 2019/12/19 -0.050 ug/g 1.1.1.7.1Frichioroethane 2019/12/19 -0.050 ug/g 1.1.1.7.1Frichioroethane 2019/12/19 -0.050 ug/g 1.1.1.7.1Frichioroethane 2019/12/19 -0.050 ug/g 1.1.1.7.1Frichioroethane 2019/12/19 -0.050 ug/g 1.1.2.7 Trichioroethane 2019/12/19 -0.050 ug/g Trichiorofturoomethane 2019/12/19 -0.050 ug/g Viene 2019/12/19 -0.020 ug/g Trichiorofturoomethane 2019/12/19 NC % 50 Bromodichioromethane 2019/12/19 NC % 50 </td <td></td> <td></td> <td></td> <td>Hoveno</td> <td>2019/12/19</td> <td><0.050</td> <td></td> <td>ug/g</td> <td></td>				Hoveno	2019/12/19	<0.050		ug/g	
6504104 CHI NPD 2019/12/19 -0.50 ug/g Methyl Isbuly Ketone 2019/12/19 -0.50 ug/g Methyl Isbuly Ketone 2019/12/19 -0.50 ug/g Styrene 2019/12/19 -0.50 ug/g 1,1,2,7 -0.50 ug/g - 1,1,1,7 -0.50 ug/g - 1,1,1,5 -0.50 ug/g -				Methylone Chloride(Dichloremethane)	2019/12/19	<0.050		ug/g	
6504104 CH NPC 10 (2 = 00.0016) 0.02.012/19 -0.0.50 ug/g Nethyl Exberk (MTRE) 2019/12/19 -0.050 ug/g 1,1,1,2 - Tetrachloroethane 2019/12/19 -0.050 ug/g 1,1,2,2 - Tetrachloroethane 2019/12/19 -0.050 ug/g Toluene 2019/12/19 -0.050 ug/g 1,1,1,2 - Tetrachloroethylene 2019/12/19 -0.050 ug/g 1,1,1,2 - Tetrachloroethylene 2019/12/19 -0.050 ug/g 1,1,1,2 - Trichloroethane 2019/12/19 -0.050 ug/g 1,1,1,2 - Trichloroethane 2019/12/19 -0.050 ug/g Trichlorofluoromethane (FREON 11) 2019/12/19 -0.020 ug/g Vinyl Choride 2019/12/19 -0.020 ug/g Vinyl Choride 2019/12/19 -0.020 ug/g 6504104 CH RPD Actone (2 Propanone) 2019/12/19 NC % 50 Bornonethane 2019/12/19 NC % 50 50 Chorobrene				Methyl Ethyl Ketone (2 Butanene)	2019/12/19	<0.030		ug/g	
6504104 CM S0.00 ug/g 6504104 CM RPD 2019/12/19 -0.050 ug/g 1,1,2,7 1,1,2,7 CM 0.050 ug/g 1,1,2,7 CTarcahloroethane 2019/12/19 -0.050 ug/g Tetrachloroethane 2019/12/19 -0.050 ug/g Tetrachloroethane 2019/12/19 -0.050 ug/g Tetrachloroethane 2019/12/19 -0.050 ug/g 1,1,2-7 Trichloroethane 2019/12/19 -0.050 ug/g 1,1,2-7 Trichloroethane 2019/12/19 -0.050 ug/g 1,1,2-7 Trichloroethane 2019/12/19 -0.020 ug/g Viny Chorate 2019/12/19 -0.020 ug/g - Viny Chorate 2019/12/19 -0.020 ug/g - 6504104 CM RPD S0 S0 S0 Bromoforh 2019/12/19 NC % S0 Bromoform 2019/12/19 NC				Methyl Icohutyl Ketono	2019/12/19	<0.50		ug/g	
6504104 CM 2019/12/19 <0.050				Methyl tobuly Recone	2019/12/19	<0.50		ug/g	
6504104 CH 2019/12/19 CO.500 Ug/g 1.1,2.2-Tetrachloroethane 2019/12/19 CO.500 Ug/g 1.1,2.2-Tetrachloroethane 2019/12/19 CO.500 Ug/g 1.1,2.2-Tetrachloroethane 2019/12/19 CO.500 Ug/g 1.1,1.2-Trichloroethane 2019/12/19 CO.500 Ug/g 1.1,2.2-Trichloroethane 2019/12/19 CO.500 Ug/g 1.1,2.2-Trichloroethane 2019/12/19 CO.500 Ug/g 1.1,2.2-Trichloroethane 2019/12/19 CO.500 Ug/g 1.1,2.3 Coloroethane 2019/12/19 CO.500 Ug/g 1.1,2.5 Total Kyenes 2019/12/19 NC % 5				Sturopo	2019/12/19	<0.050		ug/g	
6504104 CKH RPD 0.050 ug/g 1,1,2,2-Tertachinoreethane 2019/12/19 0.050 ug/g 1,1,1,2-Trichioroethane 2019/12/19 0.050 ug/g 1,1,1,Trichioroethane 2019/12/19 0.050 ug/g 1,1,2-Trichioroethane 2019/12/19 0.050 ug/g Trichiorofluoromethane (FREON 11) 2019/12/19 0.020 ug/g Viny Chloride 2019/12/19 0.020 ug/g Trichiorofluoromethane (FREON 11) 2019/12/19 0.020 ug/g Viny Chloride 2019/12/19 0.020 ug/g Total Xylenes 2019/12/19 NC % 50 Bromodichloromethane 2019/12/19 NC % 50				1 1 1 2 Tetrachlereethane	2019/12/19	<0.050		ug/g	
6504104 CH 2019/12/19 C0.050 Ug/g 1,1,2-Trichloroethane 2019/12/19 C0.050 Ug/g 1,1,1-Trichloroethane 2019/12/19 C0.050 Ug/g 1,1,2-Trichloroethane 2019/12/19 C0.050 Ug/g Trichloroethylene 2019/12/19 C0.050 Ug/g Trichloroethylene 2019/12/19 C0.050 Ug/g Viny Choirde 2019/12/19 C0.020 Ug/g o-Xylene 2019/12/19 C0.020 Ug/g o-Xylene 2019/12/19 C0.020 Ug/g o-Xylene 2019/12/19 NC % 50 Berzene 2019/12/19 NC % 50 Bromodichloromethane 2019/12/19 NC % 50 Bromodichloromethane 2019/12/19 NC % 50 Bromodichloromethane 2019/12/19 NC % 50 Diorhorochloromethane 2019/12/19 NC % 50 Diorhorochloromethane				1,1,2-Tetrachloroethane	2019/12/19	<0.050		ug/g	
6504104 CKH RPD 2019/12/19 -C.020 ug/g 1,1,1-Trichloroethane 2019/12/19 -C.050 ug/g 1,1,1-Trichloroethane 2019/12/19 -C.050 ug/g Trichloroethylene 2019/12/19 -C.050 ug/g Trichloroethylene 2019/12/19 -C.050 ug/g Trichloroethylene 2019/12/19 -C.020 ug/g 0-Xylene 2019/12/19 NC % 50 Bromodichioromethane 2019/12/19 NC % 50 Bromodichioromethane 2019/12/19 NC % 50 Chloroform 2019/12/19 NC % 50 Dibromodiloromethane 2019/12/19				Totrachloroothylopo	2019/12/19	<0.050		ug/g	
6504104 CKH RPD 2019/12/19 C0.050 Ug/g 1,1,1-Trichloroethane 2019/12/19 C0.050 Ug/g Trichloroethylene 2019/12/19 C0.050 Ug/g Trichloroethylene 2019/12/19 C0.050 Ug/g pm-Xylene 2019/12/19 C0.020 Ug/g o-Xylene 2019/12/19 NC % 50 Benzene 2019/12/19 NC % 50 Bromodichloromethane 2019/12/19 NC % 50 Bromodichloromethane 2019/12/19 NC % 50 Bromodichloromethane 2019/12/19 NC % 50 Chlorobenzene 2019/12/19 NC % 50 Dibromodihoromethane 2019/12/1				Teluana	2019/12/19	<0.030		ug/g	
6504104 CKH RPD 2013/12/19 <0.050				1 1 1 Trichlereethane	2019/12/19	<0.020		ug/g	
6504104 CH RPD 2019/12/19 <0.050				1,1,1-Inchloroethane	2019/12/19	<0.050		ug/g	
6504104 CKH RPD CL050 Ug/g TrichlorideInviente 2019/12/19 <c0.00< td=""> Ug/g Vinyl Chloride 2019/12/19 <c0.020< td=""> Ug/g PH-m Xylene 2019/12/19 <c0.020< td=""> Ug/g Sold104 CKH RPD Acetone (2-Propanone) 2019/12/19 NC % 50 Benzene 2019/12/19 NC % 50 Bromodichloromethane 2019/12/19 NC % 50 Bromodichloromethane 2019/12/19 NC % 50 Bromoform 2019/12/19 NC % 50 Bromoform 2019/12/19 NC % 50 Chlorobenzene 2019/12/19 NC % 50 Dibromochloromethane 2019/12/19 NC % 50 1,2-Dichlorobenzene 2019/12/19 NC % 50 1,2-Dichlorobenzene 2019/12/19 NC % 50 1,2-Dichlorobenzene 2019/12/19<!--</td--><td></td><td></td><td></td><td>1,1,2-Themore the lane</td><td>2019/12/19</td><td><0.050</td><td></td><td>ug/g</td><td></td></c0.020<></c0.020<></c0.00<>				1,1,2-Themore the lane	2019/12/19	<0.050		ug/g	
6504104 CKH RPD 2019/12/19 <0.020				Trichlorofluoromethana (EDEON 11)	2019/12/19	<0.050		ug/g	
6504104 CKH RPD 2019/12/19 <0.020				Visud Chlorido	2019/12/19	<0.030		ug/g	
6504104 CKH RPD Color Ug/g 6504104 CKH RPD Acetone (2-Propanone) 2019/12/19 NC % 50 Benzene 2019/12/19 NC % 50 Bromodichloromethane 2019/12/19 NC % 50 Chlorobenzene 2019/12/19 NC % 50 Chlorobenzene 2019/12/19 NC % 50 Dibromochloromethane 2019/12/19 NC % 50 1,3-Dichlorobenzene 2019/12/19 NC % 50 1,2-Dichlorobenzene 2019/12/19 NC % 50 1,2-Dichlorobenzene 2019/12/19 NC % 50 1,2-Dichlorobenzene 2019/12/19 NC % 50					2019/12/19	<0.020		ug/g	
CM 910/12/19 CO.020 Ug/g 6504104 CKH RPD Acetone (2-Propanone) 2019/12/19 NC % 50 Benzene 2019/12/19 NC % 50 Beromolichloromethane 2019/12/19 NC % 50 Bromoform 2019/12/19 NC % 50 Bromoform 2019/12/19 NC % 50 Bromonethane 2019/12/19 NC % 50 Chloroform 2019/12/19 NC % 50 Chloroform 2019/12/19 NC % 50 Dibromochloromethane 2019/12/19 NC % 50 1,2-Dichlorobenzene 2019/12/19 NC <td></td> <td></td> <td></td> <td></td> <td>2019/12/19</td> <td><0.020</td> <td></td> <td>ug/g</td> <td></td>					2019/12/19	<0.020		ug/g	
6504104 CKH RPD Acetone (2-Propanone) 2019/12/19 NC % 50 Benzene 2019/12/19 NC % 50 Bromodichloromethane 2019/12/19 NC % 50 Bromodichloromethane 2019/12/19 NC % 50 Bromoform 2019/12/19 NC % 50 Bromoform 2019/12/19 NC % 50 Chlorobenzene 2019/12/19 NC % 50 Chlorobenzene 2019/12/19 NC % 50 Dioromochloromethane 2019/12/19 NC % 50 1,2-Dichlorobenzene 2019/12/19 NC % 50 1,2-Dichlorobenzene 2019/12/19 NC % 50 1,4-Dichlorobenzene 2019/12/19 NC % 50 1,4-Dichlorobenzene 2019/12/19 NC % 50 1,4-Dichlorobenzene 2019/12/19 NC % 50				Total Vulanas	2019/12/19	<0.020		ug/g	
Bestoral CKH KPD Acetoline (2+H0palloline) 2019/12/19 NC % 50 Bernene 2019/12/19 NC % 50 Bromodichloromethane 2019/12/19 NC % 50 Bromodrethane 2019/12/19 NC % 50 Bromodrethane 2019/12/19 NC % 50 Choro Tetrachloride 2019/12/19 NC % 50 Chlorobenzene 2019/12/19 NC % 50 Dibromochloromethane 2019/12/19 NC % 50 Dibromochloromethane 2019/12/19 NC % 50 Dibromochloromethane 2019/12/19 NC % 50 1,2-Dichlorobenzene 2019/12/19 NC % 50 1,4-Dichloroethane 2019/12/19 NC % 50 1,1-Dichloroethane 2019/12/19 NC % 50 1,1-Dichloroethylene 2019/12/19 NC % 50 1,1-Dichloroethylene 2019/12/19 NC % 50 1,2-Dich	6504104	СКН		local Aylelles	2019/12/19	<0.020		ug/g	50
Bernedickforomethane 2019/12/19 NC % 50 Bromodichforomethane 2019/12/19 NC % 50 Bromomethane 2019/12/19 NC % 50 Bromomethane 2019/12/19 NC % 50 Carbon Tetrachloride 2019/12/19 NC % 50 Chlorobenzene 2019/12/19 NC % 50 Dibromochloromethane 2019/12/19 NC % 50 Dibromochloromethane 2019/12/19 NC % 50 1,2-Dichlorobenzene 2019/12/19 NC % 50 1,4-Dichlorobenzene 2019/12/19 NC % 50 1,4-Dichlorobenzene 2019/12/19 NC % 50 1,1-Dichloroethane 2019/12/19 NC % 50 1,1-Dichloroethylene 2019/12/19 NC % 50 1,1-Dichloroethylene 2019/12/19 NC % 50 1,1-Dichloroethylene 2019/12/19 NC % 50 1,2-Dichloroethylene <	0504104	СКП	RPD	Acetone (2-Propanone)	2019/12/19	NC		70 0/	50
Bromoform 2019/12/19 NC % 50 Bromoform 2019/12/19 NC % 50 Grabon Tetrachloride 2019/12/19 NC % 50 Chlorobenzene 2019/12/19 NC % 50 Dibromochloromethane 2019/12/19 NC % 50 Dibromochloromethane 2019/12/19 NC % 50 1,2-Dichlorobenzene 2019/12/19 NC % 50 1,2-Dichlorobenzene 2019/12/19 NC % 50 1,2-Dichlorobenzene 2019/12/19 NC % 50 1,4-Dichlorobenzene 2019/12/19 NC % 50 1,1-Dichlorobethane 2019/12/19 NC % 50 1,1-Dichloroethylene 2019/12/19 NC % 50 1,1-Dichloroethylene 2019/12/19 NC % 50 1,2-Dichloroethylene 2019/12/19 NC % 50 1,2-Dichloroethylene 2019/12/19 NC % 50 1,2-Dichloropropane 2019				Bromodichloromothana	2019/12/19	NC		/0	50
Bronnonethane 2019/12/19 NC % 50 Bronnonethane 2019/12/19 NC % 50 Carbon Tetrachloride 2019/12/19 NC % 50 Chlorobenzene 2019/12/19 NC % 50 Dibromochloromethane 2019/12/19 NC % 50 1,2-Dichlorobenzene 2019/12/19 NC % 50 1,2-Dichlorobenzene 2019/12/19 NC % 50 1,2-Dichlorobenzene 2019/12/19 NC % 50 1,4-Dichlorobenzene 2019/12/19 NC % 50 1,1-Dichloroethane 2019/12/19 NC % 50 1,1-Dichloroethane 2019/12/19 NC % 50 1,1-Dichloroethylene 2019/12/19 NC % 50 1,2-Dichloroethylene 2019/12/19 NC % 50 1,2-Dichloroethylene 2019/12/19 NC % 50 1,2-Dichloroethylene 2019/12/19 NC % 50 1,2-Dichloropropane <td< td=""><td></td><td></td><td></td><td>Bromoform</td><td>2019/12/19</td><td>NC</td><td></td><td>/0</td><td>50</td></td<>				Bromoform	2019/12/19	NC		/0	50
Biominetratie 2019/12/19 NC % 50 Garbon Tetrachloride 2019/12/19 NC % 50 Chlorobenzene 2019/12/19 NC % 50 Dibromochloromethane 2019/12/19 NC % 50 1,2-Dichlorobenzene 2019/12/19 NC % 50 1,2-Dichlorobenzene 2019/12/19 NC % 50 1,2-Dichlorobenzene 2019/12/19 NC % 50 1,4-Dichlorobenzene 2019/12/19 NC % 50 1,4-Dichlorobenzene 2019/12/19 NC % 50 1,1-Dichloroethane 2019/12/19 NC % 50 1,1-Dichloroethylene 2019/12/19 NC % 50 1,1-Dichloroethylene 2019/12/19 NC % 50 1,2-Dichloroethylene 2019/12/19 NC % 50 1,2-Dichloroethylene 2019/12/19 NC % 50 1,2-Dichloropropane 2019/12/19 NC % 50 1,2-Dichloropropene				Bromomothana	2019/12/19	NC		/0	50
Carbon Ferractionate 2019/12/19 NC % 50 Chlorobenzene 2019/12/19 NC % 50 Dibromochloromethane 2019/12/19 NC % 50 1,2-Dichlorobenzene 2019/12/19 NC % 50 1,2-Dichlorobenzene 2019/12/19 NC % 50 1,3-Dichlorobenzene 2019/12/19 NC % 50 1,4-Dichlorobenzene 2019/12/19 NC % 50 Dichlorodifluoromethane (FREON 12) 2019/12/19 NC % 50 1,1-Dichloroethane 2019/12/19 NC % 50 1,2-Dichloroethylene 2019/12/19 NC % 50 1,2-Dichloroethylene 2019/12/19 NC % 50 1,2-Dichloroethylene 2019/12/19 NC % 50 1,2-Dichloropropane 2019/12/19 NC % 50 1,2-Dichloropropane 2019/12/19 NC % 50 1,2-Dichloropropane 2019/12/19 NC % 50 trans-1				Carbon Tetrachleride	2019/12/19	NC		/0	50
Chloroberizene 2019/12/19 NC % 50 Chloroform 2019/12/19 NC % 50 Dibromochloromethane 2019/12/19 NC % 50 1,2-Dichlorobenzene 2019/12/19 NC % 50 1,3-Dichlorobenzene 2019/12/19 NC % 50 1,4-Dichlorobenzene 2019/12/19 NC % 50 Dichorodifluoromethane (FREON 12) 2019/12/19 NC % 50 1,1-Dichloroethane 2019/12/19 NC % 50 1,2-Dichloroethylene 2019/12/19 NC % 50 1,1-Dichloroethylene 2019/12/19 NC % 50 1,1-Dichloroethylene 2019/12/19 NC % 50 1,1-Dichloroethylene 2019/12/19 NC % 50 1,2-Dichloroethylene 2019/12/19 NC % 50 1,2-Dichloropropane 2019/12/19 NC % 50 1,2-Dichloropropane 2019/12/19 NC % 50 trans-1,3-Dichl				Chlorobenzene	2019/12/19	NC		/0 0/	50
Dibromochloromethane 2019/12/19 NC % 50 Dibromochloromethane 2019/12/19 NC % 50 1,2-Dichlorobenzene 2019/12/19 NC % 50 1,3-Dichlorobenzene 2019/12/19 NC % 50 1,4-Dichlorobenzene 2019/12/19 NC % 50 Dichlorodifluoromethane (FREON 12) 2019/12/19 NC % 50 1,1-Dichloroethane 2019/12/19 NC % 50 1,2-Dichloroethylene 2019/12/19 NC % 50 1,1-Dichloroethylene 2019/12/19 NC % 50 1,1-Dichloroethylene 2019/12/19 NC % 50 1,1-Dichloroethylene 2019/12/19 NC % 50 1,2-Dichloroptopene 2019/12/19 NC % 50				Chloroform	2019/12/19	NC		/0 0/	50
1,2-Dichlorobenzene 2019/12/19 NC % 50 1,2-Dichlorobenzene 2019/12/19 NC % 50 1,4-Dichlorobenzene 2019/12/19 NC % 50 1,4-Dichlorobenzene 2019/12/19 NC % 50 Dichlorodifluoromethane (FREON 12) 2019/12/19 NC % 50 1,1-Dichloroethane 2019/12/19 NC % 50 1,2-Dichloroethane 2019/12/19 NC % 50 1,1-Dichloroethylene 2019/12/19 NC % 50 1,1-Dichloroethylene 2019/12/19 NC % 50 1,1-Dichloroethylene 2019/12/19 NC % 50 1,2-Dichloroethylene 2019/12/19 NC % 50 1,2-Dichloropropane 2019/12/19 NC % 50 1,2-Dichloropropene 2019/12/19 NC % 50 1,2-Dichloropropene 2019/12/19 NC % 50 trans-1,3-Dichloropropene 2019/12/19 NC % 50 <				Dibromochloromethane	2019/12/19	NC		/0 0/	50
1,2-Dichlorobenzene 2019/12/19 NC % 50 1,3-Dichlorobenzene 2019/12/19 NC % 50 1,4-Dichlorobenzene 2019/12/19 NC % 50 Dichlorodifluoromethane (FREON 12) 2019/12/19 NC % 50 1,1-Dichloroethane 2019/12/19 NC % 50 1,2-Dichloroethane 2019/12/19 NC % 50 1,1-Dichloroethylene 2019/12/19 NC % 50 1,1-Dichloroethylene 2019/12/19 NC % 50 1,1-Dichloroethylene 2019/12/19 NC % 50 1,2-Dichloroethylene 2019/12/19 NC % 50 1,2-Dichloropropane 2019/12/19 NC % 50 1,2-Dichloropropene 2019/12/19 NC % 50 1,2-Dichloropropene 2019/12/19 NC % 50 1,2-Dichloropropene 2019/12/19 NC % 50 Ethylbenzene 2019/12/19 NC % 50 Ethylbenze				1.2 Dichlorobonzono	2019/12/19	NC		/0 0/	50
1,5 Dichlorobenzene 2019/12/19 NC % 50 1,4-Dichlorobenzene 2019/12/19 NC % 50 Dichlorodifluoromethane (FREON 12) 2019/12/19 NC % 50 1,1-Dichloroethane 2019/12/19 NC % 50 1,2-Dichloroethane 2019/12/19 NC % 50 1,1-Dichloroethylene 2019/12/19 NC % 50 1,1-Dichloroethylene 2019/12/19 NC % 50 1,2-Dichloroethylene 2019/12/19 NC % 50 1,2-Dichloroethylene 2019/12/19 NC % 50 1,2-Dichloropopane 2019/12/19 NC % 50 1,2-Dichloropropane 2019/12/19 NC % 50 1,2-Dichloropropene 2019/12/19 NC % 50 trans-1,3-Dichloropropene 2019/12/19 NC % 50 Ethylbenzene 2019/12/19 NC % 50 Ethylene Dibromide 2019/12/19 NC % 50 Hexane				1,2-Dichlorobenzene	2019/12/19	NC		%	50
Instruction of the intervence 2019/12/19 NC % 50 Dichlorodifluoromethane (FREON 12) 2019/12/19 NC % 50 1,1-Dichloroethane 2019/12/19 NC % 50 1,2-Dichloroethane 2019/12/19 NC % 50 1,1-Dichloroethylene 2019/12/19 NC % 50 1,1-Dichloroethylene 2019/12/19 NC % 50 1,2-Dichloroethylene 2019/12/19 NC % 50 trans-1,2-Dichloroethylene 2019/12/19 NC % 50 1,2-Dichloropropane 2019/12/19 NC % 50 trans-1,3-Dichloropropene 2019/12/19 NC % 50 trans-1,3-Dichloropropene 2019/12/19 NC % 50 Ethylbenzene 2019/12/19 NC % 50 Ethylene Dibromide 2019/12/19 NC % 50 Hexane 2019/12/19 NC % 50 Hexane 2019/12/19 NC % 50 Hexane <td></td> <td></td> <td></td> <td>1,3-Dichlorobenzene</td> <td>2019/12/19</td> <td>NC</td> <td></td> <td>/0 0/</td> <td>50</td>				1,3-Dichlorobenzene	2019/12/19	NC		/0 0/	50
1,1-Dichlorodthane (rh.Cov 12) 2019/12/19 NC % 50 1,1-Dichlorodthane 2019/12/19 NC % 50 1,2-Dichloroethane 2019/12/19 NC % 50 1,1-Dichloroethylene 2019/12/19 NC % 50 1,1-Dichloroethylene 2019/12/19 NC % 50 cis-1,2-Dichloroethylene 2019/12/19 NC % 50 trans-1,2-Dichloroethylene 2019/12/19 NC % 50 1,2-Dichloropropane 2019/12/19 NC % 50 1,2-Dichloropropane 2019/12/19 NC % 50 1,2-Dichloropropane 2019/12/19 NC % 50 cis-1,3-Dichloropropene 2019/12/19 NC % 50 trans-1,3-Dichloropropene 2019/12/19 NC % 50 Ethylenzene 2019/12/19 NC % 50 Ethylene Dibromide 2019/12/19 NC % 50 Hexane 2019/12/19 NC % 50 Methylene				Dichlorodifluoromethane (FREON 12)	2019/12/19	NC		%	50
1,1 Dichloroethane 2019/12/19 NC % 50 1,2-Dichloroethane 2019/12/19 NC % 50 1,1-Dichloroethylene 2019/12/19 NC % 50 cis-1,2-Dichloroethylene 2019/12/19 NC % 50 trans-1,2-Dichloroethylene 2019/12/19 NC % 50 1,2-Dichloropropane 2019/12/19 NC % 50 1,2-Dichloropropane 2019/12/19 NC % 50 1,2-Dichloropropane 2019/12/19 NC % 50 trans-1,3-Dichloropropene 2019/12/19 NC % 50 trans-1,3-Dichloropropene 2019/12/19 NC % 50 Ethylbenzene 2019/12/19 NC % 50 Hexane 2019/12/19 NC % 50 Methylene Chloride(Dichloromethane) 2019/12/19 NC % 50 Methylene Chloride(Dichloromethane) 2019/12/19 NC % 50 Methylene Chloride(Dichloromethane) 2019/12/19 NC % 50 <td></td> <td></td> <td></td> <td>1 1-Dichloroethane</td> <td>2019/12/19</td> <td>NC</td> <td></td> <td>%</td> <td>50</td>				1 1-Dichloroethane	2019/12/19	NC		%	50
1,1-Dichloroethalite 2019/12/19 NC % 50 1,1-Dichloroethylene 2019/12/19 NC % 50 cis-1,2-Dichloroethylene 2019/12/19 NC % 50 trans-1,2-Dichloroethylene 2019/12/19 NC % 50 1,2-Dichloropropane 2019/12/19 NC % 50 cis-1,3-Dichloropropane 2019/12/19 NC % 50 cis-1,3-Dichloropropane 2019/12/19 NC % 50 trans-1,3-Dichloropropene 2019/12/19 NC % 50 Ethylbenzene 2019/12/19 NC % 50 Ethylene Dibromide 2019/12/19 NC % 50 Hexane 2019/12/19 NC % 50 Methylene Chloride(Dichloromethane) 2019/12/19 NC % </td <td></td> <td></td> <td></td> <td>1.2-Dichloroethane</td> <td>2019/12/19</td> <td>NC</td> <td></td> <td>%</td> <td>50</td>				1.2-Dichloroethane	2019/12/19	NC		%	50
1,1 Dichlorochylene 2019/12/19 NC % 50 cis-1,2-Dichloroethylene 2019/12/19 NC % 50 trans-1,2-Dichloroethylene 2019/12/19 NC % 50 1,2-Dichloropropane 2019/12/19 NC % 50 cis-1,3-Dichloropropane 2019/12/19 NC % 50 trans-1,3-Dichloropropene 2019/12/19 NC % 50 trans-1,3-Dichloropropene 2019/12/19 NC % 50 Ethylbenzene 2019/12/19 NC % 50 Ethylene Dibromide 2019/12/19 NC % 50 Hexane 2019/12/19 NC % 50 Methylene Chloride(Dichloromethane) 2019/12/19 NC % 50				1 1-Dichloroethylene	2019/12/19	NC		%	50
cis1,2 binkinolectivitene 2019/12/19 Ne % 50 trans-1,2-Dichloroethylene 2019/12/19 NC % 50 1,2-Dichloropropane 2019/12/19 NC % 50 cis-1,3-Dichloropropene 2019/12/19 NC % 50 trans-1,3-Dichloropropene 2019/12/19 NC % 50 trans-1,3-Dichloropropene 2019/12/19 NC % 50 Ethylbenzene 2019/12/19 NC % 50 Ethylene Dibromide 2019/12/19 NC % 50 Hexane 2019/12/19 NC % 50 Methylene Chloride(Dichloromethane) 2019/12/19 NC % 50 Methylene Chloride(Dichloromethane) 2019/12/19 NC % 50				cis-1 2-Dichloroethylene	2019/12/19	NC		%	50
1,2-Dichloropropane 2019/12/19 NC % 50 1,2-Dichloropropane 2019/12/19 NC % 50 cis-1,3-Dichloropropene 2019/12/19 NC % 50 trans-1,3-Dichloropropene 2019/12/19 NC % 50 Ethylbenzene 2019/12/19 NC % 50 Ethylene Dibromide 2019/12/19 NC % 50 Hexane 2019/12/19 NC % 50 Methylene Chloride(Dichloromethane) 2019/12/19 NC % 50 Methylene Chloride(Dichloromethane) 2019/12/19 NC % 50				trans-1 2-Dichloroethylene	2019/12/19	NC		%	50
cis-1,3-Dichloropropene 2019/12/19 NC % 50 trans-1,3-Dichloropropene 2019/12/19 NC % 50 Ethylbenzene 2019/12/19 NC % 50 Ethylene Dibromide 2019/12/19 NC % 50 Hexane 2019/12/19 NC % 50 Methylene Chloride(Dichloromethane) 2019/12/19 NC % 50 Methylene Chloride(Dichloromethane) 2019/12/19 NC % 50				1 2-Dichloropropane	2019/12/19	NC		%	50
trans-1,3-Dichloropropene 2019/12/19 NC % 50 trans-1,3-Dichloropropene 2019/12/19 NC % 50 Ethylbenzene 2019/12/19 NC % 50 Ethylene Dibromide 2019/12/19 NC % 50 Hexane 2019/12/19 NC % 50 Methylene Chloride(Dichloromethane) 2019/12/19 NC % 50 Methylene Chloride(Dichloromethane) 2019/12/19 NC % 50				cis-1.3-Dichloropropene	2019/12/19	NC		%	50
Ethylbenzene 2019/12/19 NC % 50 Ethylene Dibromide 2019/12/19 NC % 50 Hexane 2019/12/19 NC % 50 Methylene Chloride(Dichloromethane) 2019/12/19 NC % 50 Methylene Chloride(Dichloromethane) 2019/12/19 NC % 50 Methylene Chloride(Dichloromethane) 2019/12/19 NC % 50				trans-1 3-Dichloronronene	2010/12/10	NC		%	50
Ethylene Dibromide 2019/12/19 NC % 50 Hexane 2019/12/19 NC % 50 Methylene Chloride(Dichloromethane) 2019/12/19 NC % 50 Methylene Chloride(Dichloromethane) 2019/12/19 NC % 50 Methylene Chloride(Dichloromethane) 2019/12/19 NC % 50				Fthylbenzene	2019/12/19	NC		%	50
Hexane 2019/12/19 NC % 50 Methylene Chloride(Dichloromethane) 2019/12/19 NC % 50 Methylene Chloride(Dichloromethane) 2019/12/19 NC % 50 Methylene Chloride(Dichloromethane) 2019/12/19 NC % 50				Ethylene Dibromide	2019/12/19	NC		%	50
Methylene Chloride(Dichloromethane) 2019/12/19 NC % 50 Methylene Chloride(Dichloromethane) 2019/12/19 NC % 50				Hexane	2019/12/19	NC		%	50
				Methylene Chloride(Dichloromethane)	2019/12/19	NC		%	50
IVIETIVI ETIVI KETONE (Z-BUTANONE) ZU19/12/19 NU. % 50				Methyl Ethyl Ketone (2-Butanone)	2019/12/19	NC		%	50

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC						_		
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			Methyl Isobutyl Ketone	2019/12/19	NC		%	50
			Methyl t-butyl ether (MTBE)	2019/12/19	NC		%	50
			Styrene	2019/12/19	NC		%	50
			1,1,1,2-Tetrachloroethane	2019/12/19	NC		%	50
			1,1,2,2-Tetrachloroethane	2019/12/19	NC		%	50
			Tetrachloroethylene	2019/12/19	0.65		%	50
			Toluene	2019/12/19	NC		%	50
			1,1,1-Trichloroethane	2019/12/19	NC		%	50
			1,1,2-Trichloroethane	2019/12/19	NC		%	50
			Irichloroethylene	2019/12/19	NC		%	50
			Trichlorofluoromethane (FREON 11)	2019/12/19	NC		%	50
			Vinyl Chloride	2019/12/19	NC		%	50
			p+m-Xylene	2019/12/19	NC		%	50
			o-Xylene	2019/12/19	NC		%	50
			Total Xylenes	2019/12/19	NC		%	50
6505767	MS4	Matrix Spike	4-Bromotluorobenzene	2019/12/19		98	%	60 - 140
			D10-o-Xylene	2019/12/19		129	%	60 - 130
			D4-1,2-Dichloroethane	2019/12/19		104	%	60 - 140
			D8-Toluene	2019/12/19		100	%	60 - 140
			Acetone (2-Propanone)	2019/12/19		93	%	60 - 140
			Benzene	2019/12/19		102	%	60 - 140
			Bromodichloromethane	2019/12/19		97	%	60 - 140
			Bromoform	2019/12/19		87	%	60 - 140
			Bromomethane	2019/12/19		129	%	60 - 140
			Carbon Tetrachloride	2019/12/19		107	%	60 - 140
			Chlorobenzene	2019/12/19		95	%	60 - 140
			Chloroform	2019/12/19		100	%	60 - 140
			Dibromochloromethane	2019/12/19		93	%	60 - 140
			1,2-Dichlorobenzene	2019/12/19		91	%	60 - 140
			1,3-Dichlorobenzene	2019/12/19		97	%	60 - 140
			1,4-Dichlorobenzene	2019/12/19		101	%	60 - 140
			Dichlorodifluoromethane (FREON 12)	2019/12/19		95	%	60 - 140
			1,1-Dichloroethane	2019/12/19		101	%	60 - 140
			1,2-Dichloroethane	2019/12/19		107	%	60 - 140
			1,1-Dichloroethylene	2019/12/19		110	%	60 - 140
			cis-1,2-Dichloroethylene	2019/12/19		97	%	60 - 140
			trans-1,2-Dichloroethylene	2019/12/19		105	%	60 - 140
			1,2-Dichloropropane	2019/12/19		94	%	60 - 140
			cis-1,3-Dichloropropene	2019/12/19		89	%	60 - 140
				2019/12/19		87	%	60 - 140
			Etnylpenzene	2019/12/19		92	%	60 - 140 CO 140
				2019/12/19		92	70 0/	60 - 140
			Hexane	2019/12/19		105	%	60 - 140
				2019/12/19		97	70 0/	60 140
			Methyl Icohutyl Ketone	2019/12/19		94 02	70 0/	60 140
			Methyl t.butyl ether (MTPE)	2019/12/19		00 0 <i>C</i>	70 0/	60 140
			Sturopo	2019/12/19		00	70 0/	60 140
			Julia a Totrachlaraathana	2019/12/19		δ4 101	70 0/	60 140
				2019/12/19		50 TOT	70 0/	60 - 140
				2019/12/19		60 08	/0 0/_	60 - 140
			Toluene	2019/12/19		50 ΩΛ	/0 0/_	60 - 140
			1 1 1-Trichloroethane	2019/12/19		54 106	/0 0/	60 - 140
1			I,I,I = I I CHIOI OCUIAIIC	2013/12/13		100	/0	00-140

Page 18 of 34

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC						_		
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			1,1,2-Trichloroethane	2019/12/19		103	%	60 - 140
			Trichloroethylene	2019/12/19		109	%	60 - 140
			Visual Chloride	2019/12/19		118	%	60 - 140
			vinyi Chloride	2019/12/19		98	% 0/	60 - 140
			p+m-xylene	2019/12/19		97	% 0/	60 - 140
			o-Xylene	2019/12/19		92	%	60 - 140
6505767	N 4C 4		FI (C6-C10)	2019/12/19		88	%	60 - 140
6505767	IVIS4	Spiked Blank	4-Bromofiuorobenzene	2019/12/19		98	%	60 - 140
			D10-0-Xylene	2019/12/19		111	%	60 - 130
			D4-1,2-Dichloroethane	2019/12/19		105	%	60 - 140
			D8-Toluene	2019/12/19		100	% 0/	60 - 140
			Acetone (2-Propanone)	2019/12/19		94	% 0/	60 - 140
			Benzene	2019/12/19		102	% 0/	60 - 130
			Bromodichioromethane	2019/12/19		98	% 0/	60 - 130
			Bromonorm	2019/12/19		88	% 0/	60 - 130
			Bromometnane	2019/12/19		132	% 0/	60 - 140
				2019/12/19		108	% 0/	60 - 130
			Chloroform	2019/12/19		95	% 0/	60 - 130
			Dibromochleromothana	2019/12/19		100	% 0/	60 - 130
				2019/12/19		94	70 0/	60 120
			1,2-Dichlorobenzene	2019/12/19		92	/0	60 120
			1,3-Dichlorobenzene	2019/12/19		90 102	/0	60 120
			1,4-Dictition oberizente	2019/12/19		102	/0	60 140
			1 1-Dichloroethane	2019/12/19		95 102	/0 0/_	60 - 140
			1.2 Dichloroethane	2019/12/19		102	/0 0/	60 - 130
				2019/12/19		108	70 0/	60 - 130
			cis-1 2-Dichloroothylono	2019/12/19		08	70 0/	60 - 130
			trans-1,2-Dichloroethylene	2019/12/19		106	70 %	60 - 130
			1 2-Dichloropropane	2019/12/19		95	%	60 - 130
			cis-1 3-Dichloropropene	2019/12/19		91	%	60 - 130
			trans-1 3-Dichloropropene	2019/12/19		90	%	60 - 130
			Ethylhenzene	2019/12/19		92	%	60 - 130
			Ethylene Dibromide	2019/12/19		93	%	60 - 130
			Hexane	2019/12/19		102	%	60 - 130
			Methylene Chloride(Dichloromethane)	2019/12/19		98	%	60 - 130
			Methyl Ethyl Ketone (2-Butanone)	2019/12/19		95	%	60 - 140
			Methyl Isobutyl Ketone	2019/12/19		87	%	60 - 130
			Methyl t-butyl ether (MTBE)	2019/12/19		87	%	60 - 130
			Styrene	2019/12/19		84	%	60 - 130
			1,1,1,2-Tetrachloroethane	2019/12/19		101	%	60 - 130
			1,1,2,2-Tetrachloroethane	2019/12/19		91	%	60 - 130
			Tetrachloroethylene	2019/12/19		98	%	60 - 130
			Toluene	2019/12/19		94	%	60 - 130
			1,1,1-Trichloroethane	2019/12/19		107	%	60 - 130
			1,1,2-Trichloroethane	2019/12/19		104	%	60 - 130
			Trichloroethylene	2019/12/19		110	%	60 - 130
			Trichlorofluoromethane (FREON 11)	2019/12/19		118	%	60 - 130
			Vinyl Chloride	2019/12/19		98	%	60 - 130
			p+m-Xylene	2019/12/19		97	%	60 - 130
			o-Xylene	2019/12/19		92	%	60 - 130
			F1 (C6-C10)	2019/12/19		93	%	80 - 120
6505767	MS4	Method Blank	4-Bromofluorobenzene	2019/12/19		96	%	60 - 140

Page 19 of 34

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC	Init		Decemeter	Data Analyzad	Value	Recovery		OC Limita
Batch	Init	QC Type	Parameter	2010/12/10	value	110	UNITS %	60 - 120
			D1-1 2-Dichlaroethane	2019/12/19		105	70 0/	60 - 140
				2019/12/19		105	/0 0/	60 140
			Acotona (2 Propanana)	2019/12/19	<0 E0	90	/0 11.0/0	00 - 140
			Acetone (2-Propanone)	2019/12/19	<0.30		ug/g	
			Bromodichloromothana	2019/12/19	<0.020		ug/g	
			Bromodicnioromethane	2019/12/19	< 0.050		ug/g	
			Bromotorm	2019/12/19	<0.050		ug/g	
			Bromometnane	2019/12/19	<0.050		ug/g	
			Carbon Tetrachioride	2019/12/19	<0.050		ug/g	
			Chlorobenzene	2019/12/19	<0.050		ug/g	
			Chiorotorm	2019/12/19	<0.050		ug/g	
			Dibromochloromethane	2019/12/19	<0.050		ug/g	
			1,2-Dichlorobenzene	2019/12/19	<0.050		ug/g	
			1,3-Dichlorobenzene	2019/12/19	< 0.050		ug/g	
			1,4-Dichlorobenzene	2019/12/19	< 0.050		ug/g	
			Dichlorodifluoromethane (FREUN 12)	2019/12/19	< 0.050		ug/g	
			1,1-Dichloroethane	2019/12/19	<0.050		ug/g	
			1,2-Dichloroethane	2019/12/19	< 0.050		ug/g	
			1,1-Dichloroethylene	2019/12/19	< 0.050		ug/g	
			cis-1,2-Dichloroethylene	2019/12/19	<0.050		ug/g	
			trans-1,2-Dichloroethylene	2019/12/19	<0.050		ug/g	
			1,2-Dichloropropane	2019/12/19	<0.050		ug/g	
			cis-1,3-Dichloropropene	2019/12/19	<0.030		ug/g	
			trans-1,3-Dichloropropene	2019/12/19	<0.040		ug/g	
			Ethylbenzene	2019/12/19	<0.020		ug/g	
			Ethylene Dibromide	2019/12/19	<0.050		ug/g	
			Hexane	2019/12/19	<0.050		ug/g	
			Methylene Chloride(Dichloromethane)	2019/12/19	<0.050		ug/g	
			Methyl Ethyl Ketone (2-Butanone)	2019/12/19	<0.50		ug/g	
			Methyl Isobutyl Ketone	2019/12/19	<0.50		ug/g	
			Methyl t-butyl ether (MTBE)	2019/12/19	<0.050		ug/g	
			Styrene	2019/12/19	<0.050		ug/g	
			1,1,1,2-Tetrachloroethane	2019/12/19	<0.050		ug/g	
			1,1,2,2-Tetrachloroethane	2019/12/19	<0.050		ug/g	
			Tetrachloroethylene	2019/12/19	<0.050		ug/g	
			Toluene	2019/12/19	<0.020		ug/g	
			1,1,1-Trichloroethane	2019/12/19	<0.050		ug/g	
			1,1,2-Trichloroethane	2019/12/19	<0.050		ug/g	
			Trichloroethylene	2019/12/19	<0.050		ug/g	
			Trichlorofluoromethane (FREON 11)	2019/12/19	<0.050		ug/g	
			Vinyl Chloride	2019/12/19	<0.020		ug/g	
			p+m-Xylene	2019/12/19	<0.020		ug/g	
			o-Xylene	2019/12/19	<0.020		ug/g	
			Total Xylenes	2019/12/19	<0.020		ug/g	
			F1 (C6-C10)	2019/12/19	<10		ug/g	
			F1 (C6-C10) - BTEX	2019/12/19	<10		ug/g	
6505767	MS4	RPD	Acetone (2-Propanone)	2019/12/19	NC		%	50
			Benzene	2019/12/19	NC		%	50
			Bromodichloromethane	2019/12/19	NC		%	50
			Bromoform	2019/12/19	NC		%	50
			Bromomethane	2019/12/19	NC		%	50
			Carbon Tetrachloride	2019/12/19	NC		%	50
			Chlorobenzene	2019/12/19	NC		%	50

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			Chloroform	2019/12/19	NC		%	50
			Dibromochloromethane	2019/12/19	NC		%	50
			1,2-Dichlorobenzene	2019/12/19	NC		%	50
			1,3-Dichlorobenzene	2019/12/19	NC		%	50
			1,4-Dichlorobenzene	2019/12/19	NC		%	50
			Dichlorodifluoromethane (FREON 12)	2019/12/19	NC		%	50
			1,1-Dichloroethane	2019/12/19	NC		%	50
			1,2-Dichloroethane	2019/12/19	NC		%	50
			1,1-Dichloroethylene	2019/12/19	NC		%	50
			cis-1,2-Dichloroethylene	2019/12/19	NC		%	50
			trans-1,2-Dichloroethylene	2019/12/19	NC		%	50
			1,2-Dichloropropane	2019/12/19	NC		%	50
			cis-1,3-Dichloropropene	2019/12/19	NC		%	50
			trans-1,3-Dichloropropene	2019/12/19	NC		%	50
			Ethylbenzene	2019/12/19	2.8		%	50
			Ethylene Dibromide	2019/12/19	NC		%	50
			Hexane	2019/12/19	7.8		%	50
			Methylene Chloride(Dichloromethane)	2019/12/19	NC		%	50
			Methyl Ethyl Ketone (2-Butanone)	2019/12/19	NC		%	50
			Methyl Isobutyl Ketone	2019/12/19	NC		%	50
			Methyl t-butyl ether (MTBE)	2019/12/19	NC		%	50
			Styrene	2019/12/19	NC		%	50
			1,1,1,2-Tetrachloroethane	2019/12/19	NC		%	50
			1,1,2,2-Tetrachloroethane	2019/12/19	NC		%	50
			Tetrachloroethylene	2019/12/19	NC		%	50
			Toluene	2019/12/19	4.7		%	50
			1,1,1-Trichloroethane	2019/12/19	NC		%	50
			1,1,2-Trichloroethane	2019/12/19	NC		%	50
			Trichloroethylene	2019/12/19	NC		%	50
			Trichlorofluoromethane (FREON 11)	2019/12/19	NC		%	50
			Vinyl Chloride	2019/12/19	NC		%	50
			p+m-Xylene	2019/12/19	5.0		%	50
			o-Xylene	2019/12/19	4.6		%	50
			Total Xylenes	2019/12/19	4.8		%	50
			F1 (C6-C10)	2019/12/19	NC		%	30
			F1 (C6-C10) - BTEX	2019/12/19	NC		%	30
6506156	DT1	Matrix Spike	Acid Extractable Antimony (Sb)	2019/12/20		102	%	75 - 125
		·	Acid Extractable Arsenic (As)	2019/12/20		99	%	75 - 125
			Acid Extractable Barium (Ba)	2019/12/20		101	%	75 - 125
			Acid Extractable Beryllium (Be)	2019/12/20		103	%	75 - 125
			Acid Extractable Boron (B)	2019/12/20		96	%	75 - 125
			Acid Extractable Cadmium (Cd)	2019/12/20		100	%	75 - 125
			Acid Extractable Chromium (Cr)	2019/12/20		97	%	75 - 125
			Acid Extractable Cobalt (Co)	2019/12/20		97	%	75 - 125
			Acid Extractable Copper (Cu)	2019/12/20		96	%	75 - 125
			Acid Extractable Lead (Pb)	2019/12/20		101	%	75 - 125
			Acid Extractable Molybdenum (Mo)	2019/12/20		102	%	75 - 125
			Acid Extractable Nickel (Ni)	2019/12/20		97	%	75 - 125
			Acid Extractable Selenium (Se)	2019/12/20		100	%	75 - 125
			Acid Extractable Silver (Ag)	2019/12/20		97	%	75 - 125
			Acid Extractable Thallium (TI)	2019/12/20		100	%	75 - 125
			Acid Extractable Uranium (U)	2019/12/20		100	%	75 - 125
			Acid Extractable Vanadium (V)	2019/12/20		97	%	75 - 125

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC	1	00.7	Devenue et en	Data Analyzad) (al. a	Deserver		OC Lineite
Batch	Init	QC Type	Parameter	Date Analyzed	value	Recovery	UNITS	QC LIMITS
			Acid Extractable Maraury (Up)	2019/12/20		104	70 0/	75 - 125
6506156	DT1	Cailed Blank	Acid Extractable Mercury (Hg)	2019/12/20		91	70 0/	75 - 125
0300130	דוס	Зрікец Біанк	Acid Extractable Antimony (SD)	2019/12/20		102	70 0/	80 - 120 80 - 120
			Acid Extractable Parium (Pa)	2019/12/20		102	/0 0/	00 - 120 00 - 120
			Acid Extractable Baridin (Ba)	2019/12/20		99 100	/0	80 120
			Acid Extractable Berginum (Be)	2019/12/20		100	70 0/	80 - 120
			Acid Extractable Boron (B)	2019/12/20		101	% 0/	80 - 120
			Acid Extractable Cadmium (Cd)	2019/12/20		100	% 0/	80 - 120
			Acid Extractable Callothium (Cr)	2019/12/20		97	70 0/	80 - 120
			Acid Extractable Cobait (Co)	2019/12/20		100	% 0/	80 - 120
			Acid Extractable Copper (Cu)	2019/12/20		99	%	80 - 120
			Acid Extractable Lead (PD)	2019/12/20		101	%	80 - 120
			Acid Extractable Molybdenum (Mo)	2019/12/20		100	%	80 - 120
			Acid Extractable Nickel (NI)	2019/12/20		97	%	80 - 120
			Acid Extractable Selenium (Se)	2019/12/20		100	%	80 - 120
			Acid Extractable Silver (Ag)	2019/12/20		101	%	80 - 120
			Acid Extractable Thallium (11)	2019/12/20		100	%	80 - 120
			Acid Extractable Uranium (U)	2019/12/20		100	%	80 - 120
			Acid Extractable Vanadium (V)	2019/12/20		98	%	80 - 120
			Acid Extractable Zinc (Zn)	2019/12/20		95	%	80 - 120
			Acid Extractable Mercury (Hg)	2019/12/20		98	%	80 - 120
6506156	DI1	Method Blank	Acid Extractable Antimony (Sb)	2019/12/20	<0.20		ug/g	
			Acid Extractable Arsenic (As)	2019/12/20	<1.0		ug/g	
			Acid Extractable Barium (Ba)	2019/12/20	<0.50		ug/g	
			Acid Extractable Beryllium (Be)	2019/12/20	<0.20		ug/g	
			Acid Extractable Boron (B)	2019/12/20	<5.0		ug/g	
			Acid Extractable Cadmium (Cd)	2019/12/20	<0.10		ug/g	
			Acid Extractable Chromium (Cr)	2019/12/20	<1.0		ug/g	
			Acid Extractable Cobalt (Co)	2019/12/20	<0.10		ug/g	
			Acid Extractable Copper (Cu)	2019/12/20	<0.50		ug/g	
			Acid Extractable Lead (Pb)	2019/12/20	<1.0		ug/g	
			Acid Extractable Molybdenum (Mo)	2019/12/20	<0.50		ug/g	
			Acid Extractable Nickel (Ni)	2019/12/20	<0.50		ug/g	
			Acid Extractable Selenium (Se)	2019/12/20	<0.50		ug/g	
			Acid Extractable Silver (Ag)	2019/12/20	<0.20		ug/g	
			Acid Extractable Thallium (Tl)	2019/12/20	<0.050		ug/g	
			Acid Extractable Uranium (U)	2019/12/20	<0.050		ug/g	
			Acid Extractable Vanadium (V)	2019/12/20	<5.0		ug/g	
			Acid Extractable Zinc (Zn)	2019/12/20	<5.0		ug/g	
			Acid Extractable Mercury (Hg)	2019/12/20	<0.050		ug/g	
6506156	DT1	RPD	Acid Extractable Antimony (Sb)	2019/12/20	NC		%	30
			Acid Extractable Arsenic (As)	2019/12/20	5.9		%	30
			Acid Extractable Barium (Ba)	2019/12/20	9.1		%	30
			Acid Extractable Beryllium (Be)	2019/12/20	NC		%	30
			Acid Extractable Boron (B)	2019/12/20	NC		%	30
			Acid Extractable Cadmium (Cd)	2019/12/20	NC		%	30
			Acid Extractable Chromium (Cr)	2019/12/20	13		%	30
			Acid Extractable Cobalt (Co)	2019/12/20	1.2		%	30
			Acid Extractable Copper (Cu)	2019/12/20	0.74		%	30
			Acid Extractable Lead (Pb)	2019/12/20	8.0		%	30
			Acid Extractable Molybdenum (Mo)	2019/12/20	NC		%	30
			Acid Extractable Nickel (Ni)	2019/12/20	8.3		%	30
			Acid Extractable Selenium (Se)	2019/12/20	NC		%	30

Page 22 of 34

QA/QC	Init		Decomptor	Data Analyzad	Value	Bacayany		OC Limite
Balch	IIIIL	QC Type		2010/12/20	Value	Recovery	01113	20
			Acid Extractable Thallium (TI)	2019/12/20	NC		/0 0/	30
			Acid Extractable Iranium (II)	2019/12/20	2.4		/0 0/	30
			Acid Extractable Vanadium (V)	2019/12/20	2.4		/0 %	30
			Acid Extractable Valiation (V)	2019/12/20	0.55 1 1		/0 0/	30
6506072	SDC	חחם	Acid Extractable Zilic (Zil)	2019/12/20	4.1		/0	20
6500972	SPC	RPD	Moisture	2019/12/19	5.0		70 0/	20
6507141	GTA	RPD	Moisture	2019/12/19	1.8		%	20
6507168	SPC	RPD	Moisture	2019/12/19	0		%	20
0508552	GIA	RPD Spilled Diaple	Moisture	2019/12/21	0.0	100	%	20
6508612	KAD			2019/12/20	0.22	100	%	97 - 103
0508012	KAD	RPD Matrix Cailes	Available (CaCl2) pH	2019/12/20	0.22	07	%	N/A
6509258	KAJ	watrix Spike	D10-Anthracene	2019/12/21		97	%	50 - 130
			D14-Terphenyi (FS)	2019/12/21		93	%	50 - 130
			D8-Acenaphthylene	2019/12/21		80	%	50 - 130
			Acenaphthelene	2019/12/21		87	%	50 - 130
			Acenaphthylene	2019/12/21		84	%	50 - 130
			Anthracene	2019/12/21		84	%	50 - 130
			Benzo(a)anthracene	2019/12/21		84	%	50 - 130
			Benzo(a)pyrene	2019/12/21		81	%	50 - 130
			Benzo(b/j)fluorantnene	2019/12/21		83	%	50 - 130
			Benzo(g,n,i)perylene	2019/12/21		89	%	50 - 130
			Benzo(k)fluorantnene	2019/12/21		89	%	50 - 130
			Chrysene	2019/12/21		84	%	50 - 130
			Dibenzo(a,n)anthracene	2019/12/21		95	%	50 - 130
			Fluoranthene	2019/12/21		61	%	50 - 130
			Fluorene	2019/12/21		90	%	50 - 130
			Indeno(1,2,3-cd)pyrene	2019/12/21		90	%	50 - 130
			1-Methylnaphthalene	2019/12/21		90	%	50 - 130
			2-Methylnaphthalene	2019/12/21		85	%	50 - 130
			Naphthalene	2019/12/21		73	%	50 - 130
			Phenanthrene	2019/12/21		56	%	50 - 130
6500250	DAL	Caller d Dlamb	Pyrene D10 Authorson	2019/12/21		60	%	50 - 130
6509258	RAJ	Spiked Blank	D10-Anthracene	2019/12/20		97	%	50 - 130
			D14-Terphenyl (FS)	2019/12/20		89	%	50 - 130
			D8-Acenaphtnylene	2019/12/20		89	%	50 - 130
			Acenaphthene	2019/12/20		94	%	50 - 130
			Acenaphthylene	2019/12/20		89	%	50 - 130
			Anthracene	2019/12/20		94	%	50 - 130
			Benzo(a)anthracene	2019/12/20		99	%	50 - 130
			Benzo(a)pyrene	2019/12/20		94	%	50 - 130
			Benzo(b/j)fluorantnene	2019/12/20		93	%	50 - 130
			Benzo(g,n,i)perviene	2019/12/20		92	%	50 - 130
			Chryson	2019/12/20		101	%	50 - 130
			Chrysene Dikewaa (a.k.) aathaa aan	2019/12/20		96	%	50 - 130
			Dibenzo(a,njanthracene	2019/12/20		87	% •⁄	50 - 130
			Fluoranchene	2019/12/20		77	% در	50 - 130
				2019/12/20		97	% 0/	50 - 130
				2019/12/20		93	% 0/	50 - 130
				2019/12/20		99	% •⁄	50 - 130
			2-ivietriyinapritrialene	2019/12/20		93	% 0/	50 - 130
			Naprinaiene Dhananthrana	2019/12/20		60	% 0/	50 - 130
			Prienantifiene	2019/12/20		93	% در	50 - 130
1			Pyrene	2019/12/20		97	%	50 - 130

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
6509258	RAJ	Method Blank	D10-Anthracene	2019/12/20		99	%	50 - 130
			D14-Terphenyl (FS)	2019/12/20		92	%	50 - 130
			D8-Acenaphthylene	2019/12/20		89	%	50 - 130
			Acenaphthene	2019/12/20	<0.0050		ug/g	
			Acenaphthylene	2019/12/20	<0.0050		ug/g	
			Anthracene	2019/12/20	<0.0050		ug/g	
			Benzo(a)anthracene	2019/12/20	<0.0050		ug/g	
			Benzo(a)pyrene	2019/12/20	<0.0050		ug/g	
			Benzo(b/j)fluoranthene	2019/12/20	<0.0050		ug/g	
			Benzo(g,h,i)perylene	2019/12/20	<0.0050		ug/g	
			Benzo(k)fluoranthene	2019/12/20	<0.0050		ug/g	
			Chrysene	2019/12/20	<0.0050		ug/g	
			Dibenzo(a,h)anthracene	2019/12/20	<0.0050		ug/g	
			Fluoranthene	2019/12/20	<0.0050		ug/g	
			Fluorene	2019/12/20	<0.0050		ug/g	
			Indeno(1,2,3-cd)pyrene	2019/12/20	<0.0050		ug/g	
			1-Methylnaphthalene	2019/12/20	<0.0050		ug/g	
			2-Methylnaphthalene	2019/12/20	<0.0050		ug/g	
			Naphthalene	2019/12/20	<0.0050		ug/g	
			Phenanthrene	2019/12/20	<0.0050		ug/g	
			Pyrene	2019/12/20	<0.0050		ug/g	
6509258	RAJ	RPD	Acenaphthene	2019/12/21	76 (1)		%	40
			Acenaphthylene	2019/12/21	NC		%	40
			Anthracene	2019/12/21	72 (2)		%	40
			Benzo(a)anthracene	2019/12/21	73 (2)		%	40
			Benzo(a)pyrene	2019/12/21	80 (2)		%	40
			Benzo(b/j)fluoranthene	2019/12/21	78 (2)		%	40
			Benzo(g,h,i)perylene	2019/12/21	87 (2)		%	40
			Benzo(k)fluoranthene	2019/12/21	87 (2)		%	40
			Chrysene	2019/12/21	74 (2)		%	40
			Dibenzo(a,h)anthracene	2019/12/21	88 (2)		%	40
			Fluoranthene	2019/12/21	76 (2)		%	40
			Fluorene	2019/12/21	86 (2)		%	40
			Indeno(1,2,3-cd)pyrene	2019/12/21	88 (2)		%	40
			1-Methylnaphthalene	2019/12/21	NC		%	40
			2-Methylnaphthalene	2019/12/21	NC		%	40
			Naphthalene	2019/12/21	NC		%	40
			Phenanthrene	2019/12/21	81 (2)		%	40
			Pyrene	2019/12/21	69 (2)		%	40
6510660	ABD	Matrix Spike	1,4-Difluorobenzene	2019/12/21		106	%	60 - 140
			4-Bromofluorobenzene	2019/12/21		102	%	60 - 140
			D10-Ethylbenzene	2019/12/21		109	%	60 - 140
			D4-1,2-Dichloroethane	2019/12/21		99	%	60 - 140
			Benzene	2019/12/21		122	%	60 - 140
			Toluene	2019/12/21		112	%	60 - 140
			Ethylbenzene	2019/12/21		131	%	60 - 140
			o-Xylene	2019/12/21		123	%	60 - 140
			p+m-Xylene	2019/12/21		117	%	60 - 140
			F1 (C6-C10)	2019/12/21		120	%	60 - 140
6510660	ABD	Spiked Blank	1,4-Difluorobenzene	2019/12/21		103	%	60 - 140
			4-Bromofluorobenzene	2019/12/21		103	%	60 - 140
			D10-Ethylbenzene	2019/12/21		103	%	60 - 140
			D4-1,2-Dichloroethane	2019/12/21		96	%	60 - 140

Page 24 of 34

Bureau Veritas Laboratories 32 Colonnade Rd, Unit #1000, Nepean, ON K2E 7J6 Phone: 613 274-0573 Fax: 613 274-0574 Website: www.bvlabs.com

QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			Benzene	2019/12/21		108	%	60 - 140
			Toluene	2019/12/21		102	%	60 - 140
			Ethylbenzene	2019/12/21		117	%	60 - 140
			o-Xylene	2019/12/21		110	%	60 - 140
			p+m-Xylene	2019/12/21		106	%	60 - 140
			F1 (C6-C10)	2019/12/21		102	%	80 - 120
6510660	ABD	Method Blank	1,4-Difluorobenzene	2019/12/21		102	%	60 - 140
			4-Bromofluorobenzene	2019/12/21		103	%	60 - 140
			D10-Ethylbenzene	2019/12/21		96	%	60 - 140
			D4-1.2-Dichloroethane	2019/12/21		95	%	60 - 140
			Benzene	2019/12/21	<0.020		ug/g	
			Toluene	2019/12/21	< 0.020		ug/g	
			Ethylbenzene	2019/12/21	< 0.020		ua\a	
			o-Xvlene	2019/12/21	<0.020			
			n+m-Xvlene	2019/12/21	<0.040		∽6/8 ug/g	
			Total Xylenes	2019/12/21	<0.040		∽6/8 ug/g	
			F1 (C6-C10)	2019/12/21	<10		∝6/δ μσ/σ	
			F1 (C6-C10) - BTFX	2019/12/21	<10		∝6/δ μσ/σ	
6510660	ARD	RPD	Benzene	2019/12/21	NC		ч <u>6</u> /б %	50
0510000	ADD		Toluene	2019/12/21	6.6		%	50
			Fthylbenzene	2019/12/21	NC		%	50
			o-Xvlene	2019/12/21	NC		%	50
			n+m-Xvlene	2019/12/21	NC		%	50
				2010/12/21	NC		%	50
			E1 (C6-C10)	2019/12/21	NC		%	30
			E1 (C6-C10) - BTEX	2019/12/21	NC		%	30
6510772	GUI	Matrix Snike	o-Ternbenyl	2019/12/21	Ne	97	%	60 - 130
0310772	GOL	Matrix Spike	E2 (C10-C16 Hydrocarbons)	2010/12/21		100	%	50 - 130
			F3 (C16-C34 Hydrocarbons)	2010/12/21		87	%	50 - 130
			E4 (C34-C50 Hydrocarbons)	2019/12/21		85	%	50 - 130
6510772	GUI	Spiked Blank	o-Ternhenyl	2019/12/21		85	/0 0/	50 - 130 60 - 130
0510772	GOL	Spiked blank	E2 (C10 C16 Hydrocarbons)	2019/12/21		05	/0 0/	00 - 130 00 - 130
			E2 (C16 C24 Hydrocarbons)	2019/12/21		95	/0 0/	00 - 120 00 - 120
			F3 (C10-C34 Hydrocarbons)	2019/12/21		04 91	/0 0/	80 - 120 80 - 120
6510772	CUI	Mothod Plank	a Tarabanyl	2019/12/21		81	/0 0/	60 120
0510772	GOL	Method Blank	E2 (C10 C16 Hydrocarbons)	2019/12/21	<10	87	/0 110/0	00-130
			E2 (C16 C24 Hydrocarbons)	2019/12/21	<10		ug/g	
			F4 (C34-C50 Hydrocarbons)	2019/12/21	<50		ug/g	
6510772	GUI	חסק	F_2 (C10-C16 Hydrocarbons)	2019/12/21			ug/g %	20
0510772	GOL	INF D	E2 (C16 C24 Hydrocarbons)	2019/12/21	NC		/0 0/	20
			E4 (C24-C50 Hydrocarbons)	2019/12/21	NC		/0 0/	30
6511621	\$1/5	Matrix Sniko		2019/12/21	NC	108	/0 0/	50 60 - 120
0511021	343		Aroclar 1360	2019/12/23		108	/0 0/	20 120
			Total DCP	2019/12/23		125	/0	20 120
6511621	c)/c	Chikad Blank	Deceshlerebinbenyl	2019/12/23		125	70 0/	50 - 150
0511021	343	Spikeu bialik	Aroclar 1260	2019/12/23		90 107	/0	20 120
				2013/12/23		107	/0 0/	20 120
6511601	C\/C	Mathad Plank	Decachlerabinhanul	2013/12/23		101	70 0/	50 - 130
0211021	282	WELTION BIANK		2019/12/23	<0.010	93	%	00 - 130
			Aroclor 1242	2019/12/23	<0.010		ug/g	
			Aroclor 1254	2019/12/23	<0.010		ug/g	
			Aroclor 1254	2019/12/23	<0.010		ug/g	
				2019/12/23	<0.010		ug/g	
1			TOTAL PCB	2019/12/23	<0.010		ug/g	

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
6511621	SVS	RPD	Aroclor 1242	2019/12/23	NC		%	50
			Aroclor 1248	2019/12/23	NC		%	50
			Aroclor 1254	2019/12/23	NC		%	50
			Aroclor 1260	2019/12/23	NC		%	50
			Total PCB	2019/12/23	NC		%	50

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

(1) Duplicate results exceeded RPD acceptance criteria due to the sample heterogeneity. The variability in the results for flagged analytes may be more pronounced. This has been confirmed by re-analysis.

(2) Recovery or RPD for this parameter is outside control limits. The overall quality control for this analysis meets acceptability criteria.

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Brad Newman, Scientific Service Specialist

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

VERIT	S		-				REPO	RT TO:		1	1			PROJEC	T INFORM	ATION:		T		Laborato	ory Use Or	nly:	
	INV	DICE TO:					REPO					Ouotation #	ŀ.	A7092	27					BV Labs Job #:		Bottle O	order #:
mpany Na	me: #982 Pinchin Ltd				ompany Na tention:	Matt. R	yan, Mike	Lobm				P.O. #:	•	1.		1.4	19.2						
ention:	1 Hines Road Suit	e 200		A	idress:							Project:		24	290	7:0	261			2000 #		7297 Project M	720
aress:	Kanata ON K2K 3	27							1	~ ~		Project Nar	ne:	4.	734	ber	<u>t</u>	1		COC #:		Project W	lanager.
	(613) 592-3387	Fax:(61	3) 592-5897	Te	el:	rmai	ckenziec	2 PINEax	1.2ºC	on		Site #:								C#729720-30-01		Alisha W	illiamson
nail:	ap@pinchin.com			Er	mail:	mkosiw	v@Pinchin.co	m, naronde(apinchin 1	.com, m	iryan@	Sampled B	y:		E SPECIE	(C)		-		Tumaround Ti	ime (TAT) Req	juired:	
MOEI	REGULATED DRINKING	WATER OR WATER	INTENDED	OR HUM	AN CON	ISUMPTION	MUST BE				AN	ALTSIS REG	IDESTED	(FEEASE E					ANAL STATE	Please provide adva	ince notice for r	rush projects	
~	SUBMITTED O	N THE BY LABS DRI	INKING WAT	IN CHIAIN		51001		cie):	suoo						-	_		R	tegular (Sta	andard) TAT:	fied):		ſ
Reg	ulation 153 (2011)	0	ther Regulation	S		Special In	structions		ocart	(jio					B	X		S	tandard TAT =	= 5-7 Working days for m	ost tests		1
Table 1	Res/Park Medium		Sanitary Sewe	viaw				ease	Hydr	5 (3	-				Z	5		P	lease note: St	andard TAT for certain le	ests such as BOL	D and Dioxins/Fi	urans are >
Table 3	Agri/Other For RSC		lunicipality					ld) b Hg	enm	ty t	(Soi	ACT		X		3	SK.	10	ays - contact y	Pour Project Manager for	ootina.	rion)	
Table		PWQO						Itere als /	Petro	VOC.	PAHs	XTR	E	all	E	3	a	c	ate Required:	Rush TAT (it applies to	Time	Required:	[
		Other						Id Fi	153 1	153	153	CI2 E	75ur	+	2	é	S	F	tush Confirma	tion Number:	(call	lab for #)	
	Include Criteria	on Certificate of Anal	lysis (Y/N)? _					це Н	Reg (iii)	Reg.	.Reg	H Ca	ieve,	i D	H	2	9		# of Bottles		Commen	its	
S	ample Barcode Label	Sample (Location) Ide	entification	Date San	npled	Time Sampled	Matrix		000	0	N/		S		- 1	-	× 1		2				
		BHIT CS.	-1	Pec		An	SOL		X		X	X		$ \times $					2	19.00			
-		19117 22		-20	17				1		1			1					2				
		Dup-1		le		11	n	media 12	IX		X			X					1				
		11	AC 1	Dec	12	Alla	1.1		X/	V	V				\bigvee	X	X		2				
		NW 4	557	ver	OP	11002	n	and the state	A	A	\wedge	-			N	()	(0		D == 10	10.19	
		N 2		10		01	10	and all and a second	della	X						1.76.	X	1	L	17-	Dec-19	10.12	
-		Jup 2		100				-	4901	1	11				11	1	1		0	Alisha W	/illiamsC		
		MUSS	5-1	Berl		11	11		X	X	X				X	X	X		2	11 11 11 11 11 11 11 11 11	1504		
		1000000			-				10		1				V	V.			1	B9Z	,4584		
		Dup-2	`	11		И	n	STOLY NO.							A	N		-		YF XX	OTT-00)1	
1		An I (5-1	r.					1	V	X	1.4			V	V	\mathbf{V}		2	KJI	01		
		rvun 6	221	и		U	И		X	A	P			-	1	N	1		~		-		
							-					-							-				
9										nK.													342.4
-																						0	
																					ON	Sal	_
1	* RELINQUISHED BY: (Si	nature/Print)	Date: (YY	MM/DD)	Tim	e	RECEIVED	BY: (Signature	/Print)		Date: (YY	/MM/DD)		Time	# jars	used and ubmitted	Time Dea	nitive	Laborat	tory Use Only	Custody Se	al Ye	15
17	12/1		Dec	2	9:01	v k	m	Jay	8		201911	2112	10	.20			Time Sen	SILVE	Temperatu	ure (°C) on Recei	Present	0	1
/	4	M. Ke Mossil	2	019	Ah	2		r											~1	210	Man In	e e	Valla

ERITAS					PEROF	TTO:			1			PROJECT	T INFORMA	TION:			Laboratory Use (Only:
	INV	OICE TO:		12 Sec. 10 Sec. 10	NET OF		45	500		Qualatina #		A7092	27		1.1.1.2		BV Labs Job #:	Bottle Order #:
any Name:	#982 Pinchin Ltd		Company	Name:	van. Mike	Lab M		-		P.O. #:	× .			- V			3 D	
on:	1 Hines Road Suit	e 200	Attention:			-017				Project:		24	296	7:0	261		/	729720
15:	Kanata ON K2K 3	C7				N I				Project Nan	ne:	4	734	ber	T			Project manager.
	(613) 592-3387	Fax: (613) 592-5897	Tel:	rma	Kenzie	PINE	in the	om	n an á	Site #:		. +1	85				C#729720-30-01	Alisha Williamson
1:	ap@pinchin.com		Email:	mkosiw	@Pinchin.col	n, naronde(gpinchin.	com, m	ANI	Sampled By	y: DUESTED	PLEASE B	E SPECIFIC	C)			Turnaround Time (TAT) R	equired:
MOE RE	GULATED DRINKING	WATER OR WATER INTENDED	FOR HUMAN CO	NSUMPTION I	MUST BE						OLOTED		~				Please provide advance notice for	or rush projects
-	SUBIMITIED C	Other Regulation		Special In	structions	cle);	pons					1	5			(will be applie	d if Rush TAT is not specified):	X
Regula	tion 153 (2011)		r Bylaw	Special in	sauctoria	e cir	rocal	Soli)					T	X		Standard TA	$\Gamma = 5-7$ Working days for most tests.	1-
able 2	Ind/Comm Acoarse	Reg 558. Storm Sewer I	Bylaw			oleas g / Ci	hyd ,	2	(16			1	2	5	-	Please note: days - contac	Standard TAT for certain tests such as B I your Project Manager for details.	OD and Dioxins/Furans are > 5
able 3	Agri/Other For RSC	MISA Municipality				H /	oleun	Cs Ly	s (Sc	RACT		\sim	S	2	2	Job Specifi	c Rush TAT (if applies to entire subr	nission)
able		PWQ0				Tilter	Petr	NOC	3 PAH	EXTI	Ę	CIL .	S	2	- 1	Date Require	d: Tir	ne Required:
						Meld	g 153	315	g 15:	aCl2	e, 75i	to	5	2º	8	Rush Contim	nation Number:(d	sall lab for #)
Came	Include Criteria	Sample (Location) Identification	Date Sampled	Time Sampled	Matrix	Ē	O.Re (Soli)	O.Re	O.Re	* Hd	Siev	9	4	a		# of Bottles	Comm	ients
Sam	le barcoue caboi	0.1.7.00.1	0.11	n in	C.11		$\mathbf{\vee}$		X	X		\bigvee				2		
		H12 SS-1	Pecia	An	SOL		$ \wedge $		11	(\sim	-					
		A a l	1.	1.0	h		1		\vee			X				2		
		pup-1	u	C.			A.		R			-		V		0		
1	1	MAL24 55-1	Decky	Am	u	1 . Y.	X	X	X				X	X	T	1		, i i i i i i i i i i i i i i i i i i i
		1000 [201	200	146			SHE	V	1					-	X	2	17-Dec-19	10:19
		Dup-2	n	0	n		20	\wedge							\cap	a	Aliche Williams	son
1		No. SC-1	No.11	1.1	1.		X	X	X				\mathbf{X}	X	X	2		
		VILUS SS-1	ball	u	U(0	2	1				3	£	()		B9Z4584	
		N: 0-7	[1	14	n								X	X			OTT	001
		Vup 5					1	1					1		$\mathbf{\nabla}$	5	KJY OII-)0 I
		ANNL SS-1	h	14	21		X	X				1	X	X	X	.2		
		1100 0 0					C		1									
							-		-									
	<																	
						1.1					-	-						<u> </u>
						1.1							- t	9 - Mai			ON	bul
<u> </u>	* RELINQUISHED BY: (Si	griature Print) Date: (Y)	//MM/DD) T	me	RECEIVED	BY: (Signature	/Print)		Date: (YY	/MM/DD)	г	lime -	 # jars not st 	used and ubmitted	Time Co	Labor	atory Use Only Custody	Seal Yes N
N	2	Dec .	17 9:0	DU K	m i	Tay	5	2	11210	2/17	10	.26	_		Time Sens	Tempera To	ature (°C) on Recei Presen	1
16		M. Kellowild 2	09 A	m 1.1	(VLU)	HGN F.	Idn	2 22	019/1	2118	Ep 1	0	_	A REAL PROPERTY AND		N	/ / White	DVL she Vallow: (

Pinchin Ltd Client Project #: 248967.001 Project name: 473 ALBERT Client ID: BH1-SS-1

Petroleum Hydrocarbons F2-F4 in Soil Chromatogram

Petroleum Hydrocarbons F2-F4 in Soil Chromatogram

Reference Spectrum

Pinchin Ltd Client Project #: 248967.001 Project name: 473 ALBERT Client ID: MW4-SS-1

Petroleum Hydrocarbons F2-F4 in Soil Chromatogram

Pinchin Ltd Client Project #: 248967.001 Project name: 473 ALBERT Client ID: MW5-SS-1

Petroleum Hydrocarbons F2-F4 in Soil Chromatogram

Pinchin Ltd Client Project #: 248967.001 Project name: 473 ALBERT Client ID: MW6-SS-1

Petroleum Hydrocarbons F2-F4 in Soil Chromatogram

Your Project #: 248967.001 Site Location: 473 ALBERT ST Your C.O.C. #: 729720-35-01

Attention: Matt, Ryan, Mike

Pinchin Ltd Ottawa 1 Hines Road Suite 200 Kanata, ON CANADA K2K 3C7

> Report Date: 2020/01/24 Report #: R6048774 Version: 2 - Revision

CERTIFICATE OF ANALYSIS – REVISED REPORT

BV LABS JOB #: C015237 Received: 2020/01/17, 11:05

Sample Matrix: Water # Samples Received: 10

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Methylnaphthalene Sum (1)	7	N/A	2020/01/23	CAM SOP-00301	EPA 8270D m
1,3-Dichloropropene Sum (1)	3	N/A	2020/01/22		EPA 8260C m
1,3-Dichloropropene Sum (1)	7	N/A	2020/01/23		EPA 8260C m
Petroleum Hydrocarbons F2-F4 in Water (1, 2)	7	2020/01/22	2020/01/23	CAM SOP-00316	CCME PHC-CWS m
Mercury (1)	4	2020/01/21	2020/01/21	CAM SOP-00453	EPA 7470A m
Dissolved Metals by ICPMS (1)	4	N/A	2020/01/21	CAM SOP-00447	EPA 6020B m
PAH Compounds in Water by GC/MS (SIM) (1)	7	2020/01/22	2020/01/23	CAM SOP-00318	EPA 8270D m
Polychlorinated Biphenyl in Water (1)	1	2020/01/21	2020/01/21	CAM SOP-00309	EPA 8082A m
Polychlorinated Biphenyl in Water (1)	3	2020/01/21	2020/01/22	CAM SOP-00309	EPA 8082A m
Volatile Organic Compounds and F1 PHCs (1)	7	N/A	2020/01/22	CAM SOP-00230	EPA 8260C m
Volatile Organic Compounds in Water (1)	3	N/A	2020/01/21	CAM SOP-00228	EPA 8260C m

Remarks:

Bureau Veritas Laboratories are accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by BV Labs are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in BV Labs profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and BV Labs in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

BV Labs liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. BV Labs has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by BV Labs, unless otherwise agreed in writing. BV Labs is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by BV Labs, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Page 1 of 37

Your Project #: 248967.001 Site Location: 473 ALBERT ST Your C.O.C. #: 729720-35-01

Attention: Matt, Ryan, Mike

Pinchin Ltd Ottawa 1 Hines Road Suite 200 Kanata, ON CANADA K2K 3C7

> Report Date: 2020/01/24 Report #: R6048774 Version: 2 - Revision

CERTIFICATE OF ANALYSIS – REVISED REPORT

BV LABS JOB #: C015237 Received: 2020/01/17, 11:05

(1) This test was performed by Bureau Veritas Laboratories Mississauga

(2) All CCME PHC results met required criteria unless otherwise stated in the report. The CWS PHC methods employed by Bureau Veritas Laboratories conform to all prescribed elements of the reference method and performance based elements have been validated. All modifications have been validated and proven equivalent following "Alberta Environment's Interpretation of the Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil Validation of Performance-Based Alternative Methods September 2003". Documentation is available upon request. Modifications from Reference Method for the Canada-wide Standard for Petroleum Hydrocarbons in Soil-Tier 1 Method: F2/F3/F4 data reported using validated cold solvent extraction instead of Soxhlet extraction.

Encryption Key

Alisha Sullivan Project Manager 24 Jan 2020 10:37:24

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Alisha Sullivan, Project Manager Email: Alisha.Williamson@bvlabs.com Phone# (613)274-0573

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)

BV Labs ID		LUP355	LUP356	LUP357	LUP362						
Sampling Date		2020/01/15	2020/01/15	2020/01/15	2020/01/15						
COC Number		729720-35-01	729720-35-01	729720-35-01	729720-35-01						
	UNITS	MW4	MW5	MW6	DUP-4	RDL	QC Batch				
Metals											
Mercury (Hg)	ug/L	<0.1	<0.1	<0.1	<0.1	0.1	6547703				
RDL = Reportable Detection Limit											
እር Batch = Quality Control Batch											

O.REG 153 DISSOLVED ICPMS METALS (WATER)

BV Labs ID		LUP355	LUP356	LUP357	LUP362		
Sampling Date		2020/01/15	2020/01/15	2020/01/15	2020/01/15		
COC Number		729720-35-01	729720-35-01	729720-35-01	729720-35-01		
	UNITS	MW4	MW5	MW6	DUP-4	RDL	QC Batch
Metals							
Dissolved Antimony (Sb)	ug/L	<0.50	<0.50	<0.50	0.72	0.50	6546678
Dissolved Arsenic (As)	ug/L	<1.0	<1.0	<1.0	<1.0	1.0	6546678
Dissolved Barium (Ba)	ug/L	180	92	280	180	2.0	6546678
Dissolved Beryllium (Be)	ug/L	<0.50	<0.50	<0.50	<0.50	0.50	6546678
Dissolved Boron (B)	ug/L	84	97	75	86	10	6546678
Dissolved Cadmium (Cd)	ug/L	<0.10	<0.10	<0.10	<0.10	0.10	6546678
Dissolved Chromium (Cr)	ug/L	<5.0	<5.0	<5.0	<5.0	5.0	6546678
Dissolved Cobalt (Co)	ug/L	4.3	19	<0.50	4.3	0.50	6546678
Dissolved Copper (Cu)	ug/L	2.9	2.6	3.8	4.4	1.0	6546678
Dissolved Lead (Pb)	ug/L	<0.50	<0.50	<0.50	<0.50	0.50	6546678
Dissolved Molybdenum (Mo)	ug/L	11	5.8	7.5	11	0.50	6546678
Dissolved Nickel (Ni)	ug/L	5.7	9.1	3.0	5.8	1.0	6546678
Dissolved Selenium (Se)	ug/L	<2.0	<2.0	2.3	<2.0	2.0	6546678
Dissolved Silver (Ag)	ug/L	<0.10	<0.10	<0.10	<0.10	0.10	6546678
Dissolved Sodium (Na)	ug/L	1500000	1100000	1800000	1500000	500	6546678
Dissolved Thallium (Tl)	ug/L	<0.050	0.31	0.078	<0.050	0.050	6546678
Dissolved Uranium (U)	ug/L	1.8	2.2	3.1	1.9	0.10	6546678
Dissolved Vanadium (V)	ug/L	<0.50	<0.50	<0.50	<0.50	0.50	6546678
Dissolved Zinc (Zn)	ug/L	<5.0	<5.0	6.2	5.9	5.0	6546678
RDL = Reportable Detection Li	nit						
QC Batch = Quality Control Bat	tch						

O.REG 153 PAHS (WATER)

BV Labs ID		LUP354	LUP355		LUP356		LUP357	LUP358		
Sampling Date		2020/01/15	2020/01/15		2020/01/15		2020/01/15	2020/01/15		
COC Number		729720-35-01	729720-35-01		729720-35-01		729720-35-01	729720-35-01		
	UNITS	MW3	MW4	RDL	MW5	RDL	MW6	MW7	RDL	QC Batch
Calculated Parameters				<u> </u>		<u> </u>			- -	
Methylnaphthalene, 2-(1-)	ug/L	<0.071	<0.071	0.071	<0.071	0.071	<0.071	<0.071	0.071	6545141
Polyaromatic Hydrocarbons		·								
Acenaphthene	ug/L	<0.050	<0.050	0.050	0.70	0.050	<0.050	<0.050	0.050	6550953
Acenaphthylene	ug/L	<0.050	<0.050	0.050	<0.050	0.050	<0.050	<0.050	0.050	6550953
Anthracene	ug/L	<0.050	<0.050	0.050	0.18	0.050	<0.050	<0.050	0.050	6550953
Benzo(a)anthracene	ug/L	<0.050	<0.050	0.050	<0.050	0.050	<0.050	<0.050	0.050	6550953
Benzo(a)pyrene	ug/L	<0.010	<0.010	0.010	<0.010	0.010	<0.010	<0.010	0.010	6550953
Benzo(b/j)fluoranthene	ug/L	<0.050	<0.050	0.050	<0.050	0.050	<0.050	<0.050	0.050	6550953
Benzo(g,h,i)perylene	ug/L	<0.050	<0.050	0.050	<0.050	0.050	<0.050	<0.050	0.050	6550953
Benzo(k)fluoranthene	ug/L	<0.050	<0.050	0.050	<0.050	0.050	<0.050	<0.050	0.050	6550953
Chrysene	ug/L	<0.050	<0.050	0.050	<0.050	0.050	<0.050	<0.050	0.050	6550953
Dibenzo(a,h)anthracene	ug/L	<0.050	<0.050	0.050	<0.050	0.050	<0.050	<0.050	0.050	6550953
Fluoranthene	ug/L	<0.050	<0.050	0.050	<0.050	0.050	<0.050	<0.050	0.050	6550953
Fluorene	ug/L	<0.050	<0.050	0.050	<0.20 (1)	0.20	<0.050	<0.050	0.050	6550953
Indeno(1,2,3-cd)pyrene	ug/L	<0.050	<0.050	0.050	<0.050	0.050	<0.050	<0.050	0.050	6550953
1-Methylnaphthalene	ug/L	<0.050	<0.050	0.050	<0.050	0.050	<0.050	<0.050	0.050	6550953
2-Methylnaphthalene	ug/L	<0.050	<0.050	0.050	<0.050	0.050	<0.050	<0.050	0.050	6550953
Naphthalene	ug/L	<0.050	<0.050	0.050	<0.20 (1)	0.20	<0.050	<0.050	0.050	6550953
Phenanthrene	ug/L	<0.030	<0.030	0.030	<0.030	0.030	<0.030	<0.030	0.030	6550953
Pyrene	ug/L	<0.050	<0.050	0.050	0.066	0.050	<0.050	<0.050	0.050	6550953
Surrogate Recovery (%)						-			-	
D10-Anthracene	%	93	94		89		97	97		6550953
D14-Terphenyl (FS)	%	81	85		60		86	89		6550953
D8-Acenaphthylene	%	91	89		90		91	92		6550953
RDL = Reportable Detection L	.imit									
QC Batch = Quality Control Ba	atch									

(1) DL was raised due to matrix interference.

O.REG 153 PAHS (WATER)

BV Labs ID		LUP361	LUP362		
Sampling Date		2020/01/15	2020/01/15		
COC Number		729720-35-01	729720-35-01		
	UNITS	MW10	DUP-4	RDL	QC Batch
Calculated Parameters					
Methylnaphthalene, 2-(1-)	ug/L	0.23	<0.071	0.071	6545141
Polyaromatic Hydrocarbons					
Acenaphthene	ug/L	<0.050	<0.050	0.050	6550953
Acenaphthylene	ug/L	<0.050	<0.050	0.050	6550953
Anthracene	ug/L	<0.050	<0.050	0.050	6550953
Benzo(a)anthracene	ug/L	<0.050	<0.050	0.050	6550953
Benzo(a)pyrene	ug/L	<0.010	<0.010	0.010	6550953
Benzo(b/j)fluoranthene	ug/L	<0.050	<0.050	0.050	6550953
Benzo(g,h,i)perylene	ug/L	<0.050	<0.050	0.050	6550953
Benzo(k)fluoranthene	ug/L	<0.050	<0.050	0.050	6550953
Chrysene	ug/L	<0.050	<0.050	0.050	6550953
Dibenzo(a,h)anthracene	ug/L	<0.050	<0.050	0.050	6550953
Fluoranthene	ug/L	<0.050	<0.050	0.050	6550953
Fluorene	ug/L	<0.050	<0.050	0.050	6550953
Indeno(1,2,3-cd)pyrene	ug/L	<0.050	<0.050	0.050	6550953
1-Methylnaphthalene	ug/L	0.23	<0.050	0.050	6550953
2-Methylnaphthalene	ug/L	<0.050	<0.050	0.050	6550953
Naphthalene	ug/L	0.070	<0.050	0.050	6550953
Phenanthrene	ug/L	<0.030	<0.030	0.030	6550953
Pyrene	ug/L	<0.050	<0.050	0.050	6550953
Surrogate Recovery (%)					
D10-Anthracene	%	95	101		6550953
D14-Terphenyl (FS)	%	75	93		6550953
D8-Acenaphthylene	%	87	96		6550953
RDL = Reportable Detection L	imit				
QC Batch = Quality Control Ba	itch				

O.REG 153 PCBS (WATER)

BV Labs ID		LUP355	LUP356	LUP357	LUP362	LUP362		
Sampling Date		2020/01/15	2020/01/15	2020/01/15	2020/01/15	2020/01/15		
COC Number		729720-35-01	729720-35-01	729720-35-01	729720-35-01	729720-35-01		
	UNITS	MW4	MW5	MW6		DUP-4		OC Batch
	UNITS	101004	141445	141440	D0F-4	Lab-Dup	NDL	QC Datti
PCBs								
Aroclor 1242	ug/L	<0.05	<0.05	<0.05	<0.05	<0.05	0.05	6547897
Aroclor 1248	ug/L	<0.05	<0.05	<0.05	<0.05	<0.05	0.05	6547897
Aroclor 1254	ug/L	<0.05	<0.05	<0.05	<0.05	<0.05	0.05	6547897
Aroclor 1260	ug/L	<0.05	<0.05	<0.05	<0.05	<0.05	0.05	6547897
Total PCB	ug/L	<0.05	<0.05	<0.05	<0.05	<0.05	0.05	6547897
Surrogate Recovery (%)								
Decachlorobiphenyl	%	83	67	84	84	89		6547897
RDL = Reportable Detection L	imit							
QC Batch = Quality Control Ba	tch							
Lab-Dup = Laboratory Initiate	d Duplic	cate						

O.REG 153 VOCS BY HS & F1-F4 (WATER)

BV Labs ID		LUP354	LUP355	LUP356	LUP357	LUP358		
Sampling Date		2020/01/15	2020/01/15	2020/01/15	2020/01/15	2020/01/15		
COC Number		729720-35-01	729720-35-01	729720-35-01	729720-35-01	729720-35-01		
	UNITS	MW3	MW4	MW5	MW6	MW7	RDL	QC Batch
Calculated Parameters	l			ļ				
1.3-Dichloropropene (cis+trans)	11ø/I	<0.50	<0.50	<0.50	<0.50	<0.50	0.50	6545083
Volatile Organics	46/ L	10.00	10.00	10.00	10100	10.00	0.50	00 10000
Acetone (2-Propanone)	ug/L	<10	<10	<10	<10	<10	10	6546168
Benzene	ug/L	<0.20	<0.20	<0.20	<0.20	<0.20	0.20	6546168
Bromodichloromethane	ug/L	<0.50	<0.50	<0.50	<0.50	<0.50	0.50	6546168
Bromoform	ug/L	<1.0	<1.0	<1.0	<1.0	<1.0	1.0	6546168
Bromomethane	ug/L	<0.50	<0.50	<0.50	<0.50	<0.50	0.50	6546168
Carbon Tetrachloride	ug/L	<0.20	<0.20	<0.20	<0.20	<0.20	0.20	6546168
Chlorobenzene	ug/L	<0.20	<0.20	<0.20	<0.20	<0.20	0.20	6546168
Chloroform	ug/L	<0.20	0.56	<0.20	0.28	0.41	0.20	6546168
Dibromochloromethane	ug/L	<0.50	<0.50	<0.50	<0.50	<0.50	0.50	6546168
1,2-Dichlorobenzene	ug/L	<0.50	<0.50	<0.50	<0.50	<0.50	0.50	6546168
1,3-Dichlorobenzene	ug/L	<0.50	<0.50	<0.50	<0.50	<0.50	0.50	6546168
1,4-Dichlorobenzene	ug/L	<0.50	<0.50	<0.50	<0.50	<0.50	0.50	6546168
Dichlorodifluoromethane (FREON 12)	ug/L	<1.0	<1.0	<1.0	<1.0	<1.0	1.0	6546168
1,1-Dichloroethane	ug/L	<0.20	<0.20	<0.20	<0.20	<0.20	0.20	6546168
1,2-Dichloroethane	ug/L	<0.50	<0.50	<0.50	<0.50	<0.50	0.50	6546168
1,1-Dichloroethylene	ug/L	<0.20	<0.20	<0.20	<0.20	<0.20	0.20	6546168
cis-1,2-Dichloroethylene	ug/L	<0.50	<0.50	<0.50	<0.50	<0.50	0.50	6546168
trans-1,2-Dichloroethylene	ug/L	<0.50	<0.50	<0.50	<0.50	<0.50	0.50	6546168
1,2-Dichloropropane	ug/L	<0.20	<0.20	<0.20	<0.20	<0.20	0.20	6546168
cis-1,3-Dichloropropene	ug/L	<0.30	<0.30	<0.30	<0.30	<0.30	0.30	6546168
trans-1,3-Dichloropropene	ug/L	<0.40	<0.40	<0.40	<0.40	<0.40	0.40	6546168
Ethylbenzene	ug/L	<0.20	<0.20	<0.20	<0.20	<0.20	0.20	6546168
Ethylene Dibromide	ug/L	<0.20	<0.20	<0.20	<0.20	<0.20	0.20	6546168
Hexane	ug/L	<1.0	<1.0	<1.0	<1.0	<1.0	1.0	6546168
Methylene Chloride(Dichloromethane)	ug/L	<2.0	<2.0	<2.0	<2.0	<2.0	2.0	6546168
Methyl Ethyl Ketone (2-Butanone)	ug/L	<10	<10	<10	<10	<10	10	6546168
Methyl Isobutyl Ketone	ug/L	<5.0	<5.0	<5.0	<5.0	<5.0	5.0	6546168
Methyl t-butyl ether (MTBE)	ug/L	<0.50	<0.50	<0.50	<0.50	<0.50	0.50	6546168
Styrene	ug/L	<0.50	<0.50	<0.50	<0.50	<0.50	0.50	6546168
1,1,1,2-Tetrachloroethane	ug/L	<0.50	<0.50	<0.50	<0.50	<0.50	0.50	6546168
1,1,2,2-Tetrachloroethane	ug/L	<0.50	<0.50	<0.50	<0.50	<0.50	0.50	6546168
Tetrachloroethylene	ug/L	<0.20	<0.20	<0.20	<0.20	<0.20	0.20	6546168
RDL = Reportable Detection Limit								
QC Batch = Quality Control Batch								

O.REG 153 VOCS BY HS & F1-F4 (WATER)

BV Labs ID		LUP354	LUP355	LUP356	LUP357	LUP358		
Sampling Date		2020/01/15	2020/01/15	2020/01/15	2020/01/15	2020/01/15		
COC Number		729720-35-01	729720-35-01	729720-35-01	729720-35-01	729720-35-01		
	UNITS	MW3	MW4	MW5	MW6	MW7	RDL	QC Batch
Toluene	ug/L	<0.20	<0.20	<0.20	<0.20	<0.20	0.20	6546168
1,1,1-Trichloroethane	ug/L	<0.20	<0.20	<0.20	<0.20	<0.20	0.20	6546168
1,1,2-Trichloroethane	ug/L	<0.50	<0.50	<0.50	<0.50	<0.50	0.50	6546168
Trichloroethylene	ug/L	<0.20	<0.20	<0.20	<0.20	<0.20	0.20	6546168
Trichlorofluoromethane (FREON 11)	ug/L	<0.50	<0.50	<0.50	<0.50	<0.50	0.50	6546168
Vinyl Chloride	ug/L	<0.20	<0.20	<0.20	<0.20	<0.20	0.20	6546168
p+m-Xylene	ug/L	<0.20	<0.20	<0.20	<0.20	<0.20	0.20	6546168
o-Xylene	ug/L	<0.20	<0.20	<0.20	<0.20	<0.20	0.20	6546168
Total Xylenes	ug/L	<0.20	<0.20	<0.20	<0.20	<0.20	0.20	6546168
F1 (C6-C10)	ug/L	<25	<25	120	<25	<25	25	6546168
F1 (C6-C10) - BTEX	ug/L	<25	<25	120	<25	<25	25	6546168
F2-F4 Hydrocarbons								
F2 (C10-C16 Hydrocarbons)	ug/L	<100	<100	1800	120	<100	100	6550974
F3 (C16-C34 Hydrocarbons)	ug/L	<200	<200	22000	900	<200	200	6550974
F4 (C34-C50 Hydrocarbons)	ug/L	<200	<200	<200	<200	<200	200	6550974
Reached Baseline at C50	ug/L	Yes	Yes	Yes	Yes	Yes		6550974
Surrogate Recovery (%)								
o-Terphenyl	%	97	96	116	97	97		6550974
4-Bromofluorobenzene	%	98	99	96	100	100		6546168
D4-1,2-Dichloroethane	%	100	101	103	103	103		6546168
D8-Toluene	%	98	97	99	97	97		6546168
RDL = Reportable Detection Limit								

QC Batch = Quality Control Batch

O.REG 153 VOCS BY HS & F1-F4 (WATER)

BV Labs ID		LUP361	LUP362		
Sampling Date		2020/01/15	2020/01/15		
COC Number		729720-35-01	729720-35-01		
	UNITS	MW10	DUP-4	RDL	QC Batch
Calculated Parameters	·			<u> </u>	
1,3-Dichloropropene (cis+trans)	ug/L	<0.50	<0.50	0.50	6545083
Volatile Organics					
Acetone (2-Propanone)	ug/L	<10	<10	10	6546168
Benzene	ug/L	<0.20	<0.20	0.20	6546168
Bromodichloromethane	ug/L	<0.50	<0.50	0.50	6546168
Bromoform	ug/L	<1.0	<1.0	1.0	6546168
Bromomethane	ug/L	<0.50	<0.50	0.50	6546168
Carbon Tetrachloride	ug/L	<0.20	<0.20	0.20	6546168
Chlorobenzene	ug/L	<0.20	<0.20	0.20	6546168
Chloroform	ug/L	0.32	0.67	0.20	6546168
Dibromochloromethane	ug/L	<0.50	<0.50	0.50	6546168
1,2-Dichlorobenzene	ug/L	<0.50	<0.50	0.50	6546168
1,3-Dichlorobenzene	ug/L	<0.50	<0.50	0.50	6546168
1,4-Dichlorobenzene	ug/L	<0.50	<0.50	0.50	6546168
Dichlorodifluoromethane (FREON 12)	ug/L	<1.0	<1.0	1.0	6546168
1,1-Dichloroethane	ug/L	<0.20	<0.20	0.20	6546168
1,2-Dichloroethane	ug/L	<0.50	<0.50	0.50	6546168
1,1-Dichloroethylene	ug/L	<0.20	<0.20	0.20	6546168
cis-1,2-Dichloroethylene	ug/L	<0.50	<0.50	0.50	6546168
trans-1,2-Dichloroethylene	ug/L	<0.50	<0.50	0.50	6546168
1,2-Dichloropropane	ug/L	<0.20	<0.20	0.20	6546168
cis-1,3-Dichloropropene	ug/L	<0.30	<0.30	0.30	6546168
trans-1,3-Dichloropropene	ug/L	<0.40	<0.40	0.40	6546168
Ethylbenzene	ug/L	<0.20	<0.20	0.20	6546168
Ethylene Dibromide	ug/L	<0.20	<0.20	0.20	6546168
Hexane	ug/L	<1.0	<1.0	1.0	6546168
Methylene Chloride(Dichloromethane)	ug/L	<2.0	<2.0	2.0	6546168
Methyl Ethyl Ketone (2-Butanone)	ug/L	<10	<10	10	6546168
Methyl Isobutyl Ketone	ug/L	<5.0	<5.0	5.0	6546168
Methyl t-butyl ether (MTBE)	ug/L	<0.50	<0.50	0.50	6546168
Styrene	ug/L	<0.50	<0.50	0.50	6546168
1,1,1,2-Tetrachloroethane	ug/L	<0.50	<0.50	0.50	6546168
1,1,2,2-Tetrachloroethane	ug/L	<0.50	<0.50	0.50	6546168
Tetrachloroethylene	ug/L	<0.20	<0.20	0.20	6546168
RDL = Reportable Detection Limit QC Batch = Quality Control Batch					

O.REG 153 VOCS BY HS & F1-F4 (WATER)

BV Labs ID		LUP361	LUP362		
Sampling Date		2020/01/15	2020/01/15		
COC Number		729720-35-01	729720-35-01		
	UNITS	MW10	DUP-4	RDL	QC Batch
Toluene	ug/L	<0.20	<0.20	0.20	6546168
1,1,1-Trichloroethane	ug/L	<0.20	<0.20	0.20	6546168
1,1,2-Trichloroethane	ug/L	<0.50	<0.50	0.50	6546168
Trichloroethylene	ug/L	<0.20	<0.20	0.20	6546168
Trichlorofluoromethane (FREON 11)	ug/L	<0.50	<0.50	0.50	6546168
Vinyl Chloride	ug/L	<0.20	<0.20	0.20	6546168
p+m-Xylene	ug/L	<0.20	<0.20	0.20	6546168
o-Xylene	ug/L	<0.20	<0.20	0.20	6546168
Total Xylenes	ug/L	<0.20	<0.20	0.20	6546168
F1 (C6-C10)	ug/L	<25	<25	25	6546168
F1 (C6-C10) - BTEX	ug/L	<25	<25	25	6546168
F2-F4 Hydrocarbons					
F2 (C10-C16 Hydrocarbons)	ug/L	<100	<100	100	6550974
F3 (C16-C34 Hydrocarbons)	ug/L	<200	<200	200	6550974
F4 (C34-C50 Hydrocarbons)	ug/L	<200	<200	200	6550974
Reached Baseline at C50	ug/L	Yes	Yes		6550974
Surrogate Recovery (%)					
o-Terphenyl	%	93	96		6550974
4-Bromofluorobenzene	%	97	98		6546168
D4-1,2-Dichloroethane	%	102	102		6546168
D8-Toluene	%	98	98		6546168
RDL = Reportable Detection Limit					
QC Batch = Quality Control Batch					

O.REG 153 VOCS BY HS (WATER)

BV Labs ID		LUP359	LUP360	LUP363		
Sampling Date		2020/01/15	2020/01/15	2020/01/15		
COC Number		729720-35-01	729720-35-01	729720-35-01		
	UNITS	MW8	MW9	TRIP BLANK	RDL	QC Batch
Calculated Parameters	•					
1,3-Dichloropropene (cis+trans)	ug/L	<0.50	<0.50	<0.50	0.50	6545083
Volatile Organics						<u>.</u>
Acetone (2-Propanone)	ug/L	<10	23	<10	10	6545881
Benzene	ug/L	<0.20	<0.20	<0.20	0.20	6545881
Bromodichloromethane	ug/L	<0.50	<0.50	<0.50	0.50	6545881
Bromoform	ug/L	<1.0	<1.0	<1.0	1.0	6545881
Bromomethane	ug/L	<0.50	<0.50	<0.50	0.50	6545881
Carbon Tetrachloride	ug/L	<0.20	<0.20	<0.20	0.20	6545881
Chlorobenzene	ug/L	<0.20	0.26	<0.20	0.20	6545881
Chloroform	ug/L	0.81	0.79	<0.20	0.20	6545881
Dibromochloromethane	ug/L	<0.50	<0.50	<0.50	0.50	6545881
1,2-Dichlorobenzene	ug/L	<0.50	<0.50	<0.50	0.50	6545881
1,3-Dichlorobenzene	ug/L	<0.50	<0.50	<0.50	0.50	6545881
1,4-Dichlorobenzene	ug/L	<0.50	<0.50	<0.50	0.50	6545881
Dichlorodifluoromethane (FREON 12)	ug/L	<1.0	<1.0	<1.0	1.0	6545881
1,1-Dichloroethane	ug/L	<0.20	<0.20	<0.20	0.20	6545881
1,2-Dichloroethane	ug/L	<0.50	<0.50	<0.50	0.50	6545881
1,1-Dichloroethylene	ug/L	<0.20	<0.20	<0.20	0.20	6545881
cis-1,2-Dichloroethylene	ug/L	<0.50	<0.50	<0.50	0.50	6545881
trans-1,2-Dichloroethylene	ug/L	<0.50	<0.50	<0.50	0.50	6545881
1,2-Dichloropropane	ug/L	<0.20	<0.20	<0.20	0.20	6545881
cis-1,3-Dichloropropene	ug/L	<0.30	<0.30	<0.30	0.30	6545881
trans-1,3-Dichloropropene	ug/L	<0.40	<0.40	<0.40	0.40	6545881
Ethylbenzene	ug/L	<0.20	<0.20	<0.20	0.20	6545881
Ethylene Dibromide	ug/L	<0.20	<0.20	<0.20	0.20	6545881
Hexane	ug/L	<1.0	<1.0	<1.0	1.0	6545881
Methylene Chloride(Dichloromethane)	ug/L	<2.0	<2.0	<2.0	2.0	6545881
Methyl Ethyl Ketone (2-Butanone)	ug/L	<10	<10	<10	10	6545881
Methyl Isobutyl Ketone	ug/L	<5.0	<5.0	<5.0	5.0	6545881
Methyl t-butyl ether (MTBE)	ug/L	<0.50	<0.50	<0.50	0.50	6545881
Styrene	ug/L	<0.50	<0.50	<0.50	0.50	6545881
1,1,1,2-Tetrachloroethane	ug/L	<0.50	<0.50	<0.50	0.50	6545881
1,1,2,2-Tetrachloroethane	ug/L	<0.50	<0.50	<0.50	0.50	6545881
Tetrachloroethylene	ug/L	<0.20	<0.20	<0.20	0.20	6545881
RDL = Reportable Detection Limit QC Batch = Quality Control Batch						

O.REG 153 VOCS BY HS (WATER)

_	T		1		1	
BV Labs ID		LUP359	LUP360	LUP363		
Sampling Date		2020/01/15	2020/01/15	2020/01/15		
COC Number		729720-35-01	729720-35-01	729720-35-01		
	UNITS	MW8	MW9	TRIP BLANK	RDL	QC Batch
Toluene	ug/L	<0.20	<0.20	<0.20	0.20	6545881
1,1,1-Trichloroethane	ug/L	<0.20	<0.20	<0.20	0.20	6545881
1,1,2-Trichloroethane	ug/L	<0.50	<0.50	<0.50	0.50	6545881
Trichloroethylene	ug/L	<0.20	<0.20	<0.20	0.20	6545881
Trichlorofluoromethane (FREON 11)	ug/L	<0.50	<0.50	<0.50	0.50	6545881
Vinyl Chloride	ug/L	<0.20	<0.20	<0.20	0.20	6545881
p+m-Xylene	ug/L	<0.20	<0.20	<0.20	0.20	6545881
o-Xylene	ug/L	<0.20	<0.20	<0.20	0.20	6545881
Total Xylenes	ug/L	<0.20	<0.20	<0.20	0.20	6545881
Surrogate Recovery (%)						
4-Bromofluorobenzene	%	95	96	96		6545881
D4-1,2-Dichloroethane	%	106	109	103		6545881
D8-Toluene	%	96	96	97		6545881
RDL = Reportable Detection Limit						
QC Batch = Quality Control Batch						

Pinchin Ltd Client Project #: 248967.001 Site Location: 473 ALBERT ST Sampler Initials: MK

2020/01/22

TEST SUMMARY

6546168

BV Labs ID:	LUP354
Sample ID:	MW3
Matrix:	Water

Sample ID: Matrix:	MW3 Water					Shipped: Received: 2020/01/17
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum		CALC	6545141	N/A	2020/01/23	Automated Statchk
1,3-Dichloropropene Sum		CALC	6545083	N/A	2020/01/23	Automated Statchk
Petroleum Hydrocarbons I	F2-F4 in Water	GC/FID	6550974	2020/01/22	2020/01/23	Biljana Lazovic
PAH Compounds in Water	by GC/MS (SIM)	GC/MS	6550953	2020/01/22	2020/01/23	Mitesh Raj

N/A

BV Labs ID:	LUP355
Sample ID:	MW4
Matrix:	Water

Volatile Organic Compounds and F1 PHCs

GC/MSFD

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	6545141	N/A	2020/01/23	Automated Statchk
1,3-Dichloropropene Sum	CALC	6545083	N/A	2020/01/23	Automated Statchk
Petroleum Hydrocarbons F2-F4 in Water	GC/FID	6550974	2020/01/22	2020/01/23	Biljana Lazovic
Mercury	CV/AA	6547703	2020/01/21	2020/01/21	Medhat Nasr
Dissolved Metals by ICPMS	ICP/MS	6546678	N/A	2020/01/21	Nan Raykha
PAH Compounds in Water by GC/MS (SIM)	GC/MS	6550953	2020/01/22	2020/01/23	Mitesh Raj
Polychlorinated Biphenyl in Water	GC/ECD	6547897	2020/01/21	2020/01/22	Sarah Huang
Volatile Organic Compounds and F1 PHCs	GC/MSFD	6546168	N/A	2020/01/22	Denis Reid

BV Labs ID:	LUP356
Sample ID:	MW5
Matrix:	Water

Collected: 2020/01/15 Shipped: Received: 2020/01/17

Collected: 2020/01/15

Denis Reid

Shipped:

Collected: 2020/01/15

Received: 2020/01/17

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	6545141	N/A	2020/01/23	Automated Statchk
1,3-Dichloropropene Sum	CALC	6545083	N/A	2020/01/23	Automated Statchk
Petroleum Hydrocarbons F2-F4 in Water	GC/FID	6550974	2020/01/22	2020/01/23	Biljana Lazovic
Mercury	CV/AA	6547703	2020/01/21	2020/01/21	Medhat Nasr
Dissolved Metals by ICPMS	ICP/MS	6546678	N/A	2020/01/21	Nan Raykha
PAH Compounds in Water by GC/MS (SIM)	GC/MS	6550953	2020/01/22	2020/01/23	Mitesh Raj
Polychlorinated Biphenyl in Water	GC/ECD	6547897	2020/01/21	2020/01/22	Sarah Huang
Volatile Organic Compounds and F1 PHCs	GC/MSFD	6546168	N/A	2020/01/22	Denis Reid

BV Labs ID: LUP357 Sample ID: MW6 Matrix: Water					Collected: Shipped: Received:	2020/01/15 2020/01/17
						,,
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Methylnaphthalene Sum	CALC	6545141	N/A	2020/01/23	Automate	d Statchk
1,3-Dichloropropene Sum	CALC	6545083	N/A	2020/01/23	Automate	d Statchk
Petroleum Hydrocarbons F2-F4 in Water	GC/FID	6550974	2020/01/22	2020/01/23	Biljana Laz	ovic
Mercury	CV/AA	6547703	2020/01/21	2020/01/21	Medhat N	asr
Dissolved Metals by ICPMS	ICP/MS	6546678	N/A	2020/01/21	Nan Raykh	a
PAH Compounds in Water by GC/MS (SIM)	GC/MS	6550953	2020/01/22	2020/01/23	Mitesh Raj	

Page 14 of 37

Bureau Veritas Laboratories 32 Colonnade Rd, Unit #1000, Nepean, ON K2E 7J6 Phone: 613 274-0573 Fax: 613 274-0574 Website: www.bvlabs.com

TEST SUMMARY

BV Labs ID: LUP357 Sample ID: MW6 Matrix: Water					Collected: Shipped: Received:	2020/01/15
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Polychlorinated Biphenyl in Water	GC/ECD	6547897	2020/01/21	2020/01/22	Sarah Huan	g
Volatile Organic Compounds and F1 PHCs	GC/MSFD	6546168	N/A	2020/01/22	Denis Reid	
BV Labs ID: LUP358 Sample ID: MW7 Matrix: Water					Collected: Shipped: Received:	2020/01/15 2020/01/17
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Methylnaphthalene Sum	CALC	6545141	N/A	2020/01/23	Automated	Statchk
1,3-Dichloropropene Sum	CALC	6545083	N/A	2020/01/23	Automated	Statchk
Petroleum Hydrocarbons F2-F4 in Water	GC/FID	6550974	2020/01/22	2020/01/23	Biljana Lazo	vic
PAH Compounds in Water by GC/MS (SIM)	GC/MS	6550953	2020/01/22	2020/01/23	Mitesh Raj	
Volatile Organic Compounds and F1 PHCs	GC/MSFD	6546168	N/A	2020/01/22	Denis Reid	
BV Labs ID: LUP359 Sample ID: MW8 Matrix: Water					Collected: Shipped: Received:	2020/01/15 2020/01/17
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Test Description 1,3-Dichloropropene Sum	Instrumentation CALC	Batch 6545083	Extracted N/A	Date Analyzed	Analyst Automated	Statchk
Test Description1,3-Dichloropropene SumVolatile Organic Compounds in Water	Instrumentation CALC GC/MS	Batch 6545083 6545881	Extracted N/A N/A	Date Analyzed 2020/01/22 2020/01/21	Analyst Automated Rebecca Mo	Statchk cClean
Test Description 1,3-Dichloropropene Sum Volatile Organic Compounds in Water BV Labs ID: LUP360 Sample ID: MW9 Matrix: Water	Instrumentation CALC GC/MS	Batch 6545083 6545881	Extracted N/A N/A	Date Analyzed 2020/01/22 2020/01/21	Analyst Automated Rebecca Mo Collected: Shipped: Received:	Statchk cClean 2020/01/15 2020/01/17
Test Description 1,3-Dichloropropene Sum Volatile Organic Compounds in Water BV Labs ID: LUP360 Sample ID: MW9 Matrix: Water	Instrumentation CALC GC/MS Instrumentation	Batch 6545083 6545881 Batch	Extracted N/A N/A Extracted	Date Analyzed 2020/01/22 2020/01/21 Date Analyzed	Analyst Automated Rebecca Mo Collected: Shipped: Received: Analyst	Statchk cClean 2020/01/15 2020/01/17
Test Description 1,3-Dichloropropene Sum Volatile Organic Compounds in Water BV Labs ID: LUP360 Sample ID: MW9 Matrix: Water Test Description 1,3-Dichloropropene Sum	Instrumentation CALC GC/MS Instrumentation CALC	Batch 6545083 6545881 Batch 6545083	Extracted N/A N/A Extracted	Date Analyzed 2020/01/22 2020/01/21 Date Analyzed 2020/01/22	Analyst Automated Rebecca Mo Collected: Shipped: Received: Analyst Automated	Statchk cClean 2020/01/15 2020/01/17 Statchk
Test Description 1,3-Dichloropropene Sum Volatile Organic Compounds in Water BV Labs ID: LUP360 Sample ID: MW9 Matrix: Water Test Description I.3-Dichloropropene Sum Volatile Organic Compounds in Water	Instrumentation CALC GC/MS Instrumentation CALC GC/MS	Batch 6545083 6545881 Batch 6545083 6545083	Extracted N/A N/A Extracted N/A N/A	Date Analyzed 2020/01/22 2020/01/21 Date Analyzed 2020/01/22 2020/01/21	Analyst Automated Rebecca Mo Collected: Shipped: Received: Analyst Automated Rebecca Mo	Statchk cClean 2020/01/15 2020/01/17 Statchk cClean
Test Description 1,3-Dichloropropene Sum Volatile Organic Compounds in Water BV Labs ID: LUP360 Sample ID: MW9 Matrix: Water Test Description 1,3-Dichloropropene Sum Volatile Organic Compounds in Water Sample ID: BV Labs ID: LUP361 Sample ID: MW10 Matrix: Water	Instrumentation CALC GC/MS Instrumentation CALC GC/MS	Batch 6545083 6545881 Batch 6545083 6545881	Extracted N/A N/A Extracted N/A N/A	Date Analyzed 2020/01/22 2020/01/21 Date Analyzed 2020/01/22 2020/01/21	Analyst Automated Rebecca Mo Collected: Shipped: Received: Analyst Automated Rebecca Mo Collected: Shipped: Received:	Statchk cClean 2020/01/15 2020/01/17 Statchk cClean 2020/01/15 2020/01/15 2020/01/17
Test Description 1,3-Dichloropropene Sum Volatile Organic Compounds in Water BV Labs ID: LUP360 Sample ID: MW9 Matrix: Water Test Description 1,3-Dichloropropene Sum Volatile Organic Compounds in Water BV Labs ID: BV Labs ID: LUP361 Sample ID: MW10 Matrix: Water	Instrumentation CALC GC/MS Instrumentation CALC GC/MS	Batch 6545083 6545881 Batch 6545083 6545881 Batch	Extracted N/A N/A Extracted N/A N/A N/A Extracted	Date Analyzed 2020/01/22 2020/01/21 Date Analyzed 2020/01/22 2020/01/21	Analyst Automated Rebecca Mo Collected: Shipped: Received: Analyst Automated Rebecca Mo Collected: Shipped: Received: Analyst	Statchk cClean 2020/01/15 2020/01/17 Statchk cClean 2020/01/15 2020/01/17
Test Description 1,3-Dichloropropene Sum Volatile Organic Compounds in Water BV Labs ID: LUP360 Sample ID: MW9 Matrix: Water Test Description 1,3-Dichloropropene Sum Volatile Organic Compounds in Water Volatile Organic Compounds in Water BV Labs ID: LUP361 Sample ID: MW10 Matrix: Water	Instrumentation CALC GC/MS Instrumentation CALC GC/MS Instrumentation CALC	Batch 6545083 6545881 Batch 6545083 6545881 Batch 6545141	Extracted N/A N/A Extracted N/A N/A N/A N/A N/A N/A	Date Analyzed 2020/01/22 2020/01/21 Date Analyzed 2020/01/22 2020/01/21	Analyst Automated Rebecca Mo Collected: Shipped: Received: Automated Rebecca Mo Collected: Shipped: Received: Analyst Automated	Statchk cClean 2020/01/15 2020/01/17 Statchk cClean 2020/01/15 2020/01/15 2020/01/17 Statchk Statchk
Test Description 1,3-Dichloropropene Sum Volatile Organic Compounds in Water BV Labs ID: LUP360 Sample ID: MW9 Matrix: Water Test Description 1,3-Dichloropropene Sum Volatile Organic Compounds in Water Notatile Organic Compounds in Water BV Labs ID: LUP361 Sample ID: MW10 Matrix: Water Test Description Matrix: Matrix: Water	Instrumentation CALC GC/MS Instrumentation CALC GC/MS Instrumentation CALC CALC CALC	Batch 6545083 6545881 Batch 6545083 6545881 6545881 6545181 6545141 6545083	Extracted N/A N/A Extracted N/A N/A N/A Extracted N/A N/A N/A	Date Analyzed 2020/01/22 2020/01/21 Date Analyzed 2020/01/22 2020/01/21 Date Analyzed 2020/01/21 Date Analyzed 2020/01/21	Analyst Automated Rebecca Mo Collected: Shipped: Received: Analyst Automated Rebecca Mo Collected: Shipped: Received: Analyst Automated Automated	Statchk cClean 2020/01/15 2020/01/17 Statchk cClean 2020/01/15 2020/01/15 2020/01/17 Statchk Statchk
Test Description 1,3-Dichloropropene Sum Volatile Organic Compounds in Water BV Labs ID: LUP360 Sample ID: MW9 Matrix: Water Test Description 1,3-Dichloropropene Sum Volatile Organic Compounds in Water Notatile Organic Compounds in Water BV Labs ID: LUP361 Sample ID: MW10 Matrix: Water Test Description Methylnaphthalene Sum 1,3-Dichloropropene Sum Petroleum Hydrocarbons F2-F4 in Water	Instrumentation CALC GC/MS Instrumentation CALC GC/MS Instrumentation CALC CALC CALC CALC CALC	Batch 6545083 6545881 Batch 6545083 6545881 6545881 6545141 6545083 6550974	Extracted N/A N/A K/A Extracted N/A N/A K/A Extracted N/A N/A 2020/01/22	Date Analyzed 2020/01/22 2020/01/21 Date Analyzed 2020/01/22 2020/01/21 Date Analyzed 2020/01/21 Date Analyzed 2020/01/21 2020/01/23 2020/01/23 2020/01/23 2020/01/23 2020/01/23	Analyst Automated Rebecca Mo Collected: Shipped: Received: Analyst Automated Rebecca Mo Collected: Shipped: Received: Analyst Automated Automated Biljana Lazo	Statchk cClean 2020/01/15 2020/01/17 Statchk cClean 2020/01/15 2020/01/15 2020/01/17 Statchk Statchk Statchk
Test Description 1,3-Dichloropropene Sum Volatile Organic Compounds in Water BV Labs ID: LUP360 Sample ID: MW9 Matrix: Water Test Description 1,3-Dichloropropene Sum Volatile Organic Compounds in Water BV Labs ID: LUP361 Sample ID: MW10 Matrix: Water Test Description Methylnaphthalene Sum 1,3-Dichloropropene Sum Petroleum Hydrocarbons F2-F4 in Water PAH Compounds in Water by GC/MS (SIM) Pater by GC/MS (SIM)	Instrumentation CALC GC/MS Instrumentation CALC GC/MS Instrumentation CALC CALC CALC CALC CALC CALC GC/FID GC/MS	Batch 6545083 6545881 Batch 6545083 6545881 6545083 6545141 6545083 6550974 6550953	Extracted N/A N/A Extracted N/A N/A N/A N/A N/A N/A 2020/01/22 2020/01/22	Date Analyzed 2020/01/22 2020/01/21 Date Analyzed 2020/01/22 2020/01/21 Date Analyzed 2020/01/21 Date Analyzed 2020/01/21 2020/01/23 2020/01/23 2020/01/23 2020/01/23 2020/01/23 2020/01/23	Analyst Automated Rebecca Mo Collected: Shipped: Received: Analyst Automated Rebecca Mo Collected: Shipped: Received: Analyst Automated Automated Biljana Lazo Mitesh Raj	Statchk Clean 2020/01/15 2020/01/17 Statchk CClean 2020/01/15 2020/01/15 2020/01/17 Statchk Statchk Statchk

Pinchin Ltd Client Project #: 248967.001 Site Location: 473 ALBERT ST Sampler Initials: MK

Collected:

2020/01/15

TEST SUMMARY

BV Labs ID:	LUP362
Sample ID:	DUP-4
Matrix:	Water

Matrix: Water					Received: 2020/01/17
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	6545141	N/A	2020/01/23	Automated Statchk
1,3-Dichloropropene Sum	CALC	6545083	N/A	2020/01/23	Automated Statchk
Petroleum Hydrocarbons F2-F4 in Water	GC/FID	6550974	2020/01/22	2020/01/23	Biljana Lazovic
Mercury	CV/AA	6547703	2020/01/21	2020/01/21	Medhat Nasr
Dissolved Metals by ICPMS	ICP/MS	6546678	N/A	2020/01/21	Nan Raykha
PAH Compounds in Water by GC/MS (SIM)	GC/MS	6550953	2020/01/22	2020/01/23	Mitesh Raj
Polychlorinated Biphenyl in Water	GC/ECD	6547897	2020/01/21	2020/01/21	Sarah Huang
Volatile Organic Compounds and F1 PHCs	GC/MSFD	6546168	N/A	2020/01/22	Denis Reid

BV Labs ID: Sample ID: Matrix:	LUP362 Dup DUP-4 Water					Collected: Shipped: Received:	2020/01/15 2020/01/17
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Polychlorinated Biphenyl in Water		GC/ECD	6547897	2020/01/21	2020/01/22	Sarah Hua	ng
BV Labs ID: Sample ID: Matrix:	LUP363 TRIP BLANK Water					Collected: Shipped: Received:	2020/01/15 2020/01/17
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
1,3-Dichloropropene Sun	n	CALC	6545083	N/A	2020/01/22	Automate	d Statchk
Volatile Organic Compounds in Water		GC/MS	6545881	N/A	2020/01/21	Rebecca N	1cClean

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures	s taken a	at receipt
--	-----------	------------

Package 1 6.3°C

Revised Report (2020/01/24): Criteria removed per client request.

Results relate only to the items tested.

QUALITY ASSURANCE REPORT

Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
6545881	RSC	Matrix Spike	4-Bromofluorobenzene	2020/01/21		101	%	70 - 130
			D4-1,2-Dichloroethane	2020/01/21		102	%	70 - 130
			D8-Toluene	2020/01/21		98	%	70 - 130
			Acetone (2-Propanone)	2020/01/21		100	%	60 - 140
			Benzene	2020/01/21		97	%	70 - 130
			Bromodichloromethane	2020/01/21		95	%	70 - 130
			Bromoform	2020/01/21		103	%	70 - 130
			Bromomethane	2020/01/21		93	%	60 - 140
			Carbon Tetrachloride	2020/01/21		91	%	70 - 130
			Chlorobenzene	2020/01/21		92	%	70 - 130
			Chloroform	2020/01/21		91	%	70 - 130
			Dibromochloromethane	2020/01/21		101	%	70 - 130
			1.2-Dichlorobenzene	2020/01/21		88	%	70 - 130
			1.3-Dichlorobenzene	2020/01/21		87	%	70 - 130
			1.4-Dichlorobenzene	2020/01/21		91	%	70 - 130
			Dichlorodifluoromethane (FREON 12)	2020/01/21		90	%	60 - 140
			1.1-Dichloroethane	2020/01/21		93	%	70 - 130
			1.2-Dichloroethane	2020/01/21		102	%	70 - 130
			1 1-Dichloroethylene	2020/01/21		97	%	70 - 130
			cis-1 2-Dichloroethylene	2020/01/21		89	%	70 - 130
			trans-1 2-Dichloroethylene	2020/01/21		93	%	70 - 130
			1 2-Dichloropropane	2020/01/21		91	%	70 - 130
			cis-1 3-Dichloropropene	2020/01/21		97	%	70 - 130
			trans-1 3-Dichloropropene	2020/01/21		101	%	70 - 130
			Fthylbenzene	2020/01/21		88	70 %	70 - 130
			Ethylene Dibromide	2020/01/21		101	%	70 - 130
			Hevane	2020/01/21		9/	70 %	70 - 130
			Methylene Chloride(Dichloromethane)	2020/01/21		102	70 0/	70 - 130
			Methyl Ethyl Ketone (2-Butanone)	2020/01/21		102	70 0/	60 - 140
			Methyl Isobutyl Ketone	2020/01/21		100	70 0/	70 - 120
			Methyl t. butyl ether (MTRE)	2020/01/21		100	70 0/	70 - 130
			Sturono	2020/01/21		90	70 0/	70 - 130
			1 1 1 2 Totrachloroothana	2020/01/21		90	/0 0/	70 - 130
			1,1,2-Tetrachloroothana	2020/01/21		98 104	70 0/	70 - 130
			1,1,2,2-1etrachioroethalle	2020/01/21		104	/0	70 - 130
			Teluene	2020/01/21		87	70 0/	70 - 130
			1 1 1 Tricklaraethana	2020/01/21		89	% 0/	70 - 130
			1,1,1-Inchloroethane	2020/01/21		95	70 0/	70 - 130
				2020/01/21		102	70 0/	70 - 130
			Trichlarafluoremethana (EDEON 11)	2020/01/21		95	% 0/	70 - 130
			Minud Chlorida	2020/01/21		96	%	70 - 130
			Vinyi Chioride	2020/01/21		92	%	70 - 130
			p+m-xylene	2020/01/21		93	%	70 - 130
6545004			o-xylene	2020/01/21		91	%	70 - 130
6545881	RSC	Spiked Blank	4-Bromofluorobenzene	2020/01/21		101	%	70 - 130
			D4-1,2-Dichloroethane	2020/01/21		99	%	70 - 130
			D8-Toluene	2020/01/21		97	%	/0 - 130
			Acetone (2-Propanone)	2020/01/21		98	%	60 - 140
			Benzene	2020/01/21		96	%	/0 - 130
			Bromodichloromethane	2020/01/21		93	%	70 - 130
			Bromotorm	2020/01/21		97	%	/0 - 130
			Bromomethane	2020/01/21		90	%	60 - 140
			Carbon Tetrachloride	2020/01/21		92	%	70 - 130
1			Chlorobenzene	2020/01/21		90	%	70 - 130

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC Batch	Init	OC Type	Parameter	Date Analyzed	Value	Recoverv	UNITS	OC Limits
Batton		40 . / pc	Chloroform	2020/01/21	Value	90	%	70 - 130
			Dibromochloromethane	2020/01/21		97	%	70 - 130
			1.2-Dichlorobenzene	2020/01/21		85	%	70 - 130
			1.3-Dichlorobenzene	2020/01/21		86	%	70 - 130
			1.4-Dichlorobenzene	2020/01/21		90	%	70 - 130
			Dichlorodifluoromethane (FREON 12)	2020/01/21		89	%	60 - 140
			1 1-Dichloroethane	2020/01/21		93	%	70 - 130
			1.2-Dichloroethane	2020/01/21		98	%	70 - 130
			1 1-Dichloroethylene	2020/01/21		99	%	70 - 130
			cis-1 2-Dichloroethylene	2020/01/21		88	%	70 - 130
			trans-1 2-Dichloroethylene	2020/01/21		94	%	70 - 130
			1 2-Dichloropropane	2020/01/21		90	70 0/	70 - 130
			cis-1 3-Dichloropropene	2020/01/21		90	70 %	70 - 130
			trans-1,3-Dichloropropene	2020/01/21		02	70 0/	70 - 130
			Ethylbonzono	2020/01/21		93	70 0/	70 - 130
			Ethylana Dibromida	2020/01/21		00 05	/0	70 - 130
			Hexane	2020/01/21		95	/0 0/	70 - 130
			Methylana Chlorida (Dichlaramathana)	2020/01/21		95	/0	70 - 130
			Methylene Chonde(Dichloromethane)	2020/01/21		99 102	70 0/	70 - 130
			Methyl Isobutyl Ketone (2-Butanone)	2020/01/21		102	70 0/	70 120
			Methyl Isobulyi Kelone	2020/01/21		96	% 0/	70 - 130
				2020/01/21		00	70 0/	70 - 130
			Styrene	2020/01/21		89	% 0/	70 - 130
			1,1,2,2 Tetrachloroethane	2020/01/21		96	% 0/	70 - 130
			1,1,2,2-i etrachioroethane	2020/01/21		98	%	70 - 130
			Teluene	2020/01/21		87	% 0/	70 - 130
			I oluene	2020/01/21		88	%	70 - 130
			1,1,1-Trichloroethane	2020/01/21		94	%	70 - 130
			1,1,2-Trichloroethane	2020/01/21		96	%	70 - 130
				2020/01/21		96	%	70 - 130
			Irichlorofluoromethane (FREUN 11)	2020/01/21		97	%	70 - 130
			Vinyl Chloride	2020/01/21		92	%	70 - 130
			p+m-Xylene	2020/01/21		92	%	/0 - 130
65 45004	200		o-Xylene	2020/01/21		90	%	70 - 130
6545881	RSC	Method Blank	4-Bromofluorobenzene	2020/01/21		100	%	70 - 130
			D4-1,2-Dichloroethane	2020/01/21		100	%	70 - 130
			D8-Toluene	2020/01/21		97	%	/0 - 130
			Acetone (2-Propanone)	2020/01/21	<10		ug/L	
			Benzene	2020/01/21	<0.20		ug/L	
			Bromodichloromethane	2020/01/21	<0.50		ug/L	
			Bromoform	2020/01/21	<1.0		ug/L	
			Bromomethane	2020/01/21	<0.50		ug/L	
			Carbon Tetrachloride	2020/01/21	<0.20		ug/L	
			Chlorobenzene	2020/01/21	<0.20		ug/L	
			Chloroform	2020/01/21	<0.20		ug/L	
			Dibromochloromethane	2020/01/21	< 0.50		ug/L	
			1,2-Dichlorobenzene	2020/01/21	< 0.50		ug/L	
			1,3-Dichlorobenzene	2020/01/21	<0.50		ug/L	
			1,4-Dichlorobenzene	2020/01/21	<0.50		ug/L	
			Dichlorodifluoromethane (FREON 12)	2020/01/21	<1.0		ug/L	
			1,1-Dichloroethane	2020/01/21	<0.20		ug/L	
			1,2-Dichloroethane	2020/01/21	<0.50		ug/L	
			1,1-Dichloroethylene	2020/01/21	<0.20		ug/L	
1			cis-1,2-Dichloroethylene	2020/01/21	<0.50		ug/L	

Page 19 of 37

Bureau Veritas Laboratories 32 Colonnade Rd, Unit #1000, Nepean, ON K2E 7J6 Phone: 613 274-0573 Fax: 613 274-0574 Website: www.bvlabs.com

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			trans-1,2-Dichloroethylene	2020/01/21	<0.50		ug/L	
			1,2-Dichloropropane	2020/01/21	<0.20		ug/L	
			cis-1,3-Dichloropropene	2020/01/21	<0.30		ug/L	
			trans-1,3-Dicnioropropene	2020/01/21	<0.40		ug/L	
			Ethylbenzene	2020/01/21	<0.20		ug/L	
			Ethylene Dibromide	2020/01/21	<0.20		ug/L	
			Hexane	2020/01/21	<1.0		ug/L	
			Methylene Chloride(Dichloromethane)	2020/01/21	<2.0		ug/L	
			Methyl Ethyl Ketone (2-Butanone)	2020/01/21	<10		ug/L	
			Methyl Isobutyl Ketone	2020/01/21	<5.0		ug/L	
			Methyl t-butyl ether (MTBE)	2020/01/21	<0.50		ug/L	
			Styrene	2020/01/21	<0.50		ug/L	
			1,1,1,2-Tetrachloroethane	2020/01/21	<0.50		ug/L	
			1,1,2,2-Tetrachloroethane	2020/01/21	<0.50		ug/L	
			Tetrachloroethylene	2020/01/21	<0.20		ug/L	
			Toluene	2020/01/21	<0.20		ug/L	
			1,1,1-Trichloroethane	2020/01/21	<0.20		ug/L	
			1,1,2-Trichloroethane	2020/01/21	<0.50		ug/L	
			Trichloroethylene	2020/01/21	<0.20		ug/L	
			Trichlorofluoromethane (FREON 11)	2020/01/21	<0.50		ug/L	
			Vinyl Chloride	2020/01/21	<0.20		ug/L	
			p+m-Xylene	2020/01/21	<0.20		ug/L	
			o-Xylene	2020/01/21	<0.20		ug/L	
			Total Xylenes	2020/01/21	<0.20		ug/L	
6545881	RSC	RPD	Acetone (2-Propanone)	2020/01/21	NC		%	30
			Benzene	2020/01/21	NC		%	30
			Bromodichloromethane	2020/01/21	NC		%	30
			Bromoform	2020/01/21	NC		%	30
			Bromomethane	2020/01/21	NC		%	30
			Carbon Tetrachloride	2020/01/21	NC		%	30
			Chlorobenzene	2020/01/21	NC		%	30
			Chloroform	2020/01/21	NC		%	30
			Dibromochloromethane	2020/01/21	NC		%	30
			1,2-Dichlorobenzene	2020/01/21	NC		%	30
			1,3-Dichlorobenzene	2020/01/21	NC		%	30
			1,4-Dichlorobenzene	2020/01/21	NC		%	30
			Dichlorodifluoromethane (FREON 12)	2020/01/21	NC		%	30
			1,1-Dichloroethane	2020/01/21	NC		%	30
			1,2-Dichloroethane	2020/01/21	NC		%	30
			1,1-Dichloroethylene	2020/01/21	NC		%	30
			cis-1,2-Dichloroethylene	2020/01/21	NC		%	30
			trans-1,2-Dichloroethylene	2020/01/21	NC		%	30
			1,2-Dichloropropane	2020/01/21	NC		%	30
			cis-1,3-Dichloropropene	2020/01/21	NC		%	30
			trans-1,3-Dichloropropene	2020/01/21	NC		%	30
			Ethylbenzene	2020/01/21	NC		%	30
			Ethylene Dibromide	2020/01/21	NC		%	30
			Hexane	2020/01/21	NC		%	30
			Methylene Chloride(Dichloromethane)	2020/01/21	NC		%	30
			Methyl Ethyl Ketone (2-Butanone)	2020/01/21	NC		%	30
			Methyl Isobutyl Ketone	2020/01/21	NC		%	30
			Methyl t-butyl ether (MTBE)	2020/01/21	NC		%	30
			Styrene	2020/01/21	NC		%	30

QA/QC	Init		Parameter	Date Analyzed	Value	Pacovari	LINUTC	OC Limita
DatCI	mit	UC TYPE	Paralleler	2020/01/21	value	Recovery	0/	
			1, 1, 2 Totrachlaraothana	2020/01/21	NC		70 0/	20
			1,1,2,2-1 ett actil010ettilaile	2020/01/21			70 0/	00
			Toluene	2020/01/21	NC		70 0/2	20 20
			1 1 1-Trichloroethane	2020/01/21	NC		/0 0/_	20
			1 1 2-Trichloroethane	2020/01/21	NC		/0 0/_	20
			Trichloroethylene	2020/01/21			70 0/	20
			Trichlorofluoromethano (EPEON 11)	2020/01/21			70 0/	20
				2020/01/21	NC		70 0/	20
			n+m-Yulene	2020/01/21	NC		/0 0/_	20
				2020/01/21			/0 0/_	20
			U-Aylenes Total Xylenes	2020/01/21	NC		/0 0/_	20
65/6169		Matrix Snike	A-Bromofluorobenzene	2020/01/21	NC	100	70 0/2	30 70 _ 120
0040100	DUI	Matin Spike	D4-1 2-Dichloroethane	2020/01/21		100	/0 0/_	70 - 130
				2020/01/21		102	/0 0/_	70 - 130
			Acetone (2-Propanone)	2020/01/21		101	/0 0/_	60 - 140
			Renzene	2020/01/21		08 TT2	/0 0/2	70 - 120
			Bromodichloromethane	2020/01/21		20	/0 0/2	70 - 130
			Bromoform	2020/01/21		90 107	/0 0/2	70 - 130
			Bromomethane	2020/01/21		107	/0 0/2	60 - 140
			Carbon Tetrachloride	2020/01/21		93	%	70 - 130
			Chlorobenzene	2020/01/21		97	%	70 - 130
			Chloroform	2020/01/21		92	%	70 - 130
			Dibromochloromethane	2020/01/21		108	%	70 - 130
			1.2-Dichlorobenzene	2020/01/21		97	%	70 - 130
			1.3-Dichlorobenzene	2020/01/21		96	%	70 - 130
			1,4-Dichlorobenzene	2020/01/21		101	%	70 - 130
			Dichlorodifluoromethane (FREON 12)	2020/01/21		76	%	60 - 140
			1,1-Dichloroethane	2020/01/21		95	%	70 - 130
			1,2-Dichloroethane	2020/01/21		102	%	70 - 130
			1,1-Dichloroethylene	2020/01/21		100	%	70 - 130
			cis-1,2-Dichloroethylene	2020/01/21		93	%	70 - 130
			trans-1,2-Dichloroethylene	2020/01/21		94	%	70 - 130
			1,2-Dichloropropane	2020/01/21		95	%	70 - 130
			cis-1,3-Dichloropropene	2020/01/21		99	%	70 - 130
			trans-1,3-Dichloropropene	2020/01/21		105	%	70 - 130
			Ethylbenzene	2020/01/21		97	%	70 - 130
			Ethylene Dibromide	2020/01/21		107	%	70 - 130
			Hexane	2020/01/21		98	%	70 - 130
			Methylene Chloride(Dichloromethane)	2020/01/21		102	%	70 - 130
			Methyl Ethyl Ketone (2-Butanone)	2020/01/21		118	%	60 - 140
			Methyl Isobutyl Ketone	2020/01/21		108	%	70 - 130
			Methyl t-butyl ether (MTBE)	2020/01/21		91	%	70 - 130
			Styrene	2020/01/21		99	%	70 - 130
			1,1,1,2-Tetrachloroethane	2020/01/21		106	%	70 - 130
			1,1,2,2-Tetrachloroethane	2020/01/21		108	%	70 - 130
			Tetrachloroethylene	2020/01/21		93	%	70 - 130
			Toluene	2020/01/21		94	%	70 - 130
			1,1,1-Trichloroethane	2020/01/21		96	%	70 - 130
			1,1,2-Trichloroethane	2020/01/21		105	%	70 - 130
			Trichloroethylene	2020/01/21		99	%	70 - 130
			Trichlorofluoromethane (FREON 11)	2020/01/21		99	%	70 - 130
			Vinyl Chloride	2020/01/21		87	%	70 - 130

6545.16 DR1 Spiked Blank 9-m-Xylene 202001/21 90 % 70-130 6545.16.8 DR1 Spiked Blank 42-0-001/21 202001/21 100 % 70-130 0-1,2-01chloroebrane 202001/21 100 % 70-130 0-1,2-01chloroebrane 202001/21 101 % 70-130 0-1,2-01chloroebrane 202001/21 91 % 70-130 0-1,2-01chloroebrane 202001/21 91 % 70-130 0-1,2-01chloroebrane 202001/21 91 % 70-130 0-100 6-10 70-130 80 % 70-130 0-100 6-10 70-130 91 % 70-130 0-100 6-10 70-130 91 % 70-130 0-100 6-10 70-130 91 % 70-130 1-100 70-130 70 % 70-130 70-130 1-100 70-130 70 % 70-130	Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
6:560.168 DR1 Spiked Bark 6:750.00 2020/01/21 99 % 70-130 6:560.168 DR1 Spiked Bark 47:000/00000000000 2020/01/21 100 % 70-130 6:560.168 DR1 Spiked Bark 47:000/000000000000000000000000000000000				p+m-Xylene	2020/01/21		102	%	70 - 130
656618 DR1 Spiked Blank 4 "GroutOurobercene 202001/21 100 % 70-130 06-701000robercene 202001/21 100 % 70-130 06-701000robercene 202001/21 101 % 70-130 06-701000robercene 202001/21 101 % 70-130 06-701000robercene 202001/21 94 % 70-130 06-701000robercene 202001/21 94 % 70-130 06-70100robercene 202001/21 94 % 70-130 01korobercene 202001/21 93 % 70-130 01korobercene 202001/21 94 % 70-130 1.2 Okthorobercene 202001/21 95 % 70-130 1.2 Okthorobercene 202001/21 96 % 70-130 1.2 Okthorobercene 202001/21 97 % 70-130 1.2 Okthorobercene 202001/21 97 % 70-130 1.2 Okthorobercene 202001/21 97 <td></td> <td></td> <td></td> <td>o-Xylene</td> <td>2020/01/21</td> <td></td> <td>99</td> <td>%</td> <td>70 - 130</td>				o-Xylene	2020/01/21		99	%	70 - 130
6546168 DN1 Spiked Blank 4-Bromofluoroberatene 2020/01/21 100 % 70-130 DA-Toluene 2020/01/21 102 % 70-130 DA-Toluene 2020/01/21 101 % 70-130 DA-Toluene 2020/01/21 91 % 70-130 Berzene 2020/01/21 91 % 70-130 Bromoferm 2020/01/21 91 % 70-130 Bromoferm 2020/01/21 88 % 70-130 Chiorobenzene 2020/01/21 93 % 70-130 Chiorobenzene 2020/01/21 95 % 70-130 Dibromoch/oromethane 2020/01/21 95 % 70-130 1,2-Dichlorobenzene 2020/01/21 9 % 70-130 1,2-Dichlorobenzene 2020/01/21 9 % 70-130 1,2-Dichlorobenzene 2020/01/21 9 % 70-130 1,1-Dichlorobenzene 2020/01/21 9 % 7				F1 (C6-C10)	2020/01/21		99	%	60 - 140
D41.2 Dehloroethane 2020/07/1 100 % 70-130 D8-Toluene 2020/07/1 111 % 60-100 Bervene 2020/07/1 91 % 70-130 Bromodichloromethane 2020/07/1 94 % 70-130 Bromodichloromethane 2020/07/1 94 % 70-130 Bromodichloromethane 2020/07/1 84 % 60-140 Carbon Tetrachloride 2020/07/1 87 % 70-130 Dibromoditoromethane 2020/07/1 87 % 70-130 1.2 Olchlorobenzene 2020/07/1 95 % 70-130 1.2 Olchlorobenzene 2020/07/1 97 % 70-130	6546168	DR1	Spiked Blank	4-Bromofluorobenzene	2020/01/21		100	%	70 - 130
D8 Toluene 2020/07/1 101 % 70-130 Acctor (2 Propance) 2020/07/1 91 % 70-130 Bronofchoromethane 2020/07/1 105 % 70-130 Bronofchoromethane 2020/07/1 88 % 70-130 Bronoferm 2020/07/1 88 % 70-130 Choroberstene 2020/07/1 88 % 70-130 Choroberstene 2020/07/1 88 % 70-130 Choroberstene 2020/07/1 9 % 70-130 Dibronochloromethane 2020/07/1 9 % 70-130 1,3 Dichloroberstene 2020/07/1 9 % 70-130 1,4 Dichloroberstene 2020/07/1 9 % 70-130 1,4 Dichloroberstene 2020/07/1 9 % 70-130 1,2 Dichlorob				D4-1,2-Dichloroethane	2020/01/21		100	%	70 - 130
Acctone (2-Propanone) 2020/01/21 11 % 60-140 Beromodichloromethane 2020/01/21 94 % 70-130 Bromodichnormethane 2020/01/21 94 % 70-130 Bromodichnormethane 2020/01/21 84 % 60-140 Carbon Tetrachloride 2020/01/21 31 % 70-130 Chierobernene 2020/01/21 70 % 70-130 Dibromothforomethane 2020/01/21 70 % 70-130 1,2 Otichiorobernene 2020/01/21 9 % 70-130 1,4 Otichiorobernene 2020/01/21 9 % 70-130 1,2 Otichiorobernene 2020/01/21 9 % 70-130 1,2 Otichiorobernene 2020/01/21 9 % 70-130 1,2 Otichiorobernene 2020/01/21 9 % 70-130 1,1 Otichiorophylene 2020/01/21 9 % 70-130 1,1 Otichiorophylene 2020/01/21 9 % 70-130 </td <td></td> <td></td> <td></td> <td>D8-Toluene</td> <td>2020/01/21</td> <td></td> <td>102</td> <td>%</td> <td>70 - 130</td>				D8-Toluene	2020/01/21		102	%	70 - 130
Benzene 2020/01/21 91 % 70 - 130 Bromofform 2020/01/21 105 % 70 - 130 Bromofform 2020/01/21 105 % 70 - 130 Bromorethane 2020/01/21 88 % 70 - 130 Chiorobenzene 2020/01/21 37 % 70 - 130 Dibromochioromethane 2020/01/21 105 % 70 - 130 1.2 Dichiorobenzene 2020/01/21 105 % 70 - 130 1.3 Dichiorobenzene 2020/01/21 98 % 70 - 130 1.4 Dichiorobenzene 2020/01/21 98 % 70 - 130 1.4 Dichiorobenzene 2020/01/21 98 % 70 - 130 1.2 Dichiorobenzene 2020/01/21 98 % 70 - 130 1.4 Dichiorobenzene 2020/01/21 98 % 70 - 130 1.4 Dichiorobenzene 2020/01/21 98 % 70 - 130 1.4 Dichiorobenzene 2020/01/21 98 % 70 - 130 </td <td></td> <td></td> <td></td> <td>Acetone (2-Propanone)</td> <td>2020/01/21</td> <td></td> <td>111</td> <td>%</td> <td>60 - 140</td>				Acetone (2-Propanone)	2020/01/21		111	%	60 - 140
Bromodic/momethane 2020/01/21 94 % 70 - 130 Bromomethane 2020/01/21 84 % 60 - 140 Carbon Tetrachloride 2020/01/21 88 % 70 - 130 Chicorberarene 2020/01/21 87 % 70 - 130 Dibromochloromethane 2020/01/21 97 % 70 - 130 1,2-Dichlorobenzene 2020/01/21 97 % 70 - 130 1,2-Dichlorobenzene 2020/01/21 97 % 70 - 130 1,2-Dichlorobenzene 2020/01/21 97 % 70 - 130 1,4-Dichlorobenzene 2020/01/21 97 % 70 - 130 1,1-Dichlorobethane 2020/01/21 97 % 70 - 130 1,2-Dichlorobethane 2020/01/21 97 % 70 - 130 1,2-Dichlorobethylene 2020/01/21 97 % 70 - 130 1,2-Dichlorobethylene 2020/01/21 97 % 70 - 130 1,2-Dichlorobethylene 2020/01/21 98 %				Benzene	2020/01/21		91	%	70 - 130
Bromedram 2020/01/21 105 % % 70-130 Bromomethane 2020/01/21 88 % 70-130 Chiorobenzene 2020/01/21 87 % 70-130 Dibromochioromethane 2020/01/21 105 % 70-130 1.2-bichiorobenzene 2020/01/21 105 % 70-130 1.3-bichiorobenzene 2020/01/21 98 % 70-130 1.4-bichiorobenzene 2020/01/21 98 % 70-130 1.4-bichiorobenzene 2020/01/21 98 % 70-130 1.2-bichiorobenzene 2020/01/21 87 % 70-130 1.2-bichiorobenzene 2020/01/21 98 % 70-130 1.2-bichiorophyne 2020/01/21 98 % 70-130 <td></td> <td></td> <td></td> <td>Bromodichloromethane</td> <td>2020/01/21</td> <td></td> <td>94</td> <td>%</td> <td>70 - 130</td>				Bromodichloromethane	2020/01/21		94	%	70 - 130
Bromomethane 2020/01/21 84 % 60-130 Chlorobernene 2020/01/21 83 % 70-130 Chlorobernene 2020/01/21 105 % 70-130 Dibromochloromethane 2020/01/21 105 % 70-130 1,2-bichlorober.ene 2020/01/21 94 % 70-130 1,2-bichlorober.ene 2020/01/21 94 % 70-130 1,4-bichlorober.ene 2020/01/21 96 % 70-130 1,4-bichlorober.ene 2020/01/21 96 % 70-130 1,2-bichlorobethane 2020/01/21 97 % 70-130 1,2-bichloropethane 2020/01/21 97 % 70-130 1,2-bichloropethylene 2020/01/21 97 % 70-130 1,2-bichloropethylene 2020/01/21 98 % 70-130 1,2-bichloropethylene 2020/01/21 98 % 70-130 1,2-bichloropetha 2020/01/21 98 % 70-130 <td></td> <td></td> <td></td> <td>Bromoform</td> <td>2020/01/21</td> <td></td> <td>105</td> <td>%</td> <td>70 - 130</td>				Bromoform	2020/01/21		105	%	70 - 130
Carbon Terrachioride 2020/01/21 98 % 70-130 Chiorobenzene 2020/01/21 87 % 70-130 Diforomenthane 2020/01/21 97 % 70-130 1.2-Dichlorobenzene 2020/01/21 95 % 70-130 1.3-Dichlorobenzene 2020/01/21 97 % 70-130 1.3-Dichlorobenzene 2020/01/21 97 % 70-130 Dichlorobenzene 2020/01/21 97 % 70-130 Dichlorobenzene 2020/01/21 97 % 70-130 1.2-Dichlorobethane 2020/01/21 97 % 70-130 1.3-Dichlorobethylene 2020/01/21 97 % 70-130 1.2-Dichlorobethylene 2020/01/21 97 % 70-130 1.3-Dichlorobethylene 2020/01/21 98 % 70-130 1.3-Dichlorobethylene 2020/01/21 98 % 70-130 thrylene Diromide 2020/01/21 98 % 70-130 <td></td> <td></td> <td></td> <td>Bromomethane</td> <td>2020/01/21</td> <td></td> <td>84</td> <td>%</td> <td>60 - 140</td>				Bromomethane	2020/01/21		84	%	60 - 140
Chlorobenzene 2020/01/21 87 % 70-130 Chlorobenzene 2020/01/21 105 % 70-130 1.2-b0thorobenzene 2020/01/21 94 % 70-130 1.2-b0thorobenzene 2020/01/21 94 % 70-130 1.4-b0thorobenzene 2020/01/21 94 % 70-130 1.4-b0thorobenzene 2020/01/21 90 % 70-130 1.4-b0thorobenzene 2020/01/21 90 % 70-130 1.1-b0thoroethane 2020/01/21 97 % 70-130 1.2-b0thoroethylene 2020/01/21 87 % 70-130 1.2-b0thoroethylene 2020/01/21 88 % 70-130 1.2-b0thoropropane 2020/01/21 90 % 70-130				Carbon Tetrachloride	2020/01/21		88	%	70 - 130
Chloroform 2020/01/21 87 % 70-130 Dibromochloromethane 2020/01/21 95 % 70-130 1.3-Dichlorobenzene 2020/01/21 94 % 70-130 1.3-Dichlorobenzene 2020/01/21 94 % 70-130 Dichlorodfluoromethane (FREON 12) 2020/01/21 96 % 70-130 Dichlorodfluoromethane 2020/01/21 97 % 70-130 1.1-Dichloroethane 2020/01/21 97 % 70-130 1.2-Dichloroethylene 2020/01/21 97 % 70-130 1.2-Dichloroethylene 2020/01/21 98 % 70-130 1.2-Dichloropropene 2020/01/21 98 % 70-130 1.2-Dichloropropene 2020/01/21 98 % 70-130 1.3-Dichloropropene 2020/01/21 98 % 70-130 Ethylene Dibromide 2020/01/21 98 % 70-130 Ethylene Dibromide 2020/01/21 98 %				Chlorobenzene	2020/01/21		93	%	70 - 130
Dibromechloromethane 2020/01/21 95 % 70-130 1,2 Dichlorobenzene 2020/01/21 95 % 70-130 1,4 Dichlorobenzene 2020/01/21 99 % 70-130 1,4 Dichlorobenzene 2020/01/21 99 % 70-130 1,4 Dichlorobenzene 2020/01/21 99 % 70-130 1,1 Dichloroethane 2020/01/21 95 % 70-130 1,2 Dichloroethylene 2020/01/21 95 % 70-130 1,2 Dichloroethylene 2020/01/21 90 % 70-130 1,2 Dichloroethylene 2020/01/21 90 % 70-130 1,2 Dichloropropane 2020/01/21 90 % 70-130 1,2 Dichloropropane 2020/01/21 90 % 70-130 1,2 Dichloropropane 2020/01/21 98 % 70-130 1,2 Dichloropropane 2020/01/21 98 % 70-130 Hekylene Dichoride 2020/01/21 98 % 70-130				Chloroform	2020/01/21		87	%	70 - 130
1,2-Dichlorobenzene 2020/01/21 94 % 70-130 1,3-Dichlorobenzene 2020/01/21 94 % 70-130 1,4-Dichlorobenzene 2020/01/21 76 % 60-140 1,1-Dichloroethane 2020/01/21 76 % 70-130 1,1-Dichloroethane 2020/01/21 97 % 70-130 1,1-Dichloroethylene 2020/01/21 97 % 70-130 cis-1,2-Dichloroethylene 2020/01/21 98 % 70-130 cis-1,2-Dichloropapane 2020/01/21 98 % 70-130 cis-1,3-Dichloroppane 2020/01/21 98 % 70-130 cis-1,3-Dichloroppane 2020/01/21 98 % 70-130 Cis-1,3-Dichloroppane 2020/01/21 98 % 70-130 Ethylene Dibromide 2020/01/21 98 % 70-130 Hexare 2020/01/21 98 % 70-130 Methyl Ethyl Ketone (2020/01/21 98 % 70-130 Hexare 2020/01/21 98 % 70-130 <tr< td=""><td></td><td></td><td></td><td>Dibromochloromethane</td><td>2020/01/21</td><td></td><td>105</td><td>%</td><td>70 - 130</td></tr<>				Dibromochloromethane	2020/01/21		105	%	70 - 130
1.3-Dichlorobenzene 2020/01/21 94 % 70-130 1.4-Dichlorobenzene 2020/01/21 99 % 70-130 Dichlorodfluoromethane (FREON 12) 2020/01/21 90 % 70-130 1.1-Dichloroethane 2020/01/21 97 % 70-130 1.2-Dichloroethylene 2020/01/21 97 % 70-130 1.2-Dichloroethylene 2020/01/21 97 % 70-130 trans-1.2-Dichloroethylene 2020/01/21 98 % 70-130 trans-1.2-Dichloroethylene 2020/01/21 98 % 70-130 trans-1.3-Dichloroptopane 2020/01/21 98 % 70-130 trans-1.3-Dichloroptopane 2020/01/21 98 % 70-130 trans-1.3-Dichloroptopane 2020/01/21 98 % 70-130 thylene Dibromide 2020/01/21 98 % 70-130 Hexane 2020/01/21 104 % 70-130 Hexane 2020/01/21 104 % 70-130 Hexane 2020/01/21 104 %				1,2-Dichlorobenzene	2020/01/21		95	%	70 - 130
1.4-Dichlorodenzene 2020/01/21 99 % 70 - 130 Dichlorodifluoromethane (FREON 12) 2020/01/21 76 % 60 - 140 1.2-Dichlorocethane 2020/01/21 97 % 70 - 130 1.2-Dichlorocethylene 2020/01/21 97 % 70 - 130 1.2-Dichlorocethylene 2020/01/21 87 % 70 - 130 1.2-Dichloropapane 2020/01/21 88 % 70 - 130 1.2-Dichloropapane 2020/01/21 98 % 70 - 130 1.2-Dichloropapane 2020/01/21 98 % 70 - 130 1.2-Dichloropropene 2020/01/21 98 % 70 - 130 1.2-Dichloropropene 2020/01/21 98 % 70 - 130 1.1-Dichloropropene 2020/01/21 104 % 70 - 130 Hexane 2020/01/21 104 % 70 - 130 Methylen Choride(Dihoromethane) 2020/01/21 104 % 70 - 130 J.1.1.2-Tretrachoroethane 2020/01/21 <				1,3-Dichlorobenzene	2020/01/21		94	%	70 - 130
Dichlorodifluoromethane (FREON 12) 2020/01/21 96 % 60-140 1,1-Dichloroethane 2020/01/21 90 % 70-130 1,2-Dichloroethylene 2020/01/21 95 % 70-130 cis-1,2-Dichloroethylene 2020/01/21 97 % 70-130 cis-1,2-Dichloroethylene 2020/01/21 90 % 70-130 cis-1,2-Dichloroethylene 2020/01/21 90 % 70-130 cis-1,3-Dichloropropane 2020/01/21 90 % 70-130 cis-1,3-Dichloropropane 2020/01/21 98 % 70-130 cis-1,3-Dichloropropane 2020/01/21 98 % 70-130 thylene Dibromide 2020/01/21 98 % 70-130 Hexane 2020/01/21 93 % 70-130 Hexane 2020/01/21 93 % 70-130 Methyl thyl ketone (2-butanone) 2020/01/21 106 % 70-130 J1,1,2-Tertachloroethane 2020/01/21 106				1,4-Dichlorobenzene	2020/01/21		99	%	70 - 130
1,1-Dickhoroethane 2020/01/21 90 % 70-130 1,2-Dickhoroethane 2020/01/21 97 % 70-130 1,1-Dickhoroethylene 2020/01/21 95 % 70-130 cis-1,2-Dickhoroethylene 2020/01/21 87 % 70-130 trans-1,2-Dickhoroptopane 2020/01/21 90 % 70-130 cis-1,3-Dickhoroptopane 2020/01/21 90 % 70-130 trans-1,3-Dickhoroptopene 2020/01/21 98 % 70-130 Ethylbenzone 2020/01/21 98 % 70-130 Ethylbenzone 2020/01/21 93 % 70-130 Hexane 2020/01/21 93 % 70-130 Hetwie 2020/01/21 96 % 70-130 Methylen Dibromide 2020/01/21 96 % 70-130 Methylene Chloride(Dichioromethane) 2020/01/21 96 % 70-130 1,1,2-Tetrachioroethane 2020/01/21 96 % 70-130 <td></td> <td></td> <td></td> <td>Dichlorodifluoromethane (FREON 12)</td> <td>2020/01/21</td> <td></td> <td>76</td> <td>%</td> <td>60 - 140</td>				Dichlorodifluoromethane (FREON 12)	2020/01/21		76	%	60 - 140
6546158 DR1 Method Blank 1,2-Dichloroethylene 2020/01/21 97 % 70-130 0.1Dichloroethylene 2020/01/21 87 % 70-130 0.5-1.2Dichloroethylene 2020/01/21 89 % 70-130 1.2-Dichloroethylene 2020/01/21 90 % 70-130 0.5-1.3Dichloropropene 2020/01/21 92 % 70-130 trans-1,3-Dichloropropene 2020/01/21 98 % 70-130 trans-1,3-Dichloropropene 2020/01/21 98 % 70-130 Hexane 2020/01/21 104 % 70-130 Methylenc Chordd(Cintoromethane) 2020/01/21 104 % 70-130 Methyl Ethyl Ketone (2-Butanone) 2020/01/21 106 % 70-130 Methyl Ethyl Ketone 2020/01/21 106 % 70-130 1,1,2.7:tertachloroethane 2020/01/21 88 % 70-130 1,1,2.7:tertachloroethane 2020/01/21 88 % 70-130				1,1-Dichloroethane	2020/01/21		90	%	70 - 130
1,1-Dichloroethylene 2020/01/21 95 % 70-130 cis-1,2-Dichloroethylene 2020/01/21 87 % 70-130 trans-1,2-Dichloroethylene 2020/01/21 87 % 70-130 1,2-Dichloroppane 2020/01/21 90 % 70-130 cis-1,3-Dichloroppane 2020/01/21 90 % 70-130 trans-1,3-Dichloroppane 2020/01/21 98 % 70-130 trans-1,3-Dichloroppane 2020/01/21 92 % 70-130 trans-1,3-Dichloroppane 2020/01/21 93 % 70-130 Hexane 2020/01/21 93 % 70-130 Hexane 2020/01/21 96 % 70-130 Methylene Dibromide 2020/01/21 106 % 70-130 Methyl Ethyl Ketone (2-Butanone) 2020/01/21 106 % 70-130 j.1,1,2-Tetrachloroethane 2020/01/21 106 % 70-130 j.1,1,2-Tetrachloroethane 2020/01/21 102 <td< td=""><td></td><td></td><td></td><td>1,2-Dichloroethane</td><td>2020/01/21</td><td></td><td>97</td><td>%</td><td>70 - 130</td></td<>				1,2-Dichloroethane	2020/01/21		97	%	70 - 130
6546168 DR1 Method Blank Cis-1,2-Dichloroethylene 2020/01/21 87 % 70 - 130 1,2-Dichloropropane 2020/01/21 90 % 70 - 130 1,2-Dichloropropane 2020/01/21 92 % 70 - 130 Cis-1,3-Dichloropropene 2020/01/21 92 % 70 - 130 Ethylbenzene 2020/01/21 98 % 70 - 130 Ethylbenzene 2020/01/21 104 % 70 - 130 Hexane 2020/01/21 93 % 70 - 130 Methylene Olioromide 2020/01/21 96 % 70 - 130 Methylene Olioromide 2020/01/21 96 % 70 - 130 Methyl Ethyl Ketone (2-Butanone) 2020/01/21 114 % 60 - 140 Methyl I-butyl ether (MTBE) 2020/01/21 88 % 70 - 130 Methyl I-butyl ether (MTBE) 2020/01/21 88 % 70 - 130 1,1,2-Trichloroethane 2020/01/21 106 % 70 - 130				1,1-Dichloroethylene	2020/01/21		95	%	70 - 130
bit trans-1,2-Dichloroethylene 2020/01/21 89 % 70 - 130 1,2-Dichloropropane 2020/01/21 90 % 70 - 130 cis1,3-Dichloropropene 2020/01/21 98 % 70 - 130 trans-1,3-Dichloropropene 2020/01/21 98 % 70 - 130 Ethylbenzene 2020/01/21 98 % 70 - 130 Hexane 2020/01/21 93 % 70 - 130 Hexane 2020/01/21 93 % 70 - 130 Methylene Chloride(Dichloromethane) 2020/01/21 96 % 70 - 130 Methyl Hyl Ketone (2-Butanone) 2020/01/21 114 % 60 - 140 Methyl Ibutyl ether (MTBE) 2020/01/21 166 % 70 - 130 Styrene 2020/01/21 166 % 70 - 130 1,1,2.7 Etrachloroethane 2020/01/21 102 % 70 - 130 1,1,1,2.7 Etrachloroethane 2020/01/21 188 % 70 - 130 1,1,2.7 fichloroethane 202				cis-1,2-Dichloroethylene	2020/01/21		87	%	70 - 130
1,2-Dichloropropane 2020/01/21 90 % 70 - 130 cis-1,3-Dichloropropene 2020/01/21 92 % 70 - 130 trans-1,3-Dichloropropene 2020/01/21 98 % 70 - 130 Ethylenzene 2020/01/21 92 % 70 - 130 Hexane 2020/01/21 93 % 70 - 130 Hexane 2020/01/21 94 % 70 - 130 Methylene Chloride(Dichloromethane) 2020/01/21 96 % 70 - 130 Methyl Ethyl Ketone (2-Butanone) 2020/01/21 96 % 70 - 130 Methyl I Chuyl Ketone 2020/01/21 106 % 70 - 130 Methyl I Chuyl Ketone 2020/01/21 106 % 70 - 130 J,1,2.2 - Tetrachloroethane 2020/01/21 96 % 70 - 130 J,1,2.2 - Tetrachloroethane 2020/01/21 96 % 70 - 130 J,1,2.2 - Tetrachloroethane 2020/01/21 90 % 70 - 130 J,1,2.1 - Trichloroethane 2020/01/				trans-1,2-Dichloroethylene	2020/01/21		89	%	70 - 130
cis-1,3-Dichloropropene 2020/01/21 92 % 70 - 130 trans-1,3-Dichloropropene 2020/01/21 98 % 70 - 130 Ethylbenzene 2020/01/21 92 % 70 - 130 Ethylbenzene 2020/01/21 94 % 70 - 130 Hexane 2020/01/21 93 % 70 - 130 Hexane 2020/01/21 96 % 70 - 130 Methylene Chloride(Dichloromethane) 2020/01/21 96 % 70 - 130 Methyl Ethyl Ketone (2-Butanone) 2020/01/21 106 % 70 - 130 Methyl I-butyl ethr (MTBE) 2020/01/21 88 % 70 - 130 1,1,1,2-Tetrachloroethane 2020/01/21 106 % 70 - 130 1,1,1,2-Tetrachloroethane 2020/01/21 106 % 70 - 130 1,1,1,2-Tetrachloroethane 2020/01/21 106 % 70 - 130 1,1,1,2-Trichloroethane 2020/01/21 90 % 70 - 130 1,1,1-Trichloroethane 2020/01/21				1,2-Dichloropropane	2020/01/21		90	%	70 - 130
trans-1,3-Dichloropropene 2020/01/21 98 % 70 - 130 Ethylbenzene 2020/01/21 92 % 70 - 130 Ethylene Dibromide 2020/01/21 104 % 70 - 130 Hexane 2020/01/21 93 % 70 - 130 Methylene Chloride(Dichloromethane) 2020/01/21 96 % 70 - 130 Methyl Ethyl Ketone 2020/01/21 106 % 70 - 130 Methyl Isobutyl Ketone 2020/01/21 106 % 70 - 130 Styrene 2020/01/21 106 % 70 - 130 1,1,2,2-Tetrachloroethane 2020/01/21 88 % 70 - 130 1,1,2,2-Tetrachloroethane 2020/01/21 102 % 70 - 130 1,1,2,2-Tetrachloroethane 2020/01/21 88 % 70 - 130 1,1,2,2-Tetrachloroethane 2020/01/21 90 % 70 - 130 1,1,2-Trichloroethane 2020/01/21 90 % 70 - 130 1,1,2-Trichloroethane 2020/01/21				cis-1,3-Dichloropropene	2020/01/21		92	%	70 - 130
Ethylbenzene 2020/01/21 92 % 70 - 130 Ethylene Dibromide 2020/01/21 104 % 70 - 130 Hexane 2020/01/21 93 % 70 - 130 Methylene Chorde(Dichloromethane) 2020/01/21 96 % 70 - 130 Methyl Ethyl Ketone 2020/01/21 114 % 60 - 140 Methyl Isbutyl Ketone 2020/01/21 106 % 70 - 130 Methyl Isbutyl Ketone 2020/01/21 106 % 70 - 130 Methyl Isbutyl Ketone 2020/01/21 96 % 70 - 130 1,1,1,2-Tetrachloroethane 2020/01/21 102 % 70 - 130 1,1,2,2-Tetrachloroethane 2020/01/21 106 % 70 - 130 1,1,1,2-Tetrachloroethane 2020/01/21 88 % 70 - 130 1,1,1,2-Trichloroethane 2020/01/21 89 % 70 - 130 1,1,2-Trichloroethane 2020/01/21 90 % 70 - 130 1,1,2-Trichloroethane 2020/01/21				trans-1.3-Dichloropropene	2020/01/21		98	%	70 - 130
Ethylene Dibromide 2020/01/21 104 % 70 - 130 Hexane 2020/01/21 93 % 70 - 130 Methylene Chloride(Dichloromethane) 2020/01/21 96 % 70 - 130 Methyl Ethyl Ketone (2-Butanone) 2020/01/21 114 % 60 - 140 Methyl Isobutyl Ketone 2020/01/21 106 % 70 - 130 Methyl Isobutyl Ketone 2020/01/21 96 % 70 - 130 Methyl Isobutyl Ketone 2020/01/21 96 % 70 - 130 1,1,2-2-Tetrachloroethane 2020/01/21 102 % 70 - 130 1,1,2-2-Tetrachloroethane 2020/01/21 106 % 70 - 130 1,1,2-Trichloroethane 2020/01/21 88 % 70 - 130 1,1,2-Trichloroethane 2020/01/21 90 % 70 - 130 1,1,2-Trichloroethane 2020/01/21 90 % 70 - 130 1,1,2-Trichloroethane 2020/01/21 93 % 70 - 130 1,1,2-Trichloroethane <t< td=""><td></td><td></td><td></td><td>Ethylbenzene</td><td>2020/01/21</td><td></td><td>92</td><td>%</td><td>70 - 130</td></t<>				Ethylbenzene	2020/01/21		92	%	70 - 130
Hexane 2020/01/21 93 % 70 - 130 Methylen Chloride(Dichloromethane) 2020/01/21 96 % 70 - 130 Methyl Ethyl Ketone (2-Butanone) 2020/01/21 114 % 60 - 140 Methyl Isobutyl Ketone 2020/01/21 106 % 70 - 130 Methyl Ethyl Ketone 2020/01/21 106 % 70 - 130 Methyl Ethyl tethor 2020/01/21 96 % 70 - 130 Methyl T-butyl ethor (MTBE) 2020/01/21 96 % 70 - 130 1,1,2-2-Tetrachloroethane 2020/01/21 106 % 70 - 130 Tetrachloroethylene 2020/01/21 88 % 70 - 130 Toluene 2020/01/21 89 % 70 - 130 1,1,2-Trichloroethane 2020/01/21 90 % 70 - 130 1,1,2-Trichloroethane 2020/01/21 93 % 70 - 130 1,1,2-Trichloroethane 2020/01/21 93 % 70 - 130 p+m-Xylene 2020/01/21				Ethylene Dibromide	2020/01/21		104	%	70 - 130
Methylene Chloride(Dichloromethane) 2020/01/21 96 % 70 - 130 Methyl Ethyl Ketone 2020/01/21 114 % 60 - 140 Methyl Ethyl Ketone 2020/01/21 106 % 70 - 130 Methyl Isbottyl Ketone 2020/01/21 106 % 70 - 130 Styrene 2020/01/21 88 % 70 - 130 1,1,2.7etrachloroethane 2020/01/21 102 % 70 - 130 1,1,2.7etrachloroethane 2020/01/21 106 % 70 - 130 1,1,2.7etrachloroethane 2020/01/21 88 % 70 - 130 Tetrachloroethylene 2020/01/21 89 % 70 - 130 1,1,1-Trichloroethane 2020/01/21 90 % 70 - 130 1,1,2-Trichloroethane 2020/01/21 90 % 70 - 130 1,1,2-Trichloroethane 2020/01/21 90 % 70 - 130 Trichloroethane (FREON 11) 2020/01/21 93 % 70 - 130 p+m-Xylene 2020/01/21				Hexane	2020/01/21		93	%	70 - 130
Methyl Ethyl Ketone (2-Butanone) 2020/01/21 114 % 60 - 140 Methyl Isobutyl Ketone 2020/01/21 106 % 70 - 130 Methyl Isobutyl Ketone 2020/01/21 88 % 70 - 130 Styrene 2020/01/21 96 % 70 - 130 1,1,1,2-Tetrachloroethane 2020/01/21 102 % 70 - 130 1,1,2,2-Tetrachloroethane 2020/01/21 106 % 70 - 130 1,1,2,2-Tetrachloroethane 2020/01/21 88 % 70 - 130 1,1,2-Trichloroethane 2020/01/21 89 % 70 - 130 1,1,2-Trichloroethane 2020/01/21 90 % 70 - 130 1,1,2-Trichloroethane 2020/01/21 93 % 70 - 130 1,1,2-Trichloroethane 2020/01/21 93 % 70 - 130 1,1,2-Trichloroethane 2020/01/21 94 % 70 - 130 Vinyl Chloride 2020/01/21 94 % 70 - 130 p+m-Xylene 2020/01/21				Methylene Chloride(Dichloromethane)	2020/01/21		96	%	70 - 130
Methyl isobutyl Ketone 2020/01/21 106 % 70 - 130 Methyl isobutyl Ketone 2020/01/21 88 % 70 - 130 Styrene 2020/01/21 96 % 70 - 130 1,1,2,2-Tetrachloroethane 2020/01/21 102 % 70 - 130 1,1,2,2-Tetrachloroethane 2020/01/21 102 % 70 - 130 1,1,2,2-Tetrachloroethane 2020/01/21 106 % 70 - 130 Tetrachloroethylene 2020/01/21 88 % 70 - 130 1,1,2-Trichloroethane 2020/01/21 89 % 70 - 130 1,1,2-Trichloroethane 2020/01/21 90 % 70 - 130 1,1,2-Trichloroethane 2020/01/21 90 % 70 - 130 1,1,2-Trichloroethane 2020/01/21 93 % 70 - 130 Trichlorofluoromethane (FREON 11) 2020/01/21 94 % 70 - 130 p+m-Xylene 2020/01/21 97 % 70 - 130 o-Xylene 2020/01/21 97<				Methyl Ethyl Ketone (2-Butanone)	2020/01/21		114	%	60 - 140
Methyl -butyl ether (MTBE) 2020/01/21 88 % 70 - 130 Styrene 2020/01/21 96 % 70 - 130 1,1,2.7etrachloroethane 2020/01/21 102 % 70 - 130 1,1,2.7etrachloroethane 2020/01/21 106 % 70 - 130 1,1,2.7etrachloroethane 2020/01/21 106 % 70 - 130 Tetrachloroethylene 2020/01/21 89 % 70 - 130 1,1,1-Trichloroethane 2020/01/21 90 % 70 - 130 1,1,2-Trichloroethane 2020/01/21 90 % 70 - 130 1,1,2-Trichloroethane 2020/01/21 90 % 70 - 130 1,1,2-Trichloroethane 2020/01/21 90 % 70 - 130 Trichloroethylene 2020/01/21 93 % 70 - 130 Vinyl Chloride 2020/01/21 94 % 70 - 130 P+m-Xylene 2020/01/21 95 % 70 - 130 6546168 DR1 Method Blank 4-Bromof				Methyl Isobutyl Ketone	2020/01/21		106	%	70 - 130
Styrene 2020/01/21 96 % 70 - 130 1,1,1,2-Tetrachloroethane 2020/01/21 102 % 70 - 130 1,1,2,2-Tetrachloroethane 2020/01/21 106 % 70 - 130 Tetrachloroethylene 2020/01/21 88 % 70 - 130 Toluene 2020/01/21 89 % 70 - 130 1,1,1-Trichloroethane 2020/01/21 90 % 70 - 130 1,1,1-Trichloroethane 2020/01/21 90 % 70 - 130 1,1,2-Trichloroethane 2020/01/21 90 % 70 - 130 Trichloroethylene 2020/01/21 93 % 70 - 130 Trichloroethylene 2020/01/21 94 % 70 - 130 Vinyl Chloride 2020/01/21 94 % 70 - 130 Vinyl Chloride 2020/01/21 97 % 70 - 130 0-Xylene 2020/01/21 97 % 70 - 130 0-Xylene 2020/01/21 92 % 60 - 140 <td></td> <td></td> <td></td> <td>Methyl t-butyl ether (MTBE)</td> <td>2020/01/21</td> <td></td> <td>88</td> <td>%</td> <td>70 - 130</td>				Methyl t-butyl ether (MTBE)	2020/01/21		88	%	70 - 130
6546168 DR1 Method Blank 4-Bromofluorobenzene 2020/01/21 102 % 70-130 1,1,2,2-Tetrachloroethane 2020/01/21 106 % 70-130 Tetrachloroethylene 2020/01/21 88 % 70-130 1,1,1-Trichloroethane 2020/01/21 89 % 70-130 1,1,2-Trichloroethane 2020/01/21 90 % 70-130 1,1,2-Trichloroethane 2020/01/21 102 % 70-130 1,1,2-Trichloroethane 2020/01/21 93 % 70-130 Trichloroethylene 2020/01/21 94 % 70-130 Trichlorofluoromethane (FREON 11) 2020/01/21 94 % 70-130 0-Xylene 2020/01/21 97 % 70-130 0-41,2-Dichloroethane 2020/01/21<				Styrene	2020/01/21		96	%	70 - 130
1,1,2,2-Tetrachloroethane 2020/01/21 106 % 70 - 130 Tetrachloroethylene 2020/01/21 88 % 70 - 130 Toluene 2020/01/21 89 % 70 - 130 1,1,1-Trichloroethane 2020/01/21 90 % 70 - 130 1,1,2-Trichloroethane 2020/01/21 90 % 70 - 130 Trichloroethylene 2020/01/21 93 % 70 - 130 Trichloroethylene 2020/01/21 94 % 70 - 130 Vinyl Chloride 2020/01/21 94 % 70 - 130 p+m-Xylene 2020/01/21 84 % 70 - 130 o-Xylene 2020/01/21 97 % 70 - 130 o-Xylene 2020/01/21 97 % 70 - 130 F1 (C6-C10) 2020/01/21 92 % 60 - 140 6546168 DR1 Method Blank 4-Bromofluorobenzene 2020/01/21 98 % 70 - 130 B-T1 (C6-C10) 2020/01/21 98 % 70 - 130 0 % 70 - 130				1.1.1.2-Tetrachloroethane	2020/01/21		102	%	70 - 130
Tetrachloroethylene 2020/01/21 88 % 70 - 130 Toluene 2020/01/21 89 % 70 - 130 1,1,1-Trichloroethane 2020/01/21 90 % 70 - 130 1,1,1-Trichloroethane 2020/01/21 102 % 70 - 130 1,1,2-Trichloroethane 2020/01/21 93 % 70 - 130 Trichloroethylene 2020/01/21 94 % 70 - 130 Vinyl Chloride 2020/01/21 94 % 70 - 130 p+m-Xylene 2020/01/21 94 % 70 - 130 o-Xylene 2020/01/21 97 % 70 - 130 o-Xylene 2020/01/21 95 % 70 - 130 6546168 DR1 Method Blank 4-Bromofluorobenzene 2020/01/21 98 % 70 - 130 b4-1,2-Dichloroethane 2020/01/21 98 % 70 - 130 D8-Toluene 2020/01/21 100 % 70 - 130 D8-Toluene 2020/01/21 10				1.1.2.2-Tetrachloroethane	2020/01/21		106	%	70 - 130
Toluene 2020/01/21 89 % 70 - 130 1,1,1-Trichloroethane 2020/01/21 90 % 70 - 130 1,1,2-Trichloroethane 2020/01/21 102 % 70 - 130 Trichloroethylene 2020/01/21 93 % 70 - 130 Trichloroethylene 2020/01/21 94 % 70 - 130 Vinyl Chloride 2020/01/21 94 % 70 - 130 p+m-Xylene 2020/01/21 97 % 70 - 130 o-Xylene 2020/01/21 97 % 70 - 130 6546168 DR1 Method Blank 4-Bromofluorobenzene 2020/01/21 95 % 70 - 130 6546168 DR1 Method Blank 4-Bromofluorobenzene 2020/01/21 98 % 70 - 130 Be-Toluene 2020/01/21 100 % 70 - 130 30 Be-Toluene 2020/01/21 100 % 70 - 130 30 Benzene 2020/01/21 100 %				Tetrachloroethylene	2020/01/21		88	%	70 - 130
1,1,1-Trichloroethane 2020/01/21 90 % 70 - 130 1,1,2-Trichloroethane 2020/01/21 102 % 70 - 130 Trichloroethylene 2020/01/21 93 % 70 - 130 Trichloroethylene 2020/01/21 94 % 70 - 130 Vinyl Chloride 2020/01/21 94 % 70 - 130 p+m-Xylene 2020/01/21 84 % 70 - 130 p+m-Xylene 2020/01/21 97 % 70 - 130 6546168 DR1 Method Blank 4-Bromofluorobenzene 2020/01/21 95 % 70 - 130 6546168 DR1 Method Blank 4-Bromofluorobenzene 2020/01/21 98 % 70 - 130 Benzene 2020/01/21 100 % 70 - 130 97 - 130 Acetone (2-Propanone) 2020/01/21 100 % 70 - 130 Benzene 2020/01/21 <10				Toluene	2020/01/21		89	%	70 - 130
1,1,2-Trichloroethane 2020/01/21 102 % 70 - 130 Trichloroethylene 2020/01/21 93 % 70 - 130 Vinyl Chloride 2020/01/21 94 % 70 - 130 Vinyl Chloride 2020/01/21 84 % 70 - 130 p+m-Xylene 2020/01/21 97 % 70 - 130 o-Xylene 2020/01/21 95 % 70 - 130 F1 (C6-C10) 2020/01/21 95 % 70 - 130 6546168 DR1 Method Blank 4-Bromofluorobenzene 2020/01/21 98 % 70 - 130 6546168 DR1 Method Blank 4-Bromofluorobenzene 2020/01/21 98 % 70 - 130 D4-1,2-Dichloroethane 2020/01/21 100 % 70 - 130 D8-Toluene 2020/01/21 100 % 70 - 130 Acetone (2-Propanone) 2020/01/21 <10				1.1.1-Trichloroethane	2020/01/21		90	%	70 - 130
6546168 DR1 Method Blank 4-Bromofluoromethane (FREON 11) 2020/01/21 93 % 70 - 130 6546168 DR1 Method Blank 4-Bromofluorobenzene 2020/01/21 94 % 70 - 130 6546168 DR1 Method Blank 4-Bromofluorobenzene 2020/01/21 97 % 70 - 130 6546168 DR1 Method Blank 4-Bromofluorobenzene 2020/01/21 92 % 60 - 140 Method Blank 4-Bromofluorobenzene 2020/01/21 98 % 70 - 130 Method Blank 4-Bromofluorobenzene 2020/01/21 98 % 70 - 130 Method Blank 4-Bromofluorobenzene 2020/01/21 100 % 70 - 130 Method Blank 4-Bromofluorobenzene 2020/01/21 100 % 70 - 130 Method Blank 4-Bromofluorobenzene 2020/01/21 100 % 70 - 130 Method Blank 4-Bromofluorobenzene 2020/01/21 100 % 70 - 130 Method Blank 4-Bromofluorobenzene 2020/01/21 <10				1.1.2-Trichloroethane	2020/01/21		102	%	70 - 130
6546168 DR1 Method Blank 4-Bromofluorobenzene 2020/01/21 94 % 70 - 130 6546168 DR1 Method Blank 4-Bromofluorobenzene 2020/01/21 97 % 70 - 130 6546168 DR1 Method Blank 4-Bromofluorobenzene 2020/01/21 92 % 60 - 140 6546168 DR1 Method Blank 4-Bromofluorobenzene 2020/01/21 98 % 70 - 130 6546168 DR1 Method Blank 4-Bromofluorobenzene 2020/01/21 98 % 70 - 130 Berzene 2020/01/21 100 % 70 - 130 0 % 70 - 130 Benzene 2020/01/21 100 % 70 - 130 0 % 70 - 130 Benzene 2020/01/21 100 % 70 - 130 0 % 70 - 130 Benzene 2020/01/21 100 % 70 - 130 0 wg/L Benzene 2020/01/21 <0.20				Trichloroethylene	2020/01/21		93	%	70 - 130
Vinkloomethane (Normation (Normality) 2020/01/21 84 % 70 - 130 p+m-Xylene 2020/01/21 97 % 70 - 130 o-Xylene 2020/01/21 95 % 70 - 130 F1 (C6-C10) 2020/01/21 92 % 60 - 140 6546168 DR1 Method Blank 4-Bromofluorobenzene 2020/01/21 98 % 70 - 130 D4-1,2-Dichloroethane 2020/01/21 100 % 70 - 130 D8-Toluene 2020/01/21 100 % 70 - 130 Acetone (2-Propanone) 2020/01/21 100 % 70 - 130 Benzene 2020/01/21 <10				Trichlorofluoromethane (FREON 11)	2020/01/21		94	%	70 - 130
6546168 DR1 Method Blank 4-Bromofluorobenzene 2020/01/21 97 % 70 - 130 6546168 DR1 Method Blank 4-Bromofluorobenzene 2020/01/21 92 % 60 - 140 6546168 DR1 Method Blank 4-Bromofluorobenzene 2020/01/21 98 % 70 - 130 D4-1,2-Dichloroethane 2020/01/21 100 % 70 - 130 D8-Toluene 2020/01/21 100 % 70 - 130 Acetone (2-Propanone) 2020/01/21 100 % 70 - 130 Benzene 2020/01/21 <10				Vinyl Chloride	2020/01/21		84	%	70 - 130
o-Xylene 2020/01/21 95 % 70 - 130 6546168 DR1 Method Blank 4-Bromofluorobenzene 2020/01/21 92 % 60 - 140 6546168 DR1 Method Blank 4-Bromofluorobenzene 2020/01/21 98 % 70 - 130 D4-1,2-Dichloroethane 2020/01/21 100 % 70 - 130 D8-Toluene 2020/01/21 100 % 70 - 130 Acetone (2-Propanone) 2020/01/21 <10				n+m-Xvlene	2020/01/21		97	%	70 - 130
6546168 DR1 Method Blank F1 (C6-C10) 2020/01/21 92 % 60 - 140 6546168 DR1 Method Blank 4-Bromofluorobenzene 2020/01/21 98 % 70 - 130 D4-1,2-Dichloroethane 2020/01/21 100 % 70 - 130 D8-Toluene 2020/01/21 100 % 70 - 130 Acetone (2-Propanone) 2020/01/21 <10				o-Xvlene	2020/01/21		95	%	70 - 130
6546168 DR1 Method Blank 4-Bromofluorobenzene 2020/01/21 98 % 70 - 130 D4-1,2-Dichloroethane 2020/01/21 100 % 70 - 130 D8-Toluene 2020/01/21 100 % 70 - 130 Acetone (2-Propanone) 2020/01/21 <10				F1 (C6-C10)	2020/01/21		92	%	60 - 140
D3-1220 D4-1,2-Dichloroethane 2020/01/21 100 % 70 - 130 D8-Toluene 2020/01/21 100 % 70 - 130 Acetone (2-Propanone) 2020/01/21 <10	6546168	DR1	Method Blank	4-Bromofluorobenzene	2020/01/21		92	%	70 - 130
D8-Toluene 2020/01/21 100 % 70 - 130 D8-Toluene 2020/01/21 100 % 70 - 130 Acetone (2-Propanone) 2020/01/21 <10	0010100	DILL		D4-1 2-Dichloroethane	2020/01/21		100	%	70 - 130
Acetone (2-Propanone) 2020/01/21 <10				D8-Toluene	2020/01/21		100	%	70 - 130
Benzene 2020/01/21 <10 ug/L Bromodichloromethane 2020/01/21 <0.20				Acetone (2-Pronanone)	2020/01/21	<10	100	μσ/I	,0 150
Bromodichloromethane 2020/01/21 <0.20 ug/L				Renzene	2020/01/21	<0.20		ug/⊑ ⊔g/I	
				Bromodichloromethane	2020/01/21	<0.20 <0 50		ug/⊑ ⊔g/I	

QA/QC		007			., .			
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			Bromotorm	2020/01/21	<1.0		ug/L	
			Bromometnane	2020/01/21	<0.50		ug/L	
			Carbon Tetrachloride	2020/01/21	<0.20		ug/L	
			Chlorobenzene	2020/01/21	<0.20		ug/L	
			Chloroform	2020/01/21	<0.20		ug/L	
			Dibromochloromethane	2020/01/21	<0.50		ug/L	
			1,2-Dichlorobenzene	2020/01/21	< 0.50		ug/L	
			1,3-Dichlorobenzene	2020/01/21	<0.50		ug/L	
			1,4-Dichlorobenzene	2020/01/21	<0.50		ug/L	
			Dichlorodifluoromethane (FREON 12)	2020/01/21	<1.0		ug/L	
			1,1-Dichloroethane	2020/01/21	<0.20		ug/L	
			1,2-Dichloroethane	2020/01/21	<0.50		ug/L	
			1,1-Dichloroethylene	2020/01/21	<0.20		ug/L	
			cis-1,2-Dichloroethylene	2020/01/21	<0.50		ug/L	
			trans-1,2-Dichloroethylene	2020/01/21	<0.50		ug/L	
			1,2-Dichloropropane	2020/01/21	<0.20		ug/L	
			cis-1,3-Dichloropropene	2020/01/21	<0.30		ug/L	
			trans-1,3-Dichloropropene	2020/01/21	<0.40		ug/L	
			Ethylbenzene	2020/01/21	<0.20		ug/L	
			Ethylene Dibromide	2020/01/21	<0.20		ug/L	
			Hexane	2020/01/21	<1.0		ug/L	
			Methylene Chloride(Dichloromethane)	2020/01/21	<2.0		ug/L	
			Methyl Ethyl Ketone (2-Butanone)	2020/01/21	<10		ug/L	
			Methyl Isobutyl Ketone	2020/01/21	<5.0		ug/L	
			Methyl t-butyl ether (MTBE)	2020/01/21	<0.50		ug/L	
			Styrene	2020/01/21	<0.50		ug/L	
			1,1,1,2-Tetrachloroethane	2020/01/21	<0.50		ug/L	
			1,1,2,2-Tetrachloroethane	2020/01/21	<0.50		ug/L	
			Tetrachloroethylene	2020/01/21	<0.20		ug/L	
			Toluene	2020/01/21	<0.20		ug/L	
			1,1,1-Trichloroethane	2020/01/21	<0.20		ug/L	
			1,1,2-Trichloroethane	2020/01/21	<0.50		ug/L	
			Trichloroethylene	2020/01/21	<0.20		ug/L	
			Trichlorofluoromethane (FREON 11)	2020/01/21	<0.50		ug/L	
			Vinyl Chloride	2020/01/21	<0.20		ug/L	
			p+m-Xylene	2020/01/21	<0.20		ug/L	
			o-Xylene	2020/01/21	<0.20		ug/L	
			Total Xylenes	2020/01/21	<0.20		ug/L	
			F1 (C6-C10)	2020/01/21	<25		ug/L	
			F1 (C6-C10) - BTEX	2020/01/21	<25		ug/L	
6546168	DR1	RPD	Acetone (2-Propanone)	2020/01/21	0.15		%	30
			Benzene	2020/01/21	NC		%	30
			Bromodichloromethane	2020/01/21	NC		%	30
			Bromoform	2020/01/21	NC		%	30
			Bromomethane	2020/01/21	NC		%	30
			Carbon Tetrachloride	2020/01/21	NC		%	30
			Chlorobenzene	2020/01/21	NC		%	30
			Chloroform	2020/01/21	NC		%	30
			Dibromochloromethane	2020/01/21	NC		%	30
			1,2-Dichlorobenzene	2020/01/21	NC		%	30
			1,3-Dichlorobenzene	2020/01/21	NC		%	30
			1,4-Dichlorobenzene	2020/01/21	NC		%	30
			Dichlorodifluoromethane (FREON 12)	2020/01/21	NC		%	30

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			1,1-Dichloroethane	2020/01/21	NC		%	30
			1,2-Dichloroethane	2020/01/21	NC		%	30
			1,1-Dichloroethylene	2020/01/21	NC		%	30
			cis-1,2-Dichloroethylene	2020/01/21	NC		%	30
			trans-1,2-Dichloroethylene	2020/01/21	NC		%	30
			1,2-Dichloropropane	2020/01/21	NC		%	30
			cis-1,3-Dichloropropene	2020/01/21	NC		%	30
			trans-1,3-Dichloropropene	2020/01/21	NC		%	30
			Ethylbenzene	2020/01/21	NC		%	30
			Ethylene Dibromide	2020/01/21	NC		%	30
			Hexane	2020/01/21	NC		%	30
			Methylene Chloride(Dichloromethane)	2020/01/21	NC		%	30
			Methyl Ethyl Ketone (2-Butanone)	2020/01/21	NC		%	30
			Methyl Isobutyl Ketone	2020/01/21	NC		%	30
			Methyl t-butyl ether (MTBE)	2020/01/21	NC		%	30
			Styrene	2020/01/21	NC		%	30
			1,1,1,2-Tetrachloroethane	2020/01/21	NC		%	30
			1.1.2.2-Tetrachloroethane	2020/01/21	NC		%	30
			Tetrachloroethylene	2020/01/21	NC		%	30
			Toluene	2020/01/21	0.50		%	30
			1.1.1-Trichloroethane	2020/01/21	NC		%	30
			1 1 2-Trichloroethane	2020/01/21	NC		%	30
			Trichloroethylene	2020/01/21	NC		%	30
				2020/01/21	NC		%	30
			Vinyl Chloride	2020/01/21	NC		%	30
			n+m-Yvlene	2020/01/21	NC		70 0/	30
				2020/01/21	NC		/0	20
				2020/01/21	NC		/0	20
				2020/01/21	NC		/0	20
			F1(C6-C10)	2020/01/21	NC		/0	20
6546679		Matrix Spika	Piccolud Antimony (Sh)	2020/01/21	NC	109	/0	20 20 120
0540078	N_N	Matrix Spike	Dissolved Arcanic (Ac)	2020/01/21		100	/0	80 - 120
			Dissolved Arsenic (As)	2020/01/21		100	%	80 - 120
			Dissolved Barlum (Ba)	2020/01/21		101	%	80 - 120
			Dissolved Beryllium (Be)	2020/01/21		98	%	80 - 120
			Dissolved Boron (B)	2020/01/21		94	%	80 - 120
			Dissolved Cadmium (Cd)	2020/01/21		104	%	80 - 120
			Dissolved Chromium (Cr)	2020/01/21		96	%	80 - 120
			Dissolved Cobalt (Co)	2020/01/21		97	%	80 - 120
			Dissolved Copper (Cu)	2020/01/21		104	%	80 - 120
			Dissolved Lead (Pb)	2020/01/21		97	%	80 - 120
			Dissolved Molybdenum (Mo)	2020/01/21		104	%	80 - 120
			Dissolved Nickel (Ni)	2020/01/21		94	%	80 - 120
			Dissolved Selenium (Se)	2020/01/21		101	%	80 - 120
			Dissolved Silver (Ag)	2020/01/21		98	%	80 - 120
			Dissolved Sodium (Na)	2020/01/21		NC	%	80 - 120
			Dissolved Thallium (TI)	2020/01/21		101	%	80 - 120
			Dissolved Uranium (U)	2020/01/21		99	%	80 - 120
			Dissolved Vanadium (V)	2020/01/21		100	%	80 - 120
			Dissolved Zinc (Zn)	2020/01/21		99	%	80 - 120
6546678	N_R	Spiked Blank	Dissolved Antimony (Sb)	2020/01/21		102	%	80 - 120
			Dissolved Arsenic (As)	2020/01/21		96	%	80 - 120
			Dissolved Barium (Ba)	2020/01/21		102	%	80 - 120
			Dissolved Beryllium (Be)	2020/01/21		99	%	80 - 120

QUALITY ASSURANCE REPORT(CONT'D)

Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			Dissolved Boron (B)	2020/01/21		102	%	80 - 120
			Dissolved Cadmium (Cd)	2020/01/21		101	%	80 - 120
			Dissolved Chromium (Cr)	2020/01/21		92	%	80 - 120
			Dissolved Cobalt (Co)	2020/01/21		97	%	80 - 120
			Dissolved Copper (Cu)	2020/01/21		103	%	80 - 120
			Dissolved Lead (Pb)	2020/01/21		98	%	80 - 120
			Dissolved Molybdenum (Mo)	2020/01/21		98	%	80 - 120
			Dissolved Nickel (Ni)	2020/01/21		94	%	80 - 120
			Dissolved Selenium (Se)	2020/01/21		98	%	80 - 120
			Dissolved Silver (Ag)	2020/01/21		96	%	80 - 120
			Dissolved Sodium (Na)	2020/01/21		97	%	80 - 120
			Dissolved Thallium (TI)	2020/01/21		99	%	80 - 120
			Dissolved Uranium (U)	2020/01/21		95	%	80 - 120
			Dissolved Vanadium (V)	2020/01/21		95	%	80 - 120
			Dissolved Zinc (Zn)	2020/01/21		97	%	80 - 120
6546678	N_R	Method Blank	Dissolved Antimony (Sb)	2020/01/21	<0.50		ug/L	
			Dissolved Arsenic (As)	2020/01/21	<1.0		ug/L	
			Dissolved Barium (Ba)	2020/01/21	<2.0		ug/L	
			Dissolved Beryllium (Be)	2020/01/21	<0.50		ug/L	
			Dissolved Boron (B)	2020/01/21	<10		ug/L	
			Dissolved Cadmium (Cd)	2020/01/21	<0.10		ug/L	
			Dissolved Chromium (Cr)	2020/01/21	<5.0		ug/L	
			Dissolved Cobalt (Co)	2020/01/21	<0.50		ug/L	
			Dissolved Copper (Cu)	2020/01/21	<1.0		ug/L	
			Dissolved Lead (Pb)	2020/01/21	<0.50		ug/L	
			Dissolved Molvbdenum (Mo)	2020/01/21	<0.50		ug/L	
			Dissolved Nickel (Ni)	2020/01/21	<1.0		ug/L	
			Dissolved Selenium (Se)	2020/01/21	<2.0		ug/L	
			Dissolved Silver (Ag)	2020/01/21	<0.10		ug/L	
			Dissolved Sodium (Na)	2020/01/21	<100		ug/L	
			Dissolved Thallium (TI)	2020/01/21	< 0.050		8, - ug/L	
			Dissolved Uranium (U)	2020/01/21	<0.10		8, - ug/l	
			Dissolved Vanadium (V)	2020/01/21	<0.50		ug/I	
			Dissolved Zinc (Zn)	2020/01/21	<5.0		ug/l	
6546678	NR	RPD	Dissolved Antimony (Sh)	2020/01/21	NC		~8/ - %	20
0010070			Dissolved Arsenic (As)	2020/01/21	77		%	20
			Dissolved Barium (Ba)	2020/01/21	12		%	20
			Dissolved Beryllium (Be)	2020/01/21	NC		%	20
			Dissolved Boron (B)	2020/01/21	3.6		%	20
			Dissolved Cadmium (Cd)	2020/01/21	NC		%	20
			Dissolved Chromium (Cr)	2020/01/21	NC		%	20
			Dissolved Cabalt (Ca)	2020/01/21	1.0		%	20
			Dissolved Copper (Cu)	2020/01/21	2.6		%	20
			Dissolved Lead (Ph)	2020/01/21	2.0		70 0/	20
			Dissolved Lead (PD)	2020/01/21	0.00		/0 0/	20
			Dissolved Nickel (Ni)	2020/01/21	0.99		/0 0/	20
			Dissolved Nickel (NI)	2020/01/21	5.2 NC		/0 0/	20
			Dissolved Selenium (Se)	2020/01/21			70 0/	20
			Dissolved Sodium (No)	2020/01/21			% 0/	20
				2020/01/21	0.33		% •⁄	20
				2020/01/21	10		% 0/	20
			Dissolved Uranium (U)	2020/01/21	1.9		%	20
			Dissolved vanadium (V)	2020/01/21	INC.		%	20
1			Dissolved Zinc (Zn)	2020/01/21	NC		%	20

Page 25 of 37

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
6547703	MEN	Matrix Spike	Mercury (Hg)	2020/01/21		98	%	75 - 125
6547703	MEN	Spiked Blank	Mercury (Hg)	2020/01/21		99	%	80 - 120
6547703	MEN	Method Blank	Mercury (Hg)	2020/01/21	<0.1		ug/L	
6547703	MEN	RPD	Mercury (Hg)	2020/01/21	NC		%	20
6547897	SHG	Matrix Spike	Decachlorobiphenyl	2020/01/22		108	%	60 - 130
			Aroclor 1260	2020/01/22		104	%	60 - 130
			Total PCB	2020/01/22		104	%	60 - 130
6547897	SHG	Spiked Blank	Decachlorobiphenyl	2020/01/21		91	%	60 - 130
			Aroclor 1260	2020/01/21		88	%	60 - 130
			Total PCB	2020/01/21		88	%	60 - 130
6547897	SHG	Method Blank	Decachlorobiphenyl	2020/01/21		91	%	60 - 130
			Aroclor 1242	2020/01/21	<0.05		ug/L	
			Aroclor 1248	2020/01/21	<0.05		ug/L	
			Aroclor 1254	2020/01/21	<0.05		ug/L	
			Aroclor 1260	2020/01/21	<0.05		ug/L	
			Total PCB	2020/01/21	<0.05		ug/L	
6547897	SHG	RPD [LUP362-01]	Aroclor 1242	2020/01/22	NC		%	30
			Aroclor 1248	2020/01/22	NC		%	30
			Aroclor 1254	2020/01/22	NC		%	30
			Aroclor 1260	2020/01/22	NC		%	30
			Total PCB	2020/01/22	NC		%	40
6550953	RAJ	Matrix Spike	D10-Anthracene	2020/01/22		99	%	50 - 130
			D14-Terphenyl (FS)	2020/01/22		93	%	50 - 130
			D8-Acenaphthylene	2020/01/22		94	%	50 - 130
			Acenaphthene	2020/01/22		73	%	50 - 130
			Acenaphthylene	2020/01/22		103	%	50 - 130
			Anthracene	2020/01/22		86	%	50 - 130
			Benzo(a)anthracene	2020/01/22		109	%	50 - 130
			Benzo(a)pyrene	2020/01/22		105	%	50 - 130
			Benzo(b/j)fluoranthene	2020/01/22		105	%	50 - 130
			Benzo(g,h,i)pervlene	2020/01/22		102	%	50 - 130
			Benzo(k)fluoranthene	2020/01/22		111	%	50 - 130
			Chrysene	2020/01/22		103	%	50 - 130
			Dibenzo(a.h)anthracene	2020/01/22		116	%	50 - 130
			Fluoranthene	2020/01/22		88	%	50 - 130
			Fluorene	2020/01/22		91	%	50 - 130
			Indeno(1.2.3-cd)pyrene	2020/01/22		104	%	50 - 130
			1-Methylnaphthalene	2020/01/22		104	%	50 - 130
			2-Methylnaphthalene	2020/01/22		103	%	50 - 130
			Naphthalene	2020/01/22		74	%	50 - 130
			Phenanthrene	2020/01/22		39 (1)	%	50 - 130
			Pyrene	2020/01/22		80	%	50 - 130
6550953	RAI	Sniked Blank	D10-Anthracene	2020/01/23		101	%	50 - 130
0330333	10.0	opined blank	D14-Ternbenyl (ES)	2020/01/23		98	%	50 - 130
			D8-Acenanhthylene	2020/01/23		95	%	50 - 130
			Acenanhthene	2020/01/23		105	%	50 - 130
			Acenaphthylene	2020/01/23		97	%	50 - 130
			Anthracene	2020,01,23		102	%	50 - 130
			Benzo(a)anthracene	2020/01/23		112	%	50 - 130
			Benzo(a)pyrene	2020/01/23		111	%	50 - 130
			Benzo(h/i)fluoranthene	2020/01/23		112	%	50 - 130
				2020/01/23		100	/0 0/_	50 - 130 50 <u>-</u> 120
			Benzo(k)fluoranthene	2020/01/23		100	70 0/	50 - 130
1			Denzo(K)nuorantinene	2020/01/23		100	/0	<u> </u>

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			Chrysene	2020/01/23		109	%	50 - 130
			Dibenzo(a,h)anthracene	2020/01/23		115	%	50 - 130
			Fluoranthene	2020/01/23		110	%	50 - 130
			Fluorene	2020/01/23		100	%	50 - 130
			Indeno(1,2,3-cd)pyrene	2020/01/23		109	%	50 - 130
			1-Methylnaphthalene	2020/01/23		110	%	50 - 130
			2-Methylnaphthalene	2020/01/23		100	%	50 - 130
			Naphthalene	2020/01/23		90	%	50 - 130
			Phenanthrene	2020/01/23		107	%	50 - 130
			Pyrene	2020/01/23		108	%	50 - 130
6550953	RAJ	Method Blank	D10-Anthracene	2020/01/22		103	%	50 - 130
			D14-Terphenyl (FS)	2020/01/22		102	%	50 - 130
			D8-Acenaphthylene	2020/01/22		92	%	50 - 130
			Acenaphthene	2020/01/22	<0.050		ug/L	
			Acenaphthylene	2020/01/22	<0.050		ug/L	
			Anthracene	2020/01/22	<0.050		ug/L	
			Benzo(a)anthracene	2020/01/22	<0.050		ug/L	
			Benzo(a)pyrene	2020/01/22	<0.010		ug/L	
			Benzo(b/j)fluoranthene	2020/01/22	<0.050		ug/L	
			Benzo(g,h,i)perylene	2020/01/22	<0.050		ug/L	
			Benzo(k)fluoranthene	2020/01/22	<0.050		ug/L	
			Chrysene	2020/01/22	<0.050		ug/L	
			Dibenzo(a,h)anthracene	2020/01/22	<0.050		ug/L	
			Fluoranthene	2020/01/22	<0.050		ug/L	
			Fluorene	2020/01/22	<0.050		ug/L	
			Indeno(1,2,3-cd)pyrene	2020/01/22	<0.050		ug/L	
			1-Methylnaphthalene	2020/01/22	<0.050		ug/L	
			2-Methylnaphthalene	2020/01/22	< 0.050		ug/L	
			Naphthalene	2020/01/22	<0.050		ug/L	
			Phenanthrene	2020/01/22	< 0.030		ug/L	
			Pyrene	2020/01/22	< 0.050		ug/L	
6550953	RAJ	RPD	Acenaphthene	2020/01/22	25		%	30
			Acenaphthylene	2020/01/22	NC		%	30
			Anthracene	2020/01/22	99 (2)		%	30
			Benzo(a)anthracene	2020/01/22	80 (2)		%	30
			Benzo(a)pyrene	2020/01/22	78 (2)		%	30
			Benzo(b/i)fluoranthene	2020/01/22	78 (2)		%	30
			Benzo(g,h,i)pervlene	2020/01/22	80 (2)		%	30
			Benzo(k)fluoranthene	2020/01/22	NC		%	30
			Chrysene	2020/01/22	98 (2)		%	30
			Dibenzo(a h)anthracene	2020/01/22	NC		%	30
			Fluoranthene	2020/01/22	85 (2)		%	30
			Fluorene	2020/01/22	40 (3)		%	30
			Indeno(1 2 3-cd)pyrene	2020/01/22	81 (2)		%	30
			1-Methylnaphthalene	2020/01/22	11		%	30
			2-Methylnaphthalene	2020/01/22	22		%	30
			Naphthalene	2020/01/22	8.6		%	30
			Phenanthrene	2020/01/22	65 (2)		%	30
			Pyrene	2020/01/22	85 (2) 85 (2)		%	30
655097/	RI 7	Matrix Snike	o-Ternhenvl	2020/01/22	05(2)	101	%	60 - 130
000074	566		F2 (C10-C16 Hydrocarbons)	2020,01,23		98	%	50 - 130
			F3 (C16-C34 Hydrocarbons)	2020,01/23		97	%	50 - 130
			F4 (C34-C50 Hydrocarbons)	2020/01/23		2, 20	%	50 - 130
1				2020/01/20		05	/0	30 130

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
6550974	BLZ	Spiked Blank	o-Terphenyl	2020/01/23		102	%	60 - 130
			F2 (C10-C16 Hydrocarbons)	2020/01/23		102	%	60 - 130
			F3 (C16-C34 Hydrocarbons)	2020/01/23		100	%	60 - 130
			F4 (C34-C50 Hydrocarbons)	2020/01/23		97	%	60 - 130
6550974	BLZ	Method Blank	o-Terphenyl	2020/01/23		95	%	60 - 130
			F2 (C10-C16 Hydrocarbons)	2020/01/23	<100		ug/L	
			F3 (C16-C34 Hydrocarbons)	2020/01/23	<200		ug/L	
			F4 (C34-C50 Hydrocarbons)	2020/01/23	<200		ug/L	
6550974	BLZ	RPD	F2 (C10-C16 Hydrocarbons)	2020/01/23	NC		%	30
			F3 (C16-C34 Hydrocarbons)	2020/01/23	NC		%	30
			F4 (C34-C50 Hydrocarbons)	2020/01/23	NC		%	30

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

(1) The recovery was below the lower control limit. This may represent a low bias in some results for this specific analyte.

(2) Recovery or RPD for this parameter is outside control limits. The overall quality control for this analysis meets acceptability criteria.

(3) Duplicate results exceeded RPD acceptance criteria. This may be due to the sediment presented in the containers supplied. The variability in the results for flagged analytes may be more pronounced.

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Ewa Pranjic, M.Sc., C.Chem, Scientific Specialist

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

	Bureau Ver 6740 Camp	tas Laboratories obello Road, Mississauga,	Ontario Canada L5N	2L8 Tel:(905) 817	-5700 Toll-free:80	0-563-6266 Fax:	(905) 817-577	77 www.bvlabs.c	mc				с	HAIN OF CUST	TODY RECORD	Page of
	INVOICE TO:				REP	ORT TO:			1		PROJE	CT INFORM	ATION:	1	Laboratory Use	Only:
ompany Name: #9	82 Pinchin Ltd		Compa	ny Name:				Sec. 1	Quotation	1#:	A709	27	AL 10	12.1	BV Labs Job #:	Bottle Order #:
ention: AC	counts Payable		Attentio	n: Matt,	Ryan, Mike	RobMe	ckenzi	e	P.O. #:						1 1 1	
ldress: IF	nata ON K2K 3C7		Addres	s:	1		1		Project:		24	+ 896-	7.001	1. 1. 1.		729720
	13) 592-3387	- (613) 502-58	07	1101			J. KA		Project N	ame:	4	73 K	Albert St.		COC #:	Project Manager:
ail: ap(@pinchin.com	- Fax: (013) 552-56	Tet:	mkos		Fax:	Opinchin		Site #:							Alisha Williamson
MOE REGULA	ATED DRINKING WATER (R WATER INTENDE	DEOR HUMAN	ONSUMPTIO	MUSTOF			om, miyang	Sampled	By:			10)		C#729720-35-01	to a silve de
	SUBMITTED ON THE BY	LABS DRINKING W	ATER CHAIN OF	CUSTODY	N MUST BE						I IN	DE OFEOIR			Please provide advance notice f	or rush projects
Regulation 15	53 (2011)	Other Regulat	tions	Special	Instructions	cle)	pons				- F			Regular (S	Standard) TAT:	1
Table 1 Res	/Park Medium/Fine C	CME Sanitary Se	ewer Bylaw			- 10 - 5	ocar	€			to	N		(will be applie	id if Rush TAT is not specified):	1
Table 2 Ind/0	Comm Coarse	eg 558. Storm Sew	er Bylaw			/ Cr	Hydi	13-69			2	5		Please note:	r = 5-7 working days for most tests Standard TAT for certain tests such as F	OD and Dioxins/Furans are
Table 3 Agri/	/Other For RSC	ISA Municipality					enm	1 A	5		1	3	1	days - contac	t your Project Manager for details.	
—		NQO				als	etrol	AH	TRA		2	2	S	Job Specifi	c Rush TAT (if applies to entire subr	nission)
						Met	53 F	53 P	E I	Eng	6	0	-	Date Require	d: Tir	ne Required:
Cample Dave	Include Criteria on Certific	ate of Analysis (Y/N)?				Fiel	De a	teg 1	CaC	ve. 7	G	2	2	Rusii Comini	auon number.	call lab for #)
Sample Barc	code Label Sample	Location) Identification	Date Sampled	Time Sampled	Matrix		0.3	0.6	Ha	Sie	4	1	X	# of Bottles	Comm	ents
	mu	03	Jun 15	PM	GW		\times	$\times \times$	-					6	1	
	mL	14	we	Am	1	\times	\mathbf{X}	\times	5		X	\times	\times	10		×
	mu	15		ľ		\times	X	XX			X	X	\times	10	17-Jan-20	11:05
	mb	16				X	X	XX			X	X	X	10	Alisha Sullivan	
	mu	V7		em			X	XX]					6	C015237	
	MI	18		1				X						2	WYL ENV-	248
	mu	19					l l	X						2	All Adams a Andress	A. AAR Lukama
	MU	010							1					2		
	1.00	10		-+			$ \wedge $	AX	5					0		
	DU	P-4		Am			V	VV			V	\bigvee	\mathbf{X}	In		
				19			N	NA	×		A	\wedge	\land	10		Dr.C
	tri	p Blank		~			1	\checkmark						12	民国の語い	at lav
· RELING	QUISHED BY: (Signature/Print)	Date: (Y	Y/MM/DD) T	ime	RECEIVED	BY: (Signature/	Print)	Date: (V	V/MM/DD)	-	1	# iars i	used and	Labora	tonullas Onlu	
10 -	/107/11	1 Trin	17. 9:	20 4	7-15	less 1.	PN	20/	11/12	11.	DT	not su	Ibmitted Time Sensi	tive -	Custody S	eal Yes
NX	/ Mike M	51W 2	DIG A	n	N. OX	Paper	ASIN	CH 2220	101/10	00	1.51	-		temperati	Present	6
ESS OTHERWISE A	AGREED TO IN WRITING, WORK S	UBMITTED ON THIS CHAI	N OF CUSTODY IS SI	BJECT TO BY LA	S' STANDARD TE	RMS AND CONDI	TIONS. SIGN	ING OF THIS CH	AIN OF CUST	DDY DOCU	MENT IS	_		51	White:	BV Labs Yellow:
THE RESPONSIBIL	LITY OF THE RELINQUISHER TO	ENSURE THE ACCURACY	OF THE CHAIN OF C	W.BVLABS.COM/T	AN INCOMPLETE	TIONS.	ODY MAY RE	SULT IN ANALYT	ICAL TAT DE	LAYS.			SAMPLES MUST BE KEP	PT COOL (< 10° C) I TIL DELIVERY TO BY	FROM TIME OF SAMPLING LABS	
			A GAN DE VIEWEU A	A WWW.BVLABS.	JOM/RESOURCES	CHAIN-OF-CUST	ODY-FORMS.									c the
							Burea	u Veritas Canad	a (2019) Inc.			L	+1414	4	1411	CUSTORY SA

Petroleum Hydrocarbons F2-F4 in Water Chromatogram

Reference Spectrum

TYPICAL PRODUCT CARBON NUMBER RANGES

Gasoline: C6 - C12	Diesel: C10-C24	Jet Fuels: 06 - 016
Varsol: C8 - C12	Fuel Oils: C6 - C32	Creosote: C10 - C26
Kerosene: C8 - C16	Motor Oils: C16 - C50	Asphalt: C18 - C50+

Petroleum Hydrocarbons F2-F4 in Water Chromatogram

Reference Spectrum

TYPICAL PRODUCT CARBON NUMBER RANGES

Gasoline: C6 - C12	Diesel: C10-C24	Jet Fuels: 06 - 016
Varsol: C8 - C12	Fuel Oils: C6 - C32	Creosote: C10 - C26
Kerosene: C8 - C16	Motor Oils: C16 - C50	Asphalt: C18 - C50+

Petroleum Hydrocarbons F2-F4 in Water Chromatogram

Reference Spectrum

TYPICAL PRODUCT CARBON NUMBER RANGES

Gasoline: C6 - C12	Diesel: C10-C24	Jet Fuels: 06 - 016
Varsol: C8 - C12	Fuel Oils: C6 - C32	Creosote: C10 - C26
Kerosene: C8 - C16	Motor Oils: C16 - C50	Asphalt: C18 - C50+

Petroleum Hydrocarbons F2-F4 in Water Chromatogram

Reference Spectrum

TYPICAL PRODUCT CARBON NUMBER RANGES

Gasoline: C6 - C12	Diesel: C10-C24	Jet Fuels: C6 - C16
Varsol: C8 - C12	Fuel Oils: C6 - C32	Creosote: C10 - C26
Kerosene: C8 - C16	Motor Oils: C16 - C50	Asphalt: C18 - C50+

Petroleum Hydrocarbons F2-F4 in Water Chromatogram

Reference Spectrum

TYPICAL PRODUCT CARBON NUMBER RANGES

Gasoline: C6 - C12	Diesel: C10-C24	Jet Fuels: C6 - C16
Varsol: C8 - C12	Fuel Oils: C6 - C32	Creosote: C10 - C26
Kerosene: C8 - C16	Motor Oils: C16 - C50	Asphalt: C18 - C50+

Petroleum Hydrocarbons F2-F4 in Water Chromatogram

Reference Spectrum

TYPICAL PRODUCT CARBON NUMBER RANGES

Gasoline: C6 - C12	Diesel: C10-C24	Jet Fuels: 06 - 016
Varsol: C8 - C12	Fuel Oils: C6 - C32	Creosote: C10 - C26
Kerosene: C8 - C16	Motor Oils: C16 - C50	Asphalt: C18 - C50+

Petroleum Hydrocarbons F2-F4 in Water Chromatogram

Reference Spectrum

TYPICAL PRODUCT CARBON NUMBER RANGES

Gasoline: C6 - C12	Diesel: C10-C24	Jet Fuels: 06 - 016
Varsol: C8 - C12	Fuel Oils: C6 - C32	Creosote: C10 - C26
Kerosene: C8 - C16	Motor Oils: C16 - C50	Asphalt: C18 - C50+

Your Project #: 248967.001 Site Location: ALBERT Your C.O.C. #: 137898

Attention: Mike Kosiw

Pinchin Ltd Ottawa 1 Hines Road Suite 200 Kanata, ON CANADA K2K 3C7

> Report Date: 2020/02/13 Report #: R6073857 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: C038544 Received: 2020/02/12, 11:08

Sample Matrix: Water # Samples Received: 1

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Petroleum Hydrocarbons F2-F4 in Water (1, 2)	1	2020/02/13	2020/02/13	CAM SOP-00316	CCME PHC-CWS m

Remarks:

Bureau Veritas Laboratories are accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by BV Labs are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in BV Labs profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and BV Labs in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

BV Labs liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. BV Labs has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by BV Labs, unless otherwise agreed in writing. BV Labs is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by BV Labs, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) This test was performed by Bureau Veritas Laboratories Mississauga

(2) All CCME PHC results met required criteria unless otherwise stated in the report. The CWS PHC methods employed by Bureau Veritas Laboratories conform to all prescribed elements of the reference method and performance based elements have been validated. All modifications have been validated and proven equivalent following "Alberta Environment's Interpretation of the Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil Validation of Performance-Based Alternative Methods September 2003". Documentation is available upon request. Modifications from Reference Method for the Canada-wide Standard for Petroleum Hydrocarbons in Soil-Tier 1 Method: F2/F3/F4 data reported using validated cold solvent extraction instead of Soxhlet extraction.

Your Project #: 248967.001 Site Location: ALBERT Your C.O.C. #: 137898

Attention: Mike Kosiw

Pinchin Ltd Ottawa 1 Hines Road Suite 200 Kanata, ON CANADA K2K 3C7

> Report Date: 2020/02/13 Report #: R6073857 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: C038544 Received: 2020/02/12, 11:08

Encryption Key

Alisha Sullivan Project Manager 13 Feb 2020 16:51:40

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Alisha Sullivan, Project Manager Email: Alisha.Williamson@bvlabs.com Phone# (613)274-0573

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

PETROLEUM HYDROCARBONS (CCME)

BV Labs ID		LZO758		
Sampling Date		2020/02/12		
COC Number		137898		
	UNITS	MW6	RDL	QC Batch
F2-F4 Hydrocarbons				
F2 (C10-C16 Hydrocarbons)	ug/L	<100	100	6587558
F3 (C16-C34 Hydrocarbons)	ug/L	<200	200	6587558
F4 (C34-C50 Hydrocarbons)	ug/L	<200	200	6587558
Reached Baseline at C50	ug/L	Yes		6587558
Surrogate Recovery (%)				
o-Terphenyl	%	89		6587558
RDL = Reportable Detection L QC Batch = Quality Control Ba	imit itch			

TEST SUMMARY

BV Labs ID: Sample ID: Matrix:	LZO758 MW6 Water					Collected: 2020 Shipped: Received: 2020	/02/12 /02/12
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Petroleum Hydrocarbons	F2-F4 in Water	GC/FID	6587558	2020/02/13	2020/02/13	(Kent) Maolin Li	

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1 2.0°C

Results relate only to the items tested.

QUALITY ASSURANCE REPORT

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
6587558	KLI	Matrix Spike [LZO758-01]	o-Terphenyl	2020/02/13		99	%	60 - 130
			F2 (C10-C16 Hydrocarbons)	2020/02/13		94	%	50 - 130
			F3 (C16-C34 Hydrocarbons)	2020/02/13		NC	%	50 - 130
			F4 (C34-C50 Hydrocarbons)	2020/02/13		104	%	50 - 130
6587558	KLI	Spiked Blank	o-Terphenyl	2020/02/13		110	%	60 - 130
			F2 (C10-C16 Hydrocarbons)	2020/02/13		100	%	60 - 130
			F3 (C16-C34 Hydrocarbons)	2020/02/13		105	%	60 - 130
			F4 (C34-C50 Hydrocarbons)	2020/02/13		104	%	60 - 130
6587558	KLI	RPD	F2 (C10-C16 Hydrocarbons)	2020/02/13	3.0		%	30
			F3 (C16-C34 Hydrocarbons)	2020/02/13	1.3		%	30
			F4 (C34-C50 Hydrocarbons)	2020/02/13	1.1		%	30
6587558	KLI	Method Blank	o-Terphenyl	2020/02/13		99	%	60 - 130
			F2 (C10-C16 Hydrocarbons)	2020/02/13	<100		ug/L	
			F3 (C16-C34 Hydrocarbons)	2020/02/13	<200		ug/L	
			F4 (C34-C50 Hydrocarbons)	2020/02/13	<200		ug/L	

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Anastassia Hamanov, Scientific Specialist

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

RUSH 6740	Campobello Road, Mississauga, 1905-817-5700 Fax: 905-817	Ontario L5N 218 7-5779 Toll Free: 800	563-6266	7° U					137898		
CAIM I	-0-01191/5	Research former		- Investory)		IAIN OF	CUSTODY	RECORD	Page of	-	
Invoice Information		Report Informal	ion (if differs from	n invoice)	-	Project Infor	nation (where a	applicable)	Turnaround Time (TAT) Required	· · ·	
company Name: Finchin Ltd	Company f	Name:			Quotation	#:			Regular TAT (5-7 days) Most analyses		· ·
Contact Name: Mille Kosh	Contact Na	ame:			P.O. #/ AFI	E#:			PLEASE PROVIDE ADVANCE NOTICE FOR RUSH PROJECTS		
Address: Watt Ryan	Address:		SAN	NE	Project #:	2	4896	7.001	Rush TAT (Surcharges will be applied)		
				Menutation	Site Locati	on: A	-ber	+	1 Day 2 Days 3-4 Days		
Phone: 1 Holes Fax Loly	Phone:		Fax:		Site #:		1.4.41		SUPER FAST ASA	2	
Email: Id cancet	Email:				Site Locati	on Province:			Date Required: A < A P	1	
MOL REGILATED DRINKING WATER OF WATER INTERNET LOR IN MAL	CONSUMPTION MUST BE SUBSITIZED IN	N THE REPEAL VERITAS LAD	ORATORIES: DRINKOM	6 WATER CHAIN OF CUSTOR		Mit	1600	1.	Rush Confirmation #:	-	
Regulation 153	Other Regu	ulations		a manufacture of coarts	Sampled B Analysis	Requested	- Mar Si	~	LABORATORY USE ONLY	-	
Table 1 Res/Park Med/ Fine	CCME Sanitar	y Sewer Bylaw					ТТТ		CUSTODY SEAL	-	
Table 2 Table 2 Coarse	MISA Storm S	Sewer Bylaw	3					· ·	Y / N COOLER TEMPERATURES		
Table 3 Agri/ Other	PWQO Region		18/CI						Present Intact	-	
	Other (Specify)	TAT REQUIRED	D Tatks / 1	10	(S - B)						7
	REG 556 (MIN, 5 DAT	(A) nectornety	MITTE E) Me	ORGAN	S HW				8		
include citiena on certoncate of Anarysis. I T			IS SUE	2.5 IN	METAI S Metu				G.S.S		
SAMIPLES MUST BE REPT COUL (< 10 °C) FROM TIME	OF SAMPLING UNTIL DELIVERT	TO BUREAU VERITAS	FAINE	FA FAL	AETAL ICPM				COOLING MEDIA PRESENT:		
SAMPLE IDENTIFICATION	DATE SAMPLED	TIME SAMPLED MATE	CON X	x/ PHC 3 F2 3 F2 153 N	153 (153 A Cr VI,					-	2
	(TTT)/mm(DD)	(Second)	# OI	PHC VOC	REG (Hg.				COMMENTS		
1 Must	Feb12	Am 60	NX	X							240
2	2020										
3											
4									-		
									12-Feb-20 11:08	-	
				_					Alisha Sullivan	-	
6					_			II		-	
7									C038544		
8								1	KIY OTT-001		(•))
9											
10							+ + +		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	
BELINOUISHED BY / Signature / Brint)	DATE: (YYYY/MM/DD)	TIME: (HH-MM)	RECEI	VED BY: /Signature /Pri	nt)	DATE- /VVV	Y/MM/001	TIME: (HH-MAA	BV JOB #	-	
	C 1 12	111 D	()	State of Congrintere/Pri		bare. (111	i i i i i i i i i i i i i i i i i i i	. units frantienen			
Inne	teb 12	11-01	Hlish	a willia	unson	202	0/10/12	11:08			
M.KeKosih	2020		Carlo B	JULYHON -	Tom	2020/	2/13	08.00	0	: <u>*</u>	* 2
Unless otherwise agreed to in writing, work submitted on this	Chain of Custody is subject to Bu	ureau Veritas Laboratori	es' standard Term	is and Conditions. Sign	ing of this Chain	f Custody doci	ment is acknow	ledgment and acce	eptance of our terms available at http://www.bvlabs.com/terms		* e
						9 - OL					

.

- 1

Petroleum Hydrocarbons F2-F4 in Water Chromatogram

Reference Spectrum

TYPICAL PRODUCT CARBON NUMBER RANGES

Gasoline: C6 - C12	Diesel: C10-C24	Jet Fuels: C6 - C16
Varsol: C8 - C12	Fuel Olls: C6 - C32	Creosote: C10-C26
Kerosene: C8 - C16	Motor Oils: C16 - C50	Asphalt: C18 - C50+

Your Project #: 248967.001 Your C.O.C. #: 729720-47-01

Attention: Matt, Ryan, Mike

Pinchin Ltd Ottawa 1 Hines Road Suite 200 Kanata, ON CANADA K2K 3C7

> Report Date: 2020/02/21 Report #: R6083192 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: C046845 Received: 2020/02/20, 15:45

Sample Matrix: Water # Samples Received: 1

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Petroleum Hydrocarbons F2-F4 in Water (1, 2)	1	2020/02/21	2020/02/21	CAM SOP-00316	CCME PHC-CWS m

Remarks:

Bureau Veritas Laboratories are accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by BV Labs are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in BV Labs profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and BV Labs in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

BV Labs liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. BV Labs has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by BV Labs, unless otherwise agreed in writing. BV Labs is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by BV Labs, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) This test was performed by Bureau Veritas Laboratories Mississauga

(2) All CCME PHC results met required criteria unless otherwise stated in the report. The CWS PHC methods employed by Bureau Veritas Laboratories conform to all prescribed elements of the reference method and performance based elements have been validated. All modifications have been validated and proven equivalent following "Alberta Environment's Interpretation of the Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil Validation of Performance-Based Alternative Methods September 2003". Documentation is available upon request. Modifications from Reference Method for the Canada-wide Standard for Petroleum Hydrocarbons in Soil-Tier 1 Method: F2/F3/F4 data reported using validated cold solvent extraction instead of Soxhlet extraction.

Your Project #: 248967.001 Your C.O.C. #: 729720-47-01

Attention: Matt, Ryan, Mike

Pinchin Ltd Ottawa 1 Hines Road Suite 200 Kanata, ON CANADA K2K 3C7

> Report Date: 2020/02/21 Report #: R6083192 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: C046845 Received: 2020/02/20, 15:45

Encryption Key

Alisha Sullivan Project Manager 21 Feb 2020 16:22:06

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Alisha Sullivan, Project Manager Email: Alisha.Williamson@bvlabs.com Phone# (613)274-0573

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

PETROLEUM HYDROCARBONS (CCME)

BV Labs ID		MBI537		
Sampling Date		2020/02/20		
COC Number		729720-47-01		
	UNITS	MW6	RDL	QC Batch
F2-F4 Hydrocarbons				
F2 (C10-C16 Hydrocarbons)	ug/L	<100	100	6599521
F3 (C16-C34 Hydrocarbons)	ug/L	<200	200	6599521
F4 (C34-C50 Hydrocarbons)	ug/L	<200	200	6599521
Reached Baseline at C50	ug/L	Yes		6599521
Surrogate Recovery (%)				
o-Terphenyl	%	100		6599521
RDL = Reportable Detection L	imit			
QC Batch = Quality Control Ba	atch			

TEST SUMMARY

BV Labs ID: Sample ID: Matrix:	MBI537 MW6 Water					Collected: 2020/02/20 Shipped: Received: 2020/02/20
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Petroleum Hydrocarbons	F2-F4 in Water	GC/FID	6599521	2020/02/21	2020/02/21	(Kent) Maolin Li

GENERAL COMMENTS

Each te	emperature is the ave	erage of up to th	ree cooler temperatures taken at receipt
	Package 1	2.0°C	
Results	relate only to the it	ems tested.	

QUALITY ASSURANCE REPORT

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
6599521	KLI	Matrix Spike [MBI537-01]	o-Terphenyl	2020/02/21		106	%	60 - 130
			F2 (C10-C16 Hydrocarbons)	2020/02/21		107	%	50 - 130
			F3 (C16-C34 Hydrocarbons)	2020/02/21		NC	%	50 - 130
			F4 (C34-C50 Hydrocarbons)	2020/02/21		100	%	50 - 130
6599521	KLI	Spiked Blank	o-Terphenyl	2020/02/21		80	%	60 - 130
			F2 (C10-C16 Hydrocarbons)	2020/02/21		92	%	60 - 130
			F3 (C16-C34 Hydrocarbons)	2020/02/21		85	%	60 - 130
			F4 (C34-C50 Hydrocarbons)	2020/02/21		88	%	60 - 130
6599521	KLI	RPD	F2 (C10-C16 Hydrocarbons)	2020/02/21	6.9		%	30
			F3 (C16-C34 Hydrocarbons)	2020/02/21	4.0		%	30
			F4 (C34-C50 Hydrocarbons)	2020/02/21	1.6		%	30
6599521	KLI	Method Blank	o-Terphenyl	2020/02/21		81	%	60 - 130
			F2 (C10-C16 Hydrocarbons)	2020/02/21	<100		ug/L	
			F3 (C16-C34 Hydrocarbons)	2020/02/21	<200		ug/L	
			F4 (C34-C50 Hydrocarbons)	2020/02/21	<200		ug/L	

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Ewa Pranjic, M.Sc., C.Chem, Scientific Specialist

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

A1	20-Feb-20 15:45 isha Sullivan			Presence of Visible Particulate/Sediment Maxxam Analytics CAM FCD-01013/5 Page 1 of 1 When there is >1cm of visible particulate/sediment, the amount will be recorded in the field below														the fie	•					1												
	C040045														~ B	ottle	Types																			
)_L	ENV-1219	_		h	norgan	ics						0	rgani	CS							Hydr	ocarb	ions				Volat	tiles	C	Other		3				
	Sample ID	All	CrVI	CN	General	Hg	Metals (Diss.)	Organic 1 of 2	Organic 2 of 2	PCB 1 of 2	PCB 2 of 2	Pest/ Herb 1 of 2	Pest/ Herb 2 of 2	SVOC/ ABN 1 of 2	SVOC/ ABN 2 of 2	PAH 1 of 2	PAH 2 of 2	Dioxin /Furan	F1 Vital 1	F1 Vial 2	F1 Vial 3	F1 Vial 4	F2-F4 1 of 2	F2-F4 2 of 2	F4G	voc vial 1	VOC Vial 2	VOC Vial 3	VOC Vial 4							
	MW6	TS														×					-							1								
																							ж						-							
																													-							
								5																												
																				~		~	84							_					~	
																			•												<i>1</i> 0					
																	E	*																	-	
-																																				
																	-											-		-						
		-														-		·						_			_	_								
																									_					_						
Co	omments:			,	1																		h. 1												•	
-		Leg	end:											1								3			_											
		P	Suspe	nded P	articulat	ė.								1	R	ecord	led By	: (signat	ture/pri	nt)	1	-	1		T	in	y.L	1	$= e^{i \frac{1}{2} \frac{1}{2}}$							
		TS	Trace	Settlec	Sedimer	nt (just	covers b	ottom of	contain	er or le	ss)														/	/							,			
		2	Jean											1																		¥				
	1									_														_	_			ĩ	_	_						

ERITAS					REPO	RT TO:						PROJECT	INFORMATION:			0.040	3043	
	INVO	ICE TO:			REPU					Oustation #		A70927	7			E	NV-1219	ottle Order #:
any Name	#982 Pinchin Ltd		Com	any Name:	att Rvan Mike	-		-		PO #	4				1_T	, Е	IN V-1217	
on:	Accounts Payable	000	Atter	tion:	att, Ttyan, mixe		-			Project:		20	+8967.0	100				729720
S:	1 Hines Road Suite	7	Add	ess:			8			Project Nan	ne:			_			COC #:	Project manager.
	(612) 502 3387	(613) 592-	-5897 Tel			Fax		Sec		Site #:		-						Alisha Williamson
	an@ninchin.com	Fax: (010/022	Ema	i: mł	kosiw@Pinchin.co	m, rlaronde(pinchin.	.com; m	ryan@	Sampled B	y:	- 73	73.	-			C#729720-47-01	Required:
		MATER OR WATER INTEN	DED FOR HUMA	CONSUMPT	TION MUST BE				ANA	LYSIS REC	UESTED	PLEASE BE	E SPECIFIC)	1	1 A 7		Please provide advance notice	for rush projects
OE RE	SUBMITTED OF	THE BV LABS DRINKING	WATER CHAIN O	F CUSTODY			<u>8</u>				•					Regular (St	tandard) TAT:	
Deput	tion 153 (2011)	Other Reg	julations	Spe	cial Instructions	aircle	arbor	-			-					(will be applied	d if Rush TAT is not specified);	
Regula	Res/Park Medium/F	ine CCME Sanitan	y Sewer Bylaw			Se c	droca	(Soil)								Standard TAT	= 5-7 Working days for most tests	BOD and Dioxins/Furans are > 5
le 2	Ind/Comm Coarse	Reg 558. Storm S	Sewer Bylaw			plea g / C	AT T	완	(lio	-						days - contact	your Project Manager for details.	
le 3	Agri/Other For RSC	MISA Municipalit	ty			H/	oleur	Cs b)	ts (S	RAC						Job Specific	Rush TAT (if applies to entire sub	omission)
le /		PWQO				Itter	2 Petr	NOV	PAF	EXT	ε	*				Date Required	" _EUSTA	API A
		Other				pie W	153	g 153	g 150	aC(2	s, 75 ₁					Rush Coniim	auon Number.	(call lab for #)
	Include Criteria	on Certificate of Analysis (Y	<u> </u>	i Time Com	malad Matrix	- Ĕ	Sell)	D.Rei	D.Rei	U U	Sieve					# of Bottles	Com	ments
San	ple Barcode Label	Sample (Location) Identification	n Date Samp	ed time sam	Indiana International	-						· ·				2		
		mwb	1001	LO AV	n 62		\wedge							_		~		
																	· · · · · · · · · · · · · · · · · · ·	
				_			-										1	
								-										
						-	-	-								-		
							-											
											-							
		÷										1					02	nice.
																	-	
				Time	RECEIVE	D BY: (Signatur	p/Print)	1 1	Date: (YY	/MM/DD)	1	Time -	# jars used and	1.1	1.0	Labor	atory Use Only	Vas No
	* RELINQUISHED BY: (Sig	nature/Print) Da		IN'YE	G7. CO	50 15	0-		20/02	10	15	:45	not submitted	Time	Sensitive	Tempera	ature (°C) on Recei	ent X
/	n/	ALLANT	egro	0.15	12/200	de leg	T-JA	112	20201	02/21	ĐX	100				di	d d Inta	act X

Pinchin Ltd Client Project #: 248967.001 Client ID: MW6

Petroleum Hydrocarbons F2-F4 in Water Chromatogram

Reference Spectrum

Gasoline: Varsol: Kerosene:

TYPICAL PRODUCT CARBON NUMBER RANGES

C6 - C12	Diesel: C10-C24	Jet Fuels: 06 - 016			
C8 - C12	Fuel Oils: C6 - C32	Creosote: C10 - C26			
C8 - C16	Motor Oils: C16 - C50	Asphalt: C18 - C50+			

RELIABLE.

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Certificate of Analysis

Paterson Group Consulting Engineers

154 Colonnade Road South Nepean, ON K2E 7J5 Attn: Karyn Munch

Client PO: 30068 Project: PE4908 Custody: 125759

Report Date: 26-Jun-2020 Order Date: 19-Jun-2020

Order #: 2026016

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID 2026016-01

Client ID BH1A-GW1

Approved By:

Dale Robertson, BSc Laboratory Director

Any use of these results implies your agreement that our total liability in connection with this work, however arising, shall be limited to the amount paid by you for this work, and that our employees or agents shall not under any circumstances be liable to you in connection with this work.

Certificate of Analysis Client: Paterson Group Consulting Engineers Client PO: 30068 Report Date: 26-Jun-2020 Order Date: 19-Jun-2020

Order #: 2026016

Project Description: PE4908

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date	Analysis Date
PHC F1	CWS Tier 1 - P&T GC-FID	22-Jun-20	22-Jun-20
PHCs F2 to F4	CWS Tier 1 - GC-FID, extraction	25-Jun-20	25-Jun-20
REG 153: VOCs by P&T GC/MS	EPA 624 - P&T GC-MS	22-Jun-20	22-Jun-20

OTTAWA • MISSISSAUGA • HAMILTON • CALGARY • KINGSTON • LONDON • NIAGARA • WINDSOR • RICHMOND HILL

Certificate of Analysis Client: Paterson Group Consulting Engineers

Client PO: 30068

Order #: 2026016

Report Date: 26-Jun-2020

Order Date: 19-Jun-2020

Project Description: PE4908

Client ID: BH1A-GW1 -Sample Date: 11-Jun-20 09:00 --2026016-01 Sample ID: MDL/Units Water -. Volatiles Acetone 5.0 ug/L <5.0 _ _ -0.5 ug/L Benzene < 0.5 _ _ _ 0.5 ug/L Bromodichloromethane < 0.5 _ 0.5 ug/L Bromoform <0.5 _ _ _ 0.5 ug/L Bromomethane <0.5 _ _ 0.2 ug/L Carbon Tetrachloride <0.2 _ --0.5 ug/L Chlorobenzene < 0.5 ---0.5 ug/L Chloroform 7.1 ---Dibromochloromethane 0.5 ug/L <0.5 _ --1.0 ug/L Dichlorodifluoromethane 7.2 --_ 0.5 ug/L 1,2-Dichlorobenzene <0.5 _ 0.5 ug/L 1,3-Dichlorobenzene <0.5 _ _ 0.5 ug/L 1,4-Dichlorobenzene < 0.5 _ _ _ 0.5 ug/L 1 1-Dichloroethane < 0.5 _ _ -1,2-Dichloroethane 0.5 ug/L < 0.5 _ -_ 0.5 ug/L 1,1-Dichloroethylene <0.5 _ _ -0.5 ug/L cis-1,2-Dichloroethylene < 0.5 _ _ _ 0.5 ug/L trans-1,2-Dichloroethylene < 0.5 _ 0.5 ug/L 1,2-Dichloropropane <0.5 _ _ _ 0.5 ug/L cis-1,3-Dichloropropylene <0.5 _ 0.5 ug/L trans-1,3-Dichloropropylene <0.5 _ _ _ 0.5 ug/L 1,3-Dichloropropene, total < 0.5 -_ _ Ethylbenzene 0.5 ug/L <0.5 ---Ethylene dibromide (dibromoethane, 1,2-) 0.2 ug/L < 0.2 ---1.0 ug/L Hexane <1.0 ---5.0 ug/L Methyl Ethyl Ketone (2-Butanone) <5.0 _ 5.0 ug/L Methyl Isobutyl Ketone <5.0 _ _ 2.0 ug/L Methyl tert-butyl ether <2.0 _ _ 5.0 ug/L Methylene Chloride <5.0 _ _ _ 0.5 ug/L Styrene < 0.5 -_ -1,1,1,2-Tetrachloroethane 0.5 ug/L < 0.5 _ _ -0.5 ug/L 1,1,2,2-Tetrachloroethane <0.5 _ _ _ 0.5 ug/L Tetrachloroethylene < 0.5 -_ 0.5 ug/L Toluene < 0.5 -_ 0.5 ug/L 1,1,1-Trichloroethane <0.5 _ _ _

OTTAWA • MISSISSAUGA • HAMILTON • CALGARY • KINGSTON • LONDON • NIAGARA • WINDSOR • RICHMOND HILL

Certificate of Analysis Client: Paterson Group Consulting Engineers Client PO: 30068

Order #: 2026016

Report Date: 26-Jun-2020

Order Date: 19-Jun-2020

Project Description: PE4908

	-				
	Client ID:	BH1A-GW1	-	-	-
	Sample Date:	11-Jun-20 09:00	-	-	-
	Sample ID:	2026016-01	-	-	-
	MDL/Units	Water	-	-	-
1,1,2-Trichloroethane	0.5 ug/L	<0.5	-	-	-
Trichloroethylene	0.5 ug/L	<0.5	-	-	-
Trichlorofluoromethane	1.0 ug/L	<1.0	-	-	-
Vinyl chloride	0.5 ug/L	<0.5	-	-	-
m,p-Xylenes	0.5 ug/L	<0.5	-	-	-
o-Xylene	0.5 ug/L	<0.5	-	-	-
Xylenes, total	0.5 ug/L	<0.5	-	-	-
4-Bromofluorobenzene	Surrogate	122%	-	-	-
Dibromofluoromethane	Surrogate	87.1%	-	-	-
Toluene-d8	Surrogate	110%	-	-	-
Hydrocarbons					
F1 PHCs (C6-C10)	25 ug/L	<25	-	-	-
F2 PHCs (C10-C16)	100 ug/L	<100	-	-	-
F3 PHCs (C16-C34)	100 ug/L	<100	-	-	-
F4 PHCs (C34-C50)	100 ug/L	<100	_	-	_

OTTAWA • MISSISSAUGA • HAMILTON • CALGARY • KINGSTON • LONDON • NIAGARA • WINDSOR • RICHMOND HILL

Method Quality Control: Blank

Order #:	2026016

Report Date: 26-Jun-2020

Order Date: 19-Jun-2020

Project Description: PE4908

	Reporting			Source %REC								
Analyte	Result	Limit	Units	Result	%REC	Limit	RPD	Limit	Notes			
Hydrocarbons												
F1 PHCs (C6-C10)	ND	25	ua/L									
Volatiles		20	~g, _									
		5.0										
Acetone	ND	5.0	ug/L									
Benzene	ND	0.5	ug/L									
Bromodicniorometnane	ND	0.5	ug/L									
Bromotorm	ND	0.5	ug/L									
Bromomethane	ND	0.5	ug/L									
	ND	0.2	ug/L									
Chlorobenzene	ND	0.5	ug/L									
Chloroform	ND	0.5	ug/L									
Dibromochloromethane	ND	0.5	ug/L									
Dichlorodifluoromethane	ND	1.0	ug/L									
1,2-Dichlorobenzene	ND	0.5	ug/L									
1,3-Dichlorobenzene	ND	0.5	ug/L									
1,4-Dichlorobenzene	ND	0.5	ug/L									
1,1-Dichloroethane	ND	0.5	ug/L									
1,2-Dichloroethane	ND	0.5	ug/L									
1,1-Dichloroethylene	ND	0.5	ug/L									
cis-1,2-Dichloroethylene	ND	0.5	ug/L									
trans-1,2-Dichloroethylene	ND	0.5	ug/L									
1,2-Dichloropropane	ND	0.5	ug/L									
cis-1,3-Dichloropropylene	ND	0.5	ug/L									
trans-1,3-Dichloropropylene	ND	0.5	ug/L									
1,3-Dichloropropene, total	ND	0.5	ug/L									
Ethylbenzene	ND	0.5	ug/L									
Ethylene dibromide (dibromoethane, 1,2-	ND	0.2	ug/L									
Hexane	ND	1.0	ug/L									
Methyl Ethyl Ketone (2-Butanone)	ND	5.0	ug/L									
Methyl Isobutyl Ketone	ND	5.0	ug/L									
Methyl tert-butyl ether	ND	2.0	ug/L									
Methylene Chloride	ND	5.0	ug/L									
Styrene	ND	0.5	ug/L									
1,1,1,2-Tetrachloroethane	ND	0.5	ug/L									
1,1,2,2-Tetrachloroethane	ND	0.5	ug/L									
Tetrachloroethylene	ND	0.5	ug/L									
Toluene	ND	0.5	ug/L									
1,1,1-Trichloroethane	ND	0.5	ug/L									
1,1,2-Trichloroethane	ND	0.5	ug/L									
Trichloroethylene	ND	0.5	ug/L									
Trichlorofluoromethane	ND	1.0	ug/L									
Vinyl chloride	ND	0.5	ug/L									
m,p-Xylenes	ND	0.5	ug/L									
o-Xylene	ND	0.5	ug/L									
Xylenes, total	ND	0.5	ug/L									
Surrogate: 4-Bromotluorobenzene	97.9		ug/L		122	50-140						
Surrogate: Dibromofluoromethane	72.0		ug/L		90.0	50-140						
Surrogate: Toluene-d8	90.9		ug/L		114	50-140						

Method Quality Control: Duplicate

Report Date: 26-Jun-2020

Order Date: 19-Jun-2020

Project Description: PE4908

		Reporting		Source		%REC		RPD	
Analyte	Result	Limit	Units	Result	%REC	Limit	RPD	Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	ND	25	ug/L	ND			NC	30	
Volatiles			Ū						
Acetone	ND	5.0	ua/l	ND			NC	30	
Benzene		0.5	ug/L				NC	30	
Bromodichloromethane		0.5	ug/L				NC	30	
Bromoform		0.5	ug/L				NC	30	
Bromomothono		0.5	ug/L				NC	30	
Carbon Tetrachloride		0.5	ug/L				NC	30	
Chlorobanzana		0.2	ug/L				NC	30	
Chloroform		0.5	ug/L				NC	20	
Dibromochleromothano		0.5	ug/L				NC	30	
Diblomocilloiomethane		0.5	ug/L				NC	30	
		1.0	ug/L				NC	30	
1,2-Dichlorobenzene		0.5	ug/L				NC	30	
		0.5	ug/L				NC	30	
		0.5	ug/L				NC	30	
		0.5	ug/L				NC	30	
		0.5	ug/L				NC	30	
		0.5	ug/L				NC	30	
cis-1,2-Dichloroethylene		0.5	ug/L				NC	30	
		0.5	ug/L				NC	30	
i,2-Dichloropropane		0.5	ug/L				NC	30	
cis-1,3-Dichloropropylene		0.5	ug/L				NC	30	
		0.5	ug/L				NC	30	
	ND	0.5	ug/L	ND			NC	30	
Etnylene dibromide (dibromoetnane, 1,2	ND	0.2	ug/L	ND			NC	30	
Hexane	ND	1.0	ug/L	ND			NC	30	
Methyl Ethyl Ketone (2-Butanone)	ND	5.0	ug/L	ND			NC	30	
Methyl Isobutyl Ketone	ND	5.0	ug/L	ND			NC	30	
Methyl tert-butyl ether	ND	2.0	ug/L	ND			NC	30	
Methylene Chloride	ND	5.0	ug/L	ND			NC	30	
Styrene	ND	0.5	ug/L	ND			NC	30	
1,1,1,2- letrachloroethane	ND	0.5	ug/L	ND			NC	30	
1,1,2,2- letrachloroethane	ND	0.5	ug/L	ND			NC	30	
Tetrachloroethylene	ND	0.5	ug/L	ND			NC	30	
Toluene	ND	0.5	ug/L	ND			NC	30	
1,1,1-Trichloroethane	ND	0.5	ug/L	ND			NC	30	
1,1,2-Trichloroethane	ND	0.5	ug/L	ND			NC	30	
Trichloroethylene	ND	0.5	ug/L	ND			NC	30	
Trichlorofluoromethane	ND	1.0	ug/L	ND			NC	30	
Vinyl chloride	ND	0.5	ug/L	ND			NC	30	
m,p-Xylenes	ND	0.5	ug/L	ND			NC	30	
o-Xylene	ND	0.5	ug/L	ND			NC	30	
Surrogate: 4-Bromofluorobenzene	93.4		ug/L		117	50-140			
Surrogate: Dibromofluoromethane	70.4		ug/L		87.9	50-140			
Surrogate: Toluene-d8	74.5		ua/L		93.2	50-140			

Γ

Certificate of Analysis Client: Paterson Group Consulting Engineers Client PO: 30068

Method Quality Control: Spike

Report Date: 26-Jun-2020

Order Date: 19-Jun-2020

Project Description: PE4908

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	1760	25	ug/L	ND	88.1	68-117			
Volatiles			Ū						
Acetone	121	5.0	ua/l		121	50-140			
Benzene	41.0	0.5	ug/L		103	60-130			
Bromodichloromethane	45.4	0.5	ug/L	ND	114	60-130			
Bromoform	42.6	0.5	ug/L		106	60-130			
Bromomethane	46.0	0.5	ug/L		115	50-130			
	45.5	0.0	ug/L		114	60-130			
Chlorobenzene	40.0	0.5	ug/L		110	60-130			
Chloroform	44.0	0.5	ug/L		114	60 130			
Dibromochloromethane	45.7	0.5	ug/L		114	60 130			
Dichlorodifluoromethane	44.3	1.0	ug/L		115	50 140			
	40.1	1.0	ug/∟	ND	110	50-140 60-120			
1,2-Dichlorobenzene	44.0	0.5	ug/L	ND	100	60 130			
	40.9	0.5	ug/L	ND	122	60 130			
	39.4	0.5	ug/L	ND	90.0	00-130			
1, 1-Dichloroethane	42.3	0.5	ug/L	ND	100	60 130			
	44.2	0.5	ug/L	ND	01.7	00-130			
	30.7	0.5	ug/L	ND	91.7	60-130			
	49.4	0.5	ug/L	ND	123	60-130			
trans-1,2-Dichloroethylene	39.9	0.5	ug/L	ND	99.7	60-130			
1,2-Dichloropropane	38.8	0.5	ug/L	ND	97.0	60-130			
cis-1,3-Dichloropropylene	40.0	0.5	ug/L	ND	99.9	60-130			
trans-1,3-Dicnioropropylene	41.2	0.5	ug/L	ND	103	60-130			
Ethylbenzene	45.9	0.5	ug/L	ND	115	60-130			
Ethylene dibromide (dibromoethane, 1,2	41.7	0.2	ug/L	ND	104	60-130			
Hexane	49.3	1.0	ug/L	ND	123	60-130			
Methyl Ethyl Ketone (2-Butanone)	89.4	5.0	ug/L	ND	89.4	50-140			
Methyl Isobutyl Ketone	101	5.0	ug/L	ND	101	50-140			
Methyl tert-butyl ether	122	2.0	ug/L	ND	122	50-140			
Methylene Chloride	45.8	5.0	ug/L	ND	115	60-130			
Styrene	42.9	0.5	ug/L	ND	107	60-130			
1,1,1,2- letrachioroethane	40.2	0.5	ug/L	ND	101	60-130			
1,1,2,2- letrachloroethane	40.6	0.5	ug/L	ND	102	60-130			
	45.0	0.5	ug/L	ND	112	60-130			
	45.6	0.5	ug/L	ND	114	60-130			
1,1,1-Irichloroethane	48.9	0.5	ug/L	ND	122	60-130			
1,1,2-Irichloroethane	46.9	0.5	ug/L	ND	117	60-130			
Irichloroethylene	44.4	0.5	ug/L	ND	111	60-130			
Irichlorofluoromethane	43.9	1.0	ug/L	ND	110	60-130			
Vinyl chloride	44.1	0.5	ug/L	ND	110	50-140			
m,p-Xylenes	98.4	0.5	ug/L	ND	123	60-130			
o-Xylene	48.5	0.5	ug/L	ND	121	60-130			
Surrogate: 4-Bromofluorobenzene	62.2		ug/L		77.7	50-140			
Surrogate: Dibromotiuoromethane	70.3		ug/L		87.9	50-140			
Surroyale. Toluerie-uo	08.U		ug/L		03.0	50-140			

Qualifier Notes:

None

Sample Data Revisions

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected MDL: Method Detection Limit Source Result: Data used as source for matrix and duplicate samples %REC: Percent recovery. RPD: Relative percent difference. NC: Not Calculated

CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.

- F1 range corrected for BTEX.

- F2 to F3 ranges corrected for appropriate PAHs where available.
- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.
- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.
- When reported, data for F4G has been processed using a silica gel cleanup.

	Paracel ID:	2026016	6016 Head Office 300-2319 St. Laurent Blvd. Ottawa, Ontario K1G 4J8 Paracel Order Number (Lab Use Only) p: 1-800-749-1947 e: paracel@paracellabs.com www.paracellabs.com 2226216							mber) G		Chain Of Custody (Lab Use Only) Nº 125759								
Client Name: PATERSON				Project	t Ref:	2E4908							Page / of							
Contact Name: KARYN MUN	(cH			Quote	#:				ĵ					Turnaround Time						
Address: 154 Coloni	nade Road			PO #: E-mail	30	1068 marked 60 c	late to			(0			-	□ 1 day				□ 3 da Z Regu	/ .lar	
Telephone: 613-226-7381													D	ate f	lequir	red:			2	=
Regulation 153/04	Other Reg	ulation	. N	Matrix Type: S (Soil/Sed.) GW (Ground Water)									R	equir	ed Ar	nalysis				
Table 1 Res/Park Med/Fine Table 2 Ind/Comm Coarse	REG 558 CCME	PWQ0 MISA	S	W (Su	rface V P (P	/ater) SS (Storm/Sar aint) A (Air) O (Oth	nitary Sewer) Ier)		·					T	Τ	T				
Table 3 Agri/Other Table	SU - Sani Mun:	SU - Storm		nme	ontainers	Sample	Taken	F1-F4+BTE	17		s by ICP			2	Ŧ					
For RSC: Yes No	Other:		latrix	ir Vol	of Co	Date	Time	-HCs-	ocs	AHS	Aetal	g	Σ	S.	23					
Sample ID/Locatio	on Name		2	4	#	Date	Time	-	$\overline{}$	<u>а</u>	2	T				-+			1	
1 ISHIA-GWI			600	-	5	June 17 20		-	^	-	Н	+	+	+		+		, . I	1	
2	n An an	n			14	a the second of	1 - M - 1		1	5.K	-	- 1	+	┢	10		-	48		
4	<u>.</u>			7					t		H			┢	+	+		-		
5						-			t				+	┢	+	+			1	
6				, , , , , , , , , , , , , , , , , , ,					T											
7	1																		. 1	
8																			j.	
9	La la constante de la constante La constante de la constante de La constante de la constante de			·		6				1										
10																			-	
Comments:										2			Metho	thod of Delivery:						
Relinquished By (Ster):		Received By Driver/De				a a masta anarese	Received at Lab	1		2	_		Verifie	rerified By:						
Relinquisted By (Print):	187	Date/Time:				Date/Time:				6-19-20/7/2 Dat					hate/Time: 05-22-2091SU					
Chain of Custody (Env.) xlsx	ere	remperature:	Revision 3.0	19,9						pir ver										

RELIABLE.

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Certificate of Analysis

Paterson Group Consulting Engineers

154 Colonnade Road South Nepean, ON K2E 7J5 Attn: Karyn Munch

Client PO: 26343 Project: PE4908 Custody: 125484

Report Date: 19-May-2020 Order Date: 15-May-2020

Order #: 2020379

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID 2020379-01 2020379-02 2020379-03

Client ID BH2-20-GW1 BH3-20-GW1 Dup1

Approved By:

Dale Robertson, BSc Laboratory Director

Any use of these results implies your agreement that our total liability in connection with this work, however arising, shall be limited to the amount paid by you for this work, and that our employees or agents shall not under any circumstances be liable to you in connection with this work.

Report Date: 19-May-2020 Order Date: 15-May-2020

Order #: 2020379

Project Description: PE4908

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date	Analysis Date
BTEX by P&T GC-MS	EPA 624 - P&T GC-MS	16-May-20	16-May-20
PHC F1	CWS Tier 1 - P&T GC-FID	15-May-20	16-May-20
PHCs F2 to F4	CWS Tier 1 - GC-FID, extraction	15-May-20	15-May-20

Client PO: 26343

Order #: 2020379

Report Date: 19-May-2020

Order Date: 15-May-2020

Project Description: PE4908

	-				
	Client ID:	BH2-20-GW1	BH3-20-GW1	Dup1	-
	Sample Date:	14-May-20 09:00	14-May-20 09:00	14-May-20 09:00	-
	Sample ID:	2020379-01	2020379-02	2020379-03	-
	MDL/Units	Water	Water	Water	-
Volatiles			•		
Benzene	0.5 ug/L	<0.5	<0.5	<0.5	-
Ethylbenzene	0.5 ug/L	<0.5	<0.5	<0.5	-
Toluene	0.5 ug/L	<0.5	<0.5	<0.5	-
m,p-Xylenes	0.5 ug/L	<0.5	<0.5	<0.5	-
o-Xylene	0.5 ug/L	<0.5	<0.5	<0.5	-
Xylenes, total	0.5 ug/L	<0.5	<0.5	<0.5	-
Toluene-d8	Surrogate	113%	108%	116%	-
Hydrocarbons					
F1 PHCs (C6-C10)	25 ug/L	<25	<25	<25	-
F2 PHCs (C10-C16)	100 ug/L	<100	<100	<100	_
F3 PHCs (C16-C34)	100 ug/L	<100	<100	<100	-
F4 PHCs (C34-C50)	100 ug/L	<100	<100	<100	_

Order #: 2020379

Report Date: 19-May-2020

Order Date: 15-May-2020

Project Description: PE4908

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	ND	25	ug/L						
F2 PHCs (C10-C16)	ND	100	ug/L						
F3 PHCs (C16-C34)	ND	100	ug/L						
F4 PHCs (C34-C50)	ND	100	ug/L						
Volatiles									
Benzene	ND	0.5	ug/L						
Ethylbenzene	ND	0.5	ug/L						
Toluene	ND	0.5	ug/L						
m,p-Xylenes	ND	0.5	ug/L						
o-Xylene	ND	0.5	ug/L						
Xylenes, total	ND	0.5	ug/L						
Surrogate: Toluene-d8	89.0		ug/L		111	50-140			

Order #: 2020379

Report Date: 19-May-2020

Order Date: 15-May-2020

Project Description: PE4908

Method Quality Control: Duplicate

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	ND	25	ug/L	ND			NC	30	
Volatiles									
Benzene	ND	0.5	ug/L	ND			NC	30	
Ethylbenzene	ND	0.5	ug/L	ND			NC	30	
Toluene	ND	0.5	ug/L	ND			NC	30	
m,p-Xylenes	ND	0.5	ug/L	ND			NC	30	
o-Xylene	ND	0.5	ug/L	ND			NC	30	
Surrogate: Toluene-d8	93.0		ug/L		116	50-140			

Report Date: 19-May-2020

Order Date: 15-May-2020

Project Description: PE4908

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	1690	25	ug/L	ND	84.6	68-117			
F2 PHCs (C10-C16)	1690	100	ug/L	ND	106	60-140			
F3 PHCs (C16-C34)	4500	100	ug/L	ND	115	60-140			
F4 PHCs (C34-C50)	2740	100	ug/L	ND	110	60-140			
Volatiles									
Benzene	25.5	0.5	ug/L	ND	63.7	60-130			
Ethylbenzene	38.7	0.5	ug/L	ND	96.7	60-130			
Toluene	36.9	0.5	ug/L	ND	92.2	60-130			
m,p-Xylenes	80.4	0.5	ug/L	ND	100	60-130			
o-Xylene	41.7	0.5	ug/L	ND	104	60-130			
Surrogate: Toluene-d8	77.0		ug/L		96.2	50-140			

Login Qualifiers :

Container(s) - Labeled improperly/insufficient information - Bottles read May 14th Applies to samples: BH2-20-GW1, BH3-20-GW1, Dup1

Sample Data Revisions

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable
ND: Not Detected
MDL: Method Detection Limit
Source Result: Data used as source for matrix and duplicate samples
%REC: Percent recovery.
RPD: Relative percent difference.
NC: Not Calculated

CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.

- F1 range corrected for BTEX.

- F2 to F3 ranges corrected for appropriate PAHs where available.

- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.

- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.

- When reported, data for F4G has been processed using a silica gel cleanup.

					Laurent Blvd. tario K1G 4J8 9-1947 paracellabs.com 7200					Paracel Order Number (Lab Use Only) 202379					Chain Of Custody (Lab Use Only) N° 125484					
Client Name: Patersong	roup			Proje	ct Ref:	PE4908	1.5.		ł	1	L	4	Page of							
Contact Name: Karyn & E	inic	8 1 1	245	Quote	e #:			1			Γ.	1		Turnaround Time						
Address: 154 COLONN	DERD	11		PO #:	24	343	at a se	-130	8	÷.	2			🗆 1 day 🔲 3 day						
OTHUAC	out	$n + \dots$	1	E-mai	: Kn	unchepe	itersong	noup) • c	a	Q	0		□ 2	day			Regula		
Telephone: 226-73e	51		2at	cierczoco patersongroup.ca									C	Date Required:						
Regulation 153/04	Regulation 153/04 Other Regulation			Matrix Type: S (Soii/Sed) GW (Ground Water)																
Table 1 Res/Park Med/Fine	🕑 REG 558	PWQ0	kta (SW (Su	V (Surface Water) SS (Storm/Sanitary Sewer)								R	quire	a Anan	1515				
Table 2 Ind/Comm Coarse	CCME				P (P	aint) A (Air) O (Uther)													
Table 3 Agri/Other	🗆 SU - Sani	SU - Storm			ners	al de serie), price ((1999) 1 – 1 77	+BTE	17		e U	- 4	1	api -	án rsti	P. A	and	0		
	Mun:	i in the second	JI	lume	ontai	Samp	ble Taken	F1-F4	Etty		s by l	nia)	1.15	0	- a trees	a	s ja			
Sample ID/Locatio	n Name	mi. I	Matrix	Air Vo	t of C	Date	Time	- HCS	/ocs	AHs	Metal	1g	2	ALLI						
1 BHZ - 20 - 6-41		1/201-1.	(+W		3	Manuel	12020	V	ŕ	a.	2	-		-	10.0	n heite. "	3257 - 0			
2 BH3-20-GW	7-1-06-28	1994	GW	13	3	10 7	11	V	17	Η		+	+	list.	12805-	1.35	: Salar	di T		
3 DUPI			Cow	201	3	11	1.1	V	1						1	-				
4					í.					15			52		7	1 1 2	382 C			
5			and the second second			in differences of the second	2 - Den trade and						1				de serve à			
6			-	4 4 4 4	T PPERTY						+	+	+	╟─	+	\vdash	an faire an			
7 - and stellage and solver	y . Anton	A. I			. 67	1	1			Ì	+	+	+	┢						
8											+	+	+	┢	+		0.703			
9 No. data mar taxta	6 1 254 200	112			£3.	(t) and and () a	t i neval	il.			+	+	+	┢	+		n da			
10											+	-	+			-		1		
Comments:	H Host are		<u>11 - 1</u>				10.4 - 0		<u> </u>			N	1ethod	hod of Delivery:						
Relinquished By (Sign): 2	1	Received By Driver/I			/Depot:			1	3	-	/	V	erified	rified By:						
Relinquished By (Print): Furt Loveyce Date/Time:						Date/Time	5-1	5	20	119	00	ate/Ti	e/Time 05 15 2 2 11/2 2							
Jate/Time: 1614 15/2	1/144 15/2020 Temperature:			°C Temperature: 9,5 °C pH					H Veri	Verified: By:										

RELIABLE.

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Certificate of Analysis

Paterson Group Consulting Engineers

154 Colonnade Road South Nepean, ON K2E 7J5 Attn: Eric Leveque

Client PO: 26336 Project: PE4908 Custody: 126107

Report Date: 15-Apr-2020 Order Date: 9-Apr-2020

Order #: 2015282

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Client ID
MW5-GW1
MW6-GW1
MW8-GW1

Approved By:

Mark Foto

Mark Foto, M.Sc. Lab Supervisor

Any use of these results implies your agreement that our total liability in connection with this work, however arising, shall be limited to the amount paid by you for this work, and that our employees or agents shall not under any circumstances be liable to you in connection with this work.

Report Date: 15-Apr-2020 Order Date: 9-Apr-2020

Order #: 2015282

Project Description: PE4908

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date	Analysis Date
BTEX by P&T GC-MS	EPA 624 - P&T GC-MS	14-Apr-20	14-Apr-20
PHC F1	CWS Tier 1 - P&T GC-FID	14-Apr-20	14-Apr-20
PHCs F2 to F4	CWS Tier 1 - GC-FID, extraction	14-Apr-20	14-Apr-20

Certificate of Analysis

Client: Paterson Group Consulting Engineers

Client PO: 26336

Order #: 2015282

Report Date: 15-Apr-2020 Order Date: 9-Apr-2020

Project Description: PE4908

	Client ID.		MW6_GW1		
	Client ID:				-
	Sample Date:	09-Apr-20 09:00	09-Apr-20 09:00	09-Apr-20 09:00	-
	Sample ID:	2015282-01	2015282-02	2015282-03	-
	MDL/Units	Water	Water	Water	-
Volatiles			•	-	
Benzene	0.5 ug/L	<0.5	<0.5	<0.5	-
Ethylbenzene	0.5 ug/L	<0.5	<0.5	<0.5	-
Toluene	0.5 ug/L	<0.5	<0.5	<0.5	-
m,p-Xylenes	0.5 ug/L	<0.5	<0.5	<0.5	-
o-Xylene	0.5 ug/L	<0.5	<0.5	<0.5	-
Xylenes, total	0.5 ug/L	<0.5	<0.5	<0.5	-
Toluene-d8	Surrogate	96.4%	95.6%	96.5%	-
Hydrocarbons	•		•		
F1 PHCs (C6-C10)	25 ug/L	<25	<25	<25	-
F2 PHCs (C10-C16)	100 ug/L	200	<100	<100	-
F3 PHCs (C16-C34)	100 ug/L	2910	<100	<100	-
F4 PHCs (C34-C50)	100 ug/L	<100	<100	<100	-

Order #: 2015282

Report Date: 15-Apr-2020

Order Date: 9-Apr-2020

Project Description: PE4908

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	ND	25	ug/L						
F2 PHCs (C10-C16)	ND	100	ug/L						
F3 PHCs (C16-C34)	ND	100	ug/L						
F4 PHCs (C34-C50)	ND	100	ug/L						
Volatiles									
Benzene	ND	0.5	ug/L						
Ethylbenzene	ND	0.5	ug/L						
Toluene	ND	0.5	ug/L						
m,p-Xylenes	ND	0.5	ug/L						
o-Xylene	ND	0.5	ug/L						
Xylenes, total	ND	0.5	ug/L						
Surrogate: Toluene-d8	76.9		ug/L		96.1	50-140			

Report Date: 15-Apr-2020

Order Date: 9-Apr-2020

Project Description: PE4908

Method Quality Control: Duplicate

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	ND	25	ug/L	ND			NC	30	
Volatiles									
Benzene	ND	0.5	ug/L	ND			NC	30	
Ethylbenzene	ND	0.5	ug/L	ND			NC	30	
Toluene	ND	0.5	ug/L	ND			NC	30	
m,p-Xylenes	ND	0.5	ug/L	ND			NC	30	
o-Xylene	ND	0.5	ug/L	ND			NC	30	
Surrogate: Toluene-d8	77.1		ug/L		96.4	50-140			

Report Date: 15-Apr-2020

Order Date: 9-Apr-2020

Project Description: PE4908

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	1810	25	ug/L	ND	90.7	68-117			
F2 PHCs (C10-C16)	1510	100	ug/L	ND	94.5	60-140			
F3 PHCs (C16-C34)	3780	100	ug/L	ND	96.6	60-140			
F4 PHCs (C34-C50)	2330	100	ug/L	ND	93.9	60-140			
Volatiles									
Benzene	38.3	0.5	ug/L	ND	95.7	60-130			
Ethylbenzene	46.7	0.5	ug/L	ND	117	60-130			
Toluene	38.1	0.5	ug/L	ND	95.2	60-130			
m,p-Xylenes	76.9	0.5	ug/L	ND	96.1	60-130			
o-Xylene	40.1	0.5	ug/L	ND	100	60-130			
Surrogate: Toluene-d8	65.9		ug/L		82.4	50-140			

Qualifier Notes:

None

Sample Data Revisions

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected MDL: Method Detection Limit Source Result: Data used as source for matrix and duplicate samples %REC: Percent recovery. RPD: Relative percent difference. NC: Not Calculated

CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.

- F1 range corrected for BTEX.

- F2 to F3 ranges corrected for appropriate PAHs where available.
- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.
- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.
- When reported, data for F4G has been processed using a silica gel cleanup.

Paracel I LABORATORI	D: 2015	282		:e St. Laurent ntario K10 49-1947 ∌paracella cellabs.com	t Blvd. 3 4J8 lbs.com m	Parad (cel Or Lab U	der l ise 0	Num Inly)	ber 2		C No	hain ((Lab 12	Of Cu Use O 610	stody nly) 17	1
ient Name: 01-1 GROUP		Projec	t Ref:	PE490	8		,						Ра	ge	of	
MATERSON UNDER		Quote	#:	1									Turna	round	Time	
ddress: 154 COLONDADE RD		PO #:		26336								🗆 1 da	y			3 day
SOUTH		E-mail	:									🗆 2 da	Ŷ			Regular
elephone: 771-7381		el	eveg	Je@pate	rsongr	ουρ	<u>،</u> د،	<i>۱</i>			D	ate Req	uired:			
Development 152/04 Other Regulation		A shelin 1		(Soil/Sed.) GW (Gr	ound Water)						Re	auired	Analysi	s		
Regulation 153/04 Other Regulation	100	Matrix SW (Su	rface W	(ater) SS (Storm/San	itary Sewer)				_			- II				
	SA		P (Pa	aint) A (Air) O (Oth	er)											
Table 3 Agri/Other SU-Sani SU	- Storm		ers			+BTE			Ъ							
Table Mun:		a	ntain	Sample	Taken	1-F4			by I		1	2)				
For RSC: Yes No Other:	trix	Volu	of Col			HCS	ocs	AHs	letals	60	2	NH)				
Sample ID/Location Name	ž	Air	22	Date	Time	ā	Š	à	2	I						+
1 MW5 - GWI	64	/	3	APA 9/2	020	-			\vdash	-	+	+				+
2 MW6 - 6W!	60		3	1.1	11	-	-		\vdash	+	+		+			
3 MW8-GW1	64		3	17	"	V	-		\vdash		+	+-	+			
4						_	-		\vdash	_						-
5						-	-	-		_			+			+
6						_	+	-				_				+
7							_	_			_	_	-			+
8							_	_								
9							_	_				_				-
10													Concernence of			
Comments:											Meth		J.	X	see S	2
Relinquished By (Sign):	eived By Driver	/Depot			Received at La	b:	N	1		P	Verifi	/Time:		5	5.	, To
Relinquished By (Print): Earch LEJIBOUE	e/Time:				10pri	19	23	20	7 /	1	all V	orified	H	- Y	20	001
Date/Time: APR 9/200 9	nperature:			°C	Temperature:	, 3		°C	<u> </u>		për v	erneu. t			E de C	· . · ·

RELIABLE.

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Certificate of Analysis

Paterson Group Consulting Engineers

154 Colonnade Road South Nepean, ON K2E 7J5 Attn: Karyn Munch

Client PO: 30216 Project: PE4908 Custody: 125726

Report Date: 9-Jun-2020 Order Date: 3-Jun-2020

Order #: 2023293

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID 2023293-01

Client ID MW6-20

Approved By:

Dale Robertson, BSc Laboratory Director

Any use of these results implies your agreement that our total liability in connection with this work, however arising, shall be limited to the amount paid by you for this work, and that our employees or agents shall not under any circumstances be liable to you in connection with this work.

Report Date: 09-Jun-2020 Order Date: 3-Jun-2020

Order #: 2023293

Project Description: PE4908

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date	Analysis Date
BTEX by P&T GC-MS	EPA 624 - P&T GC-MS	6-Jun-20	6-Jun-20
PHC F1	CWS Tier 1 - P&T GC-FID	5-Jun-20	6-Jun-20
PHCs F2 to F4	CWS Tier 1 - GC-FID, extraction	8-Jun-20	9-Jun-20

Certificate of Analysis

Client: Paterson Group Consulting Engineers Client PO: 30216

Report Date: 09-Jun-2020

Order Date: 3-Jun-2020

Project Description: PE4908

	-				
	Client ID:	MW6-20	-	-	-
	Sample Date:	02-Jun-20 09:00	-	-	-
	Sample ID:	2023293-01	-	-	-
	MDL/Units	Water	-	-	-
Volatiles			-		
Benzene	0.5 ug/L	<0.5	-	-	-
Ethylbenzene	0.5 ug/L	<0.5	-	-	-
Toluene	0.5 ug/L	<0.5	-	-	-
m,p-Xylenes	0.5 ug/L	<0.5	-	-	-
o-Xylene	0.5 ug/L	<0.5	-	-	-
Xylenes, total	0.5 ug/L	<0.5	-	-	-
Toluene-d8	Surrogate	110%	-	-	-
Hydrocarbons	•				
F1 PHCs (C6-C10)	25 ug/L	<25	-	-	-
F2 PHCs (C10-C16)	100 ug/L	<100	-	-	_
F3 PHCs (C16-C34)	100 ug/L	<100	_	-	-
F4 PHCs (C34-C50)	100 ug/L	<100	-	-	-

Order #: 2023293

Report Date: 09-Jun-2020

Order Date: 3-Jun-2020

Project Description: PE4908

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	ND	25	ug/L						
F2 PHCs (C10-C16)	ND	100	ug/L						
F3 PHCs (C16-C34)	ND	100	ug/L						
F4 PHCs (C34-C50)	ND	100	ug/L						
Volatiles									
Benzene	ND	0.5	ug/L						
Ethylbenzene	ND	0.5	ug/L						
Toluene	ND	0.5	ug/L						
m,p-Xylenes	ND	0.5	ug/L						
o-Xylene	ND	0.5	ug/L						
Xylenes, total	ND	0.5	ug/L						
Surrogate: Toluene-d8	88.5		ug/L		111	50-140			

Report Date: 09-Jun-2020

Order Date: 3-Jun-2020

Project Description: PE4908

Method Quality Control: Duplicate

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	ND	25	ug/L	ND			NC	30	
Volatiles									
Benzene	ND	0.5	ug/L	ND			NC	30	
Ethylbenzene	ND	0.5	ug/L	ND			NC	30	
Toluene	ND	0.5	ug/L	ND			NC	30	
m,p-Xylenes	ND	0.5	ug/L	ND			NC	30	
o-Xylene	ND	0.5	ug/L	ND			NC	30	
Surrogate: Toluene-d8	88.6		ug/L		111	50-140			

Report Date: 09-Jun-2020

Order Date: 3-Jun-2020

Project Description: PE4908

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	2040	25	ug/L	ND	102	68-117			
F2 PHCs (C10-C16)	1680	100	ug/L	ND	105	60-140			
F3 PHCs (C16-C34)	4280	100	ug/L	ND	109	60-140			
F4 PHCs (C34-C50)	2100	100	ug/L	ND	84.7	60-140			
Volatiles									
Benzene	31.8	0.5	ug/L	ND	79.5	60-130			
Ethylbenzene	46.7	0.5	ug/L	ND	117	60-130			
Toluene	43.7	0.5	ug/L	ND	109	60-130			
m,p-Xylenes	90.6	0.5	ug/L	ND	113	60-130			
o-Xylene	48.0	0.5	ug/L	ND	120	60-130			
Surrogate: Toluene-d8	74.7		ug/L		93.4	50-140			

Qualifier Notes:

None

Sample Data Revisions

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected MDL: Method Detection Limit Source Result: Data used as source for matrix and duplicate samples %REC: Percent recovery. RPD: Relative percent difference. NC: Not Calculated

CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.

- F1 range corrected for BTEX.

- F2 to F3 ranges corrected for appropriate PAHs where available.

- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.

- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.

- When reported, data for F4G has been processed using a silica gel cleanup.

G PARACE	Paracel	1D: 2	0232	293	Blvd. 4J8 s.com	Parac (I	iel Or Lab U	der se O	Numb Inly)	er	N	Chai	in Of C Lab Use L257	ustoc only) 26	iy
IClient Name: Dellastica		Projec	t Ref:	PE 49	08								Page 7	of_(
Contact Name:)		Quote	#:									Tu	rnarour	d Time	
Address:		PO #:		3021	6							1 day			3 day
104 tot als Prod	South	E-mai	:						I			2 day		Ø	Regular
Telephone:	Good	-	15n	unchar	atersa	ran	OUL	3, 0	a		Date	Require	d:		
Regulation 152/04 Other Reg	ulation	Matrix		(sail/sad) GW (Gr	ound Water)	ſ	_		~		Requir	red Ana	lysis	1	
Table 1 Rec/Park Med/Fine REG 558	PWQ0	SW (Su	irface W	(ater) SS (Storm/San	itary Sewer)						nequi	- T			
Table 2 Ind/Comm Coarse CCME			P (Pa	aint) A (Air) O (Oth	er)	Ĵ									
Table 3 Agri/Other SU-Sani	SU - Storm		ers			+BTE			٩.						
Table Mun:		a	Itaine	Sample	Taken	1-F4+			by IG		6				
For RSC: Yes No Other:		Volu	f Cor			- Ş	č	SHA	etals	<u>5</u>	MH)				
Sample ID/Location Name	2	Air Ma	0 #	Date	Time	L L	Ž	P A	Σ :	ÊŰ	8			\vdash	
1 MW6-20	G	W	3	June 21200		V		_		+	┾╋			\vdash	
2						-		_		+	++			\vdash	
3					-	+		_		-	++			\vdash	
4						\perp			\vdash	+	++			\vdash	
5						_		_	\square	+	\downarrow	\rightarrow		\vdash	
6								_	\square	_	+			\vdash	
7									\square	\perp	\downarrow			$ \rightarrow $	
8									\square	\perp	\downarrow	_	_		
9										\perp	\downarrow				
10										-					
Comments:			11 I	10 al a						M	ethod of	Delivery	2141		
		10			Recoved at Lab		2000	0	1	Ve	rified By		11	6-	-
Relinquished By (Sign):	Received By Drive	er/Depot:			VME	pov	1	Ve	sh h	A	1	K	l		to
Relinquished By (Print): Schannel Beinho	Date/Time:	8-12			Date/Time:	202	D	52	05.	0500	ite/Time	0	60	8-1	261
Date/Time:	Temperature:	150		°C	Temperature:	10,	8	°C		pł	l Verifie	d: 🗋	By:		
Obala of Orstada (Engl) year				Revision 3.0											

RELIABLE.

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Certificate of Analysis

Paterson Group Consulting Engineers

154 Colonnade Road South Nepean, ON K2E 7J5 Attn: Karyn Munch

Client PO: 31404 Project: PE4908 Custody: 130233

Report Date: 9-Nov-2020 Order Date: 6-Nov-2020

Order #: 2045664

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID 2045664-01

Client ID MW5-GW1

Approved By:

Mark Foto

Mark Foto, M.Sc. Lab Supervisor

Any use of these results implies your agreement that our total liability in connection with this work, however arising, shall be limited to the amount paid by you for this work, and that our employees or agents shall not under any circumstances be liable to you in connection with this work.

Report Date: 09-Nov-2020 Order Date: 6-Nov-2020

Order #: 2045664

Project Description: PE4908

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date	Analysis Date
PHC F1	CWS Tier 1 - P&T GC-FID	6-Nov-20	7-Nov-20
PHCs F2 to F4	CWS Tier 1 - GC-FID, extraction	9-Nov-20	9-Nov-20
REG 153: VOCs by P&T GC/MS	EPA 624 - P&T GC-MS	6-Nov-20	7-Nov-20

Certificate of Analysis

Order #: 2045664

Report Date: 09-Nov-2020

Order Date: 6-Nov-2020

Project Description: PE4908

Client: Paterson Group Consulting Engineers Client PO: 31404

	Client ID: Sample Date:	MW5-GW1 05-Nov-20 15:00	-	-	-
	Sample ID:	2045664-01	-	-	-
	MDL/Units	Water	-	-	-
Volatiles			- -		
Acetone	5.0 ug/L	<5.0	-	-	-
Benzene	0.5 ug/L	<0.5	-	-	-
Bromodichloromethane	0.5 ug/L	<0.5	-	-	-
Bromoform	0.5 ug/L	<0.5	-	-	-
Bromomethane	0.5 ug/L	<0.5	-	-	-
Carbon Tetrachloride	0.2 ug/L	<0.2	-	-	-
Chlorobenzene	0.5 ug/L	<0.5	-	-	-
Chloroform	0.5 ug/L	<0.5	-	-	-
Dibromochloromethane	0.5 ug/L	<0.5	-	-	-
Dichlorodifluoromethane	1.0 ug/L	<1.0	-	-	-
1,2-Dichlorobenzene	0.5 ug/L	<0.5	-	-	-
1,3-Dichlorobenzene	0.5 ug/L	<0.5	-	-	-
1,4-Dichlorobenzene	0.5 ug/L	<0.5	-	-	-
1,1-Dichloroethane	0.5 ug/L	<0.5	-	-	-
1,2-Dichloroethane	0.5 ug/L	<0.5	-	-	-
1,1-Dichloroethylene	0.5 ug/L	<0.5	-	-	-
cis-1,2-Dichloroethylene	0.5 ug/L	<0.5	-	-	-
trans-1,2-Dichloroethylene	0.5 ug/L	<0.5	-	-	-
1,2-Dichloropropane	0.5 ug/L	<0.5	-	-	-
cis-1,3-Dichloropropylene	0.5 ug/L	<0.5	-	-	-
trans-1,3-Dichloropropylene	0.5 ug/L	<0.5	-	-	-
1,3-Dichloropropene, total	0.5 ug/L	<0.5	-	-	-
Ethylbenzene	0.5 ug/L	<0.5	-	-	-
Ethylene dibromide (dibromoethane, 1,2-)	0.2 ug/L	<0.2	-	-	-
Hexane	1.0 ug/L	<1.0	-	-	-
Methyl Ethyl Ketone (2-Butanone)	5.0 ug/L	<5.0	-	-	-
Methyl Isobutyl Ketone	5.0 ug/L	<5.0	-	-	-
Methyl tert-butyl ether	2.0 ug/L	<2.0	-	-	-
Methylene Chloride	5.0 ug/L	<5.0	-	-	-
Styrene	0.5 ug/L	<0.5	-	-	-
1,1,1,2-Tetrachloroethane	0.5 ug/L	<0.5	-	-	-
1,1,2,2-Tetrachloroethane	0.5 ug/L	<0.5	-	-	-
Tetrachloroethylene	0.5 ug/L	<0.5	-	-	-
Toluene	0.5 ug/L	<0.5	-	-	-
1,1,1-Trichloroethane	0.5 ug/L	<0.5	-	-	-

Report Date: 09-Nov-2020

Order Date: 6-Nov-2020

Project Description: PE4908

	Client ID:	MW5-GW1	-	-	-
	Sample Date:	05-Nov-20 15:00	-	-	-
	Sample ID:	2045664-01	-	-	-
	MDL/Units	Water	-	-	-
1,1,2-Trichloroethane	0.5 ug/L	<0.5	-	-	-
Trichloroethylene	0.5 ug/L	<0.5	-	-	-
Trichlorofluoromethane	1.0 ug/L	<1.0	-	-	-
Vinyl chloride	0.5 ug/L	<0.5	-	-	-
m,p-Xylenes	0.5 ug/L	<0.5	-	-	-
o-Xylene	0.5 ug/L	<0.5	-	-	-
Xylenes, total	0.5 ug/L	<0.5	-	-	-
4-Bromofluorobenzene	Surrogate	99.5%	-	-	-
Dibromofluoromethane	Surrogate	84.2%	-	-	-
Toluene-d8	Surrogate	105%	-	-	-
Hydrocarbons					
F1 PHCs (C6-C10)	25 ug/L	<25	-	-	-
F2 PHCs (C10-C16)	100 ug/L	<100	-	-	-
F3 PHCs (C16-C34)	100 ug/L	<100	-	_	_
F4 PHCs (C34-C50)	100 ug/L	<100	-	-	-

Method Quality Control: Blank

Report Date: 09-Nov-2020

Order Date: 6-Nov-2020

Project Description: PE4908

		Reporting		Source		%REC		RPD	
Analyte	Result	Limit	Units	Result	%REC	Limit	RPD	Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	ND	25	ua/L						
F2 PHCs (C10-C16)	ND	100	ug/L						
F3 PHCs (C16-C34)	ND	100	ug/L						
F4 PHCs (C34-C50)	ND	100	ug/L						
Volatiles			3						
Acetope		5.0	ug/l						
Benzene		0.5	ug/L						
Bromodichloromethane		0.5	ug/L						
Bromoform		0.5	ug/L						
Bromomethane		0.5	ug/L						
Carbon Tetrachloride		0.0	ug/L						
Chlorobenzene		0.5	ug/L						
Chloroform		0.5	ug/L						
Dibromochloromethane		0.5	ug/L						
Dichlorodifluoromethane		1.0	ug/L						
		0.5	ug/L						
1.3 Dichlorobenzene		0.5	ug/L						
		0.5	ug/L						
1,4-Dichloroethane		0.5	ug/L						
1,2 Dichloroethane		0.5	ug/L						
1,2-Dichloroethylene		0.5	ug/L						
cis 1.2 Dichloroethylene		0.5	ug/L						
trans 1.2 Dichloroethylene		0.5	ug/L						
1.2 Dichloropropage		0.5	ug/L						
cis 1.3 Dichloropropulene		0.5	ug/L						
trans 1.3 Dichloropropulene		0.5	ug/L						
1.3 Dichloropropene, total		0.5	ug/L						
Ethylbenzene		0.5	ug/L						
Ethylene dibromide (dibromoethane, 1.2.		0.0	ug/L						
Hevene		1.0	ug/L						
Methyl Ethyl Ketone (2-Butanone)		5.0	ug/L						
Methyl Isobutyl Ketone		5.0	ug/L						
Methyl tert-butyl ether		2.0	ug/L						
Methylene Chloride		5.0	ug/L						
Styrene		0.5	ug/L						
1 1 1 2-Tetrachloroethane		0.5	ug/L						
1 1 2 2-Tetrachloroethane		0.5	ug/L						
Tetrachloroethylene	ND	0.5	ug/L						
Toluene	ND	0.5	ug/L						
1 1 1_Trichloroethane		0.5	ug/L						
1 1 2-Trichloroethane		0.5	ug/L						
Trichloroethylene	ND	0.5	ug/L						
Trichlorofluoromethane	ND	1.0	ug/L						
Vinyl chloride	ND	0.5	ug/L						
m n-Xvlenes	ND	0.5	ug/L						
o-Xylene	ND	0.5	ug/L						
Xvlenes total	ND	0.5	ug/L						
Surrogate: 4-Bromofluorobenzene	77.2	0.0	ug/L		96 5	50-140			
Surrogate: Dibromofluoromethane	72 /		ug/L		01 Q	50_140			
Surrogate: Distontonuorontenane	02.7		ug/L		104	50 1 40			
Surroyate. Toluene-ao	83.3		ug/L		104	50-140			

Method Quality Control: Duplicate

Report Date: 09-Nov-2020

Order Date: 6-Nov-2020

Project Description: PE4908

		Reporting		Source		%REC		RPD	RPD	
Analyte	Result	Limit	Units	Result	%REC	Limit	RPD	Limit	Notes	
Hydrocarbons										
F1 PHCs (C6-C10)	ND	25	ug/L	ND			NC	30		
Volatiles										
Acetone	ND	5.0	ua/L	ND			NC	30		
Benzene	ND	0.5	ug/L	ND			NC	30		
Bromodichloromethane	ND	0.5	ug/L	ND			NC	30		
Bromoform	ND	0.5	ug/l	ND			NC	30		
Bromomethane	ND	0.5	ug/l	ND			NC	30		
Carbon Tetrachloride	ND	0.2	ug/L	ND			NC	30		
Chlorobenzene	ND	0.5	ug/L	ND			NC	30		
Chloroform	ND	0.5	ug/L	ND			NC	30		
Dibromochloromethane	ND	0.5	ug/L	ND			NC	30		
Dichlorodifluoromethane	ND	1.0	ug/L	ND			NC	30		
1 2-Dichlorobenzene	ND	0.5	ug/L	ND			NC	30		
1.3-Dichlorobenzene	ND	0.5	ug/L	ND			NC	30		
1 4-Dichlorobenzene	ND	0.5	ug/L	ND			NC	30		
1 1-Dichloroethane	ND	0.5	ug/L	ND			NC	30		
1 2-Dichloroethane	ND	0.5	ug/L	ND			NC	30		
1 1-Dichloroethylene	ND	0.5	ug/L	ND			NC	30		
cis-1 2-Dichloroethylene	25.6	0.5	ug/L	47.9			60.6	30	QR-07	
trans-1 2-Dichloroethylene	ND	0.5	ug/L	0.77			NC	30		
1 2-Dichloropropane	ND	0.5	ug/L	ND			NC	30		
cis-1 3-Dichloropropulene	ND	0.5	ug/L	ND			NC	30		
trans-1 3-Dichloropropylene	ND	0.5	ug/L	ND			NC	30		
Ethylbenzene	ND	0.5	ug/L	ND			NC	30		
Ethylene dibromide (dibromoethane 1.2	ND	0.0	ug/L	ND			NC	30		
Hexane	ND	1.0	ug/L	ND			NC	30		
Methyl Ethyl Ketone (2-Butanone)	ND	5.0	ug/L	ND			NC	30		
Methyl Isobutyl Ketone	ND	5.0	ug/L	ND			NC	30		
Methyl tert-butyl ether	ND	2.0	ug/L	ND			NC	30		
Methylene Chloride	ND	5.0	ug/L	ND			NC	30		
Styrene	ND	0.5	ug/L	ND			NC	30		
1 1 1 2-Tetrachloroethane	ND	0.5	ug/L	ND			NC	30		
1 1 2 2-Tetrachloroethane	ND	0.5	ug/L	ND			NC	30		
Tetrachloroethylene	ND	0.5	ug/L	ND			NC	30		
Toluene	ND	0.5	ug/L	ND			NC	30		
1 1 1-Trichloroethane	ND	0.5	ug/L	ND			NC	30		
1 1 2-Trichloroethane	ND	0.5	ug/L	ND			NC	30		
Trichloroethylene	8 17	0.5	ug/L	16.3			66.6	30	QR-07	
Trichlorofluoromethane	ND	1.0	ug/L				NC	30		
Vinyl chloride	ND	0.5	ug/L				NC	30		
m n-Xvlenes	ND	0.5	ug/L				NC	30		
o-Xylene		0.5	ug/L				NC	30		
Surrogate: 4-Bromofluorobenzene	80.2	0.0	ug/L		100	50-140	110	50		
Surrogate: Dibromofluoromethane	68.2		ug/L		85.3	50_140				
Surrogate: Dibiomonuoromemane	00.2		ug/L		104	50 140				
Surroyate. Toluene-uo	02.0		ug/L		104	50-140				

Method Quality Control: Spike

Report Date: 09-Nov-2020 Order Date: 6-Nov-2020

Project Description: PE4908

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	2060	25	ug/L	ND	103	68-117			
F2 PHCs (C10-C16)	1640	100	ug/L	ND	103	60-140			
F3 PHCs (C16-C34)	4280	100	ug/L	ND	109	60-140			
F4 PHCs (C34-C50)	2690	100	ug/L	ND	109	60-140			
Volatiles									
Acetone	102	5.0	ug/L	ND	102	50-140			
Benzene	38.0	0.5	ug/L	ND	95.1	60-130			
Bromodichloromethane	42.7	0.5	ug/L	ND	107	60-130			
Bromoform	44.9	0.5	ug/L	ND	112	60-130			
Bromomethane	47.4	0.5	ug/L	ND	119	50-140			
Carbon Tetrachloride	41.1	0.2	ug/L	ND	103	60-130			
Chlorobenzene	41.1	0.5	ug/L	ND	103	60-130			
Chloroform	33.0	0.5	ug/L	ND	82.5	60-130			
Dibromochloromethane	47.1	0.5	ug/L	ND	118	60-130			
Dichlorodifluoromethane	27.1	1.0	ug/L	ND	67.8	50-140			
1,2-Dichlorobenzene	42.4	0.5	ug/L	ND	106	60-130			
1,3-Dichlorobenzene	42.4	0.5	ug/L	ND	106	60-130			
1,4-Dichlorobenzene	42.9	0.5	ug/L	ND	107	60-130			
1,1-Dichloroethane	40.4	0.5	ug/L	ND	101	60-130			
1,2-Dichloroethane	37.2	0.5	ug/L	ND	93.0	60-130			
1,1-Dichloroethylene	41.2	0.5	ug/L	ND	103	60-130			
cis-1,2-Dichloroethylene	35.5	0.5	ug/L	ND	88.7	60-130			
trans-1,2-Dichloroethylene	42.9	0.5	ug/L	ND	107	60-130			
1,2-Dichloropropane	40.6	0.5	ug/L	ND	102	60-130			
cis-1,3-Dichloropropylene	40.5	0.5	ug/L	ND	101	60-130			
trans-1,3-Dichloropropylene	39.2	0.5	ug/L	ND	98.1	60-130			
Ethylbenzene	41.6	0.5	ug/L	ND	104	60-130			
Ethylene dibromide (dibromoethane, 1,2	40.8	0.2	ug/L	ND	102	60-130			
Hexane	39.3	1.0	ug/L	ND	98.4	60-130			
Methyl Ethyl Ketone (2-Butanone)	98.9	5.0	ug/L	ND	98.9	50-140			
Methyl Isobutyl Ketone	108	5.0	ug/L	ND	108	50-140			
Methyl tert-butyl ether	93.5	2.0	ug/L	ND	93.5	50-140			
Methylene Chionde	39.2	5.0	ug/L		98.0	60 120			
Styrene	33.Z	0.5	ug/L		83.0	60 120			
	42.5	0.5	ug/L		100	60 120			
	41.0	0.5	ug/L		02.4	60 120			
	37.0 41.0	0.5	ug/L		92.4 103	60 130			
	41.0	0.5	ug/L		08.5	60 130			
1,1,2-Trichloroethane	40.2	0.5	ug/L		101	60-130			
Trichloroethylene	40.2	0.5	ug/L		101	60 130			
Trichlorofluoromethane	40.0	1.0	ug/L		93.6	60-130			
Vinvl chloride	39.9	0.5	ug/L	ND	99.7	50-140			
m n-Xylenes	77.6	0.5	ug/L	ND	97.0	60-130			
o-Xvlene	38.9	0.5	ua/l	ND	97.2	60-130			
Surrogate: 4-Bromofluorobenzene	84 4	0.0	ua/l		105	50-140			
Surrogate: Dibromofluoromethane	73.1		ug/L		91.4	50-140			
Surrogate: Toluene-d8	81.5		ug/L		102	50-140			

Qualifier Notes:

QC Qualifiers :

QR-07 : Duplicate result exceeds RPD limits due to non-homogeneity between multiple sample vials. Remainder of QA/QC is acceptable.

Sample Data Revisions

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected MDL: Method Detection Limit Source Result: Data used as source for matrix and duplicate samples %REC: Percent recovery. RPD: Relative percent difference. NC: Not Calculated

CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.

- F1 range corrected for BTEX.

- F2 to F3 ranges corrected for appropriate PAHs where available.

- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.

- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.

- When reported, data for F4G has been processed using a silica gel cleanup.

Paracel ID: 2045664					Head Office 300-2319 St. Laurent Blvd. Ottawa, Ontario K1G 4J8 , p: 1-800-749-1947 e: paracel@paracellabs.com www.paracellabs.com			Par 20	Paracel Order Number (Lab Use Only) 2014 STG614					Chain Of Custody (Lab Use Only) Nº 130233					
Client Name: PATERSON	GROUP			Projec	t Ref:	PE 4908)						T			Page	of	(
Contact Name: KARYN M	unch			Quote	#:										Turi	narou	nd Tin	ne	
Address: 154 Сосонича БЕ Rd Telephone: (613) 226 - 7	Address: 154 Сосоннаре Rd. S. ОТТАША, DNT. Telephone: (613) 226 - 7381				PO# 31404 E-mail: KMUNCH @ PATERSONGroup.ca								1 day 2 day Date Required:				□ 3 day □ Regular		
Regulation 153/04	Other Rei	gulation							-										
Table 1 Res/Park Med/Fine	□ REG 558		S N	latrix T W (Sur	rix Type: S (Soil/Sed.) GW (Ground Water) (Surface Water) SS (Storm/Sanitary Sewer)								R	Required Analysis					
Table 2 Ind/Comm Coarse	CCME	□ misa	P (Paint) A (Air) O (Other)					Г	Γ		T	Т		Τ				T	
□ Table 3 □ Agri/Other	🗆 . SU - Sani	SU - Storm			S			BTEX										124	1.5
🖾 Table 🏹	Mun:		e int Sample Taken				-F4+E			Y ICP									
For RSC: Ves No	Other:		f Cont					S F1	10	s	tals b		1.4001	(CAA					
Sample ID/Locatio	n Name		Mat		# of	Date	Time	DHd	ş	PAH	Mei	Нg						1	
1 MWS-GWI			GW	N	3	Nov 5/20	3PM	V	V				l						
2														,			1.5		
3													1						
4		·			(Τ					1	
5													T					10 10	1
6										-1			T						1
7													T		1				
8												+	+				- 21	0	
9								+	\square			+	+	┢	1				
10								-	Η	Η		+	+	┢	+	S.,			
Comments:												M	ethoo	I of Deliv	/ery:		Λ		
1													À	ALA	KEL	6	and	EL	;
Relinquished By (Sign):	N	Received By Dr	iver/De	pot:	5	-	Received at tal		1		_	V	erified	By:	4	<	2	_	-
Relinquished By (Print):		Date/Time:			L	ALISE /	Date/Time:	~	1	_	oli	0	ate/Ti	me:	11	$\frac{\partial}{\partial x}$	1		3
Date/Time:	ANDRY	Temperature	26	11	120	506	Temperature:	6-	20	2/	75)	Var	Rod [1/- Br	6-70	» 16	10	L
Nov 6/2020		remperatore.				PH.	remperature.	1.)	C		p	n ver	nieu: L	, oy.				

RELIABLE.

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Certificate of Analysis

Paterson Group Consulting Engineers

154 Colonnade Road South Nepean, ON K2E 7J5 Attn: Karyn Munch

Client PO: 31291 Project: PE4908 Custody: 52440

Report Date: 25-Nov-2020 Order Date: 23-Nov-2020

Order #: 2048110

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID 2048110-01

Client ID MW5-20-GW2

Approved By:

Mark Foto

Mark Foto, M.Sc. Lab Supervisor

Any use of these results implies your agreement that our total liability in connection with this work, however arising, shall be limited to the amount paid by you for this work, and that our employees or agents shall not under any circumstances be liable to you in connection with this work.

Report Date: 25-Nov-2020 Order Date: 23-Nov-2020

Order #: 2048110

Project Description: PE4908

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date	Analysis Date
PHC F1	CWS Tier 1 - P&T GC-FID	24-Nov-20	25-Nov-20
PHCs F2 to F4	CWS Tier 1 - GC-FID, extraction	24-Nov-20	25-Nov-20
REG 153: VOCs by P&T GC/MS	EPA 624 - P&T GC-MS	24-Nov-20	25-Nov-20

Report Date: 25-Nov-2020

Order Date: 23-Nov-2020

Project Description: PE4908

	Client ID:	MW5-20-GW2	-	-	-
	Sample Date:	20-Nov-20 09:00	-	-	-
	Sample ID:	2048110-01	-	-	-
Volatiles	MDL/Units	vvaler	-	-	-
	5.0 ug/L	<5.0	_	_	_
Benzene	0.5 ug/L	<0.5		_	
Bromodichloromethane	0.5 ug/L	<0.5			
Bromoform	0.5 ug/L	<0.5	-		-
Bromomethane	0.5 ug/L	<0.5	-		-
Carbon Tetrachloride	0.2 ug/L	<0.2			
Chlorobenzene	0.5 ug/L	<0.5		_	
Chloroform	0.5 ug/L	<0.5	_	-	_
Dibromochloromethane	0.5 ug/L	<0.5	-	_	-
Dichlorodifluoromethane	1.0 ug/L	<1.0	-	-	-
1,2-Dichlorobenzene	0.5 ug/L	<0.5	-	-	-
1,3-Dichlorobenzene	0.5 ug/L	<0.5	-	-	-
1,4-Dichlorobenzene	0.5 ug/L	<0.5	-	-	-
1,1-Dichloroethane	0.5 ug/L	<0.5	-	-	-
1,2-Dichloroethane	0.5 ug/L	<0.5	-	-	-
1,1-Dichloroethylene	0.5 ug/L	<0.5	-	-	-
cis-1,2-Dichloroethylene	0.5 ug/L	<0.5	-	-	-
trans-1,2-Dichloroethylene	0.5 ug/L	<0.5	-	-	-
1,2-Dichloropropane	0.5 ug/L	<0.5	-	-	-
cis-1,3-Dichloropropylene	0.5 ug/L	<0.5	-	-	-
trans-1,3-Dichloropropylene	0.5 ug/L	<0.5	-	-	-
1,3-Dichloropropene, total	0.5 ug/L	<0.5	-	-	-
Ethylbenzene	0.5 ug/L	<0.5	-	-	-
Ethylene dibromide (dibromoethane, 1,2-)	0.2 ug/L	<0.2	-	-	-
Hexane	1.0 ug/L	<1.0	-	-	-
Methyl Ethyl Ketone (2-Butanone)	5.0 ug/L	<5.0	-	-	-
Methyl Isobutyl Ketone	5.0 ug/L	<5.0	-	-	-
Methyl tert-butyl ether	2.0 ug/L	<2.0	-	-	-
Methylene Chloride	5.0 ug/L	<5.0	-	-	-
Styrene	0.5 ug/L	<0.5	-	-	-
1,1,1,2-Tetrachloroethane	0.5 ug/L	<0.5	-	-	-
1,1,2,2-Tetrachloroethane	0.5 ug/L	<0.5	-	-	-
Tetrachloroethylene	0.5 ug/L	<0.5	-	-	-
Toluene	0.5 ug/L	<0.5	-	-	-
1,1,1-Trichloroethane	0.5 ug/L	<0.5	-	-	-

Report Date: 25-Nov-2020 Order Date: 23-Nov-2020

Project Description: PE4908

	-				
	Client ID:	MW5-20-GW2	-	-	-
	Sample Date:	20-Nov-20 09:00	-	-	-
	Sample ID:	2048110-01	-	-	-
	MDL/Units	Water	-	-	-
1,1,2-Trichloroethane	0.5 ug/L	<0.5	-	-	-
Trichloroethylene	0.5 ug/L	<0.5	-	-	-
Trichlorofluoromethane	1.0 ug/L	<1.0	-	-	-
Vinyl chloride	0.5 ug/L	<0.5	-	-	-
m,p-Xylenes	0.5 ug/L	<0.5	-	-	-
o-Xylene	0.5 ug/L	<0.5	-	-	-
Xylenes, total	0.5 ug/L	<0.5	-	-	-
4-Bromofluorobenzene	Surrogate	125%	-	-	-
Dibromofluoromethane	Surrogate	110%	-	-	-
Toluene-d8	Surrogate	122%	-	-	-
Hydrocarbons					
F1 PHCs (C6-C10)	25 ug/L	<25	-	-	-
F2 PHCs (C10-C16)	100 ug/L	<100	-	-	_
F3 PHCs (C16-C34)	100 ug/L	<100	-	-	-
F4 PHCs (C34-C50)	100 ug/L	<100	-	-	_

Method Quality Control: Blank

Report Date: 25-Nov-2020

Order Date: 23-Nov-2020

Project Description: PE4908

		Reporting		Source		%REC			
Analyte	Result	Limit	Units	Result	%REC	Limit	RPD	Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	ND	25	ua/L						
F2 PHCs (C10-C16)	ND	100	ug/L						
F3 PHCs (C16-C34)	ND	100	ug/L						
F4 PHCs (C34-C50)	ND	100	ug/L						
Volatiles			3						
Acetone	ND	5.0	ug/l						
Ponzono		5.0	ug/L						
Bromodiableromothana		0.5	ug/L						
Bromoform		0.5	ug/L						
Bromomethane	ND	0.5	ug/L						
Corbon Totraphlarida		0.5	ug/L						
		0.2	ug/L						
Chloroform		0.5	ug/L						
Dibramachlaramathana	ND	0.5	ug/L						
Diplomochioromethane	ND	0.5	ug/L						
	ND	1.0	ug/L						
	ND	0.5	ug/L						
	ND	0.5	ug/L						
1,4-Dichlorodenzene	ND	0.5	ug/L						
1, 1-Dichloroethane	ND	0.5	ug/L						
1,2-Dichloroethalle	ND	0.5	ug/L						
r, r-Dichloroethylene	ND	0.5	ug/L						
trong 1.2 Dichloroethylene	ND	0.5	ug/L						
1.2 Dichloropropopo	ND	0.5	ug/L						
r,2-Dichloropropane	ND	0.5	ug/L						
trong 1.2 Dichloropropylene	ND	0.5	ug/L						
1.2 Dichloropropoletel	ND	0.5	ug/L						
T,S-Dichioropropene, total	ND	0.5	ug/L						
Ethylope dibromide (dibromoethene, 1.2	ND	0.5	ug/L						
	ND	0.2	ug/L						
Mathyl Ethyl Katana (2 Butanana)		1.0	ug/L						
Methyl Icebutyl Ketono		5.0	ug/L						
Methyl test bytyl ether	ND	5.0	ug/L						
Methylene Chleride	ND	2.0	ug/L						
Strong	ND	5.0	ug/L						
1 1 1 2 Totrachloroothana		0.5	ug/L						
1,1,2,2 Tetrachloroethano		0.5	ug/L						
Totraphoroothylano		0.5	ug/L						
Teluana		0.5	ug/L						
1 1 1 Trichloroothana		0.5	ug/L						
1,1,2 Trichloroethana		0.5	ug/L						
Trichloroethylono		0.5	ug/L						
Trichlorofluoromethana		0.5	ug/L						
Vipul oblorido		1.0	ug/L						
		0.5	ug/L						
		0.5	ug/L						
U-Aylenee total		0.5	ug/L						
Nyichica, Wildi Surragate: A Bramafluarabenzene	81 O	0.5	ug/L		101	50 140			
Surrogate, 4-Divinuinuinuo	101		ug/L		101	50-140			
Surrogate. Dipromotiuoromethane	101		ug/L		120	50-140			
Surrogate: Toluene-d8	102		ug/L		127	50-140			

Method Quality Control: Duplicate

Report Date: 25-Nov-2020

Order Date: 23-Nov-2020

Project Description: PE4908

	Reporting			Source		%REC		RPD	
Analyte	Result	Limit	Units	Result	%REC	Limit	RPD	Limit	Notes
Hydrocarbons									
E1 PHCs (C6-C10)	ND	25	ua/l	ND			NC	30	
Volatiles	ne -	20	ug/L	ne -				00	
Volatiles									
Acetone	ND	5.0	ug/L	ND			NC	30	
Benzene	ND	0.5	ug/L	ND			NC	30	
Bromodichloromethane	ND	0.5	ug/L	ND			NC	30	
Bromoform	ND	0.5	ug/L	ND			NC	30	
Bromomethane	ND	0.5	ug/L	ND			NC	30	
Carbon Tetrachloride	ND	0.2	ug/L	ND			NC	30	
Chlorobenzene	ND	0.5	ug/L	ND			NC	30	
Chloroform	ND	0.5	ug/L	ND			NC	30	
Dibromochloromethane	ND	0.5	ug/L	ND			NC	30	
Dichlorodifluoromethane	ND	1.0	ug/L	ND			NC	30	
1,2-Dichlorobenzene	ND	0.5	ug/L	ND			NC	30	
1,3-Dichlorobenzene	ND	0.5	ug/L	ND			NC	30	
1,4-Dichlorobenzene	ND	0.5	ug/L	ND			NC	30	
1,1-Dichloroethane	ND	0.5	ug/L	ND			NC	30	
1,2-Dichloroethane	ND	0.5	ug/L	ND			NC	30	
1,1-Dichloroethylene	ND	0.5	ug/L	ND			NC	30	
cis-1,2-Dichloroethylene	ND	0.5	ug/L	ND			NC	30	
trans-1,2-Dichloroethylene	ND	0.5	ug/L	ND			NC	30	
1,2-Dichloropropane	ND	0.5	ug/L	ND			NC	30	
cis-1,3-Dichloropropylene	ND	0.5	ug/L	ND			NC	30	
trans-1,3-Dichloropropylene	ND	0.5	ug/L	ND			NC	30	
Ethylbenzene	ND	0.5	ug/L	ND			NC	30	
Ethylene dibromide (dibromoethane, 1,2	ND	0.2	ug/L	ND			NC	30	
Hexane	ND	1.0	ug/L	ND			NC	30	
Methyl Ethyl Ketone (2-Butanone)	ND	5.0	ug/L	ND			NC	30	
Methyl Isobutyl Ketone	ND	5.0	ug/L	ND			NC	30	
Methyl tert-butyl ether	ND	2.0	ug/L	ND			NC	30	
Methylene Chloride	ND	5.0	ug/L	ND			NC	30	
Styrene	ND	0.5	ug/L	ND			NC	30	
1,1,1,2-Tetrachloroethane	ND	0.5	ug/L	ND			NC	30	
1,1,2,2-Tetrachloroethane	ND	0.5	ug/L	ND			NC	30	
Tetrachloroethylene	ND	0.5	ug/L	ND			NC	30	
Toluene	ND	0.5	ug/L	ND			NC	30	
1.1.1-Trichloroethane	ND	0.5	ua/L	ND			NC	30	
1.1.2-Trichloroethane	ND	0.5	ua/L	ND			NC	30	
Trichloroethylene	ND	0.5	ua/L	ND			NC	30	
Trichlorofluoromethane	ND	1.0	ua/L	ND			NC	30	
Vinvl chloride	ND	0.5	ua/L	ND			NC	30	
m.p-Xvlenes	ND	0.5	ua/L	ND			NC	30	
o-Xvlene	ND	0.5	ua/l	ND			NC	30	
Surrogate: 4-Bromofluorobenzene	92.9	0.0	ua/l		116	50-140			
	83.0				104	50-140			
Surrogate: Toluene d8	07.8		ug/L		107	50 140			
Surroyate. Totuerie-uo	31.0		uy/L		122	50-140			

Method Quality Control: Spike

Report Date: 25-Nov-2020 Order Date: 23-Nov-2020

Project Description: PE4908

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	1860	25	ug/L	ND	92.9	68-117			
F2 PHCs (C10-C16)	1400	100	ug/L	ND	87.6	60-140			
F3 PHCs (C16-C34)	3340	100	ug/L	ND	85.1	60-140			
F4 PHCs (C34-C50)	1820	100	ug/L	ND	73.3	60-140			
Volatiles									
Acetone	124	5.0	ug/L	ND	124	50-140			
Benzene	38.8	0.5	ug/L	ND	96.9	60-130			
Bromodichloromethane	42.6	0.5	ug/L	ND	106	60-130			
Bromoform	44.0	0.5	ug/L	ND	110	60-130			
Bromomethane	40.2	0.5	ug/L	ND	101	50-140			
Carbon Tetrachloride	39.8	0.2	ug/L	ND	99.4	60-130			
Chlorobenzene	43.6	0.5	ug/L	ND	109	60-130			
Chloroform	38.5	0.5	ug/L	ND	96.3	60-130			
Dibromochloromethane	45.4	0.5	ug/L	ND	113	60-130			
Dichlorodifluoromethane	37.9	1.0	ug/L	ND	94.8	50-140			
1,2-Dichlorobenzene	43.7	0.5	ug/L	ND	109	60-130			
1,3-Dichlorobenzene	41.6	0.5	ug/L	ND	104	60-130			
1,4-Dichlorobenzene	42.4	0.5	ug/L	ND	106	60-130			
1,1-Dichloroethane	39.9	0.5	ug/L	ND	99.8	60-130			
1,2-Dichloroethane	40.6	0.5	ug/L	ND	102	60-130			
1,1-Dichloroethylene	42.2	0.5	ug/L	ND	106	60-130			
cis-1,2-Dichloroethylene	41.1	0.5	ug/L	ND	103	60-130			
trans-1,2-Dichloroethylene	43.9	0.5	ug/L	ND	110	60-130			
1,2-Dichloropropane	38.6	0.5	ug/L	ND	96.5	60-130			
cis-1,3-Dichloropropylene	37.0	0.5	ug/L	ND	92.5	60-130			
trans-1,3-Dichloropropylene	36.2	0.5	ug/L	ND	90.6	60-130			
Ethylbenzene	45.0	0.5	ug/L	ND	112	60-130			
Ethylene dibromide (dibromoethane, 1,2-	44.7	0.2	ug/L	ND	112	60-130			
Hexane	44.4	1.0	ug/L	ND	111	60-130			
Methyl Ethyl Ketone (2-Butanone)	102	5.0	ug/L	ND	102	50-140			
Methyl Isobutyl Ketone	89.9	5.0	ug/L	ND	89.9	50-140			
Methyl tert-butyl ether	102	2.0	ug/L	ND	102	50-140			
Methylene Chloride	40.5	5.0	ug/L	ND	101	60-130			
Styrene	40.1	0.5	ug/L	ND	100	60-130			
1,1,1,2-Tetrachloroethane	42.6	0.5	ug/L	ND	107	60-130			
1,1,2,2-Tetrachloroethane	42.1	0.5	ug/L	ND	105	60-130			
Tetrachloroethylene	45.2	0.5	ug/L	ND	113	60-130			
Toluene	46.2	0.5	ug/L	ND	116	60-130			
1,1,1-Trichloroethane	42.8	0.5	ug/L	ND	107	60-130			
1,1,2-Trichloroethane	38.7	0.5	ug/L	ND	96.8	60-130			
Trichloroethylene	39.4	0.5	ug/L	ND	98.5	60-130			
Irichlorofluoromethane	41.7	1.0	ug/L	ND	104	60-130			
Vinyi chloride	45.0	0.5	ug/L	ND	112	50-140			
m,p-Aylenes	92.4	0.5	ug/L		115	60.400			
	46.8	0.5	ug/L	ND	11/	60-130			
Surrogate: 4-Bromotiuorobenzene	//.8		ug/L		97.2	50-140 50 140			
Surrogate: Toluene-d8	79.0 89.1		ug/L		99.0 102	50-140			
Sundyale. Toluche-uo	02.1		uy/L		105	00-140			

Qualifier Notes:

None

Sample Data Revisions

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected MDL: Method Detection Limit Source Result: Data used as source for matrix and duplicate samples %REC: Percent recovery. RPD: Relative percent difference. NC: Not Calculated

CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.

- F1 range corrected for BTEX.

- F2 to F3 ranges corrected for appropriate PAHs where available.
- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.
- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.
- When reported, data for F4G has been processed using a silica gel cleanup.

G PAR/ LABORATO	Par	acel ID: 2	048			ffice 9 St. Lau Ontario)-749-194 cel@parad , aracellabs	rrent Bivd. K1G 4J8 I7 cellabs.com	Pa Do	racel ((Lab	Order No Use On	umber ly)		c N?	hain (La 5	Of Cu b Use 0 244	nly) O	
Client Name: PATERSON				Projec	t Ref: 4	PE4908				-/-:	-		•	Pa	ige	of	
Contact Name: KARYN MU	moint			Quote	#:							+		Turna	around	Time	
Address:				PO #:	31	201						-	□ 1 da	v		□ 3	dav
154 COLONNADE TO	.d.5.0	TTAWA,	ONT	E-mail:		G=11											togular
Telephone: (613) 226 - 73	381			K	nu	NCHEPA	TERSON	GROU	~p.	ca		D	ate Req	v uired:			-cgulai
Regulation 153/04	Other Re	gulation		latrix T	uno: ((Sail/Sad) GW/G	round Water)			11							
Table 1 Res/Park Med/Fine	🗆 REG 558	PWQ0	5	SW (Sur	face V	Vater) SS (Storm/Sa	nitary Sewer)					Requ	ired Ana	nlysis			
Table 2 Ind/Comm Coarse	CCME				P (P	aint) A (Air) O (Oth	ier)	N						T	Π		T
Table 3 Agri/Other	🗆 SU - Sani	SU - Storm			2			Ξ¥	6								
Table 7	Mun:			e	taine	Sample	Taken	Đ.	1								
For RSC: Yes No	Other:		xir	olun	Cont				2								
Sample ID/Location	n Name		Mati	Air V	to #	Date	Time	-									
1 MUST - 20 - GWZ	-		Gω	~	3	NOU. 20/2020	~		1			+		\vdash			1
2							1				+		-				1
3									-		+		-				-
4										$\left \right $	\rightarrow	+					+
5			5					<u> </u>						-			+
6				-													-
7													+			_	\vdash
0												_			-	-	
0												_					-
9													_		-		
10																	
Comments:											M	ethod of	Delivery:	B	X		
Relinquished By (Sign):	a deservations of the	Received By Dri	ver/De	pot:	- Contentions	n Marina a san	Received at Lab	Tirm	0	bhm	Ve Ve	rified By	Da				-
Relinquished By (Print):	ANDRY	Date/Time:					Nov 23.	2020	(13.9	19 Da	527	Vou	n	aT	30	-
Date/Time: Nal 23/2020		Temperature:				°C	Temperature:	15.3	°C		pH	Verified	d: 🗌	By:		~~	

Chain of Custody (Blank) xlsx

Revision 3.0

RELIABLE.

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Certificate of Analysis

Paterson Group Consulting Engineers

154 Colonnade Road South Nepean, ON K2E 7J5 Attn: Karyn Munch

Client PO: 31372 Project: PE4908 Custody: 55576

Report Date: 21-Dec-2020 Order Date: 15-Dec-2020

Order #: 2051238

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID 2051238-01

Client ID BH4-20-GW1

Approved By:

Dale Robertson, BSc Laboratory Director

Any use of these results implies your agreement that our total liability in connection with this work, however arising, shall be limited to the amount paid by you for this work, and that our employees or agents shall not under any circumstances be liable to you in connection with this work.

Report Date: 21-Dec-2020 Order Date: 15-Dec-2020

Order #: 2051238

Project Description: PE4908

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date	Analysis Date
BTEX by P&T GC-MS	EPA 624 - P&T GC-MS	17-Dec-20	17-Dec-20
PHC F1	CWS Tier 1 - P&T GC-FID	16-Dec-20	17-Dec-20
PHCs F2 to F4	CWS Tier 1 - GC-FID, extraction	18-Dec-20	19-Dec-20

Client PO: 31372

Report Date: 21-Dec-2020

Order Date: 15-Dec-2020

Project Description: PE4908

	Client ID:	BH4-20-GW1	-	-	-
	Sample Date:	11-Dec-20 09:00	-	-	-
	Sample ID:	2051238-01	-	-	-
	MDL/Units	Water	-	-	-
Volatiles			-		
Benzene	0.5 ug/L	<0.5	-	-	-
Ethylbenzene	0.5 ug/L	<0.5	-	-	-
Toluene	0.5 ug/L	<0.5	-	-	-
m,p-Xylenes	0.5 ug/L	<0.5	-	-	-
o-Xylene	0.5 ug/L	<0.5	-	-	-
Xylenes, total	0.5 ug/L	<0.5	-	-	-
Toluene-d8	Surrogate	94.0%	-	-	-
Hydrocarbons	•				
F1 PHCs (C6-C10)	25 ug/L	<25	-	-	-
F2 PHCs (C10-C16)	100 ug/L	<100	_	-	-
F3 PHCs (C16-C34)	100 ug/L	<100	_	-	-
F4 PHCs (C34-C50)	100 ug/L	<100	-	-	-

Report Date: 21-Dec-2020

Order Date: 15-Dec-2020

Project Description: PE4908

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	ND	25	ug/L						
F2 PHCs (C10-C16)	ND	100	ug/L						
F3 PHCs (C16-C34)	ND	100	ug/L						
F4 PHCs (C34-C50)	ND	100	ug/L						
Volatiles									
Benzene	ND	0.5	ug/L						
Ethylbenzene	ND	0.5	ug/L						
Toluene	ND	0.5	ug/L						
m,p-Xylenes	ND	0.5	ug/L						
o-Xylene	ND	0.5	ug/L						
Xylenes, total	ND	0.5	ug/L						
Surrogate: Toluene-d8	78.9		ug/L		98.6	50-140			

Report Date: 21-Dec-2020

Order Date: 15-Dec-2020

Project Description: PE4908

Method Quality Control: Duplicate

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	ND	25	ug/L	ND			NC	30	
Volatiles									
Benzene	ND	0.5	ug/L	ND			NC	30	
Ethylbenzene	ND	0.5	ug/L	ND			NC	30	
Toluene	ND	0.5	ug/L	ND			NC	30	
m,p-Xylenes	ND	0.5	ug/L	ND			NC	30	
o-Xylene	ND	0.5	ug/L	ND			NC	30	
Surrogate: Toluene-d8	76.1		ug/L		95.2	50-140			

Report Date: 21-Dec-2020

Order Date: 15-Dec-2020

Project Description: PE4908

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	1850	25	ug/L	ND	92.7	68-117			
F2 PHCs (C10-C16)	1260	100	ug/L	ND	78.8	60-140			
F3 PHCs (C16-C34)	3340	100	ug/L	ND	85.2	60-140			
F4 PHCs (C34-C50)	2350	100	ug/L	ND	94.7	60-140			
Volatiles									
Benzene	34.3	0.5	ug/L	ND	85.8	60-130			
Ethylbenzene	38.7	0.5	ug/L	ND	96.7	60-130			
Toluene	43.7	0.5	ug/L	ND	109	60-130			
m,p-Xylenes	78.6	0.5	ug/L	ND	98.2	60-130			
o-Xylene	38.2	0.5	ug/L	ND	95.5	60-130			
Surrogate: Toluene-d8	64.7		ug/L		80.9	50-140			

None

Sample Data Revisions

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected MDL: Method Detection Limit Source Result: Data used as source for matrix and duplicate samples %REC: Percent recovery. RPD: Relative percent difference. NC: Not Calculated

CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.

- F1 range corrected for BTEX.

- F2 to F3 ranges corrected for appropriate PAHs where available.

- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.

- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.

- When reported, data for F4G has been processed using a silica gel cleanup.

Order Date: 15-Dec-2020

Project Description: PE4908

Report Date: 21-Dec-2020

Order #: 2051238

C PARACEL III	Paracel	ID:	2051238		Paracel O (Lab	rder Number Jse Only) 5 2 3 8	Chain (La Nº E	Of Custody b Use Only) 55576		
Client Name: Paterson (rouginc.	Projec	t Ref:	PE4908				Pa	age <u>l</u> of <u>/</u>		
Contact Name: Kanap Mupch	Quote	#:					Turnaround Time			
Address: 124 101000000 Rd S.	PO #:	31	372				🗆 1 day	🗆 3 day		
	E-mail	: V	muncha	nterse	namu	DIA	🗆 2 day	X Regular		
Telephone: 613-226-7381		F	munone	paterso	19:00	p. 0 ~	Date Required:			
Regulation 153/04 Other Regulation	Matrix 1	ype: \$	5 (Soil/Sed.) GW (Gr	ound Water)		Re	quired Analysis			
Table 1 Res/Park Med/Fine REG 558 PWQO	SW (Su	SW (Surface Water) SS (Storm/Sanitary Sewer)			in column cur minimus					
Table 2 Ind/Comm Coarse CCME MISA		P(P		erj	3					
□ Table 3 □ Agri/Other □ SU - Sani □ SU - Storm		Sample Taken			E					
	Iume				X					
Sample ID/Location Name	Vir Vo				- Ea					
		2	no 11/20							
2	<u></u>		he infac					++++-1		
3										
4										
5		ч. 								
6		1								
7										
8										
9										
10										
Comments:						Metho	d of Delivery:	1		
						7.	ACACEL (LOUGER		
Relinquished By (Sign):	iver/Depot:	10	NISE .	Received at Lab:	OWM	Donna	d By: BG	n.		
Relinquished By (Print): Ladar Date/Time:	5/12	2/2	10 2.43	Date Time: 5.	2020	04.4 Pate/1	ime poc 15	1070 16:48		
Date/Time: Der US/ Leke Temperature:	1	1	°C PH.	Temperature:	9.3 °	pH Ve	rified: By:	10		

Chain of Custody (Blank) xlsx

Revision 3.0

RELIABLE.

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Certificate of Analysis

Paterson Group Consulting Engineers

154 Colonnade Road South Nepean, ON K2E 7J5 Attn: Karyn Munch

Client PO: 31910 Project: PE4908 Custody: 31104

Report Date: 12-Mar-2021 Order Date: 12-Mar-2021

Order #: 2111604

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID **Client ID** 2111604-01 MW3-GW1 2111604-02 MW8-GW2

Approved By:

Dale Robertson, BSc Laboratory Director

Any use of these results implies your agreement that our total liability in connection with this work, however arising, shall be limited to the amount paid by you for this work, and that our employees or agents shall not under any circumstances be liable to you in connection with this work.

Report Date: 12-Mar-2021 Order Date: 12-Mar-2021

Order #: 2111604

Project Description: PE4908

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date	Analysis Date
PCBs, total	EPA 608 - GC-ECD	12-Mar-21	12-Mar-21
REG 153: PAHs by GC-MS	EPA 625 - GC-MS, extraction	12-Mar-21	12-Mar-21

Certificate of Analysis

Client: Paterson Group Consulting Engineers

Client PO: 31910

Order #: 2111604

Report Date: 12-Mar-2021

Order Date: 12-Mar-2021

Project Description: PE4908

	Client ID:	MW3-GW1	MW8-GW2	-	-
	Sample Date:	12-Mar-21 09:00	12-Mar-21 09:00	-	-
	Sample ID:	2111604-01	2111604-02	-	-
	MDL/Units	Water	Water	-	-
Semi-Volatiles			•		
Acenaphthene	0.05 ug/L	-	<0.05	-	-
Acenaphthylene	0.05 ug/L	-	<0.05	-	-
Anthracene	0.01 ug/L	-	<0.01	-	-
Benzo [a] anthracene	0.01 ug/L	-	<0.01	-	-
Benzo [a] pyrene	0.01 ug/L	-	<0.01	-	-
Benzo [b] fluoranthene	0.05 ug/L	-	<0.05	-	-
Benzo [g,h,i] perylene	0.05 ug/L	-	<0.05	-	-
Benzo [k] fluoranthene	0.05 ug/L	-	<0.05	-	-
Chrysene	0.05 ug/L	-	<0.05	-	-
Dibenzo [a,h] anthracene	0.05 ug/L	-	<0.05	-	-
Fluoranthene	0.01 ug/L	-	<0.01	-	-
Fluorene	0.05 ug/L	-	<0.05	-	-
Indeno [1,2,3-cd] pyrene	0.05 ug/L	-	<0.05	-	-
1-Methylnaphthalene	0.05 ug/L	-	<0.05	-	-
2-Methylnaphthalene	0.05 ug/L	-	<0.05	-	-
Methylnaphthalene (1&2)	0.10 ug/L	-	<0.10	-	-
Naphthalene	0.05 ug/L	-	<0.05	-	-
Phenanthrene	0.05 ug/L	-	<0.05	-	-
Pyrene	0.01 ug/L	-	<0.01	-	-
2-Fluorobiphenyl	Surrogate	-	108%	-	-
Terphenyl-d14	Surrogate	-	119%	-	-
PCBs					
PCBs, total	0.05 ug/L	<0.05	-	-	-
Decachlorobiphenyl	Surrogate	118%	-	-	-

Method Quality Control: Blank

Report Date: 12-Mar-2021

Order Date: 12-Mar-2021

Project Description: PE4908

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
PCBs									
PCBs, total	ND	0.05	ug/L		75.0	co 110			
Surrogate: Decachiorobiphenyi	0.375		ug/L		75.0	60-140			
Semi-Volatiles									
Acenaphthene	ND	0.05	ug/L						
Acenaphthylene	ND	0.05	ug/L						
Anthracene	ND	0.01	ug/L						
Benzo [a] anthracene	ND	0.01	ug/L						
Benzo [a] pyrene	ND	0.01	ug/L						
Benzo [b] fluoranthene	ND	0.05	ug/L						
Benzo [g,h,i] perylene	ND	0.05	ug/L						
Benzo [k] fluoranthene	ND	0.05	ug/L						
Chrysene	ND	0.05	ug/L						
Dibenzo [a,h] anthracene	ND	0.05	ug/L						
Fluoranthene	ND	0.01	ug/L						
Fluorene	ND	0.05	ug/L						
Indeno [1,2,3-cd] pyrene	ND	0.05	ug/L						
1-Methylnaphthalene	ND	0.05	ug/L						
2-Methylnaphthalene	ND	0.05	ug/L						
Methylnaphthalene (1&2)	ND	0.10	ug/L						
Naphthalene	ND	0.05	ug/L						
Phenanthrene	ND	0.05	ug/L						
Pyrene	ND	0.01	ug/L						
Surrogate: 2-Fluorobiphenyl	14.6		ug/L		73.2	50-140			
Surrogate: Terphenyl-d14	23.2		ug/L		116	50-140			

Method Quality Control: Spike

Report Date: 12-Mar-2021

Order Date: 12-Mar-2021

Project Description: PE4908

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
PCBs									
PCBs, total	0.930	0.05	ug/L	ND	93.0	60-140			
Surrogate: Decachlorobiphenyl	0.445		ug/L		89.0	60-140			
Semi-Volatiles									
Acenaphthene	4.72	0.05	ug/L	ND	94.4	50-140			
Acenaphthylene	4.21	0.05	ug/L	ND	84.1	50-140			
Anthracene	4.89	0.01	ug/L	ND	97.7	50-140			
Benzo [a] anthracene	4.40	0.01	ug/L	ND	87.9	50-140			
Benzo [a] pyrene	4.67	0.01	ug/L	ND	93.4	50-140			
Benzo [b] fluoranthene	5.79	0.05	ug/L	ND	116	50-140			
Benzo [g,h,i] perylene	4.35	0.05	ug/L	ND	86.9	50-140			
Benzo [k] fluoranthene	5.59	0.05	ug/L	ND	112	50-140			
Chrysene	5.16	0.05	ug/L	ND	103	50-140			
Dibenzo [a,h] anthracene	4.76	0.05	ug/L	ND	95.3	50-140			
Fluoranthene	4.40	0.01	ug/L	ND	88.1	50-140			
Fluorene	4.35	0.05	ug/L	ND	87.0	50-140			
Indeno [1,2,3-cd] pyrene	4.54	0.05	ug/L	ND	90.7	50-140			
1-Methylnaphthalene	4.65	0.05	ug/L	ND	93.0	50-140			
2-Methylnaphthalene	5.13	0.05	ug/L	ND	103	50-140			
Naphthalene	5.34	0.05	ug/L	ND	107	50-140			
Phenanthrene	4.61	0.05	ug/L	ND	92.1	50-140			
Pyrene	4.51	0.01	ug/L	ND	90.1	50-140			
Surrogate: 2-Fluorobiphenyl	15.2		ug/L		76.1	50-140			
Surrogate: Terphenyl-d14	23.9		ug/L		120	50-140			

Qualifier Notes:

None

Sample Data Revisions

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected MDL: Method Detection Limit Source Result: Data used as source for matrix and duplicate samples %REC: Percent recovery. RPD: Relative percent difference. NC: Not Calculated Report Date: 12-Mar-2021 Order Date: 12-Mar-2021 Project Description: PE4908

C PARACE LABORATORIES L	icel 1	(D: 2	2111	604	3lvd. 4J8 s.com	Pari	acel Ord (Lab Us	e On	umbe ly)	er	c I	hain (Lat	Of Cus Use Only 1311	tody /) 04	
Client Name: Ratesson Contact Name: Kasyo MUNCh		Projec Quote	ct Ref:	PE4906					(Pa Turna	ge of round Ti	me	
Telephone: 613-226-77381		PO#: 31910 E-mail: KMURA Patosograp. (9)					-	Date Required: ASAP!!			ular				
Regulation 153/04 Other Regulation Table 1 Res/Park Med/Fine REG 558 PWQO Table 2 Ind/Comm Coarse CCME MISA	N	Matrix Type: S (Soil/Sed.) GW (Ground Water) SW (Surface Water) SS (Storm/Sanitary Sewer) P (Paint) A (Air) O (Other)								R	Required Analysis				
Table 3 Agri/Other SU - Sani SU - Storm Table 7 For RSC: Yes No Other: Sample ID/Location Name	Matrix	Sample Taken			PHCs F1-F4+BTEX	VOC5 PAHs	Metals by ICP	Hg	CrVI	PCBS					
1 /W3-GW1 2 /WW8-GW7 3	4 GU		₹ 1	3/12/2021			V				V				
4 5 6															
7 8 9															
10 Comments:					- (N	Aethoo	of Delivery	80	x		
Relinquished By (Print): Determine By Dreceived By Dr Relinquished By (Print): Determine: Date/Time: SALA 20 Determine: Temperature:	iver/De	pot:		°c	Received at Lab: UMEE Pate/Time: 9 Temperature:	POVA 1021 7.0	1 ľ	.0'	719 3 D	erified Pate/Ti H Veri	ne: 2	-12 B/:	21	= 121	100

APPENDIX 2

Remediation Report

Geotechnical Engineering

Environmental Engineering

Hydrogeology

Geological Engineering

Materials Testing

Building Science

Archaeological Services

Paterson Group Inc.

Consulting Engineers 154 Colonnade Road South Ottawa (Nepean), Ontario Canada K2E 7J5

Tel: (613) 226-7381 Fax: (613) 226-6344 www.patersongroup.ca

patersongroup

Environmental Site Remediation Program

473 Albert Street Ottawa, Ontario

Prepared For

InterRent No. 3 Limited Partnership

January 25, 2021

Report: PE4908-1REM

TABLE OF CONTENTS

EXEC	UTIV	E SUMMARY	ii
1.0	INTR	ODUCTION	. 1
	1.1	Background	. 1
2.0	SOIL	REMEDIATION PROGRAM	. 3
3.0	FREE	PRODUCT	. 5
4.0	CONF	FIRMATORY SAMPLING AND ANALYSIS	. 6
	4.1	Confirmatory Soil Sampling Program	. 6
	4.2	Analytical Testing	. 6
	4.3	Quality Assurance/Quality Control	14
5.0	CON	CLUSIONS	16
	5.1	Assessment	16
	5.2	Conclusion	17
6.0	STAT	EMENT OF LIMITATIONS	18

List of Figures

Drawing PE4908-11A – Remediation Excavation and Sidewalls – Excavation 1 (Metals) Drawing PE4908-11B – Remediation Excavation and Sidewalls – Excavation 1 (VOCs) Drawing PE4908-12 – Remediation Excavation and Sidewalls – Excavation 2 (Metals)

List of Appendices

Appendix 1 Laboratory Certificates of Analysis Weigh Scale Summary

EXECUTIVE SUMMARY

Assessment

During the interim of November 4 through November 20, 2020 Paterson Group monitored the removal of impacted soil from the commercial property addressed 473 Albert Street in the City of Ottawa, Ontario.

Paterson monitored the excavation of contaminated soil and determined the limits of the excavations using visual screening methods and/or vapour screening, as well as analytical testing. Metal and VOC impacted soil was removed from the vicinity of MW5 (Excavation, EX1). Impacted fill material, consisting of crushed stone and a sandy clay soil matrix was identified beneath the concrete floor slab of the underground parking structure, and extended approximately 0.5m, to the underlying bedrock. Metal impacted soil was removed from the vicinity of MW4 (Excavation, EX2), from the underside of the floor slab to a depth of approximately 0.6m below the floor slab. Bedrock was encountered within the western portion of the excavation only. Based on the results of confirmatory sampling, the soil remaining on the Phase II Property complies with the MECP Table 7 standards.

Full horizontal delineation of soil impacts was obtained during the remediation program. To achieve vertical delineation at MW-4 and MW-5 groundwater was analysed for VOC and/or metal parameters. Based on the results of the analytical testing, the groundwater complies with the MECP Table 7 standards. Metal and VOC parameters are therefore not considered to have extended beneath the bedrock surface.

Approximately 39.5 mt of contaminated soil (mixed with granular material) was removed from the subject property and disposed of at Waste Connections of Canada Ottawa Landfill.

Groundwater levels at the subject property were measured within the bedrock at depths ranging from approximately 1.2 to 3.6 m below the basement floor slab, during the November 2020 groundwater monitoring event. Groundwater was not encountered during the remediation program. Based on the findings of the Phase II ESA, the groundwater beneath the subject site is considered to be in compliance with the MECP Table 7 standards.

Conclusion

Based on our field observations combined with the analytical test results, in our opinion, all contaminated soil has been removed from the Phase II Property. No further remedial work is recommended at this time.

1.0 INTRODUCTION

In November 2020 Paterson monitored an environmental site remediation program at the property addressed 473 Albert Street, in the City of Ottawa, Ontario. The findings of the remediation program are detailed in this report.

The subject property is located on the north side of Albert Street, approximately 55m east of Bronson Avenue, in the City of Ottawa. The area of the Phase II property is approximately 0.17 hectares with approximately 60m of frontage along Albert Street.

The location of the Phase II Property is shown on Figure 1 – Key Plan, appended to the Phase II ESA report.

1.1 Background

Pinchin Ltd. (Pinchin) prepared a Phase I ESA report in December of 2019 and subsequently conducted a subsurface investigation during the interim of December 2019 through February 2020 to address areas of potential environmental concern (APECs) identified in the Phase I ESA: existing diesel aboveground storage tank (AST); former heating oil AST; Hydro Vault; previous generation of on-site chemical waste; and a former off-site drycleaner. A final Phase II ESA report was not prepared, although plans, borehole logs and Certificates of Analysis were provided to Paterson for review.

Based on the findings of the field work carried out by Pinchin, soil impacted with 1,4-Dichlorobenzene and/or metals, was identified at MW-5 and MW-4. The impacts were considered to be primarily associated with the sandy clay soil fill mixed with the engineered fill at these locations; fill material underneath the concrete floor slab of the sub-basement level primarily consisted of crushed stone larger than 2 millimeters, although a soil matrix was also identified at several locations.

The Pinchin groundwater sampling event also identified concentrations of PHC F2 and/or F3 in the groundwater recovered from MW-5 and MW-6. Pinchin conducted 2 subsequent sampling events at MW-6 for PHC F2-F4 only; no parameter concentrations were identified above the laboratory method detection limits.

Paterson Group subsequently conducted a field program which consisted of drilling 4 additional boreholes, each of which were completed with monitoring well installations (BH1-20, BH1A-20, BH2-20 and BH3-20).

Groundwater was recovered from each of the 2020 monitoring wells (except BH1-20 which had insufficient water for sampling purposes), as well as from MW-5, MW-6 and MW-8 previously installed by Pinchin. The samples were submitted for BTEX or VOC and PHC analyses. Based on the analytical test results, no BTEX or VOC parameters were identified in the samples analysed, with the exception of chloroform in BH1A-20, which was the result of using municipally treated water for bedrock coring.

No PHC parameters were identified with the exception of PHC (F2 and F3) concentrations in MW-5. While the detected concentrations were significantly lower than those previously identified during the January 2020 sampling event conducted by Pinchin, they remained above the MECP Table 7 standards.

At the time of the soil remediation program, the details of which are presented in the following report, bedrock was excavated adjacent to MW-5 to a depth below the measured water table, to allow the infiltration of impacted groundwater, while maintaining the integrity of MW-5 for sampling purposes. A second groundwater sample was recovered from MW-5 in conjunction with the remediation program and analysed for BTEX, VOCs and PHCs. Based on the results of the analytical testing, no parameter concentrations were identified. A third groundwater sample was subsequently recovered and submitted for analytical testing; the results did not identify any parameters concentrations.

Given the analytical test results, it was considered likely that original PHC F2 and F3 fractions were the result of sediment in the recovered samples, as discussed in the Phase II ESA. Due to the sound quality of the bedrock, no groundwater infiltration was observed in the bedrock trench. A fifth borehole (BH4-20) was subsequently drilled within the trench to confirm the quality of the groundwater below the screened interval at MW-5. No BTEX or PHC parameters were identified in the sample.

The groundwater beneath the site was deemed to comply with the MECP Table 7 standards.

2.0 SOIL REMEDIATION PROGRAM

A representative sample of impacted soil obtained by Paterson personnel on November 2, 2020, was submitted to Paracel Laboratories of Ottawa for a leachate analysis in accordance with Ontario Regulation 347/558. Based on the results of the testing, the impacted material was classified as non-hazardous solid waste.

Prior to the removal of impacted soil, the concrete floor slab in the vicinity of MW-4 and MW-5 was cut as instructed by Paterson, and disposed offsite at an approved recycling facility. During the interim of November 4 through November 20, 2020, Paterson personnel were on-site periodically, to monitor the removal of the metal and VOC impacted soil. George W. Drummond Ltd. was retained as the excavation contractor for the remediation program. All impacted soil was excavated using a mini-excavator and placed in bins which were later removed for off-site disposal at a licenced landfill site. The remedial program consisted of two separate excavations (Excavation 1, EX1 and Excavation 2, EX2), located on in the vicinity of MW-5 and MW-4, respectively, on the northeast and central portions of the site.

Upon completion of the remediation program, all impacted soil had been removed from the subject property. Approximately 39.5 mt of contaminated soil was sent to Waste Connections of Canada Ottawa Landfill. A summary of landfill weigh scale tonnages is appended to this report.

Excavation 1 (EX1)

Excavation 1 (EX1) commenced at MW5 and continued to the west, north, east and south to the limits of the concrete cut. No visual or olfactory indications of contamination were noted in the fill material. The fill material primarily consisted of a granular material mixed with a sandy clay soil matrix. No deleterious materials were noted in the fill.

The fill material was removed to the bedrock surface, except where bedding sand was present around a sewer line, as shown on Drawing PE4908-11 – Remediation Excavation and Sidwalls – Excavation 1.

Sidewall samples were collected from within EX1 at multiple increments for visual screening purposes and confirmatory sampling purposes. Samples of the bedding sand were collected from along the sewer line; otherwise, the base of the excavation consisted of bedrock.

Based on visual and olfactory observations in combination with vapour measurements, worst case sidewall samples were selected for confirmatory analysis. The final floor area of EX1 was approximately 72 m². In accordance with O.Reg. 153/04, a minimum of three (3) sidewall samples and three (3) base samples were analysed for confirmatory purposes.

Upon completion of the excavation, full horizontal delineation was obtained. Vertical delineation within the soil was not obtained, however based on analytical testing groundwater at MW-5 complies with the MECP Table 7 standards for metals and VOCs. As such, metal and VOC impacts are not considered to have vertically migrated into the bedrock.

Excavation 2

Excavation 2 (EX2) commenced at MW-4 and continued to the west, north, east and south to the limits of the concrete cut. No visual or olfactory indications of contamination were noted in the fill material. The fill material primarily consisted of a granular material mixed with a sandy clay soil matrix. No deleterious materials were noted in the fill.

The fill material was removed to the bedrock surface only on the western portion of the excavation, as shown on Drawing PE4908-12 – Remediation Excavation and Sidwalls – Excavation 2.

Sidewall samples were collected from within EX2 at multiple increments for visual screening purposes and confirmatory sampling purposes. Two samples were recovered from the base within the eastern portion of the excavation.

No visual or olfactory indications of potential contamination were noted in the fill material and therefore confirmatory samples were selected based on location relative to the impact sample identified at MW-4. The final floor area of EX2 was approximately 10m²; in accordance with O.Reg.153/04, a minimum of 2 sidewall and 2 base samples are required to be submitted for confirmatory testing. Two (2) additional sidewall samples were submitted for analytical testing to achieve ful horizontal delineation. The test results were determined to comply with the MECP Table 7 standards.

Upon completion of the excavation, full horizontal delineation was obtained. Based on analytical testing of the base samples within the eastern portion of the excavation in combination with analytical testing of the groundwater at MW4, metal concentrations in the remaining soil and groundwater comply with MECP Table 7 standards. As such, metals are not considered to have vertically migrated into the bedrock.

3.0 FREE PRODUCT

Based on the findings of the initial testing conducted by Pinchin, groundwater PHC F2 and/or F3 concentrations were identified at MW5 and MW6; those identified at MW5 were significantly higher than those at MW6. Pinchin subsequently sampled MW6 for PHC F2-F4; while the results indicated no parameter concentrations were identified, they could not be relied upon without the F1 analysis. Paterson subsequently recovered groundwater samples for analysis during two separate sampling events. Free product was not observed on the purge water and the analytical test results did not identify any PHC concentrations.

Groundwater was not encountered within the remedial excavations. As previously discussed, a bedrock trench was excavated within EX1. No groundwater was observed within the excavation. Groundwater samples were recovered from MW-5 in conjunction with the remedial excavation; no visual or olfactory indications of free product were observed on the purge water. Analytical test results did not identify any PHC concentrations in the groundwater samples.

To confirm the quality of the groundwater in the vicinity of MW-5, an additional monitoring well (BH4-20) was drilled within the trench excavation, to a depth of approximately 6.1m below the floor slab. No visual or olfactory indications of free product were observed on the purge water. Analytical test results did not identify any PHC concentrations.

As further discussed in the Phase II ESA, it is the opinion of the QP that the PHC results obtained by Pinchin for MW-4 and MW-5, as well as the initial results obtained by Paterson at MW-5, resulted from sediment in the samples. Based on the most recent groundwater sampling events in combination with visual and olfactory observations during the field programs, the groundwater beneath the Phase II Property complies with the MECP Table 7 standards.
Ditawa Kingston North Bay

4.0 CONFIRMATORY SAMPLING AND ANALYSIS

4.1 Confirmatory Soil Sampling Program

The soil sampling protocols followed during this remedial program were in general accordance with the MECP document entitled "Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario", dated May 1996.

All soil samples collected from EX1 were submitted to a preliminary screening procedure which included visual and olfactory screening for colour and odour, as well as screening with a photoionization detector (PID).

The soil vapours were measured by inserting the analyzer probe into the nominal headspace above the soil sample. Samples were then agitated and the peak readings recorded. The PID organic vapour readings measured were less than 1ppm and were not considered to be indicative of VOC impacts.

Typically, the soil samples with the highest organic vapour readings are selected for analytical testing. Given the low readings where VOCs were contaminants of concern, and the low-volatility of metals, sample selection was also based on visual and olfactory observations in combination with sample location, in accordance with the prescribed sample density outlined in Ontario Regulation (O.Reg.) 153/04. Contaminants analyzed were selected based on the contaminants of concern identified during the Phase II – ESA.

A total of twenty (20) base and sidewall screening samples were collected from the larger excavation (EX1). A total of 10 sidewall and base screening samples were collected from the smaller excavation (EX2).

Screening samples selected for analysis and analytical test results are presented on Drawings PE4908-11 and 12 – Remediation Excavation and Sidewalls.

4.2 Analytical Testing

The remediation standards for the subject property were obtained from Table 7 of the document entitled "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act", prepared by the Ontario Ministry of Environment, Conservation and Parks, April 15, 2011. The MECP Table 7 Standards are based on the following considerations:

- □ Coarse-grained soil conditions;
- □ Shallow-soil conditions;
- □ Non-potable groundwater situation; and
- Residential land use.

Paracel Laboratories (Paracel) of Ottawa, performed the laboratory analysis of the samples submitted for testing. Paracel is a member of the Standards Council of Canada/Canadian Association for Environmental Analytical Laboratories (SCC/CAEAL). Paracel is accredited and certified by SCC/CAEAL for specific tests registered with the association.

Soil

As noted previously, a leachate analysis was completed for a representative sample of impacted soil, in accordance with O.Reg. 347/558, for off-site disposal purposes. A copy of the laboratory Certificate of Analysis is appended to this report.

Excavation EX1 - Metals

Based on our field observations, a total of 10 confirmatory soil samples were submitted for laboratory analysis of metals. The results of the analysed soil samples are presented in Table 1. Copies of the laboratory Certificates of Analysis are appended to this report.

Table 1: An	Table 1: Analytical Test Results – EX1 Confirmatory Wall Samples - Metals									
Parameter	MDL (ug/g)	Sampi	Soil Samples (µg/g)							
	(F3-3/		Nove	ember 5	, 2020		Nov.10, 2020	Residential Standards		
		N4	E1 ¹	E2	B1	DUP ^{1,2}	W3	(µg/g)		
Antimony	1	nd	nd	nd	nd	nd	nd	7.5		
Arsenic	1	2.6	1.4	1.8	nd	1.7	2.2	18		
Barium	1	274	307	<u>397</u>	19.6	<u>419</u>	378	390		
Beryllium	0.5	0.7	nd	nd	nd	nd	0.7	4		
Boron	5.0	15.5	10.5	7.0	nd	8.6	18.8	120		
Cadmium	0.5	nd	nd	nd	nd	nd	nd	1.2		
Chromium	5	11.0	7.5	8.4	6.8	8.5	10.8	160		
Cobalt	1	9.6	6.9	6.5	2.4	6.5	7.4	22		
Copper	5	13.7	7.1	7.0	nd	7.3	11.7	140		
Lead	1	22.8	22.0	8.9	nd	8.3	10.9	120		
Molybdenum	1	nd	nd nd nd nd nd 6.9							
Nickel	5	18.2	12.8	13.0	6.3	12.5	15.6	100		
Selenium	1	nd	nd	nd	nd	nd	nd	2.4		

Table 1: Analytical Test Results – EX1 Confirmatory Wall Samples - Metals								
Parameter MDL Soil Samples (µg/g)							MECP Table7	
	(1 0 0 <i>/</i>		Nove	ember 5	, 2020		Nov.10, 2020	Residential Standards
		N4	E1 ¹	E2	B1	DUP ^{1,2}	W3	(µg/g)
Silver	0.3	nd	nd	nd	nd	nd	nd	20
Thallium	1	nd	nd	nd	nd	nd	nd	1
Uranium	1	nd	nd	nd	nd	nd	nd	23
Vanadium	10	10.1 nd nd 12.3 10.4 10.4						
Zinc 20 nd nd nd nd nd nd 340								
Notes:	Notes:							

nd - not detected above the MDL

Bold and Underlined - Value exceeds MECP Table 7 Standard

1 - Removed from the excavation for off-site disposal

2 - Duplicate of E2

Table 1 Continued: Analytical Test Results – EX1Confirmatory Soil Samples – Metals

Parameter	MDL	L	Soil Samples (µg/g)						
	(µg/g)	Nov. 10), 2020	Nov. 1	Nov. 13, 2020		0, 2020	Table 7	
	l l			D 0			F 0	Residential	
	l I	W4	52	BZ	ВЗ	E/	Εŏ	(µg/g)	
Antimony	1	nd	nd	nd	nd	nd	nd	7.5	
Arsenic	1	1.1	1.6	nd	nd	2.0	nd	18	
Barium	1	65.0	340	121	24.5	465	104	390	
Beryllium	0.5	nd	nd	nd	nd	nd	nd	4	
Boron	5.0	nd	7.1	nd	nd	14.5	nd	120	
Cadmium	0.5	nd	nd	nd	nd	nd	nd	1.2	
Chromium	5	8.6	8.5	7.1	6.5	9.2	7.0	160	
Cobalt	1	3.9	6.3	3.1	2.3	12.0	3.9	22	
Copper	5	5.1	7.9	nd	nd	15.6	nd	140	
Lead	1	2.7	6.0	2.5	nd	10.4	1.7	120	
Molybdenum	1	nd	nd	nd	nd	nd	nd	6.9	
Nickel	5	9.4	10.5	7.7	5.8	16.7	8.0	100	
Selenium	1	nd	nd	nd	nd	nd	nd	2.4	
Silver	0.3	nd	nd	nd	nd	nd	nd	20	
Thallium	1	nd	nd	nd	nd	nd	nd	1	
Uranium	1	nd	nd	nd	nd	nd	nd	23	
Vanadium	10	13.3	10.3	11.2	nd	10.1	nd	86	
Zinc	20	23.1	nd	20.1	nd	nd	nd	340	
Notes:									

MDL – Method Detection Limit

nd - not detected above the MDL

Bold and Underlined - Value exceeds MECP Table 7 Standard Concentrations of barium exceeding the MECP Table 7 standard were identified in sample E2 and its duplicate. The soil from the east wall was further removed and re-sampled. A concentration of barium exceeding MECP Table 7 was identified in Sample E7. In accordance with Section 48 (2) of O.Reg. 153/04, as amended under the Environmental Protection Act, "if two or more samples of soil or sediment are taken from sampling points at the same sampling location that are at the same depth in, on or under the property, the property meets a standard mentioned in subsection (1) if the average of the sampling results meets the standard and in no other circumstances". As per Section 48 (4) of the regulation, "sampling location" means an area of the property that does not have a radius larger than 2m. As such, Sample E8, collected at the same depth and from within a 2m radius of Sample E7, was subsequently submitted for analytical testing of metal parameters.

The average of the barium concentrations identified in Samples E7 (465 μ g/g) and E8 (104 μ g/g), taken from sampling points at the same sampling location and the same depth, is 284.5 μ g/g, below the MECP Table 7 standard of 390 μ g/g. All metal parameters identified in the final confirmatory wall and base samples comply with the MECP Table 7 standards.

Excavation 1 – VOCs

Based on our field observations, a total of 8 confirmatory soil samples were submitted for laboratory analysis of metals. The results of the analysed soil samples are presented in Table 2. Copies of the laboratory Certificates of Analysis are appended to this report.

Table 2: Analytical T	<u>est Resu</u>	<u>lits – Soil</u>	(VOCs)		
		Soil	Samples (µg	g/g)	MECP Table 7
Parameter		1	Nov.5, 2020		Residential Standards
	(µg/g)	N4	E2	B1	(µg/g)
Acetone	0.50	nd	nd	nd	16
Benzene	0.02	nd	nd	nd	0.21
Bromodichloromethane	0.05	nd	nd	nd	13
Bromoform	0.05	nd	nd	nd	0.27
Bromomethane	0.05	nd	nd	nd	0.05
Carbon Tetrachloride	0.05	nd	nd	nd	0.05
Chlorobenzene	0.05	nd	nd	nd	2.4
Chloroform	0.05	nd	nd	nd	0.05
Dibromochloromethane	0.05	nd	nd	nd	9.4
m-Dichlorobenzene	0.20	nd	nd	nd	3.4
o-Dichlorobenzene	0.05	nd	nd	nd	4.8
p-Dichlorobenzene	0.05	nd	nd	nd	0.083
Dichlorodifluoromethane	0.05	nd	nd	nd	16
1 1-Dichloroethane	0.05	nd	nd	nd	35
1 2-Dichloroethane	0.05	nd	nd	nd	0.05
1 1-Dichlroethylene	0.05	nd	nd	nd	0.05
c-1 2-Dichloroethylene	0.05	nd	nd	nd	3.4
t-1 2-Dichloroethylene	0.05	nd	nd	nd	0.084
1 2-Dichloropropane	0.05	nd	nd	nd	0.05
c-1 3-Dichloropropene	0.05	nd	nd	nd	0.05
Ethylbenzene	0.05	nd	nd	nd	2
Ethylene Dibromide	0.05	nd	nd	nd	0.05
Heyane	0.05	nd	nd	nd	28
Methyl Ethyl Ketone	0.00	nd	nd	nd	16
Methyl Isobutyl Ketone	0.5	nd	nd	nd	17
Methyl tert-Butyl Ether	0.05	nd	nd	nd	0.75
Methylene Chloride	0.05	nd	nd	nd	0.1
Styrene	0.05	nd	nd	nd	0.7
1 1 1 2-Tetrachloroethane	0.00	nd	nd	nd	0.058
1 1 2 2-Tetrachloroethane	0.00	nd	nd	nd	0.05
Tetrachloroethylene	0.05	nd	nd	nd	0.00
Toluene	0.05	nd	nd	nd	23
1 1 1-Trichloroethane	0.05	nd	nd	nd	0.38
1 1 2-Trichloroethane	0.05	nd	nd	nd	0.05
Trichloroethylene	0.05	nd	nd	nd	0.05
Trichlorofluoromethane	0.05	nd	nd	nd	0.001 A
	0.03	nd	nd	nd	4
Xvlenes	0.02	nd	nd	nd	2 1
Notos:	0.05	nu	nu	I IU	5.1
 MDL – Method Detect nd – not detected abor 	tion Limit we the MDL				

pater	song	Iroup
Ottawa	Kingston	North Bay

			MECP Table 7			
Parameter		Nov.1	0, 2020	Nov.1	3, 2020	- Residential
	(µg/g)	W3	W4	B2	B3	(µg/g)
Acetone	0.50	nd	nd	nd	nd	16
Benzene	0.02	nd	nd	nd	nd	0.21
Bromodichloromethane	0.05	nd	nd	nd	nd	13
Bromoform	0.05	nd	nd	nd	nd	0.27
Bromomethane	0.05	nd	nd	nd	nd	0.05
Carbon Tetrachloride	0.05	nd	nd	nd	nd	0.05
Chlorobenzene	0.05	nd	nd	nd	nd	2.4
Chloroform	0.05	nd	nd	nd	nd	0.05
Dibromochloromethane	0.05	nd	nd	nd	nd	9.4
Dichlorodifluoromethane	0.05	nd	nd	nd	nd	16
m-Dichlorobenzene	0.20	nd	nd	nd	nd	3.4
o-Dichlorobenzene	0.05	nd	nd	nd	nd	4.8
p-Dichlorobenzene	0.05	0.10	0.06	nd	nd	0.083
1.1-Dichloroethane	0.05	nd	nd	nd	nd	3.5
1.2-Dichloroethane	0.05	nd	nd	nd	nd	0.05
1.1-Dichlroethvlene	0.05	nd	nd	nd	nd	0.05
c-1.2-Dichloroethylene	0.05	nd	nd	nd	nd	3.4
t-1.2-Dichloroethylene	0.05	nd	nd	nd	nd	0.084
1.2-Dichloropropane	0.05	nd	nd	nd	nd	0.05
c-1.3-Dichloropropene	0.05	nd	nd	nd	nd	0.05
Ethylbenzene	0.05	nd	nd	nd	nd	2
Ethylene Dibromide	0.05	nd	nd	nd	nd	0.05
Hexane	0.05	nd	nd	nd	nd	2.8
Methyl Ethyl Ketone	0.5	nd	nd	nd	nd	16
Methyl Isobutyl Ketone	0.5	nd	nd	nd	nd	1.7
Methyl tert-Butyl Ether	0.05	nd	nd	nd	nd	0.75
Methylene Chloride	0.05	nd	nd	nd	nd	0.1
Styrene	0.05	nd	nd	nd	nd	0.7
1,1,1,2-Tetrachloroethane	0.50	nd	nd	nd	nd	0.058
1,1,2,2-Tetrachloroethane	0.05	nd	nd	nd	nd	0.05
Tetrachloroethylene	0.05	nd	nd	nd	nd	0.28
Toluene	0.05	nd	0.14	nd	nd	2.3
1,1,1-Trichloroethane	0.05	nd	nd	nd	nd	0.38
1,1,2-Trichloroethane	0.05	nd	nd	nd	nd	0.05
Trichloroethylene	0.05	nd	nd	nd	nd	0.061
Trichlorofluoromethane	0.05	nd	nd	nd	nd	4
Vinyl Chloride	0.02	nd	nd	nd	nd	0.02
Xylenes	0.05	nd	0.08	nd	nd	3.1
Notes: MDL – Method Deter nd – not detected ab	ction Limit)				

Table 2 Continued:	Analyti	cal Test Results – Soil (VOCs)	
		Soil Samples (µg/g)	MECP Table 7
Parameter	MDL	Nov 20, 2020	Residential
	(µg/g)	W10	Standards
	0.50	WIO	(µg/g)
Acetone	0.50	nd	16
Benzene	0.02	nd	0.21
Bromodichloromethane	0.05	nd	13
Bromotorm	0.05	nd	0.27
Bromomethane	0.05	nd	0.05
Carbon Tetrachloride	0.05	nd	0.05
Chlorobenzene	0.05	nd	2.4
Chloroform	0.05	nd	0.05
Dibromochloromethane	0.05	nd	9.4
m-Dichlorobenzene	0.20	nd	3.4
o-Dichlorobenzene	0.05	nd	4.8
p-Dichlorobenzene	0.05	nd	0.083
Dichlorodifluoromethane	0.05	nd	16
1,1-Dichloroethane	0.05	nd	3.5
1,2-Dichloroethane	0.05	nd	0.05
1,1-Dichlroethylene	0.05	nd	0.05
c-1,2-Dichloroethylene	0.05	nd	3.4
t-1,2-Dichloroethylene	0.05	nd	0.084
1,2-Dichloropropane	0.05	nd	0.05
c-1,3-Dichloropropene	0.05	nd	0.05
Ethylbenzene	0.05	nd	2
Ethylene Dibromide	0.05	nd	0.05
Hexane	0.05	nd	2.8
Methyl Ethyl Ketone	0.5	nd	16
Methyl Isobutyl Ketone	0.5	nd	1.7
Methyl tert-Butyl Ether	0.05	nd	0.75
Methylene Chloride	0.05	nd	0.1
Styrene	0.05	nd	0.7
1,1,1,2-Tetrachloroethane	0.50	nd	0.058
1,1,2,2-Tetrachloroethane	0.05	nd	0.05
Tetrachloroethylene	0.05	nd	0.28
Toluene	0.05	nd	2.3
1,1,1-Trichloroethane	0.05	nd	0.38
1,1,2-Trichloroethane	0.05	nd	0.05
Trichloroethylene	0.05	nd	0.061
Trichlorofluoromethane	0.05	nd	4
Vinyl Chloride	0.02	nd	0.02
Xvlenes	0.05	nd	3.1
MDL – Method Deter	ction Limit	· ••	
\square nd – not detected ab	ove the M	וח	
		= =	

A concentration of 1,4-dichlorobenzene exceeding the MECP Table 7 standard was identified in sample W3. No other VOC concentrations were identified above in the samples analysed, with the exception of 1,4-dichlorobenzene, toluene and xylene concentrations below the MECP Table 7 standards in Sample W4.

In accordance with Section 48 (2) of O.Reg. 153/04, as amended under the Environmental Protection Act, "if two or more samples of soil or sediment are taken from sampling points at the same sampling location that are at the same depth in, on or under the property, the property meets a standard mentioned in subsection (1) if the average of the sampling results meets the standard and in no other circumstances". As per Section 48 (4) of the regulation, "sampling location" means an area of the property that does not have a radius larger than 2m. As such, Sample E8, collected at the same depth and from within a 2m radius of Sample E7, was subsequently submitted for analytical testing of metal parameters.

The average of the 1,4-dichlorobenzene concentrations identified in Samples W3 $(0.10 \ \mu g/g)$ and W4 $(0.06 \ \mu g/g)$, taken from sampling points at the same sampling location and the same depth, is 0.08 $\ \mu g/g$, below the MECP Table 7 standard of 0.083 $\ \mu g/g$. All VOC parameters identified in the final confirmatory wall and base samples comply with the MECP Table 7 standards.

Excavation EX2

Based on our field observations in combination with the results of the combustible vapour screening, a total of 6 confirmatory soil samples were submitted for laboratory analysis of metal parameters. The results of the analysed soil samples are presented in Table 3. Copies of the laboratory Certificates of Analysis are appended to this report.

Table 3: An	Table 3: Analytical Test Results – EX2									
Confirmatory Soil Samples – Metals										
Parameter	MDL			Soil S	amples	(µg/g)	1		MECP	
	(µg/g)		No	v. 10, 20	20		Nov.13	3, 2020	I able /	
		W2-1 E2-1 S2-1 N2-2 DUB ¹					B2-1	B2-2	Standards	
				021					(µg/g)	
Antimony	1	nd	nd	nd	nd	nd	nd	nd	7.5	
Arsenic	1	2.7	1.3	1.6	1.6	1.5	1.2	1.2	18	
Barium	1	157	133	381	342	309	40.3	35.4	390	
Beryllium	0.5	nd	nd	nd	nd	nd	nd	nd	4	
Boron	5.0	7.8	6.0	12.1	11.6	12.1	nd	nd	120	
Cadmium	0.5	nd	nd	nd	nd	nd	nd	nd	1.2	
Chromium	5	7.5	7.6	8.4	9.3	8.7	7.6	7.6	160	
Cobalt	1	3.3	4.3	5.0	6.4	5.3	2.9	3.0	22	
Copper	5	nd	nd	6.0	7.6	6.1	nd	nd	140	
Lead	1	8.2	4.1	5.7	5.6	5.5	3.1	2.2	120	
Molybdenum	1	nd	nd	nd	nd	nd	nd	nd	6.9	
Nickel	5	8.2	8.9	10.9	10.6	9.8	7.2	7.4	100	
Selenium	1	nd	nd	nd	nd	nd	nd	nd	2.4	
Silver	0.3	nd	nd	nd	nd	nd	nd	nd	20	
Thallium	1	nd	nd	nd	nd	nd	nd	nd	1	
Uranium	1	nd	nd	nd	nd	nd	nd	nd	23	
Vanadium	10	nd	10.3	nd	nd	nd	11.7	12.6	86	
Zinc	20	nd	nd	nd	nd	nd	21.0	23.2	340	
Notes: MDL – nd – nc	Notes: MDL – Method Detection Limit A not detected above the MDL									

□ 1 – Duplicate of S2-1

Based on the analytical test results all metal parameters identified comply with the MECP Table 7 standards.

4.3 Quality Assurance/Quality Control

Duplicates of soil Samples E2 (Excavation 1) and S2-1 (Excavation 2) were collected and submitted for analytical testing of metals. The duplicate samples were collected with the intent of calculating the relative percent difference (RPD) between duplicate sample values, as a way of assessing the quality of the analytical test results. The RPD calculations for Sample E2 and its duplicate are provided below in Table 4.

Table 4: Quality Assurance/Quality Control – EX1							
Parameter	Soil Samp	oles (µg/g)		Mooto Torrat			
	E2	DUP	- RPD (%)	Meets rarget			
Arsenic	1.8	1.7	5.7	YES			
Barium	397	419	5.4	YES			
Boron	7.0	8.6	20.5	NO			
Chromium	8.4	8.5	1.2	YES			
Cobalt	6.5	6.5	0	YES			
Copper	7.0	7.3	4.2	YES			
Lead	8.9	8.3	7.0	YES			
Nickel	13.0	12.5	3.9	YES			
Vanadium	Vanadium nd ¹ 10.4 3.9 YES						
1 – where the p for the BPD ca	1 – where the parameter was not identified above the MDL, the value of the MDL was used for the BPD calculation						

Table 5: Qu	Table 5: Quality Assurance/Quality Control – EX2							
Parameter	Soil Samp	oles (μg/g)		Masta Taunat				
	S2-1	DUP	RPD (%)	Meets Target				
Arsenic	1.6	1.5	6.5	YES				
Barium	381	309	20.9	NO				
Boron	12.1	12.1	0	YES				
Chromium	8.4	8.7	3.5	YES				
Cobalt	5.0	5.3	5.8	YES				
Copper	6.0	6.1	1.6	YES				
Lead	5.7	5.5	3.6	YES				
Nickel	10.9	9.8	10.6	YES				

Typically, RPD values below 20% are considered to be of satisfactory quality. With the exception of the boron (E2) and barium (S2-1) parameters, the RPD values calculated for all detected parameters meet the 20% target. As such, it is our opinion that the overall quality of the field data collected during the Phase II ESA is considered to be sufficient to meet the overall objectives of this assessment.

Furthermore, all samples submitted during the remediation activities were handled in accordance with the Analytical Protocol with respect to holding time, preservation method, storage requirement and container type, and as per Subsection 47(3) of O.Reg. 153/04, as amended by O.Reg. 269/11, a Certificate of Analysis has been received for each sample submitted for analysis and all Certificates of Analysis are appended to this report.

5.0 CONCLUSIONS

5.1 Assessment

During the interim of November 4 through November 20, 2020 Paterson Group monitored the removal of impacted soil from the commercial property addressed 473 Albert Street in the City of Ottawa, Ontario.

Paterson monitored the excavation of contaminated soil and determined the limits of the excavations using visual screening methods and/or vapour screening, as well as analytical testing. Metal and VOC impacted soil was removed from the vicinity of MW5 (Excavation, EX1). Impacted fill material, consisting of crushed stone and a sandy clay soil matrix was identified beneath the concrete floor slab of the underground parking structure, and extended approximately 0.5m, to the underlying bedrock. Metal impacted soil was removed from the vicinity of MW4 (Excavation, EX2), from the underside of the floor slab to a depth of approximately 0.6m below the floor slab. Bedrock was encountered within the western portion of the excavation only. Based on the results of confirmatory sampling, the soil remaining on the Phase II Property complies with the MECP Table 7 standards.

Full horizontal delineation of soil impacts was obtained during the remediation program. To achieve vertical delineation at MW-4 and MW-5 groundwater was analysed for VOC and/or metal parameters. Based on the results of the analytical testing, the groundwater complies with the MECP Table 7 standards. Metal and VOC parameters are therefore not considered to have extended beneath the bedrock surface.

Approximately 39.5 mt of contaminated soil (mixed with granular material) was removed from the subject property and disposed of at Waste Connections of Canada Ottawa Landfill.

Groundwater levels at the subject property were measured within the bedrock at depths ranging from approximately 1.2 to 3.6 m below the basement floor slab, during the November 2020 groundwater monitoring event. Groundwater was not encountered during the remediation program. Based on the findings of the Phase II ESA, the groundwater beneath the subject site is considered to be in compliance with the MECP Table 7 standards.

5.2 Conclusion

Based on our field observations combined with the analytical test results, in our opinion, all contaminated soil has been removed from the Phase II Property. No further remedial work is recommended at this time.

Ditawa Kingston North Bay

6.0 STATEMENT OF LIMITATIONS

The results of the sampling program are based on our field observations, preliminary screening results, and analytical test results obtained at specific test locations which can only be extrapolated to an undefined limited area around each location. The test results may not reflect conditions at other locations or areas beyond the extent of the excavation.

This report was prepared for the sole use of InterRent No.3 Limited Partnership. Permission from InterRent No.3 Limited Partnership and Paterson Group will be required to release this report to any other party.

Paterson Group Inc.

Kaup Munch

Karyn Munch, P.Eng., QPESA

Report Distribution:

- □ InterRent No.3 Limited Partnership
- D Paterson Group

FIGURES

Drawing PE4908-11A – Remediation Excavation and Sidewalls – Excavation 1 (Metals)

Drawing PE4908-11B – Remediation Excavation and Sidewalls – Excavation 1 (VOCs)

Drawing PE4908-12 – Remediation Excavation and Sidewalls – Excavation 2 (Metals)

	Scale:	AS SHOWN	Date: 01/2021
	Drawn by:		Report No.:
	-	RCG	PE4908-2
ONTARIO	Checked by:		Dwg. No.:
		KM	PF4908_11
METALS	Approved by:		
		MSD	Revision No.: 0

	Scale:	AS SHOWN	Date:	01/2021
	Drawn by:		Report No.:	
	-	RCG	-	PE4908-2
ONTARIO	Checked by:		Dwg. No.:	
		KM	PF49	08-11R
I - VOCs	Approved by:			
		MSD	Revision No.:	0

	Scale:	AS SHOWN	Date: 01/2021
	Drawn by:	RCG	Report No.: PE4908-2
ONTARIO	Checked by:		Dwg. No.:
FX 2	Approved by:	KM :	PE4908-12
L7.2	,	MSD	Revision No.: 0

APPENDIX 1

LABORATORY CERTIFICATES OF ANALYSIS

WEIGH SCALE SUMMARY

RELIABLE.

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Certificate of Analysis

Paterson Group Consulting Engineers

154 Colonnade Road South Nepean, ON K2E 7J5 Attn: Karyn Munch

Client PO: 27467 Project: PE4908 Custody: 55060

Report Date: 4-Nov-2020 Order Date: 2-Nov-2020

Order #: 2045120

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID **Client ID** 2045120-01 TCLP

Approved By:

Mark Foto

Mark Foto, M.Sc. Lab Supervisor

Any use of these results implies your agreement that our total liability in connection with this work, however arising, shall be limited to the amount paid by you for this work, and that our employees or agents shall not under any circumstances be liable to you in connection with this work.

Analysis Summary Table

Report Date: 04-Nov-2020 Order Date: 2-Nov-2020

Project Description: PE4908

Analysis	Method Reference/Description	Extraction Date	Analysis Date
Flashpoint	ASTM D93 - Pensky-Martens Closed Cup	2-Nov-20	3-Nov-20
Metals, ICP-MS	TCLP EPA 6020 - Digestion - ICP-MS	4-Nov-20	4-Nov-20
PHC F1	CWS Tier 1 - P&T GC-FID	3-Nov-20	3-Nov-20
PHCs F2 to F4	CWS Tier 1 - GC-FID, extraction	4-Nov-20	4-Nov-20
REG 153: Metals by ICP/MS, soil	EPA 6020 - Digestion - ICP-MS	3-Nov-20	3-Nov-20
REG 153: VOCs by P&T GC/MS	EPA 8260 - P&T GC-MS	3-Nov-20	3-Nov-20
REG 558 - Cyanide	MOE E3015- Auto Colour	4-Nov-20	4-Nov-20
REG 558 - Fluoride	EPA 340.2 - ISE	4-Nov-20	4-Nov-20
REG 558 - Mercury by CVAA	EPA 7470A - Cold Vapour AA	4-Nov-20	4-Nov-20
REG 558 - NO3/NO2	EPA 300.1 - IC	4-Nov-20	4-Nov-20
REG 558 - VOCs	EPA 624 - P&T GC-MS	4-Nov-20	4-Nov-20
Solids, %	Gravimetric, calculation	3-Nov-20	3-Nov-20

Certificate of Analysis

Client PO: 27467

Client: Paterson Group Consulting Engineers

Order #: 2045120

Report Date: 04-Nov-2020

Order Date: 2-Nov-2020

Project Description: PE4908

	Client ID:	TCLP	-	-	-
	Sample Date:	02-Nov-20 09:00	-	-	-
	MDI /Units	Soil	_	-	-
Physical Characteristics	III DEJOINTS				
% Solids	0.1 % by Wt.	95.4	-	-	-
Flashpoint	°C	>70	-	-	-
EPA 1311 - TCLP Leachate Inorganics	•				
Fluoride	0.05 mg/L	0.27	-	-	-
Nitrate as N	1 mg/L	<1	-	-	-
Nitrite as N	1 mg/L	<1	-	-	-
Cyanide, free	0.02 mg/L	<0.02	-	-	-
EPA 1311 - TCLP Leachate Metals	•				
Arsenic	0.05 mg/L	<0.05	-	-	-
Barium	0.05 mg/L	0.21	-	-	-
Boron	0.05 mg/L	<0.05	-	-	-
Cadmium	0.01 mg/L	<0.01	-	-	-
Chromium	0.05 mg/L	<0.05	-	-	-
Lead	0.05 mg/L	1.11	-	-	-
Mercury	0.005 mg/L	<0.005	-	-	-
Selenium	0.05 mg/L	<0.05	-	-	-
Silver	0.05 mg/L	<0.05	-	-	-
Uranium	0.05 mg/L	<0.05	-	-	-
EPA 1311 - TCLP Leachate Volatiles	•				
Benzene	0.005 mg/L	<0.005	-	-	-
Carbon Tetrachloride	0.005 mg/L	<0.005	-	-	-
Chlorobenzene	0.004 mg/L	<0.004	-	-	-
Chloroform	0.006 mg/L	<0.006	-	-	-
1,2-Dichlorobenzene	0.004 mg/L	<0.004	-	-	-
1,4-Dichlorobenzene	0.004 mg/L	<0.004	-	-	-
1,2-Dichloroethane	0.005 mg/L	<0.005	-	-	-
1,1-Dichloroethylene	0.006 mg/L	<0.006	-	-	-
Methyl Ethyl Ketone (2-Butanone)	0.30 mg/L	<0.30	-	-	-
Methylene Chloride	0.04 mg/L	<0.04	-	-	-
Tetrachloroethylene	0.005 mg/L	<0.005	-	-	-
Trichloroethylene	0.004 mg/L	<0.004	-	-	-
Vinyl chloride	0.005 mg/L	<0.005	-	-	-
4-Bromofluorobenzene	Surrogate	103%	-	-	-
Dibromofluoromethane	Surrogate	118%	-	-	-
Toluene-d8	Surrogate	99.8%	-	-	-
Metals					

Report Date: 04-Nov-2020

Order Date: 2-Nov-2020

Project Description: PE4908

	Client ID:	TCLP	-	-	-
	Sample Date:	02-Nov-20 09:00 2045120-01	-	-	-
	MDL/Units	Soil	-	-	-
Antimony	1.0 ug/g dry	<1.0	-	-	-
Arsenic	1.0 ug/g dry	1.2	-	-	-
Barium	1.0 ug/g dry	50.3	-	-	-
Beryllium	0.5 ug/g dry	<0.5	-	-	-
Boron	5.0 ug/g dry	<5.0	-	-	-
Cadmium	0.5 ug/g dry	<0.5	-	-	-
Chromium	5.0 ug/g dry	7.0	-	-	-
Cobalt	1.0 ug/g dry	3.1	-	-	-
Copper	5.0 ug/g dry	<5.0	-	-	-
Lead	1.0 ug/g dry	4.3	-	-	-
Molybdenum	1.0 ug/g dry	<1.0	-	-	-
Nickel	5.0 ug/g dry	7.5	-	-	-
Selenium	1.0 ug/g dry	<1.0	-	-	-
Silver	0.3 ug/g dry	<0.3	-	-	-
Thallium	1.0 ug/g dry	<1.0	-	-	-
Uranium	1.0 ug/g dry	<1.0	-	-	-
Vanadium	10.0 ug/g dry	10.3	-	-	-
Zinc	20.0 ug/g dry	20.2	-	-	-
Volatiles				-	
Acetone	0.50 ug/g dry	<0.50	-	-	-
Benzene	0.02 ug/g dry	<0.02	-	-	-
Bromodichloromethane	0.05 ug/g dry	<0.05	-	-	-
Bromoform	0.05 ug/g dry	<0.05	-	-	-
Bromomethane	0.05 ug/g dry	<0.05	-	-	-
Carbon Tetrachloride	0.05 ug/g dry	<0.05	-	-	-
Chlorobenzene	0.05 ug/g dry	<0.05	-	-	-
Chloroform	0.05 ug/g dry	<0.05	-	-	-
Dibromochloromethane	0.05 ug/g dry	<0.05	-	-	-
Dichlorodifluoromethane	0.05 ug/g dry	<0.05	-	-	-
1,2-Dichlorobenzene	0.05 ug/g dry	<0.05	-	-	-
1,3-Dichlorobenzene	0.05 ug/g dry	<0.05	-	-	-
1,4-Dichlorobenzene	0.05 ug/g dry	<0.05	-	-	-
1,1-Dichloroethane	0.05 ug/g dry	<0.05	-	-	-
1,2-Dichloroethane	0.05 ug/g dry	<0.05	-	-	-
1,1-Dichloroethylene	0.05 ug/g dry	<0.05	-	-	-
cis-1,2-Dichloroethylene	0.05 ug/g dry	<0.05	-	-	-

Report Date: 04-Nov-2020

Order Date: 2-Nov-2020

Project Description: PE4908

	Client ID:	TCLP	-	-	-
	Sample Date:	02-Nov-20 09:00	-	-	-
	Sample ID:	2045120-01 Soil	-	-	-
trans-1.2-Dichloroethylene	0.05 ug/g dry	<0.05			
1 2-Dichloropropage	0.05 ua/a drv	<0.05			_
	0.05 µg/g dry	<0.05	-	-	-
		<0.05	-	-	-
trans-1,3-Dichloropropylene		<0.05	-	-	-
1,3-Dichloropropene, total		<0.05	-	-	-
Ethylbenzene	0.05 ug/g dry	<0.05	-	-	-
Ethylene dibromide (dibromoethane, 1,2-)	0.05 ug/g dry	<0.05	-	-	-
Hexane	0.05 ug/g dry	<0.05	-	-	-
Methyl Ethyl Ketone (2-Butanone)	0.50 ug/g dry	<0.50	-	-	-
Methyl Isobutyl Ketone	0.50 ug/g dry	<0.50	-	-	-
Methyl tert-butyl ether	0.05 ug/g dry	<0.05	-	-	-
Methylene Chloride	0.05 ug/g dry	<0.05	-	-	-
Styrene	0.05 ug/g dry	<0.05	-	-	-
1,1,1,2-Tetrachloroethane	0.05 ug/g dry	<0.05	-	-	-
1,1,2,2-Tetrachloroethane	0.05 ug/g dry	<0.05	-	-	-
Tetrachloroethylene	0.05 ug/g dry	<0.05	-	-	-
Toluene	0.05 ug/g dry	<0.05	-	-	-
1,1,1-Trichloroethane	0.05 ug/g dry	<0.05	-	-	-
1,1,2-Trichloroethane	0.05 ug/g dry	<0.05	-	-	-
Trichloroethylene	0.05 ug/g dry	<0.05	-	-	-
Trichlorofluoromethane	0.05 ug/g dry	<0.05	-	-	-
Vinyl chloride	0.02 ug/g dry	<0.02	-	-	-
m,p-Xylenes	0.05 ug/g dry	<0.05	-	-	-
o-Xylene	0.05 ug/g dry	<0.05	-	-	-
Xylenes, total	0.05 ug/g dry	<0.05	-	-	-
4-Bromofluorobenzene	Surrogate	98.9%	-	-	-
Dibromofluoromethane	Surrogate	111%	-	-	-
Toluene-d8	Surrogate	117%	-	-	-
Hydrocarbons	- / .				
F1 PHCs (C6-C10)	7 ug/g dry	<7	-	-	-
F2 PHCs (C10-C16)	4 ug/g dry	<4	-	-	-
F3 PHCs (C16-C34)	8 ug/g dry	<8	-	-	-
F4 PHCs (C34-C50)	6 ug/g dry	<6	-	-	-

Method Quality Control: Blank

Report Date: 04-Nov-2020 Order Date: 2-Nov-2020

Project Description: PE4908

		Reporting		Source	Source %REC RPD				
Analyte	Result	Limit	Units	Result	%REC	Limit	RPD	Limit	Notes
EPA 1311 - TCLP Leachate Inorganics									
Eluoride	ND	0.05	ma/l						
Nitrate as N	ND	1	mg/L						
Nitrite as N	ND	1	mg/L						
Cvanide free	ND	0.02	mg/L						
EBA 1211 TCL B Loophate Matela	NB	0.02	iiig/L						
EFA 1511 - TCLF Leachale Melais									
Arsenic	ND	0.05	mg/L						
Barium	ND	0.05	mg/L						
Boron	ND	0.05	mg/L						
Cadmium	ND	0.01	mg/L						
Chromium	ND	0.05	mg/L						
Lead	ND	0.05	mg/L						
Mercury	ND	0.005	mg/L						
Selenium	ND	0.05	mg/L						
Silver	ND	0.05	mg/L						
Uranium	ND	0.05	mg/L						
EPA 1311 - TCLP Leachate Volatiles									
Benzene	ND	0.005	ma/L						
Carbon Tetrachloride	ND	0.005	mg/L						
Chlorobenzene	ND	0.004	mg/L						
Chloroform	ND	0.006	mg/L						
1,2-Dichlorobenzene	ND	0.004	mg/L						
1,4-Dichlorobenzene	ND	0.004	mg/L						
1,2-Dichloroethane	ND	0.005	mg/L						
1,1-Dichloroethylene	ND	0.006	mg/L						
Methyl Ethyl Ketone (2-Butanone)	ND	0.30	mg/L						
Methylene Chloride	ND	0.04	mg/L						
Tetrachloroethylene	ND	0.005	mg/L						
Trichloroethylene	ND	0.004	mg/L						
Vinyl chloride	ND	0.005	mg/L						
Surrogate: 4-Bromofluorobenzene	0.723		mg/L		105	83-134			
Surrogate: Dibromofluoromethane	0.816		mg/L		119	78-124			
Surrogate: Toluene-d8	0.694		mg/L		101	76-118			
Hydrocarbons									
F1 PHCs (C6-C10)	ND	7	ug/g						
F2 PHCs (C10-C16)	ND	4	ug/g						
F3 PHCs (C16-C34)	ND	8	ug/g						
F4 PHCs (C34-C50)	ND	6	ug/g						
Metals									
Antimony	ND	1.0	uq/q						
Arsenic	ND	1.0	ug/g						
Barium	ND	1.0	ug/g						
Beryllium	ND	0.5	ug/g						
Boron	ND	5.0	ug/g						
Cadmium	ND	0.5	ug/g						
Chromium	ND	5.0	ug/g						
Cobalt	ND	1.0	ug/g						
Copper	ND	5.0	ug/g						
Lead	ND	1.0	ug/g						
Molybdenum	ND	1.0	ug/g						
Nickel	ND	5.0	ug/g						
Selenium	ND	1.0	ug/g						
Silver	ND	0.3	ug/g						
Thallium	ND	1.0	ug/g						
Uranium	ND	1.0	ug/g						
Vanadium	ND	10.0	ug/g						
Zinc	ND	20.0	ug/g						

Method Quality Control: Blank

Order #: 2045120

Report Date: 04-Nov-2020

Order Date: 2-Nov-2020

Project Description: PE4908

Analita		Reporting		Source		%REC RPD					
Analyte	Result	Limit	Units	Result	%REC	Limit	RPD	Limit	Notes		
Acetone	ND	0.50	ug/g								
Benzene	ND	0.02	ug/g								
Bromodichloromethane	ND	0.05	ug/g								
Bromoform	ND	0.05	ug/g								
Bromomethane	ND	0.05	ug/g								
Carbon Tetrachloride	ND	0.05	ug/g								
Chlorobenzene	ND	0.05	ug/g								
Chloroform	ND	0.05	ug/g								
Dibromochloromethane	ND	0.05	ug/g								
Dichlorodifluoromethane	ND	0.05	ug/g								
1,2-Dichlorobenzene	ND	0.05	ug/g								
1,3-Dichlorobenzene	ND	0.05	ug/g								
1,4-Dichlorobenzene	ND	0.05	ug/g								
1,1-Dichloroethane	ND	0.05	ug/g								
1,2-Dichloroethane	ND	0.05	ug/g								
1,1-Dichloroethylene	ND	0.05	ug/g								
cis-1,2-Dichloroethylene	ND	0.05	ug/g								
trans-1,2-Dichloroethylene	ND	0.05	ug/g								
1,2-Dichloropropane	ND	0.05	ug/g								
cis-1,3-Dichloropropylene	ND	0.05	ug/g								
trans-1,3-Dichloropropylene	ND	0.05	ug/g								
1,3-Dichloropropene, total	ND	0.05	ug/g								
Ethylbenzene	ND	0.05	ug/g								
Ethylene dibromide (dibromoethane, 1,2	ND	0.05	ug/g								
Hexane	ND	0.05	ug/g								
Methyl Ethyl Ketone (2-Butanone)	ND	0.50	ug/g								
Methyl Isobutyl Ketone	ND	0.50	ug/g								
Methyl tert-butyl ether	ND	0.05	ug/g								
Methylene Chloride	ND	0.05	ug/g								
Styrene	ND	0.05	ug/g								
1,1,1,2-Tetrachloroethane	ND	0.05	ug/g								
1,1,2,2-Tetrachloroethane	ND	0.05	ug/g								
Tetrachloroethylene	ND	0.05	ug/g								
Toluene	ND	0.05	ug/g								
1,1,1-Trichloroethane	ND	0.05	ug/g								
1,1,2-Trichloroethane	ND	0.05	ug/g								
Trichloroethylene	ND	0.05	ug/g								
Trichlorofluoromethane	ND	0.05	ug/g								
Vinyl chloride	ND	0.02	ug/g								
m,p-Xylenes	ND	0.05	ug/g								
o-Xylene	ND	0.05	ug/g								
Xylenes, total	ND	0.05	ug/g								
Surrogate: 4-Bromofluorobenzene	8.46		ug/g		106	50-140					
Surrogate: Dibromofluoromethane	9.10		ug/g		114	50-140					
Surrogate: Toluene-d8	8.69		ug/g		109	50-140					

Method Quality Control: Duplicate

Order #: 2045120

	Reporting		Source		%REC	%REC		RPD	
Analyte	Result	Limit	Units	Result	%REC	Limit	RPD	Limit	Notes
EPA 1311 - TCLP Leachate Inorganics									
Fluoride	0.14	0.05	ma/L	0.14			0.9	20	
Nitrate as N	ND	1	ma/L	ND			NC	20	
Nitrite as N	ND	1	ma/L	ND			NC	20	
Cyanide, free	ND	0.02	mg/L	ND			NC	20	
FPA 1311 - TCL P Leachate Metals			5						
	ND	0.05		ND			NO	00	
Arsenic		0.05	mg/L	ND			NC	29	
Barlum	0.239	0.05	mg/L	0.206			14.6 NC	34	
Codmium		0.05	mg/L				NC	22	
Chromium		0.01	mg/L				NC	33	
Lead		0.05	mg/L				NC	32	
Mercury		0.005	mg/L				NC	30	
Selenium		0.005	mg/L				NC	28	
Silver	ND	0.05	mg/L	ND			NC	28	
Uranium	ND	0.05	mg/L	ND			NC	27	
FPA 1311 - TCI P I eachate Volatiles		0.00	<u>9</u> /2						
		0.005		ND			NO	25	
Benzene Carbon Totrachlorida		0.005	mg/L	ND			NC	25	
Chlorobenzene		0.005	mg/L				NC	25	
Chloroform		0.004	mg/L				NC	25	
		0.000	mg/L				NC	25	
		0.004	mg/L				NC	25	
1.2-Dichloroethane		0.004	mg/L				NC	25	
1 1-Dichloroethylene	ND	0.006	mg/L	ND			NC	25	
Methyl Ethyl Ketone (2-Butanone)	ND	0.30	mg/L	ND			NC	25	
Methylene Chloride	ND	0.04	mg/L	ND			NC	25	
Tetrachloroethvlene	ND	0.005	ma/L	ND			NC	25	
Trichloroethylene	ND	0.004	ma/L	ND			NC	25	
Vinyl chloride	ND	0.005	mg/L	ND			NC	25	
Surrogate: 4-Bromofluorobenzene	0.723		mg/L		105	83-134			
Surrogate: Dibromofluoromethane	0.823		mg/L		120	78-124			
Surrogate: Toluene-d8	0.684		mg/L		99.4	76-118			
Hydrocarbons									
F1 PHCs (C6-C10)	ND	7	ug/g dry	ND			NC	40	
Metals									
Antimony	ND	10	ua/a drv	ND			NC	30	
Arsenic	2.1	1.0	ua/a drv	2.2			6.6	30	
Barium	41.7	1.0	ug/g dry	44.0			5.3	30	
Beryllium	ND	0.5	ug/g dry	ND			NC	30	
Boron	5.3	5.0	ug/g dry	ND			NC	30	
Cadmium	ND	0.5	ug/g dry	ND			NC	30	
Chromium	11.8	5.0	ug/g dry	12.0			2.1	30	
Cobalt	4.0	1.0	ug/g dry	4.1			2.1	30	
Copper	8.3	5.0	ug/g dry	8.3			0.6	30	
Lead	40.6	1.0	ug/g dry	41.0			0.9	30	
Molybdenum	ND	1.0	ug/g dry	ND			NC	30	
Nickel	7.0	5.0	ug/g dry	7.3			4.5	30	
Selenium	ND	1.0	ug/g dry	ND			NC	30	
Silver	ND	0.3	ug/g dry	ND			NC	30	
I hallium	ND	1.0	ug/g dry	ND			NC	30	
Uranium	ND	1.0	ug/g dry	ND			NC	30	
Vanadium	19.9	10.0	ug/g dry	19.8			0.8	30	
	39.4	20.0	ug/g dry	40.8			3.5	30	
Physical Unaracteristics									
% Solids	92.8	0.1	% by Wt.	92.5			0.4	25	

Method Quality Control: Duplicate

Report Date: 04-Nov-2020 Order Date: 2-Nov-2020

Project Description: PE4908

		Reporting		Source		%REC		RPD	
Analyte	Result	Limit	Units	Result	%REC	Limit	RPD	Limit	Notes
Volatiles									
Acetone	ND	0.50	ug/g dry	ND			NC	50	
Benzene	ND	0.02	ug/g dry	ND			NC	50	
Bromodichloromethane	ND	0.05	ug/g dry	ND			NC	50	
Bromoform	ND	0.05	ug/g dry	ND			NC	50	
Bromomethane	ND	0.05	ug/g dry	ND			NC	50	
Carbon Tetrachloride	ND	0.05	ug/g dry	ND			NC	50	
Chlorobenzene	ND	0.05	ug/g dry	ND			NC	50	
Chloroform	ND	0.05	ug/g dry	ND			NC	50	
Dibromochloromethane	ND	0.05	ug/g dry	ND			NC	50	
Dichlorodifluoromethane	ND	0.05	ug/g dry	ND			NC	50	
1,2-Dichlorobenzene	ND	0.05	ug/g dry	ND			NC	50	
1,3-Dichlorobenzene	ND	0.05	ug/g dry	ND			NC	50	
1,4-Dichlorobenzene	ND	0.05	ug/g dry	ND			NC	50	
1,1-Dichloroethane	ND	0.05	ug/g dry	ND			NC	50	
1.2-Dichloroethane	ND	0.05	ua/a drv	ND			NC	50	
1,1-Dichloroethylene	ND	0.05	ug/g dry	ND			NC	50	
cis-1,2-Dichloroethylene	ND	0.05	ug/g dry	ND			NC	50	
trans-1.2-Dichloroethylene	ND	0.05	ua/a drv	ND			NC	50	
1.2-Dichloropropane	ND	0.05	ua/a drv	ND			NC	50	
cis-1.3-Dichloropropylene	ND	0.05	ua/a drv	ND			NC	50	
trans-1.3-Dichloropropylene	ND	0.05	ua/a drv	ND			NC	50	
Ethylbenzene	ND	0.05	ua/a drv	ND			NC	50	
Ethylene dibromide (dibromoethane, 1.2	ND	0.05	ua/a drv	ND			NC	50	
Hexane	ND	0.05	ua/a drv	ND			NC	50	
Methyl Ethyl Ketone (2-Butanone)	ND	0.50	ua/a drv	ND			NC	50	
Methyl Isobutyl Ketone	ND	0.50	ua/a drv	ND			NC	50	
Methyl tert-butyl ether	ND	0.05	ua/a drv	ND			NC	50	
Methylene Chloride	ND	0.05	ua/a drv	ND			NC	50	
Styrene	ND	0.05	ua/a drv	ND			NC	50	
1.1.1.2-Tetrachloroethane	ND	0.05	ua/a drv	ND			NC	50	
1.1.2.2-Tetrachloroethane	ND	0.05	ua/a drv	ND			NC	50	
Tetrachloroethylene	ND	0.05	ua/a drv	ND			NC	50	
Toluene	ND	0.05	ua/a drv	ND			NC	50	
1.1.1-Trichloroethane	ND	0.05	ua/a drv	ND			NC	50	
1 1 2-Trichloroethane	ND	0.05	ua/a dry	ND			NC	50	
Trichloroethylene	ND	0.05	ua/a dry	ND			NC	50	
Trichlorofluoromethane	ND	0.05	ua/a dry	ND			NC	50	
Vinvl chloride	ND	0.02	ua/a dry	ND			NC	50	
m n-Xvlenes	ND	0.05	ua/a dry	ND			NC	50	
o-Xvlene	ND	0.05	ug/a drv	ND			NC	50	
Surrogate: 4-Bromofluorobenzene	10.5	0.00	ua/a drv		99.8	50-140			
Surrogate: Dibromofluoromethane	11 5		ug/g dry		109	50-140			
Surrogate: Toluene_d8	10.2		ug/g dry		110	50_140			
Sunoyale. Toluene-uo	12.3		uy/y ury		110	50-140			

Method Quality Control: Spike

Report Date: 04-Nov-2020

Order Date: 2-Nov-2020

Project Description: PE4908

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
EPA 1311 - TCLP Leachate Inorganics									
Fluoride	0.61	0.05	mg/L	0.14	94.0	70-130			
Nitrate as N	10	1	mg/L	ND	99.7	81-112			
Nitrite as N	10	1	mg/L	ND	97.7	76-107			
Cyanide, free	0.033	0.02	mg/L	ND	66.1	60-136			
EPA 1311 - TCLP Leachate Metals									
Arsenic	46.4	0.05	mg/L	0.078	92.6	83-119			
Barium	68.4	0.05	mg/L	20.6	95.6	83-116			
Boron	41.1	0.05	mg/L	3.85	74.4	71-128			
Cadmium	38.7	0.01	mg/L	ND	77.5	78-119		C	M-07
Chromium	48.1	0.05	mg/L	ND	96.2	80-124			
Lead	41.5	0.05	mg/L	1.10	80.9	77-126			
Mercury	0.0367	0.005	mg/L	ND	122	70-130			
Selenium	39.1	0.05	mg/L	ND	78.2	75-125			
Silver	38.9	0.05	mg/L	ND	77.8	70-128			
Uranium	45.7	0.05	mg/L	ND	91.3	70-131			
EPA 1311 - TCLP Leachate Volatiles									
Benzene	0.355	0.005	mg/L	ND	103	55-141			
Carbon Tetrachloride	0.439	0.005	mg/L	ND	127	49-149			
Chlorobenzene	0.369	0.004	mg/L	ND	107	64-137			
Chloroform	0.410	0.006	mg/L	ND	119	58-138			
1,2-Dichlorobenzene	0.353	0.004	mg/L	ND	103	60-150			
1,4-Dichlorobenzene	0.343	0.004	mg/L	ND	99.8	63-132			
1,2-Dichloroethane	0.433	0.005	mg/L	ND	126	50-140			
1,1-Dichloroethylene	0.351	0.006	mg/L	ND	102	43-153			
Methyl Ethyl Ketone (2-Butanone)	0.785	0.30	mg/L	ND	91.3	26-153			
Methylene Chloride	0.373	0.04	mg/L	ND	109	58-149			
Tetrachloroethylene	0.363	0.005	mg/L	ND	105	51-145			
Trichloroethylene	0.407	0.004	mg/L	ND	118	52-135			
Vinyl chloride	0.338	0.005	mg/L	ND	98.2	31-159			
Surrogate: 4-Bromofluorobenzene	0.680		mg/L		98.8	83-134			
Surrogate: Dibromofluoromethane	0.802		mg/L		117	78-124			
Surrogate: Toluene-d8	0.580		mg/L		84.3	76-118			
Hydrocarbons									
F1 PHCs (C6-C10)	198	7	ug/g	ND	99.1	80-120			
F2 PHCs (C10-C16)	88	4	ug/g	ND	109	80-120			
F3 PHCs (C16-C34)	228	8	ug/g	ND	117	80-120			
F4 PHCs (C34-C50)	144	6	ug/g	ND	116	80-120			
Metals									
Antimony	46.9	1.0	ug/g	ND	93.7	70-130			
Arsenic	52.1	1.0	ug/g	ND	102	70-130			
Barium	67.0	1.0	ug/g	17.6	98.8	70-130			
Beryllium	49.5	0.5	ug/g	ND	98.7	70-130			
Boron	43.8	5.0	ug/g	ND	83.8	70-130			
Cadmium	48.8	0.5	ug/g	ND	97.6	70-130			
Chromium	55.3	5.0	ug/g	ND	101	70-130			
Cobalt	51.1	1.0	ug/g	1.6	99.0	70-130			
Copper	49.8	5.0	ug/g	ND	93.0	70-130			
Lead	63.4	1.0	ug/g	16.4	94.0	70-130			

Order #: 2045120

Report Date: 04-Nov-2020

Order Date: 2-Nov-2020

Project Description: PE4908

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Molybdenum	45.5	1.0	ug/g	ND	90.7	70-130			
Nickel	51.0	5.0	ug/g	ND	96.1	70-130			
Selenium	49.2	1.0	ug/g	ND	98.2	70-130			
Silver	40.6	0.3	ug/g	ND	81.2	70-130			
Thallium	45.9	1.0	ug/g	ND	91.8	70-130			
Uranium	47.2	1.0	ug/g	ND	94.1	70-130			
Vanadium	58.7	10.0	ug/g	ND	102	70-130			
Zinc	62.7	20.0	ug/g	ND	92.7	70-130			
Volatiles									
Acetone	9.05	0.50	uq/q	ND	90.5	50-140			
Benzene	3.71	0.02	uq/q	ND	92.8	60-130			
Bromodichloromethane	2.92	0.05	uq/q	ND	73.1	60-130			
Bromoform	4.29	0.05	uq/q	ND	107	60-130			
Bromomethane	3.08	0.05	ug/g	ND	77.0	50-140			
Carbon Tetrachloride	5.00	0.05	ug/g	ND	125	60-130			
Chlorobenzene	3.97	0.05	ug/g	ND	99.3	60-130			
Chloroform	4.00	0.05	ug/g	ND	100	60-130			
Dibromochloromethane	4.27	0.05	ug/g	ND	107	60-130			
Dichlorodifluoromethane	4.71	0.05	ug/g	ND	118	50-140			
1,2-Dichlorobenzene	3.91	0.05	ug/g	ND	97.9	60-130			
1,3-Dichlorobenzene	3.96	0.05	ug/g	ND	98.9	60-130			
1,4-Dichlorobenzene	3.79	0.05	ug/g	ND	94.7	60-130			
1,1-Dichloroethane	3.79	0.05	ug/g	ND	94.7	60-130			
1,2-Dichloroethane	4.13	0.05	ug/g	ND	103	60-130			
1,1-Dichloroethylene	3.68	0.05	ug/g	ND	91.9	60-130			
cis-1,2-Dichloroethylene	3.89	0.05	ug/g	ND	97.3	60-130			
trans-1,2-Dichloroethylene	3.84	0.05	ug/g	ND	96.1	60-130			
1,2-Dichloropropane	3.67	0.05	ug/g	ND	91.7	60-130			
cis-1,3-Dichloropropylene	4.20	0.05	ug/g	ND	105	60-130			
trans-1,3-Dichloropropylene	4.76	0.05	ug/g	ND	119	60-130			
Ethylbenzene	3.83	0.05	ug/g	ND	95.8	60-130			
Ethylene dibromide (dibromoethane, 1,2-	3.67	0.05	ug/g	ND	91.6	60-130			
Hexane	4.63	0.05	ug/g	ND	116	60-130			
Methyl Ethyl Ketone (2-Butanone)	8.73	0.50	ug/g	ND	87.3	50-140			
Methyl Isobutyl Ketone	7.36	0.50	ug/g	ND	73.6	50-140			
Methyl tert-butyl ether	5.70	0.05	ug/g	ND	57.0	50-140			
Methylene Chloride	3.87	0.05	ug/g	ND	96.7	60-130			
Styrene	4.05	0.05	ug/g	ND	101	60-130			
1,1,1,2-Tetrachloroethane	4.23	0.05	ug/g	ND	106	60-130			
1,1,2,2-Tetrachloroethane	3.52	0.05	ug/g	ND	88.0	60-130			
Tetrachloroethylene	4.01	0.05	ug/g	ND	100	60-130			
Toluene	3.90	0.05	ug/g	ND	97.5	60-130			
1,1,1-Trichloroethane	4.17	0.05	ug/g	ND	104	60-130			
1,1,2- Irichloroethane	3.57	0.05	ug/g	ND	89.1	60-130			
Irichloroethylene	3.90	0.05	ug/g	ND	97.5	60-130			
Irichlorofluoromethane	4.33	0.05	ug/g	ND	108	50-140			
Vinyi chloride	4.34	0.02	ug/g	ND	109	50-140			
m,p-xyienes	1.70	0.05	ug/g	ND	96.2	60-130			
o-xyiene	3.95	0.05	ug/g	ND	98.8	60-130			
Surrogate: 4-Bromotluorobenzene	8.12		ug/g		101	50-140			

Report Date: 04-Nov-2020

Order Date: 2-Nov-2020

Project Description: PE4908

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Surrogate: Dibromofluoromethane	8.79		ug/g		110	50-140			
Surrogate: Toluene-d8	7.85		ug/g		98.2	50-140			

Qualifier Notes:

QC Qualifiers :

- QM-07: The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on other acceptable QC.
- QS-02 : Spike level outside of control limits. Analysis batch accepted based on other QC included in the batch.

Sample Data Revisions

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected MDL: Method Detection Limit Source Result: Data used as source for matrix and duplicate samples %REC: Percent recovery. RPD: Relative percent difference. NC: Not Calculated

Soil results are reported on a dry weight basis when the units are denoted with 'dry'. Where %Solids is reported, moisture loss includes the loss of volatile hydrocarbons.

CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.

- F1 range corrected for BTEX.

- F2 to F3 ranges corrected for appropriate PAHs where available.
- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.
- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.
- When reported, data for F4G has been processed using a silica gel cleanup.

PARA LABORATOR	aracel ID: 2	2043	512(ce St. Lau ntario 49-194 @parac 	rent Blvd. K1G 4J8 7 ellabs.com .com	Para 20	icel Or (Lab U	der Num se Only)	per	1	Cha V ⁰	(Lab Use 550	Custo only) 60	dy
Client Name: PATER SON GROUP			Project	t Ref:	PEYS	08					14.		Page	_of	
Contact Name: Kann Munch			Quote	#: 4	27467	an shekarar						Tu	Irnarour	id Time	e
Address: 154 COLONNADIE RD			PO #:	2	27467] 0	1 day		[🗆 3 day
OTTAWA 1621E 755			E-mail:							<i>r</i>	0	2 day		[🗌 Regular
Telephone: 226 - 7381				Km	unche pa	tersongr	oop.	6	i.	. ,	Date Required:				
Regulation 153/04 Other Re	egulation	M	latrix T	ype: S	S (Soil/Sed.) GW (Gr	round Water)				Re	eauire	Analy	sis		
Table 1 Res/Park Med/Fine REG 558	D PWQ0	S	W (Su	face V	Vater) SS (Storm/Sa	nitary Sewer)					1	,			
Table 2 Ind/Comm Coarse CCME				P (P	aint) A (Air) O (Oth	er)		3	G C	2		-			
Table 3 Agri/Other SU - Sani	🛛 SU - Storm			ers				Ť	2º	6	0 3	2			
TableMun:			ê	ntain	Sample	Taken	3	Ľ,	5	100	E	Å			
For RSC: Yes No Other:		trix	Volu	f Col			-No	AC'S	ETA ACH	9CH	100	1954	,		
Sample ID/Location Name		Ma	Air	0 #	Date	Time		UT.	ŹŻ	ž ĝ į	<u>93</u>	Г			
1 TELP		S	\mathbb{N}	4	Nov 2/20			\mathbf{V}	$\langle \rangle$	J	\searrow	\searrow			•
2															
3	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -							-							
4					A CONTRACTOR									\square	
5					5-		1 1							5	
6															
7									a i						
8															
9						e									
10							÷								
Comments:										Meth	od of De	livery: KEL	. Ca	ICIE	ĸ
Relinquished By (Sign):	Received By Dri	iver/De	pot:	1	Esust	Received at Lab:	DOVA	R	ohng	Verifi	ed By:	-	5	2	
Relinquished By (Print): Domnic LANDRY	Date/Time: 🥏	2/	111	20	3.44	NOVOR	eee	0	4.21	bate/	Time:	1-7	-7.	51	6:30
Date/Time: Nov 240/2020	Temperature:	-	-		°C PM.	Temperature:	5.3	°C		pH Ve	erified:		Ву:		

Chain of Custody (Blank) xlsx

Revision 3.0

RELIABLE.

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Certificate of Analysis

Paterson Group Consulting Engineers

ID

154 Colonnade Road South Nepean, ON K2E 7J5 Attn: Karyn Munch

Client PO: 31202 Project: PE4908 Custody: 55081

Report Date: 12-Nov-2020 Order Date: 6-Nov-2020

Order #: 2045671

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID	Client
2045671-01	N4
2045671-02	E2
2045671-03	B1
2045671-04	Dup

Approved By:

Mark Foto

Mark Foto, M.Sc. Lab Supervisor

Any use of these results implies your agreement that our total liability in connection with this work, however arising, shall be limited to the amount paid by you for this work, and that our employees or agents shall not under any circumstances be liable to you in connection with this work.

Report Date: 12-Nov-2020

Order #: 2045671

Order Date: 6-Nov-2020

Project Description: PE4908

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date	Analysis Date
REG 153: Metals by ICP/MS, soil	EPA 6020 - Digestion - ICP-MS	11-Nov-20	11-Nov-20
REG 153: VOCs by P&T GC/MS	EPA 8260 - P&T GC-MS	10-Nov-20	11-Nov-20
Solids, %	Gravimetric, calculation	10-Nov-20	11-Nov-20

Certificate of Analysis

Client: Paterson Group Consulting Engineers

Client PO: 31202

Report Date: 12-Nov-2020 Order Date: 6-Nov-2020

Project Description: PE4908

	Client ID:	N4	E2	B1	Dup	
	Sample Date:	05-Nov-20 15:00	05-Nov-20 15:00	05-Nov-20 15:00	05-Nov-20 15:00	
	Sample ID:	2045671-01	2045671-02	2045671-03	2045671-04	
	MDL/Units	Soil	Soil	Soil	Soil	
Physical Characteristics			1			
% Solids	0.1 % by Wt.	93.1	95.2	98.4	95.0	
Metals			1			
Antimony	1.0 ug/g dry	<1.0	<1.0	<1.0	<1.0	
Arsenic	1.0 ug/g dry	2.6	1.8	<1.0	1.7	
Barium	1.0 ug/g dry	274	397	19.6	419	
Beryllium	0.5 ug/g dry	0.7	<0.5	<0.5	<0.5	
Boron	5.0 ug/g dry	15.5	7.0	<5.0	8.6	
Cadmium	0.5 ug/g dry	<0.5	<0.5	<0.5	<0.5	
Chromium	5.0 ug/g dry	11.0	8.4	6.8	8.5	
Cobalt	1.0 ug/g dry	9.6	6.5	2.4	6.5	
Copper	5.0 ug/g dry	13.7	7.0	<5.0	7.3	
Lead	1.0 ug/g dry	22.8	8.9	<1.0	8.3	
Molybdenum	1.0 ug/g dry	<1.0	<1.0	<1.0	<1.0	
Nickel	5.0 ug/g dry	18.2	13.0	6.3	12.5	
Selenium	1.0 ug/g dry	<1.0	<1.0	<1.0	<1.0	
Silver	0.3 ug/g dry	<0.3	<0.3	<0.3	<0.3	
Thallium	1.0 ug/g dry	<1.0	<1.0	<1.0	<1.0	
Uranium	1.0 ug/g dry	<1.0	<1.0	<1.0	<1.0	
Vanadium	10.0 ug/g dry	10.1	<10.0	12.3	10.4	
Zinc	20.0 ug/g dry	<20.0	<20.0	<20.0	<20.0	
Volatiles					-	
Acetone	0.50 ug/g dry	<0.50	<0.50	<0.50	-	
Benzene	0.02 ug/g dry	<0.02	<0.02	<0.02	-	
Bromodichloromethane	0.05 ug/g dry	<0.05	<0.05	<0.05	-	
Bromoform	0.05 ug/g dry	<0.05	<0.05	<0.05	-	
Bromomethane	0.05 ug/g dry	<0.05	<0.05	<0.05	-	
Carbon Tetrachloride	0.05 ug/g dry	<0.05	<0.05	<0.05	-	
Chlorobenzene	0.05 ug/g dry	<0.05	<0.05	<0.05	-	
Chloroform	0.05 ug/g dry	<0.05	<0.05	<0.05	-	
Dibromochloromethane	0.05 ug/g dry	<0.05	<0.05	<0.05	-	
Dichlorodifluoromethane	0.05 ug/g dry	<0.05	<0.05	<0.05	-	
1,2-Dichlorobenzene	0.05 ug/g dry	<0.05	<0.05	<0.05	-	
1,3-Dichlorobenzene	0.05 ug/g dry	<0.05	<0.05	<0.05	-	
1,4-Dichlorobenzene	0.05 ug/g dry	<0.05	<0.05	<0.05	-	
1,1-Dichloroethane	0.05 ug/g dry	<0.05	<0.05	<0.05	-	

Report Date: 12-Nov-2020 Order Date: 6-Nov-2020

Project Description: PE4908

	Client ID: Sample Date: Sample ID:	N4 05-Nov-20 15:00 2045671-01 Soil	E2 05-Nov-20 15:00 2045671-02 Soil	B1 05-Nov-20 15:00 2045671-03 Soil	Dup 05-Nov-20 15:00 2045671-04 Soil
1.2-Dichloroethane	0.05 ug/g dry	<0.05	<0.05	<0.05	-
1,1-Dichloroethylene	0.05 ug/g dry	<0.05	<0.05	<0.05	-
cis-1,2-Dichloroethylene	0.05 ug/g dry	< 0.05	<0.05	<0.05	-
trans-1,2-Dichloroethylene	0.05 ug/g dry	< 0.05	<0.05	<0.05	-
1,2-Dichloropropane	0.05 ug/g dry	< 0.05	<0.05	<0.05	-
cis-1,3-Dichloropropylene	0.05 ug/g dry	<0.05	<0.05	<0.05	-
trans-1,3-Dichloropropylene	0.05 ug/g dry	<0.05	<0.05	<0.05	-
1,3-Dichloropropene, total	0.05 ug/g dry	<0.05	<0.05	<0.05	-
Ethylbenzene	0.05 ug/g dry	<0.05	<0.05	<0.05	-
Ethylene dibromide (dibromoethane, 1,2-)	0.05 ug/g dry	<0.05	<0.05	<0.05	-
Hexane	0.05 ug/g dry	<0.05	<0.05	<0.05	-
Methyl Ethyl Ketone (2-Butanone)	0.50 ug/g dry	<0.50	<0.50	<0.50	-
Methyl Isobutyl Ketone	0.50 ug/g dry	<0.50	<0.50	<0.50	-
Methyl tert-butyl ether	0.05 ug/g dry	<0.05	<0.05	<0.05	-
Methylene Chloride	0.05 ug/g dry	<0.05	<0.05	<0.05	-
Styrene	0.05 ug/g dry	<0.05	<0.05	<0.05	-
1,1,1,2-Tetrachloroethane	0.05 ug/g dry	<0.05	<0.05	<0.05	-
1,1,2,2-Tetrachloroethane	0.05 ug/g dry	<0.05	<0.05	<0.05	-
Tetrachloroethylene	0.05 ug/g dry	<0.05	<0.05	<0.05	-
Toluene	0.05 ug/g dry	<0.05	<0.05	<0.05	-
1,1,1-Trichloroethane	0.05 ug/g dry	<0.05	<0.05	<0.05	-
1,1,2-Trichloroethane	0.05 ug/g dry	<0.05	<0.05	<0.05	-
Trichloroethylene	0.05 ug/g dry	<0.05	<0.05	<0.05	-
Trichlorofluoromethane	0.05 ug/g dry	<0.05	<0.05	<0.05	-
Vinyl chloride	0.02 ug/g dry	<0.02	<0.02	<0.02	-
m,p-Xylenes	0.05 ug/g dry	<0.05	<0.05	<0.05	-
o-Xylene	0.05 ug/g dry	<0.05	<0.05	<0.05	-
Xylenes, total	0.05 ug/g dry	<0.05	<0.05	<0.05	-
4-Bromofluorobenzene	Surrogate	100%	102%	101%	-
Dibromofluoromethane	Surrogate	84.0%	91.3%	92.6%	-
Toluene-d8	Surrogate	107%	108%	107%	-

Order #: 2045671

Report Date: 12-Nov-2020

Order Date: 6-Nov-2020

Project Description: PE4908

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Metals									
Antimony	ND	1.0	ua/a						
Anumony		1.0	ug/g						
Barium		1.0	ug/g						
Bervilium	ND	0.5	ug/g						
Boron	ND	5.0	ug/g						
Cadmium	ND	0.5	ug/g						
Chromium	ND	5.0	ua/a						
Cobalt	ND	1.0	ua/a						
Copper	ND	5.0	ug/g						
Lead	ND	1.0	ug/g						
Molybdenum	ND	1.0	ug/g						
Nickel	ND	5.0	ug/g						
Selenium	ND	1.0	ug/g						
Silver	ND	0.3	ug/g						
Thallium	ND	1.0	ug/g						
Uranium	ND	1.0	ug/g						
Vanadium	ND	10.0	ug/g						
Zinc	ND	20.0	ug/g						
Volatiles									
Acetone	ND	0.50	ug/g						
Benzene	ND	0.02	ug/g						
Bromodichloromethane	ND	0.05	ug/g						
Bromoform	ND	0.05	ug/g						
Bromomethane	ND	0.05	ug/g						
Carbon Tetrachloride	ND	0.05	ug/g						
Chlorobenzene	ND	0.05	ug/g						
Chloroform	ND	0.05	ug/g						
Dibromochloromethane	ND	0.05	ug/g						
Dichlorodifluoromethane	ND	0.05	ug/g						
1,2-Dichlorobenzene	ND	0.05	ug/g						
1,3-Dichlorobenzene	ND	0.05	ug/g						
1,4-Dichlorobenzene	ND	0.05	ug/g						
1,1-Dichloroethane		0.05	ug/g						
1,2-Dichloroethane		0.05	ug/g						
r, r-Dichloroethylene		0.05	ug/g						
trans 1.2 Dichloroethylene		0.05	ug/g						
1 2-Dichloropropane		0.05	ug/g						
cis-1 3-Dichloropropylene	ND	0.05	ug/g						
trans-1.3-Dichloropropylene	ND	0.05	ug/g						
1 3-Dichloropropene total	ND	0.05	ug/g						
Ethylbenzene	ND	0.05	ua/a						
Ethylene dibromide (dibromoethane, 1.2	ND	0.05	ua/a						
Hexane	ND	0.05	ug/g						
Methyl Ethyl Ketone (2-Butanone)	ND	0.50	ug/g						
Methyl Isobutyl Ketone	ND	0.50	ug/g						
Methyl tert-butyl ether	ND	0.05	ug/g						
Methylene Chloride	ND	0.05	ug/g						
Styrene	ND	0.05	ug/g						
1,1,1,2-Tetrachloroethane	ND	0.05	ug/g						
1,1,2,2-Tetrachloroethane	ND	0.05	ug/g						
Tetrachloroethylene	ND	0.05	ug/g						
Toluene	ND	0.05	ug/g						
1,1,1-Trichloroethane	ND	0.05	ug/g						
1,1,2-Trichloroethane	ND	0.05	ug/g						
Irichloroethylene	ND	0.05	ug/g						
Irichlorofluoromethane	ND	0.05	ug/g						
		0.02	ug/g						
п,р-луннез	UN	0.05	ug/g						

Client PO: 31202

Report Date: 12-Nov-2020

Order Date: 6-Nov-2020

Project Description: PE4908

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
o-Xylene	ND	0.05	ug/g						
Xylenes, total	ND	0.05	ug/g						
Surrogate: 4-Bromofluorobenzene	7.83		ug/g		97.9	50-140			
Surrogate: Dibromofluoromethane	6.25		ug/g		78.2	50-140			
Surrogate: Toluene-d8	8.36		ug/g		104	50-140			

Client PO: 31202

Report Date: 12-Nov-2020

Order Date: 6-Nov-2020

Project Description: PE4908

Method Quality Control: Duplicate

	Reporting		Source			%REC RPD			
Analyte	Result	Limit	Units	Result	%REC	Limit	RPD	Limit	Notes
Metals									
Antimony		1.0	ua/a day				NC	30	
Anumony		1.0	ug/g dry					30	
Arsenic	0.2	1.0	ug/g ury	0.3			0.9	30	
Barium	66.2	1.0	ug/g ary	72.9			9.6	30	
Beryllium	0.7	0.5	ug/g ary	0.6			5.4	30	
Boron	10.3	5.0	ug/g dry	11.3			9.7	30	
Cadmium	ND	0.5	ug/g dry	ND			NC	30	
Chromium	19.7	5.0	ug/g dry	20.6			4.4	30	
Cobalt	9.1	1.0	ug/g dry	9.1			0.5	30	
Copper	15.4	5.0	ug/g dry	15.2			1.2	30	
Lead	8.5	1.0	ug/g dry	8.7			1.6	30	
Molybdenum	2.7	1.0	ug/g dry	2.9			7.8	30	
Nickel	22.7	5.0	ug/g dry	22.6			0.2	30	
Selenium	ND	1.0	ug/g dry	ND			NC	30	
Silver	ND	0.3	ug/g dry	ND			NC	30	
Thallium	ND	1.0	ug/g dry	ND			NC	30	
Uranium	1.0	1.0	ug/g dry	1.1			2.0	30	
Vanadium	30.3	10.0	ug/g dry	32.1			5.7	30	
Zinc	45.1	20.0	ug/g dry	48.2			6.7	30	
Physical Characteristics									
% Solids	82.3	0.1	% by Wt.	83.5			1.4	25	
Volatiles									
Acetone	ND	0.50	ug/g dry	ND			NC	50	
Benzene	ND	0.02	ug/g dry	ND			NC	50	
Bromodichloromethane	ND	0.05	ug/g dry	ND			NC	50	
Bromoform	ND	0.05	ug/g dry	ND			NC	50	
Bromomethane	ND	0.05	ug/g dry	ND			NC	50	
Carbon Tetrachloride	ND	0.05	ug/g dry	ND			NC	50	
Chlorobenzene	ND	0.05	ug/g dry	ND			NC	50	
Chloroform	ND	0.05	ug/g dry	ND			NC	50	
Dibromochloromethane	ND	0.05	ug/g dry	ND			NC	50	
Dichlorodifluoromethane	ND	0.05	ug/g dry	ND			NC	50	
1,2-Dichlorobenzene	ND	0.05	ug/g dry	ND			NC	50	
1,3-Dichlorobenzene	ND	0.05	ug/g dry	ND			NC	50	
1,4-Dichlorobenzene	ND	0.05	ug/g dry	ND			NC	50	
1,1-Dichloroethane	ND	0.05	ug/g dry	ND			NC	50	
1,2-Dichloroethane	ND	0.05	ug/g dry	ND			NC	50	
1,1-Dichloroethylene	ND	0.05	ug/g dry	ND			NC	50	
cis-1,2-Dichloroethylene	ND	0.05	ug/g dry	ND			NC	50	
trans-1,2-Dichloroethylene	ND	0.05	ug/g dry	ND			NC	50	
1,2-Dichloropropane	ND	0.05	ug/g dry	ND			NC	50	
cis-1,3-Dichloropropylene	ND	0.05	ug/g dry	ND			NC	50	
trans-1,3-Dichloropropylene	ND	0.05	ug/g dry	ND			NC	50	
Ethylbenzene	ND	0.05	ug/g dry	ND			NC	50	
Ethylene dibromide (dibromoethane, 1,2	ND	0.05	ug/g dry	ND			NC	50	
Hexane	ND	0.05	ug/g dry	ND			NC	50	
Methyl Ethyl Ketone (2-Butanone)	ND	0.50	ug/g dry	ND			NC	50	
Methyl Isobutyl Ketone	ND	0.50	ug/g dry	ND			NC	50	
Methyl tert-butyl ether	ND	0.05	ug/g dry	ND			NC	50	
Methylene Chloride	ND	0.05	ug/g dry	ND			NC	50	
Styrene	ND	0.05	ug/g dry	ND			NC	50	
1,1,1,2-Tetrachloroethane	ND	0.05	ug/g dry	ND			NC	50	
1,1,2,2-Tetrachloroethane	ND	0.05	ug/g dry	ND			NC	50	
Tetrachloroethylene	0.408	0.05	ug/g dry	0.345			16.9	50	
Toluene	ND	0.05	ug/g dry	ND			NC	50	
1,1,1-Trichloroethane	ND	0.05	ug/g dry	ND			NC	50	
1,1,2-Trichloroethane	ND	0.05	ug/g dry	ND			NC	50	
Trichloroethylene	ND	0.05	ug/g dry	ND			NC	50	

Report Date: 12-Nov-2020 Order Date: 6-Nov-2020

Project Description: PE4908

Method Quality Control: Duplicate

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Trichlorofluoromethane	ND	0.05	ug/g dry	ND			NC	50	
Vinyl chloride	ND	0.02	ug/g dry	ND			NC	50	
m,p-Xylenes	ND	0.05	ug/g dry	ND			NC	50	
o-Xylene	ND	0.05	ug/g dry	ND			NC	50	
Surrogate: 4-Bromofluorobenzene	9.23		ug/g dry		101	50-140			
Surrogate: Dibromofluoromethane	7.67		ug/g dry		84.0	50-140			
Surrogate: Toluene-d8	9.76		ug/g dry		107	50-140			

Order #: 2045671

Report Date: 12-Nov-2020

Order Date: 6-Nov-2020

Project Description: PE4908

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Metals									
Antimony	46.3	1.0	ug/g	ND	92.3	70-130			
Arsenic	52.6	1.0	ug/g	3.3	98.5	70-130			
Barium	73.7	1.0	ug/g	29.2	89.1	70-130			
Beryllium	49.1	0.5	ug/g	ND	97.7	70-130			
Boron	47.2	5.0	ug/g	ND	85.3	70-130			
Cadmium	46.2	0.5	ug/g	ND	92.2	70-130			
Chromium	57.8	5.0	ug/g	8.2	99.2	70-130			
Cobalt	52.3	1.0	ug/g	3.7	97.2	70-130			
Copper	52.5	5.0	ug/g	6.1	92.8	70-130			
Lead	49.5	1.0	ug/g	3.5	92.0	70-130			
Molybdenum	48.6	1.0	ug/g	1.2	94.9	70-130			
Nickel	56.0	5.0	ug/g	9.0	93.9	70-130			
Selenium	48.2	1.0	ug/g	ND	96.2	70-130			
Silver	42.4	0.3	ug/g	ND	84.8	70-130			
Thallium	46.6	1.0	ug/g	ND	92.7	70-130			
Uranium	49.0	1.0	ug/g	ND	97.1	70-130			
Vanadium	62.0	10.0	ug/g	12.8	98.3	70-130			
Zinc	63.7	20.0	ug/g	ND	88.9	70-130			
Volatiles									
Acetone	11.4	0.50	ug/g	ND	114	50-140			
Benzene	4.52	0.02	ug/g	ND	113	60-130			
Bromodichloromethane	3.82	0.05	ug/g	ND	95.6	60-130			
Bromoform	3.42	0.05	ug/g	ND	85.4	60-130			
Bromomethane	5.17	0.05	ug/g	ND	129	50-140			
Carbon Tetrachloride	3.68	0.05	ug/g	ND	92.0	60-130			
Chlorobenzene	3.91	0.05	ug/g	ND	97.7	60-130			
Chloroform	3.49	0.05	ug/g	ND	87.3	60-130			
Dibromochloromethane	4.00	0.05	ug/g	ND	100	60-130			
Dichlorodifluoromethane	4.28	0.05	ug/g	ND	107	50-140			
1,2-Dichlorobenzene	3.93	0.05	ug/g	ND	98.3	60-130			
1,3-Dichlorobenzene	3.93	0.05	ug/g	ND	98.3	60-130			
1,4-Dichlorobenzene	3.98	0.05	ug/g	ND	99.5	60-130			
1,1-Dichloroethane	4.42	0.05	ug/g	ND	110	60-130			
1,2-Dichloroethane	3.20	0.05	ug/g	ND	80.0	60-130			
1,1-Dichloroethylene	4.64	0.05	ug/g	ND	116	60-130			
cis-1,2-Dichloroethylene	3.77	0.05	ug/g	ND	94.2	60-130			
trans-1,2-Dichloroethylene	4.55	0.05	ug/g	ND	114	60-130			
1,2-Dichloropropane	4.30	0.05	ug/g	ND	107	60-130			
cis-1,3-Dichloropropylene	3.42	0.05	ug/g	ND	85.6	60-130			
trans-1,3-Dichloropropylene	3.24	0.05	ug/g	ND	81.1	60-130			
Ethylona dibramida (dibramaathana, 1.2	3.90	0.05	ug/g		97.0	60 120			
	3.57	0.05	ug/g		09.3	60 120			
Methyl Ethyl Ketone (2 Butanana)	4.83 10.2	0.05	ug/g		102	50 140			
Methyl Isobutyl Ketone	10.3	0.50	ug/g		103	50-140			
Methyl tert-hutyl ether	0.06	0.00	ug/g		00 6	50-140			
Methylene Chloride	9.90 A 93	0.05	ug/g		106	60-130			
Styrene	3.02	0.05	ug/g		75 /	60-130			
orgiono -	0.02	0.00	~ <u>~</u> ,A		70.7	00 100			

Report Date: 12-Nov-2020

Order Date: 6-Nov-2020

Project Description: PE4908

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
1,1,1,2-Tetrachloroethane	3.84	0.05	ug/g	ND	95.9	60-130			
1,1,2,2-Tetrachloroethane	3.31	0.05	ug/g	ND	82.9	60-130			
Tetrachloroethylene	3.47	0.05	ug/g	ND	86.6	60-130			
Toluene	3.97	0.05	ug/g	ND	99.1	60-130			
1,1,1-Trichloroethane	4.01	0.05	ug/g	ND	100	60-130			
1,1,2-Trichloroethane	4.01	0.05	ug/g	ND	100	60-130			
Trichloroethylene	4.17	0.05	ug/g	ND	104	60-130			
Trichlorofluoromethane	4.34	0.05	ug/g	ND	109	50-140			
Vinyl chloride	4.94	0.02	ug/g	ND	123	50-140			
m,p-Xylenes	7.37	0.05	ug/g	ND	92.2	60-130			
o-Xylene	3.67	0.05	ug/g	ND	91.7	60-130			
Surrogate: 4-Bromofluorobenzene	8.11		ug/g		101	50-140			
Surrogate: Dibromofluoromethane	8.01		ug/g		100	50-140			
Surrogate: Toluene-d8	8.19		ug/g		102	50-140			

Qualifier Notes:

None

Sample Data Revisions

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected MDL: Method Detection Limit Source Result: Data used as source for matrix and duplicate samples %REC: Percent recovery. RPD: Relative percent difference. NC: Not Calculated

Soil results are reported on a dry weight basis when the units are denoted with 'dry'. Where %Solids is reported, moisture loss includes the loss of volatile hydrocarbons.

Order Date: 6-Nov-2020 Project Description: PE4908

C PARACE LABORATORIES LT	cel ID: 2045671 Vd. J8 (Lab Use Only) .com	er Chain Of Custody (Lab Use Only) N° 55081
Client Name: PATERSON	Project Ref: PE 4908	Page 1 of 1
Contact Name: KROUN MUNCH	Quote #:	Turnaround Time
Address:	PO#: 3 31202	🗆 1 day 🔲 3 day
154 COLONNADE Rd. S. OTTAW	E-mail:	🗆 2 day 🕅 Regular
Telephone: (613) 7.26 -7381	KNUNCH @ PATERSON GROWT. CO-	Date Required:
Regulation 153/04 Other Regulation	Matrix Type: S (Soil/Sed.) GW (Ground Water)	Required Analysis
Table 1 Res/Park Med/Fine REG 558 PWQO	SW (Surface Water) SS (Storm/Sanitary Sewer)	
Table 2 Ind/Comm Coarse CCME MISA	P (Paint) A (Air) O (Other)	
Table 3 Agri/Other SU - Sani SU - Storm	2 S	
전 Table객 Mun:	E Sample Taken	
For RSC: Yes No		
Sample ID/Location Name	∑ i₹ # Date Time Z	
1 NH	5 12 NOV 5/20 3 PM V V	
2 EZ		
3 B1		
4 Dug	S \ Z Nous/20 3Pm V	
5		
6		
7		
8		
9		
10		
Comments:		Method of Delivery:
1100		MARKEL COURTER
Relinquished By (Sign): Received By	er/Depot: Dause Received at table	Verified By:
Relinquished By (Print): Date/Time:	6/11/20 3.06 Date/Time:1/6.26 15/Se	Date/Time: 1/-6-2,163/
Date/Time: Jan (1207 ()	°C, 71. Temperature: [3]) °C	pH Verified: By:

Chain of Custody (Blank) xlsx

Revision 3.0

RELIABLE.

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Certificate of Analysis

Paterson Group Consulting Engineers

154 Colonnade Road South Nepean, ON K2E 7J5 Attn: Karyn Munch

Client PO: 30817 Project: PE4908 Custody: 54889

Report Date: 17-Nov-2020 Order Date: 10-Nov-2020

Order #: 2046238

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID	Client ID
2046238-01	W3
2046238-02	S2
2046238-03	W2-1
2046238-04	E2-1
2046238-05	S2-1
2046238-06	N2-2
2046238-07	DUP

Approved By:

Mark Foto

Mark Foto, M.Sc. Lab Supervisor

Any use of these results implies your agreement that our total liability in connection with this work, however arising, shall be limited to the amount paid by you for this work, and that our employees or agents shall not under any circumstances be liable to you in connection with this work.

Report Date: 17-Nov-2020 Order Date: 10-Nov-2020

Order #: 2046238

Project Description: PE4908

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date	Analysis Date
REG 153: Metals by ICP/MS, soil	EPA 6020 - Digestion - ICP-MS	16-Nov-20	16-Nov-20
REG 153: VOCs by P&T GC/MS	EPA 8260 - P&T GC-MS	13-Nov-20	13-Nov-20
Solids, %	Gravimetric, calculation	11-Nov-20	12-Nov-20

Certificate of Analysis

Client: Paterson Group Consulting Engineers

Client PO: 30817

Report Date: 17-Nov-2020

Order Date: 10-Nov-2020

Project Description: PE4908

	Client ID: Sample Date: Sample ID:	W3 10-Nov-20 09:00 2046238-01	S2 10-Nov-20 09:00 2046238-02	W2-1 10-Nov-20 09:00 2046238-03	E2-1 10-Nov-20 09:00 2046238-04
	MDI /Units	Soil	Soil	Soil	Soil
Physical Characteristics					
% Solids	0.1 % by Wt.	93.9	97.7	97.5	98.4
Metals					
Antimony	1.0 ug/g dry	<1.0	<1.0	<1.0	<1.0
Arsenic	1.0 ug/g dry	2.2	1.6	2.7	1.3
Barium	1.0 ug/g dry	378	340	157	133
Beryllium	0.5 ug/g dry	0.7	<0.5	<0.5	<0.5
Boron	5.0 ug/g dry	18.8	7.1	7.8	6.0
Cadmium	0.5 ug/g dry	<0.5	<0.5	<0.5	<0.5
Chromium	5.0 ug/g dry	10.8	8.5	7.5	7.6
Cobalt	1.0 ug/g dry	7.4	6.3	3.3	4.3
Copper	5.0 ug/g dry	11.7	7.9	<5.0	<5.0
Lead	1.0 ug/g dry	10.9	6.0	8.2	4.1
Molybdenum	1.0 ug/g dry	<1.0	<1.0	<1.0	<1.0
Nickel	5.0 ug/g dry	15.6	10.5	8.2	8.9
Selenium	1.0 ug/g dry	<1.0	<1.0	<1.0	<1.0
Silver	0.3 ug/g dry	<0.3	<0.3	<0.3	<0.3
Thallium	1.0 ug/g dry	<1.0	<1.0	<1.0	<1.0
Uranium	1.0 ug/g dry	<1.0	<1.0	<1.0	<1.0
Vanadium	10.0 ug/g dry	10.4	10.3	<10.0	10.3
Zinc	20.0 ug/g dry	<20.0	<20.0	<20.0	<20.0
Volatiles					
Acetone	0.50 ug/g dry	<0.50	<0.50	-	-
Benzene	0.02 ug/g dry	<0.02	<0.02	-	-
Bromodichloromethane	0.05 ug/g dry	<0.05	<0.05	-	-
Bromoform	0.05 ug/g dry	<0.05	<0.05	-	-
Bromomethane	0.05 ug/g dry	<0.05	<0.05	-	-
Carbon Tetrachloride	0.05 ug/g dry	<0.05	<0.05	-	-
Chlorobenzene	0.05 ug/g dry	<0.05	<0.05	-	-
Chloroform	0.05 ug/g dry	<0.05	<0.05	-	-
Dibromochloromethane	0.05 ug/g dry	<0.05	<0.05	-	-
Dichlorodifluoromethane	0.05 ug/g dry	<0.05	<0.05	-	-
1,2-Dichlorobenzene	0.05 ug/g dry	<0.05	<0.05	-	-
1,3-Dichlorobenzene	0.05 ug/g dry	<0.05	<0.05	-	-
1,4-Dichlorobenzene	0.05 ug/g dry	0.10	<0.05	-	-
1,1-Dichloroethane	0.05 ug/g dry	<0.05	<0.05	-	-

Report Date: 17-Nov-2020 Order Date: 10-Nov-2020

Project Description: PE4908

	Client ID: Sample Date: Sample ID: MDL/Units	W3 10-Nov-20 09:00 2046238-01 Soil	S2 10-Nov-20 09:00 2046238-02 Soil	W2-1 10-Nov-20 09:00 2046238-03 Soil	E2-1 10-Nov-20 09:00 2046238-04 Soil
1,2-Dichloroethane	0.05 ug/g dry	<0.05	<0.05	-	-
1,1-Dichloroethylene	0.05 ug/g dry	<0.05	<0.05	-	-
cis-1,2-Dichloroethylene	0.05 ug/g dry	<0.05	<0.05	-	-
trans-1,2-Dichloroethylene	0.05 ug/g dry	<0.05	<0.05	-	-
1,2-Dichloropropane	0.05 ug/g dry	<0.05	<0.05	-	-
cis-1,3-Dichloropropylene	0.05 ug/g dry	<0.05	<0.05	-	-
trans-1,3-Dichloropropylene	0.05 ug/g dry	<0.05	<0.05	-	-
1,3-Dichloropropene, total	0.05 ug/g dry	<0.05	<0.05	-	-
Ethylbenzene	0.05 ug/g dry	<0.05	<0.05	-	-
Ethylene dibromide (dibromoethane, 1,2-)	0.05 ug/g dry	<0.05	<0.05	-	-
Hexane	0.05 ug/g dry	<0.05	<0.05	-	-
Methyl Ethyl Ketone (2-Butanone)	0.50 ug/g dry	<0.50	<0.50	-	-
Methyl Isobutyl Ketone	0.50 ug/g dry	<0.50	<0.50	-	-
Methyl tert-butyl ether	0.05 ug/g dry	<0.05	<0.05	-	-
Methylene Chloride	0.05 ug/g dry	<0.05	<0.05	-	-
Styrene	0.05 ug/g dry	<0.05	<0.05	-	-
1,1,1,2-Tetrachloroethane	0.05 ug/g dry	<0.05	<0.05	-	-
1,1,2,2-Tetrachloroethane	0.05 ug/g dry	<0.05	<0.05	-	-
Tetrachloroethylene	0.05 ug/g dry	<0.05	<0.05	-	-
Toluene	0.05 ug/g dry	<0.05	<0.05	-	-
1,1,1-Trichloroethane	0.05 ug/g dry	<0.05	<0.05	-	-
1,1,2-Trichloroethane	0.05 ug/g dry	<0.05	<0.05	-	-
Trichloroethylene	0.05 ug/g dry	<0.05	<0.05	-	-
Trichlorofluoromethane	0.05 ug/g dry	<0.05	<0.05	-	-
Vinyl chloride	0.02 ug/g dry	<0.02	<0.02	-	-
m,p-Xylenes	0.05 ug/g dry	<0.05	<0.05	-	-
o-Xylene	0.05 ug/g dry	<0.05	<0.05	-	-
Xylenes, total	0.05 ug/g dry	<0.05	<0.05	-	-
4-Bromofluorobenzene	Surrogate	97.0%	97.7%	-	-
Dibromofluoromethane	Surrogate	106%	107%	-	-
Toluene-d8	Surrogate	126%	124%	-	-

Certificate of Analysis

Client: Paterson Group Consulting Engineers

Client PO: 30817

Order #: 2046238

Report Date: 17-Nov-2020

Order Date: 10-Nov-2020

Project Description: PE4908

	Client ID:	S2-1	N2-2	DUP	-
	Sample Date:	10-Nov-20 09:00	10-Nov-20 09:00	10-Nov-20 09:00	-
	Sample ID:	2046238-05	2046238-06	2046238-07	-
	MDL/Units	Soil	Soil	Soil	-
Physical Characteristics					
% Solids	0.1 % by Wt.	95.8	95.4	96.0	-
Metals					
Antimony	1.0 ug/g dry	<1.0	<1.0	<1.0	-
Arsenic	1.0 ug/g dry	1.6	1.6	1.5	-
Barium	1.0 ug/g dry	381	342	309	-
Beryllium	0.5 ug/g dry	<0.5	<0.5	<0.5	-
Boron	5.0 ug/g dry	12.1	11.6	12.1	-
Cadmium	0.5 ug/g dry	<0.5	<0.5	<0.5	-
Chromium	5.0 ug/g dry	8.4	9.3	8.7	-
Cobalt	1.0 ug/g dry	5.0	6.4	5.3	-
Copper	5.0 ug/g dry	6.0	7.6	6.1	-
Lead	1.0 ug/g dry	5.7	5.6	5.5	-
Molybdenum	1.0 ug/g dry	<1.0	<1.0	<1.0	-
Nickel	5.0 ug/g dry	10.9	10.6	9.8	-
Selenium	1.0 ug/g dry	<1.0	<1.0	<1.0	-
Silver	0.3 ug/g dry	<0.3	<0.3	<0.3	-
Thallium	1.0 ug/g dry	<1.0	<1.0	<1.0	-
Uranium	1.0 ug/g dry	<1.0	<1.0	<1.0	-
Vanadium	10.0 ug/g dry	<10.0	<10.0	<10.0	-
Zinc	20.0 ug/g dry	<20.0	<20.0	<20.0	-

Order #: 2046238

Report Date: 17-Nov-2020

Order Date: 10-Nov-2020

Project Description: PE4908

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Metals									
Antimony	ND	1.0	ua/a						
Arsenic	ND	1.0	ug/g						
Barium	ND	1.0	ug/g						
Bervllium	ND	0.5	ua/a						
Boron	ND	5.0	ua/a						
Cadmium	ND	0.5	ua/a						
Chromium	ND	5.0	ua/a						
Cobalt	ND	1.0	ua/a						
Copper	ND	5.0	ug/g						
Lead	ND	1.0	ug/g						
Molybdenum	ND	1.0	ug/g						
Nickel	ND	5.0	ug/g						
Selenium	ND	1.0	ug/g						
Silver	ND	0.3	ug/g						
Thallium	ND	1.0	ug/g						
Uranium	ND	1.0	ug/g						
Vanadium	ND	10.0	ug/g						
Zinc	ND	20.0	ug/g						
Volatiles									
Acetone	ND	0.50	uq/q						
Benzene	ND	0.02	ug/g						
Bromodichloromethane	ND	0.05	ug/g						
Bromoform	ND	0.05	ug/g						
Bromomethane	ND	0.05	ug/g						
Carbon Tetrachloride	ND	0.05	ug/g						
Chlorobenzene	ND	0.05	ug/g						
Chloroform	ND	0.05	ug/g						
Dibromochloromethane	ND	0.05	ug/g						
Dichlorodifluoromethane	ND	0.05	ug/g						
1,2-Dichlorobenzene	ND	0.05	ug/g						
1,3-Dichlorobenzene	ND	0.05	ug/g						
1,4-Dichlorobenzene	ND	0.05	ug/g						
1,1-Dichloroethane	ND	0.05	ug/g						
1,2-Dichloroethane	ND	0.05	ug/g						
1,1-Dichloroethylene	ND	0.05	ug/g						
cis-1,2-Dichloroethylene	ND	0.05	ug/g						
trans-1,2-Dichloroethylene	ND	0.05	ug/g						
1,2-Dichloropropane	ND	0.05	ug/g						
cis-1,3-Dichloropropylene	ND	0.05	ug/g						
trans-1,3-Dichloropropylene	ND	0.05	ug/g						
1,3-Dichloropropene, total	ND	0.05	ug/g						
Ethylbenzene	ND	0.05	ug/g						
Ethylene dibromide (dibromoethane, 1,2	ND	0.05	ug/g						
Hexane	ND	0.05	ug/g						
Methyl Ethyl Ketone (2-Butanone)	ND	0.50	ug/g						
Methyl Isobutyl Ketone	ND	0.50	ug/g						
Methylana Chlarida	ND	0.05	ug/g						
Nethylene Chioride		0.05	ug/g						
Styrene		0.05	ug/g						
1, 1, 1, 2- Tetrachioroethane		0.05	ug/g						
T, T, Z, Z- Tetrachioroethane		0.05	ug/g						
Toluono		0.05	ug/g						
1 1 1-Trichloroethane		0.05	ug/g						
1 1 2-Trichloroethane	ND	0.05	ug/g						
	ND	0.05	ug/g						
Trichlorofluoromethane	ND	0.05	ug/g						
Vinvl chloride	ND	0.02	na/a aa,a						
m.p-Xvlenes	ND	0.05	ua/a						
4 J			-3-3						

Report Date: 17-Nov-2020

Order Date: 10-Nov-2020

Project Description: PE4908

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
o-Xylene	ND	0.05	ug/g						
Xylenes, total	ND	0.05	ug/g						
Surrogate: 4-Bromofluorobenzene	8.39		ug/g		105	50-140			
Surrogate: Dibromofluoromethane	8.75		ug/g		109	50-140			
Surrogate: Toluene-d8	9.07		ug/g		113	50-140			

Order #: 2046238

Report Date: 17-Nov-2020

Order Date: 10-Nov-2020

Project Description: PE4908

Method Quality Control: Duplicate

		Reporting		Source		%REC		RPD	
Analyte	Result	Limit	Units	Result	%REC	Limit	RPD	Limit	Notes
Motals									
	ND	1.0	······				NO	20	
Anumony	ND 7 0	1.0	ug/g ary	ND			NC 10.0	30	
Arsenic	7.2	1.0	ug/g ary	6.0			16.8	30	
Barium	75.8	1.0	ug/g dry	66.0			13.8	30	
Beryllium	1.0	0.5	ug/g dry	0.8			17.4	30	
Boron	9.4	5.0	ug/g dry	8.3			12.2	30	
Cadmium	0.7	0.5	ug/g dry	0.6			14.7	30	
Chromium	23.4	5.0	ug/g dry	20.6			12.8	30	
Cobalt	13.3	1.0	ug/g dry	11.8			11.9	30	
Copper	64.3	5.0	ug/g dry	60.5			6.1	30	
Lead	34.3	1.0	ug/g dry	30.6			11.5	30	
Molybdenum	ND	1.0	ug/g dry	ND			NC	30	
Nickel	23.1	5.0	ug/g dry	20.7			11.2	30	
Selenium	ND	1.0	ug/g dry	ND			NC	30	
Silver	ND	0.3	ug/g dry	ND			NC	30	
Thallium	ND	1.0	ug/g dry	ND			NC	30	
Uranium	ND	1.0	ug/g dry	ND			NC	30	
Vanadium	32.4	10.0	ug/g dry	29.4			9.8	30	
Zinc	147	20.0	ug/g dry	128			13.3	30	
Physical Characteristics									
% Solids	91.5	0.1	% by Wt.	91.2			0.3	25	
Volatiles									
Acetone	ND	0.50	ug/g dry	ND			NC	50	
Benzene	ND	0.02	ug/g dry	ND			NC	50	
Bromodichloromethane	ND	0.05	ug/g dry	ND			NC	50	
Bromoform	ND	0.05	ug/g dry	ND			NC	50	
Bromomethane	ND	0.05	ug/g dry	ND			NC	50	
Carbon Tetrachloride	ND	0.05	ug/g dry	ND			NC	50	
Chlorobenzene	ND	0.05	ug/g dry	ND			NC	50	
Chloroform	ND	0.05	ug/g dry	ND			NC	50	
Dibromochloromethane	ND	0.05	ug/g dry	ND			NC	50	
Dichlorodifluoromethane	ND	0.05	ug/g dry	ND			NC	50	
1,2-Dichlorobenzene	ND	0.05	ug/g dry	ND			NC	50	
1,3-Dichlorobenzene	ND	0.05	ug/g dry	ND			NC	50	
1,4-Dichlorobenzene	0.130	0.05	ug/g dry	0.101			25.3	50	
1,1-Dichloroethane	ND	0.05	ug/g dry	ND			NC	50	
1,2-Dichloroethane	ND	0.05	ug/g dry	ND			NC	50	
1,1-Dichloroethylene	ND	0.05	ug/g dry	ND			NC	50	
cis-1,2-Dichloroethylene	ND	0.05	ug/g dry	ND			NC	50	
trans-1,2-Dichloroethylene	ND	0.05	ug/g dry	ND			NC	50	
1,2-Dichloropropane	ND	0.05	ug/g dry	ND			NC	50	
cis-1,3-Dichloropropylene	ND	0.05	ug/g dry	ND			NC	50	
trans-1,3-Dichloropropylene	ND	0.05	ug/g dry	ND			NC	50	
Ethylbenzene	ND	0.05	ug/g dry	ND			NC	50	
Ethylene dibromide (dibromoethane, 1,2	ND	0.05	ug/g dry	ND			NC	50	
Hexane	ND	0.05	ug/g dry	ND			NC	50	
Methyl Ethyl Ketone (2-Butanone)	ND	0.50	ug/g dry	ND			NC	50	
Methyl Isobutyl Ketone	ND	0.50	ug/g dry	ND			NC	50	
Methyl tert-butyl ether	ND	0.05	ug/g dry	ND			NC	50	
Methylene Chloride	ND	0.05	ug/g dry	ND			NC	50	
Styrene	ND	0.05	ug/g dry	ND			NC	50	
1,1,1,2-Tetrachloroethane	ND	0.05	ug/g dry	ND			NC	50	
1,1,2,2-Tetrachloroethane	ND	0.05	ug/g dry	ND			NC	50	
Tetrachloroethylene	ND	0.05	ug/g dry	ND			NC	50	
Toluene	ND	0.05	ug/g dry	ND			NC	50	
1,1,1-Trichloroethane	ND	0.05	ug/a drv	ND			NC	50	
1,1,2-Trichloroethane	ND	0.05	ug/a drv	ND			NC	50	
Trichloroethylene	ND	0.05	ug/g dry	ND			NC	50	
-									

Report Date: 17-Nov-2020

Order Date: 10-Nov-2020

Project Description: PE4908

Method Quality Control: Duplicate

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Trichlorofluoromethane	ND	0.05	ug/g dry	ND			NC	50	
Vinyl chloride	ND	0.02	ug/g dry	ND			NC	50	
m,p-Xylenes	ND	0.05	ug/g dry	ND			NC	50	
o-Xylene	ND	0.05	ug/g dry	ND			NC	50	
Surrogate: 4-Bromofluorobenzene	8.34		ug/g dry		97.9	50-140			
Surrogate: Dibromofluoromethane	8.90		ug/g dry		104	50-140			
Surrogate: Toluene-d8	10.6		ug/g dry		124	50-140			

Order #: 2046238

Report Date: 17-Nov-2020

Order Date: 10-Nov-2020

Project Description: PE4908

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Metals									
Antimony	41.8	1.0	ug/g	ND	83.4	70-130			
Arsenic	49.0	1.0	ug/g	2.4	93.2	70-130			
Barium	75.4	1.0	ug/g	26.4	98.1	70-130			
Beryllium	46.9	0.5	ug/g	ND	93.2	70-130			
Boron	44.2	5.0	ug/g	ND	81.7	70-130			
Cadmium	43.4	0.5	ug/g	ND	86.3	70-130			
Chromium	56.6	5.0	ug/g	8.2	96.6	70-130			
Cobalt	51.2	1.0	ug/g	4.7	92.9	70-130			
Copper	69.7	5.0	ug/g	24.2	91.0	70-130			
Lead	55.4	1.0	ug/g	12.2	86.4	70-130			
Molybdenum	44.4	1.0	ug/g	ND	88.3	70-130			
Nickel	53.2	5.0	ug/g	8.3	89.8	70-130			
Selenium	43.5	1.0	ug/g	ND	86.6	70-130			
Silver	42.2	0.3	ug/g	ND	84.3	70-130			
Thallium	43.3	1.0	ug/g	ND	86.6	70-130			
Uranium	44.7	1.0	ug/g	ND	89.2	70-130			
Vanadium	60.4	10.0	ug/g	11.8	97.3	70-130			
Zinc	100	20.0	ug/g	51.4	98.3	70-130			
Volatiles									
Acetone	11.9	0.50	ug/g	ND	119	50-140			
Benzene	3.27	0.02	ug/g	ND	81.7	60-130			
Bromodichloromethane	2.89	0.05	ug/g	ND	72.4	60-130			
Bromoform	4.85	0.05	ug/g	ND	121	60-130			
Bromomethane	4.34	0.05	ug/g	ND	108	50-140			
Carbon Tetrachloride	4.96	0.05	ug/g	ND	124	60-130			
Chlorobenzene	3.97	0.05	ug/g	ND	99.2	60-130			
Chloroform	3.84	0.05	ug/g	ND	96.0	60-130			
Dibromochloromethane	4.69	0.05	ug/g	ND	117	60-130			
Dichlorodifluoromethane	5.06	0.05	ug/g	ND	127	50-140			
1,2-Dichlorobenzene	3.79	0.05	ug/g	ND	94.8	60-130			
1,3-Dichlorobenzene	3.87	0.05	ug/g	ND	96.7	60-130			
1,4-Dichlorobenzene	3.89	0.05	ug/g	ND	97.3	60-130			
1,1-Dichloroethane	3.46	0.05	ug/g	ND	86.5	60-130			
1,2-Dichloroethane	4.16	0.05	ug/g	ND	104	60-130			
1,1-Dichloroethylene	3.24	0.05	ug/g	ND	80.9	60-130			
cis-1,2-Dichloroethylene	3.33	0.05	ug/g	ND	83.4	60-130			
trans-1,2-Dichloroethylene	3.31	0.05	ug/g	ND	82.9	60-130			
1,2-Dichloropropane	3.27	0.05	ug/g	ND	81.8	60-130			
cis-1,3-Dichloropropylene	3.88	0.05	ug/g	ND	97.0	60-130			
trans-1,3-Dichloropropylene	4.55	0.05	ug/g	ND	114	60-130			
Ethylbenzene	3.84	0.05	ug/g	ND	96.1	60-130			
Ethylene dibromide (dibromoethane, 1,2-	3.82	0.05	ug/g	ND	95.6	60-130			
Hexane	4.08	0.05	ug/g	ND	102	60-130			
Methyl Ethyl Ketone (2-Butanone)	9.59	0.50	ug/g	ND	95.9	50-140			
Methyl Isobutyl Ketone	8.35	0.50	ug/g	ND	83.5	50-140			
Methyl tert-butyl ether	7.30	0.05	ug/g	ND	73.0	50-140			
Methylene Chloride	3.56	0.05	ug/g	ND	88.9	60-130			
Styrene	4.07	0.05	ug/g	ND	102	60-130			

Report Date: 17-Nov-2020

Order Date: 10-Nov-2020

Project Description: PE4908

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
1,1,1,2-Tetrachloroethane	4.62	0.05	ug/g	ND	115	60-130			
1,1,2,2-Tetrachloroethane	3.93	0.05	ug/g	ND	98.4	60-130			
Tetrachloroethylene	4.00	0.05	ug/g	ND	100	60-130			
Toluene	3.83	0.05	ug/g	ND	95.7	60-130			
1,1,1-Trichloroethane	4.15	0.05	ug/g	ND	104	60-130			
1,1,2-Trichloroethane	3.00	0.05	ug/g	ND	75.1	60-130			
Trichloroethylene	3.69	0.05	ug/g	ND	92.2	60-130			
Trichlorofluoromethane	4.64	0.05	ug/g	ND	116	50-140			
Vinyl chloride	5.18	0.02	ug/g	ND	130	50-140			
m,p-Xylenes	7.93	0.05	ug/g	ND	99.2	60-130			
o-Xylene	4.16	0.05	ug/g	ND	104	60-130			
Surrogate: 4-Bromofluorobenzene	7.75		ug/g		96.9	50-140			
Surrogate: Dibromofluoromethane	8.75		ug/g		109	50-140			
Surrogate: Toluene-d8	7.34		ug/g		91.7	50-140			

Qualifier Notes:

None

Sample Data Revisions

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected MDL: Method Detection Limit Source Result: Data used as source for matrix and duplicate samples %REC: Percent recovery. RPD: Relative percent difference. NC: Not Calculated

Soil results are reported on a dry weight basis when the units are denoted with 'dry'. Where %Solids is reported, moisture loss includes the loss of volatile hydrocarbons.

Report Date: 17-Nov-2020 Order Date: 10-Nov-2020 Project Description: PE4908

6	PARA(CEL s ltd.	Paracel ID: 204623						Paracel Order Number (Lab Use Only) 2046238				Chain Of Custody (Lab Use Only) N° 54889			
Client N	Name				Project	Ref:	264908	7.00						Pag	e <u>/</u> c	f <u>(</u>
Contact	TATERON				Quote	#:								Turnar	ound	Time
Addres	ST COLONNADE	Rd- 2 381	OFTAWA	y 1	PO #: - E-mail:	30 mu	817	ITERSON (GROU	~P.CO	-	L Da	□ 1 day □ 2 day te Requ	ired:		□ 3 day □ Regula
	Regulation 153/04	Other R	egulation		Interio Ti		(Soil/Sod) GW/G	round Water)				Remin	ed Ana	lysis		
Пта	ble 1 Res/Park Med/Fine	REG 558	PWQ0	S	SW (Sur	face W	/ater) SS (Storm/Sa	nitary Sewer)				neque	Curnia	1,515		
Пта	ble 2 Ind/Comm Coarse					P (Paint) A (Air) O (Other)									11-11-1 1-1-1	1.5
Пта	ble 3 🗌 Agri/Other	🗆 SU - Sani	SU - Storm			ers			34							
🖸 Та	ble=	Mun:			a	ntain	Sample	Taken	33	õ.						
	For RSC: Yes No	Other:		trix	Volu	f Cor	1 - 1 - N. 1	1	ETA	Š						
-	Sample ID/Locatio	on Name		Ř	Air	0 12	Date	Time	2				+			
1	W3		1	S	1	Z	NOU 10/2020		V	V	$\left \right $		+			
2	62								V	\mathbf{V}			+-			
3	W2-1								V	1 .		·				
4	FZ-1								V				_			
5	SZ-1 .							ta ozna i s	\sim							
6	N2-7								\searrow							
7	DUP.			V	5	V	V	V	\vee							
8	P VII ·		· -)							1	6.2					
9				1		440				1						
10			1g -													
Comm	ents:											Method o	f Delivery	r: POF		, ≫⊼
Reling	uished By (Sign):	2	Received By C	river/[Depot:			Received at Lab	R	10m		Verified B	γ:	SI	RM	
Reling	uished By (Print):		Date/Time:					Date/Time: 10	v 10	20 1	8:30	Date/Tim	e: Hov	10	2010	18:46
Date/Time: Nov 10/2020 Temperature:					°C Temperature:				ture: 14.5 °C pH			pH Verified: 🔲 By:				

Chain of Custody (Blank) ylsy

Revision 3.0

RELIABLE.

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Certificate of Analysis

Paterson Group Consulting Engineers

154 Colonnade Road South Nepean, ON K2E 7J5 Attn: Karyn Munch

Client PO: 31222 Project: PE4908 Custody: 54897

Report Date: 17-Nov-2020 Order Date: 13-Nov-2020

Order #: 2046545

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID **Client ID** 2046545-01 B2-1 2046545-02 B2-2

Approved By:

Mark Foto

Mark Foto, M.Sc. Lab Supervisor

Any use of these results implies your agreement that our total liability in connection with this work, however arising, shall be limited to the amount paid by you for this work, and that our employees or agents shall not under any circumstances be liable to you in connection with this work.

Report Date: 17-Nov-2020 Order Date: 13-Nov-2020

Order #: 2046545

Project Description: PE4908

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date	Analysis Date
REG 153: Metals by ICP/MS, soil	EPA 6020 - Digestion - ICP-MS	17-Nov-20	17-Nov-20
Solids, %	Gravimetric, calculation	16-Nov-20	17-Nov-20

Certificate of Analysis

Client: Paterson Group Consulting Engineers

Client PO: 31222

Order #: 2046545

Report Date: 17-Nov-2020

Order Date: 13-Nov-2020

Project Description: PE4908

		B2_1	B2-2	_	_
	Sample Date:	13-Nov-20 09:00	13-Nov-20.09.00	-	-
	Sample ID:	2046545-01	2046545-02	-	-
	MDL/Units	Soil	Soil	-	-
Physical Characteristics	MDE/Onits				
% Solids	0.1 % by Wt.	99.3	99.4	-	-
Metals	• •		•	•	
Antimony	1.0 ug/g dry	<1.0	<1.0	-	-
Arsenic	1.0 ug/g dry	1.2	1.2	-	-
Barium	1.0 ug/g dry	40.3	35.4	-	-
Beryllium	0.5 ug/g dry	<0.5	<0.5	-	-
Boron	5.0 ug/g dry	<5.0	<5.0	-	-
Cadmium	0.5 ug/g dry	<0.5	<0.5	-	-
Chromium	5.0 ug/g dry	7.6	7.6	-	-
Cobalt	1.0 ug/g dry	2.9	3.0	-	-
Copper	5.0 ug/g dry	<5.0	<5.0	-	-
Lead	1.0 ug/g dry	3.1	2.2	-	-
Molybdenum	1.0 ug/g dry	<1.0	<1.0	-	-
Nickel	5.0 ug/g dry	7.2	7.4	-	-
Selenium	1.0 ug/g dry	<1.0	<1.0	-	-
Silver	0.3 ug/g dry	<0.3	<0.3	-	-
Thallium	1.0 ug/g dry	<1.0	<1.0	-	-
Uranium	1.0 ug/g dry	<1.0	<1.0	-	-
Vanadium	10.0 ug/g dry	11.7	12.6	-	-
Zinc	20.0 ug/g dry	21.0	23.2	-	-

Order #: 2046545

Report Date: 17-Nov-2020

Order Date: 13-Nov-2020

Project Description: PE4908

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Metals									
Antimony	ND	1.0	ug/g						
Arsenic	ND	1.0	ug/g						
Barium	ND	1.0	ug/g						
Beryllium	ND	0.5	ug/g						
Boron	ND	5.0	ug/g						
Cadmium	ND	0.5	ug/g						
Chromium	ND	5.0	ug/g						
Cobalt	ND	1.0	ug/g						
Copper	ND	5.0	ug/g						
Lead	ND	1.0	ug/g						
Molybdenum	ND	1.0	ug/g						
Nickel	ND	5.0	ug/g						
Selenium	ND	1.0	ug/g						
Silver	ND	0.3	ug/g						
Thallium	ND	1.0	ug/g						
Uranium	ND	1.0	ug/g						
Vanadium	ND	10.0	ug/g						
Zinc	ND	20.0	ug/g						

Order #: 2046545

Report Date: 17-Nov-2020

Order Date: 13-Nov-2020

Project Description: PE4908

Method Quality Control: Duplicate

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Metals									
Antimony	ND	1.0	ug/g dry	ND			NC	30	
Arsenic	3.4	1.0	ug/g dry	4.0			16.3	30	
Barium	70.2	1.0	ug/g dry	87.3			21.7	30	
Beryllium	0.6	0.5	ug/g dry	0.7			7.6	30	
Boron	5.5	5.0	ug/g dry	5.8			5.2	30	
Cadmium	ND	0.5	ug/g dry	ND			NC	30	
Chromium	25.8	5.0	ug/g dry	30.9			18.0	30	
Cobalt	5.5	1.0	ug/g dry	6.6			17.9	30	
Copper	11.7	5.0	ug/g dry	13.7			16.0	30	
Lead	12.8	1.0	ug/g dry	15.3			17.7	30	
Molybdenum	ND	1.0	ug/g dry	ND			NC	30	
Nickel	14.8	5.0	ug/g dry	17.8			18.6	30	
Selenium	ND	1.0	ug/g dry	ND			NC	30	
Silver	ND	0.3	ug/g dry	ND			NC	30	
Thallium	ND	1.0	ug/g dry	ND			NC	30	
Uranium	ND	1.0	ug/g dry	ND			NC	30	
Vanadium	25.7	10.0	ug/g dry	30.9			18.5	30	
Zinc	49.0	20.0	ug/g dry	57.4			15.8	30	
Physical Characteristics									
% Solids	83.4	0.1	% by Wt.	86.0			3.0	25	

Order #: 2046545

Report Date: 17-Nov-2020

Order Date: 13-Nov-2020

Project Description: PE4908

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Metals									
Antimony	48.5	1.0	ug/g	ND	96.9	70-130			
Arsenic	50.5	1.0	ug/g	1.6	97.9	70-130			
Barium	79.9	1.0	ug/g	34.9	90.1	70-130			
Beryllium	52.2	0.5	ug/g	ND	104	70-130			
Boron	48.1	5.0	ug/g	ND	91.7	70-130			
Cadmium	47.8	0.5	ug/g	ND	95.3	70-130			
Chromium	61.7	5.0	ug/g	12.4	98.7	70-130			
Cobalt	49.8	1.0	ug/g	2.6	94.4	70-130			
Copper	52.6	5.0	ug/g	5.5	94.3	70-130			
Lead	51.0	1.0	ug/g	6.1	89.9	70-130			
Molybdenum	47.8	1.0	ug/g	ND	95.2	70-130			
Nickel	54.7	5.0	ug/g	7.1	95.1	70-130			
Selenium	48.7	1.0	ug/g	ND	96.8	70-130			
Silver	42.3	0.3	ug/g	ND	84.5	70-130			
Thallium	47.4	1.0	ug/g	ND	94.6	70-130			
Uranium	47.5	1.0	ug/g	ND	94.5	70-130			
Vanadium	61.9	10.0	ug/g	12.4	99.0	70-130			
Zinc	68.6	20.0	ug/g	23.0	91.2	70-130			

Qualifier Notes:

None

Sample Data Revisions

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected MDL: Method Detection Limit Source Result: Data used as source for matrix and duplicate samples %REC: Percent recovery. RPD: Relative percent difference. NC: Not Calculated

Soil results are reported on a dry weight basis when the units are denoted with 'dry'. Where %Solids is reported, moisture loss includes the loss of volatile hydrocarbons.

Order #: 2046545

Report Date: 17-Nov-2020 Order Date: 13-Nov-2020 Project Description: PE4908

		Para	cel	ID: /	2040	6545	Blvd. 4J8 s.com	Ра 2	racel Order (Lab Use	r Numb Only)	per	N	Chai (n Of C Lab Use 548	ustod only) 97	У
Contact Name:	14.15			Projec	ct Ref: .	PE4908							-	Page <u>/</u>	of <u>/</u>	
Address: 154 COLONNADE 1 Telephone: (613) ZZG -739	NGH Rd. 5.0 81	TTAWA.0	<i>ک</i> ټ.	PO #: E-mail	317 ::	LZZ NCH @PATH	erson Gro	,p. c	a			□ 1 ⊡ 2 Date Re	day day day equired	naroun	d Time	3 day Regular
Regulation 153/04	Other F	Regulation		Aatrix T	ype:	S (Soil/Sed.) GW (G	round Water)	ound Water) Required Analysis								
Table 2 Ind/Comm Coarse				5W (5U	P (P	aint) A (Air) O (Oth	nitary Sewer) ier)	4		Т	Т					
Table 3 Agri/Other	🗆 SU - Sani	SU - Storm			ers			4								
Table 7	Mun:			ame	ntain	Sample	Taken	5								
Sample ID/Locatio	D Other:		latrix	r Volt	of Co		,	ETAIL	1						8 - 19	
1 82 -1	Indine		Σ	A	#	Date	Time	Ž		+	-	$\left \right $				
2 02-1			ر ب	>	2	Nov.13/20	<u> </u>	~		-	-		_			-1
3	111 - L		-	-	5	NOV. 13/20		V	-	-			-	+		1
4										-	1					-
5						and the second sec		+		-				+		
6								+-		-	-		_			1
7	-							+		-	-		-			+
8										-	-		_		_	+
9														++	_	
10				_	_							_	+	++	_	-
Comments:																
Relinquished By (Sign)-		Bauli de Bi	10								Metho	d of Delive	iv: CEL	La	' VLIEL	5
Contract of Cultury		mederved by Dri	ver/De	pot:	De	ENISE	Received at Lab:	m	Dol	mai	Verifie	d By:		-	-	
Relinquished By (Print): Dominic LAN	SORY	Date/Time:	3	/11	1/2	0 2:14	NW 13.2	260	02.	59	Date/T	ime: //	12	-2-	100	7
Date/Time: Nov. 13/2020		Temperature:	1			°C FH	emperature.	9.6	°C		pH Ver	ified:	By	-0	1.5 (4

Chain of Custody (Blank) xlsx

Revision 3.0

RELIABLE.

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Certificate of Analysis

Paterson Group Consulting Engineers

154 Colonnade Road South Nepean, ON K2E 7J5 Attn: Karyn Munch

Client PO: 31221 Project: PE4908 Custody: 54896

Report Date: 19-Nov-2020 Order Date: 13-Nov-2020

Order #: 2046550

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID	Client ID
2046550-01	B2
2046550-02	B3

Approved By:

Dale Robertson, BSc Laboratory Director

Any use of these results implies your agreement that our total liability in connection with this work, however arising, shall be limited to the amount paid by you for this work, and that our employees or agents shall not under any circumstances be liable to you in connection with this work.

Report Date: 19-Nov-2020 Order Date: 13-Nov-2020

Order #: 2046550

Project Description: PE4908

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date	Analysis Date
REG 153: Metals by ICP/MS, soil	EPA 6020 - Digestion - ICP-MS	18-Nov-20	18-Nov-20
REG 153: VOCs by P&T GC/MS	EPA 8260 - P&T GC-MS	16-Nov-20	18-Nov-20
Solids, %	Gravimetric, calculation	16-Nov-20	17-Nov-20

Certificate of Analysis

Client: Paterson Group Consulting Engineers

Client PO: 31221

Report Date: 19-Nov-2020

Order Date: 13-Nov-2020

Project Description: PE4908

	Client ID:	B2	B3	-	-
	Sample Date:	13-Nov-20 09:00	13-Nov-20 09:00	-	-
	Sample ID:	2046550-01 Soil	2046550-02 Soil	-	-
Physical Characteristics	MDL/Units	3011	001	-	-
% Solids	0.1 % by Wt.	93.4	98.0	-	-
Metals	ļļ		ļ	ļ	Į
Antimony	1.0 ug/g dry	<1.0	<1.0	-	-
Arsenic	1.0 ug/g dry	<1.0	<1.0	-	-
Barium	1.0 ug/g dry	121	24.5	-	-
Beryllium	0.5 ug/g dry	<0.5	<0.5	-	-
Boron	5.0 ug/g dry	<5.0	<5.0	-	-
Cadmium	0.5 ug/g dry	<0.5	<0.5	-	-
Chromium	5.0 ug/g dry	7.1	6.5	-	-
Cobalt	1.0 ug/g dry	3.1	2.3	-	-
Copper	5.0 ug/g dry	<5.0	<5.0	-	-
Lead	1.0 ug/g dry	2.5	<1.0	-	-
Molybdenum	1.0 ug/g dry	<1.0	<1.0	-	-
Nickel	5.0 ug/g dry	7.7	5.8	-	-
Selenium	1.0 ug/g dry	<1.0	<1.0	-	-
Silver	0.3 ug/g dry	<0.3	<0.3	-	-
Thallium	1.0 ug/g dry	<1.0	<1.0	-	-
Uranium	1.0 ug/g dry	<1.0	<1.0	-	-
Vanadium	10.0 ug/g dry	11.2	<10.0	-	-
Zinc	20.0 ug/g dry	20.1	<20.0	-	-
Volatiles				-	-
Acetone	0.50 ug/g dry	<0.50	<0.50	-	-
Benzene	0.02 ug/g dry	<0.02	<0.02	-	-
Bromodichloromethane	0.05 ug/g dry	<0.05	<0.05	-	-
Bromoform	0.05 ug/g dry	<0.05	<0.05	-	-
Bromomethane	0.05 ug/g dry	<0.05	<0.05	-	-
Carbon Tetrachloride	0.05 ug/g dry	<0.05	<0.05	-	-
Chlorobenzene	0.05 ug/g dry	<0.05	<0.05	-	-
Chloroform	0.05 ug/g dry	<0.05	<0.05	-	-
Dibromochloromethane	0.05 ug/g dry	<0.05	<0.05	-	-
Dichlorodifluoromethane	0.05 ug/g dry	<0.05	<0.05	-	-
1,2-Dichlorobenzene	0.05 ug/g dry	<0.05	<0.05	-	-
1,3-Dichlorobenzene	0.05 ug/g dry	<0.05	<0.05	-	-
1,4-Dichlorobenzene	0.05 ug/g dry	<0.05	<0.05	-	-
1,1-Dichloroethane	0.05 ug/g dry	<0.05	<0.05	-	-

Report Date: 19-Nov-2020 Order Date: 13-Nov-2020

Project Description: PE4908

	Client ID: Sample Date: Sample ID: MDL/Units	B2 13-Nov-20 09:00 2046550-01 Soil	B3 13-Nov-20 09:00 2046550-02 Soil	- - -	- - -
1,2-Dichloroethane	0.05 ug/g dry	<0.05	<0.05	-	-
1,1-Dichloroethylene	0.05 ug/g dry	<0.05	<0.05	-	-
cis-1,2-Dichloroethylene	0.05 ug/g dry	<0.05	<0.05	-	-
trans-1,2-Dichloroethylene	0.05 ug/g dry	< 0.05	<0.05	_	-
1,2-Dichloropropane	0.05 ug/g dry	< 0.05	<0.05	-	-
cis-1,3-Dichloropropylene	0.05 ug/g dry	<0.05	<0.05	-	-
trans-1,3-Dichloropropylene	0.05 ug/g dry	< 0.05	<0.05	-	_
1,3-Dichloropropene, total	0.05 ug/g dry	<0.05	<0.05	-	-
Ethylbenzene	0.05 ug/g dry	<0.05	<0.05	-	-
Ethylene dibromide (dibromoethane, 1,2-)	0.05 ug/g dry	<0.05	<0.05	-	-
Hexane	0.05 ug/g dry	<0.05	<0.05	-	-
Methyl Ethyl Ketone (2-Butanone)	0.50 ug/g dry	<0.50	<0.50	-	-
Methyl Isobutyl Ketone	0.50 ug/g dry	<0.50	<0.50	-	-
Methyl tert-butyl ether	0.05 ug/g dry	<0.05	<0.05	-	-
Methylene Chloride	0.05 ug/g dry	<0.05	<0.05	-	-
Styrene	0.05 ug/g dry	<0.05	<0.05	-	-
1,1,1,2-Tetrachloroethane	0.05 ug/g dry	<0.05	<0.05	-	-
1,1,2,2-Tetrachloroethane	0.05 ug/g dry	<0.05	<0.05	-	-
Tetrachloroethylene	0.05 ug/g dry	<0.05	<0.05	-	-
Toluene	0.05 ug/g dry	<0.05	<0.05	-	-
1,1,1-Trichloroethane	0.05 ug/g dry	<0.05	<0.05	-	-
1,1,2-Trichloroethane	0.05 ug/g dry	<0.05	<0.05	-	-
Trichloroethylene	0.05 ug/g dry	<0.05	<0.05	-	-
Trichlorofluoromethane	0.05 ug/g dry	<0.05	<0.05	-	-
Vinyl chloride	0.02 ug/g dry	<0.02	<0.02	-	-
m,p-Xylenes	0.05 ug/g dry	<0.05	<0.05	-	-
o-Xylene	0.05 ug/g dry	<0.05	<0.05	-	-
Xylenes, total	0.05 ug/g dry	<0.05	<0.05	-	-
4-Bromofluorobenzene	Surrogate	103%	103%	-	-
Dibromofluoromethane	Surrogate	110%	109%	-	-
Toluene-ao	Surrogate	123%	124%	-	-

Order #: 2046550

Report Date: 19-Nov-2020

Order Date: 13-Nov-2020

Project Description: PE4908

Method Quality Control: Blank

		Reporting		Source		%REC		RPD	
Analyte	Result	Limit	Units	Result	%REC	Limit	RPD	Limit	Notes
Metals									
Antimony	ND	1.0	ug/g						
Arsenic	ND	1.0	ug/g						
Barium	ND	1.0	ug/g						
Beryllium	ND	0.5	ug/g						
Boron	ND	5.0	ug/g						
Cadmium	ND	0.5	ug/g						
Chromium	ND	5.0	ug/g						
Cobalt	ND	1.0	ug/g						
Copper	ND	5.0	ug/g						
Lead		1.0	ug/g						
Nickol		1.0	ug/g						
Selenium		5.0	ug/g						
Silver	ND	0.3	ug/g ug/g						
Thallium	ND	1.0	ug/g						
Uranium	ND	1.0	ug/g						
Vanadium	ND	10.0	ua/a						
Zinc	ND	20.0	ug/g						
Volatiles			00						
Acetone	ND	0.50	uala						
Benzene	ND	0.00	ug/g ug/g						
Bromodichloromethane	ND	0.02	ug/g						
Bromoform	ND	0.05	ug/g						
Bromomethane	ND	0.05	ua/a						
Carbon Tetrachloride	ND	0.05	ug/g						
Chlorobenzene	ND	0.05	ug/g						
Chloroform	ND	0.05	ug/g						
Dibromochloromethane	ND	0.05	ug/g						
Dichlorodifluoromethane	ND	0.05	ug/g						
1,2-Dichlorobenzene	ND	0.05	ug/g						
1,3-Dichlorobenzene	ND	0.05	ug/g						
1,4-Dichlorobenzene	ND	0.05	ug/g						
1,1-Dichloroethane		0.05	ug/g						
1,2-Dichloroethane		0.05	ug/g						
r, r-Dichloroethylene		0.05	ug/g						
trans-1 2-Dichloroethylene	ND	0.05	ug/g ug/g						
1 2-Dichloropropane	ND	0.05	ug/g						
cis-1.3-Dichloropropylene	ND	0.05	ua/a						
trans-1,3-Dichloropropylene	ND	0.05	ug/g						
1,3-Dichloropropene, total	ND	0.05	ug/g						
Ethylbenzene	ND	0.05	ug/g						
Ethylene dibromide (dibromoethane, 1,2	ND	0.05	ug/g						
Hexane	ND	0.05	ug/g						
Methyl Ethyl Ketone (2-Butanone)	ND	0.50	ug/g						
Methyl Isobutyl Ketone	ND	0.50	ug/g						
Methyl tert-butyl ether	ND	0.05	ug/g						
Methylene Chloride	ND	0.05	ug/g						
Styrene		0.05	ug/g						
1, 1, 2, 2 Tetrachloroethane		0.05	ug/g						
Tetrachloroethylene	ND	0.05	ug/g						
Toluene	ND	0.05	na/a						
1.1.1-Trichloroethane	ND	0.05	ua/a						
1,1,2-Trichloroethane	ND	0.05	ug/q						
Trichloroethylene	ND	0.05	ug/g						
Trichlorofluoromethane	ND	0.05	ug/g						
Vinyl chloride	ND	0.02	ug/g						
m,p-Xylenes	ND	0.05	ug/g						

Report Date: 19-Nov-2020 Order Date: 13-Nov-2020

Project Description: PE4908

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
o-Xylene Xylenes, total	ND ND	0.05 0.05	ug/g ug/g						
Surrogate: 4-Bromofluorobenzene	8.40		ug/g		105	50-140			
Surrogate: Dibromofluoromethane	8.90		ug/g		111	50-140			
Surrogate: Toluene-d8	8.76		ug/g		109	50-140			

Report Date: 19-Nov-2020 Order Date: 13-Nov-2020

Project Description: PE4908

Method Quality Control: Duplicate

		Reporting				%REC		RPD	
Analyte	Result	Limit	Units	Result	%REC	Limit	RPD	Limit	Notes
Motals									
	ND	1.0					NO	20	
Anumony	ND	1.0	ug/g ary	ND			NC 10.0	30	
Arsenic	1.5	1.0	ug/g ary	1.3			12.9	30	
Barium	8.0	1.0	ug/g dry	7.5			6.1	30	
Beryllium	ND	0.5	ug/g dry	ND			NC	30	
Boron	ND	5.0	ug/g dry	ND			NC	30	
Cadmium	ND	0.5	ug/g dry	ND			NC	30	
Chromium	5.6	5.0	ug/g dry	5.4			2.5	30	
Cobalt	1.6	1.0	ug/g dry	1.4			12.5	30	
Copper	ND	5.0	ug/g dry	ND			NC	30	
Lead	1.7	1.0	ug/g dry	1.5			12.5	30	
Molybdenum	ND	1.0	ug/g dry	ND			NC	30	
Nickel	7.0	5.0	ug/g dry	ND			NC	30	
Selenium	ND	1.0	ug/g dry	ND			NC	30	
Silver	ND	0.3	ug/g dry	ND			NC	30	
Thallium	ND	1.0	ug/g dry	ND			NC	30	
Uranium	ND	1.0	ug/g dry	ND			NC	30	
Vanadium	15.0	10.0	ug/g dry	14.9			0.5	30	
Zinc	ND	20.0	ug/g dry	ND			NC	30	
Physical Characteristics									
% Solids	83.4	0.1	% by Wt.	86.0			3.0	25	
Volatiles									
Acetone	ND	0.50	ug/g dry	ND			NC	50	
Benzene	ND	0.02	ug/g dry	ND			NC	50	
Bromodichloromethane	ND	0.05	ug/g dry	ND			NC	50	
Bromoform	ND	0.05	ug/g dry	ND			NC	50	
Bromomethane	ND	0.05	ug/g dry	ND			NC	50	
Carbon Tetrachloride	ND	0.05	ug/g dry	ND			NC	50	
Chlorobenzene	ND	0.05	ug/g dry	ND			NC	50	
Chloroform	ND	0.05	ug/g dry	ND			NC	50	
Dibromochloromethane	ND	0.05	ug/g dry	ND			NC	50	
Dichlorodifluoromethane	ND	0.05	ug/g dry	ND			NC	50	
1,2-Dichlorobenzene	ND	0.05	ug/g dry	ND			NC	50	
1,3-Dichlorobenzene	ND	0.05	ug/g dry	ND			NC	50	
1,4-Dichlorobenzene	ND	0.05	ug/g dry	ND			NC	50	
1,1-Dichloroethane	ND	0.05	ug/g dry	ND			NC	50	
1,2-Dichloroethane	ND	0.05	ug/g dry	ND			NC	50	
1,1-Dichloroethylene	ND	0.05	ug/g dry	ND			NC	50	
cis-1,2-Dichloroethylene	ND	0.05	ug/g dry	ND			NC	50	
trans-1,2-Dichloroethylene	ND	0.05	ug/g dry	ND			NC	50	
1,2-Dichloropropane	ND	0.05	ug/g dry	ND			NC	50	
cis-1,3-Dichloropropylene	ND	0.05	ug/g dry	ND			NC	50	
trans-1,3-Dichloropropylene	ND	0.05	ug/g dry	ND			NC	50	
Ethylbenzene	ND	0.05	ug/g dry	ND			NC	50	
Ethylene dibromide (dibromoethane, 1,2	ND	0.05	ug/g dry	ND			NC	50	
Hexane	ND	0.05	ug/g dry	ND			NC	50	
Methyl Ethyl Ketone (2-Butanone)	ND	0.50	ug/g dry	ND			NC	50	
Methyl Isobutyl Ketone	ND	0.50	ug/g dry	ND			NC	50	
Methyl tert-butyl ether	ND	0.05	ug/g dry	ND			NC	50	
Methylene Chloride	ND	0.05	ug/g dry	ND			NC	50	
Styrene	ND	0.05	ug/g dry	ND			NC	50	
1,1,1,2-Tetrachloroethane	ND	0.05	ug/g dry	ND			NC	50	
1,1,2,2-Tetrachloroethane	ND	0.05	ug/g dry	ND			NC	50	
Tetrachloroethylene	ND	0.05	ug/a drv	ND			NC	50	
Toluene	ND	0.05	ug/g dry	ND			NC	50	
1,1,1-Trichloroethane	ND	0.05	ug/g dry	ND			NC	50	
1,1,2-Trichloroethane	ND	0.05	ug/g dry	ND			NC	50	
Trichloroethylene	ND	0.05	ug/g dry	ND			NC	50	

Report Date: 19-Nov-2020

Order Date: 13-Nov-2020

Project Description: PE4908

Method Quality Control: Duplicate

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Trichlorofluoromethane	ND	0.05	ug/g dry	ND			NC	50	
Vinyl chloride	ND	0.02	ug/g dry	ND			NC	50	
m,p-Xylenes	ND	0.05	ug/g dry	ND			NC	50	
o-Xylene	ND	0.05	ug/g dry	ND			NC	50	
Surrogate: 4-Bromofluorobenzene	9.51		ug/g dry		99.1	50-140			
Surrogate: Dibromofluoromethane	10.3		ug/g dry		108	50-140			
Surrogate: Toluene-d8	11.7		ug/g dry		122	50-140			

Order #: 2046550

Report Date: 19-Nov-2020

Order Date: 13-Nov-2020

Project Description: PE4908

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Metals									
Antimony	44.5	1.0	ug/g	ND	88.7	70-130			
Arsenic	46.6	1.0	ug/g	ND	92.1	70-130			
Barium	49.1	1.0	ug/g	3.0	92.1	70-130			
Beryllium	48.2	0.5	ug/g	ND	96.3	70-130			
Boron	41.9	5.0	ug/g	ND	81.8	70-130			
Cadmium	45.6	0.5	ug/g	ND	91.2	70-130			
Chromium	50.5	5.0	ug/g	ND	96.7	70-130			
Cobalt	46.3	1.0	ug/g	ND	91.4	70-130			
Copper	46.0	5.0	ug/g	ND	90.5	70-130			
Lead	43.2	1.0	ug/g	ND	85.3	70-130			
Molybdenum	44.9	1.0	ug/g	ND	89.7	70-130			
Nickel	47.2	5.0	ug/g	ND	92.1	70-130			
Selenium	43.8	1.0	ug/g	ND	87.5	70-130			
Silver	43.8	0.3	ug/g	ND	87.7	70-130			
Thallium	45.8	1.0	ug/g	ND	91.5	70-130			
Uranium	46.0	1.0	ug/g	ND	91.7	70-130			
Vanadium	54.3	10.0	ug/g	ND	96.6	70-130			
Zinc	46.0	20.0	ug/g	ND	86.6	70-130			
Volatiles									
Acetone	9.88	0.50	ug/g	ND	98.8	50-140			
Benzene	3.21	0.02	ug/g	ND	80.3	60-130			
Bromodichloromethane	2.72	0.05	ug/g	ND	67.9	60-130			
Bromoform	4.29	0.05	ug/g	ND	107	60-130			
Bromomethane	5.18	0.05	ug/g	ND	130	50-140			
Carbon Tetrachloride	4.89	0.05	ug/g	ND	122	60-130			
Chlorobenzene	3.70	0.05	ug/g	ND	92.4	60-130			
Chloroform	3.63	0.05	ug/g	ND	90.7	60-130			
Dibromochloromethane	4.22	0.05	ug/g	ND	105	60-130			
Dichlorodifluoromethane	5.16	0.05	ug/g	ND	129	50-140			
1,2-Dichlorobenzene	3.69	0.05	ug/g	ND	92.3	60-130			
1,3-Dichlorobenzene	3.72	0.05	ug/g	ND	93.0	60-130			
1,4-Dichlorobenzene	3.67	0.05	ug/g	ND	91.7	60-130			
1,1-Dichloroethane	3.35	0.05	ug/g	ND	83.7	60-130			
1,2-Dichloroethane	3.77	0.05	ug/g	ND	94.3	60-130			
i, I-Dichloroethylene	3.17	0.05	ug/g		79.Z	60 130			
cis-1,2-Dichloroethylene	3.31	0.05	ug/g	ND	82.0	60-130			
trans-1,2-Dichloroethylene	3.30	0.05	ug/g		82.0 70.9	60 130			
	3.19	0.05	ug/g		79.0 06.5	60 120			
trans 1.3 Dichloropropylene	3.00 / 13	0.05	ug/g		90.5 103	60 130			
Ethylbenzene	4.15	0.05	ug/g		80.4	60 130			
Ethylene dibromide (dibromoethane 1.2)	3.30	0.05	ug/g ua/a	ND	85.6	60-130			
Hexane	3.83	0.05	ug/g	ND	95.7	60-130			
Methyl Ethyl Ketone (2-Butanone)	8 11	0.50	~a,a	ND	81 1	50-140			
Methyl Isobutyl Ketone	6.87	0.50	~a,a	ND	68.7	50-140			
Methyl tert-butyl ether	5.74	0.05	ua/a	ND	57.4	50-140			
Methylene Chloride	3.44	0.05	ua/a	ND	86.1	60-130			
Styrene	3.80	0.05	ug/g	ND	94.9	60-130			

Report Date: 19-Nov-2020

Order Date: 13-Nov-2020

Project Description: PE4908

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
1,1,1,2-Tetrachloroethane	4.24	0.05	ug/g	ND	106	60-130			
1,1,2,2-Tetrachloroethane	3.33	0.05	ug/g	ND	83.3	60-130			
Tetrachloroethylene	3.82	0.05	ug/g	ND	95.4	60-130			
Toluene	3.56	0.05	ug/g	ND	88.9	60-130			
1,1,1-Trichloroethane	3.90	0.05	ug/g	ND	97.6	60-130			
1,1,2-Trichloroethane	3.21	0.05	ug/g	ND	80.3	60-130			
Trichloroethylene	3.53	0.05	ug/g	ND	88.2	60-130			
Trichlorofluoromethane	4.06	0.05	ug/g	ND	102	50-140			
Vinyl chloride	4.78	0.02	ug/g	ND	119	50-140			
m,p-Xylenes	7.34	0.05	ug/g	ND	91.7	60-130			
o-Xylene	3.79	0.05	ug/g	ND	94.8	60-130			
Surrogate: 4-Bromofluorobenzene	7.72		ug/g		96.5	50-140			
Surrogate: Dibromofluoromethane	8.89		ug/g		111	50-140			
Surrogate: Toluene-d8	7.91		ug/g		98.9	50-140			

Qualifier Notes:

None

Sample Data Revisions

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected MDL: Method Detection Limit Source Result: Data used as source for matrix and duplicate samples %REC: Percent recovery. RPD: Relative percent difference. NC: Not Calculated

Soil results are reported on a dry weight basis when the units are denoted with 'dry'. Where %Solids is reported, moisture loss includes the loss of volatile hydrocarbons.

Order #: 2046550 Report Date: 19-Nov-2020

Order Date: 13-Nov-2020 Project Description: PE4908

GPARACEL	Para	acel	ID:	2046550		Par	acel Ori (Lab U: 46	der Nur se Only 5 5 (nber)		Ch Nº	lain (Lab 5	Of Ca Use C 489	ustoc Inly) 6	ly	
Client Name:		Project	Ref: 7	764908						Ĩ.,		Pa	ge /	of		
Contact Name: KARYAN MUNICH	'	Quote	#:									Turna	round	l Time		
Address:		PO #:	317	221							∃ 1 day			Ĺ] 3 day	1
154 COCONNADE Rd. S. OTTAWA		E-mail:									2 day	1		E] Regu	lar
Telephone: (613) ZZ6 -7381		KMUNCH @ PATERSON Group. Co					Dat	te Requ	ired:				_			
Regulation 153/04 Other Regulation	M	atrix T	/pe: 9	5 (Soil/Sed.) GW (Gr	ound Water)					Recuir	ed Ana	lysis				
Table 1 Res/Park Med/Fine REG 558 PWQO	SI	W (Sur	face V	Vater) SS (Storm/Sar	itary Sewer)					ricqui	cu min	19 515				
Table 2 Ind/Comm Coarse CCME MISA			P (P	aint) A (Air) O (Oth	er)	3										
Table 3 Agri/Other SU - Sani SU - Storm			ers			25										
巴 Table二 Mun:		me	ntain	Sample	Taken	S	s									
For RSC: Yes No Other:	, X	Volu	of Co			14	0									
Sample ID/Location Name	ŝ	Air	0 #	Date	Time	Ĭ	>			_					_	_
1 82	S	1	Ζ	Nov. 13/20		1	1								-	_1
2 133	S		2	Nov. 13/20	_	7	\checkmark									_
3						-										
4			1													
5							1			·	1.1					
6			1					1	-							-
7						1									1	
8						1			+	-					1	
9						1			+	+	-			+		
10						+			+	+						٦
Comments:							LI		M	ethod of I	Delivery:	EZ.	1	1	ec.	
Relinquished By (Sign): Received By D	river/De	pot:	/	Terme	Received at Lab	m	D	hm	ai Ve	rified By:		Bri	2			
Relinquished By (Print): Date/Time:	17	111	12	207.14	Date/Time 13	2020		(12.	5200	te/Time:	HOJ	13	,707	0	15:1	5
Date/Time: Nov. 13/2020	4		-	°C PH.	Temperature:	Bit	°C	0.000	pH	l Verified		By:	1			

Chain of Custody (Blank) xlsx

Revision 3.0

RELIABLE.

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Certificate of Analysis

Paterson Group Consulting Engineers

154 Colonnade Road South Nepean, ON K2E 7J5 Attn: Karyn Munch

Client PO: 31220 Project: PE4908 Custody: 54895

Report Date: 19-Nov-2020 Order Date: 13-Nov-2020

Order #: 2046552

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID **Client ID** 2046552-01 E1

Approved By:

Dale Robertson, BSc Laboratory Director

Any use of these results implies your agreement that our total liability in connection with this work, however arising, shall be limited to the amount paid by you for this work, and that our employees or agents shall not under any circumstances be liable to you in connection with this work.

Report Date: 19-Nov-2020 Order Date: 13-Nov-2020

Order #: 2046552

Project Description: PE4908

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date	Analysis Date
REG 153: Metals by ICP/MS, soil	EPA 6020 - Digestion - ICP-MS	18-Nov-20	18-Nov-20
Solids, %	Gravimetric, calculation	16-Nov-20	17-Nov-20

Certificate of Analysis

Client: Paterson Group Consulting Engineers

Client PO: 31220

Report Date: 19-Nov-2020

Order Date: 13-Nov-2020

Project Description: PE4908

	Client ID:	E1	-	-	-
	Sample Date:	05-Nov-20 09:00	-	-	-
	Sample ID:	2046552-01	-	-	-
	MDL/Units	Soil	-	-	-
Physical Characteristics				-	
% Solids	0.1 % by Wt.	95.1	-	-	-
Metals					
Antimony	1.0 ug/g dry	<1.0	-	-	-
Arsenic	1.0 ug/g dry	1.4	-	-	-
Barium	1.0 ug/g dry	307	-	-	-
Beryllium	0.5 ug/g dry	<0.5	-	-	-
Boron	5.0 ug/g dry	10.5	-	-	-
Cadmium	0.5 ug/g dry	<0.5	-	-	-
Chromium	5.0 ug/g dry	7.5	-	-	-
Cobalt	1.0 ug/g dry	6.9	-	-	-
Copper	5.0 ug/g dry	7.1	-	-	-
Lead	1.0 ug/g dry	22.0	-	-	-
Molybdenum	1.0 ug/g dry	<1.0	-	-	-
Nickel	5.0 ug/g dry	12.8	-	-	-
Selenium	1.0 ug/g dry	<1.0	-	-	-
Silver	0.3 ug/g dry	<0.3	-	-	-
Thallium	1.0 ug/g dry	<1.0	-	-	-
Uranium	1.0 ug/g dry	<1.0	-	-	-
Vanadium	10.0 ug/g dry	<10.0	-	-	-
Zinc	20.0 ug/g dry	<20.0	-	-	-

Order #: 2046552

Report Date: 19-Nov-2020

Order Date: 13-Nov-2020

Project Description: PE4908

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Metals									
Antimony	ND	1.0	ug/g						
Arsenic	ND	1.0	ug/g						
Barium	ND	1.0	ug/g						
Beryllium	ND	0.5	ug/g						
Boron	ND	5.0	ug/g						
Cadmium	ND	0.5	ug/g						
Chromium	ND	5.0	ug/g						
Cobalt	ND	1.0	ug/g						
Copper	ND	5.0	ug/g						
Lead	ND	1.0	ug/g						
Molybdenum	ND	1.0	ug/g						
Nickel	ND	5.0	ug/g						
Selenium	ND	1.0	ug/g						
Silver	ND	0.3	ug/g						
Thallium	ND	1.0	ug/g						
Uranium	ND	1.0	ug/g						
Vanadium	ND	10.0	ug/g						
Zinc	ND	20.0	ug/g						

Report Date: 19-Nov-2020

Order Date: 13-Nov-2020
Project Description: PE4908

Method Quality Control: Duplicate

		Reporting		Source		%REC		RPD	
Analyte	Result	Limit	Units	Result	%REC	Limit	RPD	Limit	Notes
Metals									
Antimony	ND	1.0	ug/g dry	ND			NC	30	
Arsenic	1.5	1.0	ug/g dry	1.3			12.9	30	
Barium	8.0	1.0	ug/g dry	7.5			6.1	30	
Beryllium	ND	0.5	ug/g dry	ND			NC	30	
Boron	ND	5.0	ug/g dry	ND			NC	30	
Cadmium	ND	0.5	ug/g dry	ND			NC	30	
Chromium	5.6	5.0	ug/g dry	5.4			2.5	30	
Cobalt	1.6	1.0	ug/g dry	1.4			12.5	30	
Copper	ND	5.0	ug/g dry	ND			NC	30	
Lead	1.7	1.0	ug/g dry	1.5			12.5	30	
Molybdenum	ND	1.0	ug/g dry	ND			NC	30	
Nickel	7.0	5.0	ug/g dry	ND			NC	30	
Selenium	ND	1.0	ug/g dry	ND			NC	30	
Silver	ND	0.3	ug/g dry	ND			NC	30	
Thallium	ND	1.0	ug/g dry	ND			NC	30	
Uranium	ND	1.0	ug/g dry	ND			NC	30	
Vanadium	15.0	10.0	ug/g dry	14.9			0.5	30	
Zinc	ND	20.0	ug/g dry	ND			NC	30	
Physical Characteristics									
% Solids	83.4	0.1	% by Wt.	86.0			3.0	25	

Order #: 2046552

Report Date: 19-Nov-2020

Order Date: 13-Nov-2020

Project Description: PE4908

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Metals									
Antimony	44.5	1.0	ug/g	ND	88.7	70-130			
Arsenic	46.6	1.0	ug/g	ND	92.1	70-130			
Barium	49.1	1.0	ug/g	3.0	92.1	70-130			
Beryllium	48.2	0.5	ug/g	ND	96.3	70-130			
Boron	41.9	5.0	ug/g	ND	81.8	70-130			
Cadmium	45.6	0.5	ug/g	ND	91.2	70-130			
Chromium	50.5	5.0	ug/g	ND	96.7	70-130			
Cobalt	46.3	1.0	ug/g	ND	91.4	70-130			
Copper	46.0	5.0	ug/g	ND	90.5	70-130			
Lead	43.2	1.0	ug/g	ND	85.3	70-130			
Molybdenum	44.9	1.0	ug/g	ND	89.7	70-130			
Nickel	47.2	5.0	ug/g	ND	92.1	70-130			
Selenium	43.8	1.0	ug/g	ND	87.5	70-130			
Silver	43.8	0.3	ug/g	ND	87.7	70-130			
Thallium	45.8	1.0	ug/g	ND	91.5	70-130			
Uranium	46.0	1.0	ug/g	ND	91.7	70-130			
Vanadium	54.3	10.0	ug/g	ND	96.6	70-130			
Zinc	46.0	20.0	ug/g	ND	86.6	70-130			

None

Sample Data Revisions

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected MDL: Method Detection Limit Source Result: Data used as source for matrix and duplicate samples %REC: Percent recovery. RPD: Relative percent difference. NC: Not Calculated

Soil results are reported on a dry weight basis when the units are denoted with 'dry'. Where %Solids is reported, moisture loss includes the loss of volatile hydrocarbons.

GPARACEL III	Paracel ID: 2046552	Paracel Order Number (Lab Use Only) 20 246 5 5 2	Chain Of Custody (Lab Use Only) N° 54895				
Client Name: PATERSON	Project Ref: PE 4908		Page <u>1</u> of <u>1</u>				
Contact Name: KARYN MUNCH	Quote #:		Turnaround Time				
Address:	PO#: 31220		🗆 🗆 1 day 🔲 3 day				
154 COLONNADE Ka. S. OTTAWA, ON	E-mail:		- 🗆 2 day 🙀 Regular				
Telephone: (613) 226 -7381	KMUNCH@PATERSON (Group. Ca	Date Required:				
Regulation 153/04 Other Regulation	Other Regulation Matrix Type: S (Soil/Sed.) GW (Ground Water)						
Table 1 Res/Park Med/Fine REG 558 PWQO	SW (Surface Water) SS (Storm/Sanitary Sewer)	R	equired Analysis				
Table 2 Ind/Comm Coarse CCME MISA	P (Paint) A (Air) O (Other)	ġ					
Table 3 Agri/Other SU - Sani SU - Storm	ې ۲	<u>₹</u>					
☑ Table Mun:	g Sample Taken	2					
For RSC: Yes No Other:	Y olu	Trail					
Sample ID/Location Name	∑ i i o Date Time	ž					
1 EI	5 Z Nov. \$2/20						
2 E3 (hold)	5 2 Nov. 10/20	\sim					
3							
4							
5							
6							
7							
8							
9							
10							
Khold E3		Meth	od of Delivery:				
Relinquished By (Sign):	rer/Depot: Received at Lab	man Oder verifi	ed By:				
Relinquished By (Print): Date/Time:	3/11/20 7 14 NOVAS	1090 09 K9 Date/	Time: Nov 19 2020 15:12				
Date/Time: Nov. 13/2020	°C FTT. Temperature	C PH Ve	rified: By:				

Chain of Custody (Blank) xlsx

Revision 3.0

RELIABLE.

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Certificate of Analysis

Paterson Group Consulting Engineers

154 Colonnade Road South Nepean, ON K2E 7J5 Attn: Karyn Munch

Client PO: 31250 Project: PE4908 Custody: 52596

Report Date: 19-Nov-2020 Order Date: 18-Nov-2020

Order #: 2047284

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID 2047284-01

Client ID W4

Approved By:

Mark Foto

Mark Foto, M.Sc. Lab Supervisor

Any use of these results implies your agreement that our total liability in connection with this work, however arising, shall be limited to the amount paid by you for this work, and that our employees or agents shall not under any circumstances be liable to you in connection with this work.

Report Date: 19-Nov-2020 Order Date: 18-Nov-2020

Order #: 2047284

Project Description: PE4908

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date	Analysis Date
REG 153: Metals by ICP/MS, soil	EPA 6020 - Digestion - ICP-MS	19-Nov-20	19-Nov-20
REG 153: VOCs by P&T GC/MS	EPA 8260 - P&T GC-MS	18-Nov-20	19-Nov-20
Solids, %	Gravimetric, calculation	18-Nov-20	18-Nov-20

Certificate of Analysis

Client: Paterson Group Consulting Engineers

Client PO: 31250

Report Date: 19-Nov-2020

Order Date: 18-Nov-2020

Project Description: PE4908

	ан Г				
	Client ID:	W4	-	-	-
	Sample Date:	10-NOV-20 09:00 2047284-01	-	-	-
	Sample ID.	Soil	-	-	_
Physical Characteristics	MDE/Onits				
% Solids	0.1 % by Wt.	97.6	-	-	-
Metals			•		
Antimony	1.0 ug/g dry	<1.0	-	-	-
Arsenic	1.0 ug/g dry	1.1	-	-	-
Barium	1.0 ug/g dry	65.0	-	-	-
Beryllium	0.5 ug/g dry	<0.5	-	-	-
Boron	5.0 ug/g dry	<5.0	-	-	-
Cadmium	0.5 ug/g dry	<0.5	-	-	-
Chromium	5.0 ug/g dry	8.6	-	-	-
Cobalt	1.0 ug/g dry	3.9	_	-	-
Copper	5.0 ug/g dry	5.1	_	-	-
Lead	1.0 ug/g dry	2.7	-	-	-
Molybdenum	1.0 ug/g dry	<1.0	_	-	-
Nickel	5.0 ug/g dry	9.4	-	-	-
Selenium	1.0 ug/g dry	<1.0	-	-	-
Silver	0.3 ug/g dry	<0.3	-	-	-
Thallium	1.0 ug/g dry	<1.0	-	-	-
Uranium	1.0 ug/g dry	<1.0	-	-	-
Vanadium	10.0 ug/g dry	13.3	-	-	-
Zinc	20.0 ug/g dry	23.1	-	-	-
Volatiles					
Acetone	0.50 ug/g dry	<0.50	-	-	-
Benzene	0.02 ug/g dry	<0.02	_	-	-
Bromodichloromethane	0.05 ug/g dry	<0.05	-	-	-
Bromoform	0.05 ug/g dry	<0.05	-	-	-
Bromomethane	0.05 ug/g dry	<0.05	-	-	-
Carbon Tetrachloride	0.05 ug/g dry	<0.05	-	-	-
Chlorobenzene	0.05 ug/g dry	<0.05	-	-	-
Chloroform	0.05 ug/g dry	<0.05	-	-	-
Dibromochloromethane	0.05 ug/g dry	<0.05	-	-	-
Dichlorodifluoromethane	0.05 ug/g dry	<0.05	-	-	-
1,2-Dichlorobenzene	0.05 ug/g dry	<0.05	-	-	-
1,3-Dichlorobenzene	0.05 ug/g dry	<0.05	-	-	-
1,4-Dichlorobenzene	0.05 ug/g dry	0.06	-	-	-
1,1-Dichloroethane	0.05 ug/g dry	<0.05	-	-	-

Report Date: 19-Nov-2020 Order Date: 18-Nov-2020

Project Description: PE4908

	Client ID: Sample Date:	W4 10-Nov-20.09:00	-	-	-
	Sample ID:	2047284-01	_	-	-
	MDL/Units	Soil	-	-	-
1,2-Dichloroethane	0.05 ug/g dry	<0.05	-	-	-
1,1-Dichloroethylene	0.05 ug/g dry	<0.05	-	-	-
cis-1,2-Dichloroethylene	0.05 ug/g dry	<0.05	-	-	-
trans-1,2-Dichloroethylene	0.05 ug/g dry	<0.05	-	-	-
1,2-Dichloropropane	0.05 ug/g dry	<0.05	-	-	-
cis-1,3-Dichloropropylene	0.05 ug/g dry	<0.05	-	-	-
trans-1,3-Dichloropropylene	0.05 ug/g dry	<0.05	-	-	-
1,3-Dichloropropene, total	0.05 ug/g dry	<0.05	-	-	-
Ethylbenzene	0.05 ug/g dry	<0.05	-	-	-
Ethylene dibromide (dibromoethane, 1,2-)	0.05 ug/g dry	<0.05	-	-	-
Hexane	0.05 ug/g dry	<0.05	-	-	-
Methyl Ethyl Ketone (2-Butanone)	0.50 ug/g dry	<0.50	-	-	-
Methyl Isobutyl Ketone	0.50 ug/g dry	<0.50	-	-	-
Methyl tert-butyl ether	0.05 ug/g dry	<0.05	-	-	-
Methylene Chloride	0.05 ug/g dry	<0.05	-	-	-
Styrene	0.05 ug/g dry	<0.05	-	-	-
1,1,1,2-Tetrachloroethane	0.05 ug/g dry	<0.05	-	-	-
1,1,2,2-Tetrachloroethane	0.05 ug/g dry	<0.05	-	-	-
Tetrachloroethylene	0.05 ug/g dry	<0.05	-	-	-
Toluene	0.05 ug/g dry	0.14	-	-	-
1,1,1-Trichloroethane	0.05 ug/g dry	<0.05	-	-	-
1,1,2-Trichloroethane	0.05 ug/g dry	<0.05	-	-	-
Trichloroethylene	0.05 ug/g dry	<0.05	-	-	-
Trichlorofluoromethane	0.05 ug/g dry	<0.05	-	-	-
Vinyl chloride	0.02 ug/g dry	<0.02	-	-	-
m,p-Xylenes	0.05 ug/g dry	0.08	-	-	-
o-Xylene	0.05 ug/g dry	<0.05	-	-	-
Xylenes, total	0.05 ug/g dry	0.08	-	-	-
4-Bromofluorobenzene	Surrogate	105%	-	-	-
Dibromofluoromethane	Surrogate	94.6%	-	-	-
Toluene-d8	Surrogate	108%	-	-	-

Order #: 2047284

Report Date: 19-Nov-2020

Order Date: 18-Nov-2020

Project Description: PE4908

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Metals									
Antimony	ND	10	ua/a						
Arsenic	ND	1.0	ug/g						
Barium	ND	1.0	ug/g						
Beryllium	ND	0.5	ug/g						
Boron	ND	5.0	ug/g						
Cadmium	ND	0.5	ug/g						
Chromium	ND	5.0	ug/g						
Cobalt	ND	1.0	ug/g						
Copper	ND	5.0	ug/g						
Lead	ND	1.0	ug/g						
Molybdenum	ND	1.0	ug/g						
Nickel	ND	5.0	ug/g						
Selenium	ND	1.0	ug/g						
Silver	ND	0.3	ug/g						
I hallium	ND	1.0	ug/g						
Uranium	ND	1.0	ug/g						
Vanadium		10.0	ug/g						
	ND	20.0	ug/g						
Volatiles									
Acetone	ND	0.50	ug/g						
Benzene	ND	0.02	ug/g						
Bromodichloromethane	ND	0.05	ug/g						
Bromoform	ND	0.05	ug/g						
Bromomethane	ND	0.05	ug/g						
Carbon Tetrachloride	ND	0.05	ug/g						
Chlorobenzene	ND	0.05	ug/g						
Chlorotorm	ND	0.05	ug/g						
Dibromochloromethane	ND	0.05	ug/g						
	ND	0.05	ug/g						
1,2-Dichlorobenzene		0.05	ug/g						
1,3-Dichlorobenzene		0.05	ug/g						
1 1-Dichloroethane	ND	0.05	ug/g						
1 2-Dichloroethane	ND	0.05	ug/g						
1 1-Dichloroethylene	ND	0.05	ug/g						
cis-1.2-Dichloroethylene	ND	0.05	ua/a						
trans-1,2-Dichloroethylene	ND	0.05	ug/g						
1,2-Dichloropropane	ND	0.05	ug/g						
cis-1,3-Dichloropropylene	ND	0.05	ug/g						
trans-1,3-Dichloropropylene	ND	0.05	ug/g						
1,3-Dichloropropene, total	ND	0.05	ug/g						
Ethylbenzene	ND	0.05	ug/g						
Ethylene dibromide (dibromoethane, 1,2-	ND	0.05	ug/g						
Hexane	ND	0.05	ug/g						
Methyl Ethyl Ketone (2-Butanone)	ND	0.50	ug/g						
Methyl Isobutyl Ketone	ND	0.50	ug/g						
Methyl tert-butyl ether	ND	0.05	ug/g						
Methylene Chloride		0.05	ug/g						
Styrene		0.05	ug/g						
1,1,2.2 Tetrachloroethane		0.05	ug/g						
Tetrachloroethylene		0.05	ug/g						
Toluene	ND	0.05	na/a						
1.1.1-Trichloroethane	ND	0.05	na/a						
1.1.2-Trichloroethane	ND	0.05	ug/a						
Trichloroethylene	ND	0.05	ug/a						
Trichlorofluoromethane	ND	0.05	ug/q						
Vinyl chloride	ND	0.02	ug/g						
m,p-Xylenes	ND	0.05	ug/g						

Report Date: 19-Nov-2020

Order Date: 18-Nov-2020

Project Description: PE4908

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
o-Xylene	ND	0.05	ug/g						
Xylenes, total	ND	0.05	ug/g		400	50 4 40			
Surrogate: 4-Bromofluorobenzene	8.72		ug/g		109	50-140			
Surrogate: Dibromofluoromethane	7.48		ug/g		93.5	50-140			
Surrogate: Toluene-d8	8.37		ug/g		105	50-140			

Client PO: 31250

Report Date: 19-Nov-2020

Order Date: 18-Nov-2020

Project Description: PE4908

Method Quality Control: Duplicate

		Reporting		Source		%REC		RPD	
Analyte	Result	Limit	Units	Result	%REC	Limit	RPD	Limit	Notes
Metals									
Antimony		1.0	ua/a da/				NC	30	
Amenio	10	1.0	ug/g ury	2.2			15.0	30	
Arsenic	1.9	1.0	ug/g ury	2.2			15.2	30	
Barium	41.9	1.0	ug/g ary	43.7			4.4	30	
Beryllium	ND	0.5	ug/g ary	ND			NC	30	
Boron	6.4	5.0	ug/g dry	6.5			2.2	30	
Cadmium	ND	0.5	ug/g dry	ND			NC	30	
Chromium	12.6	5.0	ug/g dry	12.8			1.2	30	
Cobalt	4.4	1.0	ug/g dry	4.5			3.3	30	
Copper	8.2	5.0	ug/g dry	8.6			4.5	30	
Lead	3.4	1.0	ug/g dry	3.6			6.2	30	
Molybdenum	ND	1.0	ug/g dry	ND			NC	30	
Nickel	8.7	5.0	ug/g dry	9.0			3.4	30	
Selenium	ND	1.0	ug/g dry	ND			NC	30	
Silver	ND	0.3	ug/g dry	ND			NC	30	
Thallium	ND	1.0	ug/g dry	ND			NC	30	
Uranium	ND	1.0	ug/g dry	ND			NC	30	
Vanadium	22.8	10.0	ug/g dry	23.0			0.7	30	
Zinc	21.4	20.0	ug/g dry	22.1			3.2	30	
Physical Characteristics									
% Solids	93.9	0.1	% by Wt.	92.4			1.6	25	
Volatiles									
Acetone	ND	0.50	ug/g dry	ND			NC	50	
Benzene	ND	0.02	ug/g dry	ND			NC	50	
Bromodichloromethane	ND	0.05	ug/g dry	ND			NC	50	
Bromoform	ND	0.05	ug/g dry	ND			NC	50	
Bromomethane	ND	0.05	ug/g dry	ND			NC	50	
Carbon Tetrachloride	ND	0.05	ug/g dry	ND			NC	50	
Chlorobenzene	ND	0.05	ug/g dry	ND			NC	50	
Chloroform	ND	0.05	ug/g dry	ND			NC	50	
Dibromochloromethane	ND	0.05	ug/g dry	ND			NC	50	
Dichlorodifluoromethane	ND	0.05	ug/g dry	ND			NC	50	
1,2-Dichlorobenzene	ND	0.05	ug/g dry	ND			NC	50	
1,3-Dichlorobenzene	ND	0.05	ug/g dry	ND			NC	50	
1,4-Dichlorobenzene	ND	0.05	ug/g dry	ND			NC	50	
1,1-Dichloroethane	ND	0.05	ug/g dry	ND			NC	50	
1,2-Dichloroethane	ND	0.05	ug/g dry	ND			NC	50	
1,1-Dichloroethylene	ND	0.05	ug/g dry	ND			NC	50	
cis-1,2-Dichloroethylene	ND	0.05	ug/g dry	ND			NC	50	
trans-1,2-Dichloroethylene	ND	0.05	ug/g dry	ND			NC	50	
1,2-Dichloropropane	ND	0.05	ug/g dry	ND			NC	50	
cis-1,3-Dichloropropylene	ND	0.05	ug/g dry	ND			NC	50	
trans-1,3-Dichloropropylene	ND	0.05	ug/g dry	ND			NC	50	
Ethylbenzene	ND	0.05	ug/g dry	ND			NC	50	
Ethylene dibromide (dibromoethane, 1.2	ND	0.05	ua/a drv	ND			NC	50	
Hexane	ND	0.05	ua/a drv	ND			NC	50	
Methyl Ethyl Ketone (2-Butanone)	ND	0.50	ua/a drv	ND			NC	50	
Methyl Isobutyl Ketone	ND	0.50	ua/a drv	ND			NC	50	
Methyl tert-butyl ether	ND	0.05	ua/a drv	ND			NC	50	
Methylene Chloride	ND	0.05	ua/a drv	ND			NC	50	
Styrene	ND	0.05	ug/a drv	ND			NC	50	
1 1 1 2-Tetrachloroethane	ND	0.05	ug/g dry	ND			NC	50	
1 1 2 2-Tetrachloroethane	ND	0.05	ug/g dry	ND			NC	50	
Tetrachloroethylene		0.05	ug/g dry				NC	50	
Toluene		0.05	ug/g dry				NC	50	
1 1 1-Trichloroethane		0.05	ug/g dry				NC	50	
1.1.2-Trichloroethane		0.05	ug/g dry				NC	50	
Trichloroethylene		0.05	ug/g ury					50	
monoroeunyiene		0.00	ugrgury				NO	50	

Report Date: 19-Nov-2020

Order Date: 18-Nov-2020

Project Description: PE4908

Method Quality Control: Duplicate

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Trichlorofluoromethane	ND	0.05	ug/g dry	ND			NC	50	
Vinyl chloride	ND	0.02	ug/g dry	ND			NC	50	
m,p-Xylenes	ND	0.05	ug/g dry	ND			NC	50	
o-Xylene	ND	0.05	ug/g dry	ND			NC	50	
Surrogate: 4-Bromofluorobenzene	9.34		ug/g dry		109	50-140			
Surrogate: Dibromofluoromethane	8.61		ug/g dry		100	50-140			
Surrogate: Toluene-d8	9.24		ug/g dry		107	50-140			

Order #: 2047284

Report Date: 19-Nov-2020

Order Date: 18-Nov-2020

Project Description: PE4908

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Metals									
Antimony	44.5	1.0	ug/g	ND	88.4	70-130			
Arsenic	53.5	1.0	ug/g	ND	105	70-130			
Barium	63.9	1.0	ug/g	17.5	92.7	70-130			
Beryllium	54.3	0.5	ug/g	ND	108	70-130			
Boron	49.5	5.0	ug/g	ND	93.7	70-130			
Cadmium	46.2	0.5	ug/g	ND	92.4	70-130			
Chromium	61.3	5.0	ug/g	5.1	112	70-130			
Cobalt	54.6	1.0	ug/g	1.8	106	70-130			
Copper	54.6	5.0	ug/g	ND	102	70-130			
Lead	42.8	1.0	ug/g	1.5	82.7	70-130			
Molybdenum	49.9	1.0	ug/g	ND	99.5	70-130			
Nickel	56.4	5.0	ug/g	ND	106	70-130			
Selenium	49.1	1.0	ug/g	ND	98.1	70-130			
Silver	42.6	0.3	ug/g	ND	85.2	70-130			
Thallium	44.9	1.0	ug/g	ND	89.8	70-130			
Uranium	42.3	1.0	ug/g	ND	84.2	70-130			
Vanadium	66.2	10.0	ug/g	ND	114	70-130			
Zinc	56.6	20.0	ug/g	ND	95.6	70-130			
Volatiles									
Acetone	9.19	0.50	ug/g	ND	91.9	50-140			
Benzene	3.38	0.02	ug/g	ND	84.6	60-130			
Bromodichloromethane	3.65	0.05	ug/g	ND	91.4	60-130			
Bromoform	4.07	0.05	ug/g	ND	102	60-130			
Bromomethane	5.11	0.05	ug/g	ND	128	50-140			
Carbon Tetrachloride	3.60	0.05	ug/g	ND	90.1	60-130			
Chlorobenzene	3.47	0.05	ug/g	ND	86.8	60-130			
Chloroform	3.33	0.05	ug/g	ND	83.2	60-130			
Dibromochloromethane	4.45	0.05	ug/g	ND	111	60-130			
Dichlorodifluoromethane	4.55	0.05	ug/g	ND	114	50-140			
1,2-Dichlorobenzene	3.47	0.05	ug/g	ND	86.7	60-130			
1,3-Dichlorobenzene	3.67	0.05	ug/g	ND	91.9	60-130			
1,4-Dichlorobenzene	3.64	0.05	ug/g	ND	91.1	60-130			
1,1-Dichloroethane	3.79	0.05	ug/g	ND	94.6	60-130			
1,2-Dichloroethane	3.03	0.05	ug/g	ND	75.6	60-130			
1,1-Dichloroethylene	4.15	0.05	ug/g	ND	104	60-130			
cis-1,2-Dichloroethylene	3.16	0.05	ug/g	ND	79.0	60-130			
trans-1,2-Dichloroethylene	4.09	0.05	ug/g	ND	102	60-130			
1,2-Dichloropropane	3.40	0.05	ug/g	ND	85.1	60-130			
cis-1,3-Dichloropropylene	3.40	0.05	ug/g	ND	85.0	60-130			
trans-1,3-Dichloropropylene	3.25	0.05	ug/g	ND	81.3	60-130			
Ethylbenzene	3.38	0.05	ug/g	ND	84.5	60-130			
Ethylene dibromide (dibromoethane, 1,2	3.45	0.05	ug/g	ND	86.1	60-130			
Hexane	4.79	0.05	ug/g	ND	120	60-130			
Methyl Ethyl Ketone (2-Butanone)	7.25	0.50	ug/g	ND	72.5	50-140			
Methyl Isobutyl Ketone	7.21	0.50	ug/g	ND	72.1	50-140			
Methyl tert-butyl ether	7.33	0.05	ug/g	ND	73.3	50-140			
Methylene Chloride	3.50	0.05	ug/g	ND	87.5	60-130			
Styrene	3.06	0.05	ug/g	ND	76.6	60-130			

Report Date: 19-Nov-2020

Order Date: 18-Nov-2020

Project Description: PE4908

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
1,1,1,2-Tetrachloroethane	4.04	0.05	ug/g	ND	101	60-130			
1,1,2,2-Tetrachloroethane	2.92	0.05	ug/g	ND	73.0	60-130			
Tetrachloroethylene	3.24	0.05	ug/g	ND	81.1	60-130			
Toluene	3.59	0.05	ug/g	ND	89.8	60-130			
1,1,1-Trichloroethane	3.67	0.05	ug/g	ND	91.7	60-130			
1,1,2-Trichloroethane	3.10	0.05	ug/g	ND	77.5	60-130			
Trichloroethylene	3.52	0.05	ug/g	ND	87.9	60-130			
Trichlorofluoromethane	3.91	0.05	ug/g	ND	97.7	50-140			
Vinyl chloride	4.76	0.02	ug/g	ND	119	50-140			
m,p-Xylenes	6.86	0.05	ug/g	ND	85.7	60-130			
o-Xylene	3.36	0.05	ug/g	ND	84.0	60-130			
Surrogate: 4-Bromofluorobenzene	8.92		ug/g		111	50-140			
Surrogate: Dibromofluoromethane	8.22		ug/g		103	50-140			
Surrogate: Toluene-d8	8.33		ug/g		104	50-140			

Qualifier Notes:

None

Sample Data Revisions

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected MDL: Method Detection Limit Source Result: Data used as source for matrix and duplicate samples %REC: Percent recovery. RPD: Relative percent difference. NC: Not Calculated

Soil results are reported on a dry weight basis when the units are denoted with 'dry'. Where %Solids is reported, moisture loss includes the loss of volatile hydrocarbons.

Order #: 2047284

Project Description: PE4908

Para PARACE	cel I	D: 2	.047	284	Blvd. 4J8 ps.com	Para 2c	icel Order N (Lab Use On) C 7]	umber W 284	C Nº	hain Of C (Lab Use 525	ustody ^{aniy)} 36
(Client Name: PATER SOA)		Projec	t Ref:	PE 4908					· .	Page <u> </u>	of /
Contact Name: KARUN MUNCH		Quote	#:							Turnaroun	d Time
Address: 154 COLONNADE R.d. S. OTTAWA	, T.	PO#: 31250 E-mail: KMUNCH@PATERSONGROUP.CZ					Date Reg	y y	□ 3 day □ Regular		
(613) 226 - 758		-				1	I	-	Date Neg	uneu.	
Regulation 153/04 Other Regulation Table 1 Res/Park Med/Fine REG 558 PWQO Table 2 Ind/Comm Coarse COME MISA	- N	Aatrix T SW (Su	ype: 9 rface V P (P	S (Soil/Sed.) GW (Gr /ater) SS (Storm/Sa aint) A (Air) O (Oth	round Water) hitary Sewer) er)		6	Re	quired An	alysis	
Table 3 Agri/Other SU - Sani SU - Storm Table 7 For RSC: Yes No	latrix	ir Volume	of Containers	Sample	Taken	Voc's	RETALS BY 1				
	2	4	* 2			K	~				
Hold :	-		-	NOV. 10/2020	1 1						
3		-			1						
4	1	1.									
5											
6											
7											
8											
9	-		-								
10								1961.59			
Comments:								Metho	d of Delivery	IR.	
Relinquished By (Sign): Received By D	river/D	epot:			Received at Labo	14	2	Verifie	d By:		
Relinquished By (Print): Date/Time:		6.25			Date/Time: 11	17-	20 5	US Date/	Time:	182	, 033
Date/Time: Nov. 17/2020				°C	Temperature:	11.8	°C	pH Ve	rified:	By:	

Chain of Custody (Blank) xlsx

Revision 3.0

RELIABLE.

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Certificate of Analysis

Paterson Group Consulting Engineers

Client ID

W10

E7

154 Colonnade Road South Nepean, ON K2E 7J5 Attn: Karyn Munch

Client PO: 31280 Project: PE4908 Custody: 52430

Report Date: 24-Nov-2020 Order Date: 20-Nov-2020

Order #: 2047664

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID 2047664-01 2047664-02

Approved By:

Mark Foto

Mark Foto, M.Sc. Lab Supervisor

Any use of these results implies your agreement that our total liability in connection with this work, however arising, shall be limited to the amount paid by you for this work, and that our employees or agents shall not under any circumstances be liable to you in connection with this work.

Report Date: 24-Nov-2020 Order Date: 20-Nov-2020

Order #: 2047664

Project Description: PE4908

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date	Analysis Date
REG 153: Metals by ICP/MS, soil	EPA 6020 - Digestion - ICP-MS	24-Nov-20	24-Nov-20
REG 153: VOCs by P&T GC/MS	EPA 8260 - P&T GC-MS	23-Nov-20	24-Nov-20
Solids, %	Gravimetric, calculation	23-Nov-20	23-Nov-20

Certificate of Analysis

Client: Paterson Group Consulting Engineers

Client PO: 31280

Report Date: 24-Nov-2020

Order Date: 20-Nov-2020

Project Description: PE4908

	Client ID:	W10	E7	-	-
	Sample Date:	20-Nov-20 09:00	20-Nov-20 09:00	-	-
	Sample ID:	2047664-01	2047664-02	-	-
	MDL/Units	Soil	Soil	-	-
Physical Characteristics			•	-	
% Solids	0.1 % by Wt.	97.6	96.2	-	-
Metals					
Antimony	1.0 ug/g dry	-	<1.0	-	-
Arsenic	1.0 ug/g dry	-	2.0	-	-
Barium	1.0 ug/g dry	-	465	-	-
Beryllium	0.5 ug/g dry	-	<0.5	-	-
Boron	5.0 ug/g dry	-	14.5	-	-
Cadmium	0.5 ug/g dry	-	<0.5	-	-
Chromium	5.0 ug/g dry	-	9.2	-	-
Cobalt	1.0 ug/g dry	-	12.0	-	-
Copper	5.0 ug/g dry	-	15.6	-	-
Lead	1.0 ug/g dry	-	10.4	-	-
Molybdenum	1.0 ug/g dry	-	<1.0	-	-
Nickel	5.0 ug/g dry	-	16.7	-	-
Selenium	1.0 ug/g dry	-	<1.0	-	-
Silver	0.3 ug/g dry	-	<0.3	-	-
Thallium	1.0 ug/g dry	-	<1.0	-	-
Uranium	1.0 ug/g dry	-	<1.0	-	-
Vanadium	10.0 ug/g dry	-	10.1	-	-
Zinc	20.0 ug/g dry	-	<20.0	-	-
Volatiles					
Acetone	0.50 ug/g dry	<0.50	-	-	-
Benzene	0.02 ug/g dry	<0.02	-	-	-
Bromodichloromethane	0.05 ug/g dry	<0.05	-	-	-
Bromoform	0.05 ug/g dry	<0.05	-	-	-
Bromomethane	0.05 ug/g dry	<0.05	-	-	-
Carbon Tetrachloride	0.05 ug/g dry	<0.05	-	-	-
Chlorobenzene	0.05 ug/g dry	<0.05	-	-	-
Chloroform	0.05 ug/g dry	<0.05	-	-	-
Dibromochloromethane	0.05 ug/g dry	<0.05	-	-	-
Dichlorodifluoromethane	0.05 ug/g dry	<0.05	-	-	-
1,2-Dichlorobenzene	0.05 ug/g dry	<0.05	-	-	-
1,3-Dichlorobenzene	0.05 ug/g dry	<0.05	-	-	-
1,4-Dichlorobenzene	0.05 ug/g dry	<0.05	-	-	-
1,1-Dichloroethane	0.05 ug/g dry	<0.05	-	-	-

Order #: 2047664

Report Date: 24-Nov-2020 Order Date: 20-Nov-2020

Project Description: PE4908

	Client ID: Sample Date: Sample ID: MDI /I Inits	W10 20-Nov-20 09:00 2047664-01 Soil	E7 20-Nov-20 09:00 2047664-02 Soil	- - -	- - -
1,2-Dichloroethane	0.05 ug/g dry	< 0.05	-	-	-
1,1-Dichloroethylene	0.05 ug/g dry	< 0.05	-	-	-
cis-1,2-Dichloroethylene	0.05 ug/g dry	<0.05	-	-	-
trans-1,2-Dichloroethylene	0.05 ug/g dry	<0.05	-	-	-
1,2-Dichloropropane	0.05 ug/g dry	<0.05	-	-	-
cis-1,3-Dichloropropylene	0.05 ug/g dry	<0.05	-	-	-
trans-1,3-Dichloropropylene	0.05 ug/g dry	<0.05	-	-	-
1,3-Dichloropropene, total	0.05 ug/g dry	<0.05	-	-	-
Ethylbenzene	0.05 ug/g dry	<0.05	-	-	-
Ethylene dibromide (dibromoethane, 1,2-)	0.05 ug/g dry	<0.05	-	-	-
Hexane	0.05 ug/g dry	<0.05	-	-	-
Methyl Ethyl Ketone (2-Butanone)	0.50 ug/g dry	<0.50	-	-	-
Methyl Isobutyl Ketone	0.50 ug/g dry	<0.50	-	-	-
Methyl tert-butyl ether	0.05 ug/g dry	<0.05	-	-	-
Methylene Chloride	0.05 ug/g dry	<0.05	-	-	-
Styrene	0.05 ug/g dry	<0.05	-	-	-
1,1,1,2-Tetrachloroethane	0.05 ug/g dry	<0.05	-	-	-
1,1,2,2-Tetrachloroethane	0.05 ug/g dry	<0.05	-	-	-
Tetrachloroethylene	0.05 ug/g dry	<0.05	-	-	-
Toluene	0.05 ug/g dry	<0.05	-	-	-
1,1,1-Trichloroethane	0.05 ug/g dry	<0.05	-	-	-
1,1,2-Trichloroethane	0.05 ug/g dry	<0.05	-	-	-
Trichloroethylene	0.05 ug/g dry	<0.05	-	-	-
Trichlorofluoromethane	0.05 ug/g dry	<0.05	-	-	-
Vinyl chloride	0.02 ug/g dry	<0.02	-	-	-
m,p-Xylenes	0.05 ug/g dry	<0.05	-	-	-
o-Xylene	0.05 ug/g dry	<0.05	-	-	-
Xylenes, total	0.05 ug/g dry	<0.05	-	-	-
4-Bromofluorobenzene	Surrogate	51.2%	-	-	-
Dibromofluoromethane	Surrogate	52.0%	-	-	-
Ioineue-as	Surrogate	56.8%	-	-	-

Report Date: 24-Nov-2020

Order Date: 20-Nov-2020

Project Description: PE4908

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Metals									
Antimony	ND	10	ua/a						
Arsenic	ND	1.0	ug/g						
Barium	ND	1.0	ug/g						
Bervllium	ND	0.5	ua/a						
Boron	ND	5.0	ua/a						
Cadmium	ND	0.5	ug/g						
Chromium	ND	5.0	ug/g						
Cobalt	ND	1.0	ug/g						
Copper	ND	5.0	ug/g						
Lead	ND	1.0	ug/g						
Molybdenum	ND	1.0	ug/g						
Nickel	ND	5.0	ug/g						
Selenium	ND	1.0	ug/g						
Silver	ND	0.3	ug/g						
Thallium	ND	1.0	ug/g						
Uranium	ND	1.0	ug/g						
Vanadium	ND	10.0	ug/g						
Zinc	ND	20.0	ug/g						
Volatiles									
Acetone	ND	0.50	ug/g						
Benzene	ND	0.02	ug/g						
Bromodichloromethane	ND	0.05	ug/g						
Bromoform	ND	0.05	ug/g						
Bromomethane	ND	0.05	ug/g						
Carbon Tetrachloride	ND	0.05	ug/g						
Chlorobenzene	ND	0.05	ug/g						
Chloroform	ND	0.05	ug/g						
Dibromochloromethane	ND	0.05	ug/g						
	ND	0.05	ug/g						
1,2-Dichlorobenzene		0.05	ug/g						
1,3-Dichlorobenzene		0.05	ug/g						
1,4-Dichloroethane		0.05	ug/g						
1,1-Dichloroethane		0.05	ug/g						
1 1-Dichloroethylene		0.05	ug/g						
cis-1 2-Dichloroethylene		0.05	ug/g						
trans-1 2-Dichloroethylene	ND	0.05	ug/g						
1 2-Dichloropropane	ND	0.05	ug/g						
cis-1 3-Dichloropropylene	ND	0.05	ug/g						
trans-1.3-Dichloropropylene	ND	0.05	ua/a						
1,3-Dichloropropene, total	ND	0.05	ug/g						
Ethylbenzene	ND	0.05	ug/g						
Ethylene dibromide (dibromoethane, 1,2	ND	0.05	ug/g						
Hexane	ND	0.05	ug/g						
Methyl Ethyl Ketone (2-Butanone)	ND	0.50	ug/g						
Methyl Isobutyl Ketone	ND	0.50	ug/g						
Methyl tert-butyl ether	ND	0.05	ug/g						
Methylene Chloride	ND	0.05	ug/g						
Styrene	ND	0.05	ug/g						
1,1,1,2-Tetrachloroethane	ND	0.05	ug/g						
1,1,2,2-Tetrachloroethane	ND	0.05	ug/g						
Tetrachloroethylene	ND	0.05	ug/g						
Toluene	ND	0.05	ug/g						
1,1,1-I richloroethane	ND	0.05	ug/g						
1,1,2-Irichloroethane	ND	0.05	ug/g						
Irichloroethylene	ND	0.05	ug/g						
	ND	0.05	ug/g						
		0.02	ug/g						
п,р-луспез	UNI	0.05	uy/y						

Report Date: 24-Nov-2020 Order Date: 20-Nov-2020

Project Description: PE4908

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
o-Xylene Xylenes, total Surrogate: 4-Bromofluorobenzene Surrogate: Dibromofluoromethane	ND ND 10.6 9.55	0.05 0.05	ug/g ug/g ug/g ug/g		133 119	50-140 50-140			

Client PO: 31280

Report Date: 24-Nov-2020

Order Date: 20-Nov-2020

Project Description: PE4908

Method Quality Control: Duplicate

		Reporting		Source		%REC		RPD	
Analyte	Result	Limit	Units	Result	%REC	Limit	RPD	Limit	Notes
Motals									
Antimony	1.6	1.0	uala dai	1.6			1 4	20	
Antimony	1.0	1.0	ug/g ary	1.6			1.4	30	
Arsenic	5.5	1.0	ug/g dry	6.0			8.7	30	
Barium	76.8	1.0	ug/g dry	80.0			4.0	30	
Beryllium	ND	0.5	ug/g dry	0.5			NC	30	
Boron	7.2	5.0	ug/g dry	8.1			10.9	30	
Cadmium	ND	0.5	ug/g dry	0.5			NC	30	
Chromium	14.6	5.0	ug/g dry	16.9			14.5	30	
Cobalt	4.6	1.0	ug/g dry	5.2			12.0	30	
Copper	26.6	5.0	ug/g dry	30.4			13.3	30	
Lead	92.8	1.0	ug/g dry	90.9			2.1	30	
Molybdenum	1.3	1.0	ug/g dry	1.4			3.0	30	
Nickel	11.7	5.0	ug/g dry	12.1			3.1	30	
Selenium	ND	1.0	ug/g dry	ND			NC	30	
Silver	0.5	0.3	ug/g dry	ND			NC	30	
Thallium	ND	1.0	ug/g dry	ND			NC	30	
Uranium	ND	1.0	ug/g dry	ND			NC	30	
Vanadium	20.5	10.0	ug/g dry	23.2			12.5	30	
Zinc	216	20.0	ug/g dry	244			11.9	30	
Physical Characteristics									
% Solids	97.3	0.1	% by Wt.	97.6			0.3	25	
Volatiles									
Acetone	ND	0.50	ug/g dry	ND			NC	50	
Benzene	ND	0.02	ug/g dry	ND			NC	50	
Bromodichloromethane	ND	0.05	ug/g dry	ND			NC	50	
Bromoform	ND	0.05	ug/g dry	ND			NC	50	
Bromomethane	ND	0.05	ug/g dry	ND			NC	50	
Carbon Tetrachloride	ND	0.05	ug/g dry	ND			NC	50	
Chlorobenzene	ND	0.05	ug/g dry	ND			NC	50	
Chloroform	ND	0.05	ug/g dry	ND			NC	50	
Dibromochloromethane	ND	0.05	ug/g dry	ND			NC	50	
Dichlorodifluoromethane	ND	0.05	ug/g dry	ND			NC	50	
1,2-Dichlorobenzene	ND	0.05	ug/g dry	ND			NC	50	
1,3-Dichlorobenzene	ND	0.05	ug/g dry	ND			NC	50	
1,4-Dichlorobenzene	ND	0.05	ug/g dry	ND			NC	50	
1,1-Dichloroethane	ND	0.05	ug/g dry	ND			NC	50	
1,2-Dichloroethane	ND	0.05	ug/g dry	ND			NC	50	
1,1-Dichloroethylene	ND	0.05	ug/g dry	ND			NC	50	
cis-1,2-Dichloroethylene	ND	0.05	ug/g dry	ND			NC	50	
trans-1,2-Dichloroethylene	ND	0.05	ug/g dry	ND			NC	50	
1,2-Dichloropropane	ND	0.05	ug/g dry	ND			NC	50	
cis-1,3-Dichloropropylene	ND	0.05	ug/g dry	ND			NC	50	
trans-1,3-Dichloropropylene	ND	0.05	ug/g dry	ND			NC	50	
Ethylbenzene	ND	0.05	ug/g dry	ND			NC	50	
Ethylene dibromide (dibromoethane, 1,2	ND	0.05	ug/g dry	ND			NC	50	
Hexane	ND	0.05	ug/g dry	ND			NC	50	
Methyl Ethyl Ketone (2-Butanone)	ND	0.50	ug/g dry	ND			NC	50	
Methyl Isobutyl Ketone	ND	0.50	ug/g dry	ND			NC	50	
Methyl tert-butyl ether	ND	0.05	ug/g dry	ND			NC	50	
Methylene Chloride	ND	0.05	ug/g dry	ND			NC	50	
Styrene	ND	0.05	ug/g dry	ND			NC	50	
1,1,2-Tetrachloroethane	ND	0.05	ug/g dry	ND			NC	50	
1,1,2,2-Tetrachloroethane	ND	0.05	ug/a drv	ND			NC	50	
Tetrachloroethylene	ND	0.05	ug/a drv	ND			NC	50	
Toluene	ND	0.05	ug/a drv	ND			NC	50	
1,1,1-Trichloroethane	ND	0.05	ug/a drv	ND			NC	50	
1.1.2-Trichloroethane	ND	0.05	ug/a drv	ND			NC	50	
Trichloroethylene	ND	0.05	ug/a drv	ND			NC	50	
2			0.0						

Report Date: 24-Nov-2020 Order Date: 20-Nov-2020

Project Description: PE4908

Method Quality Control: Duplicate

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Trichlorofluoromethane	ND	0.05	ug/g dry	ND			NC	50	
Vinyl chloride	ND	0.02	ug/g dry	ND			NC	50	
m,p-Xylenes	ND	0.05	ug/g dry	ND			NC	50	
o-Xylene	ND	0.05	ug/g dry	ND			NC	50	
Surrogate: 4-Bromofluorobenzene	8.75		ug/g dry		109	50-140			
Surrogate: Dibromofluoromethane	8.80		ug/g dry		110	50-140			
Surrogate: Toluene-d8	9.31		ug/g dry		116	50-140			

Report Date: 24-Nov-2020

Order Date: 20-Nov-2020

Project Description: PE4908

Method Quality Control: Spike

Analyte	Result	Reporting	Units	Source	%REC	%REC	RPD	RPD Limit	Notes
, dayte		Linit		Result		Limit		LIIIII	
Metals									
Antimony	46.1	1.0	ug/g	ND	91.0	70-130			
Arsenic	50.2	1.0	ug/g	2.4	95.5	70-130			
Barium	78.4	1.0	ug/g	32.0	92.7	70-130			
Beryllium	47.8	0.5	ug/g	ND	95.2	70-130			
Boron	46.7	5.0	ug/g	ND	86.9	70-130			
Cadmium	46.1	0.5	ug/g	ND	91.8	70-130			
Chromium	54.9	5.0	ug/g	6.8	96.2	70-130			
Cobalt	48.5	1.0	ug/g	2.1	92.9	70-130			
Copper	56.5	5.0	ug/g	12.2	88.7	70-130			
Lead	83.7	1.0	ug/g	36.4	94.7	70-130			
Molybdenum	47.1	1.0	ug/g	ND	93.2	70-130			
Nickel	50.9	5.0	ug/g	ND	92.1	70-130			
Selenium	45.6	1.0	ug/g	ND	90.7	70-130			
Silver	45.5	0.3	ug/g	ND	91.0	70-130			
Thallium	46.6	1.0	ug/g	ND	93.1	70-130			
Uranium	48.5	1.0	ug/g	ND	96.6	70-130			
Vanadium	55.3	10.0	ug/g	ND	92.1	70-130			
Zinc	131	20.0	ug/g	97.4	67.7	70-130			QM-07
Volatiles									
Acetone	9.49	0.50	ug/g	ND	94.9	50-140			
Benzene	4.38	0.02	ug/g	ND	109	60-130			
Bromodichloromethane	4.56	0.05	ug/g	ND	114	60-130			
Bromoform	5.15	0.05	ug/g	ND	129	60-130			
Bromomethane	3.84	0.05	ug/g	ND	96.1	50-140			
Carbon Tetrachloride	4.08	0.05	ug/g	ND	102	60-130			
Chlorobenzene	4.60	0.05	ug/g	ND	115	60-130			
Chloroform	4.28	0.05	ug/g	ND	107	60-130			
Dibromochloromethane	5.12	0.05	ug/g	ND	128	60-130			
Dichlorodifluoromethane	4.71	0.05	ug/g	ND	118	50-140			
1,2-Dichlorobenzene	4.65	0.05	ug/g	ND	116	60-130			
1,3-Dichlorobenzene	4.56	0.05	ug/g	ND	114	60-130			
1,4-Dichlorobenzene	4.55	0.05	ug/g	ND	114	60-130			
1,1-Dichloroethane	4.34	0.05	ug/g	ND	109	60-130			
1,2-Dichloroethane	4.20	0.05	ug/g	ND	105	60-130			
1,1-Dichloroethylene	4.20	0.05	ug/g	ND	105	60-130			
cis-1,2-Dichloroethylene	4.35	0.05	ug/g	ND	109	60-130			
trans-1,2-Dichloroethylene	4.46	0.05	ug/g	ND	112	60-130			
1,2-Dichloropropane	4.18	0.05	ug/g	ND	104	60-130			
cis-1,3-Dichloropropylene	4.18	0.05	ug/g	ND	105	60-130			
trans-1,3-Dichloropropylene	3.44	0.05	ug/g	ND	86.0	60-130			
Ethylbenzene	4.57	0.05	ug/g	ND	114	60-130			
Ethylene dibromide (dibromoethane, 1,2-	4.76	0.05	ug/g	ND	119	60-130			
Hexane	3.91	0.05	ug/g	ND	97.7	60-130			
Methyl Ethyl Ketone (2-Butanone)	13.0	0.50	ug/g	ND	130	50-140			
Methyl Isobutyl Ketone	7.73	0.50	ug/g	ND	77.3	50-140			
Methyl tert-butyl ether	9.84	0.05	ug/g	ND	98.4	50-140			
Methylene Chloride	4.13	0.05	ug/g	ND	103	60-130			
Styrene	4.68	0.05	ug/g	ND	117	60-130			

Report Date: 24-Nov-2020

Order Date: 20-Nov-2020

Project Description: PE4908

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
1,1,1,2-Tetrachloroethane	4.72	0.05	ug/g	ND	118	60-130			
1,1,2,2-Tetrachloroethane	4.82	0.05	ug/g	ND	120	60-130			
Tetrachloroethylene	4.55	0.05	ug/g	ND	114	60-130			
Toluene	4.52	0.05	ug/g	ND	113	60-130			
1,1,1-Trichloroethane	4.37	0.05	ug/g	ND	109	60-130			
1,1,2-Trichloroethane	4.22	0.05	ug/g	ND	105	60-130			
Trichloroethylene	4.47	0.05	ug/g	ND	112	60-130			
Trichlorofluoromethane	4.31	0.05	ug/g	ND	108	50-140			
Vinyl chloride	4.91	0.02	ug/g	ND	123	50-140			
m,p-Xylenes	9.21	0.05	ug/g	ND	115	60-130			
o-Xylene	4.70	0.05	ug/g	ND	118	60-130			
Surrogate: 4-Bromofluorobenzene	7.65		ug/g		95.6	50-140			
Surrogate: Dibromofluoromethane	7.81		ug/g		97.7	50-140			
Surrogate: Toluene-d8	8.08		ug/g		101	50-140			

Qualifier Notes:

QC Qualifiers :

QM-07 : The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on other acceptable QC.

Sample Data Revisions

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected MDL: Method Detection Limit Source Result: Data used as source for matrix and duplicate samples %REC: Percent recovery. RPD: Relative percent difference. NC: Not Calculated

Soil results are reported on a dry weight basis when the units are denoted with 'dry'. Where %Solids is reported, moisture loss includes the loss of volatile hydrocarbons.
G PARAC LABORATORIES	EL LTD.		Para	acel	ID:	2047664		Par 2	acel Ordo (Lab Uso	er Numb e Only) 664	per	ľ	Cha V?	(Lab Us 524	Custo e Only) 430	ody
Client Name: PRITERSON				Projec	t Ref:	264908								Page	/ of]	
Contact Name: KARYN MUNC	H			Quote	#:								Tu	urnarou	Ind Tim	ne
Address:				PO #:	317	280						1	1 day			🗆 3 day
154 COLONNADE Kd.	S. OT	PAWA, ON	1	E-mail] 0	2 day			C Regular
Telephone: (613) - 226	1381			K	mu	WCHEPAT	H@PATERSON GROUP. CO					Date	Requir	ed:		i,
Regulation 153/04	Other R	egulation		Aatrix T	vne:	S (Soil/Sed.) GW (Gr	ound Water)		atter		De	en de en	d Anahi	ele		
Table 1 Res/Park Med/Fine	REG 558	PWQ0		SW (Su	rface V	/ater) SS (Storm/Sar	nitary Sewer)			10	R	squire	a Anaiy	\$15		
Table 2 Ind/Comm Coarse	CCME	MISA.			P (P	aint) A (Air) O (Oth	er)									
Table 3 Agri/Other	SU - Sani	🛛 SU - Storm			ers				J.							
12 Table	un:			me	Itain	Sample	Taken	.5	3-							
For RSC: Yes No	Other:		trix	oluri Con Internet												
Sample ID/Location N	ame		Mat	Air	0 #	Date	Time		ž							
1 WID			5	1	2	Nov 20/2000		\searrow								
² E7			S	/	2	Nov 20/2020			\checkmark							
3								1	1							
4											\top					
5											1					
6								\vdash			+					-
7								+			-				-	
8								-			+					
9								-								
10										-	+				+	
Comments:										-	Math	od of Do	livonu			
											Weth	JU UI DE	Da	0 A	Zar	
Relinquished By (Sign):	6	Received By Dr	iver/D	epot:			Received at Lab:	(20-		Verifi	ed By:	1-10	RF	2-1	
Relinquished By (Print):		Date/Time:					Date/Times	d	20	m	Date/	Time	11	- DF	Sm	0.1
Data/Time	DRY	Tamparter				0.0	NOV	20,2	0 ()	8:10	orace/		Mor	20,1	0	18:34
Nov. 20/2020		Temperature:				Ϋ́C	remperature:	15.6	°C		pH Ve	rified:		ву:		

Chain of Custody (Blank) xlsx

Revision 3.0

RELIABLE.

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Certificate of Analysis

Paterson Group Consulting Engineers

154 Colonnade Road South Nepean, ON K2E 7J5 Attn: Karyn Munch

Client PO: 31281 Project: PE4908 Custody: 52431

Report Date: 26-Nov-2020 Order Date: 20-Nov-2020

Order #: 2048362

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID **Client ID** 2048362-01 E8

Approved By:

Mark Foto

Mark Foto, M.Sc. Lab Supervisor

Any use of these results implies your agreement that our total liability in connection with this work, however arising, shall be limited to the amount paid by you for this work, and that our employees or agents shall not under any circumstances be liable to you in connection with this work.

Report Date: 26-Nov-2020 Order Date: 20-Nov-2020

Order #: 2048362

Project Description: PE4908

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date	Analysis Date
REG 153: Metals by ICP/MS, soil	EPA 6020 - Digestion - ICP-MS	26-Nov-20	26-Nov-20
Solids, %	Gravimetric, calculation	26-Nov-20	26-Nov-20

Certificate of Analysis

Client: Paterson Group Consulting Engineers

Client PO: 31281

Report Date: 26-Nov-2020

Order Date: 20-Nov-2020

Project Description: PE4908

	_				
	Client ID:	E8	-	-	-
	Sample Date:	20-Nov-20 09:00	-	-	-
	Sample ID:	2048362-01	-	-	-
	MDL/Units	Soil	-	-	-
Physical Characteristics	•				
% Solids	0.1 % by Wt.	96.8	-	-	-
Metals					
Antimony	1.0 ug/g dry	<1.0	-	-	-
Arsenic	1.0 ug/g dry	<1.0	-	-	-
Barium	1.0 ug/g dry	104	-	-	-
Beryllium	0.5 ug/g dry	<0.5	-	-	-
Boron	5.0 ug/g dry	<5.0	-	-	-
Cadmium	0.5 ug/g dry	<0.5	-	-	-
Chromium	5.0 ug/g dry	7.0	-	-	-
Cobalt	1.0 ug/g dry	3.9	-	-	-
Copper	5.0 ug/g dry	<5.0	-	-	-
Lead	1.0 ug/g dry	1.7	-	-	-
Molybdenum	1.0 ug/g dry	<1.0	-	-	-
Nickel	5.0 ug/g dry	8.0	-	-	-
Selenium	1.0 ug/g dry	<1.0	-	-	-
Silver	0.3 ug/g dry	<0.3	-	-	-
Thallium	1.0 ug/g dry	<1.0	-	-	-
Uranium	1.0 ug/g dry	<1.0	-	-	-
Vanadium	10.0 ug/g dry	<10.0	-	-	-
Zinc	20.0 ug/g dry	<20.0	-	-	-

Report Date: 26-Nov-2020

Order Date: 20-Nov-2020

Project Description: PE4908

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Metals									
Antimony	ND	1.0	ug/g						
Arsenic	ND	1.0	ug/g						
Barium	ND	1.0	ug/g						
Beryllium	ND	0.5	ug/g						
Boron	ND	5.0	ug/g						
Cadmium	ND	0.5	ug/g						
Chromium	ND	5.0	ug/g						
Cobalt	ND	1.0	ug/g						
Copper	ND	5.0	ug/g						
Lead	ND	1.0	ug/g						
Molybdenum	ND	1.0	ug/g						
Nickel	ND	5.0	ug/g						
Selenium	ND	1.0	ug/g						
Silver	ND	0.3	ug/g						
Thallium	ND	1.0	ug/g						
Uranium	ND	1.0	ug/g						
Vanadium	ND	10.0	ug/g						
Zinc	ND	20.0	ug/g						

Report Date: 26-Nov-2020

Order Date: 20-Nov-2020

Project Description: PE4908

Method Quality Control: Duplicate

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Metals									
Antimony	1.1	1.0	ug/g dry	ND			NC	30	
Arsenic	4.0	1.0	ug/g dry	4.3			6.5	30	
Barium	56.3	1.0	ug/g dry	64.7			13.8	30	
Beryllium	0.7	0.5	ug/g dry	0.8			14.8	30	
Boron	7.0	5.0	ug/g dry	7.9			12.4	30	
Cadmium	ND	0.5	ug/g dry	ND			NC	30	
Chromium	17.5	5.0	ug/g dry	19.9			12.8	30	
Cobalt	4.6	1.0	ug/g dry	5.3			13.1	30	
Copper	18.0	5.0	ug/g dry	20.6			13.3	30	
Lead	11.2	1.0	ug/g dry	12.9			14.2	30	
Molybdenum	1.1	1.0	ug/g dry	1.1			1.4	30	
Nickel	14.5	5.0	ug/g dry	16.0			9.7	30	
Selenium	ND	1.0	ug/g dry	ND			NC	30	
Silver	ND	0.3	ug/g dry	ND			NC	30	
Thallium	ND	1.0	ug/g dry	ND			NC	30	
Uranium	ND	1.0	ug/g dry	ND			NC	30	
Vanadium	26.8	10.0	ug/g dry	30.9			14.5	30	
Zinc	45.0	20.0	ug/g dry	50.4			11.5	30	
Physical Characteristics									
% Solids	94.3	0.1	% by Wt.	93.3			1.0	25	

Order #: 2048362

Report Date: 26-Nov-2020

Order Date: 20-Nov-2020

Project Description: PE4908

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Metals									
Antimony	43.5	1.0	ug/g	ND	86.6	70-130			
Arsenic	46.6	1.0	ug/g	1.7	89.7	70-130			
Barium	66.2	1.0	ug/g	25.9	80.6	70-130			
Beryllium	47.5	0.5	ug/g	ND	94.4	70-130			
Boron	48.4	5.0	ug/g	ND	90.4	70-130			
Cadmium	43.1	0.5	ug/g	ND	86.0	70-130			
Chromium	53.0	5.0	ug/g	8.0	90.2	70-130			
Cobalt	46.6	1.0	ug/g	2.1	89.1	70-130			
Copper	50.8	5.0	ug/g	8.2	85.1	70-130			
Lead	47.5	1.0	ug/g	5.2	84.6	70-130			
Molybdenum	45.3	1.0	ug/g	ND	89.7	70-130			
Nickel	50.6	5.0	ug/g	6.4	88.5	70-130			
Selenium	44.0	1.0	ug/g	ND	87.5	70-130			
Silver	52.2	0.3	ug/g	ND	104	70-130			
Thallium	44.6	1.0	ug/g	ND	89.1	70-130			
Uranium	46.9	1.0	ug/g	ND	93.2	70-130			
Vanadium	55.7	10.0	ug/g	12.4	86.7	70-130			
Zinc	61.4	20.0	ug/g	20.2	82.4	70-130			

None

Sample Data Revisions

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected MDL: Method Detection Limit Source Result: Data used as source for matrix and duplicate samples %REC: Percent recovery. RPD: Relative percent difference. NC: Not Calculated

Soil results are reported on a dry weight basis when the units are denoted with 'dry'. Where %Solids is reported, moisture loss includes the loss of volatile hydrocarbons.

Report Date: 26-Nov-2020 Order Date: 20-Nov-2020

Order #: 2048362

Project Description: PE4908

GPARACE LABORATORIES LT	Paracel I	D: 20	48362	vd. J8 .com	Pa Zu	racel Order (Lab Use (242	Number Dnly) 362	Ch Nº	(Lab Use On 52431	stody W
Contact Name: PATERSON Contact Name: KARYN MUNCH Address: 154 COLONNADE Rd. 5. OTTAG Telephone: (613) ZZG - 738 [Regulation 153/04 Other Regulation Table 1 Res/Park Med/Fine REG 558 Down	Pr Qu MA, ON, Er	oject Ref: tote #: #: 31: mail: KMU ix Type:	PE4968 281 WCH@F \$(Soil/Sed.) GW (0	ATERSON	J GI	Roup	्र Re	Ti 1 day 2 day Date Requir	Page <u>l</u> oi urnaround T ed: <u>Hous</u>	ime 3 day Regular
Table 2 Ind/Comm Coarse CCME MISA Table 3 Agri/Other SU - Sani SU - S Table 7 Table 7 For RSC: Yes No Other: Sample ID/Location Name	Matrix Matrix	of Containers	Paint) A (Air) O (Ot Sample	her) e Taken	Voc.s	(FTALS BY ICP				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5 -	2	Nov.20/202 Nov.20/2020							
6 7 8 9										
10 Comments: Relinquished By (Sign):	by Driver/Depot:			Received at Lab:		26	Method	of Delivery: Dro By:	P Box	
Relinquished By (Print): DomINIC LANDRY Date/Time Date/Time: Nov. 20/2020 Temperat	: ire:		°C Parisian 2.0	Date/Time: 10 V Temperature:	20,	20 18: °C	(O Date/Tir pH Verif	ne: 11-2 ied: 🗆	5-20 Mi	1648

	WASTE	CONNECTIONS OF CANA				REPRIN	Т	
	OTTAW	A LANDFILL		SITE	TICKET	#	OPE	RATOR
Waste Connections Canada 🍁	3354 NA SOTTAWA (613) 82	VAN ROAD 5, ON K4B 1H9 4-7289		05	106944	0	km	nasson
000220 \\\\\C				IN	OUT	TRUCK	CONT.	LICENCE
1152 KENAST		IS OF CANADA		11/6/20	11/6/20	278		
OTTAWA, ON	K1B 3P5			10:42 am	11:02 am			
,			INVOICE		REFERE	NCE	OR	IGIN
Contract: VC	C 278 - 473 ALBE	RT ST - OTTAWA	INBOUND	240229	- henri		OTTAWA	CENTER
GROSS TARE NET	27820 kg 15780 kg 12040 kg	Scale In Scale Out		COMMEN	TS: H-16		·	
QTY	UNIT	DESCRIPTION		TRAC	KING QTY	RATE	TAX	TOTAL
12.04	MT	Contaminated Soil						

Intercompany:

SIGNATURE:_____

Workorder: 1255905

	WASTE	CONNECTIONS OF CANA		REPRINT								
	OTTAW	A LANDFILL		SITE	TICKET	#	OPE	ERATOR				
Waste Connectio	3354 NA OTTAWA (613) 82	VAN ROAD A, ON K4B 1H9 4-7280		05	106988	7	jch	eckowy				
000220 11/				IN	OUT	TRUCK	CONT.	LICENCE				
1152 KENAS	ASTE CONNECTION		11/9/20	11/9/20	278							
OTTAWA, O	N K1B 3P5			11:44 am	12:04 pm							
			INVOICE		REFERE	INCE	ORIGIN					
Contract:	VC 278 - 473 ALBE	INBOUND	694121	MTO 15Y		OTTAWA	OTTAWA CENTER					
GROS TAF NE	SS 30250 kg RE 17030 kg T 13220 kg	Scale In Scale Out		COMMEN	TS: H-16							
QTY	UNIT	DESCRIPTION		TRAC	KING QTY	RATE	TAX	TOTAL				
13.22	MT	Contaminated Soil										

	WASTE	CONNECTIONS OF CANA	DA	_					
	OTTAW	A LANDFILL		SITE	TICKET	· #	OPE	ERATOR	
Waste Connections ∳ Canada ♥	3354 NA OTTAWA (613) 82	VAN ROAD 5, ON K4B 1H9 4-7289		05	10701	81	jcheckowy		
000220 14/45				IN	OUT	TRUCK	CONT.	LICENCE	
1152 KENAST	ON STREET	IS OF CANADA		11/10/20) 11/10/20	278			
OTTAWA, ON	K1B 3P5			1:34 pm	1:51 pm				
,			INVOICE		REFER	ENCE	OR	RIGIN	
Contract: VC	C 278 - 473 ALBE	RT ST - OTTAWA	INBOUND	694121	MTO 15Y		OTTAWA	CENTER	
GROSS TARE NET	31200 kg 16990 kg 14210 kg	Scale In Scale Out		COMMEN	TS: H-16				
QTY	UNIT	DESCRIPTION		TRAC	KING QTY	RATE	TAX	TOTAL	
14.21	MT	Contaminated Soil							

Intercompany:

SIGNATURE:_____

Workorder: 1256567