

Site Servicing and Stormwater Management Report 473 Albert Street Ottawa, Ontario December 5, 2019

Prepared for :

InterRent No. 3 Limited Partnership

Submitted to :

City of Ottawa

Parsons Project # 477234

delivering a better world

Table of Contents

1.0	INTRODU 1.1	CTION Site Description and Proposed Development	
	1.2	Guidelines and Background Documents	4
	1.3	Existing Infrastructure	4
	1.4	Consultation and Permits	5
2.0	WATER S	ERVICING	6
	2.1	Proposed Water Servicing	6
	2.2	Design Criteria	6
	2.3	Calculations and Simulation Results	7
	2.4	Summary and Conclusions	9
3.0	SANITARY	Y SERVICING	
	3.1	Proposed Sanitary Servicing	
	3.2	Design Criteria	9
	3.3	Calculations and Results	9
	3.4	Summary and Conclusions	9
4.0		ERVICING AND STORMWATER MANAGEMENT	
	4.1	Existing Storm Servicing	
	4.2	Proposed Storm Servicing	
	4.3	Design Criteria	
	4.4	Allowable Release Rate	11
	4.5	Storm Sewer Design	11
	4.6	Stormwater Management	
	4.7	Stormwater Quality	
	4.8	Major Overland Flow	
	4.9	Summary and Conclusions	
5.0	SEDIMEN	IT AND EROSION CONTROL	
6.0	CONCLUS	SIONS	

List of Tables

Table 1: Proposed Building Breakdown	3
Table 2: Water System Pressure – Criteria	7
Table 3: 203mm Diameter Watermain Boundary Conditions	7
Table 4: Water Demand Rates	8
Table 5: Sanitary Design Flows Criteria	9
Table 6: Rational Method Runoff Coefficients	11
Table 7: Roof Drain Controlled Flows and Storage	12

List of Figures

Figure 1: 473 Albert Street, Ottawa Key Plan	4
Figure 2: Existing Municipal Infrastructure Surrounding the Site	5
Figure 3: Existing Hydrants	8

List of Appendices

APPENDIX A | Correspondence APPENDIX B I Servicing Checklist APPENDIX C | Drawings APPENDIX D | Boundary Conditions APPENDIX E | Water Demand APPENDIX F | CCTV Reports APPENDIX G | Sanitary Flows and Sewer Design Sheet APPENDIX H | Pre-Development Drainage Plan APPENDIX I | Storm Sewer Design Sheet APPENDIX J | Stormwater Management Calculations

1.0 INTRODUCTION

1.1 Site Description and Proposed Development

InterRent No. 3 Limited Partnership (InterRent) has retained Parsons Inc. to prepare a Site Servicing and Stormwater Management Report in support of the conversion of an existing high-rise office building into a mixed-use building consisting of residential, office and restaurant uses at 473 Albert Street. **Figure 1** shows the site location.

There is an existing access driveway from Albert Street at the west side of the property that is covered by the building. The driveway leads to a ramp for the existing two level underground parking garage as well as to a small open area behind the building, historically used as parking. The existing driving access to the surface parking at the back of the building will be converted to pedestrian only access. This open area behind the building will be converted to amenity space including a terrace for the restaurant, bicycle parking, etc. The access to the underground parking garage will remain. The parking garage will provide 47 vehicle parking spaces. There will also be at least 63 bicycle parking spots divided between interior and exterior spaces.

The proposed building breakdown is listed in the table below.

	473 ALBERT STREET (12 STOREYS)			
Gross Floor Area	13,980.26 m ²			
Gross Leasable Area	11,378.15 m ²			
Office Area	1,363.15 m²			
Restaurant Area	385.00 m²			
Residential Area	9,630.00 m²			

Table 1: Proposed Building Breakdown

The existing parcel is roughly 0.17 ha in size with a zoning of Residential Fifth Density Zone. The site ground elevation varies between approximately 74.00 m and 73.2 m and generally slopes to the southwest.

The 472 Albert Street property is surrounded by the features described below.

- North: High rise buildings (residential apartments and office space) facing Queen Street
- East: Albert at Bay Suite Hotel
- South: low rise residential buildings
- West: The Gardens Condo Development

Figure 1: 473 Albert Street, Ottawa Key Plan

1.2 Guidelines and Background Documents

The 473 Albert Street design is in accordance with the documents below.

- Ottawa Design Guidelines Water Distribution, 1st Edition, July 2010 (OWG and technical bulletins)
 - o Technical Bulletin ISD-2010-2, December 15, 2010
 - o Technical Bulletin ISDTB-2014-02, May 27, 2014
 - o Technical Bulletin ISTB-2018-02, March 21, 2018
- Sewer Design Guidelines, City of Ottawa, 2nd Edition, October 2012 (OSG and technical bulletins)
 - o Technical Bulletin ISDTB-2012-6, October 31, 2012
 - o Technical Bulletin ISDTB-2014-01, February 5, 2014
 - o Technical Bulletin PIEDTB-2016-01, September 6, 2016
 - o Technical Bulletin ISTB-2018-01, March 21, 2018
- Water Supply for Public Fire Protection, Fire Underwrites Survey, 1999 (FUS)
- City of Ottawa Park and Pathway Development Manual (2012)
- City of Ottawa Accessibility Design Standards (2012)
- Ottawa Standard Tender Documents (2019)
- Ontario Provincial Standards for Roads & Public Works (2019)

1.3 Existing Infrastructure

The site is currently developed and serviced by municipal infrastructure. The exiting municipal infrastructure surrounding the property is shown in **Figure 2**.

The existing municipal infrastructure on Albert Street consists of:

- A 152 mm UCI watermain (1933) (abandoned)
- A 203 mm UCI watermain (1933)

• A 300 mm CONC combined sewer (1935)

The building currently has a water service, a storm service and a sanitary service. The storm and sanitary services both drain to the City's combined sewer. The water service is supplied by the 203 mm diameter City watermain.

There is planned road, water and sewer renewal works identified for Slater Street, Albert Street and Bronson Avenue in the next 3 – 5 years. This work will likely include separation of the existing combined sewer and upgrades to the watermain network.

1.4 Consultation and Permits

The City of Ottawa and agencies were consulted for this project. A summary of the consultations is provided below; copies of the correspondences and/or minutes are provided in **Appendix A**.

CONSULTATIONS

City of Ottawa

The City of Ottawa provided the following criteria for the proposed development:

- The allowable release rate (storm and sanitary) will be the 2-year pre-development rate;
- Runoff coefficient will need to be determined based on existing conditions but be no more than 0.4;
- Time of concentration should be 20 minutes, or can be calculated, but should not be less than 10 minutes;
- Any storm events greater than 2-year, up to 100-year, and including the 100-year storm event must be detained on site;
- Two separate sewer laterals will be required;

- Foundation drains are to be independently connected to the sewer, unless being pumped with appropriate back up power, sufficient sized pump and backflow prevention.
- Roof drains are to be connected downstream of any incorporated ICD within the stormwater system or pumped with the lateral being appropriately sized;
- Surface water to be retained on property and conveyed to ROW, approved on-site storage or directly to City infrastructure;
- A second drinking water service to be provided where the average daily demand exceeds 50 m³/day;
- FUS fire flow criteria to be used unless a low-rise building, where OBC requirements may be applicable;
- Above and below ground storage is permitted although uses ½ peak flow rate or is modeled; and
- There must be at least 15 cm of vertical clearance between the spill elevation and the ground elevation at the building envelope that is in proximity of the flow route or ponding area.

Rideau Valley Conservation Authority (RVCA)

Parsons contacted the RVCA who indicated that no additional water quality protections will be required as the site will remain rooftop drainage and the existing surface parking will be converted to open amenity space. The communication with the RVCA is included in **Appendix A**.

Ministry of the Environment, Conservation and Parks (MECP)

An Environmental Compliance Approval (ECA) is required for this site as the municipal infrastructure in the area is not fully separated, the building service laterals will drain to a combined sewer.

PERMITS AND APPROVALS

The City of Ottawa and the various agencies consulted require the approvals and permits listed below. The City of Ottawa Development Servicing Study Checklist is included in **Appendix B**.

City of Ottawa

- Road Cut Permit
- Commence Work Order
- Water permit
- Water Data Card
- Flow Control Roof Drainage Declaration

Ontario Ministry of the Environment, Conservation and Parks

• Environmental Compliance Approval

2.0 WATER SERVICING

2.1 Proposed Water Servicing

The proposed drinking water servicing approach includes providing two 152 mm diameter water services. The existing 152 mm diameter service from the City's 203 mm diameter watermain will be maintained. A second 152 mm diameter water service will be provided to the City's 203 mm diameter watermain. A new 203 mm water valve will be installed on the main line separating the two water services.

Drawing C101, in Appendix C, shows the existing and proposed water distribution network.

2.2 Design Criteria

The proposed water servicing network has been designed in general conformance with OWG and FUS as amended by the City of Ottawa by its technical bulletins.

The system pressure criteria under normal and various operating conditions are listed in the table below.

PRESSURE CRITERIA		
КРа	psi	
276-552	40-80	
350-480	50-70	
276-552	40-80	
350-480	50-70	
140	20	
	KPa 276-552 350-480 276-552 350-480	

Table 2: Water System Pressure – Criteria

The City of Ottawa provided the watermain boundary conditions for the existing 203 mm diameter watermain, as shown in the table below. A copy of the correspondence is in **Appendix D**. The City noted that the watermains on Bronson, Albert and surrounding streets are planned to be upgraded but the planned sizes are not known yet so boundary conditions for these future conditions are not known at this time.

Table 3: 203mm Diameter Watermain Boundary Conditions

MAXIMUM HGL	MAXIMUM DAY + FIRE FLOW		
115.5 m	87.8m		
60 psi	20 psi		
411 KPa	140 KPa		
	115.5 m 60 psi		

*The available fire flow = 115 L/s assuming a residual of 20 psi and a ground elevation of 73.5 m.

The boundary conditions provided demonstrate that the available pressure ranges from approximately 46 psi to 60 psi during normal operating conditions but is limited during fire flow conditions.

The fire flow was calculated using the FUS with the following parameters:

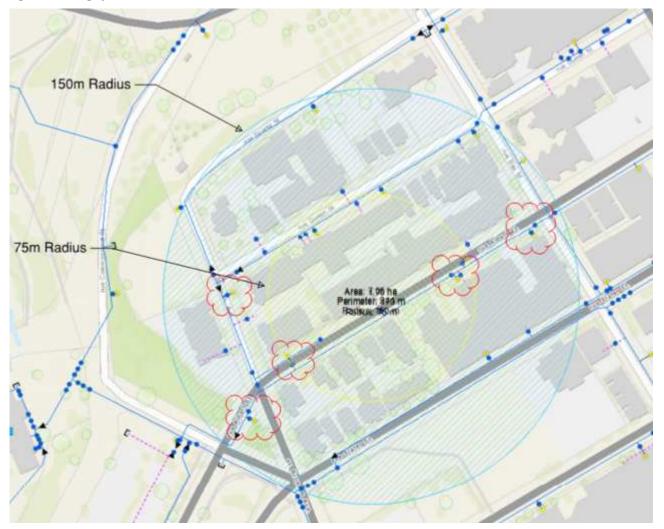
Type of construction:	non-combustible construction
Occupancy Type:	limited combustible
Sprinkler Protection:	fully monitored, automatic sprinkler system from standard water supply

The OWG requires that "Service areas with a basic day demand greater than 50 m³/day (about 50 homes) shall be connected with a minimum of two watermains, separated by an isolation valve, to avoid the creation of a vulnerable service area. Individual residential facilities with a basic day demand greater than 50 m³/day shall be connected with a minimum of two water services, separated by an isolation valve, to avoid the creation of a vulnerable service area." Therefore, a new 152 mm water service will be provided to the building, connected to the existing 203 mm watermain on Albert Street to provide redundancy to the existing 152 mm water service. An isolation valve will be installed on the City's 203 mm watermain to separate the two services.

The new water service will be installed with a minimum cover of 2.4 m where possible. Should there be less than 2.4 m cover or separation from an open structure, the pipes will be insulated as per City Standard Drawings W22 and W23.

2.3 Calculations and Simulation Results

The table below summarizes the anticipated maximum water demand for the proposed building conversion. Detailed calculations for the water demand and fire flow are in **Appendix E**.


Table 4: Water Demand Rates						
BUILDING	AVERAGE DAY DEMAND (ADD)	MAX DAILY DEMAND (MDD)	PEAK HOURLY DEMAND (PHD)	FIRE FLOW DEMAND (FF)	MDD+FF	
	L/s	L/s	L/s	L/s	L/s	
473 Albert	1.61	5.71	8.90	350	355.71	

High pressure is not an issue on this site as the boundary conditions are below 80 psi. Therefore, pressure reducing valves will not be required.

The required fire flow can be provided by five (5) nearby hydrants at the following locations:

- Two hydrants on Albert Street (within 75 m of the building)
- Two hydrants on Albert Street and one hydrant on Bronson, just north of Albert (within 150 m of the building)

Figure 3: Existing Hydrants

There are 5 fire hydrants within the vicinity of the site, 2 hydrants are within 75m and 3 hydrants within 150m. According to Table 18.5.4.3 in Appendix I of ISTB-2018-02, the available fire flow from the existing hydrants surrounding the building is 22,800 L/min (380 L/s). Based on the estimated available fire flow the existing hydrants can meet the required fire flow demands of the building.

2.4 Summary and Conclusions

A second 152 mm water service will be provided from the existing 203 mm watermain on Albert Street.

The water pressures, under average day demand, peak hour demand, are within the allowable pressure range specified by the City of Ottawa.

As per Table 18.5.4.3 of ISTB-2018-02, the surrounding hydrants can meet the required fire flow demands of the proposed building.

The proposed water service is shown on Drawing C101 in Appendix C.

3.0 SANITARY SERVICING

3.1 Proposed Sanitary Servicing

The existing sanitary service was inspected by Clean Water Works. The internal plumbing was noted to be 150 mm diameter cast iron pipe. The service lateral to the sewer in the road is a 203 mm diameter transite pipe. The pipe was inspected before and after flushing. No deficiencies were noted. Therefore, the existing sanitary service will be maintained. It is likely that this service will be replaced to the property line/building face as part of the City's planned sewer and water upgrades in the next few years. The CCTV reports are included in **Appendix F**.

3.2 Design Criteria

The proposed sanitary sewer flow has been designed in general conformance with the OSG and its technical bulletins.

The sanitary design flow rate is the peak flow plus the peak extraneous flow. The table below presents the values for the average flow, peak factor and peak extraneous flows used in the sanitary servicing calculations for the residential development.

DEVELOPMENT TYPE	AVERAGE Sanitary flow	UNIT	PEAK FACTOR	PEAK EXTRANEOUS FLOW		
Residential	280	L/c/d	Harmon Equation	0.33 L/s/gross ha		
Office	75	L/p/d	1.5			
Restaurant	125	L/seat/d	1.5			

Table 5: Sanitary Design Flows Criteria

3.3 Calculations and Results

The sanitary design flows and sewer pipe design spreadsheets, included in **Appendix G**, shows the flows from the proposed converted building as well as the estimated existing flows. The sanitary flows increased due to the proposed residential use of the building. The increase in the sanitary flows will be considered as part of the total allowable release rate from the site to the combined sewer. The existing sanitary service is sufficient to accommodate the proposed sanitary flows.

There will be additional sanitary flows from the parking garage sump which will collect the stormwater any other drainage collected within the garage from snow melt off cars, etc. The discharge rate from the sump pump is not known at this time but is expected to be negligible compared to the sanitary flows from the domestic use.

3.4 Summary and Conclusions

The existing 203 mm diameter sanitary lateral will be maintained for the proposed development.

4.0 STORM SERVICING AND STORMWATER MANAGEMENT

4.1 Existing Storm Servicing

The existing site has a parking drain at the northwest corner of the site which drains into the underground parking garage and is directed to the building's existing services. The site generally drains northeast to southwest with the existing driveway access draining towards the City right-of-way. The topography differs with the northeastern parking portion and driveway access being fairly flat with slopes less than 2% and the northwestern parking portion being sloped around 4%.

The existing storm service was inspected by Clean Water Works. The internal plumbing was noted to be 100 mm and 152 mm diameter cast iron. The storm service lateral to the City sewer is a 203 mm diameter transite pipe. No deficiencies were noted. Therefore, the existing storm service will be maintained. It is likely that this service will be replaced to the property line/building face as part of the City's planned sewer and water upgrades in the next few years.

The site existing drainage area is shown on Figure A: Pre-development Drainage Plan in Appendix H.

4.2 Proposed Storm Servicing

The storm system will maintain the existing parking drain and reuse the existing storm lateral that connects to the 300 mm diameter combined sewer on Albert Street. The existing sump pumps will be retained and will continue pumping drainage from the parking and perimeters drains.

The extended mechanical penthouse on the top floor (13th level) of the building will be equipped with a combination of controlled roof drains and uncontrolled roof drains (where storage is not available). The roof space on the 12th level will be used for amenity space and therefore will be equipped with uncontrolled roof drains. The controlled roof drains will drain directly to the existing storm service. The uncontrolled roof drains and the existing parking drain will drain to a stormwater storage tank, to be located within the underground parking garage. **Drawing C102**, in **Appendix C** depicts the roof drains and their associated catchment areas.

The design approach for the stormwater management is to ensure that the post-development peak flows do not exceed the existing 2-year pre-development release rate flow.

Drawing C101, in Appendix C depicts the boundaries of the post-development drainage areas.

4.3 Design Criteria

The proposed storm sewer system has been designed in general conformance with the OSG and its technical bulletins, plus more specific requirements from the City of Ottawa.

The criteria below were provided in part by the City of Ottawa and RVCA. These agencies correspondence are located in **Appendix A**.

The design criteria for the site includes the following:

- i. Stormwater management for the site shall be based on the 2-year storm event using the IDF information derived from the Meteorological Services of Canada rainfall data, taken from the MacDonald Cartier Airport, collected 1966 to 1997;
- ii. The pre-development runoff coefficient or a maximum equivalent 'C' of 0.4, whichever is less (8.3.7.3);
- iii. A calculated time of concentration (Cannot be less than 10 minutes);
- iv. Flows to the storm sewer in excess of the 2-year storm release rate, up to and including the 100-year storm event, must be detained on site;
- v. The Rational Method is used to calculate the allowable peak flow to discharge into the receiving combined sewer systems and the runoff volume to be retained on site;
- vi. IDF curve equations used with the Rational formula:
 - a. 2-year =732.951/(Tc+6.199)^{0.810}

b. 100-year = 1735.688/(Tc+6.014)^{0.820}

The Rational Method uses runoff coefficients for various surfaces. The table below shows the runoff coefficients chosen in this study. The runoff coefficient for a 100-year storm event is increased by 25% per the OSG.

SURFACE	5-YEAR COEFFICIENT	100-YEAR COEFFICIENT
Asphalt/Building/Concrete	0.90	1.00

4.4 Allowable Release Rate

The allowable release rate for the 0.16 ha site developed was calculated using the rational method formula based on the 2-year flow and the existing runoff coefficient of 0.4.

where

Q = Flow rate (L/s) C = Runoff coefficient i = Rainfall intensity (mm/hr) A = Area (ha)

Q = 2.78 CiA

The resultant allowable release rate is **14.0 L/s**.

The allowable release rate is a combination of the sanitary and storm flows as the flows are conveyed to a combined sewer. As a result, the allowable release rate for the storm flows is decreased by the equivalent amount of sanitary flows that are additional compared to the flows associated with the existing usage. The existing building usage results in an estimated sanitary flow of 1.34 L/s. The proposed building usage results in an estimated sanitary flow of 3.73 L/s. This represents an increase of 2.39 L/s in the sanitary flows. Therefore, the allowable storm release rate is decreased by 2.39 L/s to a total of **11.6 L/s**.

4.5 Storm Sewer Design

Calculations showing the storm sewer design are included in **Appendix I**. The storm sewer design spreadsheet is based on the Rational Method and Manning formula and was used to calculate the design flow and required pipe size. Ottawa IDF information for the 2-year design storm was used to calculate the peak flows.

Drawing C101, in Appendix C shows the drainage areas.

4.6 Stormwater Management

The on-site storm water management has been designed to attenuate the 2-year and 100-year post-development flow rates to the allowable post-development flow rates as shown in **Appendix J**.

DRAINAGE AREA WS-01 (CONTROLLED ROOF DRAINS)

A portion of the expanded mechanical penthouse roof will provide stormwater storage through the use of controlled roof drains, Watts Adjustable Accutrol roof drains. The drainage area per roof drain is shown in the table below. The roof drains are shown on **Drawing C102**, in **Appendix C**.

Roof Drain	Controlled Flow (L/s)		Max Ponding Depth (mm)		Storage Volume (m ³)	
Number	1:5 Year	1:100 Year	1:5 Year	1:100 Year	1:5 Year	1:100 Year
CFRD 1	0.15	0.38	11.7	30.5	0.044	0.115
CFRD 2	0.13	0.34	10.6	27.4	0.048	0.126
CFRD 3	0.14	0.38	11.7	30.3	0.044	0.115
CFRD 4	0.13	0.33	10.4	26.9	0.049	0.128
CFRD 5	0.06	0.15	4.8	12.3	0.070	0.183
CFRD 6	0.14	0.37	11.4	29.7	0.045	0.118
CFRD 7	0.06	0.15	4.7	12.1	0.070	0.183
CFRD 8	0.06	0.15	4.9	12.5	0.070	0.182
CFRD 9	0.13	0.34	10.6	27.4	0.048	0.126
CFRD 10	0.06	0.14	4.5	11.5	0.071	0.185
CFRD 11	0.14	0.38	11.7	30.4	0.044	0.115
CFRD 12	0.10	0.25	7.7	19.9	0.059	0.154
Total	1.30	3.36				

Table 7: Roof Drain Controlled Flows and Storage

The controlled flow from these sub-catchment areas will be **1.3** L/s for the 2-year event and **3.4** L/s for the 100-year event. The controlled roof drains will be connected directly to the storm service, inside the building.

DRAINAGE AREA WS-02 (UNCONTROLLED ROOF DRAINS)

The remaining portions of the mechanical penthouse, as well as the roof on the amenity floor, will drain through uncontrolled roof drains. These flows will be directed to the stormwater storage tank within the underground parking garage.

DRAINAGE AREA WS-03 (GROUND LEVEL AMENITY SPACE BEHIND THE BUILDING)

The post-development flow for this sub-catchment area will be collected using the existing parking drain. The flows will be directed to the stormwater storage tank within the underground parking garage.

The flows from Drainage Areas WS-02 and WS-03 will be directed to the stormwater storage tank. The stormwater storage tank will be pumped to the existing storm service at a maximum allowable flow rate of 8.2 L/s. The required storage volume of the storage tank is 43.1 m^3 .

4.7 Stormwater Quality

The RVCA has indicated that onsite water quality treatment will not be required as the stormwater is all captured on the roof or in the open space behind the building, there are no surface parking areas and driving isles.

4.8 Major Overland Flow

The major overland flow route generally flows to the southwest with most of the site exiting to the City right-of-way.

PARSONS

4.9 Summary and Conclusions

The existing storm service will be maintained and will convey the flows from the controlled roof drains as well as the pumped flows from the stormwater storage tank.

5.0 SEDIMENT AND EROSION CONTROL

To mitigate the impacts due to erosion and sedimentation during construction, erosion and sediment control measures shall be installed and maintained throughout the duration of construction. Measures shall only be removed once the construction activities are complete, and the site has stabilized.

The measures will include:

• Siltsack® shall be installed between the frame and cover of existing and new catchbasins and maintenance holes, to minimize sediments entering the storm drainage system. These shall remain in place until construction is complete.

6.0 CONCLUSIONS

This report outlines the proposed servicing and stormwater management design for the conversion of the existing building at 473 Albert Street, Ottawa, ON.

The proposed drinking water system will include the use of the existing 152 mm diameter water service as well as the construction of a second 152 mm diameter water service and the installation of a new line valve on the City watermain between these two connections.

The proposed sanitary sewer system will consist of the reuse of the existing sanitary service to convey flows to the existing combined sewer.

Stormwater runoff from the site will include a combination of controlled roof drains as well as uncontrolled roof drains and the ground level amenity space behind the building. The uncontrolled flows will be directed to a stormwater storage tank to be located within the underground parking garage. The flows in the stormwater storage tank will be pumped to the existing storm service at a maximum allowable rate of 8.8 L/s.

Prepared by:

Mathew Theiner, P.Eng., ing.

Reviewed by:

Meghan MacSween, M.Eng., P.Eng.

H:\ISO\477234\1000\DOCS\473 Albert Site Servicing and SWM ReportR1.02.docx

APPENDIX A | CORRESPONDENCE

473 Albert: Preconsultation Meeting

Conversion of existing high-rise office building into a mixed-use building (~126 dwelling units, office and restaurant uses)

Christopher Moise (Design) Comments:

- Consider fenestration / cladding / treatment at grade
- Consider location of loading area
- Re-consider 'dog area' at grade in rear yard
- Building & Façade
 - Clarify 'brutalist' characterization
 - How is the building 'residential' from the exterior
 - Consider balconies (juliette or otherwise)
 - Appropriateness of exposing concrete (especially as an <u>improvement)</u>
- UDRP for DPA not required

John Bernier (File Lead, Planner)

- Height limit is 37 metres: is 'amenity penthouse' a projection (**if no=Variance**)
- Restaurant terrace (outdoor comm. patio) is prohibited (**MV or Minor ZBA**)
- Minor variances required for existing building setbacks
- Loading space (in ROW) not functional
 - Make reference to 'Downtown Moves'
 - Which considers 2 loading spaces
 - o Considers tree plantings
 - 'DM' implementation to be determined
 - J. Bernier to provide timeline for DM
- Encroachment agreement for (new) canopy must be reviewed
- Dog Run is there a more appropriate use for those lands?
- Complex Site Plan Application:
 - <u>Timeline: +4 months</u>
 - o ZBA v. MV different timelines
 - <u>MV only after conclusion of first round of circulation/issue</u> resolution

E. Johnson (CLV Group)

- Existing encroachment agreement

Wally Dubyk (Transportation)

- 1.25 metre right-of-way protection to be conveyed
- RE: **TIA Screening:** 2 triggers for step 2 guidelines
- Multimodal service must be analyzed
- Must address reduction of parking spaces on site

- Must review docking/ROW layby
- C. Gordon (Applicants Transportation Consultant, In Response):
 - $\circ~$ Initial morning trip generation (ex. Office vs. residential), 200 v. ~80
 - Prefer to avoid full TIA process: proposes Supplement to 'Step 1'
- Dubyk: Supplement to Step 1 as alternate 'works'
- Must submit a Construction Management Plan

Shawn Wessel (Infrastructure)

- ECA required (combined sewer dates to 1935)
- Services on site, require CCTV Report
- SWM increase, SWM guidelines have changed
 - Rear yard may increase release rate
- Roof Drains: must see existing drain detail
- Wind Study Required
- Record of Site Condition Required
- Enbridge requires new pressure relief valve (to be shown on plans)
- Noise Study Req'd: Height and location of building
 - Must include stationary noise sources
 - Must include amenity areas
 - Fenestration reference FDC Rating
- Road & Sewer & Water Renewal Planned for Albert (likely sewer separation)
- Contact RVCA RE: restrictions
- Existing restaurant: sanitary needs grease trap
- Oil & grit separator: TBD for parking garage
- S.W. to provide **boundary conditions** for SWM Consultant
- Fire hydrant analysis Secondary water service required
- Trees: confirm appropriate species (in ROW) given services
- Must confirm if services in surcharge condition

Infrastructure:

A 152 mm dia. UCI Watermain (c. 1933) is available on the North side of Albert St.

A 203 mm dia. UCI Watermain (c. 1933) is available on the South side of Albert St.

A 300 mm dia. Conc. Combined Sewer (c. 1935) is available on Albert St., which is conveyed to the Booth St. Trunk and then onto the Interceptor Sewer.

The following apply to this site and any development within a <u>combined sewer</u> area:

- Total (San & Stm) allowable release rate will be 2-year pre-development rate.
- Coefficient (C) of runoff will need to be determined **as per existing conditions** but in no case more than 0.4
- TC = 20 minutes or can be calculated TC should be not be less than 10 minutes, since IDF curves become unrealistic at less than 10 min.
- Any storm events greater than 2 year, up to 100 year, and including 100-year storm event must be detained on site.
- Two separate sewer laterals (one for sanitary and other for storm) will be required.

An MECP ECA will be required.

Please have applicant provide one copy of the following for our review: MECP ECA Application Form - Direct Submission tied to SPC Fees - Certified Cheque made out to "Ministry of Finance" Proof of Applicant's Identification (if no Certificate of Incorporation) Certificate of Incorporation (if Applicable) NAICS Code (If Applicable) Plan & Profile Grading and Servicing Plans Survey Plan Pipe Data Form Draft ECA (City of Ottawa Expanded Works Form) Source Protection Policy Screening & Significant Threat Report Sewer Drainage Area Plan SWM Report Services Report Geotechnical Report & any other supportive documentation Correspondence: City of Ottawa including ROW, Water Resources Dept., ISD etc., MNR, Conservation Authority & MECP.

Please note that once the review has been completed and the Sr. Engineer is satisfied and ready to sign off on the application, after the PM recommendations 3 final bound copies

including 3 flash drives will be required to accompany the applications with MECP and for City of Ottawa records.

Footer of ECA Application should have reference #: 8551E (2019/05)

Please also note:

Foundation drains are to be independently connected to sewermain (separated or combined) unless being pumped with appropriate back up power, sufficient sized pump and back flow prevention. Water Resources Dept. to comment if connection is to a combined sewer.

Roof drains are to be connected downstream of any incorporated ICD within the SWM system or pumped with the lateral being appropriately sized.

RVCA:

Applicant to contact Rideau Valley Conservation Authority (RVCA) for possible restrictions due to quality control. Provide correspondence in Report.

Grease trap required for restaurant if not already installed.

Trees – please ensure proposed trees do not conflict with existing or proposed services. Deep root plantings not permitted. Services to be outside critical root zone (CRZ).

Surface water to be retained on property and conveyed to ROW, approved on-site storage or directly to City infrastructure. Refer to calculated allowable release rate and this sites SWM.

Existing or proposed canopy at front of building: Please provide details on how this canopy will drain and if applicable, connect to City infrastructure. Show DS location on plans and speak to this in the SWM Report.

Provide roof plan showing drain and scupper locations including control information.

Provide all control information including manufacturing specifications in the SWM Report.

Water Supply Redundancy – Fire Flow:

Applicant to ensure that a second service with an inline valve chamber be provided where the average daily demand exceeds 50 m³ / day (0.5787 l/s per day) FUS Fire Flow Criteria to be used unless a low-rise building, where OBC requirements may be applicable.

Where underground storage (UG) and surface ponding are being considered:

Show all ponding for 5 and 100 year events

Above and below ground storage is permitted although uses 1/2 Peak Flow Rate or is modeled. Please confirm that this has been accounted for and/or revise.

Rationale:

The Modified Rational Method for storage computation in the Sewer Design Guidelines was originally intended to be used for above ground storage (i.e. parking lot) where the change in head over the orifice varied from 1.5 m to 1.2 m (assuming a 1.2 m deep CB and a max ponding depth of 0.3 m). This change in head was small and hence the release rate fluctuated little, therefore there was no need to use an average release rate.

When underground storage is used, the release rate fluctuates from a maximum peak flow based on maximum head down to a release rate of zero. This difference is large and has a significant impact on storage requirements. We therefore require that an average release rate be used to estimate the required volume. Alternatively, the consultant may choose to use a submersible pump in the design to ensure a constant release rate.

In the event that there is a disagreement from the designer regarding the required storage, The City will require that the designer demonstrate their rationale utilizing dynamic modelling, that will then be reviewed by City modellers in the Water Resources Group.

Note that the above will added to upcoming revised Sewer Design Guidelines to account for underground storage, which is now widely used.

Further to above, what will be the actual underground storage provided during the major (100 year) and minor (2 year) storm events?

Please provide information on UG storage pipe. Provide required cover over pipe and details, chart of storage values, capacity etc. How will this pipe be cleaned of sediment and debris?

Note - There must be at least 15cm of vertical clearance between the spill elevation and the ground elevation at the building envelope that is in proximity of the flow route or ponding area. The exception in this case would be at reverse sloped loading dock locations. At these locations, a minimum of 15cm of vertical clearance must be provided below loading dock openings. Ensure to provide discussion in report and ensure grading plan matches if applicable.

Provide information on type of underground storage system including product name and model, number of chambers, chamber configuration, confirm invert of chamber system, top of chamber system, required cover over system and details, interior bottom slope (for self-cleansing), chart of storage values, length, width and height, capacity, entry ports (maintenance) etc.

Provide a cross section of underground chamber system showing invert and obvert/top, major and minor HWLs, top of ground, system volume provided during major and minor events. UG storage to provide actual 2 and 100 year event storage requirements.

In regard to all proposed UG storage, ground water levels (and in particular HGW levels) will need to be reviewed to ensure that the proposed system does not become surcharged and thereby ineffective.

Modeling can be provided to ensure capacity for both storm and sanitary sewers for the proposed development by City's Water Distribution Dept. – Modeling Group, through Infrastructure PM and upon request.

For proposed depressed driveways or developments with private lanes, parking areas or with entrances etc. lower than roadway...

Other:

Due to more sensitive use, a Record of Site Condition (RSC) is required. Ensure Phase I, and if applicable, Phase II ESA's speak to required RSC.

Environmental Noise Study is required due to Albert St. and within 100m proximity of Slater and Bronson Avenues.

Stationary Noise Study – consultant to speak to this in their report as per City NCG and NPC 300 Guidelines. Particularly regarding roof top units and amenity spaces.

Shadow Study required for this proposal.

Wind Study is required for this proposal.

Capital Projects:

Road, Water and Sewer renewal projects listed for Slater, Albert and Bronson in the next 3-5 years.

Environmental Source Information (Re: Phase I ESA):

City of Ottawa - Historical Land Use Inventory (HLUI) - Required

Rationale:

The HLUI database is currently undergoing an update. The updated HLUI will include additional sources beyond those included in the current database, making the inclusion of this record search even more important.

Although a municipal historic land use database is not specifically listed as required environmental record in O. Reg 153/04, Schedule D, Part II states the following:

The following are the specific objectives of a records review:

- 1. To obtain and review records that relate to the Phase I (One) property and to the current and past uses of and activities at or affecting the Phase I (One) property in order to determine if an area of potential environmental concern exists and to interpret any area of potential environmental concern.
- 2. To obtain and review records that relate to properties in the Phase I (One) study area other than the Phase I (One) property, in order to determine if an area of potential environmental concern exists and to interpret any area of potential environmental concern.

It is therefore reasonable to request that the HLUI search be included in the Phase I ESA to meet the above objectives. Please submit.

Existing buildings require a CCTV inspection and report to ensure existing services to be reused are in good working order and meet current minimum size requirements. Located services to be placed on site servicing plans.

All existing reports and plans will need to be revised if older than 2 years and must reflect current City Standards, Guidelines, By-laws and Policies.

Please refer to City of Ottawa website portal **for "Guide to preparing Studies and Plans"** at <u>https://ottawa.ca/en/city-hall/planning-and-development/information-</u> <u>developers/development-application-review-process/development-application-</u> <u>submission/guide-preparing-studies-and-plans</u>.

Please ensure you are using the current guidelines, bylaws and standards including materials of construction, disinfection and all relevant reference to OPSS/D and AWWA guidelines - all current and as amended, such as:

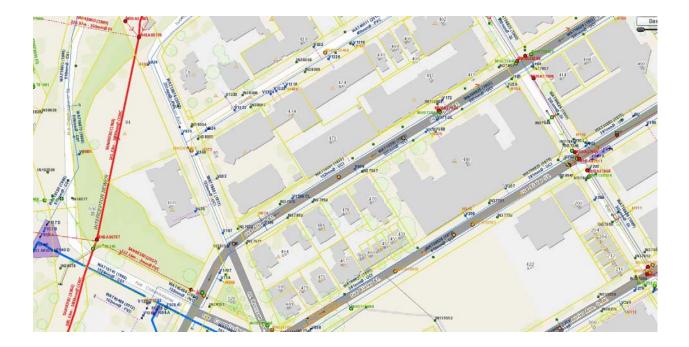
<u>City of Ottawa Sewer Design Guidelines</u> (**CoOSDG**) complete with ISTDB 2012-01, 2014-01, 2016-01 & 2018-01 technical bulletin updates as well as current Sewer, Landscape & Road Standard Detail Drawings as well as Material Specifications (MS Docs). Sewer Connection (2003-513) & Sewer Use (2003-514) By-Laws.

<u>City of Ottawa Water Distribution Design Guidelines</u> (**CoOWDDG**) complete with ISTDB 2010-02, 2014-02 & 2018-02 technical bulletin updates as well as current Watermain/ Services Material Specifications (MS Docs) as well as Water and Road Standard Detail Drawings. FUS Fire Flow standards

Water (2018-167) By-Law

Ensure to include version date and add "(as amended)" when referencing all standards, detail drwaings, by-Laws and guidelines.

Please also note:


Regarding provided Information, please be advised that it is the responsibility of the applicant and their representatives/consultants to verify information provided by the City of Ottawa. Please contact City View and Release Info Centre at Ext. 44455

Contact me at 613-580-2424, Ext. # 33017 or e-mail <u>shawn.wessel@ottawa.ca</u> if you have any questions.

Sincerely,

St. D

Shawn Wessel, A.Sc.T., rcji Project Manager Development Review, Central Branch

MacSween, Meghan

From:	Eric Lalande <eric.lalande@rvca.ca></eric.lalande@rvca.ca>
Sent:	Tuesday, November 05, 2019 9:52 AM
То:	MacSween, Meghan
Subject:	[EXTERNAL] RE: 473 Albert Street, Ottawa

Hi Meghan,

The RVCA will not require any additional water quality protections as the site will remain rooftop along with the conversion of parking spaces to open area.

Thank you,

Eric Lalande, MCIP, RPP

Planner, Rideau Valley Conservation Authority 613-692-3571 x1137

From: MacSween, Meghan <Meghan.Macsween@parsons.com>
Sent: Tuesday, October 29, 2019 11:29 AM
To: Eric Lalande <eric.lalande@rvca.ca>
Subject: 473 Albert Street, Ottawa

Hi Eric,

We would like to request any RVCA requirements or comments related to proposed work at 473 Albert Street in Ottawa.

We are working for the owner of this building (CLV Group) towards a Site Plan Approval from the City of Ottawa, to convert the existing building from office use to mixed-use (residential, office and restaurant). The existing building footprint will remain the same. As you can see from the existing aerial below, the building covers the majority of the property. Currently there is a driving aisle on the west side of the property, which is covered by the building, see picture below, that allows access to an underground parking garage as well as a small open area at the back of the property that has been used for parking a few cars in the past.

The proposed works include renovations inside the building and reuse of the existing underground parking garage. However, the vehicle access to the back of the property will be eliminated and replaced with pedestrian only access. The ground level at the back of the building will consist of amenity space including a restaurant terrace, bicycle storage and a basketball court – there will be no vehicle parking. I've attached a very preliminary site plan so you can see the building footprint and the amenity space behind the building. There will be a separate sanitary and storm outlet to the existing combined sewer in Albert Street. We are awaiting CCTV results to confirm if we'll be reusing existing service laterals or constructing new ones.

Please feel free to contact me if you have any questions or concerns.

Thanks,

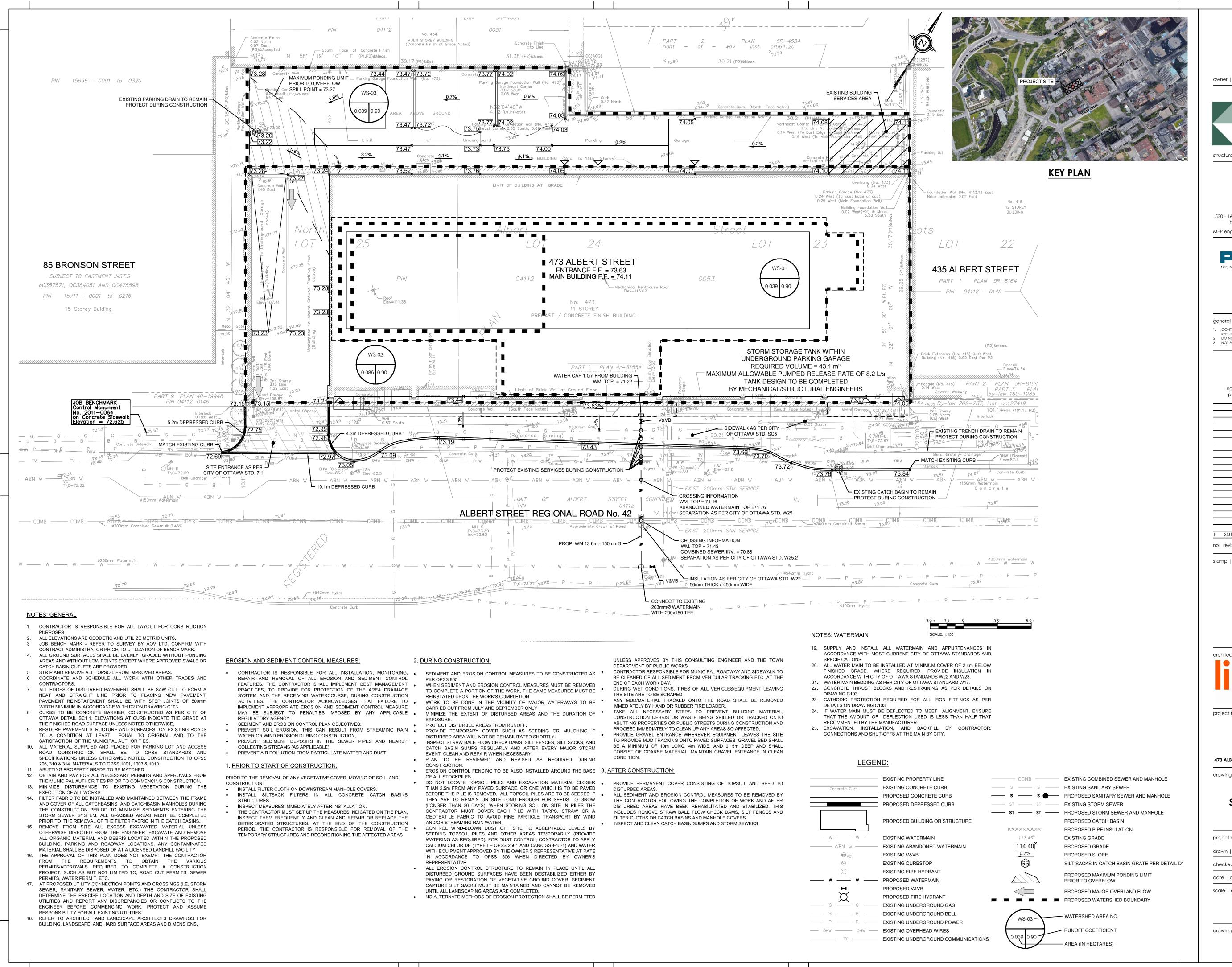
Meghan

Meghan MacSween, M.Eng., P.Eng.

Municipal Engineer 1223 Michael St. North, Suite 100, Ottawa, ON K1J 7T2 meghan.macsween@parsons.com - P: +1 613.691.1540 M: +1 343.997.3895

PARSONS - Envision More www.parsons.com | LinkedIn | Twitter | Facebook

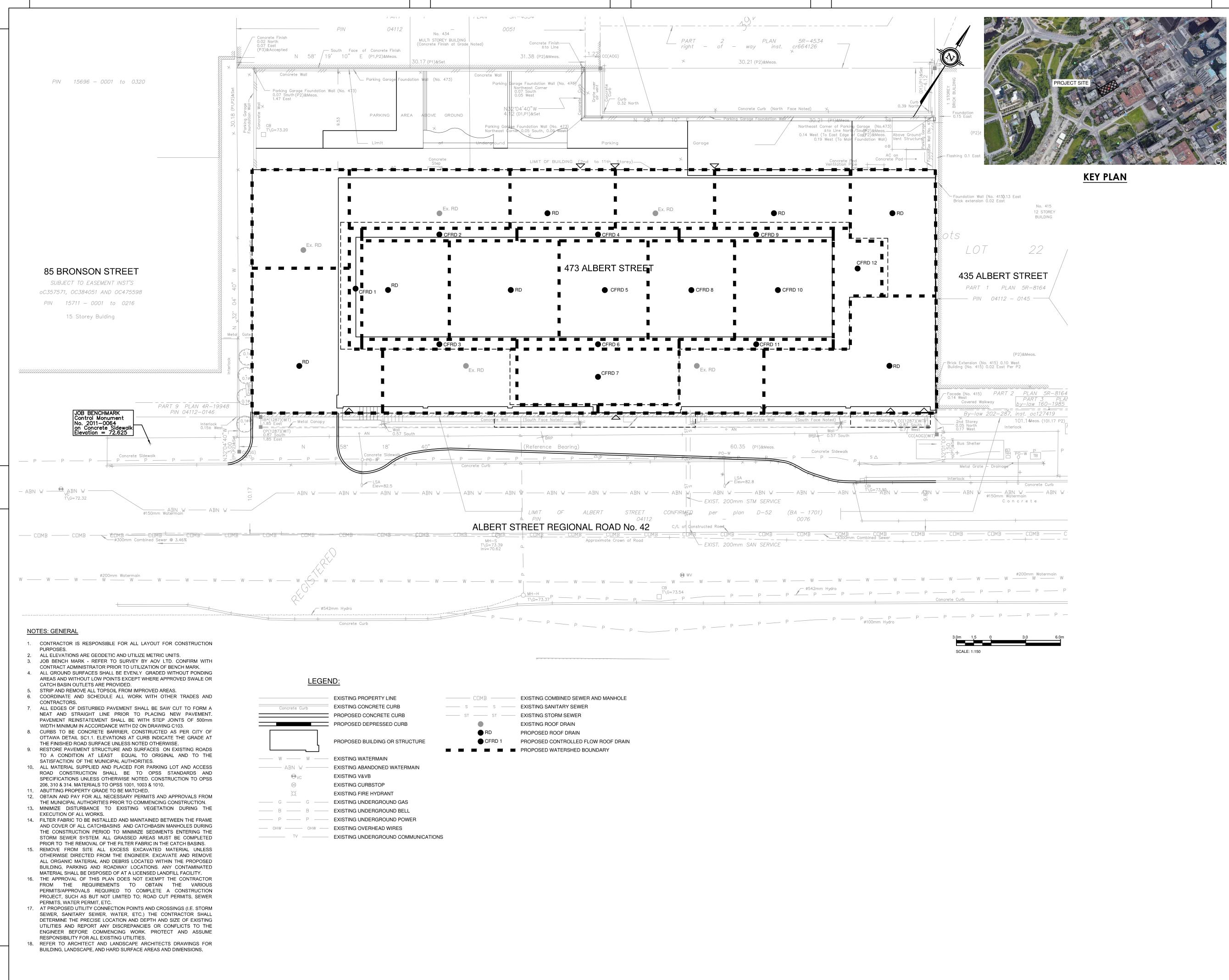
APPENDIX B | SERVICING CHECKLIST

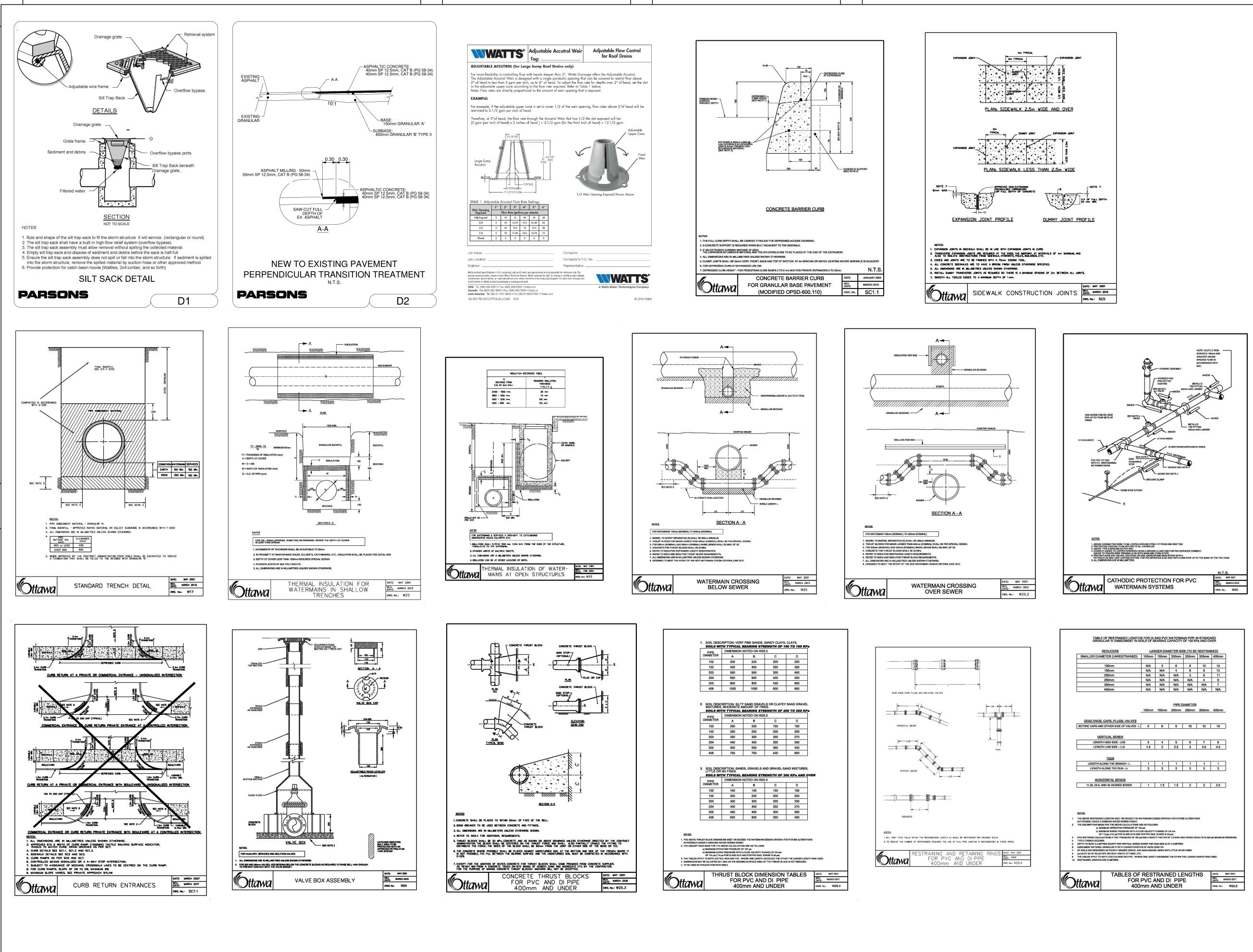

	Development Servicing Study Checklist	
1 Ger	eral Content	Comments
NA	Executive Summary (for larger reports only).	
Y	Date and revision number of the report.	Title page
Y	Location map and plan showing municipal address, boundary, and layout of proposed development.	Figure 1 and Drawing C101
Y	Plan showing the site and location of all existing services.	Drawing C101 and Figure 2
NA	Development statistics, land use, density, adherence to zoning and official plan, and	<u> </u>
	reference to applicable subwatershed and watershed plans that provide context to which individual developments must adhere.	
Y	Summary of Pre-consultation Meetings with City and other approval agencies.	Section 1.4
	Reference and confirm conformance to higher level studies and reports (Master	
	Servicing Studies, Environmental Assessments, Community Design Plans), or in the	
	case where it is not in conformance, the proponent must provide justification and	
	develop a defendable design criteria.	
Y	Statement of objectives and servicing criteria.	Section 2.2/3.2/4.3
Ý	Identification of existing and proposed infrastructure available in the immediate area.	
[.]		
NA	Identification of Environmentally Significant Areas, watercourses and Municipal	
	Drains potentially impacted by the proposed development (Reference can be made	
	to the Natural Heritage Studies, if available).	
Y	Concept level master grading plan to confirm existing and proposed grades in the	Drawing C101
	development. This is required to confirm the feasibility of proposed storm water	
	management and drainage, soil removal and fill constraints, and potential impacts to	
	neighboring properties. This is also required to confirm that the proposed grading	
	will not impede existing major system flow paths.	
NA	Identification of potential impacts of proposed piped services on private services	
	(such as wells and septic fields on adjacent lands) and mitigation required to address	
	potential impacts.	
Y	Proposed phasing of the development, if applicable	Section 1.1
NA	Reference to geotechnical studies and recommendations concerning servicing.	
	All preliminary and formal site plans submissions should have the following information:	
Y	Metric Scale	Drawings
Y	 North arrow (including construction North) 	Drawings
Y	• Key Plan	Drawings
Y	 Name and contact information of applicant and property owner 	Drawings
Y	 Property limits including bearing and dimensions 	Drawings
Y	 Existing and proposed structures and parking areas 	Drawings
Y	 Easement, road widening and right-of-way 	Drawings
Y	Adjacent street names	Drawings
2 De	velopment Servicing Report : Water	Comments
	Confirm consistency with Master Servicing Study, if available.	
Y	Availability of public infrastructure to services proposed development.	Section 2.0
Y	Identification of system constraints.	Section 2.2
Y	Identification of boundary conditions.	Section 2.2
Y	Confirmation of adequate domestic supply and pressure	Section 2.2
Y	Confirmation of adequate fire flow protection and confirmation that fire flow is	Section 2.2
	calculated as per the Fire Underwriter's Survey. Output should show available fire	
	flow at locations throughout the development.	

	Development Servicing Study Checklist	
NA	Provided a check of high pressure. If pressure is found to be high, an assessment is	
	required to confirm the application of pressure reducing valves.	
NA	Definition of phasing constraints. Hydraulic modeling is required to confirm servicing	
	for all defined phases of the project including the ultimate design.	
Y	Address reliability requirements such as appropriate location of shut-off valves.	Section 2.2
NA	Check on the necessity of a pressure zone boundary modification.	
NA	Reference to water supply analysis to show that major infrastructure is capable of delivering sufficient water for the proposed land use. This includes data that shows that expected demands under average day, peak hour and fire flow conditions provide water within the required pressure range.	Section 2.2
Y	Description of the proposed water distribution network, including locations of proposed connections to the existing system, provisions for necessary looping, and appurtenances (valves, pressure reducing valves, valve chambers, and fire hydrants) including special metering provisions.	Section 2.1
NA	Description of off-site required feedermains, booster pumping stations, and other water infrastructure that will be ultimately required to service proposed development, including financing, interim facilities, and timing of implementation.	
Y	Confirmation that water demands are calculated based on the City of Ottawa Design Guidelines.	Section 2.2
Y	Provision of model schematic showing the boundary conditions locations, streets, parcels, and building locations for reference.	Appendix D
3 De	velopment Servicing Report: Wastewater	Comments
Y	Summary of proposed design criteria (Note: Wet-weather flow criteria should not	Section 3.0
	deviate from the City of Ottawa Sewer Design Guidelines. Monitoring Flow data from relatively new infrastructure cannot be used to justify capacity requirements for	
	deviate from the City of Ottawa Sewer Design Guidelines. Monitoring Flow data from	
NA	deviate from the City of Ottawa Sewer Design Guidelines. Monitoring Flow data from relatively new infrastructure cannot be used to justify capacity requirements for	
NA NA	deviate from the City of Ottawa Sewer Design Guidelines. Monitoring Flow data from relatively new infrastructure cannot be used to justify capacity requirements for Confirm consistency with Master Servicing Study and/or justification for deviations. Consideration of local conditions that may contribute to extraneous flow that are higher than the recommended flow in the guidelines. This includes groundwater and	Section 3.1
NA NA Y	deviate from the City of Ottawa Sewer Design Guidelines. Monitoring Flow data from relatively new infrastructure cannot be used to justify capacity requirements for Confirm consistency with Master Servicing Study and/or justification for deviations. Consideration of local conditions that may contribute to extraneous flow that are higher than the recommended flow in the guidelines. This includes groundwater and soil conditions, and age and condition of sewers. Description of existing sanitary sewer available for discharge of wastewater from	
NA NA Y	deviate from the City of Ottawa Sewer Design Guidelines. Monitoring Flow data from relatively new infrastructure cannot be used to justify capacity requirements for Confirm consistency with Master Servicing Study and/or justification for deviations. Consideration of local conditions that may contribute to extraneous flow that are higher than the recommended flow in the guidelines. This includes groundwater and soil conditions, and age and condition of sewers. Description of existing sanitary sewer available for discharge of wastewater from proposed development. Verify available capacity in downstream sanitary sewer and/or identification of upgrades necessary to service the proposed development. (Reference can be made	
NA NA Y NA Y	deviate from the City of Ottawa Sewer Design Guidelines. Monitoring Flow data from relatively new infrastructure cannot be used to justify capacity requirements for Confirm consistency with Master Servicing Study and/or justification for deviations. Consideration of local conditions that may contribute to extraneous flow that are higher than the recommended flow in the guidelines. This includes groundwater and soil conditions, and age and condition of sewers. Description of existing sanitary sewer available for discharge of wastewater from proposed development. Verify available capacity in downstream sanitary sewer and/or identification of upgrades necessary to service the proposed development. (Reference can be made to previously completed Master Servicing Study if applicable). Calculations related to dry-weather and wet-weather flow rates from the development in standard MOE sanitary sewer design table (Appendix 'C') format. Description of proposed sewer network including sewers, pumping stations, and forcemains.	Section 3.1
NA NA Y NA Y	deviate from the City of Ottawa Sewer Design Guidelines. Monitoring Flow data from relatively new infrastructure cannot be used to justify capacity requirements for Confirm consistency with Master Servicing Study and/or justification for deviations. Consideration of local conditions that may contribute to extraneous flow that are higher than the recommended flow in the guidelines. This includes groundwater and soil conditions, and age and condition of sewers. Description of existing sanitary sewer available for discharge of wastewater from proposed development. Verify available capacity in downstream sanitary sewer and/or identification of upgrades necessary to service the proposed development. (Reference can be made to previously completed Master Servicing Study if applicable). Calculations related to dry-weather and wet-weather flow rates from the development in standard MOE sanitary sewer design table (Appendix 'C') format.	Section 3.1
NA NA Y NA NA	deviate from the City of Ottawa Sewer Design Guidelines. Monitoring Flow data from relatively new infrastructure cannot be used to justify capacity requirements for Confirm consistency with Master Servicing Study and/or justification for deviations. Consideration of local conditions that may contribute to extraneous flow that are higher than the recommended flow in the guidelines. This includes groundwater and soil conditions, and age and condition of sewers. Description of existing sanitary sewer available for discharge of wastewater from proposed development. Verify available capacity in downstream sanitary sewer and/or identification of upgrades necessary to service the proposed development. (Reference can be made to previously completed Master Servicing Study if applicable). Calculations related to dry-weather and wet-weather flow rates from the development in standard MOE sanitary sewer design table (Appendix 'C') format. Description of proposed sewer network including sewers, pumping stations, and forcemains. Discussion of previously identified environmental constraints and impact on servicing (environmental constraints are related to limitation imposed on the development in	Section 3.1

NA	Development Servicing Study Checklist	
NA	Identification and implementation of the emergency overflow from sanitary pumping	
	station in relation to the hydraulic grade line to protect against basement flooding.	
	Special considerations such as contamination, corrosive environment etc.	
De	velopment Servicing Report: Stormwater Checklist	Comments
Y	Description of drainage outlets and downstream constraints including legality of	Section 4.1
	outlets (i.e. municipal drain, right-of-way, watercourse, or private property)	
	Analysis of available capacity in existing public infrastructure.	
Y	A drawing showing the subject lands, its surroundings, the receiving watercourse,	Figure A and Figure B in
	existing drainage patterns, and proposed drainage patterns.	Appendix G
Y	Water quantity control objective (e.g. controlling post-development peak flows to	Section 4.3
	pre-development level for storm event ranging from the 2 or 5 years event	
	(dependent on the receiving sewer design) to 100 years return period); if other	
ſ	objectives are being applied, a rationale must be included with reference to	
	hydrologic analyses of the potentially affected subwatershed, taking into account	
	long-term cumulative effects.	
٨V	Water Quality control objectives (basic, normal or enhanced level of protection based	
	on the sensitivities of the receiving watercourse) and storage requirements.	
Y	Description of the stormwater management concept with facility locations and	Section 4.6
	descriptions with references and supporting information.	
	Set-back from private sewage disposal systems.	
	Watercourse and hazard lands setbacks.	
Y	Record of pre-consultation with the Ontario Ministry of Environment and the	Appendix A
	Conservation Authority that has jurisdiction on the affected watershed.	
	Confirm consistency with sub-watershed and Master Servicing Study, if applicable	
	study exists.	
Y	Storage requirements (complete with calculations) and conveyance capacity for	Section 4.6
	minor events (1:5 years return period) and major events (1:100 years return period).	
٨V	Identification of watercourses within the proposed development and how	
	watercourses will be protected, or, if necessary, altered by the proposed	
	development with applicable approvals.	
Y	Calculate pre and post development peak flow rates including a descriptions of	Section 4.6, Appendix I
	existing site conditions and proposed impervious areas and drainage catchments in	
	comparison to existing conditions.	
۸A	Any proposed diversion of drainage catchment areas from one outlet to another.	
Y	Proposed minor and major systems including locations and sizes of stormwater trunk	Drawing C101
	sewers, and stormwater management facilities.	
٨V	If quantity control is not proposed, demonstration that downstream system has	
	adequate capacity for the post-development flows up to and including the 100-year	
	return period storm event.	
٨V	Identification of potential impacts to receiving watercourses.	
١A	Identification of municipal drains and related approvals requirements.	
· · · ·	Descriptions of how the conveyance and storage capacity will be achieved for the	Sections 4.6
Y	development.	
Y		
	100 years flood levels and major flow routing to protect proposed development from	Section 4.7
	100 years flood levels and major flow routing to protect proposed development from flooding for establishing minimum building elevations (MBE) and overall grading.	Section 4.7

	Development Servicing Study Checklist	
Y	Description of approach to erosion and sediment control during construction for the protection of receiving watercourse or drainage corridors.	Section 5.0
	Identification of floodplains - proponent to obtain relevant floodplain information from the appropriate Conservation Authority. The proponent may be required to delineate floodplain elevations to the satisfaction of the Conservation Authority if such information is not available or if information does not match current conditions.	
NA	Identification of fill constraints related to floodplain and geotechnical investigation.	
5 Ap	proval and Permit Requirements: Checklist	Comments
NA	Conservation Authority as the designated approval agency for modification of floodplain, potential impact on fish habitat, proposed works in or adjacent to a watercourse, cut/fill permits and Approvals under Lakes and Rivers Improvements Act. The Conservation Authority is not the approval authority for the Lakes and Rivers Improvements Act. Where there are Conservation Authority regulations in place, approval under the Lakes and Rivers Improvements Act is not required, except in cases of dams as defined in the Act. Application for Certificate of Approvals (CofA) under the Ontario Water Resources Act.	
NA		
6 (0	Government Services Canada, Ministry of Transportation etc.) nclusion Checklist	Comments
Y	Clearly stated conclusion and recommendations.	Section 6.0
Y	Comments received from review agencies including the City of Ottawa and information on how the comments were addressed. Final sign-off from the responsible reviewing agency.	Appendix A
Y	All draft and final reports shall be signed and stamped by a professional Engineer registered in Ontario.	Report


APPENDIX C | DRAWINGS C101, C102 AND C103


	613-806-7816
owner propriétaire	
CLELAN JARDII ENGINEERI	DI D
structural engineers ingénieur structure	<u> </u>
Smith + Anderse Son - Acting Avenue Ottawa Order t 613 230 1186 smithandanderser MEP engineers ingénieur MEP CARRESON DESARRESON D	ario K1Z 1G3 n.com
 general notes note générale 1. CONTRACTOR SHALL CHECK AND VERIFY ALL DIM REPORT ALL ERRORS AND OMISSIONS TO THE ARC 2. DO NOT SCALE THE DRAWINGS. 3. NOT FOR CONSTRUCTION UNTIL SIGNED BY THE ARC 	HITECT.
nord du projet nord ac	ctuel
project north true no	orth
	10/05/2019
1 ISSUED FOR SITE PLAN APPLICATION no revisions	12/05/2019 date
no revisions	
no revisions stamp timbre PROFESS/ONAL M.E. MACSWEEN M UDI04372	
no revisions stamp timbre	
no revisions stamp timbre	date
no revisions stamp timbre stamp timbre	date
no revisions stamp timbre	date
no revisions stamp timbre	date
no revisions stamp timbre stamp timbre	date
no revisions stamp timbre stamp timbre stamp timbre	date
no revisions stamp timbre stamp timbre stamp timbre	date
no revisions stamp timbre stamp timbre	date
no revisions stamp timbre stamp timbre	date
no revisions stamp timbre stamp timbre	date

drawing number | numéro du dessin

C-101

owner	propriétai		485 Bank Street.	Ottawa, Ontario K2P 122 613-806-7816
structur	ral engineer	JAF	ENGINEERIN	NE DU TERRY VIA, ON
MEP er	600 Carling t 613 230 1 ngineers ir	th + An Avenue Ot 186 smithand ngénieur ME	tawa Onto dandersen P	rio K1Z 1G3 .com
1. CON REPC 2. DO I 3. NOT	Il notes nc NTRACTOR SHAL DRT ALL ERRORS NOT SCALE THE	et	P PERIFY ALL DIM S TO THE ARCH	HITECT. CHITECT.
no rev	UED FOR SIT visions timbre	TE PLAN APP	LICATION	12/05/2019 date
Junp	REGISIER	PROFESSION M. M. June I.E. MACSW 10010437 DEC 5, 201 VINCE OF O		
	ct archite			X
project	47	3 AL ED MIXED-US	E RENOVA	
	g title titre			
drawin project	g title titre			AN 477234 SS

	485 Bank Street, Suite 200 Ottawa, Ontario K2P 1Z2 613-806-7816
owner propriétaire	485 Bank Str Ottawa, On 613-80
CLELA JARDI ENGINEEI	
Smith + Anders 530 - 1600 Carling Avenue Ottawa Or t 613 230 1186 smithandanderse MEP engineers ingénieur MEP	tario K1Z 1G3
PARSO 1223 MICHAEL STREET, SUITE 100, OTTAWA, C Tel: 613-738-4160 Fax: 613-739-71	NIS NTARIO K1J 7T2 05
general notes note générale . CONTRACTOR SHALL CHECK AND VERIFY ALL D	
2. DO NOT SCALE THE DRAWINGS. 3. NOT FOR CONSTRUCTION UNTIL SIGNED BY THE	
nord du projet project north	
	,
	12/05/2010
no revisions	1 12/05/2019 date
no revisions	
architect architecte	date
to revisions stamp timbre	date
to revisions stamp timbre stamp timbre	date
to revisions stamp timbre stamp timbre	date
no revisions stamp timbre stamp timbre	date
training timbre training training train	date
no revisions stamp timbre stamp timbre	date

C-103

APPENDIX D | BOUNDARY CONDITIONS

Theiner, Mathew

From:	Wessel, Shawn <shawn.wessel@ottawa.ca></shawn.wessel@ottawa.ca>
Sent:	Thursday, November 21, 2019 8:52 AM
То:	MacSween, Meghan
Cc:	Deiaco, Simon; Theiner, Mathew
Subject:	[EXTERNAL] RE: 473 Albert Street - Boundary Condition Request
Attachments:	473 Albert Nov 2019.pdf

Good morning Ms. MacSween / Mr. Theiner

As discussed, the existing 152mm on Albert will be abandoned and the existing 203mm will be replaced by a new 203mm PVC in the near future. We can provide boundary conditions for future conditions but we are still waiting to hear back on the planned watermain sizes for Bronson, Albert and surrounding streets.

The following are boundary conditions, HGL, for hydraulic analysis at 473 Albert (zone 1W) assumed to be connected to the 203 mm on Albert (see attached PDF for location).

Minimum HGL = 106.0 m

Maximum HGL = 115.5 m

Available fire flow = 115 L/s assuming a residual of 20 psi and a ground elevation of 73.5 m

These are for current conditions and are based on computer model simulation.

Disclaimer: The boundary condition information is based on current operation of the city water distribution system. The computer model simulation is based on the best information available at the time. The operation of the water distribution system can change on a regular basis, resulting in a variation in boundary conditions. The physical properties of watermains deteriorate over time, as such must be assumed in the absence of actual field test data. The variation in physical watermain properties can therefore alter the results of the computer model simulation.

If you require additional information or clarification, please do not hesitate to contact me anytime.

Thank you

Regards,

Shawn Wessel, A.Sc.T.,rcji Project Manager - Infrastructure Approvals

Gestionnaire de projet - Approbation des demandes d'infrastructures

Development Review Central Branch | Direction de l'examen des projets d'aménagement, Centrale Planning, Infrastructure and Economic Development Department | Direction générale de la planification de l'infrastructure et du développement économique City of Ottawa | Ville d'Ottawa 110 Laurier Ave. W. | 110, avenue Laurier Ouest, Ottawa ON K1P 1J1 (613) 580 2424 Ext. | Poste 33017 Int. Mail Code | Code de Courrier Interne 01-14 shawn.wessel@ottawa.ca

A Please consider the environment before printing this email

From: MacSween, Meghan < Meghan. Macsween@parsons.com> Sent: November 13, 2019 1:29 PM To: Wessel, Shawn <shawn.wessel@ottawa.ca> Cc: Deiaco, Simon < Simon.Deiaco@ottawa.ca>; Theiner, Mathew < Mathew.Theiner@parsons.com> Subject: RE: 473 Albert Street - Boundary Condition Request

CAUTION: This email originated from an External Sender. Please do not click links or open attachments unless you recognize the source.

ATTENTION : Ce courriel provient d'un expéditeur externe. Ne cliquez sur aucun lien et n'ouvrez pas de pièce jointe, excepté si vous connaissez l'expéditeur.

Hi Shawn,

Thanks for the heads up, we'll await confirmation. If the 152mm watermain is out of service we will have to connect to the 203 mm diameter watermain and install a valve to separate the two services.

I am going to be out of the office for the next two weeks, can I ask that you include Mathew Theiner, cc'd, on any communication as he will be taking over in my absence.

Thanks,

Meghan

Meghan MacSween, M.Eng., P.Eng. **Municipal Engineer** 1223 Michael St. North. Suite 100. Ottawa. ON K1J 7T2 meghan.macsween@parsons.com - P: +1 613.691.1540 M: +1 343.997.3895

PARSONS - Envision More www.parsons.com | LinkedIn | Twitter | Facebook

From: Wessel, Shawn <<u>shawn.wessel@ottawa.ca</u>>
Sent: Wednesday, November 13, 2019 10:52 AM
To: MacSween, Meghan <<u>Meghan.Macsween@parsons.com</u>>
Cc: Deiaco, Simon <<u>Simon.Deiaco@ottawa.ca</u>>
Subject: [EXTERNAL] 473 Albert Street - Boundary Condition Request

Good morning Ms. Macsween.

Further to your request, the Water Distribution Dept. has sent the following message:

The 152mm watermain on Albert that they're proposing to connect to seems to be out of service according to GIS. I'm just waiting to hear back from Distribution to find out if this is just temporary or permanent.

I will get back to you once I hear from our colleagues regarding this matter.

If you require additional information or clarification, please do not hesitate to contact me anytime.

Thank you

Regards,

ı

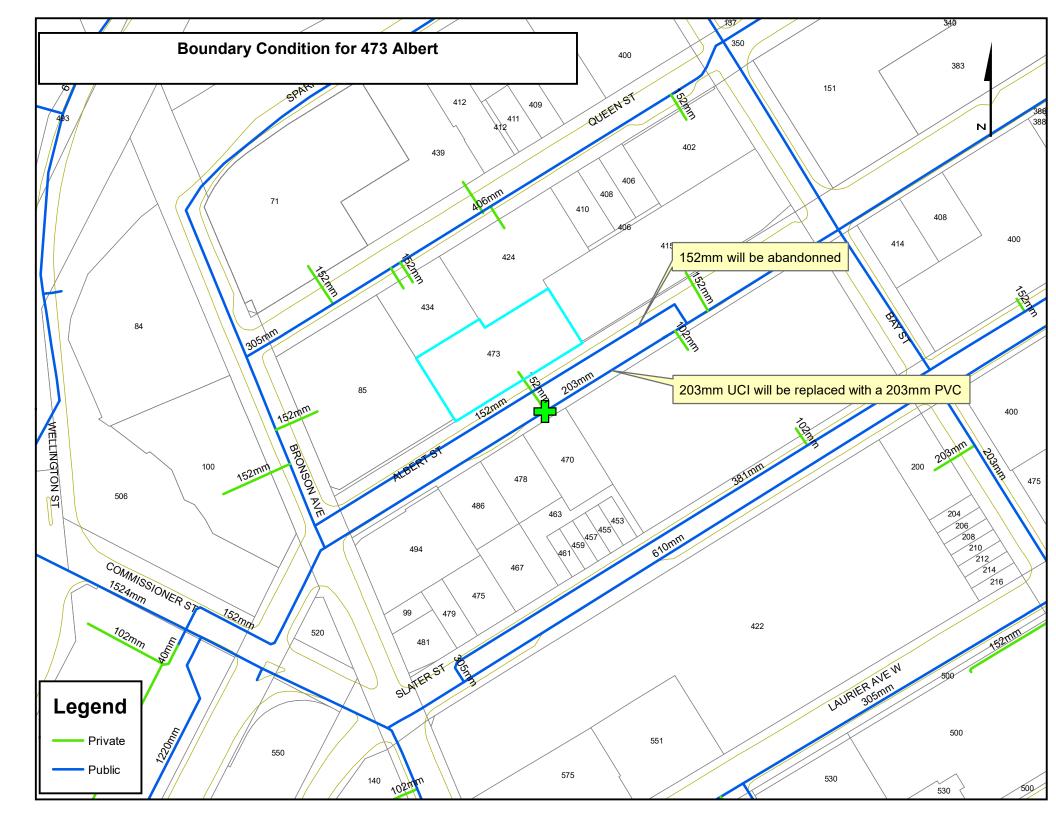
Shawn Wessel, A.Sc.T.,rcji Project Manager - Infrastructure Approvals Gestionnaire de projet – Approbation des demandes d'infrastructures

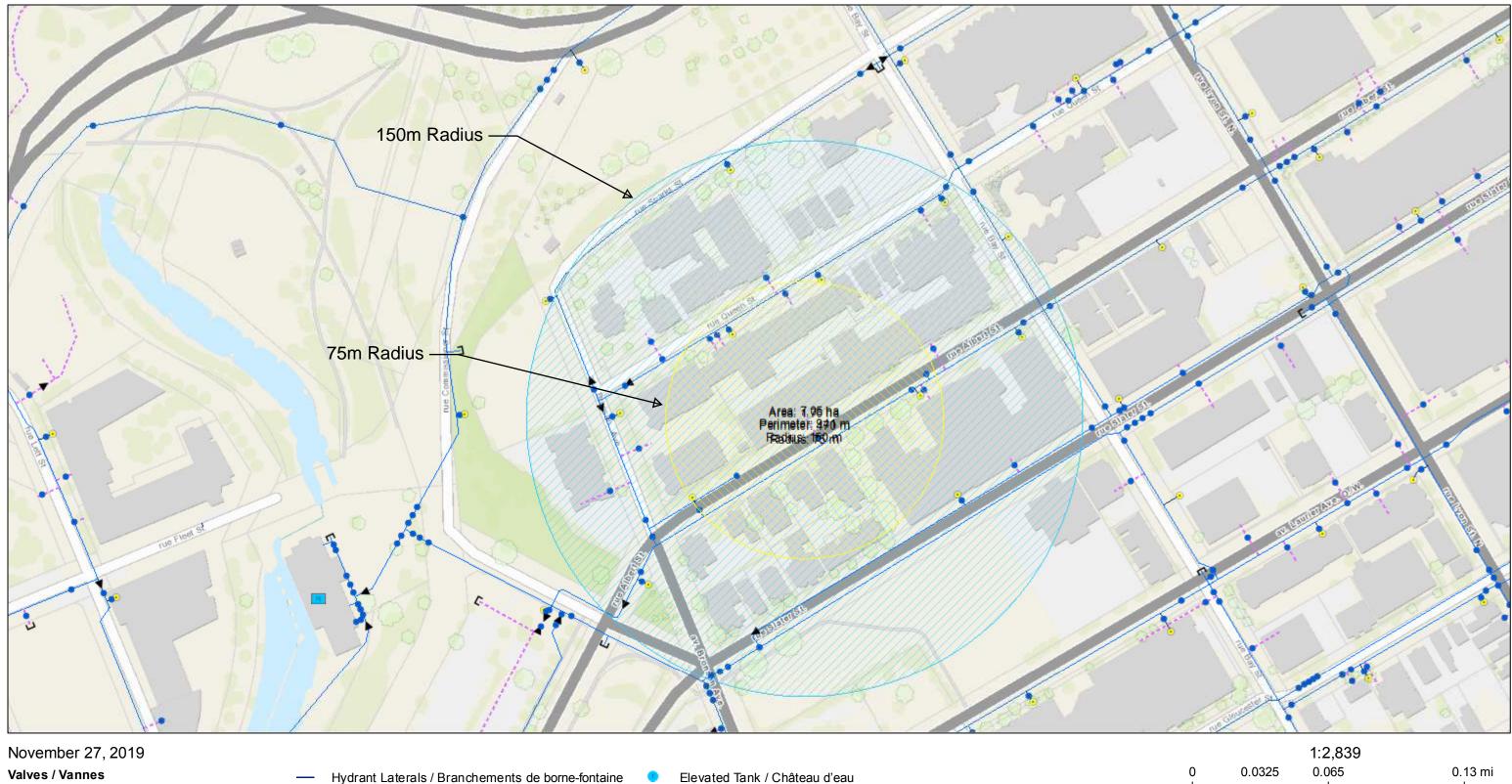
Development Review Central Branch | Direction de l'examen des projets d'aménagement, Centrale Planning, Infrastructure and Economic Development Department | Direction générale de la planification de l'infrastructure et du développement économique City of Ottawa | Ville d'Ottawa 110 Laurier Ave. W. | 110, avenue Laurier Ouest, Ottawa ON K1P 1J1 (613) 580 2424 Ext. | Poste 33017 Int. Mail Code | Code de Courrier Interne 01-14 shawn.wessel@ottawa.ca

Please consider the environment before printing this email

This e-mail originates from the City of Ottawa e-mail system. Any distribution, use or copying of this e-mail or the information it contains by other than the intended recipient(s) is unauthorized. Thank you.

ı.


ı


Le présent courriel a été expédié par le système de courriels de la Ville d'Ottawa. Toute distribution, utilisation ou reproduction du courriel ou des renseignements qui s'y trouvent par une personne autre que son destinataire prévu est interdite. Je vous remercie de votre collaboration.

'NOTICE: This email message and all attachments transmitted with it may contain privileged and confidential information, and information that is protected by, and proprietary to, Parsons Corporation, and is intended solely for the use of the addressee for the specific purpose set forth in this communication. If the reader of this message is not the intended recipient, you are hereby notified that any reading, dissemination, distribution, copying, or other use of this message or its attachments is strictly prohibited, and you should delete this message and all copies and backups thereof. The recipient may not further distribute or use any of the information contained herein without the express written authorization of the sender. If you have received this message in error, or if you have any questions regarding the use of the proprietary information contained therein, please contact the sender of this message immediately, and the sender will provide you with further instructions.'

This e-mail originates from the City of Ottawa e-mail system. Any distribution, use or copying of this e-mail or the information it contains by other than the intended recipient(s) is unauthorized. Thank you.

Le présent courriel a été expédié par le système de courriels de la Ville d'Ottawa. Toute distribution, utilisation ou reproduction du courriel ou des renseignements qui s'y trouvent par une personne autre que son destinataire prévu est interdite. Je vous remercie de votre collaboration.

- Valve / Vanne ۲
- = TVS, A, D
- Water Fittings / Raccords de conduite d'eau
 - Cap / bouchon
 - ÷ Reducer / réducteur
 - Hydrants / Bornes-fontaines ÷

- Hydrant Laterals / Branchements de borne-fontaine
- Water Mains / Conduites d'eau principales
- Private / Branchement privé ----
 - Public / Branchement public
- Misc. Water Structures / Structures d'aqueduc divers
- Pumping Station / Station de pompage des eaux **H+**
- Ψ. Well Supply / Alimentation par puits

- In Ground Tank / Réservoir souterrain
- ~+- Water Treatment Plant / Usine d'épuration des eaux

City of Ottawa

0

0.05

0.1

0.2 km

APPENDIX E | WATER DEMAND

Table1 : Water Demand for 473 Albert Street

			Gross Floor Area	Average Daily Demand (ADD)*	Maximum Daily Demand (MDD)**	Peak Hourly Demand (PHD)**	Fire Flow (FF)	MDD + FF
Puilding	Units	Population	(m2)		4.9*ADD	7.4*ADD		
Building					1.5*ADD (non- residential)	1.8*MDD (non- residential)		
				L/s	L/s	L/s	L/s	L/s
473 Albert Street				1.61	5.71	8.90	350	355.7
Residential	144	239		0.97	4.75	7.18		
Office			1363	0.05	0.07	0.13		
Restaurant			385	0.56	0.84	1.50		
12th floor			579	0.03	0.05	0.09		

Average Daily Demands

Based on Ottawa Design Guidelines - Water Distribution, 2010 and MOE Design Guidelines for Drinking-Water Systems, 2008

Average Residential Daily Flow =350 L/p/dShopping Centres =2,500 L/(1000m2/d)Restaurant (Ordinary not 24h)125 L/seat/dOffice Daily Flow =75 L/empl/dAmenity Area Flow =5 L/m2/d

** Peaking factors as per MOE Guidelines for Drinking-Water Systems Table 3-3 for 0 to 500 persons

Table 2: Fire Flow Calculations

Table 2: Fire Flow Calculation														Required F	ire Flow
Building	Type of Construction C	Total Floor Area m ² A	Fire Flow (min. 2,000) L/min F	Adjusted (nearest 1,000) L/min	Occupancy Factor O	Reduction / Increase due to Occupancy	Fire Flow with Occupancy (min. 2,000) L/min	Sprinklers Factor S	Reduction due to Sprinklers L/min	Exposure Factor % E	Increase due to Exposure L/min	Fire Flow L/min	Roof Contribution L/min R	Adjusted to the nearest 1000 (min. 2,000, max. 45,000) L/min F	minimum 3 L/s
473 Albert Street	0.8	13,980	20,810	21,000	-15%	-3,150	17,850	50%	8,925	70%	12,495	21,000	0	21,000	350
Outline of Procedure P. 20															
	А	B/C	D 1	D 2	E 2	E 2	E 2	F 3	F 3	G	G	Н			
Reference:	Ottawa Design C <u>Type of Constru</u> Wood Frame Ordinary Constr Non-Combustib	Guidelines - Wat action uction (joist mas le Construction metal structure, nstruction (= or a <u>u (m²)</u>	ter Distribution, J sonry) masonry non-cor > 3 hours)	<i>luly 2010</i> and su	ers Survey (FUS) bsequent Techni 1.5 1 0.8 0.7	cal Bulletins	S	Occupancy Non-Combus Limited Com Combustible Free Burning Rapid Burnin Commercial Sprinklers	bustible Ig prinklers NFPA Stan ater Supply ion		nplete coverage 30% 10% 10% 30%	Partial coverage 30% * x% 10% * x% 10% * x% 30% * x%			
	Fire-resistive Bu Less than 1 hou	r rating										(x%: percentage	of total protecte	d floor area)	
			bining floors s (up to 8) at 50% nan 3 hours rating					Exposure Cumulative ,	maximum 75%						
	F	largest floor Additional two a	steel) adjoining floors a	t 25%				Distance (m) 0-3 3.1-10 10.1-20		* 25% 20% 15%	E 0	W 16.7	N 9	S	
		0) 220*C*(A^0.5) 2,000 <f<45,000< td=""><td>0</td><td></td><td></td><td></td><td></td><td>20.1-30 30.1-45</td><td></td><td>10% 5%</td><td></td><td></td><td></td><td>20.7</td><td></td></f<45,000<>	0					20.1-30 30.1-45		10% 5%				20.7	
	FS <u>Fire Wall Separ</u> Per Wall		1,000 L/min					<u>Roof</u> Shake Wood		2,000 to 4,000 2,000 to 4,000					

APPENDIX F | CCTV REPORTS

Ottawa (Head Office)

1800 Bantree Street Ottawa, Ontario K1B 5L6

☎ 613.745.2444 *∰* 613.745.9994

www.cwwcanada.com 1.866.695.0155

Montreal

2700 Sabourin Street St-Laurent, Quebec H4S 1M2

☎ 514.738.2666 *∰* 514.738.9762

INTEGRATED SEWER SOLUTIONS

InterRent No.3 Limited Partnership

473 Albert St. Ottawa, Ontario Job No.: 87892

> **Drain Use** Sanitary

Inspection Date

November 21st 2019

DRAIN CCTV INSPECTION REPORT

THE WAY IS CLEAR[™]

- CIPP Lateral Drain Lining
- Drain Inspection and Locating
- Preventative Maintenance Plumbing
- Frozen Pipe Thawing
- Backwater Valve Devices
- Sewer and Waterline Replacement and Repairs
- High Pressure Blasting
- Drain Cleaning and Flushing
- Plumbing Installation, Renovations and Repairs

InterRent No. 3 Limited Partnership 473 Albert Street Ottawa, Ontario Job No.: 88792

Inspection Date November 21st 2019

Inspection Notes:

Water main was verbally confirmed as 6 inch plastic by David Seaman on site with Evan Johnson.

	MINI CAMERA CCTV	INSPECTION REPORT	
CUSTOMER:	InterRent No. 3 Limited Partnership	START OF INSPECTION:	BASEMENT MECH ROOM
JOB NO.:	87892	END OF INSPECTION:	CITY MAIN LINE
		SEWER USE:	SANITARY
LOCATION:	473 ALBERT STREET	PIPE DIAMETER(S):	150MM / 200MM
	OTTAWA, ONTARIO	PIPE MATERIAL(S):	CAST IRON / TRANSITE
		DIRECTION OF FLOW:	DOWNSTREAM
DATE:	NOVEMBER 21 ST 2019	VIDEO FILENAME:	Video #1
OPERATOR:	DAVID S.	REPORT NUMBER:	1 of 2

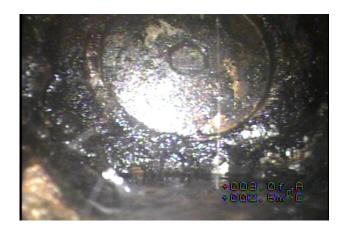
DISTANCE (M)	CODE	INSPECTION COMMENTS	<u>CODE</u> AIF BKJ	DESCRIPTION ACTIVE INFILTRATION BROKEN JOINT
0.0	START	START OF INSPECTION – BASEMENT MECH ROOM	BSG	START OF SAG
1.0	LBD	LINE BENDS DOWN	BWV C/O	BACKWATER VALVE CLEANOUT
2.4	LBS	LINE BENDS STRAIGHT	CAL	CALCITE
2.4	DC	DIAMETER CHANGE: 150MM – 200MM	CFL CRC	COLLAPSE CIRCULAR CRACK
3.8	LBR	LINE BENDS RIGHT	DC DEB	DIAMETER CHANGE DEBRIS
3.8	MC	MATERIAL CHANGE: CAST IRON – TRANSITE	DEF	PIPE DEFORMATION EVIDENCE OF INFILTRATION
13.4	END	END OF INSPECTION – CITY MAIN LINE	ESG EXG	END OF SAG EXPOSED GASKET
			EXR	EXPOSED REBAR
			F/D	FLOOR DRAIN
			FRC GRS	FRACTURE GREASE
			HOLE	HOLE IN PIPE
			LBD	LINE BENDS DOWN
			LBL	LINE BENDS LEFT
			LBR	LINE BENDS RIGHT
			LBS	LINE BENDS STRAIGHT
			LGC	LONGITUDINAL CRACK
			MAIN	MAIN SEWER IN BUILDING
			MC	MATERIAL CHANGE
			MH	MANHOLE
			MSP	MISSING PIPE PIECE
			OBS	OBSTRUCTION IN PIPE
			OFJ	OFFSET JOINT
			OPJ PFL	OPEN JOINT PARTIAL COLLAPSE
			PFL	PARTIAL COLLAPSE PROTRUDING CONNECTION
			PUN	PUNCTURE
			RTS	ROOTS
			SC	SERVICE CONNECTION
			WYE	WYE CONNECTION

COMMENTS:

Before Flushing No deficiencies noted

Video #1

	MINI CAMERA CCTV	INSPECTION REPORT	
CUSTOMER:	InterRent No. 3 Limited Partnership	START OF INSPECTION:	BASEMENT MECH ROOM
JOB NO.:	87892	END OF INSPECTION:	CITY MAIN LINE
		SEWER USE:	SANITARY
LOCATION:	473 ALBERT STREET	PIPE DIAMETER(S):	150MM / 200MM
	OTTAWA, ONTARIO	PIPE MATERIAL(S):	CAST IRON / TRANSITE
		DIRECTION OF FLOW:	DOWNSTREAM
DATE:	NOVEMBER 21 ST 2019	VIDEO FILENAME:	Video #2
OPERATOR:	DAVID S.	REPORT NUMBER:	2 of 2


DISTANCE (M)	CODE	INSPECTION COMMENTS	<u>CODE</u> AIF BKJ	DESCRIPTION ACTIVE INFILTRATION BROKEN JOINT
0.0	START	START OF INSPECTION – BASEMENT MECH ROOM	BSG	START OF SAG
1.0	LBD	LINE BENDS DOWN	BWV C/O	BACKWATER VALVE CLEANOUT
2.4	LBS	LINE BENDS STRAIGHT	CAL	CALCITE
2.4	DC	DIAMETER CHANGE: 150MM – 200MM	CFL CRC	COLLAPSE CIRCULAR CRACK
3.8	LBR	LINE BENDS RIGHT	DC DEB	DIAMETER CHANGE DEBRIS
3.8	MC	MATERIAL CHANGE: CAST IRON – TRANSITE	DEF EIF	PIPE DEFORMATION EVIDENCE OF INFILTRATION
13.4	END	END OF INSPECTION – CITY MAIN LINE	ESG EXG	END OF SAG EXPOSED GASKET
			EXR F/D FRC	EXPOSED REBAR FLOOR DRAIN FRACTURE
			GRS	GREASE HOLE IN PIPE
			LBD	LINE BENDS DOWN
			LBL LBR	LINE BENDS LEFT LINE BENDS RIGHT
			LBS	LINE BENDS STRAIGHT
			LGC MAIN	LONGITUDINAL CRACK MAIN SEWER IN BUILDING
			MC	MATERIAL CHANGE MANHOLE
			MH MSP	MANHOLE MISSING PIPE PIECE
			OBS OFJ	OBSTRUCTION IN PIPE OFFSET JOINT
			0PJ	OPEN JOINT
			PFL	PARTIAL COLLAPSE PROTRUDING CONNECTION
			PSC PUN	PROTRUDING CONNECTION PUNCTURE
			RTS	ROOTS
			SC WYE	SERVICE CONNECTION WYE CONNECTION

COMMENTS:

After Flushing No deficiencies noted

Video #2

Ottawa (Head Office)

1800 Bantree Street Ottawa, Ontario K1B 5L6

☎ 613.745.2444 *∰* 613.745.9994

www.cwwcanada.com 1.866.695.0155

Montreal

2700 Sabourin Street St-Laurent, Quebec H4S 1M2

☎ 514.738.2666 *∰* 514.738.9762

INTEGRATED SEWER SOLUTIONS

InterRent No.3 Limited Partnership

473 Albert St. Ottawa, Ontario Job No.: 87892

> Drain Use Storm

Inspection Date

November 14th 2019

DRAIN CCTV INSPECTION REPORT

THE WAY IS CLEAR[™]

- CIPP Lateral Drain Lining
- Drain Inspection and Locating
- Preventative Maintenance Plumbing
- Frozen Pipe Thawing
- Backwater Valve Devices
- Sewer and Waterline Replacement and Repairs
- High Pressure Blasting
- Drain Cleaning and Flushing
- Plumbing Installation, <u>Renovations and Repairs</u>

	MINI CAMERA CCTV	INSPECTION REPORT	
CUSTOMER:	InterRent No. 3 Limited Partnership	START OF INSPECTION:	CLEANOUT
JOB NO.:	87892	END OF INSPECTION:	MAIN LINE
		SEWER USE:	STORM
LOCATION:	473 ALBERT	PIPE DIAMETER(S):	100MM / 150MM / 200MM
	OTTAWA, ONTARIO	PIPE MATERIAL(S):	CAST IRON / TRANSITE
		DIRECTION OF FLOW:	DOWNSTREAM
DATE:	NOVEMBER 14 TH 2019	VIDEO FILENAME:	Video #1
OPERATOR:	TREVOR F.	REPORT NUMBER:	1 of 1

DISTANCE (M)	CODE	INSPECTION COMMENTS	<u>CODE</u> AIF BKJ	DESCRIPTION ACTIVE INFILTRATION BROKEN JOINT
0.0	C/0	START OF INSPECTION – CLEANOUT	BSG	START OF SAG
2.8	LBR	LINE BENDS RIGHT	BWV C/O	BACKWATER VALVE CLEANOUT
2.8	DC	DIAMETER CHANGE: 100MM – 150MM	CAL	CALCITE
4.8	LBD	LINE BENDS DOWN	CFL CRC	COLLAPSE CIRCULAR CRACK
6.0	LBS	LINE BENDS STRAIGHT	DC DEB	DIAMETER CHANGE DEBRIS
7.4	LBR	LINE BENDS RIGHT	DEF	PIPE DEFORMATION
8.2	LBL	LINE BENDS LEFT	EIF ESG	EVIDENCE OF INFILTRATION END OF SAG
8.2	DC	DIAMETER CHANGE: 150MM – 200MM	EXG EXR	EXPOSED GASKET EXPOSED REBAR
8.2	MC	MATERIAL CHANGE: CAST IRON – TRANSITE	F/D	FLOOR DRAIN
17.8	END	END OF INSPECTION – MAIN LINE	FRC GRS	FRACTURE GREASE
			HOLE LBD LBL LBR LBS LGC	HOLE IN PIPE LINE BENDS DOWN LINE BENDS LEFT LINE BENDS RIGHT LINE BENDS STRAIGHT LONGITUDINAL CRACK
			MAIN MC MH MSP OBS OFJ OPJ	MAIN SEWER IN BUILDING MATERIAL CHANGE MANHOLE MISSING PIPE PIECE OBSTRUCTION IN PIPE OFFSET JOINT OPEN JOINT
			PFL PSC PUN RTS SC WYE	PARTIAL COLLAPSE PROTRUDING CONNECTION PUNCTURE ROOTS SERVICE CONNECTION WYE CONNECTION

COMMENTS:

No deficiencies noted

Video #1

APPENDIX G | SANITARY FLOWS AND SEWER DESIGN SHEET

		REST	AURANT							R		MENITY SP	ACE		R			TOTAL	IN	FILTRATION		Total
Area	Restaurant Area (m ²)	Seats assumed 1 seat per m ²	Flow/seat	Peak Factor	Peak Flow (L/s)	Office Area (m ²)	Capita (1/25m ²)	Peak Factor	Peak Flow (L/s)	Area (m ²)	Amenity Space L/m2/d	Peak Factor	Peak Flow (L/s)	Number of units	Capita	Peak Factor	Peak Flow (L/s)	Peak Flow (L/s)	Site Areas (ha)	Infiltration Allowance (L/s/ha)	Infilt. Flow (L/s)	Total Peak Flov (L/s)
					· ·								· ·									
Proposed Building																			0.20	0.33	0.07	0.07
Restaurant	38	5 385	125	1.5	0.84													0.84				0.84
Office						1.363	55	1.5	0.07									0.07				0.07
Residential						.,								144	239	3.5	2.71	2.71				2.71
Amenity Space										579	5	1.5	0.1		200	0.0	2.7.1	0.05				0.05
Amenity Space										519	5	1.5	0.1	1				0.00			Total	3.73
																					TOLAI	3.73
Existing Building						1													0.20	0.33	0.07	0.07
Office		1	1			12,647	506	1	0.44									0.44				0.44
Restaurant	38	5 385	125	1.5	0.84	12,041	000		0.44									0.84				0.84
Restaurant		000	120	1.0	0.04													0.04			Total	1.34
											1	<u> </u>									Total	1.54
<u>Average Daily Demands</u> (Based on City of Ottawa Sewer Des	ign Guidelines 2012 and MC	e Water Design Guio	lelines)															-	Benoit Villeneuve Meghan MacSwee		473 Albert S Ottawa, Ont 473 Albert S Ottawa, Ont	itario St.
Average Residential Daily Flow =	280 L/p/d	Peak Factors																		Project # :	477234	
Institutional Flow =	28,000 L/ha/d	Commercial =		1.5 if	f commerci	ial contribution	> 20%, otherwi	s 1.0												Date:	November, 2	2019
Commercial Flow =	28,000 L/ha/d	Institutional =					> 20%, otherwis													Sheet:	1 of 1	
Light Industrial Flow =	35,000 L/ha/d	Industrial =				lix 4-B.0 Graph												L		onooti	1011	
Heavy Industrial Flow =	55,000 L/ha/d	Residential :					apita/1000) ^ 0.	5))*8														
Hotel Daily Flow =	225 L/bed/d				min =		max =															
Office/Warehouse Daily Flow = Restaurant (Ordinary not 24h)	75 L/empl/d 125 L/seat/d					-																
Shopping Centres =	2,500 L/(1000m ² /d)																					
Amenity Area =	5 L/m2/d																					
		Infiltration allowan Infiltration allowan		,		L/s/ha L/s/ha																
Population Densities				··/	0.20	L/3/11a																
Average suburban residential dev.	60 p/ha	I/I (total)			0.33	L/s/ha																
Single family	3.4 p./unit																					
Semi-detached	2.7 p./unit																					
Duplex	2.3 p./unit																					
Townhouse	2.7 p./unit																					
Appartment average	1.8 p./unit																					
Bachelor	1.4 p./unit																					
1 Bedroom	1.4 p./unit																					
2 Bedrooms	2.1 p./unit																					
Hotel room, 18 m2	1 p./unit																					
	1 p./unit 1 p./unit 1 p/25m ²																					

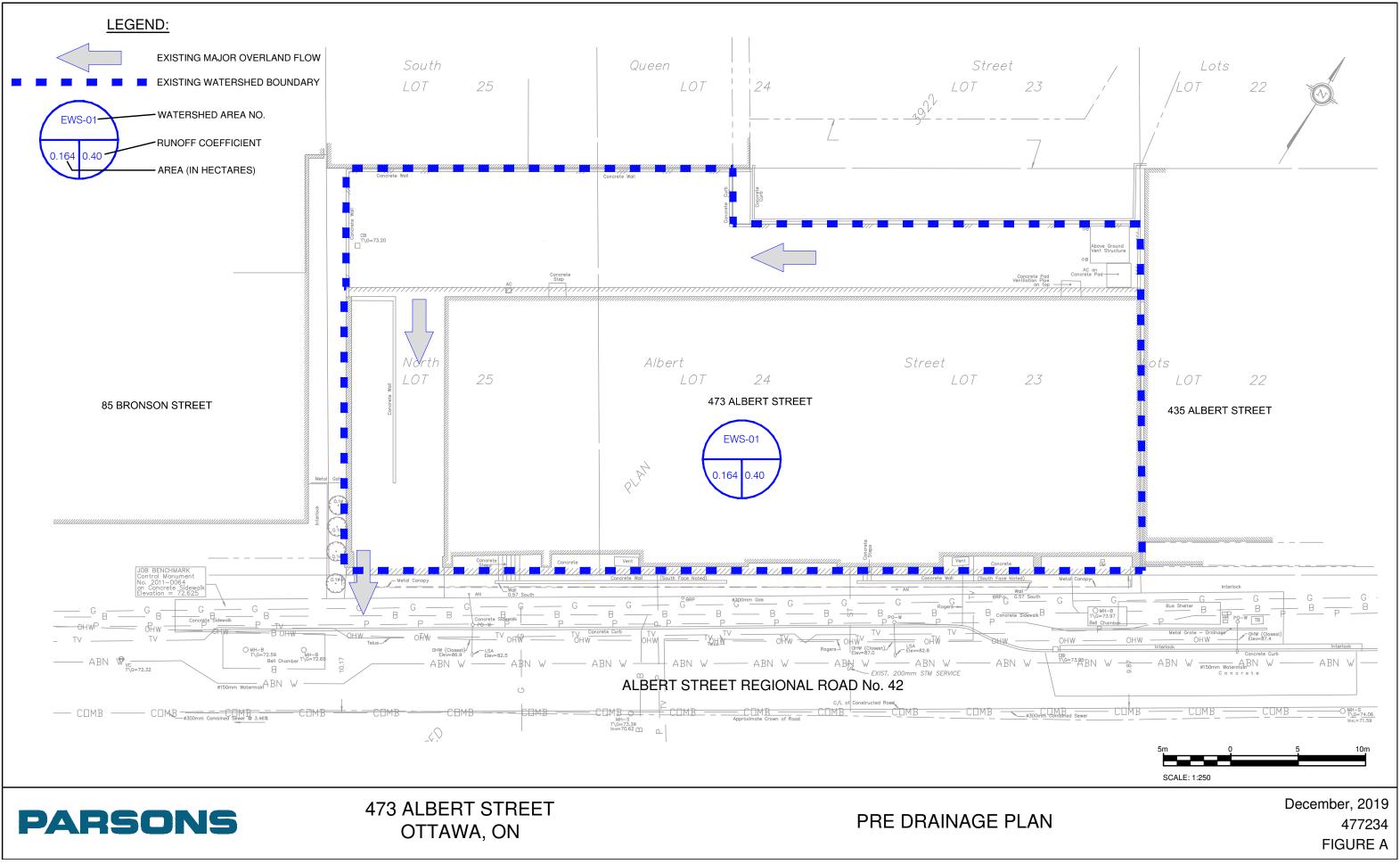

Table 1: SANITARY DESIGN FLOWS

Table 2: SANITARY SEWER COMPUTATIONS

			Peak					Se	wer Data					
Drainage	From	То	Flow	Туре	Pipe	e Dia.	Slope*	Length	Capacity	Vel	ocity	Time of	Q(d) / Q(f)	REMARKS
Area			Q	of	nom.	actual			full	full	actual	Flow		
			(L/sec)	Pipe	(mm)	(mm)	(%)	(m)	(L/sec)	(m/sec)	(m/sec)	(min)		
473 Albert Street	Building	Combined Sewer	3.73	Transite	200	200	1.5	13.4	40.1	1.28	0.71	0.31	0.09	
Manning's n :	* Min slope for cleans	ing velocities is 0.8%. building wall = 71.4 m									Mathew T Meghan N Novembe	MacSween	Project Namo Parsons Proj Client:	

Top of combined sewer at connection point is +/-71.2m

APPENDIX H | PRE-DEVELOPMENT DRAINAGE PLAN

APPENDIX I | STORM SEWER DESIGN SHEET

STORM SEWER COMPUTATION FORM

Rational Method	Q = Flow (L/sec)			Ottawa ID	F Curve - 5-	-у														
Q = 2.78*A*I*R A = Area (ha) I = Rainfall Intensity (mm/h) R = Ave. Runoff Coefficient					[:] 998.071 / (Tc + 6.053) ^{0.814} Minimum Time of Conc. Tc = 10 min					nning's n =	0.013									
					Ru	noff Paramet	ers		Roof	Peak										
Drainage	From	То	Area	Runoff	Indiv.	Accum.	Time of	Rainfall	Flow	Flow		pe Dia.	Slope	Length	Capacity		locity		Q(d) / Q(f)	REMARKS
Area			(ha)	Coeff. R	2.78AR	2.78AR	Conc. (min)	Intensity (mm/hr)	Q (L/sec)	Q (L/sec)	nom. (mm)	actual (mm)	(%)	(m)	full (L/sec)	full (m/sec)	actual (m/sec)	Flow (min)		
473 Albert Street	Building	Sewer	0.160	0.90	0.40	0.40	10.00	104.19		11.60	200	200	1.12	17.8	34.77	1.11	0.84	0.27	0.33	
lote:											_	M. Theiner			Project:	473 Alber	t Street		<u> </u>	
Ilowable release rate												M. MacSwee November, 2								

APPENDIX J | STORMWATER MANAGEMENT CALCULATIONS

TABLE I - ALLOWABLE RUNOFF CALCULATIONS BASED ON PRE-EXISTING CONDITIONS

0.90

1.00

				Minor	Storm	Storm = 100 yr			
		Time of Conc,							
Area Description	Area (ha)	Tc (min)		l ₂ (mm/hr)	C _{AVG}	Q _{ALLOW} (L/s)	I ₁₀₀ (mm/hr)	C _{AVG}	Q _{ALLOW} (L/sec)
EWS-A	0.164	10	Storm = 2 yr	76.81	0.40	14.0	178.56	0.90	73.2
Deduct additional	proposed sanitary	flows (3.73L/s-1.3	34L/s=2.39 L/s) du	ue to combined se	ewer	11.6			

Allowable Capture Rate is based on the 2-year storm at T_c =10 mins, and a C_{avg} of 0.40

2-year Storm	C _{ASPH/ROOF/CONC} =
100-year Storm	C _{ASPH/ROOF/CONC} =

C _{GRASS}	=
CGRASS	=

<u>0.20</u> 0.25

TABLE II- POST-DEVELOPMENT AVERAGE RUNOFF COEFFICIENTS

Watershed Area No.	Impervious Areas (m ²)	A * C _{ASPH/ROOF}	Pervious Areas (m ²)	A * C _{GRASS}	Sum AC	Total Area (m ²)	C _{AVG (5yr)}	C _{AVG(100yr)}
WS-01*	387.86	349	0.00	0	349	388	0.90	1.00
WS-02	857.92	772	0.00	0	772	858	0.90	1.00
WS-03	392.80	354	0.00	0	354	393	0.90	1.00
Total	1639		0		1475	1639		
Total Controlled	388		0		349	388		

* Controlled roof top area

TABLE III- TOTAL RUNOFF COEFFICIENT FOR CONTROLLED AREAS

	C _{AVG(5yr)} =	Sum AC Total Area	=	<u>349</u> 388	=	0.90	C _{AVG(100yr)} =	1.00
Ru	noff coefficient	for controlled areas	s (WS-02, WS-03,	WS-05, & WS-0	06) are listed in	Table IV		

TABLE IV- SUMMARY OF POST-DEVELOPMENT RUNOFF

			Storm	i = 2 yr			Storm :	= 100 yr	
Area No	Area (ha)	l ₂ (mm/hr)	C _{AVG(2yr)}	Q _{GEN} (L/s)	Q _{CONT} (L/s)	I ₁₀₀ (mm/hr)	C _{AVG(100yr)}	Q _{GEN} (L/s)	Q _{CONT} (L/s)
WS-01*	0.039	76.81	0.90	7.5	1.3	178.56	1.00	19.3	3.4
WS-02	0.086	76.81	0.90	16.5	10.3	178.56	1.00	42.6	8.2
WS-03	0.039	76.81	0.90	7.5	10.3	178.56	1.00	19.5	0.2
Total	0.164			31.5	11.6			81.3	11.6
* Controlled roof to	op area								
I ₂ = 732.951 / (Tc I ₁₀₀ =1735.688 / (T Time of concentra	^C + 6.014) ^{0.820}		10 mins						

Table V - Storage Volumes (2-Year and 100-Year Storm Events) Storage Requirement for CFRD 1										
			St	torage Requ	uirement fo	r CFRD 1				
	C _{AVG} =	0.90	(2-year)							
	C _{AVG} =	1.00	(100-year)			Watts Adjus	stable Accut	rol Weir Roo	of Drain	
Tim	e Interval =	5	(mins)							
Drain	age Area =	0.001	(hectares)							
		11.28	(sqm)							
	R	Release Rate =	0.15	(L/sec) per	drain	Rele	ease Rate =	0.38	(L/sec) per	drain
	R	eturn Period =	2	(years)		Retu	ırn Period =	100	(years)	
	IDF Pa	arameters, A =	732.951	, B =	0.810	IDF Para	meters, A =	1735.688	, B =	0.820
		I = A/(1	「 _c +C)B	, C =	6.199		I = A/(Tc	+C)B	, C =	6.014
Duration (min)	Rainfall Intensity, I (mm/hr)	Peak Flow (L/sec)	Release Rate (L/sec)	Storage Rate (L/sec)	Storage (m³)	Rainfall Intensity, I (mm/hr)	Peak Flow (L/sec)	Release Rate (L/sec)	Storage Rate (L/sec)	Storage (m ³)
0	-	-	-	-	-	-	-	-	-	-
5	103.6	0.3	0.15	0.15	0.044	242.7	0.8	0.38	0.38	0.115
10	76.8	0.2	0.15	0.07	0.043	178.6	0.6	0.38	0.18	0.109
15 20	61.8	0.2	0.15	0.03	0.026	142.9	0.4	0.38	0.07	0.063
	52.0	0.1	0.15	0.00	0.002	120.0		0.38	0.00	-0.003
25 30	45.2 40.0	0.1	0.15 0.15	-0.02 -0.03	-0.027 -0.058	103.8 91.9	0.3	0.38	-0.05 -0.09	-0.079 -0.163
		0.1	0.15		-0.038		0.3	0.38		
35 40	36.1 32.9	0.1	0.15	-0.04 -0.05	-0.092	82.6 75.1	0.3	0.38	-0.12 -0.14	-0.251 -0.343
40	30.2	0.1	0.15	-0.05	-0.120	69.1	0.2	0.38	-0.14	-0.343
40 50	28.0	0.1	0.15	-0.07	-0.199	64.0	0.2	0.38	-0.18	-0.437
55	26.2	0.1	0.15	-0.07	-0.236	59.6	0.2	0.38	-0.10	-0.632
60	24.6	0.1	0.15	-0.07	-0.274	55.9	0.2	0.38	-0.10	-0.732
65	23.2	0.1	0.15	-0.08	-0.312	52.6	0.2	0.38	-0.21	-0.832
70	21.9	0.1	0.15	-0.08	-0.351	49.8	0.2	0.38	-0.22	-0.934
75	20.8	0.1	0.15	-0.09	-0.390	47.3	0.1	0.38	-0.23	-1.036
80	19.8	0.1	0.15	-0.09	-0.429	45.0	0.1	0.38	-0.24	-1.140
85	18.9	0.1	0.15	-0.09	-0.469	43.0	0.1	0.38	-0.24	-1.243
90	18.1	0.1	0.15	-0.09	-0.509	41.1	0.1	0.38	-0.25	-1.348
95	17.4	0.0	0.15	-0.10	-0.548	39.4	0.1	0.38	-0.25	-1.453
100	16.7	0.0	0.15	-0.10	-0.589	37.9	0.1	0.38	-0.26	-1.558
105	16.1	0.0	0.15	-0.10	-0.629	36.5	0.1	0.38	-0.26	-1.664
110	15.6	0.0	0.15	-0.10	-0.669	35.2	0.1	0.38	-0.27	-1.770
115	15.0	0.0	0.15	-0.10	-0.710	34.0	0.1	0.38	-0.27	-1.876
120	14.6	0.0	0.15	-0.10	-0.751	32.9	0.1	0.38	-0.28	-1.982
Max Storage	e (m ³)=				0.044					0.115
	nding Depth	<u>, ,</u>			3.9					10.2
Maximum P	onding Dept	h (mm)			11.7					30.5

1) Peak flow is equal to the product of 2.78 x C x I x A

2) Rainfall Intensity, I = A/(Tc/60)^B
 3) Release Rate = LESSER of Min (Release Rate, Peak Flow) - Minus 100 Year Flow Of Uncontroled Areas OR Pipe Outlet Capacity

4) Storage Rate = Peak Flow - Release Rate

5) Storage = Duration x Storage Rate

		Table VI -	-	•		nd 100-Ye	ear Storm	Events)		
	0			torage Requ	uirement fo	r CFRD 2				
	C _{AVG} =	0.90	(2-year)							
	C _{AVG} =	1.00	(100-year)			Watts Adju	stable Accuti	rol Weir Roo	of Drain	
	e Interval =	5	(mins)							
Drain	age Area =	0.001	(hectares)							
		14.47	(sqm)							
		Release Rate =		(L/sec) per o	drain	Rele	ease Rate =	0.34	(L/sec) per o	drain
		eturn Period =	-	(years)			urn Period =	100	(years)	
	IDF Pa	arameters, A =		, B =	0.810	IDF Para	meters, A =	1735.688	, B =	0.820
		I = A/(T _c +C)B	, C =	6.199		I = A/(Tc	+C)B	, C =	6.014
	Rainfall			Storage		Rainfall		Release	Storage	
Duration	Intensity, I	Peak Flow	Release	Rate	Storage	Intensity, I	Peak Flow	Rate	Rate	Storage
(min)	(mm/hr)	(L/sec)	Rate (L/sec)	(L/sec)	(m ³)	(mm/hr)	(L/sec)	(L/sec)	(L/sec)	(m ³)
0	-	-	-	-	-	-	-	-	-	-
5	103.6	0.3	0.13	0.16	0.048	242.7	0.8	0.34	0.42	0.126
10	76.8	0.2	0.13	0.09	0.051	178.6	0.6	0.34	0.22	0.132
15	61.8	0.2	0.13	0.04	0.039	142.9	0.4	0.34	0.11	0.098
20	52.0	0.1	0.13	0.02	0.018	120.0	0.4	0.34	0.04	0.044
25	45.2	0.1	0.13	0.00	-0.006	103.8	0.3	0.34	-0.01	-0.021
30	40.0	0.1	0.13	-0.02	-0.033	91.9	0.3	0.34	-0.05	-0.093
35	36.1	0.1	0.13	-0.03	-0.062	82.6	0.3	0.34	-0.08	-0.169
40	32.9	0.1	0.13	-0.04	-0.093	75.1	0.2	0.34	-0.10	-0.250
45	30.2	0.1	0.13	-0.05	-0.125	69.1	0.2	0.34	-0.12	-0.332
50	28.0	0.1	0.13	-0.05	-0.157	64.0	0.2	0.34	-0.14	-0.417
55	26.2	0.1	0.13	-0.06	-0.190	59.6	0.2	0.34	-0.15	-0.504
60	24.6	0.1	0.13	-0.06	-0.224	55.9	0.2	0.34	-0.16	-0.592
65	23.2	0.1	0.13	-0.07	-0.258	52.6	0.2	0.34	-0.17	-0.681
70	21.9	0.1	0.13	-0.07	-0.292	49.8	0.2	0.34	-0.18	-0.771
75	20.8	0.1	0.13	-0.07	-0.327	47.3	0.1	0.34	-0.19	-0.861
80	19.8	0.1	0.13	-0.08	-0.362	45.0	0.1	0.34	-0.20	-0.953
85	18.9	0.1	0.13	-0.08	-0.398	43.0	0.1	0.34	-0.20	-1.045
90	18.1	0.1	0.13	-0.08	-0.433	41.1	0.1	0.34	-0.21	-1.138
95	17.4	0.0	0.13	-0.08	-0.469	39.4	0.1	0.34	-0.22	-1.231
100	16.7	0.0	0.13	-0.08	-0.505	37.9	0.1	0.34	-0.22	-1.325
105	16.1	0.0	0.13	-0.09	-0.541	36.5	0.1	0.34	-0.23	-1.419
110	15.6	0.0	0.13	-0.09	-0.578	35.2	0.1	0.34	-0.23	-1.513
115	15.0	0.0	0.13	-0.09	-0.614	34.0	0.1	0.34	-0.23	-1.608
120	14.6	0.0	0.13	-0.09	-0.651	32.9	0.1	0.34	-0.24	-1.702
Max Storage	e (m ³)=				0.051	-				0.132
Average Po					3.5					9.1
Maximum P	onding Dept	h (mm)			10.6					27.4

1) Peak flow is equal to the product of 2.78 x C x I x A

2) Rainfall Intensity, I = A/(Tc/60)^B

3) Release Rate = LESSER of Min (Release Rate, Peak Flow) - Minus 100 Year Flow Of Uncontroled Areas OR Pipe Outlet Capacity

4) Storage Rate = Peak Flow - Release Rate

5) Storage = Duration x Storage Rate

	Table VII - Storage Volumes (2-Year and 100-Year Storm Events) Storage Requirement for CFRD 3										
	•			torage Requ	uirement fo	or CFRD 3					
	C _{AVG} =	0.90	(2-year)								
	C _{AVG} =	1.00	(100-year)			Watts Adjus	stable Accutr	ol Weir Roo	of Drain		
	ne Interval =	5	(mins)								
Drair	nage Area =	0.001	(hectares)								
		11.40	(sqm)			-					
	F	Release Rate =	0.14	(L/sec) per o	drain	Rele	ease Rate =	0.38	(L/sec) per	drain	
		leturn Period =		(years)			urn Period =	100	(years)		
	IDF Pa	arameters, A =		, B =	0.810	IDF Para	meters, A =	1735.688	, B =	0.820	
		I = A/(1	Г _с +С)В	, C =	6.199		I = A/(Tc	+C)B	, C =	6.014	
	Rainfall			Storage		Rainfall		Release	Storage		
Duration	Intensity, I	Peak Flow	Release	Rate	Storage	Intensity, I	Peak Flow	Rate	Rate	Storage	
(min)	(mm/hr)	(L/sec)	Rate (L/sec)	(L/sec)	(m ³)	(mm/hr)	(L/sec)	(L/sec)	(L/sec)	(m ³)	
0	-	-	-	-	-	-	-	-	-	-	
5	103.6	0.3	0.14	0.15	0.044	242.7	0.8	0.38	0.38	0.115	
10	76.8	0.2	0.14	0.07	0.043	178.6	0.6	0.38	0.18	0.110	
15	61.8	0.2	0.14	0.03	0.027	142.9	0.4	0.38	0.07	0.064	
20	52.0	0.1	0.14	0.00	0.003	120.0	0.4	0.38	0.00	0.000	
25	45.2	0.1	0.14	-0.02	-0.026	103.8	0.3	0.38	-0.05	-0.076	
30	40.0	0.1	0.14	-0.03	-0.057	91.9	0.3	0.38	-0.09	-0.159	
35	36.1	0.1	0.14	-0.04	-0.090	82.6	0.3	0.38	-0.12	-0.247	
40	32.9	0.1	0.14	-0.05	-0.124	75.1	0.2	0.38	-0.14	-0.338	
45	30.2	0.1	0.14	-0.06	-0.160	69.1	0.2	0.38	-0.16	-0.432	
50	28.0	0.1	0.14	-0.07	-0.196	64.0	0.2	0.38	-0.18	-0.528	
55	26.2	0.1	0.14	-0.07	-0.233	59.6	0.2	0.38	-0.19	-0.625	
60	24.6	0.1	0.14	-0.08	-0.271	55.9	0.2	0.38	-0.20	-0.724	
65	23.2	0.1	0.14	-0.08	-0.309	52.6	0.2	0.38	-0.21	-0.824	
70	21.9	0.1	0.14	-0.08	-0.347	49.8	0.2	0.38	-0.22	-0.925	
75	20.8	0.1	0.14	-0.09	-0.386	47.3	0.1	0.38	-0.23	-1.027	
80	19.8	0.1	0.14	-0.09	-0.425	45.0	0.1	0.38	-0.24	-1.129	
85	18.9	0.1	0.14	-0.09	-0.465	43.0	0.1	0.38	-0.24	-1.233	
90	18.1	0.1	0.14	-0.09	-0.504	41.1	0.1	0.38	-0.25	-1.336	
95	17.4	0.0	0.14	-0.10	-0.544	39.4	0.1	0.38	-0.25	-1.440	
100	16.7	0.0	0.14	-0.10	-0.584	37.9	0.1	0.38	-0.26	-1.545	
105	16.1	0.0	0.14	-0.10	-0.624	36.5	0.1	0.38	-0.26	-1.650	
110	15.6	0.0	0.14	-0.10	-0.664	35.2	0.1	0.38	-0.27	-1.755	
115	15.0	0.0	0.14	-0.10	-0.704	34.0	0.1	0.38	-0.27	-1.861	
120	14.6	0.0	0.14	-0.10	-0.745	32.9	0.1	0.38	-0.27	-1.967	
Max Storag					0.044	•				0.115	
-	onding Depth	(mm)			3.9					10.1	
Ů	Ponding Dept	()			11.7					30.3	
Notes		(/									

1) Peak flow is equal to the product of 2.78 x C x I x A

Rainfall Intensity, I = A/(Tc/60)^B
 Release Rate = LESSER of Min (Release Rate, Peak Flow) - Minus 100 Year Flow Of Uncontroled Areas OR Pipe Outlet Capacity

4) Storage Rate = Peak Flow - Release Rate

5) Storage = Duration x Storage Rate

	Table VIII - Storage Volumes (2-Year and 100-Year Storm Events) Storage Requirement for CFRD 4											
				torage Requ	irement fo	r CFRD 4						
	C _{AVG} =	0.90	(2-year)									
	C _{AVG} =	1.00	(100-year)			Watts Adjus	stable Accuti	rol Weir Roo	of Drain			
	e Interval =	5	(mins)									
Drair	nage Area =	0.002	(hectares)									
		15.13	(sqm)									
	F	Release Rate =	0.13	(L/sec) per o	drain	Rele	ease Rate =	0.33	(L/sec) per o	drain		
		eturn Period =		(years)			urn Period =	100	(years)			
	IDF Pa	arameters, A =		, B =	0.810	IDF Para	meters, A =	1735.688	, B =	0.820		
		I = A/(1	Г _с +С)В	, C =	6.199		I = A/(Tc	+C)B	, C =	6.014		
	Rainfall			Storage		Rainfall		Release	Storage			
Duration	Intensity, I	Peak Flow	Release	Rate	Storage	Intensity, I	Peak Flow	Rate	Rate	Storage		
(min)	(mm/hr)	(L/sec)	Rate (L/sec)	(L/sec)	(m ³)	(mm/hr)	(L/sec)	(L/sec)	(L/sec)	(m ³)		
0	-	-	-	-	-	-	-	-	-	-		
5	103.6	0.3	0.13	0.16	0.049	242.7	0.8	0.33	0.43	0.128		
10	76.8	0.2	0.13	0.09	0.053	178.6	0.6	0.33	0.23	0.136		
15	61.8	0.2	0.13	0.05	0.041	142.9	0.4	0.33	0.11	0.103		
20	52.0	0.1	0.13	0.02	0.021	120.0	0.4	0.33	0.04	0.051		
25	45.2	0.1	0.13	0.00	-0.003	103.8	0.3	0.33	-0.01	-0.012		
30	40.0	0.1	0.13	-0.02	-0.029	91.9	0.3	0.33	-0.05	-0.082		
35	36.1	0.1	0.13	-0.03	-0.058	82.6	0.3	0.33	-0.07	-0.157		
40	32.9	0.1	0.13	-0.04	-0.087	75.1	0.2	0.33	-0.10	-0.235		
45	30.2	0.1	0.13	-0.04	-0.118	69.1	0.2	0.33	-0.12	-0.316		
50	28.0	0.1	0.13	-0.05	-0.150	64.0	0.2	0.33	-0.13	-0.399		
55	26.2	0.1	0.13	-0.06	-0.183	59.6	0.2	0.33	-0.15	-0.484		
60	24.6	0.1	0.13	-0.06	-0.216	55.9	0.2	0.33	-0.16	-0.570		
65	23.2	0.1	0.13	-0.06	-0.249	52.6	0.2	0.33	-0.17	-0.657		
70	21.9	0.1	0.13	-0.07	-0.283	49.8	0.2	0.33	-0.18	-0.746		
75	20.8	0.1	0.13	-0.07	-0.317	47.3	0.1	0.33	-0.19	-0.835		
80	19.8	0.1	0.13	-0.07	-0.351	45.0	0.1	0.33	-0.19	-0.924		
85	18.9	0.1	0.13	-0.08	-0.386	43.0	0.1	0.33	-0.20	-1.015		
90	18.1	0.1	0.13	-0.08	-0.421	41.1	0.1	0.33	-0.20	-1.106		
95	17.4	0.0	0.13	-0.08	-0.456	39.4	0.1	0.33	-0.21	-1.197		
100	16.7	0.0	0.13	-0.08	-0.491	37.9	0.1	0.33	-0.21	-1.289		
105	16.1	0.0	0.13	-0.08	-0.527	36.5	0.1	0.33	-0.22	-1.381		
110	15.6	0.0	0.13	-0.09	-0.563	35.2	0.1	0.33	-0.22	-1.474		
115	15.0	0.0	0.13	-0.09	-0.598	34.0	0.1	0.33	-0.23	-1.566		
120	14.6	0.0	0.13	-0.09	-0.634	32.9	0.1	0.33	-0.23	-1.660		
Max Storag					0.053					0.136		
-	nding Depth	, ,			3.5					9.0		
Maximum F	onding Dept	th (mm)			10.4					26.9		

1) Peak flow is equal to the product of 2.78 x C x I x A

2) Rainfall Intensity, I = A/(Tc/60)^B

3) Release Rate = LESSER of Min (Release Rate, Peak Flow) - Minus 100 Year Flow Of Uncontroled Areas OR Pipe Outlet Capacity

4) Storage Rate = Peak Flow - Release Rate

5) Storage = Duration x Storage Rate

Storage Requirement for CFRD 5 C _{AVG} = 1.00 (100-year) Watts Adjustable Accutrol Weir Roof Drain Time Interval = 5 (mins) Drainage Area = 0.07 (hectares): S5.57 (sqm) Release Rate = 0.05 (L/sec) per drain Return Period = 2 (years) Retext Period = 100 (years) IDF Parameters, A = 732.951 , B = 0.810 IDF Parameters, A = 732.951 , C = 6.199 Duration (inmrity) Rainfall intensity, I Peak Flow Release Rate Storage (L/sec) (L/sec) Rainfall intensity, I Peak Flow Release Rate (L/sec) Storage Storage (mm/hr) C422.7 0 - - - - - - - - - - 0 - - - - - - - - - - - - - - - <th c<="" th=""><th></th><th></th><th>Table IX - S</th><th>-</th><th>•</th><th></th><th></th><th>ar Storm</th><th>Events)</th><th></th><th></th></th>	<th></th> <th></th> <th>Table IX - S</th> <th>-</th> <th>•</th> <th></th> <th></th> <th>ar Storm</th> <th>Events)</th> <th></th> <th></th>			Table IX - S	-	•			ar Storm	Events)		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		0	0.00		torage Requ	irement fo	r CFRD 5					
Time Interval = 5 (mins) (hectares) 65.57 (mins) (som) Release Rate = Return Period = 0.06 2 (L/sec) per drain (years) Release Rate = 0.15 0.15 (L/sec) per drain Return Period = 0.05 (L/sec) per drain Return Period = 0.05 (L/sec) per drain Return Period = 0.05 (L/sec) per drain Return Period = 0.15 (L/sec) per drain Return Period = 0.05 (L/sec) Return Return Period = 0.15 (L/sec) Return Return Period = 0.05 (L/sec) Return Return Period = 0.15 0.14 Duration (mm/hr) (mm/hr) (L/sec) (L/sec) (L/sec) (L/sec) (L/sec) (L/sec) (L/sec) (L/sec) (L/sec) (m ³) 0 76.8 0.2 0.06 0.16 0.094 178.6 0.6 0.15 0.41 0.22 0.22 2.22 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2										(D ·		
Drainage Area = 0.007 (hectares) (sym) Release Rate = 0.06 (L/sec) per drain Return Period = 2 (years) IDF Parameters, A = 732.951 , B = 0.810 IDF Parameters, A = 732.951 , C = 6.199 Release Rate = 100 (years) IDF Parameters, A = 732.951 , C = 6.199 I = A/(Tc+C)B , C = 6.014 Mainfall Peak Flow (min) Release Return Period = 0 , C = 6.199 I = A/(Tc+C)B , C = 6.014 N = 2.020 N = 2.020 0 - <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>Watts Adjus</td><td>stable Accuti</td><td>ol Weir Roo</td><td>of Drain</td><td></td></td<>							Watts Adjus	stable Accuti	ol Weir Roo	of Drain		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $. ,								
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Drair	nage Area =		. ,								
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$				、 i								
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$				-		drain					drain	
I = A/(T_c+C)B , C = 6.199 I = A/(T_c+C)B , C = 6.014 Duration (min) Intensity, I (mm/hr) Peak Flow (L/sec) Release Rate (L/sec) Storage (m ³) Rainfall Intensity, I (mm/hr) Release (L/sec) Storage (m ³) Release (m ³) Release (L/sec) Storage (L/sec) Storage (L/								-		,		
Duration (min) Reinfall Intensity, I (L/sec) Peak Flow Release Rate Release (L/sec) Storage Rate (M ³) Rainfall Intensity, I (L/sec) Peak Flow (L/sec) Release (M ³) Storage (M ³) Storage (L/sec) Storage (M ³) Storage (L/sec) Storag		IDF Pa			-		IDF Para	-				
Duration (mm) Intensity, I (mm/h) Peak Flow (L/sec) Rate (L/sec) Rate (L/sec) Storage (mm/h) Intensity, I (L/sec) Peak Flow (L/sec) Rate (L/sec) Storage (m ³) 0 -<			I = A/(Г _с +С)В	, C =	6.199		I = A/(Tc	+C)B	, C =	6.014	
Duration (mm) Intensity, I (mm/h) Peak Flow (L/sec) Rate (L/sec) Rate (L/sec) Storage (mm/h) Intensity, I (L/sec) Peak Flow (L/sec) Rate (L/sec) Storage (m ³) 0 -<												
(min) (U/sec) Rate (U/sec) (m ³) (mm/hr) (U/sec) (U/sec) (U/sec) (U/sec) (U/sec) (U/sec) (m ³) 0 -						0					0	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $											-	
5 103.6 0.3 0.06 0.23 0.070 242.7 0.8 0.15 0.61 0.183 10 76.8 0.2 0.06 0.16 0.094 178.6 0.6 0.15 0.41 0.245 15 61.8 0.2 0.06 0.11 0.103 142.9 0.4 0.15 0.30 0.266 20 52.0 0.1 0.06 0.07 0.102 103.8 0.3 0.15 0.17 0.269 30 40.0 0.1 0.06 0.07 0.102 103.8 0.3 0.15 0.14 0.244 35 36.1 0.1 0.06 0.03 0.089 82.6 0.3 0.15 0.11 0.224 40 32.9 0.1 0.06 0.03 0.080 75.1 0.2 0.15 0.06 0.174 50 28.0 0.1 0.06 0.02 0.059 64.0 0.2 0.15 0.06 0.145 55 26.2 0.1 0.06 0.01 0.023	()	(mm/hr)	(L/sec)	Rate (L/sec)	(L/sec)	(m˘)	(mm/hr)	(L/sec)	(L/sec)	(L/sec)	(m˘)	
10 76.8 0.2 0.06 0.16 0.094 178.6 0.6 0.15 0.41 0.245 15 61.8 0.2 0.06 0.11 0.103 142.9 0.4 0.15 0.30 0.266 20 52.0 0.1 0.06 0.09 0.105 120.0 0.4 0.15 0.22 0.269 25 45.2 0.1 0.06 0.07 0.102 103.8 0.3 0.15 0.17 0.260 30 40.0 0.1 0.06 0.05 0.097 91.9 0.3 0.15 0.11 0.224 40 32.9 0.1 0.06 0.03 0.080 75.1 0.2 0.15 0.06 0.174 50 28.0 0.1 0.06 0.02 0.059 64.0 0.2 0.15 0.05 0.145 60 24.6 0.1 0.06 0.01 0.023 52.6 0.2 0.15 0.01	-	-	-	-	-	-	-	-	-	-	-	
15 61.8 0.2 0.06 0.11 0.103 142.9 0.4 0.15 0.30 0.266 20 52.0 0.1 0.06 0.09 0.105 120.0 0.4 0.15 0.22 0.269 25 45.2 0.1 0.06 0.07 0.102 103.8 0.3 0.15 0.17 0.260 30 40.0 0.1 0.06 0.05 0.097 91.9 0.3 0.15 0.14 0.244 35 36.1 0.1 0.06 0.03 0.080 75.1 0.2 0.15 0.08 0.200 45 30.2 0.1 0.06 0.02 0.059 64.0 0.2 0.15 0.06 0.174 50 28.0 0.1 0.06 0.01 0.048 59.6 0.2 0.15 0.03 0.115 60 24.6 0.1 0.06 0.01 0.023 52.6 0.2 0.15 0.00 0.016 75 20.8 0.1 0.06 0.00 -0.003 <												
20 52.0 0.1 0.06 0.09 0.105 120.0 0.4 0.15 0.22 0.269 25 45.2 0.1 0.06 0.07 0.102 103.8 0.3 0.15 0.17 0.260 30 40.0 0.1 0.06 0.05 0.97 91.9 0.3 0.15 0.14 0.244 35 36.1 0.1 0.06 0.03 0.080 75.1 0.2 0.15 0.08 0.200 40 32.9 0.1 0.06 0.03 0.080 75.1 0.2 0.15 0.08 0.200 45 30.2 0.1 0.06 0.03 0.070 69.1 0.2 0.15 0.06 0.174 50 28.0 0.1 0.06 0.01 0.048 59.6 0.2 0.15 0.03 0.115 60 24.6 0.1 0.06 0.01 0.032 52.6 0.2 0.15 0.01												
25 45.2 0.1 0.06 0.07 0.102 103.8 0.3 0.15 0.17 0.260 30 40.0 0.1 0.06 0.05 0.097 91.9 0.3 0.15 0.14 0.244 35 36.1 0.1 0.06 0.04 0.089 82.6 0.3 0.15 0.11 0.224 40 32.9 0.1 0.06 0.03 0.080 75.1 0.2 0.15 0.08 0.200 45 30.2 0.1 0.06 0.03 0.070 69.1 0.2 0.15 0.06 0.174 50 28.0 0.1 0.06 0.02 0.059 64.0 0.2 0.15 0.05 0.145 60 24.6 0.1 0.06 0.01 0.036 55.9 0.2 0.15 0.02 0.083 65 23.2 0.1 0.06 0.01 0.023 52.6 0.2 0.15 0.01 0.053 70 21.9 0.1 0.06 0.00 -0.016 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>												
30 40.0 0.1 0.06 0.05 0.097 91.9 0.3 0.15 0.14 0.244 35 36.1 0.1 0.06 0.04 0.089 82.6 0.3 0.15 0.11 0.224 40 32.9 0.1 0.06 0.03 0.080 75.1 0.2 0.15 0.08 0.200 45 30.2 0.1 0.06 0.03 0.070 69.1 0.2 0.15 0.06 0.174 50 28.0 0.1 0.06 0.02 0.059 64.0 0.2 0.15 0.05 0.145 55 26.2 0.1 0.06 0.01 0.036 55.9 0.2 0.15 0.03 0.115 60 24.6 0.1 0.06 0.01 0.023 52.6 0.2 0.15 0.00 0.016 70 21.9 0.1 0.06 0.00 -0.003 47.3 0.1 0.15 -0.01												
35 36.1 0.1 0.06 0.04 0.089 82.6 0.3 0.15 0.11 0.224 40 32.9 0.1 0.06 0.03 0.080 75.1 0.2 0.15 0.08 0.200 45 30.2 0.1 0.06 0.03 0.070 69.1 0.2 0.15 0.06 0.174 50 28.0 0.1 0.06 0.02 0.059 64.0 0.2 0.15 0.05 0.145 55 26.2 0.1 0.06 0.01 0.048 59.6 0.2 0.15 0.02 0.083 65 23.2 0.1 0.06 0.01 0.023 52.6 0.2 0.15 0.01 0.050 70 21.9 0.1 0.06 0.00 -0.003 47.3 0.1 0.15 0.00 -0.018 80 19.8 0.1 0.06 -0.01 -0.030 43.0 0.1 0.15 -0.02												
40 32.9 0.1 0.06 0.03 0.080 75.1 0.2 0.15 0.08 0.200 45 30.2 0.1 0.06 0.03 0.070 69.1 0.2 0.15 0.06 0.174 50 28.0 0.1 0.06 0.02 0.059 64.0 0.2 0.15 0.05 0.145 55 26.2 0.1 0.06 0.01 0.048 59.6 0.2 0.15 0.03 0.115 60 24.6 0.1 0.06 0.01 0.036 55.9 0.2 0.15 0.01 0.050 70 21.9 0.1 0.06 0.00 0.010 49.8 0.2 0.15 0.00 0.016 75 20.8 0.1 0.06 0.00 -0.003 47.3 0.1 0.15 -0.01 -0.053 85 18.9 0.1 0.06 -0.01 -0.030 43.0 0.1 0.15 -0.02												
45 30.2 0.1 0.06 0.03 0.070 69.1 0.2 0.15 0.06 0.174 50 28.0 0.1 0.06 0.02 0.059 64.0 0.2 0.15 0.05 0.145 55 26.2 0.1 0.06 0.01 0.048 59.6 0.2 0.15 0.03 0.115 60 24.6 0.1 0.06 0.01 0.036 55.9 0.2 0.15 0.02 0.083 65 23.2 0.1 0.06 0.01 0.023 52.6 0.2 0.15 0.00 0.016 70 21.9 0.1 0.06 0.00 -0.003 47.3 0.1 0.15 0.00 -0.018 80 19.8 0.1 0.06 -0.01 -0.030 43.0 0.1 0.15 -0.02 -0.089 90 18.1 0.1 0.06 -0.01 -0.038 39.4 0.1 0.15 -0.02 </td <td></td>												
50 28.0 0.1 0.06 0.02 0.059 64.0 0.2 0.15 0.05 0.145 55 26.2 0.1 0.06 0.01 0.048 59.6 0.2 0.15 0.03 0.115 60 24.6 0.1 0.06 0.01 0.036 55.9 0.2 0.15 0.02 0.083 65 23.2 0.1 0.06 0.01 0.023 52.6 0.2 0.15 0.00 0.016 70 21.9 0.1 0.06 0.00 -0.003 47.3 0.1 0.15 0.00 -0.018 80 19.8 0.1 0.06 0.00 -0.016 45.0 0.1 0.15 -0.02 -0.089 90 18.1 0.1 0.06 -0.01 -0.030 43.0 0.1 0.15 -0.02 -0.126 95 17.4 0.0 0.06 -0.01 -0.058 39.4 0.1 0.15 -0.0												
55 26.2 0.1 0.06 0.01 0.048 59.6 0.2 0.15 0.03 0.115 60 24.6 0.1 0.06 0.01 0.036 55.9 0.2 0.15 0.02 0.083 65 23.2 0.1 0.06 0.01 0.023 52.6 0.2 0.15 0.01 0.050 70 21.9 0.1 0.06 0.00 0.010 49.8 0.2 0.15 0.00 0.016 75 20.8 0.1 0.06 0.00 -0.003 47.3 0.1 0.15 0.00 -0.018 80 19.8 0.1 0.06 0.00 -0.016 45.0 0.1 0.15 -0.02 -0.089 90 18.1 0.1 0.06 -0.01 -0.034 43.0 0.1 0.15 -0.02 -0.126 95 17.4 0.0 0.06 -0.01 -0.058 39.4 0.1 0.15 -0.0												
60 24.6 0.1 0.06 0.01 0.036 55.9 0.2 0.15 0.02 0.083 65 23.2 0.1 0.06 0.01 0.023 52.6 0.2 0.15 0.01 0.050 70 21.9 0.1 0.06 0.00 0.010 49.8 0.2 0.15 0.00 0.016 75 20.8 0.1 0.06 0.00 -0.003 47.3 0.1 0.15 0.00 -0.018 80 19.8 0.1 0.06 0.00 -0.016 45.0 0.1 0.15 -0.01 -0.053 85 18.9 0.1 0.06 -0.01 -0.030 43.0 0.1 0.15 -0.02 -0.126 95 17.4 0.0 0.06 -0.01 -0.058 39.4 0.1 0.15 -0.03 -0.200 105 16.1 0.0 0.06 -0.01 -0.073 37.9 0.1 0.15 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>												
65 23.2 0.1 0.06 0.01 0.023 52.6 0.2 0.15 0.01 0.050 70 21.9 0.1 0.06 0.00 0.010 49.8 0.2 0.15 0.00 0.016 75 20.8 0.1 0.06 0.00 -0.003 47.3 0.1 0.15 0.00 -0.018 80 19.8 0.1 0.06 0.00 -0.016 45.0 0.1 0.15 -0.01 -0.053 85 18.9 0.1 0.06 -0.01 -0.030 43.0 0.1 0.15 -0.02 -0.089 90 18.1 0.1 0.06 -0.01 -0.058 39.4 0.1 0.15 -0.02 -0.126 95 17.4 0.0 0.06 -0.01 -0.073 37.9 0.1 0.15 -0.03 -0.200 105 16.1 0.0 0.06 -0.01 -0.087 36.5 0.1 0.15												
70 21.9 0.1 0.06 0.00 0.010 49.8 0.2 0.15 0.00 0.016 75 20.8 0.1 0.06 0.00 -0.003 47.3 0.1 0.15 0.00 -0.018 80 19.8 0.1 0.06 0.00 -0.016 45.0 0.1 0.15 -0.01 -0.053 85 18.9 0.1 0.06 -0.01 -0.030 43.0 0.1 0.15 -0.02 -0.089 90 18.1 0.1 0.06 -0.01 -0.058 39.4 0.1 0.15 -0.02 -0.126 95 17.4 0.0 0.06 -0.01 -0.058 39.4 0.1 0.15 -0.03 -0.163 100 16.7 0.0 0.06 -0.01 -0.073 37.9 0.1 0.15 -0.04 -0.238 110 15.6 0.0 0.06 -0.02 -0.102 35.2 0.1 0.15 -0.04 -0.276 115 15.0 0.0 0.06 -0.02												
75 20.8 0.1 0.06 0.00 -0.003 47.3 0.1 0.15 0.00 -0.018 80 19.8 0.1 0.06 0.00 -0.016 45.0 0.1 0.15 -0.01 -0.053 85 18.9 0.1 0.06 -0.01 -0.030 43.0 0.1 0.15 -0.02 -0.089 90 18.1 0.1 0.06 -0.01 -0.044 41.1 0.1 0.15 -0.02 -0.126 95 17.4 0.0 0.06 -0.01 -0.058 39.4 0.1 0.15 -0.03 -0.163 100 16.7 0.0 0.06 -0.01 -0.073 37.9 0.1 0.15 -0.03 -0.200 105 16.1 0.0 0.06 -0.02 -0.102 35.2 0.1 0.15 -0.04 -0.238 110 15.6 0.0 0.06 -0.02 -0.117 34.0 0.1 0.15 -0.05 -0.314 120 14.6 0.0 0.06 -0.02 <td></td>												
80 19.8 0.1 0.06 0.00 -0.016 45.0 0.1 0.15 -0.01 -0.053 85 18.9 0.1 0.06 -0.01 -0.030 43.0 0.1 0.15 -0.02 -0.089 90 18.1 0.1 0.06 -0.01 -0.044 41.1 0.1 0.15 -0.02 -0.126 95 17.4 0.0 0.06 -0.01 -0.058 39.4 0.1 0.15 -0.03 -0.163 100 16.7 0.0 0.06 -0.01 -0.073 37.9 0.1 0.15 -0.03 -0.200 105 16.1 0.0 0.06 -0.01 -0.087 36.5 0.1 0.15 -0.04 -0.238 110 15.6 0.0 0.06 -0.02 -0.102 35.2 0.1 0.15 -0.04 -0.276 115 15.0 0.0 0.06 -0.02 -0.117 34.0 0.1 0.15												
85 18.9 0.1 0.06 -0.01 -0.030 43.0 0.1 0.15 -0.02 -0.089 90 18.1 0.1 0.06 -0.01 -0.044 41.1 0.1 0.15 -0.02 -0.126 95 17.4 0.0 0.06 -0.01 -0.058 39.4 0.1 0.15 -0.03 -0.163 100 16.7 0.0 0.06 -0.01 -0.073 37.9 0.1 0.15 -0.03 -0.200 105 16.1 0.0 0.06 -0.01 -0.087 36.5 0.1 0.15 -0.04 -0.238 110 15.6 0.0 0.06 -0.02 -0.102 35.2 0.1 0.15 -0.04 -0.276 115 15.0 0.0 0.06 -0.02 -0.117 34.0 0.1 0.15 -0.05 -0.314 120 14.6 0.0 0.06 -0.02 -0.132 32.9 0.1 0.15 -0.05 -0.353 Max Storage (m³)= 1.6 <td c<="" td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td>	<td></td>											
90 18.1 0.1 0.06 -0.01 -0.044 41.1 0.1 0.15 -0.02 -0.126 95 17.4 0.0 0.06 -0.01 -0.058 39.4 0.1 0.15 -0.03 -0.163 100 16.7 0.0 0.06 -0.01 -0.073 37.9 0.1 0.15 -0.03 -0.200 105 16.1 0.0 0.06 -0.01 -0.087 36.5 0.1 0.15 -0.04 -0.238 110 15.6 0.0 0.06 -0.02 -0.102 35.2 0.1 0.15 -0.04 -0.276 115 15.0 0.0 0.06 -0.02 -0.117 34.0 0.1 0.15 -0.05 -0.314 120 14.6 0.0 0.06 -0.02 -0.132 32.9 0.1 0.15 -0.05 -0.353 Max Storage (m³)= 0.105 0.269 4.1												
95 17.4 0.0 0.06 -0.01 -0.058 39.4 0.1 0.15 -0.03 -0.163 100 16.7 0.0 0.06 -0.01 -0.073 37.9 0.1 0.15 -0.03 -0.200 105 16.1 0.0 0.06 -0.01 -0.087 36.5 0.1 0.15 -0.04 -0.238 110 15.6 0.0 0.06 -0.02 -0.102 35.2 0.1 0.15 -0.04 -0.238 110 15.6 0.0 0.06 -0.02 -0.102 35.2 0.1 0.15 -0.04 -0.276 115 15.0 0.0 0.06 -0.02 -0.117 34.0 0.1 0.15 -0.05 -0.314 120 14.6 0.0 0.06 -0.02 -0.132 32.9 0.1 0.15 -0.05 -0.353 Max Storage (m ³)= 0.105 0.105												
100 16.7 0.0 0.06 -0.01 -0.073 37.9 0.1 0.15 -0.03 -0.200 105 16.1 0.0 0.06 -0.01 -0.087 36.5 0.1 0.15 -0.04 -0.238 110 15.6 0.0 0.06 -0.02 -0.102 35.2 0.1 0.15 -0.04 -0.238 115 15.0 0.0 0.06 -0.02 -0.102 35.2 0.1 0.15 -0.04 -0.276 115 15.0 0.0 0.06 -0.02 -0.117 34.0 0.1 0.15 -0.05 -0.314 120 14.6 0.0 0.06 -0.02 -0.132 32.9 0.1 0.15 -0.05 -0.353 Max Storage (m ³)= 0.105 0.105 1.6 4.1												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						-0.087						
120 14.6 0.0 0.06 -0.02 -0.132 32.9 0.1 0.15 -0.05 -0.353 Max Storage (m ³)= 0.105 0.105 0.105 0.269 Average Ponding Depth (mm) 1.6 4.1			0.0							-0.04		
Max Storage (m ³)= 0.105 0.269 Average Ponding Depth (mm) 1.6 4.1	115	15.0	0.0	0.06	-0.02				0.15	-0.05	-0.314	
Average Ponding Depth (mm)1.64.1	120	14.6	0.0	0.06	-0.02	-0.132			0.15	-0.05	-0.353	
	Max Storag	e (m ³)=				0.105					0.269	
Maximum Ponding Depth (mm) 4.8 12.3	-					1.6					4.1	
5 1 ()	Maximum F	onding Dept	th (mm)			4.8					12.3	

1) Peak flow is equal to the product of 2.78 x C x I x A

2) Rainfall Intensity, I = A/(Tc/60)^B

3) Release Rate = LESSER of Min (Release Rate, Peak Flow) - Minus 100 Year Flow Of Uncontroled Areas OR Pipe Outlet Capacity

4) Storage Rate = Peak Flow - Release Rate

5) Storage = Duration x Storage Rate

	Table X - Storage Volumes (2-Year and 100-Year Storm Events) Storage Requirement for CFRD 6										
	-			torage Requ	uirement fo	r CFRD 6					
	C _{AVG} =	0.90	(2-year)								
	C _{AVG} =	1.00	(100-year)			Watts Adju	stable Accuti	rol Weir Roo	of Drain		
Tim	e Interval =	5	(mins)								
Drair	nage Area =	0.001	(hectares)								
		11.92	(sqm)								
	F	Release Rate =	0.14	(L/sec) per	drain	Rele	ease Rate =	0.37	(L/sec) per o	drain	
	R	eturn Period =	2	(years)		Retu	urn Period =	100	(years)		
	IDF Pa	arameters, A =	732.951	, B =	0.810	IDF Para	meters, A =	1735.688	, B =	0.820	
		I = A/(1	Г _с +С)В	, C =	6.199		I = A/(Tc	+C)B	, C =	6.014	
	Rainfall			Storage		Rainfall		Release	Storage		
Duration	Intensity, I	Peak Flow	Release	Rate	Storage	Intensity, I	Peak Flow	Rate	Rate	Storage	
(min)	(mm/hr)	(L/sec)	Rate (L/sec)	(L/sec)	(m ³)	(mm/hr)	(L/sec)	(L/sec)	(L/sec)	(m ³)	
0	-	-	-	-	-	-	-	-	-	-	
5	103.6	0.3	0.14	0.15	0.045	242.7	0.8	0.37	0.39	0.118	
10	76.8	0.2	0.14	0.08	0.045	178.6	0.6	0.37	0.19	0.115	
15	61.8	0.2	0.14	0.03	0.030	142.9	0.4	0.37	0.08	0.072	
20	52.0	0.1	0.14	0.01	0.007	120.0	0.4	0.37	0.01	0.010	
25	45.2	0.1	0.14	-0.01	-0.021	103.8	0.3	0.37	-0.04	-0.063	
30	40.0	0.1	0.14	-0.03	-0.051	91.9	0.3	0.37	-0.08	-0.143	
35	36.1	0.1	0.14	-0.04	-0.083	82.6	0.3	0.37	-0.11	-0.228	
40	32.9	0.1	0.14	-0.05	-0.116	75.1	0.2	0.37	-0.13	-0.316	
45	30.2	0.1	0.14	-0.06	-0.151	69.1	0.2	0.37	-0.15	-0.408	
50	28.0	0.1	0.14	-0.06	-0.186	64.0	0.2	0.37	-0.17	-0.501	
55	26.2	0.1	0.14	-0.07	-0.222	59.6	0.2	0.37	-0.18	-0.596	
60	24.6	0.1	0.14	-0.07	-0.259	55.9	0.2	0.37	-0.19	-0.692	
65	23.2	0.1	0.14	-0.08	-0.296	52.6	0.2	0.37	-0.20	-0.789	
70	21.9	0.1	0.14	-0.08	-0.334	49.8	0.2	0.37	-0.21	-0.887	
75	20.8	0.1	0.14	-0.08	-0.371	47.3	0.1	0.37	-0.22	-0.987	
80	19.8	0.1	0.14	-0.09	-0.409	45.0	0.1	0.37	-0.23	-1.086	
85	18.9	0.1	0.14	-0.09	-0.448	43.0	0.1	0.37	-0.23	-1.187	
90	18.1	0.1	0.14	-0.09	-0.486	41.1	0.1	0.37	-0.24	-1.288	
95	17.4	0.0	0.14	-0.09	-0.525	39.4	0.1	0.37	-0.24	-1.389	
100	16.7	0.0	0.14	-0.09	-0.564	37.9	0.1	0.37	-0.25	-1.491	
105	16.1	0.0	0.14	-0.10	-0.603	36.5	0.1	0.37	-0.25	-1.594	
110	15.6	0.0	0.14	-0.10	-0.642	35.2	0.1	0.37	-0.26	-1.696	
115	15.0	0.0	0.14	-0.10	-0.682	34.0	0.1	0.37	-0.26	-1.799	
120	14.6	0.0	0.14	-0.10	-0.721	32.9	0.1	0.37	-0.26	-1.903	
Max Storag					0.045					0.118	
-	onding Depth	. ,			3.8					9.9	
Maximum F	onding Dept	th (mm)			11.4					29.7	

1) Peak flow is equal to the product of 2.78 x C x I x A

2) Rainfall Intensity, I = A/(Tc/60)^B

3) Release Rate = LESSER of Min (Release Rate, Peak Flow) - Minus 100 Year Flow Of Uncontroled Areas OR Pipe Outlet Capacity

4) Storage Rate = Peak Flow - Release Rate

5) Storage = Duration x Storage Rate

		Table XI - S	-	•			ar Storm	Events)					
	-			torage Requ	uirement fo	r CFRD 7							
	C _{AVG} =	0.90	(2-year)										
	C _{AVG} =	1.00	(100-year)			Watts Adju	stable Accuti	rol Weir Roo	of Drain				
Tim	ie Interval =	5	(mins)										
Drair	nage Area =	0.007	(hectares)										
		67.33	(sqm)										
	Release Rate = 0.06 (L/sec) per drain Release Rate = 0.15 (L/sec) per drain								(L/sec) per o	drain			
		eturn Period =		(years)			urn Period =	100	(years)				
	IDF Pa	arameters, A =	732.951	, B =	0.810	IDF Para	meters, A =	1735.688	, B =	0.820			
		I = A/(1	Г _с +С)В	, C =	6.199		I = A/(Tc	+C)B	, C =	6.014			
	Rainfall			Storage		Rainfall		Release	Storage				
Duration	Intensity, I	Peak Flow	Release	Rate	Storage	Intensity, I	Peak Flow	Rate	Rate	Storage			
(min)	(mm/hr)	(L/sec)	Rate (L/sec)	(L/sec)	(m ³)	(mm/hr)	(L/sec)	(L/sec)	(L/sec)	(m ³)			
0	-	-	-	-	-	-	-	-	-	-			
5	103.6	0.3	0.06	0.23	0.070	242.7	0.8	0.15	0.61	0.183			
10	76.8	0.2	0.06	0.16	0.095	178.6	0.6	0.15	0.41	0.246			
15	61.8	0.2	0.06	0.12	0.104	142.9	0.4	0.15	0.30	0.268			
20	52.0	0.1	0.06	0.09	0.106	120.0	0.4	0.15	0.23	0.272			
25	45.2	0.1	0.06	0.07	0.104	103.8	0.3	0.15	0.18	0.264			
30	40.0	0.1	0.06	0.05	0.098	91.9	0.3	0.15	0.14	0.249			
35	36.1	0.1	0.06	0.04	0.091	82.6	0.3	0.15	0.11	0.229			
40	32.9	0.1	0.06	0.03	0.082	75.1	0.2	0.15	0.09	0.206			
45	30.2	0.1	0.06	0.03	0.073	69.1	0.2	0.15	0.07	0.180			
50	28.0	0.1	0.06	0.02	0.062	64.0	0.2	0.15	0.05	0.152			
55	26.2	0.1	0.06	0.02	0.051	59.6	0.2	0.15	0.04	0.123			
60	24.6	0.1	0.06	0.01	0.039	55.9	0.2	0.15	0.03	0.092			
65	23.2	0.1	0.06	0.01	0.027	52.6	0.2	0.15	0.02	0.060			
70	21.9	0.1	0.06	0.00	0.014	49.8	0.2	0.15	0.01	0.027			
75	20.8	0.1	0.06	0.00	0.001	47.3	0.1	0.15	0.00	-0.007			
80	19.8	0.1	0.06	0.00	-0.012	45.0	0.1	0.15	-0.01	-0.042			
85	18.9	0.1	0.06	0.00	-0.025	43.0	0.1	0.15	-0.02	-0.077			
90	18.1	0.1	0.06	-0.01	-0.039	41.1	0.1	0.15	-0.02	-0.113			
95	17.4	0.0	0.06	-0.01	-0.053	39.4	0.1	0.15	-0.03	-0.149			
100	16.7	0.0	0.06	-0.01	-0.067	37.9	0.1	0.15	-0.03	-0.185			
105	16.1	0.0	0.06	-0.01	-0.081	36.5	0.1	0.15	-0.04	-0.223			
110	15.6	0.0	0.06	-0.01	-0.096	35.2	0.1	0.15	-0.04	-0.260			
115	15.0	0.0	0.06	-0.02	-0.110	34.0	0.1	0.15	-0.04	-0.298			
120	14.6	0.0	0.06	-0.02	-0.125	32.9	0.1	0.15	-0.05	-0.336			
Max Storag					0.106					0.272			
-	onding Depth	, ,			1.6					4.0			
Maximum F	onding Dept	in (mm)			4.7					12.1			

1) Peak flow is equal to the product of 2.78 x C x I x A

2) Rainfall Intensity, I = A/(Tc/60)^B

3) Release Rate = LESSER of Min (Release Rate, Peak Flow) - Minus 100 Year Flow Of Uncontroled Areas OR Pipe Outlet Capacity

4) Storage Rate = Peak Flow - Release Rate

5) Storage = Duration x Storage Rate

	Table XII - Storage Volumes (2-Year and 100-Year Storm Events) Storage Requirement for CFRD 8													
				torage Requ	uirement fo	r CFRD 8								
	C _{AVG} =	0.90	(2-year)											
	C _{AVG} =	1.00	(100-year)			Watts Adju	stable Accuti	rol Weir Roo	of Drain					
Tim	ne Interval =	5	(mins)											
Drair	nage Area =	0.006	(hectares)											
		63.86	(sqm)											
	Release Rate = 0.06 (L/sec) per drain Release Rate = 0.15 (L/sec) per								(L/sec) per o	drain				
		leturn Period =		(years)			urn Period =	100	(years)					
	IDF Pa	arameters, A =	732.951	, B =	0.810	IDF Para	meters, A =	1735.688	, B =	0.820				
		I = A/(1	Г _с +С)В	, C =	6.199		I = A/(Tc	+C)B	, C =	6.014				
	Rainfall			Storage		Rainfall		Release	Storage					
Duration	Intensity, I	Peak Flow	Release	Rate	Storage	Intensity, I	Peak Flow	Rate	Rate	Storage				
(min)	(mm/hr)	(L/sec)	Rate (L/sec)	(L/sec)	(m ³)	(mm/hr)	(L/sec)	(L/sec)	(L/sec)	(m ³)				
0	-	-	-	-	-	-	-	-	-	-				
5	103.6	0.3	0.06	0.23	0.070	242.7	0.8	0.15	0.61	0.182				
10	76.8	0.2	0.06	0.16	0.094	178.6	0.6	0.15	0.41	0.243				
15	61.8	0.2	0.06	0.11	0.103	142.9	0.4	0.15	0.29	0.264				
20	52.0	0.1	0.06	0.09	0.104	120.0	0.4	0.15	0.22	0.266				
25	45.2	0.1	0.06	0.07	0.101	103.8	0.3	0.15	0.17	0.256				
30	40.0	0.1	0.06	0.05	0.095	91.9	0.3	0.15	0.13	0.240				
35	36.1	0.1	0.06	0.04	0.087	82.6	0.3	0.15	0.10	0.219				
40	32.9	0.1	0.06	0.03	0.078	75.1	0.2	0.15	0.08	0.194				
45	30.2	0.1	0.06	0.02	0.067	69.1	0.2	0.15	0.06	0.167				
50	28.0	0.1	0.06	0.02	0.056	64.0	0.2	0.15	0.05	0.138				
55	26.2	0.1	0.06	0.01	0.045	59.6	0.2	0.15	0.03	0.107				
60	24.6	0.1	0.06	0.01	0.032	55.9	0.2	0.15	0.02	0.074				
65	23.2	0.1	0.06	0.00	0.019	52.6	0.2	0.15	0.01	0.041				
70	21.9	0.1	0.06	0.00	0.006	49.8	0.2	0.15	0.00	0.006				
75	20.8	0.1	0.06	0.00	-0.007	47.3	0.1	0.15	-0.01	-0.029				
80	19.8	0.1	0.06	0.00	-0.021	45.0	0.1	0.15	-0.01	-0.065				
85	18.9	0.1	0.06	-0.01	-0.035	43.0	0.1	0.15	-0.02	-0.102				
90	18.1	0.1	0.06	-0.01	-0.049	41.1	0.1	0.15	-0.03	-0.139				
95	17.4	0.0	0.06	-0.01	-0.064	39.4	0.1	0.15	-0.03	-0.177				
100	16.7	0.0	0.06	-0.01	-0.078	37.9	0.1	0.15	-0.04	-0.215				
105	16.1	0.0	0.06	-0.01	-0.093	36.5	0.1	0.15	-0.04	-0.253				
110	15.6	0.0	0.06	-0.02	-0.108	35.2	0.1	0.15	-0.04	-0.292				
115	15.0	0.0	0.06	-0.02	-0.123	34.0	0.1	0.15	-0.05	-0.331				
120	14.6	0.0	0.06	-0.02	-0.138	32.9	0.1	0.15	-0.05	-0.371				
Max Storag					0.104					0.266				
-	onding Depth	1 /			1.6					4.2				
Maximum F	onding Dept	th (mm)			4.9					12.5				

1) Peak flow is equal to the product of 2.78 x C x I x A

2) Rainfall Intensity, I = A/(Tc/60)^B

3) Release Rate = LESSER of Min (Release Rate, Peak Flow) - Minus 100 Year Flow Of Uncontroled Areas OR Pipe Outlet Capacity

4) Storage Rate = Peak Flow - Release Rate

5) Storage = Duration x Storage Rate

Table XIII - Storage Volumes (2-Year and 100-Year Storm Events) Storage Requirement for CFRD 9													
				torage Requ	uirement fo	r CFRD 9							
	C _{AVG} =	0.90	(2-year)										
	C _{AVG} =	1.00	(100-year)			Watts Adju	stable Accuti	rol Weir Roo	of Drain				
Tim	e Interval =												
Drair	age Area =	0.001	(hectares)										
		14.38	(sqm)										
	Release Rate = 0.13 (L/sec) per drain Release Rate = 0.34 (L/sec) per								(L/sec) per o	drain			
	R	leturn Period =	2	(years)		Retu	urn Period =	100	(years)				
	IDF Pa	arameters, A =	732.951	, B =	0.810	IDF Para	meters, A =	1735.688	, B =	0.820			
		I = A/(1	Г _с +С)В	, C =	6.199		I = A/(Tc	+C)B	, C =	6.014			
	Rainfall			Storage		Rainfall		Release	Storage				
Duration	Intensity, I	Peak Flow	Release	Rate	Storage	Intensity, I	Peak Flow	Rate	Rate	Storage			
(min)	(mm/hr)	(L/sec)	Rate (L/sec)	(L/sec)	(m ³)	(mm/hr)	(L/sec)	(L/sec)	(L/sec)	(m ³)			
0	-	-	-	-	-	-	-	-	-	-			
5	103.6	0.3	0.13	0.16	0.048	242.7	0.8	0.34	0.42	0.126			
10	76.8	0.2	0.13	0.08	0.051	178.6	0.6	0.34	0.22	0.132			
15	61.8	0.2	0.13	0.04	0.038	142.9	0.4	0.34	0.11	0.097			
20	52.0	0.1	0.13	0.02	0.018	120.0	0.4	0.34	0.04	0.043			
25	45.2	0.1	0.13	0.00	-0.007	103.8	0.3	0.34	-0.01	-0.022			
30	40.0	0.1	0.13	-0.02	-0.034	91.9	0.3	0.34	-0.05	-0.094			
35	36.1	0.1	0.13	-0.03	-0.063	82.6	0.3	0.34	-0.08	-0.171			
40	32.9	0.1	0.13	-0.04	-0.094	75.1	0.2	0.34	-0.10	-0.252			
45	30.2	0.1	0.13	-0.05	-0.125	69.1	0.2	0.34	-0.12	-0.335			
50	28.0	0.1	0.13	-0.05	-0.158	64.0	0.2	0.34	-0.14	-0.420			
55	26.2	0.1	0.13	-0.06	-0.191	59.6	0.2	0.34	-0.15	-0.507			
60	24.6	0.1	0.13	-0.06	-0.225	55.9	0.2	0.34	-0.17	-0.595			
65	23.2	0.1	0.13	-0.07	-0.259	52.6	0.2	0.34	-0.18	-0.684			
70	21.9	0.1	0.13	-0.07	-0.294	49.8	0.2	0.34	-0.18	-0.774			
75	20.8	0.1	0.13	-0.07	-0.329	47.3	0.1	0.34	-0.19	-0.865			
80	19.8	0.1	0.13	-0.08	-0.364	45.0	0.1	0.34	-0.20	-0.957			
85	18.9	0.1	0.13	-0.08	-0.399	43.0	0.1	0.34	-0.21	-1.049			
90	18.1	0.1	0.13	-0.08	-0.435	41.1	0.1	0.34	-0.21	-1.142			
95	17.4	0.0	0.13	-0.08	-0.471	39.4	0.1	0.34	-0.22	-1.236			
100	16.7	0.0	0.13	-0.08	-0.507	37.9	0.1	0.34	-0.22	-1.329			
105	16.1	0.0	0.13	-0.09	-0.543	36.5	0.1	0.34	-0.23	-1.424			
110	15.6	0.0	0.13	-0.09	-0.580	35.2	0.1	0.34	-0.23	-1.518			
115	15.0	0.0	0.13	-0.09	-0.616	34.0	0.1	0.34	-0.23	-1.613			
120	14.6	0.0	0.13	-0.09	-0.653	32.9	0.1	0.34	-0.24	-1.708			
Max Storag					0.051					0.132			
-	nding Depth	1 1			3.5					9.1			
Maximum P	onding Dept	th (mm)			10.6					27.4			

1) Peak flow is equal to the product of 2.78 x C x I x A

2) Rainfall Intensity, I = A/(Tc/60)^B

3) Release Rate = LESSER of Min (Release Rate, Peak Flow) - Minus 100 Year Flow Of Uncontroled Areas OR Pipe Outlet Capacity

4) Storage Rate = Peak Flow - Release Rate

5) Storage = Duration x Storage Rate

	Table XIV - Storage Volumes (2-Year and 100-Year Storm Events) Storage Requirement for CFRD 10													
	<u> </u>	0.00		orage Requ	irement foi	CFRD 10								
	C _{AVG} =	0.90	(2-year)						(D ·					
	C _{AVG} =	1.00	(100-year)			watts Adju	stable Accuti	rol Weir Roo	of Drain					
	e Interval =	5	(mins)											
Drain	nage Area =	0.007	(hectares)											
		72.78	(sqm)			— — .								
		Release Rate =		(L/sec) per	drain		ease Rate =	0.14	(L/sec) per o	drain				
		eturn Period =	-	(years)			urn Period =	100	(years)					
	IDF Pa	arameters, A =	-	, B =	0.810	IDF Para	meters, A =		, B =	0.820				
		I = A/(Г _с +С)В	, C =	6.199		I = A/(Tc	+C)B	, C =	6.014				
	Rainfall			Storage	0	Rainfall		Release	Storage	0				
Duration	Intensity, I	Peak Flow	Release	Rate	Storage	Intensity, I	Peak Flow	Rate	Rate	Storage				
(min)	(mm/hr)	(L/sec)	Rate (L/sec)	(L/sec)	(m ³)	(mm/hr)	(L/sec)	(L/sec)	(L/sec)	(m ³)				
05	- 103.6	- 0.3	- 0.06	- 0.24	- 0.071	- 242.7	- 0.8	- 0.14	- 0.62	- 0.185				
10	76.8	0.3	0.06	0.24	0.071	178.6	0.6	0.14	0.62	0.185				
10	61.8	0.2	0.06	0.10	0.107	142.9	0.0	0.14	0.42	0.230				
20	52.0	0.2	0.06	0.12	0.107	142.9	0.4	0.14	0.31	0.275				
20	45.2	0.1	0.06	0.03	0.103	103.8	0.4	0.14	0.18	0.274				
30	40.0	0.1	0.06	0.06	0.103	91.9	0.3	0.14	0.15	0.274				
35	36.1	0.1	0.06	0.05	0.097	82.6	0.3	0.14	0.10	0.202				
40	32.9	0.1	0.06	0.04	0.089	75.1	0.0	0.14	0.09	0.244				
45	30.2	0.1	0.06	0.01	0.080	69.1	0.2	0.14	0.07	0.199				
50	28.0	0.1	0.06	0.02	0.070	64.0	0.2	0.14	0.06	0.174				
55	26.2	0.1	0.06	0.02	0.060	59.6	0.2	0.14	0.04	0.146				
60	24.6	0.1	0.06	0.01	0.049	55.9	0.2	0.14	0.03	0.117				
65	23.2	0.1	0.06	0.01	0.038	52.6	0.2	0.14	0.02	0.087				
70	21.9	0.1	0.06	0.01	0.026	49.8	0.2	0.14	0.01	0.056				
75	20.8	0.1	0.06	0.00	0.014	47.3	0.1	0.14	0.01	0.025				
80	19.8	0.1	0.06	0.00	0.002	45.0	0.1	0.14	0.00	-0.008				
85	18.9	0.1	0.06	0.00	-0.011	43.0	0.1	0.14	-0.01	-0.041				
90	18.1	0.1	0.06	0.00	-0.024	41.1	0.1	0.14	-0.01	-0.074				
95	17.4	0.0	0.06	-0.01	-0.037	39.4	0.1	0.14	-0.02	-0.108				
100	16.7	0.0	0.06	-0.01	-0.050	37.9	0.1	0.14	-0.02	-0.143				
105	16.1	0.0	0.06	-0.01	-0.064	36.5	0.1	0.14	-0.03	-0.178				
110	15.6	0.0	0.06	-0.01	-0.077	35.2	0.1	0.14	-0.03	-0.213				
115	15.0	0.0	0.06	-0.01	-0.091	34.0	0.1	0.14	-0.04	-0.249				
120	14.6	0.0	0.06	-0.01	-0.105	32.9	0.1	0.14	-0.04	-0.285				
Max Storag					0.109					0.280				
-	onding Depth	. ,			1.5					3.8				
Maximum F	onding Dept	th (mm)			4.5					11.5				

1) Peak flow is equal to the product of 2.78 x C x I x A

2) Rainfall Intensity, I = A/(Tc/60)^B

3) Release Rate = LESSER of Min (Release Rate, Peak Flow) - Minus 100 Year Flow Of Uncontroled Areas OR Pipe Outlet Capacity

4) Storage Rate = Peak Flow - Release Rate

5) Storage = Duration x Storage Rate

	I	Table XV -	•	•			ear Storm	Events)						
				orage Requ	irement for	r CFRD 11								
	C _{AVG} =	0.90	(2-year)											
	C _{AVG} =	1.00	(100-year)			Watts Adju	stable Accutr	rol Weir Roo	of Drain					
Tim	e Interval =	5	(mins)											
Drair	age Area =	0.001	(hectares)											
		11.33	(sqm)											
	Release Rate = 0.14 (L/sec) per drain Release Rate = 0.38 (L/sec) per									drain				
	R	eturn Period =	2	(years)		Retu	rn Period =	100	(years)					
	IDF Pa	arameters, A =	732.951	, B =	0.810	IDF Para	meters, A =	1735.688	, B =	0.820				
		I = A/(1	Г _с +С)В	, C =	6.199		I = A/(Tc	+C)B	, C =	6.014				
	Rainfall			Storage		Rainfall		Release	Storage					
Duration	Intensity, I	Peak Flow	Release	Rate	Storage	Intensity, I	Peak Flow	Rate	Rate	Storage				
(min)	(mm/hr)	(L/sec)	Rate (L/sec)	(L/sec)	(m ³)	(mm/hr)	(L/sec)	(L/sec)	(L/sec)	(m ³)				
0	-	-	-	-	-	-	-	-	-	-				
5	103.6	0.3	0.14	0.15	0.044	242.7	0.8	0.38	0.38	0.115				
10	76.8	0.2	0.14	0.07	0.043	178.6	0.6	0.38	0.18	0.109				
15	61.8	0.2	0.14	0.03	0.027	142.9	0.4	0.38	0.07	0.063				
20	52.0	0.1	0.14	0.00	0.003	120.0	0.4	0.38	0.00	-0.002				
25	45.2	0.1	0.14	-0.02	-0.026	103.8	0.3	0.38	-0.05	-0.078				
30	40.0	0.1	0.14	-0.03	-0.057	91.9	0.3	0.38	-0.09	-0.161				
35	36.1	0.1	0.14	-0.04	-0.090	82.6	0.3	0.38	-0.12	-0.249				
40	32.9	0.1	0.14	-0.05	-0.125	75.1	0.2	0.38	-0.14	-0.341				
45	30.2	0.1	0.14	-0.06	-0.160	69.1	0.2	0.38	-0.16	-0.435				
50	28.0	0.1	0.14	-0.07	-0.197	64.0	0.2	0.38	-0.18	-0.531				
55	26.2	0.1	0.14	-0.07	-0.234	59.6	0.2	0.38	-0.19	-0.629				
60	24.6	0.1	0.14	-0.08	-0.271	55.9	0.2	0.38	-0.20	-0.728				
65	23.2	0.1	0.14	-0.08	-0.309	52.6	0.2	0.38	-0.21	-0.829				
70	21.9	0.1	0.14	-0.08	-0.348	49.8	0.2	0.38	-0.22	-0.930				
75	20.8	0.1	0.14	-0.09	-0.387	47.3	0.1	0.38	-0.23	-1.032				
80	19.8	0.1	0.14	-0.09	-0.426	45.0	0.1	0.38	-0.24	-1.135				
85	18.9	0.1	0.14	-0.09	-0.465	43.0	0.1	0.38	-0.24	-1.239				
90	18.1	0.1	0.14	-0.09	-0.505	41.1	0.1	0.38	-0.25	-1.343				
95	17.4	0.0	0.14	-0.10	-0.544	39.4	0.1	0.38	-0.25	-1.447				
100	16.7	0.0	0.14	-0.10	-0.584	37.9	0.1	0.38	-0.26	-1.552				
105	16.1	0.0	0.14	-0.10	-0.624	36.5	0.1	0.38	-0.26	-1.657				
110	15.6	0.0	0.14	-0.10	-0.665	35.2	0.1	0.38	-0.27	-1.763				
115	15.0	0.0	0.14	-0.10	-0.705	34.0	0.1	0.38	-0.27	-1.869				
120	14.6	0.0	0.14	-0.10	-0.745	32.9	0.1	0.38	-0.27	-1.976				
Max Storag					0.044					0.115				
-	nding Depth	, ,			3.9					10.1				
Maximum F	onding Dept	in (mm)			11.7					30.4				

1) Peak flow is equal to the product of 2.78 x C x I x A

2) Rainfall Intensity, I = A/(Tc/60)^B

3) Release Rate = LESSER of Min (Release Rate, Peak Flow) - Minus 100 Year Flow Of Uncontroled Areas OR Pipe Outlet Capacity

4) Storage Rate = Peak Flow - Release Rate

5) Storage = Duration x Storage Rate

	•	Table XVI -	•	•			ear Storn	n Events)					
	0	0.00		orage Requ	irement to	CFRD 12								
	C _{AVG} =	0.90	(2-year)											
	C _{AVG} =	1.00	(100-year)			Watts Adju	stable Accuti	ol Weir Roo	of Drain					
	ne Interval =	5	(mins)											
Drair	nage Area =	0.003	(hectares)											
		28.40	(sqm)			T								
		Release Rate =		(L/sec) per	drain		ease Rate =	0.25	(L/sec) per	drain				
		eturn Period =		(years)			urn Period =	100	(years)					
	IDF Pa	arameters, A =		, B =	0.810	IDF Para	meters, A =		, B =	0.820				
		I = A/(Г _с +С)В	, C =	6.199		I = A/(Tc	+C)B	, C =	6.014				
	Rainfall			Storage		Rainfall		Release	Storage					
Duration	Intensity, I	Peak Flow	Release	Rate	Storage	Intensity, I	Peak Flow	Rate	Rate	Storage				
(min)	(mm/hr)	(L/sec)	Rate (L/sec)	(L/sec)	(m ³)	(mm/hr)	(L/sec)	(L/sec)	(L/sec)	(m ³)				
0	-	-	-	-	-	-	-	-	-	-				
5	103.6	0.3	0.10	0.20	0.059	242.7	0.8	0.25	0.51	0.154				
10	76.8	0.2	0.10	0.12	0.073	178.6	0.6	0.25	0.31	0.188				
15	61.8	0.2	0.10	0.08	0.071	142.9	0.4	0.25	0.20	0.182				
20	52.0	0.1	0.10	0.05	0.062	120.0	0.4	0.25	0.13	0.156				
25	45.2	0.1	0.10	0.03	0.048	103.8	0.3	0.25	0.08	0.119				
30	40.0	0.1	0.10	0.02	0.032	91.9	0.3	0.25	0.04	0.076				
35	36.1	0.1	0.10	0.01	0.014	82.6	0.3	0.25	0.01	0.027				
40	32.9	0.1	0.10	0.00	-0.006	75.1	0.2	0.25	-0.01	-0.025				
45	30.2	0.1	0.10	-0.01	-0.027	69.1	0.2	0.25	-0.03	-0.079				
50	28.0	0.1	0.10	-0.02	-0.048	64.0	0.2	0.25	-0.05	-0.136				
55	26.2	0.1	0.10	-0.02	-0.071	59.6	0.2	0.25	-0.06	-0.195				
60	24.6	0.1	0.10	-0.03	-0.093	55.9	0.2	0.25	-0.07	-0.254				
65	23.2	0.1	0.10	-0.03	-0.117	52.6	0.2	0.25	-0.08	-0.315				
70	21.9	0.1	0.10	-0.03	-0.140	49.8	0.2	0.25	-0.09	-0.377				
75	20.8	0.1	0.10	-0.04	-0.164	47.3	0.1	0.25	-0.10	-0.440				
80	19.8	0.1	0.10	-0.04	-0.188	45.0	0.1	0.25	-0.10	-0.503				
85	18.9	0.1	0.10	-0.04	-0.213	43.0	0.1	0.25	-0.11	-0.567				
90	18.1	0.1	0.10	-0.04	-0.238	41.1	0.1	0.25	-0.12	-0.632				
95	17.4	0.0	0.10	-0.05	-0.263	39.4	0.1	0.25	-0.12	-0.697				
100	16.7	0.0	0.10	-0.05	-0.288	37.9	0.1	0.25	-0.13	-0.762				
105	16.1	0.0	0.10	-0.05	-0.313	36.5	0.1	0.25	-0.13	-0.828				
110	15.6	0.0	0.10	-0.05	-0.338	35.2	0.1	0.25	-0.14	-0.895				
115	15.0	0.0	0.10	-0.05	-0.364	34.0	0.1	0.25	-0.14	-0.961				
120	14.6	0.0	0.10	-0.05	-0.390	32.9	0.1	0.25	-0.14	-1.028				
Max Storag	e (m ³)=				0.073					0.188				
, v	onding Depth	()			2.6					6.6				
	onding Dept	th (mm)			7.7					19.9				
Notes														

1) Peak flow is equal to the product of 2.78 x C x I x A

2) Rainfall Intensity, I = A/(Tc/60)^B
 3) Release Rate = LESSER of Min (Release Rate, Peak Flow) - Minus 100 Year Flow Of Uncontroled Areas OR Pipe Outlet Capacity

4) Storage Rate = Peak Flow - Release Rate

5) Storage = Duration x Storage Rate

	Table XVII - Storage Volumes (5-Year and 100-Year Storm Events) Storage Requirement for Uncontrolled Roof Drains and Ground Level Amenity Space Behind Building										
	C _{AVG} =	0.90	(2-year)				Amenity 5	pace beim	la Bullanig		
	C _{AVG} =	1.00	(100-year)								
Tim	ne Interval =	5	(mins)								
Drainage Area = 0.125 (hectares)											
Diali	laye Alea -	0.125	(nectares)								
	Re	elease Rate =	10.3	(L/sec)		Rele	ease Rate =	8.2	(L/sec)		
		turn Period =		(years)			ırn Period =	100	(years)		
		ameters, A =		, B =	0.810		meters, A =		_, B =	0.820	
			(T _c +C)B	, C =	6.199		I = A/(Tc	-	, C =	6.014	
		. , ,		, 0 -	0.133		1 – 74(10		, 0 -	0.014	
	Deinfell			0.1		Deinfell		Delesse	01		
Duration	Rainfall	Dook Flow	Release	Storage Rate	Storage	Rainfall	Peak Flow	Release	Storage Rate	Storage	
Duration (min)	Intensity, I (mm/hr)	Peak Flow (L/sec)	Release Rate (L/sec)	(L/sec)	(m ³)	Intensity, I (mm/hr)	(L/sec)	Rate (L/sec)	(L/sec)	(m ³)	
0		(L/SEC) -	-	(L/360) -		(((((((((((((((((((((((((((((((((((((((L/SEC) -	(L/SEC)	(L/360) -	- (11)	
5	103.6	32.4	10.3	22.1	6.6	242.7	84.4	8.2	76.2	22.9	
10	76.8	24.0	10.3	13.7	8.2	178.6	62.1	8.2	53.9	32.3	
15	61.8	19.3	10.3	9.0	8.1	142.9	49.7	8.2	41.5	37.3	
20	52.0	16.3	10.3	6.0	7.2	120.0	41.7	8.2	33.5	40.2	
25	45.2	14.1	10.3	3.8	5.8	103.8	36.1	8.2	27.9	41.9	
30	40.0	12.5	10.3	2.2	4.0	91.9	31.9	8.2	23.7	42.7	
35	36.1	11.3	10.3	1.0	2.1	82.6	28.7	8.2	20.5	43.1	
40	32.9	10.3	10.3	0.0	0.0	75.1	26.1	8.2	17.9	43.0	
45	30.2	9.5	10.3	-0.8	-2.3	69.1	24.0	8.2	15.8	42.7	
50	28.0	8.8	10.3	-1.5	-4.6	64.0	22.2	8.2	14.0	42.1	
55	26.2	8.2	10.3	-2.1	-7.0	59.6	20.7	8.2	12.5	41.4	
60	24.6	7.7	10.3	-2.6	-9.4	55.9	19.4	8.2	11.2	40.4	
65	23.2	7.2	10.3	-3.1	-11.9	52.6	18.3	8.2	10.1	39.4	
70	21.9	6.9	10.3	-3.4	-14.5	49.8	17.3	8.2	9.1	38.3	
75	20.8	6.5	10.3	-3.8	-17.0	47.3	16.4	8.2	8.2	37.0	
80	19.8	6.2	10.3	-4.1	-19.7	45.0	15.6	8.2	7.4	35.7	
85	18.9	5.9	10.3	-4.4	-22.3	43.0	14.9	8.2	6.7	34.3	
90	18.1	5.7	10.3	-4.6	-25.0	41.1	14.3	8.2	6.1	32.9	
95	17.4	5.4	10.3	-4.9	-27.6	39.4	13.7	8.2	5.5	31.4	
100	16.7	5.2	10.3	-5.1	-30.4	37.9	13.2	8.2	5.0	29.9	
105	16.1	5.0	10.3	-5.3	-33.1	36.5	12.7	8.2	4.5	28.3	
110	15.6	4.9	10.3	-5.4	-35.8	35.2	12.2	8.2	4.0	26.7	
115	15.0	4.7	10.3	-5.6	-38.6	34.0	11.8	8.2	3.6	25.0	
120	14.6	4.6	10.3	-5.7	-41.4	32.9	11.4	8.2	3.2	23.3	
Max =					8.2					43.1	
lotes											

1) Peak flow is equal to the product of 2.78 x C x I x A

2) Rainfall Intensity, I = A/(Tc/60)^B
 3) Release Rate = LESSER of Min (Release Rate, Peak Flow) - Minus 100 Year Flow Of Uncontroled Areas OR Pipe Outlet Capacity

4) Storage Rate = Peak Flow - Release Rate

5) Storage = Duration x Storage Rate