

365 Forest Street, Ottawa, Ontario

K2B 7Z7 Hydrogeological Investigation

Client:

11061917 Canada Inc. 768 St. Joseph Blvd. Suite 100 Gatineau, QC J8Y 4B8

Attention: Mr. Raad Akrawi, P.Eng.

Type of Document: Final

Project Name: 365 Forest Street, Ottawa, Ontario

Project Number: OTT-00252625-A0

EXP Services Inc. 1595 Clark Boulevard Brampton, ON, L6T 4V1 t: 905.793.9800 f: 905.793.0641

Date Submitted: 2021-11-05

Table of Contents

1	Introd	luction	
	1.1	Project Description	3
2	Hydro	geological Setting	
	2.1	Regional Setting	4
	2.1.1	Regional Physiography	4
	2.1.2	Regional Geology and Hydrogeology	4
	2.1.3	Existing Water Well Survey	4
	2.2	Site Setting	5
	2.2.1	Site Topography	5
	2.2.2	Local Surface Water Features	5
	2.2.3	Local Geology and Hydrogeology	5
3	Resul	ts	
	3.1	Monitoring Well Details	7
	3.2	Water Level Monitoring	7
	3.3	Hydraulic Conductivity Testing	8
	3.4	Groundwater Quality	9
4	Const	ruction Dewatering Assessment10	
	4.1	Construction Dewatering Rate Assumptions	10
	4.2	Numerical Model Simulation	11
	4.3	Radius of Influence	14
	4.4	Construction MECP Water Taking Permit	14
5	Enviro	onmental Impact	
	5.1	Surface Water Features	15
	5.2	Groundwater Sources	15
	5.3	Geotechnical Considerations	15
	5.4	Groundwater Quality	15
	5.5	Well Decommissioning	16
6	Concl	usions and Recommendations 17	

Hydrogeological Investigation 365 Forest Street, Ottawa, Ontario OTT-00252625-A0 November 5, 2021

7	Limitations	19
8	References	20

List of Figures

- Figure 1 Site Location Plan
- Figure 2 Surficial Geology
- Figure 3 MECP Water Well Records Map
- Figure 4 Borehole/Monitoring Well Location Plan
- Figure 5 Cross Section A-A
- Figure 6 Groundwater Flow Map

List of Appendices

Figures

- Appendix A MECP WWR Summary Table
- Appendix B Borehole Logs
- Appendix C SWRT Procedures and Results

1 Introduction

1.1 **Project Description**

EXP Services Inc. (EXP) was retained by 11061917 Canada Inc. to prepare a Hydrogeological Investigation associated with the proposed residential development located at 365 Forest Street, Ottawa, Ontario (hereinafter referred to as the 'Site').

The Site is currently occupied by a commercial building and parking lots. The proposed underground parking dimensions utilized for this report are referenced from architectural drawing A07 prepared by Laplame Rheault Architects & Associates and PMA Architects (May 28, 2021).

It is our understanding that the proposed construction for the Site will comprise of two (2) mid-rise buildings with a common four (4) levels of underground parking. The Site location plan is shown on Figure 1.

EXP previously conducted a Geotechnical Investigation and Environmental Site Assessments. The pertinent information gathered from the noted investigations is utilized for this assessment.

[%]ехр.

Hydrogeological Investigation 365 Forest Street, Ottawa, Ontario OTT-00252625-A0 November 5, 2021

2 Hydrogeological Setting

2.1 Regional Setting

2.1.1 Regional Physiography

The Site is located within a physiographic region known as the Ottawa Valley Clay Plains. The physiographic landform consists of Clay Plains (Chapman & Putnam, 2007).

2.1.2 Regional Geology and Hydrogeology

The surficial geology (Figure 2) can be described as older alluvial deposits consisting of clay, silt, sand, gravel with organics (Ministry of Northern Development and Mines, 2012).

Based on the boreholes drilled as part of the Geotechnical Investigation there is approximately 7 m of overburden soil overlying the bedrock (borehole logs provided in Appendix B, borehole plan shown in Figure 4). The underlying bedrock is known regionally as the Ottawa Formation and is considered to be limestone bedrock (with shaly partings).

2.1.3 Existing Water Well Survey

Water Well Records (WWRs) were compiled from the database maintained by the Ministry of the Environment, Conservation and Parks (MECP) and reviewed to determine the number of water wells documented within a 500-m radius of the Site boundaries. The locations of the MECP WWRs within 500 m of the Site are shown on Figure 3. A summary of the WWR is included in Appendix A.

The MECP WWR database indicates one hundred and fifty six (156) records within a 500 m radius from the Site centroid (Figure 3 and Appendix A). Well distances are calculated relative to the Site centroid, therefore some distances in Appendix A exceed 500 m.

The database indicates that the offsite wells are at an approximate distance of twenty (23) m or greater from the Site centroid. All offsite wells were reportedly identified as monitoring and observation wells, test holes, dewatering wells, water supply wells, abandoned and/or listed with unknown use. The reported water levels ranged from depths of 2.0 m to 52.0 meters below ground surface (mbgs).

The Well Identification Numbers (Well ID No.) of the offsite water supply wells are as follows: 1503867, 1503868, 1503869, 1503870, 1503871, 1503872, 1503873, 1503874, 1504044, 1504045, 1504046, 1504047, 1504048, 1504049, 1504050, 1504051, 1504052, 1504053, 1504054, 1504055, 1504056, 1504057, 1504060, 1504061, 1504062, 1504063, 1504064, 1504065, 1504066, 1504067, 1504068, 1504069, 1504075, 1507781, 1507782, 1507784, 1507791, 1507792, 1507793, 1507794, 1507795, 1507796, 1507797, 1507928, 1507929, 1507930, 1507931, 1507932, 1507933, 1507968, 1507969, 1507970, 1508048, 1508049, 1508050, 1508051, 1508052, 1508063, 1508100, 1508102, 1508120, 1508122, 1508123, 1508124, 1508125, 1508127, 1508128, 1508155, 1508163, 1508215, 1508216, 1508217, 1508335, 1508337, 1508338, 1508339, 1508340, 1508590, 1508591, 1508592, 1508686, 1508687, 1508667, 1508668, 1508669, 1508670, 1508671, 1508672, 1508673, 1508674, 1508675, 1508686, 1508687, 1508688, 1508689, 1508761, 1508772, 1508773, 1508774, 1508879, 1508922, 1508923, 1510572, and 1510573.

Based on the date of installation of the water supply wells (1940-1950s) and since the area is municipally serviced, it is unlikely that the noted water supply wells are still active.

2.2 Site Setting

2.2.1 Site Topography

The Site is in an mixed residential and commercial land use setting. The topography is considered relatively flat with a regional gradual northwesterly slope towards Ottawa River.

As indicated on the borehole logs included in Appendix B, the surface elevation of the Site ranges between approximately 74.13 to 75.74 meters above sea level (masl).

2.2.2 Local Surface Water Features

The Site is within the Ottawa River West watershed, within the Ottawa 6 subwatershed. No surface water features exist on site. The nearest surface water features is Pinecrest Creek, approximately located 450 meters east of the Site boundary and Mud Lake, approximately located 650 meters northwest of the Site boundary.

2.2.3 Local Geology and Hydrogeology

A summary of subsurface soil stratigraphy is provided in the following paragraphs. The soil descriptions are based on the geotechnical investigation report (EXP, 2021). They are summarized for the hydrogeological interpretations. As such, the information provided in this section shall not be used for construction design purposes.

The detailed soil profiles encountered in each borehole and the results of moisture content determinations are presented on the attached borehole logs (Appendix B). The soil boundaries indicated on the borehole logs are inferred from non-continuous sampling and observations during drilling. These boundaries are intended to reflect approximate transition zones for the Hydrogeological Investigation and shall not be interpreted as exact planes of geological change.

The "Notes on Sample Description" preceding the borehole logs form an integral part of and should be read in conjunction with this report. The following is a brief description of the soil conditions encountered during the investigation.

Based on the results of the geotechnical investigation, the general subsurface soil stratigraphy consists of the following units from top to bottom:

Pavement Structure

Borehole Nos. 19-03, 19-04, 19-06 and 19-07 are located in paved areas of the site. The pavement structure consists of 30 mm and 60 mm thick asphaltic concrete underlain by 150 mm to 250 mm thick granular fill base.

Gravel Surface

The remaining boreholes are located in unpaved areas consisting of a surficial 100 mm to 500 mm thick granular fill layer.

Fill

Fill was contacted beneath the pavement structure and surficial granular layer in all the boreholes. The fill extends to depths ranging from 1.4 m to 3.0 m (Elevation 73.6 m to Elevation 71.8 m). Borehole No. 19-12 terminated within the fill at 4.4 m depth (Elevation 71.0 m). The fill consists of clayey silty sand to silty sand with gravel. The fill contains rootlets and brick debris. A petroleum odour was noted in the fill samples from Borehole Nos. 19-05 and 19-11. Based on the standard penetration test (SPT) N values of 1 to 16, the fill is in a very loose to compact state. The moisture content of the fill is 4 percent to 30 percent. The unit weight of the fill is 19.1 kN/m³ to 22.9 kN/m³.

Sandy Silt to Silty Sand

The fill in Borehole Nos. 19-01 to 19-03 is underlain by a sandy silt to silty sand layer from 1.4 m to 2.2 m depths (Elevation 73.6 m to Elevation 71.9 m). The SPT N values are 4 and 6 indicating the sandy silt to silty sand is in a loose state. The natural moisture content of the sandy silt to silty sand is 22 percent and 23 percent. The natural unit weight of the sandy silt to silty sand is 19.4 kN/m³.

Glacial Till

The fill and sandy silt to silty sand layer are underlain by glacial till that extends to depths of 6.5 m to 7.8 m (Elevation 68.2 m to Elevation 67.6 m). The glacial till ranges from a clayey silty sand to a silty sand with gravel. The glacial till is a silty clay in Borehole Nos. 19-03 to 19-05 from 2.2 m to 5.3 m depths (Elevation 72.8 m to Elevation 69.7 m). The glacial till contains shale fragments, cobbles and boulders. The SPT N values of the cohesionless silty clayey sand till ranges from 1 to 81 indicating the glacial till is in a very loose to very dense state. The SPT N values of the cohesive portion of the silty clay till of 2 to 4 indicates the silty clay till has a soft consistency. The natural moisture content and unit weight of the cohesionless silty clayey sand to silty sand with gravel till is 5 percent to 26 percent and 23.1 kN/m³ to 23.9 kN/m³, respectively.

Limestone Bedrock

Auger refusal was met in Borehole Nos. 19-01 to 19-05, 19-08, 19-09 and 19-11 at 6.2 m to 7.8 m depths (Elevation 68.4 m to Elevation 67.9 m). Conventional core drilling techniques were used to advance Borehole Nos. 19-01, 19-03, 19-08, 19-09 and 19-11 beyond the auger refusal depths to termination depths of 8.0 m to 9.6 m (Elevation 67.0 m to Elevation 65.8 m) confirming that auger refusal in these boreholes was met on Ottawa formation limestone with thin shaly partings.

The borehole and monitoring well locations are shown on Figure 4. Geological cross-sections were generated based on the available borehole logs completed as part of the previous and current investigations and shown on Figure 5 (Cross section A-A'). The cross section shows a simplified representation of soil conditions and soil deposits may be interconnected differently than represented. Borehole logs used to generate both cross-sections are provided in Appendix B.

3 Results

3.1 Monitoring Well Details

The monitoring well network was installed as part of the Geotechnical and Environmental Investigations at the Site. It consists of the following:

- Seven (7) shallow overburden monitoring wells (BH19-01, BH19-02, BH19-06, BH19-07, BH19-08, BH19-09, and BH19-10) were installed;
- Two (2) deep overburden monitoring well (BH21-13 and BH21-14) were installed.

The diameter for the shallow monitoring wells is 32 and the diameter of the deep monitoring wells is 38 mm. All wells were installed with a flush mount protective casing. Borehole logs and monitoring well installation details are provided in Appendix B. The monitoring well locations are shown on Figure 4.

3.2 Water Level Monitoring

As part of the Hydrogeological Investigation, static water levels in the monitoring wells installed outside of the existing building were recorded in four (4) monitoring events, including May 10 and May 15, 2019, and May 10 and October 20, 2021. A summary of all static water level data as it relates to the elevation survey is given in Table 3-1 below.

The groundwater elevation range for the Shallow Wells ranged from 69.65 masl (6.00 mbgs at BH19-09 on 15-May-19) to 73.81 masl (1.40 mbgs at BH19-07 on 15-May-19). The groundwater elevation range for the Deep Well ranged from 67.75 masl (6.55 mbgs at BH21-14 on 20-Oct-21) to 68.94 masl (6.26 mbgs at BH21-13 on 20-Oct-21).

Table 5-1. Summary of Measured Groundwater Elevations											
Monitoring Well ID	Ground Surface Elevation (masl)	Approximate Full Well Depth (mbgs)	Depth	10 -May-19 15 -May-1		10- May- 21	20-Oct-21				
BH 19-01	74.13	8.30	mbgs		Damaged						
BH 19-01	74.15	8.50	masl		Damaged						
BH 19-02	74.37	6.20	mbgs	1.80	1.90	2.20	-				
BH 19-02	74.37	0.20	masl	72.57	72.47	72.17	-				
BH 19-06	75.28	5.90	mbgs	2.50	2.40	2.90	-				
BH 19-00	/5.28	5.90	masl	72.78	72.88	72.38	-				
BH 19-07	75.21	5.90	mbgs	1.40	1.40	1.70	-				
BH 19-07	75.21	5.90	masl	73.81	73.81	73.51	-				
BH 19-08	75.51	5.90	mbgs	5.60	5.70	4.00	-				
BH 19-08	/5.51	5.90	masl	69.91	69.81	71.51	-				
DU 10.00		C 20	mbgs	-	6.00	5.70	-				
BH 19-09	75.65	6.20	masl	-	69.65	69.95	-				
DU 40 40	75.74	5.00	mbgs	2.20	2.30	-	-				
BH 19-10	75.74	5.90	masl	73.54	73.44	-	-				
BH 21-13	75.20	14.40	mbgs	-	-		6.26				
DI 21-13	75.20	14.40	masl	-	-		68.94				
BH 21-14	74.30	12.80	mbgs	-	-		6.55				

Table 3-1: Summary of Measured Groundwater Elevations

Monitoring Well ID	Ground Surface Elevation (masl)	Approximate Full Well Depth (mbgs)	Depth	10 -May-19	15 -May-19	10- May- 21	20-Oct-21
			masl	-	-		67.75

Groundwater levels are expected to show seasonal fluctuations and vary in response to prevailing climate conditions. This may also affect the direction and rate of flow. It is recommended to conduct seasonal groundwater level measurements to provide more information on seasonal groundwater level fluctuations.

3.3 Hydraulic Conductivity Testing

Five (5) Single Well Response Tests (SWRT's) were completed on monitoring wells (BH19-02, BH19-07, BH19-10, BH21-13, and BH21-14) on October 25, 2021. The tests were completed to estimate the saturated hydraulic conductivity (K) of the soils at the well screen depths.

The static water level within each monitoring well was measured prior to the start of testing. In advance of performing SWRTs, each monitoring well underwent development to remove fines introduced into the screens following construction. The development process involved purging of the monitoring wells to induce the flow of fresh formation water through the screen. Each monitoring well was permitted to fully recover prior to performing SWRTs.

Hydraulic conductivity values were calculated from the SWRT and constant rate test data as per Hvorslev's solution included in the Aqtesolv Pro. V.4.5 software package. The semi-log plots for normalized drawdown versus time are included in Appendix C.

A summary of the hydraulic conductivities (K-values) estimated from the SWRTs are provided in Tables 3-2A and 3-2B.

Monitoring Well	Well Depth (mbgs)	Screen Interv	val (mbgs)	Soil Formation Screened	Estimated Hydraulic Conductivity (m/s)		
		from	to				
BH19-02	6.2	3.15	6.2	GLACIAL TILL (Silty Sand)	2.47E-08		
BH19-07	5.9	2.85	5.9	GLACIAL TILL (Silty Sand)	7.77E-07		
BH19-10	5.9	2.85	5.9	GLACIAL TILL (Silty Sand)	2.97E-08		
			H	lighest Estimated K Value	7.8E-07		
		Arit	hmetic Me	ean of Estimated K Values	2.8E-07		
		Geo	metric Me	ean of Estimated K Values	8.3E-08		

Table 3-2A: Summary of Hydraulic Conductivity Testing – Glacial Till

Table 3-2B: Summary of Hydraulic Conductivity Testing – Limestone Bedrock

Monitoring Well	Well Depth (mbgs)	Screen Inter	val (mbgs)	Soil Formation Screened	Estimated Hydraulic Conductivity (m/s)		
		from	to				
BH21-13	14.4	11.35	14.4	LIMESTONE BEDROCK	6.21E-06		
BH21-14	12.8	9.75	12.8	LIMESTONE BEDROCK	4.00E-06		
			F	lighest Estimated K Value	6.2E-06		
		Arit	hmetic Me	ean of Estimated K Values	5.1E-06		

Monitoring Well	Well Depth (mbgs)	Screen Interv	al (mbgs) to	Soil Formation Screened	Estimated Hydraulic Conductivity (m/s)
		Geor	netric Me	an of Estimated K Values	5.0E-06
SWRTs provide K-e	stimates of the geo	logical formati	on surrou	nding the well screens and	may not be representative of bulk

formation hydraulic conductivity. As shown in Table 3-2A, the highest K-value of the tested water-bearing zone for the silty sand aquifer is 7.8E-07 m/s, and the geometric mean of the K-values is 8.3E-08 m/s. As shown in Table 3-2A, the highest K-value of the tested water-bearing zone for the limestone bedrock is 6.2E-06 m/s, and the geometric mean of the K-values is 5.0E-6 m/s.

3.4 Groundwater Quality

No groundwater sampling has been performed as part of the hydrogeological investigation at this time. The Phase Two Environmental Site Assessment determined that a single groundwater sample located near the south side of the west building exceeded MECP Table 3 SCS for PHC F2 and F3. A groundwater bylaw sample is recommended for future compliance before permitting.

4 Construction Dewatering Assessment

To estimate the groundwater flow rates to the proposed excavation areas a numerical method using Feflow Version 7.4 software developed by DHI was utilized. Feflow is an industry standard software for developing three-dimensional (3D) groundwater flow and contaminant transport models using a finite element mathematical approach (FEM).

4.1 Construction Dewatering Rate Assumptions

It is our understanding that the proposed construction for the Site will comprise of two (2) mid-rise buildings with a common four (4) levels of underground parking.

Table 4-1 presents the assumptions used to calculate the dewatering rate for the Site. The model domain specifications and the estimated dewatering volumes are presented in Appendix C.

Input Parameter	Assumption	Units	Notes
Ground Surface Elevation	75.0	masl	Approximate elevation based on average elevation of borehole surveyed on Site.
Groundwater elevation	74.0	masl	Approximate groundwater elevation across site.
Top of Bedrock	68.0	masl	Approximate elevation of Rockcliffe bedrock formation based on borehole logs,
Number of Subgrade Levels	4 Levels	-	Based on architectural drawings prepared by Laplame Rheault Architects & Associates and PMA Architectes (May 28, 2021).
Top of Slab Elevation	62.6	masl	P4 slab elevation
Construction Dewatering Target Elevation	60	masl	Assumed to be approximately 2.6 m below the P4 slab elevation.
Post Construction Dewatering Target Elevation	62	masl	0.6 m below top of slab elevation
Bottom Elevation of Water- Bearing Zone	50.0	masl	Base of bedrock elevation used for model input.
Excavation Area (Length x Width)	7000 (100 x 70)	m² (m x m)	Approximate area (length x width) for the proposed underground parking garage based on the architectural site plan (referenced on Fig. 4)
Hydraulic Conductivity (K) Overburden	2.8E-7	m/s	Arithmetic mean K-value for silty sand/sandy silt aquifer. Kv=Kh/2

Table 4-1 Dewatering Estimate Assumptions

Hydrogeological Investigation 365 Forest Street, Ottawa, Ontario OTT-00252625-A0 November 5, 2021

Input Parameter	Assumption	Units	Notes
Hydraulic Conductivity (K) Bedrock	5.0E-6	m/s	Arithmetic mean K-value for limestone bedrock. Kv=Kh/2

4.2 Numerical Model Simulation

A 3D numerical box groundwater flow model was developed by using FEFLOW 7.4 for assessing construction and post construction dewatering. This model is a simplified representation of reality and assumes homogeneous hydrogeological conditions throughout the model domain, a flat ground water table and is not a calibrated model. Given the irregular shape of the proposed development, a numerical approach was preferred to conventional analytical methods which are more suited for square or rectangular shaped developments and a single hydraulic conductivity. This model does not take into account any hydrogeological conditions beyond those encountered on site (ex: regional fractures, varying bedrock formations and conditions) and actual dewatering may vary. The numerical model utilized Richard's equation to model the unsaturated zone and simulate the groundwater table under dewatered conditions. Model outputs can be seen in Figures 101 through 104.

The model domain can be seen in Figure 101 below. A constant head set as 74 masl was applied to the periphery of the model. The dewatering at the site was modeled using a boundary condition set with the construction and post construction dewatering targets as shown in Table 4-1.

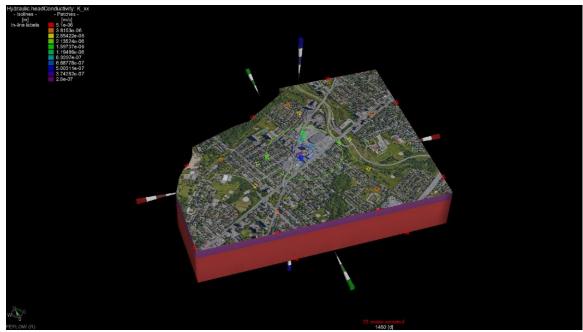


Figure 101: 3D view of numerical model representing model domain, hydraulic conductivity distribution and aerial imagery.

The drawdown cone due to the dewatering is shown in plan view (2D) on Figure 102 below.

Figure 102: Drawdown cone in plan view

The effect of the dewatering extends from the base of the excavation in all directions as can be seen in Figure 103 below.

75 150 (m)

Figure 103: Drawdown after 1460 days (post construction: drain target elevation 62 masl). White line represents the groundwater table.

The output flow rates during construction and post construction show a decrease in the first 100 days of construction dewatering and stabilize at approximately 340 m³/day (excluding precipitation and factor of safety) with a dewatering target of 60 masl (Figure 104). After 2 years (730 days), the dewatering target changes to the post construction target of 62 masl, which results in a slight decreased flow rate of approximately 300 m³/day (excluding factor of safety)/

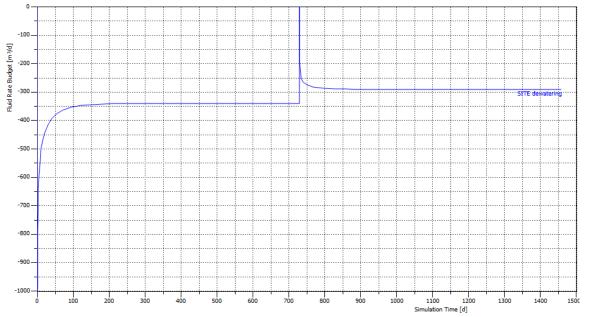


Figure 104: Flow rate over time in m3/day without factor of safety (15 days: 470 m3/day, 730 days: 340 m3/day, 1460 days: 300 m3/day (rounded))

Based on the assumptions provided in this report and the modeling results above, the rain collection volume, and resulted dewatering rates are provided in Tables 4-2 and Table 4-3, respectively.

Table 4-2 Estimated Rainwater Collection Volumes

Location	Approximate Area (m²)	Rain Collection Volume (m³/Day)
Excavation Area	7,000	105

Note: * 15 mm precipitation event assumed

Stage	Peak Dewatering Flow Rate	Factor of Safety Applied	Peak Dewatering Flow Rate	Peak Dewatering Flow Rate with Rain Collection Volume		
	(Without Factor of Safety)	(FS)	(With Factor of Safety)	(With Factor of Safety)		
Construction (15 Days)	470	1.5	705	810 (rounded)		
Construction (730 Days)	340	1.5	510	620 (rounded)		
Post Construction (1460 Days)	300	1.5	450	N.A.		

Table 4-3 Summary of Dewatering Flow Rate Estimate

Based on the preliminary results of the numerical model simulation the construction (15 and 730 Days) and post construction (1460 Days) phases dewatering flow rate for the proposed building would be 810, 620 and 450 m3/day respectively.

4.3 Radius of Influence

Based on the numerical model the zone of influence there will be 1 m of drawdown at approximately 550 m. A detail of the drawdown cone in post construction after 4 years is presented in Figure 101 to 103; drawdown after 1460 days post construction is presented in Figure 102.

4.4 Construction MECP Water Taking Permit

In accordance with the Ontario Water Resources Act, if the water taking for the construction dewatering is more than 50 m³/day but less than 400 m³/day, then an online registration in the Environmental Activity and Sector Registry (EASR) with the MECP will be required. If groundwater dewatering rates onsite exceed 400 m³/day, a Category 3 Permit to Take Water (PTTW) will be required from the MECP.

Based on the dewatering estimate of approximately 810 m³/day (810,000 L/day) applying a safety factor of 1.5 (approximately 470 m³/day (470,000 L/day) without a safety factor including rain fall amount) for this project, a PTTW would be required to facilitate the construction dewatering program of the Site. Based on this assessment a PTTW will be required for post construction.

5 Environmental Impact

5.1 Surface Water Features

The Site is within the Ottawa River West watershed, within the Ottawa 6 subwatershed. No surface water features exist onsite. The nearest surface water features is Pinecrest Creek, approximately located 450 meters east of the Site boundary and Mud Lake, approximately located 650 meters northwest of the Site boundary.

Due to the limited extent of zone of influence and the wide distance to the nearest surface water feature, no detrimental impacts on surface water features are expected during construction activities.

5.2 Groundwater Sources

Well Records from the MECP Water Well Record (WWR) Database were reviewed to determine that no active water supply wells exist within a 500 m radius of the Site boundaries. Given that no active water supply wells exist and that the dewatering zone of influence is limited, no dewatering related impact is expected on water wells in the area, if existent.

5.3 Geotechnical Considerations

As per the MECP technical requirement for PTTW and EASRs, the geotechnical assessment of the stability of the soils due to water taking (ex: settlement, soil loss, subsidence, etc.) is required. The water taking should not have unacceptable interference on soils and underground structures (foundations, utilities, etc.).

A letter related to geotechnical issues as it pertains to the Site is required to be completed under a separate cover.

5.4 Groundwater Quality

It is our understanding that the potential effluent from the dewatering system during the construction will be released to the municipal sewer system. As such, the quality of groundwater discharge is required to conform the City of Ottawa Sewer Use By-Law.

Groundwater sampling is recommended to assess suitability of water taking with the municipal sewer use by law.

For the short-term dewatering system (construction phase), it is anticipated that TSS levels and some other parameters (for example, Total Metals) in the pumped groundwater may become elevated and exceed both, Sanitary and Storm Sewer Use By-Law limits. To control the concentration of TSS and associated metals, it is recommended that a suitable treatment method be implemented (filtration or decantation facilities and/ or any other applicable treatment system) during construction dewatering activities to discharge to the applicable sewer system. The specifications of the treatment system will need to be adjusted to the reported water quality results by the treatment contractor/process engineer.

Dewatering (short and long-term) may induce migration of contaminants within the zone of influence and beyond due to changing hydraulic gradients, hydrogeological conditions beyond Site boundaries and preferential pathways in utility beddings etc. The water quality sampling conducted as part of this assessment was performed under static conditions. As a result, monitoring may be required during dewatering activities (short and long-term) to monitor potential migration, and this should be performed more frequently during early dewatering stages.

The water quality may not be representative of the long-term condition of groundwater quality onsite. As such, regular water quality monitoring is recommended for the post-construction phase as required by the City.

An agreement to discharge into the sewers owned by the City of Ottawa will be required prior to releasing dewatering effluent.

*exp.

Hydrogeological Investigation 365 Forest Street, Ottawa, Ontario OTT-00252625-A0 November 5, 2021

The Environmental Site Assessment Report(s) shall be reviewed for more information on the groundwater quality conditions at the Site.

5.5 Well Decommissioning

In conformance with Regulation 903 of the Ontario Water Resources Act, the installation and eventual decommissioning of any dewatering system wells or monitoring wells must be completed by a licensed well contractor. This will be required for all wells that are no longer in use.

6 Conclusions and Recommendations

Based on the findings of the Hydrogeological Investigation, the following conclusions and recommendations are provided:

- Based on the preliminary dewatering estimate of approximately 810 m3/day (810,000 L/day) applying a safety factor of 1.5 (approximately 470 m³/day (470,000 L/day) without a safety factor) including rain fall amount for this project. A PTTW will be required to facilitate the construction dewatering program of the Site for 705 m³/day (705,000 L/day) (excluding rain fall) based on the recent July 1, 2021 amendment to the regulation regarding water takings. The post construction dewatering flow rate estimate is 450 m³/day (450,000 L/day) applying a factor of safety of 1.5 (300 m³/day without a factor of safety) Based on this preliminary assessment a PTTW will be required for post construction. The construction dewatering and long-term estimate of sub-drain discharge volumes is based on the assumptions outlined in this report. Any variations in hydrogeological conditions beyond those encountered as part of this preliminary investigation may significantly influence the discharge volumes.
- For the short-term dewatering system (construction phase), it is anticipated that TSS levels and some other parameters (for example, Total Metals) in the pumped groundwater may become elevated and exceed both, Sanitary and Storm Sewer Use By-Law limits. To control the concentration of TSS and associated metals, it is recommended that a suitable treatment method be implemented (filtration or decantation facilities and/ or any other applicable treatment system) during construction dewatering activities to discharge to the applicable sewer system. The specifications of the treatment system will need to be adjusted to the reported water quality results by the treatment contractor/process engineer.
- As per the MECP technical requirement for PTTW and EASRs, the geotechnical assessment of the stability of the soils due to water taking (ex: settlement, soil loss, subsidence etc.) is required. The water taking should not have unacceptable interference on soils and underground structures (foundations, utilities etc.). A letter related to geotechnical issues as it pertains to the Site is required to be completed under a separate cover.
- No groundwater sampling has been performed as part of the hydrogeological investigation at this time. The Phase Two
 Environmental Site Assessment determined that a single groundwater sample located near the south side of the west
 building exceeded MECP Table 3 SCS for PHC F2 and F3. A groundwater bylaw sample is recommended for future
 compliance before permitting and treatment of discharge.
- An agreement to discharge into the sewers owned by the City of Ottawa will be required prior to releasing dewatering effluent.
- The PTTW registration allows construction dewatering discharge of greater than 400,000 L/day in construction and 50,000 L/day in post construction. Separate PTTW will be required for construction and post construction.
- A Discharge Plan (dewatering sketch, sewer discharge agreement) must be developed and applied for any discharges from the Site. The Discharge Plan and monitoring for both water quantity and water quality must be carried at the Site during the entire construction dewatering phase. The daily water taking records must be maintained onsite for the entire construction dewatering phase. The PTTW, Discharge Plan, hydrogeological investigation report, and geotechnical assessment of settlements must always also be available at the construction dewatering schedule or design, since the PTTW will need to be updated to reflect these modifications. The hydrogeological report, PTTW, Discharge Plan and geotechnical assessment constitutes the Water Taking Plan which needs to be available onsite for the duration of construction dewatering.
- In conformance with Regulation 903 of the Ontario Water Resources Act, the installation and eventual decommissioning
 of any dewatering system wells or monitoring wells must be completed by a licensed well contractor. This will be required
 for all wells that are no longer in use.

The conclusions and recommendations provided above should be reviewed in conjunction with the entirety of the report. They assume that the present design concept described throughout the report will proceed to construction. This report is solely

intended for the construction and long-term dewatering assessments. Any changes to the design concept may result in a modification to the recommendations provided in this report.

7 Limitations

This report is based on a limited investigation designed to provide information to support an assessment of the current hydrogeological conditions within the study area. The conclusions and recommendations presented within this report reflect Site conditions existing at the time of the assessment. EXP must be contacted immediately, if any unforeseen Site conditions are experienced during construction activities. This will allow EXP to review the new findings and provide appropriate recommendations to allow the construction to proceed in a timely and cost-effective manner.

Our undertaking at EXP, therefore, is to perform our work within limits prescribed by our clients, with the usual thoroughness and competence of the geoscience/engineering profession. No other warranty or representation, either expressed or implied, is included or intended in this report.

This report was prepared for the exclusive use of 11061917 Canada Inc.. This report may not be reproduced in whole or in part, without the prior written consent of EXP, or used or relied upon in whole or in part by other parties for any purposes whatsoever. Any use which a third party makes of this report, or any part thereof, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. EXP Services Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

We trust that this information is satisfactory for your purposes. Should you have any questions or comments, please do not hesitate to contact this office.

Sincerely,

EXP Services Inc.

Nicolas Sabo, M.E.S., B.Sc. Environmental Scientist Environmental Services

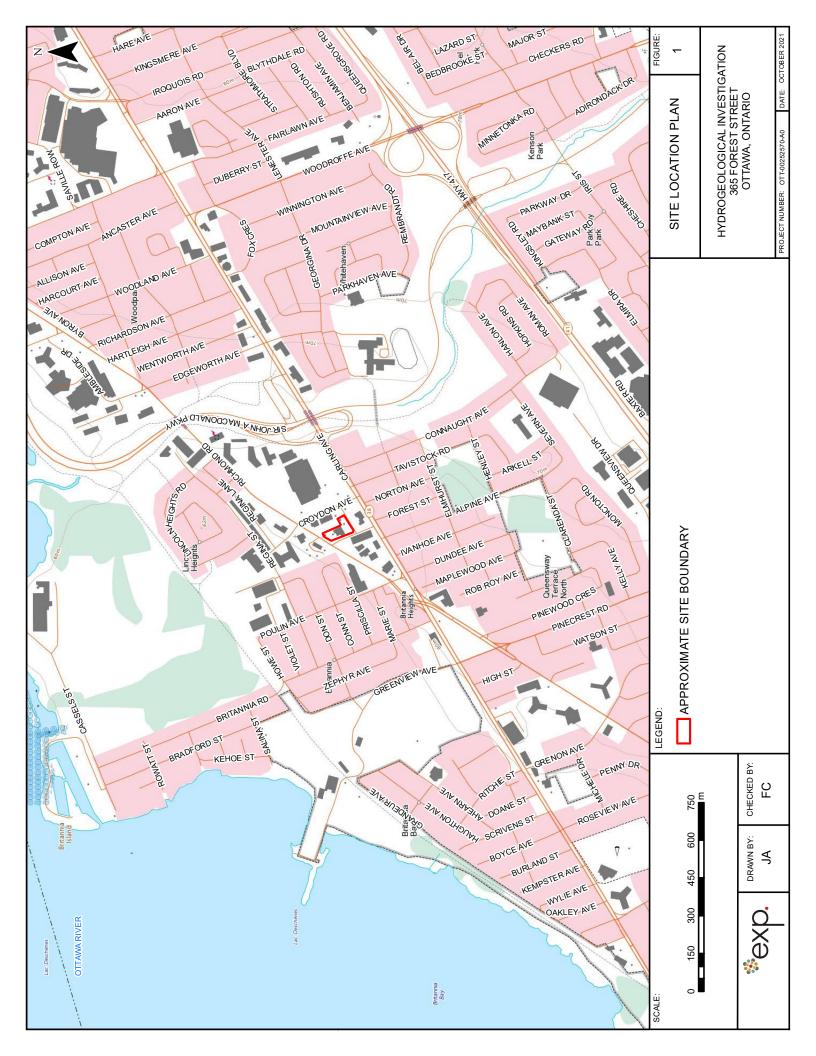
Francois Chartier, M.Sc., P.Geo. Discipline Manager, Hydrogeology Environmental Services

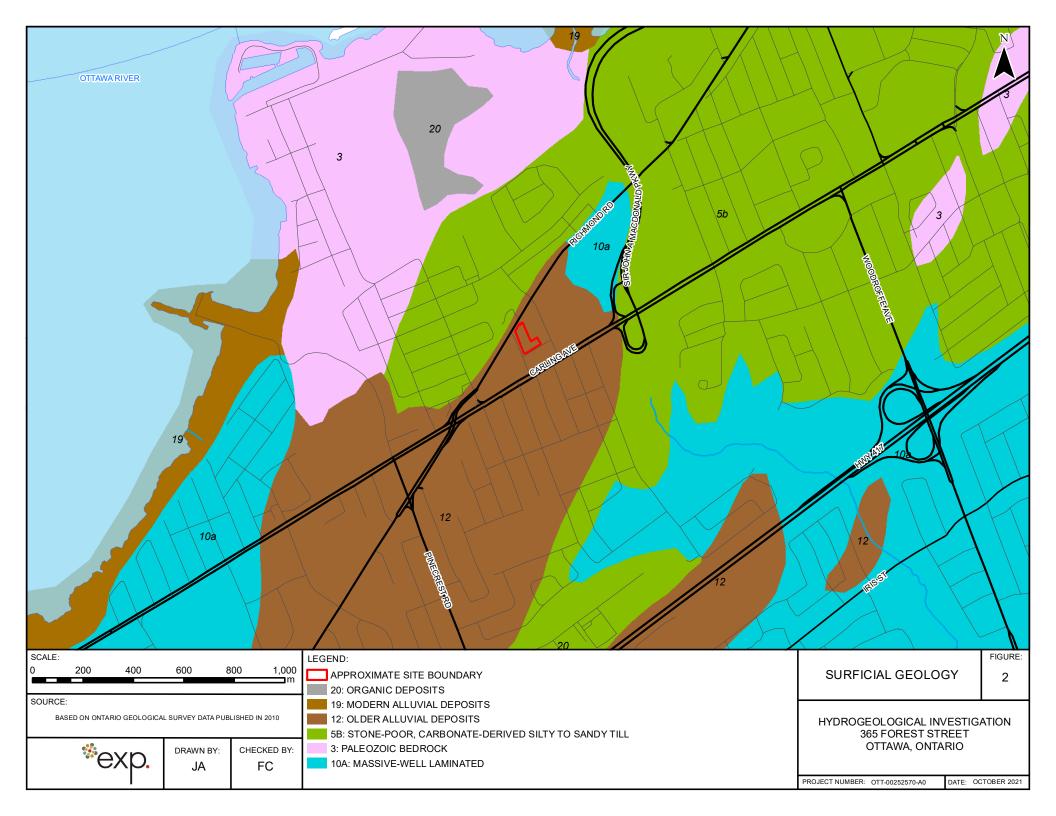
8 References

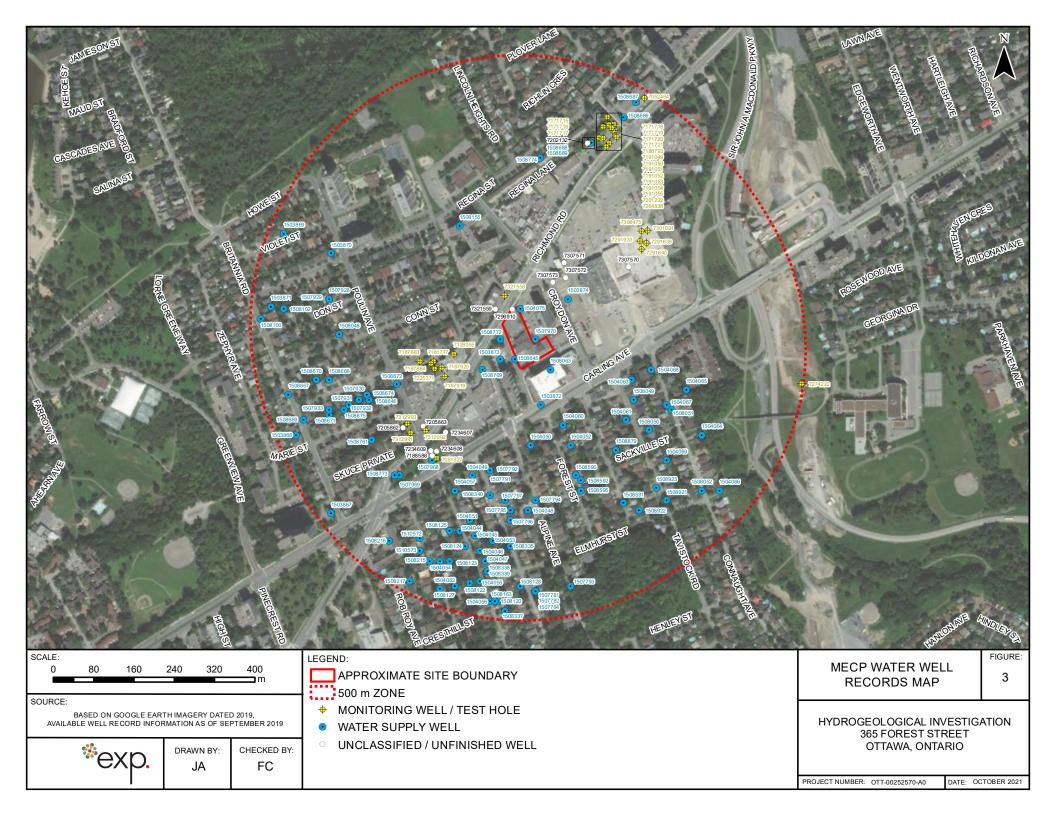
EXP Services Inc. (May 28, 2021), Geotechnical Investigation, 365 Forest Street, Ottawa, ON, prepared for 11061917 Canada Inc.

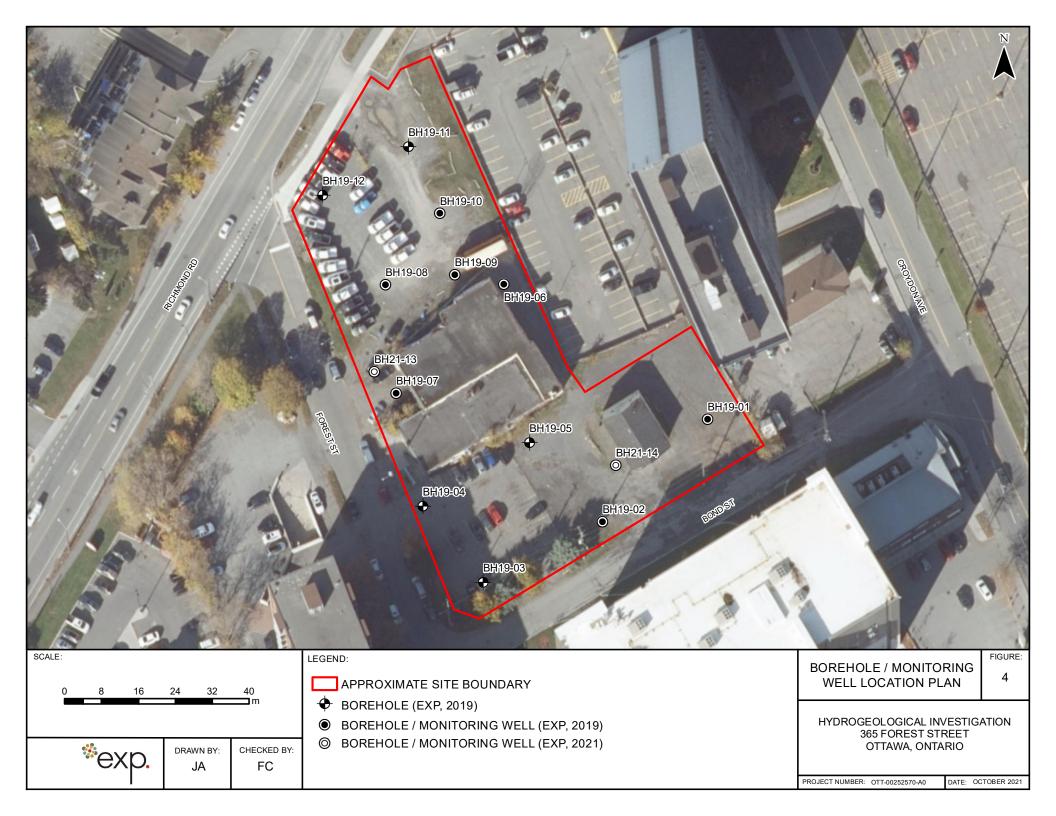
EXP Services Inc. (May 11, 2021), Phase II Environmental Site Assessment, 365 Forest Street, 1420 Richamond Road & 2589 Bond Street, Ottawa, ON, prepared for 11061917 Canada Inc.

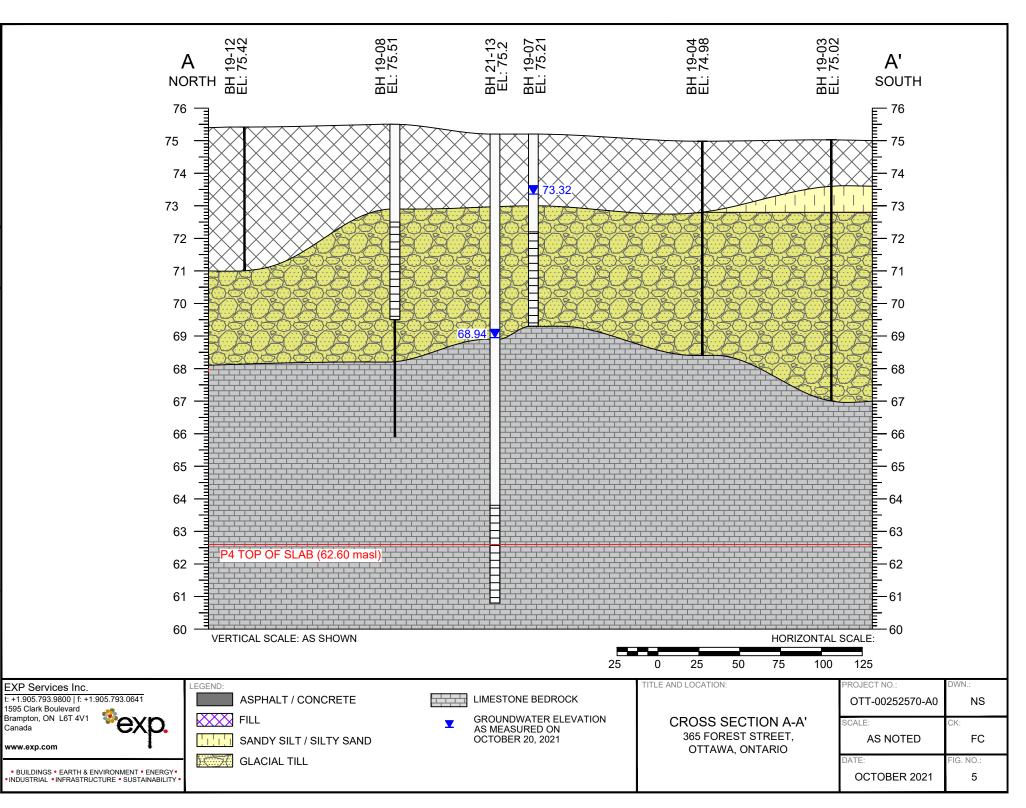
J.P. Powers, A.B. Corwin, P.C. Schmall and W.E. Kaeck (2007). Construction Dewatering and Groundwater Control, Third Edition.

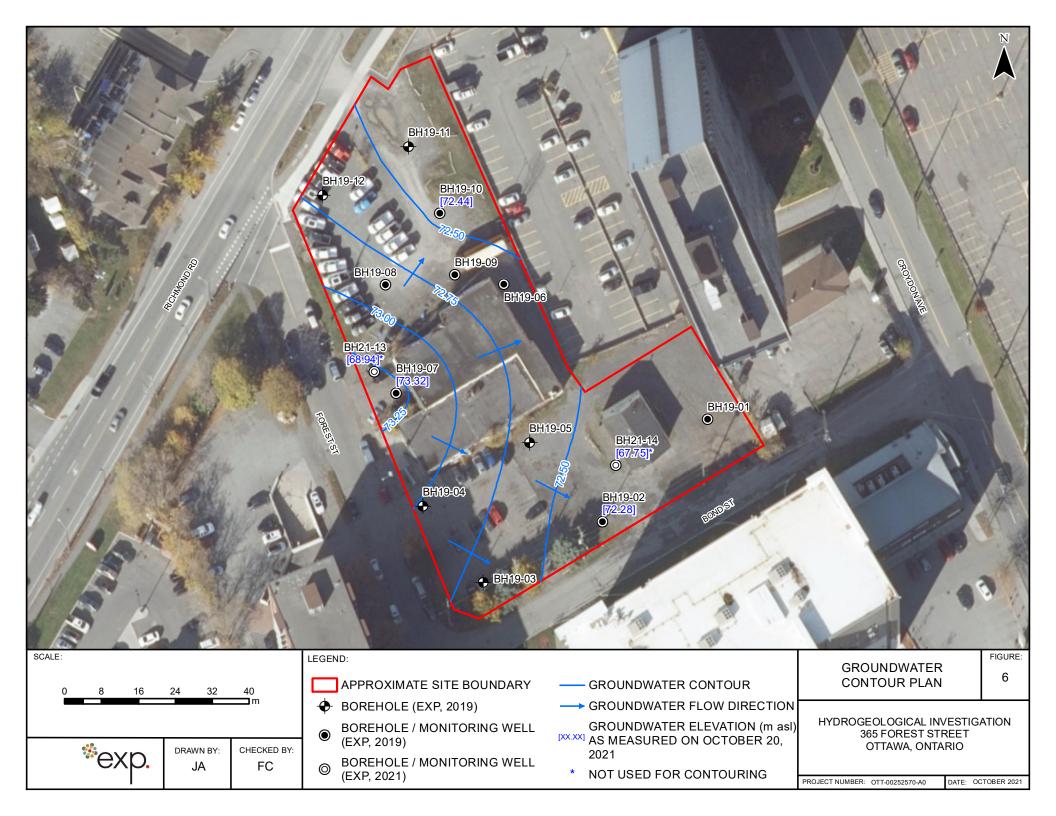

Ministry of Northern Development and Mines (May, 2012). OGS Earth. Retrieved from http://www.mndm.gov.on.ca/en/mines-and-minerals/applications/ogsearth.


*exp.


Hydrogeological Investigation 365 Forest Street, Ottawa, Ontario OTT-00252625-A0 November 5, 2021


Figures





Hydrogeological Investigation 365 Forest Street, Ottawa, Ontario OTT-00252625-A0 November 5, 2021

Appendix A – MECP WWR Summary Table

BORE_HOLE_IC	D WELL_ID	DATE	EAST83	NORTH83	ELEVATION (m ASL)	STREET	сптү	DISTANCE FROM SITE CENTROID (m)	CONSTRUCTION METHOD	WELL DEPTH (m bgs)	WATER FOUND (m BGS)	CASING DIAMETER (cm)	1st USE	2nd USE	FINAL STATUS
BORE_HOLE_IC	D WELL_ID	DATE	EAST83	NORTH83	ELEVATION (m ASL)	STREET	сіту	n/a f-Site DISTANCE FROM SITE CENTROID (m)	CONSTRUCTION METHOD	WELL DEPTH (m bgs)	WATER FOUND (m BGS)	CASING DIAMETER (cm)	1st USE	2nd USE	FINAL STATUS
10025910 10025911 10025912	1503867 1503868 1503869	10/3/1949 11/24/1949 2/7/1947	437856 437786 437761	5023317 5023472 5023872	79.4 70.0 66.1			513 489 523	52	49 13 16	45.8 12.2 6.1	10.2 10.2 10.2	Domestic Domestic Domestic		Water Supply Water Supply Water Supply
10025913 10025914 10025915	1503870 1503871 1503872	8/15/1949 9/19/1949 6/30/1949	437856 437736 438271	5023832 5023727 5023532	67.9 66.3 76.5			419 507 131		27 23 43	12.2 18.3 12.2	10.2 10.2 12.7	Domestic Domestic Commerical		Water Supply Water Supply Water Supply Water Supply
10025916 10025917	1503873 1503874	12/12/1949 6/3/1948	438191 438326	5023622 5023742	76.3 75.6			60 121		30 29	29.0	10.2 12.7	Domestic Domestic		Water Supply Water Supply
10026087 10026088 10026089	1504044 1504045 1504046	9/25/1949 11/14/1949 11/17/1949	438091 438141 438151	5023282 5023272 5023242	81.3 81.7 82.3			405 399 426		49 27 27	45.8 25.9 25.6	10.2 10.2 10.2	Domestic Domestic Domestic		Water Supply Water Supply Water Supply
10026090 10026091 10026092	1504047 1504048 1504049	11/21/1949 2/3/1948 2/26/1948	438161 438246 438136	5023222 5023322 5023392	82.2 80.7 79.7			444 337 286		30 31 34	29.0	10.2 10.2 10.2	Domestic Domestic Domestic		Water Supply Water Supply Water Supply
10026093 10026094	1504050 1504051	3/5/1948 3/22/1949	438251 438131	5023452 5023302	78.4 81.6			208 373		33 30	29.0	10.2 10.2	Domestic Domestic		Water Supply Water Supply
10026095 10026096 10026097	1504052 1504053 1504054	3/22/1949 4/4/1949 4/11/1949	438331 438176 438071	5023452 5023262 5023222	78.6 81.9 81.9			227 402 468		28 31 30	25.9 29.0 27.5	10.2 10.2 10.2	Domestic Domestic Domestic		Water Supply Water Supply Water Supply
10026098 10026099 10026100	1504055 1504056 1504057	4/16/1949 4/22/1949 5/12/1949	438131 438171 438101	5023177 5023142 5023362	82.7 83.0 80.3			494 522 327		30 30 32	28.1 29.0 30.5	10.2 10.2 10.2	Domestic Domestic Domestic		Water Supply Water Supply Water Supply
10026103 10026104 10026105	1504060 1504061 1504062	11/15/1949 12/15/1949 12/22/1949	438316 438441	5023492 5023502	77.7 77.3			184 257 520		32 32 34	32.0 29.9 32.0	10.2 12.7	Domestic Domestic		Water Supply Water Supply
10026106 10026107	1504063 1504064	12/30/1949 5/25/1949	438071 438451 438591	5023167 5023582 5023472	82.3 76.6 73.1			226 399		32 28	30.5 27.5	10.2 12.7 10.2	Domestic Domestic Domestic		Water Supply Water Supply Water Supply
10026108 10026109 10026110	1504065 1504066 1504067	6/3/1949 8/20/1949 10/19/1949	438560 438626 438531	5023562 5023362 5023522	77.1 69.5 78.4			336 489 323		39 29 37	38.1 29.0 35.7	10.2 10.2 10.2	Domestic Domestic Domestic		Water Supply Water Supply Water Supply
10026111 10026112 10026118	1504068 1504069 1504075	10/28/1949 11/6/1949 11/9/1949	438491 438521 438231	5023602 5023422 5023722	76.5 75.8 76.1			259 369 63		37 35 27	29.6 35.1 25.9	10.2 10.2 10.2	Domestic Domestic Domestic		Water Supply Water Supply Water Supply
10029816 10029817 10029819	1507781 1507782 1507784	3/30/1950 4/10/1950 5/2/1950	438261 438261	5023162 5023162	81.8 81.8 81.8			498 498 498		23 25 34	22.9 25.3 27.5	12.7 12.7 10.2	Domestic Domestic		Water Supply Water Supply Water Supply
10029826 10029827	1507791 1507792	5/27/1952 5/28/1952	438261 438171 438171	5023162 5023402 5023402	79.4 79.4			266 266		34 34	24.4 17.7	10.2 10.2	Domestic Domestic Domestic		Water Supply Water Supply
10029828 10029829 10029830	1507793 1507794 1507795	3/14/1953 3/10/1955 6/24/1954	438331 438261 438211	5023172 5023342 5023322	80.4 80.0 80.8			496 318 338		34 34 32	24.4 34.2 18.3	10.2 12.7 10.2	Domestic Domestic Domestic		Water Supply Water Supply Water Supply
10029831 10029832 10029963	1507796 1507797 1507928	10/22/1954 8/14/1953	438211 438201 437851	5023302 5023342 5023742	81.0 80.8 69.0			358 319		32 34	21.4 24.4 14.6	10.2 10.2 12.7	Domestic Domestic		Water Supply Water Supply Water Supply
10029964 10029965	1507929 1507930	8/27/1951 5/12/1951 8/18/1951	437851 437911	5023742 5023542	69.0 70.3			396 396 348		32 32 18	10.7 18.3	12.7 10.2	Domestic Domestic Domestic		Water Supply Water Supply
10029966 10029967 10029968	1507931 1507932 1507933	9/25/1951 9/22/1951 8/20/1951	437911 437881 437851	5023542 5023522 5023512	70.3 70.6 70.4			348 383 414		22 19 26	22.3 19.2 25.9	10.2 10.2 10.2	Domestic Domestic Domestic		Water Supply Water Supply Water Supply
10030003 10030004 10030005	1507968 1507969 1507970	10/2/1950 10/10/1950 10/31/1950	438056 437991 438261	5023422 5023392 5023662	77.8 79.1 76.0			299 364 23		24 43 28	24.4 42.7 27.5	10.2 10.2 10.2	Domestic Domestic Domestic		Water Supply Water Supply Water Supply
10030083 10030084 10030085	1508048 1508049 1508050	6/26/1953 2/18/1950 9/4/1950	437871 438456 438486	5023672 5023542 5023482	69.5 77.2 79.2			367 247 305		12 45 30	11.0 21.4 30.5	10.2 12.7 10.2	Domestic Domestic Domestic		Water Supply Water Supply Water Supply Water Supply
10030086 10030087	1508051 1508052	1/15/1953 9/15/1953	438521 438591	5023532 5023362	78.9 70.6			310 461		36 27	21.4 27.5	10.2 12.7	Domestic Domestic		Water Supply Water Supply
10030098 10030135 10030137	1508063 1508100 1508102	6/8/1950 7/2/1953 10/18/1956	438291 437716 437761	5023602 5023702 5023722	76.3 66.0 67.0			78 524 481		40 20 21	38.1 8.5 21.0	10.2 12.7 10.2	Domestic Domestic Domestic		Water Supply Water Supply Water Supply
10030155 10030157 10030158	1508120 1508122 1508123	4/24/1950 5/15/1950 6/19/1950	438186 438151 438091	5023142 5023182 5023222	83.0 82.6 81.7			520 485 461		32 32 30	22.9 30.5 29.0	10.2 10.2 10.2	Domestic Domestic Domestic		Water Supply Water Supply Water Supply
10030159 10030160 10030162	1508124 1508125 1508127	10/13/1950 11/20/1950	438121 438111	5023252 5023282	81.4 81.1 82.4			424 398 506		30 30	29.9 29.3 18.3	10.2 10.2 10.2	Domestic Domestic		Water Supply Water Supply
10030163 10030190	1508128 1508155	12/27/1951 3/9/1953 9/6/1954	438101 438231 438111	5023172 5023172 5023887	82.1 68.8			487 261		35 30 24	15.3 9.2	10.2 12.7	Domestic Domestic Domestic		Water Supply Water Supply Water Supply
10030198 10030250 10030251	1508163 1508215 1508216	10/23/1950 6/29/1950 7/4/1950	438181 438051 437971	5023142 5023222 5023262	83.0 81.9 82.3			520 476 479		30 30 30	29.3 29.0 27.5	10.2 10.2 10.2	Domestic Domestic Domestic		Water Supply Water Supply Water Supply
10030252 10030370 10030372	1508217 1508335 1508337	10/1/1950 11/28/1950 11/28/1951	438011 438211 438201	5023182 5023252 5023122	82.7 81.9 83.0			529 408 538		39 30 30	27.5 30.5 20.1	10.2 10.2 10.2	Domestic Domestic Domestic		Water Supply Water Supply Water Supply
10030373 10030374	1508338 1508339	4/14/1952 5/20/1952	438166 438166	5023202 5023202	82.4 82.4			463 463		33 33	21.4 24.4	10.2 10.2	Domestic Domestic		Water Supply Water Supply
10030375 10030624 10030625	1508340 1508590 1508591	6/4/1952 5/8/1950 4/24/1951	438171 438341 438436	5023352 5023392 5023337	81.2 79.9 75.9			314 286 378		35 36 35	24.4 27.5 27.5	10.2 10.2 10.2	Domestic Domestic Domestic		Water Supply Water Supply Water Supply
10030626 10030629 10030679	1508592 1508595 1508645	11/10/1951 12/12/1956 9/30/1950	438351 438351 438221	5023382 5023362 5023622	80.1 80.4 75.7			299 318 41		39 40 34	18.3 39.7 33.6	10.2 12.7 10.2	Domestic Domestic Domestic		Water Supply Water Supply Water Supply
10030680 10030701 10030702	1508646 1508667 1508668	4/2/1953 8/11/1952 8/15/1952	437931 437771 437851	5023542 5023552 5023582	70.2 69.1 69.5			329 479 395		21 20 26	6.7 18.3 19.8	10.2 10.2 10.2	Domestic Domestic Domestic		Water Supply Water Supply Water Supply
10030703 10030704	1508669 1508670	10/9/1952 10/11/1952	437801 437826	5023502 5023582	70.2 69.3			465 419		18 20	16.8 15.6	10.2 10.2	Domestic Domestic		Water Supply Water Supply
10030705 10030706 10030707	1508671 1508672 1508673	10/17/1952 11/17/1952 3/26/1953	437851 437986 437926	5023522 5023572 5023552	70.4 70.9 70.2			411 267 330		19 30 20	15.6 21.4 7.6	10.2 10.2 10.2	Domestic Domestic Domestic		Water Supply Water Supply Water Supply
10030708 10030709 10030720	1508674 1508675 1508686	3/27/1953 9/29/1954 11/17/1958	437926 437891 438436	5023552 5023532 5024102	70.2 70.5 71.1			330 370 485		23 31 43	6.7 18.3 41.2	10.2 10.2 5.1	Domestic Domestic Domestic		Water Supply Water Supply Water Supply
10030721 10030722 10030723	1508687 1508688 1508689	11/24/1958 12/4/1958 12/14/1958	438461 438371 438371	5024132 5024052 5024052	71.0 71.3 71.3			523 415 415		43 44 44 44	42.7 43.9 42.7	5.1 12.7 12.7	Domestic Domestic Domestic		Water Supply Water Supply Water Supply Water Supply
10030795 10030803	1508761 1508769	8/15/1951 7/19/1955	437936 438156	5023462 5023602	75.2 76.4			361 100		20 46	19.8 25.9	10.2 12.7	Domestic Domestic		Water Supply Water Supply
10030806 10030807 10030808	1508772 1508773 1508774	10/7/1957 8/2/1958 5/30/1959	438191 437981 438271	5023662 5023392 5024022	75.8 79.5 68.4			47 371 364		40 61 46	39.7 51.9 42.7	17.8 10.2 12.7	Commerical Commerical Domestic		Water Supply Water Supply Water Supply
10030913 10030955 10030956	1508879 1508921 1508922	11/6/1952 3/2/1951 4/20/1954	438421 438521 438466	5023442 5023342 5023322	77.9 73.9 75.6			284 425 407		45 31 32	30.5 27.5 21.4	12.7 10.2 10.2	Domestic Domestic Domestic		Water Supply Water Supply Water Supply
10030957 10032599	1508923 1510572	10/12/1954 6/15/1950	438501 438031	5023367 5023267	75.8 81.1			393 444		27 30	18.3 29.0	10.2 10.2	Domestic Domestic		Water Supply Water Supply
10032600 23052464 1002551699	1510573 7052464 7126055	6/22/1950 10/15/2007 6/17/2009	438031 438476 438099	5023242 5024140 5023633	81.5 70.7 72.1	1315 RICHMOND ROAD FORMER MCGEE LANDFILL	Ottawa Ottawa	466 537 141		30 6 5	29.0	10.2 3.8 5.1	Domestic Test Hole		Water Supply Test Hole Test Hole
1003606877 1003606879 1003606881	7171715 7171716 7171717	8/25/2011 8/25/2011 8/25/2011	438364 438365 438365	5024051 5024052 5024052	71.0 71.1 71.1	1324 RICHMOND RD 1324 RICHMOND RD 1324 RICHMOND RD	Ottawa Ottawa Ottawa	412 413 413		7 7 7		5.2 5.2 5.2	Monitoring and Monitoring and Monitoring and	i Test Hole	Test Hole Test Hole Test Hole
1003606883 1003606885 1003606887	7171718 7171719 7171720	9/26/2011 8/26/2011 8/26/2011	438418 438415 438416	5024077 5024083 5024089	71.7 71.3 71.0	1324 RICHMOND RD 1324 RICHMOND RD 1324 RICHMOND ST	Ottawa Ottawa Ottawa	455 459 465		7 6		5.2 5.2 5.2	Monitoring and Monitoring and Monitoring and	i Test Hole i Test Hole	Test Hole Test Hole Test Hole
1003606889 1003764792	7171721 7180793	8/26/2011 2/24/2012	438407 438387	5024089 5024062	70.7 71.5	1324 RICHMOND RD 1324 RICHMOND ROAD	Ottawa OTTAWA	462 430		5		5.2 0.1	Monitoring and Monitoring	i Test Hole	Test Hole Observation Wells
1003828982 1004163275 1004163278	7181777 7187883 7187884	4/25/2012 8/17/2012 8/17/2012	438058 438031 438053	5023618 5023618 5023613	71.3 71.1 71.4	2650 PRICILLA ST 1486 RICHMOND RD 1486 RICHMOND RD	Ottawa Ottawa Ottawa	185 211 191		5 5 5		4.0 3.5 3.5	Monitoring and Monitoring and Monitoring and	Test Hole	Test Hole Test Hole Test Hole
1004163606 1004163609 1004200021	7187919 7187920 7191049	8/17/2012 8/17/2012 10/12/2012	438081 438074 438414	5023588 5023605 5024076	73.6 72.5 71.6	RICHMOND RD RICHMOND RD 1325 RICHMOND RD	Ottawa Ottawa Ottawa	172 173 452		5 12 6		4.0 4.0 4.0	Monitoring and Monitoring and Monitoring and	i Test Hole i Test Hole	Test Hole Observation Wells Test Hole
1004200134 1004200137	7191050 7191051	10/12/2012 10/11/2012	438404 438395	5024102 5024083	70.0 70.7	1325 RICHMOND RD 1325 RICHMOND RD	Ottawa Ottawa	473 452		6		4.0 4.0	Monitoring and Monitoring and	i Test Hole i Test Hole	Test Hole Observation Wells
1004200140 1004200143 1004200146	7191052 7191053 7191054	10/11/2012 10/12/2012 10/12/2012	438407 438407 438412	5024088 5024051 5024081	70.8 72.4 71.3	1325 RICHMOND RD 1325 RICHMOND RD 1325 RICHMOND RD	Ottawa Ottawa Ottawa	461 427 456		6 6		4.0 4.0 3.5	Monitoring and Monitoring and Monitoring and	i Test Hole i Test Hole	Test Hole Test Hole Test Hole
1004200149 1004288940 1005060271	7191055 7201232 7225371	10/12/2012 10/12/2012 6/27/2014	438401 438395 438061	5024044 5024061 5023603	72.5 71.8 72.2	1325 RICHMOND RD 1325 RICHMOND RD. 1495 RICHMOND RD.	Ottawa OTTAWA Ottawa	418 431 186		6 6		3.5 4.0 3.5	Monitoring and Monitoring and Monitoring and	i Test Hole 🛛 🕅	Test Hole Monitoring and Test Hol Monitoring and Test Hol
1006056713 1006282403 1006668132	7264838 7274222 7291639	5/19/2016 10/17/2016 7/20/2017	438421 438789 438471	5023063 5023573 5023841	72.2 68.7 74.5	RICHMOND RD + ASSALY AVE SW TRANSITWAY 2525 CARLING AVE.	OTTAWA OTTAWA OTTAWA	443 558 296		3 4 5	2.4 2.1	-	Monitoring and Monitoring Test Hole	Test Hole N	Aonitoring and Test Hol Test Hole Conitoring and Test Hol
1006668135 1006698567	7291640 7291933	7/20/2017 7/21/2017	438481 438468	5023853 5023857	74.2 74.0	2525 CARLING AVE 2525 CARLING AVE	OTTAWA	311 303		5	2.1		Test Hole Test Hole	Monitoring Monitoring	tonitoring and Test Hol Observation Wells
1006865873 1007003468 1007003471	7301091 7307570 7307571	11/21/2017 2/28/2018 2/27/2018	438483 438446 438318	5023877 5023806 5023813		2525 CARLING AVE 2525 CARLING AVE 9086 CRAYDON AVE	OTTAWA Ottawa OTTAWA	328 255 173		5 6				Monitoring Monitoring Monitoring	Observation Wells
1007003474 1007003477 1007008376	7307572 7307573 7308475	2/26/2018 2/27/2018 3/21/2018	438321 438295 438471	5023784 5023775 5023876		9086 CRAYDON AVE 9086 CROYDON AVE 2525 CARLING AVE	OTTAWA OTTAWA Ottawa	150 129 318		6 9 5			Test Hole Test Hole Test Hole	Monitoring Monitoring Monitoring	fonitoring and Test Hol
23051327 1004196559	7051327 7188588	9/8/2007 1/12/2012	438065 438056	5023426 5023430	78.0 77.5	CONTINUE AVE	GradWil	290 293		10		5.0	Test Hole Not Used	ontoning	Observation Wells
1004313246 1004489954 1004489957	7202132 7205862 7205863	12/6/2012 5/10/2013 6/7/2013	438364 437998 438038	5024051 5023486 5023490	71.0 74.2 75.2			412 296 262							
1005268598 1005268601 1005268604	7234607 7234608 7234609	12/5/2014 7/28/2014 5/9/2014	438083 438065 438053	5023477 5023440 5023441	77.3 77.5 77.1			239 279 286							
1005764420 1007108620 1007108635	7296910 7312991 7312992	8/1/2017 3/8/2018 3/7/2018	438215 438013 438043	5023441 5023721 5023476 5023480	76.4	1509 RICHMOND ROAD 1509 RICHMOND RD	Ottawa Ottawa	66 290 265		5			Monitoring	Test Hole Test Hole	Test Hole Test Hole
1007108635 1007108638 1007305631 1007305634	7312992 7312993 7321558 7321559	3/8/2018 7/25/2018	438007 438199	5023494 5023748		1509 RICHMOND RD 1509 RICHMOND ROAD 35 WINTHORP PVT 19 WINTHROP PVT	Ottawa Ottawa Ottawa Ottawa	265 284 97 84		4			Test Hole Test Hole	Monitoring Monitoring	Test Hole Test Hole Observation Wells
1007305634	/321559	7/25/2018	438181	5023721		15 WINTHKUP PVT	Uttawa	84		5			Test Hole	Monitoring	

Hydrogeological Investigation 365 Forest Street, Ottawa, Ontario OTT-00252625-A0 November 5, 2021

Appendix B – Borehole Logs

*ехр.

		Log of E	Bore	Э	hole <u>B</u>	<u>H ′</u>	<u>19-0</u>	1 😚	°-	vr	5
Pr	oject N							-igure No. 3	C	γγρ	/•
Pr	oject:	Residential Development					г 	·		1	
Lo	cation:	365 Forest Street, Ottawa, Ontario						Page. <u>1</u> of <u>1</u>	-		
Da	te Drill	ed: 'April 30, 2019			Split Spoon Sample		\boxtimes	Combustible Vapour Reading			
Dri	ll Type	CME-75 Truck Mounted Drill Rig			Auger Sample			Natural Moisture Content		X	
Da	tum:	Geodetic Elevation			SPT (N) Value Dynamic Cone Test Shelby Tube	—		Atterberg Limits Undrained Triaxial at % Strain at Failure			
Lo	gged b	y: M.L. Checked by: I.T.			Shear Strength by Vane Test		+ s	Shear Strength by Penetrometer Test		A	
G W L	S Y B O L	SOIL DESCRIPTION	Geodetic Elevation m	D e p t h	Standard Penetrati 20 40 Shear Strength 50 100	on Test N 60 150	Value 80 kPa 200	Combustible Vapour Reading (pr 250 500 750 Natural Moisture Content % Atterberg Limits (% Dry Weigh 20 40 60	M P	Unit Wt. 1	

Ľ	B O L	SOIL DESCRIPTION	Elevation m	p	Shear S	20 Strenat	40 1	0	0	80 kPa		Natur	al Moist ra Limits	ure Conte s (% Dry V	nt % Veiaht)		Unit Wt. kN/m ³
	Ľ		74.13	h		50	100	1	50	200		20			50 50	E S	KIN/III
		GRANULAR FILL ∼200 mm Crushed gravel with silt and sand, grey, damp	73.9	0													
		Billy Silty sand with gravel, brick debris, grey and brown, wet, (loose)		1	6											$\overline{\mathbf{V}}$	SS1
		SANDY SILT	72.6		4						0					Λ	331
		With clay and gravel, brown and grey, wet, _(loose)	71.9	2	4						30	>	<			X	SS2
		GLACIAL TILL — Silty clayey sand with gravel, cobbles and boulders, grey, wet, (very loose to loose)	_		3 O						35	×				X	SS3
			_	3	3 O						25	*			No.	V	SS4
			-								25						
			69.6	4	4 O						35		×			X	SS5
		GLACIAL TILL Silty sand with gravel, cobbles and – boulders, grey, wet, (loose)		5	4 O						40	<				X	SS6
				9 th	en 50/25	mm										\langle	SS7
		_ Cobbles and boulders from 5.8 m to 6.5 m	_	6							25					Δ	
		LIMESTONE BEDROCK	67.6														
		Ottawa formation limestone with thin shaly – partings, laminated, grey, (poor to good - quality)	-	7													Run ⁻
		[─] Weathered and highly fractured zone from [−] 6.5 m to 7.3 m depths	-														Run 2
			65.8	8													
		Borehole Terminated at 8.3 m Depth															

OGS	NOTES: 1. Borehole data requires interpretation by EXP before	WAT	ER LEVEL RECO	RDS		CORE DR	ILLING RECOF	RD
BHL	use by others	Date	Water Level (m)	Hole Open To (m)	Run No.	Depth (m)	% Rec.	RQD %
Ë	 A 32 mm diameter monitoring well installed in borehole as shown. 	Completion	N/A	· · · ·	1	6.5 - 7.2	90	29
H		Damaged	N/A		2	7.2 - 8.3	100	84
ORE	3. Field work supervised by an EXP representative.	Damaged	N/A					
ЪВ	4. See Notes on Sample Descriptions	Damaged	N/A					
LOG 0	5. Log to be read with EXP Report OTT-00252625-A0							

	Log of I	Bor	e	hol	e _	<u>B</u>	11	<u>9-0</u>	<u>2</u>			*(Э	XD
Project No:	OTT-00252625-A0							F	-igure N	Jo	4		-	
Project:	Residential Development								U U			-		
Location:	365 Forest Street, Ottawa, Ontario								Pa	ge	l_of	1		
Date Drilled:	'April 29, 2019		_	Split Spo	on Samp	le	\boxtimes	3	Combus	tible Vapo	our Read	ing		
Drill Type:	CME-75 Truck Mounted Drill Rig			Auger Sa	•			ן		Moisture C	Content			×
			-	SPT (N)			С)	Atterberg			F		Ð
Datum:	atum: Geodetic Elevation			Dynamic Shelby Tu		st		-		ed Triaxial at Failure				\oplus
Logged by:	M.L. Checked by: I.T.			Shear Str Vane Tes	ength by	'	+ s	■ - :		trength by neter Tes				
G Y W B U O L	SOIL DESCRIPTION	Geodetic Elevation m	D e p t h	2 Shear S	0 4 Strength		60	alue <u>80</u> kPa 200	2 Nat Atterb		00 ure Cont (% Dry '	ing (ppm) 750 ent % Weight) 60		Natural Unit Wt. kN/m ³
	NULAR FILL ~500 mm hed gravel with silt and sand, grey, p	74.37	0					200						
FILL Silty	sand with gravel, brown and grey, wet,													
(loos	e)	73.0	1	0					5	×				SS1 20.6
	DY SILT - clay and gravel, grey, wet, (loose)			8									$\overline{\mathbb{N}}$	SS2

	74.37	0		50	100	15	0 2	200		4	20	40	60	J	Ī	
GRANULAR FILL ~500 mm Crushed gravel with silt and sand, grey,	72.0															
	/3.9															
Silty sand with gravel, brown and grey, wet,	_	1	6												\Box	SS1
	73.0		0						5		X				\land	20.6
 <u>SANDY SILT</u> With clay and gravel, grey, wet, (loose) 	1		8							· · · · · · · ·						SS2
		2	0			10 C. 10 C.			10	• • • • • • •	×				ľŇ	19.4
GLACIAL TILL	72.272.17	'														
 Silty clayey sand with gravel, cobbles, and – boulders, grev wet, (very loose to loose) 	-		5 O						F	×					X	SS3
		3														
			1 P							×					X	SS4
	70.7														$-\Delta$	
- Silty sand with gravel, cobbles and -		4	4							· · · · · ·			:::: :::::::::::::::::::::::::::::::::			<u> </u>
boulders, grey, wet, (very loose to loose)			O.						20						Ň	SS5
	-															
		5	3 〇												X	SS6
															: <u> </u>	
	-															
					1	12.011		101101	1. 0		1.1.1.1.	CID11			· · ·	
		6			50 for	75 mr	n :::::									667
	68.2	6			50 for	75 m r	<u>n</u>		-15						×	SS7
Auger Refusal at 6.2 m Depth	68.2	6			50 for	75 mr	<u>n</u>		15						×	SS7
- Auger Refusal at 6.2 m Depth	68.2	6			50 for	75 mr	<u>n</u>		-15						×	SS7
Auger Refusal at 6.2 m Depth	68.2	6			50 for	75 mr	<u>n</u>		-15						X	SS7
Auger Refusal at 6.2 m Depth	68.2	6			50 for	75 mr	n		-15						X	SS7
– Auger Refusal at 6.2 m Depth	68.2	6			50 for	75 mr	<u>n (* (*)</u>		-15						X	SS7
– Auger Refusal at 6.2 m Depth	68.2	6			50 for	7 5 m r	<u>n</u>		-15						X	SS7
- Auger Refusal at 6.2 m Depth	68.2	6			50 for	75 mr	n (* 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 *		-15							SS7
- Auger Refusal at 6.2 m Depth	68.2	6			50 for	75 mr	n (1997)		-15							SS7
Auger Refusal at 6.2 m Depth	68.2	6			50 for	75 m r O	n		-15							SS7
- Auger Refusal at 6.2 m Depth	68.2	6			50 for	75 mr	n		15							SS7
- Auger Refusal at 6.2 m Depth	68.2	6			50 for	75 mr	n		15							SS7
- Auger Refusal at 6.2 m Depth	68.2	6			50 for	75 m	<u>n</u>		15							SS7
	Crushed gravel with silt and sand, grey, damp 	Crushed gravel with silt and sand, grey, damp 73.9 FILL Silty sand with gravel, brown and grey, wet, (loose) 73.0 73.0 73.0 73.0 73.0 73.0 72.272.17 Silty clayey sand gravel, grey, wet, (loose) 72.272.17 Silty clayey sand with gravel, cobbles, and boulders, grey wet, (very loose to loose) 70.7 GLACIAL TILL Silty sand with gravel, cobbles and	Crushed gravel with silt and sand, grey, damp 73.9 FILL Silty sand with gravel, brown and grey, wet, (loose) 73.0 73.0 73.0 73.0 73.0 73.0 73.0 70.7 CLACIAL TILL Silty clayey sand with gravel, cobbles, and boulders, grey wet, (very loose to loose) 70.7 CLACIAL TILL Silty sand with gravel, cobbles and boulders, grey, wet, (very loose to loose) 70.7	Crushed gravel with silt and sand, grey, damp FILL Silty sand with gravel, brown and grey, wet, (loose) - - - - - - - - - - - - -	Crushed gravel with silt and sand, grey, damp FILL Silty sand with gravel, brown and grey, wet, (loose) - - - - - - - - - - - - -	Crushed gravel with silt and sand, grey, damp FILL Silty sand with gravel, brown and grey, wet, (loose) - - - - - - - - - - - - -	Crushed gravel with silt and sand, grey, damp FILL Silty sand with gravel, brown and grey, wet, (loose) - - - - - - - - - - - - -	Crushed gravel with silt and sand, grey, damp FILL Silty sand with gravel, brown and grey, wet, (loose) - - - - - - - - - - - - -	Crushed gravel with silt and sand, grey, damp FILL Silty sand with gravel, brown and grey, wet, (loose) - - - - - - - - - - - - -	Crushed gravel with silt and sand, grey, damp FILL Silty sand with gravel, brown and grey, wet, (loose) 	Crushed gravel with silt and sand, grey, damp FILL Silty sand with gravel, brown and grey, wet, (loose) 	Crushed gravel with silt and sand, grey, damp FILL Silty sand with gravel, brown and grey, wet, (loose) - - - - - - - - - - - - -	Crushed gravel with silt and sand, grey, damp FILL Silty sand with gravel, brown and grey, wet, (loose) - - - - - - - - - - - - -	Crushed gravel with silt and sand, grey, damp FILL Silty sand with gravel, brown and grey, wet, (loose) 	Crushed gravel with silt and sand, grey, damp FILL Silty sand with gravel, cobbles, and boulders, grey wet, (very loose to loose) GLACIAL TILL Silty sand with gravel, cobbles and boulders, grey, wet, (very loose to loose) GLACIAL TILL Silty sand with gravel, cobbles and boulders, grey, wet, (very loose to loose) 	Crushed gravel with silt and sand, grey, damp FILL Silty sand with gravel, cobbles, and boulders, grey wet, (very loose to loose) GLACIAL TILL Silty sand with gravel, cobbles and boulders, grey, wet, (very loose to loose) GLACIAL TILL Silty sand with gravel, cobbles and boulders, grey, wet, (very loose to loose)

OGS	NOTES: 1. Borehole data requires interpretation by EXP before	WAT	ER LEVEL RECO	RDS		CORE DR	ILLING RECOF	RD
BH L	use by others	Date	Water Level (m)	Hole Open To (m)	Run No.	Depth (m)	% Rec.	RQD %
OLE	2. A 32 mm diameter monitoring well installed in borehole as shown.	Completion	5.2					
H		11 days	1.8					
ORE	3. Field work supervised by an EXP representative.	17 days	1.9					
Ē	4. See Notes on Sample Descriptions	~ 2 years	2.2					
LOG O	5. Log to be read with EXP Report OTT-00252625-A0							

Project No: OTT-0025262	Log of E	Bore	e	hole <u>B</u>	<u>H 1</u>	9-0	<u>3</u>		*	Э	Xp.
Project: Residential De	<u> </u>					F	igure No	o. <u>5</u>			
	eet, Ottawa, Ontario						Page	e. <u>1</u> of	_1_		
Date Drilled: 'April 30, 2019				Split Spoon Sample	Þ	3	Combustib	le Vapour Read	ling	ļ	
Drill Type: <u>CME-75 Truck</u>	Mounted Drill Rig		_	Auger Sample SPT (N) Value		-	Natural Mo Atterberg L	isture Content	F		X Đ
Datum: Geodetic Eleva	ation			Dynamic Cone Test		_	Undrained	Triaxial at	•		9 Ð
Logged by: M.L.	Checked by: I.T.		-	Shelby Tube Shear Strength by Vane Test		⊢ 8	% Strain at Shear Stre Penetrome	ngth by			▲
	SCRIPTION	Geodetic Elevation m 75.02	D e p t h	20 40 Shear Strength	60	alue 80 kPa 200	250 Natura	ble Vapour Read 500 al Moisture Cont g Limits (% Dry 40	750 tent %	PL	Vatural Init Wt. kN/m ³
ASPHALTIC CONCR GRANULAR FILL (B Crushed gravel with damp	<u>ASE)</u> ~150 mm ∫	74.9 74.8	0	10 0						X	SS1
FILL Silty sand and grave (compact)	l, dark brown, moist,	73.6	1	15 0		Ę				X	SS2 20.5
Brown, wet, (loose)	<u>TY SAND</u> –	72.8	2	6 O			5 5			X	SS3
GLACIAL TILL Silty clayey sand wit boulders, grey, wet,	h gravel, cobbles and — (loose)			4 O		[5	×		X	SS4 23.1
	_	71.3	3	8			15 X			X	SS5
GLACIAL TILL — Silty clay with gravel	, grey, wet, (soft) —		4	3 O			20	*			SS6

2

5

69.7

68.0

67.0

GLACIAL TILL Silty sand with gravel, cobbles and boulders, grey, damp, (very dense)

Coring through cobbles and boulders from 6.6 m to 7.0 m depths

LIMESTONE BEDROCK Ottawa formation limestone with thin shaly partings, laminated, grey, (poor quality)

Weathered and highly fractured zone from 7.0 m to 7.5 m depths

Borehole Terminated at 8.0 m Depth

SS7

SS8

SS9

Run 1

15

X 15

65 〇

81 Ø

OGS.	1
1	N
252625 FOREST.GPJ	
FORE	
ST.GPJ	
TROW OT	
TROW OTTAWA.GDT 10/27/2	
10/27/21	

LOG OF BOREHOLE BH L

NOTES:	WAT	ER LEVEL RECO	ORDS		CORE DF	RILLING RECO	RD
1. Borehole data requires interpretation by EXP before use by others	Date	Water Level (m)	Hole Open To (m)	Run No.	Depth (m)	% Rec.	RQD %
2. Borehole backfilled upon completion of drilling.	Completion	N/A	8.0	1	7 - 8	100	40
3. Field work supervised by an EXP representative.							
4. See Notes on Sample Descriptions							
5. Log to be read with EXP Report OTT-00252625-A0							

	Log of I	Bore	e	hol	e _	BH	19	<u>9-0</u>	<u>4</u>			*	Ņ	xn
Project No:	OTT-00252625-A0							-	-: NI		6			$\gamma \gamma$
Project:	Residential Development								igure No			-		1
Location:	365 Forest Street, Ottawa, Ontario								Page	e1	l_of	1		
Date Drilled:	'April 29, 2019			Split Spoor	n Sample	e	\boxtimes		Combustit	ole Vapo	our Readi	ng		
Drill Type:	CME-75 Truck Mounted Drill Rig			Auger Sam SPT (N) Va	•				Natural Mo Atterberg		Content	⊢		× ⊕
Datum:	Geodetic Elevation			Dynamic C Shelby Tub		st			Undraineo % Strain a					\oplus
Logged by:	M.L. Checked by: I.T.			Shear Stre Vane Test			+ s		Shear Stre Penetrom					A
G Y W B U O L	SOIL DESCRIPTION	Geodetic Elevation m	D e p t h		4 ength	netration T 0 6	0	lue 30 kPa 200	Combusti 250 Natur Atterbe 20) 50 al Moistu	00 7 ure Conte (% Dry V	50 nt %		Natural Unit Wt. kN/m ³
	HALTIC CONCRETE ~60 mm NULAR FILL (BASE) ~250 mm hed gravel with silt and sand, grey,	74.98 74.9 74.7	0		30 O				×				Ň	SS1
damı FILL			1	5									\square	552

L	ŎĹ		m 74.98	h		Strength 50 1	00 150	20	kPa	Atterb 2		s (% Dry W 10 6		LES	kN/m ³
		ASPHALTIC CONCRETE ~60 mm	74.9	0		30								Ň	
		GRANULAR FILL (BASE) ~250 mm Crushed gravel with silt and sand, grey, damp	_74.7			0			· · · · · · · · · · · · · · · · · · ·	×				Å	SS1
		FILL Clayey silty sand to silty sand with gravel, brown, moist to wet, (loose)		1	5						×			\mathbb{Z}	SS2 19.1
			70.0	2	5 O						<			$\overline{\mathbb{N}}$	SS3
		GLACIAL TILL — Silty clay with sand and gravel, cobbles and — boulders, grey, wet, (soft)	72.8		4						×			X	SS4
		Petroleum odour from 3.0 m to 3.6 m depths		3	3 O					×				X	SS5
		- GLACIAL TILL	70.9	4											
		Silty sand with gravel, cobbles and boulders, grey, wet, (compact to very dense)	-	5		22 O				×				X	SS6 23.9
		Petroleum odour from 5.5 m to 6.1 m	_					57						\square	
		depths 	-	6				9		×				Å	SS7
5	<i>6/2</i>	Auger Refusal at 6.6 m Depth	68.4	+											
יובוח															
	DTES:														
G N	51E9:		WATE	RL	EVEL RI	ECORD	S			CO	RE DRIL	LING RE	ECORD		

5	NOTES: 1.Borehole data requires interpretation by EXP before	WAT	ER LEVEL RECO	RDS	CORE DRILLING RECORD							
핆	use by others	Date	Water Level (m)	Hole Open To (m)	Run No.	Depth (m)	% Rec.	RQD %				
비는	2. Borehole backfilled upon completion of drilling.	Completion	5.5	6.6		(,						
Ť Ĭ	3. Field work supervised by an EXP representative.											
힒	4. See Notes on Sample Descriptions											
히	5. Log to be read with EXP Report OTT-00252625-A0											
3												

	Log of E	Bore	ehole <u>BH 19</u>	-05 [%] eyn
Project No:	OTT-00252625-A0			
Project:	Residential Development	Figure No		
Location:	365 Forest Street, Ottawa, Ontario			Page. <u>1</u> of <u>1</u>
Date Drilled:	: <u>'</u> April 30, 2019		_ Split Spoon Sample	Combustible Vapour Reading
Drill Type:	CME-75 Truck Mounted Drill Rig		Auger Sample SPT (N) Value O	Natural Moisture Content X Atterberg Limits
Datum:	Geodetic Elevation		Dynamic Cone Test	Undrained Triaxial at \oplus % Strain at Failure
Logged by: M.L. Checked by: I.T.		_	Shelby Tube Shear Strength by + Vane Test S	Shear Strength by Penetrometer Test
G M W B	SOIL DESCRIPTION	Geodetic Elevation	D Standard Penetration Test N Value p 20 40 60 80 t Shear Strength	Combustible Vapour Reading (ppm) S 250 500 750 M Natural Natural Moisture Content % P Unit Wt. Isterberg Limits (% Drv Weight) Lot(x) ³

G W L	S Y B O	SOIL DESCRIPTION	Geodetic Elevation m	D e p t		20 4 Strength			30 kPa	2	50 5	00 75 ure Conter s (% Dry W	50 nt % /eight)	94⊠P_LEO	Natural Unit Wt. kN/m ³
	Ľ	ך <u>GRANULAR FILL</u> ~100 mm	74.82 74.7	h 0		0	<u>20 1</u>	50 2	00				0	E S	KIN/III
		Crushed gravel wtih silt and sand, grey,	- 14.7		11 0					40 ×				X	SS1
		FILL Clayey silty sand to silty sand with gravel, rootlets, brown and grey, moist to wet, petroleum odour, (loose)		1	9					40 ×				X	SS2 20.5
			-	2	6 0					200	×			X	SS3
			71.8	3	-7 O					60				X	SS4 22.9
		GLACIAL TILL Silty clay with sand and gravel, grey, wet, petroleum odour, (soft) –	71.1	3	2 O					45	×			X	SS5
		GLACIAL TILL — Silty clayey sand with gravel, cobbles and – boulders, grey, wet, petroleum odour, (very loose)	-	4	3 O					7 X				X	SS6
			_	5											
			_		1 0					15 X				X	SS7
				6											
252625 FOREST.GPJ TROW OTTAWA.GDT 10/27/21	2///2	Auger Refusal at 6.7 m Depth	68.1												
S - 252625 FOREST.GPJ															

	NOTES: 1. Borehole data requires interpretation by EXP before use by others	WA	TER LEVEL RECC	RDS		CORE DRILLING RECORD					
		Date	Water Level (m)	Hole Open To (m)	Run No.	Depth (m)	% Rec.	RQD %			
OLE	2. Borehole backfilled upon completion of drilling.	Completion	4.6	5.5							
BOREHOLE	3. Field work supervised by an EXP representative.										
n	4. See Notes on Sample Descriptions										
	5. Log to be read with EXP Report OTT-00252625-A0										

		Bore	e	hole <u>BH</u>	<u> 19-(</u>	<u>)6</u>	°*e	Ĺ	XD
Project No:	OTT-00252625-A0					Figure No. 8			$\gamma \gamma$
Project:	Residential Development					• <u> </u>	_		
Location:	365 Forest Street, Ottawa, Ontario					Page. <u>1</u> of	1		
Date Drilled:	'April 25, 2019		-	Split Spoon Sample	\boxtimes	Combustible Vapour Read	ling		
Drill Type:	CME-75 Truck Mounted Drill Rig			Auger Sample		Natural Moisture Content			×
Datum:	Geodetic Elevation			SPT (N) Value Dynamic Cone Test Shelby Tube		Atterberg Limits Undrained Triaxial at % Strain at Failure			€ ⊕
Logged by:	M.L. Checked by: I.T.			Shear Strength by Vane Test	+ s	Shear Strength by Penetrometer Test			
G Y W B L O L	SOIL DESCRIPTION	Geodetic Elevation m	D e p t h		0 80 kP	Natural Moisture Con	750 tent % Weight)	ΡL	Natural Jnit Wt. kN/m ³
	HALTIC CONCRETE ~30 mm NULAR FILL (BASE) ~200 mm hed gravel with silt and sand, grey,	75.28 75.2 75.0	0	5. •		40		ľ	SS1
	p clayey sand to silty sand with gravel, debris, brown, moist to wet, (loose)	-	1	- 5		D ×		\square	SS2
	-		2	9				$\overline{\mathbf{A}}$	SS3

			h 0		50 10	00 15) 2	кга 00		20	• •	io S	1	KN/r
<u>.</u>	ASPHALTIC CONCRETE ~30 mm	75.2		5 O									Λ	
	GRANULAR FILL (BASE) ~200 mm	75.0		0					¦X	13333		lasis (X		S
	Crushed gravel with silt and sand, grey, damp	Π							Ī				4	
	FILL	/												
	Silty clayey sand to silty sand with gravel	_	1	5			<u></u>			X		Ι	1	S
	Silty clayey sand to silty sand with gravel, brick debris, brown, moist to wet, (loose)						20112		5					0
×××	_ , , , , , , , , , , , , , , , , , , ,	_		-0-0-0-0										
				.9									4	~
			2	0			0.000		0					S
			2	-2-2-2-2			3-6-6-3					· · · · · · /	1	
				-0-0-0-0			2.0.0.0						1	
		- 72.7		4					h	X		Ι	1	S
	GLACIAL TILL	72.38	3						0				V	
	Silty sand with gravel, cobbles and boulders, grey, wet, (very loose to loose)	-	3										7	
	20212010; g. o, , . o, (101) 10000 to 10000/			3 O					μ×			l : : : · · · · · · · · · · · · · · · ·	1	S
	_	_							0					0.
												1999 -	1	
	_		4	5								L N	7	
			1	5 O			:		¹ Χ			le e IX		S
						1222			Ĭ			:::: : /	Y	
	_	-												
				3					μ×				4	S
	-	-	5				<u></u>		0' ^			/		00
							2010							
	_	-		9					h x	-		$ \dots \rangle$	/	S
		69.4) ×			= = =]/		0
	Borehole Terminated at 5.9 m Depth		-										1	
							::::							
							::::							
							::::							
			_					1::::		1::::	1::::			
OTES:			211			2								

OGS	NOTES: 1. Borehole data requires interpretation by EXP before	WAT	ER LEVEL RECO	RDS		CORE DR	ILLING RECOF	RD
BHL	use by others	Date	Water Level (m)	Hole Open To (m)	Run No.	Depth (m)	% Rec.	RQD %
Ľ	2. A 32 mm diameter monitoring well installed in borehole as shown.	Completion	4.6					
H		15 days	2.5					
ORE	3. Field work supervised by an EXP representative.	20 days	2.4					
ЪB	4. See Notes on Sample Descriptions	~ 2 years	2.9					
LOG C	5. Log to be read with EXP Report OTT-00252625-A0							

		Log of I	Bore	e	hole <u>BH 19</u>	<mark>9-0</mark>	<u>)7</u> 😵	F	ND
Projec	t No:	OTT-00252625-A0					Figure No. 9	\mathbf{C}	γγγ
Projec	:t:	Residential Development							
Locatio	on:	365 Forest Street, Ottawa, Ontario					Page. <u>1</u> of <u>1</u>	-	
Date D	Drilled:	'April 24, 2019			Split Spoon Sample]	Combustible Vapour Reading		
Drill Ty	/pe:	CME-75 Truck Mounted Drill Rig			Auger Sample		Natural Moisture Content Atterberg Limits	L	×
Datum	:	Geodetic Elevation		_	Dynamic Cone Test	•	Undrained Triaxial at % Strain at Failure	1	0
Logge	d by:	M.L. Checked by: I.T.			Shelby Tube Shear Strength by + Vane Test S		Shear Strength by Penetrometer Test		A
GW L GW L		SOIL DESCRIPTION	Geodetic Elevation m	D e p t h	20 40 60 a Shear Strength	lue 80 kPa 200	Combustible Vapour Reading (pp 250 500 750 Natural Moisture Content % Atterberg Limits (% Dry Weight 20 40 60	A M P	Unit Wt.
	GRA Crus dam	sand with gravel, brown, moist to wet,	_75.21 -75.1 -74.9 -	1	9. 				SS1 19.4
		-	73.51	2	8			X	SS2
	-Silty	CIAL TILL sand with gravel, cobbles and - ders, grey, wet, (loose to compact)							ss3
	Charl	-	-	3		+++++	· · · · · · · · · · · · · · · ·		-

6	UX.	Silty sand with gravel cobbles and			13	 - <u> </u>				1.2.2.2.2	$+\cdots+$	<u> </u>	1
	8//4	– Silty sand with gravel, cobbles and boulders, grey, wet, (loose to compact)			13			[İΧ	1.1.1.1.1		X	SS3
	UK.								ľ	1.1.1.1			
- IiH	VII.	Shale fragements from 3.0 m to 3.6 m	-	3									1
ΙE	C//	depths			8 O				¦ ×			I HILLING V	SS4
- LH	1H								۵ ۲			\square	004
- E	V H											l i i i i i i i i i i i i i i i i i i i	
1.1					12.51.51				10000	11000			
- E	ØH)	—	-	4	13			<u> : : : :</u>	μ×			Ι γ	SS5
- H					, i i i i i i i i i i i i i i i i i i i	 10000	12332		o 🏠		10000	$ = \wedge \wedge $	000
			_							1.7.1.1.1			1 I
Ē	(HD)												
	KH)				8			1.1.1.1	μ×			I a de la IV	SS6
- [:E			-	5		 			٥				
旧目	H/X				12 (1 H H H	 12223	12222	111111	12222	12222	111111		
- I:E	(H)				8	 ++++++		1	0.000	1.2.0.0.1	+		1
- I H	K B				0				ļΧ			I State X	SS7
Ē	Y/X		69.3						 				· · · · · · · · · · · · · · · · · · ·
		Borehole Terminated at 5.9 m Depth											
					· · · · · ·						1		
5													
121													
ę													
티													
۵ ۷													
¥.													
É													
2													
õ											1		
Ë											1		
<u> </u>													
Ľ.													
Щ.													
51													
щ													
25 F(
252625 FOREST.GPJ TROW OTTAWA.GDT 10/27/21													

OGS	NOTES: 1.Borehole data requires interpretation by EXP before	WAT	ER LEVEL RECO	RDS		CORE DF	RILLING RECOF	RD
BHL	use by others	Date	Water Level (m)	Hole Open To (m)	Run No.	Depth (m)	% Rec.	RQD %
Ľ	 A 32 mm diameter monitoring well installed in borehole as shown. 	Completion	5.2	6.1				
ЯH		16 days	1.4					
BORE	3. Field work supervised by an EXP representative.	22 Days	1.4					
OF B	4. See Notes on Sample Descriptions	~ 2 years	1.7					
LOG 0	5. Log to be read with EXP Report OTT-00252625-A0							

	Log of E	Bore	e	hole <u>BH 1</u>	9-0	<u>8</u> 💖	F	xn
Project No:	OTT-00252625-A0				-	igure No. 10		~~ ~ ~
Project:	Residential Development					·		
Location:	365 Forest Street, Ottawa, Ontario					Page. <u>1</u> of <u>1</u>	-	
Date Drilled:	'April 25, 2019		-	Split Spoon Sample	1	Combustible Vapour Reading		
Drill Type:	CME-75 Truck Mounted Drill Rig			Auger Sample		Natural Moisture Content		×
Datum:	Geodetic Elevation			SPT (N) Value O Dynamic Cone Test Shelby Tube		Atterberg Limits Undrained Triaxial at % Strain at Failure		 ⊕
Logged by:	M.L. Checked by: I.T.			Shear Strength by + Vane Test S		Shear Strength by Penetrometer Test		A
G Y W B U O L	SOIL DESCRIPTION	Geodetic Elevation m 75.51	D e p t h	20 40 60 Shear Strength	ilue 80 kPa 200	Combustible Vapour Reading (p 250 500 750 Natural Moisture Content % Atterberg Limits (% Dry Weigh 20 40 60	P	Natural Unit Wt. kN/m ³
r rus dam	<u>NULAR FILL</u> ∼150 mm hed limestone with silt and sand, grey, ∫ p	.75.4	0	4 0	[<u> </u>	X	SS1
Silty (loos	sand with gravel, brown, moist to wet, _ .e) 		1	5			<u> </u>	SS2

6 0

-**13**

16 〇

-**17** O

10 O

> **13** O

2

3

4

5

7

8

a

68.2

65.9

71.51

72.9

<u>GLACIAL TILL</u> Silty sand with gravel, cobbles and boulders, grey, moist to wet, (compact)

LIMESTONE BEDROCK Ottawa formation limstone with thin shaly partings, laminated, grey, (fair to good quality)

Borehole Terminated at 9.6 m Depth

1 X 25

∏ X 15

1 X 25

<u>⊢ ×</u>

∏ × 10

60

¢

20

SS3

SS4

SS5 23.6

SS6 23.3

SS7

SS8

SS9

Run 1

Run 2

PER PER

- 252625 FOREST.GPJ TROW OTTAWA GDT 10/27/21

OGS	NOTES: 1. Borehole data requires interpretation by EXP before	WAT	ER LEVEL RECO	RDS		CORE DR	ILLING RECOF	RD
BHL	use by others	Date	Water Level (m)	Hole Open To (m)	Run No.	Depth (m)	% Rec.	RQD %
Ë	2. A 32 mm diameter monitoring well installed in borehole as shown.	Completion	N/A	N/A	1	7.3 - 8.1	94	53
H		15 days	5.6		2	8.1 - 9.6	100	78
ORE	3. Field work supervised by an EXP representative.	20 days	5.7					
F B(4. See Notes on Sample Descriptions	~ 2 years	4.0					
LOG 0	5. Log to be read with EXP Report OTT-00252625-A0							

	Log of E	Bore	9	hole <u>B</u>	<u>' H</u>	<u>19-0</u>	<u>9</u> 🐕	Ê	ND
Project No:	OTT-00252625-A0						—	C	'nΡ
Project:	Residential Development					F	Figure No. <u>11</u>		1
Location:	365 Forest Street, Ottawa, Ontario						Page. <u>1</u> of <u>1</u>		
Date Drilled	: 'April 24, 2019			Split Spoon Sample		\boxtimes	Combustible Vapour Reading		
Drill Type:	CME-75 Truck Mounted Drill Rig			Auger Sample SPT (N) Value			Natural Moisture Content Atterberg Limits	⊢	× ⊸⊖
Datum:	Geodetic Elevation			Dynamic Cone Test Shelby Tube	_		Undrained Triaxial at % Strain at Failure		\oplus
Logged by:	M.L. Checked by: I.T.			Shear Strength by Vane Test		+ s	Shear Strength by Penetrometer Test		•
G Y M B O L L	SOIL DESCRIPTION	Geodetic Elevation m 75.65	D e p t h o	Standard Penetra 20 40 Shear Strength 50 100	tion Test N 60 150	Value 80 kPa 200	Combustible Vapour Reading (pp 250 500 750 Natural Moisture Content % Atterberg Limits (% Dry Weight) 20 40 60	A M P	Unit Wt.
o GR/	NULAR FILL ~300 mm			7				··· \ /	

Ľ	B O L	SOIE DESCRIPTION	m	t h	Shear Streng	h			kPa	Atter	berg Limit	s (% Dry V	Veight)	kN/m ³
	Ĺ		75.65	n 0	50	100	150) 20	00				Veight) L 50 S	
k	$, \circ$	GRANULAR FILL ~300 mm	75.4	Ŭ	7 O								1	4
105	\sim	\sqrt{C} rushed gravel with silt and sand, grey,	- 1		••••					h Χ			less X	SS1
a bor	XX	_damp	-									+		
i hi	\otimes	FILL					-2-2	2 - 2 - 2 - 2 - 2			1.1.0.0.0			
18	\otimes	Silty sand with gravel, brown, moist, (very		1	<u>,</u>			1.1.1.1.1					<u> </u>	4
d RR	XX	loose to loose)		Ľ	5	÷ ÷		2 - 2 - 2 - 2 - 2		<u>]:::::</u>	* :::::		X	SS2
晶	\otimes									5				V
182	XX		_											-
198	\otimes							2002 - 200 2002 - 200						SS3
468	\otimes				0			53333			Ҟ	12332	1. Secol	21.9
122	XX			2	-2-2-2-2-2-2-2-2-	. <u></u>		3-0-0-3-0						4
	\otimes							1000			13203	1.0.000		
IR	XX		73.1					2 (2 (2)		0.000	1.2.0.0.2			SS4
È	XX	GLACIAL TILL						20121			11211	111111		
10	XXX	Silty sand with gravel, cobbles and						11111				111111		
ΗĒ	U A	boulders, grey, moist to wet, (loose to	-	3										7
Πľ	B	compact)			10 O) X				SS5
Ηľ	IKA.												$ \dots \rangle$	000
Εŀ	(H)							2 2 2 2 2			11221			1
ĦP	HA)							2 2 2 2 2			11211			7
ΗP	TH)		-	4	18								+ + + + +	SS6
Η¥	XXX				9			1.1.1.1.1	Ľ	5			[330
ΗĽ	¢]]A													1
Η¢	HX													-
ΗK	1XI				7									1 007
Πŀ	6/18		_	5	0			2 1.5 1 5 2 1 2 1 1 1 1 1 1 1		<u>} ×</u>	1 1 2 1 2 1 2 1 3 1 1 2 1 2 1 2 1 3 1 3 1 3 1 3 1 3 1 3 1	· · · · · · · · · ·	<u> </u> /	SS7
ΗK	BA							5				12.5.5		1
Ηľ	UK)							544454			13333	12332		7
7			69.95		6			5 - 5 - 5 - 5 - 5		X	1.1.1.1.1.1		1	SS8
ŦĽ	HA.		09.90				331		<u>ן</u> ביי ביי ביי ביי	pie de la				
	7D			6	-2-1-1-2-1-1-2-		· · · · ·	2.0.1.2.1	· · · · · · · · · ·		1.1.0.0.1	<u></u>		1
λł	(H)				-2			20120				12222		7
71	HA.				13 O			2.1.2.2.2			1.2.1.2.1		li i i γ	SS9
Qť	TLA -		-						¹ 0)			<u> </u> //	000
H	YAX													1 I
Ú	6/A			7				2						
×	HX.			Ľ				2						
ġĮ	KA (20121			1.1.2.1.1		12422	
Q.	6/18		68.1											
₹.		LIMESTONE BEDROCK						1.1.1.1.1			1.1.1.1.1			
Ø.		Ottawa formation limestone with thin shaly		8				1.1.1.1.1						
상	╧┯┦	partings, laminated, grey, (fair quality)		°				:						Run 1
đ											10000			, turi
<u>X</u>	$-\mathbf{I}$		-								1			
석		Perchala Terminated at 9.7 m Denth	67.0											
		Borehole Terminated at 8.7 m Depth												
	1		1	1							1	- 1 · · · · ·	1	1
						111		::::			1 : : : :			

-OGS	NOTES: 1. Borehole data requires interpretation by EXP before	WAT	ER LEVEL RECC	RDS		CORE DF	RILLING RECOF	RD
BHL	use by others	Date	Water Level (m)	Hole Open To (m)	Run No.	Depth (m)	% Rec.	RQD %
HOLE	 A 32 mm diameter monitoring well installed in borehole as shown. 	Completion 21 days	N/A 6.0	N/A	1	7.6 - 8.7	95	61
ORE	3. Field work supervised by an EXP representative.							
OF B	4. See Notes on Sample Descriptions	~ 2 years	5.7					
LOG	5.Log to be read with EXP Report OTT-00252625-A0							

	Log of I	Bore	e	hole <u>Bl</u>	- ^	<u>19-1</u>	0		* +		xn
Project No:	OTT-00252625-A0							12			$\gamma \gamma$
Project:	Residential Development						Figure No.		4		
Location:	365 Forest Street, Ottawa, Ontario						Page.	1_ of _	1		
Date Drilled:	'April 25, 2019			Split Spoon Sample		\boxtimes	Combustible Vap	our Reading	9		
Drill Type:	CME-75 Truck Mounted Drill Rig			Auger Sample SPT (N) Value			Natural Moisture (Atterberg Limits	Content	∟		X
Datum:	Geodetic Elevation		_	Dynamic Cone Test		_	Undrained Triaxia % Strain at Failure		I		⊕
Logged by:	M.L. Checked by: I.T.			Shelby Tube Shear Strength by Vane Test		+ s	Shear Strength by Penetrometer Tes	/			
G SY M B U L	SOIL DESCRIPTION	Geodetic Elevation m	D e p t h	20 40 Shear Strength	n Test N 60 150	I Value 80 kPa 200	Combustible Vap 250 5 Natural Moist Atterberg Limits 20 4	00 750 ure Content	t %		Natural Unit Wt. kN/m³
	NULAR FILL ~150 mm hed gravel with silt and sand, grey / sand, brown and grey, moist, (loose to	75.74 75.6	0	5			, 20 ∏ X			Ĭ	SS1
comp		_	1	4 •			10			\square	SS2
	-	73.6	2	12 ©			10 ×			$\overline{\langle}$	SS3 20.9
Silty	CIAL TILL sand with gravel, grey, moist to wet, e to dense)	73.44	ŀ	29 ©						V	SS4

16 0

29

41 P

3

4

5

69.8

5 O

-**10** O

GLACIAL TILL Silty sand with gravel, grey, moist to wet, (loose to dense)

Borehole Terminated at 5.9 m Depth

. .

- 252625 FOREST.GPJ TROW OTTAWA.GDT 10/27/21

10

30

25

15 X

X

SS4 23.6

SS5

SS6

SS7

SS8

OGS	NOTES: 1. Borehole data requires interpretation by EXP before	WAT	ER LEVEL RECO	RDS	CORE DRILLING RECORD									
BHL	use by others	Date	Water Level (m)	Hole Open To (m)	Run No.	Depth (m)	% Rec.	RQD %						
IOLE	2. A 32 mm diameter monitoring well installed in borehole as shown.	Completion	5.2	N/A										
OREH	3. Field work supervised by an EXP representative.	15 days 20 days	2.2 2.3											
OF B	4. See Notes on Sample Descriptions	Not Found	N/A											
LOG (5. Log to be read with EXP Report OTT-00252625-A0													

	Log of E	Bore	ehole <u>BH 19-</u>	<u>11</u> [%] eyn
Project No:	OTT-00252625-A0			
Project:	Residential Development			Figure No. <u>13</u>
Location:	365 Forest Street, Ottawa, Ontario			Page. <u>1</u> of <u>1</u>
Date Drilled:	'April 29, 2019		_ Split Spoon Sample 🛛	Combustible Vapour Reading
Drill Type:	CME-75 Truck Mounted Drill Rig		Auger Sample	Natural Moisture Content X
Datum:	Geodetic Elevation		— SPT (N) Value O Dynamic Cone Test — Shelby Tube	Atterberg Limits Undrained Triaxial at % Strain at Failure
Logged by:	M.L. Checked by: I.T.		Shear Strength by + Vane Test S	Shear Strength by Area Strength Shear Strength Shear Strength Shear Strength Shear S
GWL L	SOIL DESCRIPTION	Geodetic Elevation m 75.71	p 20 40 60 80	Combustible Vapour Reading (ppm) 250 500 750 S M 750 Natural W P Natural Unit Wt. kN/m ³ kPa Atterberg Limits (% Dry Weight) 20 40 60 S Natural
GRA	NULAR FILL ~200 mm	75 5	· [7]	and a state of the

Ľ	- (m 75.71	h 0	Shear	Streng 50	gth 10	0 1	50 2	kPa 00	1	erg Limits	io	LES	kN/m°
	° X	\propto	GRANULAR FILL ∼200 mm Crushed limestone with silt and sand, grey, <i>[</i>	75.5												
		Ø	_damp													I
		×	_Silty sand with gravel, brown, moist to wet,(loose to compact)		1	14									M	SS1
		\bigotimes										0			Д	
		\otimes	Petroleum odour from 1.5 m to 2.1 m]		6 O						h x			M	SS2
		ا∜	_ ' _		2		· · · · · · · · · · · · · · · · · · ·		0000			0 <u></u>			Д	002
		\otimes				7									M	SS3
		\otimes		72.7							ļ				Д	333
			GLACIAL TILL Silty sand with gravel, grey, moist to wet,		3			32				n x			\square	664
			- (compact to dense) -					0				0 			Д	SS4
		Ø			4	12									\square	
						O .						ן א			Ŵ	SS5
			–			10			·····						\square	I
					5	0					[Ň	SS6
		B														I
																l
		8			6	10						, x			\square	SS7
		ß													Д	007
12/		Ż			7											l
12/01					ĺ											I
4.GU				67.9												I
IAW	Ĥ		_LIMESTONE BEDROCK Ottawa formation limestone with thin shaly		8										Π	Run 1
	E		partings, laminated, grey, (good quality)													D
2625 FUREST.GPJ IROW ULLAWA.GDI	Ë	⊒	Weathered and highly fractured zone from $\sqrt{7.8}$ m to 8.4 m depths	66.9											Ц	Run 2
5			Borehole Terminated at 8.8 m Depth													I
																I
97.979																I
~ ~					-1	L								 	-	

OGS	NOTES: 1. Borehole data requires interpretation by EXP before	WAT	ER LEVEL RECC	RDS	CORE DRILLING RECORD									
BHI	use by others	Date	Water Level (m)	Hole Open To (m)	Run No.	Depth (m)	% Rec.	RQD %						
OLE	2. Borehole backfilled upon completion of drilling.	Completion	N/A	8.8	1	7.8 - 8.2	94	77						
BOREHO	3. Field work supervised by an EXP representative.				2	8.2 - 8.8	100	86						
_	4. See Notes on Sample Descriptions													
LOG OF	5.Log to be read with EXP Report OTT-00252625-A0													

	Log of E	Bore	Jڊ	hole <u>BH 1</u>	9-1	2 💖	\Box	vn
Project No:	OTT-00252625-A0					_ `		γ γ
Project:	Residential Development				F	igure No. <u>14</u>		1
Location:	365 Forest Street, Ottawa, Ontario					Page. <u>1</u> of <u>1</u>		
Date Drilled:	'April 24, 2019		:	Split Spoon Sample		Combustible Vapour Reading		
Drill Type:	CME-75 Truck Mounted Drill Rig			Auger Sample SPT (N) Value		Natural Moisture Content Atterberg Limits		×
Datum:	Geodetic Elevation			Dynamic Cone Test Shelby Tube		Undrained Triaxial at % Strain at Failure		\oplus
Logged by:	M.L. Checked by: I.T.		;	Shear Strength by Vane Test	+ s	Shear Strength by Penetrometer Test		
G Y B B O L	SOIL DESCRIPTION	Geodetic Elevation m 75.42	D e p t h	Standard Penetration Test N 20 40 60 Shear Strength 50 100 150	Value 80 kPa 200	Combustible Vapour Reading (ppm) 250 500 750 Natural Moisture Content % Atterberg Limits (% Dry Weight) 20 40 60		Natural Unit Wt. kN/m ³
	NULAR FILL ∼150 mm hed gravel with silt and sand, damp,	75.3	U	4 O		×		SS1

		GRANULAR FILL ~150 mm Crushed gravel with silt and sand, dar grey FILL	mp,75.3		4 O			X		X	SS1	
		Silty sand with gravel, brown, moist to (loose to compact)	wet,	1	12 O		[X	SS2	
			_	2	16 ⊙						SS3	
		-	_		7						SS4 22.4	
			_	3	7		[SS5	
			_	4	- 5] X			SS6	
		Borehole Terminated at 4.4 m Dep	71.0	_					<u></u>	<u> </u>		
TTAWA.GDT 10/27/21												
252625 FOREST.GPJ TROW OTTAWA.GDT 10/27/21												
					EVEL RECO				RILLING RECO			
BH LOGS	1. Borehole data requires interpretation by EXP before use by others Date				Water	Hole Open	Run	Depth	RILLING RECO	RQD %		
Щ	2. Boreho	ole backfilled upon completion of drilling.	Completion		<u>evel (m)</u> Dry	<u>To (m)</u> 3.8	No.	<u>(m)</u>	+	+		

Ц	2. Borehole backfilled upon completion of drilling.
EHC	3. Field work supervised by an EXP representative.
DG OF BOREHOLE	4. See Notes on Sample Descriptions
PF	5. Log to be read with EXP Report OTT-00252625-A0
DOG	

WAT	TER LEVEL RECO	RDS		CORE DRILLING RECORD										
Date	Water Level (m)	Hole Open To (m)	Run No.	Depth (m)	% Rec.	RQD %								
Completion	Dry	3.8												

		Log of	Bor	e	hole <u>B</u>	<u>H :</u>	21 [.]	-1	<u>3</u> [%] eyn	
Pr	oject No									
Pr	oject:	Residential Development						F	igure No. <u>15</u>	
Lo	cation:	365 Forest Street, Ottawa, Ontario							Page. <u>1</u> of <u>2</u>	
Da	te Drille	d: <u>'October 6, 2021</u>		_	Split Spoon Sample		\boxtimes		Combustible Vapour Reading	
Dr	ill Type:	CME-850 Track Mounted Drill Rig			Auger Sample				Natural Moisture Content X	
	in Type.			SPT (N) Value					Atterberg Limits	
Da	itum:	Geodetic Elevation			Dynamic Cone Test Shelby Tube	—	_		Undrained Triaxial at % Strain at Failure	
Lo	gged by	: <u>M.Z.</u> Checked by: I.T.			Shear Strength by Vane Test		+ s		Shear Strength by Penetrometer Test	
G W L	S Y M B O L	SOIL DESCRIPTION	Geodetic Elevation m	D e p t h	Standard Penetrati 20 40 Shear Strength	ion Test N 60	N Value 80	kPa	Combustible Vapour Reading (ppm) 250 500 750 Natural Moisture Content % Atterberg Limits (% Dry Weight) 20 40 60	

G W L	- М В О L	SOIL DESCRIPTION		Elevation	e p t	2 Shear 9	20 Strength	40	60	80 kPa	Na Atter	∠ou atural Mois rberg Limi	sture Conte ts (% Dry V	ou ent% Veight)		Unit Wt kN/m ³
	L		7	m 5.2	ĥ			00	150	200		20		60	Ē	KIN/III
		Borehole advanced by power augering technique from ground surface to 4.6 n	3												•	
		_depth.	_													
		_			1											
					ľ	$\begin{array}{c} 0 & 0 & 0 \\ 0 & 0 & 0 \\ \end{array}$										
	-	_	_			· · · · · · · · · · · · · · · · · · ·									-	
															•	
	-	_	_		2	-2-2-2-2					• • • • • •	• • • • • • •		0.000		
		_												0000		
	-	_	_		3											
	-	_	_													
															•	
		_			4											
		_	-7	0.6												
		GLACIAL TILL Silty and with gravel, shelp fragments				11	8							0.000	\mathbb{N}	004
		Silty sand with gravel, shale fragments cobbles and boulders, grey, wet, (comp	, pact) _		5											SS1
)])															
		_	_													
	B	_	_		6	-2-6-1-2	E0/E0							600		
Y			6	8.9 68.9			50/50 m		ler refus							SS2
		LIMESTONE BEDROCK Ottawa formation limestone with thin sh	haly _											0.000		Run
		partings, grey, (very poor to excellent _quality)	5												-	
		_quality)	_		7											
		_	_			· · · · · · · · · · · · · · · · · · ·									-	Run 2
															-	
		_	_		8										-	
															-	
		_	_												-	
		_	_		9										-	Run
		_	_													
															-	
NO	TES:	Continued Next Page			10											
1.1	Boreho	et data requires interpretation by EXP before		WATER		EVEL RI Water	ECORD	S Hole O	nen	Run	CC De		ILLING R % Re			QD %
		others	Date	001		evel (m)		To (n		No.	(n	n)				
2.1	as show	Mn.	Oct. 19, 20	021		6.3				1	6.3 - 6.7 -		92 80			27 18
3.	Field w	ork supervised by an EXP representative.								3	8.2 -	9.8	100			79
		otes on Sample Descriptions								4 5	9.8 - 11.3 -		100 100			83 100
2 3.1 4.: 5.1	or to	be read with EXP Report OTT-00252625-A0								1 2	11.3 -	· 12.9 · 14.4	100	'		100

Log of Borehole BH 21-13 Project No: OTT-00252625-A0

*ехр.

Droject _ Figure No. <u>15</u>

Pr	ojec	t: Residential Development									Pa	ge.	2 of	2		
G	S Y		Geodetic	D	S			etration T			2	50 5	our Readir	50	SAMP.	Natural
G W L	SYMBOL	SOIL DESCRIPTION	Elevation m	D e p t h	Shea	20 r Stre		0 6	0	80 kPa	Nat Atterb	ural Moist berg Limits	ture Conte s (% Dry W	nt % /eight)	PLES	Unit Wt. kN/m ³
		LIMESTONE BEDROCK Ottawa formation limestone with thin shaly – partings, grey, (very poor to excellent – quality) <i>(continued)</i>	65.2	10		50	1	00 19	50 2	200			40 6	0	20	Run 4
			-	12												Run 5
			-	13												Run 6
		Borehole Terminated at 14.4 m Depth NOTE: 1) The geodetic elevation of the borehole is considered approximate.	60.8													
NO	TES:		WATE	-' Ə I				3	· · · · ·	· · · · · ·				ECORD		

	Log of E	Bore	ehole E	3H 21-	14 🏼 🏼 🎋	eyn
Project No:	OTT-00252625-A0					∇P
Project:	Residential Development	Figure No. <u>16</u>	1			
Location:	365 Forest Street, Ottawa, Ontario		Page. <u>1</u> of <u>2</u>			
Date Drilled:	'October 5, 2021		Split Spoon Sample	\boxtimes	Combustible Vapour Reading	
Drill Type:	CME-850 Track Mounted Drill Rig		Auger Sample SPT (N) Value		Natural Moisture Content Atterberg Limits	× —⊖
Datum:	Geodetic Elevation		Dynamic Cone Test Shelby Tube		Undrained Triaxial at % Strain at Failure	\oplus
Logged by:	M.Z. Checked by: I.T.		Shear Strength by Vane Test	+ s	Shear Strength by Penetrometer Test	•
S Y MBC	SOIL DESCRIPTION	Geodetic Elevation	D e p t Shear Strength	ration Test N Value 60 80	Combustible Vapour Reading (ppm) 250 500 750 Natural Moisture Content % Atterberg Limits (% Dry Weight)	S A M Natural P Unit Wt.

G W L	Р М В О L	SOIL DESCRIPTION		Geodetic Elevation m	n p t		2 Iear S 5	trength						s (% Dry Weight) L kN/m			Natural Unit Wt. kN/m ³
	-	Borehole advanced by power augerir technique from ground surface to a 4 – depth.	ng 4.6 m	_74.3	0		5	<u> </u>		50 2	200		20	<u>40 t</u>	<u>50</u>	5	
			_		1												
		_	_														
		_	_		2	2											
		_	_	_													
		_	_	_	3	3											
		_	-	_													
		_	_	_	4	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1											
	e e e e e e e e e e e e e e e e e e e			69.7													
		Silty sand with gravel, rock fragments cobbles and boulders, grey, wet	s, _	_	5	5		50/150 m	m sampl	er refusa						X	SS1
I			-	-													
I		HIGHLY WEATHERED LIMESTONE		68.2	6	5 		50/125 m	m sampl	er refusa							SS2
¥		BEDROCK Greenish grey, shaly partings, interbe with layers of clay	edded -	67 67.3	.6												Run 1
		LIMESTONE BEDROCK Ottawa formation limestone with thin	shaly	_07.3	7			· · · · · · · · · · ·									Run 2
		partings, grey, (very poor to excellent quality)	t –														Run 2
			_		8												
			_		9												Run 3
		- - 	_					• • • • • • • • • •									
		Continued Next Page			1(0											
×ι	TES:	ole data requires interpretation by EXP before		WATER LEVEL RECORDS					CORE DRILLING RECOR			ECORI	RD				
				Date		Lever (m)		rel (m) To (m)			Run No. 1). <u>(m)</u>		% Rec.		RQD %	
	as shown. 3. Field work supervised by an EXP representative.										2	6.7 -	8.2	92			46
	4. See Notes on Sample Descriptions										3 4	8.2 - 9.8 -		98 100			53 75
ōl		be read with EXP Report OTT-00252625-A0									5	11.3 -		95			95

LOG OI 5. Log to be read with EXP Report OTT-00252625-A0

Log of Borehole <u>BH 21-14</u>

*exp. <u>16</u>

Project No: OTT-00252625-A0

SYMBOL

Т

G W L

NOTE:

Project: **Residential Development**

SOIL DESCRIPTION

LIMESTONE BEDROCK Ottawa formation limestone with thin shaly partings, grey, (very poor to excellent quality) (continued)

Figure No.

-

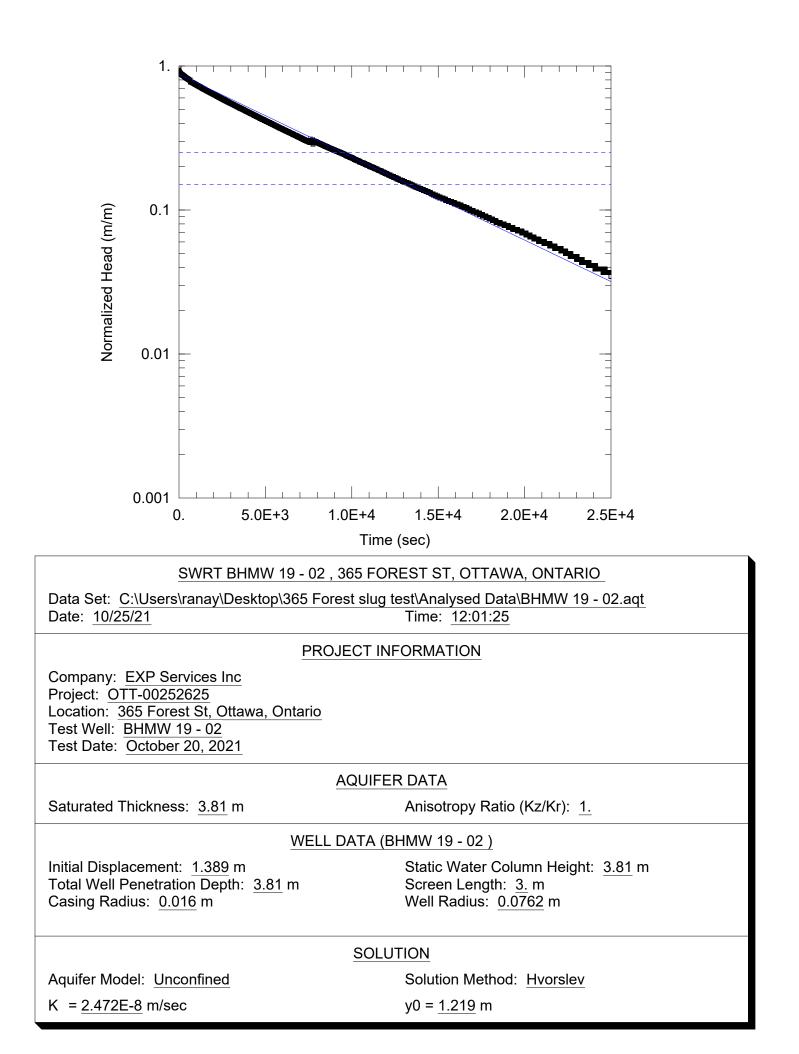
						Page.	<u>2</u> of	_2_		
Geodetic	De	Standar	d Penetrati	on Test N	I Value	Combustible 250		ding (ppm) 750	S A M	Natural
Elevation	p t	20	40	60	80	Natural N	loisture Con	tent %	P	Unit Wt.
m 64.3	h	Shear Stren 50	gtn 100	150	kPa 200	Atterberg L	imits (% Dry 40	60	L E S	kN/m ³
.04.5	10								Ĩ	
										Run 4
	11									
	12									Run 5
61.5										

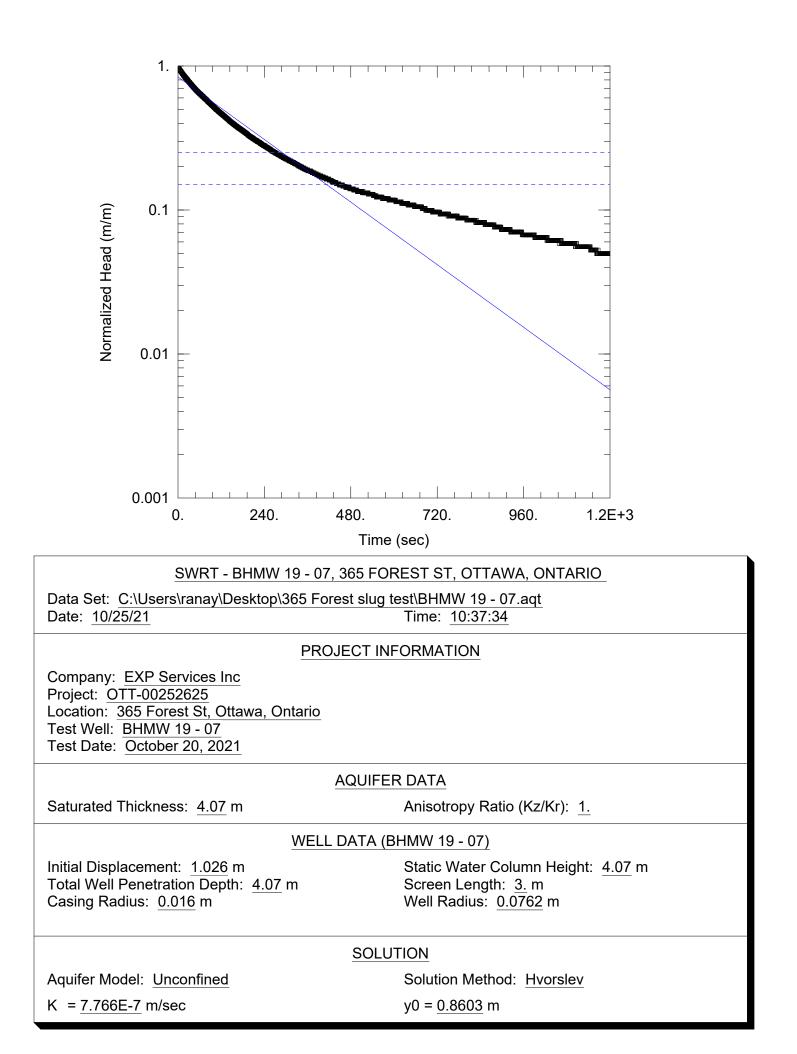
1) The geodetic elevation of the borehole is

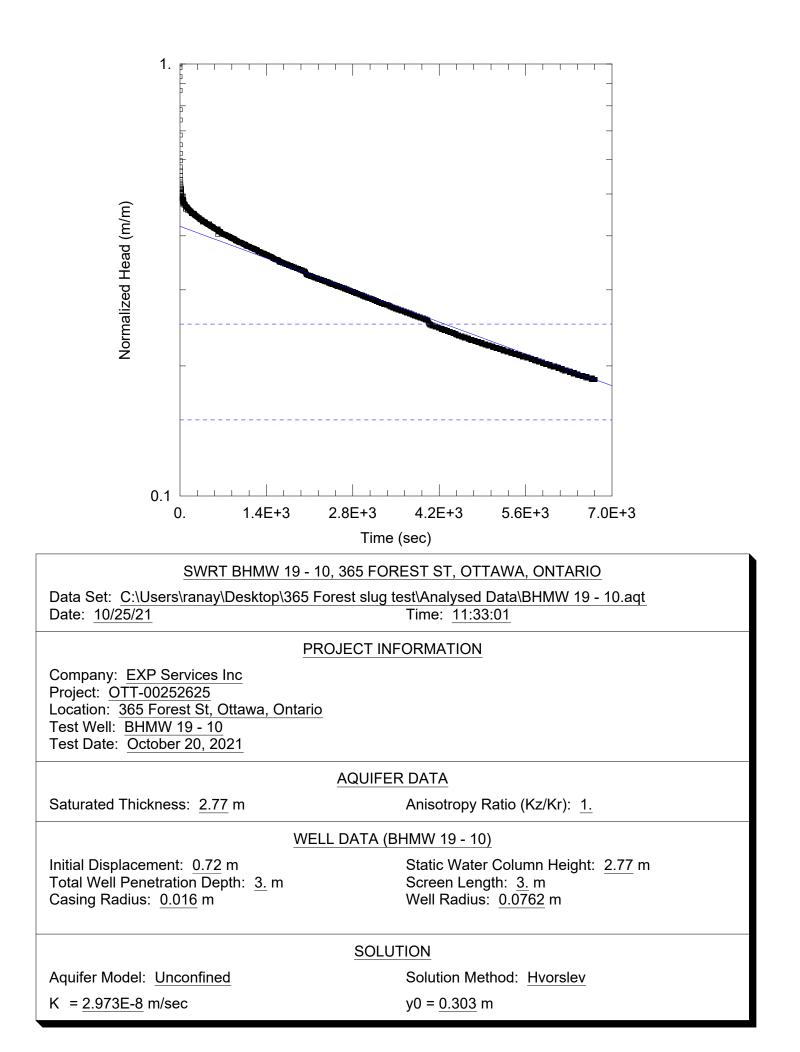
Borehole Terminated at 12.8 m Depth

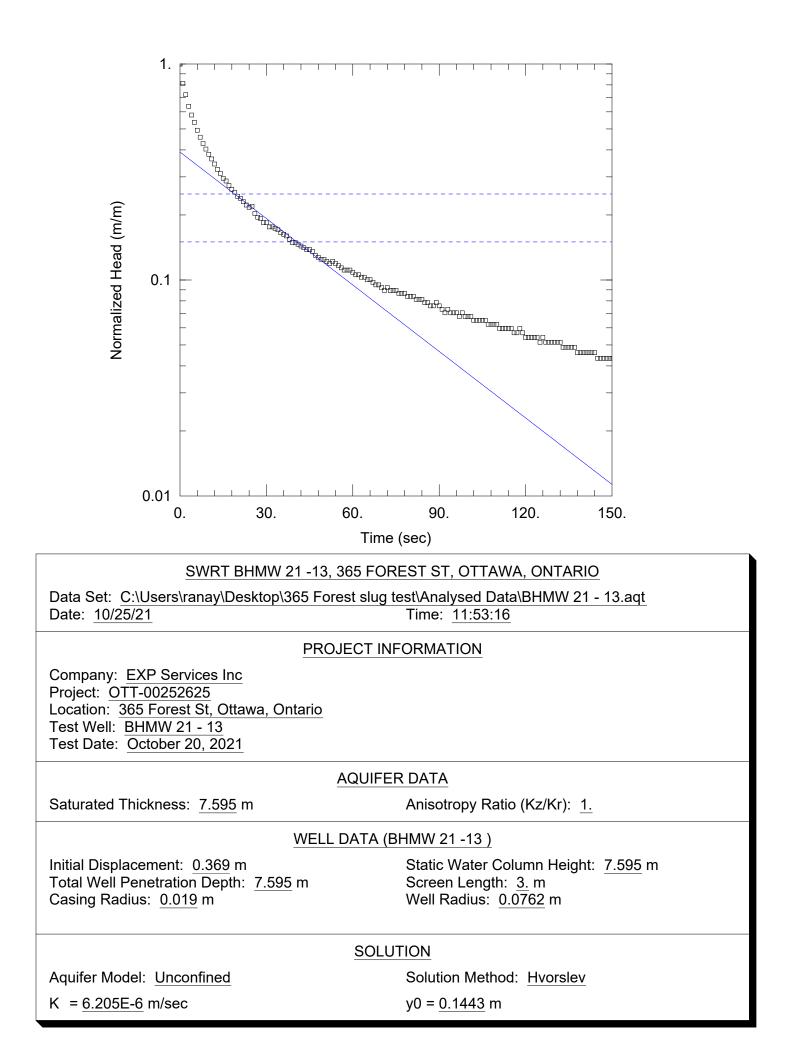
considered approximate.

252625 FOREST.GPJ TROW OTTAWA.GDT 10/27/21


BH LOGS -	NOTES: 1. Borehole data requires interpretation by EXP before	WAT	ER LEVEL RECO	RDS	CORE DRILLING RECORD				
	use by others	Date	Water Level (m)	Hole Open To (m)	Run No.	Depth (m)	% Rec.	RQD %	
IOLE	2. A 38 mm diameter monitoring well installed in borehole as shown.	Oct. 19,2021	6.7		1	6.3 - 6.7	100	0	
픕					2	6.7 - 8.2	92	46	
LOG OF BOREI	3. Field work supervised by an EXP representative.				3	8.2 - 9.8	98	53	
	4. See Notes on Sample Descriptions				4	9.8 - 11.3	100	75	
	5.Log to be read with EXP Report OTT-00252625-A0				5	11.3 - 12.8	95	95	


EXP Services Inc.


Hydrogeological Investigation 365 Forest Street, Ottawa, Ontario OTT-00252625-A0 November 5, 2021


Appendix C - SWRT Procedures and Results

