

South Nepean Town Centre (SNTC) Block 4 – Site Servicing and Stormwater Management Report

Project #160401085

April 30, 2020

Prepared for:

Caivan Development Corporation

Prepared by:

Stantec Consulting Ltd.

Revision	Description	Author		Quality Check	Independent Review
0	Site Servicing and SWM Report	T.Rathnasooriya	Apr 30, 2020	A. Paerez	K. Smadella

This document entitled South Nepean Town Centre (SNTC) Block 4 – Site Servicing and Stormwater Management Report was prepared by Stantec Consulting Ltd. ("Stantec") for the account of Caivan Development Corporation (the "Client"). Any reliance on this document by any third party is strictly prohibited. The material in it reflects Stantec's professional judgment in light of the scope, schedule and other limitations stated in the document and in the contract between Stantec and the Client. The opinions in the document are based on conditions and information existing at the time the document was published and do not take into account any subsequent changes. In preparing the document, Stantec did not verify information supplied to it by others. Any use which a third party makes of this document is the responsibility of such third party. Such third party agrees that Stantec shall not be responsible for costs or damages of any kind, if any, suffered by it or any other third party as a result of decisions made or actions taken based on this document.

Prepared by (signature)

Thakshika Rathnasooriya, P.Eng.

Reviewed by

(signature)

Ana M. Paerez, P.Eng.

Reviewed by

Karin Smadella, P.Eng.

(signature)

Table of Contents

1.0	INTRODUCTION	1.1
2.0	REFERENCES	2.2
3.0 3.1 3.2 3.3	POTABLE WATER BACKGROUND WATER DEMANDS AND RESULTS	
4.0	WASTEWATER SERVICING	4.1
4.1	BACKGROUND	4.1
4.2	DESIGN CRITERIA	4.1
4.3	PROPOSED SERVICING	4.1
5.0	STORMWATER MANAGEMENT	5.1
5.1	PROPOSED CONDITONS	5.1
5.2	CRITERIA AND CONSTRAINTS	5.1
5.3	DESIGN METHODOLOGY	5.2
5.4	MODELING RATIONALE	5.3
	5.4.1 SWMM Dual Drainage Methodology	
	5.4.2 Design Storms	
	5.4.3 Boundary Conditions	
	5.4.4 Modeling Parameters	
	5.4.5 Hydraulic Parameters	
5.5	MODELING RESULTS AND DISCUSSION	
	5.5.1 Proposed Inlet Control Devices5.5.2 Proposed Development Hydraulic Grade Line Analysis	
	5.5.3 Overland Flow	
	5.5.4 Minor and Major System Peak Outflows	
6.0	GRADING	6.10
7.0	UTILITIES	7.1
8.0	APPROVALS	
9.0	EROSION CONTROL	
		-
10.0	GEOTECHNICAL INVESTIGATION	10.1
11.0	CONCLUSIONS AND RECOMMENDATIONS	11.1
11.1	POTABLE WATER ANALYSIS	11.1
11.2	WASTEWATER SERVICING	11.1
11.3	STORMWATER MANAGEMENT	11.1
11.4	GRADING	11.2

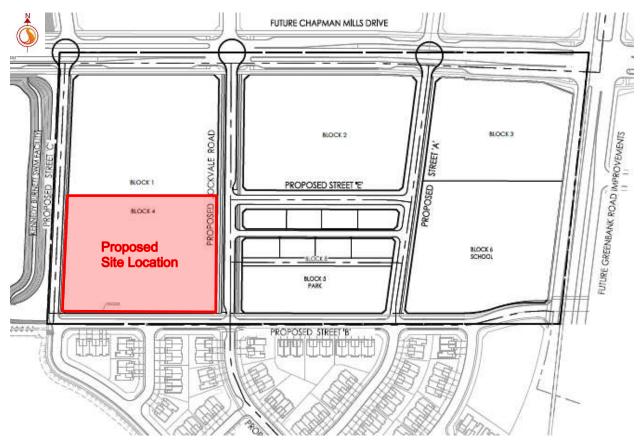
11.5	UTILITIES	11.	.2	
------	-----------	-----	----	--

LIST OF TABLES

Table 5.1: General Subcatchment Parameters	5.5
Table 5.2: Subcatchment Parameters	
Table 5.3: Storage Node Parameters	5.6
Table 5.6: Orifice Parameters for Proposed Catchments	5.7
Table 5.8: Proposed Phase Orifice Link Results	5.7
Table 5.9: 100-Year HGL Results	5.8
Table 5.11: Proposed Phase – Ultimate Maximum Static and Dynamic Surface Water	
Depths	5.9
Table 10.1: Recommended Pavement Structure – Car Parking Areas	10.1
Table 10.2: Recommended Pavement Structure – Local Residential Roadways	10.2

LIST OF FIGURES

Figure 1.1: Approximate Location of SNTC Block 4	
Figure 5.1: Schematic Representing Model Object Roles	


LIST OF APPENDICES

APPE	NDIX A	POTABLE WATER ANALYSIS	A.1
A.1		Conditions	
A.2		nand Calculations	
A.3	FUS Calcu	ılations	A.3
A.3	Hydraulic /	Analysis	A.4
A.5	Backgrour	d Report Excerpts	A.5
APPE		SANITARY SEWER CALCULATIONS	B.1
		ewer Design Sheet	
B.2		d Report Excerpts	
APPE		STORMWATER MANAGEMENT CALCULATIONS	C.1
C.1	Storm Sev	/er Design Sheet	C.1
C.2		Model Input	
C.3	PCSWMM	Model Output	C.3
C.4	Backgrour	d Report Excerpts	C.4
APPE	NDIX D	GEOTECHNICAL INVESTIGATION	D.1
APPE	NDIX E	DRAWINGS	E.1

Introduction

1.0 INTRODUCTION

Caivan Development Corporation has commissioned Stantec Consulting Ltd. to prepare the following Servicing and Stormwater Management Report for the South Nepean Town Centre (SNTC) Block 4. The subject property is located at the southwest quadrant of the SNTC subdivision, east of the Kennedy-Burnett Stormwater Management facility within the City of Ottawa, as indicated in **Figure 1.1**. The proposed residential development comprises approximately 1.59 ha of land, and consists of 116 back to back townhome units, associated private streets, and a parking area. The objective of this report is to provide a servicing scenario for the site that is free of conflicts, provides on-site servicing in accordance with City of Ottawa design guidelines, and utilizes the existing local infrastructure in accordance with the various background studies as well as the South Nepean Town Centre Site Servicing and Stormwater Management Report as outlined in **Section 2.0**.

References

2.0 REFERENCES

The following documents were referenced in the preparation of this report:

- South Nepean Town Centre(SNTC) Site Servicing and Stormwater Management Report, Stantec Consulting Ltd., February 2020
- South Nepean Town Centre (SNTC) Functional Servicing Report, Stantec Consulting Ltd., October 2019
- Geotechnical Investigation Proposed Residential Development 3288 Greenbank Road, Paterson Group Inc., March 6, 2019
- City of Ottawa Design Guidelines Water Distribution, Infrastructure Services Department, City of Ottawa, First Edition, July 2010
- City of Ottawa Sewer Design Guidelines, 2nd Ed., City of Ottawa, October 2012
- Technical Bulletin ISTB-2018-01 Revision to Ottawa Design Guidelines Sewer, City of Ottawa, March 2018
- Technical Bulletin ISTB-2018-02 Revision to Ottawa Design Guidelines Water Distribution, City of Ottawa, March 2018

Potable Water

3.0 POTABLE WATER

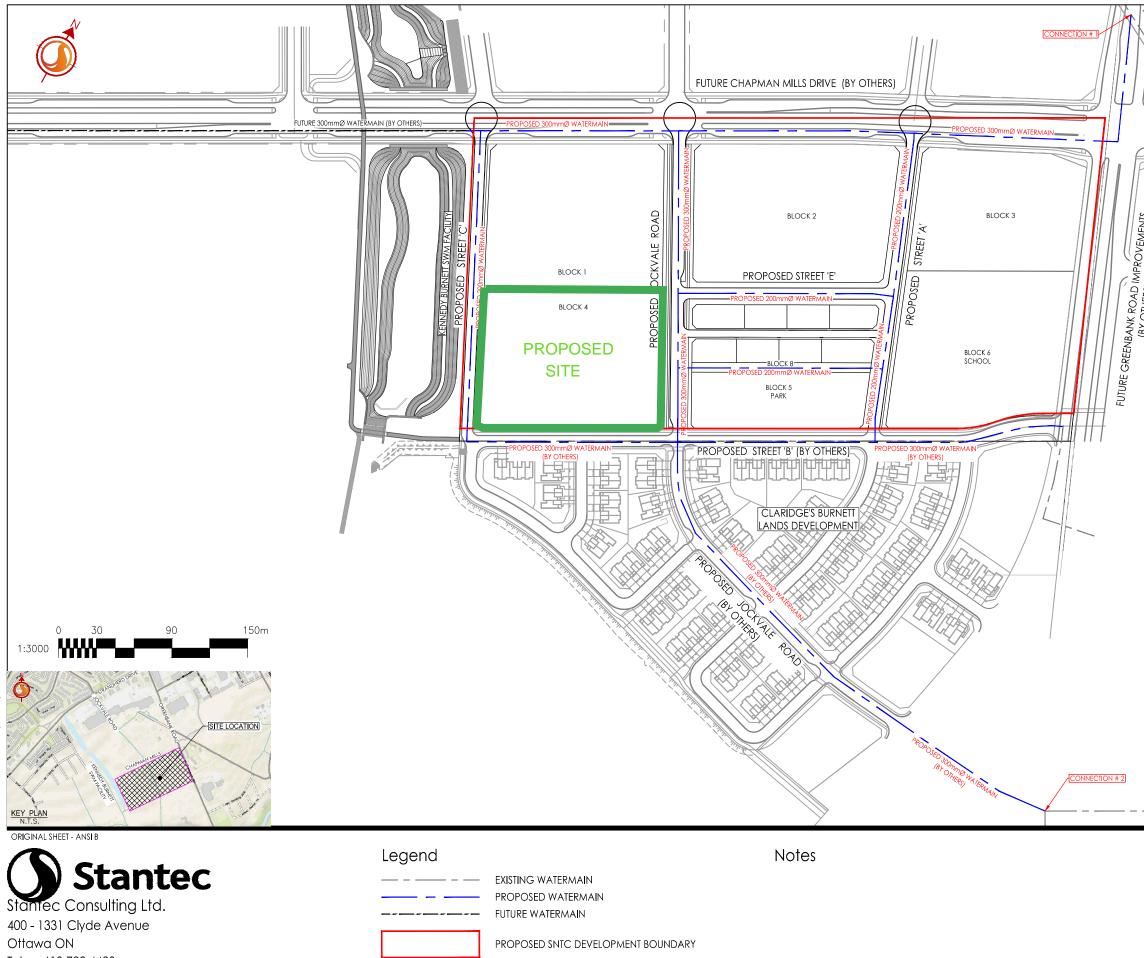
A detailed potable water servicing hydraulic analysis was completed as part of Stantec's SNTC Development Site Servicing and SWM Report (February 2020), which included the proposed Block 4 development.

3.1 BACKGROUND

The proposed site comprises 116 back to back townhome units, complete with associated infrastructure and access areas. The site will be serviced via two watermain connections to the 300mm and 200mm diameter watermains within Street B and Street C respectively (see **Drawing SSP-1**). The future watermains on Streets B and C will service 17 back-to-back townhomes fronting the ROWs. Services will be dropped off for each unit when Streets B and C are constructed. A district metering chamber will be installed on the water service connection at Street C in accordance with the Water Distribution Guidelines to facilitate leak detection within the private site by the City of Ottawa.

The SNTC development is currently located within Zone BARR of the City of Ottawa's water distribution system. This zone is fed by the Barrhaven Pump Station and Barrhaven Reservoir Pump Station, with the Moodie elevated storage tank providing balancing storage for peak flows and demands. The development is located within the future Zone 3C pressure zone reconfiguration which will be completed by the City of Ottawa in the future.

The overall development lies within the Nepean Town Centre lands (NTC). The Kennedy-Burnett Potable Water Master Servicing Study (MSS) completed by Stantec in March 2014 assessed the proposed water distribution system within the Kennedy-Burnett development and the NTC lands and provided servicing recommendations during the interim scenario with both development areas serviced by Zone BARR pressures and during future conditions with the NTC area converted to Zone 3C pressure zone.


3.2 PROPOSED WATERMAIN SIZING AND LAYOUT

The proposed watermain alignment and sizing for Block 4 is based on the proposed SNTC Development. Dual 400mm diameter watermains exist north of the subdivision lands at the intersection of Greenbank Road and Jockvale Road. Both the proposed Caivan SNTC Development and Claridge's Burnett Lands Development to the south require a 300mm watermain connection to be made at this location (Boundary Connection #1) which will require the extension of the distribution system along future Chapman Mills Drive and Greenbank Road. Looping for both developments will be provided through a second connection to an existing 300mm watermain stub located south of the Claridge lands at the intersection of Greenbank

Potable Water

Road and Bending Way (Boundary Connection #2). **Figure 3.1** shows the existing and proposed potable water distribution network required to service the proposed site.

Tel. 613.722.4420 www.stantec.com

(BY OTHERS) TO VEMENTS	EXISTING DOCK MALE ROAD			
EX. 300mmØ Client, Figure Title	/Project NEPEAN TOWN CENTRI SNTC LANDS OTTAWA, ON, CANAD,	^a Proposed	IT CORPORATI	

Potable Water

3.2.1 Water Demands

Water demands for the proposed site were estimated using the City of Ottawa Design Guidelines – Water Distribution (2010). A daily rate of 350 L/cap/day has been applied for the population of the proposed site. Population densities have been assumed as 2.7 pers./townhome unit. See **Appendix A** for detailed domestic water demand estimates.

The potable water analysis estimated for Block 4 in the overall SNTC development by Stantec assumed 140 units/ha resulting in 225 units with 2.7 pers./townhome, generating a total population of 608 persons. Excerpts from this report are included in **Appendix A** The proposed Block 4 consists of 116 units which results in a population of 313 persons.

The average day demand (AVDY) for the proposed site was determined to be 1.27 L/s. The maximum daily demand (MXDY) is 2.5 times the AVDY for residential areas, which results in 3.17 L/s. The peak hour demand (PKHR) is 2.2 times the MXDY for residential areas totaling 6.98 L/s. Each unit per block will be individually metered.

3.2.2 Fire Flow Requirements

Wood frame construction was considered in the assessment for fire flow requirements according to the FUS Guidelines. The FUS Guidelines indicate that low hazard occupancies include apartments, dwellings, dormitories, hotels, and schools, and as such, a low hazard occupancy / limited combustible building contents credit was applied. Based on calculations per the FUS Guidelines (**Appendix A**), the worst case required fire flows for this site occur at Blocks 10 and 11 with a required fire flow of 17,000 L/min (283 L/s).

As per the City's Technical Bulletin ISTB-2018-02, the maximum flow contribution from one given hydrant is 5,700 L/min (95 L/s) within a distance of 75 m, and 3,800 L/min (63 L/s) between 75 m and 150 m. As a result, hydrant placement in the vicinity of the townhome units within Block 10 and Block 11 was considered to ensure the maximum required fire flow of 17,000 L/min can be achieved.

3.2.3 Boundary Conditions

Boundary conditions for both existing and zone reconfiguration conditions were provided for the entire SNTC development from the City of Ottawa as included in **Appendix A.1** and summarized in **Table 3.4** and **Table 3.5**. As noted in the correspondence from the City included in **Appendix A.1**, the maximum day plus fire flow scenario assumed a fire flow requirement of 267 L/s. As a result, the boundary conditions for a maximum fire flow requirement of 283 L/s has been requested and will be used in the next submission.

Potable Water

Connection	Maximum HGL (m)	Peak Hour HGL (m)	Max. Day plus Fire HGL (m) 267 L/s (16,000 L/min)	Ground Elevation (m)
Jockvale Road and Greenbank Road (Connection #1)	157.4	140.2	145.0	96.4
Greenbank road and Bending Way (Connection #2)	157.3	139.8	128.8	94.3

Table 3.1: Hydraulic Analysis Existing Boundary Conditions

Table 3.2: Hydraulic Analysis Post SUC Zone Reconfiguration Boundary Conditions

Connection	Maximum HGL (m)	Peak Hour HGL (m)	Max. Day plus Fire HGL (m) 267 L/s (16,000 L/min)	Ground Elevation (m)
Jockvale Road and Greenbank Road (Connection #1)	147.8	145.3	144.2	96.4
Greenbank road and Bending Way (Connection #2)	147.6	144.5	128.3	94.3

3.3 HYDRAULIC ASSESSMENT

Level of Service

The City of Ottawa Water Distribution Design Guidelines state that the desired range of system pressures under normal demand conditions (i.e. basic day, maximum day and peak hour) should be in the range of 350 to 480 kPa (50 to 70 psi) and no less than 275 kPa (40 psi) at the ground elevation on the streets (i.e. at hydrant level). The maximum pressure at any point in the distribution system in occupied areas outside of the public right-of-way is 552 kPa (80 psi). As per the Ontario Building Code (OBC) & Guide for Plumbing, if pressures greater than 552 kPa (80 psi) are anticipated, pressure relief measures are required. The maximum pressure at any point in the

Potable Water

distribution system in unoccupied areas shall not exceed 689 kPa (100 psi). Under emergency fire flow conditions, the minimum pressure objective in the distribution system is 138 kPa (20 psi).

Model Development

The proposed watermains within the Block 4 Development were added to the H2OMAP hydraulic model created for the entire SNTC Development (Stantec, February 2020) to simulate the proposed distribution system under both the existing and post reconfiguration conditions. Hazen-Williams coefficients ("C-Factors") were applied to the new watermain in accordance with the City of Ottawa's Water Distribution Design Guidelines (**Table 3.6**).

Pipe Diameter (mm)	C-Factor
150	100
200 to 250	110
300 to 600	120
> 600	130

Table 3.3: Proposed Watermain C-Factors

3.4 HYDRAULIC MODEL RESULTS

The Kennedy-Burnett Potable Water MSS concluded that development that proceeds in the interim prior to the reconfiguration of Zone 3C will have to ensure pressure reducing valves are installed where required.

The H2OMAP model for the proposed site consists of both existing and post reconfiguration scenarios. The existing scenario assumes ultimate development conditions under existing Zone BARR conditions, and the post reconfiguration scenario assumes ultimate development conditions under SUC Zone reconfiguration (3C). The overall results can be found in **Appendix A.4.**

The results from the existing zone - ultimate development conditions analysis show that the maximum pressure modeled is approximately 90.7 psi (625 kPa) and the minimum pressure during the peak hour scenario was approximately 64.9 psi (447 kPa) within the proposed Block 4 development as shown in **Figure 3.2** and **Figure 3.3** respectively. These pressures are above the serviceable limit of 50 to 80 psi (345 to 552 kPa) and therefore all proposed units will require pressure reducing valves.

Potable Water

Figure 3.1: Existing Zone - Ultimate Condition AVDY Pressure Results (psi)

Figure 3.2: Existing Zone - Ultimate Condition PKHR Pressure Results (psi)

Post SUC zone reconfiguration under ultimate development conditions, the maximum pressure modeled was approximately 77.0 psi (530 kPa) and the minimum pressure during peak hour was approximately 71.8 psi (494 kPa) within the proposed SNTC development as shown in **Figure 3.4**

Potable Water

and **Figure 3.5** respectively. These pressures are within the City of Ottawa allowable serviceable limits of 50 to 80 psi (345 to 552 kPa). Should the pressure zones be converted from Zone BARR to Zone 3C prior to construction, the dwellings will not require pressure reducing valves.

Figure 3.3: Post SUC Zone Reconfiguration - Ultimate Condition AVDY Pressure Results (psi)

Figure 3.4: Post SUC Zone Reconfiguration - Ultimate Condition PKHR Pressure Results (psi)

The hydraulic model was used to assess the fire flow conditions of the proposed site. The model was carried out to determine the anticipated amount of flow that could be provided under

Potable Water

maximum day demands and a fire flow requirement of 283 L/s for Blocks 4 (back-to-back townhomes) on Street B and Street C (nodes 20 to 26). Boundary condition parameters for the overall SNTC Development model assumed a maximum day plus fire flow based on a fire flow demand of 267 L/s.

Results of the fire flow analysis indicate that flows in excess of 17.820 L/min (297 L/s) for the existing zone condition and 17,580 L/min (293 L/s) for the post reconfiguration zone condition can be delivered for the units that require 283 L/s while still maintaining a residual pressure of 140 kPa (20 psi).

Figure 3.5: Existing Zone - Ultimate Condition Fire Flow Results – Residual Pressure (psi)

Potable Water

Figure 3.6: Post SUC Zone Reconfiguration - Ultimate Condition Fire Flow Results – Residual Pressure (psi)

3.5 SUMMARY OF FINDINGS

Based on the findings of the report, pressure reducing valves will be required in all proposed units under existing BARR zone conditions to meet maximum pressure guidelines as per City of Ottawa standards under typical demand conditions (peak hour and average day conditions). If construction of the development occurs post SUC Zone reconfiguration, pressure reducing values will not be required.

The results indicate that sufficient fire flows are available within the proposed watermain network under emergency fire demand conditions (maximum day + fire flow) for both existing and post zone reconfiguration scenarios, while meeting the minimum pressure requirements as per City of Ottawa standards.

Wastewater Servicing

4.0 WASTEWATER SERVICING

4.1 BACKGROUND

As shown on **Drawing SA-1**, the proposed Block 4 will be serviced by the 200 mm diameter sanitary sewer on Street C with a connection to the existing 200mm stub dropped inside the property line. The network of 200mm diameter sanitary sewers is proposed along the private streets. Servicing requirements for Block 4 were outlined in Stantec's SNTC Site Servicing and Stormwater Management Report (February 2020) which included an estimated sanitary peak flow allocation for Block 4 of 7.1 L/s assuming high density residential land use with 140 units/ha and 2.7 person/unit for a total of 608 persons (Site Area = 1.59 ha).

The proposed site consists of eleven townhome blocks consists of 116 back-to-back townhome units with a population density of 313 persons. Nine units within Blocks 9 and 10 will be serviced through the sanitary sewer on Street C, and eight units within Block 7 and 8 will be serviced with individual service connections to Street B.

4.2 DESIGN CRITERIA

As outlined in the City's Sewer Design Guidelines, the following design parameters were used to calculate estimated wastewater flow rates and to size on-site sanitary sewers for the proposed phase of the development:

- Minimum Full Flow Velocity 0.6 m/s
- Maximum Full Flow Velocity 3.0 m/s
- Manning's roughness coefficient for all smooth walled pipes 0.013
- Townhouse Persons per unit 2.7
- Extraneous Flow Allowance 0.33 L/s/ha
- Residential Average Flows 280 L/cap/day
- Manhole Spacing 120 m
- Minimum Cover 2.5m

In addition, a residential peak factor based on Harmon's Equation in conjunction with a correction factor of 0.8 was used to determine the peak design flows.

4.3 PROPOSED SERVICING

The majority of the proposed site will be serviced by gravity sewers which will direct wastewater peak flows (approx. 3.5 L/s with allowance for infiltration) to the existing 200 mm diameter sanitary sewer stub. The proposed units within Blocks 7, 8, 9 and 10 that front Street B and Street C will be serviced through individual service connections to the sanitary sewers on Street C and Street B will generate a flow of approximately 0.6 L/s. Units within Blocks 1 to 6 and the units within Blocks 7-10 fronting the internal streets will be serviced through the private sanitary sewer system.

Wastewater Servicing

A sanitary sewer design sheets for the proposed sanitary sewers within the development and the sewer design sheet for the SNTC Subdivision are included in **Appendix B**.

Full port backwater valves are to be installed on all sanitary services within the site to prevent any surcharge from the downstream sewer main from impacting the proposed property.

Stormwater Management

5.0 STORMWATER MANAGEMENT

The following section describes the stormwater management (SWM) design for Block 4 in accordance with the background documents and governing criteria within the SNTC subdivision based on Stantec's Site Servicing and Stormwater Management Report (February 2020).

5.1 **PROPOSED CONDITONS**

The proposed 1.59 ha development is located within the southwestern quadrant of the SNTC subdivision and comprises 116 townhome units. The storm sewer collection system for the site will discharge to the 1200 mm diameter storm sewer on Street C that ultimately directs runoff to the Kennedy Burnett SWM Facility outlet channel. Quality control of stormwater runoff from the proposed Block 4 will be provided by hydrodynamic separator / Oil-Grit Separator (HDS) designed as part of Claridge's Development to the south to provide 'Enhanced' level of treatment (80% TSS Removal) prior to discharging into the outlet channel for the Kennedy-Burnett SWM Facility.

5.2 CRITERIA AND CONSTRAINTS

The overall approach for storm servicing and stormwater management for the proposed development was outlined in the Stantec SNTC Servicing and SWM Report (February 2020), excerpts can be found in **Appendix C.4**. The following summarizes the SWM criteria and constraints that will govern the detailed design of the proposed site as per the latest City of Ottawa Storm Sewer Guidelines as well as the conclusions made within the SNTC Servicing and SWM Report.

- Design using the dual drainage principle. (City)
- Minor system capture rate from Block 4 up to the 100-year storm to be restricted to 271 L/s. (Stantec SNTC)
- Major system peak overflows to be controlled to a rate of 330 L/s during the 100-year storm event. (Stantec SNTC)
- Size storm sewers to fully capture 2-year storm event under free-flow conditions (i.e. no ponding during 2-year storm event) using 2012 City of Ottawa Sewer Design Guidelines I-D-F parameters. (City)
- Separation of at least 0.3 m between the 100-year hydraulic grade line (HGL) and building under side of footing (USF) must be provided. (City)
- Maximum 'climate change' HGL to be lower than proposed basement elevations. (City)
- Inlet control devices (ICDs) to have a minimum orifice diameter of 83 mm. (City)
- Depth of flow may extend adjacent to the right-of-way provided that the water level does not touch any part of the building envelope and remains below the lowest building opening during the stress test event (100-year increased by 20%). (City)

Stormwater Management

- Total maximum depth of flow under static and dynamic conditions shall be less than 0.35 m. (City)
- 100-year hydraulic grade line (HGL) to be a minimum 0.30 m below lowest building underside of footing elevation. The proposed townhome units will not have basements due to grade raise restrictions and 100-year HGL elevations. (City)
- Design storm sewers along local and collector roadways to convey the 2-year and 5year peak flow respectively under free-flow conditions using 2004 City of Ottawa I-D-F parameters and an inlet time of 10 minutes. (City)
- Assess impact of 2-year storm, 5-year storm, and the worst case 100-year storm events, and climate change scenarios with a 20% increase of rainfall intensity, on the major & minor drainage system. (City)
- Building openings to be above the 100-year water level. (City)
- There must be at least 30 cm of vertical clearance between the spill elevation on the private street and the lowest building opening that is in the proximity of the flow route or ponding area. (City)
- There must be at least 30 cm of vertical clearance between the spill elevation on rear yard swales and the ground elevation at the building envelope that is in the proximity of the flow route or ponding area. (City)
- Minimum swale grades at 1.5% (subgrade provided for grades < 1.5%). (City)
- Minimum roadway profile grades at 0.5%. (City)
- Minimum roadway slope of 0.1% from crest-to-crest for overland flow route. (City)
- Provide adequate emergency overflow conveyance off-site. (City)

5.3 DESIGN METHODOLOGY

The design methodology for the SWM component of the development is as follows:

- Create a PCSWMM model that generates major and minor system hydrographs and assesses the minor system hydraulic grade line and the major system flow depths.
- Size inlet control devices for the proposed catchbasins to avoid surface ponding during the 2-year storm while meeting the required 0.3m 100-year HGL to USF clearance and the 271 L/s minor system allowable release rate in the 100-year storm.
- Ensure that total dynamic and static surface ponding depths do not exceed 0.35 m during the 100-year storm scenario.
- Confirm that climate change storm simulation does not result in flooding of properties.

The site is designed using the "dual drainage" principle, whereby the minor (pipe) system is designed to convey the peak rate of runoff from the 2-year design storm and runoff from larger

Stormwater Management

events is conveyed by both minor (pipe) and major (overland) channels, such as roadways and walkways, safely to the appropriate outlet without impacting proposed or existing downstream properties.

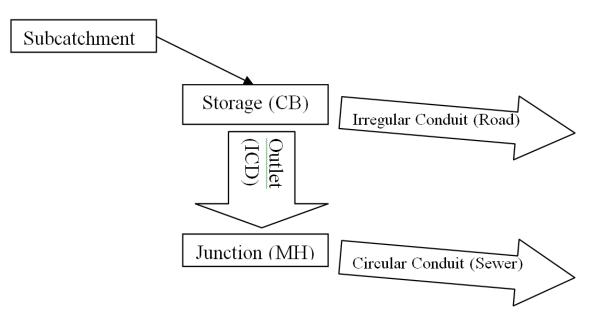
In keeping with the minor system target peak outflow, Inlet Control Devices (ICDs) or orifice plates have been specified for all catchbasins to limit the inflow to the minor system which outlets to the 1200 mm diameter storm sewer on Street C. Restricted inlet rates to the sewer are necessary to meet the target peak outflows.

Drawing SD-1 outlines the proposed storm sewer alignment, ICD locations, drainage divides, and labels. The storm sewer design sheet is included in **Appendix C.1**.

5.4 MODELING RATIONALE

A comprehensive hydrologic modeling exercise was completed with PCSWMM, accounting for the estimated major and minor systems to evaluate the storm sewer infrastructure and major system segments. The use of PCSWMM for modeling of the site hydrology and hydraulics allowed for an analysis of the systems' response during various storm events. The following assumptions were applied to the detailed model:

- Hydrologic parameters as per Ottawa Sewer Design Guidelines, including Horton infiltration, Manning's 'n', and depression storage values.
- 3-hour Chicago Storm distribution for the 2-year, 5-year and 100-year analysis.
- To 'stress test' the system a 'climate change' scenario was created by adding 20% of the individual intensity values of the 100-year storm at their specified time step.
- Percent imperviousness calculated based on actual soft and hard surfaces for the proposed catchments and converted to equivalent Runoff Coefficient using the relationship C = (Imp. X 0.7) + 0.2.
- Subcatchment areas are defined from high-point to high-point where sags occur.
- Width parameter was taken as twice the length of the street/swale segment for twosided catchments and as the length of the street/swale segment for one-sided catchments.
- Catchbasin inflow restricted with inlet-control devices (ICDs) as necessary to maintain the minor system target peak outflow.
- Surface storage in road sags calculated based on grading plans (Drawing SD-1).


5.4.1 SWMM Dual Drainage Methodology

The proposed development is modeled in one modeling program as a dual conduit system (see **Figure 5.1**), with: 1) circular conduits representing the sewers & storage nodes representing manholes; 2) irregular conduits using street-shaped cross-sections to represent the approximate overland road network and storage nodes representing catchbasins. The dual drainage systems

Stormwater Management

are connected via outlet/orifice link objects from storage node (i.e. CB) to storage node (i.e. MH), and represent inlet control devices (ICDs). Subcatchments are linked to the storage node on the surface so that generated hydrographs are directed there firstly.

Storage nodes are used in the model to represent catchbasins as well as major system junctions. For storage nodes representing catchbasins (CBs), the invert of the storage node represents the invert of the CB and the rim of the storage node represents the top of the CB plus an allowable flow depth on the segment. For the purpose of this SWM plan, CB inverts have been set 1.38 m below the top of the CB. The additional depth has been added to rim elevations to allow routing from one surface storage to the next. Storage nodes that represent catchbasins at sags, are surrounded by two transects that represent the road segments forming the sag. The storage value assigned to the storage node represents the available ponding volume above the catch basin. If the available storage volume in a storage node is exceeded, flows spill above the storage node and into the sag in the irregular conduits (representing roads). The volume stored within the road sags is represented as flood volume in the model and includes the total static volume and the ponded depth above the node representing the dynamic flow depth. Flow storage volumes exceeding the sag storage available in the transect (roadway) will spill at the downstream highpoint into the next sag and continue routing through the system until ultimately flows either re-enter the minor system or reach the outfall of the major system. Storage nodes representing high points are assigned an invert elevation equal to the transect invert (spill elevation at edge of pavement) and a rim elevation equal to the maximum allowable flow depth elevation above the storage node plus 0.35 m. A Storage value of 0 has been assigned to these nodes to disable linear volume calculations. No storage has been accounted for within

Stormwater Management

storage nodes at high points. In this manner, storage will accumulate according to the actual ponding depths before spilling along the roadway conduit, and to the next downstream road conduit.

Inlet control devices, as represented by orifice links, have been used to represent the proposed vertical circular orifices sized to restrict minor system capture rates to the 2-year and 5-year rate for local streets, and collector roads (Jockvale Road) respectively. A minimum orifice diameter of 83 mm has been specified.

5.4.2 Design Storms

The 3-hour Chicago distribution was selected to estimate the 2-year capture rates for the proposed subcatchments, and to assess the 100-year HGL across the proposed development.

To 'stress test' the system a 'climate change' scenario was created by adding 20% of the individual intensity values of the 100-year storms at their specified time step.

5.4.3 Boundary Conditions

The detailed PCSWMM hydrology and the proposed storm sewers were used to assess the peak inflows and hydraulic grade line (HGL) in the proposed site. Fixed backwater elevations were obtained from Stantec's SNTC PCSWMM model (February 2020) from the stubbed outlet for Block 4 (Node 221) as 91.30 m 2-year storm, 91.32 m for the 5-year storm, 91.75 m for the 100-year storm and 91.76 m for the 100-year plus 20%.

5.4.4 Modeling Parameters

 Table 5.1 presents the general subcatchment parameters used:

Subcatchment Parameter	Value
Infiltration Method	Horton
Max. Infil. Rate (mm/hr)	76.2
Min. Infil. Rate (mm/hr)	13.2
Decay Constant (1/hr)	4.14
N Imperv	0.013
N Perv	0.25
Dstore Imperv (mm)	1.57
Dstore Perv (mm)	4.67

Table 5.1: General Subcatchment Parameters

Stormwater Management

Table 5.2 presents the individual parameters that vary for each of the subcatchments tributary to the storm outlet.

Area ID	Area (ha)	Width (m)	Slope (%)	% Impervious	Runoff Coefficient
L101A	0.37	370	3.0	88.57	0.82
L102A	0.16	116	3.0	87.14	0.81
L102B	0.42	314	3.0	84.29	0.79
L102C	0.09	40	3.0	91.43	0.84
L102D	0.12	54	3.0	88.57	0.82
L105A	0.11	56	3.0	87.14	0.81
UNC-1	0.14	321	2.0	60.00	0.62
UNC-3	0.12	305	3.0	42.86	0.50
UNC-4	0.03	200	3.0	42.86	0.50
UNC-2	0.03	200	3.0	42.86	0.50

Table 5.2: Subcatchment Parameters

Table 5.3 summarizes the storage node parameters used in the model. All catchbasins havebeen modeled as having an outlet invert as depicted on Drawings SSP-1. Static ponding depths,areas, and volumes within the proposed development area are as per Drawings SD-1.

Storage Node	Invert Elevation (m)	Rim Elevation (m)	Total Depth (m)
L101A1-S	93.99	94.34	0.35
L101A-S	92.12	93.85	1.73
L101A-S1	93.65	94.00	0.35
L102A-S	92.29	94.02	1.73
L102A-S1	93.77	94.12	0.35
L102B-S	91.94	93.87	1.93
L102B-S1	93.87	94.22	0.35
L102B-S2	93.97	94.32	0.35
L102C-S	92.52	94.25	1.73
L102C-S1	94.10	94.45	0.35
L102D-S	92.26	93.99	1.73
L102D-S1	93.94	94.29	0.35
L105A-S	92.08	93.81	1.73
L105A-S1	93.91	94.26	0.35

Table 5.3: Storage Node Parameters

*The rim of the storage node represents the maximum allowable flow depth elevation above the storage node (equal to the top of the CB plus an additional 0.35 m).

Stormwater Management

5.4.5 Hydraulic Parameters

As per the City of Ottawa Sewer Design Guidelines, 2012, Manning's roughness values of 0.013 were used for sewer modeling and overland flow corridors representing roadways.

Storm sewers were modeled to confirm flow capacities, assess hydraulic grade lines (HGLs) and to determine minor system peak outflows to the outlet. The detailed storm sewer design sheet is included in **Appendix C.1**.

The table below presents the parameters for the orifice link objects within the proposed residential blocks which represent ICDs. It should be noted that the proposed ICDs will consist of slide type vertical circular orifices. A coefficient of 0.572 was applied when using orifices to conform to head/discharge curves as supplied by the manufacturer for IPEX Tempest HF model ICDs.

Orifice Name	Catchbasin ID	Tributary Area ID	Minor System Node	ІСД Туре
L101A-IC	CB101A	L101A	STM-101	178mm Orifice
L102A-IC	CB102A	L102A	STM-101	108mm Orifice
L102B-IC	CB102B	L102B	STM-102	178mm Orifice
L102C-IC	CB102C	L102C	STM-102	94mm Orifice
L102D-IC	CB102D	L102D	STM-102	102mm Orifice
L105A-IC	CB105A	L105A	STM-105	94mm Orifice

Table 5.4: Orifice Parameters for Proposed Catchments

5.5 MODELING RESULTS AND DISCUSSION

The following sections summarize the key hydrologic and hydraulic model results. For detailed model results or inputs please refer to the electronic model files on the enclosed CD.

5.5.1 Proposed Inlet Control Devices

Table 5.5 summarizes the orifice link maximum flow rates and heads across the proposeddevelopment.

	Orifice Name	Catchbasin ID	Tributary Area ID	ІСД Туре	2yr Head (m)	100yr Head (m)	2yr Flow (L/s)	100yr Flow (L/s)
ſ	L101A-IC	CB101A	L101A	178mm Orifice	1.35	1.58	70.91	76.88
	L102A-IC	CB102A	L102A	108mm Orifice	1.41	1.54	27.07	28.27

Table 5.5: Proposed Phase Orifice Link Results

Stormwater Management

Orifice Name	Catchbasin ID	Tributary Area ID	ІСД Туре	2yr Head (m)	100yr Head (m)	2yr Flow (L/s)	100yr Flow (L/s)
L102B-IC	CB102B	L102B	178mm Orifice	1.52	1.77	75.49	81.84
L102C-IC	CB102C	L102C	94mm Orifice	1.07	1.55	17.76	21.57
L102D-IC	CB102D	L102D	102mm Orifice	1.32	1.56	23.34	25.44
L105A-IC	CB105A	L105A	83mm Orifice	1.38	1.44	20.33	20.72

5.5.2 Proposed Development Hydraulic Grade Line Analysis

The 100-year hydraulic grade line (HGL) elevation across the proposed development and Street B and Street C in the adjacent Claridge development was estimated using the PCSWMM model for the 100-year, 3 hour Chicago storm and the climate change scenario. The 100 year HGL along storm sewers on Street B and C will service units within Blocks 7-10. The HGL values were obtained from Stantec's SNTC PCSWMM model (February 2020), excerpts of the stormwater management section can be found in **Appendix C.4. Table 5.6** below presents the clearance between the proposed storm sewer 100-year and 100-year + 20% HGL and the nearest proposed USF. The storm sewer design sheet is included in **Appendix C.1**.

		100-year, 3hr (Chicago Storm	100-year+20%, 3hr Chicago Storm		
STM MH	Prop. USF (m)	HGL (m)	Prop. USF- HGL Clearance (m)	HGL (m)	Prop. USF- HGL Clearance (m)	
101	92.12	91.82	0.30	91.83	0.29	
102	92.43	92.00	0.43	92.01	0.42	
103	92.85	91.84	1.01	91.85	1.00	
104	92.43	91.85	0.58	91.86	0.57	
105	92.85	91.87	0.98	91.88	0.97	
218 (Street C)	92.12	91.67	0.45	91.67	0.45	
EX 100 (Street B)	92.85	91.66	1.19	91.66	1.19	

Table 5.6: 100-Year HGL Results

Detailed grading of the site has been completed to ensure that the maximum hydraulic grade line is kept at least 0.30 m below the underside-of-footing (USF) of the adjacent units connected to the storm sewer during the 100-year storm event and below proposed basement or first floor elevations during the 'climate change' event(Blocks 7-11 do not have basements).

Stormwater Management

5.5.3 Overland Flow

Table 5.7 presents the maximum total surface water depths (static ponding depth + dynamic flow) above the top-of-grate of the proposed catchbasins for the 100-year, 3-hr Chicago storm and the 'climate change' storm. Based on the model results, the total ponding depth (static + dynamic) does not exceed the required 0.35 m maximum during the 100-year event. Tables summarizing the total surface water depths over the proposed catchbasins are included in **Appendix C.2**, which show that little to no ponding occurs over the proposed local streets during the 2-year storms events. Minimal ponding will occur in subcatchment area L102A in the 2-year storm, however if the ICD is increased to the next size up in keeping with the City of Ottawa approved ICD size, the 100-year HGL to USF clearance will not be met.

		Top of	2-year, 3-hour Chicago		100-year, 3-hour Chicago		100-year, 3-hour Chicago+20%	
Storage node ID	Structur e ID	Grate Elevation (m)	Max HGL (m)	Total Surface Water Depth (m)	Max HGL (m)	Total Surface Water Depth (m)	Max HGL (m)	Total Surface Water Depth (m)
L101A-S	CB500	93.50	93.47	0.00	93.70	0.20	93.73	0.23
L102A-S	CB501	93.67	93.70	0.03	93.83	0.16	93.84	0.17
L102B-S	CB503	93.52	93.46	0.00	93.71	0.19	93.75	0.23
L102C-S	CB502	93.90	93.59	0.00	94.07	0.17	94.11	0.21
L102D-S	CB504	93.64	93.58	0.00	93.82	0.18	93.85	0.21
L105A-S	CB505	93.46	93.46	0.00	93.52	0.06	93.52	0.06

Table 5.7: Proposed Phase – Ultimate Maximum Static and Dynamic Surface Water Depths

5.5.4 Minor and Major System Peak Outflows

Minor system peak flows from the site are directed to the 1200 mm diameter storm sewer on Street C. Based on the PCSWMM model for the proposed development the 100-year minor system peak outflow from the proposed site is equal to 254.6 L/s, meeting the 270.7 L/s minor system target for Block 4.

Similarly, major system peak flows from the site are directed to Street C. Due to grading restrictions, minor areas surrounding the site cannot be graded to enter the storm sewer system and will sheet flow uncontrolled to the adjacent Street B (UNC-2 & UNC-4), Street C (UNC-1), and Jockvale Road ROW (UNC-3). Peak discharges from uncontrolled areas have been considered in the overall SWM plan with 149.6 L/s being discharged in the 100-year storm. 100-year major system overflows from the proposed site onto Street C and Street B equal to 34.9 L/s and 37.9 L/s respectively, which results in 100-year overall overland peak flows of 222.4 L/s, well below the 330 L/s target.

Grading

6.0 GRADING

The proposed development site measures approximately 1.59 ha in area. The topography across the site under existing conditions is relatively flat and generally slopes towards the south west direction. The objective of the grading design strategy is to satisfy the stormwater management requirements, adhere to permissible grade raise restrictions as much as possible (see Section 10.0), and provide for minimum cover requirements for sewers. The grading plan has been provided for reference in **Appendix E**.

The grading design also follows the recommendations outlined in the SNTC Site Servicing and Stormwater Management Report (Stantec Consulting Ltd., February 2020) and directs overland drainage towards Street B and C ROW ultimately into the Kennedy Burnett SWM Facility.

The grading plan (**Drawing GP-1**) identifies grade raise restrictions identified in the geotechnical investigation. Areas where grades are expected to exceed the maximum permissible grade raise will be subject to either a pre-loading/surcharge program, or lightweight fill and/or other approved means outside of proposed rights-of-way to reduce the risks of unacceptable long-term post construction differential settlements.

Utilities

7.0 UTILITIES

As the subject site lies within residential development community, Hydro, Bell, Gas and Cable servicing for the proposed site will be readily available within subsurface infrastructure within Street B and Street C ROW. Exact size, location and routing of hydro utilities will be finalized after design circulation.

8.0 APPROVALS

Ontario Ministry of Environment, Conservation and Parks (MECP) Environmental Compliance Approvals (ECAs, formerly Certificates of Approval (CofA)) under the Ontario Water Resources Act is not expected to be required for proposed site.

An MECP Permit to Take Water (PTTW) or reporting on the Environmental Activity and Sector Registry (EASR) may be required for the site as some of the proposed works may be below the groundwater elevation shown in the geotechnical report. The geotechnical consultant shall determine whether a PTTW or EASR reporting is required prior to construction.

Erosion Control

9.0 EROSION CONTROL

Erosion and sediment controls must be in place during construction. The following recommendations to the contractor will be included in contract documents.

- 1. Implement best management practices to provide appropriate protection of the existing and proposed drainage system and the receiving water course(s).
- 2. Limit extent of exposed soils at any given time.
- 3. Re-vegetate exposed areas as soon as possible.
- 4. Minimize the area to be cleared and grubbed.
- 5. Protect exposed slopes with plastic or synthetic mulches.
- 6. Provide sediment traps and basins during dewatering.
- 7. Install sediment traps (such as SiltSack® by Terrafix) between catch basins and frames.
- 8. Plan construction at proper time to avoid flooding.

The contractor will, at every rainfall, complete inspections and guarantee proper performance. The inspection is to include:

- 9. Verification that water is not flowing under silt barriers.
- 10. Clean and change silt traps at catch basins.

Refer to Erosion and Sediment Control Plan included in **Appendix E** for the proposed location of silt fences, cutoff swales, temporary sediment basins and other erosion control structures.

Geotechnical Investigation

10.0 GEOTECHNICAL INVESTIGATION

A geotechnical investigation for the development was completed by Paterson Group Inc. in March 2019. The report summarizes the existing soil conditions within the overall SNTC subdivision including the subject site and construction recommendations. For details which are not summarized below, please see the original Paterson report included in **Appendix D**.

Subsurface soil conditions within the subject area were determined through field investigations in February 2019 and October 2012. In total 4 boreholes were drilled, and 1 test pits excavated throughout the subject lands. In general soil stratigraphy consisted of topsoil and/or a silty clay deposit overlaying glacial till. Bedrock was estimated to occur between depths of 5-15m. The thickness of the existing topsoil ranged from 300 to 330mm.

Groundwater levels were encountered between 1.08m and 2.71m in depth. It is expected that construction may occur below the existing groundwater table and therefore a permit to take water may be required.

Based on the observed soil conditions, a grade raise restriction of between 1.4m and 2.0m above existing grade was recommended for housing / roadways. Areas where grades are expected to exceed the maximum permissible grade raise will be subject to either a preloading/surcharge program, or lightweight fill and/or other approved means outside of proposed rights-of-way to reduce the risks of unacceptable long-term post construction differential settlements.

The required pavement structure for the local roadways is outlined in Table 10.1 and

Table 10.2 below.

Thickness (mm)	Material Description
50	Wear Course – HL 3 or Superpave 12.5 AC
150	Base - OPSS Granular 'A' crushed stone
300	Subbase - OPSS Granular 'B' Type II
	Subgrade – either fill, insitu soil or OPSS Granular B Type I or II material place over insitu soil or fill.

Table 10.1: Recommended Pavement Structure – Car Parking Areas

Geotechnical Investigation

Thickness (mm)	Material Description
40	Wear Course - Superpave 12.5 AC
50	Binder Course - Superpave 19.0 AC
150	Base – OPSS Granular A Crushed Stone
400	Subbase - OPSS Granular B Type II
	Subgrade – either fill, insitu soil or OPSS Granular B Type I or II material place
	over insitu soil or fill.

Table 10.2: Recommended Pavement Structure – Local Residential Roadways

Conclusions and Recommendations

11.0 CONCLUSIONS AND RECOMMENDATIONS

Based on the preceding information, the following conclusions are summarized below:

11.1 POTABLE WATER ANALYSIS

Based on the findings of the report, pressure reducing valves will be required in all proposed units under existing BARR zone conditions to meet maximum pressure guidelines as per City of Ottawa standards under typical demand conditions (peak hour and average day conditions). If construction of the development occurs post SUC Zone reconfiguration, pressure reducing values will not be required.

The results indicate that sufficient fire flows are available within the proposed watermain network under emergency fire demand conditions (maximum day + fire flow) for both existing and post zone reconfiguration scenarios, while meeting the minimum pressure requirements as per City of Ottawa standards.

11.2 WASTEWATER SERVICING

Block 4 will be serviced by a network of gravity sewers which will direct wastewater flows to the Street C. The proposed sanitary sewer design indicates a total estimated peak outflow of 3.5 L/s will be discharged to the Street C sewer. A total of 0.6 L/s will be generated by the units with direct service connections to the Street B and Street C sewers. The receiving sewer system has sufficient available capacity to receive the design flows. Design guidelines for slope and velocity have been met within the proposed sewers.

11.3 STORMWATER MANAGEMENT

- The proposed stormwater management plan is in compliance with the goals specified in the background reports and the 2012 City of Ottawa Sewer Guidelines.
- Inlet control devices will be proposed to limit inflow from the site area into the minor system to the 2-year storm (5-year for collector roads) event based on City of Ottawa IDF curves.
- All dynamic surface water depths are to be less than 0.35 m during all storm events up to the 100-year storm event.
- The storm sewer hydraulic grade line will be maintained at least 0.30 m below the underside of footing in the subdivision during design storm events.
- Minor system peak flows from the proposed site will be captured and directed to an HDS for quality control (designed by others) and will ultimately discharge into the outlet channel for the Kennedy-Burnett SWM Facility.
- The minor system target and major system peak outflow target have been met with the proposed design.

Conclusions and Recommendations

11.4 GRADING

A grading plan has been prepared taking into account required overland flow conveyance, cover over sewers, hydraulic grade line requirements, and grade raise restrictions as identified in the geotechnical investigation.

11.5 UTILITIES

Utility infrastructure exists in the general area of the subject site. Exact size, location and routing of utilities will be finalized at the detailed design stage.

Appendix A Potable Water analysis

APPENDICES

SOUTH NEPEAN TOWN CENTRE (SNTC) BLOCK 4 – SITE SERVICING AND STORMWATER MANAGEMENT REPORT

Appendix A Potable Water analysis

Appendix A **POTABLE WATER ANALYSIS**

A.1 BOUNDARY CONDITIONS

Boundary Conditions South Nepean Town Centre

Provided Information

Scenario	Demand				
Scenario	L/min	L/s			
Average Daily Demand	570.6	9.51			
Maximum Daily Demand	1426.8	23.78			
Peak Hour	3139.2	52.32			
Fire Flow Demand	16020	267			

Location

Results – Existing Conditions

Connection 1 - Jockvale Rd. (N20319)

Demand Scenario	Head (m)	Pressure ¹ (psi)
Maximum HGL	157.4	86.8
Peak Hour	140.2	62.3
Max Day plus Fire	145.0	69.1

¹ Ground Elevation = 96.4 m

Connection 2 - Greenbank Rd. (N20084)

Demand Scenario	Head (m)	Pressure ¹ (psi)
Maximum HGL	157.3	89.6
Peak Hour	139.8	64.7
Max Day plus Fire	128.8	49.0

¹ Ground Elevation = 94.3 m

Results – SUC Zone Reconfiguration

Connection 1 - Cambrian Rd. (N20319)

Demand Scenario	Head (m)	Pressure ¹ (psi)
Maximum HGL	147.8	73.1
Peak Hour	145.3	69.6
Max Day plus Fire	144.2	68.0

¹ Ground Elevation = 96.4 m

Connection 2 - Greenbank Rd. (N20084)

Demand Scenario	Head (m)	Pressure ¹ (psi)
Maximum HGL	147.6	75.8
Peak Hour	144.5	71.4
Max Day plus Fire	128.3	48.3

¹ Ground Elevation = 94.3 m

Notes:

- 1. As per the Ontario Building Code in areas that may be occupied, the static pressure at any fixture shall not exceed 552 kPa (80 psi.) Pressure control measures to be considered are as follows, in order of preference:
 - a. If possible, systems to be designed to residual pressures of 345 to 552 kPa (50 to 80 psi) in all occupied areas outside of the public right-of-way without special pressure control equipment.
 - b. Pressure reducing valves to be installed immediately downstream of the isolation valve in the home/ building, located downstream of the meter so it is owner maintained.
- 2. Under Existing Condition BARR PUMP #3 had to be turned on during Fire Hours.

Disclaimer

The boundary condition information is based on current operation of the city water distribution system. The computer model simulation is based on the best information available at the time. The operation of the water distribution system can change on a regular basis, resulting in a variation in boundary conditions. The physical properties of watermains deteriorate over time, as such must be assumed in the absence of actual field test data. The variation in physical watermain properties can therefore alter the results of the computer model simulation. Fire Flow analysis is a reflection of available flow in the watermain; there may be additional restrictions that occur between the watermain and the hydrant that the model cannot take into account.

SOUTH NEPEAN TOWN CENTRE (SNTC) BLOCK 4 – SITE SERVICING AND STORMWATER MANAGEMENT REPORT

Appendix A Potable Water analysis

A.2 WATER DEMAND CALCULATIONS

SNTC Lands Block 4 - Domestic Water Demand Estimates

Densities as per City Guidelines:

- Based on Proposed Site Plan (160401085)

B2B units 2.7 ppu

Building ID	Units	Population 1	Daily Rate of	Avg	Avg Day Demand		Max Day Demand 3		Peak Hour Demand 3	
			Demand ² (L/m ² /day)	(L/min)	(L/s)	(L/min)	(L/s)	(L/min)	(L/s)	
Area 1 - Junction 23	39	105.3	350	25.6	0.43	64.0	1.07	140.8	2.35	
Area 2 - Junction 24	8	21.6	350	5.3	0.09	13.1	0.22	28.9	0.48	
Area 3 - Junction 25	36	97.2	350	23.6	0.39	59.1	0.98	129.9	2.17	
Area 4 - Junction 26	16	43.2	350	10.5	0.18	26.3	0.44	57.8	0.96	
Area 7 - Junction 7	17	45.9	350	11.2	0.19	27.9	0.46	61.4	1.02	
Total Site :		313.2		76.1	1.27	190.3	3.17	418.7	6.98	

1 Population counts based on a conversion factor of 2.7 persons/back-toback townhome unit

2 Average day water demand for residential areas equal to 350 L/cap/d

3 The City of Ottawa water demand criteria used to estimate peak demand rates for residential areas are as follows:

maximum day demand rate = 2.5 x average day demand rate

peak hour demand rate = 2.2 x maximum day demand rate

Referenced from the City of Ottawa Design Guidelines: Water Distribution (July 2010)

SOUTH NEPEAN TOWN CENTRE (SNTC) BLOCK 4 – SITE SERVICING AND STORMWATER MANAGEMENT REPORT

Appendix A Potable Water analysis

A.3 FUS CALCULATIONS

FUS Fire Flow Calculation Sheet

Stantec Project #: 160401085 Project Name: Nepean Town Centre Development Corporation - SNTC Lands Block 4 Date: 4/30/2020 Fire Flow Calculation #: 1 Description: Residential Back to Back Townhome Units (Block 5)

Notes: Worst case townhome units

Step	Task			Value Used	Req'd Fire Flow (L/min)						
1	Determine Type of Construction				Wood Fre	ame		1.5	-		
2	Determine Ground Floor Area of One Unit				-			456.0	-		
2	Determine Number of Adjoining Units		Includes a	djacent woo	od frame stru	ctures separa	ated by 3m or less	1	-		
3	Determine Height in Storeys		Does not	include floo	ors >50% belo	w grade or o	pen attic space	3	-		
4	Determine Required Fire Flow		(F	= 220 x C x	A ^{1/2}). Round	to nearest 10	00 L/min	-	12000		
5	Determine Occupancy Charge				Limited Com	bustible		-15%	10200		
					None			0%			
6	Determine Sprinkler Reduction		Non-Standard Water Supply or N/A						0		
0	Determine spinikler keduciion	Determine Sprinkler Reduction					Not Fully Supervised or N/A				
				% Co	verage of Sp	rinkler System	1	0%			
		Direction	Exposure Distance (m)	Exposed Length (m)	Exposed Height (Stories)	Length-Height Factor (m x stories)	Construction of Adjacent Wall	-	-		
		North	20.1 to 30	14	3	31-60	Wood Frame or Non-Combustible	8%			
7	Determine Increase for Exposures (Max. 75%)	East	30.1 to 45	28	3	61-90	Wood Frame or Non-Combustible	5%	3672		
		South	3.1 to 10	14	3	31-60	Wood Frame or Non-Combustible	18%	30/2		
		West	West 30.1 to 45 28 3 61-90 Wood frame or Non-Combustible								
			Total Required Fire Flow in L/min, Rounded to Nearest 1000L/min								
8	Determine Final Required Fire Flow		Total Required Fire Flow in L/s						233.3		
					Required D	uration of Fire	Flow (hrs)		3.00		
					Required V	olume of Fire	Flow (m ³)		2520		

FUS Fire Flow Calculation Sheet

Stantec Project #: 160401085 Project Name: Nepean Town Centre Development Corporation - SNTC Lands Block 4 Date: 4/30/2020 Fire Flow Calculation #: 2 Description: Residential Back to Back Townhome Units (Block 11)

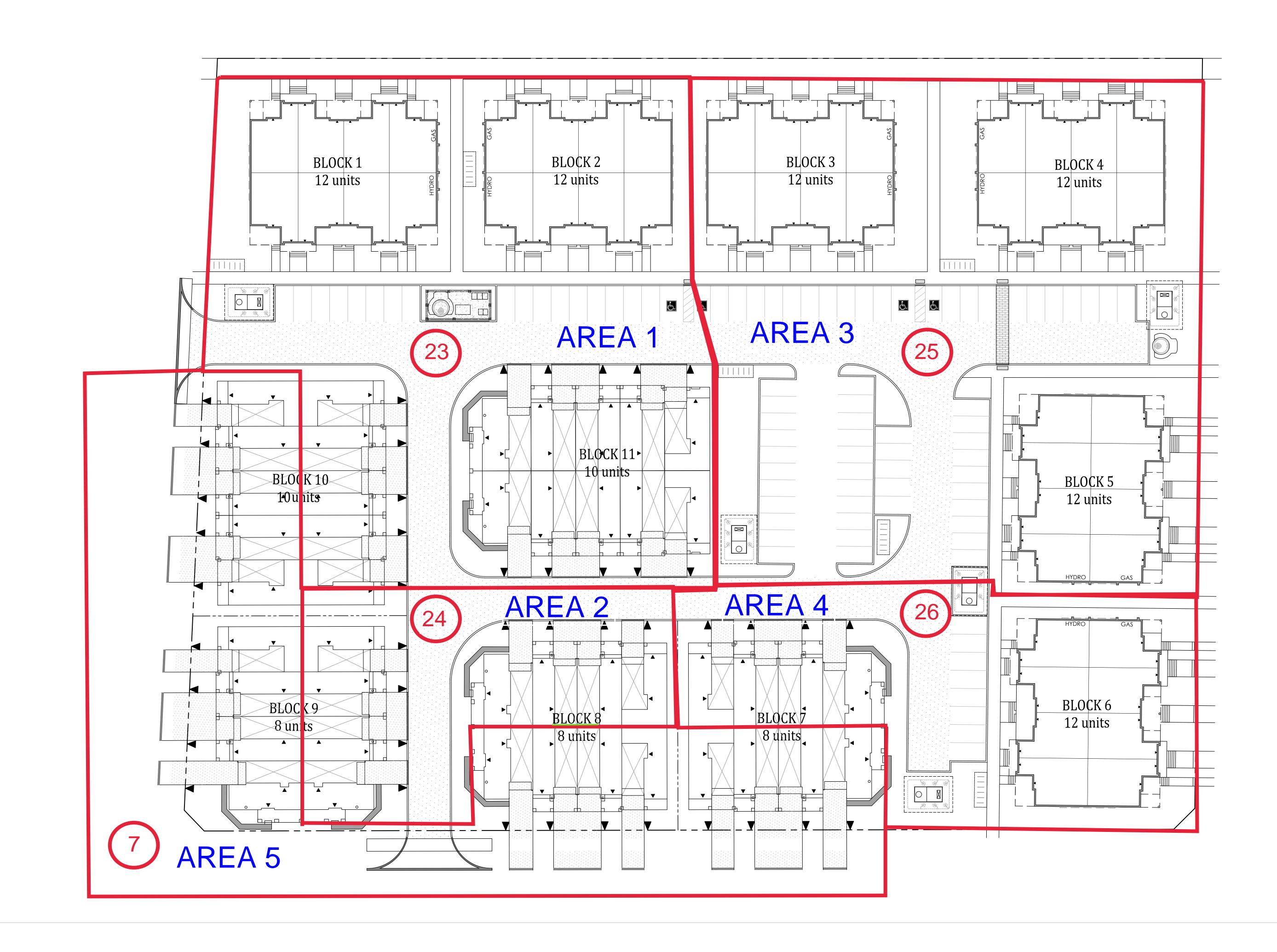
Notes: Worst case townhome units

Step	Task			Value Used	Req'd Fire Flow (L/min)				
1	Determine Type of Construction				Wood Fre	ame		1.5	-
2	Determine Ground Floor Area of One Unit				-			58.0	-
2	Determine Number of Adjoining Units		Includes a	djacent woo	od frame stru	ctures separc	ited by 3m or less	10	-
3	Determine Height in Storeys		Does not	include floo	ors >50% belo	w grade or o	pen attic space	3	-
4	Determine Required Fire Flow		(F	= 220 x C x	A ^{1/2}). Round	to nearest 10	00 L/min	-	14000
5	Determine Occupancy Charge				Limited Com	bustible		-15%	11900
					None			0%	
6	Determine Sprinkler Reduction	Non-Standard Water Supply or N/A						0%	0
°	Determine spinikler keduciion	Not Fully Supervised or N/A					0%		
				% Co	verage of Sp	rinkler System		0%	
		Direction	Exposure Distance (m)	Exposed Length (m)	Exposed Height (Stories)	Length-Height Factor (m x stories)	Construction of Adjacent Wall	-	-
		North	20.1 to 30	33	3	91-120	Wood Frame or Non-Combustible	10%	
7	Determine Increase for Exposures (Max. 75%)	East	30.1 to 45	20	3	31-60	Wood Frame or Non-Combustible	5%	5117
		South	10.1 to 20	33	3	91-120	Wood Frame or Non-Combustible	15%	5117
		West	West 10.1 to 20 20 3 31-60 Wood frame or Non-Combustible						
		Total Required Fire Flow in L/min, Rounded to Nearest 1000L/min							17000
8	Determine Final Required Fire Flow		Total Required Fire Flow in L/s						283.3
Ů	Determine rindi kequiled rite FIOW				Required D	uration of Fire	Flow (hrs)		3.50
					Required V	olume of Fire	Flow (m ³)		3570

FUS Fire Flow Calculation Sheet

Stantec Project #: 160401085 Project Name: Nepean Town Centre Development Corporation - SNTC Lands Block 4 Date: 4/30/2020 Fire Flow Calculation #: 3 Description: Residential Back to Back Townhome Units (Block 10)

Notes: Worst case townhome units


Step	Task			Value Used	Req'd Fire Flow (L/min)					
1	Determine Type of Construction				Wood Fre	ame		1.5	-	
2	Determine Ground Floor Area of One Unit				-			58.0	-	
2	Determine Number of Adjoining Units		Includes a	djacent wo	od frame stru	ctures separc	ited by 3m or less	10	-	
3	Determine Height in Storeys		Does not	include floo	ors >50% belo	w grade or o	pen attic space	3	-	
4	Determine Required Fire Flow		(F	= 220 x C x	A ^{1/2}). Round	to nearest 10	00 L/min	-	14000	
5	Determine Occupancy Charge				Limited Com	bustible		-15%	11900	
					None			0%		
6	Determine Sprinkler Reduction	Non-Standard Water Supply or N/A						0%	0	
°	Determine spinikler keduciion		Not Fully Supervised or N/A					0%	0	
				% Co	verage of Sp	rinkler System		0%		
		Direction	Exposure Distance (m)	Exposed Length (m)	Exposed Height (Stories)	Length-Height Factor (m x stories)	Construction of Adjacent Wall	-	-	
		North	20.1 to 30	20	3	31-60	Wood Frame or Non-Combustible	8%		
7	Determine Increase for Exposures (Max. 75%)	East	10.1 to 20	33	3	91-120	Wood Frame or Non-Combustible	15%	4879	
		South	3.1 to 10	20	3	31-60	Wood Frame or Non-Combustible	18%	40/7	
		West	West > 45 33 3 91-120 Wood frame or Non-Combustible							
		Total Required Fire Flow in L/min, Rounded to Nearest 1000L/min							17000	
8	Determine Final Required Fire Flow		Total Required Fire Flow in L/s						283.3	
°					Required D	uration of Fire	Flow (hrs)		3.50	
					Required V	olume of Fire	Flow (m ³)		3570	

SOUTH NEPEAN TOWN CENTRE (SNTC) BLOCK 4 – SITE SERVICING AND STORMWATER MANAGEMENT REPORT

Appendix A Potable Water analysis

A.3 HYDRAULIC ANALYSIS

EXISTING CONDITIONS Hydraulic Model Results - Average Day Analysis

Junction Results

ID	Demand	Elevation	Head	Pres	sure
שו	(L/s)	(m)	(m)	(psi)	(Kpa)
7	0.19	93.51	157.31	90.69	625.29
20	0.00	93.48	157.31	90.74	625.63
21	0.00	93.50	157.31	90.71	625.43
23	0.43	93.73	157.31	90.38	623.15
24	0.09	93.95	157.31	90.07	621.01
25	0.39	93.94	157.31	90.08	621.08
26	0.18	93.97	157.31	90.04	620.81

ID	From	To Node	Length	Diameter	Roughness	Flow	Velocity
	Node	TO NOUE	(m)	(mm)	Rouginiess	(L/s)	(m/s)
20	7	21	43.26	297.00	120	0.18	0.00
50	20	7	76.79	204.00	110	0.74	0.02
54	25	23	72.20	204.00	110	-0.32	0.01
56	23	20	40.00	204.00	110	-1.02	0.03
58	25	26	32.20	204.00	110	-0.07	0.00
60	26	24	72.20	204.00	110	-0.25	0.01
62	23	24	32.20	204.00	110	0.27	0.01
64	24	21	47.60	204.00	110	-0.07	0.00

Hydraulic Model Results -Peak Hour Analysis

Junction Results

ID	Demand	Elevation	Head	Pres	sure
טו	(L/s)	(m)	(m)	(psi)	(Kpa)
7	1.02	93.51	139.66	65.61	452.37
20	0.00	93.48	139.66	65.65	452.64
21	0.00	93.50	139.66	65.62	452.44
23	2.35	93.73	139.66	65.29	450.16
24	0.48	93.95	139.66	64.98	448.02
25	2.17	93.94	139.65	64.99	448.09
26	0.96	93.97	139.65	64.94	447.75

ID	From	To Node	Length	Diameter	Roughness	Flow	Velocity
U	Node	TO NOUE	(m)	(mm)	Rougilliess	(L/s)	(m/s)
20	7	21	43.26	297.00	120	-1.82	0.03
50	20	7	76.79	204.00	110	-1.89	0.06
54	25	23	72.20	204.00	110	-1.48	0.05
56	23	20	40.00	204.00	110	-2.59	0.08
58	25	26	32.20	204.00	110	-0.69	0.02
60	26	24	72.20	204.00	110	-1.65	0.05
62	23	24	32.20	204.00	110	-1.24	0.04
64	24	21	47.60	204.00	110	-3.37	0.10

Hydraulic Model Results -Fire Flow Analysis 283 L/s

ID	Static Demand	Static Pressure		Static Head	Fire-Flow Demand	Residual	Pressure	Available Flow at Hydrant		le Flow sure
	(L/s)	(psi)	(Kpa)	(m)	(L/s)	(psi)	(Kpa)	(L/s)	(psi)	(Kpa)
7	0.46	58.52	403.48	134.67	283.00	43.42	299.37	504.88	20	137.90
23	1.07	58.34	402.24	134.77	283.00	35.15	242.35	386.44	20	137.90
24	0.22	57.99	399.83	134.74	283.00	35.28	243.25	388.44	20	137.90
25	0.98	58.02	400.04	134.75	283.00	22.84	157.48	297.81	20	137.90
26	0.44	57.97	399.69	134.75	283.00	22.83	157.41	297.21	20	137.90

RECONFIGURATION CONDITIONS Hydraulic Model Results - Average Day Analysis

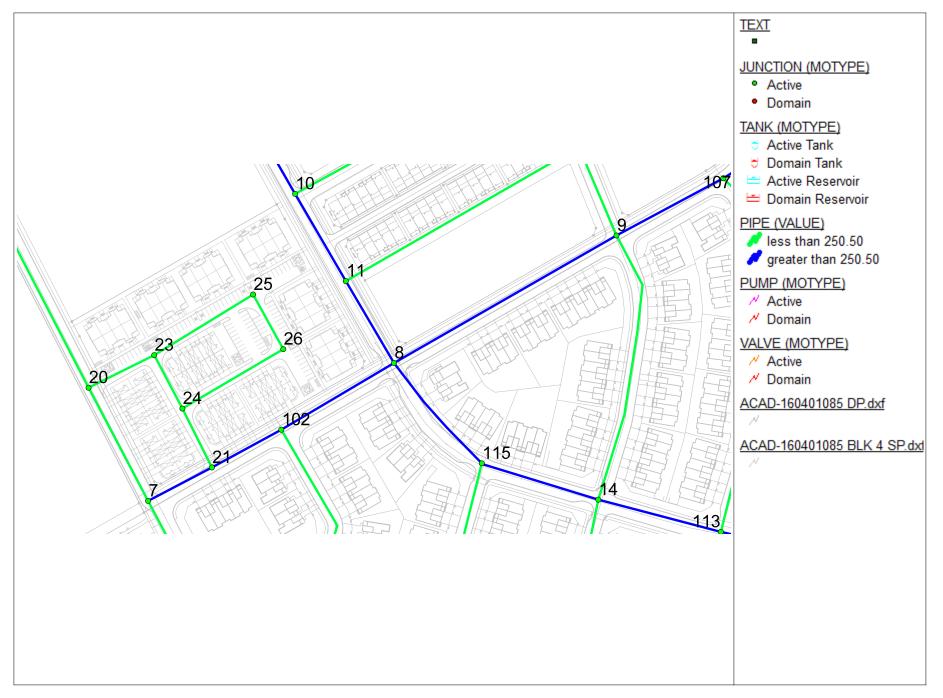
Junction Results

ID	Demand	Elevation	Head	Pres	sure
שו	(L/s)	(m)	(m)	(psi)	(Kpa)
7	0.19	93.51	147.63	76.94	530.49
20	0.00	93.48	147.63	76.98	530.76
21	0.00	93.50	147.63	76.95	530.55
23	0.43	93.73	147.63	76.63	528.35
24	0.09	93.95	147.63	76.31	526.14
25	0.39	93.94	147.63	76.33	526.28
26	0.18	93.97	147.63	76.28	525.94

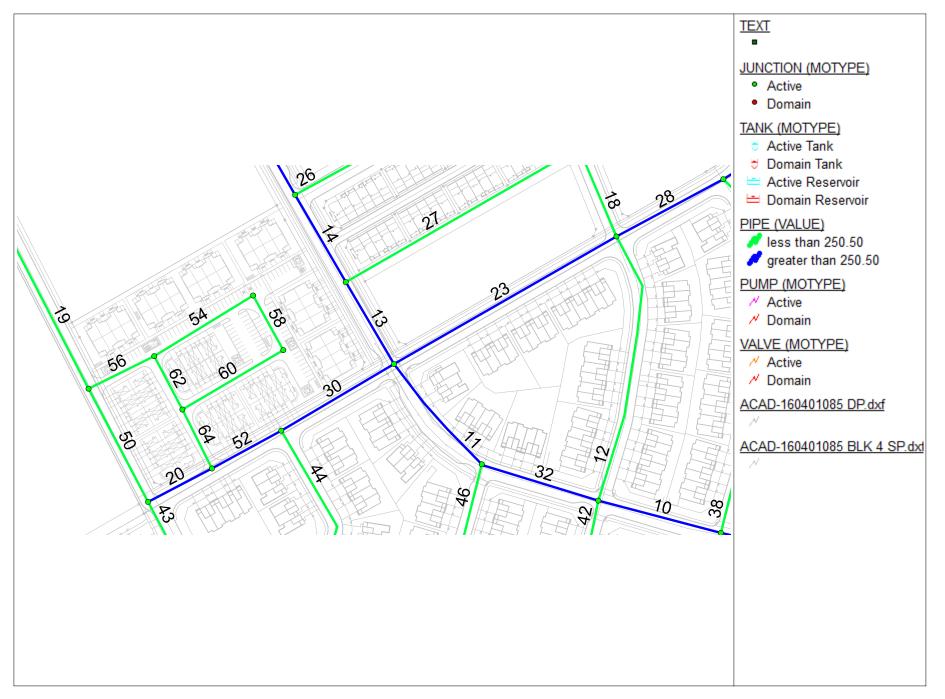
ID	From	To Node	Length	Diameter	Roughness	Flow	Velocity
U	Node	TONOUE	(m)	(mm)	Rougimess	(L/s)	(m/s)
20	7	21	43.26	297.00	120.00	0.36	0.01
50	20	7	76.79	204.00	110.00	1.29	0.04
54	25	23	72.20	204.00	110.00	-0.46	0.01
56	23	20	40.00	204.00	110.00	-1.59	0.05
58	25	26	32.20	204.00	110.00	0.07	0.00
60	26	24	72.20	204.00	110.00	-0.11	0.00
62	23	24	32.20	204.00	110.00	0.69	0.02
64	24	21	47.60	204.00	110.00	0.50	0.02

Hydraulic Model Results -Peak Hour Analysis

Junction Results


ID	Demand	Elevation	Head	Pres	sure
שו	(L/s)	(m)	(m)	(psi)	(Kpa)
7	1.02	93.51	144.46	72.43	499.39
20	0.00	93.48	144.46	72.47	499.67
21	0.00	93.50	144.46	72.44	499.46
23	2.35	93.73	144.46	72.11	497.18
24	0.48	93.95	144.46	71.80	495.05
25	2.17	93.94	144.45	71.81	495.12
26	0.96	93.97	144.45	71.77	494.84

ID	From	To Node	Length	Diameter	Roughness	Flow	Velocity
	Node	TO NOUE	(m)	(mm)	Rougimess	(L/s)	(m/s)
20	7	21	43.26	297.00	120.00	-0.72	0.01
50	20	7	76.79	204.00	110.00	-0.26	0.01
54	25	23	72.20	204.00	110.00	-1.55	0.05
56	23	20	40.00	204.00	110.00	-3.14	0.10
58	25	26	32.20	204.00	110.00	-0.62	0.02
60	26	24	72.20	204.00	110.00	-1.58	0.05
62	23	24	32.20	204.00	110.00	-0.76	0.02
64	24	21	47.60	204.00	110.00	-2.82	0.09


Hydraulic Model Results -Fire Flow Analysis 283 L/s

ID	Static Demand	Static Pressure		Static Head	Fire-Flow Demand	Residual	Pressure	Available Flow at Hydrant		le Flow sure
	(L/s)	(psi)	(Kpa)	(m)	(L/s)	(psi)	(Kpa)	(L/s)	(psi)	(Kpa)
7	0.46	57.64	397.42	134.05	283	42.63	293.93	498.53	20	137.90
23	1.07	57.46	396.18	134.15	283	34.36	236.91	381.54	20	137.90
24	0.22	57.10	393.69	134.12	283	34.49	237.80	383.46	20	137.90
25	0.98	57.14	393.97	134.13	283	22.05	152.03	293.98	20	137.90
26	0.44	57.09	393.62	134.13	283	22.03	151.89	293.37	20	137.90

160401085_SNTC_BLOCK4-JUNCTION ID

160401085_SNTC_BLOCK4-PIPE ID

160401085_SNTC_BLOCK4-PIPE ID

SOUTH NEPEAN TOWN CENTRE (SNTC) BLOCK 4 – SITE SERVICING AND STORMWATER MANAGEMENT REPORT

Appendix A Potable Water analysis

A.5 BACKGROUND REPORT EXCERPTS

Potable Water

3.2.1 Ground Elevations

The proposed ground elevations of the development range from approximately 95.50m to 93.30m. Proposed grading and elevations have been determined for the site and are included on **Drawing GP-1** and **Drawing GP-2**.

3.2.2 Water Demands

The current subdivision plan for the development consists of four public roadways with two rows of rear-lane townhomes, 4 blocks intended for future residential development, a community park block and a school block. The residential blocks lie within CDP areas noted as mid-rise residential and mid-rise mixed-use areas (2-4 and 4-6 storeys buildings), as well as high density mixed-use areas. Net unit density targets have been applied to each block to develop estimated domestic demand rates for the region in consideration with an average townhouse unit population density of 2.7ppu and average apartment population density of 1.8ppu.

The contributing area was assessed at a residential density of 100 units/ha for mid-rise 2-4 storey residential areas (Block 2), 200 units/ha for mid-rise 4-6 storey residential areas, and 250 units/ha for high-rise residential areas (Block 3). A residential density of 140 units/ha was assumed for Blocks 1 and 4.

Water demands for the development were estimated using the City of Ottawa's Water Distribution Design Guidelines. For residential developments, the average day (AVDY) per capita water demand is 350 L/cap/day. For maximum day (MXDY) demand, AVDY was multiplied by a factor of 2.5 and for peak hour (PKHR) demand, MXDY was multiplied by a factor of 2.2. For commercial and institutional use, the AVDY is based on the area of land use at 28,000 L/ha/day as shown in the following tables. For institutional use, AVDY was multiplied by a factor of 1.5 for MXDY demand and MXDY was multiplied by a factor of 1.8 for PKHR demand (see detailed calculations in **Appendix A.2**). The calculated domestic water consumption for the proposed SNTC Development is represented in **Table 3.1** and **Table 3.2**.

A 300mm watermain connection through Claridge's Burnett Lands located to the south of the site is required to maintain looping. As such, water demands for Claridge's development to the south have also been included in the hydraulic model. The water demands for Claridge's Burnett Lands Development were taken from the latest Novatech Site Servicing and Stormwater Management Report completed in May 2019(see **Appendix A.5**). Claridge's domestic demands are represented in **Table 3.3**.

Area ID	Units	Person/Unit	Population	AVDY (L/s)	MXDY (L/s)	PKHR (L/s)
Block 1	225	2.7	608	2.46	6.15	13.54
Block 2	172	2.7	464	1.88	4.70	10.35

SOUTH NEPEAN TOWN CENTRE (SNTC) - SITE SERVICING AND STORMWATER MANAGEMENT REPORT

Potable Water

Area ID	Units	Person/Unit	Population	AVDY (L/s)	MXDY (L/s)	PKHR (L/s)
Block 3	310	1.8	558	2.26	5.65	12.43
Block 4	225	2.7	608	2.46	6.15	13.54
Block 9-16	42	2.7	113	0.46	1.15	2.53
		Total	2,351	9.52	23.80	52.39

Area ID	Area (ha)	Demand (L/ha/day)	AVDY (L/s)	MXDY (L/s)	PKHR (L/s)
Block 5	0.62	28,000	0.20	0.30	0.54
Block 6	1.62	28,000	0.52	0.79	1.42
		Total	0.72	1.09	1.96

Table 3.3: Claridge's Burnett Lands Water Demands

Area ID	AVDY (L/s)	MXDY (L/s)	PKHR (L/s)
Claridge Homes (3370 Greenbank Road)	4.53	11.33	24.93

3.2.3 Fire Flow Requirements

As part of the Kennedy-Burnett Potable Water Master Servicing Study, an assessment using the City's 2013 Water Master Plan Update model was carried out. The MSS analysis concluded that under both pre and post zone reconfiguration, available fire flows in the NTC lands are projected to be greater than 15,000 L/min along all the larger diameter watermain (305mm and greater). Background report excerpts are included in **Appendix A.5**.

A maximum fire flow of 16,000 L/min (267 L/s) was estimated for the worst-case townhome units (Block 10) within the proposed Blocks 9 to 16. FUS calculations can be found in **Appendix A.3.** A fire flow requirement of 10,000 L/min has been assumed for the future development blocks. However, it is recommended that the maximum fire flow requirement assumption be revisited at the detailed design stage of each block as development proceeds to ensure sufficient fire flows are available within the adjacent watermains.

As per the City's Technical Bulletin ISTB-2018-02, the maximum flow contribution from one given hydrant is 5,700 L/min (95 L/s) within a distance of 75 m, and 3,800 L/min (63 L/s) between 75 m and 150 m. As a result, hydrant placement in the vicinity of the townhome units within Block 10 was considered to ensure the maximum required fire flow of 16,000 L/min can be achieved.

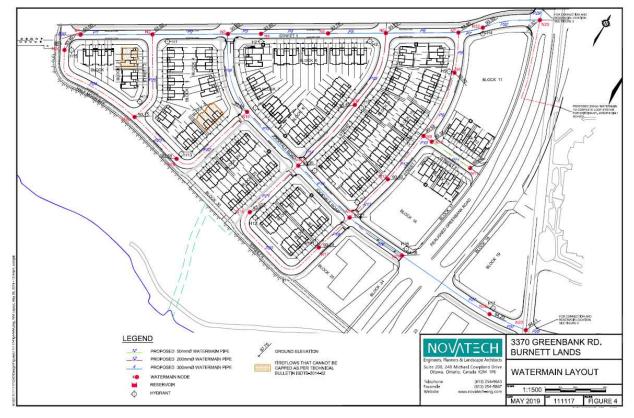
From:	Bougadis, John
To:	Rathnasooriya, Thakshika
Subject:	Re: Hydraulic Boundary Conditions - South Nepean Town Centre (SNTC)
Date:	Friday, February 14, 2020 5:22:44 PM
Attachments:	image001.png

No, the bcs did not include the claridge lands to the south or future development to the north. The 305 mm watermain was sized in past master planning studies (kevin Alemany did the work as part of the kB water servicing update).

Fire demands govern the sizing of local water mains that you will be designing. Also, the domestic demands from claridge and your development are relatively small compared to the entire pressure zone (hgls will not significantly decease during peak hour).

John

Get Outlook for iOS


From: Rathnasooriya, Thakshika <Thakshika.Rathnasooriya@stantec.com> Sent: Friday, February 14, 2020 3:15:03 PM To: Bougadis, John <John.Bougadis@ottawa.ca> Subject: RE: Hydraulic Boundary Conditions - South Nepean Town Centre (SNTC)

CAUTION: This email originated from an External Sender. Please do not click links or open attachments unless you recognize the source.

ATTENTION : Ce courriel provient d'un expéditeur externe. Ne cliquez sur aucun lien et n'ouvrez pas de pièce jointe, excepté si vous connaissez l'expéditeur.

Hi John,

To clarify, did the boundary conditions provided include demands from the development to the south, Burnett Lands (3370 Greenbank Road)?

Thanks,

Shika Rathnasooriya . P.Eng.

Direct: 613 724-4081 Thakshika.Rathnasooriya@stantec.com

Stantec 400 - 1331 Clyde Avenue Ottawa ON K2C 3G4

The content of this email is the confidential property of Stantec and should not be copied, modified, retransmitted, or used for any purpose except with Stantec's written authorization. If you are not the intended recipient, please delete all copies and notify us immediately

From: Bougadis, John <John.Bougadis@ottawa.ca>

Sent: Wednesday, February 12, 2020 12:31 PM

To: Rathnasooriya, Thakshika <Thakshika.Rathnasooriya@stantec.com>

Cc: Shillington, Jeffrey <jeff.shillington@ottawa.ca>; Simard, Lyndsey <lyndsey.simard@ottawa.ca>

Subject: RE: Hydraulic Boundary Conditions - South Nepean Town Centre (SNTC)

Hi Shika,

I have attached boundary conditions for the SNTC development.

Thanks

John x14990

From: Rathnasooriya, Thakshika <<u>Thakshika.Rathnasooriya@stantec.com</u>> Sent: February 04, 2020 10:16 AM To: Shillington, Jeffrey <<u>Jeff.shillington@ottawa.ca</u>> Subject: RE: Hydraulic Boundary Conditions - South Nepean Town Centre (SNTC)

CAUTION: This email originated from an External Sender. Please do not click links or open attachments unless you recognize the source.

ATTENTION : Ce courriel provient d'un expéditeur externe. Ne cliquez sur aucun lien et n'ouvrez pas de pièce jointe, excepté si vous connaissez l'expéditeur.

Hi Jeff,

As per my voice mail, we are leaning towards going with conservative population counts which were used during draft plan. If revising the demands will trigger an additional 2 weeks wait, please continue to use the values provided in the previous request.

The connection locations and pipes diameters will remain the same, however, the demands have increased. Please see revised domestic demands below:

Estimated domestic demands and fire flow requirements for the site are as follows: Average Day Demand -9.51L/s Max Day Demand -23.78 L/s Peak Hour Demand -52.32L/s Fire Flow Requirement per FUS for fownhome units - 267 L/s

Thank you,

Shika Rathnasooriya, P.Ena.

Direct: 613 724-4081 Thakshika.Rathnasooriya@stantec.com

Stantec 400 - 1331 Clyde Avenue Ottawa ON K2C 3G4

The content of this email is the confidential property of Stantec and should not be copied, modified, retransmitted, or used for any purpose except with Stantec's written authorization. If you are not the intended recipient, please delete all copies and notify us immediately.

From: Rathnasooriya, Thakshika Sent: Friday, January 31, 2020 2:36 PM To: Shillington, Jeffrey <<u>Jeff.shillington@ottawa.ca</u>> Subject: RE: Hydraulic Boundary Conditions - South Nepean Town Centre (SNTC)

Good afternoon Jeff,

Could you please provide me with a statues update of the boundary conditions request for South Nepean Town Centre.

Thank you.

Shika Rathnasooriya . P.Ena.

Direct: 613 724-4081 Thakshika.Rathnasooriya@stantec.com

Stantec 400 - 1331 Clyde Avenue Ottawa ON K2C 3G4

The content of this email is the confidential property of Stantec and should not be copied, modified, retransmitted, or used for any purpose except with Stantec's written authorization. If you are not the intended recipient, please delete all copies and notify us immediately

From: Rathnasooriya, Thakshika Sent: Wednesday, January 22, 2020 1:35 PM To: Shillington, Jeffrey <<u>ieff</u> shillington@ottawa.ca> Cc: Paerez, Ana <<u>Ana.Paerez@stantec.com></u> Subject: Hydraulic Boundary Conditions - South Nepean Town Centre (SNTC)

Hi Jeff,

I am looking for watermain hydraulic boundary conditions for theSouth Nepean Town Centre. The development is located southwest of the intersection of future extension of Chapman Mills Drive and Greenbank Road. The development consists of townhomes, back-to back units, apartment buildings, a school and a park.

We anticipate connecting to the existing twinning 400mm watermains on Jockvale Road south of the intersection with Greenbank Road(connection 1), and a 300mm diameter main exits at the intersection of Bending Way and Greenbank Road to maintain looping(connection 2). The development for Burnett Lands by Claridge to the south will require the extension of the Jockvale Road realignment (stated as "proposed Jockvale Rd" in proposed connection plan) to Street B.

Greenbank Road is proposed to be widened within the near future and minimal construction of the road prior to the widening is recommended through pre-consultation meetings with the City.

Estimated domestic demands and fire flow requirements for the site are as follows: Average Day Demand -7.07L/s

South Nepean Town Centre - Domestic Water Demand Estimates

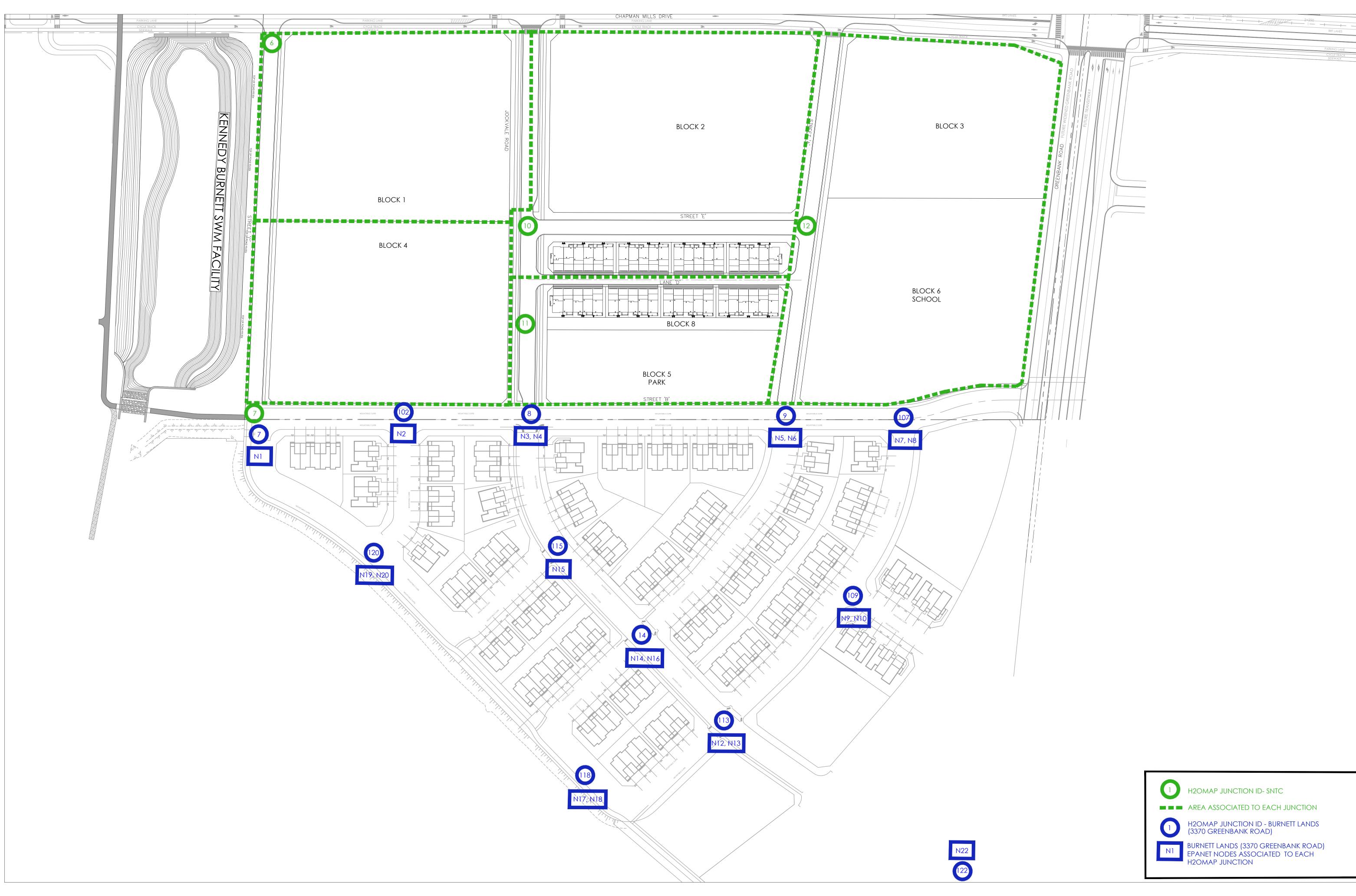
Densities as per City Guidelines:

Apartments	1.8	ppu
Townhomes	2.7	ppu
Mid-Rise (2-4)	100	units/ha
Mid-Rise (4-6)	200	units/ha
High Density	250	units/ha
Block 1 & 4	140	units/ha

Area ID	Residential Area	# of Units	Population	Institutional Area (ha)	Daily Rate of Demand (L/cap/day)	Daily Rate of Demand (L/ha/day)	Avg Da (L/min)	y Demand (L/s)	Max Day (L/min)	Demand ¹ (L/s)	Peak Hour (L/min)	r Demand
					(2.000)/003)	(Emarady)	(E/IIIII)	(Ľ/3)	(Ľ/11111)	(L/3)	(E/IIIII)	(L/3)
Block 1	1.60	225	608	0.00	350	0	147.7	2.46	369.1	6.15	812.1	13.54
Block 2	1.72	172	464	0.00	350	0	112.9	1.88	282.2	4.70	620.8	10.35
Block 3	1.24	310	558	0.00	350	0	135.6	2.26	339.1	5.65	745.9	12.43
Block 4	1.59	225	608	0.00	350	0	147.7	2.46	369.1	6.15	812.1	13.54
Block 7	0.00	0	0	0.00	350	0	0.0	0.00	0.0	0.00	0.0	0.00
Block 8	0.00	0	0	0.00	350	0	0.0	0.00	0.0	0.00	0.0	0.00
Block 9-16	0.78	42	113	0.00	350	0	27.6	0.46	68.9	1.15	151.6	2.53
Block 5	0.00	0	0	0.62	0	28000	12.1	0.20	18.1	0.30	32.6	0.54
Block 6	0.00	0	0	1.62	0	28000	31.5	0.52	47.2	0.79	85.0	1.42
Claridge Homes (3370 Greenbank Road)							-	4.53	-	11.33	-	24.93
Total Site :			2351				615	14.78	1494	36.23	3260	79.27

 Average day water demand for residential areas: 350 L/cap/d

 The City of Ottawa water demand criteria used to estimate peak demand rates for residential areas are as follows:


 maximum day demand rate = 2.5 x average day demand rate for residential

 peak hour demand rate = 2.2 x maximum day demand rate for residential

 Water demand criteria used to estimate peak demand rates for commercial/institutional areas are as follows:

 maximum day demand rate = 1.5 x average day demand rate

 peak hour demand rate = 1.5 x average day demand rate

EXISTING CONDITIONS Hydraulic Model Results - Average Day Analysis

Junction Results

ID	Demand	Elevation	Head	Pres	sure
ID	(L/s)	(m)	(m)	(psi)	(Kpa)
3	0.00	94.78	157.38	88.99	613.57
4	0.00	94.21	157.34	89.74	618.74
5	0.00	93.15	157.31	91.21	628.87
6	2.46	93.93	157.31	90.10	621.22
7	2.52	93.51	157.30	90.69	625.29
8	0.15	93.82	157.30	90.25	622.26
9	0.15	93.74	157.30	90.36	623.01
10	2.11	93.67	157.31	90.47	623.77
11	0.43	93.54	157.31	90.65	625.01
12	2.78	94.07	157.31	89.90	619.84
13	0.00	93.85	157.31	90.21	621.98
14	0.43	93.35	157.30	90.91	626.81
15	0.00	95.33	157.30	88.10	607.43
102	0.08	93.92	157.30	90.11	621.29
107	0.38	93.95	157.30	90.06	620.95
109	0.23	93.58	157.30	90.59	624.60
113	1.13	93.21	157.30	91.11	628.19
115	0.20	93.60	157.30	90.56	624.39
118	0.15	92.82	157.30	91.67	632.05
120	0.20	93.75	157.30	90.35	622.95
122	1.39	94.11	157.30	89.83	619.36

ID	From	To Node	Length	Diameter	Roughness	Flow	Velocity
טו	Node	To Node	(m)	(mm)	Roughness	(L/s)	(m/s)
10	14	113	76.07	297	120	2.56	0.04
11	8	115	80.12	297	120	2.56	0.04
12	9	14	165.53	204	110	0.83	0.03
13	11	8	57.06	297	120	4.79	0.07
14	10	11	60.55	297	120	5.02	0.07
15	5	10	125.25	297	120	6.71	0.1
16	4	12	128.8	204	110	5.12	0.16
17	12	13	57.59	204	110	1.91	0.06
18	13	9	57.74	204	110	1.72	0.05
19	6	7	243.82	204	110	1.66	0.05
20	7	102	90.67	297	120	-1.01	0.01
21	6	5	158.01	297	120	-4.12	0.06
22	4	5	186.77	297	120	10.83	0.16
23	9	8	153.93	297	120	-0.59	0.01
24	3	4	146.18	297	120	15.95	0.23
25	1000	3	92.09	297	120	15.95	0.23
26	10	12	170.91	204	110	-0.42	0.01
27	11	13	161.29	204	110	-0.2	0.01
28	9	107	72.78	297	120	1.32	0.02
30	102	8	78.61	297	120	-1.49	0.02
32	115	14	73.28	297	120	2.72	0.04
34	122	113	199.82	297	120	-2.55	0.04
36	107	15	78.35	297	120	0	0
38	113	109	106.78	204	110	-0.71	0.02
39	109	107	116.92	204	110	-0.94	0.03
41	118	113	114.97	204	110	0.41	0.01
42	14	118	109.64	204	110	0.56	0.02
43	7	120	128.07	204	110	0.16	0
44	120	102	92.43	204	110	-0.4	0.01
46	120	115	154.08	204	110	0.36	0.01
48	122	1001	10	297	120	1.16	0.02

Hydraulic Model Results -Peak Hour Analysis

Junction Results

10	Demand	Elevation	Head	Pres	sure
ID	(L/s)	(m)	(m)	(psi)	(Kpa)
3	0.00	94.78	140.04	64.35	443.68
4	0.00	94.21	139.80	64.81	446.85
5	0.00	93.15	139.64	66.09	455.68
6	13.54	93.93	139.60	64.92	447.61
7	13.85	93.51	139.59	65.51	451.68
8	0.85	93.82	139.61	65.09	448.78
9	0.80	93.74	139.61	65.21	449.61
10	11.61	93.67	139.61	65.31	450.30
11	1.79	93.54	139.61	65.49	451.54
12	13.85	94.07	139.61	64.74	446.37
13	0.00	93.85	139.61	65.05	448.51
14	2.36	93.35	139.62	65.78	453.54
15	0.00	95.33	139.61	62.95	434.03
102	0.42	93.92	139.60	64.94	447.75
107	2.07	93.95	139.61	64.91	447.54
109	1.25	93.58	139.62	65.45	451.26
113	6.27	93.21	139.64	66.01	455.13
115	1.09	93.60	139.61	65.41	450.99
118	0.85	92.82	139.63	66.55	458.85
120	1.09	93.75	139.60	65.18	449.40
122	7.62	94.11	139.79	64.94	447.75

ID	From	To Node	Length	Diameter	Roughness	Flow	Velocity
ם	Node	To Node	(m)	(mm)	Roughness	(L/s)	(m/s)
10	14	113	76.07	297	120	-14.23	0.21
11	8	115	80.12	297	120	-7.03	0.10
12	9	14	165.53	204	110	-2.88	0.09
13	11	8	57.06	297	120	1.77	0.03
14	10	11	60.55	297	120	2.97	0.04
15	5	10	125.25	297	120	14.66	0.21
16	4	12	128.80	204	110	13.69	0.42
17	12	13	57.59	204	110	-0.08	0.00
18	13	9	57.74	204	110	-0.67	0.02
19	6	7	243.82	204	110	1.84	0.06
20	7	102	90.67	297	120	-9.41	0.14
21	6	5	158.01	297	120	-15.38	0.22
22	4	5	186.77	297	120	30.04	0.43
23	9	8	153.93	297	120	2.45	0.04
24	3	4	146.18	297	120	43.74	0.63
25	1000	3	92.09	297	120	43.74	0.63
26	10	12	170.91	204	110	0.08	0.00
27	11	13	161.29	204	110	-0.59	0.02
28	9	107	72.78	297	120	-1.04	0.01
30	102	8	78.61	297	120	-10.41	0.15
32	115	14	73.28	297	120	-11.23	0.16
34	122	113	199.82	297	120	27.95	0.40
36	107	15	78.35	297	120	0.00	0.00
38	113	109	106.78	204	110	4.36	0.13
39	109	107	116.92	204	110	3.11	0.10
41	118	113	114.97	204	110	-3.09	0.09
42	14	118	109.64	204	110	-2.24	0.07
43	7	120	128.07	204	110	-2.60	0.08
44	120	102	92.43	204	110	-0.58	0.02
46	120	115	154.08	204	110	-3.11	0.10
48	122	1001	10.00	297	120	-35.57	0.51

Hydraulic Model Results -Fire Flow Analysis 267 L/s

ID	Static Demand	Static Pressure		essure Static Head		Residual Pressure		Available Flow at Hydrant		le Flow sure
	(L/s)	(psi)	(Kpa)	(m)	(L/s)	(psi)	(Kpa)	(L/s)	(psi)	(Kpa)
3	0.00	67.94	468.43	142.57	167	62.10	428.17	1025.85	20	137.90
4	0.00	63.26	436.17	138.71	167	53.93	371.84	730.12	20	137.90
5	0.00	61.36	423.06	136.31	167	52.04	358.81	631.39	20	137.90
6	6.15	59.97	413.48	136.11	167	48.14	331.92	458.68	20	137.90
7	6.29	58.29	401.90	134.51	167	48.99	337.78	506.86	20	137.90
8	0.38	57.81	398.59	134.49	167	50.30	346.81	660.25	20	137.90
9	0.36	57.80	398.52	134.40	167	49.93	344.26	589.46	20	137.90
12	6.44	59.13	407.69	135.67	167	48.88	337.02	475.20	20	137.90
13	0.00	58.47	403.14	134.98	167	48.88	337.02	492.71	20	137.90
14	1.08	56.97	392.80	133.42	167	50.62	349.01	670.63	20	137.90
15	0.00	55.43	382.18	134.32	167	44.22	304.89	393.11	20	137.90
102	0.19	57.67	397.62	134.49	167	49.23	339.43	556.64	20	137.90
107	0.95	57.39	395.69	134.32	167	48.43	333.92	503.45	20	137.90
109	0.56	56.71	391.00	133.47	167	44.21	304.82	348.72	20	137.90
113	2.83	56.16	387.21	132.71	167	50.74	349.84	718.67	20	137.90
115	0.50	57.47	396.24	134.03	167	50.33	347.02	639.82	20	137.90
118	0.38	57.22	394.52	133.07	167	45.02	310.40	357.63	20	137.90
120	0.49	57.81	398.59	134.42	167	46.80	322.68	421.20	20	137.90
122	3.46	49.57	341.78	128.98	167	49.31	339.98	2289.55	20	137.90
10	5.27	59.39	409.48	135.45	267	48.41	333.78	629.07	20	137.90
11	0.87	58.89	406.03	134.96	267	48.73	335.98	640.25	20	137.90

RECONFIGURATION CONDITIONS Hydraulic Model Results - Average Day Analysis

Junction Results

ID	Demand	Elevation	Head	Pres	sure
U	(L/s)	(m)	(m)	(psi)	(Kpa)
3	0.00	94.78	147.76	75.31	519.25
4	0.00	94.21	147.69	76.03	524.21
5	0.00	93.15	147.65	77.47	534.14
6	2.46	93.93	147.64	76.36	526.49
7	2.52	93.51	147.63	76.93	530.42
8	0.15	93.82	147.63	76.49	527.38
9	0.15	93.74	147.63	76.60	528.14
10	2.11	93.67	147.64	76.72	528.97
11	0.43	93.54	147.63	76.89	530.14
12	2.78	94.07	147.64	76.15	525.04
13	0.00	93.85	147.63	76.45	527.11
14	0.43	93.35	147.62	77.15	531.93
15	0.00	95.33	147.63	74.34	512.56
102	0.08	93.92	147.63	76.35	526.42
107	0.38	93.95	147.63	76.30	526.07
109	0.23	93.58	147.62	76.82	529.66
113	1.13	93.21	147.62	77.34	533.24
115	0.20	93.60	147.62	76.80	529.52
118	0.15	92.82	147.62	77.90	537.10
120	0.20	93.75	147.63	76.59	528.07
122	1.39	94.11	147.60	76.04	524.28

ID	From	To Node	Length	Diameter	Deushness	Flow	Velocity
U	Node	To Node	(m)	(mm)	Roughness	(L/s)	(m/s)
10	14	113	76.07	297	120	6.43	0.09
11	8	115	80.12	297	120	5.41	0.08
12	9	14	165.53	204	110	1.84	0.06
13	11	8	57.06	297	120	8.23	0.12
14	10	11	60.55	297	120	8.34	0.12
15	5	10	125.25	297	120	9.58	0.14
16	4	12	128.80	204	110	6.98	0.21
17	12	13	57.59	204	110	3.33	0.10
18	13	9	57.74	204	110	3.02	0.09
19	6	7	243.82	204	110	2.67	0.08
20	7	102	90.67	297	120	-0.43	0.01
21	6	5	158.01	297	120	-5.13	0.07
22	4	5	186.77	297	120	14.71	0.21
23	9	8	153.93	297	120	-1.43	0.02
24	3	4	146.18	297	120	21.69	0.31
25	1000	3	92.09	297	120	21.69	0.31
26	10	12	170.91	204	110	-0.87	0.03
27	11	13	161.29	204	110	-0.31	0.01
28	9	107	72.78	297	120	2.46	0.04
30	102	8	78.61	297	120	-1.23	0.02
32	115	14	73.28	297	120	6.31	0.09
34	122	113	199.82	297	120	-8.29	0.12
36	107	15	78.35	297	120	0.00	0.00
38	113	109	106.78	204	110	-1.85	0.06
39	109	107	116.92	204	110	-2.08	0.06
41	118	113	114.97	204	110	1.15	0.04
42	14	118	109.64	204	110	1.30	0.04
43	7	120	128.07	204	110	0.58	0.02
44	120	102	92.43	204	110	-0.72	0.02
46	120	115	154.08	204	110	1.10	0.03
48	122	1001	10.00	297	120	6.90	0.10

Hydraulic Model Results -Peak Hour Analysis

Junction Results

ID	Demand	Elevation	Head	Pres	sure
U	(L/s)	(m)	(m)	(psi)	(Kpa)
3	0.00	94.78	145.07	71.49	492.91
4	0.00	94.21	144.71	71.79	494.98
5	0.00	93.15	144.48	72.97	503.11
6	13.54	93.93	144.43	71.79	494.98
7	13.85	93.51	144.41	72.35	498.84
8	0.85	93.82	144.42	71.93	495.94
9	0.80	93.74	144.42	72.05	496.77
10	11.61	93.67	144.43	72.16	497.53
11	1.79	93.54	144.43	72.34	498.77
12	13.85	94.07	144.43	71.59	493.60
13	0.00	93.85	144.43	71.90	495.74
14	2.36	93.35	144.42	72.61	500.63
15	0.00	95.33	144.42	69.79	481.19
102	0.42	93.92	144.41	71.78	494.91
107	2.07	93.95	144.42	71.75	494.70
109	1.25	93.58	144.42	72.28	498.36
113	6.27	93.21	144.43	72.81	502.01
115	1.09	93.60	144.42	72.25	498.15
118	0.85	92.82	144.43	73.36	505.80
120	1.09	93.75	144.41	72.02	496.56
122	7.62	94.11	144.49	71.62	493.81

ID	From	To Node	Length Diameter		Roughness	Flow	Velocity	
U	Node	TO NODE	(m)	(mm)	Roughness	(L/s)	(m/s)	
10	14	113	76.07	297	120	-7.53	0.11	
11	8	115	80.12	297	120	-1.56	0.02	
12	9	14	165.53	204	110	-1.04	0.03	
13	11	8	57.06	297	120	7.22	0.10	
14	10	11	60.55	297	120	8.52	0.12	
15	5	10	125.25	297	120	19.85	0.29	
16	4	12	128.80	204	110	17.03	0.52	
17	12	13	57.59	204	110	2.89	0.09	
18	13	9	57.74	204	110	2.41	0.07	
19	6	7	243.82	204	110	3.38	0.10	
20	7	102	90.67	297	120	-8.27	0.12	
21	6	5	158.01	297	120	-16.92	0.24	
22	4	5	186.77	297	120	36.77	0.53	
23	9	8	153.93	297	120	1.62	0.02	
24	3	4	146.18	297	120	53.80	0.78	
25	1000	3	92.09	297	120	53.80	0.78	
26	10	12	170.91	204	110	-0.28	0.01	
27	11	13	161.29	204	110	-0.49	0.01	
28	9	107	72.78	297	120	1.03	0.01	
30	102	8	78.61	297	120	-9.55	0.14	
32	115	14	73.28	297	120	-5.08	0.07	
34	122	113	199.82	297	120	17.89	0.26	
36	107	15	78.35	297	120	0.00	0.00	
38	113	109	106.78	204	110	2.29	0.07	
39	109	107	116.92	204	110	1.04	0.03	
41	118	113	114.97	204	110	-1.79	0.05	
42	14	118	109.64	204	110	-0.94	0.03	
43	7	120	128.07	204	110	-2.20	0.07	
44	120	102	92.43	204	110	-0.86	0.03	
46	120	115	154.08	204	110	-2.43	0.07	
48	122	1001	10.00	297	120	-25.51	0.37	

Hydraulic Model Results -Peak Hour Analysis

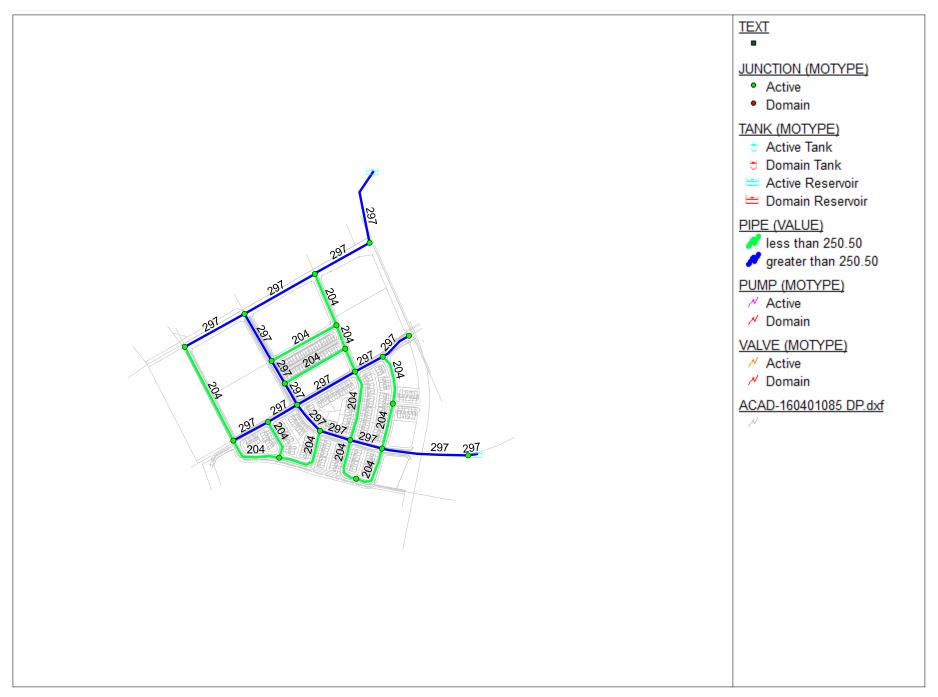
Junction Results


ID	Demand	Elevation	Head	Pressure		
U	(L/s)	(m)	(m)	(psi)	(Kpa)	
3	0.00	94.78	145.07	71.49	492.91	
4	0.00	94.21	144.71	71.79	494.98	
5	0.00	93.15	144.48	72.97	503.11	
6	13.54	93.93	144.43	71.79	494.98	
7	13.85	93.51	144.41	72.35	498.84	
8	0.85	93.82	144.42	71.93	495.94	
9	0.80	93.74	144.42	72.05	496.77	
10	11.61	93.67	144.43	72.16	497.53	
11	1.79	93.54	144.43	72.34	498.77	
12	13.85	94.07	144.43	71.59	493.60	
13	0.00	93.85	144.43	71.90	495.74	
14	2.36	93.35	144.42	72.61	500.63	
15	0.00	95.33	144.42	69.79	481.19	
102	0.42	93.92	144.41	71.78	494.91	
107	2.07	93.95	144.42	71.75	494.70	
109	1.25	93.58	144.42	72.28	498.36	
113	6.27	93.21	144.43	72.81	502.01	
115	1.09	93.60	144.42	72.25	498.15	
118	0.85	92.82	144.43	73.36	505.80	
120	1.09	93.75	144.41	72.02	496.56	
122	7.62	94.11	144.49	71.62	493.81	

ID	From	To Node	Length Diameter		Roughness	Flow	Velocity	
U	Node	TO NODE	(m)	(mm)	Roughness	(L/s)	(m/s)	
10	14	113	76.07	297	120	-7.53	0.11	
11	8	115	80.12	297	120	-1.56	0.02	
12	9	14	165.53	204	110	-1.04	0.03	
13	11	8	57.06	297	120	7.22	0.10	
14	10	11	60.55	297	120	8.52	0.12	
15	5	10	125.25	297	120	19.85	0.29	
16	4	12	128.80	204	110	17.03	0.52	
17	12	13	57.59	204	110	2.89	0.09	
18	13	9	57.74	204	110	2.41	0.07	
19	6	7	243.82	204	110	3.38	0.10	
20	7	102	90.67	297	120	-8.27	0.12	
21	6	5	158.01	297	120	-16.92	0.24	
22	4	5	186.77	297	120	36.77	0.53	
23	9	8	153.93	297	120	1.62	0.02	
24	3	4	146.18	297	120	53.80	0.78	
25	1000	3	92.09	297	120	53.80	0.78	
26	10	12	170.91	204	110	-0.28	0.01	
27	11	13	161.29	204	110	-0.49	0.01	
28	9	107	72.78	297	120	1.03	0.01	
30	102	8	78.61	297	120	-9.55	0.14	
32	115	14	73.28	297	120	-5.08	0.07	
34	122	113	199.82	297	120	17.89	0.26	
36	107	15	78.35	297	120	0.00	0.00	
38	113	109	106.78	204	110	2.29	0.07	
39	109	107	116.92	204	110	1.04	0.03	
41	118	113	114.97	204	110	-1.79	0.05	
42	14	118	109.64	204	110	-0.94	0.03	
43	7	120	128.07	204	110	-2.20	0.07	
44	120	102	92.43	204	110	-0.86	0.03	
46	120	115	154.08	204	110	-2.43	0.07	
48	122	1001	10.00	297	120	-25.51	0.37	


Hydraulic Model Results -Fire Flow Analysis 267 L/s

ID	Static Demand	Static Pressure		Static Fire-Flow Head Demand		Residual Pressure		Available Flow at Hydrant	Available Flow Pressure	
	(L/s)	(psi)	(Kpa)	(m)	(L/s)	(psi)	(Kpa)	(L/s)	(psi)	(Kpa)
3	0.00	66.86	460.99	141.81	167	61.06	421.00	1012.96	20	137.90
4	0.00	62.28	429.41	138.02	167	53.03	365.63	720.86	20	137.90
5	0.00	60.43	416.65	135.66	167	51.23	353.22	623.57	20	137.90
6	6.15	59.05	407.14	135.47	167	47.32	326.26	452.88	20	137.90
7	6.29	57.41	395.83	133.89	167	48.21	332.40	500.51	20	137.90
8	0.38	56.93	392.52	133.87	167	49.53	341.50	651.79	20	137.90
9	0.36	56.92	392.45	133.78	167	49.15	338.88	581.95	20	137.90
12	6.44	58.22	401.42	135.03	167	48.07	331.43	469.18	20	137.90
14	1.08	56.12	386.94	132.83	167	49.87	343.84	662.19	20	137.90
15	0.00	54.56	376.18	133.71	167	43.44	299.51	387.76	20	137.90
102	0.19	56.79	391.56	133.87	167	48.46	334.12	549.48	20	137.90
107	0.95	56.52	389.69	133.71	167	47.66	328.61	496.99	20	137.90
109	0.56	55.86	385.14	132.87	167	43.45	299.58	344.31	20	137.90
113	2.83	55.33	381.49	132.13	167	50.00	344.74	709.69	20	137.90
115	0.50	56.60	390.25	133.42	167	49.58	341.84	631.69	20	137.90
118	0.38	56.38	388.73	132.48	167	44.27	305.23	353.24	20	137.90
120	0.49	56.94	392.59	133.80	167	46.02	317.30	415.84	20	137.90
122	3.46	48.85	336.81	128.48	167	48.60	335.09	2259.54	20	137.90
10	5.27	58.49	403.28	134.81	267	47.62	328.33	621.14	20	137.90
11	0.87	58.00	399.90	134.34	267	47.95	330.61	632.16	20	137.90


160401085-2020-02-06-JUNCTION ID

160401085-2020-02-06-PIPE ID

160401085-2020-02-06- PIPE DIAMETER

	V	Vatermair	Table Deman		ations	
	Numbe	er of Units	_		Demand (L/s	6)
Node	Town	Apartment Condo	Pop.	High Pres.	Max Daily	Peak Hour
1	5		14	0.06	0.14	0.31
2	7		19	0.08	0.19	0.42
3	10		27	0.11	0.27	0.60
4	4		11	0.04	0.11	0.25
5	7		19	0.08	0.19	0.42
6	6		17	0.07	0.17	0.38
7	16		44	0.18	0.45	0.98
8	18		49	0.20	0.50	1.09
9	8		22	0.09	0.22	0.49
10	6		17	0.07	0.17	0.38
11	6		17	0.07	0.17	0.38
12	9	60	133	0.54	1.35	2.96
13	4	75	146	0.59	1.48	3.25
14	20		54	0.22	0.55	1.20
15	18		49	0.20	0.50	1.09
16	19		52	0.21	0.53	1.16
17	4		11	0.04	0.11	0.25
18	10		27	0.11	0.27	0.60
19	8		22	0.09	0.22	0.49
20	10		27	0.11	0.27	0.60
21			0	0.00	0.00	0.00
22		190	342	1.39	3.46	7.62
23			0	0.00 4.53	0.00 11.33	0.00 24.93

1. Residential Population density: 2.7 people/town, 2.1 people/apartment

2. Residential High Pressure demand = 350L/s/p/d

3. Residential Maximum Daily demand = 2.5 x High Pressure Demand

4. Residential Peak Hour Demand = 2.2 x Maximum Daily Demand

		ble 2 e Data	
Pipe	Length	Diameter	Roughness
1	(m) 87	(mm) 300	120
	87 75	300	120
2 3	75 44	300	120
3 4	44 55		
		300	120
5	59	300	120
6	72	300	120
7	80	300	120
8	38	200	110
9	74	200	110
10	10	200	110
11	45	50	100
12	56	200	110
13	54	200	110
14	74	300	120
15	74	300	120
16	81	300	120
17	84	200	110
18	79	200	110
19	83	200	110
20	68	200	110
21	76	200	110
22	80	200	110
23	72	200	110
24	120	200	110
25	89	200	110
26	75	300	120
27	130	300	120
28	610	300	120
29	330	300	120

Prepared By: NOVATECH Date: January 12, 2018

EXECUTIVE SUMMARY

The following report identifies and evaluates the proposed water distribution system for a development located in the southern area of the City of Ottawa. The proposed Kennedy-Burnett (KB) development and the Nepean Town Centre (NTC) are located south of Strandherd Drive and are bound by Longfields Drive to the east, Cedarview Road to the west and the Jock River to the south (Figure 1-1). The area is currently serviced by the Zone BARR pressure zone within the City of Ottawa water distribution system.

A hydraulic assessment was performed using the City's 2013 Water Master Plan Update model for existing conditions and future conditions. Since this development is located in close proximity to the future 3C boundary, the hydraulic assessment reviewed scenarios in which the development is built in existing conditions, interim conditions, and future network configurations.

In the interim, both development areas are to be serviced by Zone BARR pressures. Based on the evaluation presented herein, it is recommended for the future that the KB area remain within Zone BARR and the NTC area be converted to the Zone 3C pressure zone post zone reconfiguration.

The proposed servicing plan recommends that the KB area will be fed by the existing small diameter Zone Barr watermain that currently feeds a small development in this area and/or by the future Strandherd 406mm diameter watermain. It is recommended that the NTC area continue to be fed by the 762mm diameter watermain along Greenbank and converted to Zone 3C pressures as previously planned. This configuration eliminates the need to connect the two developments with looping watermain across the future Kennedy-Burnett stormwater facilities – a savings of potentially \$2.847 million.

Under pre zone reconfiguration conditions, certain areas within both the KB lands and the NTC lands experience maximum pressures greater than 80 psi. Per the Ontario Building Code, services with pressures greater than 80 psi require pressure mitigation measures to be implemented, in most cases this involves a pressure reduction valve (PRV) on the individual service lines. Any development that proceeds in the interim prior to zone reconfiguration will have to ensure pressure reduction measures are in place as required depending on ground elevations. Under post zone reconfiguration conditions, lands within the KB area remain in the higher pressure zone and will continue to require pressure reduction measures accordingly. Lands within NTC will be located within a lower operating pressure zone and according to the results, maximum pressures are not anticipated to exceed 80 psi and therefore would likely not require pressure reduction measures – the requirement for PRVs in the NTC lands post zone reconfigurations will ultimately be decided once the final zone reconfiguration hydraulics are confirmed and implemented.

With respect to minimum pressure constraints, the results are similar for both areas under pre and post zone reconfiguration. The KB lands are anticipated to maintain minimum pressures greater than 60psi. This value is greater than the City's Design Guideline minimum pressure objective whereas the minimum pressures in NTC are anticipated to be maintained greater than 50psi at the highest ground elevations. This value is greater than the 40 psi minimum allowable pressure per the design guidelines.

A fire flow assessment under maximum day demand conditions was carried out. Under both pre and post zone reconfiguration, available fire flows in the NTC lands are projected to be greater than 15,000L/min along all the larger diameter watermain (305mm and greater). A hydraulic analysis for individual developments will still be required to determine the fire flow requirements and capabilities of the local watermain to provide the necessary fire flow amounts.

Under pre zone reconfiguration conditions, fire flows in the KB lands are limited by the small diameter watermains that feed the area. Available fire flows are limited to approximately 10,080L/min at a residual pressure of 20 psi. As development grows in the KB area, a third connection across Strandherd to an existing watermain along Frasier Fields will help to increase fire flows to a minimum of 12,120L/min along the larger diameter pipe network. Under future network conditions if and when the KB lands connect directly to the future 406mm diameter watermain along Strandherd, the available fire flows in the KB lands are expected to increase significantly and will be capable of providing greater than 15,000L/min.

Hydraulic Assessment March 25, 2014

Scenario 1A:

- Entire study area serviced by Zone BARR with no direct connections between KB and NTC;
- Represents a scenario where KB is developed independently of NTC (Figure 2-3);
- Existing (2012) demands under existing network conditions;
- KB area connected to existing development north of Strandherd;

Scenario 1B:

- Entire study area serviced by Zone BARR with no direct connections between KB and NTC;
- Represents a scenario where KB is developed independently of NTC (Figure 2-3);
- Existing (2012) demands under existing conditions;
- KB area connected to existing development north of Strandherd and a new watermain connection to the existing 254mm diameter pipe on Fraser Fields Way (for additional fire flow support);

Scenario 1C:

- Study area serviced by Zone BARR with direct connections between KB and NTC;
- Represents a scenario where both areas are developed concurrently (Figure 2-4);
- Existing (2012) demands under existing conditions;
- KB area connected to existing development north of Strandherd and two new 305mm diameter watermains connections across the future stormwater facilities to the NTC lands.

Model results are summarized in Table 2-3. Under existing network conditions, 100% of the nodes in the KB & NTC lands exceed the 80 psi threshold requiring pressure reduction measures per the Ontario Building/Plumbing Code.

With respect to minimum pressures under peak demand conditions, all pressures at nodes in the NTC lands remain greater than 51 psi whereas the minimum pressure in the KB lands is 64psi. These minimum pressure values are within acceptable guideline ranges.

Available fire flow to the KB lands is restricted by existing smaller diameter watermain, as shown in Scenario 1A, the minimum fire flow observed is 10,080L/min. With a third connection along Fraser Fields, the fire flow increases to 12,120. If the KB lands were connected to the NTC lands (Scenario 1C) the available fire flow would exceed 15,000L/min.

		AVDY (psi)	PKHR (psi)	Available Fire
Scenario & Area	Zone	Max	Min	Flow (L/min) @ 20 psi
Scenario 1A: KB	BARR	99-102	64-67	10,080
Scenario 1A: NTC	BARR	82-103	51-72	> 15,000
Scenario 1B: KB	BARR	99-102	66-69	12,120
Scenario 1B: NTC	BARR	82-103	51-72	> 15,000
Scenario 1C: KB	BARR	99-102	67-70	> 15,000
Scenario 1C: NTC	BARR	82-103	51-72	> 15,000

Table 2-3: Pre Zone Reconfiguration - Results Under Various Scenarios

* Pressures greater than 80psi exceed the allowable range as per the OBC

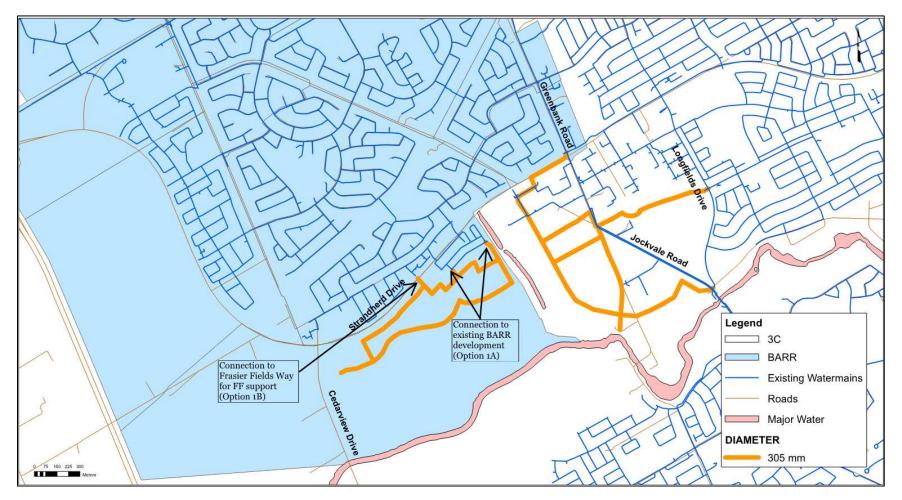


Figure 2-3: Proposed Pipe Layout Pre Zone Reconfiguration – Scenarios 1A and 1B

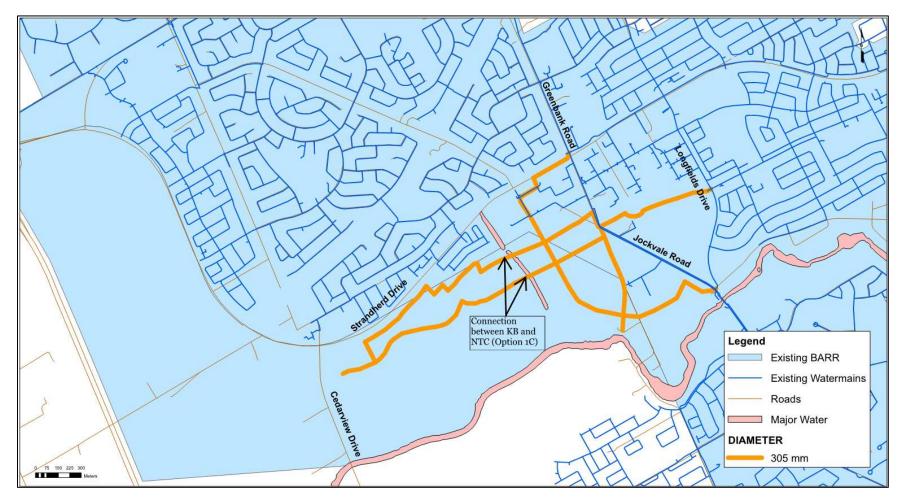


Figure 2-4: Proposed Pipe Layout Pre Zone Reconfiguration – Scenario 1C

Hydraulic Assessment March 25, 2014

2.7.2 Post Zone Reconfiguration – Future Demand Conditions

Scenario 2A: Prior to 406mm diameter watermain along Strandherd

- Represents scenario where KB operates at BARR pressure (*blue*) and NTC operates at 3C pressure (*white*) post zone reconfiguration (Figure 2-5);
- 2031 demands under 2031 network conditions;
- KB area connected to existing development north of Strandherd and a new watermain connection to the existing 254mm diameter pipe on Fraser Fields Way;

Scenario 2B: Post construction of 406mm watermain along Strandherd

- Represents scenario where KB operates at BARR pressure (*blue*) and NTC operates at 3C pressure (*white*) post zone reconfiguration (Figure 2-6);
- 2031 demands under 2031 network conditions;
- KB area connected to existing development north of Strandherd and to a future BARR 406mm diameter watermain along Strandherd;

Scenario 3: KB and NTC both serviced by Zone 3C

- Represents scenario where study area operates at 3C pressure (*white*) post zone reconfiguration (Figure 2-7);
- 2031 demands under 2031 network conditions;
- Two 305mm diameter watermains connecting KB and NTC across future stormwater facilities;
- KB area not connected to existing development along Strandherd.

Model results are summarized in Table 2-4. As shown in Scenario2A and 2B, keeping the KB lands in Zone Barr results in maximum pressures exceeding the 80 psi threshold and would require pressure reduction measures per the Ontario Building/Plumbing Code (similar to existing development conditions). If the KB development is switched to Zone 3C post reconfiguration, the maximum pressures drop below the threshold. For all scenarios, the maximum pressures within the NTC lands remain just below the maximum pressures threshold and therefore would not require pressure reduction measures.

Available fire flow to the KB lands is restricted by existing smaller diameter watermain in the development to the north. In order for fire flows to increase to greater than 15,000 L/min, connections to a new larger diameter watermain along Strandherd would be required. Similarly, if the KB lands were to be directly connected to the NTC lands and disconnected from Zone Barr, this alternative would also increase fire flows to KB lands to greater than 15,000L/min.

		AVDY (psi)	PKHR (psi)	Available Fire
Scenario & Area	Zone	Max	Min	Flow (L/min) @ 20 psi
Scenario 2A: KB	BARR	95-98	78-81	10,980
Scenario 2A: NTC	3C	59-80	51-70	> 15,000
Scenario 2B: KB	BARR	91-94	80-83	> 15,000
Scenario 2B: NTC	3C	59-80	51-70	> 15,000
Scenario 3: KB	3C	76-79	66-69	> 15,000
Scenario 3: NTC	3C	59-80	51-70	> 15,000

Table 2-4: Post Zone Reconfiguration - Results Under Various Scenarios

* Pressures greater than 80psi exceeds the allowable maximum pressure per the OBC

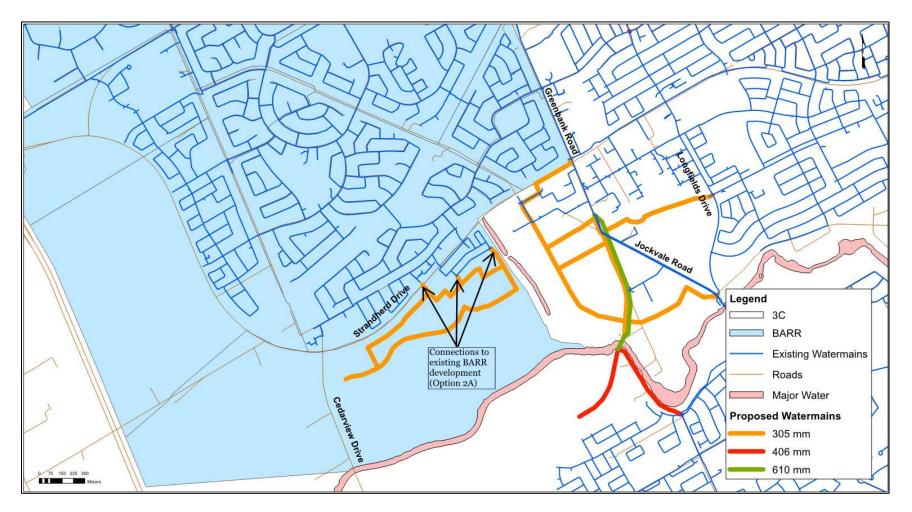


Figure 2-5: Proposed Pipe Layout Post Zone Reconfiguration - Scenario 2A

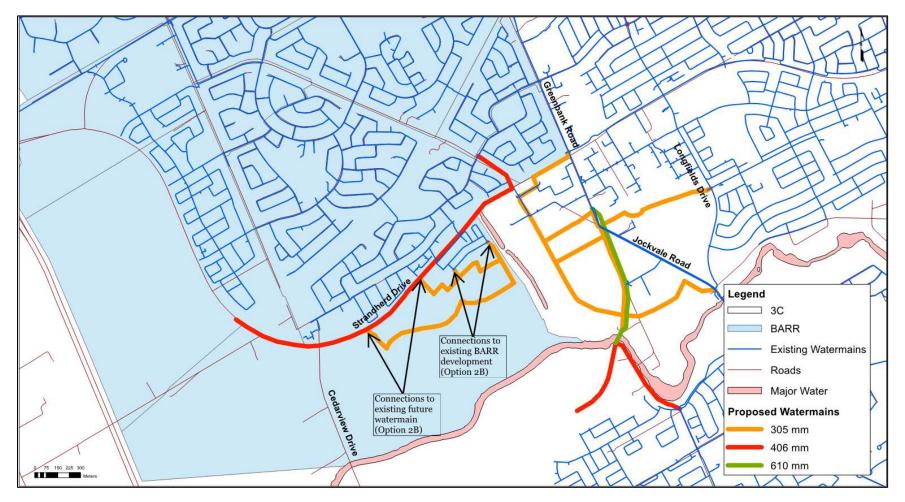


Figure 2-6: Proposed Pipe Layout Post Zone Reconfiguration – Scenario 2B

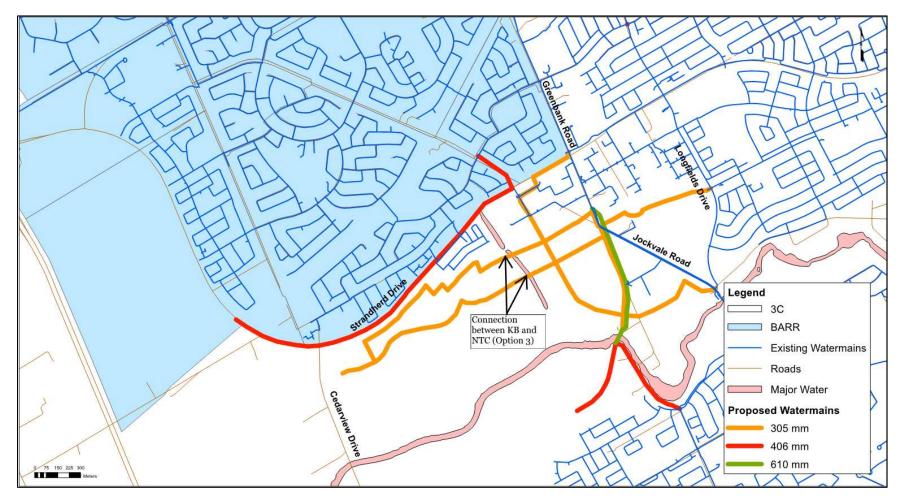


Figure 2-7: Proposed Pipe Layout Post Zone Reconfiguration - Scenario 3

Appendix B Sanitary Sewer Calculations

Appendix B SANITARY SEWER CALCULATIONS

B.1 SANITARY SEWER DESIGN SHEET

		SUBDIVISION		ds - Block	4			ę	DES	ARY S	IEET	र			MAX PEAK F	ACTOR (RES.)=	4.0		AVG. DAILY	FLOW / PERS	NC		L/p/day		MINIMUM VE	ELOCITY		0.60	m/s					
		DATE:		4/30	2020										MIN PEAK F	ACTOR (RES.)	=	2.0		COMMERCIA	4L		28,000	L/ha/day		MAXIMUM V	ELOCITY		3.00	m/s					
		REVISION:			1											CTOR (INDUS	,	2.4		INDUSTRIAL	. ,			L/ha/day		MANNINGS I			0.013						
Stante	<u>.</u>	DESIGNED				FILE NUN	IBER:	160401085								CTOR (ICI >20	%):	1.5		INDUSTRIAL	,			L/ha/day		BEDDING CL	ASS		E						
Jean rec		CHECKED	BY:	A	ЛР										PERSONS /			3.4		INSTITUTION				L/ha/day		MINIMUM CO	OVER		2.50						
															PERSONS /			2.7		INFILTRATIC	0N		0.33	L/s/ha		HARMON CO	ORRECTION F	ACTOR	0.8						
					_				_	_	_				PERSONS /			1.8										_						_	_
AREA ID	FROM	то	AREA		UNITS	RESIDENTI	POP.	POPULATION CUMUI		PEAK	PEAK	AREA	ACCU.	AREA	ACCU.	INDUST AREA	ACCU.	AREA	ACCU.	AREA	ACCU.	C+I+I PEAK	TOTAL	ACCU.	INFILT.	TOTAL FLOW	LENGTH	DIA	MATERIAL	CLASS	SLOPE	CAP	CAP. V	VEL	VEL
NUMBER	M.H.	M.H.	AREA	SINGLE	TOWN	APT	FOF.	AREA	POP.	FACT.	FLOW	AREA	ACCU. AREA	AREA	ACCU. AREA	AREA	ACCO. AREA	AREA	ACCU. AREA	AREA	ACCO. AREA	FLOW	AREA	ACCO. AREA	FLOW	FLOW	LENGTH	DIA	WATERIAL	CLASS	SLOPE	0/			VEL. (ACT.)
			(ha)					(ha)			(l/s)	(ha)	(ha)	(ha)	(ha)	(ha)	(ha)	(ha)	(ha)	(ha)	(ha)	(L/s)	(ha)	(ha)	(l/s)	(L/s)	(m)	(mm)			(%)	(L/s)	(%)	(m/s)	(m/s)
R4A	4	3	0.19	0	12	0	32	0.19	32	3.68	0.4	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0	0.19	0.19	0.1	0.4	31.2	200	PVC	SDR 35	1.00	33.4	1.34%	1.05	0.30
R5A	5	3	0.17	0	12	0	32	0.17	32	3.68	0.4	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0	0.17	0.17	0.1	0.4	30.2	200	PVC	SDR 35	1.00	33.4	1.33%	1.05	0.30
NUM	5	5	0.17	U	12	U	52	0.17	52	5.00	0.4	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0	0.17	0.17	0.1	0.4	50.2	200		051100	1.00	55.4	1.55%	1.00	0.00
R3A	3	2	0.37	0	29	0	78	0.73	143	3.56	1.7	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0	0.37	0.73	0.2	1.9	71.8	200	PVC	SDR 35	0.40	21.1	8.94%	0.67	0.34
	_																																		
R7A	/	6	0.08	0	4	0	11	0.08	11	3.73	0.1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0	0.08	0.08	0.0	0.2	28.7	200	PVC	SDR 35	0.65	27.0	0.58%	0.85	0.18
R9A	9	8	0.18	0	12	0	32	0.18	32	3.68	0.4	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0	0.18	0.18	0.1	0.4	23.0	200	PVC	SDR 35	1.00	33.4	1.33%	1.05	0.30
R8A	8	6	0.20	0	13	0	35	0.38	68	3.63	0.8	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0	0.20	0.38	0.1	0.9	71.4	200	PVC	SDR 35	0.40	21.1	4.34%	0.67	0.27
																													-						
R6A	6	2	0.08	0	5	0	14	0.54	92	3.60	1.1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0	0.08	0.54	0.2	1.3	38.3	200	PVC	SDR 35	0.40	21.1	5.91%	0.67	0.30
R2A	2	STUB 1	0.14	0	12	0	32	1.41	267	3.48	3.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0	0.14	1.41	0.5	3.5	29.5	200	PVC	SDR 35	0.40	21.1	16.45%	0.67	0.41
							-																					200							
EXT-1	EX101	EX105	0.08	0	8	0	22	0.08	22	3.70	0.3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0	0.08	0.08	0.0	0.3									
EXT-2	EV 115	EX101	0.10	0	0	0	24	0.10	24	3.69	0.3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0	0.10	0.10	0.0	0.3									

Appendix B Sanitary Sewer Calculations

B.2 BACKGROUND REPORT EXCERPTS

			SUBDIVISIO	N:							ARY S																									
				SNTC	LANDS				•		IGN SI		•											DESIGN P/	<u>ARAMETERS</u>											
											ity of Otta	wa)				MAX PEAK F	ACTOR (RES)=	4.0		AVG. DAILY	FLOW / PERS	ON	280	L/p/day		MINIMUM VE	LOCITY		0.60	m/s					
	Stant	tor	DATE:		2/20	/2020	-			·	5	,				MIN PEAK F	ACTOR (RES.)	=	2.0		COMMERCIA	4L		28,000	L/ha/day		MAXIMUM V	ELOCITY		3.00	m/s					
	Stam		REVISION			1										PEAKING FA	· ·	,	2.4		INDUSTRIAL	· ,			L/ha/day		MANNINGS r			0.013						
			DESIGNE				FILE NUM	IBER:	160401085	5						PEAKING FA		9%):	1.5		INDUSTRIAL	. ,			L/ha/day		BEDDING CL			В						
			CHECKED) BY:	A	MP										PERSONS /			3.4						L/ha/day		MINIMUM CC			2.50						
																PERSONS / [*] PERSONS / /			2.7 1.8		INFILTRATIC	JN		0.33	L/s/ha		HARMON CO	RRECTION F.	ACTOR	0.8						
	LOCATION	N					RESIDENTI	AL AREA AND	POPULATION				COMN	ERCIAL	INDUS	TRIAL (L)	INDUST	RIAL (H)	INSTITU		GREEN	/ UNUSED	C+I+I		INFILTRATIO	N	TOTAL				Pl	PE				
	REA ID	FROM	ТО	AREA		UNITS		POP.	CUMU	LATIVE	PEAK	PEAK	AREA	ACCU.	AREA	ACCU.	AREA	ACCU.	AREA	ACCU.	AREA	ACCU.	PEAK	TOTAL	ACCU.	INFILT.	FLOW	LENGTH	DIA	MATERIAL		SLOPE	CAP.	CAP. V	VEL.	VEL.
NL	JMBER	M.H.	M.H.	<i>"</i> 、	SINGLE	TOWN	APT		AREA	POP.	FACT.	FLOW	<i>"</i> , ,	AREA	<i>"</i> 、	AREA	<i>"</i> 、、	AREA	<i>"</i> , ,	AREA	<i>"</i>	AREA	FLOW	AREA	AREA	FLOW			<i>.</i>			(0())				(ACT.)
				(ha)					(ha)			(L/s)	(ha)	(ha)	(ha)	(ha)	(ha)	(ha)	(ha)	(ha)	(ha)	(ha)	(L/s)	(ha)	(ha)	(L/s)	(L/s)	(m)	(mm)			(%)	(l/s)	(%)	(m/s)	(m/s)
R	106A	106	105	1.24	0	0	310	558	1.24	558	3.36	6.1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0	1.24	1.24	0.4	6.5	11.2	200	PVC	SDR 35	0.40	21.1	30.7%	0.67	0.49
G	105A	105	104	0.00	0	0	0	0	1.24	558	3.36	6.1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.21	0.21	0.0	0.21	1.45	0.5	6.6	23.7	200	PVC	SDR 35	0.40	21.1	31.0%	0.67	0.49
P	107A	107	104	0.00	0	0	0	0	0.00	0	3.80	0.0	0.00	0.00	0.00	0.00	0.00	0.00	1.61	1.61	0.00	0.00	0.8	1.61	1.61	0.5	1.3	11.0	200	PVC	SDR 35	0.40	21.1	6.2%	0.67	0.31
		107	104	0.00	Ŭ	U	Ŭ	U	0.00	U	0.00	0.0	0.00	0.00	0.00	0.00	0.00	0.00	1.01	1.01	0.00	0.00	0.0	1.01	1.01	0.0	1.0	11.0	200	1.10	OBICOO	0.40	21.1	0.270	0.01	0.01
G104	A, R104A	104	103	0.16	0	5	0	14	1.40	572	3.35	6.2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.61	0.19	0.40	0.8	0.35	3.42	1.1	8.1	48.1	200	PVC	SDR 35	0.40	21.1	38.4%	0.67	0.52
			400	4 70		470		10.1	4 70	404	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		4.70	4 70					5140		0.40	04.4	00.0%	0.07	0.47
R	111A	111	103	1.72	0	172	0	464	1.72	464	3.39	5.1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0	1.72	1.72	0.6	5.7	11.1	200	PVC	SDR 35	0.40	21.1	26.8%	0.67	0.47
R	103A	103	102	0.26	0	10	0	27	3.38	1063	3.23	11.1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.61	0.00	0.40	0.8	0.26	5.40	1.8	13.7	64.1	200	PVC	SDR 35	0.40	21.1	64.7%	0.67	0.61
R	102A	102	101	0.21	0	6	0	16	3.59	1079	3.22	11.3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.61	0.00	0.40	0.8	0.21	5.60	1.8	13.9	60.1	200	PVC	SDR 35	0.40	21.1	65.7%	0.67	0.62
		101	100	0.00	0	0	0	0	3.59	1079	3.22	11.3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.61	0.00	0.40	0.8	0.00	5.60	1.8	13.9	35.0	200	PVC	SDR 35	0.40	21.1	65.7%	0.67	0.62
R	110A	110	109	0.24	0	11	0	30	0.24	30	3.68	0.4	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0	0.24	0.24	0.1	0.4	76.8	200	PVC	SDR 35	0.40	21.1	2.1%	0.67	0.22
	109A	109	108	0.20	0	10	0	27	0.44	57	3.64	0.7	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0	0.20	0.44	0.1	0.8	76.8	200	PVC	SDR 35	0.40	21.1	3.9%	0.67	0.26
	113A	113	112	0.00	0	0	0	0	0.00	0	3.80	0.0	0.00	0.00	0.00	0.00	0.00	0.00	0.62	0.62	0.00	0.00	0.3	0.62	0.62	0.2	0.5	15.1	150	PVC	DR 28	1.00	15.3	3.3%	0.86	0.33
G	112A	112	108	0.00	0	0	0	0	0.00	0	3.80	0.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.62	0.12	0.12	0.3	0.12	0.74	0.2	0.5	26.1	200	PVC	SDR 35	1.00	33.4	1.6%	1.05	0.32
G	108A	108	100	0.00	0	0	0	0	0.44	57	3.64	0.7	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.62	0.05	0.17	0.3	0.05	1.24	0.4	1.4	22.2	200	PVC	SDR 35	0.40	21.1	6.5%	0.67	0.31
G	100A	100	23	0.00	0	0	0	0	4.04	1136	3.21	11.8	0.00	0.00	0.00	0.00	0.00	0.00		2.23		0.92	1.1		7.19	2.4	15.3	2.7	250	PVC	SDR 35	1.32	69.7	21.9%	1.40	0.94
				4.04	U	214	310	1136					0.00		0.00		0.00		2.23		0.92			7.19												
R	117A	117	116	1.60	0	225	0	608	1.60	608	3.34	6.6	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0	1.60	1.60	0.5	7.1	10.3	200	PVC	SDR 35	0.40	21.1	33.6%	0.67	0.51
R	116A	116	115	0.00	0	0	0	0	1.60	608	3.34	6.6	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.22		0.0	0.22	1.82		7.2	76.1	200	PVC	SDR 35	0.40	21.1	34.0%	0.67	0.51
	1104	110		1.50		005		600	4.50	600	2.24		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00		1.50	4 50		74	10.0	200	DVC	CDD 25	0.40	04.4	22.00/	0.07	0.54
R	118A	118	115	1.59	U	225	U	608	1.59	608	3.34	6.6	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0	1.59	1.59	0.5	7.1	10.0	200	PVC	SDR 35	0.40	21.1	33.6%	0.67	0.51
G	115A	115	114	0.00	0	0	0	0	3.19	1215	3.20	12.6	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.10	0.32	0.0	0.10	3.52	1.2	13.7	67.2	200	PVC	SDR 35	0.40	21.1	65.0%	0.67	0.61
																													200							
				3.19	0	450	0	1215					0.00		0.00		0.00		0.00		0.32			3.52												

Appendix C Stormwater Management Calculations

Appendix C STORMWATER MANAGEMENT CALCULATIONS

C.1 STORM SEWER DESIGN SHEET

		SNTC La	nds - Block	4			STORM				DESIGN																												
Stantec	DATE:		2020	-04-30	-		DESIGN (City of				I = a / (t+	.,		(As per 0 1:10 yr	City of Otta	wa Guide	lines, 201	2)																					
	REVISIO	N:	2020				(City of	Ollawa)			a =	732.951		,	1735.688	MANNING	6'S n =	0.013		BEDDING (CLASS =	в																	
	DESIGN				FILE NUM	IBER:	16040108	15			b =	6.199	6.053	6.014		MINIMUM		2.00																					
LOCATION	CHECK	D BY:	A	MP							c =	0.810	0.814	0.816	0.820 RAINAGE AI	TIME OF	ENTRY	10	min									1					PIPE SELE	CTION					
AREA ID	FROM	то	AREA	AREA	AREA	AREA	AREA	с	с	с	с	AxC	ACCUM	AxC	ACCUM.	AxC	ACCUM.	AxC	ACCUM.	T of C	I _{2-YEAR}	I _{5-YEAR}	I _{10-YEAR}	I _{100-YEAR}	Q _{CONTROL}	ACCUM.	Q _{ACT}	LENGTH	PIPE WIDTH	PIPE	PIPE	MATERIAL	CLASS	SLOPE	Q _{CAP}	% FULL	VEL.	VEL.	TIME OF
NUMBER	M.H.	M.H.	(2-YEAR) (ha)	· · · ·	(10-YEAR) (ha)	· · · · ·		(2-YEAR)	(5-YEAR)	(10-YEAR)	(100-YEAR)	(2-YEAR) (ha)	AxC (2YR)	(5-YEAR) (ha)	AxC (5YR) (ha)	(10-YEAR)		, ,	AxC (100YR)		<i>.</i>		(mm/h)	(1/s)	Q _{CONTROL} (L/s)	(CIA/360) (L/s)		OR DIAMETE		SHAPE	~	(-)	%	(FULL) (L/s)		(FULL) (m/s)	(ACT) (m/s)	FLOW
				(ha)	()	(ha)	(ha)	(-)	(-)	(-)	(-)	()	(ha)	((14)	()	(ha)	(ha)	(ha)	(ha)	(min)	(mm/h)	(mm/n)	(mm/n)	()	()	,	(7	(m)	(mm)	(mm)	(-)	(-)	(-)	70	()	()	('/	,	(min)
Block 4 Foundation Drainage	Stub	102	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	10.00 10.00	76.81	104.19	122.14	178.56	0.0	0.0	0.0	11.8	200	200	CIRCULAR	PVC		1.00	33.3	0.0%	1.05	0.00	0.00
Block 5 Foundation Drainage	Stub	102	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	10.00	76.81	104.19	122.14	178.56	0.0	0.0	0.0	9.9	200	200	CIRCULAR	PVC	-	1.00	33.3	0.0%	1.05	0.00	0.00
																				10.00																			
L102C	CB1020	0 102	0.09	0.00	0.00	0.00	0.00	0.84	0.00	0.00	0.00	0.077	0.077	0.000	0.000	0.000	0.000	0.000	0.000	10.00	76.81	104.19	122.14	178.56	0.0	0.0	16.5	12.2	200	200	CIRCULAR	PVC	-	1.00	33.3	49.4%	1.05	0.90	0.23
L102D	CB1020	0 102	0.12	0.00	0.00	0.00	0.00	0.82	0.00	0.00	0.00	0.102	0.102	0.000	0.000	0.000	0.000	0.000	0.000	10.23 10.00	76.81	104.19	122.14	178.56	0.0	0.0	21.7	20.1	200	200	CIRCULAR	PVC	-	1.00	33.3	65.3%	1.05	0.97	0.34
L102B	CB102	3 102	0.42	0.00	0.00	0.00	0.00	0.79	0.00	0.00	0.00	0.329	0.329	0.000	0.000	0.000	0.000	0.000	0.000	10.34 10.00	76.81	104.19	122.14	178.56	0.0	0.0	70.2	20.0	375	375	CIRCULAR	PVC		1.00	110.5	63.5%	1.05	0.97	0.34
																				10.34																			
L102A	102	101	0.16	0.00	0.00	0.00	0.00	0.81	0.00	0.00	0.00	0.126	0.634	0.000	0.000	0.000	0.000	0.000	0.000	10.34 11.60	75.51	102.41	120.04	175.47	0.0	0.0	133.1	82.2	450	450	CIRCULAR	CONCRETE	-	0.40	188.1	70.7%	1.15	1.09	1.26
Block 6 Foundation Drainage	Stub 104	104 103	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.000 0.000	0.000 0.000	0.000 0.000	0.000 0.000	0.000 0.000	0.000 0.000	0.000 0.000	0.000 0.000		76.81 76.81	104.19 104.19	122.14 122.14		0.0	0.0	0.0	18.7 68.2	200 300	200 300	CIRCULAR	PVC PVC	-	1.00 0.40	33.3 60.8	0.0%	1.05 0.86	0.00	0.00
																				10.00																			
L105A	CB105/		0.11	0.00	0.00	0.00	0.00	0.81	0.00	0.00	0.00	0.090	0.090	0.000	0.000	0.000	0.000	0.000	0.000	10.00	76.81	104.19	122.14	178.56	0.0	0.0	19.2	4.3	200	200	CIRCULAR	PVC	-	1.00	33.3	57.7%	1.05	0.94	0.08
	105	103	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.000	0.090	0.000	0.000	0.000	0.000	0.000	0.000	10.08 10.70	76.51	103.79	121.67	177.86	0.0	0.0	19.1	26.3	300	300	CIRCULAR	PVC	-	0.50	68.0	28.1%	0.97	0.70	0.63
	103	101	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.000	0.090	0.000	0.000	0.000	0.000	0.000	0.000	10.70	74.20	100.61	117.92	172.36	0.0	0.0	18.6	41.3	300	300	CIRCULAR	PVC		0.40	60.8	30.5%	0.86	0.64	1.08
																				11.78																			
Blcok 1 Foundation Drainage	Stub	101	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	10.00	76.81	104.19	122.14	178.56	0.0	0.0	0.0	11.2	200	200	CIRCULAR	PVC	-	1.00	33.3	0.0%	1.05	0.00	0.00
																				10.00																			
L101A	101	Stub	0.37	0.00	0.00	0.00	0.00	0.82	0.00	0.00	0.00	0.305	1.029	0.000	0.000	0.000	0.000	0.000	0.000	11.78 12.18	70.58	95.64	112.06	163.76	0.0	0.0	201.8	25.2	675 675	675 675	CIRCULAR	CONCRETE	-	0.30	480.3	42.0%	1.30	1.06	0.40
																													0.0	0.0									

Appendix C Stormwater Management Calculations

C.2 PCSWMM MODEL INPUT

[TITLE] 160401085-2020-04-16-100yrCHI-Block4.inp 160401085 - SNTC Lands Assessment Detailed Design Block 4, located north of the Jock River and west of Greenbank Road.

 [OPTIONS]

 ;;Options
 Value

 ;;Options
 Value

 ;;Options
 LPS

 INFILTRATION
 HORTON

 FLOW_UNITS
 LPS

 INFILTRATION
 HORTON

 FLOW_OUTING
 DYNWAYE

 LINK_OFFSETS
 ELEVATION

 MIN_SLOPE
 0

 ALLOW_PONDING
 YES

 START_DATE
 01/02/2018

 START_TIME
 00:00:00

 REPORT_START_DATE
 01/03/2018

 END_DATE
 01/03/2018

 END_TIME
 00:00:00

 SWEEP_START
 01/01

 SWEEP_START
 01/01

 SWEEP_START
 01/01

 SWEEP_START
 00:01:00

 REPORT_STEP
 00:01:00

 ROUTING_STEP
 0

 RULE_STEP
 00:01:00

 ROUTING_STEP
 0

 RULE_STEP
 00:00:00

 INERTIAL_DAMPING
 PARTIAL

 NORMAL_FLOW_LIMITED
 BOTH

 POCE_MAIN_EQUATION
 H=W

 VARIABLE_STEP
 0

 MIN_SURFAREA
 0

 <td

Page 1

[RAINGAGES]			16040	1085-2020-0	04-16-100y	rCHI-Bloc	k4.inp				
;; ;;Name	Rain Type	Time Intrvl	Snow Catch	Data Source							
;; Raingage	INTENSITY	0:10	1.0	TIMESERIE	S Chicago	100y_3h_1	Om_City				
[SUBCATCHMENTS]								_			
,,Name	Raingage		Outlet	E	Total Area	Pcnt. Imperv	Width	Pcnt Slop		Curb Length	Snow Pack
L101A	Raingage		L101A	-S	0.371714	88.571	370	3		0	
L102A	Raingage		L102A	-S	0.155965	87.143	116	3		0	
L102B	Raingage		L102B	-S	0.416519	84.286	314	3		0	
L102C	Raingage		L102C-	-S	0.091812	91.429	40	3		0	
L102D	Raingage		L102D	-S	0.124257	88.571	54	3		0	
L105A	Raingage		L105A-	-S	0.111158	87.143	56	3		0	
UNC-1	Raingage		OF1		0.142651	60	321	2		0	
UNC-2	Raingage		OF2		0.03007	42.857	200	3		0	
UNC-3	Raingage		OF3		0.1184	42.857	305	3		0	
UNC-4	Raingage		OF4		0.02893	42.857	200	3		0	
[aug. ag. a]											
[SUBAREAS] ;;Subcatchment	N-Imperv	N-Per	v s	5-Imperv	S-Perv	PctZero	Rout	ето	Pct	Routed	
LIO1A LIO2A LIO2B LIO2C LIO2D LIO5A UNC-1 UNC-2 UNC-3 UNC-4	0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013	0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25		L.57 L.57 L.57 L.57 L.57 L.57 L.57 L.57	4.67 4.67 4.67 4.67 4.67 4.67 4.67 4.67	0 0 0 0 0 0 0 0 0 0 0 0 0	PERV PERV	ET ET ET ET	90 70 95 90		
[INFILTRATION] ;;Subcatchment	MaxRate	MinRa	te I	Decay	DryTime	MaxInfi	1				
;;					Page 2						

L101A L102A L102B L102C L102D L105A UNC-1 UNC-2 UNC-3 UNC-4	76.2 76.2 76.2 76.2 76.2 76.2 76.2 76.2	13.2 13.2 13.2 13.2 13.2 13.2 13.2 13.2	16040108 4.1. 4.1. 4.1. 4.1. 4.1. 4.1. 4.1. 4.1	4 7 4 7 4 7 4 7 4 7 4 7 4 7 4 7 4 7	-100угСН: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	I-Block4.	inp		
[OUTFALLS] ;; ;;Name	Invert Elev.	туре		tage/Table ime Series	Tide Gate	Route To			
, 218 MAJ-1 MAJ-2 OF1 OF2 OF3 OF4	89.827 93.33 93.24 0 93.52 93.44	FIXED FREE FREE FREE FREE FREE FREE FREE	9	1.75	NO NO NO NO NO NO NO				
[STORAGE] ;; ;;Name Infiltration par ;;	ameters	Max. Depth	Init. Depth	Storage Curve	Curve Params				Evap. Frac.
L101A1-S L101A-S L101A-S1 L102A-S1 L102A-S1 L102B-S1 L102B-S1 L102C-S L102C-S1 L102C-S1 L102D-S1 L102A-S1 STM-101 STM-102 STM-103	93.99 92.12 93.65 92.29 93.77 91.94 93.87 93.97 92.52 94.1 92.26 93.94 92.08 93.91 90.606 91.071	0.35 1.73 0.35 1.93 1.93 0.35 1.93 0.35 1.73 0.35 1.73 0.35 1.73 0.35 1.73 0.35 1.73 0.35 2.977 2.863	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	FUNCTIONAL TABULAR FUNCTIONAL TABULAR FUNCTIONAL FUNCTIONAL TABULAR FUNCTIONAL FUNCTIONAL FUNCTIONAL FUNCTIONAL FUNCTIONAL FUNCTIONAL FUNCTIONAL	L101A-V 0 L102A-V 0 L102B-V 0 102C-V 0 L102D-V 0 0 0 0 0 0 0			000000000000000000000000000000000000000	
STM-104	91.404 91.232	2.583	0.346 0.518	FUNCTIONAL		0	0	0	0

Page 3

160401085-2020-04-16-100yrCHI-Block4.inp

[CONDUITS] ;; Max. ;;Name Flow	Inlet Node	Outlet Node	Length	Manning N	Inlet Offset	Outlet Offset		
c1	L105A-S1	L105A-S	29.884	0.013	93.91	93.46	0	0
C10	L102D-S	L102D-S1	18.031	0.013	93.64	93.94	0	0
C11	L102B-S2	L102D-S	10.552	0.013	93.97	93.64	0	0
C12	L102B-S2	L102B-S	21.381	0.013	93.97	93.52	0	0
C13	L102D-S1	L102B-S1	24.144	0.013	93.94	93.87	0	0
C14	L101A1-S	L101A-S	75.133	0.013	93.99	93.5	0	0
C15	L101A1-S	L102B-S	31.108	0.013	93.99	93.52	0	0
C16	L101A-S1	MAJ-1	18.852	0.013	93.65	93.33	0	0
C17	L105A-S	MAJ-2	9.672	0.013	93.46	93.24	0	0
C3	L101A-S	L101A-S1	14.841	0.013	93.5	93.65	0	0
C4	L102A-S1	L101A-S	18.287	0.013	93.77	93.5	0	0
C5	L102A-S	L102A-S1	18.719	0.013	93.67	93.77	0	0
C6	L102B-S1	L102A-S	20.072	0.013	93.87	93.67	0	0
C7	L102C-S	L102C-S1	10.31	0.013	93.9	94.1	0	0
C8	L102C-S1	L102B-S1	46.399	0.013	94.1	93.87	0	0
С9	L102B-S	L102B-S1	21.768	0.013	93.52	93.87	0	0
Pipe_3	STM-102	STM-101	82.253	0.013	91.46	91.131	0	0
Pipe_4	STM-103	STM-101	41.48	0.013	91.371	91.206	0	0
Pipe_46	STM-101	218	40.4	0.013	90.906	90.83	0	0
Pipe_5	STM-104	STM-103	68.185	0.013	91.704	91.431	0	0

OPTETCES										
ORIFICES] ; ;Name	Inlet Node	Ou1 Not	tlet de	Ori Typ	fice	Crest Height	Disch. Coeff.	Gate	Open/Close Time	
; 101A-IC 102A-IC	L101A-S L102A-S		4-101 4-101	SID SID		92.12 92.29	0.572	NO NO	0 0	
102B-IC 102C-IC	L102B-S L102C-S	STN	4-102 4-102	SID	E	91.94 92.52	0.572 0.572	NO NO	0 0	
102D-IC 105A-IC	L102D-S L105A-S		4-102 4-105	SID SID		92.26 92.08	0.572 0.572	NO NO	0 0	
XSECTIONS] ;Link ;	Shape	Geom1		Geom2	Geom3	Geom4	Ва	rrels		
i 10	IRREGULAR IRREGULAR	Half-12 Half-17	7m-MC	0	0	0	1			
11 12	IRREGULAR IRREGULAR	Half-17 Half-17	7m-MC	0 0 0	0 0 0	0 0 0	1 1 1			
13 14 15	IRREGULAR IRREGULAR IRREGULAR	Half-17 Half-17 Half-17	2m-MC	0	0	0	1 1			
16	IRREGULAR	Half-17 Half-8	7m-MC	Ŏ Ŏ	Ö O	0 0	1 1			
17 3 4 5	IRREGULAR	Half-17 Half-17	7m-мс 7m-мс	0 0	0 0	0 0	1 1			
6	IRREGULAR IRREGULAR	Half-17 Half-17	7m-MC	0 0	0 0	0 0	1 1			
7	IRREGULAR IRREGULAR	Half-17 Half-17	7m-MC	0	0	0	1			
9 ipe_3	IRREGULAR CIRCULAR	Half-17 0.45	/m-MC	0	0	0	1			
ipe_4 ipe_46 ipe_5	CIRCULAR CIRCULAR CIRCULAR	0.3 0.675 0.3		0 0 0	0 0 0	0 0 0	1 1 1			
ipe_6 101A-IC	CIRCULAR CIRCULAR	0.3 0.178		0 0	0 0	0	1			
102A-IC 102B-IC	CIRCULAR	$0.108 \\ 0.178$		0 0	0 0	0 0 0 0 0				
102C-IC 102D-IC	CIRCULAR CIRCULAR	0.094		0	0	0				
105A-IC TRANSECTS]	CIRCULAR	0.094		0	0	0				
245m		16	0401085-2	020-04-16	-100yrCHI	-Block4.inp)			
1 18mROW R 0.35 0	.025 0.013 7 0.15 8.5 0.35	16 10 10 28.5	0401085-2 18.5 0	020-04-16 0.0 10	-100yrCHI 0.0 0.13	-Block4.ing 0.0 14.25	0.0	0.0 18.5		
C 0.025 0 1 18mROW R 0.35 0 R 0.15 1 Full street,	7 0.15 8.5 0.35 width = 11m,	10 10 28.5	18.5 0	0.0 10	0.0 0.13	0.0 14.25	0.0	18.5	nk-height = 0	.23m.
C 0.025 0 1 18mROW R 0.35 0 R 0.15 1 Full street, C 0.025 0 1 24mROW	$ \begin{array}{r} 7 \\ 0.15 \\ 8.5 \\ 0.35 \\ \text{width} = 11m, \\ .025 \\ 7 \end{array} $	$ 10 \\ 10 \\ 28.5 \\ curb = 0.1 \\ 10 $	18.5 0 15m , cro 21	0.0 10 ss-slope 0.0	0.0 0.13 = 0.016m/1 0.0	0.0 14.25 n, bank-slo 0.0	0.0 0 pe = 0.0 0.0	18.5 2m/m, bar 0.0	nk-height = 0	.23m.
C 0.025 0 1 18mROW R 0.35 0 R 0.15 1 Full street, C 0.025 0 1 24mROW R 0.35 0 R 0.15 2	$ \begin{array}{c} & 7 \\ & 0.15 \\ 8.5 & 0.35 \\ \text{width} = 11m, \\ .025 & 0.013 \\ & 7 \\ 0.15 \\ 1 & 0.35 \end{array} $	$ \begin{array}{r} 10 \\ 10 \\ 28.5 \end{array} $ curb = 0.1 10 10 31	18.5 0 15m , cro 21 0	0.0 10 ss-slope 0.0 10	0.0 0.13 = 0.016m/n 0.0 0.165	0.0 14.25 m, bank-slo 0.0 15.5	$0.0 \\ 0$ pe = 0.0 $0.0 \\ 0$	18.5 2m/m, bar 0.0 21		
C 0.025 0 1 18mROW R 0.35 0 R 0.15 1 Full street, C 0.025 0 1 24mROW R 0.35 0 R 0.15 2 Full street, C 0.025 0	$ \begin{array}{c} & 7 \\ 0.15 \\ 0.35 \\ \text{width} = 11m, \\ .025 & 0.013 \\ 7 \\ 0.15 \\ 1 & 0.15 \\ 1 & 0.55 \\ \text{width} = 5.5m, \\ .025 & 0.013 \end{array} $	$ \begin{array}{r} 10 \\ 10 \\ 28.5 \\ curb = 0.1 \\ 10 \\ 31 \\ curb = 0. \end{array} $	18.5 0 15m , cro 21 0 .15m , cro	0.0 10 ss-slope 0.0 10 oss-slope	0.0 0.13 = 0.016m/n 0.0 0.165 = 0.03m/n	0.0 14.25 m, bank-slo 0.0 15.5 m, bank-slo	$0.0 \\ 0$ pe = 0.0 $0.0 \\ 0$ pe = 0.0	18.5 2m/m, bar 0.0 21 2m/m, bar		
C 0.025 0 1 18mRoW R 0.35 0 R 0.15 1 Full street, C 0.025 0 R 0.15 2 R 0.15 2 Full street, C 0.025 0 Full street, C 0.025 0 1 8.5m-ROW	$ \begin{array}{c} & & 7 \\ & 0.15 \\ 8.5 \\ 0.35 \\ \\ width \\ 1 \\ 0.15 \\ 0.35 \\ \\ width \\ .025 \\ 0.013 \\ 7 \\ 0.15 \\ 0.35 \\ \\ 0.013 \\ 7 \\ \end{array} $	$ \begin{array}{c} 10 \\ 10 \\ 28.5 \\ curb = 0.1 \\ 10 \\ 31 \\ curb = 0. \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10$	18.5 0 15m , cro 21 0	0.0 10 ss-slope 0.0 10	0.0 0.13 = 0.016m/n 0.0 0.165	0.0 14.25 m, bank-slo 0.0 15.5	$0.0 \\ 0$ pe = 0.0 $0.0 \\ 0$	18.5 2m/m, bar 0.0 21		
C 0.025 0 1 18mRow R 0.35 0 R 0.15 1 Full street, C 0.025 0 1 24mRow R 0.35 0 R 0.15 2 Full street, C 0.025 0 1 8.5m-Row R 0.35 0 R 0.15 1 C 0.013 0	$\begin{array}{c} & & & 7 \\ & & 0.15 \\ 0.35 \\ \text{width} &= 11m, \\ .025 & 0.013 \\ & & 7 \\ 0.15 \\ 1 & 0.35 \\ \text{width} &= 5.5m, \\ .025 & 0.013 \\ & & 7 \\ 5.5 & 0.35 \\ .025 & 0.013 \end{array}$	$ \begin{array}{r} 10\\ 10\\ 28.5\\ curb = 0.1\\ 10\\ 31\\ curb = 0.1\\ 10\\ 10\\ 25.5\\ \end{array} $	18.5 0 15m , cro 21 0 .15m , cro 15.5	0.0 10 ss-slope 0.0 10 oss-slope 0.0 10	0.0 0.13 = 0.016m/n 0.0 0.165 = 0.03m/n 0.0 0.13	0.0 14.25 m, bank-slo 0.0 15.5 m, bank-slo 0.0 12.75	$pe = 0.0$ $0^{0.0}$ $pe = 0.0$ $0^{0.0}$ $pe = 0.0$ $0^{0.0}$	18.5 2m/m, bar 0.0 21 2m/m, bar 0.0 15.5		
C 0.025 0 1 18mRow R 0.35 0 R 0.15 1 Full street, C 0.025 0 1 24mRow R 0.35 0 R 0.15 2 Full street, C 0.025 0 1 8.5m-ROW R 0.35 0 R 0.15 1 C 0.013 0 1 Half-12m-M	$\begin{array}{c} & & & 7 \\ & & 0.15 \\ 0.35 \\ \text{width} &= 11\text{m}, \\ 0.025 \\ & & 0.013 \\ 7 \\ 0.15 \\ 0.35 \\ \text{width} &= 5.5\text{m}, \\ 0.025 \\ 0.15 \\ 0.35 \\ 0.025 \\ 0.013 \\ 0.11 \\ \end{array}$	$ \begin{array}{r} 10\\ 10\\ 28.5\\ curb = 0.1\\ 10\\ 31\\ curb = 0.1\\ 10\\ 10\\ 25.5\\ \end{array} $	18.5 0 15m , cro 21 0 .15m , cro 15.5	0.0 10 ss-slope 0.0 10 oss-slope 0.0	0.0 0.13 = 0.016m/1 0.0 0.165 = 0.03m/1 0.0	0.0 14.25 m, bank-slo 0.0 15.5 m, bank-slo 0.0	$0.0 \\ 0 \\ 0 \\ 0 \\ 0.0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	18.5 2m/m, bar 0.0 21 2m/m, bar 0.0		
C 0.025 0 1 18mRoW R 0.35 0 R 0.15 1 Full street, C 0.025 0 R 0.15 2 Full street, C 0.025 0 R 0.15 2 Full street, C 0.025 0 1 8.5m-ROW R 0.35 0 R 0.15 1 C 0.013 0 Half-12m-M R 0.17 0 R 0.11 1	$\begin{array}{c} & & & 7 \\ 0.15 \\ 0.35 \\ \text{width} &= 11\text{m}, \\ 0.025 \\ 0.013 \\ 7 \\ 0.15 \\ 0.35 \\ \text{width} &= 5.5\text{m}, \\ 0.025 \\ 0.013 \\ 7 \\ 5.5 \\ 0.35 \\ 0.35 \\ 0.013 \\ 6 \\ 0.11 \\ 2 \end{array}$	$ \begin{array}{c} 10 \\ 10 \\ 28.5 \\ curb = 0.1 \\ 10 \\ 31 \\ curb = 0. \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10$	18.5 0 15m , cro 21 0 .15m , cro 15.5 0 9	0.0 10 ss-slope 0.0 10 oss-slope 0.0 10 0.0	0.0 0.13 = 0.016m/1 0.0 0.165 = 0.03m/1 0.0 0.13 0.0	0.0 14.25 m, bank-slo 0.0 15.5 m, bank-slo 0.0 12.75 0.0	$\begin{array}{c} 0.0\\ 0\\ pe = 0.0\\ 0.0\\ 0\\ pe = 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0 \end{array}$	18.5 2m/m, bar 0.0 21 2m/m, bar 0.0 15.5 0.0		
C 0.025 0 1 18mRoW R 0.35 0 R 0.15 1 Full street, C 0.025 0 1 24mRoW R 0.35 0 Full street, C 0.025 0 1 8.5m-ROW R 0.15 1 C 0.013 0 1 Half-12m-M R 0.11 1 C 0.013 0 1 Half-17m-M	$\begin{array}{c} & 7 \\ 0.15 \\ 0.35 \\ \text{width} = 11m, \\ 0.025 \\ 0.013 \\ 0.15 \\ 0.35 \\ \text{width} = 5.5m, \\ 0.013 \\ 7 \\ 0.15 \\ 0.013 \\ 7 \\ 5.5 \\ 0.35 \\ 0.013 \\ 6 \\ 0.11 \\ 0.025 \\ 0.013 \\ 6 \\ 0.013$	$ \begin{array}{c} 10\\ 10\\ 28.5\\ curb = 0.1\\ 10\\ 31\\ curb = 0.1\\ 10\\ 25.5\\ 3\\ 3\end{array} $	18.5 0 15m , cro 21 0 .15m , cro 15.5 0 9 0.06 14	0.0 10 ss-slope 10 oss-slope 0.0 10 0.0 3	$\begin{array}{c} 0.0\\ 0.13\\ = 0.016m/r\\ 0.0\\ 0.165\\ = 0.03m/r\\ 0.0\\ 0.13\\ 0.0\\ 0\\ 0.0\end{array}$	0.0 14.25 m, bank-slo 0.0 15.5 m, bank-slo 0.0 12.75 0.0 9	$\begin{array}{c} 0.0\\ 0\\ pe = 0.0\\ 0.0\\ 0\\ pe = 0.0\\ 0.0\\ 0\\ 0.05\\ 0.0\\ 0.0\end{array}$	18.5 2m/m, bar 0.0 21 2m/m, bar 0.0 15.5 0.0 9		
C 0.025 0 1 18mRow R 0.35 0 Full street, C 0.025 0 1 24mRow R 0.35 0 R 0.15 2 Full street, C 0.025 0 1 8.5m-ROW R 0.35 0 R 0.15 1 C 0.013 0 1 Half-12m-M R 0.11 1 C 0.013 0 1 Half-17m-M R 0.36 0	$\begin{array}{c} & 7 \\ 0.15 \\ 0.35 \\ \text{width} = 11m, \\ 0.025 \\ 0.013 \\ 0.15 \\ 0.35 \\ \text{width} = 5.5m, \\ 0.013 \\ 7 \\ 0.15 \\ 0.013 \\ 7 \\ 0.15 \\ 0.013 \\ 7 \\ 0.15 \\ 0.013 \\ 0.11 \\ 0.025 \\ 0.013 \\ 6 \\ 0.013 \\ 0.01$	$ \begin{array}{r} 10\\ 10\\ 28.5\\ curb = 0.1\\ 10\\ 31\\ curb = 0.1\\ 10\\ 10\\ 25.5\\ \end{array} $	18.5 0 15m , cro 21 0 .15m , cro 15.5 0 9 0.06	0.0 10 ss-slope 0.0 10 oss-slope 0.0 10 0.0 3	0.0 0.13 = 0.016m/n 0.0 0.165 = 0.03m/n 0.0 0.13 0.0 0	0.0 14.25 m, bank-slo 0.0 15.5 m, bank-slo 0.0 12.75 0.0 9	$\begin{array}{c} 0.0\\ 0\\ pe = 0.0\\ 0.0\\ 0\\ pe = 0.0\\ 0.0\\ 0\\ 0.05\\ \end{array}$	18.5 2m/m, bar 0.0 21 2m/m, bar 0.0 15.5 0.0 9		
C 0.025 0 1 18mRoW R 0.35 0 R 0.15 1 Full street, C 0.025 0 1 24mRoW R 0.35 0 R 0.15 2 Full street, C 0.015 1 C 0.013 0 1 Half-12m-M R 0.36 0 R 0.14 1 C 0.013 0 1 Half-18mR0	$\begin{array}{c} & 7 \\ 0.15 \\ 0.35 \\ \text{width} = 11m, \\ 0.025 \\ 0.013 \\ 0.15 \\ 0.35 \\ 0.013 \\ 7 \\ 0.15 \\ 0.013 \\ 7 \\ 0.15 \\ 0.013 \\ 7 \\ 0.15 \\ 0.013 \\ 7 \\ 0.11 \\ 0.025 \\ 0.013 \\ 0.27 \\ 0.27 \\ 0.025 \\ 0.013 \\ 9 \\ 0.27 \\ 0.013 \\ 0.013 \\ $	$ \begin{array}{r} 10\\ 10\\ 28.5\\\\curb = 0.1\\\\10\\ 31\\\\curb = 0.1\\\\10\\ 25.5\\\\3\\3\\\\3\\\\0.0\end{array} $	18.5 0 15m , cro 21 0 .15m , cro 15.5 0 9 0.06 14 0.22 4.25	0.0 10 ss-slope 0.0 10 oss-slope 0.0 10 0.0 3 0.0 3	$\begin{array}{c} 0.0\\ 0.13\\ = 0.016m/r\\ 0.0\\ 0.165\\ = 0.03m/r\\ 0.0\\ 0.13\\ 0.0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0$	0.0 14.25 m, bank-slo 0.0 15.5 m, bank-slo 0.0 12.75 0.0 9 0.0 14	$\begin{array}{c} 0.0\\ 0\\ pe = 0.0\\ 0.0\\ 0\\ pe = 0.0\\ 0.0\\ 0\\ 0.05\\ 0.0\\ 0.0\end{array}$	18.5 2m/m, bar 0.0 21 2m/m, bar 0.0 15.5 0.0 9 0.0 14 0.0		
C 0.025 0 1 18mRow R 0.35 0 R 0.15 1 Full street, C 0.025 0 1 24mRow R 0.35 0 R 0.15 2 Full street, C 0.025 0 1 8.5m-Row R 0.35 0 R 0.15 1 C 0.013 0 1 Half-12m-M R 0.36 0 0 0.13 0 1 Half-18mRO R 0.13 0 1 Half-18mRO R 0.13 0	$\begin{array}{c} & 7 \\ 0.15 \\ 0.35 \\ 0.035 \\ 0.013 \\ 7 \\ 0.013 \\ 0.013 \\ 0.013 \\ 0.013 \\ 0.013 \\ 0.013 \\ 0.013 \\ 0.013 \\ 0.013 \\ 0.013 \\ 0.013 \\ 0.011 \\ 0.025 \\ 0.013 \\ 0.27 \\ 0.025 \\ 0.013 \\ 0.27 \\ 0.025 \\ 0.013 \\ 0.27 \\ 0.013 \\ 0.27 \\ 0.013 \\ 0.27 \\ 0.013 \\ 0.013 \\ 0 \\ 0.013 \\ 0 \\ 0.013 \\ 0 \\ 0.013 \\ 0 \\ 0.013 \\ 0 \\ 0.013 \\ 0 \\ 0.013 \\ 0 \\ 0.013 \\ 0 \\ 0.013 \\ 0 \\ 0.013 \\ 0 \\ 0.013 \\ 0 \\ 0.013 \\ 0 \\ 0.013 \\ 0 \\ 0.013 \\ 0 \\ 0.013 \\ 0 \\ 0.013 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	$ \begin{array}{r} 10\\ 10\\ 28.5\\ curb = 0.1\\ 10\\ 31\\ curb = 0.\\ 10\\ 10\\ 25.5\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\end{array} $	18.5 0 21 0 .15m , cro 15.5 0 9 0.06 14 0.22	0.0 10 ss-slope 0.0 10 0.0 10 0.0 3 0.0 3	$\begin{array}{c} 0.0\\ 0.13\\ = 0.016m/n\\ 0.0\\ 0.165\\ = 0.03m/n\\ 0.0\\ 0.13\\ 0.0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0$	0.0 14.25 m, bank-slo 0.0 15.5 m, bank-slo 0.0 12.75 0.0 9	$\begin{array}{c} 0.0\\ 0\\ \end{array}$ $pe = 0.0\\ 0.0\\ 0\\ pe = 0.0\\ 0.0\\ 0.05\\ 0.05\\ 0.05\\ \end{array}$	18.5 2m/m, bar 0.0 21 2m/m, bar 0.0 15.5 0.0 9 0.0 14		
C 0.025 0 1 18mROW R 0.35 0 R 0.15 1 Full street, C 0.025 0 1 24mROW R 0.35 0 R 0.15 2 Full street, C 0.025 0 R 0.15 1 C 0.013 0 1 Half-12m-M R 0.36 0 R 0.11 1 C 0.013 0 1 Half-18mROR R 0.13 0 1 Half-8.5mR	$\begin{array}{c} & & & & & \\ 8.5 & & & 0.15 \\ 0.35 & & & 0.35 \\ \\ \text{width} & = & 11m, \\ 0.013 & & & \\ & & & 0.013 \\ 1 & & & 0.35 \\ \\ \text{width} & = & 5.5m, \\ 0.013 & & & \\ 0.15 & & & 0.013 \\ \\ 5.5 & & & 0.35 \\ 0.25 & & 0.013 \\ \\ 0.25 & & & 0.013 \\ \\ 0 & & & & \\ 0 & & & \\ 0 & & & & \\ 0 & & & &$	$ \begin{array}{c} 10\\ 10\\ 28.5\\ curb = 0.1\\ 10\\ 31\\ curb = 0.1\\ 10\\ 25.5\\ 3\\ 3\\ 3\\ 0.0\\ 4.25\\ 0.0\\ \end{array} $	18.5 0 15m , cro 21 0 .15m , cro 15.5 0 .0.06 14 0.22 4.25 0.15	0.0 10 ss-slope 0.0 10 0.0 10 0.0 3 0.0 3 0.0 4.25	$\begin{array}{c} 0.0\\ 0.13\\ = 0.016m/n\\ 0.0\\ 0.165\\ = 0.03m/n\\ 0.0\\ 0.13\\ 0.0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0$	0.0 14.25 m, bank-slo 0.0 15.5 m, bank-slo 0.0 12.75 90.0 9 0.0 14 0.0 10	$0.0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	18.5 2m/m, bar 0.0 21 2m/m, bar 0.0 15.5 0.0 9 0.0 14 0.0 12.5 0.0		
C 0.025 0 1 18mRow R 0.35 0 R 0.15 1 Full street, C 0.025 0 I 24mRow R 0.35 0 R 0.15 2 Full street, C 0.025 0 R 0.15 1 C 0.013 0 1 Half-12m-M R 0.36 0 R 0.13 0 1 Half-18mR0 R 0.13 0 1 Half-55mR R 0.13 0 LOSSES]	$\begin{array}{c} & & & & & & \\ 8.5 & & & 0.15 \\ 0.35 & & & & 0.35 \\ \hline & & & 0.013 \\ 7 & & & 0.15 \\ 1 & & & 0.35 \\ \hline & & & & 0.013 \\ 7 & & & & 0.013 \\ 5.5 & & & 0.013 \\ 7 & & & & 0.11 \\ 0.025 & & 0.013 \\ 0.27 & & & 0.013 \\ 0.27 & & & 0.013 \\ 0 & & & & 5 \\ 0 & & & & 0.013 \\ 0 & & & & 5 \\ 0 & & & & 0.013 \\ 0 & & & & 5 \\ 0 & & & & 0.013 \\ 0 & & & & 5 \\ 0 & & & & 0.013 \\ 0 & & & & 5 \\ 0 & & & & 0.013 \\ 0 & & & & 5 \\ 0 & & & & 0.013 \\ 0 & & & & 5 \\ 0 & & & & 0.013 \\ 0 & & & & & 5 \\ 0 & & & & & 0.013 \\ 0 & & & & & 5 \\ \end{array}$	$ \begin{array}{r} 10\\ 10\\ 28.5\\\\curb = 0.1\\\\10\\ 31\\\\curb = 0.1\\\\10\\ 25.5\\\\3\\3\\\\3\\\\3\\\\0.0\\4.25\end{array} $	18.5 0 15m , cro 21 0 .15m , cro 15.5 0 9 0.06 14 0.22 4.25	0.0 10 ss-slope 0.0 10 oss-slope 0.0 10 0.0 3 0.0 3 0.0	$\begin{array}{c} 0.0\\ 0.13\\ = 0.016m/n\\ 0.0\\ 0.165\\ = 0.03m/n\\ 0.0\\ 0.13\\ 0.0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0$	0.0 14.25 m, bank-slo 0.0 15.5 m, bank-slo 0.0 12.75 90.0 9 0.0 14 0.0 14	$0.0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	18.5 2m/m, bar 0.0 2m/m, bar 0.0 15.5 0.0 9 0.0 14 0.0 12.5		
C 0.025 0 C 0.025 0 R 0.35 0 R 0.15 1 Full street, C 0.025 0 1 24mROW R 0.35 0 R 0.15 2 Full street, C 0.025 0 R 0.15 1 C 0.013 0 1 Half-12m-M R 0.35 0 R 0.11 1 C 0.013 0 1 Half-18mRO R 0.13 0 1 Half-8.5mR R 0.13 0 LOSSES] ;Link	$\begin{array}{c} & & & 7 \\ 0.15 \\ 0.35 \\ & & 0.35 \\ \end{array}$ width = 11m, 0.013 \\ 7 \\ 0.15 \\ 0.35 \\ & & 0.013 \\ 7 \\ 0.15 \\ 0.013 \\ 7 \\ 0.015 \\ 0.013 \\ 0.013 \\ 0.11 \\ 0.025 \\ 0.013 \\ 0.027 \\ 0.025 \\ 0.013 \\ 0 \\ 0.025 \\ 0.013 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\	$ \begin{array}{c} 10\\ 10\\ 28.5\\ curb = 0.1\\ 10\\ 31\\ curb = 0.1\\ 10\\ 25.5\\ 3\\ 3\\ 3\\ 0.0\\ 4.25\\ 0.0\\ 2.75\\ 0utlet \end{array} $	18.5 0 21 0 .15m , cro 15.5 0 .0 .0 .0 6 .22 4.25 0.15 2.75 0.15 2.75 0.15	0.0 10 ss-slope 0.0 10 oss-slope 0.0 10 0.0 3 0.0 4.25 0.0 2.75 e Flap	0.0 0.13 = 0.016m/n 0.0 0.165 = 0.03m/n 0.0 0.13 0.0 0 0.0 0 0.0 0.35 0.0 0.35 Gate See	0.0 14.25 m, bank-slo 0.0 15.5 m, bank-slo 0.0 12.75 0.0 9 0.0 14 0.0 10	$0.0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	18.5 2m/m, bar 0.0 21 2m/m, bar 0.0 15.5 0.0 9 0.0 14 0.0 12.5 0.0		
C 0.025 0 C 0.025 0 R 0.35 0 R 0.15 1 Full street, C 0.025 0 1 24mROW 0 R 0.15 2 Full street, C 0.025 0 R 0.15 2 Full street, C 0.025 0 R 0.15 1 C 0.013 0 I Half-12m-M R 0.13 0 I Half-12m-M R 0.13 0 I Half-18mR0 R 0.13 0 C 0.013 0 I Half-8.5mR R 0.13 0 LOSSES] Link 	$\begin{array}{c} & & & 7 \\ & & & 0.15 \\ & & & 0.35 \\ & & & 0.35 \\ & & & 0.013 \\ & & & 0.013 \\ & & & 0.013 \\ & & & 0.15 \\ & & & 0.013 \\ & & & & 0.013 \\ & & & & & 0.013 \\ & & & & & & 0.013 \\ & & & & & & 0.013 \\ & & & & & & 0.013 \\ & & & & & & 0.013 \\ & & & & & & & 0.013 \\ & & & & & & & 0.013 \\ & & & & & & & 0.013 \\ & & & & & & & 0.013 \\ & & & & & & & 0.013 \\ & & & & & & & 0 \\ & & & & & & & 0 \\ & & & &$	$ \begin{array}{c} 10\\ 10\\ 28.5\\\\ \text{curb} = 0.1\\\\ 10\\ 31\\\\ \text{curb} = 0.1\\\\ 10\\ 25.5\\\\ 3\\ 3\\ 3\\ 0.0\\ 4.25\\\\ 0.0\\ 2.75\\\\ 0.0\\ 2.75\\\\ 0.01\\ 1.32\\\\ 0.0 \end{array} $	18.5 0 15m , cro 21 0 .15m , cro 15.5 9 0.06 14 0.22 4.25 0.15 2.75 0.15 2.75 0.15 5	0.0 10 ss-slope 0.0 10 oss-slope 0.0 10 0.0 3 0.0 4.25 0.0 4.25 0.0 2.75 e Flap NO	0.0 0.13 = 0.016m/n 0.0 0.165 = 0.03m/n 0.0 0.13 0.0 0.13 0.0 0.0 0.35 0.0 0.35 Gate Se 0.0 0	0.0 14.25 m, bank-slo 0.0 15.5 m, bank-slo 0.0 12.75 0.0 9 0.0 14 0.0 10	$0.0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	18.5 2m/m, bar 0.0 21 2m/m, bar 0.0 15.5 0.0 9 0.0 14 0.0 12.5 0.0		
C 0.025 0 1 18mRow R 0.35 0 R 0.15 1 Full street, C 0.025 0 1 24mRow R 0.35 0 R 0.15 2 Full street, C 0.025 0 1 8.5m-Row R 0.15 1 C 0.013 0 1 Half-12m-M R 0.13 0 1 Half-17m-M R 0.13 0 1 Half-18mRO R 0.13 0 1 Half-8.5mR R 0.13 0 C 0.013 0 1 Half-8.5mR R 0.13 0 C 0.013 0 1 Half-8.5mR R 0.13 0 LOSSES] ;Link ;	$\begin{array}{c} & 7 \\ 0.15 \\ 0.35 \\ 0.035 \\ 0.013 \\ 7 \\ 0.013 \\ 0.013 \\ 0.013 \\ 0.013 \\ 0.013 \\ 0.013 \\ 0.013 \\ 7 \\ 0.013 \\ 7 \\ 0.013 \\ 0.013 \\ 0.013 \\ 0.013 \\ 0.013 \\ 0.025 \\ 0.013 \\ 0.025 \\ 0.013 \\ 0 \\ 0.025 \\ 0.013 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	$ \begin{array}{c} 10\\ 10\\ 28.5\\\\ \text{curb} = 0.1\\\\ 10\\ 10\\ 25.5\\\\ 3\\ 3\\ 3\\ 0.0\\ 4.25\\\\ 0.0\\ 2.75\\\\ 0.01let\\ 1.32\\\end{array} $	18.5 0 15m , cro 21 0 .15m , cro 15.5 9 0.06 14 0.22 4.25 0.15 2.75 0.15 - Averag 0	0.0 10 ss-slope 0.0 10 oss-slope 0.0 10 0.0 3 0.0 4.25 0.0 2.75 e Flap NO	$\begin{array}{c} 0.0\\ 0.13\\ = 0.016m/n\\ 0.0\\ 0.165\\ = 0.03m/n\\ 0.0\\ 0.13\\ 0.0\\ 0\\ 0.0\\ 0\\ 0.5\\ 0.0\\ 0\\ 0.35\\ 0.0\\ 0.35\\ 0.0\\ 0.35\\ 0.0\\ 0\\ 0.35\\ 0.0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0$	0.0 14.25 m, bank-slo 0.0 15.5 m, bank-slo 0.0 12.75 0.0 9 0.0 14 0.0 10	$0.0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	18.5 2m/m, bar 0.0 21 2m/m, bar 0.0 15.5 0.0 9 0.0 14 0.0 12.5 0.0		
C 0.025 0 1 18mRow R 0.35 0 R 0.15 1 Full street, C 0.025 0 1 24mRow R 0.35 0 R 0.15 2 Full street, C 0.025 0 1 8.5m-Row R 0.35 0 R 0.15 1 C 0.013 0 1 Half-12m-M R 0.36 0 R 0.13 0 1 Half-18mR0 R 0.13 0 1 Half-18mR0 R 0.13 0 1 Half-8.5mR R 0.13 0 LOSSES] ;Link ; ipe_4 ipe_4 ipe_4 ipe_5	$\begin{array}{c} & 7 \\ 0.15 \\ 0.35 \\ 0.035 \\ 0.013 \\ 7 \\ 0.013 \\ 0.013 \\ 0.013 \\ 0.013 \\ 0.013 \\ 0.013 \\ 0.013 \\ 0.013 \\ 0.013 \\ 0.013 \\ 0.013 \\ 0.013 \\ 0.013 \\ 0.013 \\ 0.025 \\ 0.013 \\ 0 \\ 0.025 \\ 0.013 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	10 10 28.5 curb = 0.1 10 10 31 curb = 0.1 10 10 25.5 3 3 3 0.0 4.25 0.0 2.75 Outlet 1.32 1.32 1.32	18.5 0 15m , cro 21 0 .15m , cro 15.5 9 0.06 14 0.22 4.25 0.15 2.75 0.15 15 Average 0 0	0.0 10 ss-slope 0.0 10 oss-slope 0.0 10 0.0 3 0.0 4.25 0.0 2.75 e Flap NO NO NO NO	0.0 0.13 = 0.016m/n 0.0 0.165 = 0.03m/n 0.0 0.13 0.0 0 0.0 0 0.0 0 0.35 0.0 0.35 0.0 0.35 0.0 0.35	0.0 14.25 m, bank-slo 0.0 15.5 m, bank-slo 0.0 12.75 0.0 9 0.0 14 0.0 10	$0.0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	18.5 2m/m, bar 0.0 21 2m/m, bar 0.0 15.5 0.0 9 0.0 14 0.0 12.5 0.0		

C202A-Q C202A-Q C202A-Q		1.38 1.73 2.08	160401085-2020-04-16-100yrCHI-Block4.inp 116.6 128.3 130.6
L201A-Q L201A-Q L201A-Q L201A-Q	Rating	0 1.38 1.73 2.08	0 79.8 87.8 89.4
L201C-Q L201C-Q L201C-Q L201C-Q L201C-Q	Rating	0 1.38 1.73 2.08	0 27.6 30.4 30.9
L202B-Q L202B-Q L202B-Q L202B-Q L202B-Q	Rating	0 1.38 1.73 2.08	0 127 139.7 142.2
L202C-Q L202C-Q L202C-Q	Rating	0 1.38 1.68	0 20.3 22.3
L203A-Q L203A-Q L203A-Q L203A-Q	Rating	0 1.38 1.73 2.08	0 52.3 57.5 58.6
L204A-Q L204A-Q L204A-Q L204A-Q	Rating	0 1.38 1.73 2.08	0 246.7 271.4 276.3
L205AA-Q L205AA-Q L205AA-Q	Rating	0 1.38 1.73	0 88.2 97
L205A-Q L205A-Q L205A-Q L205A-Q L205A-Q	Rating	0 1.38 1.73 2.08	0 208.6 229.5 233.6
L205C-Q L205C-Q L205C-Q L205C-Q L205C-Q	Rating	0 1.38 1.73 2.08	0 123.6 136 138.4
L215A-Q	Rating	0	0 Page 7

1.38 1.73 2.08

0 2.3 2.6 2.9

0 1.38 1.73 2.08

0 1.38 1.73 2.08

0 1.38 1.73 2.08

0 1.38 1.58 1.581 1.73

0 1.38 1.73 1.731 2.08

0 1.38 1.39 1.4 1.73

0 1.38 1.39 1.4 1.73

Rating

Rating

Rating

Rating

Storage

Storage

Storage

Storage

0 76 83.6 85.12

0 60.3 66.3 67.5

0 243.5 267.9 272.7

0 245.1 269.6 274.5

L215A-Q L215A-Q L215A-Q
L216A-Q L216A-Q L216A-Q L216A-Q L216A-Q
L218A-Q L218A-Q L218A-Q L218A-Q L218A-Q
L221A-Q L221A-Q L221A-Q L221A-Q L221A-Q
L222A-Q L222A-Q L222A-Q L222A-Q L222A-Q
102C-V 102C-V 102C-V 102C-V 102C-V
C202A-V C202A-V C202A-V C202A-V C202A-V C202A-V

C300A-V C300A-V C300A-V C300A-V C300A-V

C302A-V C302A-V C302A-V C302A-V C302A-V 160401085-2020-04-16-100yrCHI-Block4.inp 262.8 289.1 294.3

L101A-V L101A-V L101A-V L101A-V L101A-V	Storage	0 1.38 1.53 1.531 1.73	160401085-2020-04-16-100yrCHI-Block4.inp 0 61 0 0
L102A-V L102A-V L102A-V L102A-V L102A-V L102A-V	Storage	0 1.38 1.48 1.481 1.73	0 0 44 0 0
L102B-V L102B-V L102B-V L102B-V	Storage	0 1.58 1.93 1.931	0 0 600 0
L102D-V L102D-V L102D-V L102D-V L102D-V L102D-V	Storage	0 1.38 1.68 1.681 1.73	0 0 138 0 0
L201A-V L201A-V L201A-V L201A-V L201A-V L201A-V	Storage	0 1.38 1.73 1.731 2.08	0 0 88 0 0
L201C-V L201C-V L201C-V L201C-V L201C-V L201C-V	Storage	0 1.38 1.73 1.731 2.08	0 0 44 0 0
L203A-V L203A-V L203A-V L203A-V L203A-V L203A-V	Storage	0 1.38 1.73 1.731 2.08	0 0 78 0 0
L204AA-V L204AA-V L204AA-V L204AA-V L204AA-V L204AA-V	Storage	0 1.38 1.73 1.731 2.08	0 0 116 0 0
L204A-V	Storage	0	0 Page 9

1204A-V 1.38 0 1204A-V 1.73 1700 1204A-V 2.08 0 1205A-V 2.08 0 1205A-V 2.08 0 1205A-V 2.08 0 1205A-V 1.38 0 1205A-V 1.38 0 1205A-V 1.38 0 1205A-V 1.38 0 1205A-V 1.73 1130 1205A-V 1.73 1130 1205A-V 1.73 180 1205A-V 2.08 0 1205A-V 2.08 0 1205A-V 1.73 180 1205A-V 2.08 0 1205C-V 1.73 180 1205C-V 1.73 180 1205C-V 2.08 0 1215A-V 2.08 0 1215A-V 2.08 0 1215A-V 2.6 22000 1216A-V 2.6 22000 1216A-V 2.601 0 1216A-V			1604	01085-2020-0	14 - 16 - 10	Ovrchi
L205AA-V 1.38 0 L205AA-V Storage 0 0 L205A-V 1.38 0 L205A-V 1.38 0 L205A-V 1.38 0 L205A-V 1.73 1130 L205A-V 1.73 1130 L205A-V 1.73 0 L205A-V 1.73 0 L205C-V 1.73 180 L205C-V 1.73 180 L205C-V 1.73 180 L205C-V 1.73 180 L205C-V 1.73 0 L205C-V 1.73 0 L205C-V 2.08 0 L215A-V Storage 0 0 L215A-V 2.08 0 0 L215A-V 2.08 0 0 L216A-V 2.08 0 0 L216A-V 2.6 22000 2.6 L216A-V 2.08 0 0 L216A-V 2.08 0 0 L216A-V 2.08	L204A-V L204A-V		1.38 1.73 1.731	0 1700 0	J4 10 10	oyr chi
L205A-V 1.38 0 L205A-V 1.73 1130 L205A-V 2.08 0 L205C-V Storage 0 0 L205C-V 1.38 0 L205C-V 1.38 0 L205C-V 1.73 180 L205C-V 1.73 10 L215A-V 2.08 0 L216A-V 2.6 22000 L216A-V 2.601 0 L216A-V 2.601 0 L216A-V 2.08 0 L216A-V 2.08 0 L221A-V 1.38 0 L221A-V 2.08 0	L205AA-V	Storage	1.38	0		
L20SC-V 1.38 0 L20SC-V 1.73 180 L20SC-V 1.731 0 L20SC-V 2.08 0 L21SA-V Storage 0 0 L21SA-V 1.38 0 0 L21SA-V 1.73 487 L21SA-V 1.731 0 L21SA-V 1.731 0 L21SA-V 1.731 0 L21SA-V 2.08 0 L21SA-V 2.08 0 L21SA-V 2.08 0 L21SA-V 2.08 0 L216A-V 2.6 22000 L216A-V 2.601 0 L216A-V 2.601 0 L216A-V 2.601 0 L216A-V 2.08 0 L221A-V 1.73 452 L221A-V 1.73 452 L221A-V 1.38 0 L221A-V 1.38 0 L222A-V 1.73 458 L222A-V 1.73 458	L205A-V L205A-V L205A-V	Storage	1.38 1.73 1.731	0 1130 0		
L215A-V 1.38 0 L215A-V 1.73 487 L215A-V 1.731 0 L215A-V 2.08 0 L215A-V 2.08 0 L215A-V 2.08 0 L216A-V 2.6 22000 L216A-V 2.6 22000 L216A-V 2.601 0 L216A-V 2.9 0 L216A-V 1.38 0 L21A-V 1.73 452 L21A-V 1.73 0 L221A-V 1.73 452 L221A-V 1.73 452 L221A-V 1.73 0 L221A-V 1.73 0 L221A-V 1.73 458 L221A-V 1.73 458 L222A-V 1.73 458 L222A-V 2.08 0 L222A-V 2.08 0 L222A-V 1.73 458 L222A-V 1.38 0 L222A-V 2.08 0 L222A-V	L205C-V L205C-V L205C-V	Storage	1.38 1.73 1.731	0 180 0		
L216A-V 2.3 0 L216A-V 2.6 22000 L216A-V 2.601 0 L216A-V 2.9 0 L216A-V 2.9 0 L216A-V 1.38 0 L21A-V 1.73 452 L21A-V 1.731 0 L221A-V 1.731 0 L221A-V 1.731 0 L221A-V 1.731 0 L221A-V 1.73 452 L221A-V 1.38 0 L222A-V 1.73 458 L222A-V 1.731 0 L222A-V 1.731 0 L222A-V 1.731 0 L222A-V 1.38 0 L400A-V 1.38 0 L400A-V 1.39 1	L215A-V L215A-V L215A-V	Storage	1.38 1.73 1.731	0 487 0		
L221A-V 1.38 0 L221A-V 1.73 452 L221A-V 1.731 0 L221A-V 2.08 0 L221A-V 1.38 0 L221A-V 1.38 0 L222A-V 1.38 0 L222A-V 1.73 458 L222A-V 1.73 0 L200A-V 1.38 0 L400A-V 1.39 1	L216A-V L216A-V L216A-V	Storage	2.3 2.6 2.601	0 22000 0		
L222A-V 1.38 0 L222A-V 1.73 458 L222A-V 1.731 0 L222A-V 2.08 0 L400A-V Storage 0 0 L400A-V 1.38 0 L400A-V 1.38 0 L400A-V 1.39 1	L221A-V L221A-V L221A-V	Storage	1.38 1.73 1.731	0 452 0		
L400A-V 1.38 0 L400A-V 1.39 1	L222A-V L222A-V L222A-V	Storage	1.38 1.73 1.731	0 458 0		
	L400A-V	Storage	1.38	0	Page 10)

160401085-2020-04-16-100yrCHI-Block4.inp 1.38 0

			160401085-2020-04-16-100угСНІ-Block4.inp
L400A-V L400A-V		1.4 1.73	0 0
L402A-V L402A-V L402A-V L402A-V L402A-V L402A-V	Storage	0 1.38 1.39 1.4 1.73	0 0 4700 0 0
[TIMESERIES] ;;Name	Date	Time	Value
100yr - 4hr Chi 100yr - 4hr Cl00yr - 4hr	cago Design	Storm 0:00 0:10 0:20 0:30 0:50 1:00 1:20 1:20 1:20 2:10 2:20 2:10 2:20 2:40 2:40 3:00 3:20 3:20 3:20 3:40 3:40 3:40 3:40	- City of Ottawa IDF Data (1967-1997) 0.00 4.39 5.07 6.05 7.54 10.16 15.97 40.65 178.56 54.05 27.32 18.24 13.74 11.06 9.29 8.02 7.08 6.35 5.76 5.28 4.88 4.54 4.55 3.99 3.77
;100yr +20% - 4h C100yr-4hr+20% C100yr-4hr+20% C100yr-4hr+20% C100yr-4hr+20% C100yr-4hr+20% C100yr-4hr+20% C100yr-4hr+20% C100yr-4hr+20%	r Chicago D	esign 8 0:00 0:10 0:20 0:30 0:40 0:50 1:00 1:10	Storm - City of Ottawa IDF Data (1967-1997) 0.00 5.27 6.08 7.26 9.05 12.19 19.16 48.78
			Page 11
C100yr-4hr+20% C100yr-4hr+20%	ago Design :	1:20 1:30 1:40 2:10 2:20 2:30 2:40 3:30 3:20 3:30 3:20 3:30 3:30 3:20 3:30 3:20 3:30 3:20 3:30 3:20 3:30 3:20 3:40 3:50 3:40 3:50 3:40 3:50 3:40 3:50 3:40 3:50 3:40 3:50 3:40 3:50 3:40 3:50 3:40 3:50 3:40 3:50 3:40 3:50 3:40 3:50 3:40 3:50 3:40 3:50 3:40 3:50 3:40 3:50 3:50 3:50 3:50 3:50 3:50 3:50 3:5	160401085-2020-04-16-100yrCHI-Block4.inp 214.27 64.86 32.78 21.89 16.49 13.27 11.15 9.62 8.50 7.62 6.91 6.34 5.86 5.45 5.10 4.79 4.52 - City of Ottawa IDF Data (1967-1997)
C100yr-4hr+20% C100yr-4hr+20% C100yr-4hr+20% C100yr-4hr+20% C100yr-4hr+20% C100yr-4hr+20% C100yr-4hr+20% C100yr-4hr+20% C100yr-4hr+20% C100yr-4hr+20% C100yr-4hr+20% C100yr-4hr+20% C100yr-4hr+20% C100yr-4hr+20% C100yr-4hr+20% C100yr-4hr+20%	ago Design :	1:30 1:40 1:50 2:00 2:10 2:20 2:40 2:50 3:00 3:20 3:20 3:30 3:40 3:50 4:00	214.27 64.86 32.78 21.89 16.49 13.27 11.15 9.62 8.50 7.62 6.91 6.34 5.86 5.45 5.10 4.79 4.52
$\begin{array}{c} (100)yr-4hr+20\%\\ (20)yr-4hr+20\%\\ (20)yr-4h$		1:30 1:40 1:50 2:00 2:20 2:30 2:20 3:10 3:20 3:10 3:40 3:40 0:00 0:20	214.27 64.86 32.78 21.89 16.49 13.27 11.15 9.62 8.50 7.62 6.91 6.34 5.86 5.45 5.10 4.79 4.52 - City of Ottawa IDF Data (1967-1997) 0.00 1.51 1.75 2.07 2.58 3.46 5.39 13.44 56.67 17.77 9.12 6.14 4.65 3.76 3.17 2.74 2.43 2.18 1.98 1.81 1.68 1.56 1.47 1.47 1.88

C2yr-4hr C2yr-4hr	0:20 0:30 0:40 1:00 1:20 1:30 2:10 2:20 2:30 2:20 2:30 3:10 3:20 3:10 3:20 3:40 3:40 3:40 3:40	$\begin{array}{c} 1604010855\\ 2.37\\ 2.81\\ 3.50\\ 4.69\\ 7.30\\ 18.21\\ 76.81\\ 24.08\\ 8.12.36\\ 8.32\\ 6.30\\ 5.09\\ 3.72\\ 3.29\\ 2.95\\ 2.68\\ 2.46\\ 2.28\\ 2.12\\ 1.99\\ 1.87\\ 1.77\end{array}$	
Syr - 4hr Chicago Design CSyr-4hr	Storm - 0:00 0:20 0:30 0:50 1:00 1:20 1:20 2:00 2:20 2:30 2:30 2:30 3:00 3:20 3:40	City of ot 0.00 2.68 3.10 3.68 4.58 6.15 9.61 24.17 104.1 32.04 16.34 10.96 8.29 5.63 3.86 3.51 3.22 2.98 2.77 2.60	9
C5yr-4hr C5yr-4hr	3:50 4:00	160401085- 2.44 2.31	2020-04-16-100yrCHI-Block4.inp
C5yr-4hr C5yr-4hr Chicago_2yr_3hr_10m_ottawa		2.44	2020-04-16-100yrCHI-Block4.inp 2.81459 3.49824 4.68718 7.30485 18.20881 76.805 24.07906 12.36376 8.32403 6.30341 5.09498 4.29133 3.71786 3.28762 2.95254 2.68388 2.46348 2.27921
C5yr-4hr Chicago_2yr_3hr_10m_ottawa		2.44 2.31 0:10 0:20 0:30 0:40 0:50 1:00 1:10 1:20 1:30 1:40 2:10 2:10 2:10 2:20 2:30 2:40 2:50	2.81459 3.49824 4.68718 7.30485 18.20881 76.805 24.07906 12.36376 8.32403 6.30341 5.09498 4.29133 3.71786 3.28762 2.95254 2.68388 2.46348

Chicago100y_3h_10m_City Chicago100y_3h_10m_City Chicago100y_3h_10m_City Chicago100y_3h_10m_City Chicago100y_3h_10m_City Chicago100y_3h_10m_City Chicago100y_3h_10m_City Chicago100y_3h_10m_City Chicago100y_3h_10m_City Chicago100y_3h_10m_City	1604C 01:1 01:2 01:3 01:4 01:5 02:0 02:1 02:2 02:3 02:4 02:5	$\begin{array}{cccc} 0 & 27. \\ 0 & 18. \\ 0 & 13. \\ 0 & 11. \\ 0 & 9.2 \\ 0 & 8.0 \\ 0 & 7.0 \\ 0 & 6.3 \\ 0 & 5.7 \\ 0 & 5.2 \end{array}$	04-16- 31870 24039 73692 05876 8521 2389 8022 4698 6029 7978 7871	LOOyrCHI-Block4.inp		
Chicago100y+20%_3h_10m_City Chicago100y+20%_3h_10m_City		00:00 00:10 00:20 00:30 00:50 01:10 01:20 01:30 01:40 01:50 02:00 02:10 02:20 02:30 02:40 02:50 -	$\begin{array}{c} 7.255\\ 9.051\\ 12.199\\ 19.165\\ 48.786\\ 214.27\\ 64.855\\ 32.782\\ 21.888\\ 16.482\\ 13.277\\ 11.142\\ 9.629\\ 8.496\\ 7.616\\ 6.912\\ 6.336\\ 5.854 \end{array}$	1		
:100yr - 12hr SCS Design Sto S100yr-12hr S100yr-12hr S100yr-12hr S100yr-12hr S100yr-12hr S100yr-12hr S100yr-12hr S100yr-12hr S100yr-12hr S100yr-12hr S100yr-12hr S100yr-12hr S100yr-12hr S100yr-12hr S100yr-12hr S100yr-12hr	0:00 0:30 1:00 2:00 2:30 3:00 3:30 4:00 5:00 5:30 6:00 6:30 7:00	f ottawa I 0.00 2.82 1.31 2.44 2.44 2.44 2.44 3.76 5.07 6.39 10.14 80.38 20.47 9.02 6.01	DF Data Page			
\$100yr-12hr \$100yr-12hr \$100yr-12hr \$100yr-12hr \$100yr-12hr \$100yr-12hr \$100yr-12hr \$100yr-12hr \$100yr-12hr \$100yr-12hr	8:00 8:30 9:00 9:30 10:00 10:30 11:00 11:30	1085-2020- 5.26 4.13 4.32 2.82 2.25 3.19 2.07 1.88 1.88	04-16-	LOOyrCHI-Block4.inp		
;2yr - 12hr SCS Design Storr S2yr-12hr	0:00 0:30 1:00 2:00 2:30 3:00 4:00 5:30 5:30 6:30 7:30 6:30 7:30 8:30 9:00 9:30 10:00 10:30 11:30 12:00	0.00 1.27 0.59 1.10 1.44 1.27 1.69 1.69 2.29 2.88 4.57 36.24 9.23 4.06 2.71 2.71 2.37 1.86 1.95 1.27 1.22 1.24 0.62 2.71 2.72 2.71 2.71 2.71 2.71 2.71 2.72 1.66 1.95 1.27 1.025 0.85 0.				
;5yr - 12hr SCS Design Storr S5yr-12hr S5yr-12hr S5yr-12hr S5yr-12hr S5yr-12hr S5yr-12hr S5yr-12hr S5yr-12hr S5yr-12hr S5yr-12hr S5yr-12hr	0:30 1:00 2:00 2:30 3:00 3:30 4:00	Ottawa IDF 0.00 1.69 0.79 1.46 1.91 1.69 2.25 2.25 2.25 3.03	Data (Page			

S5yr-12hr S1NPUT CONTROLS	YES NO NTS ALL	-	5:00 5:30 6:00 6:30 8:00 9:00 9:00 10:00 10:00 11:00 11:00 11:00	$\begin{array}{c} 160401085-2020-\\ 3.82\\ 6.07\\ 48.08\\ 12.25\\ 5.39\\ 3.60\\ 3.15\\ 2.47\\ 2.58\\ 1.69\\ 1.35\\ 1.91\\ 1.24\\ 1.12\\ 1.12 \end{array}$	04-16-100угСНІ-ВІ	ock4.inp		
LINKS ALL [TAGS] Node Node Node Node Node Node Node Node	218 L101A- L102A- L102C- L102A- L102A- STM-1(STM-1(STM-1(STM-1(STM-1(C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1	-S -S -S -S 01 02 03 04	MH-C CB CB CCB CCB MH-C MH-C MH-C MAJ MAJ MAJ MAJ MAJ MAJ MAJ MAJ MAJ MAJ		Page 17			
Link Link Link Link Link Link Link Link	C6 C7 C8 C9 Pipe_ Pipe_ L101A- L102A- L102A- L102C- L102D- L102A-	4 46 5 -IC -IC -IC -IC -IC	MAJ MAJ MAJ STM STM STM STM RoadCI RoadCI RoadCI RoadCI RoadCI	B B B B B B	04-16-100yrснI-вlo	ock4.inp		
[MAP] DIMENSIONS UNITS [COORDINATT; ;Node MAJ-1 MAJ-2 OF1 OF2 OF3 OF4 L101A1-S L101A-S L101A-S L101A-S L101A-S L102A-S1 L102B-S1 L102B-S1 L102C-S1 L102C-S1 L102C-S1 L102S-S1 L102S-S1 L102S-S1 STM-102 STM-103 STM-104		363780.954 Meters 363797.507 363801.696 363827.589 363815.06 363927.001 363935.684 363951.599 363885.266 36380.675 363817.757 363859.441 363850.337 36380.759 363873.778 363911.787 363901.725 363910.176 363910.176 363900.795 36384.33 363904.9 363848.35 363848.35 363848.35 363848.35 36383.9 363913		5013769.74325 Y-Coord 5013838.233 5013833.174 5013785.283 5013801.877 5013812.438 5013801.877 5013825.948 5013841.386 5013852.948 5013854.186 5013864.523 5013854.166 5013864.523 5013871.118 5013866.656 5013903 5013903.432 5013871.083 5013866.481 5013866.481 5013866.481 5013866.481 5013866.56 5013897 5013820 5013820 5013854	363974.0113	5013954.18575		

Appendix C Stormwater Management Calculations

C.3 PCSWMM MODEL OUTPUT

160401085-2020-04-16-100yrCHI-Block4.rpt

EPA STORM WATER MANAGEMENT MODEL - VERSION 5.1 (Build 5.1.013)

160401085 - SNTC Lands Assessment Detailed Design Block 4, located north of the Jock River and west of Greenbank Road.

***** Element Count Number of rain gages 1 Number of subcatchments ... 10 Number of nodes 26 Number of links 27 Number of pollutants 0 Number of land uses 0

***** Raingage Summary

Name	Data Source	Data Type	Recording Interval
Raingage	Chicago100y_3h_10m_City	INTENSITY	10 min.

Subcatchment Summary

L101A 0.37 370.00 88.57 3.0000 Raingage L101A-S L102A 0.16 116.00 87.14 3.0000 Raingage L102A-S L102B 0.42 314.00 84.29 3.0000 Raingage L102A-S L102C 0.09 40.00 91.43 3.0000 Raingage L102C-S L102D 0.12 54.00 88.57 3.0000 Raingage L102D-S L105A 0.11 56.00 87.14 3.0000 Raingage L102D-S L105A 0.11 56.00 87.14 3.0000 Raingage L102D-S UNC-1 0.14 321.00 60.00 2.0000 Raingage OF1 UNC-2 0.03 200.00 42.86 3.0000 Raingage OF2 UNC-3 0.12 305.00 42.86 3.0000 Raingage OF3 UNC-4 0.03 200.00 42.86 3.0000 Raingage OF4	Name	Area	Width	%Imperv	%Slope Rain Gage	Outlet
	L102A L102B L102C L102D L105A UNC-1 UNC-2 UNC-3	$\begin{array}{c} 0.16\\ 0.42\\ 0.09\\ 0.12\\ 0.11\\ 0.14\\ 0.03\\ 0.12 \end{array}$	116.00314.0040.0054.0056.00321.00200.00305.00	87.14 84.29 91.43 88.57 87.14 60.00 42.86 42.86	3.0000 Raingage 3.0000 Raingage 3.0000 Raingage 3.0000 Raingage 3.0000 Raingage 2.0000 Raingage 3.0000 Raingage 3.0000 Raingage	L102A-S L102B-S L102C-S L102D-S L105A-S OF1 OF2 OF3

***** Node Summary

Page 1

****		160401085-2020-04	4-16-100yrC	HI-Block4.	rpt		
Name	Туре	Invert Elev.	Max. Depth	Ponded Area	Extern Inflow		
2118 MAJ-1 OF1 OF2 OF3 OF4 L101A-S L101A-S L101A-S L102A-S L102A-S L102B-S1 L102B-S1 L102D-S1 L102C-S1 L102C-S1 L105A-S1 STM-101 STM-103 STM-104 STM-105	OUTFALL OUTFALL OUTFALL OUTFALL OUTFALL OUTFALL STORAGE	$\begin{array}{c} 89.83\\ 93.33\\ 93.24\\ 0.00\\ 0.00\\ 93.52\\ 93.44\\ 93.99\\ 92.12\\ 93.65\\ 92.29\\ 93.77\\ 91.94\\ 93.87\\ 93.87\\ 93.97\\ 92.52\\ 94.10\\ 92.26\\ 93.94\\ 92.08\\ 93.91\\ 90.61\\ 91.16\\ 91.07\\ 91.40\\ 91.23\\ \end{array}$	$\begin{array}{c} 1.68\\ 0.36\\ 0.40\\ 0.00\\ 0.00\\ 0.00\\ 0.35\\ 1.73\\ 1.73\\$	0.0			
************* Link Summary ************	From Node	To Node	Туре	Le	nath	%slone i	Roughness
C1 C10 C11 C12 C13 C14 C15 C16 C17 C3 C4	L105A-S1 L102B-S2 L102B-S2 L102B-S2 L102D-S1 L101A1-S L101A-S1 L101A-S1 L105A-S L101A-S L102A-S1	L105A-S L102D-S1 L102D-S1 L102B-S L102B-S1 L102B-S L102B-S MAJ-1 MAJ-1 MAJ-2 L101A-S1 L101A-S	CONDUIT CONDUIT CONDUIT CONDUIT CONDUIT CONDUIT CONDUIT CONDUIT CONDUIT CONDUIT CONDUIT		29.9 18.0 - 10.6 21.4 24.1 75.1 31.1 18.9 9.7 14.8 -	1.5060 1.6640 3.1289 2.1051 0.2899 0.6522 1.5110 1.6977 2.2752 1.0108 1.4766	0.0130 0.0130 0.0130 0.0130 0.0130 0.0130 0.0130 0.0130 0.0130 0.0130 0.0130

C5 C6 C7 C8 Pipe_3 Pipe_4 Pipe_5 Pipe_5 L101A-TC L102A-TC L102B-TC L102D-TC L102D-TC L105A-TC	L102A-S L102B-S1 L102C-S1 L102C-S1 L102B-S STM-102 STM-103 STM-101 STM-104 STM-104 STM-105 L101A-S L102A-S L102A-S L102A-S L102C-S L102D-S L105A-S	160401085-20 L102A-S1 L102A-S L102C-S1 L102B-S1 STM-101 STM-101 STM-103 STM-103 STM-103 STM-101 STM-101 STM-101 STM-102 STM-102 STM-105	COI COI COI COI COI COI COI COI ORI ORI ORI ORI ORI	100yrCHI NDUIT NDUIT NDUIT NDUIT NDUIT NDUIT NDUIT NDUIT NDUIT IFICE IFICE IFICE IFICE IFICE	-Block4.rpt 18.7 20.1 10.3 46.4 21.8 82.3 41.5 40.4 68.2 26.3	-1.9402 0.4957 -1.6081 0.4000 0.3978 0.1881 0.4004	$\begin{array}{c} 0.0130\\ 0.0130\\ 0.0130\\ 0.0130\\ 0.0130\\ 0.0130\\ 0.0130\\ 0.0130\\ 0.0130\\ 0.0130\\ 0.0130\\ \end{array}$
Cross Section							
conduit	shape	Full Depth	Full Area	Hyd. Rad.		o.of Fu rrels Fl	11 ow
C1 C10 C11 C12 C13 C14 C15 C16 C17 C3 C4 C5 C6 C7 C8 C9 Pipe_3 Pipe_4 Pipe_4 Pipe_5 Pipe_6	Half-12m-MC Half-17m-MC Half-17m-MC Half-17m-MC Half-17m-MC Half-17m-MC Half-17m-MC Half-17m-MC Half-17m-MC Half-17m-MC Half-17m-MC Half-17m-MC Half-17m-MC Half-17m-MC Half-17m-MC GIRCULAR CIRCULAR CIRCULAR CIRCULAR	$\begin{array}{c} 0.17\\ 0.36\\ 0.36\\ 0.36\\ 0.36\\ 0.17\\ 0.36\\ 0.36\\ 0.36\\ 0.36\\ 0.36\\ 0.36\\ 0.36\\ 0.36\\ 0.36\\ 0.36\\ 0.36\\ 0.36\\ 0.36\\ 0.36\\ 0.36\\ 0.30\\$	1.20 3.68 3.68 3.68 3.68 1.20 3.68 3.69 3.67 0.07 0.07	$\begin{array}{c} 0.08\\ 0.18\\ 0.18\\ 0.18\\ 0.18\\ 0.18\\ 0.18\\ 0.18\\ 0.18\\ 0.18\\ 0.18\\ 0.18\\ 0.18\\ 0.18\\ 0.18\\ 0.18\\ 0.18\\ 0.18\\ 0.18\\ 0.11\\ 0.07\\ 0.07\\ 0.07\\ 0.07\\ 0.07\\ \end{array}$	$\begin{array}{c} 12.00\\ 17.00\\ 17.00\\ 17.00\\ 12.00\\ 12.00\\ 17.00\\ 17.00\\ 17.00\\ 17.00\\ 17.00\\ 17.00\\ 17.00\\ 17.00\\ 17.00\\ 17.00\\ 17.00\\ 17.00\\ 0.45\\ 0.30\\ 0.68\\ 0.30\\ 0.30\\ 0.30\\ \end{array}$	$\begin{array}{c} 1 & 2179. \\ 1 & 11600. \\ 1 & 15906. \\ 1 & 13047. \\ 1 & 4841. \\ 1 & 1434. \\ 1 & 11053. \\ 1 & 11716. \\ 1 & 6338. \\ 1 & 9040. \\ 1 & 10927. \\ 1 & 6672. \\ 1 & 8976. \\ 1 & 12525. \\ 1 & 6631. \\ 1 & 11403. \\ 1 & 160. \\ 1 & 3644. \\ 1 & 661. \\ 1 & 68. \end{array}$	04 50 50 99 93 73 73 74 65 55 80 27 33 33 99 19
			Page	3			

160401085-2020-04-16-100yrCHI-Block4.rpt

Transect Area:	18mROW				
Hrad:	$\begin{array}{c} 0.0004 \\ 0.0130 \\ 0.0438 \\ 0.0927 \\ 0.1576 \\ 0.2364 \\ 0.3429 \\ 0.4770 \\ 0.6389 \\ 0.8284 \end{array}$	0.0014 0.0177 0.0522 0.1047 0.1712 0.2555 0.3675 0.3675 0.5072 0.6746 0.8697	0.0033 0.0232 0.0612 0.1174 0.1859 0.2757 0.3932 0.5385 0.7114 0.9120	0.0058 0.0293 0.0710 0.1307 0.2016 0.2970 0.4201 0.5708 0.7493 0.9554	$\begin{array}{c} 0.0091 \\ 0.0362 \\ 0.0815 \\ 0.1441 \\ 0.2185 \\ 0.3194 \\ 0.4480 \\ 0.6043 \\ 0.7883 \\ 1.0000 \end{array}$
width:	0.0226 0.1357 0.2488 0.3619 0.5279 0.7058 0.8083 0.8748 0.9251 0.9680	0.0452 0.1583 0.2715 0.3846 0.5717 0.7307 0.8236 0.8258 0.9341 0.9762	0.0679 0.1810 0.2941 0.6114 0.7531 0.8378 0.8962 0.9428 0.9842	0.0905 0.2036 0.3167 0.4392 0.6466 0.7733 0.8510 0.9062 0.9514 0.9921	0.1131 0.2262 0.3393 0.4836 0.6779 0.7916 0.8633 0.9158 0.9598 1.0000
width.	$\begin{array}{c} 0.0161 \\ 0.0964 \\ 0.1767 \\ 0.2570 \\ 0.2982 \\ 0.4105 \\ 0.5333 \\ 0.6561 \\ 0.7789 \\ 0.9018 \end{array}$	0.0321 0.1124 0.1927 0.2730 0.3123 0.4351 0.5579 0.6807 0.8035 0.9263	0.0482 0.1285 0.2088 0.2891 0.3368 0.4596 0.5825 0.7053 0.8281 0.9509	0.0642 0.1445 0.2248 0.2982 0.3614 0.4842 0.6070 0.7298 0.8526 0.9754	0.0803 0.1606 0.2409 0.2982 0.3860 0.5088 0.6316 0.7544 0.8772 1.0000
Transect Area:					
	0.0003 0.0119 0.0400 0.0846 0.1457 0.2318 0.3448	0.0013 0.0162 0.0476 0.0955 0.1601 0.2524 0.3703	0.0030 0.0211 0.0558 0.1071 0.1760 0.2740 0.3969	0.0053 0.0268 0.0648 0.1193 0.1936 0.2966 0.4244 Page	0.0083 0.0330 0.0744 0.1322 0.2122 0.3202 0.4530 4

unada	0.4825 0.6450 0.8323	0.5130 0.6805 0.8727	160401085- 0.5445 0.7170 0.9142	2020-04-16- 0.5770 0.7544 0.9566	100yrCHI-Bloc 0.6105 0.7929 1.0000	ck4.rpt
Hrad:	0.0220 0.1318 0.2417 0.3516 0.4614 0.5912 0.7179 0.8122 0.8881 0.9531	0.0439 0.1538 0.2637 0.3735 0.4831 0.6202 0.7388 0.8286 0.9018 0.9652	0.0659 0.1758 0.2857 0.3955 0.5016 0.6471 0.7585 0.8443 0.9152 0.9770	0.0879 0.1978 0.3076 0.4175 0.5262 0.6723 0.7773 0.8594 0.9281 0.9886	0.1099 0.2197 0.3296 0.4395 0.5600 0.6958 0.7952 0.8740 0.9408 1.0000	
width:	0.0151 0.0903 0.1656 0.2409 0.3161 0.4581 0.5710 0.6839 0.7968 0.9097	$\begin{array}{c} 0.0301 \\ 0.1054 \\ 0.1806 \\ 0.2559 \\ 0.3441 \\ 0.4806 \\ 0.5935 \\ 0.7065 \\ 0.8194 \\ 0.9323 \end{array}$	0.0452 0.1204 0.1957 0.2710 0.3817 0.5032 0.6161 0.7290 0.8419 0.9548	0.0602 0.1355 0.2108 0.2860 0.4129 0.5258 0.6387 0.7516 0.8645 0.9774	0.0753 0.1505 0.2258 0.3011 0.4355 0.5484 0.6613 0.7742 0.8871 1.0000	
Transect Area:	8.5m-ROW					
	$\begin{array}{c} 0.0003\\ 0.0105\\ 0.0352\\ 0.0744\\ 0.1264\\ 0.1947\\ 0.2973\\ 0.4341\\ 0.6053\\ 0.8108\\ \end{array}$	$\begin{array}{c} 0.0012\\ 0.0142\\ 0.0418\\ 0.0840\\ 0.1374\\ 0.2125\\ 0.3219\\ 0.4656\\ 0.6437\\ 0.8561 \end{array}$	0.0026 0.0186 0.0491 0.1497 0.2316 0.3479 0.4985 0.6834 0.9027	0.0046 0.0235 0.0569 0.1048 0.1633 0.2521 0.3752 0.3752 0.7245 0.9507	$\begin{array}{c} 0.0073\\ 0.0291\\ 0.0654\\ 0.1156\\ 0.1783\\ 0.2740\\ 0.4040\\ 0.5683\\ 0.7670\\ 1.0000\\ \end{array}$	
Hrad:	0.0273 0.1638 0.3004 0.4369 0.6360 0.8220 0.8905 0.9228 0.9484	$\begin{array}{c} 0.0546\\ 0.1911\\ 0.3277\\ 0.4642\\ 0.6880\\ 0.8415\\ 0.8984\\ 0.9280\\ 0.9536\end{array}$	$\begin{array}{c} 0.0819\\ 0.2184\\ 0.3550\\ 0.4915\\ 0.7322\\ 0.8574\\ 0.9053\\ 0.9331\\ 0.9589\end{array}$	0.1092 0.2458 0.3823 0.5300 0.7685 0.8704 0.9116 0.9382 0.9643 Page	0.1365 0.2731 0.4096 0.5831 0.7980 0.8813 0.9173 0.9432 0.9699	
				Tage		
	0.9756	0.9815	160401085- 0.9875	2020-04-16- 0.9937	100yrCHI-Bloc 1.0000	:k4.rpt
width:	0.0116 0.0697 0.1278 0.1858 0.2157 0.3412 0.4784 0.6157 0.7529 0.8902	0.0232 0.0813 0.1394 0.1974 0.2314 0.3686 0.5059 0.6431 0.7804 0.9176	0.0348 0.0929 0.1510 0.2090 0.2588 0.3961 0.5333 0.6706 0.8078 0.9451	0.0465 0.1045 0.1626 0.2157 0.2863 0.4235 0.5608 0.6980 0.8353 0.9725	0.0581 0.1161 0.2157 0.3137 0.4510 0.5882 0.7255 0.8627 1.0000	
Transect Area:	Half-12m-MC					
	0.0005 0.0173 0.0583 0.1237 0.2165 0.3227 0.4409 0.5712 0.7135 0.8679	$\begin{array}{c} 0.0019\\ 0.0236\\ 0.1405\\ 0.2368\\ 0.3454\\ 0.4660\\ 0.5987\\ 0.7434\\ 0.9002 \end{array}$	0.0043 0.0308 0.0814 0.1586 0.2576 0.3686 0.4916 0.6267 0.7738 0.9330	0.0077 0.0390 0.0944 0.1774 0.2788 0.3922 0.5177 0.6551 0.8047 0.9662	0.0120 0.0482 0.1084 0.1967 0.3005 0.4163 0.5442 0.6841 0.8360 1.0000	
Hrad:						

Width:

 $\begin{array}{c} 0.0199\\ 0.1192\\ 0.2185\\ 0.3167\\ 0.4588\\ 0.6089\\ 0.7406\\ 0.8040\\ 0.8641\\ 0.9365\end{array}$

0.0283 0.1700 0.3117 0.4717 0.5892 0.6600 0.7308 0.8017 0.8725 0.9433

0.0397 0.1391 0.2384 0.3343 0.4905 0.6366 0.7651 0.8146 0.8778 0.9520

0.0567 0.1983 0.3400 0.5142 0.6033 0.6742 0.7450 0.8158 0.8867 0.9575

0.0596 0.1589 0.2583 0.3577 0.5213 0.6635 0.7779 0.8261 0.8919 0.9678

0.00.0	0.5050
0.0850 0.2267 0.3683 0.5467 0.6175 0.6883 0.7592 0.8300 0.9008 0.9717	$\begin{array}{c} 0.1133\\ 0.2550\\ 0.3967\\ 0.5608\\ 0.6317\\ 0.7025\\ 0.7733\\ 0.8442\\ 0.9150\\ 0.9858\end{array}$

 $\begin{array}{c} 0.0795\\ 0.1788\\ 0.2781\\ 0.3924\\ 0.5513\\ 0.6899\\ 0.7855\\ 0.8381\\ 0.9064\\ 0.9838 \end{array}$

0.0993 0.1987 0.2980 0.4261 0.5805 0.7155 0.7942 0.8508 0.9213 1.0000

0.1417 0.2833 0.4292 0.5750 0.6458 0.7167 0.7875 0.8583 0.9292 1.0000

1.0000

	Half-17m-MC		160401085-	2020-04-16-	100yrCHI-Block4.rpt	:
Area: Hrad:	0.0004 0.0127 0.0465 0.1094 0.2011 0.3132 0.4429 0.5798 0.7197 0.8707	0.0014 0.0173 0.0567 0.1255 0.2221 0.3378 0.4703 0.6072 0.7489 0.9023	0.0032 0.0228 0.0681 0.1428 0.2439 0.3630 0.4977 0.6347 0.7787 0.9344	0.0056 0.0295 0.0807 0.1613 0.2663 0.3890 0.5251 0.6625 0.8089 0.9670	0.0088 0.0374 0.0945 0.1808 0.2894 0.4156 0.5524 0.6909 0.8396 1.0000	
width:	0.0196 0.1178 0.1980 0.2653 0.3389 0.4304 0.5330 0.7002 0.8198 0.9198	$\begin{array}{c} 0.0393\\ 0.1374\\ 0.2114\\ 0.2790\\ 0.3565\\ 0.4494\\ 0.5665\\ 0.7336\\ 0.8398\\ 0.9398\\ \end{array}$	$\begin{array}{c} 0.0589\\ 0.1551\\ 0.2248\\ 0.2927\\ 0.3745\\ 0.4686\\ 0.6000\\ 0.7602\\ 0.8597\\ 0.9599 \end{array}$	0.0785 0.1703 0.2383 0.3065 0.3929 0.4879 0.6334 0.7800 0.8797 0.9799	0.0982 0.1844 0.2518 0.3218 0.4115 0.5073 0.6669 0.7999 0.8997 1.0000	
width:	0.0212 0.1271 0.2902 0.4667 0.6212 0.7271 0.8235 0.8235 0.8729 0.9435	0.0424 0.1490 0.3255 0.5020 0.6424 0.7482 0.8235 0.8235 0.8871 0.9576	0.0635 0.1843 0.3608 0.5373 0.6635 0.7694 0.8235 0.8306 0.9012 0.9718	0.0847 0.2196 0.3961 0.5725 0.6847 0.7906 0.8235 0.8447 0.9153 0.9859	0.1059 0.2549 0.4314 0.6000 0.7059 0.8118 0.8235 0.8588 0.9294 1.0000	
Transect Area:	Half-18mROW					
	0.0004 0.0160 0.0539 0.1140 0.1884 0.2793 0.3899 0.5201 0.6698 0.8406	$\begin{array}{c} 0.0018\\ 0.0218\\ 0.0641\\ 0.1285\\ 0.2050\\ 0.2999\\ 0.4144\\ 0.5484\\ 0.7021\\ 0.8784 \end{array}$	0.0040 0.0285 0.0753 0.1429 0.2224 0.3212 0.4396 0.5776 0.7352 0.9176	0.0071 0.0361 0.0873 0.1574 0.2406 0.3433 0.4657 0.6076 0.7691 0.9581	0.0111 0.0445 0.1002 0.1725 0.2596 0.3662 0.4925 0.6383 0.8042 1.0000	
Hrad:					-	

Page 7

width:	0.0212 0.1273 0.2334 0.3395 0.5317 0.6763 0.7812 0.8624 0.9289 0.9777	0.0424 0.1486 0.2547 0.3757 0.5649 0.6998 0.7990 0.8767 0.9410 0.9840	160401085-2 0.0637 0.1698 0.2759 0.4165 0.5957 0.7219 0.8159 0.8159 0.8904 0.9527 0.9897	2020-04-16-: 0.0849 0.1910 0.2971 0.6244 0.7428 0.8321 0.9037 0.9633 0.9951	100yrCHI-Block4.rpt 0.1061 0.2122 0.3183 0.4959 0.6512 0.7625 0.8476 0.9165 0.9708 1.0000
wiatn:	0.0209 0.1255 0.2302 0.3348 0.3814 0.4734 0.5654 0.6574 0.7494 0.8720	$\begin{array}{c} 0.0418\\ 0.1465\\ 0.2511\\ 0.3400\\ 0.3998\\ 0.4918\\ 0.5838\\ 0.6758\\ 0.7678\\ 0.9040 \end{array}$	0.0628 0.1674 0.2720 0.3400 0.4182 0.5102 0.6022 0.6942 0.7862 0.9360	0.0837 0.1883 0.2929 0.3446 0.4366 0.5286 0.6206 0.7126 0.8080 0.9680	0.1046 0.2092 0.3138 0.3630 0.4550 0.5470 0.6390 0.7310 0.8400 1.0000
Transect H	alf-8.5mROW				
une de	0.0003 0.0118 0.0395 0.0837 0.1396 0.2193 0.3270 0.4627 0.6264 0.8192	0.0013 0.0160 0.0471 0.0943 0.1533 0.2386 0.3519 0.4932 0.6625 0.8621	0.0029 0.0209 0.0552 0.1049 0.1681 0.2590 0.3779 0.5249 0.6998 0.9065	0.0052 0.0265 0.0641 0.1155 0.1841 0.2806 0.4051 0.5576 0.7381 0.9525	0.0082 0.0327 0.0735 0.1270 0.2011 0.3032 0.4333 0.5915 0.7779 1.0000
Hrad:	0.0281 0.1683 0.3086 0.4489 0.6890 0.8161 0.8800 0.9224 0.9584 0.9861	0.0561 0.1964 0.3367 0.4959 0.7232 0.8320 0.8894 0.9298 0.9655 0.9896	0.0842 0.2245 0.3647 0.5488 0.7521 0.8460 0.8983 0.9371 0.9725 0.9931	0.1122 0.2525 0.3928 0.6012 0.7768 0.8585 0.9067 0.9443 0.9787 0.9965	0.1403 0.2806 0.4209 0.6488 0.7979 0.8697 0.9147 0.9514 0.9525 1.0000
Width:	0.0135 0.0812	0.0271 0.0948	0.0406 0.1083	0.0542 0.1218 Page	0.0677 0.1354 8

$\begin{array}{ccccc} 0.1489 & 0.16\\ 0.2166 & 0.22\\ 0.2722 & 0.22\\ 0.3882 & 0.41\\ 0.5042 & 0.52\\ 0.6202 & 0.66\\ 0.7362 & 0.72\\ 0.8720 & 0.90\end{array}$	525 0.1760 200 0.2200 354 0.3186 114 0.4346 774 0.5506 134 0.6666 134 0.7826	20-04-16-10 0.1895 0.2258 0.3418 0.4578 0.5738 0.6898 0.8080 0.9680	0yrCHI-Block4.rpt 0.2031 0.2490 0.3650 0.4810 0.5970 0.7130 0.8400 1.0000							
NOTE: The summary statistics displayed in this report are based on results found at every computational time step, not just on results from each reporting time step.										
<pre>************************************</pre>	YES NO NO YES YES YES VO HORTON DYNWAVE EXTRAN 01/02/2018 00:00: 01/03/2018 00:00: 01/03/2018 00:00: 00:01:00 00:01:00 00:01:00 2.00 sec NO 8 6									
**************************************	Volume hectare-m	Depth mm								
Total Precipitation	0.114	71.665 Page 9								

Evaporation Loss Infiltration Loss Surface Runoff Final Storage Continuity Error (%)	160401085-2 0.000 0.015 0.097 0.002 -0.175	020-04-16-100yrCHI 0.000 9.663 60.875 1.252	-Block4.rpt
**************************************	Volume hectare-m	Volume 10^6 ltr	
Dry Weather Inflow Wet Weather Inflow Groundwater Inflow RDII Inflow External Outflow Flooding Loss Evaporation Loss Exfiltration Loss Initial Stored Volume Final Stored Volume Continuity Error (%)	$\begin{array}{c} 0.000\\ 0.097\\ 0.000\\ 0.001\\ 0.098\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.003\\ 0.003\\ 0.029\\ \end{array}$	0.000 0.969 0.000 0.012 0.981 0.000 0.000 0.000 0.000 0.033 0.033	

Node STM-103 (1.50%)			
**************************************	exes		
Routing Time Step Summary Minimum Time Step Average Time Step Maximum Time Step Percent in Steady State Average Iterations per Step Percent Not Converging	: 2.00 sec : 2.00 sec : 0.00 : 2.00 : 2.00 : 0.01		

Subcatchment Runoff Summary

						1				
otal Peak	Runoff		Tot		Total	Total	Imperv	Perv	Total	
unoff Runoff	f Coef	Precip f	Run	on	Evap	Infil	Runoff I	Runoff	Runoff	
Subcatchment tr LPS		. mm	I	mm	mm	mm	mm	mm	mm	10^
L101A .24 181.43	0.913	71.66	0.	00	0.00	5.00	62.19	3.21	65.40	
L102A L10 75.95	0.913	71.66	0.	00	0.00	5.63	61.19	3.60	64.79	
L102B		71.66	0.	00	0.00	6.89	59.18	4.39	63.57	
.26 201.97 L102C	0.887	71.66	0.	00	0.00	3.76	64.18	2.40	66.58	
.06 44.98 L102D	0.929	71.66	0.	00	0.00	5.02	62.17	3.19	65.36	
.08 60.61 L105A	0.912	71.66	0.	00	0.00	5.64	61.18	3.59	64.77	
.07 54.11 UNC-1	0.904	71.66	0.	00	0.00	21.56	42.10	45.08	49.29	
.07 67.67 UNC-2	0.688	71.66	0.	00	0.00	28.09	30.06	34.14	43.16	
.01 13.86 UNC-3	0.602	71.66	0.	00	0.00	28.93	30.06	40.69	42.20	
0.05 54.67 UNC-4	0.589	71.66	0.		0.00	28.72	30.06	39.43	42.44	
.01 13.36	0.592									
************* Node Depth Su **********										
Node			verage Depth Meters	Maximum Depth Meters	HGL	Time of Ma Occurrenc days hr:mi	e Max Dept	ı		
218 МАЈ-1		OUTFALL OUTFALL	1.92 0.00	1.92 0.04	91.75 93.37 Page 11	0 00:0 0 01:0				

			5-2020-04	l-16-100yr	CHI-E		
MAJ-2	OUTFALL	0.00	0.06	93.30	0	01:00	0.06
OF1	OUTFALL	0.00	0.00	0.00	0	00:00	0.00
OF2	OUTFALL	0.00	0.00	0.00	0	00:00	0.00
OF3	OUTFALL	0.00	0.00	93.52	0	00:00	0.00
OF4	OUTFALL	0.00	0.00	93.44	Ó	00:00	0.00
L101A1-S	STORAGE	0.00	0.00	93.99	Õ	00:00	0.00
L101A-S	STORAGE	0.05	1.58	93.70	Ó	01:01	1.58
L101A-S1	STORAGE	0.00	0.04	93.69	õ	01:01	0.04
L102A-5	STORAGE	0.04	1.54	93.83	õ	01:00	1.54
L102A-S1	STORAGE	0.00	0.05	93.82	õ	01:00	0.05
L102B-S	STORAGE	0.06	1.77	93.71	õ	01:01	1.77
L102B-S1	STORAGE	0.00	0.00	93.87	õ	00:00	0.00
L102B-S2	STORAGE	0.00	0.00	93.97	Õ	00:00	0.00
L102C-S	STORAGE	0.04	1.55	94.07	õ	01:01	1.55
L102C-S1	STORAGE	0.00	0.00	94.10	õ	00:00	0.00
L102D-S	STORAGE	0.05	1.56	93.82	ŏ	01:01	1.56
L102D-S1	STORAGE	0.00	0.00	93.94	ŏ	00:00	0.00
L105A-S	STORAGE	0.03	1.44	93.52	ŏ	01:00	1.44
L105A-S1	STORAGE	0.00	0.00	93.91	ŏ	00:00	0.00
STM-101	STORAGE	1.15	1.22	91.82	ŏ	01:01	1.22
STM-102	STORAGE	0.60	0.84	92.00	ŏ	00:51	0.83
STM-103	STORAGE	0.68	0.78	91.86	ŏ	00:54	0.78
STM-103	STORAGE	0.35	0.46	91.86	ŏ	00:53	0.46
STM-105	STORAGE	0.52	0.64	91.87	ŏ	00:54	0.64
516 105	STORAGE	0.52	0.04	51.07	0	00.34	0.04

Node	Туре	Maximum Lateral Inflow LPS	Maximum Total Inflow LPS	Time of Max Occurrence days hr:min	Lateral Inflow Volume 10^6 ltr	Total Inflow Volume 10^6 ltr	Flow Balance Error Percent
218 MAJ-1 MAJ-2 OF1 OF2 OF3 OF4 L101A1-S L101A-S L101A-S L101A-S1 L102A-S L102A-S1	OUTFALL OUTFALL OUTFALL OUTFALL OUTFALL OUTFALL STORAGE STORAGE STORAGE STORAGE STORAGE	0.00 0.00 67.67 13.86 54.67 13.36 0.00 181.43 0.00 75.95 0.00	254.58 34.92 33.33 67.67 13.86 54.67 13.36 0.00 224.06 36.94 75.95 44.47	0 01:02 0 01:01 0 01:00 0 01:00 0 01:00 0 01:00 0 01:00 0 01:00 0 01:00 0 01:00 0 01:00 0 01:00 Page 12	$\begin{array}{c} & 0 \\ & 0 \\ 0 \\ 0 \\ 0.0703 \\ 0.013 \\ 0 \\ 0.05 \\ 0.0123 \\ 0 \\ 0 \\ 0.243 \\ 0 \\ 0.101 \\ 0 \end{array}$	0.818 0.0126 0.017 0.0703 0.013 0.05 0.0123 0 0.26 0.0128 0.101 0.0166	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1tr -0.161 0.643 -0.279 -1.622

160401085-2020-04-16-100yrCHI-Block4.rpt										
L102B-S	STORAGE	201.97	201.97	0	01:00	0.265	0.265	0.035		
L102B-S1	STORAGE	0.00	0.00	0	00:00	0	0	0.000 ltr		
L102B-S2	STORAGE	0.00	0.00	0	00:00	0	0	0.000 ltr		
L102C-S	STORAGE	44.98	44.98	0	01:00	0.0611	0.0611	0.070		
L102C-S1	STORAGE	0.00	0.00	0	00:00	0	0	0.000 ltr		
L102D-S	STORAGE	60.61	60.61	0	01:00	0.0812	0.0812	0.087		
L102D-S1	STORAGE	0.00	0.00	0	00:00	0	0	0.000 ltr		
L105A-S	STORAGE	54.11	54.11	0	01:00	0.072	0.072	0.046		
L105A-S1	STORAGE	0.00	0.00	0	00:00	0	0	0.000 ltr		
STM-101	STORAGE	0.00	254.55	0	01:02	0	0.821	0.004		
STM-102	STORAGE	0.00	128.85	0	01:01	0	0.417	0.001		
STM-103	STORAGE	0.00	35.87	0	00:00	0	0.0689	1.526		
STM-104	STORAGE	0.00	10.70	0	00:52	0	0.00545	-3.669		
STM-105	STORAGE	0.00	22.54	0	00:00	0	0.058	0.009		

****** Node Surcharge Summary

No nodes were surcharged.

***** Node Flooding Summary

No nodes were flooded.

***** Storage Volume Summary

Storage Unit	Average Volume 1000 m3	Avg Pcnt Full	Evap Pcnt Loss	Exfil Pcnt Loss	Maximum Volume 1000 m3	Max Pcnt Full	0ccu	of Max irrence hr:min	Maximum Outflow LPS
L101A1-S L101A-S L101A-S L102A-S L102A-S L102A-S1 L102B-S L102B-S L102B-S1 L102B-S2 L102C-S	$\begin{array}{c} 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ \end{array}$	0 2 0 2 0 0 0 0 1	0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.000 0.005 0.000 0.002 0.000 0.032 0.000 0.000 0.000 0.008 ge 13	0 100 0 100 0 30 0 73	0 0 0 0 0 0 0 0 0 0	00:00 00:57 00:00 00:53 00:00 01:01 00:00 00:00 01:01	0.00 113.80 34.92 72.74 43.37 81.84 0.00 0.00 21.57

160401085-2020-04-16-100yrCHI-Block4.rpt 0 0 0 0.000 0 1 0 0 0.007 36 0 0 0 0.000 0 $\begin{array}{c} 0.000\\ 0.000\\ 0.000\\ 0.000 \end{array}$ 0 00:00 0 01:01 0 00:00

	16	5040108	5-2020	-04-16	-100yrCHI-Block4	4.rpt			
L102C-S1	0.000	0	0	0	0.000	0	0	00:00	0.00
L102D-S	0.000	1	0	0	0.007	36	0	01:01	25.44
L102D-S1	0.000	0	0	0	0.000	0	0	00:00	0.00
L105A-S	0.000	0	0	0	0.000	0	0	00:00	54.05
L105A-S1	0.000	0	0	0	0.000	0	0	00:00	0.00
STM-101	0.000	0	0	0	0.000	0	0	00:00	254.58
STM-102	0.000	0	0	0	0.000	0	0	00:00	128.86
STM-103	0.000	0	0	0	0.000	0	0	00:00	24.63
STM-104	0.000	0	0	0	0.000	0	0	00:00	6.10
STM-105	0.000	0	0	0	0.000	0	0	00:00	21.29

Outfall Node	Flow	Avg	Max	Total
	Freq	Flow	Flow	Volume
	Pcnt	LPS	LPS	10^6 ltr
218	94.11	$ \begin{array}{r} 10.06\\ 8.84\\ 22.66\\ 7.02\\ 1.30\\ 5.05\\ 1.82\\ \end{array} $	254.58	0.818
MAJ-1	1.64		34.92	0.013
MAJ-2	0.87		33.33	0.017
OF1	11.60		67.67	0.070
OF2	11.53		13.86	0.013
OF3	11.45		54.67	0.050
OF4	7.78		13.36	0.012
System	19.85	56.76	13.36	0.994

***** Link Flow Summary

Link	Туре	Maximum Flow LPS	Time of Max Occurrence days hr:min	Maximum Veloc m/sec	Max/ Full Flow	Max/ Full Depth
C1 C10 C11 C12 C13 C14 C15	CHANNEL CHANNEL CHANNEL CHANNEL CHANNEL CHANNEL CHANNEL	$\begin{array}{c} 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00 \end{array}$	$\begin{array}{cccc} 0 & 00:00 \\ 0 & 00:00 \\ 0 & 00:00 \\ 0 & 00:00 \\ 0 & 00:00 \\ 0 & 00:00 \\ 0 & 00:00 \end{array}$	$\begin{array}{c} 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \end{array}$	$\begin{array}{c} 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ \end{array}$	0.16 0.25 0.25 0.27 0.00 0.50 0.27

		160401085	-202	20-04-16-1	00vrcut_B	lock4 rr	+
C16	CHANNEL	34.92	0	01:01	0.76	0.00	0.12
C17	CHANNEL	33.33	ŏ	01:00	1.03	0.00	0.12
C3	CHANNEL	36.94	ŏ	01:00	0.09	0.00	0.33
C4	CHANNEL	43.37	ŏ	01:00	0.11	0.00	0.34
C5	CHANNEL	44.47	ŏ	01:00	0.14	0.01	0.28
C6	CHANNEL	0.00	ŏ	00:00	0.00	0.00	0.22
Č7	CHANNEL	0.00	Õ	00:00	0.00	0.00	0.24
C8	CHANNEL	0.00	Ó	00:00	0.00	0.00	0.00
C9	CHANNEL	0.00	0	00:00	0.00	0.00	0.27
Pipe_3	CONDUIT	128.86	0	01:01	0.81	0.71	1.00
Pipe_4	CONDUIT	23.89	0	00:54	0.34	0.39	1.00
Pipe_46	CONDUIT	254.58	0	01:02	0.71	0.70	1.00
Pipe_5	CONDUIT	10.70	0	00:52	0.21	0.17	0.77
Pipe_6	CONDUIT	22.54	0	00:00	0.36	0.33	1.00
L101A-IC	ORIFICE	76.88	0	01:01			1.00
L102A-IC	ORIFICE	28.27	0	01:00			1.00
L102B-IC	ORIFICE	81.84	0	01:01			1.00
L102C-IC	ORIFICE	21.57	0	01:01			1.00
L102D-IC	ORIFICE	25.44	0	01:01			1.00
L105A-IC	ORIFICE	20.72	0	01:00			1.00

	Adjusted				ion of	 Timo				
Conduit	Adjusted /Actual Length	Dry	Up Dry	Down	Sub Crit	Sup Crit	Up Crit	Down Crit	Norm Ltd	Inlet Ctrl
C1	1.00	0.99	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00
č10	1.00	0.98	0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.00
C11	1.00	0.98	0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.00
C12	1.00	0.97	0.03	0.00	0.00	0.00	0.00	0.00	0.00	0.00
C13	1.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
C14	1.00	0.97	0.03	0.00	0.00	0.00	0.00	0.00	0.00	0.00
C15	1.00	0.97	0.03	0.00	0.00	0.00	0.00	0.00	0.00	0.00
C16	1.00	0.04	0.00	0.00	0.90	0.06	0.00	0.00	0.02	0.00
C17	1.00	0.99	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00
C3	1.00	0.04	0.00	0.00	0.02	0.00	0.00	0.94	0.01	0.00
C4	1.00	0.04	0.00	0.00	0.02	0.00	0.00	0.94	0.02	0.00
C5	1.00	0.04	0.00	0.00	0.02	0.00	0.00	0.95	0.01	0.00
C6	1.00	0.98	0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.00
C7	1.00	0.98	0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.00
C8	1.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
C9	1.00	0.97	0.03	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Pipe_3	1.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00

Page 15

	160401085-2020-04-16-100yrCHI-Block4.rpt									
Pipe_4	1.00	0.00								
Pipe_46	1.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00
Pipe_5	1.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00
Pipe_4 Pipe_46 Pipe_5 Pipe_6	1.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00

***** Conduit Surcharge Summary

Conduit		Hours Full Upstream		Hours Above Full Normal Flow	Hours Capacity Limited
Pipe_3 Pipe_4 Pipe_46 Pipe_5 Pipe_6	0.56 24.00 24.00 0.01 0.34	0.56 24.00 24.00 0.01 0.34	24.00 24.00 24.00 23.99 24.00	0.01 0.01 0.01 0.01 0.01 0.01	$\begin{array}{c} 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \end{array}$

Analysis begun on: Thu Apr 30 12:18:58 2020 Analysis ended on: Thu Apr 30 12:18:59 2020 Total elapsed time: 00:00:01

SOUTH NEPEAN TOWN CENTRE (SNTC) BLOCK 4 – SITE SERVICING AND STORMWATER MANAGEMENT REPORT

Appendix C Stormwater Management Calculations

C.4 BACKGROUND REPORT EXCERPTS

Stantec	REVISION DESIGNE	l: D BY:	2020- M		FILE NUM	I	DESIGN	I SEWE N SHEE f Ottawa) 85	т		l = a / (t+l a = b =	1:2 yr 732.951 6.199	1:5 yr 998.071 6.053	1:10 yr 1174.184 6.014	1:100 yr 1735.688 6.014	MINIMUM	6'S n = COVER:	0.013 2.00	m	BEDDING	CLASS =	В																
LOCATION AREA ID NUMBER	CHECKEE FROM M.H.	D ВҮ: то м.н.	AREA (2-YEAR) (ha)	AREA (5-YEAR) (ha)	AREA (10-YEAR) (ha)	AREA (100-YEAR) (ha)	AREA (ROOF) (ha)	C (2-YEAR) (-)	C (5-YEAR) (-)	C (10-YEAR) (-)	C = C (100-YEAR) (-)	0.810 A x C (2-YEAR) (ha)	0.814 ACCUM AxC (2YR) (ha)	0.816 DR/ A x C (5-YEAR) (ha)	0.820 AINAGE AF ACCUM. AxC (5YR) (ha)	TIME OF E REA A x C (10-YEAR) (ha)	ACCUM. ACC (10YR) (ha)	10 A x C (100-YEAR) (ha)	ACCUM. ACC (100YR (ha)	T of C) (min)	l _{2-YEAR} (mm/h)	I _{5-YEAR} (mm/h)	l _{10-YEAR} (mm/h)	I _{100-YEAR} (mm/h)	Q _{CONTROL} (L/s)	ACCUM. Q _{CONTROL} (L/s)	Q _{ACT} (CIA/360) (L/s)	LENGTH C (m)	PIPE WIDTH IR DIAMETEI (mm)	PIPE HEIGHT (mm)	PIPE SHAPE (-)	P MATERIAL (-)	PIPE SELEC CLASS (-)	CTION SLOPE %	Q _{CAP} (FULL) (L/s)	% FULL (-)	VEL. (FULL) (m/s)	VEL. TIME OF (ACT) FLOW (m/s) (min)
L220A	220	219	0.06	0.00	0.00	0.00	0.00	0.73	0.00	0.00	0.00	0.043	0.043	0.000	0.000	0.000	0.000	0.000	0.000	10.00 12.18	76.81	104.19	122.14	178.56	0.0	0.0	9.1	71.5	375	375	CIRCULAR	PVC	-	0.50	116.6	7.8%	1.11	0.55 2.18
L222A	222	219	1.60	0.00	0.00	0.00	0.00	0.70	0.00	0.00	0.00	1.121	1.121	0.000	0.000	0.000	0.000	0.000	0.000	10.00 10.17	76.81	104.19	122.14	178.56	0.0	0.0	239.2	11.8	600	600	CIRCULAR	CONCRETE	-	0.30	350.8	68.2%	1.20	1.13 0.17
L219A	219	218	0.09	0.00	0.00	0.00	0.00	0.73	0.00	0.00	0.00	0.063	1.226	0.000	0.000	0.000	0.000	0.000	0.000	12.18 13.65	69.35	93.95	110.08	160.84	0.0	0.0	236.3	76.2	750	750	CIRCULAR	CONCRETE	-	0.15	449.8	52.5%	0.99	0.86 1.48
L221A	221	218	1.59	0.00	0.00	0.00	0.00	0.70	0.00	0.00	0.00	1.114	1.114	0.000	0.000	0.000	0.000	0.000	0.000	10.00 10.19	76.81	104.19	122.14	178.56	0.0	0.0	237.6	12.5	600	600	CIRCULAR	CONCRETE	-	0.30	350.8	67.7%	1.20	1.13 0.19
L218A, L218B	218	10000	0.18	0.00	0.00	0.00	0.00	0.73	0.00	0.00	0.00	0.133	2.473	0.000	0.000	0.000	0.000	0.000	0.000	13.65 1 5.26	65.14	88.17	103.28	150.86	0.0	0.0	447.5	81.5	1200 1200	1200 1200	CIRCULAR	CONCRETE	-	0.10	1286.2	34.8%	1.10	0.85 1.60
L108A, L108B, L110A	108	106	0.37	0.00	0.00	0.00	0.00	0.60	0.00	0.00	0.00	0.223	0.223	0.000	0.000	0.000	0.000	0.000	0.000	<u>10.00</u> 12.40	76.81	104.19	122.14	178.56	0.0	0.0	47.5	85.4	675	675	CIRCULAR	CONCRETE	-	0.20	392.2	12.1%	1.06	0.59 2.40
L203B, L203A	203	202	0.15	0.00	0.00	0.00	0.00	0.67	0.00	0.00	0.00	0.100	0.100	0.000	0.000	0.000	0.000	0.000	0.000	10.00 12.60	76.81	104.19	122.14	178.56	0.0	0.0	21.3	88.4	450	450	CIRCULAR	CONCRETE	-	0.30	162.9	13.1%	0.99	0.57 2.60
L205A	205	202	1.24	0.00	0.00	0.00	0.00	0.75	0.00	0.00	0.00	0.930	0.930	0.000	0.000	0.000	0.000	0.000	0.000	10.00 10.20	76.81	104.19	122.14	178.56	0.0	0.0	198.3	12.8	525	525	CIRCULAR	CONCRETE	-	0.30	245.7	80.7%	1.10	1.08 0.20
	202	201	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.000	1.030	0.000	0.000	0.000	0.000	0.000	0.000	12.60 13.15	68.07	92.19	108.01	157.80	0.0	0.0	194.7	22.8	750	750	CIRCULAR	CONCRETE	-	0.10	367.3	53.0%	0.81	0.70 0.54
L204A	204	201	1.62	0.00	0.00	0.00	0.00	0.70	0.00	0.00	0.00	1.132	1.132	0.000	0.000	0.000	0.000	0.000	0.000	10.00 10.21	76.81	104.19	122.14	178.56	0.0	0.0	241.6	14.6	600	600	CIRCULAR	CONCRETE	-	0.30	350.9	68.9%	1.20	1.13 0.21
L201A, L201B	201	106	0.32	0.00	0.00	0.00	0.00	0.62	0.00	0.00	0.00	0.202	2.364	0.000	0.000	0.000	0.000	0.000	0.000	<mark>13.15</mark> 15.51	66.52	90.07	105.51	154.14	0.0	0.0	436.9	118.4	1200	1200	CIRCULAR	CONCRETE	-	0.10	1286.5	34.0%	1.10	0.84 2.36
L106A L104B, L104A	106 104	104 102	0.23 0.40	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.73 0.56	0.00 0.00	0.00 0.00	0.00 0.00	0.165 0.222	<mark>2.752</mark> 2.975	0.000 0.000	<mark>0.000</mark> 0.000	0.000 0.000	<mark>0.000</mark> 0.000	0.000 0.000	<mark>0.000</mark> 0.000	<mark>15.51</mark> 17.48	60.60 56.46	81.96 76.30	95.97 89.32	140.14 130.38	0.0 0.0	<mark>0.0</mark> 0.0	463.3 466.5	105.8 50.4	1200 1200	1200 1200	CIRCULAR CIRCULAR	CONCRETE CONCRETE	-	0.11 0.12	1369.9 1403.7	33.8% 33.2%	1.17 1.20	0.89 1.98 0.91 0.92
C210A	210	209	0.00	0.18	0.00	0.00	0.00	0.00	0.59	0.00	0.00	0.000	0.000	0.107	0.107	0.000	0.000	0.000	0.000	18.40 10.00	76.81	104.19	122.14	178.56	0.0	0.0	31.0	111.5	450	450	CIRCULAR	CONCRETE		0.20	133.0	23.3%	0.81	0.55 3.37
L214A	214	213	0.24	0.00	0.00	0.00	0.00	0.63	0.00	0.00	0.00	0.152	0.152	0.000	0.000	0.000	0.000	0.000	0.000	13.37 10.00	76.81	104.19	122.14	178.56	0.0	0.0	32.3	26.6	375	375	CIRCULAR	PVC	-	0.30	90.3	35.8%	0.86	0.66 0.67
L215A	215	213	1.72	0.00	0.00	0.00	0.00	0.70	0.00	0.00	0.00	1.202	1.202	0.000	0.000	0.000	0.000	0.000	0.000	10.67 10.00	76.81	104.19	122.14	178.56	0.0	0.0	256.5	8.6	600	600	CIRCULAR	CONCRETE	-	0.30	350.8	73.1%	1.20	1.16 0.12
L213A	213	212	0.17	0.00	0.00	0.00	0.00	0.65	0.00	0.00	0.00	0.111	1.465	0.000	0.000	0.000	0.000	0.000	0.000	10.12 10.67	74.31	100.76	118.10	172.62	0.0	0.0	302.5	64.4	675	675	CIRCULAR	CONCRETE		0.17	361.6	83.7%	0.98	0.98 1.10
L212A		209	0.19	0.00	0.00	0.00	0.00	0.65	0.00	0.00	0.00	0.125	1.590	0.000	0.000	0.000	0.000	0.000	0.000	11.78 12.86	70.60	95.67	112.10	163.81	0.0	0.0	311.8	60.6	750	750	CIRCULAR	CONCRETE	-	0.15	449.8	69.3%	0.99	0.93 1.09
C209A	209	208	0.00	0.12	0.00	0.00	0.00	0.00	0.60	0.00	0.00	0.000	1.590	0.073	0.180	0.000	0.000	0.000	0.000	13.37 14.12	65.90	89.21	104.51	152.66	0.0	0.0	335.7	34.5	1200	1200	CIRCULAR	CONCRETE	-	0.10	1286.2	26.1%	1.10	0.77 0.74
L223A L211A, L211B	223 211	211 208	0.04 0.15	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.90 0.84	0.00 0.00	0.00 0.00	0.00 0.00	0.035 0.130	0.035 0.165	0.000 0.000	0.000 0.000	0.000 0.000	0.000 0.000	0.000 0.000	0.000 0.000	10.00 12.65 14.88	76.81 67.94	104.19 92.02	122.14 107.80	178.56 157.50	0.0 0.0	0.0 0.0	7.6 31.2	69.2 88.0	375 375	375 375	CIRCULAR	PVC PVC	-	0.30 0.30	90.3 90.3	8.4% 34.6%	0.86 0.86	0.442.650.662.23
C208A, L208B	208	207	0.18	0.22	0.00	0.00	0.00	0.50	0.65	0.00	0.00	0.088	1.843	0.144	0.324	0.000	0.000	0.000	0.000	14.88 15.89	62.06	83.95	98.32	143.58	0.0	0.0	393.3	49.3	1200	1200	CIRCULAR	CONCRETE		0.10	1286.2	30.6%	1.10	0.82 1.01
L216A	216	207	0.62	0.00	0.00	0.00	0.00	0.60	0.00	0.00	0.00	0.372	0.372	0.000	0.000	0.000	0.000	0.000	0.000	10.00 10.22	76.81	104.19	122.14	178.56	0.0	0.0	79.3	18.0	300	300	CIRCULAR	PVC	-	1.00	96.2	82.5%	1.37	1.36 0.22
C207A	207	102	0.00	0.06	0.00	0.00	0.00	0.00	0.59	0.00	0.00	0.000	2.215	0.033	0.357	0.000	0.000	0.000	0.000	15.89 16.55	59.75	80.80	94.61	138.14	0.0	0.0	447.8	33.6	1200	1200	CIRCULAR	CONCRETE	-	0.10	1286.6	34.8%	1.10	0.85 0.66
L102A, L102C, L102D, L102B L100A	102 100	100 10000	0. 49 0.10	0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.62	0.00	0.00	0.00	0.300	5.489 5.547	0.000 0.000	0.357 0.357	0.000 0.000	0.000 0.000	0.000 0.000	0.000 0.000	18.40 20.71	54.75 50.91	73.96 68.72	86.57 80.41	126.34 117.32	0.0 0.0	<mark>0.0</mark> 0.0	908.2 852.6	142.6 22.2	1920 1920	1220 1220	ELLIPTICAL		-	0.11 0.11	2434.5 2410 3	37.3% 35.4%	1.32 1.31	1.03 2.31 1.01 0.37
LIUUA		10002		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.000	8.020	0.000	0.357	0.000	0.000	0.000	0.000	21.08 21.08				116.01	0.0		^{852.0} 1189.3		1920	1220		CONCRETE	-					1.58 0.10
			11.74	0.58	0.00	0.00	0.00					8.02		0.36		0.00		0.00		21.18									1920	1220								

Notes:

1. Existing storm sewers from MH108 to MH10002 were designed by Novatech as part of the development to the south through coordination with Stantec.

Project No. 160401085 SNTC Development Runoff Coefficient Calculations

Runoff Coeeficient for Hard Areas, C=0.90 Runoff Coeeficient for Soft Areas, C=0.20

ID	Total Area (m²)	Hard Area (m ²)	Soft Area (m ²)	C-Value
C207A	600	334.28	265.72	0.59
C208A	2200	1414.29	785.71	0.65
C209A	1224	699.20	524.39	0.60
C210A	1815	1011.09	803.70	0.59
L201A	666	456.59	209.27	0.68
L201B	2600	1522.85	1077.15	0.61
L203A	700	450.00	250.00	0.65
L203B	800	548.57	251.43	0.68
L204A	16200	11571.50	4628.50	0.70
L205A	12399	9742.25	2657.04	0.75
L208B	1758	753.48	1004.65	0.50
L211A	476	442.31	34.02	0.85
L211B	1064	973.07	91.22	0.84
L212A	1916	1231.84	684.35	0.65
L213A	1713	1101.00	611.66	0.65
L214A	2408	1478.93	928.62	0.63
L215A	17171	12265.15	4905.96	0.70
L216A	6193	3538.83	2654.10	0.60
L218A	1400	1060.00	340.00	0.73
L218B	400	302.86	97.14	0.73
L219A	900	681.43	218.57	0.73
L220A	584	441.92	141.75	0.73
L221A	15912	11365.79	4546.22	0.70
L222A	16017	11440.75	4576.20	0.70
L223A	394	393.92	0.00	0.90

、

					2 year, 3 ho	ur Chicago	5 year, 3 h	our Chicago	100 year, 3	hour Chicago	100 year, 3 hou	r Chicago +20%
Storage node ID	Drainage Area	Top of Grate Elevation (m)	Lowest Adjacent Building Opening (m)	Rim Elevation (m)	Max Surface HGL (m)	Total Surface Ponding Depth (m)	Max Surface HGL (m)	Total Surface Ponding Depth (m)	Max Surface HGL (m)	Total Surface Ponding Depth (m)	Max Surface HGL (m)	Total Surface Ponding Depth (m)
C207A-S	C207A	93.49	N/A	93.89	92.23	0.00	92.35	0.00	93.71	0.22	93.77	0.28
C208A-S	C208A	93.48	N/A	93.88	92.54	0.00	93.49	0.01	93.72	0.24	93.78	0.30
C209A-S	C209A	93.61	94.00	94.01	92.62	0.00	93.12	0.00	93.83	0.22	93.88	0.27
C210A-S	C210A	92.95	N/A	93.35	92.02	0.00	92.58	0.00	93.04	0.09	93.05	0.10
L201A-S	L201A	93.90	N/A	94.30	93.10	0.00	93.71	0.00	94.01	0.11	94.18	0.28
L201B-S	L201B	93.37	N/A	93.77	93.05	0.00	93.43	0.06	93.56	0.19	93.66	0.29
L203A-S	L203A	94.03	N/A	94.43	92.82	0.00	93.00	0.00	93.79	-0.24	94.07	0.04
L203B-S	L203B	94.16	N/A	94.56	93.01	0.00	93.24	0.00	94.17	0.01	94.30	0.14
L208B-S	L208B	93.74	N/A	94.14	93.44	0.00	93.78	0.04	93.81	0.07	93.82	0.08
L211A-S	L211A	94.14	94.28	94.54	93.20	0.00	93.55	0.00	94.17	0.03	94.18	0.04
L211B-S	L211B	93.69	93.94	94.09	93.35	0.00	93.76	0.07	93.83	0.14	93.85	0.16
L212A-S	L212A	93.48	94.00	93.88	93.07	0.00	93.54	0.06	93.83	0.35	93.87	0.39
L213A-S	L213A	93.58	94.02	93.98	92.95	0.00	93.60	0.02	93.74	0.16	93.90	0.32
L214A-S	L214A	93.70	94.12	94.10	93.70	0.00	93.80	0.10	93.93	0.23	93.99	0.29
L218A-S	L218A	93.32	N/A	93.72	92.40	0.00	92.86	0.00	93.58	0.26	93.65	0.33
L218B-S	L218B	93.26	N/A	93.66	91.98	0.00	92.05	0.00	93.58	0.32	93.64	0.38
L219A-S	L219A	93.59	N/A	93.99	92.54	0.00	92.86	0.00	93.86	0.27	93.91	0.32
L220A-S	L220A	93.76	N/A	94.16	92.54	0.00	92.68	0.00	93.24	-0.52	93.61	-0.15
L223A-S	L223A	94.08	94.31	94.48	93.03	0.00	93.27	0.00	94.09	0.01	94.11	0.03

Stormwater Management

Detailed grading of the future blocks should be done based on the above results to assess the feasibility of accommodating basements in residential units while ensuring that a minimum clearance of 0.3 m is provided between all under side of footings (USFs) and the 100-year HGL, and that no basement flooding occurs in the climate change scenario.

5.3.3 Overland Flow

Due to the site configuration and grading constraints, major flows from the proposed development will be directed to Street B within the adjacent Claridge Development to the South.

Based on grading plans and plan and profiles obtained from Novatech for Street B, there are three major system outlets to the adjacent Claridge Subdivision streets and a fourth major system outlet that discharges to the storm outlet channel at the downstream end of Street B.

Major System Outlet	100-Year Major System Overflow (L/s)
Claridge Street 7	3.3
Claridge Street 5	3.5
Claridge Jockvale Road	5.6
Outlet Channel	0.0

Table 5.10: 100-Year Major System Overflows

Table 5.11 presents the maximum total surface water depths (static ponding depth + dynamic flow) above the top-of-grate of the proposed catchbasins for the 100-year, 3-hr Chicago storm and the 'climate change' storm. Based on the model results, the total ponding depth (static + dynamic) does not exceed the required 0.35 m maximum during the 100-year event. Tables summarizing the total surface water depths over the proposed catchbasins are included in **Appendix C.3**, which show that no ponding occurs over the proposed local streets and collector roads during the 2-year and 5-year storms respectively.

Table 5.11: Proposed Phase – Ultimate Maximum	n Static and Dynamic Surface Water Depths
---	---

	Ton of	Lowest	-	r, 3-hour ago		ar, 3-hour go+20%
Storage node ID	Top of Grate Elevation (m)	Lowest Adjacent Building Opening (m)	Max HGL (m)	Total Surface Water Depth (m)	Max HGL (m)	Total Surface Water Depth (m)
107A-S(1)	97.59	98.26	97.80	0.21	97.87	0.28
109A-S	97.58	98.23	97.75	0.17	97.90	0.32

SOUTH NEPEAN TOWN CENTRE (SNTC) - SITE SERVICING AND STORMWATER MANAGEMENT REPORT

Stormwater Management

	Ton of	Lowest		r, 3-hour ago		ar, 3-hour go+20%
Storage node ID	Top of Grate Elevation (m)	Adjacent Building Opening (m)	Max HGL (m)	Total Surface Water Depth (m)	Max HGL (m)	Total Surface Water Depth (m)
109B-S	97.59	98.25	97.68	0.09	97.76	0.17
110A-S	97.75	98.45	97.88	0.13	97.92	0.17
C207A-S	93.49	N/A	93.71	0.22	93.77	0.28
C208A-S	93.48	N/A	93.72	0.24	93.78	0.30
C209A-S	93.61	94.00	93.83	0.22	93.88	0.27
C210A-S	92.95	N/A	93.04	0.09	93.05	0.10
CB69-70	93.32	N/A	92.70	0.00	93.48	0.16
CB39-40	93.27	N/A	93.48	0.21	93.62	0.35
CB41-42	93.44	N/A	93.63	0.19	93.74	0.30
CB43-44	93.40	N/A	93.61	0.21	93.72	0.32
CB45-46	93.41	N/A	93.63	0.22	93.66	0.25
CB47-48	93.47	N/A	93.64	0.17	93.66	0.19
CB49-50	93.67	N/A	93.84	0.17	93.85	0.18
L201A-S	93.90	N/A	94.01	0.11	94.18	0.28
L201B-S	93.37	N/A	93.56	0.19	93.66	0.29
L203A-S	94.03	N/A	93.79	0.00	94.07	0.04
L203B-S	94.16	N/A	94.17	0.01	94.30	0.14
L208B-S	93.74	N/A	93.81	0.07	93.82	0.08
L211A-S	94.14	94.28	94.17	0.03	94.18	0.04
L211B-S	93.69	93.94	93.83	0.14	93.85	0.16
L212A-S	93.48	94.00	93.83	0.35	93.87	0.39
L213A-S	93.58	94.02	93.74	0.16	93.90	0.32
L214A-S	93.70	94.12	93.93	0.23	93.99	0.29
L218A-S	93.32	N/A	93.58	0.26	93.65	0.33
L218B-S	93.26	N/A	93.58	0.32	93.64	0.38
L219A-S	93.59	N/A	93.86	0.27	93.91	0.32
L220A-S	93.76	N/A	93.24	0.00	93.61	0.00
L223A-S	94.08	94.31	94.09	0.01	94.11	0.03

5.3.4 Future Development Blocks SWM Criteria

Table 5.12 below presents the parameters for the outlet link objects in the model, which represent the minor system capture rate for the future private blocks within the SNTC Development.

SOUTH NEPEAN TOWN CENTRE (SNTC) BLOCK 4 – SITE SERVICING AND STORMWATER MANAGEMENT REPORT

Appendix D Geotechnical Investigation

Appendix D **GEOTECHNICAL INVESTIGATION**

patersongroup

Geotechnical Engineering

Environmental Engineering

Hydrogeology

Geological Engineering

Materials Testing

Building Science

Archaeological Studies

Geotechnical Investigation

Proposed Residential Development 3288 Greenbank Road - Ottawa

Prepared For

Caivan Communities

Paterson Group Inc.

Consulting Engineers 154 Colonnade Road South Ottawa (Nepean), Ontario Canada K2E 7J5

Tel: (613) 226-7381 Fax: (613) 226-6344 www.patersongroup.ca March 6, 2019

Report: PG2743-2

Page

Tables of Contents

1.0	Introduction1
2.0	Proposed Development
3.0	Method of Investigation3.1Field Investigation3.2Field Survey3.3Laboratory Testing
4.0	Observations4.1Surface Conditions44.2Subsurface Profile44.3Groundwater4
5.0	Discussion5.1Geotechnical Assessment.65.2Site Grading and Preparation65.3Foundation Design75.4Foundation Options105.5Design of Earthquakes125.6Basement Floor Slab125.7Pavement Structure.12
6.0	Design and Construction Precautions6.1Foundation Drainage and Backfill156.2Protection Against Frost Action156.3Excavation Side Slopes156.4Pipe Bedding and Backfill166.5Groundwater Control176.6Winter Construction176.7Landscaping Considerations18
7.0	Recommendations
8.0	Statement of Limitations

Appendices

Appendix 1 Soil Profile and Test Data Sheets Symbols and Terms Record of Borehole by Others Consolidation Test Sheets Atterberg Test Results Sheets

Appendix 2 Figure 1 - Key Plan Drawing PG2743-2 - Permissible Grade Raise Areas - Housing Drawing PG2743-3 - Permissible Grade Raise Areas - Apartment Buildings Drawing PG2743-4 - Test Hole Location Plan

1.0 Introduction

Paterson Group (Paterson) was commissioned by Caivan Communities to conduct a geotechnical investigation for the proposed residential development to be located at 3288 Greenbank Road, in the City of Ottawa (refer to Figure 1 - Key Plan presented in Appendix 2).

The objective of the investigation was to:

- determine the subsoil and groundwater conditions at this site by means of test holes.
- □ provide geotechnical recommendations for the design of the proposed development including construction considerations which may affect the design.

The following report has been prepared specifically and solely for the aforementioned project which is described herein. The report contains our findings and includes geotechnical recommendations pertaining to the design and construction of the proposed development as understood at the time of this report.

Investigating the presence or potential presence of contamination on the proposed development was not part of the scope of work. Therefore, the present report does not address environmental issues.

2.0 Proposed Development

It is understood that the proposed development consists of townhouse style housing blocks and multi-storey apartment buildings. Local roadways, car parking and landscaped areas are further anticipated for the proposed development.

3.0 Method of Investigation

3.1 Field Investigation

The field program for our investigation was carried out in February 2019 and October 2012. As part of our investigations, eleven (11) boreholes and 8 test pits were completed across the subject site extending to a maximum 10 m depth. The test hole location was placed in a manner to provide general coverage of the subject site taking into account existing test holes completed by others. The test hole locations are illustrated on Drawing PG2743-4 - Test Hole Location Plan presented in Appendix 2.

The boreholes were completed using a track-mounted auger drill rig operated by a two person crew. All fieldwork was conducted under the full-time supervision of Paterson personnel under the direction of a senior engineer from the geotechnical division. The testing procedure consisted of augering to the required depths and at the selected locations sampling the overburden.

Sampling and In Situ Testing

Soil samples were collected from the borehole using a 50 mm diameter splitspoon (SS) sampler, using 73 mm diameter thin walled (TW) Shelby tubes in conjunction with a piston sampler, or from the auger flights. All soil samples were visually inspected and initially classified on site. The split-spoon samples were placed in sealed plastic bags and the Shelby tubes were sealed at both ends on site. All samples were transported to the our laboratory for examination and classification. The depths at which the split-spoon, Shelby tube and auger samples were recovered from the test holes are shown as SS, TW and AU, respectively, on the Soil Profile and Test Data sheets presented in Appendix 1.

The Standard Penetration Test (SPT) was conducted in conjunction with the recovery of the split-spoon samples. The SPT results are recorded as "N" values on the Soil Profile and Test Data sheets. The "N" value is the number of blows required to drive the split-spoon sampler 300 mm into the soil after a 150 mm initial penetration using a 63.5 kg hammer falling from a height of 760 mm.

Undrained shear strength testing was conducted in cohesive soils using a field vane apparatus.

The overburden thickness was evaluated by a dynamic cone penetration testing (DCPT) at BH 6, BH 8 and BH 10. The DCPT consists of driving a steel drill rod, equipped with a 50 mm diameter cone at the tip, using a 63.5 kg hammer falling from a height of 760 mm. The number of blows required to drive the cone into the soil is recorded for each 300 mm increment.

The subsurface conditions observed at the test hole locations were recorded in detail in the field. The soil profiles are presented on the Soil Profile and Test Data sheets in Appendix 1 of this report.

Groundwater

Flexible standpipes were installed in the boreholes to monitor the groundwater level subsequent to the completion of the sampling program. The groundwater observations are noted on the Soil Profile and Test Data sheets presented in Appendix 1.

Sample Storage

All samples will be stored in the laboratory for a period of one month after issuance of the report. They will then be discarded unless we are otherwise directed.

3.2 Field Survey

The test holes were located in the field by JD Barnes. It is understood that the elevations are referenced to a geodetic datum. The ground surface elevation and location of the test holes are presented on Drawing PG2743-4 - Test Hole Location Plan in Appendix 2.

3.3 Laboratory Testing

The soil samples recovered from the field investigation were examined in our laboratory to review field notes and soil samples.

Seven (7) Shelby tube samples were submitted for unidimensional consolidation and one (1) sample submitted for Atterberg limit testing from our test holes completed during our investigation. Eight (8) additional soil samples were submitted for atterberg limit testing as part of our current investigation.

The results of the consolidation testing are presented on the Consolidation Test sheets presented in Appendix 1 and are further discussed in Sections 4 and 5.

4.0 Observations

4.1 Surface Conditions

Currently, the subject site consists of agricultural lands and associated farmhouse and outbuildings. The majority of the ground surface across the subject site is relatively flat and slopes gradually downwards to the south.

4.2 Subsurface Profile

Generally, the soil conditions encountered at the test hole locations consist of a cultivated topsoil/organic layer followed by a stiff, brown silty clay deposit overlying a glacial till layer. Practical refusal to augering or DCPT was encountered at BH 1, BH 6, BH 8 and BH 10 at depths varying between 8.2 and 14.8 m. It should be noted that BH 2 was terminated due to damage of drilling augers on dense till material at a 5.3 m depth. Reference should be made to the Soil Profile and Test Data sheets in Appendix 1 for specific details of the soil profiles encountered at each test hole location.

Based on available geological mapping, the bedrock in this area mostly consists of interbedded limestone and dolomite of the Gull River formation with an overburden drift thickness of 5 to 15 m depth.

4.3 Groundwater

Groundwater levels (GWL) were measured in the piezometers installed in the boreholes and results are summarized in Table 1. It should be noted that surface water can become perched within a backfilled borehole, which can lead to higher than normal groundwater level readings. The long-term groundwater level can also be estimated based on moisture levels and colour of the recovered soil samples. Based on these observations, the long-term groundwater table is expected between 1.5 to 2.5 m below original ground surface. It should be noted that groundwater levels are subject to seasonal fluctuations. Therefore, the groundwater levels could vary at the time of construction.

Table 1 - Su	Table 1 - Summary of Groundwater Level Readings									
Borehole Number	Ground Surface Elevation (m)	Groundwater Level (m)	Groundwater Elevation (m)	Recording Date						
BH 1	92.89	1.30	91.59	November 7, 2012						
BH 2	92.37	1.08	91.29	November 7, 2012						
BH 3	92.66	0.55	92.11	November 7, 2012						
BH 4	92.81	1.76	91.05	November 7, 2012						
BH 5	92.06	-	92.06	November 7, 2012						
BH 6	92.19	1.08	91.11	November 7, 2012						
BH 7	92.38	2.71	89.67	November 7, 2012						
BH 8	92.88	1.35	91.53	November 7, 2012						
BH 9	92.64	3.32	89.32	November 7, 2012						
BH 10	92.40	1.63	90.77	November 7, 2012						
BH 11	92.19	1.08	91.11	November 7, 2012						

5.0 Discussion

5.1 Geotechnical Assessment

From a geotechnical perspective, the subject site is adequate for the proposed residential development. However, due to the presence of the sensitive silty clay layer, the proposed development will be subjected to grade raise restrictions.

Our permissible grade raise recommendations are discussed in Subsection 5.3 and the recommended permissible grade raise areas for housing are presented in Drawing PG2743-2 - Permissible Grade Raise Areas - Housing in Appendix 2. Also, the recommended permissible grade raise areas for apartment buildings are presented in Drawing PG2743-3 - Permissible Grade Raise Areas - Apartment Buildings in Appendix 2. If higher than permissible grade raises are required, preloading with or without a surcharge, lightweight fill and/or other measures should be investigated to reduce the risks of unacceptable long-term post construction total and differential settlements.

The above and other considerations are further discussed in the following sections.

5.2 Site Grading and Preparation

Stripping Depth

Topsoil and deleterious fill, such as those containing organic materials, should be stripped from under any buildings, paved areas, pipe bedding and other settlement sensitive structures.

Fill Placement

Fill used for grading beneath the building areas should consist, unless otherwise specified, of clean imported granular fill, such as Ontario Provincial Standard Specifications (OPSS) Granular A or Granular B Type II. Granular material should be tested and approved prior to delivery to the site. The fill should be placed in lifts of 300 mm thick or less and compacted using suitable compaction equipment for the lift thickness. Fill placed beneath the building areas should be compacted to at least 98% of the Standard Proctor Maximum Dry Density (SPMDD).

Non-specified existing fill along with site-excavated soil can be used as general landscaping fill and beneath parking areas where settlement of the ground surface is of minor concern. In landscaped areas, these materials should be spread in thin lifts and at least compacted by the tracks of the spreading equipment to minimize voids. If these materials are to be used to build up the subgrade level for areas to be paved, they should be compacted in thin lifts to a minimum density of 95% of the SPMDD. Non-specified existing fill and site-excavated soils are not suitable for use as backfill against foundation walls unless a composite drainage blanket connected to a perimeter drainage system is provided.

5.3 Foundation Design

Bearing Resistance Values

Strip footings, up to 2.5 m wide, and pad footings, up to 5 m wide, placed on an undisturbed, stiff silty clay bearing surface can be designed using a bearing resistance value at SLS of **100 kPa** and a factored bearing resistance value at ULS of **200 kPa**. Footings designed using the bearing resistance value at SLS given above will be subjected to potential post construction total and differential settlements of 25 and 20 mm, respectively.

The bearing resistance values are provided on the assumption that the footings will be placed on undisturbed soil bearing surfaces. An undisturbed soil bearing surface consists of one from which all topsoil and deleterious materials, such as loose, frozen or disturbed soil, whether in situ or not, have been removed, in the dry, prior to the placement of concrete for footings.

Lateral Support

The bearing medium under footing-supported structures is required to be provided with adequate lateral support with respect to excavations and different foundation levels. Adequate lateral support is provided to the in-situ bearing medium soils above the groundwater table when a plane extending down and out from the bottom edge of the footing at a minimum of 1.5H:1V passes only through in situ soil of the same or higher capacity as the bearing medium soil.

Settlement/Grade Raise

Consideration must be given to potential settlements which could occur due to the presence of the silty clay deposit and the combined loads from the proposed footings, any groundwater lowering effects, and grade raise fill. The foundation loads to be considered for the settlement case are the continuously applied loads which consist of the unfactored dead loads and the portion of the unfactored live load that is considered to be continuously applied. For dwellings, a minimum value of 50% of the live load is recommended by Paterson.

Generally, the potential long term settlement is evaluated based on the compressibility characteristics of the silty clay. These characteristics are estimated in the laboratory by conducting unidimensional consolidation tests on undisturbed soil samples collected using Shelby tubes in conjunction with a piston sampler. Seven (7) site specific consolidation tests were conducted. The results of the consolidation tests are presented in Table 2 and in Appendix 1.

The value for p'_{c} is the preconsolidation pressure and p'_{o} is the effective overburden pressure of the test samples. The difference between these values is the available preconsolidation. The increase in stress on the soil due to the cumulative effects of the fill surcharge, the footing pressures, the slab loadings and the lowering of the groundwater should not exceed the available preconsolidation if unacceptable settlements are to be avoided.

The values for C_{cr} and C_{c} are the recompression and compression indices, respectively. These soil parameters are a measure of the compressibility due to stress increases below and above the preconsolidation pressures. The higher values for the C_{c} , as compared to the C_{cr} , illustrate the increased settlement potential above, as compared to below, the preconsolidation pressure.

Borehole	Sample	Elevation	р' _с	p' ₀	C _{cr}	C _c	Q
BH 3	TW 4	88.45	104	50	0.021	2.253	А
BH 4	TW 4	88.53	103	55	0.019	2.146	А
BH 6	TW 3	87.16	119	63	0.022	1.064	А
BH 7	TW 3	87.35	113	68	0.016	1.683	А
BH 8	TW 3	87.78	111	62	0.015	2.000	А
BH 11	TW 1	88.41	119	58	0.014	1.253	А

The values of p'_{c} , p'_{o} , C_{cr} and C_{c} are determined using standard engineering testing procedures and are estimates only. Natural variations within the soil deposit will affect the results. The p'_{o} parameter is directly influenced by the groundwater level. Groundwater levels were measured during the site investigation. Groundwater levels vary seasonally which has an impact on the available preconsolidation. Lowering the groundwater level increases the p'_{o} and therefore reduces the available preconsolidation. Unacceptable settlements could be induced by a significant lowering of the groundwater level. The p'_{o} values for the consolidation tests during the investigation are based on the long term groundwater level being at 0.5 m below the existing groundwater table. The groundwater level is based on the colour and undrained shear strength profile of the silty clay.

The total and differential settlements will be dependent on characteristics of the proposed buildings. For design purposes, the total and differential settlements are estimated to be 25 and 20 mm, respectively. A post-development groundwater lowering of 0.5 m was assumed.

The potential post construction total and differential settlements are dependent on the position of the long term groundwater level when building are situated over deposits of compressible silty clay. Efforts can be made to reduce the impacts of the proposed development on the long term groundwater level by placing clay dykes in the service trenches, reducing the sizes of paved areas, leaving green spaces to allow for groundwater recharge or limiting planting of trees to areas away from the buildings. However, it is not economically possible to control the groundwater level.

To reduce potential long term liabilities, consideration should be given to accounting for a larger groundwater lowering and to provide means to reduce long term groundwater lowering (e.g. clay dykes, restriction on planting around the dwellings, etc). Buildings on silty clay deposits increases the likelihood of movements and therefore of cracking. The use of steel reinforcement in foundations placed at key structural locations will tend to reduce foundation cracking compared to unreinforced foundations.

Based on the consolidation testing results and subsurface profile encountered at the borehole locations, a permissible grade raise restriction was calculated for loadings associated with housing and for loadings associated with a 4 storey apartment building with an underground parking level. The recommended permissible grade raise areas for housing and apartment buildings are defined in Drawing PG2743-2 - Permissible Grade Raise Areas - Housing and Drawing PG2743-3 - Permissible Grade Raise Areas - Apartment Buildings in Appendix 2.

If higher grade raises and/or higher loading conditions are required, post construction settlements can be reduced by several methods. The following options can be considered and are further discussed in Subsection 5.4:

- preloading and surcharging
- □ lightweight fill (LWF)

Bearing resistance values for footing designs should be determined on a per lot basis at the time of construction.

5.4 Foundation Options

Based on the above discussion, several options could be considered for the foundation support of the proposed buildings:

Scenario A

Where the grade raise is close to, but below, the maximum permissible grade raise, consideration should be given to using more reinforcement in the design of the foundation (footings and walls) to reduce the risks of cracking in the concrete foundation. The use of control joints within the brick work between the garage and basement area should also be considered.

Scenario B

Where the grade raise cannot be accommodated with soil fill, the following options could be used alone or in combination.

Option 1 - Use of Lightweight Fill

Lightweight fill (LWF) can be used, consisting of EPS (expanded polystyrene) Type 19 or 22 blocks or other light weight materials which allow for raising the grade without adding a significant load to the underlying soils. However, these materials are expensive and, in the case of the EPS, are more difficult to use under the groundwater level, as they are buoyant, and must be protected against potential hydrocarbon spills. Use lightweight fill within the interior of the garage and porch areas to reduce the fill-related loads.

As an alternative to lightweight fill in the interior of the garage and porch, a structural slab can be designed to create a void beneath the floor slab and therefore reduce fill-related loads. Additional information can be provided once the design of the buildings is known.

Option 2 - Preloading or Surcharging

It is possible to preload or surcharge the proposed site in localized areas provided sufficient time is available to achieve the desired settlements based on theoretical values from the settlement analysis. If this option is considered, a monitoring program using settlement plates and electronic piezometers will have to be implemented. This program will determine the amount of settlement in the preloaded or surcharged areas. Obviously, preloading to proposed finished grades will allow for consolidation of the underlying clays over a longer time period. Surcharging the site with additional fill above the proposed finished grade will add additional load to the underlying clays accelerating the consolidation process and allowing for accelerated settlements. Once the desired settlements are achieved, the site can be unloaded and the fill can be used elsewhere on site.

With both the preloading and surcharging methods, the loading period can be reduced by installing vertical wick drains or sand drains in the silty clay layer to promote the movement of groundwater towards the ground surface. However, vertical drains are expensive for this type of residential project. Underground Utilities

The underground services may be subjected to unacceptable total or differential settlements. In particular, the joints at the interface building/soil may be subjected to excessive stress if the differential settlements between the building and the services are excessive. This should be considered in the design of the underground services.

Once the required grade raises are established, the above options could be further discussed along with further recommendations on specific requirements.

5.5 Design for Earthquakes

A seismic site response **Class D** is applicable for foundations designed for the subject site according to the OBC 2012. A higher site class, such as Class C, may be applicable for foundations constructed within the east portion of the subject site. However, the higher site class should be confirmed by a site specific shear wave velocity test. The soils underlying the site are not susceptible to liquefaction.

5.6 Basement Slab

With the removal of all topsoil and deleterious fill, containing organic matter, within the footprints of the proposed buildings, undisturbed native soil surface will be considered acceptable subgrade on which to commence backfilling for floor slab construction. Any soft areas should be removed and backfilled with appropriate backfill material. OPSS Granular B Type II, with a maximum particle size of 50 mm, are recommended for backfilling below the floor slab. It is recommended that the upper 200 mm of sub-slab fill consist of 19 mm clear crushed stone.

5.7 Pavement Structure

For design purposes, the pavement structure presented in the following tables could be used for the design of car parking areas and access lanes/local residential streets. These guidelines should be reviewed once the details of the development are known.

able 4 - Recommer	nded Pavement Structure - Car Parking Areas
Thickness (mm)	Material Description
50	Wear Course - HL 3 or Superpave 12.5 Asphaltic Concrete
150	BASE - OPSS Granular A Crushed Stone
300	SUBBASE - OPSS Granular B Type II

Table 5 - Recommended Pavement Structure - Local Residential Roadways						
Thickness (mm)	Material Description					
40	Wear Course - Superpave 12.5 Asphaltic Concrete					
50	Binder Course - Superpave 19.0 Asphaltic Concrete					
150	BASE - OPSS Granular A Crushed Stone					
400	SUBBASE - OPSS Granular B Type II					
SUBGRADE - Either fill, in situ soil or OPSS Granular B Type I or II material placed over in situ soil						

Table 6 - Recommended Pavement Structure - Roadways with Bus Traffic								
Thickness mm	Material Description							
40	Wear Course - Superpave 12.5 Asphaltic Concrete							
50	Upper Binder Course - Superpave 19.0 Asphaltic Concrete							
50	Lower Binder Course - Superpave 19.0 Asphaltic Concrete							
150	BASE - OPSS Granular A Crushed Stone							
600	SUBBASE - OPSS Granular B Type II							
	SUBGRADE - Either in situ soil or OPSS Granular B Type II material placed over in situ soil							

Minimum Performance Graded (PG) 58-34 asphalt cement should be used for this project.

If soft spots develop in the subgrade during compaction or due to construction traffic, the affected areas should be excavated and replaced with OPSS Granular B Type I or II material. Weak subgrade conditions may be experienced over service trench fill materials. This may require the use of a geotextile, thicker subbase or other measures that can be recommended at the time of construction as part of the field observation program.

The pavement granular base and subbase should be placed in maximum 300 mm thick lifts and compacted to a minimum of 100% of the material's SPMDD using suitable vibratory equipment.

Pavement Structure Drainage

Satisfactory performance of the pavement structure is largely dependent on the contact zone between the subgrade material and the base stone in a dry condition. Failure to provide adequate drainage under conditions of heavy wheel loading can result in the fine subgrade soil being pumped into the voids in the stone subbase, thereby reducing load carrying capacity.

Due to the low permeability of the subgrade materials consideration should be given to installing subdrains during the pavement construction as per City of Ottawa standards. The subdrain inverts should be approximately 300 mm below subgrade level. The subgrade surface should be crowned to promote water flow to the drainage lines.

6.0 Design and Construction Precautions

6.1 Foundation Drainage and Backfill

A perimeter foundation drainage system is recommended for proposed structures. The system should consist of a 100 to 150 mm diameter, geotextile-wrapped, perforated, corrugated, plastic pipe, surrounded on all sides by 150 mm of 10 mm clear crushed stone, placed at the footing level around the exterior perimeter of the structure. The pipe should have a positive outlet, such as a gravity connection to the storm sewer.

Backfill against the exterior sides of the foundation walls should consist of freedraining, non frost susceptible granular materials. The site materials will be frost susceptible and, as such, are not recommended for re-use as backfill unless a composite drainage system (such as system Platon or Miradrain G100N) connected to a drainage system is provided.

6.2 **Protection Against Frost Action**

Perimeter footings of heated structures are required to be insulated against the deleterious effect of frost action. A minimum 1.5 m thick soil cover (or equivalent) should be provided in this regard.

A minimum of 2.1 m thick soil cover (or equivalent) should be provided for other exterior unheated footings.

6.3 Excavation Side Slopes

The excavation for the current phase of the proposed development will be mostly through sandy silt and/or clayey silt/silty clay. Above the groundwater level, for excavations to depths of approximately 3 m, the excavation side slopes should be stable in the short term at 1H:1V. Flatter slopes could be required for deeper excavations or for excavation below the groundwater level. Where such side slopes are not permissible or practical, temporary shoring should be used. The subsoil at this site is considered to be mainly a Type 2 or 3 soil according to the Occupational Health and Safety Act and Regulations for Construction Projects.

The slope cross-sections recommended above are for temporary slopes. Excavated soil should not be stockpiled directly at the top of excavations and heavy equipment should be kept away from the excavation sides.

Slopes in excess of 3 m in height should be periodically inspected by the geotechnical consultant in order to detect if the slopes are exhibiting signs of distress.

It is recommended that a trench box be used at all times to protect personnel working in trenches with steep or vertical sides. It is expected that services will be installed by "cut and cover" methods and excavations will not be left open for extended periods of time.

6.4 Pipe Bedding and Backfill

Bedding and backfill materials should be in accordance with the most recent Material Specifications and Standard Detail Drawings from the City of Ottawa.

The pipe bedding for sewer and water pipes should consist of at least 150 mm of OPSS Granular A material. Where the bedding is located within the firm grey silty clay, the thickness of the bedding material should be increased to a minimum of 300 mm. The material should be placed in maximum 300 mm thick lifts and compacted to a minimum of 95% of its SPMDD. The bedding material should extent at least to the spring line of the pipe.

The cover material, which should consist of OPSS Granular A, should extend from the spring line of the pipe to at least 300 mm above the obvert of the pipe. The material should be placed in maximum 300 mm thick lifts and compacted to a minimum of 95% of its SPMDD.

Generally, it should be possible to re-use the moist (not wet) brown silty clay above the cover material if the excavation and filling operations are carried out in dry weather conditions. Wet silty clay materials will be difficult to re-use, as the high water contents make compacting impractical without an extensive drying period.

Where hard surface areas are considered above the trench backfill, the trench backfill material within the frost zone (about 1.8 m below finished grade) should match the soils exposed at the trench walls to minimize differential frost heaving. The trench backfill should be placed in maximum 300 mm thick loose lifts and compacted to a minimum of 95% of the material's SPMDD.

To reduce long-term lowering of the groundwater level at this site, clay seals should be provided in the service trenches. The seals should be at least 1.5 m long (in the trench direction) and should extend from trench wall to trench wall. The seals should extend from the frost line and fully penetrate the bedding, subbedding and cover material. The barriers should consist of relatively dry and compactable brown silty clay placed in maximum 225 mm thick loose layers and compacted to a minimum of 95% of the SPMDD. The clay seals should be placed at the site boundaries and at strategic locations at no more than 60 m intervals in the service trenches.

6.5 Groundwater Control

Due to the relatively impervious nature of the silty clay materials, it is anticipated that groundwater infiltration into the excavations should be low and controllable using open sumps. A perched groundwater condition may be encountered within the silty sand/sandy silt deposit which may produce significant temporary groundwater infiltration levels. Pumping from open sumps should be sufficient to control the groundwater influx through the sides of shallow excavations.

A temporary MOE permit to take water (PTTW) will be required for this project if more than 50,000 L/day are to be pumped during the construction phase. At least 3 to 4 months should be allowed for completion of the application and issuance of the permit by the MOE.

The contractor should be prepared to direct water away from all bearing surfaces and subgrades, regardless of the source, to prevent disturbance to the founding medium.

6.6 Winter Construction

The subsurface conditions at this site mostly consist of frost susceptible materials. In presence of water and freezing conditions ice could form within the soil mass. Heaving and settlement upon thawing could occur. Precautions should be taken if winter construction is considered for this project.

In the event of construction during below zero temperatures, the founding stratum should be protected from freezing temperatures by the use of straw, propane heaters, tarpaulins or other suitable means. In this regard, the base of the excavations should be insulated from sub-zero temperatures immediately upon exposure and until such time as heat is adequately supplied to the building and the footings are protected with sufficient soil cover to prevent freezing at founding level.

The trench excavations should be constructed in a manner that will avoid the introduction of frozen materials into the trenches. As well, pavement construction is difficult during winter. The subgrade consists of frost susceptible soils which will experience total and differential frost heaving as the work takes place. In addition, the introduction of frost, snow or ice into the pavement materials, which is difficult to avoid, could adversely affect the performance of the pavement structure. Additional information could be provided, if required.

6.7 Landscaping Considerations

Tree Planting Restrictions

In accordance with the City of Ottawa Tree Planting in Sensitive Marine Clay Soils (2017 Guidelines), Paterson completed a soils review of the site to determine applicable tree planting setbacks. Atterberg limits testing was completed for recovered silty clay samples at selected locations throughout the subject site. A shrinkage limit test and sieve analysis testing was also completed on selected soil samples. The shrinkage limit testing indicates a shrinkage limit of 21% with a shrinkage ratio of 1.78. The results of our atterberg limit and sieve testing are presented in Appendix 1.

During our field investigation, it was noted that the silty clay deposit across the site consists of a brown, stiff to very stiff silty clay, which is not considered to be a sensitive marine clay soil. Therefore, the Tree Planting Guidelines not required to be followed for the subject site. Based on our review of the silty clay deposit, a tree planting setback limit of 4.5 m for small (mature tree height up to 7.5m) and medium size trees (mature tree height 7.5 m to 14 m) is recommended across the subject site provided that the following conditions are met.

- □ The underside of footing (USF) is 2.1 m or greater below the lowest finished grade must be satisfied for footings within 10 m from the tree, as measured from the centre of the tree trunk and verified by means of the Grading Plan as indicated procedural changes below.
- □ A small tree must be provided with a minimum of 25 m³ of available soil volume while a medium tree must be provided with a minimum of 30 m³ of available soil volume, as determined by the Landscape Architect. The developer is to ensure that the soil is generally un-compacted when backfilling in street tree planting locations.

- The tree species must be small (mature tree height up to 7.5 m) to medium size (mature tree height 7.5 m to 14 m) as confirmed by the Landscape Architect. The foundation walls are to be reinforced at least nominally (minimum of two upper and two lower 15M bars in the foundation wall).
- Grading surround the tree must promote drainage to the tree root zone (in such a manner as not to be detrimental to the tree), as noted on the subdivision Grading Plan.

Swimming Pools

The in-situ soils are considered to be acceptable for swimming pools. Above ground swimming pools must be placed at least 4 m away from the residence foundation and neighbouring foundations. Otherwise, pool construction is considered routine, and can be constructed in accordance with the manufacturer's requirements.

Aboveground Hot Tubs

If consideration is given to construction of an aboveground hot tub, a geotechnical consultant should be retained by the homeowner to review the site conditions. Additional grading around the hot tub should not exceed permissible grade raises. Otherwise, hot tub construction is considered routine, and can be constructed in accordance with the manufacturer's specifications.

Installation of Decks or Additions

If consideration is given to construction of a deck or addition, a geotechnical consultant should be retained by the homeowner to review the site conditions. Additional grading around proposed deck or addition should not exceed permissible grade raises. Otherwise, standard construction practices are considered acceptable.

7.0 Recommendations

It is recommended that the following be completed once the master plan and site development are determined:

- Review detailed grading plan(s) from a geotechnical perspective.
- Observation of all bearing surfaces prior to the placement of concrete.
- Periodic observation of the condition of unsupported excavation side slopes in excess of 3 m in height, if applicable.
- Observation of all subgrades prior to placing backfilling materials.
- □ Field density tests to ensure that the specified level of compaction has been achieved.
- Sampling and testing of the bituminous concrete including mix design reviews.

A report confirming that these works have been conducted in general accordance with Paterson's recommendations could be issued upon request, following the completion of a satisfactory material testing and observation program by the geotechnical consultant.

8.0 Statement of Limitations

The recommendations made in this report are in accordance with Paterson's present understanding of the project. Paterson requests permission to review the grading plan once available. Paterson's recommendations should be reviewed when the drawings and specifications are complete.

The client should be aware that any information pertaining to soils and the test hole log are furnished as a matter of general information only. Test hole descriptions or logs are not to be interpreted as descriptive of conditions at locations other than those of the test holes.

A soils investigation is a limited sampling of a site. Should any conditions at the site be encountered which differ from those at the test locations, Paterson requests to be notified immediately in order to permit reassessment of the recommendations.

The present report applies only to the project described in this document. Use of this report for purposes other than those described herein or by person(s) other than Caivan Communities or their agent(s) is not authorized without review by this firm for the applicability of our recommendations to the altered use of the report.

Paterson Group Inc.

Joey R Villeneuve, M.A.Sc, EIT.

David J. Gilbert, P.Eng.

APPENDIX 1

SOIL PROFILE AND TEST DATA SHEET SYMBOLS AND TERMS RECORDS OF BOREHOLE BY OTHERS CONSOLIDATION TEST RESULTS ATTERBERG LIMITS' TESTING RESULTS GRAIN SIZE DISTRIBUTION RESULTS

patersongro		In	Con	sulting		SOI	l pro	FILE AN	ND TES	T DATA	
154 Colonnade Road South, Ottawa, On		-		ineers	 Geotechnical Investigation Prop. Residential Development - 3288 Greenbank Rd. Ottawa, Ontario 						
DATUM Ground surface elevations a	t bore	hole l	ocatio	ns prov	-			ited.	FILE NO.	PG2743	;
REMARKS									HOLE NO.		
BORINGS BY CME 850X Power Auger				DA	TE	October 1	5, 2012			BH 1	
SOIL DESCRIPTION	PLOT			IPLE		DEPTH (m)	ELEV. (m)		esist. Blo 0 mm Dia		Piezometer Construction
	STRATA	ТҮРЕ	NUMBER	<i>∞</i> RECOVERY	N VALUE or ROD			• V	Vater Con	tent %	Piezon Constru
GROUND SURFACE		~ ^ 1 1		RE	z ^o	- 0-	-92.89	20	40 60) 80	
TOPSOIL 0.30		送 AU ^全 AU	1				02.00				
		ss	3	100	10	1-	-91.89				
Hard to very stiff, brown SILTY CLAY						2-	-90.89			1	
- firm by 2.8m depth						3-	-89.89	4			
4.34						4-	-88.89	<u>.</u>			
		ss	4	100	4	5-	-87.89				
GLACIAL TILL: Grey silty clay with sand, gravel, cobbles, boulders		∦ ss V ss	5	12	2	6-	86.89				
		X ss	6	17	2	7-	-85.89				
		X SS	7 8	100 73	3 50+		04.00				
End of Borehole						8-	-84.89				<u>200800</u>
Practical refusal to augering at 8.21m depth											
(GWL @ 1.30m-Nov. 7, 2012)											
								20 Shea ▲ Undist	40 60 ar Strengt urbed △		⊣ 100

patersongro		in	Con	sulting		SOI	l pro	FILE AI	ND TES	ST DATA	
154 Colonnade Road South, Ottawa, Or		-		ineers	P		dential D		nt - 3288	Greenbank	Rd.
DATUM Ground surface elevations a				ns provi	_	ttawa, Or by J.D. Ba		nited.	FILE NO.	000742	
REMARKS									HOLENO	PG2743	
BORINGS BY CME 850X Power Auger				DA	TE	October 1	6, 2012		HOLE NC	[/] BH 2	
SOIL DESCRIPTION			SAN	IPLE		DEPTH	ELEV.			ows/0.3m	er on
			ж	RY	Ħ٩	(m)	(m)	• 5	50 mm Dia	a. Cone	Piezometer Construction
	STRATA	ТҮРЕ	NUMBER	% RECOVERY	N VALUE or RQD			• •	Vater Cor	ntent %	Diez(
GROUND SURFACE	ν.	L.	IN	REC	z Ö		00.07	20	40 6	60 80	
TOPSOIL0.30	- - - - - - - - - - - - - - - - - - -	≩ AU AU	1 2			- 0-	-92.37				
		ss	3	100	10	1-	-91.37				
Very stiff to stiff, brown SILTY CLAY											
		ss	4	100	5	2-	-90.37				
- firm by 2.8m depth							00.07	4	^		
						3-	-89.37	· A			
4.34						4-	88.37				
GLACIAL TILL: Grey silty clay with		k SS	5	38	50+						
sand, gravel, cobbles, boulders5.26							-87.37				
End of Borehole											
(GWL @ 1.08m-Nov. 7, 2012)											
								20 Show	40 (60 80 1	00
								Shea	ar Streng turbed △	th (KPa) Remoulded	

patersongro		In	Con	sulting	g	SOI	L PRO	FILE AND TEST I	DATA	
154 Colonnade Road South, Ottawa, Or		-	Eng	ineers	G P	eotechnio rop. Resio ttawa, Or	dential D	tigation evelopment - 3288 Gre	enbank Rd	d.
DATUM Ground surface elevations a	t bore	ehole lo	ocatio	ns prov				ited. FILE NO.	G2743	
				-	• T E	Ostobor 1	6 0010	HOLE NO.	SH 3	
BORINGS BY CME 850X Power Auger	PLOT		SAN	IPLE	ATE	October 1	0, 2012	Pen. Resist. Blows	10.0	
SOIL DESCRIPTION			-		<u>ы</u> с	DEPTH (m)	ELEV. (m)	• 50 mm Dia. Co	one	Piezometer Construction
	STRATA	ТҮРЕ	NUMBER	% RECOVERY	N VALUE or ROD			 Water Conten 	t %	Piezo
GROUND SURFACE				RE	z	- 0-	-92.66	20 40 60	80	~~~~
_ TOPSOIL 0.25	H H	⊠ AU	1			Ŭ	02.00			₿ ₽ ₿
		ss	2	100	10	1-	-91.66			
Very stiff to stiff, brown SILTY CLAY		ss	3	100	4	2-	90.66			
- firm and grey by 2.8m depth						3-	-89.66			
		Т	4	100		4-	-88.66			
			-	100		5-	-87.66		O	
5.87										
		ss	5	0	4	6-	-86.66			
GLACIAL TILL: Grey silty clay with sand, gravel, cobbles, boulders		ss	6	0	6	7-	-85.66			
		ss	7	83	8	8-	84.66			
8.99 End of Borehole		ss	8	67	38					
(GWL @ 0.55m-Nov. 7, 2012)										
(0.112 @ 0.0011110117,2012)										
								20 40 60 Shear Strength (Ł ▲ Undisturbed △ Ren	80 100 80 100 (Pa))

patersongro		In	Con	sulting	,	SO	L PRO	FILE AI		EST DATA	
154 Colonnade Road South, Ottawa, On		-	Eng	ineers	G P	eotechnio rop. Resio ttawa, Or	dential D		nt - 328	38 Greenbank	Rd.
DATUM Ground surface elevations a	t bore	ehole lo	ocatio	ns prov				nited.	FILE N	^{IO.} PG2743	3
REMARKS									HOLE	^{NO.} BH 4	
BORINGS BY CME 850X Power Auger					TE	October 1	6, 2012				
SOIL DESCRIPTION	PLOT			IPLE		DEPTH (m)	ELEV. (m)	-		Blows/0.3m Dia. Cone	Piezometer Construction
	STRATA	ТҮРЕ	NUMBER	* RECOVERY	N VALUE or ROD			• V	Vater C	content %	Piezor Constr
GROUND SURFACE				RE	z ⁰		-92.81	20	40	60 80	
_ TOPSOIL 0.30	T T	₿ AU	1				52.01				
		ss	2	100	12	1.	91.81		· · · · · · · · · · · · · · · · · · ·		
		ss	3	100	4	2	-90.81				₽
						2	30.01	▲ · · · · · · · · · · · · · · · · · · ·			
Very stiff to stiff, brown SILTY CLAY						3-	89.81				
							-88.81				
- firm and grey by 3.6m depth		TW	4			4	00.01	4		O	
						5-	87.81				
						6-	-86.81				
		Тw	5	83		7-	85.81				
7.54		5			7						
GLACIAL TILL: Grey silty clay with sand, gravel, cobbles, boulders		∦ ss	6	83	7	8-	-84.81				
8.99 End of Borehole		ss	7	67	12						
(GWL @ 1.76m-Nov. 7, 2012)											
								20 Shor	40 ar Stro		100
								Undist		ngth (kPa) ∆ Remoulded	

natorsonar		in	Con	sulting		SO	L PRO	FILE AN		ST DATA	
patersongro 154 Colonnade Road South, Ottawa, O		-		isulting jineers	P	eotechnio rop. Resio ttawa, Or	dential D		nt - 3288	Greenbank I	Rd.
DATUM Ground surface elevations	at bore	ehole lo	ocatio	ns prov				ited.	FILE NC	PG2743	
REMARKS									HOLEN	0	
BORINGS BY CME 850X Power Auger		1		DA	TE	October 1	6, 2012	1		^{••} BH 5	1
	Б		SAN	IPLE		DEPTH	ELEV.			lows/0.3m	25
SOIL DESCRIPTION	A PLOT		¢.	ХХ	що	(m)	(m)	• 5	50 mm D	a. Cone	mete
	STRATA	ТҮРЕ	NUMBER	RECOVERY	VALUE F ROD			• V	Vater Co	ntent %	Piezometer Construction
GROUND SURFACE	LS		Ъ	REC	N N 0 N		00.00	20	40	60 80	10
	B F/F/F	茇 AU	1			- 0-	-92.06				
		ss	2		12	1.	91.06				
Very stiff to stiff, brown SILTY CLAY											24
						2-	90.06				
- firm and grey by 2.8m depth						3-	-89.06				
		TW	3	100					f	· · · · · · · · · · · · · · · · · · ·	
4.27		TW	4	46		4-	-88.06		A		
		ss	5	50	8	5-	-87.06				
GLACIAL TILL: Grey silty clay with sand, gravel, cobbles, boulders		ss	6	50	3					· · · · · · · · · · · · · · · · · · ·	
		A X ss	7	50	15	6-	86.06				
7 16	5 5 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7		/	50	15	7-	85.06				
	-						00.00				-
Loose, grey SAND		X ss	8	42	9	8-	84.06				
0.0	4					۵.	-83.06				
9.24 End of Borehole	+	-					00.00			· · · · · · · · · · · · · · · · · · ·	-
								20	40		- 00
								Shea		gth (kPa) ∆ Remoulded	

patersongro	ור	In	Con	sulting	3	SOI	L PRO	FILE AI	ND TEST		1
154 Colonnade Road South, Ottawa, Ot		-	Eng	ineers	G	ieotechnic rop. Resid ottawa, Or	dential D		nt - 3288 G	reenban	k Rd.
DATUM Ground surface elevations a	at bore	ehole lo	ocatio	ns prov				nited.	FILE NO.	PG274	13
REMARKS						0.1.1	7 0040		HOLE NO.	BH 6	
BORINGS BY CME 850X Power Auger					ATE	October 1	7,2012				
SOIL DESCRIPTION	PLOT			IPLE 건	61	DEPTH (m)	ELEV. (m)		esist. Blov 50 mm Dia.		neter uction
	STRATA	ТҮРЕ	NUMBER	* RECOVERY	N VALUE or ROD	1		• V	Vater Conte	ent %	Piezometer Construction
GROUND SURFACE				RE	z ⁰		92.19	20	40 60	80	
TOPSOIL <u>0.33</u>	3	≊ AU	1				52.15				
		ss	2	100	9	1-	91.19				╧┈▓₌▓
		1									1
						2-	90.19				
Very stiff to stiff, brown SILTY CLAY						3-	89.19				
firms and success 0. Our density							00.10				
- firm and grey 3.6m depth						4-	-88.19				
		TW	3	100		5-	87.19			0	
								\mathbf{A}			
						6-	86.19				
						7.	-85.19	4	.		
						/	05.15		A		
						8-	84.19				
8.69											
Dynamic Cone Penetration Test commenced at 8.69m depth. Cone						9-	-83.19				
pushed to 10.0m depth.						10	-82.19				
							02.19				
						11-	81.19				····
									•		
						12-	80.19				·····
						10	-79.19				
13.28	3	+				13-	19.19				
Practical cone refusal at 13.28m											
(GWL @ 1.08m-Nov. 7, 2012)											
								20	40 60	80	<u> </u>
								Shea	ar Strength turbed △ F	r (kPa) Remoulded	

patersongro		In	Con	sulting ineers		SOI	l pro	FILE AN	ND TEST [DATA	
154 Colonnade Road South, Ottawa, Or		-		ineers	P	ieotechnic rop. Resid ottawa, Or	dential D		nt - 3288 Gre	enbank I	Rd.
DATUM Ground surface elevations a	t bore	ehole lo	ocatio	ns prov				nited.	FILE NO.	G2743	
REMARKS						0.1	7 0040		HOLE NO.	3H 7	
BORINGS BY CME 850X Power Auger			CAN		TE	October 1	7,2012	Don D	esist. Blows		
SOIL DESCRIPTION	PLOT				E .	DEPTH (m)	ELEV. (m)		0 mm Dia. Co		meter uction
	STRATA	ТҮРЕ	NUMBER	% RECOVERY	N VALUE or ROD	1		• V	Vater Conten	t %	Piezometer Construction
GROUND SURFACE			4	RI	z ⁰		92.38	20	40 60	80	× ×
TOPSOIL0.30		逫 AU	1								
		ss	2	100	8	1-	-91.38			· · · · · · · · · · · · · · · · · · ·	
						2-	90.38			1	
Very stiff to stiff, brown SILTY CLAY						3-	-89.38				T
- firm and grey by 3.6m depth						4-	-88.38			· · · · · · · · · · · · · · · · · · ·	
		ТW	3	83		5-	-87.38			0	
						6-	-86.38				
						7-	-85.38	4			
						8-	-84.38				
						9-	-83.38			· · · · · · · · · · · · · · · · · · ·	
10.06 End of Borehole		TW	4	100		10-	-82.38			· · · · · · · · · · · · · · · · · · ·	
(GWL @ 2.71m-Nov. 7, 2012)											
								20 Shea ▲ Undist	40 60 ar Strength (k urbed △ Ren		00

patersongro		In	Con	sulting	g	SOI	L PRO		ND TES	T DATA	
154 Colonnade Road South, Ottawa, O			-	lineers	P	eotechnio rop. Resio ttawa, Or	dential D		nt - 3288 (Greenbank	Rd.
DATUM Ground surface elevations	at bore	ehole lo	ocatio	ns prov				ited.	FILE NO.	PG2743	3
				_		O stals and	7 0010		HOLE NO	BH 8	
BORINGS BY CME 850X Power Auger					ATE	October 1	7,2012				
SOIL DESCRIPTION	PLOT			IPLE 거	61	DEPTH (m)	ELEV. (m)	-	esist. Blo 60 mm Dia		Piezometer Construction
	STRATA	ТҮРЕ	NUMBER	% RECOVERY	N VALUE or ROD			• V	Vater Con	itent %	Piezor Constr
GROUND SURFACE			N	RE	z °	0-	-92.88	20	40 6	0 80	
		资AU	1				92.00				
		ss	2	100	10	1-	-91.88			· · · · · · · · · · · · · · · · · · ·	
						2-	90.88				
Hard to stiff, brown SILTY CLAY						3-	-89.88				
- firm and grey by 3.6m depth						4-	88.88	4			
		TW	3	100		5-	-87.88			0	
						6-	86.88			· · · · · · · · · · · · · · · · · · ·	
7.10	3	TW	4	58		7-	85.88				
GLACIAL TILL: Grey silty clay with sand, gravel, cobbles, boulders		ss	5	42	8	8-	-84.88				
Dynamic Cone Penetration Test	D	ss	6	33	6	9-	-83.88			· · · · · · · · · · · · · · · · · · ·	
commenced at 9.00m depth.						10-	-82.88				····
						11-	-81.88			· · · · · · · · · · · · · · · · · · ·	····
						12-	-80.88				······································
							-79.88				····
							-78.88				····
14.85	3					14-	- 78.88				
End of Borehole											Ţ
Practical refusal to augering at 14.83m depth.											
(GWL @ 1.35m-Nov. 7, 2012)								20	40 6	0 80	100
									ar Streng		

patersongro		In	Con	sulting		SOI	l pro	FILE AND TEST DATA
154 Colonnade Road South, Ottawa, Or		-		ineers	Pr	eotechnic op. Resic tawa, Or	dential D	tigation evelopment - 3288 Greenbank Rd.
DATUM Ground surface elevations a	t bore	ehole le	ocatio	ns provi	-			nited. FILE NO. PG2743
REMARKS								HOLE NO. BH 9
BORINGS BY CME 850X Power Auger				DA	TE (October 1	8, 2012	
SOIL DESCRIPTION	PLOT		SAN	IPLE		DEPTH (m)	ELEV. (m)	Pen. Resist. Blows/0.3m ● 50 mm Dia. Cone
	STRATA	ТҮРЕ	NUMBER	% RECOVERY	VALUE r rod			Pen. Resist. Blows/0.3m ● 50 mm Dia. Cone ○ Water Content %
GROUND SURFACE				RE	N OF	0-	-92.64	20 40 60 80
	TX X	S AU	1			0-	92.04	
		ss	2	100	13	1-	-91.64	
Very stiff to stiff, brown SILTY CLAY		ss	3	100	7	2-	90.64	
- firm and grey by 2.8m depth						3-	-89.64	
		TW	4 5	100		4-	-88.64	
			0			5-	-87.64	
- stiff and grey-brown by 5.1m depth								
<u>6.63</u>							-86.64	
GLACIAL TILL: Grey silty clay with sand, gravel, cobbles, boulders		ss	6	42	50	7-	-85.64	
8.23 End of Borehole		X ss	7	8	14	8-	-84.64	
(GWL @ 3.32m-Nov. 7, 2012)								
								20 40 60 80 100 Shear Strength (kPa) ▲ Undisturbed △ Remoulded

patersongro		In	Con	sulting]	SOI	l pro	FILE AND	TEST DAT	Α
154 Colonnade Road South, Ottawa, Or		_	-	ineers	P	eotechnic Prop. Resic Ottawa, Or	dential D		3288 Greenba	nk Rd.
DATUM Ground surface elevations a	t bore	ehole lo	ocatio	ns prov				ited. FIL	-E NO. PG27	43
REMARKS BORINGS BY CME 850X Power Auger				D/	ATE	October 1	9 2012	нс	DLE NO. BH1	0
			CAN				0, 2012	Dam Daaia		
SOIL DESCRIPTION	PLOT			IPLE ਸ	M -	DEPTH (m)	ELEV. (m)		st. Blows/0.3m m Dia. Cone	Piezometer Construction
	STRATA	ТҮРЕ	NUMBER	* RECOVERY	N VALUE OF ROD	1		• Wate	r Content %	Piezor Constr
GROUND SURFACE				RE	z ⁰		-92.40	20 40	60 80	
TOPSOIL 0.30	₹₹₿	S AU	1				92.40			
		ss	2	100	7	1-	91.40			
		ss	3	100	3	2	-90.40			
Stiff, brown SILTY CLAY						2-	90.40	· · · · · · · · · · · · · · · · · · ·		
- firm and grey-brown by 3.6m depth						3-	-89.40			
						4-	-88.40			
		ТW	4	100		5-	-87.40			
						6-	-86.40			
		TW	5	100		7-	85.40			
						8-	-84.40			
Dynamic Cone Penetration Test	<u> A</u>					9-	-83.40			
commenced at 8.69m depth. Cone pushed to 11.5m depth.						10-	-82.40			· · · · · · · · · · · · · · · · · · ·
						11-	-81.40			· · · · · · · · · · · · · · · · · · ·
						12-	-80.40			
						13-	-79.40			······································
End of Borehole13.46		+								
Practical cone refusal at 13.46m depth.										
(GWL @ 1.63m-Nov. 7, 2012)										
								20 40 Shear Si ▲ Undisturbed	trength (kPa)	

natoreonard		n	Con	sulting		SOI	l pro			ST DATA	
patersongro 154 Colonnade Road South, Ottawa, Or		-		ineers	Pro				nt - 3288	3 Greenbank I	Rd.
DATUM Ground surface elevations a	t bore	hole l	ocatio	ns provi				nited.	FILE NO	^{).} PG2743	
REMARKS									HOLE N	0	
BORINGS BY CME 850X Power Auger					TE C	october 1	8, 2012			BH11	
SOIL DESCRIPTION	PLOT		SAN	IPLE		DEPTH				lows/0.3m ia. Cone	eter
	STRATA	ТҮРЕ	NUMBER	% RECOVERY	VALUE Nr RQD	(m)	(m)		Votor Ca	ntont 9/	Piezometer Construction
GROUND SURFACE	STR	Ъ	MUN	RECO	N VI			0 V 20	40	60 80	i <u>s</u> S
		-				0-	92.70				•
						1-	-91.70				• • • •
Firm, grey SILTY CLAY						2-	90.70				
						3-	-89.70				
		тw	1	100		4-	88.70		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
4.72								Δ		0	-
								20	40 40	60 80 1	 00
								Shea		gth (kPa) ∆ Remoulded	

patersongr		Ir	Consi	ulting		SOIL	- PRO	FILE AI	ND TE	ST DATA	
154 Colonnade Road South, Ottawa, O		-		ieers	238	otechnic 8 Green awa, Or	al Invest bank Ro ntario	igation ad			
DATUM Ground surface elevation	is prov	vided b	by J.D. I	Barnes	-				FILE NO	D. PG2743	
REMARKS									HOLE	10	
BORINGS BY Excavator				DA	TE Fe	ebruary	19, 2019			^{••} TP 1	
SOIL DESCRIPTION	PLOT		SAMF			DEPTH (m)	ELEV. (m)			lows/0.3m ia. Cone	ter tion
	STRATA	ТҮРЕ	NUMBER	RECOVERY	N VALUE OF ROD			0 V	Vater Co	ontent %	Piezometer Construction
GROUND SURFACE				8 2	z ~	0-	-93.85	20	40	60 80	ΞŪ
TOPSOIL	0	_									
Brown SILTY SAND with clay 0.4	0										
0.3											
Stiff, brown CLAYEY SILT						1-	-92.85				
		G	1								
<u>1.8</u>		*									
GLACIAL TILL: Brown clayey silt		G	2			2-	-91.85				Ţ
with sand, gravel, cobbles and boulders											
		G	3								
2.6 End of Test Pit	<u>0\^^^^</u>	1									
(GWL @ 2.0m depth based on field observations)											
								20 Shea ▲ Undist		60 80 1 gth (kPa) △ Remoulded	00

patersongr		ır	Con	sulting		SOIL	_ PRO	FILE AI	ND TE	ST DATA	
154 Colonnade Road South, Ottawa, Ont		-		ineers	23	eotechnic 88 Green tawa, Or	bank Ro				
DATUM Ground surface elevations	prov	ided b	by J.D	. Barne		,			FILE N	D. PG2743	
REMARKS									HOLE		
BORINGS BY Excavator					TE	February	19, 2019				
SOIL DESCRIPTION	PLOT			NPLE 것	ы́о	DEPTH (m)	ELEV. (m)			Blows/0.3m ia. Cone	ter tion
	STRATA	ТҮРЕ	NUMBER	∾ RECOVERY	N VALUE or RQD			• V	Vater Co	ontent %	Piezometer Construction
GROUND SURFACE	-			8	<u> </u>	0-	92.72	20	40	60 80	ĒO
TOPSOIL											
0.25	XX	_									
		G	1								
		_									
Very stiff to stiff, brown SILTY CLAY											
- grey by 1.0m depth						1-	-91.72				
							01.72				
		_ G	2								₽
		_ 4									
						2-	-90.72				
		_ G	3								
		_									
		G	4								
End of Test Pit	<u> VVX</u> z										
(Groundwater infiltration at 1.5m depth)											
								20	40		00
								Sheat Undist		gth (kPa) △ Remoulded	

patersongr		ır	Con	sulting		SOIL	- PRO	FILE AI	ND TEST D	ΑΤΑ
		-		ineers		eotechnic 88 Green				
154 Colonnade Road South, Ottawa, OntDATUMGround surface elevations				Barne		tawa, Or	ntario		FILE NO.	
REMARKS	prov		,y 0.D	. Dame	,0 LII	inteo.			PG	2743
BORINGS BY Excavator				DA	TE	February	19, 2019)	HOLE NO. TP	3
	PLOT		SAN	IPLE		DEPTH	ELEV.		lesist. Blows/0.	
SOIL DESCRIPTION			ĸ	RY	Що	(m)	(m)	• 5	50 mm Dia. Cone	B % %
	STRATA	ТҮРЕ	NUMBER	∾ RECOVERY	N VALUE or RQD			o v	Nater Content	ezom ezom
GROUND SURFACE	ß		N	RE	z ⁰	0-	-92.90	20	40 60 8	
TOPSOIL										
0.30										
		G	1							
Very stiff to stiff, brown SILTY CLAY										
- grey by 1.0m depth						1-	-91.90			
		G	2							
						2-	-90.90			
		G	3							
		-								
2.50 End of Test Pit	XX	G	4							
(Groundwater infiltration at 1.8m										
depth)										
								20	40 60 8	30 100
									ar Strength (kPa	a)

patersong	' ∩'	ıır	Con	sulting		SOIL	- PRO	FILE AI		ST DATA	
154 Colonnade Road South, Ottawa, C		-		ineers	23	eotechnic 388 Green ttawa, Or	bank Ro				
DATUM Ground surface elevation	ns prov	vided b	by J.D	. Barne					FILE NO	D. PG2743	
REMARKS									HOLE	10	
BORINGS BY Excavator				DA	TE	February	19, 2019			TP 4	
SOIL DESCRIPTION	PLOT			NPLE ਮੁ	FT _	DEPTH (m)	ELEV. (m)			Blows/0.3m ia. Cone	ter tion
	STRATA	ТҮРЕ	NUMBER	∾ RECOVERY	N VALUE or RQD			0 V		ontent %	Piezometer Construction
GROUND SURFACE				2	4		-92.95	20	40	60 80	L 0
TOPSOIL											
<u>0</u> .2	<u>25</u>										
Very stiff, brown CLAYEY SILT/SILTY CLAY											
1.						1-	-91.95				
		G	1								
Very stiff, brown SILTY CLAY		Ğ									
											_
						2-	-90.95				Ţ ⊼
		G	2				30.33				
		G	3								
End of Test Pit		4									
(Groundwater infiltration at 1.9m depth)											
								20 Shea ▲ Undist		60 80 1 gth (kPa) △ Remoulded	00

patersong	rn	Ir	Con	sulting		SOIL	- PRO	FILE AI	ND TE	ST DATA	
154 Colonnade Road South, Ottawa,	_		ineers	Geotechnical Investigation 2388 Greenbank Road Ottawa, Ontario							
DATUM Ground surface elevation	ons prov	vided k	by J.D	. Barne	_				FILE NO). DC0742	
REMARKS									HOLE	PG2743	
BORINGS BY Excavator		1		DA	TE	ebruary	19, 2019)		[©] TP 5	
SOIL DESCRIPTION	РГОТ		SAN			DEPTH (m)	ELEV. (m)			lows/0.3m ia. Cone	er ion
	STRATA	ТҮРЕ	NUMBER	% RECOVERY	N VALUE or RQD	(,	(,	0 V	ontent %	Piezometer Construction	
GROUND SURFACE	້ທີ	Ľ.	IN	REC	zö	0-	-92.40	20	40	60 80	C Pie
TOPSOIL	. <u>30</u>	_				0	92.40				
						1-	-91.40				
Stiff, brown SILTY CLAY		G	1								Ψ
		G	2			2-	-90.40				
End of Test Pit (Groundwater infiltration at 1.7m depth)	. <u>60</u>	G	3								
								20 Shea ▲ Undis	ar Streng	60 80 1 gth (kPa) △ Remoulded	00

patersongr		ır	Cons	sulting		SOIL	- PRO	FILE A	N	T C	Έ	ST [DATA						
-	154 Colonnade Road South, Ottawa, Ontario K2E 7J5										Geotechnical Investigation 2388 Greenbank Road Ottawa, Ontario								
DATUM Ground surface elevations	s prov	ded b	by J.D.	Barne	-				I	FILE	NO.	P	G2743						
REMARKS									1	HOLI	E NO								
BORINGS BY Excavator					TEF	ebruary	19, 2019												
SOIL DESCRIPTION	A PLOT		SAM		H o	DEPTH (m)	ELEV. (m)	Pen.				ows/ . Co		eter ction					
	STRATA	ТҮРЕ	NUMBER	* RECOVERY	N VALUE or RQD							tent		Piezometer Construction					
GROUND SURFACE				<u>д</u>		0-	-92.48	20		40	6	0	80						
TOPSOIL 0.20																			
		-																	
		– G	1																
Very stiff, brown SILTY CLAY with sand	40				1-														
						-91.48													
							01.40												
1.40		_																	
Stiff, grey-brown SILTY CLAY		_ G	2																
- grey by 1.7m depth														₽					
						0	-90.48												
		G	3			2	-90.40												
		– G	4																
End of Test Pit																			
(Groundwater infiltration at 1.8m depth)																			
								20 Sh ▲ Und	ear		_	h (kl		00					

patersongr	sulting	SOIL PROFILE AND TEST DATA										
154 Colonnade Road South, Ottawa, On		-		ineers	Geotechnical Investigation 2388 Greenbank Road Ottawa, Ontario							
DATUM Ground surface elevations	s prov	ided b	by J.D	. Barne	1	,			FILE NO	PG2743		
REMARKS									HOLE N	 ר		
BORINGS BY Excavator				DA	TE F	-ebruary	19, 2019			⁵ TP 7		
SOIL DESCRIPTION	PLOT			IPLE		DEPTH (m)	ELEV. (m)		esist. Bl i0 mm Dia	ows/0.3m a. Cone	tion	
	STRATA	ТҮРЕ	NUMBER	% RECOVERY	N VALUE or RQD			0 \	Vater Co	ntent %	Piezometer Construction	
GROUND SURFACE	•			R	z v	0-	-92.63	20	40 (60 80	ēÖ	
TOPSOIL												
0.40												
<u>0.4(</u>		G	1									
Very stiff, brown SILTY CLAY with sand												
1.00												
						1-	-91.63					
Stiff, brown SILTY CLAY		G	2									
						2-	2-90.63					
		G	3									
2.40	<u>17728</u>	4									- ⊻	
(Groundwater infiltration at 1.5m depth)												
								20 She ▲ Undis	ar Streng		00	

patersongr		ır	Con	sulting		SOIL	- PRO	FILE AI	ND 1	EST DATA	
154 Colonnade Road South, Ottawa, On		neers	Geotechnical Investigation 2388 Greenbank Road Ottawa, Ontario								
DATUM Ground surface elevations	prov	ided b	by J.D.	Barne	-	,			FILE	NO. PG2743	
REMARKS									HOL	E NO)
BORINGS BY Excavator				DA	TE	February	19, 2019)		TP 8	
SOIL DESCRIPTION	PLOT			IPLE 거	M	DEPTH (m)	ELEV. (m)			Blows/0.3m Dia. Cone	ter tion
	STRATA	ТҮРЕ	NUMBER	% RECOVERY	N VALUE of RQD			• V	Vater	Content %	Piezometer Construction
GROUND SURFACE	02		4	R	zv		-93.20	20	40	60 80	ΞŎ
TOPSOIL											
0.30		_								•••••••••••••••••••••••••••••••••••••••	
Very stiff, brown SILTY CLAY with sand											
						1-	-92.20				
1.10	1.10						92.20				
											 ¥
		G	1								
		1									
Very stiff, brown SILTY CLAY										·····	
		G	2			2-	-91.20				
		G	3								_
2. <u>60</u> End of Test Pit	μ <i>Έ</i> λ										
(Groundwater infiltration at 1.6m											
depth)											
								20	40	60 80 1	00
								Shea ▲ Undist	ar Stre	ength (kPa) △ Remoulded	

SYMBOLS AND TERMS

SOIL DESCRIPTION

Behavioural properties, such as structure and strength, take precedence over particle gradation in describing soils. Terminology describing soil structure are as follows:

Desiccated	-	having visible signs of weathering by oxidation of clay minerals, shrinkage cracks, etc.
Fissured	-	having cracks, and hence a blocky structure.
Varved	-	composed of regular alternating layers of silt and clay.
Stratified	-	composed of alternating layers of different soil types, e.g. silt and sand or silt and clay.
Well-Graded	-	Having wide range in grain sizes and substantial amounts of all intermediate particle sizes (see Grain Size Distribution).
Uniformly-Graded	-	Predominantly of one grain size (see Grain Size Distribution).

The standard terminology to describe the strength of cohesionless soils is the relative density, usually inferred from the results of the Standard Penetration Test (SPT) 'N' value. The SPT N value is the number of blows of a 63.5 kg hammer, falling 760 mm, required to drive a 51 mm O.D. split spoon sampler 300 mm into the soil after an initial penetration of 150 mm.

Relative Density	'N' Value	Relative Density %		
Very Loose	<4	<15		
Loose	4-10	15-35		
Compact	10-30	35-65		
Dense	30-50	65-85		
Very Dense	>50	>85		

The standard terminology to describe the strength of cohesive soils is the consistency, which is based on the undisturbed undrained shear strength as measured by the in situ or laboratory vane tests, penetrometer tests, unconfined compression tests, or occasionally by Standard Penetration Tests.

Consistency	Undrained Shear Strength (kPa)	'N' Value
Very Soft	<12	<2
Soft	12-25	2-4
Firm	25-50	4-8
Stiff	50-100	8-15
Very Stiff	100-200	15-30
Hard	>200	>30

SYMBOLS AND TERMS (continued)

SOIL DESCRIPTION (continued)

Cohesive soils can also be classified according to their "sensitivity". The sensitivity is the ratio between the undisturbed undrained shear strength and the remoulded undrained shear strength of the soil.

Terminology used for describing soil strata based upon texture, or the proportion of individual particle sizes present is provided on the Textural Soil Classification Chart at the end of this information package.

ROCK DESCRIPTION

The structural description of the bedrock mass is based on the Rock Quality Designation (RQD).

The RQD classification is based on a modified core recovery percentage in which all pieces of sound core over 100 mm long are counted as recovery. The smaller pieces are considered to be a result of closely-spaced discontinuities (resulting from shearing, jointing, faulting, or weathering) in the rock mass and are not counted. RQD is ideally determined from NXL size core. However, it can be used on smaller core sizes, such as BX, if the bulk of the fractures caused by drilling stresses (called "mechanical breaks") are easily distinguishable from the normal in situ fractures.

RQD % ROCK QUALITY

90-100	Excellent, intact, very sound
75-90	Good, massive, moderately jointed or sound
50-75	Fair, blocky and seamy, fractured
25-50	Poor, shattered and very seamy or blocky, severely fractured
0-25	Very poor, crushed, very severely fractured

SAMPLE TYPES

SS	-	Split spoon sample (obtained in conjunction with the performing of the Standard
		Penetration Test (SPT))

- TW Thin wall tube or Shelby tube
- PS Piston sample
- AU Auger sample or bulk sample
- WS Wash sample
- RC Rock core sample (Core bit size AXT, BXL, etc.). Rock core samples are obtained with the use of standard diamond drilling bits.

SYMBOLS AND TERMS (continued)

GRAIN SIZE DISTRIBUTION

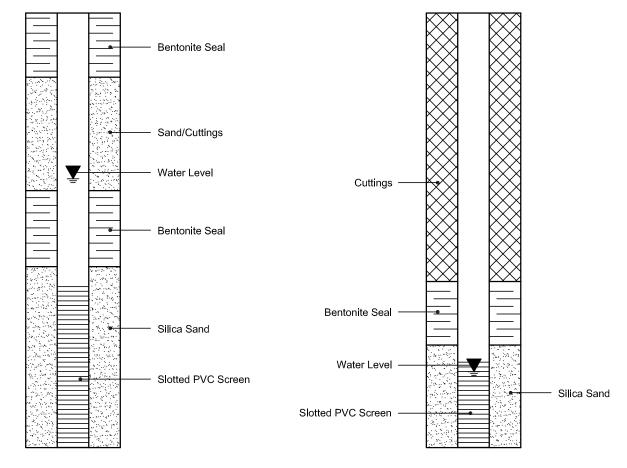
MC% LL PL PI	- - -	Natural moisture content or water content of sample, % Liquid Limit, % (water content above which soil behaves as a liquid) Plastic limit, % (water content above which soil behaves plastically) Plasticity index, % (difference between LL and PL)				
Dxx	-	Grain size which xx% of the soil, by weight, is of finer grain sizes These grain size descriptions are not used below 0.075 mm grain size				
D10	-	Grain size at which 10% of the soil is finer (effective grain size)				
D60	-	Grain size at which 60% of the soil is finer				
Сс	-	Concavity coefficient = $(D30)^2 / (D10 \times D60)$				
Cu	-	Uniformity coefficient = D60 / D10				
Cc and Cu are used to assess the grading of sands and gravels:						

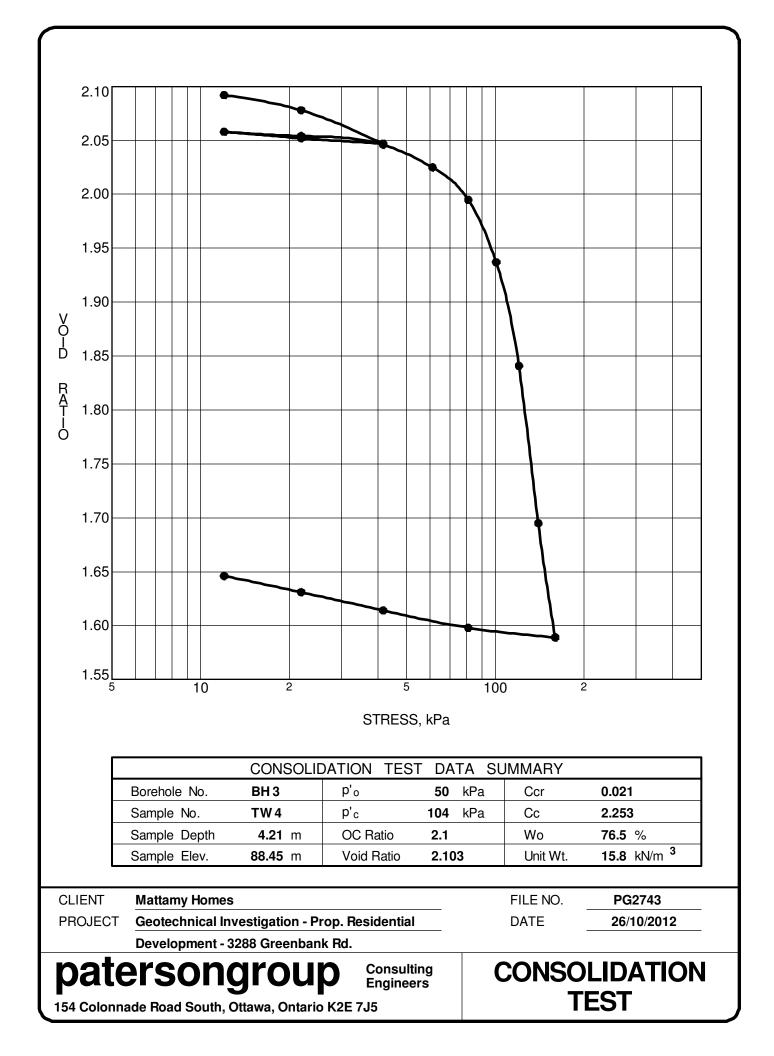
Well-graded gravels have: 1 < Cc < 3 and Cu > 4Well-graded sands have: 1 < Cc < 3 and Cu > 4Well-graded sands have: 1 < Cc < 3 and Cu > 6Sands and gravels not meeting the above requirements are poorly-graded or uniformly-graded. Cc and Cu are not applicable for the description of soils with more than 10% silt and clay (more than 10% finer than 0.075 mm or the #200 sieve)

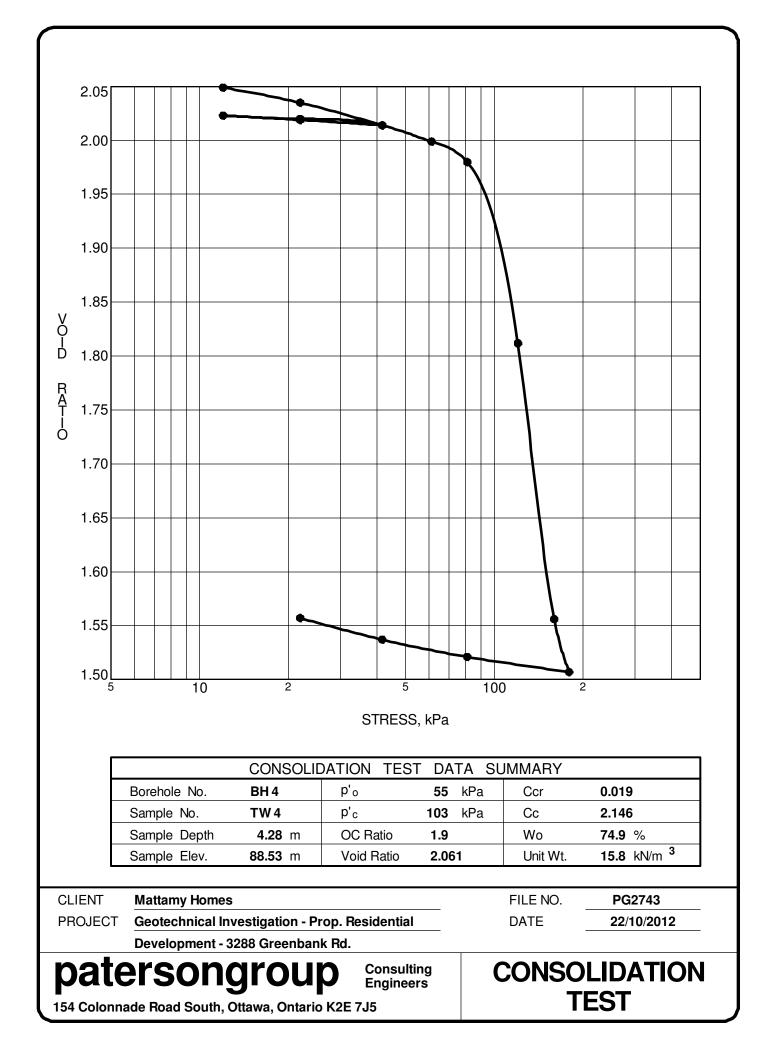
CONSOLIDATION TEST

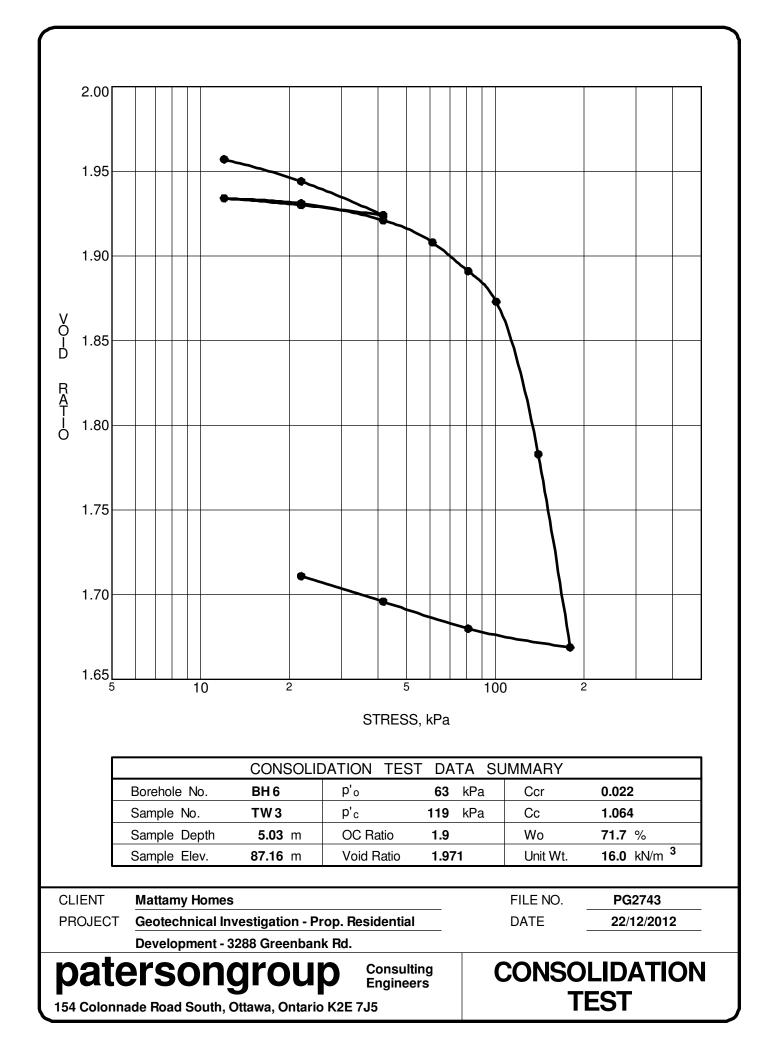
p'o	-	Present effective overburden pressure at sample depth
p'c	-	Preconsolidation pressure of (maximum past pressure on) sample
Ccr	-	Recompression index (in effect at pressures below p'c)
Сс	-	Compression index (in effect at pressures above p'c)
OC Ratio)	Overconsolidaton ratio = p'_c / p'_o
Void Rat	io	Initial sample void ratio = volume of voids / volume of solids
Wo	-	Initial water content (at start of consolidation test)

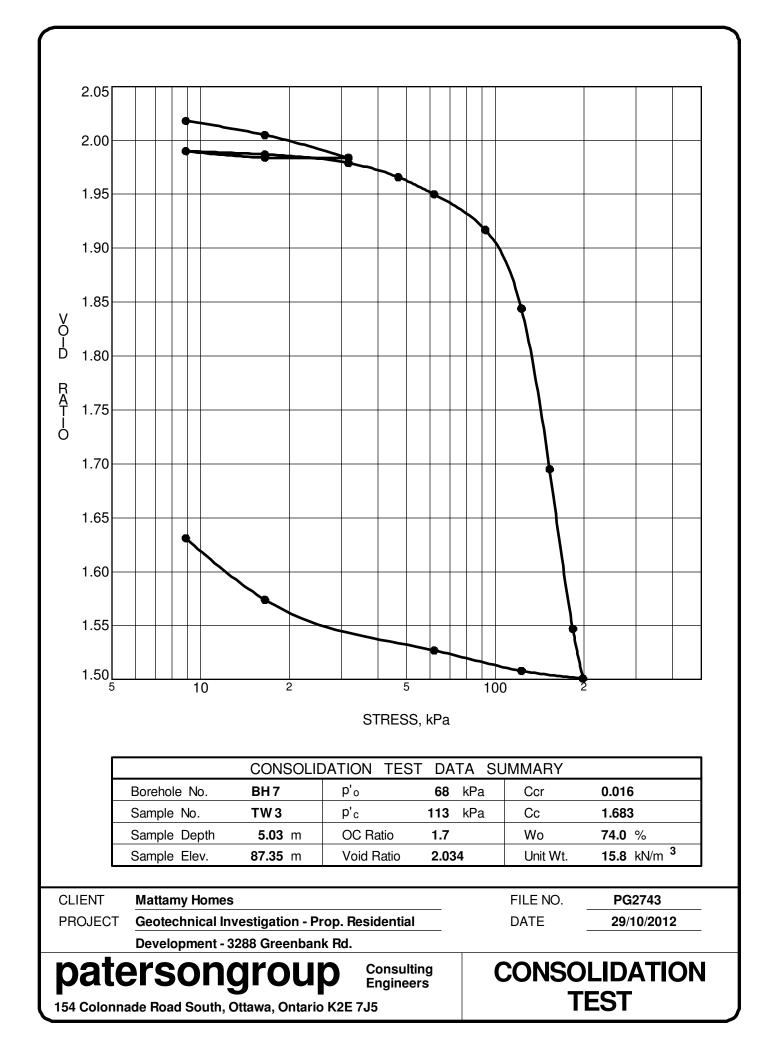
PERMEABILITY TEST

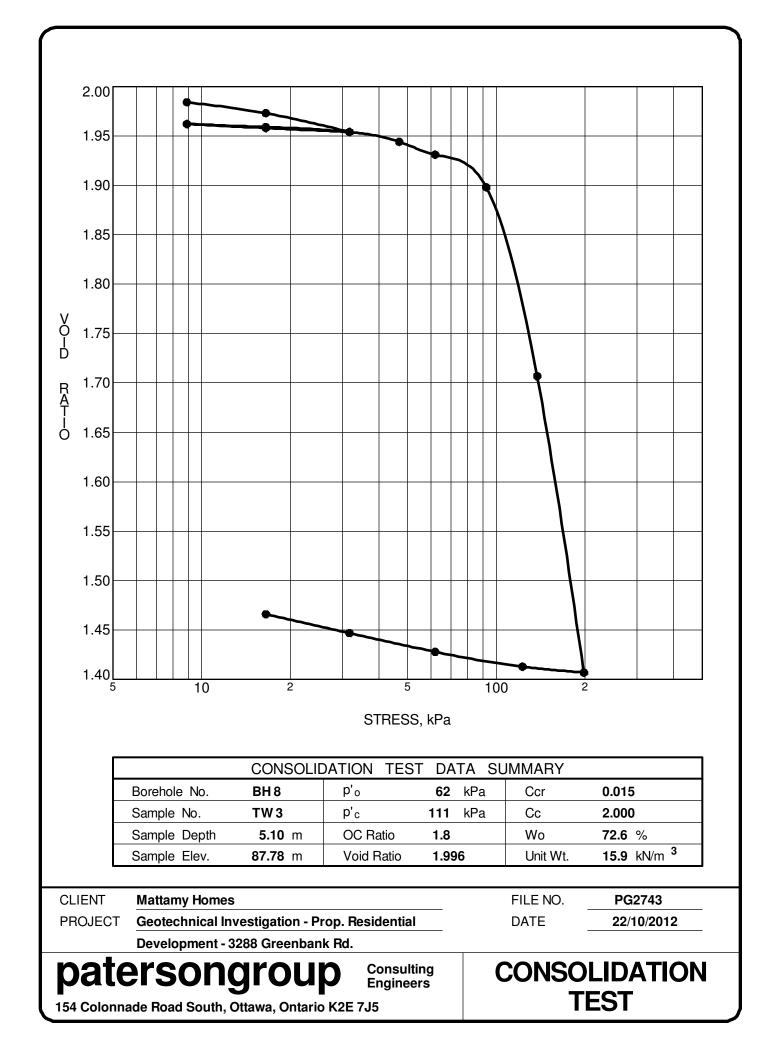

k - Coefficient of permeability or hydraulic conductivity is a measure of the ability of water to flow through the sample. The value of k is measured at a specified unit weight for (remoulded) cohesionless soil samples, because its value will vary with the unit weight or density of the sample during the test.

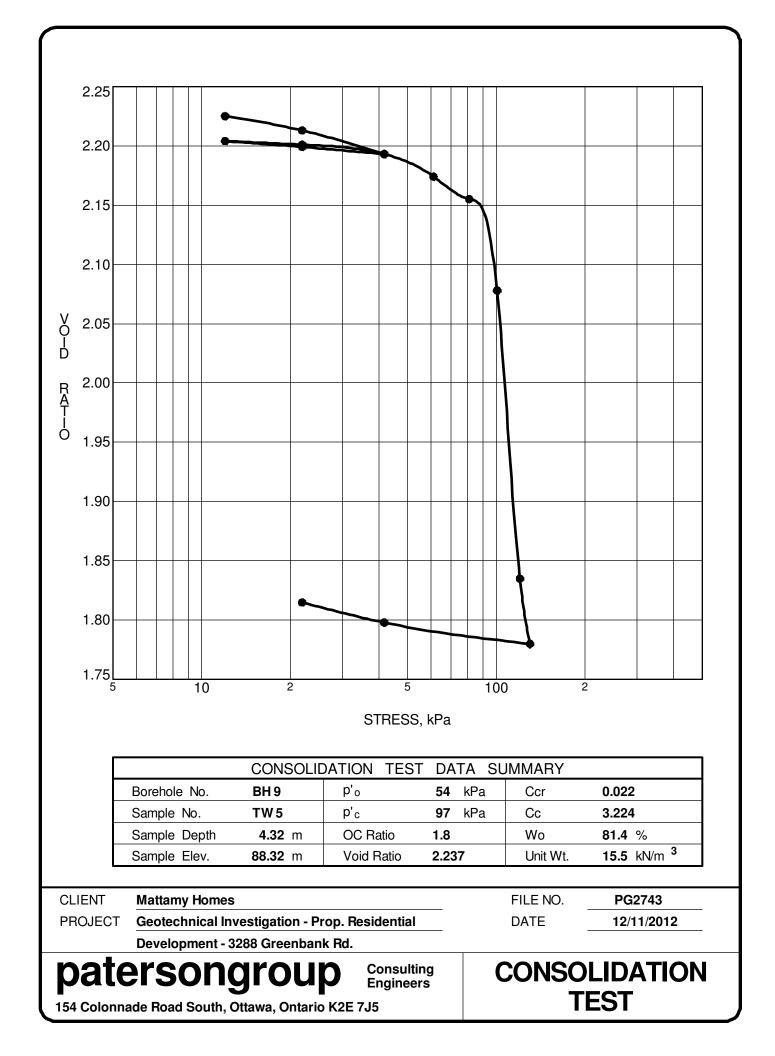

SYMBOLS AND TERMS (continued) STRATA PLOT Topsoil Asphalt Peat Sand Silty Sand Fill ∇ Sandy Silt Clay Silty Clay Clayey Silty Sand Glacial Till Shale Bedrock

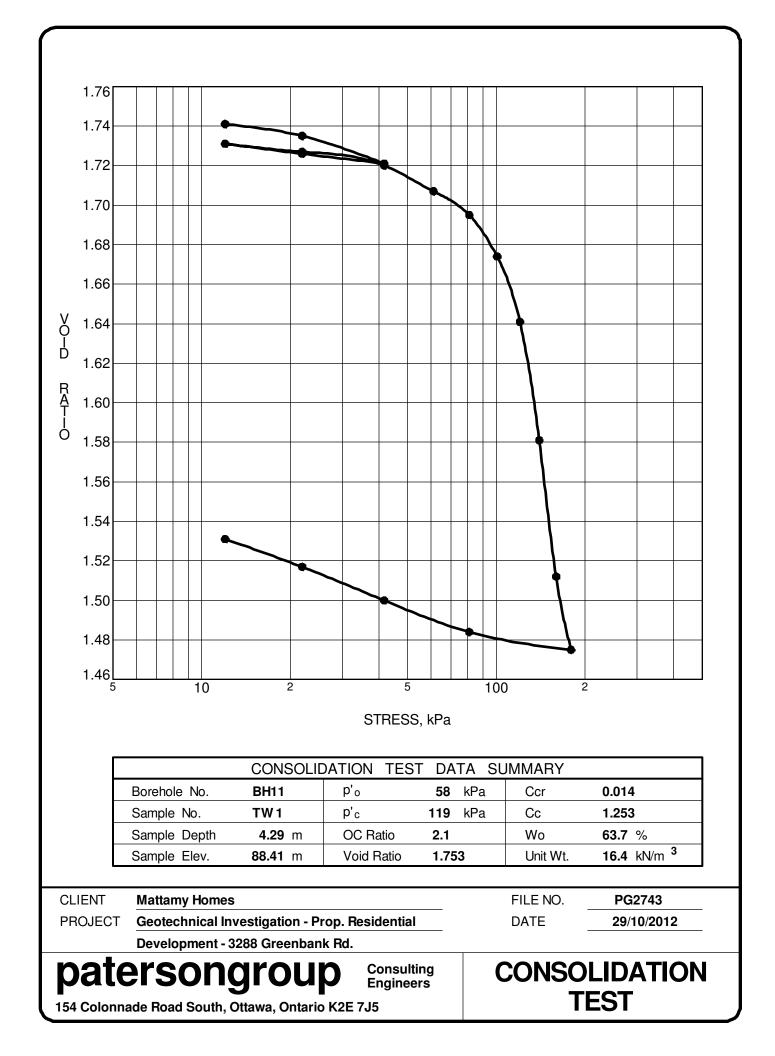

MONITORING WELL AND PIEZOMETER CONSTRUCTION

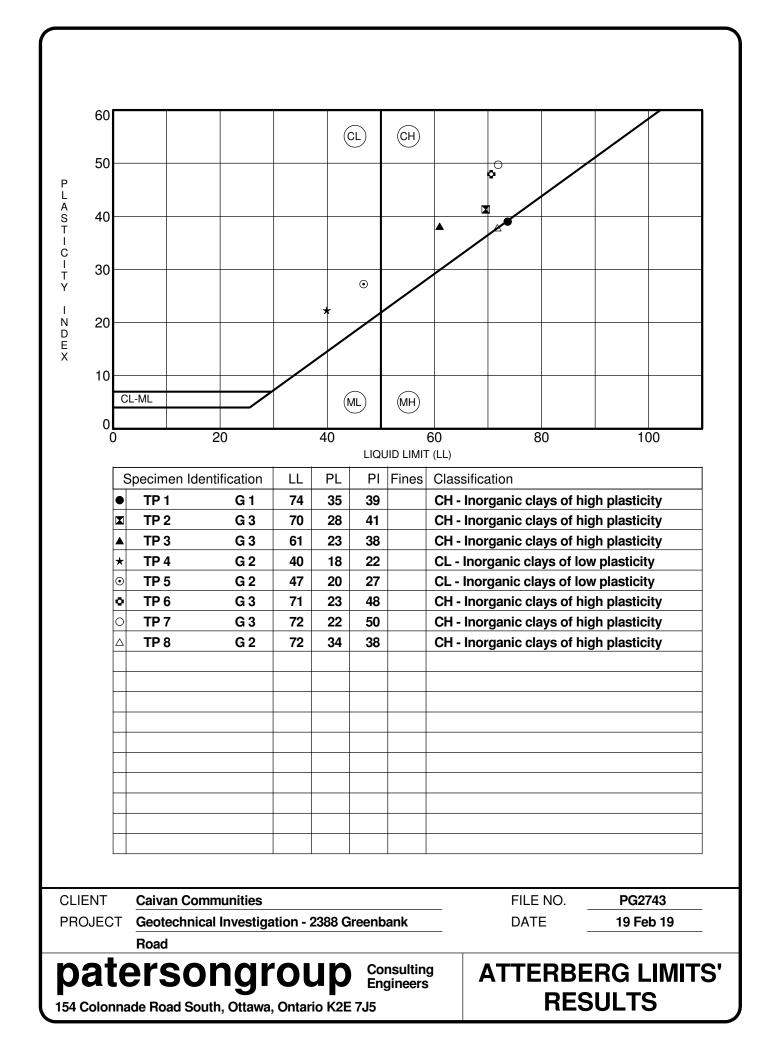


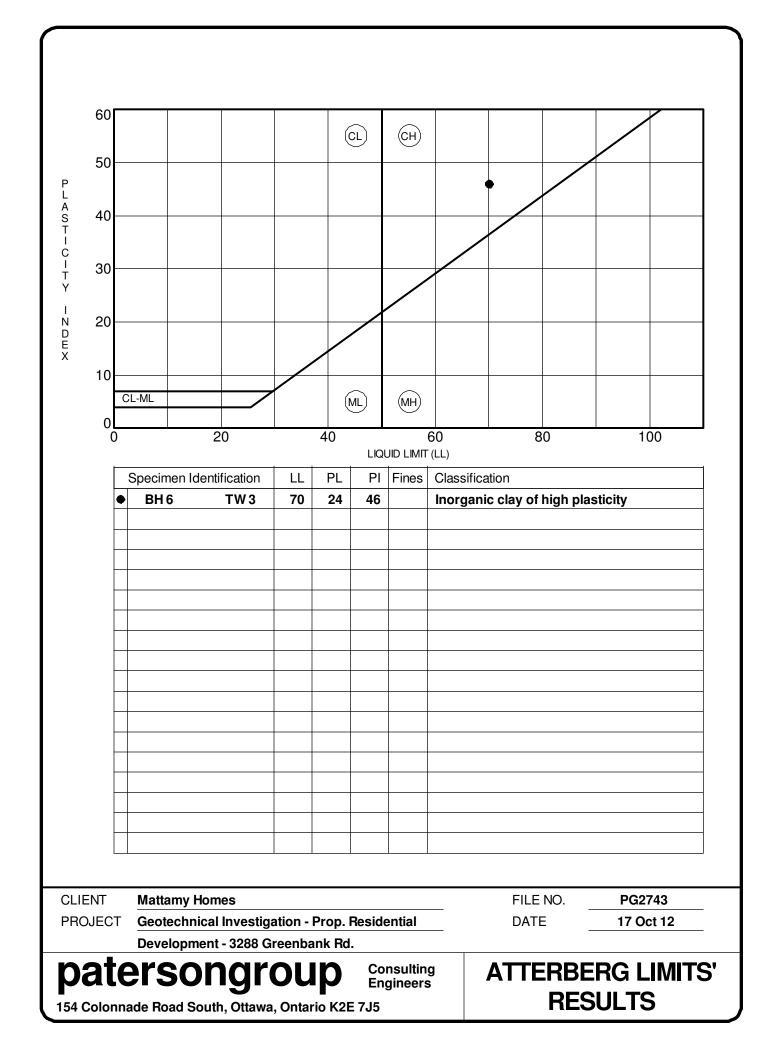

PIEZOMETER CONSTRUCTION







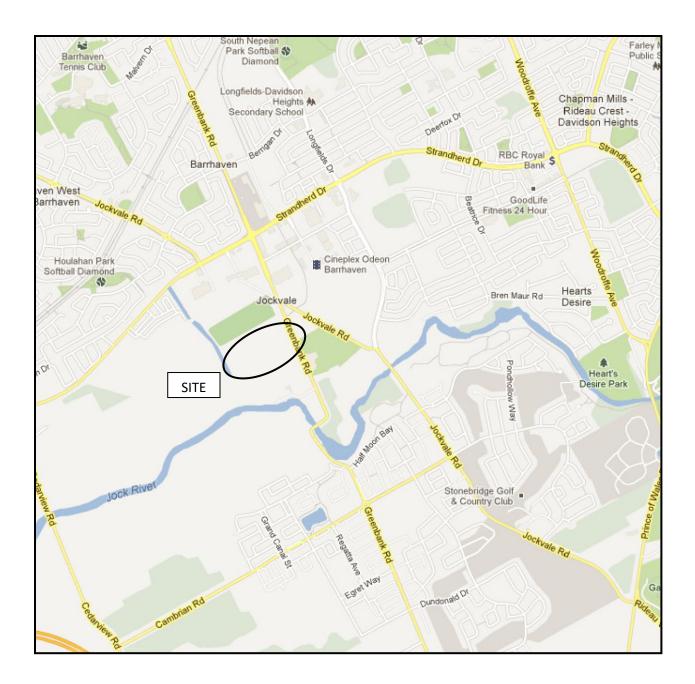


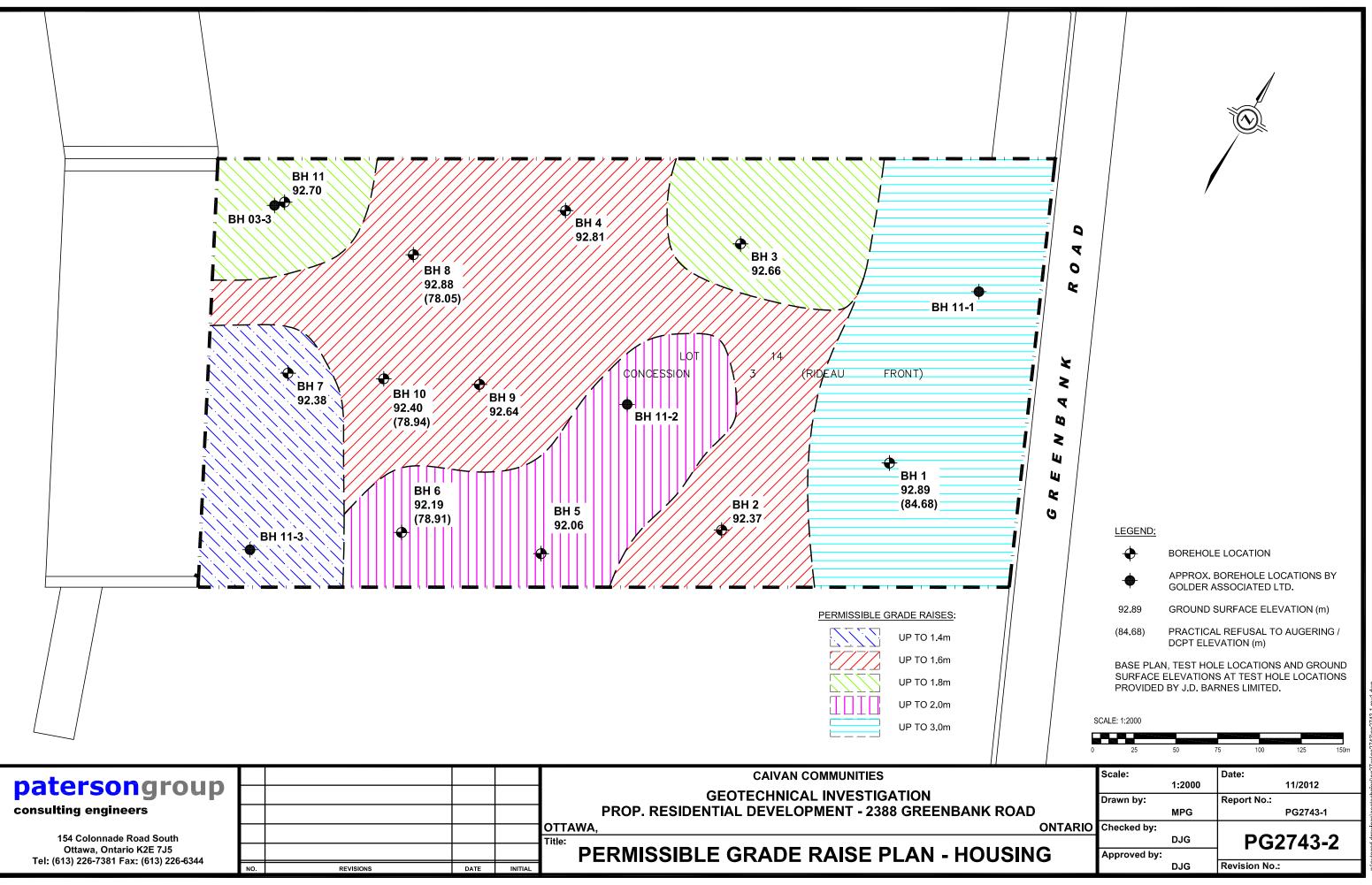


APPENDIX 2

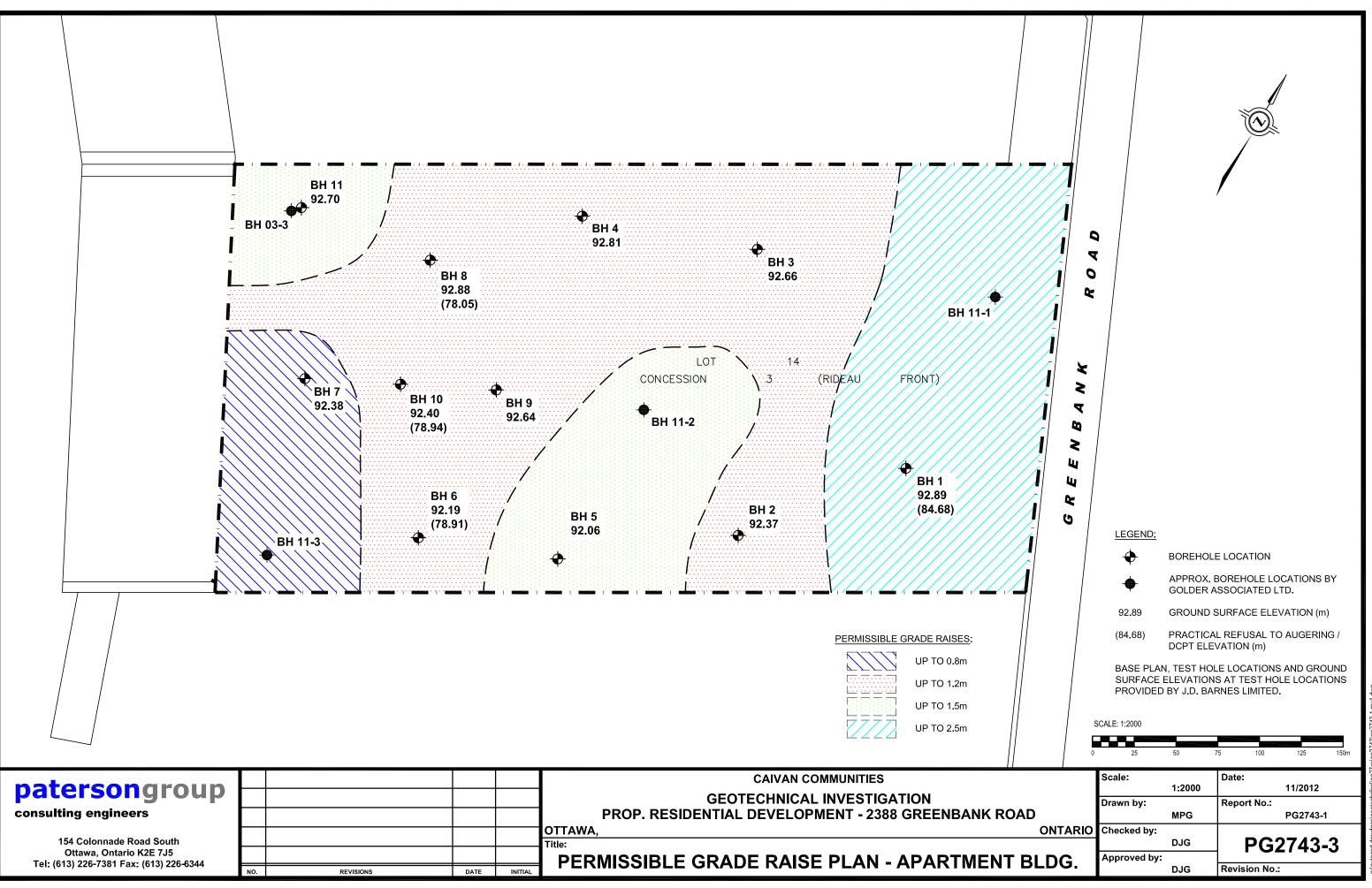
FIGURE 1 - KEY PLAN

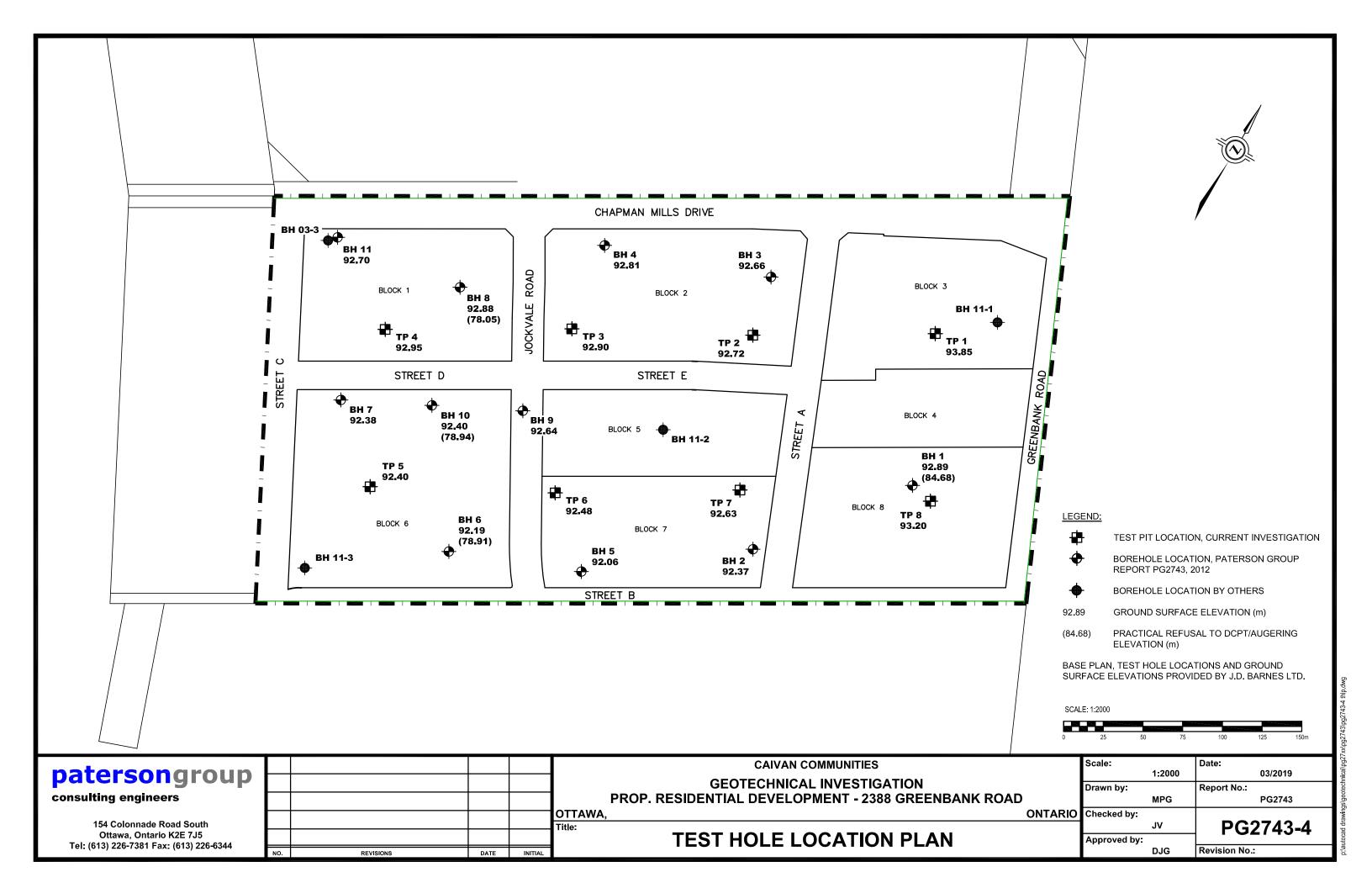
DRAWING PG2743-2 - PERMISSIBLE GRADE RAISE AREAS - HOUSING


DRAWING PG2743-3 - PERMISSIBLE GRADE RAISE AREAS - APARTMENT BLDG.


DRAWING PG2743-4 - TEST HOLE LOCATION PLAN

patersongroup


KEY PLAN



utocad drawings\geotechnical\pg27xx\pg2743\pg2743-1 rev

SOUTH NEPEAN TOWN CENTRE (SNTC) BLOCK 4 – SITE SERVICING AND STORMWATER MANAGEMENT REPORT

Appendix E Drawings

Appendix E **DRAWINGS**

