

Engineering

Land / Site Development

Municipal Infrastructure

Environmental / Water Resources

Traffic /

Transportation

Structural

Recreational

Planning

Land / Site **Development**

Planning Application Management

Municipal Planning Documents & **Studies**

Expert Witness (OMB)

Wireless Industry

Landscape **Architecture**

Urban Design & Streetscapes

Open Space, Parks & **Recreation Planning**

Community & Residential **Developments**

Commercial & **Institutional Sites**

Environmental Restoration

Provence Orleans 2128 Trim Road (Block 126) Ottawa, Ontario

Servicing Design Brief

PROVENCE ORLEANS 2128 TRIM ROAD (BLOCK 126) OTTAWA, ONTARIO

SERVICING DESIGN BRIEF IN SUPPORT OF AN APPLICATION FOR SITE PLAN CONTROL

Prepared For:

Provence Orleans Realty Investments Inc. (c/o Regional Group of Companies)

Prepared By:

NOVATECH

Suite 200, 240 Michael Cowpland Drive Ottawa, Ontario K2M 1P6

June 29, 2020

Novatech File: 120057 Ref: R-2020-088

June 29, 2020

City of Ottawa Infrastructure Services and Community Sustainability 110 Laurier Avenue West, 4th Floor Ottawa, ON K1P 1J1

Attention: Julie Lebrun, Planner II

Reference: Provence Orleans

- win

2128 Trim Road (Block 126) Noise Impact Assessment Our File No.: 120057

Enclosed for your review and approval are two (2) copies of the Servicing Design Brief for the proposed Block 126 development in the Provence Orleans Subdivision at 2128 Trim Road in support of the application for site plan control.

If you have any questions or comments, please do not hesitate to contact us.

Sincerely,

NOVATECH

Lucas Wilson, P.Eng. Project Coordinator

TABLE OF CONTENTS

1.0	INTRODUCTION	1
1.1 1.2	BACKGROUNDLAND USE	
2.0	ROADWAYS	4
2.1 2.2 2.3	EXISTING CONDITIONSPROPOSED CONDITIONSROADWAY DESIGN	4
3.0	GRADING	4
3.1 3.2	EXISTING CONDITIONSPROPOSED CONDITIONS	
4.0	EROSION AND SEDIMENT CONTROL	5
5.0	SANITARY SEWERS	6
5.1 5.2 5.3	EXISTING CONDITIONS	6
6.0	STORMWATER MANAGEMENT	8
6.2 6.3 6 6.4 6.5 6	STORMWATER MANAGEMENT CRITERIA 1.1.1 Allowable Release Rate EXISTING CONDITIONS PROPOSED CONDITIONS 3.3.1 Minor System Design 3.2 Major System Design HYDROLOGIC & HYDRAULIC MODELING RESULTS OF HYDROLOGIC / HYDRAULIC ANALYSIS 5.5.1 Minor System 5.5.2 Major System 5.5.3 Hydraulic Grade Line 5.5.4 Peak Flows	
7.0	WATER	17
7.1 7.2	EXISTING CONDITIONSPROPOSED CONDITIONS	
8.0	CONCLUSIONS AND RECOMMENDATIONS	22
Rofor	ancae	20

List of Tables

Table 2-1: Roadway Structure

Table 5-1: Sanitary Sewer Design Parameters Table 6-1: Storm Sewer Design Parameters

Table 6-2: Runoff Coefficients

Table 6-3: Subcatchment Model Parameters
Table 6-4: Inlet Control Devices & Design Flows
Table 6-5: Overland Flow Results (100-year Event)

Table 6-6: Ponding Times

Table 6-7: 100-year HGL Elevations Table 6-8: Summary of Peak Flows Table 7-1: Watermain Design Criteria Table 7-2: Water Flow Summary

Table 7-3: Summary of Hydraulic Model Results - Maximum Day + Fire Flow

Table 7-4: Summary of Hydraulic Model Results - Peak Hour Demand

Table 7-5: Summary of Hydraulic Model Results – Maximum Pressure Check

List of Figures

Figure 1: Key Plan Figure 2: Site Plan

Figure 3: Sanitary Sewer Network
Figure 4: Storm Sewer Network
Figure 5: Watermain Layout

Appendices

Appendix A: Design Sheets
Appendix B: SWM Calculations

Appendix C: Drawings Appendix D: DSS Checklist

Novatech Page ii

1.0 INTRODUCTION

1.1 Background

Novatech has been retained to prepare a Servicing Design Brief for the Provence Orleans Subdivision – Block 126 Development, located at 2128 Trim Road, in the City of Ottawa. The site will be developed by Provence Orleans Realty Investments Inc. c/o Regional Group.

The development is located in the east end of Ottawa, south of Innes Road between Provence Avenue and Trim Road. **Figure 1** shows the location of the Provence Orleans Subdivision Lands and the Block 126 development.

Figure 1: Key Plan

The proposed site is approximately 0.98ha and will be bordered by the future Phase 2 of Provence Orleans Subdivision, Ventoux Avenue to the north, Trim Road to the east and existing residential as well as a potential future Transitway to the south.

This Servicing Design Brief provides information on the considerations and approach by which Novatech has analyzed the existing site information for the Block 126 development, and details how the development lands will be serviced while meeting the City requirements and all other relevant regulations. This brief builds upon the Phase 2 and 3 Provence Orleans Subdivision

Site Servicing and Stormwater Management Design Brief prepared by Novatech [1], the Master Servicing Study, Gloucester and Cumberland East Urban Community Expansion Area [2] prepared by Stantec, and the Site Servicing and Stormwater Management Design Brief, Provence Orleans Subdivision prepared by Novatech in support of Draft Approval [3].

This report should be read in conjunction with the following:

 Geotechnical Investigation, Proposed Provence City Towns Block, Trim Road - Ottawa, Ontario prepared by Paterson Group, dated June 4, 2020 (Project:PG4278-3). [4]

1.2 Land Use

The site will consist of four back-to-back townhome buildings with 10 units each (40 units total). The proposed Site Plan is shown below in **Figure 2**.

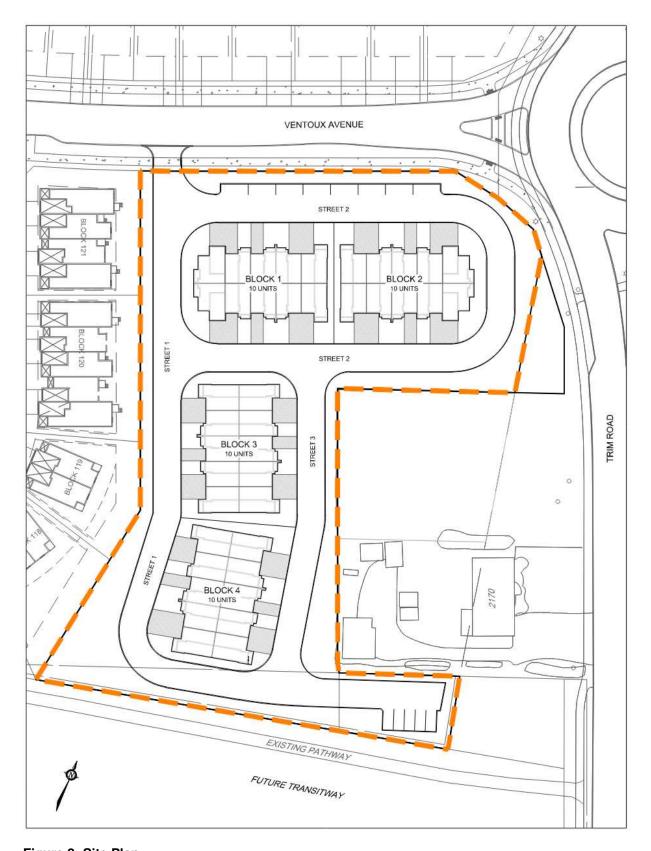


Figure 2: Site Plan

2.0 ROADWAYS

2.1 Existing Conditions

Currently the site can only be accessed from Trim Road, classified as an arterial roadway in the 2013 City of Ottawa Transportation Master Plan (TMP) [5]. Once constructed, Ventoux avenue (collector) will provide access to the site.

2.2 Proposed Conditions

The development will be accessed from a single entrance off Ventoux Avenue. The site contains a series of 6.7m private roads.

2.3 Roadway Design

Paterson Group has prepared a Geotechnical Investigation report for the development (June 4th, 2020) that provides recommendations for roadway structure, servicing and foundations. The recommended roadway structure is as follows:

Table 2-1: Roadway Structure

Roadway Material Description	Pavement Structure
noadway Material Description	Layer Thickness (mm)
Private Road	
Asphalt Wear Course: Superpave 12.5 (Class B)	40
Asphalt Binder Course: Superpave 19.0 (Class B)	50
Base: Granular A	150
Sub-Base: Granular B – Type II	<u>450</u>
Total	690

3.0 GRADING

3.1 Existing Conditions

The existing site generally slopes to the northeast at approximately 0.5%. The maximum grade of approximately 89.05 metres in the southwest corner and a minimum elevation of approximately 88.32 metres in the northeast corner give a total elevation differential of approximately 0.73 metres across the site.

Geotechnical investigations were carried out by Paterson Group [4], with no bedrock encountered in the borehole at a depth of 30.5m. Groundwater was recorded at 84.79m, 3.65m below the ground surface, on December 1st, 2017.

3.2 Proposed Conditions

The design grades will tie into existing elevations along Ventoux Avenue, Trim Road, Future Transitway lands and the adjacent residential lands in Phase 2. A grade raise constraint of 1.1m for Blocks 1 and 2, and 1.6m for Blocks 3 and 4 is required. For detailed grading refer to drawing 120057-GR.

The proposed grading will fall within these ranges:

- Landscaped Area: Minimum 2% Maximum 6%
- Rearyard Swales: Minimum 1.5% (1.0% with subdrain)
- Maximum Terracing Grade of 3H:1V

4.0 EROSION AND SEDIMENT CONTROL

Erosion and sediment control measures will be implemented during construction in accordance with the "Guidelines on Erosion and Sediment Control for Urban Construction Sites" (Government of Ontario, May 1987). Typical erosion and sediment control measures recommended include, but are not limited to, the use of silt fences around perimeter of site, filter fabric or inserts under catch basin/maintenance hole lids, heavy duty silt fence barrier, straw bale check dams, rock check dams, turbidity curtain, dewatering trap, temporary water passage system, riprap, mud mats, silt bags for dewatering operations, topsoil and sod to disturbed areas and natural grassed waterways. Dewatering and sediment control techniques will be developed for the individual situations based on the above guidelines and utilizing typical measures to ensure erosion and sediment control is controlled in an acceptable manner and there is no negative impact to adjacent lands, water bodies or water treatment/conveyance facilities.

The following erosion and sediment control measures will be implemented during construction. Details are provided on the Erosion and Sediment Control Plan.

- All erosion and sediment control measures are to be installed to the satisfaction of the engineer, the municipality and the conservation authority prior to undertaking any site alterations (filling, grading, removal of vegetation, etc.) and remain present during all phases of site preparation and construction.
- A qualified inspector should conduct daily visits during construction to ensure that the contractor is working in accordance with the design drawings and that mitigation measures are being implemented as specified.
 - A light duty silt fence barrier is to be installed in the locations shown on the Erosion and Sediment Control & Removals Plan (120057-ESC).
 - Straw bale barriers or rock flow check dams are to be installed in drainage ditches.
 - Terrafix Siltsoxx are to be placed under all new catchbasins and storm manhole covers.
 - After complete build-out, all sewers are to be inspected and cleaned and all sediment and construction fencing is to be removed.

- The contractor shall ensure that proper dust control is provided with the application of water (and if required, calcium chloride) during dry periods.
- The contractor shall immediately report to the engineer or inspector any accidental discharges of sediment material into any ditch or sewer system. Appropriate response measures shall be carried out by the contractor without delay.
- The contractor acknowledges that failure to implement erosion and sediment control measures may result in penalties imposed by any applicable regulatory agency.

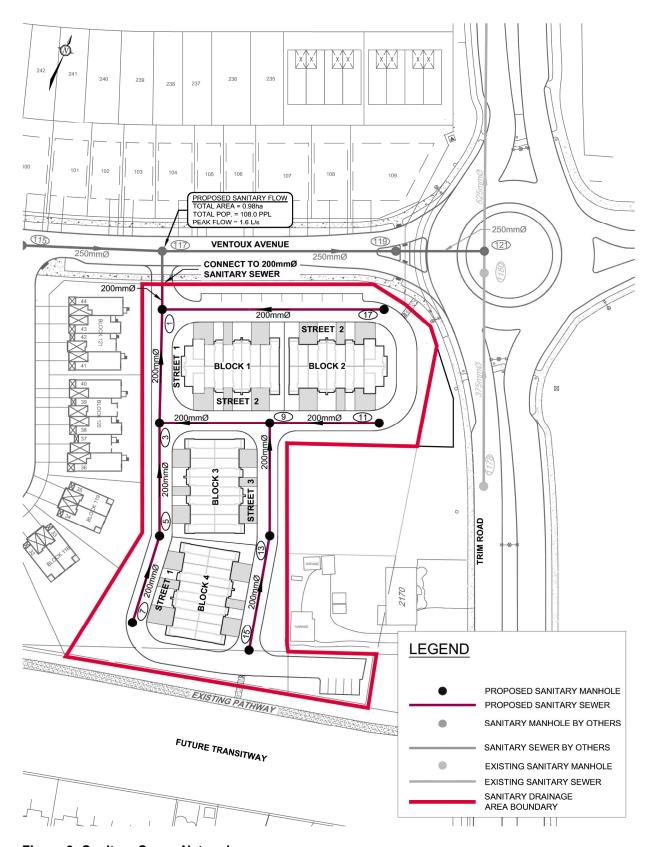
Temporary erosion and sediment control measures would be implemented both prior to commencement and during construction in accordance with the "Guidelines on Erosion and Sediment Control for Urban Construction Sites", (Government of Ontario, May 1987).

5.0 SANITARY SEWERS

5.1 Existing Conditions

A 200mm diameter sanitary sewer cap will be provided by others off Ventoux Avenue, at the site entrance, which outlets to a 250mm diameter sanitary sewer running along Ventoux.

5.2 Proposed Conditions


The peak design flow parameters in **Table 5-1** have been used in the sewer capacity analysis.

Unit and population densities and all other design parameters are specified in the City of Ottawa Sewer Design Guidelines [6].

Sanitary flow from the site is proposed to connect into the 250mm diameter sanitary sewer in Shinny Avenue. The sanitary sewer layout is shown on 120057-GP (**Appendix C**), and the design sheet is attached in **Appendix A**. The site (approx. 0.96ha) will outlet at MH 117 (site entrance) with a peak design flow of 1.6 L/s. The wastewater flow is routed through the sanitary sewer system in Ventoux Avenue to the 525mm diameter trunk sanitary sewer in Trim Road.

Table 5-1: Sanitary Sewer Design Parameters

Parameter	Design Parameter
Town Unit Population	2.7 people/unit
Residential Flow Rate, Average Daily	280 L/cap/day
Residential Peaking Factor	Harmon Equation (min=2.0, max=4.0)
Infiltration Rate	0.33 L/s/ha
Minimum Pipe Size	200 mm
Minimum Velocity	0.6 m/s
Maximum Velocity	3.0 m/s

Figure 3: Sanitary Sewer Network

5.3 Offsite Requirements

For the design of Phase 2 of the Provence Orleans Subdivision, a peak design flow of 24.89 L/s was calculated from MH 117 to MH 119 in Ventoux Avenue, which is higher than the calculated peak design flow of 24.60 L/s incorporating the proposed site plan. Therefore, there will be sufficient capacity offsite to service the proposed development.

6.0 STORMWATER MANAGEMENT

6.1 Stormwater Management Criteria

The following stormwater management criteria for the proposed development were prepared in accordance with the City of Ottawa Sewer Design Guidelines (October 2012), the Master Servicing Study prepared by Stantec which references the applicable portions of *Update to Master Drainage Plan East Urban Community Expansion Area* (Cumming Cockburn Ltd., September 11, 2000) and the Phase 2 & 3: Provence Orleans Subdivision Servicing and Stormwater Design Brief prepared by Novatech.

- Provide a dual drainage system (i.e. minor and major system flows);
- Control the runoff to MH116 in Ventoux Avenue to the allowable release rates Specified in Section 6.1.1 using on-site storage;
- Ensure that ponding is confined within the parking areas at a maximum depth of 0.35 m for both static ponding and dynamic flow;
- Minimum on-site detention storage provided by the major system is 150 m³/ha;
- Provide guidelines to ensure that site preparation and construction is in accordance with the current Best Management Practices for Erosion and Sediment Control.

6.1.1 Allowable Release Rate

The allowable release rate for the development (1.35ha) was established based on the restricted minor system flow of 70 L/s/ha (94.5 L/s) for all storms up-to and including the 100-year storm event.

6.2 Existing Conditions

The Provence Orleans subdivision lands are located within the Rideau Valley Conservation Authority jurisdiction. A 525mm diameter storm sewer cap will be provided by others at the site entrance on Ventoux Avenue (MH116). The 525mm diameter sewer will outlet to a 675mm diameter storm sewer within Ventoux Avenue.

6.3 Proposed Conditions

Runoff from the site will be routed to the storm sewer system in Ventoux Avenue through the existing 525mm diameter stub located at the private entrance along Ventoux Avenue (MH116). The storm system within the Provence Orleans Subdivison is directed to the existing Cardinal Creek stormwater management facility which provides water quality control. As such, on-site stormwater quality controls are not required. **Figure 5** outlines the proposed storm sewer system layout, and how it will connect to the existing network along Ventoux Avenue.

The existing 2170 Trim Road Lands will be captured by a series of RYCBs with controlled flows directed to the storm sewer system within the Block 126 lands.

6.3.1 Minor System Design

The storm sewers comprising the minor system have been designed based on the criteria outlined in the Ottawa Sewer Design Guidelines [6] using the principles of dual drainage. The design criteria used in sizing the storm sewers are summarized in **Table 6-1** and **Table 6-2**.

The proposed storm sewers have been designed using the Rational Method to convey peak flow associated with a 2-year rainfall event. The storm sewer design sheets are provided in **Appendix A**. The corresponding Storm Drainage Area Plan (Drawing 120057-STM) is provided in **Appendix C**.

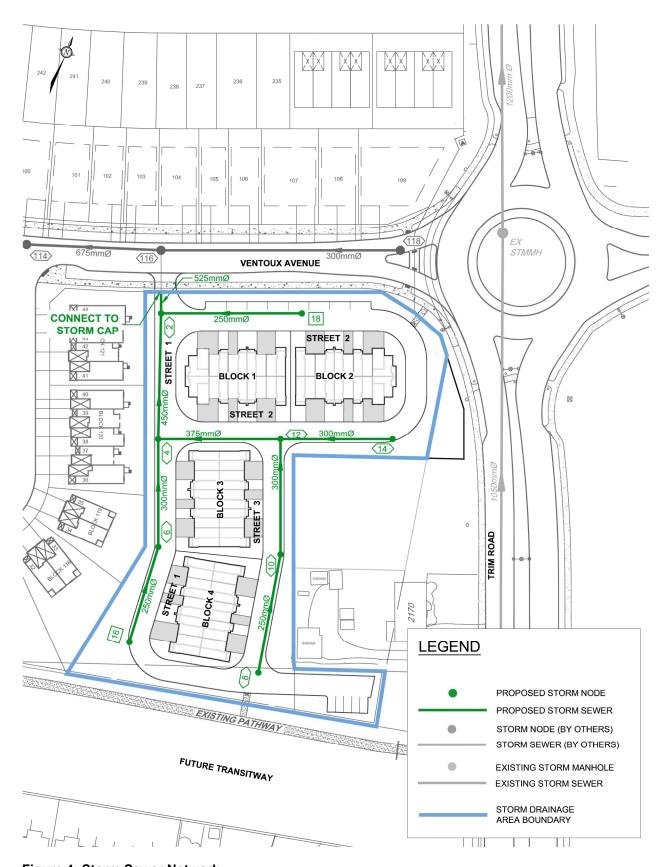


Figure 4: Storm Sewer Network

Table 6-1: Storm Sewer Design Parameters

Parameter	Design Criteria
Private Roads	2 Year Return Period
Storm Sewer Design	Rational Method/AutoDesk Storm Analysis
IDF Rainfall Data	Ottawa Sewer Design Guidelines
Initial Time of Concentration (Tc)	10 min
Minimum Velocity	0.8 m/s
Maximum Velocity	3.0 m/s
Minimum Diameter	250 mm

Table 6-2: Runoff Coefficients

Land Use	Runoff Coefficient
Hard Surface	0.90
Soft Surface	0.20

6.3.2 Major System Design

The site has been designed to convey runoff from storms that exceed the minor system capacity to Ventoux Avenue. The roadway and parking areas have been graded to ensure that the 100-year peak overland flows are confined within the parking area at a maximum flow depth of 350mm. The design of the major system conforms to the design standards outlined in Section 5.5 (Major System Considerations) of the City of Ottawa Sewer Design Guidelines (October 2012).

The site has been graded to provide an emergency overland flow route that spills along the roadway and outlets to Ventoux Avenue at the entrance to the site. An additional emergency overland flow route has been provided for the swale system capturing the existing 2170 Trim Road lands that spills along the swale and outlets to the existing DICB located within the Trim Road ROW.

6.4 Hydrologic & Hydraulic Modeling

The *City of Ottawa Sewer Design Guidelines* (October 2012) require hydrologic modeling for all dual drainage systems. The performance of the proposed storm drainage system for the site was evaluated using the *PCWMM* hydrologic/hydraulic modeling software.

Design Storms

The hydrologic analysis was completed using the following synthetic design storms and historical storms. The IDF parameters used to generate the design storms were taken from the Sewer Design Guidelines [Error! Reference source not found.].

4 Hour Chicago Storms: 25mm 4-hr Chicago storm 2-year 4hr Chicago storm 5-year 4hr Chicago storm 100-year 4hr Chicago storm 12 Hour SCS Storms: 2-year 12-hr SCS storm 5-year 24hr Chicago storm 100-year 24hr Chicago storm

The 4-hour Chicago distribution generates the highest peak flows for both the minor and major systems and was determined to be the critical storm distribution for the design of the storm drainage system.

The proposed drainage system has also been stress tested using a 4-hour Chicago design storm that has a 20% higher intensity and total volume compared to the 100-year event.

Model Development

The PCSWMM model accounts for both minor and major system flows (*dual drainage*), including the routing of flows through the storm sewer network (*minor system*), and overland along the road network (*major system*). The results of the analysis were used to:

- Determine the total major and minor system runoff from the site;
- Size the ICDs for each inlet to the storm sewer system;
- Calculate the storm sewer hydraulic gradeline for the 100-year storm event; and
- Ensure no ponding in the right-of-ways remains at the end of all storm events.

The model is capable of accounting for both static and dynamic storage within the private roadways and parking areas, including the overland flow across all high points and capture/bypass curves for inlets on continuous grade. The 100-year flow depths computed by the model represent the total (static + dynamic) ponding depths at low points for areas in road sags.

Storm Drainage Area Plan & Subcatchment Parameters

The development has been divided into subcatchments based on the drainage areas tributary to each inlet of the proposed storm sewer system. The catchment areas are shown on the Storm Drainage Area Plan provided as drawing **120057-STM** in **Appendix C**.

The hydrologic parameters for each subcatchment were developed based on the Site Plan (**Figure 2**) and the Storm Drainage Area Plan specified above. Subcatchment parameters are outlined in **Table 6-3**.

Table 6-3: Subcatchment Model Parameters

Area ID	Catchment Area	Runoff Coefficient	Percent Impervious	Zero Imperv.	Flow Length	Equivalent Width	Average Slope
	(ha)	(C)	(%)	(%)	(m)	(m)	(%)
A1	0.08	0.64	63%	9%	15	53	0.5%
A2	0.12	0.71	73%	43%	20	60	0.5%
A3	0.07	0.77	81%	29%	20	35	0.5%
A4	0.04	0.20	0%	0%	10	40	0.5%
A 5	0.07	0.71	73%	7%	30	23	0.5%
A6	0.11	0.73	76%	44%	20	55	0.5%
A7	0.15	0.77	81%	43%	20	75	0.5%
A8	0.09	0.73	76%	25%	20	45	0.5%
A9	0.16	0.73	76%	37%	20	80	0.5%
A10	0.21	0.22	3%	95%	35	60	0.5%
A11	0.12	0.26	9%	95%	35	34	0.5%

Area ID	Catchment Area	Runoff Coefficient	Percent Impervious	Zero Imperv.	Flow Length	Equivalent Width	Average Slope
	(ha)	(C)	(%)	(%)	(m)	(m)	(%)
A12	0.12	0.37	24%	44%	35	34	0.5%
B1	0.01	0.20	0%	0%	2	50	33.33%
TOTAL	1.35 ha	0.56	51%	-	-	-	-

Infiltration

Infiltration losses for all catchment areas were modeled using Horton's infiltration equation, which defines the infiltration capacity of the soil over the duration of a precipitation event using a decay function that ranges from an initial maximum infiltration rate to a minimum rate as the storm progresses. The default values for the Sewer Design Guidelines [8] were used for all catchments.

Horton's Equation: Initial infiltration rate: $f_o = 76.2$ mm/hr $f(t) = f_c + (f_o - f_c)e^{-k(t)}$ Final infiltration rate: $f_c = 13.2$ mm/hr Decay Coefficient: k = 4.14/hr

Depression Storage

The default values for depression storage in the Sewer Design Guidelines [8] were used for all catchments. Residential rooftops were assumed to provide no depression storage.

Depression Storage (pervious areas): 4.67 mm
Depression Storage (impervious areas): 1.57 mm

Equivalent Width

Equivalent Width' refers to the width of the sub-catchment flow path. This parameter is calculated as described in the Sewer Design Guidelines [8], Section 5.4.5.6. The flow paths used to calculate the equivalent widths are shown on the PCSWMM schematics provided in **Appendix B**.

Impervious Values

Impervious (TIMP) values for each subcatchment area were calculated based on the proposed Site Plan (**Figure 2**) and correspond to the Runoff Coefficients used in the Rational Method calculations using the equation:

$$\%imp = \frac{C - 0.2}{0.7}$$

6.5 Results of Hydrologic / Hydraulic Analysis

The model was used to evaluate the performance of the proposed storm drainage system for Block 126

6.5.1 Minor System

Inflows to the storm sewer were modeled based on the characteristics of each inlet. All the catchbasins in the roadways and parking areas are located at low points. Inflows to the storm

sewer are based on the ICD specified for the inlet and the maximum depth of ponding. ICDs have been sized to limit the outlet peak flows to the allowable release rate of 70 L/s/ha. Details are outlined as follows in **Table 6.4**. ICDs information is indicated on the General Plan of Services (drawing 120057-GP).

The Rational Method design sheets (**Appendix B**) were used to calculate the required storm sewer sizes based on capturing the peak flow at each inlet to the storm sewer for a 2-year design return period.

Table 6-4: Inlet Control Devices & Design Flows

Table 0-4. IIII	INIET Control Devices & Design Flows ICD Size & Inlet Rate						
Structure ID	ICD Type	T/G	Orifice Invert	100-year Head on	2-year Orifice	5-year Orifice Peak	100-year Orifice Peak
				Orifice	Peak Flow*	Flow*	Flow*
		(m)	(m)	(m)	(L/s)	(L/s)	(L/s)
CB1	Tempest LMF (Vortex 93)	89.00	87.60	1.55	9.0	9.1	9.4
CB2	Tempest LMF (Vortex 78)	89.08	87.68	1.64	6.5	6.5	6.7
CB3	Tempest LMF (Vortex 78)	89.15	87.75	1.56	6.3	6.4	6.6
CB4	Tempest LMF (Vortex 78)	89.18	87.78	1.54	6.3	6.4	6.5
CB5	Tempest LMF (Vortex 94)	89.18	87.78	1.60	9.2	9.3	9.6
CB6	Tempest LMF (Vortex 78)	89.13	87.73	1.65	6.5	6.6	6.8
CB7	Tempest LMF (Vortex 78)	89.12	87.72	1.60	6.4	6.5	6.7
CB8	Tempest LMF (Vortex 78)	89.05	87.65	1.64	6.4	6.6	6.8
RYCB1	Tempest LFM (Vortex 94)	88.24	86.84	1.88	1.5	4.5	10.4
RYCB2	Tempest LMF (Vortex 93)	88.44	87.04	1.64	5.8	8.5	9.7
RYCB3	Tempest LMF (Vortex 93)	88.55	87.15	1.62	2.3	4.3	9.6

^{*}PCSWMM model results for a 4-hour Chicago storm distribution.

6.5.2 Major System

The major system network was evaluated using the PCSWMM model to ensure that the ponding depths conform to City standards. A summary of ponding depths at each inlet for the 2-year, 5-year, 100-year and 100-year (+20%) events are provided in **Appendix B**. The maximum static and dynamic ponding depths within the roadways are less than 0.35m during all events. In addition, there is no cascading flow over the highpoint during the 100-year storm event.

As the allowable release rate of 70 L/s/ha is less than the 2-year peak flows, there will be some ponding during the 2-year storm event. This ponding will last for an average of 34 minutes at each low point and will be clear by the end of the 2-year storm event. For a 4-hour Chicago Storm Distribution, ponding will typically begin around 1 hour and 20 minutes from the beginning of the storm event, ending at the latest at 2 hours 33 minutes from the beginning of the storm event. While this is contrary to the current City of Ottawa Stormwater Criteria outlined in Technical Bulletin PIEDTB-2016-01, the allowance for 2-year ponding has been cleared in discussions with the City for the Provence Orleans Subdivision and has been assumed to include the Block 126 lands.

Table 6-5: Overland Flow Results (100-year Event)

Churchina	T/G	T/G Max. Static Ponding (Spill Depth)			100-yr Event (4hr)			
Structure		Elev.	Depth	Elev.	Depth	Cascading	Cascade	
	(m)	(m)	(m)	(m)	(m)	Flow?	Depth (m)	
CB1	89.00	89.29	0.29	89.15	0.15	N	0.00	
CB2	89.08	89.38	0.30	89.32	0.24	N	0.00	
CB3	89.15	89.45	0.30	89.31	0.16	N	0.00	
CB4	89.18	89.48	0.30	89.32	0.14	N	0.00	
CB5	89.18	89.43	0.25	89.38	0.20	N	0.00	
CB6	89.13	89.38	0.25	89.38	0.25	N	0.00	
CB7	89.12	89.42	0.30	89.32	0.20	N	0.00	
CB8	89.05	89.33	0.28	89.29	0.24	N	0.00	
RYCB1	88.24	88.78	0.54*	88.72	0.48	N	0.00	
RYCB2	88.44	88.88	0.44*	88.68	0.24	N	0.00	
RYCB3	88.55	88.73	0.18*	88.77	0.22	Υ	0.04	

^{*}RYCB located along ditch adjacent 2170 Trim Road

An expanded table of the ponding depths at low points in the roadway (including the stress-test event) is provided in **Appendix B**. Based on these results, the proposed storm drainage system will not experience any adverse flooding even with a 20% increase to the 100-year event.

Table 6-6: Ponding Times

ICD/ CB		Ponding Time* (h:mm)	
	2-year	5-year	100-year
CB1	0:03	0:19	0:58
CB2	0:44	1:14	2:48
CB3	0:13	0:40	2:00
CB4	0:15	0:33	1:24
CB5	0:23	0:42	1:36
CB6	1:13	1:54	3:49
CB7	0:29	0:51	1:58
CB8	1:12	1:55	3:56

^{*}Ponding time occurs during the peak for the 4-hour storm event.

6.5.3 Hydraulic Grade Line

The results of the analysis were used to determine if there would be any surcharging from the storm sewer system during the 100-year storm event. **Appendix B** provides a summary of the 100-year HGL elevation at each storm manhole within the proposed development, as well as a summary of the HGL elevations for a 20% increase (rainfall intensity and total precipitation) in the 100-year design event. The results of the HGL analysis and the stress testing indicates that the storm sewer does not surcharge during the 100-year event and 100-year+20% storm event.

The results of the HGL analysis were used to ensure that a minimum freeboard of 0.30m is provided between the 100-year HGL and the designed underside of footing elevations. The 100-year HGL elevations at each storm manhole with respect to the lowest adjacent underside of footing elevation are provided in **Table 6-7**.

Table 6-7: 100-year HGL Elevations

Manhole ID	MH Invert Elevation	T/G Elevation	HGL Elevation - 100yr4hr	Design USF	Clearance (100yr)		
	(m)	(m)	(m)	(m)	(m)		
HGL - Block 126							
MH2	85.74	89.27	85.98	87.77	1.79		
MH4	85.94	89.37	86.17	87.77	1.60		
MH6	86.27	89.26	86.36	87.77	1.41		
MH8	86.82	89.46	86.94	87.82	0.88		
MH10	86.38	89.37	86.54	87.77	1.23		
MH12	86.15	89.32	86.35	87.77	1.42		
MH14	86.41	89.30	86.51	87.83	1.42		
MH16	86.64	89.19	86.70	87.82	1.12		
MH18	86.48	88.74	86.54	87.77	1.23		

An expanded table showing the results of the stress test (100-year +20% event) and the HGL elevations is provided in **Appendix B**. The stress test indicates that the HGL elevations will be below the USF elevations for this event.

6.5.4 Peak Flows

The overall release rates from the ICDs were added to determine the overall release rate from the site. The results of this analysis indicate that the allowable release rates will be met for each storm event. Refer to **Table 6-8** for the modelled peak flows for each storm event.

The results of the PCSWMM analysis indicate that outflows from the proposed development will not exceed the allowable release rate for all storm events.

Table 6-8: Summary of Peak Flows

Design Event	Allowable Release Rate (L/s)	Controlled Minor System Release Rate (L/s)	Major System Release Rate (L/s)
2-year		65.7	0
5-year	94.5	74.4	0
100-year		88.6	0
100-year (+20%)	-	90.2	24.0 (Existing DICB along Trim)

^{*}PCSWMM Model results for a 4-hr Chicago storm distribution; normal outfall condition.

A small portion of the site, area B1, flows uncontrolled to the future transitway block. Area B1 is comprised completely of grass and is approximately 0.01ha with a peak flow of 4.3 L/s during the 100-year storm event. Even with the inclusion of this uncontrolled area, the total release rate of 92.9 L/s is below the allowable release rate of 94.5 L/s.

7.0 WATER

7.1 Existing Conditions

The proposed development is located inside the 2E Pressure Zone. As part of Phase 2 of the Provence Orleans Subdivision, a 300mm diameter watermain will be located within Ventoux Avenue connecting to an existing 400mm diameter trunk watermain in Trim Road. A 200mm diameter watermain cap will be provided at the entrance to the site off Ventoux Avenue.

7.2 Proposed Conditions

The site will be connected to the existing 300mm diameter waterman in Ventoux Avenue through the 200mm diameter cap provided at the site entrance.

A series of 200mm diameter watermains are proposed and will provide sufficient capacity to maintain appropriate pressures and fire flows throughout the development. **Figure 5** provides a high level schematic of the proposed water distribution system.

The watermain boundary conditions below were obtained from the City of Ottawa (December 2019) provided as part of the detailed design for the Provence Orleans Subdivision and has been included in **Appendix A**:

Boundary Condition 1 – Provence Avenue Max Day + FF of 167 L/s = 126.2m Max Day + FF of 300 L/s = 122.9m

Peak Hour = 125.8m Maximum HGL = 130.3m

Boundary Condition 2 – Trim Road Max Day + FF of 167 L/s = 126.4m Max Day + FF of 300 L/s = 123.3m Peak Hour = 125.8m Maximum HGL = 130.3m

City of Ottawa watermain design criteria are outlined in Table 7.1.

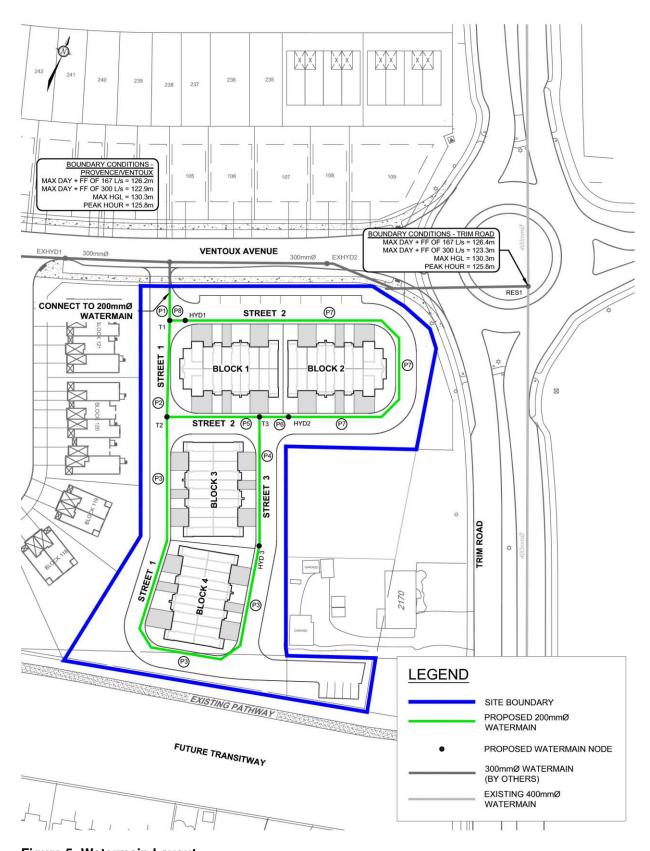


Figure 5: Watermain Layout

Table 7-1: Watermain Design Criteria

Design Parameter	Design Criteria
Town Population	2.7 people/unit
Residential Demand	280 L/c/d
Maximum Day Demand	2.5 x Average Day
Peak Hour Demand	2.2 x Maximum Day
Fire Demand	250, 267, 283 and 300 L/s
Maximum Pressure	690 kPa (100psi) unoccupied areas
Maximum Pressure	552 kPa (80psi) occupied areas outside of ROW
Minimum Pressure	275 kPa (40 psi) except during fire flow
Minimum Pressure	140 kPa (20 psi) fire flow conditions

Table 7-2: Water Flow Summary

	Units	Population	Average Day Demand (L/s)	Maximum Day Demand (L/s)	Peak Hour Demand (L/s)
Back-to-Back Towns	40	108	0.350	0.875	1.925
Total	40	108	0.350	0.875	1.925

Based on the fire underwriters survey, the fire flows were calculated as 250 L/s (Block 2), 267 L/s (Block 1), 283 L/s (Block 4) and 300 L/s (Block 3). Hydrant grades and distances to structures are illustrated on the Fire Hydrant Coverage Plan in **Appendix A**. Fire flow calculations are provided in **Appendix A**.

The proposed watermain was modeled using EPANET 2 (See 120057-GP for detailed watermain layout).

A summary of the model results are shown below in **Table 7.3**, **Table 7.4** and **Table 7.5**. Full model results are included in **Appendix A**.

Table 7-3: Summary of Hydraulic Model Results - Maximum Day + Fire Flow

Operating Condition	Minimum Pressure
267 L/s at Block 1	211.60 kPa (HYD3)
250 L/s at Block 2	233.67 kPa (HYD3)
300 L/s at Block 3	180.11 kPa (HYD3)
283 L/s at Block 4	188.16 kPa (HYD3)

Table 7-4: Summary of Hydraulic Model Results - Peak Hour Demand

Operating Condition	Maximum Pressure	Minimum Pressure
1.925 L/s through system	361.11 kPa (T3)	358.65 kPa (HYD1)

The hydraulic modeling summarized above highlights the maximum and minimum system pressures during Peak Hour conditions, and the minimum system pressures during the Maximum Day + Fire condition. Since the Maximum Day + Fire Flow pressures are above the minimum 140 kPa, and the Peak Hour Pressures onsite fall within the normal operating pressure range (345 kPa to 552 kPa) we conclude the proposed water design will adequately service the development.

Table 7-5: Summary of Hydraulic Model Results – Maximum Pressure Check

Operating Condition	Maximum Pressure	Minimum Pressure
0.350 L/s through system	464.90 kPa (HYD1)	403.49 kPa (T2)

The average day pressures throughout the system are below 552 kPa, therefore pressure reducing valves are not required.

Water retention was analyzed at each node during average day demand. The maximum age throughout the system is within City standards.

8.0 CONCLUSIONS AND RECOMMENDATIONS

The report conclusions are as follows:

- 1) The proposed storm system will control post-development flow to the allowable release rate of 70 L/s/ha. All runoff volume from the 100-year storm event is stored on site using surface storage. The existing Cardinal Creek stormwater management facility is the ultimate outlet for the site and provide water quality control.
- 2) The proposed sanitary sewer conforms to City design criteria and provides a gravity outlet for the development site. There is sufficient capacity in the downstream sanitary sewers to accommodate the flows outletting to the Ventoux Avenue sanitary sewers.
- 3) Connection to the watermain in Ventoux Avenue will provide municipal water service to the development.
- 4) There is adequate fire protection to the proposed development, in accordance with the Fire Underwriter's Survey.
- 5) The proposed infrastructure (sanitary, storm and water) complies with City of Ottawa design standards.

This report is respectfully submitted for review and approval. Please contact the undersigned should you have questions or require additional information.

Sincerely,

NOVATECH

Prepared By:

Lucas Wilson, P.Eng. Project Coordinator

Reviewed By:

Mark Bissett, P.Eng. Senior Project Manager

References

- 1. "Phase 2 and 3 Provence Orleans Subdivision Site Servicing and Stormwater Management Design Brief", Novatech [May 2020]
- "Master Servicing Study, Gloucester and Cumberland East Urban Community Expansion Area and Bilberry Creek Industrial Park Master Servicing Update", Stantec [September 2013]
- **3.** "Site Servicing and Stormwater Management Design Brief (R-2018-095), Provence Orleans Subdivision, 2128 Trim Road, Ottawa, Ontario", Novatech [March 31, 2019]
- **4.** "Geotechnical Investigation, Proposed Provence City Towns Block, Trim Road, Ottawa, Ontario (PG4278-3)", Paterson Group [June 4, 2020]
- 5. "Transportation Master Plan", City of Ottawa [November 2013]
- **6.** "Sewer Design Guidelines", Department of Public Works and Services, City of Ottawa [October 2012]

APPENDIX A: Design Sheets

Storm Sewer Design Sheet (Rational Method) Sanitary Sewer Design Sheets Watermain Boundary Conditions Watermain Modelling Fire Flow Calculations Fire Hydrant Coverage Plan

Provence Orleans - Block 126: Storm Sewer Design Sheet (Rational Method)

LOC	ATION					AREA							FL	.OW								PROP	OSED SE	WER		
Location	From Node	To Node	Hard Surface	Soft Surface	Towns Front Yard	Towns Front Yard	Towns Rear Yard	Towns Rear Yard	Total Area	Weighted Runoff	Indivi 2.78 AR	Accum 2.78 AR	Time of Concentration		ain Intensity (mm/hr)	F	Peak Flow	Total Peak	Pipe	Size	Grade	Length	Capacity	Full Flow Velocity	Time of Flow	Q/Qfull
										Coefficient				2yr	5yr	10yr	(1 /=)	Flow (Q)	_	, ,	(5.4)			, , ,		
			0.90	0.20	Area	С	Area	С	(ha)								(L/s)	(L/s)	Туре	(mm)	(%)	(m)	(l/s)	(m/s)	(min.)	(%)
			0.057	0.053					0.11	0.56	0.17	0.17	10.00	76.81			13.2									
A-3, A-4	16	6	0.037	0.033					0.00	0.50	0.17	0.00	10.00	70.01		-	0.0	13.2	PVC	250	1.00	32.1	62.0	1.22	0.44	21.3%
7. 0, 7.	.	ŭ							0.00		0.00	0.00	10.00				0.0	.0.2		200	1.00	02.1	02.0		0	21.070
			0.087	0.033					0.12	0.71	0.24	0.41	10.44	75.17			30.7									
A-2	6	4							0.00		0.00	0.00	10.44				0.0	30.7	PVC	300	0.50	35.1	71.3	0.98	0.60	43.0%
									0.00		0.00	0.00	10.44				0.0									
			0.163	0.137					0.30	0.58	0.48	0.48	10.00	76.81			37.2									
A-5, A-6, A-12	8	10	0.100						0.00	0.00	0.00	0.00	10.00				0.0	37.2	PVC	250	1.00	39.0	62.0	1.22	0.53	59.9%
									0.00		0.00	0.00	10.00				0.0									
			0.010	0.110					0.12	0.26	0.09	0.57	10.53	74.82			42.7									,
A-11	10	12							0.00		0.00	0.00	10.53				0.0	42.7	PVC	300	0.40	37.6	63.8	0.87	0.72	66.9%
									0.00		0.00	0.00	10.53				0.0									
			0.074	0.226					0.30	0.37	0.31	0.31	10.00	76.81			23.9									
A-8, A-10	14	12							0.00		0.00	0.00	10.00				0.0	23.9	PVC	300	0.50	36.4	71.3	0.98	0.62	33.5%
									0.00		0.00	0.00	10.00				0.0									
			0.122	0.028					0.15	0.77	0.32	1.20	11.25	72.33			86.9									
A-7	12	4							0.00		0.00	0.00	11.25				0.0	86.9	PVC	375	0.35	39.7	108.2	0.95	0.70	80.3%
									0.00		0.00	0.00	11.25				0.0									
			0.050	0.030					0.08	0.64	0.14	1.75	11.94	70.07			122.7									
A-1	4	2	0.000	0.000					0.00	0.01	0.00	0.00	11.94	7 0.07			0.0	122.7	CONC	450	0.30	41.0	162.9	0.99	0.69	75.3%
									0.00		0.00	0.00	11.94				0.0									
			0.121	0.039					0.16	0.73	0.32	0.32	10.00	76.81			24.9									
A-9	18	2	0.121	0.038					0.16	0.73	0.00	0.00	10.00	70.01		-	0.0	24.9	PVC	250	1.00	45.7	62.0	1.22	0.62	40.2%
Λ. υ		-							0.00		0.00	0.00	10.00				0.0	2-7.0	' '	230	1.00	40.7	02.0	1.22	0.02	40.2%
									0.00		0.00	2.08	12.63	67.98			141.1									
	2	EX116							0.00		0.00	0.00	12.63	01.30		+	0.0	141.1	CONC	525	0.25	21.4	224.3	1.00	0.36	62.9%
	-								0.00		0.00	0.00	12.63				0.0		JOING	0=0	5.25				""	0=.0 /0

Q = 2.78 AIR WHERE : Q = PEAK FLOW IN LITRES PER SECOND (L/s)

A = AREA IN HECTARES (ha)

I = RAINFALL INTENSITY IN MILLIMETERS PER HOUR (mm/hr)

R = WEIGHTED RUNOFF COEFFICIENT

Q = (1/n) A R^(2/3)So^(1/2)

WHERE: Q = CAPACITY (L/s)

n = MANNING COEFFICIENT OF ROUGHNESS (0.013)

 $A = FLOW AREA (m^2)$

Project: Provence Orleans - Block 126 (120057) Designed: LRW

> Checked: MAB Date: June 29, 2020

Provence Orleans - Block 126: Sanitary Sewer Design Sheet

AREA				RE	SIDE	NTIAL			INF	LTRATIC	N		PIPE							
		SING	GLES	Tow	ns						1. 60.	Total					- " - T			
From	То	Units	Pop.	Units	Pop.	Accum. Pop.	Peak Factor	Peak Flow (I/s)	I otal Area (ha)	Accum. Area (ha)	Flow (l/s)	Flow (I/s)	Size (mm)	Slope (%)	Length (m)	Capacity (I/s)	Vel. (m/s)	Vel. (m/s)	Q/Q _{full} (%)	d/D
Avenue																				
7	5	0	0.0	5	13.5	13.5	3.7	0.2	0.14	0.14	0.0	0.2	200	1.00	30.2	34.2	1.06	0.26	0.6%	0.000
5	3	0	0.0	5	13.5	27.0	3.7	0.3	0.08	0.22	0.1	0.4	200	1.00	37.6	34.2	1.06	0.30	1.2%	0.077
15	13	0	0.0	5	13.5	13.5	3.7	0.2	0.19	0.19	0.1	0.2	200	1.00	38.7	34.2	1.06	0.26	0.7%	0.000
13	9	0	0.0	5	13.5	27.0	3.7	0.3	0.08	0.27	0.1	0.4	200	1.00	37.5	34.2	1.06	0.30	1.2%	0.077
11	9	0	0.0	6	16.2	16.2	3.7	0.2	0.12	0.12	0.0	0.2	200	1.00	36.4	34.2	1.06	0.26	0.7%	0.000
9	3	0	0.0	4	10.8	54.0	3.6	0.6	0.08	0.47	0.2	0.8	200	1.00	36.7	34.2	1.06	0.36	2.3%	0.077
3	1	0	0.0	0	0.0	81.0	3.6	0.9	0.04	0.73	0.2	1.2	200	0.75	38.0	29.6	0.91	0.38	4.0%	0.077
17	1	0	0.0	10	27.0	27.0	3.7	0.3	0.22	0.22	0.1	0.4	200	1.00	73.8	34.2	1.06	0.30	1.2%	0.077
1	EX117	0	0.0	0	0.0	108.0	3.6	1.3	0.01	0.98	0.3	1.6	200	1.00	19.3	34.2	1.06	0.45	4.6%	0.153
EX115	EX117	0	0.0	0	0.0	1327.0	3.7	15.9		20.43	6.7	22.7	250	0.37	46.1	37.7	0.74	0.67	60.0%	0.628
EX117	EX119	5	17.0	0	0.0	1452.0	3.7	17.4	0.44	21.85	7.2	24.6	250	0.34	77.7	36.2	0.71	0.67	68.1%	0.678
	From Avenue 7 5 15 13 11 9 3 17 1 EX115	From To Avenue 7 5 5 3 15 13 13 9 11 9 9 3 3 1 17 1 1 EX117 EX115 EX117	From To Units Avenue 7 5 0 5 3 0 15 13 0 13 9 0 11 9 0 9 3 0 11 0 17 1 0 1 EX117 0 EX115 EX117 0	From To Units Pop. Avenue 0.0 0.0 0.0 5 3 0 0.0 15 13 0 0.0 13 9 0 0.0 11 9 0 0.0 9 3 0 0.0 3 1 0 0.0 17 1 0 0.0 1 EX117 0 0.0 EX115 EX117 0 0.0	SINGLES Town Avenue Units Pop. Units 7 5 0 0.0 5 5 3 0 0.0 5 15 13 0 0.0 5 13 9 0 0.0 5 11 9 0 0.0 6 9 3 0 0.0 4 3 1 0 0.0 0 17 1 0 0.0 10 1 EX117 0 0.0 0	SINGLES Towns Avenue Units Pop. Units Pop. 7 5 0 0.0 5 13.5 5 3 0 0.0 5 13.5 15 13 0 0.0 5 13.5 13 9 0 0.0 5 13.5 11 9 0 0.0 6 16.2 9 3 0 0.0 4 10.8 3 1 0 0.0 0 0.0 17 1 0 0.0 10 27.0 1 EX117 0 0.0 0 0.0	SINGLES Towns Accum. Pop. Accum. Pop. Avenue 0.0 5 13.5 13.5 5 3 0 0.0 5 13.5 27.0 15 13 0 0.0 5 13.5 27.0 11 9 0 0.0 5 13.5 27.0 11 9 0 0.0 6 16.2 16.2 9 3 0 0.0 4 10.8 54.0 3 1 0 0.0 0 0.0 81.0 17 1 0 0.0 0 0.0 108.0 EX115 EX117 0 0.0 0 0.0 1327.0	SINGLES Towns Pop. Accum. Peak Factor	SINGLES Towns Peak Flow Factor Peak Flow (l/s)	SINGLES Towns Peak Peak Flow Area (ha)	SINGLES Towns Peak Peak Flow Area (ha) Area (ha)	SINGLES Towns Accum. Peak Peak Flow Factor Peak Flow Factor Peak P	SINGLES Towns Peak Flow (I/s) Total Accum. Peak Flow (I/s) Total Area (ha) Flow (I/s)	SINGLES Towns Peak Flow Factor Peak Flow Reactor Peak Flow Reactor Peak Flow Reactor Reactor Peak Flow Reactor Reactor	SINGLES Towns Peak Flow Factor Peak Flow (I/s) Peak Flow	Note Note	From To From To Units Pop. Units Pop. Accum. Peak Peak	From From	Note Note	From From

Design Parameters: Population Density: Project: Provence Orleans - Block 126 (120057)

Designed: LRW Avg Flow/Person = 280 l/day ppl/unit units/net ha Comm./Inst. Flow = 35000 l/ha/day Apartment 1.80 Checked: MAB Infiltration = 0.33 l/s/ha Singles 3.40 Date: June 29, 2020 0.013

60

Towns 2.70

Residential Peaking Factor = Harmon Equation (max 4, min 2)

Pipe Friction n =

OVINCE OF ONTH JG/CV/CH

117155

MER

15-May-20

SANITARY SEWER DESIGN SHEET

Provence Orleans Subdivision - 2128 Trim Road

STREET FROM TO MH Area Single Units Townhouse Units Condo Units Retirement Home Units Condo Units Reti	
Future Phase 4 FUT 111 400	4% 5% 2% 5% 8% 6% 9%
Future Phase 4 FUT 111 400	4% 5% 2% 5% 8% 6% 9%
Petanque Cres. 505 503 2 3 0.0081 0.17 0.008 0.170 4.0 0.111 0.06 0.16 11.7 200 203.20 DR 35 0.65 27.6 0.85 Petanque Cres. 503 501 3 16 0.0432 0.46 0.051 0.630 4.0 0.67 0.21 0.87 52.3 200 203.20 DR 35 0.35 20.2 0.62 Petanque Cres. 501 101 4 3 0.0081 0.13 0.059 0.760 4.0 0.77 0.25 1.02 26.1 200 203.20 DR 35 0.35 20.2 0.62 Petanque Cres. 505 507 9 7 1 0.0265 0.47 0.027 0.470 4.0 0.34 0.16 0.50 56.5 200 203.20 DR 35 0.35 20.2 0.62 Petanque Cres. 507 509 10 7 1	4% 5% 2% 5% 8% 6% 9%
Petanque Cres. 505 503 2 3 0.0081 0.17 0.008 0.170 4.0 0.111 0.06 0.16 11.7 200 203.20 DR 35 0.65 27.6 0.85 Petanque Cres. 503 501 3 16 0.0432 0.46 0.051 0.630 4.0 0.67 0.21 0.87 52.3 200 203.20 DR 35 0.35 20.2 0.62 Petanque Cres. 501 101 4 3 0.0081 0.13 0.059 0.760 4.0 0.77 0.25 1.02 26.1 200 203.20 DR 35 0.35 20.2 0.62 Petanque Cres. 505 507 9 7 1 0.0265 0.47 0.027 0.470 4.0 0.34 0.16 0.50 56.5 200 203.20 DR 35 0.35 20.2 0.62 Petanque Cres. 507 509 10 7 1 0.0238	4% 5% 2% 5% 8% 6% 9%
Petanque Cres. 503 501 3 16 0.0432 0.46 0.051 0.630 4.0 0.67 0.21 0.87 52.3 200 203.20 DR 35 0.35 20.2 0.62 Petanque Cres. 501 101 4 3 0.0081 0.13 0.059 0.760 4.0 0.77 0.25 1.02 26.1 200 203.20 DR 35 0.35 20.2 0.62 Petanque Cres. 505 507 9 7 1 0.0265 0.47 0.027 0.470 4.0 0.34 0.16 0.50 56.5 200 203.20 DR 35 0.65 27.6 0.85 Petanque Cres. 507 509 10 7 1 0.0238 0.42 0.050 0.890 4.0 0.65 0.29 0.95 56.0 200 203.20 DR 35 0.35 20.2 0.62 Petanque Cres. 509 511 11 10 0.034	4% 5% 2% 5% 8% 6% 9%
Petanque Cres. 503 501 3 16 0.0432 0.46 0.051 0.630 4.0 0.67 0.21 0.87 52.3 200 203.20 DR 35 0.35 20.2 0.62 Petanque Cres. 501 101 4 3 0.0081 0.13 0.059 0.760 4.0 0.77 0.25 1.02 26.1 200 203.20 DR 35 0.35 20.2 0.62 Petanque Cres. 505 507 9 7 1 0.0265 0.47 0.027 0.470 4.0 0.34 0.16 0.50 56.5 200 203.20 DR 35 0.65 27.6 0.85 Petanque Cres. 507 509 10 7 0.0238 0.42 0.050 0.890 4.0 0.65 0.29 0.95 56.0 200 203.20 DR 35 0.35 20.2 0.62 Petanque Cres. 509 511 11 10 0.0340	4% 5% 2% 5% 8% 6% 9%
Petanque Cres. 501 101 4 3 0.081 0.13 0.059 0.760 4.0 0.77 0.25 1.02 26.1 200 203.20 DR 35 0.35 20.2 0.62 Petanque Cres. 505 507 9 7 1 0.0265 0.47 0.027 0.470 4.0 0.34 0.16 0.50 56.5 200 203.20 DR 35 0.65 27.6 0.85 Petanque Cres. 507 509 10 7 0.0238 0.42 0.050 0.890 4.0 0.65 0.29 0.95 56.0 200 203.20 DR 35 0.35 20.2 0.62 Petanque Cres. 509 511 11 10 0.0340 0.67 0.084 1.560 4.0 1.09 0.51 1.61 83.1 200 203.20 DR 35 0.35 20.2 0.62 Petanque Cres. 513 109 13 8 0.024 0.	5% 2% 5% 8% 6% 9%
Petanque Cres. 505 507 9 7 1 0.0265 0.47 0.027 0.470 4.0 0.34 0.16 0.50 56.5 200 203.20 DR 35 0.65 27.6 0.85 Petanque Cres. 507 509 10 7 0.0238 0.42 0.050 0.890 4.0 0.65 0.29 0.95 56.0 200 203.20 DR 35 0.35 20.2 0.62 Petanque Cres. 509 511 11 10 0.0340 0.67 0.084 1.560 4.0 1.09 0.51 1.61 83.1 200 203.20 DR 35 0.35 20.2 0.62 Petanque Cres. 511 513 12 2 0.0068 0.21 0.091 1.770 4.0 1.18 0.58 1.77 14.2 200 203.20 DR 35 0.65 27.6 0.85 Petanque Cres. 513 109 13 8 0.027	2% 5% 8% 6% 9%
Petanque Cres. 507 509 10 7 0.0238 0.42 0.050 0.890 4.0 0.65 0.29 0.95 56.0 200 203.20 DR 35 0.35 20.2 0.62 Petanque Cres. 509 511 11 10 0.0340 0.67 0.084 1.560 4.0 1.09 0.51 1.61 83.1 200 203.20 DR 35 0.35 20.2 0.62 Petanque Cres. 511 513 12 2 0.0068 0.21 0.091 1.770 4.0 1.18 0.58 1.77 14.2 200 203.20 DR 35 0.65 27.6 0.85 Petanque Cres. 513 109 13 8 0.0272 0.50 0.118 2.270 4.0 1.53 0.75 2.28 71.1 200 203.20 DR 35 0.50 24.2 0.75 Socca Cres. 403 405 41 7 0.0238 0.46 <t< td=""><td>5% 8% 6% 9%</td></t<>	5% 8% 6% 9%
Petanque Cres. 507 509 10 7 0.0238 0.42 0.050 0.890 4.0 0.65 0.29 0.95 56.0 200 203.20 DR 35 0.35 20.2 0.62 Petanque Cres. 509 511 11 10 0.0340 0.67 0.084 1.560 4.0 1.09 0.51 1.61 83.1 200 203.20 DR 35 0.35 20.2 0.62 Petanque Cres. 511 513 12 2 0.0068 0.21 0.091 1.770 4.0 1.18 0.58 1.77 14.2 200 203.20 DR 35 0.65 27.6 0.85 Petanque Cres. 513 109 13 8 0.0272 0.50 0.118 2.270 4.0 1.53 0.75 2.28 71.1 200 203.20 DR 35 0.50 24.2 0.75 Socca Cres. 403 405 41 7 0.0238 0.46 <t< td=""><td>8% 6% 9%</td></t<>	8% 6% 9%
Petanque Cres. 509 511 11 10 0.0340 0.67 0.084 1.560 4.0 1.09 0.51 1.61 83.1 200 203.20 DR 35 0.35 20.2 0.62 Petanque Cres. 511 513 12 2 0.0068 0.21 0.091 1.770 4.0 1.18 0.58 1.77 14.2 200 203.20 DR 35 0.65 27.6 0.85 Petanque Cres. 513 109 13 8 0.0272 0.50 0.118 2.270 4.0 1.53 0.75 2.28 71.1 200 203.20 DR 35 0.50 24.2 0.75 Socca Cres. 403 405 41 7 0.0238 0.46 0.024 0.460 4.0 0.31 0.15 0.46 56.6 200 203.20 DR 35 0.65 27.6 0.85	8% 6% 9%
Petanque Cres. 513 109 13 8 0.0272 0.50 0.118 2.270 4.0 1.53 0.75 2.28 71.1 200 203.20 DR 35 0.50 24.2 0.75 Socca Cres. 403 405 41 7 0.0238 0.46 0.024 0.460 4.0 0.31 0.15 0.46 56.6 200 203.20 DR 35 0.65 27.6 0.85	9%
Socca Cres. 403 405 41 7 0.0238 0.46 0.024 0.460 4.0 0.31 0.15 0.46 56.6 200 203.20 DR 35 0.65 27.6 0.85	
	2%
	2%
Socca Cres. 403 401 42 1 0.0034 0.14 0.027 0.600 4.0 0.35 0.20 0.55 12.6 200 203.20 DR 35 0.48 23.7 0.73	
	2%
Socca Cres. 401 111 43 10 0.0340 0.56 0.061 1.160 4.0 0.79 0.38 1.18 72.4 200 203.20 DR 35 0.35 20.2 0.62	6%
Socca Cres. 405 407 46 6 0.0204 0.38 0.020 0.380 4.0 0.26 0.13 0.39 54.9 200 203.20 DR 35 0.66 27.8 0.86	1%
Socca Cres. 407 409 47 1 2 0.0088 0.18 0.029 0.560 4.0 0.38 0.18 0.56 15.3 200 203.20 DR 35 0.52 24.7 0.76	2%
Socca Cres. 409 115 48 19 0.0513 0.63 0.081 1.190 4.0 1.04 0.39 1.44 78.9 200 203.20 DR 35 0.36 20.5 0.63	7%
N + 1	10/
Ventoux Ave. 99 101 1 4 0.0136 0.23 0.014 0.230 4.0 0.18 0.08 0.25 35.7 200 203.20 DR 35 0.65 27.6 0.85	1%
Ventoux Ave. 101 103 5 3 0.0102 0.16 0.083 1.15 4.0 1.08 0.38 1.46 30.9 200 203.20 DR 35 0.35 20.2 0.62	70/
Ventoux Ave. 101 103 5 3 0.0102 0.16 0.083 1.15 4.0 1.08 0.38 1.46 30.9 200 203.20 DR 35 0.35 20.2 0.62 Ventoux Ave. 103 105 6 7 7 0.0427 0.56 0.126 1.710 4.0 1.63 0.56 2.20 66.9 200 203.20 DR 35 0.35 20.2 0.62	7% 11%
Veritoux Ave. 105 107 7 13 1 0.0469 0.63 0.173 2.340 4.0 2.24 0.77 3.01 71.0 200 203.20 DR 35 0.35 20.2 0.62	15%
Ventoux Ave. 107 109 8 6 0.0204 0.38 0.193 2.720 4.0 2.50 0.90 3.40 73.6 200 203.20 DR 35 0.35 20.2 0.62	17%
3.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5	
Ventoux Ave. 109 111 26 0.0000 0.15 0.657 11.280 3.9 8.32 3.72 12.04 79.5 250 254.00 DR 35 0.35 36.7 0.72	33%
Ventoux Ave. 111 113 44 1 0.0034 0.12 1.209 18.64 3.7 14.68 6.15 20.83 50.9 250 254.00 DR 35 0.35 36.7 0.72	57%
Ventoux Ave. 113 115 45 7 0.0238 0.37 1.233 19.010 3.7 14.94 6.27 21.21 53.0 250 254.00 DR 35 0.35 36.7 0.72	58%
Ventoux Ave. 115 117 49 4 0 0.0136 0.23 1.327 20.430 3.7 15.99 6.74 22.73 46.7 250 254.00 DR 35 0.35 36.7 0.72	62%
Ventoux Ave. FUT 117 50 48 0.1296 1.23 1.457 21.660 3.7 17.41 7.15 24.56	
Ventoux Ave. 117 119 51 5 0.0170 0.45 1.474 22.110 3.7 17.60 7.30 24.89 77.7 250 254.00 DR 35 0.35 36.7 0.72	68%
Ventoux Ave. 119 121 52 0.0000 0.05 1.474 22.160 3.7 17.60 7.31 24.91 29.5 250 254.00 DR 35 1.00 62.0 1.22	40%

Notes: 1. Q(d) = Q(p) + Q(i)

PROJECT #:

DESIGNED BY:

CHECKED BY:

DATE PREPARED:

2. Q(i) = 0.33 L/sec/ha

3. Q(p) = (PxqxM/86,400)

<u>Definitions:</u> Q(d) = Design Flow (L/sec) Q(p) = Population Flow (L/sec) Q(i) = Extraneous Flow (L/sec)

Min pipe size 200mm @ min. slope 0.32%

P = Population (3.4 persons/single unit, 2.7 persons/townhouse, 2.1 persons/apartment, 1.4 persons/retirement residence)

q = Average per capita flow = 280 L/cap/day - Residential

M = Harmon Formula (maximum of 4.0)

Boundary Conditions for Provence Orleans

Provided Information:

Date Provided December-19

Saanawia	Dem	nand
Scenario	L/min	L/s
Average Daily Demand	119	1.99
Maximum Daily Demand	299	4.98
Peak Hour	658	10.96
Fire Flow Demand #1	10,020	167.00
Fire Flow Demand #2	18,000	300.00

Location:

Results:

Connection 1 - Provence Ave

Demand Scenario	Head (m)	Pressure¹ (psi)
Maximum HGL	130.3	59.2
Peak Hour	125.8	52.9
Max Day plus Fire 1	126.2	53.5
Max Day plus Fire 2	122.9	48.8

¹ Ground Elevation = 88.6m

Connection 2 - Trim Road

Demand Scenario	Head (m)	Pressure¹ (psi)
Maximum HGL	130.3	58.4
Peak Hour	125.8	52.1
Max Day plus Fire 1	126.4	52.9
Max Day plus Fire 2	123.3	48.5

¹ Ground Elevation = 89.2m

Connection 3 - Salzburg Dr

Demand Scenario	Head (m)	Pressure ¹ (psi)
Maximum HGL	130.3	59.5
Peak Hour	125.8	53.1
Max Day plus Fire 1	123.0	49.0
Max Day plus Fire 2	113.2	35.1

¹ Ground Elevation = 88.5m

Notes:

- 1. Fire flow was applied on connection 3 but no demand was applied on connection 3. The City modeled additional internal looping within the three connections to meet the pressure requirement under fire flow condition at connection 3 as shown above.
- 2. Looping of the watermain is required to decrease vulnerability of the water system in case of breaks and to improve pressure under fire flow condition.
- 3. Interpolate the head elevation and the pressure for fire flow between 167L/s and 300L/s.
- 4. Ensure oversizing of the of local watermain does not require an excessive number of fire hydrants to accommodate the fire flow of 300L/s.

Disclaimer

The boundary condition information is based on current operation of the city water distribution system. The computer model simulation is based on the best information available at the time. The operation of the water distribution system can change on a regular basis, resulting in a variation in boundary conditions. The physical properties of watermains deteriorate over time, as such must be assumed in the absence of actual field test data. The variation in physical watermain properties can therefore alter the results of the computer model simulation. Fire Flow analysis is a reflection of available flow in the watermain; there may be additional restrictions that occur between the watermain and the hydrant that the model cannot take into account.

Provence Orleans - Block 126 Water Demand						
				Average Day	Maximum Day	Peak Hour
	Area			Demand	Demand	Demand
	(ha)	Units	Population	(L/s)	(L/s)	(L/s)
Towns	N/A	40	108	0.350	0.875	1.925
Total	0.00	40	108	0.350	0.875	1.925

Water Demand Parameters

Towns	2.7	ppl/unit
Residential Demand	280	L/c/day
Residential Max Day	2.5	x Avg Day
Residential Peak Hour	2.2	x Max Day
Residential Fire Flow	250 - 300	L/s

Provence Orleans - Block 126: Watermain Demand

Node	Towns	Total Population	Average Day Residential Demand (L/s)	Maximum Day Residential Demand (L/s)	Peak Hour Residential Demand (L/s)
HYD1	10	27	0.088	0.219	0.481
HYD2	5	14	0.044	0.109	0.241
HYD3	10	27	0.088	0.219	0.481
EXHYD1	0	0	0.000	0.000	0.000
EXHYD2	0	0	0.000	0.000	0.000
T1	0	0	0.000	0.000	0.000
T2	5	14	0.044	0.109	0.241
T3	10	27	0.088	0.219	0.481
Total	40	108	0.350	0.875	1.925

Water Demand P	arameters
----------------	-----------

Singles	3.4	ppl/unit	Residential Max Day	2.5	x Avg Day
Towns	2.7	ppl/unit	Residential Peak Hour	2.2	x Max Day
Residential Demand	280	L/c/dav	Residential Fire Flow	250 - 300	L/s

	Elevation	Demand	Head	Pressure	Pressure	Pressure	
Node ID	m	LPS	m	m	kPa	psi	
Junc HYD1	89.21	0.48	125.77	36.56	358.65	52.02	
Junc HYD2	89	0.24	125.77	36.77	360.71	52.32	
Junc HYD3	89.02	0.48	125.77	36.75	360.52	52.29	
Junc T1	89.14	0	125.77	36.63	359.34	52.12	
Junc T2	89.17	0.24	125.77	36.6	359.05	52.08	
Junc T3	88.96	0.48	125.77	36.81	361.11	52.37	
Resvr 1	125.8	-18.17	125.8	0	0.00	0.00	
Resvr 2	125.8	-15.53	125.8	0	0.00	0.00	
Network Table - Links	s - (Peak Hour)						
Network Table - Links	s - (Peak Hour) Length	Diameter	Roughness	Flow	Velocity	Headloss	Frictio
Network Table - Links	` '	Diameter mm	Roughness	Flow LPS	Velocity m/s	Headloss m/km	
Link ID	Length		Roughness		•		Factor
Link ID Pipe P1	Length m	mm	-	LPS	m/s	m/km	Factor 0.044
	Length m 19	mm 204	110	LPS 1.93	m/s 0.06	m/km 0.04	Factor
Link ID Pipe P1 Pipe P2	Length m 19 32	mm 204 204	110 110	LPS 1.93 0.97	m/s 0.06 0.03	m/km 0.04 0.01	Factor 0.044 0.049
Link ID Pipe P1 Pipe P2 Pipe P3	Length m 19 32 142	mm 204 204 204	110 110 110	LPS 1.93 0.97 0.25	m/s 0.06 0.03 0.01	m/km 0.04 0.01 0.00	0.044 0.049 0.058 0.067
Link ID Pipe P1 Pipe P2 Pipe P3 Pipe P4 Pipe P5	Length m 19 32 142 45	mm 204 204 204 204	110 110 110 110	LPS 1.93 0.97 0.25 -0.23	m/s 0.06 0.03 0.01 0.01	m/km 0.04 0.01 0.00 0.00	0.044 0.049 0.058 0.067 0.050
Link ID Pipe P1 Pipe P2 Pipe P3 Pipe P4	Length m 19 32 142 45 31	mm 204 204 204 204 204	110 110 110 110 110	LPS 1.93 0.97 0.25 -0.23 0.48	m/s 0.06 0.03 0.01 0.01	m/km 0.04 0.01 0.00 0.00 0.00	0.058

	Elevation	Demand	Head	Pressure	Pressure	Pressure	Age
Node ID	m	LPS	m	m	kPa	psi	Hours
Junc HYD1	82.91	0.09	130.3	47.39	464.90	67.43	1.59
Junc HYD2	89	0.04	130.3	41.3	405.15	58.76	15.72
Junc HYD3	89.02	0.09	130.3	41.28	404.96	58.73	25.6
Junc T1	89.14	0	130.3	41.16	403.78	58.56	1.33
Junc T2	89.17	0.04	130.3	41.13	403.49	58.52	2.96
Junc T3	88.96	0.09	130.3	41.34	405.55	58.82	9.95
Resvr 1	130.3	-3.3	130.3	0	0.00	0.00	0
Resvr 2	130.3	-2.83	130.3	0	0.00	0.00	0

130.3	-2.03	130.3	U	0.00	0.00	U
x Pressure Check	:)					
Length	Diameter	Roughness	Flow	Velocity	Headloss	Friction
m	mm		LPS	m/s	m/km	Factor
19	204	110	0.35	0.01	0.00	0.068
32	204	110	0.18	0.01	0.00	0.039
142	204	110	0.05	0.00	0.00	0.133
45	204	110	-0.04	0.00	0.00	0.000
31	204	110	0.09	0.00	0.00	0.166
10	204	110	-0.04	0.00	0.00	0.000
134	204	110	-0.09	0.00	0.00	0.080
5	204	110	-0.17	0.01	0.00	0.000
	x Pressure Check Length m 19 32 142 45 31 10 134	x Pressure Check) Length Diameter m mm 19 204 32 204 142 204 45 204 31 204 10 204 134 204	x Pressure Check) Length Diameter Roughness m mm 19 204 110 32 204 110 142 204 110 45 204 110 31 204 110 10 204 110 134 204 110	x Pressure Check) Length Diameter Roughness Flow LPS 19 204 110 0.35 32 204 110 0.18 142 204 110 0.05 45 204 110 -0.04 31 204 110 0.09 10 204 110 -0.04 134 204 110 -0.09	x Pressure Check) Length Diameter Roughness Flow LPS m/s 19 204 110 0.35 0.01 32 204 110 0.18 0.01 142 204 110 0.05 0.00 45 204 110 -0.04 0.00 31 204 110 0.09 0.00 10 204 110 -0.04 0.00 134 204 110 -0.04 0.00	x Pressure Check) Length Diameter Roughness Flow LPS m/s m/km 19 204 110 0.35 0.01 0.00 32 204 110 0.18 0.01 0.00 142 204 110 0.05 0.00 0.00 45 204 110 0.05 0.00 0.00 31 204 110 0.09 0.00 0.00 31 204 110 0.09 0.00 0.00 10 204 110 -0.04 0.00 0.00 134 204 110 -0.04 0.00 0.00

Network Table - Nodes - (Fire Flow Summary)

Fire	Flow	Minimum Pressure				
LOCATION	Flow (L/s)	Pressure (kPa)	Pressure (PSI)	Node		
B1	267	211.60	30.69	HYD3		
B2	250	233.67	33.89	HYD3		
B3	300	180.11	26.12	HYD3		
B4	283	188.16	27.29	HYD3		

88.96

123.7

124.1

	Elevation	Demand	Head	Pressure	Pressure	Pressure
Node ID	m	LPS	m	m	kPa	psi
Junc HYD1	89.21	95.22	113.74	24.53	240.64	34.90
Junc HYD2	89	95.11	110.93	21.93	215.13	31.20
Junc HYD3	89.02	77.22	110.59	21.57	211.60	30.69
Junc EXHYD1	89.3	0	121.42	32.12	315.10	45.70
Junc EXHYD2	89.7	0.17	122.86	33.16	325.30	47.18
Junc T1	89.14	0	114.39	25.25	247.70	35.93
lune T2	80 17	0.11	112.04	22.87	224.35	32.54

0.22

-91.25

-187.06

Network Table	- Links (Max	Day + FF 'Bldg 1')
		, ,

Junc T3

Resvr 1

Resvr 2

Network Table - Nodes (Max Day + FF 'Bldg 1')

(Length	Diameter	Roughness	Flow	Velocity	Headloss	Friction
Link ID	m	mm		LPS	m/s	m/km	Factor
Pipe P1	19	204	110	267.88	8.20	355.38	0.021
Pipe P2	32	204	110	114.35	3.50	73.45	0.024
Pipe P3	142	204	110	39.48	1.21	10.25	0.028
Pipe P4	45	204	110	-37.74	1.15	9.43	0.028
Pipe P5	31	204	110	74.76	2.29	33.44	0.026
Pipe P6	10	204	110	36.80	1.13	9.00	0.028
Pipe P7	134	204	110	58.31	1.78	21.10	0.027
Pipe P8	5	204	110	153.53	4.70	126.76	0.023

111.01

123.7

124.1

22.05

0

0

216.31

0.00

0.00

31.37

0.00

0.00

	Elevation	Demand	Head	Pressure	Pressure	Pressure
Node ID	m	LPS	m	m	kPa	psi
Junc HYD1	89.21	95.22	115.28	26.07	255.75	37.09
Junc HYD2	89	95.11	112.95	23.95	234.95	34.08
Junc HYD3	89.02	60.22	112.84	23.82	233.67	33.89
Junc EXHYD1	89.3	0	122.1	32.8	321.77	46.67
Junc EXHYD2	89.7	0.17	123.4	33.7	330.60	47.95
Junc T1	89.14	0	115.88	26.74	262.32	38.05
Junc T2	89.17	0.11	113.94	24.77	242.99	35.24
Junc T3	88.96	0.22	113.06	24.1	236.42	34.29
Resvr 1	124.1	-85.26	124.1	0	0.00	0.00
Resvr 2	124.5	-176.05	124.5	0	0.00	0.00

Network Table - Lii	nks (Max Day + FF 'Bldg 2'	")					
	Length	Diameter	Roughness	Flow	Velocity	Headloss	Friction
Link ID	m	mm		LPS	m/s	m/km	Factor
Pipe P1	19	204	110	250.88	7.68	314.74	0.021
Pipe P2	32	204	110	103.02	3.15	60.55	0.024
Pipe P3	142	204	110	33.98	1.04	7.76	0.029
Pipe P4	45	204	110	-26.23	0.80	4.81	0.030
Pipe P5	31	204	110	68.93	2.11	28.77	0.026
Pipe P6	10	204	110	42.47	1.30	11.73	0.028
Pipe P7	134	204	110	52.63	1.61	17.46	0.027
Pine P8	5	204	110	147 85	4 52	118 22	0.023

	Elevation	Demand	Head	Pressure	Pressure	Pressure
Node ID	m	LPS	m	m	kPa	psi
Junc HYD1	89.21	95.22	111.41	22.2	217.78	31.59
Junc HYD2	89	95.11	108.03	19.03	186.68	27.08
Junc HYD3	89.02	95.22	107.38	18.36	180.11	26.12
Junc EXHYD1	89.3	15	120	30.7	301.17	43.68
Junc EXHYD2	89.7	0.17	121.8	32.1	314.90	45.67
Junc T1	89.14	0	112.1	22.96	225.24	32.67
Junc T2	89.17	0.11	109.27	20.1	197.18	28.60
Junc T3	88.96	0.22	108.09	19.13	187.67	27.22
Resvr 1	122.9	-103.5	122.9	0	0.00	0.00
Resvr 2	123.3	-207.82	123.3	0	0.00	0.00

Network Table - Lir	nks (Max Day + FF 'Bldg 3	')					
	Length	Diameter	Roughness	Flow	Velocity	Headloss	Friction
Link ID	m	mm		LPS	m/s	m/km	Factor
Pipe P1	19	204	110	285.88	8.75	400.87	0.021
Pipe P2	32	204	110	126.34	3.87	88.35	0.024
Pipe P3	142	204	110	45.52	1.39	13.34	0.028
Pipe P4	45	204	110	-49.70	1.52	15.70	0.027
Pipe P5	31	204	110	80.71	2.47	38.53	0.025
Pipe P6	10	204	110	30.79	0.94	6.47	0.029
Pipe P7	134	204	110	64.32	1.97	25.30	0.026
Pine P8	F	204	110	150 54	1 00	126 10	0.022

Network Table - Nodes	(Max Day + FF 'Bldg 4')					
	Elevation	Demand	Head	Pressure	Pressure	Pressure
Node ID	m	LPS	m	m	kPa	psi
Junc HYD1	89.21	93.22	112.23	23.02	225.83	32.75
Junc HYD2	89	95.11	108.85	19.85	194.73	28.24
Junc HYD3	89.02	95.22	108.2	19.18	188.16	27.29
Junc EXHYD1	89.3	0	120.75	31.45	308.52	44.75
Junc EXHYD2	89.7	0.17	122.33	32.63	320.10	46.43
Junc T1	89.14	0	112.91	23.77	233.18	33.82
Junc T2	89.17	0.11	110.09	20.92	205.23	29.77
Junc T3	88.96	0.22	108.91	19.95	195.71	28.39
Resvr 1	123.3	-96.86	123.3	0	0.00	0.00
Resvr 2	123.7	-197.45	123.7	0	0.00	0.00

Network Table - Lin	Links (Max Day + FF 'Bldg 4')						
	Length	Diameter	Roughness	Flow	Velocity	Headloss	Friction
Link ID	m	mm		LPS	m/s	m/km	Factor
Pipe P1	19	204	110	283.88	8.69	395.69	0.021
Pipe P2	32	204	110	126.25	3.86	88.23	0.024
Pipe P3	142	204	110	45.50	1.39	13.33	0.028
Pipe P4	45	204	110	-49.72	1.52	15.71	0.027
Pipe P5	31	204	110	80.63	2.47	38.46	0.025
Pipe P6	10	204	110	30.70	0.94	6.43	0.029
Pipe P7	134	204	110	64.41	1.97	25.37	0.026
Pine P8	5	204	110	157.63	4 82	133 10	0.033

As per 1999 Fire Underwriter's Survey Guidelines

Novatech Project #: 120057

Project Name: Provence Orleans - Block 126

Date: 6/29/2020
Input By: Lucas Wilson

Reviewed By: Project Manager

Building Description: Back-2-Back Towns (Block 1)

Wood frame

Legend

Step			Input		Value Used	Total Fire Flow (L/min)
		Base Fire Flo	W			
	Construction Ma	terial		Mult	iplier	
1	Coefficient related to type of construction	Wood frame Ordinary construction Non-combustible construction Modified Fire resistive construction (2 hrs) Fire resistive construction (> 3 hrs)	Yes	1.5 1 0.8 0.6 0.6	1.5	
	Floor Area	,	•		•	
2	Α	Building Footprint (m²) Number of Floors/Storeys Area of structure considered (m²)	516 3		1,548	
	F	Base fire flow without reductions F = 220 C (A) ^{0.5}	-			13,000
	1	Reductions or Sur	harnes			
	Occupancy haza	rd reduction or surcharge	ilai geo	Reduction	/Surcharge	
3	(1)	Non-combustible Limited combustible Combustible Free burning Rapid burning	Yes	-25% -15% 0% 15% 25%	-15%	11,050
	Sprinkler Reduct				ction	
4	(2)	Adequately Designed System (NFPA 13) Standard Water Supply Fully Supervised System	Cum	-30% -10% -10%	0%	0
	Exposure Surch	arge (cumulative %)			Surcharge	
5	(3)	North Side East Side South Side West Side	> 45.1m 3.1 - 10 m 10.1 - 20 m 20.1 - 30 m Cum	ulative Total	0% 20% 15% 10% 45%	4,973
	-	Results			<u> </u>	
		Total Required Fire Flow, rounded to nearest 1000L/min		1	L/min	16,000
6	(1) + (2) + (3)	(2,000 L/min < Fire Flow < 45,000 L/min)		or or	L/s USGPM	267 4,227
7	Storage Volume	Required Duration of Fire Flow (hours) Required Volume of Fire Flow (m³)			Hours m ³	3.5 3360

As per 1999 Fire Underwriter's Survey Guidelines

Novatech Project #: 120057

Project Name: Provence Orleans - Block 126

Date: 6/29/2020
Input By: Lucas Wilson

Reviewed By: Project Manager

Building Description: Back-2-Back Towns (Block 2)

Wood frame

Legend

Step			Input		Value Used	Total Fir Flow (L/min)
		Base Fire Flor	W			(=:::::)
	Construction Ma	terial		Multi	plier	
1	Coefficient related to type of construction	Wood frame Ordinary construction Non-combustible construction Modified Fire resistive construction (2 hrs) Fire resistive construction (> 3 hrs)	Yes	1.5 1 0.8 0.6 0.6	1.5	
	Floor Area	i lie resistive construction (> 3 ms)		0.0		
2	A	Building Footprint (m²) Number of Floors/Storeys Area of structure considered (m²) Base fire flow without reductions F = 220 C (A) ^{0.5}	516		1,548	13,000
		Reductions or Surc	harges			
	Occupancy haza	rd reduction or surcharge	900	Reduction/	Surcharge	
3	(1)	Non-combustible Limited combustible Combustible Free burning Rapid burning	Yes	-25% -15% 0% 15% 25%	-15%	11,050
					ction	
4	(2)	Adequately Designed System (NFPA 13) Standard Water Supply Fully Supervised System	Cum	-30% -10% -10% nulative Total	0%	0
	Exposure Surcha	arge (cumulative %)			Surcharge	
5	(3)	North Side East Side South Side West Side	> 45.1m > 45.1m 10.1 - 20 m 3.1 - 10 m	nulative Total	0% 0% 15% 20% 35%	3,868
		Results		•	•	
		Total Required Fire Flow, rounded to nearest 1000L/min		ı	L/min	15,000
6	(1) + (2) + (3)	(2,000 L/min < Fire Flow < 45,000 L/min)		or or	L/s USGPM	250 3,963
7	Storage Volume	Required Duration of Fire Flow (hours) Required Volume of Fire Flow (m³)			Hours m ³	3

As per 1999 Fire Underwriter's Survey Guidelines

Novatech Project #: 120057

Project Name: Provence Orleans - Block 126

Date: 6/29/2020

Input By: Lucas Wilson
Reviewed By: Project Manager

Building Description: Back-2-Back Towns (Block 3)

Wood frame

Legend

Step			Input	_	Value Used	Total Fire Flow (L/min)
		Base Fire Flo	w			
	Construction Ma	terial		Multi	plier	
1	Coefficient related to type of construction	Wood frame Ordinary construction Non-combustible construction Modified Fire resistive construction (2 hrs)	Yes	1.5 1 0.8 0.6	1.5	
		Fire resistive construction (> 3 hrs)		0.6		
2	Floor Area A	Building Footprint (m²) Number of Floors/Storeys Area of structure considered (m²)	553		1,659	
	F	Base fire flow without reductions F = 220 C (A) ^{0.5}	_			13,000
		Reductions or Surg	harges			
	Occupancy haza	rd reduction or surcharge		Reduction	Surcharge	
3	(1)	Non-combustible Limited combustible Combustible Free burning Rapid burning	Yes	-25% -15% 0% 15% 25%	-15%	11,050
	Sprinkler Reduct			Redu	ction	
4	(2)	Adequately Designed System (NFPA 13) Standard Water Supply Fully Supervised System	Cum	-30% -10% -10% iulative Total	0%	0
	Exposure Surch	arge (cumulative %)			Surcharge	
5	(3)	North Side East Side South Side West Side	10.1 - 20 m 10.1 - 20 m 0 - 3 m 20.1 - 30 m	ulative Total	15% 15% 25% 10% 65%	7,183
		Results				
	(4) - (5) - (5)	Total Required Fire Flow, rounded to nearest 1000L/min		1	L/min	18,000
6	(1) + (2) + (3)	(2,000 L/min < Fire Flow < 45,000 L/min)		or or	L/s USGPM	300 4,756
7	Storage Volume	Required Duration of Fire Flow (hours)	Required Duration of Fire Flow (hours)			4
. otorago romino		Required Volume of Fire Flow (m ³)	m^3	4320		

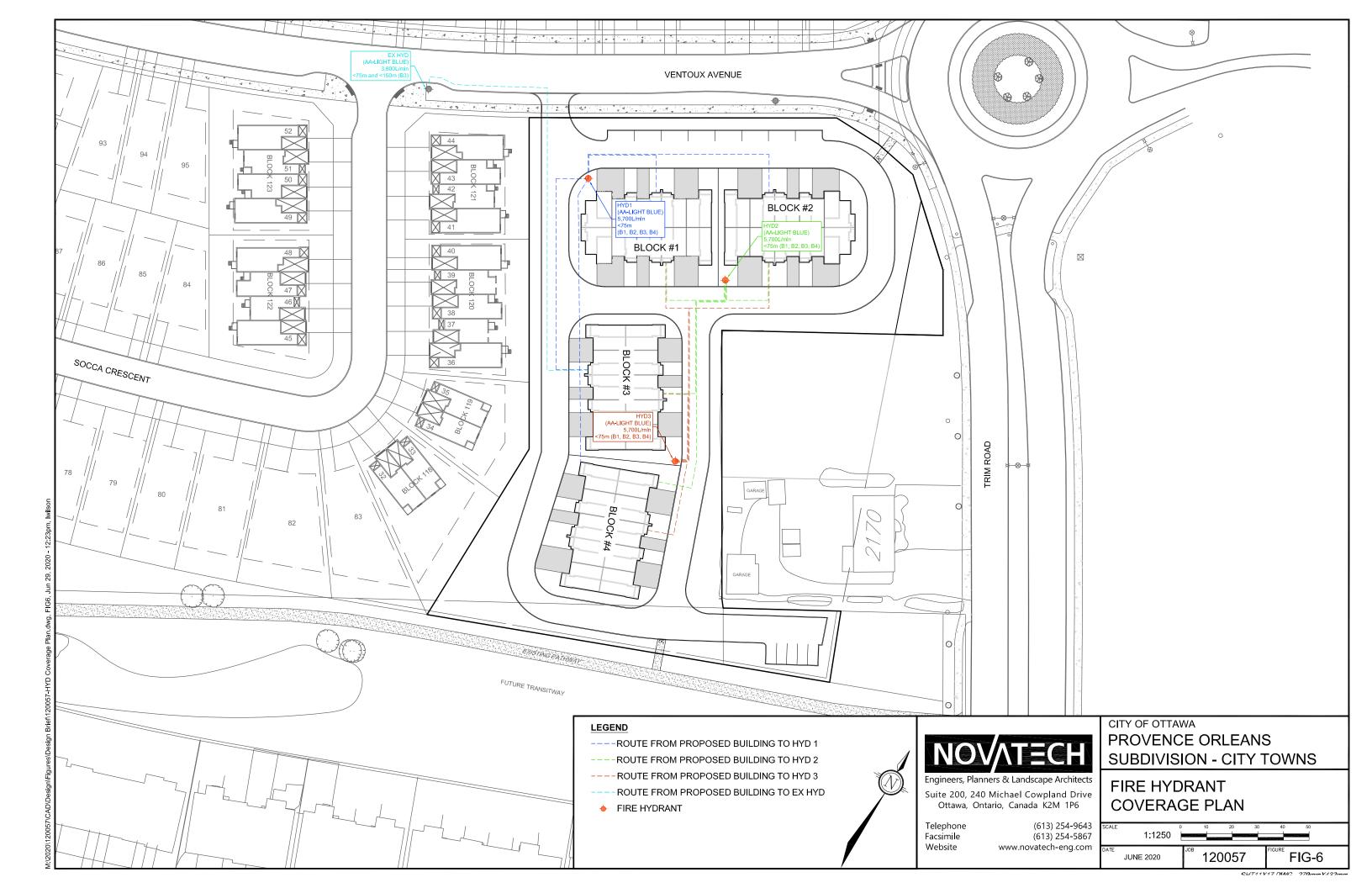
As per 1999 Fire Underwriter's Survey Guidelines

Novatech Project #: 120057

Project Name: Provence Orleans - Block 126

Date: 6/29/2020

Input By: Lucas Wilson
Reviewed By: Project Manager


Building Description: Back-2-Back Towns (Block 4)

Wood frame

Legend

Step			Input		Value Used	Total Fire Flow (L/min)
		Base Fire Flo	W			
	Construction Ma	terial		Mult	iplier	
1	Coefficient related to type of construction	Wood frame Ordinary construction Non-combustible construction Modified Fire resistive construction (2 hrs) Fire resistive construction (> 3 hrs)	Yes	1.5 1 0.8 0.6 0.6	1.5	
	Floor Area					
2	A	Building Footprint (m²) Number of Floors/Storeys Area of structure considered (m²)	553		1,659	
	F	Base fire flow without reductions F = 220 C (A) ^{0.5}				13,000
	1	Reductions or Sur	harges			
	Occupancy haza	rd reduction or surcharge		Reduction	Surcharge	
3	(1)	Non-combustible Limited combustible Combustible Free burning Rapid burning	Yes	-25% -15% 0% 15% 25%	-15%	11,050
	Sprinkler Reduct			Redu	ction	
4	(2)	Adequately Designed System (NFPA 13) Standard Water Supply Fully Supervised System	Curr	-30% -10% -10% sulative Total	0%	0
	Exposure Surcha	arge (cumulative %)			Surcharge	
5	(3)	North Side East Side South Side West Side	0 - 3 m 10.1 - 20 m > 45.1m 20.1 - 30 m	ulative Total	25% 15% 0% 10% 50%	5,525
		Results			•	
	(4) . (5) - (5)	Total Required Fire Flow, rounded to nearest 1000L/min		1	L/min	17,000
6	(1) + (2) + (3)	(2,000 L/min < Fire Flow < 45,000 L/min)		or or	L/s USGPM	283 4,491
7	Storage Volume	Required Duration of Fire Flow (hours) Required Volume of Fire Flow (m³)			Hours m ³	3.5 3570

2128	Trim	Road	(Block	126)

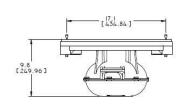
APPENDIX B

SWM Calculations

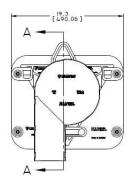
TEMPEST Product Submittal Package

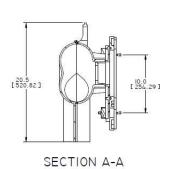
Date: June 26, 2020

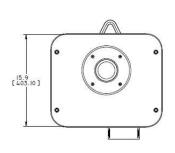
Customer: Novatech

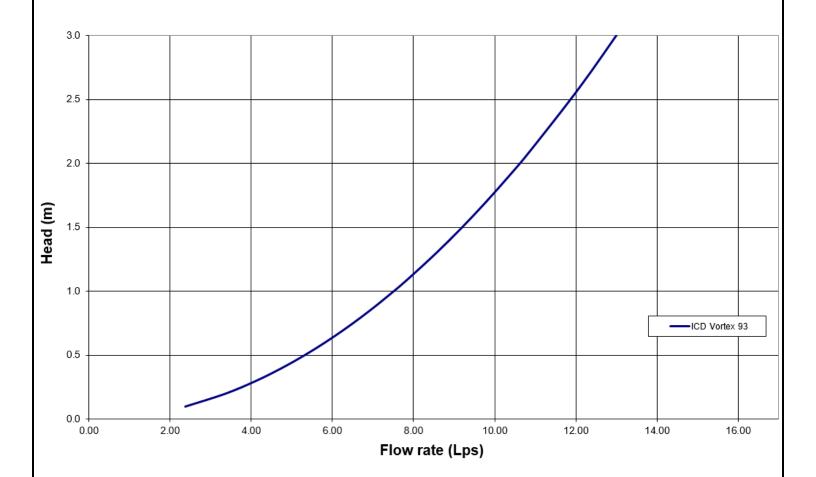

Contact: Lucas Wilson

Location: Ottawa

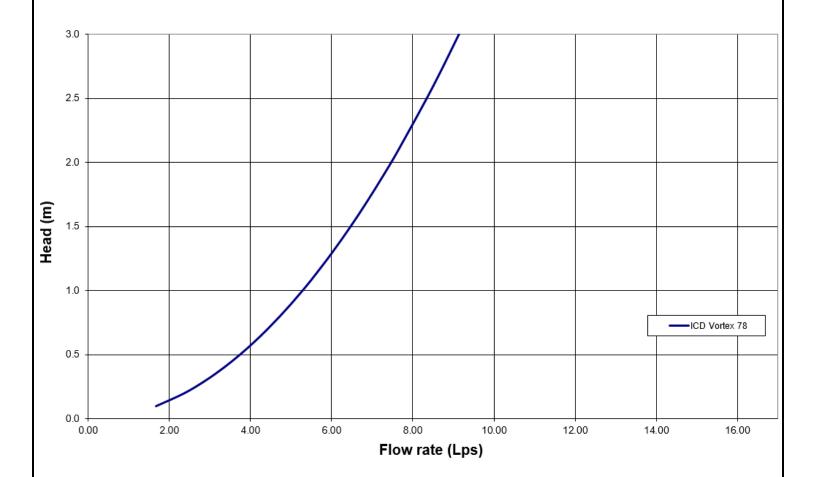

Project Name: Provence Orleans Subdivision – Block 126



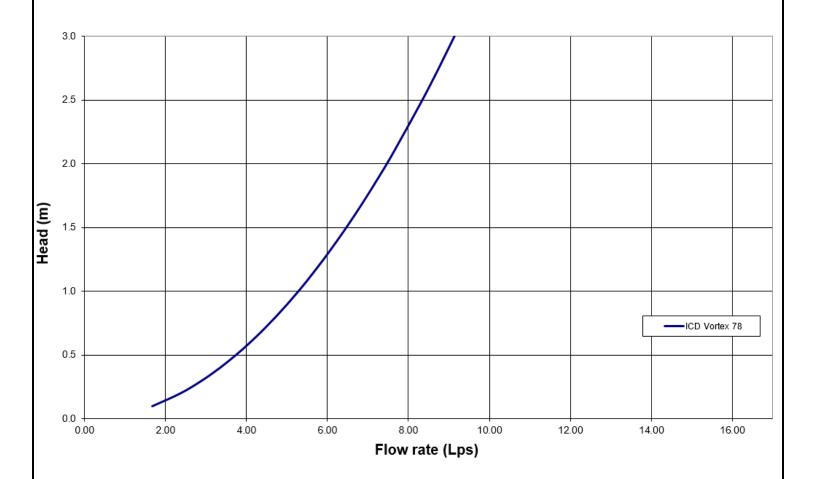

Tempest LMF ICD Sq Shop Drawing



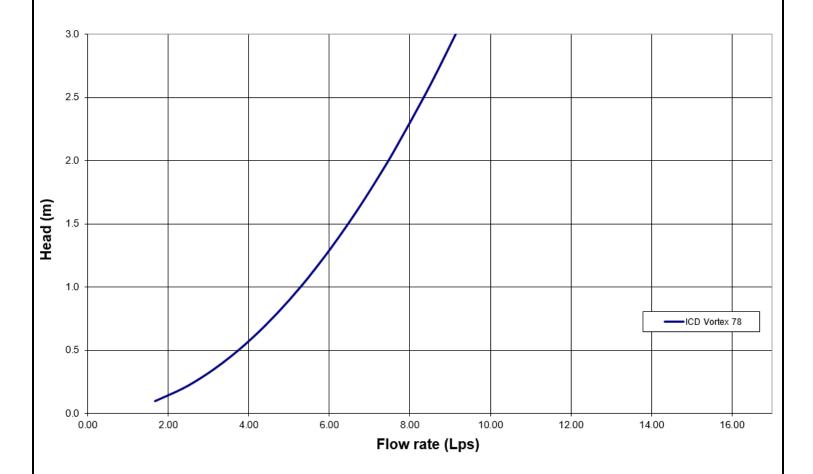
	TOLEMANCES South market will Links :	.0.060" (r.no ++)	TEC	ONHO	X LOGIES I	į	Motivat consuments and Pulsas to commerce, Sc us one Sommer, Hormack Johann Tal, SN 709 220 Welling, Mallin, Com	L OC, H38 IHT
	X.XX a	0.020, [8:12 ex] 0.020, [8:10 ex] 0.020, [6:10 ex]	THOUSE STOOM	in (mm)	LMF S	SQUAR	E CB ASSEME	BLY
	AVELAN	41/10*	DRAWN BY H. M-MARTIN		2011-07-27	ental ental	ICALEM 1/8	I OF I
THU.	- AMERICAN STREET	-CHIE	VERWIED BY		2011-07-27		IZ4_FA00IR03	nev 3



Flow: 9.4 L/s Head: 1.55 m

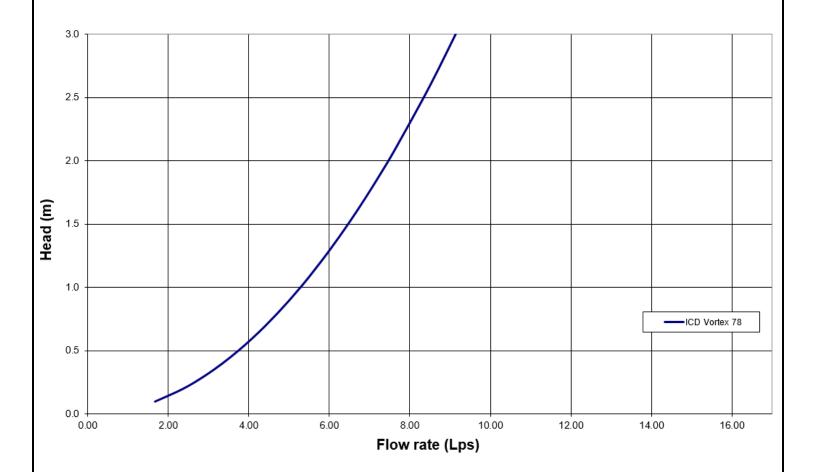


Flow: 6.7 L/s Head: 1.64 m

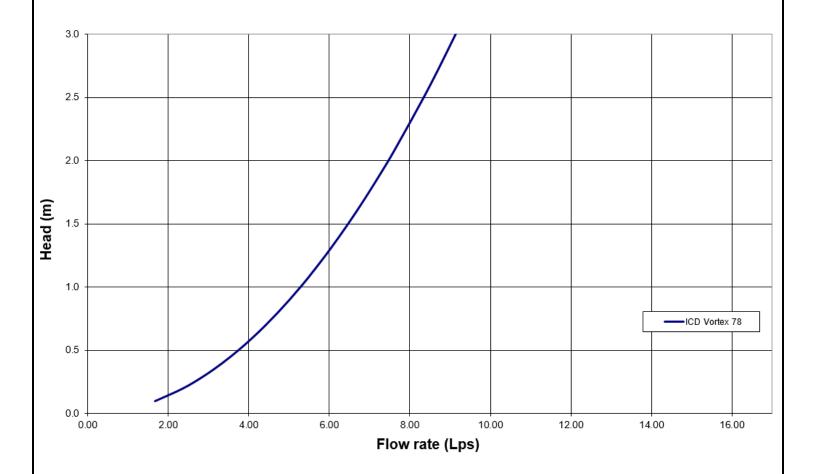


Flow: 6.6 L/s Head: 1.56 m

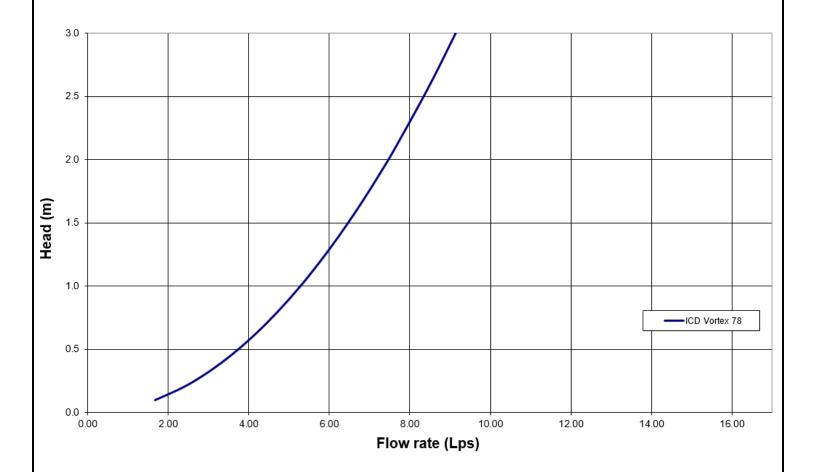
Flow: 6.5 L/s Head: 1.54 m



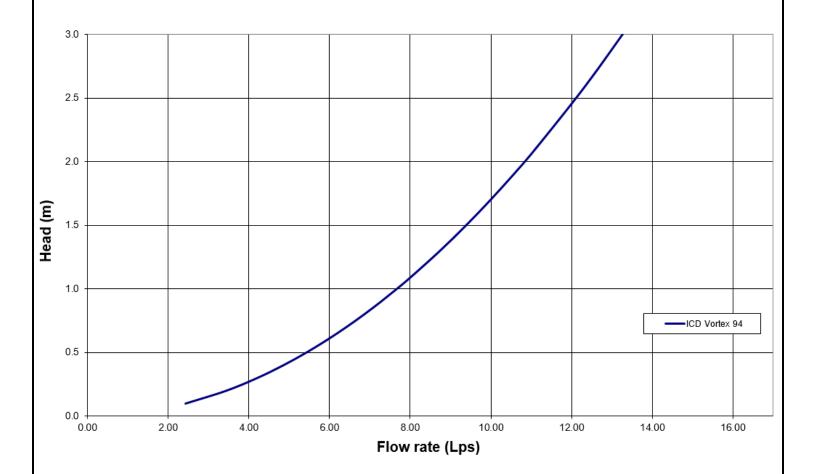
Flow: 9.6 L/s Head: 1.60 m



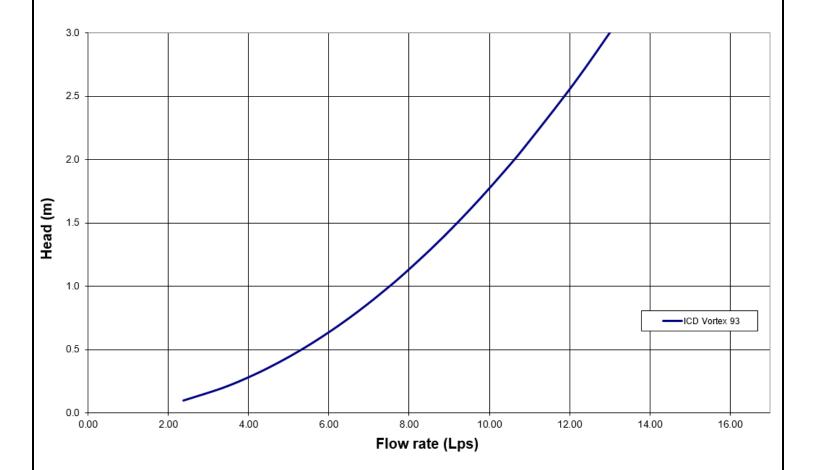
Flow: 6.8 L/s Head: 1.65 m



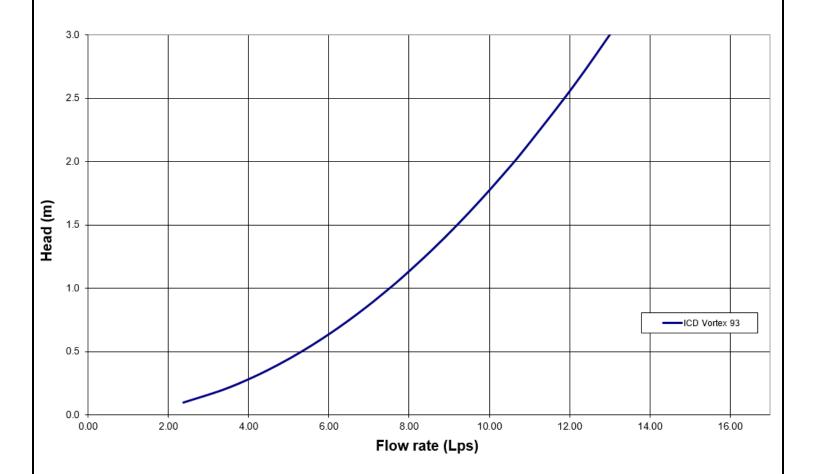
Flow: 6.7 L/s Head: 1.60 m



Flow: 6.8 L/s Head: 1.64 m

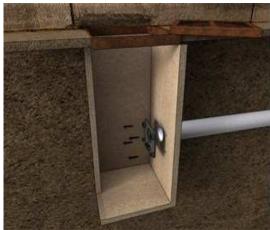


Flow: 10.4 L/s Head: 1.88 m RYCB1



Flow: 9.7 L/s Head: 1.64 m RYCB2

Flow: 9.6 L/s Head: 1.62 m RYCB3



Square CB Installation Notes:

- 1. Materials and tooling verification:
 - Tooling: impact drill, 3/8" concrete bit, torque wrench for 9/16" nut, hand hammer, level, and marker.
 - Material: (4) concrete anchor 3/8x3-1/2, (4) washers, (4) nuts
- 2. Use the mounting wall plate to locate and mark the hole (4) pattern on the catch basin wall. You should use a level to ensure that the plate is at the horizontal.
- 3. Use an impact drill with a 3/8" concrete bit to make the four holes at a minimum of 1-1/2" depth up to 2-1/2". Clean the concrete dust from the holes.
- 4. Install the anchors (4) in the holes by using a hammer. Put the nuts on the top of the anchors to protect the threads when you will hit the anchors with the hammer. Remove the nuts on the ends of the anchors
- 5. Install the wall mounting plate on the anchors and screw the nut in place with a maximum torque of 40 N.m (30 lbf-ft). There should be no gap between the wall mounting plate and the catch basin wall.
- 6. From ground above using a reach bar, lower the device by hooking the end of the reach bar to the handle of the LMF device. Align the triangular plate portion into the mounting wall plate. Push down the device to be sure it has centered in to the wall mounting plate and has created a seal.

Round CB Installation Notes: (Refer to square install notes above for steps 1, 3, & 4)

- 2. Use spigot catch basin wall plate to locate and mark the hole (4) pattern on the catch basin wall. You should use a level to ensure that the plate is at the horizontal.
- 5. Install the CB spigot wall plate on the anchors and screw the 4 nuts in place with a maximum torque of 40 N.m (30 lb-ft). There should be no gap between the CB spigot wall plate and the catch basin wall.
- 6. Apply solvent cement on the hub of the universal mounting plate and the spigot of the spigot CB wall plate. Slide the hub over the spigot. Make sure the universal mounting plate is at the horizontal and its hub is completely inserted onto the spigot. Normally, the corners of the universal mounting plate hub adapter should touch the catch basin wall.
- 7. From ground above using a reach bar, lower the ICD device by hooking the end of the reach bar to the handle of the ICD device. Align the triangular plate portion into the mounting wall plate. Push down the device to be sure it has centered into the mounting plate and has created a seal.

CAUTION/WARNING/DISCLAIM:

- Verify that the inlet(s) pipe(s) is not protruding into the catch basin. If it is, cut it back so that the inlet pipe is flush with the catch basin wall.
- Any required cement in the installation must be approved for PVC.
- The solvent cement should not be used below 0°C (32°F) or in a high humidity environment. Please refer to the IPEX solvent cement guide to confirm required curing times or attend the IPEX Online Solvent Cement Training Course.
- Call your IPEX representative for more information or if you have any questions about our products.

IPEX TEMPEST Inlet Control Devices Technical Specification

General

Inlet control devices (ICD's) are designed to provide flow control at a specified rate for a given water head level and also provide odour and floatable control where specified. All ICD's will be IPEX Tempest or approved equal.

All devices shall be removable from a universal mounting plate. An operator from street level using only a T-bar with a hook will be able to retrieve the device while leaving the universal mounting plate secured to the catch basin wall face. The removal of the TEMPEST devices listed above must not require any unbolting or special manipulation or any special tools.

High Flow (HF) Sump devices will consist of a removable threaded cap which can be accessible from street level with out entry into the catchbasin (CB). The removal of the threaded cap shall not require any special tools other than the operator's hand.

ICD's must have no moving parts.

Materials

ICD's are to be manufactured from Polyvinyl Chloride (PVC) or Polyurethane material, designed to be durable enough to withstand multiple freeze-thaw cycles and exposure to harsh elements.

The inner ring seal will be manufactured using a Buna or Nitrile material with hardness between Duro 50 and Duro 70.

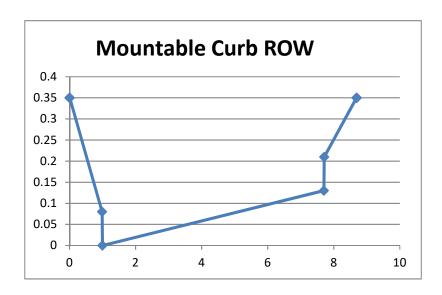
The wall seal is to be comprised of a 3/8" thick Neoprene Closed Cell Sponge gasket which is attached to the back of the wall plate.

All hardware will be made from 304 stainless steel.

Dimensioning

The Low Medium Flow (LMF), High Flow (HF) and the High Flow (HF) Sump shall allow for a minimum outlet pipe diameter of 200mm with a 600mm deep Catch Basin sump.

Installation


Contractor shall be responsible for securing, supporting and connecting the ICD's to the existing influent pipe and catchbasin/manhole structure as specified and designed by the Engineer.

Provence Orleans - Block 126Roadway Cross-Sections

Mountable Cเ Distance	ırb and Gutter Elevation
Distance	Lievation
0	0.35
0.01	0.35
0.99	0.08
1	0
7.7	0.13
7.71	0.21
8.69	0.35
8.7	0.35

CB1-Storage						
Depth (m)	Area (m ²)	Volume (m ³)				
0.00	0.36	0.00				
1.40	0.36	0.50				
1.69	309.80	45.48				
1.70	0.00	47.03				
2.40	0.00	47.03				

CB2-Storage					
Depth (m)	Area (m ²)	Volume (m ³)			
0.00	0.36	0.00			
1.40	0.36	0.50			
1.70	353.80	53.63			
1.71	0.00	55.40			
2.40	0.00	55.40			

CB3-Storage						
Depth (m)	Area (m ²)	Volume (m ³)				
0.00	0.36	0.00				
1.40	0.36	0.50				
1.70	334.00	50.66				
1.71	0.00	52.33				
2.40	0.00	52.33				

CB4-Storage						
Depth (m)	Area (m²)	Volume (m ³)				
0.00	0.36	0.00				
1.40	0.36	0.50				
1.70	452.00	68.36				
1.71	0.00	70.62				
2.40	0.00	70.62				

CB5-Storage							
Depth (m)	Volume (m ³)						
0.00	0.36	0.00					
1.40	0.36	0.50					
1.65	300.00	38.05					
1.66	0.00	39.55					
2.40	0.00	39.55					

CB6-Storage								
Depth (m) Area (m ²) Volume (m ³)								
0.00	0.36	0.00						
1.40	0.36	0.50						
1.65	392.50	49.61						
1.66	0.00	51.57						
2.40	0.00	51.57						

CB7-Storage							
Depth (m) Area (m ²) Volume							
0.00	0.36	0.00					
1.40	0.36	0.50					
1.70	341.30	51.75					
1.71	0.00	53.46					
2.40	0.00	53.46					

CB8-Storage								
Depth (m) Area (m ²) Volume (m ³)								
0.00	0.36	0.00						
1.40	0.36	0.50						
1.68	492.30	69.48						
1.69	0.00	71.94						
2.40	0.00	71.94						

LCB1-Storage							
Depth (m) Area (m ²) Volume (n							
0.00	0.36	0.00					
1.25	0.36	0.45					
1.55	188.00	28.70					
1.56	0.00	29.64					
2.25	0.00	29.64					

Provence Orleans - Block 126 (120057) PCSWMM Model Results (Ponding)

CB / CBMH	B/CBMHI I I I I			Ponding	HGL Elev. (m) ¹			Ponding Depth (m)			Spill Depth (m)					
ID	Elev. (m)	Elev. (m)	Elev. (m)	Depth (m)	2-yr	5-yr	100-yr	100-yr (+20%)	2-yr	5-yr	100-yr	100-yr (+20%)	2-yr	5-yr	100-yr	100-yr (+20%)
CB1	87.60	89.00	89.29	0.29	89.01	89.06	89.15	89.22	0.01	0.06	0.15	0.22	0.00	0.00	0.00	0.00
CB2	87.68	89.08	89.38	0.30	89.18	89.23	89.32	89.36	0.10	0.15	0.24	0.28	0.00	0.00	0.00	0.00
CB3	87.75	89.15	89.45	0.30	89.18	89.22	89.31	89.34	0.03	0.07	0.16	0.19	0.00	0.00	0.00	0.00
CB4	87.78	89.18	89.48	0.30	89.22	89.25	89.32	89.35	0.04	0.07	0.14	0.17	0.00	0.00	0.00	0.00
CB5	87.78	89.18	89.43	0.25	89.25	89.29	89.38	89.42	0.07	0.11	0.20	0.24	0.00	0.00	0.00	0.00
CB6	87.73	89.13	89.38	0.25	89.25	89.29	89.38	89.45	0.12	0.16	0.25	0.32	0.00	0.00	0.00	0.07
CB7	87.72	89.12	89.42	0.30	89.20	89.24	89.32	89.35	0.08	0.12	0.20	0.23	0.00	0.00	0.00	0.00
CB8	87.65	89.05	89.33	0.28	89.16	89.20	89.29	89.33	0.11	0.15	0.24	0.28	0.00	0.00	0.00	0.00
LCB1	87.90	89.15	89.45	0.30	89.18	89.22	89.31	89.34	0.03	0.07	0.16	0.19	0.00	0.00	0.00	0.00
RYCB1	86.84	88.24	88.78	0.54	86.91	87.22	88.72	88.81	0.00	0.00	0.48	0.57	0.00	0.00	0.00	0.03
RYCB2	87.04	88.44	88.88	0.44	87.65	88.31	88.68	88.79	0.00	0.00	0.24	0.35	0.00	0.00	0.00	0.00
RYCB3	87.15	88.55	88.73	0.18	87.27	87.50	88.77	88.82	0.00	0.00	0.22	0.27	0.00	0.00	0.04	0.09

¹ 4-hour Chicago Storm.

Date: 6/29/2020

Provence Orleans - Block 126 (120057) Summary of Hydraulic Grade Line (HGL) Elevations

MH ID	Obvert Elevation	T/G Elevation	HGL Elevation ¹	Surcharge	Clearance from T/G	HGL in Stress Test ¹
WITTE	(m)	(m)	(m)	(m)	(m)	(m)
MH2	86.27	89.27	85.98	0.00	3.29	85.98
MH4	86.39	89.37	86.17	0.00	3.20	86.17
MH6	86.57	89.26	86.36	0.00	2.90	86.36
MH8	87.07	89.46	86.94	0.00	2.52	86.94
MH10	86.68	89.37	86.54	0.00	2.83	86.55
MH12	86.53	89.32	86.35	0.00	2.97	86.36
MH14	86.71	89.30	86.51	0.00	2.79	86.51
MH16	86.89	89.19	86.70	0.00	2.49	86.70
MH18	86.73	88.74	86.54	0.00	2.20	86.54

¹4-hour Chicago Storm; Normal outfall (100yr HGL in MH116 = 85.73).

Date: 6/29/2020

Provence Orleans – Block 126 (120057) PCSWMM Model Schematic

Date: 2020-06-29

M:\2020\120057\DATA\Calculations\Sewer Calcs\SWM\PCSWMM Model Schematic.docx

Name of Part State 1	WARNING 03: negative WARNING 03: negative WARNING 03: negative	offset ignore	ed for Linled for Linled	k C18 k C19					MH16 MH18 MH2 MH4 MH6 MH8 RYCB1 RYCB2 RYCB3	STORAGE STORAGE STORAGE STORAGE STORAGE STORAGE STORAGE STORAGE STORAGE	86 86 85 85 86 86 87	48 74 94 27 82 84 04	2.55 2.26 3.53 3.43 2.99 2.64 2.40 2.40 2.40	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		
Mindre of Politronis	Number of rain gages Number of subcatchme Number of nodes	nts 13							Link Summary							
Part	Number of pollutants	0														
C4he-160yr	**************************************	Data Source			Type	Interv	al		C10 C11 C12 C13 C14 C15 C16	CB5 CB6 HP-CB13 CB7 HP-CB9 HP-CB8 RYCB2	HP-CB8 HP-CB13 CB1 HP-CB9 CB8 CB6 HP-RYCB3	00 00 00 00 00	ONDUIT TIUDUC TIUDUC TIUDUC TIUDUC TIUDUC TIUDUC TIUDUC	3.0 3.0 3.0 3.0 3.0 3.0 28.6	-8.6994 -8.3624 12.7695 -10.0504 12.4282 10.0504 -1.5386	0.2500 0.2500 0.2500 0.2500 0.2500 0.2500 0.2500 0.0350
C2									C18	RYCB3	HP-RYCB4	CC	NDUIT	17.1	-1.0527	0.0350
C4 RF-CR2 CR1 COMDUT 3.0 1.269 0.2500 R1 CR1 CR1 CR1 CR1 CR1 CR1 CR1 CR1 CR1	Subcatchment Summary ************************************	Area							C2 C20 C21 C21_1 C21_2	HP-CB3 RYCB1 HP-RYCB2 LCB1 HP-LCB01	CB2 OF1 RYCB2 HP-LCB01 CB3	CC CC CC	DIDUIT TIDUIT TIDUIT TIDUIT TIDUIT TIDUIT TIDUIT	3.0 9.0 30.0 3.0 3.0	10.3889 -6.0108 0.5000 -2.6676 2.6676	0.2500 0.0350 0.0350 0.0350 0.0350
A10	 -								C4	HP-CB2	CB1	CC	NDUIT	3.0	12.7695	0.2500
A12 0.12 34.29 24.30 0.500 RG1 PXCES C8 CH4 RF-C66 C0DUT 3.0 -10.0504 0.2500 AC A2.30 0.0500 RG1 C02 C82 C85.04 RF-C66 C85 CNDUTT 3.0 -10.0504 0.2500 AC A4 C 0.00 AC A2.30 0.0500 RG1 C02 C85.04 RF-C66 C85 CNDUTT 3.0 -10.889 0.0130 AC A4 C 0.00 AC A2.30 0.00 BC1 CB4 MEI-SHI MILO MIL2 C0DUTT 3.0 AC A5 C 0.00 AC A2.30 AC A5 C 0.00 BC1 CB4 MEI-SHI MILO MIL2 C0DUTT 3.0 AC 0.3899 0.0130 AC A5 C 0.00 AC A2.30 AC	A10	0.21	60.00	2.90	0.50	00 RG1		RYCB1	C6	CB8	HP-CB20	CC	NDUIT	3.0	-9.3743	0.2500
A3															11.0672 -10.0504	
A4																
A6																
A7																
A8																
###-PERS JUNCTION 89.48 1.00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	A8	0.09	45.00	75.70	0.50	00 RG1		CB7	MH18-MH2	MH18	MH2	CC	NDUIT	45.7	1.0066	0.0130
MRS-MRIO MRS																
Node Summary												CC	NDUIT	35.1	0.5127	0.0130
Name	*****													39.0	1.0001	0.0130
Name Type Elev Depth Area Inflow CB-ICD CB6 MH8 ORFICE																
HP-CB1	******		Inv	vert	Max.	Ponded	External									
HP-CB13																
HP-CB20																
HP-CB6																
HP-CB8 JUNCTION 89.43 1.00 0.0 HP-LCB01 JUNCTION 89.23 1.00 0.0 HP-LCB01 JUNCTION 89.23 1.00 0.0 HP-LCB01 JUNCTION 89.23 1.00 0.0 HP-RYCB2 JUNCTION 88.89 1.00 0.0 HP-RYCB3 JUNCTION 88.88 1.00 0.0 HP-RYCB4 JUNCTION 88.88 1.00 0.0 HP-RYCB4 JUNCTION 88.73 1.00 0.0 HP-RYCB4 JUNCTION 88.73 1.00 0.0 Conduit Shape Depth Area Rad. Width Barrels Flow Mill6 OUTFALL 89.29 1.00 0.0 CI Road_Transect 1.00 7.76 2.15 8.70 1 16404.35 OF2 OUTFALL 89.00 0.00 0.0 CI Road_Transect 1.00 7.76 2.15 8.70 1 15262.04 CB1 STORAGE 87.68 2.40 0.0 CCB2 STORAGE 87.75 2.40 0.0 CCB3 STORAGE 87.75 2.40 0.0 CCB5 STORAGE 87.78 2.40 0.0 CCB6 STORAGE 87.78 2.40 0.0 CCB7 STORAGE 87.78 2.40 0.0 CCB8 STORAGE 87.78 2.40 0.0 CCB7 STORAGE 87.78 2.40 0.0 CCB7 STORAGE 87.78 2.40 0.0 CCB7 STORAGE 87.79 2.40 0.0 CCB8 STORAGE 87.79 0.2.55 0.0																
HP-CB9 JUNCTION 89.42 1.00 0.0 HP-RYCB2 JUNCTION 88.59 1.00 0.0 HP-RYCB3 JUNCTION 88.85 1.00 0.0 HP-RYCB3 JUNCTION 88.87 1.00 0.0 HP-RYCB4 JUNCTION 88.73 1.00 0.0 HP-RYCB4 JUNCTION 88.73 1.00 0.0 HP-RYCB4 JUNCTION 88.73 1.00 0.0 Conduit Shape Full Full Hyd. Max. No. of Full Phychiat Shape Full Full Full Hyd. Max. No. of Full Phychiat Shape Full Full Full Hyd. Max. No. of Full Recommendation of Full Phychiat Shape Full Full Full Hyd. Max. No. of Full Phychiat Shape Full Full Full Hyd. Max. No. of Full Phychiat Shape Full Full Full Hyd. Max. No. of Full Phychiat Shape Full Full Full Hyd. Max. No. of Full Phychiat Shape Full Full Full Hyd. Max. No. of Full Phychiat Shape Full Full Full Full Hyd. Max. No. of Full Phychiat Shape Full Full Full Hyd. Max. No. of Full Phychiat Shape Full Full Full Full Full Hyd. Max. No. of Full Phychiat Shape Full Full Full Full Full Full Full Ful									RYCB3-ICD	RYCB3	MH10	OF	RIFICE			
HP-RCB2 JUNCTION 89.23 1.00 0.0 HP-RYCB2 JUNCTION 88.85 1.00 0.0 HP-RYCB3 JUNCTION 88.88 1.00 0.0 HP-RYCB4 JUNCTION 88.73 1.00 0.0 HP-RYCB4 JUNCTION 88.73 1.00 0.0 HP-RYCB5 JUNCTION 88.73 1.00 0.0 HP-RYCB6 JUNCTION 88.73 1.00 0.0 Conduit Shape Depth Area Rad Width Barrels Flow Depth Area Rad Width Barrels Flow MRIL6 OUTFALL 89.29 1.00 0.0 CI Road Transect 1.00 7.76 2.15 8.70 1 16404.35 OF2 OUTFALL 89.00 0.00 0.0 CI Road Transect 1.00 7.76 2.15 8.70 1 15262.04 CB1 STORAGE 87.68 2.40 0.0 CB2 STORAGE 87.68 2.40 0.0 CB3 STORAGE 87.75 2.40 0.0 CB3 STORAGE 87.75 2.40 0.0 CB5 STORAGE 87.78 2.40 0.0 CB5 STORAGE 87.78 2.40 0.0 CB5 STORAGE 87.78 2.40 0.0 CB5 STORAGE 87.79 2.40 0.0 CB6 STORAGE 87.70 2.40 0.0 CB7 STORAGE 87.70 2.40 0.0 CB8 STORAGE 87.71 2.40 0.0 CB7 STORAGE 87.72 2.40 0.0 CB8 STORAGE 87.72 2.40 0.0 CB9 STORAGE 87.73 2.40 0.0 CB9 STORAGE 87.74 2.40 0.0 CB9 STORAGE 87.75 2.40 0.0 CB9 STORAGE 87.75 2.40 0.0 CB9 STORAGE 87.76 2.40 0.0 CB9 STORAGE 87.76 2.40 0.0 CB9 STORAGE 87.76 2.40 0.0 CB9 STORAGE 87.77 2.40 0.0 CB9 STORAGE 87.78 2.40 0.0 CB9 STORAGE 87.79 2.40 0.0 CB9 STORAGE 87.70 2.40 0.0 CB9 STORAGE 87.71 2.40 0.0 CB9 STORAGE 87.72 2.40 0.0 CB9 STORAGE 87.73 2.40 0.0 CB9 STORAGE 87.74 2.40 0.0 CB9 STORAGE 87.75 2.40 0.0 CB9 STORAGE 87.75 2.40 0.0 CB9 STORAGE 87.70 2.40 0.0 CB9 STORAGE																
HP-RYCB3		JUNCTION	89	9.23												
HP-RYCB4																
MH16		JUNCTION	88	8.73	1.00				0 1 11	Q1						
OFI OUTFALL 88.78 1.00 0.0 C1 Road_Transect 1.00 7.76 2.15 8.70 1 16404.35 OF2 OUTFALL 89.00 0.00 0.0 C10 Road_Transect 1.00 7.76 2.15 8.70 1 15262.04 C11 Road_Transect 1.00 7.76 2.15 8.70 1 14963.52 C12 STORAGE 87.60 2.40 0.0 C11 Road_Transect 1.00 7.76 2.15 8.70 1 14963.52 C12 Road_Transect 1.00 7.76 2.15 8.70 1 14963.52 C12 Road_Transect 1.00 7.76 2.15 8.70 1 16404.35 C13 Road_Transect 1.00 7.76 2.15 8.70 1 16404.35 C14 STORAGE 87.78 2.40 0.0 C13 Road_Transect 1.00 7.76 2.15 8.70 1 16404.35 C14 Road_Transect 1.00 7.76 2.15 8.70 1 16404.35 C14 Road_Transect 1.00 7.76 2.15 8.70 1 16404.35 C14 Road_Transect 1.00 7.76 2.15 8.70 1 16404.35 C15 Road_Transect 1.00 7.76																
CB1 STORAGE 87.60 2.40 0.0 C11 Road_Transect 1.00 7.76 2.15 8.70 1 14963.52 CB2 STORAGE 87.68 2.40 0.0 C12 Road_Transect 1.00 7.76 2.15 8.70 1 14963.52 CB3 STORAGE 87.75 2.40 0.0 C13 Road_Transect 1.00 7.76 2.15 8.70 1 16404.35 CB4 STORAGE 87.78 2.40 0.0 C13 Road_Transect 1.00 7.76 2.15 8.70 1 16404.35 CB5 STORAGE 87.78 2.40 0.0 C14 Road_Transect 1.00 7.76 2.15 8.70 1 16404.35 CB6 STORAGE 87.73 2.40 0.0 C15 Road_Transect 1.00 7.76 2.15 8.70 1 16404.35 CB6 STORAGE 87.73 2.40 0.0 C16 TRAPEZOIDAL 1.00 3.15 0.49 6.15 1 6906.18 CB7 STORAGE 87.72 2.40 0.0 C17 TRAPEZOIDAL 1.00 3.15 0.49 6.15 1 6906.18 CB7 STORAGE 87.62 2.40 0.0 C18 TRAPEZOIDAL 1.00 3.15 0.49 6.15 1 5712.41 LCB1 STORAGE 87.90 2.25 0.0 C18 TRAPEZOIDAL 1.00 3.15 0.49 6.15 1 5712.41 LCB1 STORAGE 86.38 2.99 0.0 C2 ROAd_TRANSECT 1.00 7.76 2.15 8.70 1 16791.38 MH12 STORAGE 86.15 3.17 0.0 C20 TRAPEZOIDAL 1.00 0.55 7.00 1 18721.38	OF1	OUTFALL	88	8.78												
CB2 STORAGE 87.68 2.40 0.0 C12 Road_Transect 1.00 7.76 2.15 8.70 1 18490.78 CB3 STORAGE 87.75 2.40 0.0 C13 Road_Transect 1.00 7.76 2.15 8.70 1 16404.35 CB4 STORAGE 87.78 2.40 0.0 C14 Road_Transect 1.00 7.76 2.15 8.70 1 18242.00 CB5 STORAGE 87.78 2.40 0.0 C15 Road_Transect 1.00 7.76 2.15 8.70 1 18242.00 CB6 STORAGE 87.73 2.40 0.0 C15 Road_Transect 1.00 7.76 2.15 8.70 1 16404.35 CB7 STORAGE 87.72 2.40 0.0 C16 TRAPEZOIDAL 1.00 3.15 0.49 6.15 1 6906.18 CB7 STORAGE 87.72 2.40 0.0 C17 TRAPEZOIDAL 1.00 3.15 0.49 6.15 1 6598.02 CB8 STORAGE 87.65 2.40 0.0 C18 TRAPEZOIDAL 1.00 3.15 0.49 6.15 1 5712.41 LCB1 STORAGE 87.90 2.25 0.0 C19 TRAPEZOIDAL 1.00 3.15 0.49 6.15 1 5922.94 MH10 STORAGE 86.38 2.99 0.0 C2 Road_Transect 1.00 7.76 2.15 8.70 1 16678.37 MH12 STORAGE 86.15 3.17 0.0 C20 TRAPEZOIDAL 1.00 0.55 7.00 1 18721.38																
CB4 STORAGE 87.78 2.40 0.0 C14 Road_Transect 1.00 7.76 2.15 8.70 1 18242.00 CB5 STORAGE 87.78 2.40 0.0 C15 Road_Transect 1.00 7.76 2.15 8.70 1 16242.00 CB5 STORAGE 87.73 2.40 0.0 C16 TRAPEZOIDAL 1.00 3.15 0.49 6.15 1 6906.18 CB7 STORAGE 87.72 2.40 0.0 C16 TRAPEZOIDAL 1.00 3.15 0.49 6.15 1 6598.02 CB8 STORAGE 87.62 2.40 0.0 C17 TRAPEZOIDAL 1.00 3.15 0.49 6.15 1 5712.41 LCB1 STORAGE 87.90 2.25 0.0 C18 TRAPEZOIDAL 1.00 3.15 0.49 6.15 1 5712.41 LCB1 STORAGE 87.90 2.25 0.0 C19 TRAPEZOIDAL 1.00 3.15 0.49 6.15 1 5922.94 MH10 STORAGE 86.38 2.99 0.0 C2 Road_Transect 1.00 7.76 2.15 8.70 1 16678.37 MH12 STORAGE 86.15 3.17 0.0 C20 TRAPEZOIDAL 1.00 0.55 7.00 1 18721.38		STORAGE	87	7.68						Road_Transect	1.00	7.76	2.15		1 18490	.78
CB5 STORAGE 87.78 2.40 0.0 C15 Road_Transect 1.00 7.76 2.15 8.70 1 16404.35 C26 STORAGE 87.73 2.40 0.0 C16 TRAPEZOIDAL 1.00 3.15 0.49 6.15 1 6906.18 CB7 STORAGE 87.72 2.40 0.0 C17 TRAPEZOIDAL 1.00 3.15 0.49 6.15 1 6598.02 C28 STORAGE 87.65 2.40 0.0 C18 TRAPEZOIDAL 1.00 3.15 0.49 6.15 1 5712.41 C61 STORAGE 87.90 2.25 0.0 C19 TRAPEZOIDAL 1.00 3.15 0.49 6.15 1 5922.94 MH10 STORAGE 86.38 2.99 0.0 C2 Road_Transect 1.00 7.76 2.15 8.70 1 16678.37 MH12 STORAGE 86.15 3.17 0.0 C20 TRAPEZOIDAL 1.00 0.55 7.00 1 18721.38																
CB7 STORAGE 87.72 2.40 0.0 C17 TRAPEZOIDAL 1.00 3.15 0.49 6.15 1 6598.02 C18 STORAGE 87.65 2.40 0.0 C18 TRAPEZOIDAL 1.00 3.15 0.49 6.15 1 5712.41 LCB1 STORAGE 87.90 2.25 0.0 C18 TRAPEZOIDAL 1.00 3.15 0.49 6.15 1 5712.41 LCB1 STORAGE 86.38 2.99 0.0 C2 ROAD TRAPEZOIDAL 1.00 3.15 0.49 6.15 1 5922.94 MH10 STORAGE 86.15 3.17 0.0 C2 ROAD TRAPEZOIDAL 1.00 0.55 7.00 1 18678.37 C20 TRAPEZOIDAL 1.00 4.00 0.55 7.00 1 18721.38	CB5	STORAGE	87	7.78	2.40	0.0			C15	Road_Transect	1.00	7.76	2.15	8.70	1 16404	.35
CB8 STORAGE 87.65 2.40 0.0 C18 TRAPEZOIDAL 1.00 3.15 0.49 6.15 1 5712.41 LCB1 STORAGE 87.90 2.25 0.0 C19 TRAPEZOIDAL 1.00 3.15 0.49 6.15 1 5922.94 MH10 STORAGE 86.38 2.99 0.0 C2 ROA_TRANSCOIDAL 1.00 7.76 2.15 8.70 1 16678.37 MH12 STORAGE 86.15 3.17 0.0 C20 TRAPEZOIDAL 1.00 4.00 0.55 7.00 1 18721.38																
LCB1 STORAGE 87.90 2.25 0.0 C19 TRAPEZOIDAL 1.00 3.15 0.49 6.15 1 5922.94 MH10 STORAGE 86.38 2.99 0.0 C2 Road_Transect 1.00 7.76 2.15 8.70 1 16678.37 MH12 STORAGE 86.15 3.17 0.0 C20 TRAPEZOIDAL 1.00 4.00 0.55 7.00 1 18721.38																
MH12 STORAGE 86.15 3.17 0.0 C20 TRAPEZOIDAL 1.00 4.00 0.55 7.00 1 18721.38		STORAGE	87	7.90	2.25				C19	TRAPEZOIDAL	1.00	3.15	0.49	6.15	1 5922	.94

C21 1	RECT OPEN	1.00	3.00	0.60	3.00	1	9959.60
C21 2	RECT OPEN	1.00	3.00	0.60	3.00	1	9959.60
C3 -	Road Transect	1.00	7.76	2.15	8.70	1	14659.19
C4	Road Transect	1.00	7.76	2.15	8.70	1	18490.78
C5	Road Transect	1.00	7.76	2.15	8.70	1	16125.96
C6	Road Transect	1.00	7.76	2.15	8.70	1	15842.96
C7	Road Transect	1.00	7.76	2.15	8.70	1	17214.17
C8	Road Transect	1.00	7.76	2.15	8.70	1	16404.35
C9	Road Transect	1.00	7.76	2.15	8.70	1	16678.37
LCB1-CB3	CIRCULAR	0.25	0.05	0.06	0.25	1	59.10
MH10-MH12	CIRCULAR	0.30	0.07	0.07	0.30	1	61.08
MH12-MH4	CIRCULAR	0.38	0.11	0.09	0.38	1	100.36
MH14-MH12	CIRCULAR	0.30	0.07	0.07	0.30	1	67.99
MH16-MH6	CIRCULAR	0.25	0.05	0.06	0.25	1	59.38
MH18-MH2	CIRCULAR	0.25	0.05	0.06	0.25	1	59.67
MH2-MH116	CIRCULAR	0.53	0.22	0.13	0.53	1	215.32
MH4-MH2	CIRCULAR	0.45	0.16	0.11	0.45	1	154.31
MH6-MH4	CIRCULAR	0.30	0.07	0.07	0.30	1	69.24
MH8-MH10	CIRCULAR	0.25	0.05	0.06	0.25	1	59.47

Transect Summary

Transect	Road	Transect
_	-	_

Area:					
	0.0013	0.0053	0.0120	0.0213	0.0334
	0.0483	0.0657	0.0836	0.1018	0.1201
	0.1387	0.1578	0.1774	0.1976	0.2183
	0.2395	0.2613	0.2836	0.3060	0.3284
	0.3507	0.3731	0.3955	0.4178	0.4402
	0.4626	0.4850	0.5073	0.5297	0.5521
	0.5745	0.5968	0.6192	0.6416	0.6640
	0.6864	0.7088	0.7312	0.7536	0.7760
	0.7984	0.8208	0.8432	0.8656	0.8880
	0.9104	0.9328	0.9552	0.9776	1.0000
Hrad:					
	0.0046	0.0091	0.0137	0.0182	0.0226
	0.0270	0.0337	0.0423	0.0508	0.0591
	0.0675	0.0765	0.0868	0.0988	0.1127
	0.1286	0.1466	0.1691	0.1953	0.2226
	0.2506	0.2792	0.3079	0.3369	0.3658
	0.3946	0.4234	0.4519	0.4801	0.5082
	0.5359	0.5633	0.5904	0.6171	0.6435
	0.6696	0.6953	0.7207	0.7458	0.7705
	0.7948	0.8189	0.8426	0.8660	0.8891
	0.9119	0.9343	0.9565	0.9784	1.0000
Width:					
	0.1188	0.2375	0.3563	0.4751	0.6019
	0.7287	0.7964	0.8051	0.8137	0.8223
	0.8389	0.8633	0.8877	0.9122	0.9366
	0.9610	0.9855	0.9977	0.9978	0.9979
	0.9979	0.9980	0.9981	0.9982	0.9982
	0.9983	0.9984	0.9984	0.9985	0.9986
	0.9987	0.9987	0.9988	0.9989	0.9989
	0.9990	0.9991	0.9992	0.9992	0.9993
	0.9994	0.9994	0.9995	0.9996	0.9996
	0.9997	0.9998	0.9999	0.9999	1.0000

NOTE: The summary statistics displayed in this report are based on results found at every computational time step, not just on results from each reporting time step.

Analysis Options

Flow Units LPS
Process Models:
Rainfall/Runoff YES
RDII NO
Snowmelt NO
Groundwater NO
Flow Routing YES
Ponding Allowed NO
Water Quality NO
Infiltration Method HORTON
Flow Routing Method DYNWAVE

Startin Ending Anteced Report Wet Tim Dry Tim Routing Variabl Maximum Number	ng Date Date . dent Dr Time S ne Step ne Step g Time te Time n Trial of Thr	y Days tep Step Step s s	06/03, 0.0 00:01: 00:05: 2.00 s YES	/2020 00:00 /2020 00:00 :00 :00 :00 sec	:00					
		*********		Volume ectare-m	Depth mm					
*****	*****	*******	****							
Total F	recipi	tation		0.103 0.000 0.034 0.069 0.001 -0.793	76.002					
Evapora	tion L	oss		0.000	0.000					
Infiltr	ation .	Loss		0.034	24.839 51.247					
Suriace Final C	torage	I		0.069	0.518					
Continu	itv Er	ror (%)		-0.793	0.510					
	,	(-,								
Flore Do	+	********** Continuit:	h.	Volume	Volume					
*****	*****	******	·***	ectare-m	Volume 10^6 ltr					
Dry Wea	ther I	nflow		0.000 0.069 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.000					
Wet Wea	ther I	nflow		0.069	0.692					
Groundw	vater I	nflow		0.000	0.000					
Evterna	lliow .			0.000	0.000 0.000 0.692					
Externa	1 Outf	low		0.069	0.692					
Floodin	ng Loss			0.000	0.000					
Evapora	ation L	oss		0.000	0.000					
Exfiltr	ation :	Loss		0.000	0.000					
Initial	Store	d Volume .		0.000	0.000 0.000 0.000 0.000 0.000					
Continu	itv Er	ror (%)		0.000	0.000					
	1	(-,								
Time-St	ep Cri	******** tical Elen ******	nents							

			y Indexes							

All lir	nks are	stable.								
****		******								
		Step Summa								
also also also also also also also also	e ale ale ale ale ale ale ale	de d								
Minimum	n Time	Step	: : : : : : :	1.50 sec						
Average	Time :	Step	:	2.00 sec						
Maximum	n Time :	Step	:	2.00 sec						
Percent	In St	eady State	?+on :	2.00						
Percent	Not C	onverging	step .	0.01						
1										

subcato	:::ment :	Runoff Sun	unary							
m-+-1	D1	D 6.6	Total	Total	Total	Total	Imperv	Perv	Total	
Total	геак	Runoff	Precip	Runon	Evap	Infil	Runoff	Runoff	Runoff	

Runoff Runoff Coeff

35.04 0.762

76.00

0.00

0.00

17.84

47.04

Subcatchment

10^6 ltr

A1 0.05 mm

57.95

mm

10.91

A10			76.00	0.00	0.00	50.80	2.20	23.34	25.54
0.05	25.73	0.336							
A11			76.00	0.00	0.00	47.60	6.53	22.20	28.74
0.03	17.96	0.378							
A12			76.00	0.00	0.00	38.90	18.30	18.97	37.27
0.04	26.83	0.490							
A2			76.00	0.00	0.00	13.02	55.01	7.98	62.99
0.08	54.54	0.829							
A3			76.00	0.00	0.00	8.88	61.27	5.62	66.89
0.05	33.22	0.880							
A4			76.00	0.00	0.00	48.89	0.00	28.08	28.08
0.01	10.48	0.370							
A5			76.00	0.00	0.00	13.16	54.69	7.75	62.44
0.04	30.81	0.822							
A6			76.00	0.00	0.00	11.65	57.14	7.21	64.35
0.07	50.79	0.847							
A7			76.00	0.00	0.00	8.88	61.44	5.62	67.07
0.10	71.18	0.882							
A8			76.00	0.00	0.00	11.65	56.92	7.21	64.13
0.06	41.56	0.844							
A9			76.00	0.00	0.00	11.65	57.05	7.21	64.27
0.10	73.88	0.846							
B1			76.00	0.00	0.00	47.02	0.00	33.43	33.43
0.00	4.28	0.440							

Node

		Average	Maximum	Maximum	Time	of Max	Reported	
		Depth	Depth	HGL	0cci	irrence	Max Depth	
Node	Type	Meters	Meters	Meters	days	hr:min	Meters	
HP-CB13	JUNCTION	0.00	0.00	89.38	0	02:00	0.00	
HP-CB2	JUNCTION	0.00	0.00	89.38	0	00:00	0.00	
HP-CB20	JUNCTION	0.00	0.00	89.33	0	00:00	0.00	
HP-CB3	JUNCTION	0.00	0.00	89.45	0	00:00	0.00	
HP-CB6	JUNCTION	0.00	0.00	89.48	0	00:00	0.00	
HP-CB8	JUNCTION	0.00	0.00	89.43	0	00:00	0.00	
HP-CB9	JUNCTION	0.00	0.00	89.42	0	00:00	0.00	
HP-LCB01	JUNCTION	0.00	0.08	89.31	0	01:52	0.08	
HP-RYCB2	JUNCTION	0.00	0.09	88.68	0	01:48	0.09	
HP-RYCB3	JUNCTION	0.00	0.00	88.88	0	00:00	0.00	
HP-RYCB4	JUNCTION	0.00	0.03	88.76	0	01:42	0.03	
HP-CB1	OUTFALL	0.00	0.00	89.29	0	00:00	0.00	
MH116	OUTFALL	0.03	0.23	85.92	0	01:52	0.23	
OF1	OUTFALL	0.00	0.00	88.78	0	00:00	0.00	
OF2	OUTFALL	0.00	0.00	89.00	0	00:00	0.00	
CB1	STORAGE	0.07	1.55	89.15	0	01:41	1.55	
CB2	STORAGE	0.20	1.64	89.32	0	01:53	1.64	
CB3	STORAGE	0.14	1.56	89.31	0	01:51	1.56	
CB4	STORAGE	0.10	1.54	89.32	0	01:44	1.54	
CB5	STORAGE	0.12	1.60	89.38	0	01:44	1.60	
CB6	STORAGE	0.27	1.65	89.38	0	02:00	1.65	
CB7	STORAGE	0.14	1.60	89.32	0	01:47	1.60	
CB8	STORAGE	0.27	1.64	89.29	0	02:00	1.64	
LCB1	STORAGE	0.12	1.41	89.31	0	01:52	1.41	
MH10	STORAGE	0.02	0.16	86.54	0	01:44	0.16	
MH12	STORAGE	0.02	0.20	86.35	0	01:52	0.20	
MH14	STORAGE	0.01	0.10	86.51	0	01:59	0.10	
MH16	STORAGE	0.01	0.06	86.70	0	01:52	0.06	
MH18	STORAGE	0.01	0.06	86.54	0	02:01	0.06	
MH2	STORAGE	0.03	0.24	85.98	0	01:52	0.24	
MH4	STORAGE	0.03	0.23	86.17	0	01:52	0.23	
MH6	STORAGE	0.01	0.09	86.36	0	01:53	0.09	
MH8	STORAGE	0.01	0.12	86.94	0	01:46	0.12	
RYCB1	STORAGE	0.11	1.88	88.72	0	02:00	1.88	
RYCB2	STORAGE	0.08	1.64	88.68	0	01:47	1.64	
RYCB3	STORAGE	0.05	1.62	88.77	0	01:42	1.62	
Node								

		Maximum	Maximum			Later	al Total ow Inflow me Volume	F
		Lateral	Total	Time of	Max	Infl	ow Inflow	Balan
		Inflow	Inflow	Occurr	ence	Volu	me Volume	Er

HP-CB13	JUNCTION	0.00	0.14	0	01:50	0	1.57e-05	9.239 ltr
HP-CB2	JUNCTION	0.00	0.00	0	00:00	0	0	0.000 ltr
HP-CB20	JUNCTION	0.00	0.00	0	00:00	0	0	0.000 ltr
HP-CB3	JUNCTION	0.00	0.00	0	00:00	0	0	0.000 ltr
HP-CB6	JUNCTION	0.00	0.00	0	00:00	0	0	0.000 ltr
HP-CB8	JUNCTION	0.00	0.00	0	00:00	0	0	0.000 ltr
HP-CB9	JUNCTION	0.00	0.00	0	00:00	0	0	0.000 ltr
HP-LCB01	JUNCTION	0.00	3.87	0	01:35	0	0.0101	0.016
HP-RYCB2	JUNCTION	0.00	7.56	0	01:31	0	0.00205	-0.314
HP-RYCB3	JUNCTION	0.00	0.00	0	00:00	0	0	0.000 ltr
HP-RYCB4	JUNCTION	0.00	2.74	0	01:40	0	0.00176	-8.280
HP-CB1	OUTFALL	0.00	0.00	0	00:00	0	0	0.000 ltr
MH116	OUTFALL	0.00	88.58	0	01:52	0	0.688	0.000
OF1	OUTFALL	0.00	0.00	0	00:00	0	0	0.000 ltr
OF2	OUTFALL	4.28	4.28	0	01:30	0.00334	0.00334	0.000
CB1	STORAGE	35.04	35.04	0	01:30	0.0464	0.0464	0.056
CB2	STORAGE	54.54	54.54	0	01:30	0.0756	0.0756	0.005
CB3	STORAGE	33.22	33.22	0	01:30	0.0468	0.0624	0.039
CB4	STORAGE	30.81	30.81	0	01:30	0.0437	0.0437	0.041
CB5	STORAGE	50.79	50.79	0	01:30	0.0708	0.0708	0.026
CB6	STORAGE	71.18	71.18	0	01:30	0.101	0.101	0.001
CB7	STORAGE	41.56	41.56	0	01:30	0.0577	0.0577	0.016
CB8	STORAGE	73.88	73.88	0	01:30	0.103	0.103	0.010
LCB1	STORAGE	10.48	13.26	0	01:29	0.0112	0.0153	0.071
MH10	STORAGE	0.00	35.42	0	01:44	0	0.192	-0.001
MH12	STORAGE	0.00	59.15	0	01:52	0	0.406	0.037
MH14	STORAGE	0.00	17.05	0	01:59	0	0.113	-0.138
MH16	STORAGE	0.00	6.57	0	01:51	0	0.058	-0.000
MH18	STORAGE	0.00	6.75	0	02:00	0	0.103	-0.000
MH2	STORAGE	0.00	88.58	0	01:52	0	0.688	0.001
MH4	STORAGE	0.00	81.83	0	01:51	0	0.586	-0.000
MH6	STORAGE	0.00	13.32	0	01:52	0	0.134	-0.001
MH8	STORAGE	0.00	25.81	0	01:45	0	0.159	-0.000
RYCB1	STORAGE	25.73	25.73	0	01:30	0.0536	0.0553	0.340
RYCB2	STORAGE	26.83	26.83	0	01:30	0.0447	0.0468	-0.183
RYCB3	STORAGE	17.96	17.96	0	01:30	0.0345	0.0347	-0.034

Node Surcharge Summary

No nodes were surcharged.

No nodes were flooded.

	Average	Avg		Exfil	Maximum	Max		of Max	Maximum
	Volume	Pent	Pont		Volume	Pont		rrence	Outflow
Storage Unit	1000 m3	Full	Loss	Loss	1000 m3	Full	days	hr:min	LPS
CB1	0.000	1	0	0	0.012	25	0	01:41	9.41
CB2	0.002	4	0	0	0.035	63	0	01:53	6.74
CB3	0.001	1	0	0	0.015	28	0	01:51	13.29
CB4	0.001	1	0	0	0.015	22	0	01:44	6.53
CB5	0.001	3	0	0	0.025	64	0	01:44	9.58
CB6	0.005	9	0	0	0.050	97	0	02:00	6.90
CB7	0.001	2	0	0	0.023	44	0	01:47	6.66
CB8	0.005	7	0	0	0.053	73	0	02:00	6.75
LCB1	0.000	1	0	0	0.008	27	0	01:52	3.87
MH10	0.000	1	0	0	0.000	5	0	01:44	35.42
MH12	0.000	1	0	0	0.000	6	0	01:52	59.15
MH14	0.000	0	0	0	0.000	4	0	01:59	17.05
MH16	0.000	0	0	0	0.000	2	0	01:52	6.57
MH18	0.000	1	0	0	0.000	3	0	02:01	6.75
MH2	0.000	1	0	0	0.000	7	0	01:52	88.58
MH4	0.000	1	0	0	0.000	7	0	01:52	81.83
MH6	0.000	0	0	0	0.000	3	0	01:53	13.32
MH8	0.000	0	0	0	0.000	4	0	01:46	25.81
RYCB1	0.000	4	0	0	0.001	78	0	02:00	10.40
RYCB2	0.000	3	0	0	0.001	68	0	01:47	17.03

LPS LPS days hr:min 10^6 ltr 10^6 ltr

 Outfall Node
 Freq Prox
 Flow Prox
 Plow Prox
 Volume

 HP-CBI
 0.00
 0.00
 0.00
 0.00

 MH116
 25.58
 31.14
 88.58
 0.688

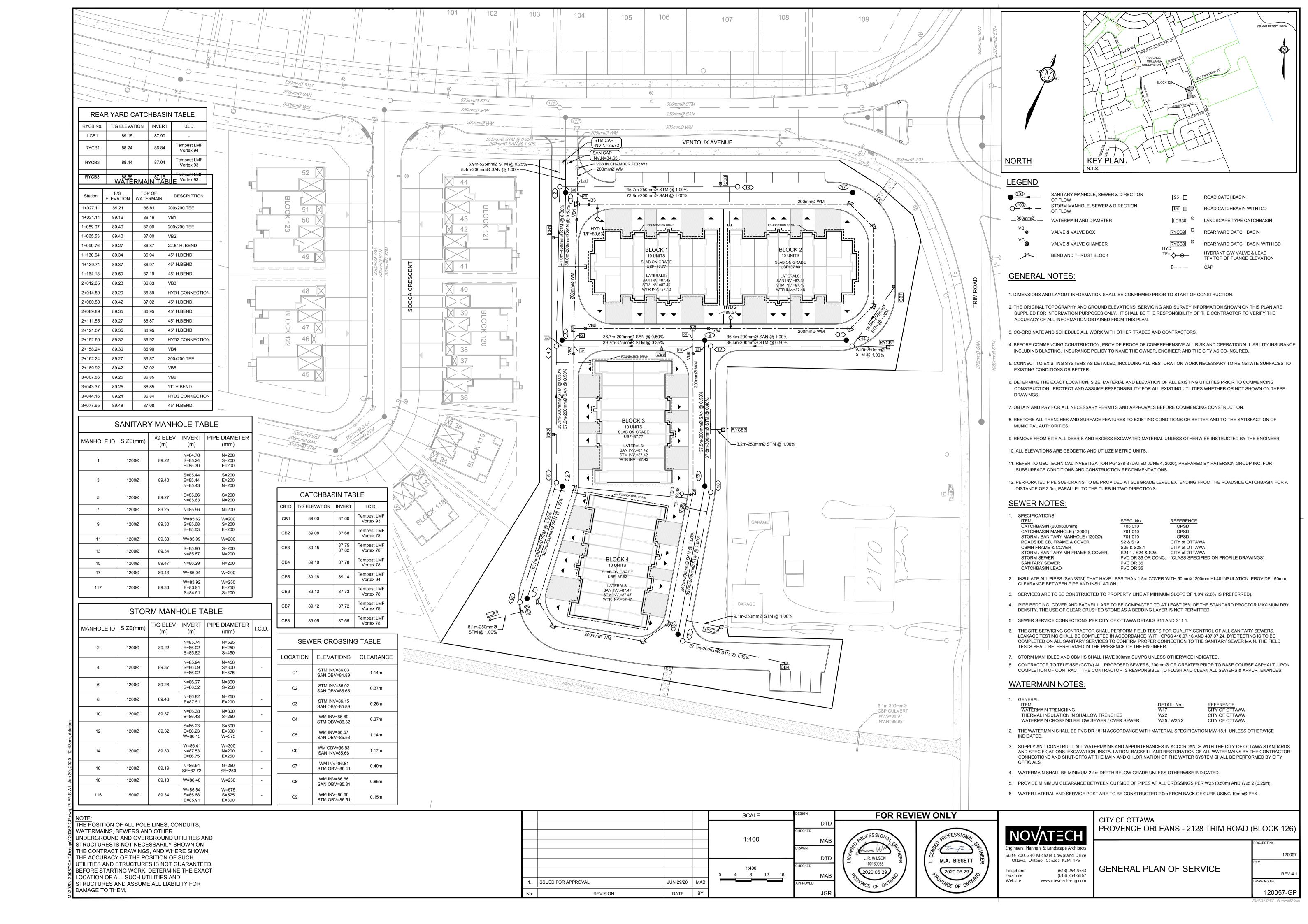
 OF1
 0.00
 0.00
 0.00
 0.00

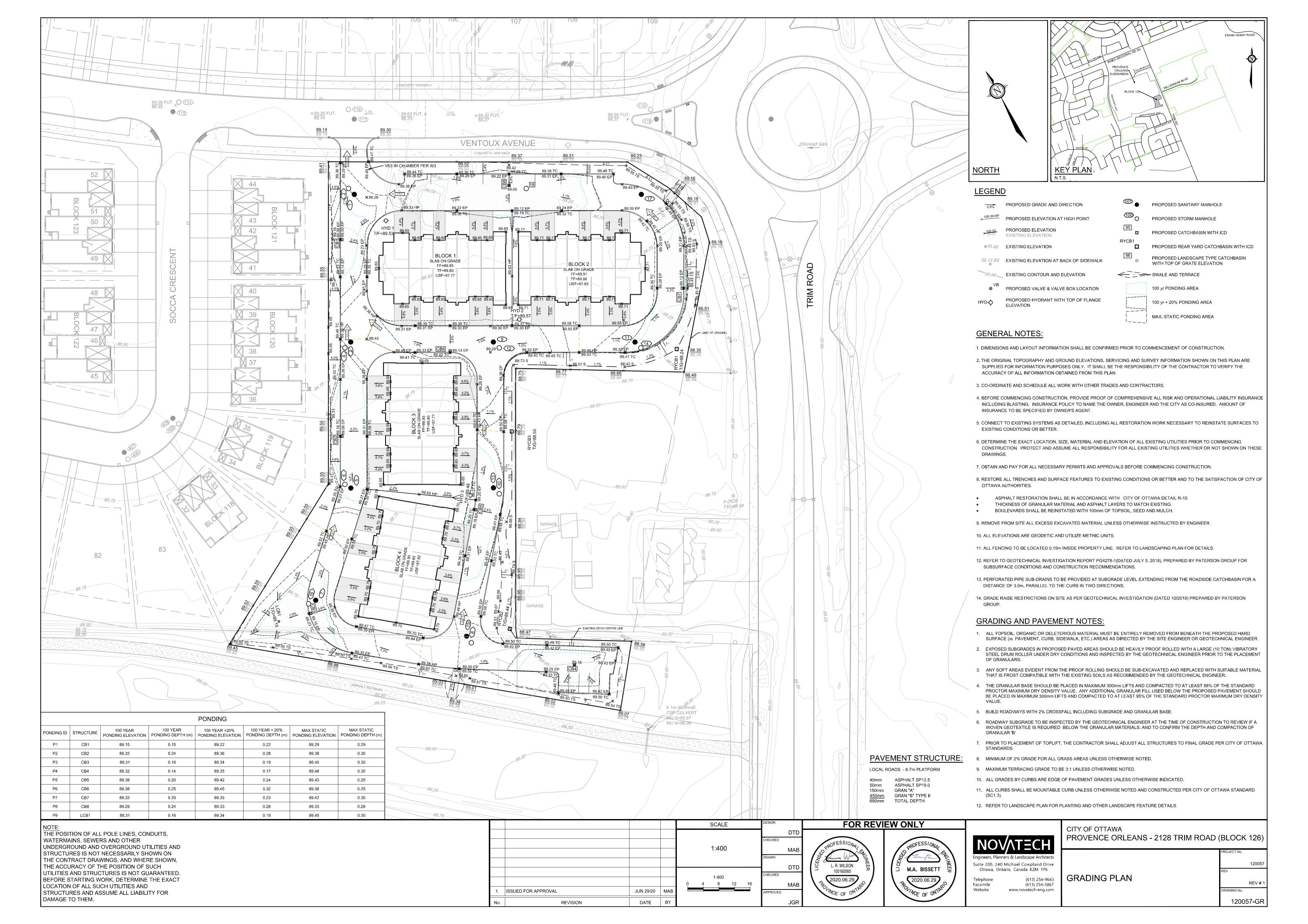
 OF2
 3.06
 1.26
 4.28
 0.003

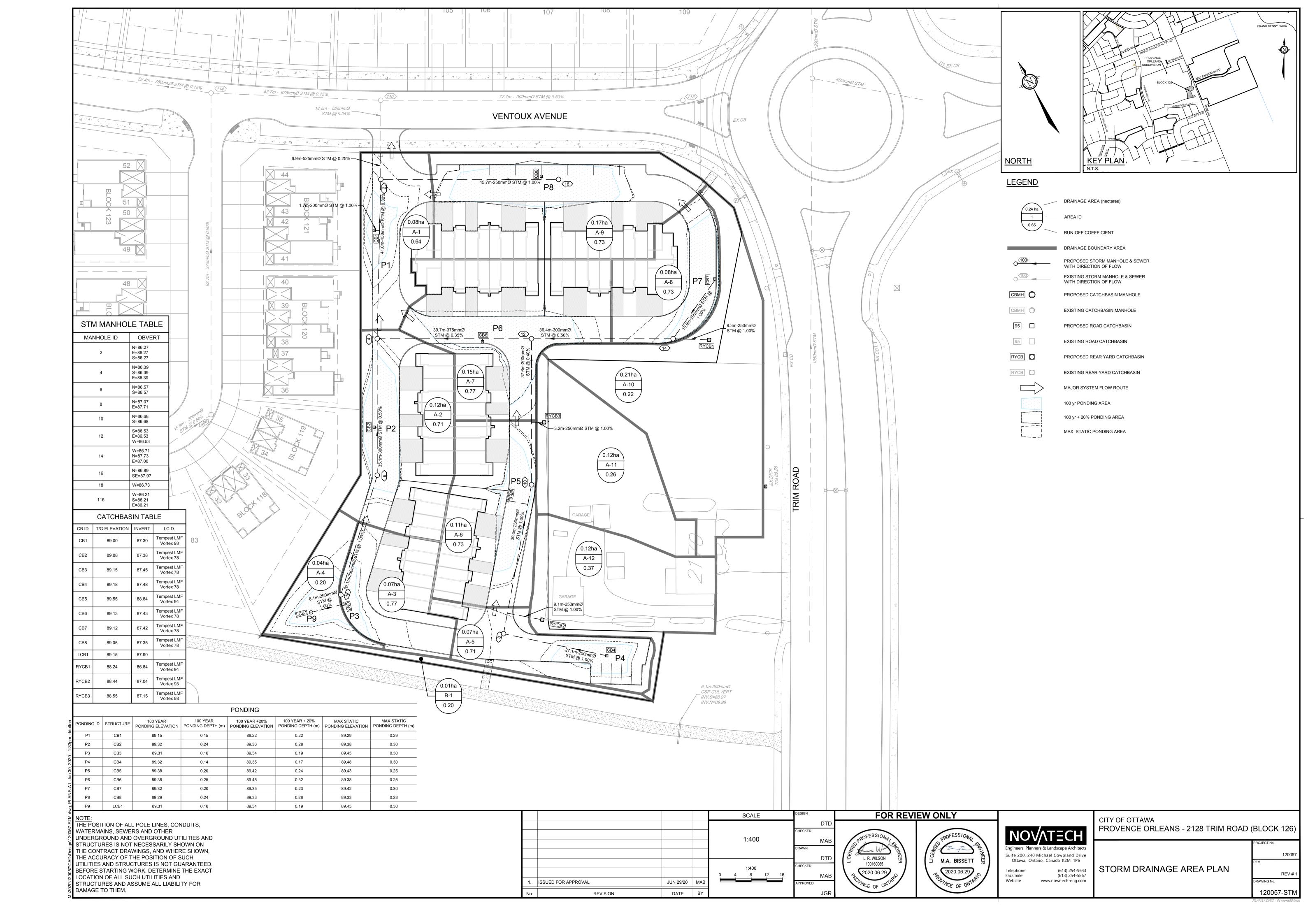
 System
 7.16
 32.40
 4.28
 0.692

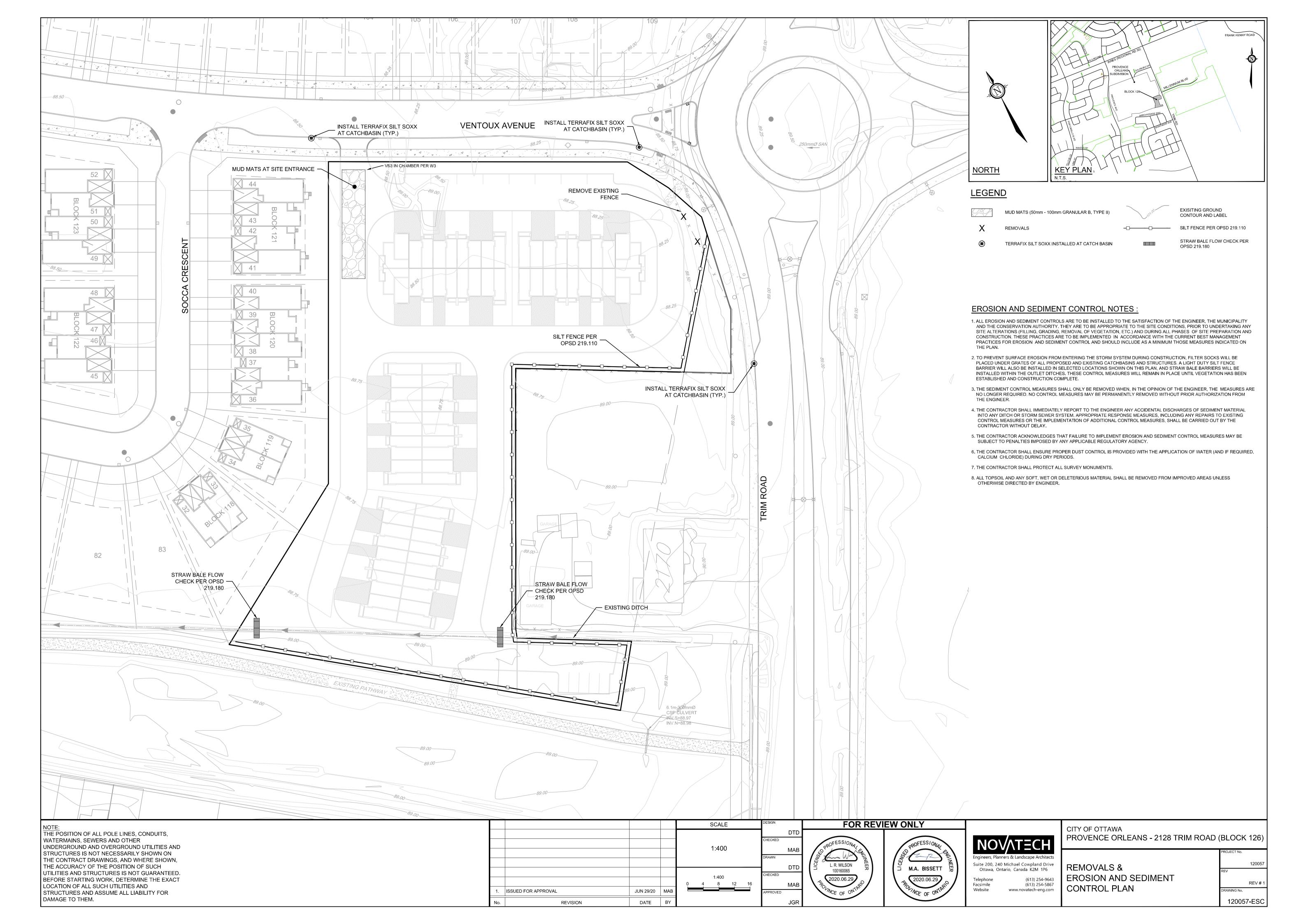
Maximum Time of Max Maximum Max/ |Flow| Occurrence |Veloc| Full Full Link LPS days hr:min Type m/sec Flow Depth CHANNEL C10 C11 0.00 0.00 CHANNEL 0 00:00 0.11 CHANNEL 0.14 01:50 0.13 C12 C13 CHANNEL 02:00 0.00 0.07 CHANNEL 00:00 0.00 C14 C15 C16 C17 C18 C19 C2 C20 C21 C21_1 C21_2 C3 C4 C5 C6 C7 0.00 0.00 CHANNEL 00:00 0.12 CHANNEL 00:00 0.13 0.00 00:00 0.00 0.00 CONDUIT 0.12 CONDUIT 0.07 0.00 2.74 CONDUIT 01:40 0.12 CONDUIT 01:42 0.24 0.00 CHANNEL 00:00 0.00 0.09 00:00 0.00 0.00 0.24 CONDUIT 0.00 CONDUIT CONDUIT 3.87 01:35 0.01 0.12 CONDUIT 3.51 01:35 0.12 CHANNEL 0.00 00:00 0.09 CHANNEL 00:00 0.00 CHANNEL 0.00 00:00 0.00 CHANNEL 00:00 0.12 0.00 00:00 0.00 0.07 CHANNEL C8 CHANNEL 0.00 0.00 00:00 0.07 CHANNEL 00:00 LCB1-CB3 0.15 0.11 1.00 CONDUIT 6.43 01:25 MH10-MH12 35.42 01:45 CONDUIT 1.05 0.59 MH12-MH4 CONDUIT 59.15 01:52 0.51 CONDUIT 0.11 MH16-MH6 CONDUIT 6.57 01:52 0.80 0.22 MH18-MH2 02:01 0.81 CONDUIT 6.75 0.23 MH2-MH116 CONDUIT 88.58 01:52 0.95 0.41 0.45 MH4-MH2 CONDUIT 01:52 MH6-MH4 CONDUIT 13.32 01:53 0.77 0.19 MH8-MH10 CONDUIT 25.81 01:46 0.46 CB1-ICD ORIFICE 01:41 1.00 ORIFICE 01:53 6.74 CB3-ICD ORIFICE 01:51 CB4-TCD ORIFICE 01:44 9.58 1.00 CB5-ICD ORIFICE 01:44 CB6-ICD ORIFICE 6.77 02:00 1.00 ORIFICE 6.66 01:47 CB8-ICD ORIFICE 02:00 RYCB1-ICD ORIFICE 10.40 02:00 1.00 01:47 1.00 RYCB2-ICD ORIFICE RYCB3-ICD ORIFICE 0 01:42

Adjusted ------ Fraction of Time in Flow Class ------//Actual Up Down Sub Sup Up Down Norm Inlet


C10 1.00 0.93 0.07 0.00	
C11 1.00 0.05 0.03 0.00 0.13 0.00 0.00 0.79 0.92 C12 1.00 0.06 0.02 0.00 0.02 0.00	0.00
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.00
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.00
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.00
C15 1.00 0.84 0.16 0.00	0.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.00
C17	0.00
C18 1.00 0.06 0.00 0.00 0.02 0.00 0.00 0.91 0.01	0.00
	0.00
C19 1.00 0.06 0.00 0.00 0.05 0.00 0.00 0.88 0.05	0.00
	0.00
C2 1.00 0.89 0.11 0.00 0.00 0.00 0.00 0.00 0.00	0.00
C20 1.00 0.94 0.06 0.00 0.00 0.00 0.00 0.00 0.00	0.00
C21 1.00 0.79 0.00 0.00 0.04 0.00 0.00 0.17 0.01	0.00
C21 1 1.00 0.92 0.01 0.00 0.07 0.00 0.00 0.00 0.87	0.00
C21 ⁻ 2 1.00 0.92 0.01 0.00 0.07 0.00 0.00 0.00 0.87	0.00
C3 1.00 0.89 0.11 0.00 0.00 0.00 0.00 0.00 0.00	0.00
C4 1.00 0.96 0.04 0.00 0.00 0.00 0.00 0.00 0.00	0.00
C5 1.00 0.96 0.04 0.00 0.00 0.00 0.00 0.00 0.00	0.00
C6 1.00 0.84 0.16 0.00 0.00 0.00 0.00 0.00 0.00	0.00
C7 1.00 0.96 0.04 0.00 0.00 0.00 0.00 0.00 0.00	0.00
C8 1.00 0.94 0.06 0.00 0.00 0.00 0.00 0.00 0.00	0.00
C9 1.00 0.93 0.07 0.00 0.00 0.00 0.00 0.00 0.00	0.00
LCB1-CB3 1.00 0.03 0.01 0.00 0.11 0.00 0.00 0.85 0.00	0.00
MH10-MH12 1.00 0.01 0.00 0.00 0.00 0.00 0.00 0.	0.00
MH12-MH4 1.00 0.01 0.00 0.00 0.00 0.00 0.00 0.99 0.00	0.00
MH14-MH12 1.00 0.01 0.00 0.00 0.05 0.00 0.00 0.94 0.05	0.00
MH16-MH6 1.00 0.01 0.00 0.00 0.00 0.00 0.00 0.99 0.00	0.00
MH18-MH2 1.00 0.01 0.00 0.00 0.00 0.00 0.99 0.00	0.00
	0.00
MH4-MH2 1.00 0.01 0.00 0.00 0.00 0.00 0.99 0.00	0.00
	0.00
MH8-MH10 1.00 0.01 0.00 0.00 0.00 0.00 0.09 0.00	0.00


				Hours	Hours
		- Hours Full		Above Full	Capacity
Conduit	Both End	s Upstream	Dnstream	Normal Flow	Limited
LCB1-CB3	2.3	1 2.31	2.35	0.01	0.01


Analysis begun on: Mon Jun 29 14:46:12 2020 Analysis ended on: Mon Jun 29 14:46:14 2020


APPENDIX C: Drawings

120057-GP 120057-GR 120057-STM 120057-ESC

2128	Trim	Road	(Block	126)
------	------	------	--------	------

Appendix D:

DSS Checklist

4.1 General Content	Addressed (Y/N/NA)	Comments
Executive Summary (for larger reports only).	N/A	
Date and revision number of the report.	Υ	
Location map and plan showing municipal address,	V	Defeate Depart Figures
boundary, and layout of proposed development.	Υ	Refer to Report Figures
Plan showing the site and location of all existing services.	Υ	Refer to Grading and Servicing Plans
Development statistics, land use, density, adherence to		
zoning and official plan, and reference to applicable	.,	Defects City Disc
subwatershed and watershed plans that provide context	Υ	Refer to Site Plan
to which individual developments must adhere.		
Summary of Pre-consultation Meetings with City and	,,	
other approval agencies.	Υ	
Reference and confirm conformance to higher level		
studies and reports (Master Servicing Studies,		
Environmental Assessments, Community Design Plans),	V	
or in the case where it is not in conformance, the	Y	
proponent must provide justification and develop a		
defendable design criteria.		
Statement of objectives and servicing criteria.	Υ	Refer to Sections: 5.0 Sanitary Sewers, 6.0 Stormwater
Identification of existing and proposed infrastructure available in the immediate area.	Υ	Management, 7.0 Water
Identification of Environmentally Significant Areas,		
watercourses and Municipal Drains potentially impacted		
by the proposed development (Reference can be made to	N/A	
the Natural Heritage Studies, if available).	,,,	
Concept level master grading plan to confirm existing and		
proposed grades in the development. This is required to		
confirm the feasibility of proposed stormwater		
management and drainage, soil removal and fill	v	Refer to Grading Plan and Stormwater Management
constraints, and potential impacts to neighboring	Y	Plan
properties. This is also required to confirm that the		
proposed grading will not impede existing major system		
flow paths.		

4.1 General Content	Addressed (Y/N/NA)	Comments
Identification of potential impacts of proposed piped		
services on private services (such as wells and septic fields on adjacent lands) and mitigation required to address potential impacts.	N/A	
Proposed phasing of the development, if applicable.	N/A	
Reference to geotechnical studies and recommendations concerning servicing.	Y	Refer to Section 3.0 Grading
All preliminary and formal site plan submissions should		
have the following information:		
Metric scale	Υ	
North arrow (including construction North)	Υ	
Key plan	Υ	
Name and contact information of applicant and property owner	Υ	
Property limits including bearings and dimensions	Υ	
Existing and proposed structures and parking areas	Υ	
Easements, road widening and rights-of-way	Υ	
Adjacent street names	Υ	

4.2 Water	Addressed (Y/N/NA)	Comments
Confirm consistency with Master Servicing Study, if available.	Υ	
Availability of public infrastructure to service proposed development.	Υ	Refer to Sections: 5.0 Sanitary Sewers, 6.0 Stormwater Management, 7.0 Water
Identification of system constraints.	N/A	ivialiagement, 7.0 water
Identify boundary conditions.	Υ	Provided by City of Ottawa
Confirmation of adequate domestic supply and pressure.	Υ	Refer to Appendix A
Confirmation of adequate fire flow protection and confirmation that fire flow is calculated as per the Fire Underwriter's Survey. Output should show available fire flow at locations throughout the development.	Υ	Refer to Appendix A
Provide a check of high pressures. If pressure is found to be high, an assessment is required to confirm the application of pressure reducing valves.	Y	Refer to Appendix A
Definition of phasing constraints. Hydraulic modeling is required to confirm servicing for all defined phases of the project including the ultimate design.	N/A	
Address reliability requirements such as appropriate location of shut-off valves.	Υ	
Check on the necessity of a pressure zone boundary modification.	N/A	
Reference to water supply analysis to show that major infrastructure is capable of delivering sufficient water for the proposed land use. This includes data that shows that the expected demands under average day, peak hour and fire flow conditions provide water within the required pressure range.	Υ	Refer to Section 7.0 Water
Description of the proposed water distribution network, including locations of proposed connections to the existing system, provisions for necessary looping, and appurtenances (valves, pressure reducing valves, valve chambers, and fire hydrants) including special metering provisions.	Y	Refer to Section 7.0 Water
Description of off-site required feedermains, booster pumping stations, and other water infrastructure that will be ultimately required to service proposed development, including financing, interim facilities, and timing of implementation.	N/A	
Confirmation that water demands are calculated based on the City of Ottawa Design Guidelines.	Υ	Refer to Section 7.0 Water
Provision of a model schematic showing the boundary conditions locations, streets, parcels, and building locations for reference.	N/A	

4.3 Wastewater	Addressed (Y/N/NA)	Comments
Summary of proposed design criteria (Note: Wet-weather flow criteria should not deviate from the City of Ottawa Sewer Design Guidelines. Monitored flow data from relatively new infrastructure cannot be used to justify capacity requirements for proposed infrastructure).	Υ	Refer to Section 5.0 Sanitary Sewers
Confirm consistency with Master Servicing Study and/or justifications for deviations.	N/A	
Consideration of local conditions that may contribute to extraneous flows that are higher than the recommended flows in the guidelines. This includes groundwater and soil conditions, and age and condition of sewers.	N/A	
Description of existing sanitary sewer available for discharge of wastewater from proposed development.	Υ	Refer to Section 5.0 Sanitary Sewers
Verify available capacity in downstream sanitary sewer and/or identification of upgrades necessary to service the proposed development. (Reference can be made to previously completed Master Servicing Study if applicable)	У	Refer to Appendix A
Calculations related to dry-weather and wet-weather flow rates from the development in standard MOE sanitary sewer design table (Appendix 'C') format.	N/A	
Description of proposed sewer network including sewers, pumping stations, and forcemains.	Υ	Refer to Section 5.0 Sanitary Sewers
Discussion of previously identified environmental constraints and impact on servicing (environmental constraints are related to limitations imposed on the development in order to preserve the physical condition of watercourses, vegetation, soil cover, as well as protecting against water quantity and quality).	N/A	
Pumping stations: impacts of proposed development on existing pumping stations or requirements for new pumping station to service development.	N/A	
Forcemain capacity in terms of operational redundancy, surge pressure and maximum flow velocity.	N/A	
Identification and implementation of the emergency overflow from sanitary pumping stations in relation to the hydraulic grade line to protect against basement flooding.	N/A	
Special considerations such as contamination, corrosive environment etc.	N/A	

4.4 Stormwater	Addressed (Y/N/NA)	Comments
Description of drainage outlets and downstream		
constraints including legality of outlet (i.e. municipal	Y	Refer to Section 6.0 Stormwater Management
drain, right-of-way, watercourse, or private property).		
Analysis of the available capacity in existing public	V	Defeate Amounding
infrastructure.	Y	Refer to Appendix A
A drawing showing the subject lands, its surroundings,		
the receiving watercourse, existing drainage patterns and	Υ	Refer to Storm Drainage Area Plan (120057-STM)
proposed drainage patterns.		
Water quantity control objective (e.g. controlling post-		
development peak flows to pre-development level for		
storm events ranging from the 2 or 5 year event		
(dependent on the receiving sewer design) to 100 year		
return period); if other objectives are being applied, a	Υ	Refer to Section 6.0 Stormwater Management
rationale must be included with reference to hydrologic		
analyses of the potentially affected subwatersheds,		
taking into account long-term cumulative effects.		
Water Quality control objective (basic, normal or		
enhanced level of protection based on the sensitivities of		
the receiving watercourse) and storage requirements.	Υ	Refer to Section 6.0 Stormwater Management
the receiving watercourse) and storage requirements.		
Description of stormwater management concept with		
facility locations and descriptions with references and	Y	Refer to Section 6.0 Stormwater Management
supporting information.		
Set-back from private sewage disposal systems.	N/A	
Watercourse and hazard lands setbacks.	N/A	
Record of pre-consultation with the Ontario Ministry of		
Environment and the Conservation Authority that has	N/A	
jurisdiction on the affected watershed.		
Confirm consistency with sub-watershed and Master	N1/A	
Servicing Study, if applicable study exists.	N/A	
Storage requirements (complete with calcs) and	V	Defeate Assessed D
conveyance capacity for 5 yr and 100 yr events.	Y	Refer to Appendix B
Identification of watercourse within the proposed		
development and how watercourses will be protected,		
or, if necessary, altered by the proposed development	N/A	
with applicable approvals.		
Calculate pre and post development peak flow rates		
including a description of existing site conditions and		
proposed impervious areas and drainage catchments in	Y	Refer to Appendix B
comparison to existing conditions.	i i	Neter to Appendix B
Any proposed diversion of drainage catchment areas	N/A	
from one outlet to another.	19/74	
Proposed minor and major systems including locations	N1/A	
and sizes of stormwater trunk sewers, and SWM facilities.	N/A	
If quantity control is not proposed, demonstration that		
downstream system has adequate capacity for the post-	, , , , , , , , , , , , , , , , , , ,	
development flows up to and including the 100-year	N/A	
return period storm event.		

4.4 Stormwater	Addressed (Y/N/NA)	Comments
Identification of potential impacts to receiving watercourses.	N/A	
Identification of municipal drains and related approval requirements.	N/A	
Description of how the conveyance and storage capacity will be achieved for the development.	Υ	Refer to Section 6.0 Stormwater Management
100 year flood levels and major flow routing to protect proposed development from flooding for establishing minimum building elevations (MBE) and overall grading.	Y	Refer to Grading Plan and Storm Drainage Area Plan
Inclusion of hydraulic analysis including HGL elevations.	N/A	
Description of approach to erosion and sediment control during construction for the protection of receiving watercourse or drainage corridors.	Υ	Refer to Section 4.0 Erosion Sediment Control
Identification of floodplains – proponent to obtain relevant floodplain information from the appropriate Conservation Authority. The proponent may be required to delineate floodplain elevations to the satisfaction of the Conservation Authority if such information is not available or if information does not match current conditions.	N/A	
Identification of fill constrains related to floodplain and geotechnical investigation.	N/A	

4.5 Approval and Permit Requirements	Addressed (Y/N/NA)	Comments
Conservation Authority as the designated approval agency for modification of floodplain, potential impact on fish habitat, proposed works in or adjacent to a watercourse, cut/fill permits and Approval under Lakes and Rivers Improvement Act. The Conservation Authority is not the approval authority for the Lakes and Rivers Improvement Act. Where there are Conservation Authority regulations in place, approval under the Lakes and Rivers Improvement Act is not required, except in cases of dams as defined in the Act.	N/A	
Application for Certificate of Approval (CofA) under the Ontario Water Resources Act.	N/A	
Changes to Municipal Drains.	N/A	
Other permits (National Capital Commission, Parks Canada, Public Works and Government Services Canada, Ministry of Transportation etc.)	N/A	

4.6 Conclusion	Addressed (Y/N/NA)	Comments
Clearly stated conclusions and recommendations.	Υ	Refer to Section 8.0 Conclusions and Recommendations
Comments received from review agencies including the City of Ottawa and information on how the comments were addressed. Final sign-off from the responsible reviewing agency.	Y	
All draft and final reports shall be signed and stamped by a professional Engineer registered in Ontario.	Y	