

Engineers, Planners & Landscape Architects

Engineering

Land / Site Development

Municipal Infrastructure

Environmental / Water Resources

Traffic / Transportation

Structural

Recreational

Planning

Land / Site Development

Planning Application Management

Municipal Planning Documents & Studies

Expert Witness (OMB)

Wireless Industry

Landscape

Architecture

Urban Design & Streetscapes

Open Space, Parks & Recreation Planning

Community & Residential Developments

Commercial & Institutional Sites

Environmental Restoration

Provence Orleans 2128 Trim Road (Block 126) Ottawa, Ontario

Servicing Design Brief

PROVENCE ORLEANS 2128 TRIM ROAD (BLOCK 126) OTTAWA, ONTARIO

SERVICING DESIGN BRIEF IN SUPPORT OF AN APPLICATION FOR SITE PLAN CONTROL

Prepared For:

Provence Orleans Realty Investments Inc. (c/o Regional Group of Companies)

Prepared By:

NOVATECH Suite 200, 240 Michael Cowpland Drive Ottawa, Ontario K2M 1P6

> June 29, 2020 Revised: September 24, 2020 Revised: March 24, 2021

> > Novatech File: 120057 Ref: R-2020-088

March 24, 2021

City of Ottawa Infrastructure Services and Community Sustainability 110 Laurier Avenue West, 4th Floor Ottawa, ON K1P 1J1

Attention: Julie Lebrun, Planner II

Reference: Provence Orleans 2128 Trim Road (Block 126) Servicing Design Brief Our File No.: 120057

Enclosed for your review and approval is a digital copy of the Servicing Design Brief for the proposed Block 126 development in the Provence Orleans Subdivision at 2128 Trim Road in support of the application for site plan control.

If you have any questions or comments, please do not hesitate to contact us.

Sincerely,

NOVATECH

2 Win

Lucas Wilson, P.Eng. Project Coordinator

M:\2020\120057\DATA\REPORTS\DESIGN BRIEF\2021.03.24\2021.03.24 SITE SERVICING.DOCX

TABLE OF CONTENTS

List of Tables

- Table 2-1: Roadway Structure
- Table 5-1: Sanitary Sewer Design Parameters
- Table 6-1: Storm Sewer Design Parameters
- Table 6-2: Runoff Coefficients
- Table 6-3: Subcatchment Model Parameters
- Table 6-4: Inlet Control Devices & Design Flows
- Table 6-5: Overland Flow Results (100-year Event)
- Table 6-7: 100-year HGL Elevations
- Table 6-8: Summary of Peak Flows
- Table 7-1: Watermain Design Criteria
- Table 7-2: Water Flow Summary
- Table 7-3: Summary of Hydraulic Model Results Maximum Day + Fire Flow
- Table 7-4: Summary of Hydraulic Model Results Peak Hour Demand
- Table 7-5: Summary of Hydraulic Model Results Maximum Pressure Check

List of Figures

- Figure 1: Key Plan
- Figure 2: Site Plan
- Figure 3: Sanitary Sewer Network
- Figure 4: Storm Sewer Network
- Figure 5: Watermain Layout

Appendices

Appendix A: Design Sheets Appendix B: SWM Calculations Appendix C: Drawings Appendix D: DSS Checklist

1.0 INTRODUCTION

1.1 Background

Novatech has been retained to prepare a Servicing Design Brief for the Provence Orleans Subdivision – Block 126 Development, located at 2128 Trim Road, in the City of Ottawa. The site will be developed by Provence Orleans Realty Investments Inc. c/o Regional Group.

The development is located in the east end of Ottawa, south of Innes Road between Provence Avenue and Trim Road. **Figure 1** shows the location of the Provence Orleans Subdivision Lands and the Block 126 development.

Figure 1: Key Plan

The proposed site is approximately 0.98ha and will be bordered by the future Phase 2 of Provence Orleans Subdivision, Ventoux Avenue to the north, Trim Road to the east and existing residential as well as a potential future Transitway to the south.

This Servicing Design Brief provides information on the considerations and approach by which Novatech has analyzed the existing site information for the Block 126 development, and details how the development lands will be serviced while meeting the City requirements and all other relevant regulations. This brief builds upon the Phase 2 and 3 Provence Orleans Subdivision Site Servicing and Stormwater Management Design Brief prepared by Novatech [1], the Master Servicing Study, Gloucester and Cumberland East Urban Community Expansion Area [2] prepared by Stantec, and the Site Servicing and Stormwater Management Design Brief, Provence Orleans Subdivision prepared by Novatech in support of Draft Approval [3].

This report should be read in conjunction with the following:

 Geotechnical Investigation, Proposed Provence City Towns Block, Trim Road - Ottawa, Ontario prepared by Paterson Group, dated June 4, 2020 (Project:PG4278-3). [4]

1.2 Land Use

The site will consist of four back-to-back townhome buildings with 10 units each (40 units total). The proposed Site Plan is shown below in **Figure 2**.

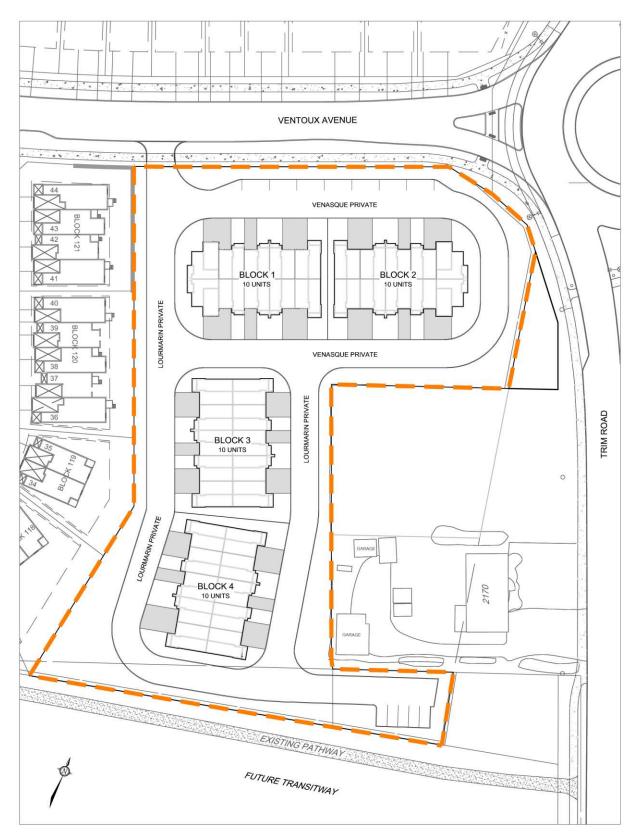


Figure 2: Site Plan

2.0 ROADWAYS

2.1 Existing Conditions

Currently the site can only be accessed from Trim Road, classified as an arterial roadway in the 2013 City of Ottawa Transportation Master Plan (TMP) **[5]**. Once constructed, Ventoux avenue (collector) will provide access to the site.

2.2 **Proposed Conditions**

The development will be accessed from a single entrance off Ventoux Avenue. The site contains a series of 6.7m private roads.

2.3 Roadway Design

Paterson Group has prepared a Geotechnical Investigation report for the development (June 4th, 2020) that provides recommendations for roadway structure, servicing and foundations. The recommended roadway structure is as follows:

Roadway Material Description	Pavement Structure
noadway Material Description	Layer Thickness (mm)
Private Road	
Asphalt Wear Course: Superpave 12.5 (Class B)	40
Asphalt Binder Course: Superpave 19.0 (Class B)	50
Base: Granular A	150
Sub-Base: Granular B – Type II	<u>450</u>
Total	690

Table 2-1: Roadway Structure

3.0 GRADING

3.1 Existing Conditions

The existing site generally slopes to the northeast at approximately 0.5%. The maximum grade of approximately 89.05 metres in the southwest corner and a minimum elevation of approximately 88.32 metres in the northeast corner give a total elevation differential of approximately 0.73 metres across the site.

Geotechnical investigations were carried out by Paterson Group [4], with no bedrock encountered in the borehole at a depth of 30.5m. Groundwater was recorded at 84.79m, 3.65m below the ground surface, on December 1st, 2017.

3.2 **Proposed Conditions**

The design grades will tie into existing elevations along Ventoux Avenue, Trim Road, Future Transitway lands and the adjacent residential lands in Phase 2. A grade raise constraint of 1.1m for Blocks 1 and 2, and 1.6m for Blocks 3 and 4 is required. For detailed grading refer to drawing 120057-GR.

The proposed grading will fall within these ranges:

- Landscaped Area: Minimum 2% Maximum 6%
- Rearyard Swales: Minimum 1.5% (1.0% with subdrain)
- Maximum Terracing Grade of 3H:1V

4.0 EROSION AND SEDIMENT CONTROL

Erosion and sediment control measures will be implemented during construction in accordance with the "Guidelines on Erosion and Sediment Control for Urban Construction Sites" (Government of Ontario, May 1987). Typical erosion and sediment control measures recommended include, but are not limited to, the use of silt fences around perimeter of site, filter fabric or inserts under catch basin/maintenance hole lids, heavy duty silt fence barrier, straw bale check dams, rock check dams, turbidity curtain, dewatering trap, temporary water passage system, riprap, mud mats, silt bags for dewatering operations, topsoil and sod to disturbed areas and natural grassed waterways. Dewatering and sediment control techniques will be developed for the individual situations based on the above guidelines and utilizing typical measures to ensure erosion and sediment control is controlled in an acceptable manner and there is no negative impact to adjacent lands, water bodies or water treatment/conveyance facilities.

The following erosion and sediment control measures will be implemented during construction. Details are provided on the Erosion and Sediment Control Plan.

- All erosion and sediment control measures are to be installed to the satisfaction of the engineer, the municipality and the conservation authority prior to undertaking any site alterations (filling, grading, removal of vegetation, etc.) and remain present during all phases of site preparation and construction.
- A qualified inspector should conduct daily visits during construction to ensure that the contractor is working in accordance with the design drawings and that mitigation measures are being implemented as specified.
 - A light duty silt fence barrier is to be installed in the locations shown on the Erosion and Sediment Control & Removals Plan (**120057-ESC**).
 - $\circ\,$ Straw bale barriers or rock flow check dams are to be installed in drainage ditches.
 - Terrafix Siltsoxx are to be placed under all new catchbasins and storm manhole covers.
 - After complete build-out, all sewers are to be inspected and cleaned and all sediment and construction fencing is to be removed.

- The contractor shall ensure that proper dust control is provided with the application of water (and if required, calcium chloride) during dry periods.
- The contractor shall immediately report to the engineer or inspector any accidental discharges of sediment material into any ditch or sewer system. Appropriate response measures shall be carried out by the contractor without delay.
- The contractor acknowledges that failure to implement erosion and sediment control measures may result in penalties imposed by any applicable regulatory agency.

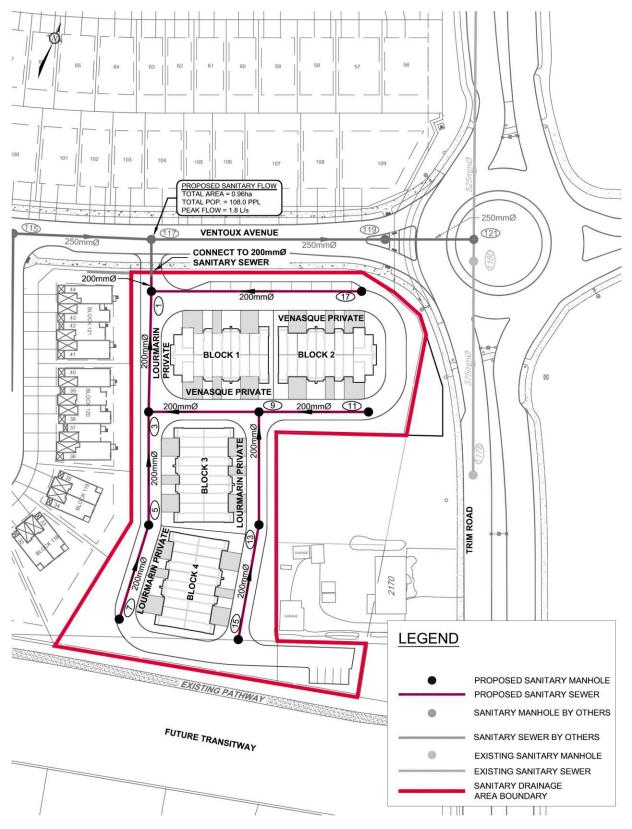
Temporary erosion and sediment control measures would be implemented both prior to commencement and during construction in accordance with the "Guidelines on Erosion and Sediment Control for Urban Construction Sites", (Government of Ontario, May 1987).

5.0 SANITARY SEWERS

5.1 Existing Conditions

A 200mm diameter sanitary sewer cap will be provided by others off Ventoux Avenue, at the site entrance, which outlets to a 250mm diameter sanitary sewer running along Ventoux.

5.2 **Proposed Conditions**


The peak design flow parameters in **Table 5-1** have been used in the sewer capacity analysis.

Unit and population densities and all other design parameters are specified in the City of Ottawa Sewer Design Guidelines **[6]**.

Sanitary flow from the site is proposed to connect into the 250mm diameter sanitary sewer in Shinny Avenue. The sanitary sewer layout is shown on 120057-GP (**Appendix C**), and the design sheet is attached in **Appendix A**. The site (approx. 0.96ha) will outlet at MH 117 (site entrance) with a peak design flow of 1.6 L/s. The wastewater flow is routed through the sanitary sewer system in Ventoux Avenue to the 525mm diameter trunk sanitary sewer in Trim Road.

Table 5-1: Sanitary Sewer Design Parameters

Parameter	Design Parameter
Town Unit Population	2.7 people/unit
Residential Flow Rate, Average Daily	280 L/cap/day
Residential Peaking Factor	Harmon Equation (min=2.0, max=4.0)
Infiltration Rate	0.33 L/s/ha
Minimum Pipe Size	200 mm
Minimum Velocity	0.6 m/s
Maximum Velocity	3.0 m/s

Figure 3: Sanitary Sewer Network

5.3 Offsite Requirements

For the design of Phase 2 of the Provence Orleans Subdivision, a peak design flow of 24.89 L/s was calculated from MH 117 to MH 119 in Ventoux Avenue, which is higher than the calculated peak design flow of 24.60 L/s incorporating the proposed site plan. Therefore, there will be sufficient capacity offsite to service the proposed development.

6.0 STORMWATER MANAGEMENT

6.1 Stormwater Management Criteria

The following stormwater management criteria for the proposed development were prepared in accordance with the City of Ottawa Sewer Design Guidelines (October 2012), the Master Servicing Study prepared by Stantec which references the applicable portions of *Update to Master Drainage Plan East Urban Community Expansion Area* (Cumming Cockburn Ltd., September 11, 2000) and the Phase 2 & 3: Provence Orleans Subdivision Servicing and Stormwater Design Brief prepared by Novatech.

- Provide a dual drainage system (i.e. minor and major system flows);
- Control the runoff to MH116 in Ventoux Avenue to the allowable release rates Specified in **Section 6.1.1** using on-site storage;
- Ensure that no surface ponding will occur on the paved surfaces (i.e. private roadways or parking areas) during the 2-year storm event;
- Ensure that ponding is confined within the parking areas at a maximum depth of 0.35 m for both static ponding and dynamic flow;
- Minimum on-site detention storage provided by the major system is 150 m³/ha;
- Provide guidelines to ensure that site preparation and construction is in accordance with the current Best Management Practices for Erosion and Sediment Control.

6.1.1 Allowable Release Rate

The allowable release rate for the development (1.35ha) was established based on the restricted minor system flow of 70 L/s/ha (94.5 L/s) for all storms up-to and including the 100-year storm event.

6.2 Existing Conditions

The Provence Orleans subdivision lands are located within the Rideau Valley Conservation Authority jurisdiction. A 525mm diameter storm sewer cap will be provided by others at the site entrance on Ventoux Avenue (MH116). The 525mm diameter sewer will outlet to a 675mm diameter storm sewer within Ventoux Avenue.

6.3 **Proposed Conditions**

Runoff from the site will be routed to the storm sewer system in Ventoux Avenue through the existing 525mm diameter stub located at the private entrance along Ventoux Avenue (MH116). The storm system within the Provence Orleans Subdivision is directed to the existing Cardinal

Creek stormwater management facility which provides water quality control. As such, on-site stormwater quality controls are not required. **Figure 5** outlines the proposed storm sewer system layout, and how it will connect to the existing network along Ventoux Avenue.

The existing 2170 Trim Road Lands will be captured by a series of RYCBs with controlled flows directed to the storm sewer system within the Block 126 lands.

6.3.1 Minor System Design

The storm sewers comprising the minor system have been designed based on the criteria outlined in the Ottawa Sewer Design Guidelines [6] using the principles of dual drainage. The design criteria used in sizing the storm sewers are summarized in **Table 6-1** and **Table 6-2**.

The proposed storm sewers have been designed using the Rational Method to convey peak flow associated with a 2-year rainfall event. The storm sewer design sheets are provided in **Appendix A**. The corresponding Storm Drainage Area Plan (Drawing 120057-STM) is provided in **Appendix C**.

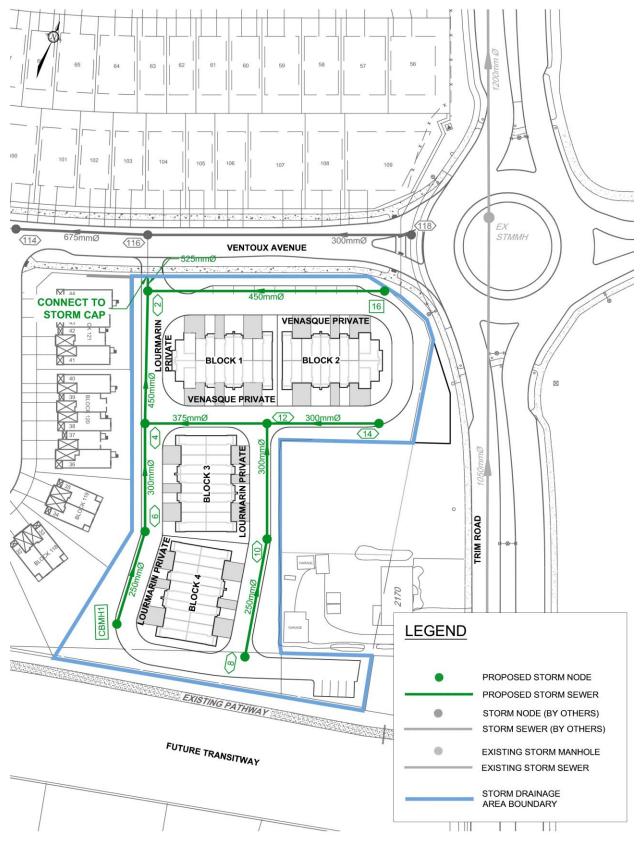


Figure 4: Storm Sewer Network

Novatech

Parameter	Design Criteria
Private Roads	2 Year Return Period
Storm Sewer Design	Rational Method/AutoDesk Storm Analysis
IDF Rainfall Data	Ottawa Sewer Design Guidelines
Initial Time of Concentration (T _c)	10 min
Minimum Velocity	0.8 m/s
Maximum Velocity	3.0 m/s
Minimum Diameter	250 mm

Table 6-1: Storm Sewer Design Parameters

Table 6-2: Runoff Coefficients

Land Use	Runoff Coefficient
Hard Surface	0.90
Soft Surface	0.20

6.3.2 Major System Design

The site has been designed to convey runoff from storms that exceed the minor system capacity to Ventoux Avenue. The roadway and parking areas have been graded to ensure that the 100-year peak overland flows are confined within the parking area at a maximum flow depth of 350mm. The design of the major system conforms to the design standards outlined in Section 5.5 (Major System Considerations) of the City of Ottawa Sewer Design Guidelines (October 2012).

The site has been graded to provide an emergency overland flow route that spills along the roadway and outlets to Ventoux Avenue at the entrance to the site. An additional emergency overland flow route has been provided for the swale system capturing the existing 2170 Trim Road lands that spills along the swale and outlets to the existing DICB located within the Trim Road ROW.

6.4 Hydrologic & Hydraulic Modeling

The *City of Ottawa Sewer Design Guidelines* (October 2012) require hydrologic modeling for all dual drainage systems. The performance of the proposed storm drainage system for the site was evaluated using the *PCWMM* hydrologic/hydraulic modeling software.

<u>Design Storms</u>

The hydrologic analysis was completed using the following synthetic design storms and historical storms. The IDF parameters used to generate the design storms were taken from the Sewer Design Guidelines [Error! Reference source not found.].

<u>4 Hour Chicago Storms:</u>

25mm 4-hr Chicago storm 2-year 4hr Chicago storm 5-year 4hr Chicago storm 100-year 4hr Chicago storm <u>12 Hour SCS Storms</u>: 2-year 12-hr SCS storm 5-year 24hr Chicago storm 100-year 24hr Chicago storm The 4-hour Chicago distribution generates the highest peak flows for both the minor and major systems and was determined to be the critical storm distribution for the design of the storm drainage system.

The proposed drainage system has also been stress tested using a 4-hour Chicago design storm that has a 20% higher intensity and total volume compared to the 100-year event.

Model Development

The PCSWMM model accounts for both minor and major system flows (*dual drainage*), including the routing of flows through the storm sewer network (*minor system*), and overland along the road network (*major system*). The results of the analysis were used to;

- Determine the total major and minor system runoff from the site;
- Size the ICDs for each inlet to the storm sewer system;
- Calculate the storm sewer hydraulic gradeline for the 100-year storm event; and
- Ensure no surface ponding occurs during the 2-year storm event.

The model is capable of accounting for both static and dynamic storage within the private roadways and parking areas, including the overland flow across all high points and capture/bypass curves for inlets on continuous grade. The 100-year flow depths computed by the model represent the total (static + dynamic) ponding depths at low points for areas in road sags.

Storm Drainage Area Plan & Subcatchment Parameters

The development has been divided into subcatchments based on the drainage areas tributary to each inlet of the proposed storm sewer system. The catchment areas are shown on the Storm Drainage Area Plan provided as drawing **120057-STM** in **Appendix C**.

The hydrologic parameters for each subcatchment were developed based on the Site Plan (**Figure 2**) and the Storm Drainage Area Plan specified above. Subcatchment parameters are outlined in **Table 6-3**.

Area ID	Catchment Area	Runoff Coefficient	Percent Impervious	Zero Imperv.	Flow Length	Equivalent Width	Average Slope
	(ha)	(C)	(%)	(%)	(m)	(m)	(%)
A1	0.08	0.64	63%	9%	15	53	0.5%
A2	0.12	0.71	73%	43%	20	60	0.5%
A3	0.07	0.77	81%	29%	20	35	0.5%
A4	0.04	0.20	0%	0%	10	40	0.5%
A5	0.07	0.71	73%	7%	30	23	0.5%
A6	0.11	0.73	76%	44%	20	55	0.5%
A7	0.15	0.77	81%	43%	20	75	0.5%
A8	0.08	0.73	76%	25%	20	45	0.5%
A9	0.17	0.73	76%	37%	20	80	0.5%
A10	0.16	0.22	3%	95%	31	51	0.5%
A10a	0.05	0.22	3%	95%	22	23	0.5%

Table 6-3: Subcatchment Model Parameters

Area ID	Catchment Area	Runoff Coefficient	Percent Impervious	Zero Imperv.	Flow Length	Equivalent Width	Average Slope
	(ha)	(C)	(%)	(%)	(m)	(m)	(%)
A11	0.12	0.26	9%	95%	35	34	0.5%
A12	0.12	0.37	24%	44%	35	34	0.5%
B1	0.01	0.20	0%	0%	2	50	33.33%
TOTAL	1.35 ha	0.56	51%	-	-	-	-

Infiltration

Infiltration losses for all catchment areas were modeled using Horton's infiltration equation, which defines the infiltration capacity of the soil over the duration of a precipitation event using a decay function that ranges from an initial maximum infiltration rate to a minimum rate as the storm progresses. The default values for the Sewer Design Guidelines **[8]** were used for all catchments.

Horton's Equation:	Initial infiltration rate: $f_0 = 76.2 \text{ mm/hr}$
$f(t) = f_c + (f_o - f_c)e^{-k(t)}$	Final infiltration rate: $f_c = 13.2 \text{ mm/hr}$
	Decay Coefficient: $k = 4.14/hr$

Depression Storage

The default values for depression storage in the Sewer Design Guidelines **[8]** were used for all catchments. Residential rooftops were assumed to provide no depression storage.

- Depression Storage (pervious areas):
 4.67 mm
- Depression Storage (impervious areas): 1.57 mm

Equivalent Width

Equivalent Width' refers to the width of the sub-catchment flow path. This parameter is calculated as described in the Sewer Design Guidelines [8], Section 5.4.5.6. The flow paths used to calculate the equivalent widths are shown on the PCSWMM schematics provided in **Appendix B**.

Impervious Values

Impervious (TIMP) values for each subcatchment area were calculated based on the proposed Site Plan (**Figure 2**) and correspond to the Runoff Coefficients used in the Rational Method calculations using the equation:

$$\% imp = \frac{C - 0.2}{0.7}$$

6.5 Results of Hydrologic / Hydraulic Analysis

The model was used to evaluate the performance of the proposed storm drainage system for Block 126

6.5.1 Minor System

Inflows to the storm sewer were modeled based on the characteristics of each inlet. All the catchbasins in the roadways and parking areas are located at low points. Inflows to the storm sewer are based on the ICD specified for the inlet and the maximum depth of ponding. ICDs have been sized to limit the outlet peak flows to the allowable release rate of 70 L/s/ha. Details are outlined as follows in **Table 6.4**. ICDs information is indicated on the General Plan of Services (drawing 120057-GP).

The Rational Method design sheets (**Appendix B**) were used to calculate the required storm sewer sizes based on capturing the peak flow at each inlet to the storm sewer for a 2-year design return period.

	ICD Size & Inlet Rate							
Structure ID	ICD Type	T/G	Orifice Invert	100-year Head on Orifice	2-year Orifice Peak Flow*	5-year Orifice Peak Flow*	100-year Orifice Peak Flow*	
		(m)	(m)	(m)	(L/s)	(L/s)	(L/s)	
CB1	Tempest LMF (Vortex 89)	89.00	87.30	1.85	8.9	9.1	9.3	
CB2	Tempest MHF (82mm)	89.08	87.38	1.87	17.4	17.9	18.4	
CB5	Tempest MHF (105mm)	89.13	87.73	1.56	25.4	26.3	27.2	
CBMH1	Tempest LMF (Vortex 66)	89.15	86.63	2.67	5.6	6.0	6.1	
MH2	Tempest LMF (Vortex 62)	89.27	85.81	3.48	5.9	6.2	6.3	
MH10	Tempest LMF (Vortex 64)	89.37	86.38	2.98	5.6	5.9	6.1	
RYCB1	Tempest LFM (Vortex 101)	88.24	86.84	1.68	1.1	3.9	11.5	
RYCB3	Tempest LMF (Vortex 78)	88.55	86.87	1.90	4.2	5.9	7.3	

Table 6-4: Inlet Control Devices & Design Flows

*PCSWMM model results for a 4-hour Chicago storm distribution.

6.5.2 Major System

The major system network was evaluated using the PCSWMM model to ensure that the ponding depths conform to City standards. A summary of ponding depths at each inlet for the 2-year, 5-year, 100-year and 100-year (+20%) events are provided in **Appendix B**. The maximum static and dynamic ponding depths within the roadways are less than 0.35m during all events. In addition, there is no cascading flow over the highpoint during the 100-year storm event.

Otwartung	T/G	Max. Static Ponding (Spill Depth)		100-yr Event (4hr))
Structure		Elev.	Depth	Elev.	Depth	Cascading	Cascade
	(m)	(m)	(m)	(m)	(m)	Flow?	Depth (m)
CB1	89.00	89.29	0.29	89.15	0.15	Ν	0.00
CB2	89.08	89.38	0.30	89.25	0.17	Ν	0.00
CB3	89.18	89.48	0.30	89.36	0.18	Ν	0.00
CB4	89.18	89.43	0.25	89.36	0.18	Ν	0.00
CB5	89.13	89.38	0.25	89.29	0.16	Ν	0.00
CB6	89.12	89.42	0.30	89.29	0.17	Ν	0.00
CB7	89.05	89.33	0.28	89.29	0.24	Ν	0.00
CBMH1	89.15	89.45	0.30	89.30	0.15	N	0.00
RYCB1	88.24	88.78	0.54*	88.52	0.28	Ν	0.00
RYCB2	88.44	88.88	0.44*	88.78	0.34	Ν	0.00
RYCB3	88.55	88.73	0.18*	88.77	0.22	Y	0.04
RYCB4	89.15	89.45	0.30	89.30	0.15	N	0.00

Table 6-5: Overland Flow Results (100-year Event)

*RYCB located along ditch adjacent 2170 Trim Road

An expanded table of the ponding depths at low points in the roadway (including the stress-test event) is provided in **Appendix B** and confirms that no ponding occurs during the 2-year event. Based on these results, the proposed storm drainage system will not experience any adverse flooding even with a 20% increase to the 100-year event.

6.5.3 Hydraulic Grade Line

The results of the analysis were used to determine if there would be any surcharging from the storm sewer system during the 100-year storm event. **Appendix B** provides a summary of the 100-year HGL elevation at each storm manhole within the proposed development, as well as a summary of the HGL elevations for a 20% increase (rainfall intensity and total precipitation) in the 100-year design event. The results of the HGL analysis and the stress testing indicates that the storm sewer does not surcharge during the 100-year event and 100-year+20% storm event.

The results of the HGL analysis were used to ensure that a minimum freeboard of 0.30m is provided between the 100-year HGL and the designed underside of footing elevations. The 100-year HGL elevations at each storm manhole with respect to the lowest adjacent underside of footing elevation are provided in **Table 6-6**.

Manhole ID	MH Invert Elevation	T/G Elevation	HGL Elevation - 100yr4hr	Design USF	Clearance (100yr)				
	(m)	(m)	(m)	(m)	(m)				
HGL - Block 12	HGL - Block 126								
MH2	85.74	89.27	86.03	87.82	1.79				
MH4	85.94	89.37	86.18	87.82	1.64				
MH6	86.27	89.26	86.39	87.87	1.48				
MH8	86.82	89.46	89.36	-	-				
MH10	86.38	89.37	89.36	-	-				
MH12	86.15	89.32	86.37	87.82	1.45				
MH14	86.41	89.30	86.49	87.88	1.39				
MH16	86.58	89.59	89.29	_	-				

Table 6-6: 100-year HGL Elevations

An expanded table showing the results of the stress test (100-year +20% event) and the HGL elevations is provided in **Appendix B**. The stress test indicates that the HGL elevations will be below the USF elevations for this event.

6.5.4 Peak Flows

The overall release rates from the ICDs were added to determine the overall release rate from the site. The results of this analysis indicate that the allowable release rates will be met for each storm event. Refer to **Table 6-7** for the modelled peak flows for each storm event.

The results of the PCSWMM analysis indicate that outflows from the proposed development will not exceed the allowable release rate for all storm events.

Design Event	Allowable Release Rate (L/s)	Controlled Minor System Release Rate (L/s)	Major System Release Rate to Ventoux Ave. (L/s)	Major System Release Rate to Trim Road DICB (L/s)
2-year		74.2	0	0.4
5-year	94.5	81.1	0	1.7
100-year		92.0	0	8.5
100-year (+20%)	-	93.7	0	22.4

Table 6-7: Summary of Peak Flows

*PCSWMM Model results for a 4-hr Chicago storm distribution; normal outfall condition.

A small portion of the site, area A10a flows uncontrolled, per existing conditions, towards the existing DICB at Trim Road.

7.0 WATER

7.1 Existing Conditions

The proposed development is located inside the 2E Pressure Zone. As part of Phase 2 of the Provence Orleans Subdivision, a 300mm diameter watermain will be located within Ventoux Avenue connecting to an existing 400mm diameter trunk watermain in Trim Road. A 200mm diameter watermain cap will be provided at the entrance to the site off Ventoux Avenue.

7.2 Proposed Conditions

The site will be connected to the existing 300mm diameter waterman in Ventoux Avenue through the 200mm diameter cap provided at the site entrance.

A series of 200mm diameter watermains are proposed and will provide sufficient capacity to maintain appropriate pressures and fire flows throughout the development. **Figure 5** provides a high level schematic of the proposed water distribution system.

The watermain boundary conditions below were obtained from the City of Ottawa (December 2019) provided as part of the detailed design for the Provence Orleans Subdivision and has been included in **Appendix A**:

Boundary Condition 1 – Provence Avenue Max Day + FF of 167 L/s = 126.2m Max Day + FF of 300 L/s = 122.9m Peak Hour = 125.8m Maximum HGL = 130.3m

Boundary Condition 2 – Trim Road Max Day + FF of 167 L/s = 126.4m Max Day + FF of 300 L/s = 123.3m Peak Hour = 125.8m Maximum HGL = 130.3m

City of Ottawa watermain design criteria are outlined in Table 7.1.

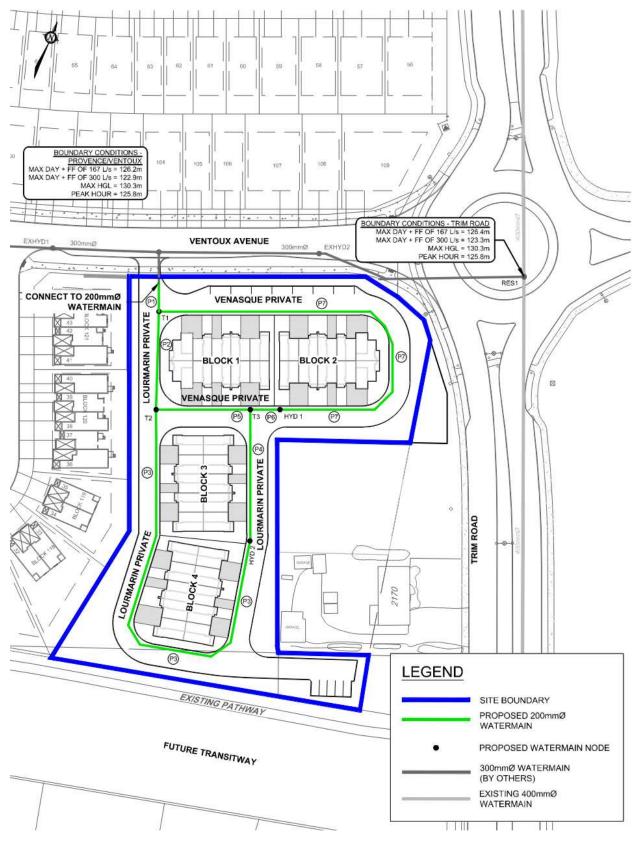


Figure 5: Watermain Layout

Design Parameter	Design Criteria
Town Population	2.7 people/unit
Residential Demand	280 L/c/d
Maximum Day Demand	2.5 x Average Day
Peak Hour Demand	2.2 x Maximum Day
Fire Demand	250, 267, 283 and 300 L/s
Maximum Pressure	690 kPa (100psi) unoccupied areas
Maximum Pressure	552 kPa (80psi) occupied areas outside of ROW
Minimum Pressure	275 kPa (40 psi) except during fire flow
Minimum Pressure	140 kPa (20 psi) fire flow conditions

Table 7-1: Watermain Design Criteria

Table 7-2: Water Flow Summary

	Units	Population	Average Day Demand (L/s)	Maximum Day Demand (L/s)	Peak Hour Demand (L/s)
Back-to-Back Towns	40	108	0.350	0.875	1.925
Total	40	108	0.350	0.875	1.925

Based on the fire underwriters survey, the fire flows were calculated as 250 L/s (Block 2), 267 L/s (Block 1), 283 L/s (Block 4) and 300 L/s (Block 3). Hydrant grades and distances to structures are illustrated on the Fire Hydrant Coverage Plan in **Appendix A**. Fire flow calculations are provided in **Appendix A**.

The proposed watermain was modeled using EPANET 2 (See 120057-GP for detailed watermain layout).

A summary of the model results are shown below in **Table 7.3**, **Table 7.4** and **Table 7.5**. Full model results are included in **Appendix A**.

Operating Condition	Minimum Pressure
267 L/s at Block 1	258.79 kPa (HYD3)
250 L/s at Block 2	277.82 kPa (HYD3)
300 L/s at Block 3	228.08 kPa (HYD3)
283 L/s at Block 4	234.16 kPa (HYD3)

Operating Condition	Maximum Pressure	Minimum Pressure
1.925 L/s through system	361.11 kPa (T3)	359.05 kPa (T2)

Table 7-4: Summary of Hydraulic Model Results - Peak Hour Demand

The hydraulic modeling summarized above highlights the maximum and minimum system pressures during Peak Hour conditions, and the minimum system pressures during the Maximum Day + Fire condition. Since the Maximum Day + Fire Flow pressures are above the minimum 140 kPa, and the Peak Hour Pressures onsite fall within the normal operating pressure range (345 kPa to 552 kPa) we conclude the proposed water design will adequately service the development.

Table 7-5: Summary of Hydraulic Model Results – Maximum Pressure Check

Operating Condition	Maximum Pressure	Minimum Pressure
0.350 L/s through system	405.55 kPa (T3)	403.49 kPa (T2)

The average day pressures throughout the system are below 552 kPa, therefore pressure reducing valves are not required.

Water retention was analyzed at each node during average day demand. The maximum age throughout the system is within City standards.

8.0 CONCLUSIONS AND RECOMMENDATIONS

The report conclusions are as follows:

- The proposed storm system will control post-development flow to the allowable release rate of 70 L/s/ha. All runoff volume from the 100-year storm event is stored on site using surface storage. The existing Cardinal Creek stormwater management facility is the ultimate outlet for the site and provide water quality control.
- 2) The proposed sanitary sewer conforms to City design criteria and provides a gravity outlet for the development site. There is sufficient capacity in the downstream sanitary sewers to accommodate the flows that outlet to the Ventoux Avenue sanitary sewers.
- 3) Connection to the watermain in Ventoux Avenue will provide municipal water service to the development.
- 4) There is adequate fire protection to the proposed development, in accordance with the Fire Underwriter's Survey.
- 5) The proposed infrastructure (sanitary, storm and water) complies with City of Ottawa design standards.

This report is respectfully submitted for review and approval. Please contact the undersigned should you have questions or require additional information.

Sincerely,

NOVATECH

Prepared By:

Lucas Wilson, P.Eng. Project Coordinator

Reviewed By:

Mark Bissett, P.Eng. Senior Project Manager

References

- 1. "Phase 2 and 3 Provence Orleans Subdivision Site Servicing and Stormwater Management Design Brief", Novatech [May 2020]
- "Master Servicing Study, Gloucester and Cumberland East Urban Community Expansion Area and Bilberry Creek Industrial Park Master Servicing Update", Stantec [September 2013]
- **3.** "Site Servicing and Stormwater Management Design Brief (R-2018-095), Provence Orleans Subdivision, 2128 Trim Road, Ottawa, Ontario", Novatech [March 31, 2019]
- **4.** "Geotechnical Investigation, Proposed Provence City Towns Block, Trim Road, Ottawa, Ontario (PG4278-3)", Paterson Group [June 4, 2020]
- 5. "Transportation Master Plan", City of Ottawa [November 2013]
- **6.** "Sewer Design Guidelines", Department of Public Works and Services, City of Ottawa [October 2012]

APPENDIX A: Design Sheets

Storm Sewer Design Sheet (Rational Method) Sanitary Sewer Design Sheets Watermain Boundary Conditions Watermain Modelling Fire Flow Calculations Fire Hydrant Coverage Plan

LO	CATION					AREA							FL	.OW							PROP	OSED SE	WER												
Location	From Node	To Node	Hard Surface	Soft Surface	Towns Front Yard	Towns Front Yard	Towns Rear Yard	Towns Rear Yard	Total Area	Weighted Runoff	Indivi 2.78 AR	Accum 2.78 AR	Time of Concentration		ain Intensit (mm/hr)	Peak F	Totarreak	Pipe	Size	Grade	Length	Capacity	Full Flow Velocity	Time of Flow	Q/Qfull										
			0.90	0.20	Area	с	Area	с	(ha)	Coefficient				2yr	5yr	10yr (L/s)	Flow (Q) (L/s)	Туре	(mm)	(%)	(m)	(I/s)	(m/s)	(min.)	(%)										
																		51		. ,															
			0.057	0.053					0.11	0.56	0.17	0.17	10.00	76.81		13.2																			
A-3, A-4	CBMH1	6							0.00		0.00	0.00	10.00			0.0	13.2	PVC	250	1.00	31.5	62.0	1.22	0.43	21.3%										
			0.087	0.033					0.00	0.71	0.00	0.00	10.00 10.43	75.20		0.0																			
A-2	6	4	0.007	0.033					0.12	0.71	0.24	0.41	10.43	75.20		0.0	30.7	PVC	300	0.50	35.1	71.3	0.98	0.60	43.0%										
									0.00		0.00	0.00	10.43			0.0		_				_													
			0.134	0.046					0.18	0.72	0.36	0.36	10.00	76.81		27.7																			
A-5, A-6	8	10	0.101	0.010					0.00	0.12	0.00	0.00	10.00	10.01		0.0	27.7	PVC	250	1.00	39.0	62.0	1.22	0.53	44.7%										
									0.00		0.00	0.00	10.00			0.0																			
			0.038	0.202					0.24	0.31	0.21	0.57	10.53	74.82		42.5																			
A-11, A-12	10	12							0.00		0.00	0.00	10.53			0.0	42.5	PVC	300	0.40	37.6	63.8	0.87	0.72	66.6%										
									0.00		0.00	0.00	10.53			0.0																			
				0.160					0.16	0.20	0.09	0.09	10.00	76.81		6.8		PVC																	
A-10	14	12							0.00		0.00	0.00	10.00			0.0	6.8		300	00 0.50	36.4	4 71.3	0.98	0.62	9.6%										
									0.00		0.00	0.00	10.00			0.0																			
			0.122	0.028					0.15	0.77	0.32	0.98	11.25	72.33		70.7																			
A-7	12	4							0.00		0.00	0.00	11.25 11.25			0.0	70.7	PVC	375	0.35	39.7	108.2	0.95	0.70	65.4%										
									0.00		0.00	0.00				0.0																			
			0.050	0.030					0.08	0.64	0.14	1.53	11.94	70.07		107.		001	CONK	CONC	CONC	CONC	CONC	CONC	CON	CONC	CONC	CONC	450		40.4	100.0	0.00	0.70	05 70/
A-1	4	2							0.00		0.00	0.00	11.94 11.94			0.0	107.1	CONC	450	0.30	43.1	162.9	0.99	0.72	65.7%										
A-8, A-9	10	0	0.188	0.062					0.25	0.73	0.50	0.50	10.00	76.81		38.8	38.8	CONC	450	0.50	77.0	040.0	4.00	1 00	18.4%										
A-8, A-9	16	2							0.00		0.00	0.00	10.00 10.00			0.0	38.8	CONC	450	0.50	77.0	210.3	1.28	1.00	18.4%										
	2	EX116							0.00		0.00	2.03 0.00	12.67 12.67	67.88		138.	138.0	CONC	505	0.25	18.3	224.3	1.00	0.30	61.5%										
	2	EATIO							0.00		0.00	0.00	12.67			0.0		CONC	525	0.25	10.3	224.3	1.00	0.30	01.5%										
									0.00		0.00	0.00	14-01			0.0																			
= 2.78 AIR		WHERE :	Q = PEAK FLOV	/ IN LITRES PER	SECOND (L/s)						Q = (1/n)	A R^(2/3)So	`(1/2)	WHERE	: Q = CAPA	ACITY (L/s)						Project: Prov	vence Orlea	is - Block	126 (1200!										
			A = AREA IN HE		. ,						. ,	、 <i>'</i>	. /				IT OF ROUGHNES	S (0.013))						esigned: LR										
			I = RAINFALL IN	TENSITY IN MILL	IMETERS PER	HOUR (mm/h	ır)								A = FLOV	V AREA (m ²)								С	hecked: M										
				RUNOFF COEFF		- (,									. ,									arch 24, 2										

Provence Orleans - Block 126: Storm Sewer Design Sheet (Rational Method)

	AREA				RE	SIDE	ITIAL			INF	LTRATIC	DN				PIPE										
ID	From	То	SIN Units	GLES Pop.	Tow Units	ns Pop.	Accum. Pop.	Peak Factor	Peak Flow (I/s)	Total Area (ha)	Accum. Area (ha)	Infilt. Flow (l/s)	Total Flow (I/s)	Size (mm)	Slope (%)	Length (m)	Capacity (I/s)	Full Flow Vel. (m/s)	Actual Vel. (m/s)	Q/Q _{full} (%)	d/D					
		10	01		0				((114)	(114)	(1/3)	(1/3)	((()))	(70)	(111)	(#3)	(11/3)	(11/3)	(70)						
Ventoux	Avenue																									
	7	5	0	0.0	5	13.5	13.5	3.7	0.2	0.14	0.14	0.0	0.2	200	1.00	32.8	34.2	1.06	0.26	0.6%	0.000					
	5	3	0	0.0	5	13.5	27.0	3.7	0.3	0.08	0.22	0.1	0.4	200	0.50	37.6	24.2	0.75	0.23	1.6%	0.077					
	15	13	0	0.0	5	13.5	13.5	3.7	0.2	0.19	0.19	0.1	0.2	200	1.00	38.7	34.2	1.06	0.26	0.7%	0.000					
	13	9	0	0.0	5	13.5	27.0	3.7	0.3	0.08	0.27	0.1	0.4	200	0.50	37.5	24.2	0.75	0.24	1.7%	0.077					
	11	9	0	0.0	6	16.2	16.2	3.7	0.2	0.12	0.12	0.0	0.2	200	1.00	36.4	34.2	1.06	0.26	0.7%	0.000					
	9	3	0	0.0	4	10.8	54.0	3.6	0.6	0.08	0.47	0.2	0.8	200	0.50	36.7	24.2	0.75	0.28	3.3%	0.077					
	3	1	0	0.0	0	0.0	81.0	3.6	0.9	0.04	0.73	0.2	1.2	200	0.50	40.1	24.2	0.75	0.32	4.9%	0.077					
	17	1	0	0.0	10	27.0	27.0	3.7	0.3	0.22	0.22	0.1	0.4	200	1.00	69.9	34.2	1.06	0.30	1.2%	0.077					
	1	EX117	0	0.0	0	0.0	108.0	3.6	1.3	0.01	0.98	0.3	1.6	200	1.00	17.3	34.2	1.06	0.45	4.6%	0.153					
	EX115	EX117	0	0.0	0	0.0	1327.0	3.7	15.9		20.43	6.7	22.7	250	0.35	46.0	36.7	0.72	0.66	61.7%	0.634					
	EX117	EX119	5	17.0	0	0.0	1452.0	3.7	17.4	0.44	21.85	7.2	24.6	250	0.35	77.7	36.7	0.72	0.68	67.1%	0.672					
Design Pa	arameters	:		1					Population	Density:						1	Project	: Provenc	e Orleans	- Block 12	6 (12005					
vg Flow/I	Person =		280	l/day						ppl/unit	u	nits/net l	าล							Desi	gned: LF					
Comm./Ins	st. Flow =		35000	l/ha/day					Apartment	1.80		90								Che	cked: M/					
nfiltration	=		0.33	l/s/ha					Singles	3.40										Date: Marc	ch 24, 20					
Pipe Friction	on n =		0.013						Towns	2.70		60														

Provence Orleans - Block 126: Sanitary Sewer Design Sheet

SANITARY SEWER DESIGN SHEET **Provence Orleans Subdivision - 2128 Trim Road** Developer: Provence Orleans Realty Investment Inc. c/o Regional Group of Companies

PROJECT # : DESIGNED BY : CHECKED BY : DATE PREPARED :

MER

LOCATIO	N					INDIVIDU	JAL			CUMULA	TIVE			PEAK	PEAK				PROPC	SED SEWER	3			T
STREET	FROM MH	то МН	Area	Single Units	Townhouse Units	Condo Units	Retirement Home Units	Population (in 1000's)	AREA (ha.)	Population (in 1000's)	AREA (ha.)	PEAK FACTOR M	POPULATION FLOW Q(p) (L/s)	EXTRAN. FLOW Q(i) (L/s)	DESIGN	LENGTH (m)	PIPE SIZE (mm)	PIPE ID (mm)	TYPE OF PIPE	GRADE %	CAPACITY (L/s)	FULL FLOW VELOCITY (m/s)	Qpeak/ Qcap	d/ D _{full}
																								4
Future Phase 5	FUT	109	500					0.3450	6.14	0.345	6.140	4.0	4.47	2.03	6.50									
Future Phase 4	FUT	111	400					0.4880	6.08	0.488	6.080	4.0	6.29	2.01	8.30									
Petanque Cres.	505	503	2		3			0.0081	0.17	0.008	0.170	4.0	0.11	0.06	0.16	12.4	200	203.20	DR 35	0.65	27.6	0.85	1%	
Petanque Cres.	503	501	3		16			0.0432	0.46	0.051	0.630	4.0	0.67	0.21	0.87	51.8	200	203.20	DR 35	0.35	20.2	0.62	4%	4
Petanque Cres.	501	101	4		3			0.0081	0.13	0.059	0.760	4.0	0.77	0.25	1.02	26.2	200	203.20	DR 35	0.35	20.2	0.62	5%	
Petangue Cres.	505	507	9	7	1			0.0265	0.47	0.027	0.470	4.0	0.34	0.16	0.50	56.5	200	203.20	DR 35	0.65	27.6	0.85	2%	
Petanque Cres.	507	509	10	7				0.0238	0.42	0.050	0.890	4.0	0.65	0.29	0.95	56.0	200	203.20	DR 35	0.35	20.2	0.62	5%	
Petangue Cres.	509	511	11	10				0.0340	0.67	0.084	1.560	4.0	1.09	0.51	1.61	82.2	200	203.20	DR 35	0.35	20.2	0.62	8%	
Petanque Cres.	511	513	12	2				0.0068	0.21	0.091	1.770	4.0	1.18	0.58	1.77	14.2	200	203.20	DR 35	0.65	27.6	0.85	6%	
Petanque Cres.	513	109	13	8				0.0272	0.50	0.118	2.270	4.0	1.53	0.75	2.28	72.0	200	203.20	DR 35	0.50	24.2	0.75	9%	
																								4
Socca Cres.	403	405	41	7				0.0238	0.46	0.024	0.460	4.0	0.31	0.15	0.46	56.6	200	203.20	DR 35	0.65	27.6	0.85	2%	
Socca Cres.	403	401	42	1				0.0034	0.14	0.027	0.600	4.0	0.35	0.20	0.55	12.6	200	203.20	DR 35	0.48	23.7	0.73	2%	
Socca Cres.	401	111	43	10				0.0340	0.56	0.061	1.160	4.0	0.79	0.38	1.18	72.4	200	203.20	DR 35	0.35	20.2	0.62	6%	-
Socca Cres.	405	407	46	6				0.0204	0.38	0.020	0.380	4.0	0.26	0.13	0.39	54.0	200	203.20	DR 35	0.66	27.8	0.86	1%	
Socca Cres.	407	409	47	1	2			0.0088	0.18	0.029	0.560	4.0	0.38	0.18	0.56	15.9	200	203.20	DR 35	0.52	24.7	0.76	2%	
Socca Cres.	409	115	48		19			0.0513	0.63	0.081	1.190	4.0	1.04	0.39	1.44	78.8	200	203.20	DR 35	0.36	20.5	0.63	7%	
Ventoux Ave.	99	101	1	4				0.0136	0.23	0.014	0.230	4.0	0.18	0.08	0.25	35.7	200	203.20	DR 35	0.65	27.6	0.85	1%	
Ventoux Ave.	101	103	5	3				0.0102	0.16	0.083	1.15	4.0	1.08	0.38	1.46	30.9	200	203.20	DR 35	0.35	20.2	0.62	7%	
Ventoux Ave.	101	105	6	7	7			0.0427	0.56	0.126	1.710	4.0	1.63	0.56	2.20	66.9	200	203.20	DR 35	0.35	20.2	0.62	11%	
Ventoux Ave.	105	107	7	13	1			0.0469	0.63	0.173	2.340	4.0	2.24	0.77	3.01	71.0	200	203.20	DR 35	0.35	20.2	0.62	15%	
Ventoux Ave.	107	109	8	6				0.0204	0.38	0.193	2.720	4.0	2.50	0.90	3.40	73.6	200	203.20	DR 35	0.35	20.2	0.62	17%	
Ventoux Ave.	109	111	26					0.0000	0.15	0.657	11.280	3.9	8.32	3.72	12.04	79.5	250	254.00	DR 35	0.35	36.7	0.72	33%	0.
																					a <i>c</i> =			
Ventoux Ave.	111	113	44	1				0.0034	0.12	1.209	18.64	3.7	14.68	6.15	20.83	52.5	250	254.00	DR 35	0.35	36.7	0.72	57%	0.
Ventoux Ave.	113	115	45	7				0.0238	0.39	1.233	19.030	3.7	14.94	6.28	21.22	52.1	250	254.00	DR 35	0.35	36.7	0.72	58%	0.
Ventoux Ave.	115	117	49	3				0.0102	0.20	1.324	20.420	3.7	15.95	6.74	22.69	46.0	250	254.00	DR 35	0.35	36.7	0.72	62%	0.
Future Multi-Unit Block	1	117	50		48			0.1296	1.23	1.453	21.650	3.7	17.38	7.14	24.52	17.2	200	203.20	DR 35	1.00	34.2	1.06	72%	
Ventoux Ave.	117	119	51	6				0.0204	0.47	1.474	22.120	3.7	17.60	7.30	24.90	77.7	250	254.00	DR 35	0.35	36.7	0.72	68%	0.
Ventoux Ave.	119	121	52					0.0000	0.05	1.474	22.170	3.7	17.60	7.32	24.91	29.5	250	254.00	DR 35	1.00	62.0	1.22	40%	0.4

<u>Notes:</u> 1. Q(d) = Q(p) + Q(i) 2. Q(i) = 0.33 L/sec/ha

3. Q(p) = (PxqxM/86,400)

<u>Definitions:</u> Q(d) = Design Flow (L/sec)

Q(p) = Population Flow (L/sec)

Q(i) = Extraneous Flow (L/sec)

P = Population (3.4 persons/single unit, 2.7 persons/townhouse, 2.1 persons/apartment, 1.4 persons/retirement residence) q = Average per capita flow = 280 L/cap/day - Residential

M = Harmon Formula (maximum of 4.0)

Min pipe size 200mm @ min. slope 0.32%

Boundary Conditions for Provence Orleans

Provided Information:

Date Provided	December-19							
Cooperie	Demand							
Scenario	L/min	L/s						
Average Daily Demand	119	1.99						
Maximum Daily Demand	299	4.98						
Peak Hour	658	10.96						
Fire Flow Demand #1	10,020	167.00						
Fire Flow Demand #2	18,000	300.00						

Location:

Results:

Connection 1 - Provence Ave

Demand Scenario	Head (m)	Pressure ¹ (psi)
Maximum HGL	130.3	59.2
Peak Hour	125.8	52.9
Max Day plus Fire 1	126.2	53.5
Max Day plus Fire 2	122.9	48.8

¹ Ground Elevation = 88.6m

Connection 2 - Trim Road

Demand Scenario	Head (m)	Pressure ¹ (psi)
Maximum HGL	130.3	58.4
Peak Hour	125.8	52.1
Max Day plus Fire 1	126.4	52.9
Max Day plus Fire 2	123.3	48.5

¹ Ground Elevation = 89.2m

Connection 3 - Salzburg Dr

Demand Scenario	Head (m)	Pressure ¹ (psi)
Maximum HGL	130.3	59.5
Peak Hour	125.8	53.1
Max Day plus Fire 1	123.0	49.0
Max Day plus Fire 2	113.2	35.1

¹ Ground Elevation = 88.5m

Notes:

- 1. Fire flow was applied on connection 3 but no demand was applied on connection 3. The City modeled additional internal looping within the three connections to meet the pressure requirement under fire flow condition at connection 3 as shown above.
- 2. Looping of the watermain is required to decrease vulnerability of the water system in case of breaks and to improve pressure under fire flow condition.
- 3. Interpolate the head elevation and the pressure for fire flow between 167L/s and 300L/s.
- 4. Ensure oversizing of the of local watermain does not require an excessive number of fire hydrants to accommodate the fire flow of 300L/s.

Disclaimer

The boundary condition information is based on current operation of the city water distribution system. The computer model simulation is based on the best information available at the time. The operation of the water distribution system can change on a regular basis, resulting in a variation in boundary conditions. The physical properties of watermains deteriorate over time, as such must be assumed in the absence of actual field test data. The variation in physical watermain properties can therefore alter the results of the computer model simulation. Fire Flow analysis is a reflection of available flow in the watermain; there may be additional restrictions that occur between the watermain and the hydrant that the model cannot take into account.

Provence Orleans - Block 126 Water Demand							
				Average Day	Maximum Day	Peak Hour	
	Area			Demand	Demand	Demand	
	(ha)	Units	Population	(L/s)	(L/s)	(L/s)	
Towns	N/A	40	108	0.350	0.875	1.925	
Total	0.00	40	108	0.350	0.875	1.925	

Water Demand Parameters

Towns	2.7	ppl/unit
Residential Demand	280	L/c/day
Residential Max Day	2.5	x Avg Day
Residential Peak Hour	2.2	x Max Day
Residential Fire Flow	250 - 300	L/s

Provence Orleans - Block 126: Watermain Demand

Node	Towns	Total Population	Average Day Residential Demand (L/s)	Maximum Day Residential Demand (L/s)	Peak Hour Residential Demand (L/s)	
HYD1	5	14	0.044	0.109	0.241	
HYD2	10	27	0.088	0.219	0.481	
EXHYD1	0	0	0.000	0.000	0.000	
EXHYD2	0	0	0.000	0.000	0.000	
T1	10	27	0.088	0.219	0.481	
T2	5	14	0.044	0.109	0.241	
Т3	10	27	0.088	0.219	0.481	
Total	40	108	0.350	0.875	1.925	
Water Demand Param	eters					
Singles	3.4	ppl/unit	Residential Max Day 2.5		x Avg Day	
Towns	2.7	ppl/unit	Residential Peak Hour	2.2	x Max Day	
Residential Demand	280	L/c/day	Residential Fire Flow	250 - 300	L/s	

Provence Orleans - Block 126: Watermain Analysis

Network Table - Node	s - (Peak Hour)						
	Elevation	Demand	Head	Pressure	Pressure	Pressure	
Node ID	m	LPS	m	m	kPa	psi	
Junc HYD1	89	0.24	125.77	36.77	360.71	52.32	
Junc HYD2	89.02	0.48	125.77	36.75	360.52	52.29	
Junc T1	89.14	0.48	125.77	36.63	359.34	52.12	
Junc T2	89.17	0.24	125.77	36.6	359.05	52.08	
Junc T3	88.96	0.48	125.77	36.81	361.11	52.37	
Resvr 1	125.8	-18.17	125.8	0	0.00	0.00	
Resvr 2	125.8	-15.53	125.8	0	0.00	0.00	
Network Table - Links	s - (Peak Hour)						
	Length	Diameter	Roughness	Flow	Velocity	Headloss	Friction
Link ID	m	mm		LPS	m/s	m/km	Factor
Pipe P1	19	204	110	1.93	0.06	0.04	0.044
Pipe P2	32	204	110	0.96	0.03	0.01	0.048
Pipe P3	142	204	110	0.25	0.01	0.00	0.060
Pipe P4	45	204	110	-0.23	0.01	0.00	0.048
Pipe P5	31	204	110	0.47	0.01	0.00	0.059
Pipe P6	10	204	110	-0.25	0.01	0.00	0.065
Pipe P7	137	204	110	-0.49	0.01	0.00	0.054

Network Table - Node	es - (Max Pressure Chec	k)					
	Elevation	Demand	Head	Pressure	Pressure	Pressure	Age
Node ID	m	LPS	m	m	kPa	psi	Hours
Junc HYD1	89	0.04	130.3	41.3	405.15	58.76	15.22
Junc HYD2	89.02	0.09	130.3	41.28	404.96	58.73	25.73
Junc T1	89.14	0.09	130.3	41.16	403.78	58.56	1.33
Junc T2	89.17	0.04	130.3	41.13	403.49	58.52	2.99
Junc T3	88.96	0.09	130.3	41.34	405.55	58.82	10.07
Resvr 1	130.3	-3.3	130.3	0	0.00	0.00	0
Resvr 2	130.3	-2.83	130.3	0	0.00	0.00	0
Network Table - Link	s - (Max Pressure Check	x)					
	Length	Diameter	Roughness	Flow	Velocity	Headloss	Friction
Link ID	m	mm		LPS	m/s	m/km	Factor
Pipe P1	19	204	110	0.35	0.01	0.00	0.068
Pipe P2	32	204	110	0.17	0.01	0.00	0.041
Pipe P3	142	204	110	0.05	0.00	0.00	0.137
Pipe P4	45	204	110	-0.04	0.00	0.00	0.000
Pipe P5	31	204	110	0.09	0.00	0.00	0.175
					0.00		
Pipe P6	10	204	110	-0.05	0.00	0.00	0.000

Fire	Flow	Minimum Pressure			
LOCATION	Flow (L/s)	Pressure (kPa)	Pressure (PSI)	Node	
B1	267	258.79	37.53	HYD2	
B2	250	277.82	40.29	HYD2	
B3	300	228.08	33.08	HYD2	
B4	283	234.16	33.96	HYD2	

Network Table - Node	s (Max Day + FF 'Bldg 1')					
	Elevation	Demand	Head	Pressure	Pressure	Pressure	
Node ID	m	LPS	m	m	kPa	psi	
Junc HYD1	89	95.11	115.77	26.77	262.61	38.09	
Junc HYD2	89.02	77.22	115.4	26.38	258.79	37.53	
Junc EXHYD1	89.3	0	122.17	32.87	322.45	46.77	
Junc EXHYD2	89.7	95.17	122.65	32.95	323.24	46.88	
Junc T1	89.14	0.22	119.01	29.87	293.02	42.50	
Junc T2	89.17	0.11	116.8	27.63	271.05	39.31	
Junc T3	88.96	0.22	115.85	26.89	263.79	38.26	
Resvr 1	123.7	-74.36	123.7	0	0.00	0.00	
Resvr 2	124.1	-203.96	124.1	0	0.00	0.00	
Network Table - Links	(Max Day + FF 'Bldg 1')						
	Length	Diameter	Roughness	Flow	Velocity	Headloss	Friction
Link ID	m	mm	-	LPS	m/s	m/km	Factor
Pipe P1	19	204	110	172.88	5.29	157.92	0.023
Pipe P2	32	204	110	110.60	3.38	69.06	0.024
Pipe P3	142	204	110	38.65	1.18	9.85	0.028
Pipe P4	45	204	110	-38.57	1.18	9.81	0.028
Pipe P5	31	204	110	71.85	2.20	31.06	0.026
Pipe P6	10	204	110	33.06	1.01	7.38	0.029
FIPEFO	10	204	110	33.00	1.01	1.00	0.023

(Max Day + FF 'Bldg 2	2')					
Elevation	Demand	Head	Pressure	Pressure	Pressure	
m	LPS	m	m	kPa	psi	
89	95.11	117.47	28.47	279.29	40.51	
89.02	60.22	117.34	28.32	277.82	40.29	
89.3	0	122.8	33.5	328.64	47.66	
89.7	95.17	123.19	33.49	328.54	47.65	
89.14	0.22	120.19	31.05	304.60	44.18	
89.17	0.11	118.38	29.21	286.55	41.56	
88.96	0.22	117.57	28.61	280.66	40.71	
124.1	-68.4	124.1	0	0.00	0.00	
124.5	-192.91	124.5	0	0.00	0.00	
(Max Day + FF 'Bldg 2')					
Length	Diameter	Roughness	Flow	Velocity	Headloss	Friction
m	mm		LPS	m/s	m/km	Factor
19	204	110	155.88	4.77	130.37	0.023
32	204	110	99.19	3.03	56.45	0.025
142	204	110	33.07	1.01	7.38	0.029
45	204	110	-27.14	0.83	5.12	0.030
31	204	110	66.01	2.02	26.55	0.026
10	204	110	38.64	1.18	9.85	0.028
137	204	110	-56.47	1.73	19.88	0.027
	Elevation m 89 89.02 89.3 89.7 89.14 88.96 124.1 124.5 (Max Day + FF 'Bidg 2' Length m 19 32 142 45 31 10	m LPS 89 95.11 89.02 60.22 89.3 0 89.7 95.17 89.14 0.22 89.17 0.11 88.96 0.22 124.1 -68.4 124.5 -192.91 Kength Diameter 19 204 32 204 45 204 31 204 31 204 31 204 31 204 31 204 31 204 31 204 32 204 32 204 31 204 31 204 30 204	Elevation Demand Head m LPS m 89 95.11 117.47 89.02 60.22 117.34 89.3 0 122.8 89.7 95.17 123.19 89.14 0.22 120.19 89.17 0.11 118.38 88.96 0.22 117.57 124.1 -68.4 124.1 124.5 -192.91 124.5 (Max Day + FF 'Bldg 2') Length Diameter Roughness m 19 204 110 32 204 110 142 45 204 110 142 10 204 110 110	Elevation Demand Head Pressure m LPS m m 89 95.11 117.47 28.47 89.02 60.22 117.34 28.32 89.3 0 122.8 33.5 89.7 95.17 123.19 33.49 89.14 0.22 120.19 31.05 89.17 0.11 118.38 29.21 88.96 0.22 117.57 28.61 124.1 -68.4 124.1 0 124.5 -192.91 124.5 0 (Max Day + FF 'Bldg 2') Length Diameter Roughness Flow 19 204 110 155.88 32 204 110 99.19 142 204 110 33.07 45 204 110 -27.14 31 204 110 66.01 10 204 110 38.64	Elevation Demand Head Pressure Pressure m LPS m m kPa 89 95.11 117.47 28.47 279.29 89.02 60.22 117.34 28.32 277.82 89.3 0 122.8 33.5 328.64 89.7 95.17 123.19 33.49 328.54 89.14 0.22 120.19 31.05 304.60 89.17 0.11 118.38 29.21 286.55 88.96 0.22 117.57 28.61 280.66 124.1 -68.4 124.1 0 0.00 124.5 -192.91 124.5 0 0.00 124.5 -192.91 124.5 0 0.00 124.5 -192.91 124.5 0 0.00 124.5 -192.91 124.5 0 0.00 124.5 204 110 155.88 4.77 32 204 <td< td=""><td>Elevation Demand Head Pressure Pressure Pressure Pressure m LPS m m m kPa psi 89 95.11 117.47 28.47 279.29 40.51 89.02 60.22 117.34 28.32 277.82 40.29 89.3 0 122.8 33.5 328.64 47.66 89.7 95.17 123.19 33.49 328.54 47.65 89.14 0.22 120.19 31.05 304.60 44.18 89.17 0.11 118.38 29.21 286.55 41.56 88.96 0.22 117.57 28.61 280.66 40.71 124.1 -68.4 124.1 0 0.00 0.00 124.5 -192.91 124.5 0 0.00 0.00 124.5 -192.91 124.5 0 0.00 0.00 132 204 110 155.88 4.77 130.</td></td<>	Elevation Demand Head Pressure Pressure Pressure Pressure m LPS m m m kPa psi 89 95.11 117.47 28.47 279.29 40.51 89.02 60.22 117.34 28.32 277.82 40.29 89.3 0 122.8 33.5 328.64 47.66 89.7 95.17 123.19 33.49 328.54 47.65 89.14 0.22 120.19 31.05 304.60 44.18 89.17 0.11 118.38 29.21 286.55 41.56 88.96 0.22 117.57 28.61 280.66 40.71 124.1 -68.4 124.1 0 0.00 0.00 124.5 -192.91 124.5 0 0.00 0.00 124.5 -192.91 124.5 0 0.00 0.00 132 204 110 155.88 4.77 130.

Network Table - Nodes	(Max Day + FF 'Bldg 3	3')					
	Elevation	Demand	Head	Pressure	Pressure	Pressure	
Node ID	m	LPS	m	m	kPa	psi	
Junc HYD1	89	95.11	112.95	23.95	234.95	34.08	
Junc HYD2	89.02	95.22	112.27	23.25	228.08	33.08	
Junc EXHYD1	89.3	55	120.47	31.17	305.78	44.35	
Junc EXHYD2	89.7	55.17	121.67	31.97	313.63	45.49	
Junc T1	89.14	0.22	116.78	27.64	271.15	39.33	
Junc T2	89.17	0.11	114.1	24.93	244.56	35.47	
Junc T3	88.96	0.22	113	24.04	235.83	34.20	
Resvr 1	122.9	-94.47	122.9	0	0.00	0.00	
Resvr 2	123.3	-216.84	123.3	0	0.00	0.00	
Network Table - Links	(Max Day + FF 'Bldg 3')					
	Length	Diameter	Roughness	Flow	Velocity	Headloss	Friction
Link ID	m	mm		LPS	m/s	m/km	Factor
Pipe P1	19	204	110	190.88	5.84	189.72	0.022
Pipe P2	32	204	110	122.67	3.75	83.65	0.024
Pipe P3	142	204	110	44.76	1.37	12.93	0.028
Pipe P4	45	204	110	-50.45	1.54	16.14	0.027
Pipe P5	31	204	110	77.79	2.38	35.99	0.025
Pipe P6	10	204	110	27.12	0.83	5.11	0.030
Pipe P7	137	204	110	-67.99	2.08	28.04	0.026

Pressure m 24.56 23.87 31.79 32.54 28.26	Pressure kPa 240.93 234.16 311.86 319.22	Pressure psi 34.94 33.96 45.23	
24.56 23.87 31.79 32.54	240.93 234.16 311.86	34.94 33.96 45.23	
23.87 31.79 32.54	234.16 311.86	33.96 45.23	
31.79 32.54	311.86	45.23	
32.54			
	319.22		
28.26		46.30	
	277.23	40.21	
25.55	250.65	36.35	
24.65	241.82	35.07	
0	0.00	0.00	
0	0.00	0.00	
Flow	Velocity	Headloss	Friction
LPS	m/s	m/km	Factor
190.88	5.84	189.72	0.022
122.67	3.75	83.65	0.024
44.76	1.37	12.93	0.028
-50.45	1.54	16.14	0.027
77.79	2.38	35.99	0.025
27.12	0.83	5.11	0.030
-67.99	2.08	28.04	0.026
	25.55 24.65 0 0 Flow LPS 190.88 122.67 44.76 -50.45 77.79 27.12	25.55 250.65 24.65 241.82 0 0.00 0 0.00 100.88 5.84 122.67 3.75 44.76 1.37 -50.45 1.54 77.79 2.38 27.12 0.83	25.55 250.65 36.35 24.65 241.82 35.07 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 Els Meadloss m/s m/km 190.88 5.84 189.72 122.67 3.75 83.65 44.76 1.37 12.93 -50.45 1.54 16.14 77.79 2.38 35.99 27.12 0.83 5.11

As per 1999 Fire Underwriter's Survey Guidelines

Novatech Project #: 120057 Project Name: Provence Orleans - Block 126 Date: 6/29/2020 Input By: Lucas Wilson Reviewed By: Project Manager

Legend

No Information or Input Required

Building Description: Back-2-Back Towns (Block 1)

Step			Input		Value Used	Total Fire Flow (L/min)
	•	Base Fire Flo	w			(
	Construction Ma	terial		Mult	iplier	
1	Coefficient related to type	Wood frame Ordinary construction Non-combustible construction	Yes	1.5 1 0.8	1.5	
	of construction	Modified Fire resistive construction (2 hrs) Fire resistive construction (> 3 hrs)		0.6		
	Floor Area		540			
2	Α	Building Footprint (m ²) Number of Floors/Storeys	516 3			
2		Area of structure considered (m ²)			1,548	
	F	Base fire flow without reductions F = 220 C (A) ^{0.5}				13,000
		Reductions or Surc	harges			
	Occupancy haza	rd reduction or surcharge	- J	Reduction	/Surcharge	
		Non-combustible Limited combustible	Yes	-25% -15%		
3	(1)	Combustible Free burning		-13% 0% 15%	-15%	11,050
		Rapid burning		25%		
	Sprinkler Reduct	tion		Redu	ction	
		Adequately Designed System (NFPA 13)		-30%		
4	(2)	Standard Water Supply		-10%		0
	(-/	Fully Supervised System		-10%		·
	-		Cum	ulative Total	0%	
	Exposure Surch	arge (cumulative %) North Side	> 45.1m		Surcharge 0%	
		East Side	3.1 - 10 m		20%	
5	(3)	South Side	10.1 - 20 m		15%	4,973
		West Side	20.1 - 30 m		10%	
			Cum	ulative Total	45%	
		Results				
0	(4) + (0) + (0)	Total Required Fire Flow, rounded to nea	rest 1000L/mir	1	L/min	16,000
6	(1) + (2) + (3)	(2,000 L/min < Fire Flow < 45,000 L/min)		or	L/s	267
		· · · · · · · · · · · · · · · · · · ·		or	USGPM	4,227
7	Storage Volume	Required Duration of Fire Flow (hours)			Hours	3.5
	storage volume	Required Volume of Fire Flow (m ³)			m ³	3360

As per 1999 Fire Underwriter's Survey Guidelines

Novatech Project #: 120057 Project Name: Provence Orleans - Block 126 Date: 6/29/2020 Input By: Lucas Wilson Reviewed By: Project Manager

Legend

No Information or Input Required

Building Description: Back-2-Back Towns (Block 2)

Step			Input		Value Used	Total Fire Flow (L/min)
		Base Fire Flor	N			. ,
	Construction Ma	terial		Mult	iplier	
1	Coefficient	Wood frame Ordinary construction	Yes	1.5 1		
1	related to type of construction C	Non-combustible construction Modified Fire resistive construction (2 hrs)		0.8	1.5	
	Floor Area	Fire resistive construction (> 3 hrs)		0.6		
	A	Building Footprint (m ²) Number of Floors/Storeys	516 3			
2		Area of structure considered (m ²)	Ŭ		1,548	
	F	Base fire flow without reductions				13,000
		$F = 220 C (A)^{0.5}$				
	1	Reductions or Surc	harges			
	Occupancy haza	rd reduction or surcharge			/Surcharge	
3	3	Non-combustible Limited combustible	Yes	-25% -15%		
	(1)	Combustible Free burning		0% 15%	-15%	11,050
	Sprinkler Reduct	Rapid burning		25% Redu	iction	
		Adequately Designed System (NFPA 13)		-30%	ction	
4	(0)	Standard Water Supply		-10%		•
	(2)	Fully Supervised System		-10%		0
			Curr	ulative Total	0%	
	Exposure Surch	arge (cumulative %)			Surcharge	
		North Side East Side	> 45.1m > 45.1m		0% 0%	
5	(3)	South Side	10.1 - 20 m		15%	3,868
		West Side	3.1 - 10 m	ulative Total	20% 35%	
		Results	Gui		JJ /0	
		Total Required Fire Flow, rounded to nea	rest 1000L/mii	า	L/min	15,000
6	(1) + (2) + (3)	(2,000 L/min < Fire Flow < 45,000 L/min)		or	L/s	250
		(2,000 L/IIIII > 1 IIE I IOW > 40,000 L/IIIII)		or	USGPM	3,963
7	Storage Volume	Required Duration of Fire Flow (hours)			Hours	3
'	Storage volume	Required Volume of Fire Flow (m ³)			m ³	2700

As per 1999 Fire Underwriter's Survey Guidelines

Novatech Project #: 120057 Project Name: Provence Orleans - Block 126 Date: 6/29/2020 Input By: Lucas Wilson Reviewed By: Project Manager

Legend

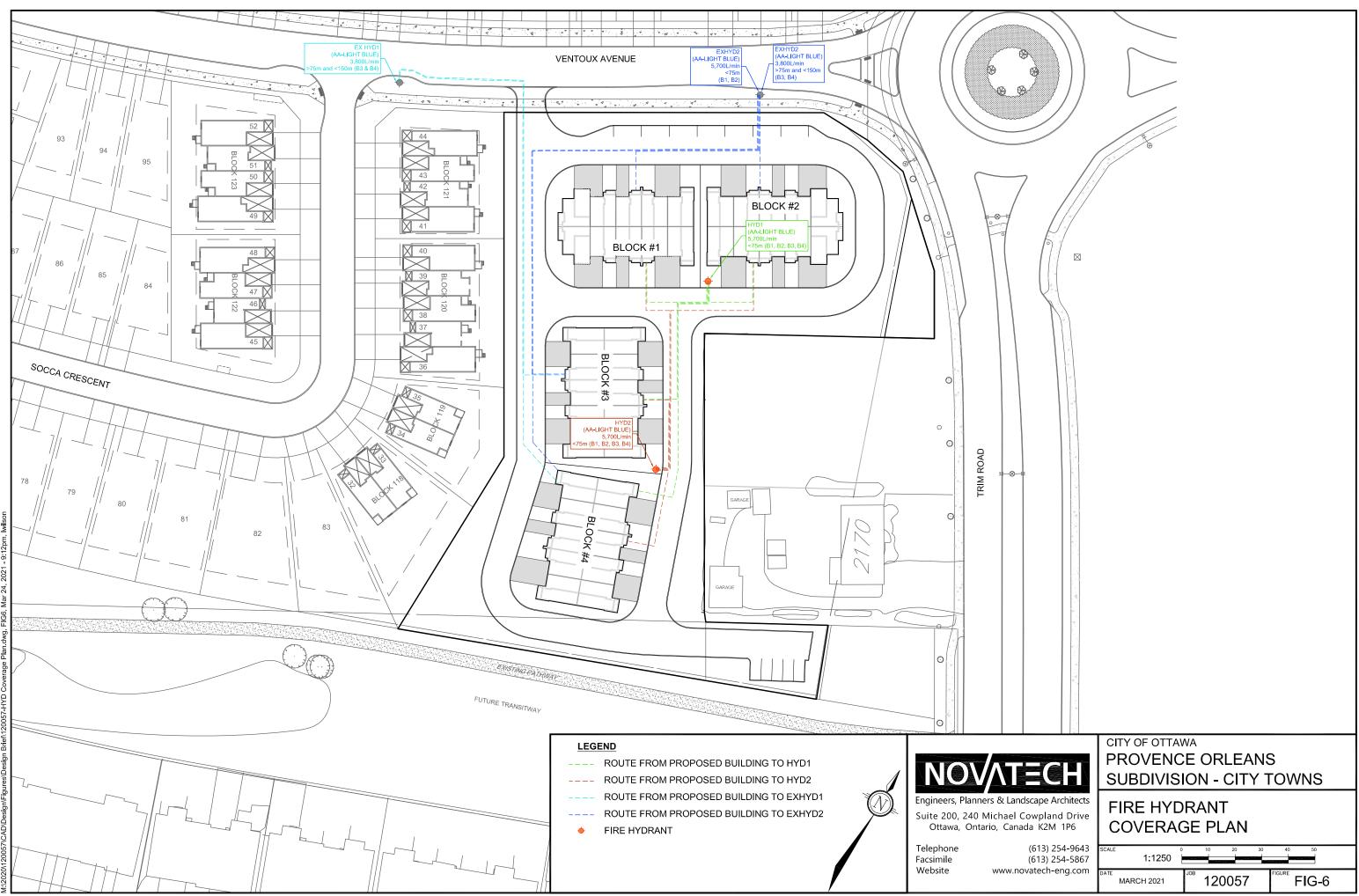
No Information or Input Required

Building Description: Back-2-Back Towns (Block 3)

Step			Input		Value Used	Total Fire Flow (L/min)
		Base Fire Flor	N		L	. ,
	Construction Ma	terial		Mult	plier	
	Coefficient	Wood frame	Yes	1.5		
1	related to type	Ordinary construction		1		
	of construction	Non-combustible construction		0.8	1.5	
	С	Modified Fire resistive construction (2 hrs)		0.6		
		Fire resistive construction (> 3 hrs)		0.6		
	Floor Area	2				
		Building Footprint (m ²)	553			
2	Α	Number of Floors/Storeys	3			
2		Area of structure considered (m ²)			1,659	
	F	Base fire flow without reductions				13,000
	•	$F = 220 C (A)^{0.5}$				10,000
		Reductions or Surc	harges			
	Occupancy haza	rd reduction or surcharge		Reduction	Surcharge	
	3 (1)	Non-combustible		-25%		
3		Limited combustible	Yes	-15%		
-		Combustible		0%	-15%	11,050
		Free burning		15%		
		Rapid burning		25%		
	Sprinkler Reduct				ction	
		Adequately Designed System (NFPA 13)		-30%		
4	(2)	Standard Water Supply		-10%		0
	(2)	Fully Supervised System		-10%		Ū
			Cum	ulative Total	0%	
	Exposure Surcha	arge (cumulative %)			Surcharge	
		North Side	10.1 - 20 m		15%	
5		East Side	10.1 - 20 m		15%	
J	(3)	South Side	0 - 3 m		25%	7,183
		West Side	20.1 - 30 m		10%	
			Curr	ulative Total	65%	
		Results				
		Total Required Fire Flow, rounded to nea	rest 1000L/mii	n	L/min	18,000
6	(1) + (2) + (3)	(2,000 L/min < Fire Flow < 45,000 L/min)		or	L/s	300
		$(2,000 \text{ L/IIIII} \times 1 \text{ He FIOW} \times 45,000 \text{ L/IIIII})$		or	USGPM	4,756
-	Otomore Mal	Required Duration of Fire Flow (hours)			Hours	4
7	Storage Volume	Required Volume of Fire Flow (m ³)			m ³	4320

As per 1999 Fire Underwriter's Survey Guidelines

Novatech Project #: 120057 Project Name: Provence Orleans - Block 126 Date: 6/29/2020 Input By: Lucas Wilson Reviewed By: Project Manager



Legend

No Information or Input Required

Building Description: Back-2-Back Towns (Block 4)

Step			Input		Value Used	Total Fire Flow (L/min)
		Base Fire Flo	w			
	Construction Ma	terial		Mult	iplier	
	Coefficient	Wood frame	Yes	1.5		
1	related to type	Ordinary construction		1		
	of construction	Non-combustible construction		0.8	1.5	
	C	Modified Fire resistive construction (2 hrs)		0.6		
		Fire resistive construction (> 3 hrs)		0.6		
	Floor Area	â				
		Building Footprint (m ²)	553			
2	Α	Number of Floors/Storeys	3			
2		Area of structure considered (m ²)			1,659	
	F	Base fire flow without reductions				13,000
	•	$F = 220 C (A)^{0.5}$				10,000
		Reductions or Surc	harges			
	Occupancy haza	rd reduction or surcharge		Reduction	/Surcharge	
	3 (1)	Non-combustible		-25%		
3		Limited combustible	Yes	-15%		
-		Combustible		0%	-15%	11,050
		Free burning		15%		
		Rapid burning		25%		
	Sprinkler Reduct		-	Redu	ction	
		Adequately Designed System (NFPA 13)		-30%		
4	(2)	Standard Water Supply		-10%		0
	(2)	Fully Supervised System		-10%		U
			Cum	ulative Total	0%	
	Exposure Surcha	arge (cumulative %)			Surcharge	
		North Side	0 - 3 m		25%	
5		East Side	10.1 - 20 m		15%	
5	(3)	South Side	> 45.1m		0%	5,525
		West Side	20.1 - 30 m		10%	
			Curr	ulative Total	50%	
		Results				
		Total Required Fire Flow, rounded to nea	rest 1000L/mi	n	L/min	17,000
6	(1) + (2) + (3)	(2,000 L/min < Fire Flow < 45,000 L/min)		or	L/s	283
		$(2,000 \text{ L/IIIII} \times 1 \text{ IIE 1 10W} \times 45,000 \text{ L/IIIII})$		or	USGPM	4,491
7	Stowers Malaret	Required Duration of Fire Flow (hours)			Hours	3.5
7	Storage Volume	Required Volume of Fire Flow (m ³)			m ³	3570

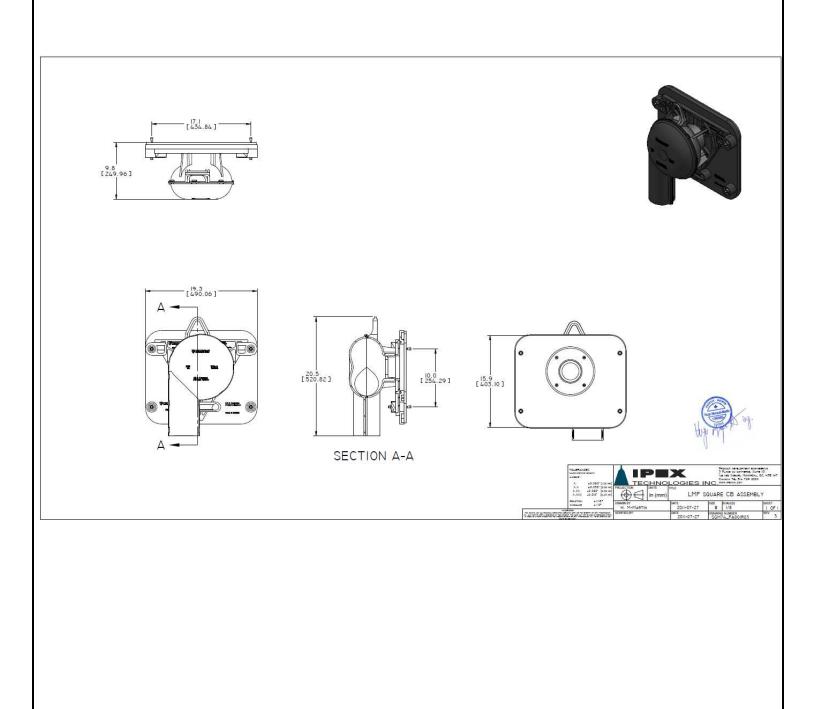
APPENDIX B

SWM Calculations

TEMPEST Product Submittal Package

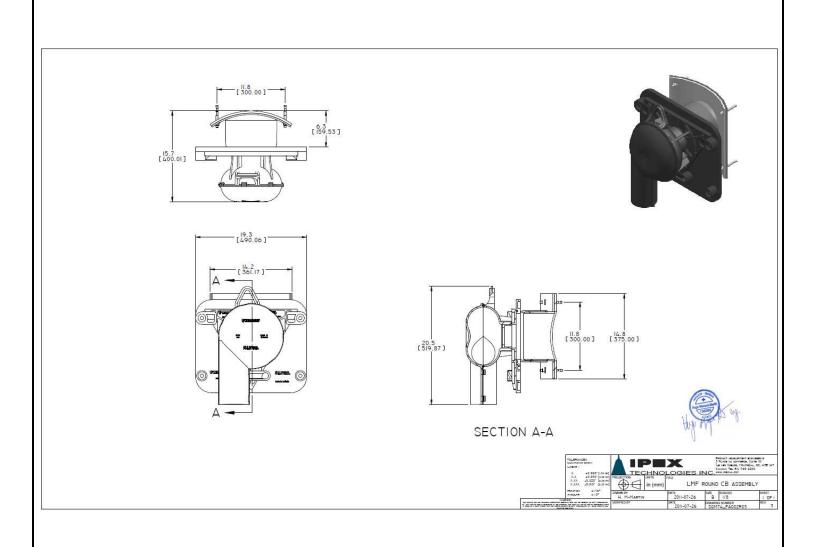
Date: March 23, 2021

<u>Customer</u>: Novatech

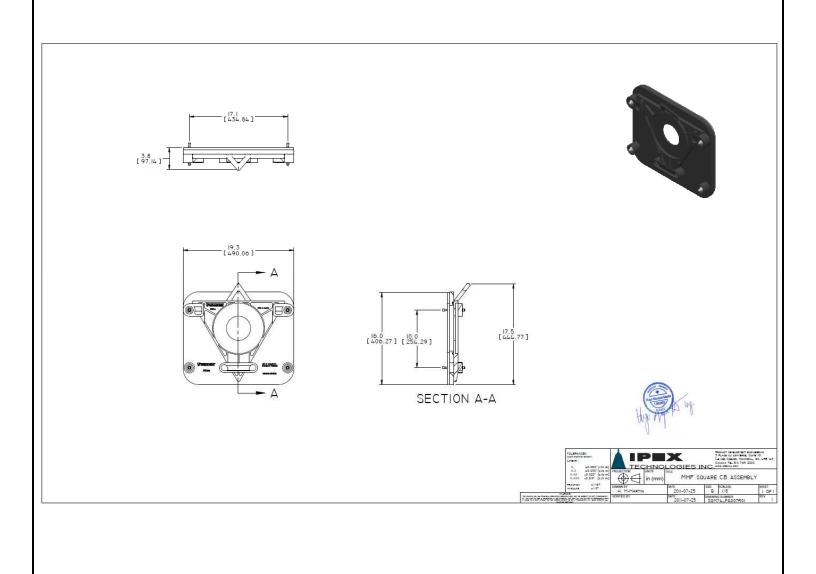

Contact: Lucas Wilson

Location: Ottawa

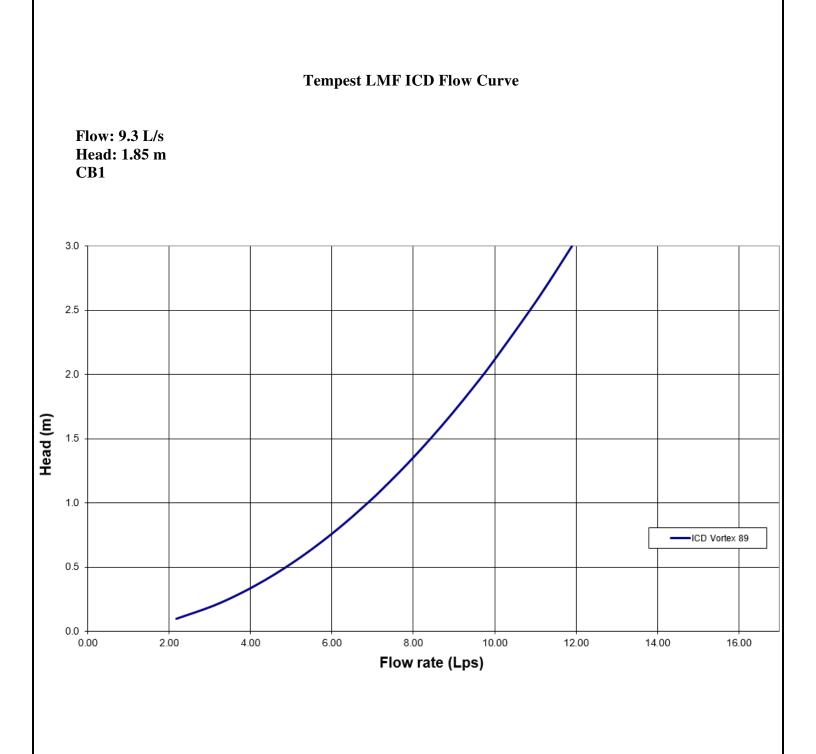
<u>Project Name</u>: Provence Orleans Subdivision – City Towns

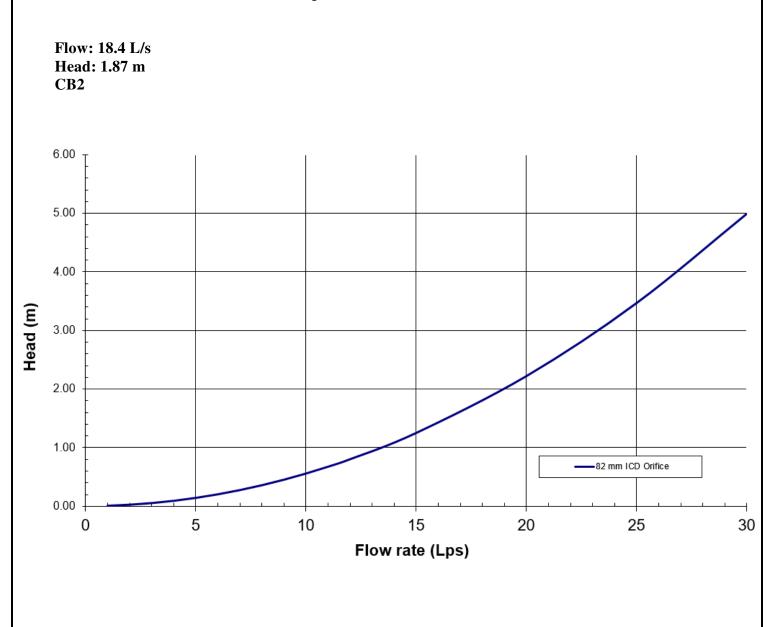


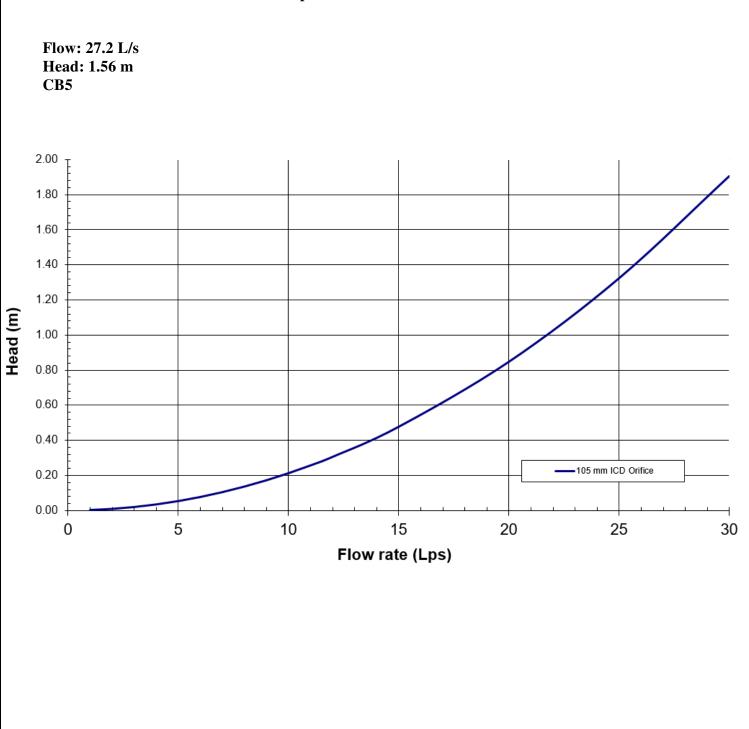
<u>Tempest LMF ICD Sq</u> Shop Drawing



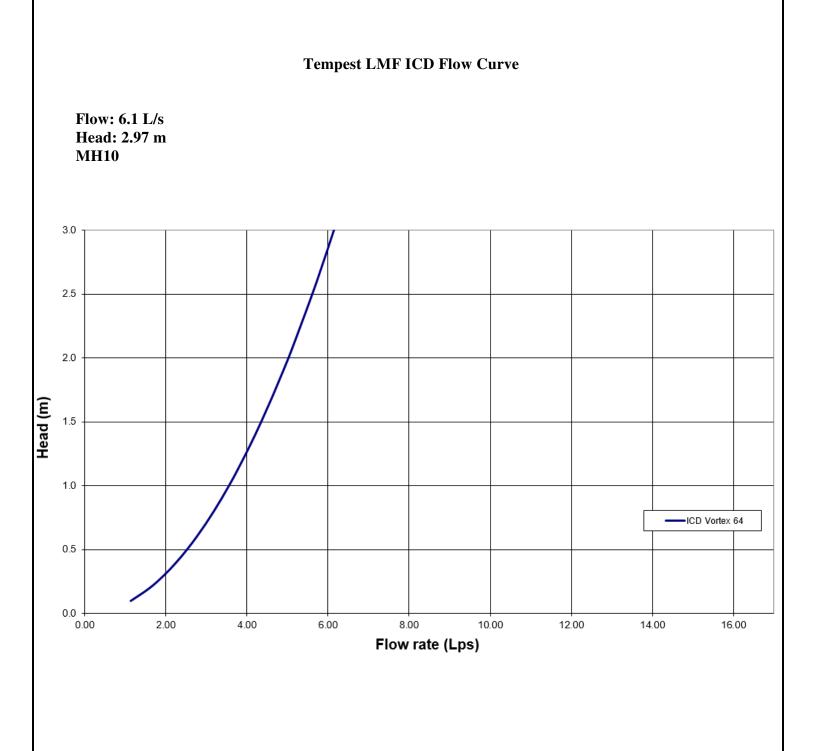
Tempest LMF ICD Rd Shop Drawing



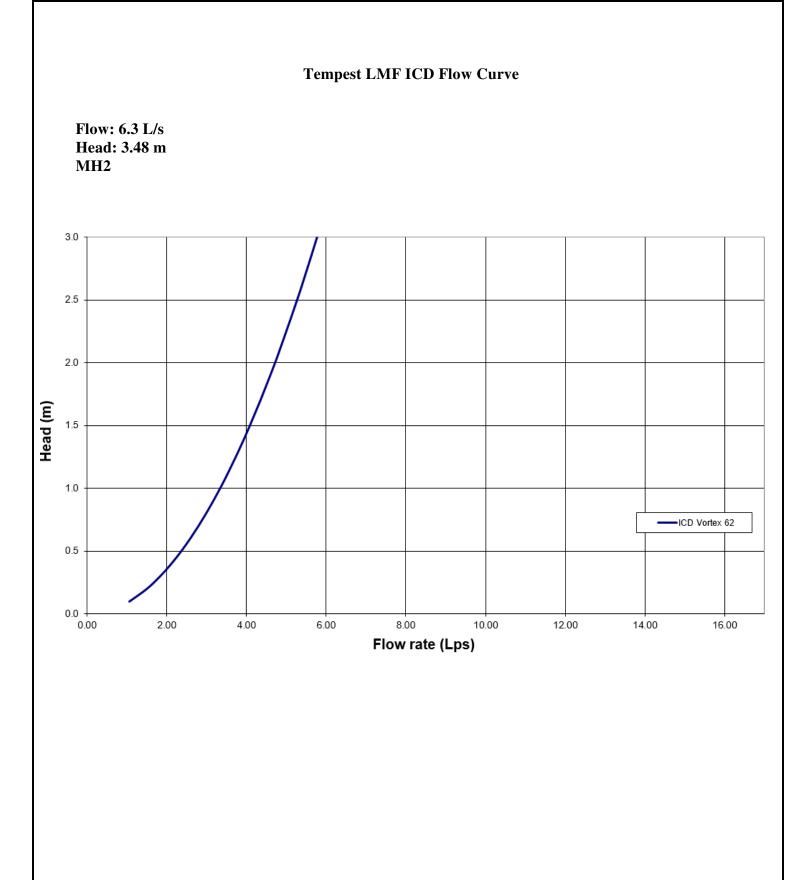

Tempest MHF ICD Sq Shop Drawing

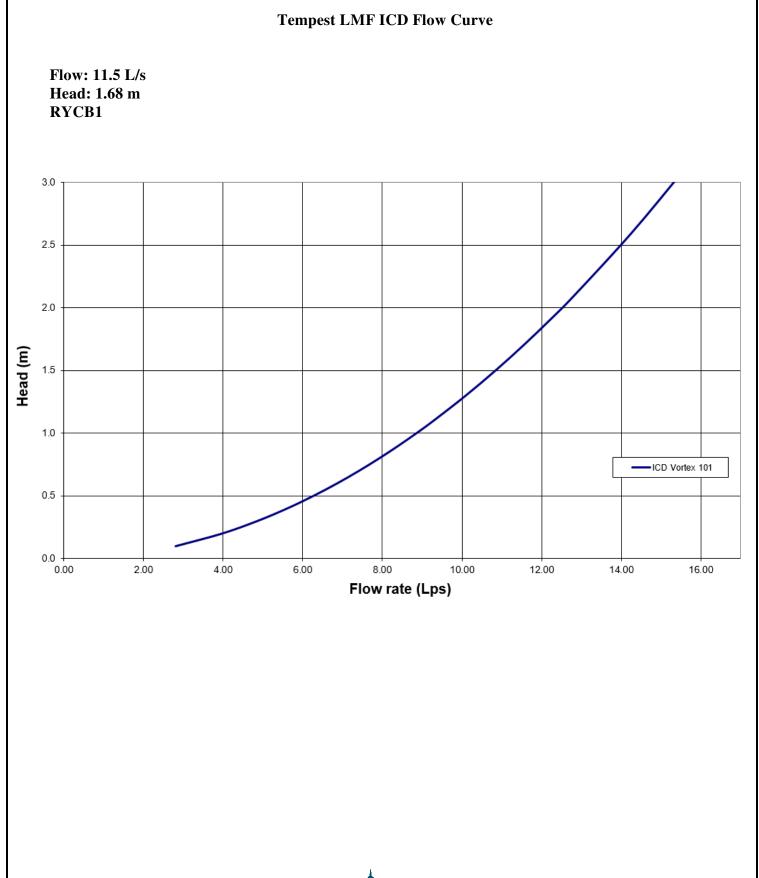


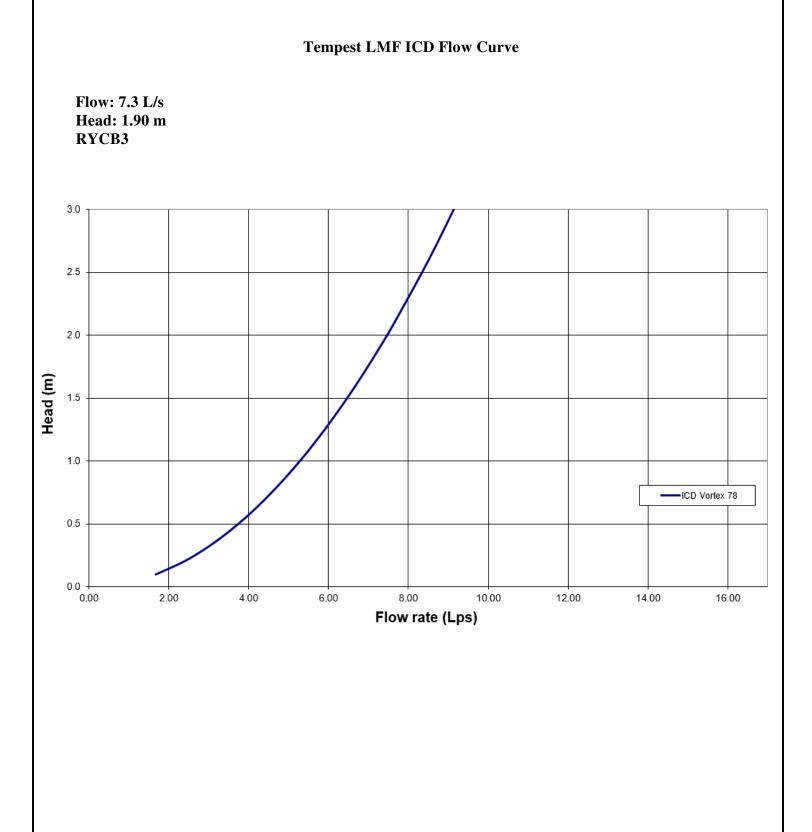
Tempest MHF ICD Flow Curve



Tempest MHF ICD Flow Curve



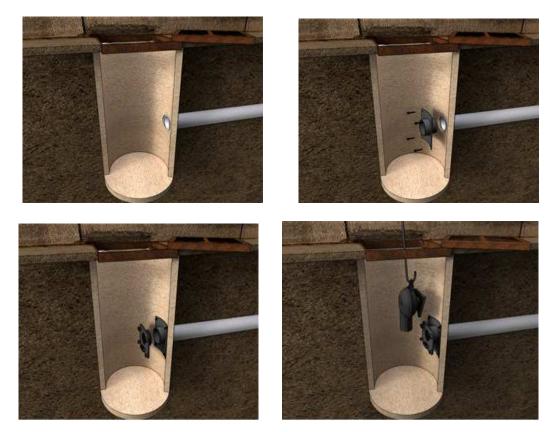





IPEX

Square CB Installation Notes:

- 1. Materials and tooling verification:
 - Tooling: impact drill, 3/8" concrete bit, torque wrench for 9/16" nut, hand hammer, level, and marker.
 - Material: (4) concrete anchor 3/8x3-1/2, (4) washers, (4) nuts
- 2. Use the mounting wall plate to locate and mark the hole (4) pattern on the catch basin wall. You should use a level to ensure that the plate is at the horizontal.
- 3. Use an impact drill with a 3/8'' concrete bit to make the four holes at a minimum of 1-1/2'' depth up to 2-1/2''. Clean the concrete dust from the holes.
- 4. Install the anchors (4) in the holes by using a hammer. Put the nuts on the top of the anchors to protect the threads when you will hit the anchors with the hammer. Remove the nuts on the ends of the anchors
- 5. Install the wall mounting plate on the anchors and screw the nut in place with a maximum torque of 40 N.m (30 lbf-ft). There should be no gap between the wall mounting plate and the catch basin wall.
- 6. From ground above using a reach bar, lower the device by hooking the end of the reach bar to the handle of the LMF device. Align the triangular plate portion into the mounting wall plate. Push down the device to be sure it has centered in to the wall mounting plate and has created a seal.



Round CB Installation Notes: (Refer to square install notes above for steps 1, 3, & 4)

- 2. Use spigot catch basin wall plate to locate and mark the hole (4) pattern on the catch basin wall. You should use a level to ensure that the plate is at the horizontal.
- 5. Install the CB spigot wall plate on the anchors and screw the 4 nuts in place with a maximum torque of 40 N.m (30 lb-ft). There should be no gap between the CB spigot wall plate and the catch basin wall.
- 6. Apply solvent cement on the hub of the universal mounting plate and the spigot of the spigot CB wall plate. Slide the hub over the spigot. Make sure the universal mounting plate is at the horizontal and its hub is completely inserted onto the spigot. Normally, the corners of the universal mounting plate hub adapter should touch the catch basin wall.
- 7. From ground above using a reach bar, lower the ICD device by hooking the end of the reach bar to the handle of the ICD device. Align the triangular plate portion into the mounting wall plate. Push down the device to be sure it has centered into the mounting plate and has created a seal.

CAUTION/WARNING/DISCLAIM:

- Verify that the inlet(s) pipe(s) is not protruding into the catch basin. If it is, cut it back so that the inlet pipe is flush with the catch basin wall.
- Any required cement in the installation must be approved for PVC.
- The solvent cement should not be used below 0°C (32°F) or in a high humidity environment. Please refer to the IPEX solvent cement guide to confirm required curing times or attend the IPEX <u>Online Solvent</u> <u>Cement Training Course</u>.
- Call your IPEX representative for more information or if you have any questions about our products.

IPEX TEMPEST Inlet Control Devices Technical Specification

General

Inlet control devices (ICD's) are designed to provide flow control at a specified rate for a given water head level and also provide odour and floatable control where specified. All ICD's will be IPEX Tempest or approved equal.

All devices shall be removable from a universal mounting plate. An operator from street level using only a T-bar with a hook will be able to retrieve the device while leaving the universal mounting plate secured to the catch basin wall face. The removal of the TEMPEST devices listed above must not require any unbolting or special manipulation or any special tools.

High Flow (HF) Sump devices will consist of a removable threaded cap which can be accessible from street level with out entry into the catchbasin (CB). The removal of the threaded cap shall not require any special tools other than the operator's hand.

ICD's must have no moving parts.

Materials

ICD's are to be manufactured from Polyvinyl Chloride (PVC) or Polyurethane material, designed to be durable enough to withstand multiple freeze-thaw cycles and exposure to harsh elements.

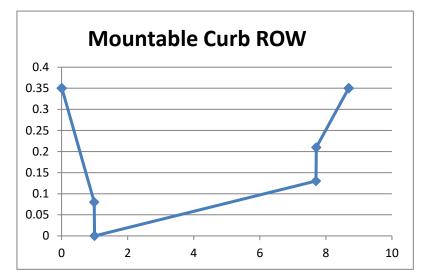
The inner ring seal will be manufactured using a Buna or Nitrile material with hardness between Duro 50 and Duro 70.

The wall seal is to be comprised of a 3/8" thick Neoprene Closed Cell Sponge gasket which is attached to the back of the wall plate.

All hardware will be made from 304 stainless steel.

Dimensioning

The Low Medium Flow (LMF), High Flow (HF) and the High Flow (HF) Sump shall allow for a minimum outlet pipe diameter of 200mm with a 600mm deep Catch Basin sump.


Installation

Contractor shall be responsible for securing, supporting and connecting the ICD's to the existing influent pipe and catchbasin/manhole structure as specified and designed by the Engineer.

Mountable Cu Distance	rb and Gutter Elevation
0	0.35
0.01	0.35
0.99	0.08
1	0
7.7	0.13
7.71	0.21
8.69	0.35
8.7	0.35

Provence Orleans - Block 126 (120057) PCSWMM Storage Curves (surface storage)

CB1-Storage							
Depth (m)	Area (m ²)	Volume (m ³)					
0.00	0.36	0.00					
1.70	0.36	0.61					
1.99	309.80	45.59					
2.00	0.00	47.13					
2.70	0.00	47.13					

CB2-Storage							
Depth (m) Area (m ²) Volume (m							
0.00	0.36	0.00					
1.70	0.36	0.61					
2.00	353.80	53.74					
2.01	0.00	55.51					
2.70	0.00	55.51					

CBMH1-Storage						
Depth (m) Area (m ²) Volume (m						
0.00	1.13	0.00				
2.52	1.13	2.85				
2.82	334.00	53.12				
2.83	0.00	54.79				
3.52	0.00	54.79				

CB3-Storage							
Depth (m)	Area (m ²)	Volume (m ³)					
0.00	0.36	0.00					
1.40	0.36	0.50					
1.70	452.00	68.36					
1.71	0.00	70.62					
2.40	0.00	70.62					

CB4-Storage							
Depth (m) Area (m ²) Volume							
0.00	0.36	0.00					
1.40	0.36	0.50					
1.65	300.00	38.05					
1.66	0.00	39.55					
2.40	0.00	39.55					

CB5-Storage							
Depth (m)	Area (m ²)	Volume (m ³)					
0.00	0.36	0.00					
1.40	0.36	0.50					
1.65	392.50	49.61					
1.66	0.00	51.57					
2.40	0.00	51.57					

CB6-Storage							
Depth (m)	Area (m ²)	Volume (m ³)					
0.00	0.36	0.00					
1.40	0.36	0.50					
1.70	341.30	51.75					
1.71	0.00	53.46					
2.40	0.00	53.46					

CB7-Storage							
Depth (m)	Area (m ²)	Volume (m ³)					
0.00	0.36	0.00					
1.40	0.36	0.50					
1.68	492.30	69.48					
1.69	0.00	71.94					
2.40	0.00	71.94					

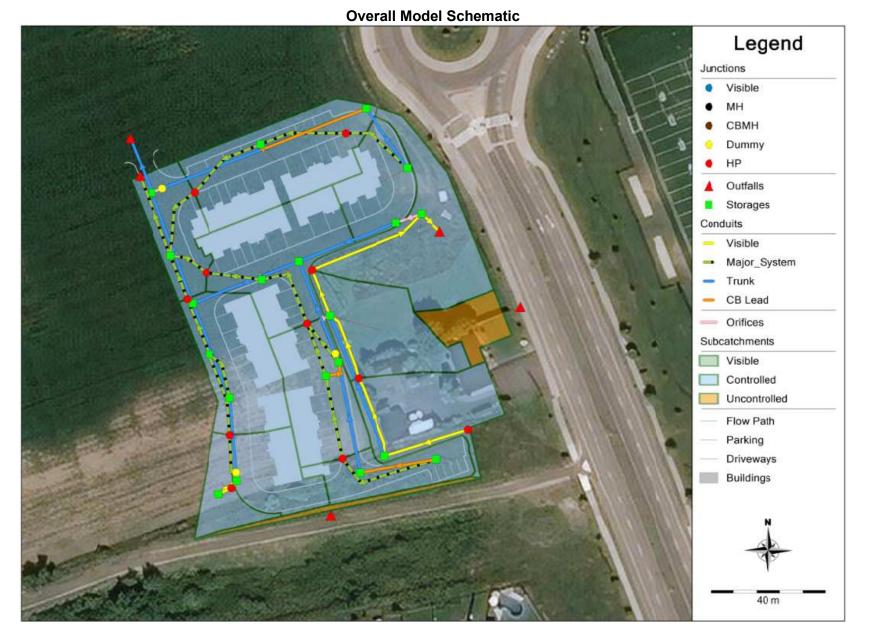
RYCB4-Storage							
Depth (m)	Depth (m) Area (m ²) Volume (m ³						
0.00	0.36	0.00					
1.40	0.36	0.50					
1.70	188.00	28.76					
1.71	0.00	29.70					
2.40	0.00	29.70					

Provence Orleans - Block 126 (120057) PCSWMM Model Results (Ponding)

СВ / СВМН	Invert	Rim	Spill	Ponding		HGL E	ev. (m) ¹		F	onding	Depth (n	า)		Spill D	epth (m)	
ID	Elev. (m)	Elev. (m)	Elev. (m)	Depth (m)	2-yr	5-yr	100-yr	100-yr (+20%)	2-yr	5-yr	100-yr	100-yr (+20%)	2-yr	5-yr	100-yr	100-yr (+20%)
CB1	87.30	89.00	89.29	0.29	88.99	89.06	89.15	89.18	0.00	0.06	0.15	0.18	0.00	0.00	0.00	0.00
CB2	87.38	89.08	89.38	0.30	89.06	89.15	89.25	89.29	0.00	0.07	0.17	0.21	0.00	0.00	0.00	0.00
CB3	87.78	89.18	89.48	0.30	88.90	89.26	89.36	89.40	0.00	0.08	0.18	0.22	0.00	0.00	0.00	0.00
CB4	87.78	89.18	89.43	0.25	88.90	89.26	89.36	89.40	0.00	0.08	0.18	0.22	0.00	0.00	0.00	0.00
CB5	87.73	89.13	89.38	0.25	89.11	89.20	89.29	89.33	0.00	0.07	0.16	0.20	0.00	0.00	0.00	0.00
CB6	87.72	89.12	89.42	0.30	88.94	89.17	89.29	89.34	0.00	0.05	0.17	0.22	0.00	0.00	0.00	0.00
CB7	87.65	89.05	89.33	0.28	88.94	89.17	89.29	89.34	0.00	0.12	0.24	0.29	0.00	0.00	0.00	0.01
CBMH01	86.63	89.15	89.45	0.30	88.94	89.21	89.30	89.34	0.00	0.06	0.15	0.19	0.00	0.00	0.00	0.00
RYCB1	86.84	88.24	88.78	0.54	86.89	87.06	88.52	88.79	0.00	0.00	0.28	0.55	0.00	0.00	0.00	0.01
RYCB2	87.04	88.44	88.88	0.44	87.52	88.11	88.78	88.84	0.00	0.00	0.34	0.40	0.00	0.00	0.00	0.00
RYCB3	86.87	88.55	88.73	0.18	87.52	88.11	88.77	88.81	0.00	0.00	0.22	0.26	0.00	0.00	0.04	0.08
RYCB4	87.75	89.15	89.45	0.30	88.94	89.21	89.30	89.34	0.00	0.06	0.15	0.19	0.00	0.00	0.00	0.00

¹4-hour Chicago Storm.

Provence Orleans - Block 126 (120057) Summary of Hydraulic Grade Line (HGL) Elevations

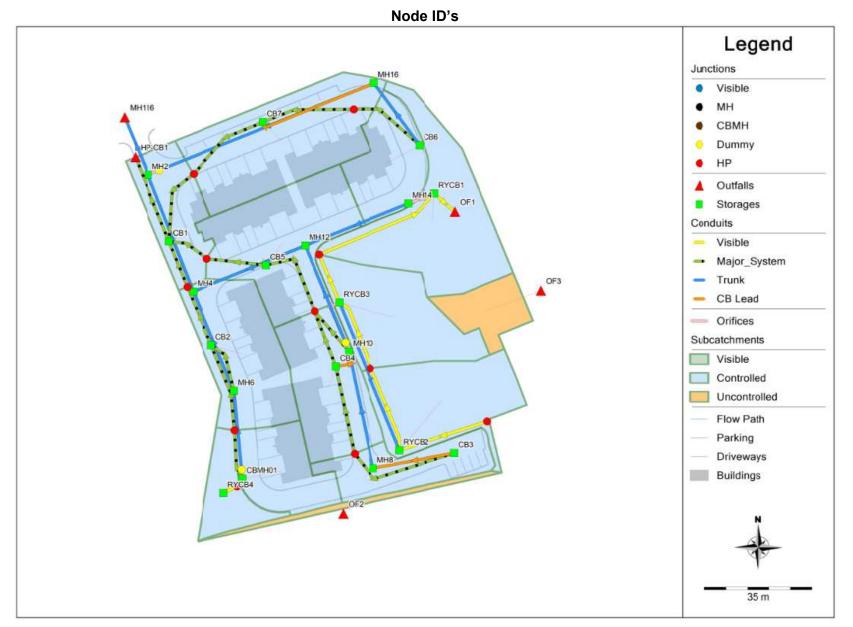


MH ID	Obvert Elevation	T/G Elevation	HGL Elevation ¹	Surcharge	Clearance from T/G	HGL in Stress Test ¹
	(m)	(m)	(m)	(m)	(m)	(m)
MH2	86.27	89.27	86.03	0.00	3.24	86.04
MH4	86.39	89.37	86.18	0.00	3.19	86.19
MH6	89.26	89.26	86.39	0.00	2.87	86.41
MH8	87.07	89.46	89.36	2.29	0.10	89.40
MH10	89.37	89.37	86.48	0.00	2.89	89.40
MH12	86.53	89.32	86.37	0.00	2.95	86.37
MH14	86.71	89.30	86.49	0.00	2.81	86.50
MH16	87.03	89.59	89.29	2.26	0.30	89.34
CBMH01	86.88	89.15	86.68	0.00	2.47	86.68

¹4-hour Chicago Storm; Normal outfall (100yr HGL in MH116 = 85.73).

Provence Orleans – Block 126 (120057) PCSWMM Model Schematic

Provence Orleans – Block 126 (120057) PCSWMM Model Schematic



Provence Orleans – Block 126 (120057) PCSWMM Model Schematic

Provence Orleans – Block 126 PCSWMM Model Output 100yr 4-hour Chicago Storm

NOV	ΛΤΞϹΗ
Engineers, Planner	s & Landscape Architect

A STORM WATER MANA	GEMENT MODEL - V	ZERSION 5	.1 (Build	5.1.013)		
**************************************					·		
**************************************	ments 14						
Number of nodes Number of links Number of pollutan Number of land use	48 ts 0						
******************* Raingage Summary ******							
Name	Data Source			Data Type	Record	ling al	
RG1	C4hr-100yr				FY 10 mi		
**************************************	ry						
Name					pe Rain Ga		Outlet
- A1	0.08	53.33	62.90 2.90 8.60 24.30 72.90 81.40 0.00 75.70 81.40 75.70 75.70 0.00	0.500	00 RG1		CB1
A-10	0.16	51.00	2.90	0.500	00 RG1		RYCB1
A-10a A11	0.05	22.56	2.90	0.500	00 RG1		OF3 RYCB3
A12	0.12	34.29	24.30	0.500	0 RG1		RYCB2
A2	0.12	60.00	72.90	0.500	00 RG1		CB2
A3	0.07	35.00	81.40	0.500	00 RG1		CBMH01
A4	0.04	40.00	0.00	0.500	00 RG1		RYCB4
A5 A6	0.07	23.33	72.90	0.500	JU RGI		CB3 CB4
А6 А7	0.11	55.00 75.00	/5./0	0.500	JU RGI		CB4 CB5
A7 A8	0.15	45 00	75 70	0.500	10 RG1		CB6
A9	0.17	80.00	75.70	0.500	00 RG1		CB7
B1	0.01	50.00	0.00	33.330	00 RG1		OF2

Node Summary *****							
Name	Туре		Elev.				
CBMH01-Dummy	JUNCTION	:	36.63	2.52	0.0		
HP	JUNCTION		38.59	1.00			
HP-CB13	JUNCTION		39.38	1.00	0.0		
HP-CB2 HP-CB20	JUNCTION			1.00	0.0		
HP-CB20 HP-CB3	JUNCTION		39.45	1.00	0.0		
HP-CB6	JUNCTION		39.45 39.48	1.00	0.0		
HP-CB8	JUNCTION	:	39.43	1.00	0.0		
HP-CB9	JUNCTION	:	39.42	1.00	0.0		
HP-RYCB2	JUNCTION	:	38.88	1.00	0.0		
HP-RYCB3	JUNCTION	1	38.73	1.00	0.0		
HP-RYCB4	JUNCTION		39.23	1.00	0.0		
MILLO December			36.38 35.81	2.99	0.0		
MH10_Dummy	JUNCTION			4.40			
MH2_Dummy	JUNCTION	:		1.00	0 0		
MH10_Dummy MH2_Dummy HP-CB1 MH116	JUNCTION JUNCTION OUTFALL OUTFALL	:	39.29	1.00	0.0		
MH2_Dummy HP-CB1 MH116	JUNCTION OUTFALL	1					
MH2_Dummy HP-CB1 MH116 OF1 OF2	JUNCTION OUTFALL OUTFALL OUTFALL OUTFALL		39.29 35.69 38.78 39.00	0.53 1.00 0.00	0.0 0.0 0.0		
MH2_Dummy HP-CB1 MH116 OF1 OF2 OF3	JUNCTION OUTFALL OUTFALL OUTFALL OUTFALL OUTFALL		39.29 35.69 38.78 39.00 0.00	0.53 1.00 0.00 0.00	0.0 0.0 0.0 0.0		
MH2_Dummy HP-CB1 MH116 OF1 OF2 OF3 CB1	JUNCTION OUTFALL OUTFALL OUTFALL OUTFALL OUTFALL STORAGE		39.29 35.69 38.78 39.00 0.00 37.30	0.53 1.00 0.00 0.00 2.70	0.0 0.0 0.0 0.0 0.0		
MH2_Dummy HP-CB1 MH116 OF1 OF2 OF3 CB1 CB1 CB2	JUNCTION OUTFALL OUTFALL OUTFALL OUTFALL STORAGE STORAGE		39.29 35.69 38.78 39.00 0.00 37.30 37.38	0.53 1.00 0.00 0.00 2.70 2.70	0.0 0.0 0.0 0.0 0.0 0.0		
MH2_Dummy HP-CB1 MH116 OF1 OF2 OF3 CB1 CB2 CB3 CB3	JUNCTION OUTFALL OUTFALL OUTFALL OUTFALL STORAGE STORAGE STORAGE		39.29 35.69 38.78 39.00 0.00 37.30 37.38	0.53 1.00 0.00 0.00 2.70 2.70	0.0 0.0 0.0 0.0 0.0 0.0 0.0		
MH2_Dummy HP-CB1 MH116 OF1 OF2 CF3 CB1 CB1 CB2 CB3 CB4 CB4	JUNCTION OUTFALL OUTFALL OUTFALL OUTFALL STORAGE STORAGE STORAGE STORAGE		39.29 35.69 38.78 39.00 0.00 37.30 37.38 37.78 37.78	0.53 1.00 0.00 2.70 2.70 2.40 2.40	0.0 0.0 0.0 0.0 0.0 0.0 0.0		
MH2_Dummy HP-CB1 MH116 OF1 OF2 OF3 CB1 CB2 CB2 CB3 CB4 CB5	JUNCTION OUTFALL OUTFALL OUTFALL OUTFALL OUTFALL STORAGE STORAGE STORAGE STORAGE STORAGE		39.29 35.69 38.78 39.00 0.00 37.30 37.38 37.78 37.78 37.78	0.53 1.00 0.00 2.70 2.70 2.40 2.40 2.40 2.40	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		
MH2_Dummy HP~CB1 MH116 OP1 OP2 OP3 CB3 CB4 CB4 CB5 CB4 CB5 CB6	JUNCTION OUTFALL OUTFALL OUTFALL OUTFALL STORAGE STORAGE STORAGE STORAGE STORAGE		39.29 35.69 38.78 39.00 0.00 37.30 37.38 37.78 37.78 37.78 37.78 37.73 37.73 37.73	0.53 1.00 0.00 2.70 2.70 2.40 2.40 2.40 2.40	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		
MH2_Dummy HP~CB1 MH116 OP1 OP2 OP3 CB1 CB2 CB3 CB4 CB5 CB4 CB5 CB6 CB7	JUNCTION OUTFALL OUTFALL OUTFALL OUTFALL STORAGE STORAGE STORAGE STORAGE STORAGE STORAGE STORAGE		39.29 35.69 38.78 39.00 0.00 37.30 37.38 37.78 37.78 37.78 37.78 37.73 37.73 37.73	0.53 1.00 0.00 2.70 2.70 2.40 2.40 2.40 2.40	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		
MH2_Dummy HP~CB1 MH116 OP1 OP2 OP3 CB3 CB4 CB4 CB5 CB4 CB5 CB6	JUNCTION OUTFALL OUTFALL OUTFALL OUTFALL STORAGE STORAGE STORAGE STORAGE STORAGE		39.29 35.69 38.78 39.00 0.00 37.30 37.38 37.78 37.78 37.78 37.78 37.73 37.73 37.73	0.53 1.00 0.00 2.70 2.70 2.40 2.40 2.40 2.40	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		

MH14	STORAGE	86.41	2.89	0.0
MH16	STORAGE	86.58	3.01	0.0
MH2	STORAGE	85.74	3.53	0.0
MH4	STORAGE	85.94	3.43	0.0
MH 6	STORAGE	86.27	3.99	0.0
MH8	STORAGE	86.82	2.64	0.0
RYCB1	STORAGE	86.84	2.40	0.0
RYCB2	STORAGE	87.04	2.40	0.0
RYCB3	STORAGE	86.87	2.68	0.0
RYCB4	STORAGE	87.75	2.40	0.0

Link Summary ******						
Name	From Node	To Node	Туре		%Slope	
C1	CBMH01	HP-CB3	CONDUIT	3.0	-10.0504	0.2500
C10	CB4	HP-CB8	CONDUIT	3.0	-8.6994	0.2500
C11	CB5	HP-CB13	CONDUIT			
C12	HP-CB13	CB1	CONDUIT	3.0	12.7695	0.2500
C13	CB6	HP-CB9	CONDUIT	3.0	-10.0504	0.2500
C14	HP-CB9	HP-CB9 CB7	CONDUIT	3.0	12,4282	0.2500
C15	HP-CB8	CB5	CONDUIT	3.0	10.0504	0.2500
C16	RYCB2	HP-RYCB2	CONDUIT	28.6	-1.5386	0.2500 0.2500 0.2500 0.2500 0.0350 0.0350 0.0350 0.0350 0.0350
C17	HP-RYCB2	RYCB3	CONDUIT	23.5	1.4044	0.0350
C18	RYCB3	HP-RYCB3	CONDUIT	17.1	-1.0527	0.0350
C19	HP-RYCB3	RYCB1	CONDUIT	43.3	1.1317	0.0350
C2	HP-CB3	CB2	CONDUIT	3.0	10.3889	0.2500
C20	RYCB1	OF1	CONDUIT	9.0	-6.0108	0.0350
C21	HP	RYCB2	CONDUIT	30.0	0.5000	0.0350
C21_1	RYCB4	HP-RYCB4	CONDUIT	3.0	-2.6676	0.2500 0.0350 0.0350 0.0350 0.2500 0.2500 0.2500 0.2500
C21_2	HP-RYCB4	CBMH01	CONDUIT	3.0	2.6676	0.0350
C22	MH10	HP-CB8	CONDUIT	3.0	-2.0004	0.2500
C24	MH 6	CB2	CONDUIT	3.0	6.0108	0.2500
C3	CB2	HP-CB2	CONDUIT	3.0	-10.0504	0.2500
C4	HP-CB2	CB1	CONDUIT	3.0	12.7695	0.2500
C5	CB1	HP-CB1	CONDUIT	3.0	-9.7122	0.2500
C6	CB7	HP-CB20	CONDUIT	3.0	-9.3743	0.2500
C7	CBMH01 CB4 CB4 CB5 HP-CB13 CB6 HP-CB9 HP-CB8 RYCB2 RYCB2 RYCB3 HP-RYCB3 HP-RYCB3 HP-RYCB4 HP-RYCB4 HP-RYCB4 HP-RYCB4 HP-RYCB4 HP-RYCB4 HP-CB2 CB1 CB2 HP-CB2 CB1 CB3 HP-CB2 CB3 HP-CB2 CB3 CB4 CB4 CB3 CB4 CB3 CB4 CB3 CB4 CB3 CB4 CB4 CB3 CB4 CB3 CB4 CB3 CB4 CB3 CB4 CB3 CB3 CB4 CB3 CB4 CB3 CB4 CB3 CB4 CB3 CB4 CB3 CB4 CB3 CB4 CB3 CB4 CB3 CB4 CB3 CB4 CB3 CB4 CB3 CB4 CB3 CB4 CB3 CB4 CB3 CB3 CB4 CB3 CB4 CB3 CB4 CB3 CB4 CB3 CB4 CB3 CB4 CB3 CB4 CB3 CB4 CB3 CB4 CB3 CB4 CB3 CB4 CB3 CB4 CB3 CB4 CB3 CB4 CB3 CB4 CB3 CB4 CB3 CB4 CB4 CB3 CB4 CB4 CB3 CB4 CB4 CB3 CB4 CB4 CB3 CB4 CB4 CB3 CB4 CB4 CB3 CB4 CB4 CB3 CB4 CB4 CB4 CB4 CB4 CB4 CB4 CB4 CB4 CB4	CB5 HP-RYCB2 RYCB3 HP-RYCB3 CB2 OF1 RYCB1 HP-RYCB4 CB4 HP-CB4 CB1 HP-CB2 CB1 HP-CB2 CB1 HP-CB2 CB1 HP-CB2 CB1 HP-CB4 MH8	CONDUIT	3.0	11.0672	0.2500 0.2500 0.2500 0.2500 0.2500 0.2500 0.0130 0.0130 0.0130 0.0130 0.0130 0.0130 0.0130 0.0130 0.0130 0.0130 0.0130 0.0130
C8	CB3	HP-CB6	CONDUIT	3.0	-10.0504	0.2500
C9	HP-CB6	CB4	CONDUIT	3.0	10.3889	0.2500
CB3-MH8	CB3	MH8	CONDUIT	27.1	0.9964	0.0130
CB4-MH10	CB4	MH10	CONDUIT	5.5	0.9091	0.0130
CB6-MH16	CB6	MH16	CONDUIT	29.2	0.9932	0.0130
CB7-MH16	CB7 CBMH01-Dummy	MH16	CONDUIT	2.5	0.8000	0.0130
		MH 6	CONDUIT	31.5	0.9842	0.0130
	MH10_Dummy	MH12	CONDUIT	37.6	0.3989	0.0130
MH12-MH4	MH12	MH4	CONDUIT	39.7	0.3276	0.0130
MH14-MH12	MH14	MH12	CONDUIT	36.4	0.4945	0.0130
MH16-MH2	MH16 MH2	MH12 MH2_Dummy MH116 MH2 MH4 MH10 RYCB3 CBMH01 CBMH01 MH4 MH6 MH12 CBMH01-Dummy MH10 Dummy	CONDUIT	77.0	1.0001	0.0130
MH2-MH116	MH2	MH116	CONDUIT	20.3	0.2507	0.0130
MH4-MH2	MH4	MH2	CONDUIT	41.0	0.2929	0.0130
MH6-MH4	MH 6 MH 8	MH4	CONDUIT	35.1	0.5128	0.0130
	MH8	MH10	CONDUIT	39.0	1.0001	0.0130
RYCB2-ICD	RYCB2	RYCB3	CONDUIT	50.8	1.0040	0.0130
	RYCB4	CBMH01	CONDUIT	9.4	0.9575	0.0130
CB1-ICD	CB1	MH4	ORIFICE			
CB2-MH6	CB2	MH 6	ORIFICE			
	CB5	MH12	ORIFICE			
	CBMH01	CBMH01-Dummy	ORIFICE			
			ORIFICE			
MH2-ICD	MH2_Dummy	MH2	ORIFICE			
RYCB1-ICD	RYCB1	MH14	ORIFICE			
RYCB3-ICD	RYCB3	MH10_Dummy	ORIFICE			

Cross Section Summary ******

Conduit	Shape	Full Depth	Full Area	Hyd. Rad.	Max. Width	No. of Barrels	Full Flow
C1	Road_Transect	1.00	7.76	2.15	8.70	1	16404.35
C10	Road_Transect	1.00	7.76	2.15	8.70	1	15262.04
C11	Road_Transect	1.00	7.76	2.15	8.70	1	14963.52
C12	Road_Transect	1.00	7.76	2.15	8.70	1	18490.78
C13	Road_Transect	1.00	7.76	2.15	8.70	1	16404.35
C14	Road_Transect	1.00	7.76	2.15	8.70	1	18242.00
C15	Road_Transect	1.00	7.76	2.15	8.70	1	16404.35
C16	TRAPEZOIDAL	1.00	3.15	0.49	6.15	1	6906.18
C17	TRAPEZOIDAL	1.00	3.15	0.49	6.15	1	6598.02

Provence Orleans – Block 126 PCSWMM Model Output 100yr 4-hour Chicago Storm

C18	TRAPEZOIDAL	1.00	3.15	0.49	6.15	1	5712.41
C19	TRAPEZOIDAL	1.00	4.50	0.58	7.50	1	9459.62
C2	Road_Transect	1.00	7.76	2.15	8.70	1	16678.37
C20	TRAPEZOIDAL	1.00	4.50	0.58	7.50	1	21800.83
C21	TRAPEZOIDAL	1.00	4.00	0.55	7.00	1	5399.56
C21_1	RECT_OPEN	1.00	3.00	0.60	3.00	1	9959.60
C21_2	RECT_OPEN	1.00	3.00	0.60	3.00	1	9959.60
C22	Road_Transect	1.00	7.76	2.15	8.70	1	7318.57
C24	Road_Transect	1.00	7.76	2.15	8.70	1	12686.30
C3	Road_Transect	1.00	7.76	2.15	8.70	1	16404.35
C4	Road_Transect	1.00	7.76	2.15	8.70	1	18490.78
C5	Road_Transect	1.00	7.76	2.15	8.70	1	16125.96
C6	Road_Transect	1.00	7.76	2.15	8.70	1	15842.96
C7	Road_Transect	1.00	7.76	2.15	8.70	1	17214.17
C8	Road_Transect	1.00	7.76	2.15	8.70	1	16404.35
C9	Road_Transect	1.00	7.76	2.15	8.70	1	16678.37
CB3-MH8	CIRCULAR	0.20	0.03	0.05	0.20	1	32.74
CB4-MH10	CIRCULAR	0.20	0.03	0.05	0.20	1	31.27
CB6-MH16	CIRCULAR	0.20	0.03	0.05	0.20	1	32.69
CB7-MH16	CIRCULAR	0.20	0.03	0.05	0.20	1	29.34
CBMH01-MH6	CIRCULAR	0.25	0.05	0.06	0.25	1	59.00
MH10-MH12	CIRCULAR	0.30	0.07	0.07	0.30	1	61.08
MH12-MH4	CIRCULAR	0.38	0.11	0.09	0.38	1	100.36
MH14-MH12	CIRCULAR	0.30	0.07	0.07	0.30	1	68.01
MH16-MH2	CIRCULAR	0.45	0.16	0.11	0.45	1	285.13
MH2-MH116	CIRCULAR	0.53	0.22	0.13	0.53	1	215.32
MH4-MH2	CIRCULAR	0.45	0.16	0.11	0.45	1	154.31
MH6-MH4	CIRCULAR	0.30	0.07	0.07	0.30	1	69.25
MH8-MH10	CIRCULAR	0.25	0.05	0.06	0.25	1	59.47
RYCB2-ICD	CIRCULAR	0.25	0.05	0.06	0.25	1	59.59
RYCB4-CBMH01	CIRCULAR	0.25	0.05	0.06	0.25	1	58.19

	Road_Transed	et			
Area:	0 0010	0 0050	0.0100	0.0010	0.0004
	0.0013	0.0053	0.0120	0.0213	0.0334
	0.0483	0.0657	0.0836	0.1018	0.1201
	0.1387	0.1578	0.1774	0.1976	0.2183
	0.2395	0.2613	0.2836	0.3060	0.3284
	0.3507	0.3731	0.3955	0.4178	0.4402
	0.4626	0.4850	0.5073	0.5297	0.5521
	0.5745	0.5968	0.6192	0.6416	0.6640
	0.6864	0.7088	0.7312	0.7536	0.7760
	0.7984	0.8208	0.8432	0.8656	0.8880
	0.9104	0.9328	0.9552	0.9776	1.0000
Hrad:					
	0.0046	0.0091	0.0137	0.0182	0.0226
	0.0270	0.0337	0.0423	0.0508	0.0591
	0.0675	0.0765	0.0868	0.0988	0.1127
	0.1286	0.1466	0.1691	0.1953	0.2226
	0.2506	0.2792	0.3079	0.3369	0.3658
	0.3946	0.4234	0.4519	0.4801	0.5082
	0.5359	0.5633	0.5904	0.6171	0.6435
	0.6696	0.6953	0.7207	0.7458	0.7705
	0.7948	0.8189	0.8426	0.8660	0.8891
	0.9119	0.9343	0.9565	0.9784	1.0000
Width:					
	0.1188	0.2375	0.3563	0.4751	0.6019
	0.7287	0.7964	0.8051	0.8137	0.8223
	0.8389	0.8633	0.8877	0.9122	0.9366
	0.9610	0.9855	0.9977	0.9978	0.9979
	0.9979	0.9980	0.9981	0.9982	0.9982
	0.9983	0.9984	0.9984	0.9985	0.9986
	0.9987	0.9987	0.9988	0.9989	0.9989
	0.9990	0.9991	0.9992	0.9992	0.9993
	0.9994	0.9994	0.9995	0.9996	0.9996
	0.9997	0.9998	0.9999	0.9999	1.0000

NOTE: The summary statistics displayed in this report are based on results found at every computational time step, not just on results from each reporting time step.

******************* Analysis Options

Flow Units	LPS	
Process Models:		
Rainfall/Runoff		
RDII		
Snowmelt	NO	
Groundwater	NO YES	
Flow Routing	IES NO	
Water Quality	NO	
Infiltration Method	HORTON	
Flow Routing Method	DYNWAVE	
Surcharge Method	EXTRAN	
Starting Date Ending Date Antecedent Dry Days Report Time Step Wet Time Step	06/02/2020 00:00:	00
Ending Date	06/03/2020 00:00:	00
Report Time Step	0.0	
Wet Time Step	00:05:00	
Dry lime Step	00:05:00	
Routing Time Step	2.00 sec	
Variable Time Step	YES	
Maximum Trials	8	
Number of Threads	4	
Head Tolerance	0.001500 m	
*****	Volume	Dep
Runoff Quantity Continuity	hectare-m	- 1

Total Precipitation	0.103 0.000	76.0
Evaporation Loss	0.033	0.0 24.7
Surface Runoff	0.069	51.3
Final Storage	0.001	0.5
Continuity Error (%)	-0.806	
*****	Volume	Volu 10^6 1
Flow Routing Continuity *************	hectare-m	106 1
Dry Weather Inflow	0.000	0.0
Wet Weather Inflow	0.069	0.6
Groundwater Inflow	0.000	0.0
RDIT Inflow	0.000	0.0
External Inflow	0.000	0.0
External Inflow External Outflow Flooding Loss	0.069	0.6
Evaporation Loss	0.000	0.0
Exfiltration Loss	0.000	0.0
Initial Stored Volume	0.000	0.0
Final Stored Volume	0.000	0.0
Continuity Error (%)	0.038	

Time-Step Critical Elements		
Link CB7-MH16 (4.36%)		

Highest Flow Instability In	dexes	
All links are stable.	* * * * *	
AII IINKS ATE SLADIE.		

Routing Time Step Summary *********		
Minimum Time Sten	: 0.50 sec	
Minimum Time Step Average Time Step Maximum Time Step	1 00	
Maximum Time Step	: 2.00 sec	
Percent in Steady State	: 1.98 sec : 2.00 sec : 0.00	
Average lime Step Percent in Steady State Average Iterations per Step Percent Not Converging	: 2.01	
Percent Not Converging	: 0.04	

Provence Orleans – Block 126 PCSWMM Model Output 100yr 4-hour Chicago Storm

NOV	ΛΤΞϹΗ
Engineers, Planner	s & Landscape Architects

			Total	Total	Total	Total	Imperv	Perv	Total
Total			Precip	Runon	Evap	Infil	Runoff	Runoff	Runoff
Runoff R Subcatch 10^6 ltr	ment	?S	mm	mm	mm	mm	mm	mm	mm
A1 0.05 35	0.4	0.762	76.00	0.00	0.00	17.84	47.04	10.91	57.95
A-10			76.00	0.00	0.00	50.38	2.20	23.79	25.99
0.04 21 A-10a	.22	0.342	76.00	0.00	0.00	49.23	2.20	25.07	27.27
0.01 8 A11	.46	0.359	76.00	0.00	0.00	47.60	6.53	22.20	28.74
0.03 17	.96	0.378							
A12 0.04 26	.83	0.490	76.00	0.00	0.00	38.90	18.30	18.97	37.27
A2 0.08 54	.54	0.829	76.00	0.00	0.00	13.02	55.01	7.98	62.99
A3			76.00	0.00	0.00	8.88	61.27	5.62	66.89
0.05 33 A4	.22	0.880	76.00	0.00	0.00	48.89	0.00	28.08	28.08
0.01 10 A5	.48	0.370	76.00	0.00	0.00	13.16	54.69	7.75	62.44
0.04 30	.81	0.822							
A6 0.07 50	.79	0.847	76.00	0.00	0.00	11.65	57.14	7.21	64.35
A7 0.10 71	.18	0.882	76.00	0.00	0.00	8.88	61.44	5.62	67.07
A8			76.00	0.00	0.00	11.63	56.89	7.27	64.16
A9	.18	0.844	76.00	0.00	0.00	11.67	57.07	7.18	64.25
0.11 78 B1	.22	0.845	76.00	0.00	0.00	47.02	0.00	33.43	33.43
	.28	0.440							

Node Depth Summary *********

lode	Туре	Depth Meters	Depth Meters		Occu days	rrence hr:min	
CBMH01-Dummy	JUNCTION			86.68			0.05
IP	JUNCTION			88.78			0.19
HP-CB13	JUNCTION	0.00	0.00	89.38	0	00:00	0.00
HP-CB2	JUNCTION	0.00	0.00	89.38			0.00
HP-CB20	JUNCTION	0.00	0.00	89.33			0.00
HP-CB3	JUNCTION	0.00	0.00	89.45	0	00:00	0.00
IP-CB6	JUNCTION	0.00	0.00	89.48	0	00:00	0.00
IP-CB8	JUNCTION	0.00	0.00	89.43	0	00:00	0.00
HP-CB9	JUNCTION	0.00	0.00	89.42	0	00:00	0.00
HP-RYCB2	JUNCTION	0.00	0.00	88.88		00:00	0.00
HP-RYCB3	JUNCTION	0.00	0.02	88.75	0	01:52	0.02
HP-RYCB4	JUNCTION	0.00	0.07	89.30	0	01:53	0.07
1H10_Dummy	JUNCTION	0.02	0.10	86.48	0	02:08	0.10
1H2_Dummy	JUNCTION	0.93	3.48	89.29	0	02:17	3.48
HP-CB1	OUTFALL	0.00	0.00	89.29	0	00:00	0.00
4H116	OUTFALL	0.04		85.93	0	01:46	0.24
DF1	OUTFALL	0.00	0.00	88.78	0	00:00	0.00
DF2	OUTFALL	0.00	0.00	89.00		00:00	0.00
OF 3	OUTFALL	0.00	0.00	0.00		00:00	0.00
CB1	STORAGE	0.09		89.15	0	01:41	1.85
CB2	STORAGE	0.07		89.25	0	01:37	1.87
CB3	STORAGE	0.27	1.58	89.36	0	02:09	1.58
CB4	STORAGE	0.27	1.58	89.36	0	02:03	1.58
CB5	STORAGE	0.06	1.56	89.29		01:34	1.56
CB6	STORAGE	0.36	1.57	89.29	0	02:17	1.57
CB7	STORAGE	0.38		89.29	0	02:17	1.64
CBMH01	STORAGE	0.27	2.67	89.30	0	01:53	2.67
1H10		0.59	2.98	89.36		02:04	
4H12	STORAGE	0.03	0.22			01:48	0.22
4H14	STORAGE		0.08			02:08	
1H16	STORAGE	0.67			0	02:17	2.71
1H2	STORAGE	0.04	0.29	86.03	0	01:46	0.29
1H 4	STORAGE	0.03	0.24	86.18	0	01:45	0.24

MH 6	STORAGE	0.01	0.12	86.39	0	01:40	0.12
MH8	STORAGE	0.47	2.54	89.36	0	02:06	2.54
RYCB1	STORAGE	0.09	1.68	88.52	0	02:06	1.68
RYCB2	STORAGE	0.50	1.74	88.78	0	01:52	1.74
RYCB3	STORAGE	0.17	1.90	88.77	0	01:51	1.90
RYCB4	STORAGE	0.14	1.55	89.30	0	01:53	1.55

			Maximum		<i>c</i> . <i>v</i>	Lateral		Flow	
			Total				Inflow Volume	Balance Error	
Node	Type	LPS	Inflow LPS	days	hr:min	Volume 10^6 ltr	10^6 ltr	Percent	
CBMH01-Dummy	JUNCTION	0.00	6.06	0	01:53	0	0.058	-0.050	
HP	JUNCTION	0.00	12.72	0	01:31	0	0.00527	0.173	
HP-CB13	JUNCTION	0.00	0.00	0	00:00	0	0	0.000	ltr
HP-CB2	JUNCTION	0.00	0.00	0	00:00	0	0	0.000	ltr
HP-CB20	JUNCTION	0.00	0.00	0	00:00	0	0	0.000	ltr
HP-CB3	JUNCTION	0.00	0.00	0	00:00	0	0	0.000	ltr
HP-CB6	JUNCTION	0.00	0.00	0	00:00	0	0.00527 0.00527 0 0 0 0 0 0 0 0 0 0 0 0 0	0.000	ltr
HP-CB8	JUNCTION	0.00	0.00	0	00:00	0	0	0.000	ltr
HP-CB9	JUNCTION	0.00	0.00	0	00:00	0	0	0.000	ltr
HP-RYCB2	JUNCTION	0.00	0.00	0	00:00	0	0	0.000	ltr
HP-RYCB3	JUNCTION	0.00	8.90	0	01:50	0	0.0145	-0.620	
HP-RYCB4	JUNCTION	0.00	3.59	0	01:34	0	0.00966	0.018	
MH10_Dummy	JUNCTION	0.00	13.33	0	01:52	0	0.179	-0.083	
MH2_Dummy	JUNCTION	0.00	8.05	0	01:08	0	0.161	0.002	
HP-CB1	OUTFALL	0.00	0.00	0	00:00	0	0	0.000	ltr
MH116	OUTFALL	0.00	91.18	0	01:46	0	0.676	0.000	
OF1	OUTFALL	0.00	0.00	0	00:00	0	0	0.000	ltr
OF2	OUTFALL	4.28	4.28	0	01:30	0.00335	0.00335	0.000	
OF 3	OUTFALL	8.46	8.46	0	01:30	0.0136	0.0136	0.000	
CB1	STORAGE	35.04	35.04	0	01:30	0.0464	0.0464 0.0756	-0.022	
CB2	STORAGE	54.54	54.54	0	01:30	0.0756	0.0756	0.080	
CB3	STORAGE	30.81	34.50	0	01:30	0.0437	0.047	0.231	
CB4	STORAGE	50.79	50.79	0	01:30	0.0708	0.0708	0.082	
CB5	STORAGE	71.18	71.18	0	01:30	0.101	0.101	0.101	
CB6	STORAGE STORAGE	37.18	37.18	0	01:30	0.0513 0.109	0.0513	0.331	
CB7	STORAGE	78.22	78.77	0	01:30	0.109	0.11	0.059	
CBMH01	STORAGE	33.22	33.22	0	01:30	0.0468	0.062	0.064	
MH10	STORAGE	0.00	37.25	0	01:25	0			
MH12	STORAGE STORAGE	0.00	51.41	0	01:47	0	0.336	0.067	
MH14	STORAGE	0.00	11.51	0	02:06	0	0.0563	-0.208	
MH16	STORAGE STORAGE	0.00	76.08	0	01:24	0	0.161 0.676	-0.220	
MH2	STORAGE	0.00	91.18	0	01:45	0	0.676	-0.011	
MH4	STORAGE	0.00	85.06	0	01:45	0	0.516 0.134	0.027	
MH 6	STORAGE	0.00	24.41	0	01:40	0	0.134	0.019	
MH8	STORAGE	0.00	27.42	0	01:25	0	0.0533	-0.204 -0.092	
RYCB1	STORAGE	21.22	21.22	0	01:30	0.0416	0.0562	-0.092	
RYCB2	STORAGE	26.83	37.22	0	01:28	0.0447	0.0525 0.0813	0.613	
RYCB3	STORAGE	17.96	21.96	0	01:27	0.0345	0.0813	-0.061	
RYCB4	STORAGE	10.48	13.78	0	01:29	0.0112	0.0149	0.006	

Node Surcharge Summary

Surcharging occurs when water rises above the top of the highest conduit.

Node	Туре	Hours Surcharged	Above Crown Meters	Below Rim Meters
MH2_Dummy	JUNCTION	7.39	3.032	0.978

Node Flooding Summary

No nodes were flooded.

^{*****} Storage Volume Summary *********

Provence Orleans – Block 126 PCSWMM Model Output 100yr 4-hour Chicago Storm

	Average	Avq	Evap	Exfil	Maximum	Max	Time	of Max	Maximum
	Volume	Pcnt		Pcnt	Volume	Pcnt		rrence	
Storage Unit	1000 m3	Full	Loss	Loss	1000 m3	Full	days 1	hr:min	LPS
CB1	0.000	1	0	0	0.012	25	0	01:41	9.30
CB2	0.000	1	0	0	0.017	31	0	01:37	18.36
CB3	0.003	4	0	0	0.025	36	0	02:09	17.35
CB4	0.002	5	0	0	0.020	51	0	02:03	37.25
CB5	0.000	1	0	0	0.021	42	0	01:34	27.16
CB6	0.002	4	0	0	0.018	33	0	02:17	22.09
CB7	0.007	10	0	0	0.053	74	0	02:17	56.41
CBMH01	0.001	2	0	0	0.016	30	0	01:53	13.48
MH10	0.001	15	0	0	0.003	75	0	02:04	15.85
MH12	0.000	1	0	0	0.000	7	0	01:48	51.41
MH14	0.000	0	0	0	0.000	3	0	02:08	11.51
MH16	0.001	22	0	0	0.003	90	0	02:17	11.45
MH2	0.000	1	0	0	0.000	8	0	01:46	91.18
MH4	0.000	1	0	0	0.000	7	0	01:45	85.06
MH 6	0.000	0	0	0	0.000	3	0	01:40	24.41
MH8	0.001	18	0	0	0.003	96	0	02:06	4.63
RYCB1	0.000	4	0	0	0.001	70	0	02:06	11.51
RYCB2	0.000	21	0	0	0.001	73	0	01:52	12.72
RYCB3	0.000	6	0	0	0.001	71	0	01:51	19.54
RYCB4	0.000	1	0	0	0.008	27	0	01:53	3.59

.....

Outfall Loading Summary

	Flow	Avg	Max	Total
	Freq	Flow	Flow	Volume
Outfall Node	Pcnt	LPS	LPS	10^6 ltr
HP-CB1	0.00	0.00	0.00	0.000
MH116	41.97	19.18	91.18	0.676
OF1	0.00	0.00	0.00	0.000
OF2	3.26	1.25	4.28	0.003
OF 3	10.14	1.55	8.46	0.014
System	11.07	21.98	8.46	0.693

..... Link Flow Summary

					Maximum		
		Flow	0ccu	rrence	Veloc	Full	Full
Link	Туре	LPS	days		m/sec		
C1	CHANNEL	0.00	0	00:00	0.00		
C10	CHANNEL	0.00	0	00:00	0.00	0.00	0.10
C11	CHANNEL		0	00:00	0.00	0.00	0.08
C12	CHANNEL	0.00	0	00:00	0.00	0.00	0.07
213	CHANNEL	0.00	0	00:00	0.00	0.00	0.09
C14	CHANNEL			00:00	0.00	0.00	0.12
C15	CHANNEL	0.00	0	00:00	0.00	0.00	0.08
216	CONDUIT	0.00	0	00:00	0.00	0.00	0.17
217	CONDUIT			00:00	0.00	0.00	0.11
218	CONDUIT	8.90	0	01:50	0.14	0.00	0.12
219	CONDUIT	8.84	0	01:52	0.04	0.00	0.15
22	CHANNEL	0.00	0	00:00	0.00	0.00	0.05
220	CONDUIT	0.00	0	00:00	0.00	0.00	0.14
221		12.72					0.27
221_1	CONDUIT	3.59		01:34	0.01	0.00	0.11
221_2	CONDUIT	3.19	0	01:34	0.02	0.00	0.11
222	CHANNEL	0.00	0	00:00	0.00	0.00	0.00
224	CHANNEL					0.00	0.08
23	CHANNEL			00:00		0.00	0.08
24	CHANNEL	0.00	0	00:00		0.00	0.07
25	CHANNEL						
26	CHANNEL						
27	CHANNEL	0.00	0	00:00		0.00	0.07
28	CHANNEL			00:00	0.00	0.00	0.09
C 9	CHANNEL	0.00	0	00:00			
CB3-MH8		17.35					
CB4-MH10	CONDUIT	37.25	0	01:25	1.19	1.19	1.00

CONDUIT CONDUIT	22.09	0	01:25	0.85	0.68	1.00	
	EC 41				0.66	1.00	
	J0.41	0	01:24	1.80	1.92	1.00	
CONDUIT	6.06	0	01:53	0.77	0.10	0.25	
CONDUIT	13.33	0	01:52	0.69	0.22	0.39	
CONDUIT	51.41	0	01:48	0.90	0.51	0.51	
CONDUIT	11.51	0	02:06	0.73	0.17	0.37	
CONDUIT	8.05	0	01:08	0.33	0.03	1.00	
CONDUIT	91.18	0	01:46	0.84	0.42	0.50	
CONDUIT	85.06	0	01:45	1.08	0.55	0.49	
CONDUIT	24.41	0	01:40	0.91	0.35	0.40	
CONDUIT	10.14	0	01:25	0.25	0.17	1.00	
CONDUIT	12.76	0	01:28	0.46	0.21	1.00	
CONDUIT	7.60	0	01:24	0.25	0.13	1.00	
ORIFICE	9.30	0	01:41			1.00	
ORIFICE	18.36	0	01:37			1.00	
ORIFICE	27.16	0	01:34			1.00	
ORIFICE	6.06	0	01:53			1.00	
ORIFICE	6.06	0	02:03			1.00	
ORIFICE		0	04:21			1.00	
ORIFICE	11.51	0	02:06			1.00	
ORIFICE	7.27	0	01:51			1.00	
	CONDUIT CONDUIT	CONDUIT 6.06 CONDUIT 13.33 CONDUIT 51.41 CONDUIT 51.41 CONDUIT 51.41 CONDUIT 51.41 CONDUIT 51.41 CONDUIT 8.05 CONDUIT 8.05 CONDUIT 8.05 CONDUIT 9.18 CONDUIT 10.14 CONDUIT 10.14 CONDUIT 10.14 CONDUIT 10.14 CONDUIT 7.60 ORIFICE 9.30 ORIFICE 18.36 ORIFICE 27.16 ORIFICE 27.16 ORIFICE 6.06 ORIFICE 6.27 ORIFICE 1.51	CONDUIT 6.06 0 CONDUIT 13.33 0 CONDUIT 51.41 0 CONDUIT 11.51 0 CONDUIT 11.51 0 CONDUIT 11.51 0 CONDUIT 91.18 0 CONDUIT 24.41 0 CONDUIT 12.76 0 CONDUIT 12.76 0 ORIFICE 9.30 0 ORIFICE 27.16 0 ORIFICE 6.06 0 ORIFICE 6.06 0 ORIFICE 6.27 0	CONDUIT 6.06 0 01:52 CONDUIT 13.33 0 01:52 CONDUIT 51.41 0 01:48 CONDUIT 51.41 0 01:48 CONDUIT 8.05 0 01:48 CONDUIT 80.66 0 01:45 CONDUIT 24.41 0 01:42 CONDUIT 12.76 0 01:25 CONDUIT 12.76 0 01:24 ORIFICE 9.30 0 01:41 ORIFICE 18.36 0 01:37 ORIFICE 27.16 0 01:34 ORIFICE 27.16 0 01:33 ORIFICE 27.16 0 01:33 ORIFICE 27.16 0 01:33 ORIFICE 6.06 0 02:03 ORIFICE 1.51 0 02:03	CONDUIT 6.06 0 01:53 0.77 CONDUIT 13.33 0 01:52 0.69 CONDUIT 51.41 0 01:48 0.90 CONDUIT 11.51 0 02:06 0.73 CONDUIT 11.51 0 02:06 0.73 CONDUIT 11.51 0 02:06 0.73 CONDUIT 8.05 0 01:48 0.84 CONDUIT 91.18 0 01:44 0.84 CONDUIT 24.41 0 01:45 1.08 CONDUIT 12.4 0 01:22 0.25 CONDUIT 12.76 0 01:24 0.25 ORIFICE 9.30 0 01:24 0.25 ORIFICE 27.16 0 01:34 0.25 ORIFICE 27.16 0 01:33 0.714 ORIFICE 6.06 0 01:33 0.714 ORIFICE 6.27 0	CONDUIT 6.06 0 01:53 0.77 0.10 CONDUIT 13.33 0 01:52 0.69 0.22 CONDUIT 51.41 0 01:48 0.90 0.51 CONDUIT 51.41 0 01:48 0.90 0.33 0.03 CONDUIT 11.51 0 02:06 0.73 0.17 0.033 0.03 CONDUIT 85.06 0 01:45 1.08 0.55 CONDUIT 24.41 0 01:45 0.46 0.22 CONDUIT 12.76 0 01:25 0.25 0.17 CONDUIT 12.76 0 01:24 0.25 0.13 ORIFICE 9.30 0 01:41 0.25 0.13 ORIFICE 18.36 0 01:37 0.01:64 0.02:03 ORIFICE 27.16 0 01:34 0.01:53 0.02:03 ORIFICE 6.06 0 01:53 0.01:64	CONDUIT 6.06 0 01:52 0.77 0.10 0.25 CONDUIT 13.33 0 01:52 0.69 0.22 0.39 CONDUIT 51.41 0 01:42 0.69 0.51 0.51 CONDUIT 51.41 0 01:46 0.40 0.17 0.17 0.37 CONDUIT 11.51 0 02:06 0.73 0.17 0.37 CONDUIT 80.50 0 01:08 0.33 0.00 1.00 CONDUIT 91.18 0 01:45 1.08 0.55 0.49 CONDUIT 24.41 0 01:25 0.25 0.17 1.00 CONDUIT 12.76 0 01:24 0.25 0.13 1.00 CONDUIT 7.60 0 01:24 0.25 0.13 1.00 CONDUIT 18.36 0 01:37 1.00 0RIFICE 1.00 ORIFICE 27.16 0 01:34

***** Flow Classification Summary

Adjusted ----- Fraction of Time in Flow Class ------Up Down Sub Sup Up Down Norm Inlet Dry Dry Dry Crit Crit Crit Crit Ltd Ctrl /Actual Conduit Length C1 1.00 0.92 0.08 0.00 0.00 0.00 0.00 0.00 0.00 0.00 C10 1.00 C11 C12 1.00 C13 1.00 0.79 0.21 0.00 0.00 0.00 0.00 0.00 0.00 0.00 C14 1.00 0.78 0.22 0.00 0.00 0.00 0.00 0.00 0.00 0.00 C15 C16 1.00 C17 C18 1.00 1.00 0.81 0.01 0.00 0.06 0.00 0.00 0.12 0.03 0.00 C19 1.00 0.80 0.01 0.00 0.05 0.00 0.00 0.14 0.05 0.00 1.00 1.00 1.00 C2 C20 C21 C21_1 0.76 0.00 0.00 0.08 0.00 0.00 0.16 0.01 0.00 1.00 0.92 0.01 0.00 0.07 0.00 0.00 0.00 0.87 0.00 C21_2 C22 C22 C24 1.00 1.00 0.97 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.97 0.03 0.00 0.00 0.00 0.00 0.00 C3 C4 C5 C6 C7 C8 0.00 0.00 1.00 1.00 1.00 0.96 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.84 0.16 0.00 0.00 0.00 0.00 0.00 0.00 0.00 C9 CB3-MH8 1.00 1.00 0.01 0.00 0.00 0.20 0.00 0.00 0.80 CB4-MH10 0.00 0.00 CB6-MH16 1.00 0.01 0.00 0.00 0.26 0.00 0.00 0.73 0.01 0.00 CB7-MH16 1.00 0.01 0.00 0.00 0.26 0.00 0.00 0.74 0.00 0.00 0.01 0.00 0.00 0.03 0.00 0.00 0.96 0.03 0.00 0.01 0.00 0.00 0.03 0.00 0.00 0.96 0.03 0.00 CBMH01-MH6 1.00 MH10-MH12 1.00 MH12-MH4 1.00 0.01 0.00 0.00 0.00 0.00 0.00 0.99 0.00 0.00 MH14-MH12 1.00 0.01 0.00 0.00 0.10 0.00 0.00 0.89 0.09 0.00 1.00 0.01 0.00 0.00 0.99 0.01 0.00 0.00 0.65 0.00 0.01 0.00 0.00 0.99 0.00 0.00 0.00 0.59 0.00 MH16-MH2 MH2-MH116 MH4-MH2 1.00 0.01 0.00 0.00 0.03 0.00 0.00 0.97 0.00 0.00 MH6-MH4 1.00 0.01 0.00 0.00 0.00 0.00 0.00 0.99 0.00 0.00 MH8-MH10 1.00 0.01 0.00 0.00 0.28 0.00 0.00 0.71 0.04 0.00 0.03 0.00 0.00 0.13 0.00 0.00 0.84 0.03 0.00 0.06 0.00 0.00 0.10 0.00 0.00 0.83 0.00 0.00 RYCB2-TCD 1.00 RYCB4-CBMH01 1.00

Conduit Surcharge Summary

				Hours	Hours
		Hours Full		Above Full	Capacity
Conduit	Both Ends	Upstream	Dnstream	Normal Flow	Limited

Provence Orleans – Block 126 PCSWMM Model Output 100yr 4-hour Chicago Storm

CB3-MH8	4.56	4.56	4.79	0.01	0.01
CB4-MH10	4.56	4.56	4.60	0.02	0.06
CB6-MH16	6.01	6.01	6.25	0.01	0.01
CB7-MH16	6.07	6.09	6.08	0.07	0.06
MH16-MH2	6.66	6.66	7.39	0.01	0.01
MH8-MH10	5.25	5.25	5.87	0.01	0.01
RYCB2-ICD	2.17	2.17	2.52	0.01	0.01
RYCB4-CBMH01	2.31	2.31	2.34	0.01	0.01

Analysis begun on: Wed Mar 24 15:44:03 2021 Analysis ended on: Wed Mar 24 15:44:07 2021 Total elapsed time: 00:00:04

APPENDIX C: Drawings

120057-GP 120057-GR 120057-STM 120057-ESC

							;				101	102
		· · · ·										
				✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓								
				-0					4	4		
							750mmØ STN			······································	4	
	· · · · · · · · · · · · · · · · · · ·						250mmØ SAI				8	
								V			X 675m	nmØ STM
							OmmØ WM			•	250m	nmØ SAN
					· · · · · · · · · · · · · · · · · · ·					7		0mmØ WM
	/										-0	
	, /	//									Ŷ	200m
	/ //	/							· · · . ▼ · .			and the second second
	' //	/										
		/		,								
/	//	//					52			×		
/	//	93 /	/		· · · · · · · · · · · · · · · · · · ·			\leq			× 44	
	//		94	;								
		///		//, S	5		51					Ð
						~ ~	50				X 43	BLOC
		CHBASIN 1	ABLE				5 📂				X 42	
С	BID T/GELE	VATION INVE	RT I.C.D.				<u> </u>	\leq				K 12
0	B1 89.	.00 87.3	0 Tempest Vortex			-				N		
			Tompost				49			9 ST		
C	B2 89.0	.08 87.3	88 82								X 41	
C	B3 89.	.18 87.7	'8 -	/						CRESCENT		
C	B4 89.	.18 87.7	'8 -	/ ~								
c	B5 89.	.13 87.7	3 Tempest 105	MHF			48				40	
	B6 89.	.12 87.7								socca		
	B7 89.0							7		N N N N N N N N N N N N N N N N N N N	X 39	B
												BLOCK
	REAR Y	ARD CATC	HBASIN T	ABLE								
R	YCB No. T/C	G ELEVATION	INVERT	I.C.D.			<u>3</u> 46					120
				empest LMF			Ĭ 🖂				38	0
	RYCB1	88.18		Vortex 101							X 37	
	RYCB2	88.44	87.44	-								3
	RYCB3	88.55	86.87 ^T	empest LMF Vortex 78								1
	RYCB4	89.15	87.75	-	-	QE.		OSSING T		┐│╵ ╟ <u></u>		1
					J						36	
		SANITAR	Y MANH	OLE TA	BLE	LOCATION		TIONS C	LEARANCE			
			T/G ELEV	INVERT	PIPE DIAMETER	C1	STM IN	V=85.83	0.00			
M	ANHOLE ID	SIZE(mm)	(m)	(m)	(mm)		SAN OE	3V=84.91	0.92m		35	
				N=84.73	N=200	C2		V=86.02 3V=85.65	0.37m			110
	1	1200Ø	89.25	S=85.23 E=85.29	S=200 E=200			V=86.15			14	CX .
				S=85.44	S=200	C3		3V=85.89	0.26m		34 10	
	3	1200Ø	89.40	E=85.44 N=85.43	E=200 N=200	C4		V=86.72	0.42m			
	5	1200Ø	89.27	S=85.66	S=200			3V=86.30				
				N=85.63	N=200	C5		V=86.70 3V=85.52	1.18m			
	7	1200Ø	89.20	N=85.99	N=200	C6		V=86.83	1.17m			
	9	1200Ø	89.31	W=85.62 S=85.68	W=200 S=200		SAN IN	V=85.66	1.1711		rt-118	\sim
				E=85.63	E=200	C7	WM IN' STM OE	V=86.81 3V=86.41	0.40m	BL		
	11	1200Ø	89.33	W=85.99	W=200			V=86.66				, /
	13	1200Ø	89.34	S=85.90 N=85.87	S=200 N=200	C8	SAN OE	3V=85.81	0.85m			
	15	1200Ø	89.47	N=86.29	N=200	C9		V=86.66 3V=86.51	0.15m			/
	17	1200Ø	89.41	W=85.99	W=200		31101	50-50.51			· · · · · · · · · · · · · · · · · · ·	
				W=83.92	W=250			WATE	ERMAIN TA	BLE		
	117	1200Ø	89.36	E=83.91 S=84.51	E=250 S=200				1		/	
						, 1	Station	F/G ELEVATION	TOP OF WATERMAIN	DESCRIPTION		0 Am 250mm
		STO	ORM MA	NHOLE	TABLE		1+027.11	89.21	86.81	200x200 TEE	1 / /	9.4m-250mr STM @ 1.0
			T/G ELEV	INVERT	PIPE DIAMETER		1+031.11	89.16	89.16	VB1		ICB ^L
М	ANHOLE ID	SIZE(mm)	(m)	(m)	(mm)	I.C.D.	1+059.07	89.41	87.01	200x200 TEE		BYCBA
				N=85.70	N=525	Tempest LMF	1+067.82	89.38	86.98	VB2		\checkmark
	2	1200Ø	89.25	E=85.81 S=85.81	E=450 S=450	Vortex 62	1+099.76	89.27	86.87	22.5° H. BEND		
	2			N=85.94	N=450		1+130.64	89.33	86.93	45° H.BEND		x
						-	1+139.71	89.37	86.97	45° H.BEND		X
	4	1200Ø	89.37	S=86.09 E=86.02	S=300 E=375							
	4			S=86.09 E=86.02 N=86.27	E=375 N=300		1+164.18	89.59	87.19	45° H.BEND		
		1200Ø 1200Ø	89.37 89.26	S=86.09 E=86.02 N=86.27 S=86.32	E=375 N=300 S=250	-	2+012.65	89.23	86.83	VB3		
	4			S=86.09 E=86.02 N=86.27	E=375 N=300	-	2+012.65 2+079.11	89.23 89.41	86.83 87.01	VB3 45° H.BEND		
	4 6 8	1200Ø 1200Ø	89.26 89.46	S=86.09 E=86.02 N=86.27 S=86.32 N=86.82 E=87.51 N=86.38	E=375 N=300 S=250 N=250	- - Tempest LMF	2+012.65 2+079.11 2+087.29	89.23 89.41 89.39	86.83 87.01 86.99	VB3 45° H.BEND 45° H.BEND		
	4	1200Ø	89.26	S=86.09 E=86.02 N=86.27 S=86.32 N=86.82 E=87.51 N=86.38 S=86.43	E=375 N=300 S=250 N=250 E=200 N=300 S=250	- - Tempest LMF Vortex 64	2+012.65 2+079.11 2+087.29 2+111.55	89.23 89.41 89.39 89.27	86.83 87.01 86.99 86.87	VB3 45° H.BEND 45° H.BEND 45° H.BEND		
	4 6 8	1200Ø 1200Ø	89.26 89.46	S=86.09 E=86.02 N=86.27 S=86.32 N=86.82 E=87.51 N=86.38	E=375 N=300 S=250 N=250 E=200 N=300		2+012.65 2+079.11 2+087.29	89.23 89.41 89.39 89.27 89.35	86.83 87.01 86.99	VB3 45° H.BEND 45° H.BEND		

2+158.24

2+162.24

2+188.65

3+009.85

3+043.37

3+044.16

3+077.95

Tempest LMF Vortex 66

W=300

E=250

SE=200

W=450

W=675

S=525

E=300

SW=250 N=250

W=86.41

E=86.73

SE=87.43 W=86.58

W=85.54

S=85.68

E=85.91

SW=87.66 N=86.63

89.30

89.59

89.34

89.15

89.30

89.27

89.41

89.27

89.25

89.24

89.48

200x200 TEE

11° H.BEND

HYD2 CONNECTION

VB4

VB5

VB6

87.08 45° H.BEND

86.90

86.87

87.01

86.87

86.85

86.84

NOTE: THE POSITION OF ALL POLE LINES, CONDUITS,

14

16

116

CBMH1

WATERMAINS, SEWERS AND OTHER UNDERGROUND AND OVERGROUND UTILITIES AND

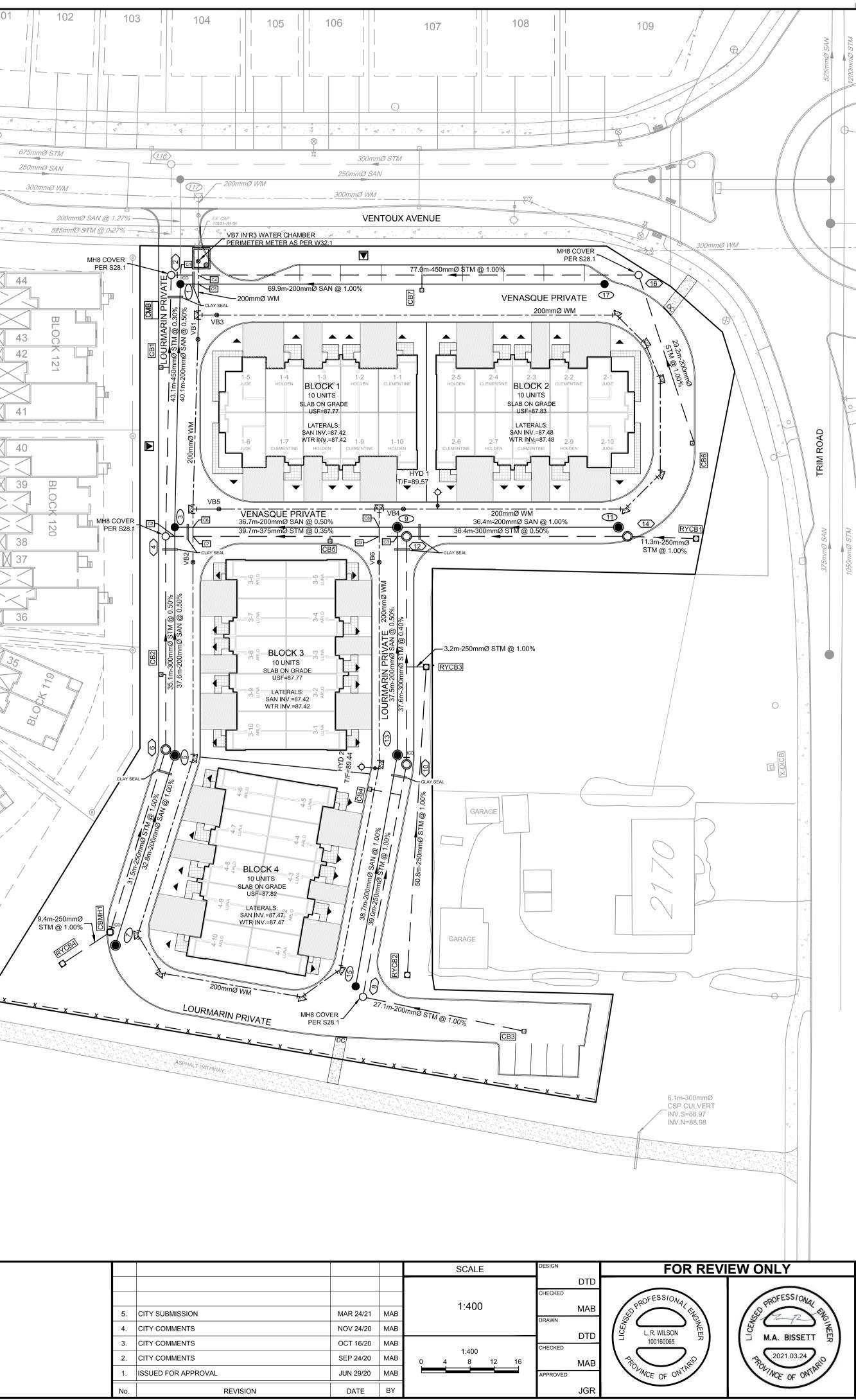
1200Ø

1200Ø

1500Ø

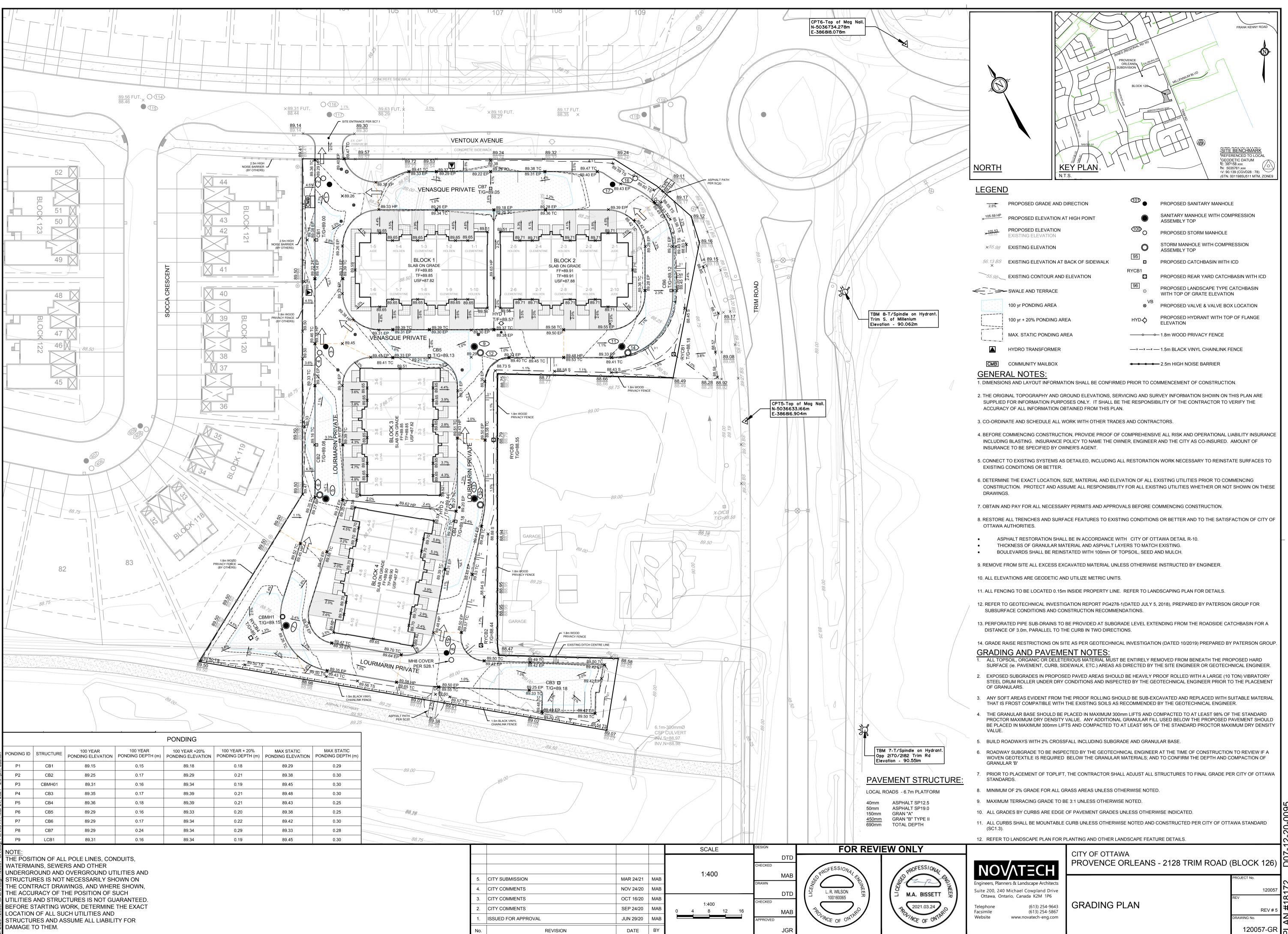
1200Ø

STRUCTURES IS NOT NECESSARILY SHOWN ON

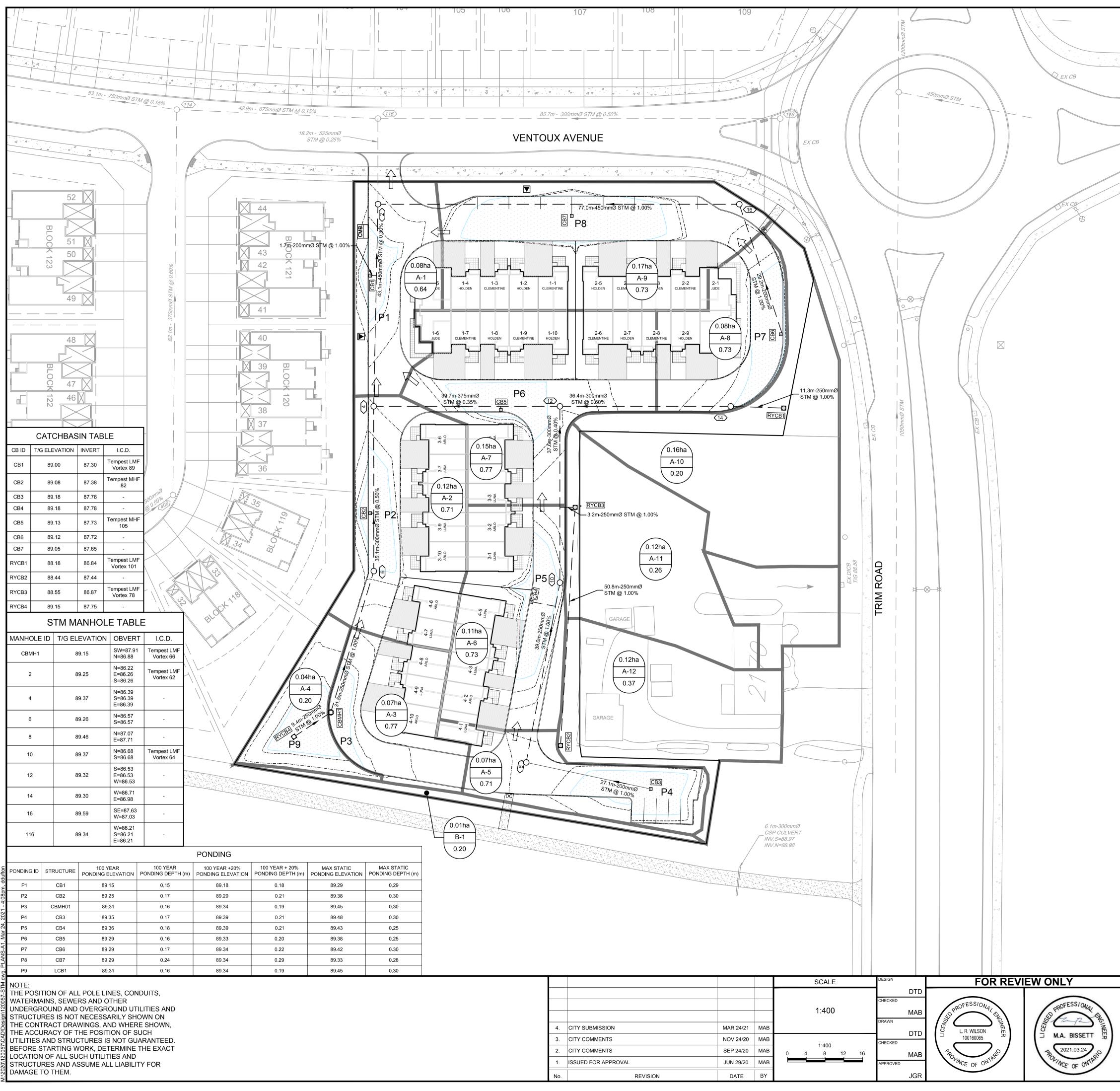

THE CONTRACT DRAWINGS, AND WHERE SHOWN, THE ACCURACY OF THE POSITION OF SUCH

UTILITIES AND STRUCTURES IS NOT GUARANTEED.

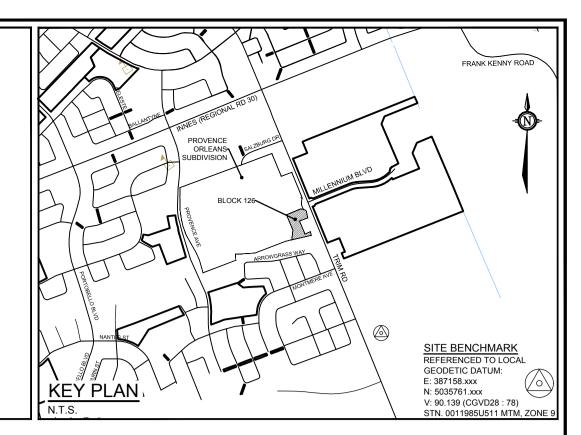
BEFORE STARTING WORK, DETERMINE THE EXACT


LOCATION OF ALL SUCH UTILITIES AND STRUCTURES AND ASSUME ALL LIABILITY FOR

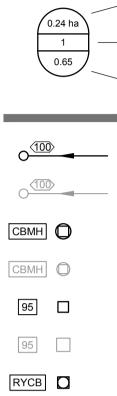
DAMAGE TO THEM.


			PROVERVEE	SALZBURG DK	REFI GEO	E BENCHMARK ERENCED TO LOCAL DETIC DATUM:
<u>NORTH</u>		EY PLA	<u>N</u> , V \	Y	N: 50 V: 90	7/158.xxx 335761.xxx 0.139 (CGVD28 : 78) .0011985U511 MTM, ZONE 9
			DIRECTION	95	ROAD CATCHBASIN	
	SANITARY MANHO OF FLOW SANITARY MANHO			96 □ LCB30 [©]	ROAD CATCHBASIN V	
	ASSEMBLY TOP STORM MANHOLE, OF FLOW	SEWER & DII	RECTION	RYCB9	REAR YARD CATCH B	
O	STORM MANHOLE ASSEMBLY TOP	WITH COMPR		RYCB9 D HYD	REAR YARD CATCH B	
<u>300mmø</u> VB				^{TF=} - ∲ ⊛	HYDRANT C/W VALVE	
vc vc	VALVE & VALVE BC			<u> </u>	CAP HYDRO TRANSFORMI	ER
, Ph	BEND AND THRUS	F BLOCK		СМВ	COMMUNITY MAIL BC	х
GENERAL 1. DIMENSIONS A	NOTES: ND LAYOUT INFORMA	TION SHALL F		OR TO START OF	CONSTRUCTION.	
SUPPLIED FOR ACCURACY OF 3. CO-ORDINATE / 4. BEFORE COMM	R INFORMATION PURP ALL INFORMATION O AND SCHEDULE ALL N IENCING CONSTRUCT	OSES ONLY. BTAINED FRO VORK WITH C	IT SHALL BE THE RE OM THIS PLAN. OTHER TRADES AND E PROOF OF COMPR	ESPONSIBILITY C CONTRACTORS REHENSIVE ALL I	RISK AND OPERATIONAL	VERIFY THE
					HE CITY AS CO-INSURED. K NECESSARY TO REINST	
EXISTING CON 6. DETERMINE TH	DITIONS OR BETTER. IE EXACT LOCATION,	SIZE, MATER	IAL AND ELEVATION	OF ALL EXISTING	G UTILITIES PRIOR TO CO	MMENCING
DRAWINGS.						
					CING CONSTRUCTION.	
8. RESTORE ALL MUNICIPAL AU		ACE FEATUR	RES TO EXISTING CO	NDITIONS OR BE	ETTER AND TO THE SATIS	FACTION OF
9. REMOVE FROM	1 SITE ALL DEBRIS AN	D EXCESS E>	CAVATED MATERIAL	UNLESS OTHE	RWISE INSTRUCTED BY T	HE ENGINEER.
	ONS ARE GEODETIC A					
	CONDITIONS AND CO				ED BY PATERSON GROU	"INC. FOR
	PIPE SUB-DRAINS TO 3.0m, PARALLEL TO T			VEL EXTENDING	FROM THE ROADSIDE C	ATCHBASIN FOR A
SEWER NO						
1. SPECIFICATION ITEM CATCHBASI	ONS: IN (600x600mm)		<u>SPEC. No.</u> 705.010	<u>REFERENCE</u> OPSD	E	-
CATCHBASI STORM / SA	IN MANHOLE (1200Ø) NITARY MANHOLE (12 CB, FRAME & COVER	,	701.010 701.010 S2 & S19	OPSD OPSD CITY of OTT	A1A/A	
CBMH FRAM STORM / SA	ME & COVER NITARY MH FRAME &		S25 & S28.1 S24.1 / S24 & S25	CITY of OTT CITY of OTT	AWA AWA	
STORM SEV SANITARY S CATCHBASI	SEWER		PVC DR 35 OR CON PVC DR 35 PVC DR 35	C. (CLASS SPE	CIFIED ON PROFILE DRA	NINGS)
2. INSULATE AL			SS THAN 1.8m COVER	R WITH 50mmX12	200mm HI-40 INSULATION	PROVIDE 150mm
			PERTY LINE AT MINIM	IUM SLOPE OF 1	.0% (2.0% IS PREFERRED).
WHERE THE SHOULD BE I	BEDDING IS LOCATED	D WITHIN FIRM MUM OF 300r	M TO SOFT GREY SIL m. THE COVER MATE	TY CLAY, THE T RIAL SHALL COM	NDARD PROCTOR MAXIM HICKNESS OF THE BEDDI NSIST OF OPSS GRANULA VERT OF THE PIPE.	NG MATERIAL
LEAKAGE TE COMPLETED TESTS SHALL	STING SHALL BE COM ON ALL SANITARY SE L BE PERFORMED IN	IPLETED IN A RVICES TO C THE PRESEN	CCORDANCE WITH (CONFIRM PROPER CO ICE OF THE ENGINEE	OPSS 410.07.16 A DNNECTION TO ER.	ONTROL OF ALL SANITAF AND 407.07.24. DYE TESTI THE SANITARY SEWER M.	NG IS TO BE
8. CONTRACTO		/) ALL PROPC	SED SEWERS, 200m	mØ OR GREATE	NDICATED. R PRIOR TO BASE COURS CLEAN ALL SEWERS & API	
		IBLY TOP BY	EJ GROUP INC. PRO		6: SAN-41420049W01 & ST	M-41420050W01
1. GENERAL:	<u>AIN NOTES:</u>				DEEEDENCE	
THERMAL I	N TRENCHING NSULATION IN SHALL		ES W	ETAIL. No. 117 122	REFERENCE CITY OF OTTAWA CITY OF OTTAWA	
2. THE WATERN	N CROSSING BELOW			'25 / W25.2 ERIAL SPECIFICA	CITY OF OTTAWA	DTHERWISE
INDICATED. 3. SUPPLY AND AND SPECIFI CONNECTION	CONSTRUCT ALL WA	TERMAINS AI DN, INSTALLA	ND APPURTENANCES TION, BACKFILL AND	S IN ACCORDAN RESTORATION	CE WITH THE CITY OF OT OF ALL WATERMAINS BY SYSTEM SHALL BE PERF(TAWA STANDARDS THE CONTRACTOR.
OFFICIALS. 4. WATERMAIN	SHALL BE MINIMUM 2	.4m DEPTH B	ELOW GRADE UNLES	SS OTHERWISE	INDICATED.	L L
					PER W25 (0.50m) AND W25 OF CURB USING 19mmØ I	
			OF OTTAWA			~
	TECH			EANS - 21	28 TRIM ROAD	(BLOCK 126)
	Landscape Architects					PROJECT No.
	nael Cowpland Drive Canada K2M 1P6					120057 REV
Telephone Facsimile Website wv	(613) 254-9643 (613) 254-5867 ww.novatech-eng.com	GEN	ERAL PLAN	N OF SE	≺VICE	REV # 5
W	eng.com					DRAWING No.

120057-GP



					FONDING				
ufton	PONDING ID	STRUCTURE	100 YEAR PONDING ELEVATION	100 YEAR PONDING DEPTH (m)	100 YEAR +20% PONDING ELEVATION	100 YEAR + 20% PONDING DEPTH (m)	MAX STATIC PONDING ELEVATION	MAX STATIC PONDING DEPTH (m)	
ı, dduftc	P1	CB1	89.15	0.15	89.18	0 <u>.</u> 18	89.29	0.29	89.00
51pm	P2	CB2	89.25	0.17	89.29	0.21	89.38	0.30	03.00
- 2	P3	CBMH01	89.31	0.16	89.34	0 <u>.</u> 19	89.45	0.30	
2021	P4	CB3	89.35	0.17	89.39	0.21	89.48	0.30	
24, 2	P5	CB4	89.36	0.18	89.39	0.21	89.43	0.25	
Mar	P6	CB5	89.29	0.16	89.33	0.20	89.38	0.25	89.28
-A1,	P7	CB6	89.29	0.17	89.34	0.22	89.42	0.30	
ANS	P8	CB7	89.29	0.24	89.34	0.29	89.33	0.28	
g, PL	P9	LCB1	89.31	0.16	89.34	0.19	89.45	0.30	88.75
	P9	LCB1	89.31	0.16	89.34	0.19	89.45	0.30	E


	12-20-0
)	D07-1
7	172
5	1 #18172
	AN

<u>LEGEND</u>

RYCB

DRAINAGE BOUNDARY AREA
PROPOSED STORM MANHOLE & SEWER WITH DIRECTION OF FLOW
EXISTING STORM MANHOLE & SEWER WITH DIRECTION OF FLOW
PROPOSED CATCHBASIN MANHOLE
EXISTING CATCHBASIN MANHOLE
PROPOSED ROAD CATCHBASIN
EXISTING ROAD CATCHBASIN
PROPOSED REAR YARD CATCHBASIN
EXISTING REAR YARD CATCHBASIN
MAJOR SYSTEM FLOW ROUTE
100 yr PONDING AREA
100 yr + 20% PONDING AREA
MAX. STATIC PONDING AREA
HYDRO TRANSFORMER

COMMUNITY MAILBOX

DRAINAGE AREA (hectares)

RUN-OFF COEFFICIENT

AREA ID

NOVATECH

Engineers, Planners & Landscape Architects

Suite 200, 240 Michael Cowpland Drive

Ottawa, Ontario, Canada K2M 1P6

(613) 254-9643

(613) 254-5867

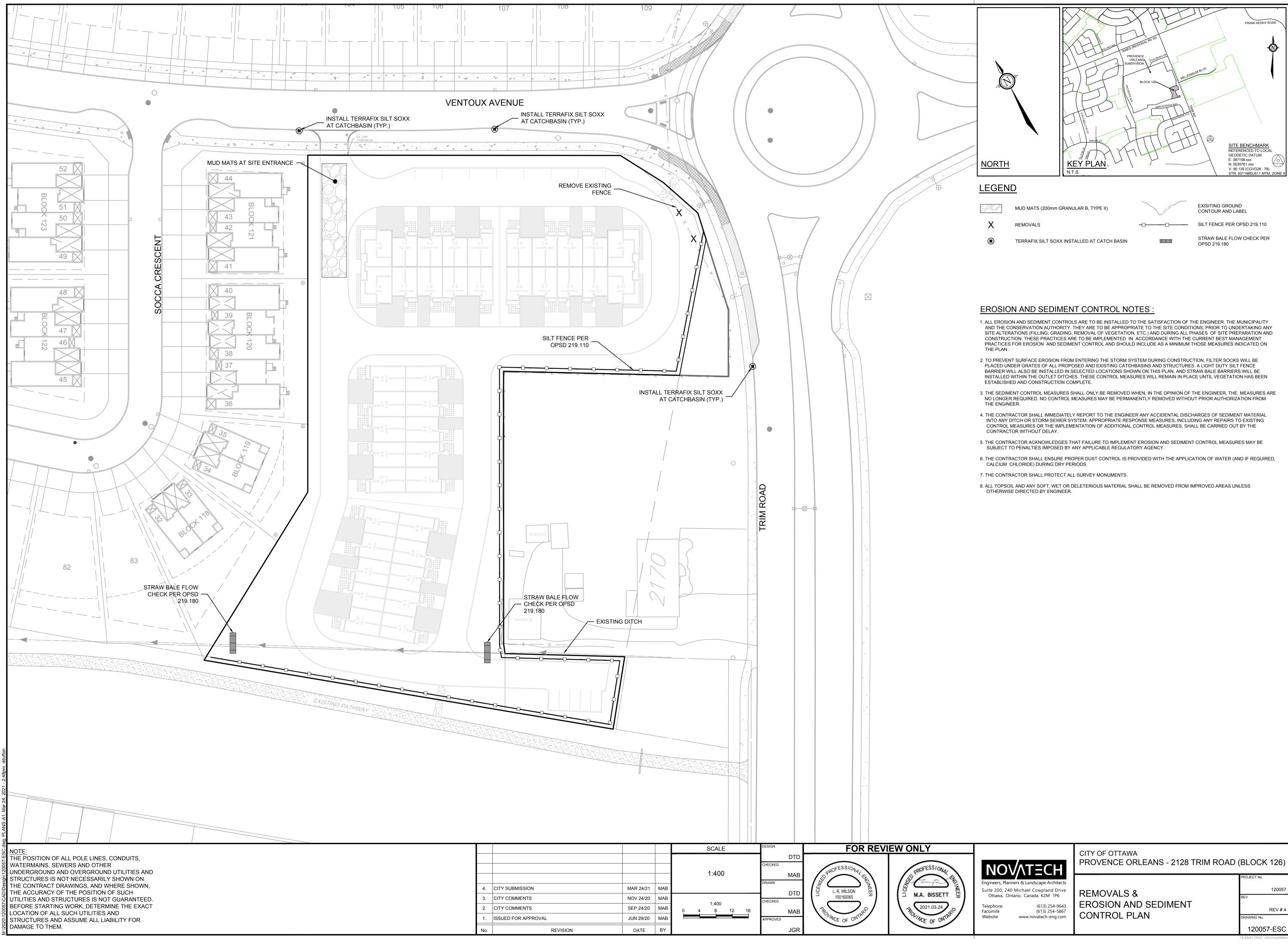
www.novatech-eng.com

Telephone

Facsimile

Website

·-·-·-·


_ · _ · _ · _ · _

600 120057 ∞ REV # 4

CITY OF OTTAWA PROVENCE ORLEANS - 2128 TRIM ROAD (BLOCK 126)

STORM DRAINAGE AREA PLAN

WING No. 120057-STM

	1000 00 01
26)	
0057	70
∨#4	1 #0170

DRAWING NO.
120057-ESC
1 ANA1 DWG - 841mmx594mm

Appendix D:

DSS Checklist

4.1 General Content	Addressed (Y/N/NA)	Comments
Executive Summary (for larger reports only).	N/A	
Date and revision number of the report.	Y	
Location map and plan showing municipal address,	N/	
boundary, and layout of proposed development.	Y	Refer to Report Figures
Plan showing the site and location of all existing services.	Y	Refer to Grading and Servicing Plans
Development statistics, land use, density, adherence to		
zoning and official plan, and reference to applicable subwatershed and watershed plans that provide context to which individual developments must adhere.	Y	Refer to Site Plan
Summary of Pre-consultation Meetings with City and other approval agencies.	Y	
Reference and confirm conformance to higher level studies and reports (Master Servicing Studies, Environmental Assessments, Community Design Plans), or in the case where it is not in conformance, the proponent must provide justification and develop a defendable design criteria.	Y	
Statement of objectives and servicing criteria.	Y	Refer to Sections: 5.0 Sanitary Sewers, 6.0 Stormwater
Identification of existing and proposed infrastructure available in the immediate area.	Y	Management, 7.0 Water
Identification of Environmentally Significant Areas, watercourses and Municipal Drains potentially impacted by the proposed development (Reference can be made to the Natural Heritage Studies, if available).	N/A	
Concept level master grading plan to confirm existing and proposed grades in the development. This is required to confirm the feasibility of proposed stormwater management and drainage, soil removal and fill constraints, and potential impacts to neighboring properties. This is also required to confirm that the proposed grading will not impede existing major system flow paths.	Y	Refer to Grading Plan and Stormwater Management Plan

4.1 General Content	Addressed (Y/N/NA)	Comments
Identification of potential impacts of proposed piped services on private services (such as wells and septic fields on adjacent lands) and mitigation required to address potential impacts.	N/A	
Proposed phasing of the development, if applicable.	N/A	
Reference to geotechnical studies and recommendations concerning servicing.	Y	Refer to Section 3.0 Grading
All preliminary and formal site plan submissions should		
have the following information:		
Metric scale	Y	
North arrow (including construction North)	Y	
Key plan	Y	
Name and contact information of applicant and property owner	Y	
Property limits including bearings and dimensions	Y	
Existing and proposed structures and parking areas	Y	
Easements, road widening and rights-of-way	Y	
Adjacent street names	Y	

4.2 Water	Addressed (Y/N/NA)	Comments
Confirm consistency with Master Servicing Study, if available.	Y	
Availability of public infrastructure to service proposed development.	Y	Refer to Sections: 5.0 Sanitary Sewers, 6.0 Stormwater
Identification of system constraints.	N/A	Management, 7.0 Water
Identify boundary conditions.	Y	Provided by City of Ottawa
Confirmation of adequate domestic supply and pressure.	Y	Refer to Appendix A
Confirmation of adequate fire flow protection and confirmation that fire flow is calculated as per the Fire Underwriter's Survey. Output should show available fire flow at locations throughout the development.	Y	Refer to Appendix A
Provide a check of high pressures. If pressure is found to be high, an assessment is required to confirm the application of pressure reducing valves.	Y	Refer to Appendix A
Definition of phasing constraints. Hydraulic modeling is required to confirm servicing for all defined phases of the project including the ultimate design.	N/A	
Address reliability requirements such as appropriate location of shut-off valves.	Y	
Check on the necessity of a pressure zone boundary modification.	N/A	
Reference to water supply analysis to show that major infrastructure is capable of delivering sufficient water for the proposed land use. This includes data that shows that the expected demands under average day, peak hour and fire flow conditions provide water within the required pressure range.	Y	Refer to Section 7.0 Water
Description of the proposed water distribution network, including locations of proposed connections to the existing system, provisions for necessary looping, and appurtenances (valves, pressure reducing valves, valve chambers, and fire hydrants) including special metering provisions.	Y	Refer to Section 7.0 Water
Description of off-site required feedermains, booster pumping stations, and other water infrastructure that will be ultimately required to service proposed development, including financing, interim facilities, and timing of implementation.	N/A	
Confirmation that water demands are calculated based on the City of Ottawa Design Guidelines.	Y	Refer to Section 7.0 Water
Provision of a model schematic showing the boundary conditions locations, streets, parcels, and building locations for reference.	N/A	

4.3 Wastewater	Addressed	Comments
	(Y/N/NA)	connicito
Summary of proposed design criteria (Note: Wet-weather		
flow criteria should not deviate from the City of Ottawa		
Sewer Design Guidelines. Monitored flow data from	Y	Refer to Section 5.0 Sanitary Sewers
relatively new infrastructure cannot be used to justify		Neter to section 5.6 summary sewers
capacity requirements for proposed infrastructure).		
Confirm consistency with Master Servicing Study and/or	N/A	
justifications for deviations.	,,,	
Consideration of local conditions that may contribute to		
extraneous flows that are higher than the recommended		
flows in the guidelines. This includes groundwater and	N/A	
soil conditions, and age and condition of sewers.		
Description of existing sanitary sewer available for	Y	Refer to Section 5.0 Sanitary Sewers
discharge of wastewater from proposed development.	· ·	Acter to section 5.6 Samilary Sewers
Verify available capacity in downstream sanitary sewer		
and/or identification of upgrades necessary to service the		
proposed development. (Reference can be made to	У	Refer to Appendix A
previously completed Master Servicing Study if		
applicable)		
Calculations related to dry-weather and wet-weather		
flow rates from the development in standard MOE	N/A	
sanitary sewer design table (Appendix 'C') format.		
Description of proposed sewer network including sewers,	Y	Refer to Section 5.0 Sanitary Sewers
pumping stations, and forcemains.	•	
Discussion of previously identified environmental		
constraints and impact on servicing (environmental		
constraints are related to limitations imposed on the		
development in order to preserve the physical condition	N/A	
of watercourses, vegetation, soil cover, as well as		
protecting against water quantity and quality).		
Pumping stations: impacts of proposed development on		
existing pumping stations or requirements for new	N/A	
pumping station to service development.		
Forcemain capacity in terms of operational redundancy,		
surge pressure and maximum flow velocity.	N/A	
Identification and implementation of the emergency		
overflow from sanitary pumping stations in relation to		
the hydraulic grade line to protect against basement	N/A	
flooding.		
Special considerations such as contamination, corrosive		
environment etc.	N/A	

4.4 Stormwater	Addressed (Y/N/NA)	Comments
Description of drainage outlets and downstream		
constraints including legality of outlet (i.e. municipal	Y	Refer to Section 6.0 Stormwater Management
drain, right-of-way, watercourse, or private property).		
Analysis of the available capacity in existing public	N/	Defente Anneadin A
infrastructure.	Y	Refer to Appendix A
A drawing showing the subject lands, its surroundings,		
the receiving watercourse, existing drainage patterns and	Y	Refer to Storm Drainage Area Plan (120057-STM)
proposed drainage patterns.		
Water quantity control objective (e.g. controlling post-		
development peak flows to pre-development level for		
storm events ranging from the 2 or 5 year event		
(dependent on the receiving sewer design) to 100 year		
return period); if other objectives are being applied, a	Y	Refer to Section 6.0 Stormwater Management
rationale must be included with reference to hydrologic		
analyses of the potentially affected subwatersheds,		
taking into account long-term cumulative effects.		
Water Quality control objective (basic, normal or		
enhanced level of protection based on the sensitivities of		
the receiving watercourse) and storage requirements.	Y	Refer to Section 6.0 Stormwater Management
Description of stormwater management concept with		
facility locations and descriptions with references and	Y	Refer to Section 6.0 Stormwater Management
supporting information.		5
Set-back from private sewage disposal systems.	N/A	
Watercourse and hazard lands setbacks.	N/A	
Record of pre-consultation with the Ontario Ministry of	,	
Environment and the Conservation Authority that has	N/A	
jurisdiction on the affected watershed.		
Confirm consistency with sub-watershed and Master		
Servicing Study, if applicable study exists.	N/A	
Storage requirements (complete with calcs) and	. v	
conveyance capacity for 5 yr and 100 yr events.	Y	Refer to Appendix B
Identification of watercourse within the proposed		
development and how watercourses will be protected,		
or, if necessary, altered by the proposed development	N/A	
with applicable approvals.		
Calculate pre and post development peak flow rates		
including a description of existing site conditions and		
proposed impervious areas and drainage catchments in	Y	Refer to Appendix B
comparison to existing conditions.		
Any proposed diversion of drainage catchment areas		
from one outlet to another.	N/A	
Proposed minor and major systems including locations		
and sizes of stormwater trunk sewers, and SWM facilities.	N/A	
If quantity control is not proposed, demonstration that		
downstream system has adequate capacity for the post-		
development flows up to and including the 100-year	N/A	
set elephicite notito up to unu moruaning the too year		

4.4 Stormwater	Addressed (Y/N/NA)	Comments
Identification of potential impacts to receiving	N/A	
watercourses.	,	
Identification of municipal drains and related approval	N/A	
requirements.		
Description of how the conveyance and storage capacity	Y	Refer to Section 6.0 Stormwater Management
will be achieved for the development.	•	
100 year flood levels and major flow routing to protect proposed development from flooding for establishing minimum building elevations (MBE) and overall grading.	Y	Refer to Grading Plan and Storm Drainage Area Plan
Inclusion of hydraulic analysis including HGL elevations.	N/A	
Description of approach to erosion and sediment control		
during construction for the protection of receiving	Y	Refer to Section 4.0 Erosion Sediment Control
watercourse or drainage corridors.		
Identification of floodplains – proponent to obtain relevant floodplain information from the appropriate Conservation Authority. The proponent may be required to delineate floodplain elevations to the satisfaction of the Conservation Authority if such information is not available or if information does not match current conditions.	N/A	
Identification of fill constrains related to floodplain and geotechnical investigation.	N/A	

4.5 Approval and Permit Requirements	Addressed (Y/N/NA)	Comments
Conservation Authority as the designated approval agency for modification of floodplain, potential impact on fish habitat, proposed works in or adjacent to a watercourse, cut/fill permits and Approval under Lakes and Rivers Improvement Act. The Conservation Authority is not the approval authority for the Lakes and Rivers Improvement Act. Where there are Conservation Authority regulations in place, approval under the Lakes and Rivers Improvement Act is not required, except in cases of dams as defined in the Act.		
Application for Certificate of Approval (CofA) under the Ontario Water Resources Act.	N/A	
Changes to Municipal Drains.	N/A	
Other permits (National Capital Commission, Parks Canada, Public Works and Government Services Canada, Ministry of Transportation etc.)	N/A	

4.6 Conclusion	Addressed (Y/N/NA)	Comments
Clearly stated conclusions and recommendations.	Y	Refer to Section 8.0 Conclusions and Recommendations
Comments received from review agencies including the City of Ottawa and information on how the comments were addressed. Final sign-off from the responsible reviewing agency.	Y	
All draft and final reports shall be signed and stamped by a professional Engineer registered in Ontario.	Y	