

Engineers, Planners & Landscape Architects

Engineering

Land / Site Development

Municipal Infrastructure

Environmental / Water Resources

Traffic / Transportation

Structural

Recreational

Planning

Land / Site Development

Planning Application Management

Municipal Planning Documents & Studies

Expert Witness (OMB)

Wireless Industry

Landscape

Architecture

Urban Design & Streetscapes

Open Space, Parks & Recreation Planning

Community & Residential Developments

Commercial & Institutional Sites

Environmental Restoration

Provence Orleans 2128 Trim Road (Block 126) Ottawa, Ontario

Servicing Design Brief

PROVENCE ORLEANS 2128 TRIM ROAD (BLOCK 126) OTTAWA, ONTARIO

SERVICING DESIGN BRIEF IN SUPPORT OF AN APPLICATION FOR SITE PLAN CONTROL

Prepared For:

Provence Orleans Realty Investments Inc. (c/o Regional Group of Companies)

Prepared By:

NOVATECH Suite 200, 240 Michael Cowpland Drive Ottawa, Ontario K2M 1P6

> June 29, 2020 Revised: September 24, 2020 Revised: March 24, 2021 Revised: April 6, 2021 Revised: May 3, 2021 Revised: May 14, 2021

> > Novatech File: 120057 Ref: R-2020-088

May 14, 2021

City of Ottawa Infrastructure Services and Community Sustainability 110 Laurier Avenue West, 4th Floor Ottawa, ON K1P 1J1

Attention: Will Curry, Project Manager – Infrastructure Approvals

Reference: Provence Orleans 2128 Trim Road (Block 126) Servicing Design Brief Our File No.: 120057

Enclosed for your review and approval is a digital copy of the Servicing Design Brief for the proposed Block 126 development in the Provence Orleans Subdivision at 2128 Trim Road in support of the application for site plan control.

If you have any questions or comments, please do not hesitate to contact us.

Sincerely,

NOVATECH

- win

Lucas Wilson, P.Eng. Project Coordinator

M:\2020\120057\DATA\REPORTS\DESIGN BRIEF\2021.05.14\2021.05.14 SITE SERVICING.DOCX

TABLE OF CONTENTS

1.0	INTRODUCTION1
1.1 1.2	BACKGROUND
2.0	ROADWAYS4
2.1 2.2 2.3	EXISTING CONDITIONS
3.0	GRADING4
3.1 3.2	EXISTING CONDITIONS
4.0	EROSION AND SEDIMENT CONTROL
5.0	SANITARY SEWERS
5.1 5.2 5.3	EXISTING CONDITIONS
6.0	STORMWATER MANAGEMENT8
6.1 6.2 6.3 6.4 6.5 6. 6. 6. 6.	STORMWATER MANAGEMENT CRITERIA81.1 Allowable Release Rate8EXISTING CONDITIONS8PROPOSED CONDITIONS93.1 Minor System Design93.2 Major System Design11HYDROLOGIC & HYDRAULIC MODELING11RESULTS OF HYDROLOGIC / HYDRAULIC ANALYSIS145.1 Minor System145.2 Major System155.3 Hydraulic Grade Line155.4 Peak Flows16
7.0	WATER17
7.1 7.2	EXISTING CONDITIONS
8.0	CONCLUSIONS AND RECOMMENDATIONS
Refer	ences20

List of Tables

- Table 2-1: Roadway Structure
- Table 5-1: Sanitary Sewer Design Parameters
- Table 6-1: Storm Sewer Design Parameters
- Table 6-2: Runoff Coefficients
- Table 6-3: Subcatchment Model Parameters
- Table 6-4: Inlet Control Devices & Design Flows
- Table 6-5: Overland Flow Results (100-year Event)
- Table 6-7: 100-year HGL Elevations
- Table 6-8: Summary of Peak Flows
- Table 7-1: Watermain Design Criteria
- Table 7-2: Water Flow Summary
- Table 7-3: Summary of Hydraulic Model Results Maximum Day + Fire Flow
- Table 7-4: Summary of Hydraulic Model Results Peak Hour Demand
- Table 7-5: Summary of Hydraulic Model Results Maximum Pressure Check

List of Figures

- Figure 1: Key Plan
- Figure 2: Site Plan
- Figure 3: Sanitary Sewer Network
- Figure 4: Storm Sewer Network
- Figure 5: Watermain Layout

Appendices

Appendix A: Design Sheets Appendix B: SWM Calculations Appendix C: Drawings Appendix D: DSS Checklist

1.0 INTRODUCTION

1.1 Background

Novatech has been retained to prepare a Servicing Design Brief for the Provence Orleans Subdivision – Block 126 Development, located at 2128 Trim Road, in the City of Ottawa. The site will be developed by Provence Orleans Realty Investments Inc. c/o Regional Group.

The development is located in the east end of Ottawa, south of Innes Road between Provence Avenue and Trim Road. **Figure 1** shows the location of the Provence Orleans Subdivision Lands and the Block 126 development.

Figure 1: Key Plan

The proposed site is approximately 0.98ha and will be bordered by the future Phase 2 of Provence Orleans Subdivision, Ventoux Avenue to the north, Trim Road to the east and existing residential as well as a potential future Transitway to the south.

This Servicing Design Brief provides information on the considerations and approach by which Novatech has analyzed the existing site information for the Block 126 development, and details how the development lands will be serviced while meeting the City requirements and all other relevant regulations. This brief builds upon the Phase 2 and 3 Provence Orleans Subdivision

Site Servicing and Stormwater Management Design Brief prepared by Novatech [1], the Master Servicing Study, Gloucester and Cumberland East Urban Community Expansion Area [2] prepared by Stantec, and the Site Servicing and Stormwater Management Design Brief, Provence Orleans Subdivision prepared by Novatech in support of Draft Approval [3].

This report should be read in conjunction with the following:

 Geotechnical Investigation, Proposed Provence City Towns Block, Trim Road - Ottawa, Ontario prepared by Paterson Group, dated March 30, 2021 (Project:PG4278-3). [4]

1.2 Land Use

The site will consist of four back-to-back townhome buildings with 10 units each (40 units total). The proposed Site Plan is shown below in **Figure 2**.

Figure 2: Site Plan

2.0 ROADWAYS

2.1 Existing Conditions

Currently the site can only be accessed from Trim Road, classified as an arterial roadway in the 2013 City of Ottawa Transportation Master Plan (TMP) **[5]**. Once constructed, Ventoux avenue (collector) will provide access to the site.

2.2 **Proposed Conditions**

The development will be accessed from a single entrance off Ventoux Avenue. The site contains a series of 6.7m private roads.

2.3 Roadway Design

Paterson Group has prepared a Geotechnical Investigation report for the development (March 30th, 2021) that provides recommendations for roadway structure, servicing and foundations. The recommended roadway structure is as follows:

Roadway Matorial Description	Pavement Structure
Roadway Material Description	Layer Thickness (mm)
Private Road	
Asphalt Wear Course: Superpave 12.5 (Class B)	40
Asphalt Binder Course: Superpave 19.0 (Class B)	50
Base: Granular A	150
Sub-Base: Granular B – Type II	<u>450</u>
Total	690

Table 2-1: Roadway Structure

3.0 GRADING

3.1 Existing Conditions

The existing site generally slopes to the northeast at approximately 0.5%. The maximum grade of approximately 89.05 metres in the southwest corner and a minimum elevation of approximately 88.32 metres in the northeast corner give a total elevation differential of approximately 0.73 metres across the site.

Geotechnical investigations were carried out by Paterson Group [4], with no bedrock encountered in the borehole at a depth of 30.5m. Groundwater was recorded at 84.79m, 3.65m below the ground surface, on December 1st, 2017.

3.2 **Proposed Conditions**

The design grades will tie into existing elevations along Ventoux Avenue, Trim Road, Future Transitway lands and the adjacent residential lands in Phase 2. A grade raise constraint of 1.1m for Blocks 1 and 2, and 1.6m for Blocks 3 and 4 is required. For detailed grading refer to drawing 120057-GR.

The proposed grading will fall within these ranges:

- Landscaped Area: Minimum 2% Maximum 6%
- Rearyard Swales: Minimum 1.5% (1.0% with subdrain)
- Maximum Terracing Grade of 3H:1V

4.0 EROSION AND SEDIMENT CONTROL

Erosion and sediment control measures will be implemented during construction in accordance with the "Guidelines on Erosion and Sediment Control for Urban Construction Sites" (Government of Ontario, May 1987). Typical erosion and sediment control measures recommended include, but are not limited to, the use of silt fences around perimeter of site, filter fabric or inserts under catch basin/maintenance hole lids, heavy duty silt fence barrier, straw bale check dams, rock check dams, turbidity curtain, dewatering trap, temporary water passage system, riprap, mud mats, silt bags for dewatering operations, topsoil and sod to disturbed areas and natural grassed waterways. Dewatering and sediment control techniques will be developed for the individual situations based on the above guidelines and utilizing typical measures to ensure erosion and sediment control is controlled in an acceptable manner and there is no negative impact to adjacent lands, water bodies or water treatment/conveyance facilities.

The following erosion and sediment control measures will be implemented during construction. Details are provided on the Erosion and Sediment Control Plan.

- All erosion and sediment control measures are to be installed to the satisfaction of the engineer, the municipality and the conservation authority prior to undertaking any site alterations (filling, grading, removal of vegetation, etc.) and remain present during all phases of site preparation and construction.
- A qualified inspector should conduct daily visits during construction to ensure that the contractor is working in accordance with the design drawings and that mitigation measures are being implemented as specified.
 - A light duty silt fence barrier is to be installed in the locations shown on the Erosion and Sediment Control & Removals Plan (**120057-ESC**).
 - $\circ\,$ Straw bale barriers or rock flow check dams are to be installed in drainage ditches.
 - Terrafix Siltsoxx are to be placed under all new catchbasins and storm manhole covers.
 - After complete build-out, all sewers are to be inspected and cleaned and all sediment and construction fencing is to be removed.

- The contractor shall ensure that proper dust control is provided with the application of water (and if required, calcium chloride) during dry periods.
- The contractor shall immediately report to the engineer or inspector any accidental discharges of sediment material into any ditch or sewer system. Appropriate response measures shall be carried out by the contractor without delay.
- The contractor acknowledges that failure to implement erosion and sediment control measures may result in penalties imposed by any applicable regulatory agency.

Temporary erosion and sediment control measures would be implemented both prior to commencement and during construction in accordance with the "Guidelines on Erosion and Sediment Control for Urban Construction Sites", (Government of Ontario, May 1987).

5.0 SANITARY SEWERS

5.1 Existing Conditions

An existing 200mm diameter sanitary sewer and maintenance hole is provided off Ventoux Avenue, at the site entrance, which outlets to a 250mm diameter sanitary sewer running along Ventoux.

5.2 **Proposed Conditions**

The peak design flow parameters in **Table 5-1** have been used in the sewer capacity analysis.

Unit and population densities and all other design parameters are specified in the City of Ottawa Sewer Design Guidelines **[6]**.

Sanitary flow from the site is proposed to connect into the 250mm diameter sanitary sewer in Ventoux Avenue. The sanitary sewer layout is shown on 120057-GP (**Appendix C**), and the design sheet is attached in **Appendix A**. The site (approx. 0.96ha) will outlet at MH 117 (site entrance) with a peak design flow of 1.6 L/s. The wastewater flow is routed through the sanitary sewer system in Ventoux Avenue to the 525mm diameter trunk sanitary sewer in Trim Road.

Tuble o Ti Guintary Gewer Design Turameters	Table 5-1:	Sanitary	Sewer	Design	Parameters
---	------------	----------	-------	--------	-------------------

Parameter	Design Parameter
Town Unit Population	2.7 people/unit
Residential Flow Rate, Average Daily	280 L/cap/day
Residential Peaking Factor	Harmon Equation (min=2.0, max=4.0)
Infiltration Rate	0.33 L/s/ha
Minimum Pipe Size	200 mm
Minimum Velocity	0.6 m/s
Maximum Velocity	3.0 m/s

Figure 3: Sanitary Sewer Network

5.3 Offsite Requirements

For the design of Phase 2 of the Provence Orleans Subdivision, a peak design flow of 24.89 L/s was calculated from MH 117 to MH 119 in Ventoux Avenue, which is higher than the calculated peak design flow of 24.60 L/s incorporating the proposed site plan. Therefore, there will be sufficient capacity offsite to service the proposed development.

6.0 STORMWATER MANAGEMENT

6.1 Stormwater Management Criteria

The following stormwater management criteria for the proposed development were prepared in accordance with the City of Ottawa Sewer Design Guidelines (October 2012), the Master Servicing Study prepared by Stantec which references the applicable portions of *Update to Master Drainage Plan East Urban Community Expansion Area* (Cumming Cockburn Ltd., September 11, 2000) and the Phase 2 & 3: Provence Orleans Subdivision Servicing and Stormwater Design Brief prepared by Novatech.

- Provide a dual drainage system (i.e. minor and major system flows);
- Control the runoff to MH116 in Ventoux Avenue to the allowable release rates Specified in **Section 6.1.1** using on-site storage;
- Ensure that no surface ponding will occur on the paved surfaces (i.e. private roadways or parking areas) during the 2-year storm event;
- Ensure that ponding is confined within the parking areas at a maximum depth of 0.35 m for both static ponding and dynamic flow;
- Minimum on-site detention storage provided by the major system is 150 m³/ha;
- Provide guidelines to ensure that site preparation and construction is in accordance with the current Best Management Practices for Erosion and Sediment Control.

6.1.1 Allowable Release Rate

The allowable release rate for the development (1.29 ha for the site and external areas) was established based on the restricted minor system flow of 70 L/s/ha (90.3 L/s) for all storms up-to and including the 100-year storm event. The site has been designed to ensure the release rate from the inlets capturing the external area of 2170 Trim Road (0.41 ha) is at least 70 L/s/ha (28.7 L/s).

6.2 Existing Conditions

The Provence Orleans subdivision lands are located within the Rideau Valley Conservation Authority jurisdiction. An existing 525mm diameter storm sewer and maintenance hole is provided at the site entrance on Ventoux Avenue. The 525mm diameter sewer will outlet to a 675mm diameter storm sewer within Ventoux Avenue.

6.3 **Proposed Conditions**

Runoff from the site will be routed to the storm sewer system in Ventoux Avenue through the existing 525mm diameter storm sewer and maintenance hole located at the private entrance along Ventoux Avenue. The storm system within the Provence Orleans Subdivision is directed to the existing Cardinal Creek stormwater management facility which provides water quality control. As such, on-site stormwater quality controls are not required. **Figure 5** outlines the proposed storm sewer system layout, and how it will connect to the existing network along Ventoux Avenue.

The existing 2170 Trim Road Lands will be captured by a series of RYCBs with controlled flows directed to the storm sewer system within the Block 126 lands.

6.3.1 Minor System Design

The storm sewers comprising the minor system have been designed based on the criteria outlined in the Ottawa Sewer Design Guidelines [6] using the principles of dual drainage. The design criteria used in sizing the storm sewers are summarized in **Table 6-1** and **Table 6-2**.

The proposed storm sewers have been sized using the Rational Method to convey peak flow associated with a 2-year rainfall event. The storm sewer design sheets are provided in **Appendix A**. The corresponding Storm Drainage Area Plan (Drawing 120057-STM) is provided in **Appendix C**.

Foundation drains are not provided for the slab-on-grade structures, the Geotechnical Report dated March 30th, 2021 does not include recommendations in regards to the installation of perimeter foundation drains.

Figure 4: Storm Sewer Network

Parameter	Design Criteria
Private Roads	2 Year Return Period
Storm Sewer Design	Rational Method/AutoDesk Storm Analysis
IDF Rainfall Data	Ottawa Sewer Design Guidelines
Initial Time of Concentration (Tc)	10 min
Minimum Velocity	0.8 m/s
Maximum Velocity	3.0 m/s
Minimum Diameter	250 mm

Table 6-1: Storm Sewer Design Parameters

Table 6-2: Runoff Coefficients

Land Use	Runoff Coefficient		
Hard Surface	0.90		
Soft Surface	0.20		

6.3.2 Major System Design

The site has been designed to convey runoff from storms that exceed the minor system capacity to Ventoux Avenue. The roadway and parking areas have been graded to ensure that the 100-year peak overland flows are confined within the parking area at a maximum flow depth of 350mm. The design of the major system conforms to the design standards outlined in Section 5.5 (Major System Considerations) of the City of Ottawa Sewer Design Guidelines (October 2012).

The site has been graded to provide an emergency overland flow route that spills along the roadway and outlets to Ventoux Avenue at the entrance to the site. An additional emergency overland flow route has been provided for the swale system capturing the existing 2170 Trim Road lands that spills along the swale and outlets to the existing DICB located within the Trim Road ROW.

6.4 Hydrologic & Hydraulic Modeling

The *City of Ottawa Sewer Design Guidelines* (October 2012) require hydrologic modeling for all dual drainage systems. The performance of the proposed storm drainage system for the site was evaluated using the *PCWMM* hydrologic/hydraulic modeling software.

Design Storms

The hydrologic analysis was completed using the following synthetic design storms and historical storms. The IDF parameters used to generate the design storms were taken from the Sewer Design Guidelines [6].

<u>4 Hour Chicago Storms</u>: 25mm 4-hr Chicago storm 2-year 4hr Chicago storm 5-year 4hr Chicago storm 100-year 4hr Chicago storm <u>12 Hour SCS Storms</u>: 2-year 12-hr SCS storm 5-year 24hr Chicago storm 100-year 24hr Chicago storm The 4-hour Chicago distribution generates the highest peak flows for both the minor and major systems and was determined to be the critical storm distribution for the design of the storm drainage system.

The proposed drainage system has also been stress tested using a 4-hour Chicago design storm that has a 20% higher intensity and total volume compared to the 100-year event.

Model Development

The PCSWMM model accounts for both minor and major system flows (*dual drainage*), including the routing of flows through the storm sewer network (*minor system*), and overland along the road network (*major system*). The results of the analysis were used to;

- Determine the total major and minor system runoff from the site;
- Size the ICDs for each inlet to the storm sewer system;
- Calculate the storm sewer hydraulic gradeline for the 100-year storm event; and
- Ensure no surface ponding occurs during the 2-year storm event.

The model is capable of accounting for both static and dynamic storage within the private roadways and parking areas, including the overland flow across all high points and capture/bypass curves for inlets on continuous grade. The 100-year flow depths computed by the model represent the total (static + dynamic) ponding depths at low points for areas in road sags.

Storm Drainage Area Plan & Subcatchment Parameters

The development has been divided into subcatchments based on the drainage areas tributary to each inlet of the proposed storm sewer system. The catchment areas are shown on the Storm Drainage Area Plan provided as drawing **120057-STM** in **Appendix C**.

The hydrologic parameters for each subcatchment were developed based on the Site Plan (**Figure 2**) and the Storm Drainage Area Plan specified above. Subcatchment parameters are outlined in **Table 6-3**.

Area ID	Catchment Area	Runoff Coefficient	Percent Impervious	Zero Imperv.	Flow Length	Equivalent Width	Average Slope		
	(ha)	(C)	(%)	(%)	(m)	(m)	(%)		
	Controlled Areas (Block 126)								
A1	0.08	0.64	63	9	15	53	0.5		
A2	0.12	0.71	73	43	20	60	0.5		
A3	0.07	0.77	81	29	20	35	0.5		
A4	0.04	0.2	0	0	10	40	0.5		
A5	0.07	0.71	73	7	30	23	0.5		
A6	0.1	0.73	76	44	20	50	0.5		
A7	0.15	0.77	81	43	20	75	0.5		
A8	0.08	0.73	76	25	20	40	0.5		
A9	0.17	0.73	76	37	20	85	0.5		
TOTAL	0.88 ha	0.70	71%	-	-	-	-		

Table 6-3: Subcatchment Model Parameters

Area ID	Catchment Area	Runoff Coefficient	Percent Impervious	Zero Imperv.	Flow Length	Equivalent Width	Average Slope
	(ha)	(C)	(%)	(%)	(m)	(m)	(%)
	Cor	ntrolled Areas	s (External Ar	eas & Portion	of Block	126)	
A10	0.16	0.22	3	95	35	46	0.5
A11	0.12	0.26	8	95	50	24	0.5
A12	0.13	0.46	37	35	45	29	0.5
TOTAL	0.41 ha	0.31	16%	-	-	-	-
			Uncontrolle	ed Areas			
B1	0.01	0.20	0	0	2	50	33.33
B2	0.003	0.20	0	0	2	15	0.5
TOTAL	0.013 ha	0.20	0%	-	-	-	-

Infiltration

Infiltration losses for all catchment areas were modeled using Horton's infiltration equation, which defines the infiltration capacity of the soil over the duration of a precipitation event using a decay function that ranges from an initial maximum infiltration rate to a minimum rate as the storm progresses. The default values for the Sewer Design Guidelines [8] were used for all catchments.

Horton's Equation:	Initial infiltration rate:	$f_{o} = 76.2 \text{ mm/hr}$
$f(t) = f_c + (f_o - f_c)e^{-k(t)}$	Final infiltration rate:	$f_{c} = 13.2 \text{ mm/hr}$
	Decay Coefficient:	k = 4.14/hr

Depression Storage

The default values for depression storage in the Sewer Design Guidelines **[8]** were used for all catchments. Residential rooftops were assumed to provide no depression storage.

•	Depression	Storage	(pervious areas):	4.67 mm
---	------------	---------	-------------------	---------

• Depression Storage (impervious areas): 1.57 mm

Equivalent Width

Equivalent Width' refers to the width of the sub-catchment flow path. This parameter is calculated as described in the Sewer Design Guidelines **[8]**, Section 5.4.5.6. The flow paths used to calculate the equivalent widths are shown on the PCSWMM schematics provided in **Appendix B**.

Impervious Values

Impervious (TIMP) values for each subcatchment area were calculated based on the proposed Site Plan (**Figure 2**) and correspond to the Runoff Coefficients used in the Rational Method calculations using the equation:

$$\% imp = \frac{C - 0.2}{0.7}$$

6.5 Results of Hydrologic / Hydraulic Analysis

The model was used to evaluate the performance of the proposed storm drainage system for Block 126

6.5.1 Minor System

Inflows to the storm sewer were modeled based on the characteristics of each inlet. All the catchbasins in the roadways and parking areas are located at low points. Inflows to the storm sewer are based on the ICD specified for the inlet and the maximum depth of ponding. ICDs have been sized to limit the outlet peak flows to the allowable release rate of 70 L/s/ha. Details are outlined as follows in **Table 6.4**. ICDs information is indicated on the General Plan of Services (drawing 120057-GP).

The Rational Method design sheets (**Appendix B**) were used to calculate the required storm sewer sizes based on capturing the peak flow at each inlet to the storm sewer for a 2-year design return period.

	ICD Size & Inlet Rate										
Structure ID	ICD Type	T/G	Orifice Invert	100-year Head on Orifice	2-year Orifice Peak Flow*	5-year Orifice Peak Flow*	100-year Orifice Peak Flow*				
	Tempest	(111)	(111)	(11)	(=, 0)	(=,0)	(=, 0)				
CB1	LMF (Vortex 89)	89.00	87.30	1.90	8.9	9.2	9.4				
CB5	Tempest MHF (98mm)	89.13	87.43	1.91	25.1	26.0	26.7				
CBMH2	Tempest LMF (Vortex 64)	89.08	86.20	3.12	4.6	5.9	6.2				
MH10	Tempest LMF (Vortex 64)	89.37	86.38	2.99	4.7	5.7	6.1				
MH18	Tempest LMF (Vortex 63)	89.32	86.11	3.13	4.5	5.8	6.0				
RYCB1	Tempest MHF (70mm)	88.18	86.78	1.53	0.2	3.2	12.0				
RYCB3	Tempest MHF (82mm)	88.55	86.87	1.80	3.4	9.2	18.0				

Table 6-4: Inlet Control Devices & Design Flows

*PCSWMM model results for a 4-hour Chicago storm distribution.

6.5.2 Major System

The major system network was evaluated using the PCSWMM model to ensure that the overland flow depths and velocities conform to City standards. A summary of ponding depths at each inlet for the 2-year, 5-year, 100-year and 100-year (+20%) events are provided in **Appendix B**. The maximum static and dynamic ponding depths within the roadways are less than 0.35m during all events and the product of depth x velocity will be less than 0.60. In addition, there is no cascading flow over the highpoint during the 100-year storm event.

Christian	T/G	Max. Static Ponding (Spill Depth)		100-yr Event (4hr)				
Structure		Elev.	Depth	Elev.	Depth	Cascading	Cascade	
	(m)	(m)	(m)	(m)	(m)	Flow?	Depth (m)	
CB1	89.00	89.31	0.31	89.20	0.20	Ν	0.00	
CB3	89.18	89.48	0.30	89.37	0.19	Ν	0.00	
CB4	89.18	89.43	0.25	89.37	0.19	Ν	0.00	
CB5	89.13	89.38	0.25	89.34	0.21	Ν	0.00	
CB6	89.02	89.32	0.30	89.24	0.22	Ν	0.00	
CB7	88.97	89.26	0.29	89.25	0.28	Ν	0.00	
CBMH1	89.15	89.45	0.30	89.32	0.17	Ν	0.00	
CBMH2	89.08	89.38	0.30	89.32	0.24	Ν	0.00	
RYCB1	88.18	88.78	0.60*	88.31	0.13	Ν	0.00	
RYCB2	88.44	88.88	0.44*	88.68	0.24	Ν	0.00	
RYCB3	88.55	88.73	0.18*	88.67	0.12	Ν	0.00	
RYCB4	89.15	89.45	0.30	89.32	0.17	N	0.00	

Table 6-5: Overland Flow Results (100-year Event)

*RYCB located along ditch adjacent 2170 Trim Road

An expanded table of the ponding depths at low points in the roadway (including the stress-test event) is provided in **Appendix B** and confirms that no ponding occurs during the 2-year event. Based on these results, the proposed storm drainage system will not experience any adverse flooding even with a 20% increase to the 100-year event.

6.5.3 Hydraulic Grade Line

The results of the analysis were used to determine if there would be any surcharging from the storm sewer system during the 100-year storm event. **Appendix B** provides a summary of the 100-year HGL elevation at each storm manhole within the proposed development, as well as a summary of the HGL elevations for a 20% increase (rainfall intensity and total precipitation) in the 100-year design event. The results of the HGL analysis and the stress testing indicates that the storm sewer surcharges at MH6, MH8, MH10, MH16, MH18, CBMH1 and CBMH2 but with no foundation drains connected to the storm sewer there are no clearance issues with respect to the designed USF elevations. The 100-year HGL elevations at each storm manhole are provided in **Table 6-6**.

Manhole ID	MH Invert Elevation	T/G Elevation	HGL Elevation - 100yr4hr					
	(m)	(m)	(m)					
HGL - Block 126								
MH2	85.74	89.25	86.02					
MH4	85.94	89.37	86.16					
MH6	86.27	89.26	86.32					
MH8	86.82	89.46	89.37					
MH10	86.38	89.37	89.37					
MH12	86.15	89.32	86.40					
MH14	86.41	89.30	86.50					
MH16	86.58	89.59	89.24					
MH18	86.11	89.31	89.24					

Table 6-6: 100-year HGL Elevations

An expanded table showing the results of the stress test (100-year +20% event) and the HGL elevations is provided in Appendix B.

6.5.4 Peak Flows

The overall release rates from the ICDs were added to determine the overall release rate from the site. The results of this analysis indicate that the allowable release rates will be met for each storm event. Refer to Table 6-7 for the modelled peak flows for each storm event.

The results of the PCSWMM analysis indicate that outflows from the proposed development will not exceed the allowable release rate for all storm events.

> > 1.3

23.9

Table 6-7: Sum	mary of Peak Fl	ows	
Design Event	Allowable Release Rate	Controlled Minor System Release Rate	Major System Release Rate to Ventoux Ave.
	(L/s)	(L/s)	(L/s)
2-year		46.6	0
5-year	90.3	62.1	0.4

*PCSWMM Model results for a 4-hr Chicago storm distribution; normal outfall condition.

84.0

85.4

A small portion of the site, area B2 adjacent Ventoux Avenue, flows uncontrolled to the existing storm system. Area B2 is comprised completely of grass and is approximately 0.003 ha with a peak flow of 1.3 L/s during the 100-year storm event. With the inclusion of this uncontrolled area, the total release rate to the Ventoux Avenue storm sewer system is 85.3 L/s, meeting the allowable release rate. There is also a small portion of grassed land, area B1, that flows uncontrolled to the future transitway block with a peak flow of 4.3 L/s during the 100-year storm event.

100-year

100-year

(+20%)

The external areas of 2170 Trim Road and the small portion of Block 126 (0.41 ha) being directed to RYCB1 and RYCB3 have a combined release rate of 30 L/s (73 L/s/ha). All external areas are being controlled to 73 L/s/ha while ensuring the development as a whole is being controlled to the allowable release rate.

7.0 WATER

7.1 Existing Conditions

The proposed development is located inside the 2E Pressure Zone. As part of Phase 2 of the Provence Orleans Subdivision, a 300mm diameter watermain will be located within Ventoux Avenue connecting to an existing 400mm diameter trunk watermain in Trim Road. A 200mm diameter watermain cap will be provided at the entrance to the site off Ventoux Avenue.

7.2 **Proposed Conditions**

The site will be connected to the existing 300mm diameter waterman in Ventoux Avenue through the 200mm diameter cap provided at the site entrance.

A series of 200mm diameter watermains are proposed and will provide sufficient capacity to maintain appropriate pressures and fire flows throughout the development. **Figure 5** provides a high level schematic of the proposed water distribution system.

The watermain boundary conditions below were obtained from the City of Ottawa (December 2019) provided as part of the detailed design for the Provence Orleans Subdivision and has been included in **Appendix A**:

Boundary Condition 1 – Provence Avenue Max Day + FF of 167 L/s = 126.2m Max Day + FF of 300 L/s = 122.9m Peak Hour = 125.8m Maximum HGL = 130.3m Boundary Condition 2 – Trim Road Max Day + FF of 167 L/s = 126.4m Max Day + FF of 300 L/s = 123.3m

Peak Hour = 125.8m Maximum HGL = 130.3m

City of Ottawa watermain design criteria are outlined in **Table 7.1**.

Figure 5: Watermain Layout

Design Parameter	Design Criteria
Town Population	2.7 people/unit
Residential Demand	280 L/c/d
Maximum Day Demand	2.5 x Average Day
Peak Hour Demand	2.2 x Maximum Day
Fire Demand	250, 267, 283 and 300 L/s
Maximum Pressure	690 kPa (100psi) unoccupied areas
Maximum Pressure	552 kPa (80psi) occupied areas outside of ROW
Minimum Pressure	275 kPa (40 psi) except during fire flow
Minimum Pressure	140 kPa (20 psi) fire flow conditions

Table 7-1: Watermain Design Criteria

Table 7-2: Water Flow Summary

	Units	Population	Average Day Demand (L/s)	Maximum Day Demand (L/s)	Peak Hour Demand (L/s)
Back-to-Back Towns	40	108	0.350	0.875	1.925
Total	40	108	0.350	0.875	1.925

Based on the fire underwriters survey, the fire flows were calculated as 250 L/s (Block 2), 267 L/s (Block 1), 283 L/s (Block 4) and 300 L/s (Block 3). Hydrant grades and distances to structures are illustrated on the Fire Hydrant Coverage Plan in **Appendix A**. Fire flow calculations are provided in **Appendix A**.

The proposed watermain was modeled using EPANET 2 (See 120057-GP for detailed watermain layout).

A summary of the model results are shown below in **Table 7.3**, **Table 7.4** and **Table 7.5**. Full model results are included in **Appendix A**.

Table 7-3: Summary of Hyd	raulic Model Results -	- Maximum Day +	Fire Flow
---------------------------	------------------------	-----------------	-----------

Operating Condition	Minimum Pressure
267 L/s at Block 1	258.79 kPa (HYD3)
250 L/s at Block 2	277.82 kPa (HYD3)
300 L/s at Block 3	228.08 kPa (HYD3)
283 L/s at Block 4	234.16 kPa (HYD3)

Table 7-4: Summary of Hydr	raulic Model Results - Peak Hour	Demand

Operating Condition	Maximum Pressure	Minimum Pressure
1.925 L/s through system	361.11 kPa (T3)	359.05 kPa (T2)

The hydraulic modeling summarized above highlights the maximum and minimum system pressures during Peak Hour conditions, and the minimum system pressures during the Maximum Day + Fire condition. Since the Maximum Day + Fire Flow pressures are above the minimum 140 kPa, and the Peak Hour Pressures onsite fall within the normal operating pressure range (345 kPa to 552 kPa) we conclude the proposed water design will adequately service the development.

Table 7-5: Summary of Hydraulic Model Results – Maximum Pressure Check

Operating Condition	Maximum Pressure	Minimum Pressure
0.350 L/s through system	405.55 kPa (T3)	403.49 kPa (T2)

The average day pressures throughout the system are below 552 kPa, therefore pressure reducing valves are not required.

Water retention was analyzed at each node during average day demand. The maximum age throughout the system is within City standards.

8.0 CONCLUSIONS AND RECOMMENDATIONS

The report conclusions are as follows:

- The proposed storm system will control post-development flow to the allowable release rate of 70 L/s/ha. All runoff volume from the 100-year storm event is stored on site using surface storage. The existing Cardinal Creek stormwater management facility is the ultimate outlet for the site and provide water quality control.
- 2) The proposed sanitary sewer conforms to City design criteria and provides a gravity outlet for the development site. There is sufficient capacity in the downstream sanitary sewers to accommodate the flows that outlet to the Ventoux Avenue sanitary sewers.
- 3) Connection to the watermain in Ventoux Avenue will provide municipal water service to the development.
- 4) There is adequate fire protection to the proposed development, in accordance with the Fire Underwriter's Survey.
- 5) The proposed infrastructure (sanitary, storm and water) complies with City of Ottawa design standards.

This report is respectfully submitted for review and approval. Please contact the undersigned should you have questions or require additional information.

Sincerely,

NOVATECH

Prepared By:

Lucas Wilson, P.Eng. Project Coordinator

Reviewed By:

Mark Bissett, P.Eng. Senior Project Manager

References

- 1. "Phase 2 and 3 Provence Orleans Subdivision Site Servicing and Stormwater Management Design Brief", Novatech [May 2020]
- 2. "Gloucester and Cumberland East Urban Community Expansion Area and Bilberry Creek Industrial Park Master Servicing Update", Stantec [July 2006]
- **3.** "Site Servicing and Stormwater Management Design Brief (R-2018-095), Provence Orleans Subdivision, 2128 Trim Road, Ottawa, Ontario", Novatech [March 31, 2019]
- **4.** "Geotechnical Investigation, Proposed Provence City Towns Block, Trim Road, Ottawa, Ontario (PG4278-3)", Paterson Group [March 30, 2021]
- 5. "Transportation Master Plan", City of Ottawa [November 2013]
- 6. "Sewer Design Guidelines", Department of Public Works and Services, City of Ottawa [October 2012]

APPENDIX A: Design Sheets

Storm Sewer Design Sheet (Rational Method) Sanitary Sewer Design Sheets Watermain Boundary Conditions Watermain Modelling Fire Flow Calculations Fire Hydrant Coverage Plan

LO	CATION					AREA							FI	LOW							PROP	OSED SE	WER		
Location	From Node	To Node	Hard Surface	Soft Surface	Towns Front Yard	Towns Front Yard	Towns Rear Yard	Towns Rear Yard	Total Area	Weighted Runoff Coefficient	Indivi 2.78 AR	Accum 2.78 AR	Time of Concentration	R 2yr	ain Intensit (mm/hr) 5yr	Peak Flow	Total Peak Flow (Q)	Pipe	Size	Grade	Length	Capacity	Full Flow Velocity	Time of Flow	Q/Qfull
			0.90	0.20	Area	С	Area	С	(ha)							(L/s)	(L/s)	Туре	(mm)	(%)	(m)	(l/s)	(m/s)	(min.)	(%)
											0.45		10.00												
A 3 A 4		6	0.057	0.053					0.11	0.56	0.17	0.17	10.00	76.81		13.2	13.2	CONC	525	1.00	31.5	118 7	2.01	0.26	2.0%
A-3, A-4	CDIVITT	0							0.00		0.00	0.00	10.00			0.0	13.2	CONC	525	1.00	51.5	440.7	2.01	0.20	2.970
									0.00		0.00	0.17	10.26	75.82		13.0									 I
	6	CBMH2							0.00		0.00	0.00	10.26			0.0	13.0	CONC	525	0.50	12.4	317.2	1.42	0.15	4.1%
									0.00		0.00	0.00	10.26			0.0									[
A 2	СВМЦЭ	1	0.087	0.033					0.12	0.71	0.24	0.41	10.41	75.28		30.7	20.7	DVC	200	0.50	22.0	71.2	0.00	0.20	12 10/
A-2	CDIVINZ	4							0.00		0.00	0.00	10.41			0.0	30.7	FVC	300	0.50	22.0	71.5	0.90	0.39	43.1%
			0.404	0.010					0.00	0.70	0.00	0.00	10.00	70.04		0.0									
A 5 A 6	8	10	0.134	0.046					0.18	0.72	0.36	0.36	10.00	76.81		27.7	27.7	DVC	375	1.00	30.0	182.0	1.60	0.41	15.2%
A-3, A-0	0	10							0.00		0.00	0.00	10.00			0.0		FVC	575	1.00	33.0	102.9	1.00	0.41	13.2 /0
			0.038	0.202					0.24	0.31	0.21	0.57	10.41	75.28		42.8		-							
A-11, A-12	10	12							0.00		0.00	0.00	10.41			0.0	42.8	PVC	300	0.40	37.6	63.8	0.87	0.72	67.0%
									0.00		0.00	0.00	10.41			0.0									L
				0.160					0.16	0.20	0.09	0.09	10.00	76.81		6.8									
A-10 14	14	12							0.00		0.00	0.00	10.00			0.0	6.8	PVC	300	0.50	36.4	71.3	0.98	0.62	9.6%
									0.00		0.00	0.00	10.00			0.0									
			0.122	0.028					0.15	0.77	0.32	0.98	11.12	72.75		71.2									
A-7	12	4							0.00		0.00	0.00	11.12			0.0	71.2	PVC	375	0.35	39.7	108.2	0.95	0.70	65.8%
									0.00		0.00	0.00	11.12			0.0									
			0.050	0.030					0.08	0.64	0.14	1.29	11.82	70.46		91.0									
A-1	4	2							0.00		0.00	0.00	11.82			0.0	91.0	CONC	450	0.30	43.1	162.9	0.99	0.72	55.9%
									0.00		0.00	0.00	11.82			0.0									
			0.188	0.062					0.25	0.73	0.50	0.50	10.00	76.81		38.8									·
A-8, A-9	16	18							0.00		0.00	0.00	10.00			0.0	38.8	CONC	600	1.00	57.8	640.6	2.19	0.44	6.1%
									0.00		0.00	0.00	10.00	75.40		0.0									
	18	2							0.00		0.00	0.50	10.44	75.16		37.9	37.0	DVC	300	1.00	10.2	100.0	1 3 8	0.23	37.6%
	10	2							0.00		0.00	0.00	10.44			0.0	57.5	FVC	500	1.00	13.2	100.9	1.50	0.25	57.070
									0.00		0.00	4.00	10.54	00.05		400.0									
	2	EV116							0.00		0.00	1.80	12.54	68.25		122.6	100.6	CONC	525	0.25	10.2	224.2	1.00	0.20	54 704
	2	EATIO							0.00		0.00	0.00	12.54			0.0	122.0	CONC	525	0.25	10.5	224.3	1.00	0.30	54.7 %
									0.00		0.00	0.00	12.01			0.0									
Q = 2.78 AIR		WHERE :	Q = PEAK FLOW	V IN LITRES PER	SECOND (L/s)					Q = (1/n) A R^(2/3)So^(1/2) WHERE : Q = CAPACITY (L/s) Project: Prove						ence Orleans - Block 126 (120057)									
			A = AREA IN HE	CTARES (ha)											n = MANN		UF ROUGHNES	5 (0.013)							Jesigned: LRW
			I = RAINFALL INTENSITY IN MILLIMETERS PER HOUR (mm/hr) R = WEIGHTED RUNOFF COEFFICIENT																			Date	Checked: MAB : May 14, 2021		

Provence Orleans - Block 126: Storm Sewer Design Sheet (Rational Method)

	AREA				RE	SIDE	NTIAL			INF	ILTRATIC)N					PI	PE			
			SIN	IGLES	Tow	/ns															
							Accum	Peak	Peak Flow	Total Area	Accum.	Infilt.	Total Flow	Size	Slope	Length	Capacity	Full Flow	Actual	0/064	1/5
ID	From	То	Units	Pop.	Units	Pop.	Pop.	Factor	(l/s)	(ha)	(ha)	(l/s)	(l/s)	(mm)	(%)	(m)	(l/s)	(m/s)	(m/s)	(%)	d/D
Ventoux	Avenue											=									
	7	5	0	0.0	5	13.5	13.5	3.7	0.2	0.14	0.14	0.0	0.2	200	1.00	32.8	34.2	1.06	0.26	0.6%	0.000
	5	3	0	0.0	5	13.5	27.0	3.7	0.3	0.08	0.22	0.1	0.4	200	0.50	37.6	24.2	0.75	0.23	1.6%	0.077
	15	13	13 0 0.0 5 13.5 13.5 3.7 0.2		0.2	0.19	0.19	0.1	0.2	200	1.00	38.7	34.2	1.06	0.26	0.7%	0.000				
	13	9	0	0.0	5	13.5	27.0	3.7	0.3	0.08	0.27	0.1	0.4	200	0.50	37.5	24.2	0.75	0.24	1.7%	0.077
	11	9	0	0.0	6	16.2	16.2	3.7	0.2	0.12	0.12	0.0	0.2	200	1.00	36.4	34.2	1.06	0.26	0.7%	0.000
	9	3	0	0.0	4	10.8	54.0	3.6	0.6	0.08	0.47	0.2	0.8	200	0.50	36.7	24.2	0.75	0.28	3.3%	0.077
	3	1	0	0.0	0	0.0	81.0	3.6	0.9	0.04	0.73	0.2	1.2	200	0.50	40.1	24.2	0.75	0.32	4.9%	0.077
	17	1	0	0.0	10	27.0	27.0	3.7	0.3	0.22	0.22	0.1	0.4	200	1.00	69.9	34.2	1.06	0.30	1.2%	0.077
	1	EX117	0	0.0	0	0.0	108.0	3.6	1.3	0.01	0.98	0.3	1.6	200	1.00	17.3	34.2	1.06	0.45	4.6%	0.153
	EX115	EX117	0	0.0	0	0.0	1327.0	3.7	15.9		20.43	6.7	22.7	250	0.35	46.0	36.7	0.72	0.66	61.7%	0.634
	EX117	EX119	5	17.0	0	0.0	1452.0	3.7	17.4	0.44	21.85	7.2	24.6	250	0.35	77.7	36.7	0.72	0.68	67.1%	0.672
Design Pa	arameters								Population	Density:	·						Project	: Provenc	e Orleans:	s - Block 12	26 (120057)
Avg Flow/F	Person =		280	l/day						ppl/unit	ur	hits/net !	ha							Desi	gned: LRW
Comm./Ins	st. Flow =		35000	l/ha/day					Apartment	1.80		90								Che	cked: MAB
Infiltration	=		0.33	l/s/ha					Singles	3.40										Date: Marc	ch 24, 2021
Pipe Frictin	on n =		0.013						Towns	2.70		60									
Residentia	I Peaking	Factor = I	Harmon ^r	Equation (,max 4, min	، 2)															

Provence Orleans - Block 126: Sanitary Sewer Design Sheet

SANITARY SEWER DESIGN SHEET **Provence Orleans Subdivision - 2128 Trim Road** Developer: Provence Orleans Realty Investment Inc. c/o Regional Group of Companies

PROJECT # : DESIGNED BY : CHECKED BY : DATE PREPARED :

MER

LOCATION	1			INDIVIDUAL							TIVE			PEAK	PEAK				PROPO	SED SEWE	R			
STREET	FROM MH	TO MH	Area	Single Units	Townhouse Units	Condo Units	Retirement Home Units	Population (in 1000's)	AREA (ha.)	Population (in 1000's)	AREA (ha.)	PEAK FACTOR M	POPULATION FLOW Q(p) (L/s)	EXTRAN. FLOW Q(i) (L/s)	DESIGN FLOW Q(d) (L/s)	LENGTH (m)	PIPE SIZE (mm)	PIPE ID (mm)	TYPE OF PIPE	GRADE %	CAPACITY (L/s)	FULL FLOW VELOCITY (m/s)	Qpeak/ Qcap	d/ D _{full}
Future Phase 5	FUT	109	500					0.3450	6.14	0.345	6.140	4.0	4.47	2.03	6.50									
Future Phase 4	FUT	111	400					0.4880	6.08	0.488	6.080	4.0	6.29	2.01	8.30									
					<u> </u>																			
Petanque Cres.	505	503	2		3			0.0081	0.17	0.008	0.170	4.0	0.11	0.06	0.16	12.4	200	203.20	DR 35	0.65	27.6	0.85	1%	(
Petanque Cres.	503	501	3		16			0.0432	0.46	0.051	0.630	4.0	0.67	0.21	0.87	51.8	200	203.20	DR 35	0.35	20.2	0.62	4%	ı ——
Petanque Cres.	501	101	4		3			0.0081	0.13	0.059	0.760	4.0	0.77	0.25	1.02	26.2	200	203.20	DR 35	0.35	20.2	0.62	5%	ı ——
			_		<u> </u>																			ı ——
Petanque Cres.	505	507	9	7	1			0.0265	0.47	0.027	0.470	4.0	0.34	0.16	0.50	56.5	200	203.20	DR 35	0.65	27.6	0.85	2%	ı ——
Petanque Cres.	507	509	10	7	<u> </u>			0.0238	0.42	0.050	0.890	4.0	0.65	0.29	0.95	56.0	200	203.20	DR 35	0.35	20.2	0.62	5%	ı ——
Petanque Cres.	509	511	11	10	<u> </u>			0.0340	0.67	0.084	1.560	4.0	1.09	0.51	1.61	82.2	200	203.20	DR 35	0.35	20.2	0.62	8%	I
Petanque Cres.	511	513	12	2				0.0068	0.21	0.091	1.770	4.0	1.18	0.58	1.77	14.2	200	203.20	DR 35	0.65	27.6	0.85	6%	I
Petanque Cres.	513	109	13	8	<u> </u>			0.0272	0.50	0.118	2.270	4.0	1.55	0.75	2.20	72.0	200	203.20	DR 35	0.50	24.2	0.75	9%	I
Sooon Cron	402	405	41	7	<u> </u>			0 0000	0.46	0.024	0.460	4.0	0.21	0.15	0.46	56.6	200	202.20		0.65	27.6	0.95	00/	ı ————————————————————————————————————
Socca Cres.	403	405	41	1	<u> </u>			0.0230	0.40	0.024	0.400	4.0	0.35	0.15	0.40	12.6	200	203.20	DR 35	0.05	27.0	0.85	2%	l
Socca Cres	403	111	42	10	<u> </u>			0.0034	0.14	0.027	1 160	4.0	0.35	0.20	1 18	72.0	200	203.20	DR 35	0.40	20.2	0.73	2 /o 6%	
oocca ores.	401			10				0.0040	0.50	0.001	1.100	4.0	0.75	0.00	1.10	72.4	200	200.20	DIT 00	0.00	20.2	0.02	078	
Socca Cres	405	407	46	6				0 0204	0.38	0.020	0.380	4 0	0.26	0.13	0.39	54 0	200	203 20	DB 35	0.66	27.8	0.86	1%	
Socca Cres	407	409	47	1	2			0.0088	0.00	0.029	0.560	4.0	0.38	0.18	0.56	15.9	200	203.20	DR 35	0.52	24.7	0.00	2%	l
Socca Cres	409	115	48		19			0.0513	0.63	0.020	1 190	4.0	1.04	0.39	1.44	78.8	200	203.20	DR 35	0.36	20.5	0.63	7%	l
								0.0010	0.00	0.001						. 0.0	200			0.00				
Ventoux Ave.	99	101	1	4				0.0136	0.23	0.014	0.230	4.0	0.18	0.08	0.25	35.7	200	203.20	DR 35	0.65	27.6	0.85	1%	
												-												
Ventoux Ave.	101	103	5	3				0.0102	0.16	0.083	1.15	4.0	1.08	0.38	1.46	30.9	200	203.20	DR 35	0.35	20.2	0.62	7%	
Ventoux Ave.	103	105	6	7	7			0.0427	0.56	0.126	1.710	4.0	1.63	0.56	2.20	66.9	200	203.20	DR 35	0.35	20.2	0.62	11%	
Ventoux Ave.	105	107	7	13	1			0.0469	0.63	0.173	2.340	4.0	2.24	0.77	3.01	71.0	200	203.20	DR 35	0.35	20.2	0.62	15%	
Ventoux Ave.	107	109	8	6				0.0204	0.38	0.193	2.720	4.0	2.50	0.90	3.40	73.6	200	203.20	DR 35	0.35	20.2	0.62	17%	
Ventoux Ave.	109	111	26					0.0000	0.15	0.657	11.280	3.9	8.32	3.72	12.04	79.5	250	254.00	DR 35	0.35	36.7	0.72	33%	0.38
Ventoux Ave.	111	113	44	1				0.0034	0.12	1.209	18.64	3.7	14.68	6.15	20.83	52.5	250	254.00	DR 35	0.35	36.7	0.72	57%	0.53
Ventoux Ave.	113	115	45	7				0.0238	0.39	1.233	19.030	3.7	14.94	6.28	21.22	52.1	250	254.00	DR 35	0.35	36.7	0.72	58%	0.53
Ventoux Ave.	115	117	49	3	<u> </u>			0.0102	0.20	1.324	20.420	3.7	15.95	6.74	22.69	46.0	250	254.00	DR 35	0.35	36.7	0.72	62%	0.56
Future Multi-Unit Block	1	117	50		48			0.1296	1.23	1.453	21.650	3.7	17.38	7.14	24.52	17.2	200	203.20	DR 35	1.00	34.2	1.06	72%	
Ventoux Ave.	117	119	51	6				0.0204	0.47	1.474	22.120	3.7	17.60	7.30	24.90	77.7	250	254.00	DR 35	0.35	36.7	0.72	68%	0.58
Ventoux Ave.	119	121	52		<u> </u>			0.0000	0.05	1.474	22.170	3.7	17.60	7.32	24.91	29.5	250	254.00	DR 35	1.00	62.0	1.22	40%	0.41

<u>Notes:</u> 1. Q(d) = Q(p) + Q(i) 2. Q(i) = 0.33 L/sec/ha

3. Q(p) = (PxqxM/86,400)

<u>Definitions:</u> Q(d) = Design Flow (L/sec)

Q(p) = Population Flow (L/sec)

Q(i) = Extraneous Flow (L/sec)

P = Population (3.4 persons/single unit, 2.7 persons/townhouse, 2.1 persons/apartment, 1.4 persons/retirement residence) q = Average per capita flow = 280 L/cap/day - Residential

M = Harmon Formula (maximum of 4.0)

Min pipe size 200mm @ min. slope 0.32%

Boundary Conditions for Provence Orleans

Provided Information:

Date Provided	December-19			
0	Demand			
Scenario	L/min	L/s		
Average Daily Demand	119	1.99		
Maximum Daily Demand	299	4.98		
Peak Hour	658	10.96		
Fire Flow Demand #1	10,020	167.00		
Fire Flow Demand #2	18,000	300.00		

Location:

Results:

Connection 1 - Provence Ave

Demand Scenario	Head (m)	Pressure ¹ (psi)
Maximum HGL	130.3	59.2
Peak Hour	125.8	52.9
Max Day plus Fire 1	126.2	53.5
Max Day plus Fire 2	122.9	48.8

¹ Ground Elevation = 88.6m

Connection 2 - Trim Road

Demand Scenario	Head (m)	Pressure ¹ (psi)
Maximum HGL	130.3	58.4
Peak Hour	125.8	52.1
Max Day plus Fire 1	126.4	52.9
Max Day plus Fire 2	123.3	48.5

¹ Ground Elevation = 89.2m

Connection 3 - Salzburg Dr

Demand Scenario	Head (m)	Pressure ¹ (psi)
Maximum HGL	130.3	59.5
Peak Hour	125.8	53.1
Max Day plus Fire 1	123.0	49.0
Max Day plus Fire 2	113.2	35.1

¹ Ground Elevation = 88.5m

Notes:

- 1. Fire flow was applied on connection 3 but no demand was applied on connection 3. The City modeled additional internal looping within the three connections to meet the pressure requirement under fire flow condition at connection 3 as shown above.
- 2. Looping of the watermain is required to decrease vulnerability of the water system in case of breaks and to improve pressure under fire flow condition.
- 3. Interpolate the head elevation and the pressure for fire flow between 167L/s and 300L/s.
- 4. Ensure oversizing of the of local watermain does not require an excessive number of fire hydrants to accommodate the fire flow of 300L/s.

Disclaimer

The boundary condition information is based on current operation of the city water distribution system. The computer model simulation is based on the best information available at the time. The operation of the water distribution system can change on a regular basis, resulting in a variation in boundary conditions. The physical properties of watermains deteriorate over time, as such must be assumed in the absence of actual field test data. The variation in physical watermain properties can therefore alter the results of the computer model simulation. Fire Flow analysis is a reflection of available flow in the watermain; there may be additional restrictions that occur between the watermain and the hydrant that the model cannot take into account.

Provence Orleans - Block 126 Water Demand							
	Average Day Maximum Day Peak Hou						
	Area				Demand	Demand	
	(ha)	Units	Population	(L/s)	(L/s)	(L/s)	
Towns	N/A	40	108	0.350	0.875	1.925	
Total	0.00	40	108	0.350	0.875	1.925	

Water Demand Parameters

Towns	2.7	ppl/unit
Residential Demand	280	L/c/day
Residential Max Day	2.5	x Avg Day
Residential Peak Hour	2.2	x Max Day
Residential Fire Flow	250 - 300	L/s

Provence Orleans - Block 126: Watermain Demand

Node	Towns	Total Population	Average Day Residential Demand (L/s)	Maximum Day Residential Demand (L/s)	Peak Hour Residential Demand (L/s)
HYD1	5	14	0.044	0.109	0.241
HYD2	10	27	0.088	0.219	0.481
EXHYD1	0	0	0.000	0.000	0.000
EXHYD2	0	0	0.000	0.000	0.000
T1	10	27	0.088	0.219	0.481
T2	5	14	0.044	0.109	0.241
Т3	10	27	0.088	0.219	0.481
Total	40	108	0.350	0.875	1.925
Water Demand Param	neters				
Singles	3.4	ppl/unit	Residential Max Day	2.5	x Avg Day
Towns	2.7	ppl/unit	Residential Peak Hour	2.2	x Max Day
Residential Demand	280	L/c/day	Residential Fire Flow	250 - 300	L/s

Provence Orleans - Block 126: Watermain Analysis

Network Table - Nodes - (P	eak Hour)						
	Elevation	Demand	Head	Pressure	Pressure	Pressure	
Node ID	m	LPS	m	m	kPa	psi	
Junc HYD1	89	0.24	125.77	36.77	360.71	52.32	
Junc HYD2	89.02	0.48	125.77	36.75	360.52	52.29	
Junc T1	89.14	0.48	125.77	36.63	359.34	52.12	
Junc T2	89.17	0.24	125.77	36.6	359.05	52.08	
Junc T3	88.96	0.48	125.77	36.81	361.11	52.37	
Resvr 1	125.8	-18.17	125.8	0	0.00	0.00	
Resvr 2	125.8	-15.53	125.8	0	0.00	0.00	
Network Table - Links - (Pe	ak Hour)						
	Length	Diameter	Roughness	Flow	Velocity	Headloss	Friction
Link ID	m	mm		LPS	m/s	m/km	Factor
Pipe P1	19	204	110	1.93	0.06	0.04	0.044
Pipe P2	32	204	110	0.96	0.03	0.01	0.048
Pipe P3	142	204	110	0.25	0.01	0.00	0.060
Pipe P4	45	204	110	-0.23	0.01	0.00	0.048
Pipe P5	31	204	110	0.47	0.01	0.00	0.059
Pipe P6	10	204	110	-0.25	0.01	0.00	0.065
Pipe P7	137	204	110	-0.49	0.01	0.00	0.054

Network Table - Nodes	- (Max Pressure Chec	:k)					
	Elevation	Demand	Head	Pressure	Pressure	Pressure	Age
Node ID	m	LPS	m	m	kPa	psi	Hours
Junc HYD1	89	0.04	130.3	41.3	405.15	58.76	15.22
Junc HYD2	89.02	0.09	130.3	41.28	404.96	58.73	25.73
Junc T1	89.14	0.09	130.3	41.16	403.78	58.56	1.33
Junc T2	89.17	0.04	130.3	41.13	403.49	58.52	2.99
Junc T3	88.96	0.09	130.3	41.34	405.55	58.82	10.07
Resvr 1	130.3	-3.3	130.3	0	0.00	0.00	0
Resvr 2	130.3	-2.83	130.3	0	0.00	0.00	0
Network Table - Links	- (Max Pressure Check	()					
	Length	Diameter	Roughness	Flow	Velocity	Headloss	Friction
Link ID	m	mm		LPS	m/s	m/km	Factor
Pipe P1	19	204	110	0.35	0.01	0.00	0.068
Pipe P2	32	204	110	0.17	0.01	0.00	0.041
Pipe P3	142	204	110	0.05	0.00	0.00	0.137
Pipe P4	45	204	110	-0.04	0.00	0.00	0.000
Pipe P5	31	204	110	0.09	0.00	0.00	0.175
Pipe P6	10	204	110	-0.05	0.00	0.00	0.000
Pipe P7	137	204	110	-0.09	0.00	0.00	0.073

Network Table - Nodes	- (Fire	Flow	Summary	1)
------------------------------	---------	------	---------	----

Fire	Flow	Minimum Pressure			
LOCATION	Flow (L/s)	Pressure (kPa)	Pressure (PSI)	Node	
B1	267	258.79	37.53	HYD2	
B2	250	277.82	40.29	HYD2	
B3	300	228.08	33.08	HYD2	
B4	283	234.16	33.96	HYD2	

Network Table - Nodes (N	lax Day + FF 'Bldg 1')						
	Elevation	Demand	Head	Pressure	Pressure	Pressure	
Node ID	m	LPS	m	m	kPa	psi	
Junc HYD1	89	95.11	115.77	26.77	262.61	38.09	
Junc HYD2	89.02	77.22	115.4	26.38	258.79	37.53	
Junc EXHYD1	89.3	0	122.17	32.87	322.45	46.77	
Junc EXHYD2	89.7	95.17	122.65	32.95	323.24	46.88	
Junc T1	89.14	0.22	119.01	29.87	293.02	42.50	
Junc T2	89.17	0.11	116.8	27.63	271.05	39.31	
Junc T3	88.96	0.22	115.85	26.89	263.79	38.26	
Resvr 1	123.7	-74.36	123.7	0	0.00	0.00	
Resvr 2	124.1	-203.96	124.1	0	0.00	0.00	
Network Table - Links (Ma	ax Day + FF 'Bldg 1')						
	Length	Diameter	Roughness	Flow	Velocity	Headloss	Friction
Link ID	m	mm		LPS	m/s	m/km	Factor
Pipe P1	19	204	110	172.88	5.29	157.92	0.023
Pipe P2	32	204	110	110.60	3.38	69.06	0.024
Pipe P3	142	204	110	38.65	1.18	9.85	0.028
Pipe P4	45	204	110	-38.57	1.18	9.81	0.028
Pipe P5	31	204	110	71.85	2.20	31.06	0.026
Pipe P6	10	204	110	33.06	1.01	7.38	0.029
Pipe P7	137	204	110	-62.05	1.90	23.68	0.026

Network Table - Nodes (Max Day + FF 'Bldg 2')						
	Elevation	Demand	Head	Pressure	Pressure	Pressure	
Node ID	m	LPS	m	m	kPa	psi	
Junc HYD1	89	95.11	117.47	28.47	279.29	40.51	
Junc HYD2	89.02	60.22	117.34	28.32	277.82	40.29	
Junc EXHYD1	89.3	0	122.8	33.5	328.64	47.66	
Junc EXHYD2	89.7	95.17	123.19	33.49	328.54	47.65	
Junc T1	89.14	0.22	120.19	31.05	304.60	44.18	
Junc T2	89.17	0.11	118.38	29.21	286.55	41.56	
Junc T3	88.96	0.22	117.57	28.61	280.66	40.71	
Resvr 1	124.1	-68.4	124.1	0	0.00	0.00	
Resvr 2	124.5	-192.91	124.5	0	0.00	0.00	
Network Table - Links (I	Max Day + FF 'Bldg 2')						
	Length	Diameter	Roughness	Flow	Velocity	Headloss	Friction
Link ID	m	mm		LPS	m/s	m/km	Factor
Pipe P1	19	204	110	155.88	4.77	130.37	0.023
Pipe P2	32	204	110	99.19	3.03	56.45	0.025
Pipe P3	142	204	110	33.07	1.01	7.38	0.029
Pipe P4	45	204	110	-27.14	0.83	5.12	0.030
Pipe P5	31	204	110	66.01	2.02	26.55	0.026
Pipe P6	10	204	110	38.64	1.18	9.85	0.028
Pipe P7	137	204	110	-56.47	1.73	19.88	0.027

Network Table - Nodes	s (Max Day + FF 'Bldg 3')						
	Elevation	Demand	Head	Pressure	Pressure	Pressure	
Node ID	m	LPS	m	m	kPa	psi	
Junc HYD1	89	95.11	112.95	23.95	234.95	34.08	
Junc HYD2	89.02	95.22	112.27	23.25	228.08	33.08	
Junc EXHYD1	89.3	55	120.47	31.17	305.78	44.35	
Junc EXHYD2	89.7	55.17	121.67	31.97	313.63	45.49	
Junc T1	89.14	0.22	116.78	27.64	271.15	39.33	
Junc T2	89.17	0.11	114.1	24.93	244.56	35.47	
Junc T3	88.96	0.22	113	24.04	235.83	34.20	
Resvr 1	122.9	-94.47	122.9	0	0.00	0.00	
Resvr 2	123.3	-216.84	123.3	0	0.00	0.00	
Network Table - Links	(Max Day + FF 'Bldg 3')						
	Length	Diameter	Roughness	Flow	Velocity	Headloss	Friction
Link ID	m	mm		LPS	m/s	m/km	Factor
Pipe P1	19	204	110	190.88	5.84	189.72	0.022
Pipe P2	32	204	110	122.67	3.75	83.65	0.024
Pipe P3	142	204	110	44.76	1.37	12.93	0.028
Pipe P4	45	204	110	-50.45	1.54	16.14	0.027
Pipe P5	31	204	110	77.79	2.38	35.99	0.025
Pipe P6	10	204	110	27.12	0.83	5.11	0.030
Pipe P7	137	204	110	-67.99	2.08	28.04	0.026

Network Table - Nodes (Max Day + FF 'Bidg 4')						
	Elevation	Demand	Head	Pressure	Pressure	Pressure	
Node ID	m	LPS	m	m	kPa	psi	
Junc HYD1	89	95.11	113.56	24.56	240.93	34.94	
Junc HYD2	89.02	95.22	112.89	23.87	234.16	33.96	
Junc EXHYD1	89.3	47	121.09	31.79	311.86	45.23	
Junc EXHYD2	89.7	46.17	122.24	32.54	319.22	46.30	
Junc T1	89.14	0.22	117.4	28.26	277.23	40.21	
Junc T2	89.17	0.11	114.72	25.55	250.65	36.35	
Junc T3	88.96	0.22	113.61	24.65	241.82	35.07	
Resvr 1	123.3	-89.89	123.3	0	0.00	0.00	
Resvr 2	123.7	-204.42	123.7	0	0.00	0.00	
Network Table - Links (M	lax Day + FF 'Bldg 4')						
	Length	Diameter	Roughness	Flow	Velocity	Headloss	Friction
Link ID	m	mm		LPS	m/s	m/km	Factor
Pipe P1	19	204	110	190.88	5.84	189.72	0.022
Pipe P2	32	204	110	122.67	3.75	83.65	0.024
Pipe P3	142	204	110	44.76	1.37	12.93	0.028
Pipe P4	45	204	110	-50.45	1.54	16.14	0.027
Pipe P5	31	204	110	77.79	2.38	35.99	0.025
Pipe P6	10	204	110	27.12	0.83	5.11	0.030
Pipe P7	137	204	110	-67.99	2.08	28.04	0.026

As per 1999 Fire Underwriter's Survey Guidelines

Novatech Project #: 120057 Project Name: Provence Orleans - Block 126 Date: 6/29/2020 Input By: Lucas Wilson Reviewed By: Project Manager

Legend

No Information or Input Required

Building Description: Back-2-Back Towns (Block 1)

						Total Fire	
Step			Input		Value Used	Flow	
						(L/min)	
		Base Fire Flov	N				
	Construction Ma	terial		Mult	iplier		
	Coefficient	Wood frame	Yes	1.5			
1	related to type	Ordinary construction		1			
-	of construction	Non-combustible construction		0.8	1.5		
	C	Modified Fire resistive construction (2 hrs)		0.6			
		Fire resistive construction (> 3 hrs)		0.6			
	Floor Area						
		Building Footprint (m ²)	516				
	Α	Number of Floors/Storeys	3				
2		Area of structure considered (m ²)			1,548		
	F	Base fire flow without reductions				13,000	
	•	$F = 220 C (A)^{0.5}$				10,000	
Reductions or Surcharges							
	Occupancy haza	rd reduction or surcharge		Reduction	/Surcharge		
		Non-combustible		-25%			
3	Limited combustible	Yes	-15%				
-	(1)	Combustible		0%	-15%	11,050	
		Free burning		15%			
		Rapid burning		25%			
	Sprinkler Reduct	ion		Redu	ction		
		Adequately Designed System (NFPA 13)		-30%			
4	(2)	Standard Water Supply		-10%		0	
	(2)	Fully Supervised System		-10%		U	
			Cum	ulative Total	0%		
	Exposure Surcha	arge (cumulative %)			Surcharge		
		North Side	> 45.1m		0%		
5		East Side	3.1 - 10 m		20%		
5	(3)	South Side	10.1 - 20 m		15%	4,973	
		West Side	20.1 - 30 m		10%		
			Cum	ulative Total	45%		
		Results					
		Total Required Fire Flow, rounded to near	rest 1000L/mir	า	L/min	16,000	
6	(1) + (2) + (3)	$(2.000 \downarrow /min < Fire Flow < 45.000 \downarrow /min)$		or	L/s	267	
		(2,000 L/11111 < FILE FIOW < 45,000 L/MIN)		or	USGPM	4,227	
_		Required Duration of Fire Flow (hours)			Hours	3.5	
7	Storage Volume	Required Volume of Fire Flow (m ³)			m ³	3360	

As per 1999 Fire Underwriter's Survey Guidelines

Novatech Project #: 120057 Project Name: Provence Orleans - Block 126 Date: 6/29/2020 Input By: Lucas Wilson Reviewed By: Project Manager

Legend

No Information or Input Required

Building Description: Back-2-Back Towns (Block 2)

Step Input Value Used Flow. (Lmin) Base Fire Flow 1 Coefficient or floated to type of construction C Wood frame Yes 1.5 1 1 Ordinary construction of construction C Mon-combustible construction Fire resistive construction (2 hrs) 0.6 1.5 2 A Building Footprint (m ²) 516 1 A Number of Floors/Storeys 3 3 1,548 Base fire flow without reductions F = 220 C (A) ^{0.2} 1,548 3 13,000 F Base fire flow without reductions F = 220 C (A) ^{0.2} 13,000 Cocupancy hazard reduction or surcharge 0ccupancy hazard reduction or surcharge Reduction/Surcharge 11,050 3 (1) Combustible Yes -15% 15% 11,050 4 (2) Fundative Reduction Reduction 0 0 Cumulative Polyned System (NFPA 13) -30% 3 Sprinkler Reduction Surcharge North Side >45,1m 0% 0							Total Fire
Image: Specific of the second	Step			Input		Value Used	Flow
Base Fire Flow Construction Material Multiplier Coefficient of construction C Wood frame Ordinary construction Yes 1.5 Ordinary construction C Mon-combustible construction (2 hrs) 0.6 1.5 Pione Area Building Footprint (m ³) 516 1.5 A Building Footprint (m ³) 516 1.5 P Base fire flow without reductions Area of structure considered (m ²) 1,548 Base fire flow without reductions F Base fire flow without reductions F Base fire flow without reductions or Surcharges 13,000 Cocupancy hazard reduction or surcharge Reduction/Surcharge 111,050 F rese burning 15% 11,050 11,050 F rese burning 15% 11,050 0 J Adequately Designed System (NFPA 13) -30% 0 G Out Side 245.1m 0% -15% J Sprinkler Reduction Reduction Cumulative Total 0% G (1) + (2) + (3) Standard Water Supply -10% </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>(L/min)</td>							(L/min)
Construction Material Multiplier 1 Coefficient related to type of construction C Wood frame Ordinary construction 1 Non-combustible construction 0.8 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 1.5 0.6 0.6 0.6 0.6 0.6 0.6 0.6 2 Fibor Area 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6			Base Fire Flow	V			
$\begin{tabular}{ c c c c c c } \hline Ves & 1.5 \\ \hline Ordinary construction & 0.8 \\ \hline Ordinary construction (2 hrs) & 0.6 \\ \hline Fire resistive construction (2 hrs) & 0.6 \\ \hline Fire resistive construction (2 hrs) & 0.6 \\ \hline Fire resistive construction (2 hrs) & 0.6 \\ \hline Fire resistive construction (2 hrs) & 0.6 \\ \hline Fire resistive construction (2 hrs) & 0.6 \\ \hline Fire resistive construction (2 hrs) & 0.6 \\ \hline Fire resistive construction (2 hrs) & 0.6 \\ \hline Fire resistive construction (2 hrs) & 0.6 \\ \hline Fire resistive construction (2 hrs) & 0.6 \\ \hline Fire resistive construction (2 hrs) & 0.6 \\ \hline Fire resistive construction (2 hrs) & 0.6 \\ \hline Fire a base fire flow without reductions \\ \hline F & Base fire flow without reductions \\ \hline F & 220 C (A)^{0.5} & 13,000 \\ \hline F & 220 C (A)^{0.5} & 13,000 \\ \hline F & 220 C (A)^{0.5} & 13,000 \\ \hline F & 220 C (A)^{0.5} & 13,000 \\ \hline F & 220 C (A)^{0.5} & 13,000 \\ \hline F & 220 C (A)^{0.5} & 13,000 \\ \hline F & 220 C (A)^{0.5} & 13,000 \\ \hline F & 220 C (A)^{0.5} & 13,000 \\ \hline F & 220 C (A)^{0.5} & 13,000 \\ \hline F & 220 C (A)^{0.5} & 13,000 \\ \hline F & 220 C (A)^{0.5} & 13,000 \\ \hline F & 220 C (A)^{0.5} & 13,000 \\ \hline F & 220 C (A)^{0.5} & 13,000 \\ \hline F & 220 C (A)^{0.5} & 13,000 \\ \hline & 1,000 & 25\% \\ \hline & 1,000 & 15\% \\ \hline & 1,000 & 10,000 \\ \hline & 1$		Construction Ma	terial		Mult	iplier	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Coefficient	Wood frame	Yes	1.5		
$\begin{tabular}{ c c c c } \hline line construction & 0.8$	1	related to type	Ordinary construction		1		
$\begin{tabular}{ c c c c } \hline C & Modified Fire resistive construction (2 hrs) & 0.6 \\ \hline Fire resistive construction (> 3 hrs) & 0.6 \\ \hline Fire resistive construction (> 3 hrs) & 0.6 \\ \hline Foor Area & Building Footprint (m2) & 516 & 0.6 \\ \hline A & Number of Floors/Storeys & 3 & 0.6 \\ \hline A & Number of Floors/Storeys & 3 & 0.6 \\ \hline A & Number of structure considered (m2) & 0 & 0.6 \\ \hline F & Base fire flow without reductions & 1,548 \\ \hline F & Base fire flow without reductions & 1,548 \\ \hline F & 220 C (A)^{0.5} & 13,000 \\ \hline F = 220 C (A)^{0.5} & 13,000 \\ \hline F = 220 C (A)^{0.5} & 13,000 \\ \hline & F = 220 C (A)^{0.5} & 13,000 \\ \hline & F = 220 C (A)^{0.5} & 13,000 \\ \hline & F = 220 C (A)^{0.5} & 13,000 \\ \hline & F = 220 C (A)^{0.5} & 13,000 \\ \hline & F = 220 C (A)^{0.5} & 13,000 \\ \hline & F = 220 C (A)^{0.5} & 13,000 \\ \hline & F = 220 C (A)^{0.5} & 11,050 \\ \hline & F = 220 C (A)^{0.5} & 0.5 \\ \hline & (1) & Combustible & Y = 5,050 \\ \hline & (1) & Combustible & Y = 5,050 \\ \hline & (1) & Combustible & Y = 5,050 \\ \hline & (1) & Combustible & Y = 5,050 \\ \hline & (2) & F = 200 C (A)^{0.5} & 11,050 \\ \hline & F = 220 C (A)^{0.5} & 11,050 \\ \hline & F = 220 C (A)^{0.5} & 0.5 \\ \hline & (2) & Cumulative Total & 0.5 \\ \hline & (2) & F = 220 C (A)^{0.5} & 0.5 \\ \hline & (2) & F = 220 C (A)^{0.5} & 0.5 \\ \hline & (2) & F = 220 C (A)^{0.5} & 0.5 \\ \hline & (3) & South Side & Y = 5,050 \\ \hline & (3) & South Side & Y = 5,100 \\ \hline & (3) & South Side & Y = 5,100 \\ \hline & (3) & South Side & Y = 5,100 \\ \hline & (1) + (2) + (3) \\ \hline & (2,00 L'min < Fire Flow, rounded to nearest 1000L/min & L/min & 15,000 \\ \hline & (2,00 L'min < Fire Flow (A5,000 L'min) & Or & US & 250 \\ \hline & 0 & Cumulative Total & 35\% \\ \hline & 7 & Storage Volume & Required Duration of Fire Flow (hours) & Hours & 3 \\ \hline & Required Duration of Fire Flow (m^3) & T & 0.5 \\ \hline & (2) & Cumulative fire Flow (hours) & Hours & 3 \\ \hline & (2) & Cumulative fire Flow (hours) & Hours & 3 \\ \hline & (3) & Required Duration of Fire Flow (hours) & Hours & 3 \\ \hline & (3) & Required Duration of Fire Flow (hours) & Hours & 3 \\ \hline & (3) & Required Duration of Fire Flow (hours) & Hours & 3 \\ \hline & (3) & Required Duration of$	-	of construction	Non-combustible construction		0.8	1.5	
Fire resistive construction (> 3 hrs) 0.6 Floor Area Building Footprint (m ²) 516 A Number of Floors/Storeys 3 A Number of Floors/Storeys 3 F Base fire flow without reductions 1,548 F Base fire flow without reductions 13,000 F E200 (A) ^{0.5} 13,000 Occupancy hazard reduction or surcharge Reduction/Surcharge Occupancy hazard reduction or surcharge Reduction/Surcharge 11,050 F ree burning 15% 11,050 Free burning 15% 11,050 Free burning 25% 0 0 Sprinkler Reduction Reduction Reduction A dequately Designed System (NFPA 13) -30% 0 Standard Water Supply -10% 0 Exposure Surcharge (cumulative %) Surcharge North Side >4.10 (3) South Side 10.1 - 20 m 15% 3.868 G (1) + (2) + (3) Total Required Fire Flow, rounded to nearest 1000L/min L/min		C	Modified Fire resistive construction (2 hrs)		0.6		
Floor Area A Building Footprint (m ²) 516 A Number of Floors/Storeys 3 F Base fire flow without reductions 1,548 F Base fire flow without reductions 1,548 F Base fire flow without reductions 13,000 F Base fire flow without reductions or Surcharges 13,000 Cocupancy hazard reduction or surcharge Reduction/Surcharge 13,000 3 Occupancy hazard reduction or surcharge Reduction/Surcharge 11,050 Go compact hazard reduction Surcharge Reduction/Surcharge 11,050 10 Combustible Yes -15% 11,050 11 Exposure Surcharge (cumulative Supply -10% 0% 10% 12 Ex			Fire resistive construction (> 3 hrs)		0.6		
$\begin{tabular}{ c c c c c c } \hline A & Building Footprint (m^2) & 516 \\ \hline Number of Floors/Storeys & 3 \\ \hline Area of structure considered (m^2) & 1,548 \\ \hline F & Base fire flow without reductions \\ \hline F & 220 C (A)^{0.5} & 13,000 \\ \hline \hline F & 220 C (A)^{0.5} & 13,000 \\ \hline \hline F & 220 C (A)^{0.5} & 13,000 \\ \hline \hline F & 220 C (A)^{0.5} & 13,000 \\ \hline \hline F & 220 C (A)^{0.5} & 13,000 \\ \hline \hline F & 220 C (A)^{0.5} & 13,000 \\ \hline \hline F & 220 C (A)^{0.5} & 13,000 \\ \hline \hline F & 220 C (A)^{0.5} & 0 & 0 \\ \hline \hline & & Reduction s or Surcharges & Reduction/Surcharge & 0 \\ \hline \hline & & Reduction or surcharge & Reduction/Surcharge & 0 \\ \hline & & & & & & & & & & & & & & & & & &$		Floor Area					
A Number of Floors/Storeys 3 Area of structure considered (m ²) 1,548 Base fire flow without reductions 13,000 F Base fire flow without reductions 13,000 F = 220 C (A) ^{0.5} 13,000 Cocupancy hazard reduction or surcharge Reduction/Surcharge Occupancy hazard reduction or surcharge Reduction/Surcharge Immediate (M ²) 25% Immediate (M ²) 25% Immediate (M ²) 11,050 Free burning 15% Rapid burning 25% Rapid burning 25% Sprinkler Reduction Reduction Adequately Designed System (NFPA 13) -30% Standard Water Supply -10% 0 Exposure Surcharge (cumulative %) Surcharge Surcharge North Side >45.1m 0% 0% East Side >45.1m 0% 0% East Side >45.1m 0% 0% 3,868 South Side 10.1 - 20m 15% 250 250 250 <td></td> <td></td> <td>Building Footprint (m²)</td> <td>516</td> <td></td> <td></td> <td></td>			Building Footprint (m ²)	516			
2 Area of structure considered (m ²) 1,548 F Base fire flow without reductions F = 220 C (A) ^{0.5} 13,000 Reductions or Surcharges Reductions or Surcharges Occupancy hazard reduction or surcharge Reduction/Surcharge Image: Non-combustible -25% 11,050 3 (1) Combustible Yes -15% 11,050 Free burning 15% 11,050 Free burning 25% 11,050 Sprinkler Reduction Reduction 0 Cumulative Designed System (NFPA 13) -30% 4 (2) Standard Water Supply -10% 0 Exposure Surcharge (cumulative %) Surcharge 0% 0 5 (3) South Side 10.1 - 20 m 15% 3,868 Fersults 6 (1) + (2) + (3) Total Required Fire Flow, rounded to nearest 1000L/min L/min 15,000 (200 L/min < Fire Flow (45,000 L/min) Or L/s 250 3,983		Α	Number of Floors/Storeys	3			
F Base fire flow without reductions F = 220 C (A) ^{0.5} 13,000 Reductions or Surcharges Occupancy hazard reduction or surcharge Reduction/Surcharge 3 0 -25% Limited combustible -25% -25% Limited combustible 11,050 3 (1) Combustible 9% Limited combustible -15% -15% 11,050 4 (2) Sprinkler Reduction Reduction Reduction 4 (2) Adequately Designed System (NFPA 13) -30% -10% -15% 5 Sprinkler Reduction Reduction 0% - 4 (2) Standard Water Supply -10% 0 5 (3) South Side >45.1m 0% 6 (1) + (2) + (3) Cumulative %) Succharge - Cumulative Side >45.1m 0% 6 (1) + (2) + (3) Total Required Fire Flow, rounded to nearest 1000L/min L/min 15,000 (1) + (2) + (3) Total Required Diration of Fire Flow (hours) or USGPM 3,963 7	2		Area of structure considered (m ²)			1,548	
$\begin{tabular}{ c c c c c } \hline F = 220 \ C \ (A)^{0.5} & Fe = 200 \ C \ ($		F	Base fire flow without reductions				13.000
Reductions or SurchargesOccupancy hazard reduction or surchargeReduction/Surcharge3 $\hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$		•	$F = 220 C (A)^{0.5}$				10,000
Occupancy hazard reduction or surcharge Reduction/Surcharge 3 Non-combustible -25% Limited combustible -25% Yes -15% 11,050 4 (1) Combustible 0% -15% 11,050 4 (2) Free burning 25% -15% 11,050 4 (2) Adequately Designed System (NFPA 13) -30% - - 5 Standard Water Supply -10% 0% - - 5 Kaposure Surcharge (cumulative %) Surcharge 0% - - 6 (1) + (2) + (3) 0.1 - 20 m 0% - - - 6 (1) + (2) + (3) Total Required Fire Flow, rounded to nearest 1000L/min L/min 15,000 7 Storage Volume Required Duration of Fire Flow (hours) Hours 3 2700			Reductions or Surc	harges			
3 Non-combustible -25% Limited combustible -15% 0% 11,050 3 (1) Imited combustible 0% -15% 11,050 4 (2) Sprinkler Reduction Reduction Reduction 0% -15% 11,050 4 (2) Adequately Designed System (NFPA 13) -30% - - 0 4 (2) Standard Water Supply -10% - 0 0 5 Standard Water Supply -10% 0% 0% 0 0 5 Standard Water Supply -10% 0% 0% 0% 0 6 North Side >45.1m 0% 3,868 3,868 3,868 6 (1) + (2) + (3) Total Required Fire Flow, rounded to nearest 1000L/min L/min 15,000 6 (1) + (2) + (3) Total Required Fire Flow, 45,000 L/min) Or L/s 250 7 Storage Volume Required Duration of Fire Flow (hours) Hours 3 3,063		Occupancy haza	rd reduction or surcharge		Reduction	/Surcharge	
3 (1) Limited combustible Combustible Rapid burning Yes -15% 0% 11,050 4 (1) Combustible Free burning 0% -15% 11,050 4 Sprinkler Reduction Reduction Reduction 0% -15% 11,050 4 (2) Adequately Designed System (NFPA 13) -30% - - - - 4 (2) Standard Water Supply -10% - 0% - - 0 5 Standard Water Supply -10% 0% - 0% - - 0% - - 0 - - 0 - - 0 - - 0 - - 0 - - 0 - 0 - 0 - 0 - 0 - 15% 3,868 - 3,868 - - 0 - 3,868 - - 15% 3,868 - - 15% 3,868<		3 (1)	Non-combustible		-25%		
(1) Combustible Free burning 0% 15% -15% 11,050 Adequately burning 25% -15% 11,050 Sprinkler Reduction Reduction Reduction 0 4 (2) Adequately Designed System (NFPA 13) -30%	3		Limited combustible	Yes	-15%		
Image: Free burning Rapid burning 15% Rapid burning 16% Rapid burning 15% Rapid bu	-		Combustible		0%	-15%	11,050
Image: Sprinkler Reduction Reduction 4 Adequately Designed System (NFPA 13) 30% 4 (2) Standard Water Supply 10% Fully Supervised System -10% 0 Fully Supervised System -10% 0 5 Standard Water Supply 10% 0% Fully Supervised System -10% 0% Standard Water Supply 10% 0% Fully Supervised System -10% 0% Standard Water Supply 10% 0% Fully Supervised System -10% 0% Standard Water Supply 10% 0% Standard Water Supply 10% 0% Standard Water Supply 10% 0% South Side >45.1m 0% South Side 10.1 - 20 m 0% West Side 3.1 - 10 m 20% Cumulative Total 35% 3,868 6 (1) + (2) + (3) Total Required Fire Flow, rounded to nearest 1000L/min L/min 15,000			Free burning		15%		
Sprinkler Reduction Reduction 4 Adequately Designed System (NFPA 13) -30%			Rapid burning		25%		
4 Adequately Designed System (NFPA 13) 30%		Sprinkler Reduct	ion		Redu	iction	
4 (2) Standard Water Supply -10% 0 Fully Supervised System -10% 0% Cumulative Total 0% Exposure Surcharge (cumulative %) Surcharge 8 North Side > 45.1m 6 North Side 0% 7 Storage Volume Required Duration of Fire Flow (hours) Or 7 Storage Volume Required Duration of Fire Flow (m ³) m ³			Adequately Designed System (NFPA 13)		-30%		
L Fully Supervised System -10% U Exposure Surcharge (cumulative %) Surcharge Morth Side > 45.1m 0% East Side > 45.1m 0% (3) South Side 10.1 - 20 m West Side 10.1 - 20 m 0% Understand 0% 10.5% (3) South Side 10.1 - 20 m West Side 10.1 - 20 m 0% Cumulative Total 35% Results Or L/s Or L/s <	4	(2)	Standard Water Supply		-10%		0
Exposure Surcharge (cumulative %) Cumulative Total 0% 5 North Side > 45.1m 0% (3) North Side > 45.1m 0% (3) South Side 10.1 - 20 m 15% West Side 3.1 - 10 m 20% Cumulative Total 35% Results 6 (1) + (2) + (3) Total Required Fire Flow, rounded to nearest 1000L/min L/min 15,000 6 (1) + (2) + (3) Total Required Fire Flow, rounded to nearest 1000L/min L/s 250 7 Storage Volume Required Duration of Fire Flow (hours) Required Volume of Fire Flow (m ³) m ³ 2700		(2)	Fully Supervised System		-10%		U
Exposure Surcharge (cumulative %) Surcharge Image: Surcharge (cumulative %) Surcharge Image: Surcharge (cumulative %) North Side Image: Surcharge (cumulative %) Image: Surcharge (cumulative %) Image: Surcharge (cumulative %) Image: Surcharge % Image: Surcharge (cumulative %) Image: Surcharge % Image: Surcharge %				Curr	ulative Total	0%	
5 North Side > 45.1m 0% East Side > 45.1m 0% South Side 10.1 - 20 m 15% West Side 3.1 - 10 m 20% Cumulative Total 35% Results 6 (1) + (2) + (3) Total Required Fire Flow, rounded to nearest 1000L/min L/min 15,000 (2,000 L/min < Fire Flow < 45,000 L/min)		Exposure Surcha	arge (cumulative %)			Surcharge	
5 (3) East Side > 45.1m 0% South Side 10.1 - 20 m 15% 3,868 West Side 3.1 - 10 m 20% 20% Cumulative Total 35% Results or L/min 15,000 (1) + (2) + (3) Total Required Fire Flow, rounded to nearest 1000L/min L/min 15,000 (1) + (2) + (3) Total Required Fire Flow, rounded to nearest 1000L/min L/min 15,000 (1) + (2) + (3) Total Required Fire Flow, rounded to nearest 1000L/min L/s 250 (2,000 L/min < Fire Flow < 45,000 L/min)			North Side	> 45.1m		0%	
South Side 10.1 - 20 m West Side 15% 20% 3,868 Cumulative Total 35% Results Or L/s 250 (1) + (2) + (3) Total Required Fire Flow, rounded to nearest 1000L/min L/min 15,000 (1) + (2) + (3) Total Required Fire Flow, 45,000 L/min) or L/s 250 (2,000 L/min < Fire Flow < 45,000 L/min) or USGPM 3,963 Flow Or USGPM 3,963 Total Required Duration of Fire Flow (hours) Hours 3 Required Duration of Fire Flow (hours) Mours 3 m ³ 2700	F		East Side	> 45.1m		0%	
West Side 3.1 - 10 m 20% Cumulative Total 35% Results 6 (1) + (2) + (3) Total Required Fire Flow, rounded to nearest 1000L/min L/min 15,000 6 (1) + (2) + (3) Total Required Fire Flow, rounded to nearest 1000L/min L/min 15,000 7 Storage Volume Required Duration of Fire Flow (hours) Required Volume of Fire Flow (m ³) Mours 3	Э	(3)	South Side	10.1 - 20 m		15%	3,868
Cumulative Total 35% Results Total Required Fire Flow, rounded to nearest 1000L/min L/min 15,000 6 (1) + (2) + (3) Total Required Fire Flow, rounded to nearest 1000L/min L/min 15,000 7 Storage Volume Required Duration of Fire Flow (hours) Required Volume of Fire Flow (m ³) Main Main			West Side	3.1 - 10 m		20%	
Results 6 L/min 15,000 or L/s 250 (1) + (2) + (3) Or L/s 250 0 USGPM 3,963 7 Storage Volume Required Duration of Fire Flow (hours) Hours 3 Point Colspan="4">Point Colspan="4">Point Colspan="4">Point Colspan="4">Point Colspan="4">Colspan="4">Colspan="4">Colspan="4">Colspan="4">Colspan="4">Colspan="4">Colspan="4">Colspan="4">Colspan="4"Colspa="4"Colspa="4"Colspan="4"Colspan="4"Colspan="4"Colspa=				Cum	nulative Total	35%	
			Results				
6 (1) + (2) + (3) or L/s 250 (2,000 L/min < Fire Flow < 45,000 L/min)			Total Required Fire Flow, rounded to near	rest 1000L/mii	n	L/min	15,000
Required Duration of Fire Flow (hours) or USGPM 3,963 7 Storage Volume Required Duration of Fire Flow (hours) Hours 3 Required Volume of Fire Flow (m ³) m ³ 2700	6	(1) + (2) + (3)	$(2,000 \downarrow /min < Fire Flow < 45,000 \downarrow /min)$		or	L/s	250
Required Duration of Fire Flow (hours) Hours 3 Required Volume of Fire Flow (m ³) m ³ 2700			(2,000 L/IIIII < File Flow < 45,000 L/IIIII)		or	USGPM	3,963
7 Storage volume Required Volume of Fire Flow (m ³) m ³ 2700	-		Required Duration of Fire Flow (hours)			Hours	3
	1	Storage volume	Required Volume of Fire Flow (m ³)			m ³	2700

As per 1999 Fire Underwriter's Survey Guidelines

Novatech Project #: 120057 Project Name: Provence Orleans - Block 126 Date: 6/29/2020 Input By: Lucas Wilson Reviewed By: Project Manager

Legend

No Information or Input Required

Building Description: Back-2-Back Towns (Block 3)

						Total Fire
Step			Input		Value Used	Flow
						(L/min)
		Base Fire Flow	N			
Con	nstruction Ma	terial		Multi	iplier	
C	Coefficient	Wood frame	Yes	1.5		
1 rol:	ated to type	Ordinary construction		1		
of c	construction	Non-combustible construction		0.8	1.5	
	C	Modified Fire resistive construction (2 hrs)		0.6		
	•	Fire resistive construction (> 3 hrs)		0.6		
Floc	or Area					
		Building Footprint (m ²)	553			
	Α	Number of Floors/Storeys	3			
2		Area of structure considered (m ²)			1,659	
	F	Base fire flow without reductions				13.000
	· ·	$F = 220 C (A)^{0.5}$				10,000
		Reductions or Surc	harges			
Occ	cupancy haza	rd reduction or surcharge		Reduction/	/Surcharge	
	3 (1)	Non-combustible		-25%		
3		Limited combustible	Yes	-15%		
		Combustible		0%	-15%	11,050
		Free burning		15%		
		Rapid burning		25%		
Spri	inkler Reduct	ion		Redu	ction	
		Adequately Designed System (NFPA 13)		-30%		
4	(2)	Standard Water Supply		-10%		0
	(2)	Fully Supervised System		-10%		U
			Cum	ulative Total	0%	
Exp	osure Surcha	arge (cumulative %)			Surcharge	
		North Side	10.1 - 20 m		15%	
_		East Side	10.1 - 20 m		15%	
5	(3)	South Side	0 - 3 m		25%	7,183
		West Side	20.1 - 30 m		10%	
			Cum	ulative Total	65%	
		Results				
		Total Required Fire Flow, rounded to near	rest 1000L/mir	n	L/min	18,000
6 (1)) + (2) + (3)	$(2,000 \downarrow /min < Fire Flow < 45,000 \downarrow /min)$		or	L/s	300
		(2,000 L/MIN < File Flow < 45,000 L/MIN)		or	USGPM	4,756
7 01		Required Duration of Fire Flow (hours)			Hours	4

As per 1999 Fire Underwriter's Survey Guidelines

Novatech Project #: 120057 Project Name: Provence Orleans - Block 126 Date: 6/29/2020 Input By: Lucas Wilson Reviewed By: Project Manager

Legend

No Information or Input Required

Building Description: Back-2-Back Towns (Block 4)

0 (1)						Total Fire
Step			Input		Value Used	Flow (L/min)
						(Ľ/ШП)
	I	Base Fire Flov	N			
	Construction Ma	terial		Mult	iplier	
	Coefficient	Wood frame	Yes	1.5		
1	related to type	Ordinary construction		1		
	of construction	Non-combustible construction		0.8	1.5	
	С	Modified Fire resistive construction (2 hrs)		0.6		
	-	Fire resistive construction (> 3 hrs)		0.6		
	Floor Area					
		Building Footprint (m ²)	553			
•	Α	Number of Floors/Storeys	3			
2		Area of structure considered (m ²)			1,659	
	F	Base fire flow without reductions				13 000
	•	$F = 220 C (A)^{0.5}$				10,000
		Reductions or Surc	harges			
	Occupancy haza	rd reduction or surcharge		Reduction	Surcharge	
		Non-combustible		-25%		
3		Limited combustible	Yes	-15%		
Ŭ	(1)	Combustible		0%	-15%	11,050
		Free burning		15%		
		Rapid burning		25%		
	Sprinkler Reduct	ion		Redu	ction	
		Adequately Designed System (NFPA 13)		-30%		
4	(0)	Standard Water Supply		-10%		•
	(2)	Fully Supervised System		-10%		U
			Cum	ulative Total	0%	
	Exposure Surch	arge (cumulative %)			Surcharge	
	•	North Side	0 - 3 m		25%	
-		East Side	10.1 - 20 m		15%	
5	(3)	South Side	> 45.1m		0%	5,525
		West Side	20.1 - 30 m		10%	
			Cum	ulative Total	50%	
		Results				
		Total Required Fire Flow, rounded to near	rest 1000L/mir	1	L/min	17.000
6	(1) + (2) + (3)	· · · · · · · · · · · · · · · · · · ·		or		283
		(2,000 L/min < Fire Flow < 45,000 L/min)		or	USGPM	4,491
		Required Duration of Fire Flow (hours)			Hours	35
7	Storage Volume	Dequired Values of Fire Flow (1001S)				3.0
		Required volume of Fire Flow (m ²)			m	30/0

APPENDIX B

SWM Calculations

TEMPEST Product Submittal Package R1

Date: May 14, 2021

<u>Customer</u>: Novatech

Contact: Lucas Wilson

Location: Provence

<u>Project Name</u>: Orleans Subdivision – City Towns

Tempest LMF ICD Rd Shop Drawing

<u>Tempest LMF ICD Sq</u> Shop Drawing

Tempest MHF ICD Sq Shop Drawing

IPEX

Square CB Installation Notes:

- 1. Materials and tooling verification:
 - Tooling: impact drill, 3/8" concrete bit, torque wrench for 9/16" nut, hand hammer, level, and marker.
 - Material: (4) concrete anchor 3/8x3-1/2, (4) washers, (4) nuts
- 2. Use the mounting wall plate to locate and mark the hole (4) pattern on the catch basin wall. You should use a level to ensure that the plate is at the horizontal.
- 3. Use an impact drill with a 3/8'' concrete bit to make the four holes at a minimum of 1-1/2'' depth up to 2-1/2''. Clean the concrete dust from the holes.
- 4. Install the anchors (4) in the holes by using a hammer. Put the nuts on the top of the anchors to protect the threads when you will hit the anchors with the hammer. Remove the nuts on the ends of the anchors
- 5. Install the wall mounting plate on the anchors and screw the nut in place with a maximum torque of 40 N.m (30 lbf-ft). There should be no gap between the wall mounting plate and the catch basin wall.
- 6. From ground above using a reach bar, lower the device by hooking the end of the reach bar to the handle of the LMF device. Align the triangular plate portion into the mounting wall plate. Push down the device to be sure it has centered in to the wall mounting plate and has created a seal.

Round CB Installation Notes: (Refer to square install notes above for steps 1, 3, & 4)

- 2. Use spigot catch basin wall plate to locate and mark the hole (4) pattern on the catch basin wall. You should use a level to ensure that the plate is at the horizontal.
- 5. Install the CB spigot wall plate on the anchors and screw the 4 nuts in place with a maximum torque of 40 N.m (30 lb-ft). There should be no gap between the CB spigot wall plate and the catch basin wall.
- 6. Apply solvent cement on the hub of the universal mounting plate and the spigot of the spigot CB wall plate. Slide the hub over the spigot. Make sure the universal mounting plate is at the horizontal and its hub is completely inserted onto the spigot. Normally, the corners of the universal mounting plate hub adapter should touch the catch basin wall.
- 7. From ground above using a reach bar, lower the ICD device by hooking the end of the reach bar to the handle of the ICD device. Align the triangular plate portion into the mounting wall plate. Push down the device to be sure it has centered into the mounting plate and has created a seal.

CAUTION/WARNING/DISCLAIM:

- Verify that the inlet(s) pipe(s) is not protruding into the catch basin. If it is, cut it back so that the inlet pipe is flush with the catch basin wall.
- Any required cement in the installation must be approved for PVC.
- The solvent cement should not be used below 0°C (32°F) or in a high humidity environment. Please refer to the IPEX solvent cement guide to confirm required curing times or attend the IPEX <u>Online Solvent</u> <u>Cement Training Course</u>.
- Call your IPEX representative for more information or if you have any questions about our products.

IPEX TEMPEST Inlet Control Devices Technical Specification

General

Inlet control devices (ICD's) are designed to provide flow control at a specified rate for a given water head level and also provide odour and floatable control where specified. All ICD's will be IPEX Tempest or approved equal.

All devices shall be removable from a universal mounting plate. An operator from street level using only a T-bar with a hook will be able to retrieve the device while leaving the universal mounting plate secured to the catch basin wall face. The removal of the TEMPEST devices listed above must not require any unbolting or special manipulation or any special tools.

High Flow (HF) Sump devices will consist of a removable threaded cap which can be accessible from street level with out entry into the catchbasin (CB). The removal of the threaded cap shall not require any special tools other than the operator's hand.

ICD's must have no moving parts.

Materials

ICD's are to be manufactured from Polyvinyl Chloride (PVC) or Polyurethane material, designed to be durable enough to withstand multiple freeze-thaw cycles and exposure to harsh elements.

The inner ring seal will be manufactured using a Buna or Nitrile material with hardness between Duro 50 and Duro 70.

The wall seal is to be comprised of a 3/8" thick Neoprene Closed Cell Sponge gasket which is attached to the back of the wall plate.

All hardware will be made from 304 stainless steel.

Dimensioning

The Low Medium Flow (LMF), High Flow (HF) and the High Flow (HF) Sump shall allow for a minimum outlet pipe diameter of 200mm with a 600mm deep Catch Basin sump.

Installation

Contractor shall be responsible for securing, supporting and connecting the ICD's to the existing influent pipe and catchbasin/manhole structure as specified and designed by the Engineer.

Mountable Cu Distance	Irb and Gutter Elevation
0	0.35
0.01	0.35
0.99	0.08
1	0
7.7	0.13
7.71	0.21
8.69	0.35
8.7	0.35

Provence Orleans - Block 126 (120057) PCSWMM Storage Curves (surface storage)

CB1-Storage		
Depth (m)	Area (m ²)	Volume (m ³)
0.00	0.36	0.00
1.70	0.36	0.61
1.75	7.00	0.80
1.80	28.50	1.68
1.85	70.00	4.15
1.90	130.00	9.15
1.95	202.00	17.45
2.00	285.00	29.62
2.01	305.00	32.57
2.02	0.00	34.10
2.70	0.00	34.10

CB2-Storage		
Depth (m)	Area (m ²)	Volume (m ³)
0.00	0.36	0.00
1.70	0.36	0.61
1.75	12.00	0.92
1.80	45.00	2.35
1.85	105.00	6.10
1.90	195.00	13.60
1.95	275.00	25.35
2.00	360.00	41.22
2.01	0.00	43.02
2.70	0.00	43.02

CBMH1-Storage		
Depth (m)	Area (m ²)	Volume (m ³)
0.00	1.13	0.00
2.52	1.13	2.85
2.57	12.00	3.18
2.62	42.00	4.53
2.67	78.00	7.53
2.72	122.00	12.53
2.77	178.00	20.03
2.82	230.00	30.23
2.83	0.00	31.38
3.52	0.00	31.38

CB3-Storage		
Depth (m)	Area (m ²)	Volume (m ³)
0.00	0.36	0.00
1.40	0.36	0.50
1.45	20.00	1.01
1.50	65.00	3.14
1.55	127.00	7.94
1.60	220.00	16.61
1.65	326.00	30.26
1.70	455.00	49.79
1.71	0.00	52.06
2.40	0.00	52.06

CB4-Storage		
Depth (m)	Area (m ²)	Volume (m ³)
0.00	0.36	0.00
1.40	0.36	0.50
1.45	12.00	0.81
1.50	45.00	2.24
1.55	105.00	5.99
1.60	195.00	13.49
1.65	306.00	26.01
1.66	0.00	27.54
2.40	0.00	27.54

CB5-Storage		
Depth (m)	Area (m ²)	Volume (m ³)
0.00	0.36	0.00
1.40	0.36	0.50
1.45	15.00	0.89
1.50	55.00	2.64
1.55	130.00	7.26
1.60	280.00	17.51
1.65	380.00	34.01
1.66	0.00	35.91
2.40	0.00	35.91

CB6-Storage			
Depth (m)	Area (m ²)	Volume (m ³)	
0.00	0.36	0.00	
1.40	0.36	0.50	
1.45	8.00	0.71	
1.50	30.00	1.66	
1.55	70.00	4.16	
1.60	120.00	8.91	
1.65	182.00	16.46	
1.70	245.00	27.14	
1.71	0.00	28.36	
2.40	0.00	28.36	

CB7-Storage		
Area (m ²)	Volume (m ³)	
0.36	0.00	
0.36	0.50	
15.00	0.89	
55.00	2.64	
120.00	7.01	
205.00	15.14	
300.00	27.76	
378.00	41.32	
0.00	43.21	
0.00	43.21	
	CB7-Storage Area (m ²) 0.36 0.36 15.00 55.00 120.00 205.00 300.00 378.00 0.00 0.00	

RYCB1-Storage		
Depth (m)	Area (m ²)	Volume (m ³)
0.00	0.36	0.00
1.40	0.36	0.50
1.45	10.00	0.76
1.50	35.00	1.89
1.55	66.00	4.41
1.60	105.00	8.69
1.65	150.00	15.06
1.70	190.00	23.56
1.75	236.00	34.21
1.80	290.00	47.36
1.85	364.00	63.71
1.90	452.00	84.11
1.95	550.00	109.16
2.00	656.00	139.31
2.01	0.00	142.59
2.40	0.00	142.59

Provence Orleans - Block 126 (120057) PCSWMM Storage Curves (surface storage)

RYCB2-Storage		
Depth (m)	Area (m ²)	Volume (m ³)
0.00	0.36	0.00
1.00	0.36	0.36
1.05	6.50	0.53
1.10	41.00	1.72
1.15	65.00	4.37
1.20	86.00	8.14
1.25	110.00	13.04
1.30	135.00	19.17
1.35	160.00	26.54
1.40	195.00	35.42
1.44	230.00	43.92
1.45	0.00	45.07
2.00	0.00	45.07

RYCB3-Storage		
Depth (m)	Area (m2)	Volume (m3)
0.00	0.36	0.00
1.68	0.36	0.60
1.73	3.00	0.69
1.78	10.00	1.01
1.83	20.00	1.76
1.86	35.00	2.59
1.87	0.00	2.76
2.68	0.00	2.76

RYCB4-Storage		
Depth (m)	Area (m2)	Volume (m3)
0.00	0.36	0.00
1.40	0.36	0.50
1.45	18.00	0.96
1.50	63.00	2.99
1.55	117.00	7.49
1.60	183.00	14.99
1.65	267.00	26.24
1.70	345.00	41.54
1.71	0.00	43.26
2.40	0.00	43.26

Provence Orleans - Block 126 (120057) PCSWMM Model Results (Ponding)

СВ / СВМН	Invert	Rim	Spill	Ponding		HGL E	lev. (m) ¹		F	Ponding	Depth (r	n)		Spill D	epth (m)	
ID	Elev. (m)	Elev. (m)	Elev. (m)	Depth (m)	2-yr	5-yr	100-yr	100-yr (+20%)	2-yr	5-yr	100-yr	100-yr (+20%)	2-yr	5-yr	100-yr	100-yr (+20%)
CB1	87.30	89.00	89.31	0.31	88.99	89.09	89.20	89.23	0.00	0.09	0.20	0.23	0.00	0.00	0.00	0.00
CB3	87.78	89.18	89.48	0.30	88.21	89.00	89.37	89.41	0.00	0.00	0.19	0.23	0.00	0.00	0.00	0.00
CB4	87.78	89.18	89.43	0.25	88.21	89.01	89.37	89.41	0.00	0.00	0.19	0.23	0.00	0.00	0.00	0.00
CB5	87.43	89.13	89.38	0.25	89.12	89.24	89.34	89.37	0.00	0.11	0.21	0.24	0.00	0.00	0.00	0.00
CB6	87.62	89.02	89.32	0.30	87.94	89.05	89.24	89.29	0.00	0.03	0.22	0.27	0.00	0.00	0.00	0.00
CB7	87.57	88.97	89.26	0.29	87.94	89.05	89.25	89.29	0.00	0.08	0.28	0.32	0.00	0.00	0.00	0.03
CBMH01	86.63	89.15	89.45	0.30	87.94	88.97	89.32	89.36	0.00	0.00	0.17	0.21	0.00	0.00	0.00	0.00
CBMH02	86.20	89.08	89.38	0.30	87.94	88.97	89.32	89.36	0.00	0.00	0.24	0.28	0.00	0.00	0.00	0.00
RYCB1	86.78	88.18	88.78	0.60	86.79	86.92	88.31	88.44	0.00	0.00	0.13	0.26	0.00	0.00	0.00	0.00
RYCB2	87.44	88.44	88.88	0.44	87.48	87.50	88.68	88.78	0.00	0.00	0.24	0.34	0.00	0.00	0.00	0.00
RYCB3	86.87	88.55	88.73	0.18	86.97	87.37	88.67	88.75	0.00	0.00	0.12	0.20	0.00	0.00	0.00	0.02
RYCB4	87.75	89.15	89.45	0.30	87.94	88.97	89.32	89.36	0.00	0.00	0.17	0.21	0.00	0.00	0.00	0.00

¹4-hour Chicago Storm.

Provence Orleans - Block 126 (120057) Summary of Hydraulic Grade Line (HGL) Elevations

	Obvert Elevation	T/G Elevation	HGL Elevation ¹	Surcharge	Clearance from T/G	HGL in Stress Test ¹
	(m)	(m)	(m)	(m)	(m)	(m)
MH2	86.27	89.25	86.02	0.00	3.23	86.02
MH4	86.39	89.37	86.16	0.00	3.21	86.17
MH6	86.80	89.26	89.32	2.52	0.00	89.36
MH8	87.20	89.46	89.37	2.18	0.09	89.41
MH10	86.68	89.37	89.37	2.69	0.00	89.41
MH12	86.53	89.32	86.40	0.00	2.92	86.40
MH14	86.71	89.30	86.50	0.00	2.80	86.50
MH16	87.30	89.59	89.24	1.94	0.35	89.29
MH18	86.41	89.31	89.24	2.83	0.07	89.29
CBMH01	87.16	89.15	89.32	2.16	0.00	89.36
CBMH02	86.50	89.08	89.32	2.82	0.00	89.36

¹4-hour Chicago Storm; Normal outfall (100yr HGL in MH116 = 85.73).

Provence Orleans – Block 126 (120057) PCSWMM Model Schematic

Overall Model Schematic

Provence Orleans – Block 126 (120057) PCSWMM Model Schematic

Provence Orleans – Block 126 (120057) PCSWMM Model Schematic

Provence Orleans – Block 126 PCSWMM Model Output 100yr 4-hour Chicago Storm

EPA STORM WATER MANAGEMENT MODEL - VERSION 5.1 (Build 5.1.013)

Element Count	

Number of rain gages	1
Number of subcatchments	14
Number of nodes	40
Number of links	48
Number of pollutants	0
Number of land uses	0

***** Raingage Summary

Name	Data Source			Type	Inte	erval	
RG1	C4hr-100yr			INTENSITY	10	min.	

Subcatchment Summary	,						
Name	Area	Width	%Tmperv	\$Slope	Rain	Gage	Outlet
AL	0.08	53.33	62.90	0.5000	RG1		CB1
A-10 A11	0.10	24 00	2.90	0.5000	RG1 RG1		RICBI PVCB3
A11 A12	0.12	28.89	37 40	0.5000	RG1		RYCB2
A2	0.12	60.00	72.90	0.5000	RG1		CBMH02
A3	0.07	35.00	81.40	0.5000	RG1		CBMH01
A4	0.04	40.00	0.00	0.5000	RG1		RYCB4
A5	0.07	23.33	72.90	0.5000	RG1		CB3
A6	0.10	50.00	75.70	0.5000	RG1		CB4
A7	0.15	75.00	81.40	0.5000	RG1		CB5
A8	0.08	40.00	75.70	0.5000	RG1		CB6
A9 B1	0.17	85.00	/5./0	0.5000	RG1		CB7
B1 B2	0.01	15 00	0.00	0 5000	RG1		OF 2

Node Summary							
* * * * * * * * * * * *		т	nuert	Max	Ponder	N External	
Name	Type	-	Elev.	Depth	Area	a Inflow	
	21 -						
CB07-Dummy	JUNCTION		86.34	3.63	0.0)	
CBMH02-Dummy	JUNCTION		86.20	2.88	0.0)	
HP-CB13	JUNCTION		89.38	1.00	0.0)	
HP-CB2	JUNCTION		89.30	1.00	0.0	, ,	
HP-CB3	JUNCTION		89 45	1 00	0.0	, 1	
HP-CB6	JUNCTION		89.48	1.00	0.0)	
HP-CB8	JUNCTION		89.43	1.00	0.0)	
HP-CB9	JUNCTION		89.32	1.00	0.0)	
HP-RYCB2	JUNCTION		88.88	1.00	0.0)	
HP-RYCB3	JUNCTION		88.73	1.00	0.0)	
HP-RYCB4	JUNCTION		89.23	1.00	0.0)	
MH10_Dummy	JUNCTION		86.38	2.99	0.0)	
MH18_Dummy	JUNCTION		86.11	3.21	0.0)	
MH116	OUTFALL		85 69	0.53	0.0	5	
OF1	OUTFALL		88.78	1.00	0.0)	
OF2	OUTFALL		89.00	0.00	0.0)	
OF4	OUTFALL		89.24	0.00	0.0)	
CB1	STORAGE		87.30	2.70	0.0)	
CB3	STORAGE		87.78	2.40	0.0)	
CB4	STORAGE		87.78	2.40	0.0)	
CB5	STORAGE		87.43	2.70	0.0)	
CBD	STORAGE		87.62 97.57	2.40	0.0	J	
CBMH01	STORAGE		86 63	2.40	0.0	, ,	
CBMH02	STORAGE		86.20	3.88	0.0	,)	
MH10	STORAGE		86.38	3.99	0.0	-)	
MH12	STORAGE		86.15	3.17	0.0)	
10111	STODACE		86 41	2 89	0.0	1	

MH16	STORAGE	86.70	2.89	0.0
MH18	STORAGE	86.11	3.20	0.0
MH2	STORAGE	85.74	3.51	0.0
MH4	STORAGE	85.94	3.43	0.0
MH 6	STORAGE	86.27	3.99	0.0
MH8	STORAGE	86.82	2.64	0.0
RYCB1	STORAGE	86.78	2.40	0.0
RYCB2	STORAGE	87.44	2.00	0.0
RYCB3	STORAGE	86.87	2.68	0.0
RYCB4	STORAGE	87.75	2.40	0.0

Link Summary						
Name	From Node	To Node	Type	Length	%Slope	Roughnes
C1	CBMH01	HP-CB3	CONDUIT	3.0	-10.0504	0.250
C10	CB4	HP-CB8	CONDUIT	3.0	-8.6994	0.250
C11	CB5	HP-CB13	CONDUIT	3.0	-8.3624	0.250
C12	HP-CB13	CB1	CONDUIT	3.0	12.7695	0.250
C13	CB6	HP-CB9	CONDUIT	3.0	-10.0504	0.250
C14	HP-CB9	CB7	CONDUIT	3.0	11.7469	0.250
C15	HP-CB8	CB5	CONDUIT	3.0	10.0504	0.250
C16	RYCB2	HP-RYCB2	CONDUIT	3.0	-14.8270	0.0350
C17	HP-RYCB2	RYCB3	CONDUIT	23.5	1.4044	0.0350
C18	RYCB3	HP-RYCB3	CONDUIT	3.0	-6.0108	0.0350
C19	HP-RYCB3	RYCB1	CONDUIT	3.0	18.6494	0.0350
C2	HP-CB3	CBMH02	CONDUIT	3.0	10.3889	0.250
C20	RYCB1	OF1	CONDUIT	3.0	-20.4124	0.0350
C21_1	RYCB4	HP-RYCB4	CONDUIT	3.0	-2.6676	0.0350
C21 2	HP-RYCB4	CBMH01	CONDUIT	3.0	2.6676	0.0350
C22	MH10	HP-CB8	CONDUIT	3.0	-2.0004	0.250
C3	CBMH02	HP-CB2	CONDUIT	3.0	-10.0504	0.250
C4	HP-CB2	CB1	CONDUIT	3.0	12.7695	0.250
C5	CB7	HP-CB7	CONDUIT	3.0	-9.7122	0.250
C6	HP-CB20	CB7	CONDUIT	3.0	11.4068	0.250
C7	CB1	HP-CB20	CONDUIT	3.0	-10.3889	0.250
C8	CB3	HP-CB6	CONDUIT	3.0	-10.0504	0.250
C9	HP-CB6	CB4	CONDUIT	3.0	10.3889	0.250
CB3-MH8	CB3	MH8	CONDUTT	27.1	0.9964	0.013
CB4-MH10	CB4	MH10	CONDUTT	5.5	0.9091	0.013
CB6-MH16	CB6	MH16	CONDUTT	29.2	0.9932	0.013
CB7-MH18	CB7	CB07-Dummy	CONDUIT	2.5	0.8000	0.013
CBMH01-MH6	CBMH01	MH6	CONDUIT	31.5	0.9842	0.013
CBMH02-MH4	CBMH02-Dummy	MH4	CONDUIT	22.8	0.4825	0.013
Dummy-MH18	CB07-Dummy	MH18	CONDUIT	22.1	0.9955	0.013
MH10-MH12	MH10 Dummy	MH12	CONDUIT	37.6	0.3989	0.013
MH12-MH4	MH12	MH4	CONDUIT	39.7	0.3276	0.013
MH14-MH12	MH14	MH12	CONDUIT	36.4	0.4945	0.013
MH16-Dummv	MH16	CB07-Dummy	CONDUIT	35.7	1.0085	0.0130
MH18-MH2	MH18 Dummy	MH2	CONDUIT	19.2	0.9896	0.013
MH2-MH116	MH2	MH116	CONDUIT	20.3	0.2507	0.013
MH4-MH2	MH4	MH2	CONDUIT	41.0	0.2929	0.013
MH6-CBMH02	MH 6	CBMH02	CONDUIT	12.4	0.5645	0.013
MH8-MH10	MH8	MH10	CONDUIT	39.0	1.0001	0.013
RYCB2-ICD	RYCB2	RYCB3	CONDUIT	50.8	1.0040	0.013
RYCB4-CBMH01	RYCB4	CBMH01	CONDUIT	9.4	0.9575	0.013
CB1-ICD	CB1	MH4	ORIFICE			
CB5-ICD	CB5	MH12	ORIFICE			
CBMH02-TCD	CBMH02	CBMH02-Dummy	ORIFICE			
MH10-ICD	MH10	MH10 Dummy	ORIFICE			
MH18-ICD	MH18	MH18 Dummy	ORIFICE			
RYCB1-ICD	RYCB1	MH14	ORIFICE			
RYCB3-ICD	RYCB3	MH10 Dummy	ORIFICE			

***** Cross Section Summary ******

Conduit	Shape	Full Depth	Full Area	Hyd. Rad.	Max. Width	No. of Barrels	Full Flow
C1	Road_Transect	1.00	7.76	2.15	8.70	1	16404.35
C10	Road_Transect	1.00	7.76	2.15	8.70	1	15262.04
C11	Road_Transect	1.00	7.76	2.15	8.70	1	14963.52
C12	Road_Transect	1.00	7.76	2.15	8.70	1	18490.78
C13	Road_Transect	1.00	7.76	2.15	8.70	1	16404.35
C14	Road_Transect	1.00	7.76	2.15	8.70	1	17734.92
C15	Road_Transect	1.00	7.76	2.15	8.70	1	16404.35
C16	TRAPEZOIDAL	1.00	3.15	0.49	6.15	1	21438.57
C17	TRAPEZOIDAL	1.00	3.15	0.49	6.15	1	6598.02

Provence Orleans – Block 126 PCSWMM Model Output 100yr 4-hour Chicago Storm

C18	TRAPEZOIDAL	1.00	3.15	0.49	6.15	1	13650.11
C19	TRAPEZOTDAL	1.00	4.50	0.58	7.50	1	38400.65
C2	Road Transect	1.00	7.76	2.15	8.70	1	16678.37
C20	TRAPEZOIDAL	1.00	4.50	0.58	7.50	1	40174.74
C21_1	RECT OPEN	1.00	3.00	0.60	3.00	1	9959.60
C21 2	RECT OPEN	1.00	3.00	0.60	3.00	1	9959.60
C22	Road Transect	1.00	7.76	2.15	8.70	1	7318.57
C3	Road Transect	1.00	7.76	2.15	8.70	1	16404.35
C4	Road_Transect	1.00	7.76	2.15	8.70	1	18490.78
C5	Road_Transect	1.00	7.76	2.15	8.70	1	16125.96
C6	Road_Transect	1.00	7.76	2.15	8.70	1	17476.33
C7	Road_Transect	1.00	7.76	2.15	8.70	1	16678.37
C8	Road_Transect	1.00	7.76	2.15	8.70	1	16404.35
C9	Road_Transect	1.00	7.76	2.15	8.70	1	16678.37
CB3-MH8	CIRCULAR	0.38	0.11	0.09	0.38	1	175.02
CB4-MH10	CIRCULAR	0.20	0.03	0.05	0.20	1	31.27
CB6-MH16	CIRCULAR	0.30	0.07	0.07	0.30	1	96.38
CB7-MH18	CIRCULAR	0.20	0.03	0.05	0.20	1	29.34
CBMH01-MH6	CIRCULAR	0.53	0.22	0.13	0.53	1	426.67
CBMH02-MH4	CIRCULAR	0.30	0.07	0.07	0.30	1	67.17
Dummy-MH18	CIRCULAR	0.60	0.28	0.15	0.60	1	612.67
MH10-MH12	CIRCULAR	0.30	0.07	0.07	0.30	1	61.08
MH12-MH4	CIRCULAR	0.38	0.11	0.09	0.38	1	100.36
MH14-MH12	CIRCULAR	0.30	0.07	0.07	0.30	1	68.01
MH16-Dummy	CIRCULAR	0.60	0.28	0.15	0.60	1	616.64
MH18-MH2	CIRCULAR	0.30	0.07	0.07	0.30	1	96.20
MH2-MH116	CIRCULAR	0.53	0.22	0.13	0.53	1	215.32
MH4-MH2	CIRCULAR	0.45	0.16	0.11	0.45	1	154.31
MH6-CBMH02	CIRCULAR	0.53	0.22	0.13	0.53	1	323.15
MH8-MH10	CIRCULAR	0.38	0.11	0.09	0.38	1	175.35
RYCB2-ICD	CIRCULAR	0.25	0.05	0.06	0.25	1	59.59
RYCB4-CBMH01	CIRCULAR	0.25	0.05	0.06	0.25	1	58.19
************************	(

Transect Road_Transect

Area:					
	0.0013	0.0053	0.0120	0.0213	0.0334
	0.0483	0.0657	0.0836	0.1018	0.1201
	0.1387	0.1578	0.1774	0.1976	0.2183
	0.2395	0.2613	0.2836	0.3060	0.3284
	0.3507	0.3731	0.3955	0.4178	0.4402
	0.4626	0.4850	0.5073	0.5297	0.5521
	0.5745	0.5968	0.6192	0.6416	0.6640
	0.6864	0.7088	0.7312	0.7536	0.7760
	0.7984	0.8208	0.8432	0.8656	0.8880
	0.9104	0.9328	0.9552	0.9776	1.0000
Hrad:					
	0.0046	0.0091	0.0137	0.0182	0.0226
	0.0270	0.0337	0.0423	0.0508	0.0591
	0.0675	0.0765	0.0868	0.0988	0.1127
	0.1286	0.1466	0.1691	0.1953	0.2226
	0.2506	0.2792	0.3079	0.3369	0.3658
	0.3946	0.4234	0.4519	0.4801	0.5082
	0.5359	0.5633	0.5904	0.6171	0.6435
	0.6696	0.6953	0.7207	0.7458	0.7705
	0.7948	0.8189	0.8426	0.8660	0.8891
	0.9119	0.9343	0.9565	0.9784	1.0000
Width:					
	0.1188	0.2375	0.3563	0.4751	0.6019
	0.7287	0.7964	0.8051	0.8137	0.8223
	0.8389	0.8633	0.8877	0.9122	0.9366
	0.9610	0.9855	0.9977	0.9978	0.9979
	0.9979	0.9980	0.9981	0.9982	0.9982
	0.9983	0.9984	0.9984	0.9985	0.9986
	0.9987	0.9987	0.9988	0.9989	0.9989
	0.9990	0.9991	0.9992	0.9992	0.9993
	0.9994	0.9994	0.9995	0.9996	0.9996
	0.9997	0.9998	0.9999	0.9999	1.0000

***** NOTE: The summary statistics displayed in this report are Noise in soundary statistics usprayed it this tepper all based on results found at every computational time step, not just on results from each reporting time step.

Analysis Options			
**************************************	LPS		
Process Models:			
Rainfall/Runoff	YES		
RDII	NO		
Groundwater	NO		
Flow Routing	YES		
Ponding Allowed	NO		
Water Quality	NO		
Flow Bouting Method	DYNWAVE		
Surcharge Method	EXTRAN		
Starting Date	06/02/2020	00:00:00	
Ending Date	06/03/2020	00:00:00	
Report Time Step	00:00:30		
Wet Time Step	00:05:00		
Dry Time Step	00:05:00		
Routing Time Step	1.00 sec		
Maximum Trials	100		
Number of Threads	2		
Head Tolerance	0.000500 m		
*****	Volu	ıme	Depth
Runoff Quantity Continuity	hectare	e−m	mm
Total Precipitation		199	76 002
Evaporation Loss	0.0	000	0.000
Infiltration Loss	0.0	32	24.251
Surface Runoff	0.0	068	51.833
Continuity Error (%)	-0.8	331	0.549
contributely brief (c)	0.0		
*****	Vol		Volumo
Flow Routing Continuity	hectare	e-m	10^6 ltr

Dry Weather Inflow	0.0	000	0.000
Groundwater Inflow	0.0	168	0.675
RDII Inflow	0.0	000	0.000
External Inflow	0.0	000	0.000
External Outflow	0.0	068	0.676
Evaporation Loss	0.0	000	0.000
Exfiltration Loss	0.0	000	0.000
Initial Stored Volume	0.0	000	0.000
Continuity Error (%)	-0.0)00)77	0.000
contributely brief (c)	0.0		
Time_Step Critical Flements			

None			
*****	****		
Highest Flow Instability In	dexes		
***************************************	****		
ALL LINKS ARE SLADIE.			

Minimum Time Step	: 0.50) sec	
Average Time Step	: 1.00) sec	
Maximum Time Step	: 1.00) sec	
rercent in Steady State	. 0.00	,	

****** Subcatchment Runoff Summary

Average Iterations per Step :

2.02

0.01

:

Percent Not Converging
Provence Orleans – Block 126 PCSWMM Model Output 100yr 4-hour Chicago Storm

OF1 OF2 OF4 CB1 CB3 CB4 CB5 CB6 CB7

CBMH01 CBMH02

MH10

MH12

MH14

MH16

MH18

MH2

STORAGE

STORAGE

STORAGE

STORAGE

STORAGE STORAGE

STORAGE

STORAGE

STORAGE

STORAGE

STORAGE

STORAGE

NOV	ΛΤΞϹΗ
Engineers, Planner	s & Landscape Architec

									_		
Total	Peak	Runoff	Tota.	L To	tal	Total	Tota	1 1	Lmperv	Perv	Total
Bunoff	Bunoff	Coef	Precip	o Ru	inon	Evap	Infi	1 F	Runoff	Runoff	Runoff
Subca	tchment		m	n	mm	mm	r	m	mm	mm	mm
10^6 It	r 1	JPS 									
A1 0.05	35 04	0 762	76.0) (.00	0.00	17.8	4	47.04	10.91	57.95
A-10			76.0) (.00	0.00	51.2	9	2.20	25.06	25.06
0.04 A11	18.26	0.330	76.0			0.00	50.5	8	6.31	25.70	25.70
0.03	12.10	0.338	76.0			0.00	27.0	-	20.10	20.10	20.10
0.05	26.78	0.515	/6.0	J		0.00	37.0	2	28.19	39.18	39.18
A2	E4 E4	0 920	76.0) (.00	0.00	13.0	2	55.01	7.98	62.99
A3	54.54	0.829	76.0		.00	0.00	8.8	8	61.27	5.62	66.89
0.05	33.22	0.880	76.0		0.00	0 00	48.8	Q	0 00	28 08	28 08
0.01	10.48	0.370	/0.0	,		0.00	40.0	5	0.00	20.00	20.00
A5 0 04	30 81	0 822	76.0) (.00	0.00	13.1	6	54.69	7.75	62.44
A6	50.01	0.022	76.0) (.00	0.00	11.6	5	57.14	7.21	64.35
0.06 A7	46.17	0.847	76.0) (.00	0.00	8.8	8	61.44	5.62	67.07
0.10	71.18	0.882	76.0			0.00		-	5.6.00	7 01	c4 10
A8 0.05	36.94	0.844	/6.0	J		0.00	11.6	5	56.92	1.21	64.13
A9	70 40	0.046	76.0) (.00	0.00	11.6	5	57.05	7.21	64.27
0.11 B1	/8.49	0.846	76.0) (.00	0.00	47.0	2	0.00	33.43	33.43
0.00	4.28	0.440	76 0			0.00	47.4	0	0 00	21 46	21 46
0.00	1.25	0.414	/0.0	, ,		0.00	4/.4	U	0.00	51.40	51.40
****	******	*****									
Node	Depth Sı *******	1mmary									
				Average	Maximum	Maximum	Time	of Max	Rep	orted	
N-d-				Depth	Depth	HGL	0ccu	rrence	Max	Depth	
			туре	Meters	Meters	Meters	days			eters	
CB07-	Dummy		JUNCTION	0.74	2.90	89.24	0	02:20		2.90	
HP-CB	2-Dummy 13		JUNCTION	0.02	0.06	86.26	0	02:11		0.00	
HP-CB	2		JUNCTION	0.00	0.00	89.38	0	00:00		0.00	
HP-CB	20		JUNCTION	0.00	0.00	89.31	0	00:00		0.00	
HP-CB	3		JUNCTION	0.00	0.00	89.45	0	00:00		0.00	
HP-CB	6		JUNCTION	0.00	0.00	89.48	0	00:00		0.00	
HP-CB	0 9		JUNCTION	0.00	0.00	89.43	0	00:00		0.00	
HP-RY	CB2		JUNCTION	0.00	0.00	88.88	Ő	00:00		0.00	
HP-RY	CB3		JUNCTION	0.00	0.00	88.73	0	00:00		0.00	
HP-RY	CB4		JUNCTION	0.01	0.09	89.32	0	02:08		0.09	
MH10_	Dummy		JUNCTION	0.02	0.15	86.53	0	02:07		0.15	
MH18_	Dummy		JUNCTION	0.02	0.05	86.16	0	02:20		0.05	
HP-CB	7		OUTFALL	0.00	0.00	89.26	0	00:00		0.00	
MH116			OUTFALL	0.04	0.23	85.92	0	01:49		0.23	
OF 1 OF 2			OUTFALL	0.00	0.00	89.78 89.00	0	00:00		0.00	
OF 4			OUTFALL	0.00	0.00	89.24	0	00:00		0.00	
CB1			STORAGE	0.09	1.90	89.20	Ő	01:41		1.90	

1.59

1.59 1.91

1.62

1.68

2.69

3.12

2.99

0.25

0.09

2.54

3.13

0.28

0.23

0.23 0.07 0.35 0.37

0.53

0.54

0.00

0.84

0.05

89.37

89.37 89.34 89.24

89.25

89.32

89.32

89.37

86.40

86.50

89.24

89.24

86.02

0 02:04

0 02:04 0 01:34

0 02:20

0 02:20

0 02:09 0 02:11

0 02:04

0 01:50

0 02:20

0 02:20 0 01:49

ō 01:48 1.59

1.59

1.62

1.68

2.69

3.12 2.99

0.25

0.09

2.54

3.13

0.28

MH4	STORAGE	0.03	0.22	86.16	0	01:48	0.22
MH 6	STORAGE	0.64	3.05	89.32	0	02:10	3.05
MH8	STORAGE	0.42	2.55	89.37	0	02:04	2.55
RYCB1	STORAGE	0.05	1.53	88.31	0	01:50	1.5
RYCB2	STORAGE	0.05	1.24	88.68	0	01:56	1.24
RYCB3	STORAGE	0.08	1.80	88.67	0	01:55	1.80
RYCB4	STORAGE	0.27	1.57	89.32	0	02:09	1.5

****** Node Inflow Summary

		Maximum	Maximum			Lateral	Total	Flow	
		Lateral	Total	Time	of Max	Inflow	Inflow	Balance	
		Inflow	Inflow	Occu	irrence	Volume	Volume	Error	
Node	Type	LPS	LPS	days	hr:min	10^6 ltr	10^6 ltr	Percent	
CB07-Dummy	JUNCTION	0.00	68.62	0	01:24	0	0.171	-0.315	
CBMH02-Dummy	JUNCTION	0.00	6.24	0	02:11	0	0.134	-0.002	
HP-CB13	JUNCTION	0.00	0.00	0	00:00	0	0	0.000	ltı
HP-CB2	JUNCTION	0.00	0.00	0	00:00	0	0	0.000	ltı
HP-CB20	JUNCTION	0.00	0.00	0	00:00	0	0	0.000	ltı
HP-CB3	JUNCTION	0.00	0.00	0	00:00	0	0	0.000	ltı
HP-CB6	JUNCTION	0.00	0.00	0	00:00	0	0	0.000	ltı
HP-CB8	JUNCTION	0.00	0.00	0	00:00	0	0	0.000	ltı
HP-CB9	JUNCTION	0.00	0.00	0	00:00	0	0	0.000	ltı
HP-RYCB2	JUNCTION	0.00	0.00	0	00:00	0	0	0.000	ltı
HP-RYCB3	JUNCTION	0.00	0.00	0	00:00	0	0	0.000	ltı
HP-RYCB4	JUNCTION	0.00	8.39	0	01:31	0	0.0109	0.019	
MH10 Dummy	JUNCTION	0.00	24.03	0	01:55	0	0.19	-0.246	
MH18 Dummy	JUNCTION	0.00	5.96	0	02:06	0	0.161	-0.002	
HP-CB7	OUTFALL	0.00	0.00	0	00:00	0	0	0.000	ltı
MH116	OUTFALL	0.00	84.04	0	01:49	0	0.672	0.000	
OF1	OUTFALL	0.00	0.00	0	00:00	0	0	0.000	ltı
OF2	OUTFALL	4.28	4.28	0	01:30	0.00334	0.00334	0.000	
OF 4	OUTFALL	1.25	1.25	0	01:30	0.000944	0.000944	0.000	
CB1	STORAGE	35.04	35.04	0	01:30	0.0464	0.0464	0.032	
CB3	STORAGE	30.81	32.00	0	01:29	0.0437	0.0445	0.257	
CB4	STORAGE	46.17	46.17	0	01:30	0.0644	0.0644	0.055	
CB5	STORAGE	71 18	71 18	0	01.30	0 101	0 101	0.021	
CB6	STORAGE	36 94	44 44	0	01.25	0 0513	0 0514	0.529	
CB7	STORAGE	78 49	83 77	0	01.30	0 109	0 11	0.059	
CBMH01	STORAGE	33 22	40.66	0	01.25	0 0468	0 0645	-0.095	
CBMH02	STORAGE	54 54	74 69	0	01.29	0.0756	0 149	0.021	
MH10	STORAGE	0.00	38 28	0	01.27	0.0700	0 115	-0.035	
MH12	STORAGE	0.00	62 46	0	01.47	0	0 331	0 109	
MH14	STORAGE	0.00	11.99	0	01:50	0	0.0401	-0.012	
MH16	STORAGE	0.00	66.85	0	01:25	0	0.059	-0.468	
MH18	STOPACE	0.00	45.23	0	01.26	0	0.163	0.036	
MH2	STORAGE	0.00	84 04	0	01.20	0	0.672	-0.017	
MHA	STORAGE	0.00	78 09	0	01.40	0	0.511	0.01/	
MH6	STORAGE	0.00	36.44	0	01.40	0	0.074	0.034	
MUS	STORAGE	0.00	35 57	0	01.25	0	0.0509	-0.308	
PYCE1	STORAGE	18 26	18 26	0	01.20	0 0401	0.0305	-0.003	
DVCB2	STORAGE	26.78	26 78	0	01.30	0.0401	0.0401	0.003	
DVCB3	STORAGE	12 10	27.08	0	01.33	0.0309	0.0817	-0.088	
PYCB/	STORAGE	10 48	23.41	0	01.20	0.0112	0.0156	0 153	
IVIOD4	SIORAGE	10.40	23.41	0	01.30	0.0112	0.0100	0.100	

Node Surcharge Summary

Surcharging occurs when water rises above the top of the highest conduit.

				,
Node	Туре	Hours Surcharged	Max. Height Above Crown Meters	Min. Depth Below Rim Meters
CB07-Dummy	JUNCTION	5.90	1.494	0.726

Node Flooding Summary

No nodes were flooded.

Provence Orleans – Block 126 PCSWMM Model Output 100yr 4-hour Chicago Storm

Storage Volume Summary

Storage Unit	Average Volume 1000 m3	Avg Pcnt Full	Evap Pcnt Loss	Exfil Pcnt Loss	Maximum Volume 1000 m3	Max Pcnt Full	Time c Occur days h	of Max rence nr:min	Maximum Outflow LPS
св1	0.000		0		0.009	25	0	01:41	9.42
CB3	0.001	2	ō	0	0.015	29	0	02:04	22.66
CB4	0.001	4	0	0	0.012	45	0	02:04	38.28
CB5	0.000	1	0	0	0.019	54	0	01:34	26.67
CB6	0.001	5	0	0	0.012	43	0	02:20	36.80
CB7	0.005	11	0	0	0.036	83	0	02:20	65.89
CBMH01	0.001	4	0	0	0.009	29	0	02:09	27.52
CBMH02	0.003	6	0	0	0.025	54	0	02:11	39.50
MH10	0.001	13	0	0	0.003	75	0	02:04	27.61
MH12	0.000	1	0	0	0.000	8	0	01:48	62.45
MH14	0.000	0	0	0	0.000	3	0	01:50	11.99
MH16	0.001	21	0	0	0.003	88	0	02:20	11.46
MH18	0.001	26	0	0	0.004	98	0	02:20	14.01
MH2	0.000	1	0	0	0.000	8	0	01:49	84.04
MH4	0.000	1	0	0	0.000	7	0	01:48	78.09
MH 6	0.001	16	0	0	0.003	76	0	02:10	21.49
MH8	0.000	16	0	0	0.003	97	0	02:04	5.27
RYCB1	0.000	0	0	0	0.003	2	0	01:50	11.99
RYCB2	0.000	1	0	0	0.012	28	0	01:56	18.00
RYCB3	0.000	1	0	0	0.001	43	0	01:55	18.00
RYCB4	0.001	2	0	0	0.010	22	0	02:09	6.75

Outfall Loading Summary

	Flow	Avg	Max	Total
	Freq	Flow	Flow	Volume
Outfall Node	Pcnt	LPS	LPS	10^6 ltr
HP-CB7	0.00	0.00	0.00	0.000
MH116	43.93	17.81	84.04	0.672
OF1	0.00	0.00	0.00	0.000
OF2	3.23	1.33	4.28	0.003
OF4	3.18	0.37	1.25	0.001
System	10.07	19.50	1.25	0.676

Link Flow Summary

Link	Туре	Maximum Flow LPS	Time Occu days	of Max irrence hr:min	Maximum Veloc m/sec	Max/ Full Flow	Max/ Full Depth
 C1	CHANNEL	0 00		00.00	0 00	0 00	0 08
C10	CHANNEL	0.00	0	00.00	0.00	0.00	0.00
C10	CUANNEL	0.00	0	00.00	0.00	0.00	0.10
C11	CHANNEL	0.00	0	00.00	0.00	0.00	0.10
C12	CHANNEL	0.00	0	00.00	0.00	0.00	0.10
C13	CHANNEL	0.00	0	00.00	0.00	0.00	0.11
C14 C15	CHANNEL	0.00	0	00.00	0.00	0.00	0.14
C15	CONDULT	0.00	0	00.00	0.00	0.00	0.10
C10	CONDUIT	0.00	0	00.00	0.00	0.00	0.12
C17	CONDUIT	0.00	0	00.00	0.00	0.00	0.00
C10	CONDUIT	0.00	0	00.00	0.00	0.00	0.00
C19	CUANNET	0.00	0	00.00	0.00	0.00	0.00
020	CHANNEL	0.00	0	00.00	0.00	0.00	0.05
C20	CONDUIT	0.00	0	00:00	0.00	0.00	0.00
021_1	CONDUIT	3.57	0	01:32	0.02	0.00	0.13
C21_2	CONDUIT	7.70	0	01:31	0.06	0.00	0.13
C22	CHANNEL	0.00	0	00:00	0.00	0.00	0.00
03	CHANNEL	0.00	0	00:00	0.00	0.00	0.12
C4	CHANNEL	0.00	0	00:00	0.00	0.00	0.10
C5	CHANNEL	0.00	0	00:00	0.00	0.00	0.14
C6	CHANNEL	0.00	0	00:00	0.00	0.00	0.14
C./	CHANNEL	0.00	0	00:00	0.00	0.00	0.10
C8	CHANNEL	0.00	0	00:00	0.00	0.00	0.10
C9	CHANNEL	0.00	0	00:00	0.00	0.00	0.10
CB3-MH8	CONDUIT	22.66	0	01:25	0.85	0.13	1.00

CB4-MH10 CB6-MH16 CB7-MH18 CBMH01-MH6 CBMH01-MH16 CBMH02-MH4 Dummy-MH18 MH10-MH12 MH12-MH12 MH14-Dummy MH16-Dummy MH16-Dummy MH16-MH10 MH2-MH116 MH4-MH2 MH6-CBMH01 CB1-ICD RYCB2-ICD RYCB2-ICD RYCB4-CBMH01 CB5-ICD CB5-ICD CB5-ICD CB5-ICD CB5-ICD RH10-ICD MH10-ICD MH10-ICD MH10-ICD RYCB3-ICD RYCB3-ICD Flow Classification	CONDUIT CONT CONT CONT CONT CONT CONT CONT CON	38. 36. 65. 27. 6. 45. 24. 62. 14. 62. 18. 18. 18. 18. 18. 18. 18. 18	28 80 85 22 24 23 30 31 99 31 00 45 99 31 00 45 42 24 24 24 24 70 99 99 90 00		01 01 01 02 01 01 01 01 01 01 01 01 01 01 01 02 02 02 02 01 01	227 225 224 228 111 555 548 555 226 448 550 649 448 224 441 557 555	1.22 1.02 2.11 0.4 0.6 0.3 0.5 0.5 0.2 0.7 0.7 0.8 1.0 0.1 0.2 0.5	270001150059773288.67229	1.22 0.38 2.25 0.06 0.09 0.07 0.39 0.62 0.18 0.08 0.08 0.39 0.51 0.10 0.13 0.25	1.00 1.00 0.23 1.00 0.51 1.00 0.43 1.00 0.43 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	
	Adjusted			 Fr	act:	ion of	Time	in Fl	ow Clas	 s	
Conduit	/Actual Length	Dry	Up Dry	Do Dr	wn Y	Sub Crit	Sup Crit	Up Crit	Down Crit	Norm Ltd	Inlet Ctrl
C1	1.69	0.84	0.16	0.	00	0.00	0.00	0.00	0.00	0.00	0.00
C10	1.64	0.87	0.13	0.	00	0.00	0.00	0.00	0.00	0.00	0.00
C12	1.63	0.97	0.03	0.	00	0.00	0.00	0.00	0.00	0.00	0.00
C13	1.69	0.80	0.20	0.	00	0.00	0.00	0.00	0.00	0.00	0.00
C14	1.75	0.80	0.20	0.	00	0.00	0.00	0.00	0.00	0.00	0.00
C15	1.69	0.97	0.03	0.	00	0.00	0.00	0.00	0.00	0.00	0.00
C16	3.02	0.96	0.04	0.	00	0.00	0.00	0.00	0.00	0.00	0.00
C18	2.19	0.97	0.03	0.	00	0.00	0.00	0.00	0.00	0.00	0.00
C19	3.65	0.97	0.03	0.	00	0.00	0.00	0.00	0.00	0.00	0.00
C2	1.70	0.84	0.16	0.	00	0.00	0.00	0.00	0.00	0.00	0.00
C20	3.78	0.97	0.03	0.	00	0.00	0.00	0.00	0.00	0.00	0.00
C21_1 C21_2	2.15	0.84	0.01	0.	00	0.14	0.00	0.00	0.00	0.80	0.00
C22	1.30	0.98	0.01	0.	00	0.00	0.00	0.00	0.00	0.00	0.00
C3	1.69	0.84	0.16	Ο.	00	0.00	0.00	0.00	0.00	0.00	0.00
C4	1.78	0.96	0.04	Ο.	00	0.00	0.00	0.00	0.00	0.00	0.00
C5	1.68	0.80	0.20	0.	00	0.00	0.00	0.00	0.00	0.00	0.00
C7	1.74	0.80	0.20	0.	00	0.00	0.00	0.00	0.00	0.00	0.00
C8	1.69	0.87	0.13	ο.	00	0.00	0.00	0.00	0.00	0.00	0.00
C9	1.70	0.87	0.13	Ο.	00	0.00	0.00	0.00	0.00	0.00	0.00
CB3-MH8	1.00	0.01	0.00	0.	00	0.19	0.00	0.00	0.80	0.01	0.00
CB4-MH10 CB6-MH16	1.00	0.01	0.00	0.	00	0.18	0.00	0.00	0.81	0.00	0.00
CB7-MH18	1.00	0.01	0.00	0.	00	0.27	0.00	0.00	0.72	0.02	0.00
CBMH01-MH6	1.00	0.01	0.00	0.	00	0.33	0.00	0.00	0.67	0.06	0.00
CBMH02-MH4	1.00	0.01	0.00	Ο.	00	0.02	0.00	0.00	0.97	0.02	0.00
Dummy-MH18	1.00	0.01	0.00	0.	00	0.43	0.00	0.00	0.56	0.05	0.00
MHIU-MHIZ MHI2_MH4	1.00	0.01	0.00	0.	00	0.03	0.00	0.00	0.96	0.00	0.00
MH14-MH12	1.00	0.05	0.01	ō.	00	0.07	0.00	0.00	0.88	0.07	0.00
MH16-Dummy	1.00	0.01	0.26	Ο.	00	0.73	0.00	0.00	0.00	0.66	0.00
MH18-MH2	1.00	0.01	0.00	Ο.	00	0.03	0.00	0.00	0.96	0.03	0.00
MH2-MH116	1.00	0.01	0.00	0.	00	0.99	0.00	0.00	0.00	0.56	0.00
MH4-MH2 MH6-CBMH02	1.00	0.01	0.00	0.	00	0.02	0.00	0.00	0.97	0.00	0.00
MH8-MH10	1.00	0.01	0.00	ö.	00	0.27	0.00	0.00	0.72	0.05	0.00
RYCB2-ICD	1.00	0.06	0.00	Ο.	00	0.06	0.00	0.00	0.88	0.01	0.00
RYCB4-CBMH01	1.00	0.06	0.00	Ο.	00	0.21	0.00	0.00	0.74	0.00	0.00

Conduit Surcharge Summary

Provence Orleans – Block 126 PCSWMM Model Output 100yr 4-hour Chicago Storm

Conduit	Both Ends	Hours Full Upstream	 Dnstream	Hours Above Full Normal Flow	Hours Capacity Limited
СВЗ-МН8	3.88	3.88	4.19	0.01	0.01
CB4-MH10	4.07	4.09	4.13	0.07	0.08
CB6-MH16	5.70	5.70	6.10	0.01	0.01
CB7-MH18	5.88	5.94	5.91	0.11	0.06
CBMH01-MH6	5.48	5.48	6.01	0.01	0.01
Dummy-MH18	7.27	7.27	7.99	0.01	0.01
MH16-Dummy	6.58	6.58	7.27	0.01	0.01
MH6-CBMH02	6.13	6.13	6.33	0.01	0.01
MH8-MH10	4.83	4.83	5.52	0.01	0.01
RYCB2-ICD	1.12	1.12	1.31	0.01	0.01
RYCB4-CBMH01	4.67	4.67	4.75	0.01	0.01

Analysis begun on: Fri May 14 10:58:34 2021 Analysis ended on: Fri May 14 10:58:38 2021 Total elapsed time: 00:00:04

APPENDIX C: Drawings

120057-GP 120057-GR 120057-STM 120057-ESC

Real Provide American Science Provide American			/			7/4								I						101		102
											_'/[,						1					
		· · · · ·	· * 4	· · · · · · · · · · · · · · · · · · ·			-															
					₹	· # 4		· · · · ·														
		4			-0			8	· · · · · · · · · · · · · · · · · · ·	₫ · · ↓ 			4									
		1						X 		7501	nmØ STM	× •	3			d .		· . 🖓 · 🦂	. ▽ .	\$		· · · ·
· · · · · · · · · · · · · · · · · · ·										250,	mmØ SAN									×		
			▽・	▼						<u>300m/</u>	mø WM									6	375mm 250mm	ØSTM
								▽													300m	
/							· · ·									I		8	-0-			
/			$\frac{1}{2}$								<₽.	· · · · ·						· · · · · · · · · · · · · · · · · · ·				200m
,	//		/ / /		, -						_							<u>v</u> <u>a</u>		· <	<i>].</i> ⊽∂ .	525mm
	WAT	ERMA	IN TAE	BLE							52 V			li								
Station	F/G ELEVATIO	TOF N WATE	P OF RMAIN	DESC	CRIPTION											×	$-\otimes$			4	4	
1+027.11	89.22	86	6.82	200x200	TEE															$\overline{}$	7	
1+031.11	89.16	89	9.16	VB1		$\exists \bot$		С	ATCH	BASIN	TABLE			_							1	Ð
1+059.07	89.41 89.38	87	7.01	200x200) TEE	Св	BID T/	G ELEV	ATION I	INVERT	I.C.D.	RELE/ RAT	ASE TE		_					4	.3	LOC
1+099.76	89.27	86	5.87	22.5° H.	BEND	С	B1	89.0	0	87.30	Tempest LMF Vortex 89	9.4	4 –							4	.2	
1+130.64	89.33	86	6.93	45° H.BE	END	СІ	B3	89.1	8	87.78	-	-								\ge]	21
1+139.71	89.37	86	6.97	45° H.BE		С	B4	89.1	8	87.78	-	-			SAN							
2+011.65	89.22	87	5.82	+o H.BE VB3			B5	89.1	3	87.43	Tempest MHF 98mm	26.	.7	IV.	nni JmmØ 75mm6		ENT			4	,1	
2+079.11	89.36	86	6.96	45° H.BE	END	С	B6	89.02	2	87.62	-	-		M M	200		ESCE		⊢≌			
2+087.29	89.36	86	6.96	45° H.BE	END		B7	88.9	7	87.57	-	-		200m	1007		A CRI			4	0	
2+111.55	89.25 89.35	86	6.85 6.95	45° Н.ВЕ		_							-				JC C ≜			\geq		
2+152.60	89.32	86	6.92	HYD1 CC	ONNECTIO	N	R	EAR	YARD	CATC	HBASIN T	ABLE]			Š			3	9	BL(
2+158.24	89.30	86	3.90	VB4		RY	CB No	T/G F	LEVATION		RT I.C D	R	ELEASE							\geq		DCK
2+162.24	89.27 89.41	86	5.87 7.01	200x200 VB5) TEE	- -			20.40		Tempest N	инг	RATE							\geq		120
3+009.85	89.27	86	6.87	VB6					00.10	80.7	70 70mm		12.0	-							8	
3+043.37	89.25	86	6.85	11° H.BE	END		YCB3		38 55	86.8	Tempest N	ИНЕ	18.0							3	7	
3+044.16	89.24 89.48	86	5.84 7.08	HYD2 CC	ONNECTIO		YCB4		39 15	87.7	75 - 82mm		-									
														J						\leq		
	SAN	NITAR	Y MA	NHOL	LE TAE	BLE		[X	$-\otimes$			<u> </u>	6	
MANHO		ZE(mm)	T/G EI		NVERT	PIPE DI		ER		SEW	ER CROSS	SING I	ABLE			\int						
				.,	N=84.73	N=	=200		LOCAT	TION	ELEVATION	is c	LEARA	NCE						35		
1	,	1200Ø	89.3	32 S	S=85.23 E=85.29	S= E=	=200 =200		C1	1	STM INV=85.9 SAN OBV=84.9	94 91	1.03m	ı			\nearrow			\mathbf{n}	7	611
3		1200Ø	89.4	40 E	S=85.44 E=85.44	S= E=	=200 =200		C2	2	STM INV=86.0)2	0.37m	<u>ו</u>		\times				\square	NO NO	5
				N	N=85.43 S=85.66	N= 	=200				STM INV=86.1	15	0.06m				\backslash		× 34		BL	
5		1200Ø	89.2	27 N	N=85.63	N=	=200			>	SAN OBV=85.8	89	0.2011	1								\square
/		12000	09.2		N=85.62	W=	=200		C4	1	STM OBV=86.	30	0.42m	ו								
9		1200Ø	89.3	31 S	S=85.68 E=85.63	S= E=	=200 =200		C5	5	WM INV=86.7 SAN OBV=85.9	0 52	1.18m	ו		2			1,8			
11		1200Ø	89.3	33 V	W=85.99	W=	=200		C6	3	WM OBV=86.8	33	1.17m	1))	t		\rightarrow	
13		1200Ø	89.3	34 N	S=85.90 N=85.87	S= N=	=200 =200		C7	7	WM INV=86.8	51	0.40m			/ //		\diamond			/	
15		1200Ø	89.4	47 N	N=86.29	N=	=200				STM OBV=86.	41 6	0.4011		`		1			./	/	/
17		1200Ø	89.3	35 V	N=85.99	VV=	=200 =250		C8	3	SAN OBV=85.	81	0.85m	ו		$\langle \rangle$	///	/	/		/	/
117		1200Ø	89.3	36 E	E=83.91 S=84.51	E= S=	=250 =200		C9	9	WM INV=86.6 STM OBV=86.	6 51	0.15m	ı							/	
					4 8 4 4 8 1													//			1	/
	I		5								1						/ /		,	/	9.	.4m-250m 3TM @ 1 0
MANHO		ZE(mm)	[] [/G El [(m]	:LEV IN 1)	mvERT (m)	PIPE DI (n	IAMET nm)	ER	I.C.	.D.	RELEAS	Ξ			_			/////	/	1	/	
2		1200Ø	80.3	34 F	N=85.70 E=85.92	N=	=525 =300		_		_	1						_//	~			BY05
۷		~	00.0		S=85.81	S	=450					M	x	x	- x		۰.	\		/		·
4		1200Ø	89.3	37 S	N=85.94 S=86.09 E=86.02	N= S= ⊏-	=450 =300 =375		-		-	Tapan A Sa			120	5	×	- x -		<u>- X</u>	= ×	
F		12000	20.2	26	N=86.27	E= N=	=525					<u></u>									-	X
.		1000~		47	S=86.32 N=86.82	S= N=	=525 =375					_										
8		1200Ø	89.4	+/ E	E=87.51	E	=375		-	- 	-											
10		1200Ø	89.3	37 S	N=86.38 S=86.43	N= S=	=300 =375		Tempe: Vorte	st LMF ex 64	6.1											
12		1200Ø	89.3	32 E	S=86.23 E=86.23	S= E=	=300 =300		-		-)								
		12000	00.0	V 20 V	wv=ช6.15 W=86.41	W: W:	=375 =300					_		/								
14		12000	09.2	E	E=86.67	E=	=250		-	_	-	_										
16	· · ·	1200Ø	89.5	59 V	W=86.70	SE W	=600		-	-	-											
18		1200Ø	89.3	31 E V	E=86.12 W=86.11	E= W	=600 =300		Tempe: Vorte	st LMF ex 63	6.0											
		1500Ø	89.3	34 S	W=85.54 S = 85.68	VV S=	=675 =525				_	1										
116					E=85.91	E	=300					_										
116		1200Ø	89.1	15 S ^V	N=86.63	SW N=	v-∠50 =525		-		-											
CBMF	H1 [/]							1	Tompo	et I ME		1	1					,				
CBMH	H1 ·	1200Ø	89.0	08 N	N=86.20 S=86.20	N= S=	=300 =525		Vorte	ex 64	6.2							/				

THE CONTRACT DRAWINGS, AND WHERE SHOWN,

THE ACCURACY OF THE POSITION OF SUCH

UTILITIES AND STRUCTURES IS NOT GUARANTEED. BEFORE STARTING WORK, DETERMINE THE EXACT

LOCATION OF ALL SUCH UTILITIES AND

STRUCTURES AND ASSUME ALL LIABILITY FOR DAMAGE TO THEM.

DATE BY

JG

REVISION

		SX	AF		FRANK KENNY ROAD
			L RD 30)		
	NE	PROVENCE ORLEANS	SALZBURG DR		
	FP	SUBDIVISION	F.L.	MULENNIUM BLVD	
	2,5	PROVENCE	DCK 126		
			ARROWGRASS WAY	TAVE R	
	PRTOBELLOBLUT		MONTME	A. S	
		ST T	TIP		SITE BENCHMARK
NORTH	KEY PLA		H -		REFERENCED TO LOCAL GEODETIC DATUM: E: 387158.xxx N: 5035761.xxx
	N.T.S.				V: 90.139 (CGVD28 : 78) STN. 0011985U511 MTM, ZONE 9
LEGEND ■ □ SANITARY MAI	NHOLE. SEWER 8		95		IN
OF FLOW WITH SANITARY MAI ASSEMBLY TO	H COVER PER S28 NHOLE WITH COM	8.1 MPRESSION	RYCB9	REAR YARD CATCHBAS	CH BASIN
STORM MANHO OF FLOW WITH	CLE, SEWER & DI COVER PER S2	IRECTION 8.1	RYCB9 D	REAR YARD CATC	CH BASIN WITH ICD
O STORM MANHO ASSEMBLY TO 300mmØ	OLE WITH COMP	RESSION	^{TF=} - ∲ ⊗	HYDRANT C/W VA TF= TOP OF FLAN	LVE & LEAD IGE ELEVATION
VB VB VALVE & VALVE	ND DIAMETER		<u> </u>	CAP HYDRO TRANSFO	RMER
VC VALVE & VALV	E CHAMBER		СМВ	COMMUNITY MAIL	BOX
GENERAL NOTES	RUST BLOCK				
1. DIMENSIONS AND LAYOUT INFO	RMATION SHALL	BE CONFIRMED PRIC	OR TO START OF	CONSTRUCTION.	
2. THE ORIGINAL TOPOGRAPHY AN SUPPLIED FOR INFORMATION P	ND GROUND ELEY URPOSES ONLY.	VATIONS, SERVICING IT SHALL BE THE RE	AND SURVEY IN	FORMATION SHOWN F THE CONTRACTOR	ON THIS PLAN ARE TO VERIFY THE
3. CO-ORDINATE AND SCHEDULE	ALL WORK WITH	OM THIS PLAN.	CONTRACTORS.		
4. BEFORE COMMENCING CONSTR			REHENSIVE ALL F		NAL LIABILITY INSURANCE
5. CONNECT TO EXISTING SYSTEM	IS AS DETAILED,	INCLUDING ALL RES		NECESSARY TO REI	RED.
EXISTING CONDITIONS OR BETT 6. DETERMINE THE EXACT LOCATI CONSTRUCTION. PROTECT ANI	TER. ON, SIZE, MATER D ASSUME RESPO	RIAL AND ELEVATION ONSIBILITY FOR ALL I	OF ALL EXISTING EXISTING UTILITI	GUTILITIES PRIOR TO) COMMENCING T SHOWN ON THESE
DRAWINGS.					,
8. RESTORE ALL TRENCHES AND S	SURFACE FEATU	RES TO EXISTING CO	NDITIONS OR BE	TTER AND TO THE S	N. ATISFACTION OF
10. ALL ELEVATIONS ARE GEODET	IC AND UTILIZE M	IETRIC UNITS.			
11. REFER TO GEOTECHNICAL INV	ESTIGATION PG4		H 30, 2021), PREP	ARED BY PATERSON	GROUP INC. FOR
12. PERFORATED PIPE SUB-DRAIN	S TO BE PROVID	ED AT SUBGRADE LE	VEL EXTENDING	FROM THE ROADSID	E CATCHBASIN FOR A
	TO THE CURB IN	TWO DIRECTIONS.			
1. SPECIFICATIONS: ITEM		SPEC. No.	REFERENCE		_
CATCHBASIN (600x600mm) CATCHBASIN MANHOLE (120 STORM / SANITARY MANHOL	0Ø) E (1200Ø)	705.010 701.010 701.010	OPSD OPSD OPSD		
ROADSIDE CB, FRAME & CO\ CBMH FRAME & COVER STORM / SANITARY MH FRAM	/ER /IE & COVER	S2 & S19 S25 & S28.1 S24.1 / S24 & S25	CITY of OTTA CITY of OTTA CITY of OTTA	AWA AWA AWA	
STORM SEWER SANITARY SEWER CATCHBASIN LEAD		PVC DR 35 OR CON PVC DR 35 PVC DR 35	C. (CLASS SPE	CIFIED ON PROFILE D	DRAWINGS)
2. INSULATE ALL PIPES (SAN/ST CLEARANCE BETWEEN PIPE A	M) THAT HAVE LE	SS THAN 1.8m COVEI	R WITH 50mmX12	00mm HI-40 INSULAT	ION. PROVIDE 150mm
3. SERVICES ARE TO BE CONSTI	RUCTED TO PRO	PERTY LINE AT MINIM	IUM SLOPE OF 1.	.0% (2.0% IS PREFERI	RED).
 PIPE BEDDING AND COVER AF WHERE THE BEDDING IS LOC/ SHOULD BE INCREASED TO A EXTEND FROM THE SPRING LI 	RE TO BE COMPA ATED WITHIN FIR MINIMUM OF 300 INE OF THE PIPE	CTED TO AT LEAST 9 M TO SOFT GREY SIL Im. THE COVER MATE TO AT LEAST 300mm	5% OF THE STAN TY CLAY, THE TH RIAL SHALL CON ABOVE THE OBV	NDARD PROCTOR MA HICKNESS OF THE BE ISIST OF OPSS GRAN /ERT OF THE PIPE.	XIMUM DRY DENSITY. EDDING MATERIAL IULAR 'A' AND SHOULD
 SEWER SERVICE CONNECTIO THE SITE SERVICING CONTRA 	NS PER CITY OF	OTTAWA DETAILS S1	1 AND S11.1. FOR QUALITY CO		TARY SEWERS.
LEAKAGE TESTING SHALL BE COMPLETED ON ALL SANITAR TESTS SHALL BE PERFORME 7. STORM MANHOLES AND CBM	COMPLETED IN A Y SERVICES TO (D IN THE PRESEN HS SHALL HAVE 3	ACCORDANCE WITH (CONFIRM PROPER CO NCE OF THE ENGINEE 300mm SUMPS UNLES	OPSS 410.07.16 A ONNECTION TO T R. S OTHERWISE IN	ND 407.07.24. DYE TE THE SANITARY SEWE	ESTING IS TO BE R MAIN. THE FIELD
8. CONTRACTOR TO TELEVISE (COMPLETION OF CONTRACT,	CCTV) ALL PROPO THE CONTRACTO	OSED SEWERS, 200m DR IS RESPONSIBLE	mØ OR GREATER	R PRIOR TO BASE CO LEAN ALL SEWERS &	URSE ASPHALT. UPON APPURTENANCES.
	SEMBLY TOP BY	EJ GROUP INC. PRO	DUCT NUMBERS	:: SAN-41420049W01 &	& STM-41420050W01
1. GENERAL: <u>ITEM</u> WATERMAIN TRENCHING	<u>.</u>		<u>ETAIL. No.</u> 17	REFERENCE CITY OF OTTAW	/A
WATERMAIN CROSSING BEL		ER SEWER W	22 / W25.2		
INDICATED. SUDDLY AND CONSTRUCT AT					
3. SUPPLY AND CONSTRUCT ALL AND SPECIFICATIONS. EXCAV CONNECTIONS AND SHUT-OF OFFICIALS.	ATION, INSTALLA	ATE AFEORIENANCES	RESTORATION (OF THE WATER S	OF ALL WATERMAINS	ERFORMED BY CITY
 WATERMAIN SHALL BE MINIMU PROVIDE MINIMUM CLEARANCE 	JM 2.4m DEPTH E	BELOW GRADE UNLES	SS OTHERWISE II LL CROSSINGS P	NDICATED. PER W25 (0.50m) AND	W25.2 (0.25m).
6. WATER LATERAL AND SERVIC	E POST ARE TO	BE CONSTRUCTED 2.	0m FROM BACK	OF CURB USING 19mi	mØ PEX.
	PROV	VENCE ORLE	EANS - 212	28 TRIM ROA	D (BLOCK 126)
Engineers, Planners & Landscape Archited	cts				PROJECT No.
Suite 200, 240 Michael Cowpland Dri Ottawa, Ontario, Canada K2M 1P6	ve				120057 REV
Telephone(613) 254-96Facsimile(613) 254-58WebsiteWww.povatech.com	43 67 m	ERAL PLAN	N OF SEF	VICE	REV # 8
www.novatech-eng.co					DIVERSING INU.

120057-GP

1#

		XAI			
				FRANK KENNY ROAD	
	ENLIMITONE INVIES (REGIONAL RD 30)			
	PRO OF SUBDI	VENCE SLEANS VISION			
		BLOCK 126	MILLENNIUM BLVD		
			R		
		ARROWG	RASS WAY		
			WONTWERE AV		
	S NANTES.ST				
			SITE REFE GEOD	BENCHMARK RENCED TO LOCAL DETIC DATUM	
NORTH	EY PLAN		IN: 50 IV: 90. (STN.)	35761.xxx 139 (CGVD28 : 78) 0011985U511 MTM, ZONE9	
LEGEND 2.5% PROPOSED GRADE AND	DIRECTION				
105.59 HP PROPOSED ELEVATION A	T HIGH POINT		PROPOSED SANITARY MANHOL	E IPRESSION	
× 105.53 FROPOSED ELEVATION EXISTING ELEVATION			ASSEMBLY TOP		
×55.98 EXISTING ELEVATION		O	STORM MANHOLE WITH COMPR	RESSION	
56.13 BS EXISTING ELEVATION AT	BACK OF SIDEWALK	95	ASSEMBLY TOP		
55.98 EXISTING CONTOUR AND	ELEVATION	RYCB1			
SWALE AND TERRACE		⊗ ^{VB}	PROPOSED VALVE & VALVE BO		
100 yr PONDING AREA		нүр-ф	PROPOSED HYDRANT WITH TO	P OF FLANGE	
100 yr + 20% PONDING AF	REA	oo	ELEVATION - 1.8m WOOD PRIVACY FENCE		
MAX. STATIC PONDING A	REA	xxx	- 1.5m BLACK VINYL CHAINI INK F	ENCE	
HYDRO TRANSFORMER			- 2.5m HIGH NOISE BARRIER		
1. DIMENSIONS AND LAYOUT INFORMA	TION SHALL BE CONFIRMED	PRIOR TO CO	MMENCEMENT OF CONSTRUCTIO	DN.	
2. THE ORIGINAL TOPOGRAPHY AND G SUPPLIED FOR INFORMATION PURP	ROUND ELEVATIONS, SERVI OSES ONLY. IT SHALL BE TH	CING AND SUF HE RESPONSIB	VEY INFORMATION SHOWN ON T	THIS PLAN ARE /ERIFY THE	
ACCURACY OF ALL INFORMATION O	BTAINED FROM THIS PLAN.				
3. CO-ORDINATE AND SCHEDULE ALL V			CTORS.	IABILITY INSURANCE	
INCLUDING BLASTING. INSURANCE	POLICY TO NAME THE OWNI VNER'S AGENT.	ER, ENGINEER	AND THE CITY AS CO-INSURED.	AMOUNT OF	
5. CONNECT TO EXISTING SYSTEMS AS	DETAILED, INCLUDING ALL	RESTORATION	WORK NECESSARY TO REINST	ATE SURFACES TO	
EXISTING CONDITIONS OR BETTER.	SIZE MATERIAL AND ELEVA				
 DETERMINE THE EXACT LOCATION, SIZE, MATERIAL AND ELEVATION OF ALL EXISTING UTILITIES PRIOR TO COMMENCING CONSTRUCTION. PROTECT AND ASSUME ALL RESPONSIBILITY FOR ALL EXISTING UTILITIES WHETHER OR NOT SHOWN ON THESE DRAWINGS. 					
7. OBTAIN AND PAY FOR ALL NECESSARY PERMITS AND APPROVALS BEFORE COMMENCING CONSTRUCTION.					
8. RESTORE ALL TRENCHES AND SURFACE FEATURES TO EXISTING CONDITIONS OR BETTER AND TO THE SATISFACTION OF CITY OF OTTAWA AUTHORITIES.					
ASPHALT RESTORATION SHALL BE IN ACCORDANCE WITH CITY OF OTTAWA DETAIL R-10.					
 THICKNESS OF GRANULAR MATERIAL AND ASPHALT LAYERS TO MATCH EXISTING. BOULEVARDS SHALL BE REINSTATED WITH 100mm OF TOPSOIL, SEED AND MULCH. 					
9. REMOVE FROM SITE ALL EXCESS EXCAVATED MATERIAL UNLESS OTHERWISE INSTRUCTED BY ENGINEER.					
10. ALL ELEVATIONS ARE GEODETIC AND UTILIZE METRIC UNITS.					
11. ALL FENCING TO BE LOCATED 0.15r	n INSIDE PROPERTY LINE. F	REFER TO LANI	DSCAPING PLAN FOR DETAILS.		
SUBSURFACE CONDITIONS AND CONSTRUCTION RECOMMENDATIONS.					
13. ALL BLOCKS ARE SLAB-ON-GRADE WITH NO FOUNDATION DRAINS BEING PROPOSED.					
14. PERFORATED PIPE SUB-DRAINS TO DISTANCE OF 3.0m, PARALLEL TO T	BE PROVIDED AT SUBGRAD HE CURB IN TWO DIRECTION	DE LEVEL EXTE NS.	NDING FROM THE ROADSIDE CA	TCHBASIN FOR A	
15. GRADE RAISE RESTRICTIONS ON SI	TE AS PER GEOTECHNICAL	INVESTIGATIO	N (DATED 10/2019) PREPARED BY	Y PATERSON GROUP.	
GRADING AND PAVEMI	ENT NOTES: ERIOUS MATERIAL MUST BE	ENTIRELY RE	MOVED FROM BENEATH THE PRO	DPOSED HARD	
SURFACE (ie. PAVEMENT, CURB, SIDEWALK, ETC.) AREAS AS DIRECTED BY THE SITE ENGINEER OR GEOTECHNICAL ENGINEER.					
STEEL DRUM ROLLER UNDER DRY CONDITIONS AND INSPECTED BY THE GEOTECHNICAL ENGINEER PRIOR TO THE PLACEMENT OF GRANULARS.					
3. ANY SOFT AREAS EVIDENT FROM THE PROOF ROLLING SHOULD BE SUB-EXCAVATED AND REPLACED WITH SUITABLE MATERIAL THAT IS FROST COMPATIBLE WITH THE EXISTING SOILS AS RECOMMENDED BY THE GEOTECHNICAL ENGINEER.					
4. THE GRANULAR BASE SHOULD BE PLACED IN MAXIMUM 300mm LIFTS AND COMPACTED TO AT LEAST 98% OF THE STANDARD PROCTOR MAXIMUM DRY DENSITY VALUE. ANY ADDITIONAL GRANULAR FILL USED BELOW THE PROPOSED PAVEMENT SHOULD					
BE PLACED IN MAXIMUM 300mm LIFTS AND COMPACTED TO AT LEAST 95% OF THE STANDARD PROCTOR MAXIMUM DRY DENSITY VALUE.					
 BUILD ROADWAYS WITH 2% CROSSFALL INCLUDING SUBGRADE AND GRANULAR BASE. ROADWAY SUBGRADE TO BE INSPECTED BY THE GEOTECHNICAL ENGINEER AT THE TIME OF CONSTRUCTION TO REVIEW IF A 					
WOVEN GEOTEXTILE IS REQUIRED BELOW THE GRANULAR MATERIALS; AND TO CONFIRM THE DEPTH AND COMPACTION OF GRANULAR 'B'					
 PRIOR TO PLACEMENT OF TOPLIFT, THE CONTRACTOR SHALL ADJUST ALL STRUCTURES TO FINAL GRADE PER CITY OF OTTAWA STANDARDS. 					
8. MINIMUM OF 2% GRADE FOR ALL GRASS AREAS UNLESS OTHERWISE NOTED.					
9. MAXIMUM TERRACING GRADE TO BE 3:1 UNLESS OTHERWISE NOTED.					
10. ALL GRADES DI CURDS ARE EDGE OF PAVEMIENT GRADES UNLESS OTHERWISE INDICATED. 11. ALL CURBS SHALL BE MOUNTABLE CURB UNLESS OTHERWISE NOTED AND CONSTRUCTED PER CITY OF OTTAWA STANDARD					
(SC1.3). 12. REFER TO LANDSCAPE PLAN FOR PLANTING AND OTHER LANDSCAPE FEATURE DETAILS.					
CITY OF OTTAWA					
	PROVENCE O	RLEANS	- 2128 TRIM ROAD	(BLOCK 126)	
Engineers, Planners & Landscape Architects				PROJECT No.	
Suite 200, 240 Michael Cowpland Drive Ottawa, Ontario, Canada K2M 1P6		A N 1		120057 REV	
Telephone(613) 254-9643Facsimile(613) 254-5867Websitewww.novatech-ena.com	GRADING PL	.AN		REV # 8	

120057-GR

LEGEND

RYCB

PROPOSED STORM MANHOLE & SEWER WITH DIRECTION OF FLOW
EXISTING STORM MANHOLE & SEWER WITH DIRECTION OF FLOW
PROPOSED CATCHBASIN MANHOLE
EXISTING CATCHBASIN MANHOLE
PROPOSED ROAD CATCHBASIN
EXISTING ROAD CATCHBASIN
PROPOSED REAR YARD CATCHBASIN
EXISTING REAR YARD CATCHBASIN
MAJOR SYSTEM FLOW ROUTE
100 yr PONDING AREA
100 yr + 20% PONDING AREA
MAX. STATIC PONDING AREA
HYDRO TRANSFORMER

DRAINAGE AREA (hectares)

RUN-OFF COEFFICIENT

AREA ID

CMB

·-·-·-·

· _ · _ · _ · _

PROVENCE ORLEANS - 2128 TRIM ROAD (BLOCK 126) ∞

120057 REV # 7 WING No. 120057-STM

STORM DRAINAGE AREA PLAN

CITY OF OTTAWA

Telephone

Facsimile Website

(613) 254-9643 (613) 254-5867 www.novatech-eng.com

COMMUNITY MAILBOX

26)	DU7 10
20057	70
V # 7	1 401

12005	57-ESC
	011

Appendix D:

DSS Checklist

4.1 General Content	Addressed (Y/N/NA)	Comments
Executive Summary (for larger reports only).	N/A	
Date and revision number of the report.	Y	
Location map and plan showing municipal address,	Y	Refer to Report Figures
boundary, and layout of proposed development.		
Plan showing the site and location of all existing services.	Y	Refer to Grading and Servicing Plans
Development statistics, land use, density, adherence to zoning and official plan, and reference to applicable subwatershed and watershed plans that provide context to which individual developments must adhere.	Y	Refer to Site Plan
Summary of Pre-consultation Meetings with City and other approval agencies.	Y	
Reference and confirm conformance to higher level studies and reports (Master Servicing Studies, Environmental Assessments, Community Design Plans), or in the case where it is not in conformance, the proponent must provide justification and develop a defendable design criteria.	Y	
Statement of objectives and servicing criteria.	Y	Refer to Sections: 5.0 Sanitary Sewers, 6.0 Stormwater
Identification of existing and proposed infrastructure available in the immediate area.	Y	Management, 7.0 Water
Identification of Environmentally Significant Areas, watercourses and Municipal Drains potentially impacted by the proposed development (Reference can be made to the Natural Heritage Studies, if available).	N/A	
Concept level master grading plan to confirm existing and proposed grades in the development. This is required to confirm the feasibility of proposed stormwater management and drainage, soil removal and fill constraints, and potential impacts to neighboring properties. This is also required to confirm that the proposed grading will not impede existing major system flow paths.	Y	Refer to Grading Plan and Stormwater Management Plan

4.1 General Content	Addressed (Y/N/NA)	Comments
Identification of potential impacts of proposed piped		
services on private services (such as wells and septic		
fields on adjacent lands) and mitigation required to	N/A	
address potential impacts.		
Proposed phasing of the development, if applicable.	N/A	
Reference to geotechnical studies and recommendations	v	Pofor to Soction 2.0 Grading
concerning servicing.	ř	Refer to section 5.0 Grading
All preliminary and formal site plan submissions should		
have the following information:		
Metric scale	Y	
North arrow (including construction North)	Y	
Key plan	Y	
Name and contact information of applicant and property owner	Y	
Property limits including bearings and dimensions	Y	
Existing and proposed structures and parking	v	
areas	ř	
Easements, road widening and rights-of-way	Y	
Adjacent street names	Y	

4.2 Water	Addressed (Y/N/NA)	Comments
Confirm consistency with Master Servicing Study, if available.	Y	
Availability of public infrastructure to service proposed development.	Y	Refer to Sections: 5.0 Sanitary Sewers, 6.0 Stormwater
Identification of system constraints.	N/A	Management, 7.0 Water
Identify boundary conditions.	Y	Provided by City of Ottawa
Confirmation of adequate domestic supply and pressure.	Y	Refer to Appendix A
Confirmation of adequate fire flow protection and confirmation that fire flow is calculated as per the Fire Underwriter's Survey. Output should show available fire flow at locations throughout the development.	Y	Refer to Appendix A
Provide a check of high pressures. If pressure is found to be high, an assessment is required to confirm the application of pressure reducing valves.	Y	Refer to Appendix A
Definition of phasing constraints. Hydraulic modeling is required to confirm servicing for all defined phases of the project including the ultimate design.	N/A	
Address reliability requirements such as appropriate location of shut-off valves.	Y	
Check on the necessity of a pressure zone boundary modification.	N/A	
Reference to water supply analysis to show that major infrastructure is capable of delivering sufficient water for the proposed land use. This includes data that shows that the expected demands under average day, peak hour and fire flow conditions provide water within the required pressure range.	Y	Refer to Section 7.0 Water
Description of the proposed water distribution network, including locations of proposed connections to the existing system, provisions for necessary looping, and appurtenances (valves, pressure reducing valves, valve chambers, and fire hydrants) including special metering provisions.	Y	Refer to Section 7.0 Water
Description of off-site required feedermains, booster pumping stations, and other water infrastructure that will be ultimately required to service proposed development, including financing, interim facilities, and timing of implementation.	N/A	
Confirmation that water demands are calculated based on the City of Ottawa Design Guidelines.	Y	Refer to Section 7.0 Water
Provision of a model schematic showing the boundary conditions locations, streets, parcels, and building locations for reference.	N/A	

4.3 Wastewater	Addressed	Comments
	(Y/N/NA)	connicitio
Summary of proposed design criteria (Note: Wet-weather flow criteria should not deviate from the City of Ottawa Sewer Design Guidelines. Monitored flow data from relatively new infrastructure cannot be used to justify capacity requirements for proposed infrastructure).	Y	Refer to Section 5.0 Sanitary Sewers
Confirm consistency with Master Servicing Study and/or justifications for deviations.	N/A	
Consideration of local conditions that may contribute to		
extraneous flows that are higher than the recommended		
flows in the guidelines. This includes groundwater and soil conditions, and age and condition of sewers.	N/A	
Description of existing sanitary sewer available for discharge of wastewater from proposed development.	Y	Refer to Section 5.0 Sanitary Sewers
Verify available capacity in downstream sanitary sewer and/or identification of upgrades necessary to service the proposed development. (Reference can be made to previously completed Master Servicing Study if applicable)	У	Refer to Appendix A
Calculations related to dry-weather and wet-weather flow rates from the development in standard MOE sanitary sewer design table (Appendix 'C') format.	N/A	
Description of proposed sewer network including sewers, pumping stations, and forcemains.	Y	Refer to Section 5.0 Sanitary Sewers
Discussion of previously identified environmental constraints and impact on servicing (environmental constraints are related to limitations imposed on the development in order to preserve the physical condition of watercourses, vegetation, soil cover, as well as protecting against water quantity and quality).	N/A	
Pumping stations: impacts of proposed development on existing pumping stations or requirements for new pumping station to service development.	N/A	
Forcemain capacity in terms of operational redundancy, surge pressure and maximum flow velocity.	N/A	
Identification and implementation of the emergency overflow from sanitary pumping stations in relation to the hydraulic grade line to protect against basement flooding.	N/A	
Special considerations such as contamination, corrosive environment etc.	N/A	

4.4 Stormwater	Addressed (Y/N/NA)	Comments
Description of drainage outlets and downstream		
constraints including legality of outlet (i.e. municipal	Y	Refer to Section 6.0 Stormwater Management
drain, right-of-way, watercourse, or private property).		
Analysis of the available capacity in existing public	N N	
infrastructure.	Ŷ	Refer to Appendix A
A drawing showing the subject lands, its surroundings,		
the receiving watercourse, existing drainage patterns and	Y	Refer to Storm Drainage Area Plan (120057-STM)
proposed drainage patterns.	_	
Water quantity control objective (e.g. controlling post-		
development peak flows to pre-development level for		
storm events ranging from the 2 or 5 year event		
dependent on the receiving sewer design) to 100 year		
return neriod): if other objectives are being annlied a	Y	Refer to Section 6.0 Stormwater Management
rationale must be included with reference to budrelogic		
analyses of the notentially affected subwatersheds		
taling into account long term sumulative effects		
Laking into account long-term cumulative effects.		
Water Quality control objective (basic, normal or		
enhanced level of protection based on the sensitivities of	Y	Refer to Section 6.0 Stormwater Management
the receiving watercourse) and storage requirements.		
Description of stormwater management concept with		
facility locations and descriptions with references and	Y	Refer to Section 6.0 Stormwater Management
supporting information.		
Set-back from private sewage disposal systems.	N/A	
Watercourse and hazard lands setbacks.	N/A	
Record of pre-consultation with the Ontario Ministry of		
Environment and the Conservation Authority that has	N/A	
urisdiction on the affected watershed.		
Confirm consistency with sub-watershed and Master	N1/A	
Servicing Study, if applicable study exists.	N/A	
Storage requirements (complete with calcs) and		
conveyance capacity for 5 yr and 100 yr events.	Y	Refer to Appendix B
dentification of watercourse within the proposed		
development and how watercourses will be protected		
or, if necessary, altered by the proposed development	N/A	
with applicable approvals.		
Calculate pre and post development neak flow rates		
including a description of existing site conditions and		
nronosed impervious greas and drainage catchments in	~	Poferto Annondiy D
proposed impervious areas and drainage calcinnents in	Ŷ	Refer to Appendix B
comparison to existing conditions.		
Any proposed diversion of drainage catchment areas	N/A	
from one outlet to another.		
Proposed minor and major systems including locations	Ν/Δ	
and sizes of stormwater trunk sewers, and SWM facilities.		
If quantity control is not proposed, demonstration that		
downstream system has adequate capacity for the post-	NI / A	
development flows up to and including the 100-year	IN/A	

4.4 Stormwater	Addressed (Y/N/NA)	Comments
Identification of potential impacts to receiving	NI / A	
watercourses.	N/A	
Identification of municipal drains and related approval	N/A	
requirements.	N/A	
Description of how the conveyance and storage capacity	v	Pofer to Section 6.0 Stormwater Management
will be achieved for the development.	Ť	Refer to section 6.0 stormwater Management
100 year flood levels and major flow routing to protect proposed development from flooding for establishing minimum building elevations (MBF) and overall grading.	Y	Refer to Grading Plan and Storm Drainage Area Plan
Inclusion of hydraulic analysis including HGL elevations.	N/A	
Description of approach to erosion and sediment control		
during construction for the protection of receiving	Y	Refer to Section 4.0 Erosion Sediment Control
watercourse or drainage corridors.		
Identification of floodplains – proponent to obtain		
relevant floodplain information from the appropriate		
Conservation Authority. The proponent may be required		
to delineate floodplain elevations to the satisfaction of	N/A	
the Conservation Authority if such information is not		
available or if information does not match current		
conditions.		
Identification of fill constrains related to floodplain and	N/A	
geotechnical investigation.	N/A	

4.5 Approval and Permit Requirements	Addressed (Y/N/NA)	Comments
Conservation Authority as the designated approval agency for modification of floodplain, potential impact on fish habitat, proposed works in or adjacent to a watercourse, cut/fill permits and Approval under Lakes and Rivers Improvement Act. The Conservation Authority is not the approval authority for the Lakes and Rivers Improvement Act. Where there are Conservation Authority regulations in place, approval under the Lakes and Rivers Improvement Act is not required, except in cases of dams as defined in the Act.	N/A	
Application for Certificate of Approval (CofA) under the Ontario Water Resources Act.	N/A	
Changes to Municipal Drains.	N/A	
Other permits (National Capital Commission, Parks Canada, Public Works and Government Services Canada, Ministry of Transportation etc.)	N/A	

4.6 Conclusion	Addressed (Y/N/NA)	Comments
Clearly stated conclusions and recommendations.	Y	Refer to Section 8.0 Conclusions and Recommendations
Comments received from review agencies including the City of Ottawa and information on how the comments were addressed. Final sign-off from the responsible reviewing agency.	Y	
All draft and final reports shall be signed and stamped by a professional Engineer registered in Ontario.	Y	