

120 lber Road, Suite 103 Ottawa, Ontario K2S 1E9 Tel. (613) 836-0856 Fax (613) 836-7183 www.DSEL.ca

SITE SERVICING AND STORMWATER MANAGEMENT REPORT

FOR

METRO CANADA INC. 3831 CAMBRIAN ROAD – PHASE 1

CITY OF OTTAWA

PROJECT NO.: 19-1135 CITY APPLICATION NO.: D07-12-XX-XXXX

> AUGUST 2020 – REV 1 © DSEL

SITE SERVICING AND STORMWATER MANAGEMENT REPORT FOR 3831 CAMBRIAN ROAD – PHASE 1

METRO CANADA

TABLE OF CONTENTS

1.0	INTRODUCTION	1
1.1	Existing Conditions	2
1.2	Required Permits / Approvals	3
1.3	Pre-consultation	3
2.0	GUIDELINES, PREVIOUS STUDIES, AND REPORTS	4
2.1	Existing Studies, Guidelines, and Reports	4
3.0	WATER SUPPLY SERVICING	6
3.1	Existing Water Supply Services	6
3.2	Water Supply Servicing Design	6
3.3	Watermain Modelling	8
3.4	Water Supply Conclusion	9
4.0	WASTEWATER SERVICING	10
4.1	Existing Wastewater Services	10
4.2	Wastewater Design	10
4.3	Wastewater Servicing Conclusions	11
5.0	STORMWATER MANAGEMENT	12
5.1	Existing Stormwater Services	12
5.2	Post-development Stormwater Management Target	12
5.3	Proposed Stormwater Management System	13
5.4	Stormwater Servicing Conclusions	14
6.0	UTILITIES	14
7.0	EROSION AND SEDIMENT CONTROL	15
8.0	CONCLUSION AND RECOMMENDATIONS	16

FIGURES

Figure 1

Site Location

TABLES

Table 1 Water Supply Design Criteria

 Table 2 Water Demand and Boundary Conditions Proposed Conditions

Table 3 Total Available Fire Flow from Proposed & Existing Hydrants

Table 4 Model Simulation Output Summary

Table 5 Wastewater Design Criteria

Table 6 Summary of Estimated Peak Wastewater Flow

Table 7 Summary of Existing Peak Storm Flow Rates

 Table 8 Stormwater Flow Rate Summary

APPENDICES

- Appendix A Pre-consultation Notes
- Appendix B Water Supply
- Appendix C Wastewater Collection
- Appendix D Stormwater Management

Drawings / Figures Proposed Site Plan

SITE SERVICING AND STORMWATER MANAGEMENT REPORT FOR 3831 CAMBRIAN ROAD – PHASE 1 METRO CANADA AUGUST 2020 – REV 1

CITY OF OTTAWA PROJECT NO.: 19-1135

1.0 INTRODUCTION

David Schaeffer Engineering Limited (DSEL) has been retained by Metro Canada Inc. to prepare a Site Servicing and Stormwater Management report in support of the application for a Site Plan Control (SPC) at 3831 Cambrian Road.

The subject property is located within the City of Ottawa urban boundary, in Barrhaven ward. As illustrated in *Figure 1*, the subject property is located south of the intersection of Cambrian Road and Future Greenbank Road. Comprised of a single parcel the subject property measures approximately *2.2 ha* and is zoned General Mixed Use (GM).

Figure 1: Site Location

The proposed SPC would allow for the development of a commercial building fronting onto an internal drive aisle. The proposed phase 1 development would include approximately **4953** m^2 of ground level retail and above ground parking, with access from Cambrian Drive and Future Greenbank Road. A copy of the Site Plan is included in **Drawings/Figures**.

The objective of this report is to provide sufficient detail to demonstrate that the proposed development is supported by existing municipal services.

1.1 Existing Conditions

The existing site a vacant lot used for staging of the adjacent subdivision construction consisting of aggregate piles and sandy the elevations range between 94.27 m and 93.00 m with a minimal grade change of approximate 0.45% from the Northeast to the Southwest corner of the property.

The existing soil conditions on the site consist of silty clay with gravel fill with practical refusal occurring between 5.25 m and 13 m in depth per the **Geotechnical Report**. Due to the existence of underlying silty clay, there are grade raise restrictions applicable to the proposed development. There is on-going surcharge under the proposed metro location and grade raise restrictions of 1.0 m to 1.5 m for the rest of the site. Refer to **Geotechnical Report**.

Sewer and watermain mapping collected from the City of Ottawa indicate that the following services exist across the property frontages within the adjacent municipal right-of-ways:

Cambrian Road

- 406 mm diameter PVC watermain;
- 525 mm diameter concrete storm sewer tributary to the Todd Pond;
- 375 mm diameter PVC storm sewer tributary to Todd Pond; and
- > 500 mm diameter concrete sanitary sewer tributary to the South Nepean Trunk.

Future Greenbank Road

- > 2550 mm diameter concrete storm sewer tributary to Clarke Pond; and
- > 375 mm diameter PVC sanitary sewer tributary to the South Nepean Collector.

1.2 Required Permits / Approvals

The proposed development is subject to the site plan control approval process. The City of Ottawa must approve the engineering design drawings and reports prior to the issuance of site plan control.

The proposed development is a single parcel of land that is not industrial and would outlet to a storm sewer. As a result, the stormwater management system is exempt from sections 53(1) and (3) of the Ontario Water Resources Act under Ontario Regulation 525/98, and does not require Environmental Compliance Approval from the Ministry of Environment.

1.3 **Pre-consultation**

Pre-consultation correspondence, along with the servicing guidelines checklist, is located in *Appendix A*.

2.0 GUIDELINES, PREVIOUS STUDIES, AND REPORTS

2.1 Existing Studies, Guidelines, and Reports

The following studies were utilized in the preparation of this report:

- Ottawa Sewer Design Guidelines, City of Ottawa, SDG002, October 2012. (City Standards)
 - Technical Bulletin ISTB-2018-01
 City of Ottawa, March 21, 2018.
 (ISTB-2018-01)
 - Technical Bulletin ISTB-2018-03
 City of Ottawa, March 21, 2018.
 (ISTB-2018-03)
- Ottawa Design Guidelines Water Distribution City of Ottawa, July 2010. (Water Supply Guidelines)
 - Technical Bulletin ISD-2010-2 City of Ottawa, December 15, 2010. (ISD-2010-2)
 - Technical Bulletin ISDTB-2014-02
 City of Ottawa, May 27, 2014.
 (ISDTB-2014-02)
 - Technical Bulletin ISDTB-2018-02
 City of Ottawa, March 21, 2018.
 (ISDTB-2018-02)
- Design Guidelines for Sewage Works, Ministry of the Environment, 2008. (MOE Design Guidelines)
- Stormwater Planning and Design Manual, Ministry of the Environment, March 2003. (SWMP Design Manual)
- Ontario Building Code Compendium
 Ministry of Municipal Affairs and Housing Building Development Branch, January 1, 2010 Update. (OBC)

- Barrhaven South Master Servicing Study Addendum Stantec, October 12, 2017. (BSMSS)
- Design Brief for the Clarke Stormwater Management Pond for the Half Moon Bay West Subdivision
 J.F. Sabourin and Associates & DSEL
 Revised, October 19, 2017
 (Clarke Pond Design Brief)
- Half Moon Bay West Subdivision Phase 2A/2B DSEL, November 6, 2019. (HMBW Phase 2 Design Brief)
- City of Ottawa Infrastructure Master Plan City of Ottawa, November 2013. (City of Ottawa IMP)
- Stormwater Management Report for Phase 2 of the Half Moon Bay West Subdivision
 J.F. Sabourin and Associates
 Updated, October 2019 (Phase 2 SWM Report)
- Geotechnical Investigation Report PG2037-1 Revision 1, Paterson Group July 29, 2020 (Geotechnical Report)

3.0 WATER SUPPLY SERVICING

3.1 Existing Water Supply Services

The subject property lies within the City of Ottawa BARR pressure zone, as shown by the Pressure Zone map in *Appendix B*. A local 406 mm diameter watermain exists within the Cambrian Road right-of-way.

3.2 Water Supply Servicing Design

It is proposed to service the development through a 200 mm internal looped watermain with two connections to the existing 406 mm diameter watermain within Cambrian Road.

Based on As-built drawings, there is one fire hydrant fronting the property along Cambrian Road.

Table 1, below, summarizes the *Water Supply Guidelines* employed in the preparation of the preliminary water demand estimate.

Design Parameter	Value	
Commercial Retail	2.5 L/m²/d	
Commercial Maximum Daily Demand	1.5 x avg. day	
Commercial Maximum Hour Demand	1.8 x max. day	
Minimum Watermain Size	150 mm diameter	
Minimum Depth of Cover	2.4 m from top of watermain to finished grade	
During normal operating conditions desired	350 kPa and 480 kPa	
operating pressure is within		
During normal operating conditions pressure must	275 kPa	
not drop below		
During normal operating conditions pressure must	552 kPa	
not exceed		
During fire flow operating pressure must not drop	140 kPa	
below		
*Daily average based on Appendix 4-A from Water Supply Guidelines ** Residential Max. Daily and Max. Hourly peaking factors per MOE Guidelines for Drinking-Water Systems Table 3-3 for 0 to 500 persons. -Table updated to reflect ISD-2010-2		

Table 1Water Supply Design Criteria

Table 2, below, summarizes the estimated water supply demand and boundary conditions for the proposed development based on the *Water Supply Guidelines*.

Table 2 Water Demands Proposed Conditions

Design Parameter Anticipated Demand ¹ Phase 1 (L/min)		Anticipated Demand ¹ Ultimate (L/min)		
Average Daily	8.6	11.9		
Demand				
Max Day + Fire Flow	12.9 + 6,000= 6,012.9	17.8+ 15,000= 15,017.8		
Peak Hour	23.2	32.1		
1) Water demand calculation per <i>Water Supply Guidelines</i> . See <i>Appendix B</i> for detailed calculations.				

The City of Ottawa was contacted to obtain boundary conditions associated with the estimated water demands as indicated in **Table 2**. Boundary conditions were not received at the time of publication. Correspondence with the City has been included in **Appendix A**. It is anticipated that a maximum pressure available at site to be approximately **597.7** *kPa* and the minimum required pressure based on the maximum day demand in the ultimate condition plus the fire flow requirement for Metro and Retail A, which have the highest fire flow demand is **175.9** *kPa*.

Fire flow requirements are to be determined in accordance with City of Ottawa *Water Supply Guidelines* and the Ontario Building Code.

Fire flow requirements were estimated per City of Ottawa Technical Bulletin *ISTB-2018-02*. The following parameters were assumed for Phase 1:

- Type of construction Non-Combustible Construction;
- Occupancy type Limited Combustible; and
- Sprinkler Protection Fully-Supervised Sprinkled System.

The above assumptions result in an estimated fire flow of approximately **6,000 L/min** for Phase 1, noting that actual building materials selected will affect the estimated flow. A certified fire protection system specialist will need to be employed to design the building fire suppression system and confirm the actual fire flow demand.

Two private hydrants are proposed in order to accommodate the anticipated fire flow demand for the proposed development.

Table 3, below, summarizes the maximum available fire flow from the proposed hydrantsas per Table 18.5.4.3 of the ISTB-2018-02.

Number of Hydrants	Distance from Metro & Retail 1 (m)	Available Fire Flow per Table 18.5.4.3 of ISTB-2018-02 (L/min)
2	< 76	5,678 x 2
0	76 < and < 152	3,785 x 0
Total		11,356

Table 3Total Available Fire Flow from Proposed Hydrants

The available fire flow from the hydrants is **11,356** *L/min* as per *Table 18.5.4.3* of the *ISTB-2018-02.*

3.3 Watermain Modelling

EPANet was utilized to determine the availability of pressures throughout the system during average day, max day plus fire flow, and peak hour demands. This static model determines pressures based on the available head obtained from the anticipated maximum and minimum pressures at the connection points. The model will be updated with boundary conditions provided by the City of Ottawa once received.

The model utilizes the Hazen-Williams equation to determine pressure drop, while the pipe properties have been selected in accordance with *Water Supply Guidelines*. The model was prepared to assess the available pressure at each building, as well as, the pressures the watermain provides to fire hydrants during fire flow conditions.

The anticipated fire flow for the ultimate development was modeled through the proposed private hydrants. Please refer to *Appendix B* for a model sketch showing the node locations, fire demands assigned to each hydrant and the resulting pressures. *Table 4* indicates the resulting pressures at each node during the average day, peak hour and maximum day plus fire flow scenarios. *Appendix B* contains output reports and model schematics for each scenario.

Location	Average Day (kPa)	Max Day + Fire Flow (kPa)	Peak Hour (kPa)
Metro2	596.25	146.76	596.25
2	597.43	147.93	597.43
RetA	597.72	143.81	597.72
Hyd1	597.82	142.25	597.82
RetC	598.41	165.00	598.41
RetB	595.96	166.67	595.96
Hyd2	599.69	159.22	599.69

Table 4 Model Simulation Output Summary

As demonstrated in *Table 4*, the anticipated pressures during the peak hour and max day + fire flow scenarios simulations are within the allowable pressure range described in *Table 1* from the *Water Supply Guidelines*. Pressures during average day demand are

above the recommended pressures outlined in *Table 1*. A pressure check should be conducted at the time of construction to determine if pressure control is required.

3.4 Water Supply Conclusion

It is proposed to service the development through a looped internal watermain network via a 200 mm diameter watermains with two connections to the existing 406 mm watermain within Cambrian Road.

Estimated water demand under proposed conditions was submitted to the City of Ottawa for establishing boundary conditions. Boundary conditions have not yet been received at the time of this submission.

It is estimated that the maximum available pressure at the site will be approximately **597.7** *kPa*, and the minimum required pressure at the connection points is **175.9** *kPa*.

It is proposed that the development will be serviced by the two proposed internal hydrants. Based on *Table 18.5.4.3* of ISTB-2018-02, the fire flow demands of the proposed buildings can be supplied through both of the proposed hydrants.

An EPANET model was prepared for the average day, maximum day plus fire flow and peak hour scenarios using the estimated maximum and the estimated minimum required pressure. The EPANET water distribution model confirmed adequate pressure exists within fire hydrants during fire flow, and within the system for the Average Day, Max Day + Fire Flow and Peak Hour scenarios. Pressure during all scenarios to be confirmed once boundary conditions are received from the City of Ottawa.

The proposed water supply design conforms to all relevant City Guidelines and Policies.

4.0 WASTEWATER SERVICING

4.1 Existing Wastewater Services

The subject site lies within the South Nepean Trunk Sewer catchment area, as shown by the City sewer mapping included in *Appendix C*. An existing 500 mm diameter sanitary sewer within Cambrian Road is available to service the proposed development.

4.2 Wastewater Design

It is proposed that the development will be serviced via the existing 500 mm sanitary sewer within Cambrian Road via a 250 mm internal sanitary sewer.

Table 5, below, summarizes the *City Standards* employed in the design of the proposed wastewater sewer system.

Value
Harmon's Peaking Factor. Max 4.0, Min 2.0
Harmon's Corrector Factor 0.8
5 L/m²/d
0.05 L/s/ha (Dry Weather)
0.28 L/s/ha (Wet Weather)
0.33 L/s/ha (Total)
$\frac{1}{1}$
$Q = \frac{1}{2} A R^{\frac{2}{3}} S^{\frac{1}{2}}$
n
250 mm diameter
0.013
2.5 m from crown of sewer to grade
0.6 m/s
3.0 m/s

Table 5 Wastewater Design Criteria

Extracted from Sections 4 and 6 of the City of Ottawa Sewer Design Guidelines, October 2012.

Table 6, below, demonstrates the estimated peak flow from the proposed development. See *Appendix C* for associated calculations.

Table 6Summary of Estimated Peak Wastewater Flow

Design Parameter	Total Flow (L/s)
Estimated Average Dry Weather Flow	0.90
Estimated Peak Dry Weather Flow	1.48
Estimated Peak Wet Weather Flow	2.10

The estimated sanitary flow based on the *Site Plan,* included in *Drawings/Figures,* results in a peak wet weather flow of *2.10 L/s*.

A sanitary sewer analysis was completed as part of the Barrhaven South Master Servicing Study (**BSMSS**) which included the existing sewers within Cambrian Road and those downstream. The subject property was contemplated as commercial lands in the study. Based on the **BSMSS** Sanitary Sewer Design Sheet, the controlling section of sewer is within Cambrian Road between MH13A and MH15A with an available capacity of **51.5 L/s**, which is sufficient to accommodate the sanitary flow from the proposed development. Extracted sanitary figures and design sheets from **BSMSS** and detailed calculations for the proposed site are included in **Appendix C**.

4.3 Wastewater Servicing Conclusions

The site is tributary to the South Nepean Trunk It is proposed to discharge wastewater to the existing 500 mm diameter sanitary sewer within Cambrian Road via a 250mm internal sanitary sewer.

Based on the above sanitary analysis, sufficient capacity is available to accommodate the anticipated **2.10** *L*/**s** peak wet weather flow from the contemplated/proposed development.

The proposed wastewater design conforms to all relevant *City Standards*.

5.0 STORMWATER MANAGEMENT

5.1 Existing Stormwater Services

Stormwater runoff from the subject property is tributary to the City of Ottawa sewer system located within the Jock River sub-watershed. As such, approvals for proposed development within this area are under the approval authority of the City of Ottawa.

Flows that influence the watershed in which the subject property is located are further reviewed by the principal authority. The subject property is located within the Jock River watershed, and is therefore subject to review by the Rideau Valley Conservation Authority (RVCA). Consultation with the RVCA is located in *Appendix A*.

It was assumed that the existing development contained no stormwater management controls for flow attenuation. The estimated pre-development peak flows for the 2, 5, and 100-year events are summarized in *Table 7,* below:

City of Ottawa Design Storm	Estimated Peak Flow Rate (L/s)
2-year	183.9
5-year	249.5
100-year	534.4

Table 7Summary of Existing Peak Storm Flow Rates

5.2 Post-development Stormwater Management Target

Stormwater management requirements for the proposed development were reviewed with the City of Ottawa and summarized in pre-consultation notes in *Appendix A*, where the proposed development is required to:

- Meet an allowable release rate based on a Rational Method Coefficient of 0.64, employing the City of Ottawa IDF parameters for a 5-year storm with a time of concentration equal to or less than 21.5 minutes and greater than or equal to 10 minutes;
- Attenuate all storms up to and including the City of Ottawa 100-year design event on site; and
- Quality controls are to be provided to achieve 80% Total Suspended Solids (TSS) removal as per the recommendation of the Rideau Valley Conservation Authority (RVCA).

Based on the above the allowable release rate for the proposed development is **263.4** *L*/**s**.

5.3 Proposed Stormwater Management System

The subject site was contemplated in the *HMBW Phase 2 Design Brief*, as well as, the *HMBW Phase 2 SWM Report,* to drain to the minor system within future Greenbank Road, eventually draining to the Clarke Pond and ultimately to the Jock River.

It is proposed that the stormwater outlet from the development will be to the existing 2550 mm diameter storm sewer within future Greenbank Road via a 750 mm connection to the existing sewer.

The *Clarke Pond Design Brief* contemplates the area in which the subject property falls within to be a 5-year capture area with onsite 100-year control.

Per the *HMBW Phase 2 Design Brief,* there is a Hydraulic Grade Line (HGL) elevation in the 100-year storm event of approximately **93.09** *m* at the future *MH904* within future Greenbank Road storm sewer, located upstream of the proposed storm connection. Refer to *Plan & Profile of future Greenbank Road*, prepared by DSEL, revision 8, dated February 25, 2020 in *Appendix D*.

To meet the stormwater quantity control objectives the proposed development will employ rooftop and surface storage. To adhere to the allocated release rate, inlet control devices (ICDs) are proposed at catch basins and manholes to control flow. The 100-year HGL elevation was taken into account in the design of available storage. The downstream condition was set at **93.09** *m* to size the ICDs. Refer to drawing **SSP-1** for ICD locations.

Table 8, below, estimates post-development flow rates to the storm sewer within Greenbank Road.

Table 8

Stormwater Flow Rate Summary					
Control Area	5-Year Release Rate	5-Year Required Storage	100-Year Release Rate	100-Year Required Storage	100-Year Available Storage
	(L/s)	(m³)	(L/s)	(m³)	(m³)
U1	3.1	0.0	6.6	0.0	0.0
U2	14.8	0.0	28.3	0.0	0.0
U3	17.7	0.0	37.8	0.0	0.0
METRO	24.2	55.5	31.9	126.8	317.5
RET A	7.5	10.7	10.0	25.3	73.6
A109	9.6	0.0	14.7	3.5	4.3
A110B	5.9	0.1	11.8	1.7	46.9
A110A	12.1	5.8	13.0	21.9	54.7
A104A	21.8	32.1	25.1	81.7	106.2
A104B	8.4	25.2	9.3	60.8	88.3
A108	8.3	26.1	9.1	62.8	106.1
A103A	18.4	5.5	19.5	19.9	89.2
A103B	7.9	7.6	8.3	21.6	76.9
A106 &, A107	31.8	48.2	37.7	138.0	138.3
Total	191.2	216.9	263.1	563.9	1102.0

It is anticipated that approximately **563.9** m^3 of surface storage will be required on site to attenuate flow to the established release rate of **263.4** *L/s*; storage calculations are contained within **Appendix D**. Sufficient surface storage is provided to satisfy the 100-year required storage.

"Enhanced" Quality control is provided by the Clarke Pond per the *Clarke Pond Design Brief.* Excerpts and figures extracted from the *Clarke Pond Design Brief* are included in *Appendix D*.

5.4 Stormwater Servicing Conclusions

The subject site was contemplated in the *HMBW Phase 2 Design Brief* and *HMBW Phase 2 SWM Report*. An allowalbe release rate of *263.4 L/s* is to be achieved with attenuation up to the 100-year storm event.

Controls are provided at each catch basin to restrict the total flow from the site to the allowable release rate. To attenuate flow to the allowable release rate, **563.9** m^3 of surface storage is required.

Quality control is provided by the Clarke Pond at an enhanced protection level per the *Clarke Pond Design Brief.*

The proposed stormwater design conforms to all relevant *City Standards* and Policies for approval.

6.0 UTILITIES

Gas and Hydro services currently exist within the Cambrian Road right-of-way. Utility servicing will be coordinated with the individual utility companies prior to site development.

The proposed development will be coordinated and approved by the utility company having jurisdiction.

7.0 EROSION AND SEDIMENT CONTROL

Soil erosion occurs naturally and is a function of soil type, climate and topography. During construction the extent of erosion losses is exaggerated due to the removal of vegetation and the top layer of soil becoming agitated.

Prior to topsoil stripping, earthworks or underground construction, erosion and sediment controls will be implemented and will be maintained throughout construction.

Silt fence will be installed around the perimeter of the site and will be cleaned and maintained throughout construction. Silt fence will remain in place until the working areas have been stabilized and re-vegetated.

Catch basins will have SILTSACKs or an approved equivalent installed under the grate during construction to protect from silt entering the storm sewer system.

A mud mat will be installed at the construction access in order to prevent mud tracking onto adjacent roads.

Erosion and sediment controls must be in place during construction. The following recommendations to the contractor will be included in contract documents:

- Limit extent of exposed soils at any given time;
- Re-vegetate exposed areas as soon as possible;
- Minimize the area to be cleared and grubbed;
- Protect exposed slopes with plastic or synthetic mulches;
- Install silt fence to prevent sediment from entering existing ditches;
- No refueling or cleaning of equipment near existing watercourses;
- Provide sediment traps and basins during dewatering;
- > Install filter cloth between catch basins and frames;
- > Plan construction at proper time to avoid flooding; and
- Establish material stockpiles away from watercourses, so that barriers and filters may be installed.

The contractor will, at every rainfall, complete inspections and guarantee proper performance. The inspection is to include:

- Verification that water is not flowing under silt barriers; and
- Clean and change filter cloth at catch basins.

8.0 CONCLUSION AND RECOMMENDATIONS

David Schaeffer Engineering Ltd. (DSEL) has been retained by Metro Canada Inc. to prepare a Site Servicing and Stormwater Management report in support of the application for a Site Plan Control (SPC) at 3831 Cambrian Road. The preceding report outlines the following:

- The watermain boundary conditions have been requested from the City of Ottawa, however they were unavailable at the time of this publication. It is anticipated that there will be an estimated maximum available pressure of **597.7** *kPa* and that the minimum required pressure to meet maximum day and fire flow demands is **175.9** *kPa*;
- The FUS method for estimating fire flow indicated 6,000 L/min is required for Phase 1 of the contemplated development;
- The contemplated development is anticipated to have a peak wet weather flow of 2.10 L/s; Based the BSMSS the existing municipal sewer infrastructure has sufficient capacity to support the development;
- Storm water quantity controls are proposed per the subdivision design, a maximum release rate of 263.4 L/s is required and provided through the use of ICD's. Flow attenuation to be provided up to the 100-year storm event;
- > It is proposed to attenuate flow through rooftop and surface storage. It is anticipated that **563.9** m^3 of onsite surface storage will be required to attenuate flow to the established release rate above;
- Quality control is provided by the Clarke Pond at an enhanced protection level per the Clarke Pond Design Brief.

Prepared by, **David Schaeffer Engineering Ltd.**

enavelerenberg

Per: Genavieve Greenberg

Per: Steven L. Merrick, P.Eng

Per: Brandon N. Chow

APPENDIX A

Pre-Consultation

Genavieve Greenberg

From:	Jaime Posen <posen@fotenn.com></posen@fotenn.com>
Sent:	Friday, June 5, 2020 5:23 PM
То:	Wayne Williams; Antony Cannell
Cc:	Bria Aird; Fel Petti; Christopher Gordon
Subject:	FW: Metro pre-consult - 3831 Cambrian Rd
Attachments:	Pre-con Study and Plan Identification List.pdf; 3831 Cambrian Design Brief.pdf

Hello team,

Please see below and attached for the meeting minutes from the pre-application consultation meeting with the City of Ottawa for 3831 Cambrian Road.

After scanning the comments, I didn't see anything dramatically different than what was shared with us in the meeting, but please let me know if anything stands out as being problematic.

Mélanie also advised that Frank McKinney had shared a link with Chris Gordon to download some material related to the EAs for the surrounding roads.

Hope that's helpful, have a great weekend.

Jaime Posen, MCIP RPP

Senior Planner T 613.730.5709 ext. 236

From: Gervais, Melanie < Melanie.Gervais@ottawa.ca>
Sent: June 4, 2020 3:48 PM
To: Jaime Posen <posen@fotenn.com>
Subject: Metro pre-consult - 3831 Cambrian Rd

Hi Jaime,

Please find below a recap of our pre-consultation meeting. Please note that during the COVID-19 pandemic the department is accepting electronic applications. Please send pdfs of your submission material (including a scanned copy of the application form) to <u>planningcirculations@ottawa.ca</u> (and cc myself). They will create the file number and upload the files to the proper location. Following the receipt of the electronic submission I will send you an email with your new file number and the new process for submitting payment.

Planning:

You will need to submit a New - Complex Site Plan application with a fee of \$35,487.53 + engineering review fees + \$1,015 (Conservation Authority fee).

The property is zoned GM[2340]-h which stands for General Mixed Use Zone Exception 2340 with a holding, the zoning provisions for Mixed Use Zone can be found <u>here</u> and all the provisions for parking lots can be found <u>here</u>. Please note that the holding zone can be lifted given that the Clarke Pond is operational.

The site is also with the Community Core in the Barrhaven South CDP. The CDP speaks to a Community Core Concept Plan and Design Framework which was completed by FoTenn and previously sent to you. Please ensure that the Planning Rationale indicated how the design elements identified in the plan have been met (Built Form, Architecture, and Land Use / Landscape and the Environment / Pedestrians and Cyclists / Vehicles and Parking...).

Proper landscaping will be required on site. This includes the addition of trees along the street edge, within landscape buffers and landscaped islands... Please note that all Landscape Plans need to be stamped by a Landscape Architect.

The Planning Rationale will have to explain the proposal, review the applicable Official Plan and CDP policies, review the applicable Zoning By-law provisions and review the Accessibility Design Standards.

The adjacent property to the south is the Dowitcher Park.

Please see the attached list identifying the submission requirements. Although the list identifies numbers of paper copies these are **not** required at this time.

Design:

More information is necessary to provide design comments and will be detailed in the Design Brief. Some of these will include:

- More details of the surrounding context and how it connects and supports it. (Using page 20 in the Community Design Plan as a guide for the extent of context requested);
- o Additional details regarding the landscaping approach (Interim and future);
- How pedestrians will be directed across and through the site;
- How direct adjacency to the park will be considered and any negative impacts from the loading and access road will be mitigated;
- How the buildings will related to the streetscape with active entrances/facades etc. especially when the interim road is removed;

We recommend the site plan illustrate a future design that shows what will replace the interim road. The final design layout should illustrate the mediating solutions to achieve the ten-year plan (especially regarding building placement) when the interim access road that will separate the buildings from the future road is removed;

Please see the Design Brief Terms of Reference provided.

Forestry:

Soil volume is fundamental to the success of newly planted trees. Please ensure newly planted trees have an adequate soil volume for their size at maturity. The following is a table of recommended minimum soil volumes:

Tree Single Tree Soil Multiple Tr Type/Size Volume (m3) Soil Volum (m3/tree)
--

Ornamental	15	9
Columnar	15	9
Small	20	12
Medium	25	15
Large	30	18
Conifer	25	15

Plant for survival to maturity - choose the right species that for the site and one that will contribute to the design and function of the built site, ensure that salt tolerant species are selected for high salt areas.

Transportation:

- Follow Traffic Impact Assessment Guidelines
 - Please begin the TIA report (Steps 1-3 must be submitted and approved prior to application or it will be deemed incomplete).
 - o <u>https://ottawa.ca/en/transportation-impact-assessment-guidelines</u>
- Noise Impact Studies required for the following:
 - Stationary (any exposed mechanical equipment and loading zone) due to the proximity to neighboring noise sensitive land uses.
- Temporary access road on Greenbank will be permitted.
- Ensure that the Cambrian and Greenbank EAs are followed for right of way requirements and the intersection control at Cambrian and Greenbank temporary road.
- All maintenance of the temporary road will be at the applicant's expense.
- On site plan:
 - Show all details of the roads abutting the site up to and including the opposite curb; include such items as pavement markings, accesses and/or sidewalks.
 - Turning templates will be required for all accesses showing the largest vehicle to access the site; required for internal movements and at all access (entering and exiting and going in both directions).
 - Show all curb radii measurements; ensure that all curb radii are reduced as much as possible
 - Show lane/aisle widths.
 - Ensure pedestrian connections are provided on the site.
 - Grey out any area that will not be impacted by this application.
- AODA legislation (link) is in effect for all organizations, please ensure that the design conforms to these standards, see attached checklist for guidance.

For any transportation questions, please contact Mike Giampa (Mike.Giampa@ottawa.ca).

Transportation Planning (Frank McKinney):

- Although we are not opposed to a complete throw away of the temporary access road, it would be best if we could find a way to prevent this as much as possible.
- Metro will be required to restore the boulevard.
- The timing of realigned Greenbank from Jockvale to Cambrian Rd is 2031 while south of Cambrian Rd is still to be determined through the next TMP.

- Once realigned Greenbank is constructed up to Cambrian Rd, how will the temporary access tie up to the intersection?
- Please hide parking as much as possible

We are having problems locating the microstation files for the Cambrian Road Widening. Frank McKinney will send all information on to Chris Gordon as soon as it is available.

Please note that an email was sent to Patrick Sammon in ISD concerning the design for realigned Greenbank but he is unfortunately away from the office. We will provide you with more information on this as soon as possible and hopefully be able to provide you with more information on how the tie-in to the future intersection should be.

Engineering:

Water

Water District Plan No: 362-012 Existing public services:

Cambrian Road – 406 mm PVC

- Service areas with a basic demand greater than 50 m³/day shall be connected with a minimum of two water services, separated by an isolation valve, to avoid creation of vulnerable service area.
- District Metering Area Chambers are required for services 150mm or greater in diameter.
- A water meter sizing questionnaire [water card] will have to be completed prior to receiving a water permit (water card will be provided post approval)

Boundary conditions:

Civil consultant must request boundary conditions from the City's assigned Project Manager prior to first submission.

- Water boundary condition requests must include the location of the service(s) and the expected loads required by the proposed developments. Please provide all the following information:
 - Location of service(s)
 - Type of development and the amount of fire flow required (as per FUS, 1999).
 - Average daily demand: ____ l/s.
 - Maximum daily demand: ____l/s.
 - Maximum hourly daily demand: ____ l/s.
- Fire protection (Fire demand, Hydrant Locations)
- A water meter sizing questionnaire [water card] will have to be completed prior to receiving a water permit (water card will be provided post approval)

Sanitary Sewer

Existing public services:

• Cambrian Road – 500 mm Conc.

- A monitoring manhole is required on private property.
- The sanitary sewer design has assumed a flow of 0.00058 m³/s/ha area. The sewer design should demonstrate that the proposed development is within that design criteria or that additional demand can be accommodated.

Storm Sewer

Existing public services:

- Future Greenbank Road 2550 mm Conc. Currently this storm sewer has been constructed to just south of Cambrian.
 - The outlet to the Clark Pond and the stormwater network north of Cambrian Road have been constructed by Mattamy as part of the Half Moon Bay West development. The stormwater

network ends just south of Cambrian Road and there are no immediate plans to extend the sewer south of Cambrian Road prior to the construction of the Future Greenbank Road.

- The Zoning Hold can be lifted now that the Clarke Pond is operational.
- Cambrian Road 375 mm PVC (South) not designed for drainage from subject site
- Cambrian Road 525 mm Conc (North) not designed for drainage from subject site

Stormwater Management

Quality Control:

• Rideau Valley Conservation Authority to confirm quality control requirements. Quantity Control:

- Master Servicing Study:
 - Barrhaven South Creek Subwatershed Study (Jock River Reach 1)
 - o Barrhaven South Master Servicing Study Oct 2017
 - Half Moon Bay West Subdivision
- Allowable Run-off Coefficient: C = 0.64
- Time of concentration (Tc): Tc = pre-development; maximum Tc = 21.5 min
- Allowable flowrate: Control the 100-year storm events to the 5-year storm event

Ministry of Environment, Conservation and Parks (MECP)

All development applications should be considered for an Environmental Compliance Approval, under MECP regulations.

- a. Consultant determines if an approval for sewage works under Section 53 of OWRA is required. Consultant determines what type of application is required and the City's project manager confirms. (If the consultant is not clear if an ECA is required, they will work with the City to determine what is required. If unclear or there is a difference of opinion the City Project Manager will coordinate requirements with MECP).
- b. The project will be either transfer of review (standard), transfer of review (additional), direct submission, or exempt as per O. Reg. 525/98.
- c. Pre-consultation is not required if applying for standard or additional works (Schedule A of the Agreement) under Transfer Review.
- d. Pre-consultation with local District office of MECP is recommended for direct submission.
- e. Consultant completes an MECP request form for a pre-consultation. Sends request to <u>moeccottawasewage@ontario.ca</u>
- f. ECA applications are required to be submitted online through the MECP portal. A business account required to submit ECA application. For more information visit https://www.ontario.ca/page/environmental-compliance-approval

NOTE: Site Plan Approval is required before any MECP application is signed

General Service Design Comments

- The City of Ottawa requests that all new services be located within the existing service trench to minimize necessary road cuts.
- Monitoring manholes should be located within the property near the property line in an accessible location to City forces and free from obstruction (i.e. not a parking).
- Where service length is greater than 30 m between the building and the first maintenance hole / connection, a cleanout is required.
- The City of Ottawa Standard Detail Drawings should be referenced where possible for all work within the Public Right-of-Way.
- The upstream and downstream manhole top of grate and invert elevations are required for all new sewer connections.
- Services crossing the existing watermain or sewers need to clearly provide the obvert/invert elevations to demonstration minimum separation distances. A watermain crossing table may be provided.

Other

Are there are Capital Works Projects scheduled that will impact the application?
Yes
No

References

• As per section 53 of the Professional Engineers Act, O. Reg 941/40, R.S.O. 1990, all documents prepared by engineers must be signed and dated on the seal.

CREO (Corporate Real Estate Office)

Please provide a sketch showing area and dimensions of the portion of future Greenbank Road that want to lease for their access road. CREO will then undertake a circulation to all City departments and utility companies to determine if there are any objections to entering into a license with Metro.

CREO will need to seek Legal advice as to whether a license is appropriate in this case or whether it should be a lease given that it appears that you will be occupying City land for many years.

If you or the Metro consultant should provide some background and anticipated works to be completed on the property.

Once CREO receive the sketch and information, a request for an appraisal will be done.

<u>RVCA</u>

The RVCA would be looking for water quality protection of 80% TSS removal on-site as part of Site Plan.

Please refer to the links to "<u>Guide to preparing studies and plans</u>" and <u>fees</u> for general information. Additional information is available related to <u>building permits</u>, <u>development charges</u>, and the <u>Accessibility Design Standards</u>. Be aware that other fees and permits may be required, outside of the development review process. You may obtain background drawings by contacting <u>informationcentre@ottawa.ca</u> (613-580-2424 ext. 44455).

All required plans are to be submitted utilizing a reasonable and appropriate metric scale as per City of Ottawa Servicing and Grading Plan Requirements: title blocks are to be placed on the right of the sheets and not along the bottom. Engineering plans may be combined, but the Site Plans must be provided separately. Plans shall include the survey monument used to confirm datum. Information shall be provided to enable a non-surveyor to locate the survey monument presented by the consultant.

All required plans & reports are to be provided in *.pdf format (at application submission and for any, and all, re-submissions).

These pre-consultation comments are valid for one year. If you submit a development application(s) after this time, you may be required to meet for another pre-consultation meeting and/or the submission requirements may change.

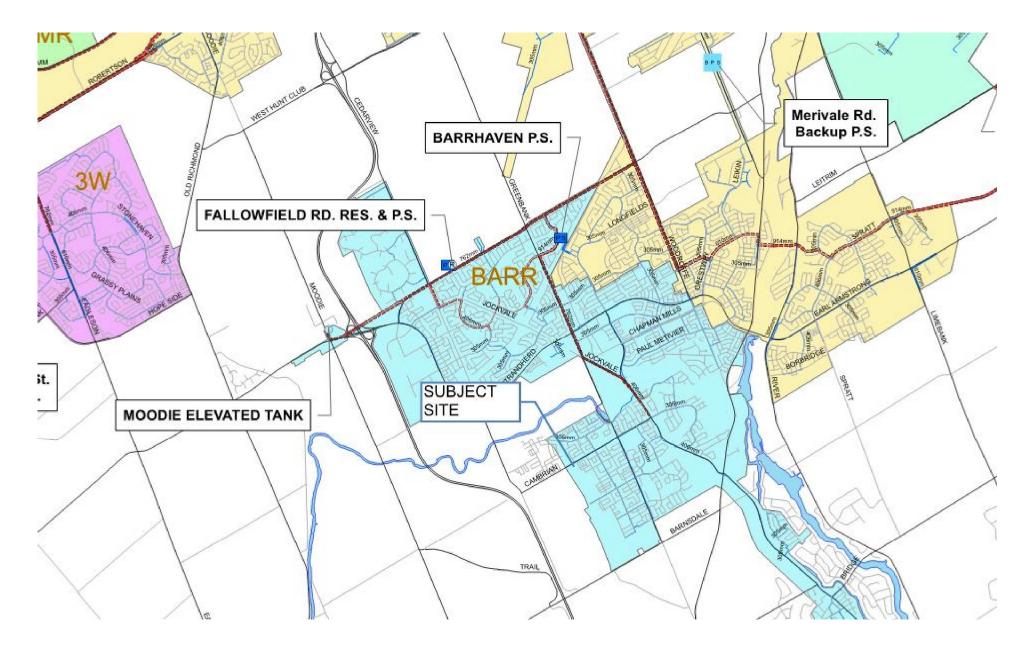
Please do not hesitate to contact me if you have any questions.

Regards,

ı

ı

Mélanie Gervais MCIP, RPP Planner / Urbaniste Development Review / Examen des demandes d'aménagement Planning, Infrastructure and Economic Development Department / Services de la planification, de l'infrastructure et du développement économique City of / Ville d'Ottawa 110, avenue Laurier Avenue West / Ouest, 4th Floor / 4ième étage Ottawa, ON K1P 1J1 Tel. : 613-580-2424 ext. 24025 Fax / Télécopieur : 613-580-2576 E-mail / Courriel : <u>Melanie.Gervais@ottawa.ca</u> Mail Code: 01-14


This e-mail originates from the City of Ottawa e-mail system. Any distribution, use or copying of this e-mail or the information it contains by other than the intended recipient(s) is unauthorized. Thank you.

Le présent courriel a été expédié par le système de courriels de la Ville d'Ottawa. Toute distribution, utilisation ou reproduction du courriel ou des renseignements qui s'y trouvent par une personne autre que son destinataire prévu est interdite. Je vous remercie de votre collaboration.

APPENDIX B

Water Supply

Pressure Zone Map

Metro Canada Inc. 3831 Cambrian Road Proposed Site Phase 1 Conditions

Water Demand Design Flows per Unit Count

City of Ottawa - Water Distribution Guidelines, July 2010

Institutional / Commercial / Industrial Demand

Property Type		Units	Avg. Daily		Max Day		Peak Hour	
	Unit Rate		m³/d	L/min	m³/d	L/min	m³/d	L/min
Metro	2.5 L/m ² /d	4,024	10.06	7.0	15.1	10.5	27.2	18.9
Retail A	2.5 L/m ² /d	929	2.32	1.6	3.5	2.4	6.3	4.4
	Total I/CI Demand		12.4	8.6	18.6	12.9	33.4	23.2
	Тс	12.4	8.6	18.6	12.9	33.4	23.2	

Metro Canada Inc. 3831 Cambrian Road Proposed Site Ultimate Conditions

Water Demand Design Flows per Unit Count City of Ottawa - Water Distribution Guidelines, July 2010

Institutional / Commercial / Industrial Demand

				Avg. D	Daily	Max	Day	Peak I	Hour
Property Type	Unit	Rate	Units	m³/d	L/min	m³/d	L/min	m³/d	L/min
Metro	2.5	L/m²/d	4,024	10.06	7.0	15.1	10.5	27.2	18.9
Retail A	2.5	L/m²/d	929	2.32	1.6	3.5	2.4	6.3	4.4
2-Storey Retail	2.5	L/m²/d	1,060	2.65	1.8	4.0	2.8	7.2	5.0
Retail B	2.5	L/m²/d	830	2.08	1.4	3.1	2.2	5.6	3.9
		Total	I/CI Demand	17.1	11.9	25.7	17.8	46.2	32.1
		т	otal Demand	17.1	11.9	25.7	17.8	46.2	32.1

Fire Flow Estimation per Fire Underwriters Survey

Water Supply For Public Fire Protection - 1999

Fire Flow Required

1. Base	Requirement							
	$F = 220C\sqrt{A}$	L/min		When	eFistl	he fire flow,	C is the T	ype of construction and ${f A}$ is the Total floor area
Ту	ype of Construction:	Non-C	Combustil	ble Co	nstructio	on		
		C A	0.8 4,953					r FUS Part II, Section 1 JS Part II section 1
Fi	re Flow		12386.4 12000.0			led to the ne	earest 1,00	0 L/min
Adjustments								
2. Redu	iction for Occupancy Type							
Li	mited Combustible		-15%					
Fi	ire Flow		10200.0	L/min				
3. Redu	ction for Sprinkler Protection							
SI	prinklered - Supervised		-50%					
R	eduction		-5100	L/min				
CI N NO S NO E NO W NO	ase for Separation Distance ons. of Exposed Wall on-Combustible on-Combustible on-Combustible on-Combustible	S.D 30.1rr >45m >45m % Inc	rease		0 0 0	LH 2 0 1 1	EC 30 0 0 0	5% 0% 0% 0% 5% value not to exceed 75%
In	crease		510.0	L/min				
H: Lt	w = Length of the Exposed Wall a = number of storeys of the adjace H = Length-height factor of expose C = Exposure Charge				i			

Total Fire Flow

Fire Flow

5610.0 L/minfire flow not to exceed 45,000 L/min nor be less than 2,000 L/min per FUS Section 46000.0 L/minrounded to the nearest 1,000 L/min

-Type of construction, Occupancy Type and Sprinkler Protection information provided by ______. -Calculations based on Fire Underwriters Survey - Part II

Fire Flow Estimation per Fire Underwriters Survey

Water Supply For Public Fire Protection - 1999

Fire Flow Required

$F = 220C\sqrt{A}$ Type of Construction: Fire Flow ments 2. Reduction for Occupancy Type		ombustible	Cons /pe of 2 min	f Consta Total f	n ruction Coe loor area b	efficient per ased on Fl		struction and A is the Tota II, Section 1 ection 1	al flooi
Fire Flow ments	c 0	.8 Ty 830 m ² 5070.5 L/	/pe of 2 min	f Consti Total f	ruction Coe loor area b	ased on Fl			
ments		830 m ²	2 min	Total f	loor area b	ased on Fl			
ments	A	5070.5 L/	min	•			JS Part II se	ection 1	
ments				rounde	ed to the n				
						earest 1,00	0 L/min		
2. Reduction for Occupancy Type									
Limited Combustible		-15%							
Fire Flow		4250.0 L/	min	•					
Non-Sprinklered		0%							
Reduction		0 L/	min						
4. Increase for Separation Distance									
Cons. of Exposed Wall	S.D	Lv		На	LH	EC			
Cons. of Exposed Wall N Non-Combustible	>45m	Lv	0	На	0	0	0%		
Cons. of Exposed Wall N Non-Combustible S Non-Combustible	>45m >45m	Lv	0 0	На	0 0	0 0	0%		
Cons. of Exposed Wall N Non-Combustible Non-Combustible Non-Combustible Non-Combustible	>45m >45m >45m		0 0 0	На	0 0 0	0 0 0	0% 0%		
Cons. of Exposed Wall N Non-Combustible S Non-Combustible	>45m >45m	45m	0 0	На	0 0	0 0	0% 0% 5%	e not to exceed 75%	

EC = Exposure Charge

Total Fire Flow

Fire Flow

4462.5 L/minfire flow not to exceed 45,000 L/min nor be less than 2,000 L/min per FUS Section 44000.0 L/minrounded to the nearest 1,000 L/min

-Type of construction, Occupancy Type and Sprinkler Protection information provided by ______. -Calculations based on Fire Underwriters Survey - Part II

Fire Flow Estimation per Fire Underwriters Survey

Water Supply For Public Fire Protection - 1999

Fire Flow Required

$F = 220C\sqrt{A}$	L/min	Whei	re F is th	ne fire flow,	C is the T	Type of co	onstruction and A is the	Total floor a
Type of Construction:	Non-Com	oustible Co	onstructio	n				
	C 0.8	Туре	of Cons	truction Co	efficient pe	er FUS Pa	rt II, Section 1	
	A 1,	060 m ²	Total	floor area k	based on F	US Part I	I section 1	
Fire Flow		30.1 L/min 00.0 L/mi r		ed to the n	earest 1,00	00 L/min		
ments								
2. Reduction for Occupancy Type								
Limited Combustible	-	15%						
Limited Combustible Fire Flow 3. Reduction for Sprinkler Protection	51	15% 00.0 L/mir	1					
Fire Flow	51		1					
Fire Flow 3. Reduction for Sprinkler Protection	51	00.0 L/mir						
Fire Flow 3. Reduction for Sprinkler Protection Non-Sprinklered Reduction 4. Increase for Separation Distance	51 on	00.0 L/mir 0%						
Fire Flow 3. Reduction for Sprinkler Protection Non-Sprinklered Reduction 4. Increase for Separation Distance Cons. of Exposed Wall	51 on S.D	00.0 L/mir 0%	ו Ha	LH	EC			
Fire Flow 3. Reduction for Sprinkler Protection Non-Sprinklered Reduction 4. Increase for Separation Distance Cons. of Exposed Wall N Non-Combustible	51 on S.D >45m	00.0 L/mir 0% 0 L/mir	ר Ha 0	0	0	0%		
Fire Flow 3. Reduction for Sprinkler Protection Non-Sprinklered Reduction 4. Increase for Separation Distance Cons. of Exposed Wall N Non-Combustible S Non-Combustible	51 on S.D >45m >45m	00.0 L/mir 0% 0 L/mir	н На 0 0	0 0	0 0	0%		
Fire Flow 3. Reduction for Sprinkler Protection Non-Sprinklered Reduction 4. Increase for Separation Distance Cons. of Exposed Wall N Non-Combustible S Non-Combustible E Non-Combustible E Non-Combustible	51 on S.D >45m >45m >45m >45m	00.0 L/mir 0% 0 L/mir Lw	Ha 0 0	0 0 0	0 0 0	0% 0%		
Fire Flow 3. Reduction for Sprinkler Protection Non-Sprinklered Reduction 4. Increase for Separation Distance Cons. of Exposed Wall N Non-Combustible S Non-Combustible	51 on S.D >45m >45m	00.0 L/mir 0% 0 L/mir Lw	н На 0 0	0 0	0 0	0% 0% 5%	alue not to exceed 75%	

EC = Exposure Charge

Total Fire Flow

Fire Flow

5355.0 L/minfire flow not to exceed 45,000 L/min nor be less than 2,000 L/min per FUS Section 45000.0 L/minrounded to the nearest 1,000 L/min

Notes:

-Type of construction, Occupancy Type and Sprinkler Protection information provided by ______. -Calculations based on Fire Underwriters Survey - Part II through pressure control at the PSs. The key characteristics of each pump station in the system are provided in *Table 5.3*.

Pump Station	Pressure	Zone Type	Nominal	Total	Firm
	Zone		Discharge HGL (m)	Capacity (MLD) ¹	Capacity (MLD) ²
Carlington 2W	2W	Open	131	68.0	34.0
Barrhaven Reservoir	BARR	Open	155	7.5	0.0
Ottawa South	3C	Closed	151	39.7	26.2
Billings Bridge	2C	Open	134	177.5	127.0
Britannia 2W	2W	Open	134	302.0	208.0
Glen Cairn	3W	Open	160	87.5	49.5
Forest Ridge	2E	Open	134	91.5	47.0
Lemieux	1W	Open	115	456.0	308.0
Fleet	1W	Open	115	279.0	189.0
Britannia 1W	1W	Open	115	328.0	213.0
Carlington ME	ME	Closed	154	13.5	5.5
Campeau	3W	Open	160	100.0	58.0
Hurdman	1E	Open	115	286.0	204.0
Barrhaven	BARR	Open	155	104.5	57.0
Orléans	2E	Open	134	93.4	64.5
Leitrim	4C	Closed	165	33.3	19.0
Montreal	MONT	Closed	148	39.4	21.9
Brittany	MONT	Closed	148	8.1	2.6
Morgan's Grant	MG	Closed	145	17.7	12.3

Table 5.3: Existing Water Pump Station Characteristics

Source: Pressure Zone Operation Manuals **HGL =** Hydraulic Grade Line (a number that reflects both the elevation of the pump station, and the station discharge pressure) **MLD =** Million Litres per Day **BARR =** Barrhaven **MONT =** Montreal **ME =** Meadowlands MG = Morgan's Grant

1. The nominal capacity of the station with all pumps in operation.

2. Total capacity of the station less the capacity of the largest pump. Typically, pump stations are designed to provide a firm capacity that is at least equal to the expected water system demand at the planning horizon.

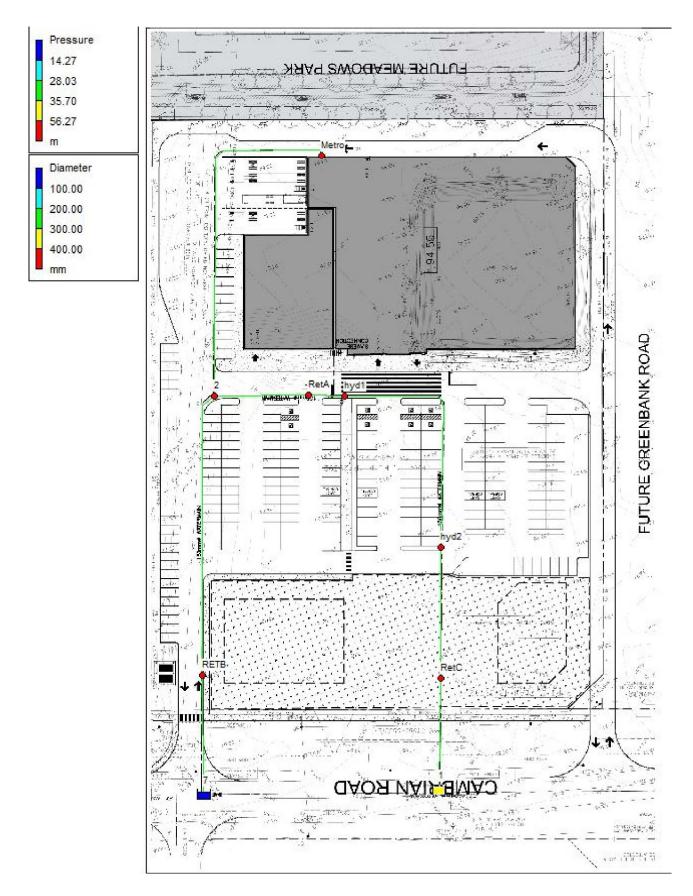
5.2.1.3 Water Storage Facilities

Water storage facilities are strategically located throughout the distribution system to augment supply during high water demand periods and fire flow conditions, and to increase the reliability of water supply during system outages. During average water demand conditions, pumps are operated to allow frequent turnover of water within each facility to keep the water fresh. The key characteristics of each of the storage facilities are provided in *Table 5.4*.

[TITLE]

[JUNCTIONS] ;ID Metro 2 RetA hyd1 RetC RETB hyd2		Elev 94.22 94.10 94.07 94.06 94.00 94.25 93.87		Demand 7 0 1.6 0 1.8 1.4 0		Pattern	· · · · · · · · · · · · · · · · · · ·
[RESERVOIRS] ;ID 7 1		Head 155 155		Pattern	I	; ; ;	
[TANKS] ;ID Diameter	MinVol	Elevati	on VolCurv	InitLev	el	MinLevel	MaxLevel
[PIPES] ;ID Diameter 1 200 2 200 3 200 4 200 5 200 5 200 9 200 10 200 6 200	Roughne 110 110 110 110 110 110 110 110 110	Node1 SS RETB 2 2 RetA hyd1 RetC RETB hyd2	MinorLo 1.4 3.4 0.6 0.6 1.6 2 2.0 0.8		Node2 Status 2 Open Metro Open RetA Open hyd1 Open 1 Open 7 Open RetC Open	; ; ; ; ; ;	Length 136.5 101.65 28.5 7.9 75.1 40 40 27.3
[PUMPS] ;ID		Node1			Node2		Parameters
[VALVES] ;ID Type Setting		Node1 MinorLo	SS		Node2		Diameter

[TAGS]


[DEMANDS] ;Junction	Demand	Pattern	Category
[STATUS] ;ID	Status/Setting		
[PATTERNS] ;ID	Multipliers		
[CURVES] ;ID	X-Value	Y-Value	
[CONTROLS]			
[RULES]			
[ENERGY] Global Efficiency Global Price Demand Charge	75 0 0		
[EMITTERS] ;Junction	Coefficient		
[QUALITY] ;Node	InitQual		
[SOURCES] ;Node	Туре	Quality	Pattern
[REACTIONS] ;Type Pipe/Ta	ank	Coefficient	
[REACTIONS] Order Bulk Order Tank Order Wall Global Bulk Global Wall Limiting Potential Roughness Correlation	1 1 0 0 0		
[MIXING] ;Tank	Model		
[TIMES] Duration Hydraulic Timestep	0 1:00		

Quality Timestep Pattern Timestep Pattern Start Report Timestep Report Start Start ClockTime Statistic	0:05 1:00 0:00 1:00 0:00 12 am None	
[REPORT] Status Summary Page	No No Ø	
[OPTIONS] Units Headloss Specific Gravity Viscosity Trials Accuracy CHECKFREQ MAXCHECK DAMPLIMIT Unbalanced Pattern Demand Multiplier Emitter Exponent Quality Diffusivity Tolerance	LPM H-W 1 40 0.001 2 10 0 Continue 10 1 1 0.5 None mg/L 1 0.01	
[COORDINATES] ;Node Metro 2 RetA hyd1 RetC RETB hyd2 7 1	X-Coord 2805.56 1616.67 2661.11 3061.11 4127.78 1483.33 4127.78 1494.44 4105.56	Y-Coord 8311.11 5644.44 5655.56 5644.44 2511.11 2544.44 3966.67 1211.11 1266.67
[VERTICES] ;Link 1 2 2 2 5	X-Coord 1483.33 1627.78 1716.67 2816.67 4105.56	Y-Coord 5533.33 8277.78 8366.67 8377.78 5644.44

5	4161.11	5544.44	
[LABELS] ;X-Coord	Y-Coord	Label & Anchor Node	
[BACKDROP]			
DIMENSIONS	0.00	0.00	10000.00
10000.00			
UNITS	None		
FILE	Z:\Project	s\19-1135_Metro - Greenbank	
Rd\B Design\B1 An	alysis\B1-5 Water	\EPANet\Background\2020-07-28	Greenbank-Metro spa
base-fig-11x17.bm	· -		
OFFSET	0.00	0.00	

[END]

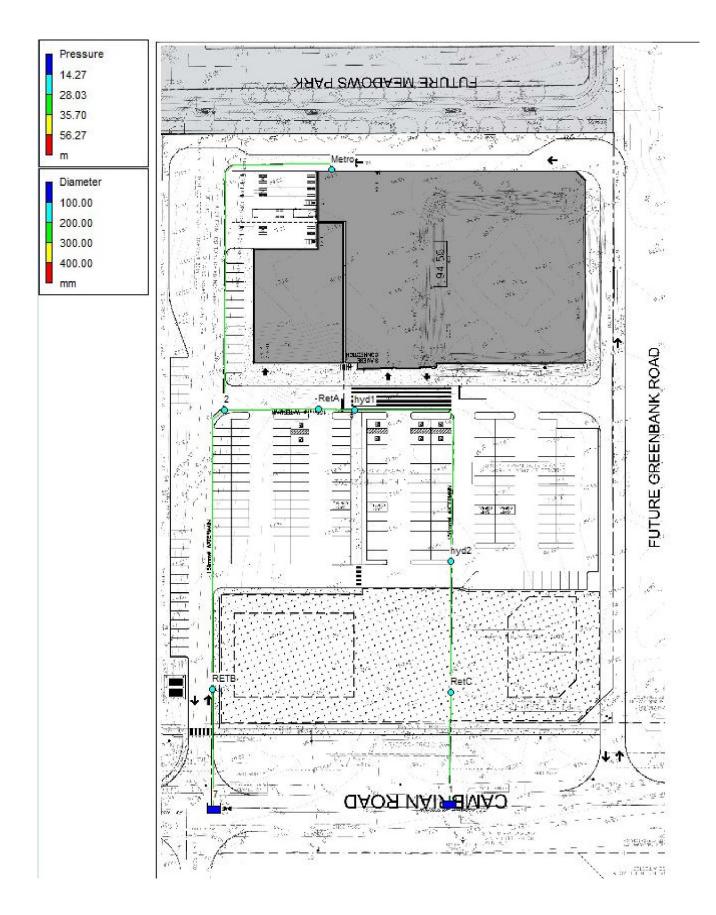
Average Day Figure

Page 1 ************************************	***************************************	8/6/2020 6:12:51 PM *****
*	ΕΡΑΝΕΤ	*
*	Hydraulic and Water Quality	*
*	Analysis for Pipe Networks	*
*	Version 2.0	*
******	************************************	*******

Input File: 1135_Peak-Hour.net

Link - Node Ta	ble:				
Link	Start	End		Length	Diameter
ID	Node	Node		m	mm
1	RETB	2		136.5	200
2	2	Metro		101.65	200
3	2	RetA		28.5	200
4	RetA	hyd1		7.9	200
5	hyd1	hyd2		75.1	200
9	RetC	1		40	200
10	RETB	7		40	200
6	hyd2	RetC		27.3	200
Node Results:					
Node	Demand	Head	Pressure	Ouality	
ID	LPM	m	m	£	
Metro	18.90	155.00	60.78	0.00	
2	0.00	155.00	60.90	0.00	
RetA	4.40	155.00	60.93	0.00	
hyd1	0.00	155.00	60.94	0.00	
RetC	5.00	155.00	61.00	0.00	
RETB	3.90	155.00	60.75	0.00	
hyd2	0.00	155.00	61.13	0.00	
7	-15.59	155.00	0.00	0.00	Reservoir
1	-16.61	155.00	0.00	0.00	Reservoir
Link Results:					
Link	Flow	VelocitvU	nit Headloss	s Stat	tus
ID	LPM	m/s		. Ju	
1	11.69	0.01	0.00	0pen	
2	18.90		0.00	0pen	
3	-7.21	0.00	0.00	0pen	
4	-11.61	0.01	0.00	Open	

Page 1 ************************************	*********	8/6/2020 10:48:54 AM ******
*	EPANET	*
*	Hydraulic and Water Quality	*
*	Analysis for Pipe Networks	*
*	Version 2.0	*
*******	***********	*******


Input File: 1135_Avg-Day.net

Link - Node Ta	ble:				
Link ID	Start Node	End Node		-	Diameter
U 	NOUE	Noue		m	mm
1	RETB	2		136.5	200
2	2	Metro		101.65	150
3	2	RetA		34.1	200
4	RetA	hyd1		2.3	200
5	hyd1	RetC		102.4	200
9	RetC	1		40	200
10	RETB	7		40	200
6	1	exhyd		3.5	400
Node Results:					
Node	Demand	Head	Pressure	Quality	
ID	LPM		m	. ,	
Metro	7.00		60.78	0.00	
2	0.00			0.00	
RetA	1.60	155.00		0.00	
hyd1	0.00			0.00	
RetC	1.80	155.00	61.00	0.00	
RETB	1.40	155.00	60.75	0.00	
exhyd	0.00	155.00	61.40	0.00	
7	-5.68	155.00	0.00	0.00	Reservoir
1	-6.13	155.00	0.00	0.00	Reservoir
Link Results:					
Link	Flow	VelocitvU	nit Headloss	s Stat	tus
ID	LPM	m/s			
1	4.28		0.00	Open	
2	7.00			Open	
3	-2.72		0.00	Open	
4	-4.32	0.00	0.00	Open	

5	-4.32	0.00	0.00	0pen
9	-6.12	0.00	0.00	0pen
10	-5.68	0.00	0.00	0pen
6	0.00	0.00	0.00	0pen

▲ Page 2

Maximum Day + Fire Flow Figure

Page 1 ************************************	***************************************	8/6/2020 6:33:06 PM
*	EPANET	*
*	Hydraulic and Water Quality	*
*	Analysis for Pipe Networks	*
*	Version 2.0	*
******	***************************************	*******

Input File: 1135_Max-Day+FF.net

Link - Node Ta	ble:				
Link ID	Start Node	End Node		Length m	Diameter mm
1 2 3 4 5 9 10 6	RETB 2 RetA hyd1 RetC RETB hyd2	2 Metro RetA hyd1 hyd2 1 7 RetC		136.5 101.65 28.5 7.9 75.1 40 40 27.3	200 200 200 200 200 200 200 200 200
Node Results:					
Node ID	Demand LPM	Head m	Pressure m	Quality	
Metro 2 RetA hyd1 RetC RETB hyd2 7 1	$10.50 \\ 0.00 \\ 2.40 \\ 5678.00 \\ 2.80 \\ 3.10 \\ 322.00 \\ -2664.36 \\ -3354.44$	109.18 108.73 108.56 110.82 111.24 110.10	15.08 14.66 14.50 16.82 16.99		Reservoir Reservoir
Link Results:					
Link ID	Flow LPM	-	nit Headlos: m/km	s Stat	tus
1 2 3 4	2661.26 10.50 2650.76 2648.36		0.00	Open Open Open Open	

5	-3029.64	1.61	20.61	0pen
9	-3354.44	1.78	29.56	0pen
10	-2664.36	1.41	19.12	0pen
6	-3351.64	1.78	26.18	0pen

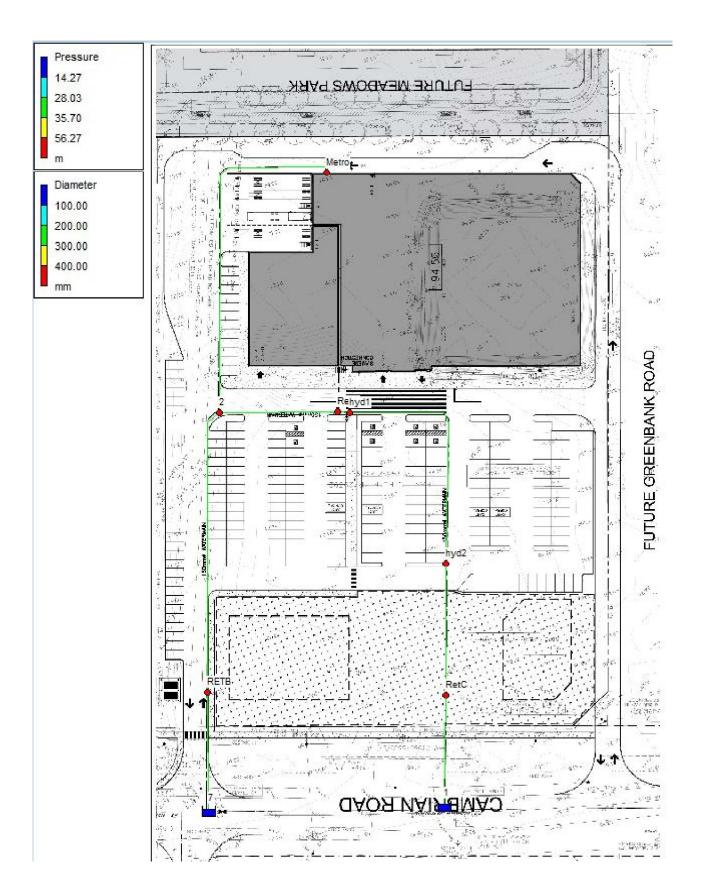
▲ Page 2

Page 1 ************************************	***************************************	8/6/2020 6:12:51 PM *****
*	ΕΡΑΝΕΤ	*
*	Hydraulic and Water Quality	*
*	Analysis for Pipe Networks	*
*	Version 2.0	*
******	************************************	*******

Input File: 1135_Peak-Hour.net

Link - Node Ta	ble:				
Link	Start	End		Length	Diameter
ID	Node	Node		m	mm
1	RETB	2		136.5	200
2	2	Metro		101.65	200
3	2	RetA		28.5	200
4	RetA	hyd1		7.9	200
5	hyd1	hyd2		75.1	200
9	RetC	1		40	200
10	RETB	7		40	200
6	hyd2	RetC		27.3	200
Node Results:					
Node	Demand	Head	Pressure	Ouality	
ID	LPM	m	m	£	
Metro	18.90	155.00	60.78	0.00	
2	0.00	155.00	60.90	0.00	
RetA	4.40	155.00	60.93	0.00	
hyd1	0.00	155.00	60.94	0.00	
RetC	5.00	155.00	61.00	0.00	
RETB	3.90	155.00	60.75	0.00	
hyd2	0.00	155.00	61.13	0.00	
7	-15.59	155.00	0.00	0.00	Reservoir
1	-16.61	155.00	0.00	0.00	Reservoir
Link Results:					
Link	Flow	VelocitvU	nit Headloss	s Stat	tus
ID	LPM	m/s		. Ju	
1	11.69	0.01	0.00	0pen	
2	18.90		0.00	0pen	
3	-7.21	0.00	0.00	0pen	
4	-11.61	0.01	0.00	Open	

Page 1 ************************************	***************************************	8/6/2020 10:43:30 AM *******
*	EPANET	*
*	Hydraulic and Water Quality	*
*	Analysis for Pipe Networks	*
*	Version 2.0	*
*******	************************************	*******


Input File: 1135_Max-Day+FF.net

Link - Node Ta	ble:				
Link ID	Start Node	End Node		Length m	Diameter mm
1 2 3 4 5 9 10 6	RETB 2 2 RetA hyd1 RetC RETB 1	2 Metro RetA hyd1 RetC 1 7 exhyd		136.5 101.65 34.1 2.3 102.4 40 40 3.5	200 150 200 200 200 200 200 200 400
Node Results:					
Node ID	Demand LPM	Head m	Pressure m	Quality	
Metro 2 RetA hyd1 RetC RETB exhyd 7 1	$10.50 \\ 0.00 \\ 2.40 \\ 5678.00 \\ 2.80 \\ 2.20 \\ 1322.00 \\ -2561.91 \\ -4455.99$	109.38 108.88 108.80 110.96 111.29 112.00 112.00	15.28 14.81 14.74 16.96	0.00 0.00 0.00 0.00 0.00 0.00 0.00	Reservoir Reservoir
Link Results:					
Link ID	Flow LPM	VelocityU m/s	nit Headlos: m/km	s Stat	tus
1 2 3 4	2559.71 10.50 2549.21 2546.81	0.01	0.00	Open Open Open Open	

5	-3131.19	1.66	21.12	0pen
9	-3133.99	1.66	25.99	0pen
10	-2561.91	1.36	17.75	0pen
6	1322.00	0.18	1.01	0pen

▲ Page 2

Peak Hour Figure

Page 1 ************************************	***************************************	8/6/2020 6:12:51 PM *****
*	EPANET	*
*	Hydraulic and Water Quality	*
*	Analysis for Pipe Networks	*
*	Version 2.0	*
******	*************************************	*******

Input File: 1135_Peak-Hour.net

Link - Node Table:					
Link Sta		End		Length	Diameter
ID Nod	e	Node		m	mm
1 RET	 В	2		136.5	200
2 2		Metro		101.65	200
3 2		RetA		28.5	200
4 Ret	A	hyd1		7.9	200
5 hyd	1	hyd2		75.1	200
9 Ret	С	1		40	200
10 RET	В	7		40	200
6 hyd	2	RetC		27.3	200
Node Results:					
Node	Demand	Head	Pressure	Ouality	
ID	LPM	m	m	(** · ·)	
Metro	18.90		60.78	0.00	
2	0.00			0.00	
RetA	4.40			0.00	
hyd1	0.00	155.00		0.00	
RetC	5.00	155.00		0.00	
RETB	3.90			0.00	
hyd2	0.00			0.00	
7	-15.59				Reservoir
1	-16.61	155.00	0.00	0.00	Reservoir
Link Results:					
Link	Flow	VelocitvU	nit Headlos	s Stat	tus
ID	LPM	m/s		-	
1	11.69			0pen	
2	18.90			0pen	
3	-7.21	0.00	0.00	0pen	
4	-11.61	0.01	0.00	Open	

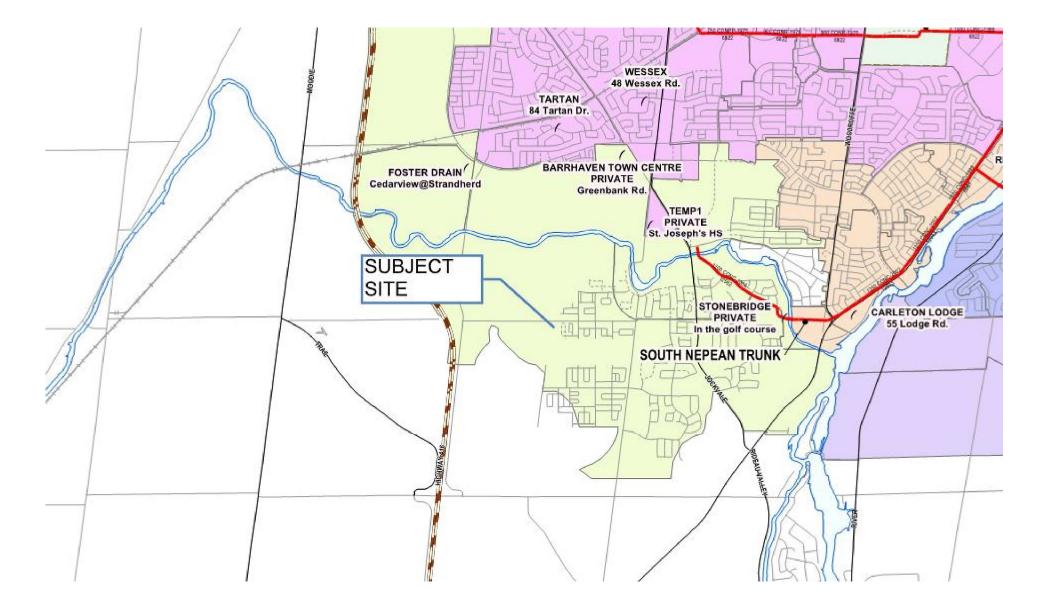
5	-11.61	0.01	0.00	0pen
9	-16.61	0.01	0.00	0pen
10	-15.59	0.01	0.00	0pen
6	-11.61	0.01	0.00	0pen

▲ Page 2

Page 1 ************************************	8 ************************************	/6/2020 10:50:33 AM
*	EPANET	*
*	Hydraulic and Water Quality	*
*	Analysis for Pipe Networks	*
*	Version 2.0	*
******	***********	******

Input File: 1135_Peak-Hour.net

Link - Node Ta	ble:				
Link ID	Start Node	End Node		Length m	Diameter mm
1 2 3 4 5 9 10 6 Node Results:	RETB 2 RetA hyd1 RetC RETB 1	2 Metro RetA hyd1 RetC 1 7 exhyd		136.5 101.65 34.1 2.3 102.4 40 40 3.5	200 150 200 200 200 200 200 200
Node ID	LPM	m	Pressure m	Quality	
Metro 2 RetA hyd1 RetC RETB exhyd 7 1	$18.90 \\ 0.00 \\ 4.40 \\ 0.00 \\ 5.00 \\ 3.90 \\ 0.00 \\ -15.50 \\ -16.70 \\ \end{array}$	155.00 155.00 155.00 155.00 155.00 155.00 155.00 155.00	60.94 61.00 60.75 61.40		Reservoir Reservoir
Link Results: Link ID	LPM	VelocityU m/s	nit Headloss m/km	s Stat	tus
1 2 3 4	11.60 18.90 -7.30 -11.70	0.02		Open Open Open Open	


5	-11.70	0.01	0.00	0pen
9	-16.70	0.01	0.00	0pen
10	-15.50	0.01	0.00	0pen
6	0.00	0.00	0.00	0pen

▲ Page 2

APPENDIX C

Wastewater Collection

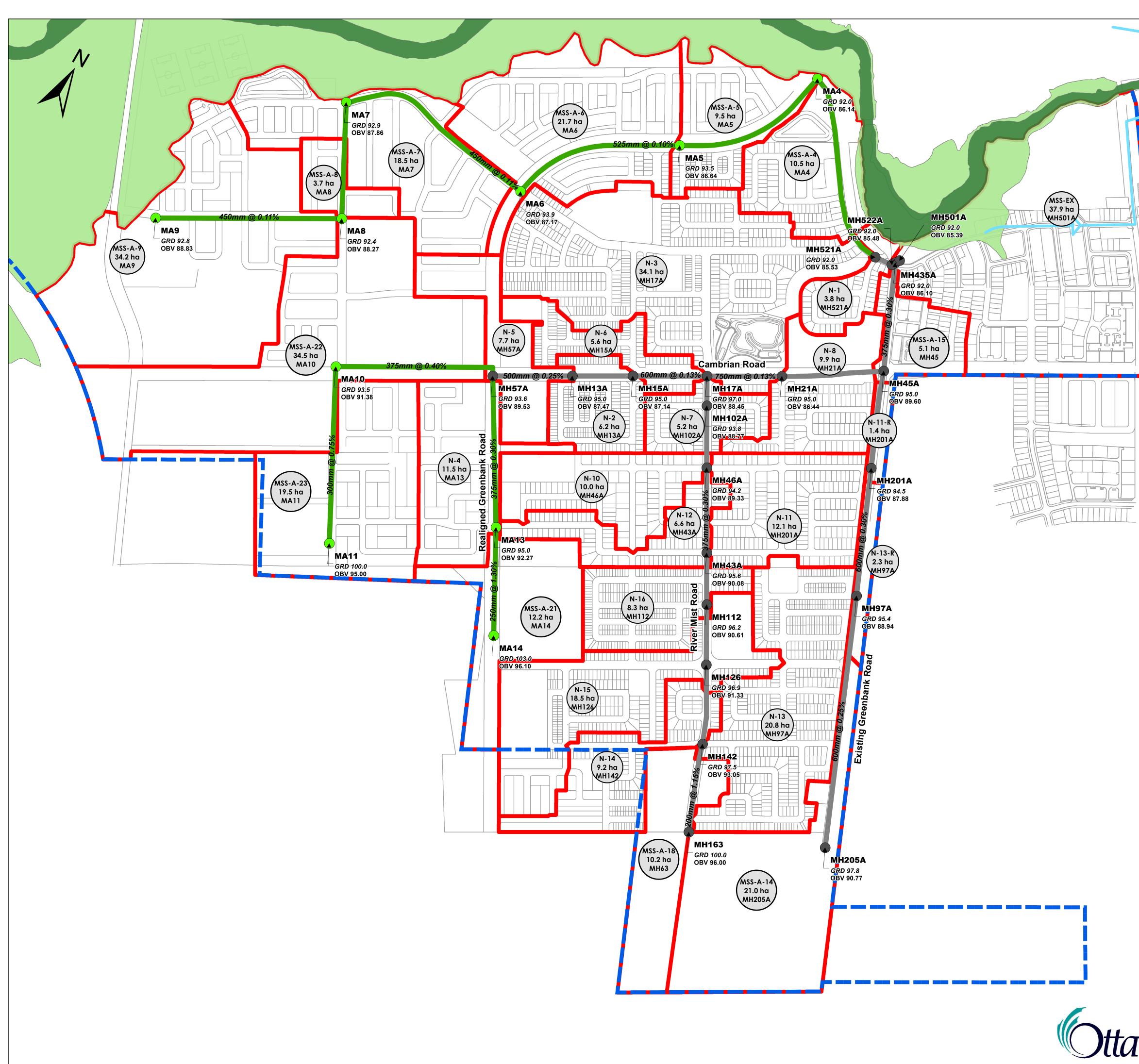
Sanitary Trunk Sewer and Collection Area Map

	2.200	ha
es		
Infiltration / Inflow (Dry)	0.11	L/s
Infiltration / Inflow (Wet)	0.62	L/s
Infiltration / Inflow (Total)	0.73	L/s
Industrial Contributions Unit Rate	No. of Units	Avg Wastewater (L/s)
5 L/m²/d	4,024	0.47
5 L/m²/d	929	0.11
5 L/m²/d	830	0.10
5 L/m²/d	1,060	0.12
Ave	rage I/C/I Flow	0.79
	Infiltration / Inflow (Dry) Infiltration / Inflow (Wet) Infiltration / Inflow (Total) Industrial Contributions Unit Rate 5 L/m²/d 5 L/m²/d 5 L/m²/d 5 L/m²/d	Infiltration / Inflow (Dry) 0.11 Infiltration / Inflow (Wet) 0.62 Infiltration / Inflow (Total) 0.73 Industrial Contributions Unit Rate No. of Units 5 L/m²/d 4,024 5 L/m²/d 929 5 L/m²/d 830

Peak Institutional / Commercial Flow	1.19
Peak I/C/I Flow	1.37

* assuming a 12 hour commercial operation

Wastewater Design Flows per Unit Count


City of Ottawa Sewer Design Guidelines, 2004

** peak industrial flow per City of Ottawa Sewer Design Guidelines Appendix 4B

Total Estimated Average Dry Weather Flow Rate	0.90 L/s
Total Estimated Peak Dry Weather Flow Rate	1.48 L/s
Total Estimated Peak Wet Weather Flow Rate	2.10 L/s

0.47 0.11 0.10 0.12

0.79

W:\active\1634 00999 Barrhaven SUC MSS Update\planning\drawing\Sanitary\163400999-SAN-DRAWING

wa	File Name: 163400999-SAN-DRAWING4.MXD LP AP LP 14.11.28 Dwn. Child. Dsgn. TY.MM.DD Permit-Seal Client/Project Client/Project CITY OF OTTAWA BARRHAVEN SOUTH MASTER SERVICING STUDY ADDENDUM Ottawa, ON Title SANITARY SERVICING PLAN Project No. Scale 0 75 150 300 153400999 1:5,000 75 150 300
	Dwn. Chkd. Dsgn. YY.MM.DD Permit-Seal Client/Project CITY OF OTTAWA BARRHAVEN SOUTH MASTER SERVICING STUDY ADDENDUM Ottawa, ON Title
	Dwn. Chkd. Dsgn. YY.MM.DD Permit-Seal Client/Project CITY OF OTTAWA BARRHAVEN SOUTH MASTER SERVICING STUDY ADDENDUM Ottawa, ON
	Dwn. Chkd. Dsgn. YY.MM.DD Permit-Seal
	Dwn. Chkd. Dsgn. YY.MM.DD
	1ISSUED FOR MSS ADDENDUMLPAP14.11.28RevisionByAppd.YY.MM.DD
	Notes
	SANITARY DRAINAGE CATCHMENTS Area Name Area (ha) Manhole SANITARY CATCHMENT INFORMATION
	 EXISTING SEWER FUTURE SEWER EXISTING SEWER (FROM 2007 MSS) RIVER 100 YEAR FLOOD PLAIN
	 BARRHAVEN SOUTH COMMUNITY BOUNDARY EXISTING NODES FUTURE NODES Node Name Ground Elevation Top Obvert Elevation
	Copyright Reserved The Contractor shall verify and be responsible for all dimensions. DO NOT scale the drawing - any errors or omissions shall be reported to Stantec without delay. The Copyrights to all designs and drawings are the property of Stantec. Reproduction or use for any purpose other than that authorized by Stantec is forbidden. Legend
	Stantec Consulting Ltd. 400 - 1331 Clyde Avenue Ottawa ON Tel. 613.722.4420 www.stantec.com

			Area:	ARRHAV	EN SOU	тн						Y SEV												DES	IGN PARAME	TERS						As per CDP (u	inits/ha)			
			MAS DATE: REVISION: DESIGNED CHECKED	BY:	2017	7/09/29 2 LP /	FILE NUM	BER:		163400999 updated val	(City of	Ottawa) Colour code: Hard codeo Caculated Value from	l values value	HMB values Most US M Estimated v MH receiving	value	2 or more	MIN PEAK FA PEAKING FAG		= TRIAL):	4.0 2.0 2.4 1.5 3.4 2.7		AVG. DAILY F COMMERCIAI INDUSTRIAL INDUSTRIAL INSTITUTION INFILTRATIO	(HEAVY) (LIGHT) IAL	И	50,000 55,000 35,000 50,000	L/p/day L/ha/day L/ha/day L/ha/day L/ha/day L/s/ha		MINIMUM VE MAXIMUM VE MANNINGS n BEDDING CL MINIMUM CC	ELOCITY 1 ASS			LOW DENSIT SEMI-DETACI TOWN HOUSI APARTMENTS COMMUNITY	Y RESIDENTIA HED ES S	L		26 52 82 120 60
							L					design		sewers		I	PERSONS / A	-		1.8							•	1	1			AVERAGE PE	RSONS/ha			107
AREA ID NUMBER	Source	FROM M.H.	TO M.H.	DEV AREA (ha)	DEV POP	ADD'N RES AREA (ha)	ADD'N	TOTAL AREA (ha)	TOTAL POP	ATION CUMU AREA (ha)	LATIVE POP.	PEAK FACT.	PEAK FLOW (L/s)	AREA (ha)	ACCU. AREA (ha)	AREA (ha)	IRIAL (L) ACCU. AREA (ha)	AREA (ha)	r RIAL (H) ACCU. AREA (ha)	AREA (ha)	ITIONAL ACCU. AREA (ha)	GREEN / AREA (ha)	ACCU. AREA (ha)	C+I+I PEAK FLOW (L/s)	TOTAL AREA (ha)	ACCU. AREA (ha)	INFILT. FLOW (L/s)	TOTAL FLOW (L/S)	LENGTH (m)	DIA (mm)	MATERIAL	PIPE SLOPE (%)	CAP. (FULL) (L/s)	CAP. V PEAK FLOW (%)	VEL. (FULL) (m/s)	VEL. (ACT.) (m/s)
MSS-A-23 MSS-A-22		MA11 MA10	MA10 MH57A	0.00 0.00	0 0	14.2 12.8	1,523 1,371	14.2 12.8	1,523 1,371	14.20 27.00	1,523 2,894	3.67 3.46	22.6 40.6	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	2.8 7.2	2.8 10.0	2.5 14.5	2.5 17.0	2 8.7	19.5 34.5	19.5 54.0	5.5 15.1	30.1 64.4	482.1 449.7	300 375	PVC PVC	0.75 0.40	87.6 115.1	34% 56%	1.20 1.01	1.08 1.04
Realigned Greenbank Road	d																																			
MSS-A-21 N-4		MA14 MA13	MA13 MH57A	0.0 0.0	0 0	4.8 11.0	513 1,176	4.8 11.0	513 1,176	4.8 15.8	513 1,689	3.97 3.64	8.3 24.9	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	7.5 0.0	7.5 7.5	0.0 0.5	0.0 0.5	6.5 6.5	12.3 11.5	12.3 23.8	3.4 6.7	18.2 38.1	295.0 413.1	250 375	PVC PVC	1.30 0.30	71.4 100.3	25% 38%	1.40 0.88	1.12 0.81
Cambrian Road																																				_
N-5 N-2 N-6		MH57A MH13A MH15A	MH13A MH15A MH17A	0.0 6.2 5.6	0 631 868	4.3 0.0 0.0	458 3 2	4.3 6.2 5.6	458 634 870	47.1 53.3 58.9	5,041 5,675 6,545	3.24 3.19 3.13	66.2 73.3 83.0	3.4 0.0 0.0	3.4 3.4 3.4	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	17.5 17.5 17.5	0.0 0.0 0.0	17.5 17.5 17.5	18.1 18.1 18.1	7.7 6.2 5.6	85.5 91.7 97.3	23.9 25.7 27.2	108.2 117.1 128.3	216.5 165.2 202.0	500 500 600	CPP CPP CPP	0.25 0.20 0.13	188.2 168.6 230.7	57% 69% 56%	0.96 0.86 0.79	0.99 0.93 0.81
River Mist Road					000	0.0	2	5.0	070						5.4	0.0	0.0		0.0			0.0	17.5		5.0	57.5	21.2	120.0	202.0	000	OFT	0.15	230.7	5070	0.13	
MSS-A-18	Stantec Stantec Stantec Stantec	162 161	162 161 EX151 MH142	6.5 0.0 0.0 0.0	543 0 0 0	0.0 0.0 0.0 0.0	0 0 0 0	6.5 0.0 0.0 0.0	543 0 0 0	6.5 6.5 6.5 6.5	543 543 543 543	3.96 3.96 3.96 3.96	8.7 8.7 8.7 8.7	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	2.8 0.0 0.0 0.0	2.8 2.8 2.8 2.8	0.9 0.0 0.0 0.0	0.9 0.9 0.9 0.9	2.4 2.4 2.4 2.4	10.2 0.0 0.0 0.0	10.2 10.2 10.2 10.2	2.9 2.9 2.9 2.9	14.0 14.0 14.0 14.0	36.3 87.2 75.6 44.4	200 250 250 300	PVC PVC PVC PVC	1.15 1.15 1.15 1.40	35.8 67.3 67.3 119.0	39% 21% 21% 12%	1.12 1.32 1.32 1.63	1.04 1.00 1.00 1.08
N-14	Stantec Stantec Stantec	EX139 EX136	EX139 EX136 MH126	8.2 0.0 0.0	825 0 0	1.0 0.0 0.0	102 0 0	9.2 0.0 0.0	927 0 0	15.7 15.7 15.7	1,470 1,470 1,470	3.69 3.69 3.69	22.0 22.0 22.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	2.8 2.8 2.8	0.0 0.0 0.0	0.9 0.9 0.9	2.4 2.4 2.4	9.2 0.0 0.0	19.4 19.4 19.4	5.4 5.4 5.4	29.8 29.8 29.8	74.8 64.7 78.9	300 300 300	PVC PVC PVC	0.40 0.40 0.41	63.5 63.5 64.2	47% 47% 46%	0.87 0.87 0.88	0.85 0.85 0.86
N-15	Stantec Stantec	MH126 EX123	EX123 MH112	16.5 0.0	954 0	0.0	0	16.5 0.0	954 0	32.2 32.2	2,424 2,424	3.52 3.52	34.6 34.6	0.0	0.0	0.0	0.0	0.0	0.0	2.1 0.0	4.9 4.9	0.0	0.9	4.3 4.3	18.6 0.0	38.0 38.0	10.6 10.6	49.5 49.5	71.3 90.3	375 375	PVC PVC	0.45 0.42	122.0 118.6	41% 42%	1.07 1.04	1.01 0.99
N-16	Stantec Stantec IBI IBI	-	EX102 EX101 MH43A MH44A	8.3 0.0 0.0 6.6	689 0 0 352	0.0 0.0 0.0 0.0	0	8.3 0.0 0.0 6.6	689 0 0 352	40.5 40.5 40.5 47.1	3,113 3,113 3,113 3,113 3,465	3.43 3.43 3.43	43.3 43.3 43.3 47.6	0.0 0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0 0.0	4.9 4.9 4.9	0.0 0.0 0.0 0.0	0.9 0.9 0.9	4.3 4.3 4.3 4.3	8.3 0.0 0.0 6.6	46.3 46.3 46.3 52.9	13.0 13.0 13.0 14.8	60.6 60.6 60.6 66.7	68.0 34.0 38.0	375 375 375	PVC PVC PVC PVC	0.31 0.29 0.30 0.30	101.5 98.0 100.3 100.3	60% 62% 60%	0.89 0.86 0.88 0.88	0.93 0.91 0.92 0.95
	IBI IBI	MH44A MH45A	MH45A MH46A	0.0	0	0.0 0.0	0	0.0	0 0	47.1 47.1	3,465 3,465	3.39 3.39 3.39	47.6 47.6	0.0 0.0	0.0 0.0 0.0	0.0 0.0	0.0 0.0 0.0	0.0 0.0	0.0 0.0 0.0	0.0 0.0	4.9 4.9 4.9	0.0 0.0	0.9 0.9 0.9	4.3 4.3	0.0 0.0	52.9 52.9	14.8 14.8	66.7 66.7	64.0 85.0	375 375 375	PVC PVC	0.30 0.30	100.3 100.3	67% 67% 67%	0.88 0.88	0.95 0.95
N-10	IBI DSEL DSEL	MH46A MH47A MH101A	MH47A MH101A MH102A	8.4 0.0 0.0	562 0 0	0.0 0.0 0.0	0	8.4 0.0 0.0	562 0 0	55.5 55.5 55.5 60.7	4,027 4,027 4,027	3.33 3.33 3.33	54.3 54.3 54.3	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	4.9 4.9 4.9	1.6 0.0 0.0	2.5 2.5 2.5	4.3 4.3 4.3	10.0 0.0 0.0	62.9 62.9 62.9	17.6 17.6 17.6	76.2 76.2 76.2	41.0 64.0 64.0	375 375 375	PVC PVC PVC	0.30 0.30 0.30	100.3 100.3 100.3	76% 76% 76%	0.88 0.88 0.88	0.98 0.98 0.98
N-7	DSEL	MH102A	MH17A	4.0	291	1.2	129	5.2	420	60.7	4,447	3.29	59.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	4.9	0.0	2.5	4.3	5.2	68.1	19.1	82.7	81.0	3/5	PVC	0.30	100.3	82%	0.88	0.99
Cambrian Road		MH17A	MH21A	26.0	1.956	0.0	0	26.0	1,956	145.6	12,948	2.84	149.0	0.0	3.4	0.0	0.0	0.0	0.0	3.0	25.4	5.1	25.1	25.0	34.1	199.5	55.9	229.9	204.3	750	CPP	0.13	419.5	55%	0.92	0.94
N-8		MH21A	MH45	7.0	408	0.0	0	7.0	408	152.6	13,356	2.83	153.1	0.0	3.4	0.0	0.0	0.0	0.0	0.0	25.4	2.9	28.0	25.0	9.9	209.4	58.6	236.7	277.8	750	CPP	0.13	419.5	56%	0.92	0.95
Greenbank Road MSS-A-14	IBI IBI	MH205A MH98A	MH98A MH99A	0.0	0	21.0 0.0	2,246 0	21.0 0.0	2,246 0	21.0 21.0	2,246 2,246	3.55 3.55	32.3 32.3	0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0 0.0	0.0	0.0	0.0	0.0	21.0 0.0	21.0 21.0	5.9 5.9	38.2 38.2	126.0 125.0	600 600	CPP CPP	0.25 0.25	321.2 321.2	12% 12%	1.10 1.10	0.73 0.73
	IBI IBI IBI IBI	MH99A MH100A MH204A MH206A	MH100A MH204A MH206A MH97A	0.0 0.0 0.0 0.0	0 0 0	0.0 0.0 0.0 0.0	0 0 0	0.0 0.0 0.0 0.0	0 0 0	21.0 21.0 21.0 21.0	2,246 2,246 2,246 2,246	3.55 3.55 3.55 3.55	32.3 32.3 32.3 32.3	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	21.0 21.0 21.0 21.0	5.9 5.9 5.9 5.9	38.2 38.2 38.2 38.2	108.0 105.0 103.0 125.0	600 600 600 600	CPP CPP CPP CPP	0.25 0.25 0.25 0.25	321.2 321.2 321.2 321.2 321.2	12% 12% 12% 12%	1.10 1.10 1.10 1.10	0.73 0.73 0.73 0.73
N-13, N-13-R	IBI IBI IBI	MH97A MH96A MH95A		19.9 0.0 0.0	1,625 0 0	0.1 0.0 0.0	6 0 0	20.0 0.0 0.0	1,631 0 0	41.0 41.0 41.0	3,877 3,877 3,877	3.35 3.35 3.35	52.6 52.6 52.6	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.8 0.0 0.0	0.8 0.8 0.8	0.0 0.0 0.0	20.8 0.0 0.0	41.8 41.8 41.8	11.7 11.7 11.7	64.3 64.3 64.3	98.0 129.0 123.0	600 600 600	CPP CPP CPP	0.30 0.30 0.30	350.4 350.4 350.4	18% 18% 18%	1.20 1.20 1.20	0.89 0.89 0.89
N-11, N-11-R		MH201A MH201B MH200A MH200C	MH200C	12.1 0.0 0.0 0.0	787 0 0 0	0.0 0.0 0.0 0.0	0 0 0 0	12.1 0.0 0.0 0.0	787 0 0 0	53.1 53.1 53.1 53.1	4,664 4,664 4,664 4,664	3.27 3.27 3.27 3.27 3.27	61.8 61.8 61.8 61.8	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.8 0.8 0.8 0.8	0.0 0.0 0.0 0.0	12.1 0.0 0.0 0.0	53.9 53.9 53.9 53.9	15.1 15.1 15.1 15.1	76.9 76.9 76.9 76.9	124.0 68.0 48.0 26.0	600 600 600 600	CPP CPP CPP CPP	0.30 0.30 0.50 0.12	350.4 350.4 452.6 221.9	22% 22% 17% 35%	1.20 1.20 1.55 0.76	0.94 0.94 1.12 0.68
MSS-A-15			MH435A	0.0	0	5.1	548	5.1	548	210.8	18,568	2.68	201.6	0.0	3.4	0.0	0.0	0.0	0.0	0.0	25.4	0.0	28.8	25.0	5.1	268.4	75.2	301.8	296.6	900	CPP	0.12	597.0	51%	0.91	0.91
North MSS-A-9		MA9	MA8	0.0	0	22.2	2,378	22.2	2,378	22.2	2,378	3.53	34.0	0.0	0.0	0.0	0.0	0.0	0.0	2.5	2.5	9.5	9.5	2.2	34.2	34.2	9.6	45.8	507.5	450	CPP	0.11	98.4	47%	0.60	0.59
MSS-A-8 MSS-A-7		MA8 MA7	MA7 MA6	0.0	0	2.9 18.5	308 1,979	2.9 18.5	308 1,979	25.1 43.6	2,686 4,665	3.48 3.27	37.9 61.8	0.0	0.0	0.0	0.0 0.0	0.0	0.0 0.0	0.0	2.5 2.5	0.8 0.0	10.3 10.3	2.2 2.2	3.7 18.5	37.9 56.4	10.6 15.8	50.7 79.8	317.1 573.1	450 450	CPP CPP	0.11 0.11	98.4 98.4	52% 81%	0.60 0.60	0.61 0.67
MSS-A-6		MA6	MA5	0.0	0	21.7	2,320	21.7	2,320	65.3	6,985	3.11	88.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.5	0.0	10.3	2.2	21.7	78.1	21.9	112.1	473.9	600	CPP	0.10	201.5	56%	0.69	0.71
MSS-A-5 MSS-A-4			M27A MH5200A	0.0	0	9.5 8.1	1,020 <mark>863</mark>	9.5 8.1	1,020 863	74.8 82.9	8,005 8,868	3.05 3.01	98.9 108.1	0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	2.5 2.5	0.0 0.0	10.3 10.3	2.2 2.2	9.5 8.1	87.6 95.7	24.5 26.8	125.6 137.1	220.0 501.5	600 600	CPP CPP	0.10 0.15	201.5 248.2	62% 55%	0.69 0.85	0.73 0.87
		MH5200A MH520A		0.0	0	0.0 0.0	0	0.0 0.0	0	82.9 82.9	8,868 8,868	3.01 3.01	108.1 108.1	0.0	0.0 0.0	0.0	0.0 0.0	0.0	0.0 0.0	0.0 0.0	2.5 2.5	0.0	10.3 10.3	2.2 2.2	0.0	95.7 95.7	26.8 26.8	137.1 137.1	46.0 44.4	600 600	CPP CPP	0.08 0.10	181.0 201.5	76% 68%	0.62 0.69	0.69 0.75
N-1		MH520A MH521A MH522A	MH522A	3.3 0.0	177 0	0.0 0.5 0.0	54 0	3.8 0.0	231 0	82.9 86.7 86.7	9,099 9,099	3.00 3.00 3.00	108.1 110.6 110.6	0.0	0.0 0.0 0.0	0.0	0.0 0.0 0.0	0.0	0.0 0.0 0.0	0.0	2.5 2.5 2.5	0.0	10.3 10.3 10.3	2.2 2.2 2.2	3.8 0.0	99.5 99.5	20.8 27.9 27.9	137.1 140.7 140.7		600	CPP CPP CPP	0.09 0.21	201.5 192.7 292.0	68% 73% 48%	0.66 1.00	0.73 0.99
		MH435A	MH501A	0.0	0	0.0	0	0.0	0	297.5	27,667	2.51	281.3	0.0	3.4	0.0	0.0	0.0	0.0	0.0	27.9	0.0	39.1	27.2	0.0	367.9	103.0	411.5	13.3	900	CPP	0.11	623.2	66%	0.95	1.02

			Area: E MAS	BARRHAVI MASTER S STU	ERVICING						Y SEW SHEE					
			DATE: REVISION: DESIGNED CHECKED	2017/09/29 1 LP		FILE NUM	BER:		163400999	PIPE (Colour code: Hard coded Caculated va Value from s	alue	Most US MI Estimated v MH receivin	alue	2 or more	
											design		sewers	.g		
AREA ID	CATION	FROM	то	ACTUAL	CA AREA	HYDR.	LUES SURCHARGE	DEPTH	GROUND	UPS OBVERT	INVERT	U/S	GROUND	DOWN OBVERT	STREAM INVERT	D/S
NUMBER	Source	M.H.	M.H.	PIPE SIZE	AREA	RADIUS	VELOCITY	OF FLOW	ELEVATION	ELEVATION	ELEVATION	COVER	ELEVATION	ELEVATION	ELEVATION	COVER
				(mm)	(m ²)		(m/s)	(m)	(m)	(m)	(m)	(m)	(m)	(m)	(m)	(m)
MSS-A-23		MA11	MA10	305	0.073	0.076			100.00	95.000	94.695	5.00	93.50	91.384	91.079	2.12
MSS-A-22		MA10	MH57A	381	0.114	0.095			93.50	91.324	90.943	2.18	93.60	89.525 ^ mu	89.144 st be above a	4.07 38.01
Realigned Greenbank Road				054	0.054	0.004			100.00	00.400	05.040	0.00	05.00			
MSS-A-21 N-4		MA14 MA13	MA13 MH57A	254 381	0.051 0.114	0.064 0.095			103.00 95.00	96.100 89.800	95.846 89.419	6.90 5.20	95.00 93.60	92.265 88.561	92.011 88.180	2.74 5.04
															above plug	
Cambrian Road N-5		MH57A	MH13A	500	0.196	0.125			93.60	88.010	87.510	5.59	95.00	87.469	86.969	7.53
N-5 N-2		MH37A MH13A	MH15A	500	0.190	0.125			95.00	87.469	86.969	7.53	95.00	87.139	86.639	7.86
N-6		MH15A	MH17A	610	0.292	0.152			95.00	87.139	86.529	7.86	97.00	86.876	86.266	10.12
River Mist Road MSS-A-18	Stantec	MH163	162	203	0.032	0.050	0.333	0.058	100.00	96.000	95.797	4.00	99.55	95.580	95.380	3.97
MOO / TO	Stantec	162	161	254	0.051	0.064	0.284	0.053	99.55	95.580	95.330	3.97	98.55	94.580	94.327	3.97
	Stantec	161	EX151	254	0.051	0.064	0.285	0.053	98.55	94.540	94.292	4.00	97.88	93.670	93.423	4.21
N-14	Stantec Stantec	EX151 MH142	MH142 EX139	305 305	0.073 0.073	0.076	0.201 0.351	0.036 0.120	97.88 97.48	93.670 93.030	93.373 92.732	4.21 4.44	97.48 96.84	93.050 92.730	92.752 92.433	4.42 4.11
14-14	Stantec	EX139	EX135	305	0.073	0.076	0.366	0.120	96.84	92.710	92.411	4.13	96.66	92.450	92.152	4.21
	Stantec	EX136	MH126	305	0.073	0.076	0.383	0.129	96.66	91.650	91.350	5.01	96.85	91.320	91.024	5.53
N-15	Stantec Stantec	MH126 EX123	EX123 MH112	381 381	0.114 0.114	0.095	0.415 0.441	0.147 0.161	96.85 96.41	91.330 90.990	90.959 90.616	5.52 5.42	96.41 96.22	91.010 90.610	90.639 90.236	5.39 5.61
N-16	Stantec	MH112	EX102	381	0.114	0.095	0.497	0.213	96.22	90.590	90.213	5.63	95.71	90.380	90.003	5.33
	Stantec	EX102	EX101	381	0.114	0.095	0.562	0.246	95.71	90.360	89.984	5.35	95.69	90.260	89.884	5.43
N-12	IBI IBI	EX101 MH43A	MH43A MH44A	381 381	0.114 0.114	0.095 0.095			95.69 95.60	90.265 90.070	89.884 89.689	5.43 5.53	95.60 95.50	90.090 89.826	89.709 89.445	5.51 5.67
11-12	IBI	MH44A	MH45A	381	0.114	0.095			95.50	89.806	89.425	5.69	95.00	89.604	89.223	5.40
	IBI	MH45A	MH46A	381	0.114	0.095			95.00	89.594	89.213	5.41	94.20	89.339	88.958	4.86
N-10	IBI DSEL	MH46A MH47A	MH47A MH101A	381 381	0.114 0.114	0.095 0.095			94.20 94.20	89.319 89.181	88.938 88.800	4.88 5.02	94.20 94.20	89.181 88.989	88.800 88.608	5.02 5.21
	DSEL	MH101A	MH102A	381	0.114	0.095			94.20	88.969	88.588	5.23	93.80	88.777	88.396	5.02
N-7	DSEL	MH102A	MH17A	381	0.114	0.095			93.80	88.693	88.312	5.11	93.40	88.451	88.070	4.95
Cambrian Road																
N-3		MH17A	MH21A	762	0.456	0.190			97.00	86.876	86.114	10.12	95.00	86.773	86.011	8.23
N-8		MH21A	MH45	762	0.456	0.190			95.00	86.773	86.011	8.23	94.50	86.412	85.650	8.09
Greenbank Road																
MSS-A-14	IBI	MH205A	MH98A	610	0.292	0.152			97.80	90.780	90.170	7.02	97.40	90.465	89.855	6.94
	IBI IBI	MH98A MH99A	MH99A MH100A	610 610	0.292 0.292	0.152 0.152			97.40 96.90	90.443 90.105	89.833 89.495	6.96 6.80	96.90 96.60	90.130 89.835	89.520 89.225	6.77 6.77
	IBI	MH100A	MH204A	610	0.292	0.152			96.60	89.803	89.193	6.80	96.20	89.540	88.930	6.66
	IBI	MH204A	MH206A	610	0.292	0.152			96.20	89.517	88.907	6.68	95.80	89.260	88.650	6.54
N-13, N-13-R	IBI IBI	MH206A MH97A	MH97A MH96A	610 610	0.292 0.292	0.152 0.152			95.80 95.40	89.260 88.938	88.650 88.328	6.54 6.46	95.40 95.20	88.948 88.643	88.338 88.033	6.45 6.56
	IBI	MH96A	MH95A	610	0.292	0.152			95.20	88.643	88.033	6.56	95.00	88.256	87.646	6.74
	IBI	MH95A	MH201A	610	0.292	0.152			95.00	88.256	87.646	6.74	94.50	87.887	87.277	6.61
N-11, N-11-R	IBI IBI	MH201A MH201B	MH201B MH200A	610 610	0.292 0.292	0.152 0.152			94.50 94.70	87.887 87.510	87.277 86.900	6.61 7.19	94.70 94.40	87.514 87.307	86.904 86.697	7.19 7.09
	IBI	MH200A	MH200C	610	0.292	0.152			94.40	87.241	86.631	7.16	94.80	87.001	86.391	7.80
	IBI	MH200C	MH45	610	0.292	0.152			94.80	87.001	86.391	7.80	94.50	86.405	85.795	8.10
MSS-A-15		MH45	MH435A	914	0.656	0.228			94.50	86.405	85.491	8.10	92.60	86.108	85.194	6.49
North MSS-A-9		MA9	MAQ	457	0 164	0.114			02.75	90.550	80.002	3 20	02.25	<u> </u>	99 525	2.26
MSS-A-9 MSS-A-8		MA9 MA8	MA8 MA7	457 457	0.164 0.164	0.114			92.75 92.35	89.550 88.932	89.093 88.475	3.20 3.42	92.35 92.90	88.992 88.583	88.535 88.126	3.36 4.32
MSS-A-7		MA7	MA6	457	0.164	0.114			92.90	88.523	88.066	4.38	93.90	87.893	87.436	6.01
MSS-A-6 MSS-A-5		MA6	MA5	610	0.292	0.152			93.90	87.833	87.223	6.07	93.50	87.359	86.749	6.14
MSS-A-5 MSS-A-4		MA5 M27A	M27A MH5200A	610 610	0.292 0.292	0.152 0.152			93.50 93.00	87.299 87.019	86.689 86.409	6.20 5.98	93.00 93.00	87.079 86.267	86.469 85.657	5.92 6.73
		MH5200A	MH520A	610	0.292	0.152			93.00	86.231	85.621	6.77	93.80	86.194	85.584	7.61
N-1		MH520A	MH521A	610	0.292	0.152			93.70 93.80	86.155 86.078	85.545	7.55	93.80 92.60	86.111 86.033	85.501	7.69
IN-1		MH521A MH522A	MH522A MH435A	610 610	0.292 0.292	0.152 0.152			93.80 92.60	86.078 86.005	85.468 85.395	7.72 6.60	92.60 92.60	86.033 85.982	85.423 85.372	6.57 6.62
		MH435A	MH501A	914	0.656	0.228			92.60	85.982	85.068	6.62	92.60	85.967	85.053	6.63

APPENDIX D

Stormwater Management

Metro Canada Inc. 3831 Cambrian Road Proposed Conditions

Estimated Peak Stormwater Flow Rate City of Ottawa Sewer Design Guidelines, 2012

Existing Drainage Charateristics From Internal Site

Area	2.21	ha
С	0.39	Rational Method runoff coefficient
L	152	m
Up Elev	94.71	m
Dn Elev	93.62	m
Slope	0.7	%
Tc	31.9	min

1) Time of Concentration per Federal Aviation Administration

+	_	$1.8(1.1-C)L^{0.5}$
lc	_	S ^{0.333}

tc, in minutes C, rational method coefficient, (-) L, length in ft S, average watershed slope in %

Estimated Peak Flow

	2-year	5-year	100-year
i	76.8	104.2	178.6 mm/hr
Q	183.9	249.5	534.4 L/s

Note:

C value for the 100-year storm is increased by 25%, to a maximum of 1.0 per Ottawa Sewer Design Guidelines (5.4.5.2.1)

Stormwater - Proposed Development City of Ottawa Sewer Design Guidelines, 2012

Target Flow Rate

Area	2.21	ha
С	0.64	Rational Method runoff coefficient
tc	21.5	min
	5-year	
i	67.1	mm/hr

Estimated Post Development Peak Flow from Unattenuated Areas

Area ID U1 Total Area 0.053 ha

C											
	Ĩ	5-year					100-year				
ſ	tc	i	Qactual	Q _{release}	Q _{stored}	V _{stored}	i	Q _{actual}	Q _{release}	Q _{stored}	V _{stored}
	(min)	(mm/hr)	(L/s)	(L/s)	(L/s)	(m ³)	(mm/hr)	(L/s)	(L/s)	(L/s)	(m ³)
[10.0	104.2	3.1	3.1	0.0	0.0	178.6	6.6	6.6	0.0	0.0

100-year

Note: C value for the 100-year storm is increased by 25%, to a maximum of 1.0 per Ottawa Sewer Design Guidelines (5.4.5.2.1)

Area ID U2 Total Area C

c 0.057 ha 0.057 ha 0.90 Rational Method runoff coefficient

5-Year

	5-Year					100-year				
t _c (min)	i (mm/hr)	Q _{actual} ‡ (L/s)	Q _{release} (L/s)	Q _{stored} (L/s)	V _{stored} (m ³)	i (mm/hr)	Q _{actual} ‡ (L/s)	Q _{release} (L/s)	Q _{stored} (L/s)	V _{stored} (m ³)
	10 104.	2 14.8	14.8	0.0	0.0	178.6	28.3	28.3	0.0	0.0
	5-Yea	5-Year Qattenuated 5-Year Max. Storage Required		14.85 L/s 0.0 m ³		100-year Q _{attenuated} 100-year Max. Storage Required			28.27 0.0	-

Area ID	U3	
Total A	rea	
	С	

0.122 ha 0.50 Rational Method runoff coefficient Note: Rational Method Coefficient "C" increased by 25% for 100-year calculations

t _c (min)	i (mm/hr)	Q _{actual} ‡ (L/s)	Q _{release} (L/s)	Q _{stored} (L/s)	V _{stored} (m ³)	i (mm/hr)	Q _{actual} ‡ (L/s)	Q _{release} (L/s)	Q _{stored} (L/s)	V _{stored} (m ³)
1	0 104.2	17.7	17.7	0.0	0.0	178.6	37.8	37.8	0.0	0.0
	5-Year		Qattenuated Je Required	17.65 0.0	-	100-year	100-yea Max. Storag	ar Q _{attenuated} e Required	37.82 0.0	-

Estimated Post Development Peak Flow from Attenuated Areas

Building ID
Roof Area
Avail Storage Area
с
tc

0.401 ha 0.381 0.90 Rational Method runoff coefficient Note: Rational Method Coefficient "C" increased by 25% for 100-year calculations 10 min, tc at outlet without restriction

Estimated Number of Roof Drains Building Length 69 Building Width 55.6 Number of Drains 21 m² / Drain 181.4

METRO

181.4 max 232.25m²/notch as recommended by Zurn for Ottawa

Roof Top Rating Curve per Zurn Model Z-105-5										
d	Α	Vacc	Vavail	Q _{notch}	Q _{roof}	V _{drawdown}				
(m)	(m ²)	(m ³)	(m ³)	(L/s)	(L/s)	(hr)				
0.000	0	0.0	0.0	0.00	0.00	0.00				
0.025	238.1	2.0	2.0	0.38	7.98	0.07				
0.050	952.4	13.9	15.9	0.77	16.17	0.31				
0.075	2142.8	37.7	53.6	1.14	23.94	0.75				
0.100	3809.5	73.4	127.0	1.52	31.92	1.38				
0.125	3809.5	95.2	222.2	1.90	39.90	2.05				
0.150	3809.5	95.2	317.5	2.28	47.88	2.60				

* Assumes one notch opening per drain, assumes maximum slope of 10cm

	5-year					100-year				
t _c (min)	i (mm/hr)	Q _{actual} (L/s)	Q _{release} (L/s)	Q _{stored} (L/s)	V _{stored} (m ³)	i (mm/hr)	Q _{actual} (L/s)	Q _{release} (L/s)	Q _{stored} (L/s)	V _{stored} (m ³)
10		104.5	24.2	80.3	48.2	178.6	198.9	31.9	167.0	100.2
15	83.6	83.8	24.2	59.6	53.7	142.9	159.2	31.9	127.3	114.5
20	70.3	70.4	24.2	46.3	55.5	120.0	133.6	31.9	101.7	122.1
25		61.0	24.2	36.9	55.3	103.8	115.7	31.9	83.8	125.7
30		54.1	24.2	29.9	53.8	91.9	102.3	31.9	70.4	126.8
35		48.6	24.2	24.5	51.4	82.6	92.0	31.9	60.1	126.2
40		44.3	24.2	20.1	48.3	75.1	83.7	31.9	51.8	124.3
45		40.7	24.2	16.6	44.8	69.1	76.9	31.9	45.0	121.5
50		37.7	24.2	13.6	40.8	64.0	71.2	31.9	39.3	118.0
55		35.2	24.2	11.1	36.5	59.6	66.4	31.9	34.5	113.9
60		33.0	24.2	8.9	31.9	55.9	62.3	31.9	30.4	109.3
65		31.1	24.2	7.0	27.2	52.6	58.6	31.9	26.7	104.3
70		29.4	24.2	5.3	22.2	49.8	55.5	31.9	23.6	99.0
75		28.0	24.2	3.8	17.1	47.3	52.6	31.9	20.7	93.3
80		26.6	24.2	2.5	11.9	45.0	50.1	31.9	18.2	87.4
85		25.4	24.2	1.3	6.5	43.0	47.8	31.9	15.9	81.3
90		24.3	24.2	0.2	1.1	41.1	45.8	31.9	13.9	75.0
95		23.4	23.4	0.0	0.0	39.4	43.9	31.9	12.0	68.6
100		22.5	22.5	0.0	0.0	37.9	42.2	31.9	10.3	61.9
105		21.6	21.6	0.0	0.0	36.5	40.7	31.9	8.8	55.2
110	20.8	20.9	20.9	0.0	0.0	35.2	39.2	31.9	7.3	48.3

5-year Q_{roof}

5-year Max. Storage Required 5-year Storage Depth 5-year Estimated Drawdown Time

24.15 L/s 55.5 m³ 0.076 m 0.76 hr

100-year Q_{roof} 100-year Max. Storage Required 100-year Storage Depth 00-year Estimated Drawdown Time

31.90 L/s

126.8 m³ 0.100 m 1.38 hr

Building ID	RET A	
Roof Area	0.093	ha
Avail Storage Area	0.088	
с	0.90	Rat
t _c	10	min

0.008 0.90 Rational Method runoff coefficient Note: Rational Method Coefficient "C" increased by 25% for 100-year calculations 10 min, tc at outlet without restriction

Estimated Number of Roof Drains Building Length 33 Building Width 26 Number of Drains 7 m² / Drain 126.2

126.2 max 232.25m²/notch as recommended by Zurn for Ottawa

d	Α	Vacc	Vavail	Qnotch	Qroof	V _{drawdown}
(m)	(m ²)	(m ³)	(m ³)	(L/s)	(L/s)	(hr)
0.000	0	0.0	0.0	0.00	0.00	0.00
0.025	55.2	0.5	0.5	0.38	2.66	0.05
0.050	220.9	3.2	3.7	0.77	5.39	0.21
0.075	497.0	8.7	12.4	1.14	7.98	0.52
0.100	883.5	17.0	29.5	1.52	10.64	0.96
0.125	883.5	22.1	51.5	1.90	13.30	1.42
0.150	883.5	22.1	73.6	2.28	15.96	1.81
Assumes one notcl				-		

	5-year					100-year				
t _c	i	Q _{actual}	Q _{release}	Q _{stored}	V _{stored}	i	Q _{actual}	Q _{release}	Q _{stored}	V _{stored}
(min)	(mm/hr)	(L/s)	(L/s)	(L/s)	(m ³)	(mm/hr)	(L/s)	(L/s)	(L/s)	(m ³)
10	104.2	24.2	7.5	16.7	10.0	178.6	46.1	10.0	36.1	21.7
15		19.4	7.5	11.9	10.7	142.9	36.9	10.0	26.9	24.2
20	70.3	16.3	7.5	8.8	10.6	120.0	31.0	10.0	21.0	25.2
25		14.2	7.5	6.7	10.0	103.8	26.8	10.0	16.8	25.3
30		12.5	7.5	5.1	9.1	91.9	23.7	10.0	13.7	24.7
35		11.3	7.5	3.8	8.0	82.6	21.3	10.0	11.3	23.8
40		10.3	7.5	2.8	6.7	75.1	19.4	10.0	9.4	22.6
45		9.4	7.5	2.0	5.3	69.1	17.8	10.0	7.9	21.2
50	37.7	8.8	7.5	1.3	3.8	64.0	16.5	10.0	6.5	19.6
55		8.2	7.5	0.7	2.3	59.6	15.4	10.0	5.4	17.9
60		7.7	7.5	0.2	0.6	55.9	14.4	10.0	4.5	16.0
65		7.2	7.2	0.0	0.0	52.6	13.6	10.0	3.6	14.1
70		6.8	6.8	0.0	0.0	49.8	12.9	10.0	2.9	12.1
75		6.5	6.5	0.0	0.0	47.3	12.2	10.0	2.2	10.0
80		6.2	6.2	0.0	0.0	45.0	11.6	10.0	1.6	7.9
85		5.9	5.9	0.0	0.0	43.0	11.1	10.0	1.1	5.7
90		5.6	5.6	0.0	0.0	41.1	10.6	10.0	0.6	3.4
95		5.4	5.4	0.0	0.0	39.4	10.2	10.0	0.2	1.1
100		5.2	5.2	0.0	0.0	37.9	9.8	9.8	0.0	0.0
105		5.0	5.0	0.0	0.0	36.5	9.4	9.4	0.0	0.0
110	20.8	4.8	4.8	0.0	0.0	35.2	9.1	9.1	0.0	0.0

7.48 L/s	100-year Q _{roof}	9.99 L/s
10.7 m ³	100-year Max. Storage Required	25.3 m ³
0.070 m	100-year Storage Depth	0.094 m
0.46 hr	00-year Estimated Drawdown Time	0.85 hr

5-year Q_{roof}

5-year Max. Storage Required 5-year Storage Depth 5-year Estimated Drawdown Time

Area ID A109 Available Sub-surface Storage

Total Subsurface Storage (m³) 0.0

Stage Attenuated Areas Storage Su	mmary									
	-		Surface	Storage		Surface and Subsurface Storage				
	Stage	Ponding	100-Year HGL	Head (Stage to 100-year HGL) delta d	V*	V _{acc} **	Q _{release} †	V _{drawdown}		
	(m)	(m ²)	(m)	(m)	(m)	(m ³)	(m ³)	(L/s)	(hr)	
Orifice INV	91.29						0.0	0.0	0.00	
TG	93.55	0.4	93.09	0.46	0.46	0.2	0.2	13.0	0.00	
0.10m ponding	93.65	43.8	93.09	0.56	0.10	1.6	1.8	14.4	0.03	
Max Ponding	93.69	84.8	93.09	0.60	0.04	2.5	4.3	14.9	0.08	

*V=Incremental storage volume **V_{acc}=Total surface and sub-surface † Q_{release} = Release rate calculated from orifice equation

Orifice Location Total Area C

 STM109
 Dia
 95

 0.083 ha
 0.40 Rational Method runoff coefficient
 Note: Rational Method Coefficient "C" increased by 25% for 100-year calculations

	5-Year					100-year				
t _c	i	Q _{actual} ‡	Q _{release}	Q _{stored}	Vstored	i	Q _{actual} ‡	Q _{release}	Q _{stored}	V _{stored}
(min)	(mm/hr)	(L/s)	(L/s)	(L/s)	(m ³)	(mm/hr)	(L/s)	(L/s)	(L/s)	(m ³)
10	104.2	9.6	9.6	0.0	0.0	178.6	20.6	14.7	5.9	3.5
20	70.3	6.5	6.5	0.0	0.0	120.0	13.8	13.8	0.0	0.0
30	53.9	5.0	5.0	0.0	0.0	91.9	10.6	13.8	0.0	0.0
40	44.2	4.1	4.1	0.0	0.0	75.1	8.7	13.8	0.0	0.0
50	37.7	3.5	3.5	0.0	0.0	64.0	7.4	13.8	0.0	0.0
60	32.9	3.0	3.0	0.0	0.0	55.9	6.4	13.8	0.0	0.0
70	29.4	2.7	2.7	0.0	0.0	49.8	5.7	13.8	0.0	0.0
80	26.6	2.4	2.4	0.0	0.0	45.0	5.2	13.8	0.0	0.0
90	24.3	2.2	2.2	0.0	0.0	41.1	4.7	13.8	0.0	0.0
100	22.4	2.1	2.1	0.0	0.0	37.9	4.4	13.8	0.0	0.0
110	20.8	1.9	1.9	0.0	0.0	35.2	4.1	13.8	0.0	0.0
120	19.5	1.8	1.8	0.0	0.0	32.9	3.8	13.8	0.0	0.0
130	18.3	1.7	1.7	0.0	0.0	30.9	3.6	13.8	0.0	0.0
140	17.3	1.6	1.6	0.0	0.0	29.2	3.4	13.8	0.0	0.0
150	16.4	1.5	1.5	0.0	0.0	27.6	3.2	13.8	0.0	0.0
160	15.6	1.4	1.4	0.0	0.0	26.2	3.0	13.8	0.0	0.0
170	14.8	1.4	1.4	0.0	0.0	25.0	2.9	13.8	0.0	0.0
180	14.2	1.3	1.3	0.0	0.0	23.9	2.8	13.8	0.0	0.0
190	13.6	1.3	1.3	0.0	0.0	22.9	2.6	13.8	0.0	0.0
200	13.0	1.2	1.2	0.0	0.0	22.0	2.5	13.8	0.0	0.0
210	12.6	1.2	1.2	0.0	0.0	21.1	2.4	13.8	0.0	0.0
220	12.1	1.1	1.1	0.0	0.0	20.4	2.3	13.8	0.0	0.0
230	11.7	1.1	1.1	0.0	0.0	19.7	2.3	13.8	0.0	0.0
240	11.3	1.0	1.0	0.0	0.0	19.0	2.2	13.8	0.0	0.0
250	10.9	1.0	1.0	0.0	0.0	18.4	2.1	13.8	0.0	0.0
260	10.6	1.0	1.0	0.0	0.0	17.8	2.1	13.8	0.0	0.0

5.00 1	J-real gatteriuateu
0.0 1	5-Year Max. Storage Required
91.36 ı	Est. 5-Year Storage Elevation

100-year Max. Storage Required Est. 100-year Storage Elevation .0 m³ 36 m

3.5 m³ 93.68 m

Area ID A110B Available Sub-surface Storage

Total Subsurface Storage (m³)

Stage Attenuated Areas Storage Summary	

	-		Surface	Storage		Surfa	surface Sto	Storage	
	Stage	Ponding	100-Year HGL	Head (Stage to 100-year HGL)	delta d	۷*	V _{acc} **	Q _{release} †	V _{drawdown}
-	(m)	(m ²)	(m)	(m)	(m)	(m ³)	(m ³)	(L/s)	(hr)
Orifice INV	92.05						0.0	0.0	0.00
TG	93.55	0.36	93.09	0.46	0.46	0.2	0.2	11.7	0.00
Max Ponding	93.85	454	93.09	0.76	0.30	46.7	46.9	15.0	0.87

0.0

V=Incremental storage volume
 **V_{acc}=Total surface and sub-surface
 † Q_{release} = Release rate calculated from orifice equation

Orifice Location Total Area C

 CB110B
 Dia
 90

 0.060 ha
 0.80 Rational Method runoff coefficient
 Note: Rational Method Coefficient "C" increased by 25% for 100-year calculations

	5-Year					100-year				
t _c	i	Q _{actual} ‡	Q _{release}	Q _{stored}	V _{stored}	i	Q _{actual} ‡	Q _{release}	Q _{stored}	V _{stored}
(min)	(mm/hr)	(L/s)	(L/s)	(L/s)	(m ³)	(mm/hr)	(L/s)	(L/s)	(L/s)	(m ³)
40	44.2	5.9	5.9	0.0	0.1	75.1	12.5	11.8	0.7	1.7
50	37.7	5.0	5.0	0.0	0.0	64.0	10.7	10.7	0.0	0.0
60	32.9	4.4	4.4	0.0	0.0	55.9	9.3	10.7	0.0	0.0
70	29.4	3.9	3.9	0.0	0.0	49.8	8.3	10.7	0.0	0.0
80	26.6	3.5	3.5	0.0	0.0	45.0	7.5	10.7	0.0	0.0
90	24.3	3.2	3.2	0.0	0.0	41.1	6.9	10.7	0.0	0.0
100	22.4	3.0	3.0	0.0	0.0	37.9	6.3	10.7	0.0	0.0
110	20.8	2.8	2.8	0.0	0.0	35.2	5.9	10.7	0.0	0.0
120	19.5	2.6	2.6	0.0	0.0	32.9	5.5	10.7	0.0	0.0
130	18.3	2.4	2.4	0.0	0.0	30.9	5.1	10.7	0.0	0.0
140	17.3	2.3	2.3	0.0	0.0	29.2	4.9	10.7	0.0	0.0
150	16.4	2.2	2.2	0.0	0.0	27.6	4.6	10.7	0.0	0.0
160	15.6	2.1	2.1	0.0	0.0	26.2	4.4	10.7	0.0	0.0
170	14.8	2.0	2.0	0.0	0.0	25.0	4.2	10.7	0.0	0.0
180	14.2	1.9	1.9	0.0	0.0	23.9	4.0	10.7	0.0	0.0
190	13.6	1.8	1.8	0.0	0.0	22.9	3.8	10.7	0.0	0.0
200	13.0	1.7	1.7	0.0	0.0	22.0	3.7	10.7	0.0	0.0
210	12.6	1.7	1.7	0.0	0.0	21.1	3.5	10.7	0.0	0.0
220	12.1	1.6	1.6	0.0	0.0	20.4	3.4	10.7	0.0	0.0
230	11.7	1.6	1.6	0.0	0.0	19.7	3.3	10.7	0.0	0.0
240	11.3	1.5	1.5	0.0	0.0	19.0	3.2	10.7	0.0	0.0
250	10.9	1.5	1.5	0.0	0.0	18.4	3.1	10.7	0.0	0.0
260	10.6	1.4	1.4	0.0	0.0	17.8	3.0	10.7	0.0	0.0
270	10.3	1.4	1.4	0.0	0.0	17.3	2.9	10.7	0.0	0.0
280	10.0	1.3	1.3	0.0	0.0	16.8	2.8	10.7	0.0	0.0
290	9.7	1.3	1.3	0.0	0.0	16.3	2.7	10.7	0.0	0.0
			attenuated	5.86				ar Q _{attenuated}	11.82	
		Max. Storag Year Storag		0.1 92.80			Max. Storag year Storag		1.7 93.56	m m

Area ID A110A Available Sub-surface Storage

Total Subsurface Storage (m³) 0.0

Stage Attenuated Areas Storage Sur	mmary									
			Surface	Storage		Surface and Subsurface Storage				
	Stage	Ponding	100-Year HGL	Head (Stage to 100-year HGL)	delta d	V*	V _{acc} **	Q _{release} †	V _{drawdown}	
	(m)	(m ²)	(m)	(m)	(m)	(m ³)	(m ³)	(L/s)	(hr)	
Orifice INV	92.05						0.0	0.0	0.00	
TG	93.55	0.36	93.09	0.46	0.46	0.2	0.2	11.7	0.00	
Max Ponding	93.85	531	93.09	0.76	0.30	54.5	54.7	15.0	1.01	

V=Incremental storage volume
 **V_{acc}=Total surface and sub-surface
 † Q_{release} = Release rate calculated from orifice equation

Orifice Location Total Area C

 CB110A
 Dia
 90

 0.094 ha
 0.80 Rational Method runoff coefficient
 Note: Rational Method Coefficient "C" increased by 25% for 100-year calculations

	5-Year 100-year								-	
t _c	I	Q _{actual} ‡	Q _{release}	Q _{stored}	Vstored	i	Q _{actual} ‡	Q _{release}	Q _{stored}	Vstored
(min)	(mm/hr)	(L/s)	(L/s)	(L/s)	(m°)	(mm/hr)	(L/s)	(L/s)	(L/s)	(m ³)
10	104.2	21.8	12.1	9.7	5.8	178.6	46.6	13.0	33.6	20.2
20	70.3	14.7	12.1	2.6	3.1	120.0	31.3	13.0	18.3	21.9
30	53.9	11.3	11.3	0.0	0.0	91.9	24.0	13.0	11.0	19.7
40	44.2	9.2	9.2	0.0	0.0	75.1	19.6	13.0	6.6	15.8
50	37.7	7.9	7.9	0.0	0.0	64.0	16.7	13.0	3.7	11.0
60	32.9	6.9	6.9	0.0	0.0	55.9	14.6	13.0	1.6	5.6
70	29.4	6.1	6.1	0.0	0.0	49.8	13.0	13.0	0.0	0.0
80	26.6	5.5	5.5	0.0	0.0	45.0	11.7	13.0	0.0	0.0
90	24.3	5.1	5.1	0.0	0.0	41.1	10.7	13.0	0.0	0.0
100	22.4	4.7	4.7	0.0	0.0	37.9	9.9	13.0	0.0	0.0
110	20.8	4.3	4.3	0.0	0.0	35.2	9.2	13.0	0.0	0.0
120	19.5	4.1	4.1	0.0	0.0	32.9	8.6	13.0	0.0	0.0
130	18.3	3.8	3.8	0.0	0.0	30.9	8.1	13.0	0.0	0.0
140	17.3	3.6	3.6	0.0	0.0	29.2	7.6	13.0	0.0	0.0
150	16.4	3.4	3.4	0.0	0.0	27.6	7.2	13.0	0.0	0.0
160	15.6	3.2	3.2	0.0	0.0	26.2	6.9	13.0	0.0	0.0
170	14.8	3.1	3.1	0.0	0.0	25.0	6.5	13.0	0.0	0.0
180	14.2	3.0	3.0	0.0	0.0	23.9	6.2	13.0	0.0	0.0
190	13.6	2.8	2.8	0.0	0.0	22.9	6.0	13.0	0.0	0.0
200	13.0	2.7	2.7	0.0	0.0	22.0	5.7	13.0	0.0	0.0
210	12.6	2.6	2.6	0.0	0.0	21.1	5.5	13.0	0.0	0.0
220	12.1	2.5	2.5	0.0	0.0	20.4	5.3	13.0	0.0	0.0
230	11.7	2.4	2.4	0.0	0.0	19.7	5.1	13.0	0.0	0.0
240	11.3	2.4	2.4	0.0	0.0	19.0	5.0	13.0	0.0	0.0
250	10.9	2.3	2.3	0.0	0.0	18.4	4.8	13.0	0.0	0.0
260	10.6	2.2	2.2	0.0	0.0	17.8	4.7	13.0	0.0	0.0

5-Year Max. Storage Required Est. 5-Year Storage Elevation

5.8 m³ 93.58 m

100-year Max. Storage Required Est. 100-year Storage Elevation 21.9 m³ 93.67 m

Area ID A106 &, A107 Available Sub-surface Storage

Total Subsurface Storage (m³)

Stage Attenuated Areas Storage Summary	

			Surface	Storage		Surface and Subsurface Storage					
	Stage	Ponding	100-Year HGL	Head (Stage to 100-year HGL)	delta d	V*	V _{acc} **	Q _{release} †	V _{drawdown}		
	(m)	(m ²)	(m)	(m)	(m)	(m ³)	(m ³)	(L/s)	(hr)		
Orifice INV	91.37						0.0	0.0	0.00		
TG	93.50	1.4	93.09	0.41	0.41	0.6	0.6	28.7	0.01		
Max Ponding	93.80	1,333.0	93.09	0.71	0.30	137.8	138.3	37.7	1.02		

0.0

* V=Incremental storage volume **V_{scc}=Total surface and sub-surface † Q_{release} = Release rate calculated from orifice equation

Orifice Location Total Area C

 CBMH106
 Dia
 145

 0.448 ha
 0.82 Rational Method runoff coefficient
 Note: Rational Method Coefficient "C" increased by 25% for 100-year calculations

i (mm/hr) 104.2 70.3 53.9 44.2 37.7 32.9 29.4 29.4 26.6 24.3	Q _{actual} ‡ (L/s) 106.7 71.9 55.2 45.2 38.6 33.7 30.1 27.2	Q _{release} (L/s) 31.8 31.8 31.8 31.8 31.8 31.8 31.8 31.8	Q _{stored} (L/s) 74.9 40.2 23.4 13.5 6.8 2.0	V _{stored} (m ³) 44.9 48.2 42.2 32.3 20.3	i (mm/hr) 178.6 120.0 91.9 75.1	Q _{actual} ‡ (L/s) 222.2 149.3 114.3 93.5	Q _{release} (L/s) 37.7 37.7 37.7 37.7	Q _{stored} (L/s) 184.6 111.6 76.7	V _{stored} (m ³) 110.7 133.9 138.0
104.2 70.3 53.9 44.2 37.7 32.9 29.4 26.6	106.7 71.9 55.2 45.2 38.6 33.7 30.1	31.8 31.8 31.8 31.8 31.8 31.8 31.8 31.8	74.9 40.2 23.4 13.5 6.8	44.9 48.2 42.2 32.3	178.6 120.0 91.9 75.1	222.2 149.3 114.3	37.7 37.7 37.7	184.6 111.6 76.7	110.7 133.9 138.0
70.3 53.9 44.2 37.7 32.9 29.4 26.6	71.9 55.2 45.2 38.6 33.7 30.1	31.8 31.8 31.8 31.8 31.8 31.8	40.2 23.4 13.5 6.8	48.2 42.2 32.3	120.0 91.9 75.1	149.3 114.3	37.7 37.7	111.6 76.7	133.9 138.0
53.9 44.2 37.7 32.9 29.4 26.6	55.2 45.2 38.6 33.7 30.1	31.8 31.8 31.8 31.8 31.8	23.4 13.5 6.8	42.2 32.3	91.9 75.1	114.3	37.7	76.7	138.0
44.2 37.7 32.9 29.4 26.6	45.2 38.6 33.7 30.1	31.8 31.8 31.8	13.5 6.8	32.3	75.1				
32.9 29.4 26.6	33.7 30.1	31.8	6.8					55.9	134.1
29.4 26.6	33.7 30.1	31.8	2.0		64.0	79.6	37.7	41.9	125.8
26.6		30.1		7.0	55.9	69.6	37.7	31.9	114.9
	27.2		0.0	0.0	49.8	62.0	37.7	24.3	102.1
24.3	21.2	27.2	0.0	0.0	45.0	56.0	37.7	18.3	88.0
	24.9	24.9	0.0	0.0	41.1	51.2	37.7	13.5	72.9
22.4	22.9	22.9	0.0	0.0	37.9	47.2	37.7	9.5	57.1
20.8	21.3	21.3	0.0	0.0	35.2	43.8	37.7	6.2	40.6
19.5	19.9	19.9	0.0	0.0	32.9	40.9	37.7	3.3	23.6
18.3	18.7	18.7	0.0	0.0	30.9	38.5	37.7	0.8	6.2
17.3	17.7	17.7	0.0	0.0	29.2	36.3	37.7	0.0	0.0
16.4	16.8	16.8	0.0	0.0	27.6	34.4	37.7	0.0	0.0
15.6	15.9	15.9	0.0	0.0	26.2	32.7	37.7	0.0	0.0
14.8	15.2	15.2	0.0	0.0	25.0	31.1	37.7	0.0	0.0
									0.0
									0.0
									0.0
									0.0
									0.0
									0.0
									0.0
									0.0
10.6	10.9	10.9	0.0	0.0	17.8	22.2	37.7	0.0	0.0
	20.8 19.5 18.3 17.3 16.4 15.6	$\begin{array}{c} 20.8 & 21.3 \\ 19.5 & 19.9 \\ 18.3 & 18.7 \\ 17.3 & 17.7 \\ 16.4 & 16.8 \\ 15.6 & 15.9 \\ 14.8 & 15.2 \\ 14.2 & 14.5 \\ 13.6 & 13.9 \\ 13.0 & 13.4 \\ 12.6 & 12.9 \\ 12.1 & 12.4 \\ 11.7 & 12.0 \\ 11.3 & 11.6 \\ 10.9 & 11.2 \\ 10.6 & 10.9 \\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

5-Year Qattenuated	31.78 L/s	100-year Q _{attenuated}	37.65 L/s
5-Year Max. Storage Required	48.2 m ³	100-year Max. Storage Required	138.0 m ³
Est. 5-Year Storage Elevation	93.60 m	Est. 100-year Storage Elevation	93.80 m

Area ID A104A

Available Sub-surface Storage

Total Subsurface Storage (m³) 0.0

Stage Attenuated Areas Storage Summary

Stage Attenuated Areas Storage Su			Surface	Storage		Surface and Subsurface Storage					
	Stage	Ponding	100-Year onding HGL		delta d	V *	V _{acc} **	Q _{release} †	V _{drawdown}		
	(m)	(m ²)	(m)	(m)	(m)	(m ³)	(m ³)	(L/s)	(hr)		
Orifice INV	92.00						0.0	0.0	0.00		
TG	93.50	0.36	93.09	0.41	0.41	0.1	0.1	19.6	0.00		
Max Ponding	93.85	890.6	93.09	0.76	0.35	106.0	106.2	26.7	1.10		

* V=Incremental storage volume **V_{acc}=Total surface and sub-surface † Q_{release} = Release rate calculated from orifice equation

Orifice Location Total Area C

 CB104A
 Dia
 120

 0.276 ha
 0.90 Rational Method runoff coefficient
 Note: Rational Method Coefficient "C" increased by 25% for 100-year calculations

	5-Year					100-year				
t _c (min)	i (mm/hr)	Q _{actual} ‡ (L/s)	Q _{release} (L/s)	Q _{stored} (L/s)	V _{stored} (m ³)	i (mm/hr)	Q _{actual} ‡ (L/s)	Q _{release} (L/s)	Q _{stored} (L/s)	V _{stored} (m ³)
10	104.2	71.9	21.8	50.1	30.1	178.6	136.9	25.1	111.8	67.1
20	70.3	48.5	21.8	26.7	32.1	120.0	92.0	25.1	66.9	80.3
30	53.9	37.2	21.8	15.4	27.8	91.9	70.4	25.1	45.4	81.7
40	44.2	30.5	21.8	8.7	20.9	75.1	57.6	25.1	32.5	78.1
50	37.7	26.0	21.8	4.2	12.7	64.0	49.0	25.1	24.0	71.9
60	32.9	22.7	21.8	1.0	3.5	55.9	42.9	25.1	17.8	64.0
70	29.4	20.3	20.3	0.0	0.0	49.8	38.2	25.1	13.1	55.1
80	26.6	18.3	18.3	0.0	0.0	45.0	34.5	25.1	9.4	45.3
90	24.3	16.8	16.8	0.0	0.0	41.1	31.5	25.1	6.5	34.9
100	22.4	15.5	15.5	0.0	0.0	37.9	29.1	25.1	4.0	24.0
110	20.8	14.4	14.4	0.0	0.0	35.2	27.0	25.1	1.9	12.7
120	19.5	13.4	13.4	0.0	0.0	32.9	25.2	25.1	0.2	1.1
130	18.3	12.6	12.6	0.0	0.0	30.9	23.7	25.1	0.0	0.0
140	17.3	11.9	11.9	0.0	0.0	29.2	22.3	25.1	0.0	0.0
150	16.4	11.3	11.3	0.0	0.0	27.6	21.2	25.1	0.0	0.0
160	15.6	10.7	10.7	0.0	0.0	26.2	20.1	25.1	0.0	0.0
170	14.8	10.2	10.2	0.0	0.0	25.0	19.2	25.1	0.0	0.0
180	14.2	9.8	9.8	0.0	0.0	23.9	18.3	25.1	0.0	0.0
190	13.6	9.4	9.4	0.0	0.0	22.9	17.6	25.1	0.0	0.0
200	13.0	9.0	9.0	0.0	0.0	22.0	16.9	25.1	0.0	0.0
210	12.6	8.7	8.7	0.0	0.0	21.1	16.2	25.1	0.0	0.0
220	12.1	8.3	8.3	0.0	0.0	20.4	15.6	25.1	0.0	0.0
230	11.7	8.1	8.1	0.0	0.0	19.7	15.1	25.1	0.0	0.0
240	11.3	7.8	7.8	0.0	0.0	19.0	14.6	25.1	0.0	0.0
250	10.9	7.5	7.5	0.0	0.0	18.4	14.1	25.1	0.0	0.0
260	10.6	7.3	7.3	0.0	0.0	17.8	13.7	25.1	0.0	0.0

5-Year Max. Storage Required Est. 5-Year Storage Elevation 32.1 m³ 93.61 m 100-year Max. Storage Required Est. 100-year Storage Elevation 81.7 m³ 93.77 m

Area ID A104B

Available Sub-surface Storage

Total Subsurface Storage (m³) 0.0

Stage Attenuated Areas Storage Summary

			Surface			Surface and Subsurface Storage			
				Head					
				(Stage to					
			100-Year	100-year					
	Stage	Ponding	HGL	HGL)	delta d	V*	V _{acc} **	Q _{release} +	V _{drawdown}
	(m)	(m ²)	(m)	(m)	(m)	(m ³)	(m ³)	(L/s)	(hr)
Orifice INV	92.00						0.0	0.0	0.00
TG	93.50	0.36	93.09	0.41	0.41	0.1	0.1	7.7	0.01
Max Ponding	93.80	864	93.09	0.71	0.30	88.2	88.3	10.1	2.43

* V=Incremental storage volume **V_{acc}=Total surface and sub-surface † Q_{release} = Release rate calculated from orifice equation

Orifice	Location

Total Area C

t _c	5-Year i	Q _{actual} ‡	Q _{release}	Q _{stored}	Vstored	100-year i	Q _{actual} ‡	Q _{release}	Q _{stored}	Vstored
(min)	(mm/hr)	(L/s)	(L/s)	(L/s)	(m ³)	(mm/hr)	(L/s)	(L/s)	(L/s)	(m ³)
10	104.2	43.2	8.4	34.9	20.9	178.6	82.3	9.3	73.0	43.
20	70.3	29.2	8.4	20.8	25.0	120.0	55.3	9.3	46.0	55.
30	53.9	22.4	8.4	14.0	25.2	91.9	42.4	9.3	33.0	59.
40	44.2	18.3	8.4	10.0	24.0	75.1	34.7	9.3	25.3	60.
50	37.7	15.6	8.4	7.3	21.8	64.0	29.5	9.3	20.2	60.
60	32.9	13.7	8.4	5.3	19.1	55.9	25.8	9.3	16.4	59.
70	29.4	12.2	8.4	3.8	16.1	49.8	23.0	9.3	13.6	57.
80	26.6	11.0	8.4	2.7	12.8	45.0	20.7	9.3	11.4	54.
90	24.3	10.1	8.4	1.7	9.3	41.1	19.0	9.3	9.6	52.
100	22.4	9.3	8.4	0.9	5.7	37.9	17.5	9.3	8.2	48.
110	20.8	8.6	8.4	0.3	1.9	35.2	16.2	9.3	6.9	45.
120	19.5	8.1	8.1	0.0	0.0	32.9	15.2	9.3	5.8	42.
130	18.3	7.6	7.6	0.0	0.0	30.9	14.2	9.3	4.9	38.
140	17.3	7.2	7.2	0.0	0.0	29.2	13.4	9.3	4.1	34.
150	16.4	6.8	6.8	0.0	0.0	27.6	12.7	9.3	3.4	30.
160	15.6	6.5	6.5	0.0	0.0	26.2	12.1	9.3	2.8	26.
170	14.8	6.2	6.2	0.0	0.0	25.0	11.5	9.3	2.2	22.
180	14.2	5.9	5.9	0.0	0.0	23.9	11.0	9.3	1.7	18.
190	13.6	5.6	5.6	0.0	0.0	22.9	10.6	9.3	1.2	14.
200	13.0	5.4	5.4	0.0	0.0	22.0	10.1	9.3	0.8	9.
210	12.6	5.2	5.2	0.0	0.0	21.1	9.7	9.3	0.4	5.
220	12.1	5.0	5.0	0.0	0.0	20.4	9.4	9.3	0.1	0.
230	11.7	4.8	4.8	0.0	0.0	19.7	9.1	9.3	0.0	0.
240	11.3	4.7	4.7	0.0	0.0	19.0	8.8	9.3	0.0	0.
250	10.9	4.5	4.5	0.0	0.0	18.4	8.5	9.3	0.0	0.
260	10.6	4.4	4.4	0.0	0.0	17.8	8.2	9.3	0.0	0.

5-Year Max. Storage Required Est. 5-Year Storage Elevation

25.2 m³ 93.59 m

100-year Max. Storage Required Est. 100-year Storage Elevation 60.8 m³ 93.71 m

Area ID A108 Available Sub-surface Storage

Total Subsurface Storage (m³) 0.0

Stage Attenuated Areas Storage Summary	

			Surface			Surface and Subsurface Storage					
				Head							
				(Stage to							
			100-Year	100-year							
	Stage	Ponding	HGL	HGL)	delta d	V*	V _{acc} **	Q _{release} +	V _{drawdown}		
	(m)	(m ²)	(m)	(m)	(m)	(m ³)	(m ³)	(L/s)	(hr)		
Orifice INV	92.00						0.0	0.0	0.00		
TG	93.50	0.36	93.09	0.41	0.41	0.1	0.1	7.7	0.01		
Max Ponding	93.80	1,040	93.09	0.71	0.30	106.0	106.1	10.1	2.92		

* V=Incremental storage volume **V_{scc}=Total surface and sub-surface † Q_{release} = Release rate calculated from orifice equation

Orifice Location Total Area C

 CB108A
 Dia
 75

 0.169 ha
 0.90 Rational Method runoff coefficient
 Note: Rational Method Coefficient "C" increased by 25% for 100-year calculations

	5-Year					100-year				
t _c	I	Q _{actual} ‡	Q _{release}	Q _{stored}	Vstored	I	Q _{actual} ‡	Q _{release}	Q _{stored}	Vstored
(min)	(mm/hr)	(L/s)	(L/s)	(L/s)	(m ³)	(mm/hr)	(L/s)	(L/s)	(L/s)	(m ³)
10	104.2	44.0	8.3	35.8	21.5	178.6	83.8	9.1	74.7	44.
20	70.3	29.7	8.3	21.4	25.7	120.0	56.3	9.1	47.2	56.
30	53.9	22.8	8.3	14.5	26.1	91.9	43.1	9.1	34.0	61.
40	44.2	18.7	8.3	10.4	25.0	75.1	35.3	9.1	26.2	62.
50	37.7	15.9	8.3	7.6	22.9	64.0	30.0	9.1	20.9	62.
60	32.9	13.9	8.3	5.7	20.4	55.9	26.2	9.1	17.1	61.
70	29.4	12.4	8.3	4.1	17.4	49.8	23.4	9.1	14.3	60.
80	26.6	11.2	8.3	3.0	14.2	45.0	21.1	9.1	12.0	57.
90	24.3	10.3	8.3	2.0	10.8	41.1	19.3	9.1	10.2	55.
100	22.4	9.5	8.3	1.2	7.2	37.9	17.8	9.1	8.7	52.
110	20.8	8.8	8.3	0.5	3.5	35.2	16.5	9.1	7.4	49.
120	19.5	8.2	8.2	0.0	0.0	32.9	15.4	9.1	6.3	45.
130	18.3	7.7	7.7	0.0	0.0	30.9	14.5	9.1	5.4	42.
140	17.3	7.3	7.3	0.0	0.0	29.2	13.7	9.1	4.6	38.
150	16.4	6.9	6.9	0.0	0.0	27.6	13.0	9.1	3.9	34.
160	15.6	6.6	6.6	0.0	0.0	26.2	12.3	9.1	3.2	30
170	14.8	6.3	6.3	0.0	0.0	25.0	11.7	9.1	2.6	27
180	14.2	6.0	6.0	0.0	0.0	23.9	11.2	9.1	2.1	23.
190	13.6	5.7	5.7	0.0	0.0	22.9	10.7	9.1	1.7	18.
200	13.0	5.5	5.5	0.0	0.0	22.0	10.3	9.1	1.2	14
210	12.6	5.3	5.3	0.0	0.0	21.1	9.9	9.1	0.8	10
220	12.1	5.1	5.1	0.0	0.0	20.4	9.6	9.1	0.5	6.
230	11.7	4.9	4.9	0.0	0.0	19.7	9.2	9.1	0.1	1.
240	11.3	4.8	4.8	0.0	0.0	19.0	8.9	9.1	0.0	0
250	10.9	4.6	4.6	0.0	0.0	18.4	8.6	9.1	0.0	0
260	10.6	4.5	4.5	0.0	0.0	17.8	8.4	9.1	0.0	0

5-Year Qattenuated	8.26 L/s	100-year Q _{attenuated}	9.10 L/s	
5-Year Max. Storage Required	26.1 m ³	100-year Max. Storage Required	62.8 m ³	
Est. 5-Year Storage Elevation	93.57 m	Est. 100-year Storage Elevation	93.68 m	

Area ID A103A Available Sub-surface Storage

Total Subsurface Storage (m³) 0.0

Attenuated Areas Storage Summary	
• •	

Stage Attenuated Areas Storage Su		Surface Storage				Surfa	face and Subsurface Storage				
	Stage	Ponding	100-Year HGL	Head (Stage to 100-year HGL)	delta d	V*	V _{acc} **	Q _{release} †	V _{drawdown}		
	(m)	(m²)	(m)	(m)	(m)	(m³)	(m³)	(L/s)	(hr)		
Orifice INV	92.00						0.0	0.0	0.00		
TG	93.50	0.36	93.09	0.41	0.41	0.1	0.1	18.0	0.00		
Max Ponding	93.85	747	93.09	0.76	0.35	89.1	89.2	24.5	1.01		
		surface and	sub-surface	om orifice eq	uation						

115

Orifice Location	CB103A	Dia	

Total Area C

0.106 ha 0.00 Rational Method runoff coefficient Note: Rational Method Coefficient "C" increased by 25% for 100-year calculations

t _c	i	Q _{actual} ‡	Q _{release}	Q _{stored}	Vstored	100-year i	Q _{actual} ‡	Q _{release}	Q _{stored}	Vstored
(min)	(mm/hr)	(L/s)	⊂release (L/s)	(L/s)	(m ³)	(mm/hr)	⊂ _{actual} . (L/s)	⊂release (L/s)	(L/s)	(m ³)
10	104.2	27.6	18.4	9.2	5.5	178.6	52.6	19.5	33.1	19
20	70.3	18.6	18.4	0.2	0.2	120.0	35.3	19.5	15.8	19
30	53.9	14.3	14.3	0.0	0.0	91.9	27.1	19.5	7.6	13
40	44.2	11.7	11.7	0.0	0.0	75.1	22.1	19.5	2.7	6
50	37.7	10.0	10.0	0.0	0.0	64.0	18.8	19.5	0.0	(
60	32.9	8.7	8.7	0.0	0.0	55.9	16.5	19.5	0.0	0
70	29.4	7.8	7.8	0.0	0.0	49.8	14.7	19.5	0.0	(
80	26.6	7.0	7.0	0.0	0.0	45.0	13.2	19.5	0.0	(
90	24.3	6.4	6.4	0.0	0.0	41.1	12.1	19.5	0.0	(
100	22.4	5.9	5.9	0.0	0.0	37.9	11.2	19.5	0.0	(
110	20.8	5.5	5.5	0.0	0.0	35.2	10.4	19.5	0.0	(
120	19.5	5.2	5.2	0.0	0.0	32.9	9.7	19.5	0.0	(
130	18.3	4.8	4.8	0.0	0.0	30.9	9.1	19.5	0.0	(
140	17.3	4.6	4.6	0.0	0.0	29.2	8.6	19.5	0.0	(
150	16.4	4.3	4.3	0.0	0.0	27.6	8.1	19.5	0.0	(
160	15.6	4.1	4.1	0.0	0.0	26.2	7.7	19.5	0.0	(
170	14.8	3.9	3.9	0.0	0.0	25.0	7.4	19.5	0.0	(
180	14.2	3.8	3.8	0.0	0.0	23.9	7.0	19.5	0.0	(
190	13.6	3.6	3.6	0.0	0.0	22.9	6.7	19.5	0.0	(
200	13.0	3.5	3.5	0.0	0.0	22.0	6.5	19.5	0.0	(
210	12.6	3.3	3.3	0.0	0.0	21.1	6.2	19.5	0.0	(
220	12.1	3.2	3.2	0.0	0.0	20.4	6.0	19.5	0.0	(
230	11.7	3.1	3.1	0.0	0.0	19.7	5.8	19.5	0.0	(
240	11.3	3.0	3.0	0.0	0.0	19.0	5.6	19.5	0.0	(
250	10.9	2.9	2.9	0.0	0.0	18.4	5.4	19.5	0.0	(
260	10.6	2.8	2.8	0.0	0.0	17.8	5.2	19.5	0.0	(

5-Year Qattenuated	18.43 L/s	100-year Qattenuated	19.47 L/s
5-Year Max. Storage Required	5.5 m ³	100-year Max. Storage Required	19.9 m ³
Est. 5-Year Storage Elevation	93.52 m	Est. 100-year Storage Elevation	93.58 m

Area ID A103B Available Sub-surface Storage

Total Subsurface Storage (m³)

Stage Attenuated Areas Storage Summary

-			Surface			Surfa	rface and Subsurface Storage			
	Stage	Ponding	100-Year HGL	Head (Stage to 100-year HGL)	delta d	V*	V _{acc} **	Q _{release} †	V _{drawdown}	
	(m)	(m ²)	(m)	(m)	(m)	(m ³)	(m ³)	(L/s)	(hr)	
Orifice INV	92.00						0.0	0.0	0.00	
TG	93.50	0.36	93.09	0.41	0.41	0.1	0.1	7.7	0.01	
Max Ponding	93.80	751	93.09	0.71	0.30	76.7	76.9	10.1	2.12	

0.0

V=Incremental storage volume
 **V_{acc}=Total surface and sub-surface
 † Q_{release} = Release rate calculated from orifice equation

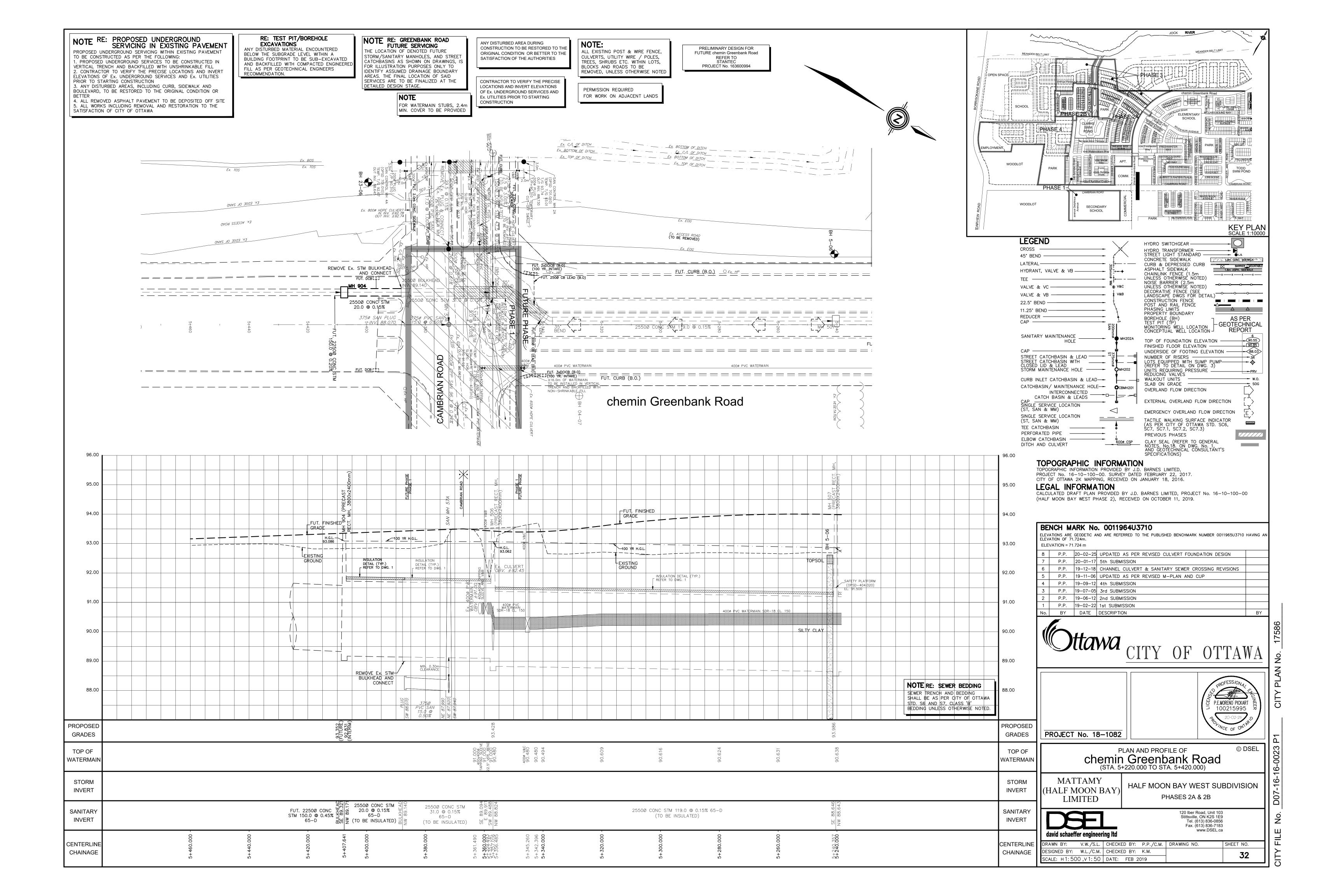
Orifice Location Total Area C

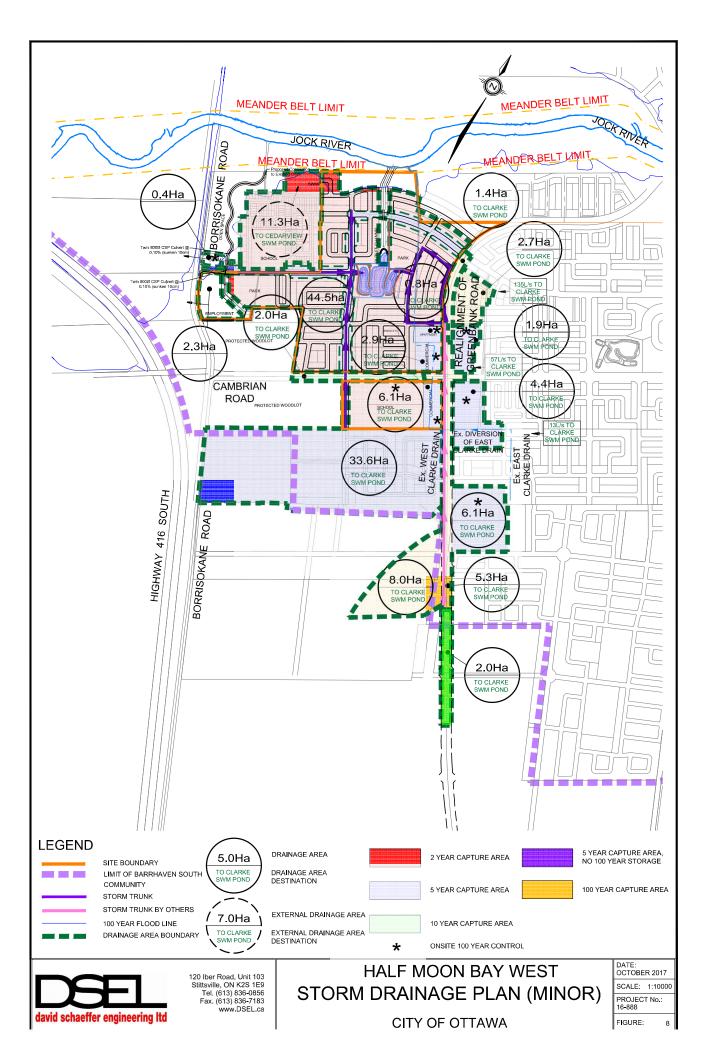
 CB103B
 Dia
 75

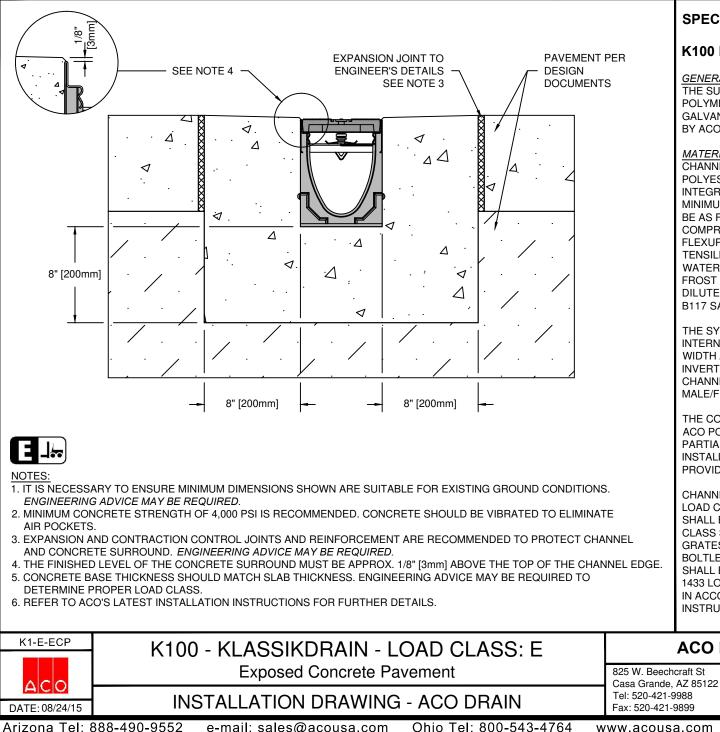
 0.079 ha
 0.90 Rational Method runoff coefficient
 Note: Rational Method Coefficient "C" increased by 25% for 100-year calculations

	5-Year					100-year				
t _c	i	Q _{actual} ‡	Q _{release}	Q _{stored}	V _{stored}	i	Q _{actual} ‡	Q _{release}	Q _{stored}	V _{stored}
(min)	(mm/hr)	(L/s)	(L/s)	(L/s)	(m ³)	(mm/hr)	(L/s)	(L/s)	(L/s)	(m ³)
10	104.2	20.6	7.9	12.7	7.6	178.6	39.2	8.3	30.8	18.5
20	70.3	13.9	7.9	6.0	7.2	120.0	26.3	8.3	18.0	21.6
30	53.9	10.7	7.9	2.7	4.9	91.9	20.2	8.3	11.8	21.3
40	44.2	8.7	7.9	0.8	2.0	75.1	16.5	8.3	8.1	19.6
50	37.7	7.4	7.4	0.0	0.0	64.0	14.0	8.3	5.7	17.1
60	32.9	6.5	6.5	0.0	0.0	55.9	12.3	8.3	3.9	14.1
70	29.4	5.8	5.8	0.0	0.0	49.8	10.9	8.3	2.6	10.8
80	26.6	5.2	5.2	0.0	0.0	45.0	9.9	8.3	1.5	7.3
90	24.3	4.8	4.8	0.0	0.0	41.1	9.0	8.3	0.7	3.7
100	22.4	4.4	4.4	0.0	0.0	37.9	8.3	8.3	0.0	0.0
110	20.8	4.1	4.1	0.0	0.0	35.2	7.7	8.3	0.0	0.0
120	19.5	3.8	3.8	0.0	0.0	32.9	7.2	8.3	0.0	0.0
130	18.3	3.6	3.6	0.0	0.0	30.9	6.8	8.3	0.0	0.0
140	17.3	3.4	3.4	0.0	0.0	29.2	6.4	8.3	0.0	0.0
150	16.4	3.2	3.2	0.0	0.0	27.6	6.1	8.3	0.0	0.0
160	15.6	3.1	3.1	0.0	0.0	26.2	5.8	8.3	0.0	0.0
170	14.8	2.9	2.9	0.0	0.0	25.0	5.5	8.3	0.0	0.0
180	14.2	2.8	2.8	0.0	0.0	23.9	5.2	8.3	0.0	0.0
190	13.6	2.7	2.7	0.0	0.0	22.9	5.0	8.3	0.0	0.0
200	13.0	2.6	2.6	0.0	0.0	22.0	4.8	8.3	0.0	0.0
210	12.6	2.5	2.5	0.0	0.0	21.1	4.6	8.3	0.0	0.0
220	12.1	2.4	2.4	0.0	0.0	20.4	4.5	8.3	0.0	0.0
230	11.7	2.3	2.3	0.0	0.0	19.7	4.3	8.3	0.0	0.0
240	11.3	2.2	2.2	0.0	0.0	19.0	4.2	8.3	0.0	0.0
250	10.9	2.2	2.2	0.0	0.0	18.4	4.0	8.3	0.0	0.0
260	10.6	2.1	2.1	0.0	0.0	17.8	3.9	8.3	0.0	0.0
		5-Year Q	attenuated	7.91			100-yea	r Q _{attenuated}	8.34	
		Max. Storag		7.6			Max. Storag	e Required	21.6	
	Est. 5-	Year Storag	e Elevation	93.53	m	Est. 100-	year Storag	e Elevation	93.30	n

7.91 L/s 5-Year Qattenuated 5-Year Max. Storage Required Est. 5-Year Storage Elevation 7.6 m³ 93.53 m


Summary of Release Rates and Storage Volumes


Control Area	5-Year Release	5-Year	100-Year	100-Year	100-Year
	Rate	Required	Release	Required	Available
		Storage	Rate	Storage	Storage
	(L/s)	(m ³)	(L/s)	(m ³)	(m ³)
U1	3.1	0.0	6.6	0.0	0.0
U2	14.8	0.0	28.3	0.0	0.0
U3	17.7	0.0	37.8	0.0	0.0
METRO	24.2	55.5	31.9	126.8	317.5
RET A	7.5	10.7	10.0	25.3	73.6
A109	9.6	0.0	14.7	3.5	4.3
A110B	5.9	0.1	11.8	1.7	46.9
A110A	12.1	5.8	13.0	21.9	54.7
A104A	21.8	32.1	25.1	81.7	106.2
A104B	8.4	25.2	9.3	60.8	88.3
A108	8.3	26.1	9.1	62.8	106.1
A103A	18.4	5.5	19.5	19.9	89.2
A103B	7.9	7.6	8.3	21.6	76.9
A106 &, A107	31.8	48.2	37.7	138.0	138.3
Total	191.2	216.9	263.1	563.9	1102.0


100-year	Q _{attenuated}
100-year Max. Storage	Required
Est. 100-year Storage	Elevation

Metro Canada Inc. 3831 Cambrian Road Proposed Conditions

Down STM111 STM10 STM108 7 CBMH106 3 STM104 STM104	Area (ha) 0.122 0.211 0.093 0.205 0.243	C (-) 0.50 0.80 0.90 0.85 0.85	0.17 0.08 0.17	0.06 0.23 0.31 0.31	T _c (min) 10.0 11.4 12.6 14.04	l (mm/hr) 104.2 97.1 92.3	Q (L/s) 17.7 62.0 68.9	DIA (mm) 300 375	Slope (%) 0.40 0.40	Length (m) 75	A _{hydraulic} (m ²) 0.071	R (m) 0.075	Velocity (m/s) 0.87	(L/s) 61.2	Time Flow (min) 1.4	(-)
STM110 STM108 7 CBMH106 3 STM104	0.122 0.211 0.093 0.205	0.50 0.80 0.90 0.85	0.17 0.08 0.17	0.23 0.31 0.31	10.0 11.4 12.6	104.2 97.1	17.7	300	0.40	75	0.071	0.075	0.87	61.2		
STM110 STM108 7 CBMH106 3 STM104	0.211 0.093 0.205	0.80	0.17 0.08 0.17	0.23 0.31 0.31	11.4 12.6	97.1	62.0								1.4	0.29
STM110 STM108 7 CBMH106 3 STM104	0.211 0.093 0.205	0.80	0.17 0.08 0.17	0.23 0.31 0.31	11.4 12.6	97.1	62.0								1.4	0.29
STM108 7 CBMH106 6 STM104	0.093	0.90	0.08	0.31	12.6			375	0.40							
STM108 7 CBMH106 6 STM104	0.093	0.90	0.08	0.31	12.6					68.4	0.110	0.094	1.00	110.9	1.1	0.56
6 STM104					14.04		00.9	375	0.30	76.3	0.110	0.094	0.87	96.0		0.72
6 STM104				0.47												
6 STM104				0.17	10.0	104.2	50.4	300	0.50	20.8	0.071	0.075	0.97	68.4	0.4	0.74
STM104			0.19	0.37	10.4	102.3	104.8	375	0.50	12.2	0.110	0.094	1.12	124.0	0.2	0.85
STM104				0.37	10.5											
	1		0.00	0.00	10.0	104.2	0.0	300	0.50	24.3	0.071	0.075	0.97	68.4	0.4	0.00
				0.00	10.4											
STM103	0.442	0.90	0.40	0.77	10.5	101.4	215.9	525	0.50	39.1	0.216	0.131	1.40	304.1	0.5	0.71
				0.77	11.0											
	0.401	0.90	0.36		10.0	104.2	31.9									
				0.36	10.0											
STM108	0.083	0.40	0.03	0.39	10.0	104.2	41.5	375	0.50	39.8	0.110	0.094	1.12	124.0	0.6	0.33
				0.39	10.6											
STM103	0.169	0.90	0.15	0.86	14.0	86.8	207.2	525	0.28	51.5	0.216	0.131	1.05	227.6	0.8	0.91
				0.86	14.9											
STM102	0 190	0.90	0.17	1.80	14 9	84.0	419.4	750	0.30	39.8	0 442	0 188	1.38	609.8	0.5	0.69
STM101			0.00		15.3	82.5	411.7	750	0.20	23.0	0.442	0.188	1.13		0.3	0.83
Fut. MH 904			0.00	1.80	15.7	81.4	406.5	750	0.20	34.2	0.442	0.188	1.13	497.9	0.5	0.82
				1.80	16.19											
	STM102 STM101	STM102 0.190 STM101 Fut. MH 904	STM102 0.190 0.90 STM101 Fut. MH 904	STM102 0.190 0.90 0.17 STM101 0.00 0.00 0.00 Fut. MH 904 0.00 0.00	STM103 0.169 0.90 0.15 0.86 STM102 0.190 0.90 0.17 1.80 STM101 0.00 1.80 1.80 Fut. MH 904 0.00 1.80 1.80	STM103 0.169 0.90 0.15 0.86 14.0 STM102 0.190 0.90 0.17 1.80 14.9 STM101 0.00 1.80 15.3 15.3 14.9 Fut. MH 904 0.00 1.80 15.3 16.19	STM103 0.169 0.90 0.15 0.86 14.0 86.8 STM102 0.190 0.90 0.17 1.80 14.9 84.0 STM101 0.00 1.80 15.3 82.5 84.0 Fut. MH 904 0.00 1.80 15.7 81.4	STM103 0.169 0.90 0.15 0.86 14.0 86.8 207.2 STM102 0.190 0.90 0.17 1.80 14.9	STM103 0.169 0.90 0.15 0.86 14.0 86.8 207.2 525 STM102 0.190 0.90 0.17 1.80 14.9 5 7 50 5 5 7 50 5 7 50 5 7 5 6 1.80 16.19 5 7 50 5 7 50 5 7 50 5 7 50 5 5 7 50 5 7 50 5 7 50 5 7 50 5 7 50 5 7 50 5 7 50 5 5 7 50 5 5 1 1 1 1 1 1 1 1	STM103 0.169 0.90 0.15 0.86 14.0 86.8 207.2 525 0.28 STM102 0.190 0.90 0.17 1.80 14.9 84.0 419.4 750 0.30 STM101 0.00 1.80 15.3 82.5 411.7 750 0.20 Fut. MH 904 0.00 1.80 15.7 81.4 406.5 750 0.20 Image: state	STM103 0.169 0.90 0.15 0.86 14.0 86.8 207.2 525 0.28 51.5 STM102 0.190 0.90 0.17 1.80 14.9 84.0 419.4 750 0.30 39.8 STM101 0.00 1.80 15.3 82.5 411.7 750 0.20 23.0 Fut. MH 904 0.000 1.80 15.7 81.4 406.5 750 0.20 34.2 Image: Control of the state of the st	STM103 0.169 0.90 0.15 0.86 14.0 86.8 207.2 525 0.28 51.5 0.216 STM102 0.190 0.90 0.17 1.80 14.9	STM103 0.169 0.90 0.15 0.86 14.0 86.8 207.2 525 0.28 51.5 0.216 0.131 STM102 0.190 0.90 0.17 1.80 14.9 84.0 419.4 750 0.30 39.8 0.442 0.188 STM101 0.00 1.80 15.3 82.5 411.7 750 0.20 23.0 0.442 0.188 Fut. MH 904 0.000 1.80 15.7 81.4 406.5 750 0.20 34.2 0.442 0.188 Fut. MH 904 0.00 1.80 16.19	STM103 0.169 0.90 0.15 0.86 14.0 86.8 207.2 525 0.28 51.5 0.216 0.131 1.05 STM102 0.190 0.90 0.17 1.80 14.9 50 0.30 39.8 0.442 0.188 1.38 STM101 0.00 1.80 15.3 82.5 411.7 750 0.20 23.0 0.442 0.188 1.13 Fut. MH 904 0.00 1.80 15.7 81.4 406.5 750 0.20 34.2 0.188 1.13 Fut. MH 904 1 1.80 16.19 <	STM103 0.169 0.90 0.15 0.86 14.0 86.8 207.2 525 0.28 51.5 0.216 0.131 1.05 227.6 STM102 0.190 0.90 0.17 1.80 14.9 84.0 419.4 750 0.30 39.8 0.442 0.188 1.38 609.8 STM101 0.00 1.80 15.7 81.4 406.5 750 0.20 23.0 0.442 0.188 1.13 497.9 Fut. MH 904 0.00 1.80 16.19	STM103 0.169 0.90 0.15 0.86 14.0 86.8 207.2 525 0.28 51.5 0.216 0.131 1.05 227.6 0.88 STM102 0.190 0.90 0.17 1.80 14.9 84.0 419.4 750 0.30 39.8 0.442 0.188 1.38 609.8 0.5 STM101 0.00 1.80 15.7 81.4 406.5 750 0.20 23.0 0.442 0.188 1.13 497.9 0.3 Fut. MH 904 0.00 1.80 16.19

SPECIFICATION CLAUSE

K100 KLASSIKDRAIN - LOAD CLASS E

GENERAL

THE SURFACE DRAINAGE SYSTEM SHALL BE POLYMER CONCRETE K100 CHANNEL SYSTEM WITH GALVANIZED STEEL EDGE RAILS AS MANUFACTURED BY ACO POLYMER PRODUCTS, INC.

MATERIALS

MATERIALS								
CHANNELS SHALL BE MANUFACTURED FROM								
POLYESTER RESIN POLYMER CONCRETE WITH AN								
INTEGRALLY CAST-IN GALVANIZED STEEL EDGE RAIL.								
MINIMUM PROPERTIES OF POLYMER CONCRETE WILL								
BE AS FOLLOWS:								
COMPRESSIVE STRENGTH:	14,000 PSI							
FLEXURAL STRENGTH:	4,000 PSI							
TENSILE STRENGTH:	1,500 PSI							
WATER ABSORPTION:	0.07%							
FROST PROOF	YES							
DILUTE ACID AND ALKALI RESISTANT	YES							
B117 SALT SPRAY TEST COMPLIANT	YES							
THE SYSTEM SHALL BE 4" (100mm) NOMI	NAL							
INTERNAL WIDTH WITH A 5.1" (130mm) OV	/ERALL							

WIDTH AND A BUILT-IN SLOPE OF 0.5%. CHANNEL INVERT SHALL HAVE DEVELOPED "V" SHAPE. ALL CHANNELS SHALL BE INTERLOCKING WITH A MALE/FEMALE JOINT.

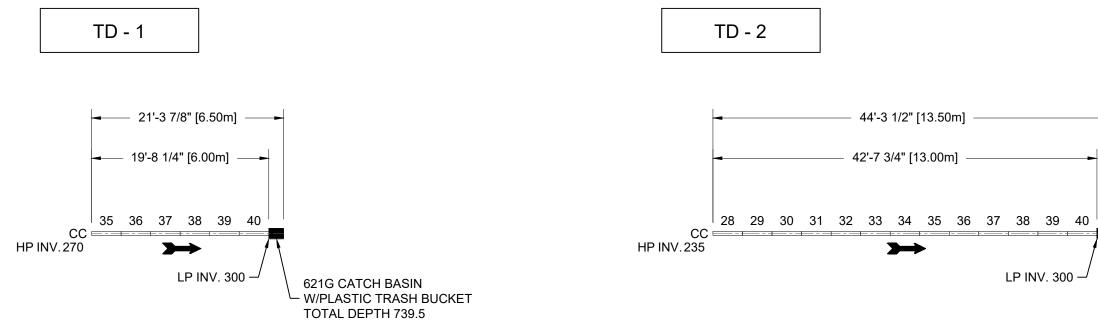
THE COMPLETE DRAINAGE SYSTEM SHALL BE BY ACO POLYMER PRODUCTS, INC. ANY DEVIATION OR PARTIAL SYSTEM DESIGN AND/OR IMPROPER INSTALLATION WILL VOID ANY AND ALL WARRANTIES PROVIDED BY ACO POLYMER PRODUCTS, INC.

CHANNEL SHALL WITHSTAND LOADING TO PROPER LOAD CLASS AS OUTLINED BY EN 1433. GRATE TYPE SHALL BE APPROPRIATE TO MEET THE SYSTEM LOAD CLASS SPECIFIED AND INTENDED APPLICATION. GRATES SHALL BE SECURED USING 'QUICKLOK' BOLTLESS LOCKING SYSTEM. CHANNEL AND GRATE SHALL BE CERTIFIED TO MEET THE SPECIFIED EN 1433 LOAD CLASS. THE SYSTEM SHALL BE INSTALLED IN ACCORDANCE WITH THE MANUFACTURER'S INSTRUCTIONS AND RECOMMENDATIONS.

ACO Polymer Products, Inc. 9470 Pinecone Dr.

Mentor, OH 44060

Tel: 440-639-7230


Fax: 440-639-7235

n	South	Carolina	Tel:	800-	-543-	4764

4211 Pleasant Rd. Fort Mill. SC 29708

Tel: 440-639-7230

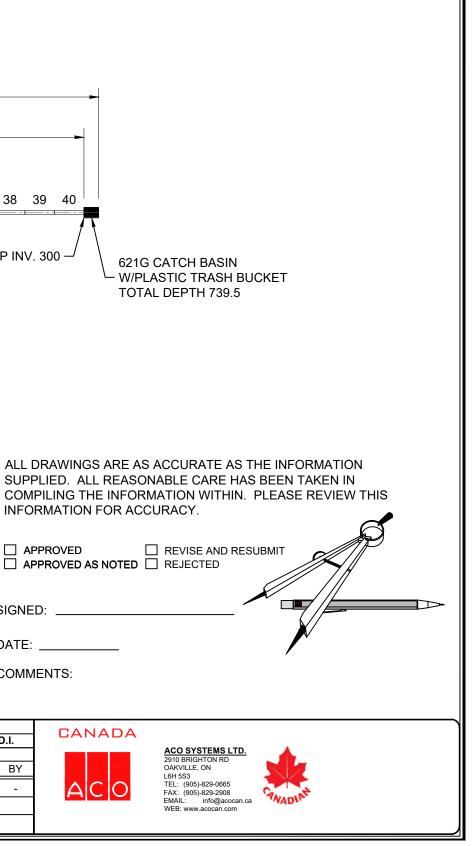
Fax: 803-802-1063

GENERAL NOTES

- 1. IT IS CUSTOMERS RESPONSIBILITY TO ENSURE THAT EACH PRODUCT IS FIT FOR IT'S INTENDED PURPOSE AND THAT THE ACTUAL CONDITIONS ARE SUITABLE.
- 2. IT IS THE CUSTOMERS RESPONSIBILITY TO FOLLOW ACO POLYMER PRODUCTS, INC. INSTALLATION INSTRUCTIONS FOR EACH PRODUCT. SEEK ENGINEERING ADVISE FOR INSTALLATIONS NOT ILLUSTRATED IN THE INSTALLATION GUIDELINES.
- 3. FOR FURTHER PRODUCT INFORMATION, CUT SHEETS, SPECIFICATIONS AND INSTALLATION INSTRUCTIONS, PLEASE VISIT US AT OUR WEBSITE: WWW.ACOUSA.COM.
- ACO IS NOT RESPONSIBLE TO ENSURE PROPER FLOW TO SYSTEMS OUTLETS OR 4. CATCH BASINS, REFER TO GRADING PLANS. ALL TRENCH DRAIN LAYOUTS ARE DESIGNED AT 0.0% LONGITUDINAL PAVEMENT SLOPE UNLESS OTHERWISE NOTED.

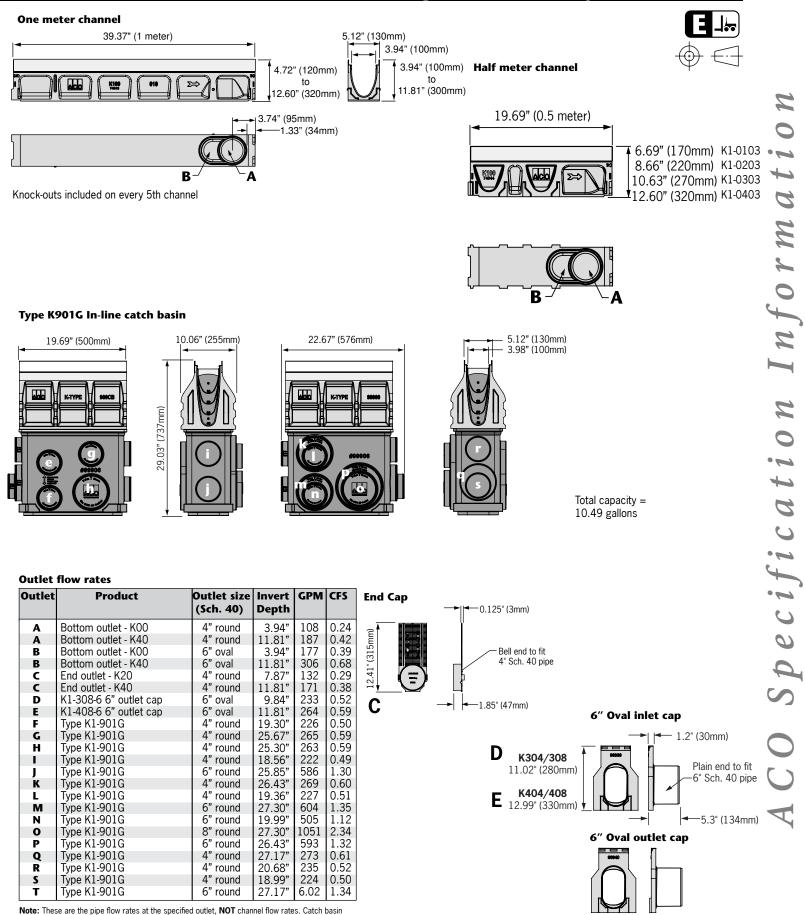
TRENCH NOTES

- 1. ALL FABRICATIONS TO BE COMPLETED BY INSTALLING CONTRACTOR.
- 2. DIMENSIONS ARE FROM OUTSIDE TO OUTSIDE


APPROVED

SIGNED:

DATE:


COMMENTS:

LEGEND	METR	O GREENBANK ON	TRENCI SYSTEM(S) K100	CANA	
CHANNEL CC = CLOSING CAP CENTER LINE OC = OUTLET CAP	DRAWN BY: KZ	EMAIL: kyle.zheng@aco.com	NO. DESCRIPTION	REVISIONS DATE BY	
OF CHANNEL LP = LOW POINT	DATE 08-13-2020	CHECKED BY:	<u>A</u> -		AC
VOA = VERTICAL OUTLET ADAPTER BO = BOTTOM OUTLET BAU = BRICKSLOT ACCESS UNIT	SHEET NO. SHEET 1 OF 1	DESIGN SERV. NO. REV. 920-558			-

ACO DRAIN

KlassikDrain - K100 Galvanized steel edge rail channel system

Note: These are the pipe flow rates at the specified outlet, NOT channel flow rates. Catch bas flow rates are without trash bucket - using trash bucket reduces flow.

ACO DRAIN KlassikDrain - K100 Galvanized steel edge rail channel system

	~
	7
	0
•	
1	1
	U
	Ш
	~
	0
5	5
	1
	7
	0
	1
	1
	0
	C
•	
	5
•	
	C
	0
,	9
C	2
	C
Y	Y

	Part	Inve	ert	Weight		Part	Inv	ert	Weight
Description	No.	Inches®	mm®	Lbs.	Description	No.	Inches [®]	mm₽	Lbs.
K1-00 Neutral channel - 39.37" (1m) ⁰	74041	3.94	100	28.1	K1-28 Sloped channel - 39.37" (1m)	74028	9.45	240	49.8
K1-1 Sloped channel - 39.37" (1m)	74001	4.13	105	28.1	K1-29 Sloped channel - 39.37" (1m)	74029	9.65	245	50.6
K1-2 Sloped channel - 39.37" (1m)	74002	4.33	110	28.9	K1-30 Sloped channel - 39.37" (1m)®	74030	9.84	250	51.4
K1-3 Sloped channel - 39.37" (1m)	74003	4.53	115	29.7	K1-030 Neutral channel - 39.37" (1m) ^D	74047	9.84	250	51.4
K1-4 Sloped channel - 39.37" (1m)	74004	4.72	120	30.5	K1-0303 Neutral channel - 19.69" (0.5m) ^D	74048	9.84	250	24.0
K1-5 Sloped channel - 39.37" (1m) $^{\oplus}$	74005	4.92	125	31.3	K1-31 Sloped channel - 39.37" (1m)	74031	10.04	255	52.2
K1-6 Sloped channel - 39.37" (1m)	74006	5.12	130	32.1	K1-32 Sloped channel - 39.37" (1m)	74032	10.24	260	53.0
K1-7 Sloped channel - 39.37" (1m)	74007	5.31	135	32.9	K1-33 Sloped channel - 39.37" (1m)	74033	10.43	265	53.8
K1-8 Sloped channel - 39.37" (1m)	74008	5.51	140	33.7	K1-34 Sloped channel - 39.37" (1m)	74034	10.63	270	54.6
K1-9 Sloped channel - 39.37" (1m)	74009	5.71	145	34.5	K1-35 Sloped channel - 39.37" (1m) ^D	74035	10.83	275	55.4
K1-10 Sloped channel - 39.37" (1m) ^D	74010	5.91	150	35.3	K1-36 Sloped channel - 39.37" (1m)	74036	11.02	280	56.2
K1-010 Neutral channel - 39.37" (1m) ^D	74043	5.91	150	35.3	K1-37 Sloped channel - 39.37" (1m)	74037	11.22	285	57.0
K1-0103 Neutral channel - 19.69" (0.5m) ^D	74044	5.91	150	17.0	K1-38 Sloped channel - 39.37" (1m)	74038	11.42	290	57.9
K1-11 Sloped channel - 39.37" (1m)	74011	6.10	155	36.1	K1-39 Sloped channel - 39.37" (1m)	74039	11.61	295	58.7
K1-12 Sloped channel - 39.37" (1m)	74012	6.30	160	36.9	K1-40 Sloped channel - 39.37" (1m) ^D	74040	11.81	300	59.5
K1-13 Sloped channel - 39.37" (1m)	74013	6.50	165	37.7	K1-040 Neutral channel - 39.37" (1m) ^D	74049	11.81	300	59.5
K1-14 Sloped channel - 39.37" (1m)	74014	6.69	170	38.5	K1-0403 Neutral channel - 19.69'' (0.5m) ^D	74050	11.81	300	27.5
K1-15 Sloped channel - 39.37" (1m) ^D	74015	6.89	175	39.3	K1-901G In-line catch basin - 19.69" (0.5m) [®]	94608	28.81	701.9	52.6
K1-16 Sloped channel - 39.37" (1m)	74016	7.09	180	40.1	K1-621G catch basin - 19.69" (0.5m) [®]	94617	28.84	732.5	55.8
K1-17 Sloped channel - 39.37" (1m)	74017	7.28	185	40.9	K1-631G catch basin - 19.69" (0.5m)®	94631	40.84	1037.4	65.8
K1-18 Sloped channel - 39.37" (1m)	74018	7.48	190	41.7	K1-Series 600 Optional plastic riser	99902	-	-	10.0
K1-19 Sloped channel - 39.37" (1m)	74019	7.68	195	42.5	Foul air trap - fits both 900 & 600 series basins	90854	-	-	1.2
K1-20 Sloped channel - 39.37" (1m) ^D	74020	7.87	200	43.4	K1-304-6 6" Inlet Cap	96839	9.84	250	5.2
K1-020 Neutral channel - 39.37" (1m) ^D	74045	7.87	200	43.4	K1-308-6 6" Outlet Cap	96840	9.84	250	5.0
K1-0203 Neutral channel - 19.69" (0.5m) ^D	74046	7.87	200	20.5	K1-404-6 6" Inlet Cap	96834	11.81	300	6.0
K1-21 Sloped channel - 39.37" (1m)	74021	8.07	205	44.2	K1-408-6 6" Outlet Cap	96836	11.81	300	5.8
K1-22 Sloped channel - 39.37" (1m)	74022	8.27	210	45.0	Universal end cap	96822	11.81	300	0.4
K1-23 Sloped channel - 39.37" (1m)	74023	8.46	215	45.8	Debris strainer for 4" bottom knockout	93488	-	-	0.2
K1-24 Sloped channel - 39.37" (1m)	74024	8.66	220	46.6	4" Oval to 6" round outlet adapter	95140	-	-	1.1
K1-25 Sloped channel - 39.37" (1m) ^D	74025	8.86	225	47.4	K1-Installation device	97477	-	-	2.8
K1-26 Sloped channel - 39.37" (1m)	74026	9.06	230	48.2	Grate removal tool	01318	-	-	0.3
K1-27 Sloped channel - 39.37" (1m)	74027	9.25	235	49.0	K1-QuickLok locking bar	02899	-	-	0.1

Notes:

1. This channel offers a bottom knockout feature; 4" round/6" oval.

2. Inverts shown are for the male end; for female invert depth subtract 5mm (~0.2") from the male invert (except for neutral channels, where it will be same as male invert).

To calculate the overall channel depth add 20mm (≈0.8") to invert depth. 3. This catch basin kit includes a polymer concrete top, removable Quicklok locking bar, trash bucket and plastic base. Select an appropriate grate.

4. This catch basin kit includes a polymer concrete top, removable Quicklok locking bar, deep trash bucket, plastic riser and plastic base. Select an appropriate grate.

Specifications

General

The surface drainage system shall be ACO Drain K100 complete with gratings secured with 'QuickLok' locking as manufactured by ACO, Inc. or approved equal.

Materials

The trench system bodies shall be manufactured from polyester polymer concrete with the minimum properties as follows:

Water absorption	0.07%
Frost proof	YES
Salt proof	YES
Dilute acid and alkali resistant	YES

The nominal clear opening shall be 4" (100mm) with overall width of 5.12" (130mm). Pre-cast units shall be manufactured with either an invert slope of 0.5% or with neutral invert and have a wall thickness of at least 0.50" (13mm). Each unit will feature a partial radius in the trench bottom and a male to female interconnecting end profile. Units shall have horizontal cast in anchoring keys on the outside wall to ensure maximum mechanical bond to the surrounding bedding material and pavement surface. The galvanized steel edge rail will be integrally

cast in by the manufacturer to ensure maximum homogeneity between polymer concrete body and edge rail. Each edge rail shall be at least 3/32" (2.5mm) thick.

Grates

Grates shall be specified. See separate ACO Spec Info grate sheets for details. After removal of grates and 'QuickLok' bar there shall be uninterrupted access to the trench to aid maintenance.

Installation

The trench drain system shall be installed in accordance with the manufacturer's installation instructions and recommendations.

ACO, Inc.

Northeast Sales Office 9470 Pinecone Drive Mentor, OH 44060 Tel: (440) 639-7230 Toll free: (800) 543-4764 Fax: (440) 639-7235

West Sales Office 825 W. Beechcraft St. Casa Grande, AZ 85122 Tel: (520) 421-9988 Toll Free: (888) 490-9552 Fax: (520) 421-9899

Southeast Sales Office 4211 Pleasant Road Fort Mill, SC 29708 Toll free: (800) 543-4764 Fax: (803) 802-1063

Electronic Contact: info@ACODrain.us www.ACODrain.us

C April 2018 ACO, Inc. This information is believed to be accurate but it is not guaranteed to be so. We cannot assume liability for results that buyer obtains with our product since conditions of use are beyond the control of the company. It is the customer's responsibility to evaluate suitability and safety of product for his own use. ACO, Inc reserves the right to change the product and specifications without notice. v1.0

April 2018

Type 461Q Ductile iron slotted grate

Product Features

- Certified to EN 1433 Load Class E 135,000 lbs 2,788 psi
- Uses 'QuickLok' boltless locking system
- Suitable for use with K100, KS100, C100, H100-8, H100-10, H100K-8 H100KS-8, and NW100 channels
- Manufactured from ductile iron to ASTM A 536-84 Grade 65-45-12
- · E- coated for improved resistance against rust
- Bicycle Tire Penetration Resistant to AS 3996 2006

Specifications

General

The surface drainage system shall be ACO Drain K100, KS100, C100, H100-8, H100-10, H100K-8, H100KS-8, and NW100 channels* complete with ACO Type 461Q Ductile iron slotted grate with 'QuickLok' locking as manufactured by ACO Polymer Products, Inc. or similar approved.

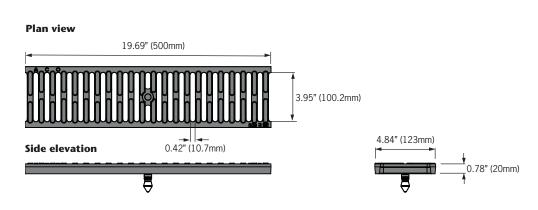
Materials

The covers shall be manufactured from ductile iron and have *minimum* properties as follows:

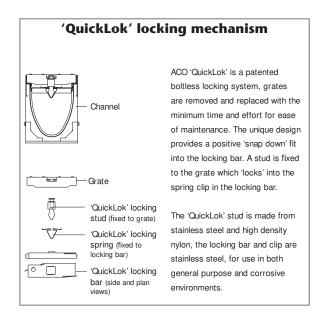
- Independently certified to meet Load Class E to EN 1433 - 135,000 lbs - 2,788 psi
- Ductile iron to ASTM A 536-84 Grade 65-45-12
- Intake area of 46.94 sq. in. (302.84 cm²) per half meter of grate

The overall width of 4.84" (123mm) and overall length of 19.69" (500mm). Slots measure at a maximum of 3.95" (100.2mm).

Installation


The trench drain system and grates shall be installed in accordance with the manufacturer's installation instructions and recommendations.

* delete as appropriate



ACO DRAIN Type 461Q Ductile iron slotted grate

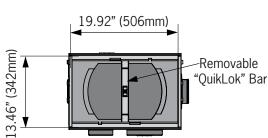
U 0 Informati ACO Specification

Description	Part No.	Length inches (mm)	Width inches <i>(mm)</i>	Weight Ibs.
QuickLok grate Type 461Q Ductile iron slotted grate QuickLok locking bar QuickLok grate removal tool	96752 02899 01318	19.69 (<i>500</i>) - -	4.84 (<i>123</i>) - -	10.2 0.1 0.3

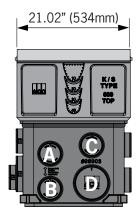
ACO Polymer Products, Inc.

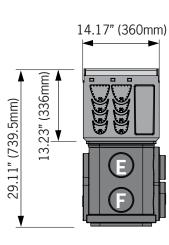
Northeast Sales Office P.O. Box 245 Chardon, OH 44024 Tel: (440) 285-7000 Toll free: (800) 5434764 Fax: (440) 285-7005 West Sales Office P.O. Box 12067 Casa Grande, AZ 85130 Tel: (520) 421-9988 Toll Free: (888) 490-9552 Fax: (520) 421-9899 **Southeast Sales Office** 4211 Pleasant Road Fort Mill, SC 29708 Toll free: (800) 543-4764 Fax: (803) 802-1063 Follow us on

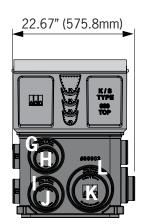
Electronic Contact: info@ACODrain.us www.ACODrain.us

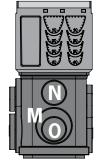


√ E _ / ~


ACO DRAIN

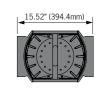

K1-621G Catch Basin

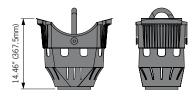

K1-621G Catch Basin



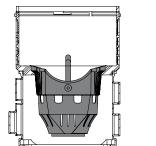
-Removable

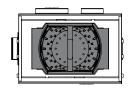
Outlet flow rates


Outlet	Product	Outlet size (Sch. 40)	Invert Depth	GPM	CFS
Α	Type K1-621G	4" round	21.29"	239	0.53
В	Type K1-621G	4" round	27.79"	276	0.62
C	Type K1-621G	4" round	19.72"	229	0.51
D	Type K1-621G	6" round	27.79"	610	1.36
E	Type K1-621G	4" round	19.84"	230	0.51
F	Type K1-621G	4" round	26.34"	269	0.60
G	Type K1-621G	6" round	20.62"	514	1.15
н	Type K1-621G	4" round	20.07"	231	0.52
I	Type K1-621G	6" round	27.76"	609	1.36
J	Type K1-621G	4" round	27.19"	273	0.61
K	Type K1-621G	6" round	27.19"	602	1.34
L	Type K1-621G	8" round	27.76"	1061	2.36
м	Type K1-621G	6" round	26.28"	591	1.32
Ν	Type K1-621G	4" round	19.15"	225	0.50
0	Type K1-621G	4" round	25.86"	266	0.59


Notes:

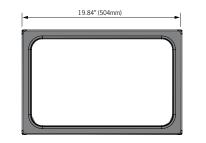
1. These are the pipe flow rates at the specified outlet, **NOT** channel flow rates. *Flow rates without trash bucket - using trash bucket or filter bag reduces flow rates.


2. 4" diameter foul air trap, part# 90854, can be fitted to catch basin base at outlet positions A/B and E/F


Trash Bucket

Note: Openings in trash bucket are 35.7"2 (23,033mm²)

Note: Trash bucket position within K1-621G catch basin body and base


N

ACO DRAIN K1-621G Catch Basin

Description	Part No.	Invert inches	Depth mm
Type K1-621G Catch basin assembly - top, removable "QuikLok" bar, trash bucket & base	94617	28.86	733.2
Catch Basin Components			
Type 600 optional riser Foul air trap - fits both Type 900 & Type 600 basins QuickLok grate removal tool	99902 90854 01318	40.86 - -	1038 - -

Optional riser detail (Part# 99902)

Weight

lbs.

55.8

10.0 1.2 0.3

Notes:

1. Riser can be cut down in 1" (25mm) increments.

2. Addition of riser will alter the outflow rates of base as shown on table overleaf.

Specifications

General

The catch basin shall be ACO Drain K1-621G Catch Basin - comprising of top section, trash bucket and base as manufactured by ACO, Inc. or similar approved.

Materials

The top unit body shall be manufactured from polyester polymer concrete with minimum properties as follows:

Compressive strength:	14.000 psi
Flexural strength:	4,000 psi
Water absorption	0.07%
Frost proof	YES

Salt proof YES Dilute acid and alkali resistant YES

The nominal clear opening shall be 13.46" (342mm) wide by 19.92" (506mm) long. Overall width of 22.70" (575.8mm) by 15.38" (390.6mm) long. Type K1-621G catch basin assembly has overall depth of 29.11" (739.5mm). Polymer concrete top units shall incorporate a cast in galvanized steel frame manufactured with drillouts for channel connection and have a wall thickness of at least 0.59" (15mm). Top units shall have horizontal cast in anchoring key features on the outside to ensure maximum mechanical bond to the surrounding bedding material and pavement surface. The base unit shall be a LLDPE plastic molding and incorporate molded plastic pipe stubbs to facilitate pipe connection.

Optional Riser

Optional riser can be useful between polymer concrete top unit and LLDPE base unit. Use of riser is determined by acess and local building codes.

Grates

Grates shall be specified. See separate ACO Spec Info grate sheets for details. After removal of grates and 'QuickLok' bar there shall be uninterrupted access to the catch basin to aid maintenance. Accepts all half-meter ACO K300 Drainlok grates or K300 Quicklok grates with optional QL bar.

Installation

The trench drain/catch basin system shall be installed in accordance with the manufacturer's installation instructions and recommendations.

ACO, Inc.

Northeast Sales Office 9470 Pinecone Drive Mentor, OH 44060 Tel: (440) 639-7230 Toll free: (800) 543-4764 Fax: (440) 639-7235 West Sales Office 825 W. Beechcraft St. Casa Grande, AZ 85122 Tel: (520) 421-9988 Toll Free: (888) 490-9552 Fax: (520) 421-9899 **Southeast Sales Office** 4211 Pleasant Road Fort Mill, SC 29708 Toll free: (800) 543-4764 Fax: (803) 802-1063

Electronic Contact: info@ACODrain.us www.ACODrain.us

April 2018

www.ACODrain.us

Product Features

- Certified to EN 1433 Load Class E 135,000 lbs 2,788 psi
- Uses 'QuickLok' boltless locking system
- Suitable for use with K300, KS300, H300K-13, and H300KS-13 channels and 621G, 621S, 631G, 631S catch basins
- Manufactured from ductile iron to ASTM A 536-84 Grade 65-45-12
- · E- coated for improved resistance against rust
- · Bicycle Tire Penetration Resistant to AS 3996 2006

Specifications

General

The surface drainage system shall be ACO Drain K300, KS300, H300K-13, and H300KS-13, channels* and 621G, 621S, 631G, and 631S catch basins complete with ACO Type 861Q Ductile iron slotted grate with 'QuickLok' locking as manufactured by ACO Polymer Products, Inc. or similar approved.

Materials

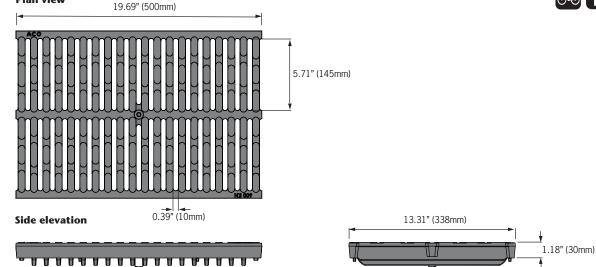
The covers shall be manufactured from ductile iron and have *minimum* properties as follows:

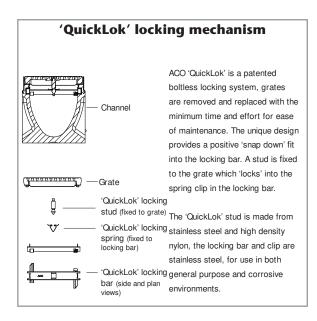
- Independently certified to meet Load Class E to EN 1433 - 135,000 lbs - 2,788 psi
- Ductile iron to ASTM A 536-84 Grade 65-45-12
- Intake area of 128.71 sq. in. (803.39 cm²) per half meter of grate

The overall width of 13.31" (338mm) and overall length of 19.69" (500mm). Slots measure at a maximum of 5.71" (145mm).

Installation

The trench drain system and grates shall be installed in accordance with the manufacturer's installation instructions and recommendations.


* delete as appropriate


ACO DRAIN Type 861Q Ductile iron slotted grate

Plan view

Description	Part No.	Length inches (mm)	Width inches (mm)	Weight Ibs.
QuickLok grate				
Type 861Q Ductile iron slotted grate	10431	19.69 (<i>500</i>)	13.35 (<i>339</i>)	48.0
QuickLok locking bar	10458	-	-	0.5
QuickLok grate removal tool	01318	-	-	0.3

ACO Polymer Products, Inc.

Northeast Sales Office

P.O. Box 245 Chardon, OH 44024 Tel: (440) 285-7000 Toll free: (800) 543-4764 Fax: (440) 285-7005

Apr 13/2

West Sales Office P.O. Box 12067 Casa Grande, AZ 85130 Tel: (520) 421-9988 Toll Free: (888) 490-9552 Fax: (520) 421-9899

Southeast Sales Office 4211 Pleasant Road Fort Mill, SC 29708 Toll free: (800) 543-4764 Fax: (803) 802-1063

Follow us on E. B 8

Electronic Contact: info@ACODrain.us www.ACODrain.us

SPEC

Trench Hydraulic Calculation for ACO Drainage Systems ACO Technical Services

Project Project Street	ct Details Name Number Address, City ip code	: METRO : 920 558 : :	GREENI	BANK							e: 2020-08-13 e: 1 of 5
Street	any et Name Address, City ip code										
Input Locatio	Data	:									
	Catchment Desc			Area	С	D	F	 [mmm/bw]	Catch	ment Surface Type	Installation
1	TD1			[m²] 168.0	0.90	[min] 0	[a] 0	[mm/hr] 150	Aspha	alt	E600
2	TD2			336.0		0	0	150	Aspha		E600
					_						
							1				
Chann	el type		Catch	ment (s)	Catchme	nt	Cm	Total run l	onath	Applicat	ion
	ertype		Catchi	inent (3)	Area [m	2]		[m]	engin	Applica	
TD1			1		168.00		0.90	6.50			
TD2			2		336.00		0.90	13.50			
Notes	5										
	YSTEMS LTD.			Pho	oared By : ne :	905-829	-0665				
1 0000	BRIGHTON RD			Ema	ail ·	KYI F.7	HENG	@ACO.CON	Λ		

Website

: WWW.ACOCAN.CA

L6H5S3 OAKVILLE, ONTARIO

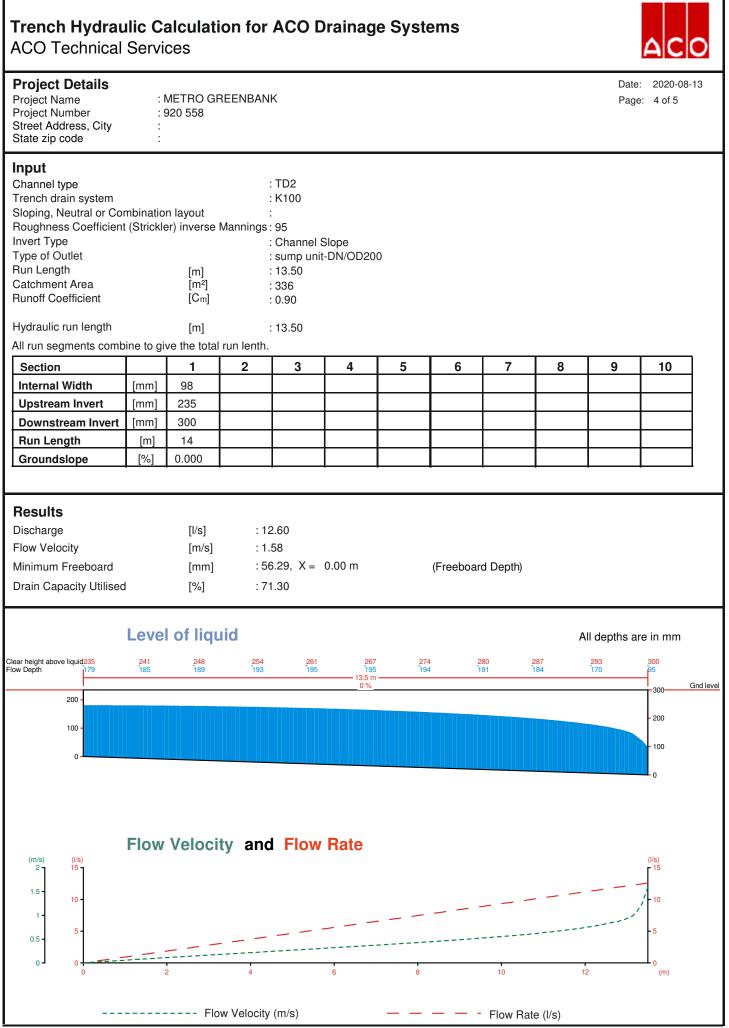
Copyright © ACO Tiefbau Vertrieb GmbH

Copyright © ACO Tiefbau Vertrieb GmbH

Trench Hydraulic Calculation for ACO Drainage Systems ACO Technical Services

Project Details Project Name Project Number Street Address, City State zip code		: METRO GREENBANK : 920 558 : :	2020-08-13 3 of 5
Channel type		: TD1	
Trench drain system		: K100	
Sloping, Neutral or Combi	nation layout	:	
Type of Outlet		: sump unit-DN/OD200	
Run Length	[m]	: 6.50	
Hydraulic run length	[m]	: 6.50	

Notes


Installation

Legend LC = Load Class according to EN1433 (A15; B125; C250; D400; E600; F900) SU = Catch Basin AU = Access Unit

AO = Access OffitVO = Vertical OutletFO = Free OutflowEO = End OutletLO = Lateral OutletA = AdapterP Plete

P = Plate

Copyright © ACO Tiefbau Vertrieb GmbH

Copyright © ACO Tiefbau Vertrieb GmbH

Trench Hydraulic Calculation for ACO Drainage Systems ACO Technical Services

2020-08-13

Project Details Project Name Project Number Street Address, City State zip code		: METRO GREENBANK : 920 558 : :	Date: Page:	2020-08 5 of 5
Channel type		: TD2		
Trench drain system		: K100		
Sloping, Neutral or Combination layout		:		
Type of Outlet		: sump unit-DN/OD200		
Run Length	[m]	: 13.50		
Hydraulic run length	[m]	: 13.50		

Notes

Installation

Legend LC = Load Class according to EN1433 (A15; B125; C250; D400; E600; F900) SU = Catch Basin

VO = Access OnliVO = Vertical OutletFO = Free OutflowEO = End OutletLO = Lateral OutletA = Adapter

P = Plate

Copyright © ACO Tiefbau Vertrieb GmbH

ACO KlassikDrain - K100 w/ 461Q – Specifications:

General

The surface drainage system shall be ACO KlassikDrain K100 complete with Type 461Q class "E" slotted ductile Iron gratings secured with 'QuickLok' boltless locking mechanism as manufactured by ACO Systems Ltd. For technical assistance or supply information, please contact ACO Canada (905)-829-0665 or <u>info@acocan.ca</u>.

Materials

The trench system bodies shall be manufactured from polymer concrete with minimum properties as follows:

Compressive strength: 14,000 psi Flexural strength: 4,000 psi Water absorption 0.07% Frost proof Salt proof Dilute acid and alkali resistant

The nominal clear opening shall be 4.00" (100mm) with overall width of 5.12" (130mm). Pre-cast units shall be manufactured with either an invert slope of 0.5% or with neutral invert and have a wall thickness of at least 0.50" (13mm). Each unit will feature a partial radius in the trench bottom and a male to female interconnecting end profile. Units shall have horizontal cast in anchoring features on the outside wall to ensure maximum mechanical bond to the surrounding bedding material and pavement surface. The galvanized steel edge rail will be integrally cast in by the manufacturer to ensure maximum homogeneity between polymer concrete body and edge rail. Each edge rail shall be at least 3/32" (2.5mm) thick.

Grates

The grates shall be Type 461 slotted ductile iron with 'QuickLok' boltless locking mechanism as manufactured by ACO Systems Ltd. After removal of the grates and 'QuickLok' bar there shall be uninterrupted access to the trench to aid in maintenance.

Materials

The grates shall be manufactured from ductile iron and have **minimum** properties as follows;

• Independently certified to meet Load Class E to DIN 19580 - 135,000 lbs - 2,788 psi.

• Ductile iron to ASTM A 536-84 - Grade 65-45-12.

• Intake area of 20.79 sq. in. (134.13cm²) per half meter of grate.

The overall width of 4.84" (123mm) and overall length of 19.69" (500mm). Slots measure 3.94" (100mm) by 0.39" (10mm) per half meter of grate.

Installation

The trench drain system shall be installed in accordance with the manufacturer's installation instructions and recommendations.

2.2 Findings of the Functional Servicing and Stormwater Management Report

The *Functional Servicing and Stormwater Management Report* (DSEL, December 2016) established the stormwater control criteria, the pond location and the general stormwater management scheme.

The proposed stormwater management facility is to be designed with the following characteristics:

- Water Quality Control: The permanent pool should be sized for an enhanced level of protection. A 40 m³/ha active volume portion for water quality control should be provided in accordance with the SWMP Design Manual.
- > A sediment forebay shall be provided.
- > Emergency overflow conveyance will be provided to safely pass emergency flows.

A summary of the required SWM pond characteristics is provided in Table 1.

3.0 DRAINAGE ANALYSIS

The pond design characteristics and requirements, based on a 123.414 ha total drainage area to the pond (121.656 ha contributing minor system flows requiring quality control treatment), as shown in *Figure 2*, are summarized in *Table 1* as follows:

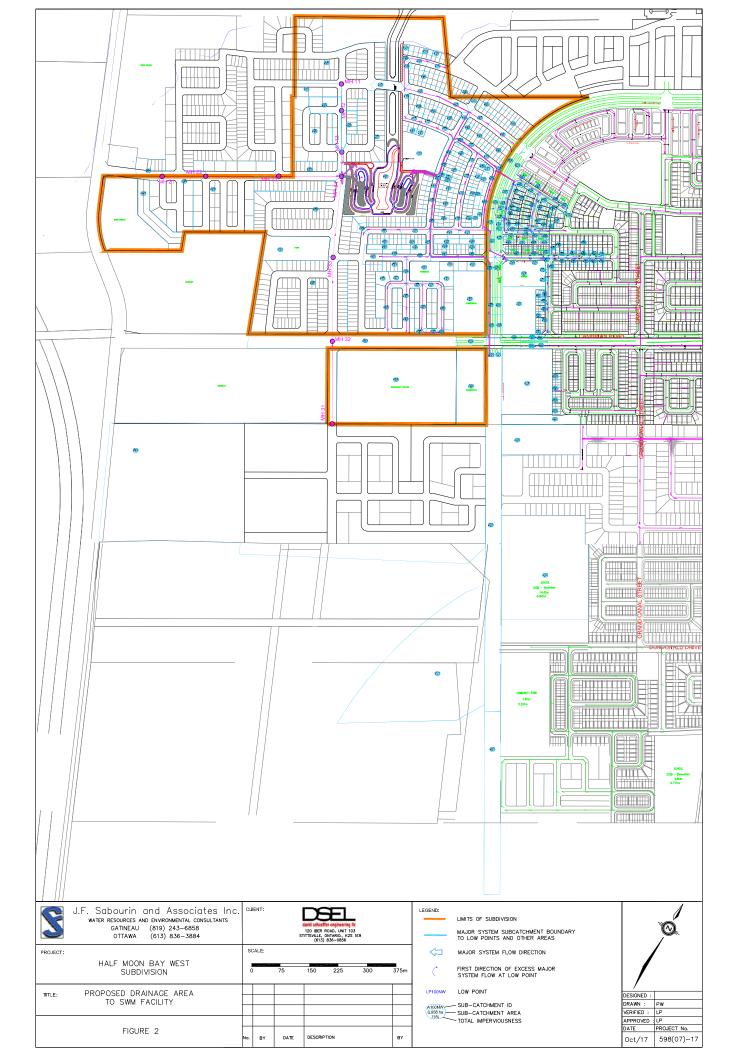
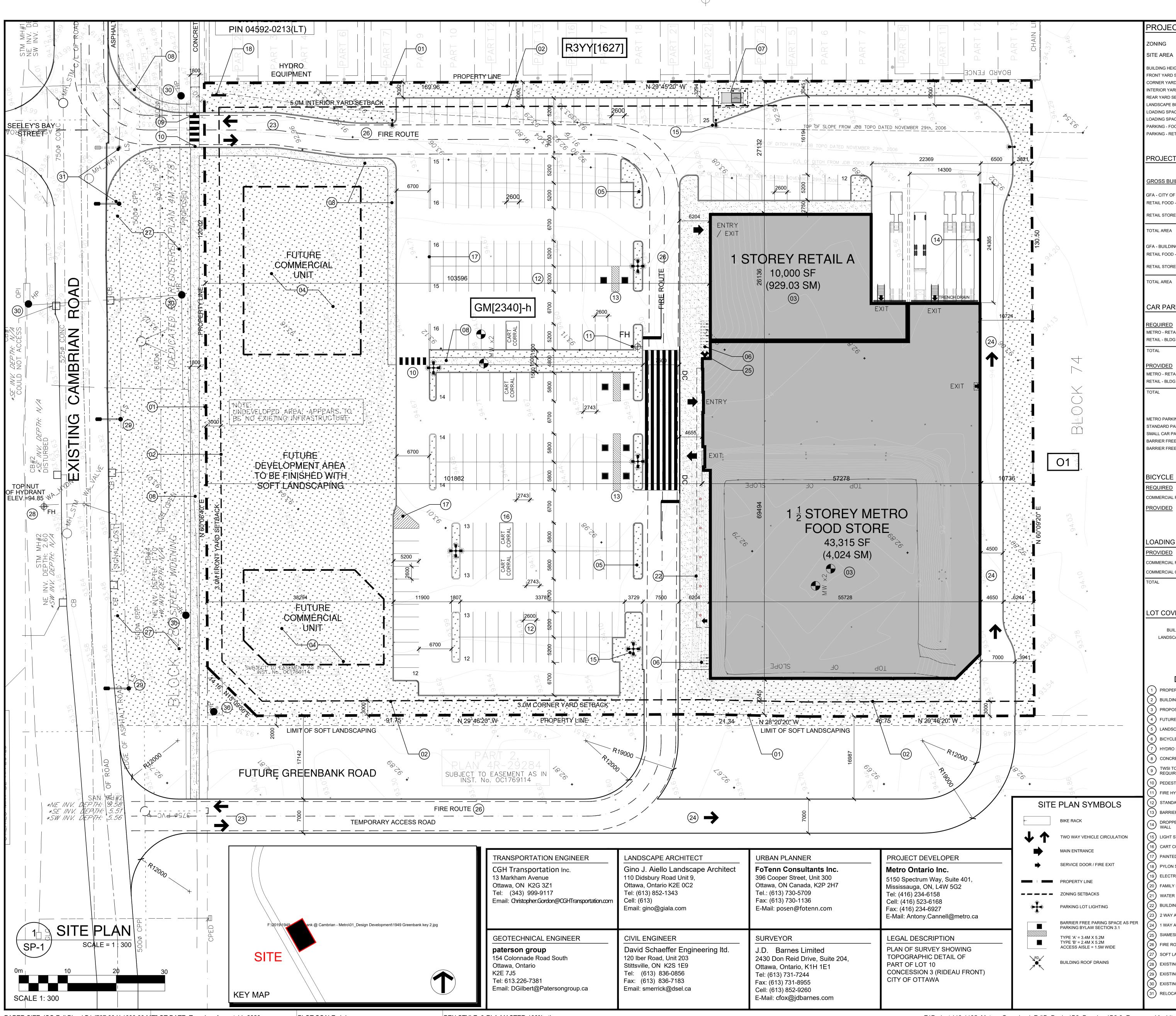

ltem	Target	Comments
Drainage Area	123.414 ha total; 121.656 ha minor flows	121.121 ha future development, 0.535 ha existing Half Moon Bay park block, 1.758 ha major flows only from existing Half Moon Bay subdivision
Imperviousness	67%	
Required Permanent Pool Volume	21,655 m ³	Based on 178.00 m ³ /ha ⁽¹⁾
Required Quality Control Volume	4,866 m ³	40 m ³ /ha
Allowable Release Rate for Quality Control	141 L/s	Minimum extended detention time between 24 to 48 hours ⁽²⁾

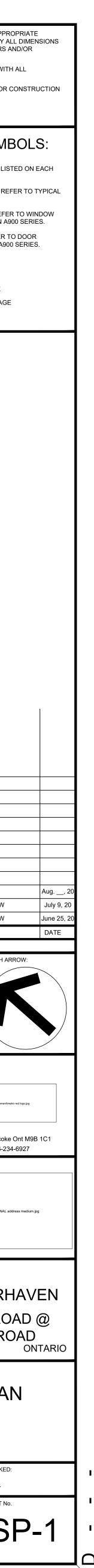
Table 1SWM Pond Design Characteristics

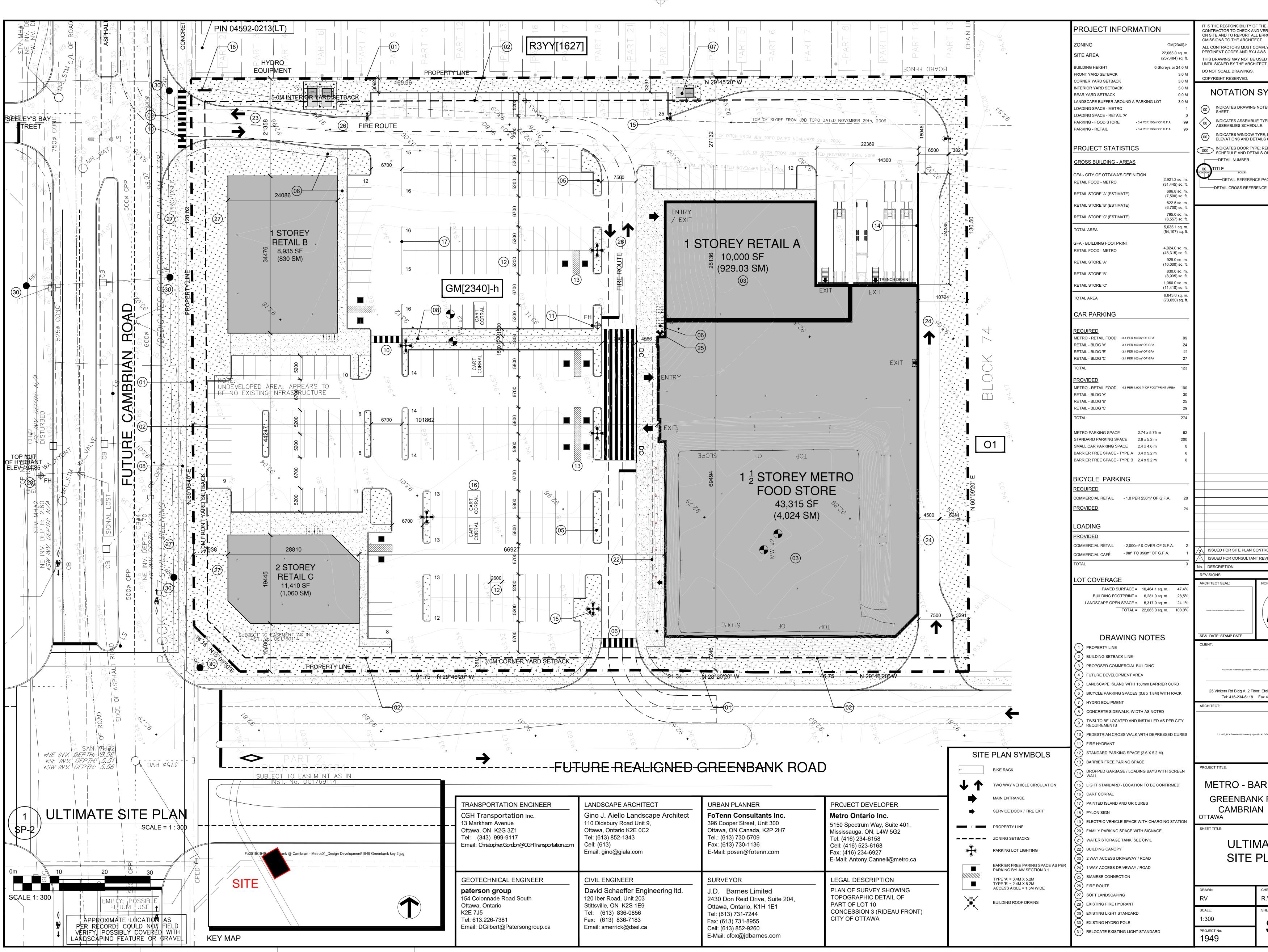

⁽¹⁾ Note: Interpolated for 67% imperviousness, enhanced protection level for wet pond, as per Table 3.2 of the SWM Planning and Design Manual. Refer to Tables B-1 and B-2 of *Appendix B*.
 ⁽²⁾ Defents Tables D.2 and D.4 of Appendix B.

⁽²⁾ Refer to Tables B-3 and B-4 of *Appendix B*.

Furthermore, the detailed design of the facility has been completed in general conformance with the *SWMP Design Manual*.

DRAWINGS / FIGURES

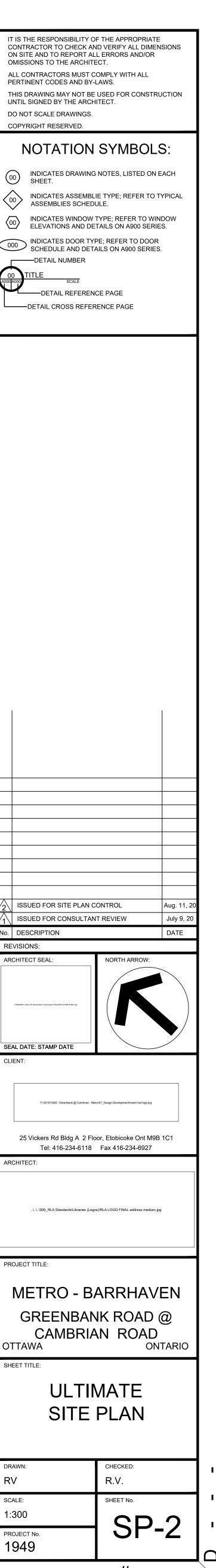



PAPER SIZE: ISO Full Bleed B1 (707.00 X 1000.00 MM) OT DATE: Tuesday, August 11, 2020

PLOT SCALE: 1:1

ROJECT INFORMATION	IT IS THE RESPONSIBILITY O CONTRACTOR TO CHECK AN	ID VERIFY A
NING GM[2340]-h	ON SITE AND TO REPORT AL OMISSIONS TO THE ARCHITE ALL CONTRACTORS MUST C	ECT.
E AREA 22,063.0 sq. m. (237,484) sq. ft.	PERTINENT CODES AND BY- THIS DRAWING MAY NOT BE	LAWS.
LDING HEIGHT 6 Storeys or 24.0 M DNT YARD SETBACK 3.0 M	UNTIL SIGNED BY THE ARCH DO NOT SCALE DRAWINGS.	ITECT.
RNER YARD SETBACK3.0 MERIOR YARD SETBACK5.0 M	COPYRIGHT RESERVED.	
AR YARD SETBACK 0.0 M IDSCAPE BUFFER AROUND A PARKING LOT 3.0 M	NOTATION	SYM
ADING SPACE - METRO 1 ADING SPACE - RETAIL 'A' 0	00 INDICATES DRAWING SHEET.	NOTES, LIS
RKING - FOOD STORE - 3.4 PER 100m² OF G.F.A. 99 RKING - RETAIL - 3.4 PER 100m² OF G.F.A. 24	00 INDICATES ASSEMBL ASSEMBLIES SCHED	
	00 INDICATES WINDOW ELEVATIONS AND DE	
ROJECT STATISTICS	000 INDICATES DOOR TYPE SCHEDULE AND DET	
COSS BUILDING - AREAS	A0000A000 SCALE	CE PAGE
A - CITY OF OTTAWA'S DEFINITION FAIL FOOD - METRO 2,921.3 sq. m. (31,445) sq. ft.	DETAIL CROSS REFER	ENCE PAGE
FAIL STORE 'A' (ESTIMATE) 696.8 sq. m. (7,500) sq. ft.		
3,618.1 sq. m. (38,945) sq. ft.		
A - BUILDING FOOTPRINT 4,024.0 sq. m.		
IAIL FOOD - METRO (43,315) sq. ft. 929 0 sq. m		
TAIL STORE 'A' (10,000) sq. ft. 4,953.1 sq. m.		
TAL AREA (53,315) sq. ft.		
AR PARKING		
QUIRED		
TRO - RETAIL FOOD - 3.4 PER 100 m² OF GFA 99 FAIL - BLDG 'A' - 3.4 PER 100 m² OF GFA 24		
TAL 123		
OVIDED		
TRO - RETAIL FOOD - 4.3 PER 1,000 ft² OF FOOTPRINT AREA 190 FAIL - BLDG 'A' 30		
TAL 220		
TRO PARKING SPACE 2.74 x 5.75 m 62 ANDARD PARKING SPACE 2.6 x 5.2 m 150		
ALL CAR PARKING SPACE2.4 x 4.6 m0RRIER FREE SPACE - TYPE A3.4 x 5.2 m4		
RRIER FREE SPACE - TYPE B2.4 x 5.2 m4		
QUIRED		
MMERCIAL RETAIL - 1.0 PER 250m ² OF G.F.A. 14		
OVIDED 16		
ADING		
OVIDED MMERCIAL RETAIL - 2,000m ² & OVER OF G.F.A. 2		
MMERCIAL CAFÉ - 0m² TO 350m² OF G.F.A. 1	3 ISSUED FOR SITE PLAN C	ONTROL
	2 ISSUED FOR CONSULTAN	
OT COVERAGE	No. DESCRIPTION	
PAVED SURFACE = 9,993.5 sq. m. 45.3%	ARCHITECT SEAL:	NORTH AF
BUILDING FOOTPRINT = 4,921.0 sq. m. 22.3% LANDSCAPE OPEN SPACE = 7,148.5 sq. m. 32.4%		
TOTAL = 22,063.0 sq. m. 100.0%	P.3201001 (Mary S. (Sower(K), Dampid, Prod/KA STAR & SDA pg	
DRAWING NOTES	SEAL DATE: STAMP DATE	
) PROPERTY LINE) BUILDING SETBACK LINE		
PROPOSED COMMERCIAL BUILDING	F:\2019\1949 - Greenbank @ Cambrian - Met	ro\01_Design Development\m
FUTURE DEVELOPMENT AREA LANDSCAPE ISLAND WITH 150mm BARRIER CURB		
BICYCLE PARKING SPACES (0.6 x 1.8M) WITH RACK	25 Vickers Rd Bldg A 2 Flo Tel: 416-234-6118	
) HYDRO EQUIPMENT) CONCRETE SIDEWALK, WIDTH AS NOTED	ARCHITECT:	
TWSI TO BE LOCATED AND INSTALLED AS PER CITY REQUIREMENTS		
PEDESTRIAN CROSS WALK WITH DEPRESSED CURBS	\.\.\000_RLA Standards\Libraries (Logo	s)\RLA LOGO FINAL a
 FIRE HYDRANT STANDARD PARKING SPACE (2.6 X 5.2 M) 		
BARRIER FREE PARING SPACE	PROJECT TITLE:	
DROPPED GARBAGE / LOADING BAYS WITH SCREEN WALL	METRO - B	
CART CORRAL		
PAINTED ISLAND AND OR CURBS	GREENBAN CAMBRIA	
ELECTRIC VEHICLE SPACE WITH CHARGING STATION	OTTAWA	
FAMILY PARKING SPACE WITH SIGNAGE	SHEET TITLE:	
BUILDING CANOPY	SITE	PLA
2 WAY ACCESS DRIVEWAY / ROAD		
1 WAY ACCESS DRIVEWAY / ROAD SIAMESE CONNECTION		
FIRE ROUTE	DRAWN:	CHECKED
EXISTING FIRE HYDRANT	RV	R.V.
EXISTING LIGHT STANDARD	scale: 1:300	
RELOCATE EXISTING LIGHT STANDARD	PROJECT №.	S
	1949	1

Z:\Projects\19-1135_Metro - Greenbank Rd\B_Design\B2_Drawings\B2-3_Resources\Architect\2020-08-11\1949 Greenbank Metro SP-1 2020 08 11.dwg



PAPER SIZE: ISO Full Bleed B1 (707.00 X 1000.00 MM)OT DATE: Tuesday, August 11, 2020

PLOT SCALE: 1:1

 TRANSPORTATION ENGINEER CGH Transportation Inc. 13 Markham Avenue	LANDSCAPE ARCHITECT Gino J. Aiello Landscape Architect 110 Didsbury Road Unit 9,	URBAN PLANNER FoTenn Consultants Inc. 396 Cooper Street, Unit 300	PRC Met
 Ottawa, ON K2G 3Z1 Tel: (343) 999-9117 Email: Christopher.Gordon@CGHTransportation.com	Ottawa, Ontario K2E 0C2 Tel: (613) 852-1343 Cell: (613) Email: gino@giala.com	Ottawa, ON Canada, K2P 2H7 Tel.: (613) 730-5709 Fax: (613) 730-1136 E-Mail: posen@fotenn.com	5150 Missi Tel: (Cell: Fax: (E-Ma
GEOTECHNICAL ENGINEER	CIVIL ENGINEER	SURVEYOR	LEG
paterson group 154 Colonnade Road South Ottawa, Ontario K2E 7J5 Tel: 613.226-7381 Email: DGilbert@Patersongroup.ca	David Schaeffer Engineering Itd. 120 Iber Road, Unit 203 Stittsville, ON K2S 1E9 Tel: (613) 836-0856 Fax: (613) 836-7183 Email: smerrick@dsel.ca	J.D. Barnes Limited 2430 Don Reid Drive, Suite 204, Ottawa, Ontario, K1H 1E1 Tel: (613) 731-7244 Fax: (613) 731-8955 Cell: (613) 852-9260 E-Mail: cfox@jdbarnes.com	PLAN TOP(PAR ⁻ CON CITY

7.\Drojacta\10 1125 Matra	Croophank Dd\B Dacian\B2	Drowings\P2 2	Pacourcos (Architact) 2020 08 11/10/0	Greenbank Metro SP-1 2020 08 11.dwg
	GIEEIIDAIIK RUD DESIGIIDZ	Diawings\DZ-3	Resources/Architect/2020-00-11/1949	Greenbank Metro SF-1 2020 00 11.0Wg
, –	_ 0 .	_ 0 _	-	5

ASSEMBLIES SCHEDULE.

SCALE