Engineers, Planners & Landscape Architects #### **Engineering** Land/Site Development Municipal Infrastructure Environmental/ Water Resources Traffic/ Transportation Recreational #### **Planning** Land/Site Development Planning Application Management **Municipal Planning** Urban Design Expert Witness (OLT) Wireless Industry #### Landscape Architecture Streetscapes & Public Amenities Open Space, Parks & Recreation Community & Residential Commercial & Institutional Environmental Restoration # 200 Baribeau Street Ottawa, Ontario **Servicing Design Brief** # 200 BARIBEAU STREET OTTAWA, ONTARIO #### **SERVICING DESIGN BRIEF** Prepared For: **Parkriver Properties** Prepared By: #### **NOVATECH** Suite 200, 240 Michael Cowpland Drive Ottawa, Ontario K2M 1P6 June 27, 2024 Novatech File: 119068 Ref: R-2020-104 June 27, 2024 City of Ottawa Infrastructure Services and Community Sustainability 110 Laurier Avenue West, 4th Floor Ottawa, ON K1P 1J1 Attention: Jean-Charles Renaud, Planner II Reference: 200 Baribeau Street Servicing Design Brief Our File No.: 119068 _ win Enclosed for your review and approval is the Servicing Design Brief for the proposed 200 Baribeau Street development. If you have any questions or comments, please do not hesitate to contact us. Sincerely, **NOVATECH** Lucas Wilson, P.Eng. Project Engineer # **TABLE OF CONTENTS** | 1.0 | INTRODUCTION | 1 | |--|--|---| | 1.1
1.2 | BACKGROUND LAND USE | | | 2.0 | ROADWAYS | 3 | | 2.1
2.2
2.3 | EXISTING CONDITIONSPROPOSED CONDITIONSROADWAY DESIGN | 3 | | 3.0 | GRADING | 3 | | 3.1
3.2 | EXISTING CONDITIONSPROPOSED CONDITIONS | | | 4.0 | EROSION AND SEDIMENT CONTROL | 4 | | 5.0 | SANITARY SEWERS | 5 | | 5.1
5.2 | Existing Conditions Proposed Conditions | | | 6.0 | STORMWATER MANAGEMENT | 8 | | 6.2
6.3
6.6
6.4
6.5
6.5 | .4.1 Stormwater Storage | 8
8
9
.11
.11
.15
.15 | | 7.0 | WATER | .18 | | 7.1
7.2 | EXISTING CONDITIONSPROPOSED CONDITIONS | | | 8.0 | CONCLUSIONS AND RECOMMENDATIONS | .22 | #### **List of Tables** Table 2-1: Roadway Structure Table 5-1: Proposed Sanitary Sewer Design Parameters Table 6-1: Storm Sewer Design Parameters Table 6-2: Runoff Coefficients Table 6-3: Subcatchment Model Parameters Table 6-4: Total Storage Provided (Surface and Underground) Table 6-5: Inlet Control Devices & Design Flows Table 6-6: Overland Flow Results (100-year Event) Table 6-7: 100-year HGL Elevations Table 6-8: Summary of Peak Flows Table 7-1: Watermain Design Criteria Table 7-2: Water Flow Summary Table 7-3: Summary of Hydraulic Model Results - Maximum Day + Fire Flow Table 7-4: Summary of Hydraulic Model Results - Peak Hour Demand Table 7-5: Summary of Hydraulic Model Results – Maximum Pressure Check #### **List of Figures** Figure 1: Key Plan Figure 2: Site Plan Figure 3: Sanitary Sewer Network Figure 4: Storm Sewer Network Figure 5: Watermain Layout #### **Appendices** Appendix A: Design Sheets Appendix B: SWM Calculations Appendix C: Drawings Appendix D: DSS Checklist **Emergency Overland Flow Route Documentation** Novatech Page ii #### 1.0 INTRODUCTION #### 1.1 Background Novatech has been retained to prepare a Servicing Design Brief for the 200 Baribeau Street Development, located in the City of Ottawa. The site will be developed by Parkriver Properties. The development is located in the Vanier neighborhood, on the west side of Baribeau Street and consists of the property located at 200 Baribeau Street. **Figure 1** shows the location of the development lands. Figure 1: Key Plan The proposed site is approximately 1.27ha and will be bordered by Landry Street to the north, Baribeau Street to the east and existing residential to the west and south. This Servicing Design Brief provides information on the considerations and approach by which Novatech has analyzed the existing site information for the 200 Baribeau Street development, and details how the development lands will be serviced while meeting the City requirements and all other relevant regulations. This report should be read in conjunction with the following: Geotechnical Investigation, Proposed Residential Development, 200 Baribeau Street -Ottawa, Ontario prepared by Paterson Group, dated July 15, 2019 (Project:PG4951-1). #### 1.2 Land Use The site will consist of 94 townhouses, each with two additional dwelling units, for a total of 282 units. The proposed Site Plan is shown below in **Figure 2**. Figure 2: Site Plan #### 2.0 ROADWAYS #### 2.1 Existing Conditions The former school site could be accessed from Landry Street and Baribeau Street, all classified as local roadways in the 2013 City of Ottawa Transportation Master Plan (TMP). #### 2.2 Proposed Conditions The development will be accessed from Baribeau Street. The site contains a 6.0m private road. #### 2.3 Roadway Design Paterson Group has prepared a Geotechnical Investigation report for the development (July 15th, 2019) that provides recommendations for roadway structure, servicing and foundations. The recommended roadway structure is as follows: **Table 2-1: Roadway Structure** | Roadway Material Description | Pavement Structure | |---|----------------------| | Roadway Material Description | Layer Thickness (mm) | | Private Road | | | Asphalt Wear Course:
Superpave 12.5
(Class B) | 40 | | Asphalt Binder Course:
Superpave 19.0
(Class B) | 50 | | Base: Granular A | 150 | | Sub-Base: Granular B – Type II | <u>400</u> | | Total | 640 | #### 3.0 GRADING #### 3.1 Existing Conditions The lands along the north and east property lines at 200 Baribeau Street slope towards the adjacent public roadways (Landry Street and Baribeau Street). The remaining portion of the subject lands are directed to an existing catchbasin located within the playing field. A geotechnical investigation was carried out by Paterson Group, practical refusal was encountered at 6.4m below ground surface at borehole 4. Groundwater was recorded between 0.82m and 1.55m below the ground surface, on April 25th, 2019. #### 3.2 Proposed Conditions The site will be graded to ensure the minimum clearances are provided per the City of Ottawa and RVCA policies listed below: Underside of slab must have a minimum of 0.30m clearance above the 100-year flood level of 56.44m; - All building openings must be at least 0.30m above the 100-year flood level; - Terracing grades at proposed buildings must be a minimum of 0.15m above the 100-year flood level. The landscaped areas located along Landry Street and Baribeau Street will tie into the back of curb and existing back of sidewalk. The landscaped areas adjacent to the west and south property lines, including the park lands, will tie into the existing grades along the south and west property lines maintaining the existing emergency overland flow routes from Landry Street and Baribeau Street. For detailed grading refer to drawing 119068-GR. The proposed grading will fall within these ranges: - Landscaped Area: Minimum 2% Maximum 6% - Rearyard Swales: Minimum 1.5% (1.0% with subdrain) - Maximum Terracing Grade of 3H:1V #### 4.0 EROSION AND SEDIMENT CONTROL Erosion and sediment control measures will be implemented during construction in accordance with the "Guidelines on Erosion and Sediment Control for Urban Construction Sites" (Government of Ontario, May 1987). Typical erosion and sediment control measures recommended include, but are not limited to, the use of silt fences around perimeter of site, filter fabric or inserts under catch basin/maintenance hole lids, heavy duty silt fence barrier, straw bale check dams, rock check dams, turbidity curtain, dewatering trap, temporary water passage system, riprap, mud mats, silt bags for dewatering operations, topsoil and sod to disturbed areas and natural grassed waterways. Dewatering and sediment control techniques will be developed for the individual situations based on the above guidelines and utilizing typical measures to ensure erosion and sediment control is controlled in an acceptable manner and there is no negative impact to adjacent lands, water bodies or water treatment/conveyance facilities. The following erosion and sediment control measures will be implemented during construction. Details are provided on the Erosion and Sediment Control Plan. - All erosion and sediment control measures are to be installed to the satisfaction of the engineer, the municipality and the conservation authority prior to undertaking any site alterations (filling, grading, removal of vegetation, etc.) and remain present during all phases of site preparation and construction. - A qualified inspector should conduct daily visits during construction to ensure that the contractor is working in accordance with the design drawings and that mitigation measures are being implemented as specified. - A light duty silt fence barrier is to be installed in the locations shown on the Erosion and Sediment Control & Removals Plan (119068-ESC). Terrafix Siltsoxx are to be placed around all new and existing catchbasins and storm manhole covers as shown on Erosion and Sediment Control & Removals Plan (119068-ESC). - After complete build-out, all sewers are to be inspected and cleaned and all sediment and construction fencing shall be removed. - The contractor shall ensure that proper dust control is provided with the application of water (and if required, calcium chloride) during dry periods. - The contractor shall immediately report to the engineer or inspector any accidental discharges of sediment material into any ditch or sewer system. Appropriate response measures shall be carried out by the contractor without delay. - The contractor acknowledges that failure to implement erosion and sediment control measures may result in penalties imposed by any applicable regulatory agency. Temporary
erosion and sediment control measures would be implemented both prior to commencement and during construction in accordance with the "Guidelines on Erosion and Sediment Control for Urban Construction Sites", (Government of Ontario, May 1987). #### 5.0 SANITARY SEWERS #### **5.1 Existing Conditions** An existing 250mm diameter sanitary sewer runs along Baribeau Street and outlets to a 750mm trunk sanitary sewer in Carillon Street. #### 5.2 Proposed Conditions The peak design flow parameters in **Table 5-1** have been used in the sewer capacity analysis. Unit and population densities and all other design parameters are specified in the City of Ottawa Sewer Design Guidelines. Sanitary flow from the site is proposed to connect into the 250mm diameter sanitary sewer in Baribeau Street at two separate connection points. The sanitary sewer layout is shown on 119068-GP (**Appendix C**), and the design sheet is attached in **Appendix A**. The site (approx. 1.27ha) will outlet to the 250mm sanitary sewer (Baribeau Street) with a peak design flow of 2.5 L/s at existing sanitary maintenance hole 6 and 3.4 L/s at the proposed maintenance hole 7 (5.9 L/s total). **Table 5-1: Proposed Sanitary Sewer Design Parameters** | Parameter | Design Parameter | |--------------------------------------|------------------------------------| | Apartment Unit Population | 1.8 people/unit | | Residential Flow Rate, Average Daily | 280 L/cap/day | | Residential Peaking Factor | Harmon Equation (min=2.0, max=4.0) | | Infiltration Rate | 0.33 L/s/ha | | Minimum Pipe Size | 200 mm | | Minimum Velocity | 0.6 m/s | | Maximum Velocity | 3.0 m/s | The existing school demand of 60 L/person/day was calculated using Appendix 4-A in the City of Ottawa Sewer Design Guidelines. The school contains 18 classrooms with 22 students per class (396 students). With one teacher per classroom an estimate of 415 people was used to determine an accurate existing peak flow: $Q_{POP} = (415 \text{ ppl * } 60 \text{ L/day}) / 86400 = 0.29 \text{ L/s}$ With the inclusion of infiltration, the total design flow from the existing school is calculated as: $Q_{PK DESIGN} = (0.33 L/s/ha * 1.27 ha) + 0.29 L/s = 0.71 L/s$ The proposed peak design flow of 5.9 L/s represents an increase of 5.2 L/s being directed to the existing 250mm diameter sanitary sewer in Baribeau Street. The attached sanitary design sheet in Appendix A shows the available capacity in the 250mm diameter sanitary sewer in Baribeau Street. With the additional flows from the site, there is still adequate capacity remaining in the existing sanitary sewer as the Q/Q_{FULL} is at 34%. Figure 3: Sanitary Sewer Network #### 6.0 STORMWATER MANAGEMENT #### 6.1 Stormwater Management Criteria The following stormwater management criteria for the proposed development were prepared in accordance with the City of Ottawa Sewer Design Guidelines (October 2012) and RVCA policies. - Provide a dual drainage system (i.e. minor and major system flows); - Control the runoff to the existing storm system in Carillon Street to the allowable release rates Specified in **Section 6.1.1** using on-site storage; - Ensure that ponding is confined within the parking areas at a maximum depth of 0.35 m for both static ponding and dynamic flow; - Ensure no surface ponding occurs during the 2-year storm event; - Provide guidelines to ensure that site preparation and construction is in accordance with the current Best Management Practices for Erosion and Sediment Control. #### 6.1.1 Allowable Release Rate The allowable release rate for the development has been calculated using the Rational Method with the following parameters: - Drainage Area - 1.27 ha (site boundary) - Runoff Coefficient - o 0.50 (based on City of Ottawa criteria) - Rainfall Intensity - Based on City of Ottawa IDF data (Ottawa Sewer Design Guidelines) - Time-of-Concentration = 10 minutes The allowable release rate based on the above parameters is 135.6 L/s for all storms up to and including the 100-year storm event. #### 6.2 Existing Conditions The development is located within the Rideau Valley Conservation Authority jurisdiction and is within the 100-year floodplain zone. Under existing conditions, the area fronting onto Baribeau Street and the parking area adjacent to Landry Street flow directly to the public roadways. The remainder of the site is directed to a catchbasin located within the playing field directing flows to the existing storm sewer system in the public roadways. A 525mm diameter storm sewer is located within Landry Street, storm sewers ranging from 600mm to 900mm are located within Baribeau Street and 1050mm diameter storm sewers are located within Carillon Street. #### 6.3 Proposed Conditions Catch basins located within the private roadway and landscaped areas will be controlled with inlet control devices (ICDs). Runoff from the site will be routed to the 1050mm diameter storm sewer in Carillon Street through the property at 127 Carillon Street. A 6.0m easement will be provided through the property to access the existing 1050mm storm sewer. Catch basins located within the private roadway and landscaped areas will be controlled with inlet control devices (ICDs) in order to meet the allowable release rate in **Section 6.1.1**. As there will be no foundation drain connections for the slab-on-grade buildings, the entire storm sewer network will act as underground storage during both the 2-year and 5-year storm events. The underside of slab elevation for each building has been set at least 300mm above the 100-year floodplain level of 56.44m. In addition, all building opening have been set a minimum of 300mm above the 100-year floodplain level. **Figure 5** outlines the proposed storm sewer system layout, and how it will connect to the existing network along Carillon Street. #### 6.3.1 Minor System Design The storm sewers comprising the minor system have been designed based on the criteria outlined in the Ottawa Sewer Design Guidelines using the principles of dual drainage. The design criteria used in sizing the storm sewers are summarized in **Table 6-1** and **Table 6-2**. The proposed storm sewers have been designed using the Rational Method to convey peak flow associated with a 2-year rainfall event. The storm sewer design sheets are provided in **Appendix A**. The corresponding Storm Drainage Area Plan (Drawing 119068-STM) is provided in **Appendix C**. Figure 4: Storm Sewer Network | Parameter | Design Criteria | |------------------------------------|---| | Private Roads | 2 Year Return Period | | Storm Sewer Design | Rational Method/AutoDesk Storm Analysis | | IDF Rainfall Data | Ottawa Sewer Design Guidelines | | Initial Time of Concentration (Tc) | 10 min | | Minimum Velocity | 0.8 m/s | | Maximum Velocity | 3.0 m/s | | Minimum Diameter | 250 mm | #### **Table 6-2: Runoff Coefficients** | Land Use | Runoff Coefficient | |--------------|--------------------| | Hard Surface | 0.90 | | Soft Surface | 0.20 | #### 6.3.2 Major System Design The site has been designed to convey runoff from storms that exceed the minor system capacity to the approved major system outlet within the existing pathway easement in the southwest corner of the site leading to Kipp Street. The roadway area has been graded to ensure that the 100-year peak overland flows are confined within the site at a maximum flow depth of 350mm. The design of the major system conforms to the design standards outlined in Section 5.5 (Major System Considerations) of the City of Ottawa Sewer Design Guidelines (October 2012). The existing site provides an emergency overland flow route for Landry Street and Baribeau Street. The proposed site grading will maintain these emergency overland flow routes through the park land and along the south and west property lines. Prior discussion with the City of Ottawa regarding the design of the emergency overland flow routes is provided in **Appendix D**. #### 6.4 Hydrologic & Hydraulic Modeling The *City of Ottawa Sewer Design Guidelines* (October 2012) require hydrologic modelling for all dual drainage systems. The performance of the proposed storm drainage system for the site was evaluated using the *PCWMM* hydrologic/hydraulic modeling software. #### **Design Storms** The hydrologic analysis was completed using the following synthetic design storms and historical storms. The IDF parameters used to generate the design storms were taken from the Sewer Design Guidelines. 3 Hour Chicago Storms: 25mm 3-hr Chicago storm 2-year 3hr Chicago storm 5-year 3hr Chicago storm 100-year 3hr Chicago storm 12 Hour SCS Storms: 2-year 12-hr SCS storm 5-year 24hr Chicago storm 100-year 24hr Chicago storm The 3-hour Chicago distribution generates the highest peak flows for both the minor and major systems and was determined to be the critical storm distribution for the design of the storm drainage system. The proposed drainage system has also been stress tested using a 3-hour Chicago design storm that has a 20% higher intensity and total volume compared to the 100-year event. #### Model Development The PCSWMM model accounts for both minor and major system flows (*dual drainage*), including the routing of flows through the storm sewer network (*minor system*), and overland along the road network (*major system*). The results of the analysis were used to; - Determine the total major and minor system runoff from the site; - Size the ICDs for each inlet to the storm sewer system; - Calculate the storm sewer hydraulic grade line (HGL) for the 100-year storm event; and - Ensure no ponding occurs during the 2-year storm event. The model is capable of accounting for both static and dynamic storage within the private roadways and landscaped areas, including the overland flow across all high points. The 100-year flow depths computed by the model represent the total (static + dynamic) ponding depths at low points for areas in road sags. #### Storm Drainage
Area Plan & Subcatchment Parameters The development has been divided into subcatchments based on the drainage areas tributary to each inlet of the proposed storm sewer system. The catchment areas are shown on the Storm Drainage Area Plan provided as drawing **119068-STM** in **Appendix C**. The hydrologic parameters for each subcatchment were developed based on the Site Plan (**Figure 2**) and the Storm Drainage Area Plan specified above. Subcatchment parameters are outlined in **Table 6-3**. **Table 6-3: Subcatchment Model Parameters** | Area
ID | Catchment
Area | Runoff
Coefficient | Percent
Impervious | Zero
Imperv. | Flow
Length | Equivalent
Width | Average
Slope | |------------|-------------------|-----------------------|-----------------------|-----------------|----------------|---------------------|------------------| | | (ha) | (C) | (%) | (%) | (m) | (m) | (%) | | A-01 | 0.064 | 0.24 | 6.1 | 0 | 25 | 26 | 4 | | A-02 | 0.092 | 0.30 | 14.7 | 60 | 25 | 37 | 4 | | A-03 | 0.097 | 0.80 | 86 | 90 | 25 | 39 | 1.5 | | A-04 | 0.091 | 0.83 | 89.3 | 93 | 25 | 36 | 1.5 | | A-05 | 0.073 | 0.76 | 80.4 | 80 | 15 | 49 | 1.5 | | A-06 | 0.06 | 0.80 | 85.5 | 89 | 15 | 40 | 1.5 | | A-07 | 0.125 | 0.83 | 89.4 | 66 | 15 | 83 | 1.5 | | A-08 | 0.158 | 0.82 | 88.5 | 33 | 25 | 63 | 1 | | A-09 | 0.024 | 0.48 | 39.6 | 84 | 10 | 24 | 2 | | A-10 | 0.009 | 0.24 | 5.6 | 0 | 5 | 18 | 2 | | A-11 | 0.007 | 0.20 | 0 | 0 | 5 | 14 | 2 | | A-12 | 0.07 | 0.73 | 75.8 | 85 | 15 | 47 | 2 | | Area
ID | Catchment
Area | Runoff
Coefficient | Percent
Impervious | Zero
Imperv. | Flow
Length | Equivalent
Width | Average
Slope | |------------|-------------------|-----------------------|-----------------------|-----------------|----------------|---------------------|------------------| | | (ha) | (C) | (%) | (%) | (m) | (m) | (%) | | A-13 | 0.076 | 0.87 | 96.1 | 0 | 15 | 51 | 1.5 | | A-14 | 0.005 | 0.20 | 0 | 0 | 5 | 10 | 2 | | A-15 | 0.110 | 0.87 | 96.2 | 28 | 20 | 55 | 1.5 | | A-16 | 0.011 | 0.20 | 0 | 0 | 5 | 22 | 2 | | A-17 | 0.01 | 0.40 | 29 | 0 | 15 | 7 | 2 | | A-18 | 0.021 | 0.68 | 69 | 72 | 10 | 21 | 1.5 | | A-19 | 0.048 | 0.66 | 66 | 68 | 15 | 32 | 1.5 | | A-20 | 0.027 | 0.60 | 57.8 | 67 | 10 | 27 | 1.5 | | B-01 | 0.036 | 0.47 | 38.1 | 0 | 5 | 72 | 2 | | B-02 | 0.054 | 0.44 | 34.3 | 0 | 5 | 108 | 2 | | A-01 | 0.064 | 0.24 | 6.1 | 0 | 25 | 26 | 4 | | TOTAL | 1.27 ha | 0.69 | 70% | - | - | - | - | #### **Infiltration** Infiltration losses for all catchment areas were modeled using Horton's infiltration equation, which defines the infiltration capacity of the soil over the duration of a precipitation event using a decay function that ranges from an initial maximum infiltration rate to a minimum rate as the storm progresses. The default values for the Sewer Design Guidelines were used for all catchments. Horton's Equation: Initial infiltration rate: $f_o = 76.2 \text{ mm/hr}$ $f(t) = f_c + (f_o - f_c)e^{-k(t)}$ Final infiltration rate: $f_c = 13.2 \text{ mm/hr}$ Decay Coefficient: k = 4.14/hr #### Depression Storage The default values for depression storage in the Sewer Design Guidelines were used for all catchments. Residential rooftops were assumed to provide no depression storage. Depression Storage (pervious areas): 4.67 mm Depression Storage (impervious areas): 1.57 mm #### Equivalent Width Equivalent Width' refers to the width of the sub-catchment flow path. This parameter is calculated as described in the Sewer Design Guidelines, Section 5.4.5.6. The flow paths used to calculate the equivalent widths are shown on the PCSWMM schematics provided in **Appendix B**. #### Impervious Values Impervious (TIMP) values for each subcatchment area were calculated based on the proposed Site Plan (**Figure 2**) and correspond to the Runoff Coefficients used in the Rational Method calculations using the equation: $$\%imp = \frac{C - 0.2}{0.7}$$ #### Boundary Conditions (Carillon Street Connection) The Hydraulic Grade Line (HGL) elevations for the existing 1050mm storm sewer in Carillon Street was provided by the City of Ottawa (refer to existing HGL profile in Appendix B). The 2-year, 5-year and 100-year HGL elevations in the existing storm sewer at the proposed connection are 52.50m, 52.60m and 55.05m respectively. #### 6.4.1 Stormwater Storage Surface storage is represented in the PCSWMM model using storage nodes and storage curves. Refer to **Appendix B** for additional details. #### <u>Underground Storage</u> Underground storage will be provided using the proposed storm sewer system to ensure no 2-year ponding occurs. #### Surface Storage In addition to the underground storage provided, surface storage will be provided to attenuate peak flows to the allowable release rates. Surface storage will consist of ponding above each catchbasin within the private roadways and landscaped areas. A summary of the underground and surface storage is provided in **Table 6-4**. The extent of surface ponding is shown on the Storm Drainage Area Plan (119068-STM). Table 6-4: Total Storage Provided (Surface and Underground) | Structure | STM | Max
Static | Storage Provided (m³) | | | | | | |---|------------|----------------------|-----------------------|---------|-------|--|--|--| | Structure
ID | Area
ID | Ponding
Depth (m) | Underground | Surface | TOTAL | | | | | Surface Storage | | | | | | | | | | CB01 | A-07 | 0.19 | - | 9 | 9 | | | | | CB02 | A-15 | 0.33 | ı | 79 | 79 | | | | | CB03 | A-12 | 0.34 | - | 69 | 69 | | | | | CB04 | A-13 | 0.31 | 1 | 80 | 80 | | | | | Underground Storage (250mm to 450mm Pipes, 1200mm Structures) | | | | | | | | | | MH04 | - | - | 35 | - | 35 | | | | #### Inlet Control Devices (ICDs) ICDs will be located at maintenance hole MH04, controlling flows from the private roadway. RY01 and RY03 will also include an ICD, controlled flows from the swales located along the west and south property lines. ICDs are specified on the General Plan of Services (119068-GP). #### 6.5 Results of Hydrologic / Hydraulic Analysis The model was used to evaluate the performance of the proposed storm drainage system for 200 Baribeau Street. #### 6.5.1 Minor System Inflows to the storm sewer were modeled based on the characteristics of each inlet. All the catch basins in the roadways are located at low points. Inflows to the storm sewer are based on the ICD specified for the inlet and the maximum depth of ponding. ICDs have been sized to limit the outlet peak flows to the allowable release rate of 135.6 L/s. Details are outlined as follows in **Table 6.4**. The Rational Method design sheets (**Appendix B**) were used to calculate the required storm sewer sizes based on capturing the peak flow at each inlet to the storm sewer for a 2-year design return period. Table 6-5: Inlet Control Devices & Design Flows | | | ICD Size & Inlet Rate | | | | | | | | | | |-----------------|----------|-----------------------|-------------------|--------------------------------|---------------------------------|---------------------------------|-----------------------------------|--|--|--|--| | Structure
ID | ICD Type | T/G | Orifice
Invert | 100-year
Head on
Orifice | 2-year
Orifice
Peak Flow* | 5-year
Orifice Peak
Flow* | 100-year
Orifice Peak
Flow* | | | | | | | | (m) | (m) | (m) | (L/s) | (L/s) | (L/s) | | | | | | MH04 | 146 mm | 56.32 | 52.52 | 3.88 | 75.1 | 83.4 | 51.3 | | | | | | RY01 | 127 mm | 55.39 | 53.59 | 1.97 | 6.3 | 18.7 | 22.7 | | | | | | RY03 | 108 mm | 55.75 | 54.03 | 1.79 | 12.0 | 17.3 | 20.7 | | | | | ^{*}PCSWMM model results for a 3-hour Chicago storm distribution. #### 6.5.2 Major System The major system network was evaluated using the PCSWMM model to ensure that the ponding depths conform to City standards. A summary of ponding depths at each inlet for the 2-year, 5-year, 100-year and 100-year (+20%) events are provided in **Appendix B**. The maximum static and dynamic ponding depths within the roadways are less than or equal to 0.35m during all events up to and including the 100-year event. Table 6-6: Overland Flow Results (100-year Event) | Table 6-6. Over | lana i lovi | ricsans (100 | your Event | | | | | |-----------------|-------------|--------------------------------------|--------------|--------------------|--------------|-----------------|----------------------| | Structure | T/G | Max. Static Ponding
(Spill Depth) | | 100-yr Event (3hr) | | | | | | (m) | Elev.
(m) | Depth
(m) | Elev.
(m) | Depth
(m) | Cascading Flow? | Cascade
Depth (m) | | CB01 | 56.26 | 56.45 | 0.19 | 56.47 | 0.21 | Υ | 0.02 | | CB02 | 56.06 | 56.39 | 0.33 | 56.40 | 0.34 | Υ | 0.01 | | CB03 | 56.07 | 56.41 | 0.34 | 56.42 | 0.35 | Υ | 0.01 | | CB04 | 56.06 | 56.37 | 0.31 | 56.36 | 0.30 | N | 0.00 | | CBMH01 | 56.64 | 56.71 | 0.07 | 56.73 | 0.09 | Υ | 0.02 | | LC01 | 56.57 | 56.66 | 0.09 | 56.78 | 0.21 | Υ | 0.12 | | LC02 | 56.58 | 56.69 | 0.11 | 56.78 | 0.20 | Υ | 0.09 | | LC03 | 56.64 | 56.73 | 0.09 | 56.85 | 0.21 | Υ | 0.12 | | Structure | T/G | Max. Static Ponding
(Spill Depth) | | 100-yr Event (3hr) | | | | |-----------|-------|--------------------------------------|--------------|--------------------|--------------|-----------------|----------------------| | Structure | (m) | Elev.
(m) | Depth
(m) | Elev.
(m) | Depth
(m) | Cascading Flow? | Cascade
Depth (m) | | LC04 | 55.69 | 55.76 | 0.07 | 55.88 | 0.19 | Υ | 0.12 | | LC05 | 55.79 | 55.89 | 0.10 | 55.92 | 0.13 | Υ | 0.03 | | LC06 | 56.72 | 56.81 | 0.09 | 56.90 | 0.18 | Υ | 0.09 | | LC07 | 56.67 | 56.76 | 0.09 | 56.87 | 0.20 | Y | 0.11 | | LC08 | 56.65 | 56.74 | 0.09 | 56.86 | 0.21 | Y | 0.12 | | LC09 | 56.62 | 56.73 | 0.11 | 56.85 | 0.23 | Υ | 0.12 | | LC10 | 56.65 | 56.75 | 0.10 | 56.84 | 0.19 | Y | 0.09 | | LC11 | 56.63 | 56.71 | 0.08 | 56.79 | 0.16 | Y | 0.08 | | LC12 | 56.65 | 56.74 | 0.09 | 56.85 | 0.20 | Υ | 0.11 | | LC13 | 56.65 | 56.71 |
0.06 | 56.84 | 0.19 | Y | 0.13 | | LC14 | 56.67 | 56.76 | 0.09 | 56.86 | 0.19 | Y | 0.10 | | RY01 | 55.39 | 55.65 | 0.26 | 55.56 | 0.17 | N | 0.00 | | RY02 | 55.50 | 55.70 | 0.20 | 55.77 | 0.27 | Y | 0.07 | | RY03 | 55.59 | 55.75 | 0.16 | 55.82 | 0.23 | Y | 0.07 | | RY04 | 55.25 | 55.50 | 0.25 | 55.58 | 0.33 | Y | 80.0 | | RY05 | 55.45 | 55.65 | 0.20 | 55.68 | 0.23 | Y | 0.03 | | RY06 | 55.55 | 55.75 | 0.20 | 55.84 | 0.29 | Y | 0.09 | | RY07 | 55.66 | 55.85 | 0.19 | 55.87 | 0.21 | Υ | 0.02 | An expanded table of the ponding depths at low points in the roadway (including the stress-test event) is provided in **Appendix B**. Based on these results, the proposed storm drainage system will not experience any adverse flooding even with a 20% increase to the 100-year event. #### 6.5.3 Hydraulic Grade Line Surcharging is occurring throughout the storm sewer system as the sewers are providing the required underground storage to ensure no 2-year ponding is occurring. Since there are no foundation drains being connected to the system for the slab-on-grade buildings, a hydraulic grade line analysis has not been provided. #### 6.5.4 Peak Flows The overall release rates from the controlled and uncontrolled areas were added to determine the overall release rate from the site. The results of this analysis indicate that the allowable release rate will be met for each storm event. Refer to **Table 6-7** for the modelled peak flows for each storm event. The results of the PCSWMM analysis indicate that outflows from the proposed development will not exceed the allowable release rate for all storm events. Table 6-7: Summary of Peak Flows | Design Event | Allowable
Release Rate
(L/s) | Controlled
Minor System
Release Rate
(L/s) | Uncontrolled
Minor
System
Release Rate
(L/s) | Total Minor
System
Release Rate
(L/s) | |-----------------|------------------------------------|---|--|--| | 2-year | | 90.7 | 9.0 | 99.7 | | 5-year | 135.6 | 117.5 | 18.0 | 135.5 | | 100-year | | 93.7 | 40.0 | 133.7 | | 100-year (+20%) | - | 96.4 | 49.5 | 145.9 | ^{*}PCSWMM Model results for a 3-hr Chicago storm distribution. As mentioned above in **Section 6.3.2**, the existing site provides an emergency overland flow route for Landry Street and Baribeau Street, outletting to the pathway block connecting to Kipp Street. Through coordination with the City of Ottawa (**Appendix D**) Novatech has assumed potential 100-year overland flows of 190 L/s from Landry Street and 1,000 L/s from Baribeau Street. Most of the major system from the 100-year storm event is contained on-site. During the 100-year storm event 26.4 L/s of major system flow from the swale system is directed to Kipp Street at RY04. The overland flow at RY04 is the result of maintaining the grade of the existing overland flow route as we are unable to raise the existing grade enough to provide additional storage. The additional 26.4 L/s from the site is insignificant compared to the assumed flows from Landry Street and Baribeau Street. #### 7.0 WATER #### 7.1 Existing Conditions The proposed development is located inside the 1E Pressure Zone. A 300mm diameter watermain runs along Landry Street and a 200mm diameter watermain runs along Baribeau Street. #### 7.2 Proposed Conditions The site will have two connection points to the existing watermain on Baribeau Street. One at the site entrance and the other connection located between building 1 and 4. A 200mm diameter watermain is proposed and will provide capacity to maintain appropriate pressures and fire flows throughout the development. **Figure 5** provides a high-level schematic of the proposed water distribution system. The watermain boundary conditions below were obtained from the City of Ottawa (July 2020) and has been included in **Appendix A**: Boundary Condition 1 – Landry Street (300mm watermain) Max Day + FF of 183 L/s = 110.0m Max Day + FF of 333 L/s = 104.0m Peak Hour = 109.5m Maximum HGL = 118.5m Boundary Condition 2 – Baribeau Street (200mm watermain) Max Day + FF of 183 L/s = 109.0m Max Day + FF of 333 L/s = 101.0m Peak Hour = 109.5m Maximum HGL = 118.5m City of Ottawa watermain design criteria are outlined in **Table 7.1**. Figure 5: Watermain Layout Table 7-1: Watermain Design Criteria | Design Parameter | Design Criteria | |----------------------|---| | Apartment Population | 1.8 people/unit | | Residential Demand | 280 L/c/d | | Maximum Day Demand | 2.5 x Average Day | | Peak Hour Demand | 2.2 x Maximum Day | | Fire Demand | 183 to 300 L/s | | Maximum Pressure | 690 kPa (100psi) unoccupied areas | | Maximum Pressure | 552 kPa (80psi) occupied areas outside of ROW | | Minimum Pressure | 275 kPa (40 psi) except during fire flow | | Minimum Pressure | 140 kPa (20 psi) fire flow conditions | **Table 7-2: Water Flow Summary** | | Units | Population | Average
Day
Demand
(L/s) | Maximum
Day
Demand
(L/s) | Peak
Hour
Demand
(L/s) | |------------|-------|------------|-----------------------------------|-----------------------------------|---------------------------------| | Apartments | 282 | 508 | 1.645 | 4.113 | 9.048 | | Total | 282 | 508 | 1.645 | 4.113 | 9.048 | Based on the fire underwriters survey, the fire flows were calculated as 183 L/s (Building 7), 233 L/s (Building 3), 250 L/s (Building 4), 267 L/s (Buildings 2 and 8), 283 L/s (Buildings 1, 5 and 9) and 300 L/s (Building 6). Hydrant grades and distances to structures are illustrated on the Fire Hydrant Coverage Plan in **Appendix A**. Fire flow calculations are provided in **Appendix A**. The proposed watermain was modeled using EPANET 2 (See 119068-GP for detailed watermain layout). A summary of the model results is shown below in **Table 7.3**, **Table 7.4** and **Table 7.5**. Full model results are included in **Appendix A**. Table 7-3: Summary of Hydraulic Model Results - Maximum Day + Fire Flow | Operating Condition | Minimum Pressure | |--|-------------------| | 300 L/s (95 L/s @ HYD 1 & 2, 55 L/s @ EXHYD 2 & 3) | 414.86 kPa (HYD2) | Table 7-4: Summary of Hydraulic Model Results - Peak Hour Demand | Operating Condition | Maximum Pressure | Minimum Pressure | |--------------------------|---------------------|------------------| | 9.048 L/s through system | 527.58 kPa (EXHYD3) | 513.95 kPa (N2) | The hydraulic modelling summarized above highlights the maximum and minimum system pressures during Peak Hour conditions, and the minimum system pressures during the Maximum Day + Fire condition. Since the Maximum Day + Fire Flow pressures are above the minimum 140 kPa, and the Peak Hour Pressures onsite fall within the normal operating pressure range (345 kPa to 552 kPa) we conclude the proposed water design will adequately service the development. Table 7-5: Summary of Hydraulic Model Results – Maximum Pressure Check | Operating Condition | Maximum Pressure | Minimum Pressure | |--------------------------|---------------------|------------------| | 1.645 L/s through system | 615.87 kPa (EXHYD3) | 602.33 kPa (N2) | The average day pressures throughout the system are above 552 kPa, therefore pressure reducing valves are required. Water retention was analyzed at each node during average day demand. The maximum age throughout the system is within City standards. #### 8.0 CONCLUSIONS AND RECOMMENDATIONS The report conclusions are as follows: 1) The proposed storm system will control post-development flow to the allowable release rate of 135.6 L/s. - 2) The proposed sanitary sewer conforms to City design criteria and provides a gravity outlet for the development site. There is capacity in the downstream sanitary sewers to accommodate the design flow into the Baribeau Street sanitary sewers. - 3) Connection to the watermain in Baribeau Street will provide municipal water service to the development. - 4) There is adequate fire protection for the proposed development, in accordance with the Fire Underwriter's Survey. - 5) The proposed infrastructure (sanitary, storm and water) complies with City of Ottawa design standards. - 6) The proposed grading provides a minimum 0.30m clearance between the RVCA regulatory flood level of 56.44m and the underside of slab of all living levels. This report is respectfully submitted for review and approval. Please contact the undersigned should you have questions or require additional information. Sincerely, #### **NOVATECH** Prepared By: Lucas Wilson, P.Eng. Project Manager Reviewed By: Mark Bissett, P.Eng. Senior Project Manager #### **APPENDIX A: Design Sheets** Storm Sewer Design Sheet (Rational Method) Sanitary Sewer Design Sheet Watermain Boundary Conditions Watermain Modelling Fire Flow Calculations Fire Hydrant Coverage Plan **Project No.: 119068** #### STORM SEWER DESIGN SHEET #### FLOW RATES BASED ON RATIONAL METHOD | | LOCATION | | AREA (ha) | | | | | | FLC | W | TOTAL FLOW | | SEWER DATA | | | | | | | | | | | |---------------------|------------------------|----------|-----------|-------|------|------|---------|----------------|----------------|--------------------|--------------------|--------------------|------------|---------------|----------|------|-------------|--|--|---------------------------------------|--|--------------|--------------| | Street | Catchment ID | From | То | Area | С | AC | Indiv | Accum | Time of | Rainfall Intensity | Rainfall Intensity | Rainfall Intensity | Peak Flow | | Dia. (m) | | Туре | Slope | Length | Capacity | Velocity | Flow
Time | Ratio | | Street | Catchinent ID | Manhole | Manhole | (ha) | | (ha) | 2.78 AC | 2.78 AC | Concentration | 2 Year
(mm/hr) | 5 Year (mm/hr) | 10 Year (mm/hr) | (L/s) | Flow, Q (L/s) | Actual | (mm) | | (%) | (m) | (L/s) | (m/s) | (min) | Q/Q fu | | | | | | 0.139 | 0.77 | 0.11 | 0.298 | 0.298 | 10.00 | 76.81 | | | 22.9 | | | | 1 | · · | | , , , , , , , , , , , , , , , , , , , | | | | | | A-04, A-19 | MH14 | MH12 | | | 0.00 | 0.000 | 0.000 | 10.00 | | | | | 22.9 | 0.305 | 300 | PVC | 0.50 | 17.2 | 71.3 | 0.98 | 0.29 | 32% | | | | | | 0.145 | 0.75 | 0.00 | 0.000 | 0.000 | 10.00 | 75.70 | | | 45.4 | | | | | | ļ | ─── | <u> </u> | | | | | A-03, A-18, A-20 | MH12 | MH10 | 0.145 | 0.75 | 0.11 | 0.302 | 0.600 | 10.29
10.29 | 75.70 | | | 45.4 | 45.4 | 0.305 | 300 | PVC | 0.50 | 27.2 | 71.3 | 0.98 | 0.46 | 64% | | | A-00, A-10, A-20 | IVIIIIZ | IVIITIO | | | 0.00 | 0.000 | 0.000 | 10.29 | | | | | 40.4 | 0.505 | 300 | 1 00 | 0.50 | 27.2 | / 1.5 | 0.30 | 0.40 | 0470 | | | | | | 0.060 | 0.80 | 0.05 | 0.133 | 0.733 | 10.76 | 74.01 | | | 54.3 | | | | i | + | | | | | 1 | | | A-06 | MH10 | CBMH01 | | | 0.00 | 0.000 | 0.000 | 10.76 | | | | | 54.3 | 0.305 | 300 | PVC | 0.50 | 9.6 | 71.3 | 0.98 | 0.16 | 76% | | | | | | | | 0.00 | 0.000 | 0.000 | 10.76 | | | | | | | | <u> </u> | | | | | | | | | | | | 0.073 | 0.76 | 0.06 | 0.154 | 0.888 | 10.92 | 73.44 | | | 65.2 | | 0.381 | | 1 | | | ' | | | | | | A-05 | CBMH01 | MH08 | | | 0.00 | 0.000 | 0.000 | 10.92 | | | | | 65.2 | | 375 | PVC | 0.50 | 35.6 | 129.2 | 1.13 | 0.52 | 2 50% | | | | | | 0.405 | 0.00 | 0.00 | 0.000 | 0.000 | 10.92 | 74.07 | | | 04.0 | . | | | | <u></u> ' | | | ļ | | | | | A-07 | MH08 | MH06 | 0.125 | 0.83 | 0.10 | 0.288 | 1.176
0.000 | 11.44
11.44 | 71.67 | | | 84.3 | 84.3 | 0.457 | 450 | Conc | 0.50 | 28.6 | 210.2 | 1.28 | 0.37 | 40% | | | A-07 | IVII IOO | IVII IOO | | | 0.00 | 0.000 | 0.000 | 11.44 | | | | | 84.3 | | 430 | l | 0.50 | 20.0 | 210.2 | 1.20 | 0.57 | 40% | | | | | | 0.344 | 0.84 | 0.29 | | 1.979 | 11.82 | 70.47 | | | 139.5 | • | | | | \vdash | | | | | + | | | A-08, A-13, A-15 | MH06 | MH04 | 0.011 | 0.0. | 0.00 | 0.000 | 0.000 | 11.82 | | | | | 139.5 | 0.457 | 450 | Conc | 1.00 | 36.2 | 297.2 | 1.81 | 0.33 | 47% | | | · | | | | | 0.00 | 0.000 | 0.000 | 11.82 | | | | | | | | 1 | <u> </u> | | ' | | | | | | A-01, A-02, A-09 to A- | | | 0.292 | 0.40 | 0.12 | | 2.304 | 12.15 | 69.43 | | | 160.0 | | | |
1 _ | | | 1 | | | | | | 12, A-14, A-16 to A-17 | MH04 | EX. 1050 | | | 0.00 | 0.000 | 0.000 | 12.15 | | | | | 160.0 | 0.457 | 450 | Conc | 2.00 | 46.6 | 420.3 | 2.56 | 0.30 | 38% | | | , , | | | | | 0.00 | 0.000 | 0.000 | 12.15 | | | | | | | | | | | ' | | | 1 | Q = 2.78 AIC, where | | | · | | | | | | | | Consul | tant: | | | | · | | - | Novatec | :h | | | | | Q = 2.78 AIC, where | Consultant: | Novatec | h | | | | |--|----------------------|-----------------|-------------|--|--|--| | Q = Peak Flow in Litres per Second (L/s) | Date: | June 27, 20 | 024 | | | | | A = Area in hectares (ha) | Design By: | Lucas Wilson | | | | | | I = Rainfall Intensity (mm/hr), 2 year storm | Client: | Dwg. Reference: | Checked By: | | | | | C = Runoff Coefficient | Parkriver Properties | 119068-STM | МАВ | | | | ### 200 Baribeau Street - Sanitary Sewer Design Sheet | | AREA | | | R | ESIDEN | ITIAL | | INF | LTRATIC | N | | | | | PI | PE | | | | | | | |-----------|---------------------|----|-------|------------|----------------|----------------|--------------------|-----------------------|------------------------|--------------------------|------------------------|--------------|--------------|---------------|-------------------|----------------------------|-------------------------|----------------------------|-------------|--|--|--| | | | | Apar | Apartments | ID | From | То | Units | Pop. | Accum.
Pop. | Peak
Factor | Peak Flow
(l/s) | Total
Area
(ha) | Accum.
Area
(ha) | Infilt.
Flow
(I/s) | Total
Flow
(I/s) | Size
(mm) | Slope
(%) | Length
(m) | Capacity
(l/s) | Full Flow
Vel.
(m/s) | Actual
Vel.
(m/s) | Q/Q _{full}
(%) | d/D | | | | | 200 BARI | 200 BARIBEAU STREET | 9 | 7 | 162 | 291.6 | 291.6 | 3.5 | 3.3 | 0.31 | 0.31 | 0.1 | 3.4 | 200 | 0.35 | 74.8 | 20.2 | 0.62 | 0.38 | 16.7% | 0.307 | | | | | | 5 | 3 | 120 | 216.0 | 216.0 | 3.5 | 2.5 | 0.24 | 0.24 | 0.1 | 2.5 | 200 | 0.65 | 46.0 | 27.6 | 0.85 | 0.44 | 9.2% | 0.229 | | | | | | 3 | 6 | 0 | 0.0 | 216.0 | 3.5 | 2.5 | 0.00 | 0.24 | 0.1 | 2.5 | 200 | 0.35 | 10.5 | 20.2 | 0.62 | 0.36 | 12.5% | 0.265 | | | | | | TOTAL | | 282 | 507.6 | 507.6 | 3.4 | 5.6 | 0.00 | 0.55 | 0.2 | 5.9 | | | | | | | | | | | | | Design Pa | arameters | ;: | _ | I. | • | | Population | Density: | I. | | | | ı | ı | 1 | Projec | t: 200 Bar | ibeau Stree | et (119068) | | | | units/net ha 90 ppl/unit Apartment 1.80 Infiltration = 0.33 l/s/ha Pipe Friction n = 0.013 Avg Flow/Person = Comm./Inst. Flow = Residential Peaking Factor = Harmon Equation (max 4, min 2) 280 l/day 28000 l/ha/day Designed: LRW Checked: MAE Date: June 27, 2024 # 200 Baribeau Street - Sanitary Sewer Design Sheet | | AREA | | | | RE | SIDEN | ITIAL | | | | ICI | | | INF | LTRATIO | NC | | PIPE | | | | | | | | |---|------------|-----------------|-----------------|----------|--------|-------|----------------|----------------|--------------------|----------------------------|-------------------------------|------------------------|-----------------------|-----------------------|------------------------|--------------------------|------------------------|--------------|--------------|------------|-------------------|----------------------------|-------------------------|----------------------------|-------------| | | | | SIN | IGLES | Apartn | nents | Street | From | То | Units | Pop. | Units | Pop. | Accum.
Pop. | Peak
Factor | Peak Flow
(l/s) | Commercial
Area
(ha) | Institutional
Area
(ha) | Accum.
Area
(ha) | Peak
Flow
(l/s) | Total
Area
(ha) | Accum.
Area
(ha) | Infilt.
Flow
(I/s) | Total
Flow
(I/s) | Size
(mm) | Slope
(%) | Length (m) | Capacity
(I/s) | Full Flow
Vel.
(m/s) | Actual
Vel.
(m/s) | Q/Q _{full}
(%) | d/D | | Existing Sanitary | y Sewer | Dagmar Ave. | EXSANMH1 | EXSANMH2 | 7 | 23.8 | 12 | 21.6 | 45.4 | 3.7 | 0.5 | 0.00 | 0.00 | 0.00 | 0.0 | 0.52 | 0.52 | 0.2 | 0.7 | 250 | 0.45 | 108.7 | 41.6 | 0.82 | 0.27 | 1.7% | 0.077 | | Dagmar Ave. | EXSANMH2 | EXSANMH3 | 0 | 0.0 | | 0.0 | 45.4 | 3.7 | 0.5 | 0.00 | 0.00 | 0.00 | 0.0 | 0.00 | 0.52 | 0.2 | 0.7 | 250 | 0.28 | 7.1 | 32.8 | 0.65 | 0.22 | 2.2% | 0.108 | | Dagmar Ave. | EXSANMH5 | EXSANMH4 | 14 | 47.6 | 3 | 5.4 | 53.0 | 3.6 | 0.6 | 0.00 | 0.00 | 0.00 | 0.0 | 0.69 | 0.69 | 0.2 | 0.9 | 250 | 1.00 | 99.2 | 62.0 | 1.22 | 0.38 | 1.4% | 0.077 | | Dagmar Ave. | | EXSANMH3 | 16 | 54.4 | | 0.0 | 107.4 | 3.6 | 1.2 | 0.00 | 0.00 | 0.00 | 0.0 | 0.77 | 1.46 | 0.5 | 1.7 | 250 | 0.81 | 110.5 | 55.8 | 1.10 | 0.42 | 3.1% | 0.132 | | Baribeau St. | EXSANMH3 | EXSANMH6 | 0 | 0.0 | 3 | 5.4 | 158.2 | 3.5 | 1.8 | 0.00 | 0.00 | 0.00 | 0.0 | 0.08 | 2.06 | 0.7 | 2.5 | 250 | 0.51 | 61.0 | 44.3 | 0.87 | 0.40 | 5.6% | 0.171 | | Montfort St. | EXSANMH8 | EXSANMH7 | 11 | 37.4 | 15 | 27.0 | 64.4 | 3.6 | 0.8 | 0.00 | 0.00 | 0.00 | 0.0 | 0.65 | 0.65 | 0.2 | 1.0 | 250 | 0.39 | 86.6 | 38.7 | 0.76 | 0.28 | 2.5% | 0.108 | | Montfort St. | EXSANMH7 | EXSANMH6 | 14 | 47.6 | 10 | 0.0 | 112.0 | 3.6 | 1.3 | 0.00 | 0.00 | 0.00 | 0.0 | 0.61 | 1.26 | 0.4 | 1.7 | 250 | 0.19 | 95.7 | 27.0 | 0.53 | 0.25 | 6.3% | 0.077 | | Baribeau St. | EXSANMH6 | EXSANMH9 | 2 | 6.8 | 282 | 507.6 | 784.6 | 3.3 | 8.4 | 0.00 | 0.00 | 0.00 | 0.0 | 1.01 | 4.33 | 1.4 | 9.8 | 250 | 0.37 | 70.4 | 37.7 | 0.74 | 0.52 | 26.0% | 0.077 | | Ethel St. | EXSANMH11 | EXSANMH10 | 11 | 37.4 | 5 | 9.0 | 46.4 | 3.7 | 0.5 | 0.00 | 0.00 | 0.00 | 0.0 | 0.58 | 0.58 | 0.2 | 0.7 | 250 | 0.40 | 84.7 | 39.2 | 0.77 | 0.25 | 1.9% | 0.077 | | Ethel St. | EXSANMH10 | EXSANMH9 | 5 | 17.0 | 3 | 5.4 | 68.8 | 3.6 | 0.8 | 0.00 | 0.28 | 0.28 | 0.1 | 0.54 | 1.12 | 0.4 | 1.3 | 250 | 0.41 | 68.8 | 39.7 | 0.78 | 0.30 | 3.3% | 0.077 | | Baribeau St. | EXSANMH9 | EXSANMH12 | 0 | 0.0 | | 0.0 | 853.4 | 3.3 | 9.1 | 0.00 | 0.00 | 0.28 | 0.1 | 1.37 | 6.82 | 2.3 | 11.4 | 250 | 0.30 | 71.8 | 34.0 | 0.67 | 0.51 | 33.7% | 0.077 | | Design Paramet | ers: | | | | | | | | Population | Density: | | | | | | | | | | | | Projec | t: 200 Bar | ibeau Stre | et (119068) | | Avg Flow/Person | | | 280 | l/day | | | | | | ppl/unit | | units/net ha | l | | | | | | | | | | | | gned: LRW | | Comm./Inst. Flow | v = | | 28000 | l/ha/day | | | | | Apartment | 1.80 | | 90 | | | | | | | | | | | | | ecked: MAB | | Infiltration = | | | 0.33 | l/s/ha | | | | | Singles | 3.40 | | 00 | | | | | | | | | | | | Date: Jur | ne 27, 2024 | | Pipe Friction n = | : | | 0.013 | : O) | | | | | Towns | 2.70 | | 60 | | | | | | | | | | | | | | | Residential Peaki
Institutional Peak | U | rmon Equation (| max 4, r
1.5 | min 2) | msululional Peak | ing Factor | | 1.5 | SHT11X17.DWG - 279mmX432mm #### **Lucas Wilson** **From:** Wu, John <John.Wu@ottawa.ca> **Sent:** Monday, July 27, 2020 12:17 PM To: Lucas Wilson **Subject:** RE: Fir flow and boundary condition for 200 Baribeau **Attachments:** 200 Baribeau July 2020.pdf The following are boundary conditions, HGL, for hydraulic analysis at 200 Baribeau (zone 1E) assumed to be connected to the 305mm on Landry and 203mm on Baribeau (see attached PDF for location). A 200mm private watermain was assumed between both
connections as requested. | | 305mm on Landry | 203mm on Baribeau | |-----------------------------|-----------------|-------------------| | Minimum HGL | 109.5m | 109.5m | | Maximum HGL | 118.5m* | 118.5m* | | MaxDay + Fireflow (183 L/s) | 110.0m | 109.0m | | MaxDay + Fireflow (333L/s) | 104.0m | 101.0m | The maximum pressure is estimated to be above 80 psi. A pressure check at completion of construction is recommended to determine if pressure control is required. These are for current conditions and are based on computer model simulation. Disclaimer: The boundary condition information is based on current operation of the city water distribution system. The computer model simulation is based on the best information available at the time. The operation of the water distribution system can change on a regular basis, resulting in a variation in boundary conditions. The physical properties of watermains deteriorate over time, as such must be assumed in the absence of actual field test data. The variation in physical watermain properties can therefore alter the results of the computer model simulation. #### John From: Lucas Wilson <1.wilson@novatech-eng.com> Sent: July 27, 2020 8:32 AM To: Wu, John < John. Wu@ottawa.ca> Subject: RE: Fir flow and boundary condition for 200 Baribeau CAUTION: This email originated from an External Sender. Please do not click links or open attachments unless you recognize the source. ATTENTION : Ce courriel provient d'un expéditeur externe. Ne cliquez sur aucun lien et n'ouvrez pas de pièce jointe, excepté si vous connaissez l'expéditeur. Good morning John, Just wanted to follow up on 200 Baribeau and if you've heard anything from water modelling in regards to the boundary conditions. Thanks, Lucas Wilson, P.Eng., Project Coordinator | Engineering **NOVATECH** Engineers, Planners & Landscape Architects 240 Michael Cowpland Drive, Suite 200, Ottawa, ON K2M 1P6 | Tel: 613.254.9643 Ext: 282 | Fax: 613.254.5867 The information contained in this email message is confidential and is for exclusive use of the addressee. From: Lucas Wilson Sent: Monday, July 13, 2020 10:17 AM **To:** 'John.Wu@ottawa.ca' < <u>John.Wu@ottawa.ca</u>> **Cc:** Mark Bissett < <u>m.bissett@novatech-eng.com</u>> Subject: RE: Fir flow and boundary condition for 200 Baribeau John, Thanks for the quick response. The link between the two connection points is a 200mm diameter watermain approximately 175m in length. We will be using a range of fire flows depending on the Block being modelled. Block 1 has the lowest fire flow of 183 L/s and Block 10 being the highest with a fire flow of 333 L/s. The City typically provides the pressures for the highest and lowest fire flows and requests that we interpolate for the remaining fire flows. Thanks, Lucas Wilson, P.Eng., Project Coordinator | Engineering **NOVATECH** Engineers, Planners & Landscape Architects 240 Michael Cowpland Drive, Suite 200, Ottawa, ON K2M 1P6 | Tel: 613.254.9643 Ext: 282 | Fax: 613.254.5867 The information contained in this email message is confidential and is for exclusive use of the addressee. From: Wu, John < John. Wu@ottawa.ca > Sent: Monday, July 13, 2020 9:14 AM To: Mark Bissett < m.bissett@novatech-eng.com >; Mark Bissett < m.bissett@novatech-eng.com > **Cc:** Renaud, Jean-Charles < <u>Jean-Charles.Renaud@ottawa.ca</u>> **Subject:** Fir flow and boundary condition for 200 Baribeau Hi. Lucas: Please let me know which Fire flow you try to use and what kind of link(size of water main and distance) between the two connection points I can forward to City's Model group to do the boundary condition for you. Thanks. John Wu, P.Eng. Project Manager, Infrastructure Approval Development Review (Urban Services) Gestionnaire de projet, Approbation de L'infrastructure Examen des projects d'amenagement (Services urbains) Planning, Infrastructure and Economic Development Department Services de planification, d'infrastructure et de développement économique City of Ottawa | Ville d'Ottawa 110 Laurier Avenue West. Ottawa, ON | 110, avenue. Laurier Ouest. Ottawa (Ontario) K1P 1J1 613.580.2424 ext./poste 27734, fax/téléc:613-560-6006, john.wu@ottawa.ca This e-mail originates from the City of Ottawa e-mail system. Any distribution, use or copying of this e-mail or the information it contains by other than the intended recipient(s) is unauthorized. Thank you. Le présent courriel a été expédié par le système de courriels de la Ville d'Ottawa. Toute distribution, utilisation ou reproduction du courriel ou des renseignements qui s'y trouvent par une personne autre que son destinataire prévu est interdite. Je vous remercie de votre collaboration. This e-mail originates from the City of Ottawa e-mail system. Any distribution, use or copying of this e-mail or the information it contains by other than the intended recipient(s) is unauthorized. Thank you. Le présent courriel a été expédié par le système de courriels de la Ville d'Ottawa. Toute distribution, utilisation ou reproduction du courriel ou des renseignements qui s'y trouvent par une personne autre que son destinataire prévu est interdite. Je vous remercie de votre collaboration. 3 | 200 Baribeau Street
Water Demand | | | | | | | | |-------------------------------------|------|-------|------------|-------------|-------------|-----------|--| | | | | | Average Day | Maximum Day | Peak Hour | | | | Area | | | Demand | Demand | Demand | | | | (ha) | Units | Population | (L/s) | (L/s) | (L/s) | | | Towns | N/A | 282 | 508 | 1.645 | 4.113 | 9.048 | | | Total | 0.00 | 282 | 508 | 1.645 | 4.113 | 9.048 | | ### **Water Demand Parameters** | Apartment | 1.8 | ppl/unit | |-----------------------|-----------|-----------| | Residential Demand | 280 | L/c/day | | Residential Max Day | 2.5 | x Avg Day | | Residential Peak Hour | 2.2 | x Max Day | | Residential Fire Flow | 183 - 300 | L/s | ### 200 Baribeau Street - Watermain Demand | Node | Apartments | Total Population | Average Day
Residential Demand
(L/s) | Maximum Day
Residential Demand
(L/s) | Peak Hour Residential
Demand
(L/s) | |--------|------------|------------------|--|--|--| | HYD1 | 18 | 32 | 0.105 | 0.263 | 0.578 | | HYD2 | 144 | 259 | 0.840 | 2.100 | 4.620 | | EXHYD1 | 0 | 0 | 0.000 | 0.000 | 0.000 | | EXHYD2 | 0 | 0 | 0.000 | 0.000 | 0.000 | | EXHY3 | 0 | 0 | 0.000 | 0.000 | 0.000 | | N1 | 60 | 108 | 0.350 | 0.875 | 1.925 | | N2 | 60 | 108 | 0.350 | 0.875 | 1.925 | | Total | 282 | 508 | 1.645 | 4.113 | 9.048 | #### **Water Demand Parameters** | | | ppl/unit | Residential Max Day | 2.5 | x Avg Day | |--------------------|-----|----------|-----------------------|-----------|-----------| | Towns | 1.8 | ppl/unit | Residential Peak Hour | 2.2 | x Max Day | | Residential Demand | 280 | L/c/day | Residential Fire Flow | 183 - 300 | L/s | ### 200 Baribeau Street - Watermain Analysis | Network Table - Nodes | - (Peak Hour) | | | | | | | |-------------------------|---------------|----------|-----------|----------|----------|----------|----------| | | Elevation | Demand | Head | Pressure | Pressure | Pressure | | | Node ID | m | LPS | m | m | kPa | psi | | | Junc HYD1 | 56.45 | 0.58 | 109.49 | 53.04 | 520.32 | 75.47 | | | Junc HYD2 | 56.72 | 4.62 | 109.49 | 52.77 | 517.67 | 75.08 | | | Junc EXHYD1 | 56.43 | 0 | 109.5 | 53.07 | 520.62 | 75.51 | | | Junc EXHYD2 | 56.05 | 0 | 109.5 | 53.45 | 524.34 | 76.05 | | | Junc EXHYD3 | 55.72 | 0 | 109.5 | 53.78 | 527.58 | 76.52 | | | Junc N1 | 57.06 | 1.92 | 109.49 | 52.43 | 514.34 | 74.60 | | | Junc N2 | 57.1 | 1.92 | 109.49 | 52.39 | 513.95 | 74.54 | | | Resvr RES1 | 109.5 | -2.54 | 109.5 | 0 | 0.00 | 0.00 | | | Resvr RES2 | 109.5 | -6.51 | 109.5 | 0 | 0.00 | 0.00 | | | Network Table - Links - | (Peak Hour) | | | | | | | | | Length | Diameter | Roughness | Flow | Velocity | Headloss | Friction | | Link ID | m | mm | | LPS | m/s | m/km | Factor | | Pipe P1 | 25 | 300 | 120 | 2.54 | 0.04 | 0.01 | 0.039 | | Pipe P2 | 49 | 204 | 110 | 2.54 | 0.08 | 0.06 | 0.042 | | Pipe P3 | 83 | 204 | 110 | -1.76 | 0.05 | 0.03 | 0.045 | | Pipe P4 | 19 | 204 | 110 | -1.76 | 0.05 | 0.03 | 0.045 | | Pipe P5 | 42 | 204 | 110 | 4.75 | 0.15 | 0.20 | 0.038 | | Pipe P6 | 39 | 204 | 110 | 0.13 | 0.00 | 0.00 | 0.063 | | Pipe P7 | 92 | 204 | 110 | 0.45 | 0.01 | 0.00 | 0.053 | | Pipe P8 | 33 | 204 | 110 | -2.38 | 0.07 | 0.06 | 0.043 | | Pipe P9 | 18 | 204 | 110 | -4.30 | 0.13 | 0.17 | 0.039 | ### 200 Baribeau Street - Watermain Analysis | | Elevation | Demand | Head | Pressure | Pressure | Pressure | Age | |-------------|-----------|--------|-------|----------|----------|----------|-------| | Node ID | m | LPS | m | m | kPa | psi | Hours | | Junc HYD1 | 56.45 | 0.1 | 118.5 | 62.05 | 608.71 | 88.29 | 13.98 | | Junc HYD2 | 56.72 | 0.84 | 118.5 | 61.78 | 606.06 | 87.90 | 0.44 | | Junc EXHYD1 | 56.43 | 0 | 118.5 | 62.07 | 608.91 | 88.31 | 1.07 | | lunc EXHYD2 | 56.05 | 0 | 118.5 | 62.45 | 612.63 | 88.86 | 2.39 | | Junc EXHYD3 | 55.72 | 0 | 118.5 | 62.78 | 615.87 | 89.32 | 0.54 | | lunc N1 | 57.06 | 0.35 | 118.5 | 61.44 | 602.73 | 87.42 | 2.59 | | Junc N2 | 57.1 | 0.35 | 118.5 | 61.4 | 602.33 | 87.36 | 3.3 | | Resvr RES1 | 118.5 | -0.46 | 118.5 | 0 | 0.00 | 0.00 | 0 | | Resvr RES2 | 118.5 | -1.18 | 118.5 | 0 | 0.00 | 0.00 | 0 | | Network Table - Links - (Max | c Pressure Check | x) | | | | | | |------------------------------|------------------|----------|-----------|-------|----------|----------|----------| | | Length | Diameter | Roughness | Flow | Velocity | Headloss | Friction | | Link ID | m | mm | | LPS | m/s | m/km | Factor | | Pipe P1 | 25 | 300 | 120 | 0.46 | 0.01 | 0.00 | 0.051 | | Pipe P2 | 49 | 204 | 110 | 0.46 | 0.01 | 0.00 | 0.058 | | Pipe P3 | 83 | 204 | 110 | -0.32 | 0.01 | 0.00 | 0.061 | | Pipe P4 | 19 | 204 | 110 | -0.32 | 0.01 | 0.00 | 0.061 | | Pipe P5 | 42 | 204 | 110 | 0.86 | 0.03 | 0.01 | 0.050 | | Pipe P6 | 39 |
204 | 110 | 0.02 | 0.00 | 0.00 | 0.000 | | Pipe P7 | 92 | 204 | 110 | 0.08 | 0.00 | 0.00 | 0.064 | | Pipe P8 | 33 | 204 | 110 | -0.43 | 0.01 | 0.00 | 0.057 | | Pipe P9 | 18 | 204 | 110 | -0.78 | 0.02 | 0.01 | 0.047 | ### 200 Baribeau Street - Watermain Analysis | Network Table - Nodes | (Max Day + FF '300 L/s' | ') | | | | | |-----------------------|-------------------------|---------|--------|----------|----------|----------| | | Elevation | Demand | Head | Pressure | Pressure | Pressure | | Node ID | m | LPS | m | m | kPa | psi | | Junc HYD1 | 56.45 | 95.26 | 98.75 | 42.3 | 414.96 | 60.19 | | Junc HYD2 | 56.72 | 97.1 | 99.01 | 42.29 | 414.86 | 60.17 | | Junc EXHYD1 | 56.43 | 0 | 105.1 | 48.67 | 477.45 | 69.25 | | Junc EXHYD2 | 56.05 | 55 | 102.06 | 46.01 | 451.36 | 65.46 | | Junc EXHYD3 | 55.72 | 55 | 102.22 | 46.5 | 456.17 | 66.16 | | Junc N1 | 57.06 | 0.88 | 101.58 | 44.52 | 436.74 | 63.34 | | Junc N2 | 57.1 | 0.88 | 100.72 | 43.62 | 427.91 | 62.06 | | Resvr RES1 | 105.3 | -104.83 | 105.3 | 0 | 0.00 | 0.00 | | Resvr RES2 | 102.8 | -199.28 | 102.8 | 0 | 0.00 | 0.00 | | | Length | Diameter | Roughness | Flow | Velocity | Headloss | Friction | |---------|--------|----------|-----------|--------|----------|----------|----------| | Link ID | m | mm | | LPS | m/s | m/km | Factor | | Pipe P1 | 25 | 300 | 120 | 104.83 | 1.48 | 8.13 | 0.022 | | Pipe P2 | 49 | 204 | 110 | 104.83 | 3.21 | 62.54 | 0.024 | | Pipe P3 | 83 | 204 | 110 | -16.02 | 0.49 | 1.93 | 0.032 | | Pipe P4 | 19 | 204 | 110 | -71.02 | 2.17 | 30.40 | 0.026 | | Pipe P5 | 42 | 204 | 110 | 128.26 | 3.92 | 90.85 | 0.024 | | Pipe P6 | 39 | 204 | 110 | 31.16 | 0.95 | 6.61 | 0.029 | | Pipe P7 | 92 | 204 | 120 | 64.10 | 1.96 | 21.41 | 0.022 | | Pipe P8 | 33 | 204 | 110 | -64.98 | 1.99 | 25.79 | 0.026 | | Pipe P9 | 18 | 204 | 110 | -65.85 | 2.01 | 26.44 | 0.026 | As per 2020 Fire Underwriter's Survey Guidelines Novatech Project #: 119068 Project Name: 200 Baribeau Date: 6/27/2024 Input By: Lucas Wilson Reviewed By: Mark Bissett **Building Description:** Building #1 (36 Units) | Step | | | Input | | Value Used | Total Fire
Flow
(L/min) | |------|---|--|---|--------------------------------------|--------------------------|-------------------------------| | | | Base Fire Flo | W | | | | | | Construction Ma | terial | | Multi | plier | | | 1 | Coefficient related to type of construction | Type V - Wood frame Type IV - Mass Timber Type III - Ordinary construction Type II - Non-combustible construction Type I - Fire resistive construction (2 hrs) | Yes | 1.5
Varies
1
0.8
0.6 | 1.5 | | | | Floor Area | I | 507 | | | | | 2 | A | Building Footprint (m²) Number of Floors/Storeys Area of structure considered (m²) | 3 | | 1,791 | | | | F | Base fire flow without reductions F = 220 C (A) ^{0.5} | _ | | 1,731 | 14,000 | | | ı | Reductions or Sur | harges | | | | | | Occupancy haza | rd reduction or surcharge | FUS Table 3 | Reduction/ | Surcharge | | | 3 | (1) | Non-combustible Limited combustible Combustible Free burning Rapid burning | Yes | -25%
-15%
0%
15%
25% | -25% | 10,500 | | | Sprinkler Reduct | | FUS Table 4 | Redu | ction | | | 4 | (2) | Adequately Designed System (NFPA 13) Standard Water Supply Fully Supervised System | Cumulati | -30%
-10%
-10%
ve Sub-Total | 0% | 0 | | | | Area of Sprinklered Coverage (m²) | 0 | 0%
Julative Total | 00/ | | | | Exposure Surch | arge | FUS Table 5 | iuiativė 10tai | 0%
Surcharge | | | 5 | (3) | North Side East Side South Side West Side | 20.1 - 30 m
20.1 - 30 m
20.1 - 30 m
3.1 - 10 m | | 10%
10%
20%
20% | 6,300 | | | | | Cum | ulative Total | 60% | | | | | Results | | | - | | | | (4) - (2) - (2) | Total Required Fire Flow, rounded to nea | | | L/min | 17,000 | | 6 | (1) + (2) + (3) | (2,000 L/min < Fire Flow < 45,000 L/min) | ì | or
or | L/s
USGPM | 283
4,491 | As per 2020 Fire Underwriter's Survey Guidelines Novatech Project #: 119068 Project Name: 200 Baribeau Date: 6/27/2024 Input By: Lucas Wilson Reviewed By: Mark Bissett **Building Description:** Building #2 (36 Units) | Step | | | Input | | Value Used | Total Fire
Flow
(L/min) | | |-------------|---|---|-----------------|--------------------|------------|-------------------------------|--| | | • | Base Fire Flo |)W | | | , , | | | | Construction Ma | terial | | Multi | plier | | | | 1 | Coefficient related to type of construction | Type V - Wood frame Type IV - Mass Timber Type III - Ordinary construction | Yes | 1.5
Varies
1 | 1.5 | | | | | C Floor Area | Type II - Non-combustible construction Type I - Fire resistive construction (2 hrs) | | 0.8
0.6 | | | | | | 1 1001 Alea | Building Footprint (m ²) | 597 | | | | | | | Α | Number of Floors/Storeys | 3 | | | | | | 2 | | Area of structure considered (m²) | | | 1,791 | | | | | F | Base fire flow without reductions | | | | 14,000 | | | | • | $F = 220 \text{ C } (A)^{0.5}$ | | | | , | | | | | Reductions or Sur | charges | | | | | | | Occupancy haza | rd reduction or surcharge | FUS Table 3 | Reduction | Surcharge | | | | | | Non-combustible | Yes | -25% | | | | | 3 | | Limited combustible | | -15% | | | | | | (1) | Combustible | | 0% | -25% | 10,500 | | | | | Free burning | | 15% | | | | | | | Rapid burning | | 25% | | | | | | Sprinkler Reduc | | FUS Table 4 | Redu | ction | | | | | | Adequately Designed System (NFPA 13) | | -30% | | | | | | | Standard Water Supply | | -10% | | | | | 4 | (2) | Fully Supervised System | | -10% | | 0 | | | | (2) | | Cumulati | ve Sub-Total | 0% | U | | | | | Area of Sprinklered Coverage (m²) | 0 | 0% | | | | | | | | Cum | ulative Total | 0% | | | | | Exposure Surch | arge | FUS Table 5 | | Surcharge | | | | | | North Side | 20.1 - 30 m | | 10% | | | | | | East Side | 3.1 - 10 m | | 20% | | | | 5 | (0) | South Side | 3.1 - 10 m | | 20% | F 050 | | | | (3) | West Side | >30m | | 0% | 5,250 | | | | | | Cum | ulative Total | 50% | | | | | | Results | | | | | | | | | Total Required Fire Flow, rounded to ne | arest 1000L/mir | า | L/min | 16,000 | | | 6 | (1) + (2) + (3) | (2,000 L/min < Fire Flow < 45,000 L/min) | | or | L/s | 267 | | | (., (=) (0) | | (2,000 L/min < Fire Flow < 45,000 L/min) | | or | USGPM | 4,227 | | As per 2020 Fire Underwriter's Survey Guidelines Novatech Project #: 119068 Project Name: 200 Baribeau Date: 6/27/2024 Input By: Lucas Wilson Reviewed By: Mark Bissett **Building Description:** Building #3 (24 Units) | Step | | | Input | | Value Used | Total Fire
Flow
(L/min) | |------|---|--|---|--------------------------------------|--------------------------|-------------------------------| | | | Base Fire Flo | w | | | | | | Construction Ma | terial | | Multi | plier | | | 1 | Coefficient related to type of construction | Type V - Wood frame Type IV - Mass Timber Type III - Ordinary construction Type II - Non-combustible construction Type I - Fire resistive construction (2 hrs) | Yes | 1.5
Varies
1
0.8
0.6 | 1.5 | | | | Floor Area | | | | | | | 2 | A | Building Footprint (m²) Number of Floors/Storeys Area of structure considered (m²) | 3 | | 1,335 | | | | F | Base fire flow without reductions $F = 220 \text{ C (A)}^{0.5}$ | | | · | 12,000 | | | • | Reductions or Sur | harges | | ' | | | | Occupancy haza | rd reduction or surcharge | FUS Table 3 | Reduction/ | Surcharge | | | 3 | (1) | Non-combustible Limited combustible Combustible Free burning Rapid burning | Yes | -25%
-15%
0%
15%
25% | -25% | 9,000 | | | Sprinkler Reduct | | FUS Table 4 | Redu | ction | | | 4 | (2) | Adequately Designed System (NFPA 13) Standard Water Supply Fully Supervised System | Cumulati | -30%
-10%
-10%
ve Sub-Total | 0% | 0 | | | | Area of Sprinklered Coverage (m²) | 0
Cum | 0%
ulative Total | 0% | | | | Exposure Surch | ı
arge | FUS Table 5 | mative rotar | Surcharge | | | 5 | (3) | North Side East Side South Side West Side | 3.1 - 10 m
20.1 - 30 m
3.1 - 10 m
3.1 - 10 m | | 20%
10%
20%
20% | 6,300 | | | | | Cum | ulative Total | 70% | | | | | Results | | | | | | | | Total Required Fire Flow, rounded to nea | arest 1000L/mir | 1 | L/min | 15,000 | | 6 | (1) + (2) + (3) | (2,000 L/min < Fire Flow < 45,000 L/min) | | or
or | L/s
USGPM | 250
3,963 | As per 2020 Fire Underwriter's Survey Guidelines Novatech Project #: 119068 Project Name: 200 Baribeau Date: 6/27/2024 Input By: Lucas Wilson Reviewed By: Mark Bissett **Building Description:** Building #4 (24 Units) | Step | | | Input | | Value Used | Total Fire
Flow
(L/min) | |------|---|--|--|--------------------------------------|-------------------------|-------------------------------| | | | Base Fire Flo | w | | | | | | Construction Ma | terial | | Multi | plier | | | 1 | Coefficient related to type of construction | Type V - Wood frame Type IV - Mass Timber Type III - Ordinary construction Type II - Non-combustible construction Type I - Fire resistive construction (2 hrs) | Yes | 1.5
Varies
1
0.8
0.6 | 1.5 | | | | Floor Area | | | | | | | 2 | A | Building Footprint (m²) Number of Floors/Storeys Area of
structure considered (m²) | 3 | | 1,335 | | | | F | Base fire flow without reductions F = 220 C (A) ^{0.5} | | | · | 12,000 | | | | Reductions or Sur | harges | | | | | | Occupancy haza | rd reduction or surcharge | FUS Table 3 | Reduction | Surcharge | | | 3 | (1) | Non-combustible Limited combustible Combustible Free burning Rapid burning | Yes | -25%
-15%
0%
15%
25% | -25% | 9,000 | | | Sprinkler Reduct | | FUS Table 4 | Redu | ction | | | 4 | (2) | Adequately Designed System (NFPA 13) Standard Water Supply Fully Supervised System | Cumulati | -30%
-10%
-10%
ve Sub-Total | 0% | 0 | | | | Area of Sprinklered Coverage (m²) | 0 | 0% | 20/ | | | | Exposure Surch | arge | FUS Table 5 | ulative Total | 0%
Surcharge | | | 5 | (3) | North Side East Side South Side West Side | 3.1 - 10 m
3.1 - 10 m
3.1 - 10 m
>30m | | 20%
20%
20%
0% | 5,400 | | | | _ | Cum | ulative Total | 60% | | | | <u> </u> | Results | | | | | | • | (4) 1 (0) 1 (0) | Total Required Fire Flow, rounded to nea | | | L/min | 14,000 | | 6 | (1) + (2) + (3) | (2,000 L/min < Fire Flow < 45,000 L/min) | | or
or | L/s
USGPM | 233
3,699 | As per 2020 Fire Underwriter's Survey Guidelines Novatech Project #: 119068 Project Name: 200 Baribeau Date: 6/27/2024 Input By: Lucas Wilson Reviewed By: Mark Bissett **Building Description:** Building #5 (36 Units) | Step | | | Input | | Value Used | Total Fire
Flow
(L/min) | |------|---|--|--|--------------------------------------|--------------------------|-------------------------------| | | | Base Fire Flo | w | | | | | | Construction Ma | terial | | Multi | plier | | | 1 | Coefficient related to type of construction | Type V - Wood frame Type IV - Mass Timber Type III - Ordinary construction Type II - Non-combustible construction Type I - Fire resistive construction (2 hrs) | Yes | 1.5
Varies
1
0.8
0.6 | 1.5 | | | | Floor Area | | | | | | | 2 | A | Building Footprint (m²) Number of Floors/Storeys Area of structure considered (m²) | 597
3 | | 1,791 | | | | F | Base fire flow without reductions F = 220 C (A) ^{0.5} | | | | 14,000 | | | | Reductions or Sur | harges | | <u>'</u> | | | | Occupancy haza | rd reduction or surcharge | FUS Table 3 | Reduction | Surcharge | | | 3 | (1) | Non-combustible Limited combustible Combustible Free burning Rapid burning | Yes | -25%
-15%
0%
15%
25% | -25% | 10,500 | | | Sprinkler Reduct | | FUS Table 4 | Redu | ction | | | 4 | (2) | Adequately Designed System (NFPA 13) Standard Water Supply Fully Supervised System | Cumulati | -30%
-10%
-10%
ve Sub-Total | 0% | 0 | | | | Area of Sprinklered Coverage (m²) | 0 | 0%
ulative Total | 0% | | | | Exposure Surch | l
arge | FUS Table 5 | uiative TUtal | Surcharge | | | 5 | (3) | North Side East Side South Side West Side | 3.1 - 10 m
20.1 - 30 m
10.1 - 20 m
3.1 - 10 m | | 20%
10%
15%
20% | 6,825 | | | | | Cum | ulative Total | 65% | | | | | Results | | | | | | | | Total Required Fire Flow, rounded to nea | arest 1000L/mir | 1 | L/min | 17,000 | | 6 | (1) + (2) + (3) | (2,000 L/min < Fire Flow < 45,000 L/min) | | or
or | L/s
USGPM | 283
4,491 | As per 2020 Fire Underwriter's Survey Guidelines Novatech Project #: 119068 Project Name: 200 Baribeau Date: 6/27/2024 Input By: Lucas Wilson Reviewed By: Mark Bissett **Building Description:** Building #6 (36 Units) | • | | | | | | Total Fir | |-------------------|--|--|----------------|---------------|------------|-----------------| | Step | | | Input | | Value Used | Flow
(L/min) | | | | Base Fire Flo | | | | (L/min) | | | la | | · V | | 1 | | | | Construction Ma | *** | | | plier | | | | Coefficient | Type V - Wood frame | Yes | 1.5 | | | | 1 | related to type | Type IV - Mass Timber | | Varies | 4.5 | | | of construction C | | Type III - Ordinary construction | | 1 | 1.5 | | | | | Type II - Non-combustible construction | | 0.8 | | | | | Floor Area | Type I - Fire resistive construction (2 hrs) | | 0.6 | | | | | 1 1001 Alea | Building Footprint (m ²) | 597 | | | | | | Α | Number of Floors/Storeys | 3 | | | | | 2 | ^ | Area of structure considered (m ²) | | | 1,791 | | | | | Base fire flow without reductions | | | ., | | | | F | F = 220 C (A) ^{0.5} | | | | 14,000 | | | | Reductions or Sur | harges | | | | | | Occupancy haza | ard reduction or surcharge | FUS Table 3 | Reduction | Surcharge | | | | | Non-combustible | Yes | -25% | | | | 3 | (1) | Limited combustible | 100 | -15% | | | | | | Combustible | | 0% | -25% | 10,500 | | | | Free burning | | 15% | | , | | | | Rapid burning | | 25% | | | | | Sprinkler Reduct | tion | FUS Table 4 | Redu | ction | | | | | Adequately Designed System (NFPA 13) | | -30% | | | | | | Standard Water Supply | | -10% | | | | 4 | (2) | Fully Supervised System | | -10% | | 0 | | | (2) | | Cumulati | ve Sub-Total | 0% | U | | | | Area of Sprinklered Coverage (m²) | 0 | 0% | | | | | | | | ulative Total | 0% | | | | Exposure Surch | | FUS Table 5 | | Surcharge | | | | | North Side | 3.1 - 10 m | | 20% | | | | | East Side | 3.1 - 10 m | | 20% | | | 5 | (3) | South Side | 10.1 - 20 m | | 15% | 7,875 | | | (-) | West Side | 0 - 3 m | | 25% | 1,010 | | | | | Cum | ulative Total | 75% | | | | • | Results | | | <u> </u> | | | | | Total Required Fire Flow, rounded to nea | rest 1000L/mir | 1 | L/min | 18,000 | | 6 | (1) + (2) + (3) | (2 000 L/min < Fire Flow < 45 000 L/min) | | or | L/s | 300 | | | (2,000 L/min < Fire Flow < 45,000 L/min) | | | or | USGPM | 4,756 | As per 2020 Fire Underwriter's Survey Guidelines Novatech Project #: 119068 Project Name: 200 Baribeau Date: 6/27/2024 Input By: Lucas Wilson Reviewed By: Mark Bissett **Building Description:** Building #7 (18 Units) | Step | | | Input | | Value Used | Total Fire
Flow
(L/min) | |-------------|-----------------|--|-----------------|---------------|------------|-------------------------------| | | | Base Fire Flo |)W | | <u> </u> | | | | Construction Ma | terial | | Mult | iplier | | | | Coefficient | Type V - Wood frame | Yes | 1.5 | | | | 1 | related to type | Type IV - Mass Timber | | Varies | | | | | of construction | Type III - Ordinary construction | | 1 | 1.5 | | | | C | Type II - Non-combustible construction | | 0.8 | | | | | | Type I - Fire resistive construction (2 hrs) | | 0.6 | | | | | Floor Area | | | | | | | | | Building Footprint (m ²) | 322 | | | | | _ | Α | Number of Floors/Storeys | 3 | | | | | 2 | | Area of structure considered (m ²) | | | 966 | | | | F | Base fire flow without reductions | | | | 10,000 | | | Г | $F = 220 \text{ C } (A)^{0.5}$ | | | | 10,000 | | | | Reductions or Sur | charges | | | | | | Occupancy haza | rd reduction or surcharge | FUS Table 3 | Reduction | /Surcharge | | | 3 (1) | | Non-combustible | Yes | -25% | | | | | (1) | Limited combustible | | -15% | | | | | | Combustible | | 0% | -25% | 7,500 | | | | Free burning | | 15% | | | | | | Rapid burning | | 25% | | | | | Sprinkler Reduc | Sprinkler Reduction | | Redu | ıction | | | | | Adequately Designed System (NFPA 13) | | -30% | | | | | | Standard Water Supply | | -10% | | | | 4 | (2) | Fully Supervised System | | -10% | | 0 | | | (2) | | Cumulati | ve Sub-Total | 0% | U | | | | Area of Sprinklered Coverage (m²) | 0 | 0% | | | | | | | Cum | ulative Total | 0% | | | | Exposure Surch | arge | FUS Table 5 | | Surcharge | | | | | North Side | >30m | | 0% | | | | | East Side | 0 - 3 m | | 25% | | | 5 | (0) | South Side | >30m | | 0% | 0.000 | | | (3) | West Side | 10.1 - 20 m | | 15% | 3,000 | | | | | Cum | ulative Total | 40% | | | | | Results | | | <u> </u> | | | | | Total Required Fire Flow, rounded to ne | arest 1000L/mir | 1 | L/min | 11,000 | | 6 | (1) + (2) + (3) | (2,000 L/min < Fire Flow < 45,000 L/min) | | or | L/s | 183 | | , , , , , , | | [(Z,000 L/IIIIII > FII& FIOW > 40,000 L/IIIII) | | or | USGPM | 2,906 | As per 2020 Fire Underwriter's Survey Guidelines Novatech Project #: 119068 Project Name: 200 Baribeau Date: 6/27/2024 Input By: Lucas Wilson Reviewed By: Mark Bissett **Building Description:** Building #8 (36 Units) | Step | | | Input | | Value Used | Total Fire
Flow
(L/min) | |------|---|---|---|---------------------------|-------------------|-------------------------------| | | • | Base Fire Flo | w | • | • | , , | | | Construction Ma | terial | | Multi | iplier | | | 1 | Coefficient related to type of construction | Type V - Wood frame Type IV - Mass Timber Type III - Ordinary construction Type II - Non-combustible construction | Yes | 1.5
Varies
1
0.8 | 1.5 | | | | C | Type I - Fire resistive construction (2 hrs) | | 0.6 | | | | | Floor Area | | | | | | | 2 | A | Building Footprint (m²) Number of Floors/Storeys | 597
3 | | 4.704 | | | _ | | Area of structure considered (m²) | | | 1,791 | | | | F | Base fire flow without reductions | | | | 14,000 | | | | $F = 220 \text{ C } (A)^{0.5}$ | | | | | | | | Reductions or Sur | | | | | | | Occupancy haza | rd reduction or surcharge | FUS Table 3 | Reduction | /Surcharge | | | 3 | (1) | Non-combustible Limited combustible Combustible Free burning | Yes | -25%
-15%
0%
15% | -25% | 10,500 | | | | Rapid burning | | 25% | | | | | Sprinkler Reduct | | FUS Table 4 | Redu | ction | | | 4 | 4 (2) | Adequately Designed System (NFPA 13) Standard Water Supply Fully Supervised System | | -30%
-10%
-10% | | 0 | | | | Area of
Considered Coveres (m2) | O | ve Sub-Total | 0% | | | | | Area of Sprinklered Coverage (m²) | · · | ulative Total | 0% | | | | Exposure Surch | arge | FUS Table 5 | | Surcharge | | | 5 | (3) | North Side East Side South Side | 10.1 - 20 m
20.1 - 30 m
10.1 - 20 m | | 15%
10%
15% | 6,300 | | | | West Side | 3.1 - 10 m | ulative Total | 20%
60% | | | | | Results | | | <u> </u> | | | | | Total Required Fire Flow, rounded to ne | arest 1000L/mir | 1 | L/min | 17,000 | | 6 | (1) + (2) + (3) | (2,000 L/min < Fire Flow < 45,000 L/min) | | or
or | L/s
USGPM | 283 4,491 | As per 2020 Fire Underwriter's Survey Guidelines Novatech Project #: 119068 Project Name: 200 Baribeau Date: 6/27/2024 Input By: Lucas Wilson Reviewed By: Mark Bissett **Building Description:** Building #9 (36 Units) | Step | | | Input | | Value Used | Total Fire
Flow
(L/min) | |------|------------------|--|------------------|---------------|--------------|-------------------------------| | | | Base Fire Flo |)W | | | (=====, | | | Construction Ma | terial | | Mult | iplier | | | | Coefficient | Type V - Wood frame | Yes | 1.5 | | | | 1 | related to type | Type IV - Mass Timber | | Varies | | | | • | of construction | Type III - Ordinary construction | | 1 | 1.5 | | | | C | Type II - Non-combustible construction | | 0.8 | | | | | | Type I - Fire resistive construction (2 hrs) | | 0.6 | | | | | Floor Area | | | | | | | | | Building Footprint (m ²) | 597 | | | | | | A | Number of Floors/Storeys | 3 | | | | | 2 | | Area of structure considered (m ²) | | | 1,791 | | | | F | Base fire flow without reductions | | | | 14 000 | | | Г | $F = 220 \text{ C (A)}^{0.5}$ | | | | 14,000 | | | | Reductions or Sur | charges | | | | | | Occupancy haza | rd reduction or surcharge | FUS Table 3 | Reduction | /Surcharge | | | | | Non-combustible | Yes | -25% | | | | 3 | (1) Co | Limited combustible | | -15% | | | | | | Combustible | | 0% | -25% | 10,500 | | | | Free burning | | 15% | | | | | | Rapid burning | 25% | | | | | | Sprinkler Reduct | tion | FUS Table 4 | Redu | ction | | | | | Adequately Designed System (NFPA 13) | | -30% | | | | | | Standard Water Supply | | -10% | | | | 4 | (0) | Fully Supervised System | | -10% | | _ | | | (2) | | Cumulati | ve Sub-Total | 0% | 0 | | | | Area of Sprinklered Coverage (m²) | | 0% | 0,0 | | | | | rusa er epinnaerea esterage (iii) | • | ulative Total | 0% | | | | Exposure Surch | arge | FUS Table 5 | | Surcharge | | | | | North Side | 10.1 - 20 m | | 15% | | | | | East Side | 3.1 - 10 m | | 20% | | | 5 | | South Side | 10.1 - 20 m | | 15% | | | | (3) | West Side | >30m | | 0% | 5,250 | | | | | Cum | ulative Total | 50% | | | | 1 | Results | - un | | 55 /0 | | | | | Total Required Fire Flow, rounded to ne | arest 10001 /mir | 1 | L/min | 16,000 | | 6 | (1) + (2) + (3) | · · · · · · · · · · · · · · · · · · · | | or | L/s | 267 | | • | (1) 1 (2) 1 (0) | (2,000 L/min < Fire Flow < 45,000 L/min) | | or | USGPM | 4,227 | | Servicing Design Brief | 200 Baribeau S | |------------------------|----------------| APPENDI | СВ | | 01414.0 1 1 | | | SWM Calcula | itions | ## 200 Baribeau Street (119068) Pre-Development Peak Flow Calculations ### **EXISTING CONDITIONS** **Existing Catchment Parameters** | Ootob word ID | Areas (ha) | Runoff Coefficient | |---------------|------------|--------------------| | Catchment ID | Total | С | | TOTAL | 1.270 | 0.50 | **Pre-Development Peak Flows** | Catchment ID | Rainfall Intensity (mm/hr) ¹ | Peak Flows (L/s) | |-----------------------|---|------------------| | Catchment iD | 2-year | 2-year | | Site Boundary | 76.81 | 135.6 | | (existing conditions) | 70.01 | 155.0 | ¹ Tc is based on Uplands Method. #### Notes: Rainfall Intensity from City of Ottawa Sewer Design Guidelines (Oct. 2012) - 100 year Intensity = $1735.688 / (Tc + 6.014)^{0.820}$ - 5 year Intensity = $998.071 / (Tc + 6.053)^{0.814}$ - 2 year Intensity = $732.951 / (Tc + 6.199)^{0.810}$ $Q(peak flow) = 2.78 \times C \times I \times A$ - C is the runoff coefficient - I is the rainfall intensity - A is the total drainage area Date: 6/4/2021 | CB1-Storage | | | | | |-------------|-----------|--------------------------|--|--| | Depth (m) | Area (m²) | Volume (m ³) | | | | 0.00 | 0.36 | 0.00 | | | | 1.40 | 0.36 | 0.50 | | | | 1.59 | 94.40 | 9.51 | | | | 1.59 | 0.00 | 9.55 | | | | 2.40 | 0.00 | 9.55 | | | | CB2-Storage | | | | | | |-------------|-----------|--------------------------|--|--|--| | Depth (m) | Area (m²) | Volume (m ³) | | | | | 0.00 | 0.36 | 0.00 | | | | | 1.40 | 0.36 | 0.50 | | | | | 1.73 | 476.00 | 79.10 | | | | | 1.73 | 0.00 | 79.34 | | | | | 2.40 | 0.00 | 79.34 | | | | | CB3-Storage | | | | | |-------------|-----------|--------------------------|--|--| | Depth (m) | Area (m²) | Volume (m ³) | | | | 0.00 | 0.36 | 0.00 | | | | 1.40 | 0.36 | 0.50 | | | | 1.74 | 407.90 | 69.91 | | | | 1.74 | 0.00 | 70.11 | | | | 2.40 | 0.00 | 70.11 | | | | CB4-Storage | | | | | | | | | | | |-------------|-----------|-------------|--|--|--|--|--|--|--|--| | Depth (m) | Area (m²) | Volume (m³) | | | | | | | | | | 0.00 | 0.36 | 0.00 | | | | | | | | | | 1.40 | 0.36 | 0.50 | | | | | | | | | | 1.71 | 517.10 | 80.71 | | | | | | | | | | 1.71 | 0.00 | 80.97 | | | | | | | | | | 2.40 | 0.00 | 80.97 | | | | | | | | | # 200 Baribeau Street (119068) PCSWMM Model Results (Ponding) | СВ | Invert | Rim | Spill | Ponding | HGL Elev. (m) ¹ | | | F | onding | Depth (n | n) | Spill Depth (m) | | | | | |--------|--------------|--------------|--------------|--------------|----------------------------|-------|--------|------------------|--------|----------|--------|------------------|------|------|--------|------------------| | ID | Elev.
(m) | Elev.
(m) | Elev.
(m) | Depth
(m) | 2-yr | 5-yr | 100-yr | 100-yr
(+20%) | 2-yr | 5-yr | 100-yr | 100-yr
(+20%) | 2-yr | 5-yr | 100-yr | 100-yr
(+20%) | | CB01 | 54.86 | 56.26 | 56.45 | 0.19 | 55.46 | 56.17 | 56.47 | 56.48 | 0.00 | 0.00 | 0.21 | 0.22 | 0.00 | 0.00 | 0.02 | 0.03 | | CB02 | 54.66 | 56.06 | 56.39 | 0.33 | 55.42 | 56.09 | 56.40 | 56.43 | 0.00 | 0.03 | 0.34 | 0.37 | 0.00 | 0.00 | 0.01 | 0.04 | | CB03 | 54.67 | 56.07 | 56.41 | 0.34 | 55.46 | 56.13 | 56.42 | 56.44 | 0.00 | 0.06 | 0.35 | 0.37 | 0.00 | 0.00 | 0.01 | 0.03 | | CB04 | 54.66 | 56.06 | 56.37 | 0.31 | 55.42 | 56.09 | 56.36 | 56.40 | 0.00 | 0.03 | 0.30 | 0.34 | 0.00 | 0.00 | 0.00 | 0.03 | | CBMH01 | 54.36 | 56.64 | 56.71 | 0.07 | 55.46 | 56.16 | 56.73 | 56.82 | 0.00 | 0.00 | 0.09 | 0.18 | 0.00 | 0.00 | 0.02 | 0.11 | | LC01 | 55.57 | 56.57 | 56.66 | 0.09 | 55.64 | 56.19 | 56.78 | 56.83 | 0.00 | 0.00 | 0.21 | 0.26 | 0.00 | 0.00 | 0.12 | 0.17 | | LC02 | 55.44 | 56.58 | 56.69 | 0.11 | 55.51 | 56.18 | 56.78 | 56.83 | 0.00 | 0.00 | 0.20 | 0.25 | 0.00 | 0.00 | 0.09 | 0.14 | | LC03 | 55.55 | 56.64 | 56.73 | 0.09 | 55.66 | 56.17 | 56.85 | 56.89 | 0.00 | 0.00 | 0.21 | 0.25 | 0.00 | 0.00 | 0.12 | 0.16 | | LC04 | 54.80 | 55.69 | 55.76 | 0.07 | 54.84 | 54.88 | 55.88 | 55.97 | 0.00 | 0.00 | 0.19 | 0.28 | 0.00 | 0.00 | 0.12 | 0.21 | | LC05 | 55.10 | 55.79 | 55.89 | 0.10 | 55.12 | 55.15 | 55.92 | 56.01 | 0.00 | 0.00 | 0.13 | 0.22 | 0.00 | 0.00 | 0.03 | 0.12 | | LC06 | 55.72 | 56.72 | 56.81 | 0.09 | 55.81 | 56.22 | 56.90 | 56.93 | 0.00 | 0.00 | 0.18 | 0.21 | 0.00 | 0.00 | 0.09 | 0.12 | | LC07 | 55.60 | 56.67 | 56.76 | 0.09 | 55.69 | 56.22 | 56.87 | 56.91 | 0.00 | 0.00 | 0.20 | 0.24 | 0.00 | 0.00 | 0.11 | 0.15 | | LC08 | 55.47 | 56.65 | 56.74 | 0.09 | 55.49 | 56.21 | 56.86 | 56.90 | 0.00 | 0.00 | 0.21 | 0.25 | 0.00 | 0.00 | 0.12 | 0.16 | | LC09 | 55.62 | 56.62 | 56.73 | 0.11 | 55.69 | 56.17 | 56.85 | 56.89 | 0.00 | 0.00 | 0.23 | 0.27 | 0.00 | 0.00 | 0.12 | 0.16 | | LC10 | 55.65 | 56.65 | 56.75 | 0.10 | 55.71 | 56.21 | 56.84 | 56.87 | 0.00 | 0.00 | 0.19 | 0.22 | 0.00 | 0.00 | 0.09 | 0.12 | | LC11 | 55.63 | 56.63 | 56.71 | 0.08 | 55.68 | 56.18 | 56.79 | 56.84 | 0.00 | 0.00 | 0.16 | 0.21 | 0.00 | 0.00 | 0.08 | 0.13 | | LC12 | 55.49 | 56.65 | 56.74 | 0.09 | 55.61 | 56.22 | 56.85 | 56.88 | 0.00 | 0.00 | 0.20 | 0.23 | 0.00 | 0.00 | 0.11 | 0.14 | | LC13 | 55.65 | 56.65 | 56.71 | 0.06 | 55.65 | 56.22 | 56.84 | 56.86 | 0.00 | 0.00 | 0.19 | 0.21 | 0.00 | 0.00 | 0.13 | 0.15 | | LC14 | 55.67 | 56.67 | 56.76 | 0.09 | 55.75 | 56.17 | 56.86 | 56.90 | 0.00 | 0.00 | 0.19 | 0.23 | 0.00 | 0.00 | 0.10 | 0.14 | | RY01 | 53.59 | 55.39 | 55.65 | 0.26 | 53.69 | 53.95 | 55.56 | 55.67 | 0.00 | 0.00 | 0.17 | 0.28 | 0.00 | 0.00 | 0.00 | 0.02 | | RY02 | 54.32 | 55.50 | 55.70 | 0.20 | 54.37 | 54.41 | 55.77 | 55.87 | 0.00 | 0.00 | 0.27 | 0.37 | 0.00 | 0.00 | 0.07 | 0.17 | | RY03 | 54.03 | 55.59 | 55.75 | 0.16 | 54.32 | 54.57 | 55.82 | 55.85 | 0.00 | 0.00 | 0.23 | 0.26 | 0.00 | 0.00 | 0.07 | 0.10 | | RY04 | 53.84 | 55.25 | 55.50 | 0.25 | 53.89 | 53.96 | 55.58 | 55.70 | 0.00 | 0.00 | 0.33 | 0.45 | 0.00 | 0.00 | 0.08 | 0.20 | | RY05 | 54.07 | 55.45 | 55.65 | 0.20 | 54.12 | 54.17 | 55.68 | 55.86 | 0.00 | 0.00 | 0.23 | 0.41 | 0.00 | 0.00 | 0.03 | 0.21 | | RY06 | 54.55 | 55.55 | 55.75 | 0.20 | 54.60 | 54.64 | 55.84 | 55.93 | 0.00 | 0.00 | 0.29 | 0.38 | 0.00 | 0.00 | 0.09 | 0.18 | | RY07 | 54.26 | 55.66 | 55.85 | 0.19 | 54.33 | 54.59 | 55.87 | 55.91 | 0.00 | 0.00 | 0.21 | 0.25 | 0.00 | 0.00 | 0.02 | 0.06 | ¹ 3-hour Chicago Storm. | | | | | | | HP-RY01 | JUNCTION | 55.65 | 1.00 | 0.0 | | | |--|----------------------|----------------------------|----------------------------|----------|--------------|--|----------------------|-----------------|--------------|--------------|---------------------|------------------| | EPA STORM WATER MANAG | SEMENT MODEL - |
VERSION 5.2 (Build | 5.2.4) | | | HP-RY02
HP-RY03 | JUNCTION
JUNCTION | 55.70
55.75 | 1.00 | 0.0 | | | | | | | | | | HP-RY05 | JUNCTION | 55.65 | 1.00 | 0.0 | | | | | | | | | | HP-RY06 | JUNCTION | 55.75 | 1.00 | 0.0 | | | | ******** | | | | | | HP-RY07(1) | JUNCTION | 55.98 | 1.00 | 0.0 | | | | Element Count | | | | | | HP-RY07(2)
Ex.1050 | JUNCTION
OUTFALL | 55.85
51.05 | 1.00 | 0.0 | | | | Number of rain gage | s 1 | | | | | HP-RY04 | OUTFALL | 55.50 | 1.00 | 0.0 | | | | Number of subcatchm | | | | | | OF1 | OUTFALL | 56.00 | 0.00 | 0.0 | | | | Number of nodes | | | | | | CB01 | STORAGE | 54.86 | 2.40 | 0.0 | | | | Number of links
Number of pollutant | | | | | | CB02
CB03 | STORAGE
STORAGE | 54.66
54.67 | 2.40 | 0.0 | | | | Number of land uses | | | | | | CB03 | STORAGE | 54.66 | 2.40 | 0.0 | | | | | | | | | | CBMH01 | STORAGE | 54.36 | 3.28 | 0.0 | | | | ********* | | | | | | Dummy-MH04 | STORAGE | 52.52 | 3.79 | 0.0 | | | | Raingage Summary | | | | | | LC01
LC02 | STORAGE
STORAGE | 55.57
55.44 | 2.00 | 0.0 | | | | ******** | | | | | | LC03 | STORAGE | 55.55 | 2.09 | 0.0 | | | | | | | | ording | | LC04 | STORAGE | 54.80 | 1.89 | 0.0 | | | | Name | Data Source | | Type Int | erval | | LC05
LC06 | STORAGE | 55.10 | 1.69
2.00 | 0.0 | | | | BG-1 | C3hr-100yr | | INTENSITY 10 | min | | LC07 | STORAGE
STORAGE | 55.72
55.60 | 2.00 | 0.0 | | | | 1.0 1 | 05112 20072 | | | | | LC08 | STORAGE | 55.47 | 2.18 | 0.0 | | | | | | | | | | LC09 | STORAGE | 55.62 | 2.00 | 0.0 | | | | ********** | | | | | | LC10
LC11 | STORAGE | 55.65 | 2.00 | 0.0 | | | | Subcatchment Summar | | | | | | LC11
LC12 | STORAGE
STORAGE | 55.63
55.49 | 2.00
2.16 | 0.0 | | | | Name | Area | Width %Imperv | %Slope Rair | Gage | Outlet | LC13 | STORAGE | 55.65 | 2.00 | 0.0 | | | | | | | | | | LC14 | STORAGE | 55.67 | 2.00 | 0.0 | | | | | 0.00 | 25 60 6 10 | 4 0000 50 | | 1.005 | MH04
MH06 | STORAGE | 52.52 | 4.76
3.89 | 0.0 | | | | A-01
A-02 | 0.06
0.09 | 25.60 6.10
36.80 14.70 | 4.0000 RG-1
4.0000 RG-1 | | LC05
LC04 | MHU6
MH08 | STORAGE
STORAGE | 53.30
53.58 | 3.85 | 0.0 | | | | A-03 | 0.10 | 38.80 86.00 | 1.5000 RG-1 | | LC12 | MH10 | STORAGE | 54.48 | 3.20 | 0.0 | | | | A-04 | 0.09 | 36.40 89.30 | 1.5000 RG-1 | | LC06 | MH12 | STORAGE | 54.62 | 3.13 | 0.0 | | | | A-05
A-06 | 0.07
0.06 | 48.67 80.40
40.00 85.50 | 1.5000 RG-1
1.5000 RG-1 | | LC14
LC01 | MH14
RY01 | STORAGE
STORAGE | 54.70
53.59 | 3.06
2.80 | 0.0 | | | | A-06
A-07 | 0.12 | 83.33 89.40 | 1.5000 RG-1 | | CB01 | RY02 | STORAGE | 54.32 | 2.18 | 0.0 | | | | A-08 | 0.16 | 63.20 88.50 | 1.0000 RG-1 | | CB03 | RY03 | STORAGE | 54.03 | 2.56 | 0.0 | | | | A-09 | 0.02 | 24.00 39.60 | 2.0000 RG-1 | | RY06 | RY04 | STORAGE | 53.84 | 2.41 | 0.0 | | | | A-10
A-11 | 0.01
0.01 | 18.00 5.60
14.00 0.00 | 2.0000 RG-1
2.0000 RG-1 | | RY02
RY05 | RY05
RY06 | STORAGE
STORAGE | 54.07
54.55 | 2.38 | 0.0 | | | | A-11
A-12 | 0.07 | 46.67 75.80 | 2.0000 RG-1 | | RY07 | RY07 | STORAGE | 54.26 | 2.40 | 0.0 | | | | A-13 | 0.08 | 50.67 96.10 | 1.5000 RG-1 | | CB04 | | | | | | | | | A-14 | 0.01 | 10.00 0.00 | 2.0000 RG-1 | | RY04 | | | | | | | | | A-15
A-16 | 0.11
0.01 | 55.00 96.20
22.00 0.00 | 1.5000 RG-1
2.0000 RG-1 | | CB02
RY01 | ************************************** | | | | | | | | A-17 | 0.01 | 6.67 29.00 | 2.0000 RG-1 | | RY03 | ******* | | | | | | | | A-18 | 0.02 | 21.00 69.00 | 1.5000 RG-1 | | LC11 | Name | From Node | To Node | Type | Length | %Slope | Roughness | | A-19 | 0.05 | 32.00 66.00 | 1.5000 RG-1 | | LC09 | | | | | | | | | A-20
B-01 | 0.03 | 27.00 57.80
72.00 38.10 | 1.5000 RG-1
2.0000 RG-1 | | LC10
OF1 | CB01-Lead
CB02-Lead | CB01
CB02 | MH08
MH04 | CONDUIT | 17.8
3.1 | 1.0113 | 0.0130
0.0130 | | B-02 | 0.05 | 108.00 34.30 | 2.0000 RG-1 | | OF1 | CB02 Bead
CB03-Lead | CB02 | MH06 | CONDUIT | 9.9 | 1.1112 | 0.0130 | | | | | | | | CB04-Lead | CB04 | MH04 | CONDUIT | 17.7 | 1.0170 | 0.0130 | | ******** | | | | | | CBMH01-MH08 | CBMH01 | MH08 | CONDUIT | 35.6 | 0.5056 | 0.0130 | | Node Summary | | | | | | LC01-LC02
LC01-MH10 | LC01
LC02 | LC02
MH10 | CONDUIT | 13.3
5.2 | 0.9775
0.9616 | 0.0130
0.0130 | | ****** | | | | | | LC03-CBMH01 | LC03 | CBMH01 | CONDUIT | 15.5 | 0.9678 | 0.0130 | | | | Invert | Max. Ponde | | | LC04-RY06 | LC04 | RY06 | CONDUIT | 25.4 | 0.9843 | 0.0130 | | Name | Type | Elev. | Depth Are | a Inflow | | LC05-LC04 | LC05 | LC04 | CONDUIT | 29.5 | 1.0170 | 0.0130 | | HP-CB01 | JUNCTION | 56.45 | 1.00 0. | n | | LC06-LC07
LC07-MH14 | LC06
LC07 | LC07
MH14 | CONDUIT | 11.8 | 1.0170 | 0.0130 | | HP-CB02 | JUNCTION | 56.39 | 1.00 0. | - | | LC08-MH14 | LC08 | MH14 | CONDUIT | 6.9 | 1.0145 | 0.0130 | | HP-CB03 | JUNCTION | 56.41 | 1.00 0. | | | LC09-LC03 | LC09 | LC03 | CONDUIT | 5.4 | 0.9260 | 0.0130 | | HP-CB04
HP-LC01 | JUNCTION | 56.37 | 1.00 0. | | | LC10-Lead
LC11-Lead | LC10
LC11 | MH12
MH10 | CONDUIT | 1.2 | 0.8334 | 0.0130
0.0130 | | HP-LC01
HP-LC02 | JUNCTION
JUNCTION | 56.66
56.69 | 1.00 0. | | | LC11-Lead
LC12-MH12 | LC11
LC12 | MH10
MH12 | CONDUIT | 1.2
5.2 | 0.8334 | 0.0130 | | HP-LC04 | JUNCTION | 55.76 | 1.00 0. | | | LC13-LC12 | LC13 | LC12 | CONDUIT | 16.1 | 0.9938 | 0.0130 | | HP-LC05(1) | JUNCTION | 55.92 | 1.00 0. | | | LC14-LC03 | LC14 | LC03 | CONDUIT | 12.0 | 1.0001 | 0.0130 | | HP-LC05(2)
HP-LC06(1) | JUNCTION
JUNCTION | 55.89
56.96 | 1.00 0. | | | MH04-Ex1050
MH06-MH04 | Dummy-MH04
MH06 | Ex.1050
MH04 | CONDUIT | 46.6
36.2 | 1.9961
0.9945 | 0.0130 | | HP-LC06(1)
HP-LC06(2) | JUNCTION JUNCTION | 56.96
56.81 | 1.00 0. | | | MH06-MH04
MH08-MH06 | MHU6
MH08 | MH04
MH06 | CONDUIT | 36.2
28.6 | 0.9945 | 0.0130 | | HP-LC07 | JUNCTION | 56.76 | 1.00 0. | 0 | | MH10-CBMH01 | MH10 | CBMH01 | CONDUIT | 9.6 | 0.5208 | 0.0130 | | HP-LC08 | JUNCTION | 56.74 | 1.00 0. | | | MH12-MH10 | MH12 | MH10 | CONDUIT | 27.2 | 0.5147 | 0.0130 | | HP-LC09/LC03
HP-LC10(1) | JUNCTION
JUNCTION | 56.73
56.76 | 1.00 0.
1.00 0. | | | MH14-MH12
MS-CB01(1) | MH14
CB01 | MH12
HP-CB01 | CONDUIT | 17.2
3.0 | 0.4651
-6.3461 | 0.0130
0.0150 | | HP-LC10(1)
HP-LC10(2) | JUNCTION | 56.75 | 1.00 0. | | | MS-CB01(1)
MS-CB01(2) | HP-CB01 | CB03 | CONDUIT | 3.0 | 12.7695 | 0.0150 | | HP-LC11/CBMH01 | JUNCTION | 56.71 | 1.00 0. | | | MS-CB02(1) | CB02 | HP-CB02 | CONDUIT | 3.0 | -11.0672 | 0.0150 | | HP-LC12 | JUNCTION | 56.74 | 1.00 0. | | | MS-CB02(2) | HP-CB02 | CB04 | CONDUIT | 3.0 | 11.0672 | 0.0150 | | HP-LC13 | JUNCTION | 56.71 | 1.00 0. | | | MS-CB03(1) | CB03
HP-CB03 | HP-CB03
CB02 | CONDUIT | | -11.4068 | 0.0150 | | HP-LC14(1)
HP-LC14(2) | JUNCTION
JUNCTION | 56.91
56.76 | 1.00 0. | | | MS-CB03(2)
MS-CB04(1) | HP-CB03
CB04 | CB02
HP-CB04 | CONDUIT | | 11.7469
-10.3889 | 0.0150
0.0150 | | /-/ | | | | - | | | | | | 5.0 | | | LC11-Lead LC12-MH12 LC13-LC12 CIRCULAR CIRCULAR CIRCULAR CIRCULAR | MS-CB04(2) | HP-CB04 | RY05 | CONDUIT | 3.0 | 32.2191 | 0.0150 | ı | LC14-LC03 | CIRCULAR | 0.25 | 0.05 | 0.06 | 0.25 | 1 59.47 | |-----------------|----------------|----------------|----------|-----------|---------|--------|---|---------------------------------------|----------------------------|------|------|------|------|-------------| | MS-CBMH01(1) | CBMH01 | HP-LC11/CBMH01 | CONDUIT | 7.3 | -0.9589 | 0.0350 | | MH04-Ex1050 | CIRCULAR | 0.45 | 0.16 | 0.11 | 0.45 | 1 402.83 | | MS-CBMH01(2) | HP-LC11/CBMH01 | LC02 | CONDUIT | 7.4 | 1.7570 | 0.0350 | | MH06-MH04 | CIRCULAR | 0.45 | 0.16 | 0.11 | 0.45 | 1 284.34 | | MS-LC01(1) | LC01 | HP-LC01 | CONDUIT | 5.8 | -1.5519 | 0.0350 | | MH08-MH06 | CIRCULAR | 0.45 | 0.16 | 0.11 | 0.45 | 1 199.49 | | MS-LC01(2) | HP-LC01 | LC04 | CONDUIT | 26.2 | 3.7048 | 0.0350 | | MH10-CBMH01 | CIRCULAR | 0.30 | 0.07 | 0.07 | 0.30 | 1 69.79 | | MS-LC02(1) | LC02 | HP-LC02 | CONDUIT | 6.5 | -1.6926 | 0.0350 | | MH12-MH10 | CIRCULAR | 0.30 | 0.07 | 0.07 | 0.30 | 1 69.38 | | MS-LC02(2) | HP-LC02 | LC01 | CONDUIT | 6.9 | 1.7394 | 0.0350 | | MH14-MH12 | CIRCULAR | 0.30 | 0.07 | 0.07 | 0.30 | 1 65.95 | | MS-LC03(1) | LC03 | HP-LC09/LC03 | CONDUIT | 6.0 | -1.5002 | 0.0350 | | MS-CB01(1) | RECT_OPEN | 1.00 | 3.00 | 0.60 | 3.00 | 1 35843.43 | | MS-LC03(2) | HP-LC09/LC03 | CBMH01 | CONDUIT | 9.4 | 0.9575 | 0.0350 | | MS-CB01(1) | RECT_OPEN | 1.00 | 3.00 | 0.60 | 3.00 | 1 50844.53 | | MS-LC04(1) | LC04 | HP-LC04 | CONDUIT | 4.4 | -1.5911 | 0.0350 | | MS-CB01(2)
MS-CB02(1) | RECT_OPEN | 1.00 | 3.00 | 0.60 | 3.00 | 1 47334.20 | | MS-LC04(1) | HP-LC04 | RY06 | CONDUIT | 21.0 | 1.0001 | 0.0350 | | MS-CB02(1) | RECT_OPEN | 1.00 | 3.00 | 0.60 | 3.00 | 1 47334.20 | | MS-LC05(1) | HP-LC05(1) | LC05 | CONDUIT | 13.6 | 0.9559 | 0.0350 | | MS-CB02(2)
MS-CB03(1) | RECT_OPEN | 1.00 | 6.00 | 0.75 | 6.00 | 1 111525.99 | | MS-LC05(1) | LC05 | HP-LC05(2) | CONDUIT | 10.1 | -0.9901 | 0.0350 | | MS-CB03(1)
MS-CB03(2) | RECT_OPEN | 1.00 | 6.00 | 0.75 | 6.00 | 1 111323.33 | | | | | | | | | | | | | | | | | | MS-LC05(3) | HP-LC05(2) | LC04 | CONDUIT | 19.4 | 1.0310 | 0.0350 | | MS-CB04(1) | RECT_OPEN | 1.00 | 3.00 | 0.60 | 3.00 | 1 45860.92 | | MS-LC06(1) | HP-LC06(1) | LC06 | CONDUIT | 5.9 | 4.0712 | 0.0350 | | MS-CB04(2) | RECT_OPEN | 1.00 | 3.00 | 0.60 | 3.00 | 1 80763.20 | | MS-LC06(2) | LC06 | HP-LC06(2) | CONDUIT | 3.8 | -2.3691 | 0.0350 | | MS-CBMH01(1) | TRAPEZOIDAL | 1.00 | 3.15 | 0.49 | 6.15 | 1 5452.14 | | MS-LC06(3) | HP-LC06(2) | LC07 | CONDUIT | 8.1 | 1.7287 | 0.0350 | | MS-CBMH01(2) | TRAPEZOIDAL | 1.00 | 3.15 | 0.49 | 6.15 | 1 7380.03 | | MS-LC07(1) | LC07 | HP-LC07 | CONDUIT | 5.9 | -1.5256 | 0.0350 | | MS-LC01(1) | TRAPEZOIDAL | 1.00 | 3.15 | 0.49 | 6.15 | 1 6935.89 | | MS-LC07(2) | HP-LC07 | LC08 | CONDUIT | 6.9 | 1.5944 | 0.0350 | | MS-LC01(2) | RECT_OPEN | 1.00 | 3.00 | 0.60 | 3.00 | 1 11737.20 | | MS-LC08(1) | LC08 |
HP-LC08 | CONDUIT | 7.0 | -1.2858 | 0.0350 | | MS-LC02(1) | TRAPEZOIDAL | 1.00 | 3.15 | 0.49 | 6.15 | 1 7243.36 | | MS-LC08(2) | HP-LC08 | LC09 | CONDUIT | 7.8 | 1.5386 | 0.0350 | | MS-LC02(2) | TRAPEZOIDAL | 1.00 | 3.15 | 0.49 | 6.15 | 1 7342.91 | | MS-LC09 | LC09 | HP-LC09/LC03 | CONDUIT | 5.4 | -2.0375 | 0.0350 | | MS-LC03(1) | TRAPEZOIDAL | 1.00 | 3.15 | 0.49 | 6.15 | 1 6819.29 | | MS-LC10(1) | HP-LC10(1) | LC10 | CONDUIT | 7.0 | 1.5716 | 0.0350 | | MS-LC03(2) | TRAPEZOIDAL | 1.00 | 3.15 | 0.49 | 6.15 | 1 5447.99 | | MS-LC10(2) | LC10 | HP-LC10(2) | CONDUIT | 7.0 | -1.4287 | 0.0350 | | MS-LC04(1) | TRAPEZOIDAL | 1.00 | 3.15 | 0.49 | 6.15 | 1 7022.94 | | MS-LC10(3) | HP-LC10(2) | LC11 | CONDUIT | 7.8 | 1.5386 | 0.0350 | | MS-LC04(2) | TRAPEZOIDAL | 1.00 | 3.15 | 0.49 | 6.15 | 1 5567.75 | | MS-LC11 | LC11 | HP-LC11/CBMH01 | CONDUIT | 5.4 | -1.4816 | 0.0350 | | MS-LC05(1) | TRAPEZOIDAL | 1.00 | 3.15 | 0.49 | 6.15 | 1 5443.54 | | MS-LC12(1) | HP-LC10(1) | LC12 | CONDUIT | 7.4 | 1.4867 | 0.0350 | | MS-LC05(2) | TRAPEZOIDAL | 1.00 | 3.15 | 0.49 | 6.15 | 1 5540.12 | | MS-LC12(2) | LC12 | HP-LC12 | CONDUIT | 7.4 | -1.2163 | 0.0350 | | MS-LC05(3) | TRAPEZOIDAL | 1.00 | 3.15 | 0.49 | 6.15 | 1 5653.21 | | MS-LC12(3) | HP-LC12 | LC13 | CONDUIT | 8.8 | 1.0228 | 0.0350 | | MS-LC06(1) | TRAPEZOIDAL | 1.00 | 3.15 | 0.49 | 6.15 | 1 11233.85 | | MS-LC13(1) | LC13 | HP-LC13 | CONDUIT | 4.3 | -1.3955 | 0.0350 | | MS-LC06(2) | TRAPEZOIDAL | 1.00 | 3.15 | 0.49 | 6.15 | 1 8569.58 | | MS-LC13(2) | HP-LC13 | LC05 | CONDUIT | 25.8 | 3.5682 | 0.0350 | | MS-LC06(3) | TRAPEZOIDAL | 1.00 | 3.15 | 0.49 | 6.15 | 1 7320.20 | | MS-LC14(1) | HP-LC14(1) | LC14 | CONDUIT | 5.5 | 4.3678 | 0.0350 | | MS-LC07(1) | TRAPEZOIDAL | 1.00 | 3.15 | 0.49 | 6.15 | 1 6876.85 | | MS-LC14(2) | LC14 | HP-LC14(2) | CONDUIT | 4.1 | -2.1957 | 0.0350 | | MS-LC07(2) | TRAPEZOIDAL | 1.00 | 3.15 | 0.49 | 6.15 | 1 7030.21 | | MS-LC14(3) | HP-LC14(2) | LC03 | CONDUIT | 7.9 | 1.5192 | 0.0350 | | MS-LC08(1) | TRAPEZOIDAL | 1.00 | 3.15 | 0.49 | 6.15 | 1 6313.34 | | MS-RY01(1) | RY01 | HP-RY01 | CONDUIT | 13.5 | -1.9263 | 0.0350 | | MS-LC08(2) | TRAPEZOIDAL | 1.00 | 3.15 | 0.49 | 6.15 | 1 6906.18 | | MS-RY01(2) | HP-RY01 | RY04 | CONDUIT | 8.3 | 4.8249 | 0.0350 | | MS-LC09 | TRAPEZOIDAL | 1.00 | 3.15 | 0.49 | 6.15 | 1 7947.19 | | MS-RY02(1) | RY02 | HP-RY02 | CONDUIT | 10.0 | -2.0004 | 0.0350 | | MS-LC10(1) | TRAPEZOIDAL | 1.00 | 3.15 | 0.49 | 6.15 | 1 6979.80 | | MS-RY02(2) | HP-RY02 | RY05 | CONDUIT | 15.0 | 1.6669 | 0.0350 | | MS-LC10(2) | TRAPEZOIDAL | 1.00 | 3.15 | 0.49 | 6.15 | 1 6654.91 | | MS-RY03(1) | RY03 | HP-RY03 | CONDUIT | 11.6 | -1.3794 | 0.0350 | | MS-LC10(3) | TRAPEZOIDAL | 1.00 | 3.15 | 0.49 | 6.15 | 1 6906.18 | | MS-RY03(2) | HP-RY03 | RY01 | CONDUIT | 22.3 | 1.6146 | 0.0350 | | MS-LC11 | TRAPEZOIDAL | 1.00 | 3.15 | 0.49 | 6.15 | 1 6777.06 | | MS-RY04(1) | RY04 | HP-RY04 | CONDUIT | 3.0 | -8.3624 | 0.0350 | | MS-LC12(1) | TRAPEZOIDAL | 1.00 | 3.15 | 0.49 | 6.15 | 1 6788.50 | | MS-RY05(1) | RY05 | HP-RY05 | CONDUIT | 10.0 | -2.0004 | 0.0350 | | MS-LC12(2) | TRAPEZOIDAL | 1.00 | 3.15 | 0.49 | 6.15 | 1 6140.31 | | MS-RY05(2) | HP-RY05 | RY04 | CONDUIT | 7.3 | 5.4877 | 0.0350 | | MS-LC12(3) | TRAPEZOIDAL | 1.00 | 3.15 | 0.49 | 6.15 | 1 5630.67 | | MS-RY06(1) | RY06 | HP-RY06 | CONDUIT | 8.5 | -2.3536 | 0.0350 | | MS-LC13(1) | TRAPEZOIDAL | 1.00 | 3.15 | 0.49 | 6.15 | 1 6577.06 | | MS-RY06(2) | HP-RY06 | RY02 | CONDUIT | 15.2 | 1.6450 | 0.0350 | | MS-LC13(2) | RECT_OPEN | 1.00 | 3.00 | 0.60 | 3.00 | 1 11518.67 | | MS-RY07(1) | HP-RY07(1) | RY07 | CONDUIT | 17.5 | 1.8289 | 0.0350 | | MS-LC14(1) | TRAPEZOIDAL | 1.00 | 3.15 | 0.49 | 6.15 | 1 11635.91 | | MS-RY07(2) | RY07 | HP-RY07(2) | CONDUIT | 12.4 | -1.5324 | 0.0350 | | MS-LC14(2) | TRAPEZOIDAL | 1.00 | 3.15 | 0.49 | 6.15 | 1 8249.94 | | MS-RY07(3) | HP-RY07(2) | RY03 | CONDUIT | 10.7 | 2.4306 | 0.0350 | | MS-LC14(3) | TRAPEZOIDAL | 1.00 | 3.15 | 0.49 | 6.15 | 1 6862.32 | | RY02-RY05 | RY02 | RY05 | CONDUIT | 25.1 | 0.9961 | 0.0130 | | MS-RY01(1) | TRAPEZOIDAL | 1.00 | 3.15 | 0.49 | 6.15 | 1 7727.32 | | RY04-RY01 | RY04 | RY01 | CONDUIT | 20.0 | 1.0001 | 0.0130 | | MS-RY01(2) | TRAPEZOIDAL | 1.00 | 3.15 | 0.49 | 6.15 | 1 12229.61 | | RY05-RY04 | RY05 | RY04 | CONDUIT | 17.3 | 0.9827 | 0.0130 | | MS-RY02 (1) | TRAPEZOIDAL | 1.00 | 3.15 | 0.49 | 6.15 | 1 7874.58 | | RY06-RY02 | RY06 | RY02 | CONDUIT | 23.4 | 0.9830 | 0.0130 | | MS-RY02(2) | TRAPEZOIDAL | 1.00 | 3.15 | 0.49 | 6.15 | 1 7188.26 | | RY07-RY03 | RY07 | RY03 | CONDUIT | 22.5 | 0.9778 | 0.0130 | | MS-RY03(1) | TRAPEZOIDAL | 1.00 | 3.15 | 0.49 | 6.15 | 1 6539.14 | | O-MH04 | MH04 | Dummy-MH04 | ORIFICE | 22.5 | 0.5770 | 0.0130 | | MS-RY03(2) | TRAPEZOIDAL | 1.00 | 3.15 | 0.49 | 6.15 | 1 7074.51 | | 0-RY01 | RY01 | Dummy-MH04 | ORIFICE | | | | | MS-RY04(1) | TRAPEZOIDAL | 1.00 | 3.15 | 0.49 | 6.15 | 1 16100.34 | | 0-RY03 | RY03 | Dummy-MH04 | ORIFICE | | | | | MS-RY05(1) | TRAPEZOIDAL | 1.00 | 3.15 | 0.49 | 6.15 | 1 7874.58 | | 0 K105 | RIUS | Duniny Piros | ONTETCH | | | | | MS-RY05(2) | TRAPEZOIDAL | 1.00 | 3.15 | 0.49 | 6.15 | 1 13042.60 | | | | | | | | | | MS-RY06(1) | TRAPEZOIDAL | 1.00 | 3.15 | 0.49 | 6.15 | 1 8541.51 | | ********** | ***** | | | | | | | MS-RY06(2) | TRAPEZOIDAL | 1.00 | 3.15 | 0.49 | 6.15 | 1 7140.80 | | Cross Section S | Zumma wir | | | | | | | MS-RY07(1) | TRAPEZOIDAL | 1.00 | 3.15 | 0.49 | 6.15 | 1 7529.42 | | ********** | | | | | | | | | | | 3.15 | | 6.15 | 1 6892.24 | | | | Full Fu | 11 Urvel | Max. No | . of Fi | 111 | | MS-RY07(2) | TRAPEZOIDAL
TRAPEZOIDAL | 1.00 | 3.15 | 0.49 | 6.15 | 1 8680.16 | | 0 | 01 | | | | | | | MS-RY07(3) | | | | | | | | Conduit | Shape | Depth Ar | ea Rad. | Width Bar | rels F | low | | RY02-RY05 | CIRCULAR | 0.25 | 0.05 | 0.06 | 0.25 | | | CDO1 I d | CIDCULAD | 0.20 | 02 0.05 | 0.20 | 1 20 | | | RY04-RY01 | CIRCULAR | 0.25 | 0.05 | 0.06 | 0.25 | 1 59.47 | | CB01-Lead | CIRCULAR | 0.20 0. | | 0.20 | 1 32 | | | RY05-RY04 | CIRCULAR | 0.25 | 0.05 | 0.06 | 0.25 | 1 58.95 | | CB02-Lead | CIRCULAR | 0.20 0. | | 0.20 | | .27 | | RY06-RY02 | CIRCULAR | 0.25 | 0.05 | 0.06 | 0.25 | 1 58.96 | | CB03-Lead | CIRCULAR | 0.20 0. | | 0.20 | | .58 | | RY07-RY03 | CIRCULAR | 0.25 | 0.05 | 0.06 | 0.25 | 1 58.81 | | CB04-Lead | CIRCULAR | 0.20 0. | | 0.20 | 1 33 | | | | | | | | | | | CBMH01-MH08 | CIRCULAR | 0.38 0. | | 0.38 | 1 124 | | | a a a a a a a a a a a a a a a a a a a | to all the | | | | | | | LC01-LC02 | CIRCULAR | 0.25 0. | | 0.25 | | .80 | | ******* | | | | | | | | LC01-MH10 | CIRCULAR | 0.25 0. | | 0.25 | | .32 | | Analysis Optic | | | | | | | | LC03-CBMH01 | CIRCULAR | 0.25 0. | | 0.25 | | .51 | | ******** | | | | | | | | LC04-RY06 | CIRCULAR | 0.25 0. | | 0.25 | | .00 | | | LPS | | | | | | | LC05-LC04 | CIRCULAR | 0.25 0. | | 0.25 | | .97 | | Process Models | | | | | | | | LC06-LC07 | CIRCULAR | 0.25 0. | | 0.25 | | .97 | | | noff YES | | | | | | | LC07-MH14 | CIRCULAR | 0.25 0. | | 0.25 | | .62 | | | NO | | | | | | | LC08-MH14 | CIRCULAR | 0.25 0. | | 0.25 | | .90 | | | NO | | | | | | | LC09-LC03 | CIRCULAR | 0.25 0. | | 0.25 | | .23 | | | NO | | | | | | | LC10-Lead | CIRCULAR | 0.25 0. | 05 0.06 | 0.25 | 1 54 | 20 | | | g YES | | | | | | Flow Routing YES Ponding Allowed NO Water Quality NO Infiltration Method HORTON 0.05 0.05 0.25 0.25 0.25 0.06 0.06 0.25 0.25 0.25 54.29 58.32 59.29 Flow Routing Method DYNWAVE Surcharge Method EXTRAN Starting Date ... 04/29/2024 00:00:00 Ending Date ... 04/30/2024 00:00:00 Antecedent Dry Days ... 0.0 Report Time Step 00:01:00 Wet Time Step 00:05:00 Dry Time Step ... 00:05:00 Routing Time Step ... 1.00 sec Variable Time Step ... YES Maximum Trials 8 Number of Threads 4 Head Tolerance 0.001500 m | ****** | | | |--------------------------------------|-----------|-----------------| | Total Precipitation Evaporation Loss | 0.091 | 71.667
0.000 | | Infiltration Loss | 0.017 | 13.529 | | Surface Runoff | 0.074 | 58.514 | | Final Storage | 0.001 | 0.478 | | Continuity Error (%) | -1.193 | | | | | | | ****** | Volume | Volume | | Flow Routing Continuity | hectare-m | 10^6 ltr | | ****** | | | | Dry Weather Inflow | 0.000 | 0.000 | | Wet Weather Inflow | 0.074 | 0.742 | | Groundwater Inflow | 0.000 | 0.000 | | RDII Inflow | 0.000 | 0.000 | | External Inflow | 0.000 | 0.002 | | External Outflow | 0.074 | 0.744 | | Flooding Loss | 0.000 | 0.000 | | Evaporation Loss | 0.000 | 0.000 | | Exfiltration Loss | 0.000 | 0.000 | | Initial Stored Volume | 0.005 | 0.046 | | Final Stored Volume | 0.005 | 0.046 | | Continuity Error (%) | 0.004 | | | | | | hectare-m mm ****** Highest Continuity Errors Node LC05 (-2.16%) Runoff Quantity Continuity ******** Time-Step Critical Elements None Highest Flow Instability Indexes Link O-RY01 (98) Link O-RY03 (90) Link O-MH04 (79) ******* ******** Most Frequent Nonconverging Nodes Convergence obtained at all time steps. Routing Time Step Summary Minimum Time Step 0.50 sec Average Time Step 1.00 sec 0.00 Maximum Time Step % of Time in Steady State : Average Iterations per Step : 2.00 % of Steps Not Converging Time Step Frequencies 1.000 - 0.871 sec 0.871 - 0.758 sec 99.43 % 0.14 % 0.758 - 0.660 sec 0.12 % 0.660 - 0.574 sec 0.11 % 0.574 - 0.500 sec 0.20 % ******* Subcatchment Runoff Summary | | | | Total | Total | Total | Total | Imperv | Perv | Total | |--------------|---------|--------|-------------|-------|-------|-------|--------|--------|--------| | Total | Peak | Runoff | Precip | Runon | Evap | Infil | Runoff | Runoff | Runoff | | Runoff | Runoff | Coeff | | | - 1 | | | | | | | tchment | | mm | 10^6 lt | r I | JPS . | A-01 | | | 71.67 | 0.00 | 0.00 | 42.53 | 4.29 | 25.78 | 30.07 | | 0.02
A-02 | 18.67 | 0.420 | 71 67 | 0.00 | 0.00 | 38 52 | 10 45 | 23.61 | 34 06 | | | 29.59 | 0.475 | 71.07 | 0.00 | 0.00 | 30.32 | 10.45 | 23.01 | 34.00 | | A-03 | | | 71.67 | 0.00 | 0.00 | 6.18 | 61.76 | 4.25 | 66.01 | | | 46.93 | 0.921 | | | | | | | | | A-04
 44.36 | 0.942 | 71.67 | 0.00 | 0.00 | 4.71 | 64.18 | 3.31 | 67.49 | | A-05 | 44.30 | 0.542 | 71.67 | 0.00 | 0.00 | 8.63 | 57.50 | 6.02 | 63.51 | | | 35.04 | 0.886 | | | | | | | | | A-06 | 29.09 | 0.010 | 71.67 | 0.00 | 0.00 | 6.37 | 61.27 | 4.54 | 65.81 | | 0.04
A-07 | | 0.918 | 71.67 | 0.00 | 0.00 | 4.65 | 63.75 | 3.38 | 67.13 | | | 61.02 | 0.937 | 71.07 | 0.00 | 0.00 | 1.00 | 03.75 | 3.30 | 07.13 | | A-08 | | | 71.67 | 0.00 | 0.00 | 5.07 | 62.83 | 3.49 | 66.32 | | 0.10
A-09 | 76.78 | 0.925 | 71 67 | 0.00 | 0.00 | 26.76 | 20 20 | 17.85 | 46.15 | | | 10.35 | 0.644 | 71.67 | 0.00 | 0.00 | 26.76 | 28.30 | 17.85 | 46.15 | | A-10 | 10.55 | 0.011 | 71.67 | 0.00 | 0.00 | 41.70 | 3.95 | 28.36 | 32.31 | | | 3.67 | 0.451 | | | | | | | | | A-11 | 2.80 | 0 410 | 71.67 | 0.00 | 0.00 | 44.20 | 0.00 | 29.92 | 29.92 | | A-12 | | 0.410 | 71.67 | 0.00 | 0.00 | 10.66 | 54.24 | 7.40 | 61.64 | | 0.04 | 33.30 | 0.860 | | | | | | | | | A-13 | | | 71.67 | 0.00 | 0.00 | 1.71 | 67.56 | 1.27 | 68.83 | | 0.05
A-14 | 37.48 | 0.960 | 71 67 | 0.00 | 0.00 | 44 20 | 0.00 | 29.92 | 29 92 | | | 2.00 | 0.418 | , , , , , , | 0.00 | 0.00 | 20 | 0.00 | 23.32 | 23.32 | | A-15 | | | 71.67 | 0.00 | 0.00 | 1.66 | 68.12 | 1.24 | 69.36 | | 0.08
A-16 | 54.25 | 0.968 | 71 67 | 0.00 | 0.00 | 44.20 | 0.00 | 29.92 | 29.92 | | | 4.40 | 0.418 | /1.0/ | 0.00 | 0.00 | 44.20 | 0.00 | 29.92 | 29.92 | | A-17 | | | 71.67 | 0.00 | 0.00 | 31.77 | 20.35 | 20.17 | 40.52 | | 0.00 | 3.82 | 0.565 | | | | | | | | | A-18 | 9.87 | 0 010 | 71.67 | 0.00 | 0.00 | 13.66 | 49.21 | 9.49 | 58.70 | | A-19 | | 0.019 | 71.67 | 0.00 | 0.00 | 15.06 | 47.05 | 10.06 | 57.12 | | | 22.08 | 0.797 | | | | | | | | | A-20 | | | 71.67 | 0.00 | 0.00 | 18.65 | 41.17 | 12.65 | 53.82 | | 0.01
B-01 | 12.31 | 0.751 | 71.67 | 0.00 | 0.00 | 27.24 | 26.75 | 19.12 | 45.87 | | | 16.08 | 0.640 | /1.6/ | 0.00 | 0.00 | 21.24 | 20.75 | 15.12 | 45.07 | | B-02 | | | 71.67 | 0.00 | 0.00 | 28.93 | 24.08 | 20.22 | 44.30 | | 0.02 | 23.91 | 0.618 | | | | | | | | Node Depth Summary | Node Type Neters Depth HGL Occurrence Max De | | | |--|---------|-----------| | HP-CB02 JUNCTION 0.00 0.01 56.40 0 01:23 0 HP-CB03 JUNCTION 0.00 0.01 56.42 0 01:14 0 HP-CB04 JUNCTION 0.00 0.00 56.57 0 00:00 0 HP-LC01 JUNCTION 0.00 0.02 56.68 0 01:11 0 HP-LC02 JUNCTION 0.00 0.09 56.78 0 01:11 0 | e | Max Depth | | HP-CB03 JUNCTION 0.00 0.01 56.42 0 01:14 0 HP-CB04 JUNCTION 0.00 0.00 56.37 0 00:00 0 HP-LC01 JUNCTION 0.00 0.02 56.68 0 01:11 0 HP-LC02 JUNCTION 0.00 0.09 56.78 0 01:11 0 | CB01 | 0.01 | | HP-CB04 JUNCTION 0.00 0.00 56.37 0 00:00 0 HP-LC01 JUNCTION 0.00 0.02 56.86 0 01:11 0 HP-LC02 JUNCTION 0.00 0.09 56.78 0 01:11 0 | CB02 | 0.01 | | HP-LC01 JUNCTION 0.00 0.02 56.68 0 01:11 0 HP-LC02 JUNCTION 0.00 0.09 56.78 0 01:11 0 | CB03 | 0.01 | | HP-LC02 JUNCTION 0.00 0.09 56.78 0 01:11 0 | CB04 | 0.00 | | | LC01 | 0.02 | | HP-LC04 JUNCTION 0.00 0.11 55.87 0 01:15 0 | LC02 | 0.09 | | | LC04 | 0.11 | | HP-LC05(1) JUNCTION 0.00 0.00 55.92 0 01:15 0 | LC05(1) | 0.00 | | HP-LC05(2) JUNCTION 0.00 0.03 55.92 0 01:15 0 | LC05(2) | 0.03 | | HP-LC06(1) | JUNCTION | 0.00 | 0.00 | 56.96 | 0 | 00:00 | 0.00 | |----------------|--------------------|------|------|----------------|---|----------------|------| | HP-LC06(2) | JUNCTION | 0.00 | 0.08 | 56.89 | 0 | 01:10 | 0.08 | | HP-LC07 | JUNCTION | 0.00 | 0.11 | 56.87 | 0 | 01:10 | 0.11 | | HP-LC08 | JUNCTION | 0.00 | 0.12 | 56.86 | 0 | 01:11 | 0.12 | | HP-LC09/LC03 | JUNCTION | 0.00 | 0.12 | 56.85 | 0 | 01:11 | 0.12 | | HP-LC10(1) | JUNCTION | 0.00 | 0.08 | 56.84 | 0 | 01:10 | 0.08 | | HP-LC10(2) | JUNCTION | 0.00 | 0.08 | 56.83 | 0 | 01:11 | 0.08 | | HP-LC11/CBMH01 | JUNCTION | 0.00 | 0.07 | 56.78 | 0 | 01:11 | 0.07 | | HP-LC12 | JUNCTION | 0.00 | 0.10 | 56.84 | 0 | 01:10 | 0.10 | | HP-LC13 | JUNCTION | 0.00 | 0.02 | 56.73 | | 01:11 | 0.02 | | HP-LC14(1) | JUNCTION | 0.00 | 0.00 | 56.91 | 0 | 00:00 | 0.00 | | HP-LC14(2) | JUNCTION | 0.00 | 0.09 | 56.85 | 0 | 01:11 | 0.09 | | HP-RY01 | JUNCTION | 0.00 | 0.00 | 55.65 | 0 | 00:00 | 0.00 | | HP-RY02 | JUNCTION | 0.00 | 0.07 | 55.77 | 0 | 01:18 | 0.07 | | HP-RY03 | JUNCTION | 0.00 | 0.07 | 55.82 | 0 | 01:11 | 0.07 | | HP-RY05 | JUNCTION | 0.00 | 0.03 | 55.68 | 0 | 01:19 | 0.03 | | HP-RY06 | JUNCTION | 0.00 | 0.08 | 55.83 | 0 | 01:17 | 0.08 | | HP-RY07(1) | JUNCTION | 0.00 | 0.00 | 55.98 | 0 | 00:00 | 0.00 | | HP-RY07(2) | JUNCTION | 0.00 | 0.02 | 55.87 | 0 | 01:11 | 0.02 | | Ex.1050 | OUTFALL | 4.00 | 4.00 | 55.05 | 0 | 00:00 | 4.00 | | HP-RY04 | OUTFALL | 0.00 | 0.07 | 55.57 | 0 | 01:19 | 0.07 | | OF1 | OUTFALL | 0.00 | 0.00 | 56.00 | 0 | 00:00 | 0.00 | | CB01 | STORAGE | 0.34 | 1.61 | 56.47 | 0 | 01:07 | 1.61 | | CB02 | STORAGE | 0.54 | 1.74 | 56.40 | 0 | 01:22 | 1.74 | | CB03 | STORAGE | 0.53 | 1.75 | 56.42 | 0 | 01:14 | 1.75 | | CB04 | STORAGE | 0.54 | 1.70 | 56.36 | 0 | 01:47 | 1.70 | | CBMH01 | STORAGE | 0.84 | 2.37 | 56.73 | 0 | 01:11 | 2.37 | | Dummy-MH04 | STORAGE | 2.53 | 2.60 | 55.12 | 0 | 01:13 | 2.60 | | LC01 | STORAGE | 0.09 | 1.21 | 56.78 | 0 | 01:11 | 1.21 | | LC02 | STORAGE | 0.10 | 1.34 | 56.78 | 0 | 01:11 | 1.34 | | LC03 | STORAGE | 0.09 | 1.30 | 56.85 | - | 01:11 | 1.30 | | LC04
LC05 | STORAGE
STORAGE | 0.27 | 1.08 | 55.88
55.92 | 0 | 01:15
01:15 | 1.08 | | LC05 | STORAGE | 0.02 | 1.18 | 56.92 | 0 | 01:15 | 1.18 | | LC07 | STORAGE | 0.07 | 1.10 | 56.87 | 0 | 01:10 | 1.10 | | LC07 | STORAGE | 0.10 | 1.39 | 56.86 | 0 | 01:10 | 1.27 | | LC09 | STORAGE | 0.08 | 1.23 | 56.85 | 0 | 01:10 | 1.23 | | LC10 | STORAGE | 0.08 | 1.19 | 56.84 | 0 | 01:11 | 1.19 | | LC11 | STORAGE | 0.08 | 1.16 | 56.79 | 0 | 01:11 | 1.16 | | LC12 | STORAGE | 0.10 | 1.36 | 56.85 | 0 | 01:10 | 1.36 | | LC13 | STORAGE | 0.08 | 1.19 | 56.84 | | 01:10 | 1.19 | | LC14 | STORAGE | 0.07 | 1.19 | 56.86 | 0 | 01:11 | 1.19 | | MHO4 | STORAGE | 2.68 | 3.88 | 56.40 | 0 | 01:22 | 3.88 | | MH06 | STORAGE | 1.90 | 3.12 | 56.42 | 0 | 01:15 | 3.12 | | MH08 | STORAGE | 1.62 | 2.90 | 56.48 | 0 | 01:12 | 2.90 | | MH10 | STORAGE | 0.73 | 2.30 | 56.78 | 0 | 01:11 | 2.30 | | MH12 | STORAGE | 0.59 | 2.22 | 56.84 | 0 | 01:10 | 2.22 | | MH14 | STORAGE | 0.51 | 2.16 | 56.86 | 0 | 01:11 | 2.16 | | RY01 | STORAGE | 1.48 | 1.97 | 55.56 | 0 | 01:13 | 1.97 | | RY02 | STORAGE | 0.75 | 1.45 | 55.77 | 0 | 01:18 | 1.45 | | RY03 | STORAGE | 1.03 | 1.79 | 55.82 | | 01:11 | 1.79 | | RY04 | STORAGE | 1.23 | 1.74 | 55.58 | | 01:19 | 1.74 | | RY05 | STORAGE | 1.00 | 1.61 | 55.68 | 0 | 01:19 | 1.61 | | RY06 | STORAGE | 0.52 | 1.29 | 55.84 | 0 | 01:16 | 1.29 | | RY07 | STORAGE | 0.80 | 1.61 | 55.87 | 0 | 01:11 | 1.61 | | | | | | | | | | | Node | Type | Maximum
Lateral
Inflow
LPS | Maximum
Total
Inflow
LPS | days h | rence | Lateral
Inflow
Volume
10^6 ltr | Total
Inflow
Volume
10^6 ltr | Flow
Balance
Error
Percent | | |--------------|----------|-------------------------------------|-----------------------------------|--------|-------|---|---------------------------------------|-------------------------------------|-----| | HP-CB01 | JUNCTION | 0.00 | 56.09 | | 01:10 | 0 | 0.0288 | -0.001 | | | HP-CB02 | JUNCTION | 0.00 | 28.23 | 0 | 01:22 | 0 | 0.004 | 0.003 | | | HP-CB03 | JUNCTION | 0.00 | 81.42 | 0 | 01:14 | 0 | 0.0228 | 0.001 | | | HP-CB04 | JUNCTION | 0.00 | 0.00 | 0 | 00:00 | 0 | 0 | 0.000 | ltr | | HP-LC01 | JUNCTION | 0.00 | 25.33 | 0 | 01:11 | 0 | 0.00991 | 2.792 | | | HP-LC02 | JUNCTION | 0.00 | 3.56 | 0 | 01:07 | 0 | 0.00101 | 0.455 | | | HP-LC04 | JUNCTION | 0.00 | 22.87 | 0 | 01:14 | 0 | 0.0138 | -0.273 | | | HP-LC05(1) | JUNCTION | 0.00 | 0.10 | 0 | 01:15 | 0 | 2.46e-06 | 0.583 | ltr | | HP-LC05(2) | JUNCTION | 0.00 | 2.18 | 0 | 01:14 | 0 | 0.000406 | 2.377 | | | HP-LC06(1) | JUNCTION | 0.00 | 0.00 | 0 | 00:00 | 0 | 0 | 0.000 | ltr | | HP-LC06(2) | JUNCTION | 0.00 | 14.19 | 0 | 01:10 | 0 | 0.00441 | -0.141 | | | HP-LC07 | JUNCTION | 0.00 | 16.71 | 0 | 01:10 | 0 | 0.00619 | 0.094 | | | HP-LC08 | JUNCTION | 0.00 | 16.50 | 0 | 01:08 | 0 | 0.0068 | 0.008 | | | HP-LC09/LC03 | JUNCTION | 0.00 | 23.03 | 0 | 01:11 | 0 | 0.00737 | 0.845 | | | HP-LC10(1) | JUNCTION | 0.00 | 8.12 | 0 | 01:10 | 0 | 0.00299 | 0.142 | | | HP-LC10(2) | JUNCTION | 0.00 | 14.15 | 0 | 01:10 | 0 | 0.00496 | -0.027 | |----------------|----------|-------|--------|---|-------|---------|----------|-----------| | HP-LC11/CBMH01 | JUNCTION | 0.00 | 9.62 | 0 | 01:11 | 0 | 0.00255 | 1.047 | | HP-LC12 | JUNCTION | 0.00 | 11.17 | 0 | 01:10 | 0 | 0.00394 | 0.204 | | HP-LC13 | JUNCTION | 0.00 | 24.68 | 0 | 01:10 | 0 | 0.0113 | 5.893 | | HP-LC14(1) | JUNCTION | 0.00 | 0.00 | 0 | 00:00 | 0 | 0 | 0.000 ltr | | HP-LC14(2) | JUNCTION | 0.00 | 13.21 | 0 | 01:10 | 0 | 0.00372 | 0.042 | | HP-RY01 | JUNCTION | 0.00 | 0.00 | 0 | 00:00 | 0 | 0 | 0.000 ltr | | HP-RY02 | JUNCTION | 0.00 | 10.71 | 0 | 01:17 | 0 | 0.00518 | -0.007 | | HP-RY03 | JUNCTION | 0.00 | 10.31 | 0 | 01:11 | 0 | 0.00342 | -2.242 | | HP-RY05 | JUNCTION | 0.00 | 2.93 | 0 | 01:18 | 0 | 0.000964 | 0.197 | | HP-RY06 | JUNCTION | 0.00 | 16.11 | 0 | 01:16 | 0 | 0.00858 | -0.198 | | HP-RY07(1) | JUNCTION | 0.00 | 0.00 | 0 | 00:00 | 0 | 0 | 0.000 ltr | | HP-RY07(2) | JUNCTION | 0.00 | 2.14 | 0 | 01:09 | 0 | 0.000224 | 2.711 | | Ex.1050 | OUTFALL | 0.00 | 93.69 | 0 | 01:13 | 0 | 0.676 | 0.000 | | HP-RY04 | OUTFALL | 0.00 | 26.42 | 0 | 01:19 | 0 | 0.0302 | 0.000 | | OF1 | OUTFALL | 39.99 | 39.99 | 0 | 01:10 | 0.0404 | 0.0404 | 0.000 | | CB01 | STORAGE | 61.02 |
61.02 | 0 | 01:10 | 0.0839 | 0.0876 | 0.007 | | CB02 | STORAGE | 54.25 | 123.52 | 0 | 01:14 | 0.0763 | 0.123 | 0.009 | | CB03 | STORAGE | 76.78 | 149.86 | 0 | 01:10 | 0.105 | 0.144 | 0.010 | | CB04 | STORAGE | 37.48 | 59.72 | 0 | 01:10 | 0.0523 | 0.0957 | -0.012 | | CBMH01 | STORAGE | 0.00 | 122.06 | 0 | 01:10 | 0 | 0.247 | -0.037 | | Dummy-MH04 | STORAGE | 0.00 | 93.68 | 0 | 01:13 | 0 | 0.681 | 0.007 | | LC01 | STORAGE | 29.09 | 29.09 | 0 | 01:10 | 0.0395 | 0.0401 | -0.039 | | LC02 | STORAGE | 0.00 | 24.33 | 0 | 01:04 | 0 | 0.0306 | 0.068 | | LC03 | STORAGE | 0.00 | 50.34 | 0 | 01:08 | 0 | 0.0746 | 0.081 | | LC04 | STORAGE | 29.59 | 72.21 | 0 | 01:10 | 0.0313 | 0.0722 | -0.378 | | LC05 | STORAGE | 18.67 | 41.79 | 0 | 01:10 | 0.0192 | 0.03 | -2.115 | | LC06 | STORAGE | 44.36 | 44.36 | 0 | 01:10 | 0.0614 | 0.0614 | -0.016 | | LC07 | STORAGE | 0.00 | 43.37 | 0 | 01:10 | 0 | 0.0614 | 0.072 | | LC08 | STORAGE | 0.00 | 18.34 | 0 | 01:09 | 0 | 0.00927 | -0.075 | | LC09 | STORAGE | 22.08 | 36.56 | 0 | 01:10 | 0.0274 | 0.0342 | -0.018 | | LC10 | STORAGE | 12.31 | 19.65 | 0 | 01:10 | 0.0145 | 0.0175 | -0.020 | | LC11 | STORAGE | 9.87 | 23.01 | 0 | 01:10 | 0.0123 | 0.0173 | 0.012 | | LC12 | STORAGE | 46.93 | 46.93 | 0 | 01:10 | 0.064 | 0.0656 | 0.015 | | LC13 | STORAGE | 0.00 | 24.86 | 0 | 01:10 | 0 | 0.0128 | -0.034 | | LC14 | STORAGE | 35.04 | 35.04 | 0 | 01:10 | 0.0464 | 0.0464 | -0.030 | | MH04 | STORAGE | 0.00 | 101.33 | 0 | 01:10 | 0 | 0.631 | -0.000 | | MH06 | STORAGE | 0.00 | 121.68 | 0 | 01:08 | 0 | 0.424 | -0.000 | | MH08 | STORAGE | 0.00 | 125.01 | 0 | 01:07 | 0 | 0.307 | -0.000 | | MH10 | STORAGE | 0.00 | 73.74 | 0 | 01:05 | 0 | 0.164 | -0.009 | | MH12 | STORAGE | 0.00 | 58.41 | 0 | 01:04 | 0 | 0.119 | -0.019 | | MH14 | STORAGE | 0.00 | 33.36 | 0 | 01:04 | 0 | 0.0586 | -0.062 | | RY01 | STORAGE | 4.40 | 29.87 | 0 | 01:10 | 0.00329 | 0.0707 | 0.062 | | RY02 | STORAGE | 3.67 | 50.32 | 0 | 01:15 | 0.00291 | 0.0874 | 0.020 | | RY03 | STORAGE | 3.82 | 32.44 | 0 | 01:10 | 0.00405 | 0.05 | -0.035 | | RY04 | STORAGE | 2.00 | 47.94 | | 01:19 | 0.0015 | 0.0919 | 0.016 | | RY05 | STORAGE | 2.80 | 48.43 | | 01:17 | 0.00209 | 0.0895 | 0.002 | | RY06 | STORAGE | 10.35 | 54.91 | 0 | 01:13 | 0.0111 | 0.0844 | 0.049 | | RY07 | STORAGE | 33.30 | 33.30 | 0 | 01:10 | 0.0431 | 0.0441 | -0.012 | No nodes were surcharged. No nodes were flooded. | Storage Unit | Average
Volume
1000 m³ | Avg
Pcnt
Full | Evap
Pent
Loss | Exfil
Pcnt
Loss | Maximum
Volume
1000 m³ | Max
Pent
Full | Time o
Occur
days h | rence | Maximum
Outflow
LPS | | | |--------------|------------------------------|---------------------|----------------------|-----------------------|------------------------------|---------------------|---------------------------|-------|---------------------------|--|--| | CB01 | 0.000 | 4.0 | 0.0 | 0.0 | 0.010 | 100.0 | 0 | 01:07 | 70.04 | | | | CB02 | 0.005 | 6.1 | 0.0 | 0.0 | 0.079 | 100.0 | 0 | 01:22 | 31.17 | | | | CB03 | 0.004 | 6.3 | 0.0 | 0.0 | 0.070 | 100.0 | 0 | 01:14 | 81.42 | | | | CB04 | 0.005 | 6.5 | 0.0 | 0.0 | 0.075 | 92.7 | 0 | 01:47 | 24.20 | | | | CBMH01 | 0.001 | 25.8 | 0.0 | 0.0 | 0.003 | 72.2 | 0 | 01:11 | 120.92 | | | | Dummy-MH04 | 0.000 | 0.0 | 0.0 | 0.0 | 0.000 | 0.0 | 0 | 00:00 | 93.69 | | | | LC01 | 0.000 | 4.3 | 0.0 | 0.0 | 0.000 | 60.6 | 0 | 01:11 | 27.23 | | | | LC02 | 0.000 | 4.8 | 0.0 | 0.0 | 0.000 | 62.8 | 0 | 01:11 | 21.25 | | | | | | | | | | | | | | | | | LC03 | 0.000 | 4.3 | 0.0 | 0.0 | 0.000 | 62.0 | 0 | 01:11 | 44.87 | |------|-------|------|-----|-----|-------|------|---|-------|--------| | LC04 | 0.000 | 14.4 | 0.0 | 0.0 | 0.000 | 57.3 | 0 | 01:15 | 51.57 | | LC05 | 0.000 | 1.2 | 0.0 | 0.0 | 0.000 | 48.6 | 0 | 01:15 | 28.59 | | LC06 | 0.000 | 3.5 | 0.0 | 0.0 | 0.000 | 59.0 | 0 | 01:10 | 43.77 | | LC07 | 0.000 | 4.1 | 0.0 | 0.0 | 0.000 | 61.5 | 0 | 01:10 | 41.96 | | LC08 | 0.000 | 4.6 | 0.0 | 0.0 | 0.000 | 63.9 | 0 | 01:10 | 16.50 | | LC09 | 0.000 | 4.1 | 0.0 | 0.0 | 0.000 | 61.7 | 0 | 01:11 | 34.58 | | LC10 | 0.000 | 3.9 | 0.0 | 0.0 | 0.000 | 59.7 | 0 | 01:10 | 18.62 | | LC11 | 0.000 | 4.0 | 0.0 | 0.0 | 0.000 | 58.0 | 0 | 01:11 | 22.35 | | LC12 | 0.000 | 4.6 | 0.0 | 0.0 | 0.000 | 62.8 | 0 | 01:10 | 45.82 | | LC13 | 0.000 | 3.9 | 0.0 | 0.0 | 0.000 | 59.4 | 0 | 01:10 | 24.68 | | LC14 | 0.000 | 3.7 | 0.0 | 0.0 | 0.000 | 59.3 | 0 | 01:11 | 33.65 | | MH04 | 0.003 | 56.3 | 0.0 | 0.0 | 0.004 | 81.5 | 0 | 01:22 | 100.19 | | MH06 | 0.002 | 48.9 | 0.0 | 0.0 | 0.004 | 80.2 | 0 | 01:15 | 118.89 | | MH08 | 0.002 | 42.1 | 0.0 | 0.0 | 0.003 | 75.3 | 0 | 01:12 | 121.68 | | MH10 | 0.001 | 22.7 | 0.0 | 0.0 | 0.003 | 72.0 | 0 | 01:11 | 67.37 | | MH12 | 0.001 | 18.8 | 0.0 | 0.0 | 0.003 | 71.0 | 0 | 01:10 | 47.40 | | MH14 | 0.001 | 16.6 | 0.0 | 0.0 | 0.002 | 70.7 | 0 | 01:11 | 27.65 | | RY01 | 0.001 | 52.7 | 0.0 | 0.0 | 0.001 | 70.4 | 0 | 01:13 | 22.68 | | RY02 | 0.000 | 34.4 | 0.0 | 0.0 | 0.001 | 66.6 | 0 | 01:18 | 48.02 | | RY03 | 0.000 | 40.4 | 0.0 | 0.0 | 0.001 | 70.1 | 0 | 01:11 | 31.03 | | RY04 | 0.000 | 50.9 | 0.0 | 0.0 | 0.001 | 72.2 | 0 | 01:19 | 47.83 | | RY05 | 0.000 | 41.9 | 0.0 | 0.0 | 0.001 | 67.5 | 0 | 01:19 | 47.45 | | RY06 | 0.000 | 26.1 | 0.0 | 0.0 | 0.000 | 64.4 | 0 | 01:16 | 49.97 | | RY07 | 0.000 | 33.5 | 0.0 | 0.0 | 0.001 | 67.1 | 0 | 01:11 | 29.80 | | | | | | | | | | | | | Outfall Node | Flow | Avg | Max | Total | |--------------|-------|-------|--------|----------| | | Freq | Flow | Flow | Volume | | | Pcnt | LPS | LPS | 10^6 ltr | | Ex.1050 | 67.36 | 11.71 | 93.69 | 0.676 | | HP-RY04 | 2.08 | 16.12 | 26.42 | 0.030 | | OF1 | 12.14 | 3.88 | 39.99 | 0.040 | | System | 27 20 | 31 71 | 136.86 | 0.746 | | Link | Type | Maximum
 Flow
LPS | 0cci | of Max
irrence
hr:min | Maximum
 Veloc
m/sec | Max/
Full
Flow | Max/
Full
Depth | |-------------|---------|--------------------------|------|-----------------------------|-----------------------------|----------------------|-----------------------| | CB01-Lead | CONDUIT | 30.54 | 0 | 01:02 | 0.97 | 0.93 | 1.00 | | CB02-Lead | CONDUIT | 27.70 | 0 | 01:10 | 0.88 | 0.86 | 1.00 | | CB03-Lead | CONDUIT | 26.76 | 0 | 01:01 | 0.85 | 0.77 | 1.00 | | CB04-Lead | CONDUIT | 24.20 | 0 | 03:39 | 0.77 | 0.73 | 1.00 | | CBMH01-MH08 | CONDUIT | 120.92 | 0 | 01:11 | 1.09 | 0.97 | 1.00 | | LC01-LC02 | CONDUIT | 24.33 | 0 | 01:04 | 0.72 | 0.41 | 1.00 | | LC01-MH10 | CONDUIT | 21.25 | 0 | 01:05 | 0.67 | 0.36 | 1.00 | | LC03-CBMH01 | CONDUIT | 44.87 | 0 | 01:08 | 0.91 | 0.77 | 1.00 | | LC04-RY06 | CONDUIT | 35.79 | 0 | 01:07 | 0.73 | 0.61 | 1.00 | | LC05-LC04 | CONDUIT | 28.59 | 0 | 01:08 | 0.58 | 0.48 | 1.00 | | LC06-LC07 | CONDUIT | 39.09 | 0 | 01:05 | 0.88 | 0.65 | 1.00 | | LC07-MH14 | CONDUIT | 33.36 | 0 | 01:04 | 0.87 | 0.55 | 1.00 | | LC08-MH14 | CONDUIT | 7.16 | 0 | 01:06 | 0.21 | 0.12 | 1.00 | | LC09-LC03 | CONDUIT | 18.65 | 0 | 01:07 | 0.53 | 0.33 | 1.00 | | LC10-Lead | CONDUIT | 7.64 | 0 | 01:07 | 0.42 | 0.14 | 1.00 | | LC11-Lead | CONDUIT | 14.57 | 0 | 01:10 | 0.41 | 0.27 | 1.00 | | LC12-MH12 | CONDUIT | 34.11 | 0 | 01:04 | 0.71 | 0.58 | 1.00 | | LC13-LC12 | CONDUIT | 14.21 | 0 | 01:10 | 0.29 | 0.24 | 1.00 | | LC14-LC03 | CONDUIT | 31.06 | 0 | 01:05 | 0.68 | 0.52 | 1.00 | | MH04-Ex1050 | CONDUIT | 93.69 | 0 | 01:13 | 0.59 | 0.23 | 1.00 | | MH06-MH04 | CONDUIT | 101.33 | 0 | 01:10 | 0.64 | 0.36 | 1.00 | | MH08-MH06 | CONDUIT | 121.68 | 0 | 01:08 | 0.77 | 0.61 | 1.00 | | MH10-CBMH01 | CONDUIT | 67.37 | 0 | 01:06 | 0.95 | 0.97 | 1.00 | | MH12-MH10 | CONDUIT | 47.40 | 0 | 01:05 | 0.67 | 0.68 | 1.00 | | MH14-MH12 | CONDUIT | 24.61 | 0 | 01:11 | 0.35 | 0.37 | 1.00 | | MS-CB01(1) | CONDUIT | 56.09 | 0 | 01:10 | 0.17 | 0.00 | 0.11 | | MS-CB01(2) | CONDUIT | 56.09 | 0 | 01:10 | 0.17 | 0.00 | 0.18 | | MS-CB02(1) | CONDUIT | 28.23 | 0 | 01:22 | 0.05 | 0.00 | 0.17 | | MS-CB02(2) | CONDUIT | 27.32 | 0 | 01:23 | 0.07 | 0.00 | 0.15 | | MS-CB03(1) | CONDUIT | 81.42 | 0 | 01:14 | 0.08 | 0.00 | 0.18 | | 110 0200(2) | COLLEGIA | ,0.05 | - | 01.11 | 0.10 | 0.00 | 0.1 | |--------------|----------|--|---|-------|--------------------------------------|----------------------|----------------------| | MS-CB04(1) | CONDUIT | 0.00 | 0 | 00:00 | 0.00
0.00
0.30 | 0.00 | 0.15 | | MS-CB04(2) | CONDUIT | 0.00
9.39 | 0 | 00:00 | 0.00 | 0.00 | 0.11 | | MS-CBMH01(1) | CONDUIT | 9.39 | 0 | 01:11 | 0.30 | 0.00 | 0.08 | | MS-CBMH01(2) | CONDUIT | 1.89 | 0 | 01:10 | 0.05 | 0.00 | 0.14
0.12
0.10 | | MS-LC01(1) | CONDUIT | 25.33 | 0 | 01:11 | 0.44 | 0.00 | 0.12 | | MS-LC01(2) | CONDUIT | 25.14 | 0 | 01:11 | 0.21 | 0 00 | 0.10 | | MS-LC02(1) | CONDUIT | 2.90 | 0 | 01:11 | 0.06 | 0.00 | 0.15 | | MS-LC02(2) | CONDUIT | 3.56 | 0 | 01:07 | 0.08 | 0.00 | 0.15 | | MS-LC03(1) | CONDUIT | 6.63 | 0 | 01:14 | 0.15 | 0.00 | 0.16 | | MS-LC03(2) | CONDUIT | 22.95 | 0 | 01:11 | 0.06
0.08
0.15
0.50 | 0.00 | 0.10 | | MS-LC04(1) | CONDUIT | 22.87 | 0 | 01:14 | 0.26 | 0.00 | 0.15 | | MS-LC04(2) | CONDUIT | 22.63 | 0 | 01:15 | 0.26 | 0.00 | 0.20 | | MS-LC05(1) | CONDUIT | 0.10 | 0 | 01:15 | 0.00
0.09
0.03
0.00
0.21 | 0.00 | 0.07 | | MS-LC05(2) | CONDUIT | 2.18 | 0 | 01:14 | 0.09 | 0.00 | 0.08 | | MS-LC05(3) | CONDUIT | 1.45 | 0 | 01:15 | 0.03 | 0.00 | 0.11 | | MS-LC06(1) | CONDUIT | 0.00 | 0 | 00:00 | 0.00 | 0.00 | 0.09 | | MS-LC06(2) | CONDUIT | 14.19 | 0 | 01:10 | 0.21 | 0.00 | 0.13 | | MS-LC06(3) | CONDUIT | 14.00 | 0 | 01:10 | 0.18 | 0.00 | 0.14 | | MS-LC07(1) | CONDUIT | 16.71 | 0 | 01:10 | 0.19 | 0.00 | 0.15 | | MS-LC07(2) | CONDUIT | 9.39
1.89
25.33
25.14
2.90
3.56
6.63
22.95
22.87
22.87
22.63
0.10
2.18
1.45
0.00
14.19
14.00
16.71
16.03
16.55 | 0 | 01:10 | 0.18
0.19
0.17
0.21 | 0.00 | 0.16 | | MS-LC08(1) | CONDUIT | 16.50 | 0 | 01:08
 | | 0.16 | | MS-LC08(2) | CONDUIT | 16.50
15.54
20.62
7.43
14.15 | 0 | 01:10 | 0.21
0.19
0.11 | 0.00 | 0.18 | | MS-LC09 | CONDUIT | 20.62 | 0 | 01:10 | 0.19 | 0.00
0.00
0.00 | 0.18 | | MS-LC10(1) | CONDUIT | 7.43 | 0 | 01:10 | 0.11 | 0.00 | 0.14 | | MS-LC10(2) | CONDUIT | 14.15
14.09
7.90
8.12 | 0 | 01:10 | 0.19 | 0.00 | 0.14 | | MS-LC10(3) | CONDUIT | 14.09 | 0 | 01:11 | 0.23 | 0.00 | 0.12 | | MS-LC11 | CONDUIT | 7.90 | 0 | 01:11 | 0.14 | 0.00 | 0.12 | | MS-LC12(1) | CONDUIT | 8.12 | 0 | 01:10 | 0.13 | 0.00 | 0.14 | | MS-LC12(2) | CONDUIT | 11.17 | 0 | 01:10 | 0.13 | 0.00 | 0.15 | | MS-LC12(3) | CONDUIT | 10.76 | 0 | 01:10 | 0.13 | 0.00 | 0.15
0.15
0.10 | | MS-LC13(1) | CONDUIT | 24.68 | 0 | 01:10 | 0.51 | 0.00 | 0.10 | | MS-LC13(2) | CONDUIT | 24.53 | 0 | 01:11 | 0.36
0.00
0.19
0.15 | 0.00 | 0.07 | | MS-LC14(1) | CONDUIT | 0.00 | 0 | 00:00 | 0.00 | 0.00 | 0.09 | | MS-LC14(2) | CONDUIT | 13.21 | 0 | 01:10 | 0.19 | 0.00 | 0.14 | | MS-LC14(3) | CONDUIT | 12.33 | 0 | 01:10 | 0.19 | 0.00 | 0.15 | | MS-RY01(1) | CONDUIT | 0.00 | 0 | 00:00 | 0.00 | 0.00 | 0.09 | | MS-RY01(2) | CONDUIT | 0.00 | 0 | 00:00 | 0.00 | 0.00 | 0.17 | | MS-RY02(1) | CONDUIT | 10.71 | 0 | 01:17 | 0.10 | 0.00 | 0.17 | | MS-RY02(2) | CONDUIT | 10.58 | 0 | 01:18 | 0.12 | 0 00 | 0.15 | | MS-RY03(1) | CONDUIT | 10.31 | 0 | 01:11 | 0.12 | 0.00 | 0.15 | | MS-RY03(2) | CONDUIT | 9.97 | 0 | 01:11 | 0.26 | 0.00 | 0.12 | | MS-RY04(1) | CONDUIT | 26.42 | 0 | 01:19 | 0.17 | 0.00 | 0.20 | | MS-RY05(1) | CONDUIT | 2.93 | 0 | 01:18 | 0.04 | 0.00 | 0.13 | | MS-RY05(2) | CONDUIT | 2.88 | 0 | 01:19 | 0.02 | 0.00 | 0.18 | | MS-RY06(1) | CONDUIT | 16.11 | 0 | 01:16 | 0.12 | 0.00 | 0.19 | | MS-RY06(2) | CONDUIT | 15.99 | 0 | 01:17 | 0.13 | 0.00
0.00
0.00 | 0.18 | | MS-RY07(1) | CONDUIT | 0.00 | 0 | 00:00 | 0.00 | 0.00 | 0.10 | | MS-RY07(2) | CONDUIT | 2.14 | 0 | 01:09 | 0.05 | 0.00 | 0.11 | | MS-RY07(3) | CONDILLE | 7.90
8.12
11.17
10.76
24.68
24.53
0.00
13.21
12.33
0.00
10.71
10.58
10.31
9.97
26.42
2.93
2.88
16.11
15.99
0.00 | 0 | 01:11 | 0.02 | 0.00 | 0.13 | | RY02-RY05 | CONDUIT | 37.91 | 0 | 01:15 | | | 1.00 | | RY04-RY01 | CONDUIT | 37.91
21.45
44.52
37.07
27.89
51.33
22.68 | 0 | 01:19 | 0 44 | 0.36 | 1.00 | | RY05-RY04 | CONDUIT | 44.52 | 0 | 01:19 | 0.91 | 0.76 | 1.00 | | | CONDUIT | 37.07 | 0 | 01:13 | 0.76 | 0.63 | 1.00 | | RY07-RY03 | CONDUIT | 27.89 | 0 | 01:10 | 0.76
0.57 | 0.47 | 1.00 | | O-MH04 | ORIFICE | 51.33 | 0 | 01:22 | | | 1.00 | | O-RY01 | ORIFICE | 22.68 | 0 | 01:24 | | | 1.00 | | O-RY03 | ORIFICE | 20.73 | 0 | 01:11 | | | 1.00 | | | | | | | | | | | | | | | | | | | MS-CB03(2) CONDUIT 75.69 0 01:14 0.10 0.00 0.17 | | Adjusted | | | Fract | ion of | Time | in Flo | w Clas | s | | |-------------|-------------------|------|-----------|-------------|-------------|-------------|------------|--------------|-------------|---------------| | Conduit | /Actual
Length | Dry | Up
Dry | Down
Dry | Sub
Crit | Sup
Crit | Up
Crit | Down
Crit | Norm
Ltd | Inlet
Ctrl | | CB01-Lead | 1.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | CB02-Lead | 1.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | CB03-Lead | 1.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | CB04-Lead | 1.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | CBMH01-MH08 | 1.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | LC01-LC02 | 1.00 | 0.01 | 0.01 | 0.00 | 0.95 | 0.03 | 0.00 | 0.00 | 0.85 | 0.00 | | LC01-MH10 | 1.00 | 0.01 | 0.00 | 0.00 | 0.13 | 0.00 | 0.00 | 0.87 | 0.00 | 0.00 | | LC03-CBMH01 | 1.00 | 0.01 | 0.00 | 0.00 | 0.13 | 0.00 | 0.00 | 0.87 | 0.00 | 0.00 | | LC04-RY06 | 1.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | LC05-LC04 | 1.00 | 0.00 | 0.81 | 0.00 | 0.19 | 0.00 | 0.00 | 0.00 | 0.95 | 0.00 | | LC06-LC07 | 1.00 | 0.01 | 0.00 | 0.00 | 0.96 | 0.03 | 0.00 | 0.00 | 0.84 | 0.00 | | LC07-MH14 | 1.00 | 0.01 | 0.00 | 0.00 | 0.12 | 0.00 | 0.00 | 0.87 | 0.00 | 0.00 | | LC08-MH14 | 1.00 | 0.04 | 0.00 | 0.00 | 0.13 | 0.00 | 0.00 | 0.84 | 0.00 | 0.00 | | Conduit Surch | ****** | | | | | | | | | | |--------------------------|--|------|------|------|------|------|------|--------------|------|-----| | ****** | | | | | | | | | | | | RY07-RY03 | 1.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.0 | | RY05-RY04
RY06-RY02 | 1.00
1.00
1.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.0 | | RY04-RY01 | 1.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.0 | | RY02-RY05 | 1.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.0 | | MS-RY07(2)
MS-RY07(3) | | | | | | | | | | | | MS-RY07(1) | 1.00 | 0.99 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.0 | | MS-RY06(2) | 1.00 | 0.05 | 0.00 | 0.00 | 0.02 | 0.00 | 0.00 | 0.93 | 0.02 | 0.0 | | 4S-R105(2)
4S-RY06(1) | 1.00 | 0.05 | 0.00 | 0.00 | 0.02 | 0.00 | 0.00 | 0.93 | 0.01 | 0.0 | | MS-RY05(1)
MS-RY05(2) | 1.00 | 0.05 | 0.01 | 0.00 | 0.02 | 0.00 | 0.00 | 0.93 | 0.01 | 0.0 | | MS-RY04(1) | 1.00 | 0.05 | 0.00 | 0.00 | 0.03 | 0.00 | 0.00 | 0.92 | 0.01 | 0.0 | | MS-RY03(2) | 1.00 | 0.05 | 0.00 | 0.00 | 0.03 | 0.00 | 0.00 | 0.93 | 0.02 | 0.0 | | MS-RY02(2)
MS-RY03(1) | 1.00 | 0.05 | 0.00 | 0.00 | 0.02 | 0.00 | 0.00 | 0.93 | 0.02 | 0.0 | | MS-RY02(1) | 1.00 | 0.05 | 0.00 | 0.00 | 0.02 | 0.00 | 0.00 | 0.93 | 0.01 | 0.0 | | MS-RY01(2) | 1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00 | 0.97 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.0 | | MS-RY01(1) | 1.00 | 0.03 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.0 | | MS-LC14(2)
MS-LC14(3) | 1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00 | 0.05 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.95 | 0.00 | 0.0 | | MS-LC14(1) | 1.00 | 0.99 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.0 | | MS-LC13(2) | 1.00 | 0.88 | 0.00 | 0.00 | 0.02 | 0.00 | 0.00 | 0.10 | 0.01 | 0.0 | | MS-LC12(3)
MS-LC13(1) | 1.00 | 0.04 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.94 | 0.00 | 0.0 | | MS-LC12(2)
MS-LC12(3) | 1.00 | 0.04 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.94 | 0.00 | 0.0 | | MS-LC12(1) | 1.00 | 0.04 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.94 | 0.00 | 0.0 | | MS-LC10(3) | 1.00 | 0.05 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.95 | 0.00 | 0.0 | | MS-LC10(2)
MS-LC10(3) | 1.00 | 0.05 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.94 | 0.00 | 0.0 | | MS-LC10(1) | 1.00 | 0.05 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.94 | 0.01 | 0.0 | | MS-LC09 | 1.00 | 0.05 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.95 | 0.00 | 0.0 | | MS-LC08(2) | 1.00 | 0.05 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.95 | 0.00 | 0.0 | | MS-LC08(1) | 1.00 | 0.05 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.94 | 0.01 | 0.0 | | MS-LC07(1) | 1.00 | 0.05 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.94 | 0.00 | 0.0 | | MS-LC06(3) | 1.00 | 0.05 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.94 | 0.01 | 0.0 | | MS-LC06(2) | 1.00 | 0.05 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.95 | 0.00 | 0.0 | | MS-LC06(1) | 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 | 0.99 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.0 | | MS-LCU5(2) | 1.00 | 0.05 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.94
n 93 | 0.01 | 0.0 | | MS-LC05(1) | 1.00 | 0.05 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.94 | 0.01 | 0.0 | | MS-LC04(2) | 1.00 | 0.05 | 0.00 | 0.00 | 0.02 | 0.00 | 0.00 | 0.93 | 0.02 | 0.0 | | MS-LC04(1) | 1.00 | 0.05 | 0.00 | 0.00 | 0.02 | 0.00 | 0.00 | 0.93 | 0.00 | 0.0 | | MS-LC03(1) | 1.00 | 0.05 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.95 | 0.00 | 0.0 | | MS-LC02(2) | 1.00 | 0.05 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.94 | 0.00 | 0.0 | | MS-LC02(1) | 1.00 | 0.05 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.94 | 0.00 | 0.0 | | MS-LC01(2) | 1.00 | 0.89 | 0.00 | 0.00 | 0.02 | 0.00 | 0.00 | 0.09 | 0.02 | 0.0 | | MS-LC01(1) | 1.00 | 0.05 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.94 | 0.00 | 0.0 | | MS-CBMH01(1) | 1.00 | 0.05 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.95
n a/ | 0.00 | 0.0 | | MS-CB04(2) | 1.00 | 0.98 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.0 | | MS-CB04(1) | 1.00 | 0.89 | 0.11 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.0 | | ms-CBU3(1)
MS-CB03(2) | 1.00 | 0.89 | 0.09 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.94 | 0.0 | | MS-CB02(2) | 1.00 | 0.89 | 0.10 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.94 | 0.0 | | MS-CB02(1) | 1.00 | 0.89 | 0.10 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.94 | 0.0 | | MS-CB01(1) | 1.00 | 0.89 | 0.09 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.95 | 0.0 | | MH14-MH12
MS-CB01(1) | 1.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.0 | | MH12-MH10 | 1.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.0 | | MH10-CBMH01 | 1.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.0 | | MH08-MH04 | 1.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.0 | | MHU4-EX1050 | 1.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.0 | | LC14-LC03 | 1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00 | 0.01 | 0.00 | 0.00 | 0.99 | 0.00 | 0.00 | 0.00 | 0.87 | 0.0 | | LC13-LC12 | 1.00 | 0.01 | 0.84 | 0.00 | 0.15 | 0.00 | 0.00 | 0.00 | 0.84 | 0.0 | | LC12-MH12 | 1.00 | 0.01 | 0.00 | 0.00 | 0.12 | 0.00 | 0.00 | 0.87 | 0.00 | 0.0 | | | | 0 01 | 0 00 | 0 00 | 0 12 | 0 00 | 0 00 | 0.87 | 0 00 | 0.0 | | LC1U-Lead
LC11-Lead | 1.00 | 0.01 | 0.00 | 0.00 | 0.12 | 0.00 | 0.00 | 0.87 | 0.00 | 0.0 | Hours Hours Both Ends Upstream Dnstream Normal Flow Limited Conduit | LC01-LC02 | 2.73 | 2.73 | 2.83 | 0.01 | 0.01 | |---------------------|-------|-------|-------|------|------| | LC01-MH10 | 2.83 | 2.83 | 2.87 | 0.01 | 0.01 | | LC03-CBMH01 | 2.75 | 2.75 | 2.86 | 0.01 | 0.01 | | LC04-RY06 | 13.99 | 13.99 | 24.00 | 0.01 | 0.01 | | LC05-LC04 | 0.67 | 0.67 | 13.90 | 0.01 | 0.01 | | LC06-LC07 | 2.64 | 2.64 | 2.71 |
0.01 | 0.01 | | LC07-MH14 | 2.71 | 2.71 | 2.78 | 0.01 | 0.01 | | LC08-MH14 | 2.81 | 2.81 | 2.87 | 0.01 | 0.01 | | LC09-LC03 | 2.69 | 2.69 | 2.73 | 0.01 | 0.01 | | LC10-Lead | 2.69 | 2.69 | 2.69 | 0.01 | 0.01 | | LC11-Lead | 2.69 | 2.69 | 2.70 | 0.01 | 0.01 | | LC12-MH12 | 2.80 | 2.80 | 2.84 | 0.01 | 0.01 | | LC13-LC12 | 2.69 | 2.69 | 2.80 | 0.01 | 0.01 | | LC14-LC03 | 2.68 | 2.68 | 2.75 | 0.01 | 0.01 | | MH04-Ex1050 | 24.00 | 24.00 | | 0.01 | 0.01 | | MH06-MH04 | 24.00 | 24.00 | 24.00 | 0.01 | 0.01 | | MH08-MH06 | 24.00 | 24.00 | 24.00 | 0.01 | 0.01 | | MH10-CBMH01 | 24.00 | 24.00 | 24.00 | 0.01 | 0.31 | | MH12-MH10 | 24.00 | 24.00 | 24.00 | 0.01 | 0.01 | | MH14-MH12 | 24.00 | 24.00 | 24.00 | 0.01 | 0.01 | | RY02-RY05 | 24.00 | 24.00 | 24.00 | 0.01 | 0.01 | | RY04-RY01 | 24.00 | 24.00 | 24.00 | 0.01 | 0.01 | | RY05-RY04 | 24.00 | 24.00 | 24.00 | 0.01 | 0.01 | | RY06-RY02 | 24.00 | 24.00 | | 0.01 | 0.01 | | RY07-RY03 | 24.00 | 24.00 | 24.00 | 0.01 | 0.01 | | | | | | | | | | | | | | | | Analysis begun on: | | | | | | | Analysais anded on. | | | | | | 24.00 24.00 24.00 24.00 24.00 24.00 0.01 0.01 0.02 0.01 0.16 24.00 24.00 24.00 Analysis ended on: Thu Jun 27 14:50:04 2024 Total elapsed time: 00:00:03 CB01-Lead CB02-Lead CB03-Lead CB04-Lead CBMH01-MH08 ### **Overall Model Schematic** Date: 2024-06-27 M:\2019\119068\DATA\Calculations\Sewer Calcs\SWM\PCSWMM Model Schematic.docx ### Subcatchment ID's ### Node ID's Date: 2024-06-27 M:\2019\119068\DATA\Calculations\Sewer Calcs\SWM\PCSWMM Model Schematic.docx Servicing Design Brief 200 Baribeau Street **APPENDIX C: Drawings** 119068-GP 119068-GR 119068-STM 119068-ESC ### 200 BARIBEAU STREET, OTTAWA DEVELOPMENT SERVICING STUDY CHECKLIST | 4.1 General Content | Addressed
(Y/N/NA) | Comments | |---|-----------------------|--| | Executive Summary (for larger reports only). | N/A | | | Date and revision number of the report. | Υ | | | Location map and plan showing municipal address, | ., | Pufferd a Provide Fig. 11 | | boundary, and layout of proposed development. | Υ | Refer to Report Figures | | Plan showing the site and location of all existing services. | Υ | Refer to Grading and Servicing Plans | | Development statistics, land use, density, adherence to | | | | zoning and official plan, and reference to applicable | | | | subwatershed and watershed plans that provide context | Υ | Refer to Site Plan | | to which individual developments must adhere. | | | | Summary of Pre-consultation Meetings with City and | Υ | | | other approval agencies. | Y | | | Reference and confirm conformance to higher level | | | | studies and reports (Master Servicing Studies, | | | | Environmental Assessments, Community Design Plans), | V | | | or in the case where it is not in conformance, the | Υ | | | proponent must provide justification and develop a | | | | defendable design criteria. | | | | Statement of objectives and servicing criteria. | Υ | Refer to Sections: 5.0 Sanitary Sewers, 6.0 Stormwater | | Identification of existing and proposed infrastructure available in the immediate area. | Υ | Management, 7.0 Water | | Identification of Environmentally Significant Areas, | | | | watercourses and Municipal Drains potentially impacted | | | | by the proposed development (Reference can be made to | N/A | | | the Natural Heritage Studies, if available). | | | | Concept level master grading plan to confirm existing and | | | | proposed grades in the development. This is required to | | | | confirm the feasibility of proposed stormwater | | | | management and drainage, soil removal and fill | ļ ,, l | Refer to Grading Plan and Stormwater Management | | constraints, and potential impacts to neighboring | Υ | Plan | | properties. This is also required to confirm that the | | | | proposed grading will not impede existing major system | | | | flow paths. | | | | 4.1 General Content | Addressed
(Y/N/NA) | Comments | |---|-----------------------|------------------------------| | Identification of potential impacts of proposed piped | | | | services on private services (such as wells and septic | N/A | | | fields on adjacent lands) and mitigation required to | N/A | | | address potential impacts. | | | | Proposed phasing of the development, if applicable. | N/A | | | Reference to geotechnical studies and recommendations | γ | Refer to Section 3.0 Grading | | concerning servicing. | r | Refer to Section 5.0 Grading | | All preliminary and formal site plan submissions should | | | | have the following information: | | | | Metric scale | Υ | | | North arrow (including construction North) | Υ | | | Key plan | Υ | | | Name and contact information of applicant | Υ | | | and property owner | Y | | | Property limits including bearings and | Υ | | | dimensions | | | | Existing and proposed structures and parking | Υ | | | areas | | | | Easements, road widening and rights-of-way | Υ | | | Adjacent street names | Υ | | | 4.2 Water | Addressed
(Y/N/NA) | Comments | |---|-----------------------|---| | Confirm consistency with Master Servicing Study, if available. | Υ | | | Availability of public infrastructure to service proposed development. | Υ | Refer to Sections: 5.0 Sanitary Sewers, 6.0 Stormwater Management, 7.0 Water | | Identification of system constraints. | N/A | ivianagement, 7.0 water | | Identify boundary conditions. | Υ | Provided by City of Ottawa | | Confirmation of adequate domestic supply and pressure. | Υ | Refer to Appendix A | | Confirmation of adequate fire flow protection and confirmation that fire flow is calculated as per the Fire Underwriter's Survey. Output should show available fire flow at locations throughout the development. | Y | Refer to Appendix A | | Provide a check of high pressures. If pressure is found to be high, an assessment is required to confirm the application of pressure reducing valves. | Υ | Refer to Appendix A | | Definition of phasing constraints. Hydraulic modeling is required to confirm servicing for all defined phases of the project including the ultimate design. | N/A | | | Address reliability requirements such as appropriate location of shut-off valves. | Υ | | | Check on the necessity of a pressure zone boundary modification. | N/A | | | Reference to water supply analysis to show that major infrastructure is capable of delivering sufficient water for the proposed land use. This includes data that shows that the expected demands under average day, peak hour and fire flow conditions provide water within the required pressure range. | Y | Refer to Section 7.0 Water | | Description of the proposed water distribution network, including locations of proposed connections to the existing system, provisions for necessary looping, and appurtenances (valves, pressure reducing valves, valve chambers, and fire hydrants) including special metering provisions. | Y | Refer to Section 7.0 Water | | Description of off-site required feedermains, booster pumping stations, and other water infrastructure that will be ultimately required to service proposed development, including financing, interim facilities, and timing of implementation. | N/A | | | Confirmation that water demands are calculated based on the City of Ottawa Design Guidelines. | Υ | Refer to Section 7.0 Water | | Provision of a model schematic showing the boundary conditions locations, streets, parcels, and building locations for reference. | N/A | | | | Addressed | | |--|-----------|--------------------------------------| | 4.3 Wastewater | (Y/N/NA) | Comments | | Summary of proposed design criteria (Note: Wet-weather flow criteria should not deviate from the City of Ottawa Sewer Design Guidelines. Monitored flow data from relatively new infrastructure cannot be used to justify capacity requirements for proposed infrastructure). | Y | Refer to Section 5.0 Sanitary Sewers | | Confirm consistency with Master Servicing Study and/or justifications for deviations. | N/A | | | Consideration of local conditions that may contribute to extraneous flows that are higher than the recommended flows in the guidelines. This includes groundwater and soil conditions, and age and condition of sewers. | N/A | | | Description of existing sanitary sewer available for discharge of wastewater from proposed development. | Υ | Refer to Section 5.0 Sanitary Sewers | | Verify available capacity in downstream sanitary sewer and/or identification of upgrades necessary to service the proposed development. (Reference can be made to previously completed Master Servicing Study if applicable) | У | Refer to Appendix A | | Calculations related to dry-weather and wet-weather flow rates from the development in standard MOE sanitary sewer design table (Appendix 'C') format. | N/A | | | Description of proposed sewer network including sewers, pumping stations, and forcemains. | Υ | Refer to Section 5.0 Sanitary Sewers | | Discussion of previously identified environmental constraints and impact on servicing (environmental constraints are related to limitations imposed on the development in order to preserve the physical condition of watercourses, vegetation, soil cover, as well as
protecting against water quantity and quality). | N/A | | | Pumping stations: impacts of proposed development on existing pumping stations or requirements for new pumping station to service development. | N/A | | | Forcemain capacity in terms of operational redundancy, surge pressure and maximum flow velocity. | N/A | | | Identification and implementation of the emergency overflow from sanitary pumping stations in relation to the hydraulic grade line to protect against basement flooding. | N/A | | | Special considerations such as contamination, corrosive environment etc. | N/A | | | 4.4 Stormwater | Addressed
(Y/N/NA) | Comments | |--|-----------------------|--| | Description of drainage outlets and downstream | | | | constraints including legality of outlet (i.e. municipal | Υ | Refer to Section 6.0 Stormwater Management | | drain, right-of-way, watercourse, or private property). | | | | Analysis of the available capacity in existing public | V | Defende Annendin A | | infrastructure. | Y | Refer to Appendix A | | A drawing showing the subject lands, its surroundings, | | | | the receiving watercourse, existing drainage patterns and | Υ | Refer to Storm Drainage Area Plan (119068-STM) | | proposed drainage patterns. | | - | | Water quantity control objective (e.g. controlling post- | | | | development peak flows to pre-development level for | | | | storm events ranging from the 2 or 5 year event | | | | (dependent on the receiving sewer design) to 100 year | | | | return period); if other objectives are being applied, a | Υ | Refer to Section 6.0 Stormwater Management | | rationale must be included with reference to hydrologic | | | | analyses of the potentially affected subwatersheds, | | | | taking into account long-term cumulative effects. | | | | Water Quality control objective (basic, normal or | | | | enhanced level of protection based on the sensitivities of | | | | the receiving watercourse) and storage requirements. | Υ | Refer to Section 6.0 Stormwater Management | | the reserving water course, and storage requirements. | | | | Description of stormwater management concept with | | | | facility locations and descriptions with references and | Y | Refer to Section 6.0 Stormwater Management | | supporting information. | | · · | | Set-back from private sewage disposal systems. | N/A | | | Watercourse and hazard lands setbacks. | N/A | | | Record of pre-consultation with the Ontario Ministry of | | | | Environment and the Conservation Authority that has | N/A | | | jurisdiction on the affected watershed. | | | | Confirm consistency with sub-watershed and Master | 21/2 | | | Servicing Study, if applicable study exists. | N/A | | | Storage requirements (complete with calcs) and | ., | | | conveyance capacity for 5 yr and 100 yr events. | Υ | Refer to Appendix B | | Identification of watercourse within the proposed | | | | development and how watercourses will be protected, | | | | or, if necessary, altered by the proposed development | N/A | | | with applicable approvals. | | | | Calculate pre and post development peak flow rates | | | | including a description of existing site conditions and | | | | proposed impervious areas and drainage catchments in | Υ | Refer to Appendix B | | comparison to existing conditions. | | The state of s | | <u>-</u> | | | | Any proposed diversion of drainage catchment areas | N1 / A | | | from one outlet to another. | N/A | | | Proposed minor and major systems including locations | N1 / A | | | and sizes of stormwater trunk sewers, and SWM facilities. | N/A | | | If quantity control is not proposed, demonstration that | | | | downstream system has adequate capacity for the post- | A1 / A | | | development flows up to and including the 100-year | N/A | | | return period storm event. | | | | 4.4 Stormwater | Addressed
(Y/N/NA) | Comments | |---|-----------------------|---| | Identification of potential impacts to receiving watercourses. | N/A | | | Identification of municipal drains and related approval requirements. | N/A | | | Description of how the conveyance and storage capacity will be achieved for the development. | Υ | Refer to Section 6.0 Stormwater Management | | 100 year flood levels and major flow routing to protect proposed development from flooding for establishing minimum building elevations (MBE) and overall grading. | Y | Refer to Grading Plan and
Storm Drainage Area Plan | | Inclusion of hydraulic analysis including HGL elevations. | N/A | | | Description of approach to erosion and sediment control during construction for the protection of receiving watercourse or drainage corridors. | Υ | Refer to Section 4.0 Erosion Sediment Control | | Identification of floodplains – proponent to obtain relevant floodplain information from the appropriate Conservation Authority. The proponent may be required to delineate floodplain elevations to the satisfaction of the Conservation Authority if such information is not available or if information does not match current conditions. | N/A | | | Identification of fill constrains related to floodplain and geotechnical investigation. | N/A | | | 4.5 Approval and Permit Requirements | Addressed
(Y/N/NA) | Comments | |--|-----------------------|----------| | Conservation Authority as the designated approval agency for modification of floodplain, potential impact on fish habitat, proposed works in or adjacent to a watercourse, cut/fill permits and Approval under Lakes and Rivers Improvement Act. The Conservation Authority is not the approval authority for the Lakes and Rivers Improvement Act. Where there are Conservation Authority regulations in place, approval under the Lakes and Rivers Improvement Act is not required, except in cases of dams as defined in the Act. | N/A | | | Application for Certificate of Approval (CofA) under the Ontario Water Resources Act. | N/A | | | Changes to Municipal Drains. | N/A | | | Other permits (National Capital Commission, Parks
Canada, Public Works and Government Services Canada,
Ministry of Transportation etc.) | N/A | | | 4.6 Conclusion | Addressed
(Y/N/NA) | Comments | |---|-----------------------|--| | Clearly stated conclusions and recommendations. | Υ | Refer to Section 8.0 Conclusions and Recommendations | | Comments received from review agencies including the City of Ottawa and information on how the comments were addressed. Final sign-off from the responsible reviewing agency. | Y | | | All draft and final reports shall be signed and stamped by a professional Engineer registered in Ontario. | Y | | ## MEMORANDUM DATE: MAY 4, 2020 PROJECT: 119068 TO: ERIC TOUSIGNANT, HIRAN SANDANAYAKE FROM: MARK BISSETT, LUCAS WILSON, CONRAD STANG RE: 200 BARIBEAU STREET – SWM MODELLING CC: KEVIN MCMAHON, PIERRE
BOULET, JOHN RIDDELL Novatech has updated our drainage model to quantify major overland flow routed through the planned development at 200 Baribeau Street. Before we finalize the Concept Plan and expend significant design effort, we request a staff review of the model so we might find consensus on the overland flow accommodation. The magnitude of conveyance informs how we design the site. Using City 1:1000 topographic mapping we have delineated the drainage boundaries (shown on Figures DSK-2A and 2B) with excellent correlation to the DRAPE 2014 Lidar mapping. There are two overland flow parcels that need consideration and are described below: #### Area 1: East of Baribeau Street There is a large 616ha drainage catchment to the east. Our analysis shows the majority of this parcel is located in a bowl and does not produce overland flow towards 200 Baribeau under any reasonable design storm (we assessed up to the 100-year+20% rainfall event). As such, the effective drainage area contributing overland flow from the east is 29.0ha. Using the City-suggested criteria a minor system capture rate of 85L/s/ha and surface storage of $100m^3/ha$ we calculate overland flow of Q_{100} =1,650L/s at Baribeau Street. Interestingly, only minor adjustments to either parameter lower the overland flow at Baribeau Street to Q_{100} =0L/s. We tested model sensitivity by adjusting the inlet capture rate to 100L/s/ha and the surface storage to $125m^3/ha$. In our opinion, these values are more representative of actual conditions as we understand there is no ICD control, and the topographic modelling supports the increased surface storage. In all likelihood, we think there will be no overland flow from this upstream area during a 100-year rainfall event due to the probable inlet capture rate and available surface storage. Regardless, we see value in an emergency overland flow route as protection against extreme weather events and/or inlet capture obstruction. #### Area 2: Northwest of Landry Street There is a 6.6ha drainage catchment northwest of the development site with overland flow routed to a parkette on Landry Street (part of a recent development by Claridge Homes). Using a minor system capture rate of 85L/s/ha and surface storage of $100m^3$ /ha we calculate overland flow of Q_{100} =190L/s. Civil design plans indicate the major system flow from Landry Street is routed through the parkette and residential rear yards toward Kipp Street. Novatech will obtain the as-built design plans and servicing report to confirm the intended conveyance along this corridor. Similar to Area 1, the modelled overland flow drops to Q_{100} =0L/s if either of the SWM parameters are modified to reflect the anticipated real-world conditions (i.e. inlet capture of 100L/s/ha, or surface storage of $125m^3$ /ha). Our conclusion is that Area 2 will not likely experience overland flow from the upstream drainage area during a 100-year design storm. Regardless, a prudent design will provide an emergency overland flow route as protection against extreme events. #### **Next Steps** In closing, we respectfully ask staff to review our SWM model so we might find a mutually acceptable overland conveyance rate through the development for both Area 1 and Area 2. This value is required to finalize the development concept, design the flow route, and make our submission to the City and RVCA. Hoping the above is agreeable. Please call with any question or concerns. Respectfully submitted. #### **Lucas Wilson** **From:** Tousignant, Eric <Eric.Tousignant@ottawa.ca> **Sent:** Tuesday, June 2, 2020 1:47 PM To: Mark Bissett **Cc:** Sandanayake, Hiran; Lucas Wilson; Conrad Stang **Subject:** RE: 200 Baribeau - Community Model #### Hi Mark Given that this is an emergency route and not part of the 100 year design, and not even part of the 20% stress test, I would not be concerned about including it in your final report if you fear it could be an issue. This was more as a check on our part to make sure that should any flow spill onto the property that it could be conveyed to the channel at the rear. This was important because the only way flow will get to the channel is through the property as it cannot spill around it. You have shown that the property can convey 900 L/s should there be some kind of major system spill (i.e. blockage or even less than anticipated storage in the upstream sewershed). It is not our intent to designate this property as an overland flow route, but it is good to know that should it be required, flow can safely make it to the channel. In short, I am fine with the approach you have taken. Eric ## Eric Tousignant, P.Eng. Senior Water Resources Engineer Infrastructure Services 613-580-2424 ext 25129 From: Mark Bissett <m.bissett@novatech-eng.com> **Sent:** May 29, 2020 2:28 PM To: Tousignant, Eric < Eric. Tousignant@ottawa.ca> Cc: Sandanayake, Hiran <Hiran.Sandanayake@ottawa.ca>; Lucas Wilson <l.wilson@novatech-eng.com>; Conrad Stang <c.stang@novatech-eng.com> Subject: 200 Baribeau - Community Model CAUTION: This email originated from an External Sender. Please do not click links or open attachments unless you recognize the source. ATTENTION : Ce courriel provient d'un expéditeur externe. Ne cliquez sur aucun lien et n'ouvrez pas de pièce jointe, excepté si vous connaissez l'expéditeur. **Eric**- I think we've developed a reasonable solution, but want to bounce this off your team one last time. Here's our approach: 1) **Existing Conditions**: overland flow from Baribeau Street is routed through the existing school site. We suspect this does not occur during any design storm up to the 100-year+20% event (based on previous modelling), but agree allowance should be made for safety. The spill point is an access road at elevation 56.00m between the school and garage at 143 Carillon Street. Using the broad-crested weir equation, we calculated flow for various water levels (see PDF-Existing). The trick of course is choosing an appropriate max. spill elevation. We think 56.15m is a reasonable peak water level, as higher elevations suggest extensive community flooding...to our knowledge this is not occurring. At 56.15m there is an emergency overland flow of Q=908L/s through the existing school block and pathway to Kipp Street (same discharge point as the 100 Landry development). 2) **Proposed Conditions**: provide an equivalent emergency overland flow (Q>908L/s) through the proposed development with a maximum water level of 56.15m on Baribeau. It appears this can be achieved...we would prepare a detailed model as part of the submission, but for now using a broad-crested weir at the Baribeau spill point and Manning's open channel through the rear yards suggest about 1,000L/s can be conveyed (see PDF-Proposed). Hoping your team can advise if you generally agree with this approach. My risk here is that we complete a detail design, submit to RVCA for a Fill Permit (has to go to Executive Committee), and then it all blows up because of the off-site overland flow conveyance. Totally respect that your not giving approval...just guidance. Thanking you in advance, have a great weekend, and my apologies for the long email. Best, Mark Bissett, P.Eng., Senior Project Manager | Land Development & Municipal **NOVATECH** Engineers, Planners & Landscape Architects 240 Michael Cowpland Drive, Suite 200, Ottawa, ON, K2M 1P6 | Tel: 613.254.9643 Ext: 237 | Cell: 613.261.4792 The information contained in this email message is confidential and is for exclusive use of the addressee. From: Tousignant, Eric < Eric.Tousignant@ottawa.ca> **Sent:** Tuesday, May 5, 2020 10:59 AM To: Mark Bissett < m.bissett@novatech-eng.com > $\textbf{Cc:} \ Sandanayake, \ Hiran < \underline{Hiran.Sandanayake@ottawa.ca} >; \ Conrad \ Stang < \underline{c.stang@novatech-eng.com} >; \ Lucas \ Wilson < \underline{Conrad Stang} >; \ Conrad \ Stang < \underline{C.stang@novatech-eng.com} >; \ Lucas \ Wilson V.stang@novatech-eng.com \$ <<u>l.wilson@novatech-eng.com</u>>; Pierre Boulet (Boulet) <<u>pierreb@bouletconstruction.com</u>>; Kevin McMahon <kevin@ulra.ca>; John Riddell <J.Riddell@novatech-eng.com> Subject: RE: 200 Baribeau - Community Model ### Hi Mark Your analysis appears to be reasonable and in line with previous assessments done in this area. What I would require though, is for you to show that should there be excess external major system flow (i.e due to CB blockages for example), that this flow could be routed through the property to the ditch that was create for the 100 Landry street Development (i.e. emergency overflow route). **Eric** ### Eric Tousignant, P.Eng. Senior Water Resources Engineer Infrastructure Services 613-580-2424 ext 25129 From: Mark Bissett < m.bissett@novatech-eng.com > Sent: May 04, 2020 12:52 PM To: Tousignant, Eric < Eric.Tousignant@ottawa.ca> **Cc:** Sandanayake, Hiran < Hiran.Sandanayake@ottawa.ca; Conrad Stang < c.stang@novatech-eng.com; Lucas Wilson | Spierreb@bouletconstruction.com | Kevin McMahon <kevin@ulra.ca>; John Riddell < J.Riddell@novatech-eng.com> Subject: 200 Baribeau - Community Model CAUTION: This email originated from an External Sender. Please do not click links or open attachments unless you recognize the source. ATTENTION : Ce courriel provient d'un expéditeur externe. Ne cliquez sur aucun lien et n'ouvrez pas de pièce jointe, excepté si vous connaissez l'expéditeur. Eric- kindly refer to the attached memo and SWM model for the 200 Baribeau development site. We're hoping to establish consensus on a reasonable overland conveyance from two upstream parcels that are routed through this site. We appreciate staff input and assistance with this matter. Sincerely, Mark Bissett, P.Eng., Senior Project Manager | Land Development & Municipal **NOVATECH** Engineers,
Planners & Landscape Architects 240 Michael Cowpland Drive, Suite 200, Ottawa, ON, K2M 1P6 | Tel: 613.254.9643 Ext: 237 | Cell: 613.261.4792 The information contained in this email message is confidential and is for exclusive use of the addressee. **From:** Tousignant, Eric < Eric.Tousignant@ottawa.ca> **Sent:** Monday, April 6, 2020 10:48 AM To: Mark Bissett < m.bissett@novatech-eng.com > Subject: FW: 200 Baribeau - Community Model #### Hi Mark Below is a rough idea of the entire overland drainage system that goes through the Property. As you can see, it is very large. Back in 2006-2007, I did a high level estimate of the flow reaching the property just to the west (100 Landry). I have attached some old emails about this. The 100 year estimate was quite high but IBI created a ditch on the property to take the upstream flow. I'm sure that if a more detailed model was created that we would have a lower peak flow, but that would be a huge undertaking at this time. Now if you only want to account for the 2.2 ha area area, I would do a lumped rational method computation for the 100 year and subtract the 2 year. This should give you a good idea of the overland flow from the 2.2 ha area. ### Eric ### Eric Tousignant, P.Eng. Senior Water Resources Engineer Infrastructure Services 613-580-2424 ext 25129 From: Cooke, Ryan < ryan.cooke@ottawa.ca> **Sent:** April 03, 2020 5:48 PM **To:** Tousignant, Eric < Eric.Tousignant@ottawa.ca> **Cc:** Sandanayake, Hiran < <u>Hiran.Sandanayake@ottawa.ca</u>> Subject: RE: 200 Baribeau - Community Model Hi Eric, Our DEM/streams show that the upstream area is very large, as shown below ('major' upstream drainage area shown, drainage area to low point would be larger). Although not all this drainage area would make its way to the site, the stream lines are also not accurate in this location because it's in a low point. Unfortunately we don't have a major system model that can provide hydrographs. Maybe we can discuss further next week? Thanks, Ryan From: Tousignant, Eric < Eric.Tousignant@ottawa.ca> **Sent:** April 02, 2020 1:27 PM To: Sandanayake, Hiran <Hiran.Sandanayake@ottawa.ca>; Cooke, Ryan <ryan.cooke@ottawa.ca> Subject: FW: 200 Baribeau - Community Model #### Gentlemen Mark Bisette at Novatech is looking at a redevelopment project at 200 Baribeau in Vanier. The attached figure shows a drainage area of approximately 2.2 ha that goes through the site, but I wonder if this was not determined with a high Level DEM. What does our more detailed DEM show? Does it go through the site or does it follow Baribeau Street. If it does go thought the site, do we have major system flow/hydrograph and this location from the Major system model? ### Thanks Eric From: Mark Bissett < m.bissett@novatech-eng.com> **Sent:** March 30, 2020 10:39 AM To: Tousignant, Eric < Eric. Tousignant@ottawa.ca> **Cc:** Conrad Stang < <u>c.stang@novatech-eng.com</u>> **Subject:** 200 Baribeau - Community Model CAUTION: This email originated from an External Sender. Please do not click links or open attachments unless you recognize the source. ATTENTION : Ce courriel provient d'un expéditeur externe. Ne cliquez sur aucun lien et n'ouvrez pas de pièce jointe, excepté si vous connaissez l'expéditeur. **Eric-** I'm working on a preliminary design for a site at 200 Baribeau Street in Vanier. The site is currently a private school, which the developer intends to convert to residential units. As part of our preliminary design, it appears that <u>external</u> major system roadway flow is routed through the private site from both the north (10ha parcel near Landry Street & St. Ambroise Avenue) and from the east (25ha parcel near Baribeau Street & Ethel Street). The drainage areas are depicted on the attached Figure DSK-2, generated using the DRAPE 2014 elevation model. Does the City have modelling information that can be shared to help quantify overland flow conveyed via each upstream parcel? We'd need the catchbasin info and ICD controls (if any), and roadway depression storage. Not sure if this is available...we'd really appreciate any modelling staff might be able to share, or guidance on your experience in this community. Hope you are keeping well. Stay safe, all the best. Mark Bissett, P.Eng., Senior Project Manager | Land Development & Municipal NOVATECH Engineers, Planners & Landscape Architects 240 Michael Cowpland Drive, Suite 200, Ottawa, ON, K2M 1P6 | Tel: 613.254.9643 Ext: 237 | Cell: 613.261.4792 The information contained in this email message is confidential and is for exclusive use of the addressee. This e-mail originates from the City of Ottawa e-mail system. Any distribution, use or copying of this e-mail or the information it contains by other than the intended recipient(s) is unauthorized. Thank you. Le présent courriel a été expédié par le système de courriels de la Ville d'Ottawa. Toute distribution, utilisation ou reproduction du courriel ou des renseignements qui s'y trouvent par une personne autre que son destinataire prévu est interdite. Je vous remercie de votre collaboration. This e-mail originates from the City of Ottawa e-mail system. Any distribution, use or copying of this e-mail or the information it contains by other than the intended recipient(s) is unauthorized. Thank you. Le présent courriel a été expédié par le système de courriels de la Ville d'Ottawa. Toute distribution, utilisation ou reproduction du courriel ou des renseignements qui s'y trouvent par une personne autre que son destinataire prévu est interdite. Je vous remercie de votre collaboration. This e-mail originates from the City of Ottawa e-mail system. Any distribution, use or copying of this e-mail or the information it contains by other than the intended recipient(s) is unauthorized. Thank you. Le présent courriel a été expédié par le système de courriels de la Ville d'Ottawa. Toute distribution, utilisation ou reproduction du courriel ou des renseignements qui s'y trouvent par une personne autre que son destinataire prévu est interdite. Je vous remercie de votre collaboration.