Geotechnical Engineering

Environmental Engineering

Hydrogeology

Geological Engineering

Materials Testing

Building Science

Archaeological Services

patersongroup

Geotechnical Investigation

Proposed Sort Facility Upper Canada Street at Palladium Drive Ottawa, Ontario

Prepared For

Purolator Inc.

Paterson Group Inc.

Consulting Engineers 154 Colonnade Road South Ottawa (Nepean), Ontario Canada K2E 7J5

Tel: (613) 226-7381 Fax: (613) 226-6344 www.patersongroup.ca

January 31, 2020

Report: PG4783-1 Revision 1

Table of Contents

1.0	Intro	Paç oduction	je
2.0	Prop	posed Development	. 1
3.0	Meti	hod of Investigation	2
	3.1	Field Survey	3
	3.3	Laboratory Testing.	. 3
	3.4	Analytical Testing	3
4.0	Obs	ervations	
	4.1	Surface Conditions	. 4
	4.2	Subsurface Profile	4
	4.3	Groundwater	6
5.0	Disc	cussion	
	5.1	Geotechnical Assessment	. 7
	5.2	Site Grading and Preparation	. 7
	5.3	Foundation Design	9
	5.4	Design for Earthquakes	10
	5.5	Slab on Grade Construction	11
	5.6		12
	5.7	Percolation Rates	13
6.0	Des	ign and Construction Precautions	
	6.1	Foundation Drainage and Backfill	14
	6.2	Protection of Footings and Slabs Against Frost Action	14
	6.3		14
	6.4 C E		15
	6.5	Groundwater Control	
	0.0 6.7	Corregion Retential and Sulphoto	17
	6.8	Tree Planting Restrictions	17
7.0	Rec	ommendations	19
8.0	Stat	ement of Limitations	20

Appendices

- Appendix 1Soil Profile and Test Data Sheets
Symbols and Terms
Soil Profile and Test Data Sheet by others
Grain Size Distribution Analysis Results
Analytical Testing Results
- Appendix 2Figure 1 Key PlanFigures 2 & 3 Seismic Shear Wave Velocity ProfilesDrawing PG4783-1 Test Hole Location Plan

1.0 Introduction

Paterson Group (Paterson) was commissioned by Purolator Inc. to conduct a geotechnical investigation for the proposed sort facility to be located at Blocks 26, 27, and 30 of the Kanata West Business Park. The subject site is located northwest of the intersection of Upper Canada Street and Palladium Drive in the City of Ottawa, Ontario (refer to Figure 1 - Key Plan in Appendix 2 of this report).

The objectives of the geotechnical investigation were to:

- determine the subsoil and groundwater conditions at this site by means of boreholes.
- □ provide geotechnical recommendations for the design of the proposed development including construction considerations which may affect its design.

The following report has been prepared specifically and solely for the aforementioned project which is described herein. It contains our findings and includes geotechnical recommendations pertaining to the design and construction of the subject development as they are understood at the time of writing this report.

2.0 Proposed Development

Based on the available drawings, it is our understanding that the proposed sort facility will consist of a single-storey, slab-on-grade structure located within the central portion of the site with an approximate footprint of 5,600 m². Asphalt-paved access lanes and parking areas with landscaped margins are also proposed surrounding the structure.

3.0 Method of Investigation

3.1 Field Investigation

The field program for the geotechnical investigation was carried out on January 3 and 4, 2019. At that time, a total of 9 boreholes were advanced to a maximum depth of 6 m below the existing ground surface. The boreholes were distributed in a manner to provide general coverage of the proposed development taking into consideration existing site features and underground utilities. A previous geotechnical investigation also included 4 boreholes (BH 4, BH 5, BH 14, and BH 15) completed at, or in the vicinity of, the subject site. The locations of the test holes are shown on Drawing PG4783-1 - Test Hole Location Plan included in Appendix 2.

The boreholes were advanced using a track-mounted auger drill rig operated by a two person crew. All fieldwork was conducted under the full-time supervision of Paterson personnel under the direction of a senior engineer. The test hole procedures consisted of augering to the required depths at the selected locations and sampling the overburden.

A field investigation program was also completed at the subject site by others on October 29, 2018, consisting of a total of 5 boreholes advanced to a maximum depth of 6.9 m below the existing ground surface. The borehole logs prepared by others are provided in Appendix 1.

Sampling and In Situ Testing

Soil samples were recovered using a 50 mm diameter split-spoon sampler or from the auger flights. The split-spoon and auger samples were classified on site and placed in sealed plastic bags. All samples were transported to our laboratory. The depths at which the split-spoon and auger samples were recovered from the boreholes are shown as SS and AU, respectively, on the Soil Profile and Test Data sheets in Appendix 1.

The Standard Penetration Test (SPT) was conducted in conjunction with the recovery of the split-spoon samples. The SPT results are recorded as "N" values on the Soil Profile and Test Data sheets. The "N" value is the number of blows required to drive the split-spoon sampler 300 mm into the soil after a 150 mm initial penetration using a 63.5 kg hammer falling from a height of 760 mm.

Undrained shear strength testing, using a vane apparatus, was carried out at regular intervals of depth in cohesive soils.

The subsurface conditions observed in the test holes were recorded in detail in the field. The soil profiles are logged on the Soil Profile and Test Data sheets in Appendix 1 of this report.

Groundwater

Flexible piezometers were installed in the boreholes to permit monitoring of the groundwater levels subsequent to the completion of the sampling program.

Sample Storage

All samples will be stored in the laboratory for a period of one month after issuance of this report. They will then be discarded unless we are otherwise directed.

3.2 Field Survey

The test hole locations were selected by Paterson to provide general coverage of the proposed development taking into consideration the existing site features and underground utilities. The test hole locations and ground surface elevation at each test hole location were surveyed by Paterson. The ground surface elevations at the borehole locations were referenced to a temporary benchmark (TBM), consisting of the top spindle of a fire hydrant located at the north end of Palladium Drive with a geodetic elevation of 105.51 m, based on topographic interpolation of available plans. The location of the test holes and ground surface elevation at each test hole location are presented on Drawing PG4783-1 - Test Hole Location Plan in Appendix 2.

3.3 Laboratory Testing

Soil samples were recovered from the boreholes and visually examined in our laboratory to review the field logs.

3.4 Analytical Testing

One (1) soil sample was submitted for analytical testing to assess the corrosion potential for exposed ferrous metals and the potential of sulphate attacks against subsurface concrete structures. The sample was submitted to determine the concentration of sulphate and chloride, the resistivity and the pH of the sample. The results are presented in Appendix 1 and are discussed further in Subsection 6.7.

4.0 Observations

4.1 Surface Conditions

The subject site consists of a former agricultural field which is bordered by Palladium Drive to the east, Upper Canada Street to the south, a vacant property to the west, and an agricultural property to the north. The site is undeveloped with fill piles, up to 3 m high, located across the site.

4.2 Subsurface Profile

Overburden

Generally, the subsurface profile encountered at the test hole locations consists of an approximate 0.2 to 0.3 m thick topsoil layer underlain by a deposit of silty clay to clayey silt. However, at boreholes BH 2-19 and BH 3-19, which were completed on the existing fill piles and are above the surrounding grade, an approximate 4.4 and 1.8 m thickness of fill was encountered, respectively. The fill was generally observed to consist of a brown silt with some sand and trace roots.

The silty clay to clayey silt deposit encountered underlying the fill and/or topsoil was noted to be of a very stiff to firm consistency and was observed to extend to approximate depths of 1.5 to 4.6 m below the existing ground surface.

Underlying the silty clay to clayey silt, a layer of loose to compact, brown to grey sandy silt to silt with occasional sand and gravel was encountered, which extended to the bedrock surface.

Practical refusal to augering was encountered within the borehole locations at approximate depths of 5.3 to 6.9 m below existing ground surface.

Reference should be made to the Soil Profile and Test Data sheets in Appendix 1 for specific details of the soil profiles encountered at each test hole location.

Bedrock

Based on available geological mapping, bedrock in the area of the subject site consists of interbedded limestone and shale of the Verulam Formation with overburden drift thickness between 5 to 10 m depth.

Laboratory Testing

Grain size distribution (sieve and hydrometer analysis) was completed on five (5) selected soil samples. The results of the grain size analysis are summarized in Table 1 and presented on the Grain Size Distribution Results sheets in Appendix 1.

Table 1 - Summary of Grain Size Distribution Analysis												
Test Hole Sample Gravel (%) Sand (%) Silt (%) Clay (%)												
BH 1	5'-7'	0.4	6.7	40.6	52.1							
BH 3	10'-12'	0.4	23.8	68.8	7							
BH 4	5'-7'	0.5	2.5	90	7							
BH 6-19	2'6"-8'6"	0	6.7	43.8	49.5							
BH 7-19	0'-2'	0	8	42	50							

4.3 Groundwater

Groundwater levels were measured in the boreholes on January 8, 2019. The measured groundwater level (GWL) readings are presented in Table 1 below and on the Soil Profile and Test Data sheets in Appendix 1. It is important to note that groundwater readings at the piezometers can be influenced by water perched within the borehole backfill material. The long-term groundwater level can also be estimated based on the observed colour and consistency of the recovered soil samples. Therefore, it is estimated that the long-term groundwater table can be expected between 2 to 3 m depth. It should be noted that groundwater levels are subject to seasonal fluctuations. Therefore, the groundwater level could vary at the time of construction.

Table 2 - Measured Groundwater Levels									
Test Hole	Ground	Ground	water Level	Dete					
Location	Elevation (m)	Depth (m)	Elevation (m)						
BH 1-19	104.80	1.74	103.06	January 8, 2019					
BH 2-19	107.10	1.61	105.49	January 8, 2019					
BH 3-19	105.56	1.91	103.65	January 8, 2019					
BH 4-19	104.49	1.08	103.41	January 8, 2019					
BH 5-19	104.72	0.95	103.77	January 8, 2019					
BH 6-19	104.54	1.12	103.42	January 8, 2019					
BH 7-19	103.49	0.61	102.88	January 8, 2019					
BH 8-19	103.64	1.00	102.64	January 8, 2019					
BH 9-19	103.59	1.26	102.33	January 8, 2019					
Note: - The gr top spindle of	ound surface elevations the fire hydrant located (are referenced to a at the north end of P	temporary benchmark (alladium Drive with a ge	TBM), consisting of the codetic elevation of					

105.51 m, based on topographic interpolation of available plans.

5.0 Discussion

5.1 Geotechnical Assessment

From a geotechnical perspective, the subject site is suitable for the proposed building. It is recommended that the proposed building be constructed with conventional shallow foundations bearing on an undisturbed, stiff silty clay to clayey silt bearing surface.

Where topsoil or fill is encountered at the underside of footing, it should be subexcavated to the surface of the undisturbed, stiff silty clay to clayey silt surface and replaced with engineered fill or lean concrete to the proposed founding elevation. The lateral limits of the engineered fill or lean concrete placement should be in accordance with our lateral support recommendations provided herein.

Due to the presence of a silty clay to clayey silt deposit, permissible grade raise restrictions are recommended for this site. The existing fill piles noted across the site should be further assessed to determine if the fill material is suitable for reuse as part of the proposed development.

The above and other considerations are further discussed in the following sections.

5.2 Site Grading and Preparation

Stripping Depth

Topsoil and fill, such as those containing organic or deleterious materials, should be stripped from under any buildings and other settlement sensitive structures. It is anticipated that the existing fill within the proposed building footprint, free of deleterious material and significant amounts of organics, can be left in place below the proposed building footprint outside of lateral support zones for the footings provided the following program is successfully completed. It is recommended that the existing fill layer be proof-rolled several times and approved by Paterson personnel at the time of construction. Any poor performing areas noted during the proof-rolling operation should be removed and replaced with an approved engineered fill.

Fill Placement

Fill used for grading beneath the proposed building footprint, unless otherwise specified, should consist of clean imported granular fill, such as Ontario Provincial Standard Specifications, (OPSS) Granular A or Granular B Type II. The fill should be tested and approved prior to delivery to the site. It should be placed in lifts no greater than 300 mm thick and compacted using suitable compaction equipment for the lift thickness. Fill placed beneath the building area should be compacted to at least 98% of its standard Proctor maximum dry density (SPMDD).

Site excavated soil can be used as general landscaping fill where the settlement of the ground surface is of minor concern. These materials should be spread in thin lifts and at least compacted by the tracks of the spreading equipment to minimize voids. If these materials are to be used to build up the subgrade level for the areas to be paved, they should be compacted in thin lifts to minimum density of 95% of their respective SPMDD. Site excavated soils are not suitable for use as backfill against foundation walls due to the frost heave potential of the site excavated soils below settlement sensitive areas, such as concrete sidewalks and exterior concrete entrance areas.

Fill used for grading beneath the base and subbase layers of paved areas should consist, unless otherwise specified, of clean imported granular fill, such as OPSS Granular A, Granular B Type II or select subgrade material. This material should be test and approved prior to delivery to the site. The fill should be placed in lifts no greater than 300 mm thick and compacted using suitable compaction equipment for the lift thickness. Fill placed beneath the paved areas should be compacted to at least 95% of its SPMDD.

Lean Concrete Filled Trenches

As an alternative to placing engineered fill, where required, consideration should be given to excavating vertical trenches to the undisturbed, stiff silty clay to clayey silt surface, and backfilling with lean concrete to the founding elevation (minimum **17 MPa** 28-day compressive strength). Typically, the excavation side walls will be used as the form to support the concrete. The trench excavation should be at least 150 mm wider than all sides of the footing (strip and pad footings) at the base of the excavation. The additional width of the concrete poured against an undisturbed trench sidewall will suffice in providing a direct transfer of the footing load to the underlying stiff silty clay to clayey silt. Once the trench excavation is approved by the geotechnical engineer, lean concrete can be poured up to the proposed founding elevation.

5.3 Foundation Design

Bearing Resistance Values

Strip footings, up to 3 m wide, and pad footings, up to 5 m wide, placed on an undisturbed, stiff silty clay to clayey silt bearing surface, or on engineered fill or lean concrete placed directly over the undisturbed, stiff silty clay to clayey silt, can be designed using a bearing resistance value at serviceability limit states (SLS) of **150 kPa** and a factored bearing resistance value at ultimate limit states (ULS) of **225 kPa**.

A geotechnical resistance factor of 0.5 was applied to the reported bearing resistance value at ULS.

An undisturbed soil bearing surface consists of a surface from which all topsoil and deleterious materials, such as loose, frozen or disturbed soil, whether in situ or not, have been removed, in the dry, prior to the placement of concrete for footings.

Footings placed on a soil bearing surface and designed using the bearing resistance values at SLS given above will be subjected to potential post construction total and differential settlements of 25 and 20 mm, respectively.

Lateral Support

The bearing medium under footing-supported structures is required to be provided with adequate lateral support with respect to excavations and different foundation levels. Adequate lateral support is provided to a stiff silty clay to clayey silt above the groundwater table when a plane extending down and out from the bottom edge of the footing at a minimum of 1.5H:1V passes only through in situ soil of the same or higher capacity as the bearing medium soil.

Permissible Grade Raise

Due to the presence of the silty clay to clayey silt deposit, a permissible grade raise restriction of **2.0 m** is recommended for grading at the subject site.

If higher than permissible grade raises are required, preloading with or without a surcharge, lightweight fill, and/or other measures should be investigated to reduce the risks of unacceptable long-term post construction total and differential settlements.

5.4 Design for Earthquakes

Shear wave velocity testing was completed for the subject site to accurately determine the applicable seismic site classification for the proposed building in accordance with Table 4.1.8.4.A of the Ontario Building Code 2012. The shear wave velocity testing was completed by Paterson personnel. The results of the shear wave velocity test are provided in Figures 2 and 3 in Appendix 2.

Field Program

The seismic array testing location was placed within the southeast portion of the site in an approximate east-west direction as presented in Drawing PG4783-1, attached to the present report. Paterson field personnel placed 24 horizontal 4.5 Hz geophones mounted to the surface by means of two 75 mm ground spikes attached to the geophone land case. The geophones were spaced at 3 m intervals and connected by a geophone spread cable to a Geode 24 Channel seismograph.

The seismograph was also connected to a computer laptop and a hammer trigger switch attached to a 12 pound dead blow hammer. The hammer trigger switch sends a start signal to the seismograph. The hammer is used to strike an I-Beam seated into the ground surface, which creates a polarized shear wave. The hammer shots are repeated between four (4) to eight (8) times at each shot location to improve signal to noise ratio. The shot locations are also completed in forward and reverse directions (i.e.- striking both sides of the I-Beam seated parallel to the geophone array). The shot locations were 3, 4.5 and 30 m away from the first geophone, 3, 4.5 and 15 m away from the last geophone and at the centre of the seismic array.

Data Processing and Interpretation

Interpretation of the shear wave velocity results was completed by Paterson personnel. Shear wave velocity measurement was made using reflection/refraction methods. The interpretation is repeated at each shot location to provide an average shear wave velocity, Vs_{30} , of the upper 30 m profile immediately below the proposed building foundations. The layer intercept times, velocities from different layers and critical distances are interpreted from the shear wave records to compute the bedrock depth at each location.

The bedrock velocity was interpreted using the main refractor wave velocity, which is considered a conservative estimate of the bedrock shear wave velocity due to the increasing quality of bedrock with depth. It should be noted that as bedrock quality increases, the bedrock shear wave velocity also increases.

Based on the test results, the average overburden shear wave velocity is **172 m/s**. Through interpretation, the bedrock shear wave velocity is **2,685 m/s**.

The Vs_{30} was calculated using the standard equation for average shear wave velocity provided in the OBC 2012, and as presented below.

$$V_{s30} = \frac{Depth_{OfInterest}(m)}{\left(\frac{(Depth_{Layer1}(m)}{Vs_{Layer1}(m/s)} + \frac{Depth_{Layer2}(m)}{Vs_{Layer2}(m/s)}\right)}$$
$$V_{s30} = \frac{30m}{\left(\frac{4m}{172m/s} + \frac{26m}{2,685m/s}\right)}$$
$$V_{s30} = 911m/s$$

Based on the results of the seismic shear wave velocity testing, the average shear wave velocity, Vs_{30} , was calculated to be **911 m/s** for an anticipated underside of footing at approximate geodetic elevation 103.5 m. Although this average shear wave velocity is sufficient for a Site Class B, as per Note 1 of Table 4.1.8.4.A of the OBC 2012, "site Classes A and B, hard rock and rock are not to be used if there is more than 3 m of softer materials between the rock and the underside of footing or mat foundations." Therefore, for the anticipated underside of footing elevation noted above, a **Site Class C** is applicable for design of the proposed building.

However, if the underside of footing is located at or below geodetic elevation 102 m, or is supported on lean concrete trenches which extend to geodetic elevation 102 m, which is within 3 m of the bedrock surface, a **Site Class B** would be applicable for design of the proposed building. The soils underlying the subject site are not susceptible to liquefaction.

5.5 Slab on Grade Construction

With the removal of all topsoil and fill, containing significant amounts of deleterious or organic materials, the existing fill approved by the geotechnical consultant at the time of excavation as per Subsection 5.2, or undisturbed, native soil will be considered an acceptable subgrade surface on which to commence backfilling for slab-on-grade construction.

It is recommended that the upper 200 mm of sub-floor fill consist of OPSS Granular A crushed stone. All backfill materials required to raise grade within the footprint of the proposed buildings should be placed in maximum 300 mm thick loose layers and compacted to at least 98% of its SPMDD.

5.6 Pavement Design

Car only parking areas, access lanes and heavy truck parking areas are anticipated at this site. The proposed pavement structures are shown in Tables 3 and 4.

Table 3 - Recommended Pavement Structure - Car Only Parking Areas								
Thickness (mm)	Material Description							
50	Wear Course - HL-3 or Superpave 12.5 Asphaltic Concrete							
150	BASE - OPSS Granular A Crushed Stone							
300	SUBBASE - OPSS Granular B Type II							
	SUBGRADE - Either fill, in situ soil, or OPSS Granular B Type I or II material placed over in situ soil or fill							

Table 4 - Recommended Pavement Structure Access Lanes and Heavy Truck Parking Areas								
Thickness (mm)	Material Description							
40	Wear Course - Superpave 12.5 Asphaltic Concrete							
50	Binder Course - Superpave 19.0 Asphaltic Concrete							
150	BASE - OPSS Granular A Crushed Stone							
450	SUBBASE - OPSS Granular B Type II							
	SUBGRADE - Either fill, in situ soil, or OPSS Granular B Type I or II material placed over in situ soil or fill							

Minimum Performance Graded (PG) 58-34 asphalt cement should be used for this project.

If soft spots develop in the subgrade during compaction or due to construction traffic, the affected areas should be excavated and replaced with OPSS Granular B Type II material. The pavement granular base and subbase should be placed in maximum 300 mm thick lifts and compacted to a minimum of 99% of the material's SPMDD using suitable vibratory equipment.

Pavement Structure Drainage

Satisfactory performance of the pavement structure is largely dependent on keeping the contact zone between the subgrade material and the base stone in a dry condition. Failure to provide adequate drainage under conditions of heavy wheel loading can result in the fine subgrade soil being pumped into the voids in the stone subbase, thereby reducing its load carrying capacity.

Due to the impervious nature of the subgrade materials consideration should be given to installing subdrains during the pavement construction as per City of Ottawa standards. The subdrain inverts should be approximately 300 mm below subgrade level. The subgrade surface should be crowned to promote water flow to the drainage lines.

5.7 Percolation Rates

Infiltration galleries are anticipated to be located beneath the asphaltic parking areas within the subject site. Paterson has completed a detailed hydrogeological investigation of the lands south of the subject site as part of previous phases of the Kanata West Business Park in order to establish hydraulic conductivity and percolation time of in-situ materials.

Varying strata at the base of the galleries will be encountered during the installation and will affect the rate of stormwater infiltration into the underlying material. The calculations for the infiltration galleries should be reviewed to correspond with the appropriate percolation rates given the appropriate strata. The percolation rate was interpreted from the hydraulic conductivity which was estimated based on the range of grain size distribution for the proposed development area. Based on these values, the average percolation rate (T-Time) was estimated to be within the ranges in Table 5.

Table 5 - Estimated Percolation Rates										
Material	Hydraulic Conductivity - k (m/sec)	Percolation (T-time) - (mins/cm)								
Silty Clay 1	3 x 10 ⁻⁶ to 1 x 10 ⁻¹⁰	35 to 50+								
Silty Fine Sand / 1 x 10 ⁻⁷ to 1 x 10 ⁻⁸ 20 to 50										
¹ - Values are	based upon site specific testing carried out	at a nearby phase of the development								

6.0 Design and Construction Precautions

6.1 Foundation Drainage and Backfill

North Bay

patersondroup

Kingston

Ottawa

It is recommended that a perimeter foundation drainage system be provided for the proposed structure. The system should consist of a 150 mm diameter perforated corrugated plastic pipe, surrounded on all sides by 150 mm of 19 mm clear crushed stone, placed at the footing level around the exterior perimeter of the structure. The pipe should have a positive outlet, such as a gravity connection to the catch basins or running drainage ditches.

Backfill against the exterior sides of the foundation walls should consist of free-draining non frost susceptible granular materials, such as clean sand or OPSS Granular B Type I granular material. The greater part of the site excavated materials will be frost susceptible and, as such, are not recommended for re-use as backfill against the foundation walls. A drainage geocomposite, such as Miradrain G100N or Delta Drain 6000, connected to the perimeter foundation drainage system is recommended.

6.2 Protection of Footings and Slabs Against Frost Action

Perimeter footings of heated structures are required to be insulated against the deleterious effect of frost action. A minimum of 1.5 m thick soil cover (or equivalent) should be provided in this regard.

Exterior unheated footings, such as those for isolated exterior piers and loading docks, are more prone to deleterious movement associated with frost action than the exterior walls of the structure proper and require additional protection, such as soil cover of 2.1 m or a combination of soil cover and foundation insulation. It is recommended that the geotechnical consultant review the proposed frost protection detail for the loading dock footings.

6.3 Excavation Side Slopes

The side slopes of excavations in the soil and fill overburden materials should either be cut back at acceptable slopes or should be retained by shoring systems from the start of the excavation until the structure is backfilled. It is expected that sufficient room will be available for the greater part of the excavation to be undertaken by open-cut methods (i.e. unsupported excavations). The excavation side slopes above the groundwater level extending to a maximum depth of 3 m should be cut back at 1H:1V or flatter. The flatter slope is required for excavation below groundwater level. Excavations below the groundwater level should be cut back at a maximum slope of 1.5H:1V. The subsoil at this site is considered to be mainly a Type 2 and 3 soil according to the Occupational Health and Safety Act and Regulations for Construction Projects.

Excavated soil should not be stockpiled directly at the top of excavations and heavy equipment should be kept away from the excavation sides.

Slopes in excess of 3 m in height should be periodically inspected by the geotechnical consultant in order to detect if the slopes are exhibiting signs of distress.

It is recommended that a trench box be used at all times to protect personnel working in trenches with steep or vertical sides. It is expected that services will be installed by "cut and cover" methods and excavations will not be left open for extended periods of time.

6.4 Pipe Bedding and Backfill

Bedding and backfill materials should be in accordance with the most recent Material Specifications & Standard Detail Drawings from the Department of Public Works and Services, Infrastructure Services Branch of the City of Ottawa.

The pipe bedding for sewer and water pipes should consist of at least 150 mm of OPSS Granular A material. Where the bedding is located within the firm grey silty clay, the thickness of the bedding material should be increased to a minimum of 300 mm as directed by the geotechnical consultant at the time of construction. The material should be placed in maximum 300 mm thick lifts and compacted to a minimum of 98% of its SPMDD. The bedding material should extend at least to the spring line of the pipe.

The cover material, which should consist of OPSS Granular A, should extend from the spring line of the pipe to at least 300 mm above the obvert of the pipe. The material should be placed in maximum 300 mm thick lifts and compacted to a minimum of 98% of its SPMDD.

It should generally be possible to re-use the moist (not wet) brown silty clay above the cover material if the excavation and filling operations are carried out in dry weather conditions. Wet silty clay materials will be difficult to re-use, as the high water contents make compacting impractical without an extensive drying period.

Where hard surface areas are considered above the trench backfill, the trench backfill material within the frost zone (about 1.8 m below finished grade) should match the soils exposed at the trench walls to minimize differential frost heaving. The trench backfill should be placed in maximum 300 mm thick loose lifts and compacted to a minimum of 95% of the material's SPMDD.

To reduce long-term lowering of the groundwater level at this site, clay seals should be provided in the service trenches. The seals should be at least 1.5 m long (in the trench direction) and should extend from trench wall to trench wall. Generally, the seals should extend from the frost line and fully penetrate the bedding, subbedding and cover material. The barriers should consist of relatively dry and compactable brown silty clay placed in maximum 225 mm thick loose layers and compacted to a minimum of 95% of the SPMDD. The clay seals should be placed at the site boundaries and at strategic locations at no more than 60 m intervals in the service trenches.

6.5 Groundwater Control

Groundwater Control for Building Construction

It is anticipated that groundwater infiltration into the excavations should be low to moderate and controllable using open sumps. Pumping from open sumps should be sufficient to control the groundwater influx through the sides of shallow excavations.

The contractor should be prepared to direct water away from all bearing surfaces and subgrades, regardless of the source, to prevent disturbance to the founding medium.

A temporary Ministry of the Environment, Conservation and Parks (MECP) permit to take water (PTTW) may be required for this project if more than 400,000 L/day of ground and/or surface water is to be pumped during the construction phase. A minimum 4 to 5 months should be allowed for completion of the PTTW application package and issuance of the permit by the MECP.

For typical ground or surface water volumes, being pumped during the construction phase, between 50,000 to 400,000 L/day, it is required to register on the Environmental Activity and Sector Registry (EASR). A minimum of two to four weeks should be allotted for completion of the EASR registration and the Water Taking and Discharge Plan to be prepared by a Qualified Person as stipulated under O.Reg. 63/16. If a project qualifies for a PTTW based upon anticipated conditions, an EASR will not be allowed as a temporary dewatering measure while awaiting the MECP review of the PTTW application.

6.6 Winter Construction

Precautions must be taken if winter construction is considered for this project.

The subsoil conditions at this site consist of frost susceptible materials. In the presence of water and freezing conditions, ice could form within the soil mass. Heaving and settlement upon thawing could occur.

In the event of construction during below zero temperatures, the founding stratum should be protected from freezing temperatures by the use of straw, propane heaters and tarpaulins or other suitable means. In this regard, the base of the excavations should be insulated from sub-zero temperatures immediately upon exposure and until such time as heat is adequately supplied to the building and the footings are protected with sufficient soil cover to prevent freezing at founding level.

Trench excavations and pavement construction are also difficult activities to complete during freezing conditions without introducing frost in the subgrade or in the excavation walls and bottoms. Precautions should be taken if such activities are to be carried out during freezing conditions. Additional information could be provided, if required.

6.7 Corrosion Potential and Sulphate

The results of analytical testing show that the sulphate content is less than 0.1%. This result is indicative that Type 10 Portland cement (normal cement) would be appropriate for this site. The chloride content and the pH of the sample indicate that they are not significant factors in creating a corrosive environment for exposed ferrous metals at this site, whereas the resistivity is indicative of a moderate to slightly aggressive corrosive environment.

6.8 Tree Planting Restrictions

Given that the proposed building will be a slab-on-grade structure, the underside of footing is expected at a maximum depth of 1.5 m. As such, the silty clay which was encountered 3 to 3.5 m below design footing level was very stiff to stiff and should be considered low to medium sensitivity, and should not be considered a sensitive marine clay.

Tree planting setback limits may therefore be reduced to 4.5 m for small trees (mature tree height up to 7.5 m) and medium size trees (mature tree height 7.5 m to 14 m). It should be noted that shrubs and other small planting are permitted within the 4.5 m setback area.

It is documented in the literature, and is our experience, that fast-growing trees located near buildings founded on cohesive soils which shrink on drying can result in long-term differential settlements of the structures. Tree varieties that have the most pronounced effect on foundations are seen to consist of poplars, willows and some maples (i.e. Manitoba Maples) and should not be considered in the landscaping design.

7.0 Recommendations

It is a requirement for the foundation design data provided herein to be applicable that the following material testing and observation program be performed by the geotechnical consultant.

- Review the grading plan from a geotechnical perspective, once available.
- Observation of all bearing surfaces prior to the placement of concrete.
- Sampling and testing of the concrete and fill materials used.
- Periodic observation of the condition of unsupported excavation side slopes in excess of 3 m in height, if applicable.
- Observation of all subgrades prior to backfilling.
- Field density tests to determine the level of compaction achieved.
- Sampling and testing of the bituminous concrete including mix design reviews.

A report confirming that these works have been conducted in general accordance with our recommendations could be issued upon the completion of a satisfactory inspection program by the geotechnical consultant.

8.0 Statement of Limitations

The recommendations made in this report are in accordance with our present understanding of the project. We request that we be permitted to review the grading plan once available and to review our recommendations when the drawings and specifications are complete.

A geotechnical investigation of this nature is a limited sampling of a site. The recommendations are based on information gathered at the specific test locations and can only be extrapolated to an undefined limited area around the test locations. The extent of the limited area depends on the soil, bedrock and groundwater conditions, as well the history of the site reflecting natural, construction, and other activities. Should any conditions at the site be encountered which differ from those at the test locations, we request notification immediately in order to permit reassessment of our recommendations.

The present report applies only to the project described in this document. Use of this report for purposes other than those described herein or by person(s) other than Purolator Inc. or their agent(s) is not authorized without review by Paterson Group for the applicability of our recommendations to the altered use of the report.

Paterson Group Inc.

Scott S. Dennis, P.Eng.

Report Distribution:

Purolator I	Inc. ((3 copies)
-------------	--------	------------

Paterson Group (1 copy)

David J. Gilbert, P.Eng.

APPENDIX 1

SOIL PROFILE & TEST DATA SHEETS

SYMBOLS AND TERMS

SOIL PROFILE & TEST DATA SHEETS BY OTHERS

GRAIN SIZE DISTRIBUTION ANALYSIS RESULTS

ANALYTICAL TESTING RESULTS

natersonar		In	Con	sulting	3	SOII	_ PRO	FILE AI		ST DATA	•	
154 Colonnade Road South, Ottawa, O	ntario I	(2E 7J	Eng	ineers	G P O	Geotechnical Investigation Prop. Sort Facility - Upper Canada St. @ Palladium Dr. Ottawa, Ontario						
DATUM TBM - Top spindle of fire with a geodetic elev. of 1	hydrai 05.51	nt loca based	ited a on to	t the no	orth phic	end of Pa interpolati	lladium D on of ava	Drive, ailable	FILE NO.	PG4783	3	
BORINGS BY CMF-55 Low Clearance	Drill			D	ΔΤΕ	2019 .lan	uary 3		HOLE NO	^{).} BH 1-19		
	н		SAN					Pen. R	esist. Ble	ows/0.3m		
SOIL DESCRIPTION	DIG V			ĸ	M e	DEPTH (m)	ELEV. (m)	• 5	0 mm Dia	. Cone	ter	
GROUND SURFACE	STRATZ	ТҮРЕ	NUMBER	RECOVEF	N VALU or ROD			0 V 20	Vater Cor 40 6	itent % 0 80	Piezome Construc	
FILL: Topsoil, trace clay		AU	1			- 0-	-104.80					
0.0		ss	2	67	5	1-	-103.80					
Very stiff, brown SILTY CLAY		ss	3	96	5	2-	-102.80					
Brown SILT , trace clay and sand	5					3-	-101.80					
- grey by 3.8m depth	7					4-	-100.80	À				
Very loose, grey SANDY SILT, trace gravel		SS ≤ SS	4 5	96 100	3 50+	5-	-99.80					
End of Borehole	9	-										
depth												
(GWL @ 1.74m - Jan. 8, 2019)												
								20 Shea ▲ Undisi	40 6 ar Strengt turbed △	0 80 ́ t h (kPa) Remoulded	⊣ 100	

natorsonar		In	Con	sulting	3	SOIL	- PRO	FILE AI		EST I	DATA	
154 Colonnade Road South, Ottawa, Ont	G Pr O	Geotechnical Investigation Prop. Sort Facility - Upper Canada St. @ Palladium Dr. Ottawa, Ontario										
DATUM TBM - Top spindle of fire h with a geodetic elev. of 10	ydrai 5.51	nt loca based	ited at on to	t the n pogra	orth e phic i	rth end of Palladium Drive, hic interpolation of available						
BORINGS BY CME-55 Low Clearance Drill DATE 2019 January 4										^{NO.} Bl	H 2-19	
	ц		SAN	IPLE		DEDTU		Pen. Resist. Blows/0.3m				
SOIL DESCRIPTION	A PLO		с.	ЗХ	Ĕ٥	(m)	ELEV. (m)	• 5	● 50 mm Dia. Cone			
	TRAT	ТҮРЕ	UMBEI	COVE]	VALU F RQI			• •	Vater C	ontent	%	zome
FILL PILE SURFACE	s v	~	N	RE	zÓ	0-	107.10	20	40	60	80	S S B B B B B B B B B B B B B B B B B B
		AU	1			1-	-106.10					
FILL: Brown silt, some sand and roots		ss	2	54	3	2-	-105.10					
<u>3.05</u>			2		11	3-	-104.10					
FILL: Grey sandy silt, trace gravel and roots		1 22	3	4	11							
4.42		ss	4	4	8	4-	-103.10					
<u>`</u>		ss	5	4	5	5-	-102.10					
Loose, grey SANDY SILT, trace clay		ss	6	75	9	6-	-101.10		2			
		ss	7	71	6	7-	-100.10					
7.75		≖ SS	8	100	50+							
Practical refusal to augering at 7.75m depth												
(GWL @ 1.61m - Jan. 8, 2019)												
								20 Shea ▲ Undis	40 ar Strei turbed	60 ngth (kl ∆ Rem	80 1 Pa) oulded	oo

natorsonar		ır	Con	sulting		SOII	- PRO		ND TES	T DATA					
154 Colonnade Road South, Ottawa, On	154 Colonnade Road South, Ottawa, Ontario K2E 7J5								Geotechnical Investigation Prop. Sort Facility - Upper Canada St. @ Palladium Dr. Ottawa Ontario						
DATUM TBM - Top spindle of fire h with a geodetic elev. of 10	nydrai 05.51	nt loca based	ated a on to	t the no	orth e	end of Pa nterpolati	lladium E on of ava)rive, ailable	FILE NO.	FILE NO. PG4783					
BORINGS BY CME-55 Low Clearance	HOLE NO.	BH 3-19													
	E		SAN	IPLE			Pen. F		tesist. Blows/0.3m						
SOIL DESCRIPTION	A PLO		~	ХХ	Що	(m)	ELEV. (m)	• 5	j0 mm Dia. Cone						
FILL PILE SURFACE	STRAT	TYPE	NUMBEI	RECOVE)	N VALU or RQI			0 V 20	Vater Cont 40 60	tent %) 80	Piezome Constru				
			1			- 0-	-105.56								
FILL: Brown silt, trace to some clay, trace sand and roots.						1-	-104.56								
1.83		ss	2	29	4		400 50								
Very stiff to stiff, brown CLAYEY SILT						3-	- 102.56		<u>}</u>						
<u>4.5</u> 7		ss	3	79	15	5-	-100.56								
Compact to loose, brown SANDY		∇													
		ss	4	50	5										
End of Borehole		+				6-	-99.56								
Practical refusal to augering at 6.07m depth															
(GWL @ 1.91m - Jan. 8, 2019)															
								20 She	40 60 ar Strongt) 80 1 h (kPa)	100				
								▲ Undis	turbed \triangle	Remoulded					

SOIL PROFILE AND TEST DATA patersongroup **Geotechnical Investigation** Prop. Sort Facility - Upper Canada St. @ Palladium Dr. 154 Colonnade Road South, Ottawa, Ontario K2E 7J5 Ottawa, Ontario TBM - Top spindle of fire hydrant located at the north end of Palladium Drive, FILE NO. DATUM with a geodetic elev. of 105.51 based on topographic interpolation of available **PG4783** REMARKS plans. HOLE NO. BH 4-19 BORINGS BY CME-55 Low Clearance Drill DATE 2019 January 3 SAMPLE Pen. Resist. Blows/0.3m PLOT DEPTH ELEV. Piezometer Construction SOIL DESCRIPTION 50 mm Dia. Cone (m) (m) RECOVERY STRATA VALUE F ROD NUMBER TYPE 0/0 Ο Water Content % N VJ 80 **GROUND SURFACE** 20 40 60 0+104.49TOPSOIL 0.36 AU 1 1+103.49 SS 2 12 12 Very stiff to stiff, brown CLAYEY SILŤ 3 SS 71 12 2+102.49 SS 4 8 71 2.90 End of Borehole (GWL @ 1.08m - Jan. 8, 2019) 40 60 80 100 20 Shear Strength (kPa) Undisturbed \triangle Remoulded

SOIL PROFILE AND TEST DATA patersongroup **Geotechnical Investigation** Prop. Sort Facility - Upper Canada St. @ Palladium Dr. 154 Colonnade Road South, Ottawa, Ontario K2E 7J5 Ottawa, Ontario TBM - Top spindle of fire hydrant located at the north end of Palladium Drive, FILE NO. DATUM with a geodetic elev. of 105.51 based on topographic interpolation of available **PG4783** REMARKS plans. HOLE NO. BH 5-19 BORINGS BY CME-55 Low Clearance Drill DATE 2019 January 3 SAMPLE Pen. Resist. Blows/0.3m PLOT DEPTH ELEV. Piezometer Construction SOIL DESCRIPTION 50 mm Dia. Cone • (m) (m) RECOVERY STRATA VALUE F ROD NUMBER TYPE 0/0 Ο Water Content % N VJ 80 **GROUND SURFACE** 20 40 60 0+104.72TOPSOIL AU 1 0.41 Stiff, brown CLAYEY SILT 1+103.72 SS 2 75 8 1.50 SS 3 71 11 Loose to dense, brown SANDY 2+102.72SILT, some clay SS 4 35 88 2.90 End of Borehole 40 60 80 100 20 Shear Strength (kPa) Undisturbed \triangle Remoulded

natorsonar	ır	SOIL PROFILE AND TEST DATA										
154 Colonnade Road South, Ottawa, On	K 2E 7J	Geotechnical Investigation Prop. Sort Facility - Upper Canada St. @ Palladium Dr. Ottawa Ontario										
DATUM TBM - Top spindle of fire h with a geodetic elev. of 10	nydrai 05.51	nt loca based	ited at on to	t the no pograp	orth er	nd of Pal terpolati	lladium E on of ava	Drive, FILE NO. ailable PG4783				
BORINGS BY CME-55 Low Clearance	Drill			DA	те 2	019 Jan	uarv 3	HOLE NO. BH 6-19				
	E		SAN	IPLE		DEDTU		Pen. Resist. Blows/0.3m				
SOIL DESCRIPTION	A PL(щ	RY	Що	(m)	(m)	● 50 mm Dia. Cone				
	TRAT	ТҮРЕ	IUMBE	COVE ∾	VALI Pr RQ			○ Water Content %				
GROUND SURFACE	01	×	2	RE	z o	0-	104.54	20 40 60 80 🛱 Č				
TOPSOIL		AU	1									
		$\overline{\mathbb{N}}$					400 54					
Very stiff, brown SILTY CLAY		ss	2	92	6	1-	-103.54	V				
1.83								139				
End of Borehole												
(GWL @ 1.12m - Jan. 8, 2019)												
								20 40 60 80 100 Shear Strength (kPa) ▲ Undisturbed △ Remoulded				

natorsonar		In	Con	sulting		SOIL	_ PRO	FILE AND TEST DATA						
154 Colonnade Road South, Ottawa, On	154 Colonnade Road South, Ottawa, Ontario K2E 7J5						Geotechnical Investigation Prop. Sort Facility - Upper Canada St. @ Palladium Dr. Ottawa Ontario							
DATUM TBM - Top spindle of fire h with a geodetic elev. of 10	nydrai 5.51	nt loca	ited a on to	t the no pograp	orth e hic ir	t awa, Or nd of Pa nterpolati	itario Iladium [on of ava	Drive, FILE NO. ailable PG4783						
REMARKS plans.					0	040 1		HOLE NO. BH 7-19						
BORINGS BY CIVIE-55 LOW Clearance					TE 2	2019 Jan	uary 3	Den Desist Blaux/0.2m						
SOIL DESCRIPTION	LOIG 1		SAN	//PLE	E a	DEPTH (m)	ELEV. (m)	● 50 mm Dia. Cone						
GROUND SURFACE	STRATZ	ТҮРЕ	NUMBEF	RECOVER	N VALU or RQD			O Water Content % 00 Drug O Water Content % 00 Drug 20 40 60 80 00 Drug 0 Drug						
Vanuatiff brown SILTY CLAY		AU	1			0-	-103.49							
Very suit, brown SILTY CLAY		ss	2	92	6	1-	-102.49							
1 83								129						
End of Borehole		1												
(GWL @ 0.61m - Jan. 8, 2019)														
								Shear Strength (kPa) ▲ Undisturbed △ Remoulded						

natoreonar	natoreonarounconsultir									SOIL PROFILE AND TEST DATA								
154 Colonnade Road South, Ottawa, O	ntario I	K2E 7J	Eng	ineers	Geotechnical Investigation Prop. Sort Facility - Upper Canada St. @ Palladium Dr. Ottawa. Ontario													
DATUM TBM - Top spindle of fire with a geodetic elev. of 1	hydrai 05.51	nt loca based	ated a l on to	t the no pograp	orth end of Palladium Drive, phic interpolation of available PG4783													
BORINGS BY CMF-55 Low Clearance	Drill			۵۵	TE 20 ²	19 Jani	uary 3		HOLE	ENO. BI	H 8-19							
	E E		SAN			re ean		Pen, F	Resist.	Blows/	0.3m							
SOIL DESCRIPTION	A PLO		а п	RY	D	EPTH (m)	ELEV. (m)	• {	50 mm	Dia. Co	ne	eter ction						
GROUND SURFACE	STRAT	ТУРЕ	NUMBE	RECOVE	N VALI of RQ			0 V 20	Water (40	Content 60	% 80	Piezom Constru						
	0	×				0-	-103.64											
		装AU 授 灯	1															
very sun, brown SILTY CLAY		ss	2	96	4	1-	-102.64					¥ 						
1.8	3							4	<u></u>		1	i0 目						
(GWL @ 1.00m - Jan. 8, 2019)																		
								20 She	40 ear Stre	60 ength (k	80 10 Pa)	 DO						
									surbed		louided							

natorsonar	sulting	SOIL PROFILE AND TEST DATA										
154 Colonnade Road South, Ottawa, Ont	tario ł	(2E 7J	Engi 15	ineers	G Pi O	eotechnic rop. Sort l ttawa, Or	al Invest Facility - ntario	tigation Upper Ca	nada St. (@ Palladium	Dr.	
DATUM TBM - Top spindle of fire h with a geodetic elev. of 10:	ydrar 5.51 I	nt loca based	ated at on to	t the no pograp	orth end of Palladium Drive, phic interpolation of available FILE NO.							
BORINGS BY CME-55 Low Clearance I	Drill			DA	ATE	2019 Jan	uary 3		HOLE NO	^{).} BH 9-19		
SOIL DESCRIPTION	LOT		SAN	IPLE		DEPTH	ELEV.	Pen. Resist. Blows/0.3m				
	TRATA F	ТҮРЕ	UMBER	°° COVERY	VALUE r RQD	(m)	(m)	• •	Vater Cor	itent %	ezometer	
GROUND SURFACE	ß	~	Z	RE	z ⁰	- 0-	-103.59	20	40 6	0 80	ы Б С	
TOPSOIL 0.38 Stiff, brown SILTY CLAY		SS	1	100	5	1-	-102.59					
1.83												
End of Borehole												
(GWL @ 1.20m - Jan. 8, 2019)								20 Shea ▲ Undist	40 6 ar Strengt turbed △	0 80 1 16 (kPa) Remoulded	00	

natersonard	g	SOIL PROFILE AND TEST DATA										
154 Colonnade Road South, Ottawa, Or	ntario	K2E 7	Eng J5	ineers	3 G P 0	Geotechnical Investigation Proposed Commercial Development - Huntmar Road Ottawa, Ontario						
DATUM Ground surface elevations p	orovido	ed by s	Stante	ec Geo	matic	s Ltd.			FILE NO.	PG3115		
REMARKS									HOLE NO.			
BORINGS BY CME 55 Power Auger				D	ATE	January 1	4, 2014			DIT4		
SOIL DESCRIPTION	PLOT		SAN			DEPTH (m)	ELEV. (m)	Pen. R	esist. Blow 0 mm Dia. (/s/0.3m Cone	neter uction	
	TRATA	ТҮРЕ	UMBER	% COVER	VALUE r RQD			• v	Vater Conte	ent %	Piezon	
GROUND SURFACE	S	*	z	RE	z ^o	- 0-	-104.12	20	40 60	80		
0.30		窓 AU 袋 AU	1				101.12			• • • • • • • • • • • • • • • • • • • •		
Very stiff, brown SILTY CLAY		ss	3	100	4	1	-103.12					
2.13						2-	102.12	<u>.</u>		······································		
		ss	4	71	13							
		A I ss	5	54	9	3-	101.12					
Grey CLAYEY SILT				50	_	4-	- 100 12			· · · · · · · · · · · · · · · · · · ·		
- trace gravel below 4.6m depth			6	50	5							
		ss	7	71	7	5-	-99.12					
		ss	8	100	19		00.10					
6.50		ss	9	86	50+		90.12					
End of Borenole												
depth												
(GWL @ 2.0m depth based on field observations)												
								20 Shea ▲ Undist	40 60 ar Strength urbed △ R	80 1 (kPa) emoulded	⊣ 00	

natersonard	1	SOIL PROFILE AND TEST DATA									
154 Colonnade Road South, Ottawa, Or	ntario	K2E 7	Eng J5	ineers	Geotechnical Investigation Proposed Commercial Development - Huntmar Road Ottawa, Ontario						
DATUM Ground surface elevations p	provide	ed by S	Stante	c Geor	natic	s Ltd.			FILE NO	^{).} PG3115	
REMARKS HOLE NO.											
BORINGS BY CME 55 Power Auger				DA	ΔTE	January 1	4, 2014			БЦЭ	
SOIL DESCRIPTION	PLOT		SAN			DEPTH (m)	ELEV. (m)	Pen. R	lesist. B 60 mm D	lows/0.3m ia. Cone	neter uction
	TRATA	гуре	UMBER	°∾ COVER!	VALUE r RQD			• V	Vater Co	ontent %	Piezom
GROUND SURFACE	ũ	-	z	RE	z ^ö	- 0-	- 103 56	20	40	60 80	
0.28		g AU	1				100.00				
		ss	2	100	2	1-	-102.56				
Stiff, brown SILTY CLAY						2-	-101.56			/	
- grey-brown by 2.9m depth		X ss	3	100	8	3-	- 100.56	<u> </u>			
4 50		ss	4	83	5	4-	-99.56				
GLACIAL TILL: Grey-brown clayey silt with gravel5.25		ss	5	58	3	5-	-98.56				
GLACIAL TILL: Brown silty sand with gravel, cobbles and boulders		ss	6	50	11	6-	97.56				
6.70		ss	7	100	17						
(GWL @ 3.0m depth based on field observations)											
								20	40	60 80 1	00
								Shea	ar Stren turbed	gth (kPa) ∆ Remoulded	

natersonard					g	SOIL PROFILE AND TEST DATA								
154 Colonnade Road South, Ottawa, On	Itario	Г Р К2Е 7	Eng J5	ineers	G	eotechnic roposed (cal Inves Commer	tigation cial Develo	opment - H	luntmar Roa	ad			
DATUM Ground surface elevations p	rovide	ed by S	Stante	c Geor	matic	s Ltd.	itario		FILE NO.	DG3115				
REMARKS										1 00110				
BORINGS BY CME 55 Power Auger				D	ATE	January 1	3, 2014			BH14				
	LOT		SAM	IPLE		DEPTH	ELEV.	Pen. R	esist. Blo	ws/0.3m	ion			
SOIL DESCRIPTION	A P		Ř	'RY	Be	(m)	(m)	• 5			truct			
	TRAT	ТУРЕ	UMBE		VAL			• v	Vater Con	tent %	Piezo			
GROUND SURFACE	ß		Z	RE	z ^o	0-	-103 55	20	40 60	80				
TOPSOIL 0.28							103.55							
		ss	1	100	3	1-	102.55		0					
Very stiff to stiff, brown SILTY CLAY						2-	-101.55	<u> </u>		1	0			
						3-	- 100.55				Ā			
<u>3.66</u>		- - 					00.55	Δ Ο	· · · · · · · · · · · · · · · · · · ·					
Grey-brown SILTY FINE SAND		ss	2	71	6	4-	-99.55	O						
End of Borehole4.00		- SS	3	0	50+									
Practical refusal to augering at 4.60m depth														
(GWL @ 2.8m depth based on field observations)														
								20 Shea ▲ Undist	40 60 ar Strengt turbed △) 80 10 h (kPa) Remoulded	DO			

patersongro		n	g	SOIL PROFILE AND TEST DATA							
154 Colonnade Road South, Ottawa, Or	ntario	K2E 7	Eng J5	ineers	G P O	eotechnio roposed (ttawa, Or	cal Inves Commer ntario	stigation rcial Development - Huntmar Road			
DATUM Ground surface elevations p	orovid	ed by s	Stante	ec Geo	matic	s Ltd.		FILE NO. PG3115			
REMARKS								HOLE NO. DUITE			
BORINGS BY CME 55 Power Auger				D	ATE	January 1	4, 2014	БПІЭ			
SOIL DESCRIPTION	PLOT		SAN	IPLE			H ELEV.	Pen. Resist. Blows/0.3m ● 50 mm Dia. Cone			
	RATA	КРЕ	MBER	°% OVERY	'ALUE ROD	(m)	(m)	Water Content %			
GBOUND SUBFACE	STI	Ĥ	ION I	REC	N N OF			20 40 60 80			
		_				- 0-	104.43				
		∦ ss	1	83	4	1-	103.43				
Stiff, brown SILTY CLAY		ss	3	100	4		100.40				
						2-	+ 102.43				
<u>5.30</u>		ss	4	67	14	3-	- 101.43				
Grey-brown SILTY FINE SAND		ss	5	42	3	4-	-100.43				
		ss	6	83	5	5-	-99.43				
5.49		SS =	7	0	50+						
Practical refusal to augering at 5.49m depth											
(GWL @ 3.0m depth based on field observations)											
								20 40 60 80 100 Shear Strength (kPa) ▲ Undisturbed △ Remoulded			

SYMBOLS AND TERMS

SOIL DESCRIPTION

Behavioural properties, such as structure and strength, take precedence over particle gradation in describing soils. Terminology describing soil structure are as follows:

Desiccated	-	having visible signs of weathering by oxidation of clay minerals, shrinkage cracks, etc.
Fissured	-	having cracks, and hence a blocky structure.
Varved	-	composed of regular alternating layers of silt and clay.
Stratified	-	composed of alternating layers of different soil types, e.g. silt and sand or silt and clay.
Well-Graded	-	Having wide range in grain sizes and substantial amounts of all intermediate particle sizes (see Grain Size Distribution).
Uniformly-Graded	-	Predominantly of one grain size (see Grain Size Distribution).

The standard terminology to describe the strength of cohesionless soils is the relative density, usually inferred from the results of the Standard Penetration Test (SPT) 'N' value. The SPT N value is the number of blows of a 63.5 kg hammer, falling 760 mm, required to drive a 51 mm O.D. split spoon sampler 300 mm into the soil after an initial penetration of 150 mm.

Relative Density	'N' Value	Relative Density %
Very Loose	<4	<15
Loose	4-10	15-35
Compact	10-30	35-65
Dense	30-50	65-85
Very Dense	>50	>85

The standard terminology to describe the strength of cohesive soils is the consistency, which is based on the undisturbed undrained shear strength as measured by the in situ or laboratory vane tests, penetrometer tests, unconfined compression tests, or occasionally by Standard Penetration Tests.

Consistency	Undrained Shear Strength (kPa)	'N' Value		
Very Soft	<12	<2		
Soft	12-25	2-4		
Firm	25-50	4-8		
Stiff	50-100	8-15		
Very Stiff	100-200	15-30		
Hard	>200	>30		

SYMBOLS AND TERMS (continued)

SOIL DESCRIPTION (continued)

Cohesive soils can also be classified according to their "sensitivity". The sensitivity is the ratio between the undisturbed undrained shear strength and the remoulded undrained shear strength of the soil.

Terminology used for describing soil strata based upon texture, or the proportion of individual particle sizes present is provided on the Textural Soil Classification Chart at the end of this information package.

ROCK DESCRIPTION

The structural description of the bedrock mass is based on the Rock Quality Designation (RQD).

The RQD classification is based on a modified core recovery percentage in which all pieces of sound core over 100 mm long are counted as recovery. The smaller pieces are considered to be a result of closely-spaced discontinuities (resulting from shearing, jointing, faulting, or weathering) in the rock mass and are not counted. RQD is ideally determined from NXL size core. However, it can be used on smaller core sizes, such as BX, if the bulk of the fractures caused by drilling stresses (called "mechanical breaks") are easily distinguishable from the normal in situ fractures.

RQD % ROCK QUALITY

90-100	Excellent, intact, very sound
75-90	Good, massive, moderately jointed or sound
50-75	Fair, blocky and seamy, fractured
25-50	Poor, shattered and very seamy or blocky, severely fractured
0-25	Very poor, crushed, very severely fractured

SAMPLE TYPES

SS	-	Split spoon sample (obtained in conjunction with the performing of the Standard
		Penetration Test (SPT))

- TW Thin wall tube or Shelby tube
- PS Piston sample
- AU Auger sample or bulk sample
- WS Wash sample
- RC Rock core sample (Core bit size AXT, BXL, etc.). Rock core samples are obtained with the use of standard diamond drilling bits.

SYMBOLS AND TERMS (continued)

GRAIN SIZE DISTRIBUTION

MC%	-	Natural moisture content or water content of sample, %
LL	-	Liquid Limit, % (water content above which soil behaves as a liquid)
PL	-	Plastic limit, % (water content above which soil behaves plastically)
PI	-	Plasticity index, % (difference between LL and PL)
Dxx	-	Grain size which xx% of the soil, by weight, is of finer grain sizes These grain size descriptions are not used below 0.075 mm grain size
D10	-	Grain size at which 10% of the soil is finer (effective grain size)
D60	-	Grain size at which 60% of the soil is finer
Сс	-	Concavity coefficient = $(D30)^2 / (D10 \times D60)$
Cu	-	Uniformity coefficient = D60 / D10
Cc and (Cu are i	used to assess the grading of sands and gravels:

Well-graded gravels have: 1 < Cc < 3 and Cu > 4Well-graded sands have: 1 < Cc < 3 and Cu > 4Well-graded sands have: 1 < Cc < 3 and Cu > 6Sands and gravels not meeting the above requirements are poorly-graded or uniformly-graded. Cc and Cu are not applicable for the description of soils with more than 10% silt and clay (more than 10% finer than 0.075 mm or the #200 sieve)

CONSOLIDATION TEST

p'o	-	Present effective overburden pressure at sample depth
p'c	-	Preconsolidation pressure of (maximum past pressure on) sample
Ccr	-	Recompression index (in effect at pressures below p'c)
Сс	-	Compression index (in effect at pressures above p'c)
OC Ratio		Overconsolidaton ratio = p'c / p'o
Void Ratio	D	Initial sample void ratio = volume of voids / volume of solids
Wo	-	Initial water content (at start of consolidation test)

PERMEABILITY TEST

k - Coefficient of permeability or hydraulic conductivity is a measure of the ability of water to flow through the sample. The value of k is measured at a specified unit weight for (remoulded) cohesionless soil samples, because its value will vary with the unit weight or density of the sample during the test.

SYMBOLS AND TERMS (continued) STRATA PLOT Topsoil Asphalt Peat Sand Silty Sand Fill ∇ Sandy Silt Clay Silty Clay Clayey Silty Sand Glacial Till Shale Bedrock

MONITORING WELL AND PIEZOMETER CONSTRUCTION

PIEZOMETER CONSTRUCTION

				Lo	g c	of B	ore	ehc	le: BH1					
				Proj	iect #	: 231	270.	001		L	.ogg	ed By	/: WT	
	1	PINCHIN		Proj	iect:	Geote	echni	cal lı	nvestigation					
				Clie	nt: P	urola	tor In	С.						
				Loc	ation	: Par	t of L	ots 3	& 4, Concessi	on 1, Block	(s 26	to 33	, Ottaw	a, ON
				Drill	Date	e: Oc	tober	29,	2018	F	Proje	ct Ma	nager	WT
		SUBSURFACE PROFILE							SA	MPLE				
Depth (m)	Symbol	Description	Elevation (m)	Monitoring Well Details	Sample Type	Sampler #	Recovery (%)	SPT N-Value	Standard Penetration N-Value 204060	Shear Strength kPa 100 200	Water Content (%)	Sample (D	Soil Vapour Concentration (ppm)	Laboratory Analysis
0-		Ground Surface	0.00		<u> </u>									
-		sand, DTPL to ATPL, grey, soft to stiff		5	SS SS	SS1	40 80	12 8						
	HI				<u> </u>			-						
2-		Silt trace to some sand trace	-2.29	N.	SS	SS3	100	3			32.7			Hydrometer
3-		gravel, trace clay, wet, grey, very loose			SS	SS4	80	3						
-		Till Conducilt trace to come day	-3.81		SS	SS5	100	4	9					
4-		trace gravel, wet, grey, very loose to loose			ss	SS6	100	9						
5-			C 40		SS	SS7	80	3						
- 6- - - 7-		End of Borehole Due to SPT refusal on probable bedrock	-5.49		_ SS _	. SS8 .	_100_	_2_						
-		ontractor: Strata Drilling Group							Grado	Invation				
	יט	rilling Method: Direct Pueh/Soli	Snoo	n					Top of	Casing Ele	wati.	on N	Δ	
	W	/ell Casing Size: N/A							Sheet:	1 of 1	. 4 G L I	<i></i> 11/	~	

				Lo	g c	of B	ore	ehc	ole: BH2					
		DINIGUN		Proj	ect #	: 231	270.	001		L	.ogg	ed By	/: WT	
	1	PINCHIN		Proj	ect:	Geote	echni	cal Ir	nvestigation					
				Clie	nt: P	urola	tor In	C.						
				Loca	ation	: Par	t of L	ots 3	& 4, Concessi	on 1, Block	s 26	to 33	, Ottawa	a, ON
				Drill	Date	e: Oc	tober	29, 3	2018	F	Proje	ct Ma	nager:	WT
		SUBSURFACE PROFILE			ļ				SA	MPLE				
Depth (m)	Symbol	Description	Elevation (m)	Monitoring Well Details	Sample Type	Sampler #	Recovery (%)	SPT N-Vatue	Standard Penetration N-Value 20 40 60	Shear Strength kPa 100,200	Water Content (%)	Sample ID	Soil Vapour Concentration (ppm)	Laboratory Analysis
0-		Fill - Sand and gravel, some silt, some clay, damp, brown, compact	-0.76		SS	SS1	40	14	7					
Soft Soft Since States, take grave, take Since S														
2-	T H		¥	SS	SS3	100	0							
3-		Till - Sandy silt, trace to some clay, trace gravel, wet, grey, compact			ss	SS4	80	15						
-					SS	SS5	100	12						
4-														
5-					SS	SS6	100	12					:	
-			-5.79											
6-		End of Borehole Due to casing refusal on probable bedrock	i											
7-														
	C	ontractor: Strata Drilling Group							Grade E	Elevation: N	\ /A			
	D	rilling Method: Direct Push/Split	Spoor	ı					Top of (Casing Ele	vatio	on: N/	A	
	Well Casing Size: N/A Sheet: 1 of 1													

				Lo	g c	of B	ore	ehc	ole: BH3					
				Proj	ect ‡	: 231	270.	001		L	.ogg	ed By	/: WT	
	1	PINCHIN		Proj	ect:	Geote	echni	cal lı	nvestigation					
				Clie	nt: P	urola	tor In	с.						
				Loc	ation	: Par	t of L	ots 3	& 4, Concessi	ion 1, Block	s 26	to 33	, Ottaw	a, ON
				Drill	Date	e: Oc	tober	29,	2018	F	Proje	ct Ma	nager.	WT
		SUBSURFACE PROFILE							SA	MPLE				
Depth (m)	Symbol	Description	Elevation (m)	Monitoring Well Details	Sample Type	Sampler #	Recovery (%)	SPT N-Value	Standard Penetration N-Value 20 40 60	Shear Strength kPa 100 200	Water Content (%)	Sample ID	Soil Vapour Concentration (ppm)	Laboratory Analysis
0-	757	Ground Surface Silt, trace gravel, trace sand, trace	0.00											
-	HI	clay, damp to moist, grey, very loose to compact			ss	SS1	80	12	ĵ					
1-	IF1					000	60	2	V					
-					33	332	υv	2						
-	H													
2-	H1				SS	SS3	50	3						
-			2.05		ss	SS4	100	4	0					
3-		Till - Sandy silt, trace to some clay, trace gravel, wet, grey, loose to compact	-3.03	Ŧ	SS	SS5	100	19			16.7			hudromator
	11-1													riyurometei
4														
-									1					
5-					SS	SS6	80	6	Ć I					
-	11-1													
-	11-1				SS	SS7	100	8	1					
7-		End of Borehole	-6.86											
- - -		Due to casing refusal on probable bedrock												
	Ca	ontractor: Strata Drilling Group			}				Grade I	Elevation:	1 N/A			1
	Dı	illing Method: Direct Push/Split	t Spool	n					Top of	Casing Ele	vatie	on: N	Ά	
	W	ell Casing Size: N/A							Sheet:	1 of 1				

2				Lo	g o	of B	ore	ehc	le: BH4					
				Proj	ect #	: 231	270.	001		L	.ogg	ed By	/: WT	6
	1	PINCHIN		Proj	ect: (Geote	echni	cal Ir	rvestigation					
				Clie	nt: Pi	urola	tor In	с.						
				Loca	ation	: Par	t of L	ots 3	& 4, Concessi	on 1, Block	s 26	to 33	, Ottaw	a, ON
				Drill	Date	: Oc	lober	29, 3	2018	F	Proje	ct Ma	nager:	WT
		SUBSURFACE PROFILE							SA	MPLE	·			
Depth (m)	Symbol	Description	Elevation (m)	Monitoring Well Details	Sample Type	Sampler #	Recovery (%)	SPT N-Value	Standard Penetration N-Value 20 40 60	Shear Strength kPa 100_200	Water Content (%)	Sample ID	Soil Vapour Concentration (ppm)	Laboratory Analysis
0-	H	Ground Surface Clay and silt, trace gravel, trace sand, DTPL to ATPL, grey, soft to firm	0.00	10.5	SS	SS1	60	5	7					
- 1- -	HH		-1.52		ss	SS2	100	4	0					
- 2-		Silt, trace to some sand, trace gravel, trace clay, wet, grey, loose to compact		Ŧ	ss	SS3	100	13			17.4			Hydrometer
3-				ss	SS4	100	15	ļ						
ь 1 1 1 1					SS	SS5	100	7						
		Till - Sandy silt, trace to some clay, trace gravel, wet, grey, compact	-4.57											
5-	1		-5.33		SS	SS6	100	28	ò					
6 End of Borehole Due to casing refusal on probable bedrock														
- 7- -														
]	c	ontractor: Strata Drilling Group							Grade E	Elevation: I	1/A			
	D	rilling Method: Direct Push/Split	Spoor	n					Top of	Casing Ele	vatio	on: N/	A	
	Well Casing Size: N/A Sheet: 1 of 1													

				Lo	g c	of B	ore	ehc	ole: BH5					
				Proj	ect #	231	270.	001		Ĺ	.ogg	ed By	: WT	
	1	PINCHIN		Proj	ect:	Geote	echni	cal Ir	nvestigation					
				Clie	nt: P	urola	tor In	C.						2
				Loca	ation	: Par	t of L	ots 3	& 4. Concess	ion 1, Block	s 26	to 33	Ottaw	a, ON
				Drill	Date	e: Oc	tober	29, 3	2018	F	Proje	ct Ma	nager:	WT
		SUBSURFACE PROFILE				,—			SA	MPLE				
Depth (m)	Symbol	Description	Elevation (m)	Monitoring Well Details	Sample Type	Sampler #	Recovery (%)	SPT N-Value	Standard Penetration N-Value 20 40 60	Shear Strength kPa 100 200	Water Content (%)	Sample ID	Soil Vapour Concentration (ppm)	Laboratory Analysis
0-		Ground Surface	0.00											
-	H	Clay and silt, trace gravel, trace sand, DTPL to ATPL, grey, soft to			ss	SS1	80	9	7					
1-	H	500												
-	H		-1.52		SS	SS2	100	4	6					
2-		Silt, trace to some sand, trace gravel, trace clay, moist to wet, grey, very loose			ss	SS3	100	1						
3-					ss	SS4	100	0	2					
					ss	SS5	100	3						
4-														
		Till - Sandy silt, trace to some clay,	-4.57											
5-		trace gravel, wet, grey, compact to dense			SS	SS6	100	18	ł		15.3			Hydrometer
-									\backslash					
6-														
1			-6.40		SS	SS7	100	56	Р					
7-		End of Borehole Due to SPT refusal on probable bedrock												
	C	ontractor: Strata Drilling Group							Grade L	Elevation:	N/A			
	D	rilling Method: Direct Push/Split	Spoor	ń					Top of	Casing Ele	vatio	on: N/	A	
	Well Casing Size: N/A Sheet: 1 of 1													

Im hun get

HYDROMETER LS-702 ASTM-422

CLIENT:		Purolator Inc.		DEPTH:	2' 6"	- 8' 6"	FILE NO.:	PG4783	
PROJECT:		Purolator Sort Facility		BH OR TP No.:	BH6	- SS2	DATE SAMPLED:	04-Jan-19	
LAB No. :		06706		TESTED BY:	D. Be	ertrand	DATE RECEIVED:	04-Jan-19	
SAMPLED BY:		D. Lattin		DATE REPT'D:	11-Ja	an-19	DATE TESTED:	09-Jan-19	
			S	AMPLE INFORMAT	ION				
SAMPLE MASS	10	9.8	50	.00					
SPECIFIC G	RAVITY (Gs)	2.700			REM	MARKS			
HYGROSCOP	IC MOISTURE	Tare No.							
TARE Wt.	50.00	ACTUAL Wt.							
AIR DRY (Wa)	150.00	100.00							
OVEN DRY (Wo)	146.80	96.80							
F=(Wo/Wa)	0.9	968							
INITIAL Wt. (Ma)	50	.00							
Wt. CORRECTED	48	.40							
Wt. AFTER WAS	SH BACK SIEVE	3.45							
SOLUTION CONCE	ENTRATION	40 g / L							
			G	RAIN SIZE ANALY	SIS				
SI	=VE DIAMETER (m	m)	WEIGHT BE		PERCENT		PERCENT	PASSING	
01		,			T ENOLIN		T ENOLITY I		
	63.0								
	53.0								
	37.5								
	26.5								
	19.0								
	18.0								
	0.5								
	9.5								
	2.0		0	0		0	100	0	
	Pan		10	9.8	0	.0	100.	0	
	i un		10	5.0					
	0.850		0	42		0	00.1)	
	0.030		0.	<u>. </u>	1	8	99.	-	
	0.250		1.	24	2	.5	97	-	
	0.106		2.	16	2	.3	95	7	
	0.075		3.	33	6	7	93	3	
	Pan		3.	45		.,		,	
SIEVE	CHECK	0.0	MAX -	= 0.3%					
				HYDROMETER DA	TA				
ELAPSED	TIME (24 hours)	Hs	Hc	Temp. (°C)	DIAMETER	(P)	TOTAL PERCE	NT PASSING	
1	8:41	46.0	6.0	23.0	0.0378	81.7	81.	7	
2	8:42	44.0	6.0	23.0	0.0273	77.6	77.0	6	
5	8:45	42.0	6.0	23.0	0.0176	73.5	73.	5	
15	8:55	40.5	6.0	23.0	0.0103	70.5	70.	5	
30	9:10	39.0	6.0	23.0	0.0074	67.4	67.4	1	
60	9:40	37.0	6.0	23.0	0.0053	63.3	63.	3	
250	12:50	32.5	6.0	23.0	0.0027	54.1	54.	1	
1440	8:40	26.0	6.0	21.0	0.0012	40.9	40.	9	
				COMMENTS					
Moisture Content = 28.6%									
		Curtis Beadow					Joe Forsyth, P. Eng.		
REVIEWED BY:				APPRO	VED BY:		JeAz	\geq	

Im hun get

HYDROMETER LS-702 ASTM-422

CLIENT:		Purolator Inc.		DEPTH:	0'	- 2'	FILE NO.:	PG4783
PROJECT:		Purolator Sort Facility		BH OR TP No.:	BH7	- AU1	DATE SAMPLED:	04-Jan-19
LAB No. :		06707		TESTED BY:	D. Be	ertrand	DATE RECEIVED:	04-Jan-19
SAMPLED BY:		D. Lattin		DATE REPT'D:	11-Ja	an-19	DATE TESTED:	09-Jan-19
			S	AMPLE INFORMAT	ION			
SAMPLE MASS	10	9.8	50	.00				
SPECIFIC G	RAVITY (Gs)	2.700			REM	IARKS		
HYGROSCOP	IC MOISTURE	Tare No.						
TARE Wt.	50.00	ACTUAL Wt.						
AIR DRY (Wa)	150.00	100.00						
OVEN DRY (Wo)	146.80	96.80						
F=(Wo/Wa)	0.9	968						
INITIAL Wt. (Ma)	50	.00						
Wt. CORRECTED	48	.40						
Wt. AFTER WAS	SH BACK SIEVE	3.45						
SOLUTION CONCE	INTRATION	40 g / L						
				RAIN SIZE ANALY	SIS			
SI	EVE DIAMETER (m	m)	WEIGHT RE	ETAINED (g)	PERCENT	RETAINED	PERCENT F	PASSING
	63.0							
	53.0							
	37.5							
	26.5							
	19.0							
	16.0							
	13.2							
	9.5							
	4.75							_
	2.0		0	.0	0	.0	100.	0
	Pan		11	1.3				
				4.4			-	
	0.850		0.	14	0	.3	99.	7
	0.425		0.	00	1	.7	98.3	3
	0.250		1.	9 <u>2</u> 20	3	.8	96.2	
	0.106		3.	32 00	6	.6	93.4	1
	0.075		4.	12	8	.0	92.0)
	Pan	10.4	4.	12				
SIEVE	CHECK	-19.4	MAX =		T۸			
ELAPSED	TIME (24 hours)	Hs	Hc	Temp. (°C)	DIAMETER	(P)	TOTAL PERCE	NT PASSING
1	8:59	47.0	6.0	23.0	0.0374	83.8	83.8	3
2	9:00	45.0	6.0	23.0	0.0270	79.7	79.	7
5	9:03	44.0	6.0	23.0	0.0173	77.6	77.0	6
15	9:13	42.0	6.0	23.0	0.0102	73.5	73.5	5
30	9:28	40.0	6.0	23.0	0.0073	69.5	69.5	5
60	9:58	38.0	6.0	23.0	0.0053	65.4	65.4	1
250	13:08	33.0	6.0	23.0	0.0027	55.2	55.2	2
1440	8:58	26.0	6.0	21.0	0.0012	40.9	40.9	9
Moisture Content = 28.2%				COMMENTS				
		Curtis Beadow					Joe Forsyth, P. Eng.	
REVIEWED BY:	NED BY: APPROVED BY: Jett							\geq

for Run

HYDROMETER LS-702 ASTM-422

		_						
CLIENT:	1940 - 17 - 18	Pinchin Limited		DEPTH	5 -	7	FILE NO.:	PM4184
PROJECT:		231270.001		BH OR TP No.:	BH	1	DATE SAMPLED:	29-Oct-18
LAB No. :		.06027	- 10 March 10	TESTED BY:	D, Ber	trand	DATE RECEIVED:	05-Nov-18
SAMPLED BY:	The support of the sector	W. Tabaczuk		DATE REPT'D	13-No	v-18	DATE TESTED	09-Nov-18
				SAMPLE INFORMAT	TION		· · · · · · · · · · · · · · · · · · ·	
SAMPLE MASS	1	12.3		50,30				
SPECIFIC GI	RAVITY (Gs)	2.700			REM	ARKS		
HYGHOSCOP		lare No.						
TARE WI.	50.00	ACTUAL WI.						
AIR DRY (Wa)	150.00	100.00						
OVEN DRY (WO)	140.15	90.15						
F=(WO/Wa)	0	.902						
INITIAL WI. (Ma)	5	0.30						
WE CORRECTED		5.35						
WI. AFTER WAS	H BACK SIEVE	3.51						
SOLUTION CONCE	INTHATION	1 40 g/L 1			lete			
			1100000000000	GRAN SIZE ANALT	243	A 2002201000	The second	States and a second
SHE	EVE DIAMETER (r	nm)	WEIGHT	RETAINED (g)	PERCENT F	RETAINED	PERCENT	PASSING
	63.0							
	53.0		100 10 - 10 - 10 - 10 - 10 - 10 - 10 -	CARDERS DANSARD			-	
	37.5							
	26.5							
	19.0							
	16.0		and the state of the	and when a state of the state of				
	13.2							
	9.5			0.0	0.0	1	100	.0
	4.75			0.5	04	, 1	99.	6
	2.0			0.5	0.4	 1	99.	6
	Pan		100	11.8				
the second second			100		1			A STATE OF STATE
	0.850			0.26	1.0)	99.	0
	0.425			0.65	1.3	7	98.	3
	0.250	1	and the state	.25	2.9)	97.	1
	0.106	1		2.68	5.1	7	94,	3
	0.075			3,38	7.1	1	92.	9
	Pan			3.51				
SIEVE (CHECK	0.0	MA	K = 0.3%				
				HYDROMETER DA	TA	31-11-1		
ELAPSED	TIME (24 hours)	Hs	Hc	Temp. (*C)	DIAMETER	(P)	TOTAL PERCE	NT PASSING
1	9:43	47.0	6.0	22.0	0.0379	89.4	89.	0
2	9:44	48.0	6.0	22.0	0.0271	87.2	86.	
5	9:47	44.0	6.0	22.0	0.0175	82.9	82.	5
15	9:57	42.0	6.0	22.0	0.0103	78.5	78.	2
30	10:12	40.0	6.0	22.0	0.0074	74.1	73.	8
60	10:42	39.0	6.0	22.0	0.0053	72.0	71.	 6
250	13.52	33.0	6.0	22.0	0.0027	58.9	58.0	6
1440	9:42	27.0	6.0	22.0	0.0012	45.8	45.	5
				COMMENTS				is the state
Moisture Cont	lent = 32.7%	a fair Alashi						
		Curtis Beadow			10-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-		Joe Forsyth, P. Eng.	
REVIEWED BY:	Low 1	hu		APPRO	APPROVED BY:			

Im Run

and-

HYDROMETER LS-702 ASTM-422

					a a management	a state with some	an garan an a	
CLIENT:		Pinchin Limited		DEPTH	10' -	12'	FILE NO.:	PM4184
PROJECT:		231270.001		BH OR TP No.:	BH	3	DATE SAMPLED:	29-Oct-18
LAB No. :		06028		TESTED BY:	D, Ber	trand	DATE RECEIVED:	06-Nov-18
SAMPLED BY:		W. Tabaczuk		DATE REPT D	13-No	v-18	DATE TESTED	09-Nov-18
The second second				SAMPLE INFORMAT	NON		and the second s	
SAMPLE MASS	10	51.1		50,30				
SPECIFIC G	RAVITY (GS)	2.700			Rem	ARKS		
TADS MR	IC MUISTURE	Tare No.						
AIR DRY (Ma)	150.00							
ALL DRY (Wa)	130.00	07.55						
E-(Wo/Wa)	147,33	37.55						
INITIAL WE (Ma)	51	970						
WA CORRECTED	41	0.07						
WI AFTER WA!		17 85						
SOLUTION CONCE	ENTRATION	40 0 / 1						
SOLO HOR OUNCE	DATENTION	40.81.6.1		GRAIN SIZE ANALY	/eig			
		1		GIWHIT WILL PRIMA				
SI	EVE DIAMETER (m	sm)	WEIGHT	RETAINED (g)	PERCENT F	IETAINED	PERCENT P	ASSING
	63.0	1						
	53.0							
	37.5	1	60 0 0 V					
	26.5	7			· · · ·			
	19.0				1			
	16.0	1						
	13.2							
	9.5	1	12 44	0.0	0.0	0	100.	0
	4.75	3		0.6	0.4	4	99.6	٥
	2,0			11	0.7	7	99.3	3
	Pan	1	**************************************	150				
	4					COMPANY SALVASA		
	0.850			0.12	1.0)	99.(J
	0.425			0.22	1.3	2	98.6	<u>ــــــــــــــــــــــــــــــــــــ</u>
	0.250			0.35	1.4	1	98. C	3
	0.106			2.44	5.5	5	94.5	<u>i</u>
	0.075]	1.87	24.	2	75.8	<u>i</u>
	Pan			7.65				
SIEVE	CHECK	0.0	MA	X = 0.3%				
				HYDROMETER DA	TA			
	TIME	Hs	Hc	Temp. (°C)	DIAMETER	(P)	TOTAL PERCEN	NT PASSING
ELAPSED	(24 hours)							
1	9:57	20.0	6.0	22.0	0.0472	28.2	28.0	<u> </u>
2	9:00	16.5	6.0	22.0	0.0342	21.2	21.0	<u> </u>
5 +5	1033	13.5	6.0	22,0	0.0220	15.1	15.0	
15	10.77	11.0	8.0	22.0	0.0129	10,1	10.0	<u> </u>
50	10,20		6.0	22.0	0.0091	10.1	10.0	-
250	10.30	100	6.0	22.0	0.0064	10.1	10.0	<u>/</u>
200	0.58		5.0	22.0	0.0032	<u> </u>	0.0	
1440	3:00	1	0.0	COMMENTS	0.0013	6.0	0.0	
Moisture Cont	tent = 16.7%			UVRINGITI U				
		Curtis Beadow					Joe Forsyth, P. Eng.	
PEVIEWED RY.		1 /		APPER	with py.		~ ~ 7	
ILTICHED DI.	for 10	har		ALL NO	VED DT:	gent		

patersongroup

consulting engineers

In the god-

HYDROMETER LS-702 ASTM-422

					Marine Marine			
CLIENT:		Pinchin Limited		DEPTH	5.	7	FILE NO.:	PM4184
PROJECT:		231270.001		BH OR TP No.:	BH	4	DATE SAMPLED:	29-Oct-18
LAS No. :		06029	and the second second	TESTED BY:	D. Ber	trand	DATE RECEIVED:	06-Nov-18
SAMPLED BY:	and the second second	W. Tabaczuk		DATE REPT'D:	13-No	V-18	DATE TESTED:	09-Nov-18
			1.	SAMPLE INFORMAT	NON		- water and the	
SAMPLE MASS	1	31.4		50.30				
SPECIFIC GR	AVITY (Gs)	2.700			REM	ARKS		
HYGROSCOPI	C MOISTURE	Tare No.						
TARE WI.	50.00	ACTUAL WL						
AIR DRY (Wa)	150.00	100.00						
OVEN DRY (Wo)	148.50	98.50						
F=(Wo/Wa)	0	.985						
INITIAL Wt. (Ma)	5	0.30						
WL CORRECTED	4	9.55						
Wt. AFTER WAS	H BACK SIEVE	1,54						
SOLUTION CONCE	NTRATION	40 g / L						
				GRAIN SIZE ANALY	/SIS			
Ste		(mm	WEIGHT	RETAINED (n)	PERCENT	ETAINED	PERCENT	ASSING
	63,0							
	53.0							
	37.5							
	26.5							
	19.0							
	16.0							
	13,2							
	9.5			0.0	0.0)	100.	0
	4.75			0.5	0.9	5	99.5	<u> </u>
	2.0			0.7	0.9	5	99.5	
	Pan		In the second	132.1				
		T					i i a contra da	
	0.850			0.07	0.1	7	99.3	
	0.425			0.21	0.9)	99,1	
	0.250		and the second second	0.38	1.3	3	98.7	7
	0.106			0.71	1.5)	98.1	
	0.075			1.20	3.0)	97.0)
	Pan			1-09				
SIEVE C	HECK	0.0	MA	X = 0.3%				
		1		HTDROMETER DA				
FLADOCO	TIME	Hs	He	Temp. (°C)	DIAMETER	(P)	TOTAL PERCE	T PASSING
ELAPSED	(24 NOURS)	000		00.0	0.0450			
	10.14	20,0	0.0	22.0	0.0453	39.9	39.1	
<u>د</u>	10:13	17.0	8.0	22.0	0.0323	37.9	37.1	
5	10-29	11.0	0.0	22.0	0.0215	22.0	21.6	1
15	10.20	19.0	0.0	22.9	0.0127	16.0	15.5	,
30	10,43	12.0	0.0	22.0	0.0091	12.0		
00	14:00	11.0	6.0	22.0	0.0064	10.0	9.9	
1440	14,23	10.0	0.0	22.0	0.0032	8.0	7.9	
1440	19:13	1 3'0 1	0,0	COMMENTE	0.0013	6.0	6.0	
Moisture Cont	ent - 17 4%			COMMEN 13				
	un = 17.47/0							
		Curtis Beadow					Joe Forsyth, P. Eng.	
REVIEWED BY:	low 1	lin		APPRO	VED BY:		ave of	a second
	01.0xx - 50x=				APPROVED BY:			

Im Run ve -1---

HYDROMETER LS-702 ASTM-422

CLIENT:		Pinchin Limited		DEPTH:	15' -	17	FILE NO.:	PM4184	
PROJECT:		231270.001		BH OR TP No.	Bh	15	DATE SAMPLED:	29-Oct-18	
LAB No. :		06030		TESTED BY:	D, Bei	trand	DATE RECEIVED:	06-Nov-18	
SAMPLED BY:		W. Tabaczuk	210-00	DATE REPT D	13-No	ov-18	DATE TESTED:	09-Nov-18	
				SAMPLE INFORMAT	IKON	and the state			
SAMPLEMASS	1	47.6	!	50.30					
SPECIFIC GR	AVITY (Gs)	2.700			REM	ARKS	<u></u>		
HYGROSCOPI	C MOISTURE	Tare No.							
TARE Wt.	50.00	ACTUAL WI.							
AIR DRY (Wa)	150.00	100.00							
OVEN DRY (Wo)	146.75	96.75							
F=(Wo/Wa)	0	.968							
INITIAL Wt. (Ma)	5	0:30							
WI. CORRECTED	. 4	8.67							
Wt. AFTER WAS	H BACK SIEVE	17.73							
SOLUTION CONCE	NTRATION	40 g / L							
17				GRAIN SIZE ANALY	SIS	1	in the second		
SIF	VE DIAMETER	(mm)	WEIGHT		PERCENT	RETAINED	PERCENT	ASSING	
			TECH	INTIANA (M)				noonte	
	63.0	1	and the second						
	53.0	1		and the					
	37.5	1	CARL AND						
	26,5								
	19.0	1		Transferra					
	16.0								
	13.2	1		0.0	0.	0	100.	0	
	9,5	0		4.9	3.	3	96,	7	
	4.75			9.8	6.	6	93.4	<u>4.</u>	
	2.0			14.3	9.	7	90.3	3	
	Pan	2		33.3					
En moderne som	weeks and	and the state of the	- Section of			The second			
	0.850			2.19	13	.6	86.4	<u>1</u>	
	0.425			4.49	17	.7		3	
<u> </u>	0.250	100		7.37	22	.9	77.	<u> </u>	
	0.106	1		3.55	34	.0	66.)	
	0.075	1	1	6.92	40	.1	59.	9	
	Pan		1	7.73					
SIEVE	CHECK	0.0	MA	K = 0.3%					
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		124 N. 1972		HYDROMETER DA	TA	93358			
ELAPSED	TIME (24 hours)	Hs	Hc	Temp. (°C)	DIAMETER	(P)	TOTAL PERCE	NT PASSING	
1	10:32	21,0	6.0	22.0	0.0469	30.5	27.	5	
2	10:33	19.0	6.0	22.0	0.0336	26.4	23.	ə	
5	10:36	17,0	6.0	22.0	0.0215	22.4	20.3	2	
15	10:46	15.0	6.0	22.0	0.0126	18.3	16.	5	
30	11:01	14.0	6.0	22.0	0.0090	16.3	14.1	7	
60	11:31	13.0	6.0	22.0	0.0064	14.2	12.1	3	
250	14:41	12.0	6.0	22.0	0.0031	12.2	11.)	
1440	10:31	11.0	6.0	22.0	0.0013	10.2	9.2		
and the second of the				COMMENTS		S 7			
Moisture Cont	ent = 15.3%						<u> </u>		
		Curtis Beadow	· · · · · ·				Joe Forsyth, P. Eng.		
REVIEWED BY:				APPRO	VED BY:	gent-			

Certificate of Analysis **Client: Paterson Group Consulting Engineers** Client PO: 25691

Order #: 1850490

Report Date: 17-Dec-2018

Order Date: 13-Dec-2018

Project Description: PG4778

	_				
	Client ID:	BH2 SS3 5' - 7'	-	-	-
	Sample Date:	12/12/2018 11:00	-	-	-
	Sample ID:	1850490-01	-	-	-
	MDL/Units	Soil	-	-	-
Physical Characteristics					
% Solids	0.1 % by Wt.	69.7	-	-	-
General Inorganics					
рН	0.05 pH Units	7.47	-	-	-
Resistivity	0.10 Ohm.m	43.1	-	-	-
Anions					
Chloride	5 ug/g dry	41	-	-	-
Sulphate	5 ug/g dry	102	-	-	-

APPENDIX 2

FIGURE 1 - KEY PLAN

FIGURES 2 & 3 - SEISMIC SHEAR WAVE VELOCITY PROFILES

DRAWING PG4783-1 - TEST HOLE LOCATION PLAN

FIGURE 1

KEY PLAN

patersongroup -

FIGURE 2 - Shear Wave Velocity Profile at Shot Location -15 m

FIGURE 3 – Shear Wave Velocity Profile at Shot Location +72 m

15

patersongroup

