INNES ROAD DEVELOPMENT 3817 - 3843 INNES ROAD OTTAWA, ONTARIO

TRANSPORTATION IMPACT ASSESSMENT STRATEGY REPORT

December 22, 2020

D. J. Halpenny & Associates Ltd.

INNES ROAD DEVELOPMENT 3817 - 3843 INNES ROAD OTTAWA, ONTARIO

TRANSPORTATION IMPACT ASSESSMENT STRATEGY REPORT

December 22, 2020

Prepared for:

Bridor Development 996 St. Augustin Road Embrun, Ontario K0A 1W0

723 TIA Analysis.doc

D. J. Halpenny & Associates Ltd.

Consulting Transportation Engineers P.O. Box 774, Manotick, ON K4M 1A7 - Tel (613) 692-8662 - David@DJHalpenny.com

TABLE OF CONTENTS

	PAGE
STEP 1 - SCREENING	1
STEP 2 - SCOPING	1
MODULE 2.1 – Existing and Planned Conditions MODULE 2.2 – Study Area and Time Periods MODULE 2.3 – Exemptions Review	11
STEP 3 - FORECASTING	13
MODULE 3.1 – Development-generated Travel Demands MODULE 3.2 – Background Network Travel Demands MODULE 3.3 – Demand Rationalization	16
STEP 4 - ANALYSIS	23
MODULE 4.1 – Development Design MODULE 4.2 – Parking MODULE 4.3 – Boundary Street Design MODULE 4.4 – Access Intersection Design MODULE 4.5 – Transportation Demand Management MODULE 4.6 – Neighbourhood Traffic Management MODULE 4.7 – Transit MODULE 4.8 – Review of Network Concept MODULE 4.9 – Intersection Design	28 29 31 39 43 43
SUMMARY	47
APPENDIX	49

LIST OF FIGURES

2.1	SITE LOCATION PLAN	2
2.2	CONCEPTUAL SITE PLAN	
2.3	PEAK AM AND PM HOUR TRAFFIC COUNTS	8
3.1	PEAK AM AND PM HOUR SITE GENERATED TRIPS	
3.2	2024 PEAK AM AND PM HOUR BACKGROUND TRAFFIC	19
3.3	2029 PEAK AM AND PM HOUR BACKGROUND TRAFFIC	20
3.4	2024 PEAK AM AND PM HOUR TOTAL TRAFFIC	21
3.5	2029 PEAK AM AND PM HOUR TOTAL TRAFFIC	22
4.1	INNES ROAD MEDIAN EXTENSION	45
LIST	OF TABLES	
2.1	COLLISION SUMMARY	10
3.1	VEHICLE TRIP GENERATION RATES	13
3.2	TOTAL PEAK HOUR SITE GENERATED TRIPS	13
3.3	MODE SHARE SUMMARY (Person-Trips)	14
3.4	FUTURE SITE GENERATED PERSON-TRIPS	15
3.5	PEAK HOUR DISTRIBUTION OF VEHICLE-TRIPS	15
4.1	PEDESTRIAN LEVEL OF SERVICE (PLOS) - Street Segment	29
4.2	BICYCLE LEVEL OF SERVICE (PLOS) - Street Segment	30
4.3	TRANSIT LEVEL OF SERVICE (PLOS) - Street Segment	30
4.4	TRUCK LEVEL OF SERVICE (PLOS) - Street Segment	
4.5	MULT-MODAL (MMLOS) SUMMARY TABLE - Street Segment	31
4.6	ACCESS 1/INNES INTERSECTION - LoS & Control Delay	
4.7	ACCESS 2/INNES INTERSECTION - LoS & Control Delay	
4.8	FRANK BENDER/INNES INTERSECTION - LoS & v/c Ratio	
4.9	VISENEAU/INNES INTERSECTION - LoS & v/c Ratio	
4.10	JEANNE D'ARC/INNES INTERSECTION - LoS & v/c Ratio	
4.11	PEDESTRIAN LEVEL OF SERVICE (PLOS) - Intersection	
4.12	BICYCLE LEVEL OF SERVICE (PLOS) - Intersection	
4.13	TRANSIT LEVEL OF SERVICE (PLOS) - Intersection	
4.14	TRUCK LEVEL OF SERVICE (TkLOS) - Intersection	
4.15	MULT-MODAL (MMLOS) SUMMARY TABLE - Intersection	44

INNES ROAD DEVELOPMENT 3817 - 3843 INNES ROAD OTTAWA, ONTARIO

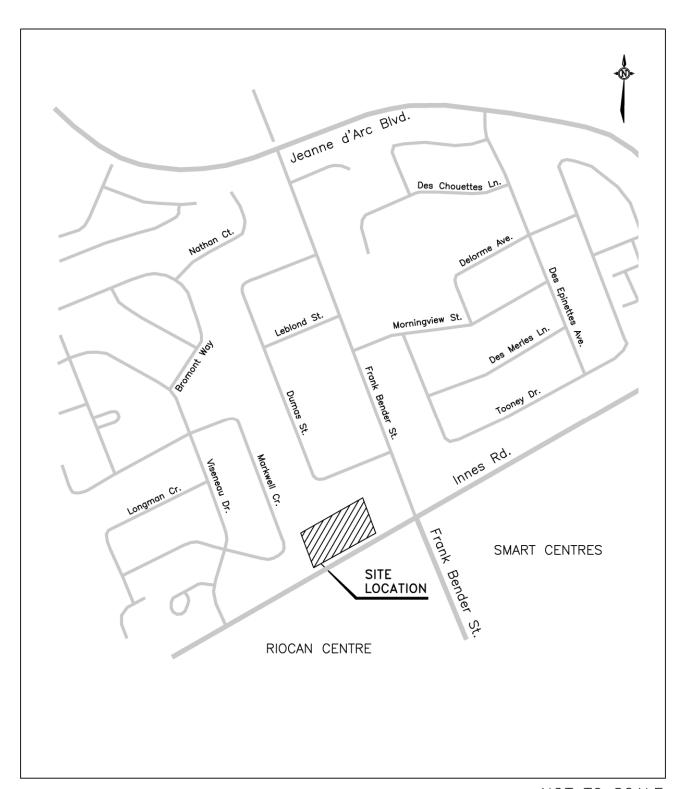
TRANSPORTATION IMPACT ASSESSMENT STRATEGY REPORT

STEP 1 - SCREENING

A Screening Form has been prepared which is included as Exhibit 1.1 in the Appendix. The Screening Form was submitted to the City of Ottawa along with the Scoping Document. The Screening Form has determined that the Trip Generation, Location, and Safety Triggers have been met and a Transportation Impact Assessment (TIA) must continue onto the next stage. The following will address the Scoping Document.

STEP 2 - SCOPING

MODULE 2.1 – Existing and Planned Conditions


Element 2.1.1 – Proposed Development

The proposed Innes Road Development will be located on three blocks of land at 3817, 3835 and 3843 Innes Road. The total property is 7,268 m² in size and is located on the north side of Innes Road approximately 132 m west of the intersection of Frank Bender Street and Innes Road. The three sites currently have two existing residential buildings. Development in the area consists of retail and commercial development along Innes Road and residential development on the local streets north of Innes Road. The property is currently zoned R4Z, Residential Fourth Density, which will support the proposed apartment development. Figure 2.1 provides a location plan of the site.

The Innes Road Development will consist of three apartment buildings, each on a separate Block of land. The development will be constructed in three phases, one phase for each Block of land and apartment building. The total development will comprise of 97 residential rental apartments. The site will contain 45 surface parking spaces and 76 spaces in an underground parking garage for a total of 121 parking spaces which include 6 barrier free spaces. Bicycle racks will be provided in a secured bicycle room in the underground parking garage. The site will have a bicycle room for each Block providing a total of 47 spaces for bike parking.

The site will provide two points of access onto Innes Road. The first access is located approximately 152 m west of Frank Bender Street and the second access 110 m west of Frank Bender Street. Both accesses will be restricted to right-in/right-out turning movements which would be controlled by a raised center median along Innes Road.

FIGURE 2.1 SITE LOCATION PLAN

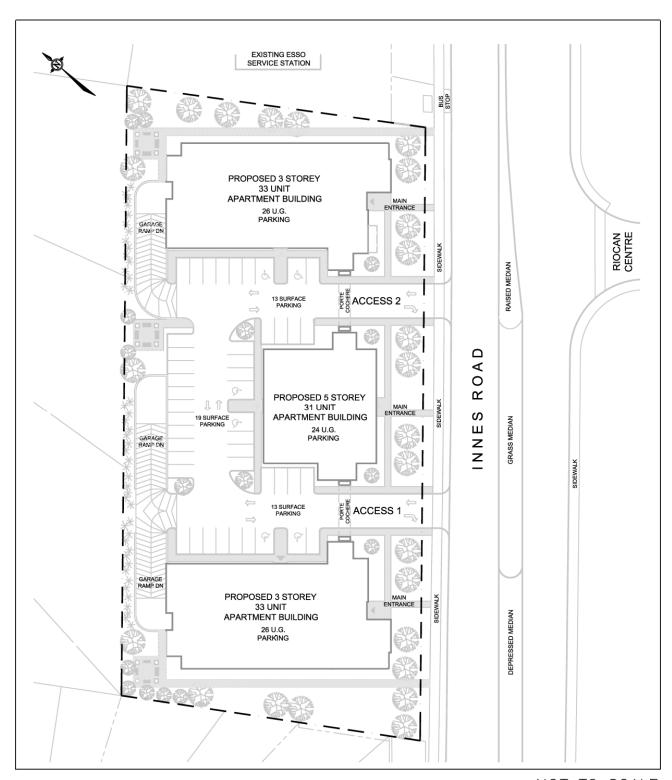
3

A conceptual site plan of all three phases of the development is provided as Figure 2.2. The total development is expected to be completed and substantially occupied by the year 2024.

Element 2.1.2 – Existing Conditions

ROADS

The Innes Road Development is located along the north side of Innes Road. Adjacent to the east limit of the site is an Esso Service Centre with convenience mart which has two right-in/right-out accesses onto Innes Road, and one full movement access onto Frank Bender Street. There are no other driveways onto Innes Road along the north side between Viseneau Drive and Frank Bender Street. Along the south side of Innes Road across from the site is the Riocan Shopping Centre. There is one right-in/right-out access on the south side of Innes Road across from the east portion of the site.


Innes Road is a four lane divided roadway which is under the jurisdiction of the City of Ottawa and is designated in the Ottawa 20/20 – Transportation Master Plan (TMP) as an east-west arterial road. Innes Road in the vicinity of the site is designated as a "Spine Route" in the City's TMP with cycling lanes provided along the roadway adjacent to the site. There are pedestrian sidewalks along both sides of the road. The speed limit along Innes Road is posted at 60 km./h.

Approximately 132 m east of the site is Frank Bender Street. Frank Bender Street is a north-south road designated in the TMP as a two lane collector road in the section north of Innes Road which passes through a residential neighbourhood, and a major collector road south of Innes Road. The north section the road is a two lane urban street with a sidewalk along the east side of the road and a posted speed limit of 40 km./h. There are 5 speed humps along the road between Innes Road and Jeanne d'Arc Boulevard. The south section of road is a four lane divided road with sidewalks along both sides of the street which provides access to the retail and commercial shopping centres.

Viseneau Drive is located approximately 240 m west of the site. The road is designated as collector road with a two lane urban cross section. Signs are posted which prohibits The speed limit is posted at 40 km./h. Viseneau Drive has a pedestrian sidewalk along the west side of the road. There are no cycling facilities along the road and the road is not designated as a cycling route.

Jeanne d'Arc Boulevard is located approximately 730 m east of the site and is designated in the City of Ottawa TMP as an arterial road. The road has a four lane divided urban cross section with a posted speed limit of 60 km./hr. Jeanne d'Arc Boulevard is designated as a "Spine Route" in the TMP. There are no dedicated cycling facilities along the road, which has pedestrian sidewalks along both sides of the road. South of Innes Road Jeanne d'Arc Boulevard becomes Mer Bleue Road. Mer Bleue Road is identified as an arterial road in the TMP. The road has a posted speed limit of 60 km./hr. with sidewalks along both sides of the road. The road is identified as a "Spine Route" and has designated cycling lanes.

FIGURE 2.2 CONCEPTUAL SITE PLAN

INTERSECTIONS

The intersection of Frank Bender Street and Innes Road is controlled by traffic signals with Innes Road forming the eastbound and westbound approaches, and Frank Bender Street the northbound and southbound approaches. The intersection has the following lane configuration:

Northbound Frank Bender Street Approach One exclusive left turn lane

One through lane

One exclusive right turn lane

Southbound Frank Bender Street Approach One exclusive left turn lane

One shared through/right lane

Eastbound Innes Road Approach One exclusive left turn lane

Two through lanes

One exclusive right turn lane

Westbound Innes Road Approach One exclusive left turn lane

One through lane

One shared through/right lane

INTERSECTION OF FRANK BENDER STREET AND INNES ROAD

The intersection of Viseneau Drive and Innes Road is controlled by traffic signals with Viseneau Drive forming the southbound approach, and the access to the Riocan Centre shopping centre the northbound approach. The intersection has the following lane configuration:

Northbound Riocan Centre Approach

Southbound Viseneau Drive Approach Eastbound Innes Road Approach

Westbound Innes Road Approach

One exclusive left turn lane

One through lane

One exclusive right turn lane
One shared left/through/right lane

One exclusive left turn lane

Two through lanes

One exclusive right turn lane

One exclusive left turn lane

One shared through/right lane

INTERSECTION OF VISENEAU DRIVE AND INNES ROAD

The intersection of Jeanne d'Arc Boulevard (Mer Bleue Road) and Innes Road is controlled by traffic signals where Jeanne d'Arc Boulevard forms the southbound approach and Mer Bleue Road the northbound approach. The intersection has the

following lane configuration:

Westbound Innes Road Approach

Northbound Mer Bleue Road Approach Two exclusive left turn lanes

One through lane

One shared through/right lane (channelized)

Southbound Jeanne d'Arc Blvd. Approach Two exclusive left turn lanes

One through lane

One shared through/right lane (channelized)

Eastbound Innes Road Approach

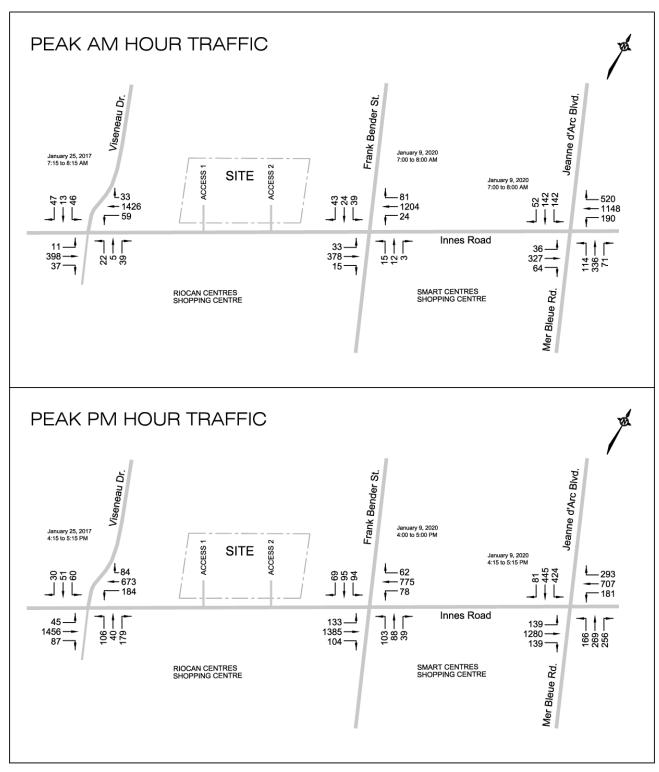
One exclusive left turn lane

Two through lanes

One exclusive right turn lane (channelized)

One exclusive left turn lane

Two through lanes


One exclusive right turn lane (channelized)

INTERSECTION OF JEANNE D'ARC BOULEVARD AND INNES ROAD

Figure 2.3 shows the weekday peak AM and PM hour traffic counts obtained from the City of Ottawa at the Frank Bender/Innes intersection taken January 9, 2020, the Viseneau/Innes intersection taken January 25, 2017, and the Jeanne d'Arc/Innes intersection taken January 9, 2020. The traffic counts are presented in the Appendix as Exhibit 2.1 for the Frank Bender/Innes intersection, Exhibit 2.2 for the Viseneau/Innes intersection, and Exhibit 2.3 for the Jeanne d'Arc/Innes intersection.

FIGURE 2.3
PEAK AM AND PM HOUR TRAFFIC COUNTS

TRANSIT

The site is well serviced by transit with Local Routes 131 and 138 traveling past the site, with Route 131 traveling to the Jeanne d'Arc Rapid Route Station and Route 138 travelling to both the Jeanne d'Arc and Place d'Orléans Rapid Route Stations. Frequent Route 25 travels along Innes Road between the Blair Transitway Station and the Millennium Rapid Route Station. Weekday peak hour service is provided by Route 231 which travels along Viseneau Drive to the Jeanne d'Arc Rapid Route Station.

Bus stops are located along Innes Road in close proximity to the site with the westbound Innes Road stop located in front of the Esso Service Centre at the northwest corner of the Frank Bender/Innes intersection, and the eastbound Innes Road stop located at the southeast corner of the Frank Bender/Innes intersection.

COLLISION HISTORY

Collision reports were obtained from the City of Ottawa through Open Data Ottawa for the five year time period between the years January 1, 2014 and December 31, 2018.

The collision data was obtained for the Frank Bender/Innes, Viseneau/Innes, and the Jeanne d'Arc/Innes intersections along with the road segments along Innes Road between Viseneau Drive and Frank Bender Street, and Frank Bender Street and Jeanne d'Arc Boulevard. Over the five year period there were 34 collisions at the Frank Bender/Innes intersection, and 14 collisions along Innes Road segment past the site. The Viseneau/Innes and Jeanne d'Arc/Innes intersections experienced 36 and 104 collisions respectively. The road segment between Frank Bender Street and Jeanne d'Arc Boulevard experienced 38 collisions over the same five year period. The collision data for all intersections and road segments showed that the majority of collisions were rear end collisions which would not be attributed to the roadway infrastructure. A summary of the type and year of each collision is provided in Table 2.1.

Element 2.1.3 – Planned Conditions

The City of Ottawa Transportation Master Plan 2013 was reviewed to identify transit and roadway projects in the vicinity of the development which may have an impact on travel demands and trip patterns. The document identified in the 2031 Affordable Network the extension of the LRT Confederation Line from the Blair Road Transit Station easterly to Place d'Orléans. Under the 2031 Affordable Transit Priority projects, peak period bus lanes and transit signal priority were identified along Blackburn Hamlet Bypass between Innes Road and Brian Coburn Boulevard.

Under the roadway projects, the document identified the extension of Brian Coburn Boulevard. Phase 1 has already been completed between Mer Bleue Road and Navan Road which was identified in the TMP to take place between 2014 and 2019. Phase 2 will be the continuation of the extension of Brian Coburn Boulevard from Navan Road to Innes Road and is identified in the TMP. The alignment options are still under review.

TABLE 2.1 COLLISION SUMMARY

\/= - =	COLLISION TYPE					
YEAR	REAR END ANGULAR TURNING SIDESWIPE OTHER-SMV					
Frank Bend	der Street and Ini	nes Road Interse	ection	•		
2014	2	0	2	1	1	6
2015	6	1	1	2	0	10
2016	3	0	3	0	0	6
2017	4	1	1	0	0	6
2018	3	0	2	1	0	6
TOTAL	18	2	9	4	1	34
Viseneau D	Prive and Innes R	oad Intersection	1			
2014	2	2	2	0	0	6
2015	3	0	3	0	0	6
2016	7	2	1	0	1	11
2017	0	0	4	0	0	4
2018	6	0	0	3	0	9
TOTAL	18	4	10	3	1	36
Jeanne d'A	arc Boulevard an	d Innes Intersec	tion			
2014	11	2	4	1	1	19
2015	12	1	1	0	2	16
2016	9	1	6	2	1	19
2017	11	4	9	3	1	28
2018	12	1	6	3	0	22
TOTAL	55	9	26	9	5	104
Innes Road	Between Visene	eau Drive and Fr	ank Bender Stre	eet		
2014	3	0	0	1	0	4
2015	1	0	0	2	0	3
2016	1	0	0	3	0	4
2017	2	0	0	0	0	2
2018	0	0	0	1	0	1
TOTAL	7	0	0	7	0	14
Innes Road	Between Frank	Bender Street a	nd Jeanne d'Arc	Boulevard		
2014	3	1	1	3	0	8
2015	3	2	0	3	0	8
2016	5	1	1	1	1	9
2017	3	0	1	1	1	6
2018	6	0	0	1	0	7
TOTAL	20	4	3	9	2	38

The TMP has identified the construction of queue jump lanes and transit signal priority at selected intersections along Innes Road between Jeanne d'Arc Boulevard and Blackburn Hamlet Bypass as a Transit Priority Project in the 2031 Affordable Network. The measures would reduce travel time and improve reliability.

Other study area developments which may have an impact of the surrounding road network which are in the approval process or have been approved are the following:

2025 Innes Road - The SmartREIT is located 1.0 kilometre east of the site at the southeast corner of the Jeanne d'Arc/Innes intersection. The development will comprise of approximately 183,000 $\rm ft^2$ gross floor area of retail space, 30,000 $\rm ft^2$ of restaurant, and 10,000 $\rm ft^2$ for banking use.

3434 Innes Road - The development is a six storey mixed-use building located at the northwest corner of the intersection of Innes Road and Page Road which is approximately 1.3 km west of the site. The development would provide 35 residential units above a ground floor commercial use.

3490 Innes Road - The development is located on the south side of Innes Road just east of Page Road and about 1.2 km west of the site. The development would consist of a subdivision with 534 single family residential homes and townhouse units.

3604 Innes Road - The development is a subdivision located on the south side of Innes Road at the intersection of Boyer Road. The subdivision would be approximately 825 m west of the site and would comprise of 457 single family and townhouse dwellings units.

MODULE 2.2 – Study Area and Time Periods

Element 2.2.1 - Study Area

The number of site generated trips would be low with the TIA Trip Generation Trigger just meeting the 90 unit trigger with a total of 97 apartment units. The Location Trigger was met due to the site location being in a Design Priority Area (DPA), and the Safety Trigger met by being within 150 m of a signalized intersection.

The study area was determined following an examination of the size of the development and TIA Triggers satisfied by the development, along with all major intersections located within 1 km. of the site as stipulated in the TIA Guidelines. The study area would comprise of the site accesses onto Innes Road and the Frank Bender/Innes, Viseneau/Innes, and Jeanne d'Arc/Innes intersections. The road segment would consist of Innes Road between Frank Bender Street and Viseneau Drive, and the segment between Frank Bender Street and Jeanne d'Arc Boulevard.

The study will examine the intersection geometry and roadway segments in accordance with the City of Ottawa *Transportation Impact Assessment Guidelines (2017).*

Element 2.2.2 – Time Periods

The time periods for the analysis would be determined from the background traffic from the traffic counts obtained from the City of Ottawa at the Frank Bender/Innes intersection. The peak hours for the analysis would be the weekday peak AM and PM hours which would coincide with the trips from the residential apartment units of the development.

Element 2.2.3 – Horizon Years

The development would be constructed in three phases, with each phase representing the construction of one apartment building. The total development is expected to be completed and substantially occupied by the year 2024. The TIA study will examine the site at the completion of all three phases in 2024, and the impact of the development traffic at five years beyond completion at the year 2029.

MODULE 2.3 – Exemptions Review

The exemptions, which provide possible reductions to the scope of work of the TIA Study, were examined using Table 4: Possible Exemptions which is provided in the City's Transportation Impact Assessment Guidelines (2017). Utilizing the table, the following lists the possible exemptions proposed for the TIA Study report:

MODULE	ELEMENT	EXEMPTION CONSIDERATIONS	
Design Review Componen	t		
4.1 Development Design	4.1.2 Circulation and Access	No - The access and circulation of on-site traffic will be examined.	
4.1 Development Design	4.1.3 New Street Networks	Yes – The development does not propose any new municipal streets.	
4.2 Parking	4.2.1 Parking Supply	No – Parking does not meet the City of Ottawa parking Bylaws.	
4.2 Parking	4.2.2 Spillover Parking	No - Spillover will be examined as parking does not meet bylaws.	
Network Impact Compone	nt		
4.5 Transportation Demand Management	All Elements	No – TDM measures will be examined.	
4.6 Neighbourhood Traffic Management	4.6.1 Adjacent Neighbourhoods	Yes – Access to the development will be from an arterial road.	
4.8 Network Concept		Yes - The site would not generate more than 200 person-trips per peak hour in excess of the volume permitted by established zoning.	

STEP 3 - FORECASTING

MODULE 3.1 - Development-generated Travel Demand

Element 3.1.1 – Trip Generation and Mode Shares

The residential development at 3817 - 3843 Innes Road would consist of 97 residential apartments in three free-standing buildings. Two of the buildings would be 3 storeys in height and one building 5 storeys, with the site having two accesses onto Innes Road. The site will provide both surface and underground parking.

The number of expected site generated trips utilized the trip statistical data documented in the *2009 TRANS Trip Generation Study* report. The analysis used the Vehicle Trip Generation Rates from Table 6.3 of the TRANS document for ITE Land Use 223, "Midrise apartments (3-10 floors)". The Base Rate was for a Suburban Area (Outside the Greenbelt). The number of site generated trips was proportioned inbound/outbound to the directional distribution shown in Table 3.17 of the document. The trips rates and distribution are shown below in Table 3.1.

TABLE 3.1 VEHICLE TRIP GENERATION RATES

Trip Rate	Peak A	M Hour	Peak PM Hour		
Blended Trip Rate	0.29 T/Dwe	elling Units	0.37 T/Dwelling Units		
Directional Distribution	24% Entering	77% Exiting	62% Entering	39% Exiting	

The site generated trips were determined by the product of the number of dwelling units (97 apartment units) and the trip rates during the peak hour as shown in Table 3.1. The total number of auto-trips is shown in Table 3.2. The person-trips were determined by the number of auto-trips divided by the mode share for the number of vehicle-trips. The mode share used was from Table 3.13 of the 2009 TRANS Trip Generation Study report for an apartment development in a suburban area (outside the greenbelt). The mode share is 0.44 vehicle-trips for the peak AM hour and PM hour. Table 3.2 shows the future peak hour person-trips.

TABLE 3.2 TOTAL PEAK HOUR SITE GENERATED TRIPS

A northwest I laite	AUTO-TRIP (SENERATION	FUTURE PERSON-TRIPS		
Apartment Units	Peak AM Hr.	Peak PM Hr.	Peak AM Hr.	Peak PM Hr.	
97 Apartment Units	28 veh.	36 veh.	64 per.	82 per.	

The modal split of trips was determined from the City of Ottawa document, 2011 NCR Household Origin-Destination Survey, January 2013, and comments from City of Ottawa staff. The primary travel modal share used the demographic characteristics for the Orleans Area (Page 104) for trips. The residential modal share was based on all observed trips within the Orleans district, including those with an origin or destination beyond that area. Table 3.3 presents the modal share summary which will be used in the TIA study for the residential land use.

TABLE 3.3 MODE SHARE SUMMARY (Person-Trips)

Future Mode Share Targets for the Development				
Travel Mode		Rationale		
Auto Driver	55%	Consistent with modal share targets		
Auto Passenger	10%	and proximity to employment areas		
Transit	30%	Consistent with the 2009 TRANS and		
Non-Auto	5%	2011 TRANS-OD reports		

OC Transpo provides Local Routes 131 and 138 and Frequent Route 25 which travel past the site along Innes Road to OC Transpo transit stations. The bus stops are located as far side bus stops at the Frank Bender/Innes intersection which is 132 m east of the site. Cycling lanes are provided along Innes Road which is identified in the City of Ottawa TMP as a Spine Route. Pedestrian sidewalks are provided on both sides of Innes Road and Jeanne d'Arc Boulevard, and along one site of the street for both Viseneau Drive and Frank Bender Street.

The peak hour person-trips per mode were determined by the product of the peak hour future person-trips from Table 3.2 and the future mode share from Table 3.3. The results are shown in Table 3.4 for the residential apartment building on Innes Road.

The TIA Guidelines allow for three Trip Reduction Factors. The three trip reductions would consist of trips from existing development on site, pass-by trips, and shared trips within the site between two or more uses. No trip reduction factors were applied for the following reasons:

- 1. The existing buildings on site would generate a negligible number of new trips.
- 2. The residential use would generate all primary trips with no pass-by trips.
- 3. The residential apartments would be a single use with no shared trips between other uses on site.

TABLE 3.4 FUTURE SITE GENERATED PERSON-TRIPS

TRAVEL MODE	DEVELOPMENT GENERATED PERSON-TRIPS			
TRAVEL MODE	PEAK AM HR.	PEAK PM HR.		
Auto Driver	35 per. trips	45 per. trips		
Auto Passenger	7 per. trips	8 per. trips		
Transit	19 per. trips	25 per. trips		
Non-Auto	3 per. trips	4 per. trips		
Total Trips	64 per. trips	82 per. trips		

Element 3.1.2 – Trip Distribution

The distribution of site generated vehicle trips for the proposed apartment development was determined from the background traffic at major intersections in the area which would comprise mainly of trips to/from work. The trip pattern was applied to the surrounding roads assuming the shortest and most convenient route. distribution was also compared to the distribution of trips from other traffic studies in the area. The trip distribution for the residential trips during the weekday peak AM and PM hour is as follows:

To/From the north along Frank Bender Street 10% (to Jeanne d'Arc Blvd.)

To/From the east along Innes Road 20% To/From the west along Innes Road 70%

Element 3.1.3 – Trip Assignment

The distribution of site generated vehicle-trips was determined by applying the directional distribution shown in Table 3.1 to the Auto Driver trips shown in Table 3.4. Table 3.5 presents the distribution of vehicle-trips entering and exiting the site.

TABLE 3.5 PEAK HOUR DISTRIBUTION OF VEHICLE-TRIPS

PEAK HOUR	WEEKD	AY PEAK	AM HR.	WEEKDAY PEAK PM HR		
BUILDING USE	TOTAL	ENTER	EXIT	TOTAL	ENTER	EXIT
97 Apartment Units	35	8 (24%)	27 (77%)	45	28 (62%)	17 (39%)

The trip distribution, as discussed in Element 3.1.2, was applied to the peak AM and PM peak hour vehicle-trips shown in Table 3.5. Figure 3.1 presents the peak AM and PM hour residential trips to/from the site.

MODULE 3.2 - Background Network Travel Demands

Element 3.2.1 – Transportation Network Plans

The City of Ottawa *Transportation Master Plan (TMP) 2013* was reviewed to identify transit and roadway projects in the vicinity of the development. The proposed changes to the transportation network are identified in this report under Element 2.1.3 - Planned Conditions. The most significant changes in the network would be the proposed extension of Brian Coburn Boulevard from Navan Road to Innes Road, and the construction of the Cumberland Transitway between Blair Road and Frank Kenny Road. These projects would be outside the study area of the TIA, but would reduce traffic along Innes Road past the site.

Element 3.2.2 – Background Growth

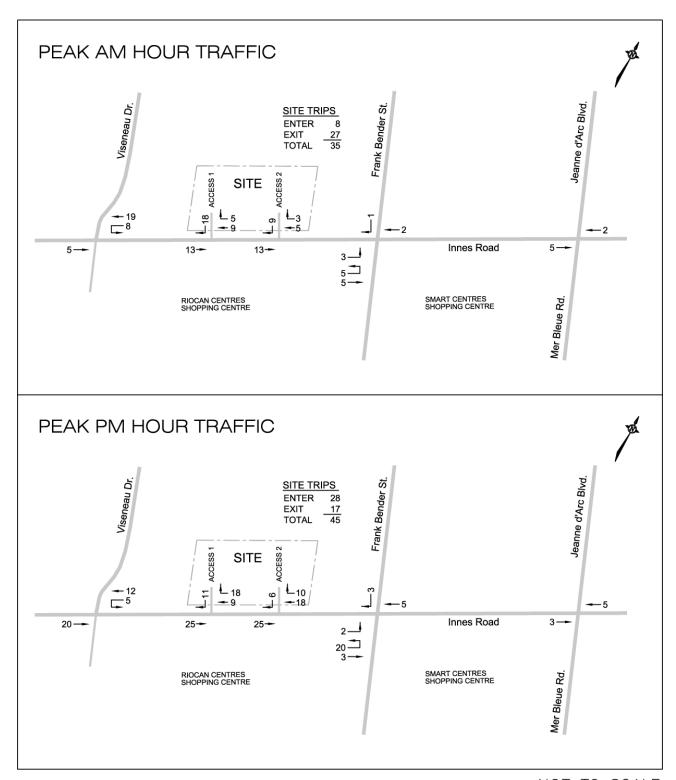
The background growth in traffic represents the increase or decrease in traffic due to development outside the study area. The study has examined historical traffic counts along Innes Road past the site. The 2016 counts taken along Innes Road when compared to the 2020 counts, determined that with the exception of the eastbound peak PM hour traffic, the eastbound/westbound peak AM hour and westbound peak PM hour traffic all experienced a reduction in traffic over the four year period.

The trip trend of trips to/from the Ottawa Inner Area for auto driver trips was examined in the *National Capital Region Travel Trends* document prepared by the IBI Group. The document showed that trips from the Orleans Area increased at an annual compounded rate of 1.47 percent for the peak AM hour between the years of 2005 and 2011.

The study has therefore assumed that the background traffic would experience an annual average compounded increase of 1.0 percent which is consistent with traffic studies for other development in the area. The 1.0 percent annual increase would translate to the following growth factors which were applied to all intersection approaches:

Growth Factor at the Frank Bender/Innes and Jeanne d'Arc/Innes Intersections

```
2020 \rightarrow 2024 = 1.041 Completion
```


 $2020 \rightarrow 2029 = 1.094$ Completion + 5 Years

Growth Factor at the Viseneau/Innes Intersection

```
2017 \rightarrow 2024 = 1.072 Completion
```

 $2017 \rightarrow 2029 = 1.127$ Completion + 5 Years

FIGURE 3.1
PEAK AM AND PM HOUR SITE GENERATED TRIPS

Element 3.2.3 – Other Developments

The study area comprises of the road segment and intersections along Innes Road between Viseneau Drive and Jeanne d'Arc Boulevard (Mer Bleue Road). Other developments in the area are identified in Element 2.1.3 - Planned Conditions. The TIA studies for the other developments were reviewed and it was determined that the background growth factors would account for the expected new development in the area. The extension of the Brian Coburn Boulevard from Navan Road to Innes Road and the construction of the Cumberland Transitway would result in a reduction of traffic past the site.

Figure 3.2 presents the 2024 peak AM and PM peak hour background vehicle traffic (does not include trips from the proposed apartment development). Figure 3.3 shows the expected 2029 peak hour background traffic which represents five years beyond completion of the development. All background traffic includes the 1.0 percent annual average compounded increase in traffic.

MODULE 3.3 - Demand Rationalization

Innes Road and the signalized intersections within the study area would not exhibit capacity issues with travel demand. The roadway, cycling facilities, and OC Transpo bus routes with direct access to transit stations, would provide sufficient capacity to handle the expected trips from the apartment development. There would be no requirement to reduce travel demand from the development due to insufficient infrastructure capacity.

The total vehicular traffic is the sum of the peak hour site generated trips and the peak hour background traffic. The site generated trips would be the addition of the apartment trips from Figure 3.1, and the background traffic (Figure 3.2 for the year 2024 and Figure 3.3 for the year 2029). Figure 3.4 presents the total 2024 peak hour vehicular traffic and Figure 3.5 the total 2029 peak hour vehicular traffic.

FIGURE 3.2 2024 PEAK AM AND PM HOUR BACKGROUND TRAFFIC

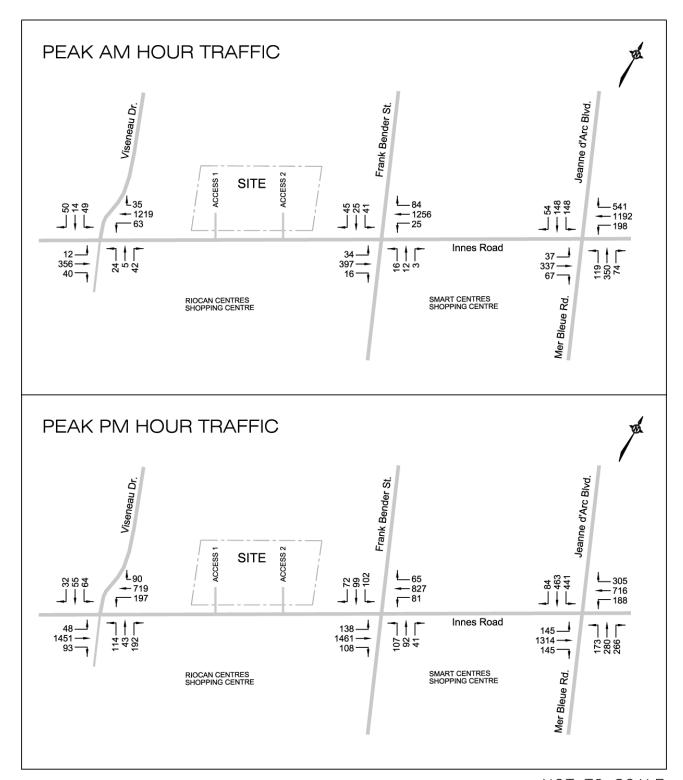


FIGURE 3.3 2029 PEAK AM AND PM HOUR BACKGROUND TRAFFIC

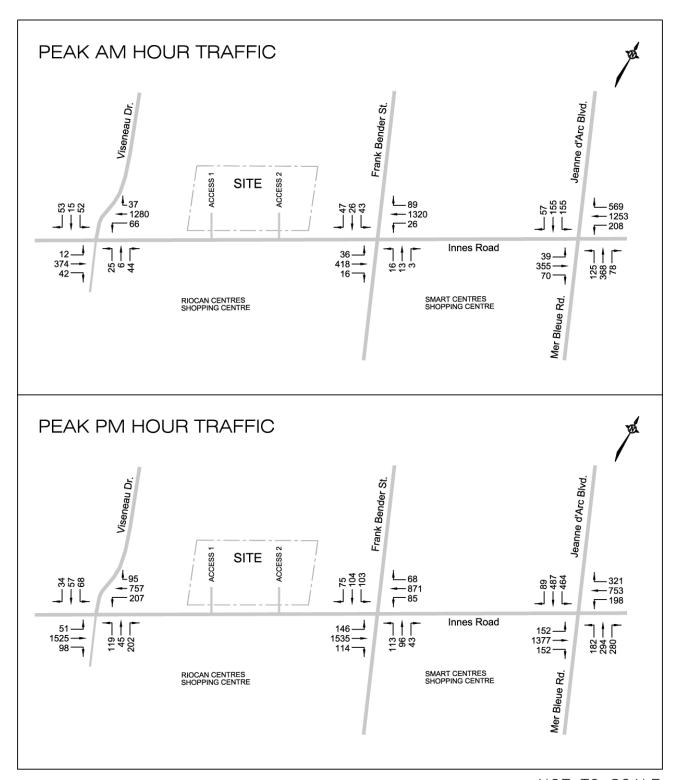


FIGURE 3.4 2024 PEAK AM AND PM HOUR TOTAL TRAFFIC

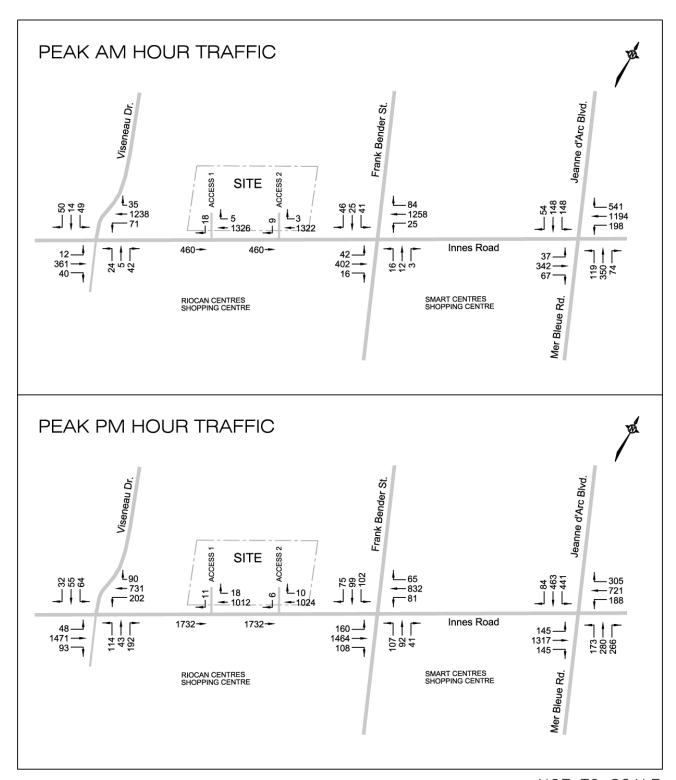
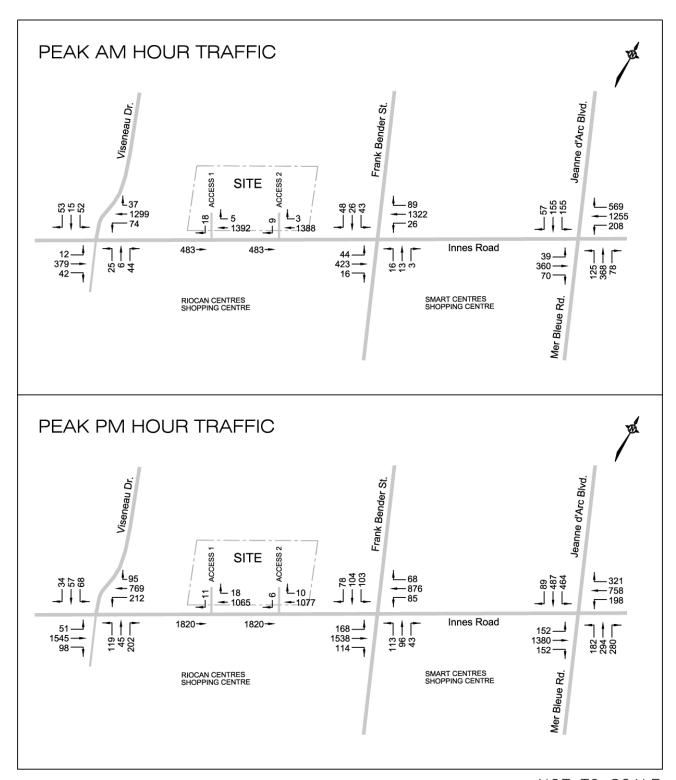



FIGURE 3.5 2029 PEAK AM AND PM HOUR TOTAL TRAFFIC

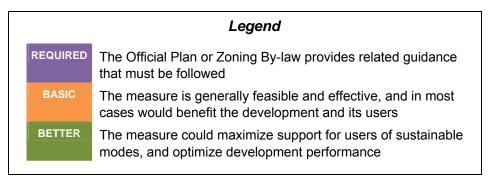
STEP 4 - ANALYSIS

MODULE 4.1 – Development Design

Element 4.1.1 – Design for Sustainable Modes

The Site Plan provides on-site parking for residents of the apartment building. There are 45 surface and 76 underground parking spaces for a total of 121 vehicular parking spaces of which 6 will be designated as barrier free. The underground parking garage will have access onto Innes Road from both Access 1 and Access 2. The parking provided does not meet the 136 space parking requirements of the City of Ottawa Bylaws. An amendment to the By-laws are required.

There is storage space (racks) for 56 bicycles on site. On the surface, bike racks would be located outside the entrance to each of the three buildings for total of 9 storage spaces. There would be storage for 47 bicycles in a secured bicycle storage room in the underground parking garage.


There are pedestrian sidewalks along both sides of Innes Road and the site is in close proximity to a signalized intersection (Frank Bender/Innes) which will allow pedestrians a safe crossing of Innes Road to the retail and commercial on the south side of the road.

The site is served by several OC Transpo transit routes with bus stops within close proximity (< 200 m) to all entrances to the apartment buildings. The eastbound and westbound Innes Road transit routes have bus stops located at the intersection of Frank Bender Street and Innes Road.

The study has utilized the *TDM - Supportive Development Design and Infrastructure Checklist* for a Residential Development which is provided below. The checklist examines the opportunity to implement facilities which are supportive of sustainable modes.

TDM-Supportive Development Design and Infrastructure Checklist:

Residential Developments (multi-family or condominium)

	TDM-s	supportive design & infrastructure measures: Residential developments	Check if completed & add descriptions, explanations or plan/drawing references
	1.	WALKING & CYCLING: ROUTES	
	1.1	Building location & access points	
BASIC	1.1.1	Locate building close to the street, and do not locate parking areas between the street and building entrances	The building has an surface parking at the side and rear with underground parking
BASIC	1.1.2	Locate building entrances in order to minimize walking distances to sidewalks and transit stops/stations	☐ The building and entrances are adjacent to the street
BASIC	1.1.3	Locate building doors and windows to ensure visibility of pedestrians from the building, for their security and comfort	
	1.2	Facilities for walking & cycling	
REQUIRED	1.2.1	Provide convenient, direct access to stations or major stops along rapid transit routes within 600 metres; minimize walking distances from buildings to rapid transit; provide pedestrian-friendly, weather-protected (where possible) environment between rapid transit accesses and building entrances; ensure quality linkages from sidewalks through building entrances to integrated stops/stations (see Official Plan policy 4.3.3)	OC Transpo bus stops are on close proximity to the site
REQUIRED	1.2.2	Provide safe, direct and attractive pedestrian access from public sidewalks to building entrances through such measures as: reducing distances between public sidewalks and major building entrances; providing walkways from public streets to major building entrances; within a site, providing walkways along the front of adjoining buildings, between adjacent buildings, and connecting areas where people may congregate, such as courtyards and transit stops; and providing weather protection through canopies, colonnades, and other design elements wherever possible (see Official Plan policy 4.3.12)	∑ The main building entrances are close to the public sidewalk

	TDM-s	supportive design & infrastructure measures: Residential developments	Check if completed & add descriptions, explanations or plan/drawing references
REQUIRED	1.2.3	Provide sidewalks of smooth, well-drained walking surfaces of contrasting materials or treatments to differentiate pedestrian areas from vehicle areas, and provide marked pedestrian crosswalks at intersection sidewalks (see Official Plan policy 4.3.10)	
REQUIRED	1.2.4	Make sidewalks and open space areas easily accessible through features such as gradual grade transition, depressed curbs at street corners and convenient access to extra-wide parking spaces and ramps (see Official Plan policy 4.3.10)	Sitting areas for tenants are easily accessible at the rear of the apartment buildings
REQUIRED	1.2.5	Include adequately spaced inter-block/street cycling and pedestrian connections to facilitate travel by active transportation. Provide links to the existing or planned network of public sidewalks, multi-use pathways and onroad cycle routes. Where public sidewalks and multi-use pathways intersect with roads, consider providing traffic control devices to give priority to cyclists and pedestrians (see Official Plan policy 4.3.11)	
BASIC	1.2.6	Provide safe, direct and attractive walking routes from building entrances to nearby transit stops	☐ The building entrances are close to the public sidewalk
BASIC	1.2.7	Ensure that walking routes to transit stops are secure, visible, lighted, shaded and wind-protected wherever possible	All walking routes are along an arterial road with street lighting
BASIC	1.2.8	Design roads used for access or circulation by cyclists using a target operating speed of no more than 30 km/h, or provide a separated cycling facility	
	1.3	Amenities for walking & cycling	
BASIC	1.3.1	Provide lighting, landscaping and benches along walking and cycling routes between building entrances and streets, sidewalks and trails	
BASIC	1.3.2	Provide wayfinding signage for site access (where required, e.g. when multiple buildings or entrances exist) and egress (where warranted, such as when directions to reach transit stops/stations, trails or other common destinations are not obvious)	

Check if completed & **TDM-supportive design & infrastructure measures:** add descriptions, explanations Residential developments or plan/drawing references 2. WALKING & CYCLING: END-OF-TRIP FACILITIES 2.1 Bicycle parking REQUIRED 2.1.1 Provide bicycle parking in highly visible and lighted areas, sheltered from the weather wherever possible storage rooms in the (see Official Plan policy 4.3.6) underground parking garage REQUIRED 2.1.2 Provide the number of bicycle parking spaces specified for various land uses in different parts of Ottawa; provide 47 bicycle parking provide convenient access to main entrances or wellspaces in the garage used areas (see Zoning By-law Section 111) REQUIRED 2.1.3 Ensure that bicycle parking spaces and access aisles \boxtimes meet minimum dimensions; that no more than 50% of spaces are vertical spaces; and that parking racks are securely anchored (see Zoning By-law Section 111) 2.1.4 Provide bicycle parking spaces equivalent to the **BASIC** expected number of resident-owned bicycles, plus the spaces meet City By-laws expected peak number of visitor cyclists 2.2 Secure bicycle parking REQUIRED 2.2.1 Where more than 50 bicycle parking spaces are □ N/A provided for a single residential building, locate at least 25% of spaces within a building/structure, a secure area (e.g. supervised parking lot or enclosure) or bicycle lockers (see Zoning By-law Section 111) **BETTER** 2.2.2 Provide secure bicycle parking spaces equivalent to at The parking is located within least the number of units at condominiums or multithe garage with the number family residential developments meeting By-law requirements 2.3 Bicycle repair station 2.3.1 Provide a permanent bike repair station, with commonly BETTER used tools and an air pump, adjacent to the main bicycle parking area (or secure bicycle parking area, if provided) 3. **TRANSIT Customer amenities** 3.1 3.1.1 Provide shelters, lighting and benches at any on-site □ N/A transit stops 3.1.2 Where the site abuts an off-site transit stop and □ N/A insufficient space exists for a transit shelter in the public right-of-way, protect land for a shelter and/or install a shelter □ N/A 3.1.3 Provide a secure and comfortable interior waiting area **BETTER** by integrating any on-site transit stops into the building

	TDM-s	supportive design & infrastructure measures: Residential developments	add descriptions, explanations or plan/drawing references
	4.	RIDESHARING	
	4.1	Pick-up & drop-off facilities	
BASIC	4.1.1	Provide a designated area for carpool drivers (plus taxis and ride-hailing services) to drop off or pick up passengers without using fire lanes or other no-stopping zones	
	5.	CARSHARING & BIKESHARING	
	5.1	Carshare parking spaces	
BETTER	5.1.1	Provide up to three carshare parking spaces in an R3, R4 or R5 Zone for specified residential uses (see Zoning By-law Section 94)	
	5.2	Bikeshare station location	
BETTER	5.2.1	Provide a designated bikeshare station area near a major building entrance, preferably lighted and sheltered with a direct walkway connection	
	6.	PARKING	
	6.1	Number of parking spaces	
REQUIRED	6.1.1	Do not provide more parking than permitted by zoning, nor less than required by zoning, unless a variance is being applied for	∑ The Site Plan provides 121 surface and garage parking spaces. The By-law requires 136 spaces
BASIC	6.1.2	Provide parking for long-term and short-term users that is consistent with mode share targets, considering the potential for visitors to use off-site public parking	
BASIC	6.1.3	Where a site features more than one use, provide shared parking and reduce the cumulative number of parking spaces accordingly (see Zoning By-law Section 104)	□ N/A
BETTER	6.1.4	Reduce the minimum number of parking spaces required by zoning by one space for each 13 square metres of gross floor area provided as shower rooms, change rooms, locker rooms and other facilities for cyclists in conjunction with bicycle parking (see Zoning By-law Section 111)	
	6.2	Separate long-term & short-term parking areas	
BETTER	6.2.1	Provide separate areas for short-term and long-term parking (using signage or physical barriers) to permit access controls and simplify enforcement (i.e. to discourage residents from parking in visitor spaces, and vice versa)	

57 1

Element 4.1.2 – Circulation and Access

The site will have two right-in/right-out accesses. Both accesses will have a pavement width of 6.7 m and a clear throat length of 22 m which meets the TAC guidelines for the minimum clear throat length for a major driveway onto an arterial road for an apartment land use.

The designated fire route connects to Innes Road from Access 1 and Access 2. The fire route is 6.7 m in width.

All service vehicles and moving vans will park along the aisle by the main access to the building to load/unload. The two access points to Innes Road provide an efficient circulation of vehicles through the site.

Garbage containers will be kept in an isolated area in the parking garage and will be moved up the ramp by management or the private garbage contractor to be emptied at the entrance to the garage.

The existing four entrances (depressed curb) and sidewalk onto Innes Road for the previous uses will be removed under the proposed Site Plan.

Element 4.1.3 – New Street Networks

Exempt as determined in the Scoping Document.

MODULE 4.2 – Parking

Element 4.2.1 – Parking Supply

The on-site parking will comprise of 19 visitor parking spaces and 102 spaces for tenants for a total of 121 parking spaces for 97 apartment units. City of Ottawa By-laws require 136 parking spaces for the total development.

Parking demand was examined utilizing the parking documented in the Institute of Transportation Engineers (ITE) Parking Generation, 3rd Edition manual. The parking demand was determined for Land Use: 221 - Low/Mid-Rise Apartment land use category. The manual calculation used an Average Peak Period Parking Demand of 1.20 vehicles per dwelling unit during a weekday in a suburban location. For a 97 unit apartment development, the ITE Average Peak Period Parking Demand was 116 parking spaces. The parking demand calculation determined that the supply of parking spaces provided on the Site Plan would meet the average peak period parking demand.

Element 4.2.2 – Spillover Parking

The apartment development will provide 121 parking spaces. With the available transit service along Innes Road past the site and the high employment opportunities in the

area from the commercial and retail in close proximity to the site, parking is not

expected to be a problem.

If spillover parking were to take place, the closest area for on-street parking would be along Drolet Street which is a local street located behind the site and a minimum 285 m walk from the building entrances. Spillover parking is not expected to be an issue.

MODULE 4.3 – Boundary Street Design

The City of Ottawa Complete Streets concept allows for the safe movement of everyone whether they choose to walk, bike, drive, or take public transit. The boundary roads to the site would consist of Innes Road which the site borders the north side of the road. Frank Bender Street and Viseneau Drive are collector streets located east and west of the site.

Innes Road is an arterial road with pedestrian sidewalks along both sides of the road and a posted speed limit of 60 km./h. Frequent transit service routes pass along Innes Road adjacent to the site providing transit service to the Place d'Orléans Rapid Route Station and the Blair Transit Station.

The multi-modal level of service for the Innes Road segment between Jeanne d'Arc Boulevard and Viseneau Drive was determined utilizing the City of Ottawa publication, *Multi-Modal Level of Service (MMLOS) Guidelines*. The following examined the MMLOS for the various modes of travel along the Bank Street road segment.

PEDESTRIAN LEVEL OF SERVICE (PLOS)

There are sidewalks along both sides of Innes Road. The sidewalks are 2.0 m in width with a 1.5 m boulevard. Table 4.1 presents the level of service for the street segment adjacent to the site, with the analysis sheets provided in the Appendix.

TABLE 4.1
PEDESTRIAN LEVEL OF SERVICE (PLOS) – Street Segment

Street	Segment	Level of Service	Analysis
Innes Road	Jeanne d'Arc Blvd. to Viseneau Dr.	E	Exhibit 4.1

BICYCLE LEVEL OF SERVICE (BLOS)

Innes Road along the road segment is designated as a Spine Route in the TMP. A cycling lane of 2.0 m width is provided along both sides of Innes Road. Table 4.2 presents the level of service for the Innes Road segment with the analysis sheets provided in the Appendix.

TABLE 4.2
BICYCLE LEVEL OF SERVICE (BLOS) – Street Segment

Street	Segment	Level of Service	Analysis
Innes Road	Jeanne d'Arc Blvd. to Viseneau Dr.	D	Exhibit 4.2

TRANSIT LEVEL OF SERVICE (TLOS)

OC Transpo provides transit service with Local Routes 131 and 138 traveling past the site to the Jeanne d'Arc and Place d'Orléans Rapid Route Stations, and Frequent Route 25 traveling to the Blair Transitway Station. Table 4.3 presents the level of service along the Innes Road segment between Jeanne d'Arc Boulevard and Viseneau Drive. The analysis sheets are provided in the Appendix.

TABLE 4.3
TRANSIT LEVEL OF SERVICE (TLOS) – Street Segment

Street	Segment	Level of Service	Analysis
Innes Road	Jeanne d'Arc Blvd. to Viseneau Dr.	D	Exhibit 4.3

TRUCK LEVEL OF SERVICE (TkLOS)

The truck LoS was determined for the Innes Road segment adjacent to the site. The City of Ottawa has designated Innes Road as a rural truck route. Table 4.4 presents the truck level of service with the analysis sheets provided in the Appendix.

TABLE 4.4
TRUCK LEVEL OF SERVICE (TkLOS) – Street Segment

Street	Segment	Level of Service	Analysis
Innes Road	Jeanne d'Arc Blvd. to Viseneau Dr.	Α	Exhibit 4.4

Traffic collisions along the Innes Road segment between Jeanne d'Arc Boulevard and Viseneau Drive are shown in Table 2.1 in Element 2.1.2. Over the five year period between January 1, 2014 and December 31, 2018, 52 collisions were recorded along the Innes Road segment. The pattern of collisions did not identify any measures which could be taken to reduce the number of collisions.

The Innes Road segment was analyzed to determine the level of service which was compared to the MMLOS targets for pedestrians, bicycles, transit and trucks. The calculated Level of Service (LoS) as shown in Tables 4.1 to 4.4 is compared to the LoS targets for all modes of travel for an Arterial Main Street as designated in the Official Plan - Urban Policy Plan. The LoS targets were obtained from Exhibit 22 of the Multi-Modal Level of Service (MMLOS) Guidelines. Table 4.5 summarizes the MMLOS results for the road segments and targets.

TABLE 4.5 MULTI-MODAL (MMLOS) SEGMENT SUMMARY TABLE - Street Segment

SEGMENTS	Level of Service (LoS) – 2029				
SEGMENTS	Pedestrian	Bicycle	Transit	Auto	Truck
SEGMENT					
Calculated Innes Road	E	D	D	-	Α
Target	С	С	D	-	D

Road Segment - Innes Road between Viseneau Drive and Jeanne d'Arc Boulevard

The pedestrian LoS did not meet the target due to the speed and volume of traffic along Innes Road.

The bicycle LoS target was not met because of the speed of traffic along Innes Road.

MODULE 4.4 – Access Intersection Design

Element 4.4.1 – Location and Design of Access

The development proposes two right-in/right-out accesses onto Innes Road with a separation of 42 m. Access 1 is the most westerly access which is located 152 m west of Frank Bender Street and 225 m east of Viseneau Drive. Access 2 is the easterly access located 110 m west of Frank Bender Street. The turning movements at both accesses are controlled by a center median along Innes Road past the site. In order to control the turning movements at Access 1, the center median was extended 50 m further east.

Both the accesses have a 6.7 m pavement width with one lane entering and one right turn lane exiting. Both accesses have a clear throat length of 22 m.

The Esso Service Station is located adjacent to the east property line of the development. The station has two right-in/right-out accesses onto Innes Road with the first located 45 m east of Access 2 and the second 70 m. Along the south side of Innes

Road is the Riocan Centre shopping centre which has one access onto Innes Road which is located 10 m east of Access 2 with right-in/right-out turning movements controlled by the center median.

Element 4.4.2 – Intersection Control

The two site accesses onto Innes Road would be right-in/right-out accesses controlled by a center median. The traffic controls would consist of the installation of a stop sign at the southbound Access 1 and Access 2 exiting lane.

Element 4.4.3 – Intersection Design

The analysis of the Frank Bender/Innes, Viseneau /Innes, and Jeanne d'Arc/Innes intersections were completed for all modes using the *Multi-Modal Level of Service* (MMLOS) Guidelines and the Highway Capacity Manual (HCM) 2010. Each mode will be addressed in the following sections:

VEHICLE LEVEL OF SERVICE (LoS) – Intersection Capacity Analysis

The analysis of the site accesses and the Frank Bender/Innes, Viseneau /Innes, and Jeanne d'Arc/Innes intersections will use the *Highway Capacity Software, Version 7.8.5*, which uses the capacity analysis procedure as documented in the *Highway Capacity Manual (HCM) 2010 and HCM 6th Edition*.

For unsignalized intersections, the level of service of each lane movement and approach is determined as a function of the average control delay of vehicles at the approach. The following relates the level of service of each lane movement with the expected control delay at the approach.

LEVEL OF SERVICE	AVERAGE CONTRO	OL DELAY
Level of Service A	0-10 sec./vehicle	Little or No Delay
Level of Service B	>10-15 sec./vehicle	Short Traffic Delays
Level of Service C	>15-25 sec./vehicle	Average Traffic Delays
Level of Service D	>25-35 sec./vehicle	Long Traffic Delays
Level of Service E	>35-50 sec./vehicle	Very Long Traffic Delays
Level of Service F	>50 sec./vehicle	Extreme Delays – Demand Exceeds Capacity

The expected length of queue at the critical lane movements for an unsignalized two-way stop controlled intersection was determined by the calculation of the 95th percentile queue at the lane approach. The 95th percentile queue length is the calculated 95th greatest queue length out of 100 occurrences at a movement during a 15-minute peak period. The 95th percentile queue length is a function of the capacity of a movement and the total expected traffic, with the calculated value determining the magnitude of the queue by representing the queue length as fractions of vehicles.

For a signalized intersection, the operation or level of service of an intersection is determined from the volume to capacity ratio (v/c) for each lane movement as

documented by the City of Ottawa in the Transportation Impact Assessment Guidelines (2017). The following relates the level of service with the volume to capacity ratio at each lane movement.

LEVEL OF SERVICE	VOLUME TO CAPACITY RATIO
Level of Service A	0 to 0.60
Level of Service B	0.61 to 0.70
Level of Service C	0.71 to 0.80
Level of Service D	0.81 to 0.90
Level of Service E	0.91 to 1.00
Level of Service F	> 1.00

The results of the analysis are discussed in detail in the following sections:

Access 1 and Innes Road Intersection

The intersection of Access 1 and Innes Road is the westerly access to the site and is located 46 m east of the west property limit of the site. The access is a "T" intersection which is restricted to right-in/right-out turn movements. The turning movements would be controlled by the center median along Innes Road which will be extended 50 m west of the present position under the Innes Road Development project. A stop sign will be placed at the southbound site exit approach with the access providing the following intersection geometry:

Southbound Access 1 Approach Eastbound Innes Road Approach Westbound Innes Road Approach

One right turn lane (Stop Sign) Two through lanes One through lane

One shared through/right lane

The operational analysis was conducted for the expected southbound right turn movements during the 2024 and 2029 peak AM and PM hours. The right turn approach was determined to function at a Level of Service (LoS) "C" during the 2024 peak AM hour and at a LoS "B" during the peak PM hour. Table 4.6 summarizes the 2024 operation of the intersection with the analysis sheets provided in the Appendix as Exhibit 4.5 and Exhibit 4.6.

TABLE 4.6 ACCESS 1/INNES INTERSECTION – LoS & Control Delay

INTERSECTION APPROACH	WEEKDAY PEAK AM HOUR 2024 Total (2029 Total)		WEEKDAY PEAK PM HOUR 2024 Total (2029 Total)	
	LoS	Delay (sec.)	LoS	Delay (sec.)
SB Right - Access 1	C (C)	15.6 (16.2)	<i>B</i> (B)	12.8 (13.2)

For the year 2029 traffic, the southbound approach to the intersection would continue to

function at a LoS "C" during the peak AM hour and LoS "B" during the peak PM hour as shown in Table 4.6, with the analysis sheets provided as Exhibit 4.7 for the peak AM hour and 4.8 for the peak PM hour. The 95th percentile queue for the 2029 traffic was 0.2 vehicles (7 m) during the peak AM hour at the southbound approach, with the site plan providing a 22 m clear throat distance.

The construction of the Access 1 approach would not trigger any roadway modifications to Innes Road with the exception of a Private Approach Permit.

Access 2 and Innes Road Intersection

Access 2 would be located 42 m east of Access 1 and would be a right-in/right-out access with turning movements controlled by the existing center median. The Access 2 intersection would have following intersection geometry:

Southbound Access 2 Approach Eastbound Innes Road Approach Westbound Innes Road Approach One right turn lane (Stop Sign)

Two through lanes One through lane

One shared through/right lane

The operational analysis determined that the access would function at a LoS "C" during the peak AM hour and LoS "B" during the peak PM hour for the 2024 traffic. Table 4.7 summarizes the 2024 operation of the intersection with the analysis sheets provided as Exhibit 4.9 for the peak AM hour and Exhibit 4.10 for the peak PM hour.

TABLE 4.7 ACCESS 2/INNES INTERSECTION – LoS & Control Delay

INTERSECTION APPROACH	WEEKDAY PEAK AM HOUR 2024 Total (2029 Total)		WEEKDAY PEAK PM HOUR 2024 Total (2029 Total)	
	LoS	Delay (sec.)	LoS	Delay (sec.)
SB Right - Access 2	C (C)	15.2 (15.8)	<i>B</i> (B)	13.0 (13.3)

For the 2029 traffic, the southbound approach would continue to function at a LoS "C" during the peak AM hour and LoS "B" during the peak PM hour as shown in Table 4.7 and Exhibits 4.11 and 4.12. The 95th percentile queue at the southbound approach to Innes Road would be 0.1 vehicles (7 m) during the peak AM hour with a clear throat distance at the southbound Access 2 approach of 22 m.

The construction of the Access 2 approach would not trigger any roadway modifications to Innes Road with the exception of a Private Approach Permit.

Frank Bender Street and Innes Road Intersection

The intersection of Frank Bender Street and Innes Road is located 132 m east of the site. The intersection is controlled by traffic signals with Innes Road forming the eastbound and westbound approaches and Frank Bender Street the northbound and southbound approaches. The intersection was examined using the traffic signal timing plan which was obtained from the City of Ottawa. The analysis was for the existing 2020 traffic counts (Figure 2.3), for the 2029 background traffic which does not include the site generated trips (Figure 3.3), and the expected 2024 and 2029 total traffic including site trips (Figures 3.4 and 3.5).

The analysis determined that all approaches operated at an acceptable level of service for all peak AM periods, and at an acceptable level of service during the peak PM hour for all periods with the exception of the eastbound Innes Road through movement which functioned at a LoS "E". All approaches functioned at the same level of service when comparing the 2029 background to the 2029 total traffic (including site trips). The additional site generated trips had only a minor impact on the operation of the intersection and did not trigger any required roadwork. Table 4.8 summarizes the operation of the intersection with the analysis sheets provided as Exhibits 4.13 to 4.20.

TABLE 4.8 FRANK BENDER/INNES INTERSECTION – LoS & v/c Ratio

INTERSECTION APPROACH	2020 Existi	WEEKDAY PEAK AM HOUR 2020 Existing 2029 Background 2024 Total (2029 Total)		WEEKDAY PEAK PM HOUR 2020 Existing 2029 Background 2024 Total (2029 Total)	
	LoS	v/c Ratio	LoS	v/c Ratio	
EB Left - Innes	A A A (A)	0.177 0.230 <i>0.244</i> (0.282)	A A A (A)	0.396 0.468 <i>0.495</i> (0.541)	
EB Through - Innes	A A A (A)	0.243 0.269 <i>0.259</i> (0.272)	D E <i>E</i> (E)	0.869 0.963 <i>0.918</i> (0.965)	
EB Right - Innes	A A A (A)	0.022 0.024 <i>0.024</i> (0.024)	A A A (A)	0.151 0.165 <i>0.157</i> (0.165)	
WB Left - Innes	A A A (A)	0.133 0.144 <i>0.138</i> (0.144)	A A A (A)	0.251 0.344 <i>0.328</i> (0.344)	
WB Through - Innes	hrough - Innes B C B (C) 0.651 0.712 0.679 (0.713)		A A A (A)	0.395 0.433 <i>0.414</i> (0.436)	
WB Right - Innes	B C B(C)	0.654 0.719 <i>0.684</i> (0.720)	A A A (A)	0.395 0.433 <i>0.414</i> (0.436)	
NB Left - Frank Bender	A A A (A)	0.042. 0.046 <i>0.045</i> (0.046)	A A A (A)	0.498 0.583 <i>0.541</i> (0.592)	
NB Through - Bender	A A A (A)	0.026 0.029 <i>0.026</i> (0.029)	A A A (A)	0.229 0.250 <i>0.239</i> (0.250)	
NB Right - F Bender	A A A (A)	0.008 0.008 <i>0.008</i> (0.008)	A A A (A)	0.122 0.135 <i>0.128</i> (0.135)	
SB Left - Frank Bender A A A (A		0.096 0.106 <i>0.101</i> (0.106)	A A A (A)	0.342 0.384 <i>0.376</i> (0.384)	
SB Through - F Bender	A A A (A)	0.169 0.184 <i>0.17</i> 9 (0.187)	A A A (A)	0.470 0.512 <i>0.4</i> 99 (0.522)	

Viseneau Drive and Innes Road Intersection

The intersection of Viseneau Drive and Innes Road is located 240 m west of the site. The intersection is controlled by traffic signals with Innes Road forming the eastbound and westbound approaches, Viseneau Drive the southbound approach, and the Riocan Centre access the northbound approach. The traffic signal timing plan obtained from the City of Ottawa was used for all analysis periods.

The analysis determined that all approaches functioned at an acceptable level of service during the peak AM hour for all analysis periods. During the peak PM periods, all movements functioned at an acceptable level of service for all analysis periods with the exception of the eastbound Innes Road through movement which functioned at a LoS "F" for the 2029 traffic. All approaches functioned at the same level of service when comparing the 2029 background to the 2029 total traffic (including site trips). The additional site generated trips had only a minor impact on the operation of the intersection and did not trigger any required roadwork. Table 4.9 summarizes the operation of the intersection with the analysis sheets provided as Exhibits 4.21 to 4.28.

TABLE 4.9
VISENEAU/INNES INTERSECTION – LoS & v/c Ratio

INTERSECTION APPROACH	WEEKDAY PEAK AM HOUR 2017 Existing 2029 Background 2024 Total (2029 Total)		WEEKDAY PEAK PM HOUR 2017 Existing 2029 Background 2024 Total (2029 Total)	
	LoS	v/c Ratio	LoS	v/c Ratio
EB Left - Innes	A A A (A)	0.092 0.080 <i>0.075</i> (0.082)	A A A (A)	0.129 0.159 <i>0.146</i> (0.161)
EB Through - Innes	A A A (A)	0.285 0.268 <i>0.258</i> (0.271)	E F <i>E</i> (F)	0.973 1.019 <i>0.983</i> (1.032)
EB Right - Innes	A A A (A)	0.061 0.070 <i>0.066</i> (0.070)	A A A (A)	0.135 0.152 <i>0.144</i> (0.152)
WB Left - Innes	A A A (A)	0.327 0.366 <i>0.3</i> 93 (0.410)	C D C (D)	0.728 0.812 <i>0.799</i> (0.839)
WB Through - Innes	C C B (C)	0.800 0.723 <i>0.699</i> (0.734)	A A A (A)	0.376 0.424 <i>0.408</i> (0.430)
WB Right - Innes	D C C (C)	0.803 0.725 <i>0.701</i> (0.736)	A A A (A)	0.377 0.424 <i>0.408</i> (0.430)
NB Left - Riocan	A A A (A)	0.055 0.065 <i>0.061</i> (0.065)	A A A (A)	0.367 0.438 <i>0.408</i> (0.438)
NB Through - Riocan	A A A (A)	0.009 0.011 <i>0.009</i> (0.011)	A A A (A)	0.089 0.100 <i>0.095</i> (0.100)
NB Right - Riocan	A A A (A)	0.087 0.098 <i>0.094</i> (0.098)	A A A (A)	0.484 0.547 <i>0.520</i> (0.547)
SB Left/Through/Right	A A A (A)	0.218 0.247 <i>0.23</i> 2 (0.247)	A A A (A)	0.334 0.377 <i>0.357</i> (0.377)

Jeanne d'Arc Boulevard and Innes Road Intersection

The intersection of Jeanne d'Arc Boulevard and Innes Road is located 730 m east of the site. The intersection is controlled by traffic signals with Innes Road forming the eastbound and westbound approaches, Mer Bleue Road the northbound approach, and Jeanne d'Arc Boulevard the southbound approach. The intersection was analyzed for all periods using the traffic signal timing plan obtained from the City of Ottawa.

The operational analysis determined that during the peak AM hour all movements, with the exception of the westbound left and through movements, functioned at an acceptable level of service for the 2024 and 2029 traffic. The westbound left turn movement functioned at a LoS "F" and westbound through movement at a LoS "E". During the peak PM hour all movements functioned at a LoS "E" or "F" with the exception of westbound Innes Road through movement and northbound Mer Bleue Road left turn movement which both functioned at a LoS "A" for the 2029 total traffic period. The site would distribute few site trips to the Jeanne d'Arc/Innes intersection resulting in only a minor impact on the operation of the intersection which would not trigger any required roadwork. Table 4.10 summarizes the operation of the intersection with the analysis sheets provided as Exhibits 4.29 to 4.36.

TABLE 4.10
JEANNE D'ARC/INNES INTERSECTION – LoS & v/c Ratio

INTERSECTION APPROACH	WEEKDAY PEAK AM HOUR 2020 Existing 2029 Background 2024 Total (2029 Total)		WEEKDAY PEAK PM HOUR 2020 Existing 2029 Background 2024 Total (2029 Total)	
	LoS	v/c Ratio	LoS	v/c Ratio
EB Left - Innes	A A A (A)	0.379 0.410 <i>0.389</i> (0.410)	E F <i>F</i> (F)	0.994 1.087 <i>1.037</i> (1.087)
EB Through - Innes	A A A (A)	0.255 0.277 <i>0.266</i> (0.280)	E F <i>F</i> (F)	0.992 1.068 <i>1.021</i> (1.070)
WB Left - Innes	F F <i>F</i> (F)	1.936 2.119 <i>2.017</i> (2.119)	F F <i>F</i> (F)	1.264 1.382 <i>1.312</i> (1.382)
WB Through - Innes	D E <i>E</i> (E)	0.873 0.953 <i>0.908</i> (0.954)	A A A (A)	0.552 0.588 <i>0.563</i> (0.592)
NB Left - Mer Bleue	A A A (A)	0.439 0.482 <i>0.458</i> (0.482)	A A A (A)	0.404 0.443 <i>0.421</i> (0.443)
NB Through - Mer Bleue	A B A (B)	0.559 0.613 <i>0.582</i> (0.613)	D E <i>D</i> (E)	0.838 0.916 <i>0.87</i> 2 (0.916)
NB Right - Mer Bleue	A B A (B)	0.570 0.624 <i>0.594</i> (0.624)	E F <i>F</i> (F)	0.963 1.053 <i>1.001</i> (1.053)
SB Left - Jeanne d'Arc	A A A (A)	0.547 0.597 <i>0.570</i> (0.597)	F F F (F)	1.025 1.121 <i>1.066</i> (1.121)
SB Through - Jeanne	A A A (A)	0.259 0.284 <i>0.270</i> (0.284)	D E <i>D</i> (E)	0.835 0.915 <i>0.868</i> (0.915)
SB Right - Jeanne d'Arc	A A A (A)	0.276 0.301 <i>0.287</i> (0.301)	D E <i>D</i> (E)	0.844 0.923 <i>0.877</i> (0.923)

PEDESTRIAN LEVEL OF SERVICE (PLOS)

The pedestrian level of service was determined utilizing the City of Ottawa publication, *Multi-Modal Level of Service (MMLOS) Guidelines*. There are sidewalks along both sides of Innes Road. The sidewalks are approximately 2.0 m in width and are adjacent to the curb. Table 4.11 presents the level of service for the three existing intersections, with the analysis sheets provided in the Appendix.

TABLE 4.11
PEDESTRIAN LEVEL OF SERVICE (PLOS) – Intersection

Intersection	Level of Service	Analysis
Frank Bender and Innes Road	Е	Exhibit 4.37
Viseneau Drive and Innes Road	F	Exhibit 4.38
Jeanne d'Arc Boulevard and Innes Road	E	Exhibit 4.39

BICYCLE LEVEL OF SERVICE (BLOS)

The bicycle level of service (BLOS) was determined for the three intersections along Innes Road. There are cycling lanes along Innes Road. Cycling lanes also exist along Mer Bleue Road, and Jeanne d'Arc Boulevard for a distance of approximately 100 m. Table 4.12 presents the level of service for the three intersections with the analysis sheets provided in the Appendix.

TABLE 4.12
BICYCLE LEVEL OF SERVICE (BLOS) – Intersection

Intersection	Level of Service	Analysis
Frank Bender and Innes Road	F	Exhibit 4.40
Viseneau Drive and Innes Road	F	Exhibit 4.41
Jeanne d'Arc Boulevard and Innes Road	F	Exhibit 4.42

TRANSIT LEVEL OF SERVICE (TLOS)

OC Transpo provides transit service along Innes Road past the site with Local Routes 131 and 138 and frequent service Route 25. The TMP has identified a transit signal priority project along Innes Road between Jeanne d'Arc Boulevard and the Blackburn Hamlet Bypass which would improve transit service. Table 4.13 presents the level of service at the three intersections which was determined from the evaluation tables

provided in the City of Ottawa publication, Multi-Modal Level of Service (MMLOS) Guidelines. The analysis sheets are provided in the Appendix.

TABLE 4.13 TRANSIT LEVEL OF SERVICE (TLOS) – Intersection

Intersection	Level of Service	Analysis
Frank Bender and Innes Road	E	Exhibit 4.43
Viseneau Drive and Innes Road	E	Exhibit 4.44
Jeanne d'Arc Boulevard and Innes Road	E	Exhibit 4.45

TRUCK LEVEL OF SERVICE (TkLOS)

Innes Road, Frank Bender Street, Jeanne d'Arc Boulevard and Mer Bleue Road are all designated as truck routes. Viseneau Drive north of Innes Road prohibits trucks, but the access to the Riocan Centre south of Innes Road allows truck travel. The level of service for the intersections is presented in Table 4.14 with the analysis sheets provided in the Appendix.

TABLE 4.14 TRUCK LEVEL OF SERVICE (TkLOS) – Intersection

Intersection	Level of Service	Analysis
Frank Bender and Innes Road	В	Exhibit 4.46
Viseneau Drive (Riocan Centre) and Innes Road	В	Exhibit 4.47
Jeanne d'Arc Boulevard and Innes Road	В	Exhibit 4.48

MODULE 4.5 – Transportation Demand Management

Element 4.5.1 – Context for TDM

The site is located along a major arterial road which functions at an acceptable level of service. The surrounding land uses consist mainly of commercial and retail uses which would experience only a minor impact by the trips generated by the development.

The area is well service by transit and pedestrian sidewalks and cycling network. The number of residential trips would be low due to the number of units and available multimodal travel options. With Innes Road designated as a four lane arterial road,

higher than expected site trips would not have a detrimental impact on the surrounding land uses.

Element 4.5.2 – Need and Opportunity

The residential component of the development would not require a program to promote various mode shares as the available transit routes and pedestrian/cycling facilities to the downtown core and transit stations would promote the use of alternative modes of travel. With the site located in close proximity to retail and other amenities, some tenants may not own a vehicle.

Element 4.5.3 – TDM Program

TDM measures could be implemented to encourage travel by sustainable modes which would be applied to the apartment development. The TDM measures, which would reduce the number of vehicle trips, would consist of the encouragement of transit and bicycle use. The programs would mainly be that of providing information in the form of transit schedules/routes, and maps showing designated bike routes.

The study has utilized the TDM Measures Checklist for a Residential Development which examines the implementation of facilities that are supportive of sustainable modes. The following provides the checklist which examines the Site Plan and transportation components for the proposed residential apartment development.

TDM Measures Checklist:

Residential Developments (multi-family, condominium or subdivision)

Legend The measure is generally feasible and effective, and in most cases would benefit the development and its users The measure could maximize support for users of sustainable modes, and optimize development performance The measure is one of the most dependably effective tools to encourage the use of sustainable modes

	TDM	measures: Residential developments	Check if proposed & add descriptions
	1.	TDM PROGRAM MANAGEMENT	
	1.1	Program coordinator	
BASIC	★ 1.1.1	Designate an internal coordinator, or contract with an external coordinator	
	1.2	Travel surveys	
BETTER	1.2.1	Conduct periodic surveys to identify travel-related behaviours, attitudes, challenges and solutions, and to track progress	
	2.	WALKING AND CYCLING	
	2.1	Information on walking/cycling routes & des	tinations
BASIC	2.1.1	Display local area maps with walking/cycling access routes and key destinations at major entrances (multi-family, condominium)	Area maps for walking/cycling can be displayed on an information board in the lobby
	2.2	Bicycle skills training	
BETTER	2.2.1	Offer on-site cycling courses for residents, or subsidize off-site courses	

		TDM	measures: Residential developments	Check if proposed & add descriptions
	3	3.	TRANSIT	
	3	3.1	Transit information	
BASIC	3	3.1.1	Display relevant transit schedules and route maps at entrances (multi-family, condominium)	☐ Transit schedules can be displayed on an information board in the lobby
BETTER	3	3.1.2	Provide real-time arrival information display at entrances (multi-family, condominium)	
	3	3.2	Transit fare incentives	
BASIC	★ 3	3.2.1	Offer PRESTO cards preloaded with one monthly transit pass on residence purchase/move-in, to encourage residents to use transit	
BETTER	3	3.2.2	Offer at least one year of free monthly transit passes on residence purchase/move-in	
	3	3.3	Enhanced public transit service	
BETTER	★ 3	3.3.1	Contract with OC Transpo to provide early transit services until regular services are warranted by occupancy levels (subdivision)	
	3	3.4	Private transit service	
BETTER	3	3.4.1	Provide shuttle service for seniors homes or lifestyle communities (e.g. scheduled mall or supermarket runs)	
	4	١.	CARSHARING & BIKESHARING	
	4	l.1	Bikeshare stations & memberships	
BETTER	4	1.1.1	Contract with provider to install on-site bikeshare station (<i>multi-family</i>)	
BETTER	4	1.1.2	Provide residents with bikeshare memberships, either free or subsidized <i>(multi-family)</i>	
	4	l.2	Carshare vehicles & memberships	
BETTER	4	1.2.1	Contract with provider to install on-site carshare vehicles and promote their use by residents	
BETTER	4	1.2.2	Provide residents with carshare memberships, either free or subsidized	
	_ 5	5.	PARKING	
	5	5.1	Priced parking	
BASIC	★ 5	5.1.1	Unbundle parking cost from purchase price (condominium)	
BASIC	* 5	5.1.2	Unbundle parking cost from monthly rent (multi-family)	Unbundling parking from

Check if proposed & TDM measures: Residential developments add descriptions 6. **TDM MARKETING & COMMUNICATIONS** 6.1 Multimodal travel information □ A multimodal travel information 6.1.1 Provide a multimodal travel option information package to new residents package can be included with the rental agreement 6.2 Personalized trip planning BETTER ★ 6.2.1 Offer personalized trip planning to new residents

MODULE 4.6 – Neighbourhood Traffic Management

Element 4.6.1 – Adjacent Neighbourhoods

Exempt as determined in the Scoping Document.

MODULE 4.7 - Transit

Element 4.7.1 – Route Capacity

OC Transpo provides Local Routes 131 and 138 and Frequent Route 25 along Innes Road past the site. The transit routes provide service locally to retail centers, and to transit stations and the downtown area. The low number of transit person trips would produce a minor impact on the capacity of transit in the area and would not trigger the need for additional transit capacity.

Element 4.7.2 – Transit Priority

The City of Ottawa has identified in the TMP that transit signal priority is already in place along Innes Road between Jeanne d'Arc Boulevard and Blackburn Hamlet Bypass. The transit signal priority would reduce transit delays of the buses along Innes Road.

MODULE 4.8 – Review of Network Concept

Exempt as determined in the Scoping Document.

MODULE 4.9 – Intersection Design

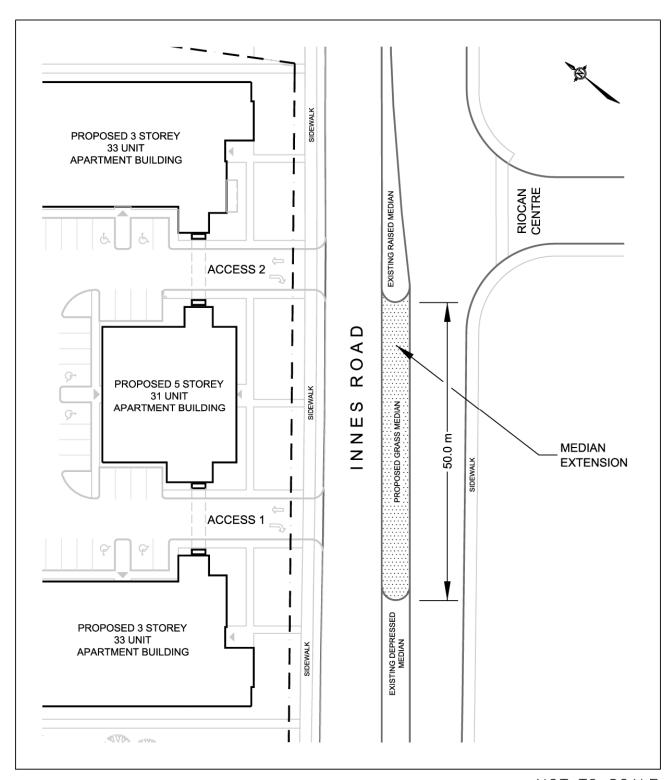
Element 4.9.1 – Intersection Control

The three intersections examined in the study (Frank Bender/Innes, Viseneau/Innes, Jeanne d'Arc/Innes) are all controlled by traffic signals. Transit signal priority already exists along Innes Road past the site which would reduce transit delays and improve service. No further intersection control measures are required.

Element 4.9.2 – Intersection Design

The two proposed accesses were analyzed to determine the operation from expected site generated trips, along with the three existing intersections along Innes Road in the study area. The performance analysis for all modes was determined in Element 4.4.3 Intersection Design. A summary of the MMLOS analysis is provided in Table 4.10 for the expected 2029 traffic at the three existing intersections. The Auto LoS for the intersections is provided for all lane movements in Element 4.4.3, but is not shown in Table 4.11 as the capacity of a signalized intersection as a whole is not addressed because both the design and the signalization focus on the accommodation of traffic movement on approaches to the intersection. The capacity analysis has followed the procedure documented in the HCM.

The calculated Level of Service (LoS) as shown in Tables 4.7 to 4.14 is compared to the LoS targets for all modes of travel. The LoS targets were obtained from Exhibit 22 of the Multi-Modal Level of Service (MMLOS) Guidelines. Table 4.15 summarizes the MMLOS results for the three intersections and targets.


TABLE 4.15 MULTI-MODAL (MMLOS) INTERSECTION SUMMARY TABLE - Intersection

INTERSECTION	Level of Service (LoS) – 2029									
INTERSECTION	Pedestrian	Bicycle	Transit	Auto	Truck					
CALCULATED										
Frank Bender/Innes	Е	F	Е	-	В					
Viseneau/Innes	F	F	Е	-	В					
Jeanne d'Arc/Innes	Е	F	Е	-	В					
TARGET	С	С	D	-	D					

Access 1 and Access 2

Both Access 1 and Access 2 are restricted to right-in/right-out turning movements. The turning movements are controlled by the center median along Innes Road. The existing median will control the turning movements at Access 2, but will require an extension of 50 m in order to control turning movements at Access 1. Figure 4.1 shows a functional design of the median extension along Innes Road. Following the roadway modifications, both Access 1 and Access 2 will operate at an acceptable level of service.

FIGURE 4.1 INNES ROAD MEDIAN EXTENSION

Till Calabogy Report

Frank Bender/Innes, Viseneau/Innes and Jeanne d'Arc/Innes Intersections

Auto LOS - The 2029 auto level of service was at an acceptable level for the Frank Bender/Innes intersection with the exception of the eastbound Innes Road through movement which functioned at a LoS "E" during the peak PM hour.

For expected 2029 traffic at the Viseneau/Innes intersection, the eastbound through movement exhibited a LoS "F" during the peak PM hour.

The Jeanne d'Arc/Innes intersection exhibited a LoS "E" or LoS "F" at the westbound intersection approach during the 2029 peak AM hour, and a LoS "E" or LoS "F" at all approaches during the peak PM hour.

The operational analysis at all three intersections determined that the 2029 total traffic (including the apartment development) operated at the same level of service for all lane movements as the 2029 background traffic. The proposed development would have only a minor impact on the operation of the intersections with no roadway modifications triggered by the expected site generated trips.

Pedestrian PLOS - For all three intersections the PLOS did not meet the target due to the number of lanes crossed and the length of the traffic signal cycle.

Bicycle BLOS - For all three intersections the BLOS did not meet the target due to the number of lanes crossed in making a left turn movement, and the travel speed of vehicles along Innes Road.

Transit TLOS - For all three intersections the TLOS did not meet the target due to the length of the traffic signal cycle.

SUMMARY

A Site Plan has been prepared for the development of a 0.727 ha parcel of land at 3817-3843 Innes Road. The site is located approximately 132 m west of Frank Bender Street and would consist of the construction of three apartment buildings.

The site would provide 97 rental apartments in the three 3 to 5 storey buildings. The site would have two accesses onto Innes Road, with a separation of 42 m between accesses. The accesses would be restricted to right-in/right-out turning movements which would be controlled by a center median along Innes Road.

The Transportation Impact Assessment report has established a study area which includes the Frank Bender/Innes, Viseneau/Innes and Jeanne d'Arc/Innes intersections. The operational analysis was completed for the weekday peak AM and PM hours at the completion of the development in 2024, and at five years beyond completion at the year 2029. The TIA analysis has examined all modes of transportation along the Innes Road segment and the intersections within the study area. The transportation analysis has determined the following:

- 1. The proposed Innes Road Development would be a residential apartment development providing 97 rental units. The total development is expected to generate 8 vehicle trips arriving and 27 vehicle trips departing during the weekday peak AM hour, and 28 vehicle trips arriving and 17 vehicle trips departing during the weekday peak PM hour.
- 2. The development would provide a total of 121 parking spaces including 6 barrier free spaces, of which 45 will be surface spaces and 76 spaces in an underground parking garage.
- 3. The Site Plan provides bicycle racks in a bike room in the parking garage for 47 bikes, with 9 spaces in bike racks located outside the main entrance to each building for a total of 56 spaces for bicycles.
- 4. The site will have two accesses onto Innes Road. Each access will be 6.7 m in width providing one lane entering and one lane exiting. The two accesses will be restricted to right-in/right-out turning movements controlled by a center median along Innes Road. The existing median must be extended 50 m further west to control the turning movements at Access 1 as shown in Figure 4.1.
- 5. The MMLOS analysis of the Innes Road segment between Viseneau Drive and Jeanne d'Arc Boulevard determined that the pedestrian PLOS and bicycle BLOS targets were not met. The low level of service of the PLOS and BLOS was attributed to the volume and speed of traffic along Innes Road. The site would have a minor impact on the level of service of the road segment.

48

- 6. The analysis of the Frank Bender/Innes, Viseneau/Innes and Jeanne d'Arc/Innes intersections determined that for the 2029 Auto LOS, the eastbound through movement at the Viseneau/Innes functioned at a LoS "F" during the peak PM hour, and all of the approaches at the Jeanne d'Arc/Innes interaction functioned at a LoS "E" of "F" during the peak PM hour due to the volume of traffic.
 - For the Frank Bender/Innes, Viseneau/Innes and Jeanne d'Arc/Innes intersections, the Pedestrian PLOS functioned at a LoS "E" or "F" due the number of travel lanes and signal cycle length, the Bicycle BLOS at a LoS "F" due to the number of travel lanes and traffic speed, and the Transit TLOS at a LoS "E" due to the length of the traffic signal cycle. There are no recommended modifications to the intersection resulting from the development of the site.
- 7. The intersections were examined using the existing traffic counts, the traffic at the year 2024 at the completion of the development, and at the year 2029 which represents five years beyond completion. The analysis was also performed for the 2029 background traffic. The analysis determined that for the 2029 total traffic including site trips, all intersections operated at the same level of service as the 2029 background traffic which did not include the site generated trips. The conclusion is that the trips from the site would result in a minor impact and not change the level of service. The development at 3817 3943 Innes Road would not trigger the requirement for roadway modification (with the exception of the median extension).

Prepared by:

David J. Halpenny, M. Eng., P. Eng.

David & Holpmy

APPENDIX

SCREENING FORM

TRAFFIC COUNTS

MMLOS ROAD SEGMENT AND INTERSECTION ANALYSIS

EXHIBIT 1.1 SCREENING FORM

City of Ottawa 2017 TIA Guidelines Screening Form

1. Description of Proposed Development

Municipal Address	3817-3843 Innes Road, Ottawa
Description of Location	Residential Development
Land Use Classification	"R4Z" Zoning – Residential Fourth Density
Development Size (units)	97 Units total in three Apartment Buildings
Development Size (m ²)	7,268 m ² Lot Area
Number of Accesses and Locations	2 accesses onto Innes Road
Phase of Development	Three Phases of development
Buildout Year	2024

If available, please attach a sketch of the development or site plan to this form.

2. Trip Generation Trigger

Considering the Development's Land Use type and Size (as filled out in the previous section), please refer to the Trip Generation Trigger checks below.

Land Use Type	Minimum Development Size
Apartments	98 units

	Yes	No
	X	
98 Apartment units > 90 Minimum Development Size	Α,	

^{*} If the development has a land use type other than what is presented in the table above, estimates of person-trip generation may be made based on average trip generation characteristics represented in the current edition of the Institute of Transportation Engineers (ITE) Trip Generation Manual.

If the proposed development size is greater than the sizes identified above, <u>the Trip Generation</u> Trigger is satisfied.

3. Location Triggers

	Yes	No
Does the development propose a new driveway to a boundary street that is designated as part of the City's Transit Priority, Rapid Transit or Spine Bicycle Networks?	X	
Is the development in a Design Priority Area (DPA) or Transit-oriented Development (TOD) zone?*	X	

^{*}DPA and TOD are identified in the City of Ottawa Official Plan (DPA in Section 2.5.1 and Schedules A and B; TOD in Annex 6). See Chapter 4 for a list of City of Ottawa Planning and Engineering documents that support the completion of TIA).

If any of the above questions were answered with 'Yes,' the Location Trigger is satisfied.

4. Safety Triggers

	Yes	No
Are posted speed limits on a boundary street are 80 km/hr or greater?		X
Are there any horizontal/vertical curvatures on a boundary street limits sight lines at a proposed driveway?		X
Is the proposed driveway within the area of influence of an adjacent traffic signal or roundabout (i.e. within 300 m of intersection in rural conditions, or within 150 m of intersection in urban/ suburban conditions)?	Х	
Is the proposed driveway within auxiliary lanes of an intersection?	Χ	
Does the proposed driveway make use of an existing median break that serves an existing site?	X	
Is there a documented history of traffic operations or safety concerns on the boundary streets within 500 m of the development?		X
Does the development include a drive-thru facility?		X

If any of the above questions were answered with 'Yes,' the Safety Trigger is satisfied.

5. Summary

	Yes	No
Does the development satisfy the Trip Generation Trigger?	X	
Does the development satisfy the Location Trigger?	X	
Does the development satisfy the Safety Trigger?	X	

If none of the triggers are satisfied, the TIA Study is complete. If one or more of the triggers is satisfied, the TIA Study must continue into the next stage (Screening and Scoping).

EXHIBIT 2.1 2020 PEAK AM HOUR TRAFFIC COUNTS - FRANK BENDER/INNES INTERSECTION

Transportation Services - Traffic Services

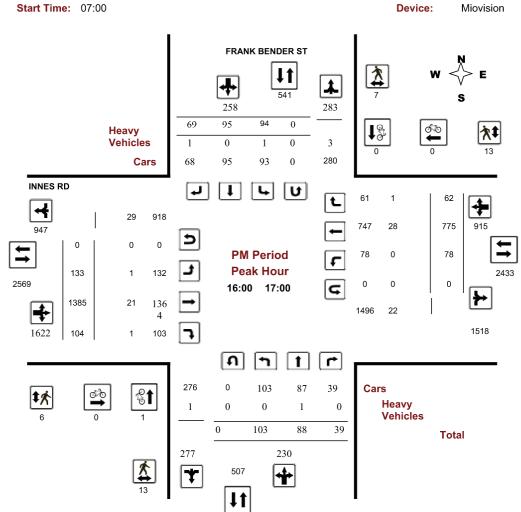
Turning Movement Count - Peak Hour Diagram

FRANK BENDER ST @ INNES RD WO No: Survey Date: Thursday, January 09, 2020 Start Time: 07:00 Device: Miovision FRANK BENDER ST Heavy Vehicles Cars INNES RD ŧ U t_ ≒ **AM Period Peak Hour** 07:00 08:00 + [ค] [ๆ] Cars Heavy Vehicles Total

Comments 5469224 - THU JAN 09, 2020 - 8HRS - LORETTA

2020-Aug-11 Page 1 of 3

2020 PEAK PM HOUR TRAFFIC COUNTS - FRANK BENDER/INNES INTERSECTION



Transportation Services - Traffic Services

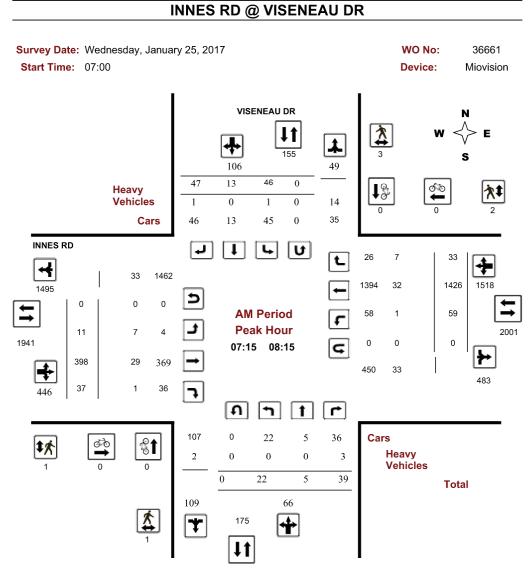
Turning Movement Count - Peak Hour Diagram

FRANK BENDER ST @ INNES RD

Survey Date: Thursday, January 09, 2020 WO No: 39283

Comments 5469224 - THU JAN 09, 2020 - 8HRS - LORETTA

2020-Aug-11 Page 3 of 3

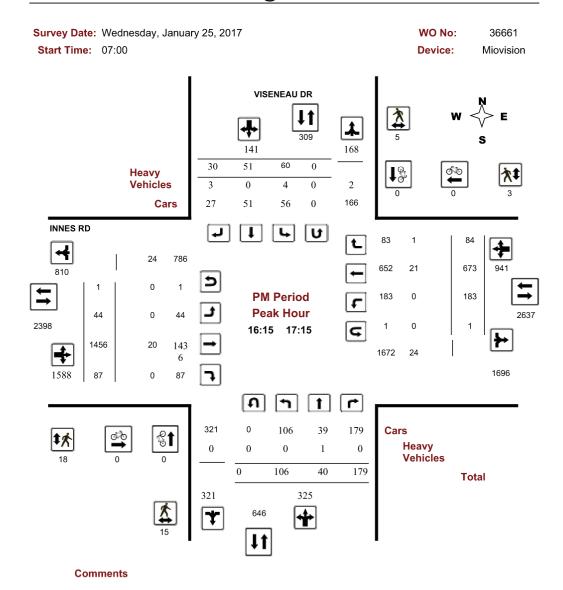

EXHIBIT 2.2 2017 PEAK AM HOUR TRAFFIC COUNTS - VISENEAU/INNES INTERSECTION

Comments

Transportation Services - Traffic Services

Turning Movement Count - Peak Hour Diagram

2020-Aug-10 Page 1 of 3

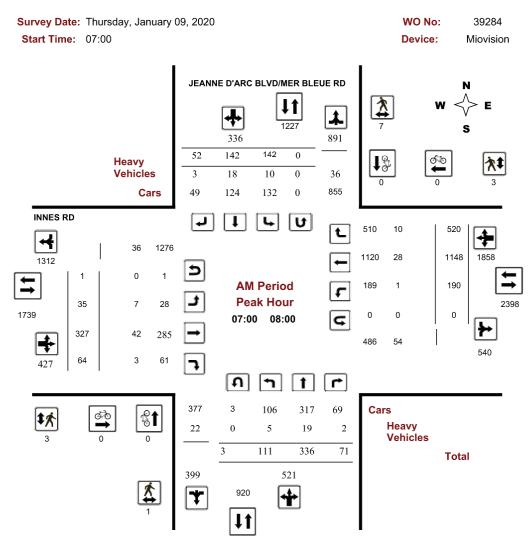

2017 PEAK PM HOUR TRAFFIC COUNTS - VISENEAU/INNES INTERSECTION

Transportation Services - Traffic Services

Turning Movement Count - Peak Hour Diagram

INNES RD @ VISENEAU DR

2020-Aug-10 Page 3 of 3


EXHIBIT 2.3 2020 PEAK AM HOUR TRAFFIC COUNTS - JEANNE D'ARC/INNES INTERSECTION

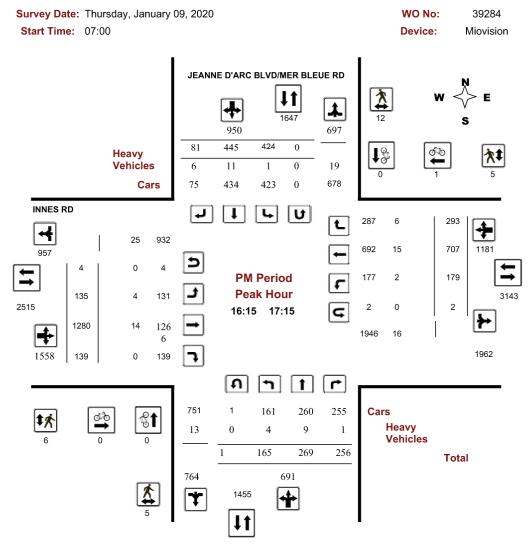
Transportation Services - Traffic Services

Turning Movement Count - Peak Hour Diagram

INNES RD @ JEANNE D'ARC BLVD/MER BLEUE RD

Comments 5469225 - THU JAN 09, 2020 - 8HRS - LORETTA

2020-Aug-10 Page 1 of 3


2020 PEAK PM HOUR TRAFFIC COUNTS - JEANNE D'ARC/INNES INTERSECTION

Transportation Services - Traffic Services

Turning Movement Count - Peak Hour Diagram

INNES RD @ JEANNE D'ARC BLVD/MER BLEUE RD

Comments 5469225 - THU JAN 09, 2020 - 8HRS - LORETTA

2020-Aug-10 Page 3 of 3

SEGMENT SCORE **E**

EXHIBIT 4.1 INNES ROAD - PLOS SEGMENT EVALUATION

STREET Innes Road FROM Viseneau Drive

TO Jeanne d'Arc Boulevard

YEAR 2029

DIRECTION Eastbound-Westbound

MMLOS MODE **PLOS**

	Motor Vehic			Segment PLOS						
Sidewalk Width	idewalk Width Boulevard Width (m) (m)		Presence of On-	Operating Speed (km/h)						
(111)	(111)	(AADT)	street Parking	≤30	>30 or 50	>50 or 60	>60 1			
		≤ 3000	N/A	А	А	А	В			
	> 2	> 3000	Yes	А	В	В	N/A			
		> 3000	No	A	В	С	D			
		≤ 3000	N/A	А	А	А	В			
2.0 or more	0.5 to 2	> 3000	Yes	А	В	С	N/A			
		> 3000	No	A	С	D	Е			
		≤ 3000	NA	А	В	С	D			
	0	> 3000	Yes	В	В	D	N/A			
		> 3000	No	В	С	Е	F			
		≤ 3000	N/A	А	А	А	В			
	> 2	> 3000	Yes	А	В	С	N/A			
		> 3000	No	А	С	D	Е			
		≤ 3000	N/A	А	В	В	D			
1.8	0.5 to 2	> 3000	Yes	А	С	С	N/A			
		> 3000	No	В	С	Е	Е			
		≤ 3000	N/A	Α	В	С	D			
	0	> 3000	Yes	В	С	D	N/A			
		> 3000	No	С	D	F	F			
		≤ 3000	N/A	С	С	С	С			
	> 2	> 3000	Yes	С	С	D	N/A			
		> 3000	No	С	D	Е	Е			
1.5		≤ 3000	N/A	С	С	С	D			
	0.5 to 2	> 3000	Yes	С	С	D	N/A			
		× 3000	No	D	Е	E	E			
	0	N	/A	D	Е	F ²	F ²			
<1.5		N/A		F ³	F ³	F ³	F ³			
No sidewalk		N/A		C ⁴	F ³	F ³	F ³			

SEGMENT SCORE **D**

EXHIBIT 4.2 INNES ROAD - BLOS SEGMENT EVALUATION

STREET Innes Road FROM Viseneay Drive

TO Jeanne d'Arc Boulevard

YEAR 2029

DIRECTION Eastbound-Westbound

MMLOS MODE **BLOS**

Type of Bikeway		LOS
	e tracks, protected bike lanes and multi-use paths). Physical separation refers to, but is not	Α
	ollards and parking lanes (adjacent to the bike lane along the travelled way i.e. not curbside).	
Bike Lanes Not Adjacent Parking L	ane - Select Worst Scoring Criteria	
	1 travel lane in each direction	A
No. of Travel Lanes	2 travel lanes in each direction separated by a raised median	В
to. or mater bands	2 travel lanes in each direction without a separating median	С
	More than 2-travel lanes in each direction	D
	≥ 1.8 m wide bkk late include marker biffer httpayee g to lidth	A
Bike Lane Width	≥1.5 m to <1.8 m wide bike lane (includes marked buffer and paved gutter width)	В
	≥1.2 m to <1.5 m wide bike lane (includes marked buffer and paved gutter width)	С
	≤ 50 km/h operating speed	Α
Operating Speed	60 km/h operating speed	С
	≥ 70 km/h operating speed	Е
Bike lane blockage	Rare	Α
commercial areas)	Frequent	С
	arking Lane - Select Worst Scoring Criteria	
In ad Travel I area	1 travel lane in each direction	Α
No. of Travel Lanes	2 or more travel lanes in each direction	С
	4.5 m wide bike lane plus parking lane (includes marked buffer and paved gutter width)	Α
Nice Lane and Desire Lane Maria	4.25 m wide bike lane plus parking lane (includes marked buffer and paved gutter width)	В
Bike Lane and Parking Lane Width	≤ 4.0 m wide bike lane plus parking lane (includes marked buffer and paved gutter width)	С
	40 km/h operating speed	A
Operating Speed	50 km/h operating speed	B
	60 km/h operating speed	D
	≥ 70 km/h operating speed	
Bike lane blockage	Rare	A
commercial areas)	Frequent	С
Mixed Traffic		
	2 travel lanes; ≤ 40 km/h; no marked centerline or classified as residential	A
	2 to 3 travel lanes; ≤ 40 km/h	В
	2 travel lanes; 50 km/h; no marked centertine or classified as residential. 2 to 3 travel and 50 km/h	В
No. of Travel Lanes and Operating		D
Speed	4 to 5 travel lanes; ≤ 40 km/h	D
	4 to 5 travel lanes; ≥ 50 km/h	E
	6 or more travel lanes; ≤ 40 km/h	Е
	≥ 60 km/h	F
Unsignalized Crossing along Route	e: no median refuge	
	3 or less lanes being crossed; ≤ 40 km/h	Α
	4 to 5 lanes being crossed; ≤ 40 km/h	В
	3 or less lanes being crossed; 50 km/h	В
	4 to 5 lanes being crossed; 50 km/h	С
No. of Travel Lanes on Side Street		С
and Operating Speed	3 or less language said; 60 m PLICABLE	D
and operating operation	6 or more lanes being crossed; ≤ 40 km/h	Е
	3 or less lanes being crossed; ≥ 65 km/h	Е
	6 or more lanes being crossed; ≥ 50 km/h	F
	4 to 5 lanes being crossed; ≥ 65 km/h	F
Insignalized Crossing along Poute	e: with median refuge (> 1.8 m wide)	
	5 or less lanes being crossed; ≤ 40 km/h	A
	3 or less lanes being crossed; 50 km/h	A
	6 or more lanes being crossed; < 40 km/h	В
	4 to E lange being amound: E0 km/h	В
	3 or less lanes of index seed of the PITCABLE	В
No. of Travel Lanes on Side Street	6 or more lanes being crossed; 50 km/h	C
and Operating Speed	4 to 5 lanes being crossed; 60 km/h	C
	3 or less lanes being crossed; ≥ 65 km/h	D
	6 or more lanes being crossed; 60 km/h	E
	4 to 5 lanes being crossed; ≥ 65 km/h 6 or more lanes being crossed; ≥ 65 km/h	E F

SEGMENT SCORE **D**

EXHIBIT 4.3 INNES ROAD - TLOS SEGMENT EVALUATION

STREET Innes Road FROM Viseneau Drive

TO Jeanne d'Arc Boulevard

YEAR 2029

DIRECTION Eastbound-Westbound

MMLOS MODE TLOS

Facility Type		Level/exposu friction	ire to conge on and incid	Quantitative	LOS	
	racinty type	Congestion	Friction	Incident Potential	Measurement	LUS
	Segregated ROW	No	No	No	N/A	Α
Due lene	No/limited parking/driveway friction	No	Low	Low	$C_f \leq 60$	В
Bus lane	Frequent parking/driveway friction	No	Medium	Medium	$C_f > 60$	С
	Limited parking/driveway friction	Yes	Low	Medium	$VtVp \ge 0.8$	D
Mixed Traffic	Moderate parking/driveway friction	Yes	Medium	Medium	$VtVp \le 0.6$	Е
	Frequent parking/driveway friction	Yes	High	High	Vt/Vp < 0.4	F

Notes:

Cf, Conflict Factor = = (Number of driveways x crossing volume) / 1 km

Vt/Vp is the ratio of average transit travel speed to posted speed limit

EXHIBIT 4.4 INNES ROAD - TKLOS SEGMENT EVALUATION

STREET

Innes Road

FROM

Viseneau Drive

TO YEAR Jeanne d'Arc Boulevard

SEGMENT SCORE

DIRECTION

MMLOS MODE

Eastbound-Westbound **TkLOS**

2029

Exhibit 20 - TkLOS Segment Evaluation Table

Curb Lane Width (m)	Only two travel lanes (one in each direction)	More than two travel lanes
>3.7	В	А
≤3.5	С	A
≤3.3	D	С
≤3.2	E	D
≤3	F	E

EXHIBIT 4.5 2024 PEAK AM HOUR ANALYSIS (Total Traffic) - Access 1/Innes

Analysis Year 20. Time Analyzed Pe. Intersection Orientation East Project Description Inr Lanes Vehicle Volumes and Adjustin Approach Movement U Priority 1U Number of Lanes 0 Configuration Volume (veh/h) Percent Heavy Vehicles (%)	nents East L	bound T 2	nent R 3	· ·	L	Inters Jurisd East/\ North Peak Analy	Enforme ection iction West Strain/South Strain Factor Fact	eet Street	hrs)	City c	ss 1/Inne of Ottawa Road ss 1		South	bound	R
Agency/Co. Date Performed 12. Analysis Year 20. Time Analyzed Performed Intersection Orientation East Project Description Intersection Project Description Intersection Project Description Intersection Intersec	24 ak AM Hoo st-West less Road D Tents East L 1	bound T 2	NA + A + LU	n Maj	West	Jurisch East/\ North Peak Analy	West Struck Stru	ctor Period (North	City of Innes Access 0.92 0.25	of Ottawa Road ss 1	a			D
Date Performed 12, Analysis Year 20. Time Analyzed Pe. Intersection Orientation East Project Description Inr Lanes Vehicle Volumes and Adjustin Approach Movement U Priority 10 Number of Lanes 0 Configuration Volume (veh/h) Percent Heavy Vehicles (%)	24 ak AM Hoo st-West less Road D Tents East L 1	bound T 2	NA + A + LU	n Maj	West	East/North Peak Analy I I I I I I I I I I I I I I I I I I I	West Stro	ctor Period (North	Innes Acces 0.92 0.25	s Road ss 1				
Analysis Year 20. Time Analyzed Pe. Intersection Orientation East Project Description Inr Lanes Vehicle Volumes and Adjustin Approach Movement U Priority 1U Number of Lanes 0 Configuration Volume (veh/h) Percent Heavy Vehicles (%)	24 ak AM Hoo st-West less Road D Tents East L 1	bound T 2	NA + A + LU	n Maj	West	North Peak Analy LL Interpretation	Hour Factorial States of the Control	ctor Period (North	Access 0.92 0.25	ss 1	U			P
Time Analyzed Per Intersection Orientation East Project Description Intersection Orientation Intersection Orientation Intersection Inte	nek AM House st-West lees Road D Tents East L 1	bound T 2	NA + A + LU	n Maj	West	Peak Analy	Hour Faces Time	etor Period (North	0.92 0.25		U			P
Intersection Orientation East Project Description Intersection Configuration Lanes Vehicle Volumes and Adjustin Approach Movement U Priority 1U Number of Lanes 0 Configuration Volume (veh/h) Percent Heavy Vehicles (%)	nents East L 1	bound T 2	NA + A + LU	n Maj	West	Analy Analy Analy Analy	sis Time	Period (North	0.25	P	U			D
Project Description Inr Lanes Vehicle Volumes and Adjustin Approach Movement U Priority 1u Number of Lanes 0 Configuration Volume (veh/h) Percent Heavy Vehicles (%)	nents East L 1	bound T	NA + A + LU	n Maj	West	b b L	0 7 4 4 4 C 0		North	bound	P	U			D
Vehicle Volumes and Adjustm Approach Movement U Priority 10 Number of Lanes Configuration Volume (veh/h) Percent Heavy Vehicles (%)	Tents East L 1	bound T	NA + A + LU	n Maj	West	bound	DA LAD NCU	U			р	U			D
Vehicle Volumes and Adjustn Approach Movement U Priority 1U Number of Lanes Configuration Volume (veh/h) Percent Heavy Vehicles (%)	East L 1	T 2	R	n Maj	West	bound	74 + 24 + 1 C U	U			P	U			D
Approach Movement U Priority 1U Number of Lanes Configuration Volume (veh/h) Percent Heavy Vehicles (%)	East L 1	T 2	R	n Maj	West	bound	7 4 + 本本 F C U	U			р	U			В
Approach Movement U Priority 1U Number of Lanes Configuration Volume (veh/h) Percent Heavy Vehicles (%)	East L 1	T 2	+	-	L	Т	R	U			D	U			P
Movement U Priority 1U Number of Lanes 0 Configuration Volume (veh/h) Percent Heavy Vehicles (%)	L 1	T 2	+	-	L	Т	R	U			Р	U			P
Priority 1U Number of Lanes 0 Configuration Volume (veh/h) Percent Heavy Vehicles (%)	1	2	+	-	_		K	U	L .				-		
Number of Lanes 0 Configuration Volume (veh/h) Percent Heavy Vehicles (%)	_	-	1 3	40	4		6		7	8	9		10	11	12
Configuration Volume (veh/h) Percent Heavy Vehicles (%)		2	0	0	0	2	0		0	0	0		0	0	1
Volume (veh/h) Percent Heavy Vehicles (%)	+ -	T	"	+		T	TR								R
Percent Heavy Vehicles (%)		460				1326	5								18
-	+	100				1520									0
Proportion Time Blocked															H
Percent Grade (%)														0	
Right Turn Channelized														No.	
Median Type Storage			Und	ivided											
Critical and Follow-up Headw	avs														
Base Critical Headway (sec)		_	Т		Г	Г					_	Г	Г	Г	6.9
***															6.90
Critical Headway (sec)	+	-	-												3.3
Base Follow-Up Headway (sec)	+														3.30
Follow-Up Headway (sec)															3.30
Delay, Queue Length, and Lev	vel of S	ervice	•												
Flow Rate, v (veh/h)	_														20
Capacity, c (veh/h)															359
v/c Ratio	+														0.05
95% Queue Length, Q ₉₅ (veh)															0.2
Control Delay (s/veh)															15.6
Level of Service (LOS)															С
Approach Delay (s/veh) Approach LOS														5.6 C	

EXHIBIT 4.6 2024 PEAK PM HOUR ANALYSIS (Total Traffic) - Access 1/Innes

		Н	CS7	Two-	-Way	Sto	p-Co	ntrol	Rep	ort						
General Information	_	_	_	_		_		Inforr			_	_	_	_		
Analyst	$\overline{}$						Inters	ection			Acces	ss 1/Inne	es			
Agency/Co.	+						Juriso	liction			City	of Ottaw	a			
Date Performed	12/8/	2020					East/\	West Str	eet		-	Road				
Analysis Year	2024						_	n/South :			Acces	ss 1				
Time Analyzed	Peak	PM Hou	r				_	Hour Fac			0.92					
Intersection Orientation	East-\	Vest					Analy	sis Time	Period ((hrs)	0.25					
Project Description	Innes	Road D	evelopm	ent												
Lanes																
				1 4 4 X 4 V C	1 4 Maj	・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	† † (* ist-West	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4								
Vehicle Volumes and Ad	ljustme	nts														
Approach	\perp	Eastk	ound			West	bound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	10	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	2	0	0	0	2	0		0	0	0		0	0	1
Configuration			T				Т	TR			-				\vdash	R
Volume (veh/h)	-		1732				1012	18			-		-		-	11
Percent Heavy Vehicles (%)											-				\vdash	0
Proportion Time Blocked													-			
Percent Grade (%)	+														0	
Right Turn Channelized	+														No	
Median Type Storage				Undi	vided											
Critical and Follow-up H	leadwa	ys														
Base Critical Headway (sec)															\perp	6.9
Critical Headway (sec)																6.90
Base Follow-Up Headway (sec)															_	3.3
Follow-Up Headway (sec)																3.30
Delay, Queue Length, ar	nd Leve	l of S	ervice													
Flow Rate, v (veh/h)																12
Capacity, c (veh/h)																471
v/c Ratio																0.03
95% Queue Length, Q ₉₅ (veh)																0.1
Control Delay (s/veh)																12.8
Level of Service (LOS)																В
Approach Delay (s/veh)															2.8	
Approach LOS															В	

EXHIBIT 4.7 2029 PEAK AM HOUR ANALYSIS (Total Traffic) - Access 1/Innes

		Н	CS7	Two-	-Wa <u>y</u>	' Sto	p-co	ntrol	кер	ort _								
General Information	_						Site	Inforr	natio	n								
Analyst	$\overline{}$						Inters	ection			Acces	ss 1/Inne	es					
Agency/Co.							Jurisd	iction			City	of Ottaw	a					
Date Performed	12/8/	2020					East/\	Vest Str	eet		Innes Road							
Analysis Year	2029						North	/South !	Street		Acces	ss 1						
Time Analyzed	Peak	AM Hou	r				Peak	Hour Fa	ctor		0.92							
Intersection Orientation	East-\	West					Analy	sis Time	Period (hrs)	0.25							
Project Description	Innes	Road D	evelopm	ent														
Lanes																		
				0 7 4 4 7 ↑ ↑ ↑ ↑		or Street: Ea	↑ ↑ ↑	1										
Vehicle Volumes and Adj	ustme	nts																
Approach		Eastk	ound			West	bound			North	bound			South	bound			
Movement	U	L	Т	R	U	L	Т	R	U	L	T	R	U	L	T	R		
Priority	10	1	2	3	4U	4	5	6		7	8	9		10	11	12		
Number of Lanes	0	0	2	0	0	0	2	0		0	0	0		0	0	1		
Configuration			T 483				T	TR 5								R		
Volume (veh/h)			483				1392	5								18		
Percent Heavy Vehicles (%) Proportion Time Blocked																0		
Percent Grade (%)															0			
Right Turn Channelized															No.			
Median Type Storage				Undi	vided													
Critical and Follow-up He	aadwa	ve		Orian	viaca													
	T	y			П									_		6.9		
Base Critical Headway (sec) Critical Headway (sec)																6.90		
Base Follow-Up Headway (sec)																3.3		
base rollow-op rieddway (sec)																3.30		
Follow-Lin Headway (sec)															_	3.30		
Follow-Up Headway (sec)	d Lovo	l of S	orvico															
Delay, Queue Length, and	d Leve	l of S	ervice			ı										20		
Delay, Queue Length, and Flow Rate, v (veh/h)	d Leve	l of S	ervice													20		
Delay, Queue Length, and Flow Rate, v (veh/h) Capacity, c (veh/h)	d Leve	l of S	ervice													340		
Delay, Queue Length, and Flow Rate, v (veh/h) Capacity, c (veh/h) v/c Ratio	d Leve	l of S	ervice													340 0.06		
Delay, Queue Length, and Flow Rate, v (veh/h) Capacity, c (veh/h) v/c Ratio 95% Queue Length, Q ₉₅ (veh)	d Leve	l of S	ervice													340 0.06 0.2		
Pelay, Queue Length, and Flow Rate, v (veh/h) Capacity, c (veh/h) v/c Ratio 95% Queue Length, Q ₉₅ (veh) Control Delay (s/veh)	d Leve	l of S	ervice													340 0.06 0.2 16.2		
Delay, Queue Length, and Flow Rate, v (veh/h) Capacity, c (veh/h) v/c Ratio 95% Queue Length, Q ₉₅ (veh)	d Leve	l of S	ervice											1	6.2	340 0.06 0.2		

EXHIBIT 4.8 2029 PEAK PM HOUR ANALYSIS (Total Traffic) - Access 1/Innes

		Н	CS7	Two-	-Way	Sto _l	р-Со	ntrol	Rep	ort						
General Information							Site	Inforr	natio	n						
Analyst	Т						Inters	ection			Acces	ss 1/Inne	es			
Agency/Co.							Juriso	liction			City	of Ottaw	а			
Date Performed	12/8/	2020					East/\	West Str	eet		Innes	Road				
Analysis Year	2029						North	/South	Street		Acces	ss 1				
Time Analyzed	Peak	PM Hou	ır				Peak	Hour Fa	ctor		0.92					
Intersection Orientation	East-\	Vest					Analy	sis Time	Period ((hrs)	0.25					
Project Description	Innes	Road D	evelopm	ent												
Lanes																
W.I. I. W.I.				0 1 4 4 Y ↑ Y C		or Street: Ea	ት ሾ ast-West	174471								
Vehicle Volumes and Ad	justme	nts														
Approach		Eastl	oound			West	bound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	T	R	U	L	Т	R
Priority	10	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	2	0	0	0	2	0		0	0	0	-	0	0	1
Configuration			Т				Т	TR			-					R
Volume (veh/h)			1820				1065	18			-					11
Percent Heavy Vehicles (%)											-					0
Proportion Time Blocked																
Percent Grade (%)	+														0	
Right Turn Channelized	+			1.1	and and										No	
Median Type Storage				Unai	vided											
Critical and Follow-up H	eadwa	ys														
Base Critical Headway (sec)													_			6.9
Critical Headway (sec)																6.90
Base Follow-Up Headway (sec)											_					3.3
Follow-Up Headway (sec)																3.30
Delay, Queue Length, ar	id Leve	l of S	ervice													
Flow Rate, v (veh/h)																12
Capacity, c (veh/h)																451
v/c Ratio																0.03
95% Queue Length, Q ₉₅ (veh)																0.1
Control Delay (s/veh)																13.2
Level of Service (LOS)																В
Approach Delay (s/veh)															3.2	
Approach LOS															В	

EXHIBIT 4.9 2024 PEAK AM HOUR ANALYSIS (Total Traffic) - Access 2/Innes

		Н	CS7	Two-	-Way	Sto	p-Co	ntrol	Rep	ort						
General Information							Site	Inforr	natio	n						
Analyst	Т						Inters	ection			Acces	ss 2/Inne	s			
Agency/Co.							Juriso	liction			City	of Ottawa	a			
Date Performed	12/8/	2020					East/\	West Str	eet		Innes	Road				
Analysis Year	2024						North	/South	Street		Acces	ss 2				
Time Analyzed	Peak	AM Hou	ır				Peak	Hour Fa	ctor		0.92					
Intersection Orientation	East-	West					Analy	sis Time	Period ((hrs)	0.25					
Project Description	Innes	Road D	evelopm	ent												
Lanes																
Vehicle Volumes and Ad	iuet	unto.		5) 4 + 4 + 7 · 7	٦ ٩ _{Maj}	・ <mark>・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ </mark>	ተተ ሮ ast-West	07447								
Vehicle Volumes and Ad	Justme															
Approach			oound	l .			bound			1	bound	T .			bound	
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	10	0	2	3	4U 0	0	5	6		7	8	9		10	0	12
Number of Lanes	1 0	U	T	0	0	U	T	TR		0	0	0		0	0	1 R
Configuration	-		-				_	3								9
Volume (veh/h)	+		460				1322	3								-
Percent Heavy Vehicles (%)	-															0
Proportion Time Blocked	+															
Percent Grade (%)	-														0	
Right Turn Channelized	+			1.117	vided										10	
Median Type Storage	٠.			Unai	viaea											
Critical and Follow-up H	eadwa	ys														
Base Critical Headway (sec)	-															6.9
Critical Headway (sec)	+										-					6.90
Base Follow-Up Headway (sec)	1															3.3
Follow-Up Headway (sec)																3.30
Delay, Queue Length, an	d Leve	l of S	ervice	•												
Flow Rate, v (veh/h)																10
Capacity, c (veh/h)																361
v/c Ratio																0.03
95% Queue Length, Q ₉₅ (veh)																0.1
Control Delay (s/veh)																15.2
Level of Service (LOS)																С
Approach Delay (s/veh)														1	5.2	
Approach LOS															С	

EXHIBIT 4.10 2024 PEAK PM HOUR ANALYSIS (Total Traffic) - Access 2/Innes

		Н	CS7	Two-	-Way	Sto	p-Co	ntrol	Rep	ort						
General Information		_	_	_		_		Inforr			_	_	_	_	_	_
Analyst	$\overline{}$						Inters	ection			Acces	ss 2/Inne	es			
Agency/Co.							Juriso	liction			-	of Ottaw				
Date Performed	12/8/	2020					East/\	West Str	eet		<u> </u>	Road				
Analysis Year	2024						_	n/South :			Acces	ss 2				
Time Analyzed	Peak	PM Hou	r				_	Hour Fac			0.92					
Intersection Orientation	East-\	Vest					Analy	sis Time	Period ((hrs)	0.25					
Project Description	Innes	Road D	evelopm	ent												
Lanes																
				14 + 14 + C	ገ ነ Maj	or Street: Ea	ist-West	1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4								
Vehicle Volumes and Ad	ljustme	nts														
Approach		Eastl	ound			West	bound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	10	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	2	0	0	0	2	0		0	0	0		0	0	1
Configuration			Т				Т	TR				_		_		R
Volume (veh/h)			1732				1024	10								6
Percent Heavy Vehicles (%)														_		0
Proportion Time Blocked																
Percent Grade (%)	\bot														0	
Right Turn Channelized	+-													1	No	
Median Type Storage				Undi	vided											
Critical and Follow-up H	eadwa	ys														
Base Critical Headway (sec)	T															6.9
Critical Headway (sec)																6.90
Base Follow-Up Headway (sec)																3.3
Follow-Up Headway (sec)																3.30
	nd Leve	l of S	ervice													
Delay, Queue Length, ar																7
Delay, Queue Length, ar	T										_		1		_	
																458
Flow Rate, v (veh/h)																458 0.01
Flow Rate, v (veh/h) Capacity, c (veh/h)																0.01
Flow Rate, v (veh/h) Capacity, c (veh/h) v/c Ratio																0.01
Flow Rate, v (veh/h) Capacity, c (veh/h) v/c Ratio 95% Queue Length, Q ₉₅ (veh)																0.01
Flow Rate, v (veh/h) Capacity, c (veh/h) v/c Ratio 95% Queue Length, Q ₉₅ (veh) Control Delay (s/veh)														1	3.0	0.01 0.0 13.0

EXHIBIT 4.11 2029 PEAK AM HOUR ANALYSIS (Total Traffic) - Access 2/Innes

		Н	CS7	Two-	-Way	Sto	p-Co	nt <u>rol</u>	Rep	or <u>t</u>						
General Information	_	-	-	-		_		Inforr			-	-	-	-		
Analyst	$\overline{}$						Inters	ection			Acce	ss 2/Inne	25			
Agency/Co.	+						Juriso				-	of Ottaw				
Date Performed	12/8/	2020						West Str	eet		<u> </u>	Road				
Analysis Year	2029						-	/South			Acces					
Time Analyzed	_	AM Hou	ır				-	Hour Fa			0.92					
Intersection Orientation	East-\						-	sis Time		hrs)	0.25					
Project Description	_		evelopm	ent												
Lanes																
				74 + A + L U) 】 Maj	ቀ Υ	ተ ተ ፫ ast-West	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4								
Vehicle Volumes and Ad	ljustme	nts														
Approach	\perp	Eastb	ound			West	bound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	10	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	2	0	0	0	2	0		0	0	0		0	0	1
Configuration			T				Т	TR							_	R
Volume (veh/h)	-		483				1388	3			-		-	_	-	9
Percent Heavy Vehicles (%)															\vdash	0
Proportion Time Blocked																
Percent Grade (%)	+														0	
Right Turn Channelized	+													1	No	
Median Type Storage				Undi	vided											
Critical and Follow-up H	leadwa	ys														
Base Critical Headway (sec)															\perp	6.9
Critical Headway (sec)																6.90
Base Follow-Up Headway (sec)																3.3
Follow-Up Headway (sec)																3.30
Delay, Queue Length, ar	nd Leve	l of S	ervice													
Flow Rate, v (veh/h)																10
Capacity, c (veh/h)																342
v/c Ratio																0.03
95% Queue Length, Q ₉₅ (veh)																0.1
Control Delay (s/veh)																15.8
Level of Service (LOS)																С
Approach Delay (s/veh)														1	5.8	
Approach LOS															С	

EXHIBIT 4.12 2029 PEAK PM HOUR ANALYSIS (Total Traffic) - Access 2/Innes

		Н	CS7	Two-	-Way	Sto	p-Co	ntrol	Rep	ort						
General Information	_	_	_	_		_		Inforr			_	_	_	_	_	
Analyst	Т						Inters	ection			Acces	ss 2/Inne	es			
Agency/Co.							Juriso	liction			-	of Ottaw				
Date Performed	12/8/	2020					East/\	West Str	eet		<u> </u>	Road				
Analysis Year	2029						-	/South !			Acces	ss 2				
Time Analyzed	Peak	PM Hou	r				-	Hour Fac			0.92					
Intersection Orientation	East-\	Vest					Analy	sis Time	Period ((hrs)	0.25					
Project Description	Innes	Road D	evelopm	ent												
Lanes			<u> </u>													
				14 + A + L L	<mark>ا د</mark> Maj	or Street: Ea	ተ ኮ ሮ ost-West	4 4 4 4 4 6 6								
Vehicle Volumes and Ad	justme	nts														
Approach		Eastk	ound			West	bound			North	nbound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	10	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	2	0	0	0	2	0		0	0	0		0	0	1
Configuration			T				T	TR			_					R
Volume (veh/h)	-		1820				1077	10			-	-	-	_	-	6
Percent Heavy Vehicles (%)											_					0
Proportion Time Blocked																
Percent Grade (%)	_												_		0	
Right Turn Channelized	-													1	No	
Median Type Storage				Undi	vided											
Critical and Follow-up H	eadwa	ys														
Base Critical Headway (sec)																6.9
Critical Headway (sec)																6.90
Base Follow-Up Headway (sec)																3.3
Follow-Up Headway (sec)																3.30
Delay, Queue Length, ar	d Leve	l of S	ervice													
Flow Rate, v (veh/h)																7
Capacity, c (veh/h)																439
v/c Ratio																0.01
95% Queue Length, Q ₉₅ (veh)																0.0
Control Delay (s/veh)																13.3
Level of Service (LOS)																В
Approach Delay (s/veh)														1	3.3	
Approach LOS															В	

EXHIBIT 4.13 2020 PEAK AM HOUR ANALYSIS (Existing Traffic) - Frank Bender/Innes

	HCS	' Sig	nalize	d Inte	ersec	tion F	Resul	lts Su	nmar	y				
Consult Information									41 a l £	4i			4741	ki ti
General Information							\rightarrow	Intersec		_		- 1	4.	
Agency					1000		\rightarrow	Duration		0.250		-		
Analyst				is Date	-		\rightarrow	Area Typ	е	Other				→
	y of Ottawa		Time F		-	AM Hou		PHF		0.92				-
	es Road		-	is Year	-			Analysis	Period	1> 7:0	00	_		7
	ink Bender/Innes		File Na	ame	723_2	2020_ex	_AM.x	us					<u> ጎተ</u>	
Project Description Inn	es Road Develop	ment	_	_	_	_	_		_	_	_		1 1 4 Y	<u>* 1</u>
Demand Information				EB			WE	3		NB			SB	
Approach Movement			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Demand (v), veh/h			33	378	15	24	120	4 81	15	12	3	39	24	43
, ,,														
Signal Information				2		215					_			T
Cycle, s 110.0 Re	ference Phase	2		1 2	₩ `	1 sa	a l			×		\leftrightarrow .		4
Offset, s 0 Re	eference Point	End	Green	7.3	55.4	29.2	0.0	0.0	0.0		1	K Z	3	4
Uncoordinated No Sir	mult. Gap E/W	On	Yellow		3.7	3.0	0.0	0.0	0.0			←		KÎZ
Force Mode Fixed Sir	mult. Gap N/S	On	Red	1.0	2.9	3.8	0.0	0.0	0.0		5	6	7	8
Timer Results			EBI		EBT	WB	L	WBT	NBI	-	NBT	SBI	- -	SBT
Assigned Phase					2	1	_	6			8		_	4
Case Number					5.3	2.0	_	4.0			5.0		_	6.0
Phase Duration, s					62.0	12.0	\rightarrow	74.0			36.0			36.0
Change Period, (Y+R c), s					6.6	4.7	_	6.6			6.8			6.8
Max Allow Headway (MAF	f), s				0.0	3.1	-	0.0			3.2			3.2
Queue Clearance Time (g	s), S					3.5					6.9			5.9
Green Extension Time (g	e), s				0.0	0.0	-	0.0			0.2			0.3
Phase Call Probability						1.00)				1.00			1.00
Max Out Probability						0.29	9				0.00			0.00
Movement Group Results	3		_	EB			WB			NB		_	SB	
Approach Movement				Т	R	L	T	□ R	L	T	R	L	T	R
Assigned Movement			5	2	12	1	6	16	3	8	18	7	4	14
Adjusted Flow Rate (v), v	eh/h		36	411	16	26	706	691	16	13	3	42	73	
Adjusted Saturation Flow F		1	377	1647	1425	1661	1744	_	1346	1800	1495	1394	1570	
Queue Service Time (g s)			7.4	7.6	0.6	1.5	28.3	_	1.0	0.6	0.2	2.5	3.9	
Cycle Queue Clearance Tir			23.9	7.6	0.6	1.5	28.3	_	4.9	0.6	0.2	3.1	3.9	
Green Ratio (g/C)	(9 -), -		0.51	0.51	0.51	0.12	0.62	_	0.27	0.27	0.27	0.27	0.27	
Capacity (c), veh/h			202	1689	731	196	1084	_	388	494	411	441	431	
Volume-to-Capacity Ratio	(X)		0.177	0.243	0.022	0.133	0.651	_	0.042	0.026	0.008	0.096	0.169	
Back of Queue (Q), ft/ln (19.7	74	5.3	16.4	282.6	_	8.3	6.3	1.6	21.4	37.2	
Back of Queue (Q), veh/lr	· · · · · · · · · · · · · · · · · · ·	e)	0.8	2.8	0.2	0.6	11.0		0.3	0.3	0.1	0.8	1.5	
Queue Storage Ratio (RQ			0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Uniform Delay (d 1), s/veh	, , ,		24.7	14.9	13.2	43.5	13.5	_	32.2	29.2	29.0	30.3	30.4	
Incremental Delay (d 2), s			1.9	0.3	0.1	0.1	3.0	3.2	0.0	0.0	0.0	0.0	0.1	
Initial Queue Delay (d 3),			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Control Delay (d), s/veh			26.6	15.3	13.3	43.6	16.5	16.4	32.2	29.2	29.0	30.3	30.4	
Level of Service (LOS)			C	В	В	D	В	В	C	C	C	C	C	
Approach Delay, s/veh / LC)S		16.1	_	В	17.0		В	30.7		С	30.4	_	С
Intersection Delay, s/veh /			10.1			7.7			55.7			В		
Multimodal Results				EB			WB			NB			SB	
	20		2.09		В	1.88	_	В	2.29		В	2.45	_	В
Pedestrian LOS Score / LO)5													

Generated: 12/8/2020 4:11:30 PM

EXHIBIT 4.14 2020 PEAK PM HOUR ANALYSIS (Existing Traffic) - Frank Bender/Innes

		нсѕ	7 Sig	nalize	d Inte	ersec	tion F	Resul	ts Sur	nmar	у				
General Inform	nation								Intersec	tion Inf	ormatic	n n		4141	h L
	iauon							\rightarrow	Duration		0.250			41	
Agency				Analys	sis Date	12/8/2	2020	\rightarrow	Area Typ		Other				
Analyst		City of Ottowo		Time F		-	PM Hou	\rightarrow	PHF	е	0.92		-		→
Jurisdiction		City of Ottawa				-	PIVI HOL			Dariad	1> 7:0	20			-
Urban Street		Innes Road		-	sis Year	-	0000 00	_	Analysis	Period	127.0	50			
Intersection	4:	Frank Bender/Innes		File Na	ame	123_2	2020_ex	_PIVI.X	us				- 1) † (2 6
Project Descrip	tion	Innes Road Develop	oment	_	-		-	-	_	-		_			
Demand Inform	nation				EB		$\overline{}$	WE	3	$\overline{}$	NB			SB	
Approach Move				L	T	l R	1	T	R	L	T	R	L	T	R
Demand (v), v				133	1385	104	62	775	_	103	88	39	94	95	69
201110110 (17);	011111			100	1000	101				100					
Signal Informa	ation				5			\top	\neg	\top					I
Cycle, s	130.0	Reference Phase	2	1	2	₹* `	F.1	a l			×		4		Ф
Offset, s	0	Reference Point	End	Green	15.2	67.4	29.2	0.0	0.0	0.0		1	¥ 2	3	
Uncoordinated	No	Simult. Gap E/W	On	Yellow		3.7	3.0	0.0	0.0	0.0			←		ĸŤ
Force Mode	Fixed	Simult. Gap N/S	On	Red	1.0	2.9	3.8	0.0	0.0	0.0		5	6	7	\mathbf{Y}
Timer Results					-	EBT	WB	L	WBT	NBI	-	NBT	SBI	-	SBT
Assigned Phas	<u> </u>					2	1		6			8			4
Case Number	<u> </u>					5.3	2.0		4.0			5.0			6.0
Phase Duration						74.0	20.0	5	94.0			36.0			36.0
Change Period	, (Y+R	c), S				6.6	4.7		6.6			6.8			6.8
Max Allow Hea					\neg	0.0	3.1		0.0			3.3		\neg	3.3
Queue Clearan	• `	-					6.6					25.5			16.7
Green Extension					\neg	0.0	0.0		0.0		\neg	0.5		\neg	1.0
Phase Call Pro		(0)					1.00)				1.00			1.00
Max Out Proba	bility						0.00					0.79			0.01
Movement Gro	oup Res	sults			EB		_	WB			NB			SB	
Approach Move	ement			L	T	R	L	T	R	L	T	R	L	Т	R
Assigned Move	ment			5	2	12	1	6	16	3	8	18	7	4	14
Adjusted Flow	Rate (v), veh/h		145	1505	113	67	472	455	112	96	42	102	178	
Adjusted Satura	ation Flo	ow Rate (s), veh/h/l	n	589	1647	1425	1661	1758	1692	1224	1800	1493	1285	1634	
Queue Service				20.1	51.9	5.3	4.6	15.3	15.3	11.3	5.6	2.9	9.1	12.2	
Cycle Queue C	learanc	e Time (<i>g c</i>), s		20.1	51.9	5.3	4.6	15.3	15.3	23.5	5.6	2.9	14.7	12.2	
Green Ratio (g	/C)			0.53	0.53	0.53	0.16	0.68	0.68	0.23	0.23	0.23	0.23	0.23	
Capacity (c), v	/eh/h			365	1733	750	268	1195	1151	225	418	347	298	380	
Volume-to-Cap				0.396	0.869	0.151	0.251	0.395	2	0.498	0.229	0.122	0.342	0.470	
Back of Queue	(Q), ft	/In (50 th percentile)		78.3	544.5	47	49.6	148.4	139.8	87.3	62.4	27	74.9	125.9	
		eh/In (50 th percenti		3.0	20.9	1.8	1.9	5.8	5.6	3.5	2.5	1.1	2.9	5.0	
Queue Storage	Ratio (RQ) (50 th percent	ile)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Uniform Delay				19.3	26.9	15.9	47.6	9.3	9.1	53.1	40.5	39.4	46.4	43.0	
Incremental De	emental Delay (d 2), s/veh			3.2	6.2	0.4	0.2	1.0	1.0	0.6	0.1	0.1	0.3	0.3	
Initial Queue D	l Queue Delay (d 3), s/veh			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Control Delay (22.5	33.1	16.3	47.8	10.3	10.1	53.8	40.6	39.5	46.7	43.3	
Level of Service	e (LOS)			С	С	В	D	В	В	D	D	D	D	D	
Approach Dela	y, s/veh	/LOS		31.2	2	С	12.	7	В	46.3	3	D	44.6	3	D
Intersection De	section Delay, s/veh / LOS					2	7.9						С		
Multimodal Re	timodal Results				EB			WB			NB			SB	
Pedestrian LOS	estrian LOS Score / LOS)	В	1.88	3	В	2.30)	В	2.46	3	В
Bicycle LOS So	estrian LOS Score / LOS ele LOS Score / LOS				1	В	1.3	1	Α	0.90)	Α	0.95	5	Α

Generated: 12/8/2020 4:24:22 PM

EXHIBIT 4.15 2029 PEAK AM HOUR ANALYSIS (Background Traffic) - Frank Bender/Innes

		нсѕ	7 Sig	nalize	d Inte	ersec	tion F	Resul	ts Sur	nmar	у				
General Inform	nation								ntersec	tion Inf	ormatic	\n		4444	b L
	iauon							\rightarrow	Duration		0.250			न्रा	
Agency Analyst				Analys	sis Date	12/0/2	020	\rightarrow	Area Typ		Other				
Jurisdiction		City of Ottawa		Time F		-	AM Hou	\rightarrow	PHF		0.92		-		→ -
		-		_		-	AIVI HOU	$\overline{}$		Dariad	1> 7:0	20			~
Urban Street		Innes Road		-	sis Year	-	1020 ha		Analysis	Period	127.0	JU			
Intersection	41	Frank Bender/Innes		File Na			.029_ba	IK_AIVI.	xus				- 4	111	
Project Descrip	tion	Innes Road Develor	pment -	васкуг	ouna 11	апіс	-	-	_	-	-	-	-	.,,,,	
Demand Inform	nation				EB			WE	3		NB			SB	
Approach Move	ement			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Demand (v), v	eh/h			36	418	16	26	132	0 89	16	13	3	43	26	47
Signal Informa	ation				2		215					_	_		人
Cycle, s	110.0	Reference Phase	2		1 6	TE I	1 50	2			×		(,⊢	3	5 †3
Offset, s	0	Reference Point	End	Green	7.3	55.4	29.2	0.0	0.0	0.0			K		
Uncoordinated	No	Simult. Gap E/W	On	Yellow		3.7	3.0	0.0	0.0	0.0			←		Ф
Force Mode	Fixed	Simult. Gap N/S	On	Red	1.0	2.9	3.8	0.0	0.0	0.0		5	6	7	<u> </u>
					_						_			_	
	ner Results			EBI	-	EBT	WB	L	WBT	NBI	-	NBT	SBI	-	SBT
Assigned Phas	e			⊢	_	2	1	_	6	_		8		_	4
Case Number				_	_	5.3	2.0	-	4.0	_	_	5.0	_	_	6.0
Phase Duration		,		⊢		62.0	12.0	-	74.0	_	_	36.0	_	_	36.0
Change Period				_	_	6.6	4.7	_	6.6	_	_	6.8	_	_	6.8
Max Allow Hea				_	_	0.0	3.1	-	0.0	_	_	3.2		\rightarrow	3.2
Queue Clearan				_	_		3.7	-		_	_	7.4	_	_	6.2
Green Extension		(g _e), s		_	_	0.0	0.0	-	0.0	_	_	0.3		_	0.3
Phase Call Pro				_	_		1.00	_		_	-	1.00		_	1.00
Max Out Proba	bility		_	_	_		0.38	3	_	_	_	0.00		_	0.00
Movement Gro	oup Res	sults			EB			WB		_	NB			SB	
Approach Move				L	Т	R	L	Т	R	L	Т	R	L	Т	R
Assigned Move				5	2	12	1	6	16	3	8	18	7	4	14
Adjusted Flow), veh/h		39	454	17	28	773	759	17	14	3	47	79	
		ow Rate (s), veh/h/l	n	331	1647	1425	1661	1744	_	1338	1800	1495	1392	1570	
Queue Service				10.1	8.6	0.7	1.7	33.1	33.6	1.1	0.6	0.2	2.8	4.2	
Cycle Queue C				31.7	8.6	0.7	1.7	33.1	33.6	5.4	0.6	0.2	3.4	4.2	
Green Ratio (g		- (3 -), -		0.51	0.51	0.51	0.12	0.62	0.62	0.27	0.27	0.27	0.27	0.27	
Capacity (c), v				170	1689	731	196	1084	_	381	494	411	440	431	
Volume-to-Cap		atio (X)		0.230	0.269	0.024	0.144	0.712	_	0.046	0.029	0.008	0.106	0.184	
		/In (50 th percentile)		24.4	83.3	5.7	17.8	333.9		9	6.8	1.6	23.8	40.7	
		eh/ln (50 th percenti		0.9	3.2	0.2	0.7	12.9	12.9	0.4	0.3	0.1	0.9	1.6	
		RQ) (50 th percent		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Uniform Delay		-,, \	,	29.1	15.1	13.2	43.5	14.4	_	32.5	29.2	29.0	30.4	30.5	
Incremental De				3.1	0.4	0.1	0.1	4.0	4.2	0.0	0.0	0.0	0.0	0.1	
	al Queue Delay (d 3), s/veh			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	rol Delay (d), s/veh			32.3	15.5	13.3	43.6	18.4	18.4	32.6	29.2	29.0	30.5	30.6	
Level of Service				C	В	В	D	В	В	C	C	C	C	C	
Approach Dela				16.7	_	В	18.9		В	30.9	_	С	30.5	_	С
	section Delay, s/veh / LOS						9.2						В		
Multimodal Re	imodal Results				EB			WB			NB			SB	
Pedestrian LOS	estrian LOS Score / LOS)	В	1.88	3	В	2.29)	В	2.45	5	В
Bicycle LOS So	cle LOS Score / LOS					Α	1.77	7	В	0.54	1	Α	0.70)	Α

Generated: 12/8/2020 4:17:59 PM

EXHIBIT 4.16 2029 PEAK PM HOUR ANALYSIS (Background Traffic) - Frank Bender/Innes

	HCS7	' Sig	nalize	d Inte	ersec	tion F	Resul	ts Sur	nmar	у				
Company Lindonna office									41 a.a. l.a.f	41			4741	NI E
General Informatio	n 						\rightarrow	ntersec		_		- 1	4.	
Agency					1000		\rightarrow	Duration		0.250		-		<u>-</u>
Analyst	011 1011			is Date	-		\rightarrow	Area Typ	е	Other				→
Jurisdiction	City of Ottawa		Time F		-	PM Hou		PHF		0.92				-
Urban Street	Innes Road		-	is Year				Analysis	Period	1> 7:0	00			¥ 4
Intersection	Frank Bender/Innes		File Na			2029_ba	ak_PM.	xus					<u>ጎተ</u> ለ	
Project Description	Innes Road Develop	ment -	Backgr	ound Tr	affic	_	_		_	_	_		1 1 4 Y	ř n
Demand Information	'n			EB			WE	?		NB			SB	
Approach Movemen			L	T	│ R	L	T	R	L	T	R	L	T	R
Demand (v), veh/h	<u>`</u>		146	1535	114	85	871		113	96	43	103	104	75
Demand (V), Venim		-	140	1000	114	00	07	00	113	30	70	103	104	7.5
Signal Information							$\overline{}$	\top	$\overline{}$					1
Cycle, s 130	.0 Reference Phase	2	1	8	143 ⁴	E.V	<u>.</u>			K	<u></u> _	4		Φ
Offset, s 0	Reference Point	End		45.0	07.4	1000					1	2	3	4
Uncoordinated No		On	Green Yellow		3.7	3.0	0.0	0.0	0.0			←		rts.
Force Mode Fixe	· ·	On	Red	1.0	2.9	3.8	0.0	0.0	0.0	-	5	6	7	\mathbf{Y}_{s}
T OTOG INIOGO T INC	omiaic cap ive			110	12.0	10.0	10.0	70.0	10.0					
Timer Results			EBI		EBT	WB	L	WBT	NBI		NBT	SBI	$\overline{}$	SBT
Assigned Phase					2	1		6			8			4
Case Number					5.3	2.0		4.0			5.0		\rightarrow	6.0
Phase Duration, s					74.0	20.0	_	94.0			36.0		$\overline{}$	36.0
Change Period, (Y+	·R c). s				6.6	4.7	\rightarrow	6.6			6.8			6.8
Max Allow Headway	,.		_		0.0	3.1	-	0.0			3.3		_	3.3
Queue Clearance Ti	,,,				0.0	8.4	\rightarrow	0.0			28.3			18.3
Green Extension Tin			_		0.0	0.1	-	0.0	_		0.2	_	_	1.0
Phase Call Probabili					0.0	1.00	-	0.0			1.00			1.00
Max Out Probability	9		_	_		0.0	_		_	_	1.00		_	0.02
wax out i robability						0.0					1.00			0.02
Movement Group R	Results			EB			WB			NB			SB	
Approach Movemen	t		L	Т	R	L	Т	R	L	Т	R	L	Т	R
Assigned Movement			5	2	12	1	6	16	3	8	18	7	4	14
Adjusted Flow Rate	(v), veh/h		159	1668	124	92	518	503	123	104	47	112	195	
Adjusted Saturation	Flow Rate (s), veh/h/ln		539	1647	1425	1661	1758	1706	1207	1800	1493	1275	1634	
Queue Service Time	(gs), s		25.7	63.2	5.9	6.4	17.4	17.4	12.8	6.1	3.2	10.2	13.5	
Cycle Queue Cleara	nce Time (g c), s		25.7	63.2	5.9	6.4	17.4	17.4	26.3	6.1	3.2	16.3	13.5	
Green Ratio (g/C)	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		0.53	0.53	0.53	0.16	0.68	0.68	0.23	0.23	0.23	0.23	0.23	
Capacity (c), veh/h			339	1733	750	268	1195	1160	211	418	347	291	380	
Volume-to-Capacity	Ratio (X)		0.468	0.963	0.165	0.344	0.433	0.433	0.583	0.250	0.135	0.384	0.512	
Back of Queue (Q)	, ft/ln (50 th percentile)		93.2	706.7	52.1	69.1	168.9	160.3	100.9	68.4	29.8	83.4	139.3	
	, veh/ln (50 th percentile	e)	3.6	27.2	2.0	2.7	6.6	6.4	4.0	2.7	1.2	3.3	5.5	
	o (RQ) (50 th percentil	_	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Uniform Delay (d 1)	· , , , , , , , , , , , , , , , , , , ,	-,	20.7	29.6	16.0	48.4	9.6	9.4	55.0	40.7	39.5	47.3	43.5	
Incremental Delay (,		4.6	14.4	0.5	0.3	1.1	1.2	2.8	0.1	0.1	0.3	0.5	
Initial Queue Delay (,		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Control Delay (d), s	, , ,		25.3	44.0	16.5	48.7	10.8	10.6	57.7	40.8	39.6	47.6	44.0	
Level of Service (LO			C	D	В	D	В	В	E	D	D	D	D	
Approach Delay, s/v	,		40.7	_	D	13.8		В	48.2	_	D	45.3	_	D
Intersection Delay, s			,0.7			3.5			70.2			C 43.0		
microcolon Delay, S	, VOIT LOU				3.	,.u								
Multimodal Results				EB			WB			NB			SB	
Pedestrian LOS Sco			2.10		В	1.88	_	В	2.30		В	2.46	_	В
Bicycle LOS Score /			2.10	-	В	1.4	-	A	0.94	-	A	0.99	-	A
,0.0 _000107			2.70		_	1. 1			0.0			0.50		

Generated: 12/8/2020 4:30:07 PM

EXHIBIT 4.17 2024 PEAK AM HOUR ANALYSIS (Total Traffic) - Frank Bender/Innes

	HCS7 Sig	nalize	d Inte	ersec	tion F	Resul	ts Sur	nmar	y				
O a manual lunfa uma ati a m							l4	41 a.a. l.a.£	4! -			4741	NI E
General Information	T					\rightarrow	Intersec		_		- 1	41	
Agency				1000		\rightarrow	Duration		0.250		-		<u>-</u>
Analyst	011 1011	-	is Date	-		\rightarrow	Area Typ	е	Other				→
Jurisdiction	City of Ottawa	Time F		-	AM Hou	_	PHF		0.92				-
Urban Street	Innes Road	-	sis Year	-		_	Analysis	Period	1> 7:0	00			7
Intersection	Frank Bender/Innes	File Na	ame	723_2	:024_tot	t_AM.x	us					ጎተሰ	
Project Description	Innes Road Development	_	_	_	_	_		_	_	_		1 1 1 4 Y	ř n
Demand Information			EB			WE	3		NB			SB	
Approach Movement		L	Т	R	L	Т	R	L	Т	R	L	T	R
Demand (v), veh/h		42	402	16	25	125	-	16	12	3	41	25	46
20			102						1				10
Signal Information			2			\top		\top					T
Cycle, s 110.0	Reference Phase 2	1	2	" "	5 to	al .			×		$A \parallel$		4
Offset, s 0	Reference Point End	Green	73	55.4	29.2	0.0	0.0	0.0		1	¥ 2	3	4
Uncoordinated No	Simult. Gap E/W On	Yellow		3.7	3.0	0.0	0.0	0.0	_		←		KÎZ
Force Mode Fixed	Simult. Gap N/S On	Red	1.0	2.9	3.8	0.0	0.0	0.0		5	6	7	8
Timer Results		EBI	-	EBT	WB	L	WBT	NBI	-	NBT	SBI	L	SBT
Assigned Phase				2	1		6			8			4
Case Number				5.3	2.0		4.0			5.0			6.0
Phase Duration, s				62.0	12.0)	74.0			36.0			36.0
Change Period, (Y+R	c), S			6.6	4.7		6.6			6.8			6.8
Max Allow Headway (<i>MAH</i>), s			0.0	3.1		0.0			3.2			3.2
Queue Clearance Time	e (g s), s				3.6					7.2			6.1
Green Extension Time	(ge), s			0.0	0.0		0.0			0.3			0.3
Phase Call Probability					1.00)				1.00			1.00
Max Out Probability					0.33	3				0.00			0.00
Movement Group Re	eulte		EB			WB		_	NB		_	SB	
Approach Movement	Suits	L	T	R	L	T	R	L	T	R	L	T	R
Assigned Movement		5	2	12	1	6	16	3	8	18	7	4	14
Adjusted Flow Rate ()	() voh/h	46	437	17	27	737	722	17	13	3	45	77	124
Adjusted Saturation FI	, .	355	1647	1425	1661	1744	_	1341	1800	1495	1394	1569	
Queue Service Time (10.7	8.2	0.7	1.6	30.4	30.8	1.1	0.6	0.2	2.7	4.1	
Cycle Queue Clearand	<u> </u>	29.4	8.2	0.7	1.6	30.4	30.8	5.2	0.6	0.2	3.2	4.1	
Green Ratio (g/C)	e fille (g c), s	0.51	0.51	0.7	0.12	0.62	0.62	0.27	0.0	0.27	0.27	0.27	
Capacity (c), veh/h		187	1689	731	196	1084	_	383	494	411	441	431	
Volume-to-Capacity Ra	atio (V)	0.244	0.259	0.024	0.138	0.679	_	0.045	0.026	0.008	0.101	0.179	
Back of Queue (Q), fl		27.3	79.6	5.7	17.1	305.4		8.9	6.3	1.6	22.6	39.5	
	eh/ln (50 th percentile)	1.1	3.1	0.2	0.7	11.8	11.7	0.4	0.3	0.1	0.9	1.6	
	(RQ) (50 th percentile)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Uniform Delay (d 1), s	, , , , ,	27.3	15.1	13.2	43.5	13.9	13.7	32.4	29.2	29.0	30.3	30.4	
Incremental Delay (d)		3.1	0.4	0.1	0.1	3.4	3.6	0.0	0.0	0.0	0.0		
	,	_				-	_	_			_	0.1	
Initial Queue Delay (d		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Control Delay (d), s/v Level of Service (LOS)		30.4 C	15.4 B	13.3 B	43.6 D	17.3 B	17.3	32.5 C	29.2 C	29.0 C	30.4 C	30.5 C	
Approach Delay, s/veh			_				B	_		С	_	_	С
		16.7		В	17.8)	В	30.8)		30.5	,	C
Intersection Delay, s/v	EII / LUS			18	3.5						В		
Multimodal Results			EB			WB			NB			SB	
Pedestrian LOS Score	/1 OS	2.09	_	В	1.88		В	2.29		В	2.45	_	В
Bicycle LOS Score / Lo		0.90	_	A	1.71	-	В	0.54	-	A	0.69	-	A
Dicycle LOS SCOIE / L	00	0.90	<u> </u>	^	1.7		D	0.52		^	0.08	,	^

Generated: 12/8/2020 4:15:51 PM

EXHIBIT 4.18 2024 PEAK PM HOUR ANALYSIS (Total Traffic) - Frank Bender/Innes

		HCS	7 Sig	nalize	d Inte	ersec	tion F	Resul	ts Sur	nmar	y				
														ne se se se	
General Inform	ation								ntersec	tion Inf	_		- 6	4741	له ال
Agency								\rightarrow	Duration		0.250		-		
Analyst				Analys	is Date	12/8/2	2020	\rightarrow	Area Typ	е	Other		<u></u>		.a
Jurisdiction		City of Ottawa		Time F	Period	-	PM Hou	ır I	PHF		0.92		*		÷
Urban Street		Innes Road		Analys	sis Year	2024			Analysis	Period	1> 7:0	00			7
Intersection		Frank Bender/Innes	3	File Na	ame	723_2	2024_tot	_PM.x	us					110	
Project Descript	ion	Innes Road Develo	pment	_	_	_	_	_	_	_	_	_	1	4 1 4 4	n d
Demand Inform	nation		_		EB	_	_	WE	3	_	NB	_	_	SB	_
				L	T	│ R	L	T	R	L	T	R	L	T	R
Demand (v), ve				160	1464	108	81	832	_	107	92	41	102	99	75
													100		
Signal Informat	Information Infor				2										\mathbf{L}
Cycle, s	130.0	Reference Phase	2		è	☆`	1 sa	2			×		♣ .	1	STA
Offset, s	0	Reference Point	End	Green	15.3	67.4	29.2	0.0	0.0	0.0		1	K Z	3	4
Uncoordinated	No	Simult. Gap E/W	On	Yellow		3.7	3.0	0.0	0.0	0.0			←		KÎZ
Force Mode	Fixed	Simult. Gap N/S	On	Red	1.0	2.9	3.8	0.0	0.0	0.0		5	6	7	8
					-						_			_	
Timer Results				EBL	-	EBT 2	WB 1	L	WBT 6	NBI	-	NBT 8	SBI	-	SBT 4
Assigned Phase Case Number	;			-		5.3	2.0		4.0	-		5.0	-		6.0
				_		74.0	20.0	-	94.0	_		36.0	_		36.0
		١.٥		_			-	-		_			_	_	
	`	,.		_		6.6	4.7	-	6.6	_		6.8	_	_	6.8
	• `			_		0.0	3.1	_	0.0	_		3.3	_	_	3.3
	Period, ($Y+R_c$), s W Headway (MAH), s Clearance Time (g_s), s					0.0	8.1	_	0.0	-		27.1	-	_	17.9
		(<i>g</i> e), s		-		0.0	1.00	-	0.0	-		1.00	-	_	1.00
				_			0.00	_		_	-	1.00	_	-	0.01
INIAX OUL FIODAL	ation City of Ottawa Street Innes Road Cition Frank Bender/Innes Description Innes Road Develope Innes Innes Road Develope Innes R						0.00					1.00			0.01
Movement Gro	up Res	ults			EB			WB			NB			SB	
Approach Move	ment			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Assigned Mover	ment			5	2	12	1	6	16	3	8	18	7	4	14
Adjusted Flow R	Rate (v), veh/h		174	1591	117	88	495	480	116	100	45	111	189	
Adjusted Satura	tion Flo	ow Rate (s), veh/h/l	n	563	1647	1425	1661	1758	1705	1213	1800	1493	1280	1631	
Queue Service	Time (g	g s), s		27.6	57.6	5.5	6.1	16.3	16.3	12.0	5.9	3.1	10.0	13.1	
Cycle Queue Cl	earanc	e Time (<i>g c</i>), s		27.6	57.6	5.5	6.1	16.3	16.3	25.1	5.9	3.1	15.9	13.1	
Green Ratio (g/	C)			0.53	0.53	0.53	0.16	0.68	0.68	0.23	0.23	0.23	0.23	0.23	
Capacity (c), ve				351	1733	750	268	1195	1160	215	418	347	295	379	
				0.495	0.918	0.157	0.328	0.414	_	0.541	0.239	0.128	0.376	0.499	
	, ,	, ,		104.2	619.7	49	65.6	158.2	150.2	93.1	65.5	28.4	82.1	134.7	
				4.0	23.8	1.9	2.5	6.2	6.0	3.7	2.6	1.1	3.2	5.3	
			tile)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
				21.1	28.2	15.9	48.3	9.4	9.3	54.2	40.6	39.5	47.0	43.3	
	• •	,		4.9	9.3	0.4	0.3	1.1	1.1	1.5	0.1	0.1	0.3	0.4	
		,,		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
				26.0	37.6	16.3	48.5	10.5	10.4	55.7	40.7	39.5	47.3	43.7	
				C	D	В	D 42.6	В	В	E 47.0	D	D	D 45.0	D	
				35.2	<u> </u>	D	13.6		В	47.2	<u> </u>	D	45.0)	D
intersection Dela	ay, s/ve	en / LOS				30	0.4						С		
Multimodal Res	sults				EB			WB			NB			SB	
Pedestrian LOS		/LOS		2.10	_	В	1.88	_	В	2.30		В	2.46		В
Bicycle LOS Sco				2.04	-	В	1.36	-	A	0.92	-	A	0.98	-	A
•															

Generated: 12/8/2020 4:27:06 PM

EXHIBIT 4.19 2029 PEAK AM HOUR ANALYSIS (Total Traffic) - Frank Bender/Innes

	HCS7 Sig	nalize	d Inte	ersec	tion F	Resul	lts Sur	nmar	y				
O a manual lanfa manatia m							l4	41 a.a. l.a. f	41			4741	ki ti
General Information						\rightarrow	Intersec		_		- 1	11	4
Agency				1401010		\rightarrow	Duration		0.250		-		<u>-</u>
Analyst	211 1211	-	is Date	-		\rightarrow	Area Typ	е	Other				→
Jurisdiction	City of Ottawa	Time F		-	AM Hou		PHF		0.92			***	-
Urban Street	Innes Road	-	sis Year	-		_	Analysis	Period	1> 7:0	00			¥ /
Intersection	Frank Bender/Innes	File Na	ame	723_2	2029_to	t_AM.x	us					<u> ጎተ</u>	
Project Description	Innes Road Development	_					_			_		A TAYY	חא
Demand Information			EB			WE	3		NB			SB	
Approach Movement		L	Т	R	L	Т	R	L	Т	R	L	Т	R
Demand (v), veh/h		44	423	16	26	132		16	13	3	43	26	48
Signal Information			2							_	_		\mathbf{L}
Cycle, s 110.0	Reference Phase 2		ĕ	† € `	T SA	2					♦ 』	١	4
Offset, s 0	Reference Point End	Green	7.3	55.4	29.2	0.0	0.0	0.0			K		~
Uncoordinated No	Simult. Gap E/W On	Yellow		3.7	3.0	0.0	0.0	0.0			←		❖
Force Mode Fixed	Simult. Gap N/S On	Red	1.0	2.9	3.8	0.0	0.0	0.0		5	6	7	8
Timer Results		EBI	-	EBT	WB	L	WBT	NBI	_	NBT	SBI	-	SBT
Assigned Phase		_		2	1		6	-		8	_	_	4
Case Number		-		5.3	2.0	_	4.0	-	-	5.0	-	-	6.0
Phase Duration, s	\	_		62.0	12.0	\rightarrow	74.0	_	_	36.0	_	-	36.0
Change Period, (Y+R		-	-	6.6	4.7	_	6.6	-	-	6.8	<u> </u>	-	6.8
Max Allow Headway (A		_		0.0	3.1	-	0.0	_		3.2	⊢	_	3.2
Queue Clearance Time	10 /	-	-		3.7	\rightarrow		_	_	7.4	_	-	6.3
Green Extension Time	(<i>g</i> _e), S	_	_	0.0	0.0	-	0.0	_	_	0.3	_	_	0.3
Phase Call Probability		-	-		1.00	-		<u> </u>	-	1.00	_	_	1.00
Max Out Probability		_	-		0.38	3		_	_	0.00	_	-	0.00
Movement Group Res	ults		EB			WB			NB			SB	
Approach Movement		L	Т	R	L	Т	R	L	Т	R	L	Т	R
Assigned Movement		5	2	12	1	6	16	3	8	18	7	4	14
Adjusted Flow Rate (v), veh/h	48	460	17	28	774	760	17	14	3	47	80	
Adjusted Saturation Flo	ow Rate (s), veh/h/ln	331	1647	1425	1661	1744	1699	1337	1800	1495	1392	1569	
Queue Service Time (g		12.7	8.7	0.7	1.7	33.2	33.7	1.1	0.6	0.2	2.8	4.3	
Cycle Queue Clearance	e Time (<i>g c</i>), s	34.4	8.7	0.7	1.7	33.2	33.7	5.4	0.6	0.2	3.4	4.3	
Green Ratio (g/C)		0.51	0.51	0.51	0.12	0.62	0.62	0.27	0.27	0.27	0.27	0.27	
Capacity (c), veh/h		170	1689	731	196	1084	1056	380	494	411	440	431	
Volume-to-Capacity Ra	tio (X)	0.282	0.272	0.024	0.144	0.713	0.720	0.046	0.029	0.008	0.106	0.187	
Back of Queue (Q), ft/	In (50 th percentile)	30.9	84.3	5.7	17.8	335	322.4	9	6.8	1.6	23.8	41.3	
Back of Queue (Q), ve	eh/ln (50 th percentile)	1.2	3.2	0.2	0.7	13.0	12.9	0.4	0.3	0.1	0.9	1.6	
Queue Storage Ratio (RQ) (50 th percentile)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Uniform Delay (d 1), s	/veh	30.1	15.2	13.2	43.5	14.4	14.2	32.6	29.2	29.0	30.4	30.5	
Incremental Delay (d 2), s/veh	4.1	0.4	0.1	0.1	4.0	4.2	0.0	0.0	0.0	0.0	0.1	
Initial Queue Delay (d	з), s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Control Delay (d), s/ve	eh	34.2	15.6	13.3	43.6	18.4	18.5	32.6	29.2	29.0	30.5	30.6	
Level of Service (LOS)		С	В	В	D	В	В	С	С	С	С	С	
Approach Delay, s/veh	/ LOS	17.2	2	В	18.9	9	В	30.9	9	С	30.5	5	С
Intersection Delay, s/ve	h / LOS			19	9.3						В		
Multimodal Results			EB			WB			NB			SB	
Pedestrian LOS Score		2.09	_	В	1.88	-	В	2.29	-	В	2.45	-	В
Bicycle LOS Score / LO)S	0.92	2	Α	1.78	3	В	0.54	1	Α	0.70)	Α

Generated: 12/8/2020 4:19:34 PM

EXHIBIT 4.20 2029 PEAK PM HOUR ANALYSIS (Total Traffic) - Frank Bender/Innes

		HCS	7 Sig	nalize	d Inte	ersec	tion F	Resu	lts Su	nmar	у				
General Inforn	nation							\rightarrow	Intersec		_		- 6	4741	Ja lu
Agency								\rightarrow	Duration		0.250				
Analyst				Analys	sis Date	-		\rightarrow	Area Typ	е	Other		<u></u>		
Jurisdiction		City of Ottawa		Time F	Period	Peak	PM Hou	_	PHF		0.92		*		1.
Urban Street		Innes Road		Analys	sis Year	2029			Analysis	Period	1> 7:0	00			
Intersection		Frank Bender/Innes	3	File Na	ame	723_2	2029_tot	t_PM.>	cus					htr	
Project Descrip	tion	Innes Road Develo	pment										1	11144	ħſſ
Demand Inforr	nation		_		EB	-	_	W	3	_	NB	_	_	SB	-
Approach Move				L	Т	R	L	Т	R	L	Т	R	L	T	R
Demand (v), v				168	1538	114	85	87	_	113	96	43	103	104	78
Signal Informa					2	, ,						_			人
Cycle, s	130.0	Reference Phase	2		"			2				1	♀ ₂	3	-
Offset, s	0	Reference Point	End	Green	15.3	67.4	29.2	0.0	0.0	0.0			<u></u>		
Uncoordinated	No	Simult. Gap E/W	On	Yellow	-	3.7	3.0	0.0		0.0					*
Force Mode	Fixed	Simult. Gap N/S	On	Red	1.0	2.9	3.8	0.0	0.0	0.0	_	5	6	7	
Timer Results				EBI		EBT	WB		WBT	NBI		NBT	SBI		SBT
Assigned Phase	 e					2	1	-	6	INDI	-	8	JUI	-	4
Case Number						5.3	2.0		4.0			5.0		\rightarrow	6.0
Phase Duration	se Duration, s					74.0	20.0	_	94.0			36.0	-	\neg	36.0
	e Duration, s ge Period, (Y+R c), s				_	6.6	4.7	\rightarrow	6.6			6.8			6.8
Max Allow Hea						0.0	3.1	_	0.0			3.3			3.3
Queue Clearan						0.0	8.4	-	0.0			28.7			18.3
Green Extension				_		0.0	0.1	\rightarrow	0.0	_		0.1	_	_	1.0
Phase Call Pro		(9 0), 3				0.0	1.00	_	0.0			1.00			1.00
Max Out Proba							0.0	-			_	1.00		_	0.02
Movement Gro		sults			EB			WB			NB	_	_	SB	
Approach Move				L	Т	R	L	Т	R	L	Т	R	L	Т	R
Assigned Move				5	2	12	1	6	16	3	8	18	7	4	14
Adjusted Flow I				183	1672	124	92	521	505	123	104	47	112	198	
		ow Rate (s), veh/h/l	n	536	1647	1425	1661	1758	_	1203	1800	1493	1275	1631	
Queue Service				31.8	63.5	5.9	6.4	17.5	_	12.9	6.1	3.2	10.2	13.8	
Cycle Queue C		e Time (<i>g c</i>), s		31.8	63.5	5.9	6.4	17.5	_	26.7	6.1	3.2	16.3	13.8	
Green Ratio (g				0.53	0.53	0.53	0.16	0.68	_	0.23	0.23	0.23	0.23	0.23	
Capacity (c), v				338	1733	750	268	1195	_	207	418	347	291	379	
Volume-to-Cap				0.541	0.965	0.165	0.344	0.436		0.592	0.250	0.135	0.384	0.522	
		/In (50 th percentile)		115.8	710.9	52.1	69.1	170.2		101.7	68.4	29.8	83.4	142.4	
		eh/ln (50 th percenti		4.5	27.3	2.0	2.7	6.6	6.5	4.1	2.7	1.2	3.3	5.6	
		-, (uie)	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	
Uniform Delay				6.1	29.6	16.0	48.4	9.6	9.5	55.3	40.7	39.5	47.3	43.6	
	emental Delay (d 2), s/veh				14.7	0.5	0.3	1.2	1.2	3.1	0.1	0.1	0.3	0.6	
	al Queue Delay (d ȝ), s/veh atrol Delay (d), s/veh				0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
				28.2 C	44.4 D	16.5 B	48.7 D	10.8 B	10.7 B	58.3 E	40.8 D	39.6 D	47.6 D	44.2 D	
Level of Service Approach Delay				41.1	_	D D	13.9		В	48.5	_	D	45.5	_	D
	section Delay, s/veh / LOS						3.8	,	D	40.0			C 45.0		<i>D</i>
	ay, o/ve	,, LOG				3.	<i>.</i>								
Multimodal Re	sults				EB			WB			NB			SB	
	estrian LOS Score / LOS					В	1.88	3	В	2.30		В	2.46	3	В
r edesilian LOC					-	В		1	Α	0.94	-			$\overline{}$	

Generated: 12/8/2020 4:31:54 PM

EXHIBIT 4.21 2017 PEAK AM HOUR ANALYSIS (Existing Traffic) - Viseneau/Innes

		HCS	7 Sig	nalize	d Int	ersec	tion F	Resul	ts Sur	nmar	y				
Company Linforms	-4'									· · · · · · · · · · · · · · ·	4! -			4 44 1	KTU
General Inform	ation							\rightarrow	ntersec		_		- 1	4	4- 4
Agency					. 5 .	1401010		\rightarrow	Duration		0.250		-		
Analyst					is Date	_		\rightarrow	Area Typ	е	Other				[
Jurisdiction		City of Ottawa		Time F		-	AM Hou	_	PHF		0.92		_===		
Urban Street		Innes Road		-	is Year	_		_	Analysis	Period	1> 7:0	00	7		,
Intersection		Viseneau/Innes		File Na	ame	723_2	017_ex	_AM.x	us					ጎተሰ	
Project Descript	ion	Innes Road Develo	pment		_			_					1	14144	h n
Demand Inform	nation				EB			WE	3		NB			SB	
Approach Move	ment			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Demand (v), ve				11	398	37	59	142	_	22	5	39	46	13	47
201114114 (17); 11	J11,711														
Signal Information	tion							\top	\neg	\neg					1
Cycle, s	110.0	Reference Phase	2	1	2	₹ <u>`</u>	F. 6	4			×	<u>_</u> _	4		4
Offset, s	0	Reference Point	End		F 7	40.7	124			100		1	2	3	4
Uncoordinated	No		On	Green Yellow	-	49.7 3.7	34.7	0.0	0.0	0.0			4		r † -
Force Mode			On	Red	2.6	2.6	4.3	0.0	0.0	0.0		5	6	7	Y
T Groot Infode	1 1/10 G	oman cap me	0			12.0	1	10.0	10.0	10.0					
Timer Results				EBL		EBT	WB	L	WBT	NBI	- T	NBT	SBI	L	SBT
Assigned Phase)					2	1		6			8			4
Case Number						5.3	2.0		4.0			5.0			8.0
Phase Duration,	, s					56.0	12.0		68.0			42.0			42.0
Change Period,	sults Phase nber ration, s eriod, (Y+R c), s					6.3	6.3		6.3			7.3			7.3
Max Allow Head	lway (/	MAH), s				0.0	3.1		0.0			3.3			3.3
	• `	, .					5.9					9.4			8.0
		10 /				0.0	0.0	_	0.0		\neg	0.3		\neg	0.4
	inated No Simult. Gap E/W ode Fixed Simult. Gap N/S esults d Phase mber uration, s Period, (Y+Rc), s w Headway (MAH), s clearance Time (gs), s attension Time (ge), s all Probability Probability ent Group Results					0.0	1.00	-	0.0			1.00			1.00
Max Out Probab							1.00	-			_	0.00			0.00
M	D	14			-FD			W/D			ND			CD	
	•	suits			EB			WB	I 5		NB		-	SB	
Approach Move				L	T	R	L	T	R	L	T	R	L	T	R
Assigned Mover				5	2	12	1	6	16	3	8	18	7	4	14
Adjusted Flow F		,		12	433	40	64	795	791	24	5	42	_	115	
		ow Rate (s), veh/h/l	n	314	1647	1424	1661	1744	1727	1356	1800	1497		1486	
Queue Service				3.4	9.0	1.7	3.9	39.6	39.9	1.4	0.2	2.2	_	3.4	
Cycle Queue Cl		e Time (<i>g շ</i>), s		31.4	9.0	1.7	3.9	39.6	39.9	7.4	0.2	2.2	_	6.0	
Green Ratio (g/				0.46	0.46	0.46	0.12	0.57	0.57	0.32	0.32	0.32		0.32	
Capacity (c), v	eh/h			131	1518	656	196	994	985	432	584	486		529	
Volume-to-Capa	city Ra	itio (X)		0.092	0.285	0.061	0.327	0.800	0.803	0.055	0.009	0.087		0.218	
		In (50 th percentile)		8.1	89.1	15.3	41.5	427	413.5	11.7	2.4	19.2		55.6	
		eh/In (50 th percenti		0.3	3.4	0.6	1.6	16.5	16.5	0.5	0.1	0.8		2.2	
Queue Storage	Ratio (RQ) (50 th percent	tile)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	
Uniform Delay (35.9	18.4	16.4	44.5	19.0	18.8	29.8	25.2	25.8		27.1	
Incremental Del	ay (d 2), s/veh		1.4	0.5	0.2	0.4	6.7	6.9	0.0	0.0	0.0		0.1	
Initial Queue De		,·		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	
Control Delay (d), s/ve	eh		37.3	18.9	16.6	44.8	25.8	25.7	29.9	25.2	25.9		27.1	
Level of Service	(LOS)			D	В	В	D	С	С	С	С	С		С	
Approach Delay	, s/veh	/LOS		19.1		В	26.5	5	С	27.1		С	27.1	1	С
Intersection Del						25	5.0						С		
														-	
Multimodal Res					EB	_		WB			NB			SB	
Pedestrian LOS				2.10	-	В	1.67	-	В	2.29	-	В	2.44	-	В
Bicycle LOS Sco	ore / LC)S		0.89)	Α	1.85	5	В	0.61		Α	0.68	3	Α

Generated: 12/8/2020 4:33:54 PM

EXHIBIT 4.22 2017 PEAK PM HOUR ANALYSIS (Existing Traffic) - Viseneau/Innes

		HCS	7 Sig	nalize	d Int	ersec	tion F	Resu	lts Sur	nmar	y				
	n City of Ottawa eet Innes Road on Viseneau/Innes escription Innes Road Devel on Viseneau/Innes escription Innes Road Devel on Movement v), veh/h formation 130.0 Reference Phase 0 Reference Point lated No Simult. Gap E/W de Fixed Simult. Gap N/S sults Phase her ration, s eriod, (Y+Rc), s ension Time (gs), s ension Time (gs), s ension Time (ge), s Il Probability Probability or Copacity Results Movement Movement Flow Rate (v), veh/h caturation Flow Rate (s), veh/h rvice Time (gs), s eue Clearance Time (gc), s tio (g/C) (c), veh/h -Capacity Ratio (X) usue (Q), tf/ln (50 th percentile usue (Q), veh/ln (5														
General Inform	ation							\rightarrow	Intersec		_		- 6	4 7 40 1	Ja lu
Agency									Duration	, h	0.250		-		
Analyst				Analys	sis Date	12/8/2	2020		Area Typ	е	Other		<u></u>		
Jurisdiction		City of Ottawa		Time F	Period	Peak	ΡΜ Ηοι	ır	PHF		0.92		*		÷
Urban Street		Innes Road		Analys	sis Year	2017			Analysis	Period	1> 7:0	00			
Intersection		Viseneau/Innes		File Na	ame	723 2	2017_ex	PM.x	us					510	
Project Descript	tion	Innes Road Develo	pment											14144	7
Domand Inform	nation				EB			WE	2		NB			SB	
				L	T	R	L	T		L	T	R	L	T	ТВ
				45	_	87	-	67:	-	106	-	_	60	-	R
Demand (v), v	en/n		-	45	1456	07	184	67.	3 04	100	40	179	60	51	30
Signal Informa	tion				2		215	T	\top	\top			_ [$\overline{\mathbf{L}}$
Cycle, s	130.0	Reference Phase	2		1 2	†# `	5.0	2			K		0		4
Offset, s	0	Reference Point	End	Green	13.7	61.7	34.7	0.0	0.0	0.0		1	¥ 2	3	
Uncoordinated	No	Simult. Gap E/W	On	Yellow	-	3.7	34.7	0.0		0.0			—		κt
Force Mode		·	On	Red	2.6	2.6	4.3	0.0	0.0	0.0		5	6	7	
Timer Results				EBI	-	EBT	WB	L	WBT	NB	L	NBT	SBI	L	SBT
Assigned Phase	9			_		2	1		6			8			4
Case Number				-		5.3	2.0	_	4.0	_	_	5.0	_	-	8.0
Phase Duration		`		_		68.0	20.0	\rightarrow	88.0	_	_	42.0	_	_	42.0
	•	•		_	_	6.3	6.3	_	6.3	_	_	7.3	_	_	7.3
	• •			<u> </u>		0.0	3.1	-	0.0			3.3			3.3
Queue Clearand	ce Time	e (gs), s					16.5	5				22.2			12.2
Green Extensio	n Time	(g _e), s				0.0	0.0		0.0			0.9			1.0
Phase Call Prob	oability						1.00)				1.00			1.00
Max Out Probat	oility						1.00					0.01			0.00
Movement Gro	up Res	sults			EB			WB			NB			SB	
Approach Move	ment			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Assigned Move				5	2	12	1	6	16	3	8	18	7	4	14
) veh/h		49	1583	95	200	421	402	115	43	195	H-	153	<u> </u>
		,	n	669	1687	1457	1701	1758	_	1318	1786	1463	-	1529	
		, ,,		5.3	59.5	4.7	14.5	14.9	_	10.0	2.4	14.5		7.5	
				5.3	59.5	4.7	14.5	14.9	_	20.2	2.4	14.5		10.2	
-		e mile (<i>g c</i>), s		0.48	0.48	0.48	_	_	_	0.27	0.27			0.27	
Green Ratio (g				_			0.16	0.64	_	314		0.27 402		_	
, , , , ,		tio (V)		378	1627	703	275	1118	_	_	490		-	459	
<u>`</u>				0.129 22.6	0.973 685.4	0.135 41.6	0.728 170.9	0.376	_	0.367 83.1	0.089	0.484 131.4		0.334 99.2	
				0.9	27.0	1.7	6.8	5.9	5.6	3.3	1.0	5.2		3.9	
				0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00		0.00	
		, , , ,	-,	18.8	32.8	18.6	51.8	11.5	_	46.0	35.1	39.4		37.8	
				0.7	16.7	0.4	8.2	1.0	1.0	0.3	0.0	0.3		0.2	
	, ,	,.		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	
Control Delay (d), s/ve	eh		19.5	49.5	19.0	60.0	12.5	12.3	46.3	35.1	39.8		38.0	
Level of Service				В	D	В	Е	В	В	D	D	D		D	
Approach Delay	oach Delay, s/veh / LOS					D	21.7	7	С	41.3	3	D	38.0)	D
Intersection Del	ay, s/ve	eh / LOS				38	3.0						D		
Multimodal Re		// 00		2.15	EB		1.0	WB		0.00	NB			SB	
	trian LOS Score / LOS			2.10	-	В	1.66	_	В	2.30	-	В	2.45	-	В
Bicycle LOS Sc	ore / LC	JS		1.91		В	1.33	5	Α	1.07		Α	0.74	7	Α

Generated: 12/8/2020 4:51:13 PM

EXHIBIT 4.23 2029 PEAK AM HOUR ANALYSIS (Background Traffic) - Viseneau/Innes

		HCS	7 Sig	nalize	d Inte	ersec	tion F	Resul	ts Sur	nmar	у				
General Inform	nation							T.	ntersec	tion Inf	ormatio	nn .	J.	4741	Ja] lg
Agency	iduon							\rightarrow	Duration		0.250			*	
Analyst				Analys	ic Data	12/8/2	020	-	Area Typ		Other		- A		
Jurisdiction		City of Ottawa		Time F		-	AM Hou	-	PHF		0.92				
Urban Street		Innes Road		_		-	AIVI HOU	-		Dorind	1> 7:0	20			
Intersection		Viseneau/Innes		File Na	sis Year		.029_ba		Analysis	renou	177.0	00			
	4:						:029_ba	IK_AIVI.	xus				- 4	ነተሰ	te C
Project Descrip	tion	Innes Road Develop	oment -	васкуг	ouna 11	апіс	-	-	_	-	-	-		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Demand Inform	nation				EB			WB		$\overline{}$	NB		$\overline{}$	SB	_
Approach Move	ement			L	Т	R	L	Т	R	L	Т	R	L	Т	F
Demand (v), v	eh/h			12	374	42	66	1280	0 37	25	6	44	53	15	5
Signal Informa		D (D)			2	, ,	21/3								人
Cycle, s	110.0	Reference Phase	2		1 6		7:7	7				1	♦ 2	3	*-
Offset, s	0	Reference Point	End	Green		49.7	34.7	0.0	0.0	0.0			<u> </u>		
Uncoordinated	No	Simult. Gap E/W	On	Yellow		3.7	3.0	0.0	0.0	0.0					V
Force Mode	Fixed	Simult. Gap N/S	On	Red	2.6	2.6	4.3	0.0	0.0	0.0		5	6	7	
Times Beaulte				EDI		EDT	\A/D		MDT	ND		NDT	CDI		CDT
Timer Results Assigned Phase	Δ			EBL		EBT 2	WB 1	_	WBT 6	NBI	-	NBT 8	SBI	-	SBT 4
Case Number	<u> </u>			-		5.3	2.0		4.0			5.0	-		8.0
Phase Duration				_		56.0	12.0	-	68.0			42.0	_		42.0
Change Period,		a) c		-	-	6.3	6.3	\rightarrow	6.3			7.3	-		7.3
Max Allow Head		, .		_	_	0.0	3.1	_	0.0		_	3.3	_	_	3.3
Queue Clearan	• `			_		0.0	6.4	-	0.0			10.6	_		8.9
Green Extensio		, ,		_		0.0	0.0	_	0.0		_	0.4	_	_	0.4
Phase Call Prol		(<i>g e)</i> , s		-		0.0	1.00	-	0.0	-		1.00	_	_	1.00
Max Out Probal				_			1.00	_			_	0.00			0.00
Movement Gro	up Res	sults			EB			WB			NB			SB	
Approach Move	ement			L	Т	R	L	T	R	L	Т	R	L	T	R
Assigned Move	ment			5	2	12	1	6	16	3	8	18	7	4	14
Adjusted Flow F	Rate (v), veh/h		13	407	46	72	719	712	27	7	48		130	
Adjusted Satura	ation Flo	ow Rate (s), veh/h/l	n	365	1647	1424	1661	1744	1723	1347	1800	1497		1485	
Queue Service		· , ·		3.0	8.4	2.0	4.4	33.2	33.3	1.7	0.3	2.5		4.4	
Cycle Queue C	learanc	e Time (<i>g c</i>), s		24.3	8.4	2.0	4.4	33.2	33.3	8.6	0.3	2.5		6.9	
Green Ratio (g	/C)			0.46	0.46	0.46	0.12	0.57	0.57	0.32	0.32	0.32		0.32	
Capacity (c), v	/eh/h			163	1518	656	196	994	982	418	584	486		529	
Volume-to-Capa	acity Ra	atio (X)		0.080	0.268	0.070	0.366	0.723	_	0.065	0.011	0.098		0.247	
Back of Queue	(Q), ft	/In (50 th percentile)		7.9	83	17.4	46.7	349.5	337.1	13.6	2.9	21.7		63.6	
	, .	eh/ln (50 th percenti		0.3	3.2	0.7	1.8	13.5	13.5	0.5	0.1	0.9		2.5	
Queue Storage	Ratio (RQ) (50 th percent	ile)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	
Uniform Delay (30.7	18.2	16.5	44.7	17.6	17.3	30.6	25.2	25.9		27.4	
Incremental De	lay (d2), s/veh		1.0	0.4	0.2	0.4	4.6	4.7	0.0	0.0	0.0		0.1	
Initial Queue De	elay (d	з), s/veh		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	
Control Delay (d), s/v	eh		31.6	18.7	16.7	45.1	22.2	22.0	30.6	25.2	26.0		27.5	
Level of Service	e (LOS)			С	В	В	D	С	С	С	С	С		С	
Approach Delay	y, s/veh	/LOS		18.8	3	В	23.2	2	С	27.4	1	С	27.5	5	С
Intersection De	section Delay, s/veh / LOS					22	2.7						С		
	timodal Poculte														
	timodal Results				EB			WB			NB			SB	_
Pedestrian LOS				2.10	-	В	1.67	-	В	2.29	-	В	2.44	-	В
Bicycle LOS Sc	ore / LC	JS		0.87		Α	1.73	3	В	0.62	2	Α	0.70)	Α

Generated: 12/8/2020 4:33:54 PM

EXHIBIT 4.24 2029 PEAK PM HOUR ANALYSIS (Background Traffic) - Viseneau/Innes

		HCS	7 Sig	nalize	d Inte	ersec	tion F	Resul	ts Sur	nmar	у				
															ere.
General Inform	nation							\rightarrow	Intersec		_		- 1	4 7 4 1	to it
Agency								\rightarrow	Duration,		0.250				
Analyst				Analys	is Date	12/8/2	2020	\rightarrow	Area Typ	е	Other				
Jurisdiction		City of Ottawa		Time F	eriod	Peak	PM Hou	ır	PHF		0.92		*		<u>+</u>
Urban Street		Innes Road		Analys	is Year	2029			Analysis	Period	1> 7:	00	4		
Intersection		Viseneau/Innes		File Na	ame	723_2	2029_ba	ık_PM.	xus					htr	
Project Descript	tion	Innes Road Develo	pment -	Backgr	ound Tr	raffic							1	1 1 4 Y	1
Demand Inforn	nation				EB		_	WE	₹	_	NB			SB	
Approach Move				L	T	R	L	T	R	L	T	R	L	T	R
				51	1525	_	207	757	_	119	45	202	68	57	34
Demand (v), v	en/n		-	51	1525	98	207	/5/	95	119	45	202	00	57	34
Signal Informa	tion				2		21.	T	\top	\top			_		\mathbf{L}
Cycle, s	130.0	Reference Phase	2		E	†# `	E/10	2			×		Θ .		4
Offset, s	0	Reference Point	End	Green	13.7	61.7	34.7	0.0	0.0	0.0		1	¥ 2	3	
Uncoordinated	No	Simult. Gap E/W	On	Yellow	-	3.7	3.0	0.0	0.0	0.0			4		κŤ
Force Mode	Fixed	Simult. Gap N/S	On	Red	2.6	2.6	4.3	0.0	0.0	0.0		5	6	7	Y
Timer Results				EBL		EBT	WB	L	WBT	NB	L	NBT	SBI	L	SBT
Assigned Phase	е			_		2	1	_	6			8	_		4
Case Number						5.3	2.0		4.0			5.0			8.0
Phase Duration	, S					68.0	20.0)	88.0			42.0			42.0
Change Period,	(Y+R	c), S				6.3	6.3		6.3			7.3			7.3
Max Allow Head	dway (/	<i>MAH</i>), s				0.0	3.1	$\neg \vdash$	0.0			3.3			3.3
Queue Clearan	ce Time	e (g s), s					18.6	3				25.5			13.8
Green Extensio	n Time	(g e), s				0.0	0.0		0.0		\neg	1.0			1.2
Phase Call Prob		(0),					1.00					1.00			1.00
Max Out Probal							1.00					0.05			0.00
Movement Gro	un Boo	aulto.			EB			WB			NB			SB	
		Suits			T	В		T	T D		T	В		T	ГБ
Approach Move				L		R	L	-	R	L		R	느		R
Assigned Move				5	2	12	1	6	16	3	8	18	7	4	14
Adjusted Flow F		,		55	1658	107	225	474	452	129	49	220	_	173	-
		ow Rate (s), veh/h/l	n	608	1687	1457	1701	1758	_	1305	1786	1463	-	1525	
Queue Service Cycle Queue C				6.8	62.7 62.7	5.3	16.6 16.6	17.5 17.5	17.5 17.5	11.7 23.5	2.7	16.7 16.7		9.1	
•		e iiiie (<i>y c)</i> , s		-					_						
Green Ratio (g.				0.48	0.48	0.48	0.16	0.64	-	0.27	0.27	0.27		0.27	
Capacity (c), v		-4'- () ()		349	1627	703	275	1118		296	490	402		458	
Volume-to-Capa				0.159	1.019		0.819	0.424		0.438	0.100			0.377	
		/In (50 th percentile) eh/In (50 th percenti		26.4 1.0	777.3 30.6	47.4 1.9	8.3	176.2 6.9	164.6	96.1 3.8	29.4 1.2	152.7 6.1		113.6 4.5	
		RQ) (50 th percent		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	
Uniform Delay (,		19.2	33.7	18.8	52.7	12.0	_	48.0	35.2	40.2		38.4	
Incremental De				1.0	27.1	0.5	16.4	1.2	1.2	0.4	0.0	0.9		0.2	
Initial Queue De				0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	
Control Delay (20.1	60.8	19.3	69.1	13.2	13.0	48.4	35.2	41.1		38.6	
Level of Service				С	F	В	Е	В	В	D	D	D		D	
Approach Delay				57.1		Е	24.0		С	42.8	3	D	38.6	3	D
Intersection Del	lay, s/ve	eh / LOS				43	3.8						D		
Multimodal Da	oulto				ED			\A/D			NID			CD	
Multimodal Re		/1.00		0.40	EB	D	4.00	WB	D	2.00	NB	D	2.4	SB	D
Pedestrian LOS				2.10	\rightarrow	В	1.66	-	В	2.30	$\overline{}$	В	2.45	-	В
Bicycle LOS Sc	ore / L(Jo		1.99		В	1.44	+	Α	1.14	+	Α	0.77		Α

EXHIBIT 4.25 2024 PEAK AM HOUR ANALYSIS (Total Traffic) - Viseneau/Innes

	HCS7 S	ignalize	ed Int	ersec	tion F	Resul	ts Sur	nmar	y				
0									41			4144	LITE
General Information						\rightarrow	ntersec		_		- 1	4	4
Agency				1		\rightarrow	Duration		0.250				
Analyst			sis Date	-		-	Area Typ	e	Other				E
Jurisdiction	City of Ottawa		Period	-	AM Hou	_	PHF		0.92		_===		-
Urban Street	Innes Road		sis Year	-		_	Analysis	Period	1> 7:0	00	7		F
Intersection	Viseneau/Innes	File N	ame	723_2	2024_to	t_AM.x	us					ጎተሰ	
Project Description	Innes Road Developme	nt	_	_	_	_	_	_	_	_	1	1 1 4 4	11
Demand Information		_	EB		_	WE	3		NB		_	SB	
Approach Movement			Т	R	1	Т	R	L	Т	R	L	T	R
Demand (v), veh/h		12	361	40	71	123	_	24	5	42	49	14	50
Signal Information			2							_	_		\mathbf{A}
Cycle, s 110.0	Reference Phase 2		è	† € `	1 54	2			×		Ә∴	1	4
Offset, s 0	Reference Point En	Green	1 5.7	49.7	34.7	0.0	0.0	0.0			K	3	**
Uncoordinated No	Simult. Gap E/W Or			3.7	3.0	0.0	0.0	0.0			←		惁
Force Mode Fixed	Simult. Gap N/S O	n Red	2.6	2.6	4.3	0.0	0.0	0.0		5	6	7	8
		_											
Timer Results		EB	L	EBT	WB	L	WBT	NBI		NBT	SBI		SBT
Assigned Phase		-		2	1		6	-		8	-	_	4
Case Number		-	-	5.3	2.0	_	4.0	-	-	5.0		-	8.0
Phase Duration, s	,	_	_	56.0	12.0	-	68.0	_		42.0	_	-	42.0
Change Period, (Y+R		_	_	6.3	6.3	_	6.3	_	_	7.3	_	_	7.3
Max Allow Headway (I		-	_	0.0	3.1	-	0.0	_	_	3.3	_	\rightarrow	3.3
Queue Clearance Time	(0)	-	_		6.7	-		_	_	10.0	_	_	8.5
Green Extension Time	(g _e), s	-	_	0.0	0.0	-	0.0	_	_	0.4	_	_	0.4
Phase Call Probability		_			1.00	-		_	-	1.00	_	_	1.00
Max Out Probability		_	_	_	1.00	0	_	_	_	0.00	_	_	0.00
Movement Group Res	ults	$\overline{}$	EB			WB			NB			SB	
Approach Movement		L	Т	R	L	Т	R	L	Т	R	L	Т	R
Assigned Movement		5	2	12	1	6	16	3	8	18	7	4	14
Adjusted Flow Rate (v), veh/h	13	392	43	77	695	689	26	5	46		123	
Adjusted Saturation Flo	,	382	1647	1424	1661	1744	1724	1351	1800	1497		1486	
Queue Service Time (g s), S	2.8	8.0	1.9	4.7	31.4	31.5	1.6	0.2	2.3		3.8	
Cycle Queue Clearance	e Time (g c), s	22.2	8.0	1.9	4.7	31.4	31.5	8.0	0.2	2.3		6.5	
Green Ratio (g/C)		0.46	0.46	0.46	0.12	0.57	0.57	0.32	0.32	0.32		0.32	
Capacity (c), veh/h		174	1518	656	196	994	983	425	584	486		529	
Volume-to-Capacity Ra	itio (X)	0.075	0.258	0.066	0.393	0.699	0.701	0.061	0.009	0.094		0.232	
Back of Queue (Q), ft		7.6	79.8	16.5	50.4	328.5	316.3	12.9	2.4	20.7		59.7	
Back of Queue (Q), ve	· · · ·	0.3	3.1	0.6	2.0	12.7	12.7	0.5	0.1	0.8		2.3	
	RQ) (50 th percentile)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	
Uniform Delay (d 1), s	, , , , ,	29.2	18.1	16.5	44.9	17.2	16.9	30.2	25.2	25.9		27.2	
Incremental Delay (d 2		0.8	0.4	0.2	0.5	4.1	4.2	0.0	0.0	0.0		0.1	
Initial Queue Delay (d		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	
Control Delay (d), s/ve	, .	30.0	18.6	16.7	45.3	21.3	21.1	30.2	25.2	25.9		27.3	
Level of Service (LOS)		С	В	В	D	С	С	С	С	С		С	
Approach Delay, s/veh		18.		В	22.5	_	С	27.3		С	27.3	_	С
Intersection Delay, s/ve					2.1						С		
Multimodal Results			EB			WB			NB			SB	
Pedestrian LOS Score	/ LOS	2.1	0	В	1.67	7	В	2.29	9	В	2.44	4	В
Bicycle LOS Score / LO	OS	0.8	6	Α	1.69	9	В	0.61		Α	0.69	9	Α

Generated: 12/8/2020 4:33:54 PM

EXHIBIT 4.26 2024 PEAK PM HOUR ANALYSIS (Total Traffic) - Viseneau/Innes

	HCS7 Sig	ınalize	d Inte	ersec	tion F	Resul	ts Sur	nmar	y				
0								11 l f	41			4741	ul III
General Information						_	Intersec				- 1	4	4
Agency		1		1.0.0.0		\rightarrow	Duration		0.250				
Analyst			is Date	-		\rightarrow	Area Typ	e	Other				٠- ا
Jurisdiction	City of Ottawa	Time F	Period		PM Hou	_	PHF		0.92		*		÷-
Urban Street	Innes Road	Analys	is Year	2024			Analysis	Period	1> 7:0	00	_ *		¥ 6
Intersection	Viseneau/Innes	File Na	ame	723_2	2024_tot	t_PM.x	us					111	
Project Description	Innes Road Development										1	[4 1 4 Y	k r
Demand Information			EB		_	WE	₹	_	NB			SB	
Approach Movement		1	T	l R	L	T	R	L	T	R	L	T	R
Demand (v), veh/h		48	1471	93	202	731		114	43	192	64	55	32
Bernand (V), Venin		70	1471	00	202	70	1 00	114	70	102	04	- 00	OZ.
Signal Information			2	_ "		\top		\top					1
Cycle, s 130.0	Reference Phase 2	1	2	†#"	- B	al .			×		$A \perp$	ľ	4
Offset, s 0	Reference Point End	Green	13.7	61.7	34.7	0.0	0.0	0.0		1	¥ 2	3	4
Uncoordinated No	oordinated No Simult. Gap E/W Or see Mode Fixed Simult. Gap N/S Or see Mode Fixed Simult. Gap N/S Or see Results gned Phase en Number see Duration, songe Period, (Y+Rc), songe Period, (Y+Rc), songe Period, (MAH), songe Clearance Time (gs), songen Extension Time (ge), songen Extension Time (ge), songen Extension Time (ge), songen Extension Time (ge)	Yellow		3.7	3.0	0.0	0.0	0.0	_		←		κtz
Force Mode Fixed	Simult. Gap N/S On	Red	2.6	2.6	4.3	0.0	0.0	0.0		5	6	7	8
Timer Results		EBI	-	EBT	WB	L	WBT	NBI	-	NBT	SBI	-	SBT
Assigned Phase		╄		2	1	_	6			8		_	4
Case Number		-		5.3	2.0	_	4.0			5.0			8.0
Phase Duration, s		_		68.0	20.0		88.0			42.0			42.0
Change Period, (Y+R	ɛ), s			6.3	6.3		6.3			7.3			7.3
Max Allow Headway (I	<i>ИАН</i>), s			0.0	3.1		0.0			3.3			3.3
Queue Clearance Time	e (g s), s				18.2	2				24.1			13.1
Green Extension Time	(g e), s			0.0	0.0		0.0			1.0			1.1
Phase Call Probability					1.00)				1.00			1.00
Max Out Probability					1.00)				0.02			0.00
Movement Group Res	uulto.		EB			WB			NB			SB	
	buits	L	T	R	L	T	R	L	T	R	L	T	R
Approach Movement		_		_	_	-					_	4	
Assigned Movement	\	5	2	12	1	6	16	3	8	18	7	-	14
Adjusted Flow Rate (v	,	52	1599	101	220	456	436	124	47	209	_	164	
Adjusted Saturation Flo		627	1687	1457	1701	1758	_	1310	1786	1463	_	1528	
Queue Service Time (, ,.	6.1	60.6	5.0	16.2	16.6	16.6	11.0	2.5	15.7	_	8.4	
Cycle Queue Clearanc	e Time (<i>g c</i>), s	6.1	60.6	5.0	16.2	16.6	16.6	22.1	2.5	15.7	-	11.1	
Green Ratio (g/C)		0.48	0.48	0.48	0.16	0.64	0.64	0.27	0.27	0.27	_	0.27	
Capacity (c), veh/h		358	1627	703	275	1118	1068	304	490	402	_	459	
Volume-to-Capacity Ra		0.146	0.983	0.144	0.799	0.408	_	0.408	0.095	0.520	_	0.357	
Back of Queue (Q), ft		24.5	707.8	44.7	199.8	167.2	_	90.9	28	143.1	_	107.1	
Back of Queue (Q), ve		1.0	27.9	1.8	7.9	6.5	6.3	3.6	1.1	5.7	_	4.2	
	RQ) (50 th percentile)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	
Uniform Delay (d 1), s		19.0	33.1	18.7	52.5	11.8	11.6	47.2	35.1	39.9		38.1	
Incremental Delay (d 2		0.9	18.6	0.4	14.2	1.1	1.2	0.3	0.0	0.6		0.2	
Initial Queue Delay (d	,.	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	
Control Delay (d), s/ve		19.9	51.7	19.1	66.7	12.9	12.8	47.5	35.2	40.5		38.3	
Level of Service (LOS)		В	D	В	E	В	В	D	D	D		D	
Approach Delay, s/veh		48.8	3	D	23.5	5	С	42.1		D	38.3	3	D
Intersection Delay, s/ve	eh / LOS			39	9.3						D		
Multimadal Bassi						\A/D			NID			0.0	
Multimodal Results	11.00	0.44	EB	D	4.00	WB	P	0.00	NB	D	0.44	SB	D
Pedestrian LOS Score		2.10	-	В	1.66	-	В	2.30	$\overline{}$	В	2.45	-	В
Bicycle LOS Score / LO	73	1.93)	В	1.40	,	Α	1.11		Α	0.76	,	Α

Generated: 12/8/2020 4:51:13 PM

EXHIBIT 4.27 2029 PEAK AM HOUR ANALYSIS (Total Traffic) - Viseneau/Innes

		HCS	7 Sig	nalize	d Inte	ersec	tion F	Resul	ts Sur	nmar	y				
														14741	ere:
General Inform	ation							\rightarrow	ntersec		_		- 1	4	\$ 'A
Agency						I.a.		\rightarrow	Duration,		0.250				
Analyst				-		12/8/2		\rightarrow	Area Typ	е	Other	•			
Jurisdiction		City of Ottawa		Time F	Period	Peak	AM Hou	ır f	PHF		0.92		- ₹		7
Urban Street		Innes Road		Analys	is Year	2029		/	Analysis	Period	1> 7:0	00	7		
Intersection		Viseneau/Innes		File Na	ame	723_2	.029_tot	_AM.x	us					ጎተሰ	
Project Descript	tion	Innes Road Develo	pment										-	1147	11
Demand Inforn	nation				EB			WE			NB			SB	
Approach Move				L	T	R	L	T	R	L	T	R	L	T	R
Demand (v), v				12	379	42	74	129	_	25	6	44	52	15	53
Demand (V), V	CIIII	_		12	318	42	/4	123	3 31	2.5		44	32	13	33
Signal Informa					2			Ţ	\top	\top		_	_		$\overline{\mathbf{A}}$
Cycle, s	110.0	Reference Phase	2		E	Ħ	T SA	2			K		Θ ,		+3
Offset, s	0	Reference Point	End	Green	5.7	49.7	34.7	0.0	0.0	0.0		-1	K	3	
Uncoordinated	No	Simult. Gap E/W	On	Yellow	-	3.7	3.0	0.0	0.0	0.0			4		κt
Force Mode	Fixed	Simult. Gap N/S	On	Red	2.6	2.6	4.3	0.0	0.0	0.0		5	6	7	Y
Timer Results				EBI	-	EBT	WB	L	WBT	NBI	-	NBT	SBI	L	SBT
Assigned Phase	Э			_		2	1	_	6			8	_		4
Case Number					_	5.3	2.0	_	4.0			5.0			8.0
Phase Duration	, s					56.0	12.0		68.0			42.0			42.0
Change Period,	(Y+R	c), S				6.3	6.3		6.3			7.3			7.3
Max Allow Head	dway (/	<i>MAH</i>), s				0.0	3.1		0.0			3.3			3.3
Queue Clearan	ce Time	e (g s), s					6.9					10.6			8.9
Green Extensio	n Time	(ge), s				0.0	0.0		0.0			0.4			0.4
Phase Call Prob	pability						1.00)				1.00			1.00
Max Out Probal	•						1.00)				0.00			0.00
Movement Gro	un Pos	eulte		_	EB		_	WB		_	NB		_	SB	
Approach Move	•	Juito		L	T	R	L	T	R	L	T	R	L	T	R
• • • • • • • • • • • • • • • • • • • •				5	2	12	1	6	16	3	8	18	7	4	14
Assigned Move		la //a		_			_	-	_	_				-	14
Adjusted Flow F		,	l	13	412	46	80	729	723	27	7	48	_	130	-
Queue Service		ow Rate (s), veh/h/l	III	358	1647 8.5	2.0	1661 4.9	1744 34.0	1724 34.2	1346	1800	1497 2.5		1486 4.3	
Cycle Queue Cl		· /·		25.2	8.5	2.0	4.9	34.0	34.2	8.6	0.3	2.5		6.9	
Green Ratio (g				0.46	0.46	0.46	0.12	0.57	0.57	0.32	0.32	0.32		0.32	
				158	1518	656	196	994	983	418	584	486		529	
Capacity (c), v		atio (V)		0.082	0.271		0.410	_	_						
Volume-to-Capa			\	8	84.2	0.070 17.4	52.7	0.734 359.3	-	0.065 13.6	0.011 2.9	0.098 21.7		0.247 63.6	
		/In (50 th percentile) eh/In (50 th percenti		0.3	3.2	0.7	2.0	13.9	13.8	0.5	0.1	0.9		2.5	
		RQ) (50 th percent		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	
Uniform Delay (,	,	31.3	18.3	16.5	44.9	17.8	17.5	30.6	25.2	25.9		27.4	
Incremental De				1.0	0.4	0.2	0.5	4.8	4.9	0.0	0.0	0.0		0.1	
Initial Queue De				0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	
Control Delay (-			32.3	18.7	16.7	45.5	22.6	22.4	30.6	25.2	26.0		27.5	
Level of Service				С	В	В	D	С	С	С	С	С		С	
Approach Delay				18.9		В	23.7	7	С	27.4		С	27.5	_	С
Intersection Del						23	3.0						С		
Multimadel De	oult-				ED			\A/D			ND			CD	
Multimodal Re		/1.00		2.40	EB	D	4.0	WB	D	2.00	NB	D	2.4	SB	D
Pedestrian LOS				2.10	_	В	1.67	-	В	2.29	\rightarrow	В	2.44	-	B
Bicycle LOS Sc	ore / LC	JS		0.88		Α	1.75		В	0.62	<u> </u>	Α	0.70)	Α

EXHIBIT 4.28 2029 PEAK PM HOUR ANALYSIS (Total Traffic) - Viseneau/Innes

		HCS	7 Sig	nalize	d Inte	ersec	tion F	Resul	lts Sur	nmar	у				
General Inform	ation							\rightarrow	Intersec		_		- 1	4741	1× 1/4
Agency								\rightarrow	Duration		0.250				
Analyst				Analys	is Date	12/8/2		-	Area Typ	е	Other	•			A- 0
Jurisdiction		City of Ottawa		Time F	eriod	Peak	PM Hou	ır I	PHF		0.92		*		-
Urban Street		Innes Road		Analys	is Year	2029			Analysis	Period	1> 7:0	00	¥		7
Intersection		Viseneau/Innes		File Na	ame	723_2	2029_tot	_PM.x	cus					111	
Project Descript	tion	Innes Road Develo	pment										1		1 1
Demand Inforn	nation				EB		_	WE	3		NB			SB	
Approach Move				L	Т	R	L	T	R	L	Т	R	L	T	R
Demand (v), v				51	1545	98	212	769		119	45	202	68	57	34
Signal Informa		Deference Dhase			2	., 7						_	,		\mathbf{A}
Cycle, s	130.0	Reference Phase	2		"	=	[SA	7			_	1	♀ ₂	3	4
Offset, s	0	Reference Point	End	Green	13.7	61.7	34.7	0.0	0.0	0.0			<u> </u>		
Uncoordinated	No	Simult. Gap E/W	On	Yellow		3.7	3.0	0.0	0.0	0.0					V
Force Mode	Fixed	Simult. Gap N/S	On	Red	2.6	2.6	4.3	0.0	0.0	0.0		5	6	7	8
Timer Results				EBL		EBT	WB		WBT	NBI		NBT	SB		SBT
Assigned Phase						2	1		6	140		8	0.0		4
Case Number						5.3	2.0		4.0			5.0			8.0
Phase Duration	, s					68.0	20.0		88.0			42.0		\neg	42.0
Change Period,	(Y+R	c), S				6.3	6.3		6.3			7.3			7.3
Max Allow Head	lway (/	<i>МАН</i>), s				0.0	3.1	\neg	0.0			3.3			3.3
Queue Clearand	ce Time	e (gs), s					19.1					25.5			13.8
Green Extensio	n Time	(ge), s				0.0	0.0	\neg	0.0			1.0		\neg	1.2
Phase Call Prob	ability	,,					1.00					1.00			1.00
Max Out Probat							1.00)				0.05			0.00
Movement Gro	un Pos	eulte.			EB			WB			NB			SB	
Approach Move	•	uits		L	T	R	L	T	R	L	T	R	L	T	R
				5	2	12	1	6	16	3	8	18	7	4	14
Assigned Move Adjusted Flow F		\ vob/b		55	1679	107	230	480	459	129	49	220		173	14
		ow Rate (<i>s</i>), veh/h/l	n	600	1687	1457	1701	1758	_	1305	1786	1463	-	1525	
Queue Service			11	6.8	62.7	5.3	17.1	17.8	17.8	11.7	2.7	16.7	_	9.1	
Cycle Queue Cl				6.8	62.7	5.3	17.1	17.8	_	23.5	2.7	16.7		11.8	
Green Ratio (g		(90),0		0.48	0.48	0.48	0.16	0.64	_	0.27	0.27	0.27	-	0.27	
Capacity (c), v				345	1627	703	275	1118	_	296	490	402		458	
Volume-to-Capa		tio (X)		0.161	1.032	0.152	0.839	0.430	_	0.438	0.100	0.547		0.377	
		In (50 th percentile)		26.4	799.6	47.4	218.9	179.7	_	96.1	29.4	152.7		113.6	
		eh/ln (50 th percenti		1.0	31.5	1.9	8.7	7.0	6.7	3.8	1.2	6.1		4.5	
		RQ) (50 th percent		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	
Uniform Delay (d 1), s	/veh		19.2	33.7	18.8	52.9	12.0	11.8	48.0	35.2	40.2		38.4	
Incremental Del	ay (d 2), s/veh		1.0	31.0	0.5	19.0	1.2	1.3	0.4	0.0	0.9		0.2	
Initial Queue De	elay (d	з), s/veh		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	
Control Delay (eh		20.2	64.7	19.3	71.8	13.2	13.1	48.4	35.2	41.1		38.6	
Level of Service				С	F	В	Е	В	В	D	D	D		D	
Approach Delay				60.7		Ε	24.7	7	С	42.8	3	D	38.6	3	D
Intersection Del	ay, s/ve	en / LOS				45	5.9						D		
Multimodal Res	sults				EB			WB			NB			SB	
Pedestrian LOS		/LOS		2.10		В	1.66	_	В	2.30		В	2.4	_	В
	ore / LC			2.01	-	В	1.45	-	Α	1.14	-	Α	0.7	-	Α

EXHIBIT 4.29 2020 PEAK AM HOUR ANALYSIS (Existing Traffic) - Jeanne d'Arc/Innes

		HCS	7 Sig	nalize	d Int	ersec	tion F	Resu	lts Su	mmar	у				
General Inform	ation								Interse		_		- i	ヤアや↑	Ja L
Agency									Duration	ո, h	0.250				
Analyst				Analys	is Date	12/8/2	2020		Area Ty	ре	Other		<i>∆</i>		
Jurisdiction		City of Ottawa		Time F	Period	Peak	AM Hou	ır	PHF		0.92		4		
Urban Street		Innes Road		Analys	is Year	2020			Analysis	Period	1> 7:0	00	7		
Intersection		Jeanne d'Arc/Innes		File Na	ame	723 2	2020 ex	: AM.	xus					4. 11. (S.)	
Project Descript	tion	Innes Road Develo	pment											4144	1- [1]
Damand Inform	4!				ED			١٨/	<u> </u>		ND			CD	
Demand Inforn					EB			W			NB			SB	
Approach Move				L	Т	R	L	T	_	L	Т	R	<u> </u>	T	R
Demand (v), v	eh/h	_	-	36	327		190	114	48	114	336	71	142	142	52
Signal Informa	tion				L			т	ζ T	\top				_	T
Cycle, s	110.0	Reference Phase	2]	F &	⊤ → '	T .	2 K			¥		→	1	4
Offset, s	0	Reference Point	End	0,,,,	F 0	45.0	24.0		, , ,			1	2	3	
Uncoordinated	No	Simult. Gap E/W	On	Green Yellow	-	45.6 3.7	24.8 3.7	8.7 3.7	_	0.0		,	←		4
Force Mode	Fixed	Simult. Gap N/S	On	Red	2.4	2.7	2.5	2.6		0.0		5	6	Y 7	ľ
. Stoc Wode	. IXCU	Canala Sap 14/5	511	1,00		12.7		2.0	. 10.0	0.0					
Timer Results				EBI	- T	EBT	WB	L	WBT	NB	_	NBT	SBI	-	SBT
Assigned Phase	Э			5		2	1		6	3		8	7		4
Case Number				2.0		4.0	2.0		4.0	2.0		4.0	2.0		4.0
Phase Duration	, s			12.0		52.0	12.0)	52.0	15.0)	31.0	15.0)	31.0
Change Period,	(Y+R	c), S		6.1		6.4	6.1		6.4	6.3		6.2	6.3		6.2
Max Allow Head	dway (I	<i>MAH</i>), s		3.1		0.0	3.1		0.0	3.1		3.1	3.1		3.1
Queue Clearan	ce Time	e (g s), s		4.5			8.9			6.0		15.0	7.1		7.8
Green Extensio		10 /		0.0		0.0	0.0		0.0	0.2		0.6	0.1		0.3
Phase Call Prob				1.00)		1.00			1.00		1.00	1.00		1.00
Max Out Probal	bility			1.00			1.00)		1.00)	0.01	1.00)	0.00
Movement Gro	un Res	eulte			EB			WB	<u> </u>	_	NB			SB	
Approach Move				L	T	R	L	T	R	L	T	R	L	T	R
Assigned Move				5	2	_ ^\	1	6	1	3	8	18	7	4	14
Adjusted Flow F) veh/h		39	355		207	1248	3	124	227	216	154	108	103
		ow Rate (s), veh/h/l	n	1647	1647		1701	1687	_	1600	1730	1613	1600	1772	1598
Queue Service		, ,		2.5	7.7		6.9	37.2	_	4.0	12.7	13.0	5.1	5.4	5.8
Cycle Queue Cl		- /-		2.5	7.7		6.9	37.2	_	4.0	12.7	13.0	5.1	5.4	5.8
Green Ratio (g.		5 mile (9 c), 5		0.06	0.42		0.73	0.42	_	0.36	0.23	0.23	0.36	0.23	0.23
				103	1395		107	1429	_	282	406	378	282	416	374
Capacity (c), v		atio (V)					1.936		_				0.547		
Volume-to-Capa		itio (x) /In (50 th percentile)		0.379 27.3	0.255 77.3		411.9	0.873 403		0.439	0.559	0.570 129.7	53.5	0.259 59.4	0.27 56.4
	, .	eh/In (50 th percentile)		1.0	3.0		16.3	15.9		1.6	5.4	5.2	2.1	2.3	2.3
		RQ) (50 th percent	•	0.00	0.00		0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Uniform Delay (, , , , ,	,	49.5	20.8		51.6	29.4		47.6	37.5	37.2	48.0	34.7	34.5
Incremental Del				0.8	0.4		453.4	7.6	_	0.4	1.1	1.3	1.3	0.1	0.1
Initial Queue De				0.0	0.0		0.0	0.0	-	0.0	0.0	0.0	0.0	0.0	0.0
Control Delay (- , `	,.		50.3	21.2		505.0	37.1	_	48.0	38.5	38.5	49.3	34.8	34.6
Level of Service				D	С		F	D		D	D	D	D	С	С
Approach Delay				24.1		С	103.	5	F	40.6	3	D	40.9		D
Intersection Del						7	1.2						E		
Maritima1-1 5	ld -							14.5			ND			65	
Multimodal Re		/1.00		2.15	EB			WB		2.5	NB			SB	
Pedestrian LOS				2.43	\rightarrow	В	2.43	-	В	2.3	-	В	2.31	-	В
Bicycle LOS Sc	ore / LC	JS		0.81		Α	1.69	9	В	0.98		Α	0.79)	Α

Generated: 12/9/2020 7:35:52 AM

EXHIBIT 4.30 2020 PEAK PM HOUR ANALYSIS (Existing Traffic) - Jeanne d'Arc/Innes

		HCS	7 Sig	nalize	d Int	ersec	tion F	Resu	lts Sur	nmar	у				
General Inform	nation								Intersec	tion Inf	_		- 6	ヤアや↑	Ja U
Agency									Duration	, h	0.250				
Analyst				Analys	is Date	12/8/2	2020		Area Typ	е	Other	-	± ==		
Jurisdiction		City of Ottawa		Time F	Period	Peak	РМ Ног	ır	PHF		0.92		*		
Urban Street		Innes Road		Analys	is Year	2020			Analysis	Period	1> 7:0	00	×		
Intersection		Jeanne d'Arc/Innes		File Na	ame	723_2	2020_ex	PM.>	cus					a. a. a.	
Project Descrip	tion	Innes Road Develo	pment										- n	4 1 4 4	1- [7]
Demand Inform	nation				EB			WI	2		NB			SB	
					T	T B		_	_		_	T B		_	T B
Approach Move				L	_	R	L 101	T 70	\rightarrow	L 100	T	R	L 10.1	T	R
Demand (v), v	en/n		-	139	1280		181	70	/	166	269	256	424	445	81
Signal Informa	tion				2			\top		т					T
Cycle, s	130.0	Reference Phase	2		L, 6	"→ `	l T	2 5	,		K		→ .		4
Offset, s	0	Reference Point	End	Green	10.0	52.6	24.8	16.	7 0.0	0.0		1	2	3	
Uncoordinated	No	Simult. Gap E/W	On	Yellow	-	3.7	3.7	3.7		0.0		7	\leftarrow		1:
Force Mode	Fixed	Simult. Gap N/S	On	Red	2.4	2.7	2.5	2.6		0.0		5	6	7	
						-D-			14/5			NID=			055
Timer Results				EBL	-	EBT	WB	L	WBT	NB	-	NBT	SBI	-	SBT
Assigned Phase	е			5		2	1		6	3		8	7		4
Case Number				2.0		4.0	2.0	-	4.0	2.0	_	4.0	2.0	_	4.0
Phase Duration		\ 0		17.0		59.0	17.0	_	59.0	23.0	$\overline{}$	31.0	23.0	-	31.0
Change Period,		**		6.1	-	6.4	6.1	-	6.4	6.3	_	6.2	6.3	-	6.2
Max Allow Head				3.1		0.0	3.1	-	0.0	3.1	-	3.2	3.1		3.1
Queue Clearan				13.8	-		13.9	_		8.5	-	26.6	19.7	_	23.0
Green Extensio		(g _e), s		0.0		0.0	0.0	$\overline{}$	0.0	1.2	$\overline{}$	0.0	0.0	-	0.3
Phase Call Prol				1.00	-		1.00	_		1.00	-	1.00	1.00	-	1.00
Max Out Probal	bility			1.00			1.00)		0.06	3	1.00	1.00		1.00
Movement Gro	up Res	sults			EB			WB			NB			SB	
Approach Move	ment			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Assigned Move	ment			5	2		1	6		3	8	18	7	4	14
Adjusted Flow F	Rate (v), veh/h		151	1391		197	768		180	292	278	461	294	278
· .		ow Rate (s), veh/h/l	n	1661	1700		1701	1687	7	1639	1758	1456	1652	1772	1662
Queue Service		, , ,		11.8	52.9		11.9	22.5	_	6.5	20.8	24.6	17.7	20.7	21.0
Cycle Queue C		- ,		11.8	52.9		11.9	22.5		6.5	20.8	24.6	17.7	20.7	21.0
Green Ratio (g	/C)			0.09	0.41		0.09	0.41		0.14	0.20	0.20	0.14	0.20	0.20
Capacity (c), v				152	1402		156	1391	_	446	349	289	450	352	330
Volume-to-Capa		atio (X)		0.994	0.992		1.264	0.552	_	0.404	0.838	0.963	1.025	0.835	0.84
		/In (50 th percentile)		204.8	646.5		302.4	-	_	68.4	270.4	_	261.1	268	254.
	, .	eh/ln (50 th percenti		7.9	25.7		12.0	9.3		2.7	10.6	12.3	10.4	10.6	10.2
		RQ) (50 th percent	·	0.00	0.00		0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00
Uniform Delay (, , , ,		59.0	38.2		59.1	29.4		51.3	50.6	51.6	56.2	50.5	50.2
Incremental De	lay (d 2), s/veh		71.0	22.3		159.8	1.6		0.2	15.5	42.5	48.9	15.0	16.9
Initial Queue De	elay (d	з), s/veh		0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Control Delay (d), s/v	eh		130.0	60.5		218.8	31.0		51.6	66.0	94.2	105.0	65.5	67.1
Level of Service	(LOS)			F	Е		F	С		D	Е	F	F	Е	Е
Approach Delay	, s/veh	/LOS		67.3		E	69.3	3	E	73.0)	E	83.6	3	F
Intersection Del	lay, s/ve	eh / LOS				7:	2.6						E		
Multimodal Da	oulto				ED			\A/D			NID			CD	
Multimodal Re		/1.06		2.44	EB	D	2.4	WB		2.2	NB	D	2.24	SB	D
Pedestrian LOS				2.44	-	В	2.44	-	В	2.3	-	В	2.31	-	В
Bicycle LOS Sc	ore / LC	75		1.76)	В	1.28)	Α	1.11		Α	1.34	+	Α

EXHIBIT 4.31 2029 PEAK AM HOUR ANALYSIS (Background Traffic) - Jeanne d'Arc/Innes

		HCS	7 Sig	nalize	d Int	ersec	tion F	Resu	Its Su	mmar	у				
General Inform	nation							_	Intersec		_		- 6	ヤアや↑	\$4 L
Agency				I		To a second			Duration		0.250				
Analyst				Analys	is Date	12/8/2	2020		Area Typ	е	Other		∆ → -		
Jurisdiction		City of Ottawa		Time F	Period	Peak	AM Hou	ır	PHF		0.92		4		
Urban Street		Innes Road		Analys	sis Year	2029			Analysis	Period	1> 7:0	00	7		
Intersection		Jeanne d'Arc/Innes		File Na	ame	723_2	2029_ba	ık_AM	.xus					4. 4. 5	
Project Descript	tion	Innes Road Develo	pment E	Backgro	und Tra	ıffic							1	4144	11
Demand Inforn	nation				EB			W	D.		NB			SB	
					_	T B		_	_		_	T B		_	Г
Approach Move				L	T	R	L	T	-	L 405	T	R	L	T	R
Demand (v), v	en/n		-	39	355	-	208	125	03	125	368	78	155	155	57
Signal Informa	tion						"	т		\top				_	1
Cycle, s	110.0	Reference Phase	2		L 6	⊤→ `	1 4	a 1			¥	′]_	→		4
Offset, s	0	Reference Point	End	Grane	5.0	45.6	24.0	07	0.0	0.0		1	2	3	
Uncoordinated	No	Simult. Gap E/W	On	Green Yellow		45.6 3.7	24.8 3.7	8.7 3.7	_	0.0		7	←		+
Force Mode	Fixed	Simult. Gap N/S	On	Red	2.4	2.7	2.5	2.6		0.0		5	6	7	ľ
T Gree Miede	Tixou	omail: cap 100		1100		12.7	12.0	12.0	10.0	10.0					
Timer Results				EBI	-	EBT	WB	L	WBT	NB	L	NBT	SBI	-	SBT
Assigned Phase	е			5		2	1		6	3		8	7		4
Case Number				2.0		4.0	2.0		4.0	2.0		4.0	2.0		4.0
Phase Duration	, s			12.0)	52.0	12.0)	52.0	15.0)	31.0	15.0)	31.0
Change Period,	(Y+R	c), S		6.1		6.4	6.1		6.4	6.3	.	6.2	6.3		6.2
Max Allow Head	dway (/	MAH), s		3.1		0.0	3.1		0.0	3.1		3.1	3.1		3.1
Queue Clearan	ce Time	e (gs), s		4.7			8.9			6.4		16.4	7.6		8.4
Green Extensio		10 /		0.0		0.0	0.0		0.0	0.2		0.7	0.1	\neg	0.4
Phase Call Prob		(0),		1.00			1.00)		1.00)	1.00	1.00)	1.00
Max Out Probal	bility			1.00			1.00			1.00)	0.04	1.00)	0.00
Movement Gro	un Pos	eulte			EB			WB			NB			SB	
Approach Move	_	suits		L	T	R	L	T	R	L	T	R	L	T	R
				5	2	I N	1	6	+ -	3	8		7	4	14
Assigned Move		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \					_	_	,	-	-	18			_
Adjusted Flow F				42	386		226	1362	_	136	249	236	168	118	113
		ow Rate (s), veh/h/l	П	1647 2.7	1647 8.4		1701 6.9	1687 42.9	_	1600 4.4	1730 14.1	1613 14.4	1600 5.6	1772 6.0	1594 6.4
Queue Service Cycle Queue Cl		- /-		2.7	8.4		6.9	42.9	-	4.4	14.1	14.4	5.6	6.0	6.4
Green Ratio (g.		c iiiic (g c), s		0.06	0.42		0.73	0.42	_	0.36	0.23	0.23	0.36	0.23	0.23
				103	1395		107	1429	_	282	406	378	282	416	374
Capacity (c), v		atio (V)					_		_			-			-
Volume-to-Capa				0.410	0.277		2.119	0.95	_	0.482 46.1	0.613		0.597	0.284	0.30
	, .	/In (50 th percentile)		29.6	84.8		471.9	495.8		1211	159.2	146.6	59.7	65.5	61.9
		eh/ln (50 th percenti RQ) (50 th percent		0.00	3.3 0.00		18.7 0.00	19.5	-	0.00	6.1 0.00	5.9 0.00	0.00	2.6 0.00	0.00
Uniform Delay (, , , , ,	0)	49.6	21.0		51.6	31.1	-	47.8	38.1	37.7	48.3	34.9	34.7
Incremental Del	. , .			1.0	0.5		533.7	14.9	_	0.5	2.0	2.4	2.4	0.1	0.2
Initial Queue De				0.0	0.0		0.0	0.0	-	0.0	0.0	0.0	0.0	0.0	0.0
Control Delay (•			50.6	21.5		585.3	46.1	_	48.2	40.1	40.1	50.7	35.0	34.8
	evel of Service (LOS)			D	С		F	D		D	D	D	D	D	С
Approach Delay				24.4		С	122.		F	41.9		D	41.6		D
Intersection Del						8	1.7						F		
M. 141 1.15	1/							14.5			110			65	
Multimodal Re		/1.00		2.13	EB			WB		2.5	NB		200	SB	
Pedestrian LOS				2.43	\rightarrow	В	2.43	-	В	2.3	-	В	2.31	-	В
Bicycle LOS Sc	ore / LC	JS		0.84		Α	1.80)	В	1.00)	Α	0.82	<u> </u>	Α

Generated: 12/9/2020 7:35:52 AM

EXHIBIT 4.32 2029 PEAK PM HOUR ANALYSIS (Background Traffic) - Jeanne d'Arc/Innes

	_	HCS	7 Sig	nalize	d Inte	ersec	tion F	Resu	lts Su	mmar	у			_	_
General Inform	ation								Intersec	tion Inf	ormatio	on		4741	Ja [lg]
Agency	ution							\rightarrow	Duration		0.250		- 1	S. C. S. S	
Analyst				Analys	is Date	12/8/2	2020	\rightarrow	Area Ty	·	Other		4		
Jurisdiction		City of Ottawa		Time F		_	PM Hou	\rightarrow	PHF	<i></i>	0.92				
Urban Street		Innes Road		_		-	r W T IOU	\rightarrow	Analysis	Pariod	1> 7:0	20	- 3		
					sis Year	_	000 ba	_		Period	1 7.0	JU	- B		
Intersection		Jeanne d'Arc/Innes		File Na			2029_ba	IK_PIVI	.xus				- 4		
Project Descript	ion	Innes Road Develo	pment E	Backgro	und Tra	ffic	-	-	-	-	-	-		4 1 4 1	P(n)
Demand Inform	nation				EB	_	$\overline{}$	VVE	3	$\overline{}$	NB	_	$\overline{}$	SB	_
Approach Move	ment			L	Т	R	L	Т	R	L	Т	R	L	Т	ΓR
Demand (v), ve				152	1377		198	75	-	182	294	280	464	487	89
, ,,															
Signal Information	tion				2	•	1] (77			_		K .	1
Cycle, s	130.0	Reference Phase	2		L. 6	`	ľπ	2 1 5	.		×		→ ,		x †
Offset, s	0	Reference Point	End	Green	10.9	52.6	24.8	16.	7 0.0	0.0			-	1 1	
Uncoordinated	No	Simult. Gap E/W	On	Yellow		3.7	3.7	3.7	0.0	0.0		>	←		Ť.
Force Mode	Fixed	Simult. Gap N/S	On	Red	2.4	2.7	2.5	2.6	0.0	0.0		5	6	7	
Timer Results				EBI	-	EBT	WB	L	WBT	NBI	-	NBT	SBI	-	SBT
Assigned Phase)			5		2	1		6	3		8	7		4
Case Number				2.0	-	4.0	2.0	_	4.0	2.0	_	4.0	2.0	-	4.0
Phase Duration,		\ -		17.0)	59.0	17.0	_	59.0	23.0	$\overline{}$	31.0	23.0	$\overline{}$	31.0
Change Period,				6.1		6.4	6.1	-	6.4	6.3		6.2	6.3	_	6.2
	ax Allow Headway (<i>MAH</i>), s ueue Clearance Time (<i>q</i> _s), s			3.1		0.0	3.1		0.0	3.1	_	3.2	3.1		3.1
	ueue Clearance Time (g s), s			13.9	_		13.9	_		9.2	-	27.8	19.7	_	25.4
	een Extension Time (g_{θ}), s			0.0	$\overline{}$	0.0	0.0	-	0.0	1.2	-	0.0	0.0	-	0.0
Phase Call Prob				1.00	-		1.00			1.00	_	1.00	1.00	-	1.00
Max Out Probab	ollity			1.00	,		1.00	,		0.10	,	1.00	1.00	,	1.00
Movement Gro	up Res	ults			EB			WB			NB			SB	
Approach Move	•			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Assigned Mover				5	2		1	6		3	8	18	7	4	14
Adjusted Flow F) veh/h		165	1497		215	818		198	320	304	504	322	304
•		w Rate (s), veh/h/l	n	1661	1700		1701	1687		1639	1758	1456	1652	1772	166
Queue Service				11.9	53.6		11.9	24.5	_	7.2	23.2	25.8	17.7	23.1	23.4
Cycle Queue Cl				11.9	53.6		11.9	24.5	-	7.2	23.2	25.8	17.7	23.1	23.4
Green Ratio (g/		5 (g c), G		0.09	0.41		0.09	0.41	_	0.14	0.20	0.20	0.14	0.20	0.20
Capacity (c), v				152	1402		156	1391	-	446	349	289	450	352	330
Volume-to-Capa		tio (X)		1.087	1.068		1.382	0.588	_	0.443	0.916	1.053	1.121	0.915	0.92
		In (50 th percentile)		235.1	761.7		353.7	257.3	-	75.4	326.7	368.7	310	325.8	309.
		eh/In (50 th percenti		9.1	30.2		14.0	10.1		3.0	12.8	14.7	12.3	12.8	12.4
		RQ) (50 th percent		0.00	0.00		0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00
Uniform Delay (, , , , ,		59.1	38.2		59.1	30.0	-	51.6	51.5	52.1	56.2	51.5	51.
Incremental Del				98.1	44.3		206.8	1.8		0.3	27.5	67.6	79.9	27.2	30.0
Initial Queue De		,		0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Control Delay (,.		157.1	82.5		265.8	31.8		51.9	79.0	119.7	136.1	78.8	81.
Level of Service				F	F		F	C		D	7 5.0 E	F	F	F	F
Approach Delay		/LOS		89.9	_	F	80.5	_	F	87.6		F	105.		F
Intersection Delay	,			00.8			1.1			07.0			F	-	
		200													
Multimodal Res	sults				EB			WB			NB			SB	
		/LOS		2.44		В	2.44	1	В	2.31		В	2.31		В
i edesiliali LOO	lestrian LOS Score / LOS ycle LOS Score / LOS				\rightarrow			-			\rightarrow			-	

EXHIBIT 4.33 2024 PEAK AM HOUR ANALYSIS (Total Traffic) - Jeanne d'Arc/Innes

		HCS	7 Sig	nalize	d Int	ersec	tion F	Resul	lts Sur	nmar	у				
General Inform	nation							\rightarrow	Intersec		_		- i	4741	1× L
Agency								\rightarrow	Duration		0.250				
Analyst				Analys	sis Date	12/8/2	2020		Area Typ	е	Other		<u>∆</u>		
Jurisdiction		City of Ottawa		Time F	Period	Peak	AM Hou	ır	PHF		0.92		*		
Urban Street		Innes Road		Analys	sis Year	2024			Analysis	Period	1> 7:0	00	7		
Intersection		Jeanne d'Arc/Innes		File Na	ame	723 2	2024_tot	t AM.x	cus					4. 4. A.A	
Project Descript	tion	Innes Road Develo	pment										ħ	4144	1- 1"
Demand Inforn	nation				EB			WE	2		NB			SB	
					T	ТВ	1	T	_	1	T	R	1	T	ТВ
Approach Move				L	-	R	L	-	R	L	-	_	L 110	-	R
Demand (v), v	en/n			37	342		198	119	4	119	350	74	148	148	54
Signal Informa	tion							Ţ	2	\top				_	1
Cycle, s	110.0	Reference Phase	2		L, 6	"→ "	1 1	2 R			×		→ .		κ†
Offset, s	0	Reference Point	End	Green	5.0	45.6	24.8	8.7	0.0	0.0		1	2	3	
Uncoordinated	No	Simult. Gap E/W	On	Yellow		3.7	3.7	3.7	0.0	0.0		7	←		1
Force Mode	Fixed	Simult. Gap N/S	On	Red	2.4	2.7	2.5	2.6		0.0		5	6	7	ľ
Timer Results				EBL	-	EBT	WB	L	WBT	NBI		NBT	SBI	-	SBT
Assigned Phase	9			5		2	1		6	3		8	7		4
Case Number				2.0	$\overline{}$	4.0	2.0	-	4.0	2.0		4.0	2.0		4.0
Phase Duration	, s			12.0		52.0	12.0	_	52.0	15.0	$\overline{}$	31.0	15.0	-	31.0
Change Period,		*		6.1		6.4	6.1	-	6.4	6.3		6.2	6.3		6.2
Max Allow Head	ax Allow Headway (MAH), s			3.1		0.0	3.1		0.0	3.1		3.1	3.1		3.1
Queue Clearan	ce Time	e (g s), s		4.6			8.9			6.2		15.6	7.3		8.1
Green Extensio	n Time	(g _e), s		0.0		0.0	0.0		0.0	0.2		0.7	0.1		0.3
Phase Call Prob	oability			1.00)		1.00)		1.00)	1.00	1.00)	1.00
Max Out Probal	bility			1.00)		1.00)		1.00)	0.02	1.00)	0.00
Movement Gro	up Res	sults			EB			WB			NB			SB	
Approach Move				L	T	R	L	T	R	L	T	R	L	T	R
Assigned Move				5	2		1	6	+ "	3	8	18	7	4	14
Adjusted Flow F		\ voh/h		40	372		215	1298		129	236	225	161	112	107
			n				_		_	_	_			_	-
•		ow Rate (s), veh/h/l	П	1647 2.6	1647 8.1		1701 6.9	1687 39.6	_	1600 4.2	1730	1613 13.6	1600 5.3	1772 5.7	159 6.1
Queue Service Cycle Queue Cl		- , .		2.6	8.1		6.9	39.6	_	4.2	13.3	13.6	5.3	5.7	6.1
Green Ratio (g.		c iiiie (g c), s		0.06	0.42		0.73	0.42	_	0.36	0.23	0.23	0.36	0.23	0.23
				103			_	_	_		406				374
Capacity (c), v		tio (V)			1395		107	1429		282		378	282	416	
Volume-to-Capa				0.389	0.266		2.017	0.908	_	0.458	0.582	0.594	0.570	0.270	0.28
	, .	In (50 th percentile)	_	28.1	81.3		438.5	_		43.8	148.6	137	56.3	62.1	58.8
		eh/ln (50 th percenti RQ) (50 th percent		0.00	3.1 0.00		17.4 0.00	17.3 0.00		0.00	5.7 0.00	5.5 0.00	0.00	0.00	0.00
Uniform Delay (,, ,	iiie)	49.5	20.9		51.6	30.1	_	47.7	37.7	37.4	48.1	34.8	34.6
Incremental Del				0.9	0.5		489.0	10.0	_	0.4	1.4	1.7	1.8	0.1	0.2
Initial Queue De				0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.2
		,.					_	_			_			_	-
Control Delay (50.4 D	21.4 C		540.6 F	40.2 D		48.1	39.2 D	39.2 D	49.9 D	34.9 C	34.7 C
	evel of Service (LOS) pproach Delay, s/veh / LOS			24.2	_	C	111.3		F	D 41.1		D	41.2	_	D
				24.2			5.4	J	Г	41.			E 41.2		D
	tersection Delay, s/veh / LOS												_		
THE TOO GOT DO		ultimodal Results													
Multimodal Re	sults				EB			WB			NB			SB	
		/LOS		2.43	_	В	2.43	_	В	2.31		В	2.31	_	В

Generated: 12/9/2020 7:35:52 AM

EXHIBIT 4.34 2024 PEAK PM HOUR ANALYSIS (Total Traffic) - Jeanne d'Arc/Innes

		HCS	7 Sig	nalize	d Int	ersec	tion F	Resu	Its Su	mmar	у				
General Informa	tion							\rightarrow	Intersec		_		- 6	ヤアや↑	Di L
Agency								\rightarrow	Duration		0.250		-		
Analyst				Analys	is Date	12/8/2	2020		Area Typ	е	Other	-	± ==		
Jurisdiction		City of Ottawa		Time F	Period	Peak	ΡΜ Ηοι	ır	PHF		0.92		*		
Urban Street		Innes Road		Analys	is Year	2024			Analysis	Period	1> 7:0	00	7		
Intersection		Jeanne d'Arc/Innes		File Na	ame	723 2	2024_tot	t PM.	cus					4. 4. A.A	
Project Description	on	Innes Road Develop	oment										- B	4 1 4 4	1+ [1]
Demand Informa	tion				EB			WI	-	_	NB			SB	
					T	T B		_	_		_	T B		_	ТВ
Approach Movem				1.45	_	R	L	T	-	L 470	T	R	L	T	R
Demand (v), veh	n/n		_	145	1317		188	72	1	173	280	266	441	463	84
Signal Informati	on				- 2			\top		\top					1
Cycle, s 1	130.0	Reference Phase	2		L, 6	" ←	P 4	al 15			×		→ .		ĸ†
Offset, s	0	Reference Point	End	Green	10.0	52.6	24.8	16.	7 0.0	0.0		1	2	3	
Uncoordinated	No	Simult. Gap E/W	On	Yellow	-	3.7	3.7	3.7		0.0		7	←		1
	ixed	Simult. Gap N/S	On	Red	2.4	2.7	2.5	2.6		0.0		5	6	7	ľ
Timer Results				EBL	-	EBT	WB	L	WBT	NB	L	NBT	SBI	-	SBT
Assigned Phase				5	_	2	1		6	3		8	7	_	4
Case Number				2.0		4.0	2.0	-	4.0	2.0	_	4.0	2.0	_	4.0
Phase Duration,				17.0		59.0	17.0	_	59.0	23.0	\rightarrow	31.0	23.0	-	31.0
Change Period, (Y+R	e), s		6.1		6.4	6.1		6.4	6.3		6.2	6.3		6.2
Max Allow Headw	vay (N	<i>IAH</i>), s		3.1		0.0	3.1		0.0	3.1		3.2	3.1		3.1
Queue Clearance	Time	(gs),s		13.9			13.9	9		8.8		27.8	19.7	7	23.9
Green Extension	Time ((g _e), s		0.0		0.0	0.0		0.0	1.2		0.0	0.0		0.2
Phase Call Proba	ability			1.00			1.00)		1.00)	1.00	1.00)	1.00
Max Out Probabil				1.00			1.00)		0.0	7	1.00	1.00)	1.00
Movement Grou	p Res	ults			EB			WB			NB			SB	
Approach Movem				L	T	R	L	T	R	L	T	R	L	T	R
Assigned Movem				5	2	<u> </u>	1	6	+ '`	3	8	18	7	4	14
Adjusted Flow Ra) yoh/h		158	1432		204	784		188	304	289	479	305	289
•		, .	n	_			_	_	_				_		_
Queue Service Ti		w Rate (s), veh/h/l		1661 11.9	1700 53.6		1701 11.9	1687 23.1	_	1639 6.8	1758 21.8	1456 25.8	1652 17.7	1772 21.7	1662 21.9
Cycle Queue Cle		. , .		11.9	53.6		11.9	23.1		6.8	21.8	25.8	17.7	21.7	21.9
Green Ratio (g/C		7 mile (g c), s		0.09	0.41		0.09	0.41	_	0.0	0.20	0.20	0.14	0.20	0.20
				$\overline{}$			_	_	_	_	_		_		-
Capacity (c), vel		4:- () ()		152	1402		156	1391	_	446	349	289	450	352	330
Volume-to-Capac				1.037	1.021		1.312	0.563		0.421	_	1.001	1.066	0.868	0.87
	. , .	In (50 th percentile)	_	218.7	688.8		323.1	242.8	5	71.5	293.1	339.5	280.3	290.1	275.
		eh/In (50 th percenti RQ) (50 th percent		8.5 0.00	27.3 0.00		12.8 0.00	9.6		0.00	0.00	0.00	0.00	0.00	0.00
Uniform Delay (a		, , , ,	110)	59.1	38.2		59.1	29.6		51.5	51.0	52.1	56.2	50.9	50.6
Incremental Dela				83.0	29.5		178.8	1.7		0.2	20.0	53.1	61.1	19.3	21.6
Initial Queue Dela	•	,.		0.0	0.0		0.0	0.0		0.2	0.0	0.0	0.0	0.0	0.0
Control Delay (d				142.1	67.7		237.8	31.2		51.7	71.0	105.2	117.2	70.2	72.1
Level of Service (·	и		F	67.7		237.6 F	C 31.2		D D	71.0 E	F	F	70.2 E	/2.1 E
Approach Delay,		/1.0S		75.1	_	E	74.0	_	E	79.0		E	91.7		F
Intersection Delay				75.1			9.5			19.0			E 91.7		'
Multimodal Resu	ults				EB			WB			NB			SB	
	estrian LOS Score / LOS					В	2.44	4	В	2.3	1	В	2.31		В
Pedestrian LOS S	estrian LOS Score / LOS cle LOS Score / LOS														

EXHIBIT 4.35 2029 PEAK AM HOUR ANALYSIS (Total Traffic) - Jeanne d'Arc/Innes

		HCS	7 Sig	nalize	d Inte	ersec	tion F	Resu	lts Sur	nmar	у				
General Inform	ation							\rightarrow	Intersec		_		_	ヤアや↑	Ja L
Agency								\rightarrow	Duration		0.250		2		
Analyst				Analys	is Date	12/8/2	2020		Area Typ	е	Other		± = = = = = = = = = = = = = = = = = = =		
Jurisdiction		City of Ottawa		Time F	Period	Peak	AM Hou	ır	PHF		0.92		*		
Urban Street		Innes Road		Analys	is Year	2029			Analysis	Period	1> 7:0	00	77		
Intersection		Jeanne d'Arc/Innes		File Na	ame	723 2	2029 tot	t AM.x	cus					a. a. A. A	
Project Descript	tion	Innes Road Develo	pment										ħ	4144	1- [1]
Demand Inforn	nation				EB			WE	3		NB			SB	
					T	ТВ	1	T	_	1	T	R		T	Тъ
Approach Move				L	_	R	L	-	\rightarrow	L	-	-	L	-	R
Demand (v), v	en/n			39	360		208	125	5	125	368	78	155	155	57
Signal Informa	tion							Ţ	7	\top				_	T
Cycle, s	110.0	Reference Phase	2		L' &	"→ "	1 n	al R			×		→ .		κ†
Offset, s	0	Reference Point	End	Green	5.0	45.6	24.8	8.7	0.0	0.0		1	2	3	
Uncoordinated	No	Simult. Gap E/W	On	Yellow	-	3.7	3.7	3.7	_	0.0		7	←		†
Force Mode	Fixed	Simult. Gap N/S	On	Red	2.4	2.7	2.5	2.6		0.0		5	6	7	ľ
Timer Results				EBL	-	EBT	WB	L	WBT	NBI	-	NBT	SBL	-	SBT
Assigned Phase	Э			5		2	1		6	3		8	7		4
Case Number				2.0		4.0	2.0		4.0	2.0		4.0	2.0		4.0
Phase Duration	, s			12.0)	52.0	12.0)	52.0	15.0)	31.0	15.0)	31.0
Change Period,	(Y+R	c), s		6.1		6.4	6.1		6.4	6.3		6.2	6.3		6.2
Max Allow Head	ax Allow Headway (<i>MAH</i>), s			3.1		0.0	3.1		0.0	3.1		3.1	3.1		3.1
Queue Clearan	ce Time	e (g s), s		4.7			8.9			6.4		16.4	7.6		8.4
Green Extensio				0.0		0.0	0.0		0.0	0.2		0.7	0.1		0.4
Phase Call Prob				1.00			1.00	\rightarrow		1.00	-	1.00	1.00		1.00
Max Out Probal				1.00	-		1.00)		1.00	_	0.04	1.00	-	0.00
Movement Gro	un Res	ulte			EB			WB			NB			SB	
Approach Move		ruito		L	T	R	L	T	l R	L	T	R	L	Т	R
				5	2			6	K	3	8		7	4	-
Assigned Move		\					1	_		-	-	18			14
Adjusted Flow F				42	391		226	1364	_	136	249	236	168	118	113
•		ow Rate (s), veh/h/l	n	1647	1647		1701	1687	_	1600	1730	1613	1600	1772	159
Queue Service Cycle Queue Cl		- , .		2.7	8.5 8.5		6.9	43.0 43.0		4.4	14.1	14.4	5.6 5.6	6.0	6.4
Green Ratio (g.		e nine (<i>g c</i>), s		0.06	0.42		0.73	0.42	_	0.36	0.23	0.23	0.36	0.23	0.23
				-				-	_						-
Capacity (c), v		dia (M)		103	1395		107	1429	_	282	406	378	282	416	374
Volume-to-Capa				0.410	0.280		2.119	0.954	+	0.482	0.613		0.597	0.284	0.30
	, .	In (50 th percentile)	_	29.6	86.2		471.9	498		46.1	159.2	146.6	59.7	65.5	61.9
		eh/ln (50 th percenti RQ) (50 th percent		0.00	3.3 0.00		18.7 0.00	19.6 0.00	_	1.8 0.00	6.1 0.00	5.9 0.00	0.00	2.6 0.00	0.00
Uniform Delay (,, ,	iie)	49.6	21.0		51.6	31.1	_	47.8	38.1	37.7	48.3	34.9	34.
Incremental Del	. , .			1.0	0.5		533.7	15.2	_	0.5	2.0	2.4	2.4	0.1	0.2
Initial Queue De				0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.2
		,.						-					_		-
Control Delay (50.6	21.5 C		585.3 F	46.3 D		48.2 D	40.1 D	40.1 D	50.7 D	35.0 D	34.8 C
	evel of Service (LOS) pproach Delay, s/veh / LOS			D 24.4		C	122.		F	41.9		D	41.6		D
				24.4			1.7	9	Г	41.8			F 41.0	,	U
	tersection Delay, s/veh / LOS														
		ultimodal Results													
Multimodal Re	sults				EB			WB			NB			SB	
Multimodal Re Pedestrian LOS		/LOS		2.43		В	2.43	_	В	2.31	_	В	2.31	_	В

Generated: 12/9/2020 7:35:52 AM

EXHIBIT 4.36 2029 PEAK PM HOUR ANALYSIS (Total Traffic) - Jeanne d'Arc/Innes

		HCS	7 Sig	nalize	d Int	ersec	tion F	Resu	lts Su	nmar	у				
								-							
General Inform	ation							\rightarrow	Intersec		_		- i	ヤアや↑	Ja L
Agency								\rightarrow	Duration		0.250		-		
Analyst				Analys	is Date	12/8/2	2020		Area Typ	е	Other		<u></u> Δ		
Jurisdiction		City of Ottawa		Time F	Period	Peak	ΡΜ Ηοι	ır	PHF		0.92		*		
Urban Street		Innes Road		Analys	is Year	2029			Analysis	Period	1> 7:0	00	7		
Intersection		Jeanne d'Arc/Innes		File Na	ame	723 2	2029_tot	t PM.	cus					a. a. o. o	
Project Descript	tion	Innes Road Develo	pment										The state of the s	4 1 4 4	1- 1
Demand Inforn	antion				EB			WE)	_	NB		_	SB	
					_	T 5		_	_		_	T 5		_	T 5
Approach Move				L	T	R	L	T	\rightarrow	L	T	R	L	T	R
Demand (v), v	eh/h		-	152	1380		198	75	8	182	294	280	464	487	89
Signal Informa	tion									\top				_ [T
Cycle, s	130.0	Reference Phase	2	1	P	⊹, '	1	al .	_		¥		→	\	4
Offset, s	0	Reference Point	End	1	40.0		10.5			1.0		1	2	3	
Uncoordinated	No	Simult. Gap E/W	On	Green	-	52.6	24.8	16.	_	0.0		7	←		•
Force Mode	Fixed	Simult. Gap N/S	On	Yellow Red	2.4	3.7 2.7	3.7 2.5	2.6		0.0		5	6	Y 7	ŀ
1 Side Widde	ixeu	Gilluit. Gap 14/3	Oll	rteu	_ <u>_</u>	2.1	2.0	2.0	0.0	10.0					
Timer Results				EBL	-	EBT	WB	L	WBT	NB	L	NBT	SBI	-	SBT
Assigned Phase	9			5		2	1		6	3		8	7		4
Case Number				2.0		4.0	2.0		4.0	2.0		4.0	2.0		4.0
Phase Duration	, s			17.0		59.0	17.0		59.0	23.0		31.0	23.0		31.0
Change Period,	(Y+R	c), S		6.1		6.4	6.1		6.4	6.3		6.2	6.3		6.2
Max Allow Headway (<i>MAH</i>), s		3.1		0.0	3.1		0.0	3.1		3.2	3.1		3.1		
Queue Clearance Time (g s), s		13.9			13.9	-		9.2	-	27.8	19.7	7	25.4		
Green Extension Time (g e), s		0.0		0.0	0.0	-	0.0	1.2	_	0.0	0.0	_	0.0		
Phase Call Probability		1.00		3.0	1.00	\rightarrow	5.5	1.00	\rightarrow	1.00	1.00	-	1.00		
Max Out Probability		1.00	-		1.00	_		0.10	-	1.00	1.00	-	1.00		
Mauram : :: 4 C	5				ED.			14/0			ND			0.0	
Movement Gro	•	suitS		-	EB			WB	_	-	NB			SB	-
Approach Move				느	T	R	L	T	R	L	T	R	L	T	R
Assigned Move				5	2		1	6		3	8	18	7	4	14
Adjusted Flow F	Rate (v), veh/h		165	1500		215	824		198	320	304	504	322	304
Adjusted Satura	tion Flo	ow Rate (s), veh/h/l	n	1661	1700		1701	1687	_	1639	1758	1456	1652	1772	166
Queue Service		- ,		11.9	53.6		11.9	24.7	-	7.2	23.2	25.8	17.7	23.1	23.4
Cycle Queue Cl		e Time (<i>g c</i>), s		11.9	53.6		11.9	24.7		7.2	23.2	25.8	17.7	23.1	23.4
Green Ratio (g/	/C)			0.09	0.41		0.09	0.41		0.14	0.20	0.20	0.14	0.20	0.20
Capacity (c), v	eh/h			152	1402		156	1391		446	349	289	450	352	330
Volume-to-Capa	acity Ra	atio (X)		1.087	1.070		1.382	0.592	2	0.443	0.916	1.053	1.121	0.915	0.92
Back of Queue (Q), ft/ln (50 th percentile)		235.1	765.7		353.7	259.7	7	75.4	326.7	368.7	310	325.8	309.		
Back of Queue	(Q), ve	eh/ln (50 th percenti	le)	9.1	30.4		14.0	10.2		3.0	12.8	14.7	12.3	12.8	12.4
Queue Storage Ratio (RQ) (50 th percentile)		0.00	0.00		0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00		
Uniform Delay (d 1), s/veh		59.1	38.2		59.1	30.0		51.6	51.5	52.1	56.2	51.5	51.		
Incremental Delay (d 2), s/veh		98.1	45.1		206.8	1.9		0.3	27.5	67.6	79.9	27.2	30.0		
Initial Queue De				0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Control Delay (d), s/ve	eh		157.1	83.3		265.8	31.9		51.9	79.0	119.7	136.1	78.8	81.
Level of Service	,.			F	F		F	С		D	Е	F	F	Е	F
Approach Delay, s/veh / LOS		90.7	_	F	80.4	_	F	87.6		F	105.		F		
Intersection Del							1.3						F		
Multimodal Res					EB			WB			NB			SB	
Pedestrian LOS	Score	/LOS		2.44		В	2.44	1	В	2.3	1	В	2.31		В
. Guestiidii Ee c				1.86		В	1.34		Α	1.17		Α	1.42		Α

EXHIBIT 4.37 FRANK BENDER/INNES - PLOS INTERSECTION EVALUATION

MAIN STREET

Innes Road

MINOR STREET

Frank Bender Street

APPROACHES

ΑII

YEAR

2029

DIRECTION

ΑII

MMLOS MODE

PLOS

MMLOS MODE PLOS	North Approd		Soutl Approd		East Approd		West 20 Approd		
	Comment	Points	Comment	Points	Comment	Points	Comment	Points	
5.1 Crossing Distance & Conditions Median? Total Travel Lanes Crossed	No 3	105	Yes 5	75	Yes 5	75	Yes 5	75	
5.2 Signal Phasing & Timing Features Left Turn Conflict	Permissive	-8	Permissive	-8	Protected	0	Permissive	-8	
Right Turn Conflict	Permissive or Yield Control	-5							
Right Turns on Red	RTOR Allowed	-3	RTOR Allowed	-3	RTOR Allowed	-3	RTOR Allowed	-3	
Leading Ped Interval	No	-2	No	-2	No	-2	No	-2	
5.3a Corner Radius	> 10m to 15m	-6							
5.3b Right Turn Channel	No Right Turn Channel	-4							
5.4 Crosswalk Treatment	Standard Transverse Markings	-7	Standard Transverse Markings	-7	Standard Transverse Markings	-7	Standard Transverse Markings	-7	
TOTAL PETSI SCORE		70		40		48		40	
DELAY SCORE Cycle length from Signal Timing Plan		130		130		130		130	
Delay (sec.)		39		39		38		38	
PETSI SCORE		C		E		D		E	
DELAY SCORE		D		D		D		D	
OVERALL APPROACH SCORE		D		E		D		E	

EXHIBIT 4.38 VISENEAU/INNES - PLOS INTERSECTION EVALUATION

MAIN STREET

Innes Road

MINOR STREET

Viseneau Drive

APPROACHES

ΑII

YEAR

2029

DIRECTION

ΑII

MMLOS MODE

PLOS

MMLOS MODE PLOS	North Approd		Soutl Approd		East Approd		West 20 Approd	
	Comment	Points	Comment	Points	Comment	Points	Comment	Points
5.1 Crossing Distance & Conditions Median? Total Travel Lanes Crossed	No 2	120	Yes 5	75	Yes 5	75	Yes 6	60
5.2 Signal Phasing & Timing Features Left Turn Conflict	Permissive	-8	Permissive	-8	Protected	0	Permissive	-8
Right Turn Conflict	Permissive or Yield Control	-5						
Right Turns on Red	RTOR Allowed	-3	RTOR Allowed	-3	RTOR Allowed	-3	RTOR Allowed	-3
Leading Ped Interval	No	-2	No	-2	No	-2	No	-2
5.3a Corner Radius	> 10m to 15m	-6						
5.3b Right Turn Channel	No Right Turn Channel	-4						
5.4 Crosswalk Treatment	Standard Transverse Markings	-7	Standard Transverse Markings	-7	Standard Transverse Markings	-7	Standard Transverse Markings	-7
TOTAL PETSI SCORE		85		40		48		25
DELAY SCORE Cycle length from Signal Timing Plan Delay (sec.)		130 32		130 32		130 38		130 38
PETSI SCORE		В		E		D		F
DELAY SCORE		D		D		D		D
OVERALL APPROACH SCORE		D		E		D		F

EXHIBIT 4.39 JEANNE D'ARC/INNES - PLOS INTERSECTION EVALUATION

North

MAIN STREET

Innes Road

MINOR STREET

Jeanne d'Arc Boulevard

APPROACHES

ΑII

YEAR

2029

DIRECTION

ΑII

PLOS

MMLOS MODE

South

East

West

	Approc	ich	Approc	ich	Approd	ich 12	20 Approc	ich	
	Comment	Points	Comment	Points	Comment	Points	Comment	Points	
5.1 Crossing Distance & Conditions Median? Total Travel Lanes Crossed	Yes 6	60	Yes 6	60	Yes 5	75	Yes 5	75	
5.2 Signal Phasing & Timing Features									
Left Turn Conflict	Protected	0	Protected	0	Protected	0	Protected	0	
Right Turn Conflict	No Right Turn	0	No Right Turn	0	No Right Turn	0	No Right Turn	0	
Right Turns on Red	RTOR Prohibited	0	RTOR Prohibited	0	RTOR Prohibited	0	RTOR Prohibited	0	
Leading Ped Interval	No	-2	No	-2	No	-2	No	-2	
5.3a Corner Radius	> 10m to 15m	-6	> 10m to 15m	-6	> 10m to 15m	-6	> 10m to 15m	-6	
5.3b Right Turn Channel	No Right Turn	0	No Right Turn	0	No Right Turn	0	No Right Turn	0	
5.4 Crosswalk Treatment	Standard Transverse Markings	-7	Standard Transverse Markings	-7	Standard Transverse Markings	-7	Standard Transverse Markings	-7	
TOTAL PETSI SCORE		45		45		60		60	
DELAY SCORE Cycle length from Signal Timing Plan		130		130		470		130	
Delay (sec.)		43		43		130 41		41	
PETSI SCORE		D		D		C		C	
DELAY SCORE		E		E		E		E	
OVERALL APPROACH SCORE		E		E		E		E	

INTERSECTION SCORE ${f F}$

EXHIBIT 4.40 FRANK BENDER/INNES - BLOS INTERSECTION EVALUATION

MAIN STREET Innes Road

MINOR STREET Frank Bender Street Eastbound-Westbound **APPROACHES**

2029 YEAR

DIRECTION ΑII MMLOS MODE **BLOS**

keway and Intersection Type		LOS
ke Lanes or higher order facility of	n a Signalized Intersection Approach	
ght-turn Lane and Turning Speed of otorists	No impact on LTS (as long as cycling facility remains to the right of any turn lane - otherwise see pocket bike	lanes below
	Two-stage, left-tum bike box; ≤ 50 km/h	A
	No lane crossed, ≤ 50 km/h	В
	1 lane crossed, ≤ 40 km/h	В
clist Making a Left-turn and	No lane crossed, ≥ 60 km/h	С
perating Speed of Motorists (refer	1 lane crossed, 50 km/h	С
figure)	2 or more lanes crossed, ≤ 40 km/h	D
J. 1,	1 lane crossed, ≥ 60 km/h	_
	2 or more lanes crossed, ≥ 50 km/h	F
	All other single left-turn lane configurations	F
-t-t Pil-t	Dual left-turn lanes (shared or exclusive)	F
ocket Bike Lanes on a Signalized I		
	Right-turn lane introduced to the right of the bike lane and ≤ 50 m long, turning speed ≤ 25 km/h (based on	В
	curb radii and angle of intersection) Right-turn lane introduced to the right of the bike lane and > 50 m long, turning speed ≤ 30 km/h (based on	
ght-turn Lane and Turning Speed of		D
gni-ium cane and ruming speed of otorists	curb radii and angle of intersection) Bike lane shifts to the left of the right-turn lane, turning speed ≤ 25 km/h (based on curb radii and angle of	
DIDITSIS		D
	intersection)	F
	Right-turn lane with any other configurations Dual right-turn lanes (shared or exclusive)	F
	Two-stage, left-turn bike box; ≤ 50 km/h	A
	No lane crossed, ≤ 50 km/h	В
		В
	1 lane crossed, ≤ 40 km/h No lane crossed, ≥ 60 km/h No lane crossed, ≥ 60 km/h	C
clist Making a Left-turn and	1 lane crossed, 50 km/h	C
perating Speed of Motorists (refer	2 or more lanes crossed, ≤ 40 km/h	D
figure)	1 lane crossed, ≥ 60 km/h	E
	2 or more lanes crossed, ≥ 50 km/h	F
	All other single left-turn lane configurations	F
	Dual left-turn lanes (shared or exclusive)	F
ixed Traffic on a Signalized Interse	ection Approach	
	Right-turn lane 25 to 50 m long, turning speed ≤ 25 km/h (based on curb radii and angle of intersection)	D
ght-turn Lane and Turning Speed of	Right-turn lane 25 to 50 m long, turning speed > 25 km/h (based on curb radii and angle of intersection)	E
otorists	Right-turn lane longer than 50 m	F
	Dual right-turn lanes (shared or exclusive)	F
	Two-stage, left-turn bike box; ≤ 50 km/h	A
	No lane crossed, ≤ 50 km/h	В
	1 lane crossed, ≤ 40 km/h NOT APPLICABLE	В
clist Making a Left-turn and	No lane crossed, ≥ 60 km/h	D
perating Speed of Motorists (refer	1 lane crossed, 50 km/h	D
figure)	2 or more lanes crossed, ≤ 40 km/h	D
ligure)	1 lane crossed, ≥ 60 km/h	F
	2 or more lanes crossed, ≥ 50 km/h	F
	All other single left-turn lane configurations	F
	Dual left-turn lanes (shared or exclusive)	F
Two-stage, left-	um bike box No lane crossed One lane crossed	

To Pocket bike lanes are defined as bike lanes that develop near intersections between vehicular right turn lanes on the right side and vehicular through or left lanes on the left side. All other configurations of bike lanes or separated facility that remain against the edge of the curb/parking lane and require right turning vehicles to yield to through cyclists will not impact the level of traffic stress (i.e. are considered to be LOSA).

INTERSECTION SCORE ${f F}$

EXHIBIT 4.41 VISENEAU/INNES - BLOS INTERSECTION EVALUATION

MAIN STREET Innes Road
MINOR STREET Viseneau Drive

APPROACHES Eastbound-Westbound

YEAR 2029 DIRECTION AII MMLOS MODE BLOS

> Bikeway and Intersection Type Bike Lanes or higher order facility on a Signalized Intersection Approach Right-turn Lane and Turning Speed of No impact on LTS (as long as cycling facility remains to the right of any turn lane - otherwise see pocket bike lanes below Two-stage, left-tum bike box; ≤ 50 km/h No lane crossed, ≤ 50 km/h 1 lane crossed, ≤ 40 km/h No lane crossed, ≥ 60 km/h Cyclist Making a Left-turn and 1 lane crossed, 50 km/h 2 or more lanes crossed, ≤ 40 km/h Operating Speed of Motorists (refer to figure) 1 lane crossed, ≥ 60 km/h 2 or more lanes crossed, ≥ 50 km/h All other single left-turn lane configurations Dual left-turn lanes (shared or exclusive) Pocket Bike Lanes on a Signalized itersection Approach
> Right-turn lane introduced to the right of the bike lane and ≤ 50 m long, turning speed ≤ 25 km/h (based or В Right-turn Lane and Turning Speed of of infarsection)
>
> Right-turn Lane and Turning Speed of of Motorists
>
> Right-turn Lane and Turning Speed of of Motorists
>
> Right-turn Lane and Turning Speed of of Motorists
>
> Right-turn Lane and Turning Speed of of Motorists
>
> Right-turn Lane and Turning Speed of of Motorists
>
> Right-turn Lane and Turning Speed of of Motorists
>
> Right-turn Lane and Turning Speed of Office Speed Spe D Right-turn lane with any other configurations Dual right-turn lanes (shared or exclusive) Two-stage, left-turn bike box; ≤ 50 km/h No lane crossed, ≤ 50 km/h 1 lane crossed, ≤ 40 km/h NOT APPLICABLE No lane crossed, ≥ 60 km/h Cyclist Making a Left-turn and 1 lane crossed, 50 km/h 2 or more lanes crossed, ≤ 40 km/h Operating Speed of Motorists (refer to figure) 1 lane crossed, ≥ 60 km/h 1 iane crossed, ≥ 60 km/h 2 or more lanes crossed, ≥ 50 km/h All other single left-turn lane configurations Dual left-turn lanes (shared or exclusive) Mixed Traffic on a Signalized Intersection Approach
>
> Right+um Lane and Turning Speed of Right+um lane 25 to 50 m long, turning speed ≤ 25 km/h (based on curb radii and angle of intersection)
>
> Motorists Right+um lane (25 to 50 m long, turning speed > 25 km/h (based on curb radii and angle of intersection)
>
> Right+um lane (15 to 50 m long), turning speed > 25 km/h (based on curb radii and angle of intersection)
>
> Right+um lane (15 to 50 m long), turning speed > 25 km/h (based on curb radii and angle of intersection)
>
> Right+um lane (15 to 50 m long), turning speed > 25 km/h (based on curb radii and angle of intersection)
>
> Right+um lane (15 to 50 m long), turning speed > 25 km/h (based on curb radii and angle of intersection)
>
> Right+um lane (15 to 50 m long), turning speed > 25 km/h (based on curb radii and angle of intersection) Two-stage, left-tum bike box; ≤ 50 km/h
> No lane crossed, ≤ 50 km/h
> 1 lane crossed, ≤ 40 km/h NOT APPLICABLE No lane crossed, ≥ 60 km/h 1 lane crossed, 50 km/h Cyclist Making a Left-turn and Operating Speed of Motorists (refer 2 or more lanes crossed, ≤ 40 km/h to figure) lane crossed, ≥ 60 km/h 2 or more lanes crossed, ≥ 50 km/h All other single left-turn lane configurations Dual left-turn lanes (shared or exclusive) Left-turn Configurations Two-stage, left-turn bike box No lane crossed One lane crossed One Lane Crossed

Notes

Pocket blike lanes are defined as bike lanes that develop near intersections between vehicular right turn lanes on the right side and vehicular through or left lanes on the left side. All other configurations of bike lanes or separated facility that remain against the edge of the curbiparking lane and require right turning vehicles to yield to through cyclists will not impact the level of traffic stress (i.e. are considered to be LOS A).

INTERSECTION SCORE ${f F}$

EXHIBIT 4.42 JEANNE D'ARC/INNES - BLOS INTERSECTION EVALUATION

MAIN STREET Innes Road

MINOR STREET Jeanne d'Arc Boulevard APPROACHES Eastbound—Westbound

YEAR 2029

DIRECTION AII
MMLOS MODE BLOS

	,			
ikeway and Intersection Type	n a Cinnalized Intersection Assessed	LOS		
ike Lanes or higher order facility of ight-tum Lane and Tuming Speed of	n a Signalized Intersection Approach			
totorists	No impact on LTS (as long as cycling facility remains to the right of any turn lane - otherwise see pocket bike	lanes below)		
	Two-stage, left-turn bike box; ≤ 50 km/h	A		
	No lane crossed, ≤ 50 km/h	В		
	1 lane crossed, ≤ 40 km/h	В		
yclist Making a Left-turn and	No lane crossed, ≥ 60 km/h	C		
perating Speed of Motorists (refer	1 lane crossed, 50 km/h			
figure)	2 or more lanes crossed, ≤ 40 km/h	D		
	1 lane crossed, ≥ 60 km/h	-		
	2 or more lanes crossed, ≥ 50 km/h	F		
	All other single left-turn lane configurations	F		
ocket Bike Lanes on a Signalized I	Dual left-turn lanes (shared or exclusive)	F		
ocket bike Lalles off a Signalized I	Right-turn lane introduced to the right of the bike lane and ≤ 50 m long, turning speed ≤ 25 km/h (based on			
	curb radii and angle of intersection)	В		
	Right-turn lane introduced to the right of the bike lane and > 50 m long, turning speed ≤ 30 km/h (based on			
ight-turn Lane and Turning Speed of		D		
otorists	Bike lane shifts to the left of the right-turn lane, turning speed ≤ 25 km/h (based on curb radii and angle of			
	intersection)	D		
	Right-turn lane with any other configurations	F		
	Dual right-turn lanes (shared or exclusive)	F		
	Two-stage, left-turn bike box; ≤ 50 km/h	A		
	No lane crossed, ≤ 50 km/h	В		
	1 lane crossed, ≤ 40 km/h NOT A DDI TO A DI T	В		
velict Meking a Laft top and	1 lane crossed, ≤ 40 km/h No lane crossed, ≥ 60 km/h No lane crossed, ≥ 60 km/h	С		
yclist Making a Left-turn and	1 lane crossed, 50 km/h	С		
perating Speed of Motorists (refer	2 or more lanes crossed, ≤ 40 km/h	D		
figure)	1 lane crossed, ≥ 60 km/h	E		
	2 or more lanes crossed, ≥ 50 km/h	F		
	All other single left-turn lane configurations	F		
	Dual left-turn lanes (shared or exclusive)	F		
lixed Traffic on a Signalized Interse				
	Right-turn lane 25 to 50 m long, turning speed ≤ 25 km/h (based on curb radii and angle of intersection)	D		
	Right-turn lane 25 to 50 m long, turning speed > 25 km/h (based on curb radii and angle of intersection)	E		
lotorists	Right-turn lane longer than 50 m	F		
	Dual right-turn lanes (shared or exclusive)	F		
	Two-stage, left-turn bike box; ≤ 50 km/h	A		
	No lane crossed, ≤ 50 km/h	В		
	1 lane crossed, ≤ 40 km/h NOT APPLICABLE	В		
yclist Making a Left-turn and	No latte crossed, 2 to kill/il	D		
perating Speed of Motorists (refer	1 lane crossed, 50 km/h	D		
figure)	2 or more lanes crossed, ≤ 40 km/h	D		
	1 lane crossed, ≥ 60 km/h	F		
	2 or more lanes crossed, ≥ 50 km/h	F		
	All other single left-turn lane configurations	F		
eft-turn Configurations	Dual left-turn lanes (shared or exclusive)	F		
Two-stage, left-t	um bike box No lane crossed One lane crossed One Lane Crossed			

Notes

To Pocket bike lanes are defined as bike lanes that develop near intersections between vehicular right turn lanes on the right side and vehicular through or left lanes on the left side. All other configurations of bike lanes or separated facility that remain against the edge of the curb/parking lane and require right turning vehicles to yield to through cyclists will not impact the level of traffic stress (i.e. are considered to be LOSA).

EXHIBIT 4.43 FRANK BENDER/INNES - TLOS INTERSECTION EVALUATION

MAIN STREET Innes Road

MINOR STREET Frank Bender Street

APPROACHES All INTERSECTION SCORE E

YEAR 2029 MMLOS MODE TLOS

Delay	Typical Location	LOS
0	Grade Separation	A
≤10 sec	High Level TSP	В
≤20 sec	TSP & short (e.g. <60 sec) to medium (e.g.	С
≤30 sec	60-90 sec) cycle length	D
≤40 sec	TSP & long cycle length (e.g. >90 sec)	E
>40 sec	No TSP & long cycle length (e.g. >90 sec)	F

Note: Delay includes travel time from end of queue to entering the intersection

EXHIBIT 4.44 VISENEAU/INNES - TLOS INTERSECTION EVALUATION

MAIN STREET I

Innes Road Viseneau Drive

APPROACHES

ΑII

INTERSECTION SCORE ${f E}$

YEAR

MMLOS MODE

2029 TLOS

Delay	Typical Location	LOS
0	Grade Separation	А
≤10 sec	High Level TSP	В
≤20 sec	TSP & short (e.g. <60 sec) to medium (e.g.	С
≤30 sec	60-90 sec) cycle length	D
≤40 sec	TSP & long cycle length (e.g. >90 sec)	E
>40 sec	No TSP & long cycle length (e.g. >90 sec)	F

Note: Delay includes travel time from end of

queue to entering the intersection

EXHIBIT 4.45 JEANNE D'ARC/INNES - TLOS INTERSECTION EVALUATION

MAIN STREET Innes Road

MINOR STREET Jeanne d'Arc Boulevard

APPROACHES All INTERSECTION SCORE E

YEAR 2029 MMLOS MODE TLOS

Delay	Typical Location	LOS
0	Grade Separation	A
≤10 sec	High Level TSP	В
≤20 sec	TSP & short (e.g. <60 sec) to medium (e.g.	С
≤30 sec	60-90 sec) cycle length	D
≤40 sec	TSP & long cycle length (e.g. >90 sec)	E
>40 sec	No TSP & long cycle length (e.g. >90 sec)	F

Note: Delay includes travel time from end of queue to entering the intersection

INTERSECTION SCORE B

EXHIBIT 4.46 FRANK BENDER/INNES - TKLOS INTERSECTION EVALUATION

MAIN STREET Innes Road

MINOR STREET Frank Bender Street
APPROACHES Eastbound-Westbound

YEAR 2029 MMLOS MODE TKLOS

Exhibit 21 - TkLOS Signalized Intersection Evaluation Table

Effective Corner Radius	One receiving lane on departure from intersection	More than one receiving lane on departure from intersection
< 10m	F	D
10 to 15m	Е	В
> 15m	С	А

INTERSECTION SCORE B

EXHIBIT 4.47 VISENEAU/INNES - TKLOS INTERSECTION EVALUATION

MAIN STREET Innes Road
MINOR STREET Viseneau Drive

APPROACHES Eastbound-Westbound

YEAR 2029 MMLOS MODE TKLOS

Exhibit 21 - TkLOS Signalized Intersection Evaluation Table

Effective Corner Radius	One receiving lane on departure from intersection	More than one receiving lane on departure from intersection
< 10m	F	D
10 to 15m	Е	В
> 15m	С	А

INTERSECTION SCORE B

EXHIBIT 4.48 JEANNE D'ARC/INNES - TKLOS INTERSECTION EVALUATION

MAIN STREET

Innes Road

MINOR STREET APPROACHES

Jeanne d'Arc Boulevard Eastbound—Westbound

YEAR

2029

MMLOS MODE

TkLOS

Exhibit 21 - TkLOS Signalized Intersection Evaluation Table

Effective Corner Radius	One receiving lane on departure from intersection	More than one receiving lane on departure from intersection
< 10m	F	D
10 to 15m	Е	В
> 15m	С	А