SITE SERVICING AND STORMWATER MANAGEMENT REPORT

Project Address – 3817 – 3843 Innes Road, Ottawa

Owner/Client: Address: City file Number: Bridor Development 996-B St-Augustin Rd, Embrun ON

By Blanchard Letendre Engineering Ltd. Date – May 3, 2022 Our File Reference: 20-184

Submission April 5, 2021

Previous Submission December 17, 2020

TABLE OF CONTENTS

Table	of Contents	2						
Apper	ndix Table	3						
1.0	Introduction							
2.0	Site Plan	4						
3.0	STORM WATER MANAGEMENT	5						
3.1	Existing Site Condition	5						
3.2	Proposed Storm Water Management	5						
3.3	Proposed Storm Water Management	5						
3.4	Proposed Stormwater Quantity Control	6						
3	.4.1 Roof Drainage	7						
3	.4.2 Underground Chambers	7						
3.5	Proposed Stormwater Quality Control	7						
4.0	SANITARY SEWER DESIGN	7						
4.1	Existing Site Conditions	7						
4.2	Existing Site Conditions	7						
5.0	WATER CONNECTION DESIGN	8						
5.1	Existing Site Conditions	8						
5.2	Proposed Domestic Water Service	8						
5.3	Proposed Fire Demand	9						
5.4	Water Capacity Comments	9						
6.0	EROSION AND SEDIMENT CONTROL	9						
7.0	CONCLUSION AND LIMITATION OF REPORT	9						
7.1	Stormwater Management	9						
7.2	7.2 Sanitary Service							
7.3	Water Service1	0						
8.0	Limitation1	0						

3817 – 3843 Innes Road, On Our File Ref. 20-184 Page: 3 of 10

APPENDIX TABLE

- Appendix A Stormwater Design
- Appendix B Sanitary Design
- Appendix C Watermain Design
- Appendix D Stormwater Underground Chamber & Stormwater Treatment Unit
- Appendix E Boundary Conditions
- Appendix F Engineering Drawings

1.0 INTRODUCTION

Blanchard Letendre Engineering Ltd. (BLEL) was retained by Bridor Development. to complete their site servicing and stormwater management for the new proposed site located at 3817 – 3843 Innes Road in Ottawa. This report summarized proposed site servicing and stormwater management and should be read in conjunction with the engineering drawings prepare by BLEL. This report and site servicing plan have been prepared based on the site plan proposed by P-Square Concepts and the site survey completed by Annis O'Sullivan Vollebekk. The information contained herein is based on the provided drawings and if there is any discrepancy with the survey or site plan, BLEL should be informed in order to verify the information and complete the changes if required.

2.0 SITE PLAN

The proposed site is to be located in Orleans, Ontario. As per the aerial picture in figure 1, the existing site consist of and green space area with four (4) existing building that will be demolished prior to construction. The property located at 3817- 3843 Innes Road, consist of approximately 0.661ha of undeveloped land. The land will be developed with two (2) new residential apartments building and be severed into two separate properties with one (1) shared entrance.

Figure 1- Existing site at 3817 - 3843 Innes Road, Orleans, Ontario

3.0 STORM WATER MANAGEMENT

3.1 Existing Site Condition

The existing site currently has no stormwater management nor storm service connection. The site currently drains uncontrolled towards Innes road where the stormwater generated from the site is captured by the road site catchbasin. The existing property naturally grades towards Innes road away from the residential development on the north and west portion of the property. There is an existing gras station at the east side of the property that is developed at a lower elevation than the existing property. Refer to BL Engineering drawing C400 for the pre-development drainage area and existing grading showing the current drainage of the site.

3.2 Proposed Storm Water Management

The development of the site will consist of adding two (2) new residential apartment buildings. The site will be modified by adding a total of 2436 square meter of building (Block $A = 1218m^2$; Block $B = 1218m^2$) asphalt parking and driving and amities areas. As the runoff coefficient will increase due to addition of hard surfaces, post-development stormwater quantity and quality will be implemented.

The site stormwater management has been prepared in correlation with the existing site grading. To minimize the fill and site work required, the stormwater management has been developed to follow the existing site grading. As the property naturally drains towards Innes Road, the proposed stormwater management will outlet to City storm sewer on Innes Road. The overland flow route has also been designed to convey the storm runoff towards Innes road.

The stormwater generated by the new hard surfaces will be directed to a series of catchbasins which will capture and covey the water runoff to existing the surrounding ditches. The catchment areas have been delineated as per the proposed grading plan. Refer to Appendix 'A', for the catchment area and runoff coefficient. In order to respect the 5 year pre-development allowable release rate, the outlets will be controlled by inlet control device which will limit the flow outletting to City storm sewer on Innes road. By throttling the flow, stormwater retention will be completed with the use of overland ponding and underground storage which was designed to hold the 100 year storm event. Refer to Appendix 'A' for the stormwater flow and storage calculations.

3.3 Proposed Storm Water Management

The pre-development flow of the 5-year storm was calculated using a 5-year storm and a 10-minute time of concentration for the affected area. The pre-development flow of the 100-year storm was calculated using a 100-year storm and a 10-minute time of concentration for the affected area. From intensity duration curves established for the Ottawa area, the intensity was evaluated at of 104.2 mm/hr for the 5yr predevelopment flow and 178.6mm/hr for the 100-year predevelopment

flow. A run-off coefficient of 0.45 was used as per the evaluated, see Appendix 'A' – Pre-Development Drainage Area table.

Using the Rational Method and considering the tributary areas of the proposed (see Appendix 'A'), the pre-development allowable release rate for the site was evaluated at **86.16 L/s**. See also the Storm Sewer Design Sheet in Appendix 'A'.

```
Allowable Release Rate (Q) = 2.78CIA (L/s)

I_5 = 998.071 / (Tc + 6.053)^{0.814}

C = 0.45

I = 104.2 mm/hr

Tc = 10 min

Total = 0.661 ha

Allowable Release Rate= 86.16 L/s
```

3.4 **Proposed Stormwater Quantity Control**

The proposed stormwater management for the site will be achieve primarily through the use of underground pipe storage and overland surface ponding. The grading of the site has been designed to direct the stormwater towards the series of catchbasins connected to the underground stormwater chambers before outleting south into the 1350mm diameter storm city sewer. The proposed underground stormwater chambers and cathcbasins are shown on the attached drawings in Appendix 'E'.

The proposed site has been graded to outlet overland onto Innes Road on the south side of the property. As the site naturally grades from the north side to the south side, the grades have been adjusted to suit this profile, to minimize the grade raise of the site. All catchment areas were designed to directed the stormwater overland to the south-east corner and to will be conveyed captured through a series of parking catchbasins and landscaping drains with subdrains.

The stormwater generated from site will be discharged to the existing storm sewer on Innes road and be controlled using an undersized pipe which will throttle the flow direct to the municipal sewer. The proposed inlet control device will release a total of **20.05 L/s** with a maximum head of 2.93m (HWL = 92.10) during the 100 year event. As the flow will be restricted, 223.81m³ of stormwater storage will be required for this area. This storage will be provided with underground stormwater chambers and surface ponding. The underground storage has been designed to hold and convey the stormwater water to the sewer on Innes road. The underground chambers will prove 160.0 m³ whereas the remaining will be stored on the parking and driving areas. An additional 65.82m³ of storage was designed overland which combined with the underground chambers (163.3 m³ + 68.82m³ = 229.12 m³) can hold more than the minimum required storage. Refer to the underground chambers in Appendix 'D'.

The two (2) underground parking ramp will be drained with separate catchbasin that will capture and to the underground garage drainage. These areas have been designated uncontrolled.

3.4.1 Roof Drainage

The proposed roofs are flat roof with roof drains. Drain and scuppers will be installed to drain the water onto the pavement area.

3.4.2 Underground Chambers

The underground storage chambers have been designed to hold and convey the stormwater generated from the site. The underground chambers have been designed to hold most of the stormwater under the proposed parking/ driving area. The chambers, which have been designed as isolator rows, were designed to also provide some filtration which is favorable for the final site TSS. A total of 163.30 m³ will be provided by the underground chambers. The chambers will be connected to the proposed manhole catchbasin which will facilitates the maintenance of the chambers. The maintenance of the chambers is to be in accordance with the manufacture. Refer to Appendix "D" for Stormwater Storage Chambers.

3.5 Proposed Stormwater Quality Control

A water quality control requirement of 80% TSS removal was set by the City of Ottawa. In order to meet the requirements, a storm treatment unit will be installed and the downstream end of the system. Using the Stormceptor sizing software, the EF06 was selected. The software generated report has been attached (See Appendix "D").

4.0 SANITARY SEWER DESIGN

4.1 Existing Site Conditions

The existing site is currently being service by a three separate service which services the existing three parcels and are connected to the existing 250mm diameter sanitary on Innes Road. The existing connection will be removed and reinstated with three new connection that will service the new buildings.

4.2 Existing Site Conditions

The new residential apartment building, which proposes 55 units for Block A and 55 units for Block B will discharge to the city via one new 200mm diameter sanitary services. The service will be located on the south face of the buildings Block A and will discharge to the existing 250mm diameter city sewer running along Innes road. The proposed 200mm diameter service will be installed at a minimum of 1.00% slope directly to the city sewer. A monitoring manhole (SAN-MH-A) is proposed for the new connection to city. Refer to drawing C300 – Site Servicing Plan for the existing and proposed sanitary service.

3817 – 3843 Innes Road, On Our File Ref. 20-184 Page: 8 of 10

Based on the City of Ottawa Sanitary Design Guidelines, the sanitary peak loads were evaluated as follow; Block A: **1.57 L/s** and Block B: **1.57L/s**. As per the City specific design parameters, the sanitary flow was evaluated based on the new building footprint and the total site area for each individual building. Refer to Appendix 'B' for the sanitary sewer design calculation and design parameters set by the City of Ottawa.

5.0 WATER CONNECTION DESIGN

5.1 Existing Site Conditions

The existing site is currently being service by a three separate 19mm diameter water service which services the existing three parcels and are connected to the existing 403mm diameter watermain on Innes Road. The existing connection will be removed and reinstated with a new connection that will service the new buildings. There is currently two (2) city fire hydrant at the front of the property. The two (2) hydrants are located on the south side of Innes Road both within the 90m radius from the building main entrance. Refer to drawing C300 – Site Servicing Plan for the existing and proposed water services and city existing infrastructure.

5.2 Proposed Domestic Water Service

The two new residential apartment buildings water services were sized based on the City of Ottawa Design Guidelines and the AWWA Standards. Based on the number of fixtures proposed and on the average water demand for residential developments the daily water consumption was evaluated for the proposed building. As per the city guidelines, the average water demand per person of is **350L/c/d** was applied to the population of the new building. The daily and hourly peak factor of **2.5** and **2.2** respectively were applied to the water demand as stated in the City of Ottawa guideline. By using the average demand and peaking factors, the daily water demand for the new buildings were evaluated as follow:

	BLOCK A	BLOCK B	UNITS
Average Water Demand =	31850.00	31850.00	L/d
Maximum Daily =	79625.00	79625.00	L/d
Maximum Hourly =	175175.00	175175.00	L/d
Total Domestic Flow =	2.03	2.03	L/s
Total Fire Flow =	203.33	203.33	L/s

Refer to Appendix 'C' for the water flow calculation sheet.

5.3 Proposed Fire Demand

The new property will be serviced by a new fire hydrant located in front of Block B. Since the fire hydrants are located on the south side of Innes Road, the 45 meters of unobstructed path of travel is not possible hence the new fire hydrant will be installed. The fire hydrant will be installed in the city right of way and have a separate connection to the city 405mm diameter watermain.

The new residentials buildings Block A and Block B will not have a sprinkler system as it is not required in the building code. Hence the new services were sized to supply only the domestic water. Therefore the buildings Block A and Block B will be serviced with two (2) new 75mm water service which will connect to the existing 405mm diameter watermain on Innes Road. The new service will be installed at the south elevation of the new buildings and be placed in the same trench as the other services.

5.4 Water Capacity Comments

The boundary conditions and HGL for hydraulic analysis for 3817 Innes was obtained from the city. See attached copy in Appendix 'E'. From the boundary conditions, the minimum HGL was evaluated at 130.3 m for the water main elevation at 91.6m and a maximum pressure estimate of 55.1 psi.

6.0 EROSION AND SEDIMENT CONTROL

During the construction, sediment and erosion protect will be implemented around the property to prevent any sediments from leaching off site. The construction and maintenance of the sediment controls must comply with the Ontario Provision Standard Specification OPSS 577. Refer to drawing C100 – Erosion and Sediment Control for the perimeter fence proposed.

7.0 CONCLUSION AND LIMITATION OF REPORT

7.1 Stormwater Management

The stormwater management proposed for the site will maintain the site to its pre-development release rate conditions and meet the requirements from the City of Ottawa. The post development release rate will be maintained to its pre-development rate of **86.16 L/s** thought an **orifice plate of 103mm**, the outlet to the sewer main on Innes Road. Stormwater quantity control will be achieved with 160.00m³ underground chamber and 65.82 m³ overland. The stormwater quality control will be met through the use of a stormwater treatment unit and isolator rows in the underground chambers.

7.2 Sanitary Service

The current site will be services with three new 200mm sanitary connection onto Innes Road. The estimated sanitary flow of; Block A: **1.57 L/s** and Block B: **1.57L/s**, for the new connections will be directed to the existing sanitary sewer along Innes Road.

7.3 Water Service

Currently the existing buildings on site are serviced with an existing 19mm diameter water service that will be replaced with a new 10mm diameter water service to be connected to the existing 406mm diameter main on Innes Road. The existing connections will all be replaced with new water services. The water demand for the building was evaluated at: Block A: **2.03 L/s** and Block B: **2.03L/s** and the fire flow demand at Block A: **203.33 L/s** and Block B: **203.33 L/s**. There will also be a new fire hydrant installed on the property at the front of Block B in the city right of way.

8.0 LIMITATION

This report was prepared for **Bridor Developement.**, and is only applicable for the property at 3817 – 3843 Innes Road, Ottawa.

Any changes to the existing site may require a review by Blanchard Letendre engineering Ltd. to ensure all information is consistent with the proposed design.

Should you have any questions, please do not hesitate to contact the undersigned.

Sincerely Yours,

Guillaume Brunet, P. Eng.

APPENDIX "A" Stormwater Management Design

BLANCHARD LETENDRE ENGINEERING

File No.	20-184	Date: May 3, 2022
Project:	Proposed Apartment Buildings	Designed: Guillaume Brunet
Project Address:	3817-3843 - Innes Road	Checked: Guillaume Brunet
Client:	Bridor Development	Drawing Reference: C200 & C300

STORM WATER MANAGEMENT DESIGN SHEET

SEWER DESIGN

LOO	CATION			AREA (ha)				FLOW			STORM SEWER DATA							
WATERSHED / STREET	From MH	То МН	C = 0.30	C = 0.80	C = 0.90	Indiv. 2.78AC	Accum. 2.78AC	Time of Conc. (min.)	Rainfall Intensity (mm/hr)	Peak Flow Q (1/s)	Pipe Diameter (mm)	Туре	Slope (%)	Length (m)	Capacity Full (L/s)	Velocity Full (m/s)	Time of Flow (min.)	Ratio (Q/Q _{FULL})
WS-06	LCB10	LCB09	0.045	0.000	0.014	0.06	0.06	10.00	104.19	6.13	200	PVC	0.25%	25.0	16.40	0.52	0.80	0.37
	LCB09	LCB08	0.000	0.000	0.000	0.00	0.06	10.80	100.16	5.89	200	PVC	0.25%	26.2	16.40	0.52	0.84	0.36
	LCB08	LCB07	0.000	0.000	0.000	0.00	0.06	11.63	96.28	5.66	200	PVC	0.25%	25.5	16.40	0.52	0.81	0.35
	LCB07	LCB06	0.000	0.000	0.000	0.00	0.06	12.45	92.82	5.46	200	PVC	0.25%	17.0	16.40	0.52	0.54	0.33
	LCB06	CBMH03	0.000	0.000	0.000	0.00	0.06	12.99	90.66	5.33	250	PVC	0.25%	13.1	29.73	0.61	0.36	0.18
WS-07	LCB15	LCB14	0.045	0.000	0.014	0.06	0.06	10.00	104.19	6.13	200	PVC	0.25%	19.2	16.40	0.52	0.61	0.37
	LCB14	LCB13	0.000	0.000	0.000	0.00	0.06	10.61	101.06	5.94	200	PVC	0.25%	16.5	16.40	0.52	0.53	0.36
	LCB13	LCB12	0.000	0.000	0.000	0.00	0.06	11.14	98.53	5.79	200	PVC	0.25%	11.5	16.40	0.52	0.37	0.35
	LCB12	LCB11	0.000	0.000	0.000	0.00	0.06	11.51	96.85	5.69	200	PVC	0.25%	40.0	16.4	0.52	1.28	0.35
	LCB11	CBMH03	0.000	0.000	0.000	0.00	0.06	12.78	91.47	5.38	250	PVC	0.25%	16.0	29.7	0.61	0.44	0.18
WS-01	CBMH05	CBMH04	0.086	0.000	0.168	0.47	0.47	10.00	104.19	48.86	375	PVC	0.40%	15.7	110.9	1.00	0.26	0.44
WS-02+ WS-03	CBMH04	CBMH03A	0.000	0.000	0.243	0.61	1.08	10.26	102.84	110.85	375	PVC	0.40%	19.2	110.9	1.00	0.32	1.00
	CBMH03A	CBMH03	0.000	0.000	0.145	0.36	1.44	10.58	101.23	145.82	375	PVC	0.40%	2.6	110.9	1.00	0.04	1.31
	CBMH03	TREATMENT	0.000	0.000	0.000	0.00	1.20	13.35	89.29	106.74	300	PVC	0.40%	28.5	61.16	0.87	0.55	1.75
	TREATMENT	CBMH01	0.000	0.000	0.000	0.00	1.20	13.90	87.28	104.35	300	PVC	0.40%	4.5	61.16	0.87	0.09	1.71
	CBMH01	CITY	0.000	0.000	0.000	0.00	1.20	13.99	86.98	103.98	300	PVC	1.00%	13.2	96.7	1.37	0.16	1.08
															-	•		

DESIGN PARAMETERS NOTES

		Q = 2.78 AIC, where
Runoff Coefficient (C)		Q = Peak flow in Litres per second (L/s)
Grass	0.30	A = Area in hectares (ha)
Gravel	0.80	I = Rainfall Intensity (mm/hr)
Asphalt / rooftop	0.90	C = Runoff Coefficient

Ottawa Macdonald-Cartier International Airport IDF curve $I_{5} = 998.071 / (T_{c} + 6.053)^{0.814}$ Min. velocity = 0.76 m/s Manning's "n" = 0.013

B BLANCHARD LETENDRE ENGINEERING

File No.	20-184	Date: May 3, 2022
Project:	Proposed Apartment Buildings	Designed: Guillaume Brunet
Project Address:	3817-3843 - Innes Road	Checked: Guillaume Brunet
Client:	Bridor Development	Drawing Reference: C200 & C300

STORM WATER MANAGEMENT DESIGN SHEET

SEWER DESIGN

LOCATION		MANHOLE INFORMATION								
From MH	To MH	Up Invert (m)	Down Invert (m)	T/G Up Stream (m)	T/G Down Stream	Up Depth obv (m)	Down Depth obv (m)	Up Depth inv (m)		
-										
LCB10	LCB09	90.38	90.32	91.80	91.70	1.22	1.18	1.22		
LCB09	LCB08	90.26	90.19	91.70	91.30	1.24	0.91	1.24		
LCB08	LCB07	90.13	90.07	91.30	91.75	0.97	1.48	0.97		
LCB07	LCB06	90.01	89.97	91.75	91.95	1.54	1.73	1.54		
LCB06	CBMH03	89.77	89.73	91.95	91.80	1.93	1.87	1.98		
LCB15	LCB14	90.62	90.57	92.20	92.10	1.38	1.33	1.38		
LCB14	LCB13	90.51	90.47	92.10	92.10	1.39	1.43	1.39		
LCB13	LCB12	90.41	90.38	92.10	92.00	1.49	1.42	1.49		
LCB12	LCB11	90.32	90.22	92.00	92.20	1.48	1.73	1.48		
LCB11	CBMH03	89.72	89.68	92.20	91.80	2.23	1.74	2.28		
CBMH05	CBMH04	89.61	89.55	91.80	91.80	1.81	1.87	1.81		
CBMH04	CBMH03A	89.49	89.41	91.80	91.80	1.93	2.09	1.93		
CBMH03A	CBMH03	89.35	89.34	91.80	91.80	2.07	2.16	2.07		
CBMH03	TREATMENT	89.28	89.17	91.80	92.25	2.22	2.78	2.14		
TREATMENT	CBMH01	89.11	89.09	92.25	92.30	2.84	2.91	2.84		
CBMH01	CITY	89.03	88.90	92.30	91.77	2.97	2.57	2.97		

BLANCHARD LETENDRE ENGINEERING

File No.	20-184	Date:	May 3, 2022
Project:	Proposed Apartment Buildings	Designed:	Guillaume Brunet
Project Address:	3817-3843 - Innes Road	Checked:	Guillaume Brunet
Client:	Bridor Development	Drawing Reference:	C200 & C300

PRE-DEVELOPMENT DRAINAGE AREA (AFFECTED AREA)

Catchment Area	R	unoff Coeffici	ient	Total Area (ha)	Combined C	
Catchinent Area	C = 0.3	C = 0.80	C = 0.90	i otal Al ca (lla)		
E-01	0.501	0.000	0.160	0.661	0.45	
TOTAL	0.501	0.000	0.160	0.661	0.45	

POST-DEVELOPMENT DRAINAGE AREA

Catalana ant Amer	R	unoff Coeffici	ient			
Catchment Area	$C = 0.30 \qquad C = 0.80 \qquad C = 0.90$		I otal Area (na)	Complined C		
WS-01	0.086	0.000	0.168	0.254	0.70	
WS-02 - Roof	0.000	0.000	0.122	0.122	0.90	
WS-03 - Roof	0.000	0.000	0.122	0.122	0.90	
WS-04 - Ramp	0.000	0.000	0.023	0.023	0.90	
WS-05 - Ramp	0.000	0.000	0.023	0.023	0.90	
WS-06	0.045	0.000	0.014	0.059	0.44	
WS-07	0.045	0.000	0.014	0.059	0.44	
TOTAL	0.176	0.000	0.485	0.661	0.74	

RUNOFF COEFFICIENT (C)	
Grass	0.30
Gravel	0.80
Asphalt / rooftop	0.90

File No.	20-184	Date:	May 3, 2022		
Project:	Proposed Apartment Buildings	Designed:	Guillaume Brunet		
Project Address:	3817-3843 - Innes Road	Checked:	Guillaume Brunet		
Client:	Bridor Development	Drawing Reference:	C200 & C300		
STORM WATER MANAGEMENT DESIGN SHEET					

5 YEAR STORM EVENT

PRE-DEVELOPMENT STORMATER MANAGEMENT

Runoff	Catchment Area	Area			$\sum \mathbf{R}_5$
Un Controllod	EWS-01	0.661	ha	R=	0.45
Un-Controlled	Total Uncontrolled =	0.661	ha	$\Sigma R =$	0.45

PRE-DEVELOPMENT ALLOWABLE RELEASE RATE

Q = 2.78CIA (L/s)

$I_5 = 998.071 / (Tc + 6.053)^{0.814}$

C =	0.45	up to a maximum of 0.5 as per City of Ottawa Sewer Design Guidelines
I =	104.2	mm/hr
Tc =	10	min
Total =	0.661	ba
Allowable Release Rate=	86.16	L/s
Allowable Release Rate=	43.08	L/s 50% of flow as per City of Ottawa

POST-DEVELOPMENT STORMATER MANAGEMENT

Runoff	Catchment Area	Area	L		$\sum R_5$	$\sum R_{100}$
	WS-01	0.254	ha	R=	0.70	0.87
	WS-02 - Roof	0.122	ha	R=	0.90	1.00
Controlled	WS-03 - Roof	0.122	ha	R=	0.90	1.00
Controlled	WS-06	0.059	ha	R=	0.44	0.55
	WS-07	0.059	ha	R=	0.44	0.55
	Total Contolled =	0.615	ha	$\Sigma R=$	0.73	0.86
	WS-04 - Ramp	0.023	ha	R=	0.90	1.00
Un-controlled	WS-05 - Ramp	0.023	ha	R=	0.90	1.00
	Total Un-Controlled =	0.046	ha	$\Sigma R=$	0.90	1.00

$I_5 = 998.071 / (Tc + 6.053)^{0.814}$

		REQUIRED STORAGE				
Time (min)	Intensity (mm/hr)	Controlled Runoff (L/s)	Storage Volume (m ³)	Controlled Release Rate (L/s)	Uncontrolled Runoff (L/s)	Total Release Rate (L/s)
10	104.2	129.66	65.77	20.05	6.05	26.09
15	83.6	103.98	75.54	20.05	4.85	24.90
20	70.3	87.42	80.85	20.05	4.08	24.12
25	60.9	75.78	83.60	20.05	3.53	23.58
30	53.9	67.11	84.71	20.05	3.13	23.18
35	48.5	60.38	84.69	20.05	2.82	22.86
40	44.2	54.98	83.85	20.05	2.56	22.61
45	40.6	50.56	82.38	20.05	2.36	22.40
50	37.7	46.86	80.43	20.05	2.19	22.23
60	32.9	41.00	75.42	20.05	1.91	21.96
70	29.4	36.55	69.32	20.05	1.70	21.75
80	26.6	33.05	62.44	20.05	1.54	21.59
90	24.3	30.22	54.96	20.05	1.41	21.46
500	6.3	7.81	0.00	20.05	0.36	20.41
720	4.7	5.83	0.00	20.05	0.27	20.32
1440	2.7	3.32	0.00	20.05	0.16	20.20

Storage Volume = (Controlled Runoff - Controlled RR)/1000 * (Time*60s)

STORMATER STORAGE REQUIREMENTS

Total Storage Required =	84.71 m ³
Surface Ponding =	65.52 m ³
Underground Chambers =	163.30 m ³
Total Available Storage =	228.82 m ³

File No.	20-184	Date:	May 3, 2022
Project:	Proposed Apartment Buildings	Designed:	Guillaume Brunet
Project Address:	3817-3843 - Innes Road	Checked:	Guillaume Brunet
Client:	Bridor Development	Drawing Reference:	C200 & C300
	STORM WATER MANAGEMENT DESIGN SHEET		

100 YEAR STORM EVENT

PRE-DEVELOPMENT STORMATER MANAGEMENT

Runoff	Catchment Area	Area	a		$\sum \mathbf{R}_5$
Un Controlled	EWS-01	0.661	ha	R=	0.45
Un-Controlled	Total Uncontrolled =	0.661	ha	$\Sigma R=$	0.45

PRE-DEVELOPMENT ALLOWABLE RELEASE RATE

Q = 2.78CIA (L/s)

$\mathbf{I}_5 = 998.071 / (\mathrm{Tc} + 6.053)^{0.814}$

C = I = Tc =	0.45 104.2 10	up to a maximum of 0.5 as per City of Ottawa Sewer Design Guidelines mm/hr min
Total =	0.661	ha
Allowable Release Rate=	86.16	L/s
Allowable Release Rate=	43.08	L/s 50% of flow as per City of Ottawa

POST-DEVELOPMENT STORMATER MANAGEMENT

Runoff	Catchment Area	Are	a		$\sum \mathbf{R}_5$	$\sum R_{100}$
	WS-01	0.254	ha	R=	0.70	0.87
	WS-02 - Roof	0.122	ha	R=	0.90	1.00
	WS-03 - Roof	0.122	ha	R=	0.90	1.00
	WS-06	0.059	ha	R=	0.44	0.55
	WS-07	0.059	ha	R=	0.44	0.55
	Total Contolled =	0.615	ha	$\Sigma R=$	0.73	0.86
	WS-04 - Ramp	0.023	ha	R=	0.90	1.00
Un-controlled	WS-05 - Ramp	0.023	ha	R=	0.90	1.00
	Total Un-Controlled =	0.046	ha	$\Sigma R=$	0.90	1.00

$I_{100} = 1735.688 / (Tc + 6.014)^{0.820}$

			REQUIRED STOP			
Time (min)	Intensity (mm/hr)	Controlled Runoff (L/s)	Storage Volume (m ³)	Controlled Release Rate (L/s)	Uncontrolled Runoff (L/s)	Total Release Rate (L/s)
10	178.6	262.65	145.56	20.05	23.03	43.08
15	142.9	210.19	171.13	20.05	18.43	38.48
20	120.0	176.44	187.67	20.05	7.74	27.78
25	103.8	152.75	199.06	20.05	6.70	26.74
30	91.9	135.13	207.15	20.05	5.93	25.97
35	82.6	121.47	212.98	20.05	5.33	25.37
40	75.1	110.53	217.17	20.05	4.85	24.89
45	69.1	101.57	220.11	20.05	4.45	24.50
50	64.0	94.07	222.08	20.05	4.12	24.17
60	55.9	82.22	223.81	20.05	3.60	23.65
90	41.1	60.47	218.29	20.05	2.65	22.70
120	32.9	48.39	204.05	20.05	2.12	22.17
360	13.7	20.18	2.96	20.05	0.88	20.93
500	10.5	15.48	0.00	20.05	0.68	20.73
720	7.8	11.51	0.00	20.05	0.50	20.55

Storage Volume = (Controlled Runoff - Controlled RR)/1000 * (Time*60s)

STORMATER STORAGE REQUIREMENTS

Total Storage Required =	223.81 m ³
Surface Ponding =	65.52 m ³
Underground Chambers =	163.30 m ³
Total Available Storage =	228.82 m ³

Inlet Control Device Parameters

Product	Orifice Plate	at CB01
HWL =	92.00	m (highest HWL)
Grate Level =	92.00	m from inv.
Invert Level =	89.30	m
Outlet Pipe Dia. =	300	mm
Max. Flow =	20.05	L/s
ICD Centerline =	89.45	
HWL Head =	2.55	m (from centerlin from centerline
C=	0.86	
Orifice Area =	0.008	m2
Orifice Diameter =	103	mm (min. 75mm)

APPENDIX "B" Sanitary Design

File No.	20-184
Project:	Proposed Apartment Buildings
Project Address:	3817-3843 - Innes Road
Client:	Bridor Development

Date: May 3, 2022 Designed: Guillaume Brunet Checked: Guillaume Brunet Drawing Reference: C200 & C300

SANITARY DESIGN SHEET SEWER DESIGN

	LOCATION			RESIDENT	IAL AREA	AND POPUI	LATION		COMM	ERCIAL	П	NDUSTRIA	L	INSTITU	TIONAL	C+I+I	IN	FILTRATI	ON	TOTAL			PI	PE			MANHOLE	3
STREET	FROM MH	TO MH	AREA (Ha)	POP.	CUMM AREA (Ha)	ULATIVE POP.	PEAK FACT.	PEAK FLOW (l/s)	AREA (Ha)	ACCU. AREA (Ha)	AREA (Ha)	ACCU. AREA (Ha)	PEAK FACT.	AREA (Ha)	ACCU. AREA (Ha)	PEAK FLOW (l/s)	TOTAL AREA (Ha)	ACCU. AREA (Ha)	INFILT. FLOW (1/s)	FLOW (l/s)	LENGTH (m)	DIA. (mm)	MATERAIL	SLOPE (%)	CAP. (FULL) (l/s)	VEL. (FULL) (m/s)	UP INVERT (m)	DOWN INVERT (m)
SITE	PROP. BLDG B	TRUNK	0.331	91.0	0.33	91.0	4.0	1.47	0.000	0.000	0.00	0.00	7.0	0.0	0.0	0.00	0.33	0.33	0.09	1.57	25.3	200	PVC	1.00%	32.80	1.04	86.90	86.65
SITE	PROP. BLDG A	TRUNK	0.331	91.0	0.66	182.0	4.0	2.95	0.000	0.000	0.00	0.00	7.0	0.0	0.0	0.00	0.33	0.66	0.19	3.13	25.3	200	PVC	1.00%	32.80	1.04	87.18	86.93

DESIGN PARAMETERS NOTES

Average Daily Flow =	350 L/p/day	Industrial Peak Factor =	7 as per Appendix 4-B	Appartments:	Person Per Unit	Building B	Building A	
Commercial and Institutional Flow =	50000 L/ha/da	Extraneous Flow =	0.28 L/s/ha	Bachelor =	1.4	0	0	
Industrial Flow =	35000.00 L/ha/da	Minimum Velocity =	0.76 m/s	1 Bedroom =	1.4	35	35	
Maximum Resedential Peak Flow = Commection and Intitutional Peak Factor =	4 1.5	Mannings n =	0.013	2 Bedroom = 3 Bedroom =	2.1 3.1	20 0	20 0	

APPENDIX "C" Watermain Design

File No.	20-184	Date:	May 3, 2022
Project:	Proposed Apartment Buildings	Designed:	Guillaume Brunet
Project Address:	3817-3843 - Innes Road	Checked:	Guillaume Brunet
Client:	Bridor Development	Drawing Reference:	C200 & C300

WATER CONSUMPTION CALCULATION

	BLOCK A	BLOCK B	
Total Building Floor Area =	892.05	557.05	m ²
Site Total Area =	0.24	0.24	ha
Total Population =	91.00	91.00	ea.
Average Demand Per People =	350	350	L/c/d
Average Water Demand =	31850.00	31850.00	L/d
Maximum Daily Peak Factor =	2.5	2.5	* As per City of Ottawa
Maximum Daily Residential =	79625.00	79625.00	L/d
Maximum Hourly Peak Factor =	2.2	2.2	* As per City of Ottawa
Maximum Hourly Residentiall =	175175.00	175175.00	L/d
Total Domestic Flow =	2.03	2.03	L/s
Total Fire Flow =	203.33	203.33	L/s

Appartments:	Person Per Unit	Building A	Building B
Bachelor =	1.4	0	0
1 Bedroom =	1.4	35	35
2 Bedroom =	2.1	20	20
3 Bedroom =	3.1	0	0
		91.00	91.00

BLOCK A	1 Bedroom	2 Bedroom	Unit Counts	WSFU	Total
Unrinal Flush Tank	1	2	75	2	150
Sinks	2	2	110	1	110
Bathub	1	2	75	4	300
Diswasher	1	1	55	1.5	82.5
Washing Machine	1	1	55	2	110
Total					752.5

BLOCK B	1 Bedroom	2 Bedroom	Unit Counts	WSFU	Total
Unrinal Flush Tank	1	2	75	2	150
Sinks	2	2	110	1	110
Bathub	1	2	75	4	300
Diswasher	1	1	55	1.5	82.5
Washing Machine	1	1	55	2	110
Total					752.5

File No.	20-184	Date:	May 3, 2021
Project:	Proposed Apartment Buildings	Designed:	Guillaume Brunet
Project Address:	3817-3843 - Innes Road	Checked:	Guillaume Brunet
Client:	Bridor Development	Drawing Reference:	C200 & C300

BLOCK B

Term	Options	Multiplier	Choose:	Value	unit	Fire Flow	
	Wood Frame	1.5					
Coefficient C	Ordinary Construction	1.0					
related to the type of	Non-combustible construction	0.8	Non-combustible construction	0.8			
construction	Fire resistive construction <2 hrs	0.7					
	Fire resistive construction >2 hrs	0.6			unit floor sq.m. L/min L/s L/min L/s L/min L/s L/min L/s L/s L/min L/s L/s L/min L/s		
	Single family dwelling	0					
	Townhouse - no. of units	0	Building - no. of units per floor	15	unit		
Type of housing	Building - no. of units per floor	2					
	Number of floors excluding the basement			4	floor		
	Floor space per unit	1	1,218	1,218	sq.m.		
Pequired fire flow		ire Eleve = 220 x C x	AracA ^{0.5}		L/min	12,285	
	F	ITE FIOW - 220 X C X /	Area ^{re}		L/s	205	
	Non-combustible	-0.25					
Occupancy bazard	Limited combustible	-0.15					
Occupancy hazard	Combustible	0	Limited combustible	-0.15			
	Free burning	0.15			L/min	10,442	
	Rapid burning	0.25			L/s	174	
	Sprinklers (NFPA13)	-0.30	False	0			
Sprinkler reduction	Water supply is standard for both the system and fire department hose lines	-0.10	False	0	L/min	9,398	
	Fully supervised system	-0.10	True	-0.1	L/s	157	
	North side	Over 45m	0				
Exposure distance	East side	10.1 to 20m	0.15				
between units	South side	Over 45m	0		L/min	12,217	
	West side	10.1 to 20m	0.15	0.3	L/s	204	
			Minimum required fire flow rate (rounded to r	nearest 100)	L/min	12,200	
	Minimum required fire flow rate						
			Required duratio	n of fire flow	min	30	

File No.	20-184	Date:	May 3, 2022
Project:	Proposed Apartment Buildings	Designed:	Guillaume Brunet
Project Address:	3817-3843 - Innes Road	Checked:	Guillaume Brunet
Client:	Bridor Development	Drawing Reference:	C200 & C300

BLOCK A

Term	Options	Multiplier	Choose:	Value	unit	Fire Flow
	Wood Frame	1.5				
Coefficient C	Ordinary Construction	1.0				
related to the type of	Non-combustible construction	0.8	Non-combustible construction	0.8		
construction	Fire resistive construction <2 hrs	0.7				
	Fire resistive construction >2 hrs	0.6				
	Single family dwelling	0				
	Townhouse - no. of units	0	Building - no. of units per floor	15	unit	
Type of housing	Building - no. of units per floor	2				
	Number of floors excluding the basement			4	floor	
	Floor space per unit	1	1,218	1,218	sq.m.	
Pequired fire flow			A reac A 0.5		L/min	12,285
	F	ITE FIOW - 220 X C X I	Area		L/s	205
	Non-combustible	-0.25				
Occupancy bazard	Limited combustible	-0.15				
reduction or surcharge	Combustible	0	Limited combustible	-0.15		
reduction of surcharge	Free burning	0.15		[unit floor sq.m. L/min L/s L/min L/s L/min L/s L/min L/s L/min L/s Umin L/s Umin L/s Umin L/s	10,442
	Rapid burning	0.25			L/s	174
	Sprinklers (NFPA13)	-0.30	False	0		
Sprinkler reduction	Water supply is standard for both the system and fire department hose lines	-0.10	False	0	L/min	9,398
	Fully supervised system	-0.10	True	-0.1	L/s	157
	North side	Over 45m	0			
Exposure distance	East side	10.1 to 20m	0.15			
between units	South side	Over 45m	0		L/min	12,217
	West side	10.1 to 20m	0.15	0.3	L/s	204
			Minimum required fire flow rate (rounded to	nearest 100)	L/min	12,200
	fire flow rate	L/s	203			
			Required duratio	n of fire flow	min	30

APPENDIX "D" Underground Chambers & Stormwater Treatment Unit

rovince:	Ontario	F	Project Name:	Innes Road	
City:	Ottawa	ŀ	Project Number:	20-184	
Vearest Rainfall Station:	OTTAWA MACDONALD-CA	ARTIER	Designer Name:	GUILLAUME BRUN	ΙΕΤ
	INT'L AP		Designer Company	y: BL ENGINEERING	
NCDC Rainfall Station Id:	6000	[Designer Email:	guillaume@blengi	neering.ca
ears of Rainfall Data:	37	[Designer Phone:	613-693-0700	
ita Nama	Innes Read		OR Name:	GUILLAUME BRUN	IET
site Name:		E	OR Company:	BL ENGINEERING	
Drainage Area (ha):	0.72	E	EOR Email:	guillaume@blengi	neering.ca
Runoff Coefficient 'c':	0.80	E	OR Phone:	613-693-0700	
Required Water Quality Runo	ff Volume Capture (%):	90.00		Sizing S	
Required Water Quality Runo	ff Volume Capture (%):	90.00		Stormcentor	TSS Removal
Estimated Water Quality Flow	Rate (L/s):	20.82		Model	Provided (%)
Dil / Fuel Spill Risk Site?		Yes		EFO4	74
Jpstream Flow Control?		No		EFO6	83
Peak Conveyance (maximum)	Flow Rate (L/s):	93.85		EFO8	87
Site Sediment Transport Rate	(kg/ha/yr):	480.00		EFO10	89
Estimated Average Annual Sec	diment Load (kg/yr):	276.48		EFO12	90
			Recommende	ed Stormcentor FFO	Model· FF
	Ectimat	od Not An	nual Sedimer	ot (TSS) Load Reduct	tion $(\%)$:
	Lotiniat				
		W.	ater Quality I	Runoff Volume Cap	ture (%): >

FORTERRA

THIRD-PARTY TESTING AND VERIFICATION

► Stormceptor® EF and Stormceptor® EFO are the latest evolutions in the Stormceptor® oil-grit separator (OGS) technology series, and are designed to remove a wide variety of pollutants from stormwater and snowmelt runoff. These technologies have been third-party tested in accordance with the Canadian ETV Procedure for Laboratory Testing of Oil-Grit Separators and performance has been third-party verified in accordance with the ISO 14034 Environmental Technology Verification (ETV) protocol.

PERFORMANCE

► Stormceptor® EF and EFO remove stormwater pollutants through gravity separation and floatation, and feature a patentpending design that generates positive removal of total suspended solids (TSS) throughout each storm event, including highintensity storms. Captured pollutants include sediment, free oils, and sediment-bound pollutants such as nutrients, heavy metals, and petroleum hydrocarbons. Stormceptor is sized to remove a high level of TSS from the frequent rainfall events that contribute the vast majority of annual runoff volume and pollutant load. The technology incorporates an internal bypass to convey excessive stormwater flows from high-intensity storms through the device without resuspension and washout (scour) of previously captured pollutants. Proper routine maintenance ensures high pollutant removal performance and protection of downstream waterwavs.

PARTICLE SIZE DISTRIBUTION (PSD)

► The **Canadian ETV PSD** shown in the table below was used, or in part, for this sizing. This is the identical PSD that is referenced in the Canadian ETV *Procedure for Laboratory Testing of Oil-Grit Separators* for both sediment removal testing and scour testing. The Canadian ETV PSD contains a wide range of particle sizes in the sand and silt fractions, and is considered reasonably representative of the particle size fractions found in typical urban stormwater runoff.

Particle	Percent Less	Particle Size	Demonst		
Size (µm)	Than	Fraction (µm)	Percent		
1000	100	500-1000	5		
500	95	250-500	5		
250	90	150-250	15		
150	75	100-150	15		
100	60	75-100	10		
75	50	50-75	5		
50	45	20-50	10		
20	35	8-20	15		
8	20	5-8	10		
5	10	2-5	5		
2	5	<2	5		

Rainfall Intensity (mm / hr)	Percent Rainfall Volume (%)	Cumulative Rainfall Volume (%)	Flow Rate (L/s)	Flow Rate (L/min)	Surface Loading Rate (L/min/m²)	Removal Efficiency (%)	Incremental Removal (%)	Cumulative Removal (%)
1	51.3	51.3	1.60	96.0	37.0	93	47.7	47.7
2	8.7	60.0	3.20	192.0	73.0	90	7.8	55.5
3	5.8	65.8	4.80	288.0	110.0	86	5.0	60.5
4	4.6	70.4	6.41	384.0	146.0	83	3.8	64.3
5	4.2	74.6	8.01	480.0	183.0	78	3.3	67.6
6	3.2	77.8	9.61	576.0	219.0	74	2.4	70.0
7	2.6	80.4	11.21	673.0	256.0	72	1.9	71.8
8	2.4	82.8	12.81	769.0	292.0	68	1.6	73.5
9	1.9	84.7	14.41	865.0	329.0	65	1.2	74.7
10	1.6	86.3	16.01	961.0	365.0	62	1.0	75.7
11	1.3	87.6	17.61	1057.0	402.0	58	0.8	76.4
12	1.1	88.7	19.22	1153.0	438.0	57	0.6	77.1
13	1.3	90.0	20.82	1249.0	475.0	56	0.7	77.8
14	1.1	91.1	22.42	1345.0	511.0	55	0.6	78.4
15	0.6	91.7	24.02	1441.0	548.0	54	0.3	78.7
16	0.8	92.5	25.62	1537.0	584.0	53	0.4	79.1
17	0.7	93.2	27.22	1633.0	621.0	52	0.4	79.5
18	0.5	93.7	28.82	1729.0	658.0	52	0.3	79.8
19	0.6	94.3	30.42	1825.0	694.0	52	0.3	80.1
20	0.5	94.8	32.03	1922.0	731.0	51	0.3	80.3
21	0.2	95.0	33.63	2018.0	767.0	51	0.1	80.4
22	0.4	95.4	35.23	2114.0	804.0	51	0.2	80.6
23	0.5	95.9	36.83	2210.0	840.0	51	0.3	80.9
24	0.4	96.3	38.43	2306.0	877.0	51	0.2	81.1
25	0.1	96.4	40.03	2402.0	913.0	50	0.1	81.1

Rainfall Intensity (mm / hr)	Percent Rainfall Volume (%)	Cumulative Rainfall Volume (%)	Flow Rate (L/s)	Flow Rate (L/min)	Surface Loading Rate (L/min/m²)	Removal Efficiency (%)	Incremental Removal (%)	Cumulative Removal (%)	
26	0.3	96.7	41.63	2498.0	950.0	50	0.2	81.3	
27	0.4	97.1	43.23	2594.0	986.0	50	0.2	81.5	
28	0.2	97.3	44.84	2690.0	1023.0	50	0.1	81.6	
29	0.2	97.5	46.44	2786.0	1059.0	49	0.1	81.7	
30	0.2	97.7	48.04	2882.0	1096.0	49	0.1	81.8	
31	0.1	97.8	49.64	2978.0	1132.0	49	0.0	81.8	
32	0.2	98.0	51.24	3074.0	1169.0	48	0.1	81.9	
33	0.1	98.1	52.84	3171.0	1206.0	48	0.0	82.0	
34	0.1	98.2	54.44	3267.0	1242.0	48	0.0	82.0	
35	0.1	98.3	56.04	3363.0	1279.0	47	0.0	82.1	
36	0.2	98.5	57.65	3459.0	3459.0 1315.0 47		0.1	82.2	
37	0.0	98.5	59.25	3555.0	1352.0	47	0.0	82.2	
38	0.1	98.6	60.85	3651.0	1388.0	46	0.0	82.2	
39	0.1	98.7	62.45	3747.0	1425.0	45	0.0	82.3	
40	0.1	98.8	64.05	3843.0	1461.0	44	0.0	82.3	
41	0.1	98.9	65.65	3939.0	1498.0	43	0.0	82.3	
42	0.1	99.0	67.25	4035.0	1534.0	42	0.0	82.4	
43	0.2	99.2	68.86	4131.0	1571.0	41	0.1	82.5	
44	0.1	99.3	70.46	4227.0	1607.0	40	0.0	82.5	
45	0.1	99.4	72.06	4323.0	1644.0	39	0.0	82.5	
46	0.0	99.4	73.66	4420.0	1680.0	38	0.0	82.5	
47	0.1	99.5	75.26	4516.0	1717.0	38	0.0	82.6	
48	0.0	99.5	76.86	4612.0	1753.0	37	0.0	82.6	
49	0.0	99.5	78.46	4708.0	1790.0	36	0.0	82.6	
50	0.0	99.5	80.06	4804.0	1827.0	35	0.0	82.6	
				Estimated Net	Annual Sedim	ent (TSS) Loa	d Reduction =	83 %	

FORTERRA

	Maximum Pipe Diameter / Peak Conveyance										
Stormceptor EF / EFO	Model Diameter		Model Diameter		Min Angle Inlet / Outlet Pipes	Max Inle Diame	et Pipe eter	Max Out Diam	et Pipe eter	Peak Cor Flow	nveyance Rate
	(m)	(ft)		(mm)	(in)	(mm)	(in)	(L/s)	(cfs)		
EF4 / EFO4	1.2	4	90	609	24	609	24	425	15		
EF6 / EFO6	1.8	6	90	914	36	914	36	990	35		
EF8 / EFO8	2.4	8	90	1219	48	1219	48	1700	60		
EF10 / EFO10	3.0	10	90	1828	72	1828	72	2830	100		
EF12 / EF012	3.6	12	90	1828	72	1828	72	2830	100		

SCOUR PREVENTION AND ONLINE CONFIGURATION

Stormceptor® EF and EFO feature an internal bypass and superior scour prevention technology that have been demonstrated in third-party testing according to the scour testing provisions of the Canadian ETV Procedure for Laboratory Testing of Oil-Grit Separators, and the exceptional scour test performance has been third-party verified in accordance with the ISO 14034 ETV protocol. As a result, Stormceptor EF and EFO are approved for online installation, eliminating the need for costly additional bypass structures, piping, and installation expense.

DESIGN FLEXIBILITY

► Stormceptor[®] EF and EFO offers design flexibility in one simplified platform, accepting stormwater flow from a single inlet pipe or multiple inlet pipes, and/or surface runoff through an inlet grate. The device can also serve as a junction structure, accommodate a 90-degree inlet-to-outlet bend angle, and can be modified to ensure performance in submerged conditions.

OIL CAPTURE AND RETENTION

► While Stormceptor® EF will capture and retain oil from dry weather spills and low intensity runoff, **Stormceptor® EFO** has demonstrated superior oil capture and greater than 99% oil retention in third-party testing according to the light liquid reentrainment testing provisions of the Canadian ETV **Procedure for Laboratory Testing of Oil-Grit Separators**. Stormceptor EFO is recommended for sites where oil capture and retention is a requirement.

Stormceptor[®] EF Sizing Report

INLET-TO-OUTLET DROP

Elevation differential between inlet and outlet pipe inverts is dictated by the angle at which the inlet pipe(s) enters the unit.

 0° - 45° : The inlet pipe is 1-inch (25mm) higher than the outlet pipe.

45° - 90° : The inlet pipe is 2-inches (50mm) higher than the outlet pipe.

HEAD LOSS

The head loss through Stormceptor EF is similar to that of a 60-degree bend structure. The applicable K value for calculating minor losses through the unit is 1.1. For submerged conditions the applicable K value is 3.0.

	Pollutant Capacity											
Stormceptor Model De EF / EFO Diameter Su		Depth Pipe In Sump	(Outlet vert to Floor)	t Oil Volume		Recomi Sedi Maintenar	mended ment ace Depth *	Maxiı Sediment ^v	num Volume *	Maximum Sediment Mass **		
	(m)	(ft)	(m)	(ft)	(L)	(Gal)	(mm)	(in)	(L)	(ft³)	(kg)	(lb)
EF4 / EFO4	1.2	4	1.52	5.0	265	70	203	8	1190	42	1904	5250
EF6 / EFO6	1.8	6	1.93	6.3	610	160	305	12	3470	123	5552	15375
EF8 / EFO8	2.4	8	2.59	8.5	1070	280	610	24	8780	310	14048	38750
EF10 / EFO10	3.0	10	3.25	10.7	1670	440	610	24	17790	628	28464	78500
EF12 / EF012	3.6	12	3.89	12.8	2475	655	610	24	31220	1103	49952	137875

*Increased sump depth may be added to increase sediment storage capacity

** Average density of wet packed sediment in sump = $1.6 \text{ kg/L} (100 \text{ lb/ft}^3)$

Feature	Benefit	Feature Appeals To
Patent-pending enhanced flow treatment and scour prevention technology	Superior, verified third-party performance	Regulator, Specifying & Design Engineer
Third-party verified light liquid capture	Proven performance for fuel/oil hotspot	Regulator, Specifying & Design Engineer,
and retention for EFO version	locations	Site Owner
Functions as bend, junction or inlet structure	Design flexibility	Specifying & Design Engineer
Minimal drop between inlet and outlet	Site installation ease	Contractor
Large diameter outlet riser for inspection and maintenance	Easy maintenance access from grade	Maintenance Contractor & Site Owner

STANDARD STORMCEPTOR EF/EFO DRAWINGS

For standard details, please visit http://www.imbriumsystems.com/stormwater-treatment-solutions/stormceptor-ef STANDARD STORMCEPTOR EF/EFO SPECIFICATION

For specifications, please visit http://www.imbriumsystems.com/stormwater-treatment-solutions/stormceptor-ef

STANDARD PERFORMANCE SPECIFICATION FOR "OIL GRIT SEPARATOR" (OGS) STORMWATER QUALITY TREATMENT DEVICE

PART1 – GENERAL

1.1 WORK INCLUDED

This section specifies requirements for selecting, sizing, and designing an underground Oil Grit Separator (OGS) device for stormwater quality treatment, with third-party testing results and a Statement of Verification in accordance with ISO 14034 Environmental Management – Environmental Technology Verification (ETV).

1.2 REFERENCE STANDARDS & PROCEDURES

ISO 14034:2016 Environmental management – Environmental technology verification (ETV)

Canadian Environmental Technology Verification (ETV) Program's **Procedure for Laboratory Testing of Oil-Grit Separators**

1.3 SUBMITTALS

1.3.1 All submittals, including sizing reports & shop drawings, shall be submitted upon request with each order to the contractor then forwarded to the Engineer of Record for review and acceptance. Shop drawings shall detail all OGS components, elevations, and sequence of construction.

1.3.2 Alternative devices shall have features identical to or greater than the specified device, including: treatment chamber diameter, treatment chamber wet volume, sediment storage volume, and oil storage volume.

1.3.3 Unless directed otherwise by the Engineer of Record, OGS stormwater quality treatment product substitutions or alternatives submitted within ten days prior to project bid shall not be accepted. All alternatives or substitutions submitted shall be signed and sealed by a local registered Professional Engineer, based on the exact same criteria detailed in Section 3, in entirety, subject to review and approval by the Engineer of Record.

PART 2 – PRODUCTS

2.1 OGS POLLUTANT STORAGE

The OGS device shall include a sump for sediment storage, and a protected volume for the capture and storage of petroleum hydrocarbons and buoyant gross pollutants. The minimum sediment & petroleum hydrocarbon storage capacity shall be as follows:

2.1.1 4 ft (1219 mm) Diameter OGS Units:
6 ft (1829 mm) Diameter OGS Units:
8 ft (2438 mm) Diameter OGS Units:
10 ft (3048 mm) Diameter OGS Units:
12 ft (3657 mm) Diameter OGS Units:

 $\begin{array}{l} 1.19 \ m^3 \ sediment \ / \ 265 \ L \ oil \\ 3.48 \ m^3 \ sediment \ / \ 609 \ L \ oil \\ 8.78 \ m^3 \ sediment \ / \ 1,071 \ L \ oil \\ 17.78 \ m^3 \ sediment \ / \ 1,673 \ L \ oil \\ 31.23 \ m^3 \ sediment \ / \ 2,476 \ L \ oil \\ \end{array}$

PART 3 – PERFORMANCE & DESIGN

3.1 GENERAL

The OGS stormwater quality treatment device shall be verified in accordance with ISO 14034:2016 Environmental management – Environmental technology verification (ETV). The OGS stormwater quality treatment device shall

remove oil, sediment and gross pollutants from stormwater runoff during frequent wet weather events, and retain these pollutants during less frequent high flow wet weather events below the insert within the OGS for later removal during maintenance. The Manufacturer shall have at least ten (10) years of local experience, history and success in engineering design, manufacturing and production and supply of OGS stormwater quality treatment device systems, acceptable to the Engineer of Record.

3.2 SIZING METHODOLOGY

The OGS device shall be engineered, designed and sized to provide stormwater quality treatment based on treating a minimum of 90 percent of the average annual runoff volume and a minimum removal of an annual average 60% of the sediment (TSS) load based on the Particle Size Distribution (PSD) specified in the sizing report for the specified device. Sizing shall be determined using historical rainfall data and a sediment removal performance curve derived from the actual third-party verified laboratory testing data. The OGS device shall also have sufficient annual sediment storage capacity as specified and calculated in Section 2.1.

3.3 CANADIAN ETV or ISO 14034 ETV VERIFICATION OF SCOUR TESTING

The OGS device shall have Canadian ETV or ISO 14034 ETV Verification of third-party scour testing conducted in accordance with the Canadian ETV Program's **Procedure for Laboratory Testing of Oil-Grit Separators.**

3.3.1 To be acceptable for on-line installation, the OGS device must demonstrate an average scour test effluent concentration less than 10 mg/L at each surface loading rate tested, up to and including 2600 L/min/m².

3.4 LIGHT LIQUID RE-ENTRAINMENT SIMULATION TESTING

The OGS device shall have Canadian ETV or ISO 14034 ETV Verification of completed third-party Light Liquid Re-entrainment Simulation Testing in accordance with the Canadian ETV **Program's Procedure for Laboratory Testing of Oil-Grit Separators,** with results reported within the Canadian ETV or ISO 14034 ETV verification. This reentrainment testing is conducted with the device pre-loaded with low density polyethylene (LDPE) plastic beads as a surrogate for light liquids such as oil and fuel. Testing is conducted on the same OGS unit tested for sediment removal to assess whether light liquids captured after a spill are effectively retained at high flow rates.

3.4.1 For an OGS device to be an acceptable stormwater treatment device on a site where vehicular traffic occurs and the potential for an oil or fuel spill exists, the OGS device must have reported verified performance results of greater than 99% cumulative retention of LDPE plastic beads for the five specified surface loading rates (ranging 200 L/min/m2 to 2600 L/min/m2) in accordance with the Light Liquid Re-entrainment Simulation Testing within the Canadian ETV Program's **Procedure for Laboratory Testing of Oil-Grit Separators.** However, an OGS device shall not be allowed if the Light Liquid Re-entrainment Simulation Testing was performed with screening components within the OGS device that are effective at retaining the LDPE plastic beads, but would not be expected to retain light liquids such as oil and fuel.

DRAWING NOT TO BE USED FOR CONSTRUCTION

ON AVAILABLE SPACE OR SITE CONFIGURATION REVISIONS. ELEVATIONS SHOULD BE MAINTAINED

EXCEPT WHERE NOTED ON BYPASS STRUCTURE (IF REQUIRED)

PER ENGINE

	а. 		2000 A			The design and information shown on this drawing is provided as a service to the project owner, engineer	and contractor by Imbrium Systems (Imbrium). Neither this drawing, nor any part thereof, may be	the prior written consent of imbrium. Failure to comply is done at the user's own risk and imbrium expressly	discialms any liability or responsibility for such use. If discretancies between the supplied information upon	which the drawing is based and actual field conditions are encountered as sile work progresses, these discontinues is the work progresses, these	to the evaluation of the design. Imbring accepts no for ne-evaluation of the design. Imbring accepts no lability for designs besed on missing, incomplete or	Inaccurate Information supplied by others.
2				`			####	####	####	JSK	JSK	ВΥ
		0					*****	*****	*****	OUTLET PLATFORM	INITIAL RELEASE	REVISION DESCRIPTION
<u>lan VI</u>	<u>ew (ST</u>	<u>andard</u>	ļ				####	####	####	6/8/18	05/26/17	DATE
/	4 4						####	####	####	-	0	MARK
				OUT								SCALE = NTS
ECIEI		BEOL		FN	лте					3A9 6-860-880	MANG PATRATA	
		EF	06						E	ON L1N	Authin Print	
D	I				*				D	WHITBY,	TONE OR MOR	
ON STOP	RAGE REC	<u>ג'</u> D (L)			*		Ó		0	DRINE 418-880	NUTLIN- 72	
TY FLOW RATE (L/s) *									Ē	BOI CA	THE COLUMN IS I	
OD OF F	., PEAK FLO	W (yrs)			*			ii i		407 F	Victoria Party	
EA (HA)		(<i>J</i> - /			*		F .			ľ⊧	Ĭ,	i 1
EA IMPE	RVIOUS	NESS (%))	Ľ,	*	DAT 10/	=: ' <u>13</u> /2	2017	,			
I.E.	MAT'L	DIA *	SLOPE	%	HGL	DES JS	ignei K	D:	[N:	
*	*	*	*	\dashv	*	CHE	CKED):	4	PPRO	OVED:	
*	*	*	*		*	BS PRO	JECT	No.:	5	SP SEQUE	INCE	No.:
ER OF R	ECORD		I			EF SHF	O6			*		
						ONE		1		OF	1	

APPENDIX "E" Boundary Conditions

Boundary Conditions 3817-3843 Innes Road

Provided Information

Cosmoria	Demand					
Scenario	L/min	L/s				
Average Daily Demand	769	12.82				
Maximum Daily Demand	1,154	19.23				
Peak Hour	1,385	23.08				
Fire Flow Demand #1	5,600	93.33				

Location

Results

Connection 1 – Innes Rd.

Demand Scenario	Head (m)	Pressure ¹ (psi)
Maximum HGL	130.3	55.1
Peak Hour	127.1	50.5
Max Day plus Fire 1	129.3	53.7

¹ Ground Elevation = 91.6 m

Disclaimer

The boundary condition information is based on current operation of the city water distribution system. The computer model simulation is based on the best information available at the time. The operation of the water distribution system can change on a regular basis, resulting in a variation in boundary conditions. The physical properties of watermains deteriorate over time, as such must be assumed in the absence of actual field test data. The variation in physical watermain properties can therefore alter the results of the computer model simulation. Fire Flow analysis is a reflection of available flow in the watermain; there may be additional restrictions that occur between the watermain and the hydrant that the model cannot take into account.

APPENDIX "F" Engineering Drawings

EROSION AND SEDIMENT CONTROL MEASURES:

** CONTRACTOR IS RESPONSIBLE FOR ALL INSTALLATION, MONITORING, REPAIR AND REMOVAL OF ALL EROSION AND SEDIMENT CONTROL FEATURES **

1. PRIOR TO START OF CONSTRUCTION:

- 1.1. PRIOR TO THE REMOVAL OF ANY VEGETATIVE COVER, MOVING OF ANY SOIL, AND CONSTRUCTION: 1.1.1. INSTALL SILT FENCE IMMEDIATELY DOWNSTREAM
- LOCATION).

- BASIN STRUCTURES.

- 2.1. WORK TO BE DONE IN THE VICINITY OF MAJOR WATERWAYS TO BE CARRIED OUT FROM JULY TO
- DURATION OF EXPOSURE.
- 2.3. PROTECT DISTURBED AREAS FROM RUNOFF. 2.4. PROVIDE TEMPORARY COVER SUCH AS SEEDING OR
- WITHIN 30 DAYS. 2.5. INSPECT SILT FENCE, FILTER CLOTHS, AND CATCH BASIN
- CLEAN AND REPAIR WHEN NECESSARY 2.6. PLAN TO BE REVIEWED AND REVISED AS REQUIRED
- DURING CONSTRUCTION.
- 2.8. DO NOT LOCATE TOPSOIL PILES AND EXCAVATION MATERIAL CLOSER THAN 2.5m FROM ANY PAVED SURFACE, ALL TOPSOIL PILES ARE TO BE SEEDED IF THEY ARE TO REMAIN ON SITE LONG ENOUGH FOR SEEDS TO GROW (30 DAYS).

- LEVELS BY SEEDING TOPSOIL PILES AND OTHER AREAS TEMPORARILY (PROVIDE WATERING AS REQUIRED).
- 2.10. ALL EROSION CONTROL STRUCTURE TO REMAIN IN PLACE UNTIL ALL DISTURBED GROUND SURFACES HAVE
- SHALL BE PERMITTED UNLESS APPROVED BY THIS CONSULTING ENGINEER AND THE CITY DEPARTMENT OF PUBLIC WORKS. "TO PREVENT UNNECESSARY SEDIMENT DISCHARGE, THE CONTRACTOR IS PERMITTED TO PLACE
- SIDEWALK TO BE CLEANED OF ALL SEDIMENT FROM VEHICULAR TRACKING ETC, AT THE END OF EACH WORK DAY
- 4m WIDE AND 0.3m DEEP AND SHALL CONSIST OF COARSE (50mm CRUSHER-RUN LIMESTONE). MAINTAIN GRAVEL ENTRANCE IN CLEAN CONDITION.
- SCRAPED.
- MATERIAL, CONSTRUCTION DEBRIS OR WASTE BEING SPILLED OR TRACKED ONTO ABUTTING PROPERTIES OR
- IMMEDIATELY TO CLEAN UP ANY AREAS SO AFFECTED.
- AND SEED TO DISTURBED AREA.

AWING NUMBER : 1828

D07-12-20-0164

PROJEC	CT INFC
ENGINEERED PRODUCT MANAGER	
ADS SALES REP	
PROJECT NO.	

SC-740 STORMTECH CHAMBER SPECIFICATIONS

- 1. CHAMBERS SHALL BE STORMTECH SC-740.
- COPOLYMERS.
- COLLECTION CHAMBERS".
- IMPEDE FLOW OR LIMIT ACCESS FOR INSPECTION.

- 7. REQUIREMENTS FOR HANDLING AND INSTALLATION: STACKING LUGS.
 - THAN 50 mm (2").
- FROM REFLECTIVE GOLD OR YELLOW COLORS. DELIVERING CHAMBERS TO THE PROJECT SITE AS FOLLOWS:

2 ADS. INC

	PROPOSED LAYOUT	PROPOSED ELEVATIONS	*INVERT ABOVE BA								
68	ISTORMTECH SC-740 CHAMBERS	MAXIMUM ALLOWABLE GRADE (TOP OF PAVEMENT/UNPAVED):	93.19	93.198 PART TYPE		DESCRIPTION	INVERT*	MAX FI			
16	STORMTECH SC-740 END CAPS	MINIMUM ALLOWABLE GRADE (UNPAVED WITH TRAFFIC):	91.36			600 mm BOTTOM PREFABRICATED EZ END CAP, PART#: SC740ECEZ / TYP OF ALL 600 mm		<u> </u>			
152	STONE ABOVE (mm)	MINIMUM ALLOWABLE GRADE (UNPAVED NO TRAFFIC):	91.21	7 PREFABRICATED EZ END CAP	A	BOTTOM CONNECTIONS AND ISOLATOR PLUS ROWS	3 mm				
40	STONE VOID	MINIMUM ALLOWABLE GRADE (BASE OF FLEXIBLE PAVEMENT):	91.21		B	INSTALL FLAMP ON 600 mm ACCESS PIPE / PART#: SC74024RAMP (TYP 3 PLACES)	010	 			
	INSTALLED SYSTEM VOLUME (m [°])	TOP OF STONE:	90.91			300 mm x 300 mm BOTTOM MANIFOLD, ADS N-12	318 mm	 			
163.3	(COVER STONE INCLUDED)	10P OF SC-740 CHAMBER: 300 mm x 300 mm TOP MANIFOLD INVERT	90.75	5 MANIFOLD	E	300 mm x 300 mm TOP MANIFOLD, ADS N-12	318 mm				
	(BASE STONE INCLUDED)	300 mm x 300 mm TOP MANIFOLD INVERT:	90.31	5 CONCRETE STRUCTURE	F	(DESIGN BY ENGINEER / PROVIDED BY OTHERS)		65 L/s			
258.4	SYSTEM AREA (m ⁻)	300 mm x 300 mm BOTTOM MANIFOLD INVERT:	90.02	8 CONCRETE STRUCTURE	G	(DESIGN BY ENGINEER / PROVIDED BY OTHERS)		65 L/s			
104.5	SYSTEM PERIMETER (m)	300 mm BOTTOM CONNECTION INVERT:	90.02	8 NYLOPLAST (OUTLET)	H	750 mm DIAMETER (DESIGN BY ENGINEER)		113 L/s			
		600 mm ISOLATOR ROW PLUS INVERT:	90.00	UNDERDRAIN		150 mm ADS N-12 DUAL WALL PERFORATED HDPE UNDERDRAIN					
		600 mm ISOLATOR ROW PLUS INVERT:	90.00	0		·					
		BOTTOM OF SC-740 CHAMBER:	89.99	7							
		UNDERDRAIN INVERT:	89.84	5							
		BOTTOM OF STONE:	89.84	5							

ISOLATOR ROW PLUS (SEE DETAIL/TYP 2 PLACES) PLACE MINIMUM 3.810 m OF ADSPLUS125 WOVEN GEOTEXTILE OVER BEDDING STONE AND UNDERNEATH CHAMBER FEET FOR SCOUR PROTECTION AT ALL CHAMBER INLET ROWS - BED LIMITS

RMATION

3817 INNES ROAD OTTAWA, CANADA

1.

2. CHAMBERS SHALL BE ARCH-SHAPED AND SHALL BE MANUFACTURED FROM VIRGIN, IMPACT-MODIFIED POLYPROPYLENE

3. CHAMBERS SHALL BE CERTIFIED TO CSA B184, "POLYMERIC SUB-SURFACE STORMWATER MANAGEMENT STRUCTURES", AND MEET THE REQUIREMENTS OF ASTM F2418, "STANDARD SPECIFICATION FOR POLYPROPYLENE (PP) CORRUGATED WALL STORMWATER

4. CHAMBER ROWS SHALL PROVIDE CONTINUOUS, UNOBSTRUCTED INTERNAL SPACE WITH NO INTERNAL SUPPORTS THAT WOULD

5. THE STRUCTURAL DESIGN OF THE CHAMBERS, THE STRUCTURAL BACKFILL, AND THE INSTALLATION REQUIREMENTS SHALL ENSURE THAT THE LOAD FACTORS SPECIFIED IN THE AASHTO LRFD BRIDGE DESIGN SPECIFICATIONS, SECTION 12.12, ARE MET FOR: 1) LONG-DURATION DEAD LOADS AND 2) SHORT-DURATION LIVE LOADS, BASED ON THE CSA S6 CL-625 TRUCK AND THE AASHTO DESIGN TRUCK WITH CONSIDERATION FOR IMPACT AND MULTIPLE VEHICLE PRESENCES.

CHAMBERS SHALL BE DESIGNED, TESTED AND ALLOWABLE LOAD CONFIGURATIONS DETERMINED IN ACCORDANCE WITH ASTM F2787, "STANDARD PRACTICE FOR STRUCTURAL DESIGN OF THERMOPLASTIC CORRUGATED WALL STORMWATER COLLECTION CHAMBERS". LOAD CONFIGURATIONS SHALL INCLUDE: 1) INSTANTANEOUS (<1 MIN) AASHTO DESIGN TRUCK LIVE LOAD ON MINIMUM COVER 2) MAXIMUM PERMANENT (75-YR) COVER LOAD AND 3) ALLOWABLE COVER WITH PARKED (1-WEEK) AASHTO DESIGN TRUCK.

• TO MAINTAIN THE WIDTH OF CHAMBERS DURING SHIPPING AND HANDLING, CHAMBERS SHALL HAVE INTEGRAL, INTERLOCKING • TO ENSURE A SECURE JOINT DURING INSTALLATION AND BACKFILL, THE HEIGHT OF THE CHAMBER JOINT SHALL NOT BE LESS • TO ENSURE THE INTEGRITY OF THE ARCH SHAPE DURING INSTALLATION, a) THE ARCH STIFFNESS CONSTANT AS DEFINED IN SECTION 6.2.8 OF ASTM F2418 SHALL BE GREATER THAN OR EQUAL TO 550 LBS/FT/%. AND b) TO RESIST CHAMBER DEFORMATION DURING INSTALLATION AT ELEVATED TEMPERATURES (ABOVE 23° C / 73° F), CHAMBERS SHALL BE PRODUCED

8. ONLY CHAMBERS THAT ARE APPROVED BY THE SITE DESIGN ENGINEER WILL BE ALLOWED. UPON REQUEST BY THE SITE DESIGN ENGINEER OR OWNER, THE CHAMBER MANUFACTURER SHALL SUBMIT A STRUCTURAL EVALUATION FOR APPROVAL BEFORE • THE STRUCTURAL EVALUATION SHALL BE SEALED BY A REGISTERED PROFESSIONAL ENGINEER.

• THE STRUCTURAL EVALUATION SHALL DEMONSTRATE THAT THE SAFETY FACTORS ARE GREATER THAN OR EQUAL TO 1.95 FOR DEAD LOAD AND 1.75 FOR LIVE LOAD, THE MINIMUM REQUIRED BY ASTM F2787 AND BY SECTIONS 3 AND 12.12 OF THE AASHTO LRFD BRIDGE DESIGN SPECIFICATIONS FOR THERMOPLASTIC PIPE. THE TEST DERIVED CREEP MODULUS AS SPECIFIED IN ASTM F2418 SHALL BE USED FOR PERMANENT DEAD LOAD DESIGN EXCEPT THAT IT SHALL BE THE 75-YEAR MODULUS USED FOR DESIGN.

9. CHAMBERS AND END CAPS SHALL BE PRODUCED AT AN ISO 9001 CERTIFIED MANUFACTURING FACILITY.

IMPORTANT - NOTES FOR THE BIDDING AND INSTALLATION OF THE SC-740 SYSTEM

- STORMTECH SC-740 CHAMBERS SHALL NOT BE INSTALLED UNTIL THE MANUFACTURER'S REPRESENTATIVE HAS COMPLETE PRE-CONSTRUCTION MEETING WITH THE INSTALLERS.
- 2. STORMTECH SC-740 CHAMBERS SHALL BE INSTALLED IN ACCORDANCE WITH THE "STORMTECH SC-310/SC-740/DC-780 CONS 3. CHAMBERS ARE NOT TO BE BACKFILLED WITH A DOZER OR AN EXCAVATOR SITUATED OVER THE CHAMBERS.
- STORMTECH RECOMMENDS 3 BACKFILL METHODS: STONESHOOTER LOCATED OFF THE CHAMBER BED.
- BACKFILL AS ROWS ARE BUILT USING AN EXCAVATOR ON THE FOUNDATION STONE OR SUBGRADE. BACKFILL FROM OUTSIDE THE EXCAVATION USING A LONG BOOM HOE OR EXCAVATOR.
- 4. THE FOUNDATION STONE SHALL BE LEVELED AND COMPACTED PRIOR TO PLACING CHAMBERS.
- 5. JOINTS BETWEEN CHAMBERS SHALL BE PROPERLY SEATED PRIOR TO PLACING STONE.
- 6. MAINTAIN MINIMUM 150 mm (6") SPACING BETWEEN THE CHAMBER ROWS.
- 7. EMBEDMENT STONE SURROUNDING CHAMBERS MUST BE A CLEAN, CRUSHED, ANGULAR STONE 20-50 mm (3/4-2").
- 8. THE CONTRACTOR MUST REPORT ANY DISCREPANCIES WITH CHAMBER FOUNDATION MATERIALS BEARING CAPACITIES TO ENGINEER.

9. ADS RECOMMENDS THE USE OF "FLEXSTORM CATCH IT" INSERTS DURING CONSTRUCTION FOR ALL INLETS TO PROTECT TH STORMWATER MANAGEMENT SYSTEM FROM CONSTRUCTION SITE RUNOFF.

NOTES FOR CONSTRUCTION EQUIPMENT

1. STORMTECH SC-740 CHAMBERS SHALL BE INSTALLED IN ACCORDANCE WITH THE "STORMTECH SC-310/SC-740/DC-780 CONS 2. THE USE OF CONSTRUCTION EQUIPMENT OVER SC-740 CHAMBERS IS LIMITED:

- NO EQUIPMENT IS ALLOWED ON BARE CHAMBERS. NO RUBBER TIRED LOADERS, DUMP TRUCKS, OR EXCAVATORS ARE ALLOWED UNTIL PROPER FILL DEPTHS ARE REACI WITH THE "STORMTECH SC-310/SC-740/DC-780 CONSTRUCTION GUIDE".
- WEIGHT LIMITS FOR CONSTRUCTION EQUIPMENT CAN BE FOUND IN THE "STORMTECH SC-310/SC-740/DC-780 CONSTRU 3. FULL 900 mm (36") OF STABILIZED COVER MATERIALS OVER THE CHAMBERS IS REQUIRED FOR DUMP TRUCK TRAVEL OR DUI

USE OF A DOZER TO PUSH EMBEDMENT STONE BETWEEN THE ROWS OF CHAMBERS MAY CAUSE DAMAGE TO THE CHAMBERS A ACCEPTABLE BACKFILL METHOD. ANY CHAMBERS DAMAGED BY THE "DUMP AND PUSH" METHOD ARE NOT COVERED UNDER TH STANDARD WARRANTY.

CONTACT STORMTECH AT 1-888-892-2694 WITH ANY QUESTIONS ON INSTALLATION REQUIREMENTS OR WEIGHT LIMITS FOR CONS

 MANIFOLD SIZE TO BE DETERMINED BY SITE DESIGN ENGINEER. SEE TECH NOTE #6.32 FOR MANIFOLD SIZING GUIDANCE.
 DUE TO THE ADAPTATION OF THIS CHAMBER SYSTEM TO SPECIFIC SITE AND DESIGN CONSTRAINTS, IT MAY BE NECESSARY TO CUT AND COUPLE ADDITIONAL PIPE TO STANDARD MANIFO COMPONENTS IN THE FIELD.
 THE SITE DESIGN ENGINEER MUST REVIEW ELEVATIONS AND IF NECESSARY ADJUST GRADING TO ENSURE THE CHAMBER COVER REQUIREMENTS ARE MET.
 THIS CHAMBER SYSTEM WAS DESIGNED WITHOUT SITE-SPECIFIC INFORMATION ON SOIL CONDITIONS OR BEARING CAPACITY. THE SITE DESIGN ENGINEER IS RESPONSIBLE FOR DETERMINING DETERMINING THE SUITABILITY OF THE SOIL AND PROVIDING THE BEARING CAPACITY OF THE INSITU SOILS. THE BASE STONE DEPTH MAY BE INCREASED OR DECREASED ONCE THIS INFORMATION IS PROVIDED. • NOT FOR CONSTRUCTION: THIS LAYOUT IS FOR DIMENSIONAL PURPOSES ONLY TO PROVE CONCEPT & THE REQUIRED STORAGE VOLUME CAN BE ACHIEVED ON SITE.

]	COPYRIGHT RESERVED THE CONTRACTOR SHALL VERIFY AND BE RESPONSIBLE OF ALL DIMENSIONS. DO NOT SCALE THE DRAWING - ANY ERRORS OR OMISSIONS SHALL BE REPORTED TO BLANCHARD LETENDRE ENGINEERING LTD. WITHOUT DELAY. THE COPYRIGHTS TO ALL DESIGNS AND DRAWINGS ARE THE PROPERTY OF BLANCHARD LETENDRE ENGINEERING LTD. REPRODUCTION OR USE FOR ANY PURPOSE OTHER THAN THAT AUTHORIZED BY BLANCHARD LETENDRE ENGINEERING LTD. IS STRICTLY PROHIBITED.
1	
ED A	
STRUCTION GUIDE".	
THE SITE DESIGN	
HE SUBSURFACE STRUCTION GUIDE".	
CHED IN ACCORDANCE RUCTION GUIDE". IMPING. AND IS NOT AN HE STORMTECH	
STRUCTION EQUIPMENT.	
17 INNES ROA OTTAWA, CANADA DRAWN: HI DRAWN: HI CHECKED: CHECKED:	ENGINEERING STAMP
38 DATE: DATE: IPTION PROJECT #: UREMENTS.	G. L. BRUNET 100191036 910019100 910019100 910019100 910019100 910019100 910019100 910019100 910019100 910019100 910019100 910019100 910019100 910019100 910019100 910019100 910019100 910000 910000 910000 9100000 910000000000
IRW CHK DESCF	#8
CH.COM DATE D	#1 ISSUED FOR SPA 14 / 10 / 2020 NO. REVISION DATE (DD/MM/YYYY)
OrmTech® mber System -892-2694 www.STORMTE s under the direction of the site is under the direction of the site	BLANCHARD LETENDRE ENGINEERING 767, Notre Dame, Local 42, Embrun, Ontario, KOA IWI (613) 693.0700 blengineering.ca
АМ BLVD Н 43026 73 150 St 888 ИГОСМИЕТ ТНЕ РАОРИС	PROJECT: NEW RESIDENTIAL
4640 TRUEM HILLIARD, OF 1-800-733-74: 	DEVELOPMENT 3817 - 3843 INNES RD, ORLEANS, ON DRAWING:
COLD	DETAILS - 1 PAPER FORMAT: 24x36 PAGE:
	DRAWN BY: BF + GB CHECKED BY: GB DATE: 04-2022 SCALE: PROJECT NUMBER: 20-184

	MATERIAL LOCATION	DESCRIPTION	AASHTO MATERIAL CLASSIFICATIONS	COMPACTION / DENSITY REQUIREM
D	FINAL FILL: FILL MATERIAL FOR LAYER 'D' STARTS FROM THE TOP OF THE 'C' LAYER TO THE BOTTOM OF FLEXIBLE PAVEMENT OR UNPAVED FINISHED GRADE ABOVE. NOTE THAT PAVEMENT SUBBASE MAY BE PART OF THE 'D' LAYER.	ANY SOIL/ROCK MATERIALS, NATIVE SOILS, OR PER ENGINEER'S PLANS. CHECK PLANS FOR PAVEMENT SUBGRADE REQUIREMENTS.	N/A	PREPARE PER SITE DESIGN ENGINEER'S PLANS. P INSTALLATIONS MAY HAVE STRINGENT MATERIAL PREPARATION REQUIREMENTS.
с	INITIAL FILL: FILL MATERIAL FOR LAYER 'C' STARTS FROM THE TOP OF THE EMBEDMENT STONE ('B' LAYER) TO 18" (450 mm) ABOVE THE TOP OF THE CHAMBER. NOTE THAT PAVEMENT SUBBASE MAY BE A PART OF THE 'C' LAYER.	GRANULAR WELL-GRADED SOIL/AGGREGATE MIXTURES, <35% FINES OR PROCESSED AGGREGATE. MOST PAVEMENT SUBBASE MATERIALS CAN BE USED IN LIEU OF THIS LAYER.	AASHTO M1451 A-1, A-2-4, A-3 OR AASHTO M431 3, 357, 4, 467, 5, 56, 57, 6, 67, 68, 7, 78, 8, 89, 9, 10	BEGIN COMPACTIONS AFTER 12" (300 mm) OF MATERI THE CHAMBERS IS REACHED. COMPACT ADDITIONAL L 6" (150 mm) MAX LIFTS TO A MIN. 95% PROCTOR DENS WELL GRADED MATERIAL AND 95% RELATIVE DENSI PROCESSED AGGREGATE MATERIALS. ROLLER GI VEHICLE WEIGHT NOT TO EXCEED 12,000 lbs (53 kN). I FORCE NOT TO EXCEED 20,000 lbs (89 kN).
в	EMBEDMENT STONE: FILL SURROUNDING THE CHAMBERS FROM THE FOUNDATION STONE ('A' LAYER) TO THE 'C' LAYER ABOVE.	CLEAN, CRUSHED, ANGULAR STONE	AASHTO M43 ¹ 3, 357, 4, 467, 5, 56, 57	NO COMPACTION REQUIRED.
А	FOUNDATION STONE: FILL BELOW CHAMBERS FROM THE SUBGRADE UP TO THE FOOT (BOTTOM) OF THE CHAMBER.	CLEAN, CRUSHED, ANGULAR STONE	AASHTO M43 ¹ 3, 357, 4, 467, 5, 56, 57	PLATE COMPACT OR ROLL TO ACHIEVE A FLAT SURF
PLEASE 1. THE 2. STC 3. WH COI 4. ONO	NOTE: E LISTED AASHTO DESIGNATIONS ARE FOR GRADATIONS ONLY. THE STONE MU ORMTECH COMPACTION REQUIREMENTS ARE MET FOR 'A' LOCATION MATERIAL ERE INFILTRATION SURFACES MAY BE COMPROMISED BY COMPACTION, FOR S MPACTION REQUIREMENTS. CE LAYER 'C' IS PLACED, ANY SOIL/MATERIAL CAN BE PLACED IN LAYER 'D' UP T	IST ALSO BE CLEAN, CRUSHED, ANGULAR. FOR EXAMPLE, A SPECIFICATION F S WHEN PLACED AND COMPACTED IN 6" (150 mm) (MAX) LIFTS USING TWO FU TANDARD DESIGN LOAD CONDITIONS, A FLAT SURFACE MAY BE ACHIEVED B O THE FINISHED GRADE. MOST PAVEMENT SUBBASE SOILS CAN BE USED TO	OR #4 STONE WOULD STATE: "CLEAN, CRUSHED, ANGU LL COVERAGES WITH A VIBRATORY COMPACTOR. Y RAKING OR DRAGGING WITHOUT COMPACTION EQUI REPLACE THE MATERIAL REQUIREMENTS OF LAYER 'C	JLAR NO. 4 (AASHTO M43) STONE". PMENT. FOR SPECIAL LOAD DESIGNS, CONTACT STORM ⁻ S' OR 'D' AT THE SITE DESIGN ENGINEER'S DISCRETION.
	ADS GEOSYNTHETICS 601T AROUND CLEAN, CRUSHED, ANG	NON-WOVEN GEOTEXTILE ALL SULAR STONE IN A & B LAYERS ************************************	PAVEMENT LAYER (DESIGNED BY SITE DESIGN ENGINEER)	18" (2.4 m)

EXCAVATION WALL (CAN -

NOTES:

- CONSIDERATION FOR THE RANGE OF EXPECTED SOIL MOISTURE CONDITIONS.
- 5. REQUIREMENTS FOR HANDLING AND INSTALLATION:
- YELLOW COLORS.

INSPECTION & MAINTENANCE

STEP 1)	 INSPECT ISOLATOR ROW PLUS FOR A. INSPECTION PORTS (IF PRESE A.1. REMOVE/OPEN LID ON NYI A.2. REMOVE AND CLEAN FLE> A.3. USING A FLASHLIGHT AND A.4. LOWER A CAMERA INTO IS A.5. IF SEDIMENT IS AT, OR AB B. ALL ISOLATOR PLUS ROWS B.1. REMOVE COVER FROM ST B.2. USING A FLASHLIGHT, INS i) MIRRORS ON POLES OF ii) FOLLOW OSHA REGULA B.3. IF SEDIMENT IS AT, OR AB
STEP 2)	CLEAN OUT ISOLATOR ROW PLUS I A. A FIXED CULVERT CLEANING N B. APPLY MULTIPLE PASSES OF J C. VACUUM STRUCTURE SUMP A
STEP 3)	REPLACE ALL COVERS, GRATES, F
STEP 4)	INSPECT AND CLEAN BASINS AND I
NOTES	

NOTES

ACCEPTABLE FILL MATERIALS: STORMTECH SC-740 CHAMBER SYSTEMS

CATION	DESCRIPTION	AASHTO MATERIAL CLASSIFICATIONS	COMPACTION / DENSITY REQUIREMENT
'D' STARTS FROM THE TOP OF THE 'C' AVEMENT OR UNPAVED FINISHED SUBBASE MAY BE PART OF THE 'D'	ANY SOIL/ROCK MATERIALS, NATIVE SOILS, OR PER ENGINEER'S PLANS. CHECK PLANS FOR PAVEMENT SUBGRADE REQUIREMENTS.	N/A	PREPARE PER SITE DESIGN ENGINEER'S PLANS. PAVED INSTALLATIONS MAY HAVE STRINGENT MATERIAL AND PREPARATION REQUIREMENTS.
R 'C' STARTS FROM THE TOP OF THE (450 mm) ABOVE THE TOP OF THE BASE MAY BE A PART OF THE 'C'	GRANULAR WELL-GRADED SOIL/AGGREGATE MIXTURES, <35% FINES OR PROCESSED AGGREGATE. MOST PAVEMENT SUBBASE MATERIALS CAN BE USED IN LIEU OF THIS LAYER.	AASHTO M1451 A-1, A-2-4, A-3 OR AASHTO M431 3, 357, 4, 467, 5, 56, 57, 6, 67, 68, 7, 78, 8, 89, 9, 10	BEGIN COMPACTIONS AFTER 12" (300 mm) OF MATERIAL OVER THE CHAMBERS IS REACHED. COMPACT ADDITIONAL LAYERS I 6" (150 mm) MAX LIFTS TO A MIN. 95% PROCTOR DENSITY FOR WELL GRADED MATERIAL AND 95% RELATIVE DENSITY FOR PROCESSED AGGREGATE MATERIALS. ROLLER GROSS VEHICLE WEIGHT NOT TO EXCEED 12,000 lbs (53 kN). DYNAMIC FORCE NOT TO EXCEED 20,000 lbs (89 kN).
NG THE CHAMBERS FROM THE E 'C' LAYER ABOVE.	CLEAN, CRUSHED, ANGULAR STONE	AASHTO M43 ¹ 3, 357, 4, 467, 5, 56, 57	NO COMPACTION REQUIRED.
MBERS FROM THE SUBGRADE UP TO	CLEAN, CRUSHED, ANGULAR STONE	AASHTO M43 ¹ 3, 357, 4, 467, 5, 56, 57	PLATE COMPACT OR ROLL TO ACHIEVE A FLAT SURFACE. ^{2,3}

1. CHAMBERS SHALL MEET THE REQUIREMENTS OF ASTM F2418, "STANDARD SPECIFICATION FOR POLYPROPYLENE (PP) CORRUGATED WALL STORMWATER COLLECTION CHAMBERS".

2. SC-740 CHAMBERS SHALL BE DESIGNED IN ACCORDANCE WITH ASTM F2787 "STANDARD PRACTICE FOR STRUCTURAL DESIGN OF THERMOPLASTIC CORRUGATED WALL STORMWATER COLLECTION CHAMBERS". 3. THE SITE DESIGN ENGINEER IS RESPONSIBLE FOR ASSESSING THE BEARING RESISTANCE (ALLOWABLE BEARING CAPACITY) OF THE SUBGRADE SOILS AND THE DEPTH OF FOUNDATION STONE WITH

4. PERIMETER STONE MUST BE EXTENDED HORIZONTALLY TO THE EXCAVATION WALL FOR BOTH VERTICAL AND SLOPED EXCAVATION WALLS.

• TO MAINTAIN THE WIDTH OF CHAMBERS DURING SHIPPING AND HANDLING, CHAMBERS SHALL HAVE INTEGRAL, INTERLOCKING STACKING LUGS. TO ENSURE A SECURE JOINT DURING INSTALLATION AND BACKFILL, THE HEIGHT OF THE CHAMBER JOINT SHALL NOT BE LESS THAN 2".

• TO ENSURE THE INTEGRITY OF THE ARCH SHAPE DURING INSTALLATION, a) THE ARCH STIFFNESS CONSTANT SHALL BE GREATER THAN OR EQUAL TO 550 LBS/FT/%. THE ASC IS DEFINED IN SECTION 6.2.8 OF ASTM F2418. AND b) TO RESIST CHAMBER DEFORMATION DURING INSTALLATION AT ELEVATED TEMPERATURES (ABOVE 73° F / 23° C), CHAMBERS SHALL BE PRODUCED FROM REFLECTIVE GOLD OR

> SC-740 ISOLATOR ROW PLUS DETAIL NTS

R SEDIMENT ENT)

LOPLAST INLINE DRAIN XSTORM FILTER IF INSTALLED

O STADIA ROD, MEASURE DEPTH OF SEDIMENT AND RECORD ON MAINTENANCE LOG SOLATOR ROW PLUS FOR VISUAL INSPECTION OF SEDIMENT LEVELS (OPTIONAL) 30VE, 3" (80 mm) PROCEED TO STEP 2. IF NOT, PROCEED TO STEP 3.

TRUCTURE AT UPSTREAM END OF ISOLATOR ROW PLUS SPECT DOWN THE ISOLATOR ROW PLUS THROUGH OUTLET PIPE R CAMERAS MAY BE USED TO AVOID A CONFINED SPACE ENTRY ATIONS FOR CONFINED SPACE ENTRY IF ENTERING MANHOLE BOVE, 3" (80 mm) PROCEED TO STEP 2. IF NOT, PROCEED TO STEP 3.

USING THE JETVAC PROCESS NOZZLE WITH REAR FACING SPREAD OF 45" (1.1 m) OR MORE IS PREFERRED

JETVAC UNTIL BACKFLUSH WATER IS CLEAN AS REQUIRED FILTERS, AND LIDS; RECORD OBSERVATIONS AND ACTIONS.

MANHOLES UPSTREAM OF THE STORMTECH SYSTEM.

1. INSPECT EVERY 6 MONTHS DURING THE FIRST YEAR OF OPERATION. ADJUST THE INSPECTION INTERVAL BASED ON PREVIOUS OBSERVATIONS OF SEDIMENT ACCUMULATION AND HIGH WATER ELEVATIONS. 2. CONDUCT JETTING AND VACTORING ANNUALLY OR WHEN INSPECTION SHOWS THAT MAINTENANCE IS NECESSARY.

	ATE	COPYRIGHT RESERVED THE CONTRACTOR SHALL VERIFY AND BE RESPONSIBLE OF ALL
		OMISSIONS SHALL BE REPORTED TO BLANCHARD LETENDRE ENGINEERING LTD. WITHOUT DELAY, THE COPYRIGHTS TO ALL DESIGNS AND DRAWINGS ARE THE PROPERTY OF BLANCHARD LETENDRE ENGINEERING LTD. REPRODUCTION OR USE FOR ANY PURPOSE OTHER THAN THAT AUTHORIZED BY BLANCHARD LETENDRE ENGINEERING LTD. IS STRICTLY PROHIBITED.
ES RO/ CANADA DRAWN: H	North Control of Contr	
7 INNE	PRIOR TO CO	
381 381 381	HIS DRAWING	
DATE:		
	MENTS.	
	LECT REQUIRE	
λ	DNS, AND PRO.	
H H H H H H H H H H H H H H H H H H H	VS, REGULATI	
DATE DR	PPLICABLE LAI	
× ×	S MEET ALL A	
B DRMTECH.C	DIGATED DETA	
iech ⁶ stem www.sto	AND ALL ASSC	
DrmT nber Sys	(S) DEPICTED	
Sto Char	THE PRODUC	
4 BLVD 43026	ENSURE THAT	
TRUEMAN ARD, OH - -733-7473	ENGINEER TO	
4640 HILLI. 1-800	E STE DESIGN	
S	IBILITY OF THE	
SHEET	THIS DRAW RESPONSI	
3 OF 6		
AD BINIA		ENGINEERING STAMP
IES RO , canada drawn: checkei		
817 INN 017AW		SP PROFESSIONAL
3(E: MECT #:		G. L. BRUNET
DAT		BOUNCE OF ONTARIO
NOITG	JUREMENTS.	
DESCR		#8
	ULATIONS, AND	#0 #5 #4 ISSUED FOR CITY COMMENTS 03 / 05 / 2022
DRW CF	LE LAWS, REGI	#3 ISSUED FOR CITY COMMENTS 05/04/2021 #2 ISSUED FOR CITY COMMENTS 17/12/2020 #1 ISSUED FOR SPA 14/10/2020
DATE	ALL APPLICAB	NO. REVISION DATE (DD/MM/YYYY)
CH.COM	DETAILS MEET	
STORMTE	ASSOCIATED	E N G I N E E R I N G 767, Notre Dame, Local 42, Embrun, Ontario, KOA IWI
nTec System		(613) 693-0700 blengineering.ca
Xtorn :hamber 888-892-26		OLIGO DEVELOPMENT 996-B ST. AUGUSTIN RD.
EMAN BLV OH 43026 7473		PROJECT: NEW RESIDENTIAL DEVELOPMENT
4640 TRUI HILLIARD, 1-800-733-	DESIGN ENGINE	3817 - 3843 INNES RD, ORLEANS, ON
8	OF THE SITE C	DRAWING:
		DETAILS - 2
SHEET 4 OF 6		PAPER FORMAT: 24x36 PAGE:
		CHECKED BY: GB DATE: 04-2022
		SCALE: PROJECT NUMBER: 20-184

PART #	GRATE/SOLID COVER OPTIONS		
2808AG	PEDESTRIAN LIGHT DUTY	STANDARD LIGHT DUTY	SOLID LIGHT DUTY
2810AG	PEDESTRIAN LIGHT DUTY	STANDARD LIGHT DUTY	SOLID LIGHT DUTY
2812AG	PEDESTRIAN	STANDARD AASHTO	SOLID
	AASHTO H-10	H-20	AASHTO H-20
2815AG	PEDESTRIAN	STANDARD AASHTO	SOLID
	AASHTO H-10	H-20	AASHTO H-20
2818AG	PEDESTRIAN	STANDARD AASHTO	SOLID
	AASHTO H-10	H-20	AASHTO H-20
2824AG	PEDESTRIAN	STANDARD AASHTO	SOLID
	AASHTO H-10	H-20	AASHTO H-20
2830AG	PEDESTRIAN	STANDARD AASHTO	SOLID
	AASHTO H-20	H-20	AASHTO H-20

D07-12-20-0164