

Hydrogeological Investigation, Terrain Analysis & Impact Assessment New Multi-Tenant Commercial Development 2822 Carp Road Carp, Ontario

Submitted to:

2513287 Ontario Inc. 87 Wheatstone Cresent Ottawa, Ontario K2G 7C4

Hydrogeological Investigation, Terrain Analysis & Impact Assessment New Multi-Tenant Commercial Development 2822 Carp Road Carp, Ontario

> December 10, 2020 Project: 65057.01

TABLE OF CONTENTS

1.0	INTRC	DDUCTION1
2.0	SITE E	BACKGROUND1
2.1 2.2		bject Description
2.2		e Geology1 ckground Studies
2.3		ditional Studies Completed by GEMTEC2
3.0	TERR/	AIN ANALYSIS
3.1	Sul	bsurface Conditions2
	3.1.1	Topsoil
	3.1.2 3.1.3	Fill Material
	3.1.4	Sandy Sint
3	3.1.5	Silty Sand
	3.1.6	Interbedded Silty Sand and Silty Clay
	3.1.7	Glacial Till
	3.1.8	Possible Bedrock
3.2	2 Gro	oundwater Level4
4.0	GROU	INDWATER SUPPLY INVESTIGATION4
4.1	Ba	ckground Water Well Records4
4.2	2 On	-Site Test Well Construction4
4.3	_	oundwater Quantity5
4.4		oundwater Quality6
		ogical Results
		Results
		c Nitrogen
5.0	-	CT ASSESSMENT
5.1	Hv	drogeological Sensitivity9
5.2	,	oundwater Impacts
Ę	5.2.1	On-Site Septic9
Ę	5.2.2	Septic Impacts to Neighbouring Properties10
5.3	B Ba	ckground Nitrate Conditions11
6.0	WATE	R BALANCE11
6.1	Wa	ater Balance Method11

ii

6.2	2 Pre-Development	12
6.3	3 Post-Development	12
6.4	4 Water Balance Summary	13
7.0	CONCLUSIONS AND RECOMMENDATIONS	13
7.	1 Conclusions	13
7.2	2 Recommendations	14
W	ater Supply Recommendations	15
Se	eptic System Recommendations	15
Gr	roundwater Impact Mitigation Recommendations	
8.0	LIMITATIONS OF REPORT	16
9.0	REFERENCES	18

LIST OF TABLES

Table 1: On-Site Water Well Construction Details	5
Table 2: Water Balance Summary	13

LIST OF FIGURES (FOLLOWING TEXT OF THIS REPORT)

- Figure 1 Site Plan
- Figure 2 Detailed Site Plan
- Figure 3 Overburden Thickness Map
- Figure 4 Water Balance, Pre-Development Conditions
- Figure 5 Water Balance, Post-Development Conditions

LIST OF APPENDICES

Appendix A	Lot Grading and Servicing Plan
Appendix B	Record of Borehole and Test Pit Sheets
Appendix C	TW19-1 Water Well Record and Certificate of Well Compliance
Appendix D	Pumping Test Data
Appendix E	Laboratory Certificates of Analysis & Summary Tables
Appendix F	Nitrate Dilution Calculations
Appendix G	Water Balance Calculations

1.0 INTRODUCTION

GEMTEC Consulting Engineers and Scientists Limited (GEMTEC) was retained by 2513287 Ontario Inc. to carry out a hydrogeological investigation, terrain analysis and groundwater impact assessment in support of a proposed multi-tenant commercial development to be located at 2822 Carp Road in Ottawa, Ontario. The site location is provided on Figure 1, which is located following the text of this report.

The objectives of the investigation are the following:

- Confirm that the construction of any new well is in accordance with the Ministry of Environment, Conservation and Parks (MECP) requirements;
- Confirm that the quality of the well water meets the Ontario Drinking Water Standards and maximum treatable limits prescribed in MECP Procedure D-5-5;
- Confirm that the quantity of water meets the MECP requirements;
- Confirm that the septic impact assessment meets the MECP requirements; and,
- Complete a groundwater water balance.

2.0 SITE BACKGROUND

2.1 Project Description

Plans are being prepared for the new multi-tenant commercial development, which will have a footprint of less than 600 square metres per building. A copy of the grading and servicing plan is provided in the Appendix A.

The site is currently being used as a sale yard for used cars and trucks. The total site area is 1.01 hectares.

2.2 Site Geology

Surficial geology maps (Ontario Geologic Survey, 2010) indicate that the site is underlain by coarse textured glaciomarine deposits consisting of sand, gravel with minor silt and clay. Bedrock geology maps (Armstrong and Dodge, 2007) indicate that bedrock is comprised of interbedded limestone and shale of the Verulam formation. Overburden thickness mapping indicates the drift thickness ranges from 3 and 17 metres (Gao et al. 2006). Available karst mapping (Brunton and Dodge, 2008) does not indicate the presence of any inferred or potential karstic features.

2.3 Background Studies

A number of available background reports were reviewed as part of this investigation, including:

• "Carp Road Corridor, Community Design Plan" prepared by the City of Ottawa and dated June 2004 (Publication No. 3-08). This report is referred to herein as the "CDP Report".

1

 "Carp Road Corridor, Groundwater Study" prepared by Dillon Consulting Limited and dated November 30, 2004 (ref: 04-3219). This report will herein be referred to as the "Groundwater Study Report"

Based on the background reports, Schedule 2 of the CDP Report and the Groundwater Study Report prepared by Dillon (2004) indicates the majority of the site is located in a high groundwater recharge area.

2.4 Additional Studies Completed by GEMTEC

The studies completed by GEMTEC for the subject site include:

• "Geotechnical Investigation, New Multi-Tenant Commercial Development, 2822 Carp Road, Carp, Ontario" dated October 28, 2020 (herein referred to as GEMTEC geotechnical investigation).

The relevant subsurface information from the geotechnical investigation is discussed in the terrain analysis section below.

3.0 TERRAIN ANALYSIS

3.1 Subsurface Conditions

The subsurface conditions at the subject site are described in the geotechnical investigation completed by GEMTEC. The field work for the geotechnical investigation was carried out on August 21 and 24, 2020. Seven boreholes numbered 20-1 to 20-7, inclusively, were advanced across the subject site to depths between approximately 3.0 and 5.0 metres below ground surface. The results of the boreholes are provided on the Record of Borehole sheets in Appendix B. The locations of the test holes are shown on the Detailed Site Plan, Figure 2. The overburden thickness map is shown on Figure 3.

One well screen was sealed in the overburden at borehole 20-03 to measure the groundwater level. The groundwater conditions in the other test holes were observed on completion of drilling or excavating.

A summary of the soil conditions, based on the geotechnical investigation, are summarized below.

3.1.1 Topsoil

Topsoil was encountered from ground surface at boreholes 20-2, 20-5, 20-6, and 20-7. The thickness of the topsoil ranged from about 200 to 300 millimetres. The topsoil is composed of dark brown silty sand with organic material.

3.1.2 Fill Material

Fill material, having a thickness of about 1.0 metre, was encountered from ground surface at boreholes 20-3 and 20-4, extending to elevations of 113.6 and 114.0 metres, respectively. The fill material can be described as dark brown sandy silt, some gravel with cobbles and organics.

3.1.3 Sandy Silt

A 0.5 metre thick native deposit of dark grey sandy silt was encountered beneath the granular pavement structure at borehole 20-1, extending from a depth of about 0.4 metres (elevation 114.7 metres) to a depth of about 0.9 metres (elevation 114.2 metres).

3.1.4 Sand

Native deposits of grey brown sand with some silt were encountered at all borehole locations. Where fully penetrated, the thickness of the sand deposits ranges from about 0.8 to 2.7 metres, extending from depths of about 0.2 to 1.0 metres (elevation 113.6 to 114.5 metres) to depths ranging from about 1.7 to 3.1 metres (elevation 111.7 to 113.3 metres). Borehole 20-1 was terminated within the sand deposit at 3.1 metres below surface grade.

The results of two grain size distribution tests carried out on samples of the sand are provided in Appendix B.

3.1.5 Silty Sand

Silty sand deposits were encountered underlying the sand deposits at boreholes 20-3, 20-4, and 20-6, at depths ranging from about 1.7 to 1.8 metres below ground surface (elevation 112.7 to 113.3 metres) and extending to depths ranging from about 2.4 to 2.8 metres below ground surface (elevation 111.8 to 112.5 metres).

The results of a grain size distribution test carried out on a sample of the silty sand are provided in Appendix B.

3.1.6 Interbedded Silty Sand and Silty Clay

A layer of interbedded grey silty sand and grey silty clay was encountered underlying the silty sand and sand deposits at boreholes 20-4 and 20-5, respectively. The layer extends from depths of about 2.5 and 3.1 metres below ground surface (elevations 112.5 and 111.7 metres) to depths of about 3.6 metres below ground surface (elevations 111.4 and 111.2 metres).

3.1.7 Glacial Till

Deposits of glacial till were encountered in boreholes 20-2 to 20-7 at depths ranging from 1.8 to 3.6 metres below ground surface (elevation 111.2 to 113.1 metres). The glacial till is generally composed of grey gravel with varying proportions of silt and sand, and probable cobbles and boulders. Auger refusal occurred within the glacial till at boreholes 20-2 to 20-5. Boreholes 20-6

and 20-7 were terminated within the glacial till. The maximum recorded thickness of the glacial till was about 2.2 metres at borehole 20-3.

Standard penetration tests (SPT) carried out in the glacial till gave N values ranging from 14 blows for 0.3 metres of penetration to 50 blows for 80 millimetres of penetration, which reflects a compact to very dense relative density. The higher N values are likely due to the presence of cobbles and boulders.

3.1.8 Possible Bedrock

Practical auger refusal on possible bedrock occurred at boreholes 20-2 to 20-5 at depths ranging from 3.4 to 5.0 metres below ground surface (elevation 109.6 to 111.6 metres). It should be noted that practical auger refusal can sometimes occur within cobbles and boulders and may not necessarily be representative of the upper surface of the bedrock.

3.2 Groundwater Level

The groundwater level in the well screen at borehole 20-03 was measured to be 1.4 metres below ground surface (elevation 113.3 metres), on September 15, 2020. Based on the Carp Road Corridor Groundwater Study (Dillon, 2004), the general shallow groundwater flow direction along the Carp Road corridor is north to northeast, towards the Carp River.

The groundwater levels may be higher during wet periods of the year such as the early spring or following periods of precipitation.

4.0 GROUNDWATER SUPPLY INVESTIGATION

4.1 Background Water Well Records

A search of the Ministry of Environment, Conservation and Parks (MECP) water well records (<u>https://www.ontario.ca/environment-and-energy/map-well-records</u>) returned 69 water well records within 500 metres of the subject site. The results of the well record search are provided in Appendix C. The well depths, excluding monitoring or test holes, range from 7.9 to 97.5 metres below ground surface, with an average well depth of approximately 38 metres.

A review of the well construction details indicates that the majority of wells are completed into the limestone bedrock. Several wells are completed with overburden sands and gravels.

4.2 On-Site Test Well Construction

A water supply well (TW20-1) was constructed at 2822 Carp Road on September 29, 2020, by a licensed MECP well contractor (Saunders Well Drilling; License No. 4879). The approximate location of the water well is provided on the Detailed Site Plan, Figure 2. A copy of the MECP Water Well Record and Certificate of Well Compliance is provided in Appendix C.

The construction details from the MECP Water Well Record are summarized in Table 1:

Table 1: On-Site Water Well Construction Details

Well Construction Details – Well ID A296836 (TW20-1)										
Depth to Bedrock	3.05 metres									
Length of Well Casing	13.4 metres									
Length of Well Casing Below Ground Surface	12.2 metres									
Length of Well Casing Set Into Bedrock	9.1 metres									
Depth Water Found	44.3 metres									
Total Well Depth	47.2 metres									
Overburden Description	Sand (grey sand and gravel)									
Bedrock Description	Grey limestone									

The water well construction recommendations were provided to Saunders Well Drilling by GEMTEC. Due to the variable overburden thickness in the vicinity of the subject site, mapped ranging from 3 to 17 metres below ground surface, the well casing was extended from the minimum MECP requirements of 6 metres to at least 12.0 metres below ground surface. The extended well casing recommendation is provided to reduce potential impacts from surface.

4.3 Groundwater Quantity

A pumping test was carried out on the water well by a GEMTEC technologist on September 29, 2020. The well was pumped at a constant rate of 38.7 litres per minute for a period of eight hours. The pumping rate of 38.7 litres per minute is expected to exceed the anticipated water demand for the proposed development, conservatively estimated to be 50% greater than the proposed septic flows of 7,200 litres per day (water demand of 10,800 litres per day). The water from the pumping test was discharged to the ground surface approximately 10 metres away from the test well such that the discharge flow was away from the well head.

Water level and flow rate measurements were taken at regular intervals throughout the pumping test. Water levels were also taken during the recovery phase of the pumping test (after the pump was turned off). The pumping test drawdown and recovery graph is provided in Appendix D.

During the pumping test the water level decreased approximately 9.5 metres from a static water level of 1.1 metres below ground surface, following approximately 60 minutes of pumping. After 60 minutes, the water level gradually decreased an additional 1.4 metres throughout the remaining 7.05 hours of pumping. Frequent flow rate measurements confirmed that the pumping was maintained at a constant rate of 38.7 litres per minute. The pumping test withdrew approximately 18,770 litres, which is greater than the expected water demand of 10,800 litres per day (50% greater than the proposed septic flows of 7,200 litres per day). Following cessation of pumping, the well recovered 99% within five hours.

The transmissivity of the water supply aquifer was estimated from the pumping test drawdown data using Aqtesolv (Version 4.5), a commercially available software program from HydroSOLVE Inc. An analysis of the pumping test and recovery data was carried out using the Cooper-Jacob and Theis recovery method of analyses. The results of the Aqtesolv analyses are provided in Appendix D.

The Cooper-Jacob and Theis recovery analyses indicate that the transmissivity of the water supply aquifer is calculated to be $1.6 \text{ m}^2/\text{day}$. The maximum drawdown in the water level of the well was approximately 9.9 metres following 8 hours of pumping at a flow rate of 38.7 litres per minute. Based on a static water level of 1.1 metres below ground surface, the recommended pump intake depth of 44.2 metres and the water level after 8 hours of pumping, the remaining available drawdown in the well is approximately 34.3 metres.

4.4 Groundwater Quality

Water samples were collected by a GEMTEC technologist after four and eight hours of pumping and were submitted to AGAT Laboratories, located in Ottawa for analysis of 'subdivision package' parameters ("Subdivision Package" includes: total coliform, E. coli, fecal coliform, heterotrophic plate count, electrical conductivity, pH, hardness, total dissolved solids, alkalinity, fluoride, chloride, nitrate, nitrite, sulphate, ammonia, total kjeldahl nitrogen, dissolved organic carbon, phenols, hydrogen sulphide, true colour, turbidity, calcium, manganese, magnesium, potassium and sodium). In addition, 'heavy metals' were analyzed in the eight-hour sample. Due to total coliform exceedances, additional water quality sampling was completed on October 22, 2020 following well chlorination on October 20, 2020. Copies of the laboratory certificates of analysis for the water samples are provided in Appendix E.

Field measurements were taken at regular intervals throughout the pumping test and are summarized in Appendix E.

The results of the laboratory analysis on the water samples are also summarized in Appendix D, along with the applicable standards, guidelines and objectives provided in the Ontario Drinking Water Quality Standards (ODWQS).

The following comments are provided regarding the drinking water quality and exceedances of the ODWQS:

Bacteriological Results

Total chlorine measurements at the time of bacteriological sampling confirmed that total chlorine concentrations in the groundwater were non-detectable.

Based on water samples collected from the onsite test well (TW20-1), the 4-hour and 8-hour samples reported total coliform concentrations of 12 and 16 CFU/100mL, respectively, which exceeds the Ontario Drinking Water Quality Standards (ODWQS).

Due to the total coliform exceedances, the water supply well was chlorinated on October 20, 2020 and additional well development was completed on October 22, 2020 at a rate of approximately 38 litres per minute for eight hours. At the time of water quality sampling, the field measured chlorine concentration was non-detectable, and two water quality samples were collected, 15 minutes apart. The reported total coliform concentrations were 1 and 0 CFU/100mL and E. coli and fecal coliform concentrations were reported to be non-detectable.

Although the total coliform concentrations exceed the ODWQS maximum acceptable concentration of 0 CFU/100mL, the total coliform concentrations detected meet the MECP Procedure D-5-5 limit of less than 6 counts per 100 mL for Total Coliform bacteria, with non-detectable e.coli and fecal coliform concentrations.

Based on the bacteriological testing, the water is suitable for consumption.

Chemical Results

The results of the chemical testing on the water samples indicate the operational guideline for hardness and the aesthetic objectives for colour and organic nitrogen were exceeded in the water samples.

The above noted exceedances are discussed in the follow sections:

Hardness

The hardness of the water samples was reported to be 216 and 206 mg/L as CaCO₃, which exceeds the ODWQS operational guideline for hardness. Water having a hardness above 100 milligrams per litre as CaCO₃ is often softened for domestic use. Water softeners are widely used throughout rural areas to treat hardness and there is no upper treatable limit for hardness. The ODQWS indicates that hardness levels exceeding 200 mg/L as CaCO₃ is considered poor but tolerable and hardness levels exceeding 500 mg/L as CaCO₃ is considered to be unacceptable for most domestic purposes.

Water softening by conventional sodium ion exchange water softeners that use sodium chloride may introduce relatively high concentrations of sodium into the drinking water, which may be of concern to persons on a sodium restricted diet. The use of potassium chloride in the water softener (which adds potassium to the water instead of sodium) could be considered as a means of keeping sodium concentrations in softened water at the background level. Alternatively, consideration could be given to providing a cold-water bypass water line for drinking water purposes that is not treated by a water softener.

Colour

The colour level was reported to be 12 TCU during the pumping test on September 29, 2020 and 16 TCU during resampling on October 22, 2020, which exceeds the aesthetic objective of 5 TCU listed by the ODWQS. Elevated levels of colour can be associated with certain metals and organic substances in the water. The colour level is not within the maximum concentration considered reasonably treatable (7 TCU) provided in Table 3 of the MECP Guideline D-5-5.

However, it should be noted that colour may be affected by various factors to which the water sample would have been subjected from the time of sampling to the time of analysis. As such, field measurements of colour are considered to be more representative of the water being sampled. During the pumping test, the unfiltered colour (Actual Colour Unit; ACU) was measured to be 13 and 0 ACU in the 3-hour and 6-hour samples respectively, and the filtered colour (True Colour Unit; TCU) was measured to be 15 TCU and 0 TCU in the 3-hour and 6-hour samples respectively. Upon resampling on October 22, 2020, the field measured colour was 43 ACU and 0 TCU.

Colour exceeding the aesthetic objective may be caused by organics, dissolved organic carbon, iron, manganese and/or sulphide. Colour is not generally considered a health issue and the aesthetic objective is set by appearance. The source of the elevated colour is unknown and may be reduced through the use of carbon filter treatment systems (organic related colour), manganese greensand filters (iron or manganese related colour) and/or aeration/oxidation (sulphide related colour).

Organic Nitrogen

The organic nitrogen concentration was calculated to be 0.22 and 0.19 mg/L [TKN – ammonia] during the pumping test which slightly exceeds the ODWQS operational guideline of 0.15 mg/L.

The ODWQS indicates that high levels of organic nitrogen may be caused by septic tank or sewage effluent contamination and organic nitrogen concentrations greater than 0.15 mg/L are typically associated with Dissolved Organic Carbon (DOC) contribution of 0.6 mg/L. DOC concentrations in the onsite well were 3.7 mg/L. At the concentrations calculated in TW20-1, the organic nitrogen is unlikely associated with septic tank or sewage effluent contamination, given the non-detectable nitrate concentrations (<0.05 mg/L), low levels total coliform and non-detectable fecal coliform and e. Coli concentrations.

The source of the organic nitrogen is presently not known but given the absence of other elevated septic indicators, septic effluent does not appear to be an issue. Elevated DOC can be related to naturally occurring sources.

Organic nitrogen can react with chlorine and severely reduce its disinfectant power; in addition, taste and odour problems are common.

5.0 IMPACT ASSESSMENT

The impact on groundwater and surface water resources due to wastewater treatment and disposal by the onsite sewage disposal system on the subject site is assessed in the following sections.

It should be noted that the following information is provided for general guidance purposes only and that the septic system installed on the subject site should be designed using specific subsurface conditions at the location of the proposed septic system. In all cases, the septic system design must conform to the Ontario Building Code (OBC) requirements.

5.1 Hydrogeological Sensitivity

Areas of thin soils cover, highly permeable soils, fractured bedrock exposed at ground surface and karst environments contribute to hydrogeological sensitivity of the site, which may not allow for sufficient attenuative processes for on-site septic systems and negatively impact the receiving aquifer. Areas of thin soil cover, generally taken to be less than two metres, or highly permeable soils were not encountered at the subject site. The overburden thickness ranges from 3.05 to 5.0 metres across the site (Figure 3). Karst mapping (Brunton and Dodge, 2008) does not indicate the presence of any inferred or potential karstic features.

5.2 Groundwater Impacts

5.2.1 On-Site Septic

The potential risk to groundwater resources on and off the subject site was assessed in accordance with Ministry of Environment Procedure D-5-4: Technical Guideline for Individual On-Site Sewage Systems: Water Quality Impact Risk Assessment. To evaluate the groundwater impacts, lot size considerations as well as nitrate dilution calculations for commercial properties outlined in MECP D-5-4 were followed.

The proposed development area of 1.01 hectares is greater than 1.01 hectares. The risks of individual on-site septic systems will be assessed using nitrate-nitrogen contaminant loading for commercial/industrial properties. The maximum allowable concentration of nitrate in the groundwater at the boundaries of the subject property is 10 milligrams per litre as per the Ministry of the Environment, Conservation and Parks' guideline D-5-4, dated August 1996.

The nitrate concentration at the site boundaries was calculated using the following information:

- Subject site area of 1.01 hectares (refer to Grading and Servicing Plan, Appendix A);
- Water holding capacity of soils (WHC) based on information obtained from Table 3.1 of the Ministry of Environment Stormwater Management Planning and Design Manual, dated March 2003;
- Post-Development water holding capacity;
 - 75 mm: Urban lawns, fine sandy loam.
- An annual water surplus of 0.378 metres/year (post-development) for soils with a water holding capacity of 75 mm (average of Ottawa Airport, Environment Canada Water Surplus Datasets, attached in Appendix F);
 - Ottawa International Airport (1939-2013), 75 mm WHC surplus of 0.378 metres/yr.
- Post-Development hard surface area of approximately 65%;
- Negligible background nitrate concentration in the receiving aquifer; and,
- The use of advanced treatment systems in the construction of the septic systems at the commercial lot, capable of reducing the concentration of nitrate in the effluent exiting the treatment unit to a maximum of 20 mg/L (this concentration value was utilized when resimplifying the formula provided in D-5-4 for the purpose of determining the factor used to determine the maximum allowable flow for each lot from the determined available infiltration volume. The factor becomes 1 versus 3 as is the case without advanced treatment).

The septic flow for the commercial lot is based on information provided in Section 5.6.3 of Guideline D-5-4, the Carp Road Corridor Nitrate Impact Assessment Recommendations memo dated September 27, 2016 and the MOE SWM Planning and Design Manual, dated March 2003. Based on the nitrate impact assessment for commercial properties, the allowable daily design sanitary sewage flow (DDSSF) for the proposed commercial lot is 2,751 litres per day. The calculations and assumptions of this are provided in Appendix F. For comparison purposes, the calculated maximum septic flow, assuming all runoff is captured and infiltrated is 7,860 litres per day.

Based on information provided to us, the average DDSSF to support the proposed development is 7,200 litres per day. The DDSSF of 7,200 litres per day exceeds the maximum allowable flow of 2,751 litres per day based on the D-5-4 nitrate impact assessment. In order to meet the MECP Procedure D-5-4 nitrate impact, additional infiltration is required (i.e. less hard surface area), greater nitrate reduction in septic system and/or reduce the size of the proposed septic system.

5.2.2 Septic Impacts to Neighbouring Properties

The proposed on-site septic system is located in the northeast portion of the subject site, adjacent to agricultural lands (Figure 1). The subject site is not considered to be hydrogeologically sensitive

and based on the nitrate impact assessment, a septic system with a maximum allowable flow of 2,926 litres per day is not anticipated to result in negative impacts at the property boundary. Therefore, nitrate impacts to neighbouring water well users are not anticipated.

5.3 Background Nitrate Conditions

To further evaluate the potential risk of septic effluent on the water supply aquifer, the background water quality in the receiving overburden aquifer was assessed. Water samples were collected on November 9, 2020 from BH20-3 reported a nitrate concentration of 0.34 mg/L. To note, the pumping test completed for TW20-1 reported nitrate concentration of <0.05 mg/L in the bedrock aquifer. Based on the thin overburden aquifer encountered at the subject site, ranging from 3.05 to 5.0 metres below ground surface, the upper bedrock water supply aquifer may also be the receiving aquifer. The nitrate concentrations in the overburden and bedrock aquifer range from <0.05 to 0.34 mg/L and are considered to be negligible.

6.0 WATER BALANCE

The subject site is located within an area of high groundwater recharge area based on available Carp Road Corridor studies (City of Ottawa, 2004 and Dillon, 2004). Pre and post-development water budgets were calculated for the subject site in order to assess the groundwater impact of the proposed development.

6.1 Water Balance Method

The water balance of the site was assessed, based on the following equation:

Mean Annual Precipitation – Change in Groundwater Storage – Evapotranspiration = Runoff + Infiltration

where:

- Mean annual precipitation is based on data provided by Environment Canada, from the Ottawa Int A weather station for the period of 1939-2013 and Carlton Place – Appleton weather stations for the period of 1984-2006. The Ottawa Intl A and Carleton-Place – Appleton weather station are located approximately 26 and 38 kilometres from the subject site respectively.
- Long term changes to groundwater storage are assumed to be negligible. Short term or seasonal changes are anticipated to balance out (e.g. increased groundwater recharge following spring freshet, followed by dry conditions in the summer months).
- Evapotranspiration is calculated based on the Thornthwaite and Mather (1955) model, run by Environment Canada. The technical documentation provided by Environment Canada is titled "Water Balance Tabulations for Canadian Climate Stations", written by

K.Johnstone and P.Y.T. Louie, Hydrometeorology Division, Canadian Climate Centre, Atmospheric Environmental Services (undated).

The hydrologic factors used to estimate infiltration, such as topography, soil, cover and water holding capacities are based on the Ministry of Environment (MOE) Stormwater Management Planning and Design Manual Section 3.0 (MOE, 2003) and the Ministry of the Environment and Energy (MOEE) Hydrogeological Technical Information Requirements for Land Development Applications (MOEE, 1995).

6.2 Pre-Development

The subject site is currently occupied by a used car dealership, with a small building and asphalt parking lot. The soil conditions across the site consist of fill material and native fine sands. The site is vegetated with grasses and shrubs. The subject site is generally flat, with a sloping gently to the northeast. Based on the site characteristics, the infiltration factor is estimated to be 0.70, based on the following:

- Topography factor of 0.2 rolling land with an average slope between 2.8 m to 3.8 m/km;
 - The site is generally flat, sloping to the northwest.
- Soil factor of 0.4 open sandy loam; and,
 - On-site soils characterized as fine sand.
- Cover factor of 0.1 Cultivated land.
 - The site consists of fill material and short grasses.

An estimated water holding capacity of 150 mm was selected from Table 3.1 of the MOE Stormwater Management Planning and Design Manual (MOE, 2003). The site vegetation is classified as pasture and shrubs underlain by fine sandy loam. The infiltration for the existing building and asphalt parking area cover approximately 14% of the total site area and are considered impervious, with an infiltration factor of 0.

6.3 Post-Development

The post-development conditions at the subject site will consist of two commercial buildings, gravel parking areas, stormwater management pond and septic bed. The remaining vegetated areas are anticipated to be landscaped (refer to Grading and Servicing Plan, Appendix A). Based on the anticipated post-development site characteristics, there are no changes to the estimated infiltration factor for vegetated areas, which remains to be 0.70. The infiltration for the proposed building and gravel parking area (65% coverage) is considered to be impervious and the infiltration factor is 0. It is anticipated that site will be landscaping which may alter the water holding

capacity. The post-development water holding capacity is expected to be 75 mm, selected from Table 3.1 of the MOE Stormwater Management Planning and Design Manual (MOE, 2003). The post-development site vegetation will be classified as urban lawns, underlain by fine sandy loam.

6.4 Water Balance Summary

Based on the water balance calculations, the annual infiltration volumes will decrease from 1,998 m³ to 935 m³ and the runoff will increase from 1,865 m³ to 5,134 m³ post-development. The hydrologic factors and the water balance calculations are provided in Appendix G. The pre and post-development infiltration and runoff factors are summarized in Table 2.

	Infiltration (mm/year)	Runoff (mm/year)	Infiltration (m³/year)	Runoff (m ³ /year)
Pre-Development	198	185	1,998	1,865
Post-Development ¹	93	508	935	5,134
Change	-105	324	-1,062	3,269

Table 2: Water Balance Summary

Notes: 1. Weighted averages based on area (refer to Appendix F).

7.0 CONCLUSIONS AND RECOMMENDATIONS

7.1 Conclusions

Based on the results of this investigation, the following conclusions are provided:

- The surficial soils encountered at the subject site consist of fine sand and fill material underlain by silty sand and glacial till, ranging in thickness from 3.05 to 5.0 metres below ground surface.
- The test well is capable of providing at least 18,770 litres per day, which is greater than the anticipated maximum water demand of 10,800 litres (equivalent to 1.5 times the proposed septic flows). The maximum drawdown in the water level of the well was approximately 10.9 metres following 8 hours of pumping at a flow rate of 38.7 litres per minute. Based on a static water level of 1.1 metres below ground surface, the proposed pump intake depth of 44.2 metres and the water level after 8 hours of pumping, the remaining available drawdown in the well is approximately 34.3 metres.

- The groundwater quality exceeds the ODWQS for the operational guideline for hardness and the aesthetic objectives for colour and organic nitrogen. It is noted that colour also exceeds the maximum concentration considered to be reasonably treatable.
- The site is not considered to be hydrogeologically sensitive as thin soils, highly permeable soils or karst geology were not encountered. The on-site test well (TW20-1) casing extends 12.2 metres below ground surface as an extra protective measure. Background nitrates are considered to be negligible, measured to be 0.34 mg/L in the receiving overburden aquifer and <0.05 mg/L in the water supply aquifer.
- The maximum allowable septic flow, as per MECP Procedure D-5-4 commercial predicative assessment, is calculated to be 2,751 litres per day, assuming the use of an advanced treatment septic system capable of reducing nitrates by 50%. The maximum allowable septic flows as per MECP Procedure D-5-4 is less than the anticipated average DDSSF of 7,200 litres per day. In order to meet the MECP Procedure D-5-4 septic impact assessment requirements, the size of the proposed septic system must be reduced, the available infiltration area needs to be increased, or the use of advanced septic systems capable of reducing nitrates by greater than 50% is required.
 - The use of advanced septic systems capable of reducing nitrates by 75%, to 10 mg/L, would meet the Procedure D-5-4 commercial predictive assessment for a DDSSF of 7,200 litres per day. It is noted that the background nitrate concentrations are considered to be negligible (0.34 mg/L in the overburden and <0.05 mg/L in the bedrock).
- Based on the water budget calculations, the annual infiltration volumes will decrease from 1,998 m³ to 935 m³ and the runoff will increase from 1,865 m³ to 5,134 m³ postdevelopment. The subject site is located within a high groundwater recharge zone based on Carp Road Corridor studies (City of Ottawa, 2004 and Dillon, 2004) and postdevelopment infiltration should be maintained in order to maintain recharge to the bedrock aquifer.
 - Low impact development (LID) and stormwater management measures will be required in order to maintain pre-development infiltration rates.

7.2 Recommendations

Based on the results of this investigation, the following water supply, septic system and groundwater impact mitigation measures recommendations are provided:

Water Supply Recommendations

- It is recommended that the property owners construct, maintain and test their drinking water well in accordance with the Ministry of the Environment and Climate Change document "Water Supply Wells - Requirements and Best Management Practices, Revised April 2015".
- The use of earth energy systems shall not be permitted.
- Groundwater quality treatment may be utilized to treat the following ODWQS exceedances:
 - Hardness Hardness levels in TW20-1 exceed the ODWQS operational guideline and can be treated using water softening by conventional sodium ion exchange. Water softening by conventional sodium ion exchange may introduce relatively high concentrations of sodium into the drinking water which may be of concern to persons on a sodium restricted diet. The use of potassium chloride in the water softener (which adds potassium to the water instead of sodium) could be considered as a means of keeping sodium concentrations in the water at background levels. Consideration could also be given to providing a bypass of the water softener for drinking water purposes.
 - Colour Colour exceeded the ODWQS aesthetic objective concentration of 5 TCU and the maximum concentration considered to be reasonably treatable of 7 TCU. The source of the elevated colour is unknown and may be treated using carbon filter treatment systems (organic related colour), manganese greensand filters (iron and manganese related colour) and/or aeration/oxidation (sulphide related colour).
 - Organic Nitrogen Organic nitrogen can react with chlorine and severely reduce its disinfectant power; in addition, taste and odour problems are common. Ongoing chlorination is not recommended as it may result in chlorination by-products, namely trihalomethanes.

Septic System Recommendations

- Based on the current lot development plan (Lot Grading and Septic Plan provided in Appendix A) and a DDSSF of 7,200 litres per day, the proposed development should be serviced by advanced treatment septic sewage disposal system that can achieve a minimum of 75% reduction in nitrogen (to 10 mg/L), approved under the Ontario Building Code, prior to the effluent being disposed to a Class IV leaching bed (Type A or Type B). The advanced treatment septic system is recommended to be BNQ certified. A sitespecific investigation should be conducted on each lot for the design of the septic system;
- It is required that the property owners enter a maintenance agreement with authorized agents of the advanced treatment septic system manufacturer for the service life of the system;
- The maximum daily design sewage flows based on the MECP Procedure D-5-4 nitrate impact assessment is calculated to be 2,751 litres per day assuming the use of advanced

septic sewage disposal system that achieve a minimum of 50% reduction in nitrogen (based on the Lot Grading and Septic Plan provided in Appendix A);

- If the proposed septic system utilizes advanced septic systems capable of reducing nitrogen by a minimum of 75%, to 10 mg/L, the proposed DDSSF of 7,200 litres per day would meet D-5-4 nitrate impact assessment requirements.
- It is recommended that the property owners construct, maintain and check their onsite septic system in accordance with the Ontario Building Code.

Groundwater Impact Mitigation Recommendations

- Low Impact Development (LID) and stormwater management measures are recommended to maintain pre-development infiltration rates of 198 mm/year. The post-development infiltration rates are calculated to be 93 mm/year.
- The post-development water balance indicates significant increase in runoff, which may be diverted to the grass swales and the stormwater retention pond (refer to Grading and Servicing Plan, Appendix A). Potential impacts from contaminant sources include winter maintenance (road salting) and fuel spills from commercial tenants. It is recommended that BMP for road salting and fuel storage/spills be followed.
 - It is recommended that the best management practices for the application of road salts should follow the City of Ottawa's "Material Application Policy, Revision 3.2, October 31, 2011" Salt Management Plan.
 - It is recommended that the best management practices for fuel storage follow the Liquid Fuels Handling Code and the Ontario Water Resources Act.
 - It is recommended that best management practices be implemented for waste treatment.
 - It is recommended that a spills prevention and management plan be prepared to protect the vulnerable aquifer which is used as a drinking water source for adjacent developments.

8.0 LIMITATIONS OF REPORT

This report was prepared for 2513287 Ontario Inc. and is intended for the exclusive use of 2513287 Ontario Inc. This report may not be relied upon by any other person or entity without the express written consent of GEMTEC and 2513287 Ontario Inc. Nothing in this report is intended to provide a legal opinion.

The investigation undertaken by GEMTEC with respect to this report and any conclusions or recommendations made in this report reflect the best judgments of GEMTEC based on the site conditions observed during the investigations undertaken at the date(s) identified in the report and on the information available at the time the report was prepared. This report has been

prepared for the application noted and it is based, in part, on visual observations made at the site, subsurface investigations at discrete locations and depths and laboratory analyses of specific chemical parameters and material during a specific time interval, all as described in the report. Unless otherwise stated, the findings contained in this report cannot be extrapolated or extended to previous or future site conditions, portions of the site that were unavailable for direct investigation, subsurface locations on the site that were not investigated directly, or chemical parameters, materials or analysis which were not addressed.

Should new information become available during future work, including excavations, borings or other studies, GEMTEC should be requested to review the information and, if necessary, reassess the conclusions presented herein.

We trust that this report is sufficient for your purposes. If you have any questions or require additional information, please call.

Andrius Paznekas, M.Sc., P.Geo. Hydrogeologist

Jean-Philippe Gobeil, M.Sc., P.Geo. Hydrogeologist

9.0 **REFERENCES**

Armstrong, D.K. and Dodge, J.E.P. 2007. Paleozoic geology of southern Ontario; Ontario Geological Survey, Miscellaneous Release--Data 219

Brunton, F.R. and Dodge, J.E.P. 2008. Karst of southern Ontario and Manitoulin Island; Ontario Geological Survey, Groundwater Resources Study 5.

City of Ottawa. 2004. Carp Road Corridor, Community Design Plan. June 2004.

Cuddy, S., Chan, G.S., and Post, R. 2013. Hydrogeological Assessment Submissions, Conservation Authority Guidelines for Development Applications. Lake Simcoe Region Conservation Authority.

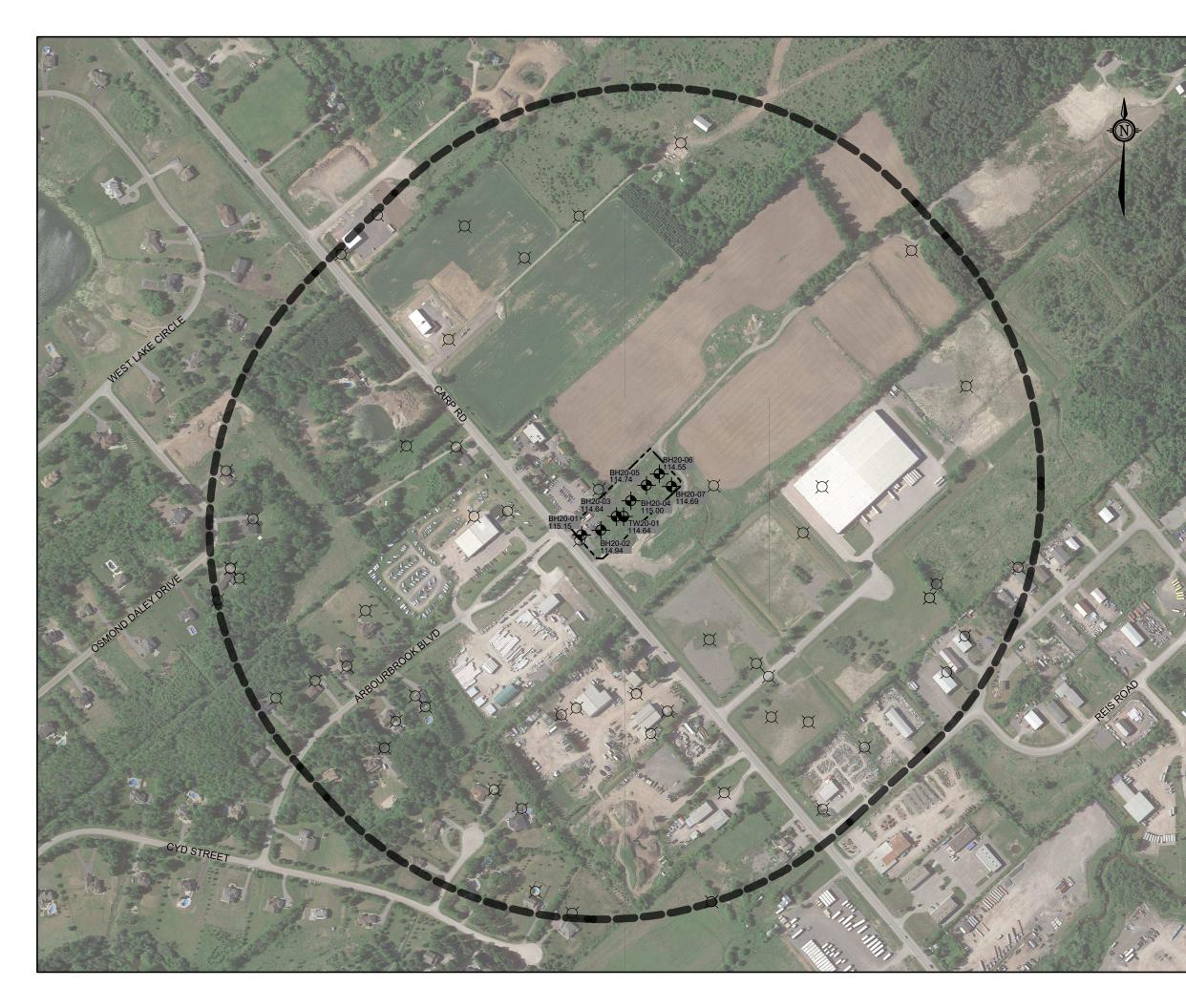
Dillon Consulting Limited. 2004. Carp Road Corridor, Groundwater Study. November 30, 2004.

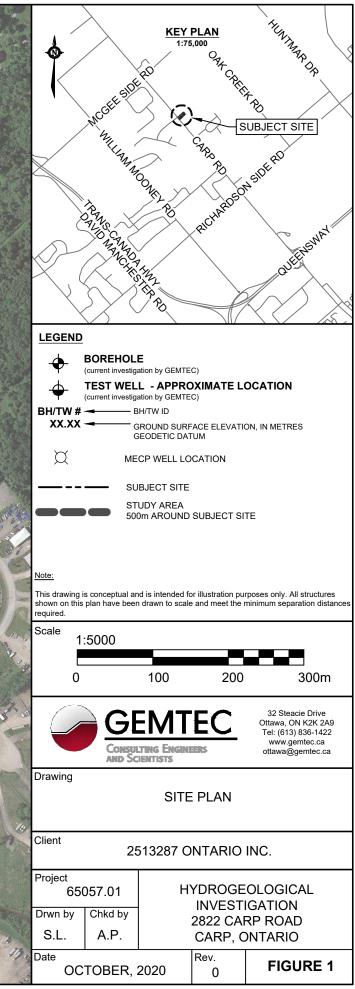
Gao, C., Shirota, J., Kelly, R. I., Brunton, F.R., van Haaften, S. 2006. Bedrock topography and overburden thickness mapping, southern Ontario; Ontario Geological Survey, Miscellaneous Release--Data 207. ISBN 1-4249-2550-9

Ontario Geological Survey. 2010. Surficial geology of Southern Ontario. Ontario Geological Survey, Miscellaneous Release-Data 128-Revision 1.

Ontario Ministry of the Environment and Climate Change. 1996. Procedure D-5-5, Technical Guideline for Private Wells: Water Supply Assessment. August 1996.

Ontario Ministry of the Environment and Climate Change. 1996. Procedure D-5-4, Technical Guideline for Individual On-Site Sewage Systems: Water Quality Impact Risk Assessment. August 1996.


Ontario Ministry of the Environment and Climate Change. 2008. Ontario Drinking Water Quality Standards, Safe Drinking Water Act, 2002, Ontario Regulation 169/03 as amended by Ontario Regulation 327/08.


Ontario Ministry of the Environment and Climate Change. 2006. Technical Support Document for Ontario Drinking Water Standards, Objectives and Guidelines. June 2006.

Ontario Ministry of the Environment and Climate Change. 1995. MOEE Hydrogeological Technical Requirements for Land Development Applications. April 1995.

Mississippi Valley Conservation and Rideau Valley Conservation Authority. 2011. Mississippi-Rideau Source Protection Region, Assessment Report, Mississippi Valley Source Protection Area. August 4, 2011.

a state	LEGEND									
		BOREHOL (current investig	. E Jation by GEMTE	C)						
522 17.10			L - APPRC		OCATION					
	BH/TW #		BH/TW ID							
	XX.XX		GROUND SURF		ON, IN METRES					
			SUBJECT SIT	E						
An .										
Contraction of the local division of the loc										
1000										
and the second se										
and										
18										
Pieros a										
No.										
	Note:									
A New	shown on this				rposes only. All structures minimum separation distances					
	required.	.750								
	1	:750								
THE.	0		15	30	45m					
	~~									
1		G	EMT	EC	32 Steacie Drive Ottawa, ON K2K 2A9 Tel: (613) 836-1422					
Press		Consu	lting Engine		www.gemtec.ca ottawa@gemtec.ca					
	Drawing	VND 20	CIENTISTS							
	5	C	DETAILED	SITE PL	AN					
A PARTY										
	Client	2	513287 O	NTARIO	INC.					
City and	Project									
the second	65057.01 HYDROGEOLOGICAL INVESTIGATION									
	Drwn by S.L.	Chkd by A.P.		2822 CAI	RP ROAD					
	S.L. Date	А.Р.		CARP, C Rev.	ONTARIO					
Carlos Carlos		TOBER,	2020	0	FIGURE 2					

LEGEND BOREHOLE \blacklozenge (current investigation by GEMTEC) **TEST WELL - APPROXIMATE LOCATION** Φ (current investigation by GEMTEC) BH/TW # 🔫 BH/TW ID XX.XX 🛥 GROUND SURFACE ELEVATION, IN METRES GEODETIC DATUM XX.XX OBVERBURDEN THICKNESS SUBJECT SITE Note: This drawing is conceptual and is intended for illustration purposes only. All structures shown on this plan have been drawn to scale and meet the minimum separation distance required. Scale 1:750 0 15 30 45m 32 Steacie Drive GEN Ottawa, ON K2K 2A9 Tel: (613) 836-1422 www.gemtec.ca ottawa@gemtec.ca Consulting Engineers and Scientists Drawing OVERBURDEN THICKNESS MAP Client 2513287 ONTARIO INC. Project HYDROGEOLOGICAL 65057.01 INVESTIGATION Drwn by Chkd by 2822 CARP ROAD S.L. A.P. CARP, ONTARIO Date Rev. FIGURE 3 OCTOBER, 2020 0

Pre-Development Site Conditions

Topography Factor = 0.2 'Rolling Lands' Vegetation Factor = 0.4 'Open Sandy Loam' Cover Factor = 0.1 'Cultivated Lands' Water Holding Capacity = 150mm 'Fine Sandy Loam - Pasture and Shrubs Hard Surface Area = 14%

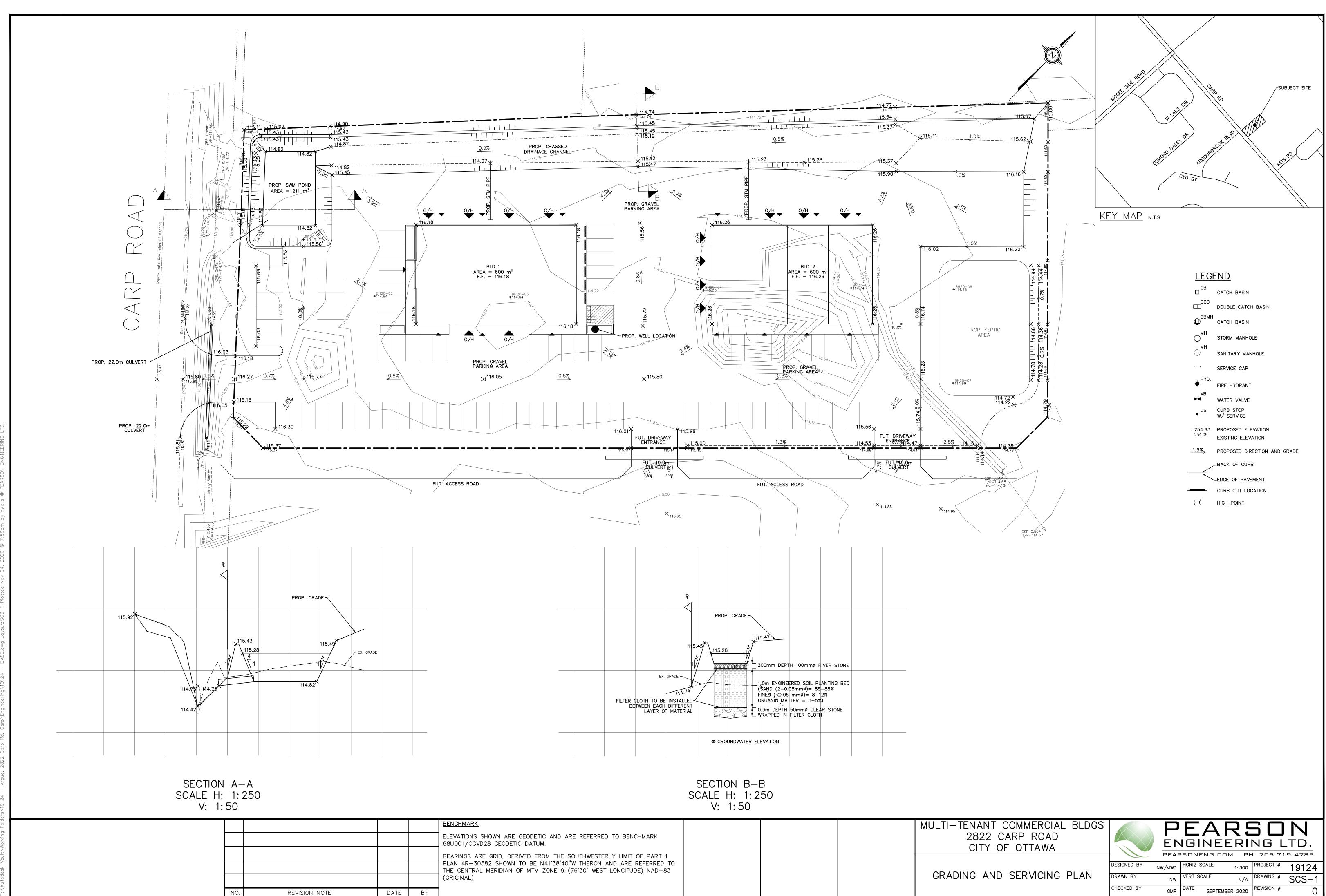
> 100 100 100

> > CARD RD

30JRBROOK BLVP

and the second second second	↔ •	BOREHOLI (current investig: TEST WEL (current investig: B G G	ation by GEMTE L - APPRC ation by GEMTE BH/TW ID	DXIMATE LO C) TACE ELEVATIO	DCATION
and have a second					
and the state of the state					rposes only. All structures ninimum separation distances
and the Name	Scale 1	:750	15	30	45m
a start a		Consu	EMT TING ENGINE		32 Steacie Drive Ottawa, ON K2K 2A9 Tel: (613) 836-1422 www.gemtec.ca ottawa@gemtec.ca
	Drawing	PRE-DE	VELOPM	IENT CO	NDITIONS
2	Client	25	513287 O	NTARIO	INC.
ALL PARTY	Project 65 Drwn by S.L.	057.01 Chkd by A.P.		INVEST 2822 CA	OLOGICAL IGATION RP ROAD DNTARIO
Aller .	Date OC	TOBER, 2	2020	Rev. 0	FIGURE 4

3H20-0 14.55



Ser and	LEGEND				
all	•	BOREHOL (current investiga		C)	
Sold and	т ф	TEST WEL	L - APPRO		OCATION
	Ţ BH/TW #	(current investiga	ation by GEMTE 3H/TW ID	C)	
	XX.XX		GROUND SURF		ON, IN METRES
Sec.	<u> </u>	<u> </u>	SUBJECT SIT	E	
Carlos Carlos	PROPERTY	AREA = 10120	.59m²		
	SURFACE A	REA = 6617.75	im², 65% OF Pf	ROPERTY ARE	A
and and	VEGETATE	D AREA = 3502	.84m ² , 35% OF	PROPERTY A	REA
No.					
S.F.					
N. C. S.					
100					
1					
and the second					
A LA					
新聞	Note:				
今日	shown on this				rposes only. All structures minimum separation distances
	required.				
	1	:750			
	0		15	30	45m
	0		10		4011
			ΞΜΤ		32 Steacie Drive Ottawa, ON K2K 2A9
					Tel: (613) 836-1422 www.gemtec.ca
and a second			LTING ENGINE		ottawa@gemtec.ca
NY.	Drawing				
-		POST-DE	EVELOP	MENT CC	NDITIONS
No. of Street, or other					
の一個の	Client	25	513287 O	NTARIO	INC.
P. C.	Project	057.01	н		OLOGICAL
New Co			''		IGATION
	Drwn by S.L.	Chkd by A.P.			RP ROAD ONTARIO
Con Control of	Date	TOBER, 2	2020	Rev.	FIGURE 4
1.30		, -	-	Ŭ	

APPENDIX A

Lot Grading and Servicing Plan

BENCHMARK		
ELEVATIONS SHOWN ARE GEODETIC AND ARE REFERRED TO BENCHMARK 68U001/CGVD28 GEODETIC DATUM.		
, BEARINGS ARE GRID, DERIVED FROM THE SOUTHWESTERLY LIMIT OF PART 1		-
PLAN 4R-30382 SHOWN TO BE N41°38'40"W THERON AND ARE REFERRED TO THE CENTRAL MERIDIAN OF MTM ZONE 9 (76°30' WEST LONGITUDE) NAD-83		
(ORIGINAL)		

APPENDIX B

Record of Borehole and Test Pit Sheets

RECORD	OF E	BOREH	OLE	20-1
--------	------	-------	-----	------

CLIENT:2513287 Ontario Inc.PROJECT:Geotechnical InvestigationJOB#:65057.01

LOCATION: See Borehole Location Plan, Figure 1

Щ	ПР	SOIL PROFILE			SAMPLES			● PENETRATION SHEAR STRENGTH (Cu), kPA RESISTANCE (N), BLOWS/0.3m + NATURAL ⊕ REMOULDED								2				
DEPTH SCALE METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	ТҮРЕ	RECOVERY, mm	BLOWS/0.3m				TRATIC LOWS/		W	′ _P ├──			w _L	ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION
_		-	ν				-	8		0 :	20 :	30 4	10 : : : :	50 0	60 i	70 8	30 9 ::::	90		
- 0 - -		Ground Surface Grey sand and gravel, trace silt (BASE/SUBBASE MATERIAL)		115.15	1	SS	430	13		•									-	
-		Dark grey SANDY SILT		<u>114.74</u> 0.41																
- - - 1		Loose to compact, grey brown SAND, some silt		<u>114.21</u> 0.94	2	SS	430	8											-	
				- - - -			430													
					3	SS	510	26												
- - 2 -																				
-					4	SS	410	16												
-		End of borehole	111 <u>2</u> 3	· · · ·	4 55															
- 3 - -				<u>112.10</u> 3.05																
																			-	
									::::			::::			::::		::::	::::		
		GEMTEC Consulting Engineers and Scientists																		ED: A.N. KED: J.B.

CLIENT:2513287 Ontario Inc.PROJECT:Geotechnical InvestigationJOB#:65057.01

LOCATION: See Borehole Location Plan, Figure 1

щ		DO	SOIL PROFILE	-		SAN	/IPLES		● PE RE	NETR.	ATION	● PENETRATION SHEAR STRENGTH (Cu), kPA RESISTANCE (N), BLOWS/0.3m + NATURAL ⊕ REMOULDED											
DEPTH SCALE		BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH	NUMBER	ТҮРЕ	RECOVERY, mm	BLOWS/0.3m		'NAMIC SISTA						WATE	R CON W			ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION	
		BC		STF	(m)	2		R.	BLO	1	10	20	30	40) 5	0 6	0 7	'0 ε	30 9 	90			
-	0	_	Ground Surface Dark brown silty sand with organic material (TOPSOIL)	<u>711</u> 71	114.94									::								ΙΓ	
Ę			material (TOPŚOIL)																				
-			Loose to compact, grey brown SAND, some silt	<u>1¹ 771¹</u>	114.63 0.31	1	SS	360	5														
Ē																							
F																							
F																							
F	1					2	SS	410	5	•													
F																							
F																							
E																							
╞					112 14																		
È			Compact to very dense, grey brown silty sandy gravel with cobbles and boulders (GLACIAL TILL)	XX	<u>113.14</u> 1.80	3	SS	430	27														
-	2		boulders (GLACIAL TILL)											::	· · · · ·								
F				1X	Ĩ																		
È				\mathcal{N}																			
+					1																		
Ē				× ×		4	SS	230	37					Ŭ.									
E																							
F	3												<u> </u>	::	<u> </u>								
-						5	SS	130	50 fo	0.19m	1												
F			End of borehole	8. <u>/</u> /	111.56 3.38																		
È			Auger refusal																				
F																							
0																							
22/9/2	4														<u></u>							-	
I G																							
2018.0																							
GEM G																							
GPJ																							
08-28	5																					-	
2020																							
<u>- 101</u>																							
65057																							
g																							
- ICE	6																					-	
GEO - BOREHOLE LOG 65057.01_GINT_2020-08-28.GPJ GEMTEC 2018.GDT 22/9/20			Gemtec	L	I	I	1	1	1		1	1	<u>· · ·</u>	· · [1	1		D: A N	
			DISULTING ENGINEERS ID SCIENTISTS																			ED: A.N. (ED: J.B.	
ö		A٨	ID SCIENTISTS																		0201		

CLIENT:2513287 Ontario Inc.PROJECT:Geotechnical InvestigationJOB#:65057.01

LOCATION: See Borehole Location Plan, Figure 1

ц	ДQ	SOIL PROFILE					SAMPLES				ATION NCE (N), BLO	NS/0.3	si m +	HEAR S NATUR	TRENG AL⊕F		ß۲				
METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	ТҮРЕ	RECOVERY, mm	BLOWS/0.3m	▲ DY RE	NAMIC SISTA	PENE NCE, B	TRATIO LOWS		W	WATE	R CON W	TENT,		TIONA	s	EZOMET OR TANDPIF STALLAT	ΡE
0		Ground Surface		114.64						· · · · ·									_			_
		Dark brown sandy silt, some gravel with cobbles and organics (FILL MATERIAL)			1	SS	150	5	•	Ö												
1		Compact, grey brown SAND, some		<u>113.60</u> 1.04	2	SS	430	10		D									-			
		silt		•															м		Ā	
				• • •																	-	
2		Compact, grey SILTY SAND		<u>112.81</u> 1.83	3	SS	310	16		۲)								м			
2																						
					4	SS	480	11											м			
		Compact to very dense, grey gravel, some silt, some sand with cobbles		<u>111.80</u> 2.84																	-	
3		and boulders (GLACIAL TILL)			5	SS	150	50 fo	r 0.136)											- - - - - - - - - - -	TTTTTTTTT
4					6	SS	50	14	0	•												
					7	SS	200	50 fo	r 0008m													
5		End of borehole		109.64 5.00																		
		Auger refusal																				
																				GF OI DATE	ROUNDWAT SSERVATIO	TEF
																				20/09/15	(m)	<u>,</u> ,
6																						t
		SEMTEC																	LOG	GED: A	N.	

CLIENT:2513287 Ontario Inc.PROJECT:Geotechnical InvestigationJOB#:65057.01

LOCATION: See Borehole Location Plan, Figure 1

S S	ALE	DOH-	SOIL PROFILE		SAN	/IPLES	-	● PE RE	NETR SISTA	ATION NCE (M	I), BLO	WS/0.3	SHEAR STRENGTH (Cu), kP/ 3m + NATURAL ⊕ REMOULDED					AL NG			
0 0 0 1 0 1 0 1 0 1 0 1 0 1 0	EPTH SC/ METRES	RING MET	DESCRIPTION	ATA PLO1		UMBER	ТҮРЕ	COVERY,	WS/0.3m	▲ DY RE	'NAMI SISTA	C PENE	TRATIO	DN /0.3m						ADDITION AB. TESTI	PIEZOMETER OR STANDPIPE INSTALLATION
3 Dut toose and your group or	ä	BOF		STR	(m)	ž		RE	BLO	1	10	20	30	40	50 6	0 7	70 E	30 9	90	₹7	
some sit 2 SS 40 10 Loose to compact, grey SILTY SAND 112,22 3 SS 40 12 Image: some sit 112,22 3 SS 40 12 Image: some sit 112,22 3 SS 40 12 Image: some sit 112,22 4 SS 410 5 Image: some sit 112,240 4 SS 410 5 Image: some sit 113,261 113,261 5 6 6 Image: some sit Image: some sit 113,261 113,261 113,261 113,261 Image: some sit Image: some sit Image: some sit Image: some sit Image: some sit Image: sot Image: sot Ima	- 0 - -		Dark brown sandy silt, some gravel with cobbles and organics (FILL		115.00	1	SS	180	50 fo	0.08n	n									-	
some sit 2 SS 40 10 Loose to compact, grey SILTY SAND 112,22 3 SS 40 12 Image: some sit 112,22 3 SS 40 12 Image: some sit 112,22 3 SS 40 12 Image: some sit 112,22 4 SS 410 5 Image: some sit 112,240 4 SS 410 5 Image: some sit 113,261 113,261 5 6 6 Image: some sit Image: some sit 113,261 113,261 113,261 113,261 Image: some sit Image: some sit Image: some sit Image: some sit Image: some sit Image: sot Image: sot Ima	-																				
some sit 2 SS 40 10 Loose to compact, grey SILTY SAND 112,22 3 SS 40 12 Image: some sit 112,22 3 SS 40 12 Image: some sit 112,22 3 SS 40 12 Image: some sit 112,22 4 SS 410 5 Image: some sit 112,240 4 SS 410 5 Image: some sit 113,261 113,261 5 6 6 Image: some sit Image: some sit 113,261 113,261 113,261 113,261 Image: some sit Image: some sit Image: some sit Image: some sit Image: some sit Image: sot Image: sot Ima	- - - 1		Loose to compact, grey brown SAND		114.04																
2 3 S5 410 12 11 11 11 11 11 11 3 5 5 5 40 6 • 0 0 0 0 0 0 0 11 11 11 11 11 0 0 0 0 0 0 0 0 0 0 0 11 11 11 11 11 0 0 0 0 0 Some still some stand with cobbles 0 0 0 0 0 0 110 11 11 0 0 0 0 0 0 0 10 11 10 10 10 10 0	- - -		some silt			2	SS	480	10												
2 3 S5 410 12 11 11 11 11 11 11 3 5 5 5 40 6 • 0 0 0 0 0 0 0 11 11 11 11 11 0 0 0 0 0 0 0 0 0 0 0 11 11 11 11 11 0 0 0 0 0 Some still some stand with cobbles 0 0 0 0 0 0 110 11 11 0 0 0 0 0 0 0 10 11 10 10 10 10 0	-				· · ·																
- 3	- 2		Loose to compact, grey SILTY SAND		<u>113.28</u> 1.72	3	SS	410	12		•										
grey SILTY ČLÁY 4 SS 410 5 SS 400 5 SS 400 6 9 - 3 - 4 - 5 - 5 - 5 - 5 - 6 - 6 - 6 - 7 -	-				- - - -																
- 4 - 4 - 5 -			Interbedded grey SILTY SAND and grey SILTY CLAY		. <u>112.51</u> 2.49	4	SS	410	5	•											
- 4 - 4	- - - 3																			-	
- 4 - 4	_					5	SS	460	6												
- 4 - 4	-		Compact to very dense, grey gravel,		111.39 3.61																
- 5 - 5	- - - 4		and boulders (GLACIAL TILL)																		
- 5 End of borehole Auger refusal 110.17 4.83 -	-					6	SS	310	25			•									
 Auger refusal 6 	- - -					7	SS	50	50 for	0.13n	1										
			End of borehole Auger refusal		<u>110.17</u> 4.83																
	-																				
	-																				
	-																				
	- б		<u> </u> Gemtec	<u> </u>																	
		A	Consulting Engineers and Scientists																	CHEC	KED: J.B.

CLIENT:2513287 Ontario Inc.PROJECT:Geotechnical InvestigationJOB#:65057.01

LOCATION: See Borehole Location Plan, Figure 1

Щ		Д Ср	SOIL PROFILE		SAM	IPLES		● PENETRATION SHEAR STRENGTH (Cu), kPA ■ RESISTANCE (N), BLOWS/0.3m + NATURAL ⊕ REMOULDED													
DEPTH SCALE METRES		BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	ТҮРЕ	RECOVERY, mm	BLOWS/0.3m			C PENE NCE, B			W _P	,⊢	R CON W O		% w _L 90	ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION
- c - -	,		Ground Surface Dark brown silty sand, with organic material (TOPSOIL)	<u>17 5117</u>	114.74	1	SS	330	4												
-			Loose to compact, grey brown SAND, some silt		0.33	·															
- - - 1 - -						2	SS	410	9												
- - - - 2	2					3	ss	460	21	-		•									-
						4	SS	460	11	-											
- 3 - - - -	5		Interbedded grey SILTY SAND and grey SILTY CLAY		<u>111.69</u> 3.05 <u>111.18</u> 3.56	5	SS	380	1	•											
	Ļ		Compact to very dense, grey silty sandy gravel with cobbles and boulders (GLACIAL TILL)			6	SS	80	58 fo	r 0.18											- - - -
GEO - BOREHOLE LOG 65057.01_GINT_2020-08-28.GPJ GEMTEC 2018.GDT 22/9/20			End of borehole Auger refusal	\$. \$ \$ \$ \$ \$ \$ \$	<u>110.40</u> 4.34																
7.01_GINT_2020-08-28.0	5																				
BHOLE LOG 65057	5																				
SEO - BORE			SEMTEC INSULTING ENGINEERS D SCIENTISTS	-							·								-		ED: A.N. KED: J.B.

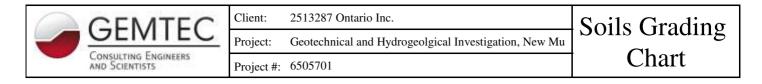
RECORD OF BOREHOLE 20-6

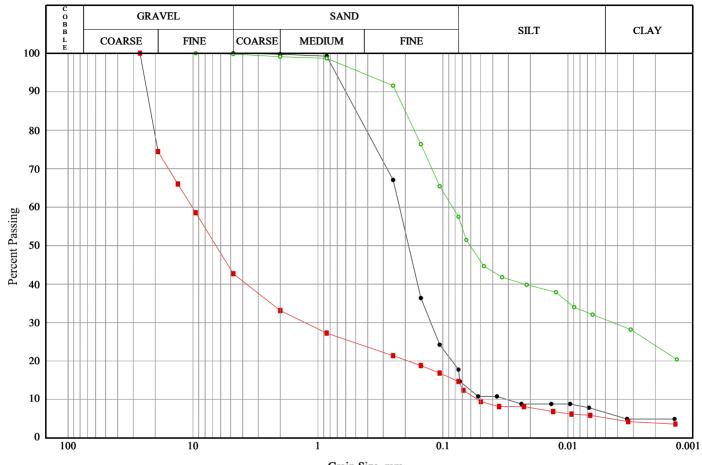
CLIENT:2513287 Ontario Inc.PROJECT:Geotechnical InvestigationJOB#:65057.01

LOCATION: See Borehole Location Plan, Figure 1

SHEET:1 OF 1DATUM:CGVD28BORING DATE:Aug 21 2020

Ц	DOH.	SOIL PROFILE	<u>.</u>	i		SAN	IPLES			NETR/ SISTA	ATION NCE (M	I), BLC	WS/0.3	⊦R m +1	IEAR S NATUR		REMOL	ILDED	₽₽	
DEP IN SUALE METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	ТҮРЕ	RECOVERY, mm	BLOWS/0.3m	▲ DYI RE					W				- w _L	ADDITIONAL LAB. TESTING	PIEZOMETEI OR STANDPIPE INSTALLATIO
-		Occurred Outford	<u>م</u>				-		1		20	30	40	50 6	50 7 ::::	70 8	30 9	90 ::::	$\left \right $	
0 -		Ground Surface Dark brown silty sand, with organic material (TOPSOIL) Very loose to compact, grey brown SAND, some silt	<u>1 </u>	<u>114.55</u> <u>114.37</u> 0.18	1	SS	610	2	•											
1					2	SS	610	3	•											
					3	SS	480	21												
2		Compact, grey brown SILTY SAND		<u>112.72</u> 1.83	4	SS	510	30				•								
		Compact, grey silty sandy gravel with cobbles and boulders (GLACIAL TILL)		<u>112.19</u> 2.36	5	SSS	200	28												
3		End of borehole	¢ ¢	<u>111.50</u> 3.05																
4																				
5																				
6																				
		SEMTEC NSULTING ENGINEERS D SCIENTISTS		I								: : : :						<u> ::::</u>	LOGGI	ED: A.N.

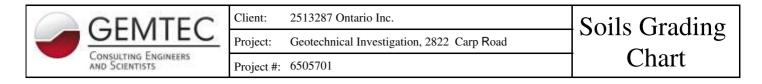

RECORD OF BOREHOLE 20-7

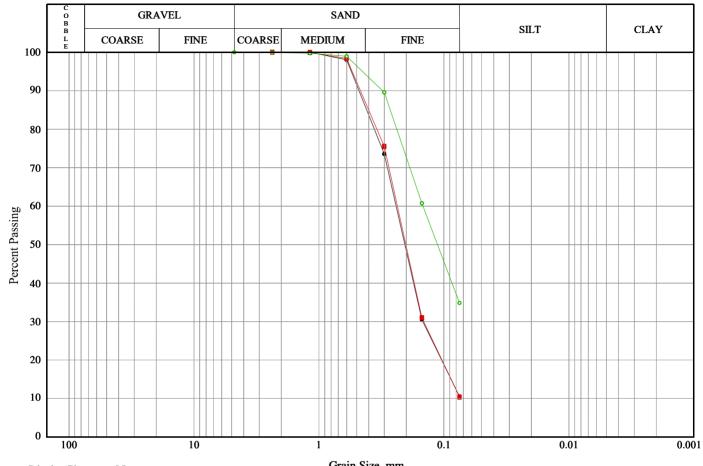

CLIENT:2513287 Ontario Inc.PROJECT:Geotechnical InvestigationJOB#:65057.01

LOCATION: See Borehole Location Plan, Figure 1

SHEET:1 OF 1DATUM:CGVD28BORING DATE:Aug 21 2020

J LE	THOD	SOIL PROFILE	1 ,		SAMPLES				● ^{PE} RE	NETR/ SISTA	TION NCE (N), BLO	NS/0.3ı	SH n + M	EAR ST	i keng AL⊕F	TH (CL REMOL	I), KPA ILDED	ВÅ	
DEPTH SCALE METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	ТҮРЕ	RECOVERY, mm	BLOWS/0.3m			PENE NCE, B			W _F	-	0		% W _L 90	ADDITIONAL LAB. TESTING	PIEZOMETEF OR STANDPIPE INSTALLATIO
0	-	Ground Surface Dark brown silty sand, with organic material (TOPSOIL)	0	114.69																
		material (TOPSOIL) Very loose to compact, grey brown SAND, some silt	<u> </u>	<u>114.49</u> 0.20	1	SS	480	3												
1					2	SS	530	2	•											
					3	SS	480	15		•										
2																				
				110.00	4	SS	480	10												
		Very dense, grey silty sandy gravel with cobbles and boulders (GLACIAL TILL)		112.30 2.39	5	SS	80	50 fo	r 0.08m											
		,																		
3		End of borehole		<u>111.64</u> 3.05																
4																				
5																				
6																				
	G	SEMTEC																	LOGGI	ED: A.N.





- Limits Shown: None

Grain Size, mm

Line Symbol	Sample		Boreh Test		Sample Number		Depth			% Cob.+ Gravel		‰ and	% Sil		% Clay
•			20-0)1	S	A 3		1.52-2.13		0.0	82	2.3	11.	2	6.6
_			20-0)2	S	A 4		2.28-2.89		57.3	2	8.0	9.5	5	5.2
o			20-0)4	S	A 4		2.28-2.89		0.2	42	2.3	26.	8	30.7
														-	
Line Symbol	CanFEM Classification		SCS nbol	D ₁	0	D ₁₅		D ₃₀	D ₅₀	I	0 ₆₀	D	85	% :	5-75µm
•	Sand, some silt, trace clay	N	I/A	0.0)3	0.07	,	0.13	0.19) (.22	0.	49		11.2
	Sandy gravel , trace silt, trace clay	N	[/A	0.0)5	0.08		1.28	6.54	۱ I	0.13	21	.80		9.5
o	Silty clayey sand , trace gravel	N	[/A		-			0.00	0.00	5 (0.08	0.	20		26.8

- Limits Shown: None

1
1

Line Symbol	Sample		ehole/ st Pit		mple Imber	Depth		% Co Gra		% Sa		% Sil	% t Clay
•	Sand, some silt	2	0-03	S	A 2		0.76-1.37	0.	0	89	.5		10.5
	Sand, some silt	2	20-03		A 3		1.52-2.13	0.	0	89	.7	10.3	
o	Silty sand	2	0-03	3 SA		2.28-2.89		0.	0.0		.2	34.8	
Line Symbol	CanFEM Classification	USCS Symbol	D	0	D ₁₅		D ₃₀	D ₅₀	De	60	D ₈	35	% 5-75µm
•	Sand , some silt	N/A		-	0.09)	0.15	0.21	0.2	24	0.4	41	
	Sand , some silt	N/A		-	0.09)	0.15	0.20	0.2	24	0.4	40	
o	Silty sand	N/A						0.11	0.1	15	0.2	27	

APPENDIX C

TW19-1 Water Well Record and Certificate of Well Compliance

&

Well Record Summary

Ministry of the Environment, Conservation and Parks Measurements recorded in:	Well Tag No. (Place Sticker an A 296836			Nell Record Water Resources Act geof
Well Owner's Information				I
First Name Last Name / Organization 25/3287	ONTARIO IN	E-mail Address		Well Constructed by Well Owner
Mailing Address (Street Number/Name)	Municipality	Province Post		ne No. <i>(inc. area code)</i>
3458 PAUL ANKA DI Well Location	R. OTTAWA	ONT KI	1V9K6	
Address of Well Location (Street Number/Name)	Township	Lot	PART Conces	
2822 CARP RD County/District/Municipality	FORMERLY City/Town/Village	HUNTLEY	9 Province	K Postal Code
OTAWA	O'T	TAWA	Ontario	
UTM Coordinates Zone Easting Northing	Municipal Plan and Sublo	Number 30382	Other	
NAD 8 3 8 42 207 1501 15 Overburden and Bedrock Materials/Abandonment Seali				
General Colour Most Common Material	Other Materials	General De	scription	Depth (<i>m/ft</i>) From To
	CEY SAND & GRA	VEL		0 10
GREY SHALE				1020
GREY LIMESTONE				26 155
Annular Space		Resul	ts of Well Yield Testi	ng
Depth Set at (<i>m/ft</i>) Type of Sealant Used	Volume Placed	After test of well yield, water	was: Draw Dow	n Recovery
FromTo(Material and Type)O40BENTONITE GI	(m3/#3) Yd	Clear and sand free Other, specify		evel Time Water Level (min) (m/ft)
O TO OLIVIOUTE G	FOUL 0710	If pumping discontinued, give	Statio 53	2
			1 9.3	5 1 35.33
		Pump intake set at (m/ft)	2 1/00	8/ 228.15
		Pumping rate (I/min / GPM)	3 14.0	7 3 25.46
	Well Use Commercial Not used	10	4 16.4	10 4 20,86
Rotary (Conventional) Jetting Domestic Rotary (Reverse) Driving Livestock	Municipal Dewatering Test Hole Monitoring	Duration of pumping	5 1700	94 5 18,99
Boring Digging Irrigation	Cooling & Air Conditioning	Final water level end of pump		65 10 12.07
Air percussion Industrial Other, specify Other, specify		35 × Z7	4 17 17	33 15 8072
Construction Record - Casing	Status of Well		20 29.	49 20 6,89
Inside Open Hole OR Material Wall Depth (r Diameter (Galvanized, Fibreglass, (cm/in) Concrete, Plastic, Steel) (cm/in) From	To Replacement Well	Recommended pump depth	(m/ft) 25 30,1	20 25 5,77
64 STEEL 0188 044	40 Test Hole	Recommended pump rate (I/min / GPM)	30 21-	79 30 5.12
	Dewatering Well	12	40 330	50 40 4.26
GIG OPEN HOLE 40 1	155 Observation and/or Monitoring Hole	Well production (Vmin/GPM)	50	50 4.03
	Alteration (Construction)	Disinfected?	60 340	1.00
Construction Record - Screen	Abandoned, Insufficient Supply	Yes No	ap of Well Location	
Outside Material Depth (r		Please provide a map below		on the back.
Diameter (cm/in) (Plastic, Galvanized, Steel) Slot No. From	To Abandoned, other, specify	11		T,
	Other, specify			- N
		8		
Water Details Water found at Depth Kind of Water: Fresh XUntested	Hole Diameter Depth (<i>m/ft</i>) Diameter	ARPX		
145 m/tt) Gas Other, specify	From To (cm/in)			
Water found at Depth Kind of Water: Fresh Untested	0 40 93	B		_
(<i>m/ft</i>) Gas Other, <i>specify</i> Water found at Depth Kind of Water: Fresh Untested	40 155 616	ň		
(m/ft) Gas Other, specify				
Well Contractor and Well Technician I Business Name of Well Contractor	Information Well Contractor's Licence No.			
SAUNDERS WELLDRILLING LT				
Business Address (Street Number/Name)	Municipality BRAESIDE	Comments:		
Province Postal Code Business E-mail Addre	· ·			
ONT: KOAIGO Bus Telephone No. (inc. and order) Name of Well Technician (Las	st Nama First Nama)	Well owner's Date Package		inistry Use Only
Bus. Telephone No. (inc. area code) Name of Well Technician (Las	TROY	package delivered	1004 Audit N	4334368
Well Technician's Licence No. Signature of Technician and/or Contr	ractor Date Submitted	No Date Work Co	100 10	
0506E (2018/12)	2020/029 Ministry's Copy	2020		ed een's Printer for Ontario, 2018

CERTIFICATE OF WELL COMPLIANCE

I, <u>TROY</u> <u>SAUNDERS</u> DO HEREBY CERTIFY that I am licensed to drill water wells in the Province of Ontario, and that I have supervised the drilling of a well on the property of <u>25/3287</u> <u>ONTARIO</u> /NC (Name of Landowner), located at <u>2822</u> <u>CARP. RD</u> (Legal Description, Lot / Plan No.) in the City of Ottawa.

I CERTIFY FURTHER that, I am aware of well drilling requirements, the guidelines, recommendations and regulations of the Ministry of the Environment governing well installations in the Province of Ontario, and the standards specified in any subdivision agreement and hydrogeological report applicable to this site and Township Standards:

AND DO HEREBY CERTIFY THAT the said well has been drilled, cased, grouted (cement or bentonite) and constructed in strict conformity with the standards required.

SIGNED this 15th day of Ot. , 2020.

JLOY South / SAUNDERS WELL DRILLING LTD.

The Engineer on behalf of the landowner set out above **CERTIFIES** that he/she has inspected the well and it was constructed in accordance with the specifications in 0.Reg.903, this report and the Hydrogeological Report with regards to casing length and grouting requirements.

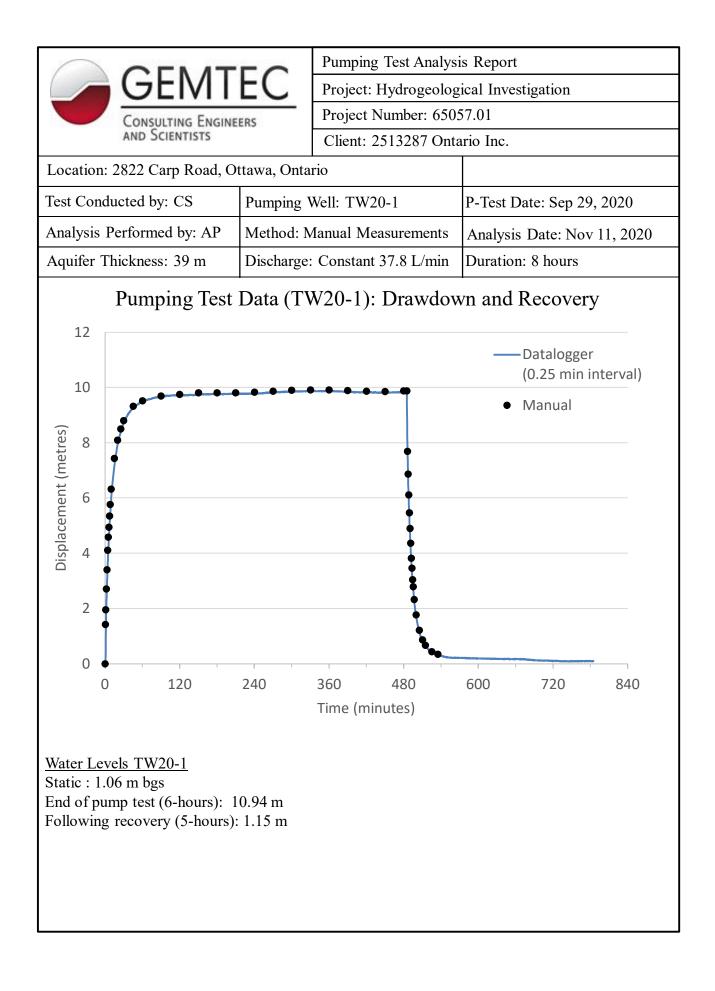
SIGNED this 23rd day of October, 2020. Andrius Paznekas, P.Geo" Engineer GEMTEC

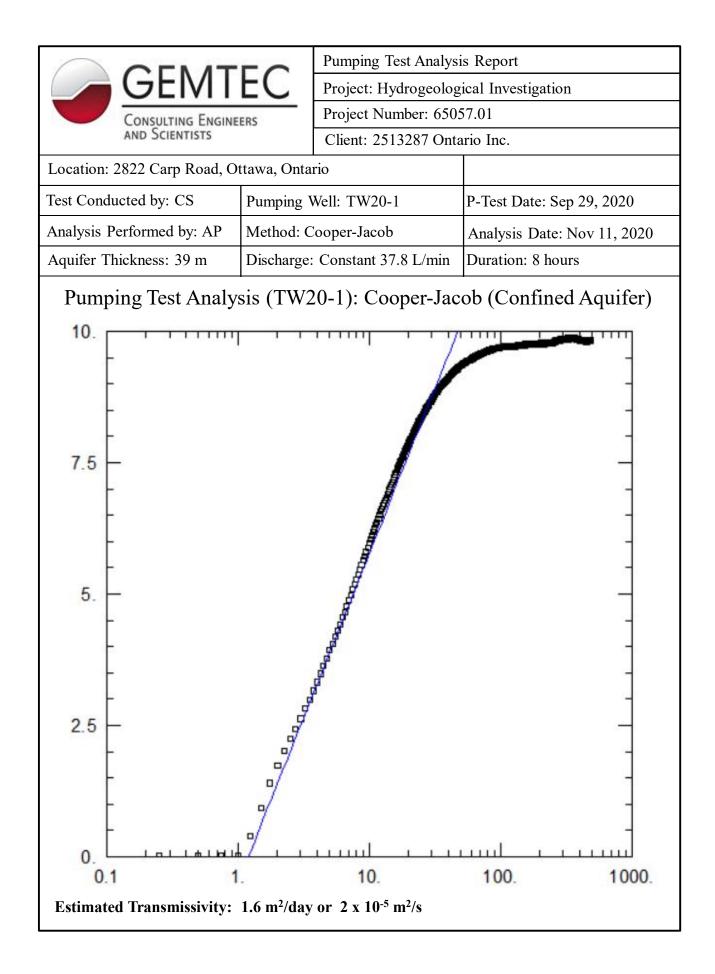
2010 #A296836 Weil Tag

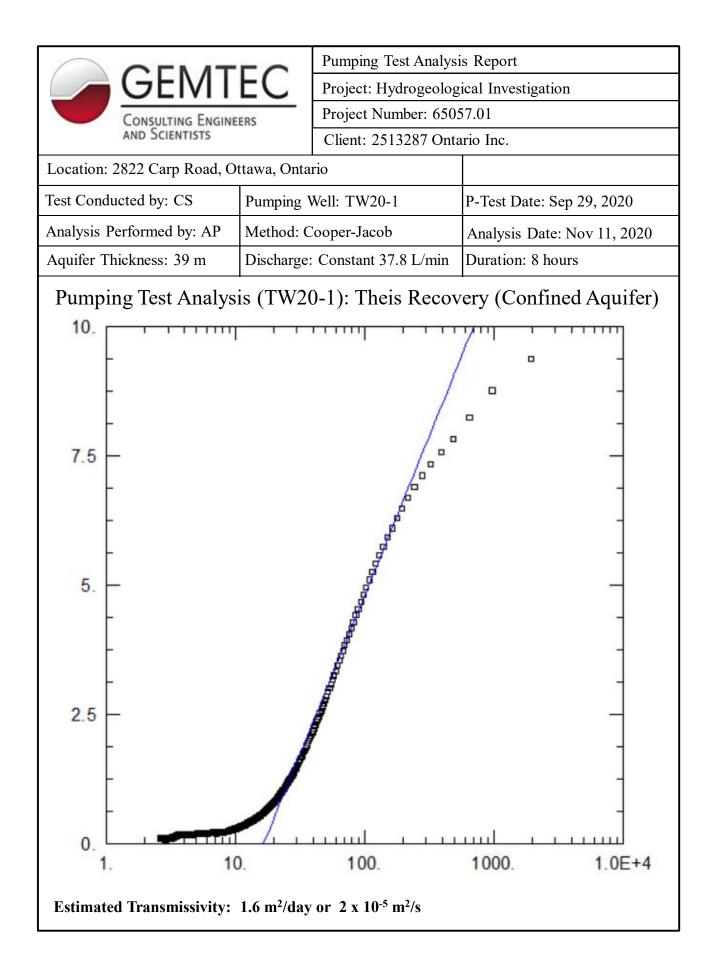
MECP Water Well Record Search 500 metre Radius - 2822 Carp Road

					Static Water	Water		
			Depth	Depth to	Level	Found	Weter Detail	
Borehole_ID 1002463513	Well_ID 7124076	Completed 2009-04-20	(m) 13.6	Bedrock (m)	(m bgs) 1.7	(m bgs)	Water Detail	Well Use DO
10045158	1523383	1989-03-28	-	0	3.7	19.8, 33.5, 59.4	SU	DO
10025106	1503063	1952-02-12	54.6	15.8	7	19.8, 48.2, 53.6	FR	DO
1001605312	7105841	2008-03-26	12.2	-	2.9	11.9	UK	DO
10025163	1503120	1966-04-24	7.9	-	1.8	7	FR	DO
11550209	1536143	2005-10-06	13.6	-	5.6	13.1, 13.4	FR	DO
1006477512	7287146	2016-08-03	83.2	-	4.9	32, 41.1	UT	DO
1006043318	7264607	2016-05-12	54.3	-	1.7	23.8, 35.4, 52.4	UT UK	CO DO
1001605300 10036009	7105837 1514027	2008-03-28 1974-02-07	14.6 23.8	- 8.5	3.8 1.8	13.4 23.2	FR	DO DO
1004689417	7214932	2013-11-20	7	-	1.0	-	-	MO
1002951495	7141751	2009-02-09	24.4			-	-	-
1006477573	7287149	2016-08-05	-	-		-	-	-
1003101928	7147771	2010-05-20	42.7	-	0.9	39.9	UT	DO
10032573	1510546	1970-01-21	23.2	9.1	3	22.9	FR	DO
1005554681	7246316	2015-07-07	61	-		-	UT	DO
1003810077	7181767	2012-04-27	25.3	-	0.8	24.1		CO
10038066	1516131	1977-08-28	19.5	1.2	9.1	16.8	FR	DO DO
11550393 10038439	1536327 1516528	2006-04-24 1978-06-20	18.3 72.2	5.5 4.3	0.9 7.6	16.8 71.6	FR	DO
1002951511	7141759	2010-02-08	48.8	4.0	1.2	45.1, 47.2	UT	DO
1006798880	7299151	2017-09-07	91.4		-	-	-	-
1005837009	7254250	2015-10-08	29.6	-	4.5	18.3, 27.4	UT	DO
1007283583	7318349	2018-07-16	3.1	-	-	-	-	-
1007283589	7318351	2018-07-16	3.1	-	-	-	-	-
10516851	1532401	2001-10-12	15.2	5.5	1.2	7.6, 13.7	UK	DO
1004191288	7190611	2012-10-03	42.1	-	3.3	20.7, 38.4	UT	DO
10537533 11691951	1533699 1536857	2003-03-17	14.6	4	3.4	12.2	UK	DO DO
1004728074	7218704	2006-09-22 2013-09-19	12.2 21.9	7.3	2.9 4.8	20.7	UT	DO
10049376	1527785	1992-02-29	57.9	9.1	4.9	12.8, 41.1, 50.9	FR	DO
11316492	1535953	2005-09-29	18.3	8.8	6.3	16.5		DO
1005671747	7247944	2015-08-06	64.3	-		15.2, 47.2	UT	TH
1005148527	7228811	2014-07-16	58	-	3.5	54.3	UT	CO
1002937571	7139812	2009-12-11	84.1	-	4.2	59.4, 82.6	UT	DO
1006196188	7268424	2016-06-09	-	-	-	-	-	-
1007293810	7319979	2018-07-15	3.1	-	-	-	-	-
10048643	1526956	1992-07-17 2010-05-04	36.6	2.1	5.2 4.4	35.1	FR UT	DO DO
1003262493 11316286	7149249 1535747	2005-07-05	45.1 35	12.5	4.4	21.3, 43.3	01	DO
11316635	1536096	2005-10-27	45.7	1.2	1.6	-		DO
10537534	1533700	2003-03-17	62.5	12.2	3.4	18.3, 44.2	UK	NU
10040692	1518822	1983-12-08	65.5	29.3	22.9	56.4, 63.7	FR	DO
11550365	1536299	2006-03-21	13.7	-	4.3	-		DO
1007283580	7318348	2018-07-16	4.7	-	-	-	-	-
11764880	7042385	2007-01-28	12.1	0.9	5.1	9.8, 11.6	FR	DO
10036297	1514322	1974-09-17	9.8	-	1.5	9.4	FR	DO
1007283586 1003434919	7318350 7156112	2018-07-16 2010-10-29	3.1 83.2	-	- 4	- 51.8, 79.2	- UT	- DO
11172720	1534968	2010-10-29 2004-08-24	45.1	4.9	4 1.9	-	01	DO DO
1001605303	7105838	2008-03-27	16.4		5.2	15.8	UK	DO
1006199035	7268387	2016-07-14	36.9	-	2	21.3, 35.1	UT	DO
1003074524	7147331	2010-05-12	30.8	-	2.4	11.6, 25, 26.8	UT	DO
1002588860	7126669	2009-06-04	42.7	-	4	20.7, 36, 40.2	UT	DO
1002950099	7141533	2010-01-11	12.8	-	-	-	-	-
10025164	1503121	1960-07-21	24.4	10.4	1.2	24.4	FR	DO
1005671750 10025165	7247945	2015-08-06	64.3 25	- 11.6	4.6	38.1 25	UT FR	TH DO
	1503122	1961-03-25				25	FR	
11691817 11691941	1536723 1536847	2006-09-08 2006-11-02	73.2 17.8	6.4	2.1	-	-	DO -
11691739	1536645	2006-07-26	15.2	4.9	1.3	12.5	-	DO
10050135	1528599	1994-05-06	15.2	7	1.5	9.8, 13.1	FR	CO
1006884093	7301325	-	-	-	-	-	-	-
1002950097	7141532	2010-01-11	43.3	-	-	-	-	-
23049235	7049235	2007-07-27	73.2	-	2.9	-	-	DO
1002951610	7141771	2009-12-21	97.5	-	1	90.5, 94.8	UT	DO
1005476375	7244461	2015-06-04	61	-	-	15.2, 50.3, 56.4	UT	DO
1004269688	7199589	2012-12-13	15.2	-	5.3	14	UT	DO
1005554678 Data from: https://data.ont	7246315	2015-06-06	85.3	-	-	71.6	-	DO

Data from: https://data.ontario.ca/dataset/well-records Last Updated: April 30, 2020


Code Description f	or "Water Detail"	Code Desc	ription for "Well Use"
FR	Fresh	DO	Domestic
SA	Salty	ST	Livestock
SU	Sulphur	IR	Irrigation
MN	Mineral	IN	Industrial
UK	Unknown	CO	Commercial
GS	Gas	MN	Municipal
IR	Iron	PS	Public
UT	Untested	AC	Cooling and A/C
OT	Other	NU	Not Used
-	-	ОТ	Other
-	-	TH	Test Hole
-	-	DE	Dewatering
-	-	MO	Monitoring
-	-	MT	Monitoring Testhole
-	-	AB	Abondoned




APPENDIX D

Pumping Test Data

APPENDIX E

Laboratory Certificates of Analysis & Summary Tables

	Summary of Measured Field Parameters											
Test Well A296836	Time Since Initiation of Pumping (Hours)	Pumping Rate	Temp	рН	Electrical Conductivity (µS/cm)	Total Dissolved Solids (ppm)	Colour (ACU ¹)	Colour (TCU ^{2,3})	Turbidity	Chlorine (mg/L)	Comments	
TW20-1	1	37.8	10.4	7.90	476	243	-	-	28.1	-	No odour, slightly turbid	
Pumping Test Sep 29, 2020	2	37.8	10.5	7.88	478	246	_	-	8.50	-	Clear, slight sulphur odour	
	3	37.8	10.8	7.82	473	237	_	-	4.51	-	Clear, slight sulphur odour	
	4	37.8	10.6	7.74	474	236	24	15	3.10	0	Clear, slight sulphur odour	
	5	37.8	10.8	7.81	476	237	-	-	4.56	-	Clear, slight sulphur odour	
	6	37.8	10.6	7.76	468	233	-	_	2.14	-	Clear, slight sulphur odour	
	7	37.8	10.6	7.84	475	240	-	-	3.41	-	Clear, slight sulphur odour	
	8	37.8	10.4	7.78	480	238	13	0	2.15	-	Clear, slight sulphur odour	
TW20-1 Oct 22, 2020	8	37.8	9.9	7.59	472	236	43	0	2.21	0	Strong sulphur odour	

NOTES:

1. ACU = Actual Colour Units

Field filtered using 0.45 micron filter
 TCU = True Colour Units

	Parameter	Units	TW20-1 4hr September 29, 2020	TW20-1 8hr September 29, 2020	TW20-1 R1 / R2 October 23, 2020	ODWQS	Standard
19	Escherichia coli	CFU/100mL	ND (1)	ND (1)	ND (1) / ND (1)	0	MAC
Parameters	Fecal Coliform	CFU/100mL	ND (1)	ND (1)	ND (1) / ND (1)	0	MAC
Paran	Total coliforms	CFU/100mL	12	16	1 / ND(1)	0	MAC
	Heterotrophic Plate Count	CFU/1mL	ND (10)	ND (10)	25 / 30	-	-
	Alkalinity (as CaC0 ₃)	mg/L	233	230	-	30-500	OG
	Ammonia as N (NH_3)	mg/L	0.08	0.08	-	-	-
	Dissolved Organic Carbon (DOC)	mg/L	3.7	3.7	-	5 / 10	AO / MCT
	Colour	тси	12	12	16	5 / 7	AO / MCT
	Electrical Conductivity	uS/cm	433	434	-	-	-
	Total Hardness (as CaC0 ₃)	mg/L	216	206	-	80-100	OG
0	рН	pH units	7.59	7.65	-	6.5-8.5	OG
0	Phenols	mg/L	0.002	0.004	-	-	-
	Total Dissolved Solids (TDS)	mg/L	264	262	-	500	AO
	Sulphide (S ₂)	mg/L	0.13	0.14	-	0.05	AO
	Tannin and Lignin	mg/L	-	-	-	-	-
	Total Kjeldahl Nitrogen (TKN)	mg/L	0.30	0.27	-	-	-
	Organic Nitrogen (TKN - NH ₃)	mg/L	0.22	0.19	-	0.15	OG
	Turbidity	NTU	2.1	1.1	-	5 / 5	AO / MCT
MAC OG = AO = ND =	VGS = Ontario Drinking Water Quality Standards = Maximum Acceptable Concentration Operational Guideline Aesthetic Objective Not Detectable Warning Level for Persons on Sodium Restricted Diets						Project: 65057.0

		Sur	mary of Laboratory	Parameters Analyzed	1 (2/2)		
	Parameter	Units	TW20-1 4hr September 29, 2020	TW20-1 8hr September 29, 2020	TW20-1 R1 / R2 October 23, 2020	ODWQS	Standard
	Chloride (Cl)	mg/L	11.0	11.5	-	250 / 250	AO / MCT
20	Fluoride (F)	mg/L	0.24	0.25	-	1.5	MAC
Anions	Nitrate as N (NO ₃)	mg/L	<0.05	<0.05	-	10	MAC
~	Nitrite as N (NO ₂)	mg/L	<0.05	<0.05	-	0.1	MAC
	Sulphate (SO ₄)	mg/L	18.6	17.9	-	500 / 500	AO / MCT
	Calcium (Ca)	mg/L	55.91	52.77	-	-	-
	Iron (Fe)	mg/L	0.110	0.088	-	0.3 / 5-10	AO / MCT
Metals	Magnesium (Mg)	mg/L	18.66	17.97	-	-	-
Met	Manganese (Mn)	mg/L	0.014	0.015	-	0.05 / 1.0	AO / MCT
	Potassium (K)	mg/L	3.80	3.58	-	-	-
	Sodium (Na)	mg/L	15.81	16.48	-	20 / 200 / 200	WL / AO / MCT

ODWQS = Ontario Drinking Water Quality Standards
 MAC = Maximum Acceptable Concentration
 OG = Operational Guideline
 AO = Aesthetic Objective
 ND = Not Detectable
 WL = Warning Level for Persons on Sodium Restricted Diets
 MC = Maximum Concentration Considered Research Transition

7. MCT = Maximum Concentration Considered Reasonably Treatable

Project: 65057.01 Date: November 2020

CLIENT NAME: GEMTEC CONSULTING ENGINEERS AND SCIENTISTS 32 STEACIE DRIVE OTTAWA, ON K2K 2A9 (613) 836-1422 ATTENTION TO: Andrius Paznekas PROJECT: 65057.01 AGAT WORK ORDER: 202657526 MICROBIOLOGY ANALYSIS REVIEWED BY: Nivine Basily, Inorganics Report Writer WATER ANALYSIS REVIEWED BY: Yris Verastegui, Report Reviewer DATE REPORTED: Oct 07, 2020 PAGES (INCLUDING COVER): 16 VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

*Notes			

Disclaimer:

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may
 incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 30 days following analysis, unless expressly agreed otherwise in writing. Please contact your Client Project Manager if you require additional sample storage time.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of
 merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines
 contained in this document.
- All reportable information as specified by ISO/IEC 17025:2017 is available from AGAT Laboratories upon request.

AGAT Laboratories (V1)

Page 1 of 16

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA) Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA) AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.

AGAT WORK ORDER: 20Z657526 PROJECT: 65057.01 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GEMTEC CONSULTING ENGINEERS AND SCIENTISTS

SAMPLING SITE:

ATTENTION TO: Andrius Paznekas

SAMPLED BY:

DATE RECEIVED: 2020-09-3	30					DATE REPORTED: 2020-10-07
	SA	MPLE DES	CRIPTION:	TW20-1 4Hr	TW20-1 8Hr	
		SAM	PLE TYPE:	Water	Water	
		DATE	SAMPLED:	2020-09-29 12:00	2020-09-29 16:00	
Parameter	Unit	G / S	RDL	1502213	15 02240	
Fecal Coliform	CFU/100mL		1	ND	ND	

Fecal Coliforms in Water

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

1502213-1502240 ND - Not Detected.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

AGAT CERTIFICATE OF ANALYSIS (V1)

AGAT WORK ORDER: 20Z657526 PROJECT: 65057.01

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GEMTEC CONSULTING ENGINEERS AND SCIENTISTS

SAMPLING SITE:

ATTENTION TO: Andrius Paznekas

SAMPLED BY:

DATE	RECEIVED:	2020-09-30	

DATE RECEIVED: 2020-09-30						DATE REPORTED: 2020-10-07
	SA	MPLE DES	CRIPTION:	TW20-1 4Hr	TW20-1 8Hr	
		SAM	PLE TYPE:	Water	Water	
		DATE	SAMPLED:	2020-09-29 12:00	2020-09-29 16:00	
Parameter	Unit	G / S	RDL	1502213	1502240	
Heterotrophic Plate Count	CFU/1ml	0	10	ND	ND	

Heterotrophic Plate Count in Water

RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to O. Reg 169/03 - Ontario Drinking Water Quality Standards - Aesthetic Objectives and Operational Guidelines Comments: Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

1502213-1502240 ND - Not Detected.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

AGAT WORK ORDER: 20Z657526 PROJECT: 65057.01 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GEMTEC CONSULTING ENGINEERS AND SCIENTISTS

SAMPLING SITE:

ATTENTION TO: Andrius Paznekas

SAMPLED BY:

Total Coliforms & E. Coli (Using MI Agar)

DATE RECEIVED: 2020-09-30

BATE RECEIVED: 2020-00-00						BATEREFORTED
	SA	MPLE DES	CRIPTION:	TW20-1 4Hr	TW20-1 8Hr	
		SAM	PLE TYPE:	Water	Water	
		DATE	SAMPLED:	2020-09-29 12:00	2020-09-29 16:00	
Parameter	Unit	G / S	RDL	1502213	1502240	
Escherichia coli	CFU/100mL	0	1	ND	ND	
Total Coliforms	CFU/100mL	0	1	12	16	

 Comments:
 RDL - Reported Detection Limit;
 G / S - Guideline / Standard: Refers to O. Reg 169/03 - Ontario Drinking Water Quality Standards. Na value derived from O. Reg 248

 Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

 1502213-1502240
 ND - Not Detected.

Analysis performed at AGAT Toronto (unless marked by *)

DATE REPORTED: 2020-10-07

AGAT CERTIFICATE OF ANALYSIS (V1)

AGAT WORK ORDER: 20Z657526 PROJECT: 65057.01 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GEMTEC CONSULTING ENGINEERS AND SCIENTISTS

SAMPLING SITE:

ATTENTION TO: Andrius Paznekas

SAMPLED BY:

DATE RECEIVED: 2020-09-30 DATE REPORTED: 2020-10-07 SAMPLE DESCRIPTION: TW20-1 4Hr SAMPLE TYPE: Water DATE SAMPLED: 2020-09-29 12:00 12:00 Parameter Unit G / S RDL 1502213 Total kon mg/l 0.3 0.010 0.110						Metals Scan
SAMPLE TYPE: Water DATE SAMPLED: 2020-09-29 12:00 Parameter Unit G / S RDL 1502213	DATE RECEIVED: 2020-09-30					DATE REPORTED: 2020-10-07
DATE SAMPLED: 2020-09-29 12:00 Parameter Unit G / S RDL 1502213		5	SAMPLE DES	CRIPTION:	TW20-1 4Hr	
12:00 Parameter Unit G / S RDL 1502213			SAM	PLE TYPE:	Water	
			DATE	SAMPLED:		
	Parameter	Unit	G / S	RDL	1502213	
	Total Iron	mg/L	0.3	0.010	0.110	
Total Manganese mg/L 0.05 0.002 0.014	Total Manganese	mg/L	0.05	0.002	0.014	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to O. Reg 169/03 - Ontario Drinking Water Quality Standards - Aesthetic Objectives and Operational Guidelines Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

Iris Verastegui

AGAT CERTIFICATE OF ANALYSIS (V1)

AGAT WORK ORDER: 20Z657526 PROJECT: 65057.01

Metals Scan incl. Chromium VI

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GEMTEC CONSULTING ENGINEERS AND SCIENTISTS SAMPLING SITE:

ATTENTION TO: Andrius Paznekas

SAMPLED BY:

DATE RECEIVED: 2020-09-30

DATE RECEIVED: 2020-09-30	D					DATE REPORTED: 2020-10-07
			SAMPLE DE	SCRIPTION:	TW20-1 8Hr	
				VPLE TYPE:	Water	
			DATE	SAMPLED:	2020-09-29 16:00	
Parameter	Unit	G / S: A	G / S: B	RDL	1502240	
Fotal Aluminum	mg/L		0.1	0.010	0.055[<b]< td=""><td></td></b]<>	
Total Antimony	mg/L	0.006		0.003	<0.003[<a]< td=""><td></td></a]<>	
Total Arsenic	mg/L	0.01		0.003	<0.003[<a]< td=""><td></td></a]<>	
Total Barium	mg/L	1.0		0.002	0.352[<a]< td=""><td></td></a]<>	
Total Beryllium	mg/L			0.0005	<0.0005	
Total Boron	mg/L	5.0		0.010	0.052[<a]< td=""><td></td></a]<>	
Total Cadmium	mg/L	0.005		0.0001	<0.0001[<a]< td=""><td></td></a]<>	
Total Chromium	mg/L	0.05		0.003	<0.003[<a]< td=""><td></td></a]<>	
Chromium VI	mg/L			0.005	<0.005	
Total Cobalt	mg/L			0.0005	<0.0005	
Fotal Copper	mg/L		1	0.001	<0.001[<b]< td=""><td></td></b]<>	
Total Iron	mg/L		0.3	0.010	0.088[<b]< td=""><td></td></b]<>	
Fotal Lead	mg/L	0.010		0.001	<0.001[<a]< td=""><td></td></a]<>	
Fotal Manganese	mg/L		0.05	0.002	0.015[<b]< td=""><td></td></b]<>	
Total Mercury	mg/L	0.001		0.0001	<0.0001[<a]< td=""><td></td></a]<>	
Fotal Molybdenum	mg/L			0.002	<0.002	
Fotal Nickel	mg/L			0.003	<0.003	
Total Selenium	mg/L	0.05		0.001	<0.001[<a]< td=""><td></td></a]<>	
Total Silver	mg/L			0.0001	<0.0001	
Total Strontium	mg/L			0.005	1.59	
Total Thallium	mg/L			0.0003	<0.0003	
Total Titanium	mg/L			0.002	0.003	
Total Tungsten	mg/L			0.010	<0.010	
Total Uranium	mg/L	0.02		0.0005	<0.0005[<a]< td=""><td></td></a]<>	
Total Vanadium	mg/L			0.002	<0.002	
Total Zinc	mg/L		5	0.005	<0.005[<b]< td=""><td></td></b]<>	
Total Zirconium	mg/L			0.004	<0.004	

Certified By:

Inis Verastegui

AGAT CERTIFICATE OF ANALYSIS (V1)

AGAT WORK ORDER: 20Z657526 PROJECT: 65057.01 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GEMTEC CONSULTING ENGINEERS AND SCIENTISTS

SAMPLING SITE:

ATTENTION TO: Andrius Paznekas

SAMPLED BY:

Metals Scan incl. Chromium VI

DATE RECEIVED: 2020-09-30

DATE REPORTED: 2020-10-07

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: A Refers to O. Reg 169/03 - Ontario Drinking Water Quality Standards. Na value derived from O. Reg 248, B Refers to O. Reg 169/03 - Ontario Drinking Water Quality Standards - Aesthetic Objectives and Operational Guidelines

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

Inis Verastegui

AGAT CERTIFICATE OF ANALYSIS (V1)

AGAT WORK ORDER: 20Z657526 PROJECT: 65057.01

Subdiv. Well Water Supply

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GEMTEC CONSULTING ENGINEERS AND SCIENTISTS

SAMPLING SITE:

ATTENTION TO: Andrius Paznekas

DATE REPORTED: 2020-10-07

SAMPLED BY:

DATE RECEIVED: 2020-09-30

DATE RECEIVED: 2020-09-30							DATE REPORTED: 2020-10-07
Bornmeter				SCRIPTION: MPLE TYPE: SAMPLED:	TW20-1 4Hr Water 2020-09-29 12:00	TW20-1 8Hr Water 2020-09-29 16:00	
Parameter	Unit	G / S: A	G / S: B	RDL	1502213	1502240	
Electrical Conductivity	μS/cm			2	433	434	
рН	pH Units		6.5-8.5	NA	7.59	7.65	
Hardness (as CaCO3) (Calculated)	mg/L		80-100	0.5	216	206	
Total Dissolved Solids	mg/L		500	20	264[<b]< td=""><td>262[<b]< td=""><td></td></b]<></td></b]<>	262[<b]< td=""><td></td></b]<>	
Alkalinity (as CaCO3)	mg/L		30-500	5	233	230	
Fluoride	mg/L	1.5		0.05	0.24[<a]< td=""><td>0.25[<a]< td=""><td></td></a]<></td></a]<>	0.25[<a]< td=""><td></td></a]<>	
Chloride	mg/L		250	0.10	11.0[<b]< td=""><td>11.5[<b]< td=""><td></td></b]<></td></b]<>	11.5[<b]< td=""><td></td></b]<>	
Nitrate as N	mg/L	10.0		0.05	<0.05[<a]< td=""><td><0.05[<a]< td=""><td></td></a]<></td></a]<>	<0.05[<a]< td=""><td></td></a]<>	
Nitrite as N	mg/L	1.0		0.05	<0.05[<a]< td=""><td><0.05[<a]< td=""><td></td></a]<></td></a]<>	<0.05[<a]< td=""><td></td></a]<>	
Sulphate	mg/L		500	0.10	18.6[<b]< td=""><td>17.9[<b]< td=""><td></td></b]<></td></b]<>	17.9[<b]< td=""><td></td></b]<>	
Ammonia as N	mg/L			0.02	0.08	0.08	
Total Kjeldahl Nitrogen	mg/L			0.10	0.30	0.27	
Dissolved Organic Carbon	mg/L		5	0.5	3.7[<b]< td=""><td>3.7[<b]< td=""><td></td></b]<></td></b]<>	3.7[<b]< td=""><td></td></b]<>	
Phenols	mg/L			0.001	0.002	0.004	
Hydrogen Sulphide	mg/L			0.05	0.13	0.14	
True Colour	TCU		5	5	12[>B]	12[>B]	
Turbidity	NTU		5	0.5	2.1[<b]< td=""><td>1.1[<b]< td=""><td></td></b]<></td></b]<>	1.1[<b]< td=""><td></td></b]<>	
Total Calcium	mg/L			0.25	55.91	52.77	
Total Magnesium	mg/L			0.25	18.66	17.97	
Total Potassium	mg/L			0.25	3.80	3.58	
Total Sodium	mg/L	20	200	0.25	15.81[<a]< td=""><td>16.48[<a]< td=""><td></td></a]<></td></a]<>	16.48[<a]< td=""><td></td></a]<>	
% Difference/ Ion Balance (Calculated)	%			NA	2.43	3.76	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: A Refers to O. Reg 169/03 - Ontario Drinking Water Quality Standards. Na value derived from O. Reg 248, B Refers to O. Reg 169/03 - Ontario Drinking Water Quality Standards - Aesthetic Objectives and Operational Guidelines

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation. **1502213-1502240** As per Client's request, Colour analysis was performed on filtered sample.

DOC analysis completed on a lab filtered sample.

Dilution required, RDL has been increased accordingly.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

Inis Verastegui

AGAT CERTIFICATE OF ANALYSIS (V1)

Exceedance Summary

AGAT WORK ORDER: 20Z657526

PROJECT: 65057.01

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GEMTEC CONSULTING ENGINEERS AND SCIENTISTS

ATTENTION TO: Andrius Paznekas

SAMPLEID	SAMPLE TITLE	GUIDELINE	ANALYSIS PACKAGE	PARAMETER	UNIT	GUIDEVALUE	RESULT
1502213	TW20-1 4Hr	ON 169/03 AO&OG	Subdiv. Well Water Supply	Hardness (as CaCO3) (Calculated)	mg/L	80-100	216
1502213	TW20-1 4Hr	ON 169/03 AO&OG	Subdiv. Well Water Supply	True Colour	TCU	5	12
1502213	TW20-1 4Hr	ON 169/03 MAC/IMAC	Total Coliforms & E. Coli (Using MI Agar)	Total Coliforms	CFU/100mL	. 0	12
1502240	TW20-1 8Hr	ON 169/03 AO&OG	Subdiv. Well Water Supply	Hardness (as CaCO3) (Calculated)	mg/L	80-100	206
1502240	TW20-1 8Hr	ON 169/03 AO&OG	Subdiv. Well Water Supply	True Colour	TCU	5	12
1502240	TW20-1 8Hr	ON 169/03 MAC/IMAC	Total Coliforms & E. Coli (Using MI Agar)	Total Coliforms	CFU/100mL	. 0	16

Quality Assurance

CLIENT NAME: GEMTEC CONSULTING ENGINEERS AND SCIENTISTS

PROJECT: 65057.01 SAMPLING SITE: AGAT WORK ORDER: 20Z657526

ATTENTION TO: Andrius Paznekas

SAMPLED BY:

Microbiology Analysis

RPT Date: Oct 07, 2020	DUPLICATE				REFERENCE MATERIAL		METHOD BLANK SPIKE			MATRIX SPIKE						
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured	Acceptable Limits		Recovery	Lin	ptable nits	Recovery	Lie	Acceptable Limits	
		ld		-			Value Lov	Lower	Upper	-	Lower	Upper	-	Lower	Upper	
Fecal Coliforms in Water																
Fecal Coliform	1502213	1502213	ND	ND	NA	< 1										
Heterotrophic Plate Count in W	/ater															
Heterotrophic Plate Count	1502213	1502213	ND	ND	NA	< 10										
Total Coliforms & E. Coli (Usin	g MI Agar)															
Escherichia coli	1502213	1502213	ND	ND	NA	< 1										
Total Coliforms	1502213 1	1502213	12	12	0.0%	< 1										

Comments: ND - Not Detected, NA - % RPD Not Applicable

AGAT QUALITY ASSURANCE REPORT (V1)

Page 10 of 16

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Quality Assurance

CLIENT NAME: GEMTEC CONSULTING ENGINEERS AND SCIENTISTS PROJECT: 65057.01 SAMPLING SITE:

AGAT WORK ORDER: 20Z657526 ATTENTION TO: Andrius Paznekas SAMPLED BY:

Water Analysis

RPT Date: Oct 07, 2020			0	UPLICATE	•		REFEREN	ICE MA	TERIAL	METHOD	BLANK	SPIKE	МАТ	IRIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured	Acceptable d Limits		Recovery	1.1.1	ptable nits	Recoverv	1 1 1 1	eptable mits
		d					Value	Lower	Upper		Lower	Upper		Lower	Upper
Metals Scan incl. Chromium VI															
Total Aluminum	1510487		0.012	0.012	NA	< 0.010	99%	70%	130%	107%	80%	120%	100%	70%	130%
Total Antimony	1510487		< 0.003	<0.003	NA	< 0.003	102%	70%	130%	107%	80%	120%	98%	70%	130%
Total Arsenic	1510487		< 0.003	< 0.003	NA	< 0.003	101%	70%	130%	112%	80%	120%	101%	70%	130%
Total Barium	1510487		0.072	0.073	1.4%	< 0.002	97%	70%	130%	103%	80%	120%	98%	70%	130%
Total Beryllium	1510487		<0.0005	< 0.0005	NA	< 0.0005	96%	70%	130%	104%	80%	120%	95%	70%	130%
Total Boron	1510487		0.063	0.064	1.6%	< 0.010	96%	70%	130%	107%	80%	120%	98%	70%	130%
Total Cadmium	1510487		< 0.0001	< 0.0001	NA	< 0.0001	99%	70%	130%	108%	80%	120%	96%	70%	130%
Total Chromium	1510487		< 0.003	<0.003	NA	< 0.003	101%	70%	130%	108%	80%	120%	99%	70%	130%
Chromium VI	1515059		<0.005	< 0.005	NA	< 0.005	100%	70%	130%	100%	80%	120%	95%	70%	130%
Total Cobalt	1510487		0.0006	0.0006	NA	< 0.0005	109%	70%	130%	110%	80%	120%	102%	70%	130%
Total Copper	1510487		<0.001	<0.001	NA	< 0.001	101%	70%	130%	110%	80%	120%	98%	70%	130%
Total Iron	1510487		0.065	0.066	1.5%	< 0.010	104%	70%	130%	109%	80%	120%	103%	70%	130%
Total Lead	1510487		0.003	< 0.001	NA	< 0.001	96%	70%	130%	98%	80%	120%	86%	70%	130%
Total Manganese	1510487		0.111	0.109	1.8%	< 0.002	108%	70%	130%	111%	80%	120%	98%	70%	130%
Total Mercury	1502269		<0.0001	<0.0001	NA	< 0.0001	103%	70%	130%	96%	80%	120%	96%	70%	130%
Total Molybdenum	1510487		0.004	0.004	NA	< 0.002	102%	70%	130%	111%	80%	120%	102%	70%	130%
Total Nickel	1510487		< 0.003	< 0.003	NA	< 0.003	109%	70%	130%	109%	80%	120%	102%	70%	130%
Total Selenium	1510487		<0.001	<0.001	NA	< 0.001	106%	70%	130%	90%	80%	120%	99%	70%	130%
Total Silver	1510487		< 0.0001	< 0.0001	NA	< 0.0001	110%	70%	130%	110%	80%	120%	97%	70%	130%
Total Strontium	1510487		0.280	0.275	1.8%	< 0.005	109%	70%	130%	109%	80%	120%	122%	70%	130%
Total Thallium	1510487		<0.0003	<0.0003	NA	< 0.0003	101%	70%	130%	108%	80%	120%	100%	70%	130%
Total Titanium	1510487		<0.002	<0.002	NA	< 0.002	110%	70%	130%	108%	80%	120%	108%	70%	130%
Total Tungsten	1510487		<0.010	<0.010	NA	< 0.010	97%	70%	130%	109%	80%	120%	98%	70%	130%
Total Uranium	1510487		<0.0005	<0.0005	NA	< 0.0005	101%	70%	130%	107%	80%	120%	103%	70%	130%
Total Vanadium	1510487		<0.002	<0.002	NA	< 0.002	110%	70%	130%	110%	80%	120%	102%	70%	130%
Total Zinc	1510487		<0.005	0.006	NA	< 0.005	99%	70%	130%	111%	80%	120%	99%	70%	130%
Total Zirconium	1510487		<0.004	<0.004	NA	< 0.004	102%	70%	130%	110%	80%	120%	101%	70%	130%
Subdiv. Well Water Supply															
Electrical Conductivity	1501901		1720	1720	0.0%	< 2	98%	90%	110%						
pH	1501901		7.51	7.54	0.4%	NA	100%	90%	110%						
Total Dissolved Solids	1498591		702	710	1.1%	< 20	100%	80%	120%						
Alkalinity (as CaCO3)	1501901		503	505	0.4%	< 5	98%	80%	120%						
Fluoride	1498798		<0.07	<0.07	NA	< 0.05	103%	90%	110%	98%	90%	110%	108%	85%	115%
Chloride	1498798		80.3	70.5	13.0%	< 0.10	94%	70%	130%	102%	80%	120%	103%	70%	130%
Nitrate as N	1498798		<0.5	< 0.5	NA	< 0.05	95%	70%	130%	99%	80%	120%	102%	70%	
Nitrite as N	1498798		<0.5	< 0.5	NA	< 0.05	98%	70%	130%	100%	80%	120%	95%	70%	130%
Sulphate	1498798		3.2	2.9	9.8%	< 0.10	93%	70%	130%	99%	80%	120%	100%	70%	130%
Ammonia as N	1503654		<0.02	<0.02	NA	< 0.02	106%	70%	130%	102%	80%	120%	96%	70%	130%

AGAT QUALITY ASSURANCE REPORT (V1)

Page 11 of 16

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Quality Assurance

CLIENT NAME: GEMTEC CONSULTING ENGINEERS AND SCIENTISTS PROJECT: 65057.01

SAMPLING SITE:

AGAT WORK ORDER: 20Z657526 ATTENTION TO: Andrius Paznekas

SAMPLED BY:

Water Analysis (Continued)

RPT Date: Oct 07, 2020	DUPLICATE				REFERENCE MATERIAL			METHOD	BLANK	SPIKE	MATRIX SPIKE			
PARAMETER	Batch Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		ptable nits	Recovery	1.1.	ptable nits	Recoverv	Acceptable Limits	
	Id		•			Value	Lower	Upper	-		Upper		Lower	Upper
Total Kjeldahl Nitrogen	1503654	0.35	0.33	NA	< 0.10	101%	70%	130%	101%	80%	120%	101%	70%	130%
Dissolved Organic Carbon	1454971	3.6	3.5	2.8%	< 0.5	107%	90%	110%	102%	90%	110%	99%	80%	120%
Phenols	1483748	0.001	<0.001	NA	< 0.001	97%	90%	110%	103%	90%	110%	104%	80%	120%
Sulphide	1502635	< 0.05	< 0.05	NA	< 0.05	99%	80%	120%	99%	85%	115%	98%	70%	130%
Hydrogen Sulphide	1502635	<0.05	<0.05	NA	< 0.05	99%	90%	110%	99%	90%	110%	98%	80%	120%
True Colour	1502635	18	19	NA	< 5	103%	90%	110%						
Turbidity	1502213 1502213	2.1	2.1	NA	< 0.5	102%	80%	120%						
Total Calcium	1510487	43.4	42.5	2.1%	< 0.05	96%	70%	130%	88%	80%	120%	96%	70%	130%
Total Magnesium	1510487	11.2	11.2	0.0%	< 0.05	94%	70%	130%	86%	80%	120%	95%	70%	130%
Total Potassium	1510487	3.34	3.34	0.0%	< 0.05	95%	70%	130%	87%	80%	120%	94%	70%	130%
Total Sodium	1510487	39.5	38.9	1.5%	< 0.05	100%	70%	130%	92%	80%	120%	98%	70%	130%

Comments: NA signifies Not Applicable.

If the RPD value is NA, the results of the duplicates are under 5X the RDL and will not be calculated.

Certified By:

AGAT QUALITY ASSURANCE REPORT (V1)

Inis Venastegui

Page 12 of 16

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Method Summary

CLIENT NAME: GEMTEC CONSULTING ENGINEERS AND SCIENTISTS

PROJECT: 65057.01 SAMPLING SITE:

AGAT WORK ORDER: 20Z657526

ATTENTION TO: Andrius Paznekas

SAMPLED BY:

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Microbiology Analysis		•	
Fecal Coliform	MIC-93-7000	SM 9222 D	MF/INCUBATOR
Heterotrophic Plate Count	MIC-93- 7020	SM 9215 C	INCUBATOR
Escherichia coli	MIC-93-7010	EPA 1604	Membrane Filtration
Total Coliforms	MIC-93-7010	EPA 1604	Membrane Filtration

Method Summary

CLIENT NAME: GEMTEC CONSULTING ENGINEERS AND SCIENTISTS PROJECT: 65057.01

AGAT WORK ORDER: 20Z657526

ATTENTION TO: Andrius Paznekas

SAMPLING SITE:		SAMPLED BY:							
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE						
Water Analysis			·						
Total Iron	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS						
Total Manganese	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS						
Total Aluminum	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS						
Total Antimony	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS						
Total Arsenic	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS						
Total Barium	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS						
Total Beryllium	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS						
Total Boron	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS						
Total Cadmium	MET -93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS						
Total Chromium	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS						
Chromium VI	INOR-93-6034	modified from SM 3500-CR B	SPECTROPHOTOMETER						
Total Cobalt	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS						
Total Copper	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS						
Total Lead	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS						
Total Mercury	MET-93-6100	modified from EPA 245.2 and SM 31 B	¹² CVAAS						
Total Molybdenum	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS						
Total Nickel	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS						
Total Selenium	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS						
Total Silver	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS						
Total Strontium	INOR-93-6003	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS						
Total Thallium	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS						
Total Titanium	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS						
Total Tungsten	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS						
Total Uranium	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS						
Total Vanadium	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS						
Total Zinc	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS						
Total Zirconium	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS						
Electrical Conductivity	INOR-93-6000	modified from SM 2510 B	PC TITRATE						
pН	INOR-93-6000	modified from SM 4500-H+ B	PC TITRATE						

AGAT METHOD SUMMARY (V1)

Results relate only to the items tested. Results apply to samples as received.

Page 14 of 16

Method Summary

CLIENT NAME: GEMTEC CONSULTING ENGINEERS AND SCIENTISTS PROJECT: 65057.01 SAMPLING SITE:

AGAT WORK ORDER: 20Z657526

ATTENTION TO: Andrius Paznekas

SAMPLED BY:	
-------------	--

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Hardness (as CaCO3) (Calculated)	MET-93-6105	modified from EPA SW-846 6010C & 200.7 & SM 2340 B	CALCULATION
Total Dissolved Solids	INOR-93-6028	modified from EPA 1684,ON MOECC E3139,SM 2540C,D	BALANCE
Alkalinity (as CaCO3)	INOR-93-6000	SM 2320 B	PC TITRATE
Fluoride	INOR-93-6004	modified from SM 4110 B	ION CHROMATOGRAPH
Chloride	INOR-93-6004	modified from SM 4110 B	ION CHROMATOGRAPH
Nitrate as N	INOR-93-6004	modified from SM 4110 B	ION CHROMATOGRAPH
Nitrite as N	INOR-93-6004	SM 4110 B	ION CHROMATOGRAPH
Sulphate	INOR-93-6004	modified from SM 4110 B	ION CHROMATOGRAPH
Ammonia as N	INOR-93-6059	modified from SM 4500-NH3 H	LACHAT FIA
Total Kjeldahl Nitrogen	INOR-93-6048	modified from EPA 351.2 and SM 4500-NORG D	LACHAT FIA
Dissolved Organic Carbon	INOR-93-6049	EPA 415.1 & SM 5310 B	SHIMADZU CARBON ANALYZER
Phenols	INOR-93-6072	modified from SM 5530 D	LACHAT FIA
Hydrogen Sulphide	INOR-93-6054	SM 4500 S2- D	SPECTROPHOTOMETER
True Colour	INOR-93-6046	SM 2120 C	SPECTROPHOTOMETER
Turbidity	INOR-93-6044	modified from SM 2130 B	NEPHELOMETER
Total Calcium	MET-93-6105	modified from EPA 6010D	ICP/OES
Total Magnesium	MET-93-6105	modified from EPA 6010D	ICP/OES
Total Potassium	MET-93-6105	modified from EPA 6010D	ICP/OES
Total Sodium	MET-93-6105	modified from EPA 6010D	ICP/OES
% Difference/ Ion Balance (Calculated)		SM 1030 E	CALCULATION

CLIENT NAME: GEMTEC CONSULTING ENGINEERS AND SCIENTISTS **32 STEACIE DRIVE** OTTAWA, ON K2K 2A9 (613) 836-1422 **ATTENTION TO: Andrius Paznekas** PROJECT: 65057.01 AGAT WORK ORDER: 20Z667841 MICROBIOLOGY ANALYSIS REVIEWED BY: Nivine Basily, Inorganics Report Writer WATER ANALYSIS REVIEWED BY: Yris Verastegui, Report Reviewer DATE REPORTED: Oct 27, 2020 PAGES (INCLUDING COVER): 10 VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

*Notes

Disclaimer:

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 30 days following analysis, unless expressly agreed otherwise in writing. Please contact your Client Project Manager if you require additional sample storage time.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines contained in this document.
- All reportable information as specified by ISO/IEC 17025:2017 is available from AGAT Laboratories upon request.

AGAT Laboratories (V1)

Member of: Association of Professional Engineers and Geoscientists of Alberta	
(APEGA)	
Western Enviro-Agricultural Laboratory Association (WEALA)	

Environmental Services Association of Alberta (ESAA)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.

Page 1 of 10

AGAT WORK ORDER: 20Z667841 PROJECT: 65057.01

CLIENT NAME: GEMTEC CONSULTING ENGINEERS AND SCIENTISTS

SAMPLING SITE:

ATTENTION TO: Andrius Paznekas

SAMPLED BY:

				Fee	cal Coliform	s in Water
DATE RECEIVED: 2020-10-23						DATE REPORTED: 2020-10-27
	SA	MPLE DES	CRIPTION:	TW20-1 R1	TW20-1 R2	
		SAM	PLE TYPE:	Water	Water	
		DATE	SAMPLED:	2020-10-22 16:15	2020-10-22 16:30	
Parameter	Unit	G / S	RDL	1596479	1596587	
Fecal Coliform	CFU/100mL		1	ND	ND	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

1596479-1596587 ND - Not Detected.

Analysis performed at AGAT Toronto (unless marked by *)

AGAT WORK ORDER: 20Z667841 PROJECT: 65057.01

CLIENT NAME: GEMTEC CONSULTING ENGINEERS AND SCIENTISTS

SAMPLING SITE:

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

ATTENTION TO: Andrius Paznekas

SAMPLED BY:

				Heterotr	ophic Plate	Count in Water
DATE RECEIVED: 2020-10-23						DATE REPORTED: 2020-10-27
	S	SAMPLE DESCRIPTION:		TW20-1 R1	TW20-1 R2	
		SAM	PLE TYPE:	Water	Water	
		DATES	SAMPLED:	2020-10-22 16:15	2020-10-22 16:30	
Parameter	Unit	G / S	RDL	1596479	1596587	
Heterotrophic Plate Count	CFU/1ml		5	25	30	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

AGAT WORK ORDER: 20Z667841 PROJECT: 65057.01 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GEMTEC CONSULTING ENGINEERS AND SCIENTISTS

SAMPLING SITE:

ATTENTION TO: Andrius Paznekas

DATE REPORTED: 2020-10-27

SAMPLED BY:

Total Coliforms & E. Coli (Using MI Agar)

DATE RECEIVED: 2020-10-23

	-				
	SA	MPLE DES	CRIPTION:	TW20-1 R1	TW20-1 R2
		SAM	PLE TYPE:	Water	Water
		DATE	SAMPLED:	2020-10-22 16:15	2020-10-22 16:30
Parameter	Unit	G / S	RDL	1596479	1596587
Escherichia coli	CFU/100mL	0	1	ND	ND
Total Coliforms	CFU/100mL	0	1	1	ND

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to O. Reg 169/03 - Ontario Drinking Water Quality Standards. Na value derived from O. Reg 248

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation. 1596479-1596587 ND - Not Detected.

Analysis performed at AGAT Toronto (unless marked by *)

AGAT WORK ORDER: 20Z667841 PROJECT: 65057.01 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GEMTEC CONSULTING ENGINEERS AND SCIENTISTS

SAMPLING SITE:

ATTENTION TO: Andrius Paznekas

SAMPLED BY:

					Colour (Water)
DATE RECEIVED: 2020-10-23					DATE REPORTED: 2020-10-27
	5	AMPLE DES	CRIPTION:	TW20-1 R1	
		SAM	PLE TYPE:	Water	
		DATE	SAMPLED:	2020-10-22 16:15	
Parameter	Unit	G / S	RDL	1596479	
True Colour	TCU	5	5	16	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to O. Reg 169/03 - Ontario Drinking Water Quality Standards - Aesthetic Objectives and Operational Guidelines Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

Inis Verastegui

Exceedance Summary

AGAT WORK ORDER: 20Z667841 PROJECT: 65057.01 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GEMTEC CONSULTING ENGINEERS AND SCIENTISTS

ATTENTION TO: Andrius Paznekas

SAMPLEID	SAMPLE TITLE	GUIDELINE	ANALYSIS PACKAGE	PARAMETER	UNIT	GUIDEVALUE	RESULT
1596479	TW20-1 R1	ON 169/03 AO&OG	Colour (Water)	True Colour	TCU	5	16
1596479	TW20-1 R1	ON 169/03 MAC/IMAC	Total Coliforms & E. Coli (Using MI Agar)	Total Coliforms	CFU/100mL	0	1

Quality Assurance

CLIENT NAME: GEMTEC CONSULTING ENGINEERS AND SCIENTISTS

PROJECT: 65057.01

SAMPLING SITE:

AGAT WORK ORDER: 20Z667841 ATTENTION TO: Andrius Paznekas

SAMPLED BY:

Microbiology Analysis

RPT Date: Oct 27, 2020			[DUPLICAT	E		REFEREN	REFERENCE MATERIAL			BLANK	SPIKE	МАТ	RIX SPI	KE	
PARAMETER	Batch	Sample Id	Dup #1	Dup #2	RPD	Method Blank	Measured Value		ptable nits	Recovery	Lin	ptable nits	Recovery	1.10	cceptable Limits	
							Value	Lower	Upper		Lower	Upper		Lower	Upper	
Total Coliforms & E. Coli (Usin	g MI Agar)															
Escherichia coli	1596063		ND	ND	NA	< 1										
Total Coliforms	1596063		ND	ND	NA	< 1										
Fecal Coliforms in Water																
Fecal Coliform	1596479 1	596479	ND	ND	NA	< 1										
Heterotrophic Plate Count in W	/ater															
Heterotrophic Plate Count	1596479 1	596479	ND	ND	NA	< 5										

Comments: ND - Not Detected, NA - % RPD Not Applicable

AGAT QUALITY ASSURANCE REPORT (V1)

Page 7 of 10

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Quality Assurance

CLIENT NAME: GEMTEC CONSULTING ENGINEERS AND SCIENTISTS

PROJECT: 65057.01

SAMPLING SITE:

AGAT WORK ORDER: 20Z667841 ATTENTION TO: Andrius Paznekas

SAMPLED BY:

Water Analysis

RPT Date: Oct 27, 2020				DUPLICAT	E		REFEREN	ICE MA	TERIAL	METHOD	BLANK	SPIKE	МАТ	RIX SPI	IX SPIKE	
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		ptable nits	Recovery	Lir	ptable nits	Recovery	Acce covery Li	eptable nits	
		ld					Value	Lower	Upper	,	Lower	Upper		Lower	Upper	
Colour (Water)																

0.0%

True Colour

1596764

28

28

< 5 100% 90% 110%

Certified By:

Inis Verastegui

AGAT QUALITY ASSURANCE REPORT (V1)

Page 8 of 10

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Method Summary

CLIENT NAME: GEMTEC CONSULTING ENGINEERS AND SCIENTISTS

PROJECT: 65057.01

AGAT WORK ORDER: 20Z667841 ATTENTION TO: Andrius Paznekas

SAMPLING SITE:		SAMPLED BY:	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Microbiology Analysis	·		
Fecal Coliform	MIC-93-7000	SM 9222 D	MF/INCUBATOR
Heterotrophic Plate Count	MIC-93- 7020	SM 9215 C	INCUBATOR
Escherichia coli	MIC-93-7010	EPA 1604	Membrane Filtration
Total Coliforms	MIC-93-7010	EPA 1604	Membrane Filtration
Water Analysis			
True Colour	INOR-93-6046	SM 2120 B	SPECTROPHOTOMETER

CLIENT NAME: GEMTEC CONSULTING ENGINEERS AND SCIENTISTS **32 STEACIE DRIVE** OTTAWA, ON K2K 2A9 (613) 836-1422 **ATTENTION TO: Andrius Paznekas** PROJECT: 65057.01 AGAT WORK ORDER: 20Z675747 WATER ANALYSIS REVIEWED BY: Yris Verastegui, Report Reviewer DATE REPORTED: Nov 11, 2020 PAGES (INCLUDING COVER): 7 VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

*N/		
*Notes		
lisclaimer:		

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 30 days following analysis, unless expressly agreed otherwise in writing. Please contact your Client Project Manager if you require additional sample storage time.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines contained in this document.
- All reportable information as specified by ISO/IEC 17025:2017 is available from AGAT Laboratories upon request.

AGAT Laboratories (V1)

Member of: Association of Professional Engineers and Geoscientists of Alberta	
(APEGA)	
Western Enviro-Agricultural Laboratory Association (WEALA)	
Environmental Services Association of Alberta (ESAA)	

Page 1 of 7

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.

Certificate of Analysis

AGAT WORK ORDER: 20Z675747 PROJECT: 65057.01

CLIENT NAME: GEMTEC CONSULTING ENGINEERS AND SCIENTISTS

SAMPLING SITE:

ATTENTION TO: Andrius Paznekas

SAMPLED BY:

	Nitrate, Nitrite (Water)												
DATE RECEIVED: 2020-11-09					DATE REPORTED: 2020-11-11								
	:	SAMPLE DES	CRIPTION:	MW20-3									
		SAM	PLE TYPE:	Water									
		DATES	SAMPLED:	2020-11-09									
Parameter	Unit	G / S	RDL	1665519									
Nitrate as N	mg/L	10.0	0.05	0.23									
Nitrite as N	mg/L	1.0	0.05	<0.05									

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to O. Reg 169/03 - Ontario Drinking Water Quality Standards. Na value derived from O. Reg 248 Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

Inis Verastegui

5835 COOPERS AVENUE

MISSISSAUGA, ONTARIO

http://www.agatlabs.com

CANADA L4Z 1Y2

TEL (905)712-5100 FAX (905)712-5122

Quality Assurance

CLIENT NAME: GEMTEC CONSULTING ENGINEERS AND SCIENTISTS

PROJECT: 65057.01

SAMPLING SITE:

AGAT WORK ORDER: 20Z675747 ATTENTION TO: Andrius Paznekas

SAMPLED BY:

Water Analysis	
----------------	--

						-									
RPT Date: Nov 11, 2020		C	UPLICAT	E		REFEREN	REFERENCE MATERIAL			BLANK	SPIKE	MATRIX SPIKE			
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured Limits			Recoverv	Acceptable Limits		Recoverv	Acceptable Limits	
		ld				Value Lower Upp		Upper		Lower Upper			Lower	Upper	
Nitrate, Nitrite (Water)															
Nitrate as N	1668761		0.44	0.45	2.2%	< 0.05	92%	70%	130%	108%	80%	120%	108%	70%	130%
Nitrite as N	1668761		<0.25	<0.25	NA	< 0.05	94%	70%	130%	97%	80%	120%	100%	70%	130%

Comments: NA Signifies Not Applicable

Duplicate NA: results are under 5X the RDL and will not be calculated.

Certified By:

Inis Verastegui

AGAT QUALITY ASSURANCE REPORT (V1)

Page 3 of 7

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Method Summary

CLIENT NAME: GEMTEC CONSULTING ENGINEERS AND SCIENTISTS

PROJECT: 65057.01

AGAT WORK ORDER: 20Z675747

ATTENTION TO: Andrius Paznekas

SAMPLING SITE:		SAMPLED BY:							
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE						
Water Analysis									
Nitrate as N	INOR-93-6004	modified from SM 4110 B	ION CHROMATOGRAPH						
Nitrite as N	INOR-93-6004	SM 4110 B	ION CHROMATOGRAPH						

APPENDIX F

Nitrate Dilution Calculations

Allowable Flows - Commercial Septic Systems

								Scenari	o 1: Use of tertiary	treatment	Scenario 2: Tertiary treatment & 100% infiltration (i.e. runoff captured)		
Site	Area m ²	Topography Factor	Soil Factor	Vegetation Factor	Infiltration Factor	Annual Water Surplus (m ³ /year)	Infiltration Volume (m ³ /year)	Hard Surface Area	Available Infiltration (litres per day)	Maximum Septic Flow (litres per day)	Available Infiltration (litres per day)	Maximum Septic Flow (litres per day)	
2822 Carp Road	10120	0.20	0.40	0.15	0.75	0.378	3825	0.65	2751	2751	7860	7860	

Notes:

1. Scenario No. 1 values are calculated under the following:

a) Carried out in accordance with Section 5.6.3 of the MECP Procedure D-5-4

b) Incorporates a value of 20 mg/L nitrate in the discharged effluent from the tertiary treatment system c) The calculated maximum allowable flow is based on a simplification of the formula provided in Section 5.6.3, utilizing a concentration of 20 mg/L of Nitrate in the effluent discharging from the tertiary treatment unit

d) Hard surface area calculated to be 65%

2. Scenario No. 2 values are calculated under the following:

a) Carried out in accordance with Section 5.6.3 of the MECP Procedure D-5-4

b) Incorporates a value of 20 mg/L nitrate in the discharged effluent from the tertiary treatment system

c) The calculated maximum allowable flow is based on a simplification of the formula provided in Section 5.6.3, utilizing a concentration of 20 mg/L of Nitrate in the effluent discharging from the tertiary treatment unit

d) Assumes all runoff is captured and infiltrated

Ottawa	Intl A		WATE	R BUDG	ET MEA	ANS FOR	R THE P	ERIOD	1939-2	013	DC20492
	45.32 G 75.67					ΕΤΥ 	75 MM 45 MM		AT IND		
DATE	TEMP (C)	PCPN	RAIN	MELT	PE	AE	DEF	SURP	SNOW	SOIL	ACC P
31- 1	-10.7	62	11	14	0	0	0	24	85	74	296
28- 2	-9.0	55	10	16	1	1	0	25	115	74	352
31- 3	-2.7	66	31	79	6	6	0	104	71	75	418
30-4	5.7	71	67	76	32	32	0	111	0	75	489
31- 5	13.0	76	76	0	80	80	0	14	0	57	566
30- 6	18.3	84	84	0	116	107	-9	5	0	29	649
31- 7	20.9	86	86	0	136	103	-33	2	0	10	735
31- 8	19.6	83	83	0	117	82	-35	1	0	10	818
30- 9	14.7	84	84	0	75	65	-10	4	0	25	902
31-10	8.2	75	75	0	37	36	-1	14	0	51	76
30-11	1.3	78	60	8	10	10	0	38	10	70	154
31-12	-7.1	81	27	15	1	1	0	36	49	74	234
AVE	6.0 TTL	901	694	208	611	523	-88	378			

Ottawa	Intl A		STAN	DARD [DEVIATI	ONS FO	OR THE	PERIOD	1939-	2013	DC20492
DATE	TEMP (C)	PCPN	RAIN	MELT	PE	AE	DEF	SURP	SNOW	SOIL	ACC P
31- 1	2.9	26	15	18	1	1	0	29	45	3	59
28- 2	2.5	27	14	25	1	1	0	35	60	3	63
31- 3	2.6	28	22	50	5	5	0	56	90	0	70
30- 4	1.8	31	32	91	9	9	0	91	3	2	78
31- 5	1.9	32	32	3	12	12	0	23	0	22	90
30- 6	1.2	39	39	0	8	18	18	17	0	29	101
31- 7	1.1	40	40	0	8	31	32	10	0	21	104
31- 8	1.3	38	38	0	8	29	31	4	0	21	117
30- 9	1.4	40	40	0	8	16	16	15	0	29	124
31-10	1.5	36	36	1	7	7	2	22	0	28	36
30-11	1.7	27	27	8	4	4	0	33	13	12	45
31-12	2.9	30	23	14	1	1	0	31	35	4	56

APPENDIX G

Water Balance Calculations

	Pre-Development Conditions												
Geology	Land Use ¹	Water Holding Capacity (mm) ¹	Area (m2)	Surplus ² (mm/yr)	Topography Factor	Soil Factor	Vegetation Factor	Infiltration Coefficient	Runoff Coefficient	Infiltration (mm/yr)	Runoff (mm/yr)	Infiltration Volume (m3/yr)	Runoff Volume (m3/yr)
Fine Sandy Loam	Pasture and Shrubs	150	8,700	328	0.2	0.4	0.1	0.7	0.3	230	98	1998	856
Hard Surface (building and parking)	Impermeable ³		1,400	721	-	-	-	0	1	0	721	0	1009
Total Site Area			10,100									1998	1865
								Weighte	ed Average ⁴	198	185		

1. Table 3.1 MOE SWMP Planning and Design Manual (2003)

2. Surplus data from Environment Canada Water Budget Means for Ottawa Intl A 1939-2013.

3. Hard Surface surplus calculated to be average precipitation - 20% evaporation (conservative estimate as per Cuddy et al., 2013). Precipitation for Ottawa Intl. A 1939-2013 is 901 mm/year.

	Post-Development Conditions												
Geology	Land Use ¹	Water Holding Capacity (mm) ¹	Area (m2)	Surplus ² (mm/yr)	Topography Factor	Soil Factor	Vegetation Factor	Infiltration Coefficient	Runoff Coefficient	Infiltration (mm/yr)	Runoff (mm/yr)	Infiltration Volume (m3/yr)	Runoff Volume (m3/yr)
Fine Sandy Loam	Urban Lawn	75	3535	378	0.2	0.4	0.1	0.7	0.3	265	113	935	401
Hard Surface (building and parking)	Impermeable ³	0	6565	721	-	-	-	0	1	0	721	0	4733
Total			10100									935	5134
								Weight	ed Average ⁴	93	508		

1. Table 3.1 MOE SWMP Planning and Design Manual (2003)

2. Surplus data from Environment Canada Water Budget Means for Ottawa Intl A 1939-2013.

3. Hard Surface surplus calculated to be average precipitation - 20% evaporation (conservative estimate as per Cuddy et al., 2013). Precipitation for Ottawa Intl. A 1939-2013 is 901 mm/year.

4. Weighted average

Water Balance Summary

Summary	Infil mm/yr	Runoff mm/yr	Infil m ³ /yr	Runoff m ³ /yr
Pre-Development	198	185	1998	1865
Post-Development	93	508	935	5134
Change	-105	324	-1062	3269

Ottawa Intl Airport M				WATER BUDGET MEANS FOR THE PERIOD						013	DC20492
LAT 45.32 WATER HOLDIN LONG 75.67 LOWER ZONE									AT IND		
DATE	TEMP (C)	PCPN	RAIN	MELT	PE	AE	DEF	SURP	SNOW	SOIL	ACC P
31- 1	-10.7	62	11	14	0	0	0	21	85	142	296
28- 2	-9.0	55	10	16	1	1	0	23	115	144	352
31- 3	-2.7	66	31	79	6	6	0	99	71	149	418
30-4	5.7	71	67	76	32	32	0	110	0	150	489
31- 5	13.0	76	76	0	80	80	0	14	0	132	566
30- 6	18.3	84	84	0	116	116	0	5	0	95	649
31- 7	20.9	86	86	0	136	126	-9	2	0	52	735
31- 8	19.6	83	83	0	117	97	-21	1	0	38	818
30- 9	14.7	84	84	0	75	67	-8	2	0	52	902
31-10	8.2	75	75	0	37	36	-1	7	0	85	76
30-11	1.3	78	60	8	10	10	0	20	10	123	154
31-12	-7.1	81	27	15	1	1	0	24	49	139	234
AVE	6.0 TTL	901	694	208	611	572	-39	328			

Ottawa Intl Airport		STAN	DARD	DEVIATIO	ONS FO	OR THE	PERIOD	1939-	2013	DC20492	
DATE	TEMP (C)	PCPN	RAIN	MELT	PE	AE	DEF	SURP	SNOW	SOIL	ACC P
31- 1	2.9	26	15	18	1	1	0	29	45	19	59
28- 2	2.5	27	14	25	1	1	0	34	60	17	63
31- 3	2.6	28	22	50	5	5	0	55	90	5	70
30- 4	1.8	31	32	91	9	9	0	90	3	2	78
31- 5	1.9	32	32	3	12	12	0	23	0	22	90
30- 6	1.2	39	39	0	8	8	1	17	0	41	101
31- 7	1.1	40	40	0	8	19	20	10	0	42	104
31- 8	1.3	38	38	0	8	23	24	4	0	42	117
30- 9	1.4	40	40	0	8	13	13	13	0	48	124
31-10	1.5	36	36	1	7	7	2	18	0	47	36
30-11	1.7	27	27	8	4	4	0	29	13	34	45
31-12	2.9	30	23	14	1	1	0	29	35	22	56

Ottawa	Intl A	WATER BUDGET MEANS FOR THE PERIOD 1939-2013									
	45.32 G 75.67		WATER HOLDING CAPACITY 75 MM HEAT INDEX LOWER ZONE 45 MM A								
DATE	TEMP (C)	PCPN	RAIN	MELT	PE	AE	DEF	SURP	SNOW	SOIL	ACC P
31- 1	-10.7	62	11	14	0	0	0	24	85	74	296
28- 2	-9.0	55	10	16	1	1	0	25	115	74	352
31- 3	-2.7	66	31	79	6	6	0	104	71	75	418
30-4	5.7	71	67	76	32	32	0	111	0	75	489
31- 5	13.0	76	76	0	80	80	0	14	0	57	566
30- 6	18.3	84	84	0	116	107	-9	5	0	29	649
31- 7	20.9	86	86	0	136	103	-33	2	0	10	735
31- 8	19.6	83	83	0	117	82	-35	1	0	10	818
30- 9	14.7	84	84	0	75	65	-10	4	0	25	902
31-10	8.2	75	75	0	37	36	-1	14	0	51	76
30-11	1.3	78	60	8	10	10	0	38	10	70	154
31-12	-7.1	81	27	15	1	1	0	36	49	74	234
AVE	6.0 TTL	901	694	208	611	523	-88	378			

Ottawa	Intl A		STAN	DARD [DEVIATI	ONS FO	OR THE	PERIOD	1939-	2013	DC20492
DATE	TEMP (C)	PCPN	RAIN	MELT	PE	AE	DEF	SURP	SNOW	SOIL	ACC P
31- 1	2.9	26	15	18	1	1	0	29	45	3	59
28- 2	2.5	27	14	25	1	1	0	35	60	3	63
31- 3	2.6	28	22	50	5	5	0	56	90	0	70
30- 4	1.8	31	32	91	9	9	0	91	3	2	78
31- 5	1.9	32	32	3	12	12	0	23	0	22	90
30- 6	1.2	39	39	0	8	18	18	17	0	29	101
31- 7	1.1	40	40	0	8	31	32	10	0	21	104
31- 8	1.3	38	38	0	8	29	31	4	0	21	117
30- 9	1.4	40	40	0	8	16	16	15	0	29	124
31-10	1.5	36	36	1	7	7	2	22	0	28	36
30-11	1.7	27	27	8	4	4	0	33	13	12	45
31-12	2.9	30	23	14	1	1	0	31	35	4	56

civil geotechnical environmental field services materials testing

civil géotechnique environnementale surveillance de chantier service de laboratoire des matériaux

