

SITE SERVICING REPORT & EROSION & CONTROL PLAN 800 MONTREAL ROAD

Project: 125532-6.04.01

Prepared for Groupe Sovima by IBI Group December 14, 2020

1	INTRO	DUCTIC	DN	1			
	1.1	Scope		1			
	1.2	Subjec	t Site	1			
	1.3	Pre-co	nsultation	1			
2	WATE		RIBUTION	2			
	2.1	Existing	g Conditions	2			
	2.2	Design	Criteria	2			
		2.2.1	Water Demands	2			
		2.2.2	System Pressure	2			
		2.2.3	Fire Flow Rates	2			
		2.2.4	Boundary Conditions	3			
	2.3	Propos	ed Water Plan	3			
3	WASTI	EWATE	R	4			
	3.1	Existing	g Conditions	4			
	3.2	Design	Criteria	4			
	3.3	Recom	mended Wastewater Plan	4			
4	STOR	WATE	R SYSTEM	5			
	4.1	Existing	g Conditions	5			
	4.2	Design	Criteria	5			
	4.3	Propos	ed Minor System	5			
	4.4	Stormv	vater Management	6			
	4.5	Inlet Co	ontrols	6			
	4.6	On-Site	e Detention	7			
		4.6.1	Site Inlet Control	7			
		4.6.2	Overall Release Rate	7			
5	SEDIM	ENT AN	ID EROSION CONTROL PLAN	8			
6	SOILS			8			
7							

1 INTRODUCTION

1.1 Scope

The purpose of this report is to outline the required municipal services, including water supply, stormwater management and wastewater disposal, needed to support the redevelopment of the subject property. The property is approximately 0.6 hectares in area and is located at the following current municipal addresses, 800 Montreal Road. The site is bound by Montreal Road to the north Den Haag Drive to the west and LeBoutillier Ave. to the east. Please refer to **Figure 1 – Location Plan** in **Appendix A** for more details.

This Site Servicing Study, which also includes the Stormwater Management Plan, Watermain Analysis and Erosion and Sedimentation Control Plans, which are being completed in support of the Site Plan Application. It should be noted the SPA is for only Building 1, and the following report does review servicing for potentially both building with a view to minimize works to be reconstructed at a later date, and do not imply approval of Building 2.

1.2 Subject Site

Groupe Sovima proposes to construct two buildings, an eight storey mixed use building with 126 residential units along with ground floor commercial space fronting along Montreal Road, and second four storey residential building with approximately 46 units. The proposed development also includes one level of underground parking. Vehicular access to the site will be from Den Haag Dr.. Please refer to Site Plan prepared by Neuf Architects located in **Appendix A** for more information.

The site currently consists of vacant lots along with some existing remnant foundations, and parking/driveway facilities. All existing structures within the subject property will be demolished to facilitate the proposed development. A copy of the site topographic survey prepared by AOV is included in **Appendix A**

1.3 Pre-consultation

It should be noted that a pre-consultation with the Ministry of the Environment is not required since this site is serviced by existing separated municipal sanitary and storm sewers and is a single owner residential site, thus an ECA is not required. A preconsulation meeting with the City of Ottawa was held on September 9, 2020 and copy of the meeting notes are included in **Appendix A**.

2 WATER DISTRIBUTION

2.1 Existing Conditions

As previously noted, the site is located south of Montreal Ave between Den Haag Dr and LeBoutillier Ave. An existing 200 mm diameter watermain is located within the LeBoutillier Ave right of way and during the development of the subdivision a 200mm dia. water service was constructed for the subject site. The watermains fall within the City of Ottawa's pressure zone 1E which will provide the water supply to the site.

2.2 Design Criteria

2.2.1 Water Demands

The population for apartment buildings is assumed at 1.4, 2.1 and 2.8 persons per unit for one, two and three bedroom units respectively, as found in Table 4.1 of the Design Guidelines. A watermain demand calculation sheet is included in **Appendix B** and the total water demands are summarized as follows:

	Subject Site
Average Day	0.98 l/s
Maximum Day	2.44 l/s
Peak Hour	5.37 l/s

2.2.2 System Pressure

The Ottawa Design Guidelines – Water Distribution (WDG001), July 2010, City of Ottawa, Clause 4.2.2 states that the preferred practice for design of a new distribution system is to have normal operating pressures range between 345 kPa (50 psi) and 480 kPa (80 psi) under maximum daily flow conditions. Other pressure criteria identified in Clause 4.2.2 of the guidelines are as follows:

Minimum Pressure	Minimum system pressure under peak hour demand conditions shall not
	be less than 276 kPa (40 psi)

Fire Flow During the period of maximum day demand, the system pressure shall not be less than 140 kPa (20 psi) during a fire flow event.

Maximum Pressure In accordance with the Ontario Building/Plumbing Code, the maximum pressure should not exceed 552 kPa (80 psi). Pressure reduction controls will be required for buildings where it is not possible/feasible to maintain the system pressure below 552 kPa.

2.2.3 Fire Flow Rates

A calculation using the Fire Underwriting Survey (FUS) method was conducted to determine the fire flow requirement for the site. The building is considered non-combustible construction. Results of the analysis provides a maximum fire flow rate of 11,000 l/min or 183 l/s is required which is used in the hydraulic analysis. A copy of the FUS calculation is included in **Appendix B**. The building will be designed with a Siamese fire connection which will be located on the building's frontage on Montreal Road.

2.2.4 Boundary Conditions

A boundary condition was provided by the City of Ottawa for the 200 mm diameter watermain on LeBoutillier Ave. adjacent to the development. A copy of the boundary conditions is included in **Appendix B** and summarized as follows:

BOUNDARY CONDITIONS										
SCENARIO	HGL (m)									
SCENARIO	LeBoutillier (proposed connection)									
Maximum HGL	147.0m									
Minimum HGL (Peak Hour)	146.8m									
Max Day + Fire Flow	139.0m									

2.3 Proposed Water Plan

The minimum water pressure inside the building at the connection is determined by the difference between the water entry elevation of 88.0m and the minimum HGL condition, resulting in a pressure 576 kPa which exceeds the minimum requirement of 276 kPa per the guidelines. Because the pressure at the 8th floor under minimum HGL conditions is close to the minimum requirement of 276 kPa, an onsite test will be required to confirm if a domestic water pump will be necessary for this building.

Maximum water pressure is determined by the difference between the water entry elevation of 88 m and the maximum HGL condition resulting in a pressure of 578 kPa, which is greater than the 552 kPa threshold in the guideline in which pressure control is required. Based on this result, pressure control is required for this building.

The boundary condition for Maximum Day and Fire Flow results in a pressure of 475 kPa at the ground floor level. In the guidelines, a minimum residual pressure of 140 kPa must be maintained in the distribution system for a fire flow and maximum day event. As a pressure of 475 kPa is achieved, the fire flow requirement is exceeded.

To service the property twin 200mm dia water services off LeBoutillier Ave. are proposed, see site servicing plan 125532-C-001 in **Appendix B.** The proposed twin 200mm dia services will provide adequate supply to the building to meet demands while also providing service redundancy for this building.

3 WASTEWATER

Existing Conditions 3.1

When the subdivision was developed a 250mm dia service was provided for this site off LeBoutillier Ave, the proposed development will utilize this sewer to service the site. The subdivision design assumed a population of 252 person for the 0.59ha site.

3.2 Design Criteria

The sanitary sewers for the subject site will be based on the City of Ottawa design criteria. It should be noted that the sanitary sewer design for this study incorporates the latest City of Ottawa design parameters identified in Technical Bulletin ISTB-2018-01. Some of the key criteria will include the following:

•	Commercial/Institutional flow	28,000 l/ha/d
•	Residential flow	280 l/c/d
•	Peaking factor	1.5 if ICI in contributing area >20% 1.0 if ICI in contributing area <20%
•	Infiltration allowance	0.33 l/s/ha
•	Velocities	0.60 m/s min. to 3.0 m/s max.

Given the above criteria, peak wastewater flow from the proposed development will 3.66 l/s, the detailed sanitary sewer calculations and Tributary area plan are included in Appendix C. As noted previously the sewers were designed to service this site based on an assumed population of 252, with an average daily flow of 350 l/p/d, and an infiltration factor of 0.28l/s/Ha, which would have resulted in an average flow of 1.186 l/s. The current plan estimates a population of 309.6 and utilizing the current design criteria of 280 l/p/d and 0.33 l/s/Ha results in an average flow of 1.198 I/s which is effectively equal to the original design flow hence no negative impact on the down stream system is anticipated due to this development.

3.3 Recommended Wastewater Plan

A 250mm dia sanitary service lateral is proposed to be extended from the existing sanitary sewer lateral in Le Boutillier Ave. to service this site. Please refer to the site servicing plan 125532-C-001 in **Appendix A** for details.

4 STORMWATER SYSTEM

4.1 Existing Conditions

When the subdivision was developed a 375mm dia service was provided for this site off LeBoutillier Ave, the proposed development will utilize this service lateral to service the site. The subdivision design assumed a runoff coefficient of 0.6 for the site and a restricted peak flow rate of 55 l/s, based on those criteria it was assumed approximately 77 cm of storage would be required to attenuate the 1:100 yr storm event.

4.2 Design Criteria

Since this site is with a subdivision that was recently developed the City of Ottawa requires the site to follow the subdivision design limits noted above;

- Existing adjacent storm sewers were designed to a 5 year level of service
- Site to be designed to limit the 100 year post development flow to a maximum of 55l/s.

The stormwater system was designed following the principles of dual drainage, making accommodations for both major and minor flow.

Some of the key criteria include the following:

Design Storm	1:5 year return (Ottawa)
Rational Method Sewer Sizing	
Initial Time of Concentration	10 minutes
Runoff Coefficients	
- Landscaped Areas	C = 0.30
- Asphalt/Concrete	C = 0.90
- Roof	C = 0.90
Pipe Velocities	0.80 m/s to 6.0 m/s
Minimum Pipe Size	250 mm diameter (200 mm CB Leads)

4.3 Proposed Minor System

The detailed design for this site shows a 375mm dia. storm sewer connection to the LeBoutillier Ave storm sewer, along with a limited amount of uncontrolled surface drainage directed to Den Haag Dr. and LeBoutillier Ave. ROW.

Using the above-noted criteria, the proposed on-site storm sewers were sized accordingly. A detailed storm sewer design sheet and the associated storm sewer drainage area plan are included in **Appendix D**. The current servicing drawing shows several catchbasins and deck drains, the deck drains are located above the underground parking structure and all flows will be routed inside the building via the mechanical plumbing systems and directed to the building cistern. Similarly all the catchbasins shown drain into the underground parking structure and all flows are routed to the building cistern. All roof deck inlets will be controlled and will utilize rooftop storage, restricted flow from the roof decks will bypass the cistern and discharge to the storm service.

4.4 Stormwater Management

The subject site will be limited to a release rate established using the criteria described in section 4.2. This will be achieved through an inlet control device (ICD) at the outlet of the cistern, and inlet control devices on all roof deck inlets.

Flows generated that are in excess of the site's allowable release rate will be stored within the combination of a cistern located within the proposed parking garage along the southern limit of the garage, and the building roof.

At certain locations within the site, the opportunity to store runoff is limited due to grading constraints and building geometry. These locations are generally located at the perimeter of the site where it is necessary to tie into public boulevards and adjacent properties, and it is not always feasible to capture or store stormwater runoff. These "uncontrolled" areas, 0.056 hectares in total, based on 1:100 year storm uncontrolled flows, the uncontrolled areas generate 16.32 l/s runoff (refer to Section 4.5 for calculation). The various roof decks will have inlets that control flow to a total of 16.38 l/s, which leaves 22.3l/s for the remaining surface inlets discharging into the cistern, which has been sized to accommodate flow during the 1:100-year event, with no overflow leaving the site.

4.5 Inlet Controls

The allowable release rate for the 0.59 Ha site as noted in the original subdivision design is 55 l/s.

As noted in Section 4.4, a portion of the site will be left to discharge to the surrounding boulevards and roadways uncontrolled.

Based on a 1:100 year event, the flow from the three uncontrolled areas can be determined as:

Quncontrolled	= 2.78 x C x i _{100yr} x A where:
С	= Average runoff coefficient of uncontrolled area
İ _{100yr}	= Intensity of 100-year storm event (mm/hr)
	= 1735.688 x (T _c + 6.014) ^{0.820} = 178.56 mm/hr; where T _c = 10 minutes
A ₁ A ₂ A ₃	= Uncontrolled Area = 0.028 Ha, $C_{100} = 0.375$, $Q_1 = 5.21$ l/s = Uncontrolled Area = 0.009 Ha, $C_{100} = 0.375$, $Q_2 = 1.68$ l/s = Uncontrolled Area = 0.019 Ha, $C_{100} = 1.00$, $Q_3 = 9.43$ l/s

Therefore, the uncontrolled release rate can be determined as:

Q_{uncontrolled} = 5.21+1.68+9.43= 16.32L/s

The maximum allowable release rate from the remainder of the site can then be determined as:

\mathbf{Q}_{max} allowable	= Q _{restricted} – Q _{uncontrolled}
	= 55 L/s – 16.32 L/s = 38.68 L/s

4.6 On-Site Detention

As noted in section 4.4 any excess storm water up to the 100-year event is to be stored on-site within the building cistern and on the roof decks in order to not surcharge the downstream municipal storm sewer system. As the cistern is located inside the building, coordination with the architect, structural and mechanical engineers will be needed to design the structure and associated inlet control device.

4.6.1 Site Inlet Control

The roof decks will utilize restrictor inlets such as the Watts RD-100-A-ADJ (or approved equal) to limit the inflow from each section of roof to the identified flow rates. Storage of runoff on the roof decks will be required to accommodate the 1:100 yr event, and scuppers will provide for overflow should a more extreme event occur or should an inlet become blocked. The Modified Rational Method (MRM) was used to identify the required storage, see the MRM calculations in **Appendix D** for details. The decks, terraces, and controlled landscape and driveway areas drain to the storm water cistern located in the building (at parking garage level), where an ICD will restrict the flow from the tank to 22.3 l/s. the MRM spreadsheet in **Appendix D** identifies the required storage to accommodate the 1:100yr event. An overflow from the tank to the exterior has been provided should a more extreme event occur or if the ICD becomes blocked. The following table summarizes the on-site storage requirements during both the 1:5-year and 1:100-year events.

ICD	TRIBUTARY	AVAILABLE	100-YEAR	STORM	5-YEAR STORM			
AREA	AREA	STORAGE (M ³)	RESTRICTED FLOW (L/S)	REQUIRED STORAGE (M ³)	RESTRICTED FLOW (L/S)	REQUIRED STORAGE (M ³)		
Cistern	0.263	100.00	22.30	91.16	22.30	32.71		
Roof Deck 1	0.120	44.85	7.56	41.82	7.56	16.06		
Roof Deck 2	0.008	3.2	0.63	2.54	0.63	0.94		
Roof Deck 3	0.012	4.8	0.63	4.52	0.63	1.8		
Roof Deck 4	0.008	3.2	0.63	2.54	0.63	0.94		
Roof Deck 5	0.009	3.6	0.63	3.02	0.63	1.14		
Roof Deck 6	0.017	6.8	0.945	6.26	0.945	2.47		
Roof Deck 7	0.015	6.0	0.945	5.25	0.945	2.03		
Roof Deck 8	0.041	16.4	1.89	16.2	1.89	6.56		
Roof Deck 9	0.028	11.9	1.26	11.16	1.26	4.53		
Roof Deck 10	0.014	5.6	0.63	5.58	0.63	2.26		
Roof Deck 11	0.007	2.8	0.63	2.09	0.63	0.75		
Unrestricted	0.056		16.32		7.54			
TOTAL	0.598	209.15	55.00	192.12	55.0	72.2		

In all instances the required storage is met with the building cistern, and roof top storage, respectively.

4.6.2 Overall Release Rate

As demonstrated above, the site uses an inlet control devices to restrict the 100 year storm event to 55 l/s which is the criteria approved by the City of Ottawa. Restricted stormwater will be contained onsite by the building cistern and roof top storage. Up to and including the 100 year event, there will be no overflow off-site from restricted areas, if however an more intense storm or should an inlet become blocked, overland routing has been provided to the approved outlet per the original system design.

5 SEDIMENT AND EROSION CONTROL PLAN

During construction, existing stream and storm water conveyance systems can be exposed to significant sediment loadings. A number of construction techniques designed to reduce unnecessary construction sediment loadings may be used such as;

- Filter socks will remain on open surface structures such as manholes and catchbasins until these structures are commissioned and put into use;
- Installation of silt fence, where applicable, around the perimeter of the proposed work area.

During construction of the services, any trench dewatering using pumps will be fitted with a "filter sock." Thus, any pumped groundwater will be filtered prior to release to the existing surface runoff. The contractor will inspect and maintain the filter sock as needed including sediment removal and disposal.

All catchbasins, and to a lesser degree manholes, convey surface water to sewers. Consequently, until the surrounding surface has been completed these structures will be protected with a sediment capture filter sock to prevent sediment from entering the minor storm sewer system. These will stay in place and be maintained during construction and build-out until it is appropriate to remove them.

The Sediment and Erosion Control Plan 125532-C-900 is included in Appendix E.

6 SOILS

DST Consulting was retained to prepare a geotechnical investigation for the proposed development. The objectives of the investigation were to prepare a report to:

- Determine the subsoil and groundwater conditions at the site by means of test pits and boreholes and;
- To provide geotechnical recommendations pertaining to design of the proposed development including construction considerations.

The geotechnical report 02001055 was prepared by DST Ltd. in July 2020. A copy of the report has been included with the SPA application. The report contains recommendations which include but are not limited to the following:

- There is no practical restriction to thickness of grade raise on this site.
- Fill placed below the foundations to meet OPSS Granular 'B' Type II placed in 300 mm lifts compacted to 100% SPMDD.
- Bedding and cover for service pipes: bedding min 150mm compacted (95% SPMDD) OPSS Gran. A to the springline, and covered with OPSS Gran A
- Fill for driveway to be suitable native material or OPSS Select Subgrade Material placed with 10:1 frost tapers, material to be placed in 300mm lifts compared to 100% SPMDD

	MATERIAL	Layer Thickness
•	Parking Lots – Light Duty (Parking Stalls)	
•	Asphalt Wearing Course (Superpave 12.5)	• 50 mm
•	Well Graded Granular Base Course (Granular 'A')	• 150 mm
•	Well Graded Granular Sub-Base Course (Granular 'B' Type II)	• 300 mm
•	Parking Lots – Heavy Duty (Aisles and Fire Routes)	
•	Asphalt Wearing Course (Superpave 12.5)	• 40 mm
•	Asphalt Binder Course (Superpave 19.0)	• 50 mm
•	Well Graded Granular Base Course (Granular 'A')	• 150 mm
•	Well Graded Granular Sub-Base Course (Granular 'B' Type II)	• 450 mm

A copy of the grading plan 125532-C-200 is included in Appendix E.

7 CONCLUSIONS

Municipal water, wastewater and stormwater systems required to accommodate the proposed development are available to service the proposed development. Prior to construction, existing sewers are to be CCTV inspected to assess sewer condition.

This report has demonstrated sanitary and storm flows from and water supply to the subject site can be accommodated by the existing infrastructure. Also, the proposed servicing has been designed in accordance with MECP and City of Ottawa current level of service requirements.

The use of lot level controls, conveyance controls and end of pipe controls outlined in the report will result in effective treatment of surface stormwater runoff from the site. Adherence to the sediment and erosion control plan during construction will minimize harmful impacts on surface water.

Based on the information provided herein, the development can be serviced to meet City of Ottawa requirements.

Report prepared by:

Demetrius Yannoulopoulos, P. Eng. Director, Ottawa Office Lead

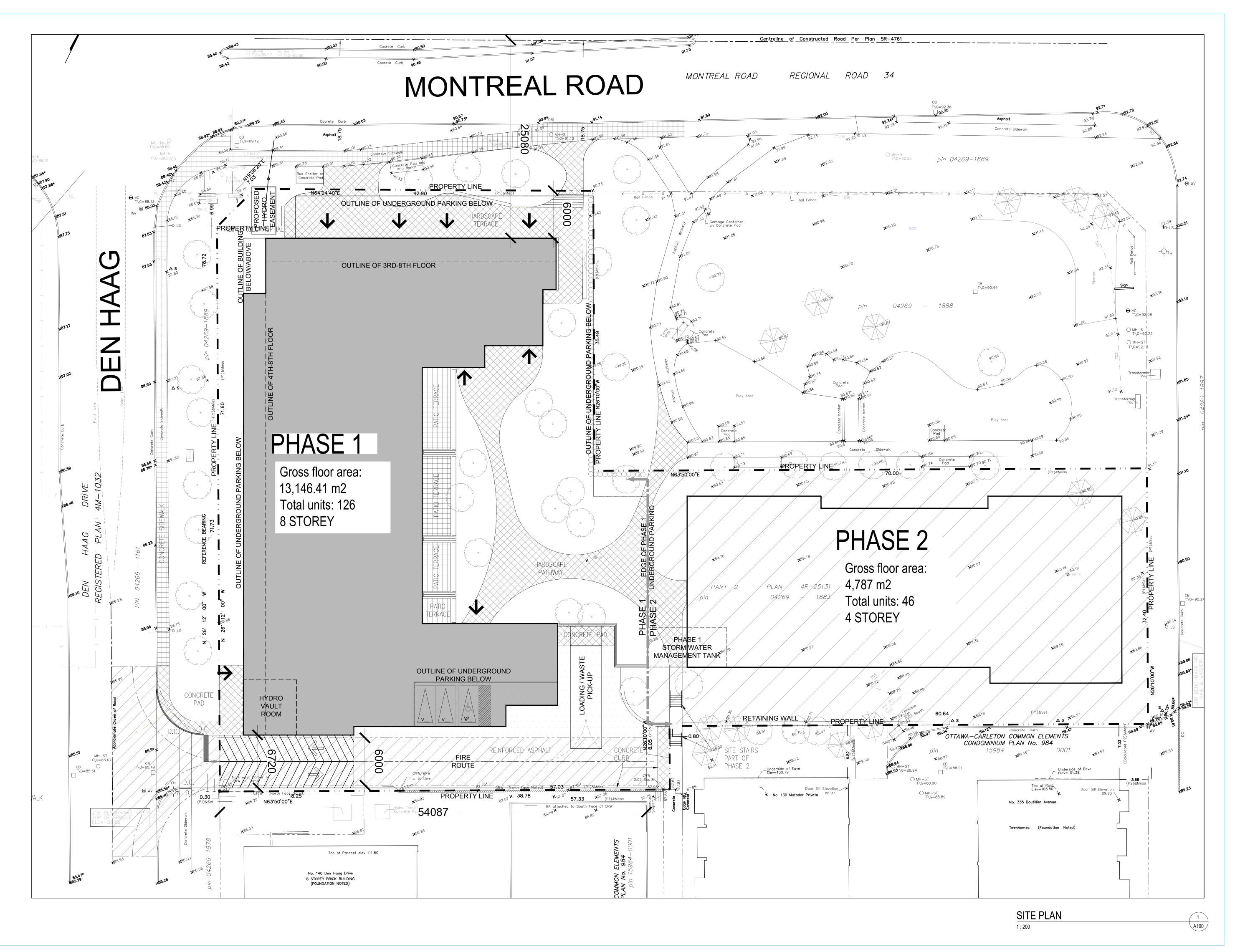
"J:\125532_800 Montreal Road_6.0_Technical\6.04_Civil_01brief\1st Submission\CTR-site-serviciing-erosion-2020-12-14.docx"

APPENDIX A

Figure 1- Location Map Site Plan by Neuf Architects AOV Plan of Survey City of Ottawa Preconsult meeting notes

IBI

Γ


Project Title

SOVIMA OTTAWA 800 MONTREAL ROAD Drawing Title

Sheet No.

KEY PLAN

FIGURE 1

NOTES GÉNÉRALES General Notes

- 1 Ces documents d'architecture sont la propriété exclusive de . NEUF architect(e)s et ne pourront être utilisés, reproduits ou copiés sans autorisation écrite préalable. / These architectural documents are the exclusive property of NEUF architect(e)s and cannot be used, copied or reproduced without written pre-authorisation 2 Les dimensions apparaissant aux documents devront être vérifiées
- par l'entrepreneur avant le début des travaux. / All dimensions which appear on the documents must be verify by the contractor before to start the work. 3 Veuillez aviser l'architecte de toute dimension erreur et/ou
- divergences entre ces documents et ceux des autres professionnels. The architect must be notified of all errors, omissions and discrepancies between these documents and those of the others professionnals.
- 4 Les dimensions sur ces documents doivent être lues et non mesurées. / The dimensions on these documents must be read and not measured.

ARCHITECTURE DE PAYSAGE Landscape Architect

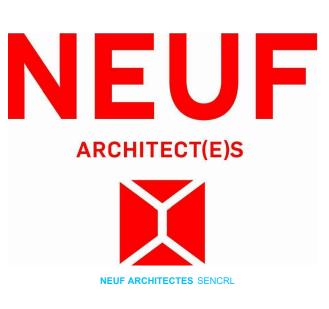
Lashley+Associates 950 Gladstone Ave. Suite 202, Ottawa (ON) K1Y 3E6 T 613.233.8579 lashleyla.com

CIVIL Civil

IBI Group 333 Preston Street Suite 400 Ottawa (ON), K1S 5N4 T 613.447.0504 IBIgroup.com

INGÉNIERIE TRANSPORT Engineering, Transportation **IBI - Transportation Eng.** 333 Preston Street Suite 400 Ottawa (ON), K1S 5N4 T 613.447.0504 IBIgroup.com

DESSIN INTÉRIEUR Interior Design NINE Design 20 des Roitelets Saint-Bruno-De-Montarville, (QC) J3V 6E4 T 514.998.8973 nine-design.ca


STRUCTURE Structural L2C Experts 4710 St-Ambroise St, Suite 103 Montréal (QC) H4C 2C T 514.379.4999 l2cexperts.com

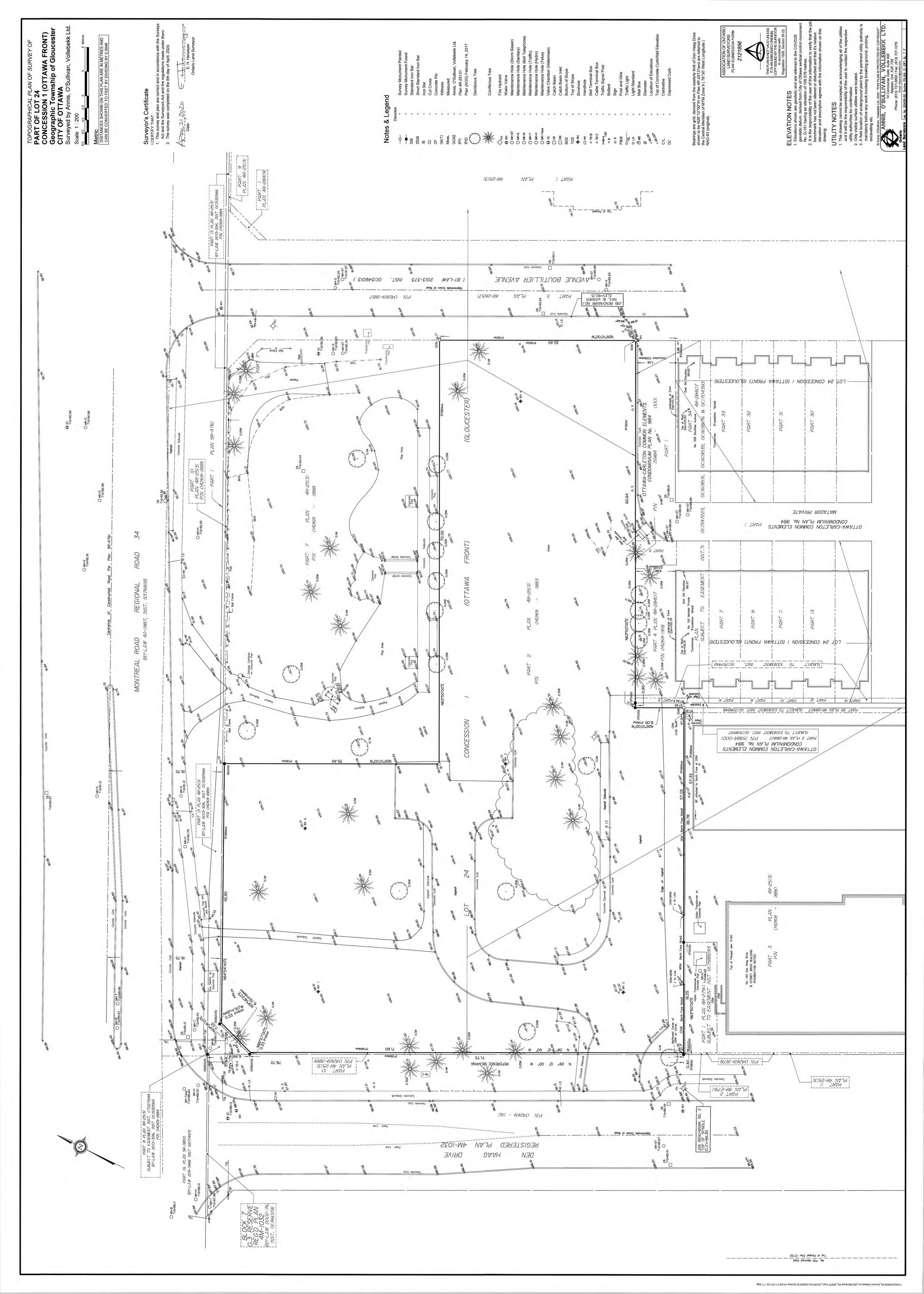
MÉCANIQUE / ELÉCTRIQUE Mechanical / Electrical GOODKEY, WEEDMARK & ASSOCIATES LTD.

1688 Woodward Dr, Ottawa, ON I T 613.727.5111 gwal.com ARCHITECTES Architect NEUF architect(e)s SENCRL 630, boul. René-Lévesque O. 32e étages, Montréal QC H3B 1S6

T 514.847.1117 NEUFarchitectes.com

SCEAU / Seal

CLIENT Client


800 MONTREAL ROAD

EMPLACEMENT Location 120 DEN HAAG DR, OTTAWA	NO PROJET No. 12263					
NO RÉVISION 1 Issued for SPA	DATE (aa-mm-jj) 2020.12.12					
DESSINÉ PAR Drawn by	VÉRIFIÉ PAR Checked by					
AJ	FP					
DATE (aa.mm.jj) 10/21/20 TITRE DU DESSIN Drawing Title	ÉCHELLE Scale As indicated					

SITE PLAN - OVERALL

RÉVISION Revision

Pre-Application Consultation Meeting Notes

800 Montreal Road September 9, 2020 PC2020-0211 TEAMS software

Attendees:

Simon Deiaco, City of Ottawa, Planning (SD) Randolph Wang, City of Ottawa, Urban Design (RW) John Wu, City of Ottawa, Engineering (JW) Paul Landry, City of Ottawa Parks & Facilities Planning (PL) Dan Paquette, Paquette Planning (DP) Frank Puentes, NEUF Architects (FP) Eric McLaren, Transportation Engineering David Hook, IBI Demetrius Yannoulopoulos, IBI, Engineering Daniela Correia, Landscape Architect Pierre Couture, Group Sovima

Regrets:

Mike Giampa, City of Ottawa, Transportation (MG)

Subject: 800 Montreal Road

Meeting notes:

Opening & attendee introduction

- o Introduction of meeting attendees
- Overview of proposal:
 - DP- context overview
 - DP will act as the agent and applicant for the forthcoming SPC application.
 - Two new buildings, 8 sty (126 rental units with ground floor), second phase (4 sty, 46 units). Connected by one floor of below grade parking to serve both buildings. Project is intended to be zoning compliant with no requested variances.
 - Project responds to the AM zoning designation.
 - Team is looking for feedback with respect to the HoK design guidelines that were established through the CLC development process. City staff confirmed that these guidelines, which are helpful, should be considered but will not be absolute requirements as they largely support and build upon the AM guidelines.
 - FP, overview of plans. One central ramp for access to the below grade parking.
 - Retail uses at grade are being considered.
 - Variety of units are being proposed.
 - The focus of the project at this time is the phase one building. Applying contemporary architecture into the project while respecting the materials found in

the existing community. Looking for a visual integration to the abutting parkland, perhaps fences.

 Landscape concept presented which responds the various commercial and residential aspects of the property (i.e. Montreal Rd vs. Den Haag). Internal walkways are proposed to connect the existing community to the south.

Preliminary comments and questions from staff and agencies, including follow-up actions:

- Planning (SD)
 - AM10[1779] site specific zoning. The project seems to be compliant with the applicable zoning provisions. To be confirmed through the review of a formal application.
 - Yard clarification, Slide 14. Refer to the zoning exception for clarification as well.
 - Question regarding the proposed grades abutting the park?
 - The project is in a very good state at this time, there are certain design elements that need resolution which are more detailed such as the public realm and architecture. The next UDRP submission deadline is September 17th, 2020 for the October panel session.
- Urban Design (RW)
 - Question about where the curtain wall system would be used
 - Question on the darker materials, what are they? Be mindful of the quality of certain metal products and their respective durability and long-term presentation.
 - Ground plane issues will evolve (i.e. integration with the sidewalk and public realm).
 - Additional detailed notes and illustration will follow.
 - A Design Brief is required as part of the site plan submission. The Terms of Reference is attached for convenience.
 - The property is within a Design Priority Area. A visit to the UDRP for formal review is required for the submission to be deemed complete. The project may also benefit from an informal review by the UDRP with a focus on architecture and detailed landscape design. It appears that detailed landscape design has yet been developed and there are still rooms for change to architecture design.
 - With respect to the design presented at the preconsultation, it is trending in the right direction with respect to site organization and massing. However, further explorations are required with respect to architecture and landscaping. Here are a few highlights (the numbering below corresponds to the numbering shown in the attached PDF):
 - The functions and landscape characteristics of the frontage along Montreal Road, including its relationship with the public sidewalk. Currently there are some inconsistencies between various drawings presented.
 - The pedestrian connection located between the two development phases. Currently there are some inconsistencies between various drawings presented. It is also important to note that this connection, while located on private land, is intended to offer public access to the park. The design should ensure the connection is physically accessible and is perceived to be public.
 - The base of the building facing Den Hagg. The current design appears to be a little bit "fuzzy" and there is a lack of distinction between the base

and the upper floors with respect to the pattern of fenestration. This design may be more successful if a clear distinction can be achieved.

- The base of the building facing Montreal. The response to the previous discussion is appreciated. However, the proposed "framing" is not a very successful endeavor. The intent of the "framing" is to create a consistent 2-storey volume along both Montreal and Den Hagg. Unfortunately, the cohesion between the two portions is not achieved.
- 1) The front residential entrance. The entrance is "hidden" in the current design. The project will benefit from a more visible front entrance as a prominent feature in the streetscape.
- Engineering (JW)
 - Sanitary sewer capacity concerns. The original study had modelled an alternative project.
 - DY a new study and analysis will be provided and will look at the overall development. No negative downstream impact is expected, and will be confirmed
 - Sanitary sewer on Den Haag will need to be extended. Sanity, storm and water will come off LeBoutillier Avenue.
 - The existing sanitary sewer on Den Haag does not extend north to the subject site.
 - Potential contamination concerns from the former building which has been removed. Ground water contamination is a potential concern that should be studied in the Phase 1 and 2 ESA studies.
 - PC engineering consultants have been retained to study the site.
 - Full study list to be attached.
- Transportation (MG)
 - A TIA is triggered- proceed to Step 2 scoping. The step 4 (strategy) must be submitted prior to or with the application.
 - The Montreal Road row protection is 37.5m.
 - A corner triangle (5x5 minimum) is required at Montreal/Den Haag.
 - Montreal to Blair transit priority EA is underway and will be competed in December. Please contact Katarina Cvetkovic for more information.
- o Environmental
 - Tree preservation / distinctive trees study can form part of the landscape
- o Parks (PL)
 - Important the public park property be delignated in some manner. Understands that there will be public connections but should be limited.
 - A low-lying fence should be provided, perhaps a continuation of the post and rail fence.
 - SD follow up comment on the grading relationship between the park and private property...will the grades match?
 - FP some areas will be able to match grades. The below grade parking will create some new grade differences.
 - Have studied some barrier free access to the site coming from the south.

Questions and comments from the Community Association representative
 N/A

Submission requirements and fees

Next steps

 Encourage applicant to discuss the proposal with Councillor, community groups and neighbours

APPENDIX B

Water Demand FUS Calculation City of Ottawa Boundary condition 125532-C-001 General Plan of Services 125532-C-010 Notes and Details Plan

WATERMAIN DEMAND CALCULATION SHEET

IBI 333 PRESTON STREET OTTAWA, ON K1S 5N4

PROJECT : 800 Montreal Road LOCATION : City of Ottawa DEVELOPER : Sovima Ottawa Inc.

FILE: 125532-6.4.4 DATE PRINTED: 2020-05-14 DESIGN: 2020-05-14 PAGE: 1 OF 1

	RESIDENTIAL				NON-RESIDENTIAL			AVERAGE DAILY			MAXIMUM DAILY			MAXIMUM HOURLY			FIRE
NODE	UNITS			INDTRL	COMM.	RETAIL	0	DEMAND (I/s)		DEMAND (I/s)			DEMAND (l/s)			DEMAND	
NODE	1bd	2bd	3bd	POP'N	(ha.)	(ha.)	(m ²)	Res.	Non-res.	Total	Res.	Non-res.	Total	Res.	Non-res.	Total	(l/min)
Phase 1	62	48	13	224				0.73	0.00	0.73	1.81	0.00	1.81	3.99	0.00	3.99	
Phase 2	28	18	0	77				0.25	0.00	0.25	0.63	0.00	0.63	1.38	0.00	1.38	
Total	90	66	13	301				0.98	0.00	0.98	2.44	0.00	2.44	5.37	0.00	5.37	11,000

ASSUMPTIONS

RESIDENTIAL DENSITIES	AVG. DAILY DEMAND	MAX. HOURLY DEMAND							
One-bedroom/Studio (1bd) 1.4 p / p / u	Residential:** 280 I / cap / day	Residential: 1,540 I / cap / day							
Two-bedroom (2bd) 2.1 p / p / u	Industrial: I / ha / day	Industrial: I / ha / day							
Three-bedroom (3bd) 2.8 p / p / u	Commercial: I / ha / day	Commercial: I / ha / day							
	Retail: I / 1000m ² / day	Retail: I / 1000m ² / day							
** Residential Daily Demand reduced to coincide with									
current waste water guidelines	MAX. DAILY DEMAND	FIRE FLOW							
	Residential: 700 I / cap / day	From FUS Calculation 28,000 I / min							
	Industrial: I / ha / day								
	Commercial: I / ha / day								
	Retail: I / 1000m ² / day								

Fire Flow Requirement from Fire Underwriters Survey - 800 Montreal Road

800 Montreal Road - PH1

5	Floor Area (1 & 2) 0% Floor Area (3 to 8) Total Floor Area	3,694 m ² 4,886 8,580 m ²	
F = 220C√A	N N		
С	0.6	C =	1.5 wood frame
А	8,580 m ²		1.0 ordinary 0.8 non-combustible
F use	12,227 l/min 12,000 l/min		0.6 fire-resistive

Occupancy Adjustment

Use	-15%	-15% limited combustible 0% combustible +15% free burning
Adjustment Fire flow	-1800 l/min 10,200 l/min	+25% rapid burning
Sprinkler Adjustment		-30% system conforming t -50% complete automatic
Use	-30%	

-3060 l/min

conforming to NFPA 13 ete automatic system

-25% non-combustible

Exposure Adjustment

Adjustment

Building	Separation	Adja	cent Expos	ed Wall	Exposure
Face	(m)	Length	Stories	L*H Factor	Charge *
north	>45	12.0	2	24	5%
east	16.0	21.0	4	84	14%
south	6.0	15.0	8	120	15%
west	29.0	40.0	2	80	6%
Total					40%
Adjustmer	nt		4,080	l/min	
					-
Total adju	stments		1,020	l/min	
Fire flow			11,220	l/min	-
Use			11,000	l/min	
			183	l/s	

Two Largerst Floors Above Floor Area (m²) Floor at 50% 1847 1847 1 2 1847 1847 3 1742 871 1606 803 4 803 1606 5 1606 803 6 803 1606 7 803 1606 8 Total 13466 4886 3694

(Note: For fire-resistive buildings, consider two largest adjoining floors plus 50% of each of any floors immediately above them up to eight.)

From: Wu, John <<u>John.Wu@ottawa.ca</u>>
Sent: Thursday, May 21, 2020 9:17 AM
To: Amy Zhuang <<u>Amy.Zhuang@ibigroup.com</u>>
Subject: RE: Water Boundary Condition Request - 800 Montreal Road

Here is the result:

The following are boundary conditions, HGL, for hydraulic analysis at 800 Montreal (zone MONT) assumed to be connected to the 203mm on LeBoutillier (see attached PDF for locations).

Existing Conditions based on current pump operations:

Minimum HGL = 146.8m

Maximum HGL = 147.0m. The maximum pressure is estimated to be close to 80 psi. A pressure check at completion of construction is recommended to determine if pressure control is required Max Day + FireFlow (183L/s) = 139.0m

Please note the following:

• Boundary conditions provided above are for existing conditions. Upgrades to the Montreal and Brittany pump stations are currently being planned to support the CFB Rockcliffe development. The City plans to control the discharge HGL to 143.0m.

These are for current conditions and are based on computer model simulation.

Disclaimer: The boundary condition information is based on current operation of the city water distribution system. The computer model simulation is based on the best information available at the time. The operation of the water distribution system can change on a regular basis, resulting in a variation in boundary conditions. The physical properties of watermains deteriorate over time, as such must be assumed in the absence of actual field test data. The variation in physical watermain properties can therefore alter the results of the computer model simulation.

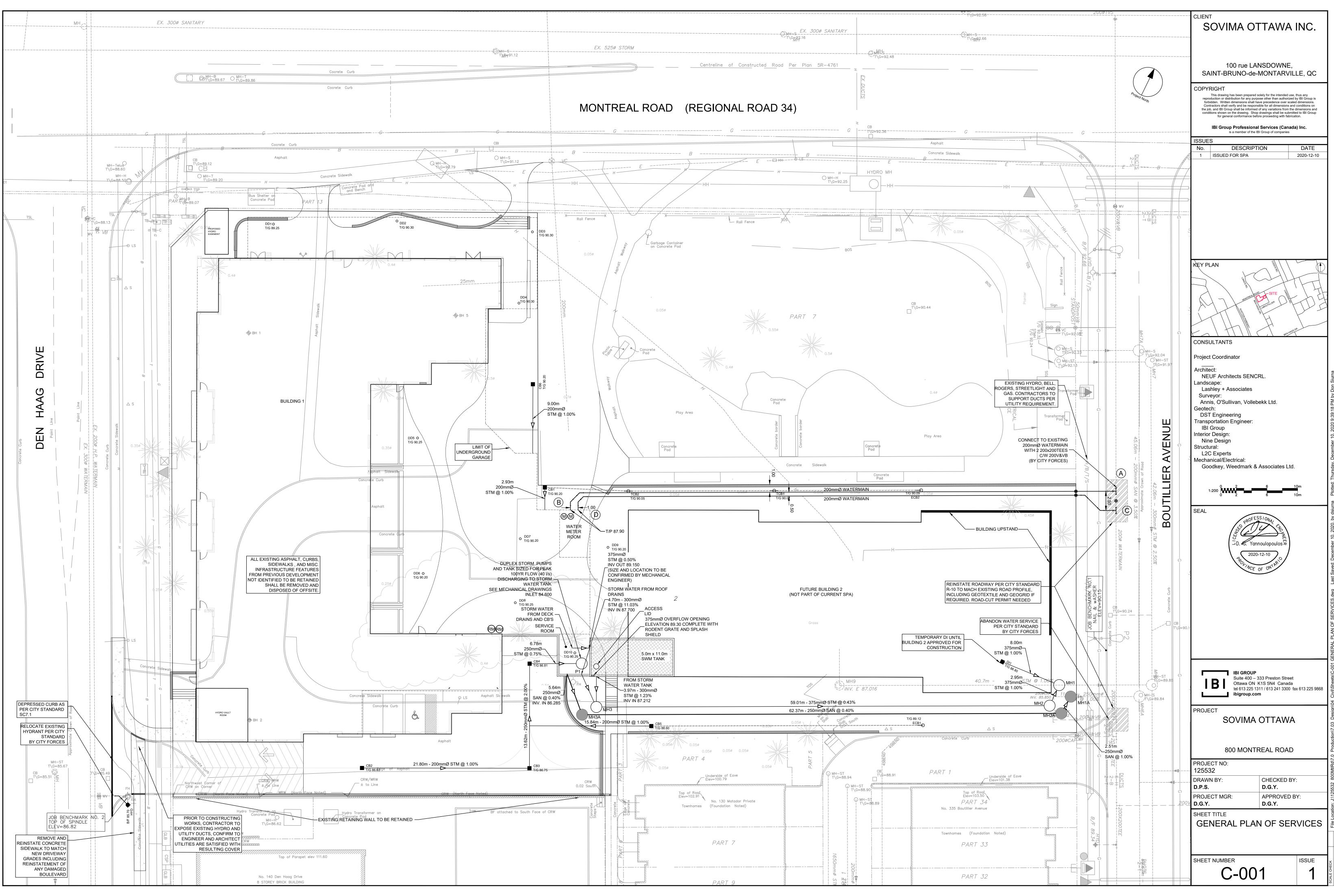
We do not provide the boundary condition at the hydrant.

John

From: Amy Zhuang <<u>Amy.Zhuang@ibigroup.com</u>>
Sent: May 14, 2020 7:06 PM
To: Wu, John <<u>John.Wu@ottawa.ca</u>>
Cc: Demetrius Yannoulopoulos <<u>dyannoulopoulos@IBIGroup.com</u>>; Ryan Magladry
<<u>rmagladry@IBIGroup.com</u>>
Subject: RE: Water Boundary Condition Request - 800 Montreal Road

CAUTION: This email originated from an External Sender. Please do not click links or open attachments unless you recognize the source.

ATTENTION : Ce courriel provient d'un expéditeur externe. Ne cliquez sur aucun lien et n'ouvrez pas de pièce jointe, excepté si vous connaissez l'expéditeur.


Hi John,

- We will be running two parallel water service connections to LeBoutillier.
- Phase 1 is a 8-story building with larger footprint compared to Phase 2 (4-story building).
- The water connection will serve both phase 1 and phase 2.

Could you provide us the boundary conditions at the connection point and also at the fire hydrant along LeBoutillier (to justify the fireflow capacity for the site)?

Thank you very much!

Amy

DRAWING NOTES

1.0 GENERAL

1.1 CONTRACTOR TO VERIFY ALL DIMENSIONS PRIOR TO CONSTRUCTION.

1.2 DO NOT SCALE DRAWINGS.

1.3 CONTRACTOR TO REPORT ALL DISCOVERIES OF ERRORS, OMISSIONS OR DISCREPANCIES TO THE

ARCHITECT OR DESIGN ENGINEER AS APPLICABLE. 1.4 USE ONLY THE LATEST REVISED DRAWINGS OR THOSE THAT ARE MARKED "ISSUED FOR CONSTRUCTION".

1.5 ALL CONSTRUCTION SHALL COMPLY WITH CURRENT CITY OF OTTAWA STANDARDS AND SPECIFICATIONS.

1.6 THIS DRAWING SHALL BE READ IN CONJUNCTION WITH ALL RELEVANT DRAWINGS AND SPECIFICATIONS.

1.7 FOR LEGAL SURVEY INFORMATION REFER TO REGISTERED PLAN FROM ANNIS, O'SULLIVAN, VOLLEBEKK LTD. 1.8 REFER TO SITE PLAN BY NEUF ARCHITECTS.

1.9 CONTRACTOR TO IMPLEMENT EROSION AND SEDIMENT CONTROL MEASURES AS IDENTIFIED IN THE EROSION AND SEDIMENT CONTROL PLAN TO THE SATISFACTION OF THE CITY OF OTTAWA, PRIOR TO UNDERTAKING ANY SITE ALTERATIONS (FILLING, GRADING, REMOVAL OF VEGETATION, ETC.). DURING ALL PHASES OF THE SITE PREPARATION AND CONSTRUCTION THE MEASURES ARE TO BE MAINTAINED TO THE SATISFACTION OF THE ENGINEER AND CITY OF OTTAWA IN ACCORDANCE WITH THE BEST MANAGEMENT PRACTICES FOR EROSION AND SEDIMENT CONTROL. SHOULD ANY ADDITIONAL MEASURES BE REQUIRED TO ADDRESS FIELD CONDITIONS THEY SHALL BE INSTALLED AS DIRECTED BY THE ENGINEER OR THE CITY OF OTTAWA. SUCH ADDITIONAL MEASURES MAY INCLUDE BUT NOT BE LIMITED TO INSTALLATION OF SEDIMENT CAPTURE FILTER SOCKS WITHIN MANHOLES AND CATCHBASINS TO PREVENT SEDIMENT FROM ENTERING THE STRUCTURE AND INSTALLATION AND

MAINTENANCE OF A LIGHT DUTY SILT FENCE BARRIER AS REQUIRED. 1.10 ALL IRON WORK ELEVATIONS SHOWN ARE APPROXIMATE AND ARE SUBJECT TO MINOR ADJUSTMENTS AS DETERMINED BY THE ENGINEER.

1.11 ALL CONCRETE CURBS AND SIDEWALKS TO CONFORM TO O.P.S. AND CONSTRUCTED TO CITY STANDARDS. ALL ONSITE CURBS TO BE BARRIER TYPE, WITH DEPRESSIONS AS NOTED.

1.12 ALL CONCRETE SHALL BE "NORMAL PORTLAND CEMENT" IN ACCORDANCE WITH O.P.S.S. 1350 AND SHALL ACHIEVE A MINIMUM STRENGTH OF 30MPa AT 28 DAYS.

1.13 ALL CONSTRUCTION TRAFFIC TO ACCESS SITE FROM LeBOUTILLIER AVE.

1.14 FOR GEOTECHNICAL REPORT SEE GEOTECHNICAL INVESTIGATION BY DST ENGINEERING.

1.15 CONTRACTOR TO PROTECT EXISTING INFRASTRUCTURE AND PROPERTY SUCH AS TREES, PARKING METERS, SIDEWALKS, CURBS, ASPHALT, AND STREET SIGNS FROM DAMAGE DURING CONSTRUCTION. CONTRACTOR TO PAY THE COST TO REINSTATE OR REPLACE ANY DAMAGED INFRASTRUCTURE OR PROPERTY TO THE SATISFACTION OF THE CITY.

1.16 THE POSITION OF POLE LINES CONDUITS WATERMAIN SEWERS AND OTHER UNDERGROUND AND ABOVEGROUND UTILITIES AND STRUCTURES ARE NOT NECESSARILY SHOWN ON THE CONTRACT DRAWINGS, AND WHERE SHOWN, THE ACCURACY OF THE POSITION OF SUCH UTILITIES AND STRUCTURES IS NOT GUARANTEED. BEFORE STARTING WORK THE CONTRACTOR SHALL INFORM ITSELF OF THE EXACT LOCATION OF ALL SUCH UTILITIES AND STRUCTURES, SHALL PROTECT ALL UTILITIES AND STRUCTURES, AND SHALL ASSUME ALL LIABILITY FOR DAMAGE TO THEM.

1.17 CONTRACTOR TO SUPPLY SUITABLE FILL MATERIAL WHERE REQUIRED TO ROUGH GRADE THE SITE. ALL IMPORTED FILL MATERIAL TO BE CERTIFIED AS ACCEPTABLE BY THE GEOTECHNICAL ENGINEER.

1.18 CONTRACTOR TO HAUL EXCESS MATERIAL OFFSITE AS NECESSARY TO GRADE SITE TO MEET THE PROPOSED GRADES. ALL EXCESS MATERIAL TO BE HAULED OFFSITE AND DISPOSED OF AT AN APPROVED DUMP SITE. SHOULD THE CONTRACTOR DISCOVER ANY HAZARDOUS MATERIAL, CONTRACTOR IS TO NOTIFY ENGINEER. ENGINEER TO DETERMINE APPROPRIATE DISPOSAL METHOD/LOCATION

1.19 FILL MATERIAL WITHIN THE PARKING LOT AND BUILDING PAD AREAS, AND SUPPORTING BUILDING FOUNDATIONS SHALL BE COMPACTED TO 98% STANDARD MODIFIED PROCTOR DENSITY AND TO THE

1.20 ALL COMPACTION METHODS TO BE PERFORMED TO THE SATISFACTION OF THE GEOTECHNICAL ENGINEER TO INCLUDE BUT NOT BE LIMITED TO THE THICKNESS OF LIFTS, AND COMPACTION EQUIPMENT USED.

1.21 ALL DISTURBED BOULEVARDS TO BE REINSTATED WITH SOD ON 100mm TOPSOIL. 1.22 UTILITY DUCTS TO BE INSTALLED PRIOR TO ROAD BASE CONSTRUCTION.

SATISFACTION OF THE GEOTECHNICAL ENGINEER.

1.23 CLAY DIKES TO BE INSTALLED WHERE INDICATED ON THE DRAWINGS OR AS APPROVED AND DIRECTED BY THE GEOTECHNICAL ENGINEER ALL IN ACCORDANCE WITH CITY OF OTTAWA STANDARDS AND SPECIFICATIONS. 1.24 BACKWATER VALES, PER CITY STANDARDS S14, S14.1 AND S14.2 RE TO BE INSTALLED FOR ALL STORM AND SANITARY SERVICE CONNECTIONS.

2.0 SANITARY

PRV

PRESSURE REDUCING VALVE

2.1 ALL SANITARY SEWER MAINS TO BE CSA CERTIFIED, BELL AND SPIGOT TYPE. ONLY FACTORY FITTINGS TO BE USED. SEWER TO BE INSTALLED AS PER OSPD 1005.01. SANITARY SEWER MATERIALS TO BE: 250mmØ AND SMALLER - PVC DR 35

2.2 ALL SANITARY MAINTENANCE HOLES TO BE 1.2m DIAMETER AS PER CITY OF OTTAWA STANDARDS COMPLETE WITH BENCHING, RUNGS, FRAME AND COVER, DROP PIPES AND LANDINGS WHERE NEEDED. 2.3 SANITARY MANHOLE COVERS TO BE CITY OF OTTAWA STD. S25 (MOD. OPSD. 401.020). SANITARY MANHOLE

COVER TO BE CLOSED COVER TYPE, AS PER CITY STANDARD S24. 2.4 SANITARY SEWER LEAKAGE TEST AND CCTV INSPECTION SHALL BE COMPLETED AS PER CITY

SPECIFICATIONS PRIOR TO INSTALLATION OF BASE COURSE ASPHALT. .5 ANY SANITARY SEWER WITH LESS THAN 2.0m COVER REQUIRES THERMAL INSULATION AS PER CITY OF OTTAWA STANDARD W22, OR AS APPROVED BY THE ENGINEER.

2.6 CONNECTION TO THE EXISTING SANITARY SEWER TO BE INCLUDED IN THE COST FOR SANITARY SEWER INSTALLATION. THIS INCLUDES REINSTATEMENT OF ROAD CUTS TO CITY STANDARDS.

3.0 STORM

3.1 ALL STORM SEWERS TO BE CSA CERTIFIED, BELL AND SPIGOT TYPE. ALL STORM SEWERS TO BE INSTALLED PER MANUFACTURER'S INSTRUCTIONS. ONLY FACTORY FITTINGS TO BE USED. STORM SEWER MATERIALS TO BE : 375mmØ AND SMALLER - PVC DR 35 - 450mmØ AND LARGER - 100-D REINFORCED CONCRETE. UNLESS NOTED OTHERWISE

3.2 ALL STORM MAINTENANCE HOLES TO BE SIZED IN ACCORDANCE WITH THE PLANS AND AS PER CITY OF OTTAWA STANDARDS COMPLETE WITH BENCHING, RUNGS, AND FRAME AND COVER.

3.3 STORM MH COVERS TO BE OPEN TYPE, AS PER CITY STANDARD S24, FRAMES TO BE PER CITY OF OTTAWA STD. S25. CONTRACTOR TO INSTALL FILTER FABRIC UNDER STORM MH COVER UNTIL SODDING IS COMPLETE.

3.4 STORM MAINTENANCE HOLES TO BE OPSD, SIZE AS SPECIFIED, TAPER TOP.

3.5 ALL CATCH BASINS TO BE AS PER OPSD 705.010, FRAME & FISH TYPE GRATE AS PER CITY OF OTTAWA STD. S19.1.

3.6 3m 150mm DIAMETER SOCK-WRAPPED PERFORATED PVC SUBDRAINS TO BE INSTALLED ALL CB'S. TO EXTEND PARALLEL TO CURB IN CBS ADJACENT TO CURB AND IN 4 DIRECTIONS FOR CBS IN CENTER OF PARKING LOT. SUBDRAINS TO DISCHARGE TO CB'S.

3.7 ANY STORM SEWER WITH LESS THAN 2.0m COVER REQUIRES THERMAL INSULATION AS PER CITY OF OTTAWA STANDARD W22, OR AS APPROVED BY THE ENGINEER.

3.8 CONNECTION TO THE EXISTING STORM SEWER TO BE INCLUDED IN THE COST FOR STORM SEWER

INSTALLATION. THIS INCLUDES REINSTATEMENT OF ROAD CUT TO CITY STANDARDS. 3.9 CONTRACTOR TO PROVIDE IPEX-TEMPEST MHF ICD'S SHOP DRAWINGS, OR EQUIVALENT, FOR

ENGINEERS REVIEW PRIOR TO ORDERING ICD'S. <u>4.0 WATER</u>

4.1 ALL WATERMAINS 100mmØ OR GREATER TO BE PVC DR 18. LESS THAN 100mm Ø TO BE COPPER OR APPROVED EQUAL WITH MINIMUM COVER OF 2.4m AND INSTALLED PER CITY OF OTTAWA STANDARDS. ALL DOMESTIC WATER SERVICES ARE TO BE 25mmØ.

4.2 THRUST BLOCKS TO BE INSTALLED AT ALL BENDS, TEES, AND CAPS ALL AS PER OPSD 1103.01 AND 1103.02.

4.3 CONTRACTOR TO CONDUCT PRESSURE AND LEAKAGE TESTING OF ALL WATERMAINS AND DISINFECT AND CHLORINATE ALL WATERMAINS TO THE SATISFACTION OF M.O.E. AND THE CITY OF OTTAWA

4.4 TRACER WIRE TO BE INSTALLED ALONG THE FULL LENGTH OF WATERMAIN AND ATTACHED TO EACH MAIN STOP AS PER CITY OF OTTAWA STANDARDS.

4.5 ALL COMPONENTS OF THE WATER DISTRIBUTION SYSTEM SHALL BE CATHODICALLY PROTECTED AS PER CITY OF OTTAWA STANDARDS.

4.6 ALL VALVES & VALVE BOXES AND CHAMBERS, HYDRANTS, AND HYDRANT VALVES AND ASSEMBLIES SHALL BE INSTALLED AS PER CITY OF OTTAWA STANDARDS.

4.7 ANY WATERMAIN WITH LESS THAN 2.4m COVER REQUIRES THERMAL INSULATION AS PER CITY OF OTTAWA STANDARD W22, OR AS APPROVED BY THE ENGINEER.

4.8 CONTRACTOR IS RESPONSIBLE FOR ACQUIRING THE WATER PERMIT FROM THE CITY OF OTTAWA AND PAYMENT OF ANY FEES ASSOCIATED WITH SECURING THE WATER PERMIT. OWNER IS RESPONSIBLE FOR REIMBURSING THE CONTRACTOR FOR THE ACTUAL COST OF ACQUIRING THE

4.9 CONNECTION TO EXISTING WATERMAIN TO BE INCLUDED IN THE COST FOR THE WATERMAIN INSTALLATION. THIS COST INCLUDES REINSTATEMENT OF ROAD CUTS TO CITY STANDARDS. 4.10 ALL WATERMAIN CROSSINGS TO BE COMPLETED AS PER CITY OF OTTAWA STANDARDS W25 AND

5.0 PARKING LOT AND WORK IN PUBLIC RIGHTS OF WAY

WATER PERMIT.

RESPONSIBILITY.

W25.2

5.1 CONTRACTOR TO REINSTATE ROAD CUTS PER CITY OF OTTAWA STANDARD R-10.

5.2 THE CONTRACTOR SHALL PREPARE A TRAFFIC MANAGEMENT PLAN FOR REVIEW AND APPROVAL BY THE CITY OF OTTAWA. CONTRACTOR TO MAINTAIN TRAFFIC FLOW DURING THE ENTIRE CONSTRUCTION PERIOD. MAINTENANCE OF ROAD CUTS SHALL BE THE RESPONSIBILITY OF THE CONTRACTOR. PROVISION OF FLAGMEN, DETOURS AS NECESSARY, BARRICADES AND SIGNS TO THE FULL SATISFACTION OF THE ENGINEER AND ROAD AUTHORITY SHALL BE THE CONTRACTOR'S

5.3 CONTRACTOR TO PREPARE SUBGRADE, INCLUDING PROOFROLLING, TO THE SATISFACTION OF THE GEOTECHNICAL ENGINEER PRIOR TO THE COMMENCEMENT OF PLACEMENT OF GRANULAR B MATERIAL.

5.4 FILL TO BE PLACED AND COMPACTED PER THE GEOTECHNICAL REPORT REQUIREMENTS.

5.5 CONTRACTOR TO SUPPLY. PLACE AND COMPACT GRANULAR B MATERIAL IN ACCORDANCE WITH THE RECOMMENDATIONS OF THE GEOETCHNICAL ENGINEER. CONTRACTOR TO PROVIDE ENGINEER WITH SAMPLES OF GRANULAR B MATERIAL FOR TESTING AND CERTIFICATION FROM THE GEOTECHNICAL ENGINEER THAT THE MATERIAL MEETS THE GRADATION REQUIREMENTS SPECIFIED IN THE GEOTECHNICAL REPORT.

5.6 GRANULAR A MATERIAL TO BE PLACED ONLY UPON APPROVAL BY THE GEOTECHNICAL ENGINEER OF GRANULAR B PLACEMENT.

5.7 ASPHALT MATERIAL TO BE PLACED ONLY UPON APPROVAL BY THE GEOTECHNICAL ENGINEER OF GRANULAR A PLACEMENT.

5.8 CONTRACTOR TO SUPPLY, PLACE AND COMPACT ASPHALT MATERIAL IN ACCORDANCE WITH THE RECOMMENDATIONS OF THE GEOTECHNICAL ENGINEER. CONTRACTOR TO PROVIDE ENGINEER WITH SAMPLES OF ASPHALT MATERIAL FOR TESTING AND CERTIFICATION FROM THE GEOTECHNICAL ENGINEER THAT THE MATERIAL MEETS THE REQUIREMENTS SPECIFIED IN THE GEOTECHNICAL REPORT.

5.9 CONTRACTOR IS RESPONSIBLE FOR ESTABLISHING LINE AND GRADE IN ACCORDANCE WITH THE PLANS, AND FOR PROVIDING THE ENGINEER WITH VERIFICATION PRIOR TO PLACEMENT.

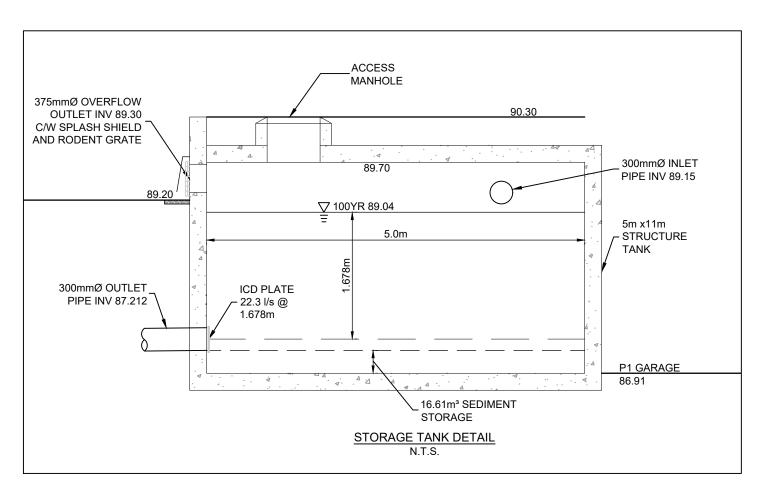
5.10 DITCHES AND CULVERTS DISTURBED DURING ARE TO BE REINSTATED TO THEIR ORIGINAL CONDITION AND FLOWLINE GRADES.

5.11 PAVEMENT STRUCTURE (MATERIAL TYPES AND THICKNESSES) FOR HEAVY DUTY AND LIGHT DUTY AREAS TO BE AS SPECIFIED IN THE GEOTECHNICAL REPORT AND SHOWN ON THE PLANS.

LEGEND:			
О ^{МНЗА}	SANITARY MANHOLE	H/B/T/G	EXISTING UTILITIES
O ^{MH3}	STORM MANHOLE		EXISTING DUCT BANK
CB T/G 99.76	CATCHBASIN c/w TOP OF GRATE	1.3%	SLOPE C/W FLOW DIRECTION
RYCB	REAR YARD CATCHBASIN c/w GUTTER GRADE	$\langle \square$	MAJOR OVERLAND FLOW ROUTE
T/G 99.76		×104.62	PROPOSED SPOT GRADE
O ECB T/G 100.25	REAR YARD "END" CATCHBASIN C/W TOP OF GRATE (300Ø)	×104.40 (S)	PROPOSED SWALE GRADE
💼 свмн	CATCHBASIN MANHOLE	×104.50 (S)HP	PROPOSED SWALE HIGH POINT
T/G 101.55	c/w TOP OF GRATE	104.60 103.59 ×	LOT CORNER GRADE C/W EXISTING GROUND
⊗ ^{∨B}	VALVE AND VALVE BOX	86.45 EX ×	TIE INTO EXISTING GRADE
⊗ ^{V&C}	VALVE AND CHAMBER	96.79	FULL STATIC PONDING GRADE
+ HYD B/F 100.56	HYDRANT c/w BOTTOM OF FLANGE ELEVATION		TOP OF RETAINING WALL GRADE
	DEPRESSED BARRIER CURB AS PER SC1.1	103.50 101.50	RETAINING WALL
D.C.	BARRIER CURB AS PER SC1.1		GRASS GRADE AT RETAINING WALL LOW SIDE
	MOUNTABLE CURB AS PER SC1.3	111111	TERRACING 3:1 MAXIMUM UNLESS NOTED OTHERWISE
	PROPOSED CONCRETE SIDEWALK	D	PRELIMINARY ROOF DRAIN LOCATION
200mmØ SAN	SANITARY SEWER & FLOW DIRECTION	TP 13-301	TEST PITS (SEE GEOTECHNICAL REPORT)
825mmØ STM	STORM SEWER & FLOW DIRECTION		
	250mmØ SUBDRAIN		CLAY DYKES PER S8
200Ø WATERMAIN	WATERMAIN	A	WATERMAIN IDENTIFICATION
RED 150Ø WM	WATERMAIN REDUCER	(1)	PIPE CROSSING IDENTIFICATION
2 VBENDS	VERTICAL BEND LOCATION	-	INLET CONTROL DEVICE LOCATION
\$	SIAMESE CONNECTION (IF REQUIRED)	۲	PROTECTIVE BOLLARD
M	METER		NOISE FENCE AND GATE LOCATION
RM	REMOTE METER		HEAVY DUTY ASPHALT / FIRE ROUTE

HEAVY DUTY ASPHALT / FIRE ROUTE

			S	AN STRL	JCTURE TA	ABLE	
	NAME	RIM ELEV.	INVERT IN	INVERT IN AS-BUILT	INVERT OUT	INVERT OUT AS-BUILT	DESCRIPTION
	MH1A	90.00	S85.905		NE85.860		1200mmØ OPSD-701.010
	MH2A	89.91	SW85.965		N85.930		1200mmØ OPSD-701.010
_	МНЗА	88.19	NW86.262		NE86.214		1200mmØ OPSD-701.010


		ST	IM STRU	CTURE TA	BLE	
NAME	RIM ELEV.	INVERT IN	INVERT IN AS-BUILT	INVERT OUT	INVERT OUT AS-BUILT	DESCRIPTION
CB1	90.56			SE89.750		OPSD-705.010
CB2	86.63			NE85.230		OPSD-705.010
CB3	86.75	SW85.012		NW84.960		OPSD-705.010
CB4	86.81	SE84.688		NE84.650		OPSD-705.010
CB5	88.60			SW87.100		OPSD-705.010
CB6	90.20			SE89.750		OPSD-705.010
DI1	88.80			E86.830		OPSD-705.030
MH1	90.11	S86.750 W86.750		NE86.700		1200mmØ OPSD-701.010
MH2	89.94	SW86.825		N86.780		1200mmØ OPSD-701.010
MH3	88.18	NW87.182 NW87.163		NE87.080		1200mmØ OPSD-701.010
P1	86.80	SW84.600				DUPLEX STORM PUMPS AND TANK

PAVE	EMENT STR	UCTURE **	
CAR C	ONLY PARKING	AREAS:	
	150mm BAS 300mm SUE SUBGR	AR COURSE - HL-3 OR SUPERPAVE 12.5 ASPHALT SE - OPSS GRANULARGRANULAR "A" CRUSHED S 3BASE - OPSS GRANULAR "B" TYPE II 2ADE - IN SITU SOIL, OR OPSS GRANULAR "B" TYP 2IAL PLACED OVER IN SITU SOIL	тс
<u>HEAV</u>	Y TRUCK PARK	(ING AREAS AND ACCESS LANES:	
	50mm BINE 150mm BAS 450mm SUE SUBGR	AR COURSE - HL-3 OR SUPERPAVE 12.5 ASPHALT DER COURSE - HL-8 OR SUPERPAVE 19.0 ASPHAL DE COURSE - OPSS GRANULAR "A" CRUSHED STO BBASE - OPSS GRANULAR "B" TYPE II RADE - IN SITU SOIL, OR OPSS GRANULAR "B" TYP IAL PLACED OVER IN SITU SOIL	LTI ON
	** REFEF	R TO GEOTECHNICAL REPORT BY DST ENGINEEF	RIN
	-	WATERMAIN SCHEDULE	
	Station	Description	
Α	0+000.00`	CONNECT TO EXISTING 2000 W/M WITH 200TEE	F
	0+005.22	200V&VB	F
	0+020.00	-	Γ
	0+040.00	-	Γ
	0+069.84	45 BEND	T

	Station	Description	Finis he d	Top of	Watermain	As Built
	Genon	Debenption	Grade	Watermain	Cover	Watermain
A	0+000.00`	CONNECT TO EXISTING 200g W/M WITH 200TEE	91.10	88.72	2.38]
	0+005.22	200V&VB	91.18	88.78	2.40	1
	0+020.00	-	90.38	87.98	2.40	1
	0+040.00	•	90.14	87.74	2.40	1
	0+069.84	45 BEND	90.25	87.85	2.40	1
	0+071.52	45 BEND	90.27	87.87	2.40	1
В	0+072.56	200mmø SERVICE CONNECTION	90.30	87.90	2.40	1
С	0+000.00	CONNECT TO EXISTING 2000 W/M WITH 200TEE	90.97	88.60	2.37	1
	0+002.06	45 BEND	91.13	88.73	2.40	1
	0+004.88	45 BEND	91.1 6	88.76	2.40	1
	0+006.05	200V&VB	91.18	88.78	2.40	1
	0+020.83	-	90.44	87.98	2.46	
	0+040.83	-	90.18	87.74	2.44	
	0+070.16	45 BEND	90.25	87.85	2.40	1
	0+071.14	45 BEND	90.27	87.87	2.40	1
D	0+072.18	200mmg SERVICE CONNECTION	90.30	87.90	2.40	

ANNIS, O'SULLIVAN, VOLLEBEKK LTD. TOPOGRAPHIC LEGEND

\bigcirc	"	Deciduous Tree
*	"	Coniferous Tree
-OFH	"	Fire Hydrant
WV WV	"	Water Valve
⊖ MH-ST	"	Maintenance Hole (Storm Sewer)
⊖ MH-S	"	Maintenance Hole (Sanitary)
○ МН-В	"	Maintenance Hole (Bell Telephone)
⊖ мн-т	"	Maintenance Hole (Traffic)
⊖ мн−н	"	Maintenance Hole (Hydro)
○ MH-Telus	"	Maintenance Hole (Telus)
VC	"	Valve Chamber (Watermain)
🗌 СВ	"	Catch Basin
CBI	"	Catch Basin Inlet
BOS	"	Bottom of Slope
TOS	"	Top of Slope
🔶 вн	"	Borehole
🗆 HH	"	Handhole
□ TB-B	"	Bell Terminal Box
□ TB-C	"	Cable Terminal Box
DO TSP	"	Traffic Signal Post
o B	"	Bollard
\triangle S	"	Sign
P&W	"	Post and Wire
	"	Traffic Light
O LS	"	Light Standard
🖞 мв	"	Mail Box
Ø	"	Diameter
+65.00	"	Location of Elevations
$+^{65.00*}$	"	Top of Concrete Curb/Wall Elevation
C/L	"	Centreline
DC	"	Depressed Curb

C CONCRETE ONE

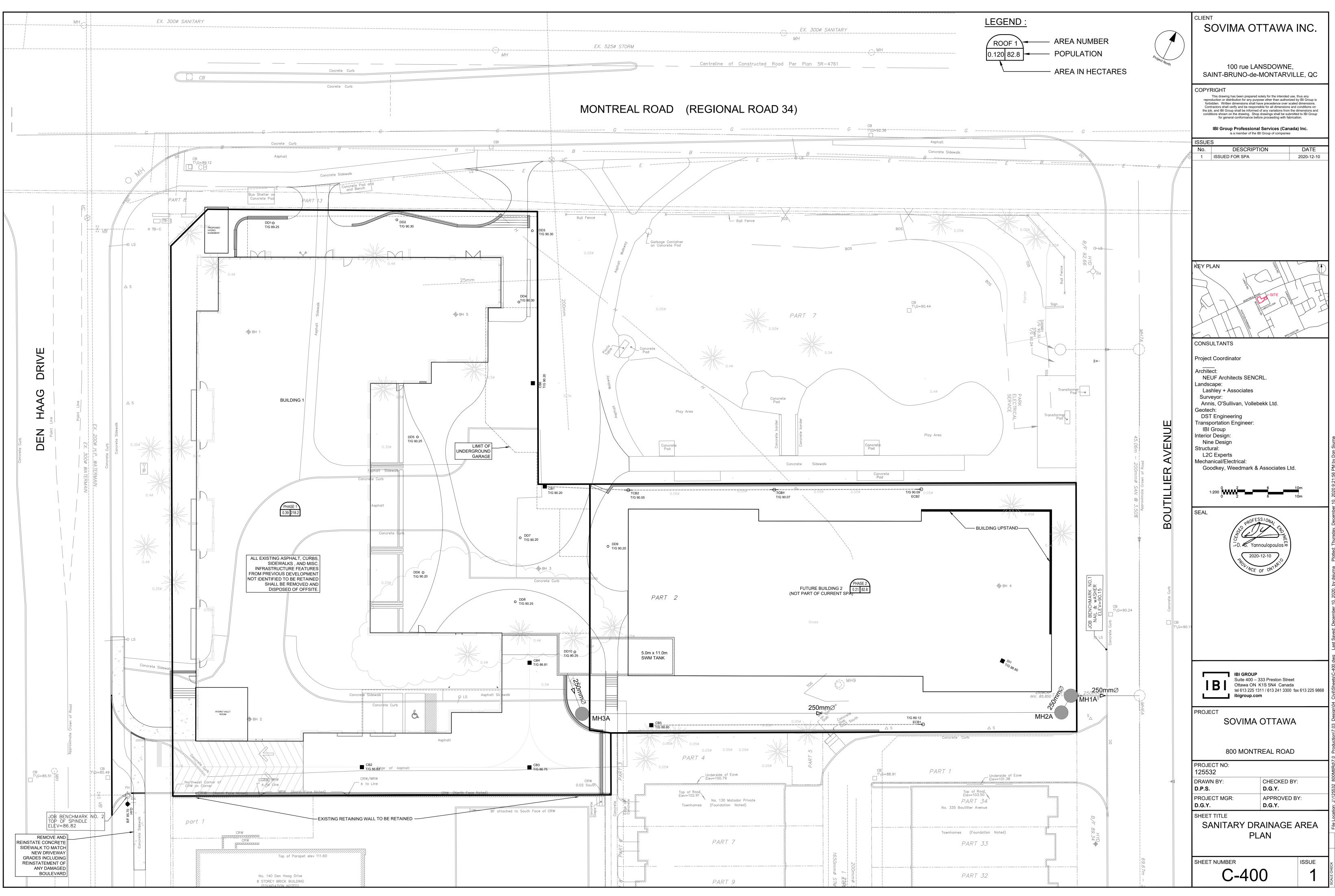
I OR II

C CONCRETE TIC CONCRETE

I OR II

SOVIMA OTTAWA I	NC.
100 rue LANSDOWNE, SAINT-BRUNO-de-MONTARVILI	LE, QC
COPYRIGHT This drawing has been prepared solely for the intended use, t reproduction or distribution for any purpose other than authorized b forbidden. Written dimensions shall have precedence over scaled Contractors shall verify and be responsible for all dimensions and the job, and IBI Group shall be informed of any variations from the d conditions shown on the drawing. Shop drawings shall be submitter for general conformance before proceeding with fabrications	y IBI Group is dimensions. conditions on imensions and d to IBI Group
IBI Group Professional Services (Canada is a member of the IBI Group of companies) Inc.
ISSUES No. DESCRIPTION	DATE
	2020-12-10
KEY PLAN	
Project Coordinator Architect: NEUF Architects SENCRL. Landscape: Lashley + Associates Surveyor: Annis, O'Sullivan, Vollebekk Ltd. Geotech: DST Engineering Transportation Engineer: IBI Group Interior Design: Nine Design Structural: L2C Experts Mechanical/Electrical: Goodkey, Weedmark & Associates Ltd.	
SEAL	
IBI GROUP Suite 400 – 333 Preston Street Ottawa ON K1S 5N4 Canada tel 613 225 1311 / 613 241 3300 fax ibigroup.com	< 613 225 9868
SOVIMA OTTAWA 800 MONTREAL ROAD	
PROJECT NO:	
125532DRAWN BY:CHECKED BY:	
D.P.S.D.G.Y.PROJECT MGR:APPROVED B'	Y:
D.G.Y. SHEET TITLE DETAILS AND NOTE	S
sheet number C-010	ISSUE 1

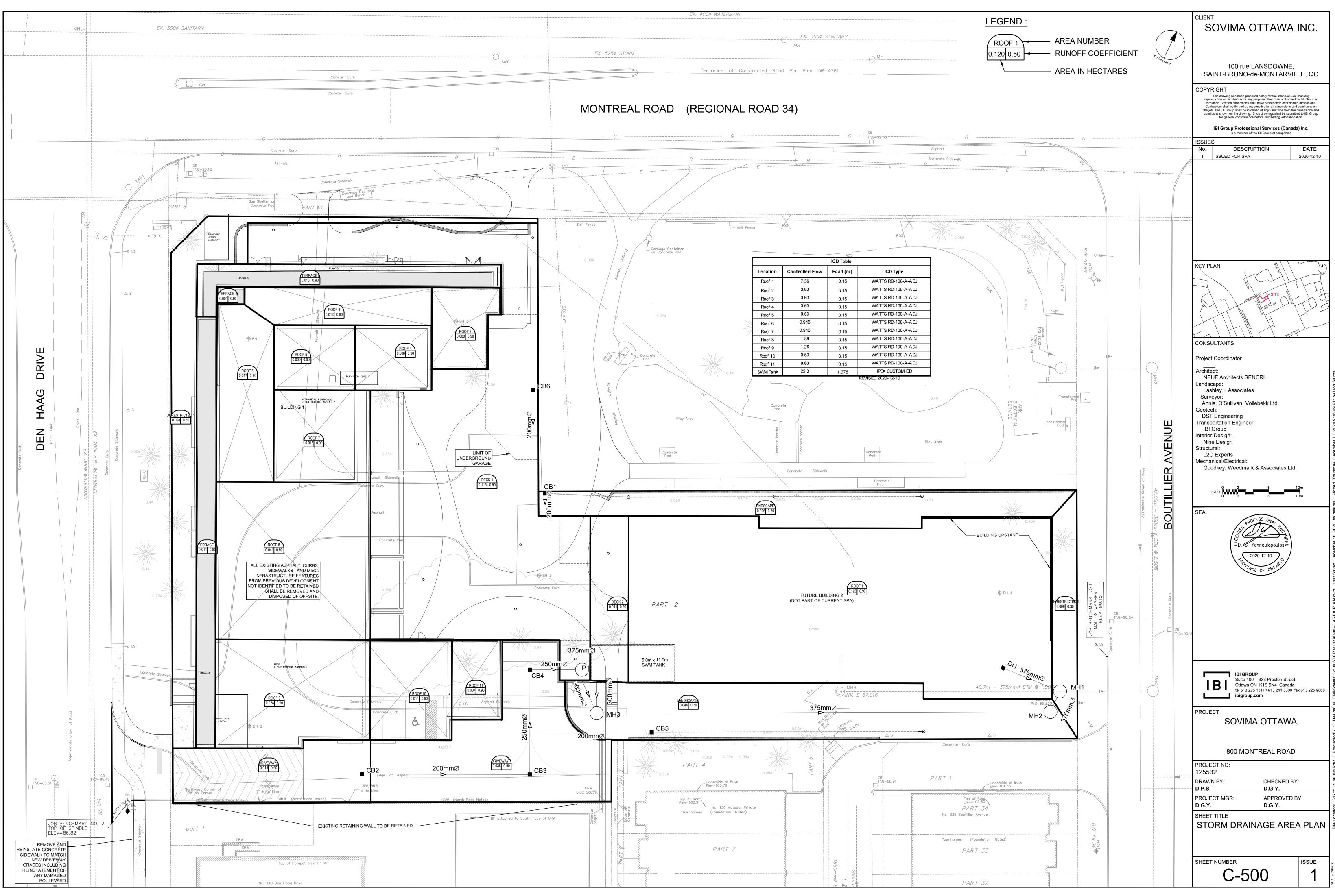
APPENDIX C


Sanitary Sewer Design Sheet 125532-C-400 Sanitary Drainage Plan

		RESIDENTIAL ICI AREAS INFILTRATION ALLOWANCE Fixed FLOW (L/s) TOTAL AREA UNIT TYPES AREA POPULATION RES PEAK AREA (Ha) ICI PEAK AREA (Ha) FLOW FLOW<																PROPOSED SEWER DESIGN																	
	LOCAT	ION			DEA			TYDEE	RESIDE		DODU	ATION	DEC	DEAK			ADE		REAS		101	DEAK				FIXED FLOW (L/s)			CARACITY	LENCTH	PROPO DIA		DESIGN VELOCITY	A)/A	ILABLE
		- FRON	то		Units					w/o Units			PEAK		INSTITU	ITIONAL	COMM	ERCIAL	INDUS	TRIAL	PEAK	FLOW		1 Y Z			1						(full)		PACITY
STREET	AREA I	р мн	MH		Ha)	1B	2B	3B	APT	(Ha)	IND		ACTOR	(L/s)	IND	CUM	IND		IND	CUM	FACTOR		IND	CUM	(L/s)	IND	CUM	(L/s)	(L/s)	(m)	(mm)	(%)	(m/s)	L/s	
	OUTLET TO LEE	BOUTILLIER	-																																
	1	BLDG	3	_	0.59				172		309.6	309.6	3.46	3.47	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.59	0.6	0.19	0.00	0.00	3.66	39.24	5.64	250	0.40	0.774	35.57	90.66%
		3	2								0.0	309.6	3.46		0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	0.6	0.19	0.00	0.00	3.66	39.24	62.37	250	0.40	0.774	35.57	
		2	1								0.0	309.6	3.46	3.47	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	0.6	0.19	0.00	0.00	3.66	62.04	2.51	250	1.00	1.224	58.37	94.09%
		1	EX								0.0	309.6	3.46	3.47	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	0.6	0.19	0.00	0.00	3.66	62.04	9.00	250	1.00	1.224	58.37	94.09%
			-																																+
																																			+
			-																																+
																																			+
				-																															+
			_																																
				-																															+
													-				-										1				-			-	
					0.59	0		0			309.6																								+
			-	_																										<u> </u>					+
			-	-1-																	1		1		1	1			1			1			+
Design Parameters:				Note	s:							0	esigned:		R.M,			No.				•	•	F	Revision	•		•	•				Date		-
				1. N	annings c	coefficient ((n) =		0.013								1. Servicing Brief - Submission No. 1												2020-12-14						
Residential		ICI Areas				er capita):		280 L		200	L/day														-						-				_
3B 2.8 p/p/u						llowance:		0.33 L	./s/Ha			c	hecked:		D.G.Y.																				
2B 2.1 p/p/u	INST 2	28,000 L/Ha/day		4. R	esidential	Peaking F	actor:	14/(4+(P/100	0140 5110	,																									
1B 1.4 p/p/u APT 1.8 p/p/u		28,000 L/Ha/day	MOE C				ormula = 1+(1 0.8 Correctio		u/ [.] 0.5))0.1	5			Defer		125600-40	0																			
API 1.8 p/p/u Other 60 p/p/Ha		35,000 L/Ha/day 17000 L/Ha/day						on Factor Factors base					wg. Refer	ence:	120000-40	0		F21.	e Referenc							Date:							Sheet No:		
Outer 60 p/p/Ha		17000 L/Ha/day		5. U			ater than 20			area,								FII	25600.6.4.4	e:						2020-08-2							1 of 1		

IBI GROUP 400-333 Preston Street Ottawa, Ontario K1S 5N4 Canada 181

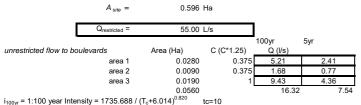
E


800 Montrel Road

APPENDIX D

Storm Design Sheet 125532-C-500 Storm Drainage Plan Modified Rational Method Calculation Sheet

IBI	IBI GROUP 400-333 Preston : Ottawa, Ontario K tel 613 225 1311 ibigroup.com	1S 5N4 Can																												STO	ORM SEW	800 N	GN SHEET Montreal Road City of Ottawa roupe Sovima
	LOCATION						REA (Ha)										RATIONAL D												EWER DAT				
STREET	AREA ID	FROM	то	C= 0.20	C= 0.30			C= 0	C= C= .87 0.9				TIME IN PIPE	TOTAL (min)	i (2) (mm/hr)	i (5) (mm/hr)	i (10) (mm/hr)	i (100) (mm/hr)	2yr PEAK FLOW (L/s	5yr PEAK FLOW (L/s)	10yr PEAK FLOW (L/s	100yr PEAR FLOW (L/s)	FIXED FLOW (L/s		CAPACITY (L/s)	LENGTH (m)	P DIA	VIPE SIZE (mi W	m) H	SLOPE (%)	VELOCITY (m/s)	AVAIL (L/s)	CAP (2yr) (%)
												_																			L		
01	UTLET TO LEBOUTILL	IER						_		_	_	-	_																		<u> </u>		_
	Drwv 1 + Lndscp 2	CB4	Sump		0.044				0.01	38 0.13	0.13	10.00	0.11	10.11	76.81	104 19	122 14	178 56	10.12	13 73	16.09	23.53	-	10.12	53 73	678	250	┝──┤		0.75	1.060	43.61	81 16%
	Diny 1 Chadop E	004	oump		0.044				0.00	0.10	0.10	10.00	0.11	10.11	10.01	104.10	122.14	110.00	10.12	10.10	10.00	20.00		10.12	00.10	0.70	200			0.70	1.000	40.01	01.10%
	roofs 1-11	BLDG	3						0.27	79 0.70	0.70	10.00	0.05	10.05	76.81	104.19	122.14	178.56	53.61	72.73	85.26	124.64		53.61	120.21	4.70	300			1.42	1.648	66.60	55.40%
sump + Landscape 1,	Terr 1-3, deck 1&2	cistern	3		0.070				0.19	0.54	0.54	10.00	0.05	10.05	76.81	104.19	122.14	178.56	41.57	56.40	66.11	96.65		41.57	100.88	3.97	300	ļ!		1.00	1.383	59.31	58.79%
		3	2					-	-	0.00	1.24	10.05	0.93	10.98	76.62	103 94	121 84	178 12	94.96	128 82	151.01	220.75		94.96	119.94	59.01	375			0.43	1.052	24.08	20.83%
		2	1					-	-	0.00			0.93	11.01	73.23	99.27	121.04	170.05	94.90	123.02	144.19	210.75		94.90	182.91	2.95	375			1.00	1.604	92.16	50.38%
		1	EX							0.00				11.14	73.12	99.13		169.80		122.85	143.98	210.43		90.62	182.91		375			1.00	1.604	92.29	
				0.000	0.070	0.000	0.000 0		000 0.47	72 1.24		-	_																		<u> </u>		_
				0.000	0.070	0.000	0.000 0	.000 0.	000 0.4		Total				-													──┦			<u> </u>		
									-																						<u> </u>		
														l .																	1		
	1	1		<u> </u>							1		1	L		1	1			L	L	I	L	L	L	L				L		L	<u> </u>
Definitions: Q = 2.78CiA. where:				Notes:								Designed	:	RM				No.				0	ister Deisf	Revision Submission No							Date 2020-12-14		
Q = 2.78CiA, where: Q = Peak Flow in Litre	s ner Second (I /s)			1. Man	nings co	efficient (n) =											1.				Sen	ncing Brief -	Submission No	.1						2020-12-14		
A = Area in Hectares (1								Checked		DY																			
i = Rainfall intensity in	millimeters per hour (mn	n/hr)		1																													
[i = 732.951 / (TC+6		2 YEAR																															
[i = 998.071 / (TC+6		5 YEAR		1								Dwg. Refe	rence:	125600-50	00																		
[i = 1174.184 / (TC+		10 YEAR 100 YEAR		1																eference: 00.6.4.4					Date: 2020-08-28						Sheet No: 1 of 1		
[i = 1735.688 / (TC+	+6.014 <i>)*</i> 0.820]	100 YEAR																	1250	00.0.4.4					2020-08-28						1 of 1		



IBI GROUP 400-333 Preston Street Ottawa, Ontario K1S 5N4 Canada tel 613 225 1311 fax 613 225 9868 ibigroup.com

STORMWATER MANAGEMENT

Maximum Allowable Release Rate

Restricted Flowrate (based on 15214 Design Brief)

Maximum Allowable Release Rate (Q max allowable = Q restricted - Q uncontrolled)

Formulas and Descriptions

i_{2vr} = 1:2 year Intensity = 732.951 / (T_c+6.199)^{0.810} i_{5yr} = 1:5 year Intensity = 998.071 / (T_c+6.053)^{0.814} i_{100yr} = 1:100 year Intensity = 1735.688 / (T_c+6.014)^{0.820} T_c = Time of Concentration (min) C = Average Runoff Coefficient A = Area (Ha) Q = Flow = 2.78CiA (L/s)

MODIFIED RATIONAL METHOD (100-Year, 5-Year & 2-Year Ponding)

Drainage Area	Roof Area 1]				Drainage Area	Roof Area 1]				Drainage Area	Roof Area 1				
Area (Ha)	0.120					Area (Ha)	0.120					Area (Ha)	0.120				
C =	1.00	Restricted Flow Q _r (L	./s)=	7.560		C =	0.90	Restricted Flow Q _r (L	/s)=	7.560		C =	0.90	Restricted Flow Q _r (L	/s)=	7.560	
		100-Year Pond	ding					5-Year Pondi	ng					2-Year Pondi	ng		
T _c Variable	i _{100yr}	Peak Flow Q _p =2.78xCi _{100yr} A	Q,	Q _p -Q _r	Volume 100yr	T _c Variable	i _{5yr}	Peak Flow Q _p =2.78xCi _{5yr} A	Q,	Q _p -Q _r	Volume 5yr	T _c Variable	i _{2yr}	Peak Flow Q _p =2.78xCi _{2yr} A	Q,	Q _p -Q _r	Volume 2yr
(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m ³)	(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m³)	(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m³)
30	91.87	30.55	7.56	22.99	41.37	14	86.93	26.01	7.56	18.45	15.50	7	90.66	27.13	7.56	19.57	8.22
35	82.58	27.46	7.56	19.90	41.78	19	72.53	21.70	7.56	14.14	16.12	12	69.89	20.91	7.56	13.35	9.62
40	75.15	24.98	7.56	17.42	41.82	24	62.54	18.71	7.56	11.15	16.06	17	57.42	17.18	7.56	9.62	9.81
45	69.05	22.96	7.56	15.40	41.58	29	55.18	16.51	7.56	8.95	15.57	22	49.02	14.67	7.56	7.11	9.38
55	59.62	19.82	7.56	12.26	40.47	34	49.50	14.81	7.56	7.25	14.80	32	38.34	11.47	7.56	3.91	7.51
		St	orage (m ³)					St	orage (m ³)					St	orage (m ³)		
	Overflow	Required	Surface	Sub-surface	Balance		Overflow	Required	Surface	Sub-surface	Balance		Overflow	Required	Surface	Sub-surface	Balance
	0.00	41.82	44.85	0	0.00		0.00	16.06	44.85	0	0.00		0.00	9.81	44.85	0	0.00
				Overflows to:	Parking Lot					Overflows to:	Parking Lot					Overflows to:	Parking Lot

PROJECT: 800 Montreal Rd

FILE:

REV #:

DESIGNED BY:

CHECKED BY:

DATE: 2020-12-14

122532-6.4

R.M. & W.Z.

D.G.Y.

								-						-			
Drainage Area	Roof Area 2					Drainage Area	Roof Area 2					Drainage Area	Roof Area 2	2			
Area (Ha)	0.008		(-)-			Area (Ha)	0.008	Destricted Flow O (l	1-)-			Area (Ha)	0.008	Beetsisted Flow O (I	(-)-		
C =	1.00	Restricted Flow Qr (Li	-	0.630		C =	0.90	,	,	0.630		C =	0.90	Restricted Flow Q _r (L	,	0.630	
	•	100-Year Pond	ling	1			1	5-Year Pondi	ng				ī	2-Year Pondi	ng		
T _c	i _{100yr}	Peak Flow	Q,	$Q_p - Q_r$	Volume	T _c	i _{5yr}	Peak Flow	Q,	$Q_p - Q_r$	Volume	T _c	i 2yr	Peak Flow	Q,	$Q_p - Q_r$	Volume
Variable		Q _p =2.78xCi _{100yr} A			100yr	Variable		$Q_p = 2.78 \times Ci_{5 \text{vr}} A$			5yr	Variable		$Q_p = 2.78 \times Ci_{2vr} A$		· · · ·	2yr
(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m ³)	(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m ³)	(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m ³)
23 28	109.68 96.27	2.44 2.14	0.63	1.81 1.51	2.50 2.54	8	116.11 90.63	2.32 1.81	0.63	1.69 1.18	0.81	5 10	103.57 76.81	2.07 1.54	0.63	1.44 0.91	0.43
33	86.03	1.91	0.63	1.28	2.54	18	74.97	1.50	0.63	0.87	0.92	15	61.77	1.24	0.63	0.61	0.55
38	77.93	1.73	0.63	1.10	2.52	23	64.29	1.29	0.63	0.66	0.91	20	52.03	1.04	0.63	0.41	0.49
48	65.89	1.47	0.63	0.84	2.41	28	56.49	1.13	0.63	0.50	0.84	30	40.04	0.80	0.63	0.17	0.31
			orage (m ³)						orage (m ³)						orage (m ³)		
	Overflow	Required	Surface	Sub-surface	Balance		Overflow	Required	Surface	Sub-surface	Balance		Overflow	Required	Surface	Sub-surface	Balance
	0.00	2.54	3.20	0	0.00		0.00	0.94	3.20	0	0.00		0.00	0.55	3.20	0	0.00
				Overflows to:	Parking Lot					Overflows to:	Parking Lot					Overflows to:	Parking Lot
					T anning Lot					overnows to.	T anning Lot					Overnows to:	T unting Lot
		_												_			
Drainage Area	Roof Area 3					Drainage Area	Roof Area 3					Drainage Area	Roof Area 3	2			
Area (Ha)	0.012					Area (Ha)	0.012					Area (Ha)	0.012	2			
C =	1.00	Restricted Flow Qr (L	/s)=	0.630		C =	0.90	Restricted Flow Qr (L	/s)=	0.630		C =	0.90) Restricted Flow Q _r (L	/s)=	0.630	
		100-Year Pond	ling					5-Year Pondi	ng					2-Year Pondi	ing		
T _c	1	Peak Flow	Q,	$Q_p - Q_r$	Volume	T _c	i.	Peak Flow	Q,	$Q_p - Q_r$	Volume	T _c	1.	Peak Flow	Q,	$Q_p - Q_r$	Volume
Variable	i _{100yr}	Q p =2.78xCi 100yr A	Q,	Qp-Qr	100yr	Variable	i _{5yr}	Q p = 2.78xCi 5yr A	Q,	Qp-Qr	5yr	Variable	i _{2yr}	Q _p =2.78xCi _{2yr} A	w _r	Qp-Qr	2yr
(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m ³)	(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m ³)	(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m³)
35	82.58	2.75	0.63	2.12	4.46	14	86.93	2.61	0.63	1.98	1.66	9	80.87	2.43	0.63	1.80	0.97
40 45	75.15	2.51	0.63	1.88	4.50	19	72.53	2.18	0.63	1.55	1.76	14 19	64.23	1.93	0.63	1.30	1.09
45 50	69.05 63.95	2.30 2.13	0.63	1.67 1.50	4.52 4.51	24 29	62.54 55.18	1.88 1.66	0.63	1.25 1.03	1.80 1.79	24	53.70 46.37	1.61 1.39	0.63	0.98	1.12 1.10
60	55.89	1.86	0.63	1.23	4.44	34	49.50	1.49	0.63	0.86	1.75	34	36.78	1.10	0.63	0.47	0.97
		Ste	orage (m ³)					Ste	orage (m ³)					St	orage (m ³)		
	Overflow	Required	Surface	Sub-surface	Balance		Overflow	Required	Surface	Sub-surface	Balance	-	Overflow	Required	Surface	Sub-surface	Balance
	0.00	4.52	4.80	0	0.00		0.00	1.80	4.80	0	0.00		0.00	1.12	4.80	0	0.00
				0	Daultin a Lat					0	Dauliu a Lat					0	Daulsia a Lat
				Overflows to:	Parking Lot					Overflows to:	Parking Lot					Overflows to:	Parking Lot
Drainage Area	Roof Area 4					Drainage Area	Roof Area 4					Drainage Area	Roof Area 4	1			
Area (Ha)	0.008					Area (Ha)	0.008					Area (Ha)	0.008	3			
C =	1.00	Restricted Flow Q _r (L	/s)=	0.630		C =	0.90	Restricted Flow Qr (L	/s)=	0.630		C =	0.90) Restricted Flow Q _r (L	./s)=	0.630	
		100-Year Pond	ling					5-Year Pondi	ng					2-Year Pondi	ing		
T _c		Peak Flow		0.0	Volume	T _c		Peak Flow			Volume	T _c		Peak Flow			Volume
Variable	i 100yr	Q p=2.78xCi 100yr A	Q,	Q _p - Q _r	100yr	Variable	i _{5yr}	Q p = 2.78xCi 5yr A	Q,	$Q_p - Q_r$	5yr	Variable	i _{2yr}	Q _p =2.78xCi _{2yr} A	Q,	$Q_p - Q_r$	2yr
(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m³)	(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m ³)	(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m ³)
23	109.68	2.44	0.63	1.81	2.50	8	116.11	2.32	0.63	1.69	0.81	5	103.57	2.07	0.63	1.44	0.43
28	96.27	2.14	0.63	1.51	2.54	13	90.63	1.81	0.63	1.18	0.92	10	76.81	1.54	0.63	0.91	0.54
33	86.03	1.91	0.63	1.28	2.54	18	74.97	1.50	0.63	0.87	0.94	15	61.77	1.24	0.63	0.61	0.55
38 48	77.93 65.89	1.73 1.47	0.63	1.10 0.84	2.52 2.41	23 28	64.29 56.49	1.29 1.13	0.63	0.66	0.91	20 30	52.03 40.04	1.04 0.80	0.63	0.41	0.49
48	00.89	1.47	0.03	0.84	2.41	20	50.49	1.13	0.03	0.50	0.04	30	40.04	0.80	0.03	0.17	0.31
		Ste	orage (m ³)					St	orage (m ³)					St	orage (m ³)		
	Overflow	Required	Surface	Sub-surface	Balance		Overflow	Required	Surface	Sub-surface	Balance		Overflow	Required	Surface	Sub-surface	Balance
	0.00	2.54	3.20	0	0.00		0.00	0.94	3.20	0	0.00		0.00	0.55	3.20	0	0.00
				Overflows to:	Parking Lot					Overflows to:	Parking Lot					Overflows to:	Parking Lot

Drainage Area						Dusta and Ana a						Due for a sure A sure a		1			
Area (Ha)	Roof Area 5					Drainage Area Area (Ha)	Roof Area 5					Drainage Area Area (Ha)	Roof Area 5 0.009				
(⊓a) 2 =		Restricted Flow Qr (L	/s)=	0.630		Атеа (па) С =	0.008		/s)=	0.630		Агеа (па) С =		Restricted Flow Qr (L	/s)=	0.630	
•	1.00	100-Year Pond	,	0.000			0.00	5-Year Pondi	,	0.000			0.00	2-Year Pondi	,	0.000	
T _c	1	Peak Flow	- J	1	Volume	Τ _c	1	Peak Flow		1 1	Volume	Τ _c	1	Peak Flow		1 1	Volume
Variable	i _{100yr}	Q _p =2.78xCi _{100yr} A	Q,	$Q_p - Q_r$	100yr	Variable	i _{5yr}	$Q_p = 2.78 \times Ci_{5yr} A$	Q,	Q _p -Q _r	5yr	Variable	i _{2yr}	$Q_p = 2.78 \times Ci_{2yr} A$	Q,	$Q_p - Q_r$	2yr
(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m ³)	(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m ³)	(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m ³)
25	103.85	2.60	0.63	1.97	2.95	10	104.19	2.35	0.63	1.72	1.03	5	103.57	2.33	0.63	1.70	0.51
30	91.87	2.30	0.63	1.67	3.00	15	83.56	1.88	0.63	1.25	1.13	10	76.81	1.73	0.63	1.10	0.66
35 40	82.58	2.07	0.63	1.44	3.02 3.00	20	70.25	1.58	0.63	0.95	1.14	15	61.77	1.39 1.17	0.63	0.76	0.68
50	75.15 63.95	1.88 1.60	0.63	1.25 0.97	2.91	25 30	60.90 53.93	1.37 1.21	0.63	0.74	1.11 1.05	20 30	52.03 40.04	0.90	0.63	0.54	0.65
	00.00		0.00	0.01	2.01		00.00		0.00	0.00	1.00		10.01	0.00	0.00	0.27	0.10
		St	orage (m3)					Ste	orage (m ³)					St	orage (m ³)		
	Overflow	Required	Surface	Sub-surface	Balance		Overflow	Required	Surface	Sub-surface	Balance		Overflow	Required	Surface	Sub-surface	Balance
	0.00	3.02	3.60	0	0.00		0.00	1.14	3.60	0	0.00		0.00	0.68	3.60	0	0.00
				Overflows to:	Parking Lot					Overflows to:	Parking Lot					Overflows to:	Parking
					·						·						
	Roof Area 6	1				Drainage Area		7				Ducinous Auco		1			
Frainage Area rea (Ha)	0.017					Drainage Area Area (Ha)	Roof Area 6	7				Drainage Area Area (Ha)	Roof Area 6 0.017				
=		Restricted Flow Q _r (L	_/s)=	0.945		C =	0.017	Restricted Flow Qr (L	/s)=	0.945		C =	0.90	Restricted Flow Qr (L	/s)=	0.945	
	1.00	100-Year Pond		0.010		•	0.00	5-Year Pondi	,	0.010		<u> </u>	0.00	2-Year Pondi	,	0.010	
T _c	1	Peak Flow		1	Volume	T _c	1	Peak Flow	-		Volume	T _c	1	Peak Flow	-	1	Volume
Variable	i _{100yr}	Q _p =2.78xCi _{100yr} A	Q,	Q _p -Q _r	100yr	Variable	i _{5yr}	$Q_p = 2.78 \times Ci_{5yr} A$	Q,	Q _p -Q _r	5yr	Variable	i _{2yr}	$Q_p = 2.78 \times Ci_{2yr} A$	Q,	$Q_p - Q_r$	2yr
(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m ³)	(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m ³)	(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m^3)
30	91.87	4.34	0.95	3.40	6.11	14	86.93	3.70	0.95	2.75	2.31	9	80.87	3.44	0.95	2.49	1.35
35	82.58	3.90	0.95	2.96	6.21	19	72.53	3.08	0.95	2.14	2.44	14	64.23	2.73	0.95	1.79	1.50
40	75.15	3.55	0.95	2.61	6.26	24	62.54	2.66	0.95	1.72	2.47	19	53.70	2.28	0.95	1.34	1.53
45 55	69.05 59.62	3.26 2.82	0.95	2.32	6.26 6.18	29 34	55.18 49.50	2.35	0.95	1.40	2.44	24	46.37 36.78	1.97 1.56	0.95	1.03	1.48
00	00.02	2.02	0.00	1.07	0.10	04	40.00	2.11	0.00	1.10	2.01	04	00.70	1.00	0.00	0.02	1.20
		St	orage (m ³)					Ste	orage (m ³)					St	orage (m ³)		
	Overflow	Required	Surface	Sub-surface	Balance		Overflow	Required	Surface	Sub-surface	Balance		Overflow	Required	Surface	Sub-surface	Balance
	0.00			0	0.00		0.00	2.47	6.80	0	0.00				6.80	0	0.00
		6.26	6.80	Ū					0.00	-	0.00		0.00	1.53	0.00		
		0.20	6.80		Parking Lot				0.00				0.00	1.55	0.00	Overflows to:	
		0.20	6.80	Overflows to:	Parking Lot				0.00	Overflows to:	Parking Lot		0.00	1.55	0.00	Overflows to:	
		0.20	6.80		Parking Lot				0.00				0.00	1.33	0.00	Overflows to:	
		0.20	6.80		Parking Lot	Drainana Ana	Deef Avec 7	_	0.00			Dusingua Area		1.55	0.00	Overflows to:	
<u> </u>		0.20	6.80		Parking Lot	Drainage Area		_				Drainage Area	Roof Area 7	1.55	0.00	Overflows to:	
D rainage Area rea (Ha) =	0.015	1		Overflows to:	Parking Lot	Drainage Area Area (Ha) C =	0.015			Overflows to:		Drainage Area Area (Ha) C =	Roof Area 7 0.015	1			Parking
rea (Ha)	0.015	Restricted Flow Q _r (L	/s)=		Parking Lot	Area (Ha)		Restricted Flow Q _r (Li	/s)=			Area (Ha)	Roof Area 7 0.015	Restricted Flow Q _r (L	/s)=	Overflows to: 0.945	
rea (Ha) =	0.015	Restricted Flow Q, (L 100-Year Pond	./s)= ding	Overflows to: 0.945		Area (Ha) C =	0.015	5 Restricted Flow Q, (L) 5-Year Pondi r	/s)= ng	Overflows to: 0.945	Parking Lot	Area (Ha) C =	Roof Area 7 0.015 0.90	Restricted Flow Q, (L 2-Year Pondi	/s)= ng	0.945	Parking
rea (Ha)	0.015	Restricted Flow Q, (L 100-Year Pond Peak Flow	/s)=	Overflows to:	Volume	Area (Ha)	0.015	Restricted Flow Q _r (Li 5-Year Pondi i Peak Flow	/s)=	Overflows to:	Parking Lot	Area (Ha)	Roof Area 7 0.015	Restricted Flow Q _r (L 2-Year Pondi Peak Flow	/s)=		Parking Volume
rea (Ha) = T _c	0.015	Restricted Flow Q, (L 100-Year Pond	./s)= ding	Overflows to: 0.945		Area (Ha) C = τ _c	0.015	5 Restricted Flow Q, (L) 5-Year Pondi r	/s)= ng	Overflows to: 0.945	Parking Lot	Area (Ha) C = T _c	Roof Area 7 0.015 0.90	Restricted Flow Q, (L 2-Year Pondi	/s)= ng	0.945	Parking
rea (Ha) = T _c Variable (min) 30	0.015 1.00 <i>i</i> _{100yr} (<i>mm/hour</i>) 91.87	Restricted Flow Q, (L 100-Year Pond Peak Flow Q _p =2.78xCi 100r A (L/s) 3.83	/s)= ding Q, (L/s) 0.95	Overflows to: 0.945 Q _p - Q _r (L/s) 2.89	Volume 100yr (m ³) 5.19	Area (Ha) C = T _c Variable (min) 12	0.015 0.90 <i>i</i> _{5yr} (<i>mm/hour</i>) 94.70	Restricted Flow Q _r (L 5-Year Pondir Peak Flow $Q_p=2.78xCi_{Syr}A$ (L/S) 3.55	/s)= ng Q, (L/s) 0.95	Overflows to: 0.945 Q _p - Q _r (L/s) 2.61	Parking Lot Volume 5yr (m ³) 1.88	Area (Ha) C = T _c Variable (min) 7	Roof Area 7 0.015 0.90 i2yr (mm/hour) 90.66	Restricted Flow Q _r (L 2-Year Pondi <i>Peak Flow</i> <i>Q</i> _p =2.78xCi _{2yr} A (L/s) 3.40	/s)= ng Q, <u>(L/s)</u> 0.95	0.945 Q _p -Q _r (L/s) 2.46	Volume 2yr (m ³) 1.03
rea (Ha) = T _c Variable (min) 30 35	0.015 1.00 <i>i</i> _{100yr} (<i>mm/hour</i>) 91.87 82.58	Restricted Flow Q, (L 100-Year Pond <i>Peak Flow</i> <i>Q_p</i> =2.78xCi _{100yr} A <i>(L/s)</i> 3.83 3.44	/s)= ding Q, (L/s) 0.95 0.95	Overflows to: 0.945 Q _p - Q _r (<i>L/s</i>) 2.89 2.50	Volume 100yr (m ³) 5.19 5.25	Area (Ha) C = <i>T_c</i> <i>Variable</i> (<i>min</i>) 12 17	0.015 0.90 <i>i</i> _{5yr} (mm/hour) 94.70 77.61	Restricted Flow Q _r (Li 5-Year Pondi Peak Flow Q _p =2.78xCi _{5yr} A (L/s) 3.55 2.91	/s)= P Q (L/s) 0.95 0.95	Overflows to: 0.945 Q _p -Q _r (L/s) 2.61 1.97	Parking Lot Volume 5yr (m ³) 1.88 2.01	Area (Ha) C = <i>T c</i> <i>Variable</i> <i>(min)</i> 7 12	Roof Area 7 0.015 0.90 i _{2yr} (mn/hour) 90.66 69.89	Restricted Flow Q _r (L 2-Year Pondi Peak Flow Q _p =2.78xCi _{2yr} A (L/s) 3.40 2.62	/s)= R Q (L/s) 0.95 0.95	0.945 Q _p -Q _r (L/s) 2.46 1.68	Volume 2yr (m ³) 1.03 1.21
rea (Ha) = Variable (min) 30 35 40	0.015 1.00 <i>i</i> _{100yr} (<i>mm/hour</i>) 91.87 82.58 75.15	Restricted Flow Q, (L 100-Year Pont Peak Flow Q _p =2.78xCi 100yr A (L/s) 3.83 3.44 3.13	/s)= Q, (L/s) 0.95 0.95	Overflows to: 0.945 Q _p -Q _r (L/s) 2.89 2.50 2.19	Volume 100yr (m ³) 5.19 5.25 5.25	Area (Ha) C = Variable (min) 12 17 22	0.015 0.90 <i>i</i> _{5yr} (mm/hour) 94.70 77.61 66.15	Restricted Flow Q _r (L 5-Year Pondit Peak Flow Q _p =2.78xCi _{5yr} A (L/s) 3.55 2.91 2.48	/s)= ng Q, (L/s) 0.95 0.95	Overflows to: 0.945 Q _p -Q _r (L/s) 2.61 1.97 1.54	Parking Lot Volume 5yr (m ³) 1.88 2.01 2.03	Area (Ha) C = Variable (min) 7 12 17	Roof Area 7 0.015 0.90 i2yr (mm/hour) 90.66 69.89 57.42	Restricted Flow Q _r (L 2-Year Pondi <i>Peak Flow</i> <i>Q</i> _p =2.78xCi _{2yr} A (L/s) 3.40 2.62 2.15	/s)= ng Q, (L/s) 0.95 0.95 0.95	0.945 Q _p - Q _r (L/s) 2.46 1.68 1.21	Parking Volume 2yr (m ³) 1.21 1.23
rea (Ha) = Variable (min) 30 35 40 45	0.015 1.00 <i>i</i> _{100yr} (<i>mm/hour</i>) 91.87 82.58 75.15 69.05	Restricted Flow Q _r (L 100-Year Pono Peak Flow Q _p =2.78xCi 100yr A (L/s) 3.83 3.44 3.13 2.88	/s)= Q, (L/s) 0.95 0.95 0.95	Overflows to: 0.945 Q _p - Q _r (L/s) 2.89 2.50 2.19 1.93	Volume 100yr (m ³) 5.19 5.25 5.22 5.22	Area (Ha) C = Variable (min) 12 17 22 27	0.015 0.90 <i>i</i> _{5yr} (<i>mm/hour</i>) 94.70 77.61 66.15 57.88	Restricted Flow Q _r (L. 5-Year Pondi Peak Flow $Q_p = 2.78 \times Ci_{5yr} A$ (L/s) 3.55 2.91 2.48 2.17	/s)= Q , (L/s) 0.95 0.95 0.95 0.95	Overflows to: 0.945 Q _p -Q _r (L/s) 2.61 1.97 1.54 1.23	Volume 5yr (m ³) 1.88 2.01 2.03 1.99	Area (Ha) C = Variable (min) 7 12 17 22	Roof Area 7 0.015 0.90 i _{2yr} (mm/hour) 90.66 69.89 57.42 49.02	Restricted Flow Q _r (L 2-Year Pondi Peak Flow Q _p =2.78xCi _{2yr} A (L/s) 3.40 2.62 2.15 1.84	/s)= Q , (L/s) 0.95 0.95 0.95	0.945 Q _p - Q _r (L/s) 2.46 1.68 1.21 0.89	Volume 2yr (m ³) 1.03 1.21 1.23 1.18
rea (Ha) = Variable (min) 30 35 40	0.015 1.00 <i>i</i> _{100yr} (<i>mm/hour</i>) 91.87 82.58 75.15	Restricted Flow Q, (L 100-Year Pont Peak Flow Q _p =2.78xCi 100yr A (L/s) 3.83 3.44 3.13	/s)= Q, (L/s) 0.95 0.95	Overflows to: 0.945 Q _p -Q _r (L/s) 2.89 2.50 2.19	Volume 100yr (m ³) 5.19 5.25 5.25	Area (Ha) C = Variable (min) 12 17 22	0.015 0.90 <i>i</i> _{5yr} (mm/hour) 94.70 77.61 66.15	Restricted Flow Q _r (L 5-Year Pondit Peak Flow Q _p =2.78xCi _{5yr} A (L/s) 3.55 2.91 2.48	/s)= ng Q, (L/s) 0.95 0.95 0.95	Overflows to: 0.945 Q _p -Q _r (L/s) 2.61 1.97 1.54	Parking Lot Volume 5yr (m ³) 1.88 2.01 2.03	Area (Ha) C = Variable (min) 7 12 17	Roof Area 7 0.015 0.90 i2yr (mm/hour) 90.66 69.89 57.42	Restricted Flow Q _r (L 2-Year Pondi <i>Peak Flow</i> <i>Q</i> _p =2.78xCi _{2yr} A (L/s) 3.40 2.62 2.15	/s)= ng Q, (L/s) 0.95 0.95 0.95	0.945 Q _p - Q _r (L/s) 2.46 1.68 1.21	Parking Volume 2yr (m ³) 1.03 1.21 1.23
rea (Ha) = Variable (min) 30 35 40 45	0.015 1.00 <i>i</i> 100yr (<i>mm/hour</i>) 91.87 82.58 75.15 69.05 59.62	Restricted Flow Q, (L 100-Year Pond Peak Flow Q _p =2.78xCi 100yr A (L/s) 3.83 3.44 3.13 2.88 2.49 St	/s)= ding Q, (L/s) 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95	Overflows to: 0.945 Q _p -Q _r (L/s) 2.89 2.50 2.19 1.93 1.54	Volume 100yr (m ³) 5.19 5.25 5.25 5.22 5.09	Area (Ha) C = Variable (min) 12 17 22 27	0.015 0.90 <i>i</i> _{5yr} (<i>mm/hour</i>) 94.70 77.61 66.15 57.88 51.61	Restricted Flow Q _r (L 5-Year Pondii Peak Flow Q _p =2.78xCi _{5yr} A (L/s) 3.55 2.91 2.48 2.17 1.94 Sto	/s)= ng Q, (L/s) 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95	Overflows to: 0.945 Q _p -Q _r (L/s) 2.61 1.97 1.54 1.23 0.99	Volume 5yr (m ³) 1.88 2.01 2.03 1.99 1.90	Area (Ha) C = Variable (min) 7 12 17 22	Roof Area 7 0.015 0.90 i _{2yr} (mm/hour) 90.66 69.89 57.42 49.02 38.34	Restricted Flow Q _r (L 2-Year Pondi Peak Flow Q _p =2.78xCi _{2yr} A (L/s) 3.40 2.62 2.15 1.84 1.44 St	/s)= Q , (L/s) 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95	0.945 Q _p - Q _r (L/s) 2.46 1.68 1.21 0.89 0.49	Volume 2yr (m ³) 1.21 1.23 1.18 0.95
rea (Ha) = Variable (min) 30 35 40 45	0.015 1.00 <i>i</i> 100yr (<i>mm/hour</i>) 91.87 82.58 75.15 66.05 59.62 Overflow	Restricted Flow Q, (L 100-Year Pond Peak Flow Q _p =2.78×Ci 100r A (L/s) 3.83 3.44 3.13 2.88 2.49 St Required	/s)= ding Q, (L/s) 0.95 0	Overflows to: 0.945 Q _p -Q _r (L/s) 2.89 2.50 2.19 1.93 1.54 Sub-surface	Volume 100yr (m ³) 5.19 5.25 5.22 5.22 5.09 Balance	Area (Ha) C = Variable (min) 12 17 22 27	0.015 0.90 <i>i</i> _{Syr} (<i>mm/hour</i>) 94.70 77.61 66.15 57.88 51.61 Overflow	Restricted Flow Q _r (L 5-Year Pondir Peak Flow Q _p =2.78xCi _{5yr} A (L/s) 3.55 2.91 2.48 2.17 1.94 Stor Required	/s)= Q , (L/s) 0.95	Overflows to: 0.945 Q _p -Q _r (L/s) 2.61 1.97 1.54 1.23 0.99 Sub-surface	Parking Lot Volume 5yr (m ³) 1.88 2.01 2.03 1.99 1.90 Balance	Area (Ha) C = Variable (min) 7 12 17 22	Roof Area 7 0.015 0.90 i2yr (mm/hour) 90.66 69.89 57.42 49.02 38.34 Overflow	Restricted Flow Q _r (L 2-Year Pondi <i>Peak Flow</i> <i>Q_p</i> =2.78 <i>x</i> Ci _{2yr} A (<i>L</i> /s) 3.40 2.62 2.15 1.84 1.84 1.44 St Required	/s)= Q , (L/s) 0.95	0.945 Q _p - Q _r (L/s) 2.46 1.68 1.21 0.89 0.49 Sub-surface	Volume 2yr (m ³) 1.03 1.21 1.23 1.18 0.95
rea (Ha) = Variable (min) 30 35 40 45	0.015 1.00 <i>i</i> 100yr (<i>mm/hour</i>) 91.87 82.58 75.15 69.05 59.62	Restricted Flow Q, (L 100-Year Pond Peak Flow Q _p =2.78xCi 100yr A (L/s) 3.83 3.44 3.13 2.88 2.49 St	/s)= ding Q, (L/s) 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95	Overflows to: 0.945 Q _p -Q _r (L/s) 2.89 2.50 2.19 1.93 1.54	Volume 100yr (m ³) 5.19 5.25 5.25 5.22 5.09	Area (Ha) C = Variable (min) 12 17 22 27	0.015 0.90 <i>i</i> _{5yr} (<i>mm/hour</i>) 94.70 77.61 66.15 57.88 51.61	Restricted Flow Q _r (L 5-Year Pondii Peak Flow Q _p =2.78xCi _{5yr} A (L/s) 3.55 2.91 2.48 2.17 1.94 Sto	/s)= ng Q, (L/s) 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95	Overflows to: 0.945 Q _p -Q _r (L/s) 2.61 1.97 1.54 1.23 0.99	Volume 5yr (m ³) 1.88 2.01 2.03 1.99 1.90	Area (Ha) C = Variable (min) 7 12 17 22	Roof Area 7 0.015 0.90 i _{2yr} (mm/hour) 90.66 69.89 57.42 49.02 38.34	Restricted Flow Q _r (L 2-Year Pondi Peak Flow Q _p =2.78xCi _{2yr} A (L/s) 3.40 2.62 2.15 1.84 1.44 St	/s)= Q , (L/s) 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95	0.945 Q _p - Q _r (L/s) 2.46 1.68 1.21 0.89 0.49	Volume 2yr (m ³) 1.03 1.21 1.23 1.18
rea (Ha) = Variable (min) 30 35 40 45	0.015 1.00 <i>i</i> 100yr (<i>mm/hour</i>) 91.87 82.58 75.15 66.05 59.62 Overflow	Restricted Flow Q, (L 100-Year Pond Peak Flow Q _p =2.78×Ci 100r A (L/s) 3.83 3.44 3.13 2.88 2.49 St Required	/s)= ding Q, (L/s) 0.95 0	Overflows to: 0.945 Q _p -Q _r (L/s) 2.89 2.50 2.19 1.93 1.54 Sub-surface	Volume 100yr (m ³) 5.19 5.25 5.22 5.22 5.09 Balance	Area (Ha) C = Variable (min) 12 17 22 27	0.015 0.90 <i>i</i> _{Syr} (<i>mm/hour</i>) 94.70 77.61 66.15 57.88 51.61 Overflow	Restricted Flow Q _r (L 5-Year Pondir Peak Flow Q _p =2.78xCi _{5yr} A (L/s) 3.55 2.91 2.48 2.17 1.94 Stor Required	/s)= Q , (L/s) 0.95	Overflows to: 0.945 Q _p -Q _r (L/s) 2.61 1.97 1.54 1.23 0.99 Sub-surface	Parking Lot Volume 5yr (m ³) 1.88 2.01 2.03 1.99 1.90 Balance	Area (Ha) C = Variable (min) 7 12 17 22	Roof Area 7 0.015 0.90 i2yr (mm/hour) 90.66 69.89 57.42 49.02 38.34 Overflow	Restricted Flow Q _r (L 2-Year Pondi <i>Peak Flow</i> <i>Q_p</i> =2.78 <i>x</i> Ci _{2yr} A (<i>L</i> /s) 3.40 2.62 2.15 1.84 1.84 1.44 St Required	/s)= Q , (L/s) 0.95	0.945 Q _p - Q _r (L/s) 2.46 1.68 1.21 0.89 0.49 Sub-surface	Volume 2yr (m ³) 1.03 1.21 1.18 0.95

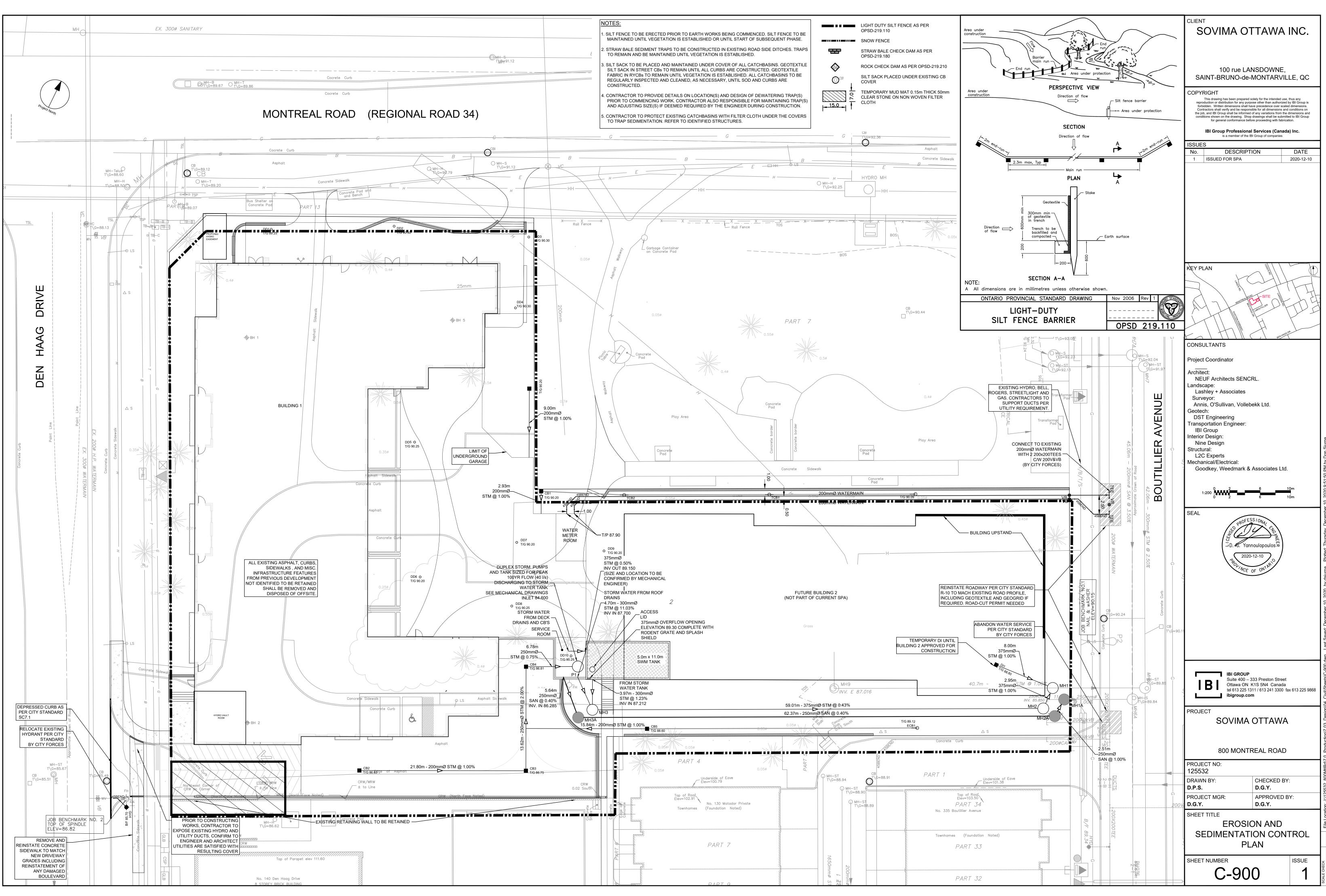
Drainage Area	Roof Area 8	1				Drainage Area	Roof Area 8					Drainage Area	Roof Area 8	1			
Area (Ha)	0.041					Area (Ha)	0.041					Area (Ha)	0.041				
C =	1.00	Restricted Flow Qr (L	_/s)=	1.890		C =	0.90) Restricted Flow Qr (L	/s)=	1.890		C =	0.90	Restricted Flow Q _r (L	/s)=	1.890	
		100-Year Pond	ding					5-Year Pondi	ng					2-Year Pondi	ng		
T _c		Peak Flow	Q,	0.0	Volume	T _c		Peak Flow	Q,	0.0	Volume	T _c		Peak Flow	Q,	0.0	Volume
Variable	i _{100yr}	Q _p =2.78xCi _{100yr} A	Qr	Q _p -Q _r	100yr	Variable	i _{5yr}	Q _p =2.78xCi _{5yr} A	Q,	$Q_p - Q_r$	5yr	Variable	i _{2yr}	Q p=2.78xCi 2yr A	Qr	$Q_p - Q_r$	2yr
(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m³)	(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m³)	(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m³)
40	75.15	8.57	1.89	6.68	16.02	18	74.97	7.69	1.89	5.80	6.26	11	73.17	7.51	1.89	5.62	3.71
45	69.05	7.87	1.89	5.98	16.15	23	64.29	6.59	1.89	4.70	6.49	16	59.50	6.10	1.89	4.21	4.05
50	63.95	7.29	1.89	5.40	16.20	28	56.49	5.80	1.89	3.91	6.56	21	50.48	5.18	1.89	3.29	4.14
55 65	59.62 52.65	6.80 6.00	1.89 1.89	4.91 4.11	16.19 16.03	33 38	50.53 45.81	5.18 4.70	1.89 1.89	3.29 2.81	6.52 6.41	26 36	44.03 35.37	4.52 3.63	1.89 1.89	2.63	4.10 3.75
00	52.05	0.00	1.09	4.11	10.03	30	45.01	4.70	1.09	2.01	0.41	30	33.37	3.03	1.09	1.74	3.75
		St	orage (m ³)					Ste	orage (m ³)					St	orage (m ³)		
	Overflow	Required	Surface	Sub-surface	Balance		Overflow	Required	Surface	Sub-surface	Balance	-	Overflow	Required	Surface	Sub-surface	Balance
	0.00	16.20	16.40	0	0.00		0.00	6.56	16.40	0	0.00		0.00	4.14	16.40	0	0.00
																o	D 1. 1
				Overflows to:	Parking Lot					Overflows to:	Parking Lot					Overflows to:	Parking Lo
		-						-						_			
Drainage Area						Drainage Area	Roof Area 9)				Drainage Area	Roof Area 9				
Area (Ha)	0.028					Area (Ha)	0.028	3				Area (Ha)	0.028				
C =	1.00	Restricted Flow Q _r (L		1.260		C =	0.90			1.260		C =	0.90		,	1.260	
		100-Year Pond	ding				-	5-Year Pondi	ng	-				2-Year Pondi	ng		
T _c	i _{100yr}	Peak Flow	Q,	$Q_p - Q_r$	Volume	T _c	i _{5yr}	Peak Flow	Q,	$Q_p - Q_r$	Volume	T _c	i _{2yr}	Peak Flow	Q,	$Q_p - Q_r$	Volume
Variable		Q _p =2.78xCi _{100yr} A			100yr	Variable		Q _p =2.78xCi _{5yr} A	-		5yr	Variable		Q p = 2.78xCi 2yr A		r	2yr
(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m³)	(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m³)	(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m³)
45	69.05	5.37	1.26	4.11	11.11	17	77.61	5.44	1.26	4.18	4.26	11	73.17	5.13	1.26	3.87	2.55
50	63.95	4.98	1.26	3.72	11.15	22	66.15	4.63	1.26	3.37	4.45	16	59.50	4.17	1.26	2.91	2.79
55 60	59.62 55.89	4.64 4.35	1.26 1.26	3.38 3.09	11.16 11.13	27 32	57.88 51.61	4.05 3.62	1.26 1.26	2.79 2.36	4.53 4.52	21 26	50.48 44.03	3.54 3.08	1.26 1.26	2.28	2.87 2.85
70	49.79	3.88	1.20	2.62	10.99	37	46.67	3.27	1.20	2.01	4.46	36	35.37	2.48	1.20	1.02	2.63
		St	orage (m ³)					St	orage (m ³)					St	orage (m ³)		
	Overflow	Required	Surface	Sub-surface	Balance		Overflow	Required	Surface	Sub-surface	Balance		Overflow	Required	Surface	Sub-surface	Balance
	0.00	11.16	11.90	0	0.00		0.00	4.53	11.90	0	0.00		0.00	2.87	11.90	0	0.00
				Overflows to:	Parking Lot					Overflows to:	Parking Lot					Overflows to:	Parking Lo
				Overnows to.						Overnows to.	Farking Lot					Overnows to.	Faiking LU
								-						-			
Drainage Area						Drainage Area	Roof Area 10					Drainage Area	Roof Area 10				
Area (Ha)	0.014	Destricted Flow O (I	(-)-			Area (Ha)	0.014		1-1-			Area (Ha)	0.014	De etriste d'Elser O. (l	1-1-		
C =	1.00	Restricted Flow Q _r (L		0.630		C =	0.90			0.630		C =	0.90		,	0.630	
_	l	100-Year Pond	aing			_	I	5-Year Pondi	ng	1				2-Year Pondi	ng		
T _c	i _{100yr}	Peak Flow	Q,	$Q_p - Q_r$	Volume	T _c	i _{5yr}	Peak Flow	Q,	$Q_p - Q_r$	Volume	Τ _c	i _{2yr}	Peak Flow	Q,	$Q_p - Q_r$	Volume
Variable		Q _p =2.78xCi _{100yr} A			100yr	Variable		Q _p =2.78xCi _{5yr} A			5yr	Variable		Q _p =2.78xCi _{2yr} A		r	2yr
(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m ³)	(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m ³)	(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m ³)
40	75.15	2.92	0.63	2.29	5.51 5.56	17 22	77.61	2.72	0.63	2.09	2.13	9	80.87	2.83	0.63	2.20	1.19
45 50	69.05 63.95	2.69 2.49	0.63	2.06 1.86	5.56 5.58	22	66.15 57.88	2.32 2.03	0.63	1.69 1.40	2.23 2.26	<u>14</u> 19	64.23 53.70	2.25	0.63	1.62 1.25	1.36 1.43
55	59.62	2.49	0.63	1.69	5.58	32	51.61	1.81	0.63	1.40	2.26	24	46.37	1.62	0.63	0.99	1.43
65	52.65	2.05	0.63	1.42	5.53	37	46.67	1.63	0.63	1.00	2.23	34	36.78	1.29	0.63	0.66	1.34
	·																
			orage (m ³)						orage (m ³)			_			orage (m ³)		
	Overflow	Required	Surface	Sub-surface	Balance		Overflow	Required	Surface	Sub-surface	Balance		Overflow	Required	Surface	Sub-surface	Balance
	0.00	5.58	5.60	0	0.00		0.00	2.26	5.60	0	0.00		0.00	1.43	5.60	0	0.00
				Overflows to:	Parking Lot					Overflows to:	Parking Lot					Overflows to:	Parking Lo
				Overnows to.	Farking LOL					Overnows to.	Farking LO					Overnows to.	Faiking LU

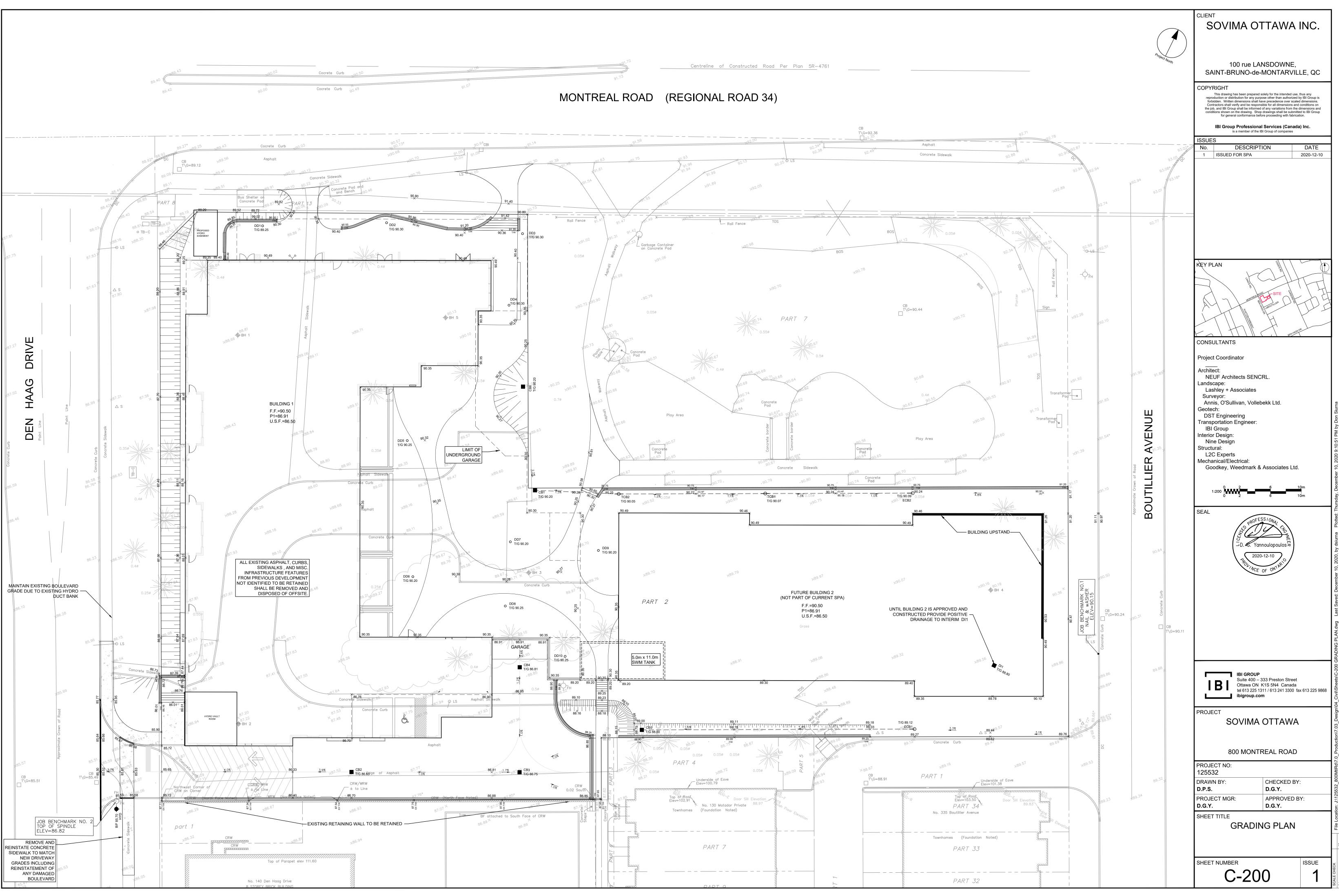
Drainage Area Area (Ha) C =	Roof Area 11 0.007 1.00	Restricted Flow Qr (L/		0.630	<u> </u>	Drainage Area Area (Ha) C =	Roof Area 11 0.007 0.90	Restricted Flow Q _r (L/		0.630	L	Drainage Area Area (Ha) C =	Roof Area 11 0.007 0.90	Restricted Flow Qr (L/		0.630	
		100-Year Pond	ling					5-Year Pondi	ng					2-Year Pondi	ng		
T _c Variable	i _{100yr}	Peak Flow Q _p =2.78xCi _{100yr} A	Q,	Q _p -Q _r	Volume 100yr	T _c Variable	i _{5yr}	Peak Flow Q _p =2.78xCi _{5yr} A	Q,	Q _p -Q _r	Volume 5yr	T _c Variable	i _{2yr}	Peak Flow Q _p =2.78xCi _{2yr} A	Q,	Q _p -Q _r	Volume 2yr
(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m³)	(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m³)	(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m³)
15	142.89	2.78	0.63	2.15	1.94	6	131.57	2.30	0.63	1.67	0.60	3	121.46	2.13	0.63	1.50	0.27
20	119.95	2.33	0.63	1.70	2.05	11	99.19	1.74	0.63	1.11	0.73	8	85.46	1.50	0.63	0.87	0.42
25	103.85	2.02	0.63	1.39	2.09	16	80.46	1.41	0.63	0.78	0.75	13	66.93	1.17	0.63	0.54	0.42
30	91.87	1.79	0.63	1.16	2.08	21	68.13	1.19	0.63	0.56	0.71	18	55.49	0.97	0.63	0.34	0.37
40	75.15	1.46	0.63	0.83	2.00	26	59.35	1.04	0.63	0.41	0.64	28	41.93	0.73	0.63	0.10	0.18

	s	torage (m ³)				5	Storage (m ³)				s	torage (m ³)		
Overflow	Required	Surface	Sub-surface	Balance	Overflow	Required	Surface	Sub-surface	Balance	Overflow	Required	Surface	Sub-surface	Balance
0.00	2.09	2.80	U	0.00	0.00	0.75	2.80	U	0.00	0.00	0.42	2.80	U	0.00
			Overflows to:	Parking Lot				Overflows to:	Parking Lot				Overflows to:	Parking Lot

roof totals available for decks	16.38 22.30				
available for decks	22.30 A	С	AC		
Deck 1	0.116	0	0.9	0.1044	
Deck 2	0.011		0.9	0.0099	
terrace 1	0.013		0.9	0.0117	
terrace 2	0.001		0.9	0.0009	
terrace 3	0.014		0.9	0.0126	
Landscape 1	0.026		0.3	0.0078	
Landscape 2	0.044		0.3	0.0132	
driveway 1	0.038		0.9	0.0342	
total	0.263			0.19	Avg C=

Drainage Area	non roof					Drainage Area	non roof					Drainage Area	non roof				
Area (Ha)	0.263	ICD Size (L	_/s)=	22.30		Area (Ha)	0.263	ICD Size (L	_/s)=	22.30104434		Area (Ha)	0.263	ICD Size (I	_/s)=	22.3010443	
C =	0.89	Reduced Restricted F	low Q _r (L/s)=	11.151		C =	0.74	Reduced Restricted F	low Q _r (L/s)=	11.151		C =	0.74	Reduced Restricted	Flow Q _r (L/s)=	11.151	
		100-Year Pond	ing					5-Year Pondii	ng					2-Year Pondi	ng		
T _c Variable	i _{100yr}	Peak Flow Q _p =2.78xCi _{100yr} A	Q,	Q _p -Q _r	Volume 100yr	T _c Variable	İ _{5yr}	Peak Flow Q _p =2.78xCi _{5yr} A	Q,	Q _p -Q _r	Volume 5yr	T _c Variable	i _{2yr}	Peak Flow Q _p =2.78xCi _{2yr} A	Q,	Q _p - Q _r	Volume 2yr
(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m ³)	(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m ³)	(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m ³)
43	71.35	46.34	11.15	35.19	90.80	22	66.15	35.80	11.15	24.65	32.54	17	57.42	31.08	11.15	19.93	20.33
48	65.89	42.80	11.15	31.65	91.14	24	62.54	33.85	11.15	22.70	32.69	18	55.49	30.03	11.15	18.88	20.39
51	63.03	40.94	11.15	29.79	91.16	26	59.35	32.12	11.15	20.97	32.71	19	53.70	29.06	11.15	17.91	20.42
54	60.44	39.26	11.15	28.10	91.06	28	56.49	30.58	11.15	19.43	32.64	20	52.03	28.16	11.15	17.01	20.41
59	56.60	36.76	11.15	25.61	90.66	30	53.93	29.19	11.15	18.04	32.47	21	50.48	27.32	11.15	16.17	20.37


		St	orage (m ³)					5	storage (m ³)				5	Storage (m ³)		
-	Overflow	Required	Surface	Sub-surface	Balance	0	Overflow	Required	Surface	Sub-surface	Balance	Overflow	Required	Surface	Sub-surface	Balance
	0.00	91.16		100	0.00		0.00	32.71	0.00	100	0.00	0.00	20.42	0.00	100	0.00


			100yr	100yr	5yr		5yr
	Area	Flow	storage req	storage provided		storage req	storage provided
Roof	0.279	16.380	100.964	109.150		39.481	109.150
uncontrolled	0.056	16.319					
controlled	0.263	22.301	91.16	100		32.71	100
	0.598	55.00	192.12	209.15		72.20	209.15
Allowable		55.00					

0.74

APPENDIX E

125532-C-900 Sediment and Erosion Control Plan 125532-C-200 Grading Plan

