

P.O. Box 189 Kemptville, Ontario K0G 1J0

Hydrogeology •

(613) 860-0923

FAX: (613) 258-0475

REPORT ON

PHASE II ENVIRONMENTAL SITE ASSESSMENT 1994 ST. JOSEPH BOULEVARD, ORLEANS CITY OF OTTAWA, ONTARIO

Submitted to:

M. J. Pulickal Holdings Inc. 1475 York Mills Drive Ottawa, Ontario K4A 2N5

DATE:

October 25, 2019

DISTRIBUTION 5 copies City of Ottawa 2 copies M. J. Pulickal Holdings Inc. 1 copy Kollaard Associates Inc.

Professional Engineers Ontario

Authorized by the Association of Professional Engineers of Ontario to offer professional engineering services.

190361-2

1.0	EXECUTIVE SUMMARY	1
2.0	INTRODUCTION	3
2		3
2.	2 SITE DESCRIPTION	
2.	.3 PROPERTY OWNERSHIP	
2.	.4 CURRENT AND PROPOSED FUTURE USES	4
2.	.5 APPLICABLE SITE CONDITION STANDARD	4
2.6	GENERAL OBJECTIVES	5
3.0	BACKGROUND INFORMATION	5
3.	.1 PHYSICAL SETTING	5
3.	.2 PAST INVESTIGATIONS	7
4.0	SCOPE OF THE INVESTIGATION	7
4.	.1 OVERVIEW	7
4.	.2 MEDIA INVESTIGATED	8
4.	.3 PHASE ONE CONCEPTUAL SITE MODEL	
4.	.4 DEVIATIONS FROM SAMPLING AND ANALYSIS PLAN	
4.		
5.0	INVESTIGATION METHOD	
5.	.1 GENERAL	
5. 5		
5	4 FIELD SCREENING MEASUREMENTS	ے ۱ 14
5.	.5 GROUNDWATER: MONITORING WELL INSTALLATION	
5.	.6 FIELD MEASUREMENT OF WATER QUALITY PARAMETERS	14
5.	.7 GROUNDWATER SAMPLING	15
5.	.8 SEDIMENT SAMPLING	
5. E	.9 ANALYTICAL LESTING	
5. 5	11 ELEVATION SUBVEVING	17
5.	12 QUALITY ASSUBANCE AND QUALITY CONTROL MEASUBES	
6.0	REVIEW AND EVALUATION	
6		18
6.	2 GROUNDWATER: ELEVATIONS AND ELOW DIRECTION	
6.	.3 GROUNDWATER: HYDRAULIC GRADIENTS	
6.	.4 FINE SOIL TEXTURE	
6.	.5 SOIL: FIELD SCREENING	20
6.		
6. 6	.6.1 U. REG. 347 SCHEDULE IV LEACHATE QUALITY CRITERIA	
0. 6	.7 GROUNDWATER QUALITY	
6.	.9 QUALITY ASSURANCE AND QUALITY CONTROL RESULTS	
6.	.10 PHASE II CONCEPTUAL SITE MODEL	24
7.0	CONCLUSIONS	35
8.0	REFERENCES	37
0.0		
9.0		

K

-i-

TABLE OF CONTENTS (continued)

ATTACHMENTS

Record of Boreholes BH1 to BH10

Figure 1, Key Plan

Figure 2, Site Plan - Conceptual Site Model

Figure 3, Sample Locations and Exceedances

Figure 4, Groundwater Elevation Contours

Figure 5, Post-Remediation Groundwater Sample

Attachment A - Laboratory Testing Results - Pre-Remediation

Attachment B - Research Article - Elevated Background Metals Concentrations in Champlain Sea Clay - Ottawa Region Study.

Attachment C - Results of Chemical Laboratory Testing for Landfill Disposal

Attachment D - Laboratory Groundwater Testing Results - Post Remediation

-ii-

1.0 EXECUTIVE SUMMARY

Kollaard Associates Inc. was retained by M. J. Pulickal Holdings Inc. to carry out a Phase II Environmental Site Assessment (ESA) of the property located at 1994 St. Joseph Boulevard, Orleans, Ottawa, Ontario to meet the requirements of a Phase II ESA as stipulated in the Ontario Regulation 153/04 (O. Reg. 153/04) as amended.

-1-

The subject site for this assessment is located at 1994 St. Joseph Boulevard, Orleans Ward, in the City of Ottawa, Ontario (see Key Plan, Figure 1). The site consists of about a 0.14 hectares (0.36 acres) parcel of land located on the south side of St. Joseph Boulevard, about 93 metres east of the intersection of Jeanne D'Arc Boulevard South and St. Joseph Boulevard. The site is currently vacant and scheduled for a new commercial development. The purpose of the Phase II ESA is to address issues of potential environmental concern from a previous Phase I ESA dated June 13, 2019 by Kollaard Associates Inc. There was one historical Potentially Contaminating Activity (PCA) identified at the subject site resulting in an Area of Potential Environmental Concern (APEC) at the property. One potential off-site source of hydrocarbon contamination was also identified in accordance with O. Reg. 153/04, as amended. The results of the Phase I ESA indicated that the most significant environmentally related issues identified at 1994 St. Joseph Street are the possible presence of metals, benzene, toluene, ethylbenzene and xylenes (BTEX) and hydrocarbon contamination from the former on site uses and from an off-site potential source of contamination, a current neighbouring fuel service station.

It is understood that the site is to be redeveloped for the purposes of commercial development. The historical and most recent land use of the property is for commercial use. The Phase II ESA was completed in general accordance with the requirements of Schedule E of Ontario Regulation (O. Reg.) 153/04 (as amended.) It is understood that the Phase II ESA is being carried out for Site Plan Application with the City of Ottawa and that a Record of Site Condition (RSC) pursuant to Ontario Regulation 153/04 - Records of Site Condition - Part XV.1 of the Act, made under the Environmental Protection Act, will not be filed for the site as there is no proposed change of use of the site.

This report should be read in conjunction with the previous Phase I ESA report completed by Kollaard Associates Inc., Project 190361, dated June 13, 2019.

In summary, the Phase Two ESA scope of work included the following:

- Drilling of 10 boreholes including the installation of four monitoring wells, the collection of eighteen (18) soil and four (4) groundwater samples from the boreholes for laboratory analysis for petroleum hydrocarbons (PHCs), volatile organic compounds (VOCs) and metals.
- The soil and groundwater analytical results were compared to the Soil, Groundwater and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act, Table 5 Stratified Site Condition Standards in a Non-Potable Groundwater Condition, Industrial/Commercial/Community property use, fine-textured soil, April 15, 2011 are considered applicable and were used to assess the environmental quality of soil at the Site.

The results of the Phase Two ESA are summarized below.

• Based on the results of soil sampling and testing carried out for this Phase II ESA, there were metal exceedances in Vanadium and Chromium

-2-

• One groundwater monitoring well location (BH3), had an exceedance of PHCs - F2 (C10-C16) above the applicable MECP standards. There was a presence of PHC F2 and/or F3 within the soils at BH3 and BH7 within acceptable limits.

The surficial fill samples tested met the applicable Table 5 Standards for all of the metals tested. However, the underlying native silty clay samples tested exceeded the MECP standards for Vanadium and Chromium and the concentrations were uniform across the site. Kollaard Associates considers the elevated metal concentrations of Vanadium and Chromium in the native silty clay soils are a native condition and not represent contamination. With regard to the metals exceedances for Vanadium and Chromium in the soils at the site, recent research indicates it has been commonly found that native silty clay soils associated with the Champlain Sea in the Ottawa area contain concentrations of metals (including Vanadium and Chromium) in excess of the MECP background soil standards (Table 1). See Attachment B for article entitled *Elevated Background Metals Concentrations in Champlain Sea Clay - Ottawa Region.*

There was no detectible hydrocarbon presence in the soil and groundwater samples obtained from the west portion of the site. The adjacent gas station is not considered to have caused any impacts at the site. It is considered that the hydrocarbon presence within the soils at BH3 and BH7 is the source of the localized groundwater impact at BH3. It is localized because the soils that were sampled below the water table did not have any hydrocarbon presence. Only two of ten borehole sample locations indicated the presence of hydrocarbons. Kollaard Associates considered that remediation of the site could be completed by means of excavation and removal of the hydrocarbon impacted soils and groundwater encountered during excavation.

REMEDIATION

On August 20, 2019, an excavation was put down at BH3 in order to removed impacted soils and groundwater. The remediation was supervised by Kollaard Associates Inc. professional staff. Soils were removed by excavation equipment and any groundwater encountered was removed by HydroVac. At that time, the exposed soils were observed to consist of fill materials. The fill materials included sand and clay. Also buried was mixed debris including concrete, asphalt, plastic and several piece of preserved wood. The source of the groundwater contamination was possibly from preserved/stained wood debris. It is considered that the hydrocarbons leached into the adjacent soil and groundwater and remained localized due to the silty clay soils. Excavation occurred until native silty clay was encountered at about 2.6 metres depth. The excavation increased laterally until all non-native soils were removed. No confirmatory soil samples were obtained as all of the soil samples previously met the MECP Standards. Subsequent to the soil removal and groundwater removal, a confirmatory groundwater sample was collected from BH3 and submitted for testing to confirm that the localized impacted groundwater was remediated. The results of the confirmatory groundwater testing indicated no presence of hydrocarbon contamination at BH3 and no further testing was considered necessary.

The Executive Summary highlights key points from the report only; for complete information and findings, as well as limitations, the reader should examine the complete report.

2.0 INTRODUCTION

2.1 BACKGROUND

This Phase II Environmental Site Assessment (ESA) was carried out by Kollaard Associates Inc. for M. J. Pulickal Holdings Inc. of Ottawa, Ontario for the property at civic address 1994 St. Joseph Boulevard, in the City of Ottawa, Ontario. The site consists of about 0.14 hectares (0.36 acres) of land. The Phase II ESA was carried out subsequent to a Phase I ESA for the same property that was dated June 13, 2019.

-3-

It is understood that it is planned to develop the site into a two storey commercial development. The historical use of the property was for commercial purposes. As such, there is no change of use or previous use for which a Record of Site Condition could be required under Ontario Regulation 153/04. A Phase II ESA is required to address concerns identified in a Phase I ESA report and to assist in site development approvals. It is understood that the City of Ottawa does not require that a Record of Site Condition (RSC) be filed for this property.

2.2 SITE DESCRIPTION

Address:	1994 St. Joseph Boulevard, Ottawa, Ontario.
Legal Description:	Part of Lot 6, Concession 1, Ottawa Front, being Part 4 on Plan 5R- 2697 and Part of the Road Allowance between Concessions 1 & 2 Ottawa Front, being Part 2 on Plan 5R-6397, subject to Easement no. N5176236, being a strip at the rear of the property in favour of Hydro, formerly City of Gloucester, City of Ottawa, PIN 04417-0105. Part Lot G, Plan 381, as described in Instrument No. N295125,
Location:	The site is located on the south side of St. Joseph Boulevard, about 93 metres east of the intersection of Jeanne D'Arc Boulevard South and St. Joseph Boulevard, in Orleans, Ward of the City of Ottawa, Ontario. The location is shown on Figure 1 – Key Plan, appended to this report.
Latitude and Longitude:	45° 46' 43" N, 75° 53' 88" W
Configuration:	rectangular
Site Area:	0.14 hectares (0.36 acres)

The site location is provided on Figure 1. A site plan is provided on Figure 2.

The site is currently a vacant commercial property. The property is partially asphaltic concrete surfaced and partially gravel surfaced with vegetation. No building exists at the site.

-4-

Surrounding land use is currently mixed residential and commercial development. The site is bordered on the north by St. Joseph Boulevard, on the east by a commercial development (Dairy Queen and Cash Money Mart), on the west by a Petro Canada Service Station and on the south by a multi-unit residential apartment building with an asphaltic surfaced parking lot.

2.3 **PROPERTY OWNERSHIP**

The property is currently owned by M. J. Pulickal Holdings Inc. Authorization to proceed with this work was granted by Mr. Matthew Pulickal.

2.4 CURRENT AND PROPOSED FUTURE USES

The Phase Two Property is currently vacant land. The most recent use of the property was for commercial purposes including a party supply store, a bicycle sales and repair business and a grooming salon. Prior to this the property was partially occupied by a series of barns, a shed and a farmhouse as part of the Ottawa Fur Farm Company between 1940 and 1958.

The proposed future use of the site is for a multi-unit commercial building (medical centre). Given that there is no change in the site land use, no mandatory filing of an RSC is required for the Phase Two Property.

2.5 APPLICABLE SITE CONDITION STANDARD

The following standards are considered to be applicable for the site for comparison of the soil and groundwater results:

• Ministry of the Environment, Conservation and Parks (MECP) regulation *Soil, Groundwater* and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act: Table 5: Stratified Site Condition Standards, dated April 15, 2011 for fine textured soils

relating to industrial/commercial/community property use for soils with a non-potable groundwater condition.

-5-

The following rationale was used for the selection of the soil and groundwater standards:

- The Site and all sites within 250 metres of the property boundaries are serviced by municipal water supply. The existing municipal water supply will not be adversely affected if nonpotable groundwater standards are used for the site;
- The boreholes logs indicate the soil cover at the site is more than 2.0 metres, indicating the property is not a shallow soils site;
- A fine grained soil texture was selected for comparison of analytical data to applicable provincial standards as the soils encountered during the drilling activities consisted mainly of silty sand and silty clay and meet the criteria for fine textured soils;
- The site is not considered an environmentally sensitive area for the following reasons; the Site is located further than 30 metres from the nearest surface water body, the pH of soil was measured as 8.57 (initial pH from TCLP sample), acceptable range is 5 9 and the site is not located within an area of natural significance nor is it within 30 metres of such an area;
- > The site is not an agricultural use.

2.6 GENERAL OBJECTIVES

The objectives of the Phase II ESA were to obtain additional information about environmental conditions in the soil, in or under the Site, and to determine if applicable site condition standards, in or under the Phase II property are met. The objectives of the Phase II ESA are achieved by developing an understanding of the geological and hydrogeological conditions at the Phase II property and conducting field sampling of soil and groundwater and analysis for all potential contaminants of concern associated with the APECs identified at the Phase II property.

3.0 BACKGROUND INFORMATION

3.1 PHYSICAL SETTING

For most of the site, the ground surface consists of a gentle slope from south to north. Near the rear property line, the ground surface rises upward about 3 to 4 metres to a higher elevation. Surface drainage is largely controlled by a catch basin located within St. Joseph Boulevard located north of the site.

The regional topography slopes north towards the Ottawa River located approximately 2.2 kilometres from the subject site. The site is not located within an area of natural significance and no areas of natural significance were identified within 30 metres of the site.

-6-

The site is currently vacant. The ground surface at the site is partially asphaltic surfaced and partially gravel and soil surfaced. Some vegetative growth has occurred over the gravel as it appears the site has been vacant for at least a few years. The former building footprint is evident from the gravel surface.

The gravelled area indicates that the former building was previously located in about the center of the property.

Based on a review of the surficial geology map for the site area, it is expected that the site is underlain by fine textured glaciomarine deposits. Bedrock geology maps indicate that the bedrock underlying the site consists of shale with lenses of sandstone of the Rockcliffe Formation.

Based on a review of overburden thickness mapping for the site area, the overburden is estimated to be between about 55 to 61 metres in thickness above bedrock.

A geotechnical investigation completed at the site by Kollaard Associates Inc. in June 2019 in conjunction with the Phase II ESA indicates the subsurface soil consists of sand followed by silty clay. Practical refusal either on a cobble or boulder was encountered at a depth of about 33.5 metres below the existing ground surface.

The surrounding properties include residential and commercial development. The site is bordered on the north by St. Joseph Boulevard followed by commercial development, on the east by a commercial development (Dairy Queen and Cash Money Mart), on the west by a Petro Canada Service Station and on the south by a multi-unit residential apartment building with an asphaltic surfaced parking lot.

3.2 PAST INVESTIGATIONS

A previous Phase I ESA conducted by Kollaard Associates was used to support the preparation of the Phase II ESA for the subject site.

-7-

A Phase I ESA in accordance with Ontario Regulation 153/04 (O. Reg. 153/04) (as amended) was completed for the site by Kollaard Associates as described in the report entitled "Phase I Environmental Site Assessment, 1994 St. Joseph Boulevard, Orleans, Ottawa, Ontario, Project 190361, dated June 13, 2019."

The results of the Phase I ESA identified the corresponding contaminants of potential concern (COPCs) are identified from the following APECs.

APEC	Comment(s)	COPCs
APEC 1 – Former Agricultural, Residential and Commercial Buildings at the site.	 potential fill and/or building debris and residues from former buildings at the site 	- Metals, PHCs, BTEX
APEC 2 - Existing Fuel Service Station - 1988 St. Joseph Boulevard	 potential for subsurface hydrocarbon contamination from the existing fuel service station 	- PHCs, BTEX and Metals

Kollaard Associates considered that a Phase II ESA should be completed to determine if there were any impacts from the former buildings located at the site over the years and from potential impact from the existing fuel service station located at 1988 St. Joseph Boulevard, immediately west of the site.

4.0 SCOPE OF THE INVESTIGATION

4.1 OVERVIEW

To achieve the objectives of the Phase II ESA, boreholes were put down at the site and soil and groundwater sampling followed by subsequent chemical analysis of select soil and groundwater samples were carried out to address issues of potential environmental concern identified by the previous Phase I Environmental Site Assessment (ESA) carried out for the site by Kollaard Associates Inc. Based on information provided, the current or historical activities at the subject site

that could be considered "Potentially Contaminating Activities", as identified in Table 2 of Schedule D of O. Reg. 153/04 are the following:

-8-

• Item #30 - Importation of Fill Material of Unknown Quality, possible buried debris from former commercial, residential and agricultural buildings located at the site

- building debris could potentially contain deleterious substances, including metals and hydrocarbons.

The following activity occurred offsite:

 Item #28 - Gasoline and Associated Products Storage in Fixed Tanks - Fuel Service Station
 possible subsurface hydrocarbon contamination related to existing fuel service station (Petro Canada) located immediately west of site.

The tasks completed for the Phase II ESA consisted of the following:

- Obtaining underground utility clearances and locates;
- Completion of 10 boreholes for soil sampling carried out between June 6 and 7, 2019
- Installation of four (4) standpipes for groundwater sampling purposes between June 6 and 7, 2018.

• The collection and submission of soil and groundwater samples for the analysis of potential contaminants for the analysis of hydrocarbon and metals contaminants (Metals, BTEX and PHCs F1 to F4), June 6 and 7 and June 11 and 14, 2019.

- Compare analytical results to Table 5 Stratified Site Condition Standards Non-potable;
- Obtain soil sample for landfill disposal, August 2, 2019;
- Excavation and removal of soils and groundwater, August 20, 2019;

• Submitting confirmatory groundwater sample for the analysis of hydrocarbons, September 9, 2019;

• Compare analytical results to Stratified Site Condition Standards - Table 5;

• The preparation of a Phase II ESA report summarizing the results and findings of the investigation.

4.2 MEDIA INVESTIGATED

The soils and groundwater were investigated at the site. No sediment was encountered at the site.

Soil and groundwater samples were collected from ten boreholes to determine the soil and groundwater quality at the site. Eighteen soil and four groundwater samples obtained from the boreholes were collected and prepared/preserved in the field using appropriate techniques and submitted to ALS Environmental Laboratories Ltd. in Waterloo, Ontario, for testing. The soil and groundwater testing consisted of select VOCs (BTEX), metals and PHCs F1 to F4.

Based on the results of the soil and groundwater testing, there was evidence of localized hydrocarbon impacts within the area of two boreholes (BH3 and BH7 on Figure 2, attached) at the site. The soil testing results indicated the presence of hydrocarbons, but at levels that met the applicable Site Condition Standards. Only the groundwater within BH3 indicated a result above the applicable standard. Kollaard Associates considered it to be localized because the soils that were sampled below the water table did not have any hydrocarbon presence. Kollaard Associates considered that remediation of the site be completed by means of excavation and removal of the localized hydrocarbon impacted soils and groundwater encountered during excavation. After excavation and removal of the soils and groundwater within the area of BH3, confirmatory groundwater sampling and testing indicated no further presence of hydrocarbon impacted groundwater at BH3 and no further testing was considered necessary.

-9-

Details of the number and locations of boreholes, number of samples, media and parameters investigated and exceedances at the Phase II property are presented in the attached Site Plan, Figures 2, 3, 4 and 5, Borehole Logs and Attachments A, B and C following the text of this report.

4.3 PHASE ONE CONCEPTUAL SITE MODEL

Based on the Phase I Conceptual Site Model and information acquired through the course of the Phase II site investigation, the following information is provided for the Phase II property and study area.

- The subject site for this assessment consists of one property with civic address 1994 St. Joseph Boulevard, in the City of Ottawa, Ontario.
- The site has a total area of 0.14 hectares (0.36 acres) of land located on the south side of St. Joseph Boulevard, about 93 metres east of the intersection of Jeanne D'Arc Boulevard South and St. Joseph Boulevard.
- The historical use of the site has been for agricultural, residential and commercial purposes.
- Farm buildings covered a portion of the site and were part of the Ottawa Fur Farm Company in around 1958.
- A single family dwelling and detached garage existed at the site around 1965.
- The site is currently vacant, however, a commercial building existed at the site from about 1976 to about 2014.
- According to the Ecolog ERIS report, there are no water wells present on the site.
- Surrounding land use is currently mixed residential and commercial development. The site is bordered on the north by St. Joseph Boulevard, on the east by a commercial development (Dairy Queen and Cash Money Mart), on the west by a Petro Canada Service Station and on the south by a multi-unit residential apartment building with an asphaltic surfaced parking lot.

• The local topography is mostly flat lying with a gentle slope from south to north across the property. The regional topography slopes north towards the Ottawa River located approximately 2.2 kilometres from the subject site.

-10-

- There are no surface water bodies within the Phase One Study Area
- Groundwater is anticipated to flow north towards the Ottawa River.
- The Study Area is serviced by municipal water supply and there are no water wells in the Study Area.
- The site is not in a municipal wellhead protection area and is not a current or proposed agricultural use.
- Based on a review of the surficial geology map for the site area, it is expected that the site is underlain by fine textured glaciomarine deposits. Bedrock geology maps indicate that the bedrock underlying the site consists of shale with lenses of sandstone of the Rockcliffe Formation.
- Based on a review of overburden thickness mapping for the site area, the overburden is estimated to be between about 55 to 61 metres in thickness above bedrock.
- A geotechnical investigation completed at the site by Kollaard Associates Inc. in June 2019 in conjunction with the Phase II ESA indicates the subsurface soil consists of sand followed by silty clay. Practical refusal either on a cobble or boulder was encountered at a depth of about 33.5 metres below the existing ground surface.
- Saturated soil conditions were encountered at depths ranging from about 1.2 to 2.1 metres below the existing ground surface at the time of borehole investigation and at between about 1.2 to 3.2 metres measured in standpipes installed in the boreholes.

Potentially Contaminating Activities: current or historical activities at 1994 St. Joseph Boulevard within the Phase I Study Area as identified in Table 2 of Schedule D of O. Reg. 153/04 are the following:

On-Site

 Item #30 - Importation of Fill Material of Unknown Quality, possible buried debris from former commercial, residential and agricultural buildings located at the site. Building debris could potentially contain deleterious substances, including metals and hydrocarbons.

Off-Site

 Item #28 - Gasoline and Associated Products Storage in Fixed Tanks - Fuel Service Station - possible subsurface hydrocarbon contamination related to existing fuel service station (Petro Canada) located immediately west of site.

Areas of Potential Environmental Concern: Due to the PCA at the subject site and on adjacent

-11-

property, the following APECs were identified at the site in the Phase I ESA, locations as shown in Figure 2:

APEC	Comment(s)	COPCs
APEC 1 – Former Agricultural, Residential and Commercial Buildings at the site.	 potential fill and/or building debris and residues from former buildings at the site 	- Metals, PHCs, BTEX
APEC 2 - Existing Fuel Service Station - 1988 St. Joseph Boulevard	 potential for subsurface hydrocarbon contamination from the existing fuel service station 	- PHCs, BTEX and Metals

4.4 DEVIATIONS FROM SAMPLING AND ANALYSIS PLAN

There are no deviations from the original scope of work for the subject investigation.

4.5 IMPEDIMENTS

There were no impediments to the Phase II investigation that prevented the completion of the original defined scope of investigation.

5.0 INVESTIGATION METHOD

5.1 GENERAL

The following sections describe the field work activities and field methodology employed during the Phase II ESA conducted at the Phase II property by Kollaard Associates Inc.

The soil and groundwater quality at the subject site was investigated at the locations shown on Figure 2 through a borehole investigation completed between June 6, 7, 11 and 12, for the remediation on August 20, 2019 and confirmatory groundwater sampling on September 9, 2019. The investigation methods are described in the following sections. The approximate borehole and sampling locations are shown on Figures 2, 3, 4 and 5.

During remediation activities of soil and groundwater completed on August 20, 2019, the removal was supervised by a member of our engineering staff. As all of the soil samples tested met the

applicable standards and confirmatory soil samples were not required. The supervision was completed in conjunction with geotechnical requirements required for site development purposes. Fill materials were removed until native soils were observed. The subsurface soil conditions within the excavation were identified based on visual and tactile examination of the excavation. Any groundwater encountered within the excavation was removed by a hydrovac company.

-12-

5.2 DRILLING

Between June 6 and 7, 2019, ten (10) boreholes, numbered BH1 to BH10, were put down at the site using a rubber tire mounted drill rig owned and operated by a CCC Drilling of Ottawa, Ontario. Standpipes were installed in four of the boreholes (BH1, BH3, BH5 and BH6) for groundwater sampling purposes.

The drill rig was equipped with a split spoon sampling device, which allowed for continuous sampling of overburden soils. Representative soil samples were collected in intervals of approximately 0.6 metre long where possible, 50 mm diameter drive open steel casing ("split spoon") sampling system. The drill rig was equipped with a hydraulic equivalent of a 63.5 kg sampler hammer that was used to hammer the split spoon into the ground and collect a discrete soil sample. The split spoon sampler was cleaned with soap and rinsed with distilled water between samples to prevent cross contamination.

The Borehole Logs are provided herein.

5.3 SUBSURFACE CONDITIONS AND SOIL SAMPLING

Soil samples were collected from the boreholes using the split spoon sampling device. Soil samples were collected manually using black nitrile gloves and were placed in laboratory prepared glass jars and vials and immediately placed in coolers. The sample jars were filled completely with soil to reduce the amount of headspace vapour within the jars. Samples to be submitted for laboratory analysis of non-volatile compounds (PHCs F2 – F4, metals) were placed in unpreserved clear glass jars with Teflon lids, while samples to be submitted to the laboratory for analysis of volatile compounds (PHC F1 and VOCs) were collected using disposable soil plug sample collectors supplied by the laboratory. The soil plugs were placed in laboratory-supplied vials charged with measured volumes of methanol for sample preservation.

The subsurface soil conditions at the boreholes were identified based on visual and olfactory examination of the samples recovered from the boreholes. Soil samples were logged in the field for texture, odour, moisture and visual appearance (staining). Groundwater conditions, if present in the boreholes were noted at the time of sampling. All of the soil samples obtained from the boreholes were collected and prepared/preserved in the field using appropriate techniques and submitted to ALS Environmental Testing Laboratory in Waterloo, Ontario, for testing.

-13-

The field work was supervised throughout by a member of our engineering staff, who logged the test holes and cared for the samples obtained. The test hole locations are approximately as shown on the attached Site Plan, Figure 2. The test hole logs are provided as Record of Boreholes.

In general, the overburden materials encountered at the site are indicated to consist of asphaltic concrete, grey crushed stone or topsoil from the surface followed by fill materials or native red brown silty sand or red brown to grey brown to grey silty clay. The fill materials consisted of yellow brown to grey brown silty sand with a trace of gravel, glass, clay, asphaltic concrete, wood or organics. With the exception of BH3, no hydrocarbon odours or discolouration were observed within any of the boreholes.

The soil samples that were submitted for laboratory testing on June 6 and 7, 2019 for PHCs F1 to F4, BTEX and metals were obtained from the following depths and locations for the specified parameters:

SOIL

- BH1 SS4 from a depth of about 1.8 to 2.4 metres
- BH1 SS7 from a depth of about 3.7 to 4.3 metres
- BH2 SS2 from a depth of about 0.6 to 1.2 metres
- BH2 SS5 from a depth of about 2.4 to 3.1 metres
- BH3 SS5 from a depth of about 2.4 to 3.1 metres
- BH3 SS7 from a depth of about 4.6 to 5.2 metres
- BH4 SS2 from a depth of about 0.6 to 1.2 metres
- BH4 SS4 from a depth of about 1.8 to 2.4 metres
- BH5 SS2 from a depth of about 0.6 to 1.2 metres
- BH5 SS5 from a depth of about 2.4 to 3.1 metres
- BH6 SS3 from a depth of about 1.2 to 1.8 metres
- BH6 SS7 from a depth of about 3.7 to 4.3 metres
- BH7 SS3 from a depth of about 1.2 to 1.8 metres
- BH7 SS5 from a depth of about 2.4 to 3.1 metres
- BH8 SS3 from a depth of about 1.2 to 1.8 metres
- BH9 SS2 from a depth of about 0.6 to 1.2 metres
- BH9 SS3 from a depth of about 1.2 to 1.8 metres

• BH10 - SS3 from a depth of about 1.2 to 1.8 metres

On August 2, 2019, a soil sample was obtained from a test pit put down in the area of BH3 and tested for landfill disposal (Attachment C).

-14-

5.4 FIELD SCREENING MEASUREMENTS

No field screening equipment was used for this project. Fill materials were identified based on visual observations. Soil samples were obtained from evenly spaced distributions throughout the property for the initial investigation between June 6 and 7, 2019.

5.5 GROUNDWATER: MONITORING WELL INSTALLATION

Four monitoring wells were installed by CCC within boreholes BH1, BH3, BH5 and BH6 using the same drilling equipment described in Section 5.2. The wells were constructed of a 50 mm diameter polyvinyl chloride (PVC) pipe and a #10 slotted PVC well screen, approximately 1.5 metres in length, placed to intercept the inferred groundwater table. A sand-pack consisting of clean silica sand was placed within the annular space surrounding the screened section of the well, and bentonite chips were added from the top of the sand layer to within 0.3 m of the surface to minimize the potential for cross-contamination between aquifers. A locking J-Plug cap was placed at the top of the well pipe and a protective flush-mount steel casing was cemented at surface to protect the well. Following monitoring well installation activities, a peristaltic sampling pump used for well development purposes. The monitoring well was developed to remove any groundwater impacted by drilling activities and to reduce the amount of sediment within the well. The borehole construction and groundwater sampling procedures were carried out in general accordance with procedures outlined in the Association of Professional Geoscientists of Ontario document "*Guidance for Environmental Site Assessments under Ontario Regulation 153/04* (as amended), April 2011."

The corresponding locations are provided in Figure 2, Phase 2 CSM.

5.6 FIELD MEASUREMENT OF WATER QUALITY PARAMETERS

No measurement of field water quality parameters was carried out for this investigation. Field screening is carried out to measure parameters while pumping until water quality stabilizes at which

time a well is considered to be properly developed (i.e. water in well is from formation and not from stagnant water in the well.) In this case, the wells were pumped dry or until three well volumes were removed from the wells in order to ensure that water samples obtained are representative of the formation water.

-15-

5.7 GROUNDWATER SAMPLING

Prior to sample collection, the wells were purged using a variable flow peristaltic pump. The pump was connected to the wells with polyethylene and silicone tubing. During pumping, qualitative observations were made of water colour, clarity, and the presence or absence of any hydrocarbon sheen or odour. The monitoring wells were purged until the wells were dry. Groundwater sampling was carried out after full recovery of initial static water conditions were measured.

Between June 11 and June 14, four water samples were obtained from boreholes, BH1, BH3, BH5 and BH6 for testing purposes. On September 9, one water sample from borehole BH3 was obtained for testing purposes after soil and groundwater removal was completed on August 20, 2019.

All of the water samples were obtained and were stored in laboratory prepared bottles for PHC F1-F4, BTEX and metals testing. The water samples obtained from boreholes BH1, BH3, BH5 and BH6 were collected and prepared/preserved in the field using appropriate techniques. Water samples were submitted to ALS Environmental Laboratory testing in Waterloo, Ontario, for testing. For the metals, the well was sampled using a variable flow peristaltic pump. A pump and flow-through cell was connected to the well with polyethylene and silicone tubing. The samples for analysis of metals, including lead, were field filtered using a 0.45 µm filter prior to being tested.

5.8 SEDIMENT SAMPLING

No sediment sampling was carried out for this investigation.

5.9 ANALYTICAL TESTING

The following soil and groundwater samples, obtained from the site between June 6 and 14 and on September 9, 2019, were submitted to ALS Environmental Laboratory in Waterloo, Ontario, for Petroleum Hydrocarbons (PHC) F1-F4, BTEX and metals testing as described below:

-16-

<u>SOIL</u>

- BH1 SS4 from a depth of about 1.8 to 2.4 metres
- BH1 SS7 from a depth of about 3.7 to 4.3 metres
- BH2 SS2 from a depth of about 0.6 to 1.2 metres
- BH2 SS5 from a depth of about 2.4 to 3.1 metres
- BH3 SS5 from a depth of about 2.4 to 3.1 metres
- BH3 SS7 from a depth of about 4.6 to 5.2 metres
- BH4 SS2 from a depth of about 0.6 to 1.2 metres
- BH4 SS4 from a depth of about 1.8 to 2.4 metres
- BH5 SS2 from a depth of about 0.6 to 1.2 metres
- BH5 SS5 from a depth of about 2.4 to 3.1 metres
- BH6 SS3 from a depth of about 1.2 to 1.8 metres
- BH6 SS7 from a depth of about 3.7 to 4.3 metres
- BH7 SS3 from a depth of about 1.2 to 1.8 metres
- BH7 SS5 from a depth of about 2.4 to 3.1 metres
- BH8 SS3 from a depth of about 1.2 to 1.8 metres
- BH9 SS2 from a depth of about 0.6 to 1.2 metres
- BH9 SS3 from a depth of about 1.2 to 1.8 metres
- BH10 SS3 from a depth of about 1.2 to 1.8 metres

GROUNDWATER

- BH1
- BH3 x 2
- BH5
- BH6

The soil and groundwater results were then compared to the Ministry of the Environment, Conservation and Parks (MECP) regulation *Soil, Groundwater and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act: Table 5: Stratified Site Condition Standards, dated April 15, 2011 for fine textured soils relating to industrial/commercial/community property use for soils with a non-potable groundwater condition.* The test results are included as Attachment A.

5.10 RESIDUE MANAGEMENT PROCEDURES

Soil cuttings from each borehole were re-installed within the borehole after samples for laboratory testing were obtained or stored in drums at the site for future disposal. All of the soil cuttings, with the exception of borehole BH3, did not show any visual or odour indicators of contamination.

-17-

5.11 ELEVATION SURVEYING

The boreholes were surveyed on June 7, 2019 as part of this assessment using a local benchmark. Borehole elevations are indicated on the Borehole logs.

Groundwater levels were monitored in all four monitoring wells to determine groundwater flow direction and were measured relative to the elevation of the top of the PVC riser.

5.12 QUALITY ASSURANCE AND QUALITY CONTROL MEASURES

Quality assurance and quality control measures were taken to ensure the integrity of the samples and the analytical testing, as follows:

- Soil and groundwater samples were obtained using appropriately labelled and prepared containers supplied by a laboratory
- Soil and groundwater samples were collected manually using black nitrile gloves and were placed in laboratory prepared glass jars and immediately placed in coolers.
- All monitoring wells were appropriately purged prior to groundwater sample collection to remove stagnant water from the well bores and improve sample representativeness, minimizing sample agitation and aeration to the extent practicable
- Soil samples for volatiles analyses were collected using disposable plastic syringe plungers and soil was immediately place into 40 mL vials containing a known pre weighed mass of methanol preservative and stored on ice, pending laboratory submission
- A chain of custody form was completed for the samples which documented the sample movement from collection and includes the sample conditions upon receipt at the laboratory, including temperature of container, hold times, etc.
- Quality control measures were taken by the laboratory by testing blanks and/or duplicates and/or spikes of one or more samples to verify all results
- Groundwater samples were handled and stored in accordance with the sample collection and preservation requirement of the Ministry of the Environment (MOE) *Protocol for Analytical Methods Used in the Assessment of Properties Under Part XV.I of the Environmental Protection Act*, July 1, 2011. Samples were collected directly into precleaned, laboratory-supplied sample containers with the appropriate preservative for the

analyte group. Upon collection, samples were placed in insulated coolers with ice for storage and transport to the analytical laboratory under chain-of-custody.

-18-

- Dedicated sampling equipment (tubing) and clean disposable Nitrile[™] gloves were used at each sampling location to prevent cross-contamination. All non-dedicated sampling equipment (e.g., water level meters, split spoons) was decontaminated between sampling locations. Sampling equipment in contact with soil, groundwater, or sediment was: cleaned by mechanical means; washed with a laboratory grade detergent (e.g., phosphate-free LiquiNox or AlcoNox) and, if necessary, an appropriate desorbing wash solution; and thoroughly rinsed with analyte-free water; and
- Detailed field records documenting the methods and circumstances of collection for each field sample were prepared at the time of sample collection. Each sample was assigned a unique sample identification number recorded in the field notes, along with the date and time of sample collection, the sample matrix, and the requested analyses.

6.0 **REVIEW AND EVALUATION**

6.1 GEOLOGY

Based on a review of the surficial geology map for the site area, it is expected that the site is underlain by fine textured glaciomarine deposits. Bedrock geology maps indicate that the bedrock underlying the site consists of limestone of the Ottawa Formation of dolomite and limestone of the Oxford Formation.

Based on a review of overburden thickness mapping for the site area, the overburden is estimated to be between about 55 to 61 metres in thickness above bedrock.

A geotechnical investigation completed at the site by Kollaard Associates Inc. in June 2019 in conjunction with the Phase II ESA indicates the subsurface soil consists of sand followed by silty clay. Practical refusal either on a cobble or boulder was encountered at a depth of about 33.5 metres below the existing ground surface.

6.2 GROUNDWATER: ELEVATIONS AND FLOW DIRECTION

The four monitoring wells (BH1, BH3, BH5 and BH6) were used in the interpretation of shallow groundwater contours and shallow groundwater flow direction. Any temporary fluctuation in water levels on the Phase Two Property is not anticipated to effect the conclusions of the Phase Two ESA.

A summary of the monitoring well construction details are presented on the Borehole logs. No evidence of petroleum hydrocarbon free product or sheen in groundwater was observed during well development or at the time of sampling.

-19-

On June 10, 2019, groundwater was measured in the standpipes installed at BH1, BH3, BH5 and BH6 at depths of about 1.16, 3.16, 3.98 and 0.60 metres below existing ground surface.

On August 20, 2019, groundwater was measured in the standpipes installed at BH1, BH3 and BH6 at depths of about 1.97, 1.15 and 1.71 metres below the existing ground surface. Groundwater could not be measured within BH5 as the well was found to be damaged and filled in with sand.

It is indicated that the groundwater levels, together with an elevation survey of the top of the monitoring wells at each location were calculated relative to an assumed benchmark to establish the groundwater flow direction. The ground surface elevations for the monitoring wells were: 500.04 metres - BH1, 500.19 metres - BH3, 500.11 metres - BH5 and 500.30 - BH6. Based on the interpreted groundwater elevation, the inferred direction of groundwater flow is to the north, towards St. Joseph Boulevard. This supports the assertions made in the Conceptual Site Model that groundwater flows north towards the Ottawa River.

6.3 GROUNDWATER: HYDRAULIC GRADIENTS

The average horizontal hydraulic gradient was estimated for shallow groundwater conditions based on water levels collected on June 8, 2019. The horizontal hydraulic gradient for shallow groundwater conditions was calculated to be 0.03 m/m.

Vertical hydraulic gradients were not established because monitoring wells were only installed in the upper aquifer at the site.

6.4 FINE SOIL TEXTURE

Based on field observations and samples obtained from the boreholes for this Phase II ESA, there is a layer of sandy fill materials overlying a thin layer of native silty sand followed by silty clay to the depths explored. The native soils at the site are silty sand and silty clay and are considered fine grained for the purposes of analytical testing. Thus, fine soil texture as per O. Reg. 153/04 s. 42.

was considered applicable for the Site and as such, no grain size analysis was performed as part of the Phase II ESA. The results were compared to *Table 5: Stratified Site Condition Standards, dated April 15, 2011 for fine textured soils relating to industrial/commercial/community property use for soils with a non-potable groundwater condition.*

-20-

6.5 SOIL: FIELD SCREENING

The soil samples that were selected for laboratory testing were selected on the basis of olfactory/discolouration where PHCs/BTEX were suspected and for metals testing. Samples were also selected based on the presence of other deleterious materials.

Kollaard Associates accepts the fine grained soil texture for comparison of analytical data as part of the Phase 2 investigation.

6.6 SOIL QUALITY

The soil results were compared to the Ministry of the Environment, Conservation and Parks (MECP) regulation *Soil, Groundwater and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act: Table 5: Stratified Site Condition Standards, dated April 15, 2011 for fine textured soils relating to industrial/commercial/community property use for soils with a non-potable groundwater condition.*

The results of the laboratory testing of the soils indicated metals exceedances in Vanadium and Chromium and for the groundwater, PHCs - F2 (C10-C16) above the applicable MECP standards (see Exceedance Summaries in **bold** below).

<u>Soils</u>

Sample Depth	Grouping	Analyte	Result (ug/g)	Limit - Table 5 Standard (ug/g)	Surface/Subsurface
BH1–SS4-1.8 to 2.4m	Metals	Vanadium Chromium	26.4 28.8	160 18,000	Subsurface
BH1-SS7-3.7 to 4.3m	Metals	Vanadium Chromium	137 141	160 18,000	Subsurface
BH2-SS2-0.6-1.2m	Metals	Vanadium Chromium	46 35.5	86 160	Surface

Phase II Environmental Site Assessment

-21-

1994 St. Joseph Boulevard, Orleans, Ottawa, Ontario 190361-2

BH2-SS5-2.4 to 3.1m	Metals	Vanadium	120	160	Subsurface
		Chromium	131	18,000	
BH3-SS5-2.4 to 3.1m	Metals	Vanadium	125	160	Subsurface
		Chromium	177	18,000	
BH3-SS7-4.6 to 5.2m	Metals	Vanadium	116	160	Subsurface
		Chromium	145	18,000	
BH4-SS2-0.6 to 1.2m	Metals	Vanadium	114	86	Surface
(Native Clay)		Chromium	145	160	
BH4-SS4-1.8 to 2.4m	Metals	Vanadium	120	160	Subsurface
		Chromium	152	18,000	
BH5-SS2-0.6 to 1.2m	Metals	Vanadium	25.3	86	Surface
		Chromium	23.4	160	
BH5-SS5-2.4 to 3.1m	Metals	Vanadium	109	160	Subsurface
		Chromium	129	18,000	
BH6-SS3-1.2 to 1.8m	Metals	Vanadium	57.2	86	Surface
		Chromium	43	160	
BH6-SS7-3.7 to 4.3m	Metals	Vanadium	129	160	Subsurface
		Chromium	122	18,000	
BH7-SS3-1.2 to 1.8m	Metals	Vanadium	109	86	Surface
(Native Clay)		Chromium	42.7	160	
BH7-SS5-2.4 to 3.1m	Metals	Vanadium	131	160	Subsurface
		Chromium	167	18,000	
BH8-SS3-1.2 to 1.8 m	Metals	Vanadium	139	86	Surface
(Native Clay)		Chromium	133	160	
BH9-SS2-0.6 to 1.2 m	Metals	Vanadium	123	86	Surface
(Native Clay)		Chromium	117	160	
BH9-SS3-1.2 to 1.8m	Metals	Vanadium	125	86	Surface
(Native Clay)		Chromium	166	160	
BH10-SS3-1.2 to 1.8m	Metals	Vanadium	107	86	Surface
(Native Clay)		Chromium	145	160	

For this particular investigation, all of the fill samples tested met the applicable Table 5 Standards for all of the metals tested. However, the native silty clay samples tested exceeded the MECP standards for Vanadium and Chromium and the concentrations were uniform across the site. With regard to the metals exceedances for Vanadium and Chromium in the soils at the site, recent research indicates it has been commonly found that native silty clay soils associated with the Champlain Sea in the Ottawa area contain concentrations of metals (including Vanadium and Chromium) in excess of the MECP background soil standards (Table 1). See Attachment B for article entitled *Elevated Background Metals Concentrations in Champlain Sea Clay - Ottawa Region.* As a result, Kollaard Associates considers the elevated metal concentrations of Vanadium and Chromium in the native silty clay soils are not considered to be due to contamination but represent a native condition.

The review of the soil analytical results and comparison to the applicable MECP Table 5 Standards indicated the following:

-22-

• Of the eighteen (18) soil samples submitted for PHC and BTEX analysis, two (2) samples had detectable concentrations of PHCs or BTEX, however, there were no samples that had exceedances above of the applicable criteria for PHCs or BTEX.

There was a detectable presence of hydrocarbons, PHC F2 and F3 at borehole BH3 - 8'-10' and PHC F3 and F4 at borehole BH7 at 4'-6'. The hydrocarbon presence was within the allowable limits. The results are summarized below.

	153/04 Table 5 Standard (ug/g)	Location	
Parameter		BH3	BH7
PHCs F2	250	13	<10
PHCs - F3	2500	58	89
PHCs - F4	6600	<50	178

Only two of ten borehole sample locations (BH3 & BH7 on Figure 2, attached) indicated the presence of hydrocarbons. There was no detectable presence of hydrocarbons in BH1, BH6 and BH8, which were located along the property line closest to the adjacent gas station. The source of the hydrocarbons at BH3 and BH7 is considered not to be related to the gas station. However, it is considered that the hydrocarbon presence within the soils within BH3 and BH7 is the source of the localized groundwater impact at BH3. It is localized because the soils that were sampled below the water table did not have any hydrocarbon presence.

6.6.1 O. Reg. 347 Schedule IV Leachate Quality Criteria

A sample of soil was collected on August 2, 2019 from a test pit put down adjacent to borehole BH3 and submitted to ALS Environmental Laboratories for TCLP testing and compared to the O. Reg. 347 Schedule IV leachate quality criteria and is presented in Attachment C following the text of this report. Laboratory Certificates of Analysis are included.

The results from the TCLP soil testing under the O.Reg. 347 for the soil sample indicated that the metals, inorganics and benzene leachate concentrations in the sample were below the O. Reg. 347 Schedule IV leachate quality criteria. In addition, the pH of the sample ranged between 5.91 and 8.57, which is within the pH range of 2.5 to 12.5 (waste is not considered corrosive). As such, the

soil is classified as solid, non-hazardous waste and could be disposed of at non-hazardous landfill facilities that are licensed to receive contaminated soil.

-23-

6.7 GROUNDWATER QUALITY

The groundwater results were compared to the Ministry of the Environment, Conservation and Parks (MECP) regulation *Soil, Groundwater and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act: Table 5: Stratified Site Condition Standards, dated April 15, 2011 for fine textured soils relating to industrial/commercial/community property use for soils with a non-potable groundwater condition.* Samples were analyzed for PHC F1, PHC F2-F4, BTEX and Metals.

• Of the four (4) groundwater samples submitted for PHC, BTEX and metals analysis, one sample (1) had a concentration of PHC- F2 - C10-C16) that had exceeded the applicable criteria for PHCs (see Exceedance Summaries in **bold** below).

Groundwater - BH3 (June 14, 2019)	Result		MRL			Table 5 S	Standard
Hydrocarbons							
F1 (C6-C10)	<25	OWP	25	ug/L	21-JUN-19	750	750
F1-BTEX	<25		25	ug/L	21-JUN-19	750	750
F2 (C10-C16)	190		100	ug/L	18-JUN-19	*150	*150
F3 (C16-C34)	<250		250	ug/L	18-JUN-19	500	500
F4 (C34-C50)	<250		250	ug/L	18-JUN-19	500	500
Total Hydrocarbons (C6-C50)	<370		370	ug/L	21-JUN-19		
Chrom. to baseline at nC50	YES			No Unit	18-JUN-19		
Surrogate: 2-Bromobenzotrifluoride	85.2		60-140	%	18-JUN-19		
Surrogate: 3,4-Dichlorotoluene	89.4		60-140	%	21-JUN-19		

Hydrocarbons were also detected within the soils at BH3. No detectable hydrocarbons were present in any other monitoring wells at the site, indicating localized impact only.

Kollaard Associates considered that the groundwater remediation of the site could be completed by means of excavation and removal of the localized hydrocarbon impacted soils and pumping of groundwater encountered during excavation followed by a confirmatory groundwater sample.

6.8 SEDIMENT QUALITY

Sediment samples were not tested as part of this investigation.

6.9 QUALITY ASSURANCE AND QUALITY CONTROL RESULTS

All of the soil and groundwater samples that were obtained during the investigation were handled in accordance with industry accepted standards.

-24-

The Laboratory Certificates of Analyses indicate that holding times and CCME checklist items for petroleum hydrocarbon testing were within response limits and laboratory blanks were utilized to provide quality assurance. The quality control measures were within acceptable limits.

6.10 PHASE II CONCEPTUAL SITE MODEL

The Phase I Conceptual Site Model (CSM), provided as Section 4.3, provides a description and assessment of areas where potentially contaminating activities (PCAs) have occurred, and areas of potential environmental concern, as well as any subsurface structures or utilities that may affect contaminant distribution and transport. This Phase II CSM provides updated information based on the information provided in this report.

Site Description and Physical Setting

The subject site for this assessment prior to remediation between June 6 and August 20, 2019 consisted of a vacant commercial property, located at civic address 1994 St. Joseph Boulevard, Orleans, in the City of Ottawa, Ontario. The location of the site has been identified on the attached Key Plan, Figure 1. The site consists of about 0.14 hectares (0.36 acres) of land located on the south side of St. Joseph Boulevard, about 93 metres east of the intersection of Jeanne D'Arc Boulevard South and St. Joseph Boulevard, in Orleans, Ward of the City of Ottawa, Ontario.

The property is partially asphaltic concrete surfaced and partially gravel surfaced with vegetation. No building exists at the site.

It is understood that it is planned to redevelop the site into a commercial development. As such, there is no change of use or previous use for which a Record of Site Condition could be required under Ontario Regulation 153/04.

Surrounding land use is currently mixed residential and commercial development. The site is bordered on the north by St. Joseph Boulevard, on the east by a commercial development (Dairy Queen and Cash Money Mart), on the west by a Petro Canada Service Station and on the south by a multi-unit residential apartment building with an asphaltic surfaced parking lot.

-25-

POTENTIAL CONTAMINATING ACTIVITY

Based on information provided, the current or historical activities at or near the subject site that could be considered "Potentially Contaminating Activities", as identified in Table 2 of Schedule D of O. Reg. 153/04 are the following:

- Item #30 Importation of Fill Material of Unknown Quality, possible buried debris from former commercial, residential and agricultural buildings located at the site. Building debris could potentially contain deleterious substances, including metals and hydrocarbons.
- Item #28 Gasoline and Associated Products Storage in Fixed Tanks Fuel Service Station - possible subsurface hydrocarbon contamination related to existing fuel service station (Petro Canada) located immediately west of site.

The first developed use of the property was determined based on a review of aerial photographs and the title search for the site (Section 4.3.1). The title search indicates that the Ottawa Fur Farm Company leased the property beginning in 1940. The earliest air photograph that was reviewed was 1958. The air photograph indicates that the site was partially occupied by two separate buildings (barns) located in the east center portion of the property along with a small garden shed located in the southeast corner of the site. The buildings correspond to the timeline of the Ottawa Fur Farm Company. Farms were also observed west, east and south of the site. As such, first developed use of the property is indicated to be sometime between 1940 and 1958 or earlier.

The corresponding contaminants of potential concern (COPCs) are identified.

APEC	Comment(s)	COPCs
APEC 1 – Former Agricultural, Residential and Commercial Buildings	 potential fill and/or building debris and residues from former buildings at the site 	- Metals, PHCs, BTEX
at the site.		
APEC 2 - Existing Fuel	- potential for subsurface	- PHCs, BTEX and Metals
Service Station - 1988 St.	hydrocarbon contamination from the	
Joseph Boulevard	existing fuel service station	

-26-

The Phase II sampling and analytical program was provided to determine whether the APECs identified at the site have resulted in impacts at the subject site. This included testing of soil and groundwater at the site for the following contaminants of concern; hydrocarbons (PHC F1-F4, BTEX) and metals.

Subsurface Structures and Utilities

The hydraulic conductivity of the soils at the site and within the Phase I study area are low due to the low permeability of the silty clay at the site. The Phase I study area is also controlled by municipal storm and sanitary sewers. Lateral gradients in clay soils are relatively slow and contamination would tend to migrate downward until saturated conditions are encountered. Once saturated conditions are encountered and depending on contaminant mobility, solubility, volatility, etc. the contaminants could be expected to dissolve into the groundwater and migrate laterally in the direction of groundwater flow. In this case, the topographical information indicates that the groundwater flow gradient is moving towards the Ottawa River located approximately 2.2 kilometres north of the subject site.

The underground utilities pertaining to gas, water, sewer and communications enter the site from the north side. Hydro services are overhead. The depth to groundwater is about 1.5 to 1.8 metres below ground surface based on borehole information review for the general site area.

PHYSICAL SETTING Topography

For most of the site, the ground surface consists of a gentle slope from south to north. Near the rear property line, the ground surface rises upward about 3 to 4 metres to a higher elevation. Surface drainage is largely controlled by a catch basin located within St. Joseph Boulevard located north of the site.

-27-

The regional topography slopes north towards the Ottawa River located approximately 2.2 kilometres from the subject site

Site Stratigraphy

- Based on a review of the surficial geology map for the site area, it is expected that the site is underlain by fine textured glaciomarine deposits. Bedrock geology maps indicate that the bedrock underlying the site consists of shale with lenses of sandstone of the Rockcliffe Formation.
- Based on a review of overburden thickness mapping for the site area, the overburden is estimated to be between about 55 to 61 metres in thickness above bedrock.
- A geotechnical investigation completed at the site by Kollaard Associates Inc. in June 2019 in conjunction with the Phase II ESA indicates the subsurface soil consists of sand followed by silty clay. Practical refusal either on a cobble or boulder was encountered at a depth of about 33.5 metres below the existing ground surface.
- Saturated soil conditions were encountered at depths ranging from about 1.2 to 2.1 metres below the existing ground surface at the time of borehole investigation and at between about 1.2 to 3.2 metres measured in a standpipes installed in the boreholes.

Hydrogeological Characteristics

- Based on the interpreted groundwater elevation, the inferred direction of groundwater flow is to the north/northwest, towards St. Joseph Boulevard. This supports the assertions made in the Conceptual Site Model that groundwater flows north towards the Ottawa River.
- On June 10, 2019, groundwater was measured in the standpipes installed at BH1, BH3, BH5 and BH6 at depths of about 1.16, 3.16, 3.98 and 0.60 metres below existing ground surface.

 On August 20, 2019, groundwater was measured in the standpipes installed at BH1, BH3 and BH6 at depths of about 1.97, 1.15 and 1.71 metres below the existing ground surface. Groundwater could not be measured within BH5 as the well was found to be damaged and filled in with sand.

-28-

- A summary of the monitoring well construction details are presented on the Record of Borehole Sheets. No evidence of petroleum hydrocarbon free product or sheen in groundwater was observed during well development or at the time of sampling.
- There are subsurface utilities buried near the northwest corner of the site. As the groundwater flow is interpreted to be to the north/northwest towards St. Joseph Boulevard and downgradient from the site, the subsurface utilities are not considered to be preferential pathways promoting the migration of COCs.

GROUNDWATER: HYDRAULIC GRADIENTS

The average horizontal hydraulic gradient was estimated for shallow groundwater conditions based on water levels collected on June 8, 2019. The horizontal hydraulic gradient for shallow groundwater conditions was calculated to be 0.03 m/m.

Vertical hydraulic gradients were not established because monitoring wells were only installed in the upper aquifer at the site.

DELINEATION OF CONTAMINANT IMPACTS

The following soil and groundwater samples, obtained from the site between June 11 and 14 and on September 9, 2019, were submitted to ALS Environmental Laboratory in Waterloo, Ontario, for Petroleum Hydrocarbons (PHC) F1-F4, BTEX and metals testing as described below:

SOIL

- BH1 SS4 from a depth of about 1.8 to 2.4 metres
- BH1 SS7 from a depth of about 3.7 to 4.3 metres
- BH2 SS2 from a depth of about 0.6 to 1.2 metres
- BH2 SS5 from a depth of about 2.4 to 3.1 metres
- BH3 SS5 from a depth of about 2.4 to 3.1 metres
- BH3 SS7 from a depth of about 4.6 to 5.2 metres
- BH4 SS2 from a depth of about 0.6 to 1.2 metres
- BH4 SS4 from a depth of about 1.8 to 2.4 metres
- BH5 SS2 from a depth of about 0.6 to 1.2 metres

- BH5 SS5 from a depth of about 2.4 to 3.1 metres
- BH6 SS3 from a depth of about 1.2 to 1.8 metres
- BH6 SS7 from a depth of about 3.7 to 4.3 metres
- BH7 SS3 from a depth of about 1.2 to 1.8 metres
- BH7 SS5 from a depth of about 2.4 to 3.1 metres
- BH8 SS3 from a depth of about 1.2 to 1.8 metres
- BH9 SS2 from a depth of about 0.6 to 1.2 metres
- BH9 SS3 from a depth of about 1.2 to 1.8 metres
- BH10 SS3 from a depth of about 1.2 to 1.8 metres

GROUNDWATER

- BH1
- BH3 x 2
- BH5
- BH6

The soil and groundwater results were then compared to the Ministry of the Environment, Conservation and Parks (MECP) regulation *Soil, Groundwater and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act: Table 5: Stratified Site Condition Standards, dated April 15, 2011 for fine textured soils relating to industrial/commercial/community property use for soils with a non-potable groundwater condition.* The test results are included as Attachment A.

-29-

Results of Analytical Testing for Phase II Investigation

The results of the laboratory testing of the soils indicated metals exceedances in Vanadium and Chromium and for the groundwater, PHCs - F2 (C10-C16) above the applicable MECP standards (see Exceedance Summaries in **bold** below).

<u>Soils</u>

Sample Depth	Grouping	Analyte	Result (ug/g)	Limit - Table 5 Standard	Surface/Subsurface
BH1–SS4-1.8 to 2.4m	Metals	Vanadium	26.4	160	Subsurface
		Chromium	28.8	18,000	
BH1-SS7-3.7 to 4.3m	Metals	Vanadium	137	160	Subsurface
		Chromium	141	18,000	
BH2-SS2-0.6-1.2m	Metals	Vanadium	46	86	Surface
		Chromium	35.5	160	
BH2-SS5-2.4 to 3.1m	Metals	Vanadium	120	160	Subsurface
		Chromium	131	18,000	
BH3-SS5-2.4 to 3.1m	Metals	Vanadium	125	160	Subsurface
		Chromium	177	18,000	

Phase II Environmental Site Assessment

-30-

1994 St. Joseph Boulevard, Orleans, Ottawa, Ontario 190361-2

BH3-SS7-4.6 to 5.2m	Metals	Vanadium	116	160	Subsurface
		Chromium	145	18,000	
BH4-SS2-0.6 to 1.2m	Metals	Vanadium	114	86	Surface
(Native Clay)		Chromium	145	160	
BH4-SS4-1.8 to 2.4m	Metals	Vanadium	120	160	Subsurface
		Chromium	152	18,000	
BH5-SS2-0.6 to 1.2m	Metals	Vanadium	25.3	86	Surface
		Chromium	23.4	160	
BH5-SS5-2.4 to 3.1m	Metals	Vanadium	109	160	Subsurface
		Chromium	129	18,000	
BH6-SS3-1.2 to 1.8m	Metals	Vanadium	57.2	86	Surface
		Chromium	43	160	
BH6-SS7-3.7 to 4.3m	Metals	Vanadium	129	160	Subsurface
		Chromium	122	18,000	
BH7-SS3-1.2 to 1.8m	Metals	Vanadium	109	86	Surface
(Native Clay)		Chromium	42.7	160	
BH7-SS5-2.4 to 3.1m	Metals	Vanadium	131	160	Subsurface
		Chromium	167	18,000	
BH8-SS3-1.2 to 1.8 m	Metals	Vanadium	139	86	Surface
(Native Clay)		Chromium	133	160	
BH9-SS2-0.6 to 1.2 m	Metals	Vanadium	123	86	Surface
(Native Clay)		Chromium	117	160	
BH9-SS3-1.2 to 1.8m	Metals	Vanadium	125	86	Surface
(Native Clay)		Chromium	166	160	
BH10-SS3-1.2 to 1.8m	Metals	Vanadium	107	86	Surface
(Native Clay)		Chromium	145	160	

Groundwater - BH3	Result		MRL			Table 5 S	<u>Standard</u>
Hydrocarbons							
F1 (C6-C10)	<25	OWP	25	ug/L	21-JUN-19	750	750
F1-BTEX	<25		25	ug/L	21-JUN-19	750	750
F2 (C10-C16)	190		100	ug/L	18-JUN-19	*150	*150
F3 (C16-C34)	<250		250	ug/L	18-JUN-19	500	500
F4 (C34-C50)	<250		250	ug/L	18-JUN-19	500	500
Total Hydrocarbons (C6-C50)	<370		370	ug/L	21-JUN-19		
Chrom. to baseline at nC50	YES			No Unit	18-JUN-19		
Surrogate: 2-Bromobenzotrifluoride	85.2		60-140	%	18-JUN-19		
Surrogate: 3,4-Dichlorotoluene	89.4		60-140	%	21-JUN-19		

With regard to the metals exceedances for Vanadium and Chromium in the soils at the site, recent research indicates it has been commonly found that native silty clay soils associated with the Champlain Sea in the Ottawa area contain concentrations of metals (including Vanadium and Chromium) in excess of the MECP background soil standards (Table 1). See Attachment B for article entitled *Elevated Background Metals Concentrations in Champlain Sea Clay - Ottawa Region.* For this particular investigation, all of the fill samples tested met the applicable Table 5

Standards for all of the metals tested. However, the native silty clay samples tested exceeded the MECP standards for Vanadium and Chromium and the concentrations were uniform across the site. As a result, Kollaard Associates considers the elevated metal concentrations of Vanadium and Chromium in the native silty clay soils are not considered to be due to contamination but represent a native condition.

-31-

The soil samples obtained below 1.5 metres meet the Standards for the subsurface soils. There was a detectable presence of hydrocarbon contamination, PHC F2 and F3 at borehole BH3 - 8'-10' and PHC F3 and F4 at borehole BH7 at 4'-6' (see below).

	153/04 Table 5 Standard (ug/g)	Location		
Parameter		BH3	BH7	
PHCs F2	250	13	<10	
PHCs - F3	2500	58	89	
PHCs - F4	6600	<50	178	

The source of the hydrocarbons is unknown. However, it is considered that the hydrocarbon presence within the soils within BH3 and BH7 is the source of the localized groundwater impact at BH3.

Based on the results of the soil and groundwater sampling and testing completed for this Phase II ESA investigation, Kollaard Associates considered there is evidence of localized hydrocarbons impacts at the site. It is localized because the soils that were sampled below the water table did not have any hydrocarbon presence. Only two of ten borehole sample locations (BH3 & BH7 on Figure 2, attached) indicated the presence of hydrocarbons. Kollaard Associates considered that the groundwater remediation of the site could be completed by means of excavation and removal of the localized hydrocarbon impacted soils and groundwater encountered during excavation followed by a confirmatory groundwater sample.

Summary of Confirmatory Groundwater Sampling and Testing and On-site Conditions

On August 20, 2019, an excavation was put down at BH3 in order to removed impacted soils and groundwater. While excavating, the exposed soils within BH3 were observed to consist of fill materials. The fill materials included sand and clay. Also buried within the fill materials were mixed debris including concrete, asphalt, plastic and several pieces of preserved/stained wood including

railway ties. Kollaard Associates considers that the preserved/stained wood debris removed from the excavation is the likely source of the contaminated water at BH3. It is considered that the preserved/stained wood leached into the water over time causing the elevated contamination in the localized groundwater. Excavating occurred until all of the fill materials and debris were removed to native, undisturbed silty clay at an average depth of about 2.6 metres. The excavating increased laterally until all non-native soils and debris were removed. An area measuring approximately 22.5 metres by 8.7 metres and an average depth of was excavated. The walls and bottom of the excavation upon completion consisted of native silty clay. Approximately, 509 cubic metres of soil and debris was removed from the subject site. It is understood that following excavation that the fill materials were delivered to a licensed landfill for disposal (Waste Connections of Canada - Ottawa Landfill).

-32-

Following excavation, granular materials were placed and compacted as part of the construction plans for the site.

On August 29, 2019, prior to the groundwater confirmatory sample collection, the well was purged using a variable flow peristaltic pump. The pump was connected to the well with polyethylene and silicone tubing. During pumping, qualitative observations were made of water colour, clarity, and the presence or absence of any hydrocarbon sheen or odour. The monitoring well was purged until the well was dry. Groundwater sampling was carried out after full recovery of initial static water conditions was measured.

A confirmatory groundwater sample was obtained from borehole BH3 on September 9, 2019 after remediation was completed. The sample was submitted to ALS Environmental in Waterloo, Ontario, for testing.

Confirmatory Groundwater Results

L2345024-1 BH3 SA1						
Sampled By: CLIENT on 09-SEP-19						
Matrix: WATER					#1	#2
Volatile Organic Compounds						
Benzene	<0.50	0.50	ug/L	16-SEP-19	44	430
Ethylbenzene	<0.50	0.50	ug/L	16-SEP-19	2300	2300
Toluene	<0.50	0.50	ug/L	16-SEP-19	18000	18000
o-Xylene	< 0.30	0.30	ug/L	16-SEP-19		
m+p-Xylenes	<0.40	0.40	ug/L	16-SEP-19		
Xylenes (Total)	< 0.50	0.50	ug/L	16-SEP-19	4200	4200
Surrogate: 4-Bromofluorobenzene	87.1	70-130	%	16-SEP-19		
Surrogate: 1,4-Difluorobenzene	91.3	70-130	%	16-SEP-19		
Hydrocarbons						
F1 (C6-C10)	<25	25	ug/L	16-SEP-19	750	750
F1-BTEX	<25	25	ug/L	16-SEP-19	750	750
F2 (C10-C16)	<100	100	ug/L	12-SEP-19	150	150
F3 (C16-C34)	<250	250	ug/L	12-SEP-19	500	500
F4 (C34-C50)	<250	250	ug/L	12-SEP-19	500	500
Total Hydrocarbons (C6-C50)	<370	370	ug/L	16-SEP-19		
Chrom. to baseline at nC50	YES		No Unit	12-SEP-19		
Surrogate: 2-Bromobenzotrifluoride	91.8	60-140	%	12-SEP-19		
Surrogate: 3,4-Dichlorotoluene	79.9	60-140	%	16-SEP-19		

-33-

The post remediation groundwater test results are included as Attachment D. The results were compared to the *Stratified Site Condition Standards, dated April 15, 2011 for fine textured soils relating to industrial/commercial/community property use for soils with a non-potable groundwater condition.* The groundwater sample meets the applicable standard.

Contaminant Distribution

No contaminants were present in the soil prior to remediation above the applicable Table 5 Standard. The source of the groundwater contamination is possibly from preserved/stained wood debris that was within the fill materials removed from the area of BH3 and BH7. It is considered that the hydrocarbons leached into the adjacent soil and groundwater and remained localized due to the silty clay soils. After soil and groundwater was removed from the site on August 20, 2019, a confirmatory groundwater sample indicated the groundwater meets the applicable standard and no further testing is required.

Contaminant Migration

It is considered that PHCs F2-F3 are non-volatile with low dissolution in groundwater. Additionally, the silty clay soils at the site are of low permeability. Due to the high water table, low dissolution of the contaminants and aquitard, the hydrocarbons would tend to migrate laterally but not downward. The hydraulic gradients at the site are also low, which limited the contaminant migration laterally. Additionally, the fill layer thinned with lateral extent as excavating continued, where native silty clay occurred. The impacted groundwater occurred in an area of fill and buried debris. Once native silty clay soils were encountered, there was no longer a preferential pathway and contaminant migration was retarded.

-34-

The groundwater was remediated in the area of concern whereby confirmatory samples met the applicable site condition standards.

Soil Vapour Intrusion Pathways

Currently, no buildings exist at the site. The site is scheduled for redevelopment. All of the soil and met the applicable site condition standards. Therefore, there are no concerns for soil vapour intrusion pathways at the site.

Distribution and Extent of Soil Impacts

Based on the results of soil and groundwater sampling, testing and groundwater remediation carried out for this Phase II ESA, there is no further evidence of hydrocarbon contamination within the groundwater.

The site is scheduled to be redeveloped into multi-unit commercial development and any fill materials within the footprint of the building and adjacent parking areas are to be removed. When removed, the fill materials should be disposed of at a facility licensed to accept that type of waste. The underlying native soils and groundwater meet the applicable MECP standards outlined in Table 5 with respect to PHCs F1 to F4 and BTEX and metals. No further soil testing is warranted at this site.

7.0 CONCLUSIONS

Based on the results of groundwater sampling and testing for this Phase II ESA, Kollaard Associates considers that the contaminated groundwater within the area of borehole BH3 has been successfully removed from the site. No further soil testing is warranted at this site.

-35-

<u>Disclaimer</u>

This letter was prepared for the exclusive use of M. J. Pulickal Holdings Inc. and is based on data and information collected by Kollaard Associates Inc. This letter may not be relied upon by any other person or entity without the express written consent of M. J. Pulickal Holdings Inc. and Kollaard Associates Inc. Any use of this letter by a third party is the responsibility of the third party. Kollaard Associates Inc. accepts no responsibility for damages, if any, sustained by any third party as a result of decisions made or action based on this letter. Kollaard Associates Inc. has relied in good faith on information provided by others. We accept no responsibility for any deficiencies, or inaccuracies in this letter as a result of omissions, misinterpretations, or fraudulent acts of others. The material in this letter reflects Kollaard Associates Inc. best judgement in view of the scope of work, and information available at the time of preparation. Due to the nature of the investigation and the limited data available, we cannot warrant against undiscovered environmental liabilities. If new information is discovered during future work, including excavations, borings or other studies, Kollaard Associates Inc. should be requested to re-evaluate the conclusions presented in this report and provide amendments as required.

We trust that this letter is sufficient for your present requirements. If you have any questions concerning this letter, please do not hesitate to contact our office.

-36-

Yours truly,

KOLLAARD ASSOCIATES, INC.

fan Tatan

Dean Tataryn, B.E.S., EP.

Reviewed by Colleen Vermeersch, P. Eng

8.0 **REFERENCES**

Topographic Map: NRCan Topographic Maps, Ottawa, Ontario, 31 G/5, Edition 11, published 1998, current as of 1994, scale 1:50,000.

-37-

Surficial Geology Map: Geological Survey of Canada, Surficial Geology, Ottawa, Ontario, Map 1506A, published 1982, scale 1:50,000.

Bedrock Geology Map: Geological Survey of Canada, Generalized Bedrock Geology, Ottawa-Hull, Ontario and Quebec, Map 1508A, published 1979, scale 1:125,000.

Elevated Background Metals Concentrations in Champlain Sea Clay - Ottawa Region Study, Sean Sterling and Kenneth Raven - Geofirma Engineering Ltd., Ottawa, ON, Brent Loney and Asia Reid - Dillon Consulting Limited., Ottawa, ON, Brad Carew - City of Ottawa, Ontario, Canada.

9.0 QUALIFICATIONS OF ASSESSORS

Colleen Vermeersch, P.Eng.

Colleen Vermeersch is an engineer with Kollaard Associates Inc. in Kemptville, Ontario. Colleen has been conducting Phase I ESAs in accordance with the CSA Standard and Environmental Protection Act for more than four years. Colleen has conducted more than thirty Phase I ESAs for commercial/residential clients over her career and several Phase II ESAs, some of which have involved clean up supervision. Colleen Vermeersch obtained a Bachelor of Engineering (Environmental) from Carleton University in 2007 and achieved professional status in 2012.

Colleen joined Kollaard Associates Inc. in 2007 and has worked on numerous environmental and hydrogeological projects since that time. Colleen is fully trained in carrying out and analyzing pumping tests, and field and lab based testing to determine soil and aquifer properties, such as hydraulic conductivity, transmissivity and groundwater flow directions/gradients, as these apply to contaminant transport and migration, coordinating and conducting environmental site assessments, environmental remediation, and storage tank assessment and removal.

Dean Tataryn, B.E.S., EP – Senior Environmental Professional

Mr. Dean Tataryn is a Senior Environmental Professional (EP) with Kollaard Associates Inc. in Kemptville, Ontario. Mr. Dean Tataryn has been conducting Phase I ESAs in accordance with the CSA Standard and Environmental Protection Act for more than 21 years. Mr. Tataryn has conducted more than 150 Phase I, II and III ESAs for commercial/residential clients over his career. Mr. Tataryn obtained a Bachelor of Environmental Studies (Honours Urban and Regional Planning) and a Certificate in Environmental Assessment from the University of Waterloo in 1995. Mr. Tataryn obtained his Environmental Professional (EP) designation in June of 2010.

EP certification is available exclusively to experienced professionals who have five or more years of relevant environmental work experience Recipients of the EP designation have demonstrated that their skills and knowledge meet or exceed the National Occupational Standards (NOS) to ensure that they possess the specific environmental competencies required in their fields of practice. The

NOS are a comprehensive list of skill statements that describe the competencies required for environmental work in Canada. The NOS provides a rigorous, nationally validated benchmark of the skills, knowledge and experience relevant for practice within the environment sector in the areas of environmental protection, resource management, environmental sustainability, environmental management, environmental auditing and/or greenhouse gas reporting.

-38-

Mr. Tataryn joined Kollaard Associates Inc. in 2005 and has worked on numerous environmental, geotechnical and hydrogeological assessment projects over his career. Mr. Tataryn is fully trained in coordinating and conducting environmental site assessments, environmental remediation, reclamation and restoration, contamination and spill inspections, and storage tank assessment and removal.

Kollaard Associates is an engineering consulting firm that provides a complete range of engineering services for developers, builders and homeowners in Eastern Ontario. Kollaard Associates specializes in providing civil, structural, geotechnical, hydrogeological and environmental services to our clients. Kollaard Associates Inc. has been established as a team of engineers and consultants since 2005. Mr. William Kollaard, P.Eng., owner and president, is responsible for the overall company development and management of the firm.

Record of Borehole: BH1

Project: PHASE II ESA

Client: M. J. Pulickal Holdings Inc.

Location: See Figure 2

Contractor: CCC

	SUBSURFACE PROFILE			SAM	PLE			VOC Concentration			
Depth (Metres)	Strata Plot	Description	Elevation	Number	Type	Lab	Analysis	100 20	ppm 300 %LEL 40 60	80	Well or Standpipe Installation
0_		Ground Surface	500.04	4							
0-		Grey crushed stone (FILL)	0.00								ara 1
- - 1-		Yellow brown silty sand (FILL)	498.8	4							
- - 2- -		Grey silty sand, trace gravel, glass, organics (FILL)	1.20			PHC's F4 + B Reg 15 Metals	F1 to TEX, 3/04 only				
- - 3- -		Grey silty clay, trace organics and wood (FILL) Grey SILTY CLAY	497.50 2.48 496.69 3.35	9							Water observed in borehole at approximately 1.2 metres below the existing ground surface on June 7, 2019. Water measured in the standpipe at about 1.2 metres below the existing ground surface, June 10, 2010
- 4 - - 5-		End of Borehole	<u>495.1</u> 4.87	7		PHC's F F4 + B1 Reg 15 Metals	F1 to F2X, 3/04 Only				
• ں	ill Math	od: CME 750									tum: local
Dr	III IVIEIN	UU. UNE-700								Da	
Dr	ill Date	: June 7, 2019		210 P Kemp	rescot tville,	t Stree Ontari	et, Uni o	: 1		Ch	ecked by: DT
				K0G ¹	IJO [′]					Sh	eet: 1 of 1

Record of Borehole: BH2

Project: PHASE II ESA

Client: M. J. Pulickal Holdings Inc.

Location: See Figure 2

Contractor: CCC

	SU	BSURFACE PROFILE	Ś	SAM	PLE			VOC Concentration				
Depth (Metres)	Strata Plot	Description	Elevation	Number	Type	Lab	Analysis	100 20	ppm 30(%LEL 40 60	80	Well or Standpipe Installation	
0-		Ground Surface	500.1	1								
		Grey crushed stone (FILL)	0.00									
- - 1- -		Yellow brown silty sand, trace organics, clay and wood (FILL)				PHC's F F4 + BT Reg 153 -Metals c	⁻¹ to EX, 3/04 only –				▼	
2_												
-			497.4	8	11	PHC's F	1 to					
3-	ΗH	Grey brown SILTY CLAY	2.63			F4 + BT Reg 153	EX, 3/04					
		Grey SILTY CLAY				Metals C	Jiny					
- - 4 -											Water observed in borehole at approximately 1.4 metres below the existing ground surface on June 6, 2019.	
5												
6												
- - 7												
-	HH											
8-	ĦĦ		491.8	8								
_		End of Borehole	8.23									
9-												
- - 10-												
Dr	ill Meth	od: CME-750								Dat	tum: local	
Dr	Drill Date: June 6, 2019			210 P	rescot	t Stree	t. Uni	t 1	Checked by: DT			
21				Kemp K0G 1	tville, J0	Ontaric)			Sh	eet: 1 of 1	
										Chi		

Record of Borehole: BH3

Project: PHASE II ESA

Client: M. J. Pulickal Holdings Inc.

Location: See Figure 2

Contractor: CCC

	SUBSURFACE PROFILE			SAM	PLE	<u> </u>	VOC Concentration			
Depth (Metres)	Strata Plot	Description	Elevation	Number	Type	Lab Analysis	 ppm 100 300 %LEL 20 40 60 8 	B 0	Well or Standpipe Installation	
0-		Ground Surface	500.19	9						
0		Grey crushed stone (FILL) Grey silty sand, trace gravel and wood (FILL) Yellow brown sand and gravel, trace organics (FILL) Grey SILTY CLAY End of Borehole	498.39 1.80 497.69 2.50 491.97 8.22	9		PHC's F1 to F4 + BTEX, Reg 153/04 -Metals Only — PHC's F1 to F4 + BTEX, Reg 153/04 -Metals Only —			Water observed in borehole at approximately 1.2 metres below the existing ground surface on June 6, 2019. Water measured in the standpipe at about 3.2 metres below the existing ground surface, June 10, 2019.	
- - 10-										
Dr	ill Meth	od: CME-750	<u> </u>					Dat	um: local	
Dr	Drill Date: June 7, 2019			210 P Kemp K0G 1	rescot tville, J0	t Street, Uni Ontario	it 1	Checked by: DT Sheet: 1 of 1		

Record of Borehole: BH4

Project: PHASE II ESA

Client: M. J. Pulickal Holdings Inc.

Location: See Figure 2

Contractor: CCC

Engineer: Colleen Vermeersch

SUBSURFACE PROFILE SAMPLE **VOC Concentration** ppm 100 300 Plot Well or Standpipe Elevation Depth (Metres) Lab Analysis Number Installation Strata F Description Type %LEL 20 40 60 80 **Ground Surface** 00.01 0 0.00 ASPHALTIC CONCRETE Grey crushed stone, trace of 99.69 0.32 asphaltic concrete (FILL) Grey silty sand, trace asphaltic :10 concrete and organics (FILL) PHC's F1 to F4 + BTEX, Reg 153/04 99.21 0.80 **Red brown SILTY SAND** Metals only Red brown SILTY CLAY PHC's F1 to F4 + BTEX. 97.9 Reg 153/04 2.10 Metals Only Grey SILTY CLAY Water observed in borehole at approximately 2.1 metres below the existing ground surface on June 7, 2019. 95.74 4.27 End of Borehole 5 Drill Method: CME-750 Datum: local Drill Date: June 7, 2019 Checked by: DT 210 Prescott Street, Unit 1 Kemptville, Ontario K0G¹J0 Sheet: 1 of 1

Record of Borehole: BH5

Project: PHASE II ESA

Client: M. J. Pulickal Holdings Inc.

Location: See Figure 2

Contractor: CCC

Record of Borehole: BH6

Project: PHASE II ESA

Client: M. J. Pulickal Holdings Inc.

Location: See Figure 2

Contractor: CCC

Record of Borehole: BH7

Project: PHASE II ESA

Client: M. J. Pulickal Holdings Inc.

Location: See Figure 2

Contractor: CCC

Record of Borehole: BH8

Project: PHASE II ESA

Client: M. J. Pulickal Holdings Inc.

Location: See Figure 2

Contractor: CCC

	SU	BSURFACE PROFILE	S	SAM	PLE			VOC Concentration			
Depth (Metres)	Strata Plot	Description	Elevation	Number	Type	Lab	Analysis	 ppm 100 300 Well or Standpipe Installation %LEL 20 40 60 80 			
0		Ground Surface 5 TOPSOIL Red brown SILTY SAND 4 Grey SILTY SAND	00.3 0.00 99.7 0.55	1 6							
- - - -		Grey SILTY CLAY	<u>98.9</u> 1.35	6		PHC's F F4 + BTE Reg 153, Metals o	1 to EX, /04 nly	Water observed in borehole			
2								at approximately 1.2 metres below the existing ground surface on June 7, 2019.			
- - - 4-		4	96.04	4							
- - 5-		End of Borehole	4.27								
Dr Dr	ill Meth ill Date	od: CME-750 : June 7, 2019	210 Prescott Street, Unit 1 Kemptville, Ontario K0G 1J0					nit 1 Datum: local Checked by: DT Sheet: 1 of 1			

Record of Borehole: BH9

Project: PHASE II ESA

Client: M. J. Pulickal Holdings Inc.

Location: See Figure 2

Contractor: CCC

Engineer: Colleen Vermeersch

SUBSURFACE PROFILE SAMPLE **VOC Concentration** ppm 100 300 Plot Well or Standpipe Elevation Lab Analysis Depth (Metres) Number Installation Strata F Description Type %LEL . 20 40 60 80 00.23 **Ground Surface** 0 0.00 TOPSOIL \sim **Red brown SILTY SAND** PHC's F1 to F4 + BTEX, Reg 153/04 Metals only 99.2 1.02 1 Grey SILTY CLAY Water observed in borehole at approximately 1.0 metres below the existing ground surface on June 7, 2019. PHC's F1 to F4 + BTEX, Reg 153/04 Metals only 3 95.96 4.27 End of Borehole 5 Drill Method: CME-750 Datum: local Drill Date: June 6, 2019 Checked by: DT 210 Prescott Street, Unit 1 Kemptville, Ontario K0G[']1J0 Sheet: 1 of 1

Record of Borehole: BH10

Project: PHASE II ESA

Client: M. J. Pulickal Holdings Inc.

Location: See Figure 2

Contractor: CCC

Engineer: Colleen Vermeersch

SUBSURFACE PROFILE SAMPLE **VOC Concentration** ppm 100 300 Well or Standpipe Strata Plot Elevation Lab Analysis Depth (Metres) Number Installation Description %LEL Type 20 40 60 80 Ground Surface 00.51 0 0.00 TOPSOIL Yellow brown SILTY SAND 00.0 0.50 Grey SILTY SAND 1 99.31 Water observed in borehole 1.20 at approximately 0.5 metres below the existing ground surface on June 7, 2019. Grey SILTY CLAY PHC's F1 to F4 + BTEX, Reg 153/04 Metals only 3 96.24 4.27 End of Borehole 5 Drill Method: CME-750 Datum: local Drill Date: June 7, 2019 Checked by: DT 210 Prescott Street, Unit 1 Kemptville, Ontario K0G[']1J0 Sheet: 1 of 1

NOT TO SCALE

Project No. 190361

Date October 2019

APEC I - POTENTIAL FOR SUBSUF CONTAMINATION FROM FORMER AGRICULTURAL, RESIDENTIAL AN -COMMERCIAL BUILDINGS AT THE

Joseph Blvd. APEC 2 - POTENTIAL FOR SUBSURFACE HYDROBARBON CONTAMINATION FROM EXISTING GAS STATION

> PCA - ITEM #28 - GASOLINE AND ASSOCIATED PRODUCTS STORAGE IN -FIXED TANKS - EXISTING GAS STATION

ST. JOSEPH BOULEVARD

BH6-MW BH3-MW

APPROXIMATE_ PROPERTY LINE

30м

1920

 $\left(\right)$

SCALE

0

BH2 BH7 1994

BHI-MW

BH

BH5-M

 \bigcirc BHIO

BH9

BH8

-	drawing number: FIGURE 2
A COLOR	LEGEND:
Carlos Carlos	
	SUBJECT SITE
and the second	LJ
RFACE	
D	CONCERN (APEC)
SITE.	
000	APPROXIMATE BOREHOLE LOCATION BH1
2	
2	
1000	
1 have a second	
and the second	
States States	NOTE: THIS DRAWING TO
	THE ACCOMPANYING REPORT.
	REFERENCE: PLAN SUPPLIED BY
	OTTAWA EMAPS
the Martin Martin	
1 Property	REV. NAME DATE DESCRIPTION
	PO, BOX 189, 210 PRESCOTT ST (613) 860-0923
	KOG 100 FAX (613) 258-0475 info@kollaard.ca http://www.kollaard.ca
	M.J. PULICKAL HULDINGS INC.
	PROJECT:
	SITE ASSESSMENT
	CONCEPTUAL SITE MODEL
6632	LOCATION:
	1994 ST. JOSEPH BOULEVARD CITY OF OTTAWA, ONTARIO
	DESIGNED BY: DATE: JUNE 2019
	DRAWN BY: SCALE: DT AS SHOWN
© COPYRIGHT 2018	KOLLAARD FILE NUMBER:
KOLLAARD ASSOCIATES INCORPORATED	190361

	10		DRAW	<i>ing ni</i> F	<i>umber:</i> IGURE	3		
			LEGE	ND:				
5					SUBJ	IECT	SITE	
	7		SA ¶	(1 81.50	GROUNDW AND ELEV	ATER S ATION	SAMPLING LOO (METRES)	CATION
2	1							
		19		NI BI Tł	OTE: THIS I E READ IN HE ACCOMP	DRAWIN CONJUI 'ANYING	G TO NCTION WITH 3 REPORT.	
				R C	EFERENCE: ITY OF OTT	PLAN AWA EI	SUPPLIED BY MAPS	
		1	REV.	NAME	DATE		DESCRIPTION	
	9			D	Kollaa Engineer	ard /	Associat	tes
			PO, B KEMP KOG http:/	IOX 189 IVILLE (1JO F/ //www.k	9, 210 PRES ONTARIO AX (613) 258 collaard.ca	COTT ST 8-0475	(613) 860 info@ko)—0923 ollaard.ca
			CLIEN	/ /: M.J.	PULICKA	L HO	LDINGS ING	c.
			PROJ	<i>ECT:</i>	PHASE II SITE CONCEPT	ENVI ASSE UAL S	RONMENTA SSMENT SITE MODE	L
			TITLE	:	SAMPL AND E	E LO	CATIONS DANCES	
			LOCA	TION:				
6	<u>632</u>	750		1994 Cl ⁻	A ST. JO ORLEA TY OF O	SEPH ANS \ TTAWA	BOULEVAF WARD MARIO	RD
-JUN-19 -JUN-19 -JUN-19	750 750 *150	750 750 *150						
-JUN-19 -JUN-19	500 500	500 500	DESIG	NED E	<i>3Y</i> :	JU	<i>ате:</i> JNE 2019	
-JUN-19 -JUN-19 -JUN-10			DRAW	<i>w вү:</i> DT		S	<i>cale:</i> AS SHOWN	1
-JUN-19 © (COPYRIGHT	2019	KOLLA	ARD P	FILE NUMBE	R:		
KOLL	AARD ASSOCIATES	S INCORPORATED			190	561		

APEC I - POTENTIAL FOR SUBSU CONTAMINATION FROM FORMER AGRICULTURAL, RESIDENTIAL AN COMMERCIAL BUILDINGS AT THE

ALC: NOT	DRAWING NUMBER:	
1 (B)	FIGURE	4
	LEGEND:	
100 March 100		
	SUBJ	IECT SITE
RFACE	INTERPRE DIRECTION	TED GROUNDWATER FLOW
ND SITE.	GROUNDW CONTOUR	ATER ELEVATION
1000	APPROXIMA BH1-MW LOCATION	TE MONITORING WELL
12	500.00 APPROXIMA ELEVATION,	TE GROUNDWATER METRES (June 7, 2019)
100		
1ma		
	NOTE: THIS BE READ IN	DRAWING TO CONJUNCTION WITH
	THE ACCOMP	ANYING REPORT.
	REFERENCE:	PLAN SUPPLIED BY
	CITY OF OTT	AWA GEOMAPS
1999	REV. NAME DATE	DESCRIPTION
	Kollaa	rd Associates
	Engineers	
	PO, BOX 189, 210 PRESCO KEMPTVILLE ONTARIO KOG 1JO FAX (613) 258- http://www.kollaard.ca	DTT ST (613) 860-0923 -0475 info®kollaard.ca
	<i>CLIENT:</i> M.J. PULICKAL	HOLDINGS INC.
	PROJECT: PHASE_II	ENVIRONMENTAL
	CONCEPTU	JAL SITE MODEL
6632	<i>TITLE:</i> ELE	GROUNDWATER VATION CONTOURS
	LOCATION:	
	1994 ST. JOS ORLEAL	EPH BOULEVARD
	CITY OF OT	TAWA, ONTARIO
	DESIGNED BY: — —	<i>DATE:</i> OCT 2019
	<i>drawn by:</i> DT	<i>SCALE:</i> AS SHOWN
© COPYRIGHT 2019	KOLLAARD FILE NUMBER	
KOLLAARD ASSOCIATES INCORPORATED	1903	001

	100		<i>drawing n</i> F	<i>umber:</i> IGURE	5					
	8	and the	LEGEND:							
	٢.	1		SUBJE	ECT SITE					
	1		SA1 ⊕ 81.50	GROUNDWA AND ELEVA	TER SAMPLING LOCATION TION (METRES)					
	2			R A	EMEDIATED AREA, UGUST 20, 2019					
		127								
		No.	N B T	OTE: THIS D E READ IN C	RAWNG TO CONJUNCTION WITH					
		2								
4		No.	R	EFERENCE: F	PLAN SUPPLIED BY					
					WA EMAPS					
		Carl.								
	1				rd Associates					
/		100	PO, BOX 189, 210 PRESCOTT ST (613) 860-0923 KEMPTVILLE ONTARIO KOG 1JO FAX (613) 258-0475 info@kollaard.ca http://www.kollaard.ca							
-			<i>client:</i> M.J.	PULICKAL	- HOLDINGS INC.					
1	#2		PROJECT:	PHASE II SITE A CONCEPTI	ENVIRONMENTAL ASSESSMENT JAL SITE MODEL					
14 300 000	430 2300 18000		TITLE:	POST F GROUN	REMEDIATION DWATER SAMPLE					
200	4200		LOCATION:							
50 50 50 00	750 750 150 500 500		1994 Cl	4 ST. JOS ORLEA TY OF OT	SEPH BOULEVARD NS WARD TAWA, ONTARIO					
			DESIGNED	3Y:	<i>DATE:</i> OCT 2019					
			<i>drawn by:</i> DT		<i>scale:</i> AS SHOWN					
	© COPYRIGHT	2019	KOLLAARD	FILE NUMBER	7.01 0					
	KOLLAARD ASSOCIATE	S INCORPORATED		1903	001-2					

ATTACHMENT A

LABORATORY TESTING RESULTS PRE-REMEDIATION

Kollaard Associates (Kemptville) ATTN: Dean Tataryn 210 Prescott Street Unit 1 P.O. Box 189 Kemptville ON K0G1J0 Date Received: 07- JUN- 19 Report Date: 21- JUN- 19 09:39 (MT) Version: FINAL REV. 2

Client Phone: 613-860-0923

Certificate of Analysis

Lab Work Order #: L2287664 Project P.O. #: NOT SUBMITTED Job Reference: 190361 C of C Numbers: Legal Site Desc:

Comments: Revised Report - T5 ICC (Fine)

Melanie Moshi Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 190 Colonnade Road, Unit 7, Ottawa, ON K2E 7J5 Canada | Phone: +1 613 225 8279 | Fax: +1 613 225 2801 ALS CANADA LTD Part of the ALS Group An ALS Limited Company

Environmental 🐊

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

ANALYTICAL GUIDELINE REPORT

L2287664 CONTD

Page 2 of 8 21-JUN-19 09:39 (MT)

Sample Details	Popult	Qualifiar		Unite	Applyzod		Guidalin	
Grouping Analyte		Quaimer	D.L.	Units	Analyzeu		Guideili	
L2287664-1 BH1 SS4 6'-8'								
Sampled By: CLIENT on 07-	IUN-19						"0	
Matrix: SOIL						#1	#2	
Physical Tests								
% Moisture	22.1		0.10	%	10-JUN-19			
Metals								
Antimony (Sb)	<1.0		1.0	ug/g	13-JUN-19	63	50	
Arsenic (As)	1.7		1.0	ug/g	13-JUN-19	47	18	
Barium (Ba)	42.5		1.0	ug/g	13-JUN-19	8600	670	
Beryllium (Be)	<0.50		0.50	ug/g	13-JUN-19	60	10	
Boron (B)	<5.0		5.0	ug/g	13-JUN-19	7900		
Cadmium (Cd)	<0.50		0.50	ug/g	13-JUN-19	7.9	1.9	
Chromium (Cr)	28.8		1.0	ug/g	13-JUN-19	18000	160	
Cobalt (Co)	5.5		1.0	ug/g	13-JUN-19	2500	100	
Copper (Cu)	14.6		1.0	ug/g	13-JUN-19	5600	300	
Lead (Pb)	11.4		1.0	ug/g	13-JUN-19	1000	120	
Molybdenum (Mo)	<1.0		1.0	ug/g	13-JUN-19	1200	40	
Nickel (Ni)	14.5		1.0	ug/g	13-JUN-19	510	340	
Selenium (Se)	<1.0		1.0	ug/g	13-JUN-19	1200	5.5	
Silver (Ag)	1.33		0.20	ug/g	13-JUN-19	490	50	
Thallium (TI)	<0.50		0.50	ug/g	13-JUN-19	33	3.3	
Uranium (U)	<1.0		1.0	ug/g	13-JUN-19	300	33	
Vanadium (V)	26.4		1.0	ug/g	13-JUN-19	160	86	
Zinc (Zn)	30.2		5.0	ug/g	13-JUN-19	24000	340	
Volatile Organic Compounds	;							
Benzene	<0.0068		0.0068	ug/g	13-JUN-19	16	0.4	
Ethylbenzene	<0.018		0.018	ug/g	13-JUN-19	19	19	
Toluene	<0.080		0.080	ug/g	13-JUN-19	78	78	
o-Xylene	<0.020		0.020	ug/g	13-JUN-19			
m+p-Xylenes	<0.030		0.030	ug/g	13-JUN-19			
Xylenes (Total)	<0.050		0.050	ug/g	13-JUN-19	30	30	
Surrogate: 4-Bromofluorobe	enzene 84.8		50-140	%	13-JUN-19			
Surrogate: 1,4-Difluorobenz	zene 99.9		50-140	%	13-JUN-19			
Hydrocarbons								
F1 (C6-C10)	<5.0		5.0	ug/g	13-JUN-19	65	65	
F1-BTEX	<5.0		5.0	ug/g	13-JUN-19	65	65	
F2 (C10-C16)	<10		10	ug/g	11-JUN-19	250	250	
F3 (C16-C34)	74		50	ug/g	11-JUN-19	7200	2500	
F4 (C34-C50)	<50		50	ug/g	11-JUN-19	8000	6600	
Total Hydrocarbons (C6-C5	0) 74		72	ug/g	13-JUN-19			
Chrom. to baseline at nC50	YES			No Unit	11-JUN-19			
Surrogate: 2-Bromobenzotr	ifluoride 64.5		60-140	%	11-JUN-19			
Surrogate: 3,4-Dichlorotolu	ene /9.6		60-140	%	13-JUN-19			
L2287664-2 BH1 SS7 12'-14	,							
Sampled By: CLIENT on 07-	IUN-19							
Matrix: SOIL						#1	#2	
Physical Tests								
- % Moisture	41.7		0.10	%	10-JUN-19			
Metals								

** Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

* Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

Ontario Regulation 153/04 - April 15, 2011 Standards = [Suite] - ON-511-T5-SOIL-ICC-SS/SSS-FINE

#1: T5-Subsurface Soil-Ind/Com/Commu. Property Use (Fine)

ANALYTICAL GUIDELINE REPORT

L2287664 CONTD

Page 3 of 8 21-JUN-19 09:39 (MT)

Sample Details	Decult	Qualifiar		Linita	A us a lum a al		Quidalia		5.05 (m1)
Grouping Analyte	Result	Qualifier	D.L.	Units	Analyzed		Guidelin	ie Limits	
L2287664-2 BH1 SS7 12'-14'									
Sampled By: CLIENT on 07-JUN-19									
Matrix: SOIL						#1	#2		
Metals									
Antimony (Sb)	<1.0		1.0	ua/a	13-JUN-19	63	50		
Arsenic (As)	3.4		1.0	ua/a	13-JUN-19	47	18		
Barium (Ba)	448		1.0	ug/g	13-JUN-19	8600	670		
Beryllium (Be)	1.16		0.50	ug/g	13-JUN-19	60	10		
Boron (B)	11.5		5.0	ug/g	13-JUN-19	7900	-		
Cadmium (Cd)	<0.50		0.50	ug/g	13-JUN-19	7.9	1.9		
Chromium (Cr)	141		1.0	ug/g	13-JUN-19	18000	160		
Cobalt (Co)	28.3		1.0	ug/g	13-JUN-19	2500	100		
Copper (Cu)	62.5		1.0	ug/g	13-JUN-19	5600	300		
Lead (Pb)	9.9		1.0	ug/g	13-JUN-19	1000	120		
Molybdenum (Mo)	<1.0		1.0	ug/g	13-JUN-19	1200	40		
Nickel (Ni)	77.2		1.0	ug/g	13-JUN-19	510	340		
Selenium (Se)	<1.0		1.0	ug/g	13-JUN-19	1200	5.5		
Silver (Ag)	<0.20		0.20	ug/g	13-JUN-19	490	50		
Thallium (TI)	0.53		0.50	ug/g	13-JUN-19	33	3.3		
Uranium (U)	2.5		1.0	ug/g	13-JUN-19	300	33		
Vanadium (V)	137		1.0	ug/g	13-JUN-19	160	*86		
Zinc (Zn)	157		5.0	ug/g	13-JUN-19	24000	340		
Volatile Organic Compounds									
Benzene	<0.0068		0.0068	ua/a	13-JUN-19	16	0.4		
Ethylbenzene	<0.018		0.018	ua/a	13-JUN-19	19	19		
Toluene	<0.080		0.080	ua/a	13-JUN-19	78	78		
o-Xylene	<0.020		0.020	ug/g	13-JUN-19	-	-		
m+p-Xylenes	<0.030		0.030	ug/g	13-JUN-19				
Xylenes (Total)	<0.050		0.050	ug/g	13-JUN-19	30	30		
Surrogate: 4-Bromofluorobenzene	77.4		50-140	%	13-JUN-19				
Surrogate: 1,4-Difluorobenzene	88.4		50-140	%	13-JUN-19				
Hydrocarbons									
F1 (C6-C10)	<5.0		5.0	ug/g	13-JUN-19	65	65		
F1-BTEX	<5.0		5.0	ug/g	13-JUN-19	65	65		
F2 (C10-C16)	<10		10	ug/g	11-JUN-19	250	250		
F3 (C16-C34)	<50		50	ug/g	11-JUN-19	7200	2500		
F4 (C34-C50)	<50		50	ug/g	11-JUN-19	8000	6600		
Total Hydrocarbons (C6-C50)	<72		72	ug/g	13-JUN-19				
Chrom. to baseline at nC50	YES			No Unit	11-JUN-19				
Surrogate: 2-Bromobenzotrifluoride	78.7		60-140	%	11-JUN-19				
Surrogate: 3,4-Dichlorotoluene	83.0		60-140	%	13-JUN-19				
L2287664-3 BH6 SS3 4'-6'									
Sampled By: CLIENT on 07-JUN-19									
Matrix: SOIL						#1	#2		
Physical Tests									
- % Moisture	15.2		0.10	%	10-JUN-19				
Metals			0.10	,0					
Antimony (Sb)	<1.0		1.0	ua/a	13-JUN-19	63	50		
Arsenic (As)	3.0		1.0	ug/g	13-JUN-19	47	18		

Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.
 Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

Ontario Regulation 153/04 - April 15, 2011 Standards = [Suite] - ON-511-T5-SOIL-ICC-SS/SSS-FINE

#1: T5-Subsurface Soil-Ind/Com/Commu. Property Use (Fine)

ANALYTICAL GUIDELINE REPORT

L2287664 CONTD

Page 4 of 8 21-JUN-19 09:39 (MT)

Sample Details Grouping Analyte	Result	Qualifier	D.L.	Units	Analyzed		Guidelin	e Limits	
				01110			Galdoni		
L220/004-3 BH0 553 4-0									
Matrix: SOIL						#1	#2		
Matrix. SOL									
Metals									
Barium (Ba)	160		1.0	ug/g	13-JUN-19	8600	670		
Beryllium (Be)	0.59		0.50	ug/g	13-JUN-19	60	10		
Boron (B)	6.1		5.0	ug/g	13-JUN-19	7900			
Cadmium (Cd)	<0.50		0.50	ug/g	13-JUN-19	7.9	1.9		
Chromium (Cr)	43.2		1.0	ug/g	13-JUN-19	18000	160		
Cobalt (Co)	10.8		1.0	ug/g	13-JUN-19	2500	100		
Copper (Cu)	24.9		1.0	ug/g	13-JUN-19	5600	300		
Lead (Pb)	7.6		1.0	ug/g	13-JUN-19	1000	120		
Molybaenum (Mo)	<1.0		1.0	ug/g	13-JUN-19	1200	40		
Nickel (Ni) Solonium (So)	24.9		1.0	ug/g	13-JUN-19	1000	340 5 5		
Selenium (Se)	<1.0		0.20	ug/g	13-JUN-19	1200	5.5		
Thallium (TI)	<0.20		0.20	ug/g	13-JUN-19	490	20		
Liranium (LI)	<0.50		1.0	ug/g	13-11 IN-19	300	3.3		
Vanadium (V)	57.2		1.0	ug/g	13-JUN-19	160	86		
Zinc (Zn)	59.0		5.0	ug/g	13-JUN-19	24000	340		
Volatile Organic Compounds			0.0	u 9, 9		21000	0.10		
Benzene	<0.0068		0 0068	nu/a	13-JUN-19	16	04		
Ethylbenzene	<0.0000		0.0000	ug/g	13-JUN-19	19	19		
Toluene	<0.080		0.080	ug/g	13-JUN-19	78	78		
o-Xvlene	< 0.020		0.020	ua/a	13-JUN-19		70		
m+p-Xylenes	< 0.030		0.030	ug/g	13-JUN-19				
Xylenes (Total)	<0.050		0.050	ug/g	13-JUN-19	30	30		
Surrogate: 4-Bromofluorobenzene	85.1		50-140	%	13-JUN-19				
Surrogate: 1,4-Difluorobenzene	99.2		50-140	%	13-JUN-19				
Hydrocarbons									
F1 (C6-C10)	<5.0		5.0	ug/g	13-JUN-19	65	65		
F1-BTEX	<5.0		5.0	ug/g	13-JUN-19	65	65		
F2 (C10-C16)	<10		10	ug/g	11-JUN-19	250	250		
F3 (C16-C34)	<50		50	ug/g	11-JUN-19	7200	2500		
F4 (C34-C50)	<50		50	ug/g	11-JUN-19	8000	6600		
Total Hydrocarbons (C6-C50)	<72		72	ug/g	13-JUN-19				
Chrom. to baseline at nC50	YES			No Unit	11-JUN-19				
Surrogate: 2-Bromobenzotrifluoride	89.9		60-140 60-140	%	11-JUN-19				
Surrogate. 3,4-Dichlorototuene	70.7		00-140	/0	13-301-13				
L2287664-4 BH6 SS7 12'-14'									
Sampled By: CLIENT on 07-JUN-19						#1	#0		
Matrix: SOIL						#1	#∠		
Physical Tests									
% Moisture	39.6		0.10	%	10-JUN-19				
Metals									
Antimony (Sb)	<1.0		1.0	ug/g	13-JUN-19	63	50		
Arsenic (As)	3.0		1.0	ug/g	13-JUN-19	47	18		
Barium (Ba)	449		1.0	ug/g	13-JUN-19	8600	670		
Beryllium (Be)	0.96		0.50	ug/g	13-JUN-19	60	10		

** Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

* Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

Ontario Regulation 153/04 - April 15, 2011 Standards = [Suite] - ON-511-T5-SOIL-ICC-SS/SSS-FINE

#1: T5-Subsurface Soil-Ind/Com/Commu. Property Use (Fine)

ANALYTICAL GUIDELINE REPORT

L2287664 CONTD

Page 5 of 8 21-JUN-19 09:39 (MT)

Sample Details		o	_ ·						
Grouping Analyte	Result	Qualifier	D.L.	Units	Analyzed		Guidelir	ne Limits	
L2287664-4 BH6 SS7 12'-14'									
Sampled By: CLIENT on 07-JUN-19									
Matrix: SOIL						#1	#2		
Metals									
Boron (B)	79		5.0	ua/a	13- II IN-19	7900			
Cadmium (Cd)	<0.50		0.50	ug/g	13-JUN-19	79	19		
Chromium (Cr)	122		1.0	ug/g	13-JUN-19	18000	160		
Cobalt (Co)	26.2		1.0	ug/g	13-JUN-19	2500	100		
Copper (Cu)	49.7		1.0	ug/g	13-JUN-19	5600	300		
Lead (Pb)	7.7		1.0	nu\a ~∂`â	13-JUN-19	1000	120		
Molvbdenum (Mo)	1.1		1.0	ua/a	13-JUN-19	1200	40		
Nickel (Ni)	67.0		1.0	nu\a ~∂`â	13-JUN-19	510	340		
Selenium (Se)	<1.0		1.0	ua/a	13-JUN-19	1200	5.5		
Silver (Ag)	<0.20		0.20	ua/a	13-JUN-19	490	50		
Thallium (TI)	0.52		0.50	ua/a	13-JUN-19	33	3.3		
Uranium (U)	2.0		1.0	ua/a	13-JUN-19	300	33		
Vanadium (V)	129		1.0	ua/a	13-JUN-19	160	*86		
Zinc (Zn)	142		5.0	ua/a	13-JUN-19	24000	340		
Volatile Organic Compounds				- 3- 3					
Benzene	<0.0068		0.0068	ug/g	13-JUN-19	16	0.4		
Ethylbenzene	<0.018		0.018	ug/g	13-JUN-19	19	19		
Toluene	<0.080		0.080	ug/g	13-JUN-19	78	78		
o-Xylene	<0.020		0.020	ug/g	13-JUN-19				
m+p-Xylenes	<0.030		0.030	ug/g	13-JUN-19				
Xylenes (Total)	<0.050		0.050	ug/g	13-JUN-19	30	30		
Surrogate: 4-Bromofluorobenzene	78.4		50-140	%	13-JUN-19				
Surrogate: 1,4-Difluorobenzene	90.8		50-140	%	13-JUN-19				
Hydrocarbons									
F1 (C6-C10)	<5.0		5.0	ug/g	13-JUN-19	65	65		
F1-BTEX	<5.0		5.0	ug/g	13-JUN-19	65	65		
F2 (C10-C16)	<10		10	ug/g	11-JUN-19	250	250		
F3 (C16-C34)	<50		50	ug/g	11-JUN-19	7200	2500		
F4 (C34-C50)	<50		50	ug/g	11-JUN-19	8000	6600		
Total Hydrocarbons (C6-C50)	<72		72	ug/g	13-JUN-19				
Chrom. to baseline at nC50	YES			No Unit	11-JUN-19				
Surrogate: 2-Bromobenzotrifluoride	89.7		60-140	%	11-JUN-19				
Surrogate: 3,4-Dichlorotoluene	74.2		60-140	%	13-JUN-19				
L2287664-5 BH8 SS3 4'-6'									
Sampled By: CLIENT on 07-JUN-19									
Matrix: SOIL						#1	#2		
Physical Tests									
% Moisture	37.0		0.10	%	10-JUN-19				
Metals	07.0		0.10	,0					
Antimony (Sb)	<1.0		1.0	ua/a	13-JUN-19	63	50		
Arsenic (As)	3.5		1.0	ua/a	13-JUN-19	47	18		
Barium (Ba)	480		1.0	ua/a	13-JUN-19	8600	670		
Beryllium (Be)	1.21		0.50	ua/a	13-JUN-19	60	10		
Boron (B)	5.8		5.0	ug/a	13-JUN-19	7900			
Cadmium (Cd)	<0.50		0.50	ug/g	13-JUN-19	7.9	1.9		

** Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

* Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

Ontario Regulation 153/04 - April 15, 2011 Standards = [Suite] - ON-511-T5-SOIL-ICC-SS/SSS-FINE

#1: T5-Subsurface Soil-Ind/Com/Commu. Property Use (Fine)

ANALYTICAL GUIDELINE REPORT

L2287664 CONTD

Page 6 of 8 21-JUN-19 09:39 (MT)

Grouping Analyte	Result	Qualifier	D.L.	Units	Analyzed		Guidelir	e Limits	
L228/004-5 BH8 553 4 -0									
Sampled By. CLIENT ON 07-JOIN-19						#1	#2		
Matrix: SOIL									
Metals									
Chromium (Cr)	133		1.0	ug/g	13-JUN-19	18000	160		
Cobalt (Co)	30.6		1.0	ug/g	13-JUN-19	2500	100		
Copper (Cu)	52.1		1.0	ug/g	13-JUN-19	5600	300		
Lead (Pb)	9.4		1.0	ug/g	13-JUN-19	1000	120		
Molybdenum (Mo)	<1.0		1.0	ug/g	13-JUN-19	1200	40		
Nickel (Ni)	71.1		1.0	ug/g	13-JUN-19	510	340		
Selenium (Se)	<1.0		1.0	ug/g	13-JUN-19	1200	5.5		
Silver (Ag)	<0.20		0.20	ug/g	13-JUN-19	490	50		
Thallium (TI)	0.51		0.50	ug/g	13-JUN-19	33	3.3		
Uranium (U)	1.4		1.0	ug/g	13-JUN-19	300	33		
Vanadium (V)	139		1.0	ug/g	13-JUN-19	160	*86		
Zinc (Zn)	146		5.0	ug/g	13-JUN-19	24000	340		
Volatile Organic Compounds									
Benzene	<0.0068		0.0068	ug/g	13-JUN-19	16	0.4		
Ethylbenzene	<0.018		0.018	ug/g	13-JUN-19	19	19		
Toluene	<0.080		0.080	ug/g	13-JUN-19	78	78		
o-Xylene	<0.020		0.020	ug/g	13-JUN-19				
III+p-Xylenes	<0.030		0.030	ug/g	13-JUN-19	20	20		
Surrogate: 4 Bromofluorobonzono	<0.050		0.050 50 140	uy/y %	13-JUN-19	30	30		
Surrogate: 1 4-Difluorobenzene	96.7		50-140	/o %	13-JUN-19				
Hydrocarbons	50.7		50 140	70	10 0011 10				
F1 (C6-C10)	~5.0		5.0	ua/a	13II IN-19	65	65		
F1-BTEX	<5.0		5.0	ug/g	13-JUN-19	65	65		
F2 (C10-C16)	<10		10	ug/g	11-JUN-19	250	250		
F3 (C16-C34)	<50		50	ua/a	11-JUN-19	7200	2500		
F4 (C34-C50)	<50		50	ug/g	11-JUN-19	8000	6600		
Total Hydrocarbons (C6-C50)	<72		72	ug/g	13-JUN-19				
Chrom. to baseline at nC50	YES			No Unit	11-JUN-19				
Surrogate: 2-Bromobenzotrifluoride	86.7		60-140	%	11-JUN-19				
Surrogate: 3,4-Dichlorotoluene	75.4		60-140	%	13-JUN-19				

** Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

Ontario Regulation 153/04 - April 15, 2011 Standards = [Suite] - ON-511-T5-SOIL-ICC-SS/SSS-FINE

Reference Information

ALS Test Code	Matrix	Test Description	Method Reference***
BTX-511-HS-WT	Soil	BTEX-O.Reg 153/04 (July 2011	I) SW846 8260
BTX is determined by ex	tracting a soil	or sediment sample as received w	vith methanol, then analyzing by headspace-GC/MS.
Analysis conducted in ad Protection Act (July 1, 2	ccordance wit	n the Protocol for Analytical Method	ds Used in the Assessment of Properties under Part XV.1 of the Environment
F1-F4-511-CALC-WT	Soil	F1-F4 Hydrocarbon Calculated Parameters	CCME CWS-PHC, Pub #1310, Dec 2001-S
Analytical methods used	l for analysis o	of CCME Petroleum Hydrocarbons	have been validated and comply with the Reference Method for the CWS PH
Hydrocarbon results are	expressed on	a dry weight basis.	
In cases where results for the gravimetric heavy hy In samples where BTEX been subtracted from F1	or both F4 and drocarbons ca and F1 were	I F4G are reported, the greater of t annot be added to the C6 to C50 h analyzed , F1-BTEX represents a	he two results must be used in any application of the CWS PHC guidelines a ydrocarbons. value where the sum of Benzene, Toluene, Ethylbenzene and total Xylenes h
In samples where PAHs represents a result wher Fluoranthene, Indeno(1,	, F2 and F3 w e the sum of I 2,3-cd)pyrene	ere analyzed, F2-Naphth represen Benzo(a)anthracene, Benzo(a)pyre , Phenanthrene, and Pyrene has b	ts the result where Naphthalene has been subtracted from F2. F3-PAH ene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Dibenzo(a,h)anthracene, een subtracted from F3.
Unless otherwise qualified	ed, the followi	ng quality control criteria have beer	n met for the F1 hydrocarbon range:
 All extraction and ana Instrument performan Linearity of gasoline results 	lysis holding t ce showing re esponse withi	mes were met. sponse factors for C6 and C10 wit n 15% throughout the calibration ra	hin 30% of the response factor for toluene. ange.
Unless otherwise qualifie 1. All extraction and ana 2. Instrument performan 3. Instrument performan 4. Linearity of diesel or r -1-HS-511-WT	ed, the followin lysis holding t ce showing C ce showing th notor oil respo Soil	ng quality control criteria have been imes were met. 10, C16 and C34 response factors e C50 response factor within 30% inse within 15% throughout the cal F1-O.Reg 153/04 (July 2011)	n met for the F2-F4 hydrocarbon ranges: within 10% of their average. of the average of the C10, C16 and C34 response factors. ibration range. E3398/CCME TIER 1-HS
Fraction F1 is determine	d by extractin	g a soil or sediment sample as rec	eived with methanol, then analyzing by headspace-GC/FID.
Analysis conducted in a Protection Act (July 1, 2 must be reported).	ccordance with 011), unless a	n the Protocol for Analytical Methor subset of the Analytical Test Grou	ds Used in the Assessment of Properties under Part XV.1 of the Environmen up (ATG) has been requested (the Protocol states that all analytes in an ATG
F2-F4-511-WT	Soil	F2-F4-O.Reg 153/04 (July 2011	1) CCME Tier 1
Petroleum Hydrocarbons to remove polar organic	s (F2-F4 fracti interferences.	ons) are extracted from soil with 1: F2, F3, & F4 are analyzed by GC	1 hexane:acetone using a rotary extractor. Extracts are treated with silica ge -FID. F4G-sg is analyzed gravimetrically.
Notes: 1. F2 (C10-C16): Sum o 2. F3 (C16-C34): Sum o 3. F4 (C34-C50): Sum o 4. F4G: Gravimetric Hea 5. F4G-sg: Gravimetric H 6. Where both F4 (C34-C	f all hydrocarb f all hydrocarb f all hydrocarb wy Hydrocarb Heavy Hydroc C50) and F4G	ons that elute between nC10 and i ons that elute between nC16 and i ons that elute between nC34 and i ons arbons (F4G) after silica gel treatm -sg are reported for a sample, the	nC16. nC34. nC50. ient. larger of the two values is used for comparison against the relevant CCME
guideline for F4.7. F4G-sg cannot be add8 This method is validated	ded to the C6	to C50 hydrocarbon results to obta	ain an estimate of total extractable hydrocarbons.
9. Data from analysis of 10. Reported results are	validation and expressed as	l quality control samples is availabl milligrams per dry kilogram, unles	le upon request. ss otherwise indicated.
Analysis conducted in a Protection Act (July 1, 2 must be reported).	ccordance with 011), unless a	n the Protocol for Analytical Method subset of the Analytical Test Grou	ds Used in the Assessment of Properties under Part XV.1 of the Environmen up (ATG) has been requested (the Protocol states that all analytes in an ATG
MET-200.2-CCMS-WT	Soil	Metals in Soil by CRC ICPMS	EPA 200.2/6020A (mod)
Soil/sediment is dried, d through a 0.355 mm siev Instrumental analysis is	isaggregated, /e. Strong Ac by Collision /	and sieved (2 mm). For tests inte id Leachable Metals in the <2mm t Reaction Cell ICPMS.	nded to support Ontario regulations, the <2mm fraction is ground to pass fraction are solubilized by heated digestion with nitric and hydrochloric acids.
Limitations: This methor partially recovered (matr Volatile forms of sulfur (d is intended t ix dependent) e.g. sulfide. H	o liberate environmentally availabl , including Al, Ba, Be, Cr, S, Sr, Ti, 2S) may be excluded if lost during	e metals. Silicate minerals are not solubilized. Some metals may be only , TI, V, W, and Zr. Elemental Sulfur may be poorly recovered by this methoc sampling, storage, or digestion.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

Reference Information

 MOISTURE-WT
 Soil
 % Moisture

 XYLENES-SUM-CALC Soil
 Sum of Xylene Isomer

 WT
 Concentrations

CCME PHC in Soil - Tier 1 (mod) CALCULATION

Total xylenes represents the sum of o-xylene and m&p-xylene.

*** ALS test methods may incorporate modifications from specified reference methods to improve performance.

Chain of Custody numbers:							
The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:							
Laboratory Definition Code	Laboratory Location	Laboratory Definition Code	Laboratory Location				
WT	ALS ENVIRONMENTAL - WATERL ONTARIO, CANADA	00,					

GLOSSARY OF REPORT TERMS

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there.

mg/kg - milligrams per kilogram based on dry weight of sample mg/kg wwt - milligrams per kilogram based on wet weight of sample

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight

mg/L - unit of concentration based on volume, parts per million.

< - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION. Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, fitness for a particular purpose, or non-infringement. ALS assumes no responsibility for errors or omissions in the information. Guideline limits are not adjusted for the hardness, pH or temperature of the sample (the most conservative values are used). Measurement uncertainty is not applied to test results prior to comparison with specified criteria values.

Quality Control Report

Workorder: L2287664 Report

Report Date: 21-JUN-19

Page 1 of 6

Client: Kollaard Associates (Kemptville) 210 Prescott Street Unit 1 P.O. Box 189 Kemptville ON K0G 1J0

Contact: Dean Tataryn

Test Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
BTX-511-HS-WT Soil							
Batch R4669621							
WG3074118-4 DUP Benzene	WG3074118- <0.0068	3 <0.0068	RPD-NA	ug/g	N/A	40	13-JUN-19
Ethylbenzene	<0.018	<0.018	RPD-NA	ug/g	N/A	40	13-JUN-19
m+p-Xylenes	<0.030	<0.030	RPD-NA	ug/g	N/A	40	13-JUN-19
o-Xylene	<0.020	<0.020	RPD-NA	ug/g	N/A	40	13-JUN-19
Toluene	<0.080	<0.080	RPD-NA	ug/g	N/A	40	13-JUN-19
WG3074118-2 LCS Benzene		108.5		%		70-130	13- II IN-19
Ethylbenzene		99.1		%		70-130	13- ILINI-19
m+p-Xvlenes		99.4		%		70-130	13-JUN-19
o-Xylene		98.9		%		70-130	13-JUN-19
Toluene		102.8		%		70-130	13-JUN-19
WG3074118-1 MB		<0.0068		ug/g		0.0068	
Ethylbenzene		<0.0000		ug/g		0.0000	13-JUN-19
		<0.010		ug/g		0.018	13-JUN-19
o-Xvlene		<0.000		ug/g		0.00	13-JUN-19
Toluene		<0.020		ug/g		0.02	13-JUN-19
Surrogate: 1 4-Difluorobenzene		111 7		~ ~		50-140	13-JUN-19
Surrogate: 4-Bromofluorobenzene		94.7		%		50-140	13- JUN-19
WG3074118-5 MS	1 2287573-8	•		,0		00.110	
Benzene		111.4		%		60-140	13-JUN-19
Ethylbenzene		101.6		%		60-140	13-JUN-19
m+p-Xylenes		100.8		%		60-140	13-JUN-19
o-Xylene		101.3		%		60-140	13-JUN-19
Toluene		105.5		%		60-140	13-JUN-19
F1-HS-511-WT Soil							
Batch R4669621							
WG3074118-4 DUP F1 (C6-C10)	WG3074118- <5.0	3 <5.0	RPD-NA	ug/g	N/A	30	13-JUN-19
WG3074118-2 LCS F1 (C6-C10)		101.5		%		80-120	13-JUN-19
WG3074118-1 MB E1 (C6-C10)		~5.0		na/a		5	12 IUN 10
Surrogate: 3 4-Dichlorotoluene		104 9		~9/9 %		60-140	13-1111-19
WG3074118-6 MS	L2287594-5	10 1.0				00 110	10-0011-13

Quality Control Report

			Workorder	: L228766	64 R	eport Date:	21-JUN-19		Page 2 of 6
Client:	Kollaard 210 Pres Kemptvill	Associates (Ko cott Street Un e ON K0G 1.	emptville) it 1 P.O. Box 189 J0						
Contact:	Dean Tai	aryn							
Test		Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
F1-HS-511-WT		Soil							
Batch	R4669621								
WG3074118- F1 (C6-C10)	6 MS		L2287594-5	96.2		%		60-140	13-JUN-19
F2-F4-511-WT		Soil							
Batch	R4663964								
WG3072163-	3 DUP		WG3072163	-5					
F2 (C10-C16	6)		<10	<10	RPD-NA	ug/g	N/A	30	11-JUN-19
F3 (C16-C34	4)		<50	<50	RPD-NA	ug/g	N/A	30	11-JUN-19
F4 (C34-C50	0)		<50	<50	RPD-NA	ug/g	N/A	30	11-JUN-19
WG3072163- F2 (C10-C16	∙2 LCS 6)			108.5		%		80-120	11-JUN-19
F3 (C16-C34	4)			107.7		%		80-120	11-JUN-19
F4 (C34-C50	D)			107.0		%		80-120	11-JUN-19
WG3072163- F2 (C10-C16	•1 MB			~10		ua/a		10	11 JUN 10
F3 (C16-C34	1)			<50		ug/g		50	11-JUN-19
F4 (C34-C50	י <i>י</i> ר)			<50		ug/g		50	11-JUN-19
Surrogate: 2	-Bromoben	zotrifluoride		85.3		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		60-140	11-JUN-19
WG3072163-	4 MS	201111001100	WG3072163	-5		,0		00 110	11-5010-15
F2 (C10-C16	6)		1100072100	112.9		%		60-140	11-JUN-19
F3 (C16-C34	4)			110.5		%		60-140	11-JUN-19
F4 (C34-C50))			111.9		%		60-140	11-JUN-19
Batch	R4664647								
WG3071836-	3 DUP		WG3071836	-5					
F2 (C10-C16	6)		<10	<10	RPD-NA	ug/g	N/A	30	11-JUN-19
F3 (C16-C34	4)		<50	<50	RPD-NA	ug/g	N/A	30	11-JUN-19
F4 (C34-C50))		<50	<50	RPD-NA	ug/g	N/A	30	11-JUN-19
WG3071836- F2 (C10-C16	·2 LCS 5)			115.1		%		80-120	11-JUN-19
F3 (C16-C34	4)			116.7		%		80-120	11-JUN-19
F4 (C34-C50	D)			110.1		%		80-120	11-JUN-19
WG3071836- F2 (C10-C16	• 1 MB 6)			<10		ug/g		10	11-JUN-19
F3 (C16-C34	4)			<50		ug/g		50	11-JUN-19
F4 (C34-C50	D)			<50		ug/g		50	11-JUN-19
Surrogate: 2	-Bromoben	zotrifluoride		92.1		%		60-140	11-JUN-19

Client:

Contact:

Test

Quality Control Report

Workorder: L2287664 Report Date: 21-JUN-19 Page 3 of 6 Kollaard Associates (Kemptville) 210 Prescott Street Unit 1 P.O. Box 189 Kemptville ON K0G 1J0 Dean Tataryn Matrix Reference Result Qualifier Units RPD Limit Analyzed Soil

F2-F4-511-WT		Soil						
Batch R46	64647							
WG3071836-4	MS		WG3071836-5	110.0	0/		00.440	
F2 (C10-C16)				113.8	%		60-140	11-JUN-19
F3 (C16-C34)				110.8	%		60-140	11-JUN-19
F4 (C34-C50)				113.4	%		60-140	11-JUN-19
MET-200.2-CCMS-W	VT	Soil						
Batch R46	68332							
WG3075653-2 Antimony (Sb)	CRM		WI-CANMEI-	109.4	%		70-130	13II IN-19
Arsenic (As)				110.5	%		70-130	13-JUN-19
Barium (Ba)				117.0	%		70-130	13-JUN-19
Beryllium (Be)				110.4	%		70-130	13-JUN-19
Boron (B)				3.5	mg/kg		0-8.2	13-JUN-19
Cadmium (Cd)				108.5	%		70-130	13-JUN-19
Chromium (Cr)				116.0	%		70-130	13-JUN-19
Cobalt (Co)				111.2	%		70-130	13-JUN-19
Copper (Cu)				111.3	%		70-130	13-JUN-19
Lead (Pb)				108.9	%		70-130	13-JUN-19
Molybdenum (Mo	c)			108.3	%		70-130	13-JUN-19
Nickel (Ni)				112.9	%		70-130	13-JUN-19
Selenium (Se)				0.32	mg/kg		0.11-0.51	13-JUN-19
Silver (Ag)				0.26	mg/kg		0.13-0.33	13-JUN-19
Thallium (TI)				0.140	mg/kg		0.077-0.18	13-JUN-19
Uranium (U)				114.2	%		70-130	13-JUN-19
Vanadium (V)				116.0	%		70-130	13-JUN-19
Zinc (Zn)				112.3	%		70-130	13-JUN-19
WG3075653-6	DUP		WG3075653-5					
Antimony (Sb)			0.13	0.17	ug/g	23	30	13-JUN-19
Arsenic (As)			2.67	2.69	ug/g	1.0	30	13-JUN-19
Barium (Ba)			40.9	43.3	ug/g	5.7	40	13-JUN-19
Beryllium (Be)			0.33	0.35	ug/g	5.2	30	13-JUN-19
Boron (B)			7.6	7.8	ug/g	3.3	30	13-JUN-19
Cadmium (Cd)			0.141	0.155	ug/g	9.4	30	13-JUN-19
Chromium (Cr)			13.1	13.5	ug/g	3.4	30	13-JUN-19
Cobalt (Co)			4.20	4.34	ug/g	3.4	30	13-JUN-19
Copper (Cu)			11.4	11.5	ug/g			13-JUN-19

Quality Control Report

Workorder: L2287664

Report Date: 21-JUN-19

Page 4 of 6

Client: Kollaard Associates (Kemptville) 210 Prescott Street Unit 1 P.O. Box 189 Kemptville ON K0G 1J0

Contact: Dean Tataryn

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-200.2-CCMS-WT	Soil							
Batch R4668332								
WG3075653-6 DUP		WG3075653-5						
Copper (Cu)		11.4	11.5		ug/g	0.8	30	13-JUN-19
Lead (Pb)		14.8	15.3		ug/g	3.8	40	13-JUN-19
Molybdenum (Mo)		0.39	0.35		ug/g	10	40	13-JUN-19
Nickel (Ni)		9.30	9.59		ug/g	3.0	30	13-JUN-19
Selenium (Se)		<0.20	<0.20	RPD-NA	ug/g	N/A	30	13-JUN-19
Silver (Ag)		<0.10	<0.10	RPD-NA	ug/g	N/A	40	13-JUN-19
Thallium (TI)		0.075	0.076		ug/g	0.8	30	13-JUN-19
Uranium (U)		0.508	0.479		ug/g	6.0	30	13-JUN-19
Vanadium (V)		22.4	23.3		ug/g	4.2	30	13-JUN-19
Zinc (Zn)		53.4	54.1		ug/g	1.3	30	13-JUN-19
WG3075653-4 LCS Antimony (Sb)			102.5		%		80-120	13-JUN-19
Arsenic (As)			99.7		%		80-120	13-JUN-19
Barium (Ba)			111.2		%		80-120	13-JUN-19
Beryllium (Be)			104.8		%		80-120	13-JUN-19
Boron (B)			92.3		%		80-120	13-JUN-19
Cadmium (Cd)			107.9		%		80-120	13-JUN-19
Chromium (Cr)			104.6		%		80-120	13-JUN-19
Cobalt (Co)			103.6		%		80-120	13-JUN-19
Copper (Cu)			103.3		%		80-120	13-JUN-19
Lead (Pb)			106.9		%		80-120	13-JUN-19
Molybdenum (Mo)			100.3		%		80-120	13-JUN-19
Nickel (Ni)			104.2		%		80-120	13-JUN-19
Selenium (Se)			99.8		%		80-120	13-JUN-19
Silver (Ag)			107.4		%		80-120	13-JUN-19
Thallium (TI)			103.7		%		80-120	13-JUN-19
Uranium (U)			107.6		%		80-120	13-JUN-19
Vanadium (V)			107.2		%		80-120	13-JUN-19
Zinc (Zn)			102.6		%		80-120	13-JUN-19
WG3075653-1 MB Antimony (Sb)			<0.10		mg/kg		0.1	13-JUN-19
Arsenic (As)			<0.10		mg/kg		0.1	13-JUN-19
Barium (Ba)			<0.50		mg/kg		0.5	13-JUN-19
Beryllium (Be)			<0.10		mg/kg		0.1	13-JUN-19

Quality Control Report

Workorder: L2287664

Report Date: 21-JUN-19

Page 5 of 6

Client:	Kollaard Associates (Kemptville)
	210 Prescott Street Unit 1 P.O. Box 189
	Kemptville ON K0G 1J0
-	

Contact: Dean Tataryn

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-200.2-CCMS-WT	Soil							
Batch R4668332 WG3075653-1 MB								
Boron (B)			<5.0		mg/kg		5	13-JUN-19
Cadmium (Cd)			<0.020		mg/kg		0.02	13-JUN-19
Chromium (Cr)			<0.50		mg/kg		0.5	13-JUN-19
Cobalt (Co)			<0.10		mg/kg		0.1	13-JUN-19
Copper (Cu)			<0.50		mg/kg		0.5	13-JUN-19
Lead (Pb)			<0.50		mg/kg		0.5	13-JUN-19
Molybdenum (Mo)			<0.10		mg/kg		0.1	13-JUN-19
Nickel (Ni)			<0.50		mg/kg		0.5	13-JUN-19
Selenium (Se)			<0.20		mg/kg		0.2	13-JUN-19
Silver (Ag)			<0.10		mg/kg		0.1	13-JUN-19
Thallium (TI)			<0.050		mg/kg		0.05	13-JUN-19
Uranium (U)			<0.050		mg/kg		0.05	13-JUN-19
Vanadium (V)			<0.20		mg/kg		0.2	13-JUN-19
Zinc (Zn)			<2.0		mg/kg		2	13-JUN-19
MOISTURE-WT	Soil							
Batch R4662266								
WG3072185-3 DUP		L2287721-1						
% Moisture		16.7	17.4		%	3.7	20	10-JUN-19
WG3072185-2 LCS % Moisture			100.4		%		90-110	10-JUN-19
WG3072185-1 MB % Moisture			<0.10		%		0.1	10-JUN-19

Client:	Kollaard Associates (Kemptville)
	210 Prescott Street Unit 1 P.O. Box 189
	Kemptville ON K0G 1J0
Contact:	Dean Tataryn

Legend:

Limit	ALS Control Limit (Data Quality Objectives)
DUP	Duplicate
RPD	Relative Percent Difference
N/A	Not Available
LCS	Laboratory Control Sample
SRM	Standard Reference Material
MS	Matrix Spike
MSD	Matrix Spike Duplicate
ADE	Average Desorption Efficiency
MB	Method Blank
IRM	Internal Reference Material
CRM	Certified Reference Material
CCV	Continuing Calibration Verification
CVS	Calibration Verification Standard
LCSD	Laboratory Control Sample Duplicate

Sample Parameter Qualifier Definitions:

Qualifier	Description
RPD-NA	Relative Percent Difference Not Available due to result(s) being less than detection limit.

Hold Time Exceedances:

All test results reported with this submission were conducted within ALS recommended hold times.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

CCME F2-F4 HYDROCARBON DISTRIBUTION REPORT

\leftarrow F2 \rightarrow \leftarrow F3 \rightarrow \leftarrow F4 \rightarrow			
nC10	nC16	nC34	nC50
174°C	287°C	481°C	575⁰C
346°F	549°F	898°F	1067ºF
Gasoline 🔶 🖌 Moto			or Oils/Lube Oils/Grease 🔶 🕨
← Diesel/Jet Fuels →			

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.

Note: This chromatogram was produced using GC conditions that are specific to ALS Canada CCME F2-F4 method. Refer to the ALS Canada CCME F2-F4 Hydrocarbon Library for a collection of chromatograms from common reference samples (fuels, oils, etc.). The HDR Library can be found at <u>www.alsglobal.com</u>.

<f2-< th=""><th>→</th><th>—_F3—→←_F4—</th><th>▶</th><th></th></f2-<>	→	—_F3 —→ ←_F4—	▶	
nC10	nC16	nC34	nC50	
174°C	287⁰C	481°C	575°C	
346°F	549°F	898°F	1067°F	
Gasolin	e →	🔶 Mot	or Oils/Lube Oils/Grease—	
	-Diesel/	let Fuels →		

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.

<f2-< th=""><th>→</th><th>—_F3—→←_F4—</th><th>*</th></f2-<>	→	—_F3—→←_F4—	*								
nC10	nC16	nC34	nC50								
174°C	287⁰C	481°C	575°C								
346°F	549°F	898°F	1067°F								
Gasolin	ie →	🔶 Mot	or Oils/Lube Oils/Grease 🗕 🔸								
	← Diesel/Jet Fuels→										

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.

<f2-< th=""><th>→ ←</th><th>—_F3—→←_F4—</th><th>▶</th></f2-<>	→ ←	—_F3 —→ ←_F4—	▶
nC10	nC16	nC34	nC50
174°C	287°C	481°C	575⁰C
346°F	549°F	898°F	1067°F
Gasolin	e →	- Mot	or Oils/Lube Oils/Grease 🔶 🕨
	- Diesel/J	et Fuels →	

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.

<f2-< th=""><th>→</th><th>F3→ ←F4</th><th>▶</th><th></th></f2-<>	→	F3→ ←F4	▶								
nC10	nC16	nC34	nC50								
174°C	287⁰C	481°C	575°C								
346°F	549°F	898°F	1067ºF								
Gasolin	e →	< Mot	or Oils/Lube Oils/Grease								
	← Diesel/Jet Fuels→										

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.

Kollaard Associates (Kemptville) ATTN: Dean Tataryn 210 Prescott Street Unit 1 P.O. Box 189 Kemptville ON K0G1J0 Date Received: 07- JUN- 19 Report Date: 21- JUN- 19 09:37 (MT) Version: FINAL REV. 3

Client Phone: 613-860-0923

Certificate of Analysis

Lab Work Order #: L2287707 Project P.O. #: NOT SUBMITTED Job Reference: 190361 C of C Numbers: Legal Site Desc:

Comments: Revised Report - T5 ICC (Fine)

Melanie Moshi Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 190 Colonnade Road, Unit 7, Ottawa, ON K2E 7 J5 Canada | Phone: +1 613 225 8279 | Fax: +1 613 225 2801 ALS CANADA LTD Part of the ALS Group An ALS Limited Company

Environmental 🐊

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

Sample Details

ANALYTICAL GUIDELINE REPORT

L2287707 CONTD.... Page 2 of 16 21-JUN-19 09:37 (MT)

Result Qualifier D.L. Units Grouping Analyte Analyzed **Guideline Limits** L2287707-1 BH2- SS2-2'-4' Sampled By: CLIENT on 06-JUN-19 #1 #2 Matrix: SOIL **Physical Tests** % Moisture 12.5 10-JUN-19 0.10 % Metals 13-JUN-19 Antimony (Sb) <1.0 1.0 63 50 ug/g Arsenic (As) 2.3 1.0 13-JUN-19 47 18 ug/g Barium (Ba) 119 1.0 13-JUN-19 8600 670 ug/g 0.50 13-JUN-19 Beryllium (Be) < 0.50 ug/g 60 10 Boron (B) 5.7 5.0 ug/g 13-JUN-19 7900 Cadmium (Cd) < 0.50 0.50 13-JUN-19 7.9 ug/g 1.9 Chromium (Cr) 35.5 1.0 ug/g 13-JUN-19 18000 160 Cobalt (Co) 8.7 1.0 ug/g 13-JUN-19 2500 100 20.2 13-JUN-19 Copper (Cu) 1.0 ug/g 5600 300 6.3 13-JUN-19 Lead (Pb) 1.0 ug/g 1000 120 13-JUN-19 Molybdenum (Mo) <1.0 1.0 1200 40 ug/g Nickel (Ni) 20.4 1.0 13-JUN-19 510 340 ug/g Selenium (Se) 1.0 13-JUN-19 5.5 < 1.0ug/g 1200 Silver (Ag) <0.20 0.20 ug/g 13-JUN-19 490 50 Thallium (TI) 0.50 13-JUN-19 <0.50 ug/g 33 3.3 Uranium (U) 1.0 13-JUN-19 <1.0 ug/g 300 33 Vanadium (V) 46.0 1.0 ug/g 13-JUN-19 160 86 Zinc (Zn) 45.8 5.0 13-JUN-19 24000 340 ug/g **Volatile Organic Compounds** Benzene <0.0068 0.0068 ug/g 13-JUN-19 16 0.4 <0.018 13-JUN-19 Ethylbenzene 0.018 ug/g 19 19 0.080 13-JUN-19 Toluene <0.080 78 ug/g 78 o-Xylene < 0.020 0.020 ug/g 13-JUN-19 < 0.030 0.030 13-JUN-19 m+p-Xylenes ug/g Xylenes (Total) < 0.050 0.050 13-JUN-19 30 ug/g 30 % Surrogate: 4-Bromofluorobenzene 95.0 50-140 13-JUN-19 Surrogate: 1,4-Difluorobenzene 111.3 50-140 % 13-JUN-19 Hydrocarbons F1 (C6-C10) <5.0 5.0 13-JUN-19 65 65 ug/g F1-BTEX <5.0 5.0 13-JUN-19 65 65 ug/g F2 (C10-C16) <10 10 ug/g 11-JUN-19 250 250 50 11-JUN-19 2500 F3 (C16-C34) <50 ug/g 7200 11-JUN-19 F4 (C34-C50) <50 50 ug/g 8000 6600 Total Hydrocarbons (C6-C50) <72 72 13-JUN-19 ug/g 11-JUN-19 Chrom. to baseline at nC50 YES No Unit 60-140 % 11-JUN-19 Surrogate: 2-Bromobenzotrifluoride 95.0 95.3 60-140 % 13-JUN-19 Surrogate: 3,4-Dichlorotoluene L2287707-2 BH2- SS5- 8'-10' Sampled By: CLIENT on 06-JUN-19 #1 #2 SOIL Matrix: **Physical Tests** % Moisture 41.3 0.10 % 10-JUN-19 Metals Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

* Analytical result for this parameter exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

Ontario Regulation 153/04 - April 15, 2011 Standards = [Suite] - ON-511-T5-SOIL-ICC-SS/SSS-FINE

#1: T5-Subsurface Soil-Ind/Com/Commu. Property Use (Fine)

ANALYTICAL GUIDELINE REPORT

L2287707 CONTD Page 3 of 16

21-JUN-19 09:37 (MT)

Sample Details	Popult	Qualifiar		Lipito	Applyzod		Cuidalia	a Limita	
Grouping Analyte	Result		D.L.	Units	Analyzed		Guidelin		
L2287707-2 BH2- SS5- 8'-10'									
Sampled By: CLIENT on 06-JUN-19									
Matrix: SOIL						#1	#2		
Metals									
Antimony (Sb)	<1.0		1.0	ua/a	14-JUN-19	63	50		
Arsenic (As)	3.4		1.0	ua/a	14-JUN-19	47	18		
Barium (Ba)	357		1.0	ua/a	14-JUN-19	8600	670		
Bervllium (Be)	1.02		0.50	ua/a	14-JUN-19	60	10		
Boron (B)	9.5		5.0	ua/a	14-JUN-19	7900			
Cadmium (Cd)	< 0.50		0.50	ua/a	14-JUN-19	7.9	1.9		
Chromium (Cr)	131		1.0	ua/a	14-JUN-19	18000	160		
Cobalt (Co)	26.3		1.0	ua/a	14-JUN-19	2500	100		
Copper (Cu)	49.4		1.0	ua/a	14-JUN-19	5600	300		
Lead (Pb)	8.7		1.0	ua/a	14-JUN-19	1000	120		
Molvbdenum (Mo)	<1.0		1.0	ua/a	14-JUN-19	1200	40		
Nickel (Ni)	69.9		1.0	nu/a	14-JUN-19	510	340		
Selenium (Se)	<10		1.0	ug/g	14IUN-19	1200	55		
Silver (Ag)	<0.20		0.20	nu/u	14IUN-19	490	50		
Thallium (TI)	<0.50		0.50	ug/g	14IUN-19	33	3.3		
Liranium (Li)	1 4		1.0	ug/g	14IUN-19	300	33		
Vanadium (V)	120		1.0	ug/g	14-11 IN-19	160	*86		
$Z_{inc}(Z_n)$	135		5.0	ug/g	14-11 IN-19	24000	340		
Volatile Organic Compounds	100		5.0	ug/g	14 0011 13	24000	340		
Denzene	0.0000		0.0000		10 1111 10	10	0.4		
Benzene Ethylhonzono	<0.0068		0.0000	ug/g	13-JUN-19	10	10		
	<0.018		0.010	ug/g	13-JUN-19	19	19		
	<0.080		0.060	ug/g	13-JUN-19	78	78		
	<0.020		0.020	ug/g	13-JUN-19				
M+p-Aylenes	< 0.030		0.030	ug/g	13-JUN-19	20	20		
Surregate: 4 Bromofluorobonzono	<0.030 79.9		50 140	uy/y %	13-JUN-19	30	30		
Surrogate: 1 4-Diffuorobenzene	78.8		50-140	/o 0/_	13-JUN-19				
Hydrocarbons	50.0		50 140	70	10 0011 10				
F1 (C6-C10)	<5.0		50	ua/a	13-JUN-19	65	65		
F1-BTFX	<5.0		5.0	ug/g	13-JUN-19	65	65		
F2 (C10-C16)	<10		10	ug/g	11IUN-19	250	250		
F3 (C16-C34)	<50		50	ug/g	11IUN-19	7200	2500		
F4 (C34-C50)	<50		50	ug/g	11IUN-19	8000	6600		
Total Hydrocarbons (C6-C50)	<72		72	ug/g	13-JUN-19	0000	0000		
Chrom, to baseline at nC50	YES		12	No Unit	11-JUN-19				
Surrogate: 2-Bromobenzotrifluoride	92.2		60-140	%	11-JUN-19				
Surrogate: 3,4-Dichlorotoluene	73.5		60-140	%	13-JUN-19				
L2287707-3 BH3- SS5- 8'-10'									
Sampled By: CLIENT on 06-IIIN-19									
Matrix: SOIL						#1	#2		
Physical Tests									
% Moisture	40.6		0.10	%	10-,II IN-19				
Metals	-0.0		0.10	70					
Antimony (Sh)	~10		10	na/a	13-, INI-10	63	50		
Arsenic (As)	30		1.0	na/a	13-11 INI-19	47	18		
	0.0		1.0	ug/y	10 0011-13	7/	10		

Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.
 Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

Ontario Regulation 153/04 - April 15, 2011 Standards = [Suite] - ON-511-T5-SOIL-ICC-SS/SSS-FINE

#1: T5-Subsurface Soil-Ind/Com/Commu. Property Use (Fine)

ANALYTICAL GUIDELINE REPORT

L2287707 CONTD Page 4 of 16

21-JUN-19 09:37 (MT)

Sample Details Grouping Analyte	Result	Qualifier	D.L.	Units	Analvzed		Guidelin	e Limits	
L2207707-3 BH3- 555- 8-10 Sampled By: CLIENT on 06 JUN 19									
Matrixe SOIL						#1	#2		
Matrix: SOIL									
Metals									
Barium (Ba)	325		1.0	ug/g	13-JUN-19	8600	670		
Beryllium (Be)	1.00		0.50	ug/g	13-JUN-19	60	10		
Boron (B)	13.9		5.0	ug/g	13-JUN-19	7900			
Cadmium (Cd)	<0.50		0.50	ug/g	13-JUN-19	7.9	1.9		
Chromium (Cr)	177		1.0	ug/g	13-JUN-19	18000	*160		
Cobalt (Co)	29.3		1.0	ug/g	13-JUN-19	2500	100		
Copper (Cu)	67.3		1.0	ug/g	13-JUN-19	5600	300		
Lead (Pb)	10.5		1.0	ug/g	13-JUN-19	1000	120		
Molybdenum (Mo)	<1.0		1.0	ug/g	13-JUN-19	1200	40		
Nickel (Ni)	93.4		1.0	ug/g	13-JUN-19	510	340		
Selenium (Se)	<1.0		1.0	ug/g	13-JUN-19	1200	5.5		
Silver (Ag)	<0.20		0.20	ug/g	13-JUN-19	490	50		
Thallium (TI)	<0.50		0.50	ug/g	13-JUN-19	33	3.3		
Uranium (U)	1.1		1.0	ug/g	13-JUN-19	300	33		
Vanadium (V)	125		1.0	ug/g	13-JUN-19	160	*86		
Zinc (Zn)	141		5.0	ug/g	13-JUN-19	24000	340		
Volatile Organic Compounds									
Benzene	<0.0068		0.0068	ug/g	13-JUN-19	16	0.4		
Ethylbenzene	<0.018		0.018	ug/g	13-JUN-19	19	19		
Toluene	<0.080		0.080	ug/g	13-JUN-19	78	78		
o-Xylene	<0.020		0.020	ug/g	13-JUN-19				
m+p-Xylenes	<0.030		0.030	ug/g	13-JUN-19				
Xylenes (Total)	<0.050		0.050	ug/g	13-JUN-19	30	30		
Surrogate: 4-Bromofluorobenzene	79.0		50-140	%	13-JUN-19				
Surrogate: 1,4-Difluorobenzene	89.9		50-140	%	13-JUN-19				
Hydrocarbons									
F1 (C6-C10)	<5.0		5.0	ug/g	13-JUN-19	65	65		
F1-BTEX	<5.0		5.0	ug/g	13-JUN-19	65	65		
F2 (C10-C16)	13		10	ug/g	11-JUN-19	250	250		
F3 (C16-C34)	58		50	ug/g	11-JUN-19	7200	2500		
F4 (C34-C50)	<50		50	ug/g	11-JUN-19	8000	6600		
Total Hydrocarbons (C6-C50)	<72		72	ug/g	13-JUN-19				
Chrom. to baseline at nC50	YES		00 1 10	No Unit	11-JUN-19				
Surrogate: 2-Bromobenzotrifluoride	90.3		60-140	%	11-JUN-19				
Surrogate. 3,4-Dichlorotoluene	73.0		00-140	70	13-3011-19				
L2287707-4 BH3- SS7- 15'-17'									
Sampled By: CLIENT on 06-JUN-19							"0		
Matrix: SOIL						#1	#2		
Physical Tests									
% Moisture	41.0		0.10	%	10-JUN-19				
Metals									
Antimony (Sb)	<1.0		1.0	ug/g	13-JUN-19	63	50		
Arsenic (As)	3.8		1.0	ug/g	13-JUN-19	47	18		
Barium (Ba)	291		1.0	ug/g	13-JUN-19	8600	670		
Beryllium (Be)	1.15		0.50	ug/g	13-JUN-19	60	10		

Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.
 Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

Ontario Regulation 153/04 - April 15, 2011 Standards = [Suite] - ON-511-T5-SOIL-ICC-SS/SSS-FINE

#1: T5-Subsurface Soil-Ind/Com/Commu. Property Use (Fine)

ANALYTICAL GUIDELINE REPORT

L2287707 CONTD.... Page 5 of 16

21-JUN-19 09:37 (MT)

Sample Details	Decult	Qualifie		L loc't -	A		0.11.11		
Grouping Analyte	Result	Qualifier	D.L.	Units	Analyzed		Guidelir	ne Limits	
L2287707-4 BH3- SS7- 15'-17'									
Sampled By: CLIENT on 06-JUN-19									
Matrix: SOIL						#1	#2		
Metals									
Boron (B)	19.2		5.0	ua/a	13-JUN-19	7900			
Cadmium (Cd)	< 0.50		0.50	ua/a	13-JUN-19	7.9	1.9		
Chromium (Cr)	145		1.0	ua/a	13-JUN-19	18000	160		
Cobalt (Co)	27.0		1.0	ua/a	13-JUN-19	2500	100		
Copper (Cu)	59.8		1.0	na\a "∂`∂	13-JUN-19	5600	300		
Lead (Pb)	11.4		1.0	na\a "∂`∂	13-JUN-19	1000	120		
Molybdenum (Mo)	<1.0		1.0	ua/a	13-JUN-19	1200	40		
Nickel (Ni)	80.4		1.0	na\a "∂`∂	13-JUN-19	510	340		
Selenium (Se)	<1.0		1.0	na\a "∂`∂	13-JUN-19	1200	5.5		
Silver (Ag)	<0.20		0.20	na\a "∂`∂	13-JUN-19	490	50		
Thallium (TI)	<0.50		0.50	na\a "∂`∂	13-JUN-19	33	33		
Uranium (U)	2.4		1.0	na\a "∂`∂	13-JUN-19	300	33		
Vanadium (V)	116		1.0	ug/g	13-JUN-19	160	*86		
Zinc (Zn)	132		5.0	ug/g	13-JUN-19	24000	340		
Volatile Organic Compounds	102		0.0	ug, g		24000	040		
Benzene	<0.0068		0.0068	ug/g	13-JUN-19	16	0.4		
Ethylbenzene	<0.018		0.018	ua/a	13-JUN-19	19	19		
Toluene	<0.080		0.080	ua/a	13-JUN-19	78	78		
o-Xylene	<0.020		0.020	ua/a	13-JUN-19	-	-		
m+p-Xylenes	<0.030		0.030	ug/g	13-JUN-19				
Xylenes (Total)	<0.050		0.050	ug/g	13-JUN-19	30	30		
Surrogate: 4-Bromofluorobenzene	78.4		50-140	%	13-JUN-19				
Surrogate: 1,4-Difluorobenzene	92.2		50-140	%	13-JUN-19				
Hydrocarbons									
F1 (C6-C10)	<5.0		5.0	ug/g	13-JUN-19	65	65		
F1-BTEX	<5.0		5.0	ug/g	13-JUN-19	65	65		
F2 (C10-C16)	<10		10	ug/g	11-JUN-19	250	250		
F3 (C16-C34)	<50		50	ug/g	11-JUN-19	7200	2500		
F4 (C34-C50)	<50		50	ug/g	11-JUN-19	8000	6600		
Total Hydrocarbons (C6-C50)	<72		72	ug/g	13-JUN-19				
Chrom. to baseline at nC50	YES			No Unit	11-JUN-19				
Surrogate: 2-Bromobenzotrifluoride	94.4		60-140	%	11-JUN-19				
Surrogate: 3,4-Dichlorotoluene	77.0		60-140	%	13-JUN-19				
L2287707-5 BH4- SS2- 2'-4'									
Sampled By: CLIENT on 06-JUN-19									
Matrix: SOIL						#1	#2		
Physical Tests									
% Moisture	23.7		0.10	%	10-JUN-19				
					10 1111 10	~~			
Antimony (Sb)	<1.0		1.0	ug/g	13-JUN-19	63	50		
Arsenic (As)	4.8		1.0	ug/g	13-JUN-19	47	18		
Barium (Ba)	333		1.0	ug/g	13-JUN-19	8600	670		
Beryllium (Be)	1.10		0.50	ug/g	13-JUN-19	60	10		
Boron (B)	8.0		5.0	ug/g	13-JUN-19	7900			
Cadmium (Cd)	<0.50		0.50	ug/g	13-JUN-19	7.9	1.9		

** Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

* Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

Ontario Regulation 153/04 - April 15, 2011 Standards = [Suite] - ON-511-T5-SOIL-ICC-SS/SSS-FINE

#1: T5-Subsurface Soil-Ind/Com/Commu. Property Use (Fine)

ANALYTICAL GUIDELINE REPORT

L2287707 CONTD.... Page 6 of 16

21-JUN-19 09:37 (MT)

Sample Details Grouping Analyte	Result	Qualifier	D.L.	Units	Analyzed		Guidelir	e Limits	
							S.G.GOM		
L228/707-5 BH4- SS2- 2-4									
Sampled By: CLIENT on 06-JUN-19						#1	#2		
Matrix: SOIL									
Metals									
Chromium (Cr)	145		1.0	ug/g	13-JUN-19	18000	160		
Cobalt (Co)	27.3		1.0	ug/g	13-JUN-19	2500	100		
Copper (Cu)	55.4		1.0	ug/g	13-JUN-19	5600	300		
Lead (Pb)	9.9		1.0	ug/g	13-JUN-19	1000	120		
Molybdenum (Mo)	<1.0		1.0	ug/g	13-JUN-19	1200	40		
Nickel (Ni)	74.9		1.0	ug/g	13-JUN-19	510	340		
Selenium (Se)	<1.0		1.0	ug/g	13-JUN-19	1200	5.5		
Silver (Ag)	<0.20		0.20	ug/g	13-JUN-19	490	50		
Thallium (TI)	<0.50		0.50	ug/g	13-JUN-19	33	3.3		
Uranium (U)	1.1		1.0	ug/g	13-JUN-19	300	33		
Vanadium (V)	114		1.0	ug/g	13-JUN-19	160	^86		
Zinc (Zn) Volatile Organic Compounds	113		5.0	ug/g	13-JUN-19	24000	340		
	0.0000		0.0000			10	0.4		
Benzene	<0.0068		0.0068	ug/g	13-JUN-19	10	0.4		
Ethylpenzene	<0.018		0.018	ug/g	13-JUN-19	19	19		
	<0.000		0.000	ug/g	13-JUN-19	/0	/0		
0-Aylenes m+n-Xylenes	<0.020		0.020	ug/g	13-JUN-19				
Xvlenes (Total)	<0.050		0.050	ug/g ua/a	13-JUN-19	30	30		
Surrogate: 4-Bromofluorobenzene	84.3		50-140	~9/9 %	13-JUN-19	00	00		
Surrogate: 1,4-Difluorobenzene	96.5		50-140	%	13-JUN-19				
Hydrocarbons									
F1 (C6-C10)	<5.0		5.0	ug/g	13-JUN-19	65	65		
F1-BTEX	<5.0		5.0	ug/g	13-JUN-19	65	65		
F2 (C10-C16)	<10		10	ug/g	11-JUN-19	250	250		
F3 (C16-C34)	<50		50	ug/g	11-JUN-19	7200	2500		
F4 (C34-C50)	<50		50	ug/g	11-JUN-19	8000	6600		
Total Hydrocarbons (C6-C50)	<72		72	ug/g	13-JUN-19				
Chrom. to baseline at nC50	YES			No Unit	11-JUN-19				
Surrogate: 2-Bromobenzotrifluoride	98.6		60-140	%	11-JUN-19				
Surrogate: 3,4-Dichlorotoluene	89.1		60-140	%	13-JUN-19				
L2287707-6 BH4- SS4- 6'-8'									
Sampled By: CLIENT on 06-JUN-19									
Matrix: SOIL						#1	#2		
Physical Tests									
% Moisture	30.7		0.10	%	10-JUN-19				
Metals									
Antimony (Sb)	<1.0		1.0	ug/g	13-JUN-19	63	50		
Arsenic (As)	4.3		1.0	ug/g	13-JUN-19	47	18		
Barium (Ba)	342		1.0	ug/g	13-JUN-19	8600	670		
Beryllium (Be)	1.25		0.50	ug/g	13-JUN-19	60	10		
Boron (B)	11.2		5.0	ug/g	13-JUN-19	7900			
Cadmium (Cd)	<0.50		0.50	ug/g	13-JUN-19	7.9	1.9		
Chromium (Cr)	152		1.0	ug/g	13-JUN-19	18000	160		
Cobalt (Co)	31.2		1.0	ug/g	13-JUN-19	2500	100		

** Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

Ontario Regulation 153/04 - April 15, 2011 Standards = [Suite] - ON-511-T5-SOIL-ICC-SS/SSS-FINE

#1: T5-Subsurface Soil-Ind/Com/Commu. Property Use (Fine)

ANALYTICAL GUIDELINE REPORT

L2287707 CONTD

Page 7 of 16 21-JUN-19 09:37 (MT)

Grouping Analyte	Result	Qualifier	D.L.	Units	Analyzed		Guidelin	e Limits	
1 2287707-6 BH4- SS4- 6'-8'									
Sampled By: CLIENT on 06-111N-19									
Matrix: SOII						#1	#2		
Metals									
Copper (Cu)	67.5		1.0	ug/g	13-JUN-19	5600	300		
Lead (Pb)	12.5		1.0	ug/g	13-JUN-19	1000	120		
Molybdenum (Mo)	<1.0		1.0	ug/g	13-JUN-19	1200	40		
Nickel (Ni)	85.7		1.0	ug/g	13-JUN-19	510	340		
Selenium (Se)	<1.0		1.0	ug/g	13-JUN-19	1200	5.5		
Silver (Ag)	<0.20		0.20	ug/g	13-JUN-19	490	50		
Thallium (TI)	<0.50		0.50	ug/g	13-JUN-19	33	3.3		
Uranium (U)	1.1		1.0	ug/g	13-JUN-19	300	33		
Vanadium (V)	120		1.0	ug/g	13-JUN-19	160	*86		
Zinc (Zn)	137		5.0	ug/g	13-JUN-19	24000	340		
Volatile Organic Compounds									
Benzene	<0.0068		0.0068	ug/g	13-JUN-19	16	0.4		
Ethylbenzene	<0.018		0.018	ug/g	13-JUN-19	19	19		
Toluene	<0.080		0.080	ug/g	13-JUN-19	78	78		
o-Xylene	<0.020		0.020	ug/g	13-JUN-19				
m+p-Xylenes	<0.030		0.030	ug/g	13-JUN-19				
Xylenes (Total)	<0.050		0.050	ug/g	13-JUN-19	30	30		
Surrogate: 4-Bromofluorobenzene	90.8		50-140	%	13-JUN-19				
Surrogate: 1,4-Difluorobenzene	102.3		50-140	%	13-JUN-19				
Hydrocarbons			_						
F1 (C6-C10)	<5.0		5.0	ug/g	13-JUN-19	65	65		
F1-BTEX	<5.0		5.0	ug/g	13-JUN-19	65	65		
F2 (C10-C16)	<10		10	ug/g	12-JUN-19	250	250		
F3 (C16-C34)	<50		50	ug/g	12-JUN-19	7200	2500		
F4 (C34-C50)	<50		50	ug/g	12-JUN-19	8000	6600		
Total Hydrocarbons (C6-C50)	<72		72	ug/g	13-JUN-19				
Chrom. to baseline at nC50	YES		00.140	No Unit	12-JUN-19				
Surrogate: 2-Bromobenzotrifiuoride	79.7 70.5		60-140	%	12-JUN-19				
Surrogate: 3,4-Dichlorotoluerie	79.5		60-140	70	13-3010-19				
L2287707-7 BH5- SS2- 2'-4'									
Sampled By: CLIENT on 06-JUN-19							"0		
Matrix: SOIL						#1	#2		
Physical Tests									
% Moisture	16.6		0.10	%	10-JUN-19				
Metals									
Antimony (Sb)	<1.0		1.0	ug/g	13-JUN-19	63	50		
Arsenic (As)	1.3		1.0	ug/g	13-JUN-19	47	18		
Barium (Ba)	27.0		1.0	ug/g	13-JUN-19	8600	670		
Beryllium (Be)	<0.50		0.50	ug/a	13-JUN-19	60	10		
Boron (B)	<5.0		5.0	ug/g	13-JUN-19	7900	-		
Cadmium (Cd)	<0.50		0.50	ug/g	13-JUN-19	7.9	1.9		
Chromium (Cr)	23.4		1.0	ug/g	13-JUN-19	18000	160		
Cobalt (Co)	3.6		1.0	ug/g	13-JUN-19	2500	100		
Copper (Cu)	5.4		1.0	ug/g	13-JUN-19	5600	300		
Lead (Pb)	2.6		1.0	ua/a	13-JUN-19	1000	120		

** Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

* Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

Ontario Regulation 153/04 - April 15, 2011 Standards = [Suite] - ON-511-T5-SOIL-ICC-SS/SSS-FINE

#1: T5-Subsurface Soil-Ind/Com/Commu. Property Use (Fine)

ANALYTICAL GUIDELINE REPORT

L2287707 CONTD.... Page 8 of 16

21-JUN-19 09:37 (MT)

Sample Details									
Grouping Analyte	Result	Qualifier	D.L.	Units	Analyzed		Guidelin	e Limits	
L2287707-7 BH5- SS2- 2'-4'									
Sampled By: CLIENT on 06-JUN-19									
Matrix: SOIL						#1	#2		
Metals									
Molybdenum (Mo)	<1.0		1.0	ug/g	13-JUN-19	1200	40		
Nickel (Ni)	9.9		1.0	ug/g	13-JUN-19	510	340		
Selenium (Se)	<1.0		1.0	ug/g	13-JUN-19	1200	5.5		
Silver (Ag)	<0.20		0.20	ug/g	13-JUN-19	490	50		
Thallium (TI)	<0.50		0.50	ug/g	13-JUN-19	33	3.3		
Uranium (U)	<1.0		1.0	ug/g	13-JUN-19	300	33		
Vanadium (V)	25.3		1.0	ug/g	13-JUN-19	160	86		
Zinc (Zn)	21.5		5.0	ug/g	13-JUN-19	24000	340		
Volatile Organic Compounds									
Benzene	<0.0068		0.0068	ug/g	13-JUN-19	16	0.4		
Ethylbenzene	<0.018		0.018	ug/g	13-JUN-19	19	19		
Toluene	<0.080		0.080	ug/g	13-JUN-19	78	78		
o-Xylene	<0.020		0.020	ug/g	13-JUN-19				
m+p-Xylenes	<0.030		0.030	ug/g	13-JUN-19				
Xylenes (Total)	<0.050		0.050	ug/g	13-JUN-19	30	30		
Surrogate: 4-Bromofluorobenzene	99.9		50-140	%	13-JUN-19				
Surrogate: 1,4-Difluorobenzene	106.8		50-140	%	13-JUN-19				
Hydrocarbons									
F1 (C6-C10)	<5.0		5.0	ug/g	13-JUN-19	65	65		
F1-BTEX	<5.0		5.0	ug/g	13-JUN-19	65	65		
F2 (C10-C16)	<10		10	ug/g	11-JUN-19	250	250		
F3 (C16-C34)	<50		50	ug/g	11-JUN-19	7200	2500		
F4 (C34-C50)	<50		50	ug/g	11-JUN-19	8000	6600		
Total Hydrocarbons (C6-C50)	<72		72	ug/g	13-JUN-19				
Chrom. to baseline at nC50	YES			No Unit	11-JUN-19				
Surrogate: 2-Bromobenzotrifluoride	92.9		60-140	%	11-JUN-19				
Surrogate: 3,4-Dichlorotoluene	80.1		60-140	%	13-JUN-19				
L2287707-8 BH5- SS5- 8'-10'									
Sampled By: CLIENT on 06-111N-19									
						#1	#2		
Physical Tests									
% Moisture	34.7		0.10	%	10-JUN-19				
Metals									
Antimony (Sb)	<1.0		1.0	ug/g	13-JUN-19	63	50		
Arsenic (As)	3.3		1.0	ug/g	13-JUN-19	47	18		
Barium (Ba)	360		1.0	ug/g	13-JUN-19	8600	670		
Beryllium (Be)	1.02		0.50	ug/g	13-JUN-19	60	10		
Boron (B)	8.0		5.0	ug/g	13-JUN-19	7900			
Cadmium (Cd)	<0.50		0.50	ug/g	13-JUN-19	7.9	1.9		
Chromium (Cr)	129		1.0	ug/g	13-JUN-19	18000	160		
Cobalt (Co)	26.0		1.0	ug/g	13-JUN-19	2500	100		
Copper (Cu)	54.3		1.0	ug/g	13-JUN-19	5600	300		
Lead (Pb)	9.0		1.0	ug/g	13-JUN-19	1000	120		
Molybdenum (Mo)	<1.0		1.0	ug/g	13-JUN-19	1200	40		
Nickel (Ni)	71.3		1.0	ug/g	13-JUN-19	510	340		

** Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

* Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

Ontario Regulation 153/04 - April 15, 2011 Standards = [Suite] - ON-511-T5-SOIL-ICC-SS/SSS-FINE

#1: T5-Subsurface Soil-Ind/Com/Commu. Property Use (Fine)

ANALYTICAL GUIDELINE REPORT

L2287707 CONTD.... Page 9 of 16

21-JUN-19 09:37 (MT)

Sample Details									
Grouping Analyte	Result	Qualifier	D.L.	Units	Analyzed		Guidelir	ne Limits	
L2287707-8 BH5- SS5- 8'-10'									
Sampled By: CLIENT on 06-JUN-19									
Matrix: SOIL						#1	#2		
Metals									
Selenium (Se)	<1.0		1.0	ug/g	13-JUN-19	1200	5.5		
Silver (Ag)	<0.20		0.20	ug/g	13-JUN-19	490	50		
Thallium (TI)	<0.50		0.50	ug/g	13-JUN-19	33	3.3		
Uranium (U)	<1.0		1.0	ug/g	13-JUN-19	300	33		
Vanadium (V)	109		1.0	ug/g	13-JUN-19	160	*86		
Zinc (Zn)	126		5.0	ug/g	13-JUN-19	24000	340		
Benzene	<0.0068		0.0068	ug/g	13-JUN-19	16	0.4		
Ethylbenzene	<0.018		0.018	ug/g	13-JUN-19	19	19		
Toluene	<0.080		0.080	ug/g	13-JUN-19	78	78		
o-Xylene	<0.020		0.020	ug/g	13-JUN-19				
m+p-Xylenes	< 0.030		0.030	ug/g	13-JUN-19				
Xylenes (Total)	<0.050		0.050	ug/g	13-JUN-19	30	30		
Surrogate: 4-Bromotiuorobenzene	93.9		50-140	%	13-JUN-19				
Surrogale. 1,4-Dilluorobenzene	101.1		50-140	70	13-3010-19				
	5.0		5.0			05	05		
	<5.0		5.0	ug/g	13-JUN-19	65	65		
	<5.0		5.0	ug/g	13-JUN-19	65	65		
F2 (C10-C16)	<10		50	ug/g	11-JUN-19	250	250		
F3 (C16-C34)	<50		50	ug/g	11-JUN-19	7200	2500		
F4 (C34-C30)	<50		50 70	ug/g	11-JUN-19	8000	6600		
Chrometa baseling at nCE0	2<br VE2		12	ug/g	13-JUN-19				
Surregate: 2 Bromohonzotrifluorido	165		60 140	NO UTIL %	11-JUN-19				
Surrogate: 3 4-Dichlorotoluone	92.3 86.4		60-140	/0 %	13- II IN-19				
	00.4		00 140	70	10 0011 10				
L2287707-9 BH7- SS3- 4'-6'									
Sampled By: CLIENT on 06-JUN-19						#1	#2		
Matrix: SOIL						<i>π</i> 1	#2		
Physical Tests									
% Moisture	19.3		0.10	%	10-JUN-19				
Metals									
Antimony (Sb)	<1.0		1.0	ug/g	14-JUN-19	63	50		
Arsenic (As)	2.8		1.0	ug/g	14-JUN-19	47	18		
Barium (Ba)	70.8		1.0	ug/g	14-JUN-19	8600	670		
Beryllium (Be)	<0.50		0.50	ug/g	14-JUN-19	60	10		
Boron (B)	<5.0		5.0	ug/g	14-JUN-19	7900			
Cadmium (Cd)	<0.50		0.50	ug/g	14-JUN-19	7.9	1.9		
Chromium (Cr)	42.7		1.0	ug/g	14-JUN-19	18000	160		
Cobalt (Co)	7.5		1.0	ug/g	14-JUN-19	2500	100		
Copper (Cu)	16.1		1.0	ug/g	14-JUN-19	5600	300		
Lead (Pb)	8.3		1.0	ug/g	14-JUN-19	1000	120		
Molybdenum (Mo)	<1.0		1.0	ug/g	14-JUN-19	1200	40		
Nickel (Ni)	20.2		1.0	ug/g	14-JUN-19	510	340		
Selenium (Se)	<1.0		1.0	ug/g	14-JUN-19	1200	5.5		
Silver (Ag)	<0.20		0.20	ua/a	14-JUN-19	490	50		

** Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

* Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

Ontario Regulation 153/04 - April 15, 2011 Standards = [Suite] - ON-511-T5-SOIL-ICC-SS/SSS-FINE

#1: T5-Subsurface Soil-Ind/Com/Commu. Property Use (Fine)

ANALYTICAL GUIDELINE REPORT

L2287707 CONTD Page 10 of 16

21-JUN-19 09:37 (MT)

190361

Sample Details	Decult	Our		1.1.4.2.4	A				
Grouping Analyte	Result	Qualifier	D.L.	Units	Analyzed		Guidelin	e Limits	
L2287707-9 BH7- SS3- 4'-6'									
Sampled By: CLIENT on 06-JUN-19									
Matrix: SOIL						#1	#2		
Metals									
Thallium (TI)	<0.50		0.50	ug/g	14-JUN-19	33	3.3		
Uranium (U)	<1.0		1.0	ug/g	14-JUN-19	300	33		
Vanadium (V)	41.6		1.0	ug/g	14-JUN-19	160	86		
Zinc (Zn)	63.0		5.0	ug/g	14-JUN-19	24000	340		
Volatile Organic Compounds									
Benzene	<0.0068		0.0068	ug/g	13-JUN-19	16	0.4		
Ethylbenzene	<0.018		0.018	ug/g	13-JUN-19	19	19		
Toluene	<0.080		0.080	ug/g	13-JUN-19	78	78		
o-Xylene	<0.020		0.020	ug/g	13-JUN-19				
m+p-Xylenes	<0.030		0.030	ug/g	13-JUN-19				
Xylenes (Total)	<0.050		0.050	ug/g	13-JUN-19	30	30		
Surrogate: 4-Bromofluorobenzene	96.5		50-140	%	13-JUN-19				
Surrogate: 1,4-Difluorobenzene	101.6		50-140	%	13-JUN-19				
Hydrocarbons									
F1 (C6-C10)	<5.0		5.0	ug/g	13-JUN-19	65	65		
F1-BTEX	<5.0		5.0	ug/g	13-JUN-19	65	65		
F2 (C10-C16)	<10		10	ug/g	11-JUN-19	250	250		
F3 (C16-C34)	89		50	ug/g	11-JUN-19	7200	2500		
F4 (C34-C50)	178		50	ug/g	11-JUN-19	8000	6600		
F4G-SG (GHH-Silica)	410		250	ug/g	10-JUN-19	8000	6600		
Total Hydrocarbons (C6-C50)	267		72	ug/g	13-JUN-19				
Chrom. to baseline at nC50	NO			No Unit	11-JUN-19				
Surrogate: 2-Bromobenzotrifluoride	92.0		60-140	%	11-JUN-19				
Surrogate: 3,4-Dichlorotoluene	89.9		60-140	%	13-JUN-19				
L2287707-10 BH7- SS5- 8'-10'									
Sampled By: CLIENT on 06-JUN-19									
Matrix: SOIL						#1	#2		
Physical Tests									
% Moisture	40.1		0.10	%	10-JUN-19				
Metals			0110	,0					
Antimony (Sb)	<1.0		1.0	ug/g	14-JUN-19	63	50		
Arsenic (As)	4.2		1.0	ug/g	14-JUN-19	47	18		
Barium (Ba)	314		1.0	ug/g	14-JUN-19	8600	670		
Beryllium (Be)	1.44		0.50	ug/g	14-JUN-19	60	10		
Boron (B)	22.7		5.0	ug/g	14-JUN-19	7900			
Cadmium (Cd)	<0.50		0.50	ug/g	14-JUN-19	7.9	1.9		
Chromium (Cr)	167		1.0	ug/g	14-JUN-19	18000	*160		
Cobalt (Co)	30.7		1.0	ug/g	14-JUN-19	2500	100		
Copper (Cu)	67.4		1.0	ug/g	14-JUN-19	5600	300		
Lead (Pb)	14.0		1.0	ug/g	14-JUN-19	1000	120		
Molybdenum (Mo)	<1.0		1.0	ug/g	14-JUN-19	1200	40		
Nickel (Ni)	91.5		1.0	ug/g	14-JUN-19	510	340		
Selenium (Se)	<1.0		1.0	ug/g	14-JUN-19	1200	5.5		
Silver (Ag)	<0.20		0.20	ug/g	14-JUN-19	490	50		
Thallium (TI)	<0.50		0.50	ug/g	14-JUN-19	33	3.3		

Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.
 Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

Ontario Regulation 153/04 - April 15, 2011 Standards = [Suite] - ON-511-T5-SOIL-ICC-SS/SSS-FINE

#1: T5-Subsurface Soil-Ind/Com/Commu. Property Use (Fine)

Sample Details

ANALYTICAL GUIDELINE REPORT

L2287707 CONTD.... Page 11 of 16

21-JUN-19 09:37 (MT)

Result Qualifier D.L. Units Grouping Analyte Analyzed **Guideline Limits** L2287707-10 BH7- SS5- 8'-10' Sampled By: CLIENT on 06-JUN-19 #1 #2 Matrix: SOIL Metals 14-JUN-19 33 Uranium (U) 2.7 1.0 ug/g 300 Vanadium (V) 131 1.0 ug/g 14-JUN-19 160 *86 Zinc (Zn) 146 5.0 14-JUN-19 24000 340 ug/g **Volatile Organic Compounds** <0.0068 0.0068 13-JUN-19 Benzene ug/g 16 04 < 0.018 13-JUN-19 Ethylbenzene 0.018 ug/g 19 19 Toluene <0.080 0.080 ug/g 13-JUN-19 78 78 13-JUN-19 o-Xylene < 0.020 0.020 ug/g m+p-Xylenes < 0.030 0.030 ug/g 13-JUN-19 Xylenes (Total) < 0.050 0.050 ug/g 13-JUN-19 30 30 Surrogate: 4-Bromofluorobenzene 80.2 50-140 % 13-JUN-19 Surrogate: 1,4-Difluorobenzene 87.5 50-140 % 13-JUN-19 Hydrocarbons F1 (C6-C10) 13-JUN-19 <5.0 5.0 ug/g 65 65 13-JUN-19 F1-BTEX <5.0 5.0 ug/g 65 65 11-JUN-19 250 F2 (C10-C16) <10 10 ug/g 250 F3 (C16-C34) <50 50 11-JUN-19 7200 2500 ug/g <50 50 11-JUN-19 8000 F4 (C34-C50) 6600 ug/g 72 13-JUN-19 Total Hydrocarbons (C6-C50) <72 ug/g YES No Unit 11-JUN-19 Chrom. to baseline at nC50 60-140 Surrogate: 2-Bromobenzotrifluoride 89.6 % 11-JUN-19 60-140 13-JUN-19 Surrogate: 3,4-Dichlorotoluene 72.7 % L2287707-11 BH9- SS2- 2'-4' Sampled By: CLIENT on 06-JUN-19 #1 #2 SOIL Matrix: **Physical Tests** % Moisture 32.5 0.10 % 10-JUN-19 Metals Antimony (Sb) <1.0 1.0 ug/g 14-JUN-19 63 50 Arsenic (As) 3.2 14-JUN-19 1.0 ug/g 47 18 Barium (Ba) 358 14-JUN-19 1.0 ug/g 8600 670 Beryllium (Be) 1.00 0.50 14-JUN-19 ug/g 60 10 Boron (B) 9.1 5.0 14-JUN-19 7900 ug/g Cadmium (Cd) <0.50 0.50 14-JUN-19 1.9 ug/g 7.9 14-JUN-19 Chromium (Cr) 117 1.0 ug/g 18000 160 Cobalt (Co) 25.3 1.0 14-JUN-19 2500 100 ug/g 53.8 14-JUN-19 Copper (Cu) 1.0 ug/g 5600 300 Lead (Pb) 9.2 1.0 ug/g 14-JUN-19 1000 120 <1.0 Molybdenum (Mo) 1.0 14-JUN-19 1200 ug/g 40 Nickel (Ni) 66.7 1.0 ug/g 14-JUN-19 510 340 ug/g Selenium (Se) <1.0 1.0 14-JUN-19 1200 5.5 Silver (Ag) <0.20 0.20 14-JUN-19 490 ug/g 50 Thallium (TI) <0.50 0.50 14-JUN-19 ug/g 33 3.3 14-JUN-19 Uranium (U) 1.7 1.0 300 33 ug/g 123 14-JUN-19 Vanadium (V) 1.0 ug/g 160 *86

Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

* Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

Ontario Regulation 153/04 - April 15, 2011 Standards = [Suite] - ON-511-T5-SOIL-ICC-SS/SSS-FINE

#1: T5-Subsurface Soil-Ind/Com/Commu. Property Use (Fine)

ANALYTICAL GUIDELINE REPORT

L2287707 CONTD Page 12 of 16 21-JUN-19 09:37 (MT)

Sample Details Grouping Analyte	Result	Qualifier	D.L.	Units	Analyzed		Guidelin	ne Limits	
L2207/07-11 BH9-552-2-4									
Matrix SOIL						#1	#2		
Matrix: SOL									
Metals									
Zinc (Zn)	134		5.0	ug/g	14-JUN-19	24000	340		
Volatile Organic Compounds									
Benzene	<0.0068		0.0068	ug/g	13-JUN-19	16	0.4		
Ethylbenzene	<0.018		0.018	ug/g	13-JUN-19	19	19		
Toluene	<0.080		0.080	ug/g	13-JUN-19	78	78		
o-Xylene	<0.020		0.020	ug/g	13-JUN-19				
m+p-Xylenes	<0.030		0.030	ug/g	13-JUN-19				
Xylenes (Total)	<0.050		0.050	ug/g	13-JUN-19	30	30		
Surrogate: 4-Bromofluorobenzene	114.4		50-140	%	13-JUN-19				
Surrogate: 1,4-Difluorobenzene	118.7		50-140	%	13-JUN-19				
Hydrocarbons									
F1 (C6-C10)	<5.0		5.0	ug/g	13-JUN-19	65	65		
F1-BTEX	<5.0		5.0	ug/g	13-JUN-19	65	65		
F2 (C10-C16)	<10		10	ug/g	11-JUN-19	250	250		
F3 (C16-C34)	<50		50	ug/g	11-JUN-19	7200	2500		
F4 (C34-C50)	<50		50	ug/g	11-JUN-19	8000	6600		
Total Hydrocarbons (C6-C50)	2</td <td></td> <td>72</td> <td>ug/g</td> <td>13-JUN-19</td> <td></td> <td></td> <td></td> <td></td>		72	ug/g	13-JUN-19				
Chrom. to baseline at nC50	YES		60 140	No Unit	11-JUN-19				
Surrogate: 2-Bromobenzotniluoride	92.9		60-140 60-140	%	11-JUN-19				
Surroyate. 3,4-Dichlorotoldene	92.2		00-140	/0	13-3011-13				
L2287707-12 BH9- SS3- 4'-6'									
Sampled By: CLIENT on 06-JUN-19						#1	#0		
Matrix: SOIL						#1	#2		
Physical Tests									
% Moisture	35.3		0.10	%	10-JUN-19				
Metals									
Antimony (Sb)	<1.0		1.0	ug/g	14-JUN-19	63	50		
Arsenic (As)	3.4		1.0	ug/g	14-JUN-19	47	18		
Barium (Ba)	319		1.0	ug/g	14-JUN-19	8600	670		
Beryllium (Be)	0.99		0.50	ug/g	14-JUN-19	60	10		
Boron (B)	9.8		5.0	ug/g	14-JUN-19	7900			
Cadmium (Cd)	<0.50		0.50	ug/g	14-JUN-19	7.9	1.9		
Chromium (Cr)	166		1.0	ug/g	14-JUN-19	18000	*160		
Cobalt (Co)	28.1		1.0	ug/g	14-JUN-19	2500	100		
Copper (Cu)	61.8		1.0	ug/g	14-JUN-19	5600	300		
Lead (Pb)	10.3		1.0	ug/g	14-JUN-19	1000	120		
Molybdenum (Mo)	<1.0		1.0	ug/g	14-JUN-19	1200	40		
Nickel (Ni)	85.9		1.0	ug/g	14-JUN-19	510	340		
Selenium (Se)	<1.0		1.0	ug/g	14-JUN-19	1200	5.5		
Silver (Ag)	< 0.20		0.20	ug/g	14-JUN-19	490	50		
I nallium (11)	<0.50		0.50	ug/g	14-JUN-19	33	3.3		
Uranium (U)	1./		1.0	ug/g	14-JUN-19	300	33		
vanadium (v)	125		1.0	ug/g	14-JUN-19	160	240		
Zing (Zin) Volatile Organic Compounds	100		5.0	ug/g	14-JUN-19	24000	340		
volatile Organic Compounds									

Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.
 Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

Ontario Regulation 153/04 - April 15, 2011 Standards = [Suite] - ON-511-T5-SOIL-ICC-SS/SSS-FINE

#1: T5-Subsurface Soil-Ind/Com/Commu. Property Use (Fine)

ANALYTICAL GUIDELINE REPORT

L2287707 CONTD.... Page 13 of 16

21-JUN-19 09:37 (MT)

Sample Details Grouping Analyte	Bosult	Qualifier	Ы	Linite	Applyzod		Guidalir	o Limito	
Crouping Analyte	nesuit	Quaimer	D.L.	01113	Analyzeu		Guidein		
L2287707-12 BH9- SS3- 4'-6'									
Sampled By: CLIENT on 06-JUN-19						#1	#0		
Matrix: SOIL						#1	#2		
Volatile Organic Compounds									
Benzene	<0.0068		0.0068	ug/g	13-JUN-19	16	0.4		
Ethylbenzene	<0.018		0.018	ug/g	13-JUN-19	19	19		
Toluene	<0.080		0.080	ug/g	13-JUN-19	78	78		
o-Xylene	<0.020		0.020	ug/g	13-JUN-19				
m+p-Xylenes	<0.030		0.030	ug/g	13-JUN-19				
Xylenes (Total)	<0.050		0.050	ug/g	13-JUN-19	30	30		
Surrogate: 4-Bromofluorobenzene	83.6		50-140	%	13-JUN-19				
Surrogate: 1,4-Difluorobenzene	92.4		50-140	%	13-JUN-19				
Hydrocarbons									
F1 (C6-C10)	<5.0		5.0	ug/g	13-JUN-19	65	65		
F1-BTEX	<5.0		5.0	ug/g	13-JUN-19	65	65		
F2 (C10-C16)	<10		10	ug/g	11-JUN-19	250	250		
F3 (C16-C34)	<50		50	ug/g	11-JUN-19	7200	2500		
F4 (C34-C50)	<50		50	ug/g	11-JUN-19	8000	6600		
Total Hydrocarbons (C6-C50)	<72		72	ug/g	13-JUN-19				
Chrom. to baseline at nC50	YES			No Unit	11-JUN-19				
Surrogate: 2-Bromobenzotrifluoride	94.7		60-140	%	11-JUN-19				
Surrogate: 3,4-Dichlorotoluene	75.8		60-140	%	13-JUN-19				
L2287707-13 BH10- SS-3 4'-6'									
Sampled By: CLIENT on 06-JUN-19									
Matrix: SOIL						#1	#2		
Physical Tests									
% Moisture	40.9		0.10	%	10-JUN-19				
Metals									
Antimony (Sb)	<1.0		1.0	ug/g	14-JUN-19	63	50		
Arsenic (As)	2.5		1.0	ug/g	14-JUN-19	47	18		
Barium (Ba)	271		1.0	ug/g	14-JUN-19	8600	670		
Beryllium (Be)	0.78		0.50	ug/g	14-JUN-19	60	10		
Boron (B)	8.6		5.0	ug/g	14-JUN-19	7900			
Cadmium (Cd)	<0.50		0.50	ug/g	14-JUN-19	7.9	1.9		
Chromium (Cr)	145		1.0	ug/g	14-JUN-19	18000	160		
Cobalt (Co)	24.4		1.0	ug/g	14-JUN-19	2500	100		
Copper (Cu)	52.3		1.0	ug/g	14-JUN-19	5600	300		
Lead (Pb)	8.9		1.0	ug/g	14-JUN-19	1000	120		
Molybdenum (Mo)	<1.0		1.0	ug/g	14-JUN-19	1200	40		
Nickel (Ni)	77.2		1.0	ug/g	14-JUN-19	510	340		
Selenium (Se)	<1.0		1.0	ug/g	14-JUN-19	1200	5.5		
Silver (Ag)	<0.20		0.20	ug/g	14-JUN-19	490	50		
Thallium (TI)	<0.50		0.50	ug/g	14-JUN-19	33	3.3		
Uranium (U)	1.5		1.0	ug/g	14-JUN-19	300	33		
Vanadium (V)	107		1.0	ug/g	14-JUN-19	160	*86		
Zinc (Zn)	116		5.0	ug/g	14-JUN-19	24000	340		
Volatile Organic Compounds									
Benzene	<0.0068		0.0068	ug/g	13-JUN-19	16	0.4		
Ethylbenzene	<0.018		0.018	ug/g	13-JUN-19	19	19		

** Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

Ontario Regulation 153/04 - April 15, 2011 Standards = [Suite] - ON-511-T5-SOIL-ICC-SS/SSS-FINE

#1: T5-Subsurface Soil-Ind/Com/Commu. Property Use (Fine)

ANALYTICAL GUIDELINE REPORT

L2287707 CONTD Page 14 of 16

21-JUN-19 09:37 (MT)

Grouping Analyte	Result	Qualifier	D.L.	Units	Analyzed		Guidelir	ne Limits	
L2207707-13 BH10- SS-3 4-0									
						#1	#2		
Volatile Organic Compounds									
Toluene	<0.080		0.080	ug/g	13-JUN-19	78	78		
o-Xylene	<0.020		0.020	ug/g	13-JUN-19				
III+p-Aylenes Xulonos (Total)	<0.030		0.030	ug/g	13-JUN-19	20	20		
Surrogate: 4-Bromofluorobenzene	90.2		50-140	ug/g %	13-JUN-19	30	30		
Surrogate: 1.4-Difluorobenzene	98.2		50-140	%	13-JUN-19				
Hydrocarbons	00.2			,0					
F1 (C6-C10)	<5.0		5.0	ua/a	13-JUN-19	65	65		
F1-BTEX	<5.0		5.0	ug/g	13-JUN-19	65	65		
F2 (C10-C16)	<10		10	ug/g	11-JUN-19	250	250		
F3 (C16-C34)	<50		50	ug/g	11-JUN-19	7200	2500		
F4 (C34-C50)	<50		50	ug/g	11-JUN-19	8000	6600		
Total Hydrocarbons (C6-C50)	<72		72	ug/g	13-JUN-19				
Chrom. to baseline at nC50	YES			No Unit	11-JUN-19				
Surrogate: 2-Bromobenzotrifluoride	89.2		60-140	%	11-JUN-19				
Surrogate: 3,4-Dichlorotoluene	84.5		60-140	%	13-JUN-19				

Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.
 Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

Ontario Regulation 153/04 - April 15, 2011 Standards = [Suite] - ON-511-T5-SOIL-ICC-SS/SSS-FINE

Reference Information

ALS Test Code	Matrix	Test Description	Method Reference***
BTX-511-HS-WT	Soil	BTEX-O.Reg 153/04 (July 2011)	SW846 8260
BTX is determined by ext	tracting a soil o	r sediment sample as received wit	th methanol, then analyzing by headspace-GC/MS.
Analysis conducted in ac Protection Act (July 1, 20	cordance with 1	the Protocol for Analytical Method	s Used in the Assessment of Properties under Part XV.1 of the Environmenta
F1-F4-511-CALC-WT	Soil	F1-F4 Hydrocarbon Calculated Parameters	CCME CWS-PHC, Pub #1310, Dec 2001-S
Analytical methods used	for analysis of	CCME Petroleum Hydrocarbons h	nave been validated and comply with the Reference Method for the CWS PH
Hydrocarbon results are	expressed on a	a dry weight basis.	
In cases where results fo the gravimetric heavy hyo In samples where BTEX been subtracted from F1.	r both F4 and F drocarbons car and F1 were ar	F4G are reported, the greater of th not be added to the C6 to C50 hy nalyzed, F1-BTEX represents a v	e two results must be used in any application of the CWS PHC guidelines ar drocarbons. ralue where the sum of Benzene, Toluene, Ethylbenzene and total Xylenes have
In samples where PAHs, represents a result where Fluoranthene, Indeno(1,2	F2 and F3 wer the sum of Be 2,3-cd)pyrene, I	re analyzed, F2-Naphth represents enzo(a)anthracene, Benzo(a)pyren Phenanthrene, and Pyrene has be	s the result where Naphthalene has been subtracted from F2. F3-PAH e, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Dibenzo(a,h)anthracene, en subtracted from F3.
Unless otherwise qualifie 1. All extraction and anal	d, the following ysis holding tim	quality control criteria have been nes were met.	met for the F1 hydrocarbon range:
 Instrument performance Linearity of gasoline re 	e showing response within	oonse factors for C6 and C10 with 15% throughout the calibration rar	in 30% of the response factor for toluene. nge.
Unless otherwise qualifie 1. All extraction and anal	d, the following ysis holding tim	quality control criteria have been nes were met.	met for the F2-F4 hydrocarbon ranges:
 Instrument performance Instrument performance Linearity of diesel or m 	ce showing C10 ce showing the notor oil respon	0, C16 and C34 response factors v C50 response factor within 30% o se within 15% throughout the calib	vithin 10% of their average. f the average of the C10, C16 and C34 response factors. pration range.
FI-HS-511-WI	501	F1-O.Reg 153/04 (July 2011)	E3398/CCME TIER 1-HS
Fraction F1 is determined	d by extracting	a soil or sediment sample as rece	ived with methanol, then analyzing by headspace-GC/FID.
Analysis conducted in ac Protection Act (July 1, 20 must be reported).	cordance with 1 11), unless a s	the Protocol for Analytical Methods subset of the Analytical Test Group	s Used in the Assessment of Properties under Part XV.1 of the Environmenta o (ATG) has been requested (the Protocol states that all analytes in an ATG
F2-F4-511-WT	Soil	F2-F4-O.Reg 153/04 (July 2011)	CCME Tier 1
Petroleum Hydrocarbons to remove polar organic i	(F2-F4 fraction nterferences.	ns) are extracted from soil with 1:1 F2, F3, & F4 are analyzed by GC-I	hexane:acetone using a rotary extractor. Extracts are treated with silica gel FID. F4G-sg is analyzed gravimetrically.
Notes: 1. F2 (C10-C16): Sum of 2. F3 (C16-C34): Sum of 3. F4 (C34-C50): Sum of 4. F4G: Gravimetric Heav	all hydrocarbo all hydrocarbo all hydrocarbo vy Hydrocarbor	ns that elute between nC10 and no ns that elute between nC16 and no ns that elute between nC34 and no ns	C16. C34. C50.
 5. F4G-sg: Gravimetric H 6. Where both F4 (C34-C guideline for F4. 	leavy Hydrocar 50) and F4G-s	bons (F4G) after silica gel treatme g are reported for a sample, the la	ent. arger of the two values is used for comparison against the relevant CCME
 F4G-sg cannot be add This method is validate Data from analysis of y 	ed to the C6 to ed for use. validation and c	C50 hydrocarbon results to obtain	n an estimate of total extractable hydrocarbons.
10. Reported results are	expressed as r	nilligrams per dry kilogram, unless	otherwise indicated.
Analysis conducted in ac Protection Act (July 1, 20 must be reported).	cordance with 1 11), unless a s	the Protocol for Analytical Methods subset of the Analytical Test Group	s Used in the Assessment of Properties under Part XV.1 of the Environment ρ (ATG) has been requested (the Protocol states that all analytes in an ATG
F4G-ADD-511-WT	Soil	F4G SG-O.Reg 153/04 (July	MOE DECPH-E3398/CCME TIER 1
F4G, gravimetric analysi mix, the solvent is evapo	s, is determine rated and the v	d if the chromatogram does not re veight of the residue is determined	turn to baseline at or before C50. A soil sample is extracted with a solvent
Analysis conducted in ac Protection Act (July 1, 20	cordance with 1	the Protocol for Analytical Methods	s Used in the Assessment of Properties under Part XV.1 of the Environment

Reference Information

MET-200.2-CCMS-WT Soil Metals in Soil by CRC ICPMS EPA 200.2/6020A (mod)

Soil/sediment is dried, disaggregated, and sieved (2 mm). For tests intended to support Ontario regulations, the <2mm fraction is ground to pass through a 0.355 mm sieve. Strong Acid Leachable Metals in the <2mm fraction are solubilized by heated digestion with nitric and hydrochloric acids. Instrumental analysis is by Collision / Reaction Cell ICPMS.

Limitations: This method is intended to liberate environmentally available metals. Silicate minerals are not solubilized. Some metals may be only partially recovered (matrix dependent), including Al, Ba, Be, Cr, S, Sr, Ti, Tl, V, W, and Zr. Elemental Sulfur may be poorly recovered by this method. Volatile forms of sulfur (e.g. sulfide, H2S) may be excluded if lost during sampling, storage, or digestion.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

MOISTURE-WT	Soil	% Moisture	CCME PHC in Soil - Tier 1 (mod)
XYLENES-SUM-CALC-	Soil	Sum of Xylene Isomer	CALCULATION
WT		Concentrations	

Total xylenes represents the sum of o-xylene and m&p-xylene.

*** ALS test methods may incorporate modifications from specified reference methods to improve performance.

Chain of Custody numbers:			
The last two letters of the abo	ve test code(s) indicate the labora	tory that performed analytical analysis for th	at test. Refer to the list below:
Laboratory Definition Code	Laboratory Location	Laboratory Definition Code	Laboratory Location
WT	ALS ENVIRONMENTAL - WAT ONTARIO, CANADA	ERLOO,	

GLOSSARY OF REPORT TERMS

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there.

mg/kg - milligrams per kilogram based on dry weight of sample

mg/kg wwt - milligrams per kilogram based on wet weight of sample

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight

mg/L - unit of concentration based on volume, parts per million.

< - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION. Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, fitness for a particular purpose, or non-infringement. ALS assumes no responsibility for errors or omissions in the information. Guideline limits are not adjusted for the hardness, pH or temperature of the sample (the most conservative values are used). Measurement uncertainty is not applied to test results prior to comparison with specified criteria values.

Workorder: L2287707

Report Date: 21-JUN-19

Page 1 of 12

Client: Kollaard Associates (Kemptville) 210 Prescott Street Unit 1 P.O. Box 189

Kemptville ON K0G 1J0

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
BTX-511-HS-WT	Soil							
Batch R4	669007							
WG3074537-4 Benzene	DUP	WG3074537-3 <0.0068	<0.0068	RPD-NA	ug/g	N/A	40	13-JUN-19
Ethylbenzene		<0.018	<0.018	RPD-NA	ug/g	N/A	40	13-JUN-19
m+p-Xylenes		<0.030	<0.030	RPD-NA	ug/g	N/A	40	13-JUN-19
o-Xylene		<0.020	<0.020	RPD-NA	ug/g	N/A	40	13-JUN-19
Toluene		<0.080	<0.080	RPD-NA	ug/g	N/A	40	13-JUN-19
WG3074537-2 Benzene	LCS		107.9		%		70-130	13-JUN-19
Ethylbenzene			104.7		%		70-130	13-JUN-19
m+p-Xylenes			102.3		%		70-130	13-JUN-19
o-Xylene			105.5		%		70-130	13-JUN-19
Toluene			105.6		%		70-130	13-JUN-19
WG3074537-1 Benzene	МВ		<0.0068		ug/g		0.0068	13-JUN-19
Ethylbenzene			<0.018		ug/g		0.018	13-JUN-19
m+p-Xylenes			<0.030		ug/g		0.03	13-JUN-19
o-Xylene			<0.020		ug/g		0.02	13-JUN-19
Toluene			<0.080		ug/g		0.08	13-JUN-19
Surrogate: 1,4-I	Difluorobenzene		108.5		%		50-140	13-JUN-19
Surrogate: 4-Br	omofluorobenzene		100.8		%		50-140	13-JUN-19
WG3074537-5	MS	L2287707-10						
Benzene			105.9		%		60-140	13-JUN-19
Ethylbenzene			108.5		%		60-140	13-JUN-19
m+p-Xylenes			100.5		%		60-140	13-JUN-19
o-Xylene			108.0		%		60-140	13-JUN-19
Ioluene			107.2		%		60-140	13-JUN-19
Batch R4 WG3074118-4	669621 DUP	WG3074118-3						
Benzene		<0.0068	<0.0068	RPD-NA	ug/g	N/A	40	13-JUN-19
Ethylbenzene		<0.018	<0.018	RPD-NA	ug/g	N/A	40	13-JUN-19
m+p-Xylenes		<0.030	<0.030	RPD-NA	ug/g	N/A	40	13-JUN-19
o-Xylene		<0.020	<0.020	RPD-NA	ug/g	N/A	40	13-JUN-19
Toluene		<0.080	<0.080	RPD-NA	ug/g	N/A	40	13-JUN-19
WG3074118-2 Benzene	LCS		108.5		%		70-130	13-JUN-19

Workorder: L2287707

Report Date: 21-JUN-19

Page 2 of 12

Client: Kollaard Associates (Kemptville) 210 Prescott Street Unit 1 P.O. Box 189 Kemptville ON K0G 1J0

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
BTX-511-HS-WT	Soil							
Batch R4	669621							
WG3074118-2	LCS		00.1		0/_		70 100	10 11 10
			99.1 99.1		/o %		70-130	13-JUN-19
			99.4		°∕_		70-130	13-JUN-19
Toluene			102.8		∕₀ %		70-130	13-JUN-19
WC2074119 1	MD		102.0		70		70-130	13-3011-19
Benzene	MD		<0.0068		ug/g		0.0068	13-JUN-19
Ethylbenzene			<0.018		ug/g		0.018	13-JUN-19
m+p-Xylenes			<0.030		ug/g		0.03	13-JUN-19
o-Xylene			<0.020		ug/g		0.02	13-JUN-19
Toluene			<0.080		ug/g		0.08	13-JUN-19
Surrogate: 1,4-I	Difluorobenzene		111.7		%		50-140	13-JUN-19
Surrogate: 4-Br	omofluorobenzene		94.7		%		50-140	13-JUN-19
WG3074118-5	MS	L2287573-8						
Benzene			111.4		%		60-140	13-JUN-19
Ethylbenzene			101.6		%		60-140	13-JUN-19
m+p-Xylenes			100.8		%		60-140	13-JUN-19
o-Xylene			101.3		%		60-140	13-JUN-19
Toluene			105.5		%		60-140	13-JUN-19
F1-HS-511-WT	Soil							
Batch R4	669007							
WG3074537-4	DUP	WG3074537-3	-E 0		uala	N1/A	00	
		<5.0	<5.0	RPD-NA	ug/g	N/A	30	13-JUN-19
F1 (C6-C10)	LCS		97.8		%		80-120	13IUN-19
WG3074537-1	MB						00 120	
F1 (C6-C10)			<5.0		ug/g		5	13-JUN-19
Surrogate: 3,4-I	Dichlorotoluene		102.4		%		60-140	13-JUN-19
WG3074537-6	MS	L2287707-13						
F1 (C6-C10)			76.5		%		60-140	13-JUN-19
Batch R4	669621							
WG3074118-4	DUP	WG3074118-3	-5.0		ua/a	N1/A	20	
	1.00	<0.0	<0.0	KPD-NA	uy/y	N/A	30	13-JUN-19
F1 (C6-C10)	LUS		101.5		%		80-120	13-JUN-19
WG3074118-1	МВ							

			Workorder:	L228770)7 F	Report Date: 2	21-JUN-19		Page 3 of 1	2
Client: Contact:	Kollaard J 210 Pres Kemptvill Dean Tat	Associates (Ke cott Street Unit e ON K0G 1J taryn	emptville) t 1 P.O. Box 189 l0							
Test		Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed	
F1-HS-511-WT		Soil								
Batch WG3074118 F1 (C6-C10	R4669621 -1 MB			<5.0		ug/g		5	13-JUN-19	
Surrogate: 3	3,4-Dichloro	toluene		104.9		%		60-140	13-JUN-19	
WG3074118 F1 (C6-C10)	-6 MS)		L2287594-5	96.2		%		60-140	13-JUN-19	
F2-F4-511-WT		Soil								
Batch	R4663964									
WG3072163	-3 DUP		WG3072163-	-5						
F2 (C10-C1)	6)		<10	<10	RPD-NA	ug/g	N/A	30	11-JUN-19	
F3 (C16-C3	4)		<50	<50	RPD-NA	ug/g	N/A	30	11-JUN-19	
F4 (C34-C5	0)		<50	<50	RPD-NA	ug/g	N/A	30	11-JUN-19	
F2 (C10-C1	-2 LCS 6)			108.5		%		80-120	11-JUN-19	
F3 (C16-C3	4)			107.7		%		80-120	11-JUN-19	
F4 (C34-C5	0)			107.0		%		80-120	11-JUN-19	
WG3072163	-1 MB			-10		ua/a		10		
F3 (C16-C3	4)			<50		ug/g		50	11-JUN-19	
F4 (C34-C5	-) ()			<50		ug/g		50	11-JUN-19	
Surrogate: 2	o) 2-Bromoben	zotrifluoride		<50 85.3		vg/g		60-140	11 1111 10	
WG3072163	-A MS	201111101100	WG3072163.	.5		/0		00 140	11-3011-13	
F2 (C10-C1	6)		WG3072103	112.9		%		60-140	11-JUN-19	
F3 (C16-C3-	4)			110.5		%		60-140	11-JUN-19	
F4 (C34-C5	0)			111.9		%		60-140	11-JUN-19	
F4G-ADD-511-W	νT	Soil								
Batch WG3074600	R4664138									
F4G-SG (GI	HH-Silica)			80.0		%		60-140	10-JUN-19	
WG3074600 F4G-SG (GI	-1 MB HH-Silica)			<250		ug/g		250	10-JUN-19	
MET-200.2-CCN	/IS-WT	Soil								
Batch	R4667606									
WG3075654	-2 CRM		WT-CANME	104 9		%		70 100		
Areania (Ac)				104.9 107 P		/o %		70-130	13-JUN-19	
Barium (Ra)	,			110.1		%		70-130	13-JUN-19	
Danum (Da)				110.1		/0		70-130	13-3014-19	

Workorder: L2287707

Report Date: 21-JUN-19

Page 4 of 12

Client: Kollaard Associates (Kemptville) 210 Prescott Street Unit 1 P.O. Box 189 Kemptville ON K0G 1J0

Contact: Dean Tataryn

_

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-200.2-CCMS-WT	Soil							
Batch R4667606								
WG3075654-2 CRM Beryllium (Be)		WT-CANME	T-TILL1 99.8		%		70-130	13-JUN-19
Boron (B)			2.6		mg/kg		0-8.2	13-JUN-19
Cadmium (Cd)			115.9		%		70-130	13-JUN-19
Chromium (Cr)			107.8		%		70-130	13-JUN-19
Cobalt (Co)			107.0		%		70-130	13-JUN-19
Copper (Cu)			110.6		%		70-130	13-JUN-19
Lead (Pb)			114.1		%		70-130	13-JUN-19
Molybdenum (Mo)			109.0		%		70-130	13-JUN-19
Nickel (Ni)			108.3		%		70-130	13-JUN-19
Selenium (Se)			0.34		mg/kg		0.11-0.51	13-JUN-19
Silver (Ag)			0.25		mg/kg		0.13-0.33	13-JUN-19
Thallium (TI)			0.129		mg/kg		0.077-0.18	13-JUN-19
Uranium (U)			103.8		%		70-130	13-JUN-19
Vanadium (V)			106.5		%		70-130	13-JUN-19
Zinc (Zn)			105.6		%		70-130	13-JUN-19
WG3075654-6 DUP		WG3075654	-5					
Antimony (Sb)		<0.10	<0.10	RPD-NA	ug/g	N/A	30	13-JUN-19
Arsenic (As)		1.66	1.65		ug/g	0.9	30	13-JUN-19
Barium (Ba)		36.4	36.1		ug/g	0.7	40	13-JUN-19
Beryllium (Be)		0.27	0.23		ug/g	16	30	13-JUN-19
Boron (B)		<5.0	<5.0	RPD-NA	ug/g	N/A	30	13-JUN-19
Cadmium (Cd)		0.047	0.039		ug/g	18	30	13-JUN-19
Chromium (Cr)		14.2	13.0		ug/g	8.6	30	13-JUN-19
Cobalt (Co)		4.07	3.86		ug/g	5.3	30	13-JUN-19
Copper (Cu)		8.50	8.09		ug/g	4.9	30	13-JUN-19
Lead (Pb)		4.50	4.23		ug/g	6.2	40	13-JUN-19
Molybdenum (Mo)		0.25	0.24		ug/g	6.2	40	13-JUN-19
Nickel (Ni)		9.11	8.46		ug/g	7.4	30	13-JUN-19
Selenium (Se)		<0.20	<0.20	RPD-NA	ug/g	N/A	30	13-JUN-19
Silver (Ag)		<0.10	<0.10	RPD-NA	ug/g	N/A	40	13-JUN-19
Thallium (TI)		0.071	0.063		ug/g	12	30	13-JUN-19
Uranium (U)		0.399	0.351		ug/g	13	30	13-JUN-19
Vanadium (V)		19.2	18.2		ug/g	5.8	30	13-JUN-19

Workorder: L2287707

Report Date: 21-JUN-19

Page 5 of 12

Workorder. E220

Client:	Kollaard Associates (Kemptville)
	210 Prescott Street Unit 1 P.O. Box 189
	Kemptville ON K0G 1J0

Test	Matrix Refere	ence Result	Qualifier	Units	RPD	Limit	Analyzed
MET-200.2-CCMS-WT	Soil						
Batch R4667606							
WG3075654-6 DUP Zinc (Zn)	WG3 22.1	075654-5 20.7		ug/g	6.4	30	13-JUN-19
WG3075654-4 LCS		110.0		0/		00,100	
Antimony (SD)		111.0		/0		80-120	13-JUN-19
Arsenic (As)		111.2		/0		80-120	13-JUN-19
Bandin (Ba)		100.7		/0		80-120	13-JUN-19
Bergillutti (Be)		102.7		%		80-120	13-JUN-19
		1101.1		%		80-120	13-JUN-19
Cadmium (Cd)		110.0		%		80-120	13-JUN-19
		108.4		%		80-120	13-JUN-19
Cobait (Co)		108.1		%		80-120	13-JUN-19
Copper (Cu)		106.3		%		80-120	13-JUN-19
Lead (Pb)		103.3		%		80-120	13-JUN-19
Molybdenum (Mo)		109.8		%		80-120	13-JUN-19
Nickel (Ni)		107.1		%		80-120	13-JUN-19
Selenium (Se)		108.0		%		80-120	13-JUN-19
Silver (Ag)		108.7		%		80-120	13-JUN-19
Thallium (TI)		100.8		%		80-120	13-JUN-19
Uranium (U)		102.6		%		80-120	13-JUN-19
Vanadium (V)		111.7		%		80-120	13-JUN-19
Zinc (Zn)		104.8		%		80-120	13-JUN-19
WG3075654-1 MB		~0.10		ma/ka		0.1	12 JUN 10
Arsenic (As)		<0.10		mg/kg		0.1	13-JUN-19
Barium (Ba)		<0.10		mg/kg		0.5	13-JUN-19
Beryllium (Be)		<0.10		mg/kg		0.1	13-JUN-19
Boron (B)		<5.0		ma/ka		5	13-JUN-19
Cadmium (Cd)		<0.020		mg/kg		0.02	13-JUN-19
Chromium (Cr)		<0.50		mg/kg		0.5	13-JUN-19
Cobalt (Co)		<0.10		ma/ka		0.1	13-JUN-19
Copper (Cu)		<0.50		ma/ka		0.5	13-JUN-19
Lead (Pb)		<0.50		ma/ka		0.5	13ILIN-19
Molybdenum (Mo)		<0.10		ma/ka		0.1	13ILIN-19
Nickel (Ni)		<0.50		ma/ka		0.5	13-11 IN-19
		-0.00					

Workorder: L2287707 Report Date: 21-JUN-19 Page 6 of 12 Kollaard Associates (Kemptville) Client: 210 Prescott Street Unit 1 P.O. Box 189 Kemptville ON K0G 1J0 Contact: Dean Tataryn Test Matrix Reference Result Qualifier Units RPD Limit Analyzed MET-200.2-CCMS-WT Soil R4667606 Batch WG3075654-1 MB Silver (Ag) < 0.10 0.1 mg/kg 13-JUN-19 Thallium (TI) < 0.050 mg/kg 0.05 13-JUN-19 0.05 Uranium (U) < 0.050 mg/kg 13-JUN-19 Vanadium (V) <0.20 mg/kg 0.2 13-JUN-19 2 Zinc (Zn) mg/kg <2.0 13-JUN-19 Batch R4668332 WG3075653-2 WT-CANMET-TILL1 CRM % Antimony (Sb) 109.4 70-130 13-JUN-19 Arsenic (As) % 110.5 70-130 13-JUN-19 Barium (Ba) 117.0 % 70-130 13-JUN-19 13-JUN-19 Beryllium (Be) 110.4 % 70-130 Boron (B) 3.5 mg/kg 0-8.2 13-JUN-19 Cadmium (Cd) 108.5 % 70-130 13-JUN-19 Chromium (Cr) 116.0 % 70-130 13-JUN-19 Cobalt (Co) 111.2 % 70-130 13-JUN-19 Copper (Cu) 111.3 % 70-130 13-JUN-19 Lead (Pb) 108.9 % 70-130 13-JUN-19 Molybdenum (Mo) 108.3 % 70-130 13-JUN-19 Nickel (Ni) % 112.9 70-130 13-JUN-19 Selenium (Se) 0.32 mg/kg 0.11-0.51 13-JUN-19 Silver (Ag) 0.26 mg/kg 0.13-0.33 13-JUN-19 Thallium (TI) 0.140 mg/kg 0.077-0.18 13-JUN-19 Uranium (U) 114.2 % 70-130 13-JUN-19 Vanadium (V) 116.0 % 70-130 13-JUN-19 Zinc (Zn) 112.3 % 70-130 13-JUN-19 WG3075653-6 DUP WG3075653-5 Antimony (Sb) 0.13 0.17 ug/g 23 30 13-JUN-19 Arsenic (As) 2.67 2.69 ug/g 1.0 30 13-JUN-19 Barium (Ba) 40.9 43.3 ug/g 5.7 40 13-JUN-19 Beryllium (Be) 0.33 0.35 ug/g 5.2 30 13-JUN-19 Boron (B) 7.6 7.8 3.3 30 ug/g 13-JUN-19 Cadmium (Cd) 0.141 0.155 ug/g 9.4 13-JUN-19 30 Chromium (Cr) 13.1 13.5 ug/g 3.4 30 13-JUN-19 Cobalt (Co) 4.20 4.34 ug/g 3.4 30 13-JUN-19

Workorder: L2287707

Report Date: 21-JUN-19

Page 7 of 12

Client: Kollaard Associates (Kemptville) 210 Prescott Street Unit 1 P.O. Box 189 Kemptville ON K0G 1J0

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-200.2-CCMS-WT	Soil							
Batch R4668332								
WG3075653-6 DUP		WG3075653-5						
Copper (Cu)		11.4	11.5		ug/g	0.8	30	13-JUN-19
Lead (Pb)		14.8	15.3		ug/g	3.8	40	13-JUN-19
Molybdenum (Mo)		0.39	0.35		ug/g	10	40	13-JUN-19
Nickel (Ni)		9.30	9.59		ug/g	3.0	30	13-JUN-19
Selenium (Se)		<0.20	<0.20	RPD-NA	ug/g	N/A	30	13-JUN-19
Silver (Ag)		<0.10	<0.10	RPD-NA	ug/g	N/A	40	13-JUN-19
Thallium (TI)		0.075	0.076		ug/g	0.8	30	13-JUN-19
Uranium (U)		0.508	0.479		ug/g	6.0	30	13-JUN-19
Vanadium (V)		22.4	23.3		ug/g	4.2	30	13-JUN-19
Zinc (Zn)		53.4	54.1		ug/g	1.3	30	13-JUN-19
WG3075653-4 LCS Antimony (Sb)			102.5		%		80-120	13-JUN-19
Arsenic (As)			99.7		%		80-120	13-JUN-19
Barium (Ba)			111.2		%		80-120	13-JUN-19
Beryllium (Be)			104.8		%		80-120	13-JUN-19
Boron (B)			92.3		%		80-120	13-JUN-19
Cadmium (Cd)			107.9		%		80-120	13-JUN-19
Chromium (Cr)			104.6		%		80-120	13-JUN-19
Cobalt (Co)			103.6		%		80-120	13-JUN-19
Copper (Cu)			103.3		%		80-120	13-JUN-19
Lead (Pb)			106.9		%		80-120	13-JUN-19
Molybdenum (Mo)			100.3		%		80-120	13-JUN-19
Nickel (Ni)			104.2		%		80-120	13-JUN-19
Selenium (Se)			99.8		%		80-120	13-JUN-19
Silver (Ag)			107.4		%		80-120	13-JUN-19
Thallium (TI)			103.7		%		80-120	13-JUN-19
Uranium (U)			107.6		%		80-120	13-JUN-19
Vanadium (V)			107.2		%		80-120	13-JUN-19
Zinc (Zn)			102.6		%		80-120	13-JUN-19
WG3075653-1 MB Antimony (Sb)			<0.10		mg/kg		0.1	13-JUN-19
Arsenic (As)			<0.10		mg/kg		0.1	13-JUN-19
Barium (Ba)			<0.50		mg/kg		0.5	13-JUN-19
Beryllium (Be)			<0.10		mg/kg		0.1	13-JUN-19

Workorder: L2287707

Report Date: 21-JUN-19

Page 8 of 12

Client: Kollaard Associates (Kemptville) 210 Prescott Street Unit 1 P.O. Box 189 Kemptville ON K0G 1J0

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-200.2-CCMS-WT	Soil							
Batch R4668332								
WG3075653-1 MB							_	
Boron (B)			<5.0		mg/kg		5	13-JUN-19
Cadmium (Cd)			<0.020		mg/kg		0.02	13-JUN-19
Chromium (Cr)			<0.50		mg/kg		0.5	13-JUN-19
Cobalt (Co)			<0.10		mg/kg		0.1	13-JUN-19
Copper (Cu)			<0.50		mg/kg		0.5	13-JUN-19
Lead (Pb)			<0.50		mg/kg		0.5	13-JUN-19
Molybdenum (Mo)			<0.10		mg/kg		0.1	13-JUN-19
Nickel (Ni)			<0.50		mg/kg		0.5	13-JUN-19
Selenium (Se)			<0.20		mg/kg		0.2	13-JUN-19
Silver (Ag)			<0.10		mg/kg		0.1	13-JUN-19
Thallium (TI)			<0.050		mg/kg		0.05	13-JUN-19
Uranium (U)			<0.050		mg/kg		0.05	13-JUN-19
Vanadium (V)			<0.20		mg/kg		0.2	13-JUN-19
Zinc (Zn)			<2.0		mg/kg		2	13-JUN-19
Batch R4670263								
WG3076159-2 CRM		WT-CANMET	-TILL1		0(
			101.5		%		70-130	14-JUN-19
Arsenic (As)			97.3		%		70-130	14-JUN-19
Barium (Ba)			105.6		%		70-130	14-JUN-19
Beryllium (Be)			97.0		%		70-130	14-JUN-19
Boron (B)			3.3		mg/kg		0-8.2	14-JUN-19
Cadmium (Cd)			96.0		%		70-130	14-JUN-19
Chromium (Cr)			103.2		%		70-130	14-JUN-19
Cobalt (Co)			98.1		%		70-130	14-JUN-19
Copper (Cu)			98.4		%		70-130	14-JUN-19
Lead (Pb)			96.6		%		70-130	14-JUN-19
Molybdenum (Mo)			99.8		%		70-130	14-JUN-19
Nickel (Ni)			100.5		%		70-130	14-JUN-19
Selenium (Se)			0.27		mg/kg		0.11-0.51	14-JUN-19
Silver (Ag)			0.22		mg/kg		0.13-0.33	14-JUN-19
Thallium (TI)			0.129		mg/kg		0.077-0.18	14-JUN-19
Uranium (U)			99.3		%		70-130	14-JUN-19
Vanadium (V)			104.2		%		70-130	14-JUN-19
Zinc (Zn)			100.6		%		70-130	14-JUN-19

Workorder: L2287707

Report Date: 21-JUN-19

Page 9 of 12

Kollaard Associates (Kemptville)

Client:	Kollaard Associates (Kemptville)
	210 Prescott Street Unit 1 P.O. Box 189
	Kemptville ON K0G 1J0

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-200.2-CCMS-WT	Soil							
Batch R4670263								
WG3076159-6 DUP		WG3076159-5						
Antimony (Sb)		0.21	0.20		ug/g	3.8	30	14-JUN-19
Arsenic (As)		6.52	6.44		ug/g	1.2	30	14-JUN-19
Barium (Ba)		97.7	96.7		ug/g	1.0	40	14-JUN-19
Beryllium (Be)		1.03	1.01		ug/g	1.6	30	14-JUN-19
Boron (B)		15.0	15.1		ug/g	0.5	30	14-JUN-19
Cadmium (Cd)		0.152	0.140		ug/g	8.7	30	14-JUN-19
Chromium (Cr)		30.4	30.2		ug/g	0.6	30	14-JUN-19
Cobalt (Co)		16.1	15.9		ug/g	1.3	30	14-JUN-19
Copper (Cu)		35.1	35.2		ug/g	0.5	30	14-JUN-19
Lead (Pb)		18.1	17.2		ug/g	4.6	40	14-JUN-19
Molybdenum (Mo)		0.72	0.65		ug/g	11	40	14-JUN-19
Nickel (Ni)		34.9	34.6		ug/g	0.9	30	14-JUN-19
Selenium (Se)		<0.20	<0.20	RPD-NA	ug/g	N/A	30	14-JUN-19
Silver (Ag)		<0.10	<0.10	RPD-NA	ug/g	N/A	40	14-JUN-19
Thallium (TI)		0.206	0.192		ug/g	7.0	30	14-JUN-19
Uranium (U)		0.821	0.782		ug/g	4.9	30	14-JUN-19
Vanadium (V)		43.4	42.8		ug/g	1.2	30	14-JUN-19
Zinc (Zn)		84.1	83.1		ug/g	1.1	30	14-JUN-19
WG3076159-4 LCS								
Antimony (Sb)			103.9		%		80-120	14-JUN-19
Arsenic (As)			98.6		%		80-120	14-JUN-19
Barium (Ba)			100.1		%		80-120	14-JUN-19
Beryllium (Be)			93.4		%		80-120	14-JUN-19
Boron (B)			85.8		%		80-120	14-JUN-19
Cadmium (Cd)			95.9		%		80-120	14-JUN-19
Chromium (Cr)			94.7		%		80-120	14-JUN-19
Cobalt (Co)			95.5		%		80-120	14-JUN-19
Copper (Cu)			94.2		%		80-120	14-JUN-19
Lead (Pb)			100.3		%		80-120	14-JUN-19
Molybdenum (Mo)			101.3		%		80-120	14-JUN-19
Nickel (Ni)			94.7		%		80-120	14-JUN-19
Selenium (Se)			97.5		%		80-120	14-JUN-19
Silver (Ag)			97.6		%		80-120	14-JUN-19

Workorder: L2287707

Report Date: 21-JUN-19

Page 10 of 12

Client: Kollaard Associates (Kemptville) 210 Prescott Street Unit 1 P.O. Box 189 Kemptville ON K0G 1J0

Contact: Dean Tataryn

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-200.2-CCMS-WT	Soil							
Batch R4670263								
WG3076159-4 LCS Thallium (TI)			97.6		%		80-120	14-JUN-19
Uranium (U)			99.9		%		80-120	14-JUN-19
Vanadium (V)			98.7		%		80-120	14-JUN-19
Zinc (Zn)			93.9		%		80-120	14-JUN-19
WG3076159-1 MB Antimony (Sb)			<0.10		mg/kg		0.1	14-JUN-19
Arsenic (As)			<0.10		mg/kg		0.1	14-JUN-19
Barium (Ba)			<0.50		mg/kg		0.5	14-JUN-19
Beryllium (Be)			<0.10		mg/kg		0.1	14-JUN-19
Boron (B)			<5.0		mg/kg		5	14-JUN-19
Cadmium (Cd)			<0.020		mg/kg		0.02	14-JUN-19
Chromium (Cr)			<0.50		mg/kg		0.5	14-JUN-19
Cobalt (Co)			<0.10		mg/kg		0.1	14-JUN-19
Copper (Cu)			<0.50		mg/kg		0.5	14-JUN-19
Lead (Pb)			<0.50		mg/kg		0.5	14-JUN-19
Molybdenum (Mo)			<0.10		mg/kg		0.1	14-JUN-19
Nickel (Ni)			<0.50		mg/kg		0.5	14-JUN-19
Selenium (Se)			<0.20		mg/kg		0.2	14-JUN-19
Silver (Ag)			<0.10		mg/kg		0.1	14-JUN-19
Thallium (TI)			<0.050		mg/kg		0.05	14-JUN-19
Uranium (U)			<0.050		mg/kg		0.05	14-JUN-19
Vanadium (V)			<0.20		mg/kg		0.2	14-JUN-19
Zinc (Zn)			<2.0		mg/kg		2	14-JUN-19
MOISTURE-WT	Soil							
Batch R4662268								
WG3072193-3 DUP % Moisture		L2287721-4 17.5	17.8		%	1.8	20	10-JUN-19
WG3072193-2 LCS % Moisture			99.7		%		90-110	10-JUN-19
WG3072193-1 MB % Moisture			<0.10		%		0.1	10-JUN-19
Batch B4663180								
WG3072238-3 DUP		L2287933-3						
% Moisture		16.4	16.7		%	2.2	20	10-JUN-19

WG3072238-2 LCS

Quality Control Report

			Workorder:	L2287707	7	Report Date: 2	21-JUN-19		Page 11 of 12
Client:	Kollaard A 210 Presc Kemptville	Associates (Ke ott Street Unit o ON K0G 1J	emptville) t 1 P.O. Box 189 0						
Contact:	Dean Tata	aryn							
Test		Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MOISTURE-WT Batch	R4663189	Soil							
WG3072238-2 % Moisture	2 LCS			98.6		%		90-110	10-JUN-19
WG3072238- % Moisture	1 MB			<0.10		%		0.1	10-JUN-19

Client:	Kollaard Associates (Kemptville)
	210 Prescott Street Unit 1 P.O. Box 189
	Kemptville ON K0G 1J0
Contact:	Dean Tataryn

Legend:

Limit	ALS Control Limit (Data Quality Objectives)
DUP	Duplicate
RPD	Relative Percent Difference
N/A	Not Available
LCS	Laboratory Control Sample
SRM	Standard Reference Material
MS	Matrix Spike
MSD	Matrix Spike Duplicate
ADE	Average Desorption Efficiency
MB	Method Blank
IRM	Internal Reference Material
CRM	Certified Reference Material
CCV	Continuing Calibration Verification
CVS	Calibration Verification Standard
LCSD	Laboratory Control Sample Duplicate

Sample Parameter Qualifier Definitions:

Qualifier	Description
RPD-NA	Relative Percent Difference Not Available due to result(s) being less than detection limit.

Hold Time Exceedances:

All test results reported with this submission were conducted within ALS recommended hold times.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

<f2-< th=""><th>→</th><th>—_F3—→←_F4—</th><th>•</th></f2-<>	→	—_F3—→←_F4—	•			
nC10	nC16	nC34	nC50			
174°C	287°C	481°C	575⁰C			
346°F	549°F	898°F	1067ºF			
Gasoline 🔸 🛛 🔶			or Oils/Lube Oils/Grease			
	← Diesel/Jet Fuels →					

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.

<f2-< th=""><th>→</th><th>F3→ ←F4</th><th>▶</th><th></th></f2-<>	→	F3→ ←F4	▶			
nC10	nC16	nC34	nC50			
174°C	287⁰C	481°C	575°C			
346°F	549°F	898°F	1067ºF			
Gasoline 🔸 🛛 🗧			or Oils/Lube Oils/Grease			
	← Diesel/Jet Fuels →					

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.

-FZ [−]						
nC10	nC16	nC34	nC50			
174°C	287ºC	481°C	575°C			
346°F	549°F	898°F	1067°F			
Gasoline -> 🔶 Mot		- Mote	or Oils/Lube Oils/Grease 🗕 🔸			
	← Diesel/Jet Fuels →					

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.

$ F2 \rightarrow \bullet F3 \rightarrow \bullet F4 \rightarrow $			
nC10	nC16	nC34	nC50
174°C	287°C	481°C	575°C
346°F	549°F	898°F	1067°F
Gasoline 🔶 🛛 🖪		← Mot	or Oils/Lube Oils/Grease
← Diesel/Jet Fuels →			

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.

<f2-< th=""><th>→ ←</th><th>F3▶◀F4</th><th>▶</th></f2-<>	→ ←	F3▶◀F4	▶										
nC10	nC16	nC34	nC50										
174°C	287⁰C	481°C	575⁰C										
346°F	549°F	898°F	1067°F										
Gasolin	ie →	← Mot	or Oils/Lube Oils/Grease										
	← Diesel/Jet Fuels →												

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.

←F2-	→	F3→∢F4	•
nC10	nC16	nC34	nC50
174°C	287⁰C	481°C	575⁰C
346°F	549°F	898°F	1067ºF
Gasolin	e →	← Mot	or Oils/Lube Oils/Grease 🔶 🕨
	-Diesel/	Jet Fuels →	

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.

<f2-< th=""><th>→</th><th>—_F3—→←_F4—</th><th>*</th></f2-<>	→	—_F3—→←_F4—	*
nC10	nC16	nC34	nC50
174°C	287⁰C	481°C	575°C
346°F	549°F	898°F	1067°F
Gasolin	ie →	🔶 Mot	or Oils/Lube Oils/Grease 🗕 🔸
	-Diesel/	Jet Fuels →	

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.

<f2-< th=""><th>→</th><th>F3→ ←F4</th><th>▶</th><th></th></f2-<>	→	F3→ ←F4	▶	
nC10	nC16	nC34	nC50	
174°C	287⁰C	481°C	575°C	
346°F	549°F	898°F	1067ºF	
Gasolin	e →	< Mot	or Oils/Lube Oils/Grease	
	-Diesel/	Jet Fuels →		

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.

<f2-< th=""><th>→</th><th>—F3→→ F4—</th><th>▶</th></f2-<>	→	—F3 → → F4—	▶
nC10	nC16	nC34	nC50
174°C	287⁰C	481°C	575⁰C
346°F	549°F	898°F	1067°F
Gasolin	e →	← Mot	or Oils/Lube Oils/Grease
•	-Diesel/J	et Fuels →	

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.

<f2-< th=""><th>→ ←</th><th>F3▶◀F4</th><th>▶</th></f2-<>	→ ←	F3▶◀F4	▶										
nC10	nC16	nC34	nC50										
174°C	287⁰C	481°C	575⁰C										
346°F	549°F	898°F	1067°F										
Gasolin	ie →	← Mot	or Oils/Lube Oils/Grease										
	← Diesel/Jet Fuels →												

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.

<f2-< th=""><th>→</th><th>F3→ ←F4</th><th>▶</th><th></th></f2-<>	→	F3→ ←F4	▶	
nC10	nC16	nC34	nC50	
174°C	287⁰C	481°C	575°C	
346°F	549°F	898°F	1067ºF	
Gasolin	e →	< Mot	or Oils/Lube Oils/Grease	
	-Diesel/	Jet Fuels →		

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.

<f2-< th=""><th>→ ←</th><th>F3▶◀F4</th><th>•</th></f2-<>	→ ←	F3▶◀F4	•
nC10	nC16	nC34	nC50
174°C	287⁰C	481°C	575⁰C
346°F	549°F	898°F	1067°F
Gasolin	e →	← Mote	or Oils/Lube Oils/Grease 🔶 🕨
	-Diesel/	Jet Fuels →	

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.

<f2-< th=""><th>→ ←</th><th>—_F3—→←_F4—</th><th>▶</th><th></th></f2-<>	→ ←	—_F3—→←_F4—	▶										
nC10	nC16	nC34	nC50										
174°C	287°C	481°C	575°C										
346°F	549°F	898°F	1067°F										
Gasolin	ie 🔶	← Mot	tor Oils/Lube Oils/Grease										
	← Diesel/Jet Fuels →												

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.

Chain of Custody (COC) / Analytical **Request Form**

COC Number: 17 -

Page

of

Canada Toll Free: 1 800 668 9878

Benert T-	Contect and company name below will appear on t	Report Format / Distribution				ı I	Select Sen	ice Leve	Befow	- Conta	ict your	AM to	confirm	n all E&	P TATs	(surcharg	jes may	apply)	
Compositi	Kollaard Associates (27196)		Select Report Fo	ormat: I PDF 1.		D (DIGITAL)	Regular [R] Standard TAT if received by 3 pm - business days - no surcharges apply													
Contract:	Dean Tataryn		Quality Control (3	ΝC	1 Bu	siness	day [E1 - 100)%]				
Dhono:	613 860 0923 ext 225	·····	Compare Results	s to Criteria on Report - I	provide details below	w if box checked	Same Day, Weekend or Staf						itatutor	y holida	iy [E2 -:	200%				
rhone.	Company address below will appear on the final repo	ort	Select Distributi	on: 🗌 EMAIL		FAX	🖁 🛔 2 day [P2-50%]									L L				
Street'	210 Prescott Street, Unit 1 P.O. Box 189		Email 1 or Fax	dean@kollaard.ca			Date and Time Required for all E&P TATs:													
City/Province	Kemptville. Ontario		Email 2				For tes	sts that can not	t be perform	ed accord	ling to th	e service	level sel	ected, yo	u will be o	ontacted.				
Postal Code:	K0G 1J0		Email 3				Analysis Request												_	
Invoice To	Same as Report To			Invoice Dis	tribution			Indi	cate Filtere	ed (F), Pro	eserved	(P) or Fil	Itered an	d Prese	rved (F/P) below			etai	
	Copy of Invoice with Report YES NO		Select Invoice D	Distribution: 🔲 EMA		FAX													l P	
Company:			Email 1 or Fax	mary@kollaard.ca								Γ							Ţ	
Contact:			Email 2]	ান্দ্র 🗋				1							de	
	Project Information		Oil	and Gas Required	Fields (client	use)] Ę	न्न											Ş	
ALS Account #	#/Quote #: Q71021		AFE/Cost Center:		PO#] ²												sep	<u>ه</u>
Job #: 190	0361		Major/Minor Code:		Routing Code:		Ö	3											plea	l ä
PO / AFE:			Requisitioner:				Ŕ	6										4) sn	1
LSD:			Location:		-		J₹											호	ar l	Ň
ALS Lab Wor	rk Order # (lab use only): L2287707	7 RD	ALS Contact:	Melanie M.	Sampler:		vity (KOI	TAK X		F1-F4								LES ON	e is haz	ER OF (
ALS Sample #	Sample Identification and/	or Coordinates		Date	Time		Tosi	2 Z	1 1	λ.								Ā	đ	E
(iab use only)	(This description will appea	ar on the report)		(dd-mmm-yy)	(hh:mm)	Campie Type	Ŝ							ø.				<u> </u>		Ţ
	BH7 - 552 - 2'-4'			06-14-19		Soll			<u> </u>											
	Q117 - 555- 81-101			1		Soil		$\overline{\mathbf{N}}$		ノ										
	0/12 555 - 2'- 10'					6.1				7										
	BHS - 55 - 10					5.1		X	t h	/				- †		-				T
	HH3- JS - 15 - 17					Sw.	+				-	+	┝╼╌┼						1	+
	19H4 - 222 - 2 -4									<u>/</u>							╞╴┠╸			+
	BH4- 554 - 6'-81					<u> </u>		μ					$\left \right $					_	╋	
	BH5 - 552- A-4					Seil	┥		1 1	∠,∟	_								╂—	
	BHS - 555 - 8'-10'					Soil													┶	_
	QUT-553 - 41-61		· · · · · · · · · · · · · · · · · · ·			Soil														
	R11 - 155 - 8'-10'	1				SA 1		V.	1											
	DUG 55 5 10	7				Sout	1 -			./										
	BHI-JJ2 - J-T		,		· · · · · · · · · · · · · · · · · · ·	507		1.1	╋╌╋			-								
	1BH7-553-4-6			<u> </u>	l				I	SAMPL	E CO		N AS	RECE	VED (la	b use d	only)			-
Drinking	g Water (DW) Samples ¹ (client use)	cial Instructions / Sp	ecity Criteria to : (elec	add on report by clic ctronic COC only)	king on the drop	-down list below	Froz	zen			SIF	Obser	vations	;)	'es			٩o		
Are samples tai	ken from a Regulated DW System?	TABLE 3	- Fullag	& Commer	-cial-(ne	- petabl	Ice I Coo	Packs	lice Cu d	bes 📮	Cus	tody se	eal inta	ct	Yes		1	10		
Are samples for	r human consumption/ use?	0 A ·		F		/		INIITIAI	COOLER	TEMPE	RATURE	S℃			FINA		R TEMPE	RATURE	s℃	
		J Keg Is	3/04	tine s	01/5		10	5.4						4.	2					
	SHIPMENT RELEASE (client use)		- / / -	INITIAL SHIPMEN	T RECEPTION	(lab use only)					FINA	L SHIP	MENT	RECE	PTION	(lab us	se only)			
Released by:	Tateum Date 7/19	Time:	Received by:	e D.6 bus	Date: 07/0	G/19	Tim (O	e. So Re	ceived b	، ۱	R		Date U	lun)8/1	9		Tin [(10:): 0	3
DECER TO BAC	K PACE FOR AUS LOCATIONS AND SAMPLING INF	ORMATION		WHI	TE - LABORATO	RY COPY YE	LOW	- CLIENT CO	OPY										SEPT	f 2017 FRC

Failure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY. By the use of this form the user acknowledges and agrees with the Terms and Conditions as specified on the back page of the white - report copy.

1. If any water samples are taken from a Regulated Drinking Water (DW) System, please submit using an Authorized DW COC form.

Chain of Custody (COC) / Analytical Request Form

COC Number: 17 -

Page of

Canada Toll Free: 1 800 668 9878

	www.aisgiobal.com				(Distribution		r —	Salact	Sonvice			Conta	ct vour	AM to	confirm	m all f	ESP TAT	's (surc	harges	may a	(vlage	,
Report To	Contact and company name below will appe	ear on the final report		Report Format	/ Distribution		Regular IP1 Vstandard TAT if received by 3 pm - husiness days - no surcharges apply															
Company:	Kollaard Associates (27196)		Select Report Fo	ormat: 🔽 PDF		D (DIGITAL)		Reg	ular [R		anuaru		d Bu		n - Dusin	E33 00	1009/1					
Contact:	Dean Tataryn		Quality Control ((QC) Report with R		kiTY ∎ Days	4 day	102.05	%] ∐ %1 □		DEW	1 BU	SINGS	s day [i	EI-I	100 %]						
Phone:	613.860.0923, ext.225		Compare Results	compare Results to Criteria on Report - provide details below if box checked												게day [i 사기	22 -20	00%				
	Company address below will appear on the fina	al report	Select Distribution						i z day [P2-50%]								<u>//1</u>					
Street:	210 Prescott Street, Unit 1 P.O. Box 189		Email 1 or Fax	dean@kollaard.ca		Date and Time Required for all E&P TATs:																
City/Province:	Kemptville, Ontario		Email 2				For tes	ts that ca	n not be	performed	accord	ing to the	service	level se	lected, yo	ou will t	e contact	ed.				
Postal Code:	KOG 1J0		Email 3										Ana	lysis	Reque	st						
Invoice To	Same as Report To			Invoice Di	stribution	- ·			Indicate	Filtered	(F), Pre	served (P) or Fil	tered ar	nd Prese	rved (F	-/P) belov	<u> </u>			deta	
	Copy of Invoice with Report YES	NO	Select Invoice D	Distribution: 🔲 EM.] FAX										\rightarrow		_	┿┙		Ē	
Company:			Email 1 or Fax	mary@kollaard.ca	1		-							1							Ē	
Contact:			Email 2					20				1									ġ	
	Project Information		Oil	and Gas Require	d Fields (client i	use)	Ê														No.	
ALS Account	# / Quote #: Q71021		AFE/Cost Center:		PO#		ι. Έ	2													Ise	6
Job #:			Major/Minor Code:		Routing Code:		Ī	বিষ্ঠা												1	plea	Ϋ́
PO / AFE:			Requisitioner:				Ŕ	C												9) sn	1 A
LSD:			Location:				₹							1						호	ardo	No.
		1 03			Commission		Į₫.	2		7										No	haz.	15
ALS Lab Wo	rk Order # (lab use only): [228770	2/ RV	ALS Contact:	Melanie M.	Sampier:		₹													Ш Ш	ŝ	Ĭ
AI S Sample #	Sample Identification	and/or Coordinates	.	Date	Time	Sample Type	Tosi	A	•	X										Ā	a de	l S
(lab use only)	(This description will	appear on the report)		(dd-mmm-yy)	(hh:mm)	Sample Type	Ö			<u> </u>						$ \rightarrow $				Ś	s.	Įź
	R1/10 - 553 - 4'-	6'		16-16-19		Gil				1	X											
	DH10 = 55 5 = 1 =	0																				
		······									1									\square		
				· · · · · · · · · · · · · · · · · · ·				- +		-	+	+						-	+			\vdash
					· · · · · ·						+		-			-+	<u> </u>					┢
							_				_										┣—-	┣
						1															 	╞
		· · · · · · · · · · · · · · · · · · ·																				
							1	1 1														Γ
				+				┝──┨			-					+						
			· · · · · · · · · · · · · · · · · · ·					┨╌┥			-				·+				+		┣──	┢
							<u> </u>								┢━━━╋╋	 +			+	\vdash	┣—	╋
											1						\rightarrow		\downarrow		 	┢
																						L
		Special Instructions / S	pecify Criteria to	add on report by cli	icking on the drop	-down list below				S	AMPL	E CON	DITIO	N AS	RECE	VED	(lab us	e only))			_
Drinkin	g Water (DW) Samples¹ (client use)		(elec	ctronic COC only)	_		Froz	en				SIF	Obsen	vations	s Y	/es	Ц		No		ļ	
Are samples ta	ken from a Regulated DW System?	TOPIT	2 /	In + C	a. A. a	in l	ice F	Packs		ce Cube	s K	Cust	ody se	eal inta	act '	Yes			No		l	
	YES 🗋 NO	Indue	2-40	ren-L	ormine	27.)	Coo	ling Init	iated													
Are samples fo	r human consumption/ use?	A	1			72)		IN	ITIAL CO	OLER T	MPER	ATURE	s℃		<u> </u>	FI	NAL COO	LER TE	MPERAT	URES	°⊂	
	YES INO	O Keo	153/04	. +	Int 'Jul.	15	10	S G										<u> </u>				
	SHIPMENT RELEASE (client use	e) 7		INITIAL SHIPMEN	IT RECEPTION ((lab use only)						FINA	SHIP	MENT	RECE	EPTIC)N (lab	use or	nly)	т=:		
Released by:	A Bate: _	Time:	Received by:	DIL	Date:	n/,d	Time	م ج ^پ ۋ	Receiv	ved by:		18		Date	«]n	\wedge	5/19			Time		3
Len	1 avain un 11	19	1.2.57	N-DDI-C	10100		10	400	TCOP	,		<u>v</u>			JUN	<u> </u>	<u>// </u>			μŪ	SEPT :	2017 FRG

REFER TO BACK PAGE FOR ALC LOCATIONS AND SAMPLING INFORMATION WHITE - LABORATORY COPY YELLOW - CLIENT COPY Failure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY. By the use of this form the user acknowledges and agrees with the Terms and Conditions as specified on the back page of the while - report copy. 1. If any water samples are taken from a Regulated Drinking Water (DW) System, please submit using an Authorized DW COC form.

Kollaard Associates (Kemptville) ATTN: Dean Tataryn 210 Prescott Street Unit 1 P.O. Box 189 Kemptville ON K0G1J0 Date Received: 13- JUN- 19 Report Date: 27- JUN- 19 09:15 (MT) Version: FINAL REV. 2

Client Phone: 613-860-0923

Certificate of Analysis

Lab Work Order #: L2290715 Project P.O. #: NOT SUBMITTED Job Reference: 190361 C of C Numbers: Legal Site Desc:

Comments: Revised Criteria - Table 5 (Water)

Melanie Moshi Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 190 Colonnade Road, Unit 7, Ottawa, ON K2E 7 J5 Canada | Phone: +1 613 225 8279 | Fax: +1 613 225 2801 ALS CANADA LTD Part of the ALS Group An ALS Limited Company

Environmental 🐊

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

190361

ANALYTICAL GUIDELINE REPORT

L2290715 CONTD Page 2 of 5

27-JUN-19 09:15 (MT)

Sample Details Grouping Analyte	Result	Qualifier	DI	.L. Units Analyzed Guideline Limits						
					Analyzed		Guidein			
L2290715-1 BH5										
Sampled By: CLIENT on 11-JUN-19						#1	#2			
Matrix: WATER							""			
Dissolved Metals										
Dissolved Metals Filtration Location	FIELD			No Unit	17-JUN-19					
Antimony (Sb)-Dissolved	<1.0	DLHC	1.0	ug/L	17-JUN-19	20000	20000			
Arsenic (As)-Dissolved	<1.0	DLHC	1.0	ug/L	17-JUN-19	1900	1900			
Barium (Ba)-Dissolved	102	DLHC	1.0	ug/L	17-JUN-19	29000	29000			
Beryllium (Be)-Dissolved	<1.0	DLHC	1.0	ug/L	17-JUN-19	67	67			
Boron (B)-Dissolved	200	DLHC	100	ug/L	17-JUN-19	45000	45000			
Cadmium (Cd)-Dissolved	<0.050	DLHC	0.050	ug/L	17-JUN-19	2.7	2.7			
Chromium (Cr)-Dissolved	<5.0	DLHC	5.0	ug/L	17-JUN-19	810	810			
Cobalt (Co)-Dissolved	<1.0	DLHC	1.0	ug/L	17-JUN-19	66	66			
Copper (Cu)-Dissolved	2.2	DLHC	2.0	ug/L	17-JUN-19	87	87			
Lead (Pb)-Dissolved	<0.50	DLHC	0.50	ug/L	17-JUN-19	25	25			
Molybdenum (Mo)-Dissolved	7.08	DLHC	0.50	ug/L	17-JUN-19	9200	9200			
Nickel (Ni)-Dissolved	<5.0	DLHC	5.0	ug/L	17-JUN-19	490	490			
Selenium (Se)-Dissolved	<0.50	DLHC	0.50	ug/L	17-JUN-19	63	63			
Silver (Ag)-Dissolved	<0.50	DLHC	0.50	ug/L	17-JUN-19	1.5	1.5			
Sodium (Na)-Dissolved	473000	DLHC	500	ug/L	17-JUN-19	2300000	2300000			
Thallium (TI)-Dissolved	<0.10	DLHC	0.10	ug/L	17-JUN-19	510	510			
Uranium (U)-Dissolved	14.0	DLHC	0.10	ug/L	17-JUN-19	420	420			
Vanadium (V)-Dissolved	<5.0	DLHC	5.0	ug/L	17-JUN-19	250	250			
Zinc (Zn)-Dissolved	<10	DLHC	10	ug/L	17-JUN-19	1100	1100			
Volatile Organic Compounds										
Benzene	<0.50		0.50	ug/L	19-JUN-19	44	430			
Ethylbenzene	<0.50		0.50	ug/L	19-JUN-19	2300	2300			
Toluene	<0.50		0.50	ug/L	18-JUN-19	18000	18000			
o-Xylene	<0.30		0.30	ug/L	19-JUN-19					
m+p-Xylenes	<0.40		0.40	ug/L	19-JUN-19					
Xylenes (Total)	<0.50		0.50	ug/L	19-JUN-19	4200	4200			
Surrogate: 4-Bromofluorobenzene	98.1		70-130	%	18-JUN-19					
Surrogate: 1,4-Difluorobenzene	100.1		70-130	%	18-JUN-19					
	0.5		05							
F1 (C6-C10)	<25		25	ug/L	18-JUN-19	/50	/50			
F1-BIEX	<25		25	ug/L	19-JUN-19	/50	/50			
F2 (C10-C16)	<100		100	ug/L	14-JUN-19	150	150			
F3 (C16-C34)	<250		250	ug/L	14-JUN-19	500	500			
F4 (C34-C50)	<250		250	ug/L	14-JUN-19	500	500			
Total Hydrocarbons (C6-C50)	<370		370	Ug/L	19-JUN-19					
Surrogate: 2 Bromobonzetrifluorida			60 140	NO UTIL 0/	14-JUN-19					
Surrogate: 3 4-Dichlorotoluene	91.6		60-140	/0 0/_	14-JUN-19					
	51.0		00 140	/0	10 0011-13					
L2290715-2 BH6										
Sampled By: CLIENT on 11-JUN-19						#1	#0			
Matrix: WATER						<i>#</i> 1	#2			
Dissolved Metals										
Dissolved Metals Filtration Location	FIELD			No Unit	17-JUN-19					
Antimony (Sb)-Dissolved	<0.10		0.10	ug/L	17-JUN-19	20000	20000			

Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.
 Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

Ontario Regulation 153/04 - April 15, 2011 Standards = [Suite] - ON511/11-T5-WATER

#1: T5-Non-potable Ground Water (Coarse Soil)-All Types of Property Use #2: T5-Non-potable Ground Water (Fine Soil)-All Types of Property Use

190361

ANALYTICAL GUIDELINE REPORT

L2290715 CONTD Page 3 of 5

27-JUN-19 09:15 (MT)

Sample Details Grouping Analyte	Result	Qualifier	D.L.	Units	Analyzed		Guidelin	e Limits	
Sampled By: CLIENT on 11 JUN 19									
						#1	#2		
Matrix: WATER									
Dissolved Metals									
Arsenic (As)-Dissolved	1.69		0.10	ug/L	17-JUN-19	1900	1900		
Barium (Ba)-Dissolved	264		0.10	ug/L	17-JUN-19	29000	29000		
Beryllium (Be)-Dissolved	<0.10		0.10	ug/L	17-JUN-19	67	67		
Boron (B)-Dissolved	132		10	ug/L	17-JUN-19	45000	45000		
Cadmium (Cd)-Dissolved	<0.010		0.010	ug/L	17-JUN-19	2.7	2.7		
Chromium (Cr)-Dissolved	<0.50		0.50	ug/L	17-JUN-19	810	810		
Cobalt (Co)-Dissolved	1.88		0.10	ug/L	17-JUN-19	66	66		
Copper (Cu)-Dissolved	0.85		0.20	ug/L	17-JUN-19	87	87		
Lead (Pb)-Dissolved	<0.050		0.050	ug/L	17-JUN-19	25	25		
Molybdenum (Mo)-Dissolved	4.01		0.050	ug/L	17-JUN-19	9200	9200		
Nickel (Ni)-Dissolved	1.94		0.50	ug/L	17-JUN-19	490	490		
Selenium (Se)-Dissolved	0.125		0.050	ug/L	17-JUN-19	63	63		
Silver (Ag)-Dissolved	<0.050		0.050	ug/L	17-JUN-19	1.5	1.5		
Sodium (Na)-Dissolved	253000	DLHC	500	ug/L	17-JUN-19	2300000	2300000		
Thallium (TI)-Dissolved	<0.010		0.010	ug/L	17-JUN-19	510	510		
Uranium (U)-Dissolved	8.13		0.010	ug/L	17-JUN-19	420	420		
Vanadium (V)-Dissolved	1.15		0.50	ug/L	17-JUN-19	250	250		
Zinc (Zn)-Dissolved	3.2		1.0	ug/L	17-JUN-19	1100	1100		
Volatile Organic Compounds									
Benzene	<0.50		0.50	ug/L	18-JUN-19	44	430		
Ethylbenzene	<0.50		0.50	ug/L	18-JUN-19	2300	2300		
Toluene	<0.50		0.50	ug/L	18-JUN-19	18000	18000		
o-Xylene	<0.30		0.30	ug/L	18-JUN-19				
m+p-Xylenes	<0.40		0.40	ug/L	18-JUN-19				
Xylenes (Total)	<0.50		0.50	ug/L	18-JUN-19	4200	4200		
Surrogate: 4-Bromofluorobenzene	97.4		70-130	%	18-JUN-19				
Surrogate: 1,4-Difluorobenzene	99.9		70-130	%	18-JUN-19				
Hydrocarbons									
F1 (C6-C10)	<25		25	ug/L	18-JUN-19	750	750		
F1-BTEX	<25		25	ug/L	18-JUN-19	750	750		
F2 (C10-C16)	<100		100	ug/L	14-JUN-19	150	150		
F3 (C16-C34)	<250		250	ug/L	14-JUN-19	500	500		
F4 (C34-C50)	<250		250	ug/L	14-JUN-19	500	500		
Total Hydrocarbons (C6-C50)	<370		370	ug/L	18-JUN-19				
Chrom. to baseline at nC50	YES			No Unit	14-JUN-19				
Surrogate: 2-Bromobenzotrifluoride	91.9		60-140	%	14-JUN-19				
Surrogate: 3,4-Dichlorotoluene	81.5		60-140	%	18-JUN-19				

Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.
 Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

Ontario Regulation 153/04 - April 15, 2011 Standards = [Suite] - ON511/11-T5-WATER

#1: T5-Non-potable Ground Water (Coarse Soil)-All Types of Property Use #2: T5-Non-potable Ground Water (Fine Soil)-All Types of Property Use

_

DLHC Detection Lin Methods Listed (if applicable ALS Test Code M 3TX-511-HS-WT V PTX is determined by apply	mit Raised: I	Dilution required due to high conce	ntration of test analyte(s)		
Aethods Listed (if applicable) ALS Test Code N 3TX-511-HS-WT V PTX is determined by apply	le).				
ALS Test Code M 3TX-511-HS-WT V					
BTX-511-HS-WT V	Matrix	Test Description	Method Reference***		
PTV is determined by analy-	Water	BTEX by Headspace	SW846 8260 (511)		
	zing by head	dspace-GC/MS.			
⁻ 1-F4-511-CALC-WT V	Water	F1-F4 Hydrocarbon Calculated Parameters	CCME CWS-PHC, Pub #1310, Dec 2001-L		
Analytical methods used for	r analysis of	CCME Petroleum Hydrocarbons h	ave been validated and comply with the Reference Method for the CWS PHO		
In cases where results for bo the gravimetric heavy hydrod In samples where BTEX and been subtracted from F1.	ooth F4 and I ocarbons car d F1 were a	F4G are reported, the greater of the not be added to the C6 to C50 hyo nalyzed, F1-BTEX represents a v	e two results must be used in any application of the CWS PHC guidelines an drocarbons. alue where the sum of Benzene, Toluene, Ethylbenzene and total Xylenes ha		
In samples where PAHs, F2 represents a result where th Fluoranthene, Indeno(1,2,3-	2 and F3 wei ne sum of Be -cd)pyrene, I	re analyzed, F2-Naphth represents enzo(a)anthracene, Benzo(a)pyren Phenanthrene, and Pyrene has be	the result where Naphthalene has been subtracted from F2. F3-PAH e, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Dibenzo(a,h)anthracene, en subtracted from F3.		
Unless otherwise qualified, t 1. All extraction and analysis 2. Instrument performance s 3. Linearity of gasoline respo	the following is holding tim showing response within	g quality control criteria have been nes were met. ponse factors for C6 and C10 withi 15% throughout the calibration ra	met for the F1 hydrocarbon range: n 30% of the response factor for toluene.		
 Unless otherwise qualified, the following quality control criteria have been met for the F2-F4 hydrocarbon ranges: 1. All extraction and analysis holding times were met. 2. Instrument performance showing C10, C16 and C34 response factors within 10% of their average. 3. Instrument performance showing the C50 response factor within 30% of the average of the C10, C16 and C34 response factors. 4. Linearity of diesel or motor oil response within 15% throughout the calibration range. 					
Fraction F1 is determined by	y analyzing	by headspace-GC/FID.			
Analysis conducted in accor Protection Act (July 1, 2011) must be reported).	rdance with), unless a s	the Protocol for Analytical Methods subset of the Analytical Test Group	s Used in the Assessment of Properties under Part XV.1 of the Environmenta (ATG) has been requested (the Protocol states that all analytes in an ATG		
⁻ 2-F4-511-WT V	Water	F2-F4-O.Reg 153/04 (July 2011)	EPA 3511/CCME Tier 1		
Petroleum Hydrocarbons (F2 per the Reference Method f	2-F4 fraction for the Cana	ns) are extracted from water using ada-Wide Standard for Petroleum F	a hexane micro-extraction technique. Instrumental analysis is by GC-FID, a Hydrocarbons in Soil Tier 1 Method, CCME, 2001.		
Analysis conducted in accorr Protection Act (July 1, 2011) must be reported).	rdance with), unless a s	the Protocol for Analytical Methods subset of the Analytical Test Group	s Used in the Assessment of Properties under Part XV.1 of the Environmenta (ATG) has been requested (the Protocol states that all analytes in an ATG		
/ET-D-UG/L-MS-WT V	Water	Diss. Metals in Water by ICPMS (ug/L)	EPA 200.8		
The metal constituents of a	non-acidifie	d sample that pass through a mem	brane filter prior to ICP/MS analysis.		
Analysis conducted in accorr Protection Act (July 1, 2011) must be reported).	rdance with), unless a s	the Protocol for Analytical Methods subset of the Analytical Test Group	s Used in the Assessment of Properties under Part XV.1 of the Environmenta (ATG) has been requested (the Protocol states that all analytes in an ATG		
(YLENES-SUM-CALC- V NT	Water	Sum of Xylene Isomer Concentrations	CALCULATION		
Total xylenes represents the	e sum of o-x	ylene and m&p-xylene.			
* ALS test methods may inco	orporate mo	difications from specified reference	e methods to improve performance.		
Chain of Custody numbers:	:				

Laboratory Demnition Code	Laboratory Location	Laboratory Definition Code	Laboratory Location
WT	ALS ENVIRONMENTAL - WATERLOO, ONTARIO, CANADA		

Reference Information

GLOSSARY OF REPORT TERMS

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there. mg/kg - milligrams per kilogram based on dry weight of sample mg/kg wwt - milligrams per kilogram based on wet weight of sample mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight mg/L - unit of concentration based on volume, parts per million.

< - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION. Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, fitness for a particular purpose, or non-infringement. ALS assumes no responsibility for errors or omissions in the information. Guideline limits are not adjusted for the hardness, pH or temperature of the sample (the most conservative values are used). Measurement uncertainty is not applied to test results prior to comparison with specified criteria values.

Workorder: L2290715

Report Date: 27-JUN-19

Page 1 of 6

Kollaard Associates (Kemptville) Client: 210 Prescott Street Unit 1 P.O. Box 189

Kemptville ON K0G 1J0 Dean Tataryn

Contact:

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
BTX-511-HS-WT	Water							
Batch R4672	577							
WG3079535-4 D	UP	WG3079535-3	3					
Benzene		<0.50	<0.50	RPD-NA	ug/L	N/A	30	19-JUN-19
Ethylbenzene		<0.50	<0.50	RPD-NA	ug/L	N/A	30	19-JUN-19
m+p-Xylenes		<0.40	<0.40	RPD-NA	ug/L	N/A	30	19-JUN-19
o-Xylene		<0.30	<0.30	RPD-NA	ug/L	N/A	30	19-JUN-19
Toluene		<0.50	<0.50	RPD-NA	ug/L	N/A	30	19-JUN-19
WG3079535-1 LO Benzene	CS		98.3		%		70-130	18-JUN-19
Ethylbenzene			99.6		%		70-130	18-JUN-19
m+p-Xylenes			96.1		%		70-130	18-JUN-19
o-Xylene			98.4		%		70-130	18-JUN-19
Toluene			99.2		%		70-130	18-JUN-19
WG3079535-2 M Benzene	В		<0.50		ua/L		0.5	18II IN-19
Ethylbenzene			<0.50		ug/L		0.5	18-JUN-19
m+p-Xylenes			<0.40		ug/L		0.4	18-JUN-19
o-Xylene			<0.30		ug/L		0.3	18-JUN-19
Toluene			<0.50		ug/L		0.5	18-JUN-19
Surrogate: 1,4-Diflu	orobenzene		100.1		%		70-130	18-JUN-19
Surrogate: 4-Bromo	ofluorobenzene		95.3		%		70-130	18-JUN-19
WG3079535-5 M	s	WG3079535-	3					
Benzene			97.7		%		50-140	18-JUN-19
Ethylbenzene			95.9		%		50-140	18-JUN-19
m+p-Xylenes			92.4		%		50-140	18-JUN-19
o-Xylene			96.6		%		50-140	18-JUN-19
Toluene			96.2		%		50-140	18-JUN-19
Batch R4672	916							
WG3080171-4 D Benzene	UP	WG3080171- <0.50	3 <0.50	RPD-NA	ug/L	N/A	30	19-JUN-19
Ethylbenzene		<0.50	<0.50	RPD-NA	ug/L	N/A	30	19-JUN-19
m+p-Xylenes		<0.40	<0.40	RPD-NA	ug/L	N/A	30	19-JUN-19
o-Xylene		<0.30	<0.30	RPD-NA	ug/L	N/A	30	19-JUN-19
WG3080171-1 LO	cs		95.4		%		70-130	18- II IN-19
Ethylbenzene			99.7		%		70-130	18-JUN-19

Workorder: L2290715

Report Date: 27-JUN-19

Page 2 of 6

Client: Kollaard Associates (Kemptville) 210 Prescott Street Unit 1 P.O. Box 189 Kemptville ON K0G 1J0

Contact: Dean Tataryn

Test		Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
BTX-511-HS-WT		Water							
Batch R4 WG3080171-1	672916 LCS					~			
m+p-Xylenes				93.5		%		70-130	18-JUN-19
o-xyiene				98.1		%		70-130	18-JUN-19
WG3080171-2 Benzene	МВ			<0.50		ug/L		0.5	18-JUN-19
Ethylbenzene				<0.50		ug/L		0.5	18-JUN-19
m+p-Xylenes				<0.40		ug/L		0.4	18-JUN-19
o-Xylene				<0.30		ug/L		0.3	18-JUN-19
WG3080171-5	MS		WG3080171-3						
Benzene				94.5		%		50-140	19-JUN-19
Ethylbenzene				98.9		%		50-140	19-JUN-19
m+p-Xylenes				93.8		%		50-140	19-JUN-19
o-Xylene				97.4		%		50-140	19-JUN-19
F1-HS-511-WT		Water							
Batch R4	672577								
WG3079535-4	DUP		WG3079535-3	. -					
F1 (C6-C10)			<25	<25	RPD-NA	ug/L	N/A	30	18-JUN-19
WG3079535-1 F1 (C6-C10)	LCS			82.6		%		80-120	18-JUN-19
WG3079535-2 F1 (C6-C10)	МВ			<25		ug/L		25	18-JUN-19
Surrogate: 3,4-I	Dichloroto	luene		101.1		%		60-140	18-JUN-19
WG3079535-5	MS		WG3079535-3						
F1 (C6-C10)				83.1		%		60-140	18-JUN-19
F2-F4-511-WT		Water							
Batch R4	669840								
WG3076331-2	LCS			100.0		24			
F2 (C10-C16)				102.6		%		70-130	13-JUN-19
F3 (C16-C34)				101.4		%		70-130	13-JUN-19
F4 (C34-C50)				99.9		%		70-130	13-JUN-19
WG3076331-1 F2 (C10-C16)	МВ			<100		ug/L		100	13-JUN-19
F3 (C16-C34)				<250		ug/L		250	13-JUN-19
F4 (C34-C50)				<250		ug/L		250	13-JUN-19
Surrogate: 2-Br	omobenzo	otrifluoride		83.9		%		60-140	13-JUN-19

MET-D-UG/L-MS-WT

Workorder: L2290715

Report Date: 27-JUN-19

Page 3 of 6

Kollaard Associates (Kemptville) 210 Prescott Street Unit 1 P.O. Box 189

Kemptville ON K0G 1J0

Contact: Dean Tataryn

Client:

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-D-UG/L-MS-WT	Water							
Batch R46719	987							
WG3078898-4 DU	JP	WG3078898-	-3					
Antimony (Sb)-Disso	blved	<1.0	<1.0	RPD-NA	ug/L	N/A	20	17-JUN-19
Arsenic (As)-Dissolv	ved	<1.0	<1.0	RPD-NA	ug/L	N/A	20	17-JUN-19
Barium (Ba)-Dissolv	ed	102	100		ug/L	2.1	20	17-JUN-19
Beryllium (Be)-Disso	olved	<1.0	<1.0	RPD-NA	ug/L	N/A	20	17-JUN-19
Boron (B)-Dissolved		200	190		ug/L	3.2	20	17-JUN-19
Cadmium (Cd)-Diss	olved	<0.050	<0.050	RPD-NA	ug/L	N/A	20	17-JUN-19
Chromium (Cr)-Diss	olved	<5.0	<5.0	RPD-NA	ug/L	N/A	20	17-JUN-19
Cobalt (Co)-Dissolve	ed	<1.0	<1.0	RPD-NA	ug/L	N/A	20	17-JUN-19
Copper (Cu)-Dissolv	ved	2.2	2.2		ug/L	0.6	20	17-JUN-19
Lead (Pb)-Dissolved	I	<0.50	<0.50	RPD-NA	ug/L	N/A	20	17-JUN-19
Molybdenum (Mo)-D	Dissolved	7.08	7.19		ug/L	1.6	20	17-JUN-19
Nickel (Ni)-Dissolved	d	<5.0	<5.0	RPD-NA	ug/L	N/A	20	17-JUN-19
Selenium (Se)-Disso	olved	<0.50	<0.50	RPD-NA	ug/L	N/A	20	17-JUN-19
Silver (Ag)-Dissolved	d	<0.50	<0.50	RPD-NA	ug/L	N/A	20	17-JUN-19
Sodium (Na)-Dissolv	ved	473000	469000		ug/L	0.9	20	17-JUN-19
Thallium (TI)-Dissolv	ved	<0.10	<0.10	RPD-NA	ug/L	N/A	20	17-JUN-19
Uranium (U)-Dissolv	ved	14.0	14.0		ug/L	0.0	20	17-JUN-19
Vanadium (V)-Disso	lved	<5.0	<5.0	RPD-NA	ug/L	N/A	20	17-JUN-19
Zinc (Zn)-Dissolved		<10	<10	RPD-NA	ug/L	N/A	20	17-JUN-19
WG3078898-2 LC	S							
Antimony (Sb)-Disso	blved		93.1		%		80-120	17-JUN-19
Arsenic (As)-Dissolv	ved		98.7		%		80-120	17-JUN-19
Barium (Ba)-Dissolv	ed		99.0		%		80-120	17-JUN-19
Beryllium (Be)-Disso	olved		96.7		%		80-120	17-JUN-19
Boron (B)-Dissolved			96.8		%		80-120	17-JUN-19
Cadmium (Cd)-Diss	olved		93.2		%		80-120	17-JUN-19
Chromium (Cr)-Diss	olved		97.9		%		80-120	17-JUN-19
Cobalt (Co)-Dissolve	ed		96.2		%		80-120	17-JUN-19
Copper (Cu)-Dissolv	ved		97.1		%		80-120	17-JUN-19
Lead (Pb)-Dissolved	1		99.8		%		80-120	17-JUN-19
Molybdenum (Mo)-D	Dissolved		96.4		%		80-120	17-JUN-19
Nickel (Ni)-Dissolved	d		95.5		%		80-120	17-JUN-19
Selenium (Se)-Disso	olved		101.3		%		80-120	17-JUN-19

Workorder: L2290715

Report Date: 27-JUN-19

Page 4 of 6

Client: Kollaard Associates (Kemptville) 210 Prescott Street Unit 1 P.O. Box 189 Kemptville ON K0G 1J0

Contact: Dean Tataryn

Test Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-D-UG/L-MS-WT Water							
Batch R4671987							
WG3078898-2 LCS							
Silver (Ag)-Dissolved		94.6		%		80-120	17-JUN-19
Sodium (Na)-Dissolved		101.1		%		80-120	17-JUN-19
Thallium (TI)-Dissolved		97.6		%		80-120	17-JUN-19
Uranium (U)-Dissolved		99.1		%		80-120	17-JUN-19
Vanadium (V)-Dissolved		99.6		%		80-120	17-JUN-19
Zinc (Zn)-Dissolved		95.0		%		80-120	17-JUN-19
WG3078898-1 MB Antimony (Sb)-Dissolved		<0.10		ug/L		0.1	17-JUN-19
Arsenic (As)-Dissolved		<0.10		ug/L		0.1	17-JUN-19
Barium (Ba)-Dissolved		<0.10		ug/L		0.1	17-JUN-19
Beryllium (Be)-Dissolved		<0.10		ug/L		0.1	17-JUN-19
Boron (B)-Dissolved		<10		ug/L		10	17-JUN-19
Cadmium (Cd)-Dissolved		<0.0050		ug/L		0.005	17-JUN-19
Chromium (Cr)-Dissolved		<0.50		ug/L		0.5	17-JUN-19
Cobalt (Co)-Dissolved		<0.10		ug/L		0.1	17-JUN-19
Copper (Cu)-Dissolved		<0.20		ug/L		0.2	17-JUN-19
Lead (Pb)-Dissolved		<0.050		ug/L		0.05	17-JUN-19
Molybdenum (Mo)-Dissolved		<0.050		ug/L		0.05	17-JUN-19
Nickel (Ni)-Dissolved		<0.50		ug/L		0.5	17-JUN-19
Selenium (Se)-Dissolved		<0.050		ug/L		0.05	17-JUN-19
Silver (Ag)-Dissolved		<0.050		ug/L		0.05	17-JUN-19
Sodium (Na)-Dissolved		<50		ug/L		50	17-JUN-19
Thallium (TI)-Dissolved		<0.010		ug/L		0.01	17-JUN-19
Uranium (U)-Dissolved		<0.010		ug/L		0.01	17-JUN-19
Vanadium (V)-Dissolved		<0.50		ug/L		0.5	17-JUN-19
Zinc (Zn)-Dissolved		<1.0		ug/L		1	17-JUN-19
WG3078898-5 MS Antimony (Sb)-Dissolved	WG3078898-6	91 4		%		70-130	17- II IN-19
Arsenic (As)-Dissolved		103.8		%		70-130	17-00N-19
Barium (Ba)-Dissolved		N/A	MS-B	%		70-100	17-00N-19
Bervllium (Be)-Dissolved		105.1	NO D	%		-	17-00N-19
Boron (B)-Dissolved		N/A	MS-R	%		-	17- II IN-10
Cadmium (Cd)-Dissolved		89.3		%		70-130	17- II IN-19
Chromium (Cr)-Dissolved		100.9		%		70-130	17-JUN-19

Workorder: L2290715

Report Date: 27-JUN-19

Page 5 of 6

Client: Kollaard Associates (Kemptville) 210 Prescott Street Unit 1 P.O. Box 189

Kemptville ON K0G 1J0

Contact: Dean Tataryn

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-D-UG/L-MS-WT	Water							
Batch R467198	7							
WG3078898-5 MS		WG3078898-6	5					
Cobalt (Co)-Dissolved			92.2		%		70-130	17-JUN-19
Copper (Cu)-Dissolve	d		89.6		%		70-130	17-JUN-19
Lead (Pb)-Dissolved			88.0		%		70-130	17-JUN-19
Molybdenum (Mo)-Dis	solved		104.0		%		70-130	17-JUN-19
Nickel (Ni)-Dissolved			89.1		%		70-130	17-JUN-19
Selenium (Se)-Dissolv	ved		108.4		%		70-130	17-JUN-19
Silver (Ag)-Dissolved			74.1		%		70-130	17-JUN-19
Sodium (Na)-Dissolve	d		N/A	MS-B	%		-	17-JUN-19
Thallium (TI)-Dissolve	d		88.5		%		70-130	17-JUN-19
Uranium (U)-Dissolve	d		N/A	MS-B	%		-	17-JUN-19
Vanadium (V)-Dissolv	ed		107.3		%		70-130	17-JUN-19
Zinc (Zn)-Dissolved			89.9		%		70-130	17-JUN-19

Client:	Kollaard Associates (Kemptville)
	210 Prescott Street Unit 1 P.O. Box 189
	Kemptville ON K0G 1J0
Contact:	Dean Tataryn

Legend:

Limit	ALS Control Limit (Data Quality Objectives)
DUP	Duplicate
RPD	Relative Percent Difference
N/A	Not Available
LCS	Laboratory Control Sample
SRM	Standard Reference Material
MS	Matrix Spike
MSD	Matrix Spike Duplicate
ADE	Average Desorption Efficiency
MB	Method Blank
IRM	Internal Reference Material
CRM	Certified Reference Material
CCV	Continuing Calibration Verification
CVS	Calibration Verification Standard
LCSD	Laboratory Control Sample Duplicate

Sample Parameter Qualifier Definitions:

Qualifier	Description
MS-B	Matrix Spike recovery could not be accurately calculated due to high analyte background in sample.
RPD-NA	Relative Percent Difference Not Available due to result(s) being less than detection limit.

Hold Time Exceedances:

All test results reported with this submission were conducted within ALS recommended hold times.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

nC10	nC16	nC34	nC50		
174°C	287°C	481°C	575⁰C		
346°F	549°F	898°F	1067°F		
Gasoline → Moto			or Oils/Lube Oils/Grease 🔶 🕨		
◄	← Diesel/Jet Fuels →				

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.

	nero	1004	1000				
174°C	287°C	481°C	575°C				
346°F	549°F	898°F	1067°F				
Gasolin	Gasoline						
<	-Diesel/Jet	Fuels →					

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.

Chain of Custody (COC) / Analytical **Request Form**

Canada Toll Free: 1 800 668 9878

COC Number: 17 -

of

www.alsglobal.com Report To Contact and company name below will appear on the final report Report Format / L ------ Level Below - Contact your AM to confirm all E&P TATs (surcharges may apply) Kollaard Associates (27196) Company: Select Report Format: PDF 🗹 EXCEL 🗌 EDD (DIGITAL) Regular [R] Standard TAT if received by 3 pm - business days - no surcharges apply Contact: Dean Tataryn Quality Control (QC) Report with Report I YES INO 4 day [P4-20%] 1 Business day [E1 - 100%] Phone: 613.860.0923, ext.225 Compare Results to Criteria on Report - provide details below if box checked 3 day [P3-25%] Same Day, Weekend or Statutory holiday [E2 -200% Company address below will appear on the final report \square Select Distribution: EMAIL MAIL FAX 2 day [P2-50%] (Laboratory opening fees may apply)] Street: 210 Prescott Street, Unit 1 P.O. Box 189 Email 1 or Fax dean@kollaard.ca Date and Time Required for all E&P TATs: dd-mmm-yy hh:mm City/Province: Kemptville, Ontario Email 2 For tests that can not be performed according to the service level selected, you will be contacted Postal Code: K0G 1J0 Email 3 **Analysis Request** Invoice To Same as Report To YES NO Invoice Distribution Indicate Filtered (F), Preserved (P) or Filtered and Preserved (F/P) below detai Copy of Invoice with Report YES NO Select Invoice Distribution: 🗌 EMAIL 📋 MAIL 🦳 FAX further Company: Email 1 or Fax mary@kollaard.ca Subdivision-Chem (KOLLAARD-SDCHEM-W Subdivision-Micro (KOLLAARD-SDMICRO-W Contact: Email 2 Sample is hazardous (please provide Project Information Oil and Gas Required Fields (client use) (KOLLAARD-CORR-WT) ALS Account # / Quote #: Q71021 AFE/Cost Center; PO# Job #: 190301 Major/Minor Code: Routing Code: CONTAINERS PO / AFE: Requisitioner: LSD: SAMPLES ON HOLD Location: ALS Lab Work Order # (lab use only): ALS Contact: Melanie M. Sampler: BTEX / F1-F4 ĥ Corrosivity NUMBER ALS Sample # Sample Identification and/or Coordinates Date Time Metals (lab use only) Sample Type (This description will appear on the report) (dd-mmm-yy) (hh:mm) BH 5 11/06/19 X Nater \sim X М Special Instructions / Specify Criteria to add on report by clicking on the drop-down list below SAMPLE CONDITION AS RECEIVED (lab use only) Drinking Water (DW) Samples¹ (client use) (electronic COC only) Frozen SIF Observations Yes No Are samples taken from a Regulated DW System? Table 3 - Full depth Ice Packs 🔲 Ice Cubes 🔲 Custody seal intact - Commercial (not potable) Yes No YES NO Cooling Initiated Are samples for human consumption/ use? INIITIAL COOLER TEMPERATURES °C FINAL COOLER TEMPERATURES °C 0 Reg 153/04 ZNYES ∏ NO 17.5 12.2 SHIPMENT RELEASE (client use) **INITIAL SHIPMENT RECEPTION (lab use only)** FINAL SHIPMENT RECEPTION (lab use only) Rele Date: Time: Received by: Time: 1019 Received by: Date: R Time: Nabbine FNC 0 12.1UN 19 1001

PAGE FOR ALS LOCATIONS AND SAMPLING INFORMATION

WHITE - LABORATORY COPY YELLOW - CLIENT COPY all portions of this form may delay analysis. Please fill in this form LEGIBLY. By the use of this form the user acknowledges and agrees with the Terms and Conditions as specified on the back page of the white - report copy

ter samples are taken from a Regulated Drinking Water (DW) System, please submit using an Authorized DW COC form.

Kollaard Associates (Kemptville) ATTN: Dean Tataryn 210 Prescott Street Unit 1 P.O. Box 189 Kemptville ON K0G1J0 Date Received: 14- JUN- 19 Report Date: 27- JUN- 19 09:17 (MT) Version: FINAL REV. 2

Client Phone: 613-860-0923

Certificate of Analysis

Lab Work Order #: L2292370 Project P.O. #: NOT SUBMITTED Job Reference: 190361 C of C Numbers: Legal Site Desc:

Comments: Revised Criteria - Table 5 (Water)

Melanie Moshi Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 190 Colonnade Road, Unit 7, Ottawa, ON K2E 7J5 Canada | Phone: +1 613 225 8279 | Fax: +1 613 225 2801 ALS CANADA LTD Part of the ALS Group An ALS Limited Company

Environmental 🐊

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

190361

Sample Details

ANALYTICAL GUIDELINE REPORT

L2292370 CONTD Page 2 of 5

27-JUN-19 09:17 (MT)

Grouping Analyte	Result	Qualifier	D.L.	Units	Analyzed		Guidelir	ne Limits	
L 2292370-1 BH1									
Sampled By: CLIENT on 14- ILIN-19									
Matrix: WATER						#1	#2		
Mainx. WATER									
Dissolved Metals									
Dissolved Metals Filtration Location	FIELD			No Unit	17-JUN-19				
Antimony (Sb)-Dissolved	<1.0	DLHC	1.0	ug/L	17-JUN-19	20000	20000		
Arsenic (As)-Dissolved	<1.0	DLHC	1.0	ug/L	17-JUN-19	1900	1900		
Barium (Ba)-Dissolved	343	DLHC	1.0	ug/L	17-JUN-19	29000	29000		
Beryllium (Be)-Dissolved	<1.0	DLHC	1.0	ug/L	17-JUN-19	67	67		
Boron (B)-Dissolved	120	DLHC	100	ug/L	17-JUN-19	45000	45000		
Cadmium (Cd)-Dissolved	0.090	DLHC	0.050	ug/L	17-JUN-19	2.7	2.7		
Chromium (Cr)-Dissolved	<5.0	DLHC	5.0	ug/L	17-JUN-19	810	810		
Cobalt (Co)-Dissolved	5.9	DLHC	1.0	ug/L	17-JUN-19	66	66		
Copper (Cu)-Dissolved	<2.0	DLHC	2.0	ug/L	17-JUN-19	87	87		
Lead (Pb)-Dissolved	<0.50	DLHC	0.50	ug/L	17-JUN-19	25	25		
Molybdenum (Mo)-Dissolved	2.34	DLHC	0.50	ug/L	17-JUN-19	9200	9200		
Nickel (Ni)-Dissolved	7.4	DLHC	5.0	ug/L	17-JUN-19	490	490		
Selenium (Se)-Dissolved	<0.50	DLHC	0.50	ug/L	17-JUN-19	63	63		
Silver (Ag)-Dissolved	<0.50	DLHC	0.50	ug/L	17-JUN-19	1.5	1.5		
Sodium (Na)-Dissolved	536000	DLHC	500	ug/L	17-JUN-19	2300000	2300000		
Thallium (TI)-Dissolved	<0.10	DLHC	0.10	ug/L	17-JUN-19	510	510		
Uranium (U)-Dissolved	4.98	DLHC	0.10	ug/L	17-JUN-19	420	420		
Vanadium (V)-Dissolved	<5.0	DLHC	5.0	ug/L	17-JUN-19	250	250		
Zinc (Zn)-Dissolved	<10	DLHC	10	ug/L	17-JUN-19	1100	1100		
Volatile Organic Compounds									
Benzene	<0.50		0.50	ug/L	21-JUN-19	44	430		
Ethylbenzene	<0.50		0.50	ug/L	21-JUN-19	2300	2300		
Toluene	<0.50		0.50	ug/L	21-JUN-19	18000	18000		
o-Xylene	<0.30		0.30	ug/L	21-JUN-19				
m+p-Xylenes	<0.40		0.40	ug/L	21-JUN-19				
Xylenes (Total)	<0.50		0.50	ug/L	21-JUN-19	4200	4200		
Surrogate: 4-Bromofluorobenzene	101.4		70-130	%	21-JUN-19				
Surrogate: 1,4-Difluorobenzene	101.0		70-130	%	21-JUN-19				
Hydrocarbons									
F1 (C6-C10)	<25		25	ug/L	21-JUN-19	750	750		
F1-BTEX	<25		25	ug/L	21-JUN-19	750	750		
F2 (C10-C16)	<100		100	ug/L	18-JUN-19	150	150		
F3 (C16-C34)	<250		250	ug/L	18-JUN-19	500	500		
F4 (C34-C50)	<250		250	ug/L	18-JUN-19	500	500		
Total Hydrocarbons (C6-C50)	<370		370	ug/L	21-JUN-19				
Chrom. to baseline at nC50	YES			No Unit	18-JUN-19				
Surrogate: 2-Bromobenzotrifluoride	98.4		60-140	%	18-JUN-19				
Surrogate: 3,4-Dichlorotoluene	89.3		60-140	%	21-JUN-19				
L2292370-2 BH3									
Sampled By: CLIENT on 14-JUN-19									
Matrix: WATER						#1	#2		
Dissolved Metals									
Dissolved Metals Filtration Location				No L Init	17. INI-10				
Antimony (Sb)-Dissolved	<1.0	DLHC	1.0	ug/L	17-JUN-19	20000	20000		

Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.
 Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

Ontario Regulation 153/04 - April 15, 2011 Standards = [Suite] - ON511/11-T5-WATER

#1: T5-Non-potable Ground Water (Coarse Soil)-All Types of Property Use #2: T5-Non-potable Ground Water (Fine Soil)-All Types of Property Use

190361

ANALYTICAL GUIDELINE REPORT

L2292370 CONTD Page 3 of 5

27-JUN-19 09:17 (MT)

Sample Details Grouping Analyte	Result	Qualifier	D.L.	Units	Analvzed		Guidelin	e Limits	
Sampled By: CLIENT on 14 JUN 19									
Matrix WATED						#1	#2		
Matrix: WATER									
Dissolved Metals									
Arsenic (As)-Dissolved	1.1	DLHC	1.0	ug/L	17-JUN-19	1900	1900		
Barium (Ba)-Dissolved	213	DLHC	1.0	ug/L	17-JUN-19	29000	29000		
Beryllium (Be)-Dissolved	<1.0	DLHC	1.0	ug/L	17-JUN-19	67	67		
Boron (B)-Dissolved	330	DLHC	100	ug/L	17-JUN-19	45000	45000		
Cadmium (Cd)-Dissolved	<0.050	DLHC	0.050	ug/L	17-JUN-19	2.7	2.7		
Chromium (Cr)-Dissolved	<5.0	DLHC	5.0	ug/L	17-JUN-19	810	810		
Cobalt (Co)-Dissolved	1.2	DLHC	1.0	ug/L	17-JUN-19	66	66		
Copper (Cu)-Dissolved	<2.0	DLHC	2.0	ug/L	17-JUN-19	87	87		
Lead (Pb)-Dissolved	<0.50	DLHC	0.50	ug/L	17-JUN-19	25	25		
Molybdenum (Mo)-Dissolved	13.1	DLHC	0.50	ug/L	17-JUN-19	9200	9200		
Nickel (Ni)-Dissolved	6.1	DLHC	5.0	ug/L	17-JUN-19	490	490		
Selenium (Se)-Dissolved	<0.50	DLHC	0.50	ug/L	17-JUN-19	63	63		
Silver (Ag)-Dissolved	<0.50	DLHC	0.50	ug/L	17-JUN-19	1.5	1.5		
Sodium (Na)-Dissolved	832000	DLHC	500	ug/L	17-JUN-19	2300000	2300000		
Thallium (TI)-Dissolved	<0.10	DLHC	0.10	ug/L	17-JUN-19	510	510		
Uranium (U)-Dissolved	9.38	DLHC	0.10	ug/L	17-JUN-19	420	420		
Vanadium (V)-Dissolved	<5.0	DLHC	5.0	ug/L	17-JUN-19	250	250		
Zinc (Zn)-Dissolved	<10	DLHC	10	ug/L	17-JUN-19	1100	1100		
Volatile Organic Compounds									
Benzene	<0.50	OWP	0.50	ug/L	21-JUN-19	44	430		
Ethylbenzene	<0.50	OWP	0.50	ug/L	21-JUN-19	2300	2300		
Toluene	<0.50	OWP	0.50	ug/L	21-JUN-19	18000	18000		
o-Xylene	0.44	OWP	0.30	ug/L	21-JUN-19				
m+p-Xylenes	0.60	OWP	0.40	ug/L	21-JUN-19				
Xylenes (Total)	1.04		0.50	ug/L	21-JUN-19	4200	4200		
Surrogate: 4-Bromofluorobenzene	101.0		70-130	%	21-JUN-19				
Surrogate: 1,4-Difluorobenzene	100.5		70-130	%	21-JUN-19				
Hydrocarbons									
F1 (C6-C10)	<25	OWP	25	ug/L	21-JUN-19	750	750		
F1-BTEX	<25		25	ug/L	21-JUN-19	750	750		
F2 (C10-C16)	190		100	ug/L	18-JUN-19	*150	*150		
F3 (C16-C34)	<250		250	ug/L	18-JUN-19	500	500		
F4 (C34-C50)	<250		250	ug/L	18-JUN-19	500	500		
Total Hydrocarbons (C6-C50)	<370		370	ug/L	21-JUN-19				
Chrom. to baseline at nC50	YES		00 1 10	No Unit	18-JUN-19				
Surrogate: 2-Bromobenzotrifluoride	85.2		60-140	%	18-JUN-19				
Surrogate: 3,4-Dichlorotoluene	89.4		60-140	%	21-JUN-19				

Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.
 Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

Ontario Regulation 153/04 - April 15, 2011 Standards = [Suite] - ON511/11-T5-WATER

#1: T5-Non-potable Ground Water (Coarse Soil)-All Types of Property Use #2: T5-Non-potable Ground Water (Fine Soil)-All Types of Property Use

Sample Parameter Qualifier key listed:

Qualifier	Description									
OWP	Organic water s substances in v	rganic water sample contained visible sediment (must be included as part of analysis). Measured concentrations of organic ubstances in water can be biased high due to presence of sediment.								
DLHC	Detection Limit	Detection Limit Raised: Dilution required due to high concentration of test analyte(s).								
Methods Liste	d (if applicable)	:								
ALS Test Code	e Ma	trix Tes	st Description	Method Reference***						
BTX-511-HS-W	/T Wa	ter BTI	EX by Headspace	SW846 8260 (511)						

BTX is determined by analyzing by headspace-GC/MS.

F1-F4-511-CALC-WT	Water	F1-F4 Hydrocarbon Calculated	CCME CWS-PHC, Pub #1310, Dec 2001-L
		Parameters	

Analytical methods used for analysis of CCME Petroleum Hydrocarbons have been validated and comply with the Reference Method for the CWS PHC.

In cases where results for both F4 and F4G are reported, the greater of the two results must be used in any application of the CWS PHC guidelines and the gravimetric heavy hydrocarbons cannot be added to the C6 to C50 hydrocarbons. In samples where BTEX and F1 were analyzed, F1-BTEX represents a value where the sum of Benzene, Toluene, Ethylbenzene and total Xylenes has

In samples where BIEX and F1 were analyzed, F1-BIEX represents a value where the sum of Benzene, Toluene, Ethylbenzene and total Xylenes has been subtracted from F1.

In samples where PAHs, F2 and F3 were analyzed, F2-Naphth represents the result where Naphthalene has been subtracted from F2. F3-PAH represents a result where the sum of Benzo(a)anthracene, Benzo(a)pyrene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Dibenzo(a,h)anthracene, Fluoranthene, Indeno(1,2,3-cd)pyrene, Phenanthrene, and Pyrene has been subtracted from F3.

Unless otherwise qualified, the following quality control criteria have been met for the F1 hydrocarbon range:

1. All extraction and analysis holding times were met.

2. Instrument performance showing response factors for C6 and C10 within 30% of the response factor for toluene.

3. Linearity of gasoline response within 15% throughout the calibration range.

Unless otherwise qualified, the following quality control criteria have been met for the F2-F4 hydrocarbon ranges:

1. All extraction and analysis holding times were met.

2. Instrument performance showing C10, C16 and C34 response factors within 10% of their average.

3. Instrument performance showing the C50 response factor within 30% of the average of the C10, C16 and C34 response factors.

4. Linearity of diesel or motor oil response within 15% throughout the calibration range.

F1-HS-511-WT Water F1-O.Reg 153/04 (July 2011) E3398/CCME TIER 1-HS

Fraction F1 is determined by analyzing by headspace-GC/FID.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

F2-F4-511-WT Water F2-F4-O.Reg 153/04 (July 2011) EPA 3511/CCME Tier 1

Petroleum Hydrocarbons (F2-F4 fractions) are extracted from water using a hexane micro-extraction technique. Instrumental analysis is by GC-FID, as per the Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil Tier 1 Method, CCME, 2001.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

MET-D-UG/L-MS-WT Water Diss. Metals in Water by ICPMS EPA 200.8 (ug/L)

The metal constituents of a non-acidified sample that pass through a membrane filter prior to ICP/MS analysis.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported). (YLENES-SUM-CALC- Water Sum of Xylene Isomer CALCULATION

 XYLENES-SUM-CALC Water
 Sum of Xylene Isomer
 C.

 WT
 Concentrations
 Concentrations
 C.

Total xylenes represents the sum of o-xylene and m&p-xylene.

*** ALS test methods may incorporate modifications from specified reference methods to improve performance.

Chain of Custody numbers:

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Reference Information

Laboratory Definition Code	Laboratory Location	Laboratory Definition Code	Laboratory Location
WT	ALS ENVIRONMENTAL - WATERLOO, ONTARIO, CANADA	,	
GLOSSARY OF REPORT T	ERMS		
Surrogates are compounds applicable tests, surrogates objectives for surrogates are mg/kg - milligrams per kilogi mg/kg wwt - milligrams per ki mg/kg lwt - milligrams per ki mg/L - unit of concentration	that are similar in behaviour to target anal, are added to samples prior to analysis as a listed there. "am based on dry weight of sample kilogram based on wet weight of sample logram based on lipid-adjusted weight based on volume, parts per million.	yte(s), but that do not normally occ a check on recovery. In reports tha	ur in environmental samples. For at display the D.L. column, laboratory

< - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION. Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, fitness for a particular purpose, or non-infringement. ALS assumes no responsibility for errors or omissions in the information. Guideline limits are not adjusted for the hardness, pH or temperature of the sample (the most conservative values are used). Measurement uncertainty is not applied to test results prior to comparison with specified criteria values.

Workorder: L2292370

Report Date: 27-JUN-19

Page 1 of 5

Client: Kollaard Associates (Kemptville) 210 Prescott Street Unit 1 P.O. Box 189 Kemptville ON K0G 1J0

Contact: Dean Tataryn

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
BTX-511-HS-WT	Water							
Batch R4	680814							
WG3082589-4	DUP	WG3082589-3						
Benzene		<0.50	<0.50	RPD-NA	ug/L	N/A	30	21-JUN-19
Ethylbenzene		<0.50	<0.50	RPD-NA	ug/L	N/A	30	21-JUN-19
m+p-Xylenes		<0.40	<0.40	RPD-NA	ug/L	N/A	30	21-JUN-19
o-Xylene		<0.30	<0.30	RPD-NA	ug/L	N/A	30	21-JUN-19
Toluene		<0.50	<0.50	RPD-NA	ug/L	N/A	30	21-JUN-19
WG3082589-1 Benzene	LCS		96.9		%		70-130	21-JUN-19
Ethylbenzene			95.6		%		70-130	21-JUN-19
m+p-Xylenes			91.4		%		70-130	21-JUN-19
o-Xylene			94.6		%		70-130	21-JUN-19
Toluene			97.1		%		70-130	21-JUN-19
WG3082589-2	МВ							
Benzene			<0.50		ug/L		0.5	21-JUN-19
Ethylbenzene			<0.50		ug/L		0.5	21-JUN-19
m+p-Xylenes			<0.40		ug/L		0.4	21-JUN-19
o-Xylene			<0.30		ug/L		0.3	21-JUN-19
Toluene			<0.50		ug/L		0.5	21-JUN-19
Surrogate: 1,4-I	Difluorobenzene		99.5		%		70-130	21-JUN-19
Surrogate: 4-Br	omofluorobenzene		98.1		%		70-130	21-JUN-19
WG3082589-5 Benzene	MS	WG3082589-3	94.8		%		E0 140	21 11 10
Ethylbenzene			94.0		°∕_		50-140	21-JUN-19
			94.9 91 0		/o 0/_		50-140	21-JUN-19
			91.0		/o 0/_		50-140	21-JUN-19
Toluene			94.9		/o 0/_		50-140	21-JUN-19
F1-HS-511-WT	Water		35.0		70		50-140	21-JUN-19
Batch B4	680814							
WG3082589-4	DUP	WG3082589-3						
F1 (C6-C10)		<25	<25	RPD-NA	ug/L	N/A	30	21-JUN-19
WG3082589-1	LCS							
F1 (C6-C10)			104.0		%		80-120	21-JUN-19
WG3082589-2 F1 (C6-C10)	МВ		<25		ug/L		25	21-JUN-19
Surrogate: 3,4-I	Dichlorotoluene		98.4		%		60-140	21-JUN-19
WG3082589-5	MS	WG3082589-3						

Client: Kollaard Associates (Kemptville) 210 Prescott Street Unit 1 P.O. Box 189 Kemptville ON K0G 1J0 Contact: Dean Tataryn Test Matrix Reference Result Qualifier Units RPD Limit Analyzed F1-HS-511-WT Water Batch R4680814 WG3082589-3 F1 (C6-C10) % 60-140 21-JUN-19 F2-F4-511-WT Water Batch R4673726 Water Batch R4673726 Vater F2 (C10-C16) 106.4 % 70-130 18-JUN-19 F3 (C16-C34) 117.9 % 70-130 18-JUN-19				Workorder:	L229237	0	Report Date:	27-JUN-19		Page 2 of 5
Test Matrix Reference Result Qualifier Units RPD Limit Analyzed F1-HS-511-WT Water Batch R4680814 WG3082589-3 60-140 21-JUN-19 F1 (C6-C10) 87.3 % 60-140 21-JUN-19 F2-F4-511-WT Water 87.3 % 60-140 21-JUN-19 F2-F4-511-WT Water 87.3 % 60-140 21-JUN-19 F2-F4-511-WT Water 87.3 % 70-130 18-JUN-19 F3 (C16-C34) 117.9 % 70-130 18-JUN-19	Client:	Kollaard A 210 Presc Kemptville	ssociates (Kemp ott Street Unit 1 I ON K0G 1J0	tville) P.O. Box 189						
Test Matrix Reference Result Qualitier Units RPD Limit Analyzed F1-HS-511-WT Water Batch R4680814 WG3082589-3 60-140 21-JUN-19 F1 (C6-C10) 87.3 % 60-140 21-JUN-19 F2-F4-511-WT Water Water 50-140 21-JUN-19 F2-F4-511-WT Water Water 50-140 21-JUN-19 F2 (C10-C16) 106.4 % 70-130 18-JUN-19 F3 (C16-C34) 117.9 % 70-130 18-JUN-19		Dean Tala	aryn	<u> </u>		0 117				
F1-HS-511-WT Water Batch R4680814 WG3082589-5 MS WG3082589-3 F1 (C6-C10) 87.3 % 60-140 21-JUN-19 F2-F4-511-WT Water Eatch R4673726 F2 (C10-C16) 106.4 % 70-130 18-JUN-19 F3 (C16-C34) 117.9 % 70-130 18-JUN-19	Test		Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
Batch R4680814 WG3082589-5 MS WG3082589-3 F1 (C6-C10) 87.3 % 60-140 21-JUN-19 F2-F4-511-WT Water F2-F4-511-WT Water F2-F4-511-WT Water Batch R4673726	F1-HS-511-WT		Water							
F2-F4-511-WT Water Batch R4673726 WG3079438-2 LCS F2 (C10-C16) 106.4 % 70-130 18-JUN-19 F3 (C16-C34) 117.9 % 70-130 18-JUN-19	Batch WG3082589- F1 (C6-C10)	R4680814 5 MS		WG3082589-3	87.3		%		60-140	21-JUN-19
Batch R4673726 WG3079438-2 LCS F2 (C10-C16) 106.4 % 70-130 18-JUN-19 F3 (C16-C34) 117.9 % 70-130 18-JUN-19	F2-F4-511-WT		Water							
F2 (C10-C16) 106.4 % 70-130 18-JUN-19 F3 (C16-C34) 117.9 % 70-130 18-JUN-19	Batch WG3079438-2	R4673726 2 LCS			106.4		9/		70.400	
13 (010-004) 117.3 /0 /0-130 18-JUN-19	F2 (C10-C10)			100.4		% %		70-130	18-JUN-19
F4 (C34,C50) 105 9 % 70 120 19 UN 10	F3 (C16-C34)			105.9		70 %		70-130	18-JUN-19
WG3070438-1 MR	WG3079438-	/ 1 MB			105.5		70		70-130	10-3010-19
F2 (C10-C16) <100 ug/L 100 18-JUN-19	F2 (C10-C16)			<100		ug/L		100	18-JUN-19
F3 (C16-C34) <250 ug/L 250 18-JUN-19	F3 (C16-C34)			<250		ug/L		250	18-JUN-19
F4 (C34-C50) <250 ug/L 250 18-JUN-19	F4 (C34-C50)			<250		ug/L		250	18-JUN-19
Surrogate: 2-Bromobenzotrifluoride 90.1 % 60-140 18-JUN-19	Surrogate: 2-	Bromobenz	otrifluoride		90.1		%		60-140	18-JUN-19
MET-D-UG/L-MS-WT Water	MET-D-UG/L-MS	S-WT	Water							
Batch R4671987 WG3078901-4 DUP WG3078901-3	Batch WG3078901-4	R4671987 4 DUP		WG3078901-3						
Antimony (Sb)-Dissolved <1.0 <1.0 RPD-NA ug/L N/A 20 17-JUN-19	Antimony (St)-Dissolved		<1.0	<1.0	RPD-NA	ug/L	N/A	20	17-JUN-19
Arsenic (As)-Dissolved <1.0 <1.0 RPD-NA ug/L N/A 20 17-JUN-19	Arsenic (As)-	Dissolved		<1.0	<1.0	RPD-NA	ug/L	N/A	20	17-JUN-19
Barium (Ba)-Dissolved 416 412 ug/L 0.9 20 17-JUN-19	Barium (Ba)-			416	412		ug/L	0.9	20	17-JUN-19
Beryllium (Be)-Dissolved <1.0 <1.0 RPD-NA ug/L N/A 20 17-JUN-19	Beryllium (Be	e)-Dissolved		<1.0	<1.0	RPD-NA	ug/L	N/A	20	17-JUN-19
Boron (B)-Dissolved <100 <100 RPD-NA ug/L N/A 20 17-JUN-19	Boron (B)-Dis	ssolved	J	<100	<100	RPD-NA	ug/L	N/A	20	17-JUN-19
Cadmium (Cd)-Dissolved <0.050 <0.050 RPD-NA ug/L N/A 20 17-JUN-19	Cadmium (Co		1	<0.050	<0.050	RPD-NA	ug/L	N/A	20	17-JUN-19
Chromium (Cr)-Dissolved <5.0 <5.0 RPD-NA ug/L N/A 20 1/-JUN-19	Chronnum (C		u	<5.0	<5.0	RPD-NA	ug/L	N/A	20	17-JUN-19
Cobait (Cu)-Dissolved <1.0 <1.0 RPD-NA ug/L N/A 20 17-JUN-19	Coppor (Cu)	Dissolved		<1.0	<1.0 2.0		ug/L	N/A	20	17-JUN-19
Copper (Cu)-Dissolved <2.0 2.0 RPD-NA ug/L N/A 20 17-JUN-19	Lead (Ph)-Di	esolved		<0.50	2.0 <0.50		ug/L	N/A	20	17-JUN-19
$\frac{1}{10} = \frac{1}{10} $	Molybdenum	(Mo)-Disso	lved	<0.50 17 3	<0.50 17 1	RPD-NA	ug/L	N/A	20	17-JUN-19
Nickel (Ni)-Dissolved < 5.0 < 5.0 PPD NA ug/l N/A 20 17.00119	Nickel (Ni)-D	(MO) DISSO	ived.	~5.0	~5.0		ug/L	1.2 N/A	20	17-JUN-19
Selenium (Se)-Dissolved < 0.50 < 0.50 $PPD NA$ ug/l N/A 20 17-JUN-19	Selenium (Se		I	<0.0	<0.50		ug/L	N/A	20	17-3010-19
Silver (Ag)-Dissolved < 0.50 < 0.50 < 0.50 $RPD-NA$ Ug/L N/A 20 $17-J0N-19$	Silver (Ag)-D	issolved	l	<0.50	<0.50		ug/L	N/A	20	17-3010-19
Sodium (Na)-Dissolved 488000 506000 ud/l 3.8 20 17-001-19	Sodium (Na)	-Dissolved		488000	506000	nı⁻ D-INA	ua/l	יזי/ר ק פ	20	17- INL-10
Thallium (TI)-Dissolved <0.10 <0.10 RPD-NA ug/L 5.0 20 17-JUN-19	Thallium (TI).	Dissolved		<0.10	<0.10		ua/l	5.0 N/A	20	17-00N-19
Uranium (U)-Dissolved 3.31 3.50 un/l 5.3 20 17-JUN-19	Uranium (LI)-	Dissolved		3.31	3.50	nı⁻ D-INA	ua/l	۱۷/۸ ۲ ۹	20	17-JUN-19
Vanadium (V)-Dissolved <5.0 <5.0 RPD-NA ug/L N/A 20 17-1010-19	Vanadium (V)-Dissolved		<5.0	<5.0	RPD-NA	ug/L	0.0 N/A	20	17-JUN-19

Workorder: L2292370

Report Date: 27-JUN-19

Page 3 of 5

Client: Kollaard Associates (Kemptville) 210 Prescott Street Unit 1 P.O. Box 189

Kemptville ON K0G 1J0

Contact: Dean Tataryn

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-D-UG/L-MS-WT	Water							
Batch R4671	987							
WG3078901-4 D	UP	WG3078901-3	1					
Zinc (Zn)-Dissolved	l	<10	<10	RPD-NA	ug/L	N/A	20	17-JUN-19
WG3078901-2 LC Antimony (Sb)-Diss	CS olved		98.0		%		80-120	17. II IN-19
Arsenic (As)-Dissol	ved		99.1		%		80-120	17-JUN-19
Barium (Ba)-Dissol	ved		98.5		%		80-120	17-JUN-19
Beryllium (Be)-Diss	olved		97.3		%		80-120	17-JUN-19
Boron (B)-Dissolve	d		93.0		%		80-120	17-JUN-19
Cadmium (Cd)-Diss	solved		96.3		%		80-120	17-JUN-19
Chromium (Cr)-Dis	solved		97.9		%		80-120	17-JUN-19
Cobalt (Co)-Dissolv	ved		96.1		%		80-120	17-JUN-19
Copper (Cu)-Dissol	ved		97.5		%		80-120	17-JUN-19
Lead (Pb)-Dissolve	d		101.4		%		80-120	17-JUN-19
Molybdenum (Mo)-l	Dissolved		97.0		%		80-120	17-JUN-19
Nickel (Ni)-Dissolve	ed		97.8		%		80-120	17-JUN-19
Selenium (Se)-Diss	olved		100.5		%		80-120	17-JUN-19
Silver (Ag)-Dissolve	ed		97.2		%		80-120	17-JUN-19
Sodium (Na)-Disso	lved		101.2		%		80-120	17-JUN-19
Thallium (TI)-Disso	lved		101.6		%		80-120	17-JUN-19
Uranium (U)-Dissol	ved		102.8		%		80-120	17-JUN-19
Vanadium (V)-Diss	olved		100.9		%		80-120	17-JUN-19
Zinc (Zn)-Dissolved	l		99.95		%		80-120	17-JUN-19
WG3078901-1 M	В							
Antimony (Sb)-Diss	olved		<0.10		ug/L		0.1	17-JUN-19
Arsenic (As)-Dissol	ved		<0.10		ug/L		0.1	17-JUN-19
Barium (Ba)-Dissol [,]	ved		<0.10		ug/L		0.1	17-JUN-19
Beryllium (Be)-Diss	olved		<0.10		ug/L		0.1	17-JUN-19
Boron (B)-Dissolve	d		<10		ug/L		10	17-JUN-19
Cadmium (Cd)-Dise	solved		<0.0050		ug/L		0.005	17-JUN-19
Chromium (Cr)-Dis	solved		<0.50		ug/L		0.5	17-JUN-19
Cobalt (Co)-Dissolv	red		<0.10		ug/L		0.1	17-JUN-19
Copper (Cu)-Dissol	ved		<0.20		ug/L		0.2	17-JUN-19
Lead (Pb)-Dissolve	d		<0.050		ug/L		0.05	17-JUN-19
Molybdenum (Mo)-I	Dissolved		<0.050		ug/L		0.05	17-JUN-19
Nickel (Ni)-Dissolve	ed		<0.50		ug/L		0.5	17-JUN-19

Workorder: L2292370

Report Date: 27-JUN-19

Page 4 of 5

Client: Kollaard Associates (Kemptville) 210 Prescott Street Unit 1 P.O. Box 189

Kemptville ON K0G 1J0

Contact: Dean Tataryn

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-D-UG/L-MS-WT	Water							
Batch R467198	7							
WG3078901-1 MB								
Selenium (Se)-Dissolv	ed		<0.050		ug/L		0.05	17-JUN-19
Silver (Ag)-Dissolved			<0.050		ug/L		0.05	17-JUN-19
Sodium (Na)-Dissolved	b		<50		ug/L		50	17-JUN-19
Thallium (TI)-Dissolved	k		<0.010		ug/L		0.01	17-JUN-19
Uranium (U)-Dissolved	1		<0.010		ug/L		0.01	17-JUN-19
Vanadium (V)-Dissolve	ed		<0.50		ug/L		0.5	17-JUN-19
Zinc (Zn)-Dissolved			<1.0		ug/L		1	17-JUN-19
WG3078901-5 MS		WG3078901-6						
Antimony (Sb)-Dissolv	ed		90.4		%		70-130	17-JUN-19
Arsenic (As)-Dissolvec	l		94.2		%		70-130	17-JUN-19
Barium (Ba)-Dissolved			N/A	MS-B	%		-	17-JUN-19
Beryllium (Be)-Dissolve	ed		97.1		%		70-130	17-JUN-19
Cadmium (Cd)-Dissolv	ved		84.9		%		70-130	17-JUN-19
Chromium (Cr)-Dissol	ved		94.9		%		70-130	17-JUN-19
Copper (Cu)-Dissolved	ł		76.2		%		70-130	17-JUN-19
Lead (Pb)-Dissolved			88.2		%		70-130	17-JUN-19
Molybdenum (Mo)-Dis	solved		86.7		%		70-130	17-JUN-19
Nickel (Ni)-Dissolved			76.8		%		70-130	17-JUN-19
Selenium (Se)-Dissolv	ed		91.8		%		70-130	17-JUN-19
Silver (Ag)-Dissolved			86.9		%		70-130	17-JUN-19
Sodium (Na)-Dissolved	b		N/A	MS-B	%		-	17-JUN-19
Thallium (TI)-Dissolved	ł		88.3		%		70-130	17-JUN-19
Uranium (U)-Dissolved	1		N/A	MS-B	%		-	17-JUN-19
Vanadium (V)-Dissolve	ed		101.0	-	%		70-130	17-JUN-19

Client:	Kollaard Associates (Kemptville)
	210 Prescott Street Unit 1 P.O. Box 189
	Kemptville ON K0G 1J0
Contact:	Dean Tataryn

Legend:

Limit	ALS Control Limit (Data Quality Objectives)
DUP	Duplicate
RPD	Relative Percent Difference
N/A	Not Available
LCS	Laboratory Control Sample
SRM	Standard Reference Material
MS	Matrix Spike
MSD	Matrix Spike Duplicate
ADE	Average Desorption Efficiency
MB	Method Blank
IRM	Internal Reference Material
CRM	Certified Reference Material
CCV	Continuing Calibration Verification
CVS	Calibration Verification Standard
LCSD	Laboratory Control Sample Duplicate

Sample Parameter Qualifier Definitions:

Qualifier	Description
MS-B	Matrix Spike recovery could not be accurately calculated due to high analyte background in sample.
RPD-NA	Relative Percent Difference Not Available due to result(s) being less than detection limit.

Hold Time Exceedances:

All test results reported with this submission were conducted within ALS recommended hold times.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

nC10	nC16	nC34	nC50			
174°C	287ºC	481°C	575°C			
346°F	549°F	898°F	1067ºF			
Gasoline 🔶 🛛 🔶 M		- Mote	or Oils/Lube Oils/Grease			
← Diesel/Jet Fuels →						

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.
CCME F2-F4 HYDROCARBON DISTRIBUTION REPORT

			P
nC10	nC16	nC34	nC50
174°C	287°C	481°C	575⁰C
346°F	549°F	898°F	1067°F
Gasolin	e →	- Mote	or Oils/Lube Oils/Grease 🔶 🕨
	-Diesel/J	et Fuels →	

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.

Note: This chromatogram was produced using GC conditions that are specific to ALS Canada CCME F2-F4 method. Refer to the ALS Canada CCME F2-F4 Hydrocarbon Library for a collection of chromatograms from common reference samples (fuels, oils, etc.). The HDR Library can be found at <u>www.alsglobal.com</u>.

Chain of Custody (COC) / Analytical **Request Form**

COC Number: 17 of

www.aisolobal.com

Canada Toll Free: 1 800 668 9878

	www.aisgiobal.com								-																
Report To	Contact and company name	below will app	ear on the final rep	ort	Report Format / Distribution				Select Service Level Below - Contact your AM to confirm all E&P TATs (surcharges may apply)																
Company:	Kollaard Associates (27196)				Select Report Format: 🖓 PDF 🖓 EXCEL 📋 EDD (DIGITAL)				Regular [R] Standard TAT if received by 3 pm - business days - no surcharges apply																
Contact:	Dean Tataryn				Quality Control	Quality Control (QC) Report with Report 🔲 YES 🗌 NO				4 da	y (P4	-20%]			ENCY	1 Bu	siness	a day	E1 - 1	00%]					
Phone:	613.860.0923, ext.225				Compare Resul	Compare Results to Criteria on Report - provide details below if box checked				្ត្រី 🚆 3 day [P3-25%] 🔲 🛛 🙀 Same D				ne Day, Weekend or Statutory holiday [E2 -200% 🛛 🗂				п							
	Company address below will app	ear on the fin	al report		Select Distribut	Select Distribution: 🗍 EMAIL 🛄 MAIL 🗍 FAX					2 day [P2-50%]														
Street:	210 Prescott Street, Unit 1 P.	O. Box 189			Email 1 or Fax	dean@kollaard.ca				Date a	nd Time	e Requir	red for	all E&	PTATE	s:			d	d-mmr	1-yy hl	1:mm			
City/Province:	Kemptville, Ontario				Email 2				For te	sts that	can not	be perfo	rmed a	ccordin	ng to the	service	level sele	ected, y	ou will b	e contacte	d.				
Postal Code:	K0G 1J0				Email 3											Analysis Request									
Invoice To	Same as Report To	YES [NO			Invoice Di	stribution				Indi	cate Filte	ered (F), Pres	erved (i	P) or Fil	tered an	d Prese	erved (F	P) below		-		letai	i
	Copy of Invoice with Report	YES [Select Invoice	Distribution: 🔲 EM] FAX																ě	l
Company:					Email 1 or Fax	mary@kollaard.ca	l		1	N-4	Š													Ē	
Contact:					Email 2				1	Ξ.	ICR													ide	İ.
	Project Inform	ation			Oi	i and Gas Require	d Fields (client	use)	ξ	SDC	MQS													è	i i
ALS Account	# / Quote #: Q7102	21			AFE/Cost Center:	·· ··	PO#		RR-	1 da	å													Se	Ś
Job #: 19	0301				Major/Minor Code:		Routing Code:		Ş	₹	₹													plea	Ë
PO / AFE:					Requisitioner:				Ω.	Ιğ	1 0 0												9	ns (I A
LSD:					Location:				_ ₹	E E	e E												Ĕ	br e	Ň
ALS Lab Wo	rk Order # (lab use only):	229	2370	ÍS Á	ALS Contact:	Melanie M.	Sampler:		ity (KOI	ion-Che	ion-Mic		-1-F4										ES ON	is haz	R OF C
ALS Sample #	Sample Id	entification	and/or Coord	inates		Date	Time		osiv	divis	divis		IX.	als									۲, E	뤝	MBE
(lab use only)	(This des	cription will	appear on the r	eport)		(dd-mmm-yy)	(hh:mm)	Sample Type	Cor	Sub	Sub		BTE	Met									SAI	Sar	R
	RHI					14-06-19		writer	1				X	$\boldsymbol{\lambda}$			-								
0	PILZ					14-06-19		 			1		X	T			_		· · · ·		1				
	1 24 3			·			1		1	1	1			-							1				
			,						┫───	+											+				<u> </u>
	·		· · · · · -							-					-					-+	+	┼──┦	_		1-
									<u> </u>	+		<u> </u> .			-							+	-		├
										_											<u> </u>				
			-																		1				1
								· · · · · · · · · · · · · · · · · · ·	<u> </u>	+	1				1							1			
											-										+	+			-
									_	_										_	+	+			
																					<u> </u>				L
Drinking	g Water (DW) Samples ¹ (clien	t use)	Special Instruc	ctions / S	pecify Criteria to	add on report by cli-	cking on the drop	-down list below	-				SA	MPLE	CON	DITIO	NASI	RECE	IVED (lab use	only)	No		- r	—
Are camples tal	kon from a Regulated DW System				(ele	Cubine COC only)		······································	Froz	zen			whee		SIFU	Joserv	auons		Vac	H		No		- r	÷
	FS NO	17	Table	3 F	u deft	n ~ (ornm	ercial (m	on-Ootania	Coo	Packs Jing In		ice ∪ i r⊄1	ubes,	ш	Custo	oay se	arintar	CT	res			NO		-	
	s human consumption/usa?		10000				(privag		ang m	NIITIAI		R TEN	IPERA	TURES	°C	—		FIN	AL COOL	ER TEN	PERAT	JRES	°C	
				00	ISZIAL	1 aral	1 Tiller	Pate	1	7.5	T	00012						1	5.7			T		ľ.	-
		(client ver		$\frac{1}{2}$		INITIAL SHIPMEN	TRECEPTION	(lab use only)	1,1	, - O,	+		L		FINAL	SHIP		IC RECI		N (lab)	ise on	<u></u>			
Released for	Date		=) 	Time:	Received by:	MUTAL SHIPMEN	Date:	(120 030 011y)	Time	e:	Rec	eived	by:/	7			Date		<u> </u>	<u>~</u>		<u> </u>	Time	·	5
IK	NUMER 1	4-A1	0-19		Fric	Dobbini	14/CG	119	17	: 10,		1	M	1			14	n	<u>e (</u> °	م، ز	<u>U</u>	7_		/-	1
DEFER TO RA	KINDE FOR ALL MONTONIO			<u>+</u>	العادية والمستعمية والمستع	<u> </u>	TT LIBORITO		1.0.11	01.15	UT OC		×	_			1				;			SEDT 20	017 EPC

REFER TO BACK PACE FOR ALS COCATIONS AND SAMPLING INFORMATION WHITE - LABORATORY COPY YELLOW - CLIENT COPY Failure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY. By the use of this form the user acknowledges and agrees with the Terms and Conditions as specified on the back page of the white - report copy. 1. If any water samples are taken from a Regulated Drinking Water (DW) System, please submit using an Authorized DW COC form.

ATTACHMENT B

ELEVATED BACKGROUND METALS CONCENTRATIONS IN CHAMPLAIN SEA CLAY OTTAWA REGION STUDY

Elevated Background Metals Concentrations in Champlain Sea Clay - Ottawa Region

Sean Sterling and Kenneth Raven Geofirma Engineering Ltd, Ottawa, ON, Canada Brent Loney and Asia Reid Dillon Consulting Limited., Ottawa, ON, Canada Brad Carew City of Ottawa, Ottawa, ON, Canada

ABSTRACT

Native clay soils associated with post-glacial Champlain Sea marine deposits contain concentrations of select trace metals at concentrations in excess of the Ministry of the Environment & Climate Change (MOECC) background soil standards. These standards have been historically used as the basis for defining which soils are designated as clean fill. As such, additional effort and expense are required in dealing with these soils during land development and civil infrastructure projects and at properties undergoing Environmental Site Assessments. This study presents a compilation of data from existing technical studies conducted in the Ottawa region to support the definition of local background concentrations (for Eastern Ontario) thereby providing a supporting technical rationale for allowing movement of these clay soils between sites in eastern Ontario that have similar properties. This study is intended to provide a mechanism to deal with this issue on a regional basis and reduce the burden on an individual site or project basis.

RÉSUMÉ

Les sols indigènes d'argile liés aux dépôts marins de mer postglaciale de Champlain contiennent des concentrations des oligo-métaux choisis aux concentrations au-dessus du Ministère de l'Environnement et de l'Action en matière de changement climatique (MEACC). Ces normes ont été historiquement employées comme base pour définir quels sols sont indiqués en tant que suffisance propre. En tant que tels, l'effort et les dépenses additionnels sont exigés en faisant face à ces sols pendant le développement de terrain et les projets civils d'infrastructure et aux propriétés subissant des évaluations environnementales d'emplacement. Cette étude présente une compilation des données des études techniques existantes entreprises dans la région d'Ottawa pour soutenir la définition des concentrations locales de fond (pour l'Est de l'Ontario), et pour fournir une justification technique pour permir le mouvement de ces sols d'argile entre les sites dans l'Est de l'Ontario qui ont les propriétés semblables. Cette étude est prévue pour fournir un mécanisme à l'affaire en cette question sur une base régionale et pour réduire le fardeau sur une base individuelle d'emplacement ou de projet.

1 BACKGROUND

Geoenvironmental practitioners in the Ottawa area commonly find that native clay soils associated with the post-glacial Champlain Sea contain concentrations of trace metals such as barium, boron, chromium, cobalt and vanadium at concentrations in excess of the Ministry of the Environment & Climate Change (MOECC) background soil standards (Table 1). This likely reflects the provenance of these clays from Canadian Shield tills, and the resulting atypical clay mineralogy

MOECC background soil standards were originally developed in 1993 based on no more than 110 soil samples (depending on parameter) collected from various old urban and rural parks, primarily in southwestern Ontario and therefore are not representative of the natural background concentrations of metals within the Champlain Sea clay found in Eastern Ontario. Further, these background standards have been historically used as the basis for defining which soils are designated as clean fill. As such, additional effort and expense may be required in dealing with these soils during land development and

civil infrastructure projects and at properties undergoing Environmental Site Assessments.

This study presents a compilation of data from existing technical studies conducted in the Ottawa region to set a baseline for naturally occurring concentrations of metals within these clay soils.

With regards to soil management, this study is intended to support the definition of local background concentrations that can be applied such that movement of these clay soils between sites in eastern Ontario that have similar properties would be facilitated. This will support future soil management initiatives and excess soil management plans, and ensure that these soils are not unnecessarily disposed of in landfills.

Similarly, with sites undergoing Environmental Site Assessments in support of filing Records of Site Condition (RSC), this study can be used to support removal of these naturally occurring metals from being considered as contaminants of concern where clay soils of this nature occur. This will reduce the burden of establishing background conditions on an individual site basis.

2 HISTORY OF THE CHAMPLAIN SEA DEPOSITS

The Champlain Sea was a body of saline to brackish water forming a temporary inlet of the Atlantic Ocean, created by the retreating glaciers during the late glacial period 12 000 to 10 000 years ago. It spanned over 55,000 km² known as the St. Lawrence Lowland within both Canadian provinces of Quebec and Ontario, as well as parts of the American states of New York and Vermont (Chapman and Putnam, 1984). Within Canada, it extended from Québec City to Brockville, Ontario, and up the Ottawa River Valley to Pembroke (Figure 1).

Figure 1. Interpreted extents of the Champlain Sea Basin and its relative position to the Laurentide Ice Sheet (Knight et al., 2012).

The northern shore of the sea was in southern Quebec where outcrops of the Canadian Shield form the Eardley Escarpment. The Eardley Escarpment is known locally as the Gatineau Hills; part of the Mattawa fault at the southeastern edge of the Ottawa-Bonnechère Graben, in Eastern Ontario and the Outaouais region of Quebec, more commonly known as the Ottawa Valley. The sea lasted some 2000 years when the water became too fresh to accommodate marine organisms. It is estimated that the sea was as much as 150 metres (490 ft) above the level of today's St. Lawrence and Ottawa Rivers (Barnet, 1988).

The most abundant sediments deposited by the sea, the Leda marine clays, are mainly rock "flour" from glacial abrasion. Their mineralogy principally reflects the composition of the Precambrian rocks from which they are derived and contain mica, chlorite, quartz, amphiboles, and feldspar. The clay fraction contains small amounts of montmorillonite and illite-montmorillonite (Karrow, 1961)

The best evidence of this former sea is the vast clay plain deposited along the Ottawa and St. Lawrence Rivers. In the geotechnical world, these sensitive clays are well known for their instability and potential for landslides. These same clays are the subject of this paper.

3 MOECC SITE CONDITION STANDARDS

The MOECC have established generic soil and groundwater Site Condition Standards (SCSs) that are commonly known as Tables 1 through 9 of Ontario Regulation 153/04 made under the Environmental Protection Act. The most recent update to these standards was in 2011. Table 1 represents typical background conditions across Ontario and is the focus of this paper.

The MOECC first published background ranges of substances in Ontario soils in 1993 (OMEE, 1993). The "Ontario Typical Range" (OTR₉₈) was defined as the overall range of a substance and was defined as the 97.5th percentile of the data distribution. The data used for background soils standards (Table 1) included surficial soils across Ontario that were considered to not be impacted by anthropogenic contaminant sources.

To take into account the natural occurring sampling variability, the MOECC added two standard deviations (of replicate samples) to the OTR₉₈ and this value was used as the Table 1 standards. The exception to this increase for sampling variability was that it could not be increased above the effects-based value as determined by OMEE (1993). Table 1 below summarizes the MOECC statistics for selected metals in non-agricultural soils considered in this paper.

Table 1. Summary of MOECC Statistics for SelectedMetals Parameters in Champlain Sea Clay

	Concentration (μg/g)									
Parameter	Barium	Boron	Chromium	Cobalt	Vanadium					
OTR ₉₈	179	30.4	62.8	17.2	86					
OTR ₉₈ + 2SD	217	35.9	70.1	20.8	101					
Replicate SD (calculated)	19	2.75	3.65	1.8	7.5					
Lowest Effect Level – Effect (a,b)	390 ^ª	120 ^ª	160 ^a	22 ^b	18 ^a					
Table 1 Standard (rounded)	217 (220)	35.9 (36)	70.1 (70)	20.8 (21)	86.0 (86)					

Notes:

a - Protection of Mammals and Birds

b - Direct Human Soil Contact - S1 Risk

Since 1993, the MOECC completed additional sampling for background metals and following the same methodology, the OTR_{98s} were recalculated (MOE, 2011). These new standards were published in 2011 and are still considered the current regulatory standards associated with O.Reg 153/04.

Acknowledging that background soil chemistry varies spatially across the province, MOE (2011) recommended that future updates should consider using geo-regional approaches and matching statistical methods if sufficient data exists at that time. This study provides a review of data specific to Champlain Sea clays as described above and the authors believe that consideration should be given to using this study as the foundation for updating background metals concentrations in Eastern Ontario.

4 REVIEW OF METALS CONCENTRATIONS IN CHAMPLAIN SEA CLAY SOIL

Fifty-nine reports were identified by the City of Ottawa (the City) to potentially contain relevant soil chemistry data for samples collected from within native clay deposits associated with the post-Glacial Champlain Sea (the unit of interest for this assessment). These reports related to investigations originally conducted for purposes other than the objective of the current assessment, but nevertheless contained data relevant to the question of establishing background concentrations, and appropriate for use in this manner.

Figure 2 shows the distribution of data used for this assessment. The reports primarily consisted of Phase II Environmental Site Assessments, but also included several soil management investigations, soil and groundwater sampling program reports, as well as City

Figure 2. Distribution of Champlain Sea clay samples reviewed as part of this study

of Ottawa Infrastructure projects. In addition, a study completed by the Geological Survey of Canada for a site in Kinburn was included in the current assessment (Knight et al, 2012).

Each report was screened for relevant samples that were associated with Champlain Sea sediments and submitted to an accredited laboratory for the analysis of metals. Several known parameters with frequent exceedances of MOECC standards were examined, specifically:

- barium (Ba)
- boron (B)
- chromium, total (Cr)
- cobalt (Co)
- vanadium (V)

Any observations of these parameters in the clay layer were summarized, a new unique ID was assigned to each sample and the locations were georeferenced.

Depending on the lithology and history of the site, each sample was qualified, and samples that may not be representative of true background concentrations were removed. This screening consisted of a review of the soil quality data from the clay layer for evidence of potential anthropogenic contamination, as well as the review of any overlying soil layers for anthropogenic contamination that may in turn impact the clay layer via the leaching of contaminants. If overlying soil layers contained elevated concentrations of the metals of interest but these were also considered to be naturally occurring (i.e., if the overlying layer also contained clay, commonly within an overlying fill layer), then the sample in question was not screened out (i.e., was retained as a valid data point).

A total of 285 samples were considered to represent valid data points for this assessment. These data were compiled and their geographic distribution plotted on a map to assess the regional data distribution and coverage (Figure 2).

The following statistical analyses were performed after removing statistical outliers:

- Minimum;
- Maximum;
- Median;
- Average (arithmetic average);
- 95% upper confidence limit on mean (UCLM);
- coefficient of variation;
- 10th, 25th, 75th, 90th & 98th percentiles;
- Standard deviation, and;
- Skewness.

These statistics were calculated either using the internal functions built into Microsoft Excel or ProUCL (version 5.1). ProUCL is a public domain statistical software package published by the United States Environmental Protection Agency (USEPA) for analysis of environmental data sets. ProUCL was applied for the determination of outliers (using Rosner's outlier test), coefficients of variation, skewness and 95% UCLMs. For data sets with many non-detect observations (boron), ProUCL's non-detect functions were applied to better estimate the required statistical

parameters. As a result, 98th percentile values were not calculated for boron, with the 95th and 99th percentile values determined from ProUCL applied instead. A selection of the computed statistics are summarized in Table 2. The boron 98th percentile value in Table 2 is conservatively the 99th percentile value.

 Table 2.
 Summary of Ottawa Region Statistics for

 Selected Metals Parameters in Champlain Sea Clay

		Concer	tration	(µg/g)	
Parameter	Barium	Boron	Chromium	Cobalt	Vanadium
MOECC Table 1 SCS*	220	36	70	21	86
MOECC Table 2/3 SCS**	390	120	160	22	86
Total # observations	271	158	277	271	267
Minimum	32.0	0.5	7.6	3.0	10.0
Maximum	<u>544</u>	23.3	<u>162</u>	<u>30.5</u>	<u>136</u>
25 th Percentile	200	5.00	49.4	13.0	58.1
Median	270	6.45	83.0	17.0	77.4
75 th Percentile	330	7.30	110	21.2	<u>92.5</u>
98 th Percentile	<u>460</u>	14.9	145	<u>27.9</u>	<u>123</u>
Average	268	5.45	79.3	17.1	75.0
Standard Deviation	98	3.4	36.4	6.04	25.3

Notes:

Bold values exceed Table 1 SCS

Bold/italics/underlined values exceed Table 3 SCS * Table 1 SCS for Residential / Parkland / Institutional / Industrial / Commercial / Community Property Use ** Table 2/3 SCS for Residential / Parkland / Institutional Property Use, all soil textures

The data for barium, total chromium, cobalt and vanadium clearly show that concentrations of these metals are naturally elevated in clay soils in the Ottawa region. In all cases, naturally occurring concentrations in excess of the MOECC Table 1 SCS can be expected to occur quite commonly, with at least the 75th percentile concentrations exceeding this level, and in two cases (barium and chromium) the average levels exceeded this level. In all cases, the maximum concentrations exceeded the MOECC Table 3 SCS, and the 98th percentile concentrations of barium, chromium, and vanadium also exceeded this level.

Boron was not found to exceed the MOECC Table 1 SCS in any of the clay samples and thus does not appear to occur naturally at problematic concentrations in the regional clay sequence.

It is noted that several other parameters were reviewed as part of this exercise (available boron, electrical conductivity, and sodium absorption ratio). Consistent with the results for total boron, available boron was generally not found to occur at elevated concentrations relative to the MOECC SCS (detected at only 2 locations at concentrations exceeding the Table 2/3 SCS) and the large number of non-detect values (with many elevated detection limits) resulted in a poor dataset therefore further statistical analyses were not Significantly fewer data points were completed. available for electrical conductivity (EC) and sodium absorption ratio (SAR), which again did not support more rigorous statistical analyses; however, concentrations in excess of the MOECC Table SCS (Tables 1, 2 and 3 SCS) were relatively common.

5 VARIABILITY WITHIN A SINGLE BOREHOLE

In addition to spatial variability of samples within Eastern Ontario, there is also strong evidence that the metals concentrations in question also vary within the Champlain Sea depositional sequence as evidenced by Knight et al. (2012). This study, which is represented by one data point in Table 2, analysed 80 samples of a 96 m column of Champlain Sea clay within a single borehole located near Kinburn, Ontario. Table 3 summarizes select statistics of these data. Note that boron was not analysed as part of this study.

Table 3. Summary of Statistics for Selected Metals Parameters in Champlain Sea Clay in Kinburn Borehole

	(Concentration (µg/g)										
Parameter	Barium	Boron	Chromium	Cobalt	Vanadium							
MOECC Table 1 SCS*	220	36	70	21	86							
MOECC Table 2/3 SCS**	390	120	160	22	86							
Minimum	<u>592</u>		62	12.2	78							
Maximum	<u>989</u>		<u>192</u>	<u>25.9</u>	<u>140</u>							
98 th Percentile	<u>955.2</u>		<u>165</u>	<u>25.7</u>	<u>127</u>							
Average	<u>839</u>		91	17.0	<u>101</u>							
Standard Deviation	83.8		25.4	2.9	12.5							

Notes:

Bold values exceed Table 1 SCS

<u>**Bold/italics/underlined</u>** values exceed Table 3 SCS -- Boron was not analysed</u>

These data show that there is significant variability within the depositional sequence at a single borehole.

In fact, of the four parameters of interest that were analysed as part of this study, all but cobalt show a 98th percentile significantly higher that the approximately 270 regional samples across Eastern Ontario.

6 PROPOSED UPDATED BACKGROUND SOIL STANDARDS

As described above, the MOECC has defined background soil standards (MOECC Table 1 SCS) as the 98th percentile defined by the Ontario Typical Range (OTR) plus two standard deviations of replicate samples, where OTR_{98} values do not exceed effects-based numbers.

In the absence of replicate data as part of the amalgamated Champlain Sea clay data, the MOE (2011) standard deviation of replicate samples can be conservatively used as part of the calculation to establish new proposed geo-regional background standards for Eastern Ontario. Table 4 summarizes these calculations for the five metals parameters for non-agricultural soils.

Table4.SummaryofProposedGeo-RegionalBackground Values for Eastern Ontario

		Conce	entration	(µg/g)	
Parameter	Barium	Boron	Chromium	Cobalt	Vanadium
Current MOECC Table 1 SCS*	220	36	70	21	86
Current MOECC Table 2/3 SCS**	390	120	160	22	86
98 th Percentile (this study)	460	14.9	145	27.9	123
Replicate SD (MOE, 2011)	19	2.75	1.8	3.65	7.5
Proposed Geo- Regional Background Values	460	NC	145	35.2	123
% increase	109	NA	107	68	43

Notes:

NC - no change proposed

NA - not applicable

Adoption of these values as geo-regional background standards will require further consultation with MOECC and as such the proposed values are not considered final as of the time of this paper. It is also noted that these values may be further updated as additional data become available.

7 POTENTIAL IMPLICATIONS ON GROUNDWATER CONCENTRATIONS

Although this study focuses on soil concentrations only, the authors of this study have worked on multiple sites with Champlain Sea sediments where groundwater concentrations show elevated concentrations of these same metals parameters compared to the MOECC Table 2 and Table 3 SCS.

These elevated concentrations are interpreted to be associated with turbidity of samples during purging and even with bias due to sample turbidity resulting from purging activities. Even with field filtering of groundwater for metals analyses, laboratory reported concentrations exceeding MOECC Table 2 SCS have been observed. In each instance, re-sampling using low flow or low / no purging methods results in a groundwater concentration significantly lower that in turn meets the MOECC Table 2 SCS.

Further research into the statistical variability of groundwater samples from Champlain Sea sediments is warranted.

8 CONCLUSIONS

This paper is considered to provide sufficient rationale to propose new geo-regional background values for Eastern Ontario for four select metals parameters due to the local depositional history of Champlain Sea clay sediments. This would allow these new proposed regional values to define the limit below which regional clay soils can be considered to have naturally occurring concentrations (i.e. native soil), recognizing that further consultation with MOECC is necessary prior to their use as such. Further, the proposed values are not considered final as of the time of this paper and are subject to change as new data become available.

This approach has significant positive implications for soil management initiatives and excess soil management plans, most specifically with respect to the new proposed excess soil regulation that is currently being proposed by the MOECC. If adopted, the most significant of these implications include:

- allowing these soils to be considered as background (i.e. inert fill) and allow movement between similar sites as part of the soil management initiative;
- 2. allowing these parameters to not be considered as a contaminant with respect to the Records of Site Condition Regulation (O.Reg. 153/04).
- ultimately reducing the amount of "noncontaminated" soil that is being unnecessarily disposed of in landfills, thereby reducing costs for site owners as well as keeping valuable landfill space available for true waste.

9 REFERENCES

- Barnett, P.J. 1988. History of the northwestern arm of the Champlain Sea. Pp 25–36 in Gadd, N.R. (ed.) The Late Quaternary Development of the Champlain Sea Basin. *Geological Association of Canada, Special Paper 36*. Map 5.
- Chapman, L.J. and D.F. Putnam. 1984. The Physiography of Southern Ontario. Third edition. *Ontario Geological Survey, Special Volume No.2.* Government of Ontario, Toronto.
- Karrow, P.F., 1961. The Champlain Sea and its Sediments. *In Soils in Canada (edited by R.F. Legget, University of Toronto Press), p.* 97.
- Knight, R.D., M. Moroz, H.A.J. Russel, 2012. Geochemistry of a Champlain Sea aquitard, Kinburn, Ontario: portable XRF analysis and fusion chemistry. *Geological Survey of Canada Open File* 7085.
- Ontario Ministry of the Environment (MOE), 2011. Rationale for the Development of Soil and Ground Water Standards for Use at Contaminated Sites in Ontario. April 15.
- Ontario Ministry of Environment and Energy (OMEE), 1993. Ontario Typical Range of Chemical Parameters in Soil, Vegetation, Moss Bags and Snow, ISBN 0-7778-1979-1.

ATTACHMENT C

RESULTS OF CHEMICAL LABORATORY TESTING FOR LANDFILL DISPOSAL

August 12, 2019

190361-2

M.J. Pulickal Holdings Inc. 1475 York Mills Drive Ottawa, Ontario K4A 2N0

c/o

Monte Pickard 118 Robson Court Kanata, Ontario K2K 2W1

Attention: Mr. Mathew Pulickal

RE: SOIL SAMPLING AND LABORATORY TESTING FOR LANDFILL DISPOSAL (WASTE COLLECTIONS OF CANADA - NAVAN ROAD LANDFILL) 1994 ST. JOSEPH BOULEVARD, ORLEANS CITY OF OTTAWA, ONTARIO

Dear Sir:

This letter reports the results of a site visit to the above noted location by a member of our engineering staff on August 2, 2019. The purpose of the site visit was to obtain for analysis a representative soil sample in accordance with MOE Regulation 347/558 Leachate Extraction Procedure for disposal purposes. No removal of any contaminated soil should be carried out unless this test is completed and accepted by the landfill disposal site (Waste Collections of Canada - Navan Road Landfill).

As per the ALS Laboratory results, the sample is considered a non-hazardous solid waste according to MOE 347/558 and the sample meets the MOE Reg. 347 Ignitability Criteria as tested and accordingly soil represented by that sample may be removed to a landfill site licensed to accept that material.

The material is sand and silty clay fill from an unknown source.

We trust that this letter is sufficient for your present requirements. If you have any questions concerning this letter, please do not hesitate to contact our office.

Yours truly,

Kollaard Associates Inc.

Dean Tataryn, B.E.S., EP. Attachment A Laboratory Results

ATTACHMENT A

RESULTS OF CHEMICAL LABORATORY TESTING FOR LANDFILL DISPOSAL

Kollaard Associates (Kemptville) ATTN: Dean Tataryn 210 Prescott Street Unit 1 P.O. Box 189 Kemptville ON K0G1J0 Date Received: 02- AUG- 19 Report Date: 12- AUG- 19 15:10 (MT) Version: FINAL

Client Phone: 613-860-0923

Certificate of Analysis

Lab Work Order #: L2322843 Project P.O. #: NOT SUBMITTED Job Reference: 190361 C of C Numbers: 14-448092 Legal Site Desc:

mi

Emil Smith Account Manager [This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 190 Colonnade Road, Unit 7, Ottawa, ON K2E 7,5 Canada | Phone: +1 613 225 8279 | Fax: +1 613 225 2801 ALS CANADA LTD Part of the ALS Group An ALS Limited Company

Environmental 💭

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

190361

ANALYTICAL GUIDELINE REPORT

L2322843 CONTD.... Page 2 of 5

12-AUG-19 15:10 (MT)

Sample Details	Pocult	Qualifier	וח	Linite	Applyzod		Guidalin	o Limito	
Grouping Analyte		Quaimer	D.L.	UTIILS	Analyzeu		Guidelli		
L2322843-1 SA2-190361									
Sampled By: CLIENT on 02-AUG-19 @ 10:30									
Matrix: SOIL						#1			
Sample Preparation									
Initial pH	8.57		0.10	pH units	08-AUG-19				
Final pH	5.97		0.10	pH units	08-AUG-19				
Physical Tests									
Air Velocity Of Fume Hood	0.70		0.10	m/sec	12-AUG-19				
Burning Rate	N/A		0.010	mm/sec	12-AUG-19				
Ignitability-Class	NON			No Unit	12-AUG-19				
	FLAMMABLE								
% Moisture	11.1		0.10	%	08-AUG-19				
Samp Comment				NO UNIT	12-AUG-19				
	SOIL								
Temperature Of Test Material	21.0		1.0	Deg. C	12-AUG-19				
Time To Ignition	N/A		1.0	sec	12-AUG-19				
TCLP Extractables									
Aroclor 1242	<0.00020		0.00020	mg/L	08-AUG-19				
Aroclor 1248	<0.00020		0.00020	mg/L	08-AUG-19				
Aroclor 1254	<0.00020		0.00020	mg/L	08-AUG-19				
Aroclor 1260	<0.00020		0.00020	mg/L	08-AUG-19				
Benzo(a)pyrene	<0.0010		0.0010	mg/L	12-AUG-19	0.001			
Cyanide, Weak Acid Diss	<0.10		0.10	mg/L	08-AUG-19	20			
	<10		10	mg/L	08-AUG-19	150.0			
Nitrate and Nitrite as N	<4.0		4.0	mg/L	08-AUG-19	1000			
Nitrate-N	<2.0		2.0	mg/∟ mg/l	08-AUG-19				
Total PCBs	<0.00040		0 00040	mg/L	08-AUG-19	03			
Surrogate: d12-Chrysene	99.3		60-140	%	12-AUG-19	0.0			
TCLP Metals				,.					
Arsenic (As)	<0.050		0.050	ma/L	08-AUG-19	2.5			
Barium (Ba)	0.92		0.50	ma/L	08-AUG-19	100			
Boron (B)	<2.5		2.5	mg/L	08-AUG-19	500			
Cadmium (Cd)	<0.0050		0.0050	mg/L	08-AUG-19	0.5			
Chromium (Cr)	<0.050		0.050	mg/L	08-AUG-19	5.0			
Lead (Pb)	<0.050		0.050	mg/L	08-AUG-19	5.0			
Mercury (Hg)	<0.00010		0.00010	mg/L	09-AUG-19	0.1			
Selenium (Se)	<0.025		0.025	mg/L	08-AUG-19	1.0			
Silver (Ag)	<0.0050		0.0050	mg/L	08-AUG-19	5.0			
Uranium (U)	<0.25		0.25	mg/L	08-AUG-19	10			
TCLP VOCs									
1,1-Dichloroethylene	<0.025		0.025	mg/L	09-AUG-19	1.4			
1,2-Dichlorobenzene	<0.025		0.025	mg/L	09-AUG-19	20.0			
1,2-Dichloroethane	<0.025		0.025	mg/L	09-AUG-19	0.5			
1,4-Dichlorobenzene	<0.025		0.025	mg/L	09-AUG-19	0.5			
Benzene	<0.025		0.025	mg/L	09-AUG-19	0.5			
Carbon tetrachloride	<0.025		0.025	mg/L	09-AUG-19	0.5			
Chlorobenzene	<0.025		0.025	mg/L	09-AUG-19	8			
Chloroform	<0.10		0.10	mg/L	09-AUG-19	10			

** Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

Ontario Ministry of the Environment, General Waste Control Regulation No. 347/90

#1: Ontario Ministry of the Environment, General Waste Control Regulation No. 347/90

190361

ANALYTICAL GUIDELINE REPORT

L2322843 CONTD Page 3 of 5

12-AUG-19 15:10 (MT)

Sample Details Grouping Analyte	Result	Qualifier	D.L.	Units	Analyzed		Guidelir	ne Limits	
L 2322843-1 SA2-190361									
Sampled By: CLIENT on 02-AUG-19 @ 10:30									
Matrix: SOIL						#1			
TCLP VOCs									
Dichloromethane	<0.50		0.50	mg/L	09-AUG-19	5.0			
Methyl Ethyl Ketone	<1.0		1.0	mg/L	09-AUG-19	200.0			
Tetrachloroethylene	<0.025		0.025	mg/L	09-AUG-19	3			
Trichloroethylene	<0.025		0.025	mg/L	09-AUG-19	5			
Vinyl chloride	<0.050		0.050	mg/L	09-AUG-19	0.2			
Surrogate: 4-Bromofluorobenzene Aggregate Organics	97.1		70-130	%	09-AUG-19				
Oil and Grease, Total	<500		500	mg/kg	07-AUG-19				
Volatile Organic Compounds									
Surrogate: 1,4-Difluorobenzene Polychlorinated Biphenyls	99.4		70-130	%	09-AUG-19				
Surrogate: Decachlorobiphenyl Surrogate: Tetrachloro-m-xylene	89.7 79.2		50-150 50-150	% %	08-AUG-19 08-AUG-19				

Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.
 Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

Ontario Ministry of the Environment, General Waste Control Regulation No. 347/90

Reference Information

Qualifier	Description		
CINT	Cooling initiated.	Samples were received packed w	vith ice or ice packs and were sampled the same day as received.
Methods Listed (if ap	plicable):		
ALS Test Code	Matrix	Test Description	Method Reference***
BAP-ONT-TCLP-WT	Waste	Benzo(a)pyrene for O. Reg 347	SW 846 8270-GC-MS on TCLP Leachate
CN-TCLP-WT	Waste	Cyanide for O. Reg 347	APHA 4500CN I
This analysis is carrie Methods Volume 1C" extracted at a 20:1 lic fluid #2 (glacial acetic extract is then analyz cyanide is determined	ed out in accordanc 'SW-846 EPA Met quid to solids ratio f c acid), depending of red using procedure d by in-line sample	e with the extraction procedure ou hod 1311, published by the United or 16 to 20 hours using either extra on the pH of the original sample. T es adapted from APHA Method 450 distillation with final determination	tlined in "Test Methods for Evaluating Solid Waste - Physical/Chemical States Environmental Protection Agency (EPA). In summary, the sample i action fluid #1 (glacial acetic acid, water and sodium hydroxide) or extraction The extract is then filtered through a 0.6 to 0.8 micron glass fiber filter. The 00-CN I. "Weak Acid Dissociable Cyanide". Weak Acid Dissociable (WAD) by colourimetric analysis.
ETCI P-WT	Waste	Eluoride (E) for O Beg 347	EDA 300 1
extracted at a 20:1 lic fluid #2 (glacial acetic extract is then analyz F1-TCLP-WT F2-F4-TCLP-WT HG-TCLP-WT This analysis is carrie Methods Volume 1C" extracted at a 20:1 lic fluid #2 (glacial acetic analysed using atomi	quid to solids ratio f c acid), depending of ed using procedure Waste Waste Waste SW-846 EPA Met quid to solids ratio f c acid), depending of c absorption spect	or 16 to 20 hours using either extra on the pH of the original sample. T as adapted from EPA 300.1 and is O. Reg 347 TCLP leachable F1 O. Reg 347 TCLP leachable F2- F4 Mercury (CVAA) for O.Reg 347 e with the extraction procedure ou hod 1311, published by the United or 16 to 20 hours using either extra on the pH of the original sample. T rophotometry (EPA 1631E).	action fluid #1 (glacial acetic acid, water and sodium hydroxide) or extraction The extract is then filtered through a 0.6 to 0.8 micron glass fiber filter. The analyzed by Ion Chromatography with conductivity and/or UV detection. SW846 8260 MOE DECPH-E3398/CCME TIER 1 EPA 1631E tlined in "Test Methods for Evaluating Solid Waste - Physical/Chemical States Environmental Protection Agency (EPA). In summary, the sample is action fluid #1 (glacial acetic acid, water and sodium hydroxide) or extraction The extract is then filtered through a 0.6 to 0.8 micron glass fibre filter and EERA SW846. Mothed 1020, 1996
Preliminary Screening Prepare a sample "as If the sample is non-r- timing with a stop wa If the sample is meta occurs, begin timing v Note: If the waste pre- burning rate test. Burning Rate Test: Refer to section 7.2 c ignitability according v LEACH-TCLP-WT Inorganic and Semi-V Characteristic Leachi	g Test: s received" 250 mm netallic, hold the fla tch and note wheth I or metal alloy pow with a stop watch a opagates burning c of EPA Method 103 to DOT regulations Waste Volatile Organic cor ng Procedure" (TC	a long by 20 mm wide by 10 mm hi ame tip on the sample until the sam er the sample propagates up to the rder, hold the flame tip on the sam nd note whether the sample propa f 200 mm of the test strip within 2 0. Samples that have a burning ra . For metallic samples , the burnir Leachate Procedure for Reg 347 ntaminants are leached from waste LP). Test results are reported in le	igh. Apply the tip of the flame to the end of the sample strip. nple ignites or for a maximum of 2 minutes. If combustion occurs, begin e 200 mm mark within the 2 minute test period. ple until the sample ignites or for a maximum of 5 minutes. If combusiton igates up to the 200 mm mark within the 20 minute test period. minutes (20 minutes for metals), the material must be evaluated by the ate of greater than 2.2 mm/s are considered to have a positive result for ng rate must be greater than 0.17 mm/s. EPA 1311 e samples in strict accordance with US EPA Method 1311, "Toxicity eachate concentration units (normally mg/L).
MET-TCLP-WT This analysis is carrie	Waste	O.Reg 347 TCLP Leachable Metals e with the extraction procedure ou	EPA 6020B tlined in "Test Methods for Evaluating Solid Waste - Physical/Chemical

extracted at a 20:1 liquid to solids ratio for 16 to 20 hours using either extraction fluid #1 (glacial acetic acid, water and sodium hydroxide) or extraction fluid #2 (glacial acetic acid), depending on the pH of the original sample. The extract is then filtered through a 0.6 to 0.8 micron glass fibre filter. Instrumental analysis of the digested extract is by collision cell inductively coupled plasma - mass spectrometry (modifed from EPA Method 6020B). MOISTURE-WT CCME PHC in Soil - Tier 1 (mod) Soil % Moisture N2N3-TCLP-WT Waste Nitrate/Nitrite-N for O. Reg 347 EPA 300.1

This analysis is carried out in accordance with the extraction procedure outlined in "Test Methods for Evaluating Solid Waste - Physical/Chemical Methods Volume 1C" SW-846 EPA Method 1311, published by the United States Environmental Protection Agency (EPA). In summary, the sample is extracted at a 20:1 liquid to solids ratio for 16 to 20 hours using either extraction fluid #1 (glacial acetic acid, water and sodium hydroxide) or extraction fluid #2 (glacial acetic acid), depending on the pH of the original sample. The extract is then filtered through a 0.6 to 0.8 micron glass fiber filter. The extract is then analyzed using procedures adapted from EPA 300.1 and is analyzed by Ion Chromatography with conductivity and/or UV detection.

Reference Information

OGG-TOT-WT	Soil	Oil and Grease, Total	APHA 5520 B
Sample is extracted with a	n acetone:hex	ane mixture and then evaporated a	and the resulting residue is weighed to determine the total oil and grease.
PCB-TCLP-WT	Waste	PCBs for O. Reg 347	SW846 8270
VOC-TCLP-WT	Waste	VOC for O. Reg 347	SW846 8260

A sample of waste is leached in a zero headspace extractor at 30–2 rpm for 18–2.0 hours with the appropriate leaching solution. After tumbling the leachate is analyzed directly by headspace technology, followed by GC/MS using internal standard quantitation.

*** ALS test methods may incorporate modifications from specified reference methods to improve performance.

Chain of Custody numbers:										
14-448092										
The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:										
Laboratory Definition Code	Laboratory Location	Laboratory Definition Code	Laboratory Location							
WT	ALS ENVIRONMENTAL - WATERLO	O,								

ONTARIO, CANADA

GLOSSARY OF REPORT TERMS

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there.

mg/kg - milligrams per kilogram based on dry weight of sample

mg/kg wwt - milligrams per kilogram based on wet weight of sample

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight

mg/L - unit of concentration based on volume, parts per million.

< - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION. Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, fitness for a particular purpose, or non-infringement. ALS assumes no responsibility for errors or omissions in the information. Guideline limits are not adjusted for the hardness, pH or temperature of the sample (the most conservative values are used). Measurement uncertainty is not applied to test results prior to comparison with specified criteria values.

			Workorder:	L2322843	8 R	eport Date: 1	2-AUG-19		Page 1 of 7
Client:	Kollaard A 210 Presc Kemptville	Associates (Kemp Nott Street Unit 1 2 ON K0G 1J0	otville) P.O. Box 189						
	Dean Tala		.		0 117				
Test		Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MOISTURE-WT		Soil							
Batch F WG3125335-3 % Moisture	R4743116 8 DUP		L2322933-4 12.0	11.7		%	2.9	20	08-AUG-19
WG3125335-2 % Moisture	2 LCS			101.3		%		90-110	08-AUG-19
WG3125335-1 % Moisture	MB			<0.10		%		0.1	08-AUG-19
OGG-TOT-WT		Soil							
Batch I	R4743248								
WG3125436-3 Oil and Greas	B DUP se, Total		WG3125436-5 <500	<500	RPD-NA	mg/kg	N/A	40	07-AUG-19
WG3125436-2 Oil and Greas	2 LCS se, Total			88.6		%		70-130	07-AUG-19
WG3125436-1 Oil and Greas	MB se, Total			<500		mg/kg		500	07-AUG-19
WG3125436-4 Oil and Greas	MS se, Total		WG3125436-5	87.0		%		50-150	07-AUG-19
BAP-ONT-TCLP-	WT	Waste							
Batch F WG3127186-4 Benzo(a)pyre	R4746825 I DUP ne		WG3127186-6 <0.0010	<0.0010	RPD-NA	mg/L	N/A	50	12-AUG-19
WG3127186-2 Benzo(a)pyre	2 LCS			103.8		%		50-150	12-AUG-19
WG3127186-1 Benzo(a)pyre	MB ne			<0.0010		mg/L		0.001	12-AUG-19
Surrogate: d1	2-Chrysen	e		100.2		%		60-140	12-AUG-19
WG3127186-3	B MB			~0.0010		ma/l		0.001	12 4110 10
Surrogate: d1	2-Chrysen	Э		107.0		%		60-140	12-AUG-19
WG3127186-5 Benzo(a)pyre	5 MS		WG3127186-6	107.5		%		50-150	12-AUG-19
CN-TCLP-WT		Waste							
Batch F	R4745009								
WG3126747-3 Cyanide, Wea	B DUP ak Acid Dis	S	L2322843-1 <0.10	<0.10	RPD-NA	mg/L	N/A	50	08-AUG-19
WG3126747-2 Cyanide, Wea	2 LCS ak Acid Dis	S		112.4		%		70-130	08-AUG-19
WG3126747-1	MB								

			Workorder:	L2322843	; I	Report Date:	12-AUG-19		Page 2 of 7
Client:	Kollaard A 210 Presco Kemptville	ssociates (Kemp ott Street Unit 1 F ON K0G 1J0	tville) P.O. Box 189						
	Dean Tala		Defenses	Bereit	0	11 14		1	A
lest		Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
CN-TCLP-WT		Waste							
Batch I WG3126747-1 Cyanide, Wea	R4745009 I MB ak Acid Diss	3		<0.10		mg/L		0.1	08-AUG-19
WG3126747-4 Cyanide, Wea	4 MS ak Acid Diss	3	L2322843-1	112.0		%		50-140	08-AUG-19
F-TCLP-WT		Waste							
Batch I	R4745454								
WG3126644-3 Fluoride (F)	3 DUP		L2322224-1 <10	<10	RPD-NA	mg/L	N/A	30	08-AUG-19
WG3126644-2 Fluoride (F)	2 LCS			99.1		%		70-130	08-AUG-19
WG3126644-1 Fluoride (F)	I MB			<10		mg/L		10	08-AUG-19
WG3126644-4 Fluoride (F)	4 MS		L2322224-1	99.4		%		50-150	08-AUG-19
HG-TCLP-WT		Waste							
Batch I WG3128036-3 Mercury (Hg)	R4745420 3 DUP		L2322960-1 <0.00010	<0.00010	RPD-NA	mg/L	N/A	50	09-AUG-19
WG3128036-2 Mercury (Hg)	2 LCS			88.8		%		70-130	09-AUG-19
WG3128036-1 Mercury (Hg)	I MB			<0.00010		mg/L		0.0001	09-AUG-19
WG3128036-4 Mercury (Hg)	4 MS		L2322960-1	94.7		%		50-140	09-AUG-19
MET-TCLP-WT		Waste							
Batch I	R4744882								
WG3126819-4 Silver (Ag)	1 DUP		WG3126819-3 <0.0050	<0.0050		ma/L	N/A	50	08-4116-19
Arsenic (As)			<0.050	< 0.050	RPD-NA	mg/L	N/A	50	08-AUG-19
Boron (B)			<2.5	<2.5	RPD-NA	mg/L	N/A	50	08-AUG-19
Barium (Ba)			<0.50	<0.50	RPD-NA	mg/L	N/A	50	08-AUG-19
Cadmium (Co	d)		<0.0050	<0.0050	RPD-NA	mg/L	N/A	50	08-AUG-19
Chromium (C	r)		<0.050	<0.050	RPD-NA	mg/L	N/A	50	08-AUG-19
Lead (Pb)			<0.050	<0.050	RPD-NA	mg/L	N/A	50	08-AUG-19
Selenium (Se	e)		<0.025	<0.025	RPD-NA	mg/L	N/A	50	08-AUG-19
Uranium (U)			<0.25	<0.25	RPD-NA	mg/L	N/A	50	08-AUG-19

Workorder: L2322843

Report Date: 12-AUG-19

Page 3 of 7

Client: Kollaard Associates (Kemptville) 210 Prescott Street Unit 1 P.O. Box 189 Kemptville ON K0G 1J0

Contact: Dean Tataryn

Test		Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-TCLP-WT		Waste							
Batch R4	744882								
WG3126819-2 Silver (Ag)	LCS			92.6		%		70-130	08-AUG-19
Arsenic (As)				97.9		%		70-130	08-AUG-19
Boron (B)				89.3		%		70-130	08-AUG-19
Barium (Ba)				92.9		%		70-130	08-AUG-19
Cadmium (Cd)				98.2		%		70-130	08-AUG-19
Chromium (Cr)				97.4		%		70-130	08-AUG-19
Lead (Pb)				90.0		%		70-130	08-AUG-19
Selenium (Se)				94.6		%		70-130	08-AUG-19
Uranium (U)				87.3		%		70-130	08-AUG-19
WG3126819-1 Silver (Ag)	MB			<0.0050		mg/L		0.005	08-AUG-19
Arsenic (As)				<0.050		mg/L		0.05	08-AUG-19
Boron (B)				<2.5		mg/L		2.5	08-AUG-19
Barium (Ba)				<0.50		mg/L		0.5	08-AUG-19
Cadmium (Cd)				<0.0050		mg/L		0.005	08-AUG-19
Chromium (Cr)				<0.050		mg/L		0.05	08-AUG-19
Lead (Pb)				<0.050		mg/L		0.05	08-AUG-19
Selenium (Se)				<0.025		mg/L		0.025	08-AUG-19
Uranium (U)				<0.25		mg/L		0.25	08-AUG-19
WG3126819-5 Silver (Ag)	MS		WG3126819-3	96 7		%		50-140	08-4116-19
Arsenic (As)				100.4		%		50-140	08-40-19
Boron (B)				87.0		%		50-140	08-40-19
Barium (Ba)				109.3		%		50-140	08-AUG-19
Cadmium (Cd)				102.4		%		50-140	08-AUG-19
Chromium (Cr)				99.2		%		50-140	08-AUG-19
Lead (Pb)				110.6		%		50-140	08-AUG-19
Selenium (Se)				99.0		%		50-140	08-AUG-19
Uranium (U)				103.6		%		50-140	08-AUG-19
N2N3-TCLP-WT		Waste							
Batch R4	745454								
WG3126644-3 Nitrate-N	DUP		L2322224-1 4.0	4.1		mg/L	0.4	25	08-AUG-19
Nitrite-N			<2.0	<2.0	RPD-NA	mg/L	N/A	25	08-AUG-19

Client:

Contact:

Batch

N2N3-TCLP-WT

Nitrate-N

Nitrite-N

Nitrate-N

Nitrite-N

Nitrate-N

Nitrite-N

PCB-TCLP-WT

Batch

WG3126644-1

WG3126644-4

WG3127438-4

Aroclor 1242

Aroclor 1248

Aroclor 1254

Aroclor 1260

WG3127438-2

Aroclor 1242

Test

Quality Control Report

Workorder: L2322843 Report Date: 12-AUG-19 Page 4 of 7 Kollaard Associates (Kemptville) 210 Prescott Street Unit 1 P.O. Box 189 Kemptville ON K0G 1J0 Dean Tataryn Matrix Reference Result Qualifier Units RPD Limit Analyzed Waste R4745454 WG3126644-2 LCS 103.1 % 70-130 08-AUG-19 99.8 % 70-130 08-AUG-19 MB 2 <2.0 mg/L 08-AUG-19 mg/L <2.0 2 08-AUG-19 MS L2322224-1 100.6 % 50-150 08-AUG-19 102.6 % 50-150 08-AUG-19 Waste R4746487 DUP WG3127438-3 < 0.00020 < 0.00020 **RPD-NA** mg/L N/A 50 08-AUG-19 < 0.00020 < 0.00020 mg/L **RPD-NA** N/A 50 08-AUG-19 < 0.00020 < 0.00020 **RPD-NA** mg/L N/A 50 08-AUG-19 < 0.00020 < 0.00020 mg/L **RPD-NA** N/A 50 08-AUG-19 LCS 99.9 % 65-130 08-AUG-19

08-AUG-19

08-AUG-19

08-AUG-19

08-AUG-19

08-AUG-19

08-AUG-19

08-AUG-19

08-AUG-19

08-AUG-19

08-AUG-19

08-AUG-19

08-AUG-19

Aroclor 1248 103.8 % 65-130 Aroclor 1254 96.4 % 65-130 Aroclor 1260 % 117.5 65-130 WG3127438-1 MB Aroclor 1242 < 0.00020 0.0002 mg/L Aroclor 1248 < 0.00020 mg/L 0.0002 Aroclor 1254 0.0002 < 0.00020 mg/L Aroclor 1260 0.0002 < 0.00020 mg/L Surrogate: Decachlorobiphenyl 111.4 % 50-150 Surrogate: Tetrachloro-m-xylene 97.5 % 50-150 WG3127438-5 MS WG3127438-3 Aroclor 1242 103.7 % 50-150 Aroclor 1254 104.7 % 50-150 Aroclor 1260 125.1 % 50-150

VOC-TCLP-WT

Waste

Workorder: L2322843

Report Date: 12-AUG-19

Page 5 of 7

Kollaard Associates (Kemptville)

Client:	Kollaard Associates (Kemptville)
	210 Prescott Street Unit 1 P.O. Box 189
	Kemptville ON K0G 1J0

Contact: Dean Tataryn

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
VOC-TCLP-WT	Waste							
Batch R4744912								
WG3127172-1 LCS					2 (
1,1-Dichloroethylene			92.8		%		70-130	09-AUG-19
1,2-Dichlorobenzene			97.6		%		70-130	09-AUG-19
1,2-Dichloroethane			103.3		%		70-130	09-AUG-19
1,4-Dichlorobenzene			96.4		%		70-130	09-AUG-19
Benzene			101.3		%		70-130	09-AUG-19
Carbon tetrachloride			96.9		%		60-140	09-AUG-19
Chlorobenzene			97.0		%		70-130	09-AUG-19
Chloroform			99.0		%		70-130	09-AUG-19
Dichloromethane			97.0		%		70-130	09-AUG-19
Methyl Ethyl Ketone			96.8		%		50-150	09-AUG-19
Tetrachloroethylene			93.4		%		70-130	09-AUG-19
Trichloroethylene			96.7		%		70-130	09-AUG-19
Vinyl chloride			110.9		%		60-130	09-AUG-19
WG3127172-2 MB			0.005				0.005	
			<0.025		mg/L		0.025	09-AUG-19
1,2-Dichlorobenzene			<0.025		mg/L		0.025	09-AUG-19
1,2-Dichloroethane			<0.025		mg/L		0.025	09-AUG-19
1,4-Dichlorobenzene			<0.025		mg/L		0.025	09-AUG-19
Benzene			<0.025		mg/L		0.025	09-AUG-19
Carbon tetrachloride			<0.025		mg/L		0.025	09-AUG-19
Chlorobenzene			<0.025		mg/L		0.025	09-AUG-19
Chloroform			<0.10		mg/L		0.1	09-AUG-19
Dichloromethane			<0.50		mg/L		0.5	09-AUG-19
Methyl Ethyl Ketone			<1.0		mg/L		1	09-AUG-19
Tetrachloroethylene			<0.025		mg/L		0.025	09-AUG-19
Trichloroethylene			<0.025		mg/L		0.025	09-AUG-19
Vinyl chloride			<0.050		mg/L		0.05	09-AUG-19
Surrogate: 1,4-Difluorobe	enzene		98.8		%		70-130	09-AUG-19
Surrogate: 4-Bromofluor	obenzene		97.0		%		70-130	09-AUG-19
WG3127172-4 MS 1,1-Dichloroethylene		WG3127172-3	100.4		%		50-140	09-AUG-19
1,2-Dichlorobenzene			97.9		%		50-140	09-AUG-19
1,2-Dichloroethane			89.5		%		50-140	09-AUG-19
1,4-Dichlorobenzene			98.8		%		50-140	09-AUG-19

Test

Quality Control Report

Workorder: L2322843 Report Date: 12-AUG-19 Page 6 of 7 Kollaard Associates (Kemptville) Client: 210 Prescott Street Unit 1 P.O. Box 189 Kemptville ON K0G 1J0 Dean Tataryn Contact: Units Matrix Reference Result Qualifier RPD Limit Analyzed VOC-TCLP-WT Waste R4744912

Batch R4744912				
WG3127172-4 MS	WG3127172-3			
Benzene	101.0	%	50-140 09-AUG-19	
Carbon tetrachloride	106.1	%	50-140 09-AUG-19	
Chlorobenzene	96.9	%	50-140 09-AUG-19	
Chloroform	97.8	%	50-140 09-AUG-19	
Dichloromethane	90.9	%	50-140 09-AUG-19	
Methyl Ethyl Ketone	71.3	%	50-140 09-AUG-19	
Tetrachloroethylene	102.6	%	50-140 09-AUG-19	
Trichloroethylene	100.8	%	50-140 09-AUG-19	
Vinyl chloride	118.9	%	50-140 09-AUG-19	

Client:	Kollaard Associates (Kemptville)						
	210 Prescott Street Unit 1 P.O. Box 189						
	Kemptville ON K0G 1J0						
Contact:	Dean Tataryn						

Legend:

Limit	ALS Control Limit (Data Quality Objectives)
DUP	Duplicate
RPD	Relative Percent Difference
N/A	Not Available
LCS	Laboratory Control Sample
SRM	Standard Reference Material
MS	Matrix Spike
MSD	Matrix Spike Duplicate
ADE	Average Desorption Efficiency
MB	Method Blank
IRM	Internal Reference Material
CRM	Certified Reference Material
CCV	Continuing Calibration Verification
CVS	Calibration Verification Standard
LCSD	Laboratory Control Sample Duplicate

Sample Parameter Qualifier Definitions:

Qualifier	Description
RPD-NA	Relative Percent Difference Not Available due to result(s) being less than detection limit.

Hold Time Exceedances:

All test results reported with this submission were conducted within ALS recommended hold times.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

CCME F2-F4 HYDROCARBON DISTRIBUTION REPORT

←_F2-	→	—_F3—→ ∢ —_F4—	▶
nC10	nC16	nC34	nC50
174°C	287°C	481°C	575⁰C
346°F	549°F	898°F	1067⁰F
Gasolin	e →	← Mot	or Oils/Lube Oils/Grease 🔶 🕨
	-Diesel/J	et Fuels →	

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.

Note: This chromatogram was produced using GC conditions that are specific to ALS Canada CCME F2-F4 method. Refer to the ALS Canada CCME F2-F4 Hydrocarbon Library for a collection of chromatograms from common reference samples (fuels, oils, etc.). The HDR Library can be found at <u>www.alsglobal.com</u>.

Chain of Cu R Engisonmental www.alsglobal.com Canada 1	stody (COC) / Analytical equest Form ^{oll Free: 1 800 668 9878}	L2322843-	COFC				47	coc H	Numb	er: 14 Page	- 4 `	48(* —)92 _) -
Report To Main Tatwy	Report For	nat / Distribution		1	Select Serv	ce Level E	elow (Ru	ish Turnar	round Tin	ne (TAT) is	not availab	le for all ter	sts)	
Company: Kolding Association InC.	Select Report Format:	PDF EXCEL EDD (DIGITAL)	R		Regular (Sta	dard TAT	if received	1 by 3pm)						
Contact:	Quality Control (QC) Report with	Report Yes No	P	٦·	Priority (2-4	ousiness da	ys if recei	ived by 3p	pm)					
Address:	Criteria on Report - provide detail	below if box checked	E	Πŧ	mergency (l-2 busines	s days if r	received b	by 3pm)					
210 Prescutt St Remotiville ON	Select Distribution:		E2	Πs	Same day or	weekend e	mergency	if receiv	red by 10	lam – conta	ct ALS for	surcharge.		
Phone:	Email 1 or Fax		Specify	y Date	Required	for E2,E	or P:	T						
613-860-090) 21 205	Email 2		-		· ·	· · ·	A	nalysis	s Requ	est				
Invoice To Same as Report To Yes T No	Invoice	Distribution	-	Ir	ndicate Filter	ed (F), Pre	served (P) or Filtere	ed and P	reserved (F	/P) below			
Copy of Invoice with Report TYes T No	Select Invoice Distribution:						Т			r r		_	·	l
Company:	Email 1 or Fax						1	╉╼╼┥					+	l
Contact:	Email 2	· · · · · · · · · · · · · · · · · · ·	-1				₹D							
Project Information	Oil and Gas Regu	ired Fields (client use)	<u> </u>		2.	ح اما	1~							ners
ALSQuote # Nº710.31	Approver ID:	Cost Center:	-Fill	_	S	2 1		f l	.)					ntaii
Job # 1 42 21.1	GL Account:	Bouting Code:		$\overline{\mathbf{v}}$	Ð.			h_2	l X					Ŝ
PO / AFE:	Activity Codo:		-1.21:	2	oh	\mathcal{A}	$1 \sim$		\leq		1			r of
			-UH	· 4	+ [र्म इ	·] \S	1 M						đr
	Location:		- 120	いい.		3 .	\mathcal{Q}	0) Q					Ž
ALS Lab Work Order # (lab use only)	ALS Contact: ES	Sampler:	5	R.	NZ NZ	ג כו־	19	5	い					
ALS Sample # Sample Identification and/or Coordinates	Date	Time Sample Tune	ार ।	Y T	J	1	1	1+	$\left + \right $					l
(lab use only) (This description will appear on the report)	(dd-mmm-yy)	(hh:mm)												L
SAI- 190361 ~ +1-564	12-0	8-19 10 DA 6.1	_i/											1
			- ♥				1							
SAT IRATI	67-60-1	· A: 20.01		1			7					+	++	
JA Z ~ 190361 -	02-08-1-	7 10- 3044 1 3011		<u>v</u>	<u> </u>	\sim	 -	 ∠	~				- 	
													\perp	<u> </u>
														ļ
													1-1	
			╶┼╺╶┼					+					++	
					·								+	ļ
													\downarrow	L
														ĺ
	······		-++	†									+	<u> </u>
						_		+					╡	┝──
	I												┶──┛	Ĺ
Drinking Water (DW) Samples ¹ (client use) Speci	I Instructions / Specify Criteria to add	on report (client Use)			S/	MPLE	ONDIT	ION AS	RECE	IVED (la	D USe O	aly)		_
Are samples taken from a Regulated DW System?		· · · · · · · · · · · · · · · · · · ·				J 1	Pers-	SIFOL	oservat	ions	105			
TYES INO I Table 3	- Kull Denth	(ammercial	Ice pac	жs - I=1411	Yes L	J NO	- P	Custoc	oy seal	intact	Yes		0	
Are samples for human deinking weter war?	- p	(non- un to Lig)	Cooling	g initiat	rea P	1								
	CLAU - SAI	(vion-point ble)		TIAL CO	IOLER TEM	PERATURI	≘s °C	+ -	F	INAL COO	LER TEMP	ERATURE	<u>s °C</u>	
	140- 101		di	2	•			<u> </u>	Ч,а					
BHIPMENT RELEASE (client use)	INITIAL SHIPMENT REC	EPTION (lab use only)				FINAL	SHIPME	ENT RE	CEPTI	ON (lab i	ise only	1		
Recei	STAR FARACCION	Dur The UP7	Keceiv	ved by:	1/~			1	Uate:	in In	i nue:	1-10-		
A WWW HI NOW I TO AVIII I IVI SUTINI	OSTAT PALASSAC	1746 2111 10.20			<u> </u>				JA C	<u>20/19</u>	1	$\underline{\dots Q}$	<i>i</i>	

XP

Failure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY. By the use of this form the user acknowledges and agrees with the Terms and Conditions as specified on the back page of the white - report copy.

1. If any water samples are taken from a Regulated Drinking Water (DW) System, please submit using an Authorized DW COC form.

ATTACHMENT D

LABORATORY TESTING RESULTS POST-REMEDIATION

Kollaard Associates (Kemptville) ATTN: Dean Tataryn 210 Prescott Street Unit 1 P.O. Box 189 Kemptville ON K0G1J0 Date Received:10-SEP-19Report Date:16-SEP-1913:41 (MT)Version:FINAL

Client Phone: 613-860-0923

Certificate of Analysis

Lab Work Order #: L2345024 Project P.O. #: NOT SUBMITTED Job Reference: 190361 C of C Numbers: Legal Site Desc:

mi

Emil Smith Account Manager [This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 190 Colonnade Road, Unit 7, Ottawa, ON K2E 7.5 Canada | Phone: +1 613 225 8279 | Fax: +1 613 225 2801 ALS CANADA LTD Part of the ALS Group An ALS Limited Company

Environmental 💭

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

190361

Sampla

ANALYTICAL GUIDELINE REPORT

L2345024 CONTD.... Page 2 of 4

16-SEP-19 13:41 (MT)

Grouping Analyte	Result	Qualifier	D.L.	Units	Analyzed		Guidelin	e Limits	
L2345024-1 BH3 SA1									
Sampled By: CLIENT on 09-SEP-19									
Matrix: WATER						#1	#2		
Volatile Organic Compounds									
Benzene	<0.50		0.50	ua/L	16-SEP-19	44	430		
Ethylbenzene	< 0.50		0.50	ug/L	16-SEP-19	2300	2300		
Toluene	<0.50		0.50	ug/L	16-SEP-19	18000	18000		
o-Xylene	<0.30		0.30	ug/L	16-SEP-19				
m+p-Xylenes	<0.40		0.40	ug/L	16-SEP-19				
Xylenes (Total)	<0.50		0.50	ug/L	16-SEP-19	4200	4200		
Surrogate: 4-Bromofluorobenzene	87.1		70-130	%	16-SEP-19				
Surrogate: 1,4-Difluorobenzene	91.3		70-130	%	16-SEP-19				
Hydrocarbons									
F1 (C6-C10)	<25		25	ug/L	16-SEP-19	750	750		
F1-BTEX	<25		25	ug/L	16-SEP-19	750	750		
F2 (C10-C16)	<100		100	ug/L	12-SEP-19	150	150		
F3 (C16-C34)	<250		250	ug/L	12-SEP-19	500	500		
F4 (C34-C50)	<250		250	ug/L	12-SEP-19	500	500		
Total Hydrocarbons (C6-C50)	<370		370	ug/L	16-SEP-19				
Chrom. to baseline at nC50	YES			No Unit	12-SEP-19				
Surrogate: 2-Bromobenzotrifluoride	91.8		60-140	%	12-SEP-19				
Surrogate: 3,4-Dichlorotoluene	79.9		60-140	%	16-SEP-19				

** Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

* Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

Ontario Regulation 153/04 - April 15, 2011 Standards = [Suite] - T3 Non-Potable Ground Water (Coarse and Fine)

Reference Information

Methods Listed (if applicable)

190361

methods Listed (il applicable):	
ALS Test Code Ma	atrix Test Description	Method Reference***
BTX-511-HS-WT W	ater BTEX by Headspace	SW846 8260 (511)
BTX is determined by analyzi	ng by headspace-GC/MS.	
1-F4-511-CALC-WT W	ater F1-F4 Hydrocarbon Calculated Parameters	CCME CWS-PHC, Pub #1310, Dec 2001-L
Analytical methods used for a	nalysis of CCME Petroleum Hydrocarbons	have been validated and comply with the Reference Method for the CWS PH
In cases where results for bot the gravimetric heavy hydroca In samples where BTEX and been subtracted from F1.	h F4 and F4G are reported, the greater of arbons cannot be added to the C6 to C50 I F1 were analyzed, F1-BTEX represents a	the two results must be used in any application of the CWS PHC guidelines ar hydrocarbons. . value where the sum of Benzene, Toluene, Ethylbenzene and total Xylenes h
In samples where PAHs, F2 a represents a result where the Fluoranthene, Indeno(1,2,3-c	and F3 were analyzed, F2-Naphth represe sum of Benzo(a)anthracene, Benzo(a)pyr d)pyrene, Phenanthrene, and Pyrene has I	nts the result where Naphthalene has been subtracted from F2. F3-PAH ene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Dibenzo(a,h)anthracene, been subtracted from F3.
Unless otherwise qualified, th 1. All extraction and analysis 2. Instrument performance sh 3. Linearity of gasoline respon	e following quality control criteria have bee holding times were met. owing response factors for C6 and C10 wi nse within 15% throughout the calibration r	n met for the F1 hydrocarbon range: thin 30% of the response factor for toluene. ange.
Unless otherwise qualified, th 1. All extraction and analysis 2. Instrument performance sh 3. Instrument performance sh 4. Linearity of diesel or motor 51-HS-511-WT Wa	e following quality control criteria have bee holding times were met. owing C10, C16 and C34 response factors owing the C50 response factor within 30% oil response within 15% throughout the ca ater F1-O.Reg 153/04 (July 2011)	n met for the F2-F4 hydrocarbon ranges: within 10% of their average. of the average of the C10, C16 and C34 response factors. libration range. E3398/CCME TIER 1-HS
Fraction F1 is determined by	analyzing by headspace-GC/FID.	
Analysis conducted in accord Protection Act (July 1, 2011), must be reported).	ance with the Protocol for Analytical Metho unless a subset of the Analytical Test Gro	ds Used in the Assessment of Properties under Part XV.1 of the Environment up (ATG) has been requested (the Protocol states that all analytes in an ATG
2-F4-511-WT W	ater F2-F4-O.Reg 153/04 (July 201	1) EPA 3511/CCME Tier 1
Petroleum Hydrocarbons (F2- per the Reference Method fo	F4 fractions) are extracted from water usin r the Canada-Wide Standard for Petroleur	ng a hexane micro-extraction technique. Instrumental analysis is by GC-FID, a n Hydrocarbons in Soil Tier 1 Method, CCME, 2001.
Analysis conducted in accord Protection Act (July 1, 2011), must be reported).	ance with the Protocol for Analytical Methounless a subset of the Analytical Test Gro	ds Used in the Assessment of Properties under Part XV.1 of the Environment up (ATG) has been requested (the Protocol states that all analytes in an ATG
YLENES-SUM-CALC- W	ater Sum of Xylene Isomer Concentrations	CALCULATION
Total xylenes represents the	sum of o-xylene and m&p-xylene.	
* ALS test methods may incor	porate modifications from specified referer	ce methods to improve performance.
Chain of Custody numbers:		
The last two letters of the abo	ove test code(s) indicate the laboratory that	t performed analytical analysis for that test. Refer to the list below:
Laboratory Definition Code	Laboratory Location	Laboratory Definition Code Laboratory Location
WT	ALS ENVIRONMENTAL - WATERLOO).

ALS ENVIRONMENTAL - WATERLOO, ONTARIO, CANADA

Reference Information

GLOSSARY OF REPORT TERMS

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there. mg/kg - milligrams per kilogram based on dry weight of sample mg/kg wwt - milligrams per kilogram based on wet weight of sample mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight mg/L - unit of concentration based on volume, parts per million.

< - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION. Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, fitness for a particular purpose, or non-infringement. ALS assumes no responsibility for errors or omissions in the information. Guideline limits are not adjusted for the hardness, pH or temperature of the sample (the most conservative values are used). Measurement uncertainty is not applied to test results prior to comparison with specified criteria values.

Workorder: L2345024

Report Date: 16-SEP-19

Page 1 of 3

Client: Kollaard Associates (Kemptville) 210 Prescott Street Unit 1 P.O. Box 189

Kemptville ON K0G 1J0

Contact: Dean Tataryn

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
BTX-511-HS-WT	Water							
Batch R4	809530							
WG3161112-4	DUP	WG3161112-	3					
Benzene		<0.50	<0.50	RPD-NA	ug/L	N/A	30	16-SEP-19
Ethylbenzene		<0.50	<0.50	RPD-NA	ug/L	N/A	30	16-SEP-19
m+p-Xylenes		<0.40	<0.40	RPD-NA	ug/L	N/A	30	16-SEP-19
o-Xylene		<0.30	<0.30	RPD-NA	ug/L	N/A	30	16-SEP-19
Toluene		<0.50	<0.50	RPD-NA	ug/L	N/A	30	16-SEP-19
WG3161112-1 Benzene	LCS		103.6		%		70-130	16-SEP-19
Ethylbenzene			98.2		%		70-130	16-SEP-19
m+p-Xylenes			100.3		%		70-130	16-SEP-19
o-Xylene			95.7		%		70-130	16-SEP-19
Toluene			101.9		%		70-130	16-SEP-19
WG3161112-2 Benzene	МВ		<0.50		ua/l		0.5	16-SEP-10
Ethylbenzene			<0.50		ug/L		0.5	16-SEP-19
m+p-Xvlenes			<0.40		ug/l		0.4	16-SEP-19
o-Xvlene			<0.30		ua/L		0.3	16-SEP-19
Toluene			<0.50		ua/L		0.5	16-SEP-19
Surrogate: 1,4-[Difluorobenzene		91.7		%		70-130	16-SEP-19
Surrogate: 4-Bromofluorobenzene			86.9		%		70-130	16-SEP-19
WG3161112-5	MS	WG3161112-	3					
Benzene			102.5		%		50-140	16-SEP-19
Ethylbenzene			95.7		%		50-140	16-SEP-19
m+p-Xylenes			97.7		%		50-140	16-SEP-19
o-Xylene			94.3		%		50-140	16-SEP-19
Toluene			99.8		%		50-140	16-SEP-19
F1-HS-511-WT	Water							
Batch R4	809530							
WG3161112-4 F1 (C6-C10)	DUP	WG3161112- <25	3 <25	RPD-NA	ug/L	N/A	30	16-SEP-19
WG3161112-1	LCS							
F1 (C6-C10)			102.5		%		80-120	16-SEP-19
WG3161112-2 F1 (C6-C10)	МВ		<25		ug/L		25	16-SEP-19
Surrogate: 3,4-I	Dichlorotoluene		92.3		%		60-140	16-SEP-19
WG3161112-5	MS	WG3161112-	3					

			Workorder: L2345024		Report Date: 1	6-SEP-19		Page 2 of 3	
Client:	Kollaard As 210 Presco Kemptville	ssociates (Ke ott Street Unit ON K0G 1J	mptville) :1 P.O. Box 189 0						
Contact:	Dean Tata	ryn							
Test		Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
F1-HS-511-WT		Water							
Batch WG3161112-{ F1 (C6-C10)	R4809530 5 MS		WG3161112-3	91.7		%		60-140	16-SEP-19
F2-F4-511-WT		Water							
Batch	R4800696								
WG3158631-2 F2 (C10-C16	2 LCS			108.4		%		70-130	12-SEP-19
F3 (C16-C34)			120.1		%		70-130	12-SEP-19
F4 (C34-C50)			97.6		%		70-130	12-SEP-19
WG3158631- ⁻ F2 (C10-C16	1 MB			<100		ug/L		100	12-SEP-19
F3 (C16-C34)			<250		ug/L		250	12-SEP-19
F4 (C34-C50)			<250		ug/L		250	12-SEP-19
Surrogate: 2-	Bromobenzo	otrifluoride		85.1		%		60-140	12-SEP-19

Client:	Kollaard Associates (Kemptville)
	210 Prescott Street Unit 1 P.O. Box 189
	Kemptville ON K0G 1J0
Contact:	Dean Tataryn

Legend:

Limit	ALS Control Limit (Data Quality Objectives
DUP	Duplicate
RPD	Relative Percent Difference
N/A	Not Available
LCS	Laboratory Control Sample
SRM	Standard Reference Material
MS	Matrix Spike
MSD	Matrix Spike Duplicate
ADE	Average Desorption Efficiency
MB	Method Blank
IRM	Internal Reference Material
CRM	Certified Reference Material
CCV	Continuing Calibration Verification
CVS	Calibration Verification Standard
LCSD	Laboratory Control Sample Duplicate

Sample Parameter Qualifier Definitions:

Qualifier	Description
RPD-NA	Relative Percent Difference Not Available due to result(s) being less than detection limit.

Hold Time Exceedances:

All test results reported with this submission were conducted within ALS recommended hold times.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

CCME F2-F4 HYDROCARBON DISTRIBUTION REPORT

<f2-< th=""><th>→</th><th>—_F3—→∢—_F4—+</th><th>→</th></f2-<>	→	—_F3—→ ∢ —_F4—+	→							
nC10	nC16	nC34	nC50							
174°C	287⁰C	481°C	575°C							
346°F	549°F	898°F	1067°F							
Gasolin	e 🔸	- Mote	or Oils/Lube Oils/Grease 🔶 🕨							
•	← Diesel/Jet Fuels →									

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.

Note: This chromatogram was produced using GC conditions that are specific to ALS Canada CCME F2-F4 method. Refer to the ALS Canada CCME F2-F4 Hydrocarbon Library for a collection of chromatograms from common reference samples (fuels, oils, etc.). The HDR Library can be found at <u>www.alsglobal.com</u>.

Chain of Custody (COC) / Analytical

Request Form

COC Number: 17 -

Page

of

Canada Toll Free: 1 800 668 9878

	www.aisglobal.com				_																
Report To	Contact and company name below will app	Report Format / Distribution				Select Service Level Below - Contact your AM to confirm all E&P TATs (surcharges may apply))		
Company:	Kollaard Associates (27196) Select Report Format: PDF EXCEL EDD (DIGITAL)						Regular (R) Standard TAT if received by 3 pm - business days - no surcharges apply														
Contact:	Dean Tataryn		Quality Control (QC) Report with Report					4 day	day [P4-20%]												
Phone:	613.860.0923, ext.225	Compare Results	s to Criteria on Report -	provide details below	if box checked	RUOR!	3 day	[P3-2	5%]		Same Day, Weekend or Statutory holiday [E2 -200%										
	Company address below will appear on the fir	Select Distributi	on: 🗌 EMAIL		AX	14 B)	2 day	(P2-5	0%]			(Labora	itory o	pening	fees n	nay ap	oply)]				
Street:	210 Prescott Street, Unit 1 P.O. Box 189)	Email 1 or Fax	dean@kollaard.ca			1	Date and	Time R	equired f	or all E&I	P TATs							_		-
City/Province:	Kemptville, Ontario		Email 2				For tes	sts that c	an not be	performed	accordin	g to the s	service le	/el select	ed, you wi	ll be cont	tacted.	•			
Postal Code:	K0G 1J0		Email 3										Analy	sis Re	quest						
Invoice To	Same as Report To			Invoice Dis	stribution				Indicat	e Filtered	(F), Prese	erved (P) or Filter	letai							
	Copy of Invoice with Report TYES	NO NO	Select Invoice D	Distribution: 🔲 EMA] FAX														er d	
Company:			Email 1 or Fax	mary@kollaard.ca				3	Š											Ę	
Contact:			Email 2					单	В,											de	
	Project Information		Oil	and Gas Required	d Fields (client u	180)	Ê	l ĝ	No.											rovi	
ALS Account #	/ Quote #: Q71021		AFE/Cost Center:		PO#		2-2	ļõ	S	1											
Job#: AO	301		Major/Minor Code:		Routing Code:		١.	¥	Å,												ERS
PO / AFE:		<u></u>	Requisitioner:		•		ģ	61	or										<u>ہ</u> ا		AN
LSD:		XH	Location:				I ₹	Ε	Š										ģ	Ē	N
ALS Lab Wor	k Order # (lab use only): 22	45024	ALS Contact:	Melanie M.	Sampler:		ity (Kol	ion-Chei	ion-Micr	1-F4									ES ON F	is haza	R OF C
ALS Sample #	Sample Identification	n and/or Coordinates		Date	Time		osi	divis	divis	Ĭ									14	- e	ABE
(lab use only)	(This description will	appear on the report)		(dd-mmm-yy)	(hh:mm)	Sample Type	Ъ.	ăn	Sub	BTE									SAN	San	Ñ
	RH3 SAI			17-19-A		woter	1			$\overline{\mathbf{x}}$											
						V VOLIGI				-+-~											
					-	+			-+						-	+ +					
							<u> </u>							_	_	┨					
																				-	
													1							1	
								┼──┤			+			-						1	
				· · ·							-								-		-
								 											_		
					[
	• ••••••••••••••••••••••••••••••••••••	Special Instructions / Su	pecify Criteria to a	dd on report by clic	king on the drop-	down list below	i			S/	MPLE	CON	NOITION	AS RE	CEIVE) (lab i	use or	nly)			
Drinking	Water (DW) Samples' (client use)	-,	(elec	tronic COC only)	···· y ······		Froz	Frozen SIF Observations Yes]		No					
Are samples take	en from a Regulated DW System?	Toblez -	Comm	And IN		100	Ice F	acks		ce Cube	s 🔲	Custo	dy seal	intact	Yes	Ľ]		No		
Sec. 1	is 🔲 NO	Conney	JUL N	ur-por	M	Cool	Cooling Initiated														
Are samples for	human consumption/ use?	53hu				INIITIAL COOLER TEMPERATURES					°C			FINAL C	OOLER	TEMPE	RATURE	s °C			
🗌 YE	is 🔲 NO					14.9				11			10.6								
	SHIPMENT RELEASE (client use			INITIAL SHIPMEN	RECEPTION (ab use only)		-			F	INAL	SHIPM	ENT R	ECEPT	ION (la	b use	only)			
Released by:	Date: ALC	A I G Time:	Received by:	C	Date:		Time) :	Recei	ved by:		A		Date:		a [–]			Tir	ne:	•
	Jor Jerr	COTAS	MAGASSALL		19	13:	رت CLUEN	TOOP				<u>11 x</u>	1.26	(Ħ·l	-1				<u>50</u>	2017 EDCM	
REFERITO BACK	A PAGE FOR ALS LOCATIONS AND SAMPLIN	GANFORMATION		WHI	IE - LABORATOR	TY COPY YEL	∟UW -	- CLIEN	I COPY	r					1					SEPT	AND LAND

REFERITO BACK PAGE FOR ALS LOCATIONS AND SAMPLING INFORMATION Failure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY. By the use of this form the user acknowledges and agrees with the Terms and Conditions as specified on the back page of the white - report copy.

1. If any water samples are taken from a Regulated Drinking Water (DW) System, please submit using an Authorized DW COC form.