

i

SITE SERVICING REPORT 21 HUNTMAR DRIVE

Project: 127134-6.04.01

Prepared for North American Development Group by IBI Group February 4, 2021

1	INTRO	DUCTIC	DN	1
	1.1	Scope		1
	1.2	Subjec	t Site	1
	1.3	Pre-co	nsultation	1
2	WATE	R DISTF	RIBUTION	2
	2.1	Existing	g Conditions	2
	2.2	Design	Criteria	2
		2.2.1	Water Demands	2
		2.2.2	System Pressure	2
		2.2.3	Fire Flow Rates	2
		2.2.4	Boundary Conditions	3
	2.3	Propos	ed Water Plan	3
3	WASTI	EWATE	R	4
	3.1	Existing	g Conditions	4
	3.2	Design	Criteria	4
	3.3	Recom	mended Wastewater Plan	4
4	STOR	WATE	R SYSTEM	5
	4.1	Existing	g Conditions	5
	4.2	Design	Criteria	5
	4.3	Propos	ed Minor System	5
	4.4	Stormv	vater Management	6
	4.5	Inlet Co	ontrols	6
	4.6	On-Site	e Detention	7
		4.6.1	Site Inlet Control	7
		4.6.2	Overall Release Rate	7
5	SEDIM		ID EROSION CONTROL PLAN	8
6	SOILS			8
7	CONC	LUSION	S	9

1 INTRODUCTION

1.1 Scope

The purpose of this report is to outline the required municipal services, including water supply, stormwater management and wastewater disposal, needed to support the redevelopment of the subject property. The property is approximately 1.6 hectares in area and is located on the west of Huntmar Drive just south of the intersection of Huntmar Drive and Hazeldean Road. The parcel is located across the road from the owners commercial development, and prior to the creation of Huntmar Drive the subject parcel was part of the main parcel located now located on the east side of Huntmar Dr. Please refer to **Figure 1 – Location Plan** in **Appendix A** for more details.

This Site Servicing Study, which also includes the Stormwater Management Plan, and Erosion and Sedimentation Control Plans, are being completed in support of the Site Plan Application.

1.2 Subject Site

The subject lands are located within the Kanata West Development Area (KWDA) and therefore are subject to the requirements of the KWDA Master Servicing Reports. Since the first site plan approval in 2010, this parcel was intended to be developed as a commercial site, to address market demands the owner is submitting for Site Plan Approval for two six storey residential buildings, with a total of 344 residential units. The proposed development also includes two level of underground parking. Vehicular access to the site will be from Huntmar Drive, where the proposed driveway is opposite the existing entrance for the existing commercial site. Please refer to Site Plan prepared by RLA Architects located in **Appendix A** for more information.

The site currently consists of vacant lot, a copy of the site topographic survey and legal boundary plan prepared by Fairhall Moffatt and Woodland is included in **Appendix A**

1.3 Pre-consultation

It should be noted that a pre-consultation with the Ministry of the Environment is not required since this site is serviced by existing separated municipal sanitary and storm sewers and is a single owner residential site, thus an ECA is not required. A preconsulation meeting with the City of Ottawa was held on July 31, 2020 and a copy of the meeting notes are included in **Appendix A**.

2 WATER DISTRIBUTION

2.1 Existing Conditions

As previously noted, the site is located west of Huntmar Drive just north of Hazeldean Road. An existing 400 mm diameter watermain is located within the Huntmar Drive right of way. The watermains fall within the City of Ottawa's pressure zone 3W which will provide the water supply to the site. When the CDP and MSS were first completed to supported the Kanata West development area, the planning for this area envisioned the adjacent parcels to the west to be serviced through this site. As development projects have advance those parcels have been constructed or designed to be serviced independently from this site.

2.2 Design Criteria

2.2.1 Water Demands

The population for apartment buildings is assumed at 1.4, 2.1 and 2.8 persons per unit for one, two and three bedroom units respectively, as found in Table 4.1 of the Design Guidelines. A watermain demand calculation sheet is included in **Appendix B** and the total water demands are summarized as follows:

	Subject Site
Average Day	2.00 l/s
Maximum Day	5.01 l/s
Peak Hour	11.02 l/s

2.2.2 System Pressure

The Ottawa Design Guidelines – Water Distribution (WDG001), July 2010, City of Ottawa, Clause 4.2.2 states that the preferred practice for design of a new distribution system is to have normal operating pressures range between 345 kPa (50 psi) and 480 kPa (80 psi) under maximum daily flow conditions. Other pressure criteria identified in Clause 4.2.2 of the guidelines are as follows:

Minimum Pressure	Minimum system pressure under peak hour demand conditions shall not be less than 276 kPa (40 psi)
Fire Flow	During the period of maximum day demand, the system pressure shall not be less than 140 kPa (20 psi) during a fire flow event.
Maximum Pressure	In accordance with the Ontario Building/Plumbing Code, the maximum pressure should not exceed 552 kPa (80 psi). Pressure reduction controls will be required for buildings where it is not possible/feasible to maintain the system pressure below 552 kPa.

2.2.3 Fire Flow Rates

A calculation using the Fire Underwriting Survey (FUS) method was conducted to determine the fire flow requirement for both buildings on the site. The buildings are considered non-combustible construction. Results of the analysis provides a maximum fire flow rate of 11,000 l/min or 183 l/s is required. A copy of the FUS calculation is included in **Appendix B**. The buildings will be designed with a Siamese fire connection for each building and they will be located on the building's frontage on Huntmar Drive.

2.2.4 Boundary Conditions

A boundary condition was provided by the City of Ottawa for the adjacent development on the 400mm diameter watermain on Huntmar Drive. A copy of the boundary conditions is included in **Appendix B** and summarized as follows, an updated boundary condition has been requested and the below analysis will be updated for the next submission:

BOUNDARY CONDITIONS			
SCENARIO	HGL (m)		
JULIARIO	Huntmar Drive		
Maximum HGL	161.6m		
Minimum HGL (Peak Hour)	156.5m		
Max Day + Fire Flow	155.0m		

2.3 Proposed Water Plan

The minimum water pressure inside the building at the connection is determined by the difference between the water entry elevation of 100.6m and the minimum HGL condition, resulting in a pressure 548 kPa which exceeds the minimum requirement of 276 kPa per the guidelines. Because the pressure at the 6th floor under minimum HGL conditions is close to the minimum requirement of 276 kPa, an onsite test will be required to confirm if a domestic water pump will be necessary for this building.

Maximum water pressure is determined by the difference between the water entry elevation of 100.6 m and the maximum HGL condition resulting in a pressure of 598 kPa, which is greater than the 552 kPa threshold in the guideline in which pressure control is required. Based on this result, pressure control is required for this building.

The boundary condition for Maximum Day and Fire Flow results in a pressure of 503 kPa at the ground floor level. In the guidelines, a minimum residual pressure of 140 kPa must be maintained in the distribution system for a fire flow and maximum day event. As a pressure of 503 kPa is achieved, the fire flow requirement is exceeded.

To service the property twin 200mm dia water services off Huntmar Drive are proposed, see site servicing plan 127134-C-001 in **Appendix B.** The proposed twin 200mm dia services will provide adequate supply to the building to meet demands while also providing service redundancy for the buildings.

3 WASTEWATER

3.1 Existing Conditions

When the MSS for the area was developed a 750mm dia trunk was designed to service this area, and as previously noted the usage was assumed to be commercial and based on the criteria at the time (50,000 l/d/Ha) this site was to drain into the 750 sewer. The site was also to convey flow from upstream lands to the west, however as previously noted the adjacent lands have been serviced independently.

3.2 Design Criteria

The sanitary sewers for the subject site will be based on the City of Ottawa design criteria. It should be noted that the sanitary sewer design for this study incorporates the latest City of Ottawa design parameters identified in Technical Bulletin ISTB-2018-01. Some of the key criteria will include the following:

•	Commercial/Institutional flow	28,000 l/ha/d
•	Residential flow	280 l/c/d
•	Peaking factor	1.5 if ICI in contributing area >20% 1.0 if ICI in contributing area <20%
•	Infiltration allowance	0.33 l/s/ha
•	Velocities	0.60 m/s min. to 3.0 m/s max.
•		

Given the above criteria, the average wastewater flow from the proposed development will 2.51 l/s, the detailed sanitary sewer calculations and Tributary area plan are included in **Appendix C**. As noted previously when the supporting sewers were designed the site was assumed to be developed as a commercial site with an average flow of 50,000 l/d/Ha, and an infiltration factor of 0.28l/s/Ha, which would have resulted in an average flow of 1.33 l/s. The current plan estimates an average flow of 2.51 l/s which is approximately 1.18 l/s greater then original design, which within the larger context of discharging into a 750mm truck with a capacity of over 500l/s it is not anticipated to yield any negative impact on the down stream system.

3.3 Recommended Wastewater Plan

A 250mm dia sanitary service lateral is proposed to be extended from the existing sanitary MH in Huntmar Drive to service this site. Please refer to the site servicing plan 127134-C-001 in **Appendix A** for details.

4 STORMWATER SYSTEM

4.1 Existing Conditions

When the Kanata West MSS was completed this site was limited to a minor system flow (5yr) to 85 I/s/Ha and major flow was to be directed to Huntmar Drive. As noted previously the CDP envisioned a connection through this site to the adjacent sites to the west, however those parcels have advanced their design/construction and are now independent of servicing through this site for both minor and major flows.

4.2 Design Criteria

Since this site is serviced by a storm sewer system that was designed based on 85 I/s/Ha City of Ottawa requires the site to follow the following design criteria;

- Storm sewers designed to a 2 year level of service
- Site to be designed to limit the 100 year post development flow to a maximum of 132.74l/s (1.562 Ha @ 85 l/s/Ha).

The stormwater system was designed following the principles of dual drainage, making accommodations for both major and minor flow.

Some of the key criteria include the following:

Design Storm	1:2 year return (Ottawa)
Rational Method Sewer Sizing	
Initial Time of Concentration	10 minutes
Runoff Coefficients	
- Landscaped Areas	C = 0.30
- Asphalt/Concrete	C = 0.90
- Roof	C = 0.90
Pipe Velocities	0.80 m/s to 6.0 m/s
Minimum Pipe Size	250 mm diameter (200 mm CB Leads)

4.3 Proposed Minor System

Using the above-noted criteria, the proposed on-site storm sewers were sized accordingly. A detailed storm sewer design sheet and the associated storm sewer drainage area plan are included in **Appendix D**. The current servicing drawing outlines the proposed underground parking structure, all of the deck drains are located above the underground parking structure will be routed inside the building via the mechanical plumbing systems and directed to the building cistern located adjacent to the northern wall. All roof deck inlets will be controlled and will utilize rooftop storage, restricted flow from the roof decks will bypass the cistern and discharge to the

storm service. The runoff from the landscaped areas will be collected and conveyed through a series of clear stone infiltration cells. These cells will provide both infiltration and stormwater storage. Volume of storage below the invert of the perforated pipe will be used for infiltration, and the volume of storage above the invert of the perforated pipe will be used for stormwater storage. Flow from the system will be controlled with an ICD and the outlet will connect to the joint outlet servicing the roof drains, and onsite cistern.

4.4 Stormwater Management

The subject site will be limited to a release rate established using the criteria described in section 4.2. This will be achieved through an inlet control device (ICD) at the outlet of the cistern, and inlet control devices on all roof deck inlets, and ICD at the outlet of the infiltration cells.

When rainfall events generate flows that are in excess of the site's allowable release rate excess volume will be stored within the combination of a cistern, roof top and infiltration cells.

At certain locations within the site, the opportunity to capture runoff is limited due to grading constraints and building geometry. These locations are generally located at the perimeter of the site where it is necessary to tie into public boulevards and adjacent properties, and it is not always feasible to capture or store stormwater runoff. These "uncontrolled" areas, 0.123 hectares in total, based on 1:100 year storm uncontrolled flows the uncontrolled areas generate 53.3 l/s runoff (refer to Section 4.5 for calculation). The various roof decks will have inlets that control flow to a total of 27.72 l/s, which leaves 51.72l/s for the remaining surface inlets discharging into the cistern and infiltration cell, which have been sized to accommodate flow during the 1:100-year event, with no overflow leaving the site.

4.5 Inlet Controls

The allowable release rate for the 1.562 Ha site as noted previously is 132.74 l/s.

As noted in Section 4.4, a portion of the site will be left to discharge to the surrounding boulevards and roadways uncontrolled.

Based on a 1:100 year event, the flow from the three uncontrolled areas can be determined as:

Quncontrolled	= 2.78 x C x i _{100yr} x A where:
С	= Average runoff coefficient of uncontrolled area
İ _{100yr}	= Intensity of 100-year storm event (mm/hr)
	= 1735.688 x (T _c + 6.014) ^{0.820} = 178.56 mm/hr; where T _c = 10 minutes
A ₁ A ₂ A ₃	= Uncontrolled Area = 0.037 Ha, $C_{100} = 1.0$, $Q_1 = 18.37$ l/s = Uncontrolled Area = 0.025 Ha, $C_{100} = 0.375$, $Q_2 = 4.65$ l/s = Uncontrolled Area = 0.061 Ha, $C_{100} = 1.00$, $Q_3 = 30.28$ l/s

Therefore, the uncontrolled release rate can be determined as:

Quncontrolled = 18.37+4.65+30.28= 53.3L/s

The maximum allowable release rate from the remainder of the site can then be determined as:

Q max allowable	= Qrestricted - Quncontrolled
	= 132.74 L/s - 53.3 L/s = 79.44 L/s

4.6 On-Site Detention

As noted in section 4.4 any excess storm water up to the 100-year event is to be stored on-site within the building cistern, infiltration cells, and on the roof decks in order to not surcharge the downstream municipal storm sewer system.

4.6.1 Site Inlet Control

The roof decks will utilize restrictor inlets such as the Watts RD-100-A-ADJ (or approved equal) to limit the inflow from each section of roof to the identified flow rates. Storage of runoff on the roof decks will be required to accommodate the 1:100 yr event, and scuppers will provide for overflow should a more extreme event occur or should an inlet become blocked. The Modified Rational Method (MRM) was used to identify the required storage, see the MRM calculations in **Appendix D** for details. The deck and driveway areas drain to the storm water cistern located adjacent to the building north wall, where an ICD will restrict the flow from the tank to 41.05l/s. The landscape areas will drain to the infiltration cells where additional storage above the infiltration volume will be used to accommodate restricting the flow from this system to 10.66 l/s the MRM spreadsheet in **Appendix D** identifies the required storage requirements during both the 1:5-year and 1:100-year events.

ICD	TRIBUTARY	AVAILABLE	100-YEAR STORM		2-YEAR STORM	
AREA	AREA	STORAGE (M ³)	RESTRICTED FLOW (L/S)	REQUIRED STORAGE (M ³)	RESTRICTED FLOW (L/S)	REQUIRED STORAGE (M ³)
Cistern	0.507	210.0	41.05	209.70	41.05	55.15
Roof Deck 1A	0.044	17.6	2.52	16.02	2.52	3.88
Roof Deck 1B	0.041	16.4	2.52	14.5	2.52	3.43
Roof Deck 1C	0.029	11.6	1.89	10.01	1.89	2.33
Roof Deck 1D	0.057	23.09	2.52	22.86	2.52	5.89
Roof Deck 1E	0.063	25.2	3.15	24.15	3.15	6.06
Roof Deck 2A	0.044	17.6	2.52	16.01	2.52	3.87
Roof Deck 2B	0.077	32.73	3.15	31.73	3.15	8.33
Roof Deck 2C	0.029	11.6	1.89	10.01	1.89	2.33
Roof Deck 2D	0.057	23.09	2.52	22.86	2.52	5.89
Roof Deck 2E	0.029	11.6	1.89	10.01	1.89	2.33
Roof Deck 2F	0.059	23.6	3.15	22.07	3.15	5.44
Landscape	0.393	64.8	10.66	59.86	10.66	14.2
Unrestricted	0.123		53.3		24.63	
TOTAL	1.552	488.91	132.73	469.79	104.06	63.93

In all instances the required storage is met with the building cistern, landscape and roof top storage, respectively.

4.6.2 Overall Release Rate

As demonstrated above, the site uses various inlet control devices to restrict the 100 year storm event to 132.73 l/s. Restricted stormwater will be contained onsite by the building cistern, landscape clear stone cells, and roof top storage. Up to and including the 100 year event, there

will be no overflow off-site from restricted areas, if however an more intense storm or should an inlet become blocked, overland routing has been provided to the approved outlet per the original system design.

5 SEDIMENT AND EROSION CONTROL PLAN

During construction, existing stream and storm water conveyance systems can be exposed to significant sediment loadings. A number of construction techniques designed to reduce unnecessary construction sediment loadings may be used such as;

- Filter socks will remain on open surface structures such as manholes and catchbasins until these structures are commissioned and put into use;
- Installation of silt fence, where applicable, around the perimeter of the proposed work area.

During construction of the services, any trench dewatering using pumps will be fitted with a "filter sock." Thus, any pumped groundwater will be filtered prior to release to the existing surface runoff. The contractor will inspect and maintain the filter sock as needed including sediment removal and disposal.

All catchbasins, and to a lesser degree manholes, convey surface water to sewers. Consequently, until the surrounding surface has been completed these structures will be protected with a sediment capture filter sock to prevent sediment from entering the minor storm sewer system. These will stay in place and be maintained during construction and build-out until it is appropriate to remove them.

The Sediment and Erosion Control Plan 127134-C-900 is included in Appendix E.

6 SOILS

Paterson Group was retained to prepare a geotechnical investigation for the proposed development. The objectives of the investigation were to prepare a report to:

- Determine the subsoil and groundwater conditions at the site by means of boreholes and monitoring well program.
- To provide geotechnical recommendations pertaining to design of the proposed development including construction considerations.

The geotechnical report PG5006-1 "Geotechnical Investigation 21 Huntmar Drive" dated July 7, 2020. A copy of the report has been included with the SPA application. The report contains recommendations for building construction and site services, which include but are not limited to the following for site servicing:

- Bedding and cover for service pipes: bedding min 150mm compacted (95% SPMDD) OPSS Gran. A to the springline, and covered with OPSS Gran A
- Fill for driveway to be suitable native material or OPSS Select Subgrade Material placed in thin lifts compacted to 95% SPMDD

	MATERIAL	Layer Thickness
•	Car Only Parking Areas	
•	Asphalt Wearing Course (Superpave 12.5)	• 50 mm
•	Well Graded Granular Base Course (Granular 'A')	• 150 mm
•	Well Graded Granular Sub-Base Course (Granular 'B' Type II)	• 300 mm
•	Access Lanes and Heavy Truck Parking	
•	Asphalt Wearing Course (Superpave 12.5)	• 40 mm
•	Asphalt Binder Course (Superpave 19.0)	• 50 mm
•	Well Graded Granular Base Course (Granular 'A')	● 150 mm
•	Well Graded Granular Sub-Base Course (Granular 'B' Type II)	• 400 mm

Infiltration targets for the proposed site were outlined in the KWDA MSP. As indicated in Figure 5.4 of the MSS, the soil type within the proposed development area is characterized as clay with low recharge potential. The infiltration target for the area, as identified within the MSP is 50-70mm/year. The subject site consists of approximately 1.56 Ha of development, the site is comprised of impervious Building deck, roof surfaces, and landscape areas. It is proposed to take advantage of the landscape areas to install infiltration cell to meet the infiltration target for the site.

For the previous phases of the original development an infiltration strategy for the site was developed in consultation with the MVCA; see approval email from Doug Nuttall in **Appendix E**. The strategy included three sources: natural infiltration from rainfall, infiltration from irrigation system, and infiltration from a dry well supplied by roof runoff. For this phase where more landscape area is available, we propose to use infiltration cells supplied with runoff from the landscape areas.

The Infiltration cells will be a drywell constructed with clear stone, each cell will be 4m wide by 60m long, and 0.2m clear depth from bottom of perforated pipe to the bottom of the cell. Each cell has a volume of $48m^3$, with 30% voids in the clear stone there is $14.4m^3$ of storage available for each cell for a total of $43.2m^3$.

Rainfall from the 3950 m² of landscape areas will supply the infiltration cells, the cells are set up such that if the volume of runoff from the landscape area exceeds the storage capacity of the dry well excess runoff is discharged to the storm sewer, see the Servicing Plan C-100 in **Appendix A**, and the grading plan in **Appendix E**.

Based on previously approved rainfall data where for the months of March up to and including November, 40 days of 5mm or more rain occurred, and for the same period 22 days of 10mm or more rain occurred. Assuming 80% of rainfall is collected by the drains the following volume of rainfall is collected and discharged into the drywell:

5mm, at 80% = 4mm, for 3950 m² of landscape area = $15.8m^3$, for 40 events = $632m^3$

10mm, at 80%= 8mm (less 4mm from above) = 4mm for 3950 m² of landscape area = $15.8m^3$, for 22 events = $347.6m^3$. These events provide approximately of $979.6m^3$ of rainfall for use by the infiltration cells.

For the 1.56 Ha site this equates to approximately 62.8mm/yr of infiltration, which is within the guideline of 50 to 70 mm/yr.

7 CONCLUSIONS

Municipal water, wastewater and stormwater systems required to accommodate the proposed development are available to service the proposed development. Prior to construction, existing sewers are to be CCTV inspected to assess sewer condition.

This report has demonstrated sanitary and storm flows from and water supply to the subject site can be accommodated by the existing infrastructure. Also, the proposed servicing has been designed in accordance with MECP and City of Ottawa current level of service requirements.

The use of lot level controls, conveyance controls and end of pipe controls outlined in the report will result in effective treatment of surface stormwater runoff from the site. Adherence to the sediment and erosion control plan during construction will minimize harmful impacts on surface water.

Based on the information provided herein, the development can be serviced to meet City of Ottawa requirements.

Report prepared by:

Demetrius Yannoulopoulos, P. Eng. Director, Ottawa Office Lead "J:\127134_21 Huntmar rd_6.0_Technical\6.04_Civil_01brief\1st Submission\CTR-site-serviciing-erosion-2021-01-26.docx"

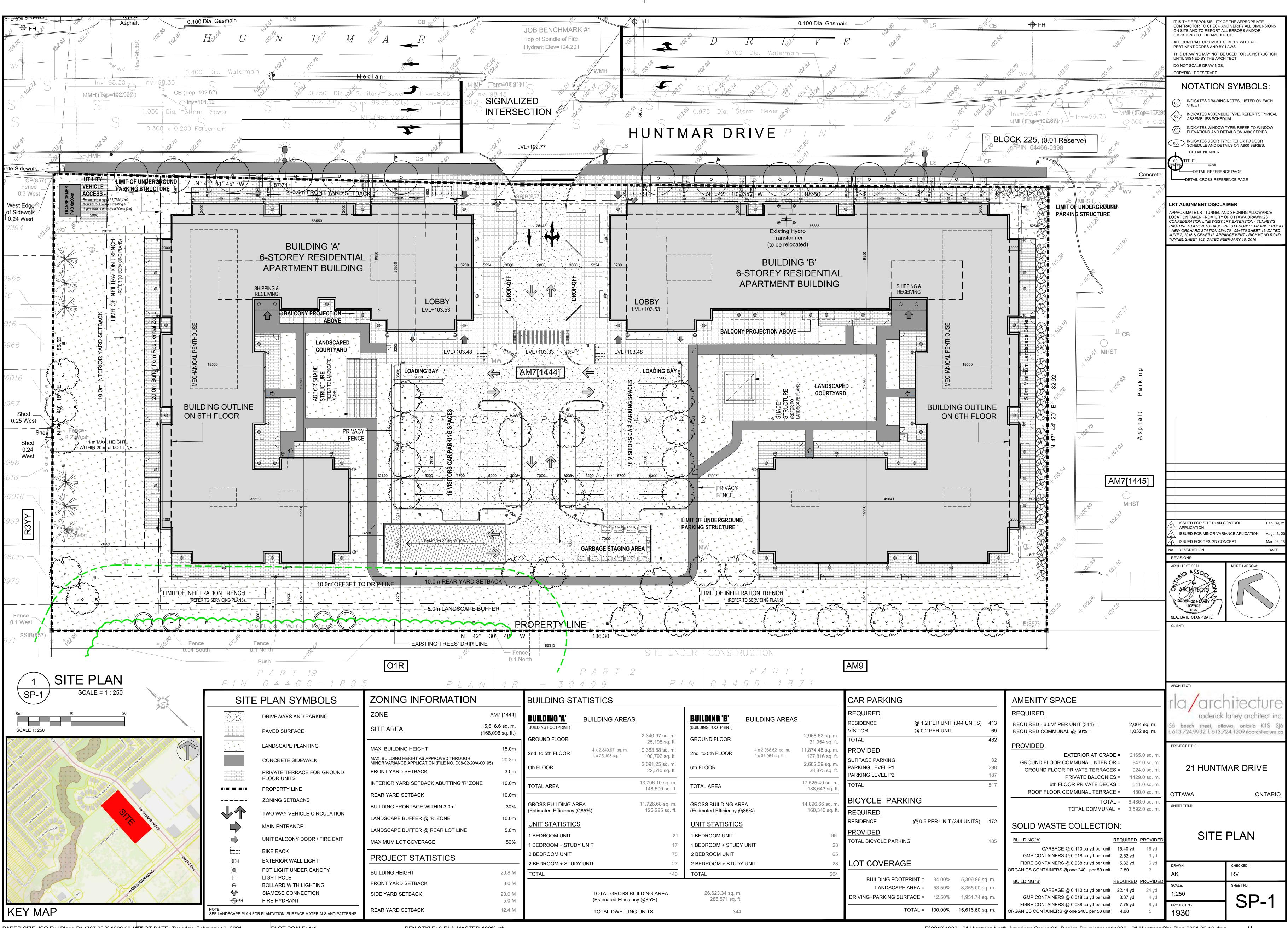
10

APPENDIX A

- Site Plan
- Topographic SurveyPreconsultation Meeting Notes

PLOT SCALE: 1:500

21 HUNTMAR DRIVE OTTAWA, ONTARIO

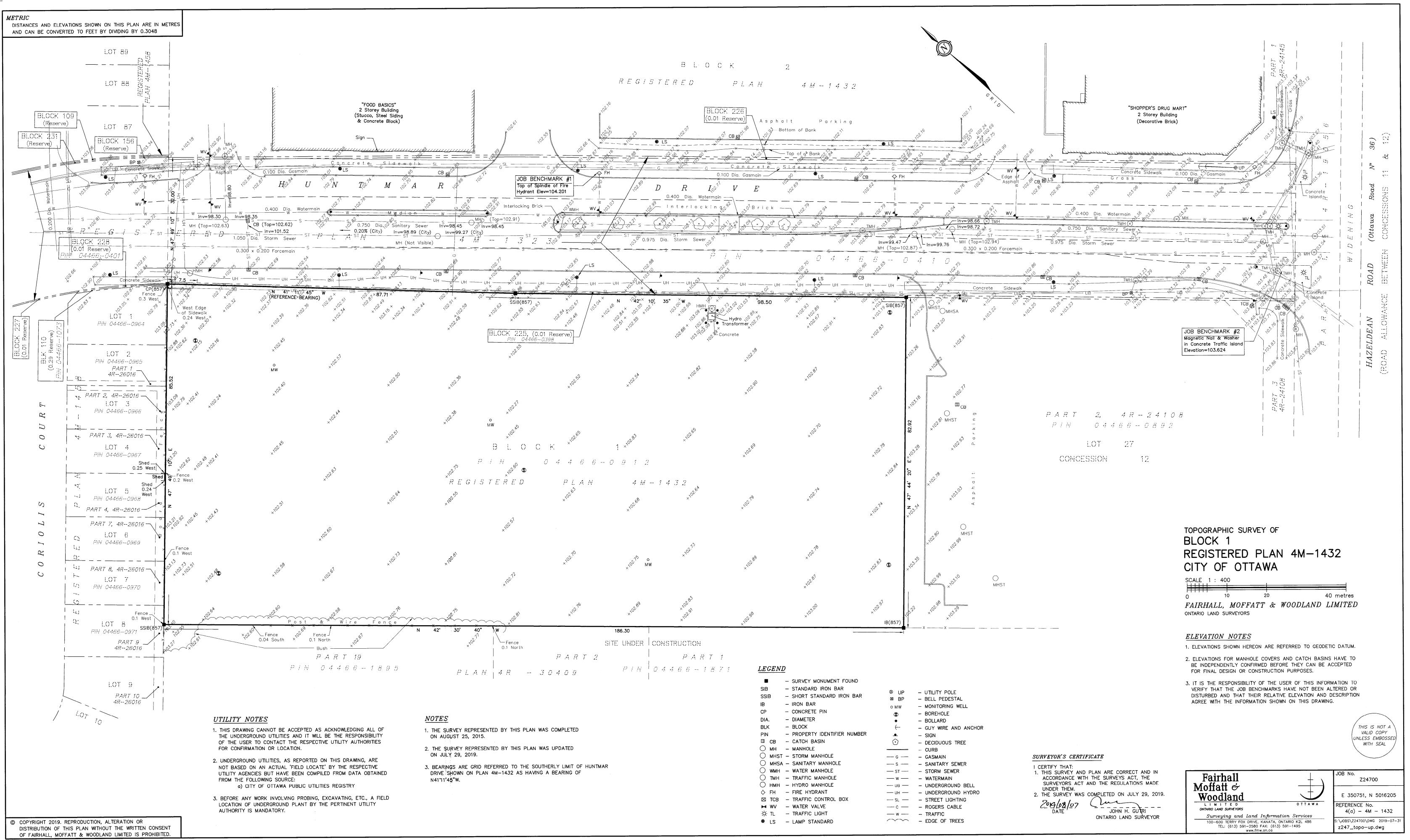

PAPER SIZE: ANSI Full Bleed B (17.00 X 11.00 Inches)

roderick lahey architect inc.

February 2020

PAPER SIZE: ISO Full Bleed B1 (707.00 X 1000.00 MIM) OT DATE: Tuesday, February 16, 2021

PLOT SCALE: 1:1


	AM7 [1444]
REA	15,616.6 sq. m. (168,096 sq. ft.)
LDING HEIGHT	15.0m
DING HEIGHT AS APPROVED THROUGH RIANCE APPLICATION (FILE NO. D08-02-20/A	-00195) 20.8m
ARD SETBACK	3.0m
R YARD SETBACK ABUTTING 'R' ZON	IE 10.0m
RD SETBACK	10.0m
FRONTAGE WITHIN 3.0m	30%
APE BUFFER @ 'R' ZONE	10.0m
APE BUFFER @ REAR LOT LINE	5.0m
I LOT COVERAGE	50%
ECT STATISTICS	
G HEIGHT	20.8 M
ARD SETBACK	3.0 M
RD SETBACK	20.0 M 5.0 M
RD SETBACK	12.4 M

BUILDING AREAS	6
	-
	2,968.6 31,9
4 x 2,968.62 sq. m. 4 x 31,954 sq. ft.	11,874.4 127,8
	2,682.3 28,8
	17,525. 188,6
A 35%)	14,896. 160,3
UNIT	
UNIT	
	4 x 2,968.62 sq. m. 4 x 31,954 sq. ft. A \$5%)

PEN STYLE: 0-RLA-MASTER-100%.ctb

F:\2019\1930 - 21 Huntmar-North American Group\01_Design Development\1930 - 21 Huntmar Site Plan 2021.02.16.dwg

	- SURVEY MONUMENT FOUND		
SIB	- STANDARD IRON BAR	⊗ UP	
SSIB	- SHORT STANDARD IRON BAR	⊗ UP ⊠ BP	– UTILITY POLE – BELL PEDESTAL
IB	– IRON BAR	o MW	- MONITORING WELL
CP	- CONCRETE PIN	C M W	- BOREHOLE
DIA.	- DIAMETER		- BOLLARD
BLK	- BLOCK	(- GUY WIRE AND ANCH
PIN	- PROPERTY IDENTIFIER NUMBER	<u>.</u>	– SIGN
💷 CB	– CATCH BASIN	\odot	- DECIDUOUS TREE
🔾 мн	- MANHOLE		- CURB
🔘 мнэт	– STORM MANHOLE	G	- GASMAIN
🔘 MHSA	A - SANITARY MANHOLE	s	- SANITARY SEWER
🔾 WMH	- WATER MANHOLE	st	- STORM SEWER
О_тмн	- TRAFFIC MANHOLE	— w —-	– WATERMAIN
🔿 нмн	- HYDRO MANHOLE	UB	- UNDERGROUND BELL
¢- FH	- FIRE HYDRANT	UH	- UNDERGROUND HYDRO
🖾 TCB	- TRAFFIC CONTROL BOX	— SL —	- STREET LIGHTING
₩ WV	- WATER VALVE	— c —	 ROGERS CABLE
₩т∟	- TRAFFIC LIGHT	— w —	- TRAFFIC
	- LAMP STANDARD	\sim	- FDGF OF TREES

21 Huntmar Drive Pre-Consultation Meeting Minutes

Location: Room 4106E, City Hall Date: July 31, 2019, 3pm to 4pm

Attendee	Role	Organization	
Mark Young	Mark Young Planner		
Julie Candow	Project Manager (Infrastructure)		
Mike Giampa	Project Manager (Transportation)	City of Ottawa	
Matthew Ippersiel	Planner (Urban Design)		
Sami Rehman	Planner (Environmental)		
Samantha Gatchene	Planning Assistant		
Ron Richards	Owner's Representative	North American	
Paul Ferarro	Owner's Representative	North Americali	
Abhinav Sukumar	Architect	Roderick Lahey Architects	

Comments from Applicant

- 1. The applicant is proposing the development of two (2) five-storey mid-rise buildings at 21 Huntmar Drive. The buildings would be residential aparments with 210 units total.
- 2. 334 underground parking spaces and 12 surface parking spaces would be provided.
- 3. One new access point is proposed off of Huntmar Drive. This driveway would lead to the surface parking lot on the interior of site, providing access to both buildings and the underground parking.

Planning Comments

- 1. This is a pre-consultation for a Site Plan Control application, Complex, subject to Public Consultation. Application form, timeline and fees can be found <u>here</u>.
- 2. With regards to maximum building height, the Zoning By-law permits a maximum of 11 metres in areas up to 20 metres from a property line abutting a residential zone.
- 3. Cash-in-lieu of parkland and associated appraisal fee will be required as a condition of approval as per the <u>Parkland Dedication By-law</u>.

Urban Design Comments

- 1. The general built form approach and the L-shaped building footprints framing the street are supported and it is recommended that the applicant pursue this approach.
- 2. The ground-oriented units and proposed individual walkways are supported.
- 3. As the site plan and landscape plan progress, be mindful of demonstrating how the pedestrian pathway network will be properly lit and CPTED design principles have been applied.

Engineering Comments

- The Servicing Study Guidelines for Development Applications are available at the following address: <u>https://ottawa.ca/en/city-hall/planning-and-</u> <u>development/information-developers/development-application-review-</u> <u>process/development-application-submission/guide-preparing-studies-and-plans</u>
- 2. Servicing and site works shall be in accordance with the following documents:
 - ⇒ Ottawa Sewer Design Guidelines (October 2012)
 - ⇒ Ottawa Design Guidelines Water Distribution (2010)
 - ⇒ Geotechnical Investigation and Reporting Guidelines for Development Applications in the City of Ottawa (2007)
 - ⇒ City of Ottawa Slope Stability Guidelines for Development Applications (revised 2012)
 - ⇒ City of Ottawa Environmental Noise Control Guidelines (January 2016)
 - ⇒ City of Ottawa Park and Pathway Development Manual (2012)
 - ⇒ City of Ottawa Accessibility Design Standards (2012)
 - ⇒ Ottawa Standard Tender Documents (latest version)
 - ⇒ Ontario Provincial Standards for Roads & Public Works (2013)
- 3. Record drawings and utility plans are also available for purchase from the City (Contact the City's Information Centre by email at <u>InformationCentre@ottawa.ca</u> or by phone at (613) 580-2424 x.44455).
- 4. The Stormwater Management Criteria for the subject site is to be based on the following:
 - i. The allowable storm release rate for the subject site is limited to 85 L/s/ha as per the Kanata West Master Servicing Study.
 - ii. Onsite storm runoff, in excess of the allowable release rate, and up to the 1:100 year storm event must be detained on site.

- iii. Post development infiltration rates are to be increased by 25 percent above the pre-development infiltration rates as per the Kanata West Master Servicing Study.
- Quantity control to be provided by the downstream stormwater management facility and/or as determined by the Mississippi Valley Conservation Authority (MVCA). Please include correspondence from the MVCA in the stormwater management report.
- v. A letter of acknowledgment will be required to be obtained from Mattamy to allow storm flows from 21 Huntmar Drive to discharge to Mattamy's temporary SWM pond, within Mattamy's Phase 5 development.
- 5. No sanitary sewer capacity constraints were identified on Huntmar Drive during the initial review of the concept plan. A sanitary sewer connection to the existing 750mm diameter sanitary sewer within Huntmar Drive is acceptable.
- 6. As per Section 4.3.1 of the Water Design Guidelines, two watermain connections will be required to provide a looped connection if the basic day demand is greater than 50 m3/day (approx. 50 homes).
- 7. Water Boundary condition requests must include the location of the service and the expected loads required by the proposed development. Please provide the following information:
 - i. Location of service
 - ii. Type of development and the amount of fire flow required (as per FUS, 1999).
 - iii. Average daily demand: ____ l/s.
 - iv. Maximum daily demand: ____l/s.
 - v. Maximum hourly daily demand: ____ l/s.
- 8. An MECP Environmental Compliance Approval is not anticipated to be required for the subject site.
- Phase 1 ESAs and Phase 2 ESAs must conform to clause 4.8.4 of the Official Plan that requires that development applications conform to Ontario Regulation 153/04.

Should you have any questions or require additional information, please contact me directly at (613) 580-2424, x13850 or by email at <u>Julie.Candow@ottawa.ca</u>.

Transportation Comments

- 1. A TIA is triggered for this site and they should proceed to Scoping (Step 2). This should be done prior to an application.
- 2. The signalization of the Huntmar access should be further explored.
- 3. The application will not be deemed complete until the submission of the draft Step 1-4, including the functional draft RMA package (if applicable).
- 4. A noise study is required.

Environmental Planning

- The subject property is within the adjacency distance to the Natural Heritage Systems (See OP Section 2.4.2 and Schedule L3) and thus, triggers a requirement for an Environmental Impact Statement (EIS), as per OP Section 4.7.8. Given that butternut trees were identified in the adjacent woodlot, there is a potential for butternuts to be on the subject property. The field on the subject property may also host other endangered or threatened species.
- The EIS should address and demonstrate no negative impacts on the NHS and to determine the presence of endangered or threatened species or their habitats on the subject property. Further details on the EIS requirements can be found in OP section 4.7.8 and the EIS guidelines. <u>https://documents.ottawa.ca/sites/default/files/documents/eis_guidelines2015_en_.pdf</u>

<u>Forestry</u>

- 1. Any tree information can be combined into the EIS.
- 2. A tree permit is required if any trees need to be cut that are 10cm or larger in diameter.

Parks Planning

- 1. Recommend there is a pathway connection to the Poole Creek corridor (UNA 185);
- 2. Assumption that play area(s) are to remain as private ownership.
- 3. Although play area(s) are private, recommend the Owner adhere to City specifications and standards for play area(s) design, construction and maintenance.

4. The site is located within Kanata West CDP area, therefore 100% CIL direction to District Park

Mississippi Valley Conservation Authority

- 1. There does not appear to be any hazards or heritage features, however it appears to drain into Poole Creek so it is enhanced level of treatment and we generally recommend using LIDs.
- The Master Serving Study for Kanata West (SWM) indicates infiltration targets 50

 70 mm/yr., but it should be confirmed.

Requested Plans and Studies

1. A list of required plans and studies required for a complete Site Plan Control application have been attached.

Please refer to the links to "<u>Guide to preparing studies and plans</u>" and <u>fees</u> for general information. Additional information is available related to <u>building permits</u>, <u>development</u> <u>charges</u>, <u>and the Accessibility Design Standards</u>. Be aware that other fees and permits may be required, outside of the development review process. You may obtain background drawings by contacting <u>informationcentre@ottawa.ca</u>.

These pre-con comments are valid for one year. If you submit a development application(s) after this time, you may be required to meet for another pre-consultation meeting and/or the submission requirements may change. You are as well encouraged to contact us for a follow-up meeting if the plan/concept will be further refined.

Please contact me at <u>Mark.Young@ottawa.ca</u> or at 613-580-2424 extension 41396 if you have any questions.

Sincerely,

Mark M.J.

Mark Young, MCIP RPP Planner III Development Review - West

APPENDIX B

- Watermain Demand Calculation Sheet
- FUS Fire Flow Calculation
- Watermain Boundary Condition
- C-001 General Plan
- C-010 Details Plan

IBI 333 PRESTON STREET OTTAWA, ON

WATERMAIN DEMAND CALCULATION SHEET

PROJECT : 21 HUNTMAR DR	FILE:	127134-6.4.4
LOCATION : City of Ottawa	DATE PRINTED:	2021-02-08
DEVELOPER : NORTH AMERICAN DEVELOPMENT GROUP	DESIGN:	2021-01-19
	PAGE :	1 OF 1

		RESID	ENTIAL			N-RESIDEN			/ERAGE D								FIRE
NODE		UNITS			INDTRL	COMM.	RETAIL	L	DEMAND	(I/S)	D	EMAND (I	/s)	D	EMAND (I	/s)	DEMAND
NODE	1bd	2bd	3bd	POP'N	(ha.)	(ha.)	(m ²)	Res.	Non-res.	Total	Res.	Non-res.	Total	Res.	Non-res.	Total	(l/min)
BUILDING A	38	102		267				0.87	0.00	0.87	2.17	0.00	2.17	4.77	0.00	4.77	
BUILDING B	111	93	0	351				1.14	0.00	1.14	2.84	0.00	2.84	6.25	0.00	6.25	
Total	149	195	0	618				2.00	0.00	2.00	5.01	0.00	5.01	11.02	0.00	11.02	11,000

ASSUMPTIONS

RESIDENTIAL DEN	SITIES	AVG. DAILY DEMA	AND		MAX. HOURLY	DEMAND	<u>.</u>
One-bedroom/Studio (1bd)	1.4 p/p/u	Residential:**	280	l / cap / day	Residential:	1,540	l / cap / day
Two-bedroom (2bd)	2.1 p/p/u	Industrial:		l / ha / day	Industrial:		l / ha / day
Three-bedroom (3bd)	2.8 p/p/u	Commercial:		l / ha / day	Commercial:		l / ha / day
		Retail:		l / 1000m² / day	Retail:		I / 1000m ² / day
** Residential Daily Demand reduce	d to coincide with						
current waste water guidelines		MAX. DAILY DEMA	AND		FIRE FLC	w	
		Residential:	700	l / cap / day	From FUS Calculation	11,000	l / min
		Industrial:		l / ha / day			
		Commercial:		l / ha / day			
		Retail:		l / 1000m² / day			
				-			

Fire Flow Requirement from Fire Underwriters Survey - 21 Huntmar Drive

Building A

						L
	Floor Area (1 & 2) 50% Floor Area (3 to 8)	4,682 4,557	m²			
	Total Floor Area	9,239	m ²			_
F = 22	20C√A					
С	0.6	C =	1	.5 wood frame		
A	9,239 m ²	Ũ		.0 ordinary		╞
7.	0,200			.8 non-combustil	ble	(
F	12,688 l/min		C	.6 fire-resistive		ť
use	13,000 l/min					e
Occur	pancy Adjustment		-25	% non-combustil	ble	
<u></u>	<u>ouroj / ujuourrorri</u>			% limited combu		
Use	-15%		0	% combustible		
				% free burning		
Adjust Fire fl			+25	% rapid burning		
Fire II	ow 11,050	1/11111				
Sprink	kler Adjustment		-30	% system confor	ming to NFPA 13	3
	· ·		-50	% complete auto	matic system	
Use	-30%					
Adjust	tment -3315	l/min				
Adjust	ument -5515	1/11111				
<u>Expos</u>	sure Adjustment					
Build Fac		ent Expose Stories	ed Wall L*H Fac	Exposure to Charge *		
Tac	e (III) Lengui	0101165		charge		
north	40.0			5%		
east	25.5 20.0	6	120	9%		
south	> 45	c		0%		
west	28.0 100.0	2	200	15%		
Total				29%		

Adjustment	3,205 l/min
Total adjustments	(111) l/min
Fire flow	10,940 l/min
Use	11,000 l/min
	183 l/s

* Exposure charges from Techinical Bulletin ISTB 2018-02 Appendix H (ISO Method)

Floor	Area (m ²)	Two	Floors
FIUUI	Area (m.)	Largerst	Above at
1	2341	2341	
2	2341	2341	
3	2341		1170.5
4	2341		1170.5
5	2341		1170.5
6	2091		1045.5
Total	13796	4682	4557

(<u>Note</u>: For fire-resistive buildings, consider two largest adjoining floors plus 50% of each of any floors immediately above them

Fire Flow Requirement from Fire Underwriters Survey - 21 Huntmar Drive

Building B

5(Floor Area (1 & 2) <u>0% Floor Area (3 to 8)</u> Total Floor Area	5,936 m ² 5,793 11,729 m ²	
F = 220C√A			
С	0.6	C =	1.5 wood frame
А	11,729 m ²		1.0 ordinary 0.8 non-combustible
F use	14,296 l/min 14,000 l/min		0.6 fire-resistive

Occupancy Adjustment

o coupanel i talacario		
		-15% limited combustible
Use	-15%	0% combustible
		+15% free burning
Adjustment	-2100 l/min	+25% rapid burning
Fire flow	11,900 l/min	
Sprinkler Adjustment		-30% system conforming to NFPA 13
		-50% complete automatic system
Use	-30%	
Adjustment	-3570 l/min	

-25% non-combustible

Exposure Adjustment

Building	Separation	Adja	cent Expose	ed Wall	Exposure
Face	(m)	Length	Stories	L*H Factor	Charge *
north	> 45				0%
east	> 45				0%
south	> 45				0%
west	25.5	20.0	6	120	9%
Total					9%
Adjustme	nt		1,071	l/min	_
					-
Total adju	stments		(2,499)	l/min	_
Fire flow			9,401	l/min	-
Use			9,000	l/min	
			150	l/s	

* Exposure charges from Techinical Bulletin ISTB 2018-02 Appendix H (ISO Method)

Floor	Area (m ²)	Two Largerst Floor	Floors Above at 50%
1	2968	2968	
2	2968	2968	
3	2968		1484
4	2968		1484
5	2968		1484
6	2682		1341
Total	17522	5936	5793

(<u>Note</u>: For fire-resistive buildings, consider two largest adjoining floors plus 50% of each of any floors immediately above them up to eight.)

Lance Erion

From:	Fraser, Mark <mark.fraser@ottawa.ca></mark.fraser@ottawa.ca>
Sent:	Monday, August 29, 2016 8:19 AM
То:	Lance Erion
Cc:	Demetrius Yannoulopoulos
Subject:	RE: North American Hazeldean & Huntmar Commercial Site
Attachments:	CCS_FUSfireflow_2016-08-15.pdf; CCSwater_demand2016-08-12.pdf; Node ID's.pdf;
	Boundary condition.pdf; BC at 5705 Hazeldean Road.docx

Hi Lance,

Please find attached/below water distribution network boundary conditions for hydraulic analysis as requested based on the provided anticipated water demands and fire flow requirement.

Proposed Water Demands and Fire Flow Requirement:

Proposed Development Location: 5705 Hazeldean Road **Average Daily Demand** = 0.73L/s **Max Daily Demand** = 1.08 L/s **Peak Hour Demand** = 1.95 L/s **Fire Flow** = 250 L/s

City of Ottawa Boundary Conditions:

Specified Service Connection Point: Huntmar Drive [Connection 1] Max HGL = 161.6m PKHR = 156.5m MXDY+Fire = 155.0m

Please refer to City of Ottawa, Ottawa Design Guidelines – Water Distribution, First Edition, July 2010, WDG001 Clause 4.2.2 for watermain pressure and demand objectives.

Please note that hydraulic modelling software is anticipated. Please include an electronic version of the modelling file with the Site Servicing Report resubmission for review.

These boundary conditions are for current conditions and are based on computer model simulation.

Disclaimer: The boundary condition information is based on current operation of the city water distribution system. The computer model simulation is based on the best information available at the time. The operation of the water distribution system can change on a regular basis, resulting in a variation in boundary conditions. The physical properties of watermains deteriorate over time, as such must be assumed in the absence of actual field test data. The variation in physical watermain properties can therefore alter the results of the computer model simulation. Fire Flow analysis is a reflection of available flow in the watermain; there may be additional restrictions that occur between the watermain and the hydrant that the model cannot take into account.

If you have any questions please let me know.

Regards,

Mark Fraser Junior Infrastructure Engineer, Suburban Services

City of Ottawa | Ville d'Ottawa Planning, Infrastructure and Economic Development Department 110 Laurier Avenue West. 4th Floor, Ottawa ON, K1P 1J1 <u>Tel:613.580.2424</u> ext. 27791 Fax: 613-580-2576 Mail: Code 01-14 Email: <u>Mark.Fraser@ottawa.ca</u>

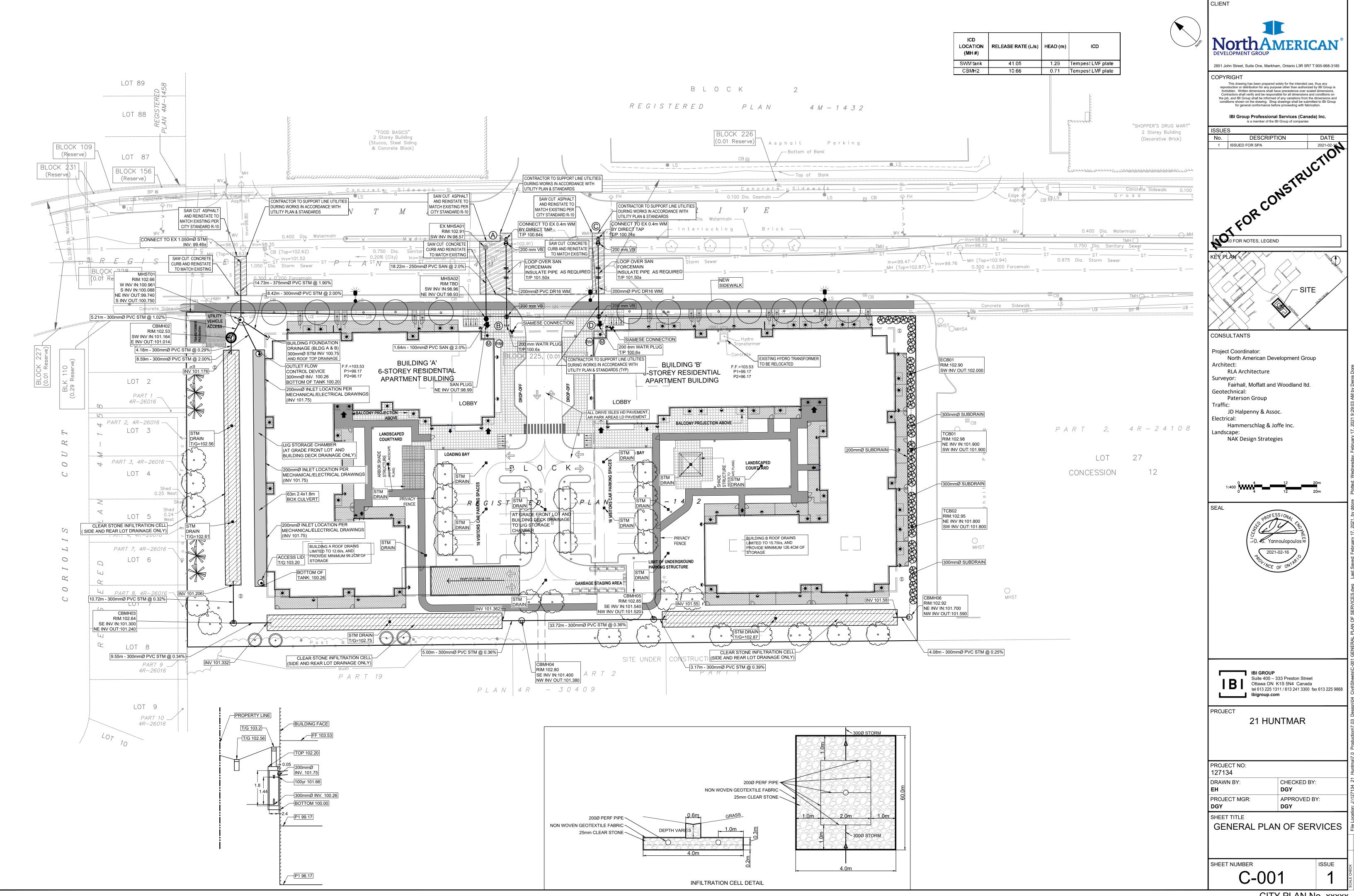
*Please consider your environmental responsibility before printing this e-mail

This message, including any document or file attached, is intended only for the addressee and may contain privileged and /or confidential information. Any person is strictly prohibited from reading, using, disclosing or copying this message. If you received this message in error, please notify the sender and delete the message. Thank you.

From: Lance Erion [mailto:lerion@IBIGroup.com]
Sent: August 12, 2016 11:56 AM
To: Fraser, Mark
Cc: Demetrius Yannoulopoulos
Subject: North American Hazeldean & Huntmar Commercial Site

We are requesting an update to the attached watermain boundary condition for the commercial site at Hazeldean and Huntmar roads, the calculated water demands are as follows:

Average Day	0.73 l/s
Max Day	1.08
Peak Hour	1.95


A fire flow rate of 250 l/s was used in the analysis.

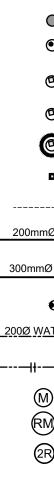
Regards

Lance Erion P.Eng

Associate email <u>lerion@IBIGroup.com</u> web <u>www.ibigroup.com</u>

IBI GROUP

D07-xx-xx S N M ĒЩ Ē CITY


PAVEMENT STRUCTURE **

CAR ONLY PARKING AREAS:

150mm BASE - OPSS GRANULAR "A" CRUSHED STONE

150mm BASE - OPSS GRANULAR "A" CRUSHED STONE

MATERIAL PLACED OVER IN SITU SOIL OR FILL

50mm WEAR COURSE - HL-3 OR SUPERPAVE 12.5 ASPHALTIC CONCRETE

300mm SUBBASE - OPSS GRANULAR "B" TYPE II SUBGRADE - EITHER FILL, IN SITU SOIL, OR OPSS GRANULAR "B" TYPE I OR II MATERIAL PLACED OVER IN SITU SOIL OR FILL

ACCESS LANES AND HEAVY TRUCK PARKING AREAS

40mm WEAR COURSE - HL-3 OR SUPERPAVE 12.5 ASPHALTIC CONCRETE 50mm BINDER COURSE - HL-8 OR SUPERPAVE 19.0 ASPHALTIC CONCRETE

400mm SUBBASE - OPSS GRANULAR "B" TYPE II SUBGRADE - EITHER FILL, IN SITU SOIL, OR OPSS GRANULAR "B" TYPE I OR II

** REFER TO GEOTECHNICAL REPORT BY PATERSON GROUP.

DRAWING NOTES

1.0 GENERAL

1.1 CONTRACTOR TO VERIFY ALL DIMENSIONS PRIOR TO CONSTRUCTION.

1.2 DO NOT SCALE DRAWINGS.

1.3 CONTRACTOR TO REPORT ALL DISCOVERIES OF ERRORS, OMISSIONS OR DISCREPANCIES TO THE ARCHITECT OR DESIGN ENGINEER AS APPLICABLE.

1.4 USE ONLY THE LATEST REVISED DRAWINGS OR THOSE THAT ARE MARKED "ISSUED FOR CONSTRUCTION".

1.5 ALL CONSTRUCTION SHALL COMPLY WITH CURRENT CITY OF OTTAWA STANDARDS AND SPECIFICATIONS. 1.6 THIS DRAWING SHALL BE READ IN CONJUNCTION WITH ALL RELEVANT DRAWINGS AND SPECIFICATIONS.

1.7 FOR LEGAL SURVEY INFORMATION REFER TO REGISTERED PLAN FROM FAIRHALL, MOFFATT AND WOODLAND LTD.

1.8 REFER TO SITE PLAN BY RLA ARCHITECTURE.

1.9 CONTRACTOR TO IMPLEMENT EROSION AND SEDIMENT CONTROL MEASURES AS IDENTIFIED IN THE EROSION AND SEDIMENT CONTROL PLAN TO THE SATISFACTION OF THE CITY OF OTTAWA, PRIOR TO UNDERTAKING ANY SITE ALTERATIONS (FILLING, GRADING, REMOVAL OF VEGETATION, ETC.). DURING ALL PHASES OF THE SITE PREPARATION AND CONSTRUCTION THE MEASURES ARE TO BE MAINTAINED TO THE SATISFACTION OF THE ENGINEER AND CITY OF OTTAWA IN ACCORDANCE WITH THE BEST MANAGEMENT PRACTICES FOR EROSION AND SEDIMENT CONTROL. SHOULD ANY ADDITIONAL MEASURES BE REQUIRED TO ADDRESS FIELD CONDITIONS THEY SHALL BE INSTALLED AS DIRECTED BY THE ENGINEER OR THE CITY OF OTTAWA. SUCH ADDITIONAL MEASURES MAY INCLUDE BUT NOT BE LIMITED TO INSTALLATION OF SEDIMENT CAPTURE FILTER SOCKS WITHIN MANHOLES AND CATCHBASINS TO PREVENT SEDIMENT FROM ENTERING THE STRUCTURE AND INSTALLATION AND MAINTENANCE OF A LIGHT DUTY SILT FENCE BARRIER AS REQUIRED.

1.10 ALL IRON WORK ELEVATIONS SHOWN ARE APPROXIMATE AND ARE SUBJECT TO MINOR ADJUSTMENTS AS DETERMINED BY THE ENGINEER.

1.11 ALL CONCRETE CURBS AND SIDEWALKS TO CONFORM TO O.P.S. AND CONSTRUCTED TO CITY STANDARDS. ALL ONSITE CURBS TO BE BARRIER TYPE, WITH DEPRESSIONS AS NOTED.

1.12 ALL CONCRETE SHALL BE "NORMAL PORTLAND CEMENT" IN ACCORDANCE WITH O.P.S.S. 1350 AND SHALL ACHIEVE A MINIMUM STRENGTH OF 30MPa AT 28 DAYS.

1.13 ALL CONSTRUCTION TRAFFIC TO ACCESS SITE FROM HUNTMAR DRIVE.

1.14 FOR GEOTECHNICAL REPORT SEE GEOTECHNICAL INVESTIGATION BY PATERSON GROUP.

1.15 CONTRACTOR TO PROTECT EXISTING INFRASTRUCTURE AND PROPERTY SUCH AS TREES, PARKING METERS, SIDEWALKS, CURBS, ASPHALT, AND STREET SIGNS FROM DAMAGE DURING CONSTRUCTION. CONTRACTOR TO PAY THE COST TO REINSTATE OR REPLACE ANY DAMAGED INFRASTRUCTURE OR PROPERTY TO THE SATISFACTION OF THE CITY.

1.16 THE POSITION OF POLE LINES, CONDUITS, WATERMAIN, SEWERS, AND OTHER UNDERGROUND AND ABOVEGROUND UTILITIES AND STRUCTURES ARE NOT NECESSARILY SHOWN ON THE CONTRACT DRAWINGS, AND WHERE SHOWN, THE ACCURACY OF THE POSITION OF SUCH UTILITIES AND STRUCTURES IS NOT GUARANTEED. BEFORE STARTING WORK THE CONTRACTOR SHALL INFORM ITSELF OF THE EXACT LOCATION OF ALL SUCH UTILITIES AND STRUCTURES, SHALL PROTECT ALL UTILITIES AND STRUCTURES, AND SHALL ASSUME ALL LIABILITY FOR DAMAGE TO THEM.

1.17 CONTRACTOR TO SUPPLY SUITABLE FILL MATERIAL WHERE REQUIRED TO ROUGH GRADE THE SITE. ALL IMPORTED FILL MATERIAL TO BE CERTIFIED AS ACCEPTABLE BY THE GEOTECHNICAL ENGINEER.

1.18 CONTRACTOR TO HAUL EXCESS MATERIAL OFFSITE AS NECESSARY TO GRADE SITE TO MEET THE PROPOSED GRADES. ALL EXCESS MATERIAL TO BE HAULED OFFSITE AND DISPOSED OF AT AN APPROVED DUMP SITE. SHOULD THE CONTRACTOR DISCOVER ANY HAZARDOUS MATERIAL, CONTRACTOR IS TO NOTIFY ENGINEER. ENGINEER TO DETERMINE APPROPRIATE DISPOSAL METHOD/LOCATION.

1.19 FILL MATERIAL WITHIN THE PARKING LOT AND BUILDING PAD AREAS, AND SUPPORTING BUILDING FOUNDATIONS SHALL BE COMPACTED TO 98% STANDARD MODIFIED PROCTOR DENSITY AND TO THE SATISFACTION OF THE GEOTECHNICAL ENGINEER.

1.20 ALL COMPACTION METHODS TO BE PERFORMED TO THE SATISFACTION OF THE GEOTECHNICAL ENGINEER TO INCLUDE BUT NOT BE LIMITED TO THE THICKNESS OF LIFTS, AND COMPACTION EQUIPMENT USED.

1.21 ALL DISTURBED BOULEVARDS TO BE REINSTATED WITH SOD ON 100mm TOPSOIL.

1.22 UTILITY DUCTS TO BE INSTALLED PRIOR TO ROAD BASE CONSTRUCTION.

1.23 CLAY DIKES TO BE INSTALLED WHERE INDICATED ON THE DRAWINGS OR AS APPROVED AND DIRECTED BY THE GEOTECHNICAL ENGINEER ALL IN ACCORDANCE WITH CITY OF OTTAWA STANDARDS AND SPECIFICATIONS.

1.24 BACKWATER VALES, PER CITY STANDARDS S14, S14.1 AND S14.2 RE TO BE INSTALLED FOR ALL STORM AND SANITARY SERVICE CONNECTIONS.

2.0 SANITARY

2.1 ALL SANITARY SEWER MAINS TO BE CSA CERTIFIED, BELL AND SPIGOT TYPE. ONLY FACTORY FITTINGS TO BE USED. SEWER TO BE INSTALLED AS PER OSPD 1005.01. SANITARY SEWER MATERIALS TO BE: 250mmØ AND SMALLER - PVC DR 35 2.2 ALL SANITARY MAINTENANCE HOLES TO BE 1.2m DIAMETER AS PER CITY OF OTTAWA STANDARDS COMPLETE WITH BENCHING, RUNGS, FRAME AND COVER, DROP PIPES AND LANDINGS WHERE NEEDED.

2.3 SANITARY MANHOLE COVERS TO BE CITY OF OTTAWA STD. S25 (MOD. OPSD. 401.020). SANITARY MANHOLE COVER TO BE CLOSED COVER TYPE, AS PER CITY STANDARD S24.

2.4 SANITARY SEWER LEAKAGE TEST AND CCTV INSPECTION SHALL BE COMPLETED AS PER CITY SPECIFICATIONS PRIOR TO INSTALLATION OF BASE COURSE ASPHALT.

2.5 ANY SANITARY SEWER WITH LESS THAN 2.0m COVER REQUIRES THERMAL INSULATION AS PER CITY OF OTTAWA STANDARD W22, OR AS APPROVED BY THE ENGINEER.

2.6 CONNECTION TO THE EXISTING SANITARY SEWER TO BE INCLUDED IN THE COST FOR SANITARY SEWER INSTALLATION. THIS INCLUDES REINSTATEMENT OF ROAD CUTS TO CITY STANDARDS.

2.7 ALL SANITARY CONNECTION TO INCLUDE BACKWATER VALVE TYPE 1 PER CITY STANDARD S14.1

LEGEND:						
O ^{MHSA3A}	SANITARY MANHOLE STORM		MOFFATT AND WOODLAND LTD. OPOGRAPHIC LEGEND			
● ^{MHST01}	MANHOLE		- SURVEY MONUMENT FOUND			
		SIB	- STANDARD IRON BAR			
● ^{CB01}	CATCHBASIN	SSIB	- SHORT STANDARD IRON BAR			
		IB	- IRON BAR			
OCBMH01	CATCHBASIN MANHOLE	CP	- CONCRETE PIN			
		DIA.	- DIAMETER			
О СВМН02	CATCHBASIN MANHOLE C/W ICD	BLK	- BLOCK			
ECB01	REAR YARD "END" CATCHBASIN	PIN	- PROPERTY IDENTIFIER NUMBER			
-		CB CB	- CATCH BASIN			
	SUBDRAIN	О МН	- MANHOLE			
		O MHST	- STORM MANHOLE			
00mmØ SAN	SANITARY SEWER	O MHSA	- SANITARY MANHOLE			
		O WMH	- WATER MANHOLE		NAME	RIM EL
0mmØ STM	STORM SEWER	🔾 тмн	- TRAFFIC MANHOLE			
		🔾 нмн	- HYDRO MANHOLE			
€ ^{VB}	VALVE AND VALVE BOX	¢- FH	- FIRE HYDRANT		14107704	
Ø WATERMAIN	WATERMAIN	🖾 TCB	- TRAFFIC CONTROL BOX		MHST01	102.6
	WATERMAIN		- WATER VALVE			
	VERTICAL BEND LOCATION	¥ TL	- TRAFFIC LIGHT		CBMH02	102.5
		● LS	- LAMP STANDARD		CBMH03	102.6
M	METER	⊗ UP	- UTILITY POLE		CBMH04	102.8
~	DEMOTE METER	⊠ BP	- BELL PEDESTAL		CBMH05	102.8
RM	REMOTE METER	o MW	- MONITORING WELL		CBMH06	102.9
2R	NUMBER OF RISERS	٢	- BOREHOLE		CDIVINUO	102.9
9		@ /	- BOLLARD			
		(-	- GUY WIRE AND ANCHOR			
		•	- SIGN			WATER
		\odot	- DECIDUOUS TREE			
			- CURB		STATION	DESCRIPTI
		— G — G — G —				DEGORIFIN
			- SANITARY SEWER	A	0+000.00	TEE 400mmX20
			- STORM SEWER		0+001.10	VB 200mm
			- WATERMAIN - UNDERGROUND BELL		0+007.32	V-BEND 200n
			- UNDERGROUND BELL - UNDERGROUND HYDRO		0+007.52	V-BEND 200n
			- STREET LIGHTING		0+007.02	V-BEND 200n
			- ROGERS CABLE		0+010.01	V-BEND 200n
		- v v v -			0+010.01	VB 200mm
					0.013.00	VB 2001111

- EDGE OF TREES

NAME	RIM ELEV.	INVERT IN	INVERT IN ASBUILT	INVERT OUT	INVERT OUT ASBUILT	DESCRIPTION
		W100.961				
MHST01	102.66	W100.540		99.974		1200Ø OPSD 701.010
		SW 100.088				
CBMH02	102.53	101.164		101.014		1200Ø OPSD 701.010
CBMH03	102.64	101.300		101.240		1200Ø OPSD 701.010
CBMH04	102.80	101.400		101.380		1200Ø OPSD 701.010
CBMH05	102.85	101.540		101.520		1200Ø OPSD 701.010
CBMH06	102.92	101.700		101.590		1200Ø OPSD 701.010

		WATERMAIN S	CHEDUL	E
	STATION	DESCRIPTION	FINISHED GRADE	TOP C WATERN
Α	0+000.00	TEE 400mmX200mm	102.91	100.5 [.]
	0+001.10	VB 200mm	102.90	100.50
	0+007.32	V-BEND 200mm	102.84	100.44
	0+007.62	V-BEND 200mm	102.83	101.50
	0+009.71	V-BEND 200mm	102.81	101.50
	0+010.01	V-BEND 200mm	102.81	100.41
	0+019.83	VB 200mm	103.04	100.64
В	0+022.17	CAP 200mm	103.05	100.65
C	0+000.00	TEE 400mmX200mm	103.08	100.68
	0+001.10	VB 200mm	103.13	100.73
	0+007.32	V-BEND 200mm	103.09	100.69
	0+007.62	V-BEND 200mm	103.07	101.50
	0+009.71	V-BEND 200mm	102.96	101.50
	0+010.01	V-BEND 200mm	102.96	100.56
	0+019.83	VB 200mm	103.13	100.73
D	0+022.17	CAP 200mm	103.01	100.61

3.0 STORM

3.1 ALL STORM SEWERS TO BE CSA CERTIFIED, BELL AND SPIGOT TYPE. ALL STORM SEWERS TO BE INSTALLED PER MANUFACTURER'S INSTRUCTIONS. ONLY FACTORY FITTINGS TO BE USED. STORM SEWER MATERIALS TO BE : 375mmØ AND SMALLER - PVC DR 35 - 450mmØ AND LARGER - 100-D REINFORCED CONCRETE. UNLESS NOTED OTHERWISE 3.2 ALL STORM MAINTENANCE HOLES TO BE SIZED IN ACCORDANCE WITH THE PLANS AND AS PER CITY OF OTTAWA STANDARDS COMPLETE WITH BENCHING, RUNGS, AND FRAME AND COVER.

3.3 STORM MH COVERS TO BE OPEN TYPE, AS PER CITY STANDARD S24, FRAMES TO BE PER CITY OF OTTAWA STD. S25. CONTRACTOR TO INSTALL FILTER FABRIC UNDER STORM MH COVER UNTIL SODDING IS COMPLETE.

3.4 STORM MAINTENANCE HOLES TO BE OPSD, SIZE AS SPECIFIED, TAPER TOP. 3.5 ALL CATCH BASINS TO BE AS PER OPSD 705.010, FRAME & FISH TYPE GRATE AS PER CITY OF OTTAWA STD. S19.1.

3.6 ANY STORM SEWER WITH LESS THAN 2.0m COVER REQUIRES THERMAL INSULATION AS PER CITY OF OTTAWA STANDARD W22, OR AS APPROVED BY THE ENGINEER.

3.7 CONNECTION TO THE EXISTING STORM SEWER TO BE INCLUDED IN THE COST FOR STORM SEWER INSTALLATION. THIS INCLUDES REINSTATEMENT OF ROAD CUT TO CITY STANDARDS.

3.8 CONTRACTOR TO PROVIDE IPEX-TEMPEST MHF ICD'S SHOP DRAWINGS, OR EQUIVALENT, FOR ENGINEERS REVIEW PRIOR TO ORDERING ICD'S.

3.9 ALL STORM CONNECTION TO INCLUDE FOUNDATION BACKWATER VALVE TYPE 1 PER CITY STANDARD S14.1

3.10 LANDSCAPE SUBDRAIN AND APPURTENANCES TO BE INSTALLED PER CITY OF OTTAWA STANDARDS INCLUDING BUT NOT LIMITED TO S29, S30, S31

<u>4.0 WATER</u>

4.1 ALL WATERMAINS 100mmØ OR GREATER TO BE PVC DR 18, LESS THAN 100mm Ø TO BE COPPER OR APPROVED EQUAL WITH MINIMUM COVER OF 2.4m AND INSTALLED PER CITY OF OTTAWA STANDARDS. ALL DOMESTIC WATER SERVICES ARE TO BE 25mmØ. 4.2 THRUST BLOCKS TO BE INSTALLED AT ALL BENDS, TEES, AND CAPS ALL AS PER OPSD 1103.01 AND 1103.02.

4.3 CONTRACTOR TO CONDUCT PRESSURE AND LEAKAGE TESTING OF ALL WATERMAINS AND DISINFECT AND CHLORINATE ALL

WATERMAINS TO THE SATISFACTION OF M.O.E. AND THE CITY OF OTTAWA.

4.4 TRACER WIRE TO BE INSTALLED ALONG THE FULL LENGTH OF WATERMAIN AND ATTACHED TO EACH MAIN STOP AS PER CITY OF OTTAWA STANDARDS.

4.5 ALL COMPONENTS OF THE WATER DISTRIBUTION SYSTEM SHALL BE CATHODICALLY PROTECTED AS PER CITY OF OTTAWA STANDARDS.

4.6 ALL VALVES & VALVE BOXES AND CHAMBERS, HYDRANTS, AND HYDRANT VALVES AND ASSEMBLIES SHALL BE INSTALLED AS PER CITY OF OTTAWA STANDARDS

4.7 ANY WATERMAIN WITH LESS THAN 2.4m COVER REQUIRES THERMAL INSULATION AS PER CITY OF OTTAWA STANDARD W22, OR

AS APPROVED BY THE ENGINEER. 4.8 CONTRACTOR IS RESPONSIBLE FOR ACQUIRING THE WATER PERMIT FROM THE CITY OF OTTAWA AND PAYMENT OF ANY FEES ASSOCIATED WITH SECURING THE WATER PERMIT. OWNER IS RESPONSIBLE FOR REIMBURSING THE CONTRACTOR FOR THE

ACTUAL COST OF ACQUIRING THE WATER PERMIT. 4.9 CONNECTION TO EXISTING WATERMAIN TO BE INCLUDED IN THE COST FOR THE WATERMAIN INSTALLATION. THIS COST INCLUDES REINSTATEMENT OF ROAD CUTS TO CITY STANDARDS.

4.10 ALL WATERMAIN CROSSINGS TO BE COMPLETED AS PER CITY OF OTTAWA STANDARDS W25 AND W25.2

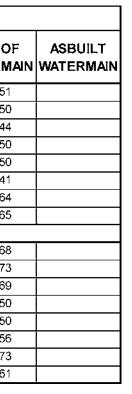
5.0 PARKING LOT AND WORK IN PUBLIC RIGHTS OF WAY

5.1 CONTRACTOR TO REINSTATE ROAD CUTS PER CITY OF OTTAWA STANDARD R-10.

5.2 THE CONTRACTOR SHALL PREPARE A TRAFFIC MANAGEMENT PLAN FOR REVIEW AND APPROVAL BY THE CITY OF OTTAWA. CONTRACTOR TO MAINTAIN TRAFFIC FLOW DURING THE ENTIRE CONSTRUCTION PERIOD. MAINTENANCE OF ROAD CUTS SHALL BE THE RESPONSIBILITY OF THE CONTRACTOR. PROVISION OF FLAGMEN, DETOURS AS NECESSARY, BARRICADES AND SIGNS TO THE FULL SATISFACTION OF THE ENGINEER AND ROAD AUTHORITY SHALL BE THE CONTRACTOR'S RESPONSIBILITY.

5.3 CONTRACTOR TO PREPARE SUBGRADE, INCLUDING PROOFROLLING, TO THE SATISFACTION OF THE GEOTECHNICAL ENGINEER PRIOR TO THE COMMENCEMENT OF PLACEMENT OF GRANULAR B MATERIAL.

5.4 FILL TO BE PLACED AND COMPACTED PER THE GEOTECHNICAL REPORT REQUIREMENTS.


5.5 CONTRACTOR TO SUPPLY, PLACE AND COMPACT GRANULAR B MATERIAL IN ACCORDANCE WITH THE RECOMMENDATIONS OF THE GEOETCHNICAL ENGINEER. CONTRACTOR TO PROVIDE ENGINEER WITH SAMPLES OF GRANULAR B MATERIAL FOR TESTING AND CERTIFICATION FROM THE GEOTECHNICAL ENGINEER THAT THE MATERIAL MEETS THE GRADATION REQUIREMENTS SPECIFIED IN THE GEOTECHNICAL REPORT.

5.6 GRANULAR A MATERIAL TO BE PLACED ONLY UPON APPROVAL BY THE GEOTECHNICAL ENGINEER OF GRANULAR B PLACEMENT. 5.7 ASPHALT MATERIAL TO BE PLACED ONLY UPON APPROVAL BY THE GEOTECHNICAL ENGINEER OF GRANULAR A PLACEMENT. 5.8 CONTRACTOR TO SUPPLY, PLACE AND COMPACT ASPHALT MATERIAL IN ACCORDANCE WITH THE RECOMMENDATIONS OF THE GEOTECHNICAL ENGINEER. CONTRACTOR TO PROVIDE ENGINEER WITH SAMPLES OF ASPHALT MATERIAL FOR TESTING AND CERTIFICATION FROM THE GEOTECHNICAL ENGINEER THAT THE MATERIAL MEETS THE REQUIREMENTS SPECIFIED IN THE

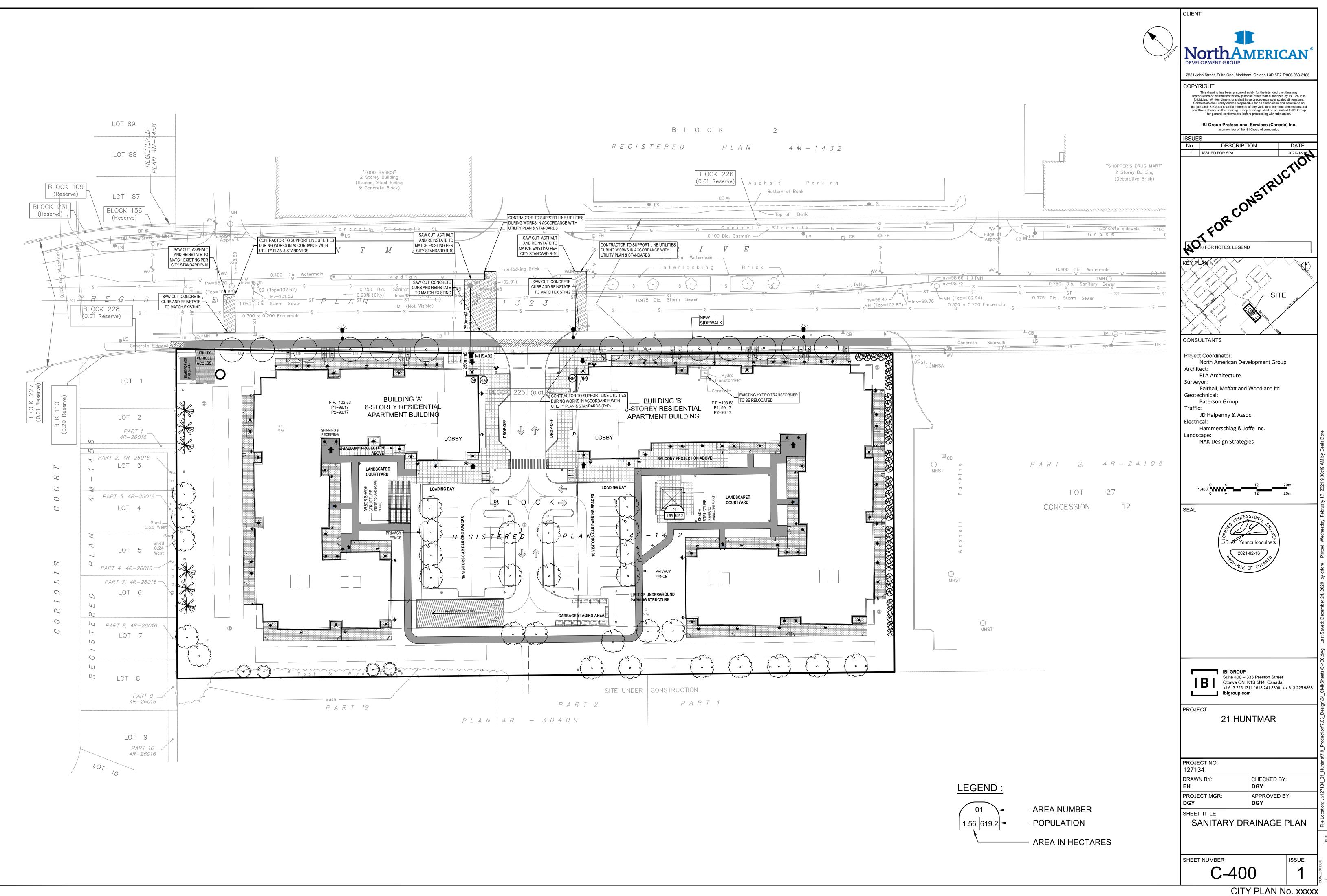
GEOTECHNICAL REPORT. 5.9 CONTRACTOR IS RESPONSIBLE FOR ESTABLISHING LINE AND GRADE IN ACCORDANCE WITH THE PLANS, AND FOR PROVIDING HE ENGINEER WITH VERIFICATION PRIOR TO PLACEMENT.

5.10 PAVEMENT STRUCTURE (MATERIAL TYPES AND THICKNESSES) FOR HEAVY DUTY AND LIGHT DUTY AREAS TO BE AS SPECIFIED IN THE GEOTECHNICAL REPORT AND SHOWN ON THE PLANS.

STORM STRUCTURE TABLE

CLIENT
NorthAmerican®
2851 John Street, Suite One, Markham, Ontario L3R 5R7 T:905-968-3185
COPYRIGHT This drawing has been prepared solely for the intended use, thus any
reproduction or distribution for any purpose other than authorized by IBI Group is forbidden. Written dimensions shall have precedence over scaled dimensions. Contractors shall verify and be responsible for all dimensions and conditions on the job, and IBI Group shall be informed of any variations from the dimensions and
conditions shown on the drawing. Shop drawings shall be submitted to IBI Group for general conformance before proceeding with fabrication.
IBI Group Professional Services (Canada) Inc. is a member of the IBI Group of companies
ISSUES No. DESCRIPTION DATE
1 ISSUED FOR SPA 2021-02-16
RUC
FOR CONSTRUCTION FOR CONSTRUCTION FOR DIFOR NOTES, LEGEND
COR
SEC 10 FOR NOTES, LEGEND
KEY PLAN
CONSULTANTS
Project Coordinator: North American Development Group
Architect: RLA Architecture
Geotechnical:
Paterson Group
Surveyor: Fairhall, Moffatt and Woodland ltd. Geotechnical: Paterson Group Traffic: JD Halpenny & Assoc. Electrical: Hammerschlag & Joffe Inc. Landscape: NAK Design Strategies
Hammerschlag & Joffe Inc.
NAK Design Strategies
Februa
, iesday,
. Wedr
Plotted: Wed
SEAL BROFESSIONAL
PROFESS / ON 4/ CKG NET
D. C. Yannoulopoulos
PROFESSIONAL BROULDE D. C. Vannoulopoulos PROLUCE OF ONTAR 2021-02-16 PROLUCE OF ONTAR 2021-02-16 PROLUCE OF ONTAR
PROLINCE OF ONTARIO
Last Se
DATA.
D-CB
L E G E F
IBI GROUP 400 - 333 Preston Street Ottawa ON K1S 5N4 Canada tel 613 225 1311 fax 613 225 9868 ibigroup.com PROJECT 21 HUNTMAR
-010-C
IBI GROUP IBI GROUP 400 – 333 Preston Street IBI GROUP
BI Ottawa ON K1S 5N4 Canada View tel 613 225 1311 fax 613 225 9868 ja ja ja ibigroup.com ja ja ja ja ja
PROJECT 21 HUNTMAR
Produc
PROJECT NO: 별 127134 북
DRAWN BY: CHECKED BY: Z
EH DGY PROJECT MGR: APPROVED BY:
PROJECT NO: 127134 DRAWN BY: EH DGY PROJECT MGR: DGY PROJECT MGR: DGY SHEET TITLE GENERAL NOTES, LEGEND AND TABLES
LEGEND AND TABLES
SHEET NUMBER ISSUE
C-010 1

CITY PLAN No. xxxxx


CITY

APPENDIX C

- C-400 Sanitary Tributary Area Plan
- Sanitary sewer design sheet

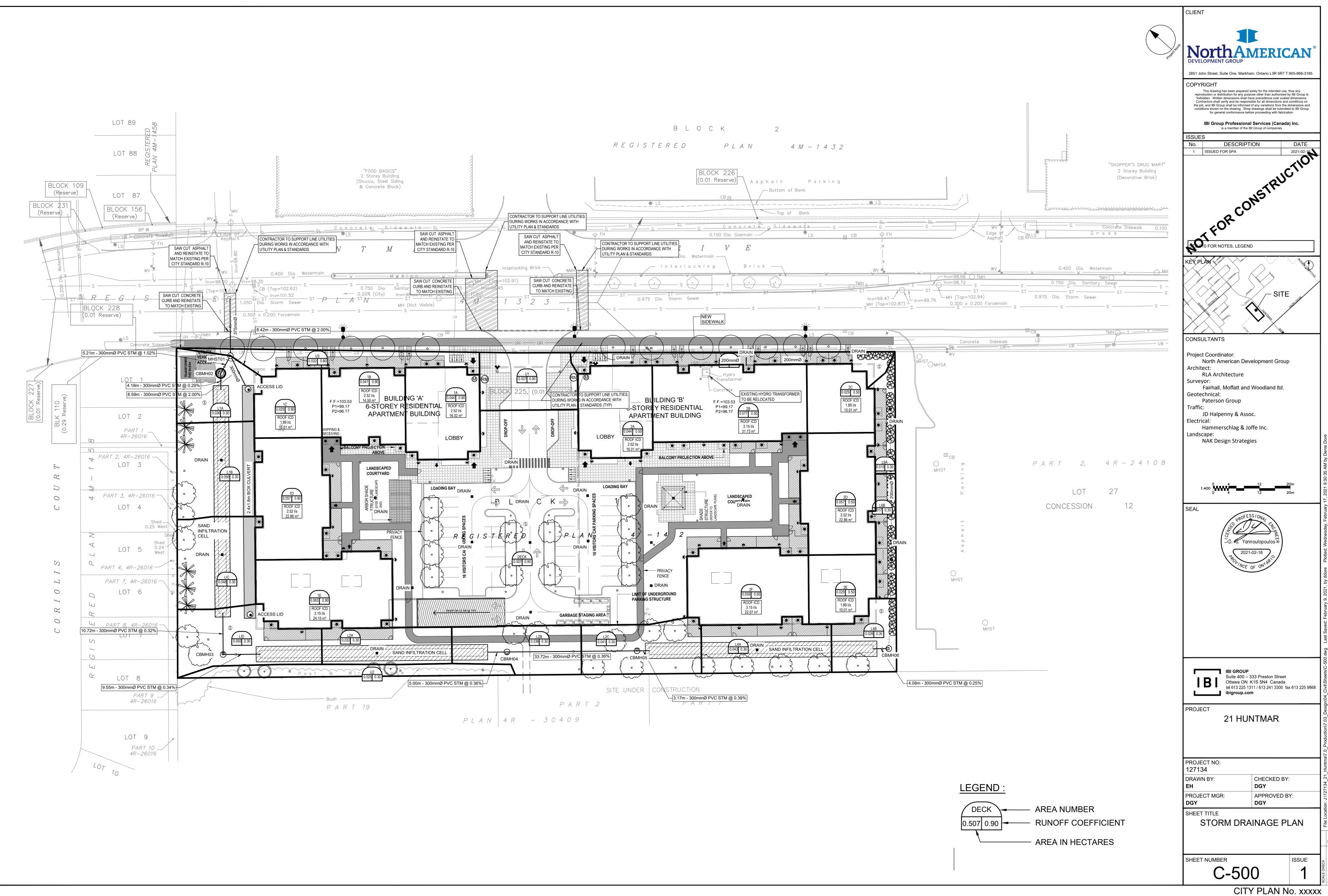
1B1	IBI GROUP 400-333 Presto Ottawa, Ontario tel 613 225 131 ibigroup.com	K1S 5N4 Cana																													SA	ANITARY SE	сп	21 Huntmar Rd TY OF OTTAWA American Group
	LOCATION							RESID	ENTIAL					I			ICI A	REAS				INFILT	RATION ALL	OWANCE	EIVED E	LOW (L/s)	TOTAL	1		PROPO	SED SEWER			
	LOCATION			AREA		UNIT	TYPES		AREA		LATION	RES	PEAK				A (Ha)			ICI	PEAK	ARE	EA (Ha)	FLOW	TIALDT	2011 (2/8)	FLOW	CAPACITY	LENGTH	DIA	SLOPE	VELOCITY		ILABLE
STREET	AREA ID	FROM MH	TO MH	w/ Units (Ha)	1B	2B	3B	APT	w/o Units (Ha)	IND	CUM	PEAK FACTOR	FLOW (L/s)		CUM	COMM IND	ERCIAL CUM	INDUS	CUM	PEAK FACTOR	FLOW (L/s)	IND	CUM	(L/s)	IND	CUM	(L/s)	(L/s)	(m)	(mm)	(%)	(full) (m/s)	CAP/ L/s	PACITY (%)
01	UTLET TO HUNTM	AR RD																																—
	1	BLDG A& B	2	1.56	149	195				618.1			6.69	0.00	0.00	0.00	0.00		0.00	1.00		1.56	1.6	0.51	0.00	0.00	7.21	87.74	1.64	250	2.00	1.731		91.79%
		2	1				-			0.0	618.1	3.34	6.69	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	1.6	0.51	0.00	0.00	7.21	87.74	18.22	250	2.00	1.731	80.53	91.79%
									-																									+
	1				1	1	1	1																										1
								-													-	1				l			l					+
		-																				-												
		-																																-
																																		-
																																		-
																																		-
																																		-
																						1												
								-													-	1				l			l					
		-				-								l							-	1							<u> </u>					+
				1.56	149	+	0	1	1	618.1				l	1							1				1					l			+
				1.50	/48	1		1	1	0.0.1				1	1				1			1	1	1		1		1	1					+
									1																			1						1
Design Parameters:				Notes:								Designed		R.M,			No.							Revision								Date		
				1. Manning				0.013									1.						Servicing Bri	ef - Submissio	on No. 1							2021-02-04		
Residential		ICI Areas		2. Demand 3. Infiltration				L/day				Cheeks 1		DCV																				
3B 2.8 p/p/u 2B 2.1 p/p/u	INST 28,00	0 1/1/1=/days		 Infiltration Resident 			0.33	L/S/Ha				Checked:		D.G.Y.																				
2B 2.1 p/p/u 1B 1.4 p/p/u	COM 28,00	0 L/Ha/day		4. rtesident	Harmon Fi	⊢actor: ormula = 1+	(14/(4+(P/1	000)*0 5))0	8																									
APT 1.8 p/p/u	IND 35,00		MOE Chart	1		0.8 Correct			-			Dwg. Refe	erence:	127134-4	00																			
Other 60 p/p/Ha		0 L/Ha/day		5. Commerc				ased on tota	l area.								Fi	ile Referen	ce:						Date:							Sheet No:		
		,				eater than 2			,									127134.6.4.	4.						2021-02-0	4						1 of 1		

SANITARY SEWER DESIGN SHEET

D07-xx-No. FILE 5 CITY

APPENDIX D

- C-500 Storm Tributary Area Plan
- Storm sewer design sheets
- Modified Rational Method design sheets


IRI	Ottawa, Ontario K1 tel 613 225 1311 ibigroup.com	1S 5N4 Can																															C	Huntmar Rd City of Ottawa erican Group
	LOCATION					ŀ	AREA (Hi	a)										RATIONAL D												SEWER DAT				
STREET	AREA ID	FROM	то	C=	C=	C=	C=	C=	C=	C= 1	IND (CUM	INLET	TIME	TOTAL	i (2)	i (5)	i (10)	i (100)	2yr PEAK	5yr PEAK	10yr PEAP	100yr PEA	FIXED		CAPACITY	LENGTH	F	PIPE SIZE (r	nm)	SLOPE	VELOCITY	AVAIL	CAP (2yr)
STREET	AREA ID	FROW	10	0.20	0.30	0.80	0.83	0.85	0.87	0.90 2.7	78AC 2.	78AC	(min)	IN PIPE	(min)	(mm/hr)	(mm/hr)	(mm/hr)	(mm/hr)	FLOW (L/s	FLOW (L/s	s) FLOW (L/s) FLOW (L/s	FLOW (L/s	FLOW (L/s)	(L/s)	(m)	DIA	w	н	(%)	(m/s)	(L/s)	(%)
OL	UTLET TO HUNTMAR P	RD																																
																														4				
	Landscape 6a, 6b,4b		cell		0.058).05 (10.00	0.10	10.10	76.81	104.19	122.14	178.56	3.72	5.04	5.91	8.64		3.72	50.44		300			0.25	0.691	46.73	92.63%
	Landscape 4a	Cell	CBMH5		0.043).04 (10.10	0.06	10.16	76.43	103.68	121.53	177.66	6.44	8.73	10.24	14.97		6.44	63.00	3.17	300			0.39	0.863		89.78%
	Landscape 2c	CBMH5	CBMH4		0.041).03 (10.16	0.68	10.84	76.20	103.36	121.16	177.11	9.02	12.24	14.35	20.98		9.02	60.53		300		4	0.36	0.830		85.09%
	Landscape 2b	CBMH4	Cell		0.038						0.03 (10.84	0.10	10.94	73.73	99.97	117.17	171.25	11.07	15.01	17.59	25.71	1	11.07	60.53	5.00	300		4	0.36	0.830		81.71%
	Landscape 2a	Cell	CBMH3		0.032							0.18	10.94	0.20	11.13	73.38	99.49	116.60	170.42	12.97	17.59	20.62	30.13	I	12.97	58.82	9.55	300			0.34	0.806	45.85	77.94%
	Landscape 1d	CBMH3	Cell		0.050							0.22	11.13	0.23	11.36	72.71	98.56	115.50	168.81	15.89	21.54	25.24	36.89		15.89	57.07	10.72	300			0.32	0.782	41.18	72.16%
	Landscape 1c, 1b	Cell	CBMH2		0.098						0.08 (11.36	0.09	11.46	71.94	97.50	114.26	166.99	21.60	29.27	34.31	50.14		21.60	54.33	4.18	300			0.29	0.745		60.24%
	Landscape 1a	CBMH2	MH1		0.036					0	0.03 (0.33	11.46	0.06	11.52	71.63	97.08	113.76	166.25	23.66	32.06	37.57	54.91		23.66	101.89	5.21	300			1.02	1.396	78.23	76.78%
	roofs 1 and 2	BLDG	MH1						().529 1	1.32	1.32	10.00	0.07	10.07	76.81	104.19	122.14	178.56	101.66	137.91	161.66	236.33		101.66	142.67	8.42	300		4	2.00	1.955	41.01	28.75%
	deck	cistern	MH1						(0.507 1	1.27	1.27	10.00	0.07	10.07	76.81	104.19	122.14	178.56	97.43	132.17	154.94	226.50		97.43	142.67	8.59	300			2.00	1.955	45.24	31.71%
		MH1	EX							C	0.00	2.92	11.46	0.44	11.90	71.63	97.08	113.76	166.25	209.33	283.70	332.46	485.85		209.33	252.13	59.01	375			1.90	2.211	42.80	16.98%
				0.000	0.396	0.000	0.000	0.000	0.000 1	1.036 2																								
											1.43 T																							
										C).73 A	vg. C																						
																								I										
Definitions:				Notes:								0	lesigned:		RM				No.						Revision					4		Date		-
Q = 2.78CiA, where:				1. Man	inings co	efficient	t (n) =												1.				Ser	vicing Brief - \$	Submission No	o. 1						2021-02-04		
Q = Peak Flow in Litres																																		
A = Area in Hectares (H												C	hecked:		DY																			
i = Rainfall intensity in n	millimeters per hour (mm	1/hr)																																
[i = 732.951 / (TC+6.	.199)^0.810]	2 YEAR																																
[i = 998.071 / (TC+6.	.053)^0.814]	5 YEAR										D	wg. Refer	ence:	125600-50	0																		
[i = 1174.184 / (TC+6 [i = 1735.688 / (TC+6		10 YEAR 100 YEAR											-								eference: 134.6.4.4					Date: 2021-02-04						Sheet No: 1 of 1		

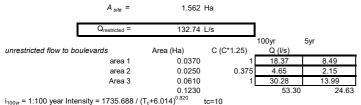
STORM SEWER DESIGN SHEET

101

Г

IBI GROUP 400-333 Preston Street

CITY FILE No. D07-XX-XX-XXXX



IBI GROUP 400-333 Preston Street Ottawa, Ontario K1S 5N4 Canada tel 613 225 1311 fax 613 225 9868 ibigroup.com

STORMWATER MANAGEMENT

Maximum Allowable Release Rate

Restricted Flowrate (based on 85l/s/Ha)

Maximum Allowable Release Rate (Q max allowable = Q restricted - Q uncontrolled)

Formulas and Descriptions

i_{2vr} = 1:2 year Intensity = 732.951 / (T_c+6.199)^{0.810} i_{5yr} = 1:5 year Intensity = 998.071 / (T_c+6.053)^{0.814} i_{100yr} = 1:100 year Intensity = 1735.688 / (T_c+6.014)^{0.820} T_c = Time of Concentration (min) C = Average Runoff Coefficient A = Area (Ha) Q = Flow = 2.78CiA (L/s)

MODIFIED RATIONAL METHOD (100-Year, 5-Year & 2-Year Ponding)

Drainage Area	Roof Area 1A					Drainage Area	Roof Area 1A					Drainage Area	Roof Area 1A				
Area (Ha)	0.044					Area (Ha)	0.044					Area (Ha)	0.044				
C =	1.00	Restricted Flow Q _r (L	./s)=	2.520		C =	0.90	Restricted Flow Q _r (L	/s)=	2.520		C =	0.90	Restricted Flow Q _r (L	/s)=	2.520	
		100-Year Pond	ding					5-Year Pondi	ng					2-Year Pondi	ng		
T _c Variable	i _{100yr}	Peak Flow Q _p =2.78xCi _{100yr} A	Q,	Q _p -Q _r	Volume 100yr	T _c Variable	i _{5yr}	Peak Flow Q _p =2.78xCi _{5yr} A	Q,	Q _p -Q _r	Volume 5yr	T _c Variable	i _{2yr}	Peak Flow Q _p =2.78xCi _{2yr} A	Q,	Q _p -Q _r	Volume 2yr
(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m ³)	(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m³)	(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m³)
33	86.03	10.52	2.52	8.00	15.85	11	99.19	10.92	2.52	8.40	5.54	8	85.46	9.41	2.52	6.89	3.31
38	77.93	9.53	2.52	7.01	15.99	16	80.46	8.86	2.52	6.34	6.08	13	66.93	7.37	2.52	4.85	3.78
43	71.35	8.73	2.52	6.21	16.02	21	68.13	7.50	2.52	4.98	6.28	18	55.49	6.11	2.52	3.59	3.88
48	65.89	8.06	2.52	5.54	15.95	26	59.35	6.53	2.52	4.01	6.26	23	47.66	5.25	2.52	2.73	3.76
58	57.32	7.01	2.52	4.49	15.63	31	52.74	5.81	2.52	3.29	6.11	33	37.54	4.13	2.52	1.61	3.19
		St	orage (m ³)					St	orage (m ³)					St	orage (m ³)		
	Overflow	Required	Surface	Sub-surface	Balance		Overflow	Required	Surface	Sub-surface	Balance		Overflow	Required	Surface	Sub-surface	Balance
	0.00	16.02	17.60	0	0.00		0.00	6.28	17.60	0	0.00		0.00	3.88	17.60	0	0.00
				Overflows to:	Parking Lot					Overflows to:	Parking Lot					Overflows to:	Parking Lot

https://ibigroup.sharepoint.com/sites/Projects1/127134/Internal Documents/6.0_Technical/6.04_Civil/04_Design-Analysis/CCS_swm_2021-01

PROJECT: 21 HUNTMAR RD

FILE:

REV #:

DESIGNED BY:

CHECKED BY:

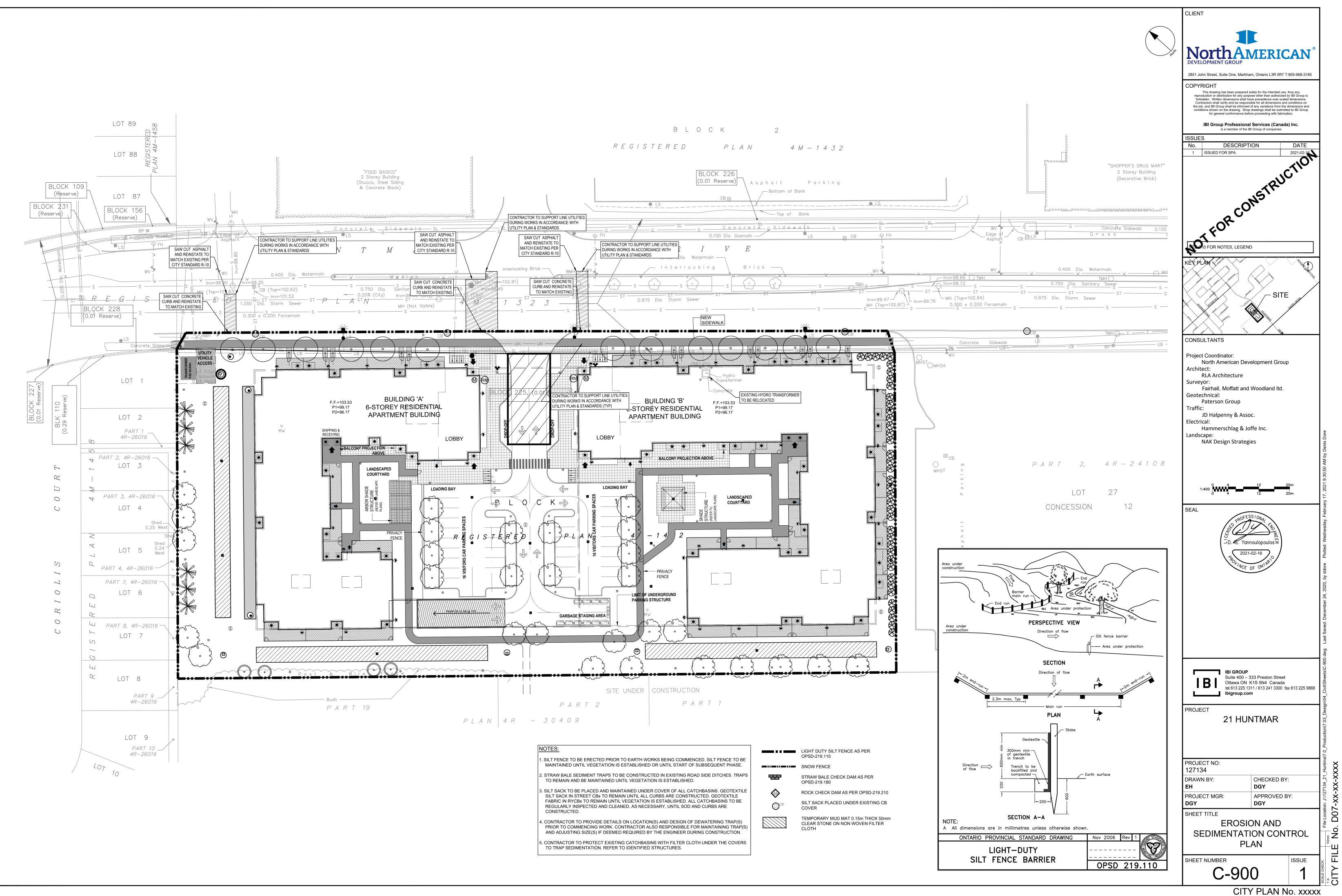
DATE: 2021-02-04

127134-6.4

R.M.

D.G.Y.

			l						-						-			
$ \frac{1}{100} 1$	0						Drainage Area	Roof Area 1B					Drainage Area	Roof Area 1B				
$ \frac{1}{\frac{1}{\frac{1}{\frac{1}{\frac{1}{\frac{1}{\frac{1}{\frac{1}$	с =		Restricted Flow Q. (L)	(s)=	2 520					/s)=	2 520				Restricted Flow Qr (I	/s)=	2 520	
$ \frac{r_{c}}{p_{and}} \frac{r_{and}}{p_{and}} \frac{p_{and}}{p_{and}} p_{$	0 -	1.00			2.520		0 -	0.30		,	2.520		<u> </u>	0.30		,	2.520	
$\frac{\operatorname{virisle}}{\operatorname{virisle}} \frac{\operatorname{viss}}{\operatorname{virisle}} \frac{\operatorname{viss}}}{\operatorname{virisle}} \frac{\operatorname{viss}}{vi$	τ	1		•		Volume	T	1				Volume	T	1			T T	Volume
$ \frac{\operatorname{max}}{\operatorname{max}} = \frac{\operatorname{max}}}{\operatorname{max}} = \frac{\operatorname{max}}{\operatorname{max}} = \frac{\operatorname{max}}}{\operatorname{max}} = \frac{\operatorname{max}}{\operatorname{max}} = \frac{\operatorname{max}}{\operatorname{max}} = \frac{\operatorname{max}}{\operatorname{max}} = \frac{\operatorname{max}}}{\operatorname{max}} = \frac{\operatorname{max}}}{\operatorname{max}} = \frac{\operatorname{max}}}{\operatorname{max}} $		i _{100yr}		Q,	$Q_p - Q_r$			i _{5yr}		Q,	Q _p -Q _r			i _{2yr}		Q,	$Q_p - Q_r$	
$ \frac{31}{800} \frac{60.92}{10.51} \frac{10.34}{10.52} \frac{10.24}{10.52} \frac{10.24}{10.52} \frac{10.25}{10.52} $		(mm/hour)		(L/s)	(L/s)			(mm/hour)	<i></i>	(L/s)	(L/s)			(mm/hour)		(L/s)	(L/s)	
$\frac{41}{64} \frac{71.83}{65} \frac{8.42}{65} \frac{3.23}{65} \frac{3.23}{65} \frac{14.48}{65} \\ \frac{3.2}{52} \frac{3.23}{65} \frac$						14.36												
44 0.738 7.75 2.02 5.17 4.40 9.20 6.51 5.60 7.20 3.14 6.40 7.20 7.40																		
66 68.83 6.71 2.80 4.90 5.91 5.92 5.01 5.22 5.01 5.22 5.01 5.20																		
$\frac{1}{100} \frac{1}{1000}																		
Overflow Required Subservice Balance Overflow Required Subservice Balance Overflow Required Subservice Balance 0.00	50	50.05	0.71	2.32	4.19	14.00	34	49.50	5.06	2.52	2.50	5.22		37.34	3.00	2.32	1.55	2.04
Overflow Required Subservice Balance Overflow Required Subservice Balance Overflow Required Subservice Balance 0.00			Sto	orage (m ³)					St	orage (m ³)					St	torage (m ³)		
And mark And mark And mark And mark And mark And mark And mark And mark And mark And mark And mark And mark And mark And mark And mark And mark And mark And mark And mark And mark And mark And mark And mark And mark And mark And mark And mark And mark And mark And mark And mark And mark And mark And mark And mark And mark And mark And mark And mark And mark And mark And mark And mark And mark And mark And mark And mark And mark And mark And mark And mark And mark And mark And mark And mark And mark And mark And mark And mark And mark And mark And mark And mark And mark And mark And mark And mark And mark And mark And mark And mark And mark And mark And mark And mark And mark And mark And mark And mark And mark And mark And mark And mark		Overflow			Sub-surface	Balance		Overflow			Sub-surface	Balance	-	Overflow			Sub-surface	Balance
		0.00	14.50	16.40	0	0.00		0.00	5.61	16.40	0	0.00		0.00	3.43	16.40	0	0.00
$ \frac{\ln (x_{1})}{ x_{1} ^{2}} = \frac{1}{100} $					Overflows to:	Parking Lot					Overflows to:	Parking Lot					Overflows to:	Parking Lot
$ \frac{\ln (x_{1})}{ x_{1} ^{2}} = \frac{1}{100} $																		
$ \frac{\ln (x_{1})}{ x_{1} ^{2}} = \frac{1}{100} $	Drainage Area	Roof Area 1C					Drainage Area	Roof Area 1C	:				Drainage Area	Roof Area 1C	:			
$ \frac{100 - Year Ponding}{r_{arc} 278cG} \frac{1}{r_{byr}} - \frac{1}{r$	Area (Ha)								9						9			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	C =	1.00	Restricted Flow Q _r (L/	/s)=	1.890		C =	0.90	Restricted Flow Q _r (L	./s)=	1.890		C =	0.90	Restricted Flow Q _r (L	./s)=	1.890	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			100-Year Pond	ling					5-Year Pondi	ing					2-Year Pondi	ing		
$ \frac{\sqrt{arade}}{(mn)} \sqrt{arade$	T _c	1		0	0.0	Volume	Tc	1	Peak Flow	0	0.0	Volume	T _c	1.	Peak Flow	0	0.0	Volume
$\frac{1}{20} 103.85 8.37 1.89 6.46 9.72 \\ 30 91.87 7.41 1.89 5.52 9.30 \\ 35 82.58 6.66 1.89 4.17 3.76 \\ 40 7.515 6.66 1.89 4.17 10.01 \\ 30 91.87 7.25 6.66 1.89 4.17 10.01 \\ 20 7.25 6.10 1.89 3.21 3.85 \\ 20 7.25 6.10 1.89 3.21 3.85 \\ 30 6.399 3.91 1.89 2.22 3.84 \\ \hline 16 5.950 4.32 1.89 2.42 2.38 \\ 16 5.950 4.32 1.89 2.42 2.38 \\ 16 5.950 4.32 1.89 2.42 2.38 \\ 18 9.095 1.77 2.23 1.89 2.22 1.89 2.22 3.84 \\ \hline 16 5.950 4.32 1.89 2.42 1.89 2.23 3.85 \\ 11 0 0 0 3.85 0 0 0 0 0 0 0 0 0 $	Variable	1 100yr	Q p =2.78xCi 100yr A	Q,	∝ _p -∝ _r	100yr	Variable	I 5yr	Q p = 2.78xCi 5yr A	w _r	$\alpha_p - \alpha_r$	5yr	Variable	I 2yr	Q p = 2.78xCi 2yr A	w _r	$\mathbf{w}_p \cdot \mathbf{w}_r$	
$ \frac{30}{90} \frac{91.87}{1.35} - \frac{7.41}{1.89} \frac{1.89}{1.25} - \frac{5.72}{7.41} \frac{9.93}{1.89} \frac{5.52}{1.27} \frac{9.93}{1.25} - \frac{15}{2.25} \frac{3.56}{5.16} \frac{5.66}{1.89} \frac{1.47}{4.17} \frac{1.60}{1.25} - \frac{5.22}{5.16} - \frac{1.89}{2.5} \frac{3.27}{1.29} - \frac{3.42}{2.26} - \frac{2.23}{2.5} - \frac{1.19}{2.5} - \frac{3.42}{2.25} - \frac{1.19}{2.5} - \frac{3.42}{2.25} - \frac{2.23}{2.5} - \frac{1.19}{2.5} - \frac{3.42}{2.5} - \frac{1.19}{2.5} - \frac{3.42}{2.5} - \frac{2.23}{2.5} - \frac{1.19}{2.5} - \frac{3.42}{2.5} - \frac{1.19}{2.5} - \frac{3.42}{2.5} - \frac{2.23}{2.5} - \frac{1.19}{2.5} - \frac{3.42}{2.5} - \frac{1.19}{2.5} - \frac{3.42}{2.5} - \frac{1.19}{2.5} - \frac{3.42}{2.5} - \frac{2.23}{2.5} - \frac{1.19}{2.5} - \frac{1.11}{2.5} - \frac{1.19}{2.5} - \frac{3.42}{2.5} - \frac{2.23}{2.5} - \frac{1.11}{2.5} - \frac{1.19}{2.5} - \frac{3.42}{2.5} - \frac{1.19}{2.5} - \frac{1.11}{2.5} - \frac{1.19}{2.5} - \frac{1.11}{2.5} - \frac{1.19}{2.5} - \frac{1.11}{2.5} - \frac{1.11}{2.5} - \frac{1.19}{2.5} - \frac{1.11}{2.5} - \frac{1.19}{2.5} - \frac{1.11}{2.5} - 1.$	(min)	(mm/hour)		(L/s)	(L/s)	(m ³)	(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m³)	(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m³)
$ \frac{35}{40} \frac{32}{515} \frac{32}{6.06} \frac{1.89}{6.06} \frac{1.89}{1.89} \frac{4.77}{40.01} \\ \frac{10}{515} \frac{10}{6.06} \frac{1.89}{1.89} \frac{4.77}{40.01} \\ \frac{10}{525} \frac{10}{6.00} \frac{1.89}{3.27} \frac{3.1}{3.81} \frac{1.89}{1.89} \frac{2.7}{3.79} \\ \frac{30}{30} \frac{33}{53} \frac{3.81}{3.81} \frac{1.89}{1.89} \frac{2.7}{2.20} \frac{3.84}{3.64} \\ \frac{10}{30} \frac{10}{3.917} \frac{3.85}{2.84} \frac{10}{3.917} \frac{9.90}{2.84} \\ \frac{10}{3.917} \frac{10}{2.84} \frac{10}{1.69} \frac{9.90}{3.27} \frac{4.22}{1.89} \frac{189}{1.77} \frac{2.23}{2.33} \\ \frac{10}{30} \frac{9.90}{3.85} \frac{3.81}{3.91} \frac{1.89}{2.63} \frac{2.7}{3.79} \\ \frac{10}{30} \frac{9.90}{1.01} \frac{10}{1.60} \frac{10}{1.60} \frac{9.90}{3.85} \frac{3.81}{3.81} \frac{1.89}{1.89} \frac{2.7}{2.2} \frac{3.84}{3.84} \\ \frac{10}{3.917} \frac{9.90}{2.84} \frac{18.9}{1.9} \frac{1.77}{2.23} \\ \frac{10}{30} \frac{9.90}{3.85} \frac{11.80}{3.85} \frac{9.1}{3.85} \frac{9.1}{3.86} \frac{9.0}{0.00} \\ \frac{9.0}{0.00} \frac{8.81}{8.81} \frac{10}{1.77} \frac{9.90}{2.84} \\ \frac{10}{30} \frac{9.90}{2.33} \frac{11.80}{1.89} \frac{9.27}{2.84} \frac{9.89}{2.43} \frac{1.89}{2.43} \frac{1.77}{2.23} \\ \frac{10}{30} \frac{9.90}{2.43} \frac{11.89}{2.43} \frac{1.77}{2.84} \\ \frac{9.0}{0.00} \frac{8.81}{8.81} \frac{1.77}{2.84} \\ \frac{10}{0.00} \frac{8.81}{8.81} \frac{1.77}{2.84} \frac{10}{8.90} \\ \frac{10}{0.00} \frac{8.81}{8.81} \frac{1.77}{2.84} \frac{10}{8.90} \\ \frac{10}{0.00} \frac{8.81}{8.81} \frac{10}{8.81} \\ \frac{10}{8.81} \frac{10}{8.81} \frac{10}{8.81} \frac{10}{8.81} \\ \frac{10}{8.81}																		
$ \frac{40}{50} + \frac{7515}{508} + \frac{306}{516} + \frac{189}{189} + \frac{417}{27} + \frac{100}{980} + \frac{25}{30} + \frac{189}{308} + \frac{253}{379} + \frac{379}{31} + \frac{121}{3917} + \frac{284}{284} + \frac{189}{189} + \frac{177}{223} + \frac{223}{31} + \frac{189}{31} + \frac{253}{31} + \frac{379}{31} + \frac{21}{3917} + \frac{284}{284} + \frac{189}{189} + \frac{177}{223} + \frac{21}{223} + \frac{189}{31} + \frac{189}{317} + \frac{284}{386} + \frac{189}{177} + \frac{223}{285} + \frac{1189}{177} + \frac{223}{286} + \frac{189}{177} + \frac{189}{286} + \frac{253}{383} + \frac{389}{381} + \frac{189}{189} + \frac{263}{31} + \frac{3917}{286} + \frac{286}{31} + \frac{189}{189} + \frac{177}{288} + \frac{288}{189} + \frac{177}{288} + \frac{189}{198} + \frac{177}{288} + \frac{288}{189} + \frac{177}{288} + \frac{288}{189} + \frac{177}{288} + \frac{288}{189} + \frac{177}{288} + \frac{189}{1189} + \frac{177}{188} + \frac{189}{1189} + \frac{177}{288} + \frac{189}{1189} + \frac{177}{1189} + \frac{189}{1189} + \frac{177}{1189} + \frac{189}{1189} + \frac{189}{1189} + \frac{177}{1189} + \frac{189}{1189} + \frac{189}{1189} + \frac{177}{1189} + \frac{189}{1189} + \frac{177}{1189} + \frac{189}{1189} + \frac{177}{1189} + \frac{189}{1189} + \frac{189}{1189} + \frac{177}{1189} + \frac{189}{1189} + \frac{177}{1189} + \frac$																		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $																		
$ \frac{10}{10.01} + \frac{11.60}{11.60} + \frac{11.60}{0} + \frac{11.60}$																		
$ \frac{1}{10.01} \frac{1}{10.01} \frac{1}{10.01} \frac{1}{10.01} \frac{1}{10.00} \frac{1}{0.00} 1$																		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			Sto	orage (m ³)					St	orage (m ³)			_		St	torage (m ³)		
refuges<																		
$\frac{rainage Area 10}{(a) 0.057} = 1.00 \text{ Restricted Flow Q, } (Us) = 2.50$ $\frac{100 \text{ Vear Ponding}}{(a) 2.52 \text{ row A} (us) = 2.50}$ $\frac{100 \text{ Vear Ponding}}{(a) 2.52 \text{ row A} (us) = 2.50}$ $\frac{100 \text{ Vear Ponding}}{(a) 2.52 \text{ row A} (us) = 2.50}$ $\frac{100 \text{ Vear Ponding}}{(a) 2.52 \text{ row A} (us) = 2.50}$ $\frac{100 \text{ Vear Ponding}}{(a) 2.52 \text{ row A} (us) = 2.50}$ $\frac{100 \text{ Vear Ponding}}{(a) 2.52 \text{ row A} (us) = 2.50}$ $\frac{100 \text{ Vear Ponding}}{(a) 2.52 \text{ row A} (us) = 1.52 \text{ row A} (us) = 0.57 r$		0.00	10.01	11.60	0	0.00		0.00	3.85	11.60	0	0.00		0.00	2.33	11.60	0	0.00
$\frac{rainage Area 10}{(a) 0.057} = 1.00 \text{ Restricted Flow Q, } (Us) = 2.50$ $\frac{100 \text{ Vear Ponding}}{(a) 2.52 \text{ row A} (us) = 2.50}$ $\frac{100 \text{ Vear Ponding}}{(a) 2.52 \text{ row A} (us) = 2.50}$ $\frac{100 \text{ Vear Ponding}}{(a) 2.52 \text{ row A} (us) = 2.50}$ $\frac{100 \text{ Vear Ponding}}{(a) 2.52 \text{ row A} (us) = 2.50}$ $\frac{100 \text{ Vear Ponding}}{(a) 2.52 \text{ row A} (us) = 2.50}$ $\frac{100 \text{ Vear Ponding}}{(a) 2.52 \text{ row A} (us) = 2.50}$ $\frac{100 \text{ Vear Ponding}}{(a) 2.52 \text{ row A} (us) = 1.52 \text{ row A} (us) = 0.57 r$					Overflows to:	Parking Lot					Overflows to:	Parking Lot					Overflows to:	Parking Lot
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					01011011010	r annig zot					o foliatio to:	r anang zot						i anting Lot
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			1						-						-			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Drainage Area																	
S-Year Ponding T_c Variable i_{100yr} $q_p=2.78xG_{100yr}A$ Q_r (L/s) Q_p-Q_r (L/s) Volume $100yr$ (min) T_c $min)$ i_{5yr} (min) Q_p-Q_r (L/s) Volume $L/s)$ T_c (L/s) I_{2yr} (L/s) Peak Flow $Q_p=2.78xG_{10yr}A$ Q_r $Q_p=2.78xG_{10yr}A$ Q_r $Q_p=2.78xG_{10yr}A$ Q_r $Q_p=2.78xG_{10yr}A$ Q_r $Q_p=2.78xG_{10yr}A$ Q_r $Q_p=2.78xG_{10yr}A$ Q_r $Q_p=2.78xG_{10yr}A$ Q_r $Q_r=2.78xG_{10yr}A$ Q_r $Q_rQ_rQ_rQ_rVolumeQ_rQ_rQ_rQ_rQ_rQ_rVolumeQ_rQ_rQ_rQ_rQ_rQ_rVolumeQ_rQ_rQ_rQ_rQ_rQ_rVolumeQ_rQ_rQ_rQ_rQ_rQ_rVolumeQ_rQ_rQ_rQ_rQ_rQ_rVolumeQ_rQ_rQ_rQ_rQ_rQ_rVolumeQ_rQ_rQ_rQ_rQ_rQ_rVolumeQ_rQ_rQ_rQ_rQ_rQ_rQ_rQ_rQ_rVolumeQ_r4371.3511.312.528.7922.67192.527.5310.342.527.828.92144.64.239.612.242.526.645.885857.329.082.526.5622.842.623.99112.523.899.113933.454.772.522.525.786850.898.062.525.5422.623.9900.009.31$	Area (Ha)						Area (Ha)						Area (Ha)					
T_c Peak Flow Q_p=2.78xCi 100yr Q_r Q_p-Q_r Volume 100yr T_c i 100yr Q_p=2.78xCi 100yr Q_r Volume 100yr i 5yr Peak Flow Q_p=2.78xCi 5yr Q_r Volume 5yr Q_r Volume 5yr (min) (mx)hour) (L/s) (m) (mm/hour) (L/s) (L/s) (m) (mm/hour) (L/s) (L/s) (m) (mm/hour) (L/s) (m/s) (mm/hour) (L/s) (m/s) (mm/hour) (L/s) (m/s)	C =	1.00			2.520		C =	0.90		,	2.520		C =	0.90		,	2.520	
Variable I_{100yr} $q_p=2.78xCi_{100yrA}$ d_r d_p-d_r $100yr$ I_{2yr} $q_p=2.78xCi_{2yrA}$ d_r d_p-d_r $2yr$ (min)(mm/hour)(L/s)(L/s)(L/s)(L/s)(L/s)(L/s)(L/s)(L/s)(L/s) (un) $(mn/hour)$ (U_s) $($	_	1		ing				1		ing			_	1		ing		
Variable $U_p = 2.78xC1_{100yr} A$ $100yr$ <td></td> <td>i 100yr</td> <td></td> <td>Q,</td> <td>$Q_p - Q_r$</td> <td></td> <td></td> <td>i _{5yr}</td> <td></td> <td>Q,</td> <td>$Q_p - Q_r$</td> <td></td> <td></td> <td>i 2yr</td> <td></td> <td>Q,</td> <td>$Q_p - Q_r$</td> <td></td>		i 100yr		Q,	$Q_p - Q_r$			i _{5yr}		Q,	$Q_p - Q_r$			i 2yr		Q,	$Q_p - Q_r$	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $																		
48 65.89 10.44 2.52 7.92 22.81 24 62.54 8.92 2.52 6.40 9.21 19 53.70 7.66 2.52 5.14 5.86 53 61.28 9.71 2.52 7.19 22.86 29 55.18 7.87 2.52 5.35 9.31 24 46.37 6.61 2.52 4.09 5.89 58 57.32 9.08 2.52 6.56 22.84 34 49.50 7.06 2.52 4.54 9.26 29 40.96 5.84 2.52 3.32 5.78 68 50.89 8.06 2.52 5.54 22.62 39 44.98 6.41 2.52 3.89 9.11 39 33.45 4.77 2.52 2.52 5.77 Coverflow 0.00 22.86 23.09 0 0.00 9.31 23.09 0 0.00 9.00 0.00 0.00 5.89 23.09 0 0.00						. ,												. ,
53 61.28 9.71 2.52 7.19 22.86 29 55.18 7.87 2.52 5.35 9.31 24 46.37 6.61 2.52 4.09 5.89 58 57.32 9.08 2.52 6.56 22.84 34 49.50 7.06 2.52 4.54 9.26 29 40.96 5.84 2.52 3.32 5.78 68 50.89 8.06 2.52 5.54 22.62 39 44.98 6.41 2.52 3.89 9.11 39 33.45 4.77 2.52 5.27 Storage (m ³) Storage (m ³) Storage (m ³) Storage (m ³) 0.00 22.86 23.09 0 0.00 9.31 23.09 0 0.00 5.89 23.09 0 0.00																		
58 57.32 9.08 2.52 6.56 22.84 34 49.50 7.06 2.52 4.54 9.26 29 40.96 5.84 2.52 3.32 5.78 68 50.89 8.06 2.52 5.54 22.62 39 44.98 6.41 2.52 3.89 9.11 39 33.45 4.77 2.52 2.25 5.27 Storage (m ³) Storage (m ³) Storage (m ³) Overflow Required Surface Sub-surface Balance Overflow Required Sub-surface Balance Overflow 0.00 9.31 23.09 0 0.00 5.89 23.09 0 0.00																		
Storage (m ³) Overflow Required Surface Sub-surface Balance 0.00 22.86 23.09 0 0.00 9.31 23.09 0 0.00 5.89 23.09 0 0.00	58	57.32		2.52		22.84	34	49.50	7.06	2.52	4.54	9.26	29	40.96	5.84	2.52	3.32	5.78
OverflowRequiredSurfaceSub-surfaceBalanceOverflowRequiredSurfaceSub-surfaceBalanceOverflowRequiredSurfaceBalance0.0022.8623.0900.000.009.3123.0900.000.005.8923.0900.00	68	50.89	8.06	2.52	5.54	22.62	39	44.98	6.41	2.52	3.89	9.11	39	33.45	4.77	2.52	2.25	5.27
OverflowRequiredSurfaceSub-surfaceBalanceOverflowRequiredSurfaceSub-surfaceBalanceOverflowRequiredSurfaceBalance0.0022.8623.0900.000.009.3123.0900.000.005.8923.0900.00			_ .	, 9.					-	, 2.					-	, a.		
0.00 22.86 23.09 0 0.00 9.31 23.09 0 0.00 5.89 23.09 0 0.00		0			Out of	Data		0			Out a fri	Dala	-	0			Out a f	Dala
Overflows to: Parking Lot Overflows to: Parking Lot Overflows to: Parking Lot		0.00	22.00	20.00	0	0.00		0.00	0.01	23.03	U	0.00		0.00	5.03	23.03	U	0.00
					Overflows to:	Parking Lot					Overflows to:	Parking Lot					Overflows to:	Parking Lot


	Deef Area 45					Drainaga Araa	Roof Area 1E					Drainaga Araa	Roof Area 1E	1			
Area (Ha)	Roof Area 1E 0.063					Drainage Area Area (Ha)	0.063	8				Drainage Area Area (Ha)	0.063				
=		Restricted Flow Qr (L	/s)=	3.150		C =	0.90	Restricted Flow Qr (L	/s)=	3.150		C =	0.90	Restricted Flow Qr (L	/s)=	3.150	
		100-Year Pond	lina					5-Year Pondi	na					2-Year Pondi	na		
T _c		Peak Flow			Volume	T _c	1.	Peak Flow			Volume	T _c	Ι.	Peak Flow	•		Volun
Variable	i _{100yr}	Q _p =2.78xCi 100yr A	Q,	$Q_p - Q_r$	100yr	Variable	i _{5yr}	Q p = 2.78xCi 5yr A	Q,	$Q_p - Q_r$	5yr	Variable	i _{2yr}	Q _p =2.78xCi _{2yr} A	Q,	$Q_p - Q_r$	2yr
(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m³)	(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m ³)	(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m ³)
40	75.15	13.16	3.15	10.01	24.03	15	83.56	13.17	3.15	10.02	9.02	9	80.87	12.75	3.15	9.60	5.18
45	69.05	12.09	3.15	8.94	24.15	20	70.25	11.07	3.15	7.92	9.51	14	64.23	10.12	3.15	6.97	5.86
50 55	63.95 59.62	11.20 10.44	3.15 3.15	8.05 7.29	24.15 24.07	25 30	60.90 53.93	9.60 8.50	3.15 3.15	6.45 5.35	9.67 9.63	19 24	53.70 46.37	8.46 7.31	3.15 3.15	5.31 4.16	6.06 5.99
65	52.65	9.22	3.15	6.07	23.67	35	48.52	7.65	3.15	4.50	9.65	34	36.78	5.80	3.15	2.65	5.40
																1 1	
		Ste	orage (m ³)					Ste	orage (m ³)						orage (m ³)		
	Overflow	Required	Surface	Sub-surface	Balance		Overflow	Required	Surface	Sub-surface	Balance		Overflow	Required	Surface	Sub-surface	Balanc
	0.00	24.15	25.20	0	0.00		0.00	9.67	25.20	0	0.00		0.00	6.06	25.20	0	0.00
				Overflows to:	Parking Lot					Overflows to:	Parking Lot					Overflows to:	Parking
					·						·						
	D					Ducincere Area		1				Ducinous Area		1			
Drainage Area Irea (Ha)	0.044					Drainage Area Area (Ha)	Roof Area 2A					Drainage Area Area (Ha)	Roof Area 2A 0.044				
:=		Restricted Flow Q _r (L	/s)=	2.520		C =	0.90	Restricted Flow Qr (L)	/s)=	2.520		C =	0.044	Restricted Flow Qr (L	/s)=	2.520	
-	1.00	100-Year Pond		2.520		0 -	0.30	5-Year Pondi	,	2.520		0 -	0.30	2-Year Pondi	,	2.020	
Tc	1	Peak Flow	<u> </u>	T T	Volume	T _c		Peak Flow	5	1	Volume	T _c	1	Peak Flow	•	T T	Volum
Variable	i _{100yr}	$Q_p = 2.78 \times Ci_{100yr} A$	Q,	$Q_p - Q_r$	100yr	، Variable	i _{5yr}	$Q_p = 2.78 \times Ci_{5vr} A$	Q,	$Q_p - Q_r$	5yr	Variable	i _{2yr}	$Q_p = 2.78 \times Ci_{2vr} A$	Q,	$Q_p - Q_r$	2yr
(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m^3)	(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m ³)	(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m ³)
30	91.87	11.24	2.52	8.72	15.69	14	86.93	9.57	2.52	7.05	5.92	9	80.87	8.90	2.52	6.38	3.45
35	82.58	10.10	2.52	7.58	15.92	19	72.53	7.98	2.52	5.46	6.23	14	64.23	7.07	2.52	4.55	3.82
40	75.15	9.19	2.52	6.67	16.01	24	62.54	6.88	2.52	4.36	6.29	19	53.70	5.91	2.52	3.39	3.87
45 55	69.05 59.62	8.45 7.29	2.52	5.93 4.77	16.00 15.75	29 34	55.18 49.50	6.07 5.45	2.52	3.55 2.93	6.18 5.98	24 34	46.37 36.78	5.11 4.05	2.52	2.59	3.72
55	39.02	1.29	2.52	4.77	13.75		49.50	5.45	2.52	2.95	5.90		30.78	4.05	2.32	1.55	J.12
		Ste	orage (m ³)					Ste	orage (m ³)					St	orage (m ³)		
	Overflow	Required	Surface		Balance					0 1							
	0.00		Surrace	Sub-surface	Dalatice		Overflow	Required	Surface	Sub-surface	Balance		Overflow	Required	Surface	Sub-surface	Balanc
	0.00	16.01	17.60	Sub-surface 0	0.00		Overflow 0.00	Required 6.29	Surface 17.60	O	Balance 0.00		Overflow 0.00	Required 3.87	Surface 17.60	Sub-surface 0	Balanc 0.00
	0.00			0	0.00					0	0.00					0	0.00
	0.00																0.00
	0.00			0	0.00					0	0.00					0	0.00
				0	0.00		0.00	6.29		0	0.00		0.00			0	0.00
<u> </u>	Roof Area 2B			0	0.00	Drainage Area	0.00 oof Area 2B	6.29		0	0.00	Drainage Area	0.00 oof Area 2B			0	0.00
Drainage Area Area (Ha)	Roof Area 2B 0.077	16.01	17.60	0 Overflows to:	0.00	Area (Ha)	0.00 oof Area 2B	6.29	17.60	0 Overflows to:	0.00	Area (Ha)	0.00 oof Area 2B	3.87	17.60	0 Overflows to:	Balance 0.00 Parking
<u> </u>	Roof Area 2B	16.01 Restricted Flow Q _r (L	17.60 /s)=	0	0.00		0.00 oof Area 2B	6.29 Restricted Flow Qr (Li	17.60 's)=	0	0.00		0.00 oof Area 2B	3.87 Restricted Flow Q, (L	17.60 /s)=	0	0.00
rea (Ha) ; =	Roof Area 2B 0.077	16.01 Restricted Flow Q _r (L 100-Year Pond	17.60 /s)= ling	0 Overflows to: 3.150	0.00 Parking Lot	Area (Ha) C =	0.00 oof Area 2B	6.29 Restricted Flow Q _r (Li 5-Year Pondi i	17.60 /s)= ng	0 Overflows to: 3.150	0.00 Parking Lot	Area (Ha) C =	0.00 oof Area 2B	3.87 Restricted Flow Q _r (L 2-Year Pondi	17.60 /s)= ng	0 Overflows to: 3.150	0.00 Parking
rea (Ha) ;= Τ _c	Roof Area 2B 0.077	16.01 Restricted Flow Q _r (L 100-Year Pond <i>Peak Flow</i>	17.60 /s)=	0 Overflows to:	0.00 Parking Lot Volume	Area (Ha) C = T _c	0.00 oof Area 2B	6.29 Restricted Flow Q _r (L 5-Year Pondi i Peak Flow	17.60 's)=	0 Overflows to:	0.00 Parking Lot	Area (Ha) C = τ _c	0.00 oof Area 2B	3.87 Restricted Flow Q, (L 2-Year Pondi <i>Peak Flow</i>	17.60 /s)=	0 Overflows to:	0.00 Parking Volum
rea (Ha) : = T _c Variable	Roof Area 2B 0.077 1.00 i _{100yr}	16.01 Restricted Flow Q _r (L 100-Year Pond <i>Peak Flow</i> <i>Q</i> _p =2.78xCi 100yr A	17.60 /s)= ling Q,	0 Overflows to: 3.150	0.00 Parking Lot Volume 100yr	Area (Ha) C = T _c Variable	0.00 oof Area 2B 0.077 0.90 i _{syr}	6.29 Restricted Flow Q _r (Li 5-Year Pondi i Peak Flow $Q_p = 2.78 \times Ci_{5yr} A$	17.60 /s)= ng Q,	0 Overflows to: 3.150	0.00 Parking Lot Volume 5yr	Area (Ha) C = T _c Variable	0.00 oof Area 2B 0.077 0.90 i _{2yr}	3.87 Restricted Flow Qr, (L 2-Year Pondi Peak Flow Q p = 2.78xCi 2yr A	17.60 /s)= ng Q,	0 Overflows to: 3.150	0.00 Parkin Volum 2yr
rea (Ha) = <i>T</i> _c	Roof Area 2B 0.077 1.00	16.01 Restricted Flow Q _r (L 100-Year Pond <i>Peak Flow</i>	17.60 /s)= ling	0 Overflows to: 3.150	0.00 Parking Lot Volume	Area (Ha) C = T _c	0.00 oof Area 2B 0.077 0.90	6.29 Restricted Flow Q _r (L 5-Year Pondi i Peak Flow	17.60 /s)= ng	0 Overflows to: 3.150	0.00 Parking Lot	Area (Ha) C = τ _c	0.00 oof Area 2B 0.077 0.90	3.87 Restricted Flow Q, (L 2-Year Pondi <i>Peak Flow</i>	17.60 /s)= ng	0 Overflows to: 3.150	0.00 Parkin Volum
rea (Ha) = <i>T_c</i> <i>Variable</i> (<i>min</i>) 50 55	Roof Area 2B 0.077 1.00 <i>i</i> _{100yr} (<i>mm/hour</i>) 63.95 59.62	16.01 Restricted Flow Q _r (L 100-Year Pond Peak Flow $Q_p = 2.78 \times Ci_{100yr} A$ (L/s)	/s)= ling Q, (L/s) 3.15 3.15	0 Overflows to: 3.150 Q _p - Q _r (L/s) 10.54 9.61	0.00 Parking Lot Volume 100yr (m ³)	Area (Ha) C = <i>T_c</i> <i>Variable</i> (<i>min</i>) 24 29	0.00 oof Area 2B 0.077 0.90 <i>i</i> _{5yr} <i>(mm/hour)</i> 62.54 55.18	6.29 Restricted Flow Q _r (Li 5-Year Pondir Peak Flow $Q_p = 2.78 \times Ci_{Syr} A$ (L/s) 12.05 10.63	17.60 /s)= 	0 Overflows to: 3.150 Q _p -Q _r (L/s) 8.90 7.48	0.00 Parking Lot Volume 5yr (m ³) 12.81 13.02	Area (Ha) C = Variable (min) 14 19	0.00 oof Area 2B 0.077 0.90 <i>i</i> _{2yr} (<i>mn/hour</i>) 64.23 53.70	3.87 Restricted Flow Q _r (L 2-Year Pondi <i>Peak Flow</i> <i>Q_p</i> =2.78xCi _{2yr} A (L/s) 12.37 10.35	17.60 /s)= ng Q, (L/s) 3.15 3.15	0 Overflows to: 3.150 $Q_p - Q_r$ (L/s)	0.00 Parkin Volum 2yr (m ³)
rea (Ha) = Variable (min) 50 55 60	Roof Area 2B 0.077 1.00 i _{100yr} (mm/hour) 63.95 59.62 55.89	16.01 Restricted Flow Q _r (L 100-Year Pond <i>Peak Flow</i> <i>Q_p</i> =2.78xCi 100yr A (L/s) 13.69 12.76 11.96	17.60 /s)= ling Q, (L/s) 3.15 3.15 3.15	0 Overflows to: 3.150 Q _p -Q _r (L/s) 10.54 9.61 8.81	0.00 Parking Lot Volume 100yr (m ³) 31.62 31.72 31.73	Area (Ha) C = Variable (min) 24 29 34	0.00 oof Area 2B 0.077 0.90 <i>i</i> _{5yr} <i>(mm/hour)</i> 62.54 55.18 49.50	6.29 Restricted Flow Q_r (L: 5-Year Pondi Peak Flow $Q_p = 2.78 \times Ci_{5yr} A$ (L's) 12.05 10.63 9.54	17.60 (s)= ng Q, (L/s) 3.15 3.15 3.15	0 Overflows to: 3.150 Q _p - Q _r (L/s) 8.90 7.48 6.39	0.00 Parking Lot Volume 5yr (m ³) 12.81 13.02 13.03	Area (Ha) C = Variable (min) 14 19 24	0.00 oof Area 2B 0.077 0.90 i _{2yr} (mm/hour) 64.23 53.70 46.37	3.87 Restricted Flow Q _r (L 2-Year Pondi <i>Q_p</i> =2.78xCi _{2yr} A (L/s) 12.37 10.35 8.93	17.60 /s)= ng <u>Q</u> , <u>(L/s)</u> <u>3.15</u> <u>3.15</u> <u>3.15</u>	0 Overflows to: 3.150 Q _p - Q _r (L/s) 9.22 7.20 5.78	0.00 Parkin 2yr (m ³) 7.75 8.33
rea (Ha) = Variable (min) 50 55 60 65	Roof Area 2B 0.077 1.00 <i>i</i> 100yr (<i>mm/hour</i>) 63.95 59.62 55.89 52.65	16.01 Restricted Flow Q _r (L 100-Year Pond <i>Peak Flow</i> <i>Q_p</i> = 2.78xCi 100yr A (L/s) 13.69 12.76 11.96 11.27	17.60 /s)= Q, (L/s) 3.15 3.15 3.15 3.15	0 Overflows to: 3.150 <i>Q_p-Q_r</i> (<i>L/s</i>) 10.54 9.61 8.81 8.81 8.12	0.00 Parking Lot Volume 100yr (m ³) 31.62 31.72 31.73 31.67	Area (Ha) C = Variable (min) 24 29 34 39	0.00 oof Area 2B 0.077 0.90 <i>i</i> _{syr} (<i>mm/hour</i>) 62.54 55.18 49.50 44.98	6.29 Restricted Flow Q _r (L 5-Year Pondi Peak Flow Q _p =2.78xCi syr A (L/s) 12.05 10.63 9.54 8.67	17.60 (s)= Qr (L/s) 3.15 3.15 3.15 3.15 3.15	0 Overflows to: 3.150 Q _p -Q _r (L/s) 8.90 7.48 6.39 5.52	0.00 Parking Lot Volume 5yr (m ³) 12.81 13.02 13.03 12.91	Area (Ha) C = Variable (min) 14 19 24 29	0.00 oof Area 2B 0.077 0.90 <i>i</i> _{2yr} (<i>mm/hour</i>) 64.23 53.70 64.37 46.37 40.96	3.87 Restricted Flow Q _r (L 2-Year Pondi Peak Flow Q _p =2.78xCi _{2yr} A (L/s) 12.37 10.35 8.93 7.89	17.60 /s)= ng Q , (L/s) 3.15 3.15 3.15 3.15	0 Overflows to: 3.150 Q _p -Q _r (L/s) 9.22 7.20 5.78 4.74	0.00 Parkin 2yr (m ³) 7.75 8.20 8.33 8.25
rea (Ha) = <i>T_c</i> <i>Variable</i> <i>(min)</i> 50 55 60	Roof Area 2B 0.077 1.00 i _{100yr} (mm/hour) 63.95 59.62 55.89	16.01 Restricted Flow Q _r (L 100-Year Pond <i>Peak Flow</i> <i>Q_p</i> =2.78xCi 100yr A (L/s) 13.69 12.76 11.96	17.60 /s)= ling Q, (L/s) 3.15 3.15 3.15	0 Overflows to: 3.150 Q _p -Q _r (L/s) 10.54 9.61 8.81	0.00 Parking Lot Volume 100yr (m ³) 31.62 31.72 31.73	Area (Ha) C = Variable (min) 24 29 34	0.00 oof Area 2B 0.077 0.90 <i>i</i> _{5yr} <i>(mm/hour)</i> 62.54 55.18 49.50	6.29 Restricted Flow Q_r (L: 5-Year Pondi Peak Flow $Q_p = 2.78 \times Ci_{5yr} A$ (L's) 12.05 10.63 9.54	17.60 (s)= ng Q, (L/s) 3.15 3.15 3.15	0 Overflows to: 3.150 Q _p - Q _r (L/s) 8.90 7.48 6.39	0.00 Parking Lot Volume 5yr (m ³) 12.81 13.02 13.03	Area (Ha) C = Variable (min) 14 19 24	0.00 oof Area 2B 0.077 0.90 i _{2yr} (mm/hour) 64.23 53.70 46.37	3.87 Restricted Flow Q _r (L 2-Year Pondi <i>Q_p</i> =2.78xCi _{2yr} A (L/s) 12.37 10.35 8.93	17.60 /s)= ng <u>Q</u> , <u>(L/s)</u> <u>3.15</u> <u>3.15</u> <u>3.15</u>	0 Overflows to: 3.150 Q _p - Q _r (L/s) 9.22 7.20 5.78	0.00 Parkin 2yr (m ³) 7.75 8.33
rea (Ha) = Variable (min) 50 55 60 65	Roof Area 2B 0.077 1.00 <i>i</i> 100yr (<i>mm/hour</i>) 63.95 59.62 55.89 52.65	16.01 Restricted Flow Q _r (L 100-Year Pond <i>Peak Flow</i> <i>Q_p</i> =2.78xCi 100yr A (L/s) 13.69 12.76 11.96 11.27 10.12	/s)= ling Q, (L/s) 3.15 3.15 3.15 3.15 3.15 3.15	0 Overflows to: 3.150 <i>Q_p-Q_r</i> (<i>L/s</i>) 10.54 9.61 8.81 8.81 8.12	0.00 Parking Lot Volume 100yr (m ³) 31.62 31.72 31.73 31.67	Area (Ha) C = Variable (min) 24 29 34 39	0.00 oof Area 2B 0.077 0.90 <i>i</i> _{syr} (<i>mm/hour</i>) 62.54 55.18 49.50 44.98	6.29 Restricted Flow Q _r (L 5-Year Pondir Peak Flow Q _p =2.78xCi _{5yr} A (L's) 12.05 10.63 9.54 8.67 7.95	17.60 (s)= Q , (L/s) 3.15 3.15 3.15 3.15 3.15 3.15	0 Overflows to: 3.150 Q _p -Q _r (L/s) 8.90 7.48 6.39 5.52	0.00 Parking Lot Volume 5yr (m ³) 12.81 13.02 13.03 12.91	Area (Ha) C = Variable (min) 14 19 24 29	0.00 oof Area 2B 0.077 0.90 <i>i</i> _{2yr} (<i>mm/hour</i>) 64.23 53.70 64.37 46.37 40.96	3.87 Restricted Flow Q _r (L 2-Year Pondi Peak Flow Q _p =2.78xCi _{2yr} A (L/s) 12.37 10.35 8.93 7.89 6.44	/s)= ng Q, (L/s) 3.15 3.15 3.15 3.15 3.15 3.15	0 Overflows to: 3.150 Q _p -Q _r (L/s) 9.22 7.20 5.78 4.74	0.00 Parkin 2yr (m ³) 7.75 8.20 8.33 8.25
rea (Ha) := T _c Variable (min) 50 55 60 65	Roof Area 2B 0.077 1.00 <i>i</i> 100yr (<i>mm/hour</i>) 63.95 59.62 55.89 52.65	16.01 Restricted Flow Q _r (L 100-Year Pond <i>Peak Flow</i> <i>Q_p</i> =2.78xCi 100yr A (L/s) 13.69 12.76 11.96 11.27 10.12	17.60 /s)= Q, (L/s) 3.15 3.15 3.15 3.15	0 Overflows to: 3.150 <i>Q_p-Q_r</i> (<i>L/s</i>) 10.54 9.61 8.81 8.81 8.12	0.00 Parking Lot Volume 100yr (m ³) 31.62 31.72 31.73 31.67	Area (Ha) C = Variable (min) 24 29 34 39	0.00 oof Area 2B 0.077 0.90 <i>i</i> _{syr} (<i>mm/hour</i>) 62.54 55.18 49.50 44.98	6.29 Restricted Flow Q _r (L 5-Year Pondir Peak Flow Q _p =2.78xCi _{5yr} A (L's) 12.05 10.63 9.54 8.67 7.95	17.60 (s)= Qr (L/s) 3.15 3.15 3.15 3.15 3.15	0 Overflows to: 3.150 Q _p -Q _r (L/s) 8.90 7.48 6.39 5.52	0.00 Parking Lot Volume 5yr (m ³) 12.81 13.02 13.03 12.91	Area (Ha) C = Variable (min) 14 19 24 29	0.00 oof Area 2B 0.077 0.90 <i>i</i> _{2yr} (<i>mm/hour</i>) 64.23 53.70 64.37 46.37 40.96	3.87 Restricted Flow Q _r (L 2-Year Pondi Peak Flow Q _p =2.78xCi _{2yr} A (L/s) 12.37 10.35 8.93 7.89 6.44	17.60 /s)= ng Q , (L/s) 3.15 3.15 3.15 3.15	0 Overflows to: 3.150 Q _p -Q _r (L/s) 9.22 7.20 5.78 4.74	0.00 Parkin 2yr (m ³) 7.75 8.20 8.33 8.25 7.71
rea (Ha) := T c Variable (min) 50 55 60 65	Roof Area 2B 0.077 1.00 <i>i</i> _{100yr} (<i>mm/hour</i>) 63.95 59.62 55.89 52.65 47.26	16.01 Restricted Flow Q _r (L 100-Year Pond <i>Peak Flow</i> <i>Q_p</i> =2.78x <i>Ci</i> 100yr <i>A</i> <i>(L/s)</i> 13.69 12.76 11.96 11.27 10.12 Sta	17.60 /s)= Q, (L/s) 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15	0 Overflows to: 3.150 Q _p - Q _r (<i>L/s</i>) 10.54 9.61 9.61 8.81 8.12 6.97	0.00 Parking Lot Volume 100yr (m ³) 31.62 31.72 31.73 31.67 31.34	Area (Ha) C = Variable (min) 24 29 34 39	0.00 oof Area 2B 0.077 0.90 <i>i</i> 5yr (mm/hour) 62.54 55.18 49.50 44.98 41.29	6.29 Restricted Flow Q _r (L: 5-Year Pondi Peak Flow Q _p =2.78xCi _{5yr} A (L/s) 12.05 10.63 9.54 8.67 7.95 Sta	17.60 (s)= Q, (L/s) 3.15	0 Overflows to: 3.150 Q _p - Q _r (L/s) 8.90 7.48 6.39 5.52 4.80	0.00 Parking Lot Volume 5yr (m ³) 12.81 13.02 13.03 12.91 12.68	Area (Ha) C = Variable (min) 14 19 24 29	0.00 oof Area 2B 0.077 0.90 <i>i</i> _{2yr} (<i>mm/hour</i>) 64.23 53.70 46.37 40.96 33.45	3.87 Restricted Flow Q _r (L 2-Year Pondi Peak Flow Q _p =2.78xCi _{2yr} A (L/s) 12.37 10.35 8.93 7.89 6.44 St	17.60 /s)= ng Q _r (L/s) 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15	0 Overflows to: 3.150 Q _p - Q _r (L/s) 9.22 7.20 5.78 4.74 3.29	0.00 Parkin 2yr (m ³) 7.75 8.20 8.33 8.25
rea (Ha) := T _c Variable (min) 50 55 60 65	Roof Area 2B 0.077 1.00 i 100yr (mm/hour) 63.95 59.62 55.89 52.65 47.26 Overflow	16.01 Restricted Flow Qr (L 100-Year Pond Peak Flow Qp = 2.78xCi 100yr A (L's) 13.69 12.76 11.96 11.27 10.12 Ster	(L/s) (L/s) 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15	0 Overflows to: 3.150 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.00 Parking Lot Volume 100yr (m ³) 31.62 31.72 31.73 31.67 31.34 Balance	Area (Ha) C = Variable (min) 24 29 34 39	0.00 oof Area 2B 0.077 0.90 <i>i</i> _{syr} (<i>mm/hour</i>) 62.54 55.18 49.50 44.98 41.29 Overflow	6.29 Restricted Flow Q _r (L 5-Year Pondi Peak Flow Q _p =2.78xCi _{5yr} A (L/s) 12.05 10.63 9.54 8.67 7.95 Ste Required	17.60 (s)= Q, (L/s) 3.15	0 Overflows to: 3.150 Q _p -Q _r (L/s) 8.90 7.48 6.39 5.52 4.80 Sub-surface	0.00 Parking Lot Volume 5yr (m ³) 12.81 13.02 13.03 12.91 12.68 Balance	Area (Ha) C = Variable (min) 14 19 24 29	0.00 oof Area 2B 0.077 0.90 <i>i</i> _{2yr} (<i>mm/hour</i>) 64.23 53.70 64.23 53.70 46.37 40.96 33.45 Overflow	3.87 Restricted Flow Q _r (L 2-Year Pondi Peak Flow Q _p =2.78xCi _{2yr} A (L/s) 12.37 10.35 8.93 7.89 6.44 St Required	17.60 /s)= ng Q _r <u>(L/s)</u> <u>3.15</u> <u>3.15</u> <u>3.15</u> <u>3.15</u> <u>3.15</u> <u>3.15</u> <u>3.15</u> 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3	0 Overflows to: 3.150 Q _p -Q _r (L/s) 9.22 7.20 5.78 4.74 3.29 Sub-surface	0.00 Parkin 2yr (m ³) 7.75 8.20 8.33 8.25 7.71 Balanc

Drainage Area	Deef Area 20					Drainage Area	ant Area 20					Drainage Area	ant Aron 20	1			
Area (Ha)	0.029					Area (Ha)	0.029	9				Area (Ha)	0.029				
C =	1.00	Restricted Flow Qr (L	/s)=	1.890		C =	0.90	Restricted Flow Qr (L	/s)=	1.890		C =	0.90	Restricted Flow Qr (L	./s)=	1.890	
		100-Year Pond	lina					5-Year Pondi	na				•	2-Year Pondi	ina		
T _c		Peak Flow		0.0	Volume	T _c		Peak Flow	<u> </u>	0.0	Volume	T _c		Peak Flow	<u> </u>	0.0	Volume
Variable	i _{100yr}	Q _p =2.78xCi _{100yr} A	Q,	$Q_p - Q_r$	100yr	Variable	i _{5yr}	Q _p =2.78xCi _{5yr} A	Q,	$Q_p - Q_r$	5yr	Variable	i _{2yr}	Q _p =2.78xCi _{2yr} A	Q,	$Q_p - Q_r$	2yr
(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m ³)	(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m³)	(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m³)
25	103.85	8.37	1.89	6.48	9.72	9	109.79	7.97	1.89	6.08	3.28	5	103.57	7.51	1.89	5.62	1.69
30	91.87 82.58	7.41 6.66	1.89	5.52 4.77	9.93	14	86.93	6.31	1.89	4.42 3.37	3.71	10	76.81	5.57 4.48	1.89 1.89	3.68 2.59	2.21
35 40	75.15	6.06	1.89 1.89	4.17	10.01 10.00	19 24	72.53 62.54	5.26 4.54	1.89 1.89	2.65	3.84 3.81	<u>15</u> 20	61.77 52.03	4.48	1.89	2.59	2.33 2.26
50	63.95	5.16	1.89	3.27	9.80	29	55.18	4.00	1.89	2.03	3.68	30	40.04	2.91	1.89	1.09	1.83
		St	orage (m ³)					St	orage (m ³)			_		St	orage (m ³)		
	Overflow	Required	Surface	Sub-surface	Balance		Overflow	Required	Surface	Sub-surface	Balance	-	Overflow	Required	Surface	Sub-surface	Balance
	0.00	10.01	11.60	0	0.00		0.00	3.84	11.60	0	0.00		0.00	2.33	11.60	0	0.00
				Overflows to:	Parking Lot					Overflows to:	Parking Lot					Overflows to:	Parking L
				Overnows to.	T arking Lot					Overnows to.	T arking Lot					Overnows to:	
								-						-			
Drainage Area						Drainage Area	Roof Area 2D)				Drainage Area	Roof Area 2D				
Area (Ha)	0.057					Area (Ha)	0.057					Area (Ha)	0.057				
C =	1.00	Restricted Flow Q _r (L		2.520		C =	0.90		,	2.520		C =	0.90		,	2.520	
		100-Year Pond	ling	.				5-Year Pondi	ng					2-Year Pondi	ng		
T _c	i _{100yr}	Peak Flow	Q,	$Q_p - Q_r$	Volume	T _c	i _{5yr}	Peak Flow	Q,	$Q_p - Q_r$	Volume	T _c	i _{2yr}	Peak Flow	Q,	$Q_p - Q_r$	Volume
Variable		Q _p =2.78xCi _{100yr} A		-	100yr	Variable		Q _p =2.78xCi _{5yr} A			5yr	Variable		Q _p =2.78xCi _{2yr} A			2yr
(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m ³)	(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m ³)	(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m ³)
45 50	69.05 63.95	10.94 10.13	2.52 2.52	8.42 7.61	22.74 22.84	19 24	72.53 62.54	10.34 8.92	2.52 2.52	7.82 6.40	8.92 9.21	<u> </u>	64.23 53.70	9.16 7.66	2.52 2.52	6.64 5.14	5.58 5.86
55	59.62	9.45	2.52	6.93	22.86	29	55.18	7.87	2.52	5.35	9.21	24	46.37	6.61	2.52	4.09	5.89
60	55.89	8.86	2.52	6.34	22.81	34	49.50	7.06	2.52	4.54	9.26	29	40.96	5.84	2.52	3.32	5.78
70	49.79	7.89	2.52	5.37	22.55	39	44.98	6.41	2.52	3.89	9.11	39	33.45	4.77	2.52	2.25	5.27
			3						2						2		
			orage (m ³)						orage (m ³)			-			orage (m ³)		B.1
	Overflow 0.00	Required 22.86	Surface 23.09	Sub-surface	Balance 0.00		Overflow 0.00	Required 9.31	Surface 23.09	Sub-surface 0	Balance 0.00		Overflow 0.00	Required 5.89	Surface 23.09	Sub-surface 0	Balance 0.00
	0.00	22.00	23.09	0	0.00		0.00	9.51	23.09	0	0.00		0.00	5.09	23.09	0	0.00
				Overflows to:	Parking Lot					Overflows to:	Parking Lot					Overflows to:	Parking Lo
					-						-						-
Drainaria Area	D	1				Dreiners Aree	D (4					Drainaria Area	D (A				
Drainage Area Area (Ha)	Roof Area 2E 0.029					Drainage Area Area (Ha)	Roof Area 2E 0.029					Drainage Area Area (Ha)	Roof Area 2E 0.029				
C =		Restricted Flow Q _r (L	/s)=	1.890		C =	0.90	Restricted Flow Q _r (L	/s)=	1.890		C =	0.90	Restricted Flow Q _r (L	/s)=	1.890	
•	1.00	100-Year Pond		1.000		<u> </u>	0.00	5-Year Pondi					0.00	2-Year Pondi		1.000	
T _c	1	Peak Flow		1 1	Volume	T _c	1	Peak Flow	-	1	Volume	T _c	1	Peak Flow	r T		Volume
، Variable	i _{100yr}	Q _p =2.78xCi 100yr A	Q,	Q _p -Q _r	100yr	Variable	i _{5yr}	$Q_p = 2.78 \times Ci_{5yr} A$	Q,	$Q_p - Q_r$	5yr	، Variable	i _{2yr}	$Q_p = 2.78 \times Ci_{2yr} A$	Q,	$Q_p - Q_r$	2yr
(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m^3)	(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m^3)	(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m^3)
25	103.85	8.37	1.89	6.48	9.72	9	109.79	7.97	1.89	6.08	3.28	5	103.57	7.51	1.89	5.62	1.69
30	91.87	7.41	1.89	5.52	9.93	14	86.93	6.31	1.89	4.42	3.71	10	76.81	5.57	1.89	3.68	2.21
35	82.58	6.66	1.89	4.77	10.01	19	72.53	5.26	1.89	3.37	3.84	15	61.77	4.48	1.89	2.59	2.33
40	75.15 63.95	6.06 5.16	1.89 1.89	4.17 3.27	10.00 9.80	24 29	62.54 55.18	4.54 4.00	1.89 1.89	2.65 2.11	3.81 3.68	20	52.03 40.04	3.78 2.91	1.89 1.89	1.89	2.26
50	03.90	01.0	1.89	3.21	9.80	29	55.18	4.00	1.89	2.11	3.00	30	40.04	2.91	1.89	1.02	1.83
		St	orage (m ³)					St	orage (m ³)					St	orage (m ³)		
	Overflow	Required	Surface	Sub-surface	Balance		Overflow	Required	Surface	Sub-surface	Balance	-	Overflow	Required	Surface	Sub-surface	Balance
	0.00	10.01	11.60	0	0.00		0.00	3.84	11.60	0	0.00		0.00	2.33	11.60	0	0.00
				Overflows to:	Parking Lot					Overflows to:	Parking Lot					Overflows to:	Parking Lo

Drainage Area Area (Ha)	Roof Area 2F 0.059					Drainage Area Area (Ha)	Roof Area 2F 0.059					Drainage Area Area (Ha)	Roof Area 2F 0.059	1			
) =		Restricted Flow Qr (L	/s)=	3.150		C =		Restricted Flow Qr (I	_/s)=	3.150		C =	0.90	Restricted Flow Qr (I	_/s)=	3.150	
	100-Year Ponding					5-Year Ponding							2-Year Ponding				
T _c Variable	i _{100yr}	Peak Flow Q _p =2.78xCi _{100yr} A	Q,	$Q_p - Q_r$	Volume 100yr	T _c Variable	i _{5yr}	Peak Flow Q _p =2.78xCi _{5vr} A	Q,	Q _p -Q _r	Volume 5yr	T _c Variable	i _{2yr}	Peak Flow Q _p =2.78xCi _{2vr} A	Q,	$Q_p - Q_r$	Volume 2yr
(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m^3)	(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m^3)	(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m^3)
35	82.58	13.54	3.15	10.39	21.83	16	80.46	11.88	3.15	8.73	8.38	8	85.46	12.61	3.15	9.46	4.54
40	75.15	12.33	3.15	9.18	22.02	21	68.13	10.06	3.15	6.91	8.70	13	66.93	9.88	3.15	6.73	5.25
45	69.05	11.33	3.15	8.18	22.07	26	59.35	8.76	3.15	5.61	8.75	18	55.49	8.19	3.15	5.04	5.44
50	63.95	10.49	3.15	7.34	22.02	31	52.74	7.79	3.15	4.64	8.62	23	47.66	7.04	3.15	3.89	5.36
60	55.89	9.17	3.15	6.02	21.66	36	47.58	7.02	3.15	3.87	8.37	33	37.54	5.54	3.15	2.39	4.74
		St	orage (m ³)					S	torage (m ³)					s	torage (m ³)		
	Overflow	Required	Surface	Sub-surface	Balance		Overflow	Required	Surface	Sub-surface	Balance	-	Overflow	Required	Surface	Sub-surface	Balance
	0.00	22.07	23.60	0	0.00		0.00	8.75	23.60	0	0.00		0.00	5.44	23.60	0	0.00
				Overflows to:	Parking Lot					Overflows to:	Parking Lot					Overflows to:	Parking L
rainage Area	deck	1				Drainage Area	deck	1				Drainage Area	deck	1			
ea (Ha)	0.507	ICD Size ('L/s)=	41.05		Area (Ha)	0.507		(L/s)=	41.05		Area (Ha)	0.507	ICD Size	(L/s)=	41.05	
=	1.00	Reduced Restricted	Flow Q _r (L/s)=	20.527		C =	0.90	Reduced Restricted	Flow Q _r (L/s)=			C =	0.90	Reduced Restricted	Flow Q _r (L/s)=	20.527	
	•	100-Year Pond	ding				•	5-Year Pond	ing					2-Year Pond	ing		
T _c		Peak Flow			Volume	T _c		Peak Flow			Volume	T _c		Peak Flow			Volume
Variable	i _{100yr}	Q _p =2.78xCi 100yr A	Q,	Q _p -Q _r	100yr	Variable	i _{5yr}	Q p = 2.78xCi 5yr A	Q,	Q _p -Q _r	5yr	Variable	i _{2yr}	Q _p =2.78xCi _{2yr} A	Q,	$Q_p - Q_r$	2yr
(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m ³)	(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m ³)	(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m ³)
49	64.91	91.48	20.53	70.96	208.61	28	56.49	71.66	20.53	51.13	85.90	22	49.02	62.18	20.53	41.66	54.99
54	60.44	85.18	20.53	64.66	209.49	30	53.93	68.41	20.53	47.88	86.19	23	47.66	60.45	20.53	39.93	55.10
57	58.07	81.84	20.53	61.32	209.70	32	51.61	65.47	20.53	44.94	86.28	24	46.37	58.83	20.53	38.30	55.15
60 65	55.89 52.65	78.78 74.20	20.53 20.53	58.25 53.68	209.72 209.34	34 36	49.50 47.58	62.79 60.35	20.53 20.53	42.27 39.82	86.22 86.02	25 26	45.17 44.03	57.29 55.85	20.53 20.53	36.77 35.32	55.15 55.10
60	52.05	74.20	20.53	53.68	209.34	30	47.58	60.35	20.53	39.82	86.02	20	44.03	55.85	20.53	35.32	55.10
	Storage (m ³)				Storage (m ³)					_		S	torage (m ³)				
	Overflow	Required	Surface	Sub-surface	Balance		Overflow	Required	Surface	Sub-surface	Balance		Overflow	Required	Surface	Sub-surface	Balance
	0.00	209.70		210	0.00		0.00	86.28	0.00	210	0.00		0.00	55.15	0.00	210	0.00
rainage Area	LANDSCAPE					Drainage Area	LANDSCAPE]				Drainage Area	LANDSCAPE	1			
ea (Ha)	0.393	ICD Size (10.66		Area (Ha)	0.393	ICD Size		10.66		Area (Ha)	0.393	ICD Size		10.66	
=	0.36	Reduced Restricted	Flow Q _r (L/s)=	5.331		C =	0.30	Reduced Restricted	Flow Q _r (L/s)=	5.331		C =	0.30	Reduced Restricted	Flow Q _r (L/s)=	5.331	
		100-Year Pond	ding					5-Year Pond	ing					2-Year Pond	ing		
T _c	i _{100yr}	Peak Flow	Q,	$Q_p - Q_r$	Volume	T _c	i _{5yr}	Peak Flow	Q,	$Q_p - Q_r$	Volume	T _c	i _{2yr}	Peak Flow	Qr	$Q_p - Q_r$	Volume
Variable		Q _p =2.78xCi _{100yr} A			100yr	Variable		Q _p =2.78xCi _{5yr} A		-	5yr	Variable		Q _p =2.78xCi _{2yr} A			2yr
(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m ³)	(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m³)	(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m³)
62	54.54	21.45	5.33	16.12	59.97	31	52.74	17.29	5.33	11.96	22.24	24	46.37	15.20	5.33	9.87	14.21
67 70	51.46 49.79	20.24 19.58	5.33 5.33	14.91 14.25	59.94 59.86	33 35	50.53 48.52	16.56 15.90	5.33 5.33	11.23 10.57	22.24 22.20	25 26	45.17 44.03	14.80 14.43	5.33 5.33	9.47 9.10	14.21 14.20
70 73	49.79 48.23	19.58 18.97	5.33	14.25	59.86 59.74	35	48.52	15.90 15.30	5.33	10.57	22.20	26	44.03	14.43 14.08	5.33	9.10 8.75	14.20 14.17
15	45.87	18.04	5.33	12.71	59.48	39	44.98	14.74	5.33	9.97	22.13	28	42.95	13.74	5.33	8.41	14.17
78																	
78	40.01	St	orage (m ³)					Q	torage (m ³)					•	torage (m ³)		
78	Overflow	St Required	orage (m ³) Surface	Sub-surface	Balance		Overflow	S Required	torage (m ³) Surface	Sub-surface	Balance	-	Overflow	S Required	torage (m ³) Surface	Sub-surface	Balance

APPENDIX E

- C-900 Sediment & Erosion Plan
- MVCA email
- C-200 Grading Plan

___ ∎ ĻЩ Ē CITY

Demetrius Yannoulopoulos

From:	Doug Nuttall <dnuttall@mvc.on.ca></dnuttall@mvc.on.ca>
Sent:	Friday, June 22, 2012 9:10 AM
То:	Demetrius Yannoulopoulos
Cc:	sean.moore@ottawa.ca
Subject:	RE: Infiltration augmentation

Sorry about the delay;

MVC is satisfied with this approach. It is reasonable to expect that there will be sufficient infiltration from this facility to supplement the infiltration that will come from the sand beds and irrigation. It would be very interesting to monitor the water flowing into and out of such a facility, and I would ask the consultant, on behalf of the client, if MVC would be able to install monitoring in MH 35? Ideally, we should be monitoring flows in and out of the facility – thus it would be easier for us if the outlet was directed to CBMH 29, rather than directly to the pipe. There should be lots of grade to make that work.

Douglas Nuttall, P.Eng. Water Resources Engineer Mississippi Valley Conservation

From: Demetrius Yannoulopoulos Sent: Tuesday, June 19, 2012 10:03 AM To: 'Doug Nuttall' Subject:

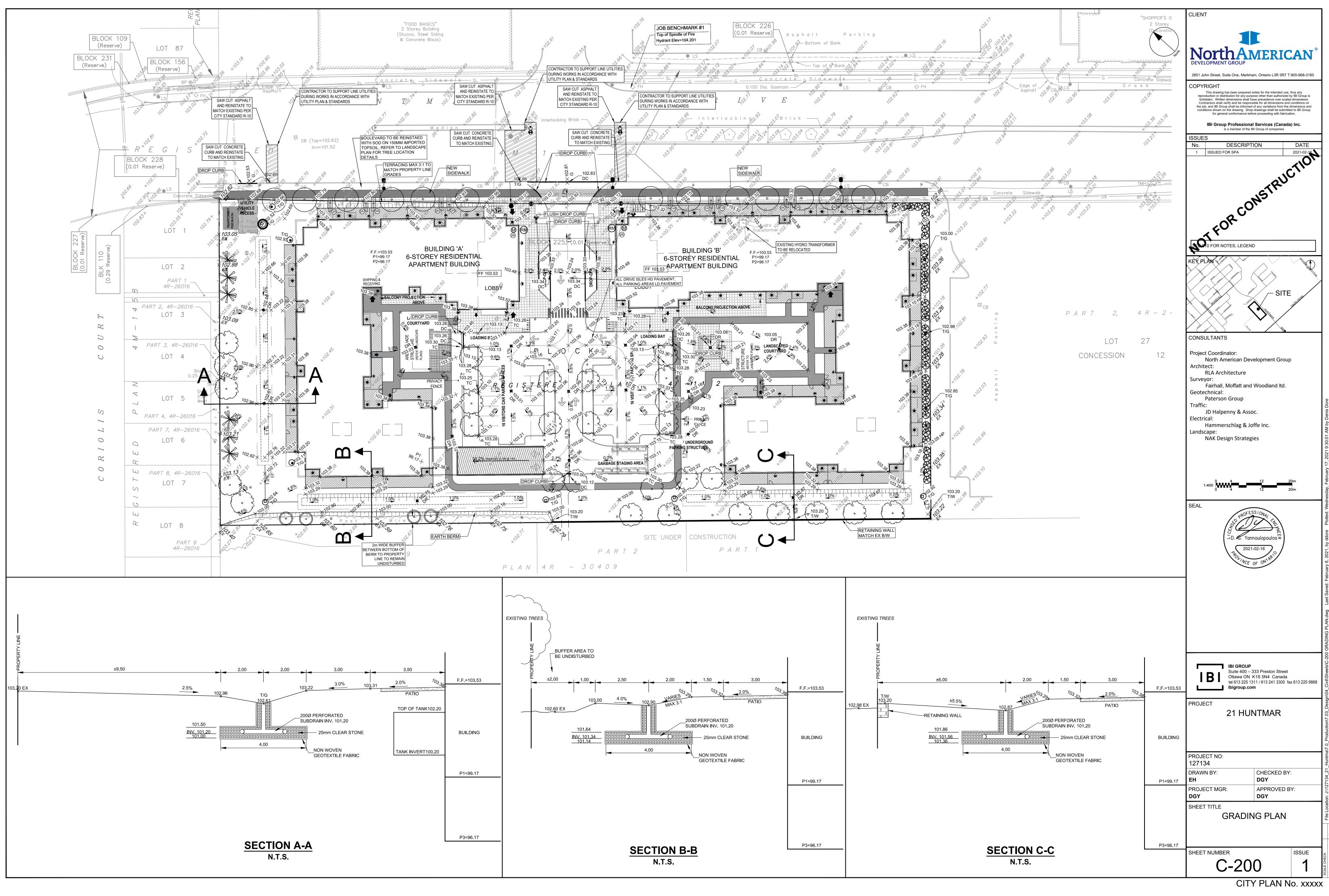
Hi Doug

As discussed yesterday, we propose to add a drywell in front of Box C, within in the parking lot area. The drywell will be a clear stone facility 4m wide by 40m long, and 0.73m clear depth from bottom of perforated pipe. The drywell has a total volume of 116.6m3, with 30% voids in the clear stone there is 35m3 of storage available. Rainfall from the 5992 m2 roof of Box C will supply the drywell, the roof of Box C has flow restrictors limiting the outflow to 25l/s. The dry well is set up such that if the volume of runoff from the roof exceeds the storage capacity of the dry well excess runoff is discharged to the storm sewer, see attached PDF illustrating the proposed drywell.

Rainfall data (see attached) indicates for the months of March up to and including November, 40 days of 5mm or more rain occurred, and for the same period 22 days of 10mm or more rain occurred. Assuming 80% of rainfall is collected by the roof drains the following volume of rainfall is collected and discharged into the drywell: 5mm, at 80% = 4mm, for 5992m2 roof = 23.96m3, for 40 events = 958.72m3 10mm, at 80% = 8mm (less 4mm from above) = 4mm for 5992m2 roof = 23.96m3, for 22 events = 527.29m3 These events provide a approximately of 1486m3 of rainfall for use by the drywell. For the 84,600m2 site, this will add approximately 17.56mm/yr of infiltration.

As we had previously discussed the sand well will provide approximately 20mm/yr of infiltration with natural rainfall, and the irrigation system will also supplement with an additional 20mm/yr. Combining these three the site will have approximately 57mm/yr of infiltration which falls within the 50 to 70mm/yr target for this area. As you are aware the City is asking us to provide CA acceptance of the infiltration approach. If you are in agreement with the above, it would be greatly appreciated if you could forward me an email indicating MVCA acceptance of the infiltration approach.

If you have any questions, please call or email. Thx Demetrius


Demetrius Yannoulopoulos P.Eng. Associate Director

IBI Group 400-333 Preston Street Ottawa ON K1S 5N4 Canada

tel 613 225 1311 ext 590 fax 613 225 9868 cell 613 447 0504 email <u>dyannoulopoulos@IBIGroup.com</u> web <u>www.ibigroup.com</u>

NOTE: This e-mail message and attachments may contain privileged and confidential information. If you have received this message in error, please immediately notify the sender and delete this e-mail message.

NOTE: Ce courriel peut contenir de l'information privilégiée et confidentielle. Si vous avez recu ce message par erreur, veuillez le mentionner immédiatement à l'expéditeur et effacer ce courriel.

 ScALE CHECK
 File Location: J:/127134_21_Huntma/7.0_Production/7.03_Design/04_Civil/Sheets/C-200 GRADING PLAN.dwg
 Last Saved: February 8, 2021, by ddore
 Plotted: Wednesday, February

 1 in
 10mm
 10mm
 Externary
 DO7-XX-XXXXXX
 Plotted: Wednesday, February

 CITY FILE
 No.
 DO7-XX-XXXXXX
 Plotted:
 Plotted:
 Plotted: