951 Gladstone Avenue and 145 Loretta Avenue North Transportation Impact Assessment

Step 1 Screening Report Step 2 Scoping Report Step 3 Forecasting Report Step 4 Strategy Report (Revision #6)

Prepared for:

TIP Gladstone Limited Partnership 200-485 Bank Street Ottawa, ON K2P 1Z2

Prepared by:

6 Plaza Court Ottawa, ON K2H 7W1

September 2024

PN: 2020-25

Table of Contents

1		Screer	ning	1
2			ig and Planned Conditions	
	2.1		posed Development	
	2.2	•	ing Conditions	
	2.2		Area Road Network	
	2.2	2.2 E	Existing Intersections	3
	2.2		Existing Driveways	
	2.2	2.4 (Cycling and Pedestrian Facilities	4
	2.2	2.5 E	xisting Transit	6
	2.2	2.6 E	Existing Area Traffic Management Measures	8
	2.2	2.7 E	Existing Peak Hour Travel Demand	8
	2.2	2.8 (Collision Analysis	9
	2.3	Plan	ned Conditions	13
	2.3	3.1 (Changes to the Area Transportation Network	13
	2.3	3.2 (Other Study Area Developments	13
3		Study	Area and Time Periods	14
	3.1	Stud	ly Area	14
	3.2	Time	e Periods	14
	3.3	Hori	zon Years	14
4		Exemp	otion Review	15
5		Develo	opment-Generated Travel Demand	15
	5.1	Мос	le Shares	15
	5.2	Trip	Generation	16
	5.3	Trip	Distribution	17
	5.4	Trip	Assignment	18
6		Backg	round Network Travel Demands	18
	6.1		sportation Network Plans	
	6.2	Back	ground Growth	19
	6.3		er Developments	
7		Dema	nd Rationalization	19
	7.1		lal Share Sensitivity	
8			opment Design	
	8.1		gn for Sustainable Modes	
	8.2		ulation and Access	
9			g	
	9.1		ing Supply	
10			lary Street Design	
11			s Intersections Design	
	11.1		tion and Design of Access	
	11.2		rsection Control	
	11.3		ess Intersection Design	
	11	3.1	Future Total Access Intersection Operations	21

11	3.2	Access Intersection MMLOS	. 23
11	3.3	Recommended Design Elements	. 23
12	Transpo	ortation Demand Management	. 23
12.1	Conte	xt for TDM	. 23
12.2	Need	and Opportunity	. 23
12.3	TDM	Program	. 23
13	Neighb	ourhood Traffic Management	. 23
14	Transit.		. 24
14.1	Route	Capacity	. 24
14.2		it Priority	
15	Networ	k Intersection Design	. 24
15.1	Netw	ork Intersection Control	. 24
15.2	Netw	ork Intersection Design	. 25
15	.2.1	Future Total Network Intersection Operations	
15	.2.2	Network Intersection MMLOS	. 26
15	.2.3	Recommended Design Elements	. 26
16	Summa	ry of Improvements Indicated and Modifications Options	. 26
17	Conclus	ion	. 30

List of Figures

Figure 1: Area Context Plan	1
Figure 2: Concept Plan	2
Figure 3: Study Area Pedestrian Facilities	4
Figure 4: Study Area Cycling Facilities	5
Figure 5: Existing Pedestrian Volumes	5
Figure 6: Existing Cycling Volumes	6
Figure 7: Existing Study Area Transit Service	7
Figure 8: Existing Study Area Transit Stops	7
Figure 9: Existing Traffic Counts	8
Figure 10: Study Area Collision Records – Representation of 2016-2020	10
Figure 11: Gladstone Station District CDP Vision & Concept Options Report – Preferred Option: Perspective	e Looking
North-East	13
Figure 12: New Site Generation Auto Volumes	18
Figure 13: Future Total Volumes	22

Table of Tables

Table 1: Intersection Count Date	8
Table 2: Existing Intersection Operations	9
Table 3: Study Area Collision Summary, 2016-2020	10
Table 4: Summary of Collision Locations, 2016-2020	11
Table 5: Gladstone Avenue and Bayswater Avenue Collision Summary	11
Table 6: Gladstone Avenue and Preston Street Collision Summary	11

Table 7: Somerset Street W between Breezehill Avenue and Preston Street Collision Summary	12
Table 8: Exemption Review	15
Table 9: TRANS Trip Generation Manual Recommended Mode Shares – Ottawa West	15
Table 10: Proposed Development Mode Shares	16
Table 11: Trip Generation Person Trip Rates	16
Table 12: Total Development Person Trip Generation	16
Table 13: Internal Capture Rates	
Table 14: Trip Generation by Mode	17
Table 15: OD Survey Distribution	17
Table 16: Boundary Street MMLOS Analysis	20
Table 17: Future Total Access Intersection Operations	22
Table 18: Trip Generation by Transit Mode	24
Table 19: Forecasted Site-Generated Transit Ridership	24
Table 20: Future Total Network Intersection Operations	25
Table 21: Study Area Intersection MMLOS Analysis	

List of Appendices

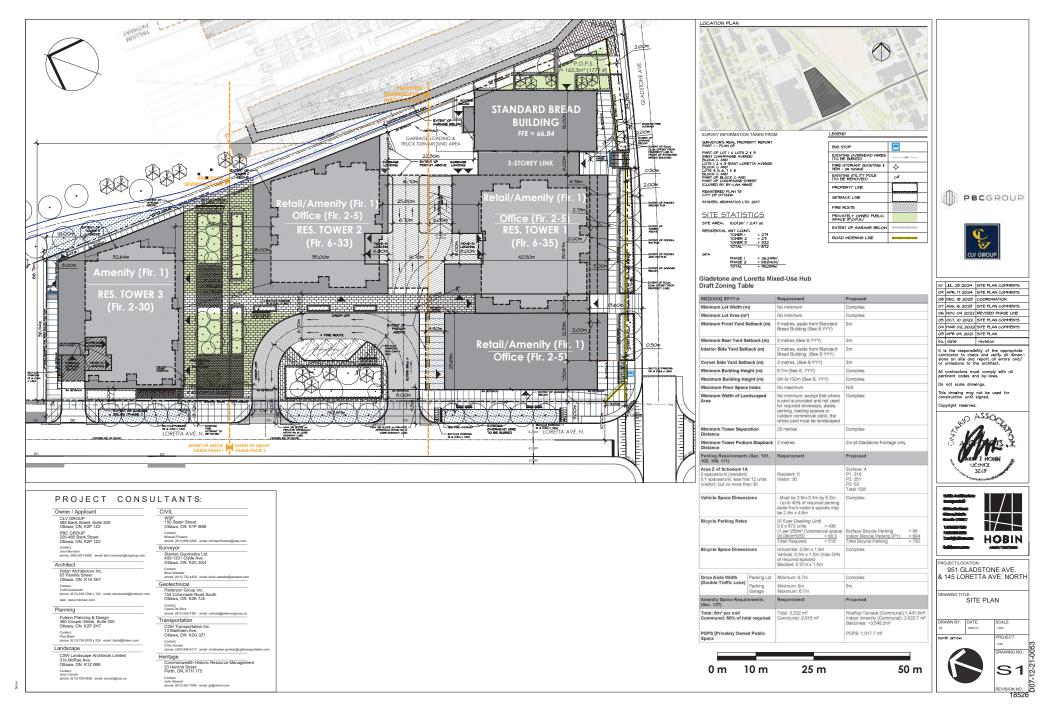
- Appendix A TIA Screening Form and Certification Form
- Appendix B Turning Movement Count Data
- Appendix C Synchro Intersection Worksheets Existing Conditions
- Appendix D Collision Data
- Appendix E TDM Checklist
- Appendix F Turning Templates
- Appendix G MMLOS Analysis
- Appendix H Synchro Intersection Worksheets Future Total Conditions
- Appendix I Signal Warrant OTM Justification 7

1 Screening

This study has been prepared according to the City of Ottawa's 2017 Transportation Impact Assessment (TIA) Guidelines, prior to the June 2023 updates. A TIA report was submitted and approved for the zoning bylaw amendment in 2019. This report provides an update on the existing conditions, forecasting and network impact component and the submission of the design review component. Accordingly, the Step 1 Screening Form has been revised and is included as Appendix A, along with the Certification Form for TIA Study PM. This TIA will support the site plan application.

2 Existing and Planned Conditions

2.1 Proposed Development


The proposed development is located at 951 Gladstone Avenue and 145 Loretta Avenue North and has undergone an Official Plan and Zoning amendment to rezone the site from general industry (IG) zoning to mixed-use centre (MC). The existing land uses have been closed and previously included a brewery, jujitsu club, cross-fit gym, glass blowing, art studio, beer and wine supply, bread bakery, and other assorted industrial uses. The proposed site plan application consists of approximately 872 residential units, 198,524 sq. ft of office space (including the existing Standard Bread building, live-work space) and 17,611 sq. ft of retail space. A total of 526 parking spaces will be provided (including visitor spaces), with four at ground level and the remaining 522 in the three levels of underground parking. A total of 762 bicycle parking spaces are proposed, including 68 surface parking and 694 underground parking spaces. Four existing accesses and street edge parking will be removed and replaced with a new two-way general access between Towers 1 and 2, with a one-way loop extending past Tower 2 to Loretta Avenue North and a two-way access for Tower 3. A loading/move-in areas will be provided adjacent to the underground parking ramps. The frontage along Loretta Avenue North would formalize the curb edge and remove the paved shoulder and open access along the building frontage. The anticipated full build-out and occupancy horizon is 2026. Figure 1 illustrates the Study Area Context. Figure 2 illustrates the proposed concept plan.

Source: http://maps.ottawa.ca/geoOttawa/ Accessed: March 21, 2021

Figure 2: Concept Plan

2.2 Existing Conditions

2.2.1 Area Road Network

Preston Street: Preston Street is a City of Ottawa arterial road with a two-lane urban cross-section, including parking lanes and auxiliary lanes at major intersections. The unposted speed limit is 50 km/h, and the Ottawa Official Plan reserves a 23.0 metre right-of-way.

Somerset Street West: Somerset Street West is a City of Ottawa arterial road with a two-lane cross-section, including sidewalks and on street parking. The unposted speed limit is 50 km/h, and the right-of-way is 20.0 metres. East of Breezehill Avenue, bike lanes are provided.

Gladstone Avenue: Gladstone Avenue is a City of Ottawa major collector road with a two-lane urban cross-section including sidewalks and a posted speed limit of 40 km/h. The current right-of-way is 20.0 metres, with additional width provided in proximity to the rail corridor.

Bayswater Avenue: Bayswater Avenue is a City of Ottawa collector road with a two-lane urban cross-section, including sidewalks and on-street parking. The posted speed limit is 30 km/h, and the right-of-way is 25.0 metres.

Loretta Avenue North/Laurel Street: Loretta Avenue N is a City of Ottawa local road with a two-lane urban crosssection including paved shoulders on the east side and a sidewalk on the west side. The posted speed is 40 km/h, and the right-of-way is 20.0 metres.

Breezehill Avenue: Breezehill Avenue is a City of Ottawa local road with a two-lane urban cross-section, including sidewalks, and parking on the east side of the road. The posted speed limit is 40 km/h, and the right-of-way is 20.0 metres.

2.2.2 Existing Intersections

The existing signalized area intersections within one kilometre of the site have been summarized below:

Gladstone Avenue & Bayswater Avenue	The intersection of Gladstone Avenue and Bayswater Avenue is a signalized intersection with shared all movement lanes on each approach. No turn restrictions were noted.
Gladstone Avenue & Preston Street	The intersection of Gladstone Avenue and Preston Street is a signalized intersection with auxiliary left-turn lanes on the northbound, westbound, and southbound approaches. Eastbound and southbound right turns on red are prohibited.
Somerset Street West & Breezehill Avenue	The intersection of Somerset Street West and Breezehill Avenue is a minor stop-controlled intersection with shared movement lanes on all approaches. Bike lanes along Somerset Street West start/end on the east side of the intersection. No turn restrictions were noted.
Gladstone Avenue & Loretta Avenue North	The intersection of Gladstone Avenue and Loretta Avenue N is a minor stop-controlled intersection with shared movement lanes on all approaches. No turn restrictions were noted.

Laurel Street & Breezehill Avenue	The intersection of Laurel Street and Breezehill Avenue is an all-way stop-controlled intersection with shared movement lanes on all approaches. No turn restrictions were noted.
2.2.3 Existing Driveways	

2.2.3 Existing Driveways

Along Gladstone Avenue, a driveway to the City of Ottawa yard (175 Loretta Avenue North) is located opposite the existing Standard Bread access adjacent to the Trillium Rail Corridor, and an access to 950 Gladstone Avenue within 5.0 metres of the Loretta Avenue North intersection. Between Loretta Avenue North and Breezehill Avenue, an access loop is located on the north side of Gladstone Avenue to the Canadian Bank Note Limited, and five driveways are located on the south side.

Along Loretta Avenue North, two accesses are provided on the west side of the road for the Canadian Bank Note Limited site, and a single access is located north of the proposed site for 131 Loretta Avenue North. The paved shoulder is used for perpendicular parking along Loretta Avenue North as well.

2.2.4 Cycling and Pedestrian Facilities

Figure 3 illustrates the pedestrian facilities in the study area and Figure 4 illustrates the cycling facilities. Figure 5 and Figure 6 illustrate the existing pedestrian and cycling volumes within the study area.

Sidewalks are provided along both sides of the roadways in the study area with the exception of the east side of Breezehill Avenue between Gladstone Avenue and Laurel Street, on both sides of Laurel Street, and the east side of Loretta Avenue North. The Trillium Pathway is a multi-use pathway along the east side of the Trillium Rail Corridor.

The Ottawa Cycling Plan (2013) consists of the Trillium Pathway as a cross-town bikeway, suggested biking routes along Gladstone Avenue, Bayswater Avenue and Somerset Street W, including bike lanes on the bridge over the Trillium Rail Corridor.

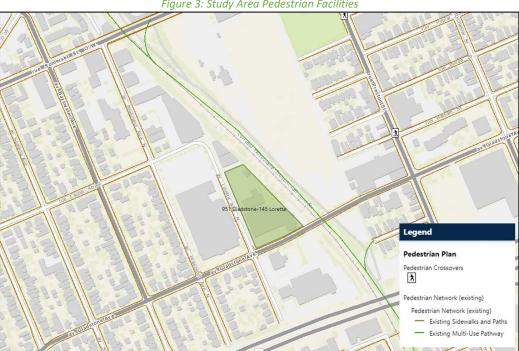
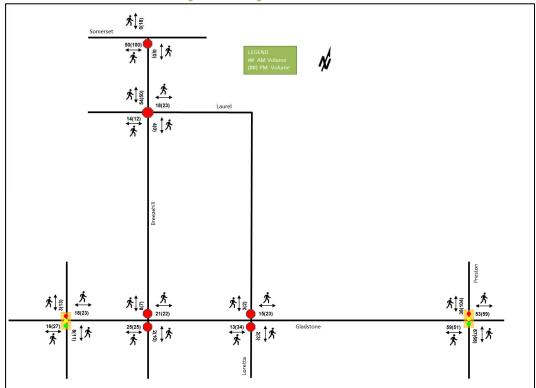
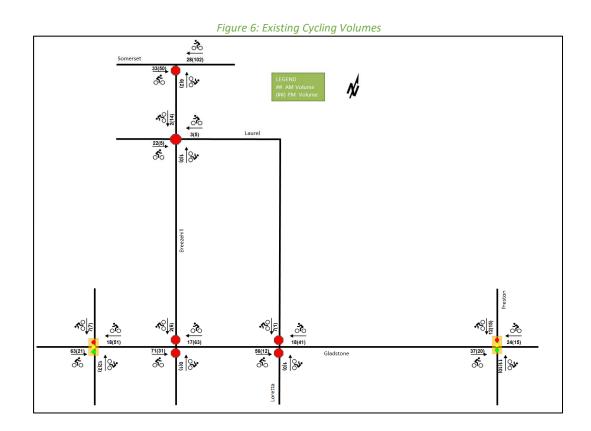


Figure 3: Study Area Pedestrian Facilities

Source: http://maps.ottawa.ca/geoOttawa/ Accessed: March 31, 2021




Figure 4: Study Area Cycling Facilities

Source: http://maps.ottawa.ca/geoOttawa/ Accessed: September 27, 2022

Figure 5: Existing Pedestrian Volumes

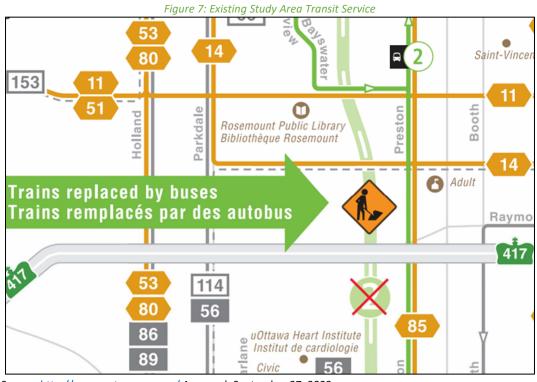

2.2.5 Existing Transit

Figure 7 illustrates the transit system map in the study area and Figure 8 illustrates nearby transit stops. All transit information is from September 27, 2022, and is included for general information purposes and context to the surrounding area.

Within the study area, the routes #11, #14 and #114 run along Gladstone Avenue, Somerset Street and Preston Street. The frequency of these routes within proximity of the proposed site based on September 27, 2022, service levels are:

- Route #11 every 10-15 minutes during the day and 20-30 minutes during the evening
- Route # 14 every 15-20 minutes during the day and 20-30 minutes during the evening
- Route #85 every 10-20 minutes during the day and 20-30 minutes during the evening
- Route # 114 two trips during the AM peak to Rideau and two trips during the PM peak to Caldwell/Merivale

Source: <u>http://www.octranspo.com/</u> Accessed: September 27, 2022

Figure 8: Existing Study Area Transit Stops

Source: http://www.octranspo.com/ Accessed: September 27, 2022

2.2.6 Existing Area Traffic Management Measures

There are no existing area traffic management measures within the Study Area.

2.2.7 Existing Peak Hour Travel Demand

Existing turning movement counts were acquired from the City of Ottawa and new traffic count surveys for the existing Study Area intersection. Table 1 summarizes the intersection count dates and sources.

Table 1: Intersection Count Date						
Intersection	Count Date	Source				
Gladstone Avenue and Bayswater Avenue	Wednesday July 27, 2016	City of Ottawa				
Gladstone Avenue and Breezehill Avenue	Wednesday, July 18, 2018	City of Ottawa				
Gladstone Avenue and Loretta Avenue	Tuesday, April 23, 2019	The Traffic Specialist				
Gladstone Avenue and Preston Street	Tuesday June 20,2017	City of Ottawa				
Laurel Street and Breezehill Avenue	Tuesday, April 23, 2019	The Traffic Specialist				
Somerset Street West and Breezehill Avenue	Thursday August 12, 2015	City of Ottawa				

Figure 9 illustrates the existing traffic counts and Table 2 summarizes the existing intersection operations. The level of service for signalized intersections is based on volume to capacity ratio (v/c) calculations for individual lane movements and HCM 2000 v/c calculations for the overall intersection, and average delay for unsignalized intersections. The volumes have been balanced through the network. Detailed turning movement count data is included in Appendix B and the Synchro worksheets are provided in Appendix C.

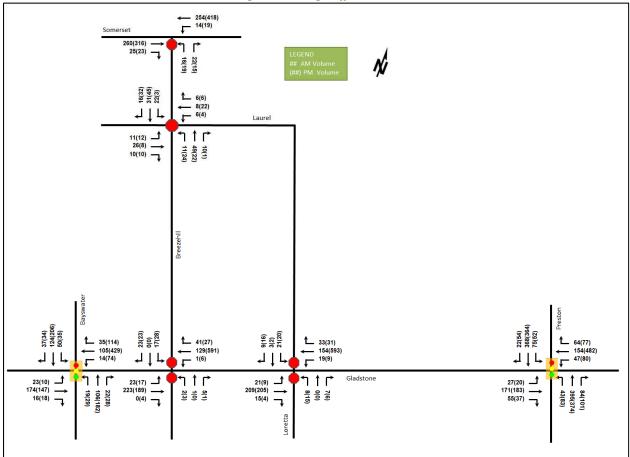


Figure 9: Existing Traffic Counts

Interception	lana	AM Peak Hour			PM Peak Hour				
Intersection	Lane	LOS	V/C	Delay	Q (95th)	LOS	V/C	Delay	Q (95th)
	EB	С	0.76	37.8	#57.3	А	0.50	20.0	47.8
	WBL	А	0.27	23.8	13.6	А	0.23	16.0	17.5
	WBT/R	А	0.59	25.9	43.1	E	0.91	40.2	#140.8
Gladstone Avenue	NBL	А	0.11	8.5	7.6	А	0.39	19.7	19.0
& Preston Street	NBT/R	А	0.55	12.2	68.1	С	0.76	24.4	85.2
Signalized	SBL	А	0.23	10.3	12.8	А	0.29	17.7	12.7
	SBT/R	А	0.43	10.7	52.0	В	0.67	21.8	73.0
	Overall	В	0.61	18.3	-	D	0.83	27.2	-
	EB	А	0.02	7.8	0.8	А	0.01	9.2	0.0
Gladstone Avenue	WB	А	0.02	7.8	0.8	А	0.01	7.9	0.0
& Loretta Avenue	NB	В	0.03	11.9	0.8	С	0.09	20.3	2.3
North	SB	В	0.08	12.9	1.5	С	0.15	20.3	3.8
Unsignalized	Overall	Α	-	1.8	-	Α	-	1.5	-
	EB	А	0.02	7.7	0.8	А	0.02	9.2	0.8
Gladstone Avenue & Breezehill	WB	А	0.00	7.8	0.0	А	0.01	7.8	0.0
Avenue	NB	В	0.02	11.2	0.0	С	0.02	19.6	0.8
Unsignalized	SB	В	0.07	11.3	1.5	С	0.20	20.9	5.3
Onsignalized	Overall	Α	-	1.5	-	Α	-	1.5	-
Gladstone Avenue	EB	А	0.31	11.3	27.8	А	0.23	8.5	19.8
& Bayswater	WB	А	0.23	8.9	18.4	D	0.85	25.5	#121.1
Avenue	NB	Α	0.28	13.8	22.9	А	0.52	20.7	41.7
Signalized	SB	Α	0.42	16.0	33.3	В	0.61	23.0	49.3
Signalizea	Overall	Α	0.35	12.7	-	С	0.75	21.8	-
Somerset Street W	EB	-	-	-	-	-	-	-	-
& Breezehill	WB	А	0.01	8.2	0.0	А	0.02	8.7	0.8
Avenue	NB	В	0.08	12.5	2.3	С	0.12	17.7	3.0
Unsignalized	Overall	Α	-	1.0	-	Α	-	1.0	-
	EB	Α	0.06	7.5	1.5	А	0.04	7.3	0.8
Laurel Street &	WB	А	0.03	7.3	0.8	А	0.04	7.4	0.8
Breezehill Avenue	NB	А	0.09	7.5	2.3	А	0.06	7.5	1.5
Unsignalized	SB	А	0.09	7.5	2.3	А	0.10	7.3	2.3
	Overall	Α	-	7.5	-	Α	-	7.4	-

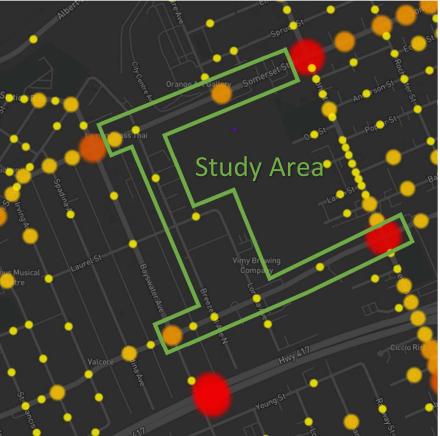
Table 2. Existing Intersection Operations

Queue is measured in metres Peak Hour Factor = 0.90

= volume for the 95th %ile cycle exceeds capacity

During both the AM and PM peak hours, the study area intersection operates well. No capacity issues are noted. The eastbound movements at the intersection of Gladstone Avenue and Preston Street may exhibit extended queues during AM peak. During the PM peak, the westbound queues at the Gladstone Avenue and Preston Street intersection may extend beyond the mid-block and to Rochester Street, and at the Gladstone Avenue and Bayswater Avenue intersection may extend beyond the Breezehill Avenue intersection.

2.2.8 Collision Analysis


Collision data have been acquired from the City of Ottawa open data website (data.ottawa.ca) for the recent five years for the surrounding study area road network. Table 3 summarizes the collision types and conditions in the study area, Figure 10 illustrates the intersections and segments analyzed, and Table 4 summarizes the total collisions for each of these locations. Collision data are included in Appendix D.

		Number	%
Total Co	ollisions	63	100%
	Fatality	0	0%
Classification	Non-Fatal Injury	25	40%
	Property Damage Only	38	60%
	Approaching	1	2%
	Angled	17	27%
	Rear end	12	19%
Initial Impact Tura	Sideswipe	6	10%
Initial Impact Type	Turning Movement	13	21%
	SMV Unattended	4	6%
	SMV Other	8	13%
	Other	2	3%
	Dry	38	60%
	Wet	11	17%
Road Surface Condition	Loose Snow	4	6%
Road Surface Condition	Slush	6	10%
	Packed Snow	1	2%
	lce	3	5%
Pedestrian Involved		7	11%
Cyclists Involved		7	11%

Table 3: Study Area Collision Summary, 2016-2020

Figure 10: Study Area Collision Records – Representation of 2016-2020

	Number	%
Intersections / Segments	63	100%
Gladstone Avenue @ Bayswater Avenue	14	22%
Gladstone Avenue @ Breezehill Avenue	3	5%
Gladstone Avenue @ Loretta Avenue	1	2%
Gladstone Avenue @ Preston Street	19	30%
Gladstone Avenue btwn Bayswater Avenue & Breezehill Avenue N	2	3%
Gladstone Avenue btwn Loretta Avenue N & Preston Street	3	5%
Gladstone Avenue btwn Breezehill Avenue & Loretta Avenue	1	2%
Somerset Street W btwn Bayswater Avenue & Breezehill Avenue N	7	11%
Somerset Street W btwn Breezehill Avenue N & Preston Street	11	17%
Breezehill Avenue N btwn Somerset Street W & Laurel Street	1	2%
Laurel Street btwn Breezehill Avenue N & Loretta Avenue N	1	2%

Table 4: Summary of Collision Locations, 2016	6-2020
---	--------

Within the study area, the intersection of Gladstone Avenue at Bayswater Avenue and Gladstone Avenue at Preston Street, and the segment of Somerset Street W between Breezehill Avenue and Preston Street are noted to have experienced higher collisions than other intersections. Table 5, Table 6 and Table 7 summarize the collision types and conditions for each of these locations.

		Number	%
Total Co	Total Collisions		100%
	Fatality	0	0%
Classification	Non-Fatal Injury	5	36%
	Property Damage Only	9	64%
	Angle	5	35%
Initial Impact Type	Rear end	4	29%
Initial Impact Type	Turning Movement	3	21%
	SMV Other	2	14%
	Dry	9	64%
Road Surface Condition	Wet	2	14%
Road Surface Condition	Loose Snow	2	14%
	Packed Snow	1	7%
Pedestrian Involved		2	14%
Cyclists Involved		0	0%

 Table 5: Gladstone Avenue and Bayswater Avenue Collision Summary

The Gladstone Avenue and Bayswater Avenue intersection had a total of 14 collisions during the 2016-2020 time period, with nine involving property damage only and the remaining five having non-fatal injuries. The collision types are most represented by angled (five collisions) and rear-end (four collisions) and the remaining split between turning movement and single motor vehicle. The angled collisions may be subject to weather conditions as two are loose snow and one was wet weather conditions. Weather conditions do not affect collisions at this location. No other patterns are noted within the collision data and no mitigation is recommended.

		Number	%
Total Collisions		19	100%
Classification	Fatality	0	0%
	Non-Fatal Injury	9	47%
	Property Damage Only	10	53%
Initial Impact Type	Angle	2	10%

Table 6: Gladstone Avenue and Preston Street Collision Summary

		Number	%
Total Co	Total Collisions		100%
	Rear end	6	32%
	Sideswipe	2	10%
	Turning Movement	4	21%
	SMV Other	5	26%
	Dry	9	47%
	Wet	4	21%
Road Surface Condition	Loose Snow	1	4%
	Slush	3	16%
	Ice	2	10%
Pedestrian Involved		4	21%
Cyclists Involved		2	10%

The Gladstone Avenue and Preston Street intersection had a total of 19 collisions during the 2016-2020 time period, with 10 involving property damage only and the remaining nine having non-fatal injuries. The collision types are most represented by rear-end (six collisions), SMV other (five collisions), and sideswipe, turning movement and angled with four or less each. Pedestrian and bicycles were involved in 31% of the collisions at the intersection and this aligns with the safety review completed by the City in 2020 for this intersection. Intersection improvements were recommended to include buffered/protected cycling approaches to the intersection, thermoplast bike crossing markings, truck aprons to reduce turn radii and reducing all approaches to single shared movement lanes. Weather conditions do not affect collisions at this location. No further review is required as part of this study.

		Number	%
Total	Collisions	11	100%
	Fatality	0	0%
Classification	Non-Fatal Injury	6	45%
	Property Damage Only	5	55%
	Angle	3	27%
Initial Impact Type	Sideswipe	3	27%
Initial Impact Type	Turning Movement	4	36%
	SMV Unattended	1	9%
Road Surface	Dry	9	79%
Condition	Wet	2	21%
Pedestrian Involved		0	0%
Cyclists Involved		5	55%

 Table 7: Somerset Street W between Breezehill Avenue and Preston Street Collision Summary

The Somerset Street W segment between Breezehill Avenue and Preston Street had a total of 11 collisions during the 2016-2020 time period, with five involving property damage only and six having non-fatal injuries. The collision types are evenly distributed with turning movements with four each, sideswipe and angled with three each and a single unattended vehicle. The collisions are assumed to be a result of the on-street parking and commercial/retail access located on the east side of the Trillium Line overpass, through a combination of parked cars, dooring, loading vehicles, infrequent access traffic and the Plant Recreation Centre access. This area also has shared road cycling facilities, where as the overpass has bike lanes west to Breezehill Avenue, and likely contributes to the cycling collision frequency of approximately one per year. Weather conditions do not affect collisions at this location. No further review is required as part of this study although the City should initiate a review for potential

mitigation along Somerset Street, similar to the intersection study done for Somerset Street and Bayswater Avenue.

2.3 Planned Conditions

2.3.1 Changes to the Area Transportation Network

The subject development is within the Gladstone Station District CDP (2014) and as such, is subject to the development and planning vision outlined with the CDP. The CDP visioning option for the transit-oriented development node, illustrated in Figure 11, has the following new transportation infrastructure elements:

- Trillium LRT station plaza identified as a node/landmark/gateway for the community (estimated 2023)
- a multi-use crossing is proposed over the rail line between Gladstone Avenue and Laurel Street W
- a new road connection across the rail line between Laurel Street W and Oak Street

Beyond the station plaza, these improvements are not identified in the City's affordable network and no time frame is available for their construction.

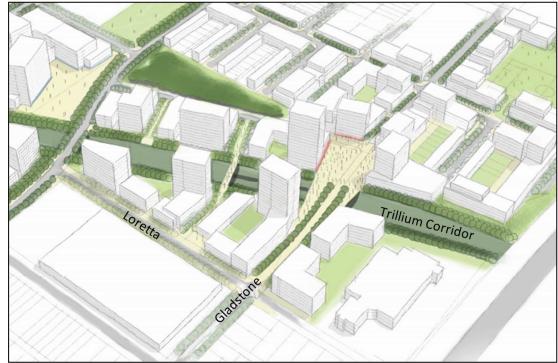


Figure 11: Gladstone Station District CDP Vision & Concept Options Report – Preferred Option: Perspective Looking North-East

The Loretta Avenue N reconstruction will be undertaken by the City in 2023 to replace aging infrastructure. As part of this reconstruction, raised crossings will be included on Gladstone Avenue for the north side and south side crossings at Loretta Avenue N.

2.3.2 Other Study Area Developments

The following developments were available on Ottawa's devapps service at the time of this study. Files added subsequently should include this site within their background conditions.

1040 and 1050 Somerset Street

The combined site would include a 32-storey residential building between the Trillium Rail corridor and Breezehill Avenue, and a 23-storey residential building on the west side of Breezehill Avenue. Both sites would include

ground floor commercial/retail and provide underground parking. Access to the 1040 site was proposed along Breezehill Avenue and a laneway access on Somerset Street West was proposed for the 1050 site. This application file has not advanced since 2013.

989 Somerset Street

The proposed development consists of a mixed-use building with ground floor retail and 127 residential units above. The transportation impact of this site will be primarily on Somerset Street West and Preston Street. In addition, this file has not advanced since 2014.

975 Gladstone Avenue

An addition to the existing Canada Bank Note building is proposed on the rear of the building, consisting of 947m² warehousing space and a 177m² secure interior loading bay. The planning rationale states that the addition supports the existing light industrial business and not generate any increase of vehicular trips.

139-143 Balsam Street and 20 Larch Street

The proposed demolish control applications was submitted to remove the existing buildings on site. The properties would remain in an interim condition until such time redevelopment occurs in accordance with the Gladstone Station CDP.

3 Study Area and Time Periods

3.1 Study Area

The study area will include the intersections of:

- Gladstone Avenue at:
 - o Bayswater Avenue
 - Breezehill Avenue
 - o Loretta Avenue
 - Preston Street
 - Breezehill Avenue at:
 - o Laurel Street
 - Somerset Street
- Loretta Avenue at:
 - Site Access #1
 - Site Access #2 (outbound)
 - o Site Access #3

The boundary roads will be Gladstone Avenue and Loretta Avenue. The TRANS screenline SL-29 was reviewed during the zoning bylaw amendment application and no issues were noted. No additional screenline analysis will be provided within this TIA.

3.2 Time Periods

As the proposed development is composed predominantly by residential and office, the AM and PM peak hours will be examined.

3.3 Horizon Years

The anticipated build-out year is 2026. As a result, the full build-out plus five years horizon year is 2031.

4 Exemption Review

Table 8 summarizes the exemptions for this TIA.

		Table 8: Exemption Review		
Module	Element	Explanation	Exempt/Required	
Design Review Compo	nent			
4.1 Development	4.1.2 Circulation and Access	Only required for site plans	Required	
Design	4.2.3 New Street Networks	Only required for plans of subdivision	Exempt	
	4.2.1 Parking Supply	Only required for site plans	Required	
4.2.2 Spillover Parking		Only required for site plans where parking supply is 15% below unconstrained demand	Exempt	
Network Impact Comp	onent			
4.5 Transportation Demand	All Elements	Not required for site plans expected to have fewer than 60 employees and/or	Required	
Management	4.6.1 Adjacent	students on location at any given time Only required when the development relies	Required	
4.6 Neighbourhood Traffic Management	Neighbourhoods	on local or collector streets for access and total volumes exceed ATM capacity thresholds	nequireu	
4.8 Network Concept		Only required when proposed development generates more than 200 person-trips during the peak hour in excess of equivalent volume permitted by established zoning	Exempt (site plan matches new zoning)	

5 Development-Generated Travel Demand

5.1 Mode Shares

Examining the mode shares recommended in the TRANS Trip Generation Manual (2020) for the subject district, derived from the most recent National Capital Region Origin-Destination survey (OD Survey), the existing average district mode shares by land use for Ottawa West have been summarized in Table 9.

Travel Mode	Multi-Unit	(High-Rise)	Commercia	l Generator	Employment Generator	
Travel Wode	AM	PM	AM	PM	AM and PM	
Auto Driver	28%	33%	55%	50%	54%	
Auto Passenger	11%	11%	11%	16%	8%	
Transit	41%	26%	11%	11%	28%	
Cycling	3%	7%	0%	5%	5%	
Walking	16%	23%	23%	18%	5%	
Total	100%	100%	100%	100%	100%	

Table 9: TRANS Trip Generation Manual Recommended Mode Shares – Ottawa West

Since the site is being within the TOD area, a higher transit mode is considered achievable at this location. A 24% shift to transit mode from the auto driver mode and six percent shift from the auto passenger mode is proposed for both residential and non-residential land uses. The modified mode share targets are proposed for the development and are summarized in Table 10.

		Table 10: Proposed	Development Mode	e Shares		
Travel Mode	Multi-Unit	(High-Rise)	Commercia	l Generator	Employment Generator	
Travel Wode	AM	PM	AM	РМ	AM and PM	
Auto Driver	10%	15%	37%	32%	36%	
Auto Passenger	5%	5%	5%	10%	2%	
Transit	65%	50%	35%	35%	52%	
Cycling	3%	7%	0%	5%	5%	
Walking	16%	23%	23%	18%	5%	
Total	100%	100%	100%	100%	100%	

Table 40 Dara and Douglanmant Mada Ch

5.2 Trip Generation

This TIA has been prepared using the vehicle and person trip rates for the residential dwellings using the TRANS Trip Generation Manual (2020) and the vehicle trip rates and derived person trip rates for commercial component from the ITE Trip Generation Manual 11th Edition (2021) using the City-prescribed conversion factor of 1.28. Table 11 summarizes the person trip rates for the proposed residential land uses for each peak period and the person trip rates for the non-residential land uses by peak hour.

Land Use	Land Use	Peak	Vehicle Trip	Person Trip	Note
Land Ose	Code	Period	Rate	Rates	Note
Multi-Unit High-Rise	221 & 222	AM	-	0.80	
	(TRANS)	PM	-	0.90	-
Land Use	Land Use	Peak	Vehicle Trip	Person Trip	Nata
Land Use	Code	Hour	Rate	Rates	Note
Consul Office	710	AM	1.52	1.95	Fitted Curry
General Office	710 (ITE)	AM PM	1.52 1.48	1.95 1.89	Fitted Curve
General Office Strip Retail Plaza (<40k)			-		Fitted Curve

Using the above person trip rates, the total person trip generation has been estimated. Table 12 summarizes the total person trip generation for the residential land uses and for the non-residential land uses.

	1	able 12: Total	Development P	erson Trip Genei	ation			
Land Use	Units		AM Peak Perio	od	P	M Peak Perio	d	
Land Use	Units	In	Out	Total	In	Out	Total	
Multi-Unit (High-Rise)	872	216	482	698	455	330	785	
Land Use	GFA	AM Peak Hour			PM Peak Hour			
Land Use	GFA	In	Out	Total	In	Out	Total	
General Office	198,524	341	46	387	64	311	375	
Strip Retail Plaza (<40k)	17,611	32	21	53	75	75	149	

Table 12: Total Development Person Trip Congration

Internal capture rates from the ITE Trip Generation Handbook 3rd Edition have been assigned to the development's retail component for mixed-use developments. The rates summarized in Table 13 represent the percentage of trips to/from the office and retail use based on the residential component.

Table 13: Internal Capture Rates				
Land Use	Α	М	PM	
	In	Out	In	Out
Residential to/from General Office	3%	1%	57%	2%
Residential to/from Shopping Centre	17%	14%	10%	26%

Using the above mode share targets for a TOD area, the internal capture, and the person trip rates, the person trips by mode have been projected. Trip generation by peak hour has been forecasted using the prescribed peak period conversion factors presented in the TRANS Trip Generation Manual (2020) for the residential component. Table 14 summarizes the residential trip generation and the non-residential trip generation by mode and peak hour.

			AM Peak H				M Peak H	lour	
1	Fravel Mode	Mode Share	In	Out	Total	Mode Share	In	Out	Total
	Auto Driver	10%	10	24	34	15%	29	23	52
e)	Auto Passenger	5%	5	12	17	5%	10	7	17
Multi-Unit (High-Rise)	Transit	65%	75	175	250	50%	104	81	185
gh- gh-	Cycling	3%	4	8	12	7%	15	11	26
ΣΞ	Walking	16%	20	46	65	23%	53	41	94
	Total	100%	114	265	378	100%	211	163	374
	Auto Driver	36%	119	17	136	36%	10	110	120
9	Auto Passenger	2%	7	1	8	2%	1	6	7
General Office	Transit	52%	172	24	196	52%	15	159	174
al	Cycling	5%	17	2	19	5%	1	15	16
ner	Walking	5%	17	2	19	5%	1	15	16
Ge	Internal Capture	varies	-10	0	-10	varies	-36	-6	-42
	Total	100%	332	46	378	100%	28	305	333
-	Auto Driver	37%	10	7	17	32%	21	18	39
laza	Auto Passenger	5%	1	1	2	10%	7	6	12
ii Pi	Transit	35%	9	6	15	35%	23	19	42
Retail (<40k)	Cycling	0%	0	0	0	5%	3	3	6
~ ~ ~	Walking	23%	6	4	10	18%	12	10	22
Strip Retail Plaza (<40k)	Internal Capture	varies	-5	-3	-8	varies	-8	-20	-28
0)	Total	100%	26	18	45	100%	66	56	121
	Auto Driver	-	139	48	187	-	60	151	211
	Auto Passenger	-	13	14	27	-	18	19	36
Total	Transit	-	256	205	461	-	142	259	401
D L	Cycling	-	21	10	31	-	19	29	48
	Walking	-	43	52	94	-	66	66	132
	Total	-	472	329	801	-	305	524	828

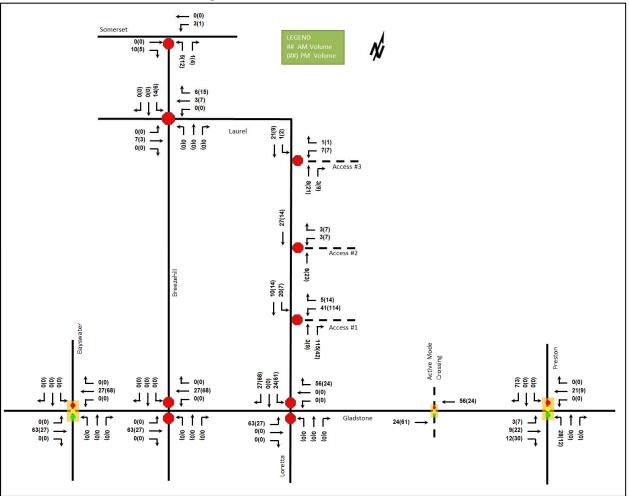
Table 14: Trip Generation by Mode

As shown above, a total of 187 AM and 211 PM new peak hour two-way vehicle trips are projected as a result of the proposed development.

5.3 Trip Distribution

To understand the travel patterns of the subject development the OD Survey has been reviewed to determine the travel patterns for the Ottawa West area. Table 15 below summarizes the distributions.

To/From	Ottawa West	Routing
North	5%	5
		via Somerset (2.5% east and west)
South	30%	via Gladstone (15% west), Preston (15% south)
Feet	200/	via Gladstone (15% east), Preston (5% south),
East	East 30%	Preston (5% north), Gladstone (5% west to Hwy 417)


To/From	Ottawa West	Routing			
West	35%	via Laurel (5%) west, Somerset (5% west), Gladstone (25% west)			
Total	100%				
Note: internal trips applied to wast direction					

Note: internal trips applied to west direction

5.4 Trip Assignment

Using the distribution outlined above, turning movement splits, and access to major transportation infrastructure, the trips generated by the site have been assigned to the study area road network. Figure 12 illustrates the new site generated volumes.

6 Background Network Travel Demands

6.1 Transportation Network Plans

The transportation network plans were discussed in Section 2.3.1. Beyond the opening of the Trillium LRT Corso Italia, no addition network changes have been included the preparation of this TIA.

6.2 Background Growth

The auto demand within the inner area of Ottawa has been documented as decreasing over the past 10 years, resulting in reduced demand on many roadways. As such, no growth has been applied to the study area intersections. This is consistent with the zoning bylaw amendment TIA.

6.3 Other Developments

No background developments were explicitly considered as part of this TIA as no active files were documented within the area at the time. The future background traffic volumes are anticipated to remain the same as the existing conditions and no improvements are recommended.

7 Demand Rationalization

7.1 Modal Share Sensitivity

No capacity constraints have been noted at the study area intersections. As this development is targeted for a transit focus and meets the planned context of this area, rationalization for adjusted demand is not required for this TIA.

8 Development Design

8.1 Design for Sustainable Modes

The proposed development is a mixed-use development, with four surface parking spaces and 522 underground parking spaces. It is anticipated that 68 surface parking and 694 underground parking spaces will be provided. A total of 22 surface bicycle parking spaces are provided on the west and south side of the retail/office building southwest of the parcel, eight spaces are located next to the surface parking, 12 spaces are located on the north side of Tower 2, eight spaces are located on the west side of Tower 2, two spaces are located on the northwest side of Tower 3, and 16 spaces are located on the west side of Tower 3, with the remainder located underground in the bike storage rooms. The access to the bicycle storage area on P1 is via the MUP on the west side of the Trillium LRT line.

As part of the site plan, the plaza located between Towers 2 and 3 will provide access to the MUP on the west side of the Trillium LRT line, and the area between the Standard Bread and Trillium LRT line will be reconstructed as a pedestrian plaza for active mode connectivity to Corso Italia.

The infrastructure TDM checklist is provided in Appendix E.

8.2 Circulation and Access

Vehicle access is provided via a two-way access on Loretta Avenue to the Towers 1 and 2 loading and underground garage and a one-way loop to the north that exits onto Loretta Avenue. The two-way access is 8.0m wide and the one-way loop is 6.7m wide. The one-way loop is designated as the fire route within the site. Additionally, an access is provided to Tower 3 for loading and underground garage from Loretta Avenue, and this access is 6.0m wide. The garbage trucks are anticipated to enter via Access 3 and exit by reversing. All proposed accesses meet the Private Approach Bylaw widths.

According to the Private Approach By-law, a maximum of one two-way private approach and two one-way private approaches or two two-way private approaches are permitted along the 150-metre frontage of Loretta Avenue. Although not meeting the by-law requirements, the additional one-way access (Access #2) is outbound only and will operate only for drop-off/pick-up and as a fire lane, and is expected to generate six auto trips during the AM

peak hour and 14 trips during the PM peak hour. The additional one-way access (Access #2) is considered to have a negligible impact to the roadway and is a low volume driveway that improves the site operations for a transit focused site. With respect to the existing condition, this will be a reduction from the four two-way accesses and uncontrolled perpendicular parking along the street edge. The proposed condition will result in a more structured operation in line with driver expectation along a local roadway. It is recommended that the access be approved by the City.

The pedestrian and active mode access is provided along Gladstone Avenue for the Standard Bread building, retail components, and through connection into the site. Along Loretta Avenue, the lobby accesses are all located on the one-way loop.

The garbage truck, move in truck and fire truck turning movements can be accommodated on site. The turning templates are provided in Appendix F.

9 Parking

9.1 Parking Supply

The site provides a total of 526 vehicle parking spaces, which include 436 spaces for residential use, 46 spaces for office and existing buildings, 14 spaces for retail, and 30 visitor parking spaces. There are four surface vehicle parking spaces and 522 underground vehicle parking spaces in total. According to the zoning by-law, the maximum vehicle parking for the site is 1,991 parking spaces, with no minimum required for a TOD zone. The minimum requirement for visitor parking on the site is 30 spaces. The proposed vehicle parking spaces meet the bylaw requirements of maximum vehicle parking and minimum visitor parking.

The site provides a total of 694 bicycle parking spaces, including 68 surface parking and 694 underground parking spaces. According to the zoning by-law, the minimum bicycle parking for the site is 436 residential bicycle parking spaces and 80 office/retail parking spaces. The proposed bicycle parking exceeds the bylaw requirements.

10 Boundary Street Design

Table 16 summarizes the MMLOS analysis for the boundary streets of Gladstone Avenue and Loretta Avenue N. The Gladstone Avenue existing and future conditions will be the same and are considered in one row and the Loretta Avenue N will be split between existing and future conditions. The boundary street analysis is based on the policy area of "within 600m of a rapid transit station". The MMLOS worksheets has been provided in Appendix G.

Tuble 10. Boundary Street MiniLOS Anarysis								
Segment	Pedestrian LOS		Bicycle LOS		Transit LOS		Truck LOS	
Segment	PLOS	Target	BLOS	Target	TLOS	Target	TrLOS	Target
Gladstone Avenue	С	А	D	В	D	D	-	-
Loretta Avenue North (existing)	F	Α	В	D	-	-	-	-
Loretta Avenue North (future)	А	Α	В	D	-	-	-	-

Table 16: Boundary Street MMLOS Analysis

Gladstone Avenue and the existing Loretta Avenue N segments do not meet the pedestrian MMLOS target. Gladstone Avenue would require reduced traffic and a boulevard of 0.5m or greater to meet the PLOS A target. The addition of a sidewalk and landscaping along the Loretta Avenue N frontage will meet the PLOS target.

Gladstone Avenue segment does not meet the bicycle MMLOS target. To meet the target, operating speed has to be reduced to less or equal to 40 km/h.

11 Access Intersections Design

11.1 Location and Design of Access

The vehicle access will be located along Loretta Avenue N on a two-way driveway to the underground ramp, and a one-way loop will extend north to exit onto Loretta Avenue N. A two-way driveway to the underground ramp for Tower 3 located at the north of the site. Access #1 is located approximately 55 metres north of Gladstone Avenue and will be 8.0 metres wide to accommodate all turning movements, and the Access #2 is located approximately 105 metres north of Gladstone Avenue and will be 6.7 metres wide, permitting left and right turn lanes. Access #3 is located approximately 4 metres south of the northern property limit and is 6.0 metres wide.

The access is located approximately 55 metres from Gladstone Avenue, and it is five metres less than the Private Approach Bylaw Section 25(m)(ii) requirement of 60 metres. It is noted that the TAC Geometric Design Guidelines minimum clearance for a private driveway on local road is 15 metres, therefore, the 57 metres offset is considered sufficient. It is recommended that that access location meets TAC standards and can be approved by the City.

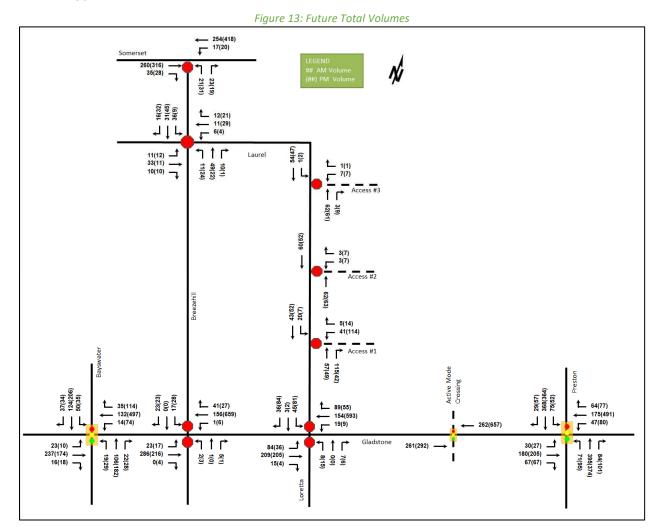
According to Section 25(m)(ii) of the Private Approach Bylaw, a minimum distance of 60 meters is required between a two-way private approach and any other private approach. Additionally, the TAC Geometric Design Guidelines recommend minimum 1.0 metre spacing between the ends of curb returns for adjacent low-volume driveways in residential areas along local roadways and 3.0 meters for commercial land uses. The distance between Access #1 and Access #2 is 28.5 metres, and the distance between Access #2 and Access #3 is 43.5 metres. Although the distances between accesses do not meet the Private Approach Bylaw requirements, given that Access #2 is an outbound-only, and both Access #2 and Access #3 are expected low volumes, the distances between accesses are beyond the TAC requirements and considered sufficient. It is recommended that that access location meets TAC standards and can be approved by the City.

Section 25(1)(p) of the Private Approach By-law requires a 3.0 metres off-set between the end of the curb return and the property line. The access is located appropriately within the site to have a 3.0-metre offset from the property line, although due to truck movements, the curb radii does end near the adjacent parcel access (131 Loretta Avenue). The offset distance between the radii and adjacent access is expected to be approximately 1.0metres once the Loretta Renewal is completed. It is noted that the adjacent access does not provide any separation from the property line in its current state. Should this parcel redevelop, a greater separation can be expected through revisions to the access location. As the access is at approximately the TAC minimums, it is recommended that the access can be approved by the City.

Access #1 throat length is approximately 7.4 metres to the turn of the one-way loop radius and 20.7 metres to the first parking stall. Access #2 throat length is approximately 7.3 metre from the property line to the end the turn of the one-way loop radius and 26.2 metres to the first parking space. The Access #3 provides approximately 11.2 metres from the property line to the loading door.

11.2 Intersection Control

All accesses will include stop sign controls and one-way signage will be provided at the Access #2 location.


11.3 Access Intersection Design

11.3.1 Future Total Access Intersection Operations

The future total intersection volumes are illustrated in Figure 13 and the access intersection operations are summarized below in Table 17. Synchro 11 has been used to model the unsignalized intersections and the HCM

2010 methodology was used for unsignalized intersection operations. The synchro worksheets have been provided in Appendix H.

Table 17: Future Total Access Intersection Operations

Interception	Lana	AM Peak Hour PM Pea				ak Hour			
Intersection	Lane	LOS	V/C	Delay	Q (95th)	LOS	V/C	Delay	Q (95th)
A	WBL/R	А	0.06	9.8	1.5	А	0.15	9.9	3.8
Access #1 & Loretta Avenue N	NBT/R	-	-	-	-	-	-	-	-
Unsignalized	SBL/T	А	0.01	7.6	0.0	А	0.01	7.4	0.0
Unsignunzeu	Overall	Α	-	2.1	-	Α	-	4.7	-
	WBL/R	А	0.01	8.9	0.0	А	0.02	8.9	0.0
Access #2 & Loretta Avenue N	NBT	-	-	-	-	-	-	-	-
	SBT	-	-	-	-	-	-	-	-
Unsignalized	Overall	Α	-	0.4	-	Α	-	1.0	-
Access #3 &	WBL/R	А	0.01	9.1	0.0	А	0.01	9.1	0.0
Loretta Avenue N Unsignalized	NBT/R	-	-	-	-	-	-	-	-
	SBL/T	А	0.00	7.3	0.0	А	0.00	7.4	0.0
Unsignunzeu	Overall	Α	-	0.6	-	Α	-	0.7	-

Notes: Saturation flow rate of 1800 veh/h/lane Queue is measured in metres Peak Hour Factor = 1.00 m = metered queue

= volume for the 95th %ile cycle exceeds capacity

The access intersection operations for the future total horizon operate well.

11.3.2 Access Intersection MMLOS

No signalized intersections are used to access the proposed site.

11.3.3 Recommended Design Elements

The recommended access design elements remain consistent with City of Ottawa standards for access design for depressed curbs through the access locations and depressed sidewalks crossing the accesses.

12 Transportation Demand Management

12.1 Context for TDM

The mode shares used within the TIA represent the planning level targets for a transit-oriented design (TOD) s the site is located within the Gladstone Station TOD design priority area.

For the residential land use, total bedrooms are estimated to be 1,209 and no age restrictions are noted. The retail and office land uses will be determined by lease options and are entirely dependant on tenants to determine the number and occupation of employees, and clients/customers travelling from the Ottawa-Gatineau area and within 2.0km of the site. It is noted that the existing tenants of the site may continue to stay and rent the provided retail/office space.

12.2 Need and Opportunity

The subject site has been assumed to rely predominantly on transit due to the proximity to the future Gladstone LRT Station. The development is planned to coincide with the Corso Italia construction. The convenience of the transit station should provide the opportunity to reach the forecast transit mode share, although incentives for new residential tenants exists within the TDM framework. Hard measures, such as reduced parking provisions, would limit the risk of higher auto mode shares being produced from the site.

12.3 TDM Program

The "suite of post occupancy TDM measures" has been summarized in the TDM checklists for both the residential and non-residential land uses. The checklist is provided in Appendix E.

The key TDM measures recommended include:

- Enhanced connectivity of pedestrians and cyclists to the adjacent network and adjacent Gladstone LRT station
- Engagement with local bike share programs (e.g., VeloGO) to include onsite space for bike rack/storage
- Posting of pedestrian, cycling, and transit information and maps at primary entrances/exits
- Unbundle parking cost from purchase or rental costs
- Inclusion of a 1-year Presto card for first time new residential tenants, along with a set time frame for this offer (e.g., 6-months) from the 'opening' of the building/tower

The City and the proponent may engage beyond the scope of the TIA process to confirm the elements and conditions required as part of the site plan approvals.

13 Neighbourhood Traffic Management

Gladstone Avenue is a major collector road and has a 600-vehicle threshold for two-way traffic volumes per the City's TIA Guidelines. The existing Gladstone Avenue volumes exceed this threshold in both segments to the east and west of Loretta Avenue N by at least 140 percent. The site traffic will increase the two-way vehicles by 57-85

to the east of the site and 64-95 vehicles to the west of the site. The overall increase is not considered significant within the context of the existing Gladstone Avenue traffic. If a reduction is required to meet the TIA thresholds, the City will be required to explore options to reduce Gladstone Avenue volumes by 250-300 vehicles during the peak hours.

Along Loretta Avenue N, the existing volumes are below the local road thresholds of 120 two-way vehicles. The segment of Loretta Avenue N from Gladstone Avenue to the outbound site access will exceed the local road threshold with the addition of the site traffic and the segment north of the site will remain below the threshold. As the segment between Gladstone Avenue and the site accesses will not have any accesses or adjacent land uses that would be negatively affected by the volumes and no mitigation is recommended. It is noted that the MMLOS analysis meets the area targets for Loretta Avenue N.

14 Transit

14.1 Route Capacity

In Section 5.1 the trip generation by mode was estimated, including an estimate of the number of transit trips that will be generated by the proposed development. Table 18 summarizes the transit trip generation.

			M Peak Ho	ur	PM Peak Hour		
Travel Mode	Mode Share	In	Out	Total	In	Out	Total
Transit	Varies	256	205	461	142	259	401

Table 18: Trip Generation by Transit Mode

The proposed development is anticipated to generate an additional 339 AM peak hour transit trips and 289 PM peak hour transit trips. From the trip distribution found in Section 5.3, these values can further be broken down, and Table 19 summarized the transit ridership by direction and equivalent bus loads.

	AM Peak Hour PM Peak Hour			Approximate Equivalent Peak		
Direction	In	Out	In	Out	Service Type	Hour/Direction Bus Loads
North	13	9	6	13	LRT	-
South	77	62	43	78	LRT	-
East	77	62	43	78	Bus, LRT	One and one-third of a standard bus
West	89	72	50	90	Bus, LRT	One and half of a standard bus

Table 19: Forecasted Site-Generated Transit Ridership

The City has indicated that the Trillium line can accommodate the additional ridership demand. If a maximum of 10% of the transit mode share utilizes the existing route #14, this may see the need for two additional single bus (55-person capacity) during the peak hours to accommodate the additional demand.

14.2 Transit Priority

No transit priority is required explicitly for this study.

15 Network Intersection Design

15.1 Network Intersection Control

No change to the existing signalized control is recommended for the network intersections. A signal warrant was completed for the Gladstone Avenue and Loretta Avenue N intersection and is provided in Appendix I.

15.2 Network Intersection Design

15.2.1 Future Total Network Intersection Operations

The future total network intersection operations are summarized below in Table 20. The level of service for signalized intersections is based on the v/c calculation for individual lane movements and HCM 2000 v/c calculations for the overall intersection, and HCM average delay for unsignalized intersections. The synchro worksheets have been provided in Appendix H.

				ak Hour		PM Peak Hour			
Intersection	Lane	LOS	V/C	Delay	Q (95th)	LOS	V/C	Delay	Q (95th)
-	EB	С	0.73	36.7	27.7	В	0.63	21.6	56.9
	WBL	А	0.23	21.8	11.7	А	0.23	16.2	16.2
-	WBT/R	А	0.56	24.6	40.0	D	0.88	37.4	#123.9
Gladstone Avenue	NBL	А	0.15	9.6	11.5	А	0.33	17.5	18.4
& Preston Street	NBT/R	А	0.51	11.9	64.9	В	0.64	19.7	72.9
Signalized	SBL	А	0.19	10.4	12.6	А	0.20	15.0	10.7
-	SBT/R	Α	0.41	11.0	52.1	А	0.57	18.9	64.5
-	Overall	Α	0.57	18.1	_	С	0.75	24.5	_
Gladstone Avenue	EB	А	0.18	3.6	17.9	A	0.21	3.6	20.3
& Active Mode	WB	А	0.19	2.1	15.3	А	0.46	3.1	m28.9
Crossing Signalized	Overall	Α	0.17	2.9	-	Α	0.43	3.3	-
	EB	А	0.07	8.0	1.5	А	0.04	9.2	0.8
Gladstone Avenue & Loretta Avenue	WB	А	0.01	7.8	0.0	А	0.01	7.8	0.0
North	NB	В	0.03	13.2	0.8	С	0.10	23.5	2.3
Unsignalized	SB	В	0.19	14.7	5.3	D	0.57	32.4	24.8
Onsignalized	Overall	Α	-	3.4	-	Α	-	5.8	-
Gladstone Avenue	EB	Α	0.02	7.8	0.8	А	0.02	9.2	0.8
& Breezehill	WB	Α	0.00	7.9	0.0	А	0.01	7.8	0.0
Avenue	NB	В	0.01	11.6	0.0	С	0.02	19.5	0.0
Unsignalized	SB	В	0.07	11.6	1.5	С	0.18	20.7	5.3
g	Overall	Α	-	1.3	-	Α	-	1.4	-
Gladstone Avenue	EB	A	0.36	12.0	32.8	А	0.24	8.7	20.7
& Bayswater	WB	Α	0.24	9.4	19.8	D	0.84	24.8	#120.0
Avenue	NB	A	0.25	13.2	20.6	A	0.47	19.6	37.4
Signalized	SB	A	0.37	15.1	29.6	A	0.55	21.3	43.5
	Overall	Α	0.36	12.4	-	С	0.73	20.9	-
Somerset Street W	EB	-	-	-	-	-	-	-	-
& Breezehill	WB NB	A	0.02	8.1 12.4	0.0	A C	0.02	8.6	0.8
Avenue Unsignalized	Overall	B	0.08	12.4 1.1	2.3	ر ۲	0.15	17.4 1.2	3.8
Unsignalizea	EB	A	0.06	7.5	- 1.5	A	- 0.04	7.3	- 0.8
Laurel Street &	WB	A	0.03	7.3	0.8	A	0.04	7.3	1.5
Breezehill Avenue	NB	A	0.03	7.5	2.3	A	0.06	7.5	1.5
Unsignalized	SB	A	0.00	7.6	2.3	A	0.00	7.4	2.3
Unsignalized	Overall	A	0.20	7.5		A	-	7.4	

Saturation flow rate of 1800 veh/h/laneNotes:Queue is measured in metres

Peak Hour Factor = 1.00

m = metered queue

= volume for the 95th %ile cycle exceeds capacity

The network intersection operations for the future total conditions operate similarly to the existing conditions. A slight increase in operations is noted due to the peak hour factor of 1.00 applied when compared to the existing conditions.

15.2.2 Network Intersection MMLOS

Table 21 summarizes the MMLOS analysis for the signalized network intersections and the existing and future conditions for are assumed to be the same and are considered in one row. The intersection analysis is based on the policy area of "within 600m of a rapid transit station", which has the same targets as "within 330m of a school". The MMLOS worksheets has been provided in Appendix G.

Intercetion	Pedestrian LOS		Bicycle LOS		Transit LOS		Truck LOS		Auto LOS	
Intersection	PLOS	Target	BLOS	Target	TLOS	Target	TrLOS	Target	ALOS	Target
Gladstone Avenue & Preston Street	E	А	D	В	Ε	D	E	D	С	E
Gladstone Avenue & Bayswater Avenue	D	А	В	В	D	D	-	-	С	E

Table 21: Study Area Intersection	MMLOS Analysis
-----------------------------------	-----------------------

The MMLOS targets will not be met for the pedestrian at both intersections and bicycle LOS, transit LOS, and truck LOS at the Gladstone Avenue and Preston Street intersection.

To meet the PLOS targets, the intersection of Gladstone Avenue and Bayswater Avenue could meet the area targets on the east and west sides of the intersection with a signage change to prohibit right-turns on red, and on the north and south sides of the intersection through protected left-turns on Gladstone Avenue or a combination of zebra hi-vis crossing markings and the prohibition of right-turns on red. These are considered City improvements and can be reviewed internally for potential implementation.

At the intersection of Gladstone Avenue and Preston Street, the PLOS cannot be met due to arterial road intersection limitations. It would require reconstruction of the intersection to reduce all pedestrian crossing distances to approximately 7.0 metres and include the additional implementation of on of the following items: protected left-turns, right-turn on red prohibition or raised pedestrian crossings. The bicycle LOS would require operating speed to be reduced to less than 40 km/h, the transit LOS would require delay to be reduced to below 30 seconds on all transit approach movements, and the truck LOS would require additional receiving lanes or corner radii to be increased to greater than 15 metres to meet the targets. No improvements are recommended for this intersection to meet the MMLOS targets.

15.2.3 Recommended Design Elements

No study area intersection design elements are proposed as part of this study.

16 Summary of Improvements Indicated and Modifications Options

The following summarizes the analysis and results presented in this TIA report:

Proposed Site and Screening

- The proposed site plan application consists of approximately 872 residential units, 198,524 sq. ft of office space (including the existing Standard Bread building, live-work space) and 17,611 sq. ft of retail space
- Four existing accesses and street edge parking will be removed and replaced with a new two-way general access between Towers 1 and 2, with a one-way loop extending past Tower 2 to Loretta Avenue North and a two-way access for Tower 3

- A pedestrian plaza is proposed at the corner of the development adjacent to Gladstone Avenue and the Trillium LRT corridor
- The development is proposed to be completed by 2026
- The trip generation and location triggers were met for the TIA Screening

Existing Conditions

- Preston Street and Somerset Street W are arterial roads, Gladstone Avenue is a major collector road, and Bayswater Avenue is a collector road in the study area
- Sidewalks are generally provided on both sides of the study area roadways, with the exception of limited facilities along Loretta Avenue, no sidewalks on Laurel Street to the east of Breezehill Avenue and on the east side of Breezehill Avenue between Laurel Street and Gladstone Avenue
- Bike lanes are provided on Somerset Street W over the Trillium LRT corridor and Gladstone Avenue, Bayswater Avenue and Somerset Street W are suggested bike routes
- The Trillium Pathway runs along the east side of the Trillium LRT corridor
- The existing transit route #14 travels along Gladstone Avenue, route #11 along Somerset Street W and #85 along Preston Street
- No operational issues are noted for the study area intersections
- The study area intersections with higher collisions were reviewed and no specific mitigation recommendations are noted for the Gladstone Avenue and Bayswater Avenue intersection or Gladstone Avenue and Preston Street intersection, but additional review may be required by the City for Somerset Street W between Breezehill Avenue and Preston Street for cycling collisions

Development Generated Travel Demand

- The proposed development is forecasted produce 677 two-way people trips during the AM peak hour and 829 two-way people trips during the PM peak hour
- Of the forecasted people trips, 142 two-way trips will be vehicle trips during the AM peak hour and 211 two-way trips will be vehicle trips during the PM peak hour
- Of the forecasted people trips, 398 two-way trips will be transit trips during the AM peak hour and 400 two-way trips will be transit trips during the PM peak hour
- Of the forecasted trips, 35% are anticipated to travel west, 30% to the east and south, and 5% to the north

Background Conditions

- Adjacent developments have either been on hold for extended periods of time with an unknown horizon, or are too small to have a noticeable impact on the adjacent road network
- Additionally, the background growth in the Ottawa core has been decreasing and a 0% growth was assumed for the area
- The future background intersection operations are the same as the existing intersections

Development Design

- Bicycle parking is provided on the east and south side of the retail/office building southeast of the parcel, on the south side of Tower 3, with the remainder located underground in the bike storage rooms
- Pedestrian connections will be made along Gladstone Avenue and Loretta Avenue N, and a connection to the Trillium LRT corridor MUP will be made between Towers 2 and 3 and at the Gladstone Avenue pedestrian plaza to the LRT station

- Despite not meeting the maximum number of accesses specified in the Private Approach By-law, the oneway access (Access #2) is projected to have a negligible impact, and the proposed accesses will result in a more structured operation in line with driver expectations along a local roadway compared to the existing condition. Therefore, it is recommended that the access be approved by the City
- The one-way loop is designated as the fire route within the site
- Vehicle access is provided via a two-way access on Loretta Avenue to the Towers 1 and 2 loading and underground garage and a one-way loop to the north that exits onto Loretta Avenue. Additionally, vehicle access is available via a two-way access on Loretta Avenue to Towers 3 for loading and underground garage and exit by reversing
- The garbage truck, move in truck and fire truck turning movements can be accommodated on site

Parking

- The site provides a total of 526 vehicle parking spaces, which include 436 spaces for residential use, 46 spaces for office and existing buildings, 14 spaces for retail, and 30 visitor parking spaces
- The site provides a total of 694 bicycle parking spaces, including 68 surface parking and 694 underground parking spaces
- The proposed parking spaces meet the bylaw requirements of maximum vehicle parking, minimum visitor parking, and minimum bicycle parking

Boundary Street Design

- The boundary streets will not meet pedestrian MMLOS targets along Gladstone Avenue and the existing Loretta Avenue N, due to auto volumes and lack of boulevard space along Gladstone Avenue and no sidewalk currently provided along the frontage of Loretta Avenue N
- The addition of the sidewalk and boulevard on Loretta Avenue N will meet the pedestrian targets once the site is developed
- Gladstone Avenue segment does not meet the bicycle MMLOS target, which requires reduction of operating speed to be less or equal to 40 km/h

Access Intersections Design

- The accesses will require depressed curbs through the access locations and depressed sidewalks crossing the accesses
- All accesses will include stop sign controls and one-way signage will be provided at the Access #2 location
- The access is located beyond the TAC requirements for a private driveway on a local road and it is recommended the City approve the location

TDM

- Supportive TDM measures to be included within the proposed development should include:
 - Enhanced connectivity of pedestrians and cyclists to the adjacent network and adjacent Gladstone LRT station
 - Engagement with local bike share programs (e.g., VeloGO) to include onsite space for bike rack/storage
 - Posting of pedestrian, cycling, and transit information and maps at primary entrances/exits
 - Unbundle parking cost from purchase or rental costs

- Inclusion of a 1-year Presto card for first time new residential tenants, along with a set time frame for this offer (e.g., 6-months) from the 'opening' of the building/tower
- The City and the proponent may engage beyond the scope of the TIA process to confirm the elements and conditions required as part of the site plan approvals

Neighbourhood Traffic Management

- Gladstone Avenue currently exceeds the City's TIA Guideline thresholds for a major collector road, and the City would be required to reduce the two-way traffic along Gladstone Avenue by 250-300 vehicles during the peak hours to achieve the prescribed thresholds
- Loretta Avenue N is currently under the City's TIA Guideline thresholds for a local road and is projected to remain under the threshold to the north upon the site build-out
- Between Gladstone Avenue and the outbound access of the one-way loop is forecasted to exceed the City's TIA Guideline thresholds for a local road, and due to limited impacts along the segment, no mitigation is recommended

Transit

- The City has confirmed the forecasted transit use/ridership can be accommodated on the Trillium LRT line
- Two additional single buses during the peak hours may be needed to accommodate the additional demand
- No specific transit priority measures were considered as part of this development

Network Intersection Design

- Generally, the network intersections will operate similarly to the existing conditions
- The MMLOS targets will not be met for the pedestrian LOS at the Gladstone Avenue intersections at Bayswater Avenue and at Preston Street, the transit LOS and truck LOS at Preston Street
- At the intersection of Gladstone Avenue and Bayswater Avenue, the prohibition of right-turns on read for all approaches and the addition of zebra hi-vis crossing markings on the north and south sides of the intersection would be required to meet the pedestrian LOS, and are considered the responsibility of the City to implement should they require
- The bicycle LOS would require operating speed to be reduced to less than 40 km/h at the intersection of Gladstone Avenue and Preston Street
- The transit LOS would require delay to be reduced to below 30 seconds on all transit approach movements, and the truck LOS would require additional receiving lanes or corner radii to be increased to greater than 15 metres at the intersection of Gladstone Avenue and Preston Street
- No mitigation is recommended for the Gladstone Avenue and Preston Street intersection as reconstruction would be required to meet the pedestrian LOS targets and the truck LOS targets directly conflict with achieving the pedestrian LOS targets

17 Conclusion

It is recommended that, from a transportation perspective, the proposed development applications proceed.

Prepared By:

hhh

Yu-Chu Chen Transportation Engineering-Intern

Andrew Harte, P.Eng. Senior Transportation Engineer

Appendix A

TIA Screening Form and PM Certification Form

City of Ottawa 2017 TIA Guidelines	Date:	08-Apr-21
Step 1 - Screening Form	Project Number:	2020-25
	Project Reference:	951 Gladstone & 145 Loretta

1.1 Description of Proposed Development	
Municipal Address	951 Gladstone Ave, 145 Loretta Ave N
Description of Location	Existing general indutrial or retail/commercial uses,
Description of Location	including the Standard Bread Building
Land Use Classification	Pending rezoning to Mixed-Use Centre
Development Size	Apartments: 843 units, Office: 198,165 sq. ft, Retail:
Development Size	17,611 sq.ft (includes Standard Bread Building)
Accesses	One-way loop and garbage/move-in access on Loretta
Phase of Development	Single Phase
Buildout Year	2026
TIA Requirement	Full TIA Required

1.2 Trip Generation Trigger	
Land Use Type	Townhomes or apartments
Development Size	843 Units
Trip Generation Trigger	Yes

1.3 Location Triggers	
Does the development propose a new driveway to a boundary street that is	
designated as part of the City's Transit Priority, Rapid Transit or Spine	No
Bicycle Networks?	
Is the development in a Design Priority Area (DPA) or Transit-oriented	Yes
Development (TOD) zone?	
Location Trigger	Yes

1.4. Safety Triggers	
Are posted speed limits on a boundary street 80 km/hr or greater?	No
Are there any horizontal/vertical curvatures on a boundary street limits	No
sight lines at a proposed driveway?	
Is the proposed driveway within the area of influence of an adjacent traffic	
signal or roundabout (i.e. within 300 m of intersection in rural conditions,	No
or within 150 m of intersection in urban/ suburban conditions)?	
Is the proposed driveway within auxiliary lanes of an intersection?	No
Does the proposed driveway make use of an existing median break that	No
serves an existing site?	
Is there is a documented history of traffic operations or safety concerns on	No
the boundary streets within 500 m of the development?	
Does the development include a drive-thru facility?	No
Safety Trigger	No

TIA Plan Reports

On 14 June 2017, the Council of the City of Ottawa adopted new Transportation Impact Assessment (TIA) Guidelines. In adopting the guidelines, Council established a requirement for those preparing and delivering transportation impact assessments and reports to sign a letter of certification.

Individuals submitting TIA reports will be responsible for all aspects of development-related transportation assessment and reporting, and undertaking such work, in accordance and compliance with the City of Ottawa's Official Plan, the Transportation Master Plan and the Transportation Impact Assessment (2017) Guidelines.

By submitting the attached TIA report (and any associated documents) and signing this document, the individual acknowledges that s/he meets the four criteria listed below.

CERTIFICATION

- 1. I have reviewed and have a sound understanding of the objectives, needs and requirements of the City of Ottawa's Official Plan, Transportation Master Plan and the Transportation Impact Assessment (2017) Guidelines;
- 2. I have a sound knowledge of industry standard practice with respect to the preparation of transportation impact assessment reports, including multi modal level of service review;
- 3. I have substantial experience (more than 5 years) in undertaking and delivering transportation impact studies (analysis, reporting and geometric design) with strong background knowledge in transportation planning, engineering or traffic operations; and
- 4. I am either a licensed¹ or registered² professional in good standing, whose field of expertise [check $\sqrt{}$ appropriate field(s)] is either transportation engineering $\sqrt{}$ or transportation planning \Box .

^{1,2} License of registration body that oversees the profession is required to have a code of conduct and ethics guidelines that will ensure appropriate conduct and representation for transportation planning and/or transportation engineering works.

City Of Ottawa Infrastructure Services and Community Sustainability Planning and Growth Management 110 Laurier Avenue West, 4th fl. Ottawa, ON K1P 1J1 Tel. : 613-580-2424 Fax: 613-560-6006 Ville d'Ottawa Services d'infrastructure et Viabilité des collectivités Urbanisme et Gestion de la croissance 110, avenue Laurier Ouest Ottawa (Ontario) K1P 1J1 Tél.: 613-580-2424 Télécopieur: 613-560-6006 Dated at <u>Ottawa</u> this <u>20</u> day of <u>September</u>, 2018. (City)

Name:

Andrew Harte

(Please Print)

Professional Title:

Professional Engineer

Signature of Individual certifier that s/he meets the above four criteria

Office Contact Information (Please Print)

Address: 6 Plaza Court

City / Postal Code: Ottawa / K2H 7W1

Telephone / Extension: (613) 697-3797

E-Mail Address: Andrew.Harte@CGHTransportation.com

Turning Movement Count Data

Turning Movement Count - 15 Minute Summary Report

BAYSWATER AVE @ GLADSTONE AVE

Survey Da	te:	۱	Wedn	esday	, July	27, 20	016		Т	otal	Obsei	ved I	U-Turr	าร					
								N	orthbour	nd: ()	So	uthbour	nd: 0					
								E	astboun	d: (estbour						
		В	AYS	NATE	R AV	E					GI	ADS	TONE	AVE					
	N	orthbou	und		So	uthbour	nd			Eas	stbound			We	stboun	d			
Time Period	LT	ST	RT	N TOT	LT	ST	RT	s тот	STR TOT	LT	ST	RT	Е ТОТ	LT	ST	RT	w тот	STR TOT	Grand Total
07:00 07:15	0	13	3	16	11	31	6	48	64	5	22	3	30	2	11	6	19	49	113
07:15 07:30	2	21	2	25	3	23	3	40 29	54	5	21	3	29	2	18	5	25	43 54	108
07:30 07:45	1	19	2	23	10	32	2	44	66	9	24	3	36	3	21	8	32	68	134
07:45 08:00	2	25	7	34	8	35	5	44	82	5	24	3	36	4	14	4	22	58	140
08:00 08:15	2	20	5	28	18	30	11	4 0 59	87	5	36	1	42	3	19	7	29	71	158
08:15 08:30	5	32	3	40	8	29	7	44	84	7	28	4	39	1	22	9	32	71	155
08:30 08:45	3	24	7	34	10	32	, 15	57	91	5	23	8	36	5	26	10	41	77	168
08:45 09:00	8	30	7	45	14	33	4	51	96	6	25	3	34	5	38	9	52	86	182
09:00 09:15	3	27	8	38	9	24	7	40	78	7	28	3	38	5	19	8	32	70	148
09:15 09:30	4	18	10	32	10	24	9	40	79	3	20	2	34	2	20	8	30	64	143
09:30 09:45	7	13	8	28	10	14	5	29	57	6	23	5	34	3	20	7	31	65	122
09:45 10:00	4	12	5	21	9	19	2	30	51	5	24	3	32	1	25	6	32	64	115
11:30 11:45	4	28	5	37	2	21	5	28	65	2	27	2	31	12	24	10	46	77	142
11:45 12:00	5	15	14	34	10	23	6	39	73	1	30	2	34	5	46	14	65	99	172
12:00 12:15	6	25	9	40	8	28	8	44	84	5	28	0	33	7	35	8	50	83	167
12:15 12:30	6	17	5	28	8	23	13	44	72	4	26	4	34	6	38	15	59	93	165
12:30 12:45	7	28	10	45	5	18	3	26	71	8	20	4	41	3	27	6	36	77	148
12:45 13:00	7	20	13	47	10	15	4	20	76	3	26	5	34	7	28	10	45	79	155
13:00 13:15	3	14	3	20	7	24	4	35	55	4	30	3	37	4	32	16	43 52	89	144
13:15 13:30	5	20	8	33	, 10	17	4	35 31	55 64	9	33	4	46	2	38	10	52 50	96	160
15:00 15:15	4	48	5	57	10	30	9	49	106	6	32	3	41	7	27	11	45	86	192
15:15 15:30	2		3	58	6		8	4 5		8	20	8		9	35	26	40 70	106	220
15:15 15:30	2	53 52	3 7	50 60	4	42 38	° 2	56 44	114 104	8 7	20 28	° 2	36 37	9 11	35 60	26 35	106	106	220
15:30 15:45	4	52 46	5	55	4	38 25	2	44 39	94	5	28 25	2	37 35	9	60 46	35 23	78	143	247
16:00 16:15	4 6	40 57	7	55 70	。 12	35	10	39 57	94 127	11	25 30	6	35 47	9 13	40 69	33	70 115	162	207
16:15 16:30	7	44	3	54	9	35 47	9	57 65	127	8	26	1	35	24	66	27	117	152	209
16:30 16:45	8	44	8	54 60	5	47 69	9	83	143	0 7	20	8	35 41	24 11	66	32	109	152	293
16:45 17:00	8	44 37	0 10	55	9	55	6	83 70	145	4	20 18	3	25	26	66	22	114	139	293 264
17:00 17:15	о 9	37 40	2	55 51	9 6	55 58	6 15	70 79	125	4 9	26	3 6	25 41	20 22	57	22	106	139	264
17:15 17:30	9 5	40 36	2 10	51	9	37	12	79 58	109	9	20	6	41 38	16	73	27	115	147	262
17:30 17:45	3	28	5	36	9 6	35	8	58 49	85	9 11	23 29	5	30 45	10	50	13	74	119	202
17:30 17:45	3 6	28 26	э 9	30 41	6 10	35 28	8 10	49 48	89	6	29 21	5 2	45 29	5	50 38	13	74 54	83	172
11.45 10.00	U	939	208	1295	274	998	227	1499	2794	195	844	121	1160	246	117		-		583

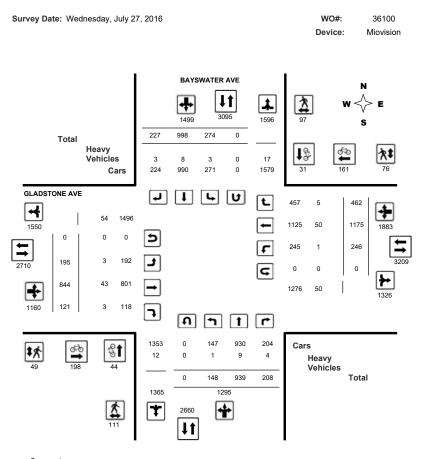
Transportation Services - Traffic Services

Turning Movement Count - Cyclist Volume Report

Work Order 36100

Count Dat	te: Wednesda	y, July 27, 2016				Start Time:	07:00
	B	AYSWATER AV	E	G	SLADSTONE A	/E	
Time Period	Northbound	Southbound	Street Total	Eastbound	Westbound	Street Total	Grand Total
07:00 08:00	6	2	8	29	14	43	51
00:00 09:00	12	7	19	63	18	81	100
09:00 10:00	5	0	5	19	15	34	39
11:30 12:30	2	0	2	11	14	25	27
12:30 13:30	2	0	2	10	0	10	12
15:00 16:00	3	4	7	10	9	19	26
16:00 17:00	3	7	10	21	51	72	82
17:00 18:00	11	11	22	35	40	75	97
Total	44	31	75	198	161	359	434

Comment:


Note: These volumes consists of bicycles only (no mopeds or motorcycles) and ARE NOT included in the Turning Movement Count Summary.

2018-Oct-04

Transportation Services - Traffic Services Turning Movement Count - Full Study Diagram

BAYSWATER AVE @ GLADSTONE AVE

Transportation Services - Traffic Services

W.O. 36100

Turning Movement Count - Heavy Vehicle Report

BAYSWATER AVE @ GLADSTONE AVE

			BAY	SWA	TER A	VE						GLA	DSTO	ONE A	VE					
	1	Northb	ound		5	Southb	ound	_			Eastb	ound		١	Nestbo	ound	_			
Time P	eriod	LT	ST	RT	N TOT	LT	ST	RT	S TOT	STR TOT	LT	ST	RT	Е ТОТ	LT	ST	RT	w тот	STR TOT	Grand Total
07:00	08:00	0	0	1	1	1	1	0	2	3	2	2	0	4	1	8	0	9	13	16
00:80	09:00	0	2	0	2	0	3	1	4	6	0	4	2	6	0	7	1	8	14	20
09:00	10:00	0	1	0	1	0	1	0	1	2	0	4	0	4	0	5	0	5	9	11
1:30	12:30	0	1	3	4	1	0	1	2	6	0	6	0	6	0	8	2	10	16	22
2:30	13:30	1	5	0	6	1	2	0	3	9	0	9	1	10	0	9	0	9	19	28
5:00	16:00	0	0	0	0	0	0	0	0	0	0	9	0	9	0	3	2	5	14	14
6:00	17:00	0	0	0	0	0	0	1	1	1	1	6	0	7	0	6	0	6	13	14
7:00	18:00	0	0	0	0	0	1	0	1	1	0	3	0	3	0	4	0	4	7	8
Sub T	otal	1	9	4	14	3	8	3	14	28	3	43	3	49	1	50	5	56	105	133
-Turns	s (Heav	y Veł	nicles)		0				0	0				0				0	0	0
Tot	al	1	9	4	0	3	8	3	14	28	3	43	3	49	1	50	5	56	105	133

Comments

2018-Oct-04

2018-Oct-04

Page 1 of 1

Work Order 36100

Turning Movement Count - Pedestrian Volume Report

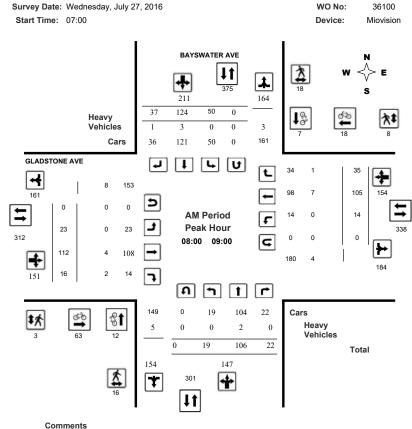
Count Dat	e: Wednesday,	July 27, 2016				Start Time:	07:00
Time Period	NB Approach (E or W Crossing)	SB Approach (E or W Crossing)	Total	EB Approach (N or S Crossing)	WB Approach (N or S Crossing)	Total	Grand Tota
07:00 07:15	1	1	2	0	1	1	3
07:15 07:30	3	0	3	1	0	1	4
07:30 07:45	4	5	9	2	1	3	12
07:45 08:00	3	3	6	1	6	7	13
07:00 08:00	11	9	20	4	8	12	32
08:00 08:15	2	5	7	1	3	4	11
08:15 08:30	5	6	11	1	4	5	16
08:30 08:45	8	2	10	0	0	0	10
08:45 09:00	1	5	6	1	1	2	8
08:00 09:00	16	18	34	3	8	11	45
09:00 09:15	3	5	8	2	0	2	10
09:15 09:30	2	2	4	1	2	3	7
09:30 09:45	4	3	7	2	2	4	11
09:45 10:00	2	1	3	0	3	3	6
09:00 10:00	11	11	22	5	7	12	34
11:30 11:45	1	4	5	0	1	1	6
11:45 12:00	3	0	3	0	4	4	7
12:00 12:15	3	0	3	0	9	9	12
12:15 12:30	4	1	5	2	1	3	8
11:30 12:30	11	5	16	2	15	17	33
12:30 12:45	3	0	3	2	1	3	6
12:45 13:00	5	1	6	0	0	0	6
13:00 13:15	4	1	5	0	2	2	7
13:15 13:30	5	2	7	1	3	4	11
12:30 13:30	17	4	21	3	6	9	30
15:00 15:15	0	1	1	0	1	1	2
15:15 15:30	3	1	4	4	2	6	10
15:30 15:45	4	2	6	1	2	3	9
15:45 16:00	2	2	4	0	3	3	7
15:00 16:00	9	6	15	5	8	13	28
16:00 16:15	6	9	15	3	4	7	22
16:15 16:30	2	1	3	4	0	4	7
16:30 16:45	8	7	15	5	5	10	25
16:45 17:00	11	6	17	1	2	3	20
6:00 17:00	27	23	50	13	11	24	74
7:00 17:15	3	8	11	3	1	4	15
17:15 17:30	1	7	8	3	7	10	18
17:30 17:45	2	3	5	2	5	7	12
17:45 18:00	3	3	6	6	0	6	12
17:00 18:00	9	21	30	14	13	27	57
Total	111	97	208	49	76	125	333

Transportation Services - Traffic Services

Work Order 36100

Turning Movement Count - Full Study Summary Report

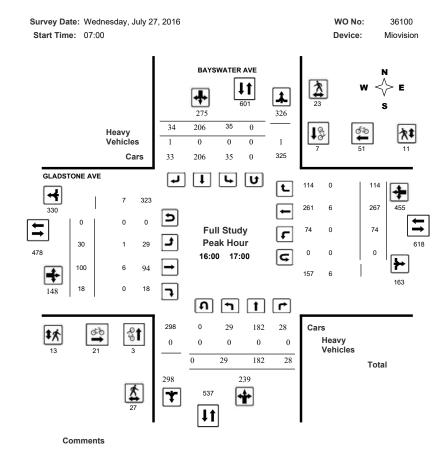
BAYSWATER AVE @ GLADSTONE AVE

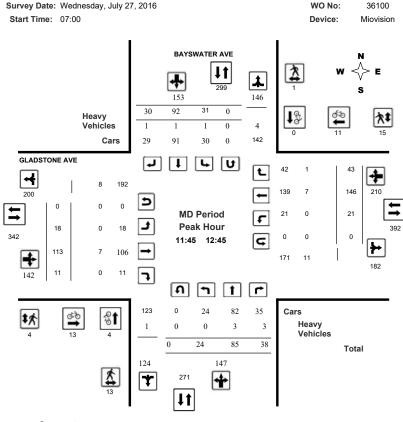

Survey Da	ate:	Wedne	esday,	July 2	7, 20	16			Total C	Obser	ved U-	Turns	5				AAD	T Fact	or
								Northbou	und: 0		South	hbound:	0				.90		
								Eastbou	nd: 0		West	tbound:	0						
								F	ull Stu	udy									
			BAY	SWAT	ER A	/E						GLA	DST	ONE A	VE				
	1	Northb	ound		5	Southb	ound		_		Eastbo	ound			Westb	ound			
Period	LT	ST	RT	NB TOT	LT	ST	RT	SB TOT	STR TOT	LT	ST	RT	EB TOT	LT	ST	RT	WB TOT	STR TOT	Grano Tota
07:00 08:00	5	78	14	97	32	121	16	169	266	24	95	12	131	11	64	23	98	229	495
08:00 09:00	19	106	22	147	50	124	37	211	358	23	112	16	151	14	105	35	154	305	663
09:00 10:00	18	70	31	119	38	85	23	146	265	21	104	13	138	11	85	29	125	263	528
11:30 12:30	21	85	33	139	28	95	32	155	294	12	111	9	132	30	143	47	220	352	646
12:30 13:30	22	89	34	145	32	74	15	121	266	24	118	16	158	16	125	42	183	341	607
15:00 16:00	11	199	20	230	28	135	25	188	418	26	105	18	149	36	168	95	299	448	866
16:00 17:00	29	182	28	239	35	206	34	275	514	30	100	18	148	74	267	114	455	603	1117
17:00 18:00	23	130	26	179	31	158	45	234	413	35	99	19	153	54	218	77	349	502	915
Sub Total	148	939	208	1295	274	998	227	1499	2794	195	844	121	1160	246	1175	462	1883	3043	5837
U Turns				0				0	0				0				0	0	0
Total	148	939	208	1295	274	998	227	1499	2794	195	844	121	1160	246	1175	462	1883	3043	5837
EQ 12Hr	206	1305	289	1800	381	1387	316	2084	3884	271	1173	168	1612	342	1633	642	2617	4229	8113
Note: These v	values a	re calcu	lated by	y multiply	ying the	totals b	y the a	opropriat	e expans	ion fac	tor.			1.39					
AVG 12Hr	185	1175	260	1620	343	1248	284	1875	3495	244	1056	151	1451	308	1470	578	2356	3807	7302
Note: These v	volumes	are calo	culated	by multi	plying tl	ne Equiv	alent 1	2 hr. tota	ils by the	AADT	factor.			.90					
AVG 24Hr	243	1539	341	2122	449	1636	372	2457	4579	320	1383	198	1901	403	1926	757	3086	4987	9566
Note: These v	volumes	are calo	culated	by multi	plying tl	ne Avera	ige Dai	ly 12 hr.	totals by	12 to 2	4 expans	sion fact	tor.	1.31					

Comments:

Note: U-Turns provided for approach totals. Refer to 'U-Turn' Report for specific breakdown.

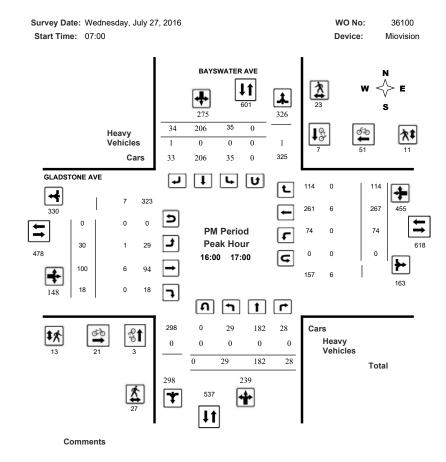
Comment:




Ottawa

Transportation Services - Traffic Services

Turning Movement Count - Peak Hour Diagram BAYSWATER AVE @ GLADSTONE AVE



Comments

Ottawa

Transportation Services - Traffic Services

Turning Movement Count - Peak Hour Diagram BAYSWATER AVE @ GLADSTONE AVE

2018-Oct-04

Work Order 36100

Turning Movement Count - 15 Min U-Turn Total Report

BAYSWATER AVE @ GLADSTONE AVE

Survey Date:	Wednesday, July 27, 2016

Time I	Period	Northbound U-Turn Total	Southbound U-Turn Total	Eastbound U-Turn Total	Westbound U-Turn Total	Total
07:00	07:15	0	0	0	0	0
07:15	07:30	0	0	0	0	0
07:30	07:45	0	0	0	0	0
07:45	08:00	0	0	0	0	0
08:00	08:15	0	0	0	0	0
08:15	08:30	0	0	0	0	0
08:30	08:45	0	0	0	0	0
08:45	09:00	0	0	0	0	0
09:00	09:15	0	0	0	0	0
09:15	09:30	0	0	0	0	0
09:30	09:45	0	0	0	0	0
09:45	10:00	0	0	0	0	0
11:30	11:45	0	0	0	0	0
11:45	12:00	0	0	0	0	0
12:00	12:15	0	0	0	0	0
12:15	12:30	0	0	0	0	0
12:30	12:45	0	0	0	0	0
12:45	13:00	0	0	0	0	0
13:00	13:15	0	0	0	0	0
13:15	13:30	0	0	0	0	0
15:00	15:15	0	0	0	0	0
15:15	15:30	0	0	0	0	0
15:30	15:45	0	0	0	0	0
15:45	16:00	0	0	0	0	0
16:00	16:15	0	0	0	0	0
16:15	16:30	0	0	0	0	0
16:30	16:45	0	0	0	0	0
16:45	17:00	0	0	0	0	0
17:00	17:15	0	0	0	0	0
17:15	17:30	0	0	0	0	0
17:30	17:45	0	0	0	0	0
17:45	18:00	0	0	0	0	0
	otal	0	0	0	0	0

Transportation Services - Traffic Services w.o. 37971

Turning Movement Count - 15 Minute Summary Report

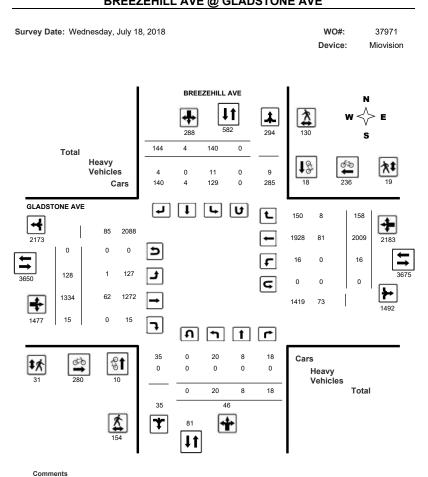
BREEZEHILL AVE @ GLADSTONE AVE

Sur	vey D	ate:	١	Nedne	esday,	July	18, 20	018						U-Turr						
										orthbour astboun				outhbour estboun						
				DEET	7	A.)/F	-		E	astboun	d: ()				
					ZEHILI						_		ADS	TONE						
		N	orthbou	Ind	N	So	uthbou	nd	s	STR	Eas	tbound		Е	We	stbound		w	STR	Grand
Time	Period	LT	ST	RT	тот	LT	ST	RT	тот	TOT	LT	ST	RT	тот	LT	ST	RT	тот	TOT	Total
07:00	07:15	0	0	0	0	2	0	1	3	3	3	32	0	35	0	18	2	20	55	58
)7:15	07:30	0	0	0	0	1	0	3	4	4	4	28	0	32	0	30	8	38	70	74
7:30	07:45	0	1	1	2	0	0	3	3	5	3	36	0	39	0	18	4	22	61	66
07:45	08:00	0	0	1	1	5	1	3	9	10	7	36	0	43	0	35	2	37	80	90
00:80	08:15	0	0	1	1	4	0	4	8	9	4	40	0	44	0	30	4	34	78	87
08:15	08:30	0	0	1	1	1	0	7	8	9	10	49	0	59	0	40	8	48	107	116
08:30	08:45	1	1	0	2	3	0	8	11	13	4	53	0	57	0	42	7	49	106	119
08:45	09:00	0	0	1	1	2	0	1	3	4	5	60	0	65	1	44	8	53	118	122
09:00	09:15	1	0	1	2	2	0	2	4	6	4	38	0	42	0	27	14	41	83	89
09:15	09:30	0	0	0	0	6	0	6	12	12	8	42	0	50	0	46	9	55	105	117
09:30	09:45	0	0	0	0	9	0	7	16	16	3	35	0	38	2	38	8	48	86	102
09:45	10:00	2	1	0	3	5	0	5	10	13	9	42	0	51	0	32	1	33	84	97
11:30	11:45	2	0	1	3	5	0	5	10	13	3	44	0	47	1	39	4	44	91	104
11:45	12:00	1	0	0	1	7	0	4	11	12	9	43	1	53	1	39	2	42	95	107
12:00	12:15	1	0	0	1	7	0	7	14	15	7	40	1	48	0	42	6	48	96	111
12:15	12:30	1	0	1	2	5	0	5	10	12	1	39	3	43	0	48	8	56	99	111
12:30	12:45	0	1	0	1	8	0	3	11	12	5	36	0	41	0	37	4	41	82	94
12:45	13:00	0	1	3	4	5	1	5	11	15	5	37	0	42	1	31	1	33	75	90
13:00	13:15	0	0	0	0	2	0	4	6	6	2	45	0	47	0	49	2	51	98	104
13:15	13:30	1	0	0	1	2	1	3	6	7	1	39	1	41	1	58	2	61	102	109
15:00	15:15	2	1	0	3	2	0	6	8	11	2	43	1	46	0	67	5	72	118	129
15:15	15:30	1	1	1	3	4	0	3	7	10	0	37	0	37	0	87	4	91	128	138
15:30	15:45	1	1	0	2	7	0	4	11	13	2	39	0	41	0	88	2	90	131	144
15:45	16:00	0	0	2	2	5	0	7	12	14	4	45	0	49	0	105	5	110	159	173
16:00	16:15	0	0	0	0	2	0	6	8	8	4	56	1	61	0	103	5	108	169	177
16:15	16:30	1	0	1	2	10	0	10	20	22	2	56	2	60	2	124	5	131	191	213
16:30	16:45	0	0	0	0	6	0	2	8	8	8	46	2	56	0	118	9	127	183	191
16:45	17:00	0	0	0	0	7	0	6	13	13	3	41	0	44	1	133	5	139	183	196
17:00	17:15	2	0	0	2	5	0	5	10	12	4	44	0	48	3	122	8	133	181	193
17:15	17:30	1	0	2	3	4	1	2	7	10	0	49	1	50	2	112	3	117	167	177
17:30	17:45	2	0	1	3	1	0	6	7	10	2	34	2	38	1	114	2	117	155	165
17:45	18:00	0	0	0	0	6	0	1	7	7	0	30	0	30	0	93	1	94	124	131
ΓΟΤΑΙ	.:	20	8	18	46	140	4	144	288	334	128	1334	15	1477	16	2009	158	3 218	3 3660	399
ote: l	J-Turns	are i	nclude	d in To	otals						Comme	nt.								

2018-Oct-04

Page 1 of 1

Turning Movement Count - Cyclist Volume Report


Count Dat	te: Wednesda	y, July 18, 2018	3			Start Time:	07:00
	В	REEZEHILL AV	E	G	LADSTONE A	VE.	
Time Period	Northbound	Southbound	Street Total	Eastbound	Westbound	Street Total	Grand Total
07:00 08:00	4	1	5	39	23	62	67
08:00 09:00	2	2	4	98	15	113	117
09:00 10:00	0	1	1	29	24	53	54
11:30 12:30	0	0	0	17	11	28	28
12:30 13:30	0	2	2	7	10	17	19
15:00 16:00	1	3	4	26	33	59	63
16:00 17:00	1	3	4	28	49	77	81
17:00 18:00	2	6	8	36	71	107	115
Total	10	18	28	280	236	516	544

Comment:

Transportation Services - Traffic Services Turning Movement Count - Full Study Diagram

BREEZEHILL AVE @ GLADSTONE AVE

Note: These volumes consists of bicycles only (no mopeds or motorcycles) and ARE NOT included in the Turning Movement Count Summary.

2018-Oct-04

Work Order

37971

W.O. 37971

Turning Movement Count - Heavy Vehicle Report

BREEZEHILL AVE @ GLADSTONE AVE

Survey Date: Wednesday, July 18, 2018

			BRE	EZE⊦	IILL A	VE						GLA	DST	ONE A	VE					
		Northb	ound			Southb	ound	_			Eastb	ound			Westbo	ound	_			
Time I	Period	LT	ST	RT	N TOT	LT	ST	RT	s тот	STR TOT	LT	ST	RT	Е ТОТ	LT	ST	RT	w тот	STR TOT	Gran Tota
07:00	08:00	0	0	0	0	0	0	1	1	1	0	11	0	11	0	12	1	13	24	25
00:80	09:00	0	0	0	0	0	0	0	0	0	0	11	0	11	0	11	0	11	22	22
9:00	10:00	0	0	0	0	1	0	0	1	1	0	10	0	10	0	12	1	13	23	24
1:30	12:30	0	0	0	0	4	0	2	6	6	1	9	0	10	0	10	3	13	23	29
2:30	13:30	0	0	0	0	1	0	1	2	2	0	7	0	7	0	9	0	9	16	18
5:00	16:00	0	0	0	0	1	0	0	1	1	0	5	0	5	0	6	0	6	11	12
6:00	17:00	0	0	0	0	3	0	0	3	3	0	7	0	7	0	15	3	18	25	28
7:00	18:00	0	0	0	0	1	0	0	1	1	0	2	0	2	0	6	0	6	8	9
Sub	Total	0	0	0	0	11	0	4	15	15	1	62	0	63	0	81	8	89	152	167
-Turn	s (Heav	/y Veh	nicles)		0				0	0				0				0	0	0
То	tal	0	0	0	0	11	0	4	15	15	1	62	0	63	0	81	8	89	152	167

Transportation Services - Traffic Services

Work Order 37971

Turning Movement Count - Pedestrian Volume Report

Count Dat	e: Wednesday,	July 18, 2018				Start Time:	07:00
Time Period	NB Approach (E or W Crossing)	SB Approach (E or W Crossing)	Total	EB Approach (N or S Crossing)	WB Approach (N or S Crossing)	Total	Grand Total
07:00 07:15	6	5	11	1	0	1	12
07:15 07:30	5	3	8	1	1	2	10
07:30 07:45	7	3	10	0	2	2	12
07:45 08:00	2	3	5	0	2	2	7
07:00 08:00	20	14	34	2	5	7	41
08:00 08:15	5	4	9	0	0	0	9
08:15 08:30	8	2	10	3	0	3	13
08:30 08:45	11	6	17	2	1	3	20
08:45 09:00	5	9	14	4	0	4	18
08:00 09:00	29	21	50	9	1	10	60
09:00 09:15	6	3	9	2	1	3	12
09:15 09:30	3	3	6	0	0	0	6
09:30 09:45	1	2	3	2	0	2	5
09:45 10:00	6	3	9	0	0	0	9
09:00 10:00	16	11	27	4	1	5	32
11:30 11:45	7	7	14	0	0	0	14
11:45 12:00	5	1	6	1	0	1	7
12:00 12:15	3	4	7	1	0	1	8
12:15 12:30	6	2	8	0	0	0	8
11:30 12:30	21	14	35	2	0	2	37
12:30 12:45	2	5	7	2	0	2	9
12:45 13:00	2	2	4	1	0	1	5
13:00 13:15	4	3	7	0	0	0	7
13:15 13:30	2	3	5	0	0	0	5
12:30 13:30	10	13	23	3	0	3	26
15:00 15:15	9	3	12	0	0	0	12
15:15 15:30	3	1	4	1	0	1	5
15:30 15:45	6	3	9	0	0	0	9
15:45 16:00	4	7	11	0	0	0	11
15:00 16:00	22	14	36	1	0	1	37
16:00 16:15	2	7	9	0	0	0	9
16:15 16:30	3	7	10	1	5	6	16
16:30 16:45	5	6	11	4	3	7	18
16:45 17:00	7	3	10	0	- 1	1	11
16:00 17:00	17	23	40	5	9	14	54
17:00 17:15	10	6	16	2	1	3	19
17:15 17:30	5	7	12	0	1	1	13
17:30 17:45	0	2	2	0	1	1	3
17:45 18:00	4	5	9	3	0	3	12
17:00 18:00	19	20	39	5	3	8	47
Total	154	130	284	31	19	50	334

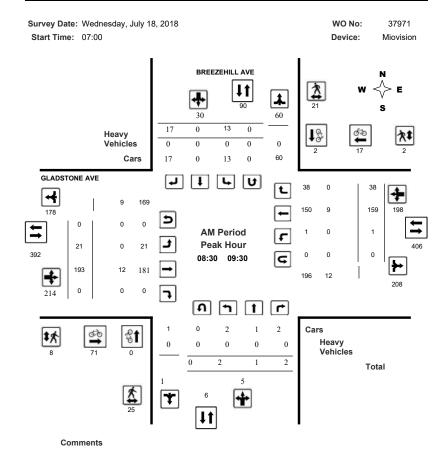
Comment:

Ottawa

Transportation Services - Traffic Services

Turning Movement Count - Full Study Summary Report

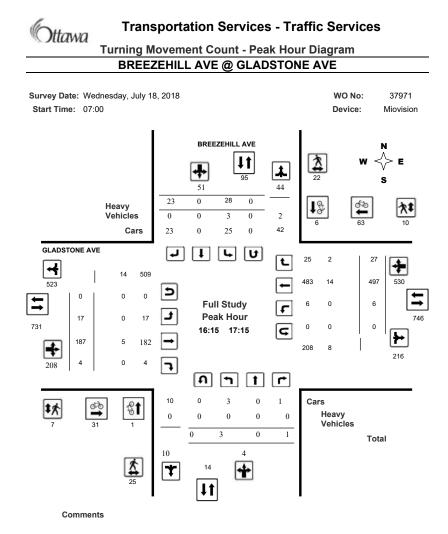
				E	BREE	ZEI	HILL	. AVE	E @ 0	GLA	DST	ONE	E AV	Έ					
Survey Da	te: V	Nedne	sday,	July 1	8, 201	8			Total C)bser	ved U-	Turns	;				AAD	T Fact	or
								Northbou	nd: ()		Sout	hbound:	0				.90		
								Eastbour	nd: 0		Wes	tbound:	0						
								F	ull Stu	ıdy									
			BRE	EZEH	ILL AV	E						GLA	DSTO	NE A	VE				
_	Ν	lorthbo	ound		S	outhb	ound		-		Eastbo	ound			Westb	ound			
Period	LT	ST	RT	NB TOT	LT	ST	RT	SB TOT	STR TOT	LT	ST	RT	EB TOT	LT	ST	RT	WB TOT	STR TOT	Grand Tota
07:00 08:00	0	1	2	3	8	1	10	19	22	17	132	0	149	0	101	16	117	266	288
08:00 09:00	1	1	3	5	10	0	20	30	35	23	202	0	225	1	156	27	184	409	444
09:00 10:00	3	1	1	5	22	0	20	42	47	24	157	0	181	2	143	32	177	358	405
11:30 12:30	5	0	2	7	24	0	21	45	52	20	166	5	191	2	168	20	190	381	433
12:30 13:30	1	2	3	6	17	2	15	34	40	13	157	1	171	2	175	9	186	357	397
15:00 16:00	4	3	3	10	18	0	20	38	48	8	164	1	173	0	347	16	363	536	584
16:00 17:00	1	0	1	2	25	0	24	49	51	17	199	5	221	3	478	24	505	726	777
17:00 18:00	5	0	3	8	16	1	14	31	39	6	157	3	166	6	441	14	461	627	666
Sub Total	20	8	18	46	140	4	144	288	334	128	1334	15	1477	16	2009	158	2183	3660	3994
U Turns				0				0	0				0				0	0	0
Total	20	8	18	46	140	4	144	288	334	128	1334	15	1477	16	2009	158	2183	3660	3994
EQ 12Hr	28	11	25	64	195	6	200	400	464	178	1854	21	2053	22	2793	220	3034	5087	5551
Note: These va	alues ar	re calcul	ated by	/ multiply	/ing the	totals b	y the ap	opropriate	e expansi	ion fac	tor.		1	.39					
AVG 12Hr	25	10	23	58	175	5	180	360	418	160	1669	19	1848	20	2513	198	2731	4579	4997
Note: These ve	olumes	are calc	ulated	by multip	olying th	e Equiv	alent 1	2 hr. tota	s by the	AADT	factor.			90					
AVG 24Hr	33	13	29	75	229	7	236	472	547	210	2186	25	2421	26	3292	259	3578	5999	6546
Note: These ve	olumes	are calc	ulated	by multip	olying th	e Avera	ige Dail	y 12 hr. t	otals by	12 to 2	4 expans	sion fact	tor. 1	.31					


Comments:

Note: U-Turns provided for approach totals. Refer to 'U-Turn' Report for specific breakdown.

Transportation Services - Traffic Services

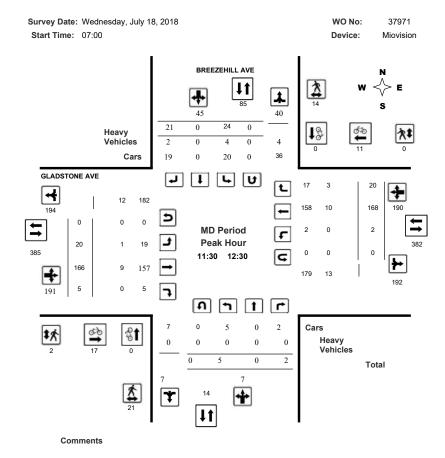
Turning Movement Count - Peak Hour Diagram BREEZEHILL AVE @ GLADSTONE AVE


2018-Oct-04

Work Order

37971

2018-Oct-04


Page 1 of 4

Cottawa Turnin


Transportation Services - Traffic Services

Turning Movement Count - Peak Hour Diagram BREEZEHILL AVE @ GLADSTONE AVE

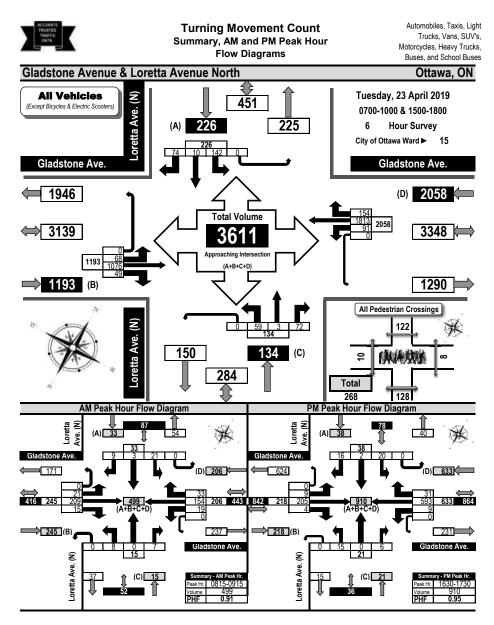
2018-Oct-04

Page 2 of 4

Survey Date: Wednesday, Start Time: 07:00	July 18, 201	18		WO No: Device: M	37971 Iiovision
Heavy Vehici C		0 3 0		N ₩ ↓ S 63	> E
GLADSTONE AVE 523 14 523 0 0 731 17 0 187 5 4 0		PM Period Peak Hour 16:15 17:15	 ↓ ↓	2 27 14 497 0 6 0 0 8	530 746 216
7 31		$ \begin{array}{c} \hline \begin{bmatrix} $	1 Cars 0 H 1 V	leavy ehicles Total	
Comments					

Comments

Ottawa


Transportation Services - Traffic Services

Work Order

Turning Movement Count - 15 Min U-Turn Total Report

BREEZEHILL AVE @ GLADSTONE AVE Survey Date: Wednesday, July 18, 2018 Northbound Southbound Eastbound Westbound **Time Period** Total U-Turn Total U-Turn Total U-Turn Total **U-Turn Total** 07:15 07:00 07:15 07:30 07:30 07:45 07:45 08:00 08:00 08:15 08:15 08:30 08:30 08:45 08:45 09:00 09:00 09:15 09:15 09:30 09:30 09:45 09:45 10:00 11:30 11:45 11:45 12:00 12:00 12:15 12:15 12:30 12:30 12:45 12:45 13:00 13:00 13:15 13:15 13:30 15:00 15:15 15:15 15:30 15:45 15:30 15:45 16:00 16:00 16:15 16:15 16:30 16:30 16:45 16:45 17:00 17:00 17:15 17:30 17:15 17:30 17:45 17:45 18:00 Total

Page 4 of 4

Turning Movement Count Summary Report **AADT and Expansion Factors**

Gladstone Avenue & Loretta Avenue North

Survey Date: Tuesday, 23 April 2019 Weather AM: Partly Cloudy +10°C Weather PM: Overcast +17°C

Ottawa, ON

Start Time: 0700 AADT Factor: 0.7 Survey Duration: 6 Hrs. Survey Hours: 0700-1000 & 1500-1800 Surveyor(s): Carmody Gladstone Ave. Gladstone Ave. Loretta Ave. (N) Loretta Ave. (N) Eastbound Westbound Northbound Southbound Time E/B Tot W/B Tot S/B Tot ST RT UT LT ST RT lut Street Total ST RTUT N/B Tot LT LT LT ST RT UT Period otal Tota 0700-080 142 166 112 158 324 351 22 24 20 2 0800-090 214 24 140 19/ 434 477 0900-100 168 195 160 21 442 406 1/ 1500-1600 174 708 189 358 393 582 62 64 1600-1700 188 199 525 547 746 11 22 37 58 826 20 80 1700-1800 190 204 518 555 807 759 11 16 48 Totals 68 1076 49 0 134 142 3611 0 1193 91 1813 154 3251 59 3 72 10 74 226 360 2058

Equivalent 12 & 24-hour Vehicle Volumes Including the Annual Average Daily Traffic (AADT) Factor Applicable to the Day and Month of the Turning Movement Count

Expansion factors are applied exclusively to standard weekday 8-hour turning movement counts conducted during the hours of 0700h - 1000h, 1130h - 1330h and 1500h - 1800h

	Ec	uivaler	ıt 12-ho	our veh	icle vo	umes.	These v	/olume	s are c	alculate	ed by m	ultiplyi	ng the l	8-hour	totals	by the 8	⇒ 12 e	expans	ion fac	tor of 1	.39		
Equ. 12 Hr	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
		A	an de lle	. 40 h -		ala wala		1			Invitation							ala ku	44.2.4.4	DT (tor of: 0	-	
AADT 12-hr	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/
			T The	se voli	imes a	re calcu	lated b	y multi	iplying	the ave	rage da	ily 12-l	hour ve	hicle v	olumes	s by the	12 =>2	4 expa	nsion t	actor o	f 1.31		
	24-H0																						

AADT and expansion factors provided by the City of Ottawa

AM Peak Ho	ur Fa	ctor <		0.9	91									High	est He	ourly	Vehicle	e Volu	ıme E	etwee	en 07	00h &	1000h
AM Peak Hr	LT	ST	RT	UT	TOT	LT	ST	RT	UT	тот	S.TOT	LT	ST	RT	UT	TOT	LT	ST	RT	UT	TOT	S.TOT	G.TOT
0815-0915	21	209	15	0	245	19	154	33	0	206	451	8	0	7	0	15	21	3	9	0	33	48	499

PM Peak Ho	ur Fa	ctor <		0.9	95								High	est H	ourly	Vehicl	e Volu	ıme E	letwee	en 1500)h & '	1800h
PM Peak Hr	LT	ST	RT	UT	TOT	LT	ST	RT	UT	TOT S.TOT	LT	ST	RT	UT	TOT	LT	ST	RT	UT	TOT S	.TOT	G.TOT
1630-1730	9	205	4	0	218	9	593	31	0	633 851	15	0	6	0	21	20	2	16	0	38	59	910

Comments:

No traffic issues noted during survey.

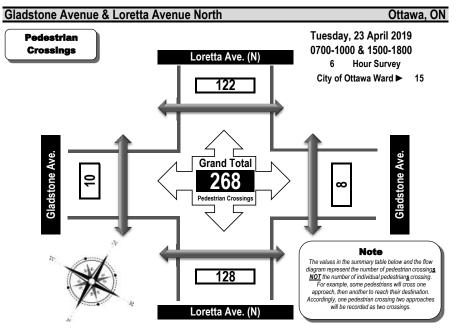
Notes:

1. Includes all vehicle types except bicycles, electric bicycles, and electric scooters. 2.When expansion and AADT factors are applied, the results will differ slightly due to rounding.

Printed on: 4/24/2019

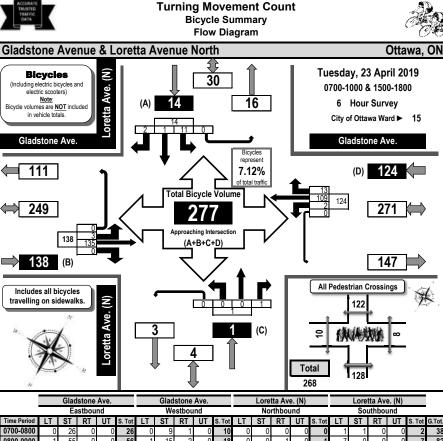
Summary: All Vehicles

Printed on: 4/24/2019


Prepared by: thetrafficspecialist@gmail.com

Flow Diagrams: AM PM Peak

Turning Movement Count Pedestrian Crossings Summary and Flow Diagram



Time Period	West Side Crossing	East Side Crossing	Street	South Side Crossing	North Side Crossing	Street	Grand
Time Period	Gladstone Ave.	Gladstone Ave.	Total	Loretta Ave. (N)	Loretta Ave. (N)	Total	Total
0700-0800	6	2	8	13	15	28	36
0800-0900	2	2	4	14	16	30	34
0900-1000	0	0	0	16	17	33	33
1500-1600	0	1	1	24	23	47	48
1600-1700	0	0	0	27	28	55	55
1700-1800	2	3	5	34	23	57	62
Totals	10	8	18	128	122	250	268

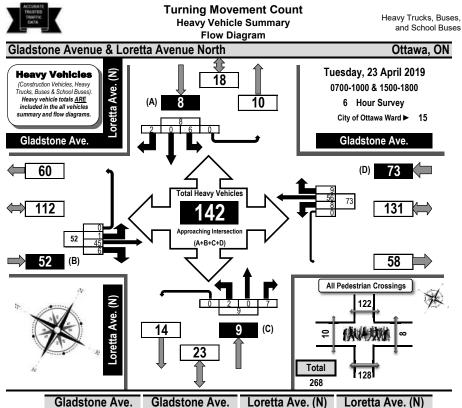
Comments:

No traffic issues noted during survey.

Time Period	LT	ST	RT	UT	S. Tot	LT	ST	RT	UT	S. Tot	LT	ST	RT	UT	S. Tot	LT	ST	RT	UT	S. Tot	G.Tot.
0700-0800	0	26	0	0	26	0	9	1	0	10	0	0	0	0	0	1	1	0	0	2	38
0800-0900	1	55	0	0	56	1	15	2	0	18	0	0	1	0	1	7	0	0	0	7	82
0900-1000	0	15	0	0	15	0	8	0	0	8	0	0	0	0	0	1	0	0	0	1	24
1500-1600	1	10	0	0	11	0	14	1	0	15	0	0	0	0	0	1	0	1	0	2	28
1600-1700	1	17	0	0	18	1	29	2	0	32	0	0	0	0	0	1	0	0	0	1	51
1700-1800	0	12	0	0	12	0	34	7	0	41	0	0	0	0	0	0	0	1	0	1	54
Totals	3	135	0	0	138	2	109	13	0	124	0	0	1	0	1	11	1	2	0	14	277

Comments:

No traffic issues noted during survey.


Printed on: 4/24/2019

Prepared by: thetrafficspecialist@gmail.com

Summary: Pedestrian Crossings

Printed on: 4/24/2019

Summary: Bicycles

		add					aud		• • • •				M / 1	10:1	••/			<u>, </u>			
		Eas	stbou	und			We	stbo	und			Nor	thbo	und			Sou	thbo	und		•
Time Period	LT	ST	RT	UT	S. Tot	LT	ST	RT	UT	S. Tot	LT	ST	RT	UT	S. Tot	LT	ST	RT	UT	S. Tot	G.Tot.
0700-0800	0	6	2	0	8	1	7	1	0	9	0	0	1	0	1	0	0	0	0	0	18
0800-0900	0	8	1	0	9	0	10	3	0	13	0	0	4	0	4	2	0	0	0	2	28
0900-1000	1	14	1	0	16	2	15	3	0	20	0	0	0	0	0	1	0	2	0	3	39
1500-1600	0	6	1	0	7	3	7	1	0	11	0	0	2	0	2	1	0	0	0	1	21
1600-1700	0	5	1	0	6	1	10	0	0	11	2	0	0	0	2	1	0	0	0	1	20
1700-1800	0	6	0	0	6	1	7	1	0	9	0	0	0	0	0	1	0	0	0	1	16
Totals	1	45	6	0	52	8	56	9	0	73	2	0	7	0	9	6	0	2	0	8	142

Comments:

No traffic issues noted during survey.

Transportation Services - Traffic Services W.O. 37132

Turning Movement Count - 15 Minute Summary Report

GLADSTONE AVE @ PRESTON ST

Sur	vey D	ate:		Tues	sday, J	une 2	20, 201	7		٦	otal (Obser	ved l	J-Turr	ıs					
										orthbour				uthbour						
									E	astboun	d: 1			estboun						
					STON								ADS	TONE						
		N	orthbo	und	N	So	uthbour	ıd	s	STR	Eas	tbound		Е	We	stbound		w	STR	Grand
Time I	Period	LT	ST	RT	тот	LT	ST	RT	тот	TOT	LT	ST	RT	тот	LT	ST	RT	тот	TOT	Total
07:00	07:15	12	66	16	94	12	82	2	96	190	4	25	10	39	10	27	19	56	95	285
07:15	07:30	3	78	19	100	14	104	3	121	221	2	24	8	34	10	23	12	45	79	300
07:30	07:45	13	85	15	113	10	70	4	84	197	3	29	13	45	8	25	12	45	90	287
)7:45	08:00	13	95	15	123	17	90	7	114	237	11	32	10	53	13	24	14	51	104	341
00:8	08:15	12	99	17	128	19	85	3	107	235	7	39	16	62	13	28	21	62	124	359
)8:15	08:30	14	100	27	141	18	91	10	119	260	9	56	19	84	17	40	17	74	158	418
08:30	08:45	9	120	21	150	20	91	3	114	264	5	52	14	71	6	49	14	69	140	404
)8:45	09:00	10	94	16	120	16	78	0	94	214	10	50	13	73	12	41	16	69	142	356
09:00	09:15	13	81	20	114	21	108	10	139	253	5	27	13	45	12	35	17	64	109	362
9:15	09:30	19	61	18	98	23	94	8	125	223	8	27	12	47	12	40	21	73	120	343
09:30	09:45	14	79	17	110	24	84	11	119	229	9	25	10	45	21	26	15	62	107	336
)9:45	10:00	9	73	19	101	16	75	3	94	195	4	30	11	45	11	38	17	66	111	306
11:30	11:45	8	70	20	98	20	63	4	87	185	5	24	14	43	29	22	20	71	114	299
11:45	12:00	9	67	23	99	15	89	13	117	216	2	38	12	52	27	53	27	107	159	375
12:00	12:15	13	79	21	113	11	84	11	106	219	5	35	13	53	30	41	28	99	152	371
2:15	12:30	11	89	25	125	16	67	5	88	213	5	35	14	54	22	44	29	95	149	362
12:30	12:45	7	53	19	79	18	97	11	126	205	6	33	13	52	21	34	27	82	134	339
2:45	13:00	16	63	27	106	21	77	4	102	208	8	32	19	59	22	44	25	91	150	358
13:00	13:15	13	89	19	121	14	83	9	106	227	9	40	19	68	24	44	21	89	157	384
13:15	13:30	12	73	22	107	29	75	8	112	219	10	35	11	56	21	41	21	83	139	358
15:00	15:15	15	84	29	128	8	95	8	111	239	5	39	26	70	24	62	27	113	183	422
15:15	15:30	21	118	24	163	17	97	9	123	286	6	40	11	57	16	64	15	95	152	438
15:30	15:45	12	98	16	126	13	73	10	96	222	5	39	14	58	26	92	20	138	196	418
15:45	16:00	13	108	16	137	12	86	6	104	241	10	48	14	72	19	96	15	130	202	443
16:00	16:15	27	118	19	164	15	83	9	107	271	4	40	8	52	22	97	14	133	185	456
16:15	16:30	14	104	22	140	12	95	10	117	257	3	48	11	62	18	107	20	145	207	464
16:30	16:45	14	83	22	128	9	86	8	103	231	6	40 51	13	70	24	107	20	145	215	446
16:45	17:00	22	92	23	137	15	103	10	128	265	3	43	6	52	18	114	20	156	208	440
17:00	17:15	22	92 95	23	146	16	80	21	120	263	8	43 45	8	52 61	20	117	24 13	150	200	473
7:15	17:30	12	95 79	27	146	7	85	21	117	263	0 1	40	9	50	20	100	20	150	211 194	474
	17:30	12	79 86							215	8		9 8	50 64	24 26		20 25		200	409
17:30				31	130	15	71	7	93			48		•••		85 79		136		
7:45	18:00	13	84	12	109	6	94	11	111	220	8	45	12	65	27	78	20	125	190	410
OTAL		432	2763	668	3863	499	2735	246	3480	7343	194	1214	404	1813	605	1832	62	6 306	63 4876	122

2018-Oct-04

Page 1 of 1

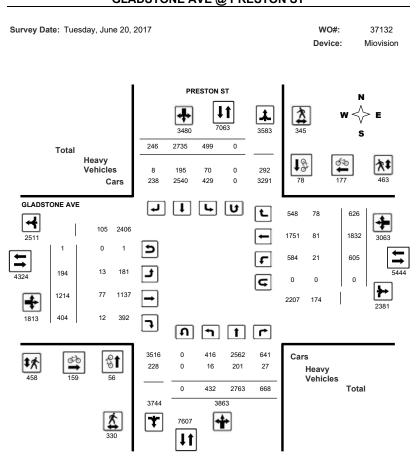
Printed on: 4/24/2019

Prepared by: thetrafficspecialist@gmail.com

Summary: Heavy Vehicles

Turning Movement Count - Cyclist Volume Report

Count Dat	te: Tuesday, J	lune 20, 2017				Start Time:	07:00
		PRESTON ST		G	LADSTONE A	/E	
Time Period	Northbound	Southbound	Street Total	Eastbound	Westbound	Street Total	Grand Total
07:00 08:00	0	8	8	19	14	33	41
08:00 09:00	10	14	24	47	25	72	96
09:00 10:00	7	8	15	15	21	36	51
11:30 12:30	5	9	14	10	8	18	32
12:30 13:30	8	10	18	4	14	18	36
15:00 16:00	8	8	16	17	15	32	48
16:00 17:00	11	13	24	20	42	62	86
17:00 18:00	7	8	15	27	38	65	80
Total	56	78	134	159	177	336	470


Comment:

Transportation Services - Traffic Services

Turning Movement Count - Full Study Diagram

GLADSTONE AVE @ PRESTON ST

Comments

Note: These volumes consists of bicycles only (no mopeds or motorcycles) and ARE NOT included in the Turning Movement Count Summary.

2018-Oct-04

Work Order

37132

W.O. 37132

Turning Movement Count - Heavy Vehicle Report

GLADSTONE AVE @ PRESTON ST

Survey Date: Tuesday, June 20, 2017

			PF	REST	ON ST	•						GLA	DSTO	ONE A	VE					
	-	Northb	ound			Southb	ound	_			Eastb	ound			Westbo	ound	_			
Time	Period	LT	ST	RT	N ТОТ	LT	ST	RT	s тот	STR TOT	LT	ST	RT	Е ТОТ	LT	ST	RT	w тот	STR TOT	Grano Total
07:00	08:00	1	26	5	32	13	22	1	36	68	2	12	1	15	0	9	5	14	29	97
00:80	09:00	1	28	5	34	11	26	0	37	71	4	10	3	17	4	12	10	26	43	114
09:00	10:00	4	33	5	42	12	40	0	52	94	2	12	4	18	3	13	12	28	46	140
11:30	12:30	1	25	2	28	6	29	4	39	67	1	9	1	11	3	9	14	26	37	104
12:30	13:30	5	27	2	34	15	22	0	37	71	1	10	2	13	7	11	11	29	42	113
15:00	16:00	3	27	4	34	3	24	3	30	64	3	6	1	10	3	12	8	23	33	97
16:00	17:00	1	21	3	25	7	18	0	25	50	0	11	0	11	0	9	11	20	31	81
17:00	18:00	0	14	1	15	3	14	0	17	32	0	7	0	7	1	6	7	14	21	53
Sub	Total	16	201	27	244	70	195	8	273	517	13	77	12	102	21	81	78	180	282	799
J-Turr	s (Heav	/y Veł	nicles)		0				0	0				0				0	0	0
То	tal	16	201	27	0	70	195	8	273	517	13	77	12	102	21	81	78	180	282	799

Transportation Services - Traffic Services

Work Order 37132

Turning Movement Count - Pedestrian Volume Report

Count Date	e: Tuesday, Ju	ne 20, 2017				Start Time:	07:00
Time Period	NB Approach (E or W Crossing)	SB Approach (E or W Crossing)	Total	EB Approach (N or S Crossing)	WB Approach (N or S Crossing)	Total	Grand Total
07:00 07:15	1	3	4	1	3	4	8
07:15 07:30	7	5	12	3	4	7	19
07:30 07:45	7	10	17	8	12	20	37
07:45 08:00	19	6	25	12	14	26	51
07:00 08:00	34	24	58	24	33	57	115
08:00 08:15	10	7	17	9	16	25	42
08:15 08:30	8	9	17	4	15	19	36
08:30 08:45	26	22	48	21	40	61	109
08:45 09:00	13	16	29	10	23	33	62
00:00 00:00	57	54	111	44	94	138	249
09:00 09:15	12	6	18	3	9	12	30
09:15 09:30	8	6	14	5	14	19	33
09:30 09:45	4	9	13	9	3	12	25
09:45 10:00	9	10	19	10	12	22	41
09:00 10:00	33	31	64	27	38	65	129
11:30 11:45	9	4	13	8	14	22	35
11:45 12:00	8	9	17	11	9	20	37
12:00 12:15	14	13	27	18	13	31	58
12:15 12:30	14	9	23	27	8	35	58
11:30 12:30	45	35	80	64	44	108	188
12:30 12:45	10	9	19	16	20	36	55
12:45 13:00	8	8	16	13	16	29	45
13:00 13:15	6	11	17	20	14	34	51
13:15 13:30	4	6	10	12	12	24	34
12:30 13:30	28	34	62	61	62	123	185
15:00 15:15	6	7	13	16	14	30	43
15:15 15:30	9	11	20	10	19	29	49
15:30 15:45	10	5	15	17	11	28	43
15:45 16:00	21	11	32	11	13	24	56
5:00 16:00	46	34	80	54	57	111	191
16:00 16:15	8	14	22	22	14	36	58
16:15 16:30	10	15	25	20	16	36	61
16:30 16:45	10	16	26	33	22	55	81
16:45 17:00	16	12	28	28	12	40	68
16:00 17:00	44	57	101	103	64	167	268
17:00 17:15	15	16	31	23	18	41	72
17:15 17:30	13	10	30	18	22	40	70
17:30 17:45	9	18	30 27	13	8	40 21	48
17:45 18:00	6	25	31	27	23	50	40 81
17:00 18:00	43	76	119	81	71	152	271
Total	330	345	675	458	463	921	1596

Comment:

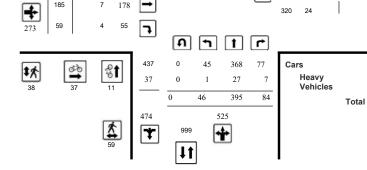
Ottawa

Transportation Services - Traffic Services

Turning Movement Count - Full Study Summary Report

Survey Da	te:	Tuesda	ay, Ju	ne 20,	2017				Total (Obser	ved U-	Turns					AAD	T Fact	or
								Northbou	und: ()		South	nbound:	0				.90		
								Eastbou	ind: 1		Wes	tbound:	0						
								F	ull St	udy									
			Р	RESTO	N ST							GLA	DSTC	NE A	VE				
-	1	Northbo	ound		S	Southb	ound		-		Eastbo	ound			Westb	ound			
Period	LT	ST	RT	NB TOT	LT	ST	RT	SB TOT	STR TOT	LT	ST	RT	EB TOT	LT	ST	RT	WB TOT	STR TOT	Gran Tota
07:00 08:00	41	324	65	430	53	346	16	415	845	20	110	41	171	41	99	57	197	368	1213
08:00 09:00	45	413	81	539	73	345	16	434	973	31	197	62	290	48	158	68	274	564	1537
09:00 10:00	55	294	74	423	84	361	32	477	900	26	109	46	181	56	139	70	265	446	1346
11:30 12:30	41	305	89	435	62	303	33	398	833	17	132	53	202	108	160	104	372	574	1407
12:30 13:30	48	278	87	413	82	332	32	446	859	33	140	62	235	88	163	94	345	580	1439
15:00 16:00	61	408	85	554	50	351	33	434	988	26	166	65	257	85	314	77	476	733	1721
16:00 17:00	79	397	93	569	51	367	37	455	1024	16	182	38	236	82	419	78	579	815	1839
17:00 18:00	62	344	94	500	44	330	47	421	921	25	178	37	240	97	380	78	555	795	1716
Sub Total	432	2763	668	3863	499	2735	246	3480	7343	194	1214	404	1812	605	1832	626	3063	4875	12218
U Turns				0				0	0				1				0	1	1
Total	432	2763	668	3863	499	2735	246	3480	7343	194	1214	404	1813	605	1832	626	3063	4876	12219
EQ 12Hr	600	3841	929	5370	694	3802	342	4837	10207	270	1687	562	2520	841	2546	870	4258	6778	16985
Note: These v	alues a	re calcu	lated by	y multiply	/ing the	totals b	y the a	ppropriat	e expans	ion fact	tor.		1	.39					
AVG 12Hr	540	3457	836	4833	624	3421	308	4353	9186	243	1519	505	2268	757	2292	783	3832	6100	15286
lote: These v	olumes	are calo	culated	by multip	olying th	ne Equiv	alent 1	2 hr. tota	ils by the	AADT	factor.			90					

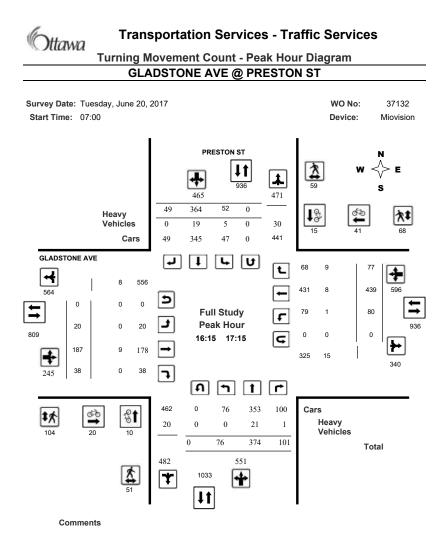
Comments:


Note: U-Turns provided for approach totals. Refer to 'U-Turn' Report for specific breakdown.

Transportation Services - Traffic Services

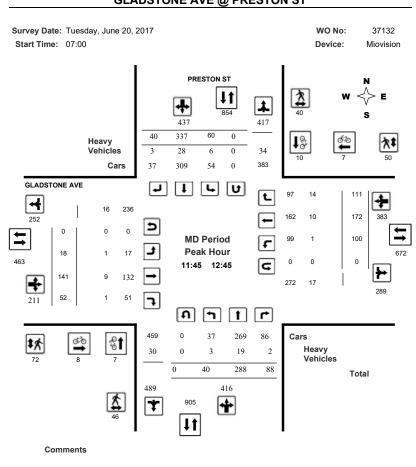
Turning Movement Count - Peak Hour Diagram GLADSTONE AVE @ PRESTON ST

		GLA	Dart			<i>y</i>	ESIU	11 31			
Survey Date: To Start Time: 07		ie 20, 2	2017							D No: vice:	37132 Miovision
	Heavy Vehicle C	es ars	23 0 23	PR 466 368 31 337	ESTON	ST 11 954 0 0 0	40 448	53 53		₩ <	
GLADSTONE A 234 507 GLADSTONE A 0 29	AVE 16 0 3	218 0 26	ب و ا		Perio ak Hor 5 09:	ur	E F	54 150 45 0	10 15 2 0	64 165 47 0	5 276
185	7	178	➡	00.1			4	320	24	İ	₩

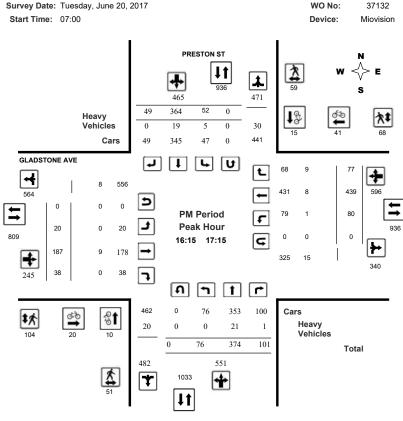


Comments

Work Order 37132

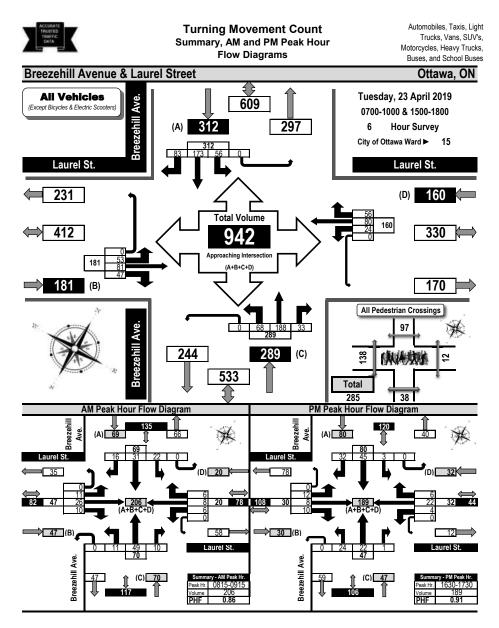

2018-Oct-04

344



Turning Movement Count - Peak Hour Diagram GLADSTONE AVE @ PRESTON ST

Comments


Ottawa

Transportation Services - Traffic Services

Work Order

Turning Movement Count - 15 Min U-Turn Total Report **GLADSTONE AVE @ PRESTON ST** Survey Date: Tuesday, June 20, 2017 Northbound Southbound Eastbound Westbound **Time Period** Total U-Turn Total U-Turn Total U-Turn Total U-Turn Total 07:15 07:00 07:15 07:30 07:30 07:45 07:45 08:00 08:00 08:15 08:15 08:30 08:30 08:45 08:45 09:00 09:00 09:15 09:15 09:30 09:30 09:45 09:45 10:00 11:30 11:45 11:45 12:00 12:00 12:15 12:15 12:30 12:30 12:45 12:45 13:00 13:00 13:15 13:15 13:30 15:00 15:15 15:15 15:30 15:45 15:30 15:45 16:00 16:00 16:15 16:15 16:30 16:30 16:45 16:45 17:00 17:00 17:15 17:30 17:15 17:30 17:45 17:45 18:00 Total

Page 4 of 4

Prepared by: thetrafficspecialist@gmail.com

Flow Diagrams: AM PM Peak

ACCURATE TRUSTED TRAFFIC DATA

Turning Movement Count Summary Report AADT and Expansion Factors Automobiles, Taxis, Light Trucks, Vans, SUV's, Motorcycles, Heavy Trucks, Buses, and School Buses

Breezehill Avenue & Laurel Street Ottawa, ON Survey Date: Tuesday, 23 April 2019 Start Time: 0700 AADT Factor: 0.7 Weather AM: Partly Cloudy +10°C Survey Duration: 6 Hrs. Survey Hours: 0700-1000 & 1500-1800 Weather PM: Overcast +17°C Surveyor(s): Carmody Laurel St. Breezehill Ave. Laurel St. Breezehill Ave. Eastbound Westbound Northbound Southbound Time W/B Tot S/B Tot ST RT UT E/B Tot ST RT lυτ Street Total ST RTUT N/B Tot RT LT LT LT LT ST UT Period **Fota** Tota 0700-080 24 107 16 1/ 26 *۸* 29 6 0800-090 44 65 195 61 0900-100 162 11 67 Λ 1/ 21 1500-1600 160 25 19 66 14 29 49 29 4 9, 1600-1700 11 19 63 9 36 33 57 156 10 33 30 27 93 1700-1800 48 162 21 18 25 46 22 37 68 116 Totals 53 81 47 0 181 24 80 56 942 160 341 68 188 33 280 56 173 83 312 601

Equivalent 12 & 24-hour Vehicle Volumes including the Annual Average Daily Traffic (AADT) Factor Applicable to the Day and Month of the Turning Movement Count

Expansion factors are applied exclusively to standard <u>weekday</u> 8-hour turning movement counts conducted during the hours of 0700h - 1000h, 1130h - 1330h and 1500h - 1800h

	Ec	quivaler	ıt 12-ho	our veh	icle vo	lumes.	These	volume	s are c	alculate	d by m	ultiplyi	ng the l	8-hour	totals I	by the 8	₱ 12	expans	ion fac	tor of 1	.39		
Equ. 12 Hr	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
		Avera	na daih	(12 ha	urvehi	ام بر مام		Chase 1	aluma		loulate	dhum	dtinhein	a the	-	ont 12		tala hu	the AA	DT fee	tor of: (7	
AADT 12-hr	n/a			n/a																	n/a		n/a
	Π/α	n/u	n/u	n/u	n/u	11/0	n/u	n/a	n/u	n/u	n/a	n/u	n/u	n/u	n/u	11/4	n/u	n/u	n/u	Π/U	11/0	11/4	
	24-Ho	our AAD)T. The	se volu	imes a	re calc	ulated b	y mult	iplying	the ave	rage da	ily 12-l	nour ve	hicle v	olumes	by the	12 🔿	24 expa	nsion	factor o	of 1.31		
AADT 24 Hr	n/a	n/a	n/a	n/a	n/2	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a

AADT and expansion factors provided by the City of Ottawa

AM Peak Ho	ur Fac	tor •		0.8	6							1		High	est H	ourly	Vehicle	e Volu	ıme E	letwe	en 070	00h &	1000h
AM Peak Hr	LT	ST	RT	UT	TOT	LT	ST	RT	UT	TOT	S.TOT	LT	ST	RT	UT	TOT	LT	ST	RT	UT	TOT	S.TOT	G.TOT
0815-0915	11	26	10	0	47	6	8	6	0	20	67	11	49	10	0	70	22	31	16	0	69	139	206

PM Peak Ho	ur Fac	tor 🛋	•	0.9	91									High	est He	ourly \	/ehicl	e Volu	ıme B	etwee	en 1500h 8	a 1800h
PM Peak Hr	LT	ST	RT	UT	TOT	LT	ST	RT	UT	TOT S	S.TOT	LT	ST	RT	UT	TOT	LT	ST	RT	UT	TOT S.TO	G.TOT
1630-1730	12	8	10	0	30	4	22	6	0	32	62	24	22	1	0	47	3	45	32	0	80 127	7 189

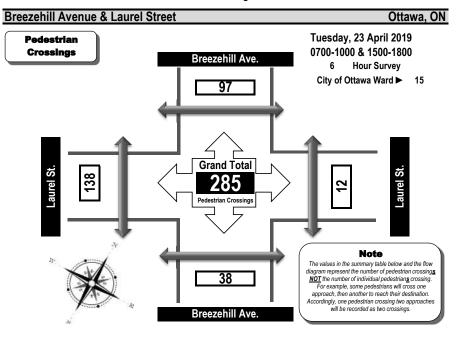
Comments:

A cedar hedge growing along the property frontage on the southwest quadrant is creating a serious sightline problem. The majority of the cyclists as well as some drivers ignore the all-way stop control. Vehicles parked too close to the intersection on both Laurel Street, east of Breezehill Avenue and Breezehill Avenue, south of Laurel Street create a sightline problem.

Notes:

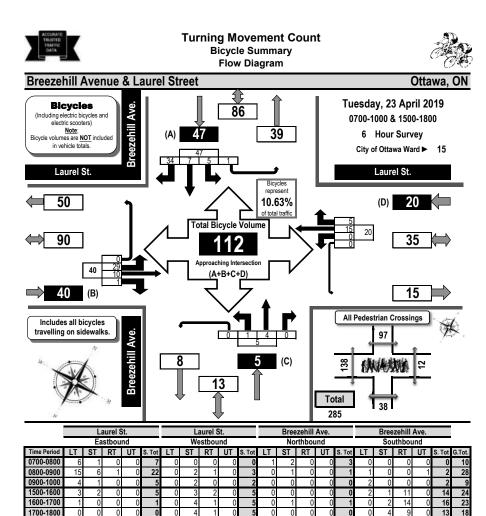
Includes all vehicle types except bicycles, electric bicycles, and electric scooters.
 When expansion and AADT factors are applied, the results will differ slightly due to rounding.

Printed on: 4/25/2019


Prepared by: thetrafficspecialist@gmail.com

Summary: All Vehicles

Turning Movement Count Pedestrian Crossings Summary and Flow Diagram



Time Period	West Side Crossing	East Side Crossing	Street	South Side Crossing	North Side Crossing	Street	Grand
Time Period	Laurel St.	Laurel St.	Total	Breezehill Ave.	Breezehill Ave.	Total	Total
0700-0800	5	1	6	3	8	11	17
0800-0900	54	4	58	14	18	32	90
0900-1000	2	0	2	0	4	4	6
1500-1600	50	0	50	12	23	35	85
1600-1700	12	1	13	2	22	24	37
1700-1800	15	6	21	7	22	29	50
Totals	138	12	150	38	97	135	285

Comments:

A cedar hedge growing along the property frontage on the southwest quadrant is creating a serious sightline problem. The majority of the cyclists as well as some drivers ignore the all-way stop control. Vehicles parked too close to the intersection on both Laurel Street, east of Breezehill Avenue and Breezehill Avenue, south of Laurel Street create a sightline problem.

Totals Comments:

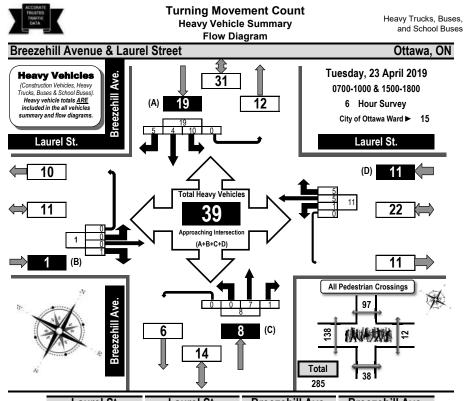
A cedar hedge growing along the property frontage on the southwest quadrant is creating a serious sightline problem. The majority of the cyclists as well as some drivers ignore the all-way stop control. Vehicles parked too close to the intersection on both Laurel Street, east of Breezehill Avenue and Breezehill Avenue, south of Laurel Street create a sightline problem.

Λ

Printed on: 4/25/2019

Prepared by: thetrafficspecialist@gmail.com

Summary: Pedestrian Crossings


Printed on: 4/25/2019

15

Summary: Bicycles

11:

3/

		La	urel	St.			La	urel	St.		B	reez	ehil	I Av	e.	B	reez	ehil	<u>I Av</u>	e.	
		Eas	stboı	und			We	stbo	und			Nor	thbo	und			Sou	thbo	und		
Time Period	LT	ST	RT	UT	S. Tot	LT	ST	RT	UT	S. Tot	LT	ST	RT	UT	S. Tot	LT	ST	RT	UT	S. Tot	G.Tot.
0700-0800	0	0	0	0	0	0	1	0	0	1	0	1	0	0	1	2	0	0	0	2	4
0800-0900	0	0	0	0	0	0	0	3	0	3	0	0	1	0	1	3	0	3	0	6	10
0900-1000	0	0	1	0	1	1	2	1	0	4	0	4	0	0	4	2	2	1	0	5	14
1500-1600	0	0	0	0	0	0	1	0	0	1	0	1	0	0	1	1	0	1	0	2	4
1600-1700	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	1	1	0	0	2	3
1700-1800	0	0	0	0	0	0	0	1	0	1	0	1	0	0	1	1	1	0	0	2	4
Totals	0	0	1	0	1	1	5	5	0	11	0	7	1	0	8	10	4	5	0	19	39

Comments:

A cedar hedge growing along the property frontage on the southwest quadrant is creating a serious sightline problem. The majority of the cyclists as well as some drivers ignore the all-way stop control. Vehicles parked too close to the intersection on both Laurel Street, east of Breezehill Avenue and Breezehill Avenue, south of Laurel Street create a sightline problem.

Printed on: 4/25/2019

Prepared by: thetrafficspecialist@gmail.com

Summary: Heavy Vehicles

Transportation Services - Traffic Services W.O. 35301

Turning Movement Count - 15 Minute Summary Report

BREEZEHILL AVE @ SOMERSET ST

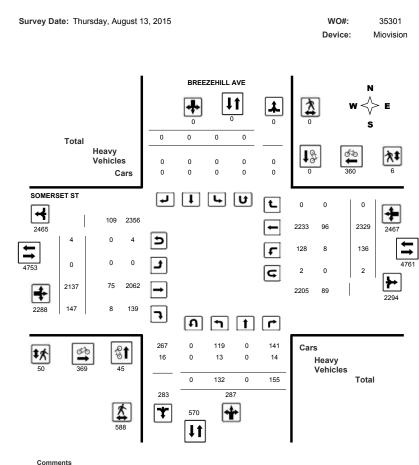
Surv	ey Da	ate:	٦	Thurso	day, Au	ugust	13, 2	015	N	٦ orthboui		Obser		J-Turi uthbour)				
									E	astbour		4	W	estbour						
			E	BREEZ	ZEHILI	- AVI	E					S	OME	RSET	ST					
		No	orthbo	und		So	uthbou	nd			Ea	stbound			We	stbound				
Time Pe	eriod	LT	ST	RT	N TOT	LT	ST	RT	S TOT	STR TOT	LT	ST	RT	Е ТОТ	LT	ST	RT	w тот	STR TOT	Grand Total
07:00 0	07:15	2	0	2	4	0	0	0	0	4	0	27	5	32	3	21	0	24	56	60
07:15 0	07:30	0	0	6	6	0	0	0	0	6	0	29	3	32	2	35	0	37	69	75
07:30 0	07:45	2	0	3	5	0	0	0	0	5	0	53	2	55	1	35	0	36	91	96
7:45 0	00:80	2	0	4	6	0	0	0	0	6	0	62	3	65	4	54	0	58	123	129
08:00	08:15	3	0	6	9	0	0	0	0	9	0	65	5	70	4	56	0	60	130	139
08:15 0	08:30	4	0	5	9	0	0	0	0	9	0	92	3	95	4	42	0	46	141	150
08:30 0	08:45	3	0	4	7	0	0	0	0	7	0	54	5	59	3	40	0	43	102	109
08:45 0	09:00	3	0	9	12	0	0	0	0	12	0	64	4	68	4	50	0	54	122	134
09:00	09:15	3	0	6	9	0	0	0	0	9	0	63	8	71	5	68	0	73	144	153
09:15 0	09:30	5	0	4	9	0	0	0	0	9	0	62	4	66	5	53	0	58	124	133
09:30 0	09:45	6	0	7	13	0	0	0	0	13	0	76	3	79	2	66	0	68	147	160
09:45 1	10:00	2	0	5	7	0	0	0	0	7	0	59	10	70	2	67	0	69	139	146
11:30 1	11:45	5	0	2	7	0	0	0	0	7	0	81	2	83	3	74	0	77	160	167
11:45 1	12:00	9	0	3	12	0	0	0	0	12	0	81	3	84	5	69	0	74	158	170
12:00 1	12:15	7	0	12	19	0	0	0	0	19	0	78	8	86	12	80	0	92	178	197
12:15 1	12:30	4	0	8	12	0	0	0	0	12	0	69	4	74	5	70	0	75	149	161
12:30 1	12:45	6	0	3	9	0	0	0	0	9	0	71	5	76	2	64	0	66	142	151
12:45 1	13:00	1	0	4	5	0	0	0	0	5	0	80	9	89	5	72	0	77	166	171
13:00 1	13:15	4	0	3	7	0	0	0	0	7	0	65	7	72	2	66	0	68	140	147
13:15 1	13:30	5	0	5	10	0	0	0	0	10	0	49	5	54	6	86	0	92	146	156
15:00 1	15:15	6	0	2	8	0	0	0	0	8	0	65	5	70	2	74	0	76	146	154
15:15 1	15:30	7	0	6	13	0	0	0	0	13	0	66	2	68	5	89	0	94	162	175
15:30 1	15:45	8	0	8	16	0	0	0	0	16	0	58	4	62	3	93	0	96	158	174
15:45 1	16:00	4	0	2	6	0	0	0	0	6	0	61	4	66	6	75	0	81	147	153
16:00 1	16:15	2	0	7	9	0	0	0	0	9	0	73	3	76	5	96	0	101	177	186
16:15 1	16:30	3	0	5	8	0	0	0	0	8	0	87	7	94	7	108	0	115	209	217
16:30 1	16:45	5	0	3	8	0	0	0	0	8	0	65	8	73	4	104	0	109	182	190
16:45 1	17:00	3	0	4	7	0	0	0	0	7	0	86	3	89	6	114	0	120	209	216
17:00 1	17:15	8	0	3	11	0	0	0	0	11	0	78	5	83	2	92	0	94	177	188
17:15 1	17:30	4	0	3	7	0	0	0	0	7	0	78	3	81	7	113	0	121	202	209
17:30 1	17:45	4	0	5	9	0	0	0	0	9	0	64	3	68	7	110	0	117	185	194
17:45 1	18:00	2	0	6	8	0	0	0	0	8	0	76	2	78	3	93	0	96	174	182
TOTAL:	1	32	0	155	287	0	0	0	0	287	0	2137	147	2288	136	2329	0	24	67 4755	504
ote: U-			· ·		-	-	-				Comm	-					-			

2018-Sep-27

Page 1 of 1

Turning Movement Count - Cyclist Volume Report

Count Dat	te: Thursday,	August 13, 201	5			Start Time:	07:00
	В	REEZEHILL AV	E		SOMERSET S	г	
Time Period	Northbound	Southbound	Street Total	Eastbound	Westbound	Street Total	Grand Total
07:00 08:00	6	0	6	38	24	62	68
08:00 09:00	17	0	17	99	39	138	155
09:00 10:00	6	0	6	33	28	61	67
11:30 12:30	4	0	4	28	25	53	57
12:30 13:30	2	0	2	21	30	51	53
15:00 16:00	3	0	3	41	34	75	78
16:00 17:00	3	0	3	50	79	129	132
17:00 18:00	4	0	4	59	101	160	164
Total	45	0	45	369	360	729	774


Comment:

Transportation Services - Traffic Services

Turning Movement Count - Full Study Diagram

BREEZEHILL AVE @ SOMERSET ST

Comm

Note: These volumes consists of bicycles only (no mopeds or motorcycles) and ARE NOT included in the Turning Movement Count Summary.

2018-Sep-27

Work Order

35301

Ottawa

Transportation Services - Traffic Services

W.O. 35301

Turning Movement Count - Heavy Vehicle Report

BREEZEHILL AVE @ SOMERSET ST

Survey Date: Thursday, August 13, 2015

			BRE	EZE⊦	IILL A	VE						SC	MER	SET S	т					
	-	Northb	ound		:	Southt	ound	_			Eastbo	ound			Westbo	ound	_			
Time I	Period	LT	ST	RT	N TOT	LT	ST	RT	S TOT	STR TOT	LT	ST	RT	Е ТОТ	LT	ST	RT	w тот	STR TOT	Grand Total
07:00	08:00	2	0	1	3	0	0	0	0	3	0	7	1	8	2	12	0	14	22	25
08:00	09:00	1	0	2	3	0	0	0	0	3	0	12	0	12	1	15	0	16	28	31
09:00	10:00	4	0	6	10	0	0	0	0	10	0	11	2	13	0	15	0	15	28	38
11:30	12:30	4	0	2	6	0	0	0	0	6	0	10	0	10	4	11	0	15	25	31
12:30	13:30	1	0	0	1	0	0	0	0	1	0	7	3	10	1	13	0	14	24	25
15:00	16:00	1	0	3	4	0	0	0	0	4	0	11	0	11	0	15	0	15	26	30
16:00	17:00	0	0	0	0	0	0	0	0	0	0	7	1	8	0	7	0	7	15	15
17:00	18:00	0	0	0	0	0	0	0	0	0	0	10	1	11	0	8	0	8	19	19
Sub	Total	13	0	14	27	0	0	0	0	27	0	75	8	83	8	96	0	104	187	214
J-Turn	is (Heav	vy Veľ	nicles)		0				0	0				0				0	0	0
То	tal	13	0	14	0	0	0	0	0	27	0	75	8	83	8	96	0	104	187	214

Transportation Services - Traffic Services

Work Order 35301

Turning Movement Count - Pedestrian Volume Report

Count Dat	e: Thursday, Au	ugust 13, 2015				Start Time:	07:00
Time Period	NB Approach (E or W Crossing)	SB Approach (E or W Crossing)	Total	EB Approach (N or S Crossing)	WB Approach (N or S Crossing)	Total	Grand Total
07:00 07:15	8	0	8	0	0	0	8
07:15 07:30	8	0	8	0	1	1	9
07:30 07:45	14	0	14	1	0	1	15
07:45 08:00	15	0	15	2	1	3	18
07:00 08:00	45	0	45	3	2	5	50
08:00 08:15	10	0	10	1	1	2	12
08:15 08:30	25	0	25	0	0	0	25
08:30 08:45	14	0	14	3	0	3	17
08:45 09:00	10	0	10	0	0	0	10
08:00 09:00	59	0	59	4	1	5	64
09:00 09:15	13	0	13	0	0	0	13
09:15 09:30	12	0	12	0	0	0	12
09:30 09:45	16	0	16	0	0	0	16
09:45 10:00	9	0	9	0	0	0	9
09:00 10:00	50	0	50	0	0	0	50
11:30 11:45	18	0	18	2	0	2	20
11:45 12:00	8	0	8	3	0	3	11
12:00 12:15	21	0	21	2	0	2	23
12:15 12:30	19	0	19	0	1	1	20
11:30 12:30	66	0	66	7	1	8	74
12:30 12:45	21	0	21	0	0	0	21
12:45 13:00	16	0	16	0	0	0	16
13:00 13:15	16	0	16	0	0	0	16
13:15 13:30	18	0	18	0	1	1	19
12:30 13:30	71	0	71	0	1	1	72
15:00 15:15	19	0	19	2	0	2	21
15:15 15:30	26	0	26	1	0	1	27
15:30 15:45	21	0	21	1	0	1	22
15:45 16:00	21	0	21	0	0	0	21
15:00 16:00	87	0	87	4	0	4	91
16:00 16:15	13	0	13	2	0	2	15
16:15 16:30	20	0	20	6	õ	6	26
16:30 16:45	20	0	24	3	õ	3	27
16:45 17:00	30	0	30	6	õ	6	36
16:00 17:00	87	0	87	17	0	17	104
17:00 17:15	26	0	26	3	0	3	29
17:15 17:30	37	0	37	5	1	6	43
17:30 17:45	35	0	35	5	0	7	43
17:45 18:00	25	0	25	0	0	0	42 25
17:45 18:00	123	0	123	15	1	16	139
Total	588	0	123 588	15	6	56	139

Comment:

Ottawa

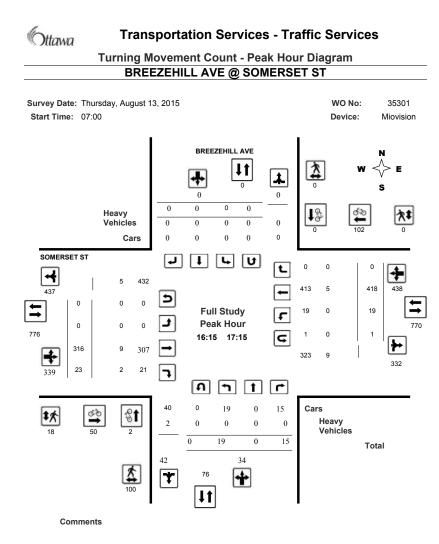
Transportation Services - Traffic Services

Turning Movement Count - Full Study Summary Report

Survey Da	te:	Thursd	ay, Aı	ugust 1	3, 201	5		т	otal O	bser	ved U-	Turns					AAD	T Fact	or
							1	Northbour	id: 0		South	nbound:	0				.90		
								Eastboun	d: 4		West	tbound:	2						
								Fι	ıll Stu	dy									
			BRE	EZEHI	LL AV	E						SO	MERS	SET S	Т				
_		Northbo	ound		S	outhbo	ound				Eastbo	ound			Westb	ound			
Period	LT	ST	RT	NB TOT	LT	ST	RT	SB TOT	STR TOT	LT	ST	RT	EB TOT	LT	ST	RT	WB TOT	STR TOT	Grand Tota
07:00 08:00	6	0	15	21	0	0	0	0	21	0	171	13	184	10	145	0	155	339	360
08:00 09:00	13	0	24	37	0	0	0	0	37	0	275	17	292	15	188	0	203	495	532
09:00 10:00	16	0	22	38	0	0	0	0	38	0	260	25	285	14	254	0	268	553	591
11:30 12:30	25	0	25	50	0	0	0	0	50	0	309	17	326	25	293	0	318	644	694
12:30 13:30	16	0	15	31	0	0	0	0	31	0	265	26	291	15	288	0	303	594	625
15:00 16:00	25	0	18	43	0	0	0	0	43	0	250	15	265	16	331	0	347	612	655
16:00 17:00	13	0	19	32	0	0	0	0	32	0	311	21	332	22	422	0	444	776	808
17:00 18:00	18	0	17	35	0	0	0	0	35	0	296	13	309	19	408	0	427	736	771
Sub Total	132	0	155	287	0	0	0	0	287	0	2137	147	2284	136	2329	0	2465	4749	5036
U Turns				0				0	0				4				2	6	6
Total	132	0	155	287	0	0	0	0	287	0	2137	147	2288	136	2329	0	2467	4755	5042
EQ 12Hr	183	0	215	399	0	0	0	0	399	0	2970	204	3180	189	3237	0	3429	6609	7008
Note: These v	alues a	are calcul	ated by	multiply	ing the f	totals by	the ap	propriate	expansi	on fact	tor.		1	.39					
AVG 12Hr	165	0	194	359	0	0	0	0	359	0	2673	184	2862	170	2914	0	3086	5948	6307
Note: These v	olumes	are calo	ulated	by multip	olying the	e Equiv	alent 12	2 hr. totals	by the <i>i</i>	AADT	factor.			90					
AVG 24Hr	216	0	254	470	0	0	0	0	470	0	3502	241	3750	223	3817	0	4043	7793	8263

Comments:

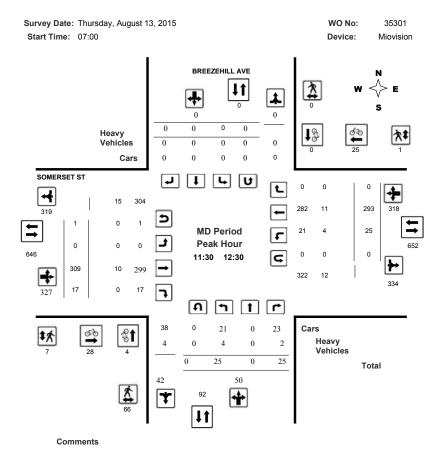
Note: U-Turns provided for approach totals. Refer to 'U-Turn' Report for specific breakdown.

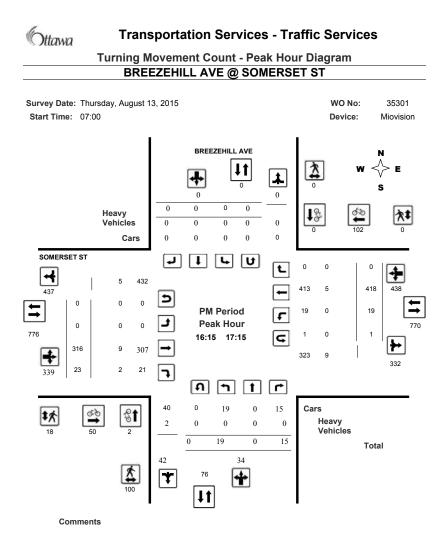

Transportation Services - Traffic Services

Turning Movement Count - Peak Hour Diagram BREEZEHILL AVE @ SOMERSET ST

Survey Date: Thursday, August Start Time: 07:00	13, 2015	WO No: 35301 Device: Miovision
Heavy Vehicles Cars	BREEZEHILL AVE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	$ \begin{array}{cccc} \mathbf{N} \\ \mathbf{N} \\ \mathbf{V} \\ \mathbf{V} \\ \mathbf{V} \\ \mathbf{E} \\ \mathbf{S} \\ \mathbf{S} \\ \mathbf{V} \\ \mathbf{S} \\ \mathbf{S} \\ \mathbf{V} \\ \mathbf{S} \\ \mathbf{S} \\ \mathbf{V} \\ \mathbf{S} $
SOMERSET ST 271 19 252 271 1 0 1 557 0 0 0 557 260 11 245 286 25 2 23	AM Period Peak Hour 09:00 10:00	0 0 0 239 15 254 14 0 14 0 0 0 265 17 282
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Cars Heavy Vehicles Total
0		

Comments


Work Order 35301


Cottawa Transpo

Transportation Services - Traffic Services

Turning Movement Count - Peak Hour Diagram BREEZEHILL AVE @ SOMERSET ST

2018-Sep-27

Ottawa

Transportation Services - Traffic Services

Work Order 35301

Turning Movement Count - 15 Min U-Turn Total Report

Survey Date:	Th	ursday, August 13	3, 2015			
Time Pe	riod	Northbound U-Turn Total	Southbound U-Turn Total	Eastbound U-Turn Total	Westbound U-Turn Total	Total
07:00	07:15	0	0	0	0	0
07:15	07:30	0	0	0	0	0
07:30	07:45	0	0	0	0	0
07:45	08:00	0	0	0	0	0
08:00	08:15	0	0	0	0	0
08:15	08:30	0	0	0	0	0
08:30	08:45	0	0	0	0	0
08:45	09:00	0	0	0	0	0
09:00	09:15	0	0	0	0	0
09:15	09:30	0	0	0	0	0
09:30	09:45	0	0	0	0	0
09:45	10:00	0	0	1	0	1
11:30	11:45	0	0	0	0	0
11:45	12:00	0	0	0	0	0
12:00	12:15	0	0	0	0	0
12:15	12:30	0	0	1	0	1
12:30	12:45	0	0	0	0	0
12:45	13:00	0	0	0	0	0
13:00	13:15	0	0	0	0	0
13:15	13:30	0	0	0	0	0
15:00	15:15	0	0	0	0	0
15:15	15:30	0	0	0	0	0
15:30	15:45	0	0	0	0	0
15:45	16:00	0	0	1	0	1
16:00	16:15	0	0	0	0	0
16:15	16:30	0	0	0	0	0
16:30	16:45	0	0	0	1	1
16:45	17:00	0	0	0	0	0
17:00	17:15	0	0	0	0	0
17:15	17:30	0	0	0	1	1
17:30	17:45	0	0	1	0	1
17:45	18:00	0	0	0	0	0
Tota	1	0	0	4	2	6

Page 4 of 4

Appendix C

Synchro Intersection Worksheets – Existing Conditions

HCM 2010 TWSC 1: Breezehill & Gladstone

951 Gladstone & 145 Loretta Existing - AM Peak Hour

Intersection												
Int Delay, s/veh	1.5											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	23	223	0	1	129	41	2	1	5	17	0	23
Future Vol. veh/h	23	223	0	1	129	41	2	1	5	17	0	23
Conflicting Peds, #/hr	21	0	25	25	0	21	8	0	2	2	0	8
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized		-	None	-	-	None	-	-	None	-	-	None
Storage Length			-	-		-			-			-
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-
Grade. %	-	0		-	0			0		-	0	
Peak Hour Factor	90	90	90	90	90	90	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mymt Flow	26	248	0	1	143	46	2	1	6	19	0	26
			-						-		-	
Major/Minor N	/lajor1		1	Major2		1	Minor1			Minor2		
Conflicting Flow All	210	0	0	273	0	0	514	537	275	495	514	195
Stage 1	-	-	-	-	-	-	325	325	-	189	189	-
Stage 2		-	-	-	-		189	212	-	306	325	
Critical Hdwy	4.12	-	-	4.12	-	-	7.12	6.52	6.22	7.12	6.52	6.22
Critical Hdwy Stg 1		-	-	-	-		6.12	5.52	-	6.12	5.52	
Critical Hdwy Stg 2	-	-	-	-	-	-	6.12	5.52	-	6.12	5.52	-
	2.218	-	-	2.218	-		3.518	4.018	3.318	3.518	4.018	3.318
Pot Cap-1 Maneuver	1361	-	-	1290	-	-	471	450	764	485	464	846
Stage 1		-	-	-	-		687	649	-	813	744	
Stage 2	-	-	-	-	-	-	813	727	-	704	649	-
Platoon blocked, %		-			-							
Mov Cap-1 Maneuver	1339	-	-	1265	-	-	437	424	748	463	437	827
Mov Cap-2 Maneuver	-	-		-	-		437	424	-	463	437	-
Stage 1	-	-	-	-	-	-	658	622	-	781	731	-
Stage 2		-			-		782	715		680	622	
-												
Approach	EB			WB			NB			SB		
HCM Control Delay, s	0.7			0			11.2			11.3		
HCM LOS							В			В		
Minor Lane/Major Mvm	t N	VBLn1	EBL	EBT	EBR	WBL	WBT	WBR				
Capacity (veh/h)		587	1339	-	-	1265	-	-	620			
HCM Lane V/C Ratio			0.019	-	-	0.001	-	-	0.072			
HCM Control Delay (s)		11.2	7.7	0	-	7.8	0					
		В	A	A		A	A	-	В			
HCM Lane LOS HCM 95th %tile Q(veh)		0	0.1	~		0	~		0.2			

Lanes, Volumes, Timings 951 Gladstone & 145 Loretta 2: Preston & Gladstone Existing - AM Peak Hour ≯ -۰ ∡ 1 * -Lane Group EBL EBT EBR WBL WBT WBR NBL SBR NBT NBR SBL SBT Lane Configurations 4 3 1. 1. ħ ٦ 22 Traffic Volume (vph) 27 171 55 64 43 84 47 154 395 75 368 Future Volume (vph) 27 55 47 43 84 75 171 154 64 395 368 22 Satd. Flow (prot) 0 1616 0 1658 1588 0 1658 1643 0 1658 1722 0 Flt Permitted 0.936 0.487 0.465 0.389 Satd. Flow (perm) 1507 791 1588 782 1643 635 1722 0 0 0 0 C Satd. Flow (RTOR) 29 25 Lane Group Flow (vph) 0 281 0 52 242 48 532 83 433 Turn Type Perm NA Perm NA Perm NA Perm NA Protected Phases 2 6 4 8 Permitted Phases 4 8 2 6 Detector Phase 4 4 8 2 2 6 6 Switch Phase Minimum Initial (s) 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 Minimum Split (s) 24.5 24.5 24.5 24.5 23.7 23.7 23.7 23.7 Total Split (s) 25.0 45.0 45.0 25.0 25.0 25.0 45.0 45.0 Total Split (%) 35.7% 35.7% 35.7% 35.7% 64.3% 64.3% 64.3% 64.3% Yellow Time (s) 3.0 3.0 3.0 3.0 3.3 3.3 3.3 3.3 All-Red Time (s) 3.5 3.5 3.5 3.5 2.4 2.4 2.4 2.4 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Total Lost Time (s) 6.5 6.5 6.5 5.7 5.7 5.7 5.7 Lead/Lag Lead-Lag Optimize? Recall Mode None None None None C-Min C-Min C-Min C-Min Act Effct Green (s) 17.3 17.3 17.3 40.5 40.5 40.5 40.5 Actuated g/C Ratio 0.25 0.25 0.25 0.58 0.58 0.58 0.58 v/c Ratio 0.76 0.27 0.59 0.11 0.55 0.23 0.43 Control Delay 37.8 10.7 23.8 25.9 8.5 12.2 10.3 Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Total Delay 37.8 23.8 25.9 8.5 12.2 10.3 10.7 LOS D С С Α B B B Approach Delay 37.8 25.5 11.9 10.7 Approach LOS D С В R Queue Length 50th (m) 33.3 2.7 30.0 5.4 23.8 38.4 5.0 Queue Length 95th (m) #57.3 13.6 43.1 7.6 68.1 12.8 52.0 Internal Link Dist (m) 300.5 149.8 122.5 139.6 Turn Bay Length (m) 37.5 24.0 28.0 Base Capacity (vph) 414 217 457 461 979 374 1015 Starvation Cap Reductn 0 0 0 0 0 0 0 Spillback Cap Reductn 0 0 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 0 0 Reduced v/c Ratio 0.68 0.24 0.53 0.10 0.54 0.22 0.43 Intersection Summary Cycle Length: 70 Actuated Cycle Length: 70 Offset: 37 (53%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green Natural Cycle: 60 Control Type: Actuated-Coordinated

Synchro 11 Report Page 2

Lanes, Volumes, Timings 2: Preston & Gladstone

951 Gladstone & 145 Loretta Existing - AM Peak Hour

Maximum v/c Ratio: 0.76	
Intersection Signal Delay: 18.3	Intersection LOS: B
Intersection Capacity Utilization 86.4%	ICU Level of Service E
Analysis Period (min) 15	
# 95th percentile volume exceeds capacity, queue may be lor	iger.
Queue shown is maximum after two cycles.	

Splits and Phases: 2: Preston & Gladstone

Ø2 (R)	<u></u> Ø4
45 s	25 s
Ø6 (R)	↓ Ø8
45 s	25 s

HCM 2010 TWSC 3: Breezehill & Somerset 951 Gladstone & 145 Loretta Existing - AM Peak Hour

Intersection	_	_				
Int Delay, s/veh	1					
			1115			LIDE
	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	4			र्भ	M	
Traffic Vol, veh/h	260	25	14	254	16	22
Future Vol, veh/h	260	25	14	254	16	22
Conflicting Peds, #/hr	0	50	50	0	0	0
	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage, #		-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	289	28	16	282	18	24
Major/Minor Ma	ajor1		Major2		Minor1	
	ajor i 0	0	367	0	667	353
Conflicting Flow All	-	-	367	-	353	353
Stage 1		-		-	353	
Stage 2	-		4.12			6.22
Critical Hdwy		-		-	6.42	
Critical Hdwy Stg 1	-	-	-	-	0.12	-
Critical Hdwy Stg 2	-	-	-	-	5.42	-
Follow-up Hdwy	-	-		-		
Pot Cap-1 Maneuver	-	-	1192	-	424	691
Stage 1	-	-	-	-	711	-
Stage 2	-	-	-	-	741	-
Platoon blocked, %	-	-		-		
Mov Cap-1 Maneuver	-	-	1146	-	401	664
Mov Cap-2 Maneuver	-	-	-	-	401	-
Stage 1	-	-	-	-	683	-
Stage 2	-	-	-	-	728	-
Approach	EB		WB		NB	
HCM Control Delay, s	0		0.4		12.5	
HCM LOS	0		0.4		12.3 B	
HOIVI LOS					D	
Minor Lane/Major Mvmt	1	VBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		520	-	-	1146	-
HCM Lane V/C Ratio		0.081	-	-	0.014	-
HCM Control Delay (s)		12.5	-	-	8.2	0
HCM Lane LOS		В	-	-	Α	А
HCM 95th %tile Q(veh)		0.3	-	-	0	-

HCM 2010 TWSC 6: Loretta & Gladstone

951 Gladstone & 145 Loretta Existing - AM Peak Hour

Intersection				_	_		_					
Int Delay, s/veh	1.8											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	21	209	15	19	154	33	8	0	7	21	3	9
Future Vol, veh/h	21	209	15	19	154	33	8	0	7	21	3	9
Conflicting Peds, #/hr	15	0	13	13	0	15	3	0	2	2	0	3
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-					-	-	-
Veh in Median Storage	e, # -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	90	90	90	90	90	90	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	23	232	17	21	171	37	9	0	8	23	3	10
Major/Minor I	Major1		1	Major2	_		Minor1			Minor2		
Conflicting Flow All	223	0	0	262	0	0	541	565	256	540	555	208
Stage 1	-	-	-	-	-	-	300	300	-	247	247	-
Stage 2		-	-	-	-		241	265	-	293	308	
Critical Hdwy	4.12	-	-	4.12	-	-	7.12	6.52	6.22	7.12	6.52	6.22
Critical Hdwy Stg 1		-	-	-	-		6.12	5.52	-	6.12	5.52	
Critical Hdwy Stg 2	-	-	-	-	-	-	6.12	5.52	-	6.12	5.52	-
Follow-up Hdwy	2.218	-	-	2.218	-		3.518	4.018	3.318	3.518	4.018	3.318
Pot Cap-1 Maneuver	1346	-	-	1302	-	-	452	434	783	453	440	832
Stage 1		-	-	-	-		709	666		757	702	-
Stage 2	-	-	-	-	-	-	762	689	-	715	660	-
Platoon blocked, %		-	-		-	-						
Mov Cap-1 Maneuver	1330	-	-	1289	-	-	425	408	774	429	414	820
Mov Cap-2 Maneuver	-	-	-		-		425	408	-	429	414	-
Stage 1	-	-	-	-	-	-	688	646	-	734	680	-
Stage 2	-	-	-	-	-	-	733	668	-	693	640	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	0.7			0.7			11.9			12.9		
HCM LOS							В			В		
Minor Lane/Major Mvm	nt	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR	SBLn1			
Capacity (veh/h)		538	1330	-	-	1289	-	-	491			
HCM Lane V/C Ratio		0.031	0.018		-	0.016	-	-	0.075			
HCM Control Delay (s)		11.9	7.8	0	-	7.8	0	-	12.9			
HCM Lane LOS		В	A	A	-	A	A	-	В			

HCM 2010 AWSC 7: Breezehill & Laurel 951 Gladstone & 145 Loretta Existing - AM Peak Hour

Intersection	7.5											
Intersection Delay, s/veh Intersection LOS	7.5 A											
Intersection LOS	A											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SB
Lane Configurations		ф,			4			\$			\$	
Traffic Vol, veh/h	11	26	10	6	8	6	11	49	10	22	31	1
Future Vol, veh/h	11	26	10	6	8	6	11	49	10	22	31	1
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.9
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	
Mvmt Flow	12	29	11	7	9	7	12	54	11	24	34	1
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	1			1			1			1		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	1			1			1			1		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	1			1			1			1		
HCM Control Delay	7.5			7.3			7.5			7.5		
HCM LOS	А			А			А			А		
Lane		NBLn1	EBLn1	WBLn1	SBLn1							
Vol Left, %		16%	23%	30%	32%							
Vol Thru, %		70%	55%	40%	45%							
Vol Right, %		14%	21%	30%	23%							
Sign Control					23%							
		Stop	Stop	Stop	23% Stop							
Traffic Vol by Lane		Stop 70	Stop 47									
Traffic Vol by Lane LT Vol				Stop	Stop							
,		70	47	Stop 20	Stop 69							
LT Vol		70 11	47 11	Stop 20 6	Stop 69 22							
LT Vol Through Vol		70 11 49	47 11 26	Stop 20 6 8	Stop 69 22 31							
LT Vol Through Vol RT Vol		70 11 49 10	47 11 26 10	Stop 20 6 8 6	Stop 69 22 31 16							
LT Vol Through Vol RT Vol Lane Flow Rate		70 11 49 10 78	47 11 26 10 52	Stop 20 6 8 6 22	Stop 69 22 31 16 77							
LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp		70 11 49 10 78 1	47 11 26 10 52 1	Stop 20 6 8 6 22 1	Stop 69 22 31 16 77 1							
LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X)		70 11 49 10 78 1 0.088	47 11 26 10 52 1 0.06	Stop 20 6 8 6 22 1 0.025	Stop 69 22 31 16 77 1 0.086							
LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd)		70 11 49 10 78 1 0.088 4.067	47 11 26 10 52 1 0.06 4.136	Stop 20 6 8 6 22 1 0.025 4.12	Stop 69 22 31 16 77 1 0.086 4.047							
LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N		70 11 49 10 78 1 0.088 4.067 Yes	47 11 26 10 52 1 0.06 4.136 Yes	Stop 20 6 8 6 22 1 0.025 4.12 Yes	Stop 69 22 31 16 77 1 0.086 4.047 Yes							
LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap		70 11 49 10 78 1 0.088 4.067 Yes 875	47 11 26 10 52 1 0.06 4.136 Yes 855	Stop 20 6 8 6 22 1 0.025 4.12 Yes 857	Stop 69 22 31 16 77 1 0.086 4.047 Yes 879							
LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time		70 11 49 10 78 1 0.088 4.067 Yes 875 2.12	47 11 26 10 52 1 0.06 4.136 Yes 855 2.212	Stop 20 6 8 6 22 1 0.025 4.12 Yes 857 2.204	Stop 69 22 31 16 77 1 0.086 4.047 Yes 879 2.101							
LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time HCM Lane V/C Ratio		70 11 49 10 78 1 0.088 4.067 Yes 875 2.12 0.089	47 11 26 10 52 1 0.06 4.136 Yes 855 2.212 0.061	Stop 20 6 8 6 22 1 0.025 4.12 Yes 857 2.204 0.026	Stop 69 22 31 16 77 1 0.086 4.047 Yes 879 2.101 0.088 300							

Synchro 11 Report Page 8

Lanes, Volumes, Timings
8: Bayswater & Gladstone

951 Gladstone & 145 Loretta Existing - AM Peak Hour

	۶	-	\mathbf{F}	*	+	*	1	1	1	1	Ļ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			\$			\$			\$	
Traffic Volume (vph)	23	174	16	14	105	35	19	106	22	50	124	37
Future Volume (vph)	23	174	16	14	105	35	19	106	22	50	124	37
Satd. Flow (prot)	0	1706	0	0	1657	0	0	1688	0	0	1673	0
Flt Permitted		0.960			0.966			0.946			0.894	
Satd. Flow (perm)	0	1641	0	0	1606	0	0	1606	0	0	1510	0
Satd. Flow (RTOR)		9			32			16			20	
Lane Group Flow (vph)	0	237	0	0	172	0	0	163	0	0	235	0
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases		2			6			8			4	
Permitted Phases	2			6			8			4		
Detector Phase	2	2		6	6		8	8		4	4	
Switch Phase												
Minimum Initial (s)	10.0	10.0		10.0	10.0		10.0	10.0		10.0	10.0	
Minimum Split (s)	22.5	22.5		22.5	22.5		22.5	22.5		22.5	22.5	
Total Split (s)	33.0	33.0		33.0	33.0		27.0	27.0		27.0	27.0	
Total Split (%)	55.0%	55.0%		55.0%	55.0%		45.0%	45.0%		45.0%	45.0%	
Yellow Time (s)	3.0	3.0		3.0	3.0		3.3	3.3		3.3	3.3	
All-Red Time (s)	2.5	2.5		2.5	2.5		2.0	2.0		2.0	2.0	
Lost Time Adjust (s)		0.0			0.0			0.0			0.0	
Total Lost Time (s)		5.5			5.5			5.3			5.3	
Lead/Lag												
Lead-Lag Optimize?												
Recall Mode	C-Max	C-Max		C-Max	C-Max		Max	Max		Max	Max	
Act Effct Green (s)		27.5			27.5			21.7			21.7	
Actuated g/C Ratio		0.46			0.46			0.36			0.36	
v/c Ratio		0.31			0.23			0.28			0.42	
Control Delay		11.3			8.9			13.8			16.0	
Queue Delay		0.0			0.0			0.0			0.0	
Total Delay		11.3			8.9			13.8			16.0	
LOS		В			А			В			В	
Approach Delay		11.3			8.9			13.8			16.0	
Approach LOS		В			A			В			В	
Queue Length 50th (m)		14.8			8.6			11.1			17.1	
Queue Length 95th (m)		27.8			18.4			22.9			33.3	
Internal Link Dist (m)		95.1			81.5			119.0			98.4	
Turn Bay Length (m)												
Base Capacity (vph)		757			753			591			558	
Starvation Cap Reductn		0			0			0			0	
Spillback Cap Reductn		0			0			0			0	
Storage Cap Reductn		0			0			0			0	
Reduced v/c Ratio		0.31			0.23			0.28			0.42	
Intersection Summary												
Cycle Length: 60												
Actuated Cycle Length: 60												
Offset: 29 (48%), Reference	ed to phase	2:EBTL a	and 6:WE	BTL, Star	of Green							
Natural Cycle: 45												
Control Type: Actuated-Cod	ordinated											

 Lanes, Volumes, Timings
 951 Gladstone & 145 Loretta

 8: Bayswater & Gladstone
 Existing - AM Peak Hour

 Maximum v/c Ratio: 0.42
 Intersection LOS: B

 Intersection Capacity Utilization 46.5%
 ICU Level of Service A

 Analysis Period (min) 15
 ICU Level of Service A

Splits and Phases: 8: Bayswater & Gladstone

Ø2 (R)	▼ 04
33 s	27 s
Ø6 (R)	≪¶_ø8
33 s	27 s

HCM 2010 TWSC 1: Breezehill & Gladstone

951 Gladstone & 145 Loretta Existing - PM Peak Hour

Intersection												
Int Delay, s/veh	1.5											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	17	189	4	6	591	27	3	0	1	28	0	23
Future Vol. veh/h	17	189	4	6	591	27	3	0	1	28	0	23
Conflicting Peds, #/hr	22	0	25	25	0	22	7	0	10	10	0	7
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-		None	-	-	None	-	-	None
Storage Length	-		-			-			-			-
Veh in Median Storage	. # -	0	-		0	-	-	0	-	-	0	
Grade, %		0			0			0			0	
Peak Hour Factor	90	90	90	90	90	90	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mymt Flow	19	210	4	7	657	30	3	0	1	31	0	26
WWIIITTIOW	13	210	4	,	037	50	5	0		51	0	20
Major/Minor	Major1			Major2			Minor1			Minor2		
Conflicting Flow All	709	0	0	239	0	0	981	998	247	969	985	701
Stage 1	103	-	0	200	0	0	275	275	247	708	708	701
Stage 2		-	-	-	-	-	706	723	-	261	277	
Critical Hdwy	4.12		-	4.12	-		7.12	6.52	6.22	7.12	6.52	6.22
Critical Hdwy Stg 1	4.12		-	4.12			6.12	5.52	0.22	6.12	5.52	0.22
Critical Hdwy Stg 2	-	-	-	-	-	-	6.12	5.52	-	6.12	5.52	-
Follow-up Hdwy	2.218	-	-	2.218	-		3.518	5.52 4.018	3.318	3.518		3.318
Pot Cap-1 Maneuver	890		-	1328	-	-	229	244	792	233	248	439
	890		-	1320	-		731	683	792	426	438	439
Stage 1 Stage 2				-	-		427	431	-	744	438 681	-
Platoon blocked, %	-		-	-			427	401	-	/44	001	-
	875			1302	-		205	227	771	221	231	429
Mov Cap-1 Maneuver Mov Cap-2 Maneuver	8/5	-	-	1302		-	205	227		221	231	429
Stage 1	-		-	-	-		205 699	653	-	408	427	
0			-			-	396	420		719	651	-
Stage 2	-		-	-			396	420	-	/19	651	
Approach	EB			WB			NB			SB		
HCM Control Delay, s	0.7			0.1			19.6			20.9		
HCM LOS							С			С		
Minor Lane/Major Mvm		VBLn1	EBL	EBT	EBR	WBL	WBT		SBLn1			
Capacity (veh/h)	IL I	251	875	EDI	EDR	1302	WDI	WBR	283			
HCM Lane V/C Ratio		0.018	0.022			0.005			0.2			
		19.6	9.2	0		7.8	0	-	20.9			
HCM Control Delay (s)								-				
HCM Lane LOS		C 0.1	A 0.1	A	-	A 0	A	-	C 0.7			
HCM 95th %tile Q(veh)												

	۶	-	\mathbf{r}	4	-	*	1	†	1	- \	Ļ	-
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SB
Lane Configurations		\$		ሻ	ţ,		<u> </u>	¢Î		۲.	¢Î,	
Traffic Volume (vph)	20	183	37	80	482	77	83	374	101	52	364	5
Future Volume (vph)	20	183	37	80	482	77	83	374	101	52	364	5
Satd. Flow (prot)	0	1663	0	1658	1671	0	1658	1633	0	1658	1661	
Flt Permitted		0.778		0.595			0.355			0.290		
Satd. Flow (perm)	0	1299	0	968	1671	0	568	1633	0	483	1661	
Satd. Flow (RTOR)					13			25				
Lane Group Flow (vph)	0	266	0	89	622	0	92	528	0	58	464	
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases		4			8			2			6	
Permitted Phases	4			8			2			6		
Detector Phase	4	4		8	8		2	2		6	6	
Switch Phase												
Minimum Initial (s)	10.0	10.0		10.0	10.0		10.0	10.0		10.0	10.0	
Minimum Split (s)	24.5	24.5		24.5	24.5		23.7	23.7		23.7	23.7	
Total Split (s)	33.0	33.0		33.0	33.0		37.0	37.0		37.0	37.0	
Total Split (%)	47.1%	47.1%		47.1%	47.1%		52.9%	52.9%		52.9%	52.9%	
Yellow Time (s)	3.0	3.0		3.0	3.0		3.3	3.3		3.3	3.3	
All-Red Time (s)	3.5	3.5		3.5	3.5		2.4	2.4		2.4	2.4	
Lost Time Adjust (s)		0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)		6.5		6.5	6.5		5.7	5.7		5.7	5.7	
Lead/Lag												
Lead-Lag Optimize?												
Recall Mode	None	None		None	None		C-Min	C-Min		C-Min	C-Min	
Act Effct Green (s)		28.4		28.4	28.4		29.4	29.4		29.4	29.4	
Actuated g/C Ratio		0.41		0.41	0.41		0.42	0.42		0.42	0.42	
v/c Ratio		0.50		0.23	0.91		0.39	0.76		0.29	0.67	
Control Delay		20.0		16.0	40.2		19.7	24.4		17.7	21.8	
Queue Delay		0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Delay		20.0		16.0	40.2		19.7	24.4		17.7	21.8	
LOS		С		В	D		В	С		В	С	
Approach Delay		20.0			37.2			23.7			21.4	
Approach LOS		С			D			С			С	
Queue Length 50th (m)		23.7		7.0	68.6		8.5	57.0		5.1	49.8	
Queue Length 95th (m)		47.8		17.5	#140.8		19.0	85.2		12.7	73.0	
Internal Link Dist (m)		300.5			149.8			122.5			139.6	
Turn Bay Length (m)				37.5			24.0			28.0		
Base Capacity (vph)		527		392	686		253	744		215	742	
Starvation Cap Reductn		0		0	0		0	0		0	0	
Spillback Cap Reductn		0		0	0		0	0		0	0	
Storage Cap Reductn		0		0	0		0	0		0	0	
Reduced v/c Ratio		0.50		0.23	0.91		0.36	0.71		0.27	0.63	
Intersection Summary												
Cycle Length: 70												
Actuated Cycle Length: 70 Offset: 40 (57%), Reference												

Synchro 11 Report Page 2

Lanes, Volumes, Timings 2: Preston & Gladstone

951 Gladstone & 145 Loretta Existing - PM Peak Hour

Maximum v/c Ratio: 0.91	
Intersection Signal Delay: 27.2	Intersection LOS: C
Intersection Capacity Utilization 83.9%	ICU Level of Service E
Analysis Period (min) 15	
# 95th percentile volume exceeds capacity, queue may be le	onger.
Queue shown is maximum after two cycles.	
Splits and Phases: 2: Preston & Gladstone	

Ø2 (R)	<u></u> _04
37 s	33 s
Ø6 (R)	4 ▼ Ø8
37 s	33 c

HCM 2010 TWSC 3: Breezehill & Somerset 951 Gladstone & 145 Loretta Existing - PM Peak Hour

		_				
Intersection						
Int Delay, s/veh	1					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	ĥ			र्स	۰¥	
Traffic Vol, veh/h	316	23	19	418	19	15
Future Vol, veh/h	316	23	19	418	19	15
Conflicting Peds, #/hr	0	100	100	0	19	0
-	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length		-		-	0	-
Veh in Median Storage,	# 0			0	0	-
Grade, %	0			0	0	
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2
Mymt Flow	351	26	21	464	21	17
WWIIIt FIOW	301	20	21	404	21	- 17
Major/Minor Ma	ajor1	1	Major2		Minor1	
Conflicting Flow All	0	0	477	0	989	464
Stage 1	-	-	-	-	464	-
Stage 2	-			-	525	-
Critical Hdwy	-	-	4.12	-	6.42	6.22
Critical Hdwy Stg 1	-				5.42	-
Critical Hdwy Stg 2	-				5.42	-
Follow-up Hdwy	-		2.218			3.318
Pot Cap-1 Maneuver	-		1085	-	274	598
Stage 1			-		633	
Stage 2	-				593	-
Platoon blocked, %					000	
Mov Cap-1 Maneuver	-		1001		242	552
	-	-	1001	-	242	552
Mov Cap-2 Maneuver			-	-	242 584	-
Stage 1	-		-			
Stage 2	-	-	-	-	568	-
Approach	EB		WB		NB	
HCM Control Delay, s	0		0.4		17.7	
HCM LOS	Ū		0.1		C	
					5	
Minor Lane/Major Mvmt	1	NBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		322	-	-	1001	-
HCM Lane V/C Ratio		0.117	-	-	0.021	-
HCM Control Delay (s)		17.7	-	-	8.7	0
HCM Lane LOS		С		-	A	Α
HCM 95th %tile Q(veh)		0.4	-	-	0.1	-

HCM 2010 TWSC 6: Loretta & Gladstone

951 Gladstone & 145 Loretta Existing - PM Peak Hour

Intersection	_		_	_	_		_				_	
Int Delay, s/veh	1.5											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	9	205	4	9	593	31	15	0	6	20	2	16
Future Vol. veh/h	9	205	4	9	593	31	15	0	6	20	2	16
Conflicting Peds, #/hr	23	0	34	34	0	23	2	0	3	3	0	2
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length			-	-		-			-			-
Veh in Median Storage,	# -	0	-	-	0			0			0	-
Grade. %	-	0	-	-	0			0			0	
Peak Hour Factor	90	90	90	90	90	90	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	10	228	4	10	659	34	17	0	7	22	2	18
Major/Minor N	lajor1	_		Major2	_		Minor1	_		Minor2	_	_
Conflicting Flow All	716	0	0	266	0	0	992	1020	267	976	1005	701
Stage 1	-	-	-		-		284	284	-	719	719	-
Stage 2		-		-			708	736		257	286	
Critical Hdwy	4.12	-	-	4.12	-		7.12	6.52	6.22	7.12	6.52	6.22
Critical Hdwy Stg 1		-			-		6.12	5.52		6.12	5.52	
Critical Hdwy Stg 2	-	-	-	-	-		6.12	5.52	-	6.12	5.52	-
	2.218	-	-	2.218	-		3.518	4.018	3.318	3.518	4.018	3.318
Pot Cap-1 Maneuver	885	-	-	1298	-	-	225	237	772	230	241	439
Stage 1	-	-	-	-	-		723	676	-	420	433	
Stage 2	-	-	-	-	-	-	426	425	-	748	675	-
Platoon blocked, %		-	-		-							
Mov Cap-1 Maneuver	869	-	-	1264	-	-	204	221	750	219	225	430
Mov Cap-2 Maneuver	-	-	-	-	-	-	204	221	-	219	225	-
Stage 1	-	-	-	-	-	-	695	650	-	407	420	-
Stage 2	-	-	-	-	-	-	400	412	-	730	649	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	0.4			0.1			20.3			20.3		
HCM LOS							С			С		
Minor Lane/Major Mvmt	: N	VBLn1	EBL	EBT	EBR	WBL	WBT	WBR	SBLn1	_	_	_
Capacity (veh/h)		258	869	-	-	1264	-	-	277			
HCM Lane V/C Ratio		0.09	0.012	-	-	0.008	-	-	0.152			
HCM Control Delay (s)		20.3	9.2	0	-	7.9	0	-	20.3			
HCM Lane LOS		С	А	А	-	А	А	-	С			

HCM 2010 AWSC 7: Breezehill & Laurel 951 Gladstone & 145 Loretta Existing - PM Peak Hour

Intersection Delay, s/veh	7.4											
Intersection LOS	A											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SB
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	12	8	10	4	22	6	24	22	1	3	45	3
Future Vol, veh/h	12	8	10	4	22	6	24	22	1	3	45	3
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.9
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	
Mvmt Flow	13	9	11	4	24	7	27	24	1	3	50	3
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	1			1			1			1		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	1			1			1			1		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	1			1			1			1		
HCM Control Delay	7.3			7.4			7.5			7.3		
HCM LOS	А			А			Α			Α		
Lane		NBLn1	EBLn1	WBLn1	SBLn1							
Vol Left, %		51%	40%	12%	4%							
Vol Thru, %		47%	27%	69%	56%							
Vol Right, %		2%	33%	19%	40%							
Sign Control		Stop	Stop	Stop	Stop							
Traffic Vol by Lane		47	30	32	80							
LT Vol												
		24	12	4	3							
Through Vol		24 22	12 8	4 22	3 45							
Through Vol		22	8	22	45							
Through Vol RT Vol		22 1	8 10	22 6	45 32							
Through Vol RT Vol Lane Flow Rate		22 1 52	8 10 33	22 6 36	45 32 89							
Through Vol RT Vol Lane Flow Rate Geometry Grp		22 1 52 1	8 10 33 1	22 6 36 1	45 32 89 1							
Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X)		22 1 52 1 0.061	8 10 33 1 0.038	22 6 36 1 0.041	45 32 89 1 0.095							
Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd)		22 1 52 1 0.061 4.212	8 10 33 1 0.038 4.085	22 6 36 1 0.041 4.116	45 32 89 1 0.095 3.862							
Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N		22 1 52 1 0.061 4.212 Yes	8 10 33 1 0.038 4.085 Yes	22 6 36 1 0.041 4.116 Yes	45 32 89 1 0.095 3.862 Yes							
Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap		22 1 52 1 0.061 4.212 Yes 846	8 10 33 1 0.038 4.085 Yes 867	22 6 36 1 0.041 4.116 Yes 861	45 32 89 1 0.095 3.862 Yes 923							
Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time		22 1 52 1 0.061 4.212 Yes 846 2.26	8 10 33 1 0.038 4.085 Yes 867 2.153	22 6 36 1 0.041 4.116 Yes 861 2.183	45 32 89 1 0.095 3.862 Yes 923 1.908							
Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time HCM Lane V/C Ratio		22 1 52 1 0.061 4.212 Yes 846 2.26 0.061	8 10 33 1 0.038 4.085 Yes 867 2.153 0.038	22 6 36 1 0.041 4.116 Yes 861 2.183 0.042	45 32 89 1 0.095 3.862 Yes 923 1.908 0.096							

Synchro 11 Report Page 8

Lanes, Volumes, Timings
8: Bayswater & Gladstone

951 Gladstone & 145 Loretta Existing - PM Peak Hour

EBL 10	EBT	500									
10		EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
10	4.			\$			\$			\$	
10	147	18	74	429	114	29	182	28	35	206	34
10	147	18	74	429	114	29	182	28	35	206	34
0	1701	0	0	1661	0	0	1698	0	0	1694	0
	0.960			0.937			0.938			0.934	
0	1636	0	0	1558	0	0	1600	0	0	1589	0
	14			28			12			12	
0	194	0	0	686	0	0	265	0	0	306	0
Perm	NA		Perm	NA		Perm	NA		Perm	NA	
	2			6			8			4	
2			6			8			4		
2	2		6	6		8	8		4	4	
10.0	10.0		10.0	10.0		10.0	10.0		10.0	10.0	
22.5	22.5		22.5	22.5		22.5	22.5		22.5	22.5	
36.0	36.0		36.0	36.0		24.0	24.0		24.0	24.0	
60.0%	60.0%		60.0%	60.0%		40.0%	40.0%		40.0%	40.0%	
3.0	3.0		3.0	3.0		3.3	3.3		3.3	3.3	
2.5	2.5		2.5	2.5		2.0	2.0		2.0	2.0	
	0.0			0.0			0.0			0.0	
	5.5			5.5			5.3			5.3	
C-Max	C-Max		C-Max	C-Max		Max	Max		Max	Max	
	30.5			30.5			18.7			18.7	
	0.51			0.51			0.31			0.31	
	0.23			0.85			0.52			0.61	
	8.5			25.5			20.7			23.0	
	0.0			0.0			0.0			0.0	
	8.5			25.5			20.7			23.0	
	Α			С			С			С	
	8.5			25.5			20.7			23.0	
	Α			С			С			С	
	10.1			57.9			22.4			27.0	
	19.8			#121.1			41.7			49.3	
	95.1			81.5			119.0			98.4	
	838			805			506			503	
	0			0			0			0	
	0			0			0			0	
	0			0			0			0	
	0.23			0.85			0.52			0.61	
d to phase	2:EBTL a	and 6:WE	BTL, Starl	of Green							
rdinated											
	0 0 Perm 2 2 10.0 22.5 36.0 60.0% 3.0 2.5 C-Max	0.960 0 1636 14 0 194 Perm NA 2 2 2 2 2 2 10.0 10.0 22.5 22.5 36.0 36.0 60.0% 60.0% 3.0 3.0 2.5 2.5 0.0 5.5 C-Max C-Max 30.5 0.51 0.23 8.5 0.0 8.5 0.0 8.5 0.0 8.5 A 10.1 19.8 95.1 838 0 0 0 0 0 0 0 0 0 0 0 0 0	0.960 0 1636 0 14 0 194 0 Perm NA 2 2 2 2 2 2 2 2 10.0 10.0 22.5 22.5 36.0 36.0 60.0% 60.0% 3.0 3.0 2.5 2.5 0.0 5.5 C-Max C-Max 30.5 0.51 0.23 C-Max S.5 0.0 8.5 0.0 8.5 0.0 8.5 0.0 8.5 0.0 8.5 0.0 8.5 0.0 0.0 8.5 0.0 0.0 8.5 0.0 0.0 0.0 8.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	0.960 0 1636 0 0 14 0 194 0 0 Perm NA Perm 2 2 6 2 2 6 10.0 10.0 10.0 22.5 22.5 22.5 36.0 36.0 36.0 60.0% 60.0% 60.0% 3.0 3.0 3.0 2.5 2.5 2.5 0.0 5.5 C-Max C-Max C-Max 30.5 0.51 0.23 C-Max C-Max C-Max 30.5 0.51 0.23 C-Max S- 4 8.5 A 8.5 A 10.1 19.8 95.1 838 0 0 0 0 0 0 0 0 0 0 0 0 0	0.960 0.937 0 1636 0 0 1558 14 28 0 194 0 0 686 Perm NA Perm NA 2 6 6 2 2 6 6 2 2 6 6 10.0 10.0 10.0 10.0 10.0 22.5 22.5 22.5 22.5 36.0 36.0 60.0% 60.0% 60.0% 60.0% 3.0 3.0 2.5 2.5 2.5 2.5 2.5 5.5 0.0 .0.0 .0.0 5.5 5.5 0.0 .0.0 .0.0 0.51 0.51 0.23 0.85 .25.5 .25.5 .25.5 A CC 8.5 .25.5 .25.5 A C 8.5 .25.5 .25.5 A C .0.0 .0.0 <	0.960 0.937 0 1636 0 0 1558 0 14 28 0 194 0 0 666 0 Perm NA Perm NA 2 6 6 2 2 6 6 10.0 10.0 10.0 10.0 22.5 22.5 22.5 22.5 22.5 36.0 36.0 36.0 60.0% 60.0% 60.0% 60.0% 30.0 30.0 30.2 2.5 2.5 2.5 2.5 2.5 36.0 36.0 36.0 36.0 36.0 36.0 36.0 36.0 36.0 30.5 30.5 5.5 5.5 5	0.960 0.937 0 1636 0 0 14 28 0 0 194 0 666 0 Perm NA Perm NA Perm 2 6 6 8 2 2 6 8 10.0 10.0 10.0 10.0 22.5 22.5 22.5 22.5 36.0 36.0 36.0 24.0 60.0% 60.0% 60.0% 40.0% 3.0 3.0 3.0 3.3 2.5 2.5 2.5 2.5 3.0 3.0 3.0 3.3 2.5 2.5 2.5 2.0 0.0 0.0 0.0 3.0 3.0 3.0 3.0 3.3 2.5 2.5 2.5 2.0 0.0 0.0 0.0 0.0 0.23 0.35 0.5 0.5	0.960 0.937 0.938 0 1636 0 0 1558 0 0 1600 14 28 12 13 13 13 13 13 13 13 13 13 13 13 13 13	0.960 0.937 0.938 0 1636 0 0 1558 0 0 1600 0 14 28 12 0 14 28 12 0 0 194 0 0 666 0 0 265 0 Perm NA Perm NA Perm NA Perm NA 2 6 6 8 8 10.0 10.0 10.0 10.0 22.5 22.5 22.5 22.5 22.5 22.5 22.5 36.0 36.0 36.0 36.0 36.0 36.0 33.3 3.3 2.5 2.5 2.5 2.0 2.0 0.0	0.960 0.937 0.938 0 1600 0 0 0 1636 0 0 1558 0 0 1600 0 0 0 194 0 0 66 0 0 265 0 0 Perm NA Perm NA Perm NA Perm 2 6 6 8 4 2 2 6 6 8 4 10.0 10.0 10.0 10.0 10.0 10.0 22.5 22.5 22.5 22.5 22.5 22.5 22.5 36.0 36.0 36.0 36.0 24.0 24.0 24.0 60.0% 60.0% 60.0% 40.0% 40.0% 40.0% 30.3 3.0 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 <t< td=""><td>0.960 0.937 0.938 0.934 0.934 0 1636 0 0 1558 0 0 1600 0 0 1589 14 28 12 13 13 13 13 13 13 13 13 13 13 13 13</td></t<>	0.960 0.937 0.938 0.934 0.934 0 1636 0 0 1558 0 0 1600 0 0 1589 14 28 12 13 13 13 13 13 13 13 13 13 13 13 13

 Lanes, Volumes, Timings
 951 Gladstone & 145 Loretta

 8: Bayswater & Gladstone
 Existing - PM Peak Hour

 Maximum v/c Ratio: 0.85
 Intersection LOS: C

Intersection Capacity Utilization 84.1% ICU Level of Service E Analysis Period (min) 15 # 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

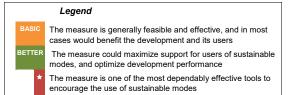
Splits and Phases: 8: Bayswater & Gladstone

Ø2 (R)		₽ Ø4		
36 s		24 s		
€ Ø6 (R)		1 Ø8		
36 s		24 s		

Synchro 11 Report Page 12

Collision Data

Anom ID	Accident Date Accident T Location	Geo ID Accident Location	Cassification of Accide	nt Initial Impact Type	Environment Q	nglight Road Surface Conc	tit Traffic Control	Traffic Control Con	d No of Vehicles	No of Bicycles No of Motorcy	No of Pedestrians	Max Iniu	No of Iniu No o	No of It	No of No of X	Y	Latitude	ongitude O	piectId
16-10248	2016-10-02 1:33 PM BAYSWATER AVE @ GLADSTONE AVE (0006164)	6164 02 - Intersection related	02 - Non-fatal injury	03 - Rear end	02 - Rain	01 - Daylight 02 - Wet	01 - Traffic signal		2	0		02 - Minor		1			77 45.40256		389
16-11753	2016-11-12 6:01 PM BAYSWATER AVE (© GLADSTONE AVE (0006164)	6164 02 - Intersection related	03 - P.D. only	03 - Rear end	01 - Clear	07 - Dark 01 - Dry	01 - Traffic signal		2	0	0 0	2	0				81 45.40259		1764
166478	2016-06-14 5:42 PM BAYSWATER AVE @ GLADSTONE AVE (0006164)	6164 02 - Intersection related	03 - P.D. only	03 - Rear end	01 - Clear	01 - Daylight 01 - Dry	01 - Traffic signal		2	0	0 0)	0		361	001.8 50294	79 45.402576	-75.7182165	10663
17-10464	2017-10-14 12:20 PM BAYSWATER AVE @ GLADSTONE AVE (0006164)	6164 03 - At intersection	03 - P.D. only	05 - Turning movement	01 - Clear	01 - Daylight 02 - Wet	01 - Traffic signal	01 - Functioning	2	0	0 0)	0		361	001.7 50294	78 45.402568	-75.7182189	271
17-12510	2017-11-28 7:06 PM BAYSWATER AVE @ GLADSTONE AVE (0006164)	6164 02 - Intersection related	02 - Non-fatal injury	03 - Rear end	01 - Clear	07 - Dark 01 - Dry	01 - Traffic signal		3	0	0 0	0 01 - Minin	1 1		361	001.7 50294	80 45.402584	-75.7182179	2606
17-1798	2017-02-12 1:39 PM BAYSWATER AVE (# GLADSTONE AVE (0006164)	6164 03 - At intersection	03 - P.D. only	02 - Angle	03 - Snow	01 - Davlight 03 - Loose snow	01 - Traffic signal		2	0	0 0		0				79 45.402575		5525
178459	2017-08-21 1:29 PM BAYSWATER AVE (# GLADSTONE AVE (0006164)	6164 03 - At intersection	03 - P.D. only	05 - Turning movement		01 - Daylight 01 - Dry	01 - Traffic signal		2		0 0		0				80 45.402578		12411
18-5291	2018-05-16 6:10 PM BAYSWATER AVE @ GLADSTONE AVE (0006164)	6164 03 - At intersection	03 - P.D. only	02 - Angle	01 - Clear	01 - Daylight 01 - Dry	01 - Traffic signal		2	0	0 0		0				80 45.402578		9109
19-12278	2019-10-10 8:47 AM BAYSWATER AVE @ GLADSTONE AVE (0006164)	6164 03 - At intersection	03 - P.D. only	05 - Turning movement		01 - Daylight 01 - Dry	01 - Traffic signal		2	0	0 0	í.	0				80 45.40258		2433
19-12867	2019-10-24 4:42 PM BAYSWATER AVE @ GLADSTONE AVE (0006164)	6164 03 - At intersection	02 - Non-fatal injury	07 - SMV other	01 - Clear	01 - Davlight 01 - Dry	01 - Traffic signal				0 0	, L 01 - Minin	1 1				80 45.402579		3853
19-2759	2019-10-24 4-42 PM BATSWATER AVE @ GLADSTORE AVE (0006164) 2019-02-14 7:19 PM BAYSWATER AVE @ GLADSTORE AVE (0006164)	6164 03 - At Intersection	02 - Non-fatal injury	07 - SMV other	01 - Clear	07 - Dark 05 - Packed snow	01 - Traffic signal					L 02 - Minor					80 45.402579		8818
19-938	2019-02-14 7.15 PM BAYSWATER AVE (# GLADSTONE AVE (0006164) 2019-01-18 9:50 AM BAYSWATER AVE (# GLADSTONE AVE (0006164)	6164 03 - At intersection	03 - P.D. only	02 - Angle	03 - Snow	01 - Davlight 03 - Loose snow	01 - Traffic signal		2	0	0 0		0	1			80 45.402578		15137
20-332				02 - Angle					2	0	0 0		0						2034
20332	2020-01-09 1:06 PM BAYSWATER AVE @ GLADSTONE AVE (0006164) 2020-11-03 1:37 PM BAYSWATER AVE @ GLADSTONE AVE (0006164)	6164 03 - At intersection 6164 03 - At intersection	03 - P.D. only 02 - Non-fatal injury	02 - Angle 02 - Angle	01 - Clear 01 - Clear	01 - Daylight 01 - Dry 01 - Daylight 01 - Dry	01 - Traffic signal 01 - Traffic signal		2	0	0 0) 02 - Minor	0				80 45.402578 80 45.402578		2034
								01 - Functioning	2	U	0 0		1	1					
1610156	2016-09-29 Unknown BREEZEHILL AVE N btwn SOMERSET ST W & LAUREL ST (3ZAAIA)	3ZAAIA 01 - Non intersection	03 - P.D. only	06 - SMV unattended ve		00 - Unknown 01 - Dry	10 - No control		1	U			U				40 45.404921		887
1612776	2016-12-07 3:25 PM BREEZEHILL AVE @ GLADSTONE AVE (0006286)	6286 03 - At intersection	02 - Non-fatal injury	05 - Turning movement		01 - Daylight 02 - Wet		01 - Functioning	2	0	0 0	0 01 - Minin	1 1				24 45.402968		3902
186897	2018-06-28 4:27 PM BREEZEHILL AVE @ GLADSTONE AVE (0006286)	6286 03 - At intersection	03 - P.D. only	02 - Angle	01 - Clear	01 - Daylight 01 - Dry		01 - Functioning	2	0	0 0)	0				24 45.402966		11793
197449	2019-06-14 11:13 PM BREEZEHILL AVE @ GLADSTONE AVE (0006286)	6286 03 - At intersection	03 - P.D. only	02 - Angle	01 - Clear	07 - Dark 01 - Dry		01 - Functioning	2	0	0 0		0				24 45.402966		13624
186394	2018-06-15 10:14 PM GLADSTONE AVE @ LORETTA AVE (0005092)	5092 03 - At intersection	02 - Non-fatal injury	07 - SMV other	01 - Clear	07 - Dark 01 - Dry		01 - Functioning	1	0		1 01 - Minin					68 45.403353		10928
161852	2016-02-12 5:40 PM GLADSTONE AVE @ PRESTON ST (0002212)	2212 02 - Intersection related	03 - P.D. only	03 - Rear end	03 - Snow	05 - Dusk 03 - Loose snow	01 - Traffic signal		2	0	0 0		0				13 45.404634		4507
163967	2016-04-01 6:23 AM GLADSTONE AVE @ PRESTON ST (0002212)	2212 03 - At intersection	02 - Non-fatal injury	07 - SMV other	01 - Clear	03 - Dawn 02 - Wet	01 - Traffic signal		1	0		1 02 - Minor		1			12 45.404631		7133
167075	2016-06-29 9:45 AM GLADSTONE AVE @ PRESTON ST (0002212)	2212 02 - Intersection related	03 - P.D. only	07 - SMV other	01 - Clear	01 - Daylight 01 - Dry	01 - Traffic signal	01 - Functioning	1	0	0 0)	0		366	490.2 50297	13 45.404634	-75.7119499	10192
167984	2016-07-26 3:25 PM GLADSTONE AVE @ PRESTON ST (0002212)	2212 02 - Intersection related	02 - Non-fatal injury	07 - SMV other	01 - Clear	01 - Daylight 01 - Dry	01 - Traffic signal	01 - Functioning	1	0	0 1	L 03 - Major	1		1 364	489.5 50297	13 45.404636	-75.7119587	11863
168456	2016-08-10 9:45 AM GLADSTONE AVE @ PRESTON ST (0002212)	2212 03 - At intersection	02 - Non-fatal injury	03 - Rear end	01 - Clear	01 - Daylight 01 - Dry	01 - Traffic signal	01 - Functioning	2	0		01 - Minin			361	489.5 50297	13 45.404632	-75.7119587	12352
168418	2016-08-09 6:13 PM GLADSTONE AVE @ PRESTON ST (0002212)	2212 02 - Intersection related	02 - Non-fatal injury	05 - Turning movement	01 - Clear	01 - Daylight 01 - Dry	01 - Traffic signal	01 - Functioning	2	1	0 0	02 - Minor	1	1	361	489.5 50297	13 45.404632	-75.7119587	12812
1710763	2017-10-23 2:18 PM GLADSTONE AVE @ PRESTON ST (0002212)	2212 02 - Intersection related	03 - P.D. only	02 - Angle	01 - Clear	01 - Daylight 01 - Dry	01 - Traffic signal	00 - Unknown	2	0	0 0)	0		361	489.7 50297	12 45.40463	-75.7119559	606
1714172	2017-12-27 9:15 AM GLADSTONE AVE @ PRESTON ST (0002212)	2212 03 - At intersection	03 - P.D. only	05 - Turning movement	03 - Snow	01 - Daylight 06 - Ice	01 - Traffic signal	01 - Functioning	2	0	0 0)	0		366	489.9 50297	13 45.404634	-75.7119528	4504
18-11703	2018-11-05 5:14 PM GLADSTONE AVE @ PRESTON ST (0002212)	2212 03 - At intersection	02 - Non-fatal injury	07 - SMV other	02 - Rain	07 - Dark 02 - Wet	01 - Traffic signal	01 - Functioning	1	0	0 1	01 - Minin	1 1		361	489.7 50297	13 45.404632	-75.7119558	1310
183956	2018-04-04 2:25 PM GLADSTONE AVE @ PRESTON ST (0002212)	2212 03 - At intersection	02 - Non-fatal injury	07 - SMV other	01 - Clear	01 - Daylight 01 - Dry	01 - Traffic signal	01 - Functioning	1	0	0 1	01 - Minin	1 1		361	489.4 50297	12 45.404626	-75.7119604	7022
18596	2018-01-10 2:37 PM GLADSTONE AVE @ PRESTON ST (0002212)	2212 03 - At intersection	03 - P.D. only	03 - Rear end	01 - Clear	01 - Daylight 04 - Slush	01 - Traffic signal		2	0	0 0	2	0				13 45.404632		10256
186961	2018-06-29 7:26 AM GLADSTONE AVE @ PRESTON ST (0002212)	2212 03 - At intersection	02 - Non-fatal injury	05 - Turning movement	01 - Clear	01 - Davlight 01 - Dry	01 - Traffic signal		2	0	0 0	0 01 - Minin	1 1				13 45.404632		11461
19-13168	2019-10-31 2:38 PM GLADSTONE AVE @ PRESTON ST (0002212)	2212 02 - Intersection related	03 - P.D. only	04 - Sideswipe	02 - Rain	01 - Daylight 02 - Wet	01 - Traffic signal		2	0	0 0		0				13 45.404632		3397
191537	2019-01-25 8:27 AM GLADSTONE AVE @ PRESTON ST (0002212)	2212 02 - Intersection related	03 - P.D. only	03 - Rear end	01 - Clear	01 - Davlight 04 - Slush	01 - Traffic signal		2	0	0 0	1	0				13 45.404631		5615
19-1581	2019-01-26 5:34 PM GLADSTONE AVE @ PRESTON ST (0002212)	2212 02 - Intersection related	03 - P.D. only	03 - Rear end	03 - Snow	05 - Dusk 06 - Ice	01 - Traffic signal		2	0	0 0		0				13 45.404632		6290
197012	2019-06-03 9:04 AM GLADSTONE AVE @ PRESTON ST (0002212)	2212 02 - Intersection related	03 - P.D. only	04 - Sideswipe	01 - Clear	01 - Daylight 01 - Dry	01 - Traffic signal		2		0 0						12 45.40463		13830
20-16	2020-01-01 6:00 PM GLADSTONE AVE @ PRESTON ST (0002212)	2212 03 - At intersection	03 - P.D. only	02 - Angle	01 - Clear	07 - Dark 02 - Wet	01 - Traffic signal		2	0	0 0		0				13 45.404632		424
20-3408	2020-03-06 7:32 AM GLADSTONE AVE @ PRESTON ST (0002212)	2212 02 - Intersection related	02 - Non-fatal injury	03 - Rear end	03 - Snow	01 - Daylight 04 - Slush	01 - Traffic signal		2	0		, 0 01 - Minin					13 45.404632		2843
205581	2020-07-15 9:01 PM GLADSTONE AVE @ PRESTON ST (0002212)	2212 02 - Intersection reated	02 - Non-fatal injury	05 - Turning movement		05 - Dusk 01 - Dry	01 - Traffic signal		2			01 - Maior					13 45.404632		5753
19-9701	2019-08-10 4:41 PM GLADSTONE AVE btwn BAYSWATER AVE & BREEZEHILL AVE N (3ZA3Z9)	3ZA3Z9 01 - Non intersection	03 - P.D. only	99 - Other	01 - Clear	01 - Daylight 01 - Dry	10 - No control	or - Punctioning	2	-	0 0	o os - iviajoi	1				19 45.402926		16207
205307	2020-07-03 3:35 PM GLADSTONE AVE blwn BAYSWATER AVE & BREEZEHILL AVE N (3ZA329)	3ZA3Z9 01 • Non intersection	03 - P.D. only	03 - Rear end	01 - Clear	01 - Daylight 01 - Dry	10 - No control		2	0	0 0		0				13 45.402869		4474
20-2736	2020-02-22 10:21 AM GLADSTONE AVE blwn BREEZEHILL AVE N & LORETTA AVE N (32A32D)		03 - P.D. only	99 - Other	01 - Clear		10 - No control		2		0 0	,	0				65 45.403328		1704
		3ZA3ZD 01 - Non intersection				01 - Daylight 01 - Dry			2	U	0 0	,	U						
18-12366	2018-11-17 6:30 PM GLADSTONE AVE btwn LORETTA AVE N & PRESTON ST (3ZA31H)	3ZA31H 01 - Non intersection	03 - P.D. only	04 - Sideswipe	01 - Clear	07 - Dark 02 - Wet	10 - No control		2	0	0 0	,	0				80 45.404347		2751
18-2157	2018-02-10 7:11 PM GLADSTONE AVE btwn LORETTA AVE N & PRESTON ST (3ZA31H)	3ZA31H 01 - Non intersection	03 - P.D. only	01 - Approaching	03 - Snow	07 - Dark 03 - Loose snow	10 - No control		2	U	u u	5	U				88 45.404413		5026
192702	2019-02-14 11:00 AM GLADSTONE AVE btwn LORETTA AVE N & PRESTON ST (3ZA31H)	3ZA31H 01 - Non intersection	03 - P.D. only	03 - Rear end	01 - Clear	01 - Daylight 04 - Slush	10 - No control		2	0	0 0)	0				83 45.404374		8207
192298	2019-02-05 Unknown LAUREL ST btwn BREEZEHILL AVE N & LORETTA AVE N (3ZA155)	3ZA155 01 - Non intersection	03 - P.D. only	06 - SMV unattended ve		00 - Unknown 06 - Ice	10 - No control		1	0	0 0	2	0				67 45.405156		7314
1712890	2017-12-07 3:38 PM SOMERSET ST W btwn BAYSWATER AVE & BREEZEHILL AVE N (3ZA31E)	3ZA31E 04 - At/near private drive	03 - P.D. only	02 - Angle	01 - Clear	01 - Daylight 01 - Dry	10 - No control		2	0	0 0		0				27 45.406619		3922
174984	2017-05-09 2:42 PM SOMERSET ST W btwn BAYSWATER AVE & BREEZEHILL AVE N (3ZA31E)	3ZA31E 04 - At/near private drive	03 - P.D. only	02 - Angle	01 - Clear	01 - Daylight 01 - Dry	10 - No control		2	0	0 0)	0				37 45.406702		8669
1760	2017-01-03 12:46 AM SOMERSET ST W btwn BAYSWATER AVE & BREEZEHILL AVE N (3ZA31E)	3ZA31E 04 - At/near private drive	02 - Non-fatal injury	05 - Turning movement		07 - Dark 02 - Wet	10 - No control		2	0	0 0	0 03 - Major	1				31 45.40665		9159
1814072	2018-12-19 12:34 AM SOMERSET ST W btwn BAYSWATER AVE & BREEZEHILL AVE N (3ZA31E)	3ZA31E 01 - Non intersection	03 - P.D. only	06 - SMV unattended ve		07 - Dark 01 - Dry	10 - No control		1	0	0 0)	0				21 45.406566		4561
18-469	2018-01-08 2:15 PM SOMERSET ST W btwn BAYSWATER AVE & BREEZEHILL AVE N (3ZA31E)	3ZA31E 04 - At/near private drive	02 - Non-fatal injury	02 - Angle	03 - Snow	01 - Daylight 04 - Slush	10 - No control		2	0	0 0	0 01 - Minin	1 1		365	898.8 50299	49 45.406815	-75.7194746	8136
19299	2019-01-08 11:36 AM SOMERSET ST W btwn BAYSWATER AVE & BREEZEHILL AVE N (3ZA31E)	3ZA31E 04 - At/near private drive	03 - P.D. only	02 - Angle	01 - Clear	01 - Daylight 04 - Slush	10 - No control		2	0	0 0)	0		365	862.5 50299	33 45.406675	-75.7199393	8251
202702	2020-02-21 2:08 PM SOMERSET ST W btwn BAYSWATER AVE & BREEZEHILL AVE N (3ZA31E)	3ZA31E 04 - At/near private drive	02 - Non-fatal injury	02 - Angle	01 - Clear	01 - Daylight 01 - Dry	10 - No control		2	0	0 0	0 02 - Minor	1	1	3	55870 50299	37 45.406703	-75.7198439	1667
165138	2016-05-08 1:37 PM SOMERSET ST W btwn BREEZEHILL AVE N & PRESTON ST (3ZA32I)	3ZA32I 01 - Non intersection	02 - Non-fatal injury	04 - Sideswipe	01 - Clear	01 - Daylight 01 - Dry	10 - No control		2	1	0 0	0 01 - Minin	1 1		361	282.2 50301	17 45.408285	-75.7145557	8933
167475	2016-07-11 6:43 PM SOMERSET ST W btwn BREEZEHILL AVE N & PRESTON ST (3ZA32I)	3ZA32I 04 - At/near private drive	02 - Non-fatal injury	05 - Turning movement	01 - Clear	01 - Daylight 01 - Dry	10 - No control		2	1	0 0	0 03 - Major	1		1 364	294.5 50301	22 45.408333	-75.7143978	11453
168258	2016-08-03 9:12 AM SOMERSET ST W btwn BREEZEHILL AVE N & PRESTON ST (3ZA32I)	3ZA32I 01 - Non intersection	03 - P.D. only	04 - Sideswipe	01 - Clear	01 - Daylight 01 - Dry	10 - No control		2	0	0 0)	0		365	914.8 50299	55 45.406868	-75.7192695	12648
17-12584	2017-11-30 11:17 AM SOMERSET ST W btwn BREEZEHILL AVE N & PRESTON ST (3ZA32I)	3ZA32I 01 - Non intersection	03 - P.D. only	06 - SMV unattended ve	01 - Clear	01 - Davlight 01 - Dry	10 - No control		1	0	0 0)	0		361	232.9 50300	96 45.408103	-75.7151879	2796
176052	2017-06-08 4:42 PM SOMERSET ST W btwn BREEZEHILL AVE N & PRESTON ST (3ZA32I)	3ZA32I 01 - Non intersection	02 - Non-fatal injury	05 - Turning movement		01 - Daylight 01 - Dry	10 - No control		2	1	0 0	0 02 - Minor	1	1			69 45.407871	-75.715992	10122
17833	2017-01-20 1:01 PM SOMERSET ST W btwn BREEZEHILL AVE N & PRESTON ST (3ZA32I)	3ZA32I 04 - At/near private drive	03 - P.D. only	02 - Angle	01 - Clear	01 - Daylight 02 - Wet	10 - No control		2	0	0 0		0				85 45.408007		12558
18-6971	2018-06-30 10:02 AM SOMERSET ST W blwn BREEZEHILL AVE N & PRESTON ST (3ZA32I)	3ZA32I 01 - Non intersection	02 - Non-fatal injury	05 - Turning movement		01 - Davlight 01 - Dry	10 - No control		2	0		, 0 01 - Minin					60 45.406905		11472
18-8698	2018-08-22 2:20 PM SOMERSET ST W btwn BREEZEHILL AVE N & PRESTON ST (3ZA321 01 - Non intersection	02 - Non-fatal injury	04 - Sideswipe	01 - Clear	01 - Daylight 01 - Dry	10 - No control		2	1		01 - Maior	1 1				48 45.407678		13186
18-968	2018-01-17 6:10 PM SOMERSET ST W blwn BREEZEHILL AVE N & PRESTON ST (3ZA32I)		03 - P.D. only	02 - Angle	01 - Clear	07 - Dark 02 - Wet	10 - No control		2		0 0	n os - iviajoi	-				98 45.408124		14386
19-11004	2019-09-12 11:15 AM SOMERSET ST W blwn BREEZEHILL AVE N & PRESTON ST (3ZA321 04 - At/near private drive	03 - P.D. only	02 - Angle	01 - Clear	01 - Daylight 01 - Dry	10 - No control		2	0	0 0		0				89 45.408046		14580
19-9075	2019-07-24 5:28 PM SOMERSET ST W btwn BREEZEHILL AVE N & PRESTON ST (02 - Non-fatal injury	05 - Turning movement		01 - Daylight 01 - Dry	10 - No control		2) 02 - Minor					86 45.408016		15727
19-90/5	2012-07-24 3.26 FM SUMERSELST W DIWI DREEZENILLAVE N & PRESION ST [_32A321]		oz - wom-ratal injury	us - running movement	or - crear	or - payigne or - pry	10 - No control		2	1	0 0	7 02 - Minol	1	1	301	212.5 50300	45.408016	*/5./134525	15/2/


TDM Checklist

City of Ottawa

TDM Measures Checklist:

Non-Residential Developments (office, institutional, retail or industrial)

	TDM	measures: Non-residential developments	Check if proposed & add descriptions
	1.	TDM PROGRAM MANAGEMENT	
	1.1	Program coordinator	
BASIC 🖈	1.1.1	Designate an internal coordinator, or contract with an external coordinator	\bigtriangledown
	1.2	Travel surveys	
BETTER	1.2.1	Conduct periodic surveys to identify travel-related behaviours, attitudes, challenges and solutions, and to track progress	
	2.	WALKING AND CYCLING	
	2.1	Information on walking/cycling routes & destin	ations
BASIC	2.1.1	Display local area maps with walking/cycling access routes and key destinations at major entrances	Δ
	2.2	Bicycle skills training	
		Commuter travel	
BETTER 🖈	2.2.1	Offer on-site cycling courses for commuters, or subsidize off-site courses	
	2.3	Valet bike parking	
		Visitor travel	
BETTER	2.3.1	Offer secure valet bike parking during public events when demand exceeds fixed supply (e.g. for festivals, concerts, games)	

TDM Measures Checklist

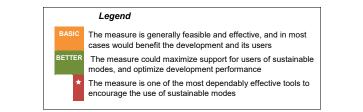
Version 1.0 (30 June 2017)

	TDM	measures: Non-residential developments	Check if proposed & add descriptions
	3.	TRANSIT	
	3.1	Transit information	
BASIC	3.1.1	Display relevant transit schedules and route maps at entrances	\square
BASIC	3.1.2	Provide online links to OC Transpo and STO information	\bigtriangledown
BETTER	3.1.3	Provide real-time arrival information display at entrances	
	3.2	Transit fare incentives	
		Commuter travel	
BETTER	3.2.1	Offer preloaded PRESTO cards to encourage commuters to use transit	\checkmark
BETTER ★	3.2.2	Subsidize or reimburse monthly transit pass purchases by employees	
		Visitor travel	
BETTER	3.2.3	Arrange inclusion of same-day transit fare in price of tickets (e.g. for festivals, concerts, games)	
	3.3	Enhanced public transit service	
		Commuter travel	
BETTER	3.3.1	Contract with OC Transpo to provide enhanced transit services (e.g. for shift changes, weekends)	
		Visitor travel	
BETTER	3.3.2	Contract with OC Transpo to provide enhanced transit services (e.g. for festivals, concerts, games)	
	3.4	Private transit service	
		Commuter travel	
BETTER	3.4.1	Provide shuttle service when OC Transpo cannot offer sufficient quality or capacity to serve demand (e.g. for shift changes, weekends)	
		Visitor travel	
BETTER	3.4.2	Provide shuttle service when OC Transpo cannot offer sufficient quality or capacity to serve demand (e.g. for festivals, concerts, games)	

City of Ottawa

	TDM	measures: Non-residential developments	Check if proposed & add descriptions
	4.	RIDESHARING	
	4.1	Ridematching service	
		Commuter travel	
BASIC ★	4.1.1	Provide a dedicated ridematching portal at OttawaRideMatch.com	
	4.2	Carpool parking price incentives	
		Commuter travel	
BETTER	4.2.1	Provide discounts on parking costs for registered carpools	
	4.3	Vanpool service	
		Commuter travel	
BETTER	4.3.1	Provide a vanpooling service for long-distance commuters	
	5.	CARSHARING & BIKESHARING	
	5.1	Bikeshare stations & memberships	
BETTER	5.1.1	Contract with provider to install on-site bikeshare station for use by commuters and visitors	$\overline{\mathbf{A}}$
		Commuter travel	
BETTER	5.1.2	Provide employees with bikeshare memberships for local business travel	
	5.2	Carshare vehicles & memberships	
		Commuter travel	
BETTER	5.2.1	Contract with provider to install on-site carshare vehicles and promote their use by tenants	Ø
BETTER	5.2.2	Provide employees with carshare memberships for local business travel	
	6.	PARKING	
	6.1	Priced parking	
		Commuter travel	
BASIC ★	6.1.1	Charge for long-term parking (daily, weekly, monthly)	
BASIC	6.1.2	Unbundle parking cost from lease rates at multi-tenant sites	
		Visitor travel	
BETTER	6.1.3	Charge for short-term parking (hourly)	\square

TDM Measures Checklist


Version 1.0 (30 June 2017)

	TDM	measures: Non-residential developments	Check if proposed & add descriptions
	7.	TDM MARKETING & COMMUNICATIONS	
	7.1	Multimodal travel information	
		Commuter travel	
BASIC ★	7.1.1	Provide a multimodal travel option information package to new/relocating employees and students	\checkmark
		Visitor travel	
BETTER ★	7.1.2	Include multimodal travel option information in invitations or advertising that attract visitors or customers (e.g. for festivals, concerts, games)	
	7.2	Personalized trip planning	
		Commuter travel	
BETTER ★	7.2.1	Offer personalized trip planning to new/relocating employees	
	7.3	Promotions	
		Commuter travel	
BETTER	7.3.1	Deliver promotions and incentives to maintain awareness, build understanding, and encourage trial of sustainable modes	
	8.	OTHER INCENTIVES & AMENITIES	
	8.1	Emergency ride home	
		Commuter travel	
BETTER ★	8.1.1	Provide emergency ride home service to non-driving commuters	
	8.2	Alternative work arrangements	
		Commuter travel	
BASIC ★	8.2.1	Encourage flexible work hours	
BETTER	8.2.2	Encourage compressed workweeks	
BETTER ★	8.2.3	Encourage telework	
	8.3	Local business travel options	
		Commuter travel	
BASIC ★	8.3.1	Provide local business travel options that minimize the need for employees to bring a personal car to work	
	8.4	Commuter incentives	
		Commuter travel	
BETTER	8.4.1	Offer employees a taxable, mode-neutral commuting allowance	
	8.5	On-site amenities	
		Commuter travel	
BETTER	8.5.1	Provide on-site amenities/services to minimize mid-day or mid-commute errands	

City of Ottawa

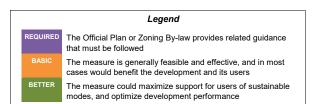
TDM Measures Checklist:

Residential Developments (multi-family, condominium or subdivision)

	TDM	measures: Residential developments	Check if proposed & add descriptions
	1.	TDM PROGRAM MANAGEMENT	
	1.1	Program coordinator	
BASIC ★	1.1.1	Designate an internal coordinator, or contract with an external coordinator	\checkmark
	1.2	Travel surveys	
BETTER	1.2.1	Conduct periodic surveys to identify travel-related behaviours, attitudes, challenges and solutions, and to track progress	\bigtriangledown
	2.	WALKING AND CYCLING	
	2.1	Information on walking/cycling routes & des	tinations
BASIC	2.1.1	Display local area maps with walking/cycling access routes and key destinations at major entrances (multi-family, condominium)	\checkmark
	2.2	Bicycle skills training	
BETTER	2.2.1	Offer on-site cycling courses for residents, or subsidize off-site courses	

TDM Measures Checklist Version 1.0 (30 June 2017)

TDM measures: Residential developments			Check if proposed & add descriptions
	3.	TRANSIT	
	3.1	Transit information	
BASIC	3.1.1	Display relevant transit schedules and route maps at entrances (multi-family, condominium)	\bigtriangledown
ETTER	3.1.2	Provide real-time arrival information display at entrances (<i>multi-family, condominium</i>)	
	3.2	Transit fare incentives	
BASIC ★	3.2.1	Offer PRESTO cards preloaded with one monthly transit pass on residence purchase/move-in, to encourage residents to use transit	
ETTER	3.2.2	Offer at least one year of free monthly transit passes on residence purchase/move-in	\checkmark
	3.3	Enhanced public transit service	
etter ★	3.3.1	Contract with OC Transpo to provide early transit services until regular services are warranted by occupancy levels (<i>subdivision</i>)	
	3.4	Private transit service	
ETTER	3.4.1	Provide shuttle service for seniors homes or lifestyle communities (e.g. scheduled mall or supermarket runs)	
	4.	CARSHARING & BIKESHARING	
	4.1	Bikeshare stations & memberships	
ETTER	4.1.1	Contract with provider to install on-site bikeshare station (<i>multi-family</i>)	\checkmark
ETTER	4.1.2	Provide residents with bikeshare memberships, either free or subsidized (multi-family)	
	4.2	Carshare vehicles & memberships	
ETTER	4.2.1	Contract with provider to install on-site carshare vehicles and promote their use by residents	\checkmark
ETTER	4.2.2	Provide residents with carshare memberships, either free or subsidized	
	5.	PARKING	
	5.1	Priced parking	
BASIC ★	5.1.1	Unbundle parking cost from purchase price (condominium)	\checkmark
BASIC ★	5.1.2	Unbundle parking cost from monthly rent	\square


City of Ottawa

	TDM	measures: Residential developments	Check if proposed & add descriptions
e	6.	TDM MARKETING & COMMUNICATIONS	6
e	6.1	Multimodal travel information	
BASIC ★ 6	5.1.1	Provide a multimodal travel option information package to new residents	
e	6.2	Personalized trip planning	
BETTER ★ 6	5.2.1	Offer personalized trip planning to new residents	

TDM-Supportive Development Design and Infrastructure Checklist Version 1.0 (30 June 2017)

City of Ottawa

TDM-Supportive Development Design and Infrastructure Checklist: *Non-Residential Developments (office, institutional, retail or industrial)*

	TDM-s	upportive design & infrastructure measures: Non-residential developments	Check if completed & add descriptions, explanations or plan/drawing references
	1.	WALKING & CYCLING: ROUTES	
	1.1	Building location & access points	
BASIC	1.1.1	Locate building close to the street, and do not locate parking areas between the street and building entrances	\checkmark
BASIC	1.1.2	Locate building entrances in order to minimize walking distances to sidewalks and transit stops/stations	\checkmark
BASIC	1.1.3	Locate building doors and windows to ensure visibility of pedestrians from the building, for their security and comfort	\checkmark
	1.2	Facilities for walking & cycling	
EQUIRED	1.2.1	Provide convenient, direct access to stations or major stops along rapid transit routes within 600 metres; minimize walking distances from buildings to rapid transit; provide pedestrian-friendly, weather-protected (where possible) environment between rapid transit accesses and building entrances; ensure quality linkages from sidewalks through building entrances to integrated stops/stations (see Official Plan policy 4.3.3)	Ø
EQUIRED	1.2.2	Provide safe, direct and attractive pedestrian access from public sidewalks to building entrances through such measures as: reducing distances between public sidewalks and major building entrances; providing walkways from public streets to major building entrances; within a site, providing walkways along the front of adjoining buildings, between adjacent buildings, and connecting areas where people may congregate, such as courtyards and transit stops; and providing weather protection through canopies, colonnades, and other design elements wherever possible (see Official <i>Plan policy 4.3.12</i>)	Ø

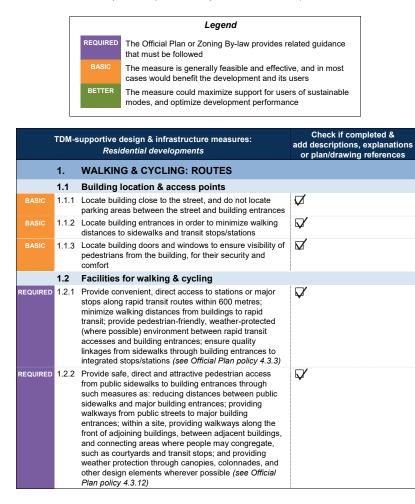
TDM-Supportive Development Design and Infrastructure Checklist Version 1.0 (30 June 2017)

City of Ottawa

	TDM-s	upportive design & infrastructure measures: Non-residential developments	Check if completed & add descriptions, explanations or plan/drawing references
REQUIRED	1.2.3	Provide sidewalks of smooth, well-drained walking surfaces of contrasting materials or treatments to differentiate pedestrian areas from vehicle areas, and provide marked pedestrian crosswalks at intersection sidewalks (see Official Plan policy 4.3.10)	Ø
REQUIRED	1.2.4	Make sidewalks and open space areas easily accessible through features such as gradual grade transition, depressed curbs at street corners and convenient access to extra-wide parking spaces and ramps (see Official Plan policy 4.3.10)	
REQUIRED	1.2.5	Include adequately spaced inter-block/street cycling and pedestrian connections to facilitate travel by active transportation. Provide links to the existing or planned network of public sidewalks, multi-use pathways and on-road cycle routes. Where public sidewalks and multi-use pathways intersect with roads, consider providing traffic control devices to give priority to cyclists and pedestrians (see Official Plan policy 4.3.11)	Ø
BASIC	1.2.6	Provide safe, direct and attractive walking routes from building entrances to nearby transit stops	\checkmark
BASIC	1.2.7	Ensure that walking routes to transit stops are secure, visible, lighted, shaded and wind-protected wherever possible	\checkmark
BASIC	1.2.8	Design roads used for access or circulation by cyclists using a target operating speed of no more than 30 km/h, or provide a separated cycling facility	
	1.3	Amenities for walking & cycling	
BASIC	1.3.1	Provide lighting, landscaping and benches along walking and cycling routes between building entrances and streets, sidewalks and trails	\checkmark
BASIC	1.3.2	Provide wayfinding signage for site access (where required, e.g. when multiple buildings or entrances exist) and egress (where warranted, such as when directions to reach transit stops/stations, trails or other common destinations are not obvious)	Ø

TDM-Supportive Development Design and Infrastructure Checklist Version 1.0 (30 June 2017)

	TDM-s	upportive design & infrastructure measures: Non-residential developments	Check if completed & add descriptions, explanations or plan/drawing references
	2.	WALKING & CYCLING: END-OF-TRIP FACILI	TIES
	2.1	Bicycle parking	
EQUIRED	2.1.1	Provide bicycle parking in highly visible and lighted areas, sheltered from the weather wherever possible (see Official Plan policy 4.3.6)	\bigtriangledown
EQUIRED	2.1.2	Provide the number of bicycle parking spaces specified for various land uses in different parts of Ottawa; provide convenient access to main entrances or well- used areas (see Zoning By-law Section 111)	\bigtriangledown
EQUIRED	2.1.3	Ensure that bicycle parking spaces and access aisles meet minimum dimensions; that no more than 50% of spaces are vertical spaces; and that parking racks are securely anchored (see Zoning By-law Section 111)	\bigtriangledown
BASIC	2.1.4	Provide bicycle parking spaces equivalent to the expected number of commuter cyclists (assuming the cycling mode share target is met), plus the expected peak number of customer/visitor cyclists	
BETTER	2.1.5	Provide bicycle parking spaces equivalent to the expected number of commuter and customer/visitor cyclists, plus an additional buffer (e.g. 25 percent extra) to encourage other cyclists and encure adequate capacity in peak cycling season	
	2.2	Secure bicycle parking	
EQUIRED	2.2.1	Where more than 50 bicycle parking spaces are provided for a single office building, locate at least 25% of spaces within a building/structure, a secure area (e.g. supervised parking lot or enclosure) or bicycle lockers (see Zoning By-law Section 111)	
BETTER	2.2.2	Provide secure bicycle parking spaces equivalent to the expected number of commuter cyclists (assuming the cycling mode share target is met)	
	2.3	Shower & change facilities	
BASIC	2.3.1	Provide shower and change facilities for the use of active commuters	
BETTER	2.3.2	In addition to shower and change facilities, provide dedicated lockers, grooming stations, drying racks and laundry facilities for the use of active commuters	
	2.4	Bicycle repair station	
BETTER	2.4.1	Provide a permanent bike repair station, with commonly used tools and an air pump, adjacent to the main bicycle parking area (or secure bicycle parking area, if provided)	\checkmark


TDM-Supportive Development Design and Infrastructure Checklist Version 1.0 (30 June 2017)

	TDM-s	upportive design & infrastructure measures: Non-residential developments	Check if completed & add descriptions, explanations or plan/drawing references
	3.	TRANSIT	
	3.1	Customer amenities	
BASIC	3.1.1	Provide shelters, lighting and benches at any on-site transit stops	
BASIC	3.1.2	Where the site abuts an off-site transit stop and insufficient space exists for a transit shelter in the public right-of-way, protect land for a shelter and/or install a shelter	
BETTER	3.1.3	Provide a secure and comfortable interior waiting area by integrating any on-site transit stops into the building	\checkmark
	4.	RIDESHARING	
	4.1	Pick-up & drop-off facilities	
BASIC	4.1.1	Provide a designated area for carpool drivers (plus taxis and ride-hailing services) to drop off or pick up passengers without using fire lanes or other no-stopping zones	
	4.2	Carpool parking	
BASIC	4.2.1	Provide signed parking spaces for carpools in a priority location close to a major building entrance, sufficient in number to accommodate the mode share target for carpools	
BETTER	4.2.2	At large developments, provide spaces for carpools in a separate, access-controlled parking area to simplify enforcement	
	5.	CARSHARING & BIKESHARING	
	5.1	Carshare parking spaces	
BETTER	5.1.1	Provide carshare parking spaces in permitted non- residential zones, occupying either required or provided parking spaces (see Zoning By-law Section 94)	\square
	5.2	Bikeshare station location	
BETTER	5.2.1	Provide a designated bikeshare station area near a major building entrance, preferably lighted and sheltered with a direct walkway connection	\checkmark

TDM-Supportive Development Design and Infrastructure Checklist Version 1.0 (30 June 2017) City of Ottawa

	TDM-s	upportive design & infrastructure measures: Non-residential developments	Check if completed & add descriptions, explanations or plan/drawing references
	6.	PARKING	
	6.1	Number of parking spaces	
REQUIRED	6.1.1	Do not provide more parking than permitted by zoning, nor less than required by zoning, unless a variance is being applied for	\square
BASIC	6.1.2	Provide parking for long-term and short-term users that is consistent with mode share targets, considering the potential for visitors to use off-site public parking	
BASIC	6.1.3	Where a site features more than one use, provide shared parking and reduce the cumulative number of parking spaces accordingly (see Zoning By-law Section 104)	\square
BETTER	6.1.4	Reduce the minimum number of parking spaces required by zoning by one space for each 13 square metres of gross floor area provided as shower rooms, change rooms, locker rooms and other facilities for cyclists in conjunction with bicycle parking (see Zoning By-law Section 111)	
	6.2	Separate long-term & short-term parking areas	
BETTER	6.2.1	Separate short-term and long-term parking areas using signage or physical barriers, to permit access controls and simplify enforcement (i.e. to discourage employees from parking in visitor spaces, and vice versa)	
	7.	OTHER	
	7.1	On-site amenities to minimize off-site trips	
BETTER	7.1.1	Provide on-site amenities to minimize mid-day or mid-commute errands	

TDM-Supportive Development Design and Infrastructure Checklist: *Residential Developments (multi-family or condominium)*

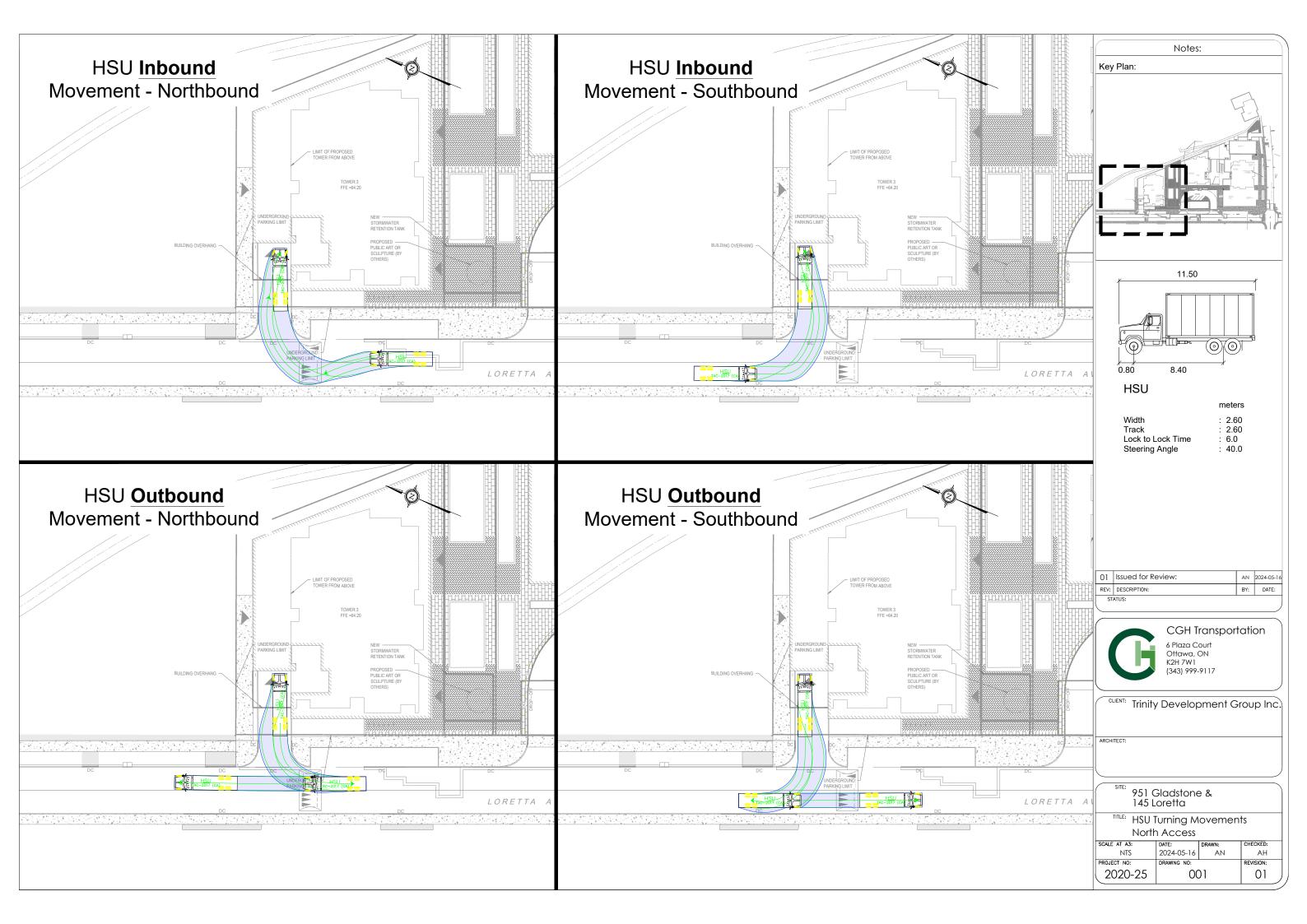
TDM-Supportive Development Design and Infrastructure Checklist Version 1.0 (30 June 2017)

	TDM-s	supportive design & infrastructure measures: Residential developments	Check if completed & add descriptions, explanations or plan/drawing references
REQUIRED	1.2.3	Provide sidewalks of smooth, well-drained walking surfaces of contrasting materials or treatments to differentiate pedestrian areas from vehicle areas, and provide marked pedestrian crosswalks at intersection sidewalks (see Official Plan policy 4.3.10)	\bigtriangledown
REQUIRED	1.2.4	Make sidewalks and open space areas easily accessible through features such as gradual grade transition, depressed curbs at street corners and convenient access to extra-wide parking spaces and ramps (see Official Plan policy 4.3.10)	\checkmark
REQUIRED	1.2.5	Include adequately spaced inter-block/street cycling and pedestrian connections to facilitate travel by active transportation. Provide links to the existing or planned network of public sidewalks, multi-use pathways and on- road cycle routes. Where public sidewalks and multi-use pathways intersect with roads, consider providing traffic control devices to give priority to cyclists and pedestrians (see Official Plan policy 4.3.11)	Ø
BASIC	1.2.6	Provide safe, direct and attractive walking routes from building entrances to nearby transit stops	\bigtriangledown
BASIC	1.2.7	Ensure that walking routes to transit stops are secure, visible, lighted, shaded and wind-protected wherever possible	\bigtriangledown
BASIC	1.2.8	Design roads used for access or circulation by cyclists using a target operating speed of no more than 30 km/h, or provide a separated cycling facility	
	1.3	Amenities for walking & cycling	•
BASIC	1.3.1	Provide lighting, landscaping and benches along walking and cycling routes between building entrances and streets, sidewalks and trails	\checkmark
BASIC	1.3.2	Provide wayfinding signage for site access (where required, e.g. when multiple buildings or entrances exist) and egress (where warranted, such as when directions to reach transit stops/stations, trails or other common destinations are not obvious)	\bigtriangledown

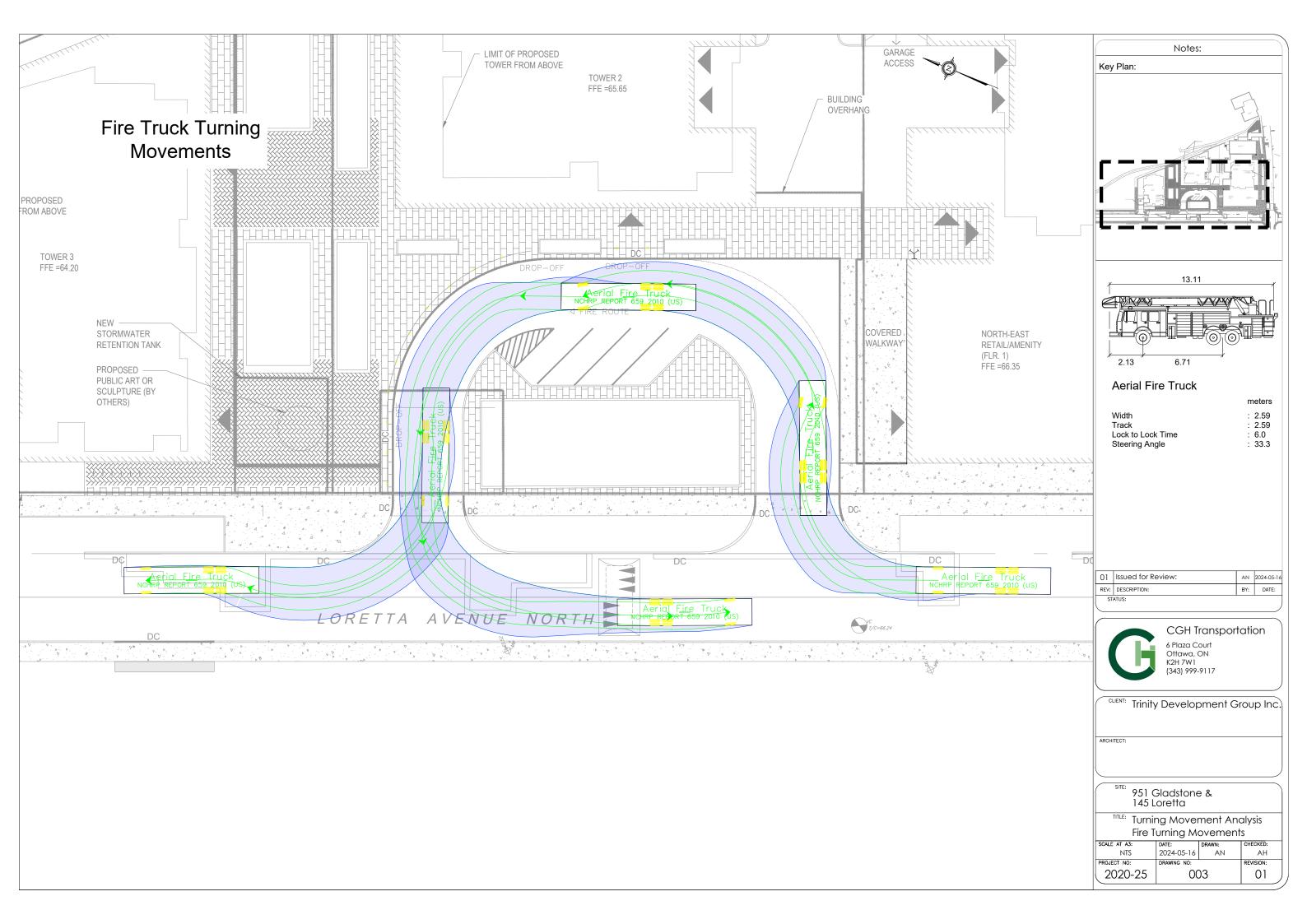
 TDM-Supportive Development Design and Infrastructure Checklist
 City of Ottawa

 Version 1.0 (30 June 2017)
 City of Ottawa

	TDM-s	upportive design & infrastructure measures: Residential developments	Check if completed & add descriptions, explanations or plan/drawing references
	2.	WALKING & CYCLING: END-OF-TRIP FACILI	TIES
	2.1	Bicycle parking	
REQUIRED	2.1.1	Provide bicycle parking in highly visible and lighted areas, sheltered from the weather wherever possible (see Official Plan policy 4.3.6)	\checkmark
REQUIRED	2.1.2	Provide the number of bicycle parking spaces specified for various land uses in different parts of Ottawa; provide convenient access to main entrances or well- used areas (see Zoning By-law Section 111)	\checkmark
REQUIRED	2.1.3	Ensure that bicycle parking spaces and access aisles meet minimum dimensions; that no more than 50% of spaces are vertical spaces; and that parking racks are securely anchored (see Zoning By-law Section 111)	\square
BASIC	2.1.4	Provide bicycle parking spaces equivalent to the expected number of resident-owned bicycles, plus the expected peak number of visitor cyclists	
	2.2	Secure bicycle parking	
REQUIRED	2.2.1	Where more than 50 bicycle parking spaces are provided for a single residential building, locate at least 25% of spaces within a building/structure, a secure area (e.g. supervised parking lot or enclosure) or bicycle lockers (see Zoning By-law Section 111)	\bigtriangledown
BETTER	2.2.2	Provide secure bicycle parking spaces equivalent to at least the number of units at condominiums or multi- family residential developments	
	2.3	Bicycle repair station	
BETTER	2.3.1	Provide a permanent bike repair station, with commonly used tools and an air pump, adjacent to the main bicycle parking area (or secure bicycle parking area, if provided)	\checkmark
	3.	TRANSIT	
	3.1	Customer amenities	
BASIC	3.1.1	Provide shelters, lighting and benches at any on-site transit stops	
BASIC	3.1.2	Where the site abuts an off-site transit stop and insufficient space exists for a transit shelter in the public right-of-way, protect land for a shelter and/or install a shelter	
BETTER	3.1.3	Provide a secure and comfortable interior waiting area by integrating any on-site transit stops into the building	\checkmark


TDM-Supportive Development Design and Infrastructure Checklist Version 1.0 (30 June 2017)

	TDM-s	upportive design & infrastructure measures: Residential developments	Check if completed & add descriptions, explanations or plan/drawing references
	4.	RIDESHARING	
	4.1	Pick-up & drop-off facilities	
BASIC	4.1.1	Provide a designated area for carpool drivers (plus taxis and ride-hailing services) to drop off or pick up passengers without using fire lanes or other no-stopping zones	
	5.	CARSHARING & BIKESHARING	
	5.1	Carshare parking spaces	
BETTER	5.1.1	Provide up to three carshare parking spaces in an R3, R4 or R5 Zone for specified residential uses (see Zoning By-law Section 94)	
	5.2	Bikeshare station location	_
BETTER	5.2.1	Provide a designated bikeshare station area near a major building entrance, preferably lighted and sheltered with a direct walkway connection	\checkmark
	6.	PARKING	
	6.1	Number of parking spaces	
REQUIRED	6.1.1	Do not provide more parking than permitted by zoning, nor less than required by zoning, unless a variance is being applied for	\checkmark
BASIC	6.1.2	Provide parking for long-term and short-term users that is consistent with mode share targets, considering the potential for visitors to use off-site public parking	
BASIC	6.1.3	Where a site features more than one use, provide shared parking and reduce the cumulative number of parking spaces accordingly (see Zoning By-law Section 104)	\bigtriangledown
BETTER	6.1.4	Reduce the minimum number of parking spaces required by zoning by one space for each 13 square metres of gross floor area provided as shower rooms, change rooms, locker rooms and other facilities for cyclists in conjunction with bicycle parking (see Zoning By-law Section 111)	
	6.2	Separate long-term & short-term parking areas	
BETTER	6.2.1	Provide separate areas for short-term and long-term parking (using signage or physical barriers) to permit access controls and simplify enforcement (i.e. to discourage residents from parking in visitor spaces, and vice versa)	



Turning Templates

MMLOS Analysis

Multi-Modal Level of Service - Intersections Form

Consultant Scenario Comments			Project Date	-	0-25 //2021				
	INTERSECTIONS		Gladstone (@ Bayswater			Gladstone	@ Preston	
	Crossing Side	NORTH	SOUTH	EAST	WEST	NORTH	SOUTH	EAST	WEST
	Lanes	4	3	3	3	4	4	5	0 - 2
	Median	No Median - 2.4 m	No Median - 2.4 n						
	Conflicting Left Turns	Permissive							
	Conflicting Right Turns	Permissive or yield control	Permissive or yiel control						
	Right Turns on Red (RToR) ?	RTOR allowed	RTOR prohibited	RTOR prohibited	RTOR allowed				
	Ped Signal Leading Interval?	No							
c	Right Turn Channel	No Channel	No Channel	No Channel	No Channel	No Channel	No Channel	No Channel	No Channel
tria		5-10m	5-10m	5-10m	5-10m	5-10m	5-10m	10-15m	5-10m
Pedestrian	Corner Radius	5-10m Std transverse	5-10m Std transverse	5-10m Zebra stripe hi-vis	5-10m Zebra stripe hi-vis	5-10m Textured/coloured	5-10m Textured/coloured	10-15m Textured/coloured	5-10m Textured/coloured
bed	Crosswalk Type	markings	markings	markings	markings	pavement	pavement	pavement	pavement
	PETSI Score	54	71	74	74	57	60	43	89
	Ped. Exposure to Traffic LoS	D	С	С	С	D	С	E	В
	Cycle Length	60	60	60	60	70	70	70	70
	Effective Walk Time	22 12	22 12	11 20	11 20	28 13	28	11 25	11 25
	Average Pedestrian Delay								
	Pedestrian Delay LoS	В	В	c	c	В	В	с —	c
	Level of Service	D	С	C	C	D	С	E	С
			1	D			l i	E	
	Approach From	NORTH	SOUTH	EAST	WEST	NORTH	SOUTH	EAST	WEST
	Bicycle Lane Arrangement on Approach	Mixed Traffic							
	Right Turn Lane Configuration								
	Right Turning Speed								
<u>o</u>	Cyclist relative to RT motorists	#N/A							
Bicycle	Separated or Mixed Traffic	Mixed Traffic	Mixed Traffic	Mixed Traffic	Mixed Traffic	Mixed Traffic	Mixed Traffic	Mixed Traffic	Mixed Traffic
Bi	Left Turn Approach	No lane crossed	No lane crossed	No lane crossed	No lane crossed	One lane crossed	One lane crossed	One lane crossed	No lane crossed
	Operating Speed	≤ 40 km/h	≤ 40 km/h	> 40 to ≤ 50 km/h	> 40 to ≤ 50 km/h	> 40 to ≤ 50 km/h	> 40 to ≤ 50 km/h	> 40 to ≤ 50 km/h	> 40 to ≤ 50 km/ł
	Left Turning Cyclist	В	В	В	В	D	D	D	В
		#N/A							
	Level of Service		#N	۱/A			#N	1/A	
			""		100	1.00			1.40
oit	Average Signal Delay			≤ 30 sec	≤ 20 sec	≤ 20 sec	≤ 20 sec	≤ 40 sec	≤ 40 sec
Transit	Level of Service	-	-	D	C	С	С	E	E
E E				D			l l	E	
	Effective Corner Radius					10 - 15 m	10 - 15 m	10 - 15 m	
×	Number of Receiving Lanes on Departure from Intersection					1	1	1	
Truck		-	-	-	-	E	E	E	-
	Level of Service			-				E	
0	Volume to Capacity Ratio		0.71	- 0.80			0.71	- 0.80	
Auto	Lovel of Service			С				С	
4	Level of Service								

Consultant Scenario Comments	CGH Transportation Inc Existing and Future	Project Date		0-25 2021	
SEGMENTS			Gladstone 1	Loretta (frontage) 2	Loretta (frontage) 3
Pedestrian	Sidewalk Width Boulevard Width Avg Daily Curb Lane Traffic Volume Operating Speed On-Street Parking <u>Exposure to Traffic PLoS</u> Effective Sidewalk Width Pedestrian Volume	С	≥ 2 m < 0.5 > 3000 > 30 to 50 km/h no C 2.0 m 500 ped /hr	2 no sidewalk n/a ≤ 3000 > 30 to 50 km/h yes F	3 ≥ 2 m 0.5 - 2 m ≤ 3000 > 30 to 50 km/h no A
	Crowding PLoS Level of Service		в С	-	-
Bicycle	Type of Cycling Facility Number of Travel Lanes Operating Speed # of Lanes & Operating Speed LoS Bike Lane (+ Parking Lane) Width Bike Lane Width LoS Bike Lane Blockages Blockage LoS Median Refuge Width (no median = < 1.8 m) No. of Lanes at Unsignalized Crossing Sidestreet Operating Speed Unsignalized Crossing - Lowest LoS Level of Service	D	Mixed Traffic 2-3 lanes total >40 to <50 km/h D - - < 1.8 m refuge ≤ 3 lanes >40 to 50 km/h B D	Mixed Traffic ≤ 2 (no centreline) >40 to <50 km/h B - - < 1.8 m refuge ≤ 3 lanes ≤ 40 km/h A B	Mixed Traffic ≤ 2 (no centreline) >40 to <50 km/h B - - < 1.8 m refuge ≤ 3 lanes ≤ 40 km/h A B
Transit	Facility Type Friction or Ratio Transit:Posted Speed Level of Service	D	Mixed Traffic Vt/Vp ≥ 0.8 D	-	-
Truck	Truck Lane Width Travel Lanes per Direction Level of Service	-	-	-	-
Auto	Level of Service		Not Ap	plicable	

Multi-Modal Level of Service - Segments Form

Appendix H

Synchro Intersection Worksheets – Future Total Conditions

HCM 2010 TWSC 1: Breezehill & Gladstone

951 Gladstone & 145 Loretta Future Total- AM Peak Hour

Interception					_	_	_	_	_	_	_	_
Intersection Int Delay, s/veh	1.4					_	_		_	_		_
31												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		- (}-			- 4 >			4			- 4 2	
Traffic Vol, veh/h	23	268	0	1	148	41	2	1	5	17	0	23
Future Vol, veh/h	23	268	0	1	148	41	2	1	5	17	0	23
Conflicting Peds, #/hr	25	0	25	25	0	25	8	0	2	2	0	8
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	100	100	100	100	100	100	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	23	268	0	1	148	41	2	1	5	17	0	23
Major/Minor N	/lajor1			Major2			Minor1			Minor2		
Conflicting Flow All	214	0	0	293	0	0	529	555	295	515	535	202
Stage 1	214	-	-	295	-	-	339	339	295	196	196	202
Stage 2							190	216		319	339	
Critical Hdwy	4.12	-	-	4.12	-		7.12	6.52	6.22	7.12	6.52	6.22
Critical Hdwy Stg 1	4.12	-		4.12			6.12	5.52	0.22	6.12	5.52	0.22
Critical Hdwy Stg 2	-	-	-	-		-	6.12	5.52	-	6.12	5.52	-
	2.218	-	-	2.218		-	3.518	4.018	3.318	3.518	4.018	3.318
Pot Cap-1 Maneuver	1356	-	-	1269		-	460	4.018	744	470	4.018	839
Stage 1	1000		-	1209			676	640	- 144	806	739	039
Stage 2	-	-	-	-			812	724		693	640	-
Platoon blocked, %	-	-		-	-		012	124	-	093	040	-
Mov Cap-1 Maneuver	1330	-	-	1244			429	414	728	449	426	818
Mov Cap-1 Maneuver Mov Cap-2 Maneuver	1000	-		1244	-		429	414	120	449	426	010
Stage 1	-	-			-		429 650	615	-	775	724	-
Stage 2					-		783	710	-	672	615	-
Slaye 2	-	-					103	110		012	015	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	0.6			0			11.4			11.4		
HCM LOS							В			В		
Minor Lane/Major Mvmt		VBLn1	EBL	EBT	EBR	WBL	WBT	WBR	SBI n1			
Capacity (veh/h)		574	1330			1244	-	-	606			
HCM Lane V/C Ratio		0.014	0.017			0.001			0.066			
HCM Control Delay (s)	_	11.4	7.8	0		7.9	0					
HCM Lane LOS		B	7.0 A	A		7.5 A	A		н.4 В			
HCM 95th %tile Q(veh)		0	0.1	А	-	0	A	-	0.2			
		0	0.1	-	-	0	-	-	0.2			

2: Preston & Gladstone Future Total- AM Peak Hour ⊁ 1 -۰ ~ * \rightarrow Lane Group EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL SBT SBR Lane Configurations 4 1. 7 Ъ ٦ 1. Traffic Volume (vph) 29 177 64 47 169 64 63 395 84 27 75 368 Future Volume (vph) 29 177 64 47 169 64 63 395 84 75 368 27 Satd. Flow (prot) 1658 1590 1658 1643 0 1715 0 1596 0 0 1658 0 Flt Permitted 0.938 0.507 0.494 0.427 Satd. Flow (perm) 1490 815 1590 826 1643 0 690 1715 0 0 0 0 Satd. Flow (RTOR) 26 25 Lane Group Flow (vph) 0 270 0 47 233 63 479 75 395 0 Perm Turn Type NA Perm NA Perm NA Perm NA Protected Phases 4 2 6 8 Permitted Phases 4 8 2 6 Detector Phase 4 4 8 2 2 6 6 Switch Phase 10.0 10.0 10.0 10.0 10.0 10.0 Minimum Initial (s) 10.0 10.0 Minimum Split (s) 24.5 24.5 24.5 24.5 23.7 23.7 23.7 23.7 Total Split (s) 25.0 25.0 25.0 25.0 45.0 45.0 45.0 45.0 64.3% 64.3% Total Split (%) 35.7% 35.7% 35.7% 35.7% 64.3% 64.3% Yellow Time (s) 3.0 3.0 3.0 3.0 3.3 3.3 3.3 3.3 All-Red Time (s) 3.5 3.5 3.5 3.5 2.4 2.4 2.4 2.4 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Total Lost Time (s) 6.5 6.5 6.5 5.7 5.7 5.7 5.7 Lead/Lag Lead-Lag Optimize? C-Min C-Min C-Min C-Min Recall Mode None None None None Act Effct Green (s) 40.2 40.2 40.2 17.6 17.6 17.6 40.2 Actuated g/C Ratio 0.25 0.25 0.25 0.57 0.57 0.57 0.57 v/c Ratio 0.40 0.72 0.23 0.56 0.13 0.50 0.19 Control Delay 36.6 10.9 21.8 24.5 9.4 11.8 10.4 Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Total Delay 21.8 24.5 9.4 11.8 10.4 10.9 36.6 LOS D С А В В В С Approach Delay 36.6 24.1 11.5 10.8 D Approach LOS C В R Queue Length 50th (m) 39.7 4.9 23.3 3.5 32.3 4.3 26.1 11.5 12.8 Queue Length 95th (m) 27.1 38.5 10.6 66.0 52.5 Internal Link Dist (m) 140.4 149.8 122.5 139.6 Turn Bay Length (m) 37.5 24.0 28.0 422 409 Base Capacity (vph) 231 469 489 985 1017 Starvation Cap Reductn 0 0 0 0 0 0 0 Spillback Cap Reductn 0 0 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 0 0 Reduced v/c Ratio 0.64 0.20 0.50 0.13 0.49 0.18 0.39 Intersection Summary Cycle Length: 70 Actuated Cycle Length: 70 Offset: 37 (53%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green Natural Cycle: 55 Control Type: Actuated-Coordinated

Lanes, Volumes, Timings

Synchro 11 Report

Page 2

Synchro 11 Report Page 3

951 Gladstone & 145 Loretta

Lanes, Volumes, Timings
2: Preston & Gladstone

Ø6 (R)

951 Gladstone & 145 Loretta Future Total- AM Peak Hour

Maximum v/c Ratio: 0.72 Intersection Signal Delay: 17.9	Intersection LOS: B	
Intersection Capacity Utilization 88.4%	ICU Level of Service E	
Analysis Period (min) 15		
Splits and Phases: 2: Preston & Gladstone		
√ ¶g2 (R)	A 104	

₹ø8

HCM 2010 TWSC 3: Breezehill & Somerset 951 Gladstone & 145 Loretta Future Total- AM Peak Hour

Intersection						
Int Delay, s/veh	1.1					
		EDE	MD	MDT	NID	NDD
	EBT	EBR	WBL		NBL	NBR
Lane Configurations	1	00	10	ا	Y	00
Traffic Vol, veh/h	260	32	16	254	19	23
Future Vol, veh/h	260	32	16	254	19	23
Conflicting Peds, #/hr	0	50	50	0	0	0
	Free	Free	Free	Free	Stop	Stop
RT Channelized		None	-	None		None
Storage Length	-	-	-	-	0	-
Veh in Median Storage, #		-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	260	32	16	254	19	23
Major/Minor Ma	ajor1		Major2	,	Minor1	
	-					000
Conflicting Flow All	0	0	342	0	612	326
Stage 1	-	-	-	-	326	-
Stage 2		-	-		286	-
Critical Hdwy		-	4.12			6.22
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2		-	-	-	5.42	-
Follow-up Hdwy	-	-	2.218	-	3.518	
Pot Cap-1 Maneuver		-	1217	-	456	715
Stage 1	-	-	-	-		-
Stage 2	-	-	-	-	763	-
Platoon blocked, %	-	-		-		
Mov Cap-1 Maneuver	-	-	1170	-	431	687
Mov Cap-2 Maneuver	-	-	-	-	431	-
Stage 1	-	-	-	-	702	-
Stage 2		-	-	-	751	-
Approach	EB		WB		NB	
HCM Control Delay, s	0		0.5		12.2	
HCM LOS					В	
Minor Lane/Major Mvmt	1	NBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		541	-	-	1170	-
HCM Lane V/C Ratio		0.078			0.014	
HCM Control Delay (s)		12.2	-		8.1	0
HCM Lane LOS		IZ.Z	-	-	0.1 A	A
HCM 25th %tile Q(veh)		0.3	-		0	- A
TOW SOUT AUR Q(Ven)		0.5	-	-	0	-

HCM 2010 TWSC 6: Loretta & Gladstone

951 Gladstone & 145 Loretta Future Total- AM Peak Hour

Intersection					_			_	_			
Int Delay, s/veh	2.9											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	LDL	4	LDIX	TTDL	4	VUDIN	NUL	4	NDIN	ODL	4	ODIX
Traffic Vol, veh/h	66	209	15	19	154	73	8	0	7	38	3	28
Future Vol, veh/h	66	209	15	19	154	73	8	0	7	38	3	28
Conflicting Peds, #/hr	25	200	14	14	0	25	3	0	3	3	0	3
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length		-	-	-		-			-	-		-
Veh in Median Storage	. # -	0	-	-	0	-		0	-	-	0	-
Grade, %	-	0			0		-	0			0	-
Peak Hour Factor	100	100	100	100	100	100	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mymt Flow	66	209	15	19	154	73	8	0	7	38	3	28
							-				-	
Major/Minor	Major1			Major2	_	_	Minor1			Minor2		
		0			0			052			004	040
Conflicting Flow All	252	0	0	238	0	0	610 363	653 363	234	609 254	624 254	219
Stage 1	-	-		-		-	247	290		355	254 370	-
Stage 2	4.12	-	-	4.12	-	-	7.12	6.52	6.22	7.12	6.52	6.22
Critical Hdwy Critical Hdwy Stg 1	4.1Z			4.1Z		-	6.12	5.52	0.22	6.12	5.52	0.22
Critical Hdwy Stg 1	-	-		-	-	-	6.12	5.52	-	6.12	5.52	-
Follow-up Hdwy	2.218	-		2.218		-	3.518	5.52 4.018	3.318	3.518	5.52 4.018	3.318
Pot Cap-1 Maneuver	1313	-		1329	-	-	407	4.010	805	407	4.010	821
Stage 1	1313		-	1329	-	-	656	625	- 005	750	697	021
Stage 2	-		-	-	-	-	757	672	-	662	620	-
Platoon blocked, %	-	-	-	-		-	101	012	-	002	020	-
Mov Cap-1 Maneuver	1288			1315		-	363	347	794	372	361	803
Mov Cap-1 Maneuver	1200	-		1313		-	363	347	- 194	372	361	005
Stage 1				-		-	611	582	-	692	672	
Stage 2							713	648		616	577	
Oldyo 2							715	0+0		010	511	
							117			0.5		
Approach	EB			WB			NB			SB		
HCM Control Delay, s	1.8			0.6			12.6			13.9		
HCM LOS							В			В		
Minor Lane/Major Mvm	ıt	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR	SBLn1			
Capacity (veh/h)		486	1288	-	-	1315	-	-	475			
HCM Lane V/C Ratio		0.031	0.051	-		0.014		-	0.145			
HCM Control Delay (s)		12.6	7.9	0	-	7.8	0	-	13.9			
HCM Lane LOS		В	A	A	-	A	A	-	В			
HCM 95th %tile Q(veh))	0.1	0.2	-	-	0	-	-	0.5			

HCM 2010 AWSC 7: Breezehill & Laurel 951 Gladstone & 145 Loretta Future Total- AM Peak Hour

Intersection												
Intersection Delay, s/veh	7.5											
Intersection LOS	А											
Mariant	501	EDT	500	W/DI	MOT		NDI	NDT	NDD		ODT	000
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations		.	10	0	.	10			40	00	.	
Traffic Vol, veh/h	11	31	10	6	10	10	11	49	10	32	31	16
Future Vol, veh/h	11	31	10	6	10	10	11	49	10	32	31	16
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	11	31	10	6	10	10	11	49	10	32	31	16
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	C
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	1			1			1			1		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	1			1			1			1		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	1			1			1			1		
HCM Control Delay	7.5			7.3			7.5			7.5		
HCM LOS	А			А			А			А		
Lane		NBLn1	EBLn1	WBLn1	SBLn1							
Vol Left, %		16%	21%	23%	41%							
Vol Thru, %		70%	60%	38%	39%							
Vol Right, %		14%	19%	38%	20%							
Sign Control		Stop	Stop	Stop	Stop							
Traffic Vol by Lane		70	52	26	79							
LT Vol		11	11	6	32							
Through Vol		49	31	10	31							
RT Vol		10	10	10	16							
Lane Flow Rate		70	52	26	79							
Geometry Grp		1	1	1	1							
Degree of Util (X)		0.079	0.06	0.029	0.09							
Departure Headway (Hd)		4.075	4.137	4.046	4.082							
Convergence, Y/N		Yes	Yes	Yes	Yes							
Сар		872	855	872	871							
Service Time		2.131	2.214	2.13	2.136							
HCM Lane V/C Ratio		0.08	0.061	0.03	0.091							
HCM Control Delay		7.5	7.5	7.3	7.5							
HCM Lane LOS		А	А	А	А							
HCM 95th-tile Q		0.3	0.2	0.1	0.3							

Synchro 11 Report Page 12

Lanes, Volumes, Timings 8: Bayswater & Gladstone 951 Gladstone & 145 Loretta Future Total- AM Peak Hour

	۶	-	\mathbf{r}	1	-	*	1	1	1	1	Ļ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			4			\$			\$	
Traffic Volume (vph)	23	219	16	14	124	35	19	106	22	50	124	37
Future Volume (vph)	23	219	16	14	124	35	19	106	22	50	124	37
Satd. Flow (prot)	0	1713	0	0	1666	0	0	1687	0	0	1673	0
Flt Permitted		0.968			0.970			0.950			0.902	
Satd. Flow (perm)	0	1661	0	0	1620	0	0	1612	0	0	1522	0
Satd. Flow (RTOR)		7			28	-		17			20	
Lane Group Flow (vph)	0	258	0	0	173	0	0	147	0	0	211	0
Turn Type	Perm	NA	-	Perm	NA	-	Perm	NA	-	Perm	NA	-
Protected Phases		2			6			8			4	
Permitted Phases	2	_		6	-		8	-		4	-	
Detector Phase	2	2		6	6		8	8		4	4	
Switch Phase	_	_		-	-		-					
Minimum Initial (s)	10.0	10.0		10.0	10.0		10.0	10.0		10.0	10.0	
Minimum Split (s)	22.5	22.5		22.5	22.5		22.5	22.5		22.5	22.5	
Total Split (s)	33.0	33.0		33.0	33.0		27.0	27.0		27.0	27.0	
Total Split (%)	55.0%	55.0%		55.0%	55.0%		45.0%	45.0%		45.0%	45.0%	
Yellow Time (s)	3.0	3.0		3.0	3.0		3.3	3.3		3.3	3.3	
All-Red Time (s)	2.5	2.5		2.5	2.5		2.0	2.0		2.0	2.0	
Lost Time Adjust (s)	2.0	0.0		2.0	0.0		2.0	0.0		2.0	0.0	
Total Lost Time (s)		5.5			5.5			5.3			5.3	
Lead/Lag		0.0			0.0			0.0			0.0	
Lead-Lag Optimize?												
Recall Mode	C-Max	C-Max		C-Max	C-Max		Max	Max		Max	Max	
Act Effct Green (s)	O Max	27.5		O Max	27.5		max	21.7		Max	21.7	
Actuated g/C Ratio		0.46			0.46			0.36			0.36	
v/c Ratio		0.34			0.23			0.25			0.37	
Control Delay		11.7			9.2			13.2			15.1	
Queue Delay		0.0			0.0			0.0			0.0	
Total Delay		11.7			9.2			13.2			15.1	
LOS		B			A			B			B	
Approach Delay		11.7			9.2			13.2			15.1	
Approach LOS		В			3.2 A			13.2 B			B	
Queue Length 50th (m)		16.6			8.9			9.7			14.9	
Queue Length 95th (m)		30.6			18.9			20.6			29.6	
Internal Link Dist (m)		95.1			81.5			119.0			98.4	
Turn Bay Length (m)		55.1			01.0			115.0			50.4	
Base Capacity (vph)		765			757			593			563	
Starvation Cap Reductn		0			0			0			0	
Spillback Cap Reductn		0			0			0			0	
Storage Cap Reductin		0			0			0			0	
Reduced v/c Ratio		0.34			0.23			0.25			0.37	
		0.04			0.20			0.25			0.57	
Intersection Summary			_	_	_	_				_	_	
Cycle Length: 60												
Actuated Cycle Length: 60	مطفم مامد	0.EDT/ -	and CAME		of Crock							
Offset: 29 (48%), Reference	ed to phase	2:EBTE a	ind 6:WE	i L, Start	of Green							
Natural Cycle: 45			_			_	_			_		
Control Type: Actuated-Coo	proinated											
												_

 Lanes, Volumes, Timings
 951 Gladstone & 145 Loretta

 8: Bayswater & Gladstone
 Future Total- AM Peak Hour

 Maximum v/c Ratio: 0.37
 Intersection LOS: B

 Intersection Capacity Utilization 49.4%
 ICU Level of Service A

 Analysis Period (min) 15
 Intersection LOS: B

Splits and Phases: 8: Bayswater & Gladstone

→ _{Ø2 (R)}	▼Ø4
33 s	27 s
🗸 🖉 Ø6 (R)	<1 ø8
33 s	27 s

Synchro 11 Report Page 16

	≯	-	\mathbf{r}	1	+		1	- †	1	1	.↓	1
ane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SB
ane Configurations		≜										
raffic Volume (vph)	0	254	0	0	246	0	0	0	0	0	0	1
uture Volume (vph)	0	254	0	0	246	0	0	0	0	0	0	
Satd. Flow (prot)	0	1745	0	0	1745	0	0	0	0	0	0	1
It Permitted												
Satd. Flow (perm)	0	1745	0	0	1745	0	0	0	0	0	0	
Satd. Flow (RTOR)												
ane Group Flow (vph)	0	254	0	0	246	0	0	0	0	0	0	1
urn Type		NA			NA							
Protected Phases		2			6							
Permitted Phases												
Detector Phase		2			6							
Switch Phase												
/inimum Initial (s)		10.0			10.0							
/inimum Split (s)		22.5			22.5							
otal Split (s)		50.0			50.0							
otal Split (%)		71.4%			71.4%							
ellow Time (s)		3.0			3.0							
II-Red Time (s)		1.9			1.9							
ost Time Adjust (s)		0.0			0.0							
otal Lost Time (s)		4.9			4.9							
.ead/Lag												
ead-Lag Optimize?												
Recall Mode		C-Max			C-Max							
ct Effct Green (s)		56.8			56.8							
ctuated g/C Ratio		0.81			0.81							
/c Ratio		0.18			0.17							
Control Delay		3.5			2.1							
Queue Delay		0.0			0.0							
otal Delay		3.5			2.1							
.OS		A			A							
Approach Delay		3.5			2.1							
pproach LOS		A			A							
Queue Length 50th (m)		10.1			3.8							
Queue Length 95th (m)		17.5			13.8							
nternal Link Dist (m)		136.1			140.4			3.1			12.7	
urn Bay Length (m)								0				
Base Capacity (vph)		1416			1416							_
Starvation Cap Reductn		0			0							
Spillback Cap Reductn		0			0							_
Storage Cap Reductn		0			0							
Reduced v/c Ratio		0.18			0.17							
ntersection Summary												
Cycle Length: 70												
ctuated Cycle Length: 70												

Lanes, Volumes, Timings	951 Gladstone & 145 Loretta
9: Gladstone	Future Total- AM Peak Hour

Lane Group	Ø4	Ø8
Lane Configurations		
Traffic Volume (vph)		
Future Volume (vph)		
Satd. Flow (prot)		
Flt Permitted		
Satd. Flow (perm)		
Satd. Flow (RTOR)		
Lane Group Flow (vph)		
Turn Type		
Protected Phases	4	8
Permitted Phases		
Detector Phase		
Switch Phase		
Minimum Initial (s)	10.0	10.0
Minimum Split (s)	18.0	18.0
Total Split (s)	20.0	20.0
Total Split (%)	29%	29%
Yellow Time (s)	3.0	3.0
All-Red Time (s)	1.1	1.1
Lost Time Adjust (s)		
Total Lost Time (s)		
Lead/Lag		
Lead-Lag Optimize?		
Recall Mode	None	None
Act Effct Green (s)		
Actuated q/C Ratio		
v/c Ratio		
Control Delay		
Queue Delay		
Total Delay		
LOS		
Approach Delay		
Approach LOS		
Queue Length 50th (m)		
Queue Length 95th (m)		
Internal Link Dist (m)		
Turn Bay Length (m)		
Base Capacity (vph)		
Starvation Cap Reductn		
Spillback Cap Reductn		
Storage Cap Reductn		
Reduced v/c Ratio		
Intersection Summary		

Synchro 11 Report Page 17

Lanes, Volumes, Timings 9: Gladstone		951 Gladstone & 14 Future Total-	45 Loretta AM Peak Hour
Maximum v/c Ratio: 0.18			
Intersection Signal Delay: 2.8	Intersection LOS: A		
Intersection Capacity Utilization 18.2%	ICU Level of Service A		
Analysis Period (min) 15			
Splits and Phases: 9: Gladstone →Ø2 (R)		₩₿ø4	
50 s		20 s	
← Ø6 (R)		AL _{Ø8}	
50 s		20 s	

HCM 2010 TWSC 5: Loretta & Access #1 951 Gladstone & 145 Loretta Future Total- AM Peak Hour

Intersection						
Intersection	1.7					
Int Delay, s/veh						
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	۰Y		f,			ŧ
Traffic Vol, veh/h	26	3	57	82	14	42
Future Vol, veh/h	26	3	57	82	14	42
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage	e, # 0	-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2
Mymt Flow	26	3	57	82	14	42
Maria all Cara	All a surf		Astend		Ma:0	
and the second sec	Minor1		Major1		Major2	
Conflicting Flow All	168	98	0	0	139	0
Stage 1	98	-	-		-	-
Stage 2	70	-	-	-	-	-
Critical Hdwy	6.42	6.22			4.12	
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-		-		-
Follow-up Hdwy	3.518		-	-		-
Pot Cap-1 Maneuver	822	958			1445	
Stage 1	926	-	-	-	-	-
Stage 2	953	-		-	-	-
Platoon blocked, %			-	-		-
Mov Cap-1 Maneuver	814	958			1445	-
Mov Cap-2 Maneuver	814	-	-	-	-	-
Stage 1	926	-	-	-	-	-
Stage 2	943	-	-	-	-	
, in the second s						
Approach	WB		NB		SB	
Approach						
HCM Control Delay, s	9.5		0		1.9	
HCM LOS	A					
Minor Lane/Major Mvm	nt	NBT	NBR\	WBLn1	SBL	SBT
Capacity (veh/h)		-	-	827	1445	-
HCM Lane V/C Ratio				0.035	0.01	-
HCM Control Delay (s)		-	-	9.5	7.5	0
HCM Lane LOS			-	A	A	A
HCM 95th %tile Q(veh)		-	0.1	0	-
	/			0.1	U	

HCM 2010 TWSC 4: Loretta & Access #2

951 Gladstone & 145 Loretta Future Total- AM Peak Hour

Interception	_		_			_
Intersection	0.0					
Int Delay, s/veh	0.3					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	۰¥					•
Traffic Vol, veh/h	2	2	60	0	0	54
Future Vol, veh/h	2	2	60	0	0	54
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage.	,# 0	-	0	-	-	0
Grade, %	0	-	0	-		0
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2
Mymt Flow	2	2	60	0	0	54
	2	2	00	0	U	54
	Minor1		Major1	l I	Major2	
Conflicting Flow All	114	60	0	-	-	-
Stage 1	60	-	-	-	-	-
Stage 2	54	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	-	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
	3.518	3.318		-	-	-
Pot Cap-1 Maneuver	882	1005	-	0	0	-
Stage 1	963	-		0	0	-
Stage 2	969	-	-	0	0	-
Platoon blocked, %	505	-		0	U	-
Mov Cap-1 Maneuver	882	1005	-			-
Mov Cap-1 Maneuver	882	1005				
	963		-		-	-
Stage 1						
Stage 2	969		-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	8.9		0		0	
HCM LOS	0.5 A		0		U	
	л					
Minor Lane/Major Mvm	t	NBTV	VBLn1	SBT		
Capacity (veh/h)		-	939	-		
HCM Lane V/C Ratio		-	0.004	-		
HCM Control Delay (s)		-	8.9	-		
HCM Lane LOS			A	-		
HCM 95th %tile Q(veh)		-	0	-		
			-			

HCM 2010 TWSC 10: Loretta & Access #3 951 Gladstone & 145 Loretta Future Total- AM Peak Hour

Intersection			_	_		
Int Delay, s/veh	0.6					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Y		1		ODL	<u>الات</u>
Traffic Vol, veh/h	7	1	59	3	1	48
Future Vol. veh/h	7	1	59	3	1	48
Conflicting Peds, #/hr	0	0	0	0	0	40
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	- Stop	None	-	None	-	None
Storage Length	- 0	NULLE -		-		-
Veh in Median Storage	-	-	0	-	-	0
Grade. %	, # 0		0			0
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2
Mymt Flow	7	2	59	2	2	48
WWITH FIOW	1	1	29	3	1	40
Major/Minor I	Minor1	1	Major1		Major2	
Conflicting Flow All	111	61	0	0	62	0
Stage 1	61	-	-	-		-
Stage 2	50	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.12	-
Critical Hdwy Stg 1	5.42	-	-	-	-	
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	-	-	2.218	-
Pot Cap-1 Maneuver	886	1004	-	-	1541	-
Stage 1	962	-	-	-	-	-
Stage 2	972	-	-	-	-	-
Platoon blocked, %	0.12					-
Mov Cap-1 Maneuver	885	1004			1541	-
Mov Cap-2 Maneuver	885	-100		-	1341	
Stage 1	962					
Stage 2	971					
Sidye z	9/1	-	-		-	-
Approach	WB		NB		SB	
HCM Control Delay, s	9		0		0.1	
HCM LOS	A					
Minor Lane/Major Mvm	ıt	NBT	NRP\	WBLn1	SBL	SBT
	n.	NDT	NDA	898	1541	001
					0.001	-
Capacity (veh/h)		-	-			
HCM Lane V/C Ratio		_		0		
HCM Lane V/C Ratio HCM Control Delay (s)		-	-	9	7.3	0
HCM Lane V/C Ratio		-	-	9 A 0	7.3 A 0	A

Synchro 11 Report Page 8

HCM 2010 TWSC 1: Breezehill & Gladstone

951 Gladstone & 145 Loretta Future Total - PM Peak Hour

Intersection	1.4											
Int Delay, s/veh	1.4											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	17	216	4	6	659	27	3	0	1	28	0	23
Future Vol, veh/h	17	216	4	6	659	27	3	0	1	28	0	23
Conflicting Peds, #/hr	26	0	25	25	0	26	7	0	10	10	0	7
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %		0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	100	100	100	100	100	100	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	17	216	4	6	659	27	3	0	1	28	0	23
Malan/Maran M	Antone			4-1-0			Alternation			Min 0		
	/lajor1			Major2			Minor1			Minor2		=
Conflicting Flow All	712	0	0	245	0	0	980	1001	253	974	990	706
Stage 1	-	-	-	-	-		277	277	-	711	711	-
Stage 2	-	-	-	-	-	-	703	724	-	263	279	-
Critical Hdwy	4.12			4.12		-	7.12	6.52	6.22	7.12	6.52	6.22
Critical Hdwy Stg 1	-	-	-	-	-		6.12	5.52	-	6.12	5.52	-
Critical Hdwy Stg 2	-			-	-	-	6.12	5.52	-	6.12	5.52	-
	2.218	-		2.218	-	-	3.518	4.018	3.318	3.518		3.318
Pot Cap-1 Maneuver	888	-		1321	-		229	243	786	231	246	436
Stage 1	-	-	-		-		729	681	-	424	436	-
Stage 2							428	430	-	742	680	
Platoon blocked, %	0.70	-	-	1005	-							105
Mov Cap-1 Maneuver	870			1295			206	227	765	219	230	425
Mov Cap-2 Maneuver	-		-		-		206	227	-	219	230	-
Stage 1		-					699	653	-	406	424	
Stage 2	-		-		-		399	418	-	719	652	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	0.7			0.1			19.5			20.7		
HCM LOS							C			C		
			-									
Minor Lane/Major Mvmt		NBLn1	EBL	EBT	EBR	WBL	WBT	WBR				
Capacity (veh/h)		252	870	-	-	1295	-	-	280			
HCM Lane V/C Ratio		0.016	0.02	-	-	0.005	-		0.182			
HCM Control Delay (s)				0		7.8	0		20.7			
		19.5	9.2									
HCM Lane LOS HCM 95th %tile Q(veh)		19.5 C 0	9.2 A 0.1	A	-	A	A	-	C 0.7			

Lanes, Volumes, Timings 951 Gladstone & 145 Loretta Future Total - PM Peak Hour 2: Preston & Gladstone ≯ 1 -۰ ~ * \rightarrow Lane Group EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL SBT SBR Lane Configurations 4 1. ĥ 1. 7 ٦ Traffic Volume (vph) 27 205 67 491 374 101 52 57 77 95 364 80 Future Volume (vph) 27 205 67 80 491 77 95 374 101 52 364 57 Satd. Flow (prot) 1628 1658 1665 1658 1633 1658 1657 0 0 0 0 0 Flt Permitted 0.758 0.553 0.414 0.361 Satd. Flow (perm) 1234 905 1665 654 1633 0 597 1657 0 0 0 0 Satd. Flow (RTOR) 13 25 Lane Group Flow (vph) 0 299 0 80 568 95 475 52 421 0 Perm Turn Type NA Perm NA Perm NA Perm NA Protected Phases 4 8 2 6 Permitted Phases 4 8 2 6 Detector Phase 4 4 8 2 2 6 6 Switch Phase 10.0 10.0 10.0 10.0 10.0 Minimum Initial (s) 10.0 10.0 10.0 Minimum Split (s) 24.5 24.5 24.5 24.5 23.7 23.7 23.7 23.7 Total Split (s) 33.0 33.0 33.0 33.0 37.0 37.0 37.0 37.0 52.9% 52.9% Total Split (%) 47.1% 47.1% 47.1% 47.1% 52.9% 52.9% 3.3 Yellow Time (s) 3.0 3.0 3.0 3.0 3.3 3.3 3.3 All-Red Time (s) 3.5 3.5 3.5 3.5 2.4 2.4 2.4 2.4 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Total Lost Time (s) 6.5 6.5 6.5 5.7 5.7 5.7 5.7 Lead/Lag Lead-Lag Optimize? C-Min C-Min C-Min C-Min Recall Mode None None None None Act Effct Green (s) 26.7 26.7 26.7 31.1 31.1 31.1 31.1 Actuated g/C Ratio 0.38 0.38 0.38 0.44 0.44 0.44 0.44 v/c Ratio 0.23 0.33 0.64 0.20 0.57 0.63 0.88 Control Delay 21.6 19.7 18.9 16.2 37.4 17.5 15.0 Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Total Delay 21.6 16.2 37.4 17.5 19.7 15.0 18.9 LOS С D В В В В B 21.6 Approach Delay 34.8 19.4 18.4 С Approach LOS С В R Queue Length 50th (m) 19.1 6.3 60.4 8.5 48.0 4.3 43.1 16.2 #123.9 10.7 Queue Length 95th (m) 56.9 18.4 72.9 64.5 Internal Link Dist (m) 137.4 149.8 122.5 139.6 Turn Bay Length (m) 37.5 24.0 28.0 488 Base Capacity (vph) 357 666 301 765 274 762 Starvation Cap Reductn 0 0 0 0 0 0 0 Spillback Cap Reductn 0 0 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 0 0 Reduced v/c Ratio 0.61 0.22 0.85 0.32 0.62 0.19 0.55 Intersection Summary Cycle Length: 70 Actuated Cycle Length: 70 Offset: 40 (57%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green Natural Cycle: 60 Control Type: Actuated-Coordinated

Synchro 11 Report Page 2

Lanes, Volumes, Timings
2: Preston & Gladstone

951 Gladstone & 145 Loretta Future Total - PM Peak Hour

Maximum v/c Ratio: 0.88									
Intersection Signal Delay: 24.5	Intersection LOS: C								
Intersection Capacity Utilization 92.6%	ICU Level of Service F								
Analysis Period (min) 15									
# 95th percentile volume exceeds capacity, queue may be longer.									
Queue shown is maximum after two cycles.									
Splits and Phases: 2: Preston & Gladstone									

Ø2 (R)	A 04
37 s	33 s
Ø6 (R)	₩ Ø8
37 s	33 s

HCM 2010 TWSC 3: Breezehill & Somerset 951 Gladstone & 145 Loretta Future Total - PM Peak Hour

Intersection						
Intersection Int Delay, s/veh	1.3					
3.						
	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	f •			ર્સ	۰Y	
Traffic Vol, veh/h	316	28	20	418	31	19
Future Vol, veh/h	316	28	20	418	31	19
Conflicting Peds, #/hr	0	100	100	0	19	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage,	# 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2
Mymt Flow	316	28	20	418	31	19
	ajor1		Major2		Minor1	
Conflicting Flow All	0	0	444	0	907	430
Stage 1	-		-	-	430	-
Stage 2	-	-	-	-	477	-
Critical Hdwy	-	-	4.12	-	6.42	6.22
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	-	-	-	5.42	-
Follow-up Hdwy	-	-	2.218	-	3.518	
Pot Cap-1 Maneuver	-	-	1116	-	306	625
Stage 1	-	-	-	-	656	-
Stage 2					624	
Platoon blocked, %	-	-		-		
Mov Cap-1 Maneuver	-	-	1029	-	271	576
Mov Cap-2 Maneuver	-	-	-	-	271	-
Stage 1	-	-	-	-	605	-
Stage 2	-		-	-	600	-
Ŭ						
			14/10		ND	
Approach	EB		WB		NB	
HCM Control Delay, s	0		0.4		17.4	
HCM LOS					С	
Minor Lane/Major Mvmt		NBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		339			1029	-
HCM Lane V/C Ratio		0.147	-		0.019	
HCM Control Delay (s)	_	17.4	-	-	8.6	0
HCM Lane LOS		C	-	-	0.0 A	A
HCM 95th %tile Q(veh)	_	0.5	-	-	0.1	-
		0.0			0.1	

Synchro 11 Report Page 4

HCM 2010 TWSC 6: Loretta & Gladstone

951 Gladstone & 145 Loretta Future Total - PM Peak Hour

Intersection												
Int Delay, s/veh	5.8											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	36	205	4	9	593	55	15	0	6	81	2	84
Future Vol, veh/h	36	205	4	9	593	55	15	0	6	81	2	84
Conflicting Peds, #/hr	36	0	35	35	0	36	2	0	4	4	0	2
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	-		-	-
Veh in Median Storage	, # -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	100	100	100	100	100	100	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	36	205	4	9	593	55	15	0	6	81	2	84
Major/Minor I	Major1			Major2			Minor1			Minor2		
Conflicting Flow All	684	0	0	244	0	0	998	1016	246	961	991	659
Stage 1	-	-	-	-	-	-	314	314	-	675	675	-
Stage 2	-	-	-	-	-	-	684	702	-	286	316	
Critical Hdwy	4.12	-	-	4.12	-	-	7.12	6.52	6.22	7.12	6.52	6.22
Critical Hdwy Stg 1	-	-	-	-	-	-	6.12	5.52	-	6.12	5.52	-
Critical Hdwy Stg 2	-	-	-	-	-	-	6.12	5.52	-	6.12	5.52	-
Follow-up Hdwy	2.218	-	-	2.218	-	-	3.518	4.018	3.318	3.518	4.018	3.318
Pot Cap-1 Maneuver	909	-	-	1322	-	-	223	238	793	236	246	464
Stage 1	-	-	-	-	-	-	697	656	-	444	453	-
Stage 2	-	-	-	-	-	-	439	440	-	721	655	-
Platoon blocked, %		-	-		-	-						
Mov Cap-1 Maneuver	884	-	-	1286	-	-	167	212	769	217	219	450
Mov Cap-2 Maneuver	-	-	-	-	-	-	167	212	-	217	219	-
Stage 1	-	-	-		-	-	647	609	-	412	435	-
Stage 2	-	-	-		-	-	351	423	-	680	608	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	1.4			0.1			23.5			32.4		
HCM LOS							С			D		
Minor Lane/Major Mvm	t	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR	SBLn1			
Capacity (veh/h)		215	884	-	-	1286	-	-	293			
HCM Lane V/C Ratio		0.098	0.041		-	0.007	-	-	0.57			
HCM Control Delay (s)		23.5	9.2	0	-	7.8	0	-	32.4			
HCM Lane LOS		С	А	А	-	A	A	-	D			
HCM 95th %tile Q(veh)		0.3	0.1	-	-	0	-	-	3.3			

HCM 2010 AWSC 7: Breezehill & Laurel 951 Gladstone & 145 Loretta Future Total - PM Peak Hour

Intersection												
Intersection Delay, s/veh	7.4											
Intersection LOS	А											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations		ф,			4			4			\$	
Traffic Vol, veh/h	12	11	10	4	29	21	24	22	1	9	45	32
Future Vol, veh/h	12	11	10	4	29	21	24	22	1	9	45	32
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	12	11	10	4	29	21	24	22	1	9	45	32
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	C
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	1			1			1			1		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	1			1			1			1		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	1			1			1			1		
HCM Control Delay	7.3			7.3			7.5			7.4		
HCM LOS	А			А			А			А		
Lane		NBLn1	EBLn1	WBLn1	SBLn1							
Vol Left, %		51%	36%	7%	10%							
Vol Thru, %		47%	33%	54%	52%							
Vol Right, %		2%	30%	39%	37%							
Sign Control		Stop	Stop	Stop	Stop							
Traffic Vol by Lane		47	33	54	86							
LT Vol		24	12	4	9							
Through Vol		22	11	29	45							
RT Vol		1	10	21	32							
Lane Flow Rate		47	33	54	86							
Geometry Grp		1	1	1	1							
Degree of Util (X)		0.055	0.038	0.06	0.094							
Departure Headway (Hd)		4.239	4.096	3.97	3.918							
Convergence, Y/N		Yes	Yes	Yes	Yes							
Сар		838	864	892	908							
Service Time		2.297	2.167	2.038	1.97							
HCM Lane V/C Ratio		0.056	0.038	0.061	0.095							
HCM Control Delay		7.5	7.3	7.3	7.4							
HCM Lane LOS		А	А	А	А							
		0.2	0.1	0.2	0.3							

Synchro 11 Report Page 12

	≯	-	\mathbf{r}	4	-	*	1	1	1	1	÷.	4
ane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SB
ane Configurations		4			4			4			4	
Traffic Volume (vph)	10	174	18	74	497	114	29	182	28	35	206	3
Future Volume (vph)	10	174	18	74	497	114	29	182	28	35	206	3
Satd. Flow (prot)	0	1707	0	0	1669	0	0	1697	0	0	1694	
Flt Permitted		0.966			0.943			0.935			0.934	
Satd. Flow (perm)	0	1652	0	0	1575	0	0	1594	0	0	1589	
Satd. Flow (RTOR)		12			24			12			12	
Lane Group Flow (vph)	0	202	0	0	685	0	0	239	0	0	275	
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases		2			6			8			4	
Permitted Phases	2			6			8			4		
Detector Phase	2	2		6	6		8	8		4	4	
Switch Phase												
Minimum Initial (s)	10.0	10.0		10.0	10.0		10.0	10.0		10.0	10.0	
Minimum Split (s)	22.5	22.5		22.5	22.5		22.5	22.5		22.5	22.5	
Total Split (s)	36.0	36.0		36.0	36.0		24.0	24.0		24.0	24.0	
Total Split (%)	60.0%	60.0%		60.0%	60.0%		40.0%	40.0%		40.0%	40.0%	
Yellow Time (s)	3.0	3.0		3.0	3.0		3.3	3.3		3.3	3.3	
All-Red Time (s)	2.5	2.5		2.5	2.5		2.0	2.0		2.0	2.0	
Lost Time Adjust (s)		0.0			0.0			0.0			0.0	
Total Lost Time (s)		5.5			5.5			5.3			5.3	
Lead/Lag												
Lead-Lag Optimize?	0.14	0.14		0.14	0.14							
Recall Mode	C-Max	C-Max		C-Max	C-Max		Max	Max		Max	Max	
Act Effct Green (s)		30.5			30.5			18.7			18.7	
Actuated g/C Ratio		0.51			0.51 0.84			0.31 0.47			0.31 0.55	
v/c Ratio		0.24 8.7			24.8			19.6			21.3	
Control Delay								0.0				
Queue Delay		0.0 8.7			0.0 24.8			19.6			0.0 21.3	
Total Delay					24.0 C			19.0 B			21.3 C	
LOS Approach Delay		A 8.7			24.8			19.6				
Approach Delay Approach LOS		8.7 A			24.8 C			19.6 B			21.3 C	
Queue Length 50th (m)		10.7			57.6			19.8			23.6	
Queue Length 95th (m)		20.7			#120.0			37.4			43.5	
Internal Link Dist (m)		95.1			#120.0			119.0			43.5 98.4	
Turn Bay Length (m)		33.1			01.5			113.0			30.4	
Base Capacity (vph)		845			812			505			503	
Starvation Cap Reductn		040			012			0			0	
Spillback Cap Reductn		0			0			0			0	
Storage Cap Reductn		0			0			0			0	
Reduced v/c Ratio		0.24			0.84			0.47			0.55	
ntersection Summary												
Actuated Cycle Length: 60 Offset: 53 (88%), Reference latural Cycle: 60	ed to phase	2:EBTL a	nd 6:WE	TL, Start	of Green							

Lanes, Volumes, Timings 8: Bayswater & Gladstone 951 Gladstone & 145 Loretta Future Total - PM Peak Hour

Maximum v/c Ratio: 0.84

Waximum v/c Ralio. 0.04	
Intersection Signal Delay: 20.9	Intersection LOS: C
Intersection Capacity Utilization 87.9%	ICU Level of Service E
Analysis Period (min) 15	
# 95th percentile volume exceeds capacity, queue may be lon	ger.
Queue shown is maximum after two cycles.	

Splits and Phases: 8: Bayswater & Gladstone

Ø2 (R)		Ø4	
36 s		24 s	
₩ Ø6 (R)		™ ¶ø8	
36 s		74 s	

Synchro 11 Report Page 16

	≯	-	$\mathbf{\hat{v}}$	1	-	*	•	1	1	1	÷.	4
ane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SB
ane Configurations		†			1							
Traffic Volume (vph)	0	292	0	0	657	0	0	0	0	0	0	
Future Volume (vph)	0	292	0	0	657	0	0	0	0	0	0	
Satd. Flow (prot)	0	1745	0	0	1745	0	0	0	0	0	0	
Flt Permitted												
Satd. Flow (perm)	0	1745	0	0	1745	0	0	0	0	0	0	
Satd. Flow (RTOR)												
ane Group Flow (vph)	0	292	0	0	657	0	0	0	0	0	0	
Turn Type		NA			NA							
Protected Phases		2			6							
Permitted Phases												
Detector Phase		2			6							
Switch Phase												
Vinimum Initial (s)		10.0			10.0							
Vinimum Split (s)		22.5			22.5							
Total Split (s)		50.0			50.0							
Total Split (%)		71.4%			71.4%							
Yellow Time (s)		3.0			3.0							
All-Red Time (s)		1.9			1.9							
Lost Time Adjust (s)		0.0			0.0							
Total Lost Time (s)		4.9			4.9							
_ead/Lag												
_ead-Lag Optimize?												
Recall Mode		C-Max			C-Max							
Act Effct Green (s)		56.8			56.8							
Actuated g/C Ratio		0.81			0.81							
//c Ratio		0.21			0.46							
Control Delay		3.6			3.1							
Queue Delay		0.0			0.0							
Total Delay		3.6			3.1							
_OS		A			A							
Approach Delay		3.6			3.1							
Approach LOS		A			A							
Queue Length 50th (m)		11.9			19.8							
Queue Length 95th (m)		20.3			m28.9							
nternal Link Dist (m)		139.1			137.4			12.5			12.7	
Furn Bay Length (m)		100.1			101.4			12.0			12.1	
Base Capacity (vph)		1416			1416							_
Starvation Cap Reductn		0			59							
Spillback Cap Reductn		0			0							
Storage Cap Reductn		0			0							
Reduced v/c Ratio		0.21			0.48							_
		0.21			0.40							
ntersection Summary												
Cycle Length: 70												
Actuated Cycle Length: 70 Dffset: 0 (0%), Referenced t												

9: Gladstone Future T	& 145 Loretta
	otal - PM Peak Hour

Lane Group	Ø4	Ø8
Lane Configurations		
Traffic Volume (vph)		
Future Volume (vph)		
Satd. Flow (prot)		
Flt Permitted		
Satd. Flow (perm)		
Satd. Flow (RTOR)		
Lane Group Flow (vph)		
Turn Type		
Protected Phases	4	8
Permitted Phases		Ŭ
Detector Phase		
Switch Phase		
Minimum Initial (s)	10.0	10.0
Minimum Split (s)	18.0	18.0
Total Split (s)	20.0	20.0
Total Split (%)	20.0	20.0
Yellow Time (s)	29%	29%
All-Red Time (s)	1.1	1.1
Lost Time Adjust (s)		
Total Lost Time (s)		
Lead/Lag		
Lead-Lag Optimize?		
Recall Mode	None	None
Act Effct Green (s)		
Actuated g/C Ratio		
v/c Ratio		
Control Delay		
Queue Delay		
Total Delay		
LOS		
Approach Delay		
Approach LOS		
Queue Length 50th (m)		
Queue Length 95th (m)		
Internal Link Dist (m)		
Turn Bay Length (m)		
Base Capacity (vph)		
Starvation Cap Reductn		
Spillback Cap Reductn		
Storage Cap Reductin		
Reduced v/c Ratio		
Reduced WC Rallo		
Intersection Summary		

Synchro 11 Report Page 17

Lanes, Volumes,	Timings
9: Gladstone	

951 Gladstone & 145 Loretta Future Total - PM Peak Hour

Maximum v/c Ratio: 0.46	
Intersection Signal Delay: 3.3	Intersection LOS: A
Intersection Capacity Utilization 40.6%	ICU Level of Service A
Analysis Period (min) 15	
m Volume for 95th percentile queue is metered by upstream	n signal.

Splits and Phases: 9: Gladstone

, →ø2 (R)	Åå _{Ø4}
50 s	20 s
, ← Ø6 (R)	Åå ø8
50 s	20 s

HCM 2010 TWSC 5: Loretta & Access #1 951 Gladstone & 145 Loretta Future Total - PM Peak Hour

Intersection			_	_		
Int Delay, s/veh	4.7					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	۰Y		4			ન ી
Traffic Vol, veh/h	114	14	49	42	7	52
Future Vol, veh/h	114	14	49	42	7	52
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage	,#0	-	0	-		0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2
Mymt Flow	114	14	49	42	7	52
Major/Minor	Minor1		Major1	,	Major2	
						0
Conflicting Flow All	136	70	0	0	91	0
Stage 1	70	-	-	-	-	-
Stage 2	66	-	-	-	-	-
Critical Hdwy	6.42	6.22	-		4.12	-
Critical Hdwy Stg 1	5.42	-	-	-		-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy		3.318	-	-	2.218	-
Pot Cap-1 Maneuver	857	993	-	-	1504	-
Stage 1	953	-	-	-	-	-
Stage 2	957	-	-	-	-	-
Platoon blocked, %			-	-		-
Mov Cap-1 Maneuver	853	993	-	-	1504	-
Mov Cap-2 Maneuver	853	-	-	-	-	-
Stage 1	953	-	-	-	-	-
Stage 2	952				-	
otago 2	002					
A			ND		00	
Approach	WB		NB		SB	
HCM Control Delay, s	9.9		0		0.9	
HCM LOS	A					
Minor Lane/Major Mvm	t	NBT	NBR	NBLn1	SBL	SBT
Capacity (veh/h)		-	-	866	1504	-
HCM Lane V/C Ratio				0.148		
HCM Control Delay (s)		-	-	9.9	7.4	0
HCM Lane LOS		-	-	0.5 A	A	Ā
HCM 95th %tile Q(veh)			-	0.5	0	-
			-	0.0	0	-

HCM 2010 TWSC 4: Loretta & Access #2

951 Gladstone & 145 Loretta Future Total - PM Peak Hour

1.1 P		_	_			
Intersection						
Int Delay, s/veh	1					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	۰¥		•			•
Traffic Vol, veh/h	7	7	63	0	0	52
Future Vol, veh/h	7	7	63	0	0	52
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage.	,# 0	-	0	-	-	0
Grade, %	0	-	0	-		0
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2
Mymt Flow	7	7	63	0	0	52
	- 1		- 00	- 0	0	02
	Minor1		Major1		Major2	
Conflicting Flow All	115	63	0	-	-	-
Stage 1	63	-	-	-	-	-
Stage 2	52	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	-	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	-	-	-	-
Pot Cap-1 Maneuver	881	1002	-	0	0	-
Stage 1	960	-		0	0	-
Stage 2	970	-	-	0	0	-
Platoon blocked, %	0.0			Ű	Ŭ	-
Mov Cap-1 Maneuver	881	1002	-	-	-	-
Mov Cap-2 Maneuver	881					
Stage 1	960	-	-	-		-
Stage 2	970					
Oldge 2	570	-	-	-	-	-
			NB		SB	
Approach	WB					
Approach HCM Control Delay, s	8.9		0		0	
			0		0	
HCM Control Delay, s	8.9		0		0	
HCM Control Delay, s HCM LOS	8.9 A	NDT		ODT	0	
HCM Control Delay, s HCM LOS Minor Lane/Major Mvm	8.9 A	NBTV	VBLn1	SBT	0	
HCM Control Delay, s HCM LOS Minor Lane/Major Mvm Capacity (veh/h)	8.9 A	-	VBLn1 938	-	0	
HCM Control Delay, s HCM LOS Minor Lane/Major Mvm Capacity (veh/h) HCM Lane V/C Ratio	8.9 A	-	VBLn1 938 0.015	-	0	
HCM Control Delay, s HCM LOS Minor Lane/Major Mvm Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s)	8.9 A	-	VBLn1 938 0.015 8.9	-	0	
HCM Control Delay, s HCM LOS Minor Lane/Major Mvm Capacity (veh/h) HCM Lane V/C Ratio	8.9 A	-	VBLn1 938 0.015	-	0	

HCM 2010 TWSC 10: Loretta & Access #3 951 Gladstone & 145 Loretta Future Total - PM Peak Hour

Intersection						
Int Delay, s/veh	0.7					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Y		ĥ		002	<u>بون</u>
Traffic Vol, veh/h	7	1	61	9	2	47
Future Vol. veh/h	7	1	61	9	2	47
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-		-		-
Veh in Median Storage.	-	-	0	-	-	0
Grade, %	, # 0 0		0			0
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2
Mymt Flow	7	1	61	9	2	47
	1	1	01	9	2	47
	Vinor1		Major1		Major2	
Conflicting Flow All	117	66	0	0	70	0
Stage 1	66	-	-	-		-
Stage 2	51	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.12	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	-	-	2.218	-
Pot Cap-1 Maneuver	879	998	-	-	1531	-
Stage 1	957	-	-	-	-	-
Stage 2	971	-	-	-		-
Platoon blocked, %				-		-
Mov Cap-1 Maneuver	878	998	-	-	1531	-
Mov Cap-2 Maneuver	878	-		-	-	-
Stage 1	957	-	-	-	-	-
Stage 2	970					
Stage 2	510					
Approach	WB		NB		SB	
HCM Control Delay, s	9.1		0		0.3	
HCM LOS	Α					
	t	NBT	NRR\	WBLn1	SBL	SBT
Minor Lane/Major Mym	t	NDT	NUN	891	1531	
Minor Lane/Major Mvm						
Capacity (veh/h)		-		0 000		
Capacity (veh/h) HCM Lane V/C Ratio		-	-	0.009		-
Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s)		-	-	9.1	7.4	0
Capacity (veh/h) HCM Lane V/C Ratio			-			

Synchro 11 Report Page 8

Appendix I

Signal Warrant – OTM Justification 7

Gladstone Ave @ Loretta Ave N Future Total

Justification #7

Justification	Description	Minimum Requirement		Minimum Requirement		Compliance			
		1 Lane Highway		2 or More Lanes		Sectional		Entire %	Signal
		Free Flow	Restr. Flow	Free Flow	Restr. Flow	Numerical	%	LIILII E 70	
1. Minimum Vehicular Volume	A. Vehicle volume, all approaches (average hour)	480	720	600	900	428	59%	40%	No
	B. Vehicle volume, along minor streets (average hour)	120	170	120	170	68	40%		
2. Delay to Cross Traffic	A. Vehicle volumes, major street (average hour)	480	720	600	900	360	50%	49%	No
	B. Combined vehicle and pedestrian volume crossing artery from minor streets (average hour)	50	75	50	75	37	49%		

Notes

1. Refer to OTM Book 12, pg 92, Mar 2012 2. Lowest section percentage governs justification

3. Average hourly volumes estimated from peak hour volumes, AHV = PM/2 or (AM + PM) / 4, including amplifcation factors

4. T-intersection factor corrected, applies only to 1B