

FINAL REPORT

Phase Two Environmental Site Assessment

100 Bayshore Drive, Ottawa, Ontario

Submitted to:

Ivanhoé Cambridge

95 Wellington Street West, Suite 600 Toronto, Ontario M5J 2R2

Submitted by:

Golder Associates Ltd.

1931 Robertson Road Ottawa, Ontario, K2H 5B7 Canada +1 613 592 9600 19134931 March 2021

Distribution List

e-copy - Ivanhoé Cambridge

e-copy - Golder Associates Ltd

Executive Summary

The Executive Summary highlights key points from the report only; for complete information and findings, as well as the limitations, the reader should examine the complete report.

Golder Associates Ltd. (Golder) was retained by Ivanhoé Cambridge (Ivanhoé) to carry out a Phase Two Environmental Site Assessment (ESA) for a part of the property addressed 100 Bayshore Drive in Ottawa Ontario (the "Subject Property"). The part of the Subject property covered by this Phase Two ESA includes a 0.51 hectare (1.27 acres) of vacant land (hereinafter referred to as the "Site", "Phase Two Property" or "RSC Property") located west of the Bayshore Shopping Mall, , as shown on Figure 1.

The Phase Two Property, which is identical to the RSC Property, is an irregular parcel of vacant land, bordered by Woodridge Crescent to the north, Bayshore Mall building to the east (across an unnamed driveway and raised walkway connecting the transit station and shopping centre), vacant land followed by a residential apartment building to the west, and an OC-Transpo bus station followed by Highway 417 to the south. There were no buildings or structures present at the Site. The surrounding properties to the Site primarily consist of commercial, transportation and residential land uses. The Site's most recent developed use was as a community centre (i.e. community land use) but more recently was used as a construction yard for the adjacent mall which may be considered an extension of the shopping centre.

Given that the Site will be redeveloped for residential purposes with two multi-tenant residential buildings, a change in land use from less sensitive (community and/or commercial) to more sensitive (residential) entails a mandatory requirement for filing of a Record of Site Condition (RSC) for this property pursuant to Ontario Regulation 153/04 – Records of Site Condition – Part XV.1 of the Act, made under the Environmental Protection Act. Golder understands that this Phase Two ESA, completed in accordance with the requirements of Schedule E of O.Reg. 153/04 (as amended), will be used for filing of an RSC application. As such, the boundaries of the property for which the RSC will be filed, and the Phase Two Property are the same.

A Phase One ESA in accordance with Ontario Regulation 153/04 (O.Reg. 153/04) (as amended) was completed for the RSC Property by Golder titled "Phase One Environmental Site Assessment Part of 100 Bayshore Drive, West of Bayshore Shopping Mall, Ottawa, Ontario" in December 2019 (the "Phase One ESA").

The Phase Two ESA investigated the APECs identified in the Phase One ESA. There were no exceedances of the applicable site standards in the soil or groundwater samples collected from the Site with the exception of road salt related impacts, specifically EC and/or SAR in some of the soil samples and chloride in the groundwater samples and naturally elevated vanadium in the clay. However, as salt was only applied at the Phase Two Property for safety purposes under conditions of ice and snow, and the vanadium was within the typical range for local area marine clays, these samples were deemed by the Qualified Person to meet the applicable site condition standards.

i

Table of Contents

EXE	CUTIV	E SUMMARY	i
1.0	INTRO	DDUCTION	1
	1.1	Site Ownership and Description	1
	1.2	Overview	1
	1.3	Applicable Site Condition Standards	2
	1.4	Phase Two ESA Objectives	2
2.0	BACK	GROUND INFORMATION	2
	2.1	Physical Setting	3
	2.2	Past Investigations	3
	1.1.1	2019 Phase One ESA	3
3.0	SCOF	PE OF THE PHASE TWO ESA INVESTIGATION	5
	3.1	Overview of Site Investigation	5
	3.2	Media Investigated	6
4.0	INVE	STIGATION METHOD	6
	4.1	General	6
	4.2	Drilling/Test Pits	6
	4.3	Soil: Sampling	6
	4.4	Groundwater: Monitoring Well Installation	7
	4.5	Groundwater: Field Measurements for Water Quality Parameters	7
	4.6	Groundwater: Sampling	8
	4.7	Sediment: Sampling	8
	4.8	Residue Management Procedures	8
	4.9	Elevation Surveying	8
	4.10	Quality Assurance and Quality Control Measures	8
5.0	REVI	EW AND EVALUATION	9
	5.1	Geology	9

5.2	Groundwater: Elevations and Flow Direction	10				
5.3	Groundwater: Hydraulic Conductivity, Hydraulic Gradients and Velocity	10				
5.3.1	Hydraulic Gradients	10				
5.3.2	Groundwater Velocity	10				
5.4	Coarse Soil Texture	10				
5.5	Soil: Quality	10				
5.6	Groundwater: Quality	11				
5.7	Sediment: Quality	12				
5.8	Quality Assurance and Quality Control Results	12				
5.9	Phase Two Conceptual Site Model	13				
5.9.1	Physical Settings	14				
5.9.2	Physical Hydrogeology	16				
5.9.3	Proposed Buildings and Structures	16				
5.9.4	Potentially Contaminating Activities (PCA) and Areas of Potential Environmental Concern (APEC)	16				
5.9.5	Findings of the Phase Two ESA with Respect to the APECs	17				
5.9.6	Summary of Current Site Condition	19				
5.9.7	Meteorological and Climatic Considerations	20				
5.9.8	Potential Exposure Pathways and Receptors	20				
5.9.9	Contaminant Release and Migration Mechanism	20				
5.9.10	Soil Vapour Intrusion	20				
CONC	CLUSIONS	20				
CERT	CERTIFICATION20					
LIMIT	ATIONS	20				
SIGNA	ATURE	21				

6.0

7.0

8.0

9.0

TABLES

- Table 1: Groundwater Monitoring Well Construction Details
- Table 2: Groundwater Levels and Elevations
- Table 3: Summary of Soil Samples Submitted for Analysis
- Table 4: Summary of Groundwater Samples Submitted for Analysis
- Table 5: Summary of Soil Analytical Results
- Table 6: Summary of Groundwater Analytical Results

FIGURES

- Figure 1: Site Plan and Areas of Potential Environmental Concern
- Figure 2: Groundwater Elevations, Interpreted Shallow Groundwater flow Direction (August 10, 2020)
- Figure 3: Groundwater Elevations, Interpreted Deep Groundwater Flow Direction (August 10, 2020)
- Figure 4: PHCs and BTEX Analysis and Exceedances in Soil
- Figure 5: PAHs Analysis and Exceedances in Soil
- Figure 6: Metals Analysis and Exceedances in Soil
- Figure 7: PCB Analysis and Exceedances in Soil
- Figure 8: EC & SAR Analysis in Soil
- Figure 9: PHCs and BTEX Analysis and Exceedances in Groundwater
- Figure 10: PAHs Analysis and Exceedances in Groundwater
- Figure 11: Metals Analysis and Exceedances in Groundwater
- Figure 12: PCB Analysis in Groundwater
- Figure 13: Sodium & Chloride Analysis and Exceedances in Groundwater
- Figure 14: Cross Section A-A' with PHCs and BTEX Analysis and Exceedance in Soil
- Figure 15: Cross Section B-B' with PHCs and BTEX Analysis and Exceedance in Soil
- Figure 16: Cross Section A-A' with PAHs Analysis and Exceedance in Soil
- Figure 17: Cross Section B-B' with PAHs Analysis and Exceedance in Soil
- Figure 18: Cross Section A-A' with Metals Analysis and Exceedance in Soil
- Figure 19: Cross Section A-A' with Metals Analysis and Exceedance in Soil
- Figure 20: Cross Section A-A' with PCB Analysis and Exceedance in Soil
- Figure 21: Cross Section B-B' with PCB Analysis and Exceedance in Soil
- Figure 22: Cross Section A-A' with EC & SAR Analysis in Soil
- Figure 23: Cross Section B-B' with EC & SAR Analysis in Soil

- Figure 24: Cross Section A-A' with PHCs and BTEX Analysis and Exceedance in Groundwater
- Figure 25: Cross Section B-B' with PHCs and BTEX Analysis and Exceedance in Groundwater
- Figure 26: Cross Section A-A' with PAHs Analysis and Exceedance in Groundwater
- Figure 27: Cross Section B-B' with PAHs Analysis and Exceedance in Groundwater
- Figure 28: Cross Section A-A' with Metals Analysis and Exceedance in Groundwater
- Figure 29: Cross Section B-B' with Metals Analysis and Exceedance in Groundwater
- Figure 30: Cross Section A-A' with PCB Analysis in Groundwater
- Figure 31: Cross Section A-A' with PCB Analysis in Groundwater
- Figure 32: Cross Section A-A' with Sodium & Chloride Analysis and Exceedance in Groundwater
- Figure 33: Cross Section A-A' with Sodium & Chloride Analysis and Exceedance in Groundwater

APPENDICES

APPENDIX A

Plan of Survey

APPENDIX B

Record of Boreholes

APPENDIX C

Laboratory Certificates of Analysis

1.0 INTRODUCTION

The following Phase Two Environmental Site Assessment (ESA) report has been prepared for a part of the property addressed 100 Bayshore Drive in Ottawa Ontario (the "Subject Property"). The part of the Subject property covered by this Phase Two ESA includes a 0.51 hectare (1.27 acres) of vacant land (hereinafter referred to as the "Site", "Phase Two Property" or "RSC Property") located west of the Bayshore Shopping Mall, as shown on Figure 1.

1.1 Site Ownership and Description

The RSC Property information is as follows:

Municipal Address	Part of 100 Bayshore Drive, Ottawa
Property Identification Number	047010101 and 047010103
Legal Description	Part of Block A, Plan 465465, being Parts 1&2 on Plan 4R-14855, formerly City of Nepean, City of Ottawa,

The contact information for the Phase Two Property is:

Site Owner/Client	Address	Contact Information
Ivanhoé Cambridge	95 Wellington Street West, Suite 600, Toronto ON M5J 2R2	Ms. Denise Galan Email: Denise.Galan@ivanhoecambridge.com

1.2 Overview

The Phase Two Property, which is identical to the RSC Property, is an irregular parcel of vacant land, bordered by Woodridge Crescent to the north, Bayshore Mall building to the east (across an unnamed driveway), residential apartment building to the west, and an OC-Transpo station to the south. There were no buildings or structures present at the Site. The surrounding properties to the Site primarily consist of commercial and residential land uses.

Given that the Site will be redeveloped for residential purposes with two multi-tenant residential buildings, a change in land use from less sensitive (community and/or commercial) to more sensitive (residential) entails a mandatory requirement for filing of a Record of Site Condition (RSC) for this property pursuant to Ontario Regulation 153/04 – Records of Site Condition – Part XV.1 of the Act, made under the Environmental Protection Act. Golder understands that this Phase Two ESA, completed in accordance with the requirements of Schedule E of O.Reg. 153/04 (as amended), will be used for filing of an RSC application. As such, the boundaries of the property for which the RSC will be filed, and the Phase Two Property are the same.

This Phase Two ESA was completed to investigate potential impact from the APECs identified in the Phase One ESA titled "Phase One Environmental Site Assessment Part of 100 Bayshore Drive, West of Bayshore Shopping Mall, Ottawa, Ontario", dated December 2019 (the "2019 Phase One ESA"). The fieldwork program for this Phase Two ESA, completed in conjunction with a geotechnical investigation at the Site, consisted of seven boreholes (20-01 to 20-07) with four of these locations installed with monitoring wells. The work also included soil investigation at two shallow test pits excavated to evaluate fill quality at the eastern boundary.

1.3 Applicable Site Condition Standards

The analytical results of the samples collected for this Phase Two ESA were compared to the Table 3 Full Depth Generic Site Condition Standards in a Non-Potable Groundwater Condition (Residential/Parkland/Institutional Property Use, coarse textured soil) presented in the Ministry of Environment and Climate Change "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act", dated April 15, 2011. The applicable site condition standards were selected based on the following rationale:

- The Site and all other properties located, in whole or in part, within 250 metres of the Site are supplied by the City of Ottawa municipal drinking water system and there are no water supply wells which are in use.
- The Site is not located in an area designated in a municipal official plan as a well-head protection area or other designation identified by the municipality for the protection of ground water.
- Based on a conservative approach, the soil is considered coarse textured.
- There are no water bodies on the Site. The closest permanent water body is the Graham Creek located 220 m southwest of the Phase Two Property.
- There are no features on the Phase Two Property that would meet the conditions of an environmentally sensitive site, as described in Section 41 of O.Reg.153/04 as amended. Based on the results obtained during this Phase Two ESA, soil pH was measured between 6.91 and 8.05, which is within MECP's acceptable pH range of 5 to 9.
- The proposed land use for the Phase Two Property is residential.
- The overburden thickness encountered in the boreholes is greater than 2 metres, as such, the Site is not considered a shallow soil Phase Two Property.

Based on the above considerations, the soil and groundwater analytical results were compared to *Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act* Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition, Residential/Parkland/Institutional Property Use, coarse-textured soil, dated April 15, 2011 (2011 MECP Table 3).

1.4 Phase Two ESA Objectives

The objectives of the Phase Two ESA were to obtain information about environmental conditions in the soil and groundwater on, in or under the Site, and to develop the information necessary to complete a Record of Site Condition ("RSC") for the property. The objectives of this Phase Two ESA were achieved by:

- Developing an understanding of the geological and hydrogeological conditions at the Site; and,
- Conducting field sampling for all contaminants of concern ("COC") associated with all areas of potential environmental concern identified at the Site.

2.0 BACKGROUND INFORMATION

This section presents the background conditions of the Property including a description of the physical setting and a summary of past investigations conducted.

2.1 Physical Setting

The Site addressed 100 Bayshore Drive in Ottawa, Ontario with an area of 0.51 hectare is located west of the Bayshore Shopping Centre. The Site is bordered by Woodridge Crescent to the north, the Bayshore Shopping Centre building to the east (across an unnamed driveway), vacant land followed by a residential apartment building to the west, and, an OC-Transpo station to the south as shown on Figure 1. No buildings or structures were present on-Site. A supporting structure for an overhead walkway (connecting the OC-Transpo station (Bayshore Station) with Bayshore Shopping Centre) was observed off-Site directly east of the Site.

The surrounding properties include residential, commercial and community, as summarized below:

- West (inferred to be hydraulically down and cross-gradient of the Site): Immediately west of the Site is a vacant lot formerly used as a gravel parking lot. Further west of this property is a residential apartment building.
- **North (inferred up- and cross-gradient)**: Bounded by Woodridge Crescent followed by a large residential housing complex.
- South (inferred down- and cross-gradient): Community use occupied by OC Transpo- Bayshore Station with associated laneways/driveways and passenger waiting structures. Further south is the Highway 417 followed by vacant land.
- **East (inferred up- and cross-gradient)**: A small strip of vacant land followed by Bayshore Shopping Centre building across an unnamed driveway.

2.2 Past Investigations

1.1.1 2019 Phase One ESA

A Phase One ESA in accordance with Ontario Regulation 153/04 (O.Reg. 153/04) (as amended) was completed for the RSC Property by Golder titled "Phase One Environmental Site Assessment Part of 100 Bayshore Drive, West of Bayshore Shopping Mall, Ottawa, Ontario" in December 2019 (the "Phase One ESA"), which included a review of previous historical reports relevant the RSC Property.

The following describes the Phase One ESA Conception Site Model (CSM) for the RSC Property based on the information obtained and reviewed as part of the Phase One ESA:

- The Site is an irregular parcel of vacant land bordered by Woodridge Crescent to the north, Bayshore Mall building to the east (across an unnamed driveway), vacant lot followed by a residential apartment building to the west, and an OC-Transpo station and Highway 417 to the south. At the time of the Site visit, no buildings or structures were present.
- In the earliest available aerial image from 1934, the Site was undeveloped and likely used for agricultural purposes. Subsequent aerials indicate first development of the Site, sometime between 1958 and 1965, as part of a community recreational centre with associated parking lot; however, this was removed between 1991 and 1999. The Site was used as a construction yard in mid- to late 2010s, likely associated with renovation work at the Bayshore Shopping Centre.
- The nearest permanent watercourse is Graham Creek located approximately 220 m southwest of Site.

 This creek discharges into the Ottawa River located approximately 750 m north of the Site.

Regional groundwater flow in the underlying soil aquifers is expected to be northwest toward the Ottawa River, located approximately 750 m north of the Site. Shallow groundwater flow is expected to be southwest towards Graham Creek, located 220 m southwest of the Site.

- No areas of natural and scientific interest (ANSI) are known to be located on the Site or on the Phase One Study Area;
- At the time of the Phase One ESA, the surrounding properties within the Phase One Study Area included:
 - West: Immediately west of the Site is a vacant lot formerly used as a gravel parking lot. Further west of this property is a residential apartment building.
 - North: Bounded by Woodridge Crescent followed by a large residential housing complex.
 - South: Community use occupied by an OC Transpo- Bayshore Station with associated laneways/driveways and passenger waiting structures. Further south is Highway 417 followed by vacant land.
 - East: A vacant strip of land followed by Bayshore Shopping Centre building located across an unnamed driveway.
- There are no buildings on site, and thus no active utility connections. However, the Site is serviced by municipal water, electricity, and storm sewer.
- The Site topography is generally flat with exception of some uneven terrain on the eastern portion of the Site, likely resulting from regrading activities. Stratigraphy consists of fill materials underlain by Offshore Marine Deposits with clay and silt underlying erosional terraces. Bedrock consists of Rockcliffe formations with interbedded fine-grained light greenish grey quartz sandstone, shaley limestone and shale, locally conglomerate at base, interbeds of calcarenite and silty dolostone in upper part.
- Based on the information obtained as part of this Phase One ESA, ten (10) Potentially Contaminating Activities (PCAs) were identified in the Phase One Study Area, four of which were on the Phase One Property and six of which were on adjacent land. Based on site characteristics and the locations of the PCAs, five (5) Areas of Potential Environmental Concern (APECs) were identified for the Phase One Property as indicated in table bellow.

Area of Potential Environmental Concern ¹	Location of APEC on Phase One Property	Potentially Contaminating Activity ²	Location of PCA	Contaminants of Potential Concern ³	Media Potentially Impacted
APEC 1: PCA ID # A – Use of imported fill materials across the Site for regrading purposes	Across entire Site	PCA 30. Importation of Fill Material of Unknown Quality	On-Site	PHCs/BTEX,P AHs, Metals and Inorganics	Soil and Groundwater

Area of Potential Environmental Concern ¹	Location of APEC on Phase One Property	Potentially Contaminating Activity ²	Location of PCA	Contaminants of Potential Concern ³	Media Potentially Impacted
APEC 2: PCA ID # B, C and F – Two former diesel ASTs for refuelling purposes; Salt dome with bulk storage for application on Bayshore Shopping Centre property; Former snow disposal on adjacent vacant land west of the Site	Southwest corner of the Site	PCA 28: Gasoline and Associated Products Storage in Fixed Tanks; PCA 48. Salt Manufacturing Processing and Bulk Storage	On-Site (PCA B and C); Off-Site (PCA F)	PHCs/BTEX, EC, SAR	Soil and Groundwater
APEC 3: PCA ID # D – Current concrete pad mounted transformer	Northwest corner of the Site	PCA 55. Electricity Generator, Transformation and Power Station	On-Site	PHC/BTEX and PCBs	Soil and Groundwater
APEC 4: PCA ID # E – Use of the adjacent lands as off-site snow storage.	West portion of the Site	Unnumbered PCA.	Off-Site	Metals and Inorganics	Soil and Groundwater
APEC 5: PCA ID # F – PAH impacts identified in shallow fill east of the Site	Southeast property boundary	PCA 30. Importation of Fill Material of Unknown Quality	Off-Site	PAHs	Soil

Additionally, it is expected that salt was used on the RSC Property for de-icing purposes when it was used as a construction staging area for in mid- to late 2010s, likely associated with renovation work at the Bayshore Shopping Centre. However, since the salt application was for the safety of vehicular or pedestrian traffic under conditions of snow or ice, it was not considered to represent a PCA on the Site.

3.0 SCOPE OF THE PHASE TWO ESA INVESTIGATION

3.1 Overview of Site Investigation

This Phase Two ESA was combined with a geotechnical investigation at the RSC Property with a total of eight (8) boreholes advanced- 20-01, 20-02, 20-03, 20-04, 20-05, 20-06, 20-07 and 20-08. Five of these eight locations were completed with stick-up monitoring wells with monument casings, including two boreholes (20-02, 20-06 and 20-08) installed with nested wells with screen at various depths in the overburden. This borehole 20-08 was not included in the scope of this Phase Two ESA as it was located off-Site (southeast of the RSC Property); however, PAH impacts identified in 20-08 prompted completion of two test pits (TP-1 and TP-2) on the southeast corner of the Site to confirm that PAH impacts were not present on-Site. Only the nested wells with shallow screen depths at 20-02 and 20-06, hereafter referred to as 20-02S and 20-06S respectively, were sampled for environmental purposes.

Further details of the Phase Two ESA field investigation are provided below in Section 4.0.

3.2 Media Investigated

To address the potential environmental issues identified in the Phase One ESA, the Phase Two ESA field program included sampling of soil and of groundwater from boreholes and monitoring wells screened within the overburden at the Site. In addition, soil samples from two test pits excavated on the southeast corner of the Site were also completed to evaluate the possible presence of PAHs in the on-Site fill associated with documented off-Site PAH impacts in the fill southeast of the Site. No sediment was present at the Site and therefore no sediment sampling was completed. A summary of media investigated, and the applicable contaminants of potential concern are provided in the attached Tables 3 and 4.

4.0 INVESTIGATION METHOD

4.1 General

The following sections describe the pre-field work activities and field investigation methodology employed during this Phase Two ESA conducted at the Site.

Prior to initiating the field work, Golder developed and implemented Site-specific protocols to protect the health and safety of its employees and subcontractors through the preparation of a Site-specific Health and Safety Plan. An assessment of potential health and safety hazards at the Phase Two Property and those associated with the proposed work was completed each day of the field program. A health and safety tail gate meeting was held with Golder's subcontractors each day prior to completion of the field work. The document was reviewed and signed on-Site by field personnel prior to commencing work. Additionally, prior to any intrusive investigations, including drilling, Golder completed public and private utility clearances.

4.2 Drilling/Test Pits

The boreholes were advanced using a track-mounted drill rig supplied and operated by CCC Geotechnical & Environmental Drilling of Ottawa, Ontario. The top portion of the boreholes (i.e., about 5 m depth) were drilled using hollow stem augers, followed by wash boring, with bentonite slurry as needed, for the deeper portions of the boreholes.

Overburden soil samples were collected continuously using a 50 mm diameter split spoon soil sampler and augered using 200 mm outside diameter ("OD") hollow stem augers. Split spoons were decontaminated between sample locations.

Boreholes 20-03, 20-04 and 20-05 were advanced on the east side of the Site, while boreholes 20-01, 20-02 and 20-07 were advanced on the western portion of the RSC Property. The boreholes (20-01 to 20-05, inclusive, and 20-07) were advanced to depths varying from 35.8 to 44.0 m below the existing ground surface (mbgs). The remaining borehole (20-06) was advanced to a depth of 5.2 mbgs. Boreholes 20-01 to 20-05 as well as 20-07 were advanced an additional 1.8 to 8.0 m into the bedrock using rotary diamond drilling techniques while retrieving HQ3 sized core, following refusal to wash boring was encountered at depths of 33.5 to 35.9 mbgs.

In addition, two test pits (TP-1 and TP-2) were excavated on the southeast corner of the Site to a maximum depth of 0.6 mbgs using manual methods. The test pits were completed on October 5, 2020 to evaluate potential impact from off-Site PAH impacted fill which were identified at this depth.

4.3 Soil: Sampling

Soil samples were split in the field into two components. One component of each sample was placed into laboratory supplied sample jars and stored in a cooler with ice for possible subsequent chemical analysis.

The second component of the sample was placed inside a labelled plastic bag for subsequent field headspace screening. When handling all soil samples, a clean gloved hand was used and all equipment in contact with soils was decontaminated between sampling locations to minimize the potential for cross-contamination.

All soil samples collected and submitted for chemical analysis were obtained from undisturbed soils, including fill materials and native overburden from the Site. Nitrile gloves were worn when handling soil samples and all equipment in contact with soils was washed between sample locations to prevent the potential of cross contamination. Soil samples submitted for chemical analysis were based on visual (e.g., staining, discolouration and/or free product, if any) and/or olfactory (if any) observations obtained during field program. No visual or olfactory observations were noted, the highest recorded field screening reading and/or depth horizons at which potential contamination was considered most likely to have occurred was used to determine which soil sample to submit for analysis from each test location. Soil samples submitted for analysis are indicated in the attached Table 3 (Summary of Soil Samples Submitted for Analysis).

The subsurface soil conditions within the boreholes were described in terms of their texture, presence of staining, odour and debris, if any. Geologic descriptions of soil samples are presented in the Record of Borehole sheets (Appendix B). Visual and olfactory observations and results of soil headspace measurements are presented on the Record of Borehole sheets provided in Appendix B.

4.4 Groundwater: Monitoring Well Installation

Shallow groundwater monitoring wells were installed in 20-01 and 20-04 and a nested pair of monitoring wells (a shallow and a deep) were installed in 20-02, and 20-06 (shallow wells identified as 20-02S, and 20-06S, and deep wells identified as 20-02D, and 20-06D). However, only wells 20-01, 20-02S, and 20-06S were used for environmental sampling purposes based on the APECs identified in the Phase One ESA.

The wells were installed using threaded 32 mm diameter, schedule 40, polyvinyl chloride ("PVC") well screens and riser pipe, which were brought to the Site in sealed plastic bags. The annulus surrounding the screened portion of the well and an approximately 0.3 m portion of the riser pipe above the slotted pipe was filled with silica filter sand. Where nested wells were installed, bentonite was placed above the silica sand between two the well screens. The monitoring wells were completed as stick-up wells with monument casings.

Following drilling, the monitoring wells were developed by removing up to ten well volumes or by removing groundwater until the well was purged three times dry, using dedicated Waterra® inertial pumps (polyethylene tubing with foot valves). During monitoring well development, qualitative observations were made of water colour, clarity, and the presence or absence of any hydrocarbon sheen or odours.

Monitoring well construction details are summarized in Table 1 and presented in the Record of Borehole sheets (Appendix B).

4.5 Groundwater: Field Measurements for Water Quality Parameters

Groundwater indicator parameters including temperature, pH, conductivity, oxidation-reduction potential ("ORP") and dissolved oxygen were measured prior to sampling to ensure adequate well development and purging. A Horiba U-52 water quality meter was used to measure groundwater quality during monitoring well development and groundwater sampling.

4.6 Groundwater: Sampling

Prior to the groundwater sampling the wells were purged by using a peristaltic pump. During the well purging, qualitative observations were made of water colour, clarity, the presence or absence of any hydrocarbon sheen and any odours present. Free phase product, odour or sheen were not observed or detected with the oil/water interface probe in any the monitoring wells during the groundwater purging or sampling. The monitoring wells were purged using the low flow procedure which involves purging each well at a constant pumping rate (between 0.1 and 1 L/min) using dedicated 6.3 mm diameter low density polyethylene (LDPE) tubing attached to a peristaltic pump.

Following purging (determined by stabilization of water quality parameters within specified criteria over at least three consecutive readings), groundwater samples were collected into the laboratory provided sample bottles, placed in a cooler on ice and delivered under chain-of-custody procedures to AGAT Laboratories ("AGAT"). Groundwater sampling was carried at the Site on July 20, 2020.

Groundwater samples were analyzed for PHC F1-F4, BTEX, PAHs, PCBs, metals, and/or sodium and chloride following chain-of-custody procedures. Details of the parameters analyzed at each monitoring well are presented in Table 4 (Summary of Groundwater Samples Submitted for Analysis).

4.7 Sediment: Sampling

No sediment samples were collected as part of this investigation.

4.8 Residue Management Procedures

All residues produced during the investigation were left on site for management during the subsequent work.

4.9 Elevation Surveying

All boreholes and monitoring wells were surveyed using a Trimble R8 to a geodetic benchmark following their completion.

Groundwater levels were monitored in all monitoring wells to determine groundwater flow direction and were measured relative to the elevation of the top of the PVC riser. An oil/water interface probe was used to investigate the potential presence of product in the monitoring wells.

A summary of recorded groundwater elevations is provided in Table 2(Groundwater Elevations).

4.10 Quality Assurance and Quality Control Measures

Golder's quality assurance program for environmental investigations was implemented to ensure that analytical data obtained by the investigation were valid and representative. The quality assurance program included the following measures:

- The use of standard operating procedures for all field investigation activities.
- The collection of field duplicate samples at a minimum frequency of one duplicate for every ten samples.
- If applicable, initial calibration of field equipment was performed at the start of each field day, with a daily check of calibration using a standard of known concentration.

Samples were collected in pre-cleaned, labelled, laboratory-supplied bottles with preservation (as necessary) and handled with dedicated nitrile gloves. Samples were put in ice-filled coolers following collection and prior to submission to the laboratory. Soil samples submitted for PHC F1 or BTEX analysis were placed in 40 mL glass vials with methanol preservative using pre-measured syringes to obtain 6 grams of soil.

- Soil samples were handled and stored in accordance with the sample collection and preservation requirement of the MECP Protocol for Analytical Methods Used in the Assessment of Properties Under Part XV.I of the Environmental Protection Act, July 1, 2011.
- Detailed field records documenting the methods and circumstances of collection for each field sample were prepared at the time of sample collection. Each sample was assigned a unique sample identification number recorded in the field notes, along with the date and time of sample collection, the sample matrix, and the requested analyses.
- The submission of samples to the analytical laboratory was in accordance with standard chain of custody procedures.

Details of the parameters analysed for the duplicate soil and groundwater samples are also presented in Tables 3 and 4 following the text of this report.

5.0 REVIEW AND EVALUATION

This section of the report presents a review and evaluation of the results of the drilling, test pitting, monitoring and sampling activities conducted as part of the Phase Two ESA.

5.1 Geology

The soil conditions encountered during the drilling program are presented in the Record of Borehole sheets (included in the Phase Two ESA Report), as well as in the cross sections presented in Figures 15 through 36 with the cross-section location and orientation shown on Figure 2.

The subsurface stratigraphy within the area of the investigation consists of fill underlain by a deposit of clayey silt to silty clay, overlaying a layered deposit of silt underlain by a thick and compact to dense deposit of sands which is in turn underlain by a dense to very dense sand and gravel deposit over dolomite bedrock.

Topsoil was found at the ground surface at all of the borehole locations, with the exceptions of 20-04 and 20-06, with a thickness range from about 0.15 to 0.25 m. The topsoil generally consists of dark brown silty sand with organic matter. Fill was present at all the borehole locations to maximum a depth of 2.4 mbgs and consisted of gravelly sand to gravelly silty sand, silty clay to clayey silt, and sand and gravel. Clayey silt to silty clay was encountered below the fill layer at all the borehole locations and extended to depths between 3.8 to 7.6 mbgs. The clayey silt to silty clay is underlain by layered deposits of clayey silt, silt, sandy silt, and silty sand (called hereafter "silt") and extended to depths varying between about 10.7 to 16.8 mbgs. A deposit of sand to gravelly sand followed by sand and gravel was present to depths ranging between 33.5 and 35.9 mbgs. Bedrock was encountered in six of the boreholes at depths ranging between 33.5 and 35.9 mbgs, and subsequently cored to additional depths of 1.8 to 8.0 mbgs.

5.2 Groundwater: Elevations and Flow Direction

As part of the Phase Two ESA, the groundwater levels in all the monitoring wells were measured on August 10, 2020. The depth to static groundwater level measured ranged between 2.71 and 5.64 mbgs in the shallow wells and 3.08 and 6.50 mbgs in the deep wells. The interpreted shallow and deep groundwater flow directions, based on above mentioned water level measurements, were both to the east towards the Bayshore Shopping Centre building (as shown on Figure 2). Seasonal fluctuations in water levels on the Site are anticipated. Although monitoring well MW20-08, southeast of the Site was not included in the Phase Two ESA, the deeper well at this location MW20-08S was used to calculate flow direction in the deeper aquifer, as shown on Figure 3.

5.3 Groundwater: Hydraulic Conductivity, Hydraulic Gradients and Velocity

5.3.1 Hydraulic Gradients

The average horizontal hydraulic gradient was calculated based on the water level contours presented on Figure 2. The horizontal hydraulic gradient for shallow and deep groundwater conditions were calculated to be approximately 0.019 m/m and 0.027 m/m, respectively. Variability in hydraulic gradients may be present at the Phase Two property related to the presence of foundations/buried structure, bedding materials, and buried services at the Site.

The vertical hydraulic gradients were calculated to be 0.12, 0.39 and -0.045 for nested wells at 20-02, 20-06 and 20-08, respectively. As such, two of the three locations indicated upward gradient.

5.3.2 Groundwater Velocity

Groundwater flow velocity was determined based on the hydraulic conductivity of 5.0 x 10⁻⁹ m/s and porosity of 42% for silty clay to (*source:* https://structx.com/Soil_Properties_006.html), and the hydraulic gradient. The groundwater flow velocity within silty sand was calculated to be 2.26 x 10⁻¹⁰ m/s. Note that the actual groundwater velocity may vary significantly not only because of the variability of the hydraulic gradient, but also because of the variability of the hydraulic conductivity within the clayey silt to silty clay layer.

5.4 Coarse Soil Texture

Soil samples from the Phase Two Property were not analysed for grain size. Based on conservative approach, the soil at the Site is considered coarse-textured. The standards associated with coarse textured soil under MECP Table 3 (applicable to this Site as discussed under section 1.3) are equal or more stringent compared to those for medium/fine textured soil.

5.5 Soil: Quality

Table 3 provides a summary of the soil samples submitted for analysis and the associated test parameters. The analytical results of soil samples are presented in Tables 5A to 5H. Laboratory Certificates of Analysis for the soil samples are included in Appendix C.

A total of 13 fill samples, including two test pits samples (TP-1 and TP-2), were analyzed for PHCs F1-F4, BTEX, PAHs, EC, SAR and/or metals and hydride-forming metals as outlined in Table 3. Five fill samples (20-01 SA2, 20-02 SA3, 20-03 SA2, 20-04 SA3 and 20-06 SA2) exceeded the applicable site condition standards (MECP Table 3 Standards) for EC, SAR and/or vanadium. However, exceedances of vanadium in two samples (20-01 SA2 and 20-06 SA2), both of which consisted of clayey silt to silty clay, is inferred to be associated with naturally occurring elevated concentrations of vanadium commonly found in marine clays in the Ottawa region. This is believed to be the case as the other metals commonly associated with the Ottawa area marine clays (barium,

chromium and cobalt) are also proportionally higher in the clay samples containing high vanadium. Given this information, added to the absence of a source for vanadium, the concentration of vanadium is considered to be of natural origin and were deemed by the Qualified Person to meet the applicable site condition standards as a result.

A total of 15 native soil samples, including two field duplicates, were analyzed for PHCs F1-F4, BTEX, PAHs, metals, EC, SAR and PCBs. No exceedances for PHCs F1-F4, BTEX, PAHs, metals, and PCBs were identified in any of the native samples analyzed. EC and/or SAR were the only exceedancesidentified above the MECP Table 3 Standards in five samples (20-01 SA5, 20-02 SA5, 20-03 SA6, 20-05 SA3 and 20-05 SA6) and a field duplicate (DUP1).

Based on review of the fill and native samples which exceeded EC and SAR concentrations above the MECP Table 3 standards, it appears that ten (10) of the eleven (11) samples consisted of clay (silty clay or clayey silt materials), with the highest values being in the native silty clay below the fill. Given that the majority of the locations (20-01, 20-02, 20-03, 20-4 and 20-06) showed lower to no EC/SAR exceedances in the shallower overlying fill samples or in the deeper coarse deposits below the silty clay it is inferred that the EC/SAR is attributed to natural EC/SAR content in the marine clay deposits and not associated with the application or storage of de-icing agents at surface. This is further supported by the absence of EC/SAR exceedances in the coarse soils directly below the silty clay and increasing EC/SAR in the silty clay at borehole 20-05. Hence, the EC and SAR exceedances in the clay and clay containing fill at the Site were deemed by the Qualified Person to meet the applicable site condition standards.

The exception to the above is the sample 20-02 SA3, collected between 1.52 and 2.13 mbgs, consisting of silty sand which also contained an exceeded EC and SAR but did not contain any notable clay. This sample location is also in proximity to of the former on-Site salt storage dome. This storage facility was used to store salt which was applied to the driveways and parking areas of Bayshore Shopping Centre for de-icing purposes and was present sometime between 2012 and 2017. Similar elevated concentrations of EC and SAR concentrations were not present in a the overlying sample from this location (20-02 SA1B), collected between 0.25 and 0.61 mbgs. This discrepancy may be due to use of imported fill for grading at the Site following removal of salt storage dome and construction staging area. As such, upper layer of fill at this location was is not impacted by the former salt storage dome. Similarly, the samples from the upper fill layer (approximately 0 to 0.61 mbgs) across the Site were all below MECP Table 3 standards for EC and SAR.

5.6 Groundwater: Quality

Monitoring well construction details are summarized in Table 1 and a list of groundwater samples submitted for laboratory analysis is provided in Table 4. The analytical results for groundwater samples are summarized in Tables 6A through 6E, along with the applicable MECP Table 3 Standards. Laboratory Certificates of Analysis for groundwater are provided in Appendix C.

Groundwater sampling event was completed from monitoring wells 20-01, 20-02S, 20-06S including a field duplicate from 20-06 (DUP-1). The groundwater samples (MW20-01, MW20-02S, MW20-06S and DUP-1) were analyzed for PHC F1-F4, BTEX, PAHs, metals, sodium, chloride and/or PCBs. All groundwater samples satisfied the MECP Table 3 Standards for PHC F1-F4, BTEX, PCBs, PAHs and sodium; however, chloride concentrations exceeded the MECP Table 3 Standard in MW20-01 and MW20-02S.

Given the presence of OC-Transpo station followed by Highway 417 up-gradient and adjacent to the Site with lower concentrations at monitoring well MW20-06S, the exceedances of chloride in groundwater inferred to be the result from salt application associated with these adjacent land uses. In addition, salt application on-Site was

solely for de-icing purposes associated with pedestrian and vehicle safety at the Bayshore Shopping Centre. Given these salt applications are understood to be for safety purposes under conditions of ice and snow, added to the likely contribution from off-Site highway and roadway uses, the chloride exceedances in two groundwater samples were deemed by the Qualified Person to meet the applicable site condition standards.

In addition to numerical standards, the MECP Table 3 Standard sets out non-numerical (aesthetic) standards relating to the presence of free phase product and hydrocarbon sheen. Specifically, a property does not meet the site condition standards if there is evidence of free product, including but not limited to, visible petroleum hydrocarbon film or sheen present on groundwater, surface water or in any groundwater or surface water samples. Monitoring for free phase product using an interface probe was conducted during the sampling events No evidence of free product or sheen in groundwater was observed.

5.7 Sediment: Quality

No sediment samples were collected as part of this investigation.

5.8 Quality Assurance and Quality Control Results

Two duplicate soil samples and one duplicate groundwater sample were submitted for analysis. Details of the parameters analysed for the duplicate soil and groundwater samples are also presented in Tables 3 and 4 following the text of this report.

The quality assurance assessment of the field duplicate sample results was conducted according to the document entitled Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act, March 9, 2004 (amended in July 2009 and effective as of July 1, 2011) ("Analytical Protocol").

To determine the precision of the analytical methods and field sampling procedures, blind duplicate samples were collected during soil sampling. Precision is determined by the relative percent difference (RPD) between the duplicate and original samples and was calculated as follows:

$$RPD = \frac{|x_1 - x_2|}{x_m}$$

Where x_1 initial sample results

x₂ duplicate sample results

 x_m mean of x_1 , x_2

Where, x₁ and x₂ are the original and duplicate concentrations. RPDs are calculated only if the concentrations of a parameter are greater than the laboratory RDL in both the duplicate and original samples. In addition, lower precision in the RPD calculation is expected when the average of the concentrations of the analytes is less than 5 times the RDL. Therefore, RPDs were calculated for the original and duplicate sample only in cases where the average of the measured concentrations of analytes was five (5) times greater than the RDL.

RPDs were calculated for the original and duplicate soil and groundwater samples and were generally within the acceptable limits in the Analytical Protocol.

The quality of the analytical results is further supported by the laboratory's internal quality assurance program that includes laboratory blanks, spikes, surrogates and duplicate samples.

All certificates of analysis or analytical reports received pursuant to clause 47 (2) (b) of the regulation comply with subsection 47(3). A certificate of analysis or analytical report has been received for each sample submitted for analysis and is provided in Appendix C.

Furthermore, a trip blank sample was submitted for analysis of BTEX and did not have any detectable concentrations of BTEX.

Accordingly, the analytical data generated during the investigation are valid and representative and may be used in this Phase Two ESA without further qualification.

5.9 Phase Two Conceptual Site Model

The Phase Two Environmental Site Assessment ("ESA") Conceptual Site Model (CSM) described below is based on data from the Phase Two ESA investigations. The CSM consists of diagrams, cross-sections and figures that show the current condition of the RSC Property. A narrative description is provided to explain the contents of the figures and an interpretation of the contaminant distribution.

The figures that comprise the Phase Two CSM include:

- Figure 1: Site Plan and Areas of Potential Environmental Concern
- Figure 2: Groundwater Elevations, Interpreted Shallow Groundwater Flow Direction (August 10, 2020)
- Figure 3: Groundwater Elevations, Interpreted Deep Groundwater Flow Direction (August 10, 2020)
- Figure 4: PHCs and BTEX Analysis and Exceedances in Soil
- Figure 5: PAHs Analysis and Exceedances in Soil
- Figure 6: Metals Analysis and Exceedances in Soil
- Figure 7: PCB Analysis and Exceedances in Soil
- Figure 8: EC & SAR Analysis in Soil
- Figure 9: PHCs and BTEX Analysis and Exceedances in Groundwater
- Figure 10: PAHs Analysis and Exceedances in Groundwater
- Figure 11: Metals Analysis and Exceedances in Groundwater
- Figure 12: PCB Analysis in Groundwater
- Figure 13: Sodium & Chloride Analysis and Exceedances in Groundwater
- Figure 14: Cross Section A-A' with PHCs and BTEX Analysis and Exceedance in Soil
- Figure 15: Cross Section B-B' with PHCs and BTEX Analysis and Exceedance in Soil
- Figure 16: Cross Section A-A' with PAHs Analysis and Exceedance in Soil
- Figure 17: Cross Section B-B' with PAHs Analysis and Exceedance in Soil
- Figure 18: Cross Section A-A' with Metals Analysis and Exceedance in Soil
- Figure 19: Cross Section A-A' with Metals Analysis and Exceedance in Soil
- Figure 20: Cross Section A-A' with PCB Analysis and Exceedance in Soil
- Figure 21: Cross Section B-B' with PCB Analysis and Exceedance in Soil

- Figure 22: Cross Section A-A' with EC & SAR Analysis in Soil
- Figure 23: Cross Section B-B' with EC & SAR Analysis in Soil
- Figure 24: Cross Section A-A' with PHCs and BTEX Analysis and Exceedance in Groundwater
- Figure 25: Cross Section B-B' with PHCs and BTEX Analysis and Exceedance in Groundwater
- Figure 26: Cross Section A-A' with PAHs Analysis and Exceedance in Groundwater
- Figure 27: Cross Section B-B' with PAHs Analysis and Exceedance in Groundwater
- Figure 28: Cross Section A-A' with Metals Analysis and Exceedance in Groundwater
- Figure 29: Cross Section B-B' with Metals Analysis and Exceedance in Groundwater
- Figure 30: Cross Section A-A' with PCB Analysis in Groundwater
- Figure 31: Cross Section A-A' with PCB Analysis in Groundwater
- Figure 32: Cross Section A-A' with Sodium & Chloride Analysis and Exceedance in Groundwater
- Figure 33: Cross Section A-A' with Sodium & Chloride Analysis and Exceedance in Groundwater

5.9.1 Physical Settings

The Site, addressed 100 Bayshore Drive in Ottawa, Ontario with an area of 0.51 hectare, is located west of the Bayshore Shopping Centre. The Site is bordered by Woodridge Crescent to the north, the Bayshore Shopping Centre building to the east (across an unnamed driveway), a residential apartment building to the west, and, an OC-Transpo station to the south. No buildings or structures were present on-Site. A supporting structure for an overhead walkway (connecting the OC-Transpo station (Bayshore Station) with Bayshore Shopping Centre) was observed off-Site directly east of the Site.

The surrounding properties include residential, commercial and community, as summarized below:

- **West:** Immediately west of the Site is a vacant lot formerly used as a gravel parking lot. Further west of this property is a residential apartment building.
- **North:** Bounded by Woodridge Crescent followed by a large residential housing complex.
- South: Community use occupied by an OC Transpo- Bayshore Station with associated laneways/driveways and passenger waiting structures. Further south is the Trans-Canada Highway (417) followed by vacant land.
- **East:** Bayshore Shopping Centre building across unnamed driveway.

Topography and Drainage

The topography of the Site is generally flat with exception of some uneven terrain on the eastern portion of the Site, likely resulting from regrading activities.

Environmentally Sensitive Areas

Golder is not aware of the confirmed presence of any species at risk or their associated habitats at the Site; however, given the urban nature of the Site it is unlikely that there are any species at risk or their associated habitats present on the RSC Property. Additionally the soil pH was measured between 6.91 and 8.05, which is within MECP's acceptable pH range of 5 to 9. As such, the RSC Property is not considered an environmentally sensitive area as defined by O.Reg. 153/04 (as amended).

Shallow Soil Property or Water Body

Based on the review of the borehole logs, the thickness of overburden in the boreholes ranged between 10.67 and 35.9 mbgs. Bedrock was encountered in six of the seven boreholes between 33.5 and 35.9 mbgs. According to O.Reg.153/04 as amended, "shallow soil property" means a property of which 1/3 or more of the area consists of soil equal to or less than 2 metres in depth beneath the soil surface, excluding any non-soil surface treatment such as asphalt, concrete or aggregate. As such, the Site is not considered a shallow soil property.

There are no surface water bodies within 30 metres of the Site.

Summary of Historical Site Use

The Site was originally developed as part of a community recreational centre, sometime between 1958 and 1965 with a building and associated parking and outdoor swimming on adjacent lands. Following demolition of this building, the Site was vacant until mid-2010s when it was used as a construction yard associated with renovation work at the Bayshore Shopping Centre for several years. As such, the first developed land use is determined to be community; however, most recent land use of the Site is considered to be commercial.

Potable Water Wells

No potable wells are located within the Site; however, six water well records (for domestic water supply) were available within 250 m of the Site. Due to the availability of the municipal water service in the area, it is unlikely that these remain in service.

Subsurface Utilities

The surrounding areas to the Site are serviced with storm sewer, sanitary sewer, municipal water, natural gas and telecommunication, whereas the Site consists of storm sewer easement and conduits labelled Nepean Hydro. No evidence of sanitary or natural gas connections were available at the Site.

Geological Conditions

The soil conditions encountered during the drilling program are presented in the Record of Borehole sheets (included in the Phase Two ESA Report), as well as in the cross sections presented in Figures 15 through 36 with the cross-section location and orientation shown on Figure 2.

The subsurface stratigraphy within the area of the investigation consists of fill underlain by a deposit of clayey silt to silty clay, overlaying a layered deposit of silt underlain by a thick and compact to dense deposit of sands which is in turn underlain by a dense to very dense sand and gravel deposit over dolomite bedrock.

Topsoil was found at the ground surface at all of the borehole locations, with the exceptions of 20-04 and 20-06, with a thickness range from about 0.15 to 0.25 m. The topsoil generally consists of dark brown silty sand with organic matter. Fill was present at all of the borehole locations to maximum a depth of 2.4 mbgs and consisted of gravelly sand to gravelly silty sand, silty clay to clayey silt, and sand and gravel. Clayey silt to silty clay was encountered below the fill layer at all the borehole locations and extended to depths between 3.8 to 7.6 mbgs. The clayey silt to silty clay is underlain by layered deposits of clayey silt, silt, sandy silt, and silty sand (called hereafter "silt") and extended to depths varying between about 10.7 to 16.8 mbgs. A deposit of sand to gravelly sand followed by sand and gravel was present to depths ranging between 33.5 and 35.9 mbgs. Bedrock was encountered in six of the boreholes at depths ranging between 33.5 and 35.9 mbgs, and subsequently cored to additional depths of 1.8 to 8.0 mbgs.

5.9.2 Physical Hydrogeology

Groundwater Levels and Flow Directions

As part of the Phase Two ESA, the groundwater levels in all the monitoring wells were measured on August 10, 2020. The depth to static groundwater level measured ranged between 2.71 and 5.64 mbgs in the shallow wells and 3.08 and 6.50 mbgs in the deep wells. The interpreted shallow groundwater flow direction, based on above mentioned water level measurements, was calculated to be to the east towards the Bayshore Shopping Centre building (as shown on Figure 2). Seasonal fluctuations in water levels on the Site are anticipated.

Hydraulic Gradients

The average horizontal hydraulic gradient was calculated based on the water level contours presented on Figure 2 (shallow aquifer) and Figure 3 (deep aquifer). The horizontal hydraulic gradient for shallow groundwater conditions was calculated to be approximately 0.019 m/m, whereas the deeper aquifer was 0.027 m/m. Variability in hydraulic gradients may be present at the Phase Two property related to the presence of foundations/buried structure, bedding materials, and buried services at the Site.

The vertical hydraulic gradients were calculated to be 0.12, 0.39 and -0.045 for nested wells at 20-02, 20-06 and 20-08, respectively. As such, two of the three locations indicated upward gradient.

Groundwater Hydraulic Conductivity

Groundwater flow velocity was determined based on the hydraulic conductivity of 5.0 x 10⁻⁹ m/s and porosity of 42% for silty clay to (*source:* https://structx.com/Soil_Properties_006.html), and the hydraulic gradient. The groundwater flow velocity within silty sand was calculated to be 2.26 x 10⁻¹⁰ m/s. Note that the actual groundwater velocity may vary significantly not only because of the variability of the hydraulic gradient, but also because of the variability of the hydraulic conductivity within the clayey silt to silty clay layer.

5.9.3 Proposed Buildings and Structures

The proposed development for the Site will include two high-rise residential buildings on the southwest portion (27 storeys) and eastern portion (30 storeys), and a three-storey parking podium with one level of underground parking.

5.9.4 Potentially Contaminating Activities (PCA) and Areas of Potential Environmental Concern (APEC)

The following table summarizes all the PCAs identified in the Phase One ESA considered to have resulted in an APEC on the Site. Figure 1 shows the locations of the identified APECs and their associated PCAs.

Phase Two ESA Findings with respect to the PCAs resulting in APECs to the Site

PCA and APEC	Location of APEC at the Site	Potentially Contaminating Activity (PCA)	Location of PCA (on-Site or off-Site)	Contaminants of Potential Concern	Media Potentially Impacted (Groundwater, soil and/or Sediment)
APEC 1: PCA ID # A – Use of imported fill materials across the Site for regrading purposes	Across entire Site	PCA 30. Importation of Fill Material of Unknown Quality	On-Site	PHCs/BTEX, PAHs, Metals and Inorganics	Soil and Groundwater

PCA and APEC	Location of APEC at the Site	Potentially Contaminating Activity (PCA)	Location of PCA (on-Site or off-Site)	Contaminants of Potential Concern	Media Potentially Impacted (Groundwater, soil and/or Sediment)
APEC 2: PCA ID # B, C and F – Two former diesel ASTs for refuelling purposes; Salt dome with bulk storage for application on Bayshore Shopping Centre property; Former snow disposal on adjacent vacant land west of the Site	Southwest corner of the Site	PCA 28: Gasoline and Associated Products Storage in Fixed Tanks; PCA 48. Salt Manufacturing Processing and Bulk Storage	On-Site (PCA B and C); Off-Site (PCA F)	PHCs/BTEX, EC, SAR	Soil and Groundwater
APEC 3: PCA ID # D – Current concrete pad mounted transformer	Northwest corner of the Site	PCA 55. Electricity Generator, Transformation and Power Station	On-Site	PCBs	Soil and Groundwater
APEC 4: PCA ID # E – Use of imported fill for regrading and identified EC and SAR impact in fill layer	West portion of the Site	PCA 30. Importation of Fill Material of Unknown Quality	Off-Site	PHCs/BTEX, PAHs, Metals and Inorganics	Soil and Groundwater
APEC 5: PCA ID # F – PAH impacts identified in shallow fill east of the Site	Southeast property boundary	PCA 30. Importation of Fill Material of Unknown Quality	Off-Site	PAHs	Soil

5.9.5 Findings of the Phase Two ESA with Respect to the APECs

To address the APECs identified at the Site, soil and groundwater sampling and analysis for potential COCs were completed as part of this Phase Two ESA. The MECP Table 3 Standards (April 15, 2011) in a non-potable groundwater condition for residential/parkland/institutional property use for coarse-textured soil are considered to be the applicable site condition standards and were used to compare the soil and groundwater analytical results. A summary of the findings of the Phase Two ESA with respect to the APECs and associated PCAs identified by the Phase One ESA with respect to the Site is provided in the table below. Detailed information about the samples submitted for analysis are provided in Table 3 (Summary of Soil Samples Submitted for Analysis) and Table 4 (Summary of Groundwater Samples Submitted for Analysis).

Phase Two ESA Investigation Results for each APEC

APEC	PCA	Summary of Phase Two ESA Program	Summary of Exceedances
#1	#30. Importation of Fill Material of Unknown Quality	A total of eleven fill samples (20-01 SA1B, 20-01 SA2, 20-02 SA1B, 20-02 SA3, 20-03 SA1B, 20-03 SA2, 20-04 SA1, 20-04 SA3, 20-06 SA1B, 20-06 SA2 and 20-07 SA1B) were analyzed for PHCs F1-F4, BTEX, PAHs, metals, EC and/or SAR. In addition, two test pit samples analyzed for PAHs only. Three groundwater samples (20-01, 20-02S, 20-06S) and field duplicate of 20-06S were analyzed for PHC	Five fill samples (20-01 SA2, 20-02 SA3, 20-03 SA2, 20-04 SA3, and 20-06 SA2) exceeded for EC and/or SAR. Exceedance of vanadium in two samples (20-01 SA2, 20-06 SA2). Two groundwater
		F1-F4, PAHs, metals, sodium, and/or chloride.	samples (20-01, 20-02S) exceeded for chloride only.
#2	#28. Gasoline and Associated Products Storage in Fixed Tanks; #48. Salt Manufacturing Processing and Bulk	Five fill samples (20-01 SA1B, 20-01 SA2, 20-02 SA1B, 20-02 SA3, 20-07 SA1B) and five native samples (20-01 SA5, 20-01 SA11, 20-02 SA5, 20-02 SA12A, 20-02 SA14) were analyzed for PHCs F1-F4, BTEX, PAHs, Metals, EC and/or SAR. Two groundwater samples (20-01 and 20-02S) were	Two fill samples (20-01 SA2 and 20-02 SA3) and two native samples (20-01 SA5 and 20-02 SA5) exceeded for EC and SAR. Exceedance of vanadium in sample 20-01 SA2.
	Storage	analyzed for for PHC F1-F4, PAHs, metals, sodium, and chloride.	Both groundwater samples (20-01, 20- 02S) exceeded for chloride only.
#3	#55. Electricity Generator, Transformation and Power Station	One soil sample (20-06 SA7) and a field duplicate of (DUP-10-6) were analyzed for PHC/BTEX and PCBs One groundwater sample and field duplicate (20-06S and DUP1) were analyzed for PHC/BTEX and PCBs.	No exceedances
#4	Off Site Snow Storage	A total of eleven fill samples (20-01 SA1B, 20-01 SA2, 20-02 SA1B, 20-02 SA3, 20-03 SA1B, 20-03 SA2, 20-04 SA1, 20-04 SA3, 20-06 SA1B, 20-06 SA2 and 20-07 SA1B) were analyzed for PHCs F1-F4, BTEX, PAHs, metals, EC and/or SAR. Three groundwater samples (20-01, 20-02S, 20-06S) and field duplicate of 20-06S were analyzed for PHC F1-F4, PAHs, metals, sodium, chloride. and/or PCBs.	Five fill samples (20-01 SA2, 20-02 SA3, 20-03 SA2, 20-04 SA3, and 20-06 SA2) exceeded for EC and/or SAR. Exceedance of vanadium in two samples (20-01 SA2, 20-06 SA2). Two groundwater samples (20-01, 20-02S) exceeded for

APEC	PCA	Summary of Phase Two ESA Program	Summary of Exceedances
#5	#30. Importation of Fill Material of Unknown Quality with PAH impacts (off-Site)	Two test pits were excavated and a sample from each was collected for PAH analysis (TP1 and TP2)	None

5.9.6 Summary of Current Site Condition

The summary of the soil and groundwater conditions at the Site based on the results of the Phase Two ESA, by stratigraphic layer and media, is presented below. The soil samples submitted for analysis are presented on Figures 4 through 9 and Figures 15 through 26 The groundwater samples submitted for analysis are presented on Figures 10 through 14 and Figures 27 through 36.

- Fill (soil) The fill at the Site extended up to 2.4 mbgs, consisting of gravelly sand to gravelly salty sand, silty clay to clayey silt, and sand and gravel. A total of eleven fill samples identified in Table 3 were analyzed for PHCs F1-F4, BTEX,PAHs, metals, EC and/or SAR. Five fill samples exceeded the applicable site condition standards (MECP Table 3 Standards) for EC, SAR, and/or vanadium; however, these exceedances are considered naturally occurring and attributed to the marine clay within the fill and underlying native soil at the site and as such are deemed by the Qualified Person to meet the applicable site condition standards. The one exception being a silty sand fill at borehole 20-02 where the EC and SAR were attributed to the storage of salt on the Site. Since the salt was stored on the site for use by the shopping centre for the application on roads and sidewalks for safety purposes, it was also deemed to meet the applicable site condition standards.
- Native (soil) The native soil, consisting of clayey silt to silty clay underlain by layered deposits of clayey silt, silt, sandy silt, and silty sand followed by a deposit of sand to gravelly sand followed by sand and gravel, extended to depths ranging between 33.5 and 35.9 mbgs. A total of fifteen native soil samples including two field duplicates identified in Table 3 were collected from the Site at depths between 1.52 and 20.42 mbgs. These native samples were analyzed for PHCs F1-F4, BTEX, PAHs, metals, EC, SAR and PCBs.
 - No exceedances for PHCs F1-F4, BTEX, PAHs, metals, and PCBs were identified in any of the native samples analyzed.
 - EC and/or SAR concentrations exceeded MECP Table 3 standards in six samples (which includes a field duplicate). However, each of the six samples consisted of clay (silty clay or clayey silt materials) which is inferred to have naturally occurring elevated levels of EC and SAR. This is supported by the absence of EC/SAR exceedances in the sandy fill and coarse native soil above and below the silty clay and the increasing EC/SAR with depth in the silty clay at borehole 20-05. As such the EC and/or SAR in the native soil is not attributed to historical activities or use of the RSC Property and are not considered to represent an exceedance of the site condition standards.
- **Groundwater** Groundwater quality assessment at the Site consisted of groundwater samples from 20-01, 20-02, and 20-06, as summarized in Table 4, which were analyzed for PHC F1-F4, BTEX, PAHs, sodium, chloride and/or PCBs. Only chloride concentrations exceeded the MECP Table 3 Standard in sample 20-01 and 20-02; however, based on the proximity of the bus terminal and Highway 417 adjacent to and upgradient of the Site which are heavily salted for safety purposes, these samples were deemed by the Qualified Person to meet the applicable site condition standards.

5.9.7 Meteorological and Climatic Considerations

Seasonal fluctuations in groundwater levels are expected at the Site. Groundwater flow contours in August 2020 are provided in Figure 2 and 3, respectively. The shallow groundwater was encountered primarily in the clayey silt to silty clay below the fill layer.

5.9.8 Potential Exposure Pathways and Receptors

No exceedances of site conditions standards were identified. The EC, SAR and vanadium at the site have been attributed to the influence of naturally occurring conditions with some minor contribution from the application salt for safety purposes in the vicinity of borehole 20-02. Similarly, the chloride concentrations in the groundwater were attributed to migration from the adjacent bus station and Highway 417 where road salt is applied for safety purposes.

As such the exposure pathways were not considered and receptors were not considered relevant to the Phase Two ESA.

5.9.9 Contaminant Release and Migration Mechanism

As outlined in Section 5.9.6, no concentrations above the applicable site condition standards have been identified, therefore no contaminant release and migration mechanisms are identified.

5.9.10 Soil Vapour Intrusion

No volatile contaminants were present on the Site and vapour intrusion is not a concern for future buildings at the Site.

6.0 CONCLUSIONS

The Phase Two ESA investigated the APECs identified in the Phase One ESA. There were no exceedances of the applicable site standards in the soil or groundwater samples collected from the Site with the exception of road salt related impacts, specifically EC and/or SAR in some of the soil samples and chloride in the groundwater samples and naturally elevated vanadium in the clay. However, as salt was only applied at the Phase Two Property for safety purposes under conditions of ice and snow, and the vanadium was within the typical range for local area marine clays, these samples were deemed by the Qualified Person to meet the applicable site condition standards.

7.0 CERTIFICATION

Following the completion of the most recent ground water sampling event (considered completion of the fieldwork program), soil and groundwater satisfied the applicable site condition standards (MECP Table 3 Standards), certified as of October 5, 2020.

8.0 LIMITATIONS

This report (the "Report") was prepared for the exclusive use of Ivanhoe Cambridge (Ivanhoe) for the express purpose of providing advice with respect to the environmental condition of the Site. In evaluating the Site, Golder Associates Ltd. ("Golder") has relied in good faith on information provided by others as noted in the Report. We have assumed that the information provided is factual and accurate. We accept no responsibility for any deficiency, misstatement or inaccuracy contained in this Report as a result of omissions, misinterpretations or fraudulent acts of persons interviewed or contacted, or incomplete or inaccurate historical information from the various agencies. Any use which a third party makes of this Report, or any reliance on or decisions to be made based on it, is the sole responsibility of such third party. If a third party requires reliance on this Report, prior written authorization from Golder is required. Golder disclaims any responsibility of consequential financial effects on transactions or property values, or requirements for follow-up actions and costs.

The scope and the period of Golder's assessment are described in this Report, and are subject to restrictions, assumptions and limitations. Except as noted herein, the work was conducted in accordance with the scope of work and terms and conditions within Golder's proposal. Distances noted in this report were determined using mapping data of variable accuracy and should therefore be considered approximate. Golder did not perform a complete assessment of all possible conditions or circumstances that may exist at the site referenced in the Report. Conditions may therefore exist which were not detected given the limited nature of the assessment Golder was retained to undertake with respect to the Site and additional environmental studies and actions may be required. In addition, it is recognized that the passage of time affects the information provided in the Report. Golder's opinions are based upon information available to Golder as of the date of the Site visit. It is understood that the services provided for in the scope of work allowed Golder to form no more than an opinion of the actual conditions at the Site at the time of the site visit and cannot be used to assess the effect of any subsequent changes in any laws or regulations and the environmental quality of the Site or its surroundings. Asbestos and mould surveys were not performed. If a service is not expressly indicated, do not assume it has been provided.

The results of an assessment of this nature should in no way be construed as a warranty that the Site is free from any and all contamination from past or current practices.

9.0 SIGNATURE

The undersigned Qualified Person confirms that he was responsible for conducting and/or supervising this Phase Two ESA and the associated findings and conclusions.

We trust that you will find the contents of this report satisfactory for your current needs. Should you require clarification of the information provided, please do not hesitate to contact the undersigned.

Golder Associates Ltd.

Alyssa Whiteduck, P.Eng.esa Environmental Engineer

alyssa Whiteduck

Keith Holmes, M.Sc., P.Geo., QP

Geoscientist/Associate

AW/CH/KPH/ca

https://golderassociates.sharepoint.com/sites/119469/project files/6 deliverables/phase ii esa/final/19134931 bayshore rsc phase two esa final.docx

Golder and the G logo are trademarks of Golder Associates Corporation

Tables

Monitoring Well	Ground Surface Elevation (mASL)	Top of Pipe Elevation (mASL)	Borehole Depth (mbgs)	Borehole Depth (masl)	Screen Interval (masl)	Screened Media	Date of well Completion
20-01	66.31	67.12	35.75	30.556	60.98 - 64.06	Silty Clay / Clayey Silt	02-Jul-20
20-02D**	66.82	67.595	36.5	30.32	51.58 - 54.63	Sand	06-Jul-20
20-02S**	66.82	67.625	34.4	32.416	61.64 - 64.69	Silty Clay / Clayey Silt	06-Jul-20
20-03	66.83	n/a	34.56	32.271	n/a	no well installed	n/a
20-04	66.93	67.79	34.93	31.999	48.64 - 51.69	Silt / Sand	13-Jul-20
20-05	67.67	n/a	35.94	31.732	n/a	no well installed	n/a
20-06D**	66.28	67.10	10.67	55.609	55.61 - 58.66	Silty Clay / Clayey Silt	22-Jun-20
20-06S**	66.28	67.16	10.67	55.609	60.18 - 63.23	Silty Clay / Clayey Silt	22-Jun-20
20-07	66.57	n/a	34.44	32.13	n/a	no well installed	n/a
20-08D**	66.36	67.22	15.24	51.123	51.12 - 54.17	Silty Clay / Clayey Silt	19-Jun-20
20-085**	66.36	67.28	15.24	51.123	60.57 - 63.23	Silty Clay / Clayey Silt	19-Jun-20

Notes:

mASL- metres above sea level mbgs-metres below ground surface

No evidence of free product was observed during elevation or sampling events.

All monitoring wells were completed as stick-up wells with monument casings

** completed as nested wells

Monitoring Well	Top of Pipe Elevation (mASL)	Ground Surface Elevation (mASL)	Depth to Groundwater (mbTOP)	Depth to Groundwater (mbgs)	Groundwater Elevation (mASL)	Date of Measurement
20-01	67.12	66.31	3.52	2.71	63.60	10-Aug-20
20-02D**	67.595	66.82	6.4	5.62	61.20	10-Aug-20
20-02S**	67.625	66.82	5.23	4.42	62.40	10-Aug-20
20-03	n/a	66.83	n/a	n/a	n/a	n/a
20-04	67.79	66.93	6.50	5.64	61.29	10-Aug-20
20-05	n/a	67.67	n/a	n/a	n/a	n/a
20-06D**	67.10	66.28	5.68	4.86	61.42	10-Aug-20
20-06S**	67.16	66.28	3.95	3.07	63.21	10-Aug-20
20-07	n/a	66.57	n/a	n/a	n/a	n/a
20-08D**	67.22	66.36	3.94	3.08	63.28	10-Aug-20
20-08S**	67.28	66.36	4.32	3.40	62.96	10-Aug-20

All monitoring wells were completed as stick-up wells with monument casings

mbgs- metres below ground surface

mASL- metres above sea level

n/a - water levels not measured

No evidence of free product was observed during any elevation or sampling events.

^{**} completed as nested wells

Location	Soil Samples Collected	Soil Samples Analyzed	Paramaters Analyzed	MECP Table 3 Exceedances (1)
20-01	20-01 SA1, 20-01 SA2, 20-01 SA3, 20-01 SA4, 20-01 SA5, 20-01 SA6, 20-01 SA7, 20-01 SA8, 20-01 SA9, 20-01 SA10, 20-01 SA11, 20-01 SA12, 20-01 SA13, 20-01 SA14, 20-01 SA15, 20-01 SA16, 20-01 SA17	20-01 SA1B (0.20 - 0.61), 20-01 SA2 (0.76 - 1.37), 20-01 SA5 (3.05 - 3.66), 20-01 SA11 (13.71 - 14.32)	PHCs, BTEX, PAHs, SPLP, Metals and Inorganics	SA2 for Metals (Vanadium), EC, SAR SA5 for EC, SAR
20-02	20-02 SA1, 20-02 SA2, 20-02 SA3, 20-02 SA4, 20-02 SA5, 20-02 SA6, 20-02 SA7, 20-02 SA8, 20-02 SA9, 20-02 SA10, 20-02 SA11, 20-02 SA12, 20-02 SA13, 20-02 SA14, 20-02 SA15, 20-02 SA16	20-02 SA1B (0.25 - 0.61), 20-02 SA3 (1.52 - 2.13), 20-02 SA5 (3.05 - 3.66), 20-02 SA12 (18.19 - 18.89), 20-02 SA14 (24.38 - 24.99)	PHCs, BTEX, PAHs, Metals and Inorganics	SA3 for EC, SAR SA5 for EC, SAR
20-03	20-03 SA1, 20-03 SA2, 20-03 SA3, 20-03 SA4, 20-03 SA5, 20-03 SA6, 20-03 SA7, 20-03 SA8, 20-03 SA9, 20-03 SA10, 20-03 SA11, 20-03 SA12, 20-03 SA13, 20-03 SA14, 20-03 SA15, 20-03 SA16, 20-03 SA17	20-03 SA1B (0.17 - 0.61), 20-03 SA2 (0.76 - 1.37), 20-03 SA6 (3.81 - 4.42), 20-03 SA17 (33.53 -34.14)	PHCs, BTEX, PAHs, Metals and Inorganics	SA2 for EC, SAR SA6 for EC
20-04	20-04 SA1, 20-04 SA2, 20-04 SA3, 20-04 SA4, 20-04 SA5, 20-04 SA6, 20-04 SA7, 20-04 SA8, 20-04 SA9, 20-04 SA10, 20-04 SA11, 20-04 SA12, 20-04 SA13, 20-04 SA14, 20-04 SA15, 20-04 SA16	20-04 SA1 (0.0 - 0.61), 20-04 SA3 (1.52 - 2.13), 20-04 SA7 (4.57 - 5.18), 20-04 SA7 (4.57 - 5.18)	PHCs, PAHs, Metals and Inorganics	SA3 for EC, SAR
20-05	20-05 SA1, 20-05 SA2, 20-05 SA3, 20-05 SA4, 20-05 SA5, 20-05 SA6, 20-05 SA7, 20-05 SA8, 20-05 SA9, 20-05 SA10, 20-05 SA11, 20-05 SA12, 20-05 SA13, 20-05 SA14, 20-05 SA15, 20-05 SA16, 20-05 SA17, 20-05 SA18, 20-05 SA19, 20-05 SA20, 20-05 SA21, 20-05 SA22, 20-05 SA20, 20-05 SA21, 20-05 SA22, 20-05 SA20, 20-	20-05 SA16 (12.19 - 12.80),	PHCs, BTEX, PAHs, Metals and Inorganics	SA3 for EC, SAR DUP1 for EC, SAR SA6 for EC, SAR
20-06	20-06 SA1, 20-06 SA2, 20-06 SA3, 20-06 SA4, 20-06 SA5, 20-06 SA6, 20-06 SA7	20-06 SA1B (0.46 - 0.61), 20-06 SA2 (0.76 - 1.37), 20-06 SA7 (4.57 - 5.18), DUP-1-06 (field duplicate of 20-06 SA7)	PHCs, BTEX, PAHs, PCBs, Metals and Inorganics	SA2 for Metals (Vanadium), SAR
20-07	20-07 SA1, 20-07 SA2, 20-07 SA3, 20-07 SA4, 20-07 SA5, 20-07 SA6, 20-07 SA7, 20-07 SA8, 20-07 SA9, 20-07 SA10, 20-07 SA11, 20-07 SA12, 20-07 SA13, 20-07 SA14, 20-07 SA15, 20-07 SA16, 20-07 SA17, 20-07 SA18, 20-07 SA19, 20-07 SA20, 20-07 SA21	20-07 SA1B (0.15 - 0.45)	Inorganics	None
TP-1	TP-1	TP-1 (0.3- 0.6)	PAHs	None
TP-2	TP-2	TP-2 (0.3- 0.6)	PAHs	None

(1) Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act, Table 3 Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition, Industrial/Community Property Use, coarse-textured soil, April 15, 2011 (MECP Table 3 Standards).

Bold font indicates parameter exceedance of the MECP Table 3 Standards

PHCs: Petroleum Hydrocabons (F1-F4)

PAHs: Polycyclic Aromatic Hydrocarbons

EC: Electrical Conductivity

SAR: Sodium Adsorption Ratio

PCBs: Polychlorinated biphenyls

Monitoring Well ID	Screen Interval (masl)	Screened Media	Groundwater Samples Submitted for Analysis	Analytical Paramaters	MECP Table 3 Exceedances (1)
MW20-01	60.98 - 64.06	Silty Clay / Clayey Silt	MW20-01	PHCs, BTEX, PAHs, Metals, Dissolved sodium, Chloride, pH	Chloride
MW20-02S	61.64 - 64.69	Silty Clay / Clayey Silt	MW20-02S	PHCs, BTEX, PAHs, Metals, Dissolved sodium, Chloride, pH	Chloride
MW20-06S	60.18 - 63.23	Silty Clay / Clayey Silt	MW20-06S, DUP-1 (field duplicate of MW20-06S)	PHCs, BTEX, PAHs, PCBs, Metals, Dissolved sodium, Chloride, pH	None

⁽¹⁾ Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act, Table 3 Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition, Industrial/Community Property Use, coarse-textured soil, April 15, 2011 (MECP Table 3 Standards).

Bold font indicates parameter exceedance of the MECP Table 3 Standards

PHCs: Petroleum Hydrocabons (F1-F4)

BTEX: Benzene, Toluene, Ethylbenzene, Xylene

PAHs: Polycyclic Aromatic Hydrocarbons

PCBs: Polychlorinated biphenyls

Borehole Location		Standard (D/D/I) (1)	20-01				20-04	20-05				
Sample Date			29-Jun-2020	29-Jun-2020	2-Jul-2020	7-Jul-2020	9-Jul-2020	10-Jun-2020	10-Jun-2020	22-Jun-2020	22-Jun-2020	22-Jun-2020
Sample ID			20-01 SA1B	20-01 SA5	20-02 SA3	20-03 SA2	20-04 SA1	20-05 SA3	DUP1	20-06 SA2	20-06 SA7	DUP-1-06
Soil Type			Fill (sand)	Clayey Silt / Silty Clay	Fill (silty sand)	Fill (clayey silt / silty clay)	Fill (sand)	Clayey Silt / Silty Clay	Clayey Silt / Silty Clay	Fill (clayey silt / silty clay)	Clayey Silt / Silty Clay	Clayey Silt / Silty Clay
Sample Depth (mbgs)			0.20 - 0.61	3.05 - 3.66	1.52 - 2.13	0.76 - 1.37	0.0 - 0.61	1.52 - 2.13	Field duplicate of SA3	0.76 - 1.37	4.57 - 5.18	Field duplicate of SA7
Petroleum Hydrocarbons												
Benzene	μg/g	0.21	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Toluene	μg/g	2.3	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Ethylbenzene	μg/g	2	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Xylenes, Total	μg/g	3.1	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Petroleum Hydrocarbons - F1 (C6-C10)	μg/g	55	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Petroleum Hydrocarbons - F2 (C10-C16)	μg/g	98	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Petroleum Hydrocarbons - F3 (C16-C34)	μg/g	300	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50
Petroleum Hydrocarbons - F4 (C34-C50)	μg/g	2800	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50

Footnotes:

Tables should be read in conjunction with the accompanying document.

n/a = Chemical not analyzed or criteria not defined.

Grey background and **bold font** indicates exceedances above MECP Table 3 standards.

(1) Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act, Table 3 Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition, Residential/Parkland/Institutional Property Use, coarse-textured soil, April 15, 2011 (MECP Table 3 Standards).

Borehole Location	9				20-01	20-02	20-03	20-04	20	-05	20-06	Test Pit	Samples
Sample Date		MECP Table 3	29-Jun-2020	2-Jul-2020	7-Jul-2020	9-Jul-2020	10-Jun-2020	10-Jun-2020	22-Jun-2020	5-Oct-2020	5-Oct-2020		
Sample ID			20-01 SA1B	20-02 SA3	20-03 SA2	20-04 SA1	20-05 SA3	DUP1	20-06 SA2	TP1	TP2		
Soil Type		Standard (R/P/I) (1)	Fill (sand)	Fill (silty sand)	Fill (clayey silt / silty clay)	Fill (sand)	Clayey Silt / Silty Clay	Clayey Silt / Silty Clay	Fill (clayey silt / silty clay)	Fill (clayey silt / silty clay)	Fill (clayey silt / silty clay)		
Sample Depth (mbgs)			0.20 - 0.61	1.52 - 2.13	0.76 - 1.37	0.0 - 0.61	1.52 - 2.13	Field duplicate of SA3	0.76 - 1.37	0.3 - 0.6	0.3 - 0.6		
PAHs													
Naphthalene	μg/g	0.6	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	< 0.05	<0.05	<0.05		
Acenaphthylene	μg/g	0.15	< 0.05	< 0.05	< 0.05	<0.05	<0.05	< 0.05	< 0.05	<0.05	<0.05		
Acenaphthene	μg/g	7.9	< 0.05	< 0.05	< 0.05	<0.05	<0.05	< 0.05	< 0.05	<0.05	<0.05		
Fluorene	μg/g	62	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	<0.05		
Phenanthrene	μg/g	6.2	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	<0.05		
Anthracene	μg/g	0.67	< 0.05	< 0.05	< 0.05	<0.05	<0.05	< 0.05	< 0.05	<0.05	<0.05		
Fluoranthene	μg/g	0.69	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	<0.05		
Pyrene	μg/g	78	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	< 0.05	<0.05	<0.05		
Benz(a)anthracene	μg/g	0.5	<0.05	<0.05	< 0.05	<0.05	<0.05	< 0.05	< 0.05	<0.05	<0.05		
Chrysene	μg/g	7	< 0.05	< 0.05	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.05	<0.05		
Benzo(b)fluoranthene	μg/g	0.78	< 0.05	< 0.05	< 0.05	<0.05	<0.05	< 0.05	< 0.05	<0.05	<0.05		
Benzo(k)fluoranthene	μg/g	0.78	< 0.05	< 0.05	< 0.05	<0.05	<0.05	< 0.05	< 0.05	<0.05	<0.05		
Benzo(a)pyrene	μg/g	0.3	< 0.05	< 0.05	< 0.05	<0.05	<0.05	< 0.05	< 0.05	<0.05	<0.05		
Indeno(1,2,3-cd)pyrene	μg/g	0.38	< 0.05	< 0.05	< 0.05	<0.05	<0.05	< 0.05	< 0.05	<0.05	<0.05		
Dibenz(a,h)anthracene	μg/g	0.1	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	< 0.05	<0.05	<0.05		
Benzo(g,h,i)perylene	μg/g	6.6	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05		
1 and 2 Methlynaphthalene	μg/g	0.99	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	< 0.05	<0.05	<0.05		

Footnotes:

Tables should be read in conjunction with the accompanying document.

n/a = Chemical not analyzed or criteria not defined.

Grey background and **bold font** indicates exceedances above MECP Table 3 standards.

(1) Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act, Table 3 Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition, Residential/Parkland/Institutional Property Use, coarse-textured soil, April 15, 2011 (MECP Table 3 Standards).

Borehole Location	Unit			20-01	20-02	20-03	20-04	20	-05	20-06	
Sample Date		MECP Table 3 Standard	29-Jun-2020	29-Jun-2020	2-Jul-2020	7-Jul-2020	9-Jul-2020	10-Jun-2020	10-Jun-2020	22-Jun-2020	
Sample ID		Unit		20-01 SA1B	20-01 SA2	20-02 SA3	20-03 SA2	20-04 SA1	20-05 SA3	DUP1	20-06 SA2
Soil Type			(R/P/I) ⁽¹⁾	Fill (sand)	Fill (clayey silt / silty clay)	Fill (silty sand)	Fill (clayey silt / silty clay)	Fill (sand)	Clayey Silt / Silty Clay	Clayey Silt / Silty Clay	Fill (clayey silt / silty clay)
Sample Depth (mbgs)			0.20 - 0.61	0.76 - 1.37	1.52 - 2.13	0.76 - 1.37	0.0 - 0.61	1.52 - 2.13	Field duplicate of SA3	0.76 - 1.37	
Metals											
Antimony	μg/g	7.5	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	
Arsenic	μg/g	18	3	3	2	1	2	2	2	2	
Barium	μg/g	390	167	377	41	209	117	316	244	331	
Beryllium	μg/g	4	<0.5	0.9	<0.5	0.6	<0.5	0.6	0.6	0.9	
Boron	μg/g	120	7	5	5	<5	6	<5	<5	6	
Boron (Hot Water Extractable)	μg/g	1.5	0.36	0.14	0.21	0.18	0.42	0.29	0.43	<0.10	
Cadmium	μg/g	1.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
Chromium	μg/g	160	35	85	12	51	27	69	59	85	
Cobalt	μg/g	22	8.7	19.7	3.9	9.3	7.5	17	14	22	
Copper	μg/g	140	20	38	10	12	17	30	24	35	
Lead	μg/g	120	20	7	6	5	13	9	11	7	
Molybdenum	μg/g	6.9	0.7	<0.5	<0.5	<0.5	0.6	<0.5	0.7	<0.5	
Nickel	μg/g	100	18	43	7	21	14	35	30	49	
Selenium	μg/g	2.4	<0.4	<0.4	<0.4	<0.4	0.5	0.5	0.4	<0.4	
Silver	μg/g	20	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	
Thallium	μg/g	1	<0.4	0.4	<0.4	<0.4	<0.4	<0.4	<0.4	0.4	
Uranium	μg/g	23	0.8	0.7	0.5	0.8	0.8	0.8	0.9	0.7	
Vanadium	μg/g	86	44	93*	21	49	38	78	66	106*	
Zinc	μg/g	340	89	125	21	92	74	118	111	127	
Chromium, Hexavalent	μg/g	8	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	
Cyanide, Free	μg/g	0.051	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	
Mercury	μg/g	0.27	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	

Footnotes:

Tables should be read in conjunction with the accompanying document.

n/a = Chemical not analyzed or criteria not defined.

Grey background and **bold font** indicates exceedances above MECP Table 3 standards.

*Not considered exceedances due to naturally elevated background conditions

(1) Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act, Table 3 Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition, Residential/Parkland/Institutional Property Use, coarse-textured soil, April 15, 2011 (MECP Table 3 Standards).

March 2021 Table 5D: Summary of Soil Analytical Results- Inorganics 19134931

Borehole Location	on			20-0	1				20-02				20-0)3	
Sample Da	te	MECP Table 3 Standard	28-Feb-2015	28-Feb-2015	29-Jun-2020	29-Jun-2020	2-Jul-2020	2-Jul-2020	2-Jul-2020	2-Jul-2020	2-Jul-2020	7-Jul-2020	7-Jul-2020	7-Jul-2020	7-Jul-2020
Sample I	D Unit	(R/P/I) (1)	20-01 SA1B	20-01 SA2	20-01 SA5	20-01 SA11	20-02 SA1B	20-02 SA3	20-02 SA5	20-02 SA12A	20-02 SA14	20-03 SA1B	20-03 SA2	20-03 SA6	20-03 SA17
Soil Typ	oe	(R/P/I) · ·	Fill (sand)	Fill (clayey silt / silty clay)	Clayey Silt / Silty Clay	Sand	Fill (silty sand)	Fill (silty sand)	Clayey Silt / Silty Clay	Sand / Silt	Sand & Gravel	Fill (sand)	Fill (clayey silt / silty clay)	Clayey Silt / Silty Clay	Sand & Gravel
Sample Depth (mbg	s)		0.20 - 0.61	0.76 - 1.37	3.05 - 3.66	13.71 - 14.32	0.25 - 0.61	1.52 - 2.13	3.05 - 3.66	18.19 - 18.89	24.38 - 24.99	0.17 - 0.61	0.76 - 1.37	3.81 - 4.42	33.53 - 34.14
Inorganics															
SAR	N/A	5	2.03	21.5*	9.36*	0.831	1.430	12.6*	13.8*	1.820	1.560	1.01	39.7*	0.821	0.717
EC	mS/cm	0.7	0.234	2.17*	4.9*	0.114	0.138	0.791*	5.22*	0.291	0.123	0.173	6.08*	1.08*	0.162
рН	pH units	5.0 - 9.0	7.59	7.52	n/a	n/a	n/a	8.05	7.48	n/a	n/a	n/a	6.91	7.57	n/a
Physicial Parameters															
Moisture	%	n/a	8	9.6	n/a	n/a	n/a	9.6	n/a	n/a	n/a	n/a	22.4	n/a	n/a

Footnotes:

Tables should be read in conjunction with the accompanying document.

n/a = Chemical not analyzed or criteria not defined.

Grey background and **bold font** indicates exceedances above MECP Table 3 standards.

*Not considered exceedances due to either naturally elevated background conditions or application of salt for safety purposes

(1) Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act, Table 3 Full Depth Generic Site Condition, Residential/Parkland/Institutional Property Use, coarse-textured soil, April 15, 2011 (MECP Table 3 Standards).

March 2021 Table 5D: Summary of Soil Analytical Results- Inorganics 19134931

Borehole Location	n			20	0-04			20	-05			20-0	16		20-07
Sample Date	;	MECP Table 3 Standard	9-Jul-2020	9-Jul-2020	9-Jul-2020	9-Jul-2020	10-Jun-2020	10-Jun-2020	10-Jun-2020	10-Jun-2020	22-Jun-2020	22-Jun-2020	22-Jun-2020	22-Jun-2020	22-Jun-2020
Sample II	Unit		20-04 SA1	20-04 SA3	20-04 SA7	20-04 SA12	20-05 SA3	DUP1	20-05 SA6	20-05 SA16	20-06 SA1B	20-06 SA2	20-06 SA7	DUP-1-06	20-07 SA1B
Soil Type	;	(R/P/I) ⁽¹⁾	Fill (sand)	Fill (silty clay)	Clayey Silt / Silty Clay	Sand	Fill (sand)	Fill (clayey silt / silty clay)	Clayey Silt / Silty Clay	Clayey Silt / Silty Clay	Fill (sand)				
Sample Depth (mbgs)		0.0 - 0.61	1.52 - 2.13	4.57 - 5.18	19-81 - 20.42	1.52 - 2.13	Field duplicate of SA3	3.81 - 4.42	12.19 - 12.80	0.46 - 0.61	0.76 - 1.37	4.57 - 5.18	Field duplicate of SA7	0.15 - 0.45
Inorganics															
SAR	N/A	5	0.954	7.01*	1.13	2.05	9.47*	9.8*	41.6*	1.28	n/a	5.02*	0.494	4.58	0.167
EC	mS/cm	0.7	0.221	0.831*	0.374	0.191	1.22*	1.28*	2.75*	0.209	n/a	0.41	0.684	0.427	0.149
рН	pH units	5.0 - 9.0	7.53	7.14	n/a	n/a	7.72	7.48	n/a	n/a	n/a	7.73	n/a	n/a	n/a
Physicial Parameters		·													
Moisture	%	n/a	8.2	n/a	n/a	n/a	24	25.7	n/a	n/a	n/a	24.3	30.9	25.5	n/a

Footnotes:

Tables should be read in conjunction with the accompanying document.

n/a = Chemical not analyzed or criteria not defined.

Grey background and **bold font** indicates exceedances above MECP Table 3 standards.

*Not considered exceedances due to either naturally elevated background conditions or application of salt for safety purposes

(1) Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act, Table 3 Full Depth Generic Site Condition, Residential/Parkland/Institutional Property Use, coarse-textured soil, April 15, 2011 (MECP Table 3 Standards).

Table 5E: Summary of Soil Analytical Results- Polychlorinated biphenyls

Borehole Location			20-06		
Sample Date	Unit	MECP Table 3 Standard	22-Jun-2020	22-Jun-2020	
Sample ID			20-06 SA7	DUP-1-06	
Soil Type		(R/P/I) ⁽¹⁾	Clayey Silt / Silty Clay	Clayey Silt / Silty Clay	
Sample Depth (mbgs)			4.57 - 5.18	Field duplicate of SA7	
PCBs					
PBCs (total)	μg/g	1.1	<0.10	<0.10	

Tables should be read in conjunction with the accompanying document.

n/a = Chemical not analyzed or criteria not defined.

Grey background and **bold font** indicates exceedances above MECP Table 3 standards.

(1) Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act, Table 3 Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition, Residential/Parkland/Institutional Property Use, coarse-textured soil, April 15, 2011 (MECP Table 3 Standards).

Sample ID			20-06 SA1B					
Sample Date	Unit	O.Reg 558Schedule 4 ⁽¹⁾	22-Jun-2020					
Sample Depth (mbgs)		_	0.46 - 0.61					
Physical Characteristics								
Flashpoint			>100					
EPA 1311 - TCLP Leachate Metals	3							
Arsenic		2.5 mg/L	<0.010					
Barium		100 mg/L	0.734					
Boron		500 mg/L	0.053					
Cadmium		0.5 mg/L	<0.010					
Chromium		5 mg/L	<0.010					
Lead		5 mg/L	<0.010					
Mercury		0.1 mg/L	<0.01					
Selenium		1 mg/L	<0.010					
Silver		5 mg/L	<0.010					
Uranium		10 mg/L	<0.050					
EPA 1311 - TCLP Leachate Volatil	les							
Benzene	•	0.5 mg/L	<0.020					
EPA 1311 - TCLP Leachate Organics								
Benzo[a]pyrene		0.001 mg/L	<0.0010					

Tables should be read in conjunction with the accompanying document.

ND (value) = Indicates parameter not detected above laboratory method detection limit. n/a = Chemical not analyzed or criteria not defined.

Grey background and **bold font** indicates exceedances above MECP Table 3 standards.

(1) MECP O. Reg 558: Schedule 4- Leachate Quality Criteria, Ontario Regulation 558/00 (amendin Regulation 347 of RRO 1990) under the Environmental Protection Act of the Ministry of the Environment, Conservation and Parks (MECP)

Sample ID		O.Reg. 406/19 Synthetic	20-01 SA2	20-02 SA3	20-03 SA2
Sample Date	Unit	Precipitate Leachate Quality	29-Jun-2020	2-Jul-2020	7-Jul-2020
Sample Depth (mbgs)		Criteria ^{(1) (2)}	0.76 - 1.37	1.52 - 2.13	0.76 - 1.37
Antimony Leachate	μg/L		<0.6	<0.6	<0.6
Arsenic Leachate	μg/L		7	2	1
Barium Leachate	μg/L	4600	1070	<100	136
Beryllium Leachate	μg/L	11	1.8	<0.4	<0.4
Boron Leachate	μg/L		<500	<500	<500
Cadmium Leachate	μg/L	0.5	0.17	<0.05	<0.05
Chromium Leachate	μg/L	130	244	18	17
Cobalt Leachate	μg/L	10	34.8	2.2	2.3
Copper Leachate	μg/L	14	156	10.8	8.3
Lead Leachate	μg/L		18.4	3.8	2.2
Molybdenum Leachate	μg/L		<1.5	<1.5	<1.5
Nickel Leachate	μg/L	78	140	<7	10
Selenium Leachate	μg/L	10	<1	<1	<1
Silver Leachate	μg/L	0.3	0.25	0.07	<0.03
Thallium Leachate	μg/L		0.7	<0.2	<0.2
Uranium Leachate	μg/L		2	<2	<2
Vanadium Leachate	μg/L		231	23.9	18.2
Zinc Leachate	μg/L	180	333	21	28

Tables should be read in conjunction with the accompanying document.

ND (value) = Indicates parameter not detected above laboratory method detection limit.

n/a = Chemical not analyzed or criteria not defined.

Grey background and **bold font** indicates exceedances above O.Reg 406/19 SPLP

- (1) Leachate for metal testing was prepared in accordance with Ontario MECP Method E9003, which has been modified from SW846-1312 by Ontario MECP.
- (2) Ontario Reg 406/19 (2019) Table 3.1: Leachate Screening Levels for Full Depth Excess Soil in a Non-Potable Ground Water Condition

Sample ID		MECP Table 3	MW20-01	MW20-02S	MW20-06S	DUP-1 (duplicate of MW20-06S)	Trip Blank
Sample Date		Standards ⁽¹⁾	20-Jul-2020	20-Jul-2020	20-Jul-2020	20-Jul-2020	20-Jul-2020
Water Levels (mbgs)	Unit		2.71	4.42	4.83	4.83	n/a
Benzene	μg/l	44	<0.20	<0.20	<0.20	<0.20	<0.20
Toluene	μg/l	18000	<0.20	<0.20	<0.20	<0.20	<0.20
Ethylbenzene	μg/l	2300	<0.10	<0.10	<0.10	<0.10	<0.10
Xylenes, Total	μg/l	4200	<0.20	<0.20	<0.20	<0.20	<0.20
Petroleum Hydrocarbons - F1 (C6-C10)	μg/l	750	<25	<25	<25	<25	<25
Petroleum Hydrocarbons - F2 (C10-C16)	μg/l	150	<100	<100	<100	<100	n/a
Petroleum Hydrocarbons - F3 (C16-C34)	μg/l	500	<100	<100	<100	<100	n/a
Petroleum Hydrocarbons - F4 (C34-C50)	μg/l	500	<100	<100	<100	<100	n/a

Tables should be read in conjunction with the accompanying document.

> value = Indicates parameter detected above equipment analytical range.

na = Chemical not analyzed or criteria not defined.

Grey background and **bold font** indicates exceedances above MECP Table 3 standards.

Sample ID Sample Date		MECP Table 3 Standards ⁽¹⁾	MW20-01 20-Jul-2020	MW20-02S 20-Jul-2020	MW20-06S 20-Jul-2020	DUP-1 (duplicate of MW20-06S) 20-Jul-2020
Water Levels (mbgs)			2.71	4.42	4.83	4.83
Naphthalene	μg/l	1400	<0.20	<0.20	<0.20	<0.20
Acenaphthylene	μg/l	1.8	<0.20	<0.20	<0.20	<0.20
Acenaphthene	μg/l	600	<0.20	<0.20	<0.20	<0.20
Fluorene	μg/l	400	<0.20	<0.20	<0.20	<0.20
Phenanthrene	μg/l	580	<0.10	<0.10	<0.10	<0.10
Anthracene	μg/l	2.4	<0.10	<0.10	<0.10	<0.10
Fluoranthene	μg/l	130	<0.20	<0.20	<0.20	<0.20
Pyrene	μg/l	68	<0.20	<0.20	<0.20	<0.20
Benzo(a)anthracene	μg/l	4.7	<0.20	<0.20	<0.20	<0.20
Chrysene	μg/l	1	<0.10	<0.10	<0.10	<0.10
Benzo(b)fluoranthene	μg/l	0.75	<0.10	<0.10	<0.10	<0.10
Benzo(k)fluoranthene	μg/l	0.4	<0.10	<0.10	<0.10	<0.10
Benzo(a)pyrene	μg/l	0.81	<0.01	<0.01	<0.01	<0.01
Indeno(1,2,3-cd)pyrene	μg/l	0.2	<0.20	<0.20	<0.20	<0.20
Dibenz(a,h)anthracene	μg/l	0.52	<0.20	<0.20	<0.20	<0.20
Benzo(g,h,i)perylene	μg/l	0.2	<0.20	<0.20	<0.20	<0.20
2-and 1-methyl Naphthalene	μg/l	1800	<0.20	<0.20	<0.20	<0.20

Grey background and **bold font** indicates exceedances above MECP Table 3 standards.

> value = Indicates parameter detected above equipment analytical range.

na = Chemical not analyzed or criteria not defined.

Sample ID		MECP Table 3	MW20-01	MW20-02S	MW20-06S	DUP-1 (duplicate of MW20-06S)
Sample Date		Standards ⁽¹⁾	20-Jul-2020	20-Jul-2020	20-Jul-2020	20-Jul-2020
Water Levels (mbgs)	Unit		2.71	4.42	4.83	4.83
Dissolved Antimony	μg/l	20000	<1.0	<1.0	<1.0	<1.0
Dissolved Arsenic	μg/l	1900	<1.0	7	<1.0	<1.0
Dissolved Barium	μg/l	29000	648	610	326	312
Dissolved Beryllium	μg/l	67	<0.50	<0.50	<0.50	<0.50
Dissolved Boron	μg/l	45000	12.8	58.7	<10.0	<10.0
Dissolved Cadmium	μg/l	2.7	0.7	0.44	<0.20	<0.20
Dissolved Chromium	μg/l	810	<2.0	<2.0	<2.0	<2.0
Dissolved Cobalt	μg/l	66	5.18	9.01	1.39	1.31
Dissolved Copper	μg/l	87	4.6	1.8	1.4	2.4
Dissolved Lead	μg/l	25	2.03	2.5	7.71	6.93
Dissolved Molybdenum	μg/l	9200	0.55	12	0.59	0.59
Dissolved Nickel	μg/l	490	18	30.6	6.8	6.9
Dissolved Selenium	μg/l	63	1.8	1.7	<1.0	24.2
Dissolved Silver	μg/l	1.5	0.28	0.25	<0.20	<0.20
Dissolved Thallium	μg/l	510	< 0.30	<0.30	< 0.30	<0.30
Dissolved Uranium	μg/l	420	9.21	14.1	1.69	1.75
Dissolved Vanadium	μg/l	250	<0.40	0.63	1.03	0.79
Dissolved Zinc	μg/l	1100	<5.0	<5.0	<5.0	10.6

> value = Indicates parameter detected above equipment analytical range.

na = Chemical not analyzed or criteria not defined.

Grey background and **bold font** indicates exceedances above MECP Table 3 standards.

Sample ID		MECP Table 3	MW20-06S	DUP-1 (duplicate of MW20-06S)
Sample Date		Standards ⁽¹⁾	20-Jul-2020	20-Jul-2020
Water Levels (mbgs)	Unit		4.83	4.83
PCBs	μg/l	7.8	<0.1	<0.1
Decachlorobiphenyl	μg/l	n/a	84	87

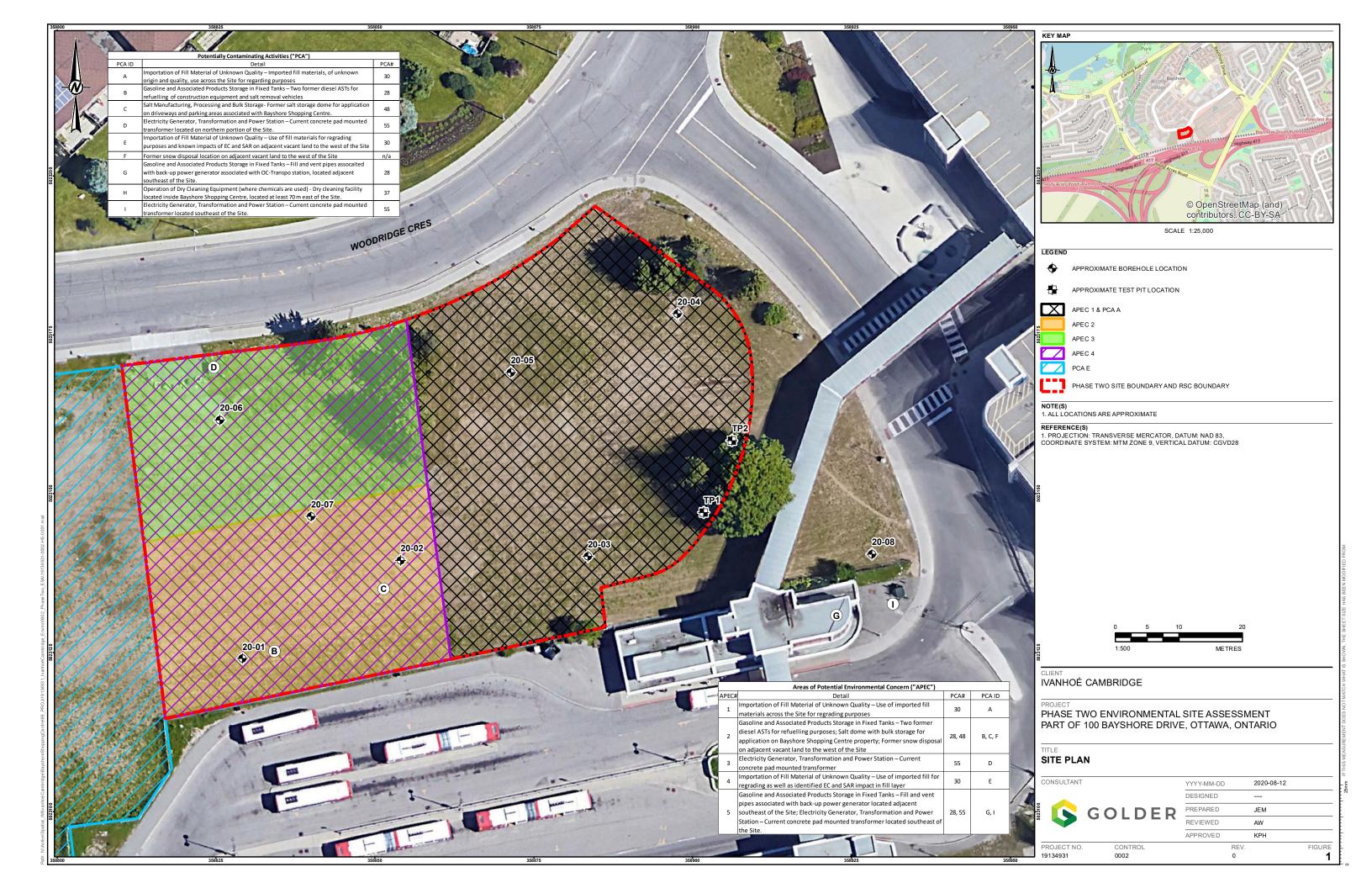
> value = Indicates parameter detected above equipment analytical range.

na = Chemical not analyzed or criteria not defined.

Grey background and **bold font** indicates exceedances above MECP Table 3 standards.

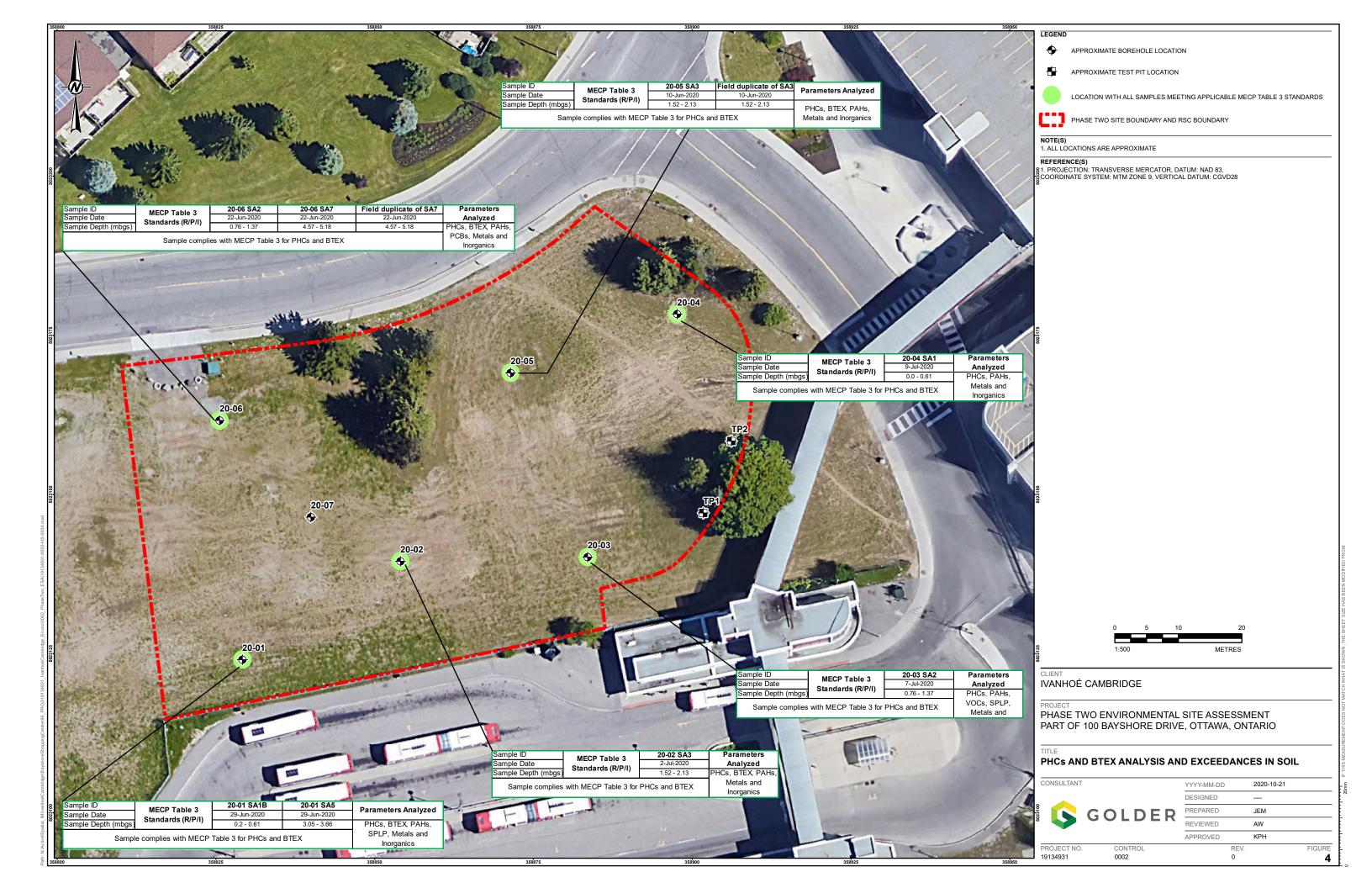
Sample ID		MECP Table 3	MW20-01	MW20-02S	MW20-06S	DUP-1 (duplicate of MW20-06S)
Sample Date		Standards ⁽¹⁾	20-Jul-2020	20-Jul-2020	20-Jul-2020	20-Jul-2020
Water Levels (mbgs)	Unit		2.71	4.42	4.83	4.83
Dissolved Sodium	μg/l	2,300,000	1,670,000	1,540,000	207,000	194,000
Chloride	μg/l	2,300,000	5,860,000	4,980,000	1,120,000	1,100,000
рН	pH unit	n/a	7.39	7.65	7.43	7.45

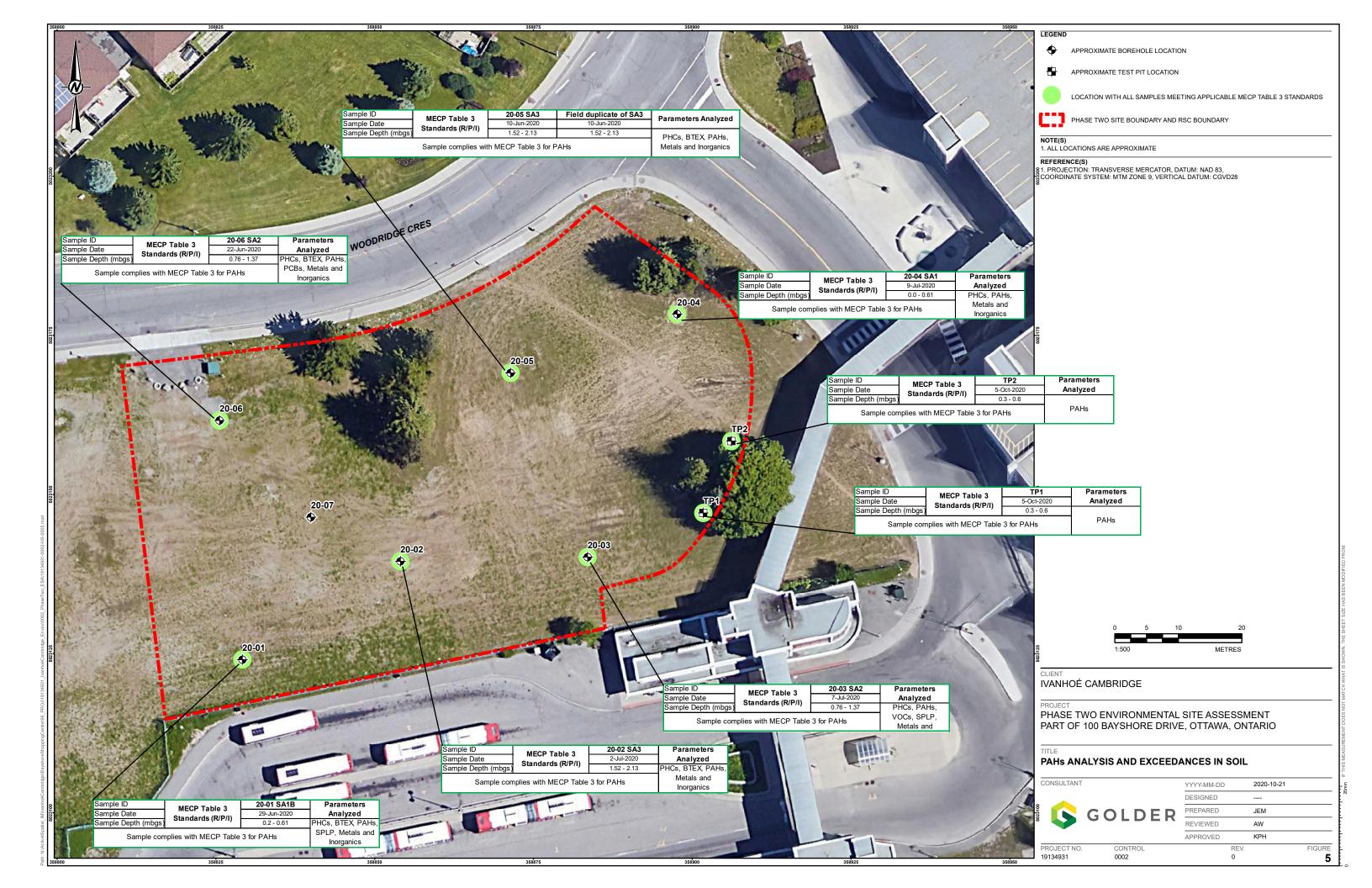
Grey background and **bold font** indicates exceedances above MECP Table 3 standards.

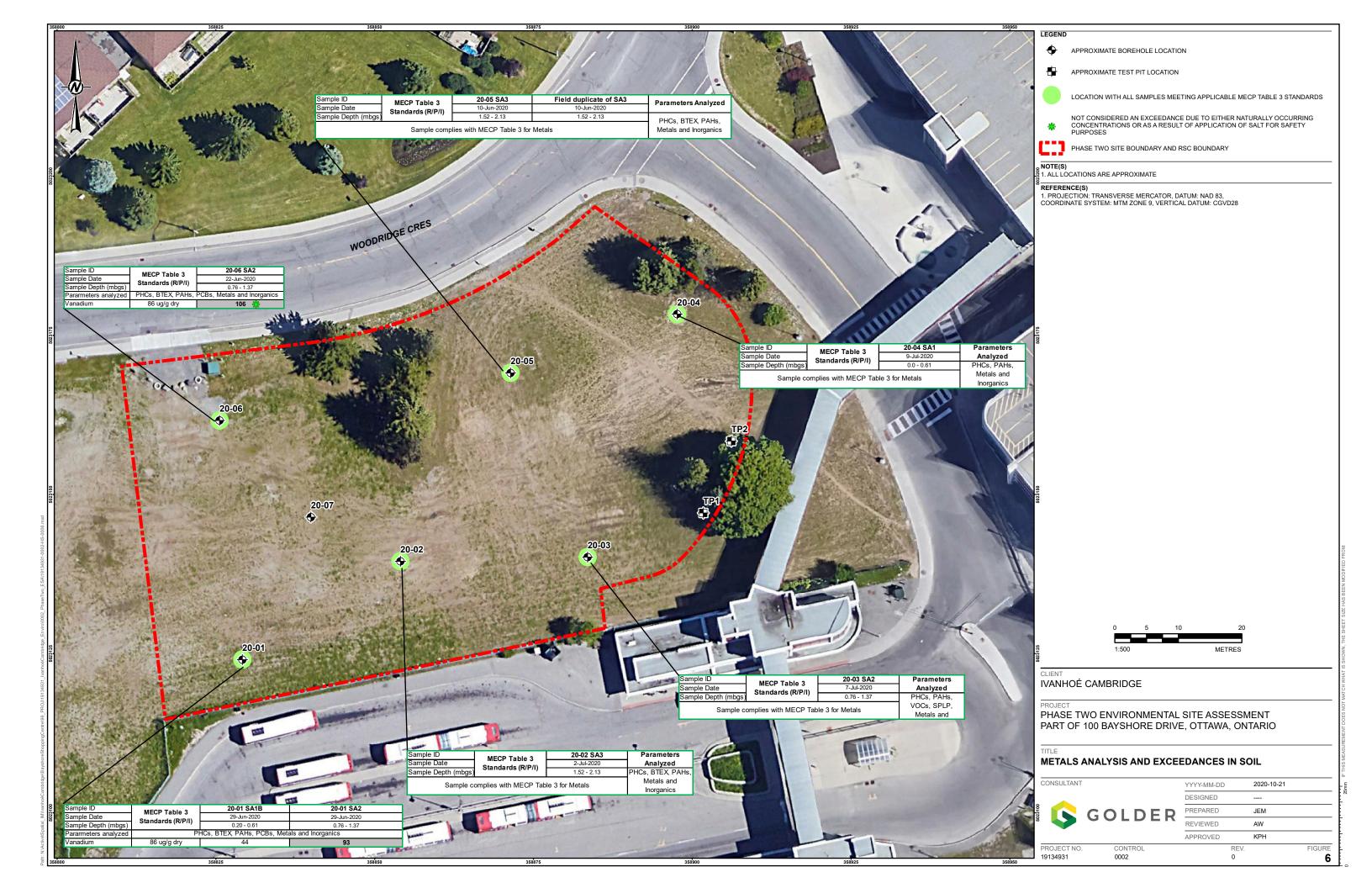


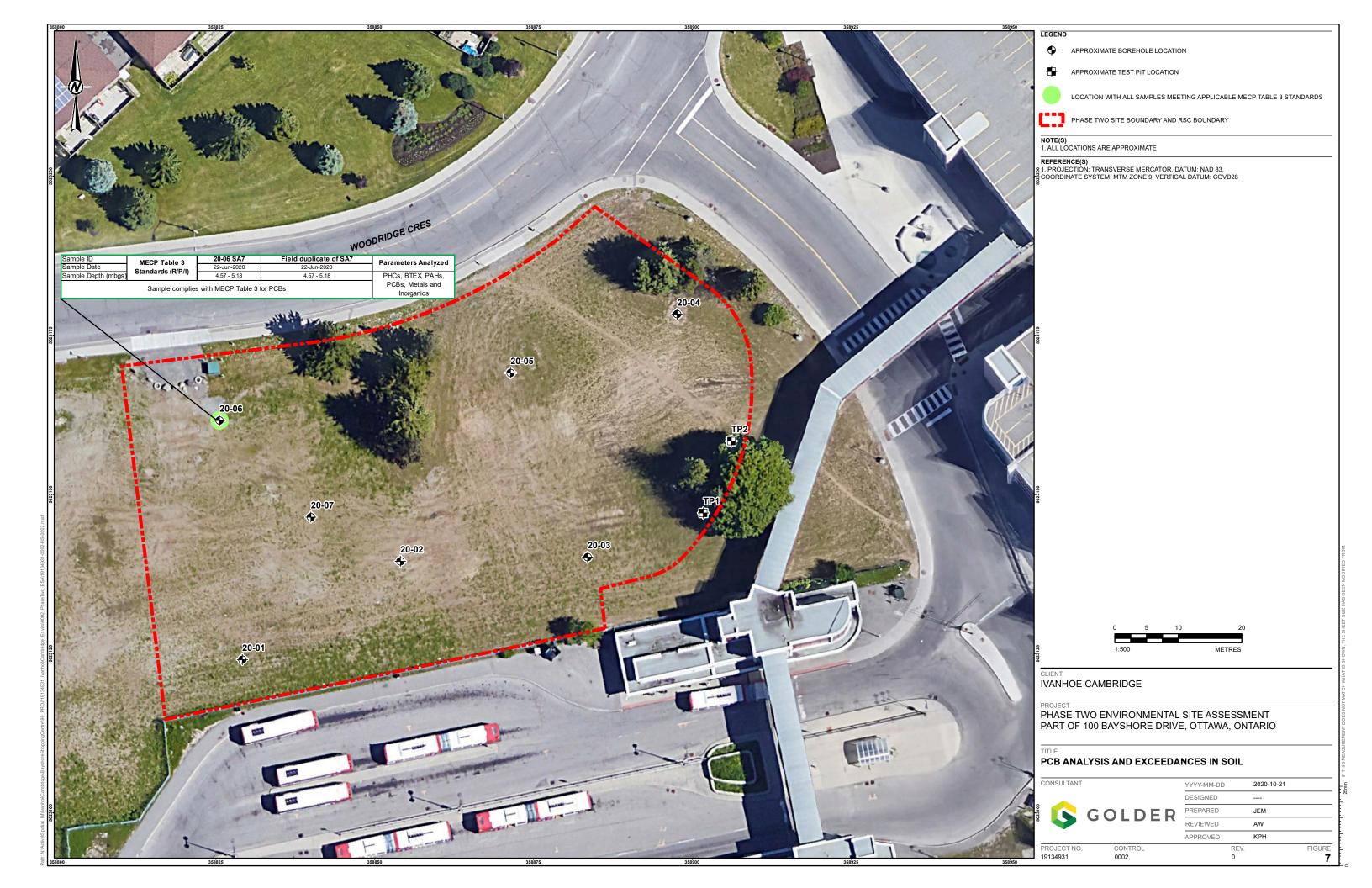

> value = Indicates parameter detected above equipment analytical range.

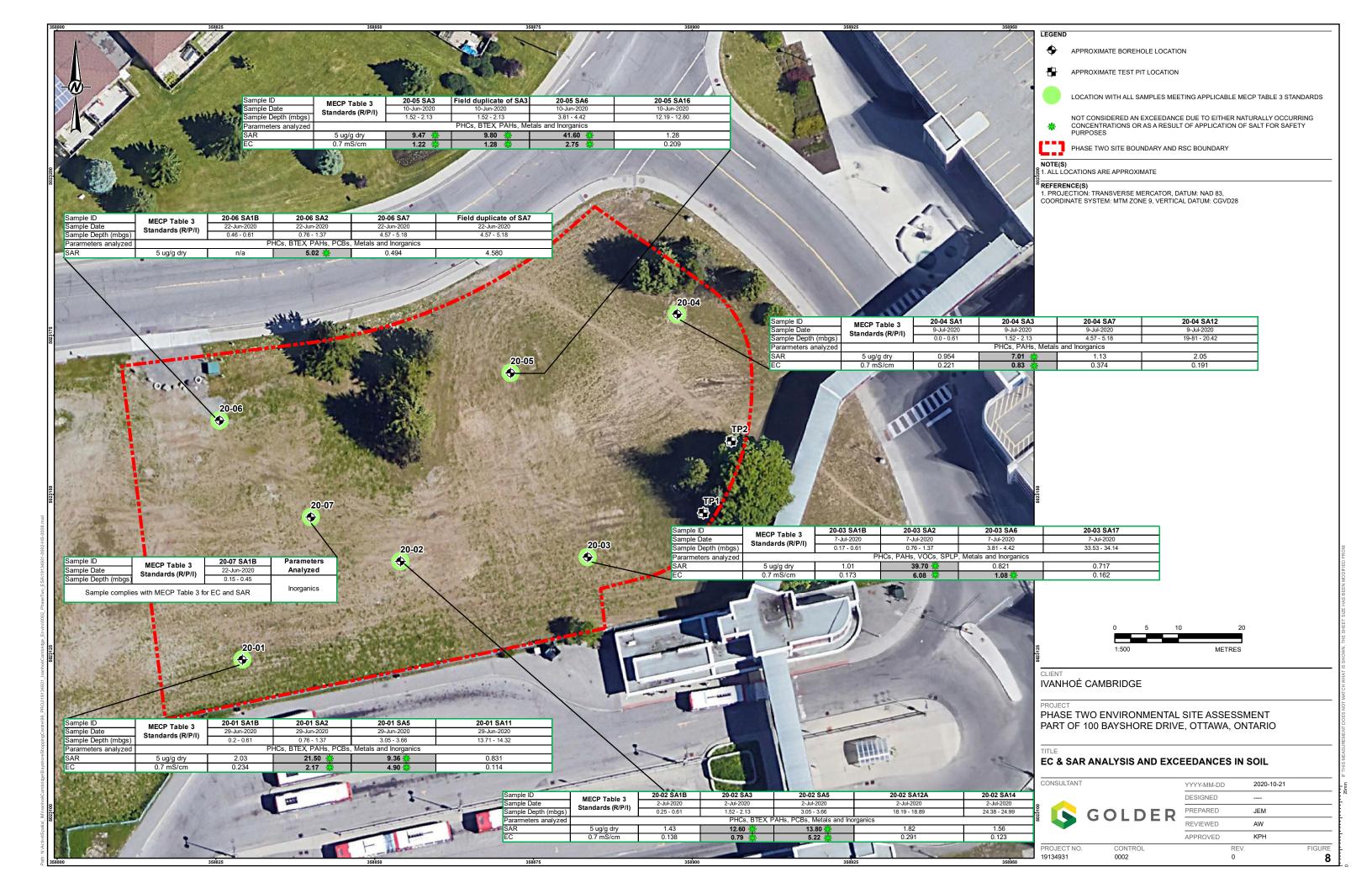
na = Chemical not analyzed or criteria not defined.

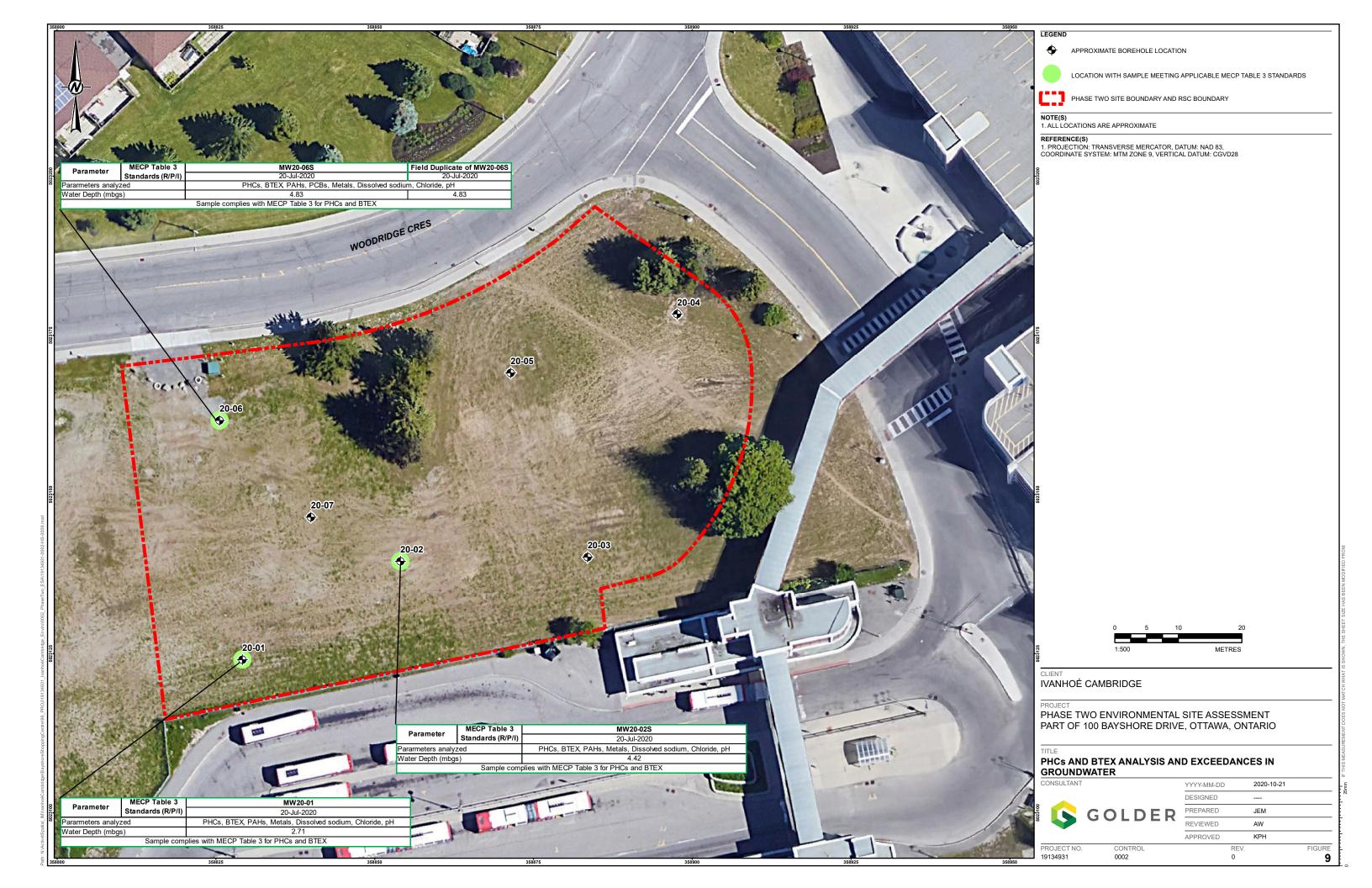

March 2021 19134931

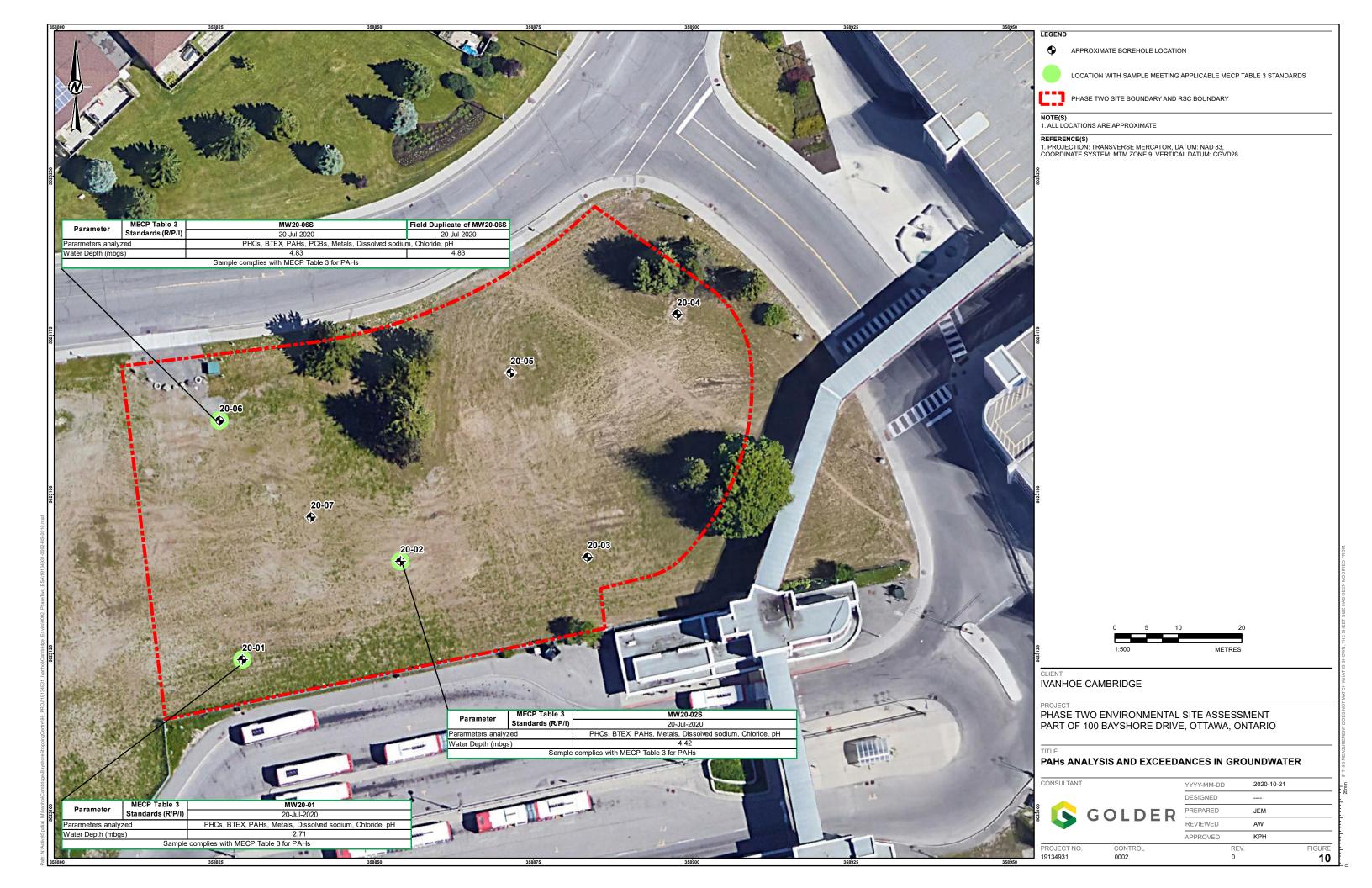

Figures

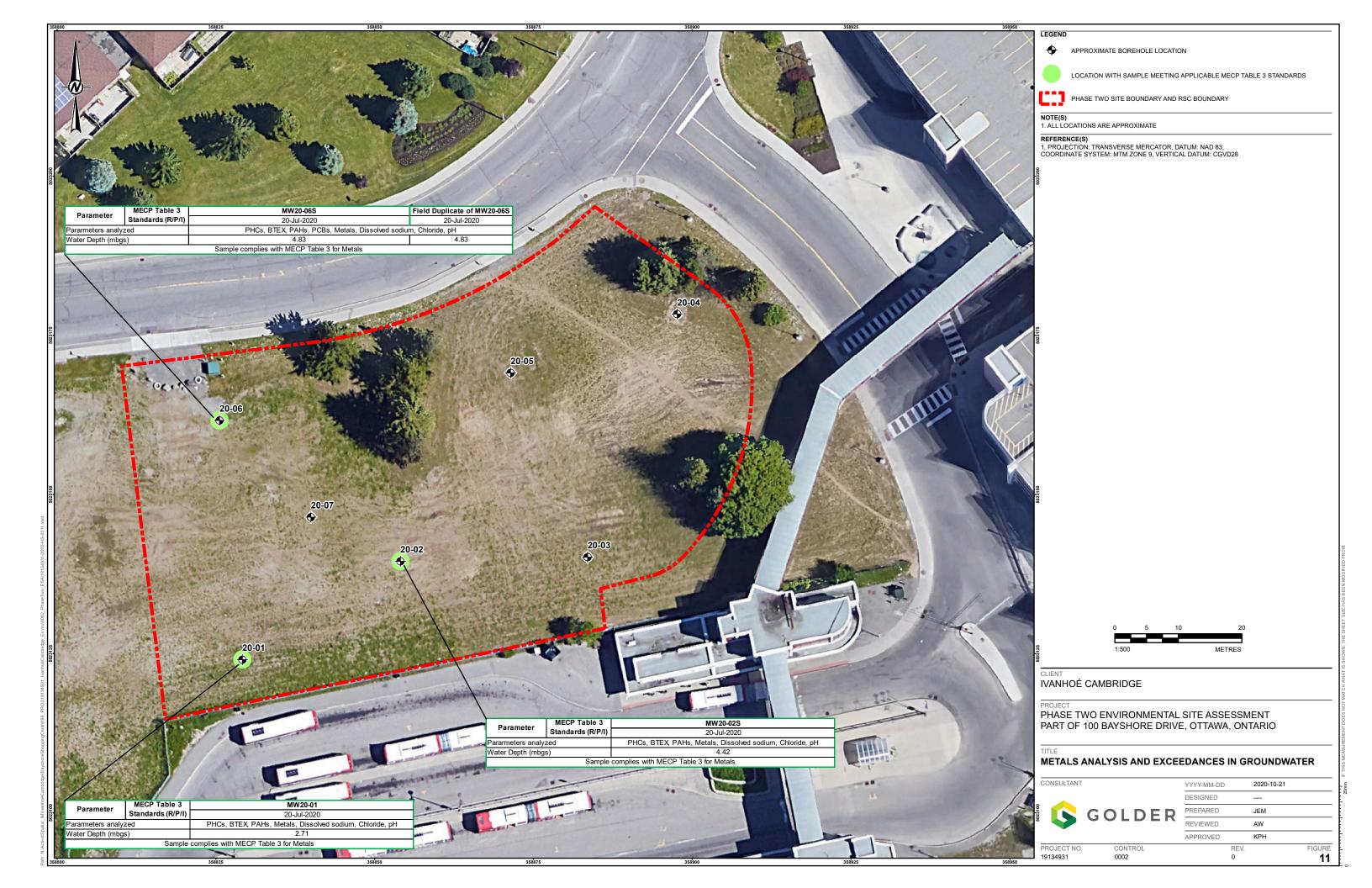


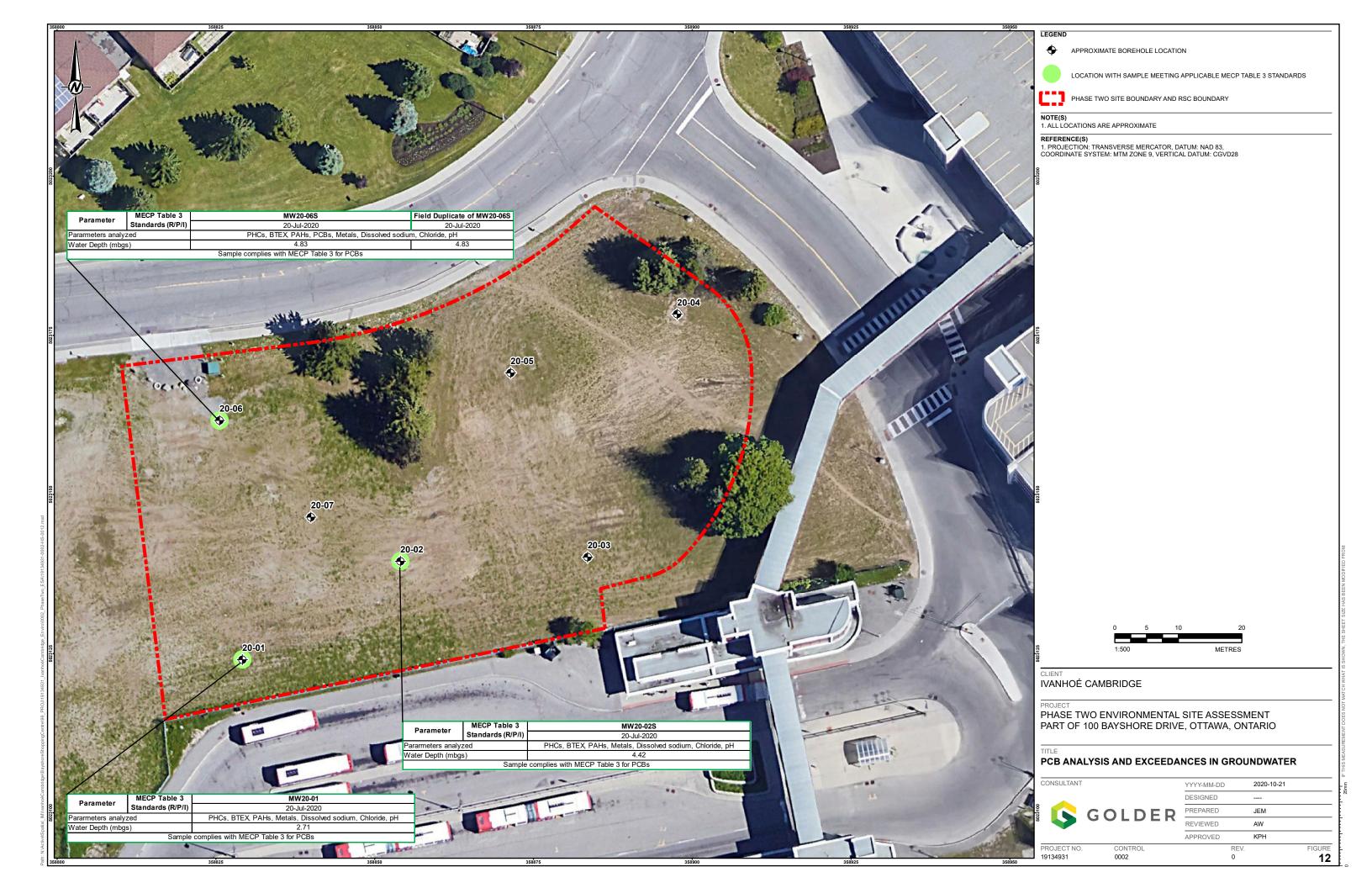


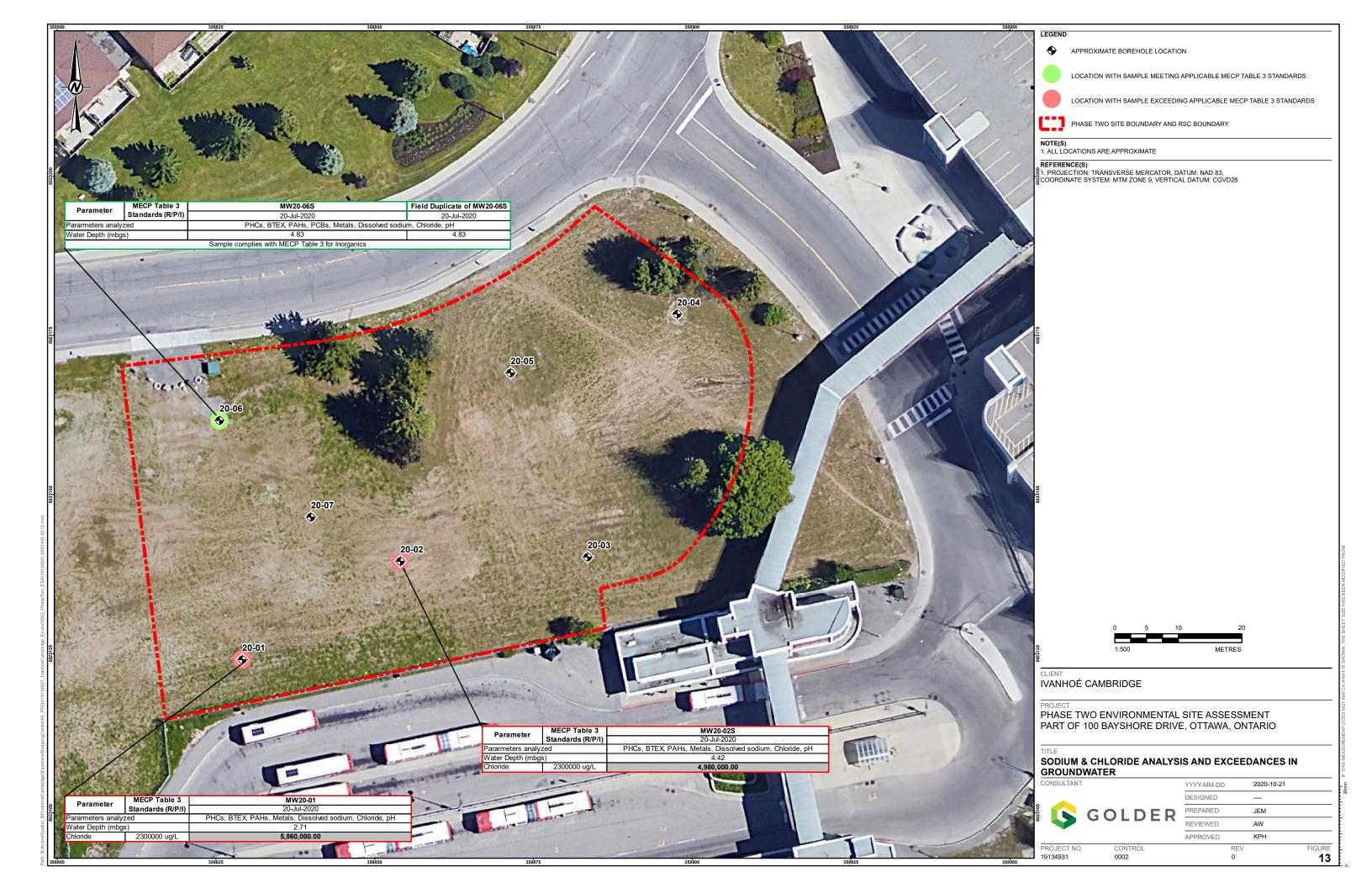


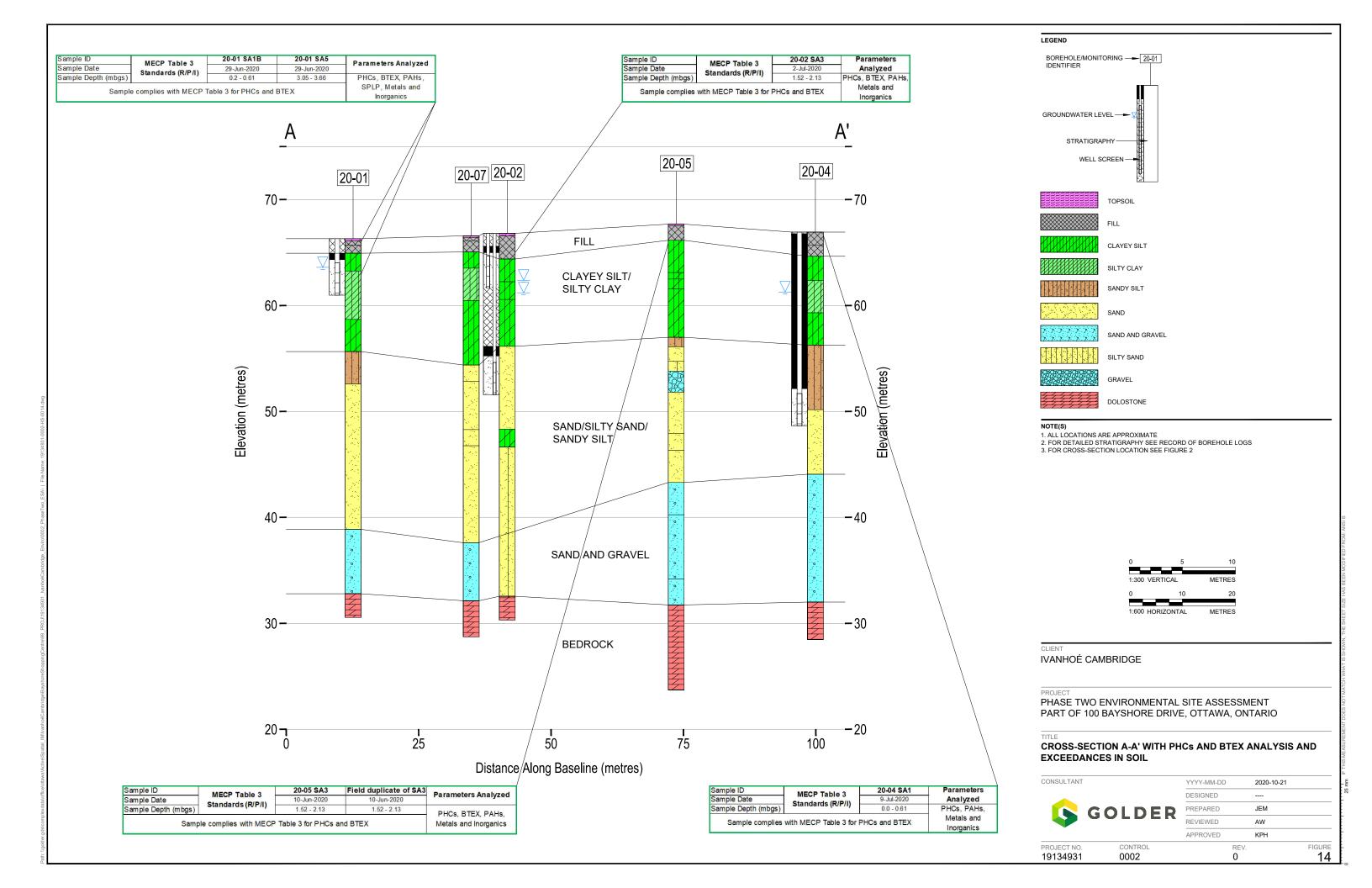


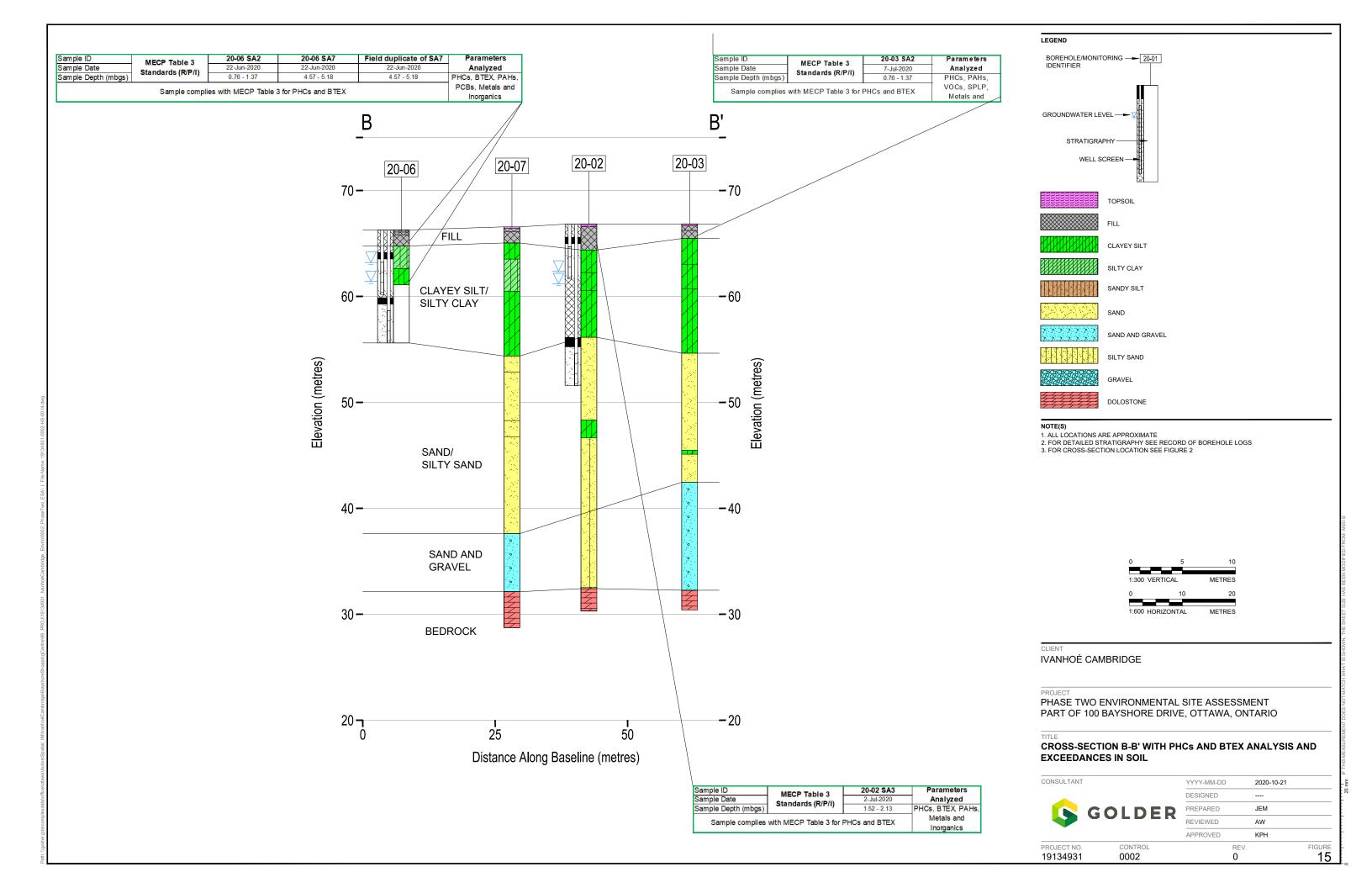


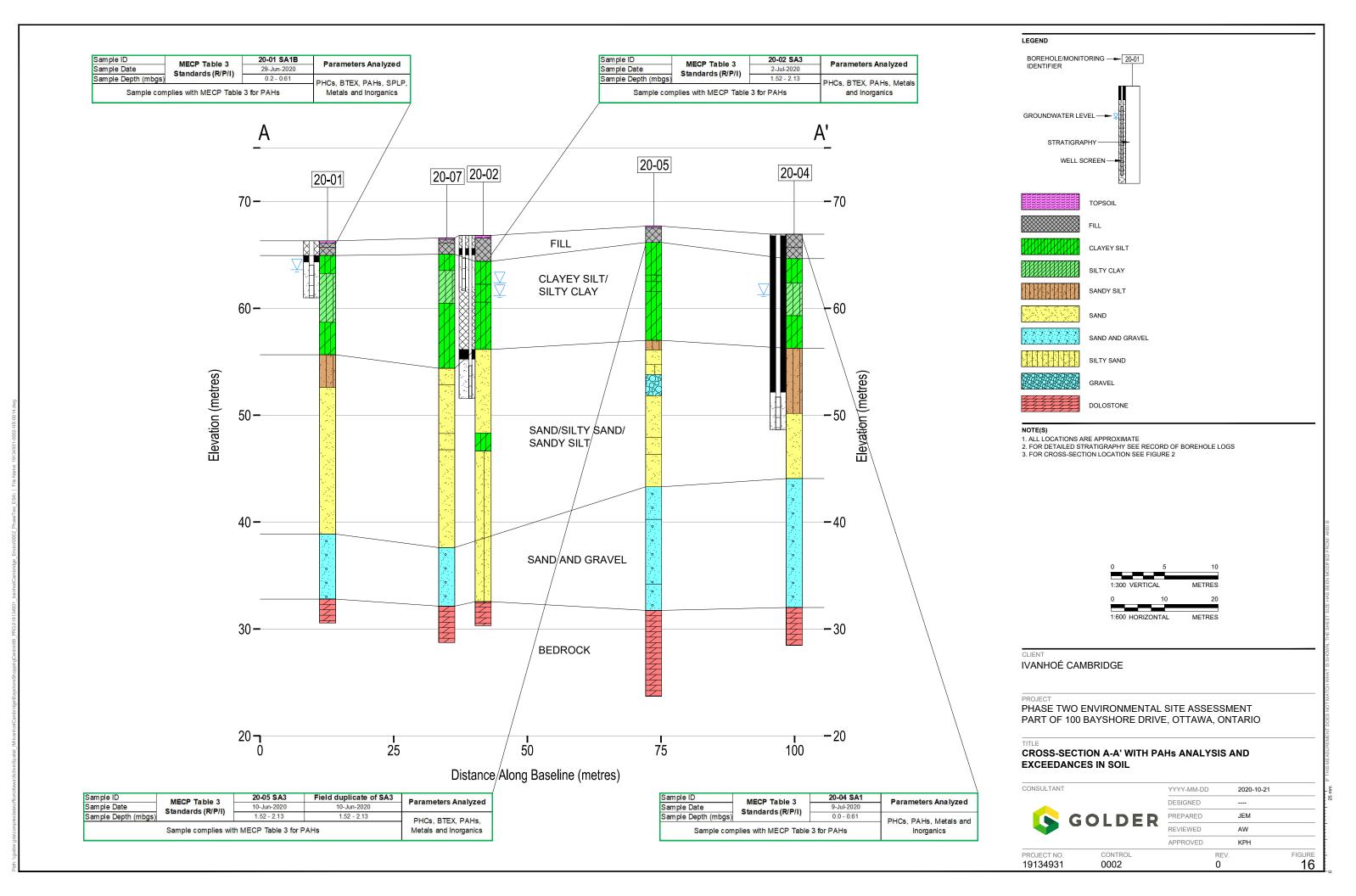


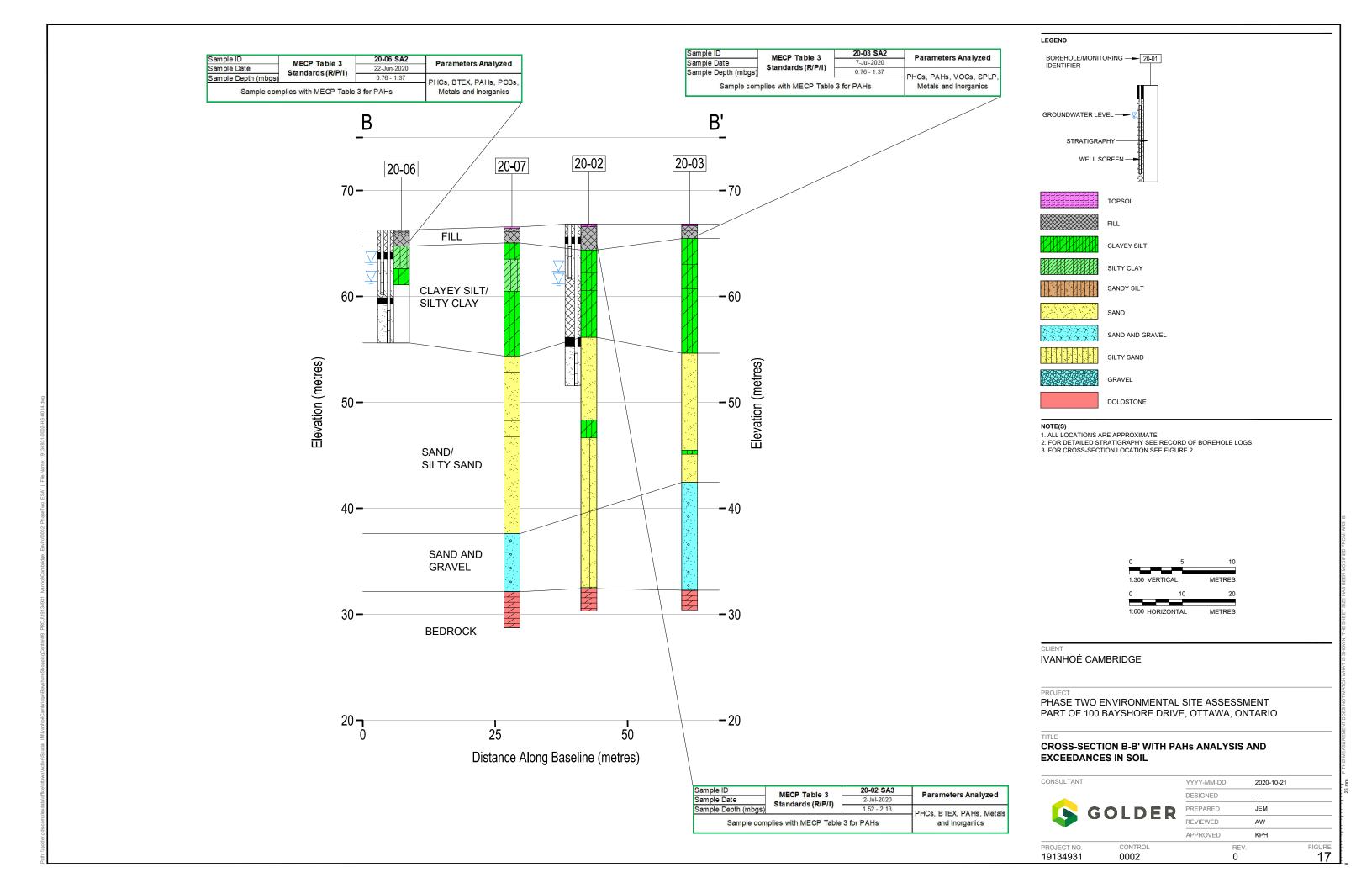


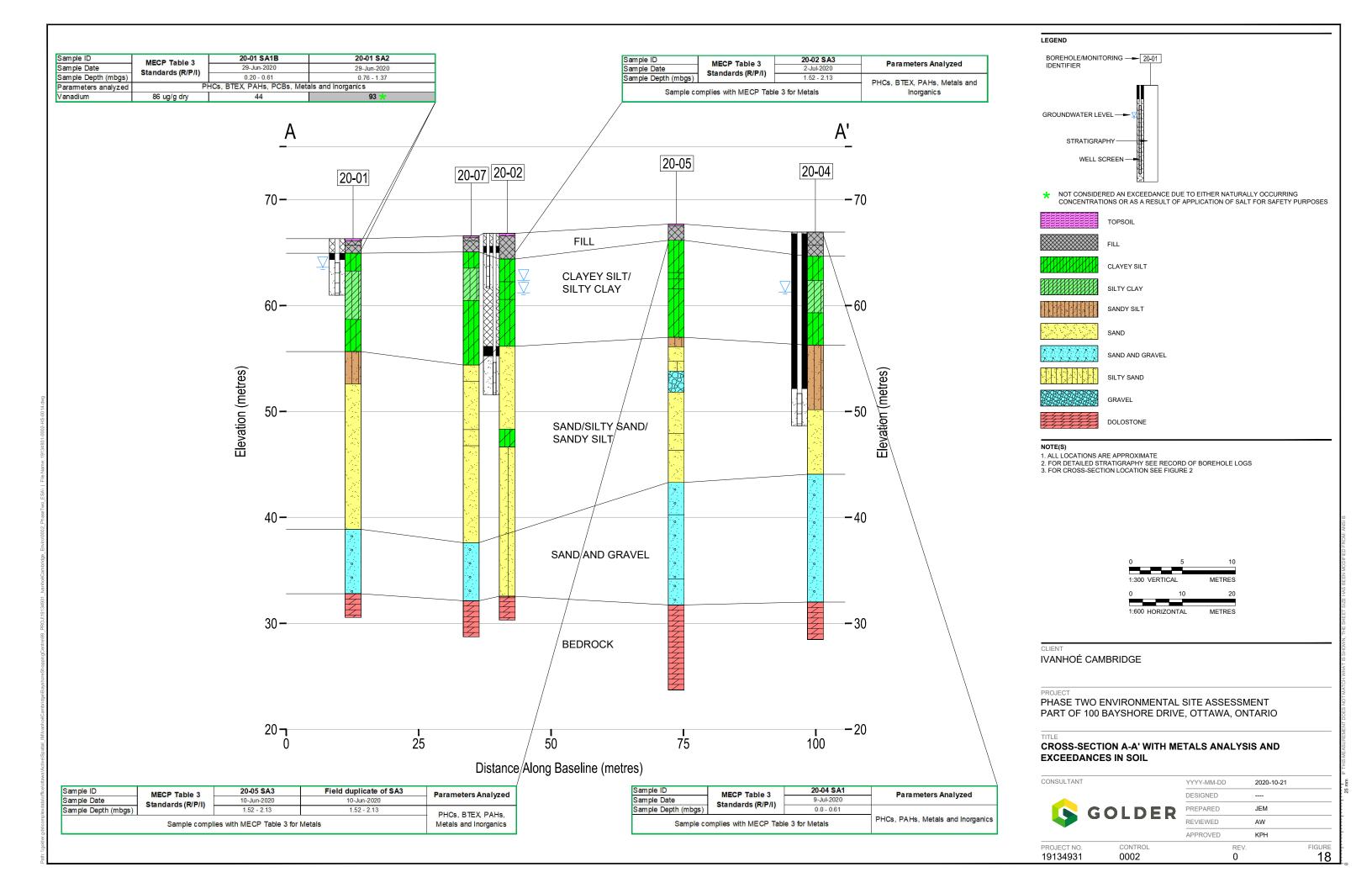


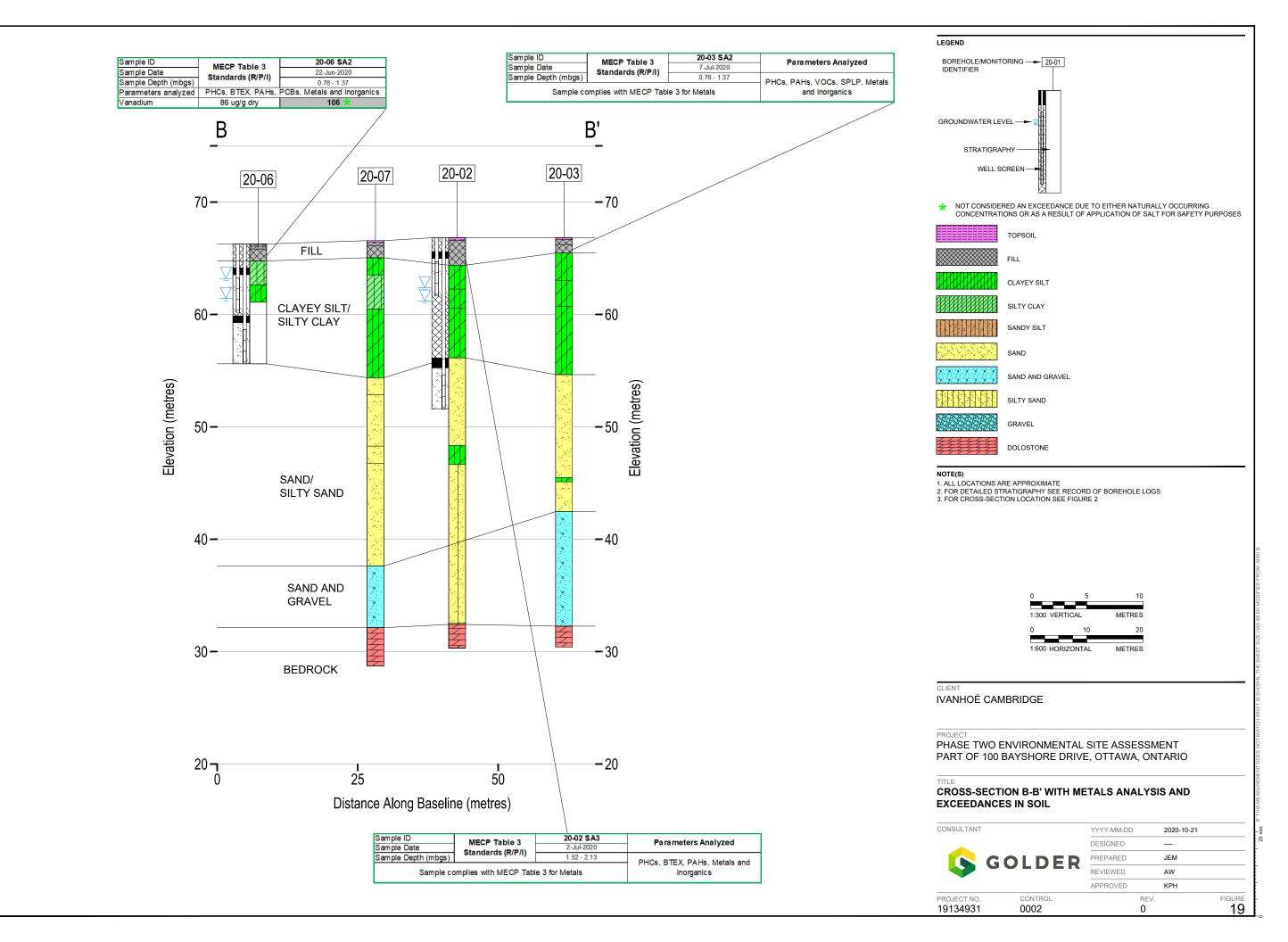


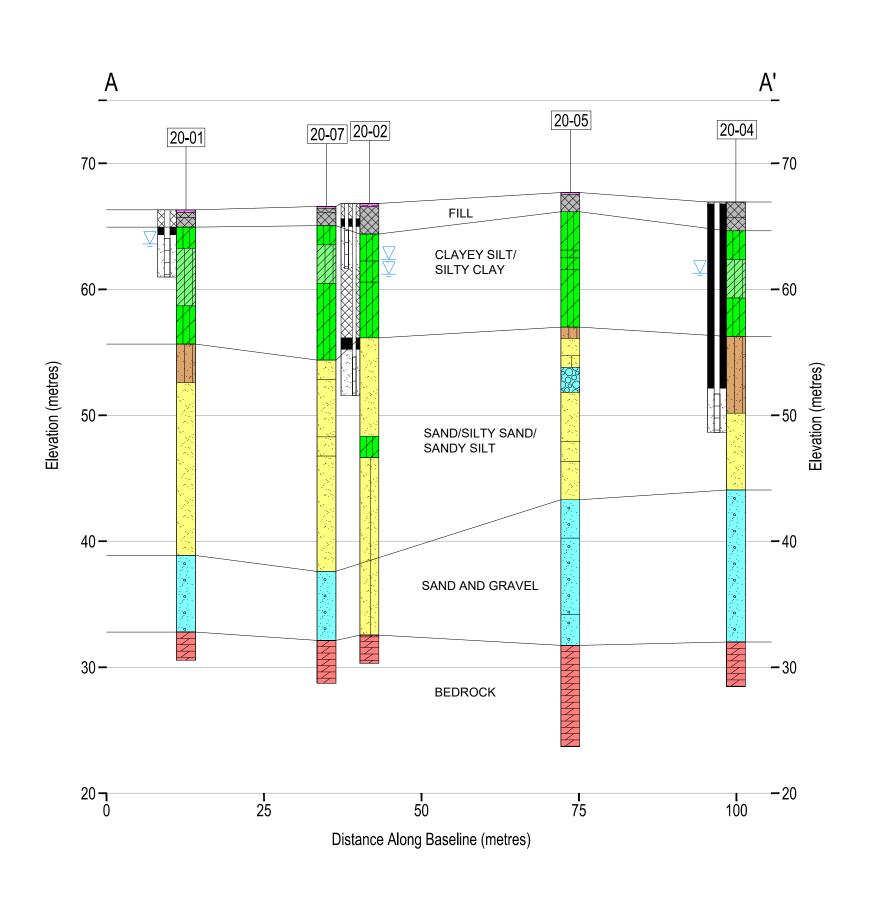


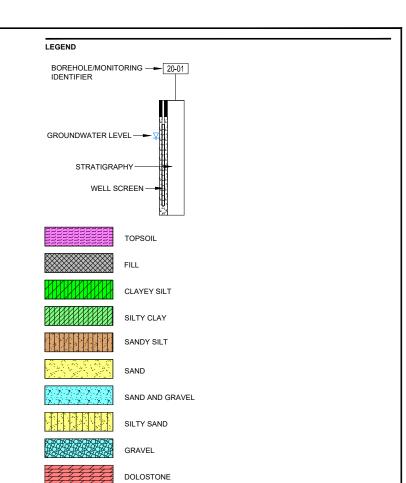


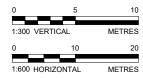




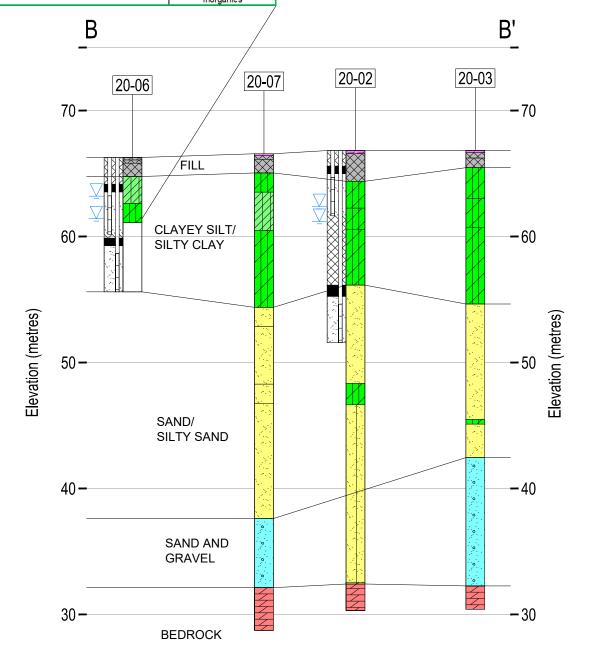


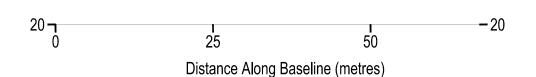


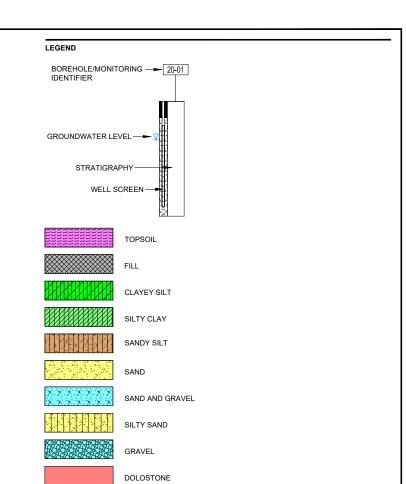




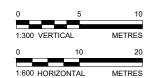
1. ALL LOCATIONS ARE APPROXIMATE
 2. FOR DETAILED STRATIGRAPHY SEE RECORD OF BOREHOLE LOGS
 3. FOR CROSS-SECTION LOCATION SEE FIGURE 2


IVANHOÉ CAMBRIDGE

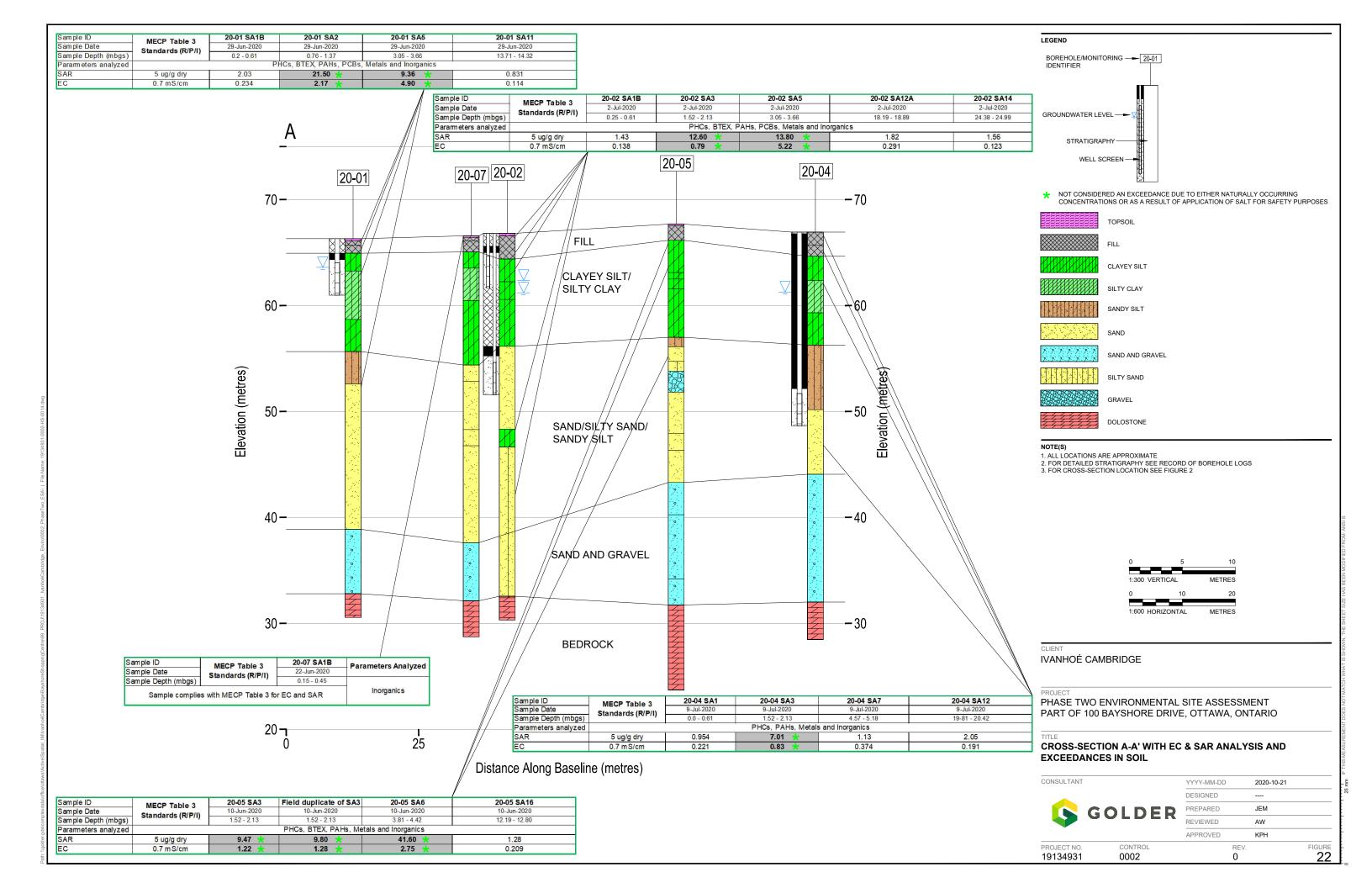

PHASE TWO ENVIRONMENTAL SITE ASSESSMENT PART OF 100 BAYSHORE DRIVE, OTTAWA, ONTARIO

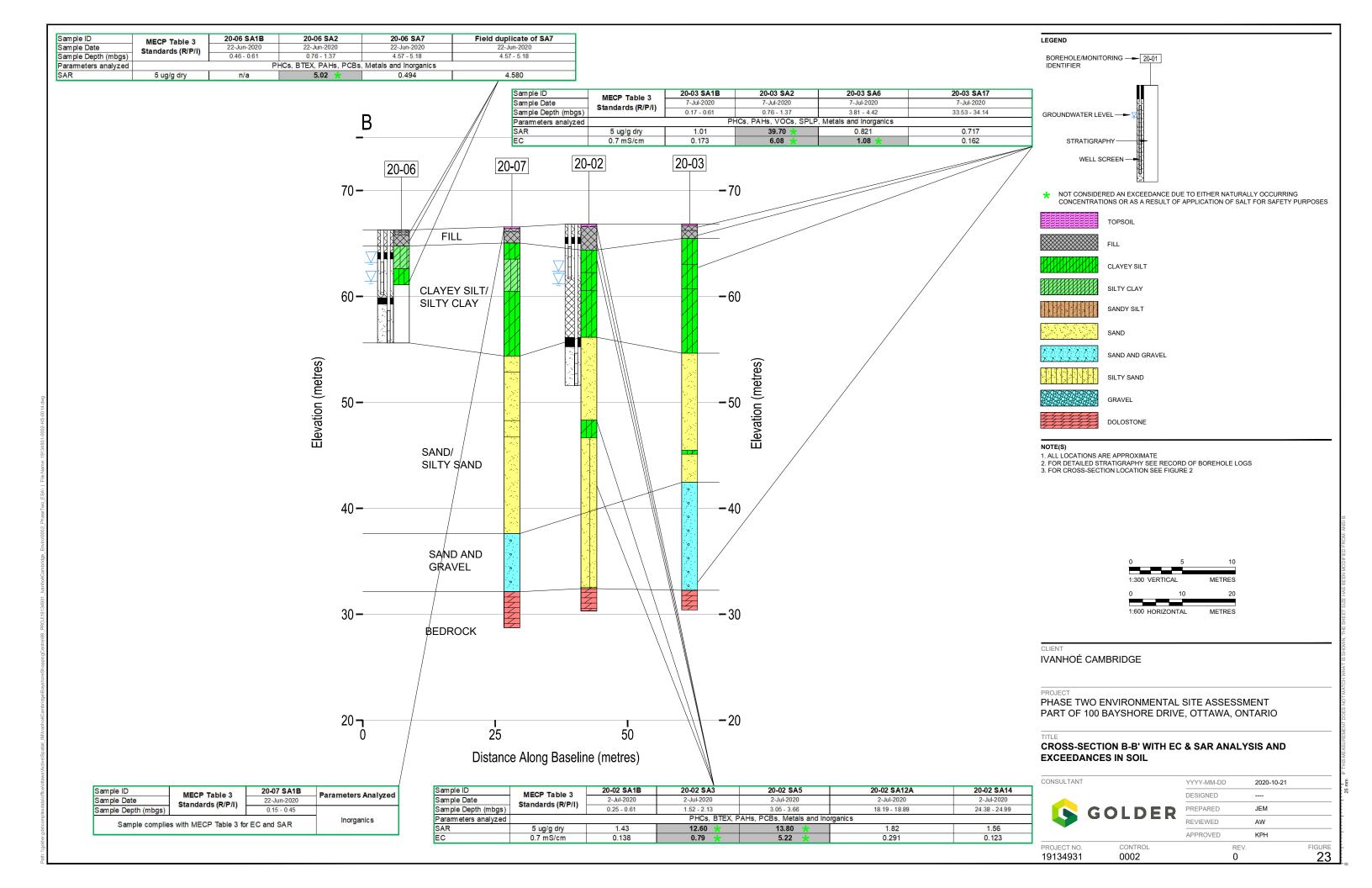

TITLE
CROSS-SECTION A-A' WITH PCB ANALYSIS AND EXCEEDANCES IN SOIL

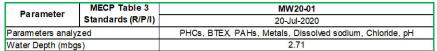
CONSULTANT YYYY-MM-DD 2020-10-21 DESIGNED PREPARED GOLDER REVIEWED APPROVED PROJECT NO. 19134931 0002


Sample ID Sample Date	MECP Table 3 Standards (R/P/I)	20-06 SA7 22-Jun-2020	Parameters Analyzed						
Sample Depth (mbgs)	Standards (R/F/I)	4.57 - 5.18	4.57 - 5.18	PHCs, BTEX, PAHs,					
	Sample complies with MECP Table 3 for PCBs								

- 1. ALL LOCATIONS ARE APPROXIMATE
 2. FOR DETAILED STRATIGRAPHY SEE RECORD OF BOREHOLE LOGS
 3. FOR CROSS-SECTION LOCATION SEE FIGURE 2




IVANHOÉ CAMBRIDGE


PHASE TWO ENVIRONMENTAL SITE ASSESSMENT PART OF 100 BAYSHORE DRIVE, OTTAWA, ONTARIO

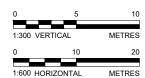
TITLE CROSS-SECTION B-B' WITH PCB ANALYSIS AND EXCEEDANCES IN SOIL

CONSULTANT YYYY-MM-DD 2020-10-21 DESIGNED PREPARED JEM **GOLDER** REVIEWED AW APPROVED FIGURE 21 19134931 0002

Parameters analyzed

Water Depth (mbgs)

PHCs, BTEX, PAHs, Metals, Dissolved sodium, Chloride, pH

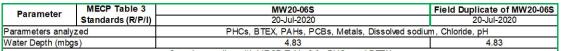

Sample complies with MECP Table 3 for PHCs and BTEX

Sample complies with MECP Table 3 for PHCs and BTEX 20-05 20-02 20-04 20-01 70**-**-70 FILL CLAYEY SILT/ SILTY CLAY 60 **–** Elevation (metres) Elevation (metres) SAND/SILTY SAND/ SANDY SILT 40 -**-40** SAND AND GRAVEL 30 -**BEDROCK** 20 ¬ 75 100 25 50 Distance Along Baseline (metres) MECP Table 3 MW20-02S **Parameter** Standards (R/P/I) 20-Jul-2020

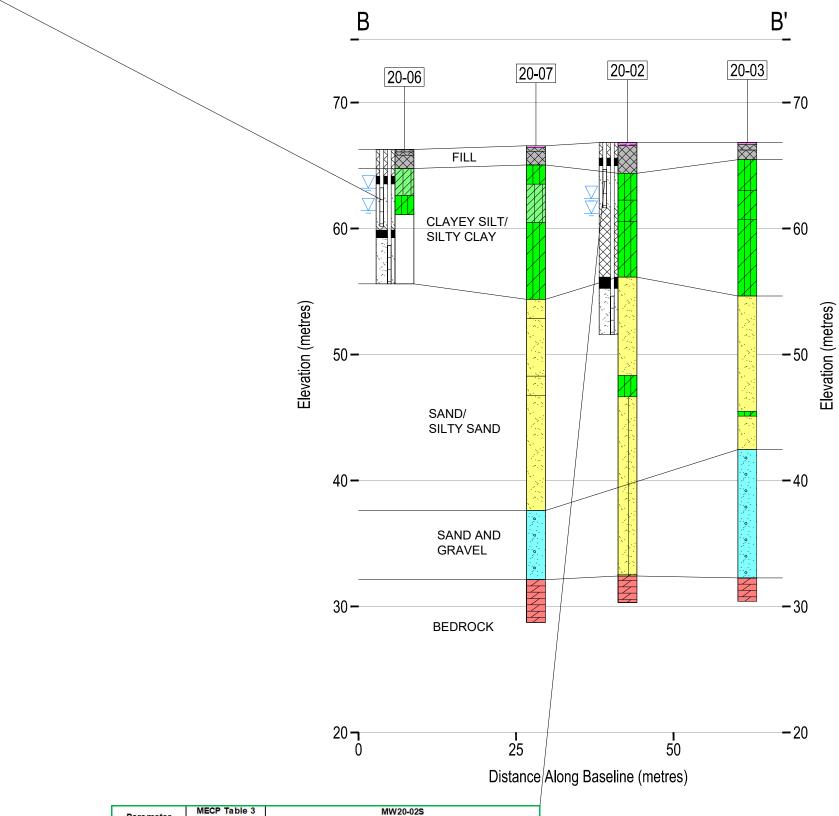
LEGEND BOREHOLE/MONITORING — 20-01 IDENTIFIER GROUNDWATER LEVEL -STRATIGRAPHY WELL SCREEN TOPSOIL CLAYEY SILT SILTY CLAY SANDY SILT SAND AND GRAVEL SILTY SAND GRAVEL

- 1. ALL LOCATIONS ARE APPROXIMATE
 2. FOR DETAILED STRATIGRAPHY SEE RECORD OF BOREHOLE LOGS
 3. FOR CROSS-SECTION LOCATION SEE FIGURE 2

DOLOSTONE

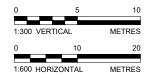


IVANHOÉ CAMBRIDGE


PHASE TWO ENVIRONMENTAL SITE ASSESSMENT PART OF 100 BAYSHORE DRIVE, OTTAWA, ONTARIO

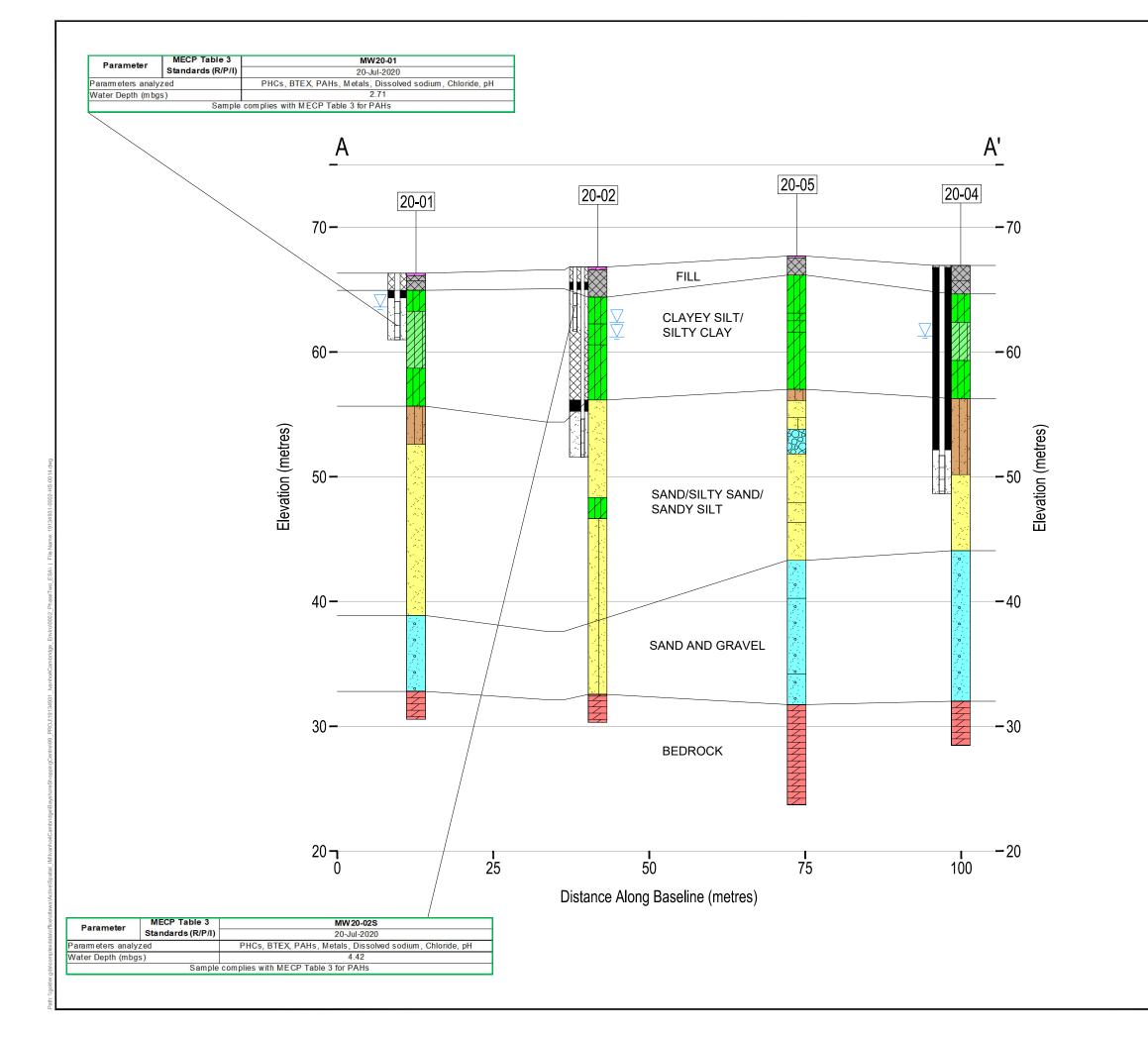
CROSS-SECTION A-A' WITH PHCs AND BTEX ANALYSIS AND **EXCEEDANCES IN GROUNDWATER**

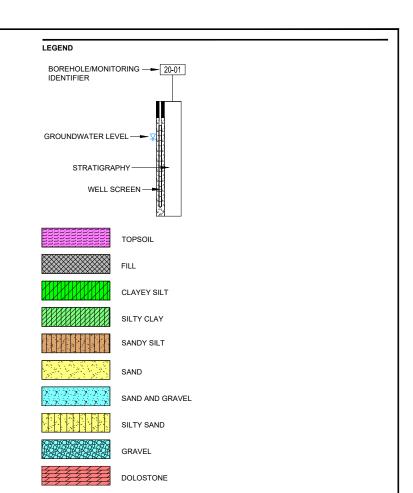
CONSULTANT YYYY-MM-DD 2020-10-21 DESIGNED PREPARED **GOLDER** REVIEWED APPROVED 19134931 0002


Sample complies with MECP Table 3 for PHCs and BTEX

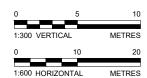
Parameter	MECP Table 3	MW20-02\$
	Standards (R/P/I)	20-Jul-2020
Parameters analyzed		PHCs, BTEX, PAHs, Metals, Dissolved sodium, Chloride, pH
Water Depth (mbgs)		4.42
Sample complies with MECP Table 3 for PHCs and BTEX		

- 1. ALL LOCATIONS ARE APPROXIMATE
 2. FOR DETAILED STRATIGRAPHY SEE RECORD OF BOREHOLE LOGS
 3. FOR CROSS-SECTION LOCATION SEE FIGURE 2




IVANHOÉ CAMBRIDGE

PHASE TWO ENVIRONMENTAL SITE ASSESSMENT PART OF 100 BAYSHORE DRIVE, OTTAWA, ONTARIO

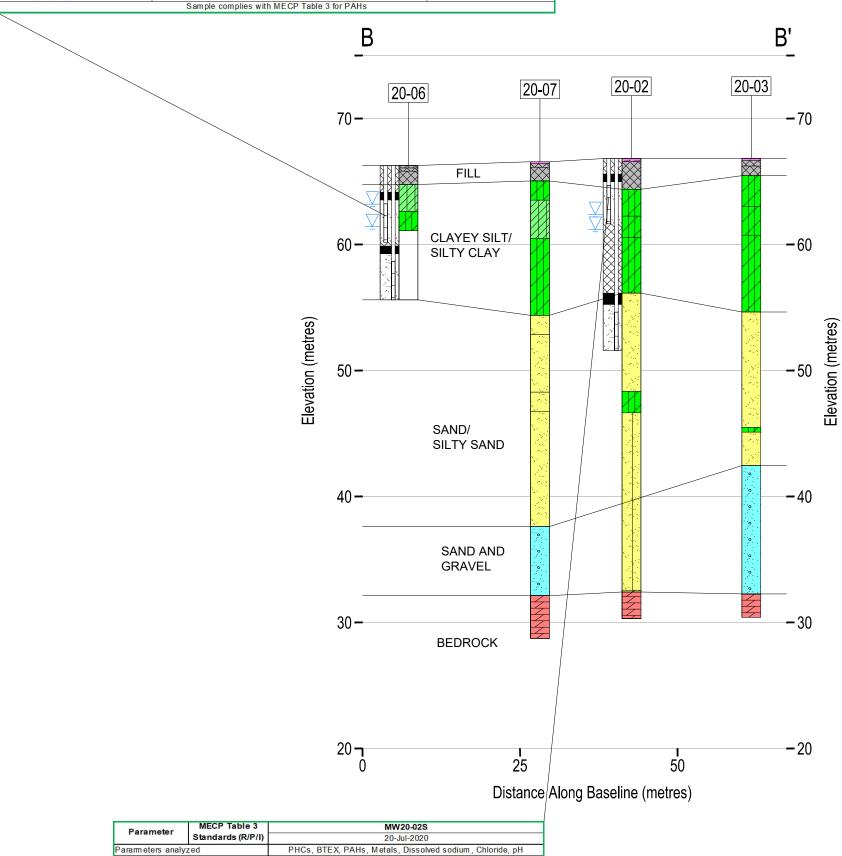

CROSS-SECTION B-B' WITH PHCs AND BTEX ANALYSIS AND **EXCEEDANCES IN GROUNDWATER**

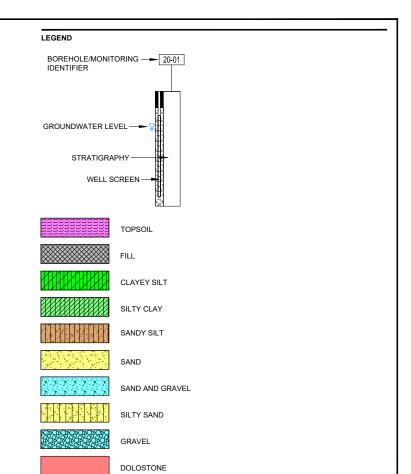
CONSULTANT YYYY-MM-DD 2020-10-21 DESIGNED PREPARED JEM **GOLDER** REVIEWED AW APPROVED REV. 19134931 0002

- 1. ALL LOCATIONS ARE APPROXIMATE
 2. FOR DETAILED STRATIGRAPHY SEE RECORD OF BOREHOLE LOGS
 3. FOR CROSS-SECTION LOCATION SEE FIGURE 2

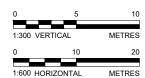
IVANHOÉ CAMBRIDGE

PHASE TWO ENVIRONMENTAL SITE ASSESSMENT PART OF 100 BAYSHORE DRIVE, OTTAWA, ONTARIO


CROSS-SECTION A-A' WITH PAHS ANALYSIS AND **EXCEEDANCES IN GROUNDWATER**

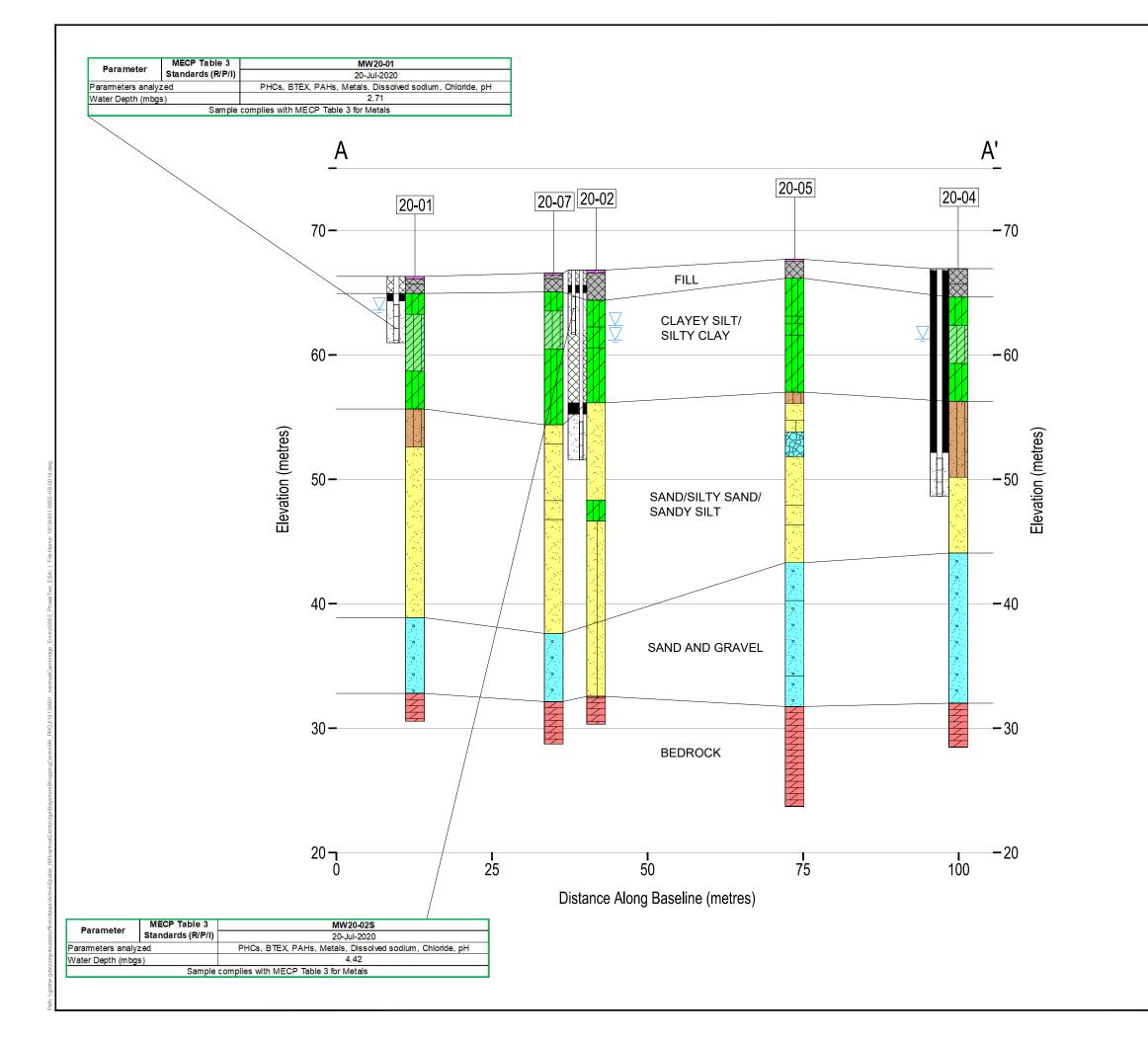

CONSULTANT YYYY-MM-DD 2020-10-21 DESIGNED PREPARED **GOLDER** REVIEWED APPROVED 19134931 0002

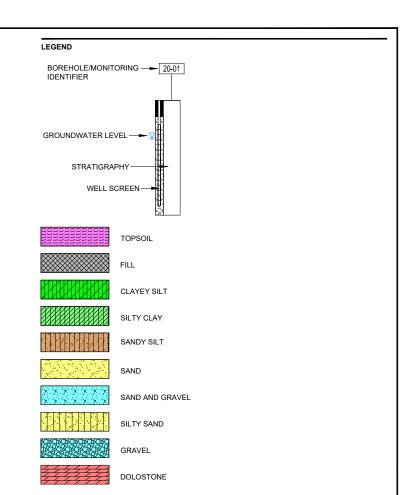
Parameter	MECP Table 3	MW20-06S	Field Duplicate of MW20-06S
rarameter	Standards (R/P/I)	20-Jul-2020	20-Jul-2020
Parameters analyzed		PHCs, BTEX, PAHs, PCBs, Metals, Dissolved sodiur	m, Chloride, pH
Water Depth (mbgs)		4.83	4.83
water Deptil (IIIbgs)			


Water Depth (mbgs)

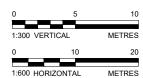
Sample complies with MECP Table 3 for PAHs

- 1. ALL LOCATIONS ARE APPROXIMATE
 2. FOR DETAILED STRATIGRAPHY SEE RECORD OF BOREHOLE LOGS
 3. FOR CROSS-SECTION LOCATION SEE FIGURE 2



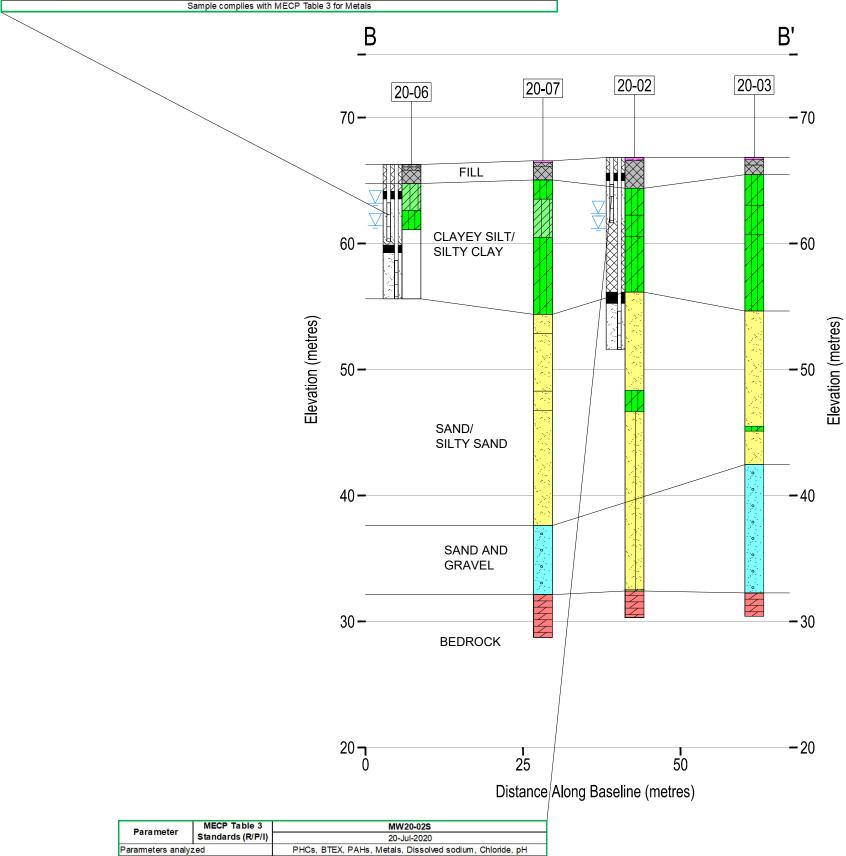

IVANHOÉ CAMBRIDGE

PHASE TWO ENVIRONMENTAL SITE ASSESSMENT PART OF 100 BAYSHORE DRIVE, OTTAWA, ONTARIO


TITLE
CROSS-SECTION B-B' WITH PAHS ANALYSIS AND
EXCEEDANCES IN GROUNDWATER

CONSULTANT		YYYY-MM-DD	2020-10-21	
		DESIGNED		
G C	OLDER	PREPARED	JEM	
	OLDER	REVIEWED	AW	
		APPROVED	KPH	
PROJECT NO.	CONTROL	RE	≣V.	FIGURE
19134931	0002	0		27

- 1. ALL LOCATIONS ARE APPROXIMATE
 2. FOR DETAILED STRATIGRAPHY SEE RECORD OF BOREHOLE LOGS
 3. FOR CROSS-SECTION LOCATION SEE FIGURE 2

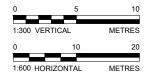

IVANHOÉ CAMBRIDGE

PHASE TWO ENVIRONMENTAL SITE ASSESSMENT PART OF 100 BAYSHORE DRIVE, OTTAWA, ONTARIO

CROSS-SECTION A-A' WITH METALS ANALYSIS AND **EXCEEDANCES IN GROUNDWATER**

CONSULTANT YYYY-MM-DD 2020-10-21 DESIGNED PREPARED **GOLDER** REVIEWED APPROVED 19134931 0002

Parameter	MECP Table 3	MW20-06S	Field Duplicate of MW20-06S
raiailletei	Standards (R/P/I)	20-Jul-2020	20-Jul-2020
Parameters analyzed		PHCs, BTEX, PAHs, PCBs, Metals, Dissolved sodium, Chloride, pH	
Water Depth (mbgs)		4.83 4.83	

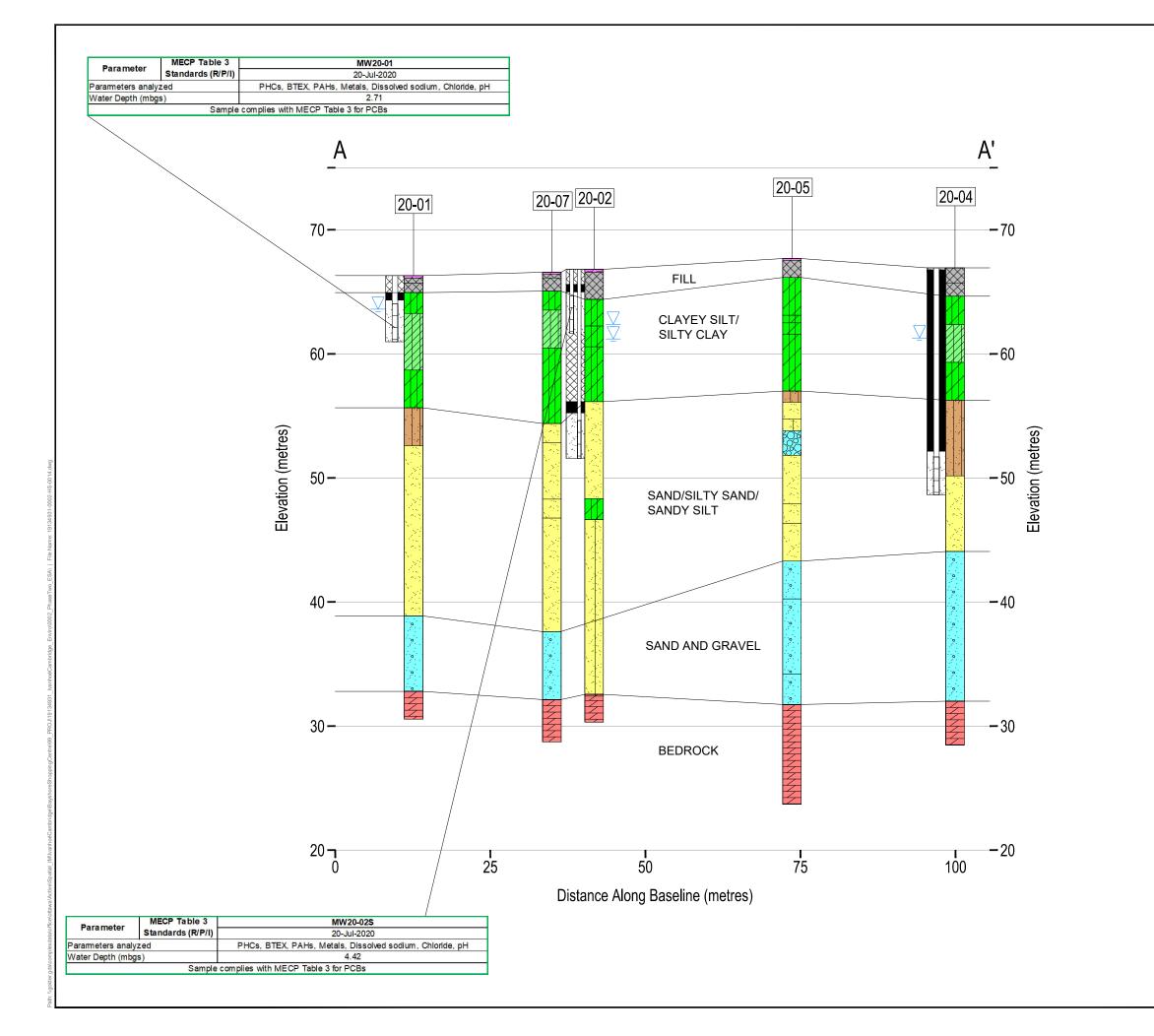


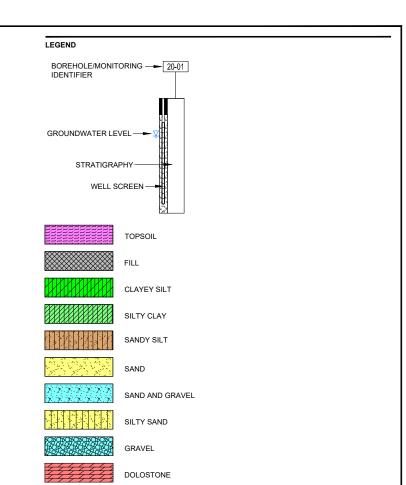
Sample complies with MECP Table 3 for Metals

LEGEND BOREHOLE/MONITORING — 20-01 IDENTIFIER GROUNDWATER LEVEL -STRATIGRAPHY WELL SCREEN TOPSOIL CLAYEY SILT SILTY CLAY SANDY SILT SAND SAND AND GRAVEL SILTY SAND GRAVEL

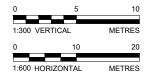
- 1. ALL LOCATIONS ARE APPROXIMATE
 2. FOR DETAILED STRATIGRAPHY SEE RECORD OF BOREHOLE LOGS
 3. FOR CROSS-SECTION LOCATION SEE FIGURE 2

DOLOSTONE


IVANHOÉ CAMBRIDGE

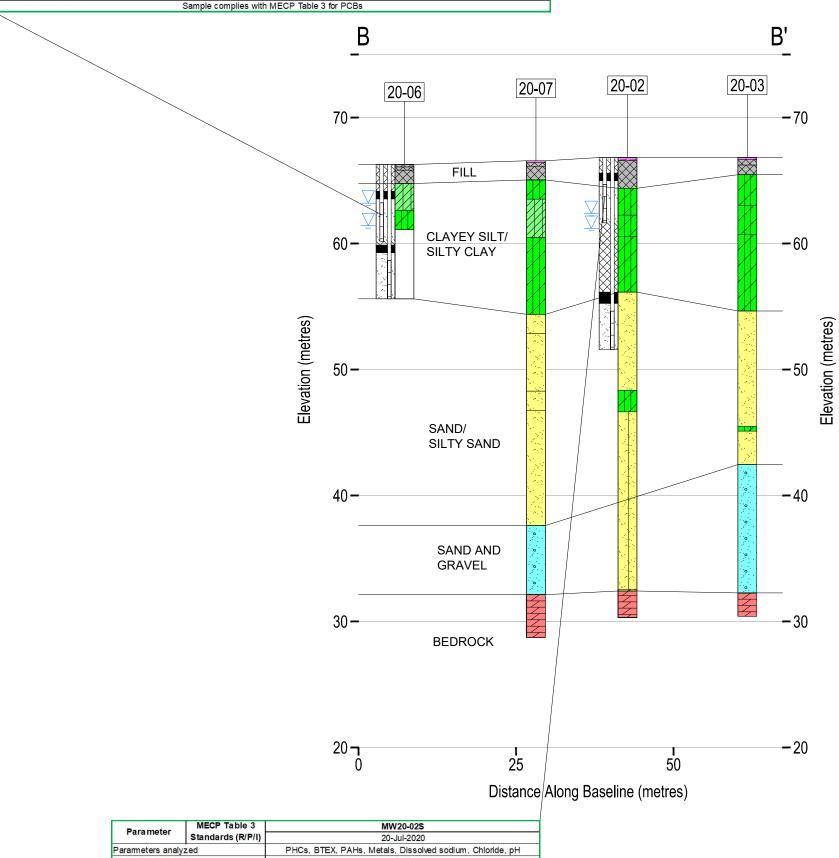

PHASE TWO ENVIRONMENTAL SITE ASSESSMENT PART OF 100 BAYSHORE DRIVE, OTTAWA, ONTARIO

CROSS-SECTION B-B' WITH METALS ANALYSIS AND **EXCEEDANCES IN GROUNDWATER**


CONSULTANT YYYY-MM-DD 2020-10-21 DESIGNED PREPARED JEM **GOLDER** REVIEWED APPROVED 0002

19134931

- 1. ALL LOCATIONS ARE APPROXIMATE
 2. FOR DETAILED STRATIGRAPHY SEE RECORD OF BOREHOLE LOGS
 3. FOR CROSS-SECTION LOCATION SEE FIGURE 2


IVANHOÉ CAMBRIDGE

PHASE TWO ENVIRONMENTAL SITE ASSESSMENT PART OF 100 BAYSHORE DRIVE, OTTAWA, ONTARIO

TITLE CROSS-SECTION A-A' WITH PCB ANALYSIS AND EXCEEDANCES IN GROUNDWATER

CONSULTANT YYYY-MM-DD 2020-10-21 DESIGNED PREPARED **GOLDER** REVIEWED APPROVED FIGURE 30 19134931 0002

Parameter MECP Table		MW20-06S	Field Duplicate of MW20-06S
Falailletei	Standards (R/P/I)	20-Jul-2020	20-Jul-2020
Parameters analyzed		PHCs, BTEX, PAHs, PCBs, Metals, Dissolved sodium, Chloride, pH	
Water Depth (mbgs)		4.83 4.83	

PHCs, BTEX, PAHs, Metals, Dissolved sodium, Chloride, pH

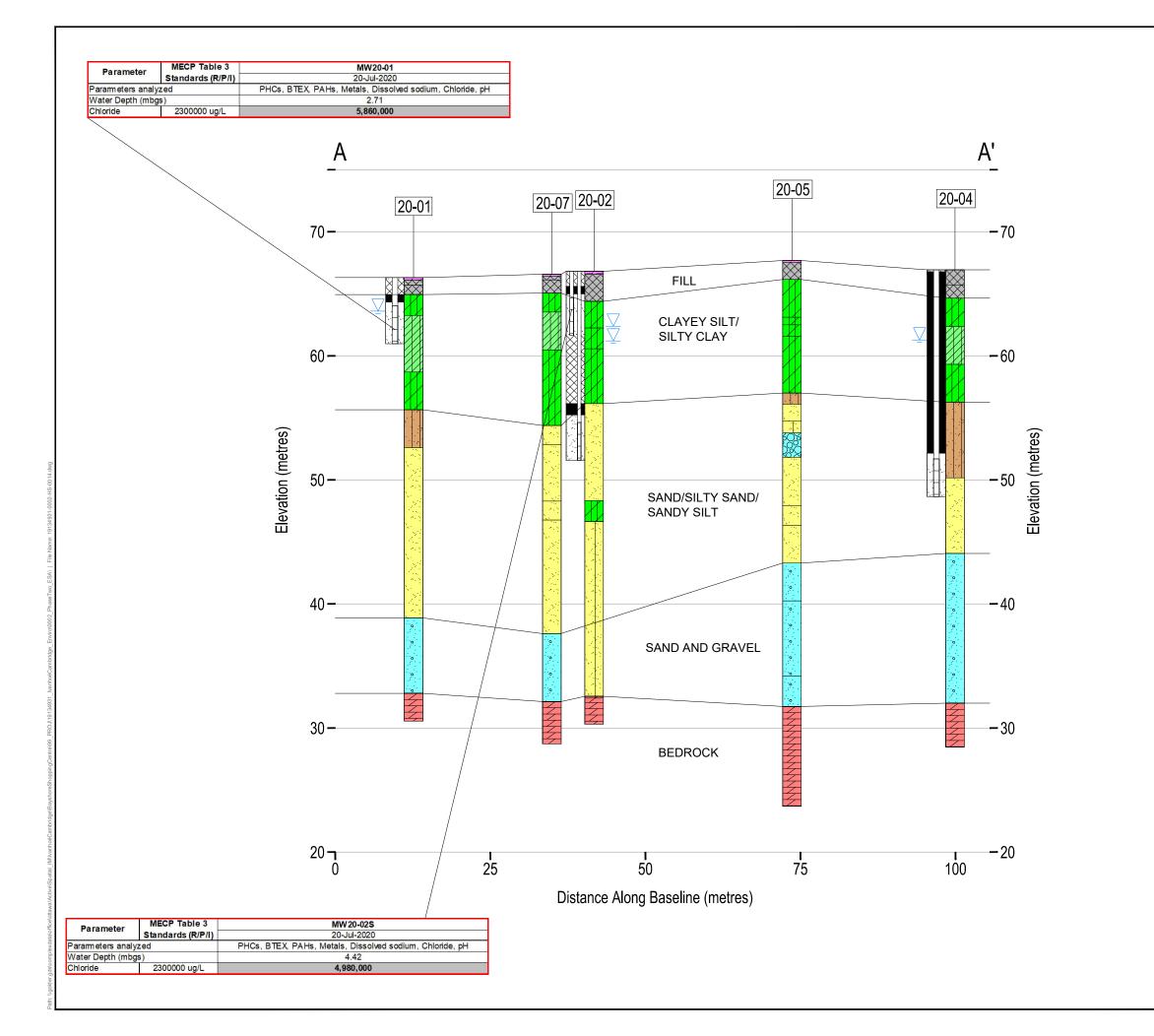
Sample complies with MECP Table 3 for PCBs

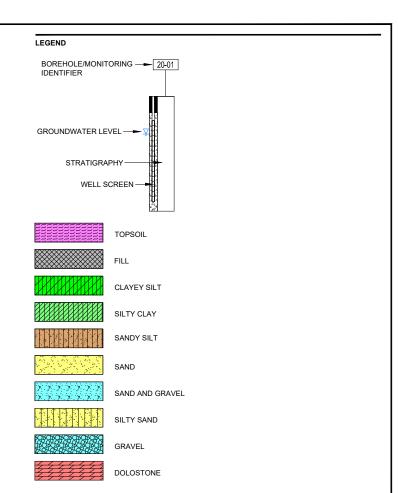
Water Depth (mbgs)

LEGEND BOREHOLE/MONITORING — 20-01 IDENTIFIER GROUNDWATER LEVEL -STRATIGRAPHY WELL SCREEN TOPSOIL CLAYEY SILT SILTY CLAY SANDY SILT SAND SAND AND GRAVEL SILTY SAND GRAVEL

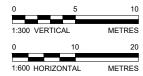
- 1. ALL LOCATIONS ARE APPROXIMATE
 2. FOR DETAILED STRATIGRAPHY SEE RECORD OF BOREHOLE LOGS
 3. FOR CROSS-SECTION LOCATION SEE FIGURE 2

DOLOSTONE



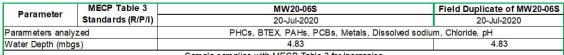

IVANHOÉ CAMBRIDGE

PHASE TWO ENVIRONMENTAL SITE ASSESSMENT PART OF 100 BAYSHORE DRIVE, OTTAWA, ONTARIO


CROSS-SECTION B-B' WITH PCB ANALYSIS AND EXCEEDANCES IN GROUNDWATER

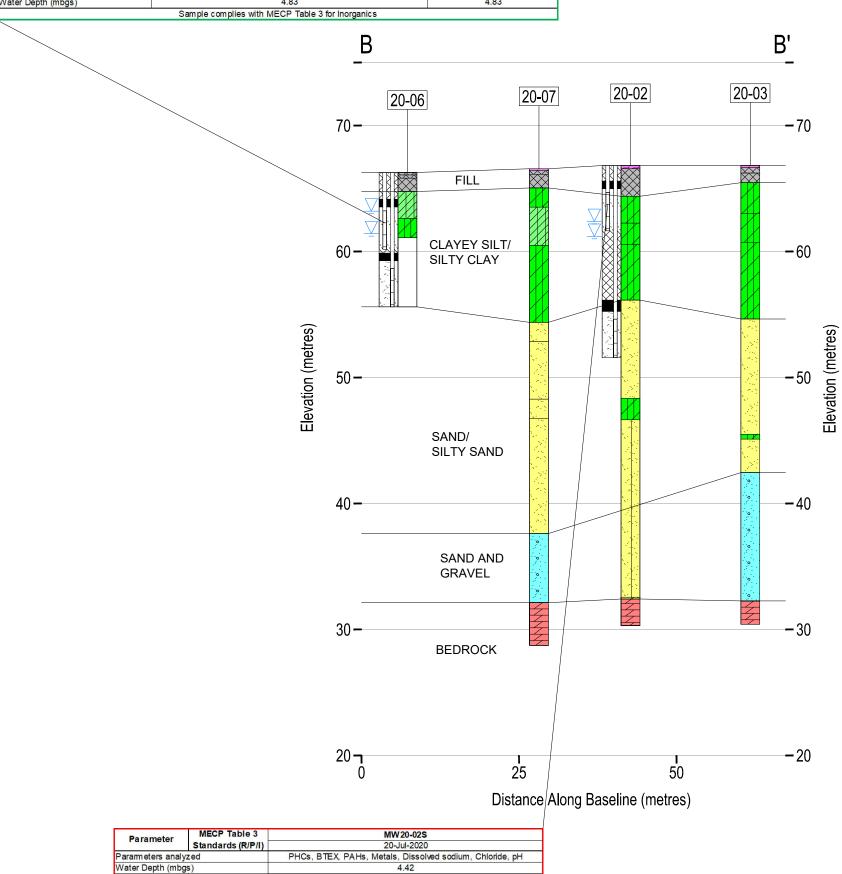
CONSULTANT YYYY-MM-DD 2020-10-21 DESIGNED PREPARED JEM **GOLDER** REVIEWED APPROVED FIGURE 31 19134931 0002

- 1. ALL LOCATIONS ARE APPROXIMATE
 2. FOR DETAILED STRATIGRAPHY SEE RECORD OF BOREHOLE LOGS
 3. FOR CROSS-SECTION LOCATION SEE FIGURE 2



IVANHOÉ CAMBRIDGE

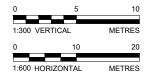
PHASE TWO ENVIRONMENTAL SITE ASSESSMENT PART OF 100 BAYSHORE DRIVE, OTTAWA, ONTARIO


CROSS-SECTION A-A' WITH SODIUM & CHLORIDE ANALYSIS AND EXCEEDANCES IN GROUNDWATER

CONSULTANT YYYY-MM-DD 2020-10-21 DESIGNED PREPARED **GOLDER** REVIEWED APPROVED 19134931 0002

Chloride

2300000 ug/L



4,980,000

LEGEND BOREHOLE/MONITORING — 20-01 IDENTIFIER GROUNDWATER LEVEL -STRATIGRAPHY WELL SCREEN TOPSOIL CLAYEY SILT SILTY CLAY SANDY SILT SAND SAND AND GRAVEL SILTY SAND GRAVEL

- 1. ALL LOCATIONS ARE APPROXIMATE
 2. FOR DETAILED STRATIGRAPHY SEE RECORD OF BOREHOLE LOGS
 3. FOR CROSS-SECTION LOCATION SEE FIGURE 2

DOLOSTONE

IVANHOÉ CAMBRIDGE

PHASE TWO ENVIRONMENTAL SITE ASSESSMENT PART OF 100 BAYSHORE DRIVE, OTTAWA, ONTARIO

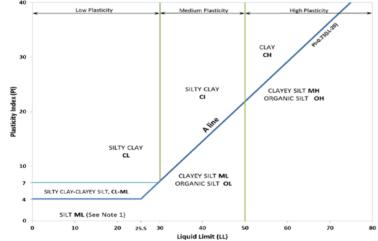
CROSS-SECTION B-B' WITH SODIUM & CHLORIDE ANALYSIS AND EXCEEDANCES IN GROUNDWATER

March 2021 19134931

APPENDIX A

Plan of Survey

March 2021 19134931


APPENDIX B

Record of Boreholes

METHOD OF SOIL CLASSIFICATION

The Golder Associates Ltd. Soil Classification System is based on the Unified Soil Classification System (USCS)

Organic or Inorganic	Soil Group	Туре	of Soil	Gradation or Plasticity	Cu	$=\frac{D_{60}}{D_{10}}$		$Cc = \frac{(D)}{D_{10}}$	$(xD_{60})^2$	Organic Content	USCS Group Symbol	Group Name					
		of is nm)	Gravels with ≤12%	Poorly Graded		<4		≤1 or ≥	≥3		GP	GRAVEL					
(ss)	5 mm)	GRAVELS 3% by mass referaction	fines (by mass)	Well Graded		≥4		1 to 3	3		GW	GRAVEL					
by me	SOILS an 0.07	GRAVELS (>50% by mass of coarse fraction is larger than 4.75 mm)	Gravels with >12%	Below A Line			n/a				GM	SILTY GRAVEL					
INORGANIC (Organic Content <30% by mass)	COARSE-GRAINED SOILS (>50% by mass is larger than 0.075 mm)	(> o	(by mass)	Above A Line			n/a			≤30%	GC	CLAYEY GRAVEL					
INOR	SE-GR ISS is la	of is mm)	Sands with ≤12%	Poorly Graded		<6		≤1 or ≩	≥3	-0070	SP	SAND					
rganic	COAR by ma	SANDS (≥50% by mass of coarse fraction is smaller than 4.75 mm)	fines (by mass)	Well Graded		≥6		1 to 3	3		SW	SAND					
0	(>50%	SAI 50% by oarse f	Sands with >12%	Below A Line			n/a				SM	SILTY SAND					
		sms	fines (by mass)	Above A Line			n/a				SC	CLAYEY SAND					
Organic	Soil			Laboratory			ield Indic	ators		Organic	USCS Group	Primary					
or Inorganic	Group	Type of S	of Soil	Tests	Dilatancy	Dry Strength	Shine Test	Thread Diameter	Toughness (of 3 mm thread)	Content	Symbol	Name					
	FINE-GRAINED SOILS (250% by mass is smaller than 0.075 mm)	L plot	5	Liquid Limit	Rapid	None	None	>6 mm	N/A (can't roll 3 mm thread)	<5%	ML	SILT					
(ss)			75 mm	75 mm	75 mm	75 mm	and Ll	and LI ine sity ow)	S I and L Line icity ilow)	<50	Slow	None to Low	Dull	3mm to 6 mm	None to low	<5%	ML
INORGANIC (Organic Content <30% by mass)	OILS ian 0.0	SILTS ic or Pl	SILTS Non-Pastic or Pl and LL plot	below A-Line on Plasticity Chart below)		Slow to very slow	Low to medium	Dull to slight	3mm to 6 mm	Low	5% to 30%	OL	ORGANIC SILT				
INORGANIC	FINE-GRAINED SOILS mass is smaller than 0.	VED S		n-Plast be ol	Liquid Limit	Slow to very slow	Low to medium	Slight	3mm to 6 mm	Low to medium	<5%	МН	CLAYEY SILT				
INORC	-GRAII	ON)	2	≥50	None	Medium to high	Dull to slight	1 mm to 3 mm	Medium to high	5% to 30%	ОН	ORGANIC SILT					
ganic (FINE by mas	plot	e on	Liquid Limit <30	None	Low to medium	Slight to shiny	~ 3 mm	Low to medium	0%	CL	SILTY CLAY					
O.	>20%	CLAYS	A-Linicity Chapter (Chapter)	Liquid Limit 30 to 50	None	Medium to high	Slight to shiny	1 mm to 3 mm	Medium	to 30%	CI	SILTY CLAY					
		CLAYS (Pl and LL plot above A-Line on Plasticity Chart below)		Liquid Limit ≥50	None	High	Shiny	<1 mm	High	(see Note 2)	СН	CLAY					
ALY ANIC LS	anic >30% ass)	Peat and mineral soil mixtures Predominantly peat, may contain some mineral soil, fibrous or amorphous peat					30% to 75%	SILTY PEAT, SANDY PEAT									
HIGHLY ORGANIC SOILS	Content >30% by mass)						_	Dual Sum		75% to 100%	PT tue symbols	PEAT					

Note 1 – Fine grained materials with PI and LL that plot in this area are named (ML) SILT with slight plasticity. Fine-grained materials which are non-plastic (i.e. a PL cannot be measured) are named SILT

Note 2 – For soils with <5% organic content, include the descriptor "trace organics" for soils with between 5% and 30% organic content include the prefix "organic" before the Primary name.

Dual Symbol — A dual symbol is two symbols separated by a hyphen, for example, GP-GM, SW-SC and CL-ML.

For non-cohesive soils, the dual symbols must be used when the soil has between 5% and 12% fines (i.e. to identify transitional material between "clean" and "dirty" sand or gravel.

For cohesive soils, the dual symbol must be used when the liquid limit and plasticity index values plot in the CL-ML area of the plasticity chart (see Plasticity Chart at left).

Borderline Symbol — A borderline symbol is two symbols separated by a slash, for example, CL/CI, GM/SM, CL/ML. A borderline symbol should be used to indicate that the soil has been identified as having properties that are on the transition between similar materials. In addition, a borderline symbol may be used to indicate a range of similar soil types within a stratum.

ABBREVIATIONS AND TERMS USED ON RECORDS OF BOREHOLES AND TEST PITS

PARTICLE SIZES OF CONSTITUENTS

Soil Constituent	Particle Size Description	Millimetres	Inches (US Std. Sieve Size)
BOULDERS	Not Applicable	>300	>12
COBBLES	Not Applicable	75 to 300	3 to 12
GRAVEL	Coarse Fine	19 to 75 4.75 to 19	0.75 to 3 (4) to 0.75
SAND	Coarse Medium Fine	2.00 to 4.75 0.425 to 2.00 0.075 to 0.425	(10) to (4) (40) to (10) (200) to (40)
SILT/CLAY	Classified by plasticity	<0.075	< (200)

MODIFIERS FOR SECONDARY AND MINOR CONSTITUENTS

Percentage Modifier by Mass	
>35	Use 'and' to combine major constituents (i.e., SAND and GRAVEL)
> 12 to 35	Primary soil name prefixed with "gravelly, sandy, SILTY, CLAYEY" as applicable
> 5 to 12	some
≤ 5	trace

PENETRATION RESISTANCE

Standard Penetration Resistance (SPT), N:

The number of blows by a 63.5 kg (140 lb) hammer dropped 760 mm (30 in.) required to drive a 50 mm (2 in.) split-spoon sampler for a distance of 300 mm (12 in.). Values reported are as recorded in the field and are uncorrected.

Cone Penetration Test (CPT)

An electronic cone penetrometer with a 60° conical tip and a project end area of 10 cm² pushed through ground at a penetration rate of 2 cm/s. Measurements of tip resistance (q_i), porewater pressure (u) and sleeve frictions are recorded electronically at 25 mm penetration intervals.

Dynamic Cone Penetration Resistance (DCPT); N_d : The number of blows by a 63.5 kg (140 lb) hammer dropped 760 mm (30 in.) to drive uncased a 50 mm (2 in.) diameter, 60° cone attached to "A" size drill rods for a distance of 300 mm (12 in.).

PH: Sampler advanced by hydraulic pressure PM: Sampler advanced by manual pressure WH: Sampler advanced by static weight of hammer WR: Sampler advanced by weight of sampler and rod

SAMPLES

AS	Auger sample
BS	Block sample
CS	Chunk sample
DD	Diamond Drilling
DO or DP	Seamless open ended, driven or pushed tube sampler – note size
DS	Denison type sample
GS	Grab Sample
MC	Modified California Samples
MS	Modified Shelby (for frozen soil)
RC	Rock core
SC	Soil core
SS	Split spoon sampler – note size
ST	Slotted tube
TO	Thin-walled, open – note size (Shelby tube)
TP	Thin-walled, piston – note size (Shelby tube)
WS	Wash sample

SOIL TESTS

Term

Very Soft

Soft

Firm

Stiff

Very Stiff

Hard

w	water content
PL, w _p	plastic limit
LL, w _L	liquid limit
С	consolidation (oedometer) test
CHEM	chemical analysis (refer to text)
CID	consolidated isotropically drained triaxial test ¹
CIU	consolidated isotropically undrained triaxial test with porewater pressure measurement ¹
D _R	relative density (specific gravity, Gs)
DS	direct shear test
GS	specific gravity
M	sieve analysis for particle size
MH	combined sieve and hydrometer (H) analysis
MPC	Modified Proctor compaction test
SPC	Standard Proctor compaction test
OC	organic content test
SO ₄	concentration of water-soluble sulphates
UC	unconfined compression test
UU	unconsolidated undrained triaxial test
V (FV)	field vane (LV-laboratory vane test)
γ	unit weight

Tests anisotropically consolidated prior to shear are shown as CAD, CAU.

NON-COHESIVE (COHESIONLESS) SOILS

Compactness²

Term	SPT 'N' (blows/0.3m) ¹
Very Loose	0 to 4
Loose	4 to 10
Compact	10 to 30
Dense	30 to 50
Very Dense	>50

- 1. SPT 'N' in accordance with ASTM D1586, uncorrected for the effects of overburden pressure.
- Definition of compactness terms are based on SPT 'N' ranges as provided in Terzaghi, Peck and Mesri (1996). Many factors affect the recorded SPT 'N' value, including hammer efficiency (which may be greater than 60% in automatic trip hammers), overburden pressure, groundwater conditions, and grainsize. As such, the recorded SPT 'N' value(s) should be considered only an approximate guide to the soil compactness. These factors need to be considered when evaluating the results, and the stated compactness terms should not be relied upon for design or construction.

Field Moisture Condition

Term	Description
Dry	Soil flows freely through fingers.
Moist	Soils are darker than in the dry condition and may feel cool.
Wet	As moist, but with free water forming on hands when handled.

COHESIVE SOILS Consistency

Undrained Shear SPT 'N'1,2 Strength (kPa) (blows/0.3m) <12 0 to 2 12 to 25 2 to 4 25 to 50 4 to 8 50 to 100 8 to 15

15 to 30

>30 SPT 'N' in accordance with ASTM D1586, uncorrected for overburden pressure effects; approximate only.

100 to 200

>200

SPT 'N' values should be considered ONLY an approximate guide to consistency; for sensitive clays (e.g., Champlain Sea clays), the N-value approximation for consistency terms does NOT apply. Rely on direct measurement of undrained shear strength or other manual observations.

Water Content

Term	Description
w < PL	Material is estimated to be drier than the Plastic Limit.
w ~ PL	Material is estimated to be close to the Plastic Limit.
w > PL	Material is estimated to be wetter than the Plastic Limit.

Unless otherwise stated, the symbols employed in the report are as follows:

I.	GENERAL	(a)	Index Properties (continued)
_	3.1416	w w _l or LL	water content liquid limit
π In x	natural logarithm of x	w _p or PL	plastic limit
	x or log x, logarithm of x to base 10	w _p or PI	plastic infit plasticity index = $(w_l - w_p)$
log ₁₀	acceleration due to gravity	NP	non-plastic
g t	time	W _S	shrinkage limit
·	ume	IL	liquidity index = $(w - w_p) / I_p$
		Ic	consistency index = $(w - w_p) / I_p$
		e _{max}	void ratio in loosest state
		e _{min}	void ratio in densest state
		ID	density index = $(e_{max} - e) / (e_{max} - e_{min})$
II.	STRESS AND STRAIN	.5	(formerly relative density)
γ	shear strain	(b)	Hydraulic Properties
$\stackrel{\prime}{\Delta}$	change in, e.g. in stress: $\Delta \sigma$	h ,	hydraulic head or potential
Ξ	linear strain	q	rate of flow
ε _V	volumetric strain	v	velocity of flow
η	coefficient of viscosity	i	hydraulic gradient
υ	Poisson's ratio	k	hydraulic conductivity
σ	total stress		(coefficient of permeability)
σ'	effective stress ($\sigma' = \sigma - u$)	j	seepage force per unit volume
σ'_{vo}	initial effective overburden stress	,	ocopago lolos pol alini volalilo
σ ₁ , σ ₂ , σ ₃	and a final atomic for a final for the second of the		
01, 02, 00	minor)	(c)	Consolidation (one-dimensional)
	,	Ċ,	compression index
σoct	mean stress or octahedral stress		(normally consolidated range)
	$= (\sigma_1 + \sigma_2 + \sigma_3)/3$	C_r	recompression index
τ	shear stress		(over-consolidated range)
u	porewater pressure	Cs	swelling index
E	modulus of deformation	C_{α}	secondary compression index
G	shear modulus of deformation	m_{v}	coefficient of volume change
K	bulk modulus of compressibility	C _V	coefficient of consolidation (vertical direction)
		Ch	coefficient of consolidation (horizontal direction)
		T_v	time factor (vertical direction)
III.	SOIL PROPERTIES	U	degree of consolidation
		σ′ _P	pre-consolidation stress
(a)	Index Properties	OCR	over-consolidation ratio = σ'_p / σ'_{vo}
ρ(γ)	bulk density (bulk unit weight)*	4.0	
ρ _α (γ _α)	dry density (dry unit weight)	(d)	Shear Strength
ρω(γω)	density (unit weight) of water	τρ, τι	peak and residual shear strength
$ ho_s(\gamma_s)$	density (unit weight) of solid particles	φ′ δ	effective angle of internal friction
γ'	unit weight of submerged soil	0	angle of interface friction
_	$(\gamma' = \gamma - \gamma_w)$	μ	coefficient of friction = $tan \delta$
D_R	relative density (specific gravity) of solid	C'	effective cohesion
	particles ($D_R = \rho_s / \rho_w$) (formerly G_s)	Cu, Su	undrained shear strength ($\phi = 0$ analysis)
е	void ratio	р	mean total stress $(\sigma_1 + \sigma_3)/2$
n	porosity	p′	mean effective stress $(\sigma'_1 + \sigma'_3)/2$
S	degree of saturation	q	$(\sigma_1 - \sigma_3)/2$ or $(\sigma'_1 - \sigma'_3)/2$
		qu St	compressive strength $(\sigma_1 - \sigma_3)$ sensitivity
* -		Nata 4	
	ity symbol is ρ . Unit weight symbol is γ	Notes: 1	$\tau = c' + \sigma' \tan \phi'$
	e $\gamma = \rho g$ (i.e. mass density multiplied by	2	shear strength = (compressive strength)/2
accei	eration due to gravity)		

RECORD OF BOREHOLE: 20-01

SHEET 1 OF 5

LOCATION: N 5021705.3 ;E 436503.7

BORING DATE: June 29, 2020

DATUM: Geodetic

Ц	무	SOIL PROFILE			SA	MPLE	_	DYNAMIC PERESISTANC	ENETRAT E, BLOW	FION S/0.3m			AULIC C k, cm/s	ONDUC	ΓΙVITY,	ᇦ	PIEZOMETER
TRES	MET		PLOT	ELEV.	ER		.30m	20	40		80	10			0 ⁻⁴ 10 ⁻³	FISTING FIRE	OR STANDPIPE
METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	DEPTH	NUMBER	TYPE	BLOWS/0.30m	SHEAR STR Cu, kPa	ENGTH	nat V. + rem V. ⊕	- Q- ● 9 U- O			TMETMC W	PERCENT WI	ADDITIONAL LAB. TESTING	INSTALLATION
ב	BO		STR	(m)	z		BLC	20	40	60	80				80 80		
0		GROUND SURFACE		66.31													
		TOPSOIL - (SM) SILTY SAND; grey brown, contains organics; non-cohesive, dry, loose FILL - (SP) gravelly SAND, fine to coarse, angular; grey, contains rootlets;		0.00 66.11 0.20 65.70 0.61	1	ss	17										Flush Mount Casing Bentonite and Cuttings
1		Non-cohesive, dry, compact FILL - (CL/ML) SILTY CLAY to CLAYEY SILT, trace sand; grey brown, slightly fissured; w <pl, stiff<="" td="" very=""><td>*</td><td>64.94</td><td>2</td><td>SS</td><td>25</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Bentonite and Cuttings</td></pl,>	*	64.94	2	SS	25										Bentonite and Cuttings
	Stem)	(ML/CL) CLAYEY SILT to SILTY CLAY; grey, fissured (WEATHERED CRUST); cohesive, w <pl, stiff="" stiff<="" td="" to="" very=""><td></td><td>1.37</td><td>3</td><td>SS</td><td>22</td><td></td><td></td><td></td><td></td><td></td><td>0</td><td></td><td></td><td></td><td>Bentonite Seal</td></pl,>		1.37	3	SS	22						0				Bentonite Seal
2	Power Auger 200 mm Diam. (Hollow Stem)																Silica Sand
3	200 mm	(CL/ML) SILTY CLAY to CLAYEY SILT;		63.26 3.05	4	SS	11							0			<u> </u>
		grey; cohesive, w>PL, soft to very soft			5	SS	4							0			32 mm Diam. PVC
4					6	ss	4							0			#10 Slot Screen
5					7	SS	2						0				
								Φ			+						WL in Screen at Elev. 63.596 m on August 10, 2020
6					8	SS	17							0			
7	Wash Boring HW Casing																
8	Wash	(ML) CLAYEY SILT to sandy SILT; grey; non-cohesive, w>PL, very loose		58.69 7.62	9	ss '	WH						0				
9																	
10		CONTINUED NEXT PAGE		†		\dagger	-	+-	-	+	\vdash				+-	-	
		I			I	╙	4	G						İ			1

RECORD OF BOREHOLE: 20-01

SHEET 2 OF 5

LOCATION: N 5021705.3 ;E 436503.7

BORING DATE: June 29, 2020

DATUM: Geodetic

ا با		SOIL PROFILE	1.	ı	SA	MPLI		DYNAMIC PENETRAT RESISTANCE, BLOW	ON \ 6/0.3m	HYDRAULIC CONDUCTIVITY, k, cm/s	ا ود	PIEZOMETER
TRES	3 MET		PLOT	ELEV.	ER		J.30m	20 40	60 80	1 1 1 1	10 ³ VALUE OF STATE	OR STANDPIPE
METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	DEPTH	NUMBER	TYPE	BLOWS/0.30m	SHEAR STRENGTH Cu, kPa	nat V. + Q - ● rem V. ⊕ U - ○	WATER CONTENT PERC	A ADDITIONAL LAB. TESTING	INSTALLATION
	ă			(m)			В	20 40	60 80	20 40 60	80	
10	\dashv	CONTINUED FROM PREVIOUS PAGE (ML) CLAYEY SILT to sandy SILT; grey;	Тии									
		(ML) CLAYEY SILT to sandy SILT; grey; non-cohesive, w>PL, very loose										
44		(ML/SM) sandy SILT to SILTY SAND; grey, contains clay seams; non-cohesive, wet, loose		55.65 10.66	10	ss	wн					
11		Tion consume, we, read										
12												
13												
		(SP) SAND, some gravel, fine to coarse, angular, trace non-plastic fines; grey		52.60 13.71		-						
14		angular, trace non-plastic fines; grey brown; non-cohesive, wet, loose to dense			11	ss	40			0		
	6											
15	Wash Boring HW Casing											
16												
17					12	ss	6			0		
18												
19												
20		- contains cobbles			13	ss	12					
-		CONTINUED NEXT PAGE										

RECORD OF BOREHOLE: 20-01

SHEET 3 OF 5

LOCATION: N 5021705.3 ;E 436503.7

BORING DATE: June 29, 2020

DATUM: Geodetic

į	НОВ	SOIL PROFILE		SA	MPLE		DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m	HYDRAULIC CONDUCTIVITY, k, cm/s	آدً	PIEZOMETER
METRES	3 METI		FLOT ELEV.	R	ш	D.30m	20 40 60 80	10 ⁻⁶ 10 ⁻⁵ 10 ⁻⁴ 10 ⁻³	TIONA ESTIN	OR STANDPIPE
ME	BORING METHOD	DESCRIPTION	STRATA PLOT (w) H1dad (x) TABLOT		TYPE	BLOWS/0.30m	SHEAR STRENGTH nat V. + Q - ● rem V. ⊕ U - ○	WATER CONTENT PERCENT Wp	ADDITIONAL LAB. TESTING	INSTALLATION
	ă	CONTINUED EDOM DDEVIOUS DAGE	P			В	20 40 60 80	20 40 60 80		
20		CONTINUED FROM PREVIOUS PAGE — (SP) SAND, some gravel, fine to coarse, angular, trace non-plastic fines; grey		40	ss	40				
		brown; non-cohesive, wet, loose to dense		13	35	12				
21										
				14	SS	25				
22					1					
23										
24										
					1					
	ing			15	SS	40				
25	Wash Boring HW Casing				1					
	× í									
26										
27										
		(SW/GW) SAND and GRAVEL, angular	38.88		1					
		(SW/GW) SAND and GRAVEL, angular to sub-rounded, trace non-plastic fines; grey, contains cobbles and boulders; non-cohesive, wet, dense to very dense		16	ss	100				
28		·			$\mid \mid$					
29										
30	_L	CONTANTED MEVERS		 	\dashv	-	+	 -	- -	
		CONTINUED NEXT PAGE		1	Ш	<u> </u>				
DE	ртн 9	CALE					GOLDER		LO	GGED: AK

DEPTH SCALE

1:50

RECORD OF BOREHOLE: 20-01

SHEET 4 OF 5

LOGGED: AK

CHECKED: AG

LOCATION: N 5021705.3 ;E 436503.7

BORING DATE: June 29, 2020

DATUM: Geodetic

SAMPLER HAMMER, 64kg; DROP, 760mm PENETRATION TEST HAMMER, 64kg; DROP, 760mm DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m $\begin{array}{c} \text{HYDRAULIC CONDUCTIVITY,} \\ \text{k, cm/s} \end{array}$ SOIL PROFILE SAMPLES BORING METHOD ADDITIONAL LAB. TESTING DEPTH SCALE METRES PIEZOMETER STRATA PLOT BLOWS/0.30m 80 10⁻⁶ 10⁻⁵ 10⁻⁴ STANDPIPE INSTALLATION NUMBER TYPE ELEV. SHEAR STRENGTH nat V. + Q - ● rem V. ⊕ U - ○ WATER CONTENT PERCENT DESCRIPTION DEPTH OW. Wp -(m) --- CONTINUED FROM PREVIOUS PAGE ---30 (SW/GW) SAND and GRAVEL, angular to sub-rounded, trace non-plastic fines; grey, contains cobbles and boulders; non-cohesive, wet, dense to very dense 17 SS 52 31 32 33 Borehole continued on RECORD OF DRILLHOLE 20-01 34 35 36 37 38 MIS-BHS 001 19134931.GPJ GAL-MIS.GDT 3-19-21 JEM 39 40 GOLDER

RECORD OF DRILLHOLE: 20-01 PROJECT: 19134931 SHEET 5 OF 5 LOCATION: N 5021705.3 ;E 436503.7 DRILLING DATE: June 29, 2020 DATUM: Geodetic DRILL RIG: CME-850 INCLINATION: -90° AZIMUTH: ---DRILLING CONTRACTOR: CCC Drilling BD - Bedding FO - Foliation CO - Contact OR - Orthogonal CL - Cleavage PL - Planar CU- Curved UN- Undulating ST - Stepped IR - Irregular PO- Polished K - Slickensided SM- Smooth Ro - Rough MB- Mechanical Br JN - Joint FLT - Fault SHR- Shear VN - Vein CJ - Conjugate DRILLING RECORD NOTE: For additional abbreviations refer to list of abbreviations & symbols. SYMBOLIC LOG DEPTH SCALE METRES ģ ELEV. DESCRIPTION RUN FRACT. INDEX PER 0.25 m DEPTH RECOVERY DISCONTINUITY DATA Diametra Point Loa Index (MPa) R.Q.D. % FLUSH TOTAL CORE % SOLID CORE % (m) TYPE AND SURFACE DESCRIPTION 10-4-0 GROUND SURFACE 32.79 Fresh, thinly to medium bedded, medium grey, fine grained, non-porous, very strong DOLOSTONE, with thin laminations to very thin beds of dark grey to black, non-porous, medium strong to 34 weak shale and limestone Rotary Drill HQ Core 35 End of Drillhole 36 37 38 39 40 41 42 43

GOLDER

JEM

MIS-RCK 004 19134931.GPJ GAL-MISS.GDT 3-19-21

RECORD OF BOREHOLE: 20-02

SHEET 1 OF 5

LOCATION: N 5021720.3 ;E 436528.9

BORING DATE: July 2, 2020

DATUM: Geodetic

.	ᅙ	SOIL PROFILE			SA	MPLE		DYNAMIC PENETR RESISTANCE, BLC	ATION WS/0.3m)		HYDRAULIC C k, cm/s	ONDUCTIVI	TY,	ةَــ	DIEZOMETED
METRES	BORING METHOD		LOT	E. E	H.	[T	.30m	20 40	60	80	`	10 ⁻⁶ 1	0 ⁻⁵ 10 ⁻⁴	10 ⁻³	ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE
ME	RING	DESCRIPTION	STRATA PLOT	ELEV. DEPTH	NUMBER	TYPE	BLOWS/0.30m	SHEAR STRENGTI Cu, kPa	nat V. rem V	+ Q- ⊕ U-	0		ONTENT PE	RCENT WI	ADDIT AB. TE	INSTALLATION
1	8		STR	(m)	z		BLC	20 40	60	80		· ·	10 60	80 80		
0	\dashv	GROUND SURFACE TOPSOIL - (SP) SAND, fine to medium:		66.82		\sqcup	\dashv									Flush Mount Casing
		TOPSOIL - (SP) SAND, fine to medium; brown, contains rootlets, organics; \non-cohesive, very dense		66.57 0.25	1	SS 6	61									Nash Wodak Gasing M
		FILL - (SM) gravelly SILTY SAND, fine to coarse; brown; non-cohesive, dry to														l
		moist, dense														l
1					2	ss s	37									
						.										×
																Bentonite Seal
	Stem)				3	ss s	35									ş
2	dollow															Silica Sand
	Power Auger 200 mm Diam. (Hollow Stem)	(CL/MIL) CLAVEV SILT to SILTY CLAV	\mathbb{R}	64.39 2.43		1						0				
	0 mm	(CL/ML) CLAYEY SILT to SILTY CLAY; grey with black mottling, highly fissured (WEATHERED CRUST); cohesive,		2.43	4	ss	9						 			
3	50	w <pl soft<="" stiff="" td="" to="" w~pl,=""><td></td><td></td><td></td><td> </td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></pl>														
				1												
				1	5	SS	4						0			
				1												32 mm Diam. PVC #10 Slot Screen 'B'
4					6	ss	2									
							-									
		(CL/ML) CLAYEY SILT to SILTY CLAY;		62.2 <u>5</u> 4.57												
		grey; cohesive, w>PL, very soft		1	7	ss v	٧н					0				
5]												
				1				Φ		+						
				1				-		' -96	ا ۵					∑
6				1						>90	J T					
		- sand and gravel seam from 6.1 to 6.25 \m depth		60.57 6.25								0				
		(ML/SM) CLAYEY SILT to SILTY SAND grey; non-cohesive, wet, loose		1	8	SS 3	33					6				
				1												
7	ing ng															
	Wash Boring HW Casing			}												
	ř															Bentonite and Cuttings
۰				1												
8				1												
				1												
9				1												
				1												
				1	9	ss v	٧н					0				
				1												
10			_TM1	1		-	-	+ -	-+-	-	-		 -	-+-	-	[®]
				<u> </u>				GOL								

MIS-BHS 001

1:50

RECORD OF BOREHOLE: 20-02

SHEET 2 OF 5

CHECKED: AG

LOCATION: N 5021720.3 ;E 436528.9

BORING DATE: July 2, 2020

DATUM: Geodetic

SAMPLER HAMMER, 64kg; DROP, 760mm PENETRATION TEST HAMMER, 64kg; DROP, 760mm HYDRAULIC CONDUCTIVITY, k, cm/s DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m SOIL PROFILE SAMPLES BORING METHOD ADDITIONAL LAB. TESTING DEPTH SCALE METRES PIEZOMETER STRATA PLOT 10⁻⁵ 10⁻⁴ STANDPIPE INSTALLATION NUMBER TYPE SHEAR STRENGTH Cu, kPa ELEV. nat V. + Q - ● rem V. ⊕ U - ○ WATER CONTENT PERCENT BLOWS/0 DESCRIPTION DEPTH -OW Wp -(m) --- CONTINUED FROM PREVIOUS PAGE --10 (ML/SM) CLAYEY SILT to SILTY SAND grey; non-cohesive, wet, loose Bentonite and Cuttings (SW) gravelly SAND, trace non-plastic fines; grey, contains cobbles; non-cohesive, dense to very dense Bentonite Seal Silica Sand 12 10 SS 35 0 13 32 mm Diam. PVC #10 Slot Screen 'A' 14 Wash Boring HW Casing 15 WL in Screen 'B' at Elev. 62.386 m on 53 SS 11 0 August 10, 2020 WL in Screen 'A' at Elev. 61.196 m on August 10, 2020 17 18 19134931.GPJ GAL-MIS.GDT 3-19-21 JEM (ML) CLAYEY SILT to SILT; grey, contains clay seams; non-cohesive, w>PL, stiff 12 SS 39 Ю 19 CONTINUED NEXT PAGE GOLDER DEPTH SCALE LOGGED: AK

RECORD OF BOREHOLE: 20-02

SHEET 3 OF 5

LOCATION: N 5021720.3 ;E 436528.9

BORING DATE: July 2, 2020

DATUM: Geodetic

SAMPLER HAMMER, 64kg; DROP, 760mm PENETRATION TEST HAMMER, 64kg; DROP, 760mm

»,	원	SOIL PROFILE		S	AMPL		DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m	`	HYDRAULIC CONDUCTIVITY, k, cm/s	, AL	PIEZOMETER
DEPTH SCALE METRES	BORING METHOD		STRATA PLOT	LEV.	щ	BLOWS/0.30m	20 40 60 80		1 1 1 1	ADDITIONAL LAB. TESTING	OR STANDPIPE
A M	RING	DESCRIPTION	ATA DE	EPTH \$	TYPE	/SMC	SHEAR STRENGTH nat V. + Q. Cu, kPa rem V. ⊕ U-	- 0	WATER CONTENT PERCEI	APDI ABB	INSTALLATION
	В			(m) Z		BLC	20 40 60 80			0	
- 20	<u> </u>	CONTINUED FROM PREVIOUS PAGE	1211/	46.65							
		(SW/GW) SAND and GRAVEL, fine to		46.65 20.17							
		(SW/GW) SAND and GRAVEL, fine to coarse; grey brown, contains cobbles and boulders; non-cohesive, wet,									
		compact to very dense									
- 21											
				13	ss	17					
- 22					_						
- 23											
20											
- 24											
. 24											
					-						
				14	ss	52					
	oring										
- 25	Wash Boring HW Casing										
- 26											
27			渊								
			渊								
			渊								
			渊	15	ss	15					
- 28			淵		-						
			渊								
			捌								
			捌								
- 29			捌								
30	┝┕	CONTINUED NEXT PAGE	<u> </u>		+-	-	+	-+	 		
		GONTHNOED INEXT PAGE									<u> </u>
DE	PTH S	SCALE			1		GOLDER)		L	OGGED: AK
1 ·	50				<	V		•		CH	IECKED: AG

RECORD OF BOREHOLE: 20-02

SHEET 4 OF 5

LOCATION: N 5021720.3 ;E 436528.9

BORING DATE: July 2, 2020

DATUM: Geodetic

SAMPLER HAMMER, 64kg; DROP, 760mm PENETRATION TEST HAMMER, 64kg; DROP, 760mm

Щ	Q Q	SOIL PROFILE			SA	MPL	_	DYNAMIC PEI RESISTANCE	NETRATI	ON 6/0.3m	>	HYDRAL k	JLIC Co	ONDUCT	ΓΙVITY,		9بـ	PIEZOMETER
DEPTH SCALE METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	BLOWS/0.30m	20 SHEAR STRE Cu, kPa	40 L NGTH	60 8 I nat V. + rem V. ⊕	B0 Q - ● O U - O		TER CO	ONTENT	PERCE	0 ⁻³ INT WI 80	ADDITIONAL LAB. TESTING	OR STANDPIPE INSTALLATION
- 30 · - 31		— CONTINUED FROM PREVIOUS PAGE — (SW/GW) SAND and GRAVEL, fine to coarse; grey brown, contains cobbles and boulders; non-cohesive, wet, compact to very dense			16													
32	Wash Boring HW Casing																	
34		Borehole continued on RECORD OF DRILLHOLE 20-02		32.42 34.4														
35																		
36 37																		
38																		
39																		
40																		
DEI		CALE						GC	L	DΕ	R							DGGED: AK ECKED: AG

RECORD OF DRILLHOLE: 20-02 PROJECT: 19134931 SHEET 5 OF 5 LOCATION: N 5021720.3 ;E 436528.9 DRILLING DATE: July 2, 2020 DATUM: Geodetic DRILL RIG: CME-850 INCLINATION: -90° AZIMUTH: ---DRILLING CONTRACTOR: CCC Drilling BD - Bedding FO - Foliation CO - Contact OR - Orthogonal CL - Cleavage PL - Planar CU- Curved UN- Undulating ST - Stepped IR - Irregular PO- Polished K - Slickensided SM- Smooth Ro - Rough MB- Mechanical Br JN - Joint FLT - Fault SHR- Shear VN - Vein CJ - Conjugate DRILLING RECORD NOTE: For additional abbreviations refer to list of abbreviations & symbols. SYMBOLIC LOG DEPTH SCALE METRES ģ ELEV. DESCRIPTION RUNI FRACT. INDEX PER 0.25 m HYDRAULIC CONDUCTIVIT K, cm/sec Diametra Point Loa Index (MPa) DEPTH RECOVERY DISCONTINUITY DATA R.Q.D. % FLUSH TOTAL CORE % SOLID CORE % (m) TYPE AND SURFACE DESCRIPTION GROUND SURFACE Fresh, thinly to medium bedded, medium grey, fine grained, non-porous, very strong DOLOSTONE, with thin laminations to very thin beds of dark grey to black, non-porous, medium strong to 35 weak shale and limestone Rotary Dril 옆 2 36 30.32 End of Drillhole 37 38 39 40 41 42

GOLDER

MIS-RCK 004 19134931.GPJ GAL-MISS.GDT 3-19-21 JEM

44

DEPTH SCALE

1:50

RECORD OF BOREHOLE: 20-03

SHEET 1 OF 5

LOCATION: N 5021720.4 ;E 436558.3

BORING DATE: July 7, 2020

DATUM: Geodetic

į	HOD	SOIL	PROFILE			SA	MPL	$\overline{}$	DYNAM RESIST	ANCE, I	BLOWS	/0.3m		IIIDIV	k, cm/s	ONDUC	,		48 84	PIEZOMETER
METRES	BORING METHOD	DESCRIPTION	ON	STRATA PLOT	ELEV.	NUMBER	TYPE	BLOWS/0.30m	20 SHEAR				80 - Q- ●	10 W.	Of 1 L ATER C			10 ⁻³ L ENT	ADDITIONAL LAB. TESTING	OR STANDPIPE
j ∑	BORIN	DESCRIPTION	JN	TRAT/	DEPTH (m)	NOM	TYI	SLOWS					Q- • 9 U- O	Wp	-	-OW		WI	ADC LAB.	INSTALLATION
0		GROUND SURFACE		0)	66.83				20) 4	U	60	80	2	0 4	0	60	80		
Ü		TOPSOIL - mixture of SA ORGANICS, fine to medi gravel; brown, contains n non-cohesive, dry, dense FILL - (SW) gravelly SAN coarse, contains rootlets	um, some potlets; D. fine to		0.00 0.17 66.22 0.61	1	SS	47												
1		\\non-cohesive, dry, dense \\Fill - (CL/ML) SILTY CL \\SILT; dark grey to grey w \\mottling; cohesive, moist	AY to CLAYEY ith black to dry, very stiff		65.46	2	SS	24												
2		(CL/ML) CLAYEY SILT to grey, highly fissured (WE CRUST); cohesive, w <pi stiff to firm</pi 	ATHERED		1.37	3	SS	16							0					
	Auger	(Trollow Steff)				4	SS	16							(>				
3	Power	ZOO TITITI LOIART.				5	ss	7								0				
4		(ML/CL) CLAYEY SILT to grey; cohesive, w>PL, so	SILTY CLAY; ft to very soft		3.81	6	SS	3							0					
5						7	SS	2							0					
6		-							Ф Ф		+	H	+							
Ü		(ML) CLAYEY SILT to sa fines; grey; non-cohesive	ndy SILT, some , wet, very loose		60.7 <u>3</u> 6.10	8	SS	WH							0					
7																				
8	Wash Boring	Busen MA																		
9																				
10						9	SS	WH							0					
10		CONTINUED NEX	T PAGE															<u> </u>		

RECORD OF BOREHOLE: 20-03

SHEET 2 OF 5

LOCATION: N 5021720.4 ;E 436558.3

BORING DATE: July 7, 2020

DATUM: Geodetic

SAMPLER HAMMER, 64kg; DROP, 760mm PENETRATION TEST HAMMER, 64kg; DROP, 760mm

ا لِا	모	SOIL PROFILE	٦.		0/-	MPLES	RESISTANCE, BL	OWS/0.3m	HYDRAULIC CONDUCTIVITY k, cm/s	+8	PIEZOMETER
DEPIH SCALE METRES	BORING METHOD		STRATA PLOT		띪	TYPE	20 40	60 80		TENT ADDITIONAL LAB. TESTING	OR STANDPIPE
# <u></u>	RING	DESCRIPTION	1TA F	ELEV. DEPTH	NUMBER	TYPE	SHEAR STRENG Cu, kPa	TH nat V. + Q - ● rem V. ⊕ U - ○	WATER CONTENT PERC	CENT G	INSTALLATION
วี	BOF		STR	(m)	ĭ	c	20 40	60 80	Wp I → W 20 40 60	-1 WI	
		CONTINUED FROM PREVIOUS PAGE		1		 	20 40		20 40 00	7	
10		(ML) CLAYEY SILT to sandy SILT, some	ТИИ								
		fines; grey; non-cohesive, wet, very loose									
				1							
				1							
. 11											
				1							
				1							
				1							
12											
		(SP) SAND, some gravel, fine to coarse:	414	54.64 12.19							
		(SP) SAND, some gravel, fine to coarse; grey, contains cobbles and boulders; non-cohesive, wet, compact	TIMI]	10	SS 4	_				
		non-conceive, wer, compact]	.5						
			35.0	1							
13				1							
				\$							
				\$							
14											
			7.	1							
				1							
			3,00	1							
	ng Pa			1							
15	Wash Boring HW Casing			(
	Was			4							
40]	44						
16				1	11	SS 2	9				
			3,00	1							
				1							
				:							
17				4							
			7.								
]							
			1	1							
18				1							
				\$	12	SS 3	6				
				\$							
				4							
19											
]							
]							
			1	1							
				1							
20			<u> </u>	†		-	- + -	-+	 	-+	
		CONTINUED NEATT AGE									
DΕ	ртн 9	CALE					GO	LDER		1	OGGED: AK

RECORD OF BOREHOLE: 20-03

SHEET 3 OF 5

LOCATION: N 5021720.4 ;E 436558.3

BORING DATE: July 7, 2020

DATUM: Geodetic

SAMPLER HAMMER, 64kg; DROP, 760mm

PENETRATION TEST HAMMER, 64kg; DROP, 760mm

<u> </u>	무	SOIL PROFILE	_		SA	MPLI		DYNAMIC PENETRATION \ RESISTANCE, BLOWS/0.3m	HYDRAULIC CONDUCTIVITY, k, cm/s	날의	PIEZOMETER
METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH	NUMBER	TYPE	BLOWS/0.30m	20 40 60 80 SHEAR STRENGTH nat V. + Q - ● Cu, kPa rem V. ⊕ U - ○	10 ⁶ 10 ⁵ 10 ⁴ 10 ³ WATER CONTENT PERCENT	ADDITIONAL LAB. TESTING	OR STANDPIPE INSTALLATION
7	BOR		STRA	(m)	N	-	BLOV	20 40 60 80	Wp	₹≦	
_		CONTINUED FROM PREVIOUS PAGE	1				Ħ	20 40 00 00	20 40 00 00		
20		(SP) SAND, some gravel, fine to coarse; grey, contains cobbles and boulders;									
		non-cohesive, wet, compact									
21											
				45.49							
		(ML) CLAYEY SILT to SILT; grey; non-cohesive, wet, dense	ИИ	21.34 45.10		ss	69				
22		(SW) SAND, fine to medium, some angular gravel; grey brown;		21.73							
22		non-cohesive, wet, dense to very dense									
23											
				•							
24											
		(SW/GW) SAND and GRAVEL, some non-plastic fines; grey, contains cobbles	7.3	42.45 24.38		$\left\{ \ \right $					
	D	and houlders: non-cohesive, dense to	9.9 9.9 9.9		14	ss	26				
25	Wash Boring HW Casing	very dense	2.2			$\mid \cdot \mid$					
	, Wa										
)))								
26											
27											
			22			$\mid \mid$					
					15	ss	53				
28			2.2 2.2			$\mid \cdot \mid$					
29											
20											
30	_L	CONTINUED VEST DAGE				\dashv	-	+	 	- -	
		CONTINUED NEXT PAGE									
DE	PTH S	SCALE					八	GOLDER		LOG	GED: AK

RECORD OF BOREHOLE: 20-03

SHEET 4 OF 5

LOCATION: N 5021720.4 ;E 436558.3

BORING DATE: July 7, 2020

DATUM: Geodetic

SAMPLER HAMMER, 64kg; DROP, 760mm PENETRATION TEST HAMMER, 64kg; DROP, 760mm

Щ.		9	SOIL PROFILE			SA	MPL		DYNAMIC PEN RESISTANCE,	ETRATIO BLOWS/	ON 0.3m	7	HYDRA	AULIC C k, cm/s	ONDUC	TIVITY,		J.S.	PIEZOMETER
DEPTH SCALE METRES		BORING METHOD		STRATA PLOT	ELEV.	ËR	ш	BLOWS/0.30m		1	l	90 ,	10		1	1	10 ⁻³	ADDITIONAL LAB. TESTING	OR STANDPIPE
ME			DESCRIPTION	RATA	DEPTH	NUMBER	TYPE)/S//(SHEAR STREN Cu, kPa	IGTH r	at V. + em V. ⊕	Q - • U - O			ONTENTO OWN			ADDI AB. 1	INSTALLATION
	1	S		STF	(m)	_		BLC	20 4	0 6	0 8	0	2				80		
- 30			CONTINUED FROM PREVIOUS PAGE																
			(SW/GW) SAND and GRAVEL, some non-plastic fines; grey, contains cobbles and boulders; non-cohesive, dense to																
			and boulders; non-cohesive, dense to very dense	2.2															
			10., 40.100				Ī												
				7.7 7.7 7.7		16	ss	76											
- 31				3. 3	-														
				7.7															
				7.7															
				2.2															
32	6	, _																	
	Borir	asing																	
	Vash	HW Casing		5.5															
	_			, ,															
]														
33																	1		
				2.2]														
					·														
				7.7															
				, ,		17	ss	60											
34				<i>7</i>															
				, ,															
				> > > > > >	32.27														
			Borehole continued on RECORD OF DRILLHOLE 20-03		34.56	ĺ													
			DIVILLITOLE 20-03																
35																			,
36																			
30																			
37																			
-																	1		
																	1		
38																			
																	1		
																	1		
39																			
																	1		
40																	1		
רי	ים	ъ e.	CALE				<					_							OCCED: AK
			CALE				Į	L.	GO	L	JΕ	K							OGGED: AK
1:	50						-	7	-									CHE	ECKED: AG

MIS-BHS 001 19134931.GPJ GAL-MIS.GDT 3-19-21 JEM

RECORD OF DRILLHOLE: 20-03 PROJECT: 19134931 SHEET 5 OF 5 LOCATION: N 5021720.4 ;E 436558.3 DRILLING DATE: July 7, 2020 DATUM: Geodetic DRILL RIG: CME-850 INCLINATION: -90° AZIMUTH: ---DRILLING CONTRACTOR: CCC Drilling BD - Bedding FO - Foliation CO - Contact OR - Orthogonal CL - Cleavage PL - Planar CU- Curved UN- Undulating ST - Stepped IR - Irregular PO- Polished K - Slickensided SM- Smooth Ro - Rough MB- Mechanical Br JN - Joint FLT - Fault SHR- Shear VN - Vein CJ - Conjugate DRILLING RECORD NOTE: For additional abbreviations refer to list of abbreviations & symbols. SYMBOLIC LOG DEPTH SCALE METRES ģ ELEV. DESCRIPTION RUN FRACT. INDEX PER 0.25 m DEPTH DISCONTINUITY DATA Diametra Point Loa Index (MPa) R.Q.D. % TOTAL CORE % FLUSH SOLID CORE % (m) TYPE AND SURFACE DESCRIPTION 10-4-0 GROUND SURFACE Fresh, thinly to medium bedded, medium grey, fine grained, non-porous, very strong DOLOSTONE, with thin laminations to very thin beds of dark grey to black, non-porous, medium strong to 35 weak shale and limestone Rotary Drill HQ Core 2 36 End of Drillhole 37 38 39 40 41 42 43

GOLDER

1:50

MIS-RCK 004 19134931.GPJ GAL-MISS.GDT 3-19-21

1:50

RECORD OF BOREHOLE: 20-04

SHEET 1 OF 5

CHECKED: AG

LOCATION: N 5021758.2 ;E 436573.1

BORING DATE: July 9, 2020

DATUM: Geodetic

PENETRATION TEST HAMMER, 64kg; DROP, 760mm SAMPLER HAMMER, 64kg; DROP, 760mm DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m HYDRAULIC CONDUCTIVITY, k, cm/s SOIL PROFILE SAMPLES BORING METHOD ADDITIONAL LAB. TESTING DEPTH SCALE METRES PIEZOMETER STRATA PLOT 10⁻⁵ 10⁻⁴ STANDPIPE INSTALLATION NUMBER SHEAR STRENGTH Cu, kPa ELEV. TYPE nat V. + Q - ● rem V. ⊕ U - ○ WATER CONTENT PERCENT BLOWS/0 DESCRIPTION DEPTH -OW Wp -(m) GROUND SURFACE 66.93 FILL - (SM) gravelly SAND, fine to Flush Mount Casing coarse, angular gravel; brown, contains rootlets and organics; non-cohesive, dry, SS 26 compact SS 18 FILL - (CL/CI) SILTY CLAY, trace sand; grey; cohesive, w<PL, very stiff SS 20 2 (CL/ML) CLAYEY SILT to SILTY CLAY, trace sand; grey, fissured (WEATHERED CRUST); cohesive, w<PL to w~PL, stiff SS SS 5 0 SS 3 0 62.36 4.57 (CL/ML) SILTY CLAY to CLAYEY SILT, trace fines; grey; cohesive, w>PL, soft SS 2 0 Bentonite Seal Wash Boring HW Casing (ML) CLAYEY SILT to SILT; grey to grey brown, contains clay seams; ss wh non-cohesive, wet, very loose to 0 compact 19134931.GPJ GAL-MIS.GDT 3-19-21 JEM CONTINUED NEXT PAGE GOLDER DEPTH SCALE LOGGED: AK

RECORD OF BOREHOLE: 20-04

SHEET 2 OF 5

LOCATION: N 5021758.2 ;E 436573.1

BORING DATE: July 9, 2020

DATUM: Geodetic

SAMPLER HAMMER, 64kg; DROP, 760mm PENETRATION TEST HAMMER, 64kg; DROP, 760mm

ا <u>ب</u> ا	ДОН	SOIL PROFILE	1.	_	Si	AMPLI		DYNAMIC PENETRA RESISTANCE, BLOV	TION VS/0.3m		HYDRAULI(k, cn	CONDU v/s	CTIVITY,		Å₽ VG	PIEZOMETER
METRES	BORING METHOD		STRATA PLOT	ELEV	Ë	س ا	BLOWS/0.30m	20 40	60 not)/	80	10 ⁻⁶			10 ⁻³	ADDITIONAL LAB. TESTING	OR STANDPIPE
ME:	RING	DESCRIPTION	\$ATA	DEPT	_ =	TYPE	NSWC	SHEAR STRENGTH Cu, kPa	nat V. rem V. 6	+ Q- ● Ð U- O	WATEF Wp I —	CONTEN	II PERCI	ENT I WI	ADDI AB. T	INSTALLATION
,	BC		STF	(m)		Ш	BLC	20 40	60	80	20	40		80		
10	_	CONTINUED FROM PREVIOUS PAGE (ML) CLAYEY SILT to SILT; grey to grey	III.			H	\sqcup			1				+		
		brown, contains clay seams; non-cohesive, wet, very loose to														
		compact														
		(ML/SM) sandy SILT to SILTY SAND;		56.2	7	-										
11		grey; non-cohesive, moist, dense		;	9	ss	18				0					
				;												
				;												
12				;												
																Bentonite Seal
13																
				:												
				;												
						4										
14				;	10	SS	33				0					
				;	10	00	33									
				;		1										
				;												
15	Wash Boring HW Casing			:												Silica Sand
	Wash HW 0			;												
				;												
				:												
16																
				50.1	7											32 mm Diam. PVC
17		(SP) SAND, fine to medium, some gravel; grey brown; non-cohesive, wet,		16.7	11	SS	33									#10 Slot Screen
		dense			''	33	55									
						1										(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)
18																
																WL in Screen at
																Elev. 61.279 m on August 10, 2020
19																
20	_L	- becoming well graded	_\Z.	1	12	ss	11		-4	-	├	-4	-	+		
		CONTINUED NEXT PAGE														
DEF	PTH S	SCALE				<		COL	DE	: D					L	OGGED: AK
1:5						<	7	GOL	ם	. K						ECKED: AG

1:50

RECORD OF BOREHOLE: 20-04

SHEET 3 OF 5

CHECKED: AG

LOCATION: N 5021758.2 ;E 436573.1

BORING DATE: July 9, 2020

DATUM: Geodetic

SAMPLER HAMMER, 64kg; DROP, 760mm PENETRATION TEST HAMMER, 64kg; DROP, 760mm DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m HYDRAULIC CONDUCTIVITY, k, cm/s SOIL PROFILE SAMPLES BORING METHOD ADDITIONAL LAB. TESTING DEPTH SCALE METRES PIEZOMETER STRATA PLOT BLOWS/0.30m 10⁻⁶ 10⁻⁵ 10⁻⁴ NUMBER STANDPIPE INSTALLATION TYPE ELEV. SHEAR STRENGTH nat V. + Q - ● rem V. ⊕ U - ○ WATER CONTENT PERCENT DESCRIPTION DEPTH OW Wp -(m) --- CONTINUED FROM PREVIOUS PAGE --20 (SP) SAND, fine to medium, some 0 gravel; grey brown; non-cohesive, wet, dense SS 11 21 22 (SW/GW) SAND and GRAVEL, grey, 23 contains cobbles and boulders; 13 SS 39 non-cohesive, wet, dense to very dense 24 Wash Boring HW Casing 25 26 SS 22 27 28 MIS-BHS 001 19134931.GPJ GAL-MIS.GDT 3-19-21 JEM 29 15 ss 12 CONTINUED NEXT PAGE GOLDER DEPTH SCALE LOGGED: AK

1:50

RECORD OF BOREHOLE: 20-04

SHEET 4 OF 5

CHECKED: AG

LOCATION: N 5021758.2 ;E 436573.1

BORING DATE: July 9, 2020

DATUM: Geodetic

SAMPLER HAMMER, 64kg; DROP, 760mm PENETRATION TEST HAMMER, 64kg; DROP, 760mm DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m HYDRAULIC CONDUCTIVITY, k, cm/s SOIL PROFILE SAMPLES BORING METHOD ADDITIONAL LAB. TESTING DEPTH SCALE METRES PIEZOMETER 10-4 STRATA PLOT BLOWS/0.30m 10⁻⁶ 10⁻⁵ NUMBER STANDPIPE INSTALLATION TYPE ELEV. SHEAR STRENGTH nat V. + Q - ● rem V. ⊕ U - ○ WATER CONTENT PERCENT DESCRIPTION DEPTH -OW Wp -(m) 60 --- CONTINUED FROM PREVIOUS PAGE ---30 (SW/GW) SAND and GRAVEL; grey, contains cobbles and boulders; non-cohesive, wet, dense to very dense 31 32 Wash Boring HW Casing 16 SS 17 33 34 Borehole continued on RECORD OF DRILLHOLE 20-04 35 36 37 38 MIS-BHS 001 19134931.GPJ GAL-MIS.GDT 3-19-21 JEM 39 40 GOLDER DEPTH SCALE LOGGED: AK

RECORD OF DRILLHOLE: 20-04 PROJECT: 19134931 SHEET 5 OF 5 LOCATION: N 5021758.2 ;E 436573.1 DRILLING DATE: July 9, 2020 DATUM: Geodetic DRILL RIG: CME-850 INCLINATION: -90° AZIMUTH: ---DRILLING CONTRACTOR: CCC Drilling BD - Bedding FO - Foliation CO - Contact OR - Orthogonal CL - Cleavage PL - Planar CU- Curved UN - Undulating ST - Stepped IR - Irregular PO- Polished K - Slickensided SM- Smooth Ro - Rough MB- Mechanical Br JN - Joint FLT - Fault SHR- Shear VN - Vein CJ - Conjugate DRILLING RECORD NOTE: For additional abbreviations refer to list of abbreviations & symbols. SYMBOLIC LOG DEPTH SCALE METRES RUN No. ELEV. DESCRIPTION FRACT. INDEX PER 0.25 m HYDRAULIC CONDUCTIVIT K, cm/sec DEPTH RECOVERY DISCONTINUITY DATA Diametra Point Loa Index (MPa) R.Q.D. % FLUSH TOTAL CORE % SOLID CORE % (m) TYPE AND SURFACE DESCRIPTION GROUND SURFACE 32.00 35 Fresh, thinly to medium bedded, medium grey, fine grained, non-porous, very strong DOLOSTONE, with thin laminations to very thin beds of dark grey to black, non-porous, medium strong to weak shale and limestone 36 Rotary Drill HQ Core 37 38 End of Drillhole 39 40 41 42 43

DEPTH SCALE

MIS-RCK 004 19134931.GPJ GAL-MISS.GDT 3-19-21

DEPTH SCALE

1:50

RECORD OF BOREHOLE: 20-05

SHEET 1 OF 5

LOGGED: JS

CHECKED: AG

LOCATION: N 5021749.5 ;E 436546.8

BORING DATE: June 10, 2020

DATUM: Geodetic

SAMPLER HAMMER, 64kg; DROP, 760mm PENETRATION TEST HAMMER, 64kg; DROP, 760mm DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m HYDRAULIC CONDUCTIVITY, k, cm/s SOIL PROFILE SAMPLES BORING METHOD ADDITIONAL LAB. TESTING DEPTH SCALE METRES PIEZOMETER STRATA PLOT 10⁻⁵ 10⁻⁴ NUMBER STANDPIPE INSTALLATION ELEV. TYPE SHEAR STRENGTH nat V. + Q - ● rem V. ⊕ U - ○ WATER CONTENT PERCENT BLOWS/0 DESCRIPTION DEPTH -OW Wp -(m) GROUND SURFACE 67.67 TOPSOIL - (SM) SILTY SAND, some 1 SS 48 gravel; brown, contains organics; \non-cohesive, dry, loose 0.15 FILL - (SW) gravelly SAND, non-plastic fines; brown to grey; non-cohesive, moist, compact SS 10 (ML/CL) CLAYEY SILT to SILTY CLAY, some gravel and sand; grey with mottling and fissuring (WEATHERED CRUST); cohesive, w<PL, stiff to very stiff SS 13 SS SS 13 0 SS 6 0 63.1<u>0</u> 4.57 (ML/CL) CLAYEY SILT to SILTY CLAY; brown grey, contains layers of sandy silt; cohesive, w>PL, firm to soft SS 2 (ML/CL) CLAYEY SILT to SILTY CLAY; grey, contains sandy silt layers; cohesive, w>PL, stiff or loose ss wh lo 61.57 (ML) CLAYEY SILT to sandy SILT; grey; non-cohesive, wet, loose SS 3 Ф Wash Boring HW Casing 10 SS 0 19134931.GPJ GAL-MIS.GDT 3-19-21 JEM - layers of stiff silty clay SS WH 0 9 12 SS 2 0 13 SS CONTINUED NEXT PAGE GOLDER

AIS-BHS 001

1:50

RECORD OF BOREHOLE: 20-05

SHEET 2 OF 5

CHECKED: AG

PENETRATION TEST HAMMER, 64kg; DROP, 760mm

LOCATION: N 5021749.5 ;E 436546.8

SAMPLER HAMMER, 64kg; DROP, 760mm

BORING DATE: June 10, 2020

DATUM: Geodetic

DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m HYDRAULIC CONDUCTIVITY, SOIL PROFILE SAMPLES BORING METHOD ADDITIONAL LAB. TESTING DEPTH SCALE METRES PIEZOMETER STRATA PLOT 10⁻⁶ 10⁻⁵ 10⁻⁴ NUMBER STANDPIPE INSTALLATION ELEV. TYPE SHEAR STRENGTH nat V. + Q - ● rem V. ⊕ U - O WATER CONTENT PERCENT BLOWS/0 DESCRIPTION DEPTH -OW Wp -(m) --- CONTINUED FROM PREVIOUS PAGE ---10 (ML) CLAYEY SILT to sandy SILT; grey; non-cohesive, wet, loose 0 13 SS 3 (ML) sandy SILT, some plastic fines; grey; non-cohesive, wet, loose ss wh 14 0 layers of clayey silt; grey; cohesive, w>PL, firm to stiff present (SW) SAND, fine to coarse, some gravel SS 22 15 and non-plastic fines; grey; non-cohesive, moist, dense 12 SS 34 0 54.72 12.95 13 (SM/ML) SILTY SAND to CLAYEY SILT; grey; non-cohesive, moist, dense SS 37 17 53.80 13.87 (GW) sandy GRAVEL, fine to coarse, 18 SS 28 trace non-plastic fines; grey; non-cohesive, wet, compact SS 27 Wash Boring HW Casing 19 15 ss 20 35 0 - cobbles and boulders based on resistance (SW) gravelly SAND, fine to coarse, some non-plastic fines; grey; non-cohesive, wet, compact to dense 21 SS 25 17 SS 22 29 - lense of sandy silt 23 SS 36 18 19134931.GPJ GAL-MIS.GDT 3-19-21 JEM SS 29 19 SS 29 25 47.93 19.74 (SP) SAND, fine, some non-plastic fines; 26 SS 41 grey; non-cohesive, wet, dense CONTINUED NEXT PAGE GOLDER DEPTH SCALE LOGGED: JS

RECORD OF BOREHOLE: 20-05

SHEET 3 OF 5

LOCATION: N 5021749.5 ;E 436546.8

BORING DATE: June 10, 2020

DATUM: Geodetic

4	무	SOIL PROFILE SAMPLES			ES	DYNAMIC PENET RESISTANCE, BL	HYDRAULIC CONDUCTIVITY, k, cm/s					l o	PIEZOMETER					
RES	BORING METHOD	DESCRIPTION	LOT		H.		.30m	20 40	80	10 ⁻⁶	10 ⁻⁶ 10 ⁻⁵ 10 ⁻⁴ 10				TONA	OR STANDBIRE		
METRES	SING			ELEV. DEPTH	NUMBER	TYPE	BLOWS/0.30m	SHEAR STRENGTH nat V. + Q - ● Cu, kPa rem V. ⊕ U - ○							NT PERCENT		ADDITIONAL LAB. TESTING	STANDPIPE INSTALLATION
	BOR		STR/	(m)	ž		BLO	20 40	60		80	Wp I 20		0 0	60	-I WI 80	₹5	
20		CONTINUED FROM PREVIOUS PAGE																
20		(SP) SAND, fine, some non-plastic fines; grey; non-cohesive, wet, dense			26	SS	41											
		- lense of clayey silt																
					27	ss	38											
21																		
		(CD) CAND fine to seems some group!		46.3 <u>3</u> 21.3 <u>4</u>														
		(SP) SAND, fine to coarse, some gravel and non-plastic fines; grey; non-cohesive, wet, dense to very dense		21.04	28	SS	11											
		non-conesive, wet, dense to very dense			20	33	41											
22																		
					29	SS	45											
23																		
					30	SS	67											
24																		
		(SW/GW) SAND and GRAVEL, sub-angular to sub-rounded to compact,	7.7	43.29 24.38														
		contains cobbles and houlders, trace to			31	ss	48											
25	Wash Boring HW Casing	some fines; grey; non-cohesive, wet, very dense																
20	Wash																	
			2.2															
			2.8															
00			22															
26					22	SS	16											
			2.2		32	33	40											
27																		
				40.24														
		(SW/GW) SAND and GRAVEL, some fines; grey, contains cobbles and		27.43														
		fines; grey, contains cobbles and boulders; non-cohesive, wet, very dense			33	SS	58											
28																		
29																		
					34	ss	71											
30	_L					$oxed{oxed}$	_	4			L	-			-	4	_ _	
		CONTINUED NEXT PAGE					_											
							4	GOI										

1:50

RECORD OF BOREHOLE: 20-05

SHEET 4 OF 5

CHECKED: AG

LOCATION: N 5021749.5 ;E 436546.8

BORING DATE: June 10, 2020

DATUM: Geodetic

SAMPLER HAMMER, 64kg; DROP, 760mm PENETRATION TEST HAMMER, 64kg; DROP, 760mm DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m $\begin{array}{c} \text{HYDRAULIC CONDUCTIVITY,} \\ \text{k, cm/s} \end{array}$ SAMPLES SOIL PROFILE BORING METHOD ADDITIONAL LAB. TESTING DEPTH SCALE METRES PIEZOMETER STRATA PLOT BLOWS/0.30m 10⁻⁶ 10⁻⁵ 10⁻⁴ STANDPIPE INSTALLATION NUMBER TYPE ELEV. SHEAR STRENGTH nat V. + Q - ● rem V. ⊕ U - ○ WATER CONTENT PERCENT DESCRIPTION DEPTH OW. Wp -(m) --- CONTINUED FROM PREVIOUS PAGE ---30 (SW/GW) SAND and GRAVEL, some fines; grey, contains cobbles and boulders; non-cohesive, wet, very dense SS 93 35 31 32 36 SS 64 Wash Boring HW Casing 33 (SW/GW) SAND and GRAVEL, sub-rounded to sub-angular; grey, contains cobbles and boulders; 37 SS 74 non-cohesive, wet, very dense 34 35 Borehole continued on RECORD OF DRILLHOLE 20-05 37 38 MIS-BHS 001 19134931.GPJ GAL-MIS.GDT 3-19-21 JEM 39 40 GOLDER DEPTH SCALE LOGGED: JS

RECORD OF DRILLHOLE: 20-05 PROJECT: 19134931 SHEET 5 OF 5 LOCATION: N 5021749.5 ;E 436546.8 DRILLING DATE: June 10, 2020 DATUM: Geodetic DRILL RIG: CME-850 INCLINATION: -90° AZIMUTH: ---DRILLING CONTRACTOR: CCC Drilling BD - Bedding FO - Foliation CO - Contact OR - Orthogonal CL - Cleavage PL - Planar CU- Curved UN- Undulating ST - Stepped IR - Irregular PO- Polished K - Slickensided SM- Smooth Ro - Rough MB- Mechanical Br JN - Joint FLT - Fault SHR- Shear VN - Vein CJ - Conjugate DRILLING RECORD NOTE: For additional abbreviations refer to list of abbreviations & symbols. SYMBOLIC LOG DEPTH SCALE METRES ģ ELEV. DESCRIPTION RUNI FRACT. INDEX PER 0.25 m Diametra Point Loa Index (MPa) DEPTH RECOVERY DISCONTINUITY DATA R.Q.D. % FLUSH (m) TOTAL CORE % SOLID CORE % TYPE AND SURFACE DESCRIPTION 10-4-0 GROUND SURFACE 31.73 Fresh, thinly to medium bedded, medium grey, fine grained, non-porous, very strong DOLOSTONE, with thin laminations to very thin beds of dark grey to black, non-porous, medium strong to weak shale and limestone 37 38 - mud seam from 38.37 to 38.40 m depth 39 - slightly porous, cavities Rotary Drill HQ Core 40 41 5 42 - slightly porous 43 44 End of Borehole

DEPTH SCALE

19134931.GPJ GAL-MISS.GDT 3-19-21

1:50

RECORD OF BOREHOLE: 20-06

SHEET 1 OF 2

LOCATION: N 5021742.9 ;E 436500.8

BORING DATE: June 22, 2020

DATUM: Geodetic

SAMPLER HAMMER, 64kg; DROP, 760mm

PENETRATION TEST HAMMER, 64kg; DROP, 760mm

ا پ	보	SOIL PROFILE	_		SA	AMPL	-	DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m	HYDRAULIC CONDUCTIVITY, k, cm/s	그의	PIEZOMETER	
DEP IN SCALE METRES	BORING METHOD		STRATA PLOT	ELEV.	ĭER	ň	BLOWS/0.30m	20 40 60 80 SHEAR STRENGTH nat V. + Q - ●	10 ⁻⁶ 10 ⁻⁵ 10 ⁻⁴ 10 ⁻³ WATER CONTENT PERCENT	ADDITIONAL LAB. TESTING	OR STANDPIPE	
	ORIN	DESCRIPTION	RATA	DEPTH	NUMBER	TYPE	OWS,	Cu, kPa rem V. \oplus U - O	Wp W W	ADD LAB.	INSTALLATION	
	ā	GROUND SURFACE	ST	(m)			Я	20 40 60 80	20 40 60 80			
0		FILL - (SP) SAND, coarse, some silt and	***	66.28 0.00 66.08		+					Flush Mount Casing	
		gravel; grey (STONE DUST); non-cohesive, dry, loose	/‱	0.20	1	SS	41					
		FILL - (SW) gravelly SAND; brown, mottled; non-cohesive, moist, compact	√	0.46	_						×	
		FILL - (CL/ML) SILTY CLAY to CLAYEY SILT, some to trace fine sand; brown				1					XXX	
1		grey, mottled and fissured; cohesive, w <pl, stiff="" stiff<="" td="" to="" very=""><td></td><td></td><td>2</td><td>SS</td><td>27</td><td></td><td></td><td></td><td>Bentonite and Cuttings</td></pl,>			2	SS	27				Bentonite and Cuttings	
				64.76	_	-					× ······g-	
		(CL/ML) SILTY CLAY to CLAYEY SILT; brown grey, mottled, fissured		1.52								
2		(WEATHERED CRUST); cohesive, w <pl stiff<="" td="" to="" w~pl,=""><td></td><td></td><td>3</td><td>SS</td><td>20</td><td></td><td></td><td></td><td>XX</td></pl>			3	SS	20				XX	
-						1					×	
					\vdash	-					Bentonite Seal	
					4	SS	10				ia i	
3											Silica Sand ☑ ↓	
					5	SS	5					
				62.62		30						
		(CL/ML) CLAYEY SILT to SILTY CLAY; grey; cohesive, w>PL, stiff		3.66		1						
4				1	6	SS	2					
	/ Stem)					1					32 mm Diam. PVC #10 Slot Screen 'B'	
_	Auger (Hollow				7	ss	2				 	
5	Power Auger mm Diam. (Hollow Stem)	End of Sampling	_###	61.10 5.18		1						
	200 mm]								
	2										倒	
6												
											Bentonite and Cuttings	
											Ŭ XX	
											Bentonite Seal	
7											ి	
											Silica Sand	
8												
											S	
											32 mm Diam. PVC	
9											#10 Slot Screen 'A'	
10	_L	CONTINUED NEXT PAGE	-	 	 	+-	-	+	 			
		OUNTINOED NEAT FAGE										
DEI	PTH S	SCALE					本	GOLDER		L	OGGED: JS	

RECORD OF BOREHOLE: 20-06

SHEET 2 OF 2 DATUM: Geodetic

LOCATION: N 5021742.9 ;E 436500.8

SAMPLER HAMMER, 64kg; DROP, 760mm

BORING DATE: June 22, 2020

PENETRATION TEST HAMMER, 64kg; DROP, 760mm

H L	ПООН	SOIL PROFILE	1.		SA	MPL		DYNAMIC PEN RESISTANCE,	ETRATION BLOWS/0		HYDRAU k,	LIC CONDUCT cm/s	TIVITY,	NG NG	PIEZOMETER
DEPTH SCALE METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	BLOWS/0.30m	SHEAR STREN Cu, kPa		t V. + Q - ① n V. ⊕ U - C	VVP F	ER CONTENT	PERCENT WI	ADDITIONAL LAB. TESTING	OR STANDPIPE INSTALLATION
		CONTINUED FROM PREVIOUS PAGE	S				В	20 4	0 60	80	20	40 6	0 80		
10	Power Auger	SOMMED NOW THE VIOLET NO.		55.61											32 mm Diam. PVC #10 Slot Screen 'A'
11	•	End of Borehole		10.67											WL in Screen 'B' at Elev. 63.209 m on August 10, 2020 WL in Screen 'A' at Elev. 61.419 m on August 10, 2020
12															
13															
14															
15															
16															
17															
18															
19															
20															
DE	PTH S	SCALE						GO		FR				L	OGGED: JS

AIS-BHS 001

1:50

RECORD OF BOREHOLE: 20-07

SHEET 1 OF 5

CHECKED: AG

LOCATION: N 5021727.5 ;E 436514.9

BORING DATE: June 22, 2020

DATUM: Geodetic

SAMPLER HAMMER, 64kg; DROP, 760mm PENETRATION TEST HAMMER, 64kg; DROP, 760mm DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m HYDRAULIC CONDUCTIVITY, k, cm/s SOIL PROFILE SAMPLES BORING METHOD ADDITIONAL LAB. TESTING DEPTH SCALE METRES PIEZOMETER STRATA PLOT 10⁻⁵ 10⁻⁴ NUMBER STANDPIPE INSTALLATION ELEV. TYPE nat V. + Q - ● rem V. ⊕ U - ○ SHEAR STRENGTH Cu, kPa nat V. WATER CONTENT PERCENT BLOWS/0 DESCRIPTION DEPTH -OW Wp -(m) GROUND SURFACE 66.57 TOPSOIL - (SM) SILTY SAND; dark brown, contains organics; non-cohesive, dry, loose 0.15 SS 40 FILL - (SP) gravelly SAND, fine to coarse, angular gravel; grey, contains wood debris; non-cohesive, dry, compact FILL - (CL/ML) SILTY CLAY to CLAYEY SILT, trace fine sand and organics; SS 46 brown to grey, highly fissured; cohesive, w<PL, stiff (ML/CL) CLAYEY SILT to SILTY CLAY, trace sand; grey, highly fissured (WEATHERED CRUST); cohesive, w<PL to w>PL, stiff to very stiff SS 20 0 Power Auger SS 0 (CL/ML) SILTY CLAY to CLAYEY SILT; grey, contains sandy silt layers; SS cohesive, w~PL to w>PL, very soft to soft 5 SS 2 0 SS 2 0 >96-60.47 (ML/SM) CLAYEY SILT to SILTY SAND; grey, contains clayey seams; non-cohesive, wet, loose to very loose SS 14 Wash Boring HW Casing ss lw_H 0 19134931.GPJ GAL-MIS.GDT 3-19-21 JEM 9 SS 10 8 0 CONTINUED NEXT PAGE GOLDER DEPTH SCALE LOGGED: AK

RECORD OF BOREHOLE: 20-07

SHEET 2 OF 5 DATUM: Geodetic

LOCATION: N 5021727.5 ;E 436514.9

SAMPLER HAMMER, 64kg; DROP, 760mm

BORING DATE: June 22, 2020

PENETRATION TEST HAMMER, 64kg; DROP, 760mm

ا لِا	HO	SOIL PROFILE	1.		SA	MPLE		DYNAMIC PENETRA RESISTANCE, BLOV	VS/0.3m	(HYDRA	AULIC Co k, cm/s	ONDUC	HVHY,		일	PIEZOMETER
METRES	BORING METHOD		STRATA PLOT	ELE.	띪		BLOWS/0.30m	20 40	60	80	10				10 ⁻³	ADDITIONAL LAB. TESTING	OR STANDPIPE
MET	SING	DESCRIPTION	\TA F	ELEV. DEPTH	NUMBER	TYPE	WS/0	SHEAR STRENGTH Cu, kPa	nat V. rem V.	+ Q- ● ∌ U- O	W	ATER C				B. TE	INSTALLATION
i	BOF		STR	(m)	Ŋ	-	BLO	20 40	60	80	Wp 2		-OW		WI 80	^5	
		CONTINUED FROM PREVIOUS PAGE	-			H	\dashv	20 40		30		U 4			1	1	
10		(ML/SM) CLAYEY SILT to SILTY SAND:	HH													1 1	
		grey, contains clayey seams; non-cohesive, wet, loose to very loose															
						-											
					11	SS	١٨/١ ١					0					
11					''	33	VVI										
12																	
				54.38													
		(SW) SAND, some plasticity fines and gravel; grey to brown grey, contains clay	YIN.	12.19													
		and silt seams; non-cohesive, wet, compact			12	SS	26				0						
13																	
				52.85													
		(SW) gravelly SAND, fine to coarse; brown grey to grey, contains clay/silt		13.72		1											
14		seams; non-cohesive, wet, very dense			13	ss	87							0			
	Wash Boring HW Casing																
15	W Ca																
	š į					1											
					14	SS	58					0					
40						1											
16																	
17							0.5										
					15	SS	35										
18																	
		L		48.28													
		(SM/ML) SAND to sandy SILT; brown grey to grey; non-cohesive, moist, very		18.29													
		dense			16	SS	73										
19																	
			× .														
				46.76													
20		L		19.81	17	ss	59										
20		CONTINUED NEXT PAGE		Γ – –		Π	_		- T		T = =		Γ		T	_	
		1		<u> </u>		Щ	◢						<u> </u>				
DE	PTH S	SCALE					人	GOL	DE	D						LO	GGED: AK
	50						V	JOL		. 「						CHE	CKED: AG

RECORD OF BOREHOLE: 20-07

SHEET 3 OF 5

LOCATION: N 5021727.5 ;E 436514.9

DATUM: Geodetic

BORING DATE: June 22, 2020 SAMPLER HAMMER, 64kg; DROP, 760mm PENETRATION TEST HAMMER, 64kg; DROP, 760mm DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m $\begin{array}{c} \text{HYDRAULIC CONDUCTIVITY,} \\ \text{k, cm/s} \end{array}$ SAMPLES SOIL PROFILE BORING METHOD ADDITIONAL LAB. TESTING DEPTH SCALE METRES PIEZOMETER STRATA PLOT BLOWS/0.30m 10⁻⁶ 10⁻⁵ 10⁻⁴ STANDPIPE INSTALLATION NUMBER TYPE ELEV. SHEAR STRENGTH nat V. + Q - ● rem V. ⊕ U - ○ WATER CONTENT PERCENT DESCRIPTION DEPTH OW. Wp -(m) --- CONTINUED FROM PREVIOUS PAGE ---20 (SM) SAND, some gravel, fine to coarse; brown grey, contains pockets of clay; non-cohesive, wet, dense to very dense SS 59 21 22 - cobbles and boulders 23 18 SS 45 24 Wash Boring HW Casing 25 26 SS 41 19 27 28 19134931.GPJ GAL-MIS.GDT 3-19-21 JEM 37.61 29 (SW/GW) SAND and GRAVEL, some non-plastic fines; grey, contains cobbles and boulders; non-cohesive, wet, very

DEPTH SCALE 1:50

dense

CONTINUED NEXT PAGE

SS 77

20

RECORD OF BOREHOLE: 20-07

SHEET 4 OF 5 DATUM: Geodetic

LOCATION: N 5021727.5 ;E 436514.9

SAMPLER HAMMER, 64kg; DROP, 760mm

BORING DATE: June 22, 2020

PENETRATION TEST HAMMER, 64kg; DROP, 760mm

Ę	HOD	SOIL PROFILE			SA	MPL	_	DYNAMIC PENETRA RESISTANCE, BLOV	IION \ /S/0.3m \	H	IYDRAULIC C k, cm/s	ONDUCT	ινιΓΥ,	일	PIEZOMETER
DEPIH SCALE METRES	BORING METHOD		STRATA PLOT	ELEV.	ËR	ш	BLOWS/0.30m	20 40	60 80	\perp		0 ⁻⁵ 10		 ADDITIONAL LAB. TESTING	OR STANDPIPE
ME	RING	DESCRIPTION	MTA	DEPTH	NUMBER	TYPE)WS/t	SHEAR STRENGTH Cu, kPa	nat v. + Q - € rem V. ⊕ U - C	5	WATER C	ONTENT OW	PERCEN	ADDI AB. T	INSTALLATION
_	BC		STF	(m)	_		BLC	20 40	60 80	\perp		10 6			
30		CONTINUED FROM PREVIOUS PAGE	1.5. 2.5							\perp					
		(SW/GW) SAND and GRAVEL, some non-plastic fines; grey, contains cobbles and boulders; non-cohesive, wet, very													
		dense													
31															
			> > > >												
32	Wash Boring HW Casing														
	ash Bo W Car		2.5		21	SS	86								
	> I														
			> >												
33															
			, ,												
			88												
34															
		Borehole continued on RECORD OF	2.7	32.13 34.44											
		DRILLHOLE 20-07													
35															
36															
30															
37															
38															
39															
40															
DΕ	ртн 9	CALE				<	1	GOL	D					10	GGED: AK
عار	50							GOL	レヒ R						CKED: AG

RECORD OF DRILLHOLE: 20-07 PROJECT: 19134931 SHEET 5 OF 5 LOCATION: N 5021727.5 ;E 436514.9 DRILLING DATE: June 22, 2020 DATUM: Geodetic DRILL RIG: CME-850 INCLINATION: -90° AZIMUTH: ---DRILLING CONTRACTOR: CCC Drilling BD - Bedding FO - Foliation CO - Contact OR - Orthogonal CL - Cleavage PL - Planar CU- Curved UN - Undulating ST - Stepped IR - Irregular PO- Polished K - Slickensided SM- Smooth Ro - Rough MB- Mechanical Br JN - Joint FLT - Fault SHR- Shear VN - Vein CJ - Conjugate DRILLING RECORD NOTE: For additional abbreviations refer to list of abbreviations & symbols. SYMBOLIC LOG DEPTH SCALE METRES ģ ELEV. DESCRIPTION RUN FRACT. INDEX PER 0.25 m HYDRAULIC CONDUCTIVIT K, cm/sec DEPTH RECOVERY DISCONTINUITY DATA Diametra Point Loa Index (MPa) R.Q.D. % TOTAL CORE % FLUSH SOLID CORE % (m) TYPE AND SURFACE DESCRIPTION GROUND SURFACE 32.13 Fresh, thinly to medium bedded, medium grey, fine grained, non-porous, very strong DOLOSTONE, with thin laminations to very thin beds of dark grey to black, non-porous, medium strong to 35 weak shale and limestone Rotary Drill 36 ğ 37 28.73 37.84 End of Borehole 39 40 41 42 43

GOLDER

MIS-RCK 004 19134931.GPJ GAL-MISS.GDT 3-19-21

44

RECORD OF BOREHOLE: 20-08

SHEET 1 OF 2

LOCATION: N 5021719.9 ;E 436603.0

BORING DATE: June 19, 2020

DATUM: Geodetic

SAMPLER HAMMER, 64kg; DROP, 760mm PENETRATION TEST HAMMER, 64kg; DROP, 760mm

H L	QOH.	SOIL PROFILE	1.		SA	AMPL	-	DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m	HYDRAULIC CONDUCTIVITY, k, cm/s	AS PIEZOI	PIEZOMETER	
TRES	MET		PLOT	ELEV.	ER		.30m	20 40 60 80	10 ⁶ 10 ⁻⁵ 10 ⁻⁴ 10 ⁻³	OS STAN	R	
DEPIH SCALE METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	DEPTH	NUMBER	TYPE	BLOWS/0.30m	SHEAR STRENGTH nat V. $+$ Q - \bullet rem V. \oplus U - \bigcirc	WATER CONTENT PERCENT Wp OW WI		LATION	
ר	B0		STR	(m)	z		BLC	20 40 60 80	20 40 60 80			
0	<u> </u>	GROUND SURFACE		66.36								
		TOPSOIL - (SM) SILTY SAND, some gravel; brown, contains organics;		0.00 66.16 0.20		SS	70					
		\non-cohesive, dry, compact FILL - (SW/GW) SAND and GRAVEL,	′ 🗱			- 55	, ,					
		some non-plastic fines; grey, angular; non-cohesive, dry, compact to dense	\bowtie	65.60		1						
1		(CL/ML) CLAYEY SILT to SILTY CLAY, trace fine sand; brown, mottling and		0.76			ایرا					
		fissured (WEATHERED CRUST); cohesive, w <pl hard<="" td="" to="" w~pl,=""><td></td><td></td><td>2</td><td>SS</td><td>1/</td><td></td><td></td><td>Bentonite Seal</td><td></td></pl>			2	SS	1/			Bentonite Seal		
	(me			}								
2	jer Iow St]	3	SS	16					
	200 mm Diam (Hollow Stem)					1						
	Pow Piar			}							3 [
	200 m			}	4	SS	7			Silica Sand		
3				63.31		1						
		(CL/ML) SILTY CLAY to CLAYEY SILT, trace fine sand; brown to grey brown;		3.05								
		cohesive, w~PL to w>PL, firm			5	SS	3				7	
				62.55		1					团	
4		(ML) CLAYEY SILT to fine sandy SILT; grey; cohesive, w>PL, firm		3.81								
				1	6	SS	3			32 mm Diam. F	vc H	
	Н	End of sampling	-JYIV	61.94 4.42						#10 Slot Screen	"	
5											【】	
											H	
											E E	
6										Silica Sand		
										Bentonite Seal		
7												
8											፠	
										Bentonite and Cuttings	፠	
											፠	
9											₿	
											₿	
											፠	
10		00171115		 		+-	-	+				
		CONTINUED NEXT PAGE					Ш					
DE	PTH	SCALE						GOLDER		LOGGED: JS		
1 ·	50					<	V	OCLULIK		CHECKED: AG		

1:50

RECORD OF BOREHOLE: 20-08

SHEET 2 OF 2

CHECKED: AG

PENETRATION TEST HAMMER, 64kg; DROP, 760mm

LOCATION: N 5021719.9 ;E 436603.0

SAMPLER HAMMER, 64kg; DROP, 760mm

BORING DATE: June 19, 2020

DATUM: Geodetic

DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m $\begin{array}{c} \text{HYDRAULIC CONDUCTIVITY,} \\ \text{k, cm/s} \end{array}$ SOIL PROFILE SAMPLES BORING METHOD ADDITIONAL LAB. TESTING DEPTH SCALE METRES PIEZOMETER STRATA PLOT BLOWS/0.30m 80 10⁻⁶ 10⁻⁵ 10⁻⁴ STANDPIPE INSTALLATION NUMBER TYPE ELEV. SHEAR STRENGTH nat V. + Q - ● rem V. ⊕ U - ○ WATER CONTENT PERCENT DESCRIPTION DEPTH OW. - WI Wp -(m) --- CONTINUED FROM PREVIOUS PAGE ---10 End of sampling Bentonite and Cuttings 11 Bentonite Seal Silica Sand 12 13 32 mm Diam. PVC #10 Slot Screen 'A' 14 15 End of Borehole WL in Screen 'B' at Elev. 62.963 m on August 10, 2020 WL in Screen 'A' at Elev. 63.355 m on August 10, 2020 16 17 18 MIS-BHS 001 19134931.GPJ GAL-MIS.GDT 3-19-21 JEM 19 20 GOLDER DEPTH SCALE LOGGED: JS

March 2021 19134931

APPENDIX C

Laboratory Certificates of Analysis

CLIENT NAME: GOLDER ASSOCIATES LTD 1931 ROBERTSON ROAD OTTAWA, ON K2H5B7 (613) 592-9600

ATTENTION TO: Alyssa Whiteduck

PROJECT: 19134931-002-HS-0001

AGAT WORK ORDER: 20Z627637

TRACE ORGANICS REVIEWED BY: Oksana Gushyla, Trace Organics Lab Supervisor

WATER ANALYSIS REVIEWED BY: Jacky Zhu, Spectroscopy Technician

DATE REPORTED: Jul 28, 2020

PAGES (INCLUDING COVER): 16 VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

Notes	

Disclaimer:

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may
 incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 30 days following analysis, unless expressly agreed otherwise in writing. Please contact your Client Project Manager if you require additional sample storage time.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other
 third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the
 services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of
 merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines
 contained in this document.
- All reportable information as specified by ISO/IEC 17025:2017 is available from AGAT Laboratories upon request.

AGAT Laboratories (V1)

Page 1 of 16

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA)

Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA) AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.

AGAT WORK ORDER: 20Z627637 PROJECT: 19134931-002-HS-0001 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE:

ATTENTION TO: Alyssa Whiteduck SAMPLED BY:

O. Reg. 153(511) - PAHs (Water)

DATE RECEIVED: 2020-07-20									DATE REPORTED: 2020-07-28
	;		CRIPTION: PLE TYPE: SAMPLED:	MW20-08S Water 2020-07-20	MW20-01 Water 2020-07-20	MW20-02S Water 2020-07-20	MW20-06S Water 2020-07-20	DUP-1 Water 2020-07-20	
Parameter	Unit	G/S	RDL	1286357	1286362	1286363	1286364	1286365	
Naphthalene	μg/L	1400	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
Acenaphthylene	μg/L	1.8	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
Acenaphthene	μg/L	600	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
Fluorene	μg/L	400	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
Phenanthrene	μg/L	580	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	
Anthracene	μg/L	2.4	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	
Fluoranthene	μg/L	130	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
Pyrene	μg/L	68	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
Benzo(a)anthracene	μg/L	4.7	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
Chrysene	μg/L	1	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	
Benzo(b)fluoranthene	μg/L	0.75	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	
Benzo(k)fluoranthene	μg/L	0.4	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	
Benzo(a)pyrene	μg/L	0.81	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	
Indeno(1,2,3-cd)pyrene	μg/L	0.2	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
Dibenz(a,h)anthracene	μg/L	0.52	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
Benzo(g,h,i)perylene	μg/L	0.2	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
2-and 1-methyl Naphthalene	μg/L	1800	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
Sediment				Trace	No	Trace	No	No	
Surrogate	Unit	Acceptab	le Limits						
Naphthalene-d8	%	50-1	140	114	98	114	71	102	
Acenaphthene-d10	%	50-1	140	111	89	114	80	108	
Chrysene-d12	%	50-1	140	98	81	89	70	91	

Certified By:

AGAT WORK ORDER: 20Z627637 PROJECT: 19134931-002-HS-0001 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE:

ATTENTION TO: Alyssa Whiteduck

SAMPLED BY:

O. Reg. 153(511) - PAHs (Water)

DATE RECEIVED: 2020-07-20 DATE REPORTED: 2020-07-28

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Non-Potable Ground Water - All

Types of Property Uses - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

1286357 Sediment present in sample.

Note: The result for Benzo(b)Fluoranthene is the total of the Benzo(b)&(j)Fluoranthene isomers because the isomers co-elute on the GC column.

2- and 1-Methyl Naphthalene is a calculated parameter. The calculated value is the sum of 2-Methyl Naphthalene and 1-Methyl Naphthalene. The calculated parameter is non-accredited. The parameters

that are components of the calculation are accredited.

Sediment parameter is comment only based on visual inspection of the sample prior to extraction and is not an accredited test.

1286362 Note: The result for Benzo(b)Fluoranthene is the total of the Benzo(b)&(j)Fluoranthene isomers because the isomers co-elute on the GC column.

2- and 1-Methyl Naphthalene is a calculated parameter. The calculated value is the sum of 2-Methyl Naphthalene and 1-Methyl Naphthalene. The calculated parameter is non-accredited. The parameters

that are components of the calculation are accredited.

Sediment parameter is comment only based on visual inspection of the sample prior to extraction and is not an accredited test.

1286363 Sediment present in sample.

Note: The result for Benzo(b)Fluoranthene is the total of the Benzo(b)&(j)Fluoranthene isomers because the isomers co-elute on the GC column.

2- and 1-Methyl Naphthalene is a calculated parameter. The calculated value is the sum of 2-Methyl Naphthalene and 1-Methyl Naphthalene. The calculated parameter is non-accredited. The parameters

that are components of the calculation are accredited.

Sediment parameter is comment only based on visual inspection of the sample prior to extraction and is not an accredited test.

1286364-1286365 Note: The result for Benzo(b)Fluoranthene is the total of the Benzo(b)&(j)Fluoranthene isomers because the isomers co-elute on the GC column.

2- and 1-Methyl Naphthalene is a calculated parameter. The calculated value is the sum of 2-Methyl Naphthalene and 1-Methyl Naphthalene. The calculated parameter is non-accredited. The parameters

that are components of the calculation are accredited.

Sediment parameter is comment only based on visual inspection of the sample prior to extraction and is not an accredited test.

Analysis performed at AGAT Toronto (unless marked by *)

AGAT WORK ORDER: 20Z627637 PROJECT: 19134931-002-HS-0001 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE:

ATTENTION TO: Alyssa Whiteduck

SAMPLED BY:

O. Reg. 153(511) - PHCs F1 - F4 (with PAHs) (Water)

DATE RECEIVED: 2020-07-20									DATE REPORTED: 2020-07-28
Parameter	Unit	_	CRIPTION: PLE TYPE: SAMPLED: RDL	MW20-08S Water 2020-07-20 1286357	MW20-01 Water 2020-07-20 1286362	MW20-02S Water 2020-07-20 1286363	MW20-06S Water 2020-07-20 1286364	DUP-1 Water 2020-07-20 1286365	
Benzene	µg/L	44	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
Toluene	μg/L	18000	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
Ethylbenzene	μg/L	2300	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	
Xylenes (Total)	μg/L	4200	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
F1 (C6-C10)	μg/L	750	25	<25	<25	<25	<25	<25	
F1 (C6 to C10) minus BTEX	μg/L	750	25	<25	<25	<25	<25	<25	
F2 (C10 to C16)	μg/L	150	100	<100	<100	<100	<100	<100	
F2 (C10 to C16) minus Naphthalene	μg/L		100	<100	<100	<100	<100	<100	
F3 (C16 to C34)	μg/L	500	100	<100	<100	<100	<100	<100	
F3 (C16 to C34) minus PAHs	μg/L		100	<100	<100	<100	<100	<100	
F4 (C34 to C50)	μg/L	500	100	<100	<100	<100	<100	<100	
Gravimetric Heavy Hydrocarbons	μg/L		500	NA	NA	NA	NA	NA	
Sediment				Trace	No	Trace	No	No	
Surrogate	Unit	Acceptab	le Limits						
Terphenyl	%	60-1	40	96	69	83	85	82	

ATTENTION TO: Alyssa Whiteduck

SAMPLED BY:

AGAT WORK ORDER: 20Z627637 PROJECT: 19134931-002-HS-0001 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aqatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE:

O. Reg. 153(511) - PHCs F1 - F4 (with PAHs) (Water)

DATE RECEIVED: 2020-07-20 DATE REPORTED: 2020-07-28

Comments:

RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Non-Potable Ground Water - All Types of Property Uses - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

1286357

Sediment present in sample.

The C6-C10 fraction is calculated using toluene response factor.

Xylenes total is a calculated parameter. The calculated value is the sum of m&p-Xylene and o-Xylene.

C6-C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX.

The calculated parameters are non-accredited. The parameters that are components of the calculation are accredited.

The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and n-C34.

Gravimetric Heavy Hydrocarbons are not included in the Total C16-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons > C50 are present.

The chromatogram has returned to baseline by the retention time of nC50.

Total C6 - C50 results are corrected for BTEX and PAH contributions.

C>10 - C16 (F2- Naphthalene) is a calculated parameter. The calculated value is F2 - Naphthalene.

C>16 - C34 (F3-PAH) is a calculated parameter. The calculated value is F3-PAH (PAH: sum of Phenanthrene, Benzo(a)anthracene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Benzo(a)pyrene,

Fluoranthene, Dibenzo(a,h)anthracene, Indeno(1,2,3-c,d)pyrene and Pyrene).

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 + nC34 average.

Linearity is within 15%.

Extraction and holding times were met for this sample.

Sediment parameter is comment only based on visual inspection of the sample prior to extraction and is not an accredited test.

1286362

The C6-C10 fraction is calculated using toluene response factor.

Xylenes total is a calculated parameter. The calculated value is the sum of m&p-Xylene and o-Xylene.

C6-C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX.

The calculated parameters are non-accredited. The parameters that are components of the calculation are accredited.

The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and n-C34.

Gravimetric Heavy Hydrocarbons are not included in the Total C16-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons > C50 are present.

The chromatogram has returned to baseline by the retention time of nC50.

Total C6 - C50 results are corrected for BTEX and PAH contributions.

C>10 - C16 (F2- Naphthalene) is a calculated parameter. The calculated value is F2 - Naphthalene.

C>16 - C34 (F3-PAH) is a calculated parameter. The calculated value is F3-PAH (PAH: sum of Phenanthrene, Benzo(a)anthracene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Benzo(a)pyrene,

Fluoranthene, Dibenzo(a,h)anthracene, Indeno(1,2,3-c,d)pyrene and Pyrene).

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 + nC34 average.

Linearity is within 15%.

Extraction and holding times were met for this sample.

Sediment parameter is comment only based on visual inspection of the sample prior to extraction and is not an accredited test.

1286363

Sediment present in sample.

The C6-C10 fraction is calculated using toluene response factor.

Xylenes total is a calculated parameter. The calculated value is the sum of m&p-Xylene and o-Xylene.

Certified By:

AGAT WORK ORDER: 20Z627637 PROJECT: 19134931-002-HS-0001 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE:

ATTENTION TO: Alyssa Whiteduck

SAMPLED BY:

O. Reg. 153(511) - PHCs F1 - F4 (with PAHs) (Water)

DATE RECEIVED: 2020-07-20 DATE REPORTED: 2020-07-28

C6-C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX.

The calculated parameters are non-accredited. The parameters that are components of the calculation are accredited.

The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and n-C34.

Gravimetric Heavy Hydrocarbons are not included in the Total C16-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons > C50 are present. The chromatogram has returned to baseline by the retention time of nC50.

Total C6 - C50 results are corrected for BTEX and PAH contributions.

C>10 - C16 (F2- Naphthalene) is a calculated parameter. The calculated value is F2 - Naphthalene.

C-16 - C34 (F3-PAH) is a calculated parameter. The calculated value is F3-PAH (PAH: sum of Phenanthrene, Benzo(a)anthracene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Benzo(a)pyrene,

Fluoranthene, Dibenzo(a,h)anthracene, Indeno(1,2,3-c,d)pyrene and Pyrene).

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 + nC34 average.

Linearity is within 15%.

Extraction and holding times were met for this sample.

Sediment parameter is comment only based on visual inspection of the sample prior to extraction and is not an accredited test.

1286364-1286365 The C6-C10 fraction is calculated using toluene response factor.

Xylenes total is a calculated parameter. The calculated value is the sum of m&p-Xylene and o-Xylene.

C6-C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX.

The calculated parameters are non-accredited. The parameters that are components of the calculation are accredited.

The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and n-C34.

Gravimetric Heavy Hydrocarbons are not included in the Total C16-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons >C50 are present.

The chromatogram has returned to baseline by the retention time of nC50.

Total C6 - C50 results are corrected for BTEX and PAH contributions.

C>10 - C16 (F2- Naphthalene) is a calculated parameter. The calculated value is F2 - Naphthalene.

C>16 - C34 (F3-PAH) is a calculated parameter. The calculated value is F3-PAH (PAH: sum of Phenanthrene, Benzo(a)anthracene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Benzo(a)pyrene, Fluoranthene, Dibenzo(a,h)anthracene, Indeno(1,2,3-c,d)pyrene and Pyrene).

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 + nC34 average.

Linearity is within 15%.

Extraction and holding times were met for this sample.

Sediment parameter is comment only based on visual inspection of the sample prior to extraction and is not an accredited test.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

AGAT WORK ORDER: 20Z627637 PROJECT: 19134931-002-HS-0001 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE:

ATTENTION TO: Alyssa Whiteduck

SAMPLED BY:

O. Reg. 15	3(511) - PHCs F1/	BTEX	(Water)
------------	-------	--------------	------	---------

DATE RECEIVED: 2020-07-20 DATE REPORTED: 2020-07-28

		SAMPLE DES	CRIPTION:	Trip Blank
		SAM	PLE TYPE:	Water
		DATES	SAMPLED:	2020-07-20
Parameter	Unit	G/S	RDL	1286367
Benzene	μg/L	44	0.20	<0.20
Toluene	μg/L	18000	0.20	<0.20
Ethylbenzene	μg/L	2300	0.10	<0.10
Xylenes (Total)	μg/L	4200	0.20	<0.20
F1 (C6-C10)	μg/L	750	25	<25
F1 (C6 to C10) minus BTEX	μg/L	750	25	<25

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Non-Potable Ground Water - All

Types of Property Uses - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

1286367 The C6-C10 fraction is calculated using Toluene response factor.

Total C6-C10 results are corrected for BTEX contributions.

Xylenes total is a calculated parameter. The calculated value is the sum of m&p-Xylene and o-Xylene.

C6-C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX.

The calculated parameters are non-accredited. The parameters that are components of the calculation are accredited.

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC6 and nC10 response factors are within 30% of Toluene response factor.

Extraction and holding times were met for this sample.

NA = Not Applicable

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

AGAT WORK ORDER: 20Z627637 PROJECT: 19134931-002-HS-0001 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE:

ATTENTION TO: Alyssa Whiteduck

SAMPLED BY:

T-1-1	DOD -	/ 1\
ı otai	PCBS	(water)

					TOTAL FUDS	(water)	
DATE RECEIVED: 2020-07-20							DATE REPORTED: 2020-07-28
		SAMPLE DES	CRIPTION:	MW20-08S	MW20-06S	DUP-1	
		SAMI	PLE TYPE:	Water	Water	Water	
		DATE S	SAMPLED:	2020-07-20	2020-07-20	2020-07-20	
Parameter	Unit	G/S	RDL	1286357	1286364	1286365	
PCBs	μg/L	7.8	0.1	<0.1	<0.1	<0.1	
Surrogate	Unit	Acceptab	le Limits				
Decachlorobiphenyl	%	60-1	130	82	84	87	

Comments:

RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Non-Potable Ground Water - All Types of Property Uses - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

Analysis performed at AGAT Toronto (unless marked by *)

AGAT WORK ORDER: 20Z627637 PROJECT: 19134931-002-HS-0001 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE:

O. Reg. 153(511) - Metals (Including Hydrides) (Water)

DATE RECEIVED: 2020-07-20									DATE REPORTED: 2020-07-28
		_	CRIPTION: PLE TYPE: SAMPLED:	MW20-08S Water 2020-07-20	MW20-01 Water 2020-07-20	MW20-02S Water 2020-07-20	MW20-06S Water 2020-07-20	DUP-1 Water 2020-07-20	
Parameter	Unit	G/S	RDL	1286357	1286362	1286363	1286364	1286365	
Dissolved Antimony	μg/L	20000	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	
Dissolved Arsenic	μg/L	1900	1.0	<1.0	<1.0	7.0	<1.0	<1.0	
Dissolved Barium	μg/L	29000	2.0	365	648	610	326	312	
Dissolved Beryllium	μg/L	67	0.50	< 0.50	<0.50	< 0.50	<0.50	<0.50	
Dissolved Boron	μg/L	45000	10.0	44.6	12.8	58.7	<10.0	<10.0	
Dissolved Cadmium	μg/L	2.7	0.20	<0.20	0.70	0.44	<0.20	<0.20	
Dissolved Chromium	μg/L	810	2.0	<2.0	<2.0	<2.0	<2.0	<2.0	
Dissolved Cobalt	μg/L	66	0.50	2.33	5.18	9.01	1.39	1.31	
Dissolved Copper	μg/L	87	1.0	2.4	4.6	1.8	1.4	2.4	
Dissolved Lead	μg/L	25	0.50	4.76	2.03	2.50	7.71	6.93	
Dissolved Molybdenum	μg/L	9200	0.50	6.58	0.55	12.0	0.59	0.59	
Dissolved Nickel	μg/L	490	3.0	8.2	18.0	30.6	6.8	6.9	
Dissolved Selenium	μg/L	63	1.0	<1.0	1.8	1.7	<1.0	24.2	
Dissolved Silver	μg/L	1.5	0.20	<0.20	0.28	0.25	<0.20	<0.20	
Dissolved Thallium	μg/L	510	0.30	< 0.30	< 0.30	<0.30	< 0.30	< 0.30	
Dissolved Uranium	μg/L	420	0.50	10.3	9.21	14.1	1.69	1.75	
Dissolved Vanadium	μg/L	250	0.40	0.46	<0.40	0.63	1.03	0.79	
Dissolved Zinc	μg/L	1100	5.0	<5.0	<5.0	<5.0	<5.0	10.6	

Comments:

RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Non-Potable Ground Water - All Types of Property Uses - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

1286357-1286365 Metals analysis completed on a filtered sample.

Analysis performed at AGAT Toronto (unless marked by *)

CHARTERED DE LE CHARTERED DE L

ATTENTION TO: Alyssa Whiteduck

SAMPLED BY:

AGAT WORK ORDER: 20Z627637 PROJECT: 19134931-002-HS-0001 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE:

ATTENTION TO: Alyssa Whiteduck

SAMPLED BY:

O. Reg. 153(511) - ORPs (Water)

DATE RECEIVED: 2020-07-20									DATE REPORTE	D: 2020-07-28	
	\$	_	RIPTION: PLE TYPE: AMPLED:	MW20-08S Water 2020-07-20		MW20-01 Water 2020-07-20	MW20-02S Water 2020-07-20		MW20-06S Water 2020-07-20	DUP-1 Water 2020-07-20	
Parameter	Unit	G/S	RDL	1286357	RDL	1286362	1286363	RDL	1286364	1286365	
Dissolved Sodium	μg/L	2300000	5000	463000	50000	1670000	1540000	5000	207000	194000	
Chloride	μg/L	2300000	5000	1990000	10000	5860000	4980000	2000	1120000	1100000	
рН	pH Units		NA	7.82	NA	7.39	7.65	NA	7.43	7.45	

Comments:

RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Non-Potable Ground Water - All Types of Property Uses - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

1286357-1286365 Elevated RDL indicates the degree of sample dilution prior to the analysis in order to keep analytes within the calibration range of the instrument and to reduce matrix interference.

Analysis performed at AGAT Toronto (unless marked by *)

CHARTERED STORM CHARTER CHARTE

Guideline Violation

AGAT WORK ORDER: 20Z627637 PROJECT: 19134931-002-HS-0001 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD

ATTENTION TO: Alyssa Whiteduck

SAMPLEID	SAMPLE TITLE	GUIDELINE	ANALYSIS PACKAGE	PARAMETER	UNIT	GUIDEVALUE	RESULT
1286362	MW20-01	ON T3 NPGW CT	O. Reg. 153(511) - ORPs (Water)	Chloride	μg/L	2300000	5860000
1286363	MW20-02S	ON T3 NPGW CT	O. Reg. 153(511) - ORPs (Water)	Chloride	μg/L	2300000	4980000

Quality Assurance

CLIENT NAME: GOLDER ASSOCIATES LTD

PROJECT: 19134931-002-HS-0001

SAMPLING SITE:

AGAT WORK ORDER: 20Z627637 **ATTENTION TO: Alyssa Whiteduck**

SAMPLED BY:

			Trac	e Or	gani	cs Ar	nalysi	is																					
RPT Date: Jul 28, 2020			D	UPLICATI	E		REFEREN	ICE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE														
PARAMETER	Batch	Sample Id	Dup #1	Dup #2	RPD	Method Blank	Measured	Acceptable Limits														Recovery	Acceptable Limits Reco		Limite		Recovery		ptable nits
		Ia	·	•			Value	Lower	Upper	,	Lower	Upper	,	Lower	Upper														
O. Reg. 153(511) - PHCs F1 - I	F4 (with PAHs) (\	Nater)																											
Benzene	1270677		< 0.20	< 0.20	NA	< 0.20	89%	50%	140%	116%	60%	130%	97%	50%	140%														
Toluene	1270677		< 0.20	< 0.20	NA	< 0.20	83%	50%	140%	114%	60%	130%	91%	50%	140%														
Ethylbenzene	1270677		< 0.10	< 0.10	NA	< 0.10	82%	50%	140%	118%	60%	130%	92%	50%	140%														
Xylenes (Total)	1270677		< 0.20	< 0.20	NA	< 0.20	82%	50%	140%	104%	60%	130%	97%	50%	140%														
F1 (C6-C10)	1270677		< 25	< 25	NA	< 25	100%	60%	140%	111%	60%	140%	101%	60%	140%														
F2 (C10 to C16)	1286357 12	86357	< 100	< 100	NA	< 100	104%	60%	140%	103%	60%	140%	95%	60%	140%														
F3 (C16 to C34)	1286357 12	86357	< 100	< 100	NA	< 100	100%	60%	140%	108%	60%	140%	81%	60%	140%														
F4 (C34 to C50)	1286357 12	86357	< 100	< 100	NA	< 100	88%	60%	140%	106%	60%	140%	113%	60%	140%														
O. Reg. 153(511) - PAHs (Wat	er)																												
Naphthalene	1284087		<0.20	<0.20	NA	< 0.20	107%	50%	140%	89%	50%	140%	95%	50%	140%														
Acenaphthylene	1284087		<0.20	<0.20	NA	< 0.20	119%	50%	140%	95%	50%	140%	101%	50%	140%														
Acenaphthene	1284087		<0.20	<0.20	NA	< 0.20	109%	50%	140%	95%	50%	140%	101%	50%	140%														
Fluorene	1284087		<0.20	<0.20	NA	< 0.20	111%	50%	140%	97%	50%	140%	106%	50%	140%														
Phenanthrene	1284087		0.21	0.24	NA	< 0.10	98%	50%	140%	93%	50%	140%	99%	50%	140%														
Anthracene	1284087		<0.10	<0.10	NA	< 0.10	105%	50%	140%	86%	50%	140%	94%	50%	140%														
Fluoranthene	1284087		<0.20	< 0.20	NA	< 0.20	102%	50%	140%	93%	50%	140%	102%	50%	140%														
Pyrene	1284087		0.32	0.34	NA	< 0.20	101%	50%	140%	93%	50%	140%	103%	50%	140%														
Benzo(a)anthracene	1284087		<0.20	< 0.20	NA	< 0.20	119%	50%	140%	84%	50%	140%	89%	50%	140%														
Chrysene	1284087		0.11	0.11	NA	< 0.10	105%	50%	140%	96%	50%	140%	106%	50%	140%														
Benzo(b)fluoranthene	1284087		<0.10	<0.10	NA	< 0.10	109%	50%	140%	77%	50%	140%	88%	50%	140%														
Benzo(k)fluoranthene	1284087		<0.10	<0.10	NA	< 0.10	104%	50%	140%	75%	50%	140%	89%	50%	140%														
Benzo(a)pyrene	1284087		< 0.01	< 0.01	NA	< 0.01	104%	50%	140%	75%	50%	140%	82%	50%	140%														
Indeno(1,2,3-cd)pyrene	1284087		<0.20	<0.20	NA	< 0.20	118%	50%	140%	102%	50%	140%	71%	50%	140%														
Dibenz(a,h)anthracene	1284087		<0.20	<0.20	NA	< 0.20	108%	50%	140%	71%	50%	140%	76%	50%	140%														
Benzo(g,h,i)perylene	1284087		<0.20	<0.20	NA	< 0.20	116%	50%	140%	82%	50%	140%	72%	50%	140%														
Total PCBs (water)																													
PCBs	1294388		< 0.1	< 0.1	NA	< 0.1	104%	60%	140%	89%	60%	140%	89%	60%	140%														

Comments: When the average of the sample and duplicate results is less than 5x the RDL, the Relative Percent Difference (RPD) will be indicated as Not Applicable (NA).

Certified By:

Page 12 of 16

Quality Assurance

CLIENT NAME: GOLDER ASSOCIATES LTD

PROJECT: 19134931-002-HS-0001

SAMPLING SITE:

AGAT WORK ORDER: 20Z627637
ATTENTION TO: Alyssa Whiteduck

SAMPLED BY:

<u> </u>																			
				Wate	er Ar	nalys	is												
RPT Date: Jul 28, 2020				UPLICATI	.		REFERENCE MATERIAL			METHOD	BLANK	SPIKE	MAT	RIX SPI	KE				
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured	Acceptable Limits		sured Limits		Recovery	Acceptable Limits				Recovery		ptable nits
		la la					Value	Lower	Upper		Lower	Upper		Lower	Upper				
O. Reg. 153(511) - Metals (Includi	ing Hydride	es) (Water)																
Dissolved Antimony	1286357	1286357	<1.0	<1.0	NA	< 1.0	94%	70%	130%	102%	80%	120%	90%	70%	130%				
Dissolved Arsenic	1286357	1286357	<1.0	1.4	NA	< 1.0	103%	70%	130%	110%	80%	120%	105%	70%	130%				
Dissolved Barium	1286357	1286357	365	380	4.0%	< 2.0	96%	70%	130%	98%	80%	120%	116%	70%	130%				
Dissolved Beryllium	1286357	1286357	<0.50	< 0.50	NA	< 0.50	105%	70%	130%	112%	80%	120%	106%	70%	130%				
Dissolved Boron	1286357	1286357	44.6	40.7	NA	< 10.0	100%	70%	130%	101%	80%	120%	92%	70%	130%				
Dissolved Cadmium	1286357	1286357	<0.20	<0.20	NA	< 0.20	101%	70%	130%	100%	80%	120%	90%	70%	130%				
Dissolved Chromium	1286357	1286357	<2.0	<2.0	NA	< 2.0	98%	70%	130%	99%	80%	120%	89%	70%	130%				
Dissolved Cobalt	1286357	1286357	2.33	2.42	NA	< 0.50	99%	70%	130%	98%	80%	120%	89%	70%	130%				
Dissolved Copper	1286357	1286357	2.4	1.8	NA	< 1.0	100%	70%	130%	100%	80%	120%	82%	70%	130%				
Dissolved Lead	1286357	1286357	4.76	4.77	0.2%	< 0.50	105%	70%	130%	107%	80%	120%	95%	70%	130%				
Dissolved Molybdenum	1286357	1286357	6.58	6.21	5.8%	< 0.50	101%	70%	130%	99%	80%	120%	91%	70%	130%				
Dissolved Nickel	1286357	1286357	8.2	8.0	NA	< 3.0	100%	70%	130%	100%	80%	120%	85%	70%	130%				
Dissolved Selenium	1286357	1286357	<1.0	1.8	NA	< 1.0	100%	70%	130%	100%	80%	120%	95%	70%	130%				
Dissolved Silver	1286357	1286357	<0.20	<0.20	NA	< 0.20	104%	70%	130%	100%	80%	120%	81%	70%	130%				
Dissolved Thallium	1286357	1286357	<0.30	<0.30	NA	< 0.30	100%	70%	130%	110%	80%	120%	101%	70%	130%				
Dissolved Uranium	1286357	1286357	10.3	10.1	2.0%	< 0.50	100%	70%	130%	113%	80%	120%	105%	70%	130%				
Dissolved Vanadium	1286357	1286357	0.46	< 0.40	NA	< 0.40	104%	70%	130%	106%	80%	120%	103%	70%	130%				
Dissolved Zinc	1286357	1286357	<5.0	<5.0	NA	< 5.0	97%	70%	130%	102%	80%	120%	92%	70%	130%				
O. Reg. 153(511) - ORPs (Water)																			
Dissolved Sodium	1285982		20500	20500	0.0%	< 500	93%	70%	130%	101%	80%	120%	92%	70%	130%				
Chloride	1289724		813000	821000	1.0%	< 100	91%	70%	130%	103%	80%	120%	97%	70%	130%				
pH	1287441		7.92	7.83	1.1%	NA	100%	90%	110%										

Comments: If the RPD value is NA, the results of the duplicates are under 5X the RDL and will not be calculated.

Method Summary

CLIENT NAME: GOLDER ASSOCIATES LTD

AGAT WORK ORDER: 20Z627637

PROJECT: 19134931-002-HS-0001

ATTENTION TO: Alyssa Whiteduck

SAMPLING SITE: SAMPLED BY:

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Trace Organics Analysis			
Naphthalene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Acenaphthylene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Acenaphthene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Fluorene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Phenanthrene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Anthracene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Fluoranthene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Pyrene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Benzo(a)anthracene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Chrysene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Benzo(b)fluoranthene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Benzo(k)fluoranthene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Benzo(a)pyrene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Indeno(1,2,3-cd)pyrene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Dibenz(a,h)anthracene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Benzo(g,h,i)perylene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
2-and 1-methyl Naphthalene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Naphthalene-d8	ORG-91-5105	modified from EPA SW-846 3510C & 8270E	GC/MS
Acenaphthene-d10	ORG-91-5105	modified from EPA SW-846 3510C & 8270E	GC/MS
Chrysene-d12	ORG-91-5105	modified from EPA SW-846 3510C & 8270E	GC/MS
Sediment			
Benzene	VOL-91-5010	modified from EPA SW-846 5230B & 8260	(P&T)GC/MS
Toluene	VOL-91-5010	modified from EPA SW-846 5030C & 8260D	P&T GC/MS
Ethylbenzene	VOL-91-5010	modified from EPA SW-846 5030C & 8260D	P&T GC/MS
Xylenes (Total)	VOL-91-5010	modified from EPA SW-846 5030C & 8260D	P&T GC/MS
F1 (C6-C10)	VOL-91- 5010	MOE PHC-E3421	P&T GC/FID
F1 (C6 to C10) minus BTEX	VOL-91-5010	MOE PHC E3421	P&T GC/FID
F2 (C10 to C16)	VOL-91-5010	MOE PHC E3421	GC/FID
F2 (C10 to C16) minus Naphthalene	VOL-91-5010	MOE PHC E3421	GC/FID
F3 (C16 to C34)	VOL-91-5010	MOE PHC E3421	GC/FID

Method Summary

CLIENT NAME: GOLDER ASSOCIATES LTD AGAT WORK ORDER: 20Z627637
PROJECT: 19134931-002-HS-0001 ATTENTION TO: Alyssa Whiteduck

SAMPLING SITE: SAMPLED BY:

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE					
F3 (C16 to C34) minus PAHs	VOL-91-5010	MOE PHC E3421	GC/FID					
F4 (C34 to C50)	VOL-91-5010	MOE PHC E3421	GC/FID					
Gravimetric Heavy Hydrocarbons	VOL-91-5010	MOE PHC E3421	BALANCE					
Terphenyl	VOL-91-5010		GC/FID					
F1 (C6-C10)	VOL-91- 5010	modified from MOE E3421	(P&T)GC/FID					
F1 (C6 to C10) minus BTEX	VOL-91-5010	modified from MOE E3421	P&T GC/FID					
PCBs	ORG-91-5112	EPA SW-846 3510 & 8082	GC/ECD					
Decachlorobiphenyl	ORG-91-5112	EPA SW-846 3510 & 8082	GC/ECD					
Water Analysis								
Dissolved Antimony	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS					
Dissolved Arsenic	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS					
Dissolved Barium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS					
Dissolved Beryllium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS					
Dissolved Boron	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS					
Dissolved Cadmium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS					
Dissolved Chromium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS					
Dissolved Cobalt	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS					
Dissolved Copper	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS					
Dissolved Lead	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS					
Dissolved Molybdenum	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS					
Dissolved Nickel	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS					
Dissolved Selenium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS					
Dissolved Silver	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS					
Dissolved Thallium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS					
Dissolved Uranium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS					
Dissolved Vanadium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS					
Dissolved Zinc	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS					
Dissolved Sodium	MET-93-6105	modified from EPA 6010D	ICP/OES					
Chloride	INOR-93-6004	modified from SM 4110 B	ION CHROMATOGRAPH					
pH INOR-93-6000 modified from SM 4500-H+ B PC TITRATE								

5835 Coopers Avenue

Laboratory Use Only

Laboratories	Mississauga, Ontario L4Z 1Y2 Ph: 905.712.5100 Fax: 905.712.5122 Work Order #: 10 163
Date Lactured	webearth.agatlabs.com Cooler Quantity:
Chain of Custody Record If this is a Drinking Water sample, please use Drinking	Water Chain of Custody Form (potable water consumed by humans) Arrival Temperatures:
	tory Requirements: No Regulatory Requirement Custody Seal Intact: Yes Workers

Chain of Custody Reco	rd If this is	a Drinking Wa	ter sample,	please use [Drinking Water Chain of Custody Form (potable	water consu	med by huma	ns)		А	rrival T	empe	eratur#	es:	IV	17	14.2	13	, 8
Report Information: Company: Contact: Address:	Ke.			(P	Regulatory Requirements: ☐ No Regulatory Requirement (Please check all applicable boxes) Regulation 153/04 ☐ Sewer Use ☐ Regulation 558						Custody Seal Intact: Yes No No Notes: Turnaround Time (TAT) Required:									
		,			Table					Regular TAT 5 to 7 Business Days										
Phone: Reports to be sent to: 1. Email: Alussa White 2. Email:		Golde	r-Con	So	Sto	rm ate One		Prov. Wate Objectives Other	(PWQ		Ru		3 Busi Days	siness	charges A	Apply) 2 B Da)	Busines: ys	5 Da	Next Busi Day	
Project Information: Project: Site Location: Sampled By:	002-H	S-000	31		Is this submission for a Record of Site Condition? Yes			t Guidell cate of Ai		is			TAT is	exclu	isive of	f weeke	ends ar		sh TAT ry holidays AGAT CPN	
AGAT Quote #: Please note: If quotation number	PO:	vill be talled full price	e for analysis.	S	sample Matrix Legend	CrVI	-	Reg 153		-						□PCBs		anic		(N/V) nc
Invoice Information: Company: Contact: Address: Email:		Bill To Same:	Yes N	⊙ □	W Ground Water Oil Paint Soil	Field Filtered - Metals, Hg,	Metals and Inorganics □ All Metals □ 153 Metals (excl. Hydrides)	ide Metals 153 Metals (Incl. Hydrides) B-HWS C CN C C C C C	tals Scan	Regulation/Custom Metals Nutrients: ☐ TP ☐ NH3 ☐ TKN ☐ NO ☐ NO +NO	s: \(\text{VOC} \text{X}\\ \text{BTEX} \(\text{THM} \)	1 - F4			PCBS Notal DAroclors Organochlorine Pesticides	Š	Use	s and Irona		v Hazardous or High Concentrati
Sample Identification	Date Sampled	Time Sampled	# of Containers	Sample Matrix	Comments/ Special Instructions	Y/N	Metals	ORPs: [Full Metals	Regulation/Cu Nutrients: T	Volatiles:	PHCs F1 - F4	ABNS	PAHS	Organo	TCLP: 🗆 M&I	Sewer	Teta C	3	Potential
MW 20-085 MW 20-01 MW 20-065 MW 20-065 Trip Hank Empty battles	22bdx		10 10 10 10	GW GW GW W		1 - 4444		V			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	V V V V	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	V V V V V V V V V V V V V V V V V V V				V V V V V V	'	
					-4															
Samples Retinquished By (Print Name and Sign): PCWOLF WATER A Samples Retinquished By (Print Name and Sign): Samples ** .inquished By (Print Name and Sign):	Leethe Factor 20	20107	121	134C	Samples Received By (Print Name and Sign). Samples Received By (Print Name and Sign): Samples Received By (Print Name and Fifth):	70	ely"	22/2	02	Date Date	1	V Tin		50		F °: T	Page _	L_of_	33	

Pink Copy - Client | Yellow Copy - AGAT | White Copy- AGAT | Page 16 of 16

CLIENT NAME: GOLDER ASSOCIATES LTD 1931 ROBERTSON ROAD OTTAWA, ON K2H5B7 (613) 592-9600

ATTENTION TO: Alyssa Whiteduck PROJECT: 19134931 Bayshore

AGAT WORK ORDER: 20Z612548

SOIL ANALYSIS REVIEWED BY: Jacky Zhu, Spectroscopy Technician

TRACE ORGANICS REVIEWED BY: Oksana Gushyla, Trace Organics Lab Supervisor

DATE REPORTED: Jun 19, 2020

PAGES (INCLUDING COVER): 15 VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

Notes	

Disclaimer:

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may
 incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 30 days following analysis, unless expressly agreed otherwise in writing. Please contact your Client Project Manager if you require additional sample storage time.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other
 third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the
 services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of
 merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines
 contained in this document.
- All reportable information as specified by ISO/IEC 17025:2017 is available from AGAT Laboratories upon request.

AGAT Laboratories (V1)

Page 1 of 15

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA)

Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA) AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.

AGAT WORK ORDER: 20Z612548 PROJECT: 19134931 Bayshore 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE:

ATTENTION TO: Alyssa Whiteduck SAMPLED BY:

O. Reg. 153(511) - Metals & Inorganics (Soil) DATE RECEIVED: 2020-06-12 SAMPLE DESCRIPTION: 20-05 SA3 DUP1 SAMPLE TYPE: Soil Soil DATE SAMPLED: 2020-06-10 2020-06-10 Parameter Unit G/S RDL 1198164 1198165

		SAME	PLE TYPE:	Soil	Soil	
		DATE S	SAMPLED:	2020-06-10	2020-06-10	
Parameter	Unit	G/S	RDL	1198164	1198165	
Antimony	μg/g	7.5	0.8	<0.8	<0.8	
Arsenic	μg/g	18	1	2	2	
Barium	μg/g	390	2	316	244	
Beryllium	μg/g	4	0.5	0.6	0.6	
Boron	μg/g	120	5	<5	<5	
Boron (Hot Water Extractable)	μg/g	1.5	0.10	0.29	0.43	
Cadmium	μg/g	1.2	0.5	<0.5	<0.5	
Chromium	μg/g	160	5	69	59	
Cobalt	μg/g	22	0.5	17.0	14.0	
Copper	μg/g	140	1	30	24	
Lead	μg/g	120	1	9	11	
Molybdenum	μg/g	6.9	0.5	<0.5	0.7	
Nickel	μg/g	100	1	35	30	
Selenium	μg/g	2.4	0.4	0.5	0.4	
Silver	μg/g	20	0.2	<0.2	<0.2	
Thallium	μg/g	1	0.4	<0.4	<0.4	
Uranium	μg/g	23	0.5	0.8	0.9	
Vanadium	μg/g	86	1	78	66	
Zinc	μg/g	340	5	118	111	
Chromium, Hexavalent	μg/g	8	0.2	<0.2	<0.2	
Cyanide, Free	μg/g	0.051	0.040	<0.040	< 0.040	
Mercury	μg/g	0.27	0.10	<0.10	<0.10	
Electrical Conductivity (2:1)	mS/cm	0.7	0.005	1.22	1.28	
Sodium Adsorption Ratio	NA	5	NA	9.47	9.80	
pH, 2:1 CaCl2 Extraction	pH Units	5.0-9.0	NA	7.72	7.48	

AGAT WORK ORDER: 20Z612548 PROJECT: 19134931 Bayshore

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE:

ATTENTION TO: Alyssa Whiteduck

SAMPLED BY:

O. Reg. 153(511) - Metals & Inorganics (Soil)

DATE RECEIVED: 2020-06-12 DATE REPORTED: 2020-06-19

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Soil -

Residential/Parkland/Institutional Property Use - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

1198164-1198165 EC was determined on the DI water extract obtained from the 2:1 leaching procedure (2 parts DI water:1 part soil). pH was determined on the 0.01M CaCl2 extract prepared at 2:1 ratio. SAR is a calculated parameter.

Analysis performed at AGAT Toronto (unless marked by *)

CHARTERED CHARTER CHARTERED CHARTER CHARTERED

AGAT WORK ORDER: 20Z612548 PROJECT: 19134931 Bayshore

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE:

ATTENTION TO: Alyssa Whiteduck SAMPLED BY:

O. Reg.	153(511) -	- ORPs (Soil)	
---------	------------	---------------	--

DATE RECEIVED: 2020-06-12 DATE REPORTED: 2020-06-19

	S	AMPLE DES	20-05 SA6		
		SAM	Soil		
		DATE	SAMPLED:	2020-06-10	
Parameter	Unit	G/S	RDL	1198166	
Electrical Conductivity (2:1)	mS/cm	0.7	0.005	2.75	
Sodium Adsorption Ratio	NA	5	NA	41.6	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Soil -

Residential/Parkland/Institutional Property Use - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

1198166 EC was determined on the DI water extract obtained from the 2:1 leaching procedure (2 parts DI water:1 part soil). SAR is a calculated parameter.

Analysis performed at AGAT Toronto (unless marked by *)

CHARTERED CHEMIST

AGAT WORK ORDER: 20Z612548 PROJECT: 19134931 Bayshore 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE:

ATTENTION TO: Alyssa Whiteduck

SAMPLING SITE:						SAMPLED BY:			
O. Reg. 153(511) - PAHs (Soil)									
DATE RECEIVED: 2020-06-12						DATE REPORTED: 2020-0	D6-19		
		SAMPLE DES	CRIPTION:	20-05 SA3	DUP1				
		SAMI	PLE TYPE:	Soil	Soil				
		DATES	SAMPLED:	2020-06-10	2020-06-10				
Parameter	Unit	G/S	RDL	1198164	1198165				
Naphthalene	μg/g	0.6	0.05	<0.05	<0.05				
Acenaphthylene	μg/g	0.15	0.05	< 0.05	< 0.05				
Acenaphthene	μg/g	7.9	0.05	< 0.05	< 0.05				
Fluorene	μg/g	62	0.05	< 0.05	<0.05				
Phenanthrene	μg/g	6.2	0.05	< 0.05	< 0.05				
Anthracene	μg/g	0.67	0.05	< 0.05	< 0.05				
Fluoranthene	μg/g	0.69	0.05	< 0.05	< 0.05				
Pyrene	μg/g	78	0.05	< 0.05	<0.05				
Benz(a)anthracene	μg/g	0.5	0.05	< 0.05	< 0.05				
Chrysene	μg/g	7	0.05	<0.05	< 0.05				
Benzo(b)fluoranthene	μg/g	0.78	0.05	< 0.05	< 0.05				
Benzo(k)fluoranthene	μg/g	0.78	0.05	< 0.05	< 0.05				
Benzo(a)pyrene	μg/g	0.3	0.05	<0.05	<0.05				
Indeno(1,2,3-cd)pyrene	μg/g	0.38	0.05	<0.05	<0.05				
Dibenz(a,h)anthracene	μg/g	0.1	0.05	< 0.05	<0.05				
Benzo(g,h,i)perylene	μg/g	6.6	0.05	< 0.05	<0.05				
1 and 2 Methlynaphthalene	μg/g	0.99	0.05	< 0.05	<0.05				
Moisture Content	%		0.1	24.0	25.7				
Surrogate	Unit	Acceptab	le Limits						
Naphthalene-d8	%	50-1	140	112	109				
Acenaphthene-d10	%	50-1	140	76	77				
Chrysene-d12	%	50-1	140	87	76				

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Soil -

Residential/Parkland/Institutional Property Use - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

1198164-1198165 Results are based on the dry weight of the soil.

Note: The result for Benzo(b)Fluoranthene is the total of the Benzo(b)&j)Fluoranthene isomers because the isomers co-elute on the GC column.

2- and 1-Methyl Naphthalene is a calculated parameter. The calculated value is the sum of 2-Methyl Naphthalene and 1-Methyl Naphthalene.

Analysis performed at AGAT Toronto (unless marked by *)

AGAT WORK ORDER: 20Z612548 PROJECT: 19134931 Bayshore 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE:

ATTENTION TO: Alyssa Whiteduck

SAMPLED BY:

\cap	Raa	153/511)	- PHCs F1	- F4 (with	PAHs) (Soil)
U.	neu.	155(511)	- FIICS FI	- F4 (WILII	LAUST (2011)

5. 169. 166(611) 1116611 11 (William 7116) (Gen)								
DATE RECEIVED: 2020-06-12						DATE REPORTED: 2020-06-19		
		SAMPLE DESC	CRIPTION:	20-05 SA3	DUP1			
		SAMF	LE TYPE:	Soil	Soil			
		DATE S	AMPLED:	2020-06-10	2020-06-10			
Parameter	Unit	G/S	RDL	1198164	1198165			
Benzene	μg/g	0.21	0.02	<0.02	<0.02			
Toluene	μg/g	2.3	0.05	< 0.05	< 0.05			
Ethylbenzene	μg/g	2	0.05	< 0.05	< 0.05			
Xylenes (Total)	μg/g	3.1	0.05	< 0.05	< 0.05			
F1 (C6 to C10)	μg/g	55	5	<5	<5			
F1 (C6 to C10) minus BTEX	μg/g	55	5	<5	<5			
F2 (C10 to C16)	μg/g	98	10	<10	<10			
F2 (C10 to C16) minus Naphthalene	μg/g		10	<10	<10			
F3 (C16 to C34)	μg/g	300	50	<50	<50			
F3 (C16 to C34) minus PAHs	μg/g		50	<50	<50			
F4 (C34 to C50)	μg/g	2800	50	<50	<50			
Gravimetric Heavy Hydrocarbons	μg/g	2800	50	NA	NA			
Moisture Content	%		0.1	24.0	25.7			
Surrogate	Unit	Acceptabl	e Limits					
Terphenyl	%	60-1	40	104	98			

AGAT WORK ORDER: 20Z612548 PROJECT: 19134931 Bayshore

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE:

ATTENTION TO: Alyssa Whiteduck

SAMPLED BY:

O. Reg. 153(511) - PHCs F1 - F4 (with PAHs) (Soil)

DATE RECEIVED: 2020-06-12 DATE REPORTED: 2020-06-19

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Soil -

Residential/Parkland/Institutional Property Use - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

1198164-1198165 Results are based on sample dry weight.

The C6-C10 fraction is calculated using toluene response factor.

Xylenes total is a calculated parameter. The calculated value is the sum of m&p-Xylene and o-Xylene.

C6–C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX.

The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and n-C34.

Gravimetric Heavy Hydrocarbons are not included in the Total C16-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons >C50 are present.

The chromatogram has returned to baseline by the retention time of nC50.

Total C6 - C50 results are corrected for BTEX and PAH contributions.

C>10 - C16 (F2- Naphthalene) is a calculated parameter. The calculated value is F2 - Naphthalene.

C>16 - C34 (F3-PAH) is a calculated parameter. The calculated value is F3-PAH (PAH: sum of Phenanthrene, Benzo(a)anthracene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Benzo(a)pyrene,

Fluoranthene, Dibenzo(a,h)anthracene, Indeno(1,2,3-c,d)pyrene and Pyrene).

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 + nC34 average.

Linearity is within 15%.

Extraction and holding times were met for this sample.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

Guideline Violation

AGAT WORK ORDER: 20Z612548 PROJECT: 19134931 Bayshore

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD

ATTENTION TO: Alyssa Whiteduck

SAMPLEID	SAMPLE TITLE	GUIDELINE	ANALYSIS PACKAGE	PARAMETER	UNIT	GUIDEVALUE	RESULT
1198164	20-05 SA3	ON T3 S RPI CT	O. Reg. 153(511) - Metals & Inorganics (Soil)	Electrical Conductivity (2:1)	mS/cm	0.7	1.22
1198164	20-05 SA3	ON T3 S RPI CT	O. Reg. 153(511) - Metals & Inorganics (Soil)	Sodium Adsorption Ratio	NA	5	9.47
1198165	DUP1	ON T3 S RPI CT	O. Reg. 153(511) - Metals & Inorganics (Soil)	Electrical Conductivity (2:1)	mS/cm	0.7	1.28
1198165	DUP1	ON T3 S RPI CT	O. Reg. 153(511) - Metals & Inorganics (Soil)	Sodium Adsorption Ratio	NA	5	9.80
1198166	20-05 SA6	ON T3 S RPI CT	O. Reg. 153(511) - ORPs (Soil)	Electrical Conductivity (2:1)	mS/cm	0.7	2.75
1198166	20-05 SA6	ON T3 S RPI CT	O. Reg. 153(511) - ORPs (Soil)	Sodium Adsorption Ratio	NA	5	41.6

AGAT WORK ORDER: 20Z612548

ATTENTION TO: Alyssa Whiteduck

Quality Assurance

CLIENT NAME: GOLDER ASSOCIATES LTD

PROJECT: 19134931 Bayshore

SAMPLING SITE: SAMPLED BY:

SAMILENCOTE.																
				Soi	l Ana	alysis	S									
RPT Date: Jun 19, 2020			C	UPLICATI	E		REFERENCE MATERIAL			METHOD	BLANK	SPIKE	MAT	MATRIX SPIKE		
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured	Acceptable d Limits		Acceptable Limits		Recovery	Acceptable Limits			
		ld		.			Value	Lower	Upper	,	Lower	Upper		Lower	Upper	
O. Reg. 153(511) - Metals & Inor	ganics (Soil)										•				•	
Antimony	1198164 1	198164	<0.8	<0.8	NA	< 0.8	77%	70%	130%	98%	80%	120%	104%	70%	130%	
Arsenic	1198164 1	198164	2	2	NA	< 1	109%	70%	130%	103%	80%	120%	100%	70%	130%	
Barium	1198164 1	198164	316	315	0.3%	< 2	111%	70%	130%	101%	80%	120%	102%	70%	130%	
Beryllium	1198164 1	198164	0.6	0.6	NA	< 0.5	88%	70%	130%	107%	80%	120%	72%	70%	130%	
Boron	1198164 1	198164	<5	<5	NA	< 5	91%	70%	130%	98%	80%	120%	90%	70%	130%	
Boron (Hot Water Extractable)	1201276		0.12	0.12	NA	< 0.10	108%	60%	140%	104%	70%	130%	102%	60%	140%	
Cadmium	1198164 1	198164	<0.5	<0.5	NA	< 0.5	100%	70%	130%	103%	80%	120%	103%	70%	130%	
Chromium	1198164 1	198164	69	69	0.0%	< 5	98%	70%	130%	104%	80%	120%	110%	70%	130%	
Cobalt	1198164 1	198164	17.0	17.0	0.0%	< 0.5	94%	70%	130%	101%	80%	120%	92%	70%	130%	
Copper	1198164 1	198164	30	29	3.4%	< 1	91%	70%	130%	112%	80%	120%	98%	70%	130%	
Lead	1198164 1	198164	9	9	0.0%	< 1	108%	70%	130%	108%	80%	120%	101%	70%	130%	
Molybdenum	1198164 1	198164	<0.5	0.5	NA	< 0.5	103%	70%	130%	102%	80%	120%	102%	70%	130%	
Nickel	1198164 1	198164	35	35	0.0%	< 1	96%	70%	130%	106%	80%	120%	96%	70%	130%	
Selenium	1198164 1	198164	0.5	< 0.4	NA	< 0.4	135%	70%	130%	99%	80%	120%	99%	70%	130%	
Silver	1198164 1	198164	<0.2	<0.2	NA	< 0.2	94%	70%	130%	104%	80%	120%	97%	70%	130%	
Thallium	1198164 1	198164	<0.4	<0.4	NA	< 0.4	113%	70%	130%	104%	80%	120%	99%	70%	130%	
Uranium	1198164 1	198164	0.8	0.8	NA	< 0.5	112%	70%	130%	104%	80%	120%	101%	70%	130%	
Vanadium	1198164 1	198164	78	80	2.5%	< 1	94%	70%	130%	98%	80%	120%	103%	70%	130%	
Zinc	1198164 1	198164	118	119	0.8%	< 5	100%	70%	130%	109%	80%	120%	111%	70%	130%	
Chromium, Hexavalent	1201276		<0.2	<0.2	NA	< 0.2	90%	70%	130%	85%	80%	120%	95%	70%	130%	
Cyanide, Free	1207499		<0.040	<0.040	NA	< 0.040	102%	70%	130%	100%	80%	120%	83%	70%	130%	
Mercury	1198164 1	198164	<0.10	<0.10	NA	< 0.10	104%	70%	130%	99%	80%	120%	97%	70%	130%	
Electrical Conductivity (2:1)	1198164 1	198164	1.22	1.23	0.8%	< 0.005	102%	80%	120%							
Sodium Adsorption Ratio	1198164 1	198164	9.47	9.62	1.6%	NA										
pH, 2:1 CaCl2 Extraction	1201533		7.79	7.89	1.3%	NA	100%	80%	120%							

Comments: NA signifies Not Applicable.

pH duplicates QA acceptance criteria was met relative as stated in Table 5-15 of Analytical Protocol document.

If the RPD value is NA, the results of the duplicates are under 5X the RDL and will not be calculated.

CHARTERED OF THE MEMORY OF THE

Quality Assurance

CLIENT NAME: GOLDER ASSOCIATES LTD

PROJECT: 19134931 Bayshore

AGAT WORK ORDER: 20Z612548 ATTENTION TO: Alyssa Whiteduck

SAMPLING SITE: SAMPLED BY:

			Trac	e Org	gani	cs Ar	nalys	is							
RPT Date: Jun 19, 2020				UPLICATI	E		REFERENCE MATERIAL		METHOD BLANK SPIKE			MATRIX SPIKE			
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		eptable mits	Recovery	Acceptable Limits		Recovery		eptable mits
		ld	·	,			Value	Lower	Upper	ĺ	Lower	Upper	,	Lower	Upper
O. Reg. 153(511) - PHCs F1 - F4 (with PAHs)	(Soil)													
Benzene	1193853		< 0.02	< 0.02	NA	< 0.02	83%	50%	140%	83%	60%	130%	107%	50%	140%
Toluene	1193853		< 0.05	< 0.05	NA	< 0.05	114%	50%	140%	117%	60%	130%	118%	50%	140%
Ethylbenzene	1193853		< 0.05	< 0.05	NA	< 0.05	112%	50%	140%	92%	60%	130%	111%	50%	140%
Xylenes (Total)	1193853		< 0.05	< 0.05	NA	< 0.05	99%	50%	140%	104%	60%	130%	105%	50%	140%
F1 (C6 to C10)	1193853		< 5	< 5	NA	< 5	119%	60%	140%	105%	60%	140%	116%	60%	140%
F2 (C10 to C16)	1197195		< 10	< 10	NA	< 10	102%	60%	140%	98%	60%	140%	124%	60%	140%
F3 (C16 to C34)	1197195		< 50	< 50	NA	< 50	105%	60%	140%	80%	60%	140%	100%	60%	140%
F4 (C34 to C50)	1197195		< 50	< 50	NA	< 50	100%	60%	140%	94%	60%	140%	103%	60%	140%
O. Reg. 153(511) - PAHs (Soil)															
Naphthalene	1201014		< 0.05	< 0.05	NA	< 0.05	81%	50%	140%	92%	50%	140%	112%	50%	140%
Acenaphthylene	1201014		< 0.05	< 0.05	NA	< 0.05	112%	50%	140%	116%	50%	140%	114%	50%	140%
Acenaphthene	1201014		< 0.05	< 0.05	NA	< 0.05	89%	50%	140%	90%	50%	140%	91%	50%	140%
Fluorene	1201014		< 0.05	< 0.05	NA	< 0.05	81%	50%	140%	109%	50%	140%	95%	50%	140%
Phenanthrene	1201014		< 0.05	< 0.05	NA	< 0.05	103%	50%	140%	103%	50%	140%	102%	50%	140%
Anthracene	1201014		< 0.05	< 0.05	NA	< 0.05	107%	50%	140%	106%	50%	140%	116%	50%	140%
Fluoranthene	1201014		< 0.05	< 0.05	NA	< 0.05	115%	50%	140%	105%	50%	140%	105%	50%	140%
Pyrene	1201014		< 0.05	< 0.05	NA	< 0.05	106%	50%	140%	98%	50%	140%	116%	50%	140%
Benz(a)anthracene	1201014		< 0.05	< 0.05	NA	< 0.05	107%	50%	140%	103%	50%	140%	108%	50%	140%
Chrysene	1201014		< 0.05	< 0.05	NA	< 0.05	115%	50%	140%	117%	50%	140%	95%	50%	140%
Benzo(b)fluoranthene	1201014		< 0.05	< 0.05	NA	< 0.05	112%	50%	140%	114%	50%	140%	111%	50%	140%
Benzo(k)fluoranthene	1201014		< 0.05	< 0.05	NA	< 0.05	108%	50%	140%	99%	50%	140%	112%	50%	140%
Benzo(a)pyrene	1201014		< 0.05	< 0.05	NA	< 0.05	110%	50%	140%	96%	50%	140%	95%	50%	140%
Indeno(1,2,3-cd)pyrene	1201014		< 0.05	< 0.05	NA	< 0.05	84%	50%	140%	95%	50%	140%	95%	50%	140%
Dibenz(a,h)anthracene	1201014		< 0.05	< 0.05	NA	< 0.05	87%	50%	140%	94%	50%	140%	90%	50%	140%
Benzo(g,h,i)perylene	1201014		< 0.05	< 0.05	NA	< 0.05	100%	50%	140%	96%	50%	140%	90%	50%	140%

Comments: When the average of the sample and duplicate results is less than 5x the RDL, the Relative Percent Difference (RPD) will be indicated as Not Applicable (NA).

Certified By:

Jung

QA Violation

CLIENT NAME: GOLDER ASSOCIATES LTD

AGAT WORK ORDER: 20Z612548

PROJECT: 19134931 Bayshore

ATTENTION TO: Alyssa Whiteduck

RPT Date: Jun 19, 2020			REFEREN	ICE MAT	ERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPII	KE
PARAMETER	Sample Id	Sample Description	Measured	Accep Limi	ite	Recovery	Lin	ptable nits	Acceptate Limits		
. ,			Value	Lower		,		Upper	,		Upper

O. Reg. 153(511) - Metals & Inorganics (Soil)

Selenium 1198164 20-05 SA3 135% 70% 130% 99% 80% 120% 99% 70% 130%

Comments: NA signifies Not Applicable.

pH duplicates QA acceptance criteria was met relative as stated in Table 5-15 of Analytical Protocol document.

If the RPD value is NA, the results of the duplicates are under 5X the RDL and will not be calculated.

Method Summary

CLIENT NAME: GOLDER ASSOCIATES LTD

PROJECT: 19134931 Bayshore

SAMPLING SITE:

AGAT WORK ORDER: 20Z612548
ATTENTION TO: Alyssa Whiteduck

SAMPLED BY:

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE		
Soil Analysis					
Antimony	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS		
Arsenic	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS		
Barium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS		
Beryllium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS		
Boron	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS		
Boron (Hot Water Extractable)	MET-93-6104	modified from EPA 6010D and MSA PART 3, CH 21	ICP/OES		
Cadmium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS		
Chromium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS		
Cobalt	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS		
Copper	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS		
Lead	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS		
Molybdenum	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS		
Nickel	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS		
Selenium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS		
Silver	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS		
Thallium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS		
Uranium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS		
Vanadium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS		
Zinc	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS		
Chromium, Hexavalent	INOR-93-6068	modified from EPA 3060 and EPA 7196	SPECTROPHOTOMETER		
Cyanide, Free	INOR-93-6052	modified from ON MOECC E3015 and SM 4500-CN- I	TECHNICON AUTO ANALYZER		
Mercury	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS		
Electrical Conductivity (2:1)	INOR-93-6036	modified from MSA PART 3, CH 14 and SM 2510 B	EC METER		
Sodium Adsorption Ratio	INOR-93-6007	McKeague 4.12 & 3.26 & EPA SW-846 6010C	ICP/OES		
pH, 2:1 CaCl2 Extraction	INOR-93-6031	modified from EPA 9045D and MCKEAGUE 3.11	PH METER		

Method Summary

CLIENT NAME: GOLDER ASSOCIATES LTD

AGAT WORK ORDER: 20Z612548

PROJECT: 19134931 Bayshore

ATTENTION TO: Alyssa Whiteduck

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Trace Organics Analysis	·		
Naphthalene	ORG-91-5106	modified from EPA 3541 and EPA 8270E	GC/MS
Acenaphthylene	ORG-91-5106	modified from EPA 3541 and EPA 8270E	GC/MS
Acenaphthene	ORG-91-5106	modified from EPA 3541 and EPA 8270E	GC/MS
Fluorene	ORG-91-5106	modified from EPA 3541 and EPA 8270E	GC/MS
Phenanthrene	ORG-91-5106	modified from EPA 3541 and EPA 8270E	GC/MS
Anthracene	ORG-91-5106	modified from EPA 3541 and EPA 8270E	GC/MS
Fluoranthene	ORG-91-5106	modified from EPA 3541 and EPA 8270E	GC/MS
Pyrene	ORG-91-5106	modified from EPA 3541 and EPA 8270E	GC/MS
Benz(a)anthracene	ORG-91-5106	modified from EPA 3541 and EPA 8270E	GC/MS
Chrysene	ORG-91-5106	modified from EPA 3541 and EPA 8270E	GC/MS
Benzo(b)fluoranthene	ORG-91-5106	modified from EPA 3541 and EPA 8270E	GC/MS
Benzo(k)fluoranthene	ORG-91-5106	modified from EPA 3541 and EPA 8270E	GC/MS
Benzo(a)pyrene	ORG-91-5106	modified from EPA 3541 and EPA 8270E	GC/MS
Indeno(1,2,3-cd)pyrene	ORG-91-5106	modified from EPA 3541 and EPA 8270E	GC/MS
Dibenz(a,h)anthracene	ORG-91-5106	modified from EPA 3541 and EPA 8270E	GC/MS
Benzo(g,h,i)perylene	ORG-91-5106	modified from EPA 3541 and EPA 8270E	GC/MS
1 and 2 Methlynaphthalene	ORG-91-5106	modified from EPA 3541 and EPA 8270E	GC/MS
Moisture Content	ORG-91-5106	Tier 1 Method	BALANCE
Naphthalene-d8	ORG-91-5106	modified from EPA 3541 & 8270E	GC/MS
Acenaphthene-d10	ORG-91-5106	modified from EPA 3541 & 8270E	GC/MS
Chrysene-d12	ORG-91-5106	modified from EPA 3541 & 8270E	GC/MS
Benzene	VOL-91-5009	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
Toluene	VOL-91-5009	modified from EPA SW-846 5035C & 8260D	P&T GC/MS
Ethylbenzene	VOL-91-5009	modified from EPA SW-846 5035C & 8260D	P&T GC/MS
Xylenes (Total)	VOL-91-5009	modified from EPA SW-846 5035C & 8260D	P&T GC/MS
F1 (C6 to C10)	VOL-91-5009	modified from CCME Tier 1 Method	P&T GC/FID
F1 (C6 to C10) minus BTEX	VOL-91-5009	modified from CCME Tier 1 Method	P&T GC/FID
F2 (C10 to C16)	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID
F2 (C10 to C16) minus Naphthalene	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID
F3 (C16 to C34)	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID
F3 (C16 to C34) minus PAHs	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID
F4 (C34 to C50)	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID
Gravimetric Heavy Hydrocarbons	VOL-91-5009	modified from CCME Tier 1 Method	BALANCE

Method Summary

CLIENT NAME: GOLDER ASSOCIATES LTD

AGAT WORK ORDER: 20Z612548

PROJECT: 19134931 Bayshore

ATTENTION TO: Alyssa Whiteduck

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Moisture Content	VOL-91-5009	modified from CCME Tier 1 Method	BALANCE
Terphenyl	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID

5835 Coopers Avenue Mississauga, Ontario L4Z 1Y2

Ph: 905.712.5100 Fax: 905.712.5122 webearth.agatlabs.com

Laboratory Use Only Work Order #: 207612548 Cooler Quantity: One - onice

Chain of Custody Record If this is a Drinking Water sample, pleas	use Drinklng Water Chain of Custody Form (potable water consumed by hur	umans) Arrival Temperatures: 4.5 4.6 4.6					
Report Information: Company: Colder Associates Contact: Alway Whiterluck / Keith Itolmes	Regulatory Requirements: No Regulatory F	Requirement Custody Seal Intact: Yes No N/A Notes: Yes No N/A					
Address: 1931 Roberton Road	Regulation 153/04 Sewer Use Regulation Table Sanitary CCME	Turnaround Time (TAT) Required: Regular TAT					
Phone: 613-290-8736 Fax: Reports to be sent to: 1. Email: awhiteduck a hotmail.com kholmes a golder.com	Prov. Water Quality Objectives (PWQO) Soil Texture (Check One) Indicate One Indicate One Other 3 Business Days Day						
Project Information: Project: 19134931 Baupshare Site Location: Sampled By:	Is this submission for a Report Guide Record of Site Condition? Certificate of A						
AGAT Quote #: PO: Please note: If quotation number is not provided, client will be billed full price for analysis.	Sample Matrix Legend B Biota GW Ground Water	D DPCBs					
Invoice Information: Company: Contact: Address: Email:	B Blota GM Ground Mater O Oil B Paint S Social Instructions Cowments □ 153 Metals (Act) + Mortide Metals (Act) +	N M M M M M M M M M M M M M M M M M M M					
	uple Comments/ strix Special Instructions	PHCS F1 - F PHCS					
20-05 SA3 June 10/2020 4 1		XXX					
20-05 SA6 " 1 4	S						
amples Relinquished By (Print Name and Sign): Date Time	Sameter Beeckard By (Britt Assure and Circo)						
amples Relinquished By (Print Name and Sign): Aug 550 What club (Ally or Whole Time 19/2070 amples Relinquished By (Print Name and Sign): Time 19/2070 Time 4 4 amples Relinquished By (Print Name and Sign): To 20 (Date 1 7 Time 4 4 2 Time 2 4 4 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	9:30 Samples metahad By (Print Surge and Sign)	Date Odla . IZNSS Time 11' JS M Page of					
amples Relinquisting by White Denie was Signs. Date Time Support ID, DIW76 1513,035		Date Time No: T 093908					

CLIENT NAME: GOLDER ASSOCIATES LTD 1931 ROBERTSON ROAD OTTAWA, ON K2H5B7

(613) 592-9600 ATTENTION TO: Keith Holmes

DDO 1507: 40404004 D ----- b -

PROJECT: 19134931 Bayshore

AGAT WORK ORDER: 20Z617404

SOIL ANALYSIS REVIEWED BY: Amanjot Bhela, Inorganic Lab Manager

TRACE ORGANICS REVIEWED BY: Oksana Gushyla, Trace Organics Lab Supervisor

DATE REPORTED: Jul 02, 2020

PAGES (INCLUDING COVER): 23 VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

Notes	

Disclaimer:

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may
 incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 30 days following analysis, unless expressly agreed otherwise in writing. Please contact your Client Project Manager if you require additional sample storage time.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other
 third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the
 services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of
 merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines
 contained in this document.
- All reportable information as specified by ISO/IEC 17025:2017 is available from AGAT Laboratories upon request.

AGAT Laboratories (V1)

Page 1 of 23

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA)

Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA) AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.

AGAT WORK ORDER: 20Z617404 PROJECT: 19134931 Bayshore 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE:

ATTENTION TO: Keith Holmes SAMPLED BY:

			Ο.	Reg. 153(5	511) - Metals 8	Inorganics (Soil)
DATE RECEIVED: 2020-06-24						DATE REPORTED: 2020-07-02
	S		CRIPTION: PLE TYPE: SAMPLED:	20-06 SA2 Soil 2020-06-22	20-08 SA1 Soil 2020-06-19	
Parameter	Unit	G/S	RDL	1222779	1222782	
Antimony	μg/g	7.5	0.8	<0.8	<0.8	
Arsenic	μg/g	18	1	2	2	
Barium	μg/g	390	2	331	240	
Beryllium	μg/g	4	0.5	0.9	<0.5	
Boron	μg/g	120	5	6	21	
Boron (Hot Water Extractable)	μg/g	1.5	0.10	<0.10	0.50	
Cadmium	μg/g	1.2	0.5	<0.5	<0.5	
Chromium	μg/g	160	5	85	16	
Cobalt	μg/g	22	0.5	22.0	6.2	
Copper	μg/g	140	1	35	7	
∟ead	μg/g	120	1	7	11	
Molybdenum	μg/g	6.9	0.5	<0.5	1.4	
lickel	μg/g	100	1	49	13	
Selenium	μg/g	2.4	0.4	<0.4	<0.4	
Silver	μg/g	20	0.2	<0.2	<0.2	
⁻ hallium	μg/g	1	0.4	0.4	<0.4	
Jranium	μg/g	23	0.5	0.7	<0.5	
/anadium	μg/g	86	1	106	21	
'inc	μg/g	340	5	127	17	
Chromium, Hexavalent	μg/g	8	0.2	<0.2	<0.2	
Syanide, Free	μg/g	0.051	0.040	<0.040	<0.040	
1ercury	μg/g	0.27	0.10	<0.10	<0.10	
Electrical Conductivity (2:1)	mS/cm	0.7	0.005	0.410	0.337	
Sodium Adsorption Ratio	NA	5	NA	5.02	0.216	
pH, 2:1 CaCl2 Extraction	pH Units	5.0-9.0	NA	7.73	9.23	

AGAT WORK ORDER: 20Z617404 PROJECT: 19134931 Bayshore 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE:

ATTENTION TO: Keith Holmes

SAMPLED BY:

O. Reg. 153(511) - Metals & Inorganics (Soil)

DATE RECEIVED: 2020-06-24 DATE REPORTED: 2020-07-02

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Soil -

Residential/Parkland/Institutional Property Use - Coarse Textured Soils
Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

1222779-1222782 EC was determined on the DI water extract obtained from the 2:1 leaching procedure (2 parts DI water:1 part soil). pH was determined on the 0.01M CaCl2 extract prepared at 2:1 ratio. SAR is a calculated

parameter.

Analysis performed at AGAT Toronto (unless marked by *)

Amanjot Bhelly Amanjor Bhelly Shannor Bhelly Shanno

NA

Certificate of Analysis

4.58

AGAT WORK ORDER: 20Z617404 PROJECT: 19134931 Bayshore 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE:

ATTENTION TO: Keith Holmes

SAMPLED BY:

1.62

	O. Reg. 153(511) - ORPs (Soil)										
DATE RECEIVED: 2020-06-24								DATE REPORTED: 2020-07-02			
		SAMPLE DES	CRIPTION:	20-05 SA16	20-06 SA7	DUP-1-06	20-08 SA6				
		SAM	PLE TYPE:	Soil	Soil	Soil	Soil				
		DATE	SAMPLED:	2020-06-10	2020-06-22	2020-06-22	2020-06-19				
Parameter	Unit	G/S	RDL	1222778	1222780	1222781	1222783				
Electrical Conductivity (2:1)	mS/cm	0.7	0.005	0.209	0.684	0.427	1.05				

Comments:

Sodium Adsorption Ratio

RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Soil - Residential/Parkland/Institutional Property Use - Coarse Textured Soils

0.494

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

1222778-1222783 EC was determined on the DI water extract obtained from the 2:1 leaching procedure (2 parts DI water:1 part soil). SAR is a calculated parameter.

1.28

NA

Analysis performed at AGAT Toronto (unless marked by *)

manjot Bhells Amanjo Bhels CHEMIST

mg/L

mg/L

mg/L

Certificate of Analysis

AGAT WORK ORDER: 20Z617404 PROJECT: 19134931 Bayshore 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE:

Selenium Leachate

Uranium Leachate

Silver Leachate

ATTENTION TO: Keith Holmes

SAMPLED BY:

					O. Reg. 558 Metals
DATE RECEIVED: 2020-06-24					DATE REPORTED: 2020-07-02
	S	SAMPLE DES	CRIPTION:	20-06 SA1	
		SAMI	PLE TYPE:	Soil	
		DATES	SAMPLED:	2020-06-22	
Parameter	Unit	G/S	RDL	1222784	
Arsenic Leachate	mg/L	2.5	0.010	< 0.010	
Barium Leachate	mg/L	100	0.100	0.734	
Boron Leachate	mg/L	500	0.050	0.053	
Cadmium Leachate	mg/L	0.5	0.010	< 0.010	
Chromium Leachate	mg/L	5	0.010	< 0.010	
Lead Leachate	mg/L	5	0.010	< 0.010	
Mercury Leachate	mg/L	0.1	0.01	<0.01	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to O. Reg. 558 - Schedule IV Leachate Quality Criteria

5

10

0.010

0.010

0.050

< 0.010

<0.010

< 0.050

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

Analysis performed at AGAT Toronto (unless marked by *)

Amanjot Bhells Amanjot Bhells OCHEMIST

AGAT WORK ORDER: 20Z617404 PROJECT: 19134931 Bayshore 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE:

ATTENTION TO: Keith Holmes

SAMPLED BY:

	Flash Point Analysis										
DATE RECEIVED: 2020-06-24					DATE REPORTED: 2020-07-02						
	S	SAMPLE DES	CRIPTION:	20-06 SA1							
		SAM	PLE TYPE:	Soil							
		DATE SAMPLED:		2020-06-22							
Parameter	Unit	G/S	RDL	1222784							
Flash point (Pensky Martin Closed Cup)	Deg C		NA	>100							

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

Analysis performed at AGAT Calgary (unless marked by *)

AGAT WORK ORDER: 20Z617404 PROJECT: 19134931 Bayshore 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE:

ATTENTION TO: Keith Holmes

SAMPLED BY:

				O. Re	g. 153(511) -	PAHs (Soil)
DATE RECEIVED: 2020-06-24						DATE REPORTED: 2020-07-02
	5	SAMPLE DES SAMI	CRIPTION: PLE TYPE:	20-06 SA2 Soil	20-08 SA1 Soil	
			SAMPLED:	2020-06-22	2020-06-19	
Parameter	Unit	G/S	RDL	1222779	1222782	
Naphthalene	μg/g	0.6	0.05	< 0.05	<0.05	
Acenaphthylene	μg/g	0.15	0.05	< 0.05	<0.05	
Acenaphthene	μg/g	7.9	0.05	<0.05	<0.05	
Fluorene	μg/g	62	0.05	<0.05	<0.05	
Phenanthrene	μg/g	6.2	0.05	< 0.05	0.27	
Anthracene	μg/g	0.67	0.05	< 0.05	0.09	
Fluoranthene	μg/g	0.69	0.05	< 0.05	0.71	
Pyrene	μg/g	78	0.05	< 0.05	0.60	
Benz(a)anthracene	μg/g	0.5	0.05	< 0.05	0.34	
Chrysene	μg/g	7	0.05	<0.05	0.28	
Benzo(b)fluoranthene	μg/g	0.78	0.05	< 0.05	0.39	
Benzo(k)fluoranthene	μg/g	0.78	0.05	<0.05	0.14	
Benzo(a)pyrene	μg/g	0.3	0.05	< 0.05	0.11	
Indeno(1,2,3-cd)pyrene	μg/g	0.38	0.05	< 0.05	0.17	
Dibenz(a,h)anthracene	μg/g	0.1	0.05	< 0.05	< 0.05	
Benzo(g,h,i)perylene	μg/g	6.6	0.05	< 0.05	0.17	
1 and 2 Methlynaphthalene	μg/g	0.99	0.05	< 0.05	< 0.05	
Moisture Content	%		0.1	24.3	2.7	
Surrogate	Unit	Acceptab	le Limits			
Naphthalene-d8	%	50-1	140	73	72	
Acenaphthene-d10	%	50-1	140	74	79	
Chrysene-d12	%	50-1	140	88	98	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Soil -

Residential/Parkland/Institutional Property Use - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

1222779-1222782 Results are based on the dry weight of the soil.

Note: The result for Benzo(b)Fluoranthene is the total of the Benzo(b)&j)Fluoranthene isomers because the isomers co-elute on the GC column.

2- and 1-Methyl Naphthalene is a calculated parameter. The calculated value is the sum of 2-Methyl Naphthalene and 1-Methyl Naphthalene.

Analysis performed at AGAT Toronto (unless marked by *)

AGAT WORK ORDER: 20Z617404 PROJECT: 19134931 Bayshore 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD

OLILIAI IA/IIIL. GOLDLII / 10000I/IILO LIL

SAMPLING SITE:

ATTENTION TO: Keith Holmes

SAMPLED BY:

O/ (IVII EII VO OITE.							GANNI ELD DT.
				O. Reg. 1	53(511) - PH	ICs F1 - F4	(Soil)
DATE RECEIVED: 2020-06-24							DATE REPORTED: 2020-07-02
		SAMPLE DES	CRIPTION:	20-06 SA7	DUP-1-06	20-08 SA6	
		SAMI	PLE TYPE:	Soil	Soil	Soil	
		DATE S	SAMPLED:	2020-06-22	2020-06-22	2020-06-19	
Parameter	Unit	G/S	RDL	1222780	1222781	1222783	
Benzene	μg/g	0.21	0.02	< 0.02	<0.02	<0.02	
Toluene	μg/g	2.3	0.05	< 0.05	< 0.05	< 0.05	
Ethylbenzene	μg/g	2	0.05	< 0.05	< 0.05	< 0.05	
Xylenes (Total)	μg/g	3.1	0.05	< 0.05	< 0.05	< 0.05	
F1 (C6 to C10)	μg/g	55	5	<5	<5	<5	
F1 (C6 to C10) minus BTEX	μg/g	55	5	<5	<5	<5	
F2 (C10 to C16)	μg/g	98	10	<10	<10	<10	
F3 (C16 to C34)	μg/g	300	50	<50	<50	<50	
F4 (C34 to C50)	μg/g	2800	50	<50	<50	<50	
Gravimetric Heavy Hydrocarbons	μg/g	2800	50	NA	NA	NA	
Moisture Content	%		0.1	30.9	25.5	20.8	
Surrogate	Unit	Acceptab	le Limits				
Terphenyl	%	60-1	140	100	100	128	

Comments:

RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Soil -

Residential/Parkland/Institutional Property Use - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

1222780-1222783 Results are based on sample dry weight.

The C6-C10 fraction is calculated using Toluene response factor.

Xylenes is a calculated parameter. The calculated value is the sum of m&p-Xylene and o-Xylene.

C6-C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX.

The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and n-C34.

Gravimetric Heavy Hydrocarbons are not included in the Total C16-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons > C50 are present.

The chromatogram has returned to baseline by the retention time of nC50.

Total C6 - C50 results are corrected for BTEX contribution.

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC6 and nC10 response factors are within 30% of Toluene response factor.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 + nC34 average.

Linearity is within 15%.

Extraction and holding times were met for this sample.

Fractions 1-4 are quantified with the contribution of PAHs. Under Ontario Regulation 153, results are considered valid without determining the PAH contribution if not requested by the client.

Quality Control Data is available upon request.

Analysis performed at AGAT Toronto (unless marked by *)

AGAT WORK ORDER: 20Z617404 PROJECT: 19134931 Bayshore 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE:

ATTENTION TO: Keith Holmes SAMPLED BY:

SAMPLED B

			O. Re	eg. 153(511) - PHCs F1	- F4 (with PAHs) (Soil)
DATE RECEIVED: 2020-06-24						DATE REPORTED: 2020-07-02
		SAMPLE DESC	CRIPTION:	20-06 SA2	20-08 SA1	
		SAMI	PLE TYPE:	Soil	Soil	
		DATE S	SAMPLED:	2020-06-22	2020-06-19	
Parameter	Unit	G/S	RDL	1222779	1222782	
Benzene	μg/g	0.21	0.02	<0.02	<0.02	
Toluene	μg/g	2.3	0.05	<0.05	<0.05	
Ethylbenzene	μg/g	2	0.05	<0.05	<0.05	
Xylenes (Total)	μg/g	3.1	0.05	<0.05	<0.05	
F1 (C6 to C10)	μg/g	55	5	<5	<5	
F1 (C6 to C10) minus BTEX	μg/g	55	5	<5	<5	
F2 (C10 to C16)	μg/g	98	10	<10	<10	
F2 (C10 to C16) minus Naphthalene	μg/g		10	<10	<10	
F3 (C16 to C34)	μg/g	300	50	<50	160	
F3 (C16 to C34) minus PAHs	μg/g		50	<50	160	
F4 (C34 to C50)	μg/g	2800	50	<50	100	
Gravimetric Heavy Hydrocarbons	μg/g	2800	50	NA	NA	
Moisture Content	%		0.1	24.3	2.7	
Surrogate	Unit	Acceptab	le Limits			
Terphenyl	%	60-1	40	90	70	

AGAT WORK ORDER: 20Z617404 PROJECT: 19134931 Bayshore 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE:

ATTENTION TO: Keith Holmes

SAMPLED BY:

O. Reg. 153(511) - PHCs F1 - F4 (with PAHs) (Soil)

DATE RECEIVED: 2020-06-24 DATE REPORTED: 2020-07-02

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Soil -

Residential/Parkland/Institutional Property Use - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

1222779-1222782 Results are based on sample dry weight.

The C6-C10 fraction is calculated using toluene response factor.

Xylenes total is a calculated parameter. The calculated value is the sum of m&p-Xylene and o-Xylene.

C6-C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX.

The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and n-C34.

Gravimetric Heavy Hydrocarbons are not included in the Total C16-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons > C50 are present.

The chromatogram has returned to baseline by the retention time of nC50.

Total C6 - C50 results are corrected for BTEX and PAH contributions.

C>10 - C16 (F2- Naphthalene) is a calculated parameter. The calculated value is F2 - Naphthalene.

C>16 - C34 (F3-PAH) is a calculated parameter. The calculated value is F3-PAH (PAH: sum of Phenanthrene, Benzo(a)anthracene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Benzo(a)pyrene,

Fluoranthene, Dibenzo(a,h)anthracene, Indeno(1,2,3-c,d)pyrene and Pyrene).

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 + nC34 average.

Linearity is within 15%.

Extraction and holding times were met for this sample.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

Jung

AGAT WORK ORDER: 20Z617404 PROJECT: 19134931 Bayshore 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE:

Benzene

Parameter

ATTENTION TO: Keith Holmes

SAMPLED BY:

O. Reg. 558 - Benzene

DATE RECEIVED: 2020-06-24 DATE REPORTED: 2020-07-02

| SAMPLE DESCRIPTION: 20-06 SA1 |
| SAMPLE TYPE: Soil |
| DATE SAMPLED: 2020-06-22 |
| Unit G/S RDL 1222784 |
| mg/L 0.5 0.020 <0.020 |

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to O. Reg. 558 - Schedule IV Leachate Quality Criteria

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

1222784 Surrogate Recovery for Toluene-d8: %

Surrogate recovery for 4-Bromofluorobenzene: %

Sample was prepared using Regulation 558 protocol and a zero headspace extractor.

Results relate only to the items tested.

Analysis performed at AGAT Toronto (unless marked by *)

AGAT WORK ORDER: 20Z617404 PROJECT: 19134931 Bayshore 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE:

ATTENTION TO: Keith Holmes

SAMPLED BY:

	O. Reg. 558 - Benzo(a) pyrene												
DATE RECEIVED: 2020-06-24					DATE REPORTED: 2020-07-02								
		SAMPLE DESC	CRIPTION:	20-06 SA1									
		SAMF	PLE TYPE:	Soil									
		DATE S	SAMPLED:	2020-06-22									
Parameter	Unit	G/S	RDL	1222784									
Benzo(a)pyrene	mg/L	0.001	0.001	<0.001									
Surrogate	Unit	Acceptab	e Limits										
Naphthalene-d8	%	50-1	40	80									
Acenaphthene-d10	%	50-1	40	72									

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to O. Reg. 558 - Schedule IV Leachate Quality Criteria

76

50-140

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

1222784 The sample was leached according to Regulation 558 protocol. Analysis was performed on the leachate.

Analysis performed at AGAT Toronto (unless marked by *)

Chrysene-d12

AGAT WORK ORDER: 20Z617404 PROJECT: 19134931 Bayshore 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE:

ATTENTION TO: Keith Holmes

SAMPLED BY:

					Total PCB	s (soil)	
DATE RECEIVED: 2020-06-24							DATE REPORTED: 2020-07-02
		SAMPLE DES	CRIPTION:	20-06 SA7	DUP-1-06	20-08 SA6	
		SAM	PLE TYPE:	Soil	Soil	Soil	
		DATE	SAMPLED:	2020-06-22	2020-06-22	2020-06-19	
Parameter	Unit	G/S	RDL	1222780	1222781	1222783	
PCBs	μg/g	0.35	0.1	<0.1	<0.1	<0.1	
Moisture Content	%		0.1	30.9	25.5	20.8	
Surrogate	Unit	Acceptab	le Limits				
Decachlorobiphenyl	%	60-	130	88	100	100	

Comments:

RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Soil -

Residential/Parkland/Institutional Property Use - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

1222780-1222783 Results are based on the dry weight of soil extracted.

Analysis performed at AGAT Toronto (unless marked by *)

Guideline Violation

AGAT WORK ORDER: 20Z617404 PROJECT: 19134931 Bayshore 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD

ATTENTION TO: Keith Holmes

SAMPLEID	SAMPLE TITLE	GUIDELINE	ANALYSIS PACKAGE	PARAMETER	UNIT	GUIDEVALUE	RESULT
1222779	20-06 SA2	ON T3 S RPI CT	O. Reg. 153(511) - Metals & Inorganics (Soil)	Sodium Adsorption Ratio	NA	5	5.02
1222779	20-06 SA2	ON T3 S RPI CT	O. Reg. 153(511) - Metals & Inorganics (Soil)	Vanadium	μg/g	86	106
1222782	20-08 SA1	ON T3 S RPI CT	O. Reg. 153(511) - Metals & Inorganics (Soil)	pH, 2:1 CaCl2 Extraction	pH Units	5.0-9.0	9.23
1222782	20-08 SA1	ON T3 S RPI CT	O. Reg. 153(511) - PAHs (Soil)	Fluoranthene	μg/g	0.69	0.71
1222783	20-08 SA6	ON T3 S RPI CT	O. Reg. 153(511) - ORPs (Soil)	Electrical Conductivity (2:1)	mS/cm	0.7	1.05

Quality Assurance

CLIENT NAME: GOLDER ASSOCIATES LTD

PROJECT: 19134931 Bayshore

SAMPLING SITE:

AGAT WORK ORDER: 20Z617404
ATTENTION TO: Keith Holmes

SAMPLED BY:

Soil Analysis															
RPT Date: Jul 02, 2020			С	UPLICAT	E		REFEREN	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample Id	Dup #1	Dup #1 Dup #2	: RPD	Method Blank	Measured	Acceptable Limits		Recovery	Acceptable Limits		Recovery	Acceptable Limits	
		Ia		·			Value	Lower	Upper	ĺ	Lower	Upper		Lower	Upper
O. Reg. 153(511) - ORPs (Soil)															
Electrical Conductivity (2:1)	1223908		8.64	8.64	0.0%	< 0.005	100%	80%	120%	NA			NA		
Sodium Adsorption Ratio	1221640		1.12	1.10	1.8%	NA	NA			NA			NA		

Comments: NA signifies Not Applicable.

pH duplicates QA acceptance criteria was met relative as stated in Table 5-15 of Analytical Protocol document.

If the RPD value is NA, the results of the duplicates are under 5X the RDL and will not be calculated.

O. Reg. 153(511) - Metals & Inor	ganics (Soil)													
Antimony	1233822	<0.8	<0.8	NA	< 0.8	127%	70%	130%	99%	80%	120%	100%	70%	130%
Arsenic	1233822	3	3	NA	< 1	112%	70%	130%	99%	80%	120%	103%	70%	130%
Barium	1233822	97	100	3.0%	< 2	91%	70%	130%	96%	80%	120%	99%	70%	130%
Beryllium	1233822	0.6	0.7	NA	< 0.5	94%	70%	130%	95%	80%	120%	96%	70%	130%
Boron	1233822	8	8	NA	< 5	87%	70%	130%	102%	80%	120%	100%	70%	130%
Boron (Hot Water Extractable)	1220331	0.58	0.59	1.7%	< 0.10	115%	60%	140%	105%	70%	130%	107%	60%	140%
Cadmium	1233822	<0.5	<0.5	NA	< 0.5	108%	70%	130%	99%	80%	120%	108%	70%	130%
Chromium	1233822	25	25	0.0%	< 5	103%	70%	130%	96%	80%	120%	94%	70%	130%
Cobalt	1233822	7.6	7.8	2.6%	< 0.5	99%	70%	130%	94%	80%	120%	95%	70%	130%
Copper	1233822	16	16	0.0%	< 1	84%	70%	130%	91%	80%	120%	85%	70%	130%
Lead	1233822	11	11	0.0%	< 1	106%	70%	130%	102%	80%	120%	100%	70%	130%
Molybdenum	1233822	1.0	1.1	NA	< 0.5	102%	70%	130%	95%	80%	120%	94%	70%	130%
Nickel	1233822	16	16	0.0%	< 1	102%	70%	130%	100%	80%	120%	97%	70%	130%
Selenium	1233822	0.6	0.5	NA	< 0.4	78%	70%	130%	101%	80%	120%	105%	70%	130%
Silver	1233822	<0.2	<0.2	NA	< 0.2	98%	70%	130%	106%	80%	120%	104%	70%	130%
Thallium	1233822	<0.4	<0.4	NA	< 0.4	102%	70%	130%	107%	80%	120%	106%	70%	130%
Uranium	1233822	0.6	0.6	NA	< 0.5	98%	70%	130%	90%	80%	120%	93%	70%	130%
Vanadium	1233822	35	36	2.8%	< 1	104%	70%	130%	95%	80%	120%	98%	70%	130%
Zinc	1233822	55	55	0.0%	< 5	101%	70%	130%	100%	80%	120%	109%	70%	130%
Chromium, Hexavalent	1233822	<0.2	<0.2	NA	< 0.2	90%	70%	130%	85%	80%	120%	95%	70%	130%
Cyanide, Free	1224291	<0.040	<0.040	NA	< 0.040	107%	70%	130%	105%	80%	120%	114%	70%	130%
Mercury	1233822	<0.10	<0.10	NA	< 0.10	107%	70%	130%	96%	80%	120%	94%	70%	130%
Electrical Conductivity (2:1)	1223908	8.64	8.64	0.0%	< 0.005	100%	80%	120%	NA			NA		
Sodium Adsorption Ratio	1221640	1.12	1.10	1.8%	NA	NA			NA			NA		
pH, 2:1 CaCl2 Extraction	1224882	7.43	7.41	0.3%	NA	100%	80%	120%	NA			NA		

Comments: NA signifies Not Applicable.

pH duplicates QA acceptance criteria was met relative as stated in Table 5-15 of Analytical Protocol document.

If the RPD value is NA, the results of the duplicates are under 5X the RDL and will not be calculated.

Ο.	Reg.	558	Metals
----	------	-----	--------

•														
Arsenic Leachate	1224373	< 0.010	<0.010	NA	< 0.010	103%	70%	130%	113%	80%	120%	120%	70%	130%
Barium Leachate	1224373	0.410	0.407	NA	< 0.100	103%	70%	130%	114%	80%	120%	121%	70%	130%
Boron Leachate	1224373	< 0.050	< 0.050	NA	< 0.050	94%	70%	130%	97%	80%	120%	94%	70%	130%
Cadmium Leachate	1224373	< 0.010	< 0.010	NA	< 0.010	98%	70%	130%	100%	80%	120%	99%	70%	130%

AGAT QUALITY ASSURANCE REPORT (V1)

Page 15 of 23

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

AGAT WORK ORDER: 20Z617404

Quality Assurance

CLIENT NAME: GOLDER ASSOCIATES LTD

PROJECT: 19134931 Bayshore ATTENTION TO: Keith Holmes

SAMPLING SITE: SAMPLED BY:

Soil Analysis (Continued)															
RPT Date: Jul 02, 2020	E		REFERENCE MATERIAL			METHOD	BLANK	SPIKE	MAT	MATRIX SPIKE					
PARAMETER	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured Value	Acceptable Limits		Recovery	Acceptable Limits		Recovery	Acceptable Limits		
		ld					value	Lower	Upper	,	Lower	Upper	,		Upper
Chromium Leachate	1224373		<0.010	<0.010	NA	< 0.010	96%	70%	130%	100%	80%	120%	106%	70%	130%
Lead Leachate	1224373		0.014	0.013	NA	< 0.010	94%	70%	130%	92%	80%	120%	92%	70%	130%
Mercury Leachate	1224373		<0.01	<0.01	NA	< 0.01	102%	70%	130%	99%	80%	120%	99%	70%	130%
Selenium Leachate	1224373		<0.010	<0.010	NA	< 0.010	102%	70%	130%	115%	80%	120%	129%	70%	130%
Silver Leachate	1224373		<0.010	<0.010	NA	< 0.010	95%	70%	130%	88%	80%	120%	88%	70%	130%
Uranium Leachate	1224373		< 0.050	< 0.050	NA	< 0.050	95%	70%	130%	88%	80%	120%	87%	70%	130%

Quality Assurance

CLIENT NAME: GOLDER ASSOCIATES LTD

PROJECT: 19134931 Bayshore

AGAT WORK ORDER: 20Z617404 ATTENTION TO: Keith Holmes

SAMPLING SITE: SAMPLED BY:

		Trac	e Or	gani	cs Ar	alys	is							
RPT Date: Jul 02, 2020			DUPLICAT	E		REFERE	NCE MA	TERIAL	METHOD	BLANK	K SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		eptable mits	Recovery	Lie	eptable mits	Recovery		ptable
	la la	,	·			Value	Lower	Upper	j	Lower	Upper	ĺ	Lower	Upper
O. Reg. 153(511) - PAHs (Soil)														
Naphthalene	1224212	< 0.05	< 0.05	NA	< 0.05	95%	50%	140%	77%	50%	140%	89%	50%	140%
Acenaphthylene	1224212	< 0.05	< 0.05	NA	< 0.05	113%	50%	140%	94%	50%	140%	89%	50%	140%
Acenaphthene	1224212	< 0.05	< 0.05	NA	< 0.05	102%	50%	140%	99%	50%	140%	100%	50%	140%
Fluorene	1224212	< 0.05	< 0.05	NA	< 0.05	113%	50%	140%	117%	50%	140%	107%	50%	140%
Phenanthrene	1224212	< 0.05	< 0.05	NA	< 0.05	109%	50%	140%	115%	50%	140%	118%	50%	140%
Anthracene	1224212	< 0.05	< 0.05	NA	< 0.05	112%	50%	140%	115%	50%	140%	117%	50%	140%
Fluoranthene	1224212	< 0.05	< 0.05	NA	< 0.05	114%	50%	140%	116%	50%	140%	113%	50%	140%
Pyrene	1224212	< 0.05	< 0.05	NA	< 0.05	115%	50%	140%	114%	50%	140%	113%	50%	140%
Benz(a)anthracene	1224212	< 0.05	< 0.05	NA	< 0.05	117%	50%	140%	111%	50%	140%	97%	50%	140%
Chrysene	1224212	< 0.05	< 0.05	NA	< 0.05	112%	50%	140%	108%	50%	140%	117%	50%	140%
Benzo(b)fluoranthene	1224212	< 0.05	< 0.05	NA	< 0.05	119%	50%	140%	100%	50%	140%	93%	50%	140%
Benzo(k)fluoranthene	1224212	< 0.05	< 0.05	NA	< 0.05	114%	50%	140%	87%	50%	140%	95%	50%	140%
Benzo(a)pyrene	1224212	< 0.05	< 0.05	NA	< 0.05	107%	50%	140%	110%	50%	140%	103%	50%	140%
Indeno(1,2,3-cd)pyrene	1224212	< 0.05	< 0.05	NA	< 0.05	101%	50%	140%	81%	50%	140%	85%	50%	140%
Dibenz(a,h)anthracene	1224212	< 0.05	< 0.05	NA	< 0.05	112%	50%	140%	103%	50%	140%	96%	50%	140%
Benzo(g,h,i)perylene	1224212	< 0.05	< 0.05	NA	< 0.05	100%	50%	140%	87%	50%	140%	80%	50%	140%
O. Reg. 153(511) - PHCs F1 - F4	(with PAHs) (Soil)													
Benzene	1217655	< 0.02	< 0.02	NA	< 0.02	83%	50%	140%	83%	60%	130%	103%	50%	140%
Toluene	1217655	< 0.05	< 0.05	NA	< 0.05	93%	50%	140%	85%	60%	130%	92%	50%	140%
Ethylbenzene	1217655	< 0.05	< 0.05	NA	< 0.05	103%	50%	140%	83%	60%	130%	108%	50%	140%
Xylenes (Total)	1217655	< 0.05	< 0.05	NA	< 0.05	94%	50%	140%	91%	60%	130%	96%	50%	140%
F1 (C6 to C10)	1217655	< 5	< 5	NA	< 5	88%	60%	140%	110%	60%	140%	87%	60%	140%
F2 (C10 to C16)	1222781 1222781	< 10	< 10	NA	< 10	117%	60%	140%	106%	60%	140%	89%	60%	140%
F3 (C16 to C34)	1222781 1222781	< 50	< 50	NA	< 50	101%	60%	140%	110%	60%	140%	90%	60%	140%
F4 (C34 to C50)	1222781 1222781	< 50	< 50	NA	< 50	97%	60%	140%	140%	60%	140%	140%	60%	140%
Total PCBs (soil)														
PCBs	1220340	< 0.1	< 0.1	NA	< 0.1	103%	60%	140%	94%	60%	140%	105%	60%	140%
O. Reg. 558 - Benzene														
Benzene	1224373	< 0.020	< 0.020	NA	< 0.020	89%	50%	140%	83%	50%	140%	81%	60%	130%
O. Reg. 558 - Benzo(a) pyrene														
Benzo(a)pyrene	1228960	< 0.001	< 0.001	NA	< 0.001	119%	50%	140%	108%	50%	140%	96%	50%	140%

Comments: When the average of the sample and duplicate results is less than 5x the RDL, the Relative Percent Difference (RPD) will be indicated as Not Applicable (NA).

Flash Point Analysis

Flash point (Pensky Martin Closed 2922 butanol 35 35 0.0% 100% 80% 120% Cup)

AGAT QUALITY ASSURANCE REPORT (V1)

Page 17 of 23

Quality Assurance

CLIENT NAME: GOLDER ASSOCIATES LTD

AGAT WORK ORDER: 20Z617404 PROJECT: 19134931 Bayshore ATTENTION TO: Keith Holmes

SAMPLING SITE: SAMPLED BY:

Trace Organics Analysis (Continued)														
RPT Date: Jul 02, 2020		UPLICAT	E		REFEREN	NCE MATERIA	L METHOD	BLANK	SPIKE	MAT	RIX SPII	KE		
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured	Acceptable Limits	Recovery	Lin	ptable nits	Recovery		ptable nits
FARAMETER		ld		2 up "2			Value	Lower Uppe	r	Lower	Upper	,	Lower	Upper

Comments: If the RPD value is NA, the results of the duplicates are under 5X the RDL and will not be calculated. The sample spikes and dups are not from the same sample ID.

Method Summary

CLIENT NAME: GOLDER ASSOCIATES LTD

AGAT WORK ORDER: 20Z617404

PROJECT: 19134931 Bayshore

ATTENTION TO: Keith Holmes

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Soil Analysis	·		
Antimony	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Arsenic	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Barium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Beryllium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Boron	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Boron (Hot Water Extractable)	MET-93-6104	modified from EPA 6010D and MSA PART 3, CH 21	ICP/OES
Cadmium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Chromium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Cobalt	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Copper	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Lead	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Molybdenum	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Nickel	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Selenium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Silver	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Thallium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Uranium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Vanadium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Zinc	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Chromium, Hexavalent	INOR-93-6068	modified from EPA 3060 and EPA 7196	SPECTROPHOTOMETER
Cyanide, Free	INOR-93-6052	modified from ON MOECC E3015 and SM 4500-CN- I	TECHNICON AUTO ANALYZER
Mercury	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Electrical Conductivity (2:1)	INOR-93-6036	modified from MSA PART 3, CH 14 and SM 2510 B	EC METER
Sodium Adsorption Ratio	INOR-93-6007	McKeague 4.12 & 3.26 & EPA SW-846 6010C	GICP/OES
pH, 2:1 CaCl2 Extraction	INOR-93-6031	modified from EPA 9045D and MCKEAGUE 3.11	PH METER
Arsenic Leachate	MET-93-6103	EPA 1311 & modified from EPA 6020E	BICP-MS
Barium Leachate	MET-93-6103	EPA 1311 & modified from EPA 6020E	B ICP-MS
Boron Leachate	MET-93-6103	EPA 1311 & modified from EPA 6020E	B ICP-MS
Cadmium Leachate	MET-93-6103	EPA 1311 & modified from EPA 6020E	B ICP-MS
Chromium Leachate	MET-93-6103	EPA 1311 & modified from EPA 6020E	3 ICP-MS

Method Summary

CLIENT NAME: GOLDER ASSOCIATES LTD

AGAT WORK ORDER: 20Z617404

PROJECT: 19134931 Bayshore

ATTENTION TO: Keith Holmes

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Lead Leachate	MET-93-6103	EPA 1311 & modified from EPA 6020B	ICP-MS
Mercury Leachate	MET-93-6103	EPA 1311 & modified from EPA 6020B	ICP-MS
Selenium Leachate	MET-93-6103	EPA 1311 & modified from EPA 6020B	ICP-MS
Silver Leachate	MET-93-6103	EPA 1311 & modified from EPA 6020B	ICP-MS
Uranium Leachate	MET-93-6103	EPA 1311 & modified from EPA 6020B	ICP-MS

Method Summary

CLIENT NAME: GOLDER ASSOCIATES LTD

AGAT WORK ORDER: 20Z617404

PROJECT: 19134931 Bayshore

ATTENTION TO: Keith Holmes

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Trace Organics Analysis			
Flash point (Pensky Martin Closed Cup)	TO 2210	ASTM D93	Pensky Martin Closed Cup
Naphthalene	ORG-91-5106	modified from EPA 3541 and EPA 8270E	GC/MS
Acenaphthylene	ORG-91-5106	modified from EPA 3541 and EPA 8270E	GC/MS
Acenaphthene	ORG-91-5106	modified from EPA 3541 and EPA 8270E	GC/MS
Fluorene	ORG-91-5106	modified from EPA 3541 and EPA 8270E	GC/MS
Phenanthrene	ORG-91-5106	modified from EPA 3541 and EPA 8270E	GC/MS
Anthracene	ORG-91-5106	modified from EPA 3541 and EPA 8270E	GC/MS
Fluoranthene	ORG-91-5106	modified from EPA 3541 and EPA 8270E	GC/MS
Pyrene	ORG-91-5106	modified from EPA 3541 and EPA 8270E	GC/MS
Benz(a)anthracene	ORG-91-5106	modified from EPA 3541 and EPA 8270E	GC/MS
Chrysene	ORG-91-5106	modified from EPA 3541 and EPA 8270E	GC/MS
Benzo(b)fluoranthene	ORG-91-5106	modified from EPA 3541 and EPA 8270E	GC/MS
Benzo(k)fluoranthene	ORG-91-5106	modified from EPA 3541 and EPA 8270E	GC/MS
Benzo(a)pyrene	ORG-91-5106	modified from EPA 3541 and EPA 8270E	GC/MS
Indeno(1,2,3-cd)pyrene	ORG-91-5106	modified from EPA 3541 and EPA 8270E	GC/MS
Dibenz(a,h)anthracene	ORG-91-5106	modified from EPA 3541 and EPA 8270E	GC/MS
Benzo(g,h,i)perylene	ORG-91-5106	modified from EPA 3541 and EPA 8270E	GC/MS
1 and 2 Methlynaphthalene	ORG-91-5106	modified from EPA 3541 and EPA 8270E	GC/MS
Moisture Content	ORG-91-5106	Tier 1 Method	BALANCE
Naphthalene-d8	ORG-91-5106	modified from EPA 3541 & 8270E	GC/MS
Acenaphthene-d10	ORG-91-5106	modified from EPA 3541 & 8270E	GC/MS
Chrysene-d12	ORG-91-5106	modified from EPA 3541 & 8270E	GC/MS
Benzene	VOL-91-5009	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
Toluene	VOL-91-5009	modified from EPA SW-846 5035C & 8260D	P&T GC/MS
Ethylbenzene	VOL-91-5009	modified from EPA SW-846 5035C & 8260D	P&T GC/MS
Xylenes (Total)	VOL-91-5009	modified from EPA SW-846 5035C & 8260D	P&T GC/MS
F1 (C6 to C10)	VOL-91-5009	modified from CCME Tier 1 Method	P&T GC/FID
F1 (C6 to C10) minus BTEX	VOL-91-5009	modified from CCME Tier 1 Method	P&T GC/FID
F2 (C10 to C16)	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID
F3 (C16 to C34)	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID
F4 (C34 to C50)	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID
Gravimetric Heavy Hydrocarbons	VOL-91-5009	modified from CCME Tier 1 Method	BALANCE
Moisture Content	VOL-91-5009	modified from CCME Tier 1 Method	BALANCE

Method Summary

CLIENT NAME: GOLDER ASSOCIATES LTD

AGAT WORK ORDER: 20Z617404

PROJECT: 19134931 Bayshore

ATTENTION TO: Keith Holmes

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Terphenyl	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID
F1 (C6 to C10)	VOL-91-5009	modified from CCME Tier 1 Method	P&T GC/FID
F2 (C10 to C16) minus Naphthalene	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID
F3 (C16 to C34)	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID
F3 (C16 to C34) minus PAHs	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID
Benzene	VOL-91-5001	EPA 1311, EPA 8260D	(P&T)GC/MS
Benzo(a)pyrene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Naphthalene-d8	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Acenaphthene-d10	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Chrysene-d12	ORG-91-5105	modified from EPA 3541 and EPA 8270E	GC/MS
PCBs	ORG-91-5113	modified from EPA SW-846 3541 & 8082	GC/ECD
Decachlorobiphenyl	ORG-91-5113	modified from EPA SW-846 3541 & 8082	GC/ECD
Moisture Content		Tier 1 method	BALANCE

LT (i'ce) - 6.2 (6.3 | 7.2 Laboratories Ph: 90

5835 Coopers Avenue

Mississauga, Ontario L4Z 1Y2

Ph: 905.712.5100 Fax: 905.712.5122

webearth.agatlabs.com

Laboratory Use Only

Work Order #: 202617404

11 By Mack

Chain of Custody	Record	
------------------	--------	--

THE REST	webear(n.agauaus.com																		
Chain of Custody Recor	d If this Is	a Drinking Wat	er sample, p	lease use	e Drinking Water Chain of Custody Form (p	otable v	vater consu	ımed by humans)		An	ival Ten	nperat	ures:	15	5.5	+ 15.	5/	5.4
Report Information: Company: Golde As	sociale	0,			Regulatory Requirements:		No Regi	ılatory Req	uirem	ent			al Int	act:	Ye	S	□Ne		Day/A
Contact: Address: Address: 1931 Roberts	educk	/ Korth	Holm	as	3	Use		Regulation	558		Tui	naro	und	Time	(TAT) Re	quired:		
Address.	on Ad				□ina/com	ary		CCME										ays	
Phone:	Fax:				☐ Agriculture ☐ Storr	n					Rus	sh TAT	(Rush S	Surcharge	s Apply)				
1. Email: awhiteduck (_	Soil Texture (Check One) Region Indicate	e One	_ [Other						SS			ess [Next B	usiness
2. Email: Kholme @ g	older Co	2~		= .	□Fine □MISA		I,	Indicate 0	ne			OR	Date	Requir	ed (Rus	sh Surc	charges Ma	ay Apply):	
Project Information:	0-1-	0 1			Is this submission for a							-	Please	e provid	de prior	notific	cation for	rush TAT	-0.0
Project: 1913 493 / Site Location	Rober	Bayph	ne	_		Cooler Quantity: Arrival Temperatures: Arrival T		150											
Sampled By:				0	Per 153	LIN			or San	ne Day	y anai	-		ontact you	I AGAI C	PIVI			
AGAT Quote #: Please note: If quotation number	PO: PO:	vill be billed full price	tor analysis	=	Sample Matrix Legend	Cr.		9							904	e.,			ion (Y,'N
Invoice Information:		Bill To Same:	Yes □ No		GW Ground Water	Is, Hg,	ydrides	ol, Hydr		Z	THM				☐ B(a)F		3	00	centrat
Company:						Meta			etals	Į,	Ä			ors	des		0/8	200	Eth Cor
Contact: Address:				-		red -	anics	53 Me	Ž	NON.	D BT	世		Åroci	estici		\$ 3	000	s or Hi
Fmail:						d Filte	Inorga 1533	FWS TO	Scan /Custo	ر 10°	_ voc			fa	rine P		\$ 00	00 00	Zardou
		No.				<u> </u>	ils and	Hide Me	/letals	ents:	iles:	<u>F</u>		2	nochlc	ar Use	1/0	20 5	fally H.
Sample Identification	Date Sampled	Time Sampled	# of Containers	Sampl Matri		Y/N	Meta	ORPS ORPS	Full N Regu	No	Volat	PHCs	PAHs	PCBs	Orga TCLP:	Sewe	Ma	\$ a	Poten
	June 101:	2020		S						_	V=						X		
20-06 SAZ	Jun 221	070	-				X			-		\rightarrow	X						
20-06 5A7	N 7									-		Ş	-			H			
20-08 5A	June 18	252.0					X					X	X			\Box			
20-08 5A6	VUNDE	2			7							X	2	X			XX		2
20-06 5AI	Tune 22	12070		1			th		14.9		UT.							XX	X
							M				26				112			10	
										-									
								1			-					Н			
Samples Relinquished By (Print Name and Sign):	- 1.0.1	Date	Tin	ne	Samples Received By IPrint Name and Sign)		200	0		ate	, 7	Time	//	1	-				
Samples Reinquished By (Print Name and Sign):	saluhita	Date	Tin	ne	Sample Specified By (Print Name and Sign);	1	,	7	0 00	ete 10	m c		01	200	am	Page	e (of	
Samples Relinquished By (Print Name and Sign):		Date	Tin	ne	Samples Received By (Print Name and Sign):			Sun		14)	Time	J / (J (J)	Nº:	Г	093	90	q

CLIENT NAME: GOLDER ASSOCIATES LTD 1931 ROBERTSON ROAD OTTAWA, ON K2H5B7 (613) 592-9600

ATTENTION TO: Alyssa Whiteduck

PROJECT: 19134931 - Bayshore

AGAT WORK ORDER: 20Z620709

SOIL ANALYSIS REVIEWED BY: Nivine Basily, Inorganics Report Writer TRACE ORGANICS REVIEWED BY: Neli Popnikolova, Senior Chemist

DATE REPORTED: Jul 17, 2020

PAGES (INCLUDING COVER): 19 VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

Notes	

Disclaimer:

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may
 incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 30 days following analysis, unless expressly agreed otherwise in writing. Please contact your Client Project Manager if you require additional sample storage time.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other
 third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the
 services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of
 merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines
 contained in this document.
- All reportable information as specified by ISO/IEC 17025:2017 is available from AGAT Laboratories upon request.

AGAT Laboratories (V1)

Page 1 of 19

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA)

Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA) AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.

AGAT WORK ORDER: 20Z620709 PROJECT: 19134931 - Bayshore 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE:

ATTENTION TO: Alyssa Whiteduck SAMPLED BY:

O. Reg. 153(511) - Metals & Inorganics (Soil)

DATE RECEIVED: 2020-07-03						DATE REPORTED: 202	20-07-17
		SAMPLE DES	CRIPTION: PLE TYPE:	20-01-SA1 Soil	20-01-SA2 Soil	5.1.2.1.2.1.2.1.2.1	
		DATE SAME		2020-06-29	2020-06-29		
Parameter	Unit	G/S	RDL	1245159	1245164		
Antimony	μg/g	7.5	0.8	<0.8	<0.8		
Arsenic	μg/g	18	1	3	3		
Barium	μg/g	390	2	167	377		
Beryllium	μg/g	4	0.5	<0.5	0.9		
Boron	μg/g	120	5	7	5		
Boron (Hot Water Extractable)	μg/g	1.5	0.10	0.36	0.14		
Cadmium	μg/g	1.2	0.5	<0.5	<0.5		
Chromium	μg/g	160	5	35	85		
Cobalt	μg/g	22	0.5	8.7	19.7		
Copper	μg/g	140	1	20	38		
∟ead	μg/g	120	1	20	7		
Molybdenum	μg/g	6.9	0.5	0.7	<0.5		
Nickel	μg/g	100	1	18	43		
Selenium	μg/g	2.4	0.4	<0.4	<0.4		
Silver	μg/g	20	0.2	<0.2	<0.2		
Thallium	μg/g	1	0.4	<0.4	0.4		
Uranium	μg/g	23	0.5	0.8	0.7		
√anadium	μg/g	86	1	44	93		
Zinc	μg/g	340	5	89	125		
Chromium, Hexavalent	μg/g	8	0.2	<0.2	<0.2		
Cyanide, Free	μg/g	0.051	0.040	<0.040	<0.040		
Mercury	μg/g	0.27	0.10	<0.10	<0.10		
Electrical Conductivity (2:1)	mS/cm	0.7	0.005	0.234	2.17		
Sodium Adsorption Ratio	NA	5	NA	2.03	21.5		
pH, 2:1 CaCl2 Extraction	pH Units	5.0-9.0	NA	7.59	7.52		

AGAT WORK ORDER: 20Z620709 PROJECT: 19134931 - Bayshore

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE:

ATTENTION TO: Alyssa Whiteduck

SAMPLED BY:

O. Reg. 153(511) - Metals & Inorganics (Soil)

DATE RECEIVED: 2020-07-03 **DATE REPORTED: 2020-07-17**

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Soil -Residential/Parkland/Institutional Property Use - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

1245159-1245164 EC was determined on the DI water extract obtained from the 2:1 leaching procedure (2 parts DI water:1 part soil). pH was determined on the 0.01M CaCl2 extract prepared at 2:1 ratio. SAR is a calculated parameter.

Analysis performed at AGAT Toronto (unless marked by *)

NIVINE BASILY CHEMIST

NA

5

Certificate of Analysis

AGAT WORK ORDER: 20Z620709 PROJECT: 19134931 - Bayshore 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE:

ATTENTION TO: Alyssa Whiteduck

SAMPLED BY:

				O. Re	g. 153(511)	- ORPs (Soil)
DATE RECEIVED: 2020-07-03						DATE REPORTED: 2020-07-17
	S	AMPLE DES	CRIPTION:	20-01-SA5	20-01-SA11	
		SAM	PLE TYPE:	Soil	Soil	
		DATE	SAMPLED:	2020-06-29	2020-06-29	
Parameter	Unit	G/S	RDL	1245165	1245166	
Electrical Conductivity (2:1)	mS/cm	0.7	0.005	4.90	0.114	

Comments:

Sodium Adsorption Ratio

RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Soil - Residential/Parkland/Institutional Property Use - Coarse Textured Soils

0.831

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

1245165-1245166 EC was determined on the DI water extract obtained from the 2:1 leaching procedure (2 parts DI water:1 part soil). SAR is a calculated parameter.

9.36

NA

Analysis performed at AGAT Toronto (unless marked by *)

CHARTERED BY CHEMIST OF CHEMIST O

AGAT WORK ORDER: 20Z620709 PROJECT: 19134931 - Bayshore

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE:

ATTENTION TO: Alyssa Whiteduck SAMDLED BY:

SAMPLING SITE:				SAMPLED BY:
			O. Reg	g. 406/19 SPLP Metals
DATE RECEIVED: 2020-07-03				DATE REPORTED: 2020-07-17
		SAMPLE DESCRIPTION:	20-01-SA2	
		SAMPLE TYPE:	Soil	
		DATE SAMPLED:	2020-06-29	
Parameter	Unit	G/S RDL	1245164	
Antimony Leachate	μg/L	0.6	<0.6	
Arsenic Leachate	μg/L	1	7	
Barium Leachate	μg/L	100	1070	
Beryllium Leachate	μg/L	0.4	1.8	
Boron Leachate	μg/L	500	<500	
Cadmium Leachate	μg/L	0.05	0.17	
Chromium Leachate	μg/L	5	244	
Cobalt Leachate	μg/L	0.3	34.8	
Copper Leachate	μg/L	1.4	156	
Lead Leachate	μg/L	0.4	18.4	
Molybdenum Leachate	μg/L	1.5	<1.5	
Nickel Leachate	μg/L	7	140	
Selenium Leachate	μg/L	1	<1	
Silver Leachate	μg/L	0.03	0.25	
Thallium Leachate	μg/L	0.2	0.7	
Uranium Leachate	μg/L	2	2	
Vanadium Leachate	μg/L	0.6	231	
Zinc Leachate	μg/L	20	333	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

1245164 Leachate for metal testing was prepared in accordance with Ontario MECP Method E9003, which has been modified from SW846-1312 by Ontario MECP. MECP has recommended that Method E9003

be used for leachate testing of soil samples under O'Reg 406/19 by MECP. This is a validated, unaccredited procedure.

Analysis performed at AGAT Toronto (unless marked by *)

NIVINE BASILY CHEMIST

AGAT WORK ORDER: 20Z620709 PROJECT: 19134931 - Bayshore 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE:

Chrysene-d12

ATTENTION TO: Alyssa Whiteduck

SAMPLING SITE:						S	AMPLED BY:			
				O. Re	g. 153(511) - F	PAHs (Soil)				
DATE RECEIVED: 2020-07-03								DATE REPOR	RTED: 2020-07-17	
		SAMPLE DESC	RIPTION:	20-08-SA2	20-01-SA1					
		SAMPLE TYPE:		Soil	Soil					
		DATE SAMPLED:		2020-06-19	2020-06-29					
Parameter	Unit	G/S	RDL	1245156	1245159					
Naphthalene	μg/g	0.6	0.05	<0.05	<0.05					
Acenaphthylene	μg/g	0.15	0.05	< 0.05	< 0.05					
Acenaphthene	μg/g	7.9	0.05	< 0.05	<0.05					
Fluorene	μg/g	62	0.05	< 0.05	<0.05					
Phenanthrene	μg/g	6.2	0.05	< 0.05	< 0.05					
Anthracene	μg/g	0.67	0.05	< 0.05	< 0.05					
Fluoranthene	μg/g	0.69	0.05	< 0.05	< 0.05					
Pyrene	μg/g	78	0.05	< 0.05	< 0.05					
Benz(a)anthracene	μg/g	0.5	0.05	< 0.05	<0.05					
Chrysene	μg/g	7	0.05	< 0.05	< 0.05					
Benzo(b)fluoranthene	μg/g	0.78	0.05	< 0.05	< 0.05					
Benzo(k)fluoranthene	μg/g	0.78	0.05	< 0.05	< 0.05					
Benzo(a)pyrene	μg/g	0.3	0.05	<0.05	<0.05					
Indeno(1,2,3-cd)pyrene	μg/g	0.38	0.05	< 0.05	<0.05					
Dibenz(a,h)anthracene	μg/g	0.1	0.05	< 0.05	<0.05					
Benzo(g,h,i)perylene	μg/g	6.6	0.05	< 0.05	< 0.05					
1 and 2 Methlynaphthalene	μg/g	0.99	0.05	< 0.05	<0.05					
Moisture Content	%		0.1	25.0	8.0					
Surrogate	Unit	Acceptable	e Limits							
Naphthalene-d8	%	50-14	40	71	70					
Acenaphthene-d10	%	50-14	40	85	71					

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Soil -

Residential/Parkland/Institutional Property Use - Coarse Textured Soils

50-140

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

79

1245156-1245159 Results are based on the dry weight of the soil.

Note: The result for Benzo(b)Fluoranthene is the total of the Benzo(b)&j)Fluoranthene isomers because the isomers co-elute on the GC column.

2- and 1-Methyl Naphthalene is a calculated parameter. The calculated value is the sum of 2-Methyl Naphthalene and 1-Methyl Naphthalene.

77

Analysis performed at AGAT Toronto (unless marked by *)

AGAT WORK ORDER: 20Z620709 PROJECT: 19134931 - Bayshore 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE:

ATTENTION TO: Alyssa Whiteduck

SAMPLED BY:

O. Reg. 153(511) - PHCs F1 -	F4 (Soil)
------------------------------	-----------

				0og	
DATE RECEIVED: 2020-07-03					DATE REPORTED: 2020-07-17
	5	SAMPLE DESCR	RIPTION:	20-01-SA5	
		SAMPL	E TYPE:	Soil	
		DATE SA	MPLED:	2020-06-29	
Parameter	Unit	G/S	RDL	1245165	
Benzene	μg/g	0.21	0.02	<0.02	
Toluene	μg/g	2.3	0.05	< 0.05	
Ethylbenzene	μg/g	2	0.05	< 0.05	
Xylenes (Total)	μg/g	3.1	0.05	< 0.05	
F1 (C6 to C10)	μg/g	55	5	<5	
F1 (C6 to C10) minus BTEX	μg/g	55	5	<5	
F2 (C10 to C16)	μg/g	98	10	<10	
F3 (C16 to C34)	μg/g	300	50	<50	
F4 (C34 to C50)	μg/g	2800	50	<50	
Gravimetric Heavy Hydrocarbons	μg/g	2800	50	NA	
Moisture Content	%		0.1	24.8	
Surrogate	Unit	Acceptable	Limits		
Terphenyl	%	60-14	0	87	

AGAT WORK ORDER: 20Z620709 PROJECT: 19134931 - Bayshore 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aqatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD

OLILIAI IAMME. GOLDLIN MOOGONTILO LID

SAMPLING SITE:

ATTENTION TO: Alyssa Whiteduck

SAMPLED BY:

O. Reg. 153(511) - PHCs F1 - F4 (Soil)

DATE RECEIVED: 2020-07-03 DATE REPORTED: 2020-07-17

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Soil -

Residential/Parkland/Institutional Property Use - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

1245165 Results are based on sample dry weight.

The C6-C10 fraction is calculated using Toluene response factor.

Xylenes is a calculated parameter. The calculated value is the sum of m&p-Xylene and o-Xylene. C6–C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX.

The calculated parameters are non-accredited. The parameters that are components of the calculation are accredited.

The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and n-C34.

Gravimetric Heavy Hydrocarbons are not included in the Total C16-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons >C50 are present.

The chromatogram has returned to baseline by the retention time of nC50.

Total C6 - C50 results are corrected for BTEX contribution.

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC6 and nC10 response factors are within 30% of Toluene response factor. nC10, nC16 and nC34 response factors are within 10% of their average. C50 response factor is within 70% of nC10 + nC16 + nC34 average.

Linearity is within 15%.

Extraction and holding times were met for this sample.

Fractions 1-4 are quantified with the contribution of PAHs. Under Ontario Regulation 153, results are considered valid without determining the PAH contribution if not requested by the client.

Quality Control Data is available upon request.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

NPopukolof

AGAT WORK ORDER: 20Z620709 PROJECT: 19134931 - Bayshore 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE:

ATTENTION TO: Alyssa Whiteduck

SAMPLED BY:

O. Reg. 153(511) - PHCs F1 - F4 (with PAHs) (Soil)

DATE RECEIVED: 2020-07-03					DATE REPORTED: 2020-07-17
	•	SAMPLE DES	CRIPTION:	20-01-SA1	
		SAMI	PLE TYPE:	Soil	
		DATE S	SAMPLED:	2020-06-29	
Parameter	Unit	G/S	RDL	1245159	
Benzene	μg/g	0.21	0.02	<0.02	
Toluene	μg/g	2.3	0.05	<0.05	
Ethylbenzene	μg/g	2	0.05	<0.05	
Xylenes (Total)	μg/g	3.1	0.05	<0.05	
F1 (C6 to C10)	μg/g	55	5	<5	
F1 (C6 to C10) minus BTEX	µg/g	55	5	<5	
F2 (C10 to C16)	μg/g	98	10	<10	
F2 (C10 to C16) minus Naphthalene	μg/g		10	<10	
F3 (C16 to C34)	μg/g	300	50	<50	
F3 (C16 to C34) minus PAHs	μg/g		50	<50	
F4 (C34 to C50)	μg/g	2800	50	<50	
Gravimetric Heavy Hydrocarbons	μg/g	2800	50	NA	
Moisture Content	%		0.1	8.0	
Surrogate	Unit	Acceptab	le Limits		
Terphenyl	%	60-1	140	63	

AGAT WORK ORDER: 20Z620709 PROJECT: 19134931 - Bayshore 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aqatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE:

ATTENTION TO: Alyssa Whiteduck

SAMPLED BY:

O. Reg. 153(511) - PHCs F1 - F4 (with PAHs) (Soil)

DATE RECEIVED: 2020-07-03 DATE REPORTED: 2020-07-17

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Soil - Residential/Parkland/Institutional Property Use - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

1245159 Results are based on sample dry weight.

The C6-C10 fraction is calculated using toluene response factor.

Xylenes total is a calculated parameter. The calculated value is the sum of m&p-Xylene and o-Xylene.

C6-C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX.

The calculated parameters are non-accredited. The parameters that are components of the calculation are accredited.

The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and n-C34.

Gravimetric Heavy Hydrocarbons are not included in the Total C16-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons >C50 are present.

The chromatogram has returned to baseline by the retention time of nC50.

Total C6 - C50 results are corrected for BTEX and PAH contributions.

C>10 - C16 (F2- Naphthalene) is a calculated parameter. The calculated value is F2 - Naphthalene.

C>16 - C34 (F3-PAH) is a calculated parameter. The calculated value is F3-PAH (PAH: sum of Phenanthrene, Benzo(a)anthracene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Benzo(a)pyrene,

Fluoranthene, Dibenzo(a,h)anthracene, Indeno(1,2,3-c,d)pyrene and Pyrene).

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 + nC34 average.

Linearity is within 15%.

Extraction and holding times were met for this sample.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

NPopukolof

Guideline Violation

AGAT WORK ORDER: 20Z620709 PROJECT: 19134931 - Bayshore 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD

ATTENTION TO: Alyssa Whiteduck

SAMPLEID	SAMPLE TITLE	GUIDELINE	ANALYSIS PACKAGE	PARAMETER	UNIT	GUIDEVALUE	RESULT
1245164	20-01-SA2	ON T3 S RPI CT	O. Reg. 153(511) - Metals & Inorganics (Soil)	Electrical Conductivity (2:1)	mS/cm	0.7	2.17
1245164	20-01-SA2	ON T3 S RPI CT	O. Reg. 153(511) - Metals & Inorganics (Soil)	Sodium Adsorption Ratio	NA	5	21.5
1245164	20-01-SA2	ON T3 S RPI CT	O. Reg. 153(511) - Metals & Inorganics (Soil)	Vanadium	μg/g	86	93
1245165	20-01-SA5	ON T3 S RPI CT	O. Reg. 153(511) - ORPs (Soil)	Electrical Conductivity (2:1)	mS/cm	0.7	4.90
1245165	20-01-SA5	ON T3 S RPI CT	O. Reg. 153(511) - ORPs (Soil)	Sodium Adsorption Ratio	NA	5	9.36

Quality Assurance

CLIENT NAME: GOLDER ASSOCIATES LTD

PROJECT: 19134931 - Bayshore

AGAT WORK ORDER: 20Z620709 ATTENTION TO: Alyssa Whiteduck

SAMPLING SITE: SAMPLED BY:

	Soil Analysis														
RPT Date: Jul 17, 2020				UPLICATI	=		REFERE	NCE MA	TERIAL	METHOD	BLANK	(SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		eptable mits	Recovery	Lie	eptable mits	Recovery		ptable nits
		ld	·	,			Value	Lower	Upper	ĺ	Lower	Upper		Lower	Upper
O. Reg. 153(511) - Metals & Inorg	ganics (Soil)														
Antimony	1248611		<0.8	<0.8	NA	< 0.8	128%	70%	130%	99%	80%	120%	88%	70%	130%
Arsenic	1248611		6	6	0.0%	< 1	107%	70%	130%	102%	80%	120%	100%	70%	130%
Barium	1248611		38	39	2.6%	< 2	106%	70%	130%	100%	80%	120%	103%	70%	130%
Beryllium	1248611		< 0.5	< 0.5	NA	< 0.5	112%	70%	130%	103%	80%	120%	105%	70%	130%
Boron	1248611		<5	<5	NA	< 5	84%	70%	130%	103%	80%	120%	101%	70%	130%
Boron (Hot Water Extractable)	1252353		0.31	0.34	NA	< 0.10	102%	60%	140%	100%	70%	130%	103%	60%	140%
Cadmium	1248611		<0.5	< 0.5	NA	< 0.5	105%	70%	130%	99%	80%	120%	100%	70%	130%
Chromium	1248611		34	33	3.0%	< 5	97%	70%	130%	102%	80%	120%	91%	70%	130%
Cobalt	1248611		3.6	3.6	0.0%	< 0.5	95%	70%	130%	98%	80%	120%	96%	70%	130%
Copper	1248611		10	10	0.0%	< 1	95%	70%	130%	107%	80%	120%	96%	70%	130%
Lead	1248611		18	18	0.0%	< 1	99%	70%	130%	104%	80%	120%	98%	70%	130%
Molybdenum	1248611		< 0.5	<0.5	NA	< 0.5	113%	70%	130%	105%	80%	120%	108%	70%	130%
Nickel	1248611		7	7	0.0%	< 1	96%	70%	130%	100%	80%	120%	92%	70%	130%
Selenium	1248611		<0.4	< 0.4	NA	< 0.4	119%	70%	130%	97%	80%	120%	100%	70%	130%
Silver	1248611		<0.2	<0.2	NA	< 0.2	109%	70%	130%	101%	80%	120%	98%	70%	130%
Thallium	1248611		<0.4	<0.4	NA	< 0.4	106%	70%	130%	103%	80%	120%	101%	70%	130%
Uranium	1248611		<0.5	<0.5	NA	< 0.5	108%	70%	130%	109%	80%	120%	106%	70%	130%
Vanadium	1248611		20	19	5.1%	< 1	100%	70%	130%	96%	80%	120%	99%	70%	130%
Zinc	1248611		80	78	2.5%	< 5	98%	70%	130%	103%	80%	120%	94%	70%	130%
Chromium, Hexavalent	1248623		<0.2	<0.2	NA	< 0.2	90%	70%	130%	85%	80%	120%	91%	70%	130%
Cyanide, Free	1244609		<0.040	<0.040	NA	< 0.040	94%	70%	130%	99%	80%	120%	108%	70%	130%
Mercury	1248611		<0.10	<0.10	NA	< 0.10	108%	70%	130%	103%	80%	120%	103%	70%	130%
Electrical Conductivity (2:1)	1248611		0.198	0.198	0.0%	< 0.005	102%	80%	120%						
Sodium Adsorption Ratio	1248611		0.066	0.066	0.0%	NA									
pH, 2:1 CaCl2 Extraction	1248658		7.61	7.65	0.5%	NA	100%	80%	120%						

Comments: NA signifies Not Applicable.

pH duplicates QA acceptance criteria was met relative as stated in Table 5-15 of Analytical Protocol document.

If the RPD value is NA, the results of the duplicates are under 5X the RDL and will not be calculated.

O. Reg. 406/19 SPLP Metals														
Antimony Leachate	1256553	<0.6	<0.6	NA	< 0.6	99%	70%	130%	120%	80%	120%	114%	70%	130%
Arsenic Leachate	1256553	1	2	NA	< 1	102%	70%	130%	109%	80%	120%	112%	70%	130%
Barium Leachate	1256553	< 100	< 100	NA	< 100	95%	70%	130%	111%	80%	120%	113%	70%	130%
Beryllium Leachate	1256553	< 0.4	< 0.4	NA	< 0.4	104%	70%	130%	100%	80%	120%	102%	70%	130%
Boron Leachate	1256553	<500	<500	NA	< 500	99%	70%	130%	110%	80%	120%	112%	70%	130%
Cadmium Leachate	1256553	<0.05	<0.05	NA	< 0.05	99%	70%	130%	100%	80%	120%	105%	70%	130%
Chromium Leachate	1256553	< 5	< 5	NA	< 5	109%	70%	130%	102%	80%	120%	105%	70%	130%
Cobalt Leachate	1256553	< 0.3	< 0.3	NA	< 0.3	103%	70%	130%	106%	80%	120%	105%	70%	130%
Copper Leachate	1256553	<1.4	<1.4	NA	< 1.4	104%	70%	130%	107%	80%	120%	110%	70%	130%
Lead Leachate	1256553	< 0.4	< 0.4	NA	< 0.4	98%	70%	130%	103%	80%	120%	105%	70%	130%

AGAT QUALITY ASSURANCE REPORT (V1)

Page 12 of 19

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Quality Assurance

CLIENT NAME: GOLDER ASSOCIATES LTD

AGAT WORK ORDER: 20Z620709 PROJECT: 19134931 - Bayshore ATTENTION TO: Alyssa Whiteduck

SAMPLING SITE: SAMPLED BY:

GAWII EED DT.														
		Soil	Analy	ysis	(Con	tinue	d)							
		С	UPLICAT	E		REFEREN	NCE MA	TERIAL	METHOD	BLANK	SPIKE	МАТ	RIX SPI	IKE
Batch	Sample	Dup #1	Dup #2	RPD	Method Blank				Recovery	Lie		Recovery	Lie	eptable mits
	Iu	·	·			value	Lower	Upper	,	Lower	Upper	·	Lower	Upper
1256553		1.6	1.6	NA	< 1.5	102%	70%	130%	118%	80%	120%	120%	70%	130%
1256553		<7	<7	NA	< 7	103%	70%	130%	106%	80%	120%	108%	70%	130%
1256553		<1	<1	NA	< 1	99%	70%	130%	108%	80%	120%	108%	70%	130%
1256553		0.06	< 0.03	NA	< 0.03	97%	70%	130%	99%	80%	120%	102%	70%	130%
1256553		<0.2	<0.2	NA	< 0.2	97%	70%	130%	99%	80%	120%	102%	70%	130%
1256553		<2	<2	NA	< 2	100%	70%	130%	99%	80%	120%	103%	70%	130%
1256553		8.3	8.5	2.4%	< 0.6	99%	70%	130%	95%	80%	120%	101%	70%	130%
1256553		<20	<20	NA	< 20	103%	70%	130%	107%	80%	120%	106%	70%	130%
	1256553 1256553 1256553 1256553 1256553 1256553	Batch Sample Id 1256553 1256553 1256553 1256553 1256553 1256553	Batch Sample Id Dup #1 1256553	Batch Sample Id Dup #1 Dup #2 1256553 1.6 1.6 1256553 <7	DUPLICATE	DUPLICATE Batch Sample Id Dup #1 Dup #2 RPD Method Blank 1256553 1.6 1.6 NA < 1.5	Soil Analysis (Continue) DUPLICATE Method Blank REFERENT Batch Sample Id Dup #1 Dup #2 RPD Method Blank Measured Value 1256553 1.6 1.6 NA < 1.5	Soil Analysis (Continued) Batch Sample Id Dup #1 Dup #2 RPD Method Blank REFERENCE MA Measured Value Accentification 1256553 1.6 1.6 NA < 1.5	DUPLICATE REFERENCE MATERIAL Measured Value Limits Lower Upper	DUPLICATE Batch Sample Id Dup #1 Dup #2 RPD Method Blank Measured Value Limits Lower Upper Recovery	Soil Analysis (Continued) DUPLICATE	DUPLICATE Batch Sample Id Dup #1 Dup #2 RPD Method Blank Measured Value Limits Lower Upper Limits Lower Upper Limits Lower Upper U	DUPLICATE Dup #1 Dup #2 RPD Method Blank Measured Value Limits Lower Upper Limits Recovery Lower Upper Limits Lower Upper Limits Recovery Lower Upper Limits Lower Upper Upper Limits Lower Upper Upper	DUPLICATE

Comments: If the RPD value is NA, the results of the duplicates are under 5X the RDL and will not be calculated.

AGAT WORK ORDER: 20Z620709

Quality Assurance

CLIENT NAME: GOLDER ASSOCIATES LTD

PROJECT: 19134931 - Bayshore ATTENTION TO: Alyssa Whiteduck

SAMPLING SITE: SAMPLED BY:

	Trace Organics Analysis														
RPT Date: Jul 17, 2020				UPLICAT	E		REFERE	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		ptable nits	Recovery		ptable nits	Recovery		ptable nits
		ld					Value	Lower	Upper	,	Lower	Upper	, , ,	Lower	Upper
O. Reg. 153(511) - PAHs (Soil)															
Naphthalene	1248652		< 0.05	< 0.05	NA	< 0.05	99%	50%	140%	84%	50%	140%	81%	50%	140%
Acenaphthylene	1248652		< 0.05	< 0.05	NA	< 0.05	115%	50%	140%	107%	50%	140%	95%	50%	140%
Acenaphthene	1248652		< 0.05	< 0.05	NA	< 0.05	110%	50%	140%	96%	50%	140%	88%	50%	140%
Fluorene	1248652		< 0.05	< 0.05	NA	< 0.05	108%	50%	140%	110%	50%	140%	97%	50%	140%
Phenanthrene	1248652		< 0.05	< 0.05	NA	< 0.05	103%	50%	140%	109%	50%	140%	96%	50%	140%
Anthracene	1248652		< 0.05	< 0.05	NA	< 0.05	104%	50%	140%	115%	50%	140%	102%	50%	140%
Fluoranthene	1248652		< 0.05	< 0.05	NA	< 0.05	108%	50%	140%	116%	50%	140%	97%	50%	140%
Pyrene	1248652		< 0.05	< 0.05	NA	< 0.05	107%	50%	140%	113%	50%	140%	107%	50%	140%
Benz(a)anthracene	1248652		< 0.05	< 0.05	NA	< 0.05	89%	50%	140%	104%	50%	140%	95%	50%	140%
Chrysene	1248652		< 0.05	< 0.05	NA	< 0.05	102%	50%	140%	102%	50%	140%	96%	50%	140%
Benzo(b)fluoranthene	1248652		< 0.05	< 0.05	NA	< 0.05	81%	50%	140%	115%	50%	140%	99%	50%	140%
Benzo(k)fluoranthene	1248652		< 0.05	< 0.05	NA	< 0.05	105%	50%	140%	102%	50%	140%	75%	50%	140%
Benzo(a)pyrene	1248652		< 0.05	< 0.05	NA	< 0.05	106%	50%	140%	102%	50%	140%	80%	50%	140%
Indeno(1,2,3-cd)pyrene	1248652		< 0.05	< 0.05	NA	< 0.05	88%	50%	140%	78%	50%	140%	79%	50%	140%
Dibenz(a,h)anthracene	1248652		< 0.05	< 0.05	NA	< 0.05	78%	50%	140%	84%	50%	140%	83%	50%	140%
Benzo(g,h,i)perylene	1248652		< 0.05	< 0.05	NA	< 0.05	92%	50%	140%	75%	50%	140%	74%	50%	140%
O. Reg. 153(511) - PHCs F1 - F4 (with PAHs)	(Soil)													
Benzene	1248418		< 0.02	< 0.02	NA	< 0.02	87%	50%	140%	104%	60%	130%	92%	50%	140%
Toluene	1248418		< 0.05	< 0.05	NA	< 0.05	93%	50%	140%	105%	60%	130%	82%	50%	140%
Ethylbenzene	1248418		< 0.05	< 0.05	NA	< 0.05	94%	50%	140%	115%	60%	130%	87%	50%	140%
Xylenes (Total)	1248418		< 0.05	< 0.05	NA	< 0.05	91%	50%	140%	109%	60%	130%	100%	50%	140%
F1 (C6 to C10)	1248418		< 5	< 5	NA	< 5	117%	60%	140%	104%	60%	140%	90%	60%	140%
F2 (C10 to C16)	1245050		< 10	< 10	NA	< 10	112%	60%	140%	101%	60%	140%	92%	60%	140%
F3 (C16 to C34)	1245050		< 50	< 50	NA	< 50	94%	60%	140%	105%	60%	140%	118%	60%	140%
F4 (C34 to C50)	1245050		< 50	< 50	NA	< 50	91%	60%	140%	120%	60%	140%	109%	60%	140%

Comments: When the average of the sample and duplicate results is less than 5x the RDL, the Relative Percent Difference (RPD) will be indicated as Not Applicable (NA).

Method Summary

CLIENT NAME: GOLDER ASSOCIATES LTD

PROJECT: 19134931 - Bayshore

AGAT WORK ORDER: 20Z620709

ATTENTION TO: Alyssa Whiteduck

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Soil Analysis	·	·	
Antimony	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Arsenic	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Barium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Beryllium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Boron	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Boron (Hot Water Extractable)	MET-93-6104	modified from EPA 6010D and MSA PART 3, CH 21	ICP/OES
Cadmium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Chromium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Cobalt	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Copper	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Lead	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Molybdenum	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Nickel	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Selenium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Silver	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Thallium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Uranium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Vanadium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Zinc	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Chromium, Hexavalent	INOR-93-6068	modified from EPA 3060 and EPA 7196	SPECTROPHOTOMETER
Cyanide, Free	INOR-93-6052	modified from ON MOECC E3015 and SM 4500-CN- I	TECHNICON AUTO ANALYZER
Mercury	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Electrical Conductivity (2:1)	INOR-93-6036	modified from MSA PART 3, CH 14 and SM 2510 B	EC METER
Sodium Adsorption Ratio	INOR-93-6007	McKeague 4.12 & 3.26 & EPA SW-846 6010C	GICP/OES
pH, 2:1 CaCl2 Extraction	INOR-93-6031	modified from EPA 9045D and MCKEAGUE 3.11	PH METER
Antimony Leachate	MET-93-6103	modified from EPA 1312 & EPA 6020E	B ICP/MS
Arsenic Leachate	MET-93-6103	modified from EPA 1312 & EPA 6020E	B ICP/MS
Barium Leachate	MET-93-6103	modified from EPA 1312 & EPA 6020E	BICP-MS
Beryllium Leachate	MET-93-6103	modified from EPA 1312 & EPA 6020E	B ICP-MS
Boron Leachate	MET-93-6103	modified from EPA 1312 & EPA 6020E	3 ICP-MS

Method Summary

CLIENT NAME: GOLDER ASSOCIATES LTD

PROJECT: 19134931 - Bayshore

AGAT WORK ORDER: 20Z620709

ATTENTION TO: Alyssa Whiteduck

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Cadmium Leachate	MET-93-6103	modified from EPA 1312 & EPA 6020B	ICP-MS
Chromium Leachate	MET-93-6103	modified from EPA 1312 & EPA 6020B	ICP-MS
Cobalt Leachate	MET-93-6103	modified from EPA 1312 & EPA 6020B	ICP-MS
Copper Leachate	MET-93-6103	modified from EPA 1312 & EPA 6020B	ICP-MS
Lead Leachate	MET-93-6103	modified from EPA 1312 & EPA 6020B	ICP-MS
Molybdenum Leachate	MET-93-6103	modified from EPA 1312 & EPA 6020B	ICP-MS
Nickel Leachate	MET-93-6103	modified from EPA 1312 & EPA 6020B	ICP-MS
Selenium Leachate	MET-93-6103	modified from EPA 1312 & EPA 6020B	ICP-MS
Silver Leachate	MET-93-6103	modified from EPA 1312 & EPA 6020B	ICP-MS
Thallium Leachate	MET-93-6103	modified from EPA 1312 & EPA 6020B	ICP-MS
Uranium Leachate	MET-93-6103	modified from EPA 1312 & EPA 6020B	ICP-MS
Vanadium Leachate	MET-93-6103	modified from EPA 1312 & EPA 6020B	ICP-MS
Zinc Leachate	MET-93-6103	modified from EPA 1312 & EPA 6020B	ICP-MS

Method Summary

CLIENT NAME: GOLDER ASSOCIATES LTD

PROJECT: 19134931 - Bayshore

AGAT WORK ORDER: 20Z620709

ATTENTION TO: Alyssa Whiteduck

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Trace Organics Analysis	·	·	
Naphthalene	ORG-91-5106	modified from EPA 3541 and EPA 8270E	GC/MS
Acenaphthylene	ORG-91-5106	modified from EPA 3541 and EPA 8270E	GC/MS
Acenaphthene	ORG-91-5106	modified from EPA 3541 and EPA 8270E	GC/MS
Fluorene	ORG-91-5106	modified from EPA 3541 and EPA 8270E	GC/MS
Phenanthrene	ORG-91-5106	modified from EPA 3541 and EPA 8270E	GC/MS
Anthracene	ORG-91-5106	modified from EPA 3541 and EPA 8270E	GC/MS
Fluoranthene	ORG-91-5106	modified from EPA 3541 and EPA 8270E	GC/MS
Pyrene	ORG-91-5106	modified from EPA 3541 and EPA 8270E	GC/MS
Benz(a)anthracene	ORG-91-5106	modified from EPA 3541 and EPA 8270E	GC/MS
Chrysene	ORG-91-5106	modified from EPA 3541 and EPA 8270E	GC/MS
Benzo(b)fluoranthene	ORG-91-5106	modified from EPA 3541 and EPA 8270E	GC/MS
Benzo(k)fluoranthene	ORG-91-5106	modified from EPA 3541 and EPA 8270E	GC/MS
Benzo(a)pyrene	ORG-91-5106	modified from EPA 3541 and EPA 8270E	GC/MS
Indeno(1,2,3-cd)pyrene	ORG-91-5106	modified from EPA 3541 and EPA 8270E	GC/MS
Dibenz(a,h)anthracene	ORG-91-5106	modified from EPA 3541 and EPA 8270E	GC/MS
Benzo(g,h,i)perylene	ORG-91-5106	modified from EPA 3541 and EPA 8270E	GC/MS
1 and 2 Methlynaphthalene	ORG-91-5106	modified from EPA 3541 and EPA 8270E	GC/MS
Moisture Content	ORG-91-5106	Tier 1 Method	BALANCE
Naphthalene-d8	ORG-91-5106	modified from EPA 3541 & 8270E	GC/MS
Acenaphthene-d10	ORG-91-5106	modified from EPA 3541 & 8270E	GC/MS
Chrysene-d12	ORG-91-5106	modified from EPA 3541 & 8270E	GC/MS
Benzene	VOL-91-5009	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
Toluene	VOL-91-5009	modified from EPA SW-846 5035C & 8260D	P&T GC/MS
Ethylbenzene	VOL-91-5009	modified from EPA SW-846 5035C & 8260D	P&T GC/MS
Xylenes (Total)	VOL-91-5009	modified from EPA SW-846 5035C & 8260D	P&T GC/MS
F1 (C6 to C10)	VOL-91-5009	modified from CCME Tier 1 Method	P&T GC/FID
F1 (C6 to C10) minus BTEX	VOL-91-5009	modified from CCME Tier 1 Method	P&T GC/FID
F2 (C10 to C16)	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID
F3 (C16 to C34)	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID
F4 (C34 to C50)	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID
Gravimetric Heavy Hydrocarbons	VOL-91-5009	modified from CCME Tier 1 Method	BALANCE
Moisture Content	VOL-91-5009	modified from CCME Tier 1 Method	BALANCE
Terphenyl	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID

Method Summary

CLIENT NAME: GOLDER ASSOCIATES LTD

PROJECT: 19134931 - Bayshore

AGAT WORK ORDER: 20Z620709

ATTENTION TO: Alyssa Whiteduck

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
F1 (C6 to C10)	VOL-91-5009	modified from CCME Tier 1 Method	P&T GC/FID
F2 (C10 to C16) minus Naphthalene	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID
F3 (C16 to C34)	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID
F3 (C16 to C34) minus PAHs	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID

Stody Person! I med fine of the circles of the philipping stody Person!

Chain of Custody Record

Sample Identification

05 20-01 SAI

20-08 SAS

Contact: Address:

Phone: Reports to be sent to: 1. Email: 2. Email:

Report Information:
Company: Golden Associates

If this is a Drinking Water sample, please use Drinking Water Chain of Custody Form (potable water consumed by humans)

X Yes

Biota Ground Water

Paint

Containers

Sampled

Sample Matrix Legend

Mississauga, Ontario L4Z 1Y2

Ph: 905.712.5100 Fax: 905.712.5122 webearth.agatlabs.com

Laboratory Use Only

	Cu	rival T istody otes:				· -]Yes			□No))		_ N,	/A
	Re	rnaı gula sh T	r T/	ΑT		V	5 t			red: ess D				
	3 Business 2 Business Next Business Days Days Day OR Date Required (Rush Surcharges May Apply):													ess
	Please provide prior notification for rush TAT *TAT is exclusive of weekends and statutory holidays													
a l			TAT	is exc	lusiv	e of	week	ends	and	statu	tory i	rolid		
		For 'S	ame	Day	' ana	lysis		ase (conta	ct yo	ur AG	AT (CPM	
	Volatiles: □ VOC □ BTEX □ THM	X X PHCs F1 - F4 //87-EX	ABNS	XX PAHS	PCBs: ☐ Total ☐ Aroclors	Organochlorine Pesticides	TCLP: ☐ M&I ☐ VOCs ☐ ABNs ☐ BI3]P ☐ PCBs	Sewer Use	XX EC+SAR	X SPLP Merlib				
	iv.				*		8 8						***	
7	0	3	ine ine	h	30	n	n	Pag	(e	1	of _	/		

Regulatory Requ		o Regulatory Requirement
Regulation 153/04	Sewer Use	Regulation 558
Table	Sanitary	CCME
☑Res/Park □Agriculture	□Storm	Prov. Wator Quality Objectives (PWQO)
Soil Texture (Check One)	Region	Other
Fine	MISA	Indicate One
is this submission	ni ioi a	Report Guideline on

ered - Metals, Hg, CrVI

No

Project: Site Location.	19/3493,	Baysh	al		
Sampled By:					
AGAT Quote #1		PO:			
	Ploaco neto: If quotation	an number is not provided, cli	ent will be hilled full pric	re for analysis	
Invoice Info	ormation:		Bill To Same:	Yes □ No	
Company:					
Company: Contact:					

Sampled

SW	Sediment Surface Water	Field Filt	and Inor	☐ All Metals ☐ 153 ☐ Hydride Metals ☐	: □ B-HWS · □ EC □	Full Metals Scar	Regulation/Cust	its: TP	se: □ vo(1 - F4	H		□ Total [Organochlorine]M&I □V¢	Use	+5A	ph			
ample Matrix	Comments/ Special Instructions	Y/N	Metals	☐ All Metals ☐ Hydride M	ORPs:	Full Me	Regula	Nutrients:	Volatiles:	PHCs F1	ABNs	PAHS	PCBs; []	Organo	TCLP: ☐ M&I	Sewer	EC	200			
5 1	Hold time up									,		X								ñ-	
			X							X		×						×	-		_
										X							X				
4						_											X		-	+	_
			_						12		100			_				_	_		_

FOC THE

Salabies accuration of A Link Annua and Salabi	
Alice What I be for the town The same wind the work he lot I to	1111 200 107103 1443
Sample Rollyguilland By (Print Name and Sign) Data Data Data Data	Time 252 Page of
COZOTOTIOS ISTRUO SITUATION DE COZOTOTIOS ISTRUO SITUATION DE CITATION DE COZOTOTION D	Vote Time No. T O O T C C 1
Samples Relinquistred by (Wart Name and Sept).	No: 1 18222

CLIENT NAME: GOLDER ASSOCIATES LTD 1931 ROBERTSON ROAD OTTAWA, ON K2H5B7 (613) 592-9600

ATTENTION TO: Alyssa Whiteduck

PROJECT: 19134931 - Bayshore

AGAT WORK ORDER: 20Z622555

SOIL ANALYSIS REVIEWED BY: Jacky Zhu, Spectroscopy Technician

TRACE ORGANICS REVIEWED BY: Oksana Gushyla, Trace Organics Lab Supervisor

DATE REPORTED: Jul 20, 2020

PAGES (INCLUDING COVER): 19 VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

*Notes	

Disclaimer:

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may
 incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 30 days following analysis, unless expressly agreed otherwise in writing. Please contact your Client Project Manager if you require additional sample storage time.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other
 third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the
 services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of
 merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines
 contained in this document.
- All reportable information as specified by ISO/IEC 17025:2017 is available from AGAT Laboratories upon request.

AGAT Laboratories (V1)

Page 1 of 19

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA)

Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA) AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.

AGAT WORK ORDER: 20Z622555 PROJECT: 19134931 - Bayshore 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE:

ATTENTION TO: Alyssa Whiteduck

SAMPLED BY:

	O. Reg. 153(511) - EC/SAR (Soil)												
DATE RECEIVED: 2020-07-08	DATE RECEIVED: 2020-07-08 DATE REPORTED: 2020-07-20												
	;	SAMPLE DES	CRIPTION:	20-02 SA5	20-02 SA12	20-02 SA14							
		SAM	PLE TYPE:	Soil	Soil	Soil							
		DATE:	SAMPLED:	2020-07-02	2020-07-02	2020-07-02							
Parameter	Unit	G/S	RDL	1257952	1257953	1257954							
Electrical Conductivity (2:1)	mS/cm	0.7	0.005	5.22	0.291	0.123							
Sodium Adsorption Ratio	NA	5	NA	13.8	1.82	1.56							

Comments:

RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Soil - Residential/Parkland/Institutional Property Use - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

1257952-1257954 EC was determined on the DI water extract obtained from the 2:1 leaching procedure (2 parts DI water:1 part soil). SAR is a calculated parameter.

Analysis performed at AGAT Toronto (unless marked by *)

CHARTERED CHEMIST

AGAT WORK ORDER: 20Z622555 PROJECT: 19134931 - Bayshore 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE:

ATTENTION TO: Alyssa Whiteduck SAMPLED BY:

O. Reg. 153(511) - Metals & Inorganics (Soil) DATE RECEIVED: 2020-07-08 **DATE REPORTED: 2020-07-20** SAMPLE DESCRIPTION: 20-02 SA3 SAMPLE TYPE: Soil DATE SAMPLED: 2020-07-02 G/S **RDL** 1257951 Parameter Unit Antimony 7.5 0.8 <0.8 μg/g Arsenic 18 2 μg/g 41 Barium 390 2 μg/g Beryllium 0.5 < 0.5 μg/g 4 Boron μg/g 120 5 5 Boron (Hot Water Extractable) 0.10 0.21 μg/g 1.5 Cadmium μg/g 1.2 0.5 < 0.5 Chromium μg/g 160 5 12 Cobalt 22 0.5 3.9 μg/g Copper μg/g 140 10 6 Lead μg/g 120 Molybdenum 6.9 0.5 < 0.5 μg/g Nickel 100 7 μg/g Selenium 2.4 0.4 < 0.4 μg/g Silver μg/g 20 0.2 < 0.2 Thallium μg/g 1 0.4 < 0.4 Uranium μg/g 23 0.5 0.5 Vanadium 86 21 μg/g 340 21 Zinc μg/g Chromium, Hexavalent μg/g 8 0.2 < 0.2 < 0.040 Cyanide, Free μg/g 0.051 0.040 Mercury μg/g 0.27 0.10 < 0.10 Electrical Conductivity (2:1) mS/cm 0.7 0.005 0.791 Sodium Adsorption Ratio NA 5 NA 12.6

Certified By:

pH Units

5.0-9.0

NA

8.05

pH, 2:1 CaCl2 Extraction

AGAT WORK ORDER: 20Z622555 PROJECT: 19134931 - Bayshore

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE:

ATTENTION TO: Alyssa Whiteduck

SAMPLED BY:

O. Reg. 153(511) - Metals & Inorganics (Soil)

DATE RECEIVED: 2020-07-08 **DATE REPORTED: 2020-07-20**

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Soil -

Residential/Parkland/Institutional Property Use - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

1257951 EC was determined on the DI water extract obtained from the 2:1 leaching procedure (2 parts DI water:1 part soil). pH was determined on the 0.01M CaCl2 extract prepared at 2:1 ratio. SAR is a calculated

parameter.

Analysis performed at AGAT Toronto (unless marked by *)

AGAT WORK ORDER: 20Z622555 PROJECT: 19134931 - Bayshore

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE:

ATTENTION TO: Alyssa Whiteduck

SAMPLED BY:

O. Reg. 153(511) - pH (Soil)

DATE RECEIVED: 2020-07-08 **DATE REPORTED: 2020-07-20**

> SAMPLE DESCRIPTION: 20-02 SA5

SAMPLE TYPE: Soil

DATE SAMPLED:

2020-07-02 Unit G/S RDL 1257952 Parameter

pH, 2:1 CaCl2 Extraction pH Units 7.48

RDL - Reported Detection Limit; G / S - Guideline / Standard Comments:

1257952 pH was determined on the 0.01M CaCl2 extract obtained from 2:1 leaching procedure (2 parts extraction fluid:1 part wet soil).

Analysis performed at AGAT Toronto (unless marked by *)

AGAT WORK ORDER: 20Z622555 PROJECT: 19134931 - Bayshore

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD

ATTENTION TO: Alyssa Whiteduck

SAMPLING SITE:			SAMPLED BY:	
			O. Reg	g. 406/19 SPLP Metals
DATE RECEIVED: 2020-07-08				DATE REPORTED: 2020-07-20
		SAMPLE DESCRIPTION:	20-02 SA3	
		SAMPLE TYPE:	Soil	
		DATE SAMPLED:	2020-07-02	
Parameter	Unit	G/S RDL	1257951	
Antimony Leachate	μg/L	0.6	<0.6	
Arsenic Leachate	μg/L	1	2	
Barium Leachate	μg/L	100	<100	
Beryllium Leachate	μg/L	0.4	<0.4	
Boron Leachate	μg/L	500	<500	
Cadmium Leachate	μg/L	0.05	< 0.05	
Chromium Leachate	μg/L	5	18	
Cobalt Leachate	μg/L	0.3	2.2	
Copper Leachate	μg/L	1.4	10.8	
Lead Leachate	μg/L	0.4	3.8	
Molybdenum Leachate	μg/L	1.5	<1.5	
Nickel Leachate	μg/L	7	<7	
Selenium Leachate	μg/L	1	<1	
Silver Leachate	μg/L	0.03	0.07	
Thallium Leachate	μg/L	0.2	<0.2	
Uranium Leachate	μg/L	2	<2	
Vanadium Leachate	μg/L	0.6	23.9	
Zinc Leachate	μg/L	20	21	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

1257951 Leachate for metal testing was prepared in accordance with Ontario MECP Method E9003, which has been modified from SW846-1312 by Ontario MECP. MECP has recommended that Method E9003 be used for leachate testing of soil samples under O'Reg 406/19 by MECP. This is a validated, unaccredited procedure.

Analysis performed at AGAT Toronto (unless marked by *)

AGAT WORK ORDER: 20Z622555 PROJECT: 19134931 - Bayshore 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE:

ATTENTION TO: Alyssa Whiteduck SAMPLED BY:

O. Reg. 153(511) - PAHs (Soil)

DATE RECEIVED: 2020-07-08					DATE REPORTED: 2020-07-20
	(SAMPLE DESC	RIPTION:	20-02 SA3	
		SAMP	LE TYPE:	Soil	
		DATE S	AMPLED:	2020-07-02	
Parameter	Unit	G/S	RDL	1257951	
laphthalene	μg/g	0.6	0.05	<0.05	
cenaphthylene	μg/g	0.15	0.05	< 0.05	
cenaphthene	μg/g	7.9	0.05	<0.05	
luorene	μg/g	62	0.05	<0.05	
henanthrene	μg/g	6.2	0.05	<0.05	
nthracene	μg/g	0.67	0.05	< 0.05	
luoranthene	μg/g	0.69	0.05	< 0.05	
yrene	μg/g	78	0.05	< 0.05	
enz(a)anthracene	μg/g	0.5	0.05	< 0.05	
hrysene	μg/g	7	0.05	< 0.05	
enzo(b)fluoranthene	μg/g	0.78	0.05	< 0.05	
Senzo(k)fluoranthene	μg/g	0.78	0.05	<0.05	
enzo(a)pyrene	μg/g	0.3	0.05	<0.05	
ndeno(1,2,3-cd)pyrene	μg/g	0.38	0.05	< 0.05	
Dibenz(a,h)anthracene	μg/g	0.1	0.05	<0.05	
enzo(g,h,i)perylene	μg/g	6.6	0.05	< 0.05	
and 2 Methlynaphthalene	μg/g	0.99	0.05	< 0.05	
oisture Content	%		0.1	9.6	
Surrogate	Unit	Acceptabl	e Limits		
laphthalene-d8	%	50-1	40	75	
cenaphthene-d10	%	50-1	40	86	
Chrysene-d12	%	50-1	40	81	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Soil -

Residential/Parkland/Institutional Property Use - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

1257951 Results are based on the dry weight of the soil.

Note: The result for Benzo(b)Fluoranthene is the total of the Benzo(b)&j)Fluoranthene isomers because the isomers co-elute on the GC column.

2- and 1-Methyl Naphthalene is a calculated parameter. The calculated value is the sum of 2-Methyl Naphthalene and 1-Methyl Naphthalene.

Analysis performed at AGAT Toronto (unless marked by *)

AGAT WORK ORDER: 20Z622555 PROJECT: 19134931 - Bayshore 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE:

ATTENTION TO: Alyssa Whiteduck

SAMPLED BY:

O. Reg. 153(511) - I	PHCs F1 - F4	(with PAHs) (Soi	I)
----------------------	--------------	------------------	----

				-9()	(
DATE RECEIVED: 2020-07-08					DATE REPORTED: 2020-07-20
	;	SAMPLE DES	CRIPTION:	20-02 SA3	
		SAM	PLE TYPE:	Soil	
		DATES	SAMPLED:	2020-07-02	
Parameter	Unit	G/S	RDL	1257951	
Benzene	μg/g	0.21	0.02	<0.02	
Toluene	μg/g	2.3	0.05	< 0.05	
Ethylbenzene	μg/g	2	0.05	< 0.05	
Xylenes (Total)	μg/g	3.1	0.05	< 0.05	
F1 (C6 to C10)	μg/g	55	5	<5	
F1 (C6 to C10) minus BTEX	μg/g	55	5	<5	
F2 (C10 to C16)	μg/g	98	10	<10	
F2 (C10 to C16) minus Naphthalene	μg/g		10	<10	
F3 (C16 to C34)	μg/g	300	50	<50	
F3 (C16 to C34) minus PAHs	μg/g		50	<50	
F4 (C34 to C50)	μg/g	2800	50	<50	
Gravimetric Heavy Hydrocarbons	μg/g	2800	50	NA	
Moisture Content	%		0.1	9.6	
Surrogate	Unit	Acceptab	le Limits		
Terphenyl	%	60-1	40	75	

AGAT WORK ORDER: 20Z622555 PROJECT: 19134931 - Bayshore 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aqatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE:

ATTENTION TO: Alyssa Whiteduck

SAMPLED BY:

O. Reg. 153(511) - PHCs F1 - F4 (with PAHs) (Soil)

DATE RECEIVED: 2020-07-08 DATE REPORTED: 2020-07-20

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Soil -

Residential/Parkland/Institutional Property Use - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

1257951 Results are based on sample dry weight.

The C6-C10 fraction is calculated using toluene response factor.

Xylenes total is a calculated parameter. The calculated value is the sum of m&p-Xylene and o-Xylene.

C6–C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX.

The calculated parameters are non-accredited. The parameters that are components of the calculation are accredited.

The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and n-C34.

Gravimetric Heavy Hydrocarbons are not included in the Total C16-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons >C50 are present.

The chromatogram has returned to baseline by the retention time of nC50.

Total C6 - C50 results are corrected for BTEX and PAH contributions.

C>10 - C16 (F2- Naphthalene) is a calculated parameter. The calculated value is F2 - Naphthalene.

C>16 - C34 (F3-PAH) is a calculated parameter. The calculated value is F3-PAH (PAH: sum of Phenanthrene, Benzo(a)anthracene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Benzo(a)pyrene,

Fluoranthene, Dibenzo(a,h)anthracene, Indeno(1,2,3-c,d)pyrene and Pyrene).

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 + nC34 average.

Linearity is within 15%.

Extraction and holding times were met for this sample.

Analysis performed at AGAT Toronto (unless marked by *)

Guideline Violation

AGAT WORK ORDER: 20Z622555 PROJECT: 19134931 - Bayshore 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD

ATTENTION TO: Alyssa Whiteduck

SAMPLEID	SAMPLE TITLE	GUIDELINE	ANALYSIS PACKAGE	PARAMETER	UNIT	GUIDEVALUE	RESULT
1257951	20-02 SA3	ON T3 S RPI CT	O. Reg. 153(511) - Metals & Inorganics (Soil)	Electrical Conductivity (2:1)	mS/cm	0.7	0.791
1257951	20-02 SA3	ON T3 S RPI CT	O. Reg. 153(511) - Metals & Inorganics (Soil)	Sodium Adsorption Ratio	NA	5	12.6
1257952	20-02 SA5	ON T3 S RPI CT	O. Reg. 153(511) - EC/SAR (Soil)	Electrical Conductivity (2:1)	mS/cm	0.7	5.22
1257952	20-02 SA5	ON T3 S RPI CT	O. Reg. 153(511) - EC/SAR (Soil)	Sodium Adsorption Ratio	NA	5	13.8

Quality Assurance

CLIENT NAME: GOLDER ASSOCIATES LTD

PROJECT: 19134931 - Bayshore

SAMPLING SITE:

AGAT WORK ORDER: 20Z622555
ATTENTION TO: Alyssa Whiteduck

SAMPLED BY:

				Soi	l Ana	alysis	6								
RPT Date: Jul 20, 2020				UPLICATI	E		REFEREN	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample Id	Dup #1	Dup #2	RPD	Method Blank	Measured		Acceptable Limits			ptable	Recovery		ptable nits
		ia	·				Value	Lower	Upper		Lower	Upper		Lower	Upper
O. Reg. 153(511) - Metals & Inor	ganics (Soil)														
Antimony	1261989		<0.8	<0.8	NA	< 0.8	130%	70%	130%	105%	80%	120%	76%	70%	130%
Arsenic	1261989		3	3	NA	< 1	110%	70%	130%	102%	80%	120%	104%	70%	130%
Barium	1261989		88	88	0.0%	< 2	101%	70%	130%	97%	80%	120%	95%	70%	130%
Beryllium	1261989		0.6	0.6	NA	< 0.5	97%	70%	130%	119%	80%	120%	98%	70%	130%
Boron	1261989		8	8	NA	< 5	75%	70%	130%	114%	80%	120%	88%	70%	130%
Boron (Hot Water Extractable)	1264324		0.12	0.12	NA	< 0.10	97%	60%	140%	101%	70%	130%	100%	60%	140%
Cadmium	1261989		< 0.5	< 0.5	NA	< 0.5	103%	70%	130%	100%	80%	120%	104%	70%	130%
Chromium	1261989		27	28	3.6%	< 5	98%	70%	130%	106%	80%	120%	102%	70%	130%
Cobalt	1261989		10.7	10.9	1.9%	< 0.5	99%	70%	130%	106%	80%	120%	100%	70%	130%
Copper	1261989		21	21	0.0%	< 1	89%	70%	130%	114%	80%	120%	97%	70%	130%
Lead	1261989		10	10	0.0%	< 1	102%	70%	130%	104%	80%	120%	97%	70%	130%
Molybdenum	1261989		< 0.5	< 0.5	NA	< 0.5	99%	70%	130%	103%	80%	120%	102%	70%	130%
Nickel	1261989		24	25	4.1%	< 1	100%	70%	130%	109%	80%	120%	98%	70%	130%
Selenium	1261989		< 0.4	< 0.4	NA	< 0.4	129%	70%	130%	102%	80%	120%	103%	70%	130%
Silver	1261989		<0.2	<0.2	NA	< 0.2	148%	70%	130%	102%	80%	120%	95%	70%	130%
Thallium	1261989		<0.4	<0.4	NA	< 0.4	110%	70%	130%	105%	80%	120%	100%	70%	130%
Uranium	1261989		0.6	0.6	NA	< 0.5	114%	70%	130%	104%	80%	120%	106%	70%	130%
Vanadium	1261989		35	36	2.8%	< 1	102%	70%	130%	102%	80%	120%	97%	70%	130%
Zinc	1261989		58	59	1.7%	< 5	100%	70%	130%	111%	80%	120%	109%	70%	130%
Chromium, Hexavalent	1264193		<0.2	<0.2	NA	< 0.2	90%	70%	130%	85%	80%	120%	91%	70%	130%
Cyanide, Free	1264507		<0.040	<0.040	NA	< 0.040	98%	70%	130%	97%	80%	120%	97%	70%	130%
Mercury	1261989		<0.10	<0.10	NA	< 0.10	102%	70%	130%	100%	80%	120%	99%	70%	130%
Electrical Conductivity (2:1)	1267979		0.831	0.832	0.1%	< 0.005	101%	80%	120%						
Sodium Adsorption Ratio	1264324		0.165	0.163	1.2%	NA									
pH, 2:1 CaCl2 Extraction	1267818		7.78	7.77	0.1%	NA	100%	80%	120%						

Comments: QA Qualifier for metals - Silver Reference recovery is outside method's acceptance limit by more than an absolute maximum of 10% however, all other QCs i.e. duplicate, blank, blank spike and matrix spike are within method's QC acceptance criteria.

O. Reg. 406/19 SPLP Metals														
Antimony Leachate	1238289	<0.6	<0.6	NA	< 0.6	103%	70%	130%	99%	80%	120%	99%	70%	130%
Arsenic Leachate	1238289	<1	<1	NA	< 1	103%	70%	130%	110%	80%	120%	110%	70%	130%
Barium Leachate	1238289	< 100	< 100	NA	< 100	103%	70%	130%	109%	80%	120%	109%	70%	130%
Beryllium Leachate	1238289	<0.4	<0.4	NA	< 0.4	105%	70%	130%	112%	80%	120%	106%	70%	130%
Boron Leachate	1238289	<500	<500	NA	< 500	105%	70%	130%	114%	80%	120%	104%	70%	130%
Cadmium Leachate	1238289	< 0.05	<0.05	NA	< 0.05	100%	70%	130%	104%	80%	120%	105%	70%	130%
Chromium Leachate	1238289	< 5	< 5	NA	< 5	100%	70%	130%	106%	80%	120%	104%	70%	130%
Cobalt Leachate	1238289	< 0.3	< 0.3	NA	< 0.3	99%	70%	130%	109%	80%	120%	102%	70%	130%
Copper Leachate	1238289	<1.4	2.1	NA	< 1.4	100%	70%	130%	112%	80%	120%	114%	70%	130%
Lead Leachate	1238289	<0.4	<0.4	NA	< 0.4	100%	70%	130%	108%	80%	120%	107%	70%	130%
Molybdenum Leachate	1238289	<1.5	1.6	NA	< 1.5	100%	70%	130%	107%	80%	120%	106%	70%	130%

AGAT QUALITY ASSURANCE REPORT (V1)

Page 11 of 19

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

AGAT WORK ORDER: 20Z622555

Quality Assurance

CLIENT NAME: GOLDER ASSOCIATES LTD

PROJECT: 19134931 - Bayshore ATTENTION TO: Alyssa Whiteduck

SAMPLING SITE: SAMPLED BY:

Soil Analysis (Continued)															
RPT Date: Jul 20, 2020			С	UPLICAT	E		REFEREN	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Acceptable Measured Limits					ptable nits	Recovery	منا أ	ptable nits
		ld					Value	Lower	Upper	,	Lower Upper				Upper
Nickel Leachate	1238289		<7	<7	NA	< 7	100%	70%	130%	109%	80%	120%	101%	70%	130%
Selenium Leachate	1238289		<1	<1	NA	< 1	101%	70%	130%	108%	80%	120%	104%	70%	130%
Silver Leachate	1238289		< 0.03	0.03	NA	<0.03	100%	70%	130%	108%	80%	120%	105%	70%	130%
Thallium Leachate	1238289		<0.2	<0.2	NA	< 0.2	98%	70%	130%	104%	80%	120%	102%	70%	130%
Uranium Leachate	1238289		<2	<2	NA	< 2	99%	70%	130%	107%	80%	120%	105%	70%	130%
Vanadium Leachate	1238289		1.4 1.5 NA < 0.6 100% 70% 130%				108%	80%	120%	103%	70%	130%			
Zinc Leachate	1238289		<20	<20	NA	< 20	102%	70%	130%	111%	80%	120%	109%	70%	130%

Comments: NA signifies Not Applicable.

pH duplicates QA acceptance criteria was met relative as stated in Table 5-15 of Analytical Protocol document.

If the RPD value is NA, the results of the duplicates are under 5X the RDL and will not be calculated.

CHARTERED SHARE CHARTERED SHARE CHARTERED SHARE CHARTERED SHARE CHARTER CHARTE

AGAT WORK ORDER: 20Z622555

Quality Assurance

CLIENT NAME: GOLDER ASSOCIATES LTD

PROJECT: 19134931 - Bayshore ATTENTION TO: Alyssa Whiteduck

SAMPLING SITE: SAMPLED BY:

Trace Organics Analysis															
RPT Date: Jul 20, 2020				UPLICATI	E		REFERE	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample Id	Dup #1	Dup #2	RPD	Method Blank	Measured		ptable nits	Recovery	Lie	ptable nits	Recovery		ptable nits
		la la					Value	Lower	Upper	·	Lower	Upper		Lower	Upper
O. Reg. 153(511) - PHCs F1 - F4 (with PAHs)	(Soil)													
Benzene	1252687		< 0.02	< 0.02	NA	< 0.02	96%	50%	140%	111%	60%	130%	93%	50%	140%
Toluene	1252687		< 0.05	< 0.05	NA	< 0.05	95%	50%	140%	100%	60%	130%	83%	50%	140%
Ethylbenzene	1252687		< 0.05	< 0.05	NA	< 0.05	118%	50%	140%	102%	60%	130%	92%	50%	140%
Xylenes (Total)	1252687		< 0.05	< 0.05	NA	< 0.05	104%	50%	140%	100%	60%	130%	89%	50%	140%
F1 (C6 to C10)	1252687		< 5	< 5	NA	< 5	108%	60%	140%	105%	60%	140%	93%	60%	140%
F2 (C10 to C16)	1262070		< 10	< 10	NA	< 10	100%	60%	140%	118%	60%	140%	76%	60%	140%
F3 (C16 to C34)	1262070		170	240	NA	< 50	99%	60%	140%	122%	60%	140%	92%	60%	140%
F4 (C34 to C50)	1262070		< 50	< 50	NA	< 50	96%	60%	140%	103%	60%	140%	69%	60%	140%
O. Reg. 153(511) - PAHs (Soil)															
Naphthalene	1272678		< 0.05	< 0.05	NA	< 0.05	99%	50%	140%	87%	50%	140%	81%	50%	140%
Acenaphthylene	1272678		< 0.05	< 0.05	NA	< 0.05	109%	50%	140%	97%	50%	140%	93%	50%	140%
Acenaphthene	1272678		< 0.05	< 0.05	NA	< 0.05	107%	50%	140%	95%	50%	140%	91%	50%	140%
Fluorene	1272678		< 0.05	< 0.05	NA	< 0.05	115%	50%	140%	96%	50%	140%	93%	50%	140%
Phenanthrene	1272678		<0.05	<0.05	NA	< 0.05	110%	50%	140%	96%	50%	140%	92%	50%	140%
Anthracene	1272678		<0.05	<0.05	NA	< 0.05	115%	50%	140%	102%	50%	140%	96%	50%	140%
Fluoranthene	1272678		< 0.05	< 0.05	NA	< 0.05	109%	50%	140%	109%	50%	140%	103%	50%	140%
Pyrene	1272678		< 0.05	< 0.05	NA	< 0.05	108%	50%	140%	107%	50%	140%	101%	50%	140%
Benz(a)anthracene	1272678		< 0.05	< 0.05	NA	< 0.05	111%	50%	140%	89%	50%	140%	89%	50%	140%
Chrysene	1272678		<0.05	< 0.05	NA	< 0.05	104%	50%	140%	110%	50%	140%	103%	50%	140%
Benzo(b)fluoranthene	1272678		<0.05	<0.05	NA	< 0.05	116%	50%	140%	100%	50%	140%	88%	50%	140%
Benzo(k)fluoranthene	1272678		<0.05	< 0.05	NA	< 0.05	117%	50%	140%	111%	50%	140%	108%	50%	140%
Benzo(a)pyrene	1272678		<0.05	< 0.05	NA	< 0.05	119%	50%	140%	95%	50%	140%	90%	50%	140%
Indeno(1,2,3-cd)pyrene	1272678		<0.05	< 0.05	NA	< 0.05	83%	50%	140%	87%	50%	140%	79%	50%	140%
Dibenz(a,h)anthracene	1272678		<0.05	<0.05	NA	< 0.05	87%	50%	140%	76%	50%	140%	75%	50%	140%
Benzo(g,h,i)perylene	1272678		<0.05	<0.05	NA	< 0.05	81%	50%	140%	88%	50%	140%	73%	50%	140%

Comments: When the average of the sample and duplicate results is less than 5x the RDL, the Relative Percent Difference (RPD) will be indicated as Not Applicable (NA).

Certified By:

Juz

QA Violation

CLIENT NAME: GOLDER ASSOCIATES LTD

AGAT WORK ORDER: 20Z622555

PROJECT: 19134931 - Bayshore

ATTENTION TO: Alyssa Whiteduck

RPT Date: Jul 20, 2020			REFEREN	ICE MAT	ERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPII	KE
PARAMETER	Sample Id	Sample Description	Measured	Accept Limi	ite	Recovery	Lin	ptable nits	Recovery	Lin	ptable nits
. ,			Value	Lower		,		Upper	,		Upper

O. Reg. 153(511) - Metals & Inorganics (Soil)

Silver 20-02 SA3 148% 70% 130% 102% 80% 120% 95% 70% 130%

Comments: QA Qualifier for metals - Silver Reference recovery is outside method's acceptance limit by more than an absolute maximum of 10% however, all other QCs i.e. duplicate, blank, blank spike and matrix spike are within method's QC acceptance criteria.

Method Summary

CLIENT NAME: GOLDER ASSOCIATES LTD

PROJECT: 19134931 - Bayshore

SAMPLING SITE:

AGAT WORK ORDER: 20Z622555 ATTENTION TO: Alyssa Whiteduck

SAMPLED BY:

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE			
Soil Analysis						
Electrical Conductivity (2:1)	INOR-93-6036	modified from MSA PART 3, CH 14 and SM 2510 B	EC METER			
Sodium Adsorption Ratio	INOR-93-6007	McKeague 4.12 & 3.26 & EPA SW-846 6010C	ICP/OES			
Antimony	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS			
Arsenic	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS			
Barium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS			
Beryllium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS			
Boron	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS			
Boron (Hot Water Extractable)	MET-93-6104	modified from EPA 6010D and MSA PART 3, CH 21	ICP/OES			
Cadmium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS			
Chromium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS			
Cobalt	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS			
Copper	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS			
Lead	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS			
Molybdenum	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS			
Nickel	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS			
Selenium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS			
Silver	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS			
Thallium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS			
Uranium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS			
Vanadium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS			
Zinc	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS			
Chromium, Hexavalent	INOR-93-6068	modified from EPA 3060 and EPA 7196	SPECTROPHOTOMETER			
Cyanide, Free	INOR-93-6052	modified from ON MOECC E3015 and SM 4500-CN- $\mbox{\rm I}$	TECHNICON AUTO ANALYZER			
Mercury	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS			
pH, 2:1 CaCl2 Extraction	INOR-93-6031	modified from EPA 9045D and MCKEAGUE 3.11	PH METER			
Antimony Leachate	MET-93-6103	modified from EPA 1312 & EPA 6020B	ICP/MS			
Arsenic Leachate	MET-93-6103	modified from EPA 1312 & EPA 6020B	ICP/MS			
Barium Leachate	MET-93-6103	modified from EPA 1312 & EPA 6020B	ICP-MS			
Beryllium Leachate	MET-93-6103	modified from EPA 1312 & EPA 6020B	ICP-MS			
Boron Leachate	MET-93-6103	modified from EPA 1312 & EPA 6020B	ICP-MS			

Method Summary

CLIENT NAME: GOLDER ASSOCIATES LTD

AGAT WORK ORDER: 20Z622555

PROJECT: 19134931 - Bayshore

ATTENTION TO: Alyssa Whiteduck

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Cadmium Leachate	MET-93-6103	modified from EPA 1312 & EPA 6020B	ICP-MS
Chromium Leachate	MET-93-6103	modified from EPA 1312 & EPA 6020B	ICP-MS
Cobalt Leachate	MET-93-6103	modified from EPA 1312 & EPA 6020B	ICP-MS
Copper Leachate	MET-93-6103	modified from EPA 1312 & EPA 6020B	ICP-MS
Lead Leachate	MET-93-6103	modified from EPA 1312 & EPA 6020B	ICP-MS
Molybdenum Leachate	MET-93-6103	modified from EPA 1312 & EPA 6020B	ICP-MS
Nickel Leachate	MET-93-6103	modified from EPA 1312 & EPA 6020B	ICP-MS
Selenium Leachate	MET-93-6103	modified from EPA 1312 & EPA 6020B	ICP-MS
Silver Leachate	MET-93-6103	modified from EPA 1312 & EPA 6020B	ICP-MS
Thallium Leachate	MET-93-6103	modified from EPA 1312 & EPA 6020B	ICP-MS
Uranium Leachate	MET-93-6103	modified from EPA 1312 & EPA 6020B	ICP-MS
Vanadium Leachate	MET-93-6103	modified from EPA 1312 & EPA 6020B	ICP-MS
Zinc Leachate	MET-93-6103	modified from EPA 1312 & EPA 6020B	ICP-MS

Method Summary

CLIENT NAME: GOLDER ASSOCIATES LTD

AGAT WORK ORDER: 20Z622555

PROJECT: 19134931 - Bayshore

ATTENTION TO: Alyssa Whiteduck

SAMPLING SITE:		SAMPLED BY:						
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE					
Trace Organics Analysis								
Naphthalene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS					
Acenaphthylene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS					
Acenaphthene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS					
Fluorene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS					
Phenanthrene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS					
Anthracene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS					
Fluoranthene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS					
Pyrene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS					
Benz(a)anthracene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS					
Chrysene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS					
Benzo(b)fluoranthene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS					
Benzo(k)fluoranthene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS					
Benzo(a)pyrene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS					
Indeno(1,2,3-cd)pyrene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS					
Dibenz(a,h)anthracene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS					
Benzo(g,h,i)perylene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS					
1 and 2 Methlynaphthalene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS					
Moisture Content	ORG-91-5106	Tier 1 Method	BALANCE					
Naphthalene-d8	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS					
Acenaphthene-d10	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS					
Chrysene-d12	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS					
Benzene	VOL-91-5009	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS					
Toluene	VOL-91-5009	modified from EPA SW-846 5035C & 8260D	P&T GC/MS					
Ethylbenzene	VOL-91-5009	modified from EPA SW-846 5035C & 8260D	P&T GC/MS					
Xylenes (Total)	VOL-91-5009	modified from EPA SW-846 5035C & 8260D	P&T GC/MS					
F1 (C6 to C10)	VOL-91-5009	modified from CCME Tier 1 Method	P&T GC/FID					
F1 (C6 to C10) minus BTEX	VOL-91-5009	modified from CCME Tier 1 Method	P&T GC/FID					
F2 (C10 to C16)	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID					
F2 (C10 to C16) minus Naphthalene	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID					
F3 (C16 to C34)	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID					

Method Summary

CLIENT NAME: GOLDER ASSOCIATES LTD

AGAT WORK ORDER: 20Z622555

PROJECT: 19134931 - Bayshore

ATTENTION TO: Alyssa Whiteduck

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
F3 (C16 to C34) minus PAHs	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID
F4 (C34 to C50)	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID
Gravimetric Heavy Hydrocarbons	VOL-91-5009	modified from CCME Tier 1 Method	BALANCE
Moisture Content	VOL-91-5009	modified from CCME Tier 1 Method	BALANCE
Terphenyl	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID

Ph: 905.712.5100 Fax: 905.712.5122

Laboratory Use Only 5835 Coopers Avenue Mississauga, Ontario L4Z 1Y2

Chain of Custody Recor							-		pearth.agati	abs.com		Cooler Q	mpera	ures:		.51	8.6		8-8
Papart Information				R	rinking Water Chain of egulatory Requ	uirements:				iremen		Custody	Ci (Ye:	. 3 s	9.3		. 4 □N/
Company: pt Goldu F Contact: Alyss White Address: 1937 Roberts	teduck on Roe	/keth	Holmes	_ 🗷	Regulation 153/04 Table Indicate One	Sewe			egulation 5	58	To			Time			uired:		
Phone: 613-290-8736 Reports to be sent to:					☐Ind/Com ☐Res/Park ☐Agriculture	□Stor	-	_c	Prov. Water Quality Objectives (PWQO) Other		111	Regular TAT 5 to 7 Bu Rush TAT (Rush Surcharges Apply) 3 Business 2 Busines							n . 060
1. Email: awhiteducked 2. Email: khulmas@goid	en.com	b'm			il Texture (Check One) ☑coarse ☐Fine		ite One		Indicate On	ı			ays	Requi	red (Rus		arges Ma	Day	Busine:
Project Information: Project: 1913 4931 - 8 Site Location: Sampled By:	Baysher	Q			ls this submission Record of Site Co			Report Certificat	Guldeline te of Ana	ysls			AT is ex	e provi clusive	of week	notifica kends a	ation for a and statut ntact you	tory holid	days
AGAT Quote #: Please note: If quotation number in the properties of the properties	PO: is not provided, client	will be billed full price		В	ample Matrix Leg Biota W Ground Water Oil	gend	als, Hg, CrVI	Hydrides) O. Rea			THM			Man.	□ B(a)P □PCBs			\$. W	
Company: Contact: Address: Email:				P S SD SV	Paint Soil Sediment		Field Filtered - Metals, Hg, CrVI	nics letals (excl. 53 Metals (ORPs: □B-HWS □C: □CN □Cr* □EC □FOC □Hg □ pH □SAR	Full Metals Scan Regulation/Custom Metals	102 ONO3+NO2	F4/BTEX		PCBs: □ Total □ Aroclors	ochionine Pecticides IM&I □ VOCs □ ABNs	90	p McKeh	0	
Sample Identification	Date Sampled	Time Sampled	# of Containers	Sample Matrix	Commer Special Inst		Y/N	Metals All Me	ORPs:	Regula	ONO3 Or	PHCs F	ABNS	PCBs: 1	Organochia TCLP: □ M&I	Sewer Use	266	ZZ ZZ	to
20-02 SAG 20-02 SAR 20-02 SAR 20-02 SAI4 DUP-2-02	Stelling 2/26	25		5				*		20		X			- 24			X	×
Samples Relinquished By (Print Name and Sign): HUSSAU A + A A A A A A A A A A A A A A A A A	W. to	Date July Date Lolo	8/22 Tim	9:00	Samples Received By (F Samples Received By (F Samples Received By (F	rint Name and Sign): The Le	\$10	3U	Tu	Date Date	20	HO 8	14	h15 30	9~ Nº: T	~Page	<u></u> (of/	

CLIENT NAME: GOLDER ASSOCIATES LTD 1931 ROBERTSON ROAD OTTAWA, ON K2H5B7 (613) 592-9600

ATTENTION TO: Alyssa Whiteduck

PROJECT: 191314931 Bayshore

AGAT WORK ORDER: 20Z624409

SOIL ANALYSIS REVIEWED BY: Jacky Zhu, Spectroscopy Technician TRACE ORGANICS REVIEWED BY: Neli Popnikolova, Senior Chemist

DATE REPORTED: Aug 13, 2020

PAGES (INCLUDING COVER): 24 VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

*Notes	

Disclaimer:

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may
 incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 30 days following analysis, unless expressly agreed otherwise in writing. Please contact your Client Project Manager if you require additional sample storage time.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other
 third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the
 services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of
 merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines
 contained in this document.
- All reportable information as specified by ISO/IEC 17025:2017 is available from AGAT Laboratories upon request.

AGAT Laboratories (V1)

Page 1 of 24

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA)

Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA) AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.

AGAT WORK ORDER: 20Z624409 PROJECT: 191314931 Bayshore 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE:

pH Units

5.0-9.0

NA

6.91

ATTENTION TO: Alyssa Whiteduck
SAMPLED BY:

O. Reg. 153(511) - Metals & Inorganics (Soil) DATE RECEIVED: 2020-07-13 **DATE REPORTED: 2020-08-13** SAMPLE DESCRIPTION: 20-03 SA2 20-04 SA1 SAMPLE TYPE: Soil Soil DATE SAMPLED: 2020-07-07 2020-07-09 G/S **RDL** 1268805 1268815 Parameter Unit Antimony 7.5 8.0 <0.8 < 0.8 μg/g Arsenic μg/g 18 Barium 390 2 209 117 μg/g 4 0.5 0.6 < 0.5 Beryllium μg/g Boron 120 5 <5 6 μg/g Boron (Hot Water Extractable) 0.10 0.18 0.42 μg/g 1.5 Cadmium μg/g 1.2 0.5 < 0.5 < 0.5 Chromium μg/g 160 5 51 27 Cobalt 22 0.5 9.3 7.5 μg/g Copper μg/g 140 12 17 Lead μg/g 120 1 5 13 Molybdenum 6.9 0.5 < 0.5 0.6 μg/g Nickel 100 21 14 μg/g Selenium 2.4 0.4 < 0.4 0.5 μg/g Silver μg/g 20 0.2 < 0.2 < 0.2 Thallium μg/g 1 0.4 < 0.4 < 0.4 Uranium μg/g 23 0.5 8.0 8.0 Vanadium 86 49 38 μg/g 92 74 Zinc μg/g 340 5 Chromium, Hexavalent µg/g 8 0.2 < 0.2 < 0.2 < 0.040 Cyanide, Free μg/g 0.051 0.040 < 0.040 Mercury 0.27 0.10 < 0.10 < 0.10 μg/g Electrical Conductivity (2:1) mS/cm 0.7 0.005 6.08 0.221 Sodium Adsorption Ratio NA 5 NA 39.7 0.954

Certified By:

pH, 2:1 CaCl2 Extraction

7.53

AGAT WORK ORDER: 20Z624409 PROJECT: 191314931 Bayshore 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE:

ATTENTION TO: Alyssa Whiteduck

SAMPLED BY:

O. Reg. 153(511) - Metals & Inorganics (Soil)

DATE RECEIVED: 2020-07-13 DATE REPORTED: 2020-08-13

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Soil - Residential/Parkland/Institutional Property Use - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

1268805-1268815 EC was determined on the DI water extract obtained from the 2:1 leaching procedure (2 parts DI water:1 part soil). pH was determined on the 0.01M CaCl2 extract prepared at 2:1 ratio. SAR is a calculated parameter.

Analysis performed at AGAT Toronto (unless marked by *)

CHARTERED SO CHEMIST

7.01

1.13

AGAT WORK ORDER: 20Z624409 PROJECT: 191314931 Bayshore 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE:

Sodium Adsorption Ratio

ATTENTION TO: Alyssa Whiteduck SAMPLED BY:

2.05

O. Reg. 153(511) - ORPs (Soil)											
DATE RECEIVED: 2020-07-13									DATE REPORTED: 2020-08-13		
		SAMPLE DES	CRIPTION:	20-03 SA6	20-03 SA17	20-04 SA3	20-04 SA7	20-04 SA12			
		SAM	PLE TYPE:	Soil	Soil	Soil	Soil	Soil			
		DATE	SAMPLED:	2020-07-07	2020-07-07	2020-07-09	2020-07-09	2020-07-09			
Parameter	Unit	G/S	RDL	1268810	1268813	1268846	1268847	1268880			
Electrical Conductivity (2:1)	mS/cm	0.7	0.005	1.08	0.162	0.831	0.374	0 191			

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Soil -

Residential/Parkland/Institutional Property Use - Coarse Textured Soils

5

NA

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

1268810-1268847 EC was determined on the DI water extract obtained from the 2:1 leaching procedure (2 parts DI water:1 part soil). SAR is a calculated parameter.

0.821

NA

1268880 EC was determined on the DI water extract obtained from the 2:1 leaching procedure (2 parts DI water:1 part soil). pH was determined on the 0.01M CaCl2 extract obtained from 2:1 leaching procedure (2

parts extraction fluid:1 part wet soil). SAR is a calculated parameter.

FOC - Samples were analysed and are reported in triplicate. FOC was calculated from the Total Organic Matter, which was determined using the Loss on Ignition procedure.

0.717

Analysis performed at AGAT Toronto (unless marked by *)

CHARTERED CHARTE

AGAT WORK ORDER: 20Z624409 PROJECT: 191314931 Bayshore

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE:

ATTENTION TO: Alyssa Whiteduck SAMPLED BY:

O. Reg. 153(511)	- pH (Soil)	
------------------	-------------	--

O. Reg. 153(511) - pH (S0II)											
DATE RECEIVED: 2020-07-13						DATE REPORTED: 2020-08-13					
	S	AMPLE DES	CRIPTION:	20-03 SA6	20-04 SA3						
		SAM	PLE TYPE:	Soil	Soil						
		DATES	SAMPLED:	2020-07-07	2020-07-09						
Parameter	Unit	G/S	RDL	1268810	1268846						
pH, 2:1 CaCl2 Extraction	pH Units		NA	7.57	7.14						

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

1268810-1268846 pH was determined on the 0.01M CaCl2 extract obtained from 2:1 leaching procedure (2 parts extraction fluid:1 part wet soil).

Analysis performed at AGAT Toronto (unless marked by *)

AGAT WORK ORDER: 20Z624409 PROJECT: 191314931 Bayshore

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE:

ATTENTION TO: Alyssa Whiteduck SAMDLED BY:

SAMPLING SITE:			SAMPLED BY:								
			O. Re	g. 406/19 SPLP Metals							
DATE RECEIVED: 2020-07-13				DATE REPORTED: 2020-08-13							
		SAMPLE DESCRIPTION:	20-03 SA2								
	SAMPLE TYPE:		Soil								
		DATE SAMPLED:	2020-07-07								
Parameter	Unit	G/S RDL	1268805								
Antimony Leachate	μg/L	0.6	<0.6								
Arsenic Leachate	μg/L	1	1								
Barium Leachate	μg/L	100	136								
Beryllium Leachate	μg/L	0.4	<0.4								
Boron Leachate	μg/L	500	<500								
Cadmium Leachate	μg/L	0.05	< 0.05								
Chromium Leachate	μg/L	5	17								
Cobalt Leachate	μg/L	0.3	2.3								
Copper Leachate	μg/L	1.4	8.3								
Lead Leachate	μg/L	0.4	2.2								
Molybdenum Leachate	μg/L	1.5	<1.5								
Nickel Leachate	μg/L	7	10								
Selenium Leachate	μg/L	1	<1								
Silver Leachate	μg/L	0.03	<0.03								
Thallium Leachate	μg/L	0.2	<0.2								
Uranium Leachate	μg/L	2	<2								
Vanadium Leachate	μg/L	0.6	18.2								
Zinc Leachate	μg/L	20	28								

Comments:

RDL - Reported Detection Limit; G / S - Guideline / Standard

1268805

Leachate for metal testing was prepared in accordance with Ontario MECP Method E9003, which has been modified from SW846-1312 by Ontario MECP. MECP has recommended that Method E9003 be used for leachate testing of soil samples under O'Reg 406/19 by MECP. This is a validated, unaccredited procedure.

Analysis performed at AGAT Toronto (unless marked by *)

AGAT WORK ORDER: 20Z624409 PROJECT: 191314931 Bayshore 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE:

ATTENTION TO: Alyssa Whiteduck

SAMPLING SITE:						SA	MPLED BY:		
				O. Re	g. 153(511) - l	PAHs (Soil)			
DATE RECEIVED: 2020-07-13								DATE REPORTED:	2020-08-13
		SAMPLE DESC	RIPTION:	20-03 SA2	20-04 SA1				
		SAMP	LE TYPE:	Soil	Soil				
		DATE S	AMPLED:	2020-07-07	2020-07-09				
Parameter	Unit	G/S	RDL	1268805	1268815				
Naphthalene	μg/g	0.6	0.05	<0.05	<0.05				
Acenaphthylene	μg/g	0.15	0.05	< 0.05	< 0.05				
Acenaphthene	μg/g	7.9	0.05	< 0.05	< 0.05				
Fluorene	μg/g	62	0.05	< 0.05	< 0.05				
Phenanthrene	μg/g	6.2	0.05	< 0.05	< 0.05				
Anthracene	μg/g	0.67	0.05	< 0.05	< 0.05				
Fluoranthene	μg/g	0.69	0.05	< 0.05	< 0.05				
Pyrene	μg/g	78	0.05	< 0.05	< 0.05				
Benz(a)anthracene	μg/g	0.5	0.05	< 0.05	< 0.05				
Chrysene	μg/g	7	0.05	< 0.05	<0.05				
Benzo(b)fluoranthene	μg/g	0.78	0.05	< 0.05	< 0.05				
Benzo(k)fluoranthene	μg/g	0.78	0.05	< 0.05	< 0.05				
Benzo(a)pyrene	μg/g	0.3	0.05	< 0.05	< 0.05				
Indeno(1,2,3-cd)pyrene	μg/g	0.38	0.05	< 0.05	< 0.05				
Dibenz(a,h)anthracene	μg/g	0.1	0.05	< 0.05	< 0.05				
Benzo(g,h,i)perylene	μg/g	6.6	0.05	< 0.05	< 0.05				
1 and 2 Methlynaphthalene	μg/g	0.99	0.05	< 0.05	< 0.05				
Moisture Content	%		0.1	22.4	8.2				
Surrogate	Unit	Acceptable	e Limits						
Naphthalene-d8	%	50-14	40	73	60				
Acenaphthene-d10	%	50-14	40	72	75				
Chrysene-d12	%	50-14	40	93	81				

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Soil -

Residential/Parkland/Institutional Property Use - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

1268805-1268815 Results are based on the dry weight of the soil.

Note: The result for Benzo(b)Fluoranthene is the total of the Benzo(b)&j)Fluoranthene isomers because the isomers co-elute on the GC column.

2- and 1-Methyl Naphthalene is a calculated parameter. The calculated value is the sum of 2-Methyl Naphthalene and 1-Methyl Naphthalene.

Analysis performed at AGAT Toronto (unless marked by *)

AGAT WORK ORDER: 20Z624409 PROJECT: 191314931 Bayshore 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE:

ATTENTION TO: Alyssa Whiteduck

SAMPLED BY:

O Rea	153/511).	PHC _s F1	- F4 (with	PAHe a	nd VOC) (Soil)
O. Neu.	. 10000111	· FNG5 F1	- F4 (WILII	гипь а	iliu vooi tooiii

DATE RECEIVED: 2020-07-13 DATE REPORTED: 2020-08-13

	;	SAMPLE DES	CRIPTION:	20-03 SA2	
		SAMI	PLE TYPE:	Soil	
		DATE S	SAMPLED:	2020-07-07	
Parameter	Unit	G/S	RDL	1268805	
F1 (C6 to C10)	μg/g	55	5	<5	
F1 (C6 to C10) minus BTEX	μg/g	55	5	<5	
F2 (C10 to C16)	μg/g	98	10	<10	
F2 (C10 to C16) minus Naphthalene	μg/g		10	<10	
F3 (C16 to C34)	μg/g	300	50	<50	
F3 (C16 to C34) minus PAHs	μg/g		50	<50	
F4 (C34 to C50)	μg/g	2800	50	<50	
Gravimetric Heavy Hydrocarbons	μg/g	2800	50	NA	
Moisture Content	%		0.1	22.4	
Surrogate	Unit	Acceptab	le Limits		
Terphenyl	%	60-1	40	85	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Soil -

Residential/Parkland/Institutional Property Use - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

1268805 Results are based on sample dry weight.

The C6-C10 fraction is calculated using toluene response factor.

C6–C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX. The calculated parameter is non-accredited. The parameters that are components of the calculation are accredited.

The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and n-C34.

Gravimetric Heavy Hydrocarbons are not included in the Total C16-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons > C50 are present.

The chromatogram has returned to baseline by the retention time of nC50.

Total C6 - C50 results are corrected for BTEX and PAH contributions.

C>10 - C16 (F2- Naphthalene) is a calculated parameter. The calculated value is F2 - Naphthalene.

C>16 - C34 (F3-PAH) is a calculated parameter. The calculated value is F3-PAH (PAH: sum of Phenanthrene, Benzo(a)anthracene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Benzo(a)pyrene,

Fluoranthene, Dibenzo(a,h)anthracene, Indeno(1,2,3-c,d)pyrene and Pyrene).

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 + nC34 average.

Linearity is within 15%.

Extraction and holding times were met for this sample.

Analysis performed at AGAT Toronto (unless marked by *)

AGAT WORK ORDER: 20Z624409 PROJECT: 191314931 Bayshore 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE:

ATTENTION TO: Alyssa Whiteduck

SAMPLED BY:

DATE RECEIVED: 2020-07-13					DATE REPORTED: 2020-08-13
		SAMPLE DES	CRIPTION:	20-04 SA1	
		SAMI	PLE TYPE:	Soil	
		DATE S	SAMPLED:	2020-07-09	
Parameter	Unit	G/S	RDL	1268815	
Benzene	μg/g	0.21	0.02	<0.02	
Toluene	μg/g	2.3	0.05	<0.05	
Ethylbenzene	μg/g	2	0.05	<0.05	
Xylenes (Total)	μg/g	3.1	0.05	<0.05	
F1 (C6 to C10)	μg/g	55	5	<5	
F1 (C6 to C10) minus BTEX	μg/g	55	5	<5	
F2 (C10 to C16)	μg/g	98	10	<10	
F2 (C10 to C16) minus Naphthalene	μg/g		10	<10	
F3 (C16 to C34)	μg/g	300	50	<50	
F3 (C16 to C34) minus PAHs	μg/g		50	<50	
F4 (C34 to C50)	μg/g	2800	50	<50	
Gravimetric Heavy Hydrocarbons	μg/g	2800	50	NA	
Moisture Content	%		0.1	8.2	
Surrogate	Unit	Acceptab	le Limits		
Terphenyl	%	60-1	40	61	

AGAT WORK ORDER: 20Z624409 PROJECT: 191314931 Bayshore 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE:

INT NAME. COLDEN ACCOUNTIES ETE

ATTENTION TO: Alyssa Whiteduck SAMPLED BY:

O. Reg. 153(511) - PHCs F1 - F4 (with PAHs) (Soil)

DATE RECEIVED: 2020-07-13 DATE REPORTED: 2020-08-13

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Soil -

Residential/Parkland/Institutional Property Use - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

1268815 Results are based on sample dry weight.

The C6-C10 fraction is calculated using toluene response factor.

Xylenes total is a calculated parameter. The calculated value is the sum of m&p-Xylene and o-Xylene.

C6-C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX.

The calculated parameters are non-accredited. The parameters that are components of the calculation are accredited.

The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and n-C34.

Gravimetric Heavy Hydrocarbons are not included in the Total C16-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons >C50 are present.

The chromatogram has returned to baseline by the retention time of nC50.

Total C6 - C50 results are corrected for BTEX and PAH contributions.

C>10 - C16 (F2- Naphthalene) is a calculated parameter. The calculated value is F2 - Naphthalene.

C>16 - C34 (F3-PAH) is a calculated parameter. The calculated value is F3-PAH (PAH: sum of Phenanthrene, Benzo(a)anthracene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Benzo(a)pyrene,

Fluoranthene, Dibenzo(a,h)anthracene, Indeno(1,2,3-c,d)pyrene and Pyrene).

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 + nC34 average.

Linearity is within 15%.

Extraction and holding times were met for this sample.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

NPopukolof

AGAT WORK ORDER: 20Z624409 PROJECT: 191314931 Bayshore

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD

ATTENTION TO: Alyssa Whiteduck

SAMPLING SITE:					SAMPLED BY:	
				O. Reg. 1	153(511) - VOCs (Soil)	
DATE RECEIVED: 2020-07-13					DATE REPORTED: 2020-0)8-13
			PLE TYPE:	20-03 SA2 Soil		
Parameter	Unit	DATE S G/S	SAMPLED: RDL	2020-07-07 1268805		
Dichlorodifluoromethane	μg/g	16	0.05	<0.05		
Vinyl Chloride	ug/g	0.02	0.02	<0.02		
Bromomethane	ug/g	0.05	0.05	<0.05		
Trichlorofluoromethane	ug/g	4	0.05	<0.05		
Acetone	ug/g	16	0.50	<0.50		
1,1-Dichloroethylene	ug/g	0.05	0.05	<0.05		
Methylene Chloride	ug/g	0.1	0.05	<0.05		
Trans- 1,2-Dichloroethylene	ug/g	0.084	0.05	<0.05		
Methyl tert-butyl Ether	ug/g	0.75	0.05	<0.05		
1,1-Dichloroethane	ug/g	3.5	0.02	<0.02		
Methyl Ethyl Ketone	ug/g	16	0.50	<0.50		
Cis- 1,2-Dichloroethylene	ug/g	3.4	0.02	<0.02		
Chloroform	ug/g	0.05	0.04	<0.04		
1,2-Dichloroethane	ug/g	0.05	0.03	<0.03		
1,1,1-Trichloroethane	ug/g	0.38	0.05	<0.05		
Carbon Tetrachloride	ug/g	0.05	0.05	<0.05		
Benzene	ug/g	0.21	0.02	<0.02		
1,2-Dichloropropane	ug/g	0.05	0.03	<0.03		
Trichloroethylene	ug/g	0.061	0.03	<0.03		
Bromodichloromethane	ug/g	13	0.05	<0.05		
Methyl Isobutyl Ketone	ug/g	1.7	0.50	<0.50		
1,1,2-Trichloroethane	ug/g	0.05	0.04	<0.04		
Toluene	ug/g	2.3	0.05	<0.05		
Dibromochloromethane	ug/g	9.4	0.05	<0.05		
Ethylene Dibromide	ug/g	0.05	0.04	<0.04		
Tetrachloroethylene	ug/g	0.28	0.05	<0.05		
1,1,1,2-Tetrachloroethane	ug/g	0.058	0.04	<0.04		
Chlorobenzene	ug/g	2.4	0.05	<0.05		
Ethylbenzene	ug/g	2	0.05	<0.05		
(

Certified By:

ug/g

m & p-Xylene

0.05

< 0.05

AGAT WORK ORDER: 20Z624409 PROJECT: 191314931 Bayshore 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE:

ATTENTION TO: Alyssa Whiteduck

SAMPLING SITE.					SAMPLED BY.
				O. Re	g. 153(511) - VOCs (Soil)
DATE RECEIVED: 2020-07-13					DATE REPORTED: 2020-08-13
	SA	AMPLE DES	CRIPTION:	20-03 SA2	
		SAMPLE TYPE: DATE SAMPLED:		Soil	
				2020-07-07	
Parameter	Unit	G/S	RDL	1268805	
Bromoform	ug/g	0.27	0.05	<0.05	
Styrene	ug/g	0.7	0.05	<0.05	
1,1,2,2-Tetrachloroethane	ug/g	0.05	0.05	<0.05	
o-Xylene	ug/g		0.05	<0.05	
1,3-Dichlorobenzene	ug/g	4.8	0.05	< 0.05	
1,4-Dichlorobenzene	ug/g	0.083	0.05	<0.05	
1,2-Dichlorobenzene	ug/g	3.4	0.05	< 0.05	
Xylenes (Total)	ug/g	3.1	0.05	<0.05	
1,3-Dichloropropene (Cis + Trans)	μg/g	0.05	0.04	<0.04	
n-Hexane	μg/g	2.8	0.05	<0.05	
Surrogate	Unit	Acceptab	le Limits		
Toluene-d8	% Recovery	50-1	40	83	
4-Bromofluorobenzene	% Recovery	50-1	40	80	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Soil -

Residential/Parkland/Institutional Property Use - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

1268805 The sample was analyzed using the high level technique. The sample was extracted using methanol, a small amount of the methanol extract was diluted in water and the purge & trap GC/MS analysis was performed. Results are based on the dry weight of the soil.

Xylenes total is a calculated parameter. The calculated value is the sum of m&p-Xylene + o-Xylene.

1,3-Dichloropropene total is a calculated parameter. The calculated value is the sum of Cis-1,3-Dichloropropene and Trans-1,3-Dichloropropene.

The calculated parameters are non-accredited. The parameters that are components of the calculation are accredited.

Analysis performed at AGAT Toronto (unless marked by *)

Guideline Violation

AGAT WORK ORDER: 20Z624409 PROJECT: 191314931 Bayshore 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD

ATTENTION TO: Alyssa Whiteduck

SAMPLEID	SAMPLE TITLE	GUIDELINE	ANALYSIS PACKAGE	PARAMETER	UNIT	GUIDEVALUE	RESULT
1268805	20-03 SA2	ON T3 S RPI CT	O. Reg. 153(511) - Metals & Inorganics (Soil)	Electrical Conductivity (2:1)	mS/cm	0.7	6.08
1268805	20-03 SA2	ON T3 S RPI CT	O. Reg. 153(511) - Metals & Inorganics (Soil)	Sodium Adsorption Ratio	NA	5	39.7
1268810	20-03 SA6	ON T3 S RPI CT	O. Reg. 153(511) - ORPs (Soil)	Electrical Conductivity (2:1)	mS/cm	0.7	1.08
1268846	20-04 SA3	ON T3 S RPI CT	O. Reg. 153(511) - ORPs (Soil)	Electrical Conductivity (2:1)	mS/cm	0.7	0.831
1268846	20-04 SA3	ON T3 S RPI CT	O. Reg. 153(511) - ORPs (Soil)	Sodium Adsorption Ratio	NA	5	7.01

Quality Assurance

CLIENT NAME: GOLDER ASSOCIATES LTD

PROJECT: 191314931 Bayshore

AGAT WORK ORDER: 20Z624409 ATTENTION TO: Alyssa Whiteduck

SAMPLING SITE: SAMPLED BY:

				Soi	l Ana	alysis	3								
RPT Date: Aug 13, 2020				DUPLICATE			REFERENCE MATERIAL			METHOD BLANK SPIKE			MAT	RIX SPI	KE
PARAMETER	Batch Sample		Dup #1	Dup #2	RPD	Method Blank	Measured Value	Acceptable Limits		Recovery	Acceptable Limits		Recovery	Lin	ptable mits
		lu					value	Lower	Upper		Lower	Upper		Lower	Uppe
O. Reg. 153(511) - Metals & Inor	ganics (Soil)														
Antimony	1280883		<0.8	<0.8	NA	< 0.8	127%	70%	130%	102%	80%	120%	103%	70%	130%
Arsenic	1280883		3	2	NA	< 1	106%	70%	130%	99%	80%	120%	103%	70%	130%
Barium	1280883		69	66	4.4%	< 2	99%	70%	130%	98%	80%	120%	99%	70%	130%
Beryllium	1280883		< 0.5	<0.5	NA	< 0.5	103%	70%	130%	118%	80%	120%	116%	70%	130%
Boron	1280883		9	9	NA	< 5	92%	70%	130%	111%	80%	120%	103%	70%	130%
Boron (Hot Water Extractable)	1280883		0.23	0.23	NA	< 0.10	113%	60%	140%	98%	70%	130%	96%	60%	140%
Cadmium	1280883		<0.5	<0.5	NA	< 0.5	103%	70%	130%	101%	80%	120%	103%	70%	130%
Chromium	1280883		17	17	NA	< 5	95%	70%	130%	104%	80%	120%	106%	70%	130%
Cobalt	1280883		6.0	5.9	1.7%	< 0.5	92%	70%	130%	108%	80%	120%	100%	70%	130%
Copper	1280883		12	12	0.0%	< 1	95%	70%	130%	108%	80%	120%	99%	70%	130%
Lead	1280883		9	9	0.0%	< 1	107%	70%	130%	104%	80%	120%	98%	70%	130%
Molybdenum	1280883		< 0.5	<0.5	NA	< 0.5	98%	70%	130%	99%	80%	120%	104%	70%	130%
Nickel	1280883		12	11	8.7%	< 1	94%	70%	130%	108%	80%	120%	98%	70%	130%
Selenium	1280883		0.4	<0.4	NA	< 0.4	107%	70%	130%	97%	80%	120%	100%	70%	130%
Silver	1280883		<0.2	<0.2	NA	< 0.2	95%	70%	130%	97%	80%	120%	94%	70%	130%
Thallium	1280883		<0.4	<0.4	NA	< 0.4	104%	70%	130%	99%	80%	120%	97%	70%	130%
Uranium	1280883		0.6	0.5	NA	< 0.5	111%	70%	130%	100%	80%	120%	99%	70%	130%
Vanadium	1280883		26	27	3.8%	< 1	97%	70%	130%	101%	80%	120%	102%	70%	130%
Zinc	1280883		43	41	4.8%	< 5	99%	70%	130%	107%	80%	120%	110%	70%	130%
Chromium, Hexavalent	1269669		<0.2	<0.2	NA	< 0.2	90%	70%	130%	85%	80%	120%	91%	70%	130%
Cyanide, Free	1276449		<0.040	<0.040	NA	< 0.040	102%	70%	130%	106%	80%	120%	106%	70%	130%
Mercury	1280883		<0.10	<0.10	NA	< 0.10	100%	70%	130%	99%	80%	120%	100%	70%	130%
Electrical Conductivity (2:1)	1276768		0.181	0.181	0.0%	< 0.005	100%	80%	120%						
Sodium Adsorption Ratio	1280475		3.96	3.89	1.8%	NA									
pH, 2:1 CaCl2 Extraction	1267979		7.61	7.64	0.4%	NA	100%	80%	120%						
O. Reg. 153(511) - Metals & Inor	ganics (Soil)														
Boron (Hot Water Extractable)	1280475		0.15	0.15	NA	< 0.10	105%	60%	140%	97%	70%	130%	94%	60%	140%
Comments: NA signifies Not Applic pH duplicates QA acceptance criter If the RPD value is NA, the results	ria was met re							-							

O. Reg. 406/19 SPLP Metals														
Antimony Leachate	1268805 1268805	<0.6	<0.6	NA	< 0.6	99%	70%	130%	96%	80%	120%	99%	70%	130%
Arsenic Leachate	1268805 1268805	1	1	NA	< 1	103%	70%	130%	100%	80%	120%	102%	70%	130%
Barium Leachate	1268805 1268805	136	137	NA	< 100	105%	70%	130%	95%	80%	120%	93%	70%	130%
Beryllium Leachate	1268805 1268805	< 0.4	< 0.4	NA	< 0.4	104%	70%	130%	119%	80%	120%	118%	70%	130%
Boron Leachate	1268805 1268805	<500	<500	NA	< 500	99%	70%	130%	122%	80%	120%	112%	70%	130%
Cadmium Leachate	4000005 4000005	.0.05	.0.05	NIA	. 0. 05	000/	700/	4000/	000/	000/	4000/	050/	700/	130%
Cadmium Leachale	1268805 1268805	<0.05	<0.05	NA	< 0.05	98%	70%	130%	98%	80%	120%	95%	70%	130%
Chromium Leachate	1268805 1268805	17	17	NA	< 5	100%	70%	130%	109%	80%	120%	107%	70%	130%
Cobalt Leachate	1268805 1268805	2.3	2.4	4.3%	< 0.3	93%	70%	130%	104%	80%	120%	104%	70%	130%

AGAT QUALITY ASSURANCE REPORT (V1)

Page 14 of 24

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Quality Assurance

CLIENT NAME: GOLDER ASSOCIATES LTD

AGAT WORK ORDER: 20Z624409 PROJECT: 191314931 Bayshore ATTENTION TO: Alyssa Whiteduck

SAMPLING SITE: SAMPLED BY:

			Soil	Analy	/sis	(Con	tinue	d)							
RPT Date: Aug 13, 2020	g 13, 2020 DUPLICATE		E		REFEREN	ENCE MATERIAL		METHOD	BLANK	SPIKE	MAT	MATRIX SPIKE			
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured Value	Acceptable Limits		Recovery	Lin	ptable nits	Recovery	1 1 1 1 1 1	eptable mits
		ld	·	·			value	Lower	Upper		Lower	Upper	·	Lower	Upper
Copper Leachate	1268805	1268805	8.3	7.8	6.2%	< 1.4	102%	70%	130%	109%	80%	120%	107%	70%	130%
Lead Leachate	1268805	1268805	2.2	2.3	4.4%	< 0.4	99%	70%	130%	100%	80%	120%	99%	70%	130%
Molybdenum Leachate	1268805	1268805	<1.5	<1.5	NA	< 1.5	100%	70%	130%	101%	80%	120%	102%	70%	130%
Nickel Leachate	1268805	1268805	10	11	NA	< 7	99%	70%	130%	106%	80%	120%	104%	70%	130%
Selenium Leachate	1268805	1268805	<1	<1	NA	< 1	103%	70%	130%	98%	80%	120%	102%	70%	130%
Silver Leachate	1268805	1268805	< 0.03	< 0.03	NA	< 0.03	98%	70%	130%	99%	80%	120%	97%	70%	130%
Thallium Leachate	1268805	1268805	<0.2	<0.2	NA	< 0.2	100%	70%	130%	99%	80%	120%	97%	70%	130%
Uranium Leachate	1268805	1268805	<2	<2	NA	< 2	103%	70%	130%	101%	80%	120%	101%	70%	130%
Vanadium Leachate	1268805	1268805	18.2	18.8	3.2%	< 0.6	94%	70%	130%	106%	80%	120%	105%	70%	130%
Zinc Leachate	1268805	1268805	28	28	NA	< 20	103%	70%	130%	104%	80%	120%	107%	70%	130%

Comments: If the RPD value is NA, the results of the duplicates are under 5X the RDL and will not be calculated. QA Qualifier for Boron Leachate: For a multi-element scan up to 10% of analytes may exceed the quoted limits by up to 10% absolute.

Quality Assurance

CLIENT NAME: GOLDER ASSOCIATES LTD

PROJECT: 191314931 Bayshore

AGAT WORK ORDER: 20Z624409 ATTENTION TO: Alyssa Whiteduck

SAMPLING SITE: SAMPLED BY:

			Trac	e Org	ganio	cs Ar	alys	is							
RPT Date: Aug 13, 2020			С	UPLICATI	E		REFERE	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	IKE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		ptable nits	Pacayary	Recovery Acceptable Limits Lower Upper		Recovery	Lie	eptable mits
FARAIMETER	Balcii	ld	Dup #1	Dup #2	KFD		Value	Lower	Upper	Recovery			1 ,		ower Upper
O. Reg. 153(511) - VOCs (Soil)															
Dichlorodifluoromethane	1269669		< 0.05	< 0.05	0.0%	< 0.05	81%	50%	140%	99%	50%	140%	70%	50%	140%
Vinyl Chloride	1269669		< 0.02	< 0.02	0.0%	< 0.02	93%	50%	140%	96%	50%	140%	95%	50%	140%
Bromomethane	1269669		< 0.05	< 0.05	0.0%	< 0.05	97%	50%	140%	87%	50%	140%	98%	50%	140%
Trichlorofluoromethane	1269669		< 0.05	< 0.05	0.0%	< 0.05	99%	50%	140%	87%	50%	140%	98%	50%	140%
Acetone	1269669		< 0.50	< 0.50	0.0%	< 0.50	94%	50%	140%	92%	50%	140%	99%	50%	140%
1,1-Dichloroethylene	1269669		< 0.05	< 0.05	0.0%	< 0.05	112%	50%	140%	98%	60%	130%	95%	50%	140%
Methylene Chloride	1269669		< 0.05	< 0.05	0.0%	< 0.05	99%	50%	140%	104%	60%	130%	103%	50%	140%
Trans- 1,2-Dichloroethylene	1269669		< 0.05	< 0.05	0.0%	< 0.05	104%	50%	140%	87%	60%	130%	106%	50%	140%
Methyl tert-butyl Ether	1269669		< 0.05	< 0.05	0.0%	< 0.05	108%	50%	140%	92%	60%	130%	98%	50%	140%
1,1-Dichloroethane	1269669		< 0.02	< 0.02	0.0%	< 0.02	107%	50%	140%	94%	60%	130%	96%	50%	140%
Methyl Ethyl Ketone	1269669		< 0.50	< 0.50	0.0%	< 0.50	88%	50%	140%	93%	50%	140%	98%	50%	140%
Cis- 1,2-Dichloroethylene	1269669		< 0.02	< 0.02	0.0%	< 0.02	98%	50%	140%	95%	60%	130%	103%	50%	140%
Chloroform	1269669		< 0.04	< 0.04	0.0%	< 0.04	96%	50%	140%	102%	60%	130%	90%	50%	140%
1,2-Dichloroethane	1269669		< 0.03	< 0.03	0.0%	< 0.03	94%	50%	140%	105%	60%	130%	86%	50%	140%
1,1,1-Trichloroethane	1269669		< 0.05	< 0.05	0.0%	< 0.05	78%	50%	140%	96%	60%	130%	87%	50%	140%
Carbon Tetrachloride	1269669		< 0.05	< 0.05	0.0%	< 0.05	93%	50%	140%	95%	60%	130%	89%	50%	140%
Benzene	1269669		< 0.02	< 0.02	0.0%	< 0.02	115%	50%	140%	99%	60%	130%	93%	50%	140%
1,2-Dichloropropane	1269669		< 0.03	< 0.03	0.0%	< 0.03	95%	50%	140%	104%	60%	130%	101%	50%	140%
Trichloroethylene	1269669		< 0.03	< 0.03	0.0%	< 0.03	96%	50%	140%	96%	60%	130%	77%	50%	140%
Bromodichloromethane	1269669		< 0.05	< 0.05	0.0%	< 0.05	102%	50%	140%	109%	60%	130%	116%	50%	140%
Methyl Isobutyl Ketone	1269669		< 0.50	< 0.50	0.0%	< 0.50	86%	50%	140%	93%	50%	140%	92%	50%	140%
1,1,2-Trichloroethane	1269669		< 0.04	< 0.04	0.0%	< 0.04	99%	50%	140%	81%	60%	130%	100%	50%	140%
Toluene	1269669		< 0.05	< 0.05	0.0%	< 0.05	98%	50%	140%	77%	60%	130%	93%	50%	140%
Dibromochloromethane	1269669		< 0.05	< 0.05	0.0%	< 0.05	95%	50%	140%	99%	60%	130%	98%	50%	140%
Ethylene Dibromide	1269669		< 0.04	< 0.04	0.0%	< 0.04	98%	50%	140%	104%	60%	130%	105%	50%	140%
Tetrachloroethylene	1269669		< 0.05	< 0.05	0.0%	< 0.05	83%	50%	140%	96%	60%	130%	80%	50%	140%
1,1,1,2-Tetrachloroethane	1269669		< 0.04	< 0.04	0.0%	< 0.04	113%	50%	140%	98%	60%	130%	97%	50%	140%
Chlorobenzene	1269669		< 0.05	< 0.05	0.0%	< 0.05	113%	50%	140%	111%	60%	130%	111%	50%	140%
Ethylbenzene	1269669		< 0.05	< 0.05	0.0%	< 0.05	99%	50%	140%	112%	60%	130%	97%	50%	140%
m & p-Xylene	1269669		< 0.05	< 0.05	0.0%	< 0.05	95%	50%	140%	106%	60%	130%	107%	50%	140%
Bromoform	1269669		< 0.05	< 0.05	0.0%	< 0.05	92%	50%	140%	102%	60%	130%	119%	50%	140%
Styrene	1269669		< 0.05	< 0.05	0.0%	< 0.05	95%		140%	96%	60%		95%		140%
1,1,2,2-Tetrachloroethane	1269669		< 0.05	< 0.05	0.0%	< 0.05	104%		140%	106%		130%	97%		140%
o-Xylene	1269669		< 0.05	< 0.05	0.0%	< 0.05	84%		140%	85%		130%	98%	50%	140%
1,3-Dichlorobenzene	1269669		< 0.05	< 0.05	0.0%	< 0.05	109%		140%	93%		130%	98%		140%
1,4-Dichlorobenzene	1269669		< 0.05	< 0.05	0.0%	< 0.05	111%	50%	140%	93%	60%	130%	101%	50%	140%
1,2-Dichlorobenzene	1269669		< 0.05	< 0.05	0.0%	< 0.05	107%		140%	93%		130%	98%		140%
1,3-Dichloropropene (Cis + Trans)	1269669		< 0.03	< 0.03	0.0%	< 0.03	96%		140%	102%		130%	86%	50%	140%
n-Hexane	1269669		< 0.04	< 0.04	0.0%	< 0.04	90 <i>%</i> 87%		140%	87%		130%	104%		140%

AGAT QUALITY ASSURANCE REPORT (V1)

Page 16 of 24

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Quality Assurance

CLIENT NAME: GOLDER ASSOCIATES LTD

PROJECT: 191314931 Bayshore

AGAT WORK ORDER: 20Z624409 ATTENTION TO: Alyssa Whiteduck

SAMPLING SITE: SAMPLED BY:

RPT Date: Aug 13, 2020	Batch		С												
DADAMETED	Batch	Date: Aug 13, 2020					REFERENCE MATERIAL			METHOD	BLANK	SPIKE	MATRIX SPIKE		
PARAMETER		Sample Id	Dup #1	Dup #2	RPD	Method Blank	Measured	Acceptable Limits		Recovery	Acce Lim		Recovery		eptable mits
		Id	·	,			Value	Lower	Upper		Lower Upper			Lower	Upper
O. Reg. 153(511) - PHCs F1 - F4	(with PAHs :	and VOC)	(Soil)												
F2 (C10 to C16)	1269586		< 10	< 10	NA	< 10	119%	60%	140%	98%	60%	140%	79%	60%	140%
F3 (C16 to C34)	1269586		< 50	< 50	NA	< 50	109%	60%	140%	123%	60%	140%	83%	60%	140%
F4 (C34 to C50)	1269586		< 50	< 50	NA	< 50	103%	60%	140%	103%	60%	140%	101%	60%	140%
O. Reg. 153(511) - PHCs F1 - F4	(with PAHs)	(Soil)													
Benzene	1270641		< 0.02	< 0.02	NA	< 0.02	82%	50%	140%	85%	60%	130%	95%	50%	140%
Toluene	1270641		< 0.05	< 0.05	NA	< 0.05	99%	50%	140%	112%	60%	130%	90%	50%	140%
Ethylbenzene	1270641		< 0.05	< 0.05	NA	< 0.05	85%	50%	140%	90%	60%	130%	95%	50%	140%
Xylenes (Total)	1270641		< 0.05	< 0.05	NA	< 0.05	92%	50%	140%	88%	60%	130%	97%	50%	140%
F1 (C6 to C10)	1270641		< 5	< 5	NA	< 5	108%	60%	140%	99%	60%	140%	82%	60%	140%
O. Reg. 153(511) - PAHs (Soil)															
Naphthalene	1264827		< 0.05	< 0.05	NA	< 0.05	103%	50%	140%	88%	50%	140%	95%	50%	140%
Acenaphthylene	1264827		< 0.05	< 0.05	NA	< 0.05	105%	50%	140%	99%	50%	140%	107%	50%	140%
Acenaphthene	1264827		< 0.05	< 0.05	NA	< 0.05	115%	50%	140%	95%	50%	140%	106%	50%	140%
Fluorene	1264827		< 0.05	< 0.05	NA	< 0.05	117%	50%	140%	96%	50%	140%	106%	50%	140%
Phenanthrene	1264827		< 0.05	< 0.05	NA	< 0.05	119%	50%	140%	103%	50%	140%	112%	50%	140%
Anthracene	1264827		< 0.05	< 0.05	NA	< 0.05	106%	50%	140%	113%	50%	140%	107%	50%	140%
Fluoranthene	1264827		< 0.05	< 0.05	NA	< 0.05	111%	50%	140%	103%	50%	140%	108%	50%	140%
Pyrene	1264827		< 0.05	< 0.05	NA	< 0.05	113%	50%	140%	108%	50%	140%	109%	50%	140%
Benz(a)anthracene	1264827		< 0.05	< 0.05	NA	< 0.05	107%	50%	140%	116%	50%	140%	110%	50%	140%
Chrysene	1264827		< 0.05	< 0.05	NA	< 0.05	114%	50%	140%	99%	50%	140%	96%	50%	140%
Benzo(b)fluoranthene	1264827		< 0.05	< 0.05	NA	< 0.05	100%	50%	140%	106%	50%	140%	80%	50%	140%
Benzo(k)fluoranthene	1264827		< 0.05	< 0.05	NA	< 0.05	112%	50%	140%	118%	50%	140%	77%	50%	140%
Benzo(a)pyrene	1264827		< 0.05	< 0.05	NA	< 0.05	109%	50%	140%	89%	50%	140%	79%	50%	140%
Indeno(1,2,3-cd)pyrene	1264827		< 0.05	< 0.05	NA	< 0.05	83%	50%	140%	119%	50%	140%	88%	50%	140%
Dibenz(a,h)anthracene	1264827		< 0.05	< 0.05	NA	< 0.05	76%	50%	140%	77%	50%	140%	90%	50%	140%
Benzo(g,h,i)perylene	1264827		< 0.05	< 0.05	NA	< 0.05	75%	50%	140%	74%	50%	140%	79%	50%	140%

Comments: When the average of the sample and duplicate results is less than 5x the RDL, the Relative Percent Difference (RPD) will be indicated as Not Applicable (NA).

QA Violation

CLIENT NAME: GOLDER ASSOCIATES LTD

AGAT WORK ORDER: 20Z624409

PROJECT: 191314931 Bayshore

ATTENTION TO: Alyssa Whiteduck

RPT Date: Aug 13, 2020			REFEREN	ICE MATERIAL	METHOD	BLANK SPIKE	MAT	RIX SPI	KE
PARAMETER	Sample Id	Sample Description	Measured	Acceptable Limits	Recovery	Acceptable Limits	Recovery	Lim	ptable nits
	,		Value	Lower Upper	,	Lower Upper	,	Lower	Upper

O. Reg. 406/19 SPLP Metals

Boron Leachate 1268805 20-03 SA2 99% 70% 130% 122% 80% 120% 112% 70% 130%

Comments: If the RPD value is NA, the results of the duplicates are under 5X the RDL and will not be calculated. QA Qualifier for Boron Leachate: For a multi-element scan up to 10% of analytes may exceed the quoted limits by up to 10% absolute.

Method Summary

CLIENT NAME: GOLDER ASSOCIATES LTD

PROJECT: 191314931 Bayshore

AGAT WORK ORDER: 20Z624409

ATTENTION TO: Alyssa Whiteduck

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Soil Analysis	·	·	
Antimony	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Arsenic	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Barium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Beryllium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Boron	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Boron (Hot Water Extractable)	MET-93-6104	modified from EPA 6010D and MSA PART 3, CH 21	ICP/OES
Cadmium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Chromium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Cobalt	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Copper	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Lead	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Molybdenum	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Nickel	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Selenium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Silver	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Thallium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Uranium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Vanadium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Zinc	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Chromium, Hexavalent	INOR-93-6068	modified from EPA 3060 and EPA 7196	SPECTROPHOTOMETER
Cyanide, Free	INOR-93-6052	modified from ON MOECC E3015 and SM 4500-CN- I	TECHNICON AUTO ANALYZER
Mercury	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Electrical Conductivity (2:1)	INOR-93-6036	modified from MSA PART 3, CH 14 and SM 2510 B	EC METER
Sodium Adsorption Ratio	INOR-93-6007	McKeague 4.12 & 3.26 & EPA SW-846 6010C	GICP/OES
pH, 2:1 CaCl2 Extraction	INOR-93-6031	modified from EPA 9045D and MCKEAGUE 3.11	PH METER
Antimony Leachate	MET-93-6103	modified from EPA 1312 & EPA 6020E	B ICP/MS
Arsenic Leachate	MET-93-6103	modified from EPA 1312 & EPA 6020E	B ICP/MS
Barium Leachate	MET-93-6103	modified from EPA 1312 & EPA 6020E	BICP-MS
Beryllium Leachate	MET-93-6103	modified from EPA 1312 & EPA 6020E	B ICP-MS
Boron Leachate	MET-93-6103	modified from EPA 1312 & EPA 6020E	3 ICP-MS

Method Summary

CLIENT NAME: GOLDER ASSOCIATES LTD

PROJECT: 191314931 Bayshore

AGAT WORK ORDER: 20Z624409

ATTENTION TO: Alyssa Whiteduck

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Cadmium Leachate	MET-93-6103	modified from EPA 1312 & EPA 6020B	ICP-MS
Chromium Leachate	MET-93-6103	modified from EPA 1312 & EPA 6020B	ICP-MS
Cobalt Leachate	MET-93-6103	modified from EPA 1312 & EPA 6020B	ICP-MS
Copper Leachate	MET-93-6103	modified from EPA 1312 & EPA 6020B	ICP-MS
Lead Leachate	MET-93-6103	modified from EPA 1312 & EPA 6020B	ICP-MS
Molybdenum Leachate	MET-93-6103	modified from EPA 1312 & EPA 6020B	ICP-MS
Nickel Leachate	MET-93-6103	modified from EPA 1312 & EPA 6020B	ICP-MS
Selenium Leachate	MET-93-6103	modified from EPA 1312 & EPA 6020B	ICP-MS
Silver Leachate	MET-93-6103	modified from EPA 1312 & EPA 6020B	ICP-MS
Thallium Leachate	MET-93-6103	modified from EPA 1312 & EPA 6020B	ICP-MS
Uranium Leachate	MET-93-6103	modified from EPA 1312 & EPA 6020B	ICP-MS
Vanadium Leachate	MET-93-6103	modified from EPA 1312 & EPA 6020B	ICP-MS
Zinc Leachate	MET-93-6103	modified from EPA 1312 & EPA 6020B	ICP-MS

Method Summary

CLIENT NAME: GOLDER ASSOCIATES LTD

AGAT WORK ORDER: 20Z624409

PROJECT: 191314931 Bayshore

ATTENTION TO: Alyssa Whiteduck

SAMPLING SITE:		SAMPLED BY:							
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE						
Trace Organics Analysis									
Naphthalene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS						
Acenaphthylene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS						
Acenaphthene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS						
Fluorene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS						
Phenanthrene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS						
Anthracene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS						
Fluoranthene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS						
Pyrene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS						
Benz(a)anthracene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS						
Chrysene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS						
Benzo(b)fluoranthene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS						
Benzo(k)fluoranthene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS						
Benzo(a)pyrene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS						
Indeno(1,2,3-cd)pyrene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS						
Dibenz(a,h)anthracene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS						
Benzo(g,h,i)perylene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS						
1 and 2 Methlynaphthalene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS						
Moisture Content	ORG-91-5106	Tier 1 Method	BALANCE						
Naphthalene-d8	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS						
Acenaphthene-d10	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS						
Chrysene-d12	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS						
F1 (C6 to C10)	VOL-91-5009	modified from CCME Tier 1 Method	P&T GC/FID						
F1 (C6 to C10) minus BTEX	VOL-91-5009	modified from CCME Tier 1 Method	P&T GC/FID						
F2 (C10 to C16)	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID						
F2 (C10 to C16) minus Naphthalene	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID						
F3 (C16 to C34)	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID						
F3 (C16 to C34) minus PAHs	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID						
F4 (C34 to C50)	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID						
Gravimetric Heavy Hydrocarbons	VOL-91-5009	modified from CCME Tier 1 Method	BALANCE						
Moisture Content	VOL-91-5009	modified from CCME Tier 1 Method	BALANCE						
Terphenyl	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID						
Benzene	VOL-91-5009	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS						

AGAT WORK ORDER: 20Z624409

Method Summary

CLIENT NAME: GOLDER ASSOCIATES LTD

PROJECT: 191314931 Bayshore ATTENTION TO: Alyssa Whiteduck

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Toluene	VOL-91-5009	modified from EPA SW-846 5035C & 8260D	P&T GC/MS
Ethylbenzene	VOL-91-5009	modified from EPA SW-846 5035C & 8260D	P&T GC/MS
Xylenes (Total)	VOL-91-5009	modified from EPA SW-846 5035C & 8260D	P&T GC/MS
Dichlorodifluoromethane	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
Vinyl Chloride	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
Bromomethane	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
Trichlorofluoromethane	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
Acetone	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
1,1-Dichloroethylene	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
Methylene Chloride	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
Trans- 1,2-Dichloroethylene	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
Methyl tert-butyl Ether	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
1,1-Dichloroethane	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
Methyl Ethyl Ketone	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
Cis- 1,2-Dichloroethylene	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
Chloroform	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
1,2-Dichloroethane	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
1,1,1-Trichloroethane	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
Carbon Tetrachloride	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
Benzene	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
1,2-Dichloropropane	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
Trichloroethylene	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
Bromodichloromethane	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
Methyl Isobutyl Ketone	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
1,1,2-Trichloroethane	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
Toluene	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
Dibromochloromethane	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
Ethylene Dibromide	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS

Method Summary

CLIENT NAME: GOLDER ASSOCIATES LTD

PROJECT: 191314931 Bayshore

AGAT WORK ORDER: 20Z624409

ATTENTION TO: Alyssa Whiteduck

	SAMPLED BY:	
AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
VOL-91-5002	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
VOL-91-5002	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
	VOL-91-5002	VOL-91-5002 LITERATURE REFERENCE VOL-91-5002 modified from EPA 5035C and EPA 8260D VOL-91-5002 modified from EPA 5030B & EPA 8260D VOL-91-5002 modified from EPA 5030B & EPA 8260D

AGGT Laborate	5835 Coopers Avenue Mississauga, Ontario L4Z 1Y2 Ph: 905.712.5100 Fax: 905.712.5122 webearth.agatlabs.com	Work Order #: 207624409 Cooler Quantity: 010 - 1 Ce
of Custody Record If this is a Drinking Water sample, please	use Drinking Water Chain of Custody Form (potable water intended for human consumption)	Arrival Temperatures: 1.3 7.6 7.1
Information: Associates	Regulatory Requirements: No Regulatory Requirement (Please check all applicable boxes)	Custody Seal Intact: 2026 Tho ON/A Notes: 2026 The One
Alies Whidedad North Halmen	MP-04-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	Notes. 2027 CT TO

cliaili of Custouy Recor	IT THIS IS	a DTIIIKING Wa	сег ѕапріе, р										CT.	5.	214	4114	12
Report Information: Company:	ciato	11- 11		(Regulatory Requirements: Please check all applicable boxes)	□ I	No Regula	tory Requir	ement	1.0	stody Sotes:	eal Inta	act:	□Yes O Z	62	440	gn/a
Address: 193 Rober	educk	/Keith	Holm	2	Regulation 153/04 Sewe	r Use		Regulation 558		Tui	naro	und '	Time	(TAT)	Requir	 ed:	
o Have	ns on No	9/)			Table	itary		CCME			gular 1				7 Busines		
Phone:	Fax:				Res/Park Stor	m		Prov. Water Qua			sh TAT			-	/ busines	is Days	
Reports to be sent to:	ca alale	10 -		ll s	Soil Texture (Check One) Region			Objectives (PW0 Other	(0)			Busines	_		usiness	Navt F	Busines
Let A	ag our				M Coarse	ite One					Day		55	Day	usiness /s	Day	usines
2. Email: Kholmes (6)	jolden.	con			Fine		-	Indicate One	_		OR	l Date	Require	ed (Rush	Surcharge	es May Apply):	
Project Information:					Is this submission for a Record of Site Condition?			Guldeline o te of Analys			-	Dlease		ago		for rush TAT	_/
Project: 19131493) F	sayshou	(- 12		1										tatutory holid	
Sampled By:					✓ Yes □ No		X Yes		O	F	For 'San	ne Day	/' analy	sis, plea	se contac	t your AGAT (PM
AGAT Quote #:	PO:				Sample Matrix Legend		O. Rep	g 153						□PCBs			317
Please note: If quotation number	is not provided, client	will be biiled full pric	e for analysis	- 11	B Biota	CrVI	Hydrides)				×				Na ball		
Invoice Information:		Bill To Same:	Yes □ No	_	GW Ground Water	Field Filtered - Metals, Hg,	Hydr	Z	als	THW WHIT				□ B(a)P			
Company:				_ ;	O Oil P Paint	Meta	s (exc	N P	etals	Z Z	BTE		ors .		3		4
Address:				— s	S Soil	red -	anics	70C DC:	stom Metals	□ BTEX	1 to 4		Aroclors		the		-
Email:				- 11	SD Sediment SW Surface Water	Filte	Inorganics 153 Metals (excl.	WS Dean	Custo	101	ons 1				ا چ	part that	1134
					odridoc water	Field	and stals [DB-H DEC JSAR Itals (tion/	2 1 1 2 1 1 2 1 1 2 1 1 1 1 1 1 1 1 1 1	Fractions			M&I		a	
Sample Identification	Date Sampled	Time Sampled	# of Containers	Sample Matrix		Y/N	Metals and Inorganics All Metals 153 Metal	ORPs: □B-HWS □ Cr ^{e-} □ EC □ F □ pH □ SAR Full Metals Scan	Regulation/Custom Metals Nutrients: □ TP □ NH, □ 1	Volatiles:	CCME	PAHs	PCBs: □ Total	Organochiorine Pesticides -CLP: □ M&I □ VOCs □ ABNs	Sewer Use	工業主	
20-03 SA2	July 7		- 1	5	SPLP as per		X			X	X	1	2		X		
20-03 SA6	11.0			5	Reg 406					1274-1					7	XXX	
20-03 SA+0 SA17	11		-	2.			*			11,10						SX	
20-04 SAI	Julya			2			X			251/	X	X		= 4		3	AT.
20-04 SA3				3										-		XXX	
20-04 SA7 20-04 SA12				-												XX	
20-04 3A12										1							
			-	*													
										100							Į.
										_							-
Samples Relinquished By (Print Name and Sign):	111	Date	Tir	ne 71 - /	Samples Recoived By (Print Name and Signin			*** ^	20/07	112	Time	311	<				
Aluss Whit-duck (Purns Samples gelinquished by (Print Name and Sign):	lines	JUL U	13/20	11-00	Samples Received By(Print Name and Sign):	11	4	(0	(O)()	1113	Time	וויכ	0	712	1		
Samples Kellinguished by (Print Name and Sign):	· d	WOOD T		bho	Sample Received By (Print Name and Sign):	0	Α.	3 2 2 2	Pate	_	Time				Page _/	_ of	-
					Sharings	X	Ju	le 14	120	20	1	0	Apr	Nº:	<u>U4</u>	<u>/131</u>	

Document ID: DIV-78-1511-013

Fc

Pink Copy - Client | Yellow Copy - AGAT | White Copy- AGAT | Date Issued September 20, 2016

Page 24 of 24

CLIENT NAME: GOLDER ASSOCIATES LTD 1931 ROBERTSON ROAD OTTAWA, ON K2H5B7 (613) 592-9600

ATTENTION TO: Alyssa Whiteduck

PROJECT: 19134931 - Bayshore

AGAT WORK ORDER: 20Z631729

SOIL ANALYSIS REVIEWED BY: Jacky Zhu, Spectroscopy Technician

DATE REPORTED: Aug 07, 2020

PAGES (INCLUDING COVER): 5 VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

Notes	

Disclaimer:

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may
 incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 30 days following analysis, unless expressly agreed otherwise in writing. Please contact your Client Project Manager if you require additional sample storage time.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other
 third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the
 services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of
 merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines
 contained in this document.
- All reportable information as specified by ISO/IEC 17025:2017 is available from AGAT Laboratories upon request.

AGAT Laboratories (V1)

Page 1 of 5

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA)

Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA)

AGAT WORK ORDER: 20Z631729 PROJECT: 19134931 - Bayshore 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE:

ATTENTION TO: Alyssa Whiteduck

SAMPLED BY:

O. Reg. 153(511) - ORPs (Soil)												
DATE RECEIVED: 2020-07-29							DATE REPORTED: 2020-08-07					
		SAMPLE DES	CRIPTION:	20-03 SA1	20-02 SA1	20-07 SA1						
SAMPLE TYPE:			PLE TYPE:	Soil	Soil	Soil						
		DATE	SAMPLED:	2020-07-07	2020-07-21	2020-07-22						
Parameter	Unit	G/S	RDL	1311914	1311915	1311916						
Electrical Conductivity (2:1)	mS/cm		0.005	0.173	0.138	0.149						
Sodium Adsorption Ratio	NA		NA	1.01	1.43	0.167						

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

1311914-1311916 EC was determined on the DI water extract obtained from the 2:1 leaching procedure (2 parts DI water:1 part soil). SAR is a calculated parameter.

Analysis performed at AGAT Toronto (unless marked by *)

CHARTERED SO CHEMIST

Quality Assurance

CLIENT NAME: GOLDER ASSOCIATES LTD

AGAT WORK ORDER: 20Z631729 PROJECT: 19134931 - Bayshore ATTENTION TO: Alyssa Whiteduck

SAMPLING SITE: SAMPLED BY:

Soil Analysis															
RPT Date: Aug 07, 2020			DUPLICATE				REFEREN	ICE MAT	TERIAL	METHOD	BLANK	SPIKE	MATRIX SPIKE		
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		otable nits	Recovery	Acceptable Limits		Recovery	Lin	ptable nits
		ld	.,	Bup #2			Value	Lower	Upper		Lower	Upper	,	Lower	Upper

O. Reg. 153(511) - ORPs (Soil)

Electrical Conductivity (2:1) 1315012 0.257 0.244 5.2% < 0.005 101% 80% 120%

Sodium Adsorption Ratio 1321219 5.20 5.23 0.6% NA

Comments: NA signifies Not Applicable.

pH duplicates QA acceptance criteria was met relative as stated in Table 5-15 of Analytical Protocol document.

If the RPD value is NA, the results of the duplicates are under 5X the RDL and will not be calculated.

Method Summary

CLIENT NAME: GOLDER ASSOCIATES LTD

AGAT WORK ORDER: 20Z631729 PROJECT: 19134931 - Bayshore ATTENTION TO: Alyssa Whiteduck

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE				
Soil Analysis							
Electrical Conductivity (2:1)	INOR-93-6036	modified from MSA PART 3, CH 14 and SM 2510 B	EC METER				
Sodium Adsorption Ratio	INOR-93-6007	McKeague 4.12 & 3.26 & EPA SW-846 6010C	⁶ ICP/OES				

Laboratory Use Only

Report Information: Company: Golden Asso	520	a Drinking Wa	ter sample, p	lease u	Drinking Water Chain of Custody Form (potable Regulatory Requirements:						-1	Cu	stody		erature I Intact		☐Yes	s / ,		
Contact: Address: Phone: Reports to be sent to: 1. Email: Contact: Augssa Unit Augssa Unit Contact: Augssa Unit Augssa Unit Contact: Augssa Unit Augss	ten 136 Fax:		Dimes		Regulation 153/04 Table Some One Sanitary □Ind/Com □Res/Park □Agriculture Soil Texture (check One) □Coarse □Fine	_		egulation CME rov. Wate bjectives ther	r Quali (PWQ	ity O)		Tui Re	gula sh T/	r TA AT (Ru 3 Bus Days	T ush Surch siness	narges A	5 t Apply)	to 7 Bu Busine ays	L	6
Project Information: Project: 1913 493 / - Site Location: Sampled By.	Bayster	(Is this submission for a Record of Site Condition? Yes No	Cer		Guidelli te of Ar		ls		F		TAT is	s exclus	sive o	f week	ends a	and statu	rush TAT utory holidays our AGAT CPM
AGAT Quote #: Please note: If quotation num Invoice Information: Company: Contact: Address: Email:	PO:	will be billed full pric			Sample Matrix Legend B Biota GW Ground Water O Oil P Paint S Soil SD Sediment SW Surface Water	Metals and Inorganics	All Metals 153 Metals (excl. Hydr:ces) OHydrice Metals 153 Metal	HWS CICI CICNI	als Scan	/Custom Met	IS: U TP UNH, U TKN UNO, UNO,+No,	s: □ voc □ втех □тнм	Fractions 1 to 4		Total Aroclore	9	☐ M&I ☐ VOCs ☐ ABNs ☐ B(a)F ☐PCBS		MSAR	
Sample Identification	Date Sampled	Time Sampled	# of Containers	Sam Mat	1 / 1	Metals	☐ All Metals ☐	ORPs: DB-		Regulat	Nutrients:	Volatiles:		ABNs	PAHs	Organo	TCLP:	Sewer Use	EC	
20-03 SAI 20-02 SAI 20-07 SAI 20-07 SAZ	July 7, 2 July 21, Tuly 22 July 22	200 200	1	2															×	

Samples Relinquished By (Print Name and Sign):

Nº:

golder.com