

REPORT Preliminary Geotechnical Review Ottawa Hospital

Submitted to:

Parsons Inc. 1223 Michael St., Suite 100 Ottawa, ON K1J 7T2

Submitted by:

Golder Associates Ltd. 1931 Robertson Road Ottawa, Ontario, K2H 5B7

19127064

March 2021

Distribution List

1 e-copy - Parsons

1 e-copy - Golder

Table of Contents

1.0	INTRODUCTION							
2.0	DESC	DESCRIPTION OF PROJECT AND SITE						
3.0	DESK	DESKTOP STUDY						
	3.1	Published Bedrock and Surficial Geology Maps	4					
	3.2	Water Well Records	4					
	3.3	Previous Investigations Completed by Golder	4					
	3.4	Previous Environmental Investigations	7					
4.0	SUBS	URFACE CONDITIONS	7					
	4.1	General	7					
	4.2	Topsoil & Organic Deposits	7					
	4.3	Fill	8					
	4.4	Silty Sand	8					
	4.5	Silty Clay	8					
	4.6	Glacial Till	8					
	4.7	Bedrock	9					
	4.8	Groundwater1	0					
5.0	DISCU	JSSION1	0					
	5.1	General1	0					
	5.2	Site Grading1	1					
	5.3	Seismic Design Considerations1	1					
	5.4	Foundations1	1					
	5.5	Groundwater1	2					
	5.6	Excavations1	2					
	5.7	Slope Stability1	3					
	5.8	Roads and Pavements1	3					
6.0		ADDITIONAL STUDIES						
7.0	CLOSURE							

Important Information and Limitations of This Report

FIGURES

Figure 1 – Site Plan

- Figure 2 Drift Thickness
- Figure 3 Surficial Geology
- Figure 4 Bedrock Geology

APPENDICES

APPENDIX A

Records of Previous Investigations

APPENDIX B

Borehole Records from Recent Environmental Investigations

1.0 INTRODUCTION

This report presents the results of a desktop study and preliminary geotechnical review completed as part of planning studies related to the proposed development of a new campus of The Ottawa Hospital (TOH) on an approximately 50-acre site located in the northeast corner of the Canadian Experimental Farm in the City of Ottawa. The site is located south of Carling Avenue, and west of Preston Street.

The desktop study included a review of available sub-surface information as well as information from previous investigations provided to us. Based on an interpretation of the factual information reviewed, a general description of the subsurface and groundwater conditions is presented. The purpose of the investigation is to provide a summary of the anticipated sub-surface conditions at the site in support of an eventual Master Plan and Functional Program to develop the site.

The reader is referred to the "Important Information and Limitations of This Report" which follows the text but forms an integral part of this document.

2.0 DESCRIPTION OF PROJECT AND SITE

The approximately 50-acre site is bordered on the north by Carling Avenue, to the east by Preston Street and to the southeast by Prince of Wales Drive. To the south and west, the parcel is bordered by remaining portions of the Central Experimental Farm. The eastern portion of the site is divided by the Ottawa Light Rail Transit (OLRT) right-of-way, resulting in a larger 45-acre parcel on the west side of the OLRT and a smaller 5-acre parcel on the east side.

The larger portion of the site west of the OLRT right-of-way consists primarily of park lands with landscaped areas, wooded areas, pedestrian paths, low-volume roads and parking lots. The northwest area of the site was the location of the Sir John Carling Building which was demolished in 2013 – 2014. The former West Annex of the building remains on site, as do the parking lot and access roads. The smaller portion of the site, east of the OLRT is covered primarily with a large parking lot, surrounded by landscaped areas.

The site topography grades towards the north, with approximately 20 m of elevation difference between the upland southern portion of the site and the lower portions of the site in the northeast.

The approximate location of the site is shown on Figure 1. It should be noted that the 100 m buffer shown on Figure 1 was used in the search for existing geotechnical investigations within 100 m of the proposed site.

3.0 DESKTOP STUDY

The investigation completed as part of this assignment included a desktop study which involved a review of existing available subsurface information, including:

- Published surficial and bedrock geology maps.
- Historical water well records in the general area.
- Records of historical investigations completed by Golder in the general area contained within our archives.
- Records of previous environmental investigations provided to us.

3.1 Published Bedrock and Surficial Geology Maps

Published bedrock geology maps indicate the site is underlain by limestone and shale (see Figure 3). The majority of the site (from approximately the OLRT right-of-way westwards) is indicated to be underlain by limestone and minor shale of the Bobcaygeon formation. The eastern portion of the site is indicated to be underlain by limestone of the Lindsay formation. Both formations are typically sound rock and are generally favourable for construction of foundations, open-cut excavations, etc.

Surficial geology maps indicate the site is underlain by a number of major soil types. The southwestern portion of the site is indicated to be overlain by marine deposits (silt and clay), while the northern and eastern portions are indicated to be underlain by shallow bedrock and glacial till.

Drift thickness (depth to bedrock) indicated in available mapping varies considerably across the site. The deepest soil deposits are indicated to be in the southwestern portion of the site (along the southern and western site boundaries). Bedrock is indicated to be relatively shallow in a central portion of the west side of the site, becoming deeper again to the northeast. On the east side of the OLRT right of way the small parcel of land is indicated as having relatively shallow bedrock.

It should be noted that all published geology maps are prepared on a very large scale and the boundaries of various soil deposits and rock formations are interpreted from a variety of regional sources and are very approximate. These maps provide a useful overview of anticipated conditions, but do not accurately predict detailed conditions. Interpretation of these maps should be undertaken with caution and in conjunction with other sub-surface information.

3.2 Water Well Records

Historical water well records were reviewed in the Ministry of the Environment, Conservation and Parks database. These records provided minimal information related to the sub-surface conditions at the site.

3.3 Previous Investigations Completed by Golder

Golder has completed a number of investigations at the site and in the general area in the past. These investigations can be broadly grouped as follows:

- Investigations along Carling Avenue for various infrastructure and development projects.
- Investigations along the southeastern side of the site in the areas of the Dow's Lake Pavilion and the HMCS Carleton facility.
- An investigation at the southern extent of the site, northwest of the traffic circle on Prince of Wales Drive.
- A previous investigation near the northwest corner of the site, west of the former Sir John Carling Building.
- A previous investigation in the north-central portion of the site (south of Carling and west of the OLRT rightof-way).

Some of these investigations are discussed below. Selected records from historical investigations completed for various Federal government projects are included in Appendix A.

3.3.1 North of Site

Golder has carried out previous investigations along the north perimeter of the site. These investigations were primarily carried out along and to the north of Carling Avenue for a variety of geotechnical and environmental projects, as well as for development projects along Carling Avenue and Preston Street.

The results of these investigations which include eight geotechnical reports are contained in the following reports:

- Golder Report to Minto Construction Ltd., titled "Preliminary Soil Investigation, Proposed Residential Development, Protestant Children's Village, Ottawa, ON", dated October 1982 (Report No. 821-2254).
- Golder Report to Minto Construction Ltd., titled "*Preliminary Soil Investigation, Proposed Swimming Pool, Protestant Children's Village, Ottawa, ON*", dated August 1984 (Report No. 841-2104).
- Golder Report to McCormick Corp., titled "Geotechnical Investigation, Carling Avenue Rehabilitation, Kirkwood avenue to Bronson Avenue, Ottawa, ON", dated April 2007 (Report No. 06-1120-367).
- Golder Report to Gormark Holdings Ltd., titled "Phase 2 Environmental Site Assessment, 901 Carling Avenue, Ottawa, ON", dated May 1996 (Report No. 961-2728).
- McRostie and Associates Report to Canadian Bank of Commerce, titled "Foundation Investigation at Carling Avenue and Preston Street, Ottawa, ON", dated July 1958 (Report No. SF-0359).
- Golder Report to Gormark Holdings Ltd., titled "Geotechnical Consideration for Watermain, Sewer and Road Reconstruction, Preston Street, Albert Street to Carling Avenue, Ottawa, ON", dated July 2007 (Report No. 06-11-289 (1000)).
- Golder Report to Claridge Homes Inc., titled "Application for a Category 3 Permit to Take Water, 505 Preston Street, Ottawa, ON", dated August 2014 (Report No. 12-1121-0045 (3000)).

Based on these various historical investigations, overburden in these areas typically consisted of fill and glacial till, overlying bedrock at depths estimated to range from less than 1 m to approximately 5 m. Groundwater levels (where measured) were found to be relatively shallow, ranging from approximately 1.5 m to 3 m below the ground surface.

3.3.2 Southeast of Site

Golder completed previous investigations south of the eastern portion of the site, in the area of the Dow's Lake Pavilion and the HMCS Carleton Facility. The results of these investigations are contained in the following reports:

- Golder Report to Novatech Engineering Consultants and Department of National Defence, titled "*Subsurface Investigation at CFRB Dow's Lake, Ottawa, ON*", dated June 1996 (Report No. SF-4385).
- Golder Report to Corush and Larocque Ltd., titled "Subsurface Investigation, Proposed Landscape, Roadway and Dock, Dow's Lake, Ottawa, ON", dated May 1983 (Report No. 831-2097).
- Golder Report to National Capital Commission, titled "Subsurface Investigation, Proposed Dow's Lake Boathouse, Dow's Lake, Ottawa, ON", dated March 1982 (Report No. 821-2042).
- McRostie and Associates Report to National Capital Commission, titled "Subsurface Investigation, Rideau Canal Western Pathway, Hartwell Locks to Dow's Lake, Ottawa, ON", dated October 2002 (Report No. SF-4729).

- McRostie and Associates Report to National Capital Commission, titled "Subsurface Investigation, Rideau Canal Pathway, Bronson Bridge Overpass, Ottawa, ON", dated January 2002 (Report No. SF-4764).
- Golder Report to National Capital Commission, titled "*Subsurface Investigation, Queen Elizabeth Driveway, Pretoria Bridge to Preston Street, Ottawa, ON*", dated October 1979 (Report No. 791-2217).
- Golder Report to National Capital Commission, titled "Subsurface Investigation, Proposed Dock and Boardwalk, Dow's Lake, Ottawa, ON", dated January 1982 (Report No. 821-2000).
- Golder Report Adjeleian, Allen, Rubeli Ltd., titled "Geotechnical Investigation, Proposed Elevator, Dow's Lake Pavilion, Ottawa, ON", dated January 2007 (Report No. 06-1120-362).

The majority of boreholes advanced in this area encountered fill and glacial till overlying shallow bedrock. The depth to bedrock in these boreholes was typically less than 2 m.

3.3.3 South of Site

Golder carried out a small investigation at the southern extent of the site (near the traffic circle on Prince of Wales). The results of that investigation were provided in the following report:

Golder Report to Schoeler & Heaton Architects Inc., titled "Soil Investigation, Proposed New Connector Road and Related Landscaping, Central Experimental Farm, Ottawa, Ontario", dated August 2000 (Report No. 0012137).

The boreholes drilled for this investigation were drilled to a maximum of 3 m and encountered fill material underlain by glacial till and silty clay. Bedrock was not encountered in these holes, and groundwater levels were not measured.

3.3.4 Northeast Corner Inside Site

McRostie and Associates (later acquired by Golder) carried out a geotechnical investigation for a possible new location of the former Sir John Carling Building in the northwest corner of the larger portion of the site along the west side of the OLRT right-of-way. The results of that investigation were provided in the following report:

McRostie and Associates Report to Public Work and Government Service Canada, titled "Subsurface Investigation, Carling Avenue, Central Experimental Farm, New Sir John Carling Building, Ottawa, Ontario", dated November 2000 (Report No. SF-4654).

Boreholes in this area encountered fill overlying glacial till, with limestone bedrock at depths ranging from 1.8 m to 4.7 m. Groundwater was typically encountered near the overburden/bedrock interface.

3.3.5 Northwest side of Site

Golder carried out a previous investigation for a sewer pipe installation, including advancing six boreholes to depths varying from 6.0 to 10.5 m below the existing ground surface. These boreholes are located at the northwest corner of the site (between the site boundary and the Dominion Observatory).

The results of that investigation were provided in the following report:

■ Golder Report to McNeely Engineering Ltd., titled "Auger Probe Survey, Proposed Sewer, Ottawa Observatory, Ottawa, Ontario", dated February 1988 (Report No. 8812044).

The subsurface conditions encountered at the borehole locations included a thin layer of fill underlain by a thick deposit of silty sand till which extended to borehole termination depths. Silty clay was encountered at one borehole location. No refusal to augering was encountered in any of the boreholes.

3.4 Previous Environmental Investigations

The results of two previous environmental investigations were provided for use in this study. The approximate locations of these environmental boreholes are shown on Figure 1. Copies of borehole records are included in Appendix B.

3.4.1 Phase II Investigation at Sir John Carling Building

The first of these was an investigation of the site of the former Sir John Carling Building. The study included a total of seven boreholes and monitoring wells advanced to depths of up to 9 m in approximately the location of the previous building. The results of the investigation are included in the following report:

 Stantec Consulting Ltd. "Phase II Environmental Site Assessment, Former Sir John Carling Building, 930 Carling Ave., Ottawa, ON" dated March 2016.

The boreholes encountered relatively deep fill (it is understood the previous building had a basement which was filled in) and sandy soils overlying silty clay. Three of the boreholes met refusal on what was inferred to be bedrock at depths of 6.7 m to 7.3 m. The remaining four holes did not meet refusal to their maximum depth of 9.1 m.

Groundwater levels in the investigation area ranged from 0.7 m to 5.2 m below existing grade. It is noted in the report, however, that these may not be stabilized levels at all locations.

3.4.2 Phase II Investigation for New Ottawa Hospital Campus

The second environmental report included the results of a preliminary environmental investigation at various locations within the site area. The investigation included a total of 10 boreholes/monitoring wells spread over the site. The results of the investigation are included in the following report:

Stantec Consulting Ltd. "*Phase II Environmental Site Assessment, New Ottawa Hospital Civic Campus, Ottawa, ON*" dated September 2017.

Overburden at the various boreholes included fill and sand/silt overlying bedrock at depths ranging from 0.9 m to 5.5 m based on coring and auger refusal. Groundwater measured during the investigation ranged from 1.2 m to 4.6 m below the ground surface.

4.0 SUBSURFACE CONDITIONS

4.1 General

The following sections provide an overview of the sub-surface conditions encountered in previous investigations. This overview is based only on existing documents and has not been confirmed through site-specific investigations. Additional fieldwork will be required as the design progresses to confirm (or modify) the assumptions and discussion provided below.

4.2 Topsoil & Organic Deposits

Topsoil is present extensively across the site which is comprised primarily of parks, treed areas and natural spaces.

Deeper deposits of organic soils were not noted in previous investigations and would not be expected in most areas. There may, however, be localized areas of deeper organic soils which have not been encountered in previous boreholes.

4.3 Fill

Fill material has been extensively encountered throughout the site. This fill includes thin layers of soil below pavement structures, thicker deposits which were likely used to alter the grade of the site and backfill of various excavations.

The thickest fill deposits were encountered in the 2016 environmental investigation of the former location of the Sir John Carling Building where the former basement was filled in following demolition of the building. In most other areas the fill deposits are shallower (typically 1 m to 3 m).

4.4 Silty Sand

Many of the boreholes record a layer of sandy material (most commonly described as silty sand, but areas of silt, sandy silt, and sand are also present). This soil is particularly prevalent in the environmental boreholes drilled in 2016 and 2017 within the site.

It should be noted that the description of sandy silt is very similar to glacial till in the area and in some cases the presence of cobbles and boulders is noted. Cobbles and boulders are common in glacial till, and it is possible that some of the areas described as silty sand are in fact glacial till.

4.5 Silty Clay

Deposits of silty clay are expected to exist within the project site. Published surficial geology maps suggest these deposits may be present from the central portion of the larger site towards the southwest.

Historical investigations encountered silty clay in the central portion of the site. The 2016 investigation of the former location of the Sir John Carling Building encountered silty clay near the base of many of the boreholes but did not advance far enough to determine how thick the deposit is. The location of the silty clay is somewhat consistent with the information presented on surficial geology maps (i.e., silty clay may be underlying the area of the former building). The southwest portion of the site is not well covered with historical boreholes and the exact extent and depth of silty clay present at the site is not known.

4.6 Glacial Till

Glacial till exists extensively throughout the site, and typically consists of a mixture of gravel, cobbles and boulders in a silty sand or sandy silt matrix. Glacial till (or soil with a similar description to till) was encountered extensively north of the site as well as the east portion of the site. Till was not encountered in the central portion of the site (though it is likely present below the silty clay), in the area of the former Sir John Carling Building. The boreholes advanced in the western and southern portions of the site in the previous environmental investigations identified silty sand at most locations. In some areas, however, the soil is described as containing cobbles and boulders, which is typical of glacial till. It is possible that some of the soil encountered in the boreholes could be till.

4.7 Bedrock

The site is underlain by bedrock of the Lindsay and Bobcaygeon formations. These formations include limestone with shale layers. The bedrock in the area typically has an upper disturbed zone which is of lower quality. This zone typically extends 1 m to 2 m, though this can vary. Below this zone the rock is typically relatively sound and competent. The limestone bedrock in the area is typically strong to very strong though weaker zones can be present.

Bedrock or drilling refusal was encountered extensively in previous investigations.

- Boreholes along Carling Avenue generally met bedrock (or refusal) at depths of 1 m to 5 m, generally deeper to the west (though many were drilled on roads and developed lots, and these values may not represent the overall bedrock surface).
- Previous developments around the intersection of Carling and Preston also encountered shallow bedrock.
- In area to the south of the site near the Dow's Lake Pavilion and the HMCS Carleton facility boreholes typically encountered bedrock at depths of less than 2 m.
- An environmental investigation was completed in the east parcel (east of the OLRT right-of-way). The results of the investigation are not available, but the Stantec environmental investigation report states that bedrock was encountered in this area at depths of 1 m to 3 m.
- The OLRT right-of-way includes a trench which is below-grade and houses the railway tracks. This trench is primarily in rock, confirming shallow bedrock in the eastern portion of the site.
- On the west side of the OLRT right-of-way an investigation was completed for a proposed new building. Boreholes in this area encountered bedrock at 2 m to 5 m below the existing ground.
- Further west, in the central portion of the site where the Sir John Carling Building was located, the environmental investigation encountered refusal in 3 boreholes at depths of 6.7 m to 7.3 m. None of these holes were cored, however, and refusal could have been caused by boulders in till. The majority of the boreholes were advanced to 9.1 m without refusal.
- On the west side of the site, boreholes were drilled in the northwest corner to a depth of up to 10.5 m without encountering refusal. Four boreholes were drilled at the far western extent of the site during the environmental investigations in 2017. Two of these holes met refusal at 4.6 m and 5.5 m. The remaining two were extended to 7.6 m without any refusal. Rock was not cored, and it is uncertain if the refusal was a result of rock or boulders in till.
- At the south end of the site two boreholes were drilled to a depth of 7.3 to 7.6 m without encountering refusal.

Generally, bedrock would be expected to be shallow over all of the site on the east side of the OLRT right-of-way. Immediately west of the OLRT the rock is also expected to be relatively shallow (rock is exposed along the right-of-way and is present at relatively shallow depth just to the west of the right-of-way). Further towards the centre of the site, near the former Sir John Carling Building bedrock could be 9 m or more below the ground surface. Similarly, towards the western extent of the site, the depth to rock is uncertain but is as much as 10.5 m (or more) in some locations. At the south end of the site, bedrock is greater than 7.6 m deep based on previous boreholes.

A fault line connected to the Gloucester Fault crosses throughout the northeast portion of the site in a northwestsoutheast direction. These historical faults are not active faults but are more commonly what are known as healed faults; they are planes of movement where large sections of rock have experienced relative movement in the past but have usually in-filled with intact rock material. Where major excavations are found to intersect these faults additional investigation and characterization of this zone can be completed during the design stage.

4.8 Groundwater

Groundwater levels have been measured in a number of historical boreholes and have generally been found to be relatively shallow. The most recent environmental investigation encountered groundwater levels ranging from 1.2 m to 4.6 m below the existing ground surface in the various boreholes.

The groundwater level would also be expected to be shallow near existing water bodies. Groundwater levels are expected to fluctuate seasonally. Higher groundwater levels are expected during wet periods of the year, such as spring.

5.0 **DISCUSSION**

This section of the report provides preliminary engineering discussion related to geotechnical aspects of the project based on our interpretation of the available information obtained during our limited geotechnical investigation. The discussion and recommendations presented herein are intended to provide preliminary information to assess the feasibility of constructing various buildings and infrastructure across the site.

The scope of work competed as part of this assignment is significantly less than would be done for a typical design stage project. This report should therefore not be used or relied upon for detailed design decisions. These decisions will need to be supported with additional investigations and analyses as the project progresses.

Contractors must make their own interpretation based on the factual data provided in the report, in combination with additional geotechnical investigation to satisfy the project objectives and design needs. Contractors bidding on or undertaking various works should examine the factual results of the investigation, satisfy themselves as to the adequacy of the factual information for construction, and make their own interpretation of the factual data as it affects their proposed construction techniques, schedule, safety, and equipment capabilities.

5.1 General

The overall site is expected to be underlain by a variety of overburden soils, including topsoil, fill, silt and sand, silty clay and glacial till.

This overburden is underlain by bedrock which is expected to be relatively sound and competent. The depth to bedrock varies across the site. In the east portion of the site around the OLRT right-of-way it is relatively shallow. Further towards the west and south, the bedrock is deeper. The exact depth to bedrock is less well understood but it is likely that in some areas it is 10 m or more.

Groundwater is relatively shallow at the site, ranging from approximately 1 m to 5 m below grade in the various boreholes.

It is anticipated that the new hospital development would likely include a variety of large buildings, with underground parking or basements, as well as associated roads and infrastructure. Discussion of some of the main geotechnical considerations which affect these types of development is presented below.

5.2 Site Grading

The subsurface conditions at the site are expected to consist of a variable thickness of overburden fill, silt and sand, silty clay and glacial till overlying bedrock at depths of 1 m to greater than 10 m. The majority of these soils are not likely to be unusually prone to excessive settlement caused by grading (with the exception of silty clay which may be present at depth in the central portion of the site). In most of the site no practical restrictions are likely to apply to normal site grading for roads, parking areas, green space, etc.

In the central portion of the site, in the area around the former Sir John Carling Building, there may be areas where silty clay soils are present. If these deposits include softer, unweathered silty clay then assessment of allowable grade raises may be required. These grade raise restrictions, however, are not likely to be severe enough to prevent typical development but would need to be confirmed and considered during detailed design.

5.3 Seismic Design Considerations

The eastern portion of the site, generally speaking on both sides of the OLRT right-of-way is underlain by relatively shallow rock. Where foundations are placed on, or within 3 m of, bedrock a favourable seismic site class could likely be used (Site Class A or B). Given the shallow bedrock it is likely that this would apply to large portions of the eastern part of the site (particularly if new structures have basements and below-grade parking which bring the foundations down to bedrock). Assigning a site class more favourable than C does, however, require site-specific measurement of shear wave velocities during the design phase.

Where building basements do not reach bedrock, a Site Class C may apply. There may be some areas where the presence of deep overburden, (in particular the silty clay) would require that they be assigned a Site Class D or E (depending on the thickness and strength of the clay deposit). These areas would need to be confirmed with additional investigations.

In the eastern portion of the site, where bedrock is shallow, seismic liquefaction is not considered to be a significant risk. It is possible that there are some areas in the western portion where seismic liquefaction may be an issue (where sandy soils are present and groundwater levels are relatively high). This must be confirmed during detailed design investigations since the methods of drilling used in the previous investigations typically did not obtain the data required to make this assessment at this time.

5.4 Foundations

Large portions of the site are expected to have relatively shallow bedrock (less than 5 m). In these areas, structures with conventional basements or underground parking can likely be founded on rock. Foundations on rock will be capable of supporting large loads and are generally suitable for any type of structure.

In areas where the soil is deeper than the lowest level of basements (for example in the central and western portions of the site) it is likely that lighter structures can still be founded on conventional spread footings. Large, heavy structures such as large hospital buildings for example may require deep foundations, or large raft foundations where overburden is deep.

There is limited data available at this time to confirm the extent of these deeper overburden areas, but they may exist around the former Sir John Carling Building and further to the west and south. Additional investigation would be required to confirm the detailed foundation requirements in these areas.

Conventional slab on grade construction is likely to be feasible at the site.

5.5 Groundwater

Groundwater was found to be relatively shallow in the various investigations (ranging from less than 1 m to 5 m below grade).

Based on the anticipated high groundwater levels, deep basement levels may be below the water table (depending on final grading and elevations at specific locations) and may require drainage (weeping tiles, sub-floor drains, sumps, etc.).

If large, deep excavations are required there may be a need for a Permit to Take Water or registration under the Environmental Activity and Sector Registry. Obtaining these permits is relatively routine, but they must be accompanied by appropriate hydrogeological studies (which would be completed as part of the design-stage excavations).

If the deep excavations are also located in areas of thicker overburden an active dewatering system may also be required, particularly in the central, western and southern portions of the site where there is a significant thickness of silty, sandy overburden soils which extends below the water table.

5.6 Excavations

Excavations will likely be through a combination of soil and bedrock, depending on the depth of excavation and the specific location within the site.

No unusual problems would be anticipated with excavations in overburden soil (recognizing the potential need for dewatering if very deep excavations are required).

Shallow or localized excavations in bedrock can typically be accomplished using mechanical methods (such as hoe ramming in conjunction with line drilling). Deeper, larger excavations into bedrock are generally more economically made by blasting. Given the undeveloped nature of the site, unusual problems with blasting restrictions would not be expected.

Above the water table, side slopes should be stable in the short term at 1 horizontal to 1 vertical (Type 3 soil in accordance with the Occupational Health and Safety Act of Ontario (OHSA)). Below the water table (or the depth of dewatering), side slopes of 3 horizontal to 1 vertical (Type 4 soil in accordance with the OHSA) will be required to prevent sloughing of the sandier soils. It should be noted that more sloughing can be anticipated for portions of the excavations carried out through wet silt, silty sand and gravel deposits which in turn will require further side slope flattening or shoring, depends on the depth and size of excavations.

Near-vertical excavation side slopes in the bedrock, if encountered, should be feasible. Rock excavations in the area are typically made without shoring, using a combination of temporary support including rock bolts, wire mesh and shotcrete.

It should be possible to handle the groundwater inflow in small and/or shallow excavations above the water table, by pumping from properly filtered sumps in the excavations. Deeper excavations in thicker overburden may require active dewatering, particularly where it is coarser in nature (silts and sands as well as glacial tills) or highly susceptible to disturbance.

5.7 Slope Stability

The area slopes generally from south to north. Slope stability is not likely to be a significant factor over most of the site, and the soils described in the various borehole logs are not unusually prone to large scale slope failures. Localized areas may require a slope stability assessment and determination of suitable grading plans, but these would not be expected to be a significant impediment to development.

Sloping areas should be reviewed and assessed based on future development plans.

5.8 Roads and Pavements

The overburden soils and bedrock would not be expected to present any unusual issues related to the construction or performance of normal asphaltic concrete pavements at the site. This assumes pavements would not be constructed in areas of unusually high groundwater (higher than identified in previous investigations, or areas where significant cuts were required brining the pavement closer to groundwater). These areas could require special investigation, design and treatment prior to constructing new pavements.

6.0 ADDITIONAL STUDIES

The information and discussion provided in this report is of a preliminary nature and intended to inform development planning, not detailed design. As development plans progress additional geotechnical investigations will be required as part of the normal design process.

As plans for the site progress, Golder would be pleased to provide additional guidance and input as required based on proposed structure types, locations, etc.

7.0 CLOSURE

We trust that this report meets your current needs. If you have any questions, or if we may be of further assistance, please do not hesitate to contact the undersigned.

Golder Associates Ltd.

fift for

Bridgit Bocage, M.Eng., P.Eng. *Geotechnical Engineer*

Allah

Chris Hendry, P.Eng. Senior Geotechnical Engineer

BB/CH/hwd https://golderassociates.sharepoint.com/sites/112513/project files/6 deliverables/geotech report/19127064-001-parsons general hospital geotechnical review mar 2021_rev01.docx

Golder and the G logo are trademarks of Golder Associates Corporation

IMPORTANT INFORMATION AND LIMITATIONS OF THIS REPORT

Standard of Care: Golder Associates Ltd. (Golder) has prepared this report in a manner consistent with that level of care and skill ordinarily exercised by members of the engineering and science professions currently practicing under similar conditions in the jurisdiction in which the services are provided, subject to the time limits and physical constraints applicable to this report. No other warranty, expressed or implied is made.

Basis and Use of the Report: This report has been prepared for the specific site, design objective, development and purpose described to Golder by the Client <u>Parsons Inc.</u> The factual data, interpretations and recommendations pertain to a specific project as described in this report and are not applicable to any other project or site location. Any change of site conditions, purpose, development plans or if the project is not initiated within eighteen months of the date of the report may alter the validity of the report. Golder cannot be responsible for use of this report, or portions thereof, unless Golder is requested to review and, if necessary, revise the report.

The information, recommendations and opinions expressed in this report are for the sole benefit of the Client. No other party may use or rely on this report or any portion thereof without Golder's express written consent. If the report was prepared to be included for a specific permit application process, then the client may authorize the use of this report for such purpose by the regulatory agency as an Approved User for the specific and identified purpose of the applicable permit review process, provided this report is not noted to be a draft or preliminary report, and is specifically relevant to the project for which the application is being made. Any other use of this report by others is prohibited and is without responsibility to Golder. The report, all plans, data, drawings and other documents as well as all electronic media prepared by Golder are considered its professional work product and shall remain the copyright property of Golder, who authorizes only the Client and Approved Users to make copies of the report, but only in such quantities as are reasonably necessary for the use of the report by those parties. The Client and Approved Users may not give, lend, sell, or otherwise make available the report or any portion thereof to any other party without the express written permission of Golder. The Client acknowledges that electronic media is susceptible to unauthorized modification, deterioration and incompatibility and therefore the Client cannot rely upon the electronic media versions of Golder's report or other work products.

The report is of a summary nature and is not intended to stand alone without reference to the instructions given to Golder by the Client, communications between Golder and the Client, and to any other reports prepared by Golder for the Client relative to the specific site described in the report. In order to properly understand the suggestions, recommendations and opinions expressed in this report, reference must be made to the whole of the report. Golder cannot be responsible for use of portions of the report without reference to the entire report.

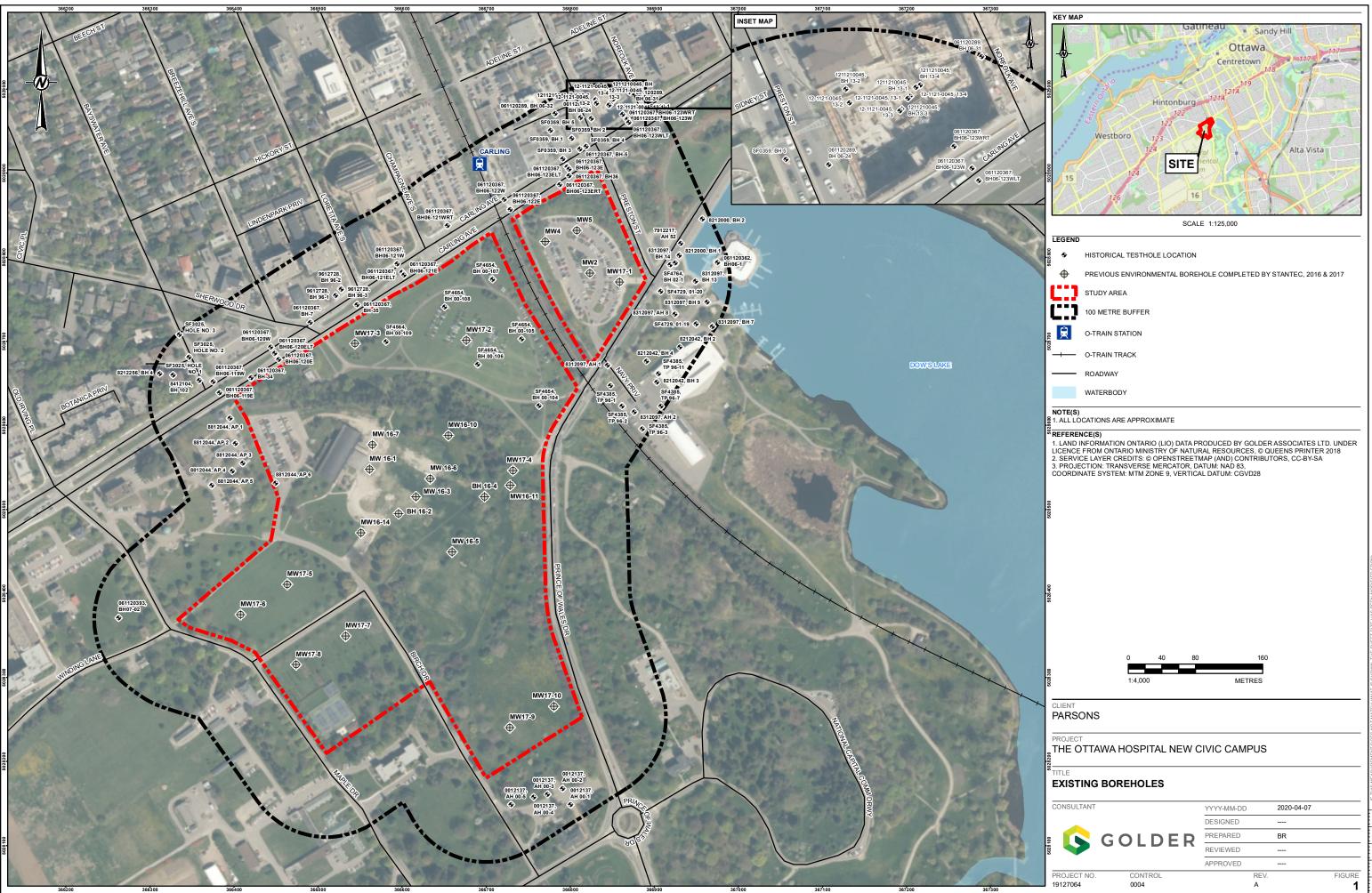
Unless otherwise stated, the suggestions, recommendations and opinions given in this report are intended only for the guidance of the Client in the design of the specific project. The extent and detail of investigations, including the number of test holes, necessary to determine all of the relevant conditions which may affect construction costs would normally be greater than has been carried out for design purposes. Contractors bidding on, or undertaking the work, should rely on their own investigations, as well as their own interpretations of the factual data presented in the report, as to how subsurface conditions may affect their work, including but not limited to proposed construction techniques, schedule, safety and equipment capabilities.

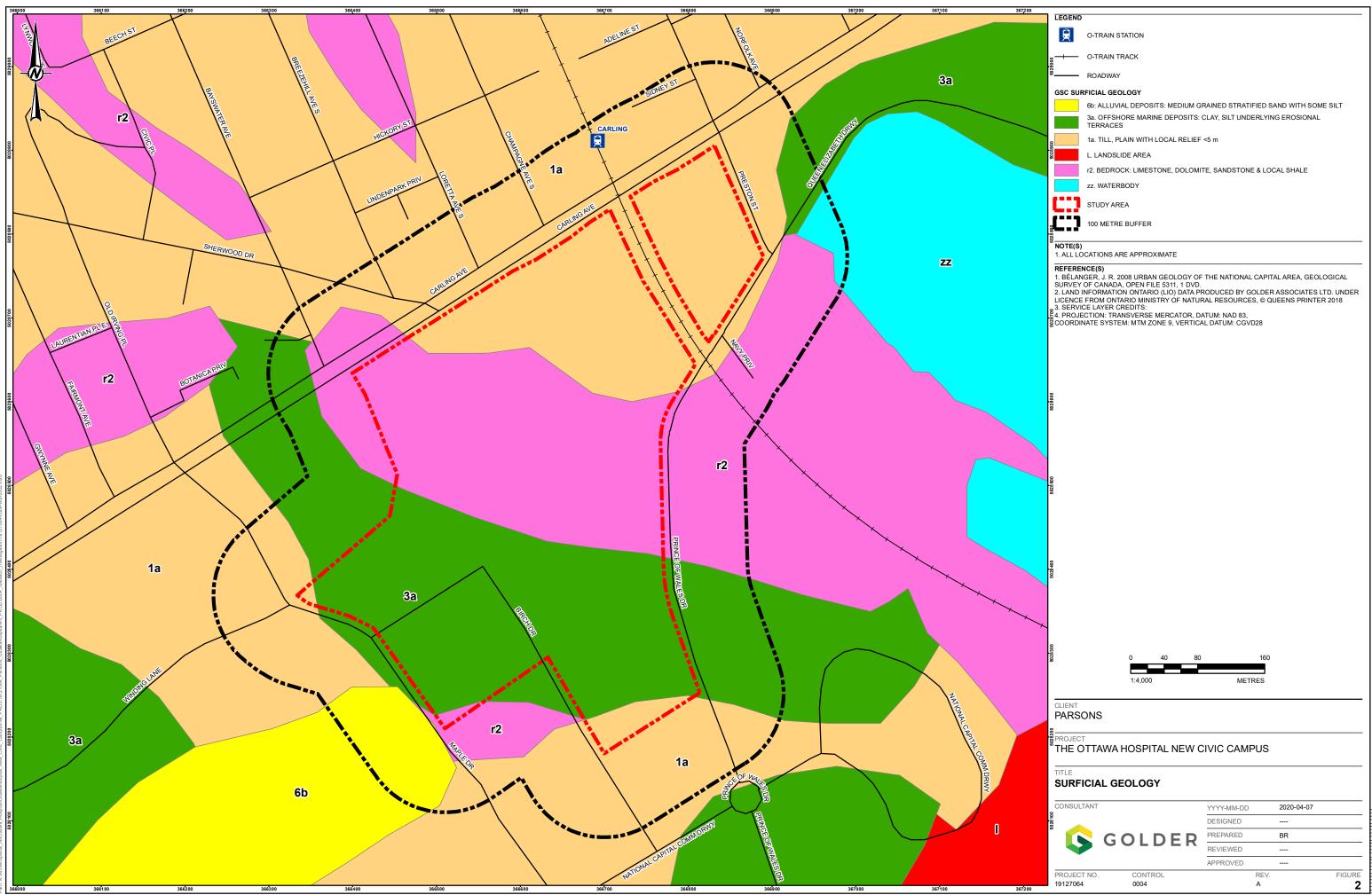
Soil, Rock and Groundwater Conditions: Classification and identification of soils, rocks, and geologic units have been based on commonly accepted methods employed in the practice of geotechnical engineering and related disciplines. Classification and identification of the type and condition of these materials or units involves judgment, and boundaries between different soil, rock or geologic types or units may be transitional rather than abrupt. Accordingly, Golder does not warrant or guarantee the exactness of the descriptions.

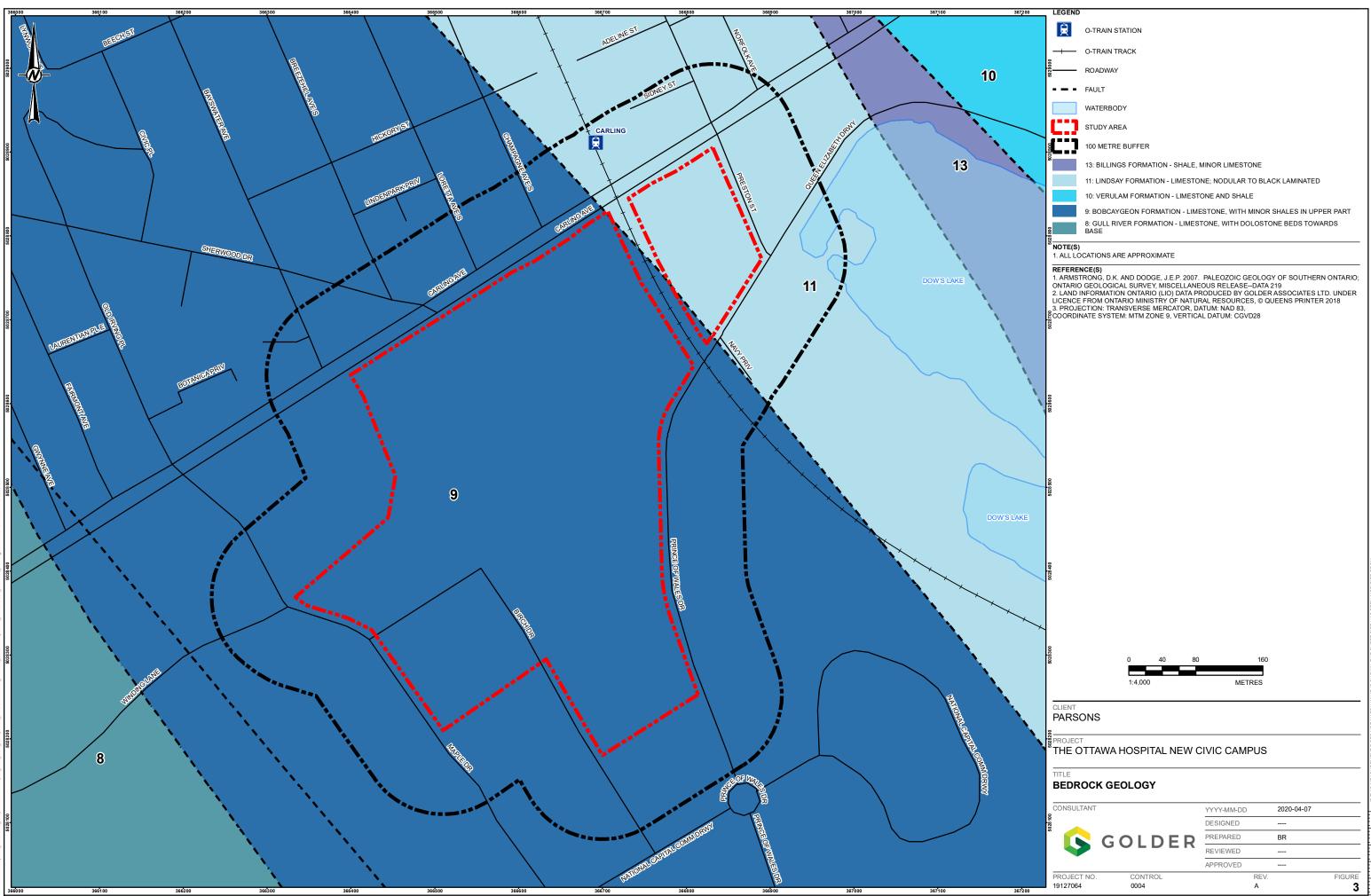
IMPORTANT INFORMATION AND LIMITATIONS OF THIS REPORT (cont'd)

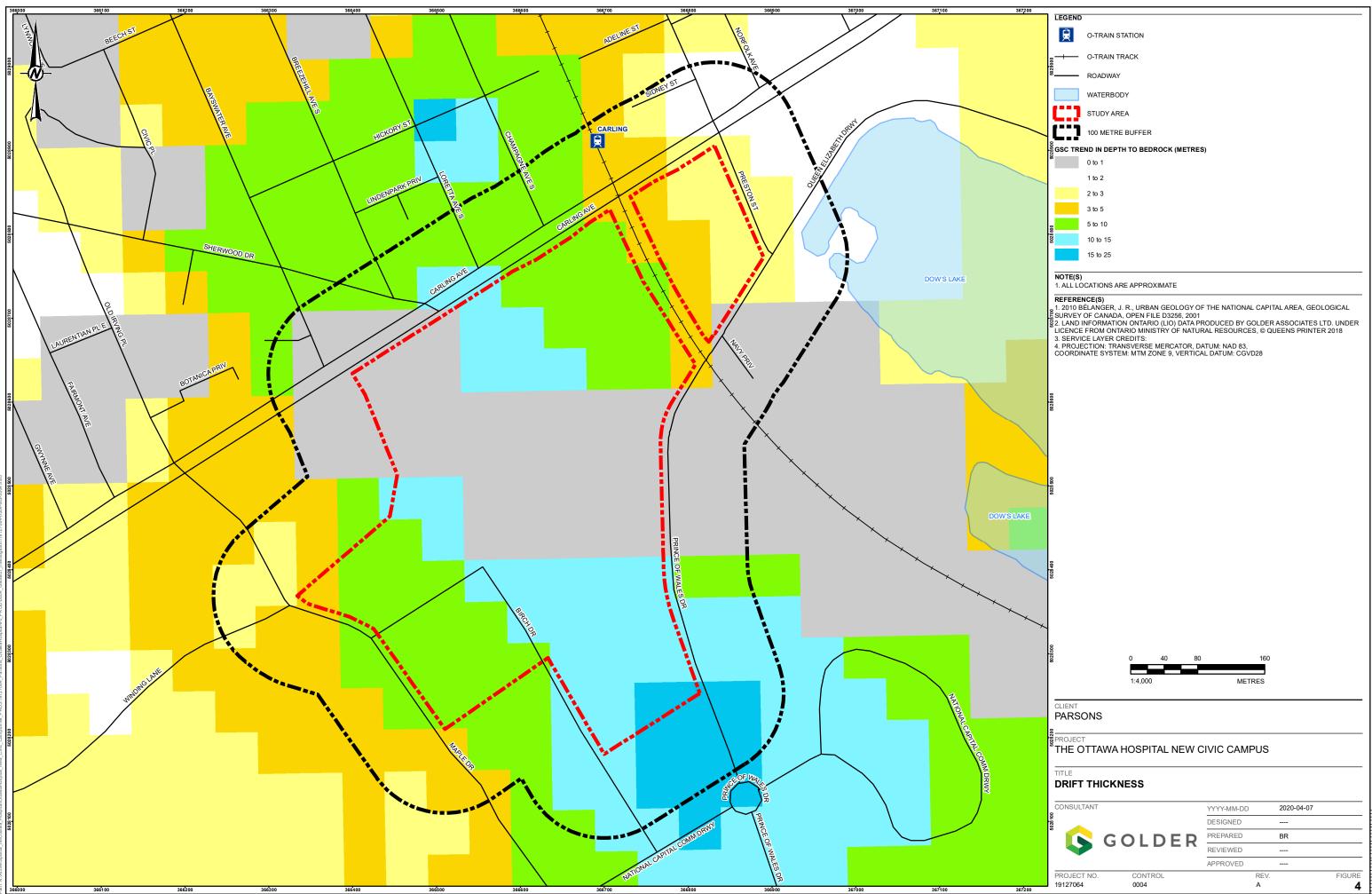
Special risks occur whenever engineering or related disciplines are applied to identify subsurface conditions and even a comprehensive investigation, sampling and testing program may fail to detect all or certain subsurface conditions. The environmental, geologic, geotechnical, geochemical and hydrogeologic conditions that Golder interprets to exist between and beyond sampling points may differ from those that actually exist. In addition to soil variability, fill of variable physical and chemical composition can be present over portions of the site or on adjacent properties. **The professional services retained for this project include only the geotechnical aspects of the subsurface conditions at the site, unless otherwise specifically stated and identified in the report.** The presence or implication(s) of possible surface and/or subsurface contamination resulting from previous activities or uses of the site and/or resulting from the introduction onto the site of materials from off-site sources are outside the terms of reference for this project and have not been investigated or addressed.

Soil and groundwater conditions shown in the factual data and described in the report are the observed conditions at the time of their determination or measurement. Unless otherwise noted, those conditions form the basis of the recommendations in the report. Groundwater conditions may vary between and beyond reported locations and can be affected by annual, seasonal and meteorological conditions. The condition of the soil, rock and groundwater may be significantly altered by construction activities (traffic, excavation, groundwater level lowering, pile driving, blasting, etc.) on the site or on adjacent sites. Excavation may expose the soils to changes due to wetting, drying or frost. Unless otherwise indicated the soil must be protected from these changes during construction.


Sample Disposal: Golder will dispose of all uncontaminated soil and/or rock samples 90 days following issue of this report or, upon written request of the Client, will store uncontaminated samples and materials at the Client's expense. In the event that actual contaminated soils, fills or groundwater are encountered or are inferred to be present, all contaminated samples shall remain the property and responsibility of the Client for proper disposal.


Follow-Up and Construction Services: All details of the design were not known at the time of submission of Golder's report. Golder should be retained to review the final design, project plans and documents prior to construction, to confirm that they are consistent with the intent of Golder's report.


During construction, Golder should be retained to perform sufficient and timely observations of encountered conditions to confirm and document that the subsurface conditions do not materially differ from those interpreted conditions considered in the preparation of Golder's report and to confirm and document that construction activities do not adversely affect the suggestions, recommendations and opinions contained in Golder's report. Adequate field review, observation and testing during construction are necessary for Golder to be able to provide letters of assurance, in accordance with the requirements of many regulatory authorities. In cases where this recommendation is not followed, Golder's responsibility is limited to interpreting accurately the information encountered at the borehole locations, at the time of their initial determination or measurement during the preparation of the Report.


Changed Conditions and Drainage: Where conditions encountered at the site differ significantly from those anticipated in this report, either due to natural variability of subsurface conditions or construction activities, it is a condition of this report that Golder be notified of any changes and be provided with an opportunity to review or revise the recommendations within this report. Recognition of changed soil and rock conditions requires experience and it is recommended that Golder be employed to visit the site with sufficient frequency to detect if conditions have changed significantly.

Drainage of subsurface water is commonly required either for temporary or permanent installations for the project. Improper design or construction of drainage or dewatering can have serious consequences. Golder takes no responsibility for the effects of drainage unless specifically involved in the detailed design and construction monitoring of the system.

APPENDIX A

Records of Previous Investigations

Organic or Inorganic	Soil Group	Туре	of Soil	Gradation or Plasticity	Cu	$=\frac{D_{60}}{D_{10}}$		$Cc = \frac{(D)}{D_{10}}$	$\frac{(x_{30})^2}{xD_{60}}$	Organic Content	USCS Group Symbol	Group Name
_		of s im)	Gravels with	Poorly Graded		<4		≤1 or 3	≥3		GP	GRAVEL
(se	5 mm)	GRAVELS (>50% by mass of coarse fraction is larger than 4.75 mm)	≤12% fines (by mass)	Well Graded		≥4		1 to 3	3		GW	GRAVEL
by mas	SOILS	GRAVELS 0% by mas arse fractior er than 4.75	Gravels with	Below A Line			n/a				GM	SILTY GRAVEL
ANIC ≤30%	JNED : ger tha	(>5 co large	>12% fines (by mass)	Above A Line			n/a				GC	CLAYEY GRAVEL
NORG	COARSE-GRAINED SOILS (>50% by mass is larger than 0.075 mm)	of m()	Sands	Poorly Graded		<6		≤1 or ∃	≥3	≤30%	SP	SAND
INORGANIC (Organic Content ≾30% by mass)	OARS y mas	SANDS (≥50% by mass of coarse fraction is smaller than 4.75 mm)	≤12% fines (by mass)	Well Graded		≥6		1 to 3	3	-	SW	SAND
(Org	C ~50% b	SANDS 0% by ma arse fractio	Sands with	Below A Line			n/a			-	SM	SILTY SAND
	÷	(≥5i coa smalle	>12% fines (by mass)	Above A Line			n/a			-	SC	CLAYEY SAND
Organic	Soil		(by mass)	Laboratory		I	Field Indica	tors		Organic	USCS Group	Primary
or Inorganic	Group	Туре	of Soil	Tests	Dilatancy	Dry Strength	Shine Test	Thread Diameter	Toughness (of 3 mm thread) N/A (can't	Content	Symbol	Name
		plot		Liquid Limit	Rapid	None	None	>6 mm	roll 3 mm thread)	<5%	ML	SILT
(ss	75 mm)	and	SILTS SILTS (Non-Plastic or Pl and LL plot below A-Line on Plasticity Chart below)	<50	Slow	None to Low	Dull	3mm to 6 mm	None to low	<5%	ML	CLAYEY SILT
by ma	OILS an 0.0	SILTS		ow A-I Plasti art bel		Slow to very slow	Low to medium	Dull to slight	3mm to 6 mm	Low	5% to 30%	OL
ANIC ≤30%	JED So aller th	-Plast	a p C	Liguid Limit	Slow to very slow	Low to medium	Slight	3mm to 6 mm	Low to medium	<5%	МН	CLAYEY SILT
NORGANIC ontent ≤30%	FINE-GRAINED SOILS (≥50% by mass is smaller than 0.075 mm)	ISS ISS	(Nor	≥50	None	Medium to high	Dull to slight	1 mm to 3 mm	Medium to high	5% to 30%	ОН	ORGANIC SILT
INORGANIC (Organic Content ≤30% by mass)			(PI and LL plot above A-Line on Plasticity Chart below)	Liquid Limit <30	None	Low to medium	Slight to shiny	~ 3 mm	Low to medium	0%	CL	SILTY CLAY
(Org				Liquid Limit 30 to 50	None	Medium to high	Slight to shiny	1 mm to 3 mm	Medium	to 30%	CI	SILTY CLAY
	₹)	(Plar C	above Plasti b	Liquid Limit ≥50	None	High	Shiny	<1 mm	High	(see Note 2)	СН	CLAY
ح.⊇ ر. 9	30% s)		mineral soil tures			1	1	30% to 75%			SILTY PEAT, SANDY PEAT	
HIGHLY ORGANIC SOILS (Organic	Content >30% by mass)	Predominantly peat, may contain some mineral soil, fibrous or amorphous peat					75% to 100%	PT	PEAT			
 Ad tow Plasticity Addition Plasticity<th>ML. e used when e. to identify rty" sand or ed when the CL-ML area (). two symbols SM, CL/ML. that the soil : are on the , a borderline</th>					ML. e used when e. to identify rty" sand or ed when the CL-ML area (). two symbols SM, CL/ML. that the soil : are on the , a borderline							

The Golder Associates Ltd. Soil Classification System is based on the Unified Soil Classification System (USCS)

ら GOLDER

ABBREVIATIONS AND TERMS USED ON RECORDS OF BOREHOLES AND TEST PITS

PARTICI E SIZES OF CONSTITUENTS

Soil Constituent	Particle Size Description	Millimetres	Inches (US Std. Sieve Size)
BOULDERS	Not Applicable	>300	>12
COBBLES	Not Applicable	75 to 300	3 to 12
GRAVEL	Coarse Fine	19 to 75 4.75 to 19	0.75 to 3 (4) to 0.75
SAND	Coarse Medium Fine	2.00 to 4.75 0.425 to 2.00 0.075 to 0.425	(10) to (4) (40) to (10) (200) to (40)
SILT/CLAY	Classified by plasticity	<0.075	< (200)

MODIFIERS FOR SECONDARY AND MINOR CONSTITUENTS

Percentage by Mass	Modifier		
>35	Use 'and' to combine major constituents (<i>i.e.</i> , SAND and GRAVEL)		
> 12 to 35	Primary soil name prefixed with "gravelly, sandy, SILTY, CLAYEY" as applicable		
> 5 to 12	some		
≤ 5	trace		

PENETRATION RESISTANCE

Standard Penetration Resistance (SPT), N:

The number of blows by a 63.5 kg (140 lb) hammer dropped 760 mm (30 in.) required to drive a 50 mm (2 in.) split-spoon sampler for a distance of 300 mm (12 in.). Values reported are as recorded in the field and are uncorrected.

Cone Penetration Test (CPT)

An electronic cone penetrometer with a 60° conical tip and a project end area of 10 cm² pushed through ground at a penetration rate of 2 cm/s. Measurements of tip resistance (q), porewater pressure (u) and sleeve frictions are recorded electronically at 25 mm penetration intervals.

Dynamic Cone Penetration Resistance (DCPT); Nd: The number of blows by a 63.5 kg (140 lb) hammer dropped 760 mm (30 in.) to drive uncased a 50 mm (2 in.) diameter, 60° cone attached to "A" size drill rods for a distance of 300 mm (12 in.).

- PH: Sampler advanced by hydraulic pressure
- PM: Sampler advanced by manual pressure
- WH: Sampler advanced by static weight of hammer
- WR: Sampler advanced by weight of sampler and rod

Compactness ²					
Term	SPT 'N' (blows/0.3m) ¹				
Very Loose	0 to 4				
Loose	4 to 10				
Compact	10 to 30				
Dense	30 to 50				
Very Dense	>50				

NON-COHESIVE (COHESIONLESS) SOILS

- 1. SPT 'N' in accordance with ASTM D1586, uncorrected for the effects of overburden pressure.
- Definition of compactness terms are based on SPT 'N' ranges as provided in Terzaghi, Peck and Mesri (1996). Many factors affect the recorded SPT 'N' 2. value, including hammer efficiency (which may be greater than 60% in automatic trip hammers), overburden pressure, groundwater conditions, and grainsize. As such, the recorded SPT 'N' value(s) should be considered only an approximate guide to the soil compactness. These factors need to be considered when evaluating the results, and the stated compactness terms should not be relied upon for design or construction.

Field Moisture Condition

Term	Description					
Dry	Soil flows freely through fingers.					
Moist	Soils are darker than in the dry condition and may feel cool.					
Wet	As moist, but with free water forming on hands when handled.					

SAMPLES	
AS	Auger sample
BS	Block sample
CS	Chunk sample
DD	Diamond Drilling
DO or DP	Seamless open ended, driven or pushed tube sampler – note size
DS	Denison type sample
GS	Grab Sample
MC	Modified California Samples
MS	Modified Shelby (for frozen soil)
RC	Rock core
SC	Soil core
SS	Split spoon sampler – note size
ST	Slotted tube
ТО	Thin-walled, open - note size (Shelby tube)
TP	Thin-walled, piston – note size (Shelby tube)
WS	Wash sample

SOIL LESIS	
w	water content
PL, w _p	plastic limit
LL, wL	liquid limit
С	consolidation (oedometer) test
CHEM	chemical analysis (refer to text)
CID	consolidated isotropically drained triaxial test ¹
CIU	consolidated isotropically undrained triaxial test with porewater pressure measurement ¹
D _R	relative density (specific gravity, Gs)
DS	direct shear test
GS	specific gravity
М	sieve analysis for particle size
MH	combined sieve and hydrometer (H) analysis
MPC	Modified Proctor compaction test
SPC	Standard Proctor compaction test
OC	organic content test
SO ₄	concentration of water-soluble sulphates
UC	unconfined compression test
UU	unconsolidated undrained triaxial test
V (FV)	field vane (LV-laboratory vane test)
γ	unit weight

Tests anisotropically consolidated prior to shear are shown as CAD, CAU. 1.

COHESIVE SOILS						
Consistency						
Term	Undrained Shear Strength (kPa)	SPT 'N' ^{1,2} (blows/0.3m)				
Very Soft	<12	0 to 2				
Soft	12 to 25	2 to 4				
Firm	25 to 50	4 to 8				
Stiff	50 to 100	8 to 15				
Very Stiff	100 to 200	15 to 30				
Hard	>200	>30				

1. SPT 'N' in accordance with ASTM D1586, uncorrected for overburden pressure effects; approximate only. 2

SPT 'N' values should be considered ONLY an approximate guide to consistency; for sensitive clays (e.g., Champlain Sea clays), the N-value approximation for consistency terms does NOT apply. Rely on direct measurement of undrained shear strength or other manual observations.

Water Content					
Term	Description				
w < PL	Material is estimated to be drier than the Plastic Limit.				
w ~ PL	Material is estimated to be close to the Plastic Limit.				
w > PL	Material is estimated to be wetter than the Plastic Limit.				

Unless otherwise stated, the symbols employed in the report are as follows:

I.	GENERAL	(a) w	Index Properties (continued) water content
π In x	3.1416 natural logarithm of x	w _l or LL w _p or PL	liquid limit plastic limit
log ₁₀	x or log x, logarithm of x to base 10 acceleration due to gravity	l₀ or PI NP	plasticity index = (wı – wp) non-plastic
g t	time	Ws	shrinkage limit
		lL	liquidity index = $(w - w_p) / I_p$
		lc Amay	consistency index = $(w_l - w) / I_p$ void ratio in loosest state
		emax emin	void ratio in densest state
		ID	density index = $(e_{max} - e) / (e_{max} - e_{min})$
II.	STRESS AND STRAIN		(formerly relative density)
γ	shear strain	(b)	Hydraulic Properties
Δ	change in, e.g. in stress: $\Delta \sigma$ linear strain	h	hydraulic head or potential rate of flow
ε ε _v	volumetric strain	q v	velocity of flow
η	coefficient of viscosity	i	hydraulic gradient
υ	Poisson's ratio	k	hydraulic conductivity
σ	total stress		(coefficient of permeability)
σ'	effective stress ($\sigma' = \sigma - u$)	j	seepage force per unit volume
σ'νο	initial effective overburden stress principal stress (major, intermediate,		
σ1, σ2, σ3	minor)	(c)	Consolidation (one-dimensional)
	- /	Cc	compression index
σ_{oct}	mean stress or octahedral stress		(normally consolidated range)
	$= (\sigma_1 + \sigma_2 + \sigma_3)/3$	Cr	recompression index
τ	shear stress	Cs	(over-consolidated range)
u E	porewater pressure modulus of deformation	Cs Cα	swelling index secondary compression index
G	shear modulus of deformation	mv	coefficient of volume change
К	bulk modulus of compressibility	Cv	coefficient of consolidation (vertical direction)
		Ch	coefficient of consolidation (horizontal direction)
		Tv	time factor (vertical direction)
III.	SOIL PROPERTIES	U σ′p	degree of consolidation pre-consolidation stress
(a)	Index Properties	OCR	over-consolidation ratio = σ'_p / σ'_{vo}
ρ(γ)	bulk density (bulk unit weight)*		
ρ _d (γ _d)	dry density (dry unit weight)	(d)	Shear Strength
ρω(γω)	density (unit weight) of water	τρ, τr	peak and residual shear strength
ρs(γs) v'	density (unit weight) of solid particles unit weight of submerged soil	φ' δ	effective angle of internal friction angle of interface friction
γ′	$(\gamma' = \gamma - \gamma_w)$		coefficient of friction = tan δ
D _R	relative density (specific gravity) of solid	μ c′	effective cohesion
	particles (D _R = ρ_s / ρ_w) (formerly G _s)	Cu, Su	undrained shear strength ($\phi = 0$ analysis)
е	void ratio	р	mean total stress $(\sigma_1 + \sigma_3)/2$
n	porosity	p'	mean effective stress ($\sigma'_1 + \sigma'_3$)/2
S	degree of saturation	q	$(\sigma_1 - \sigma_3)/2$ or $(\sigma'_1 - \sigma'_3)/2$
		q _u St	compressive strength (σ_1 - σ_3) sensitivity
* Densi	ty symbol is ρ . Unit weight symbol is γ	Notes: 1	$\tau = c' + \sigma' \tan \phi'$
where	$\rho = \rho g$ (i.e. mass density multiplied by eration due to gravity)	2	shear strength = (compressive strength)/2

LITHOLOGICAL AND GEOTECHNICAL ROCK DESCRIPTION TERMINOLOGY

WEATHERINGS STATE

Fresh: no visible sign of rock material weathering.

Faintly weathered: weathering limited to the surface of major discontinuities.

Slightly weathered: penetrative weathering developed on open discontinuity surfaces but only slight weathering of rock material.

Moderately weathered: weathering extends throughout the rock mass but the rock material is not friable.

Highly weathered: weathering extends throughout rock mass and the rock material is partly friable.

Completely weathered: rock is wholly decomposed and in a friable condition but the rock and structure are preserved.

BEDDING THICKNESS

Description	Bedding Plane Spacing
Very thickly bedded	Greater than 2 m
Thickly bedded	0.6 m to 2 m
Medium bedded	0.2 m to 0.6 m
Thinly bedded	60 mm to 0.2 m
Very thinly bedded	20 mm to 60 mm
Laminated	6 mm to 20 mm
Thinly laminated	Less than 6 mm

JOINT OR FOLIATION SPACING

Spacing
Greater than 3 m
1 m to 3 m
0.3 m to 1 m
50 mm to 300 mm
Less than 50 mm

GRAIN SIZE

Term	<u>Size*</u>
Very Coarse Grained	Greater than 60 mm
Coarse Grained	2 mm to 60 mm
Medium Grained	60 microns to 2 mm
Fine Grained	2 microns to 60 microns
Very Fine Grained	Less than 2 microns

Note: * Grains greater than 60 microns diameter are visible to the naked eye.

CORE CONDITION

Total Core Recovery (TCR)

The percentage of solid drill core recovered regardless of quality or length, measured relative to the length of the total core run.

Solid Core Recovery (SCR)

The percentage of solid drill core, regardless of length, recovered at full diameter, measured relative to the length of the total core run.

Rock Quality Designation (RQD)

The percentage of solid drill core, greater than 100 mm length, as measured along the centerline axis of the core, relative to the length of the total core run. RQD varies from 0% for completely broken core to 100% for core in solid segments.

DISCONTINUITY DATA

Fracture Index

A count of the number of naturally occuring discontinuities (physical separations) in the rock core. Mechanically induced breaks caused by drilling are not included.

Dip with Respect to Core Axis

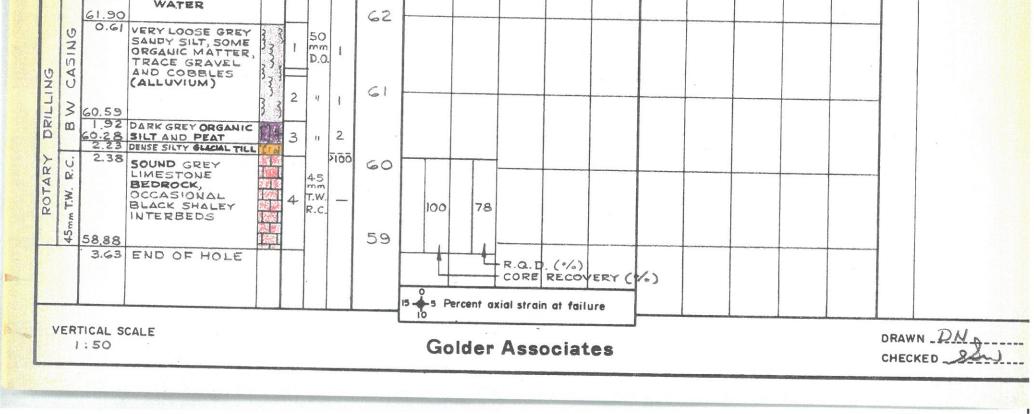
The angle of the discontinuity relative to the axis (length) of the core. In a vertical borehole a discontinuity with a 90° angle is horizontal.

Description and Notes

An abbreviation description of the discontinuities, whether naturally occurring separations such as fractures, bedding planes and foliation planes and mechanically separated bedding or foliation surfaces. Additional information concerning the nature of fracture surfaces and infillings are also noted.

Abbreviations		
JN Joint	PL	Planar
FLT Fault	CU	Curved
SH Shear	UN	Undulating
VN Vein	IR	Irregular
FR Fracture	К	Slickensided
SY Stylolite	PO	Polished
BD Bedding	SM	Smooth
FO Foliation	SR	Slightly Rough
CO Contact	RO	Rough
AXJ Axial Joint	VR	Very Rough
KV Karstic Void		

MB Mechanical Break


TABLE 1

RECORD OF AUGERHOLES

Augerhole <u>Number</u>	Depth (<u>metres</u>)	Description
AH 00-1	$\begin{array}{c} 0.0 - 0.09 \\ 0.09 - 0.36 \\ 0.36 - 1.90 \\ 1.90 - 2.10 \\ 2.10 - 3.05 \\ 3.05 \end{array}$	Asphaltic Concrete Grey crushed stone (base) Brown fine sand (subbase) Brown sand and gravel (subbase) Grey brown Silty Clay End of augerhole
AH00-2	$\begin{array}{c} 0.0 - 0.07 \\ 0.07 - 0.40 \\ 0.40 - 0.97 \\ 0.97 - 1.83 \\ 1.83 \end{array}$	Asphaltic Concrete Grey crushed stone (base) Brown fine sand (subbase) Dark brown Glacial Till, wet End of augerhole Auger refusal
AH00-3	$\begin{array}{r} 0.0 & - \ 0.30 \\ 0.30 - \ 0.65 \\ 0.65 - \ 0.95 \\ 0.95 - \ 1.63 \\ 1.63 \end{array}$	Topsoil Brown silty sand, trace topsoil (FILL) Dark brown silty Topsoil Brown Glacial Till, wet End of augerhole Auger refusal
AH00-4	$\begin{array}{c} 0.0 - 0.20 \\ 0.20 - 0.75 \\ 0.75 - 0.95 \\ 0.95 - 1.15 \\ 1.15 - 1.80 \\ 1.80 \end{array}$	Topsoil Brown silty sand (FILL) Topsoil Grey brown Silty Clay Brown Glacial Till End of augerhole
AH00-5	$\begin{array}{c} 0.0 - 0.10 \\ 0.10 - 0.18 \\ 0.18 - 0.45 \\ 0.45 - 0.96 \\ 0.96 - 1.14 \\ 1.14 - 1.20 \\ 1.20 - 1.50 \\ 1.50 - 2.54 \\ 2.54 \end{array}$	Asphaltic Concrete Grey crushed stone (base) Brown sand and gravel (subbase) Brown fine sand (subbase) Brown sand and gravel (subbase) Dark brown sandy Topsoil Brown fine Sand Brown Glacial Till End of augerhole Auger refusal Free water at 1.9 metres depth

Project No. _______ RECORD OF BOREHOLES 1, 2 \$ 3 2 BORING DATE JAN. 6, 1982 LOCATION See Figure DATUM GEODETIC SAMPLER HAMMER WEIGHT 63.5 Kg., DROP 0.76m PENETRATION TEST HAMMER WEIGHT DROP SOIL PROFILE METHOD SAMPLES DYNAMIC PENETRATION COEFFICIENT OF PERMEABILITY, RESISTANCE, BLOWS/0.3m (TESTING Z SCALE k., CM. / SEC. BLOWS/0.3m PLOT PIEZOMETER IXIO IXIO IXIO IXIO NUMBER OR BORING TYPE ELEV'N. SHEAR STRENGTH DESCRIPTION STANDPIPE STRAT. WATER CONTENT, PERCENT NAT. V. - + Q. - . DEPTH Cu. INSTALLATION ADDI' LAB. Wp REM.V. - @ U.-O _____W____WL E BH. 1 (M3 63 62.51 GROUND SURFACE S1 0.00 VERY LOOSE DARK GREY ORGANIC SANDY SILT, TRACE GRAVEL, WOOD AND BRICK (ALLUVIUM) 3 50 IOLLOV 3 3 2 " 1 mm 1 62 D.O. 1 61.44 1.07 END OF HOLE I 2100 AUGER REFUSAL, V PROBABLY Ň 61 BEDROCK 4 0 8 20 BH. 2 Ö -63 R 62.53 ICE SURFACE ш 0.00 5 ICE 0.15 0 WATER 4 61.92 O.GI VERY LOOSE DARK GREY ALLUVIUM 62 R N ш 50 30 1 mm 1 D.Q 61.04 0 1.49 VERY DENSE 61 >100 2 88 SILTY GLACIAL 60.52 2.01 END OF HOLE AUGER REFUSAL PROBABLY 60 BEDROCK BH. 3 63 62.51 ICE SURFACE 0.00 ICE 0.18

Form G.A.-D-1.

Form G.A.-D-1.

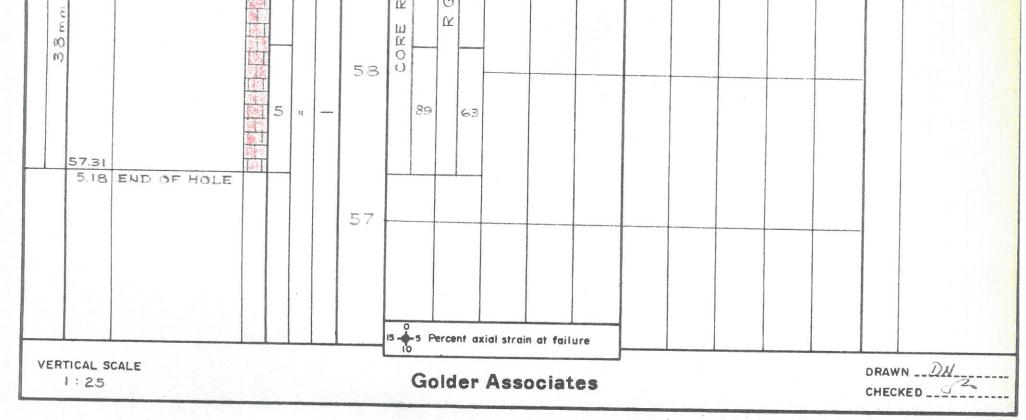
	SAMPLE	R HAMMER WEIGHT	63.5	Kg.	, DR			n		PE	, 198			MER WI	EIGHT	(DETIC	-	
BORING METHOD	ELEV'N.	SOIL PROFILE	STRAT. PLOT	SAN			ELEVATION SCALE	SHEAR		E, BLOW	ATION S/0.3 m	1	ix	K., 10 I:	CM. / SEG	PERCEN	10	ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION
BORIN	DEPTH		STRAT	NUMBER	TYPE	/SWOJB	ELE	Cu.		F	EM.V 6	UO		Wp			+	ADDI LAB.	INSTALLATION
45mm BW CASING	61.26 1.28 61.02 1.52 60.41 2.13 59.95 2.59 59.64	VERY LOOSE TO VERY DENSE GLACIAL TILL FRACTURED LIMESTONE BEDROCK		2	50 m D.O. 45 m T.W R.C.	2	63 62 61 60 59	83	ВН.	R.Q.	D. (%	VERY	(*/2)						
45mm TW RDBW CASING	0.00 0.18 0.40 0.61 0.73	ICE SURFACE ICE WATER DARK GREY ALLOVIUM DARK GREY SILTY GLACIAL TILL SOUND GREY LIMESTONE BEDROCK OCCASIONAL SHALEY		2	50 mm D.O. 45 mm		63	100	ВН.										

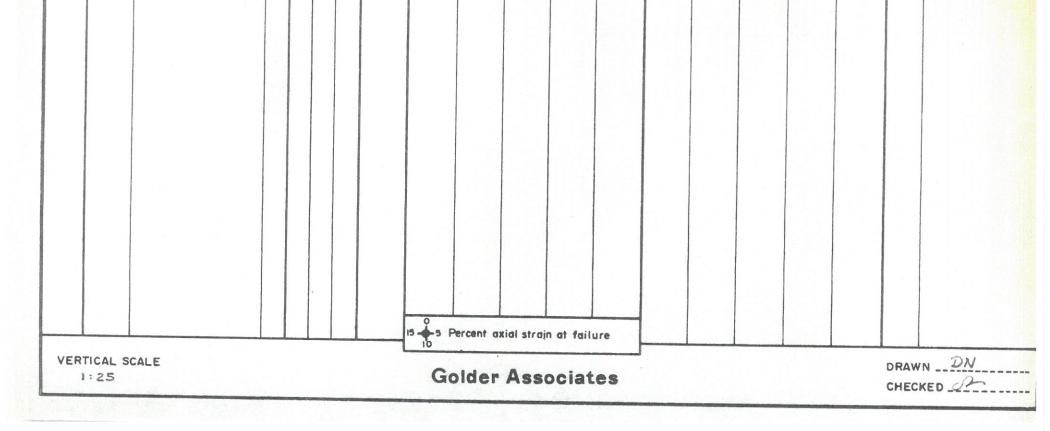
Contract of

The second

ni tan

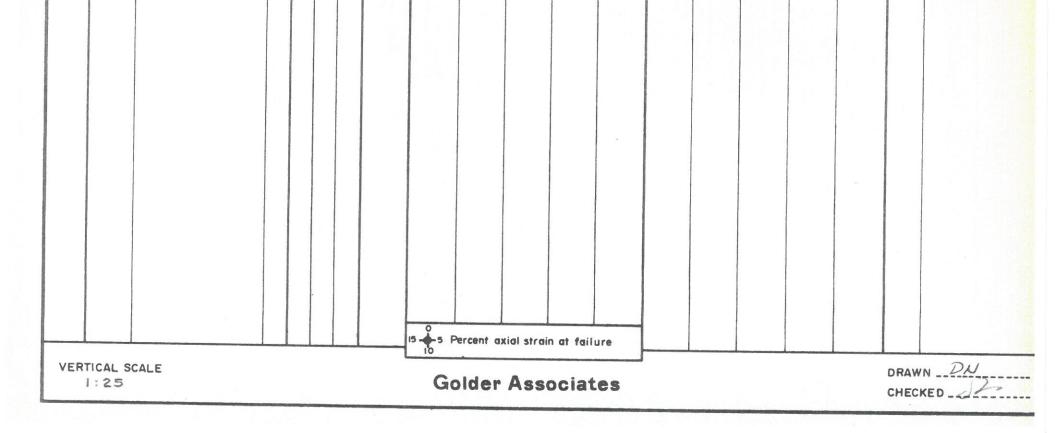
Contrast of the


Project No. _821-2000


	LOCAT	ER HAMMER WEIGHT	2 63.5		ROP	BO	RING D		MAR.	11, 199	HOLE				DETIC		
BORING METHOD	ELEV'N DEPTH		E	NUMBER	0.3 m	ELEVATION	RE	NAMIC SISTAN	CE, BLOW	ATION /S/ 0.3 m 	- 00	ix	10 I	CM. / SE x 10 I		ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION
S CASING	0.00 <u>88.13</u> 13.0	ICE				62											
	60.11 2.38 59.87 2.62			R.C.		60 E9	20VERY (°6)	0 78									

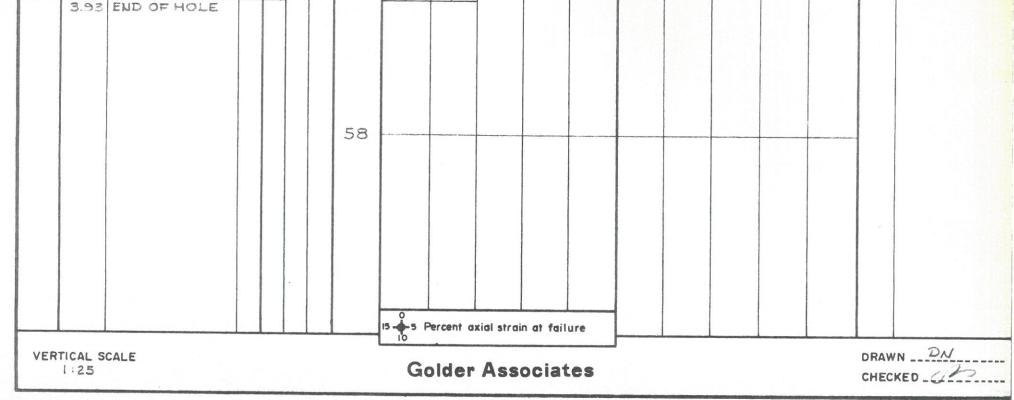
Dote _____

Coldar Desociates


BURNELEV'I	2.62 ICE SURFACE 1.62	STRAT. PLOT	SAM	PLES	ELEVATION SCALE	D' m D' R SHEA	YNAMIC	PENETRAT	10N	CC	DEFFICIE	WEIGHT NT OF PE , CM. / SE	RMEAB C. ×10 PERCE	1×10	ADDITIONAL LAB. TESTING	OR STANDPIPE
ONINO ELEVID DEPTH 0 62.62 0.000 0	EV'N. DESCRIPTION PTH DESCRIPTION 2.62 ICE SURFACE 2.00 ICE 2.19 2.43 DARK BROWN SILTY SAND, SOME GRAVEL OCCASIONAL COBBLES (ALLUVION 8G 0.76 VERY DENSE GREY BROWN SILTY SAND SOME GRAVEL, TRACE CLAY (GLACIAL TILL)	STRAT. PLOT		В M	ELEVATION	SHEA	ESISTAN	IGTH NAT	').3m <		IX IO WATER C	CM. / SE	C. xIO PERCE	1×10	VAL	STANDPIPE
ONNO ELEVIDEPTH 00 0.000 0	2.62 ICE SURFACE 1.62		NUMBER		ELEVATI	1 01124	AR STREM	NAI			WATER C	ONTENT,	PERCE		ADDITIONA LAB. TESTI	and the second se
0.00 <u>62.19</u> 0.43 0.4	1CE 19 143 DARK BROWN SILTY SAND, SOME GRAVEL OCCASIONAL COBBLES (ALLUVIUM 8G 0.76 VERY DENSE GREY BROWN SILTY SAND SOME GRAVEL, TRACE CLAY (GLACIAL TILL)														LA	
Z <u>61.28</u> J 1.34 Ζ Δ Ψ	28	011	5	0 m >100	62											
ROTARY 38 mm DIAM. T.W. CO 82.20 82.	34 FRACTURED GREY LIMESTONE BEDROCK, OCCASIONAL SILT FILLED SEAMS		- P (&⊕	61	CORE RECOVERY (%)	R. G. D. (%)									

								RECO	RD (F	BORE	HOLE	3					
	LOCAT	ION See Figure ER HAMMER WEIGHT				ROP		RING DA					ST HAMMER		GEOI	DETIC	-	0 2 PIEZOMETI 0R 0R
ETHOD		SOIL PROFILE		SA	MPL	.ES	_	DY	NAMIC P		ATION	5	COEFFIC	ENT OF PE	RMEABIL	ITY, Ţ		
BORING METI	ELEV'N DEPTH	DESCRIPTION	STRAT. PLOT	NUMBER	TYPE	BLOWS / 0.3 m	ELEVATION SCALE		STREN	STH N	AT. V + EM.V @	0	1x 10	K., CM. / SE	PERCENT	r	ADDITIONAL LAB. TESTING	
CASING	0.00	ICE SURFACE					62											
CLING B	0.67	DARK BROWN SILTY SAND AND GRAVEL, OCCASIONAL ASPHALT ETC. (ALLUVIUM) BADLY TO MODERATELY FRACTURED GREY LIMESTONE		3	1	>100		62										
M. T.W. CORE	60,53 1.95	BEDROCK, OCCASIONAL SILT FILLED SEAMS		5 6 7	1) 1) 1)		61	COVERY (%)	.D. (°%)									
38 mm DIAN		GREY LIMESTONE BEDROCK, SOME DARK GREY SHALEY LIMESTONE BANDS, OCCASIONAL NEAR HORIZONTAL JOINTS		8			60	94 94	Ø 2 66									

Coldon Association


Chud Jone

		ION See Figure				BO	RING	DAT	EN	ARI	80RE	12				GEO	DETIC		
00		ER HAMMER WEIGHT		Kg., C		760 r	T	DYN	AMIC	PENETI	RATION	TION TE		FICIEN	T OF PEI	RMEABIL	DROP		
BORING METHOD	ELEV'N DEPTH	DESCRIPTION	STRAT. PLOT	NUMBER	BLOWS/0.3m	ELEVATION SCALE		EAR	STRE	NGTH	NAT. V	- Q@	ix	10 I.	CM. / SEC	S.	x 10	ADDITIONAL LAB. TESTING	PIEZOMETEI OR STANDPIPE INSTALLATIO
N CORE B CASING	0.00 0.85 61.62 1.19	GROUND SURFACE BROWN SAND AND GRAVEL, OCCASIONAL WOOD AND ORGANIC MATTER (FILL) LOOSE DARK BROWN SANDY SILT, SOME CLAY AND ORGANIC MATTER (ALLUVIUM) FAIRLY SOUND GREY LIMESTONE BEDROCK, SOME DARK GREY SHALEY LIMESTONE BANDS OCCASIONAL		1 C.: 2 50 2 D.C 38 mm R.C	5	63 62 61	RY	89	(°/c)										
38mm DIAM. T.W		NEAR HORIZONTAL		4 u 5 u	-	60	CORE RECOVE		0 0 C										

T MAR 24.1982

----- 11X1 T

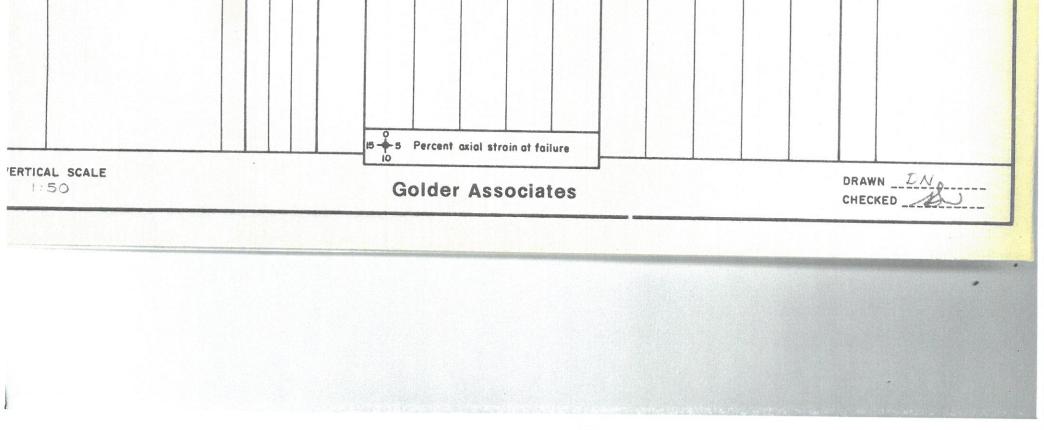
RECORD OF BOREHOLE I

indefe

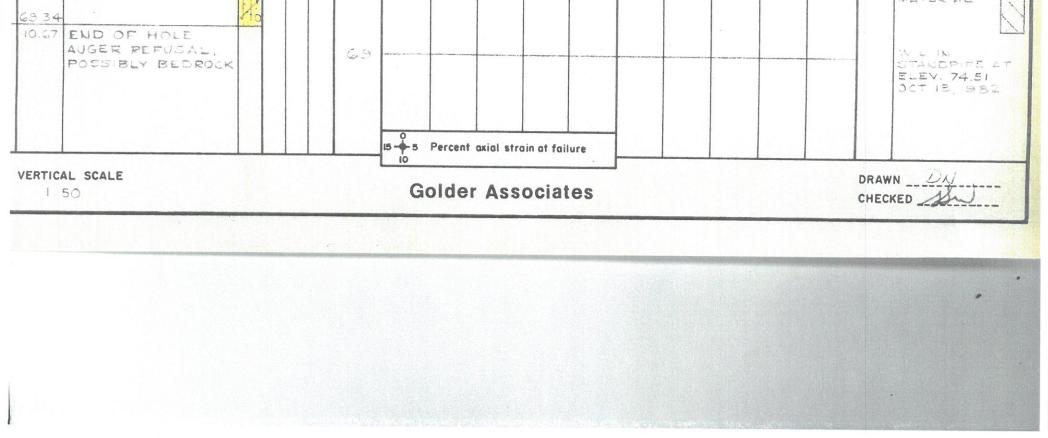
LOCATION See Figure

-1(1

BORING DATE OCT. 1 \$ 4, 1982 DATUM GEODETIC


ject,

SAMPLER HAMMER, 63.5 kg.; DROP, 760 mm


2

PENETRATION TEST HAMMER, 63.5 kg., DROP, 760 mm

	SOIL PROFILE		SA	MPL	ES		DYNA	MIC PEN	BLOWS	ION 8/0.3m	>	HY	DRAULI	C CONDU	CTIVITY	Y, T	0	
'N.	DESCRIPTION	STRATA PLOT	NUMBER	TYPE	BLOWS/0.3m	ELEVATION	SHEAR	STREN		 IAT. V +	00		IO I	cm/sec. x10 is	10 11	<u>к 10</u> NT	ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE
H		STRA'	NUN	F	BLOW	ELE	Cu, kPc	, 		EM. V @			WP 	Ő	WL	p	ADDI LAB.	INSTALLATIO
0	GROUND SURFACE	C26				81										1	-	GROUND SURFACE 7
4	LOOSE BROWN SANDY SILT												19.14					SURFACE -
1			1	50 mm	20	80		1999 Al gange a 'a babasan									-	
		0		DO.	29							O						
		U	2	iq.	46	79						0						FLASTIC -
		ro																
			3	11	15	78							0				MH	
11	DENSE TO VERY	0.	4	2Ą	13									0				NATIVE
-	GREY SILTY SAND TO SANDY SILT, SOME GRAVEL,					77											1	BACKFILL
100	TRACE TO SOME CLAY, OCCASIONAL COBBLES AND	Ó	5	H.	13								0					
11	GLACIAL TILL)					7/												
		0	6	4.3	5	76						0						
			7	.ŋ .	4							O					MH	
		·				75												
			8	R	5							0						
						74												
		0.																
			9	ų	5	73										r ministratistis entiter ministrati		
		1/2																STANDPIPE
E	END OF HOLE AUGER REFUSAL					72			aliptica "Hij Sim Lineara					4 				
P	OSSIELY BEDROCK																	W.L.IN
						71									and an one of the poly of the of	Deall II - Change and Annual Annual		ELEV. 76 42 DCT. 13, 1982

ELEV'N. DESCRIPTION	ZOMETER OR NDPIPE ALLATIO		0							ION TES				DYALA		50	44.01	104		SOU PROFILE	
80 01 GR DULE SUPFACE 00 0.21 VERY LOOKE LIGHT BROWN CINDER: AND ASHES (FILL) 00 10 10 <		STAN	DITIONAL B. TESTIN	10	10 Ix,1	/sec. Ix IO	, cm/se 1x10	k, 1x10			AT. V +	STH N	STREN	SHEAF	LEVATION S CALE	T			RATA PLOT	DESCRIPTION	A REAL PROPERTY AND INCOME.
Boold Operation Description Description <thdescription< th=""></thdescription<>			LAE												ш 	BL(z	STI		
ACHES (FILL) 3.70 3.71 3.21 10750L 3.24 10750L 3.24 10750L 3.25 3.00	ACE 7	JRFA													80					PSOIL	0.21
198 10 7.6 7.6 7.6 198 10 7.6 7.6 7.6 198 10 7.6 7.6 10 7.5 7.6 10 7.5 10 7.5 10 7.5 10 7.5 10 7.5 10 7.5 10 7.5 10 7.5															79	2	m m D.O.			PSOIL	570 31-58
DENCE TO LODDE EROWN TO GREY CANDY GUT TO CANDY GUT TO COME CLAY, OCCASIONAL COEBLES AND EOULDERS (GLACIAL TILL) 7 8 74 8 9 24		FLACT.													0 7	43	11	0 V		NDY SILT	
EROWA TO GEEY SANDY SHET TO SULTY SAND, SOME GRAVEL, TRACE TO SOME CLAY, OCCASIONAL COEBLES AND EOULDERS (GLACIAL TILL) 7 8 74 7 7 8 7 4																			Vier i		
COEBLES AND BOULDERS (GLACIAL TILL) 8. # 24 74																			S. V. S.	DWN TO SEER IDY SILT TO TY SAND, SOME AVEL, TRACE TO ME CLAY,	
															74	8		7	0	ULDERS	
															73	24	u-	8			
9 15 72									fige (de page fac a				an of a state of a second		72	5	я	9	0		

ject RECORD OF BOREHOLES 3 8 4 LOCATION See Figure 2 BORING DATE OCT. 4, 1982 DATUM GEODETIC SAMPLER HAMMER, 63.5 kg.; DROP, 760 mm PENETRATION TEST HAMMER, 63.5 kg.; DROP, 760 mm DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m SOIL PROFILE SAMPLES HYDRAULIC CONDUCTIVITY, ADDITIONAL LAB. TESTING ELEVATION k, cm/sec. PIEZOMETER PLOT ε IxIO IxIO IxIO BLOWS/0.3 1x10 OR NUMBER STANDPIPE SHEAR STRENGTH NAT. V.- + 0.-TYPE LEV'N. STRATA WATER CONTENT, PERCENT DESCRIPTION INSTALLATION Cu, kPa Wp DEPTH Ø WL REM. V. - @ U.-O 70 3 BH. GROUND 59.35 GROUND SURFACE SURFACE 0.00 BROWN CLAYEY X SURFACE 0.15 SILT (FILL) 69 SEAL 50 PLASTIC In G TUEING 0.0 VERY LOOSE BROWN 63 CINDERS AND ASHES TRACE GLASS (FILL) 2 14 4 NATIVE -BACKFILL 67 23 2 1 4 5.81 3.54 5.57 3.78 60 60 STANDPIPE -NOC PROBABLY WEATHERED T_T END OF HOLE AUGER REFUSAL WL.IN STANDPIPE AT PROBABLY BEDROCK 4 E ELEV. 66.15 OCT. 13, 1982 - 3.2 M BH. 4 GROUND SURFACE 7 70.22 GROUND SURFACE 0.00 SURFACE -70 SEAL VERY LOOSE TO LOOSE BROWN CINDERS AND ASHES, TRACE GLASS 50 AND BRICK (FILL)

1 m ri 60 DO

2

3

4

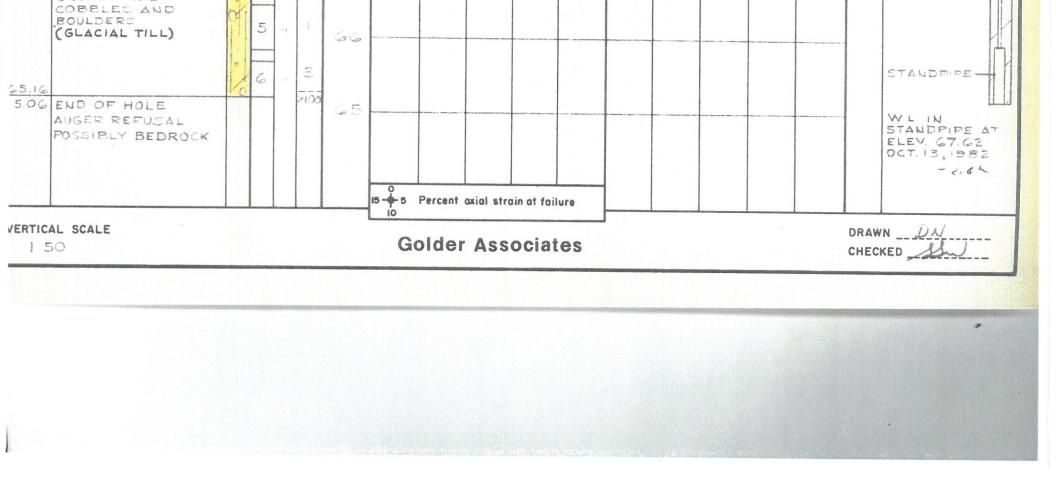
67.48

274

LOOSE TO VERY LOCSE

BROWN TO GREY SANDY SILT AND SILTY SAND, SOME GRAVEL, TRACE CLAY, OCCASIONAL

2


3

9

69

68

27

PLASTIC -

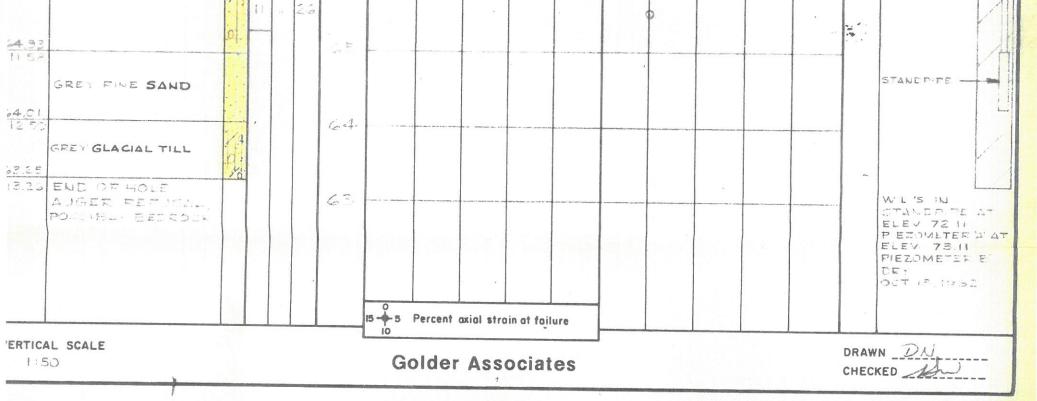
TUBING

NATIVE -

EACKFILL

1

RECORD OF BOREHOLE 5

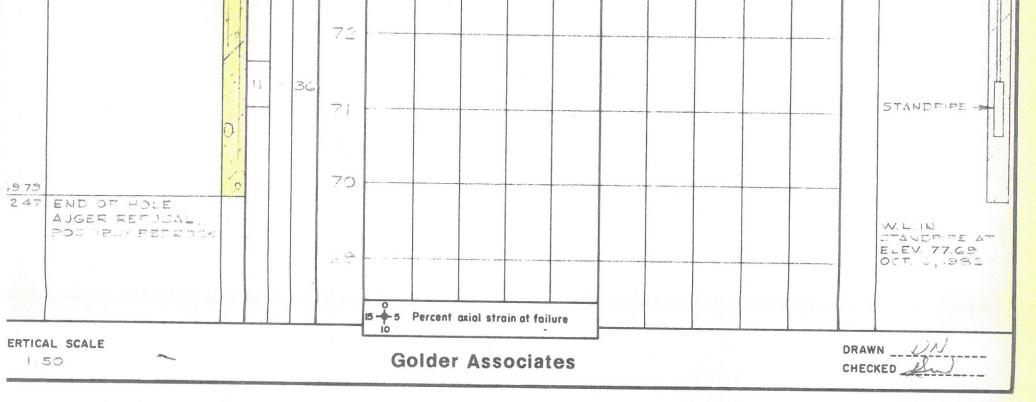

LOCATION See Figure 2

BORING DATE OCT. 5, 1982 DATUM GEODETIC

SAMPLER HAMMER, 63.5 kg.; DROP, 760 mm

PENETRATION TEST HAMMER, 63.5 kg.; DROP, 760 mm

	SOIL PROFILE		SA	MP	LES		DYNA	MIC PEN	ETRA	TION VS/0.3m	5	HY	DRAUL	IC CON	DUCTIV	ITY.	T		
ELEV'N.		PLOT	ER		/0.3 m	ELEVATION SCALE		1		VS/0.3m	<	Ix	10 1	, cm/se ixiO	c. 1x10	1x 10	DNAL	PIEZOMET	
DEPTH	ULJUNIT	STRATA	NUMBER	TYPE	BLOWS/0.3m	ELEVI	SHEAF Cu, kP	STREN		NAT. V REM. V 6				20	NT, PER		ADDITIONAL	STANDPIF	
						77			-							1		J	
0.00																		GROUND SURFACE	
0.58	BROWN SANDY SILT					76										-		SEAL	NU NU
			-1	50 m m D.O.	31							0						PLASTIC	
		1	2	n	44	75	Bridder II o' Co'habe dezenh					0							
		0	(6	4	19	74							<u>,</u>			natur an allan an ann		SEAL -	Industry International International
	DENSE TO VERY	0	4	0	8								0					PIEZOMETER	
	LODSE BROWN TO GREY SANDY GILT TO SILTY DAND, SOME GRAVEL, TRACE TO SOME	0	(J		4	73							>				AAA 1.544	- 3. 2h	
	CLAY, OCCACIONAL CORRES AND BOULDERS (GLACIAL TILL)		6	ł	11	72	845.11		e (Letters est state										
		0	7		7	71 -											P MH	NATIVE BACKFILL -	
			-													-			
	-	.0	8		4	70 -	A 100 (10)						9						
		1																PIEZOMETER	
			9		G	69 -						. 0)					'A'	
		0				68	e na ser anna a be	10					** ****						
			10		1.6						-	Θ							
		0	-			67 -						,	ann a shaalii ka ga'aya kayaa						
	-	0				66 -			a Barrador - Annola II. (Martor				er i militare and some						
	× 19	11		-															1


RECORD OF BOREHOLE 6

LOCATION See Figure 2 BORING DATE OCT. 5 46, 1982 DATUM GEODETIC

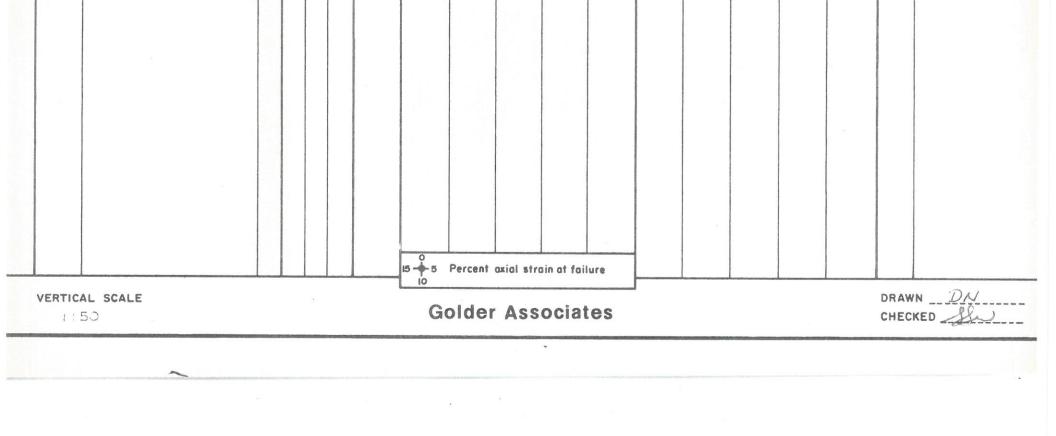
SAMPLER HAMMER, 63.5 kg.; DROP, 760 mm

PENETRATION TEST HAMMER, 63.5 kg.; DROP, 760 mm

-	SOIL PROFILE		SA	MPL	.ES		DYNA	MIC PEI	NETRAT	10N S/0.3m	>	HYDR	AULIC	CONDU	CTIVIT	Y, T	1	
/'N.		PLOT	ER		0.3 m	SCALE		1			1	I × IC) x	m/sec. IO Ix	10 1	x 10	STING	PIEZOMETER
TH	DESCRIPTION	STRATA PLOT	NUMBER	TYPE	BLOWS/0.3m	S C I	SHEAF Cu, kP	STREN		NAT. V H REM. V 6	- Q@ UO	WA"	Wp	W W	PERCE	NT	ADDITIONAL LAB. TESTING	STANDPIPE INSTALLATION
						83												
26 (GROUND SUPFACE																	GROUND
00		1				82				and the set of an exception of the set								SURFACE
5	ROWN SANDY SILT																	and the second second
		.0	1	50	47	81								,				
		1			2.0	01												
		10	2	0	39	00												
		5	14	11	22	80									Magnel (der Viter) für stande er ender Viter			PLACTIC
																		TUBING
		0	4	в	15	79								ernitur ik in unterkelenden er som	***** ********************************			
			5	2. 2. a.	28													
1	DENSE TO VERY	:0				78												
010	DELTY SANDY SILT		6	: <i>1</i>	8													NATIVE
TEC	RACE TO SOME	-	7			77					***.(*************************							
		a			4													
		1	8	0	7	76												
						75												
		X	9		7													
						74												
			10		2	73-												
					-													

RECORD OF BOREHOLE 7

LOCATION See Figure 2


BORING DATE OCT. 6, 1982

DATUM GEODETIC

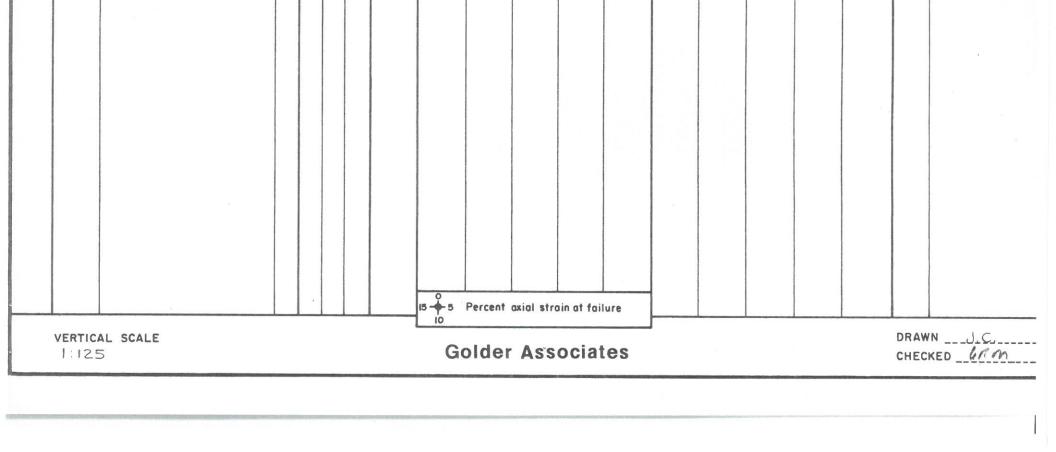
SAMPLER HAMMER, 63.5 kg.; DROP, 760 mm

PENETRATION TEST HAMMER, 63.5 kg.; DROP, 760 mm

	SOIL PROFILE		SA	MPL	.ES		DYNA	MIC PE	NETRAT	10N S/0.3m	>	HYD	RAULI	C CONDU	CTIVITY	Y, T	0	
		TOT	æ).3 m	CALE			.,		1	١x		cm/sec. «10 li		x 10	STIN	PIEZOMETER
ELEV'N DEPTH		STRATA PLOT	NUMBER	TYPE	BLOWS/0.3m	ELEVA. SCA	SHEAF Cu, kP	STREN		NAT. V		W	WP	ONTENT	, PERCE	NT	ADDITIONAL LAB. TESTING	STANDPIPE INSTALLATION
Q 7 15	GROUND SURFACE																	GROUND
0.00	TOPSOIL	1000											×					SURFACE 7
0.24	+	.0																SEAL
82	CRUNN USKET	Y.	1	50 mm D,0	13													PLASTIC
	SANEY SILT AND SILTY SAND, SOME GRAVEL, TRACE TO	0			v.													TUEING
81_			2	1	12				· .									
	(GLACIAL TILL)	10	3		17													NATIVE
fu																		
-		.0	4	11	9													
		1																
		0	5	11	54													STAND PIPE-
75.5		0	6		sioo													
4.13	AUGER REFUSAL, POSSIBLY BEDROCK																an a	STANDPIPE DRY OCT. 13, 15 82
										193864		P rofes						
							110											
							NU		Iro :	SOUTH	OFI	2H.7,	AUG	ERR	EFUC			
											The	_	T', I lan I					

RECORD OF AUGERHOLE I

LOCATION See Figure 2


BORING DATE APRIL 25, 1983

DATUM GEODETIC

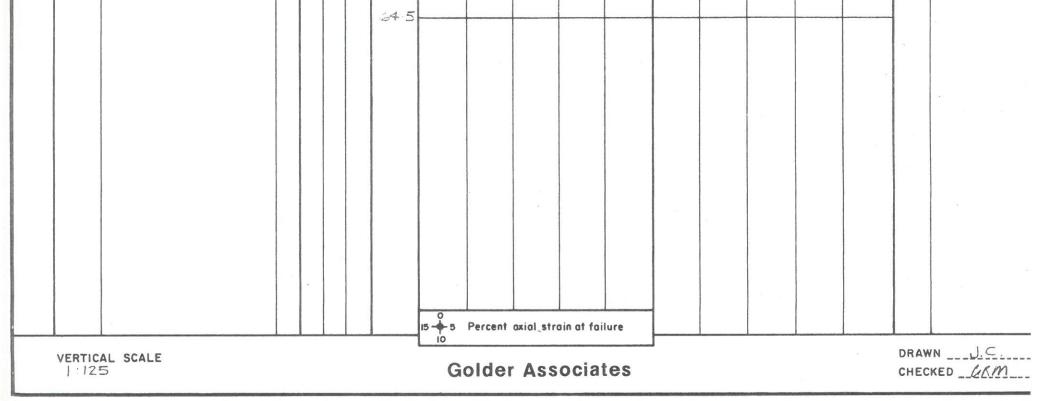
SAMPLER HAMMER, 63.5 kg.; DROP, 760 mm

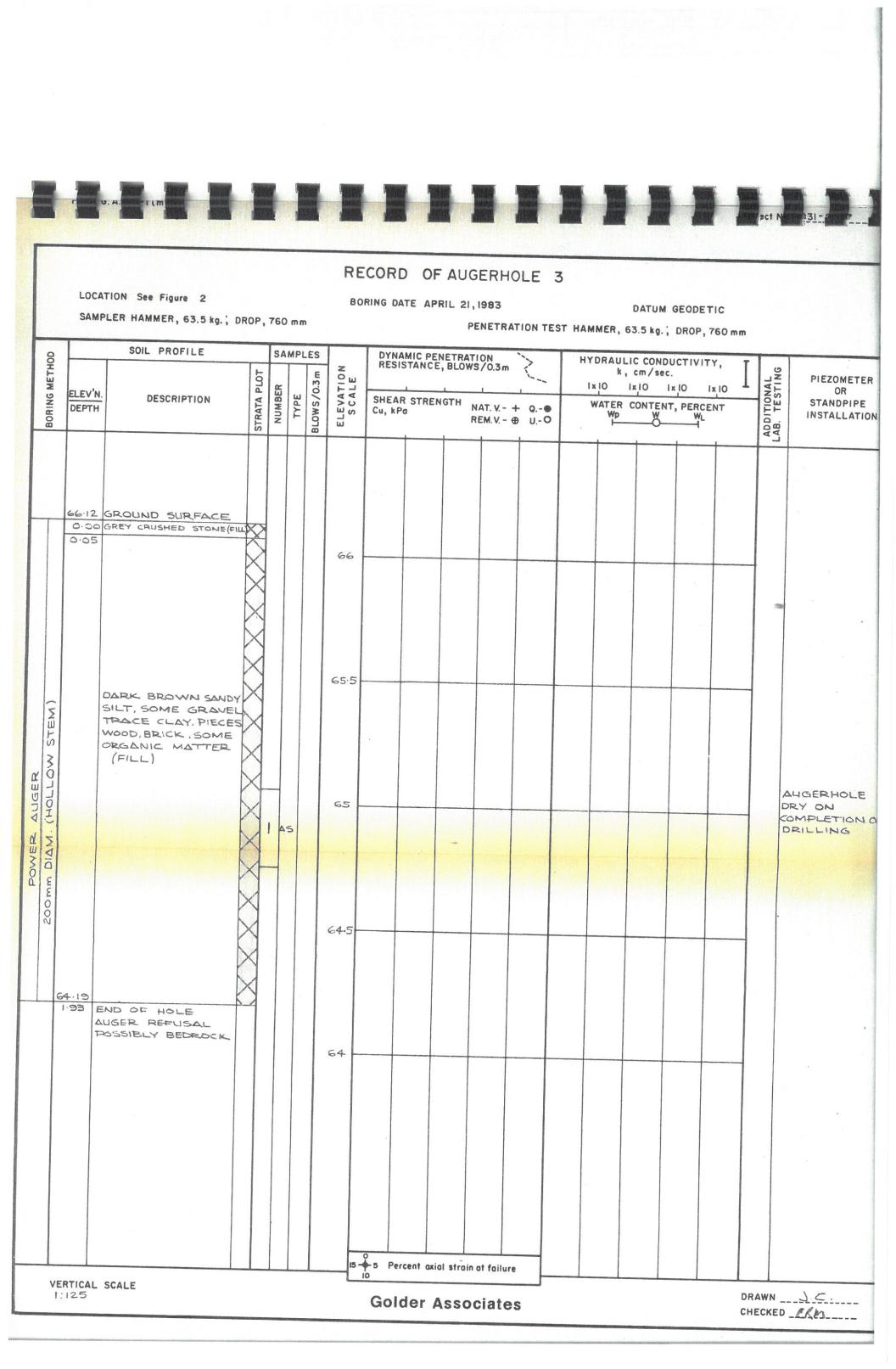
PENETRATION TEST HAMMER, 63.5 kg.; DROP, 760 mm

0			SOIL PROFILE		SA	MPL	.ES		DYNA	MIC PEN	ETRATI	ON	>	HYI	DRAULI	CONDU	CTIVIT	Y, T	0	
ETHO	ſ			LOT	~		E C	LE	RESIS	I	BLOWS	/0.5m	1	Ix		cm/sec. 10 lx		×10	NAL	PIEZOMETER
BORING METHOD		ELEV'N. DEPTH	DESCRIPTION	STRATA PLOT	NUMBER	TYPE	BLOWS/0.3m	ELEVATION SCALE	SHEAF Cu, kP	STREN	14	AT. V + Em. V &			ATER C	ONTENT	, PERCE	NT	ADDITIONAL LAB. TESTING	STANDPIPE INSTALLATION
POWER AUGER	200 mm DIAM. (HOLLOW STEM)	0.00 0.04 0.13 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25	GROUND SURFACE ASPHALT BROWN SAND SOME GRAVEL (FILL) THIN ROCK SLABS AND BROWN SILT (FILL) CON CRETE DARK BROWN CLAYEY SILT, SOME GRAVEL, THIN LIMESTONE SLABS AND CRGANIC MATTER (FILL) END OF HOLE REFUSAL TO AUGER POSSIBLY BEDROCK			A.5		66.5 65.5 65.0												AUGERHOLE D ON COMPLETTI OF DRILLING

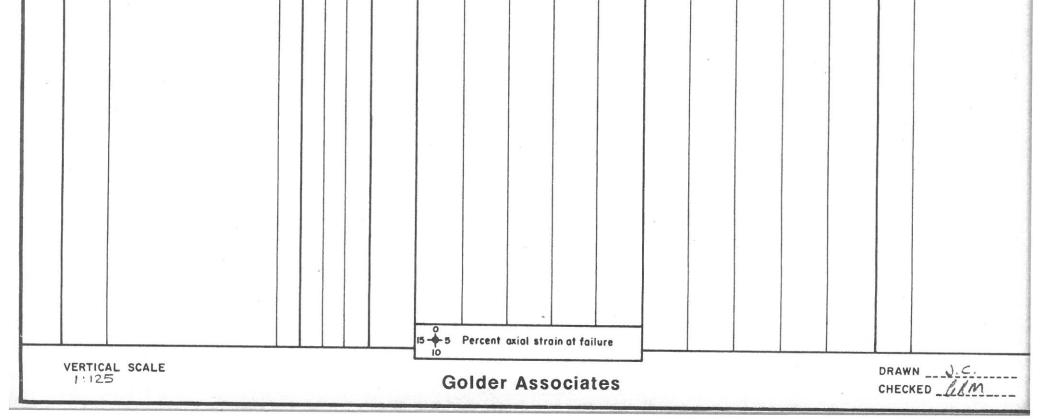
RECORD OF AUGERHOLE 2

LOCATION See Figure 2

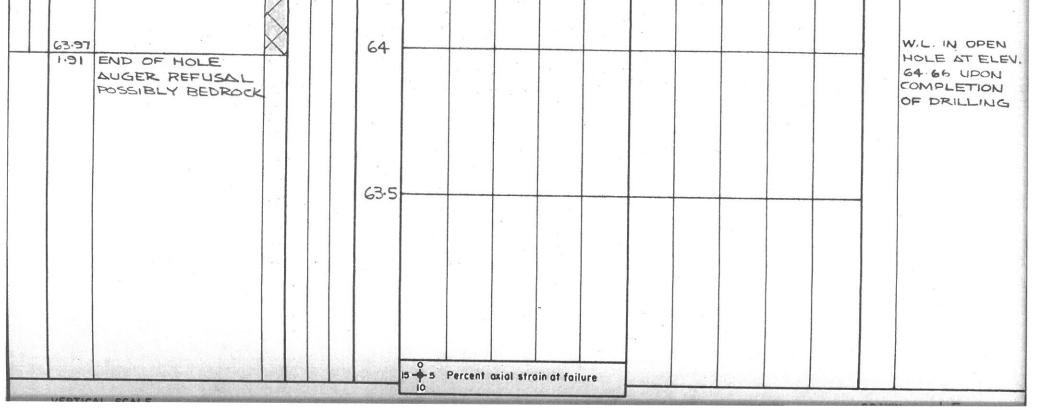

BORING DATE APRIL 21, 1983

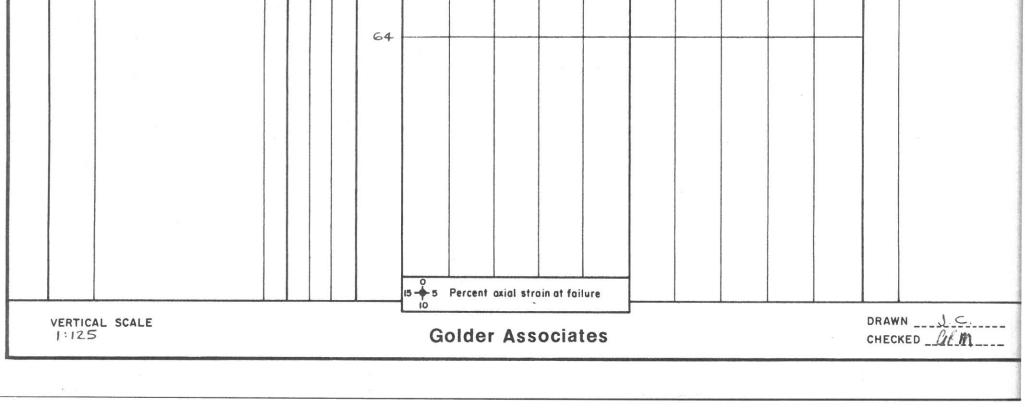

DATUM GEODETIC

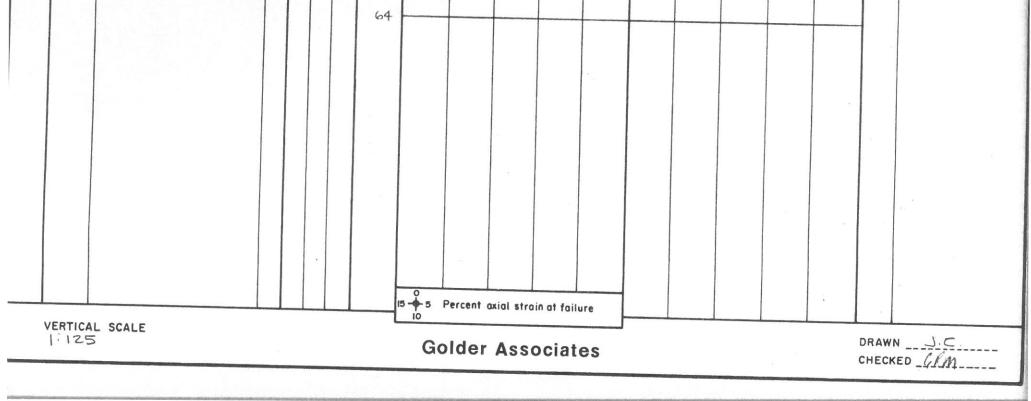
SAMPLER HAMMER, 63.5 kg.; DROP, 760 mm

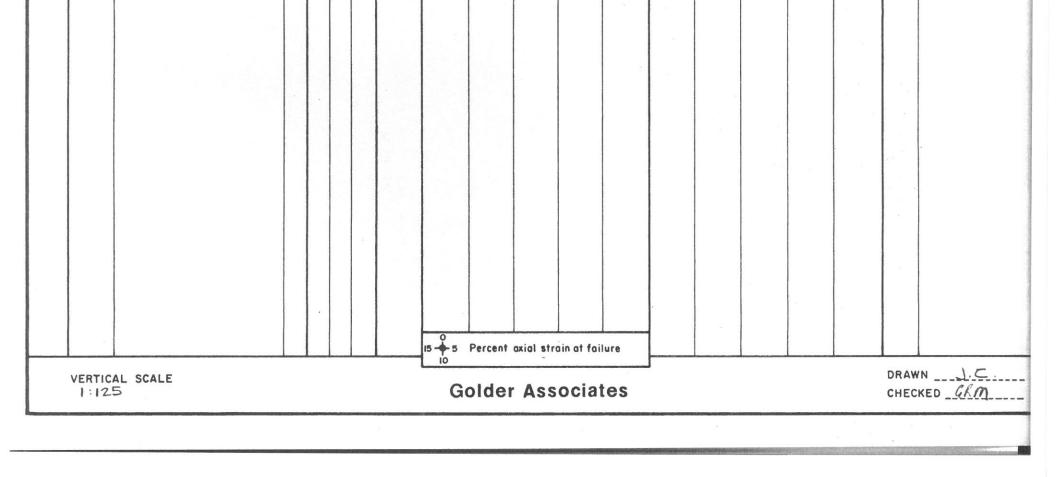

PENETRATION TEST HAMMER, 63.5 kg., DROP, 760 mm

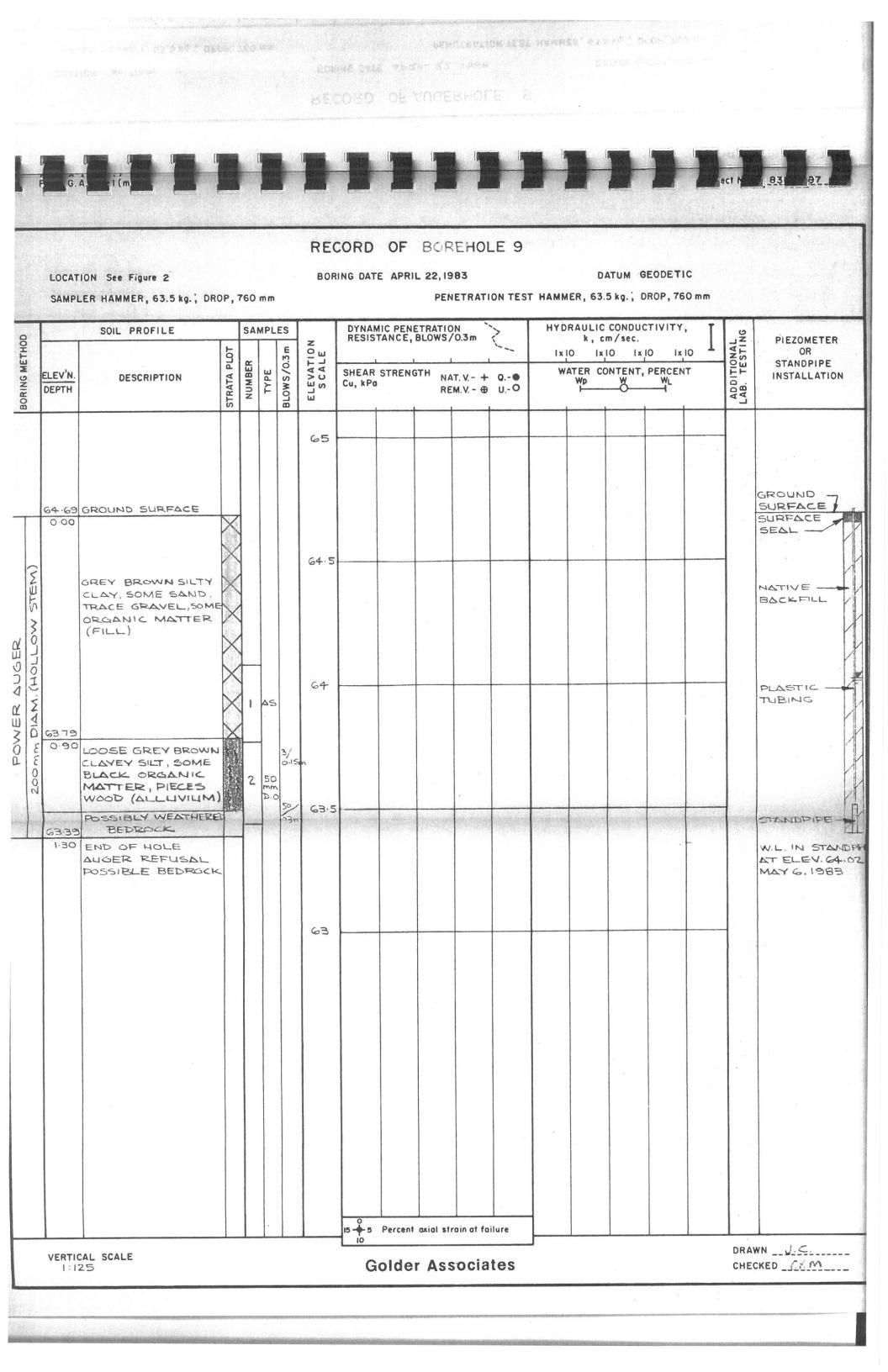
C	,		SOIL PROFILE		SA	MPL	.ES		DYNA	MIC PEN	ETRATI	0N /03m	>	HYD	RAULI	CONDU	CTIVITY	6 T	9	:
HU				PLOT			E D	NON NON						١x		10 Ix		L 01	NAL	PIEZOMETER
N C		ELEV'N.	DESCRIPTION	A PL	BER	ш	S/0.	VAT CAL		STREN	GTH N	AT. V +	0-0	W	ATER C	ONTENT	, PERCEI	NT	TEO	STANDPIPE
BORING METHOD		DEPTH		STRATA	NUMBER	TYPE	BLOWS/0.3m	ELEVATION	Cu, kPa	1		EM. V 🕀		2	₩p 	ŏ	{ WL		ADDITIONAL LAB. TESTING	
	2			0												1	1	1		
			A					- 1												× ::
								66.5												
		66.35	GROUND SURFACE	X																
			GREY CRUSHED	\Diamond																
			STONE (FILL)	\bigcirc													19-11 19-11			
		66.11		$\langle \rangle$																
			COMACT BROWN	$\langle \rangle$				66		3										
			GRAVEL (FILL)	\bigcirc	1	AS		66											M	
		65.89 0.46		R		1														
	STEM)			$\langle \rangle$														8		
	1 1		GREY BROWN	X	1															
d	30		SILTY CLAY, SOME	1																
U U	L		SAND AND GRAVEL	\square				65.5												
NV	(HOLLOW		ORGANIC MATTER (POSSIBLE FILL)	K																
				X									1							
POWER	DIAM.																		-	
DO				\mathbb{C}					-											
	24			X	+		110													
	200 mm			X	1			65												
	N			X	2	AS		60												AUGERHOLE D
		64.83		X																OF DRILLING
			END OF HOLE ALIGER REFLISAL			1														
			POSSIBLE BEDROCK																	
																			1	
								1	1											



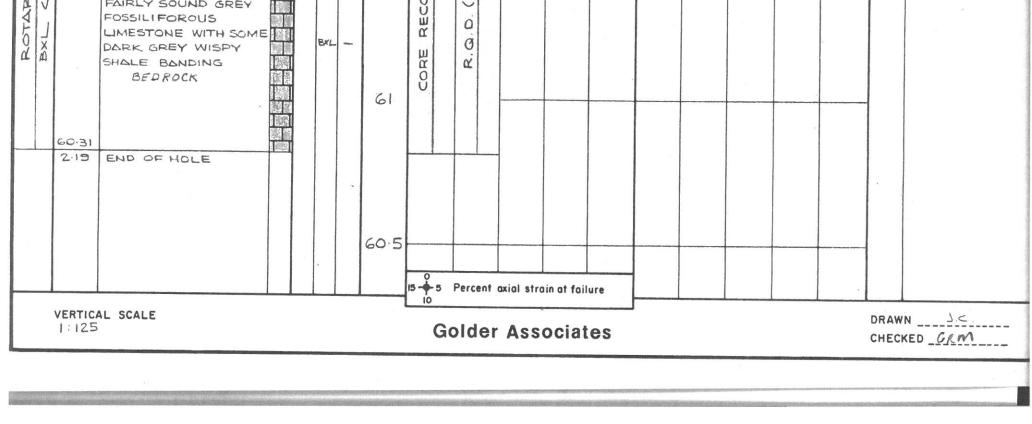

								OF AL								(GC1 1	\$3J. <u>7</u> .5
		TION See Figure 2						TE APRIL 2				t	DATUM	GEODET	IC		
	SAMF	SOIL PROFILE	-		MPLES		DYNA	MIC RENET	PENETRA								
BORING METHOD	ELEV'N. DEPTH	DESCRIPTION	STRATA PLOT	NUMBER	TYPE		SHEAF	MIC PENETF STANCE, BLC R STRENGTH		+ 0•	Ix	k, i 10 la	cm/sec. 10 Ix		10	ADDITIONAL LAB. TESTING	PIEZOMETE OR STANDPIPE INSTALLATIO
M. (HOLLOW STEM)	0.00 62.91 0.50	GROUND SURFACE COMPACT BROWN SAND, SOME GRAVEL (FILL) DARK BROWN SANDY SILT, SOME GRAVEL OCCASIONAL THIN SHALE SLABS, TRACE CLAY, SOME	XXXXXXXX			65:											
200 mm DIAM		ORGANIC MATTER	XXXX	1	15	65								the second second			AUGERHOL DRY ON COMPLETION DRILLING
		END OF HOLE AUGER REFUSAL POSSIBLY BEDROCK	X			64.5											


	F												1				ect h	<u>1331- y</u>
		TION See Figure 2 PLER HAMMER, 63.5 kg.; DR	ROP,	760	mm	1		O OF	81L 21,	983	DLE 5				GEODET DROP, 7			
BORING METHOD	ELEV'N. DEPTH	SOIL PROFILE	STRATA PLOT	NUMBER	TYPE	D.3 m	ELEVATION SCALE	AMIC PEI STANCE R STREM		AT. V	+ Q• • U0	X N	k, IO I ATER (Wp	cm/sec ×10 I CONTENT W	× 10 I F, PERCE WL	×,10	ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION
POWER AUGER 200 mm DIAM. (HOLLOW STEM)	0.00 65.80 0.08 65.65 0.23	BROWN SAND AND GRAVEL, TRACE SILT (FILL	XXXXX		A5		66 65.5 64.5										ΎΜ.	

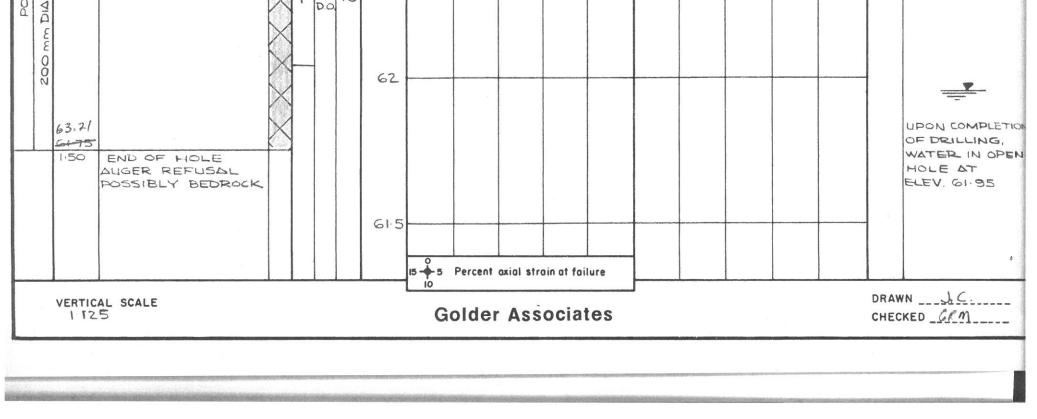

			19 - ¹	(9) (7)	1.227		REC 9.04	1995. 1997.							y (s. 2) 2 3		ject	831 97
		FION See Figure 2						CORD		L,21,1	983			DATUM (
BORING METHOD	ELEV'N. DEPTH	LER HAMMER, 63.5 kg.; DR SOIL PROFILE DESCRIPTION	STRATA PLOT	-	MPLE	BLOWS/0.3m	ELEVATION SCALE	DYNAMI RESISTA SHEAR S Cu, kPo		ETRATIC BLOWS		HY (RAULI k,	3.5 kg.; C CONDU cm/sec. k10 1x CONTENT W		^Y , I	ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION
LOW STEM)	0.00 0.05 65.87 0.20 0.23	BROWN SILTY SAND (FILL) ASPHALT COMPACT BROWN SILTY SAND, SOME GRAVEL (FILL)			A S		65 5		200-									GROUND - SURFACE BENTONITE SEAL
200 mm DIAM. (HOLLO		COMPACT SILTY SAND AND GRAVEL, SOME CLAY, PIECES OF BRICK (PROBABLY FILL)	XXXXX	2	50 EED.O	20	65			New York	61 201 201		panonaj		100000			PLASTIC TUBING
		END OF HOLE AUGER REFUSAL POSSIBLY BEDROCK	XXX	З	l'' .	50 5.1 m	64-5									ца 1. т.		STANDPIPE

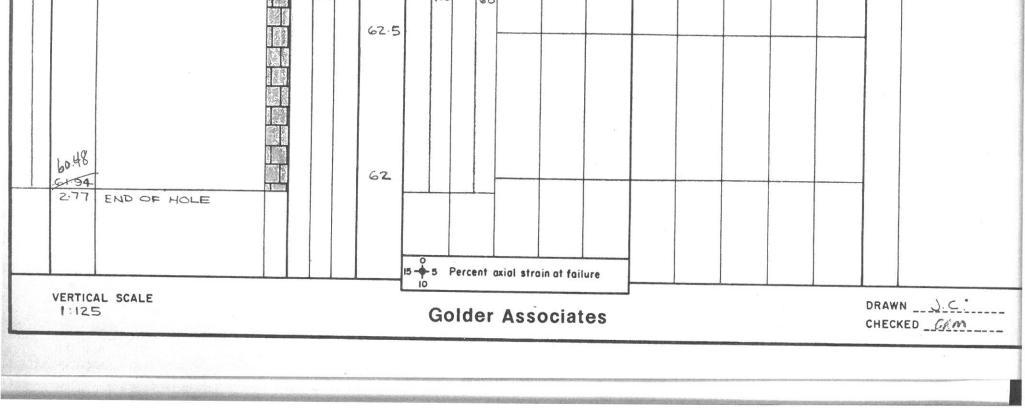


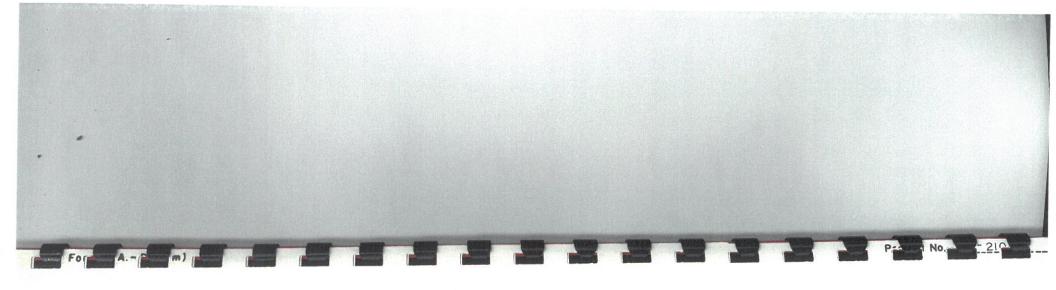
		S. A1 CT									840-555 1999				pjecty	831 97
		ATION See Figure 2 IPLER HAMMER, 63.5 kg., DR	OP, 76	0 m	m) OF	RIL 21	, 1983		MMER,		GEOD	ETIC 760 mm		
BORING METHOD	ELEV'I DEPTH	- DESCRIPTION	STRATA PLOT		BLOWS/0.3m	ELEVATION S CALE	MIC PEN STANCE	GTH	NAT. V	+ Q@	 k x 0	LIC CONE cm/set ixIO CONTEN W	c. Ix 10	1×10	ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION
W STEM)	66.11 0.00 0.01 65.84 0.27	BROWN SAND AND GRAVEL (FILL)	XXXXXXXX			66 65·5										
200 mm DIAM. (HOLLOW	100 A 100 A 100	COMPACT GREY BROWN		5D %D:0		65 -				123 MIL						
	64.26 1.85	GRAVEL, TRACE CLAY, TRACE ORGANIC MATTER (GLACIAL TILL) END OF HOLE ALIGER REFUSAL POSSIBLY BEDROCK	2		50 0.1n	64.5										



	G.	A - 1 (m								0								ject	<u>331. 97,</u>
	LOCAT	10N See Figure 2.							OF /				3	C	ATUM C	EODE	ETIC		
	SAMP	SOIL PROFILE	-		MPLES	5		DYNA	MIC PENE			ION TES		RAULI	5 kg.; I		Carlola multimated		
	ELEV'N. DEPTH	DESCRIPTION	STRATA PLOT	NUMBER	TYPE	men/emol	SCALE		STRENG	TH N	/0.3 m ↓ AT. V + EM. V ⊕		lx W	10 11	ONTENT,	Longer Contractor	Annes and a second	ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATIO
ZOOMM DIAM (HOLLOW STEM)	0.00 0.05 65.98 0.41	GROUND SURFACE BROWN SANDY TOPSOIL BROWN SILTY SAND (FILL) COMPACT BROWN TO GREY SANDY SILT AND GRAVEL, TRACE CLAY, SOME THIN LIMESTONE SLABS (POSSIBLE GLACIAL TILL)			50 50		665												
1 1	65-38 1-01	END OF HOLE AUGER REFUSAL POSSIBLY BEDROCK	<u>.</u>	•	50 51 D.O.I	M												×	AUGERHOLE ON COMPLE OF DRILLIN
						~	65	<u>provide</u>			i nap								




		TION See Figure 2 LER HAMMER, 63.5 kg.; DF	ROP,	760 1	ńm				RIL 22,19	983	LE I				GEODET DROP, 7		
ЕТНОО		SOIL PROFILE	DT	SAN	PLES	- z	DYNA RESI	MIC PEI	BLOWS	0N /0.3 m	2	HYD	k, (cm/sec.		AL	PIEZOMETER
BORING METHOD	ELEV'N. DEPTH	DESCRIPTION	STRATA PLOT	NUMBER	TYPE BLOWS/0.3 m	ELEVATI	SHEAI Cu, kP	R STREN	N/	L AT. V + EM. V ⊕			COLUMN STREET, STREET, ST.	A	x IO I F, PERCE WL	 ADDITIONAL LAB. TESTING	OR STANDPIPE INSTALLATION
	62.94	GROUND SURFACE				63			B.H. I (1		
(HOLLOW STEM.)	62.64	INTERLAYERED THIN LIMESTONE SLABS, SILT AND SAND, (PROBABLY HIGHLY WEATHERED BEDROCK) END OF HOLE AUGER REFUSAL POSSIBLY BEDROCK				62·5											AUGERHOLE D ON COMPLETI OF DRILLIN
									B.H. II								
TOW STEM)		GROUND SURFACE INTERLAYERE THIN LIMESTONE, SILT AND SAND (PROBABLY HIGHLY WEATHERED BEDROCK)				62.5											
200 (H01	62.02			ada .	Alien				the state of the state				lan contr			1.100	

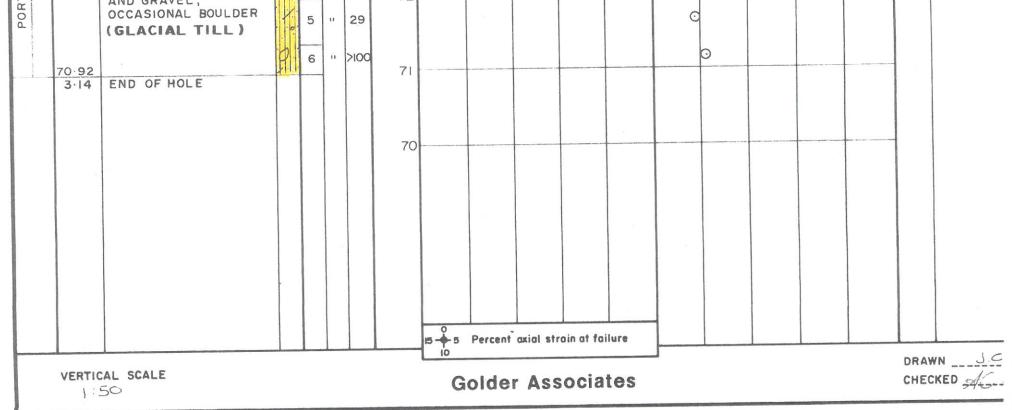


		10N See Figure 2 LER HAMMER, 63.5 kg.; DRI	OP.	760	mm						DLES		D		BEODETI		- 6 	
BORING METHOD	ELEV'N. DEPTH	SOIL PROFILE	STRATA PLOT	-	TYPE	_	ELEVATION S CALE	R STRE	NETRA E, BLOW	rion /s/0.3 m 	\sim	HYDR	AULIC k, cr	CONDU m/sec. IO Ix	CTIVITY	, I	ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION
WIDIAM . (HOLLOW STEM.)	62.84	GROUND SURFACE GREY SILTY SAND AND GRAVEL (FILL)	XXXXXX	1	85		63											н 4
18	62·15 0·69	END OF HOLE AUGER REFUSAL POSSIBLE BEDROCK					62		6.011								-	
		GROUND SURFACE GREY CRUSHED STONE	X					AUG	GKH		2							

		5. A -1 (m								Caracteria	5.0	- 						[lect]	
1.1.1		TION See Figure 2 PLER HAMMER, 63.5 kg.; Df	ROP,	760	mm			OR[6 04		OF			OLE	MMER,	DATUM 63.5 kg. ;	GEODE DROP,			
BORING METHOD	ELEV'N DEPTH		STRATA PLOT	NUMBER	TYPE STOR	1 2	s		RSI		GTH I	10N S/0.3m NAT. V REM. V		 1×10	LIC COND , cm/sec ix10 CONTEN W	:. I×10	1×10	ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION
POWER AUGER	0.00	GROUND SURFACE DARK BROWN, LOOSE GRAVEL, SOME SILT AND SAND, TRACE ORGANIC MATTER	000000000000000000000000000000000000000			64.5	5												
ROTARY DRILLING BXL CORE		FAIRLY SOUND GREY FOSSILIFOROUS LIMESTONE WITH FREQUENT DARK GREY WISPY SHALE BANDING (BEDROCK)		90 87	×L <<	63.5	CORE RECOVERY (%)	38	R.Q.D. (%)	86									

RECORD OF BOREHOLES 84-1 & 84-2

LOCATION See Figure 2


BORING DATE AUG. 8, 1984

DATUM GEODETIC

SAMPLER HAMMER, 63.5 kg.; DROP, 760 mm

PENETRATION TEST HAMMER, 63.5 kg., DROP, 760 mm

0		SOIL PROFILE	S	SAMP	PLES		DYNAMIC PENETRATION HYDRAULIC CONDUCTIVITY, RESISTANCE, BLOWS/0.3m k, cm/sec.	PIEZOMETE
BORING METHOD	ELEV'N DEPTH	DESCRIPTION	STRATA PLOT	NUMBER	BLOWS/0.3m	ELEVATION SCALE	SHEAR STRENGTH Cu, kPo NAT. V + Q• REM.V • U• WATER CONTENT, PERCENT Wp Water WL 10 20 30 40	90 PIEZOMETE OR STANDPIPE INSTALLATIO
PORTABLE DRILL	74.00 0.00 73.73 0.27 9NIS 0.98 0.98 E 5 - 71.26 2.7	LOOSE BROWN SILTY SAND, OCCASIONAL BOULDER DENSE GREY BROWN SANDY SILT, TRACE CLAY AND SOME GRAVEL, OCCASIONAL BOULDER (GLACIAL TILL)		1 m 2 3	10 4 .0. 33 11 41 11 81/6 11 47	72	BH. 9 9-1	
TABLE DRILL	74.0 0.0 73.8 0.2 9 73.3 0.7 5 73.3 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7	2 TOPSOIL 4 COMPACT GREY BROWN SILTY FINE SAND, WITH 50 SOME GRAVEL AND COMPACT STATES			50 II mm U.O. '' >I('' 3	4 ⁷		

PROJECT: 06-1120-362

LOCATION: See Site Plan

RECORD OF BOREHOLE: 06-1

BORING DATE: November 14, 2006

SHEET 1 OF 1

DATUM: Local

SAMPLER HAMMER, 21kg; DROP, 760mm

PENETRATION TEST HAMMER, 21kg; DROP, 760mm

Ę	2 2	SOIL PROFILE			SA	MPL	.ES	DY RE	NAM! SIST/	C PE	NETR	ATIC)N 0.3m	Ì		HYDI	RAULI k, c	C CC	NDUC	TIVITY,	,	T	ەر	
METRES BODING METHOD	C ME	DESCRIPTION	STRATA PLOT	ELEV.	BER	TYPE	S/0.3m	SH	20 EAR		40 NGTI	6 H n		80 + 0	`			10 R CC		10 ⁴ T PERC	10 ⁻³	1	ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE
	פראוא	DESCRIPTION	STRAT/	DEPTH (m)	NUMBER	ž	BLOWS/0.3m	Cu,	kPa				atV. ansV. (ō	٧	Vp }		-0 <u>v</u>	[- I WI		ADD.	INSTALLATIO
0 =		FLOOR SLAB							20		40	6		80			20	40)	60	80			
e Rotary Dril	NO Cor	CONCRETE INSULATION CONCRETE		0.09	ţ	N RC	DD				*****				-									
re la construction de la constru		VOID		0.41							******													
																							·	
1												ļ												
100 million - 10																				****				
Line in the second seco	Bu																							
Rotary Drift	WV Casi	WATER		1,90																		•		
	-	Loose to very loose dark brown silty sand with shells and organic matter		2.26		65															1			
- -		(ALLUVIUM)			2	50 DO	6																	
3																								
					3	50 DO	1																	
Н	Ц	Dark brown silty clay with sand and gravel, some organic matter (ALLUVIUM)		3.50 - 3.68	· ·	50 DO	32	-		- T		-												
4		VALLUVIUM) Fresh grey LIMESTONE BEDROCK with shale interbeds increasing with depth				NQ RC	DD		94	8	8	47												
		· ····································	臣							_	-	\square												
Rotary Drill	VQ Core		臣					T.C.R. (%)		S.C.R. (%)	R.O.D. (%)													
5 ¥	ſ		E		6	NQ RC	DD	F	96	» ۹	a a	60												
			H H H H H H H H H H H H H H H H H H H															-						
μ	Ļ	End of Borehole	Ē	5.50		 										<u> </u>	1			1		_		
6		Note: 'N' values corrected for 1/3 sampler									********										*****			
		weight hammer	·								******							Were and the second						
																	****	*******		********				
			1																					
7																								
						Ì																		
8																								

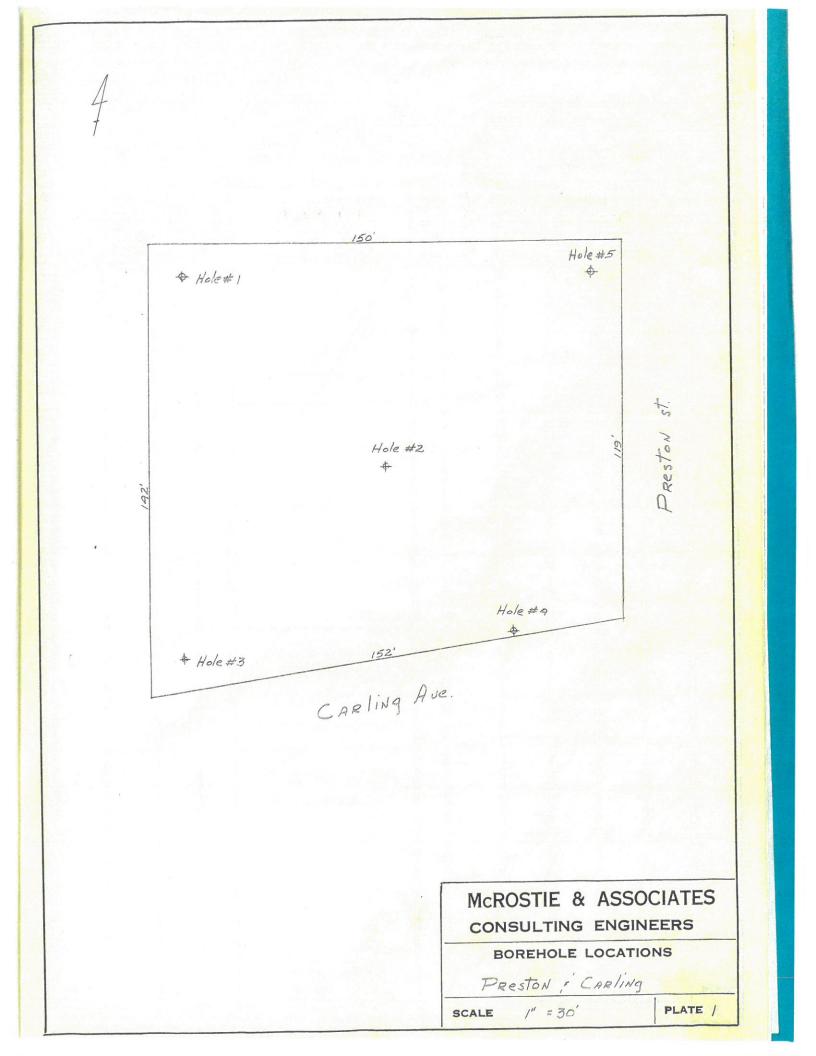
9																								

10																								
												1]							
DEPTH	нs	CALE							- 757 			1 -	tes										1.0	ogged: J.A.S.
: 50								U	-	G		ICI	tac											ECKED: G.S.W.

1 13	8	SOIL PROFILE	an monthly said	S	AMPL	ES	DYNAMIC PENETRATIO		HYDRAULIC CONDUCTIVITY,	T		
METRES	BORING METHOD	DESCRIPTION	STRATA PLOT (M) ETE	H	ТҮРЕ	BLOWS/0.3M		v + Q ● .v ⊕ ∪ ⊙	K, CM/SEC	IT IT	ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION
0		Ground Surface - ASPHALT Brown sand and gravel (FILL)		00								
1		Brown fine to coarse sand, trace gravel (FILL)	0.	31								
2 3 4 5 6 7 8 9	Power Auger 150mm Diam (Solid Stem)	Proabably grey brown to gre silty sand, some gravel, trace clay, occasional cobbl and boulder (GLACIAL TILL)	0. 1. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	22								
10		Hole Continued	0.	00			0 16 6 PERCENT AXIAL STRAI			-		

	aot	SOIL PROFILE	,	,	SA	MPL	ES	DYNAMIC PENETR RESISTANCE, BLO	ATION XS/0.3m	HYDRAULIC CONDUCTIVITY, k, CM/SEC	Tlje	
METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (M)	NUMBER	TYPE	BLOWS/0.3M	SHEAR STRENGTH Cu, kPa	l	WATER CONTENT, PERCEN	ADDITIONAL LAB. TESTING	PIEZOMETEF OR STANDPIPE INSTALLATION
10	Power Auger 150mm Diam (Solid S	Hole Continued Proabably grey brown to grey silty sand, some gravel, trace clay, occasional cobb and boulder (GLACIAL TILL) End of Hole	e 0	10.00								
2												
3												
4												
5												
6												
7											,	
8												
					0							

			RECOR N See Figure 2 R HAMMER, 83.5kg, DROP, 760mm	D	QF		ΑL		ER PROBE A RING DATE Fob.5,1988 PENETRATION TE	P - 2 SHEET 1 of DATUM GE ST HAMMER, 83.5kg, DROP, 760m	DDETIC	GA
DEPTH SCALE METRES		BORING METHOD	SOIL PROFILE		ELEV. DEPTH (M)	NUMBER	MPLI	BLOWS/0.3M	DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m SHEAR STRENGTH CU, kPa rem.V @ U	WATER CONTENT, PERCENT	ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION
		_	Ground Surface	~								
			ASPHALT Grey silty sand, some gravel (FILL)	\mathbb{N}	0.08							
			Brown silty sand (FILL)	Ø	0.49							
1	1			X	0.82							
	2	Stem)	Probably grey brown to grey silty sand, some gravel,	00.00								
		150mm Diam (Solid Stem)	trace clay, occasional cobble and boulder (GLACIAL TILL)	0.0								
_ (5			0.9.0.0.								,
— 6				0.0								
- 7			End of Hole		6.10							
- 8								8				
- 9												
- 10									0 	RE		
	EPTH ;		ALE					1	Golder Associates		LOGGED CHECKED	S.Leighton CRM

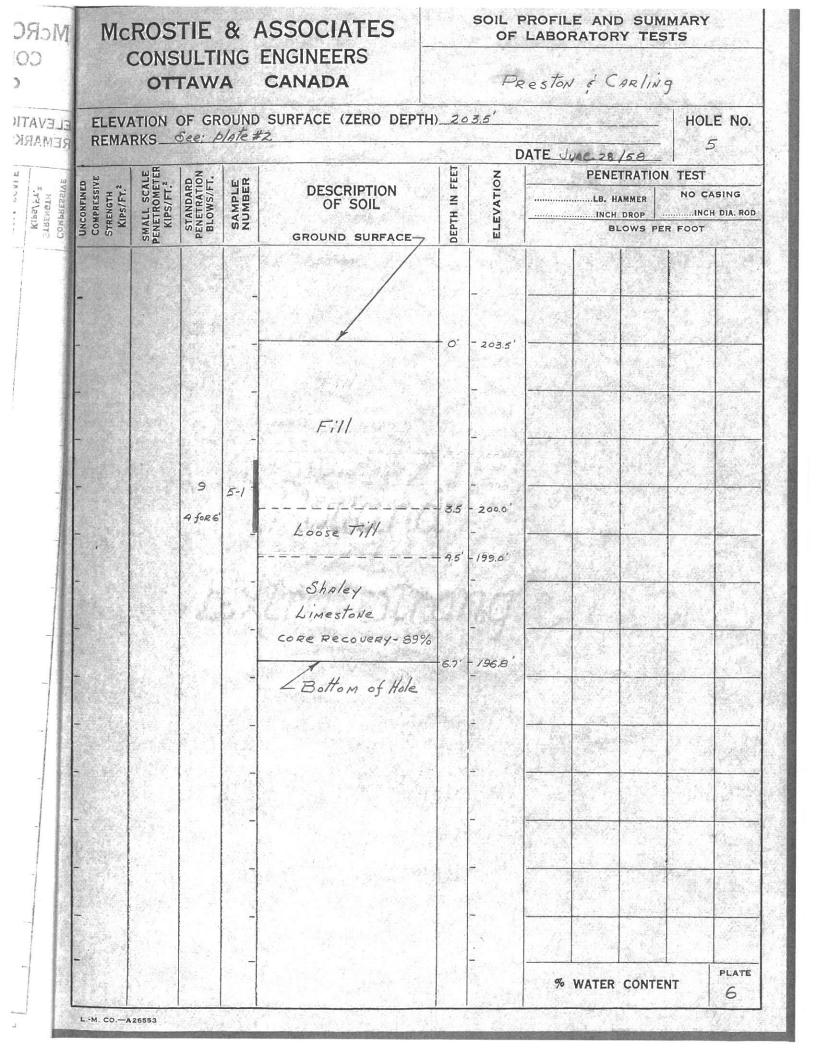

	AMI	PLEF	DN See Figure 2 R HAMMER, 63.5kg, DROP, 760mm	R	0 0	F	A			DATUM GEC T HAMMER, 63.5kg, DROP, 760mm	DETIC	GA
DEPTH SCALE METRES		BORING METHOD	SOIL PROFILE	STRATA PLOT	ELEV. DEPTH (M)	BER	MPLI	BLOWS/0.3M	SHEAR STRENGTH Cu, kPa Cu, contraction Cu, kPa Cu, cu, cu, cu, cu, cu, cu, cu, cu, cu, c	HYDRAULIC CONDUCTIVITY, k, CM/SEC WATER CONTENT, PERCENT WP W WI	ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION
- 0	F		Ground Surface									
			ASPHALT		0.00	1						
- 1			Brown silty sand, some grave (FILL)		0.23							
- 2 - 3 - 4 - 5 - 6 - 7 - 7	Power Auger	Solid Ste	Probably grey brown to grey silty clay becoming silty sand, some gravel, trace clay occasional cobble and boulder (GLACIAL TILL)		0.98							*
9			End of Hole		9.14				0 16 - FERCENT AXIAL STRAIN AT FAILURE			-
DEI 1 :			ALE						Golder Associates		LOGGED	S.Leighton

ALE	dOH	SOIL PROFILE			SA	MPLE		DYNAMIC PENETR RESISTANCE, BLO	ATION WS/0.3m	2	HYDRAULIC CONDUCTIVIT k, CM/SEC	recentled to a state	9
DEPTH SCALE METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (M)	NUMBER	TYPE	BLOWS/0.3M	SHEAR STRENGTH Cu, kPa	nat.V rem.V		WATER CONTENT, PEI		PIEZOMETER OR STANDPIPE INSTALLATION
- 0		Ground Surface ASPHALT Dark grey silty sand, some gravel (FILL)		0.00 0.09 0.21									
- 1		Brown silty sand, trace gravel (Probably Fill)	XX										
				1.28									
- 2	r Stem)												
. 3	Diam (Solid	Probably grey brown to grey SILTY CLAY	H										
. 4	150mm												£
5			H										
6		End of Hole		6.10							-		
7													
8													
0													
9													
10								N.					

щ	METHOD	SOIL PROFILE	-1.		SA	MPL	ES	DYNAMIC PENETRA RESISTANCE, BLOY	ATION /\$/0.3m	2	HYDRAULIC	CONDUCTIVITY,	T		
DEPTH SCALE METRES	BORING MET	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (M)	NUMBER	TYPE	BLOWS/0.3M	SHEAR STRENGTH Cu, kPa	nat.V rem.V	+ Q ● ⊕ U O	WATER C	ONTENT, PERCE		ADDITIONAL LAB. TESTING	PIEZOMETEI OR STANDPIPE INSTALLATIO
0		Ground Surface ASPHALT Grey silty sand and gravel		0.00											
		Grey silty sand and gravel (FILL)	X	0.09											
1		Very stiff grey brown SILTY CLAY, trace sand and gravel (Weathered Crust)	1		1	50 DO	16								
2				2.16		50 DO	10								
З			. 0 0 0		3	50 DO	25			3					
4	55		1:00												£
	Power Auger	Grey brown to grey silty san	d .												
5		some gravel, trace clay, occasional cobble and boulder (GLACIAL TILL)	10												
6			.0.												
7			0;												
8	/		· 0												
		End of Hole		8.63											
9	-														
						-									

ш	8	SOIL PROFILE	Contracto de la contracta de la	s/	AMPLE	S	DYNAMIC PENETRAT RESISTANCE, BLOWS			CONDUCTIVITY,	T	
DEPTH SCALE METRES	BORING METHOD	DESCRIPTION	ELEV.	NUMBER	ТҮРЕ	BLOWS/0.3M	SHEAR STRENGTH	nat.V + Q € em.V ⊕ U C	WATER C	ONTENT, PERCEI	1	PIEZOMETEI OR STANDPIPE INSTALLATIO
- 0 - 1 - 2 - 3 - 4 - 6 - 7 - 8 - 9	Power Auger 150mm Diam (Hollow Stem)	Ground Surface Medium brown silty sand, trace organic matter (FILL) Medium brown silty sand, trace gravel (FILL) Probably grey brown to grey silty sand, some gravel, trace clay, occasional cobble and boulder (GLACIAL TILL) End of Hole										
10							0 6 PERCENT AXIAL STR					

CALCULATION OF



(ENGINEERS CANADA		P_{k}	Reston	: CARlin	19	
ELEVA REMA	RKSE	3. M. #	OUND : 19 /	SURFACE (ZERO DEPTH Norfolk & CARling (et:	207.6	6') Ge	o detic 2 DATE June	Datum 226/58	HOL	.E No.
S VE	ALE ETER 2	NON-	ше		FEET	NO		PENETRATIC	N TEST	
UNCONFINED COMPRESSIVE STRENGTH ` KIPS/FT. ²	SMALL SCALE PENETROMETER KIPS/FT. ²	STANDARD PENETRATION BLOWS/FT.	SAMPLE NUMBER	DESCRIPTION OF SOIL	N	ELEVATION		LB. HAMMER	NO C	ASING
COMP	NETH	STAR	SAN	OF SOIL	DEPTH	E C			INCI	H DIA. ROI
n o s	PEI			GROUND SURFACE	DEP	EL		BLOWS P	ER FOOT	
			-							
					- 0'	- 202.7'				
		E		Fill	- 4.7'	- /98.0'				
			-	Shaley Limestone core recovery-87% Bottom of Hole	- 7.2	- <i>195.5</i> ' 				
	a shine in 1990, and a shine is shine in a shine in the shine shi	and a property of the second								
			-			- .			L	

15.24				ASSOCIATES				E AND			
,				CANADA		PR	eston	e CA	Rlin	9	
ELEVA	TION	DF GR	OUND	SURFACE (ZERO DEPTH)_20	3.1'					E NO.
RE						D	ATE J.	ne 26/	58		-
A K	SMALL SCALE PENETROMETER KIPS/FT. ²	NON-	шк		FEET	NO		PENET	RATIO	N TEST	
COMPRESSIVE STRENGTH KIPS/FT. ²	ROMI S/FT	STANDARD PENETRATION BLOWS/FT.	SAMPLE NUMBER	DESCRIPTION OF SOIL	IN	ELEVATION		LB. HA	MMER	NO C	ASING
COMPRESSIV Strength Kips/Ft. ²	NETI	STAI	SAN		DEPTH IN			INCH I		ER FOOT	H DIA. ROD
000	P S	d l		GROUND SURFACE	DE				ONS PE	TR POOL	-
			-			-					-
			_			_					
			-	Fill	0	- 203.1'					
			-		1.5'	-201.6					
			-			-					
	¢		-	Shaley Limestone core recovery- 100%		-					
			-	and Receivery 100,2		-					
			-								
			-		- 67	- /96.4'					
				Shaley Linestone		-					
		8	_	CORE RECOVERY-100%	6	-					
			-			-					
			-	A	12.0'	- - <i>191. '</i>					
			_	- Bottomof Hole			%	WATER	CONTE	NT	PLATE

McROSTIE & ASSOCIATES CONSULTING ENGINEERS					SOIL PROFILE AND SUMMARY OF LABORATORY TESTS					
,				CANADA	PRESTON & CARling					
ELEVA	TION	OF GR	OUND	SURFACE (ZERO DEPT	H)_20	05.5°			HOL	E NO.
REMA	RKS_ <u>c</u>	ee: A	5/ <u>8/e</u>	<u><u><u></u><u></u><u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u></u></u>		C	ATE June 2	6/58	3	i
ED IVE	ETER	NOI	щщ	DESCRIPTION	FEET	1	1	ETRATION	TEST	
UNCONFINED COMPRESSIVE STRENGTH KIPS/FT. ²	SMALL SCALE PENETROMETER KIPS/FT. ²	STANDARD PENETRATION BLOWS/FT.	SAMPLE NUMBER	DESCRIPTION OF SOIL	DEPTH IN	ELEVATION	LB.	H DROP	NO CA	
200	PEI			GROUND SURFACE	DEI	Ш го <u>5,5</u>		BLOWS PE	R FOOT	
			_	Fill		- 204.5				
						~~ //2				
			_	Dense		-				
		23 foe6	ti I	7;11						
		63	3-1							
						-201,5				
				Shaley						
			-	Shaley Limestone		-	- 56			
			-	CORE Recovery-87	K	-				
				1	6.5	- 199.0'				
			-	BottomofHole		-				
			-			-				
			_			_				
			-			-				
						_				
	-									
			_			-				
						_				
			_			-				
			_			-	% WATER		 T	PLATE 4

ELEVA	TION	OF GRO	DUND	SURFACE (ZERO DEPTH)	_20	5.5					e no.
REMAR	₹KS_©	ee: p	Ale .	H L		DA	ATE JU	he 28/	58	4	
111	щщ	Z .	~				PENETRATION TEST				
UNCONFINED COMPRESSIVE STRENGTH KIPS/FT. ²	SMALL SCALE PENETROMETER KIPS/FT. ²	STANDARD PENETRATION BLOWS/FT.	SAMPLE NUMBER	DESCRIPTION OF SOIL	L IN	ELEVATION		LB. HAN	24.25	NO CA	
UNCON COMPI STREN KIPS	SMALL ENETR KIPS	PENEI	SAI	GROUND SURFACE	DEPTH IN	ELE			nor i	R FOOT	
					0.	205.5					
			_			-					
				Fill							
			-							<u> </u>	
		49	9-1		- 3.5	- 202.0'					
-		8foe6		Medium Dense Till		- 201.3			_		
					1.2	201.5					
			-	Shaley Limestone		-					
			_	CORE RECOVERY- 92%		-				-	<u> </u>
				A	6.3	- 199.2					
<u>-</u>			-	Bottom of Hole		-					
						_					
			-								
			-			-					
-			-			-					
			-			-					
									•		
-						-					
						_					
~											
						_		-	ļ		

McRO	Test Pit No. 96-1					
С	Consulting Engineers Date :					
			S LAKE N.D.			
ELEV. 66.41	DEPTH in metres	DESCR	REMARKS			
66.11	0.30	crushed limest	ILL one gran. "A" ILL d gravel 4" minus)	sides stable		
65.61	0.80					
65.41	1	F topsoil and clay, brick and metal and a fe 0.30m Ø and a broke	no water			
64.86	1.55	Refusal on p	of pit ossible rock ulders	seepage		
				×		
			- - -			
				Plate No. 2.		

	MCROSTIE GENEST ST-LOUIS TEST PIT RECORD & Associates Ltd. Consulting Engineers						
C	MAY 31, 1996						
			+ S LAKE N.D.				
ELEV. 66.46				REMARKS			
66.26	0.20	FILL - crus	hed limestone	sides stable			
		sand and gravel broken rock an 0.5m Ø and t	ILL with some topsoil, d boulders up to races of wood brick				
65.46	1			no water			
65.16	1.3	Bottom of pit Refusal on possible rock or boulders		seepage			
				×			
			×				
				Plate No. <u>3</u>			

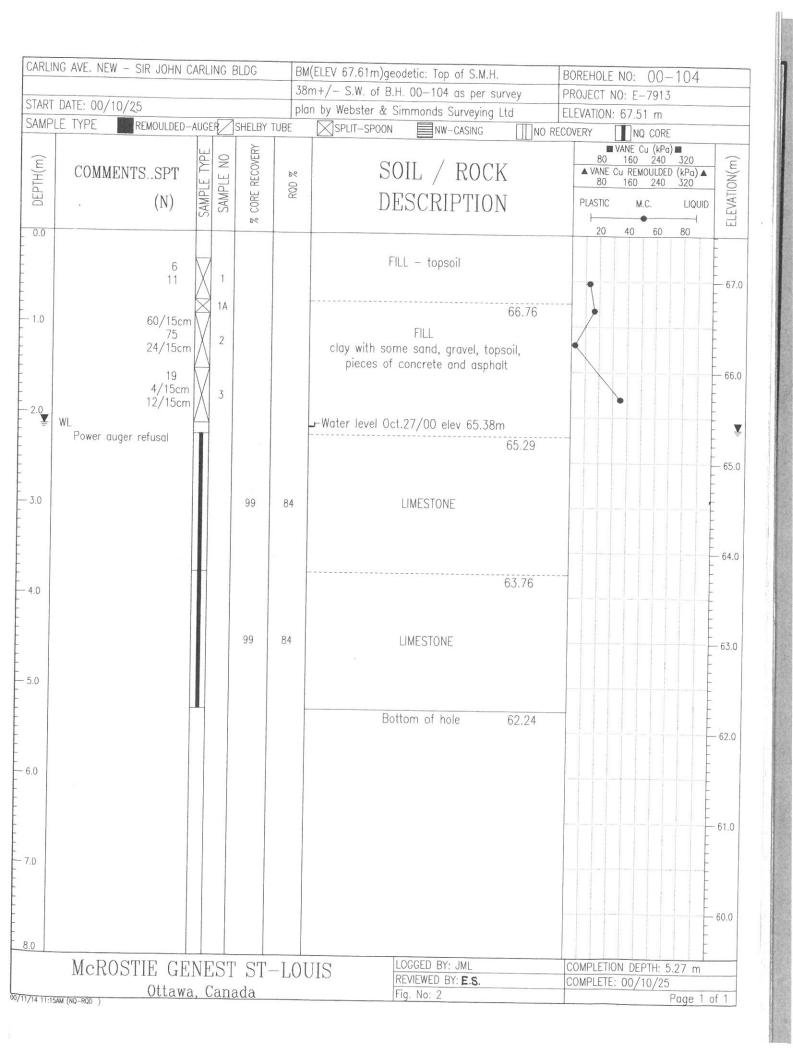
	5					
	McROSTIE GENEST ST-LOUIS TEST PIT RECORD & Associates Ltd. Consulting Engineers					
C	MAY 31, 1996					
			+ S LAKE N.D.			
ELEV. 66.58			IPTION	REMARKS		
66.33	0.25	F crushed	ILL limestone	sides stable		
			ILL vel (pit run)			
65.98	0.60	F				
65.58	1	some clay an	broken rock with d topsoil, and rick and wood	ŗ		
64.78	64.78 1.8Bottom of pit Refusal on possible rock or boulders		possible rock	no water seepage		
			*			
				Plate No. 4		

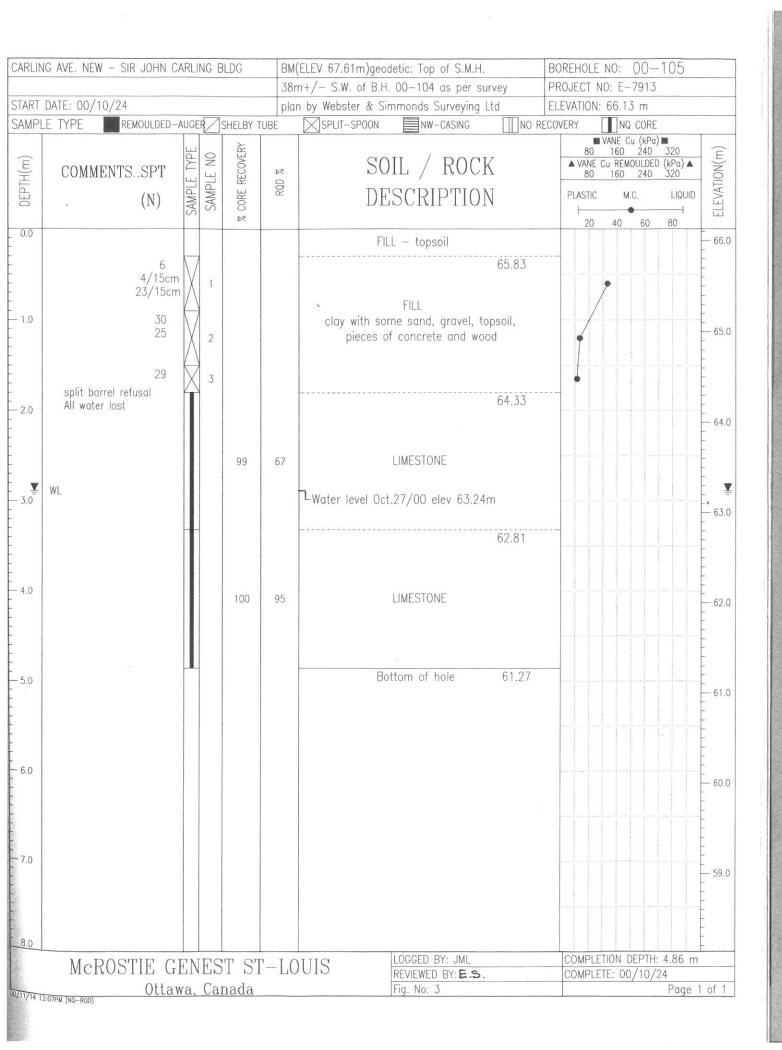
ŝ

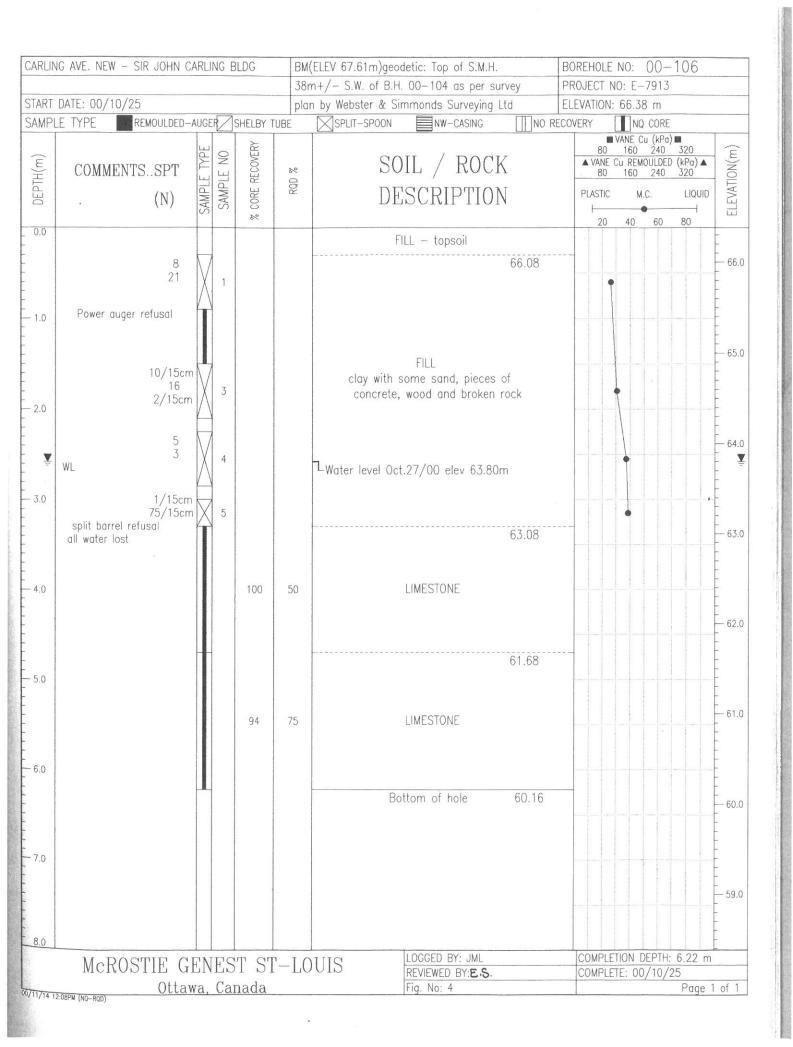
٠								
& Associa	McROSTIE GENEST ST-LOUIS TEST PIT RECORD & Associates Ltd. Consulting Engineers							
OTTAWA,	MAY 31, 1996							
+	DOW'S LAKE D.N.D.							
ELEV. DEPTH 66.32 in metres								
66.17 0.15		d and gravel	sides stable					
	sand and gravel boulders, broke	ILL with some topsoil, n rock and traces elain and paper						
65.32 1			×					
64.82 1.5	Refusal on	of pit possible rock ulders	no water seepage					
			9					
		¥"	Plate No. 5					

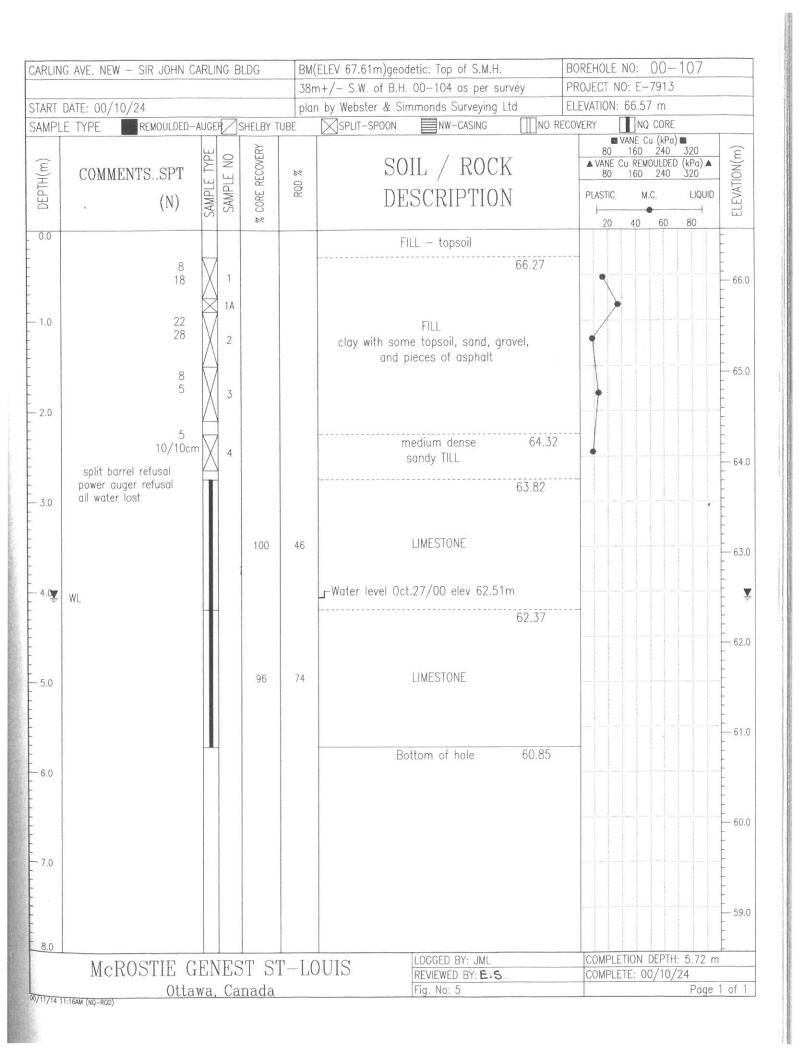
	McROSTIE GENEST ST-LOUIS TEST PIT RECORD & Associates Ltd.						
C	Consulting Engineers Date :						
			 S LAKE N.D.				
ELEV. 66.47	DEPTH in metres	DESCR	REMARKS				
66.32	0.15		hed limestone ILL	sides stable			
66.02	0.45		vel (pit run)				
65.47	1	F topsoil, sand pieces of b to 1mx0.8mx brick, woo organic	r				
64.47	2						
64.02	2.45	Bottom Refusal on or bo	no water seepage				
			τ.				
				Plate No. G.			

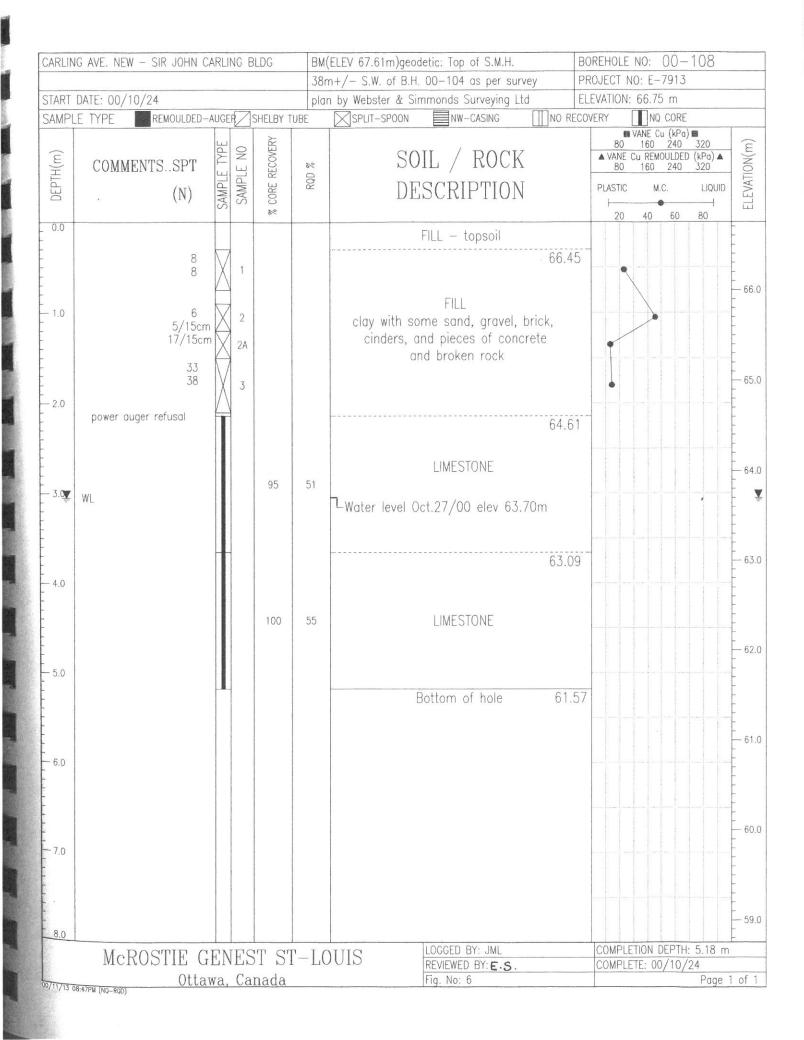
	MCROSTIE GENEST ST-LOUIS TEST PIT RECORD & Associates Ltd.						
Co	Consulting Engineers Date :						
+			S LAKE N.D.				
ELEV.	DEPTH in metres	DESCR	REMARKS				
+		ASP	HALT	sides stable			
65.86	0.03	FILL - sand and	gravel (pit run)	×			
65.49	0.40						
64.89	1	F sand, gravel, t organic materia tree roots, wit and wire and pie (0.5mx0	Ţ				
64.09	1.8	Refusal on	of pit possible rock ulders	slight water seepage at bottom of pit			
				Plate No. 7.			

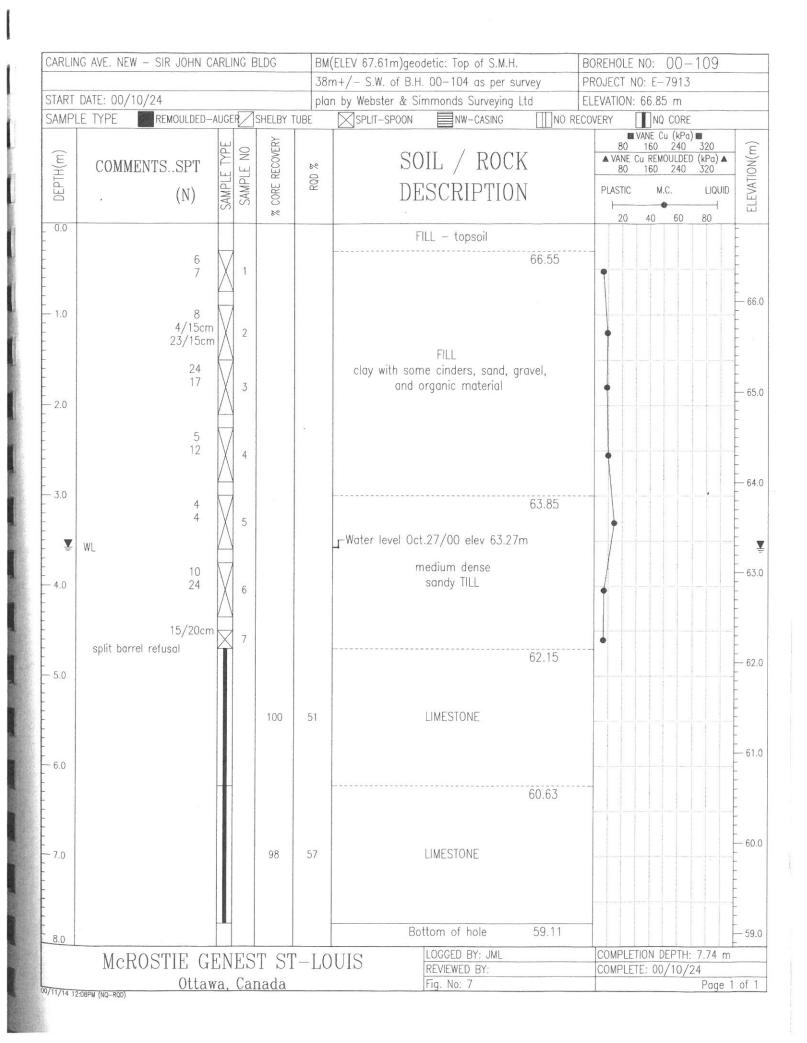

	& Associat		TEST PIT RECORD	Test Pit No. 96-7
C	Consulting D OTTAWA, O		Date :	MAY 31, 1996
			+ S LAKE N.D.	
ELEV. 66.14	DEPTH in metres	DESCR	IPTION	REMARKS
	+	+ ASP	 HALT	sides stable
66.11	0.03	FILL - sand and	gravel (pit run)	
65.89	0.25			
		F	ILL	
65.14	1	organic materia rock and tr	opsoil with some l, wood, broken aces of metal brick	· ·
				slight water seepage at
64.54	1.6	Refusal on	of pit possible rock ulders	bottom of pit
			*	
				Plate No.
	I	1		I <i>O</i> .

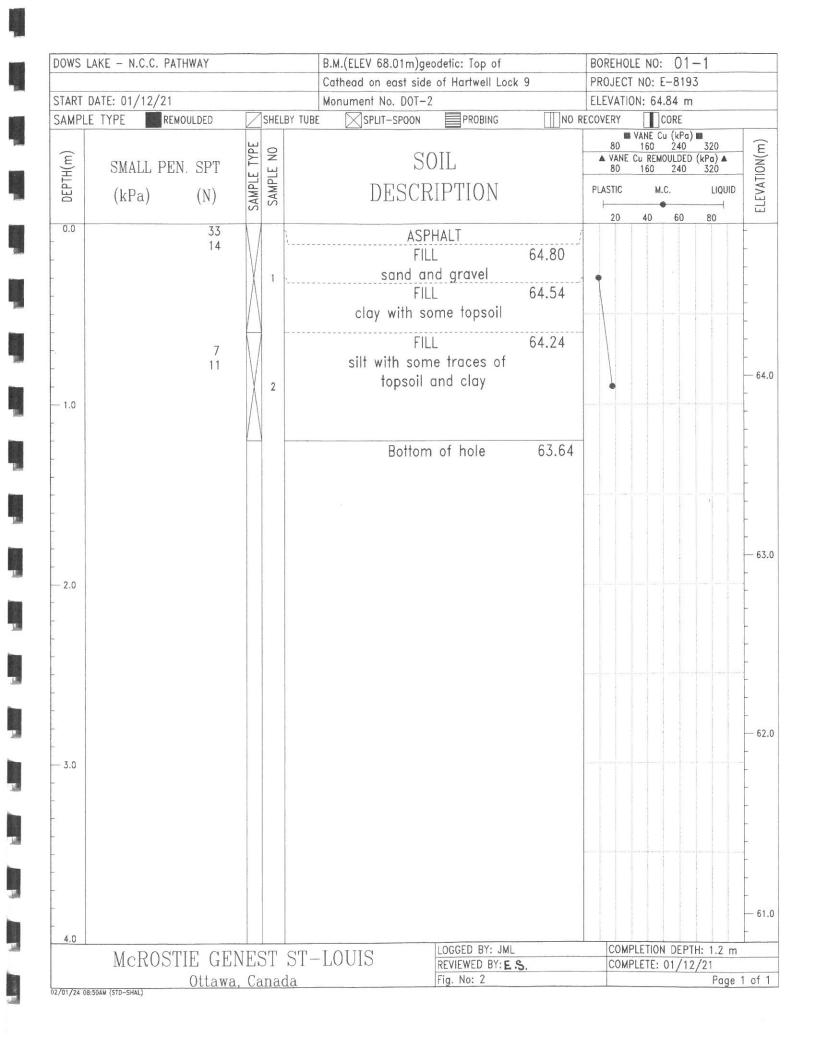

	& Associat		TEST PIT RECORD	Test Pit No. 96-8
C	Consulting DOTTAWA, O	CANADA		MAY 31, 1996
		DOW'	 S LAKE N.D.	
ELEV. 66.01		DESCR	REMARKS	
	+	ASP		sides stable
65.96	0.05	FILL - san (2" minu	d and gravel s pit run)	
65.51	0.50	F sand and gravel material trace and	no water	
65.11	0.90	Refusal on	of pit possible rock ulders	seepage
			r. V	
				Plate No. <u>9</u>

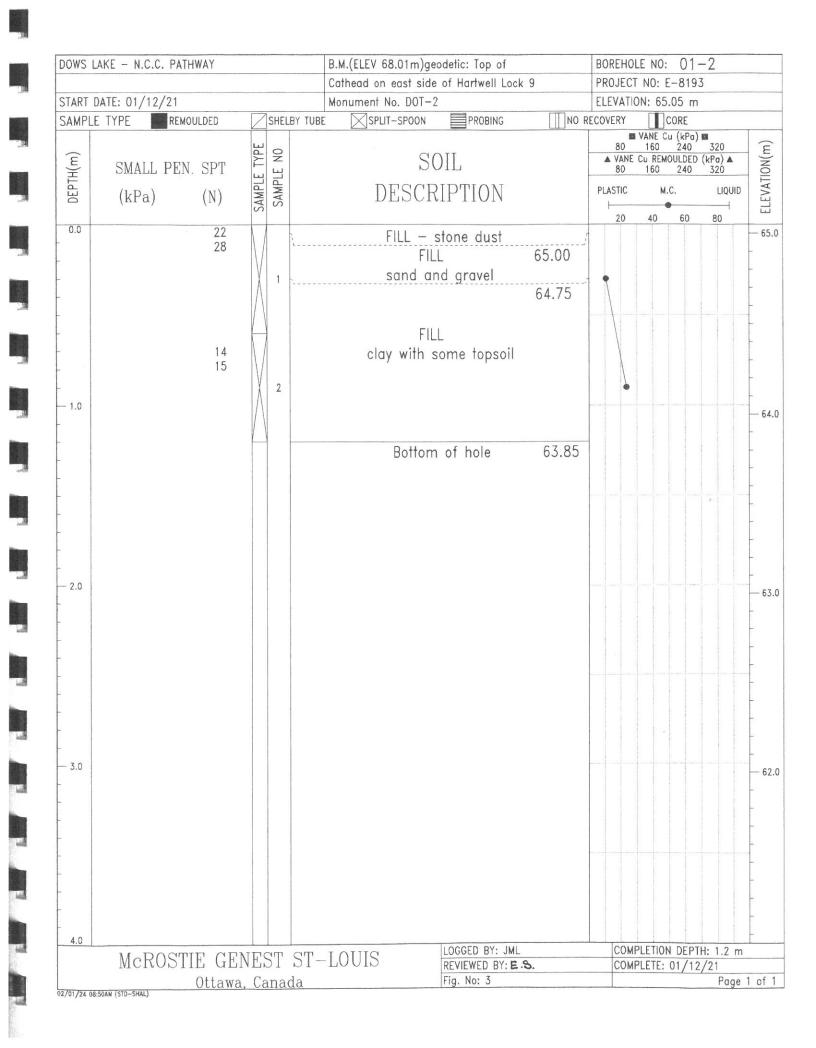

	4			
	STIE GENES & Associat onsulting F		TEST PIT RECORD	Test Pit No. 96-9
	OTTAWA, (Date :	MAY 31, 1996
+			S LAKE N.D.	
ELEV. 65.55	DEPTH in metres	REMARKS		
65.40	0.15	FILL - sand	d and gravel	sides stable
			ILL nd till	
64.55	1			
		F	ILL	,
	3	ashes, meta	material, brick, al and wood ear bottom of pit	water seepage at elev 63.91m
63.55	2			
63.10	2.45	Bottom		
		Refusal on p or bou	possible rock Ilders	
				Plate No. IO.

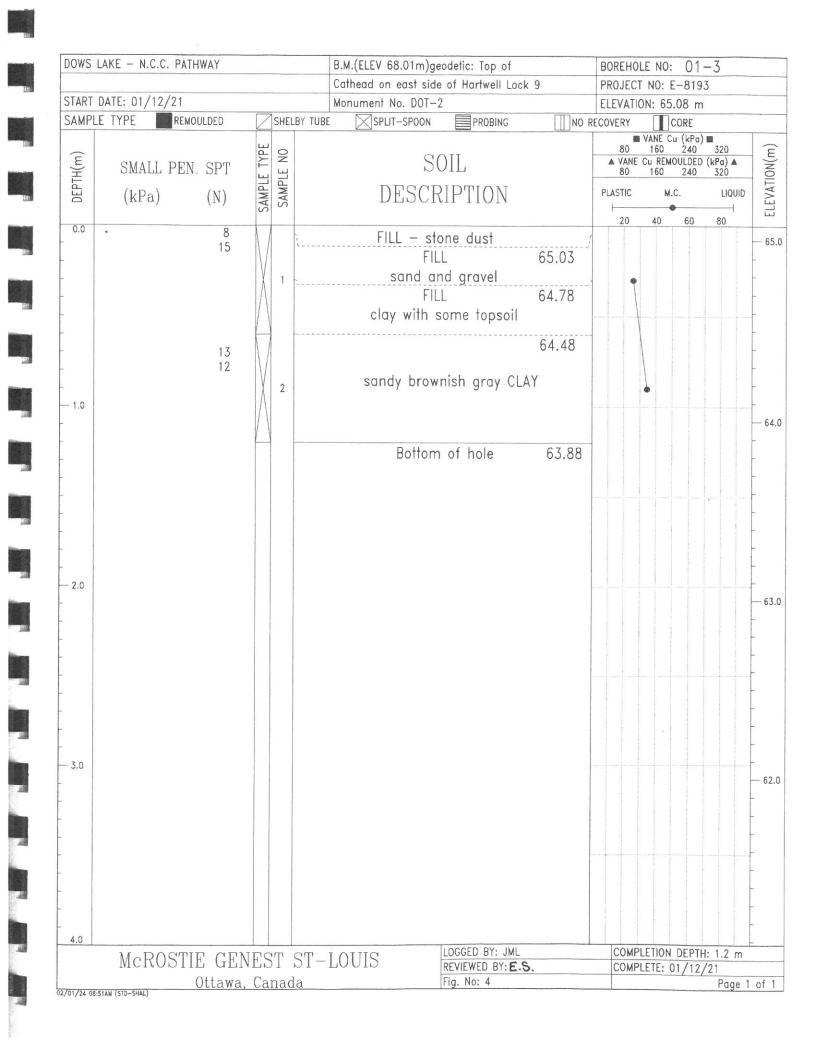

	STIE GENES & Associat onsulting E		TEST PIT RECORD	Test Pit No. 96-10
C	OTTAWA, C		Date :	MAY 31, 1996
			+ S LAKE N.D.	
ELEV. 66.14	DEPTH in metres	DESCR	IPTION	REMARKS
	+	ASPI		sides stable
66.09	0.05	FILL - sand	d and gravel	
65.94	0.20			
		topsoil, sand a traces of wood	and gravel with d, metal, brick wire	
65.19	0.95	Refusal on p	of pit possible rock ulders	no water seepage
				8
				*
			ب.	
				Plate No.

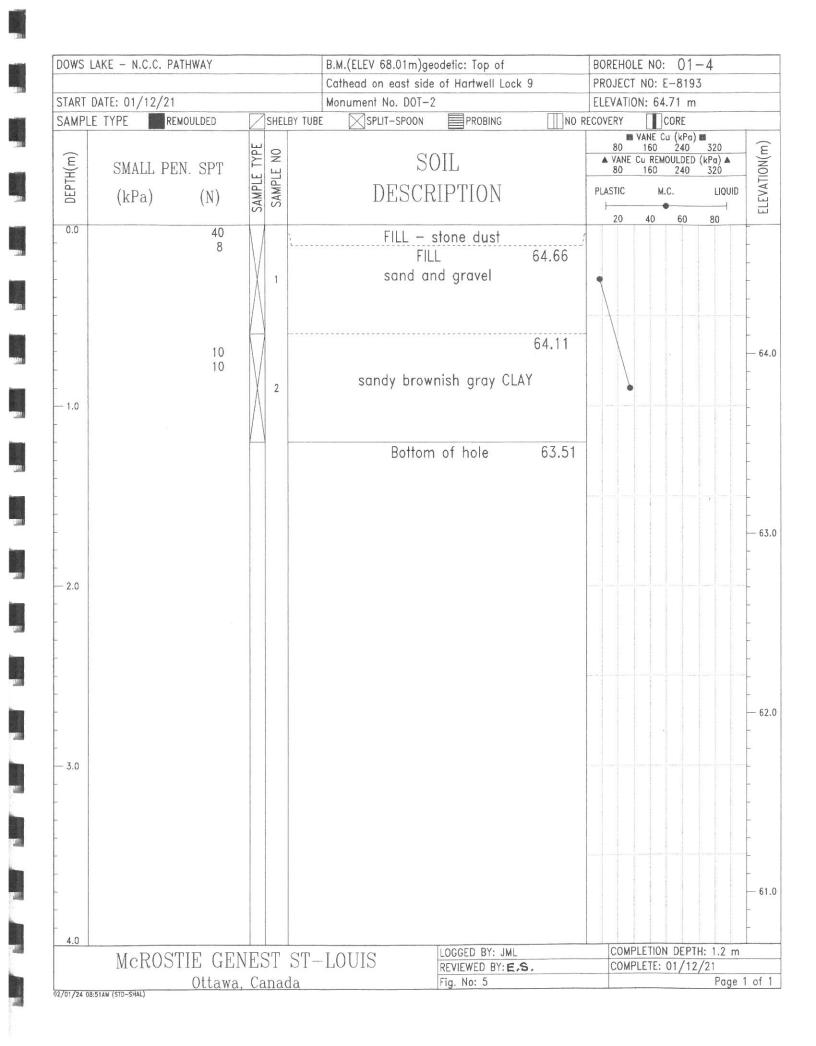

McROSTIE GENES & Associat	es Ltd.	TEST PIT RECORD	Test Pit No. 96-11
Consulting E OTTAWA, C	Ingineers ANADA	Date :	MAY 31, 1996
+		 S LAKE N.D.	
ELEV. DEPTH 66.35 in metres	DESCR	REMARKS	
+	ASP		sides stable
66.30 0.05		d and gravel s pit run)	
66.10 0.25	Refusal on	of pit possible rock ulders	no water seepage
			r
			Plate No. 12.

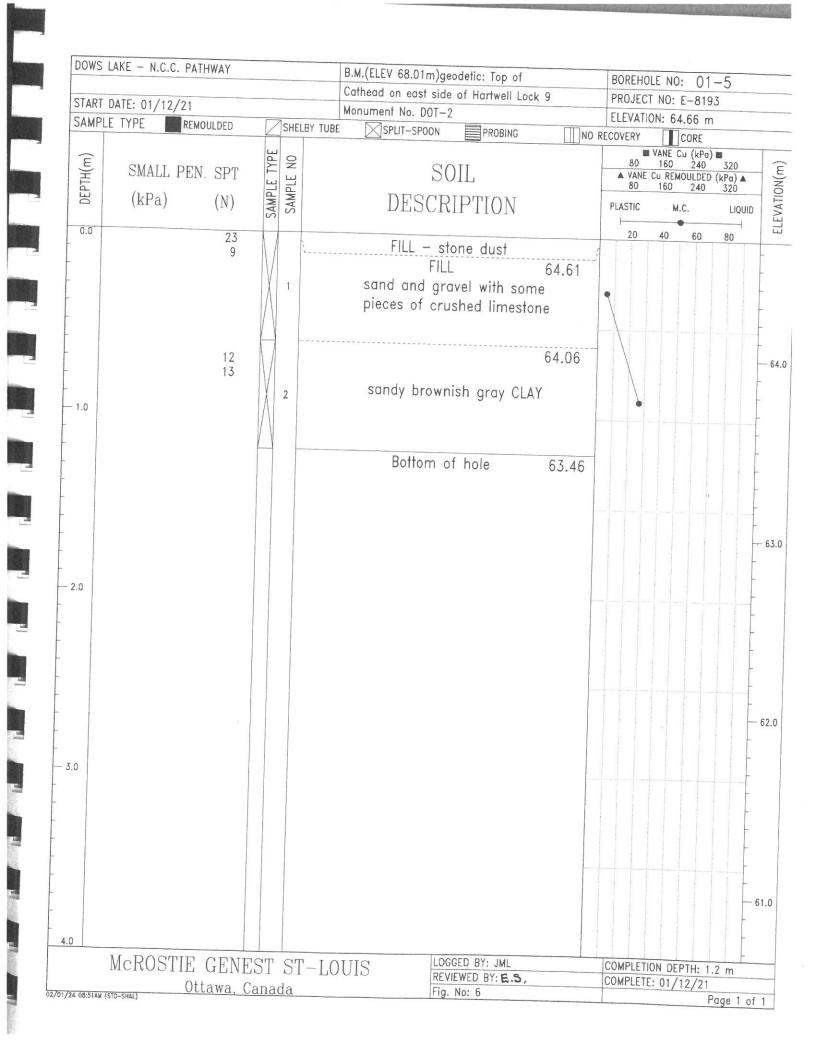






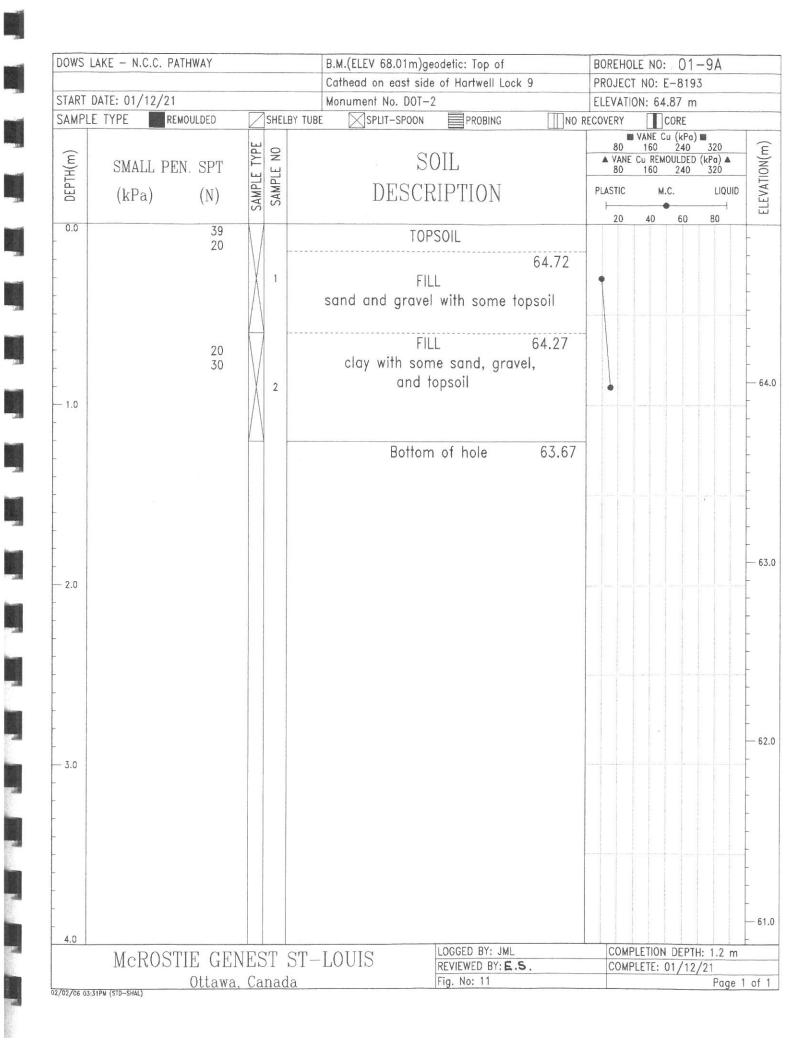






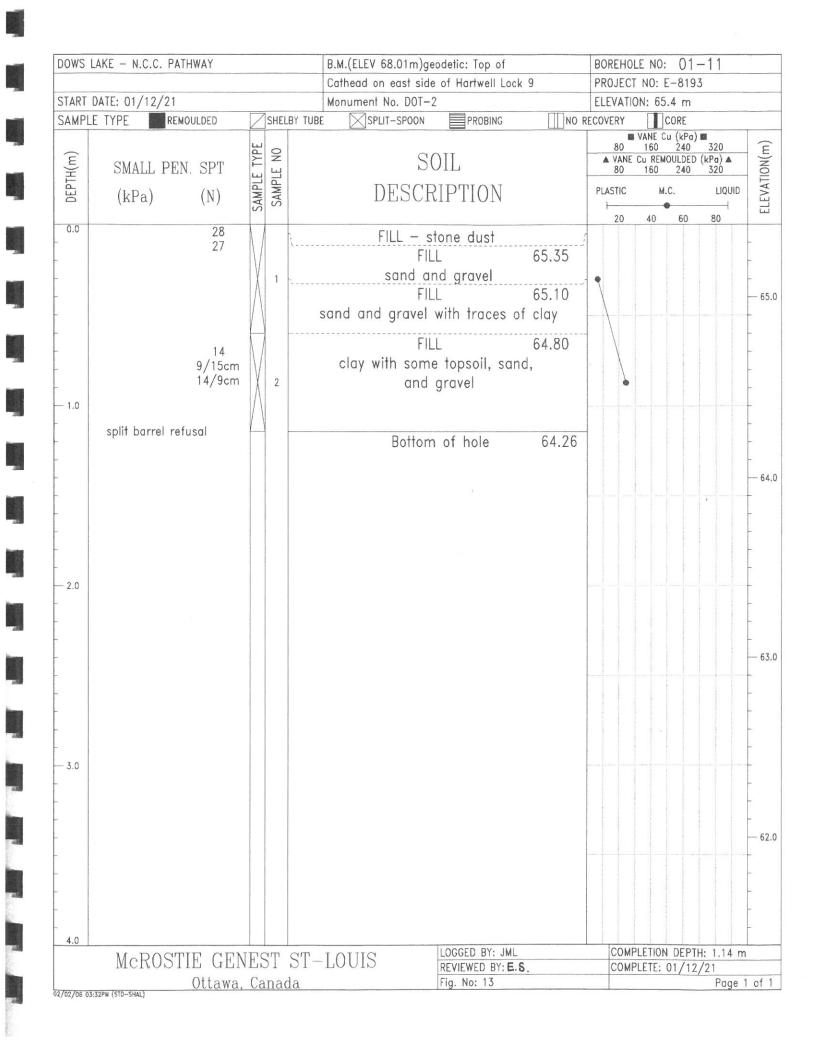
DOWS LA	AKE – N.C.C. PATH	WAY			B.M.(ELEV 68.01m)geodetic: Top c	and the second sec		E NO: 01		
START D	ATE: 01/12/21				Cathead on east side of Hartwell Monument No. DOT-2	LOCK 9		NO: E-819		
SAMPLE	and the second se		17	SHELBY TUB			ECOVERY	0N: 64.83 n	1	
DEPTH(m)		L PEN. SPT					80) ■ 320 D (kPa) ▲ 320		
DEP	(kPa)	(N)	SAMPI	SAMF	DESCRIPTION	Ţ		M.C.		- 17/17
0.0		8 6		1	FILL — stone dust FILL sand and gravel FILL clay with some topsoil	64.78 64.53 and	20	<u>40 60</u>	80	
1.0		6 6		2	traces of gravel					
					Bottom of hole	63.63				
- 2.0										
3.0										
4.0										-
4.0	McROSTI	E GEN	IES	ST ST-	LOUIS LOGGED BY: REVIEWED BY		COMP	LETION DEPT LETE: 01/12	H: 1.2 m	
	1923 133 123 1	I TIT	ALL V	JI NJ	LIVVIV DEVIEWED DV	ES	1001/0	ETE OF LAS	101	

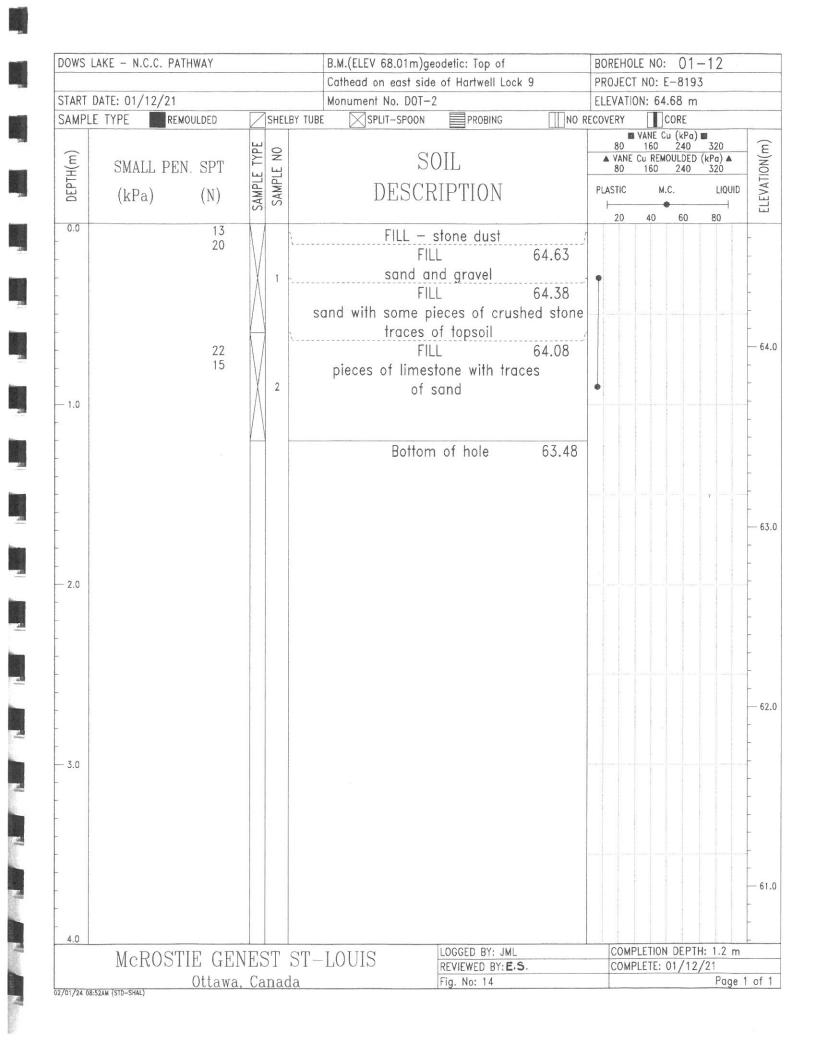
DOWS LA	AKE - N.C.C. PATHWA	ΑY			B.M.(ELEV 68.01m)	geodetic: Top of de of Hartwell Lock 9			OREHOLE NO: 01-7 ROJECT NO: E-8193			
START D	ATE: 01/12/21				Monument No. DOT			ELEVAT				
	TYPE REMOULD)FD	\square	SHEL	Y TUBE SPLIT-SPOON		NO RE	ECOVERY		CORE		
DEPTH(m)	SMALL PEN. S	ALL PEN. SPT					■ VANE Cu (kPa) 80 160 240 ▲ VANE Cu REMOULDED (180 160 240 PLASTIC M.C.			320 (kPa) ▲ 320 LIQUID	FI FVATION(m)	
	(KI U)	(11)	SA	S	DICO			20	40	60	80	L
0.0		95 21 10 7		1	FI sand FI sand with some p and trace medi	and gravel LL 65 pieces of broken r s of topsoil	65.69		40		80	- 6
- 1.0					Bottor	n of hole 6	65.09				r	- - - - -
- 2.0												
- 3.0												
4.0						LOGGED BY: JML		CON	APLETIO	N DEPTI	H: 1.2 m	
4.0	McROSTIE	GEN	E	51	ST-LOUIS	REVIEWED BY: E.S.		COL	APL ETF.	01/12		


DOWS	LAKE - N.C.C. PATHWAY				B.M.(ELEV 68.	.01m)geo	detic: Top of		BOREHOI	LE NO:	01-	-8	
							of Hartwell Lock	9	PROJECT			5	
	DATE: 01/12/21				Monument No			Printpageros	ELEVATIO				
SAMP	LE TYPE REMOULDED	2	SHEL	BY TUBE	SPLIT-	SPOON	PROBING	NO R	RECOVERY		ORE		
		ц.							80	VANE Cu 160	1 (kPa) 240	320	(F
DEPTH(m)	SMALL PEN. SPT	TYF	SAMPLE NO			SO	IL		▲ VANE 80	Cu REMO 160	ULDED 240	(kPa) ▲ 320	N(r
TH		4	IPLE							100000			ATIC
DEI	(kPa) (N)	SAMPLE TYPE	SAN		DE	SCKI	PTION		PLASTIC	M.(u.	LIQUID	ELEVATION(m)
									20	40	60	80	
0.0	23		A	1	FIL	L – sto	one dust						-
	17	$ \rangle $				FILL		65.13					- 65.0
-		ΙV	1	e	S	and ar	nd gravel		•				-
_								64.88					-
-	19	1/ 1				FILL			· · · · · · · · · · · · · · · · · · ·				
_		_			sand ar		el with trace	20					-
-	21	1	A				nd brick						-
-	25	$ \rangle $			01	citay di	IG DITCK						-
-		X	2						•				-
- 1.0													
-													F
F		-	_) attama	of hole	63.98					- 64.0
-					1	50110111	of note	05.90					~
F													Ī
F													Ī
-													
ŀ													
-													
-													
- 2.0													
Ī													- 63.0
													-
													_
													-
													-
													-
-													-
-													-
- 3.0													
-													-
-													- 62.0
-													-
F													-
ŀ									·····				-
-													-
-													-
ł													F
4.0									Approximation of Approximation				
4.0	MODOCTIE CI		CTT C	CT	LOUIC		LOGGED BY: JML					H: 1.2 m	
	McROSTIE GI				-TOOI2		REVIEWED BY: E.S	<i>5</i> .	COMF	PLETE: (01/12		
02/01/24	Ottav	va, Ca	ana	da			Fig. No: 9					Page	1 of 1

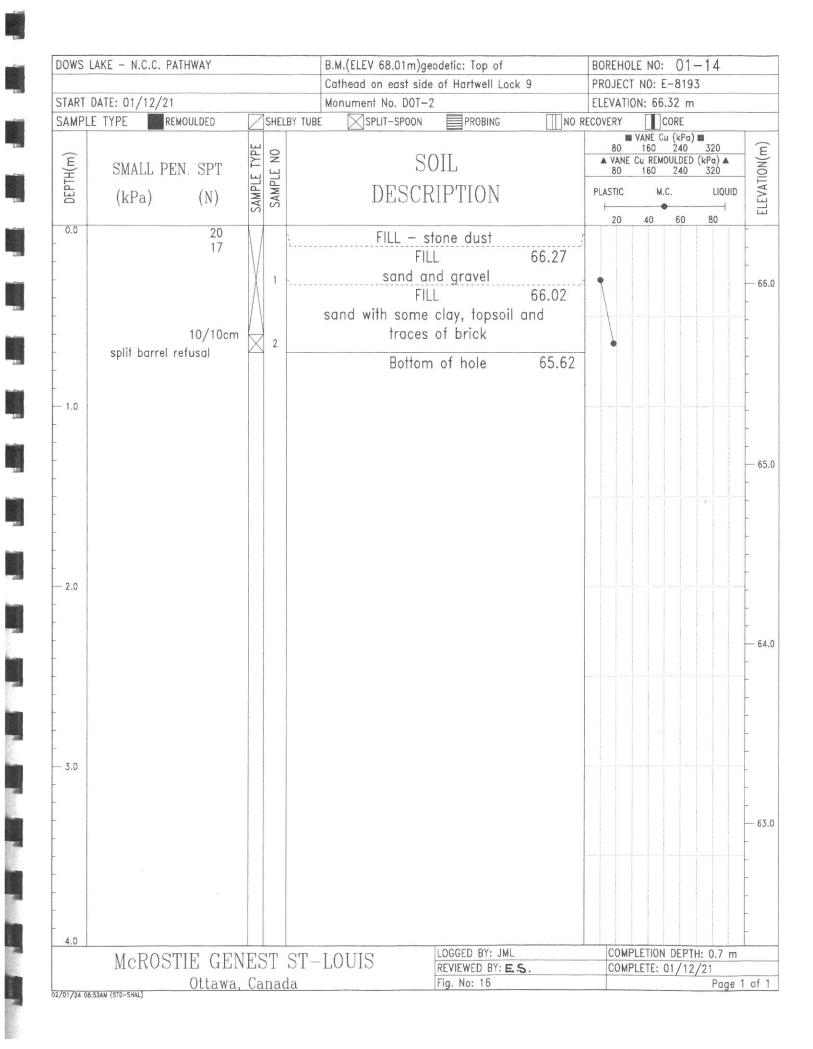
Diable

1


DOWS L	AKE – N.C.C. PATHWAY				B.M.(ELEV 68.01m				LE NO:			
START I	DATE: 01/12/21					ide of Hartwell Loc	k 9		T NO: E		i	
SAMPLE			כטבוו	BY TUBE	Monument No. DO				ON: 64.			
DEPTH(m)	SMALL PEN. SPT (kPa) (N)	SAMPLE TYPE	Ī			SOIL RIPTION		RECOVERY 80 VANE 80 PLASTIC	VANE Cu 160 Cu REMO 160 M.C	ULDED (240	320 (kPa) ▲ 320 LIQUID	
0.0	(11) 11 24 split barrel refusal	SA		SC	FILL - F sand and & gravel w and pieces	stone dust ILL and gravel ILL	64.91 64.66 topsoil ck 64.36	20	40	60	80	
3.0												- 6.
4.0					OUIC	LOGGED BY: JML		COMP	LETION D		0.6	- 6
	McROSTIE GEN	ES	TS	[-1]	LOUIS	REVIEWED BY: E.S	S.		LETTE: 01			
	AM (STD-SHAL) Ottawa,	Car	nada	1		Fig. No: 10		100mll		/ 12/2	Page 1	of


No.

DOWS L	LAKE - N.C.C. PATHWAY					B.M.(ELEV 68.01m)geodetic: Top of BOREHOLE NO: 01-10					-10		
STADT D	DATE: 01/12/21						side of Hartwell Lo	ock 9		F NO: E-819			
SAMPLE				lour		Monument No. D	States and the second		ELEVATION: 65.04 m				
DEPTH(m)	SMALL PEN.		SAMPLE TYPE	1	BY TUBE		SOIL	NO R	RECOVERY CORE VANE Cu (kPa) I 80 160 240 VANE Cu REMOULDED (80 160 240		320	ELEVATION(m)	
	(kPa)	(N)	SAMF	SAM		DES	CRIPTION		PLASTIC	M.C.		ELEVA	
0.0		24 24		1	l	FILL -	– stone dust sand and grav FILL	64.74		40 80	60	- 65	
		12 13		2		of crus	ne gravel and shed limestone FILL ne sand and g	64.44					
- 1.0						Botto	m of hole	63.84		· ·		— 64. 	
												-	
- 2.0												- 63. - -	
3.0							1.			*		- - - - 62.0	
4.0	McROSTIE	GEN] ttawa,				JOUIS	LOGGED BY: JML REVIEWED BY: E. Fig. No: 12	S		ETION DEPTH: ETE: 01/12/2			


and a

DOWS LAKE - N.C.C. PATHWAY			B.M.(ELEV 68.01m)ge			-	LE NO: 0		
START DATE: 01/12/21			Cathead on east side Monument No. DOT-2		< 9		NO: E-8 ON: 64.5 m		
SAMPLE TYPE REMOULDED		HELBY TUBE	SPLIT-SPOON	PROBING		ECOVERY	UN: 64.5 n		
(E) SMALL PEN. SPT (kPa) (N)	TYPE	NON NOL				80	VANE Cu (kF 160 24 Cu REMOULD 160 24	^o a) m 0 320	ELEVATION(m)
(kPa) (N)	SAMPLE	AMPS	DESCR	IPTION		PLASTIC	M.C.	LIQUID	ELEVAT
0.0 12 7 8/9cm split barrel refusal		2	FIL sand ar FIL sand and grave	nd gravel L I with traces and clay	64.45 64.20 of 63.81	20	40 60) 80	64
- 1.0								7	- 63
									- - - - 62
3.0									61
4.0 McROSTIE GE Ottawa				LOGGED BY: JML REVIEWED BY: E.S Fig. No: 15	š.		LETION DEF LETE: 01/1	PTH: 0.69 m 12/21 Page 1	

H.

DOM2	LAKE – N.C.C. PATHWAY		B.M.(ELEV 68.01m)g			E NO: 01-				
CTADT	DATE: 01/12/21		Cathead on east side			NO: E-8193				
	E TYPE REMOULDED		Monument No. DOT-			N: 65.98 m	_			
DEPTH(m)	SMALL PEN. SPT	SAMPLE TYPE SAMPLE NO		e ⊠split-spoon ■probing Ⅲno r SOIL			RECOVERY CORE 80 160 240 320 ▲ VANE Cu REMOULDED (kPa) ▲ 80 160 240 320			
DEP.	(kPa) (N)	SAMPL	DESCF	RIPTION	PLASTIC	M.C.		ELEVATION(m)		
0.0	5/15cm 14/15cm split barrel refusal	1	FIL sand and gravel wi and pieces of	tone dust L 65.94 ith some clay, topsoil of broken rock n of hole 65.68	20	40 60	80			
- 1.0							L	65		
- 2.0								- 64. 		
3.0								- - - 63.0 - -		
4.0	McROSTIE GENI	EST S		Logged by: JML Reviewed by: e.s .		ETION DEPTH: ETE: 01/12/2		62.0		
	Ottawa, (Canada		Fig. No: 17	- own Ll		Page 1	of 1		

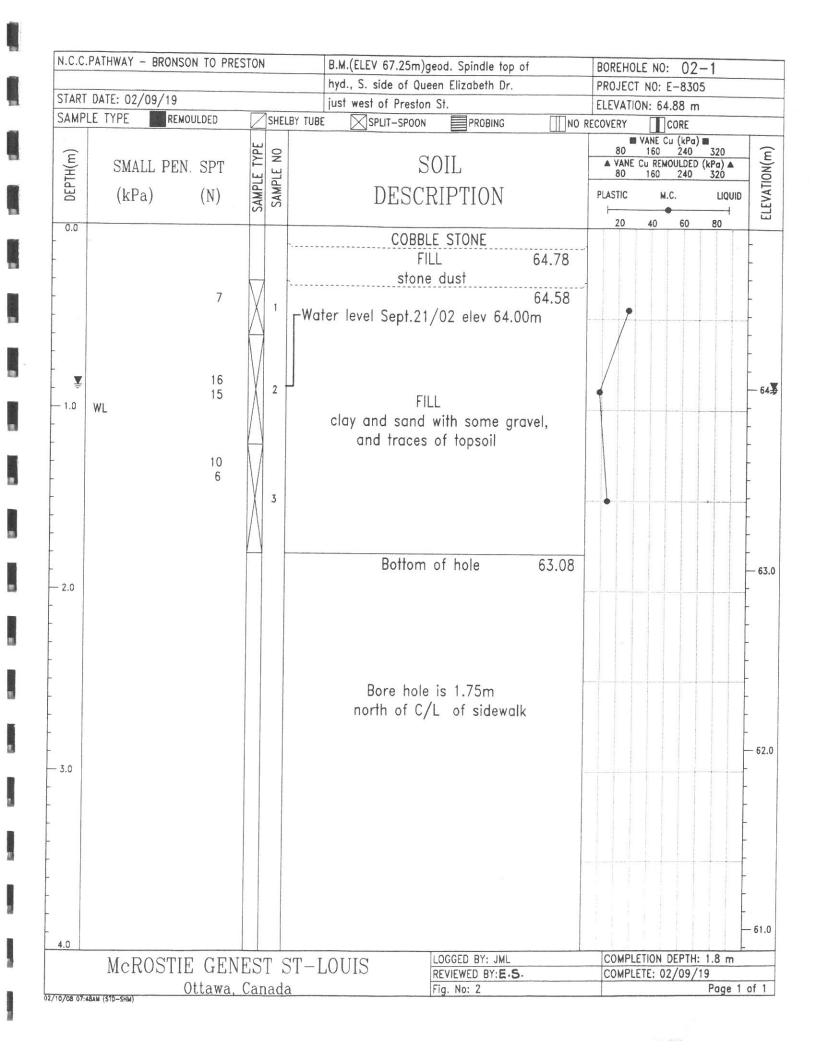
DOWS L	AKE - N.C.C. PATHWAY			B.M.(ELEV 68.01m)geodetic: Top of			LE NO: 01		
TANT	DATE: 01/12/21			Cathead on east side of Hartwell Lock 9 Monument No. DOT-2			NO: E-819		
SAMPLE			וכערו	Y TUBE SPLIT-SPOON PROBING		ECOVERY	N: 64.61 m	1	
DEPTH(m)	SMALL PEN. SPT	SAMPLE TYPE		SOIL		80	VANE Cu (kPa 160 240 Cu REMOULDED 160 240	320	EI EVATION(m)
DEP	(kPa) (N)	SAMPI	SAMPLE 1	DESCRIPTION		PLASTIC	M.C.	LIQUID	LEVA'
0.0	9 7			FILL – sand and gravel		20	40 60	80	-
- 1.0	9 8		2	64. FILL sand and gravel with some clay, to and pieces of broken rock	.31 psoil	•			- 6
				Bottom of hole 63	3.41				
- 2.0									
- 3.0									
4.0	McROSTIE GEN	IES	ST	T-LOUIS LOGGED BY: JML REVIEWED BY: E.S.			LETION DEPT LETE: 01/12		
	3AM (STD-SHAL) Ottawa,	Ca	nad					Page 1	of

-

6

E.

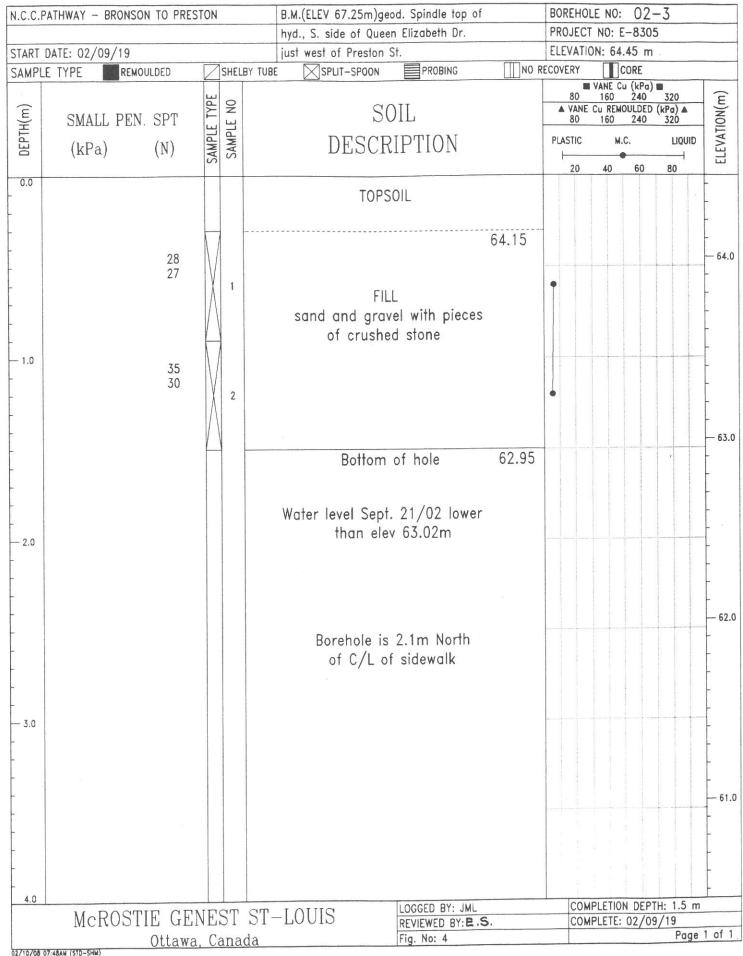
DOWS LAKE - N.C.C. PATHWAY		B.M.(ELEV 68.01m)geodetic: Top of	BOREHOLE NO: 01-	the second se
		Cathead on east side of Hartwell Lock 9	PROJECT NO: E-8193	\$
START DATE: 01/12/21		Monument No. DOT-2	ELEVATION: 64.52 m	
SAMPLE TYPE REMOULDED	SHELBY TU	BE SPLIT-SPOON PROBING NO	RECOVERY CORE 80 160 240 A VANE Cu REMOULDED 80 160 240	320 (kPa) ▲ 320 LIQUID
SMALL PEN. SPT (kPa) (N)	SAMPLE TYPE SAMPLE NO	DESCRIPTION	PLASTIC M.C.	
0.0 9 13		FILL – sand and gravel	20 40 60	80
		64.22 FILL sand and gravel with some topsoil		- 64.0
- 4 - 5 - 1.0	2	and traces of clay		
		Bottom of hole 63.32		- 63.0
- 2.0				
- 3.0				61.
4.0 McRostie Ge	NEST ST , Canada	-LOUIS REVIEWED BY: JML Fig. No: 19	COMPLETION DEPT COMPLETE: 01/12	H: 1.2 m

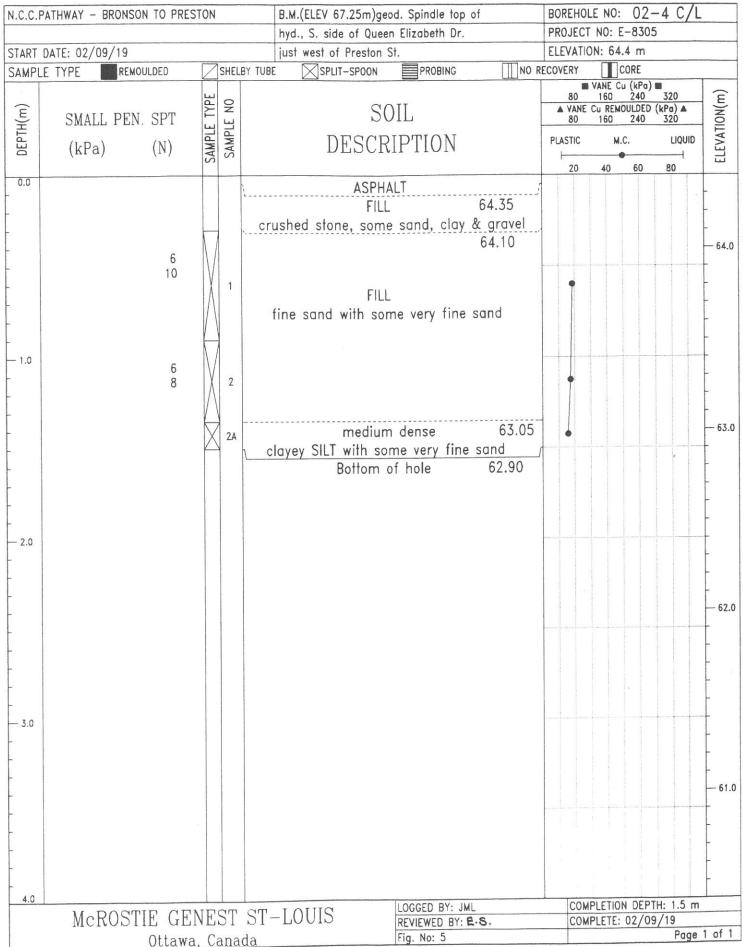

-

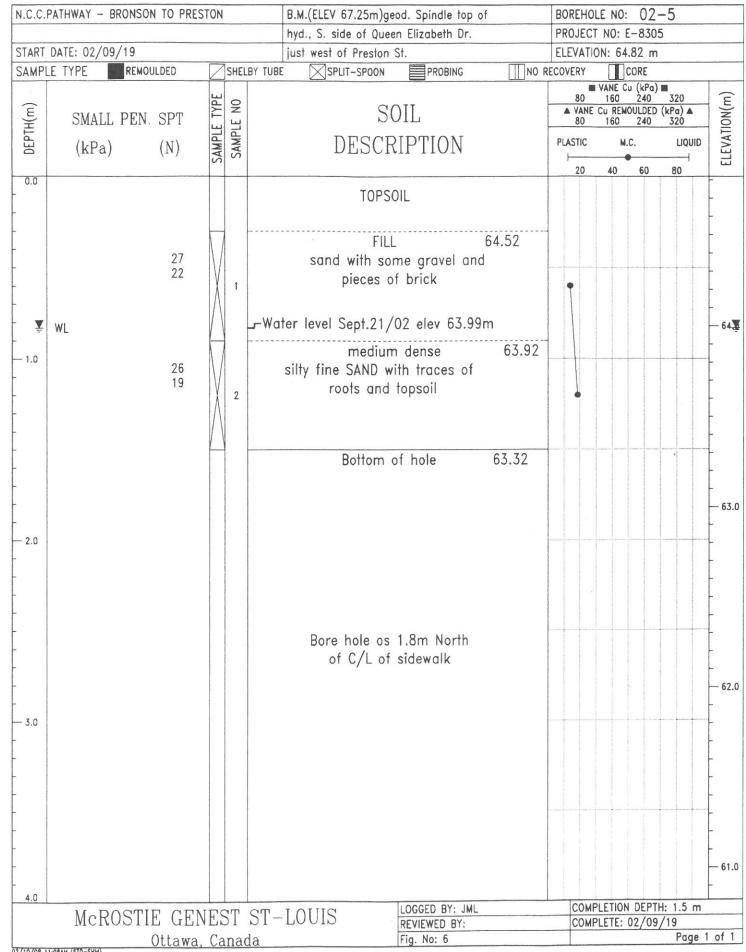
START DATE: 01/12/21 Monument No. D0T-2 ELEVATION: 64.83 m SAMPLE TYPE REMOULDED SHELBY TUBE SPLIT-SPOON NO RECOVERY CORE Image: Stream of the strea	B.M.(ELEV 68.01m)geodetic: Top ofBOREHOLE NO: 01-18Cathead on east side of Hartwell Lock 9PROJECT NO: E-8193	
SAMPLE TYPE REMOULCED SHELBY TUBE SPUT-SPOON PROBING PROBING COREY CORE SMALL PEN. SPT (kPa) (N) B Solution (kPa) (kPa) (N) B Split barrel refusal -1.0 -2.0 -2.0 -2.0		
E SMALL PEN. SPT (kPa) E SOIL DESCRIPTION None Col (Per) A VANE Col (PEO) 40 - 52 - 20 - 52 A VANE Col (PEO) 40 - 52 - 20 - 52 PLASTIC 0.0 7/15cm 8/8cm split borrel refusal 1 FILL sand and gravel with traces of clay Bottom of hole 9 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0		
0.0 7/15cm 8/8cm 1 FILL sand and gravel with traces of clay 0 60 80 split barrel refusal 1 Bottom of hole 64.60 1 1 -1.0 -2.0 0 0 0 0 0 -2.0 0 0 0 0 0 0 0 -2.0 0 0 0 0 0 0 0 0 -2.0 0 0 0 0 0 0 0 0	VANE Cu (kPa)	
0.0 7/15cm 8/8cm 1 FILL sand and gravel with traces of clay split barrel refusal 1 Bottom of hole -1.0 -2.0		EI FVAT
1.0	FILL sand and gravel with traces of clay	
2.0		- 6
3.0		-
3.0		
4.0		
Madogene Centege of Louis Logged BY: JML COMPLETION DEPTH: 0		m
		1 of

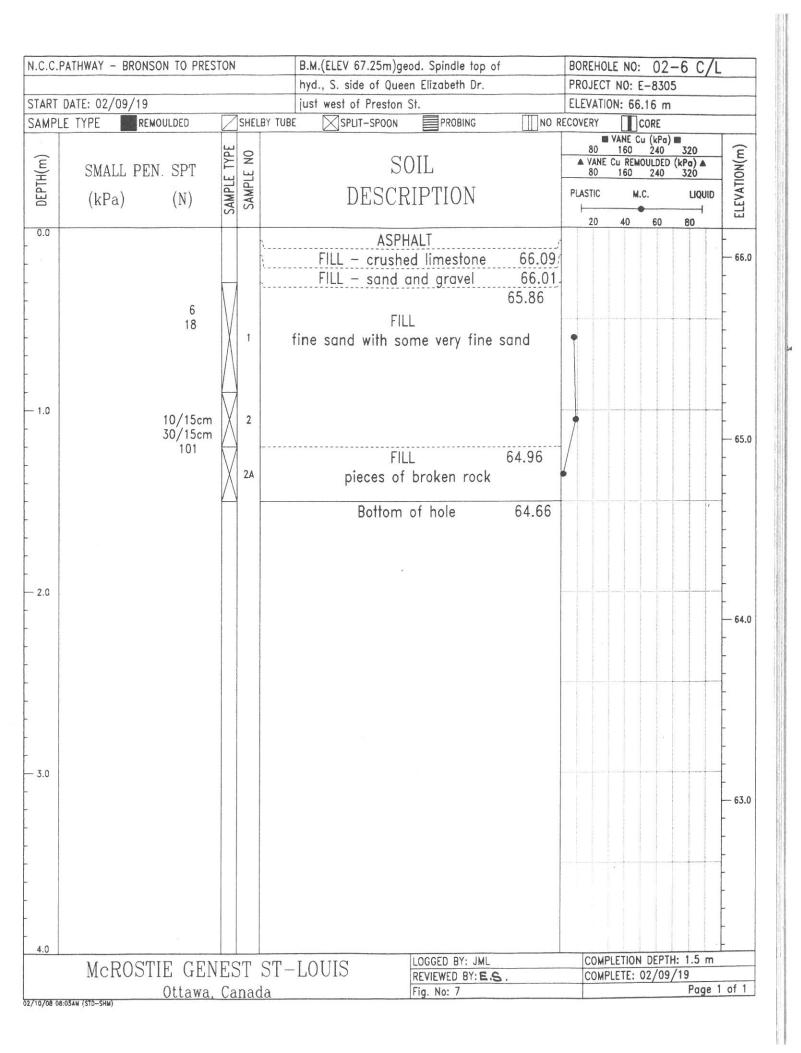
No.

DOWS	LAKE - N.C.C. PATHWAY			B.M.(ELEV 68.01m)geodetic: Top	of	BOREHOL	E NO: 01-	-19	
				Cathead on east side of Hartwel	I Lock 9		NO: E-8193	3	
	DATE: 01/12/21			Monument No. DOT-2			N: 66.03 m		
SAMP	LE TYPE REMOULDED		SHELE	TUBE SPLIT-SPOON PROBI		COVERY			1
DEPTH(m)	SMALL PEN. SPT	SAMPLE TYPE	SAMPLE NO	SOIL		80 A VANE 0 80	VANE Cu (kPa) 160 240 Cu REMOULDED 160 240	320 (kPa) ▲ 320	ELEVATION(m)
DEP1	(kPa) (N)	SAMPL	SAMP	DESCRIPTIO	N	PLASTIC	M.C.	LIQUID	ELEVAT
0.0	5			FILL - sand and g	ravel	20	40 60	80	- 66.0
- 1.0	6 14		2	FILL sand and gravel wit clay and topsoi		•			- 65.0
				Bottom of hole	64.83			•	
- 2.0									- 64.0
- 3.0									- 63.0
4.0				T LOUIS LOGGED BY:	- IMI	COMPI	ETION DEPTH	1 1 2 m	
	McROSTIE GI			I-LUUIS REVIEWED E			ETE: 01/12		
0.6.6	18:53AM (STD-SHAL)	ra, Ca	nada					Page 1	of 1


DOWS	LAKE - N.C.C. PATH	WAY				I.(ELEV 68.01m)g			BOREHOL			20	
OTIOT						head on east sid		ck 9	PROJECT				
	DATE: 01/12/21		<u> </u>			nument No. DOT-			ELEVATIO				
	<u>e type</u> remoi SMALL PEN.		TYPE		BY TUBE	SPLIT-SPOON	PROBING		RECOVERY 80 VANE 80	VANE Cu 160 Cu REMOU 160	(kPa) 🔳	320 kPa)▲ 320	ON(m)
DEPTH(m)	(kPa)	(N)	SAMPLE TYPE	SAMPLE NO		DESC	RIPTION		PLASTIC	м.с.			ELEVATION(m)
0.0		0							20	40	60	80	
-		8 13 3/15cm 8/13cm		1	SC	F and and grav	PSOIL ILL el with some s of topsoil	65.44 clay	-				
- 1.0	split barrel refu	sal	\square			Bottor	n of hole	64.86					-
- 2.0													- 64.0
- - - - 3.0													63.0
- - - - - - - -	Madage			<u>-</u>	CUT I		LOGGED BY: JM	L				: 0.88 m	62.0
	McROSTI					1012	REVIEWED BY: E			LETE: 01		21	
02/01/24	8:53AM (STD-SHAL)	<u>Ottawa,</u>	Ca	nac	1a		Fig. No: 22					Page 1	of 1




N.C.C.PA	THWAY - BRONSO	N TO PRE	STON			n)geod. Spindle top	of		E NO: 02					
	ATE: 02/09/19					hyd., S. side of Queen Elizabeth Dr. just west of Preston St.				PROJECT NO: E-8305 ELEVATION: 64.82 m				
the second se	the subscription of the su	ULDED	17	SHELBY				RECOVERY	CORE	n				
SAMPLE TYPE REMOULDED SHELBY TUB (W) SMALL PEN. SPT (kPa) (N) WS					Lana J	SOIL			RECOVERY CURE ■ VANE Cu (kPa) ■ 80 160 240 320 ▲ VANE Cu REMOULDED (kPa) ▲ 80 160 240 320					
DEP1	(kPa)	(N)	SAMPL	SAMP	DES	CRIPTION			M.C.	LIQUID				
0.0	3	17 24		1	sto	BLE STONE FILL one dust FILL ed limestone	64.72 64.52	20	40 60	80				
1.0		14 18		2	topsoil with so	FILL me sand and p Jshed stone	63.92 ieces							
- 2.0					Water level Se	om of hole ept. 21/02 lowe elev 63.32m	63.32 r			•				
3.0						is 2.70m North . of sidewalk								
4.0														
	McROSTI	EGE	NES	ST S	T-LOUIS	LOGGED BY: JML	٩		LETION DEPT LETE: 02/09	the second se				
		Ottawa				REVIEWED BY: E. Fig. No: 3	3.	COMP	LETE: 02/05	Page 1				


St week

J

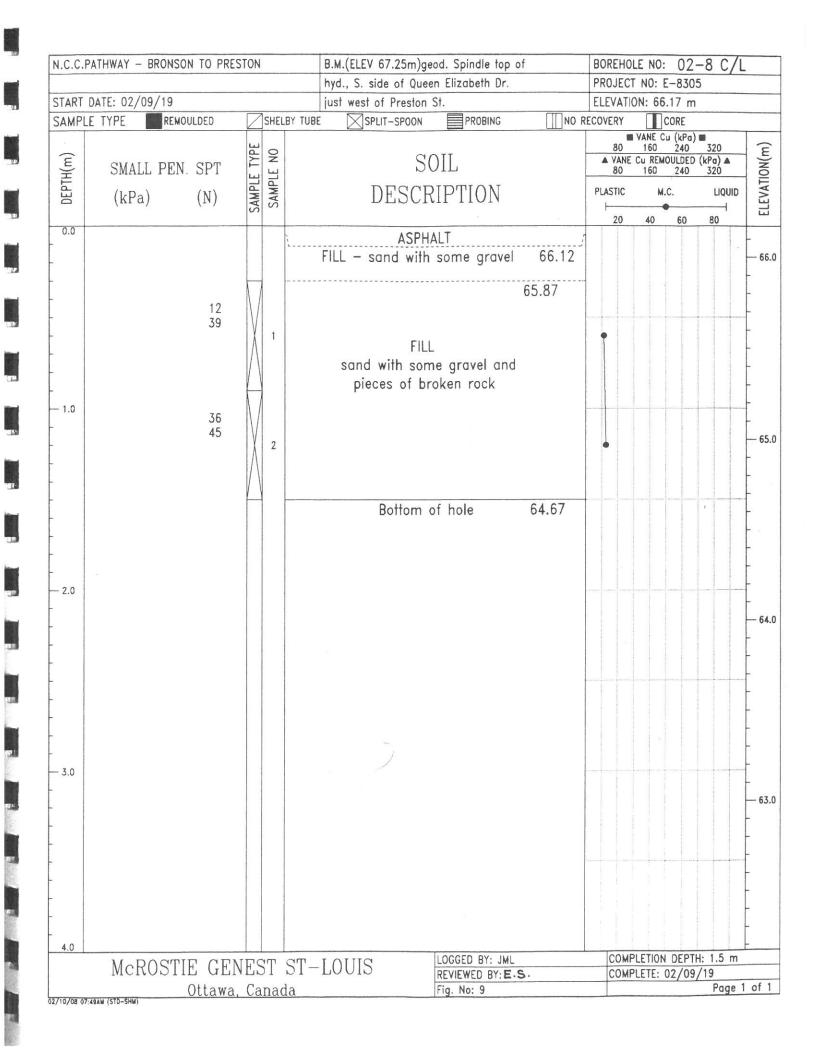
Borehole is 4.35m South of C/L of sidewalk	N.C.C.P	ATHWAY - BRONSON	N TO PRES	STON		B.M.(ELEV 67.25m)geod		BOREHOL	E NO: 02-	-7	
SAMPLE TYPE PERMULAD Seturity Type Seturity Type Seturity Type Source of the seturity of the seture seture seture of the seturity of the seture of the seturity of	CTADT D								the second se		
Email SMALL PEN. SPT (kPa) Email SOIL DESCRIPTION Mathematical Partice Mathematice Mathematical P					lour						
SMALL PEN. SPT (kPa) Image: Construction of the construction	SAMPLE	REMOU	JLDED	K	SHEL	SPLIT-SPOON					7
00 10 10 10 10 10 11 FILL sand with some gravel and traces of topsoil 66.67 10	PTH(m)			PLE TYPE	APLE NO			80 A VANE 80	160 240 Cu REMOULDED (160 240	320 (kPa) ▲ 320	VTION(m)
10 10 10 10 10 66.67 66.67 -10 33 44 2 FILL sand with some gravel and traces of topsoil 66.67 -10 34 2 Bottom of hole 65.47 65.47 -20 80 tom of hole 65.56m 65.47 65.56m -30 Borehole is 4.35m South of C/L of sidewalk 66.67 65.47 -30 McROSTIE GENEST ST-LOUIS Located BY: JML COMPLETION DEPTH: 1.5 m Completion Depth: 1.5 m	DE	(kPa)	(N)	SAM	SAN	DESCRI	PTION		M.C.		LEVI
10 33 7 FILL 66.67 10 33 7 FILL sand with some gravel and traces of topsoil 66.67 10 33 7 8 7 66.67 66.67 10 33 7 7 8 7 66.67 66.67 10 33 7 7 8 7 66.67 66.67 10 33 7 2 8 8 65.47 66.67 20 8 8 8 65.56m 65.56m 65.55m 30 8 8 8 64.4 65.56m 64.4 30 8 8 8 64.4 64.4 64.4 4.0 9 9 9 9 64.4 64.4	0.0							20	40 60	80	
10 33 -1.0 33 44 2 Bottom of hole 65.47 Water level Sept.21/02 lower than elev 65.56m Borehole is 4.35m South of C/L of sidewalk 40 McROSTIE GENEST ST-LOUIS LOCED BY. JML COMPLETIC 02/09/19						TOPSOI					
Bottom of hole 65.47 -2.0 -2			10 39		1	sand with some	gravel and				
McROSTIE GENEST ST-LOUIS	- 1.0 				2	х С					- 66.0
-2.0 than elev 65.56m Borehole is 4.35m South of C/L of sidewalk -3.0 McROSTIE GENEST ST-LOUIS	-						÷				-
A.0 MCROSTIE GENEST ST-LOUIS MCROSTIE GENEST ST-LOUIS LOGGED BY: JML REVIEWED BY: E.S. COMPLETION DEPTH: 1.5 m COMPLETION DEPTH: 1.5 m COMPLETE: 02/09/19	- 2.0 										- 65.0 - -
A.0 MCROSTIE GENEST ST-LOUIS LOGGED BY: JML REVIEWED BY: E S. COMPLETION DEPTH: 1.5 m COMPLETION DEPTH: 1.5 m COMPLETE: 02/09/19	-										-
MCROSTIE GENEST ST-LOUIS LOGGED BY: JML COMPLETION DEPTH: 1.5 m REVIEWED BY: ES. COMPLETE: 02/09/19	-										- 64.0
	4.0	MCROSTIE	CEN	FC	T						03.0
							and the second se	COMPL	ETE: 02/09/1		

.____

E

18.-

E


E.


.

-

-

5

APPENDIX B

Borehole Records from Recent Environmental Investigations

Project: Phase II Environmental Site Assessment Client: Public Services and Procurement Canada Sir John Carling Building Location: 122511246 Number: Field investigator: J. Urben / B. Chenier Strata Drilling Group Contractor:

Drilling method:	GM100 (Direct Push)
Date started/completed:	14-Mar-2016
Ground surface elevation:	97.46 m RTD
Top of casing elevation:	97.37 m RTD
Easting:	444332.2
Northing:	5026985.7

				1		0			1	
		SUBSURFACE PROFILE				SA	MPLE DETAILS		INST	ALLATION DETAILS
Depth (ft) (m)	Graphic Log	Lithologic Description	Elevation (m RTD) Depth (m BGS) 97.46	Sample Number	Sample Type	Recovery	Lab Analyses	%LEL Comb▲ 20 40 60 80 1 1 1 1 ppm OTOV ● 200 400 600 800	Diagram	Description
- - - - - -		TOPSOIL moist to wet CRUSHED CONCRETE (FILL) grey, silt, trace clay, dry	97.48 0.00 97.38 0.08 95.94	1	DP	17" 28%	pH, Phenols	<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>		Flushmount protective cover with concrete seal
		SANDY SILT (FILL)	1.52	2	DP	47" 78%		- <5 0 1.0 	-	— Bentonite backfill — 50 mm ID PVC pipe
		SANDY SILT (FILL)	3.05	3	DP	31" 52%	Explosives	<pre> </pre>		
		- becomes grey		4	DP	26" 43%	Metals & Inorganics, Phenols	$ \begin{vmatrix} & & & \\ & & & \\ <5 & & & \\ \hline \\ 0 & & & \\ 1.0 & & \\ & & & \\ & & \\ & &$		— Groundwater Level: 5.29 m BGS 17-Mar-16
		- becomes moist to wet CLAY grey, moist, black staining at 7.5 m BGS	90.45 7.01	5	DP	30" 50%	PHC, VOC, PAH, Field Duplicate			— Silica sand backfill — 50 mm ID slotted PVC pipe
		- becomes wet	88.32	6	DP	30" 50%		<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>		— Slough
		End of Borehole	9.14						¥	

STANTEC BOREHOLE AND WELL V2 122511246.GPJ STANTEC - DATA TEMPLATE.GDT 3/29/16 MIFORD

 Screen Interval:
 5.64 - 8.69 m BGS

 Sand Pack Interval:
 5.33 - 8.69 m BGS

 Well Seal Interval:
 0.23 - 5.33 m BGS

Notes: m BGS - metres below ground surface DP - direct push sample ppm - parts per million by volume n/a - not available

PAH - polycyclic aromatic hydrocarbons PHC F1-F4 - petroleum hydrocarbon fractions 1 to 4 VOC - volatile organic compounds

Field Duplicate - MW16-1A SS5

Borehole: BH16-2

Project: Phase II Environmental Site Assessment Client: Public Services and Procurement Canada Sir John Carling Building Location: 122511246 Number: Field investigator: J. Urben / B. Chenier Strata Drilling Group Contractor:

Drilling method: Date started/completed: Ground surface elevation: 99.32 m RTD Top of casing elevation: n/a Easting: Northing:

GM100 (Direct Push) 14-Mar-2016 444365.8 5026932.5

			SUBSURFACE PROFILE				SA	MPLE DETAILS		INSTALLATION DETAILS
Dep		Graphic Log	Linologic Description	Elevation (m RTD) Depth (m BGS)	Sample Number	Sample Type	Recovery	Lab Analyses	%LEL Comb▲ 20 40 60 80 1 1 1 ppm OTOV ●	Ee Do Description
(ft)	(m)	N. N. N	Ground Surface TOPSOIL	99.32					200 400 600 800	
_	-		CLAYEY SILT brown with orange mottling, sand, gravel, dry	0.00	1	DP	21" 70%	Explosives, PAH, Metals	<5 0 <0.02	
- - 5 —				97.80	2a	DP	19" 63%		<5 <0.02	
-	2		SILTY SAND grey-brown, with gravel, moist	1.52	2b	DP	19" 32%		<pre><5 </pre>	
10 — - - -	 4		- becomes grey, dry		3	DP	24" 40%		<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>	
- 15 -	- - - -		- with silt, moist		4	DP	12" 20%	VOC, PHC	- - - - -	 ■ Bentonite backfill
- 20 — -	6 		No soil samples recovered	93.22 6.10			2070		<0.02 	
- 25	+		CLAY grey, gravel, trace silt, wet	91.70 7.62						
_					6	DP	12" 20%		<pre><5 <5 • <0.02 </pre>	
- 30 —	 		End of Borehole	90.18 9.14						

Stantec

Notes: m BGS - metres below ground surface DP - direct push sample ppm - parts per million by volume n/a - not available

PAH - polycyclic aromatic hydrocarbons PHC F1-F4 - petroleum hydrocarbon fractions 1 to 4 VOC - volatile organic compounds

Project: Phase II Environmental Site Assessment Client: Public Services and Procurement Canada Sir John Carling Building Location: 122511246 Number: Field investigator: J. Urben / B. Chenier Strata Drillir С

Contractor:	Strata Drilling Group			Northi	ng:	Ę	5026952	
	SUBSURFACE PROFILE				SAM	IPLE DETAILS		INSTALLATION DETAILS
Depth Graphic Log	c Lithologic Description	Elevation (m RTD) Depth (m BGS)	Sample Number	Sample Type	Recovery	Lab Analyses	%LEL Comb▲ 20 40 60 80 1 1 1 1 ppm OTOV ●	E Description
	Ground Surface TOPSOIL CRUSHED CONCRETE (FILL) with sand, gravel, dry	98.02 0.00 97.76 0.26	1	DP	9" 15%	Phenols	200 400 600 800 <5 <0.02 	Flushmount protective cover with concrete seal
	- brick fragments	94.97	2	DP	14" 23%	PAH, Metals & Inorganics	- 	 50 mm ID PVC pipe
	SAND (FILL) — — — — — — — — — — — — — — — — — —	3.05 93.45	3	DP	10" 17%	Phenols, Explosives		♥ Groundwater Level: 3.80 m BGS 17-Mar-16
	GRAVEL (FILL) trace silt, moist	4.57	4	DP	11" 18%	VOC, pH, PHC		 Groundwater Level: 3.80 m BGS 17-Mar-16 Silica sand backfill 50 mm ID slotted PVC pipe
	- with silt, trace clay, wet CLAY grey, with gravel, wet	91.62	5	DP	31" 52%		<pre><5 </pre>	Silian cond bookfill
	- trace sand	88.88	6	DP	38" 63%		<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>	Silica sand backfill
	End of Borehole	9.14		1	1			<u>r. · _ j</u>

STANTEC BOREHOLE AND WELL V2 122511246.GPJ STANTEC - DATA TEMPLATE.GDT 3/29/16 MIFORD

Screen Interval:3.05 - 6.10 m BGSSand Pack Interval:2.74 - 9.14 m BGSWell Seal Interval:0.23 - 2.74 m BGS

Notes: m BGS - metres below ground surface DP - direct push sample ppm - parts per million by volume n/a - not available

PAH - polycyclic aromatic hydrocarbons PHC F1-F4 - petroleum hydrocarbon fractions 1 to 4 VOC - volatile organic compounds

Borehole: BH16-4

Project:Phase II Environmental Site AssessmentClient:Public Services and Procurement CanadaLocation:Sir John Carling BuildingNumber:122511246Field investigator:J. Urben / B. ChenierContractor:Strata Drilling Group

Drilling method:	GM100 (Direct Push)
Date started/completed:	14-Mar-2016
Ground surface elevation:	94.29 m RTD
Top of casing elevation:	n/a
Easting:	444468.1
Northing:	5026816

Contractor	r:	Strata Drilling Group			Northi	ng:		5026816	
		SUBSURFACE PROFILE				SA	MPLE DETAILS		INSTALLATION DETAILS
Depth	Graphic Log		Elevation (m RTD) Depth (m BGS)	Sample Number	Sample Type	Recovery	Lab Analyses	%LEL Comb▲ 20 40 60 80 1 1 1 1 Ppm OTOV ● 200 400 600 800	- E B Description
(ft) (m)		Ground Surface SILTY SAND grey, trace clay, gravel, moist	94.29 0.00	1	DP	24" 40%	PAH, Metals, Explosives, Field Duplicate		
		SAND coarse to medium grained, with gravel	92.51 1.78 91.24	2	DP	24" 40%	Glycol, pH		
		SILTY SAND grey, with clay, gravel, wet	3.05	3	DP	36" 60%	VOC, PHC	<5	 ➡ Bentonite backfill
-				4	DP	29" 81%		<5 <0.02 	
20 - 6				5	DP	29" 121%	,	<5 0 <0.02 	
		Refusal on inferred bedrock End of Borehole	87.28	6	DP	36" 100%		<5 <0.02 	
 25 8 		End of Borehole							
30 —									

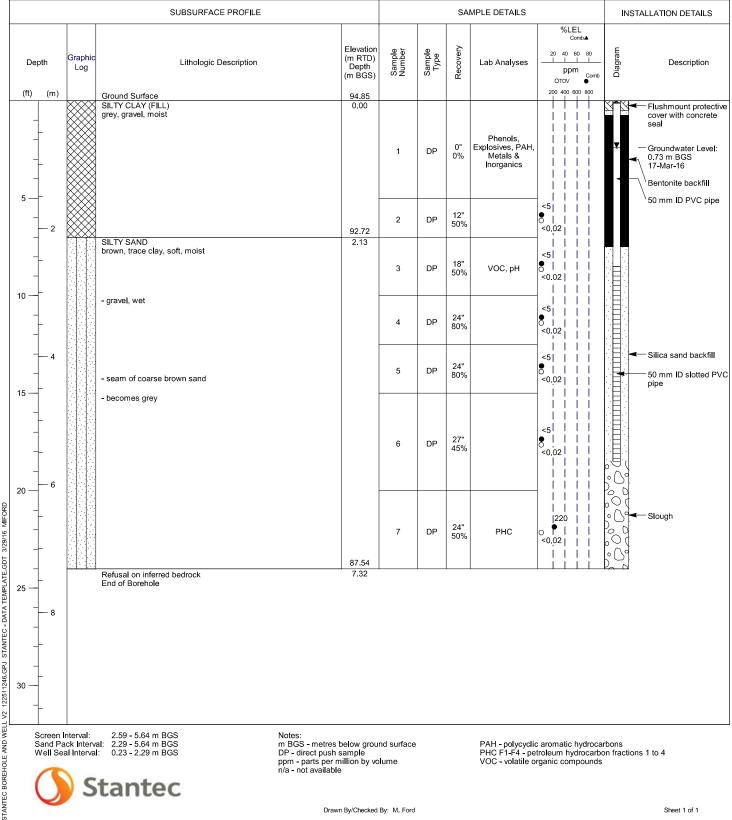
Stantec

STANTEC BOREHOLE AND WELL V2 122511246.GPJ STANTEC - DATA TEMPLATE.GDT 3/29/16 MIFORD

Notes: m BGS - metres below ground surface DP - direct push sample ppm - parts per million by volume n/a - not available

PAH - polycyclic aromatic hydrocarbons PHC F1-F4 - petroleum hydrocarbon fractions 1 to 4 VOC - volatile organic compounds

Field Duplicate - BH16-4 SS7 (for Metals Only)


Project: Phase II Environmental Site Assessment Client: Public Services and Procurement Canada Sir John Carling Building Location: 122511246 Number: Field investigator: J. Urben / B. Chenier Strata Drilling Group Contractor:

Drilling method:	GM100 (Direct Push)
Date started/completed:	14-Mar-2016
Ground surface elevation:	96.18 m RTD
Top of casing elevation:	96.10 m RTD
Easting:	444404.1
Northing:	5026972.9

	SUBSURFACE PROFILE					SA	MPLE DETAILS		INS	TALLATION DETAILS
Depth (ft) (m)	Graphic Log	Lithologic Description	Elevation (m RTD) Depth (m BGS) 96.18	Sample Number	Sample Type	Recovery	Lab Analyses	%LEL Comb▲ 20 40 60 80 Ppm OTCV ● 200 400 600 800	Diagram	Description
		SAND (FILL)	0.00						<u>k-</u> k-	Flushmount protect
		brown, clay, gravel, dry		1	DP	11" 18%	VOC, PHC, PAH, Metals & Inorganics, Explosives	<pre> <5 -0.02 </pre>		cover with concret seal
5		- becomes grey, moist	93.74	2	DP	36" 60%	Glycol, Field Duplicate		▼	Groundwater Leve
 _ _ 		SILTY SAND grey, gravel - trace clay, moist to wet	2.44			0070		<pre><0.02 </pre>		 Groundwater Leve 2.28 m BGS 17-Mar-16
- - - - - 4				3	DP	37" 62%		<pre><5 <0.02 </pre>		← Silica sand backfi
5										
- - - - - - 6				4	DP	27" 45%		$ \begin{vmatrix} & & & \\ & & & \\ <_{5} & & & \\ \bullet & & & \\ \bullet & & & \\ <_{0.02} & & \\ & & & \\ & & & \\ & & $		— 50 mm ID slotted I pipe
			89.47	5	DP	19" 79%		<5 • <0.02		
		Refusal on inferred bedrock End of Borehole	6.71							
	ick Interva al Interval	3.05 - 6.10 m BGS at: 2.74 - 6.71 m BGS : 0.23 - 2.74 m BGS tantec	Notes: m BGS - metres below grou DP - direct push sample ppm - parts per million by vo n/a - not available		•		PHC F1-F4 - pe	c aromatic hydroc; troleum hydrocart rganic compounds - MW16-5 SS7	on fractio	ns 1 to 4
		CUITCC								

Project: Phase II Environmental Site Assessment Client: Public Services and Procurement Canada Sir John Carling Building Location: 122511246 Number: Field investigator: J. Urben / B. Chenier Strata Drilling Group Contractor:

Drilling method:	GM100 (Direct Push)
Date started/completed:	11-Mar-2016 / 14-Mar-2016
Ground surface elevation:	94.85 m RTD
Top of casing elevation:	94.82 m RTD
Easting:	444454.1
Northing:	5026972.9

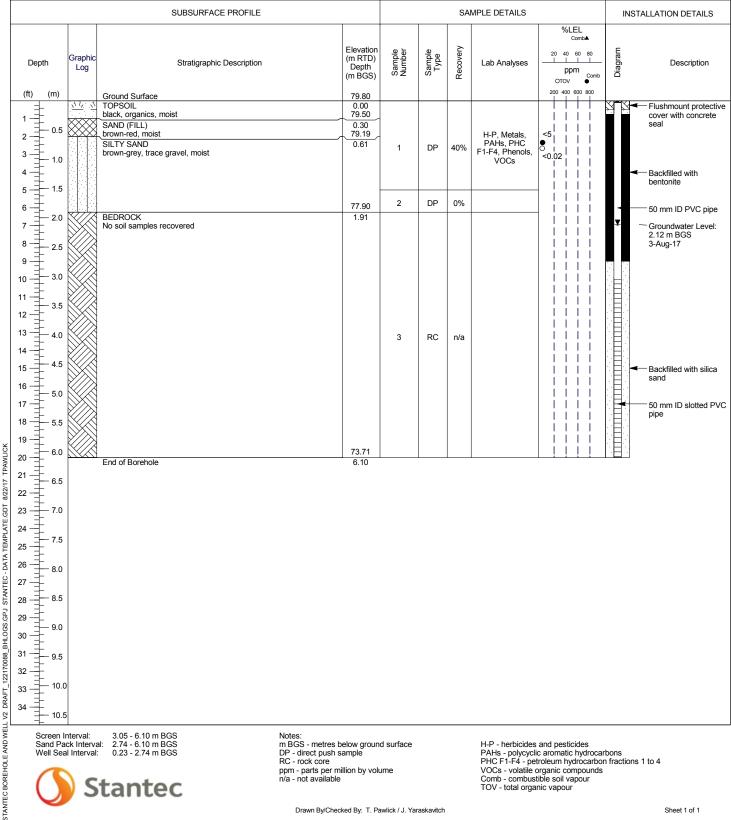
Stantec

Project: Phase II Environmental Site Assessment Client: Public Services and Procurement Canada Sir John Carling Building Location: 122511246 Number: Field investigator: J. Urben / B. Chenier Strata Drilling Group Contractor:

Drilling method:	GM100 (Direct Push)
Date started/completed:	14-Mar-2016
Ground surface elevation:	95.47 m RTD
Top of casing elevation:	95.36 m RTD
Easting:	444336.2
Northing:	5027014.9

		SUBSURFACE PROFILE				SA	MPLE DETAILS		INS	TALLATION DETAILS
	aphic _og	Lithologic Description	Elevation (m RTD) Depth (m BGS)	Sample Number	Sample Type	Recovery	Lab Analyses	%LEL Comb▲ 20 40 60 80 1 1 1 1 ppm OTOV ● 200 400 600 800	Diagram	Description
		Ground Surface TOPSOIL with grass, sand, dry SILTY CLAY brown, soft, dry	95.47 0.00 95.16 0.30	1	DP	24" 100%			X-X-	Flushmount protect cover with concrett seal
				2	DP	24" 67%	Phenols, Metals, Explosives, PAH	<5 		
2 2 		SILTY SAND	92.73 2.74	3	DP	36" 60%		<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>		— 50 mm ID PVC pi
		brown, coarse grained sand, gravel - becomes wet		4	DP	24" 80%	PHC, VOC, Field Duplicate	60		
- 4 		- grey SILTY SAND	90.90	5	DP	30" 100%		<5 0 <0.02 		
6		grey, trace clay, gravel, moist		6	DP	36" 60%		<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>		Groundwater Leve 4.79 m BGS 17-Mar-16 Silica sand backfi 50 mm ID slotted pipe
				7	DP	30" 50%		<pre><5 </pre>	0000	
				8	DP	28" 47%		<pre> <5 </pre> <pre></pre>		— Slough
	민이	End of Borehole	86.33 9.14						لأما	

Project: Phase II Environmental Site Assessment Client: Public Services and Procurement Canada Location: 870 and 930 Carling Avenue and 520 Preston Street, Ottawa, Ontario 122170088 Number: Field investigator: A. Parrott Contractor: Strata Drilling Group


Drilling method:	Geoprobe (direct push)
Date started/completed:	28-Jul-2017
Ground surface elevation:	79.39 m RTD
Top of casing elevation:	79.31 m RTD
Easting:	444632.4025
Northing:	5027203.643

Depth Origina Stratgraphic Description Elevation 0 ag 2 m FTD 0 ag 2 m FTD <th></th> <th>INSTALLATION DETAILS</th>		INSTALLATION DETAILS
ASPHALTINTERLOCKING BRICK 0.00 79.23 0.15 0.4 Def 79.23 0.15 0.46 Def 79.23 0.45 Def 79.23 0.46 Def 79.23 0.46 Def 79.23 0.46 Def 79.45, POB PHC F1.44 Phenols, VO 1 DP 50% PAHS, POB PHC F1.44 Def 74.66 Def 79.23 1 DP 50% PAHS, POB PHC F1.44 5 1.0 BEDROCK No soil samples recovered 0.91 2 RC n/a 1 3.5 1 DP 50% Pheros, VO 8 2.5 9 0.91 2 RC n/a 11 3.5 1 DP 50% Pheros, VO 11 3.5 1 DP 50% Pheros, VO 13 4.0 1 2 RC n/a 14 4.5 74.66 4.72 1 13 4.0 2 End of Borehole 4.72 1 14 4.5 1 0.4 4.72 1 14 5.5 1 6.0 1 <td>ppm OTOV ●</td> <td>- E By Description</td>	ppm OTOV ●	- E By Description
BEDROCK No soil samples recovered		Flushmount protective cover with concrete seal Backfilled with bentonite
9 10 10 12 12 13 14 14 15 14 15 14 15 16 5.0 17 16 5.0 17 18 5.5 19 20 10 14 15 15 16 16 16 16 16 16 16 16 16 18 18 18 18 18 18 18 18 18 18		50 mm ID PVC pipe
15 4.5 16 5.0 17 5.0 18 5.5 19 20 20 6.0 21 6.5 22 6.5		1.61 m BGS 3-Aug-17 Backfilled with silica sand 50 mm ID slotted PVC pipe
$ \begin{array}{c} 19 \\ 20 \\ 21 \\ 22 \\ 22 \\ 22 \\ 4 \end{array} $		
23 - 7.0 $24 - 7.5$ $25 - 7.5$ $26 - 8.0$ $27 - 4$ $28 - 8.5$ $29 - 9.0$ $30 - 9.0$ $31 - 9.5$ $32 - 10.0$		
$\begin{array}{c} 27 \\ 28 \\ 29 \\ 30 \\ 31 \\ 32 \\ 32 \\ 32 \\ 33 \\ 100 \end{array}$		
$\begin{array}{c} 31 & - & 9.5 \\ 32 & - & & \\ & 33 & - & & 10.0 \end{array}$		
Screen Interval: 1.68 - 4.72 m BGS Sand Pack Interval: 1.37 - 4.72 m BGS Well Seal Interval: 0.23 - 1.37 m BGS DP - direct push sample RC - rock core ppm - parts per million by volume Na - not available Comb - com TOV - total	nd furans vclic aromatic hydroc nlorinated biphenyls petroleum hydrocarb le organic compound ustible soil vapour ganic vapour	

Project: Phase II Environmental Site Assessment Client: Public Services and Procurement Canada Location: 870 and 930 Carling Avenue and 520 Preston Street, Ottawa, Ontario 122170088 Number: Field investigator: A. Parrott Strata Drilling Group Contractor:

Drilling method:	Geoprobe (direct push)
Date started/completed:	28-Jul-2017
Ground surface elevation:	79.80 m RTD
Top of casing elevation:	79.73 m RTD
Easting:	444449.4352
Northing:	5027137.48

Drawn By/Checked By: T. Pawlick / J. Yaraskavitch

TOV - total organic vapour

Project: Phase II Environmental Site Assessment Client: Public Services and Procurement Canada Location: 870 and 930 Carling Avenue and 520 Preston Street, Ottawa, Ontario 122170088 Number: Field investigator: A. Parrott Strata Drilling Group Contractor:

Drilling method:	Geoprobe (direct push)
Date started/completed:	27-Jul-2017
Ground surface elevation:	79.52 m RTD
Top of casing elevation:	79.42 m RTD
Easting:	444317.1276
Northing:	5027135.316

Contractor: Strata Drilling Group			Northing: 5027135.316						
SUBSURFACE PROFILE			SAMPLE DETAILS					INSTALLATION DETAILS	
Depth Graphic Log	Stratigraphic Description	(m BGS)	Sample Number	Sample Type	Recovery	Lab Analyses	%LEL Comb▲ 20 40 60 80 1 1 1 1 ppm OTOV ● 200 400 600 800	Diagram	Description
$\begin{array}{c} (ft) & (m) \\ \hline \\ 1 \\ 2 \\ - \\ 3 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ -$	Ground Surface TOPSOIL black, organics, moist SAND brown-black, trace gravel, moist SILTY SAND grey, trace gravel, moist - black organic soils, trace wood	79.52 0.00 79.22 0.30 78.91 0.61	2	DP	50%	H-P, Metals, PAHs, PHC F1-F4, Phenols, VOCs H-P, Metals, PAHs, PHC F1-F4, Phenols, VOCs	<pre></pre>	Cov sea Baa ber 50 ▼	kfilled with tonite mm ID PVC pipe undwater Level:
6 - 2.0 7 - 2.0 8 - 2.5 9	- grey, wet		3	DP	40%		$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Bad sar	mm ID slotted P\
0 3.0		76.32	5	DP _	0%		-		
13 4.0 14 4.5 15 4.5 16 5.0 17 5.5 18 5.5 19 6.0 20 6.0 21 6.5 22 7.0 24 7.5 25 8.0 27 8.5 28 8.5 29 9.0 31 9.5 32 10.0 34 10.5 Screen Interval: Sand Pack Interval		Notes: m BGS - metres below grour DP - direct push sample	nd surface			H-P - herbicides PAHs - polycyci	and pesticides ic aromatic hydrocar	thons	
Well Seal Interva		ppm - parts per million by vol	ume				troleum hydrocarbor organic compounds		

 Project:
 Phase II Environmental Site Assessment

 Client:
 Public Services and Procurement Canada

 Location:
 870 and 930 Carling Avenue and 520 Preston Street, Ottawa, Ontario

 Number:
 122170088

 Field investigator
 A. Parrott

 Contractor:
 Strata Drilling Group

Drilling method:	Geoprobe (direct push)
Date started/completed:	27-Jul-2017
Ground surface elevation:	85.13 m RTD
Top of casing elevation:	85.06 m RTD
Easting:	444502.0718
Northing:	5026981.471

Contractor	•				NOTUI	ig.		0020901.471		
		SUBSURFACE PROFILE				SAI	MPLE DETAILS		INSTA	ALLATION DETAILS
Depth (ft) (m)	Graphic Log	Straugraphic Description	Elevation (m RTD) Depth (m BGS)	Sample Number	Sample Type	Recovery	Lab Analyses	%LEL Comb▲ 20 40 60 80 1 1 1 1 ppm OTOV ● 200 400 600 800	Diagram	Description
(1) $(1)123-1.04-1.0$		Ground Surface TOPSOIL black, organics, moist SILTY SAND brown, trace gravel, moist	85.13 0.00 84.82 0.30	1	DP	80%	PCBs, Metals, PAHs, PHC F1-F4, Phenols, VOCs	<5 0 0.02 1		 Flushmount protective cover with concrete seal Backfilled with bentonite 50 mm ID PVC pipe
5 - 1.5 6 - 2.0 7 - 2.5		- moist-wet - wet	00.00	3	DP	80%	PCBs, Metals, PAHs, PHC F1-F4, Phenols, VOCs	<pre><5 <5 <0 <0 </pre>		Groundwater Level: 1.61 m BGS 3-Aug-17 Backfilled with silica sand
9		Refusal at inferred bedrock End of Borehole	82.38 2.74	4	<u> </u>			<0.02		150 mm ID slotted PVC pipe
11										
15 <u>4.5</u> 16 <u>5.0</u> 17 <u>5.0</u>										
18 - 5.5 19 - 6.0 20 - 6.0 21 - 6.0										
22 7.0 23 7.0										
27										
27 28 28 29 30 30 31 31 9.5 32 32 400 30 30 400 30 400 30 400 30 400 30 400 30 400 30 400 30 400 30 400 30 400 30 400 40										
31 - 9.5 32 - 10.0 33 - 10.0 34 - 10.5										
¦∟+	1									

STANTEC BOREHOLE AND WELL V2 DRAFT_122170088_BHLOGS.GPJ STANTEC - DATA TEMPLATE.GDT 8/22/17 TPAWLICK

Notes: m BGS - metres below ground surface DP - direct push sample ppm - parts per million by volume n/a - not available

PCBs - polychlorinated biphenyls PAHs - polycyclic aromatic hydrocarbons PHC F1-F4 - petroleum hydrocarbon fractions 1 to 4 VOCs - volatile organic compounds Comb - combustible soil vapour TOV - total organic vapour

Project: Phase II Environmental Site Assessment Client: Public Services and Procurement Canada 870 and 930 Carling Avenue and 520 Preston Street, Ottawa, Ontario Location: 122170088 Number: Field investigator: A. Parrott Strata Drilling Group Contractor:

Drilling method:	Geoprobe (direct push)
Date started/completed:	26-Jul-2017
Ground surface elevation:	94.49 m RTD
Top of casing elevation:	94.39 m RTD
Easting:	444231.6325
Northing:	5026850.536

	SUBSURFACE PROFILE			SAMPLE DETAILS					INS	TALLATION DETAILS	
	Depth (ft) (m)	Graphic Log	Stratigraphic Description	Elevation (m RTD) Depth (m BGS) 94.49	Sample Number	Sample Type	Recovery	Lab Analyses	%LEL Comb▲ 20 40 60 80 1 1 1 1 ppm OTOV ● 200 400 600 800	Diagram	Description
	1 0.5 2 0.5 3 1.0	<u>x^h I₂, x^h</u> I ₂ <u>x^h I₂</u>	SILT brown-grey, moist	93.88 0.61	1	DP	100%	H-P, Metals, PAHs, Phenois, VOCs	<5 0 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1	X-X-	 Flushmount protective cover with concrete seal
	4 1.5 6 2.0 7 2.0			92.05	3	DP	100%	PHC F1-F4	<pre><0.02 </pre>		 Backfilled with bentonite 50 mm ID PVC pipe
	8 2.5 9 10 3.0 11 3.5		SILTY SAND brown, trace gravel, wet - brown-grey	2.44	4			H-P, Metals, PAHs, PHC F1-F4, Phenols, VOCs	<5 ● <0.02 - <5		- Groundwater Level:
	12 4.0 13 4.0 14 15 4.5		- grey		6	DP	80%		<pre><0.02 <5 <0.02 </pre>		3.43 m BGS 3-Aug-17
	16 5.0 17 18 5.5 19				7	DP	80%		<pre><5 <0.02 <5 <5 <5 </pre>		sand 50 mm ID slotted PVC pipe
ATE.GDT 8/22/17 TPAWLICK	20 - 6.0 21 - 6.5 22 - 23 - 7.0 24 - 7.0		End of Borehole	<u> </u>					<pre><0.02 </pre>		
EC BOREHOLE AND WELL V2 DRAFT_122170088_BHLOGS.GPJ STANTEC - DATA TEMPLATE.GDT	24 7.5 25 7.5 26 8.0 27 8.5										
170088_BHLOGS.GPJ S	29 9.0 30 31 9.5 32										
VELL V2 DRAFT_122	33 - 10.0 34 - 10.5 Screen Ir		3.05 - 6.10 m BGS	Notes:							
EC BOREHOLE AND V	Screen II Sand Pa Well Sea	ck Interva I Interval	al: 2.74 - 6.10 m BGS	notes: m BGS - metres below grour DP - direct push sample ppm - parts per million by vo n/a - not available				H-P - herbicides PAHs - polycycl PHC F1-F4 - pe VOCs - volatile Comb - combus TOV - total orga	ic aromatic hydroca troleum hydrocarbo organic compounds tible soil vapour	rbons n fractions	s 1 to 4

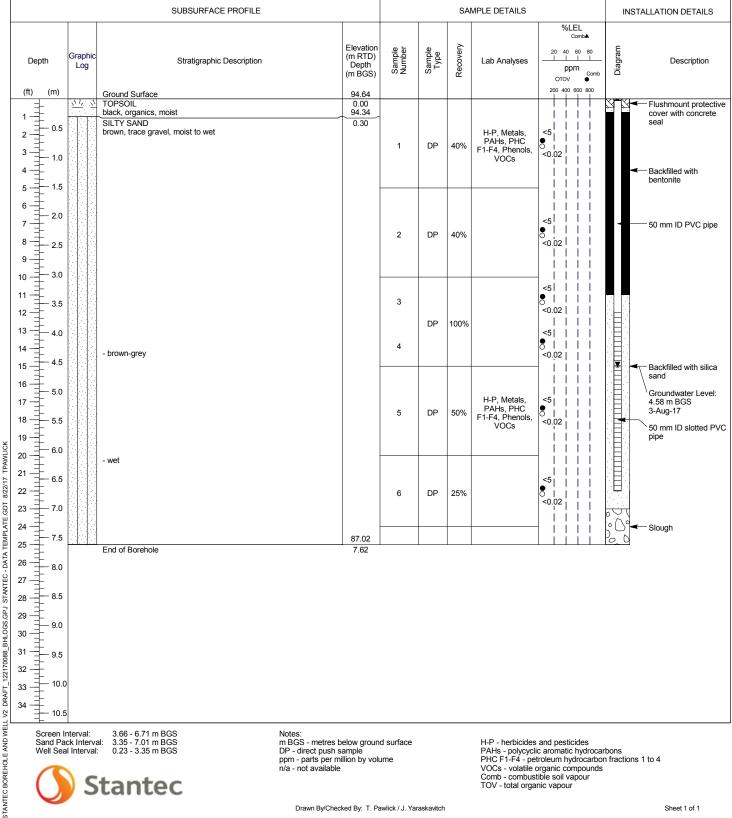
 Project:
 Phase II Environmental Site Assessment

 Client:
 Public Services and Procurement Canada

 Location:
 870 and 930 Carling Avenue and 520 Preston Street, Ottawa, Ontario

 Number:
 122170088

 Field investigator
 A. Parrott


 Contractor:
 Strata Drilling Group

Drilling method:	Geoprobe (direct push)
Date started/completed:	26-Jul-2017
Ground surface elevation:	95.09 m RTD
Top of casing elevation:	95.03 m RTD
Easting:	444175.7424
Northing:	5026815.478

		SUBSURFACE PROFILE					SAI	MPLE DETAILS		INSTA	LLATION DETAILS
Depth (ft) (m)	Graphic Log	Stratigraphic Description		Elevation (m RTD) Depth (m BGS)	Sample Number	Sample Type	Recovery	Lab Analyses	%LEL Comba 20 40 60 1 1 1 ppm OTOV 6 200 400 600	e Comp	Description
1	<u>x¹ /_x x</u>	Ground Surface TOPSOIL black-brown, organics, moist SANDY SILT brown, trace gravel, moist		95.09 0.00 94.78 0.30	1	DP	75%	H-P, Metals, PAHs, Phenols, VOCs			Flushmount protective cover with concrete seal Backfilled with bentonite
		SILTY SAND brown, trace gravel, moist to wet		93.87	2			PHC F1-F4			~ 50 mm ID PVC pipe
7 <u>-</u> 2.5 8 <u>-</u> 2.5 9 <u>-</u> 10 <u>-</u> 3.0				_	3	DP	50%	H-P, Metals, PAHs, PHC F1-F4, Phenols, VOCs	<pre><5 • <0.02 </pre>		- Backfilled with silica sand
11		- brown-grey			4	DP	n/a		<5 0 <0.02 <5		pipe
14		SAND brown, wet Refusal at inferred bedrock End of Borehole		90.82 4.27 90.48 4.60	5	_DP_/	\ <u>n/a</u> /		<pre></pre>		- Groundwater Level: dry on 3-Aug-17
18 5.5											
20 - 1 - 6.0 21 - 6.5 22 - 1 - 6.5 23 - 7.0 23 - 7.0											
25 7.5 26 8.0 27											
28 - 8.5 29 - 9.0 30 - 9.0											
23 7.0 24 7.5 26 8.0 27 8.5 29 9.0 30 9.0 31 9.5 32 10.0 34 10.5 Screen I Screen I Sc											
Screen I Sand Pa Well Sea	ck Interva I Interval		Notes: m BGS - metres be DP - direct push sa ppm - parts per mill n/a - not available	mple				H-P - herbicides PAHs - polycycl PHC F1-F4 - pe VOCs - volatile Comb - combus TOV - total orga	ic aromatic hyd troleum hydrod organic compo tible soil vapou	drocarbons carbon fractions 1 ounds	to 4
	5		Drawn Bv/Check	ed By: T Pa	wlick / I Var	askavitch		-			Sheet 1 of 1

Project: Phase II Environmental Site Assessment Client: Public Services and Procurement Canada Location: 870 and 930 Carling Avenue and 520 Preston Street, Ottawa, Ontario 122170088 Number: Field investigator: A. Parrott Strata Drilling Group Contractor:

Drilling method:	Geoprobe (direct push)
Date started/completed:	26-Jul-2017
Ground surface elevation:	94.64 m RTD
Top of casing elevation:	94.58 m RTD
Easting:	444240.9625
Northing:	5026754.904

Stantec

Drawn By/Checked By: T. Pawlick / J. Yaraskavitch

TOV - total organic vapour

Project: Phase II Environmental Site Assessment Client: Public Services and Procurement Canada Location: 870 and 930 Carling Avenue and 520 Preston Street, Ottawa, Ontario 122170088 Number: Field investigator: A. Parrott Contractor: Strata Drilling Group

Drilling method:	Geoprobe (direct push)
Date started/completed:	26-Jul-2017
Ground surface elevation:	95.59 m RTD
Top of casing elevation:	95.52 m RTD
Easting:	444299.964
Northing:	5026787.713

SUBSURFACE PROFILE					1	SA	MPLE DETAILS	INS	STALLATION DETAILS	
Depth (ft) (m)	Graphic Log	Stratigraphic Description	Elevation (m RTD) Depth (m BGS)	Sample Number	Sample Type	Recovery	Lab Analyses	%LEL Comb▲ 20 40 60 80 1 1 1 1 ppm Comb OTOV ● 200 400 600 800	Diagram	Description
	11. 51 1	Ground Surface TOPSOIL	95.59 0.00							Flushmount protective
		SAND brown, trace silt and gravel, moist	94.98 0.61 94.07	1	DP	40%	H-P, Metals, PAHs, PHC F1-F4, Phenols, VOCs	<pre><5</pre>		Backfilled with bentonite
5 - 1.5 6 - 2.0 7 - 2.5		SILTY SAND brown, trace gravel, moist No soil samples recovered	93.15 2.44	2	DP	50%	H-P, Metals, PAHs, PHC F1-F4, Phenols, VOCs	<pre></pre>		
9 10 11 11 12 12 12 12 12 12 12 12		- augered through boulders		3	DP	20%				 Backfilled with silica sand 50 mm ID slotted PVC
13 - 4.0 14 - 4.5 15 - 4.5 16 - 5.0 17 - 18 - 5.5		SILTY SAND grey, trace gravel, moist Refusal at inferred bedrock End of Borehole	90.41 5.18 90.11 5.49	4	RC	n/a				pipe — Groundwater Level: 5.21 m BGS 3-Aug-17
19										
30	nterval: ck Interval I Interval:	2 23 - 5 28 m BGS 1.93 - 5 49 m BGS 0.23 - 1.93 m BGS tantec	Notes: m BGS - metres below ground DP - direct push sample RC - rock core ppm - parts per million by volu n/a - not available				PHC F1-F4 - pe	ic aromatic hydroca troleum hydrocarbo organic compounds tible soil vapour	n fractior	ns 1 to 4

Project: Phase II Environmental Site Assessment Client: Public Services and Procurement Canada Location: 870 and 930 Carling Avenue and 520 Preston Street, Ottawa, Ontario 122170088 Number: Field investigator: A. Parrott Strata Drilling Group Contractor:

Drilling method:	Geoprobe (direct push)
Date started/completed:	27-Jul-2017
Ground surface elevation:	99.19 m RTD
Top of casing elevation:	99.12 m RTD
Easting:	444493.9007
Northing:	5026676.009

		SUBSURFACE PROFILE	SAMPLE DETAILS					INSTALLATION DETAILS		
Depth (ft) (m)	Graphic Log	Stratigraphic Description	Elevation (m RTD) Depth (m BGS) 99.19	Sample Number	Sample Type	Recovery	Lab Analyses	%LEL Comb▲ 20 40 60 80 1 1 1 ppm OTOV ● 200 400 600 800	Diagram	Description
1		SILTY SAND brown, trace gravel, moist	97.97 97.97 1.22	1	DP	30%	H-P, Metals, PAHs, PHC F1-F4, Phenols, VOCs	<pre><5 </pre>		Flushmount protective cover with concrete seal Backfilled with bentonite 50 mm ID PVC pipe
5 - 1.5 6 - 2.0 7 - 2.0 7 - 2.0 9 - 2.5 9				2 3	DP	70%		<pre><5 </pre>	¥	 Groundwater Level: 2.24 m BGS 3-Aug-17
				4	DP	50%	H-P, Metals, PAHs, PHC F1-F4, Phenols, VOCs	<pre><5 <.0.02 </pre>		
13 <u>4.0</u> 14 <u>4.5</u> 15 <u>4.5</u>				5	DP	25%				
16		- grey, wet		6 7	DP	80%		<pre><5 <0.02 <5 <0.02 <1 <5 <0.02 <1 <0.02 <1 <1 <0.02 <1 <0.02 <0.02 </pre>		sand 50 mm ID slotted PV0 pipe
20 - 6.0 21 - 6.5 22 - 23 - 7.0 24 - 7.5			91.57	8	DP	100%		<pre><5</pre>		— Slough
$\begin{array}{c} 25 \\ 26 \\ - \\ 28 \\ - \\ 28 \\ - \\ 28 \\ - \\ 30 \\ - \\ - \\ 30 \\ - \\ - \\ - \\ 9.0 \\ - \\ - \\ 9.0 \\ - \\ - \\ 9.0 \\ - \\ - \\ 9.0 \\ - \\ - \\ 9.0 \\ - \\ - \\ - \\ 9.0 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ $		End of Borehole	7.62		1					
34 10.5 Screen Ir Sand Par Well Sea	l terval: ck Interva I Interval:		Notes: m BGS - metres below groun DP - direct push sample ppm - parts per million by volu n/a - not available				PHC F1-F4 - pe	ic aromatic hydroca troleum hydrocarbo organic compounds tible soil vapour	n fractions	1 to 4

Project: Phase II Environmental Site Assessment Client: Public Services and Procurement Canada Location: 870 and 930 Carling Avenue and 520 Preston Street, Ottawa, Ontario 122170088 Number: Field investigator: A. Parrott Strata Drilling Group Contractor:

Drilling method:	Geoprobe (direct push)
Date started/completed:	27-Jul-2017
Ground surface elevation:	96.57 m RTD
Top of casing elevation:	96.48 m RTD
Easting:	444546.5613
Northing:	5026699.988

	SUBSURFACE PROFILE				SAMPLE DETAILS					INSTALLATION DETAILS	
Depth	, ⁰	Graphic Log	Stratigraphic Description	Elevatio (m RTD) Depth (m BGS	ampl	Sample Type	Recovery	Lab Analyses	%LEL Comb▲ 20 40 60 80 1 1 1 1 ppm OTOV ●	Diagram	Description
(ft) 1 2 3	(m) - 0.5 - 1.0		Ground Surface TOPSOIL black, organics, moist SILTY SAND brown, trace gravel, wet	96.57 0.00 96.26 0.30	1	DP	60%	H-P, Metals, PAHs, PHC F1-F4, Phenols, VOCs	200 400 600 800 <5 0 <0.02 <5		Flushmount protective cover with concrete seal Backfilled with bentonite
4 5 6 7	- 1.5 - 2.0		- moist		2			H-P, Metals, PAHs, PHC F1-F4, Phenols, VOCs	• • 0.02 • 1 • 1 • 0.02		∼50 mm ID PVC pipe
8 9 10 11	- 2.5 - 3.0				4	DP	75%		<5 0 <0.02 <5		[—] Groundwater Level: 2.79 m BGS 3-Aug-17
	- 3.5 - 4.0 - 4.5				6	DP	75%		• <0.02		[—] Backfilled with silica sand
16 17 18 	- 5.0		- grey		7	DP	50%		<pre><5 < 0.2 < 0.2 < 1 < 5 < 0.2 </pre>		[—] 50 mm ID slotted PVC pipe
22 22	- 6.0		No sample recovered	90.47 6.10	9	DP	0%				[—] Slough
A TEMPLATE.C	- 7.5		End of Borehole	89.25 7.32						00	
28	- 8.0 - 8.5 - 9.0 - 9.5 - 10.0 - 10.5										
SCR Sar Sar We		Interva Interval:	l: 2.74 - 6.40 m BGS 0.23 - 2.74 m BGS	Notes: m BGS - metres below grou DP - direct push sample ppm - parts per million by vo n/a - not available				PHC F1-F4 - pe	ic aromatic hydroca troleum hydrocarbo organic compounds tible soil vapour	n fractions	1 to 4
STANTE				Drawn By/Checked By: T.	Pawlick / J. Ya	raskavitch					Sheet 1 of 1

golder.com