

Developpements Proximi-T Inc.

Phase Two Environmental Site Assessment 971 Montreal Road Ottawa, Ontario

MM2320

August 10th, 2022

CM3 Environmental Inc. 5710 Akins Road Ottawa, Ontario K2S 1B8

TABLE OF CONTENTS

1.0	Executive Summary1					
2.0	Intr	Introduction				
	2.1	Site Description	.3			
	2.2	Property Ownership	.3			
	2.3	Current and Proposed Future Uses	.4			
	2.4	Applicable Site Condition Standard	4			
3.0	Bac	ckground Information	.5			
	3.1	Physical Setting	.5			
		3.1.1 Water Bodies and Areas of Natural Significance	5			
		3.1.2 Topography and Drainage	5			
		3.1.3 Geology	. 5			
		3.1.4 Wellhead Protection Area, Water Supply and Wells	6			
	3.2	Past Investigations	6			
4.0	Sco	ope of the Investigation	8			
	4.1	Overview of Site Investigation	8			
	4.2	Media Investigated	9			
	4.3	Phase One Conceptual Site Model	9			
	4.4	Deviations From Sampling and Analysis Plan	9			
	4.5	Impediments	0			
5.0	Inv	estigation Method	1			
	5.1	General	1			
	5.2	Drilling and Excavating	1			
	5.3	Soil: Sampling	1			
	5.4	Field Screening Measurements	1			
	5.5	Ground Water: Monitoring Well Installation	2			
	5.6	Ground Water: Field Measurement of Water Quality Parameters	13			
	5.7	Ground Water: Sampling	13			
		5.7.1 LPH and Water Level Measurement	13			
		5.7.2 Sample Collection	13			
	5.8	Analytical Testing	13			
	5.9	Residue Management Procedures	15			
	5.10	Elevation Surveying				
	5.11	Quality Assurance and Quality Control Measures	15			
		5.11.1 Blind Field Duplicates – Sampling QA/QC				
		5.11.2 Trip Blanks and Trip Spikes				
		5.11.3 Laboratory QA/QC	16			
6.0		Review and Evaluation1				
	6.1	Geology				
	6.2 Ground Water: Elevations and Flow Direction					
	6.3	Ground Water: Hydraulic Gradients				
		6.3.1 Horizontal Gradients	17			

		6.3.2	Vertical Gradients				
	6.4	Fine-	Medium Soil Texture				
	6.5	Soil:					
	6.6	Soil (Soil Quality				
		6.6.1	APEC 1 – Subject Property				
	6.7	Ground Water Quality					
		6.7.1	APEC 1 – Subject Property				
	6.8	Qual	ity Assurance and Quality Control Results				
		6.8.1	Blind Field Duplicates				
		6.8.2	Trip Blanks and Trip Spikes				
		6.8.3	Laboratory QA/QC				
	6.9	Phas	e Two Conceptual Site Model	24			
7.0	Cor	Conclusions					
	7.1	Signa	atures				
8.0	Ref	erence	95				

LIST OF TABLES

- Table 1:Monitoring Well Construction
- Table 2:LPH and Water Level Measurements
- Table 3: Summary of Soil Analytical Results BTEX and PHCs F1-F4
- Table 4: Summary of Soil Analytical Results VOCs
- Table 5:
 Summary of Soil Analytical Results Metals
- Table 6:Summary of Soil Analytical Results PAHs
- Table 7: Summary of Groundwater Analytical Results BTEX and PHCs F1-F4
- Table 8: Summary of Groundwater Analytical Results VOCs
- Table 9:
 Summary of Groundwater Analytical Results Metals
- Table 10:
 Summary of Groundwater Analytical Results PAHs
- Table 11:
 Soil and Groundwater Maximum Concentrations

LIST OF FIGURES

- Figure 1: Site Location
- Figure 2: Site Plan
- Figure 3: Potentially Contaminating Activities
- Figure 4: Areas of Potential Environmental Concern
- Figure 5: Groundwater Elevations May 3, 2022
- Figure 6: Soil Quality BTEX and PHCs F1-F4
- Figure 7: Soil Quality VOCs
- Figure 8: Soil Quality Metals
- Figure 9: Soil Quality PAHs
- Figure 10: Groundwater Quality BTEX and PHCs F1-F4
- Figure 11: Groundwater Quality VOCs
- Figure 12: Groundwater Quality Metals
- Figure 13: Groundwater Quality PAHs
- Figure 14: Distribution of Contamination BTEX and PHCs F1-F4
- Figure 14A: Distribution of Contamination Cross Section AA' BTEX and PHCs F1-F4
- Figure 14B: Distribution of Contamination Cross Section BB' BTEX and PHCs F1-F4
- Figure 15: Distribution of Contamination VOCs
- Figure 15A: Distribution of Contamination Cross Section AA' VOCs
- Figure 15B: Distribution of Contamination Cross Section BB' VOCs
- Figure 16: Distribution of Contamination Metals
- Figure 16A: Distribution of Contamination Cross Section AA' Metals
- Figure 16B: Distribution of Contamination Cross Section BB' Metals
- Figure 17: Distribution of Contamination PAHs
- Figure 17A: Distribution of Contamination Cross Section AA' PAHs
- Figure 17B: Distribution of Contamination Cross Section BB' PAHs

LIST OF APPENDICES

- Appendix A: Finalized Field Logs
- Appendix B: Certificates of Analysis
- Appendix C: Survey of Phase Two Property

ACRONYMS

0 ppm	not detected
ANSI(s)	area(s) of natural and scientific interest
APEC(s)	area(s) of potential environmental concern
BFD	blind field duplicate
BH	borehole
BTEX	benzene, toluene, ethylbenzene, xylenes
CALA	Canadian Association for Laboratory Accreditation
CGD	combustible gas detector
cm	centimetre
CM3	CM3 Environmental
CSA	Canadian Standards Association
CSM	conceptual site model
Downing	Forage Downing Drilling
ESA	environmental site assessment
g	gram
На	hectare(s)
HSVL	headspace vapour level
Kg	kilogram
Km	kilometre(s)
L	litre(s)
LDPE	low density polyethylene
LNAPL	light non-aqueous phase liquid(s)
LPH	liquid phase hydrocarbon
m	metre(s)
m arl	metres above reference level
m asl	metres above sea level
m bg	metres below grade
m bgs	metres below ground surface
MDL	method detection limit
MECP	Ontario Ministry of the Environment, Conservation and Parks
mg	milligram
mL	millilitre
mm	millimetre
MRL	method reporting limit
MDL	method detection limit
μg	microgram
μm	micrometre
MW	monitoring well
N/S	not specified

NA	not applicable/not analysed
O. Reg.	Ontario Regulation
O.Reg. 153/04	Ontario Regulation 153/04, as amended
O.Reg. 558	Ontario Regulation 558, as amended
O.Reg. 903	Ontario Regulation 903, as amended
OGS	OGS Drilling Inc.
PAH(s)	polycyclic aromatic hydrocarbon(s)
Paracel	Paracel Laboratories Limited
PCA(s)	potentially contaminating activity(ies)
PHCs	petroleum hydrocarbons
PHCs F1-F4	petroleum hydrocarbons F1 to F4 fractions
PIN	property identification number
ppm	parts per million
QA	quality assurance
QC	quality control
QPESA	Qualified Person for ESAs per O.Reg. 153/04
RDL	reporting detection limit
RPD	relative percent difference
RSC	Record of Site Condition
SAP	sampling and analysis plan
SCS	site condition standard(s)
site	971 Montreal Road
SOP	standard operating procedure(s)
SQG	soil quality guidelines
subject property	971 Montreal Road
UST	underground storage tank
VOC(s)	volatile organic compound(s)

1.0 EXECUTIVE SUMMARY

CM3 Environmental (CM3) was retained by Developpements Proximi-T Inc. to conduct a Phase I Environmental Site Assessment (ESA) for the property located at 971 Montreal Road Ottawa, Ontario ("site" or "subject property"). The Phase I ESA was completed in 2020 in support of a real estate transaction. A Phase II ESA was completed in July 2020, based on the findings of the Phase I ESA. CM3 issued the Phase I ESA report on July 28, 2020, and the Phase II ESA report was issued on July 31, 2020.

CM3 was requested to revise the 2020 Phase I and II ESAs to provide a Phase One ESA and Phase Two ESA in the reporting format required by the City of Ottawa to support a Site Plan Control Application and for the filing of a record of site condition (RSC). The July 2020 Phase II ESA was incorporated into the updated Phase Two ESA.

The initial Phase II ESA was entitled "CM3 Environmental. Phase II Environmental Site Assessment 971 Montreal Road Ottawa, Ontario. July 31, 2020".

The Phase II ESA was completed in July 2020 following the July 2020 Phase I ESA. The Phase II ESA include the advancement of three boreholes completed as monitoring wells to evaluate soil and groundwater conditions, and the presence of contaminants of concern related to APEC(s). The results of the Phase II ESA are incorporated into this report and are discussed in the appropriate sections.

The scope of work for the Phase II ESA included:

- The preparation of a site-specific health and safety plan;
- The determination of the locations of all underground utilities by a third-party utility locator;
- The advancement of three boreholes completed as monitoring wells;
- The continuous collection of soil samples during the drilling for soil logging and on-site field screening;
- The selection of soil samples from each borehole for laboratory analysis of PHCs F1-F4, VOCs and metals;
- The measurement of the depth to LPH and groundwater in all newly installed monitoring wells; and
- The collection of groundwater samples from all newly installed monitoring wells for laboratory analysis of PHCs F1-F4, VOCs and metals.

The results of the Phase Two ESA identified the presence of impacted (concentrations above applicable SCS) soil at the southeast corner, northeast property boundary and southwest corner of the property.

The contaminants and impacted media at each location are summarized in the following table.

Summary of Soil and Groundwater Contamination								
Location	Contaminant Group	Borehole (Sample ID; depth) / Monitoring Well	Contaminant	Impacted Media				
Southeast corner	PHCs F1-F4	MW4 (SA3; 1.52-1.91 m bg)	F3 fraction	Soil				
Northeast property boundary	Metals	MW8 (SA1; 0.0-0.76 m bg)	zinc	Soil				
Southwest corner	PAHs	MW5 (SA1; 0.0-0.76 m bg)	fluoranthene	Soil				
Center of site VOCs		MW1, MW2, MW3	chloroform	Groundwater				

2.0 INTRODUCTION

CM3 Environmental (CM3) was retained by Developpements Proximi-T Inc. to conduct a Phase I Environmental Site Assessment (ESA) for the property located at 971 Montreal Road Ottawa, Ontario ("site" or "subject property"). The Phase I ESA was completed in 2020 in support of a real estate transaction. A Phase II ESA was completed in July 2020, based on the findings of the Phase I ESA. CM3 issued the Phase I ESA report on July 28, 2020, and the Phase II ESA report was issued on July 31, 2020.

CM3 was requested to revise the 2020 Phase I and II ESAs to provide a Phase One ESA and Phase Two ESA in the reporting format required by the City of Ottawa to support a Site Plan Control Application and for the filing of a record of site condition (RSC). The July 2020 Phase II ESA was incorporated into the updated Phase Two ESA.

2.1 Site Description

The civic address for the subject property is 971 Montreal Road, Ottawa, Ontario. The legal description is Lot 22, Concession 10F. The property identification number for the subject property is 042740181. The subject property is zoned AM for Arterial Mainstreet Zone and the current use is commercial. The site location is provided as **Figure 1**. A survey of the subject property is provided in **Appendix C**.

The subject property is rectangular in shape and is bounded by Montreal Road to the south, commercial properties to the east and west, and commercial and residential development to the north. The total area of the subject property is approximately 0.18 hectares (0.44 acres). One two-storey commercial building is located on the east property boundary. The building consists of a large kitchen, dining room, unfinished basement with mechanical rooms, a vacant second floor apartment with two bedrooms and a washroom. A large parking lot spans the south, west and north areas of the property with roughly 20 spaces. A small patch of vegetation is present on the west and north boundaries of the property. A site plan is provided as **Figure 2**.

2.2 Property Ownership

CM3 was retained by Developpements Proximi-T Inc. in July 2020 to conduct the Phase I/II ESAs. At the time of the 2020 Phase I ESA, the property owner was Mr. Ying Ling Liao. The current property owner is 12318407 Canada Inc. Contact Information for Developpements Proximi-T Inc. and the current owner is provided below:

12318407 Canada Inc. 6-3500 Av Atwater Montreal, QC H3H 1Y5 martin.sacksner@placementssommet.com

2.3 Current and Proposed Future Uses

The current and past land uses were determined based on the historical records search, a review of historical aerial photographs, and site interviews completed as part of the Phase One ESA. The subject property was developed prior to 1958 and has been used for commercial purposes since development and the current property use is commercial. The property has been vacant since late 2020.

The proposed future property use, as conveyed by Developpements Proximi-T Inc., is multi-unit residential. Based on the proposed change in land use from commercial to residential, the filing of an RSC would be required under the Ontario Environmental Protection Act, section 168.3.1.

2.4 Applicable Site Condition Standard

The results of the soil and groundwater analyses were compared to the Ontario Ministry of Environment, Conservation and Parks (MECP) *Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act,* under Ontario Regulation (O. Reg.) 153/04. The following site conditions were used in the selection of the appropriate site condition standards (SCS):

- No environmentally sensitive areas were located on site or in the immediate vicinity;
- Conservatively, the site was considered a shallow soil property (i.e. bedrock less than 2 metres below grade);
- The site was not located within 30 m of a water body;
- Groundwater was not used as a potable water source in the area; and
- Land use at the site was considered commercial, however a residential development is proposed for the property.

The Table 7 Full Depth Generic Site Condition Standards in a Non-Potable Groundwater Condition with fine soils and residential land use were selected for evaluation of the analytical results, based on the above.

3.0 BACKGROUND INFORMATION

3.1 Physical Setting

3.1.1 Water Bodies and Areas of Natural Significance

There are multiple unevaluated wetlands to the south and west o the subject property, outside of the Phase One Study Area. There were no wetlands identified within the Phase One study area.

The Ottawa River is approximately 1.8 km north of the site, outside of the Phase One study area. No water bodies were identified within the Phase One study area.

One Area of Natural and Scientific Interest (ANSI) ("St. Laurent – Montreal Road") was identified within 2000 m of the site but outside of the Phase One study area. No ANSI were identified within the Phase One study area.

3.1.2 Topography and Drainage

The subject property is relatively flat at an elevation of approximately 102 m above sea level (m asl). The site the site slopes slightly downward from Montreal Road at the south to north property boundary. The subject property is located on a topographic high, and the Phase One study area slopes downwards in all directions to 88-96 m asl to the north and east, and 80 m asl to the south and west. The topography is shown on the site location map, **Figure 1**.

The Ottawa River is approximately 1.8 km north of the site, outside of the Phase One study area. No water bodies were identified within the Phase One study area. The Ottawa River is shown on the site location map, **Figure 1**.

Surface drainage at the subject property is likely controlled by the primary surface covering (asphalt) and site grading. The surface drainage is likely by overland flow toward the north property boundary. There were no drainage ditches surrounding the subject property. Information regarding soil and bedrock drainage were not available. The inferred regional groundwater flow direction was north towards the Ottawa River.

3.1.3 Geology

The surficial geology of the subject property and Phase One study area was interpreted from the Ontario Geological Survey Surficial Geology of Southern Ontario (Miscellaneous Releases, 2010) and the ERIS PSR. The surficial geology consists of a thin veneer of unconsolidated Quaternary sediments up to 1m thick, overlying relatively flat lying, bare, tabular outcrops of limestone, dolomite, sandstone and locally shale and the surficial geology of the Phase One study consists of clay, silty clay and silt, locally overlain by sand.

The bedrock geology of the subject property was interpreted from the Ontario Geological Survey Bedrock Geology of Ontario (Miscellaneous Releases, 2011) and the ERIS PSR. The bedrock at

the site consists of limestone, dolostone, shale, arkose and sandstone of the Ottawa Group and Simcoe Group, Shadow Lake Formation.

3.1.4 Wellhead Protection Area, Water Supply and Wells

The subject property is not within a City of Ottawa wellhead protection area and supply wells were not identified at the subject property. The Phase One study area is supplied potable water by the City of Ottawa municipal drinking water system, based on available information. CM3 did not identify any wells within the phase one study area that supply water used for human consumption or an agricultural use.

3.2 Past Investigations

The following reports were reviewed in preparation of the phase Two ESA work plan:

<u>CM3 Environmental. Phase I Environmental Site Assessment 971 Montreal Road Ottawa,</u> <u>Ontario. July 28, 2020. Revised July, 2022 (Phase One ESA)</u>

CM3 completed a Phase I ESA in July 2020 in support of a real estate transaction. The Phase I ESA was revised and updated to provide a Phase One ESA to support a City of Ottawa Site Plan Control Application, and for the filing of a record of site condition (RSC). Information provided in the Phase I ESA was incorporated into the updated Phase One ESA. The Phase One ESA identified two on-site potentially contaminating activities (PCAs) and 20 off-site PCAs within the Phase One study area. One area of potential environmental concern (APEC) was identified at the subject property based on the evaluation of the PCAs. The APEC and contaminants of concerns are summarized in the following table:

Areas of Potential Environmental Concern						
APEC	Location	Cause of Concern	COCs			
1	Subject property	PCA 1. Former heating fuel storage tank (unconfirmed).	VOCs, PHCs F1-F4, PAHs			
		PCA 2. Importation of Fill Material of Unknown Quality	VOCs, PHCs F1-F4, PAHs, metals			
		PCA 6. 989 Montreal Road. Generator and fuel storage tank.	BTEX, PHCs F1-F4			
		PCA 10. 881 Montreal Road. Former Gas Station.	BTEX, PHCs F1-F4			
		PCA 12. 947 Montreal Road. Former Gas Station.	BTEX, PHCs F1-F4			
		PCA 13. 973 Montreal Road. Former Gas Station.	BTEX, PHCs F1-F4			
		PCA 14. 973 Montreal Road. Automobile service Garage.	VOCs, PHCs F1-F4, metals			
		PCA 16. 561 Foxview Place. Former Fuel Oil Tanks.	BTEX, PHCs F1-F4			
		PCA 17. 53 Hochelaga Street. Former Fuel Oil Tanks.	BTEX, PHCs F1-F4			

BTEX Benzene, toluene, ethylbenzene, xylenes

PHCs F1-F4 Petroleum hydrocarbons F1 to F4 fractions

VOCs Volatile organic compounds (including BTEX)

PCBs Polychlorinated biphenyls

PAHs Polycyclic aromatic hydrocarbons

The subject property was identified as an APEC due to the locations of the PCAs, overlap between PCAs, COCs, the size of the property and potential areas of contamination. Any subsurface investigation at the subject property would address multiple PCAs simultaneously.

<u>CM3 Environmental. Phase II Environmental Site Assessment 971 Montreal Road Ottawa,</u> <u>Ontario. July 31, 2020.</u>

The Phase II ESA was completed in July 2020 following the July 2020 Phase I ESA. The Phase II ESA include the advancement of three boreholes completed as monitoring wells to evaluate soil and groundwater conditions, and the presence of contaminants of concern related to APEC(s). The results of the Phase II ESA are incorporated into this report and are discussed in the appropriate sections.

4.0 SCOPE OF THE INVESTIGATION

4.1 Overview of Site Investigation

The Phase Two ESA was completed in two stages between, based on the requirements of Developpements Proximi-T Inc. The fist stage was the completion of a Phase II ESA in July 2020, and the second stage was this Phase Two ESA. The investigations were completed following the requirements of the Canadian Standards Association (CSA) Standard Z769-00 (R2008) and in accordance with Ontario Regulation (O. Reg.) 153/04.

The July 2020 Phase II ESA was completed as described in CM3's proposal. The purpose of the July 2020 investigation was to assess the presence of potential contaminants of concern identified in the July 2020 Phase I ESA. The scope of work for the Phase II ESA included:

- The preparation of a site-specific health and safety plan;
- The determination of the locations of all underground utilities by a third-party utility locator;
- The advancement of three boreholes completed as monitoring wells;
- The continuous collection of soil samples during the drilling for soil logging and on-site field screening;
- The selection of soil samples from each borehole for laboratory analysis of PHCs F1-F4, VOCs and metals;
- The measurement of the depth to LPH and groundwater in all newly installed monitoring wells; and
- The collection of groundwater samples from all newly installed monitoring wells for laboratory analysis of PHCs F1-F4, VOCs and metals.

This Phase Two ESA was completed to enhance the previous Phase II ESA and for the purposes of a Record of Site Condition. The purpose of the Phase Two ESA was to assess the presence of contaminants at the east and west property boundaries, and delineate the extent of contamination, if present. The scope of work for the Phase Two ESA included the following, in addition to the scope of work described above:

- The advancement of five boreholes completed as monitoring wells;
- The continuous collection of soil samples during the drilling for soil logging and on-site field screening;
- The selection of soil samples from each borehole for laboratory analysis of petroleum PHCs F1-F4, VOCs, metals and polycyclic aromatic hydrocarbons;
- The measurement of the depth to LPH and groundwater in all newly installed and existing monitoring wells; and
- The collection of groundwater samples from all newly installed and existing monitoring wells for laboratory analysis of PHCs F1-F4, VOCs, metals and PAHs.

4.2 Media Investigated

The Phase Two ESA included the investigation of soil and groundwater at the site to address the APEC identified in the Phase One ESA. Surface water and sediments were not present on the site and were therefore not included in the investigation. Soil samples were collected during the advancement of eight boreholes. All boreholes were completed as monitoring wells for the collection of groundwater samples.

4.3 Phase One Conceptual Site Model

The Phase One Conceptual Site Model (CSM) was provided in the July 25th, 2022 Phase One ESA report. The Phase One ESA identified two PCAs on-site related to a former fuel storage tank in the building and importation of fill to develop the property, and twenty PCAs were identified within the Phase One study area, including historic and current fuel storage tanks and automobile repair garages, to the east, west and south, and transformers to the east south and northwest of the subject property, **Figure 3**. The subject property was identified as one APEC based on the evaluation of the PCAs, **Figure 4**. The contaminants of concern included BTEX, VOCs, PHCs F1-F4, PAHs and metals.

Underground utilities to the on-site building included natural gas from Montreal Road to the exterior south wall of the building and hydro from the southwest corner of the property to the west wall of the building. The presence of underground utilities may influence groundwater flow in the immediate vicinity of the utility corridor and may affect the overall groundwater flow at the property. Potential subsurface contaminant distribution may be influenced by the presence pf underground utilities.

The surface soil at the site was crushed stone, sand, gravel, organics and trace clay fill to approximately 2.5-3 m bg. Till (suspected) was present at three borehole locations, at depths ranging from 1.37 m bg to 3.05 m bg. Limestone bedrock was present at depths of 1.37-3.0 m bg towards the south and west areas of the site. The surface soil within the Phase One study area consists of a thin veneer of unconsolidated Quaternary sediments, clay, silty clay and silt, locally overlain by sand. The bedrock geology consists of limestone, dolostone, shale, arkose and sandstone of the Ottawa Group and Simcoe Group, Shadow Lake Formation. Well records identified the bedrock in the study area as shale at depths of 0.0 m bg and 2.74 m bg.

The inferred regional groundwater flow direction was north towards the Ottawa River. The site groundwater flow direction was northeast, based on the results of the July 2020 Phase II ESA.

4.4 Deviations From Sampling and Analysis Plan

No deviations from the sampling and Analysis Plan were required.

4.5 Impediments

Drilling could not be completed along the east property boundary due to the presence of overhead and underground utilities. The proposed borehole/wells were relocated to the west to maintain a safe working distance from the utilities.

5.0 INVESTIGATION METHOD

5.1 General

All work conducted as part of the site investigations was completed following standard operating procedures for environmental drilling and monitoring well installation methods, soil sampling, and groundwater monitoring and sampling.

5.2 Drilling and Excavating

A total of eight boreholes (MW1 through MW8) were completed between July 10, 2020 and April 21, 2022, under supervision of CM3 personnel. Boreholes MW1, MW2 and MW3 were completed on July 10, 2020, by Forage Downing Drilling (Downing) from Hawkesbury, Ontario, using a CME-20 truck mount drill rig. Boreholes MW4 through MW8 were completed between April 19 and 21, 2022, by OGS Drilling Inc. (OGS) from Almonte, Ontario, using a CME-55 truck mount drill rig. All boreholes were advanced through overburden from grade to a depth of practical refusal (bedrock) using hollow stem augers and split spoon samplers. Boreholes MW1, MW2 and MW3 were advanced into bedrock using 0.10 m diameter coring equipment, and municipal water. Boreholes MW4 through MW8 were advanced into bedrock using a 0.10 m diameter down-hole air hammer.

Soil samples were collected using 60 cm long, 5.1 cm diameter split spoon samplers, advanced below the lead auger into undisturbed soil. The hollow stem augers and split-spoon sampling equipment were washed and rinsed between each sample interval and borehole location to prevent cross-contamination. At each borehole location, soil samples were collected continuously every 0.60 m from grade to refusal on bedrock, when soil conditions permitted.

5.3 Soil: Sampling

Soil samples were collected using a 60 cm long, 5.1 cm diameter split spoon sampler. A new pair of clean, disposal nitrile gloves was used for each spoon sample to manually remove the soil from the spoon and place it in the appropriate laboratory supplied sample containers following MECP protocols for the required analyses, and a food-grade polyethylene bag. The containerized samples were placed into an iced chilled cooler pending laboratory analysis. The bagged samples were used for field screening of relative combustible vapours. The soils recovered during the drilling generally consisted of crushed stone, sand, gravel, organics and trace clay fill (topsoil in some locations), underlain by limestone bedrock.

5.4 Field Screening Measurements

Field screening of the soil samples for relative combustible vapour concentrations was completed using an RKI Eagle combustible vapour meter, operated in methane elimination mode. The RKI Eagle detects combustible vapours (minimizing the influence from methane) and registers combustible vapours from 0 (i.e. not detected) to 10 000 parts per million (ppm). The RKI Eagle is calibrated weekly by CM3 using hexane calibration gas of known concentration. The equipment calibration is checked daily before use by measuring vapours in ambient background (upwind)

air. The RKI Eagle is maintained by an independent supplier on an as-needed basis or every three months at a minimum.

The bagged soil samples were allowed to equilibrate to ambient temperature prior to combustible vapour measurements. The vapour concentrations were measured and recorded from the bag sample headspace by inserting and sealing the intake probe of the vapour meter into the plastic bag. The highest vapour reading from each sample was recorded and the meter was allowed to zero following each reading by exposing the intake probe to the atmosphere.

The results of the combustible vapour analysis were used to confirm field observations with respect to the presence of petroleum hydrocarbons. A minimum of one soil sample from each borehole location was selected for laboratory analysis of PHCs F1-F4 and/or VOCs, based on the results of the field screening and field observations. In general, the soil sample showing the highest relative vapour concentrations at each borehole location was selected for analysis.

5.5 Ground Water: Monitoring Well Installation

All boreholes were completed as monitoring wells, under supervision of CM3 following the completion of the soil sampling and bedrock drilling. Monitoring wells MW1, MW2 and MW3 were constructed by Downing, and wells MW4 through MW8 were constructed by OGS. Monitoring wells were constructed manually using flush-threaded schedule 40 PVC well screens and risers. To minimize the potential for cross contamination, all well materials were handled wearing a new pair of clean, disposal nitrile gloves for each installation.

Monitoring well construction consisted of 38 mm (MW1, MW2, MW3) or 50 mm (MW4 through MW8) outside diameter well pipe. At each borehole, a 10-slot well screen was installed in the borehole and a silica sand pack was placed around the outside of the well screen in the annular space of the borehole to a minimum of 0.3 m above the screened interval. A bentonite seal was placed above the sand pack to approximately ground surface. All monitoring wells were capped with lockable j-plugs and finished below grade in 200 mm manhole covers set in concrete. The monitoring well construction details are provided in **Table 1** and on the borehole logs, **Appendix A**.

Monitoring wells were developed following installation to ensure that subsequent groundwater samples collected were representative of overburden groundwater conditions. Each well was developed using 5/8" outside diameter low density polyethylene (LDPE) tubing and inertial lift pumps (foot valves), dedicated to the well. Well development was accomplished by removing water from the wells at a rate fast enough to re-suspend and extract sediment from the bottom of the well, where present.

The volume of water for well development were calculated based on the depth the static water level measurements, the well depth and the volume of the well and borehole annulus. If possible, three standing water volumes were removed. If insufficient water was present to achieve the required volume, the well was purged dry. Qualitative observations regarding the purge water quality were recorded.

5.6 Ground Water: Field Measurement of Water Quality Parameters

Field measurement of groundwater quality was not completed as part of the Phase Two ESA due to limited groundwater recovery in the wells. Qualitative observations with respect to the purge water quality were recorded at the time of well development and water sampling and included: turbidity; hydrocarbon odour; and hydrocarbon sheen.

5.7 Ground Water: Sampling

5.7.1 LPH and Water Level Measurement

The depth to liquid phase hydrocarbons (LPH) and groundwater was measured in monitoring wells MW1, MW2 and MW3 on July 16, 2020 and April 20, 2022, and monitoring wells MW1 through MW8 on April 25, 2022 and May 3, 2022. The depth to LPH (if present) and water were measured the nearest millimetre from the highest point of the well riser using a Solinst® electronic oil/water interface meter. The interface probe was cleaned and rinsed with distilled water between each well to prevent cross contamination.

5.7.2 Sample Collection

Groundwater samples were collected from monitoring wells MW1, MW2 and MW3 on July 16 and July 23, 2020, and from wells MW1 through MW8 between May 3 and 5, 2022, including field duplicate samples. Prior to sampling, each well was purged to remove stagnant water from within the well bore to obtain samples that were representative of formation groundwater. If possible, three standing water well volumes were purged from each well, calculated based on the static water level measurements at the depth to the bottom of each well. If insufficient water was present to achieve the required volume, the well was purged dry and allowed to recover before sampling. Qualitative observations regarding the purge water quality were recorded.

Groundwater purging and sampling was conducted using 3/8" outside diameter LDPE tubing and a peristaltic pump. Groundwater samples were collected directly from the outlet of the LDPE tubing into the appropriate laboratory supplied containers for the required analyses, following MECP sampling protocols. Samples for metals analysis were field filtered at the time of collection using a 45µm in-line filter. To minimize the potential for cross-contamination, all sampling tubing and filters were dedicated to each well, and a new pair of clean, disposal nitrile gloves was used for each well. Following collection, the samples were placed into an iced chilled cooler pending submission to the laboratory for analysis.

5.8 Analytical Testing

Soil and groundwater samples selected for analysis were submitted to Paracel Laboratories Limited of Ottawa, Ontario. Samples were submitted within 24 hours of collection for regular turnaround. The analytical testing is summarized in the table below:

Summary of Soil and Groundwater Analyses									
	Analysis								
Sample ID	Sample Date	PHCs F1 -F4	VOCs	metals	PAHs	chloroform	рН		
Soil									
BH1-SA1	10-Jul-20			Х					
BH1-SA5	10-Jul-20	Х	Х						
BH2-SA1	10-Jul-20			Х					
BH2-SA5	10-Jul-20	Х	Х						
BH3-SA3	10-Jul-20	Х	Х						
MW4 SA1	19-Apr-22	Х	Х	Х	Х				
MW4 SA3	19-Apr-22	Х	Х	Х	Х				
MW5 SA1	19-Apr-22	Х	Х	Х	Х				
MW5 SA2	19-Apr-22	Х	Х	Х	Х		Х		
MW6 SA2	19-Apr-22	Х	Х	Х	Х				
MW6 SA5	19-Apr-22	Х	Х	Х	Х				
MW7 SA1	19-Apr-22	Х	Х	Х	Х				
MW8 SA1	19-Apr-22	Х	Х	Х	Х				
MW8 SA2	19-Apr-22	Х	Х	Х	Х		Х		
DUP 1	19-Apr-22	Х	Х	Х	Х				
	•	•	Grour	dwater		- • •			
MW1	16-Jul-20	Х	Х	Х					
MW2	16-Jul-20	Х	Х	Х					
MW3	16-Jul-20	Х	Х	Х					
MW1	23-Jul-20					Х			
MW2	23-Jul-20					Х			
MW3	23-Jul-20					Х			
MW1	3-May-22	Х	Х	Х	Х				
MW2	3-May-22	Х	Х	Х	Х				
DUP 1	3-May-22	Х	Х	Х	Х				
MW3	3-May-22	Х	Х	Х	Х				
MW4	4-May-22	Х	Х	Х	X ⁽¹⁾				
MW5	3-May-22	Х	Х	Х	Х				
MW6	4-May-22	Х	Х	Х	Х				
MW7	4-May-22	Х	Х	Х	Х				
MW8	3-May-22	Х	Х	Х	Х				

1 Sample collected May 5, 2022

Soil and groundwater soil samples were collected following MECP sampling protocols and industry accepted standard operating procedures. All samples were collected in the appropriate clean, laboratory supplied samples containers for the requested analyses. Soil samples were placed in a 40 mL vial with methanol preservative for VOCs and PHCs F1 analysis, and a 250 mL amber glass jar for all other analyses. Groundwater samples were placed in three 40 mL vials for VOCs and PHCs F1 analysis, and one 500 mL glass bottle, one 1 L glass bottle and one 500 mL plastic bottle for PHCs F2-F4, PAHs and metals analysis, respectively.

5.9 Residue Management Procedures

All residual soil from the drilling and soil sampling operations, water from the cleaning of the sampling equipment and purge water from well development and sampling were stored on-site in sealed drums pending disposal.

5.10 Elevation Surveying

The locations of all boreholes/monitoring wells were referenced to existing site buildings and structures. The ground surface and monitoring well top of pipe elevations were referenced to a site benchmark (monitoring well MW3 top of well pipe)) of 100 m above reference level (m arl) using a TopCon AT-B4 automatic level. The ground surface and top of pipe elevations are included in the borehole logs, **Appendix A**.

5.11 Quality Assurance and Quality Control Measures

CM3 followed a quality assurance and quality control (QA/QC) program to ensure that the results of the Phase II ESA were representative of site conditions. The QA/QC program included general field procedures to maintain sample integrity and blind field duplicate (BFD) sampling to demonstrate that the field sampling techniques were capable of yielding reproducible results. The general field QA/QC procedures included, but were not limited to:

- A new pair of disposable nitrile gloves was used for each sample collected;
- Sampling equipment was either single use or was dedicated to a specific location (i.e. LDPE tubing and foot valves for monitoring well sampling);
- Equipment that came into contact with the media to be collected (interface probe, stainless-steel trowel, etc.) was decontaminated between each monitoring location or sample;
- Clean, laboratory prepared sample containers containing the required preservatives were obtained from the laboratory for the proposed analyses;
- Sample containers were labelled prior to sample collection;
- Samples were placed in the appropriate sample containers for the selected analyses, following CM3 standard operating procedures and MECP protocols;
- Immediately following collection, all samples were stored in laboratory supplied coolers with the appropriate packing materials and ice packs, pending shipment to the laboratory; and
- Chain of Custody forms with CM3 contact information, date sampled, sample matrix, number and type of containers, and requested analyses travelled with all samples delivered to the laboratory for analysis.

All samples collected by CM3 were given unique sample identification and field staff recorded the location and identification of each sample collected using field logs and/or notebooks. Chain of Custody forms were filled out on site and travelled with all samples placed in coolers delivered to the laboratory for analysis. Each Chain of Custody included the CM3 contact information, date sampled, sample matrix, number and type of containers, and requested analyses.

5.11.1 Blind Field Duplicates – Sampling QA/QC

In addition to the general QA/QC measures described above, a field duplicate program for sample analysis was used to evaluate sample QA/QC and repeatability. The field duplicate program included the collection of a duplicate sample from the same location and at the same time as the original sample, submitted to the laboratory under "blind label" for the same analyses as the original sample. The number of duplicates collected was approximately 10% for each media sampled, when possible. The reproducibility and precision of the sampling results precision was determined by calculating the relative percentage difference (RPD) for the duplicate sample pair as follows:

RPD (%) = $[(Dup1 - Dup2)/(average of Dup1+Dup2)] \times 100$

Where Dup1 and Dup2 are the concentrations in the original and duplicate samples, respectively. The RPD was calculated for duplicate sample pairs returning contaminant concentrations greater than 5 times the reported analytical method detection limit (MDL) in both samples. For duplicate pairs that showed concentrations close to the MDL (less than 5 times the MDL) in one or both samples, an RPD was not calculated because of a decrease in the precision of the analytical equipment approaching the MDL. When the analytical result for one or both of the duplicate pair was less than the MDL (i.e. not detected), an RPD was not calculated. Generally accepted RPDs for soil and ground water are 40% and 30%, respectively, but can vary by parameters analysed.

5.11.2 Trip Blanks and Trip Spikes

To assess potential sample contamination during storage or transport to and from the laboratory, trip blanks and trip spikes were prepared at the laboratory and analysed for VOCs. Trip blanks were prepared using deionized water and trip spikes were prepared with known concentrations of analytes. The trip blank and trip spike sets accompanied the water sampling containers to sampling locations and were placed in coolers with the samples for shipment back to the laboratory for analysis.

5.11.3 Laboratory QA/QC

Paracel is a Canadian Association for Laboratory Accreditation Inc. (CALA) accredited laboratory that uses Ministry of Environment recognized methods to conduct analyses and follows an inhouse WA/QC program. Paracel employs method blanks, control standard samples, certified reference material standards, method spikes, replicates, duplicates and instrument blanks as part of their internal QA/QC programs. The results of the laboratory QA/QC are reported in the laboratory certificates. If the internal QA/QC criteria are not met, the laboratory either re-analyses the affected samples or qualifies the results.

6.0 **REVIEW AND EVALUATION**

6.1 Geology

The site geology was determined based on the borehole drilling and soil logging. Surface materials included asphalt underlain by crushed stone fill to approximately 0.76 m bg. The overburden soil at the site consisted of gravelly sand fill and silty sand fill to approximately 0.56-3.81 m bg. Organics (topsoil) was present in borehole MW2 at 2.13-3.05 m bg and in borehole MW3 at 0.20-0.86 m bg. Limestone bedrock was present at 0.56 m bg tp 3.081 m bg, at an average depth of 2.26 m bg. The site stratigraphy is provided on the borehole logs, **Appendix A**.

6.2 Ground Water: Elevations and Flow Direction

The depth to LPH (if present) and groundwater was measured in all accessible on-site monitoring wells July 16, 2020, April 20 and 25, 2022, and May 3, 2022, **Table 2**. LPH or hydrocarbon sheen was not present during any of the monitoring events. The May 3, 2022 water levels were at a relative elevation of 96.14 m arl to 97.04 m arl, and the average groundwater elevation was 96.72 m arl.

The groundwater flow direction was interpreted based on the May 3, 2022 water levels at monitoring wells MW1 through MW8. All monitoring wells were screened in the shallow bedrock and were considered to be in the same unconfined shallow aquifer. The May 3, 2022 water level measurements showed a groundwater flow divide in the center of the site, from the southwest to north. Groundwater flow was to the east-southeast and west from the center of the site. The inferred groundwater contours and flow are provided on **Figure 5**. The flow direction was not consistent with the interpreted flow in previous reports.

The groundwater flow at the site may be influenced by the presence of drainage under the building and underground utilities (i.e., hydro, water, sewer, gas lines) to the south and west of the building, and municipal service mains along Montreal Road. Groundwater flow may also be influenced by the presence of fill (higher permeability than the native soil) used in the development of the property.

6.3 Ground Water: Hydraulic Gradients

6.3.1 Horizontal Gradients

Horizontal hydraulic gradients were determined based on the May 3, 2020 water levels and inferred groundwater flow direction. The hydraulic gradient in the shallow bedrock was 0.02-0.07 m/m toward the east-southeast, and 0.03-0.14 m/m toward the west, from the center of the site. Additional water level monitoring would be required to assess potential seasonal variations of groundwater flow and hydraulic gradients.

6.3.2 Vertical Gradients

All monitoring wells were screened in the shallow bedrock, and vertical hydraulic gradients could not be determined. However, it is suspected that the vertical gradients are predominantly downward. The observed water levels at the site are likely within an unconfined overburdenshallow bedrock aquifer and the water table likely fluctuates across the overburden and bedrock interface. Additional multi-level monitoring wells would be required to confirm the vertical gradients at the site and seasonal groundwater monitoring would be required to determine the variations in the water table.

6.4 Fine-Medium Soil Texture

Soil grain size analysis was not completed as part of the Phase Two ESA. The soils observed in the field at the time of sampling were predominantly described as coarse-grained. Therefore, grain size analysis was not completed.

6.5 Soil: Field Screening

<u>APEC 1 – Subject Property</u>

A total of 35 soil samples were collected from boreholes MW1 through MW8 for field screening and combustible vapour analysis. Soil vapours were 0 ppm (not detected) in samples from boreholes MW1, MW4, MW5, MW6 and MW7. The vapour concentrations at borehole MW2 were 0 ppm from grade to 2.44 m bg and 15 ppm in sample MW4 SA5, at 2.44-3.05 m bg, collected near the overburden bedrock contact. Soil samples at borehole MW3 showed vapour concentrations of 0 ppm from grad to 10 ppm at 0.71-1.22 m bg, and 0 ppm below 1.22 m bg. The vapour concentrations in samples from borehole MW 8 were 10 ppm from grade to bedrock at 1.52 m bg. The relatively low vapour concentrations confirm the field observations. The borehole locations are provided on **Figure 2** and the vapour concentrations and field observations are included on the borehole logs, **Appendix A**.

6.6 Soil Quality

6.6.1 APEC 1 – Subject Property

A total of 15 soil samples, including one BFD, from boreholes MW1 through MW8 were submitted for laboratory analysis of PHCs F1-F4, VOCs, metals and/or PAHs. The soil sample PHCs F1-F4 results, including BTEX are summarized in **Table 3**. The results of the soil VOCs, metals and PAHs analyses are summarized in **Table 4** through **Table 6**. The borehole soil sample locations and soil quality are provided on **Figure 6**, **Figure 7**, **Figure 8** and **Figure 9**, respectively for BTEX and PHCs F1-F4, VOCs, metals and PAHs. The soil sample laboratory reports are provided in **Appendix B**.

BTEX and PHCs F1-F4 Fractions

Soil samples BH1-SA5, BH2-SA5, BH3-SA3, MW4 SA1, MW4 SA3, MW5 SA1, MW5 SA2, MW6 SA2, MW6 SA5, MW7 SA1, MW8 SA1, MW8 SA2 and DUP 1 (BFD of MW6 SA2) were analysed for PHCs F1-F4 and VOCs (including BTEX). Concentrations above the MECP Table 7 SCS were present in the following samples:

• MW4 SA3 (APEC 1); 1.52-2.21 m bg: PHCs F3 fraction

PHCs F4 fraction was also present in sample MW4 SA3, at a concentration below the Table 7 SCS. One or more PHCs F1-F4 were detected in samples BH1-SA5, BH2-SA1, BH2-SA5, BH3-SA3, MW4 SA1, MW5 SA1, MW5 SA2, MW6 SA2, DUP 1 (BFD of MW6 SA2), MW6 SA5, MW7 SA1, MW8 SA1 and MW8 SA2, at concentrations below the Table 7 SCS. PHCs F1-F4 were not detected in sample BH2-SA5. BTEX were mot detected in any of the samples.

The PHCs detected in the samples were primarily F3 and F4 fractions, suggesting a heavier-end hydrocarbon source or weathered hydrocarbon plume. The depth of eth impacts may be due to on-site migration from off-site sources. The presence of PHCs F3 an dF4 in the majority of the samples may also be the result of poor-quality fill used in the development of the site.

<u>VOCs</u>

Soil samples BH1-SA5, BH2-SA1, BH2-SA5, BH3-SA3, MW4 SA1, MW4 SA3, MW5 SA1, MW5 SA2, MW6 SA2, MW6 SA5, MW7 SA1, MW8 SA1, MW8 SA2 and DUP 1 (BFD of MW6 SA2) were analysed for VOCs. The results showed that VOCs were not present in any of the analysed samples, meeting the MECP Table 7 SCS.

The absence of VOCs (including BTEX) suggests that gasoline storage may not be the contaminant source.

<u>Metals</u>

Soil samples BH1-SA1, BH2-SA1, BH2-SA5, MW4 SA1, MW4 SA3, MW5 SA1, MW5 SA2, MW6 SA2, MW6 SA5, MW7 SA1, MW8 SA1, MW8 SA2 and DUP 1 (BFD of MW6 SA2) were analysed for metals. Concentrations above the MECP Table 7 SCS were present in the following samples:

• MW8 SA1 (APEC 1); 0.0-0.76 m bg: zinc

All other metals detected in sample MW8 SA1 were at concentrations below the Table 7 SCS. One or more metals were detected in all other analysed samples, at concentrations below the Table 7 SCS.

The presence of metals in all soil samples and the zinc concentration above SCS in borehole MW8 may result from the presence of metal debris in the fill at the site.

<u>PAHs</u>

Soil samples MW4 SA1, MW4 SA3, MW5 SA1, MW5 SA2, MW6 SA2, MW6 SA5, MW7 SA1, MW8 SA1, MW8 SA2 and DUP 1 (BFD of MW6 SA2) were analysed for PAHs. Concentrations above the MECP Table 7 SCS were present in the following samples:

• MW5 SA1 (APEC 1); 0.0-0.76 m bg: fluoranthene

All other PAHs detected in sample MW5 SA1 were at concentrations below the Table 7 SCS. One or more PAHs were detected in samples MW4 SA3, MW5 SA2, MW6 SA2, MW6 SA5, MW7 SA1, MW8 SA1, MW8 SA2 and DUP 1 (BFD of MW6 SA2), at concentrations below the Table 7 SCS. PAHs were not detected in sample BH4 SA1.

The presence of PAHs in all soil samples and the zinc fluoranthene above SCS may result from the presence of poor-quality fill and debris in the fill at the site.

6.7 Ground Water Quality

Groundwater samples were collected from monitoring wells MW1, MW2 and MW3 on July 16, 2020 for laboratory analysis of PHCs F1-F4, VOCs, and/or metals, and on July 23, 2020 for analysis of chloroform. Monitoring wells MW1 through MW8 were sampled between May 3 and 5, 2022 for analysis of PHCs F1-F4, VOCs, metals and PAHs. The groundwater sample analytical results are summarized in **Table 7** for BTEX and PHCs F1-F4 and **Table 8** through **Table 10**, respectively for VOCs, metals and PAHs. The monitoring well locations and groundwater quality are provided on **Figure 10**, **Figure 11**, **Figure 12** and **Figure 13**, respectively for BTEX and PHCs F1-F4, VOCs, metals and PAHs. The groundwater **3** and **3** and **5** are provided on **Figure 10**, **5** and PAHs. The monitoring well locations and groundwater quality are provided on **Figure 10**, **Figure 11**, **Figure 12** and **Figure 13**, respectively for BTEX and PHCs F1-F4, VOCs, metals and PAHs. The groundwater sample laboratory reports are provided in **Appendix B**.

6.7.1 APEC 1 – Subject Property

BTEX and PHCs F1-F4 Fractions

Groundwater samples MW1, MW2 and MW3 were collected on July 16, 2020, and analysed for PHCs F1-F4 and VOCs (including BTEX). The results showed the presence of PHCs F3 and F4 fractions in all samples, at concentrations below the MECP Table 7 SCS.

Wells MW1 through MW8 were sampled between May 3 and 4, 2022 for PHCs F1-F4 analysis. The results showed the presence of PHCs F3 and F4 fractions in samples MM4 and MW7, at concentrations below the MECP Table 7 SCS. PHCs F1 and F2 fractions were not detected in samples MW4 or MW7, and PHCS F1-F4 were not detected in any other samples, meeting the Table 7 SCS. BTEX were not detected in any of the samples.

The groundwater PHCs results were consistent with the soil analytical results, showing primarily PHCs F3 and F4 fractions. The groundwater results also indicated a weathered plume or heavyend hydrocarbon source. Based on the reported concentrations, it is unlikely that the PHCs in groundwater are contributing to the observed soil contamination.

<u>VOCs</u>

Groundwater samples MW1, MW2 and MW3 were collected on July 16, 2020, and analysed for VOCs. Concentrations above the MECP Table 7 SCS were present in the following samples:

- MW1 (APEC 1): chloroform
- MW2 (APEC 1): chloroform
- MW2 (APEC 1): chloroform

No other VOCs were detected in the above samples, meeting the Table 7 SCS.

Wells MW1, MW2 and MW3 were sampled on July 23, 2020 for chloroform analysis. Chloroform was present in all three samples. The reported concentration in sample MW1 was equal to the Table 7 SCS. The concentrations were below the SCS in samples MW2 and MW3.

Groundwater samples MW1 through MW8 and DUP 1 (BFD of MW2) were collected between May 3 and 5, 2022, and analysed for VOCs. VOCs were not detected in any of the analysed samples, meeting the MECP Table 7 SCS.

The elevated chloroform concentrations during the July 2020 sampling events were attributed to the addition of chlorinated municipal water during the bedrock coring of wells MW1, MW2 and MW3. Sources of chloroform were not identified in the Phase One ESA. Chloroform was not detected in wells installed during subsequent drilling using a down hole air hammer and chloroform concentrations were reduced or not detected in the above wells during subsequent sampling.

<u>Metals</u>

Groundwater samples MW1, MW2 and MW3 were collected on July 16, 2020, and analysed for metals. The results showed the presence of several metals in all samples, at concentrations below the MECP Table 7 SCS.

Wells MW1 through MW8 were sampled between May 3 and 4, 2022 for metals analysis. The results showed the presence of several metals in all samples, at concentrations below the MECP Table 7 SCS.

The presence of metals in all groundwater samples may result from the presence of metal debris in the fill at the site.

<u>PAHs</u>

Groundwater samples MW1 through MW8 were collected between May 3 and 5, 2022 for PAHs analysis. The results showed the presence of one or more PAH in samples MW1, MW2, MW4, MW5, MW6, MW7 and MW8, at concentrations below eth MECP Table 7 SCS.

The presence of PAHs in all groundwater samples may result from the presence of debris in the fill and poor-quality fill at the site.

6.8 Quality Assurance and Quality Control Results

6.8.1 Blind Field Duplicates

<u>Soil</u>

One soil BFD was collected during the April 2022 drilling program. Soil sample DUP 1 was submitted as a blind duplicate of sample MW6 SA2, for analysis of VOCs, PHCs F1-F4, metals and PAHs. RPDs were not calculated for several parameters in the duplicate pairs because the concentrations were reported as non-detect or were less than five times the RDL in one or both of the samples. In general, parameters that were detected at concentrations near the RDL (<5x RDL) in both samples of the duplicate pair, showed similar concentrations between the pair. RPDs were calculated for parameters detected in both samples at concentrations greater than five times the RDL, showing acceptable RPDs of 19% and 16%, respectively, for PHCs F3 and F4 fractions. Valid RPDs ranging from 6% to 21% were also calculated for metals including arsenic, barium, chromium, cobalt, lead and nickel. RPDs for PAHs benzo[b]fluoranthene, fluoranthene and pyrene ranged from 0% to 9%. The acceptable RPDs for the above parameters and consistent concentrations between samples near the RDL verifies the sampling protocols and confirms the results.

Groundwater

One groundwater BFD was collected during the May 2022 sampling program. Sample DUP 1 was submitted as a blind duplicate of sample MW2, for analysis of VOCs, PHCs F1-F4, metals and PAHs. RPDs were not calculated for several parameters in the duplicate pairs because the concentrations were reported as non-detect or were less than five times the RDL in one or both of the samples. In general, parameters that were detected at concentrations near the RDL (<5x RDL) in both samples of the duplicate pair, showed similar concentrations between the pair. RPDs were calculated for parameters detected in both samples at concentrations greater than five times the RDL, showing acceptable RPDs for barium (3%), boron (2%), molybdenum (3%), nickel (0%), sodium (4%) and uranium (5%). The acceptable RPDs for the above parameters and consistent concentrations between samples near the RDL verifies the sampling protocols and confirms the results.

6.8.2 Trip Blanks and Trip Spikes

The groundwater sampling program was completed between May 3 and 5, 2022. One trip blank and one trip spike were submitted to the laboratory in the May 3, 2022 shipment, for VOCs analysis. Methylene chloride was detected in the trip blank sample. No other VOCs were detected in the trip blank. The detection of methylene chloride may be a result of the preservative used in the VOCs sample vial. The trip spike results showed concentrations within 27% or less of the laboratory prepared concentrations. The variations in concentrations are attributed to the interactions of the analytes within the sample container. The trip blank and trip spike results are considered acceptable and show that sample contamination during transport and storage was not likely. The trip blank and trip spike analytical results are provided in the laboratory reports, **Appendix B**.

6.8.3 Laboratory QA/QC

Laboratory Method Blanks

Method blanks (reagents processed through the extraction/digestion and analysis procedures) prepared by the laboratory were used at a minimum frequency of one blank per analysis suite per batch of samples. Method blanks give a measure of the quantity of any contaminant (analyte) that may be added during the analyses and are not expected to produce detectable results.

Benzo(ghi)perylene and pyrene were detected in the method blank for the July 16, 2020 groundwater samples, at concentrations close to the MDL. No other parameters were detected in the sample and the laboratory did not provide comment or qualification of the results. All other method quality control blanks reported as part of the laboratory QA/QC measures were below the detection limit. The laboratory method blank results are included in the laboratory reports, **Appendix B**.

Laboratory Method Spikes

Method spikes prepared by the laboratory were used at a minimum frequency of one per analysis suite per batch of samples. Method spikes are prepared with a known concentration of analyte and the concentration of analyte in the results is evaluated based on the percent recovery. If the percent recovery is not within the acceptable laboratory limits, a qualifier is provided.

The zinc concentration was below laboratory lab percent recovery limits in the method blank in the method blank for the July 2020 groundwater samples. Beryllium, lead and sodium concentrations were below laboratory lab percent recovery limits in the method blank for the May 2022 groundwater samples. All other parameters were within the percent recovery limits and the batches were accepted based on other acceptable quality control results. All other method quality control spikes reported as part of the laboratory QA/QC measures were within the laboratory reports, **Appendix B**.

Laboratory Duplicates

In addition to the field duplicates collected by CM3, the laboratory also ran duplicate samples for some parameters as part of their own internal QA/QC program. The results of the laboratory duplicate samples were either non-calculable or met the internal laboratory criteria, verifying the reproducibility of the laboratory analytical methods. The laboratory duplicate QA/QC results are included in the laboratory reports, **Appendix B**.

Reportable Detection Limits Exceeding Applicable Criteria

The reportable detection limits for PHCs F2 and F3 fractions in the April 2022 soil samples MW4 SA3 and MW8 SA1 were elevated (10x MSL) due to the nature of the sample matrix. The leveated RDLs did not exceed the applicable SCS. There were no other qualifiers for any other soil or groundwater samples and all MDLs met the SCS. The laboratory MDLs and RDLs are included in the laboratory reports, **Appendix B**.

6.9 Phase Two Conceptual Site Model

The Phase Two Conceptual Site Model (CSM) was developed based on the Phase One ESA and the findings of the Phase Two ESA. Potentially contamination activities have occurred on site, including a former fuel storage tank in the building and the use of fill in all areas of the site during development of the property. Off site PCAs included historic and current fuel storage tanks and automobile repair garages, to the east, west and south, and transformers to the east south and northwest of the subject property.

The subject property was identified as one APEC based on the evaluation of the PCAs. The contaminants of concern included BTEX, PHCs F1-F4, VOCs, metals and PAHs.

Underground utilities to the on-site building included natural gas from Montreal Road to the exterior south wall of the building and hydro from the southwest corner of the property to the west wall of the building. The presence of underground utilities may influence groundwater flow in the immediate vicinity of the utility corridor and may affect the overall groundwater flow at the property. Potential subsurface contaminant distribution may be influenced by the presence pf underground utilities.

Stratigraphy and Aquifer or Aquitard Investigated

The geology of the subject property consists of a thin veneer of unconsolidated Quaternary sediments up to 1m thick, overlying relatively flat lying, bare, tabular bedrock outcrops of limestone, dolomite, sandstone and locally shale, of the Ottawa Group and Simcoe Group, Shadow Lake Formation. The stratigraphy at the site was investigated to a maximum depth of 7.19 m bg. Asphalt was present at grade, underlain by various fill, consisting of crushed stone, gravelly sand and silty sand, to limestone bedrock. Organic soil was present at two borehole locations.

The surficial unconfined overburden-shallow bedrock aquifer was investigated to a depth of 7.19 m bg. Groundwater flow was to the east-southeast and to the west from the center of the site. Horizontal gradients were 0.02-0.07 m/m toward the east-southeast, and 0.03-0.14 m/m toward the west. All wells were screened within the same hydrostratigraphic unit and vertical hydraulic gradients could not be determined. It is assumed that vertical gradients at the site are downward.

Bedrock was present at 0.56-3.05 m bg.

The water table was at an average elevation of 96.72 m arl (3.731 m bg), based on the May 3, 2022 monitoring event.

Application of Sections 35, 41 and 43.1 of O.Reg. 153

Section 35 of O.Reg 153, Non-potable site condition standards, is applicable to the subject property:

- The site and surrounding properties within 250 m of the site are supplied by a municipal drinking water system.
- The subject property is not agricultural use.
- The property is not in a wellhead protection area or other designation identified by the municipality for the protection of groundwater.
- Wells used or intended for use as a source of water for human consumption or agriculture were not identified at the property or in the phase one study area.

Written notice of intention to apply the standards in preparing a record of site condition for the property will be submitted to the municipality.

Section 41 of O.Reg. 153, Site Condition Standards, Environmentally Sensitive Areas, does not apply to the subject property:

- the subject property:
 - o is not within an area of natural significance,
 - o does not include or is adjacent to an area of natural significance, and
 - o does not include land within 30 metres of an area of natural significance;
- The surface soil at the property has a pH value between 5 and 9.

Section 43.1, Site condition standards, shallow soil property or water body, is applicable to the subject property:

• The property is considered a shallow soil property.

It was conservatively estimated that one third or more of the site consists of soil equal to or less than 2 m in depth beneath the soil surface, excluding any non-soil surface treatment such as asphalt, concrete or aggregate.

Excess Soil at the Subject Property

Soil was not brought to the subject property and excess soil was not generated during this Phase Two ESA.

Proposed Development

The proposed redevelopment of the property includes a multi-storey apartment building, with underground parking. The proposed building is located approximately 6.3 m from the center of

the south property line and is approximately 1430 square meters. The proposed building and underground parking occupy the majority of the site.

Distribution of Contaminants

Contaminants at concentrations above the applicable SCS were present at the southeast corner, northeast property boundary and southwest corner of the site. Contaminant concentrations above SCS were also present in the center of the site.

The contaminants and impacted media at each location are summarized in the following table.

Summary of Soil and Groundwater Contamination							
Location	Contaminant Group	Borehole (Sample ID; depth) / Monitoring Well	Contaminant	Impacted Media			
Southeast corner	PHCs F1-F4	MW4 (SA3; 1.52-1.91 m bg)	F3 fraction	Soil			
Northeast property boundary	Metals	MW8 (SA1; 0.0-0.76 m bg)	zinc	Soil			
Southwest corner	PAHs	MW5 (SA1; 0.0-0.76 m bg)	fluoranthene	Soil			
Center of site	VOCs	MW1, MW2, MW3	chloroform	Groundwater			

Soil sample MW4 SA3 from borehole MW4 showed a PHCs F3 concentration above applicable SCS. The relative combustible vapour concentration was 0 ppm and field evidence of PHCs were not observed during soil logging. The impact was at a depth of 1.52-2.21 m bg, in silty sand fill at the overburden-bedrock contact. PHCs F3 fraction was also present in a shallower soil sample from the same borehole, but at a concentration that met the SCS. BTEX and PHCs F1-F2 fractions were not detected in either sample, indicating either a heavy-end hydrocarbon source or a weathered contaminant plume. The depth of the sample suggests that the contamination may be due to migration from an off-site source and fluctuations in the groundwater table.

The zinc concentration above applicable SCS in soil sample MW8 SA1 was from gravely sand fill at a depth of 0.0-0.76 m bg. Metals were detected in 11 of 11 soil samples including MW8 SA1, at concentrations that met the SCS. The zinc impact is attributed to the presence of metal debris in the fill at borehole MW8.

Soil sample MW5 SA1 from borehole MW5 showed a fluoranthene concentration above applicable SCS. The relative combustible vapour concentration was 0 ppm and field evidence of impacts were not observed during soil logging. The impact was at a depth of 0.0-0.76 m bg, in gravelly sand fill. PAHs were detected in eight of nine soil samples including MW5 SA1, at concentrations that met the SCS. The anomalous fluoranthene impact is attributed to the presence of debris in the fill at borehole MW5.

The chloroform contamination in groundwater at wells MW1, MW2 and MW3 was present during the July 2020 sampling events. Chloroform was present in well MW1 at a concentration below the SCS and was not detected in wells MW2 or MW3 during the May 2022 sampling event. The elevated chloroform concentrations during the July 2020 sampling events were attributed to the addition of chlorinated municipal water during the bedrock coring of wells MW1, MW2 and MW3.

Sources of chloroform were not identified in the Phase One ESA. Chloroform was not detected in wells installed during subsequent drilling using a down hole air hammer.

The maximum concentrations of the COC in Ground Water and Soil are provided in Table 11.

The distribution of PHCs F1-F4 contamination in soil is shown on **Figure 6**. The PHCs contamination was present as F3 fraction in one soil sample at borehole MW4. The nearest boreholes to the north and west met the applicable SCS for PHCs F1-F4 fractions.

The distribution of VOCs in soil is shown on **Figure 7**. VOCs were either not detected or were at concentrations that met the Table 7 SCS.

The distribution of metals contamination in soil is shown on **Figure 8**. The metals contamination was present as zinc in one soil sample at borehole MW8. The nearest boreholes south and west met the applicable SCS for metals.

The distribution of PAHs contamination in soil is shown on **Figure 9**. The PAHs contamination was present as fluoranthene in one soil sample at borehole MW5. The nearest boreholes north and east met the applicable SCS for PAHs.

The most recent groundwater sampling event did not identify any contaminants of concern at concentrations above the applicable SCS. The groundwater quality is shown on **Figure 10** to **Figure 13**, respectively for PHCs F1-F4, VOCs, metals and PAHs.

Contaminant Discharge and Migration

The PHCs F1-F4 contamination at the site may the result of historical activities at adjacent properties, including historic and current fuel storage tanks and automobile repair garages. The metals and PAHs contamination may be due to the use of poor-quality, debris containing fill during the development of the site. The PHCs contamination may also be due to poor quality fill.

There is the potential for migration of the contamination to the east and west, based on water level measurements and the inferred groundwater flow direction in this investigation. Migration to the south may also occur due to the presence of underground municipal utilities along Montreal Road. However, the contamination was present in soil above and near the overburden-bedrock interface, the water table was within the bedrock, and the groundwater sampling results did not show any contaminants above the SCS, that corresponded to the soil impacts. Contaminant migration may only occur during high seasonal water levels. Seasonal fluctuations in groundwater levels and/or flow directions may also result in on-site migration of contaminants from off-site sources.

This investigation was completed in the early spring, and it is anticipated that the measured water levels were relatively high. Seasonal precipitation may result in fluctuations in the groundwater levels, across the overburden-bedrock interface. This may result in the vertical migration of contaminants. Mobilization of contamination in soil may occur during high water table. However, contaminants (i.e. PHCs) may be trapped in bedrock during high water table.

Vapour Intrusion

The current site building has a partially finished basement and underground utilities enter through the south and west basement walls. The proposed building includes underground parking. The depth of contamination may result in vapour intrusion into the basement of the current building and parking garage of the proposed building. However, it is anticipated that the contaminated soil will be removed to bedrock for the construction of the parking garage, and the parking garage will be ventilated. Therefore, vapour intrusion should not be a concern.

Lateral and Vertical Extents of Contamination

The lateral vertical extents of the soil and groundwater contamination (prior to remediation) were interpreted based on the analytical results, field observations, distance between samples and the presence of structures and underground utilities. The lateral vertical extents of the soil and groundwater contamination (concentrations above applicable SCS) are provided on **Figure 14** through **Figure 17**, for PHCs F1-F4 fractions, VOCs, metals and PAHs. Cross sections showing the vertical extent of PHCs F1-F4 contamination are provided as **Figure 14A** and **Figure 14B**. The vertical extent of VOCs, metals and PAHs contamination are shown on **Figure 15A/B**, **Figure 16A/B** and **Figure 17A/B**, respectively. The cross sections include the approximate depth to the water table, site stratigraphy to the deepest aquifer investigated, and underground structures or utilities that may affect contaminant transport.

Contaminant Release, Transport and Exposure

On-site and off-site sources of contamination were identified by the Phase One and Two ESAs. Contaminant releases on site may have occurred from the former heating oil tank and oil burning equipment. Off-site contaminant releases may have occurred during the historic operation of retail gasoline outlets and automotive repair garages and current fuel storage (ASTs, USTs, waste oil tanks, parts cleaning, hydraulic lift, etc.). The placement of contaminated fill during on-site and off-site development may also be a source of contamination.

The primary contaminant transport pathway is likely migration in groundwater. The water table was near the overburden-bedrock interface and likely fluctuates seasonally between the soil and shallow bedrock. The soil at the site was a coarse textured fill and the shallow bedrock is likely heavily fractured, and conducive to groundwater flow and contaminant migration. It is also likely that coarse grained fill (gravel) may be present surrounding buried utilities, providing a preferred migration pathway for contamination near the utility. Vapour migration from soil and/or groundwater into the basement of the on-site building may also be a viable pathway, based on the site soil and groundwater conditions.

Potential receptors were identified based on the site characteristics and the above exposure pathways, including humans in the building due to vapour intrusion and human exposure during construction activities. The site is currently covered with asphalt and terrestrial receptors are less likely.

The routes of exposure included human uptake by inhalation, ingestion, or direct contact, and root uptake by terrestrial plants. The exposure by vapour intrusion is likely limited to the basement of the building. Vapour intrusion may increase if the basement of the building is extended into bedrock. Human exposure by inhalation, ingestion and direct contact during construction activities is more likely, specifically during excavation of soil and/or /bedrock.

7.0 CONCLUSIONS

CM3 Environmental was retained by Developpements Proximi-T Inc. to conduct a Phase Two ESA for the property located at 971 Montreal Road Ottawa, Ontario. The Phase Two ESA undertaken to support a City of Ottawa Site Plan Control Application and the filing of a Record of Site Condition (RSC). The Phase Two addressed the APEC identified in the Phase One ESA and include the installation of eight boreholes/monitoring wells. The results of the Phase Two ESA are summarized below:

Site Characterization

- The overburden soil at the site consisted of crushed stone fill, gravelly sand fill and silty sand fill to approximately 0.56-3.81 m bg. Limestone bedrock was present at an average depth of 2.26 m bg. Organics (topsoil) were present in two boreholes at 0.20-0.86 m bg and 2.13-3.05 m bg
- Groundwater was present at a relative elevation of 96.14 m arl to 97.04 m arl, and the average groundwater elevation was 96.72 m arl.
- The groundwater flow was east-southeast and west from a groundwater flow divide the center of the site.

Soil Quality

- Fifteen soil samples were submitted for analysis of one or more of PHCs F1-F4, VOCs. Metals and/or PAHs;
 - PHCs were detected in all samples, primarily in the F3 and F4 fractions. A PHCs F3 concentration above The Table 7 SCS was detected in one soil sample from borehole MW4, at the southeast corner of the property;
 - VOCs (including BTEX) were not detected in any samples, meeting the MECP Table 7 SCS;
 - Metals were detected in all samples. A zinc concentration above The Table 7 SCS was detected in one soil sample from borehole MW8, near the northeast corner of the property;
 - PAHs were detected in all samples. A fluoranthene concentration above The Table 7 SCS was detected in one soil sample from borehole MW5, near the southwest property boundary;

Groundwater Quality

- Monitoring wells MW1 through MW3 were sampled for PHCs F1-F4, VOCs (including BTEX) and metals on July 16, 2020 and for chloroform on July 23, 2020;
 - PHCs were detected in all samples, primarily in the F3 and F4 fractions, at concentrations that met the Table 7 SCS.
 - Chloroform concentrations were above the SCS in all three wells during the July 16 sampling event;
 - The July 23 sampling event showed chloroform above the SCS in monitoring well MW1, and concentrations that met the SCS in wells MW2 and MW3;

- Monitoring wells MW1 through MW8 were sampled for PHCs F1-F4, VOCs (including BTEX), metals and PAHs on May 3-4, 2022;
 - PHCs F3 and F4 fractions were detected in wells MW4 at the southeast corner of the property and MW7 at the northwest corner of the property, at concentrations that met the SCS;
 - VOCs were either not detected or were at concentrations that met the SCS;
 - Metals were detected in all wells at concentrations that met the SCS;
 - PAHs were detected in wells MW1, MW2, MW5, MW6 and MW7, at concentrations that met the SCS.

The results of the Phase Two ESA identified the presence of impacted (concentrations above applicable SCS) soil at the southeast corner, northeast property boundary and southwest corner of the property. The initial water sampling identified impacted groundwater at the center of site.

Soil PHCs F3 impact was identified in borehole MW4 at the southeast corner of the property, in silty sand fill at the overburden-bedrock contact at a depth of 1.52-2.21 m bg. PHCs F4 was also present in the sample and PHCs F3 and F4 were detected in all other soil samples, at concentrations that met the SCS. BTEX and PHCs F1-F2 fractions were typically not detected in any samples. The presence of primarily PHCs F3 and F4 indicated either a heavy-end hydrocarbon source or a weathered contaminant plume. The depth of the sample suggests that the contamination may be due to migration from an off-site source and fluctuations in the groundwater table. The presence of PHCs may also be due to the use of fill for the development of the site.

A zinc concentration above SCS was present in borehole MW8 at the northeast corner of the property, in gravelly sand fill at a depth of 0.0-0.76 m bg. A fluoranthene concentration above SCS was present in borehole MW5 at the southwest corner of the property, in gravelly sand fill at a depth of 0.0-0.76 m bg. Several metals and PAHs were detected in most of the soil samples. The metals and PAHs impacts are attributed to the presence of metal and debris at the borehole locations.

The groundwater impacts at the centre of the site in wells MW1, MW2 and MW3 during the July 2020 sampling events included chloroform. Chloroform impacted groundwater was not present during the May 2022 sampling event. The elevated chloroform concentrations during the July 2020 sampling events were attributed to the addition of chlorinated municipal water during the bedrock coring of wells MW1, MW2 and MW3. Sources of chloroform were not identified in the Phase One ESA. Chloroform was not detected in wells installed during subsequent drilling using a down hole air hammer.

The results of the soil analyses did not meet the MECP Table 7 SCS. A risk assessment is not necessary based on the subject property environmental conditions. The impacts may be addressed by soil remediation (exaction) during the development of the site. The results of the remedial activities may be used to support the RSC submission. Additional testing may be required to confirm the site conditions, further characterize soil and groundwater quality, and to develop a remedial plan for the site.

7.1 Signatures

This report has been prepared and the work referred to in this report has been undertaken by CM3 Environmental Inc. for Developpements Proximi-T. It is intended for the sole and exclusive use of Developpements Proximi-T, its affiliated companies and partners and their respective insurers, agents, employees and advisors. Any use, reliance on, or decision made by any person other than Developpements Proximi-T based on this report is the sole responsibility of such other person. CM3 Environmental Inc. and Developpements Proximi-T make no representation or warranty to any other person with regard to this report and the work referred to in this report, and they accept no duty of care to any other person or any liability or responsibility whatsoever for any losses, expenses, damages, fines, penalties or other harm that may be suffered or incurred by any other person as a result of the use of, reliance on, any decision made or any action taken based on this report or the work referred to in this report.

The investigation undertaken by CM3 Environmental Inc. with respect to this report and any conclusions or recommendations made in this report reflect CM3 Environmental Inc.'s judgement based on the site conditions observed at the time of the site inspection on the date(s) set out in this report and on information available at the time of preparation of this report. This report has been prepared for specific application to this site and it is based, in part, upon visual observation of the site, subsurface investigation at discrete locations and depths, and specific analysis of specific chemical parameters and materials during a specific time interval, all as described in this report. Unless otherwise stated, the findings cannot be extended to previous or future site conditions, portions of the site which were unavailable for direct investigation, subsurface locations which were not addressed. Substances other than those addressed by the investigation may exist in areas of the site not investigated and concentrations of substances addressed which are different than those reported may exist in areas other than the location from which samples were taken.

If site conditions or applicable standards change or if any additional information becomes available at a future date, modifications to the findings, conclusions and recommendations in this report may be necessary.

Other than by Developpements Proximi-T, copying or distribution of this report or use of or reliance on the information contained herein, in whole or in part, is not permitted without the express written permission of CM3 Environmental Inc. Nothing in this report is intended to constitute or provide a legal opinion.

This Phase Two ESA was completed under supervision of Mr. Marc MacDonald, P.Eng. of CM3 Environmental Inc. Mr. MacDonald is a Qualified Person as defined in O.Reg. 153/04 and confirms that this report includes all findings and conclusions of the Phase Two ESA.

We trust that the above is satisfactory for your purposes at this time. Please feel free to contact the undersigned if you have any questions.

Yours sincerely,

CM3 Environmental Inc.

Hand Brig

Karl Bilyj, B.Sc. P. Geo., QP Senior Geoscientist

MMac Doald

Marc MacDonald, P.Eng. QP, EP Principal

8.0 **REFERENCES**

Soil, Groundwater and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act, Ontario Ministry of Environment, April, 2011.

Guide for Completing Phase Two Site Assessments under Ontario Regulation 153/04, Ontario Ministry of Environment, June 2011.

Guide for Completing Phase One Site Assessments under Ontario Regulation 153/04, Ontario Ministry of Environment, June 2011.

Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario, Ontario Ministry of Environment, December 1996.

Ontario Regulation 153/04 (made under the Environmental Protection Act), as amended, Ontario Ministry of Environment, 2004.

Environmental Protection Act, R.S.O. 1990, Chapter E.19, as amended, Ontario Ministry of Environment, 2004.

TABLES

Phase Two Environmental Site Assessment 971 Montreal Road Ottawa, Ontario Developpements Proximi-T Inc. MM2320

Table 1: Monitoring Well Construction Phase Two ESA 971 Montreal Road Ottawa, Ontario MM2320

ID	Date	Drilling	TOC	Ground	Stickup	End o	of Hole	Well	Top of W	ell Screen	Bottom of V	Nell Screen	Screen	Top of Sand		Well
	Drilled	Method						Diameter					Length			Completion
			(marl)	(marl)	(m)	(m bg)	(m arl)	(mm)	(m bg)	(m arl)	(m bg)	(m arl)	(m)	(m bg)	(m arl)	
MW1	10-Jul-20	SS/HSA and core	100.89	101.08	-0.18	7.16	93.92	32	4.11	96.97	7.16	93.92	3.05	3.86	97.22	FM
MW2	10-Jul-20	SS/HSA and core	100.07	100.22	-0.15	7.19	93.03	32	4.14	96.08	7.19	93.03	3.05	3.66	96.56	FM
MW3	10-Jul-20	SS/HSA and core	100.00	100.17	-0.17	6.13	94.04	32	3.07	97.10	6.12	94.05	3.05	2.74	97.43	FM
MW4	19-Apr-22	SS/HSA and AH	100.94	101.06	-0.12	7.06	94.00	50	4.01	97.05	7.06	94.00	3.05	3.70	97.36	FM
MW5	19-Apr-22	SS/HSA and AH	100.51	100.61	-0.10	7.11	93.50	50	4.06	96.55	7.11	93.50	3.05	3.75	96.86	FM
MW6	19-Apr-22	SS/HSA and AH	100.12	100.23	-0.11	6.53	93.70	50	3.48	96.75	6.53	93.70	3.05	3.17	97.06	FM
MW7	19-Apr-22	SS/HSA and AH	99.82	99.93	-0.10	6.35	93.58	50	3.30	96.63	6.35	93.58	3.05	2.99	96.94	FM
MW8	19-Apr-22	SS/HSA and AH	100.17	100.29	-0.11	6.27	94.02	50	3.22	97.07	6.27	94.02	3.05	2.92	97.37	FM

Notes: TOC - top of casing

m - metres mm - millimeters

m arl - metres above reference level m bg - metres below grade SS/HSA - split spoon and hollow stem auger AH - downhole air hammer

Table 2: LPH and Water Level Measurements Phase Two ESA 971 Montreal Road Ottawa, Ontario MM2320

Well	Date	TOC	Grade	Dep	th to	Elev	ation	Comments
ID				LPH	GW	LPH	GW	
		(marl)	(marl)	(mbtoc)	(mbtoc)	(marl)	(marl)	
MW1	16-Jul-20	100.894	101.079		4.320		96.574	
MW1	20-Apr-22	100.894	101.079		3.865		97.029	
MW1	25-Apr-22	100.894	101.079		3.887		97.007	
MW1	3-May-22	100.894	101.079		3.921		96.973	
MW2	16-Jul-20	100.071	100.218		3.370		96.701	
MW2	20-Apr-22	100.071	100.218		2.942		97.129	
MW2	25-Apr-22	100.071	100.218		3.003		97.068	
MW2	3-May-22	100.071	100.218		3.036		97.035	
MW3	16-Jul-20	100.000	100.169		4.050		95.950	
MW3	20-Apr-22	100.000	100.169		2.858		97.142	
MW3	25-Apr-22	100.000	100.169		2.983		97.017	
MW3	3-May-22	100.000	100.169		3.015		96.985	
MW4	25-Apr-22	100.941	101.057		NV		NV	dry at 6.94m
MW4	3-May-22	100.941	101.057		4.805		96.136	
MW5	25-Apr-22	100.513	100.613		3.463		97.050	
MW5	3-May-22	100.513	100.613		3.487		97.026	
MW6	25-Apr-22	100.119	100.227		4.435		95.684	
MW6	3-May-22	100.119	100.227		3.906		96.213	
MW7	25-Apr-22	99.824	99.929		4.840		94.984	
MW7	3-May-22	99.824	99.929		3.474		96.350	
MW8	25-Apr-22	100.171	100.286		3.117		97.054	
MW8	3-May-22	100.171	100.286		3.155		97.016	

Notes: TOC - top of casing marl - metres above reference level mbtoc - metres below top of casing

LPH - liquid phase hydrocarbons GW - groundwater

NM - not measured

NV / -- - no value/LPH not present

Table 3: Summary of Soil Analytical Results - BTEX and PHCs F1-F4 Phase Two ESA 971 Montreal Road Ottawa, Ontario MM2320

Parameter	Sample ID > Depth (m bg) >	MDL	MECP Table 7	BH1-SA1 0.61-1.22	BH1-SA5 2.44-2.75	BH2-SA1 0.0-0.61	BH2-SA5 2.44-3.05	BH3-SA3	MW4 SA1 0.0-0.76	MW4 SA3	MW5 SA1 0.0-0.76	MW5 SA2	MW6 SA2	DUP 1 (MW6 SA2) 0.76-1.52	MW6 SA5 3.05-3.13
	HSVL (ppm) > Sample Date >		SCS	0 10-Jul-20	0 10-Jul-20	0 10-Jul-20	15 10-Jul-20	0 10-Jul-20	0 19-Apr-22	0 19-Apr-22	0 19-Apr-22	0 19-Apr-22	0 19-Apr-22	0 19-Apr-22	0 19-Apr-22
BTEX															
Benzene		0.02	0.21	NA	ND (0.02)	NA	ND (0.02)	ND (0.02)	ND (0.02)	ND (0.02)	ND (0.02)	ND (0.02)	ND (0.02)	ND (0.02)	ND (0.02)
Ethylbenzene		0.05	0.21	NA	ND (0.02)	NA	ND (0.02)	ND (0.02)	ND (0.02)	ND (0.02)	ND (0.02)	ND (0.02)	ND (0.02)	ND (0.05)	ND (0.02)
Toluene		0.05	2.3	NA	ND (0.05)	NA	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)
m,p-Xylene		0.05	NV	NA	ND (0.05)	NA	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)
o-Xylene		0.05	NV	NA	ND (0.05)	NA	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)
Xylene (Total)		0.05	3.1	NA	ND (0.05)	NA	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)
PHCs															
PHC F1(C6-C10)		7	55	NA	ND (7)	NA	ND (7)	NA	7	ND (7)	ND (7)	ND (7)	ND (7)	8	ND (7)
PHC F2(C10-C16)		4	98	NA	ND (4)	NA	ND (4)	NA	17	ND (40)	ND (4)	7	15	20	ND (4)
PHC F3(C16-C34)		8	300	NA	88	NA	ND (8)	NA	92	445	74	50	47	57	32
PHC F4(>C34)		6	2800	NA	162	NA	ND (6)	NA	266	1110	159	96	79	93	12
PHCs F4G (gravimetric)		50	2800	NA	NA	NA	NA	NA	150	1360	365	NA	NA	NA	NA

Notes:

mg/kg - all concentrations provided in parts per million (milligrams per kilogram)

MDL - reported analytical method detection limit

HSVL - headspace vapour level (combustible vapour meter, calibrated to hexane)

m bg - metres below grade

ppm - parts per million

NV - no standard listed

"<" or "ND ()" - less than detection limits indicated (refer to laboratory report)

NA - not applicable

MECP Table 7 SCS - Ontain Ministry of Environment, Conservation and Parks (MECP) Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act. April, 2011. Generic Site Condition Standards for Shallow Soils in a Non-Potable Ground

Water Condition, residential land use, coarse textured soil.

Bold / Italic - indicates concentration above applicable MECP Table 7 SCS

Table 3: Summary of Soil Analytical Results - BTEX and PHCs F1-F4 Phase Two ESA 971 Montreal Road Ottawa, Ontario

Parameter	Sample ID > Depth (m bg) > HSVL (ppm) > Sample Date >	MDL	MECP Table 7 SCS	MW7 SA1 0.0-0.56 0 19-Apr-22	MW8 SA1 0.0-0.76 10 19-Apr-22	MW8 SA2 0.76-1.52 10 19-Apr-22
BTEX						
Benzene		0.02	0.21	ND (0.02)	ND (0.02)	ND (0.02)
Ethylbenzene		0.05	2	ND (0.05)	ND (0.05)	ND (0.05)
Toluene		0.05	2.3	ND (0.05)	ND (0.05)	ND (0.05)
m,p-Xylene		0.05	NV	ND (0.05)	ND (0.05)	ND (0.05)
o-Xylene		0.05	NV	ND (0.05)	ND (0.05)	ND (0.05)
Xylene (Total)		0.05	3.1	ND (0.05)	ND (0.05)	ND (0.05)
PHCs						
PHC F1(C6-C10)		7	55	ND (7)	ND (7)	ND (7)
PHC F2(C10-C16)		4	98	8	ND (40)	ND (4)
PHC F3(C16-C34)		8	300	90	ND (80)	56
PHC F4(>C34)		6	2800	259	272	80
PHCs F4G (gravimetric)		50	2800	164	384	NA

Notes:

mg/kg - all concentrations provided in parts per million (milligrams per kilogram)

MDL - reported analytical method detection limit

HSVL - headspace vapour level (combustible vapour meter, calibrated to hexane)

m bg - metres below grade

ppm - parts per million

NV - no standard listed

"<" or "ND ()" - less than detection limits indicated (refer to laboratory report)

NA - not applicable

MECP Table 7 SCS - Ontain Ministry of Environment, Conservation and Parks (MECP) Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the

Environmental Protection Act. April, 2011. Generic Site Condition Standards for Shallow Soils in a Non-Potable Ground

Water Condition, residential land use, coarse textured soil.

Bold / Italic - indicates concentration above applicable MECP Table 7 SCS

0.5 - MDL above applicable MECP Table 7 SCS (refer to laboratory reports)

Table 4: Summary of Soil Analytical Results - VOCs Phase Two ESA 971 Montreal Road Ottawa, Ontario MM2320

Sample ID >			BH1-SA1	BH1-SA5	BH2-SA1	BH2-SA5	BH3-SA3	MW4 SA1	MW4 SA3	MW5 SA1	MW5 SA2	MW6 SA2	DUP 1	MW6 SA5
Parameter	MDL	MECP											(MW6 SA2)	1
Depth (m bg) >		Table 7	0.61-1.22	2.44-2.75	0.0-0.61	2.44-3.05	1.22-1.37	0.0-0.76	1.52-1.91	0.0-0.76	1.52-2.13	0.76-1.52	0.76-1.52	3.05-3.13
HSVL (ppm) > Sample Date >		SCS	0 10-Jul-20	0 10-Jul-20	0 10-Jul-20	15 10-Jul-20	0 10-Jul-20	0	0 19-Apr-22	0 19-Apr-22	0	0	0	0
Sample Date >			10-Jui-20	10-Jul-20	10-Jul-20	10-Jui-20	10-Jui-20	19-Apr-22	19-Apr-22	19-Apr-22	19-Apr-22	19-Apr-22	19-Apr-22	19-Apr-22
VOCs														1
Acetone	0.5	16	NA	ND (0.50)	NA	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)
Benzene	0.02	0.21	NA	ND (0.02)	NA	ND (0.02)	ND (0.02)	ND (0.02)	ND (0.02)	ND (0.02)	ND (0.02)	ND (0.02)	ND (0.02)	ND (0.02)
Bromodichloromethane	0.05	13	NA	ND (0.05)	NA	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)
Bromoform	0.05	0.27	NA	ND (0.05)	NA	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)
Bromomethane	0.05	0.05	NA	ND (0.05)	NA	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)
Carbon Tetrachloride	0.05	0.05	NA	ND (0.05)	NA	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)
Chlorobenzene	0.05	2.4	NA	ND (0.05)	NA	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)
Chloroform	0.05	0.05	NA	ND (0.05)	NA	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)
Dibromochloromethane	0.05	9.4	NA	ND (0.05)	NA	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)
Dichlorodifluoromethane	0.05	16	NA	ND (0.05)	NA	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)
	0.05		NA		NA	(/	()	()	()	()	()	ND (0.05)	ND (0.05)	ND (0.05)
1,2-Dichlorobenzene		3.4		ND (0.05)		ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)			
1,3-Dichlorobenzene	0.05	4.8	NA	ND (0.05)	NA	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)
1,4-Dichlorobenzene	0.05	0.083	NA	ND (0.05)	NA	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)
1,1-Dichloroethane	0.05	3.5	NA	ND (0.05)	NA	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)
1,2-Dichloroethane	0.05	0.05	NA	ND (0.05)	NA	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)
1,1-Dichloroethylene	0.05	0.05	NA	ND (0.05)	NA	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)
cis-1,2-Dichloroethylene	0.05	3.4	NA	ND (0.05)	NA	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)
trans-1,2-Dichloroethylene	0.05	0.084	NA	ND (0.05)	NA	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)
1,2-Dichloropropane	0.05	0.05	NA	ND (0.05)	NA	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)
cis-1,3-Dichloropropylene	0.05	NV	NA	ND (0.05)	NA	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)
trans-1,3-Dichloropropylene	0.05	NV	NA	ND (0.05)	NA	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)
1,3-Dichloropropene, total	0.05	0.05	NA	ND (0.05)	NA	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)
Ethylbenzene	0.05	2	NA	ND (0.05)	NA	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)
Ethylene dibromide (dibromoethane, 1,2-)	0.05	0.05	NA	ND (0.05)	NA	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)
Hexane	0.05	2.8	NA	ND (0.05)	NA	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)
Methyl Ethyl Ketone (2-Butanone)	0.5	16	NA	ND (0.50)	NA	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)
Methyl Isobutyl Ketone	0.5	1.7	NA	ND (0.50)	NA	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)
Methyl tert-butyl ether	0.05	0.75	NA	ND (0.05)	NA	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)
Methylene Chloride	0.05	0.1	NA	ND (0.05)	NA	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)
Styrene	0.05	0.7	NA	ND (0.05)	NA	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)
1.1.1.2-Tetrachloroethane	0.05	0.058	NA	ND (0.05)	NA	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)
1,1,2,2-Tetrachloroethane	0.05	0.05	NA	ND (0.05)	NA	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)
Tetrachloroethylene	0.05	0.03	NA	ND (0.05)	NA	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)
Toluene	0.05	2.3	NA	ND (0.05)	NA	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)
	0.05	0.38	NA	ND (0.05) ND (0.05)	NA	ND (0.05)	ND (0.05)	ND (0.05)	. ,	. ,	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)
1,1,1-Trichloroethane	0.05	0.38	NA		NA				ND (0.05)	ND (0.05)		ND (0.05) ND (0.05)	ND (0.05) ND (0.05)	ND (0.05) ND (0.05)
1,1,2-Trichloroethane				ND (0.05)		ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)			
Trichloroethylene	0.05	0.061	NA	ND (0.05)	NA	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)
Trichlorofluoromethane	0.05	4	NA	ND (0.05)	NA	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)
Vinyl Chloride	0.02	0.02	NA	ND (0.02)	NA	ND (0.02)	ND (0.02)	ND (0.02)	ND (0.02)	ND (0.02)	ND (0.02)	ND (0.02)	ND (0.02)	ND (0.02)
m/p-Xylene	0.05	NV	NA	ND (0.05)	NA	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)
o-Xylene	0.05	NV	NA	ND (0.05)	NA	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)
Xylenes, total	0.05	3.1	NA	ND (0.05)	NA	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)
														ı

Notes:

mg/kg - all concentrations provided in parts per million (milligrams per kilogram) MDL - reported analytical method detection limit

HSVL - headspace vapour level (combustible vapour meter, calibrated to hexane)

m bg - metres below grade

ppm - parts per million

NV - no standard listed

"<" or "ND ()" - less than detection limits indicated (refer to laboratory report)

NA - not applicable

MECP Table 7 SCS - Ontario Ministry of Environment, Conservation and Parks (MECP) Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the

Environmental Protection Act. April, 2011.

Generic Site Condition Standards for Shallow Soils in a Non-Potable Ground Water Condition, residential land use, coarse textured soil.

Bold / Italic - indicates concentration above applicable MECP Table 7 SCS

Table 4: Summary of Soil Analytical Results - VOCs Phase Two ESA 971 Montreal Road Ottawa, Ontario MM2320

Sample ID >			MW7 SA1	MW8 SA1	MW8 SA2
Parameter	MDL	MECP			
Depth (m bg) >		Table 7	0.0-0.56	0.0-0.76	0.76-1.52
HSVL (ppm) >		SCS	0	10	10
Sample Date >			19-Apr-22	19-Apr-22	19-Apr-22
VOCs					
Acetone	0.5	16	ND (0.50)	ND (0.50)	ND (0.50)
Benzene	0.02	0.21	ND (0.02)	ND (0.02)	ND (0.02)
Bromodichloromethane	0.05	13	ND (0.05)	ND (0.05)	ND (0.02)
Bromoform	0.05	0.27	ND (0.05)	ND (0.05)	ND (0.05)
Bromomethane	0.05	0.05	ND (0.05)	ND (0.05)	ND (0.05)
Carbon Tetrachloride	0.05	0.05	ND (0.05)	ND (0.05)	ND (0.05)
Chlorobenzene	0.05	2.4	ND (0.05)	ND (0.05)	ND (0.05)
Chloroform	0.05	0.05	ND (0.05)	· · · ·	. ,
Dibromochloromethane	0.05	9.4	()	ND (0.05)	ND (0.05)
		-	ND (0.05)	ND (0.05)	ND (0.05)
Dichlorodifluoromethane 1.2-Dichlorobenzene	0.05 0.05	16 3.4	ND (0.05)	ND (0.05)	ND (0.05)
			ND (0.05)	ND (0.05)	ND (0.05)
1,3-Dichlorobenzene	0.05	4.8	ND (0.05)	ND (0.05)	ND (0.05)
1,4-Dichlorobenzene	0.05	0.083	ND (0.05)	ND (0.05)	ND (0.05)
1,1-Dichloroethane	0.05	3.5	ND (0.05)	ND (0.05)	ND (0.05)
1,2-Dichloroethane	0.05	0.05	ND (0.05)	ND (0.05)	ND (0.05)
1,1-Dichloroethylene	0.05	0.05	ND (0.05)	ND (0.05)	ND (0.05)
cis-1,2-Dichloroethylene	0.05	3.4	ND (0.05)	ND (0.05)	ND (0.05)
trans-1,2-Dichloroethylene	0.05	0.084	ND (0.05)	ND (0.05)	ND (0.05)
1,2-Dichloropropane	0.05	0.05	ND (0.05)	ND (0.05)	ND (0.05)
cis-1,3-Dichloropropylene	0.05	NV	ND (0.05)	ND (0.05)	ND (0.05)
trans-1,3-Dichloropropylene	0.05	NV	ND (0.05)	ND (0.05)	ND (0.05)
1,3-Dichloropropene, total	0.05	0.05	ND (0.05)	ND (0.05)	ND (0.05)
Ethylbenzene	0.05	2	ND (0.05)	ND (0.05)	ND (0.05)
Ethylene dibromide (dibromoethane, 1,2-)	0.05	0.05	ND (0.05)	ND (0.05)	ND (0.05)
Hexane	0.05	2.8	ND (0.05)	ND (0.05)	ND (0.05)
Methyl Ethyl Ketone (2-Butanone)	0.5	16	ND (0.50)	ND (0.50)	ND (0.50)
Methyl Isobutyl Ketone	0.5	1.7	ND (0.50)	ND (0.50)	ND (0.50)
Methyl tert-butyl ether	0.05	0.75	ND (0.05)	ND (0.05)	ND (0.05)
Methylene Chloride	0.05	0.1	ND (0.05)	ND (0.05)	ND (0.05)
Styrene	0.05	0.7	ND (0.05)	ND (0.05)	ND (0.05)
1,1,1,2-Tetrachloroethane	0.05	0.058	ND (0.05)	ND (0.05)	ND (0.05)
1,1,2,2-Tetrachloroethane	0.05	0.05	ND (0.05)	ND (0.05)	ND (0.05)
Tetrachloroethylene	0.05	0.28	ND (0.05)	ND (0.05)	ND (0.05)
Toluene	0.05	2.3	ND (0.05)	ND (0.05)	ND (0.05)
1.1.1-Trichloroethane	0.05	0.38	ND (0.05)	ND (0.05)	ND (0.05)
1,1,2-Trichloroethane	0.05	0.05	ND (0.05)	ND (0.05)	ND (0.05)
Trichloroethylene	0.05	0.061	ND (0.05)	ND (0.05)	ND (0.05)
Trichlorofluoromethane	0.05	4	ND (0.05)	ND (0.05)	ND (0.05)
Vinyl Chloride	0.02	0.02	ND (0.02)	ND (0.02)	ND (0.02)
m/p-Xylene	0.05	NV	ND (0.05)	ND (0.05)	ND (0.05)
o-Xylene	0.05	NV	ND (0.05)	ND (0.05)	ND (0.05)
Xylenes, total	0.05	3.1	ND (0.05)	ND (0.05)	ND (0.05)
· · ···, ·	0.00				

Notes:

mg/kg - all concentrations provided in parts per million (milligrams per kilogram)

MDL - reported analytical method detection limit

- HSVL headspace vapour level (combustible vapour meter, calibrated to hexane)
- m bg metres below grade
- ppm parts per million

NV - no standard listed

"<" or "ND ()" - less than detection limits indicated (refer to laboratory report)

- NA not applicable
- MECP Table 7 SCS Ontario Ministry of Environment, Conservation and Parks (MECP) Soil,

Ground Water and Sediment Standards for Use Under Part XV.1 of the

Environmental Protection Act. April, 2011.

Generic Site Condition Standards for Shallow Soils in a Non-Potable Ground

Water Condition, residential land use, coarse textured soil.

Bold / Italic - indicates concentration above applicable MECP Table 7 SCS

Table 5: Summary of Soil Analytical Results - Metals Phase Two ESA 971 Montreal Road Ottawa, Ontario MM2320

S	ample ID >			BH1-SA1	BH1-SA5	BH2-SA1	BH2-SA5	BH3-SA3	MW4 SA1	MW4 SA3	MW5 SA1	MW5 SA2	MW6 SA2	DUP 1	MW6 SA5
Parameter	-	MDL	MECP											(MW6 SA2)	
Dept	th (m bg) >		Table 7	0.61-1.22	2.44-2.75	0.0-0.61	2.44-3.05	1.22-1.37	0.0-0.76	1.52-1.91	0.0-0.76	1.52-2.13	0.76-1.52	0.76-1.52	3.05-3.13
HSV	VL (ppm) >		SCS	0	0	0	15	0	0	0	0	0	0	0	0
Sam	nple Date >			10-Jul-20	10-Jul-20	10-Jul-20	10-Jul-20	10-Jul-20	19-Apr-22						
Metals															
Antimony		1.0	7.5	ND (1.0)	NA	ND (1.0)	NA	NA	ND (1.0)						
Arsenic		1.0	18	3.6	NA	5.6	NA	NA	3.3	4.4	4.4	13	6.4	6	9.2
Barium		1.0	390	86.4	NA	68.6	NA	NA	148	141	74.6	157	186	161	90.8
Beryllium		0.5	4	ND (0.5)	NA	ND (0.5)	NA	NA	ND (0.5)	0.7	ND (0.5)	0.6	0.6	0.6	0.5
Boron		5.0	120	ND (5.0)	NA	5.4	NA	NA	8	12.1	5.7	12.5	9.5	9.7	10.7
Cadmium		0.5	1.2	ND (0.5)	NA	ND (0.5)	NA	NA	ND (0.5)						
Chromium		5.0	160	19.6	NA	15.8	NA	NA	12.8	34.1	16.9	18.7	28.4	26.5	19.2
Cobalt		1.0	22	5.1	NA	7.8	NA	NA	4.6	8.7	4.7	6.4	10.6	9.3	4.5
Copper		5.0	140	12.7	NA	27.8	NA	NA	13.5	27.1	12.2	22.5	24.9	23.5	21.8
Lead		1.0	120	16.9	NA	97.3	NA	NA	13.2	13.6	31.6	28.4	37.2	30.2	31.8
Molybdenum		1.0	6.9	ND (1.0)	NA	2.2	NA	NA	1.3	5.1	ND (1.0)	4.3	3.3	3.1	2
Nickel		5.0	100	13	NA	22.6	NA	NA	14.9	22	11.2	24.5	29.8	28.1	15.4
Selenium		1.0	2.4	ND (1.0)	NA	ND (1.0)	NA	NA	ND (1.0)						
Silver		0.3	20	ND (0.3)	NA	ND (0.3)	NA	NA	ND (0.3)						
Thallium		1.0	1	ND (1.0)	NA	ND (1.0)	NA	NA	ND (1.0)						
Uranium		1.0	23	ND (1.0)	NA	1	NA	NA	ND (1.0)	ND (1.0)	ND (1.0)	1.3	1.2	1.2	1.1
Vanadium		10	86	24	NA	24.2	NA	NA	14.3	32.8	23.9	18.7	30.7	28.1	22.5
Zinc		20	340	36.3	NA	61.2	NA	NA	24.5	38.3	44.4	34.9	44.6	44.9	52.1
		20	340	30.3	NA	01.2	INA	INA	24.0	30.3	44.4	34.9	44.0	44.9	52.1
1															

Notes:

mg/kg - all concentrations provided in parts per million (milligrams per kilogram)

MDL - reported analytical method detection limit

HSVL - headspace vapour level (combustible vapour meter, calibrated to hexane)

m bg - metres below grade

ppm - parts per million

NV - no standard listed

"<" or "ND ()" - less than detection limits indicated (refer to laboratory report)

NA - not applicable

MECP Table 7 SCS - Ontario Ministry of Environment, Conservation and Parks (MECP) Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act. April, 2011. Generic Site Condition Standards for Shallow Soils in a Non-Potable Ground

Water Condition, residential land use, coarse textured soil.

Bold / Italic - indicates concentration above applicable MECP Table 7 SCS

Table 5: Summary of Soil Analytical Results - Metals Phase Two ESA 971 Montreal Road Ottawa, Ontario MM2320

Parameter	Sample ID > Depth (m bg) > HSVL (ppm) > Sample Date >	MDL	MECP Table 7 SCS	MW7 SA1 0.0-0.56 0 19-Apr-22	MW8 SA1 0.0-0.76 10 19-Apr-22	MW8 SA2 0.76-1.52 10 19-Apr-22
Metals						
Antimony		1.0	7.5	ND (1.0)	ND (1.0)	ND (1.0)
Arsenic		1.0	18	9	3.6	5.7
Barium		1.0	390	94	65.1	81
Beryllium		0.5	4	0.6	ND (0.5)	ND (0.5)
Boron		5.0	120	9.5	6.2	11.5
Cadmium		0.5	1.2	ND (0.5)	ND (0.5)	ND (0.5)
Chromium		5.0	160	20.4	14.8	21
Cobalt		1.0	22	8	4.1	5.2
Copper		5.0	140	23.1	11.4	22.5
Lead		1.0	120	50	61.2	45.8
Molybdenum		1.0	6.9	2.7	ND (1.0)	1.5
Nickel		5.0	100	26.8	10.7	16.2
Selenium		1.0	2.4	ND (1.0)	ND (1.0)	ND (1.0)
Silver		0.3	20	ND (0.3)	ND (0.3)	ND (0.3)
Thallium		1.0	1	ND (1.0)	ND (1.0)	ND (1.0)
Uranium		1.0	23	1	ND (1.0)	ND (1.0)
Vanadium		10	86	24.6	17.7	22.5
Zinc		20	340	76.1	1340	184
		20	540			

Notes:

mg/kg - all concentrations provided in parts per million (milligrams per kilogram)

MDL - reported analytical method detection limit

HSVL - headspace vapour level (combustible vapour meter, calibrated to hexane)

m bg - metres below grade

ppm - parts per million

NV - no standard listed

"<" or "ND ()" - less than detection limits indicated (refer to laboratory report)

NA - not applicable

MECP Table 7 SCS - Ontario Ministry of Environment, Conservation and Parks (MECP) Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the

Environmental Protection Act. April, 2011.

Generic Site Condition Standards for Shallow Soils in a Non-Potable Ground

Water Condition, residential land use, coarse textured soil.

Bold / Italic - indicates concentration above applicable MECP Table 7 SCS

Table 6: Summary of Soil Analytical Results - PAHs Phase Two ESA 971 Montreal Road Ottawa, Ontario MM2320

Sample ID : Parameter	MDL	MECP	BH1-SA1	BH1-SA5	BH2-SA1	BH2-SA5	BH3-SA3	MW4 SA1	MW4 SA3	MW5 SA1	MW5 SA2	MW6 SA2	DUP 1 (MW6 SA2)	MW6 SA5
Depth (m bg) :	>	Table 7	0.61-1.22	2.44-2.75	0.0-0.61	2.44-3.05	1.22-1.37	0.0-0.76	1.52-1.91	0.0-0.76	1.52-2.13	0.76-1.52	0.76-1.52	3.05-3.13
HSVL (ppm) :		SCS	0	0	0	15	0	0	0	0	0	0	0	0
Sample Date :			10-Jul-20	10-Jul-20	10-Jul-20	10-Jul-20	10-Jul-20	19-Apr-22	19-Apr-22	19-Apr-22	19-Apr-22	19-Apr-22	19-Apr-22	19-Apr-22
PAHs (Semi-Volatiles)														
Acenaphthene	0.02	7.9	NA	NA	NA	NA	NA	ND (0.02)	ND (0.02)	0.1	ND (0.02)	ND (0.02)	ND (0.02)	ND (0.02)
Acenaphthylene	0.02	0.15	NA	NA	NA	NA	NA	ND (0.02)	0.02	ND (0.02)				
Anthracene	0.02	0.67	NA	NA	NA	NA	NA	ND (0.02)	ND (0.02)	0.24	ND (0.02)	0.02	0.03	0.03
Benzo[a]anthracene	0.02	0.5	NA	NA	NA	NA	NA	ND (0.02)	ND (0.02)	0.29	0.04	0.08	0.08	0.04
Benzo[a]pyrene	0.02	0.3	NA	NA	NA	NA	NA	ND (0.02)	0.03	0.22	0.05	0.1	0.1	0.04
Benzo[b]fluoranthene	0.02	0.78	NA	NA	NA	NA	NA	ND (0.02)	0.03	0.25	0.06	0.11	0.12	0.05
Benzo[g,h,i]perylene	0.02	6.6	NA	NA	NA	NA	NA	ND (0.02)	0.05	0.11	0.04	0.07	0.08	0.03
Benzo[k]fluoranthene	0.02	0.78	NA	NA	NA	NA	NA	ND (0.02)	ND (0.02)	0.15	0.03	0.05	0.06	0.02
Chrysene	0.02	7	NA	NA	NA	NA	NA	ND (0.02)	0.02	0.24	0.04	0.08	0.08	0.05
Dibenzo[a,h]anthracene	0.02	0.1	NA	NA	NA	NA	NA	ND (0.02)	ND (0.02)	0.04	ND (0.02)	ND (0.02)	0.02	ND (0.02)
Fluoranthene	0.02	0.69	NA	NA	NA	NA	NA	ND (0.02)	0.02	0.74	0.08	0.16	0.16	0.07
Fluorene	0.02	62	NA	NA	NA	NA	NA	ND (0.02)	ND (0.02)	0.15	ND (0.02)	ND (0.02)	ND (0.02)	ND (0.02)
Indeno[1,2,3-cd]pyrene	0.02	0.38	NA	NA	NA	NA	NA	ND (0.02)	ND (0.02)	0.12	0.03	0.06	0.08	0.03
1-Methylnaphthalene	0.02	0.99	NA	NA	NA	NA	NA	ND (0.02)	ND (0.02)	0.04	ND (0.02)	ND (0.02)	ND (0.02)	ND (0.02)
2-Methylnaphthalene	0.02	0.99	NA	NA	NA	NA	NA	ND (0.02)	ND (0.02)	0.05	ND (0.02)	ND (0.02)	ND (0.02)	ND (0.02)
Methylnaphthalene (1&2)	0.04	0.99	NA	NA	NA	NA	NA	ND (0.04)	ND (0.04)	0.09	ND (0.04)	ND (0.04)	ND (0.04)	ND (0.04)
Naphthalene	0.01	0.6	NA	NA	NA	NA	NA	ND (0.01)	ND (0.01)	0.06	ND (0.01)	ND (0.01)	ND (0.01)	0.01
Phenanthrene	0.02	6.2	NA	NA	NA	NA	NA	ND (0.02)	ND (0.02)	0.85	0.06	0.07	0.08	0.07
Pyrene	0.02	78	NA	NA	NA	NA	NA	ND (0.02)	0.02	0.56	0.07	0.14	0.14	0.06

Notes:

mg/kg - all concentrations provided in parts per million (milligrams per kilogram)

MDL - reported analytical method detection limit

HSVL - headspace vapour level (combustible vapour meter, calibrated to hexane)

m bg - metres below grade

ppm - parts per million

NV - no standard listed

"<" or "ND ()" - less than detection limits indicated (refer to laboratory report) NA - not applicable

MECP Table 7 SCS - Ontario Ministry of Environment, Conservation and Parks (MECP) Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the

Environmental Protection Act. April, 2011. Generic Site Condition Standards for Shallow Soils in a Non-Potable Ground

Water Condition, residential land use, coarse textured soil.

Bold / Italic - indicates concentration above applicable MECP Table 7 SCS

Table 6: Summary of Soil Analytical Results - PAHs Phase Two ESA 971 Montreal Road Ottawa, Ontario MM2320

Sample ID >	>		MW7 SA1	MW8 SA1	MW8 SA2
Parameter	MDL	MECP	_		
Depth (m bg) >	,	Table 7	0.0-0.56	0.0-0.76	0.76-1.52
HSVL (ppm) >	•	SCS	0	10	10
Sample Date >	>		19-Apr-22	19-Apr-22	19-Apr-22
PAHs (Semi-Volatiles)					
Acenaphthene	0.02	7.9	ND (0.02)	0.04	0.04
	0.02	0.15			
Acenaphthylene Anthracene			ND (0.02)	ND (0.02) 0.08	ND (0.02)
	0.02	0.67 0.5	ND (0.02) 0.03	0.08	0.09 0.17
Benzo[a]anthracene					-
Benzo[a]pyrene	0.02	0.3	0.04	0.16	0.16
Benzo[b]fluoranthene	0.02	0.78	0.05	0.18	0.19
Benzo[g,h,i]perylene	0.02	6.6	0.04	0.1	0.09
Benzo[k]fluoranthene	0.02	0.78	0.02	0.1	0.11
Chrysene	0.02	7	0.03	0.2	0.16
Dibenzo[a,h]anthracene	0.02	0.1	ND (0.02)	0.03	0.03
Fluoranthene	0.02	0.69	0.06	0.4	0.37
Fluorene	0.02	62	ND (0.02)	0.04	0.04
Indeno[1,2,3-cd]pyrene	0.02	0.38	0.02	0.1	0.09
1-Methylnaphthalene	0.02	0.99	ND (0.02)	ND (0.02)	ND (0.02)
2-Methylnaphthalene	0.02	0.99	ND (0.02)	ND (0.02)	ND (0.02)
Methylnaphthalene (1&2)	0.04	0.99	ND (0.04)	ND (0.04)	ND (0.04)
Naphthalene	0.01	0.6	ND (0.01)	ND (0.01)	ND (0.01)
Phenanthrene	0.02	6.2	0.04	0.31	0.31
Pyrene	0.02	78	0.05	0.31	0.29

Notes:

mg/kg - all concentrations provided in parts per million (milligrams per kilogram)

MDL - reported analytical method detection limit

HSVL - headspace vapour level (combustible vapour meter, calibrated to hexane)

m bg - metres below grade

ppm - parts per million

NV - no standard listed "<" or "ND ()" - less than detection limits indicated (refer to laboratory report)

NA - not applicable

MECP Table 7 SCS - Ontario Ministry of Environment, Conservation and Parks (MECP) Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the

Environmental Protection Act. April, 2011.

Generic Site Condition Standards for Shallow Soils in a Non-Potable Ground

Water Condition, residential land use, coarse textured soil.

Bold / Italic - indicates concentration above applicable MECP Table 7 SCS

Table 7: Summary of Groundwater Analytical Results - BTEX and PHCs F1-F4 Phase Two ESA 971 Montreal Road Ottawa, Ontario MM2320

Sample ID			MW1	MW1	MW1	MW2	MW2	MW2	DUP 1	MW3	MW3	MW3	MW4	MW5
Parameter	MDL	MECP							MW2 BFD					
		Table 7												
		SCS												
Sample Date	>		16-Jul-20	23-Jul-20	3-May-22	16-Jul-20	23-Jul-20	3-May-22	3-May-22	16-Jul-20	23-Jul-20	3-May-22	4-May-22	3-May-22
BTEX														
Benzene	0.5	0.5	ND (0.5)	NA	ND (0.5)	ND (0.5)	NA	ND (0.5)	ND (0.5)	ND (0.5)	NA	ND (0.5)	ND (0.5)	ND (0.5)
Ethylbenzene	0.5	54	ND (0.5)	NA	ND (0.5)	ND (0.5)	NA	ND (0.5)	ND (0.5)	ND (0.5)	NA	ND (0.5)	ND (0.5)	ND (0.5)
Toluene	0.5	320	ND (0.5)	NA	ND (0.5)	ND (0.5)	NA	ND (0.5)	ND (0.5)	ND (0.5)	NA	ND (0.5)	ND (0.5)	ND (0.5)
m,p-Xylene	0.5	NV	ND (0.5)	NA	ND (0.5)	ND (0.5)	NA	ND (0.5)	ND (0.5)	ND (0.5)	NA	ND (0.5)	ND (0.5)	ND (0.5)
o-Xylene	0.5	NV	ND (0.5)	NA	ND (0.5)	ND (0.5)	NA	ND (0.5)	ND (0.5)	ND (0.5)	NA	ND (0.5)	ND (0.5)	ND (0.5)
Xylene (Total)	0.5	72	ND (0.5)	NA	ND (0.5)	ND (0.5)	NA	ND (0.5)	ND (0.5)	ND (0.5)	NA	ND (0.5)	ND (0.5)	ND (0.5)
PHCs														
PHC F1(C6-C10)	25	420	ND (25)	NA	ND (25)	ND (25)	NA	ND (25)	ND (25)	ND (25)	NA	ND (25)	ND (25)	ND (25)
PHC F2(C10-C16)	100	150	ND (100)	NA	ND (100)	ND (100)	NA	ND (100)	ND (100)	ND (100)	NA	ND (100)	ND (100)	ND (100)
PHC F3(C16-C34)	100	500	360	NA	ND (100)	320	NA	ND (100)	ND (100)	260	NA	ND (100)	337	ND (100)
														ND (100)
PHC F4(>C34)	100	500	100	NA	ND (100)	140	NA	ND (100)	ND (100)	119	NA	ND (100)	257	ND

Notes:

µg/L - all concentrations provided in micrograms per litre (parts per billion) MDL - reported analytical method detection limit

ppm - parts per million NV - no standard listed

"<" or "ND ()" - less than detection limits indicated (refer to laboratory report)

NA - not applicable

MECP Table 7 SCS - Ontario Ministry of Environment, Conservation and Parks (MECP) Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act. April, 2011. Generic Site Condition Standards for Shallow Soils in a Non-Potable Ground Water Condition, residential land use, coarse textured soil.

Bold / Italic - indicates concentration above applicable MECP Table 7 SCS

Table 7: Summary of Groundwater Analytical Results - BTEX and PHCs F1-F4 Phase Two ESA 971 Montreal Road Ottawa, Ontario MM2320

Sam	ple ID >		MW6	MW7	MW8
Parameter	MDL	MECP	_		
		Table 7			
		SCS			
Sample	Date >		4-May-22	4-May-22	3-May-22
втех					
	0.5				
Benzene	0.5	0.5	ND (0.5)	ND (0.5)	ND (0.5)
Ethylbenzene	0.5	54	ND (0.5)	ND (0.5)	ND (0.5)
Toluene	0.5	320	ND (0.5)	ND (0.5)	ND (0.5)
m,p-Xylene	0.5	NV	ND (0.5)	ND (0.5)	ND (0.5)
o-Xylene	0.5	NV	ND (0.5)	ND (0.5)	ND (0.5)
Xylene (Total)	0.5	72	ND (0.5)	ND (0.5)	ND (0.5)
PHCs					
PHC F1(C6-C10)	25	420	ND (25)	ND (25)	ND (25)
PHC F2(C10-C16)	100	150	ND (100)	ND (100)	ND (100)
PHC F3(C16-C34)	100	500	ND (100)	243	ND (100)
PHC F4(>C34)	100	500	ND (100)	157	ND (100)

Notes:

µg/L - all concentrations provided in micrograms per litre (parts per billion) MDL - reported analytical method detection limit

ppm - parts per million NV - no standard listed

"<" or "ND ()" - less than detection limits indicated (refer to laboratory report)

NA - not applicable

- MECP Table 7 SCS Ontario Ministry of Environment, Conservation and Parks (MECP) Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act. April, 2011.
 - Generic Site Condition Standards for Shallow Soils in a Non-Potable Ground

Water Condition, residential land use, coarse textured soil.

Bold / Italic - indicates concentration above applicable MECP Table 7 SCS

Table 8: Summary of Groundwater Analytical Results - VOCs Phase Two ESA 971 Montreal Road Ottawa, Ontario MM2320

Sample ID >		1	MW1	MW1	MW1	MW2	MW2	MW2	DUP 1	MW3	MW3	MW3	MW4	MW5
Parameter	MDL	MECP							MW2 BFD					
	1	Table 7	/ !											
	1	SCS	/ !											
Sample Date >			16-Jul-20	23-Jul-20	3-May-22	16-Jul-20	23-Jul-20	3-May-22	3-May-22	16-Jul-20	23-Jul-20	3-May-22	4-May-22	3-May-22
VOCs			/ /											
Acetone	5	100000	ND (5.0)	NA	ND (5.0)	ND (5.0)	NA	ND (5.0)	ND (5.0)	ND (5.0)	NA	ND (5.0)	6.8	ND (5.0)
Benzene	0.5	0.5	ND (0.5)	NA	ND (0.5)	ND (0.5)	NA	ND (0.5)	ND (0.5)	ND (0.5)	NA	ND (0.5)	ND (0.5)	ND (0.5)
Bromodichloromethane	0.5	67000	ND (0.5)	NA	ND (0.5)	ND (0.5)	NA	ND (0.5)	ND (0.5)	ND (0.5)	NA	ND (0.5)	ND (0.5)	ND (0.5)
Bromoform	0.5	5	ND (0.5)	NA	ND (0.5)	ND (0.5)	NA	ND (0.5)	ND (0.5)	ND (0.5)	NA	ND (0.5)	ND (0.5)	ND (0.5)
Bromomethane	0.5	0.89	ND (0.5)	NA	ND (0.5)	ND (0.5)	NA	ND (0.5)	ND (0.5)	ND (0.5)	NA	ND (0.5)	ND (0.5)	ND (0.5)
Carbon Tetrachloride	0.2	0.2	ND (0.2)	NA	ND (0.2)	ND (0.2)	NA	ND (0.2)	ND (0.2)	ND (0.2)	NA	ND (0.2)	ND (0.2)	ND (0.2)
Chlorobenzene	0.5	140	ND (0.5)	NA	ND (0.5)	ND (0.5)	NA	ND (0.5)	ND (0.5)	ND (0.5)	NA	ND (0.5)	ND (0.5)	ND (0.5)
Chloroform	0.5	2	5.7	2	0.6	4.9	1.9	ND (0.5)	ND (0.5)	6.7	1.2	ND (0.5)	ND (0.5)	ND (0.5)
Dibromochloromethane	0.5	65000	ND (0.5)	NA	ND (0.5)	ND (0.5)	NA	ND (0.5)	ND (0.5)	ND (0.5)	NA	ND (0.5)	ND (0.5)	ND (0.5)
Dichlorodifluoromethane	1	3500	ND (1.0)	NA	ND (1.0)	ND (1.0)	NA	ND (1.0)	ND (1.0)	ND (1.0)	NA	ND (1.0)	ND (1.0)	ND (1.0)
1,2-Dichlorobenzene	0.5	150	ND (0.5)	NA	ND (0.5)	ND (0.5)	NA	ND (0.5)	ND (0.5)	ND (0.5)	NA	ND (0.5)	ND (0.5)	ND (0.5)
1,3-Dichlorobenzene	0.5	7600	ND (0.5)	NA	ND (0.5)	ND (0.5)	NA	ND (0.5)	ND (0.5)	ND (0.5)	NA	ND (0.5)	ND (0.5)	ND (0.5)
1.4-Dichlorobenzene	0.5	0.5	ND (0.5)	NA	ND (0.5)	ND (0.5)	NA	ND (0.5)	ND (0.5)	ND (0.5)	NA	ND (0.5)	ND (0.5)	ND (0.5)
1.1-Dichloroethane	0.5	11	ND (0.5)	NA	ND (0.5)	ND (0.5)	NA	ND (0.5)	ND (0.5)	ND (0.5)	NA	ND (0.5)	ND (0.5)	ND (0.5)
1.2-Dichloroethane	0.5	0.5	ND (0.5)	NA	ND (0.5)	ND (0.5)	NA	ND (0.5)	ND (0.5)	ND (0.5)	NA	ND (0.5)	ND (0.5)	ND (0.5)
1,1-Dichloroethylene	0.5	0.5	ND (0.5)	NA	ND (0.5)	ND (0.5)	NA	ND (0.5)	ND (0.5)	ND (0.5)	NA	ND (0.5)	ND (0.5)	ND (0.5)
cis-1,2-Dichloroethylene	0.5	1.6	ND (0.5)	NA	ND (0.5)	ND (0.5)	NA	ND (0.5)	ND (0.5)	ND (0.5)	NA	ND (0.5)	ND (0.5)	ND (0.5)
trans-1,2-Dichloroethylene	0.5	1.6	ND (0.5) ND (0.5)	NA	ND (0.5) ND (0.5)	ND (0.5)	NA	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5)	NA	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)
1,2-Dichloropropane	0.5	0.58	ND (0.5)	NA	ND (0.5)	ND (0.5)	NA	ND (0.5)	ND (0.5)	ND (0.5)	NA	ND (0.5)	ND (0.5)	ND (0.5)
cis-1,3-Dichloropropylene	0.5	0.58 NV	ND (0.5) ND (0.5)	NA	ND (0.5) ND (0.5)	ND (0.5)	NA	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5)	NA	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)
trans-1,3-Dichloropropylene	0.5	NV	ND (0.5)	NA	ND (0.5)	ND (0.5)	NA	ND (0.5)	ND (0.5)	ND (0.5)	NA	ND (0.5)	ND (0.5)	ND (0.5)
1,3-Dichloropropene, total	0.5	0.5	ND (0.5) ND (0.5)	NA	ND (0.5) ND (0.5)	ND (0.5)	NA	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5)	NA	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)
Ethylbenzene	0.5	54	. ,	NA	ND (0.5)	ND (0.5)	NA	ND (0.5)	ND (0.5)	ND (0.5)	NA	ND (0.5)	ND (0.5)	ND (0.5)
		0.2	ND (0.5)	NA	. ,		NA	• • •			NA			
Ethylene dibromide (dibromoethane, 1,2-) Hexane	0.2 1	0.2	ND (0.2)	NA	ND (0.2)	ND (0.2) ND (1.0)	NA	ND (0.2)	ND (0.2)	ND (0.2) ND (1.0)	NA	ND (0.2) ND (1.0)	ND (0.2) ND (1.0)	ND (0.2) ND (1.0)
	5	21000	ND (1.0)	NA	ND (1.0)	ND (1.0) ND (5.0)	NA	ND (1.0)	ND (1.0)		NA			
Methyl Ethyl Ketone (2-Butanone)	5	5200	ND (5.0)	NA	ND (5.0)	()	NA	ND (5.0)	ND (5.0)	ND (5.0)	NA	ND (5.0)	ND (5.0) ND (5.0)	ND (5.0) ND (5.0)
Methyl Isobutyl Ketone	2	15	ND (5.0)	NA	ND (5.0)	ND (5.0) ND (2.0)	NA	ND (5.0)	ND (5.0) ND (2.0)	ND (5.0) ND (2.0)	NA	ND (5.0) ND (2.0)	ND (5.0) ND (2.0)	ND (5.0) ND (2.0)
Methyl tert-butyl ether Methylene Chloride	2 5	26	ND (2.0) ND (5.0)	NA	ND (2.0) ND (5.0)	ND (2.0)	NA	ND (2.0) ND (5.0)	ND (2.0) ND (5.0)	ND (2.0)	NA	ND (2.0) ND (5.0)	ND (2.0) ND (5.0)	ND (2.0) ND (5.0)
2	0.5	43	ND (5.0) ND (0.5)	NA	ND (0.5)	ND (5.0) ND (0.5)	NA	• • •	ND (5.0) ND (0.5)	ND (0.5)	NA	ND (0.5)	ND (5.0) ND (0.5)	ND (5.0) ND (0.5)
Styrene 1.1.1.2-Tetrachloroethane	0.5	43		NA			NA	ND (0.5) ND (0.5)			NA			
1.1.2.2-Tetrachloroethane	0.5	0.5	ND (0.5)	NA	ND (0.5)	ND (0.5)	NA	()	ND (0.5)	ND (0.5)	NA	ND (0.5) ND (0.5)	ND (0.5)	ND (0.5) ND (0.5)
			ND (0.5)	NA	ND (0.5)	ND (0.5)	NA	ND (0.5)	ND (0.5)	ND (0.5)	NA		ND (0.5)	
Tetrachloroethylene	0.5	0.5	ND (0.5)		ND (0.5)	ND (0.5)		ND (0.5)	ND (0.5)	ND (0.5)		ND (0.5)	ND (0.5)	ND (0.5)
	0.5 0.5	320 23	ND (0.5)	NA NA	ND (0.5)	ND (0.5)	NA NA	ND (0.5)	ND (0.5)	ND (0.5)	NA	ND (0.5)	ND (0.5)	ND (0.5)
1,1,1-Trichloroethane			ND (0.5)		ND (0.5)	ND (0.5)		ND (0.5)	ND (0.5)	ND (0.5)	NA	ND (0.5)	ND (0.5)	ND (0.5)
1,1,2-Trichloroethane	0.5	0.5	ND (0.5)	NA	ND (0.5)	ND (0.5)	NA	ND (0.5)	ND (0.5)	ND (0.5)	NA	ND (0.5)	ND (0.5)	ND (0.5)
Trichloroethylene	0.5	0.5	ND (0.5)	NA	ND (0.5)	ND (0.5)	NA	ND (0.5)	ND (0.5)	ND (0.5)	NA	ND (0.5)	ND (0.5)	ND (0.5)
Trichlorofluoromethane	1	2000	ND (1.0)	NA	ND (1.0)	ND (1.0)	NA	ND (1.0)	ND (1.0)	ND (1.0)	NA	ND (1.0)	ND (1.0)	ND (1.0)
Vinyl Chloride	0.5	0.5	ND (0.5)	NA	ND (0.5)	ND (0.5)	NA	ND (0.5)	ND (0.5)	ND (0.5)	NA	ND (0.5)	ND (0.5)	ND (0.5)
m/p-Xylene	0.5	NV	ND (0.5)	NA	ND (0.5)	ND (0.5)	NA	ND (0.5)	ND (0.5)	ND (0.5)	NA	ND (0.5)	ND (0.5)	ND (0.5)
o-Xylene	0.5	NV	ND (0.5)	NA	ND (0.5)	ND (0.5)	NA	ND (0.5)	ND (0.5)	ND (0.5)	NA	ND (0.5)	ND (0.5)	ND (0.5)
Xylenes, total	0.5	72	ND (0.5)	NA	ND (0.5)	ND (0.5)	NA	ND (0.5)	ND (0.5)	ND (0.5)	NA	ND (0.5)	ND (0.5)	ND (0.5)
			1										L	

Notes:

 $\mu g/L$ - all concentrations provided in micrograms per litre (parts per billion) MDL - reported analytical method detection limit

ppm - parts per million

NV - no standard listed

"<" or "ND ()" - less than detection limits indicated (refer to laboratory report)

NA - not applicable

MECP Table 7 SCS - Ontario Ministry of Environment, Conservation and Parks (MECP) Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act. April, 2011.

Generic Site Condition Standards for Shallow Soils in a Non-Potable Ground

Water Condition, residential land use, coarse textured soil.

Bold / Italic - indicates concentration above applicable MECP Table 7 SCS

Table 8: Summary of Groundwater Analytical Results - VOCs Phase Two ESA 971 Montreal Road Ottawa, Ontario MM2320

Sample ID >			MW6	MW7	MW8
Parameter	MDL	MECP	-		-
		Table 7			
		SCS			
Sample Date >			4-May-22	4-May-22	3-May-22
VOCs					
Acetone	5	100000	ND (5.0)	ND (5.0)	ND (5.0)
Benzene	0.5	0.5	ND (0.5)	ND (0.5)	ND (0.5)
Bromodichloromethane	0.5	67000	ND (0.5)	ND (0.5)	ND (0.5)
Bromoform	0.5	5	ND (0.5)	ND (0.5)	ND (0.5)
Bromomethane	0.5	0.89	ND (0.5)	ND (0.5)	ND (0.5)
Carbon Tetrachloride	0.2	0.2	ND (0.2)	ND (0.2)	ND (0.2)
Chlorobenzene	0.5	140	ND (0.5)	ND (0.5)	ND (0.5)
Chloroform	0.5	2	ND (0.5)	ND (0.5)	ND (0.5)
Dibromochloromethane	0.5	65000	ND (0.5)	ND (0.5)	ND (0.5)
Dichlorodifluoromethane	1	3500	ND (1.0)	ND (1.0)	ND (1.0)
1.2-Dichlorobenzene	0.5	150	ND (0.5)	ND (0.5)	ND (0.5)
1.3-Dichlorobenzene	0.5	7600	ND (0.5)	ND (0.5)	ND (0.5)
1.4-Dichlorobenzene	0.5	0.5	ND (0.5)	ND (0.5)	ND (0.5)
1.1-Dichloroethane	0.5	11	ND (0.5)	ND (0.5)	ND (0.5)
1.2-Dichloroethane	0.5	0.5	ND (0.5)	ND (0.5)	ND (0.5)
1,1-Dichloroethylene	0.5	0.5	ND (0.5)	ND (0.5)	ND (0.5)
cis-1,2-Dichloroethylene	0.5	1.6	ND (0.5)	ND (0.5)	ND (0.5)
trans-1,2-Dichloroethylene	0.5	1.6	ND (0.5)	ND (0.5)	ND (0.5)
1,2-Dichloropropane	0.5	0.58	ND (0.5)	ND (0.5)	ND (0.5)
cis-1,3-Dichloropropylene	0.5	NV	ND (0.5)	ND (0.5)	ND (0.5)
trans-1,3-Dichloropropylene	0.5	NV	ND (0.5)	ND (0.5)	ND (0.5)
1,3-Dichloropropene, total	0.5	0.5	ND (0.5)	ND (0.5)	ND (0.5)
Ethylbenzene	0.5	54	ND (0.5)	ND (0.5)	ND (0.5)
Ethylene dibromide (dibromoethane, 1,2-)	0.2	0.2	ND (0.2)	ND (0.2)	ND (0.2)
Hexane	1	5	ND (1.0)	ND (1.0)	ND (1.0)
Methyl Ethyl Ketone (2-Butanone)	5	21000	ND (5.0)	ND (5.0)	ND (5.0)
Methyl Isobutyl Ketone	5	5200	ND (5.0)	ND (5.0)	ND (5.0)
Methyl tert-butyl ether	2	15	ND (2.0)	ND (2.0)	ND (2.0)
Methylene Chloride	5	26	ND (5.0)	ND (5.0)	ND (5.0)
Styrene	0.5	43	ND (0.5)	ND (0.5)	ND (0.5)
1.1.1.2-Tetrachloroethane	0.5	1.1	ND (0.5)	ND (0.5)	ND (0.5)
1.1.2.2-Tetrachloroethane	0.5	0.5	ND (0.5)	ND (0.5)	ND (0.5)
Tetrachloroethylene	0.5	0.5	ND (0.5)	ND (0.5)	ND (0.5)
Toluene	0.5	320	ND (0.5)	ND (0.5)	ND (0.5)
1.1.1-Trichloroethane	0.5	23	ND (0.5)	ND (0.5)	ND (0.5)
1,1,2-Trichloroethane	0.5	0.5	ND (0.5)	ND (0.5)	ND (0.5)
Trichloroethylene	0.5	0.5	ND (0.5)	ND (0.5)	ND (0.5)
Trichlorofluoromethane	1	2000	ND (1.0)	ND (1.0)	ND (1.0)
Vinyl Chloride	0.5	0.5	ND (0.5)	ND (0.5)	ND (0.5)
m/p-Xylene	0.5	NV	ND (0.5)	ND (0.5)	ND (0.5)
o-Xylene	0.5	NV	ND (0.5)	ND (0.5)	ND (0.5)
Xylenes, total	0.5	72	ND (0.5)	ND (0.5)	ND (0.5)
			(/	(7	·- · /

Notes:

μg/L - all concentrations provided in micrograms per litre (parts per billion) MDL - reported analytical method detection limit

ppm - parts per million

NV - no standard listed

"<" or "ND ()" - less than detection limits indicated (refer to laboratory report)

NA - not applicable

- MECP Table 7 SCS Ontario Ministry of Environment, Conservation and Parks (MECP) Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the
 - Environmental Protection Act. April, 2011.
 - Generic Site Condition Standards for Shallow Soils in a Non-Potable Ground
 - Water Condition, residential land use, coarse textured soil.
 - Bold / Italic indicates concentration above applicable MECP Table 7 SCS
 - 0.5 MDL above applicable MECP Table 7 SCS (refer to laboratory reports)

Table 9: Summary of Groundwater Analytical Results - Metals Phase Two ESA 971 Montreal Road Ottawa, Ontario MM2320

Sample ID >			MW1	MW1	MW1	MW2	MW2	MW2	DUP 1	MW3	MW3	MW3	MW4	MW5
Parameter	MDL	MECP							MW2 BFD					
		Table 7												
		SCS												
Sample Date >			16-Jul-20	23-Jul-20	3-May-22	16-Jul-20	23-Jul-20	3-May-22	3-May-22	16-Jul-20	23-Jul-20	3-May-22	4-May-22	3-May-22
Metals														
Antimony	0.5	16000	0.6	NA	0.6	0.6	NA	0.6	0.6	ND (0.5)	NA	ND (0.5)	ND (0.5)	ND (0.5)
Arsenic	1	1500	ND (1)	NA	ND (1)	2	NA	3	3	ND (0.3)	NA	ND (1)	ND (0.3)	ND (0.3)
Barium	1	23000	224	NA	74	143	NA	107	104	104	NA	25	113	95
Beryllium	0.5	53	ND (0.5)	NA	ND (0.5)	ND (0.5)	NA	ND (0.5)	ND (0.5)	ND (0.5)	NA	ND (0.5)	ND (0.5)	ND (0.5)
Boron	10	36000	117	NA	50	95	NA	67	66	49	NA	39	60	43
Cadmium	0.1	2.1	ND (0.1)	NA	ND (0.1)	ND (0.1)	NA	ND (0.1)	ND (0.1)	ND (0.1)	NA	ND (0.1)	ND (0.1)	ND (0.1)
Chromium	1	640	ND (1)	NA	ND (1)	ND (1)	NA	ND (1)	ND (1)	ND (1)	NA	ND (1)	ND (1)	ND (1)
Cobalt	0.5	52	0.5	NA	ND (0.5)	1.4	NA	1.2	1.1	0.6	NA	ND (0.5)	ND (0.5)	ND (0.5)
Copper	0.5	69	9.2	NA	3.4	4.1	NA	1.9	2.1	3.8	NA	1	1.3	2
Lead	0.1	20	0.1	NA	ND (0.1)	0.1	NA	ND (0.1)	ND (0.1)	0.2	NA	ND (0.1)	ND (0.1)	ND (0.1)
Molybdenum	0.5	7300	12.6	NA	6.3	6.7	NA	7.4	7.2	1.5	NA	0.6	3.6	10.5
Nickel	1	390	7	NA	2	5	NA	9	9	2	NA	1	1	4
Selenium	1	50	1	NA	1	ND (1)	NA	ND (1)	ND (1)	ND (1)	NA	ND (1)	ND (1)	ND (1)
Silver	0.1	1.2	ND (0.1)	NA	ND (0.1)	ND (0.1)	NA	ND (0.1)	ND (0.1)	ND (0.1)	NA	ND (0.1)	ND (0.1)	ND (0.1)
Sodium	200	1800000	710000	NA	417000	195000	NA	117000	112000	41000	NA	75700	74100	382000
Thallium	0.1	400	0.2	NA	ND (0.1)	ND (0.1)	NA	ND (0.1)	ND (0.1)	0.4	NA	0.2	ND (0.1)	0.1
Uranium	0.1	330	25.2	NA	5.3	13.7	NA	14.8	15.5	0.7	NA	1.5	0.8	3.8
Vanadium	0.5	200	ND (0.5)	NA	0.5	0.8	NA	0.9	0.9	ND (0.5)	NA	ND (0.5)	ND (0.5)	ND (0.5)
Zinc	5	890	20	NA	12	7	NA	7	7	6	NA	ND (5)	ND (5)	15

Notes:

µg/L - all concentrations provided in micrograms per litre (parts per billion) MDL - reported analytical method detection limit

ppm - parts per million NV - no standard listed

"<" or "ND ()" - less than detection limits indicated (refer to laboratory report)

NA - not applicable

MECP Table 7 SCS - Ontario Ministry of Environment, Conservation and Parks (MECP) Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act. April, 2011.

Generic Site Condition Standards for Shallow Soils in a Non-Potable Ground

Water Condition, residential land use, coarse textured soil.

Bold / Italic - indicates concentration above applicable MECP Table 7 SCS

Table 9: Summary of Groundwater Analytical Results - Metals Phase Two ESA 971 Montreal Road Ottawa, Ontario MM2320

Sample ID >			MW6	MW7	MW8
Parameter	MDL	MECP			
		Table 7			
		SCS			
Sample Date >			4-May-22	4-May-22	3-May-22
Metals					
Antimony	0.5	16000	ND (0.5)	ND (0.5)	ND (0.5)
Arsenic	1	1500	2	ND (1)	6
Barium	1	23000	95	101	75
Beryllium	0.5	53	ND (0.5)	ND (0.5)	ND (0.5)
Boron	10	36000	41	61	144
Cadmium	0.1	2.1	ND (0.1)	ND (0.1)	ND (0.1)
Chromium	1	640	ND (1)	ND (1)	ND (1)
Cobalt	0.5	52	ND (0.5)	0.5	3.7
Copper	0.5	69	1.8	1.1	ND (0.5)
Lead	0.1	20	ND (0.1)	ND (0.1)	0.9
Molybdenum	0.5	7300	6.2	10	1.7
Nickel	1	390	4	2	8
Selenium	1	50	ND (1)	1	ND (1)
Silver	0.1	1.2	ND (0.1)	ND (0.1)	ND (0.1)
Sodium	200	1800000	64800	72500	61900
Thallium	0.1	400	ND (0.1)	ND (0.1)	0.6
Uranium	0.1	330	1.5	1.1	0.6
Vanadium	0.5	200	0.6	ND (0.5)	ND (0.5)
Zinc	5	890	ND (5)	6	ND (5)

Notes:

μg/L - all concentrations provided in micrograms per litre (parts per billion) MDL - reported analytical method detection limit

ppm - parts per million NV - no standard listed

"<" or "ND ()" - less than detection limits indicated (refer to laboratory report)

NA - not applicable

MECP Table 7 SCS - Ontario Ministry of Environment, Conservation and Parks (MECP) Soil,

Ground Water and Sediment Standards for Use Under Part XV.1 of the

Environmental Protection Act. April, 2011.

Generic Site Condition Standards for Shallow Soils in a Non-Potable Ground

Water Condition, residential land use, coarse textured soil. **Bold / Italic** - indicates concentration above applicable MECP Table 7 SCS

Table 10: Summary of Groundwater Analytical Results - PAHs Phase Two ESA 971 Montreal Road Ottawa, Ontario MM2320

Sample ID >			MW1	MW1	MW1	MW2	MW2	MW2	DUP 1	MW3	MW3	MW3	MW4	MW5
Parameter	MDL	MECP							MW2 BFD					
		Table 7												
		SCS	16-Jul-20	23-Jul-20	3-Mav-22	16-Jul-20	23-Jul-20	3-Mav-22	3-Mav-22	16-Jul-20	23-Jul-20	3-Mav-22	4-Mav-22	
Sample Date >			16-Jul-20	23-Jui-20	3-May-22	16-Jul-20	23-Jui-20	3-May-22	3-May-22	16-Jul-20	23-Jui-20	3-May-22	4-way-22	3-May-22
PAHs (Semi-Volatiles)														
Acenaphthene	0.05	17	NA	NA	ND (0.05)	NA	NA	ND (0.05)	ND (0.05)	NA	NA	ND (0.05)	NA	ND (0.05)
Acenaphthylene	0.05	1	NA	NA	ND (0.05)	NA	NA	ND (0.05)	ND (0.05)	NA	NA	ND (0.05)	NA	ND (0.05)
Anthracene	0.01	1	NA	NA	ND (0.01)	NA	NA	ND (0.01)	ND (0.01)	NA	NA	ND (0.01)	NA	ND (0.01)
Benzo[a]anthracene	0.01	1.8	NA	NA	ND (0.01)	NA	NA	ND (0.01)	ND (0.01)	NA	NA	ND (0.01)	NA	ND (0.01)
Benzo[a]pyrene	0.01	0.81	NA	NA	ND (0.01)	NA	NA	ND (0.01)	ND (0.01)	NA	NA	ND (0.01)	NA	ND (0.01)
Benzo[b]fluoranthene	0.05	0.75	NA	NA	ND (0.05)	NA	NA	ND (0.05)	ND (0.05)	NA	NA	ND (0.05)	NA	ND (0.05)
Benzo[g,h,i]perylene	0.05	0.2	NA	NA	ND (0.05)	NA	NA	ND (0.05)	ND (0.05)	NA	NA	ND (0.05)	NA	ND (0.05)
Benzo[k]fluoranthene	0.05	0.4	NA	NA	ND (0.05)	NA	NA	ND (0.05)	ND (0.05)	NA	NA	ND (0.05)	NA	ND (0.05)
Chrysene	0.05	0.7	NA	NA	ND (0.05)	NA	NA	ND (0.05)	ND (0.05)	NA	NA	ND (0.05)	NA	ND (0.05)
Dibenzo[a,h]anthracene	0.05	0.4	NA	NA	ND (0.05)	NA	NA	ND (0.05)	ND (0.05)	NA	NA	ND (0.05)	NA	ND (0.05)
Fluoranthene	0.01	44	NA	NA	ND (0.01)	NA	NA	ND (0.01)	ND (0.01)	NA	NA	ND (0.01)	NA	ND (0.01)
Fluorene	0.05	290	NA	NA	ND (0.05)	NA	NA	ND (0.05)	ND (0.05)	NA	NA	ND (0.05)	NA	ND (0.05)
Indeno [1,2,3-cd] pyrene	0.05		NA	NA	ND (0.05)	NA	NA	ND (0.05)	ND (0.05)	NA	NA	ND (0.05)	NA	ND (0.05)
1-Methylnaphthalene	0.05	1500	NA	NA	ND (0.05)	NA	NA	ND (0.05)	ND (0.05)	NA	NA	ND (0.05)	NA	ND (0.05)
2-Methylnaphthalene	0.05	1500	NA	NA	0.17	NA	NA	ND (0.05)	ND (0.05)	NA	NA	ND (0.05)	NA	ND (0.05)
Methylnaphthalene (1&2)	0.1	1500	NA	NA	0.17	NA	NA	ND (0.10)	ND (0.10)	NA	NA	ND (0.10)	NA	ND (0.10)
Naphthalene	0.05	7	NA	NA	0.53	NA	NA	ND (0.05)	ND (0.05)	NA	NA	ND (0.05)	NA	ND (0.05)
Phenanthrene	0.05	380	NA	NA	ND (0.05)	NA	NA	ND (0.05)	ND (0.05)	NA	NA	ND (0.05)	NA	ND (0.05)
Pyrene	0.01	5.7	NA	NA	0.04	NA	NA	0.03	0.03	NA	NA	ND (0.01)	NA	0.03

Notes:

µg/L - all concentrations provided in micrograms per litre (parts per billion) MDL - reported analytical method detection limit

ppm - parts per million NV - no standard listed

"<" or "ND ()" - less than detection limits indicated (refer to laboratory report)

NA - not applicable

MECP Table 7 SCS - Ontario Ministry of Environment, Conservation and Parks (MECP) Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act. April, 2011.

Generic Site Condition Standards for Shallow Soils in a Non-Potable Ground

Water Condition, residential land use, coarse textured soil.

Bold / Italic - indicates concentration above applicable MECP Table 7 SCS

Table 10: Summary of Groundwater Analytical Results - PAHs Phase Two ESA 971 Montreal Road Ottawa, Ontario MM2320

Sample ID >			MW6	MW7	MW8
Parameter	MDL	MECP			
		Table 7			
		SCS			
Sample Date >			4-May-22	4-May-22	3-May-22
PAHs (Semi-Volatiles)					
Acenaphthene	0.05	17	ND (0.05)	ND (0.05)	ND (0.05)
Acenaphthylene	0.05	1	ND (0.05)	ND (0.05)	ND (0.05)
Anthracene	0.01	1	ND (0.01)	ND (0.01)	ND (0.01)
Benzo[a]anthracene	0.01	1.8	ND (0.01)	ND (0.01)	ND (0.01)
Benzo[a]pyrene	0.01	0.81	ND (0.01)	ND (0.01)	ND (0.01)
Benzo[b]fluoranthene	0.05	0.75	ND (0.05)	ND (0.05)	ND (0.05)
Benzo[g,h,i]perylene	0.05	0.2	ND (0.05)	ND (0.05)	0.05
Benzo[k]fluoranthene	0.05	0.4	ND (0.05)	ND (0.05)	ND (0.05)
Chrysene	0.05	0.7	ND (0.05)	ND (0.05)	ND (0.05)
Dibenzo[a,h]anthracene	0.05	0.4	ND (0.05)	ND (0.05)	ND (0.05)
Fluoranthene	0.01	44	ND (0.01)	ND (0.01)	ND (0.01)
Fluorene	0.05	290	ND (0.05)	ND (0.05)	ND (0.05)
Indeno [1,2,3-cd] pyrene	0.05		ND (0.05)	ND (0.05)	ND (0.05)
1-Methylnaphthalene	0.05	1500	ND (0.05)	ND (0.05)	ND (0.05)
2-Methylnaphthalene	0.05	1500	ND (0.05)	ND (0.05)	ND (0.05)
Methylnaphthalene (1&2)	0.1	1500	ND (0.10)	ND (0.10)	ND (0.10)
Naphthalene	0.05	7	0.17	0.17	ND (0.05)
Phenanthrene	0.05	380	ND (0.05)	ND (0.05)	ND (0.05)
Pyrene	0.01	5.7	0.02	ND (0.01)	0.04

Notes:

μg/L - all concentrations provided in micrograms per litre (parts per billion) MDL - reported analytical method detection limit

ppm - parts per million NV - no standard listed

"<" or "ND ()" - less than detection limits indicated (refer to laboratory report)

NA - not applicable

MECP Table 7 SCS - Ontario Ministry of Environment, Conservation and Parks (MECP) Soil,

Ground Water and Sediment Standards for Use Under Part XV.1 of the

Environmental Protection Act. April, 2011.

Generic Site Condition Standards for Shallow Soils in a Non-Potable Ground

Water Condition, residential land use, coarse textured soil. **Bold / Italic** - indicates concentration above applicable MECP Table 7 SCS

Table 11: Soil and Groundwater Maximum Concentrations Phase Two ESA 971 Montreal Road Ottawa, Ontario MM2320

			SOIL			G	ROUNDWATER			
Parameter	MDL	MECP Table 7	Maximum Concentration	Location Sample ID	Depth Sample	MDL	MECP Table 7	Maximum Concentration	Location/ Sample ID	Depth Screen
		SCS	mg/kg		Interval m bg		SCS	μg/L		Interval m bg
BTEX										
Benzene	0.02	0.21	ND (0.02)		-	0.5	0.5	ND (0.5)	-	-
Ethylbenzene	0.05	2	ND (0.05)		-	0.5	54	ND (0.5)	-	-
Toluene	0.05	2.3	ND (0.05)		-	0.5	320	ND (0.5)	-	-
m,p-Xylene	0.05	NV	ND (0.05)			0.5	NV	ND (0.5)		
o-Xylene	0.05	NV	ND (0.05)			0.5	NV	ND (0.5)		
Xylene (Total)	0.05	3.1	ND (0.05)		-	0.5	72	ND (0.5)	-	-
PHCs										
PHC F1(C6-C10)	7	55	8	DUP 1	0.76-1.52	25	420	ND (25)	-	-
PHC F2(C10-C16)	4	98	20	DUP 1	0.76-1.52	100	150	ND (100)	_	_
PHC F3(C16-C34)	8	300	445	MW4 SA3	1.52-1.91	100	500	360	MW1	4.11 - 7.16
PHC F4(>C34) PHCs F4G (gravimetric)	6 50	2800 2800	1110 1360	MW4 SA3 MW4 SA3	1.52-1.91 1.52-1.91	100 NA	500 500	257 NA	MW4 NA	4.01 - 7.06 NA
VOCs										
Acetone	0.5	16	ND (0.5)	-	-	5	100000	6.8	MW4	4.01 - 7.06
Benzene	0.02	0.21	ND (0.02)		_	0.5	0.5	ND (0.5)		
	0.02	13	ND (0.05)	-	-	0.5	67000	ND (0.5)	-	-
Bromodichloromethane		0.27		-	-	0.5	5		-	-
Bromoform	0.05		ND (0.05)	-	-			ND (0.5)	-	-
Bromomethane	0.05	0.05	ND (0.05)	-	-	0.5	0.89	ND (0.5)	-	-
Carbon Tetrachloride	0.05	0.05	ND (0.05)	-	-	0.2	0.2	ND (0.2)	-	-
Chlorobenzene	0.05	2.4	ND (0.05)	-	-	0.5	140	ND (0.5)	-	-
Chloroform	0.05	0.05	ND (0.05)	-	-	0.5	2	6.7	MW3	3.07 - 6.12
Dibromochloromethane	0.05	9.4	ND (0.05)	-	-	0.5	65000	ND (0.5)	-	-
Dichlorodifluoromethane	0.05	16	ND (0.05)	-	-	1	3500	ND (1)	-	-
1,2-Dichlorobenzene	0.05	3.4	ND (0.05)		-	0.5	150	ND (0.5)	-	-
1,3-Dichlorobenzene	0.05	4.8	ND (0.05)		-	0.5	7600	ND (0.5)	-	-
1,4-Dichlorobenzene	0.05	0.083	ND (0.05)			0.5	0.5	ND (0.5)		
1,1-Dichloroethane	0.05	3.5	ND (0.05)			0.5	11	ND (0.5)		
1,2-Dichloroethane	0.05	0.05	ND (0.05)			0.5	0.5	ND (0.5)		
	0.05			•	-	0.5	0.5		-	-
1,1-Dichloroethylene		0.05	ND (0.05)	-	-			ND (0.5)	-	-
cis-1,2-Dichloroethylene	0.05	3.4	ND (0.05)	-	-	0.5	1.6	ND (0.5)	-	-
trans-1,2-Dichloroethylene	0.05	0.084	ND (0.05)	-	-	0.5	1.6	ND (0.5)	-	-
1,2-Dichloropropane	0.05	0.05	ND (0.05)	-	-	0.5	0.58	ND (0.5)	-	-
cis-1,3-Dichloropropylene	0.05	NV	ND (0.05)	-	-	0.5	NV	ND (0.5)	-	-
trans-1,3-Dichloropropylene	0.05	NV	ND (0.05)	-	-	0.5	NV	ND (0.5)	-	-
1,3-Dichloropropene, total	0.05	0.05	ND (0.05)	-	-	0.5	0.5	ND (0.5)	-	-
Ethylbenzene	0.05	2	ND (0.05)	-	-	0.5	54	ND (0.5)	-	-
Ethylene dibromide (dibromoethane, 1,2-)	0.05	0.05	ND (0.05)	-	-	0.2	0.2	ND (0.2)	-	-
Hexane	0.05	2.8	ND (0.05)		-	1	5	ND (1)	-	-
Methyl Ethyl Ketone (2-Butanone)	0.5	16	ND (0.5)		-	5	21000	ND (5)	-	-
Methyl Isobutyl Ketone	0.5	1.7	ND (0.5)		-	5	5200	ND (5)	-	-
Methyl tert-butyl ether	0.05	0.75	ND (0.05)			2	15	ND (3)		
Methylene Chloride	0.05	0.75	ND (0.05) ND (0.05)	-	-	5	26	ND (2) ND (5)	-	-
				-	-		26 43		-	-
Styrene	0.05	0.7	ND (0.05)	-	-	0.5		ND (0.5)	-	-
1,1,1,2-Tetrachloroethane	0.05	0.058	ND (0.05)	-	-	0.5	1.1	ND (0.5)	-	-
1,1,2,2-Tetrachloroethane	0.05	0.05	ND (0.05)	-	-	0.5	0.5	ND (0.5)	-	-
Tetrachloroethylene	0.05	0.28	ND (0.05)	-	-	0.5	0.5	ND (0.5)	-	-
Toluene	0.05	2.3	ND (0.05)	-	-	0.5	320	ND (0.5)	-	-
1,1,1-Trichloroethane	0.05	0.38	ND (0.05)	-	-	0.5	23	ND (0.5)	-	-
1,1,2-Trichloroethane	0.05	0.05	ND (0.05)	-	-	0.5	0.5	ND (0.5)	-	-
Trichloroethylene	0.05	0.061	ND (0.05)	-	-	0.5	0.5	ND (0.5)	-	-
Trichlorofluoromethane	0.05	4	ND (0.05)	-	-	1	2000	ND (1)	-	-
Vinyl Chloride	0.02	0.02	ND (0.02)		-	0.5	0.5	ND (0.5)	-	-
m/p-Xylene	0.02	NV	ND (0.05)		_	0.5	NV	ND (0.5)	-	-
	0.05	NV	ND (0.05)	-	-	0.5	NV		-	-
o-Xylene Xylenes, total	0.05	3.1	ND (0.05) ND (0.05)		-	0.5	72	ND (0.5) ND (0.5)	-	-
Metals										
	1	7.5	ND (1)			0.5	16000	0.6	MW1	4.11 - 7.16
Antimony					-	0.5	10000	0.0		
Antimony Arsenic	1	18	13	MW5 SA2	1.52-2.13	1	1500	6	MW8	3.22 - 6.27

Table 11: Soil and Groundwater Maximum Concentrations Phase Two ESA 971 Montreal Road Ottawa, Ontario MM2320

			SOIL				G	ROUNDWATER		
		MECP	Maximum	Location	Depth	1	MECP	Maximum	Location/	Depth
Parameter	MDL	Table 7	Concentration	Sample ID	Sample	MDL	Table 7	Concentration	Sample ID	Screen
		SCS			Interval		SCS			Interval
			mg/kg		m bg			μg/L		m bg
Barium	1	390	186	MW6 SA2	0.76-1.52	1	23000	224	MW1	4.11 - 7.16
Beryllium	0.5	4	0.7	MW4 SA3	1.52-1.91	0.5	53	ND (0.5)	-	-
Boron	5	120	12.5	MW5 SA2	1.52-2.13	10	36000	144	MW8	3.22 - 6.27
Cadmium	0.5	1.2	ND (0.5)	-	-	0.1	2.1	ND (0.1)	-	-
Chromium	5	160	34.1	MW4 SA3	1.52-1.91	1	640	ND (1)	-	-
Cobalt	1	22	10.6	MW6 SA2	0.76-1.52	0.5	52	3.7	MW8	3.22 - 6.27
Copper	5	140	27.8	BH2-SA1	0.0-0.61	0.5	69	9.2	MW1	4.11 - 7.16
Lead	1	120	97.3	BH2-SA1	0.0-0.61	0.1	20	0.9	MW8	3.22 - 6.27
Molybdenum	1	6.9	5.1	MW4 SA3	1.52-1.91	0.5	7300	12.6	MW1	4.11 - 7.16
Nickel	5	100	29.8	MW6 SA2	0.76-1.52	1	390	9	MW2	4.14 - 7.19
Selenium	1	2.4	ND (1)	-	-	1	50	1	MW1	4.11 - 7.16
Silver	0.3	20	ND (0.3)	-	-	0.1	1.2	ND (0.1)	-	-
Sodium	NA	NV	NA	NA	NA	200	1800000	710000	MW1	4.11 - 7.16
Thallium	1	1	ND (1)	-	-	0.1	400	0.6	MW8	3.22 - 6.27
Uranium	1	23	1.3	MW5 SA2	1.52-2.13	0.1	330	25.2	MW1	4.11 - 7.16
Vanadium	10	86	32.8	MW4 SA3	1.52-1.91	0.5	200	0.9	MW2	4.14 - 7.19
Zinc	20	340	1340	MW8 SA1	0.0-0.76	5	890	20	MW1	4.11 - 7.16
Zinc	20	340	1340	WWW SAT	0.0-0.76	5	890	20		4.11-7.10
PAHs (Semi-Volatiles)										
Acenaphthene	0.02	7.9	0.1	MW5 SA1	0.0-0.76	0.05	17	ND (0.05)	-	-
Acenaphthylene	0.02	0.15	0.02	DUP 1	0.76-1.52	0.05	1	ND (0.05)	-	-
Anthracene	0.02	0.67	0.24	MW5 SA1	0.0-0.76	0.01	1	ND (0.01)	-	-
Benzo[a]anthracene	0.02	0.5	0.29	MW5 SA1	0.0-0.76	0.01	1.8	ND (0.01)	-	-
Benzo[a]pyrene	0.02	0.3	0.22	MW5 SA1	0.0-0.76	0.01	0.81	ND (0.01)	-	-
Benzo[b]fluoranthene	0.02	0.78	0.25	MW5 SA1	0.0-0.76	0.05	0.75	ND (0.05)	-	-
Benzolg,h,i)perylene	0.02	6.6	0.11	MW5 SA1	0.0-0.76	0.05	0.2	0.05	MW8	3.22 - 6.27
Benzo[k]fluoranthene	0.02	0.78	0.15	MW5 SA1	0.0-0.76	0.05	0.4	ND (0.05)	-	-
Chrvsene	0.02	7	0.24	MW5 SA1	0.0-0.76	0.05	0.7	ND (0.05)		
Dibenzo[a,h]anthracene	0.02	0.1	0.04	MW5 SA1	0.0-0.76	0.05	0.4	ND (0.05)		
Fluoranthene	0.02	0.69	0.74	MW5 SA1	0.0-0.76	0.00	44	ND (0.01)		-
Fluorene	0.02	62	0.15	MW5 SA1	0.0-0.76	0.01	290	ND (0.05)	-	
Indeno[1,2,3-cd]pyrene	0.02	0.38	0.15	MW5 SA1	0.0-0.76	NA	0.2	ND (0.05) NA	NA	NA
				MW5 SA1			1500		INA	INA
1-Methylnaphthalene	0.02	0.99	0.04		0.0-0.76	0.05		ND (0.05)	MW1	- 4.11 - 7.16
2-Methylnaphthalene	0.02	0.99	0.05	MW5 SA1	0.0-0.76	0.05	1500	0.17		
Methylnaphthalene (1&2)	0.04	0.99	0.09	MW5 SA1	0.0-0.76	0.1	1500	0.17	MW1	4.11 - 7.16
Naphthalene	0.01	0.6	0.06	MW5 SA1	0.0-0.76	0.05	7	0.53	MW1	4.11 - 7.16
Phenanthrene	0.02	6.2	0.85	MW5 SA1	0.0-0.76	0.05	380	ND (0.05)	-	-
Pyrene	0.02	78	0.56	MW5 SA1	0.0-0.76	0.01	5.7	0.04	MW1	4.11 - 7.16

Notes:

m bg - metres below grade

NV - no standard listed

"<" or "ND ()" - less than detection limits indicated (refer to laboratory report)

NA - not analysed MECP Table 7 SCS - Ontario Ministry of Environment, Conservation and Parks (MECP) Soil,

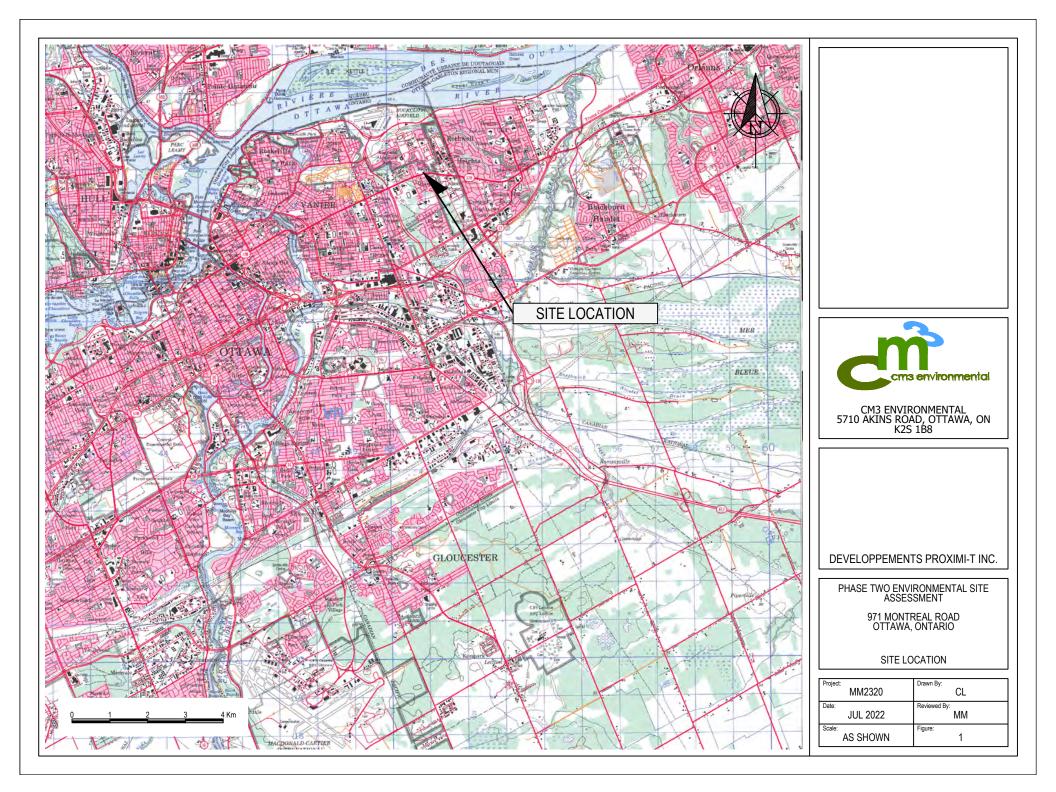
Ground Water and Sediment Standards for Use Under Part XV.1 of the

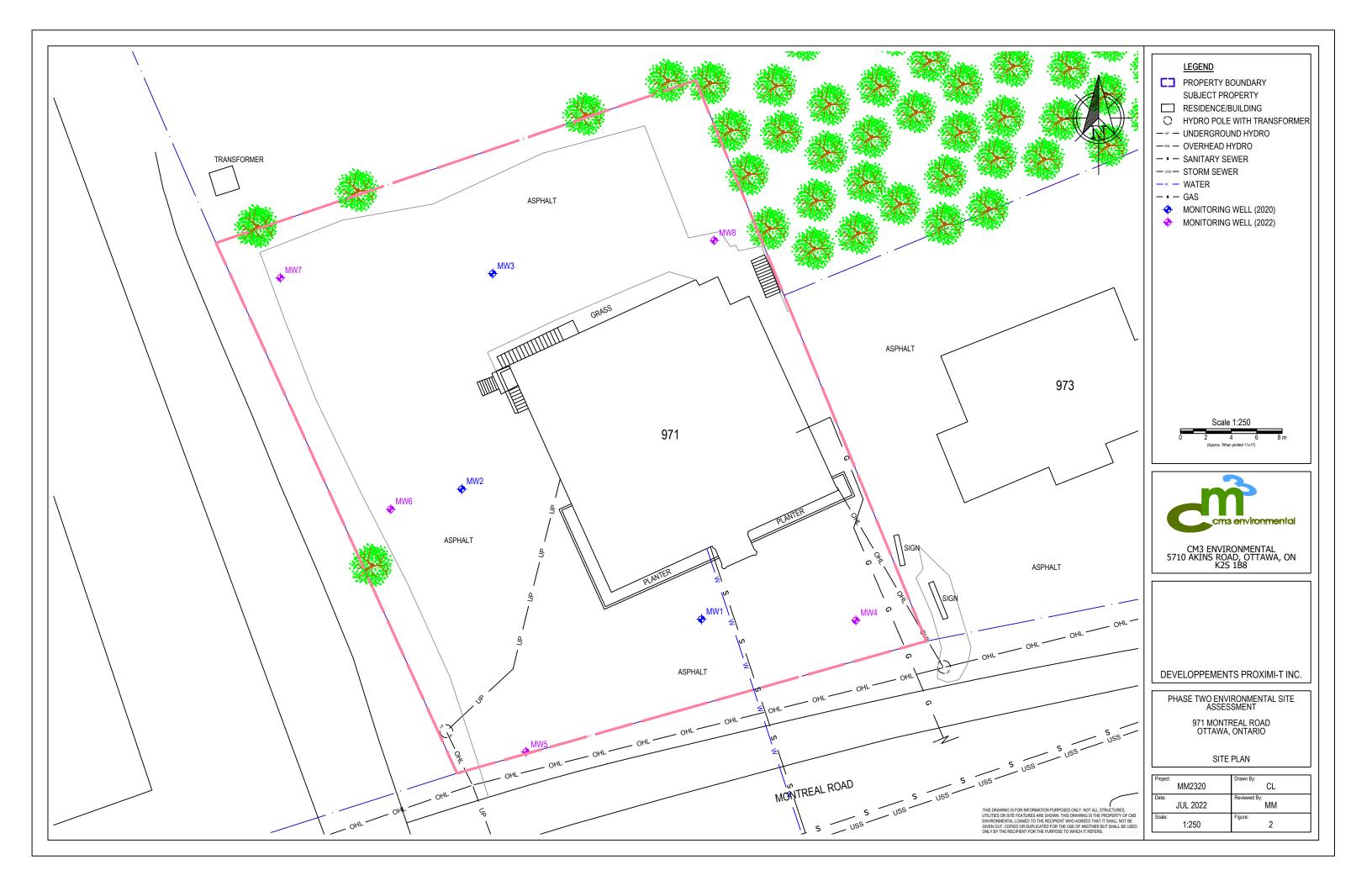
Environmental Protection Act. April, 2011.

Generic Site Condition Standards for Shallow Soils in a Non-Potable Ground

Water Condition, residential land use, coarse textured soil.

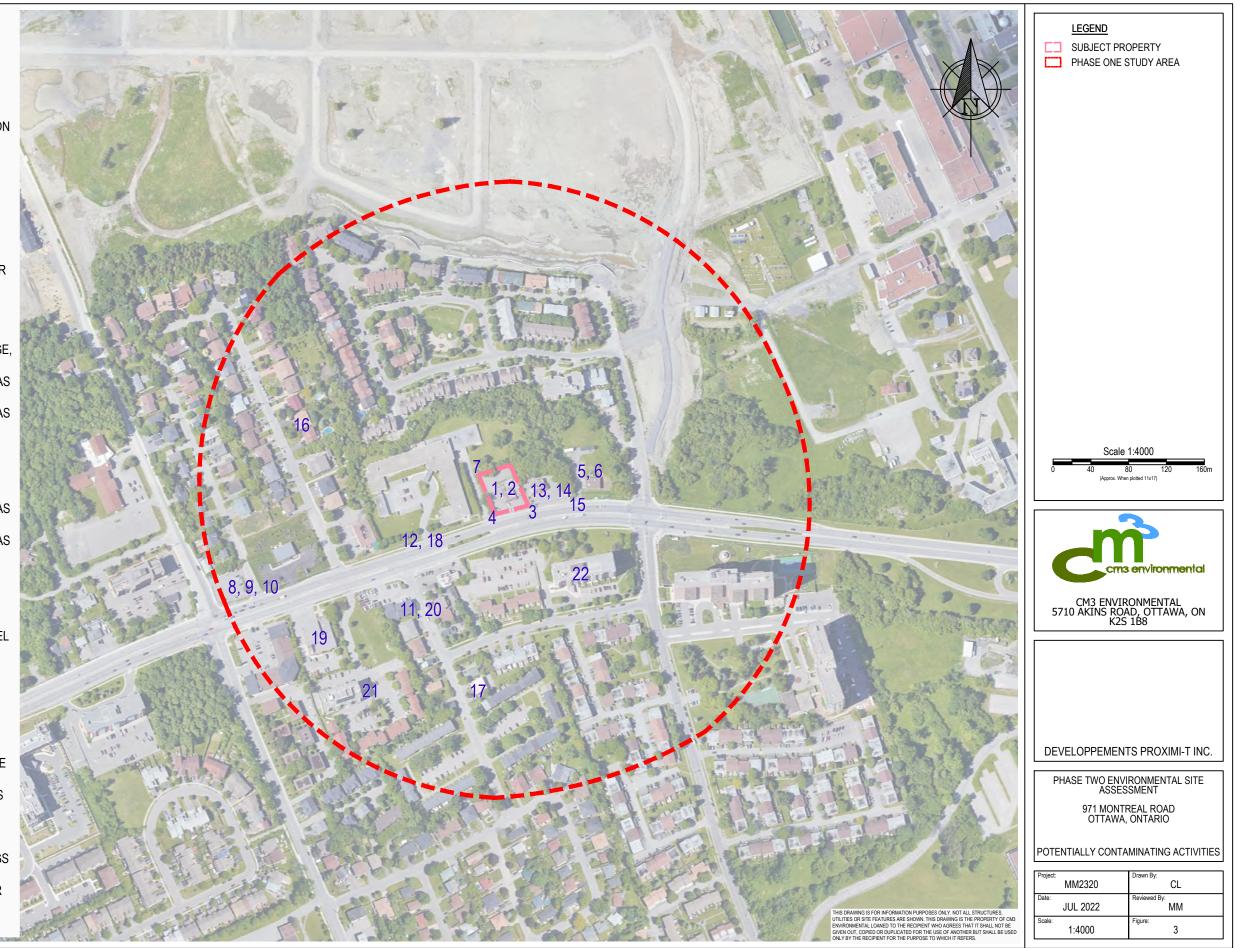
Bold / Italic - indicates concentration above applicable MECP Table 7 SCS

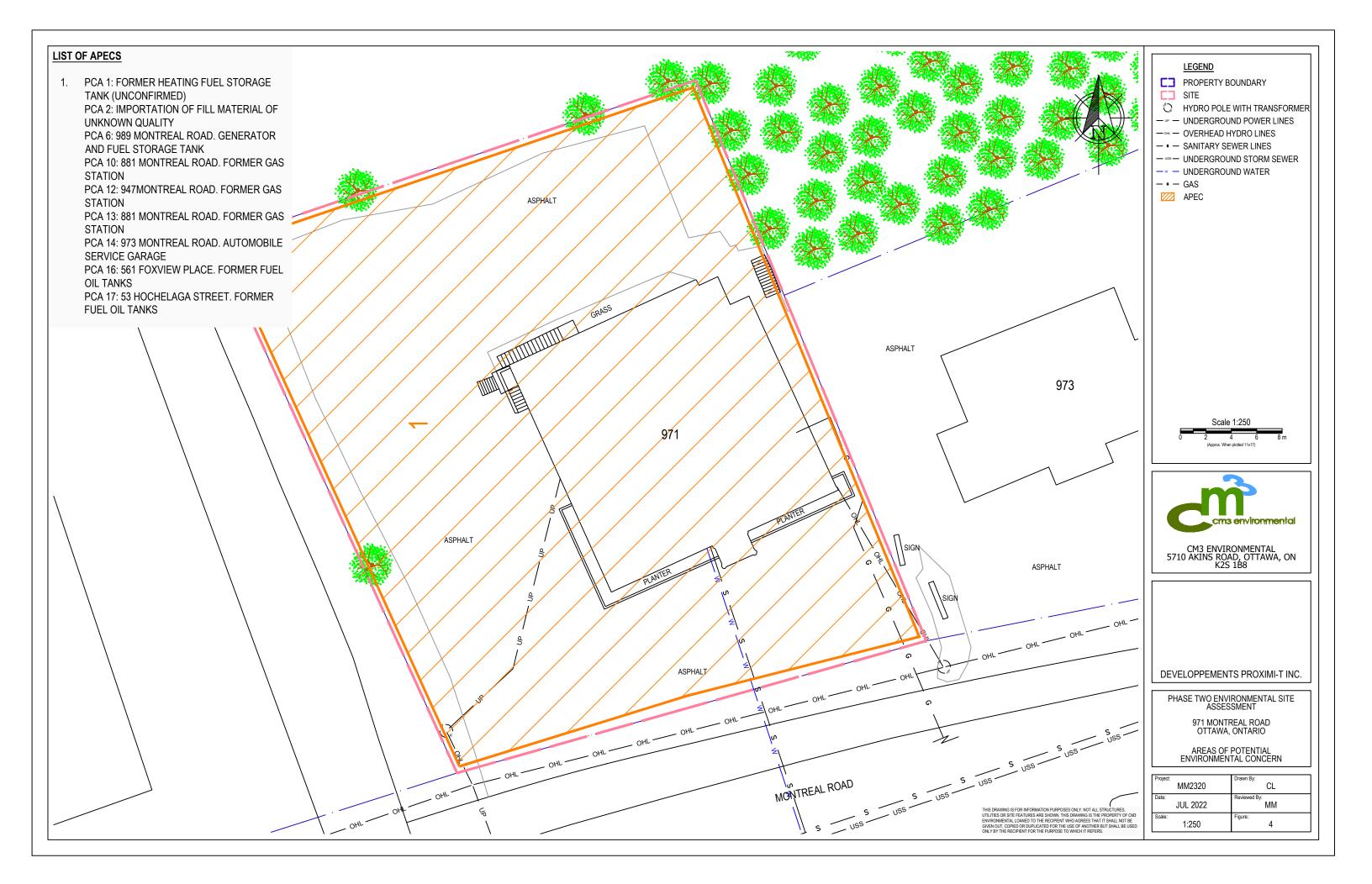

FIGURES

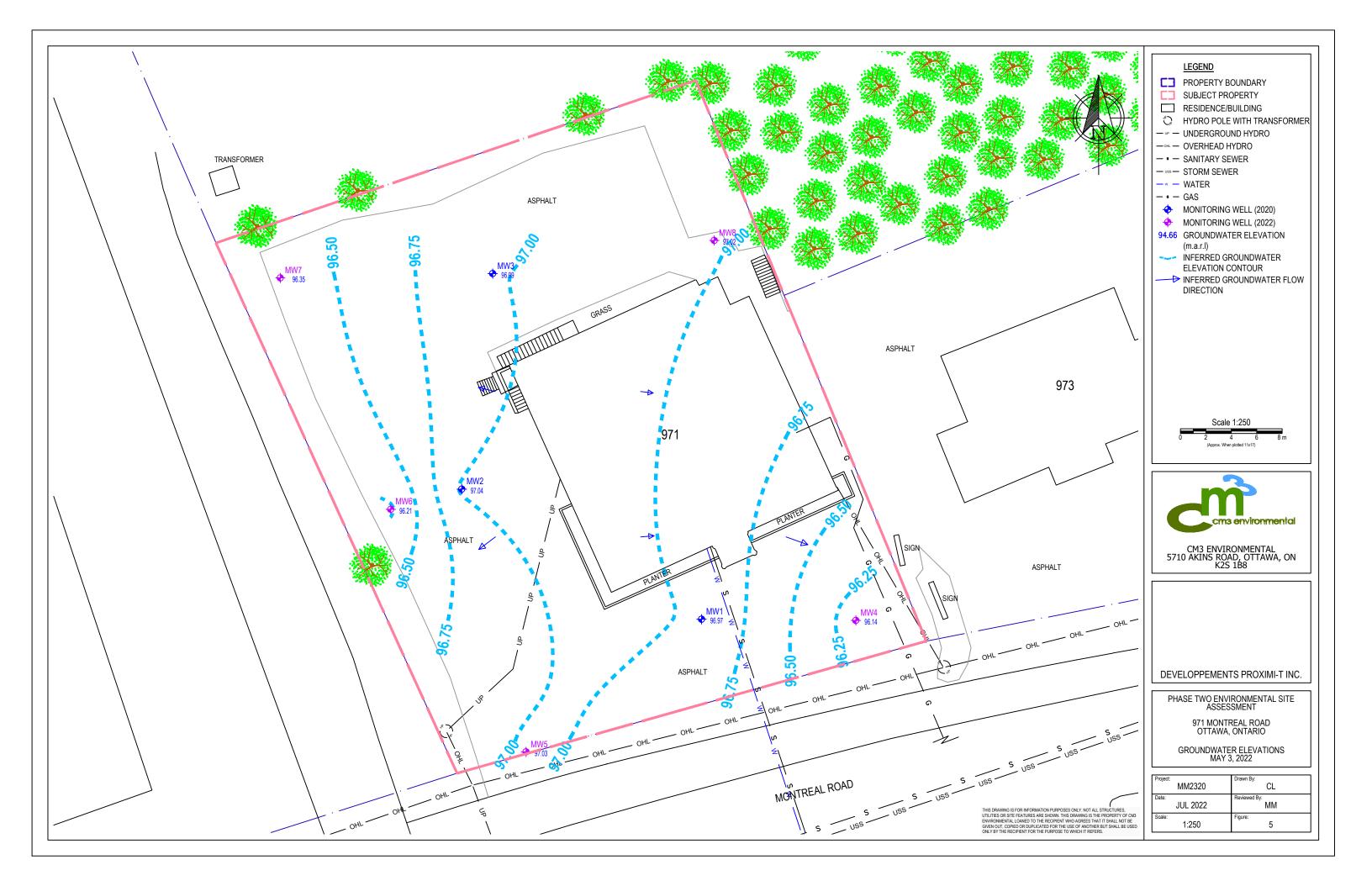

Phase Two Environmental Site Assessment

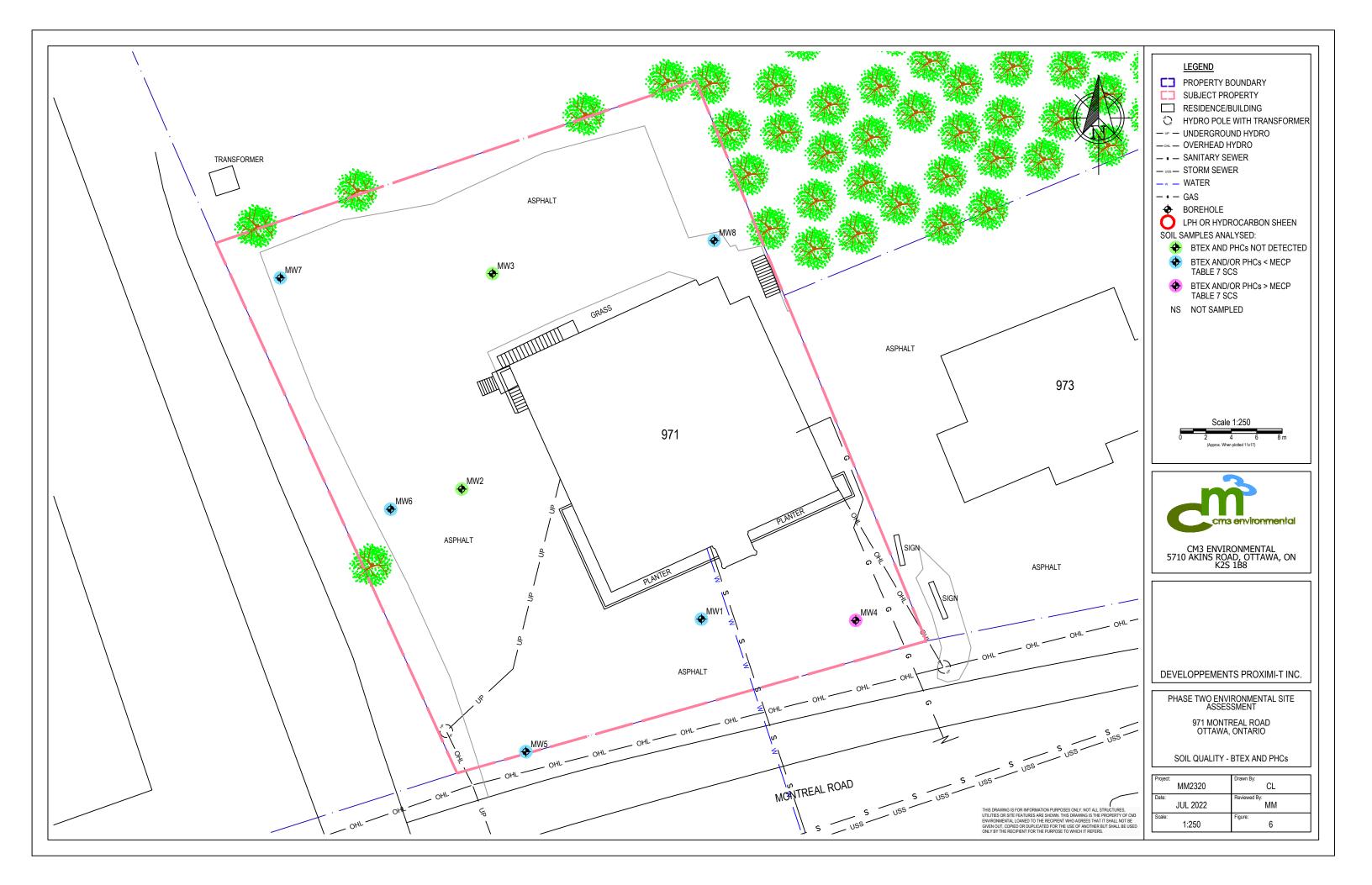
971 Montreal Road Ottawa, Ontario

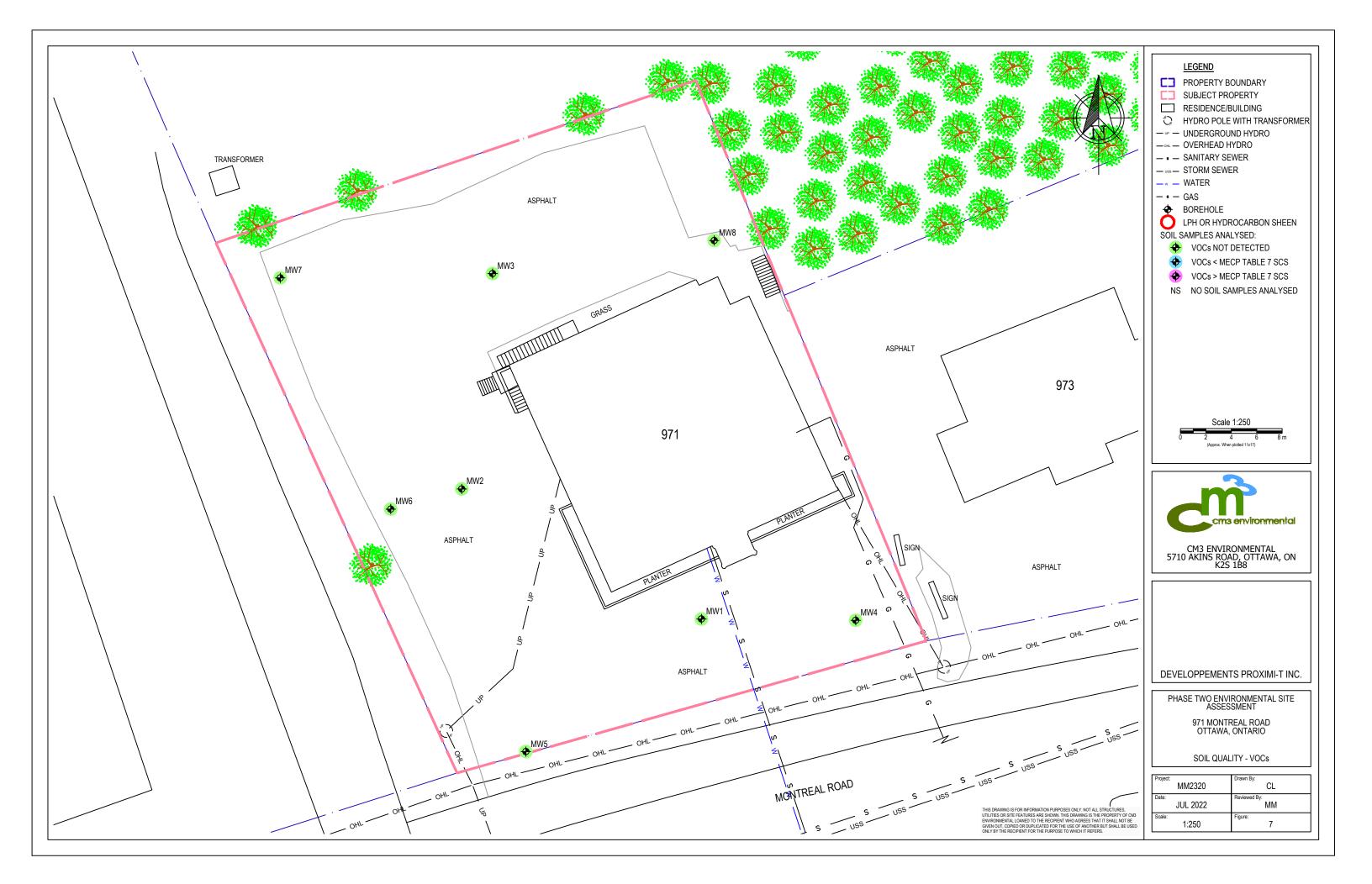
Developpements Proximi-T Inc.

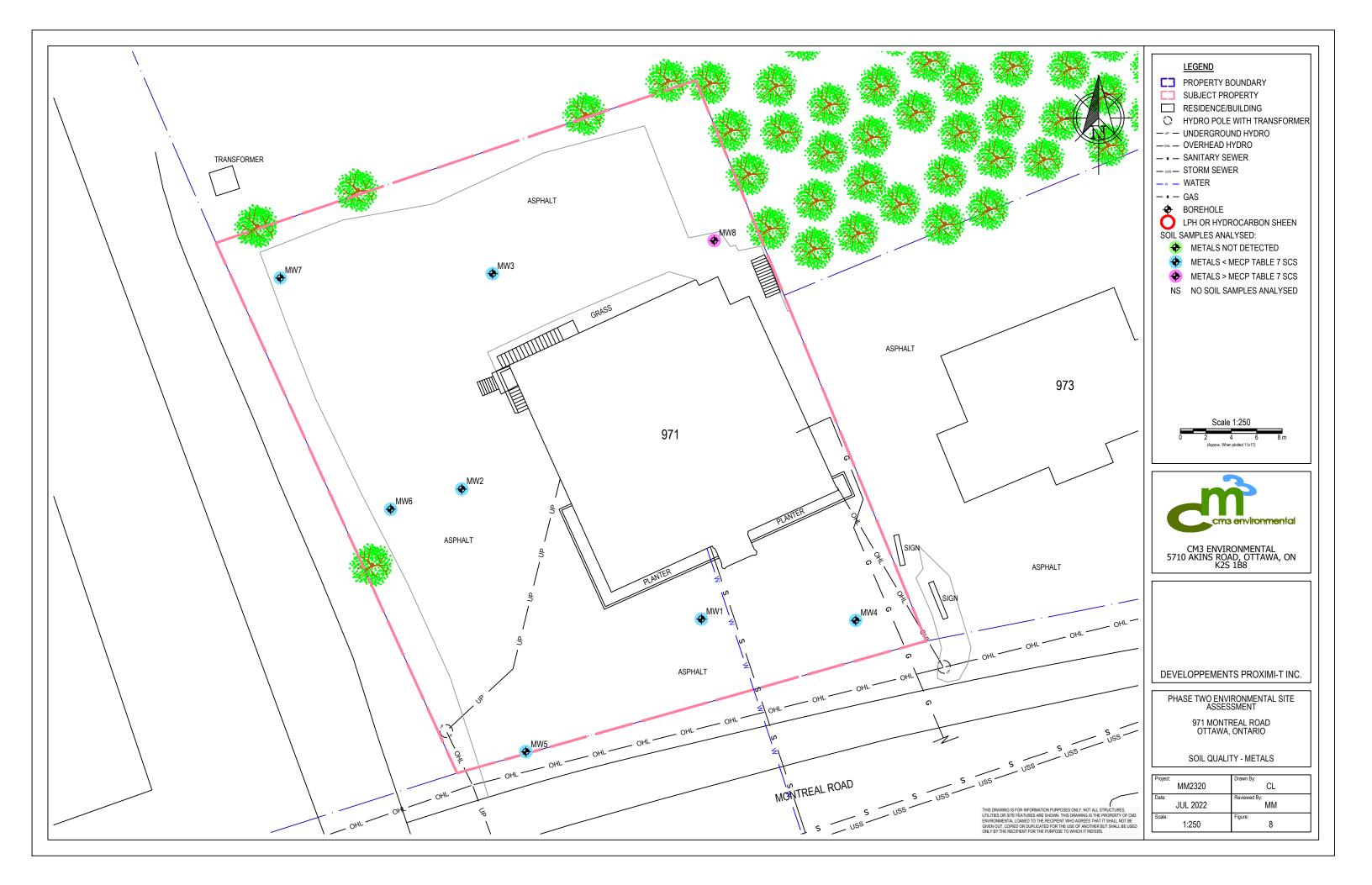

MM2320

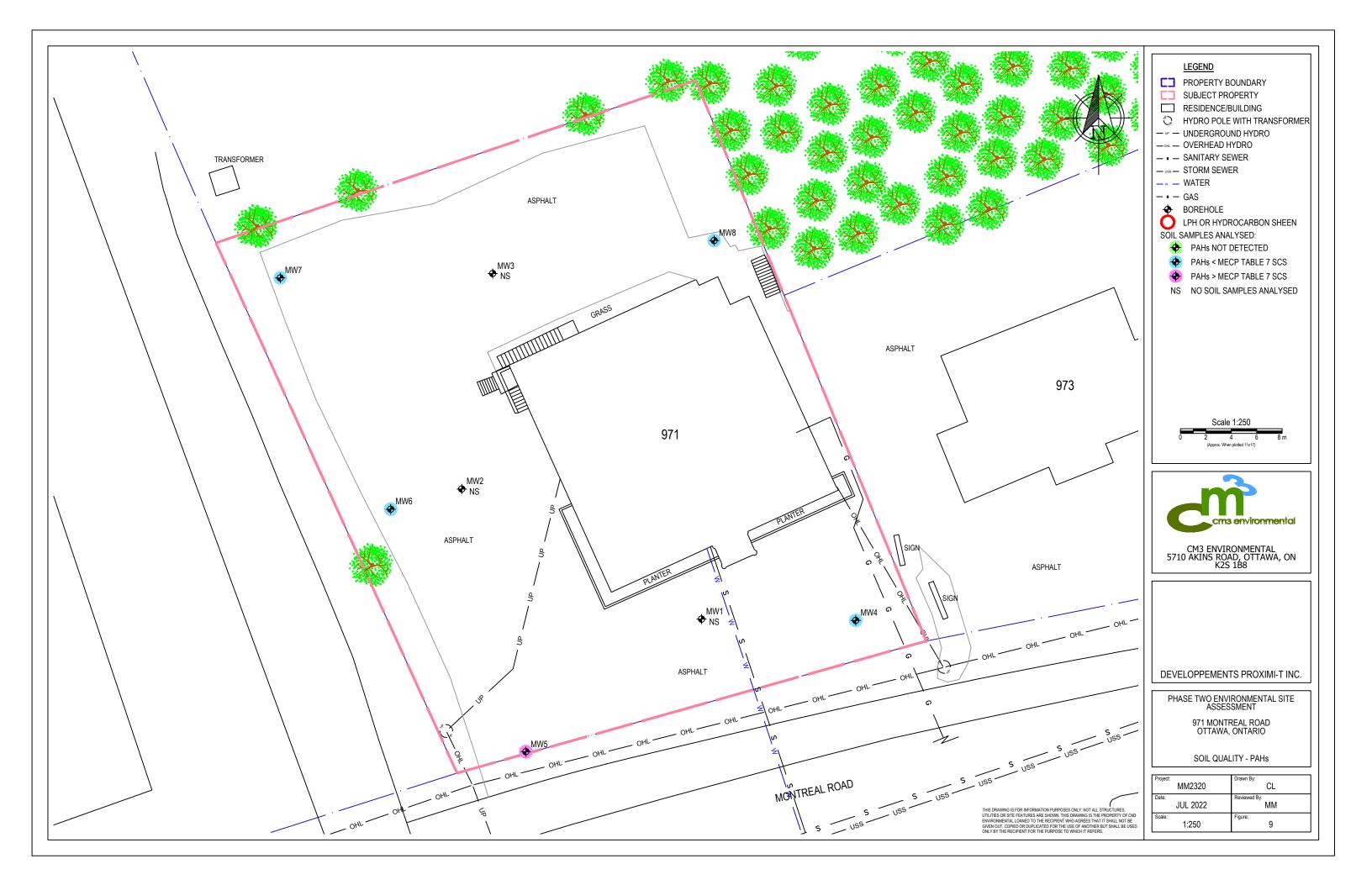


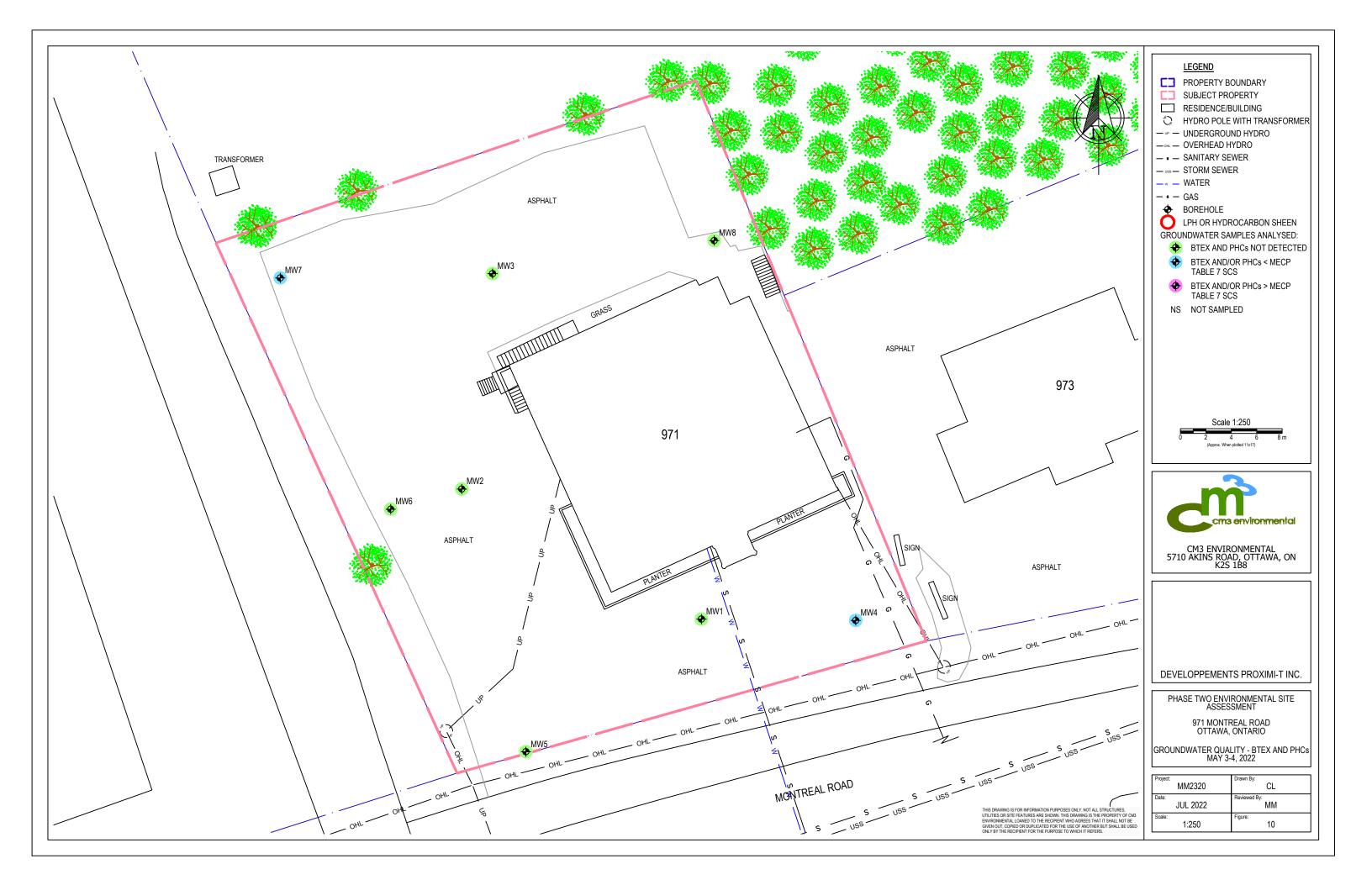


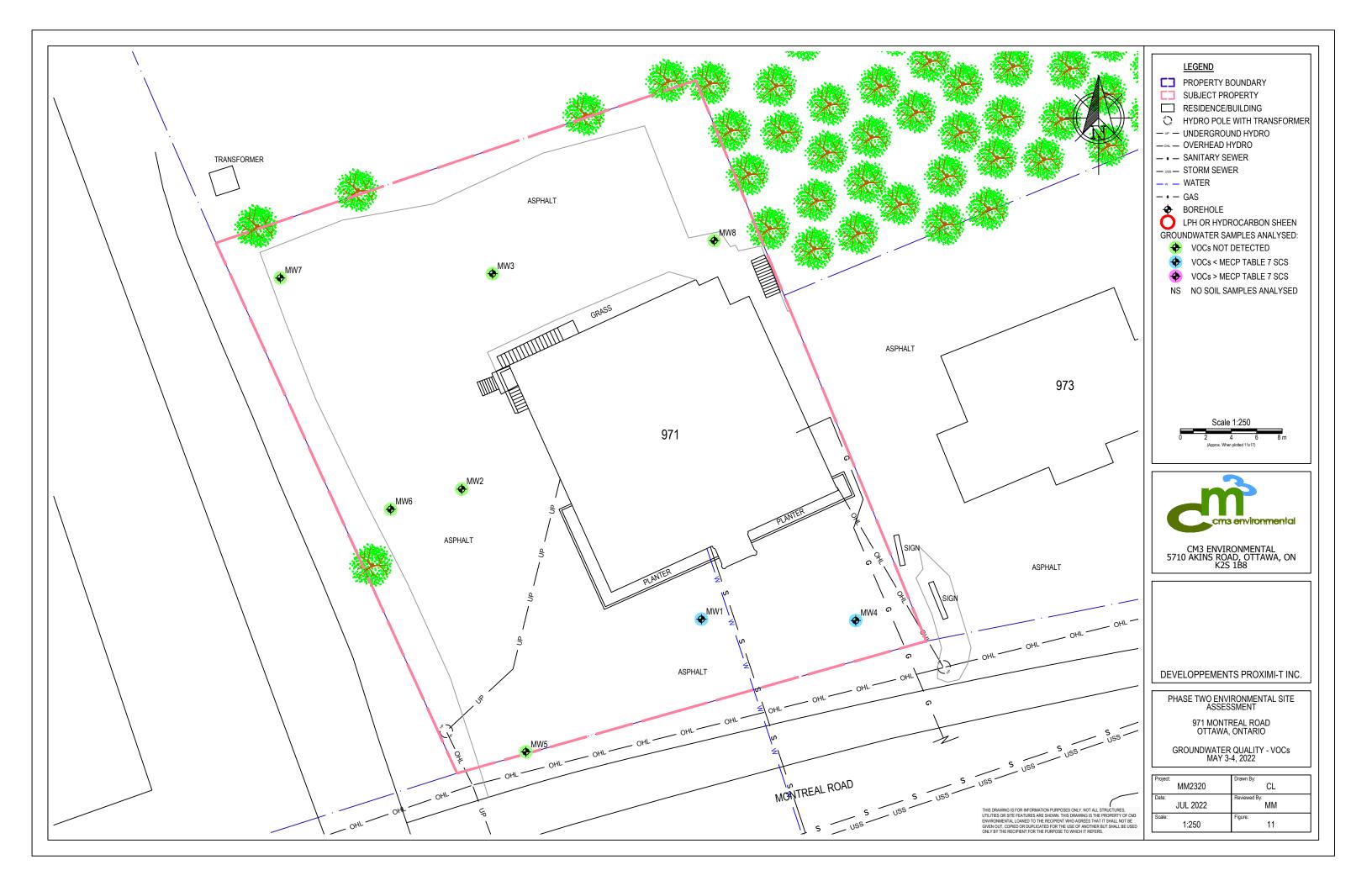

LIST OF PCAS

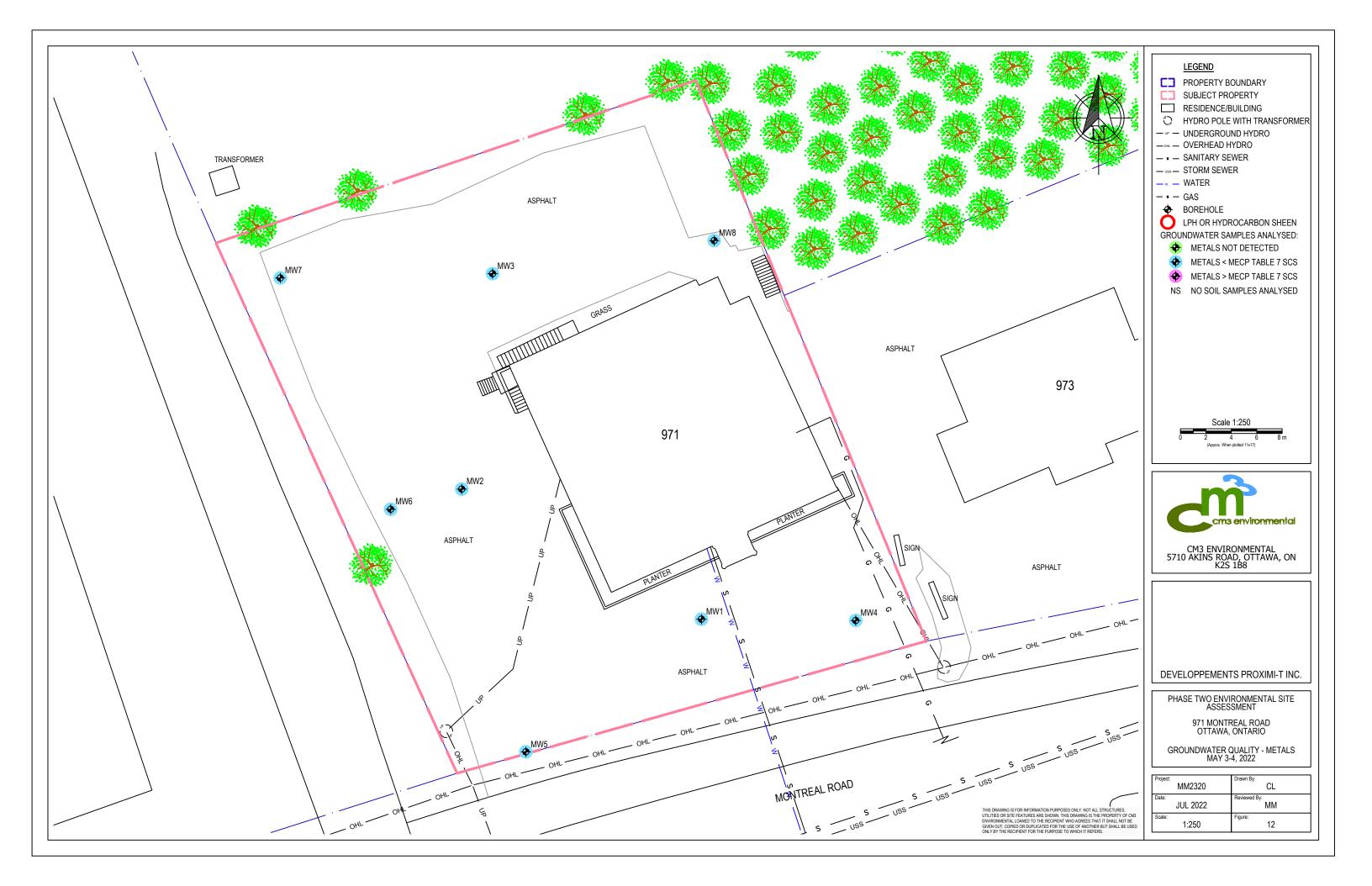

- 1. SUBJECT PROPERTY (ITEM 28): FORMER FORCED AIR OIL HEATING AND TANK (NOT CONFIRMED)
- 2. SUBJECT PROPERTY (ITEM 30): POSSIBLE IMPORTATION OF FILL DURING SITE DEVELOPMENT OR BUILDING CONSTRUCTION
- 971 MONTREAL ROAD, OFF-SITE TO SOUTHEAST (ITEM 18): POLE MOUNTED TRANSFORMER
- 4. 971 MONTREAL ROAD, OFF-SITE TO SOUTHWEST (ITEM 18): POLE MOUNTED TRANSFORMER
- 5. 989 MONTREAL ROAD (ITEM 18): PAD MOUNTED TRANSFORMER
- 6. 989 MONTREAL ROAD (ITEM 28): GENERATOR AND FUEL STORAGE TANK
- 7. 949 MONTREAL ROAD (ITEM 18): PAD MOUNTED TRANSFORMER
- 8. 875 MONTREAL ROAD (ITEM 28): FUEL STORAGE TANKS (DELISTED, FUEL STORAGE, PRIVATE AND RETAIL)
- 9. 871 MONTREAL ROAD (ITEM 28): FORMER GAS STATION
- 10. 881 MONTREAL ROAD (ITEM 28): FORMER GAS STATION
- 11. 916 MONTREAL ROAD (ITEM 28): GASOLINE SERVICE CENTER. FUEL STORAGE TANKS (DELISTED, FUEL STORAGE, PRIVATE AND RETAIL)
- 12. 947 MONTREAL ROAD (ITEM 28): FORMER GAS STATION
- 13. 973 MONTREAL ROAD (ITEM 28): FORMER GAS STATION
- 14. 973 MONTREAL ROAD (ITEM 52): FORMER AUTOMOBILE SERVICE GARAGE
- 15. 995 MONTREAL ROAD (ITEM 28): GASOLINE SERVICE CENTER.
- 561 FOXVIEW PLACE (ITEM 28): FORMER FUEL OIL TANKS AT ST. BERNADETTE PUBLIC SCHOOL.
- 17. 53 HOCHELAGA STREET (ITEM 28): FORMER FUEL OIL TANKS AT FOURNIER VAN & STORAGE LTD.
- 18. 943 MONTREAL ROAD (ITEM 52): FORMER AUTOMOBILE SERVICE GARAGE
- 19. 900 MONTREAL ROAD, CITY OF OTTAWA FIRE STATION (NOT LISTED): GENERATOR OF WASTE OILS, OIL SKIMMINGS AND SLUDGES
- 20. 920 MONTREAL ROAD (NOT LISTED): GENERATOR OF LIGHT FUELS
- 21. 10 DESLOGES PRIVATE (NOT LISTED): GENERATOR OF WASTE OILS, OIL SKIMMINGS AND SLUDGES
- 22. 981 GULF PLACE (NOT LISTED): GENERATOR OF WASTE OILS/SLUDGES

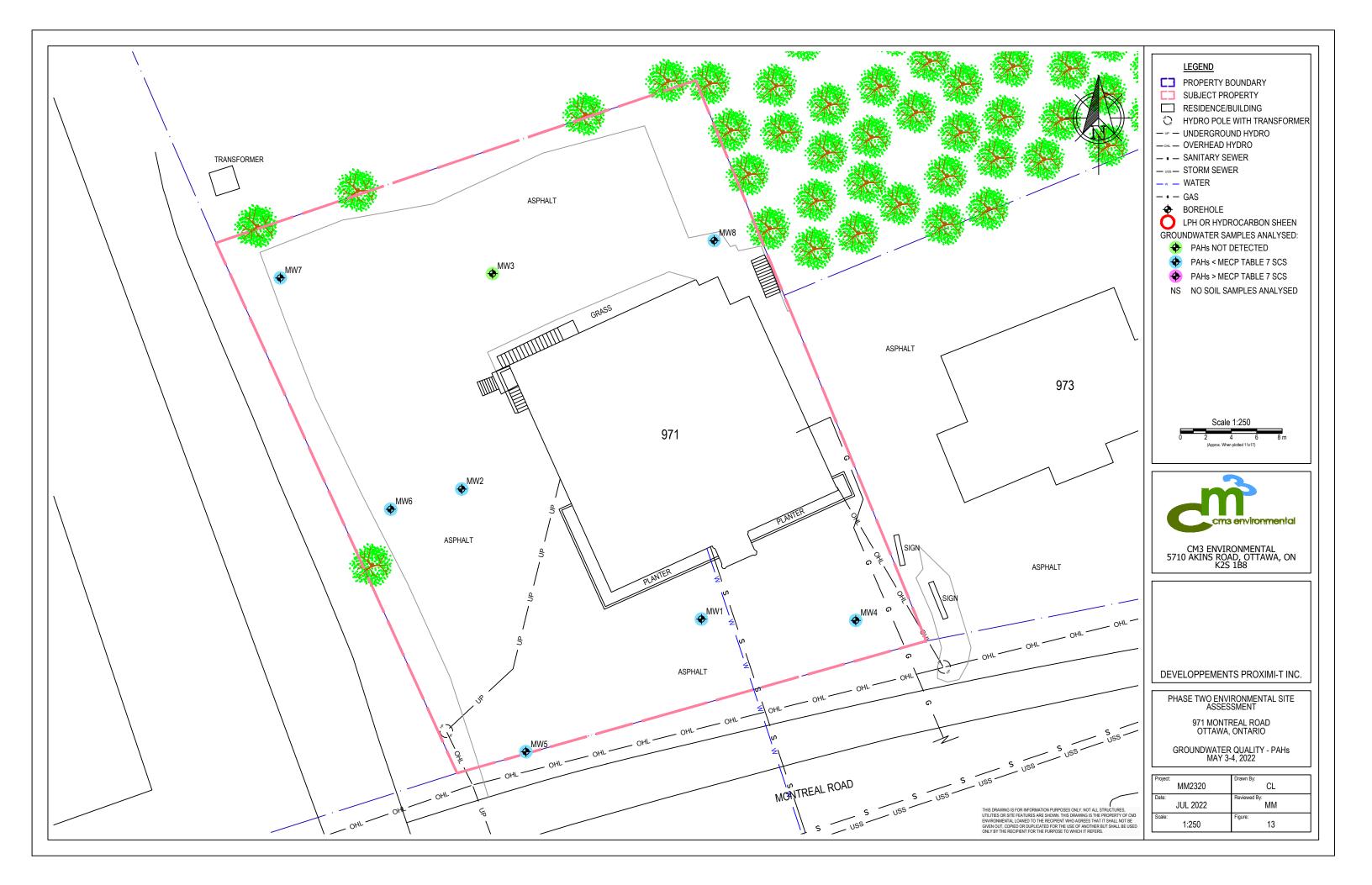


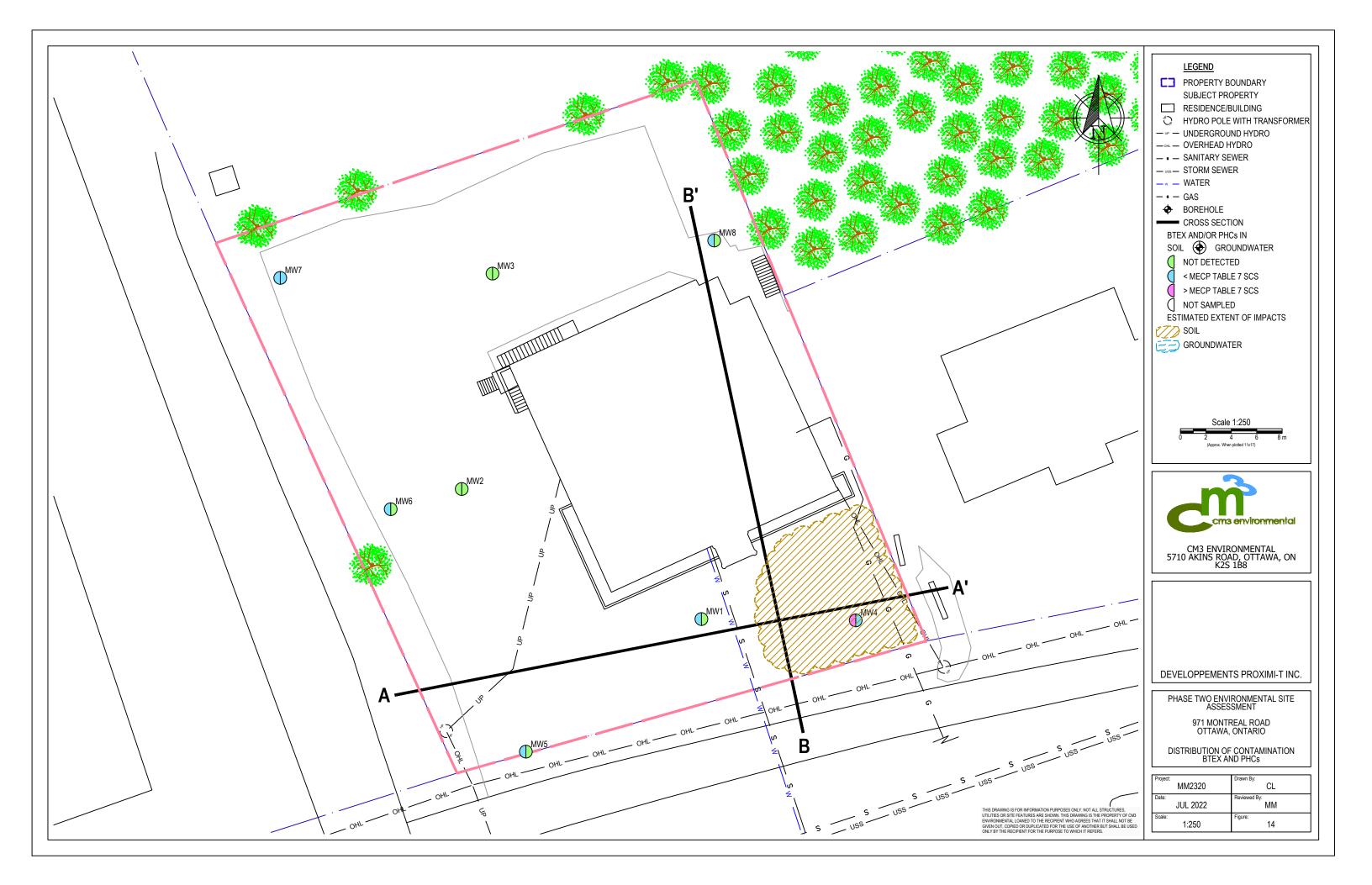


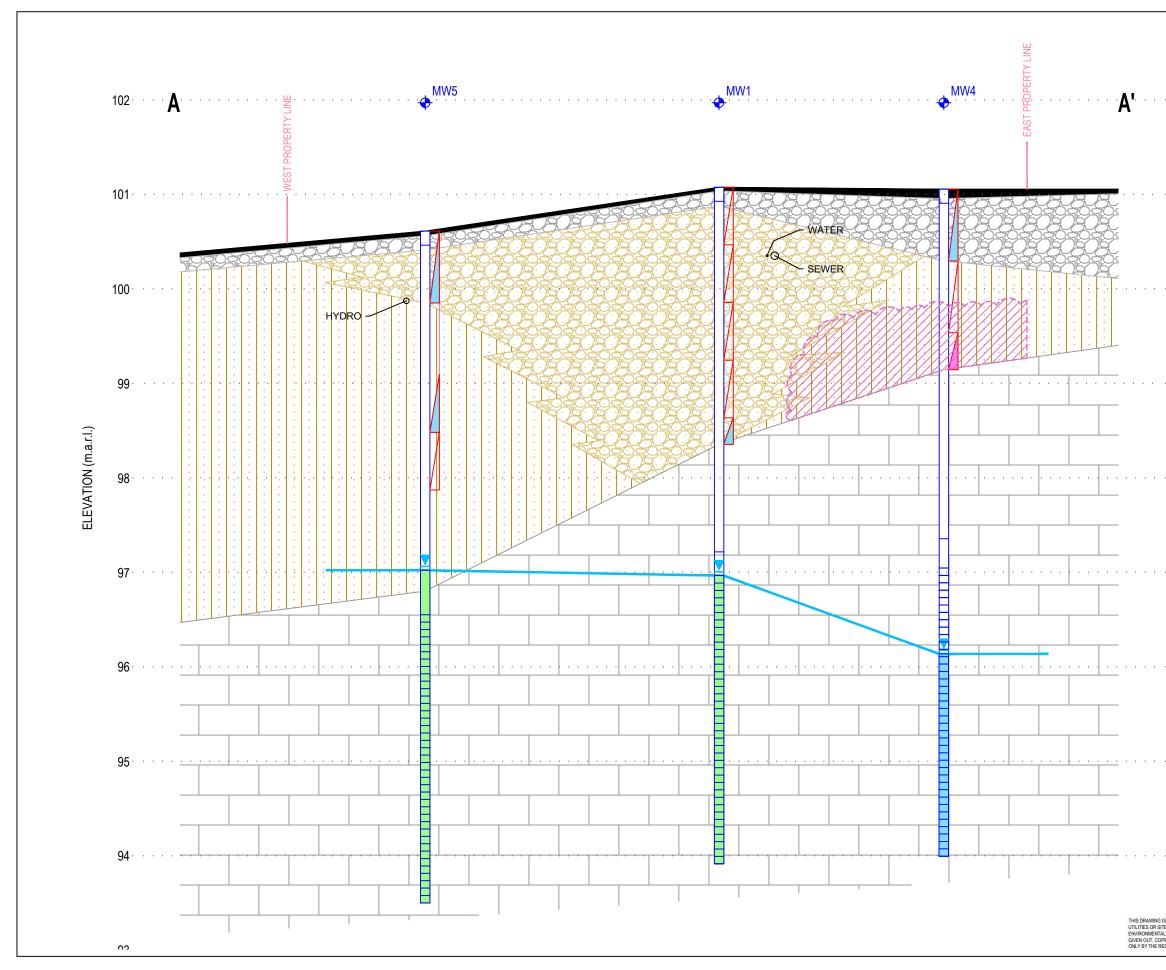


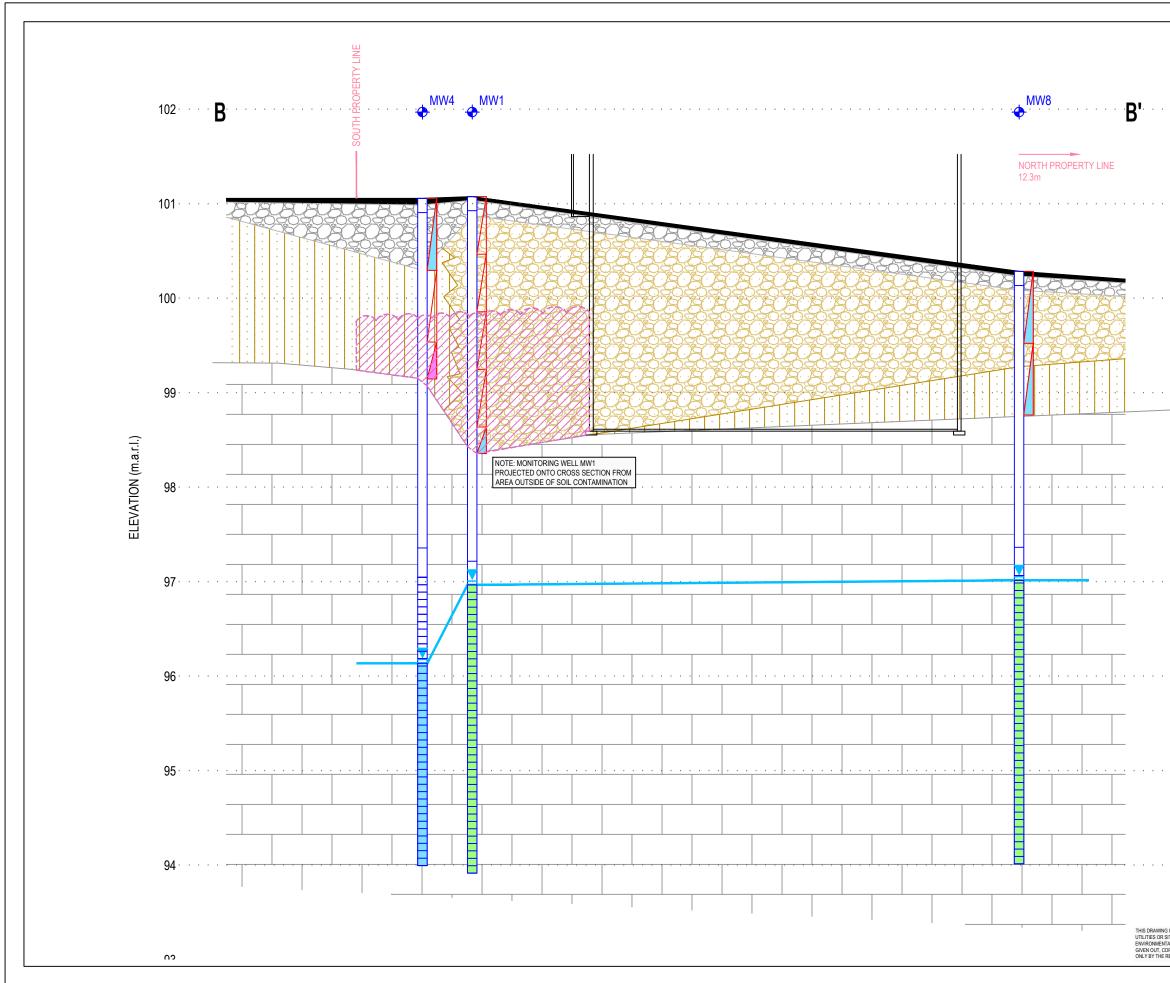


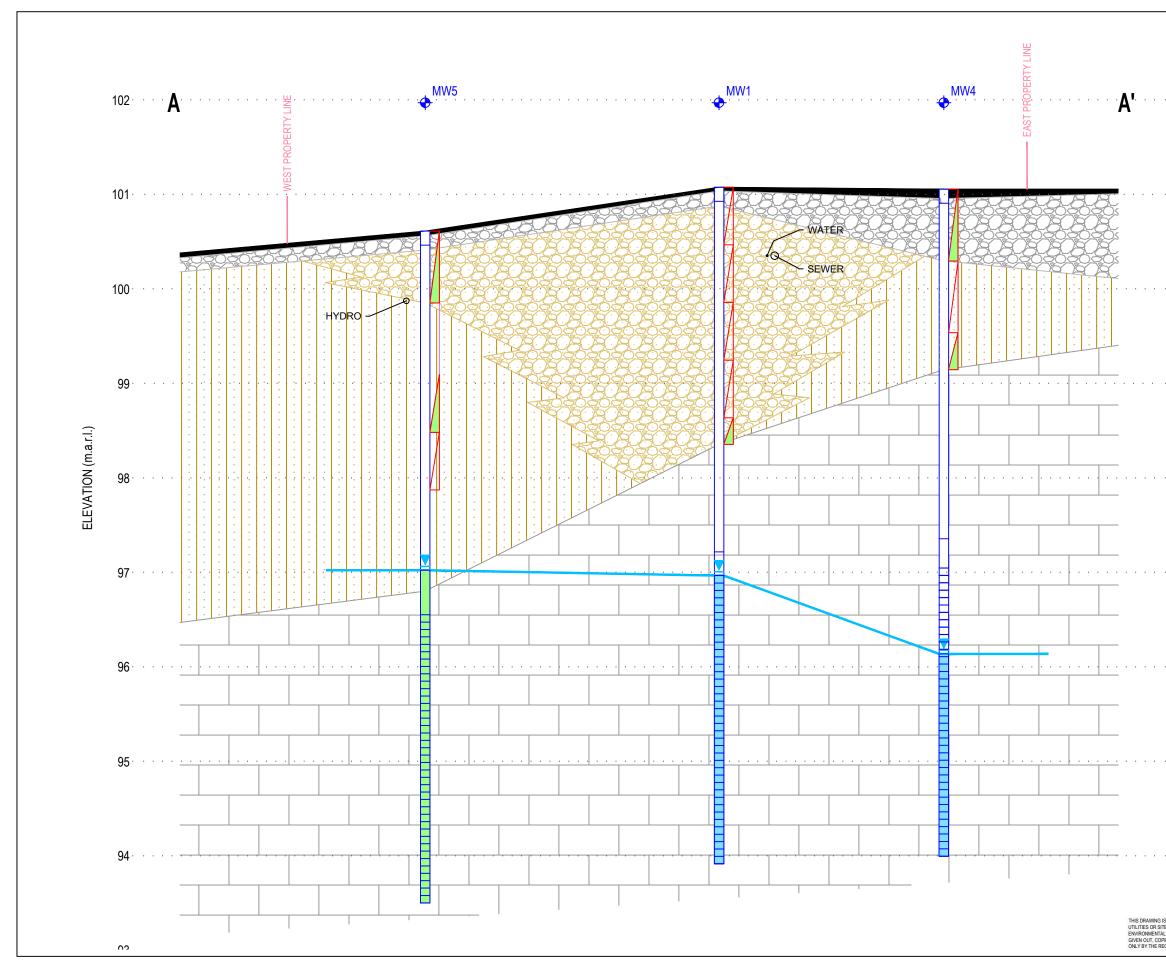




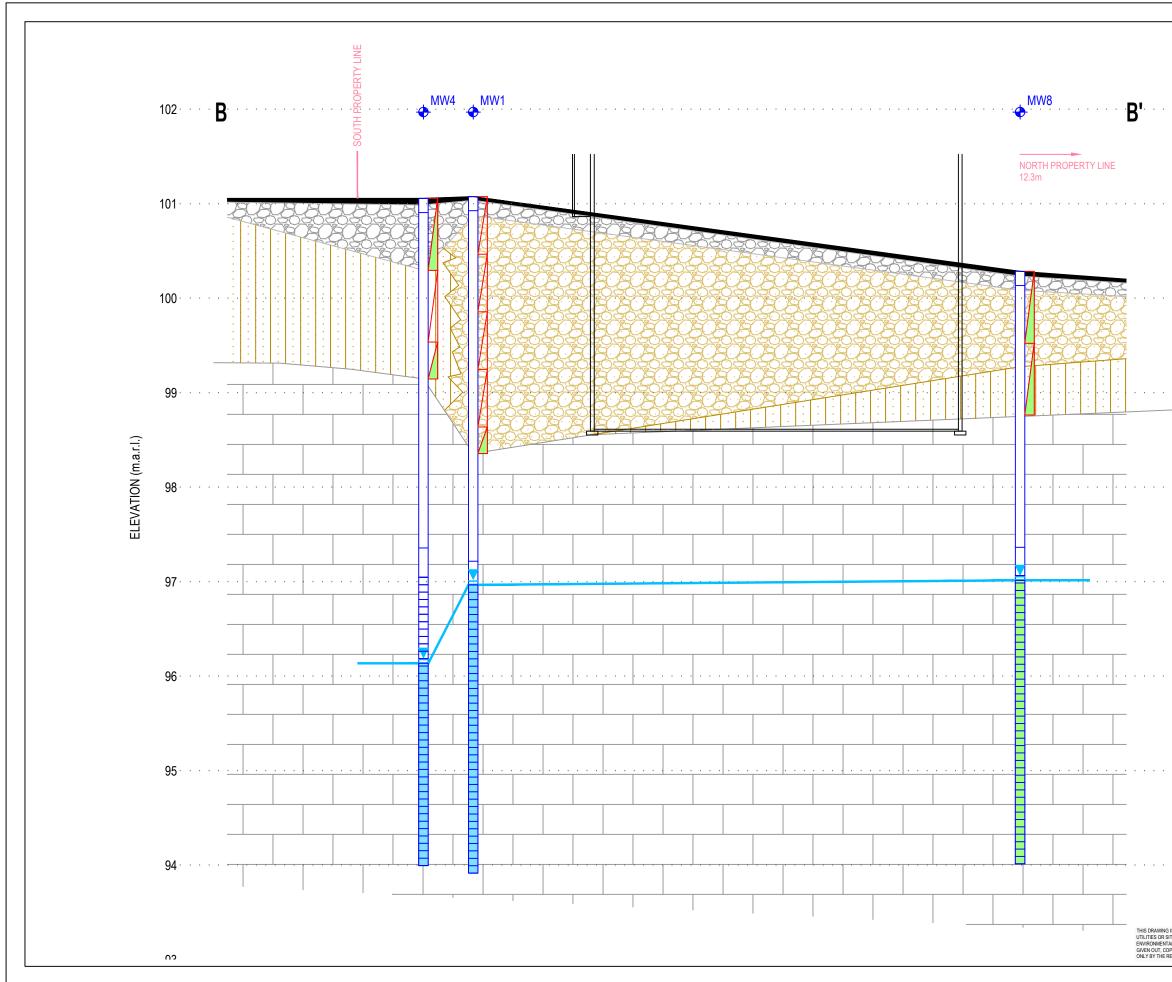




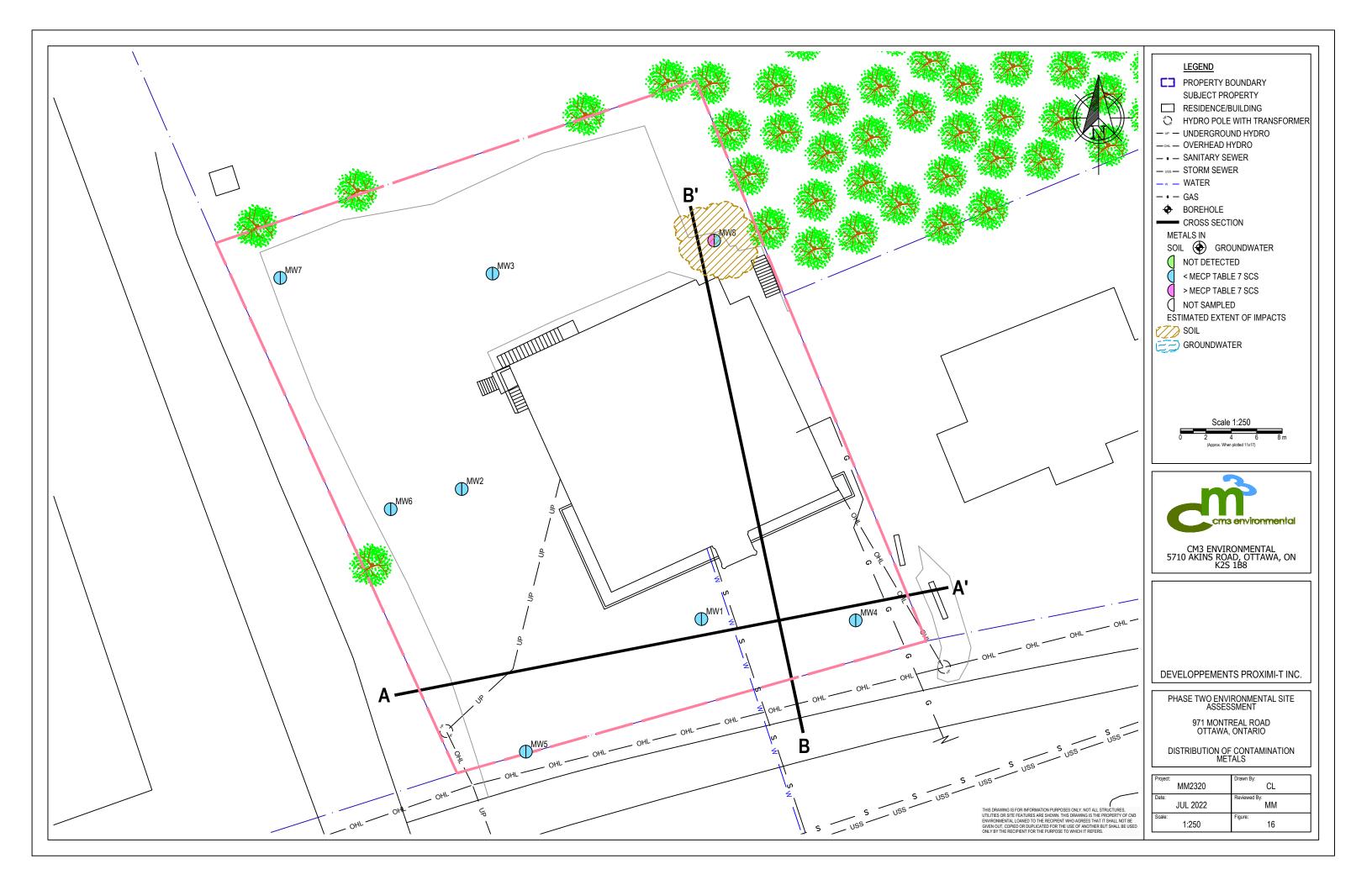


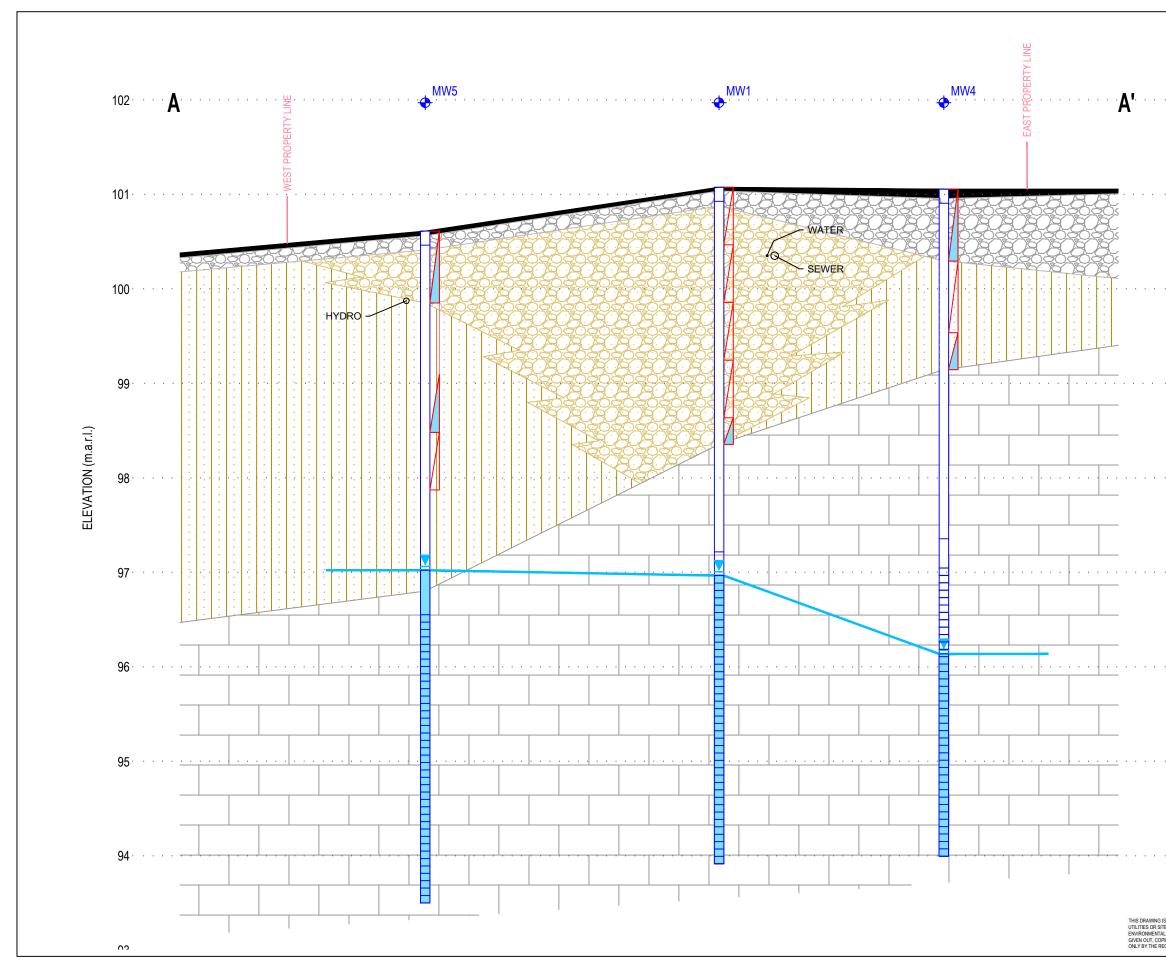


· 102	LEGEND ASPHALT GRAVEL GRAVELLY SAND GRAVELLY SAND ORGANICS BEDROCK MONITORING WELL LABEL WELL RISER
• 101	WELL SCREEN SOIL SAMPLE INTERVAL BTEX AND PHCs NOT DETECTED BTEX AND/OR PHCs < SCS
· 100	 BTEX AND/OR PHCs > SCS GROUNDWATER WATER LEVEL (m bg) BTEX AND PHCs NOT DETECTED BTEX AND/OR PHCs < SCS BTEX AND/OR PHCs > SCS
· 99	ESTIMATED EXTENT OF IMPACTS SOIL
· 98	HORIZONTAL SCALE
· 97	CM3 ENVIRONMENTAL 5710 AKINS ROAD, OTTAWA, ON K2S 1B8
· 96	
· 95	DEVELOPPEMENTS PROXIMI-T INC.
• 94	PHASE TWO ENVIRONMENTAL SITE ASSESSMENT 971 MONTREAL ROAD OTTAWA, ONTARIO DISTRIBUTION OF SOIL CONTAMINATION CROSS SECTION A-A' BTEX AND PHCS
S IS FOR INFORMATION PURPOSES ONLY. NOT ALL STRUCTURES, SITE FEATURES ARE SHOWN. THIS DRAWING IS THE PROPERTY OF CM3 FAL LOANED TO THE RECIPIENT WHO AGREES THAT IT SHALL NOT BE OPEO OR DUPLICATE FOR THE USE OF ANNOTHER BUT SHALL BE USED RECIPIENT FOR THE PURPOSE TO WHICH IT REFERS.	Scale: JUL 2022 MM Scale: AS SHOWN Figure:

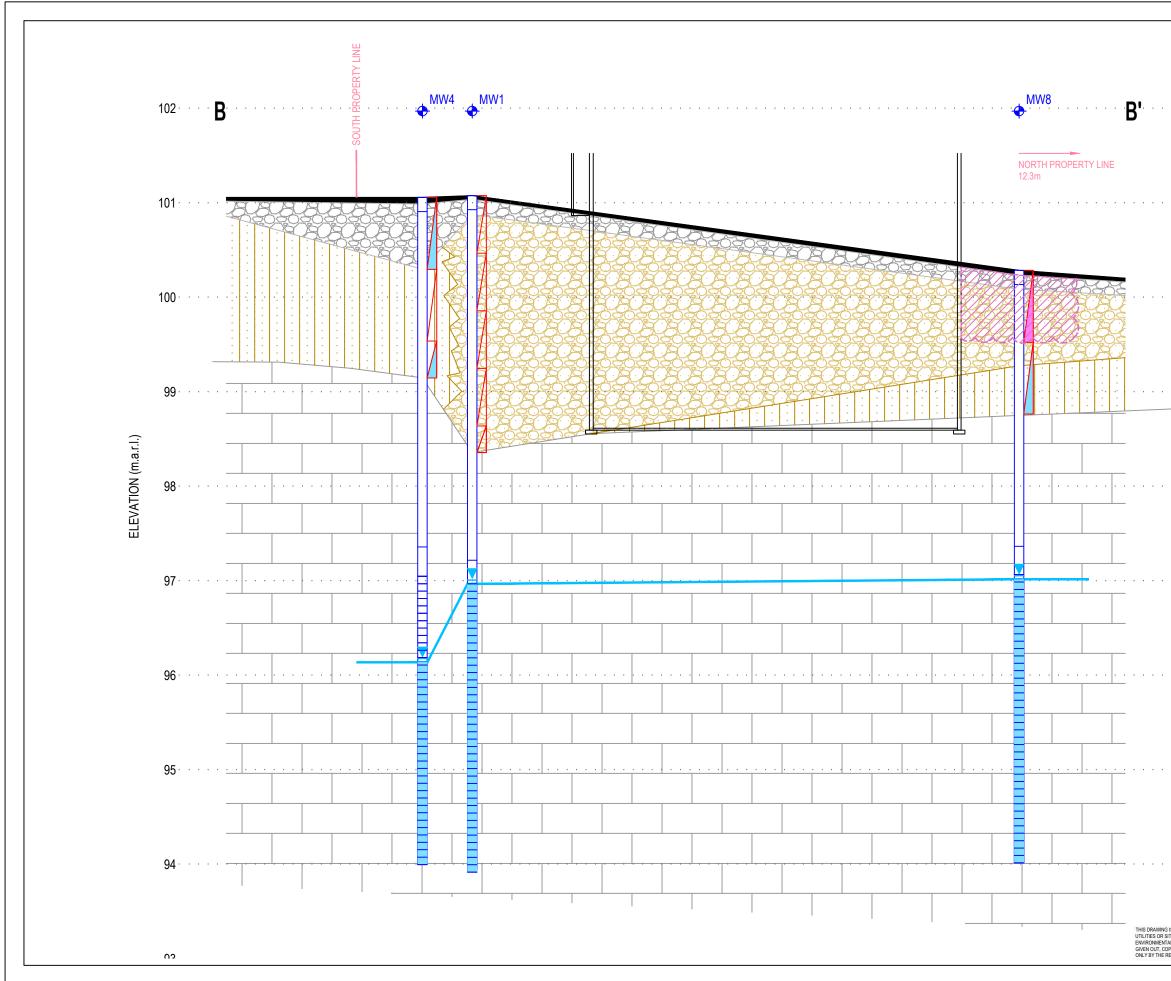


· 102	LEGEND ASPHALT GRAVEL GRAVELLY SAND SILTY SAND ORGANICS BEDROCK MONITORING WELL LABEL WELL RISER
· 101	WELL RISER WELL SCREEN SOIL SAMPLE INTERVAL BTEX AND PHCs NOT DETECTED BTEX AND/OR PHCs < SCS
· 100	 ➢ BTEX AND/OR PHCs > SCS GROUNDWATER ☑ WATER LEVEL (m bg) ☑ BTEX AND PHCs NOT DETECTED ☑ BTEX AND/OR PHCs < SCS ☑ BTEX AND/OR PHCs > SCS
99	ESTIMATED EXTENT OF IMPACTS
98	HORIZONTAL SCALE
· 97	CM3 ENVIRONMENTAL 5710 AKINS ROAD, OTTAWA, ON K2S 188
· 96	
95	DEVELOPPEMENTS PROXIMI-T INC.
- 94	Project: Project: Project: MM2320 Project: Project: MM2320 Project: MM2320 Project: Project: MM2320 Project: Project: MM2320 Project: Proj
S IS FOR INFORMATION PURPOSES ONLY. NOT ALL STRUCTURES, SITE FEATURES ARE SHOWN. THIS DRAWING IS THE PROPERTY OF CMS TAL LOANED TO THE RECIPIENT WHO AGREES THAT IT SHALL NOT BE OPEO OR DUPLCATEO FOR THE USE OF ANNOTHER BUT SHALL BE USED RECIPIENT FOR THE PURPOSE TO WHICH IT REFERS.	June reversed by: JUN 2022 MM Scale: Figure: AS SHOWN 14B

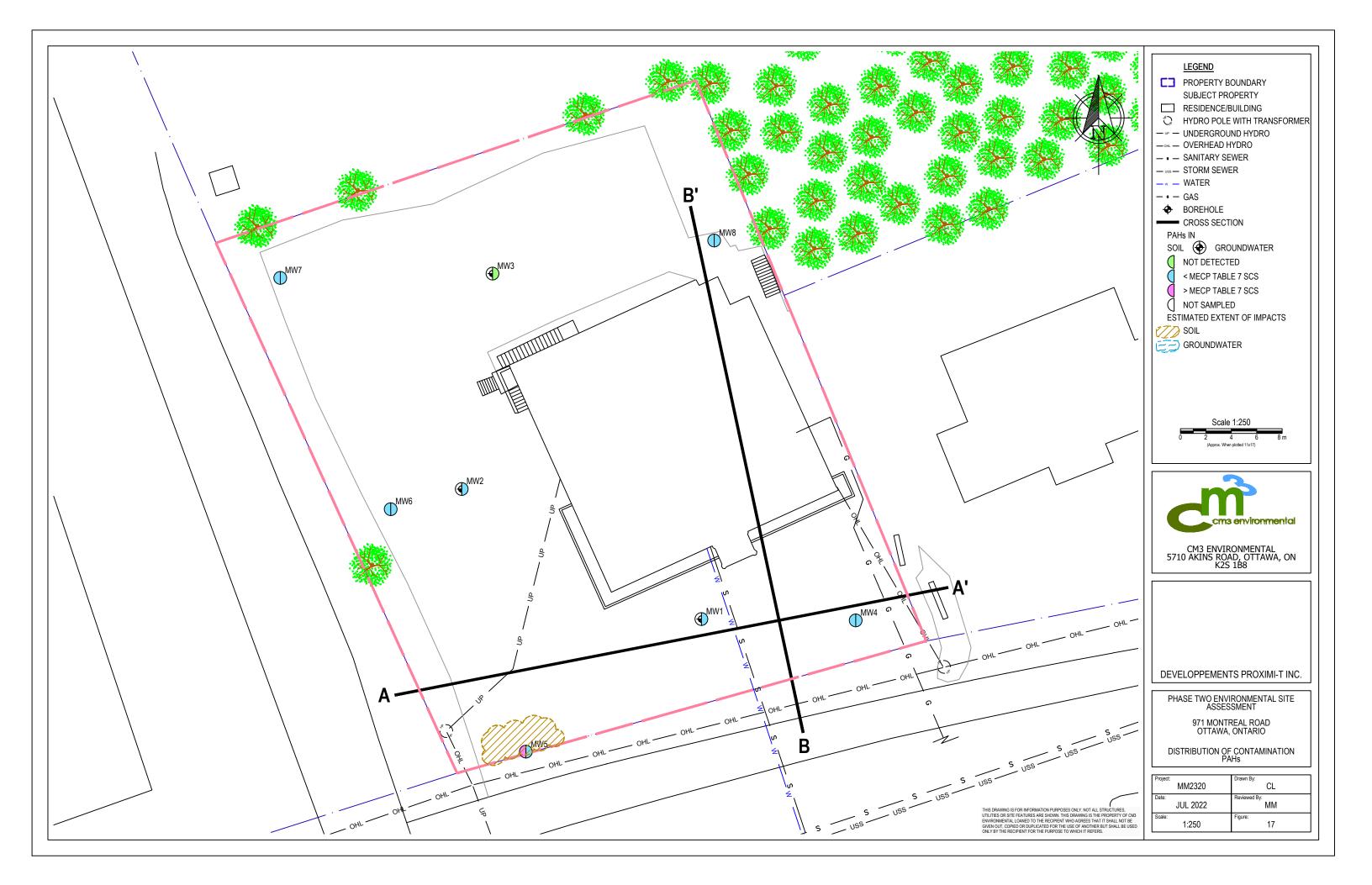


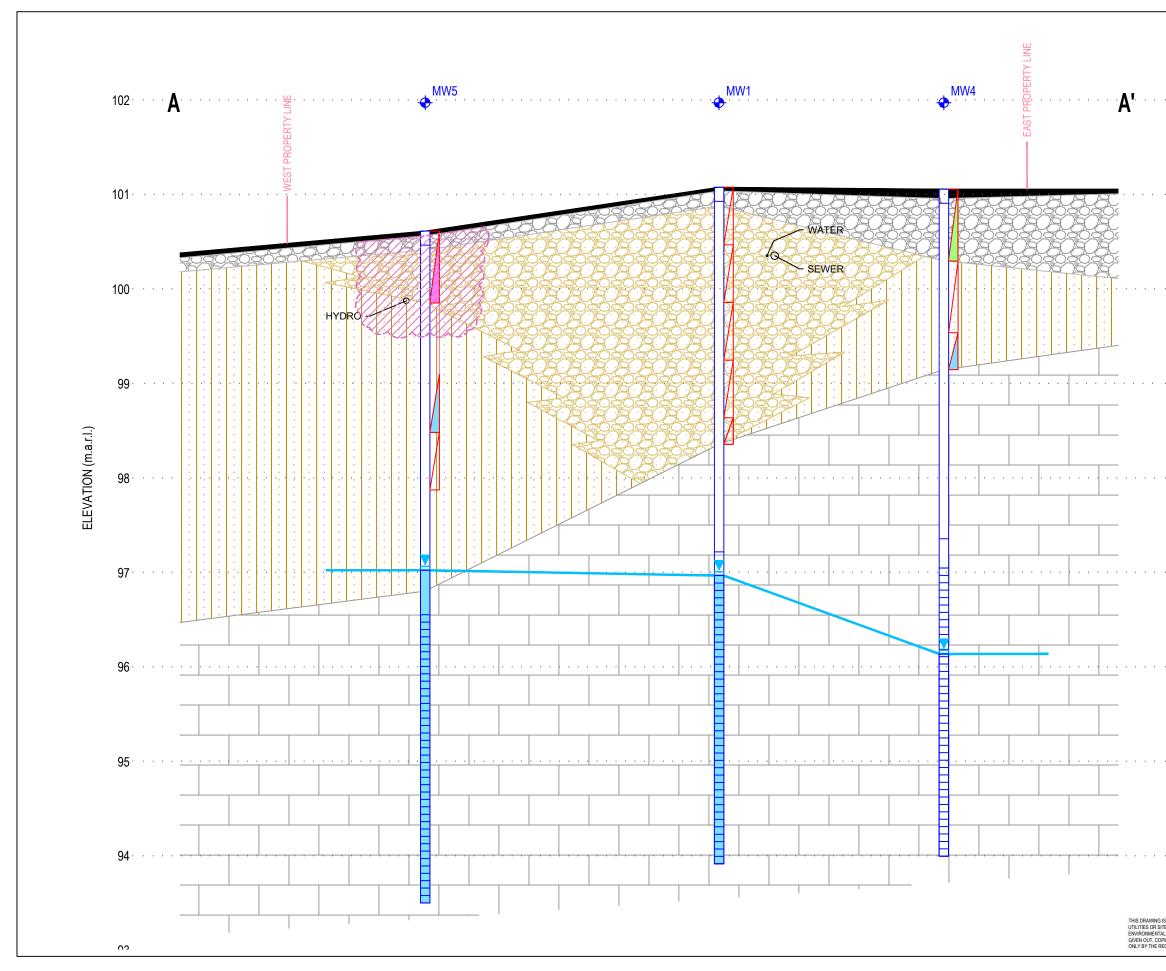


· 102	LEGEND ASPHALT GRAVEL GRAVELLY SAND SILTY SAND ORGANICS BEDROCK MONITORING WELL LABEL WELL RISER
• 101	WELL SCREEN SOIL SAMPLE INTERVAL VOCs NOT DETECTED VOCs < SCS VOCs > SCS
· 100	GROUNDWATER WATER LEVEL (m bg) VOCs NOT DETECTED VOCs < SCS VOCs > SCS
· 99	ESTIMATED EXTENT OF IMPACTS
· 98	HORIZONTAL SCALE 0 2 4 6 8 m 5X VERTICAL EXAGGERATION
· 97	CM3 ENVIRONMENTAL 5710 AKINS ROAD, OTTAWA, ON K2S 188
· 96	
· 95	DEVELOPPEMENTS PROXIMI-T INC. PHASE TWO ENVIRONMENTAL SITE ASSESSMENT
• 94	971 MONTREAL ROAD OTTAWA, ONTARIO DISTRIBUTION OF SOIL CONTAMINATION CROSS SECTION A-A' VOCs
IS FOR INFORMATION PURPOSES ONLY. NOT ALL STRUCTURES, SITE FEATURES ARE SHOWN. THIS DRAWING IS THE PROPERTY OF CM3 ALLOANED TO THE RECIPIENT WHO AGREES THAT IT SHALL NOT BE PIED OR DUPLICATED FOR THE USE OF ANNOTHER BUT SHALL BE USED RECIPIENT FOR THE PURPOSE TO WHICH IT REFERS.	JUL 2022 MM Scale: Figure: AS SHOWN 15A

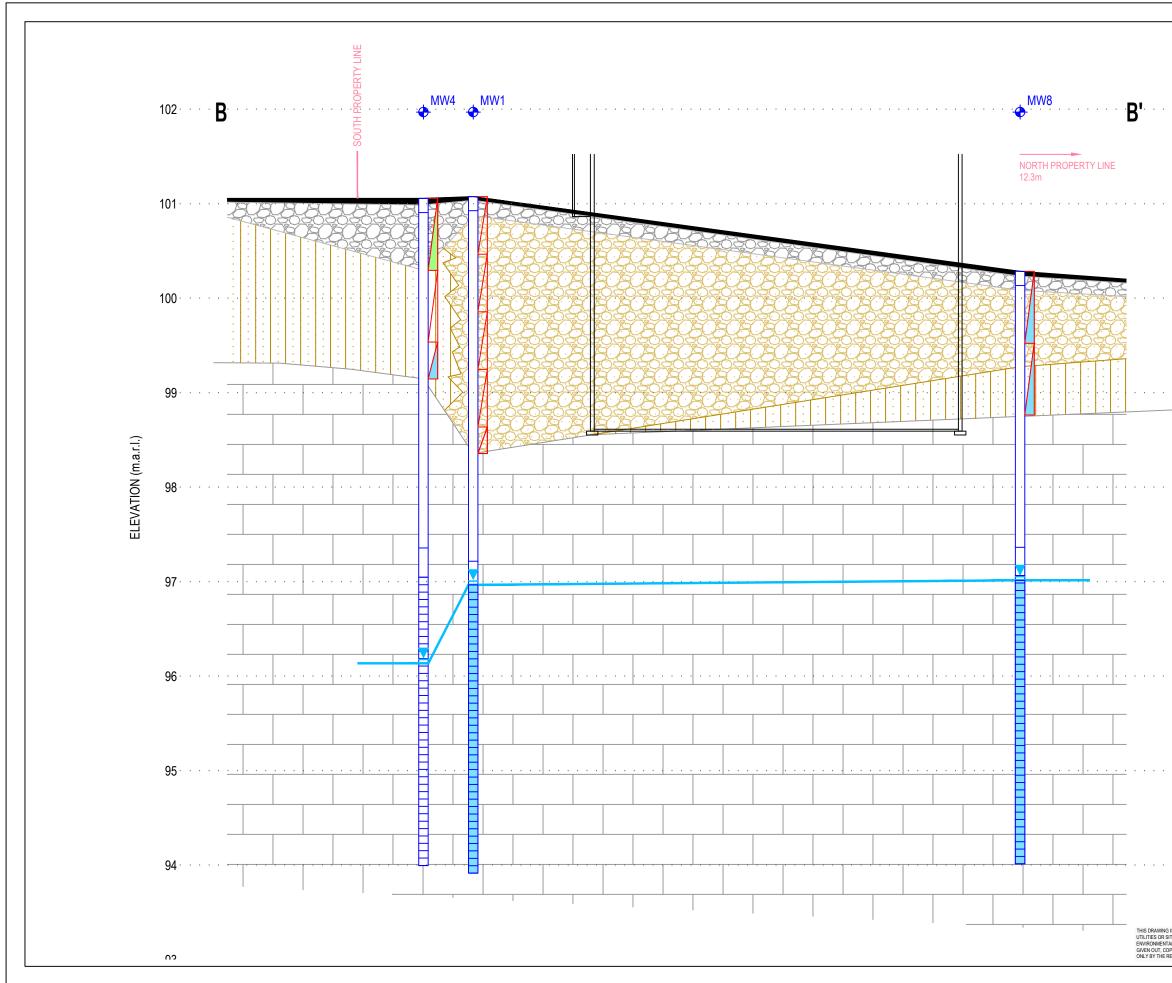


· 102	LEGEND ASPHALT GRAVEL GRAVELLY SAND SILTY SAND ORGANICS BEDROCK MONITORING WELL LABEL
· 101	WELL RISER WELL SCREEN SOIL SAMPLE INTERVAL
· 100	✓ VOCs NOT DETECTED ✓ VOCs < SCS
· 99 —	ESTIMATED EXTENT OF IMPACTS
· 98	HORIZONTAL SCALE
· 97	CM3 ENVIRONMENTAL 5710 AKINS ROAD, OTTAWA, ON K2S 1B8
· 96	K2S 1B8
· 95	DEVELOPPEMENTS PROXIMI-T INC.
· 94	PHASE TWO ENVIRONMENTAL SITE ASSESSMENT 971 MONTREAL ROAD OTTAWA, ONTARIO DISTRIBUTION OF SOIL CONTAMINATION CROSS SECTION B-B' VOCs
IIS FOR INFORMATION PURPOSES ONLY. NOT ALL STRUCTURES, ITE FEATURES ARE SHOWN. THIS DRAWING IS THE PROPERTY OF CM3 ALLOARED TO THE RECIPIENT WHO AGREES THAT IT SHALL NOT BE PIED OR DUPLICATE FOR THE USE OF ANOTHER BUT SHALL BE USED RECIPIENT FOR THE PURPOSE TO WHICH IT REFERS.	Project: MM2320 Drawn By: Date: JUN 2022 Reviewed By: JUN 2022 MM Scale: AS SHOWN Figure:





· 102	LEGEND ASPHALT GRAVEL GRAVELLY SAND SILTY SAND ORGANICS BEDROCK MONITORING WELL LABEL WELL RISER
• 101	WELL SCREEN SOIL SAMPLE INTERVAL METALS NOT DETECTED METALS < SCS METALS > SCS
· 100	GROUNDWATER WATER LEVEL (m bg) METALS NOT DETECTED METALS < SCS METALS > SCS
· 99	ESTIMATED EXTENT OF IMPACTS
· 98	HORIZONTAL SCALE
· 97	CM3 ENVIRONMENTAL 5710 AKINS ROAD, OTTAWA, ON K2S 188
· 96	
· 95	DEVELOPPEMENTS PROXIMI-T INC.
• 94	ASSESSMENT 971 MONTREAL ROAD OTTAWA, ONTARIO DISTRIBUTION OF SOIL CONTAMINATION CROSS SECTION A-A' METALS Project: MM2320 Drawn By: CL Date: Reviewed By:
S IS FOR INFORMATION PURPOSES ONLY. NOT ALL STRUCTURES, SITE FEATURES ARE SHOWN. THIS DRAWING IS THE PROPERTY OF CM3 FAL LOANED TO THE RECIPIENT WHO AGREES THAT IT SHALL NOT BE OPEO OR DUPLICATE FOR THE USE OF ANTOTHER BUT SHALL BE USED RECIPIENT FOR THE PURPOSE TO WHICH IT REFERS.	JUL 2022 MM Scale: AS SHOWN Figure: 16A



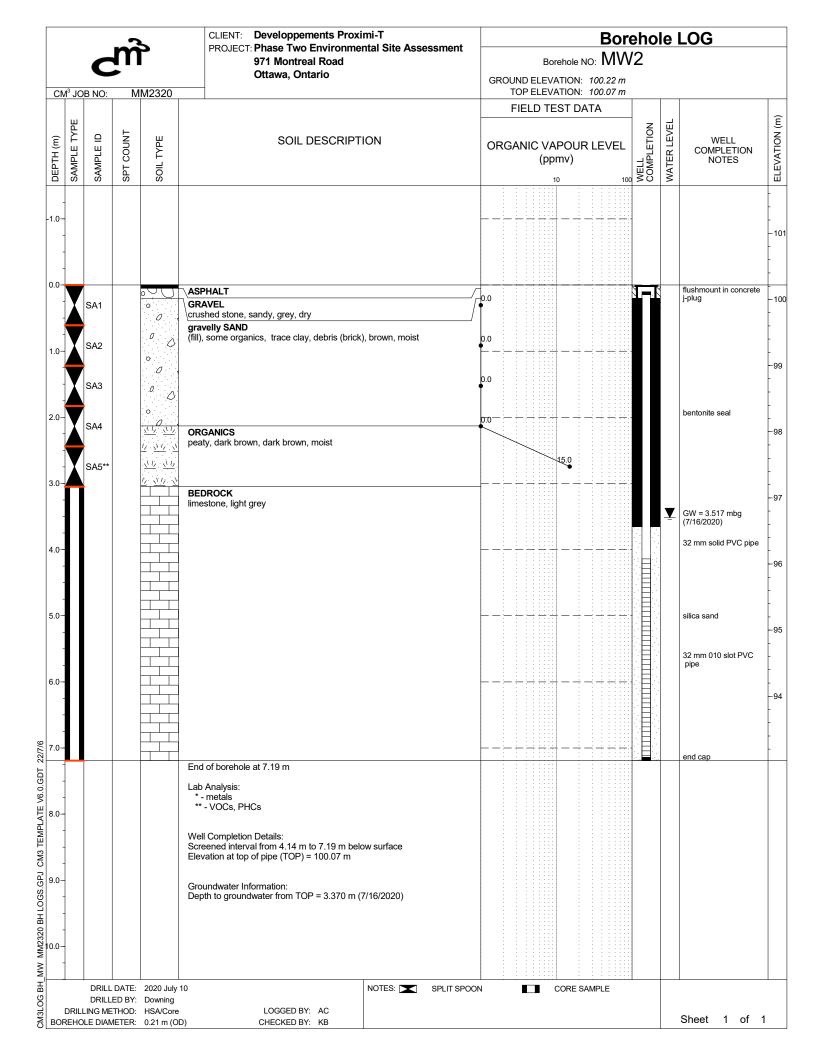
· 102	LEGEND ASPHALT GRAVEL GRAVELLY SAND SILTY SAND ORGANICS BEDROCK MONITORING WELL LABEL
· 101	WELL RISER WELL SCREEN SOIL SAMPLE INTERVAL METALS NOT DETECTED
· 100	 METALS < SCS METALS > SCS GROUNDWATER WATER LEVEL (m bg) METALS NOT DETECTED METALS < SCS METALS > SCS
· 99 —	ESTIMATED EXTENT OF IMPACTS
· 98	HORIZONTAL SCALE
· 97	CM3 ENVIRONMENTAL 5710 AKINS ROAD, OTTAWA, ON
· 96	5710 AKINS ROAD, OTTAWA, ON K2S 1B8
· 95	DEVELOPPEMENTS PROXIMI-T INC.
•94	971 MONTREAL ROAD OTTAWA, ONTARIO DISTRIBUTION OF SOIL CONTAMINATION CROSS SECTION B-B' METALS
IS FOR INFORMATION PURPOSES ONLY. NOT ALL STRUCTURES. THE FEATURES ARE SHOWN. THIS DRAWING IS THE PROPERTY OF CM ALLOANED TO THE RECIPIENT WHO AGREES THAT IT SHALL NOT BE PEED OR DUPLICATE FOR THE USE OF ANOTHER BUT SHALL BE USED LECIPIENT FOR THE PURPOSE TO WHICH IT REFERS.	MM2320 CL Date: JUN 2022 Reviewed By: Scale: MM AS SHOWN Figure:

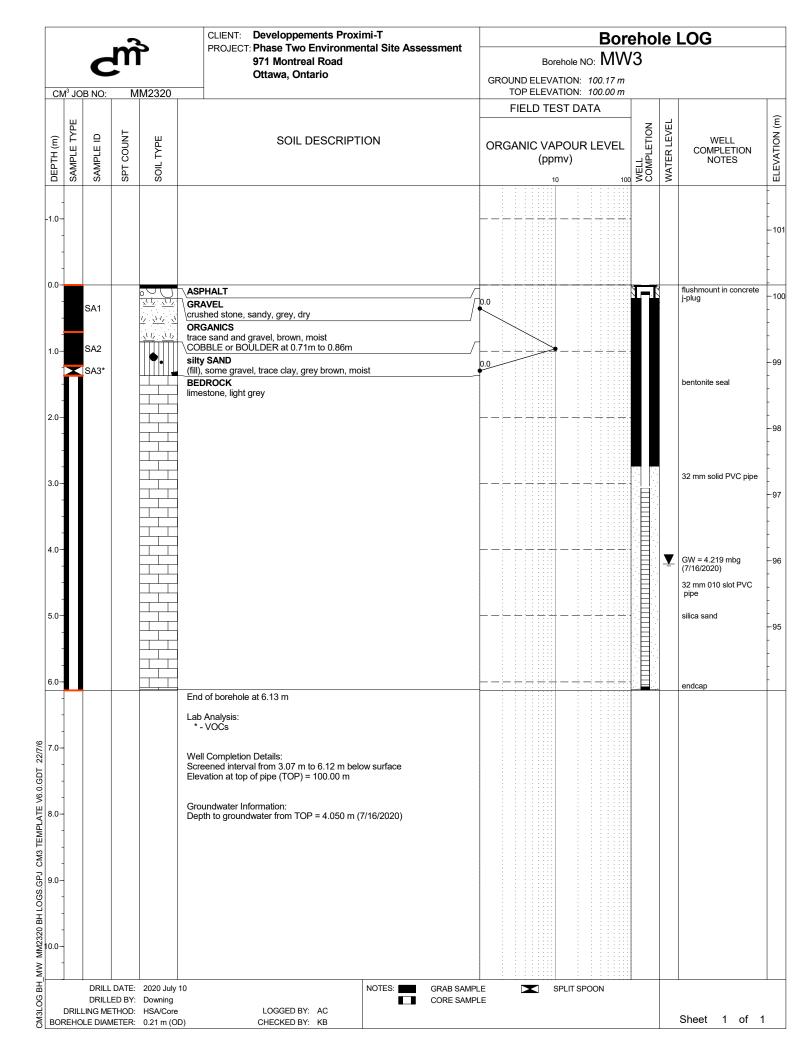
· 102	LEGEND ASPHALT □ GRAVEL Image: GRAVELLY SAND Image: SILTY SAND Image: SILTY SAND Image: ORGANICS Image: BEDROCK Image: Image: MONITORING WELL LABEL
· 101	Image: Monitoring Well Label Well Riser Well Screen Soil Image: Ample Interval Image: Parts of Scs
· 100	 PAHs > SCS GROUNDWATER WATER LEVEL (m bg) PAHs NOT DETECTED PAHs < SCS PAHs > SCS
· 99	ESTIMATED EXTENT OF IMPACTS SOIL GROUNDWATER
· 98	HORIZONTAL SCALE
· 97	CM3 ENVIRONMENTAL 5710 AKINS ROAD, OTTAWA, ON K2S 188
· 96	K2S 1B8
• 95	DEVELOPPEMENTS PROXIMI-T INC.
· 94	ASSESSMENT 971 MONTREAL ROAD OTTAWA, ONTARIO DISTRIBUTION OF SOIL CONTAMINATION CROSS SECTION A-A' PAHs Project: MM2320 Drawn By: CL
IS FOR INFORMATION PURPOSES ONLY. NOT ALL STRUCTURES, SITE FEATURES ARE SHOWN. THIS DRAWING IS THE PROPERTY OF CMS TAL LOANED TO THE RECIPIENT WHO AGREES THAT IT SHALL NOT BE PIED OR DUPLICATED FOR THE USE OF ANNOTHER BUT SHALL BE USED RECIPIENT FOR THE PURPOSE TO WHICH IT REFERS.	Date: JUL 2022 Reviewed By: Scale: AS SHOWN Figure:

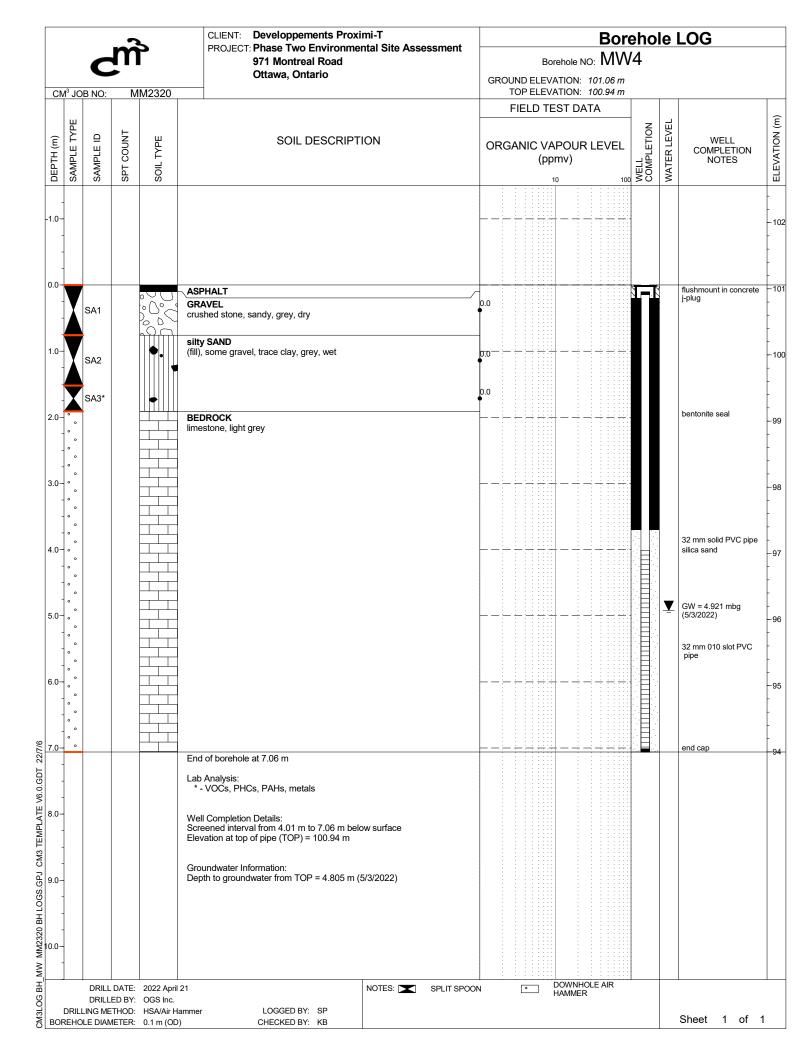
· 102	LEGEND ASPHALT GRAVEL GRAVELLY SAND SILTY SAND ORGANICS BEDROCK MONITORING WELL LABEL
· 101	WELL RISER WELL SCREEN SOIL SAMPLE INTERVAL PAHs NOT DETECTED
· 100	 PAHs < SCS PAHs > SCS GROUNDWATER WATER LEVEL (m bg) PAHs NOT DETECTED PAHs < SCS PAHs > SCS
- 99	ESTIMATED EXTENT OF IMPACTS
· 98	HORIZONTAL SCALE
• 97	
96	5710 ĀKĪNŠ ROAD, OTTAWĀ, ON K2S 1B8
95	DEVELOPPEMENTS PROXIMI-T INC.
94	971 MONTREAL ROAD OTTAWA, ONTARIO DISTRIBUTION OF SOIL CONTAMINATION CROSS SECTION B-B' PAHs
S FOR INFORMATION PURPOSES ONLY. NOT ALL STRUCTURES. E FEATURES ARE SHOWN THIS DRAWING IS THE PROPERTY OF CAG LOANED TO THE RECIPENT WHO ARREES THAT IT SHALL NOT BE EO OR DUPLICATE FOR THE USE OF ANOTHER BUT SHALL BE USED CIPIENT FOR THE PURPOSE TO WHICH IT REFERS.	MM2320 CL Date: Reviewed By: JUN 2022 MM Scale: AS SHOWN

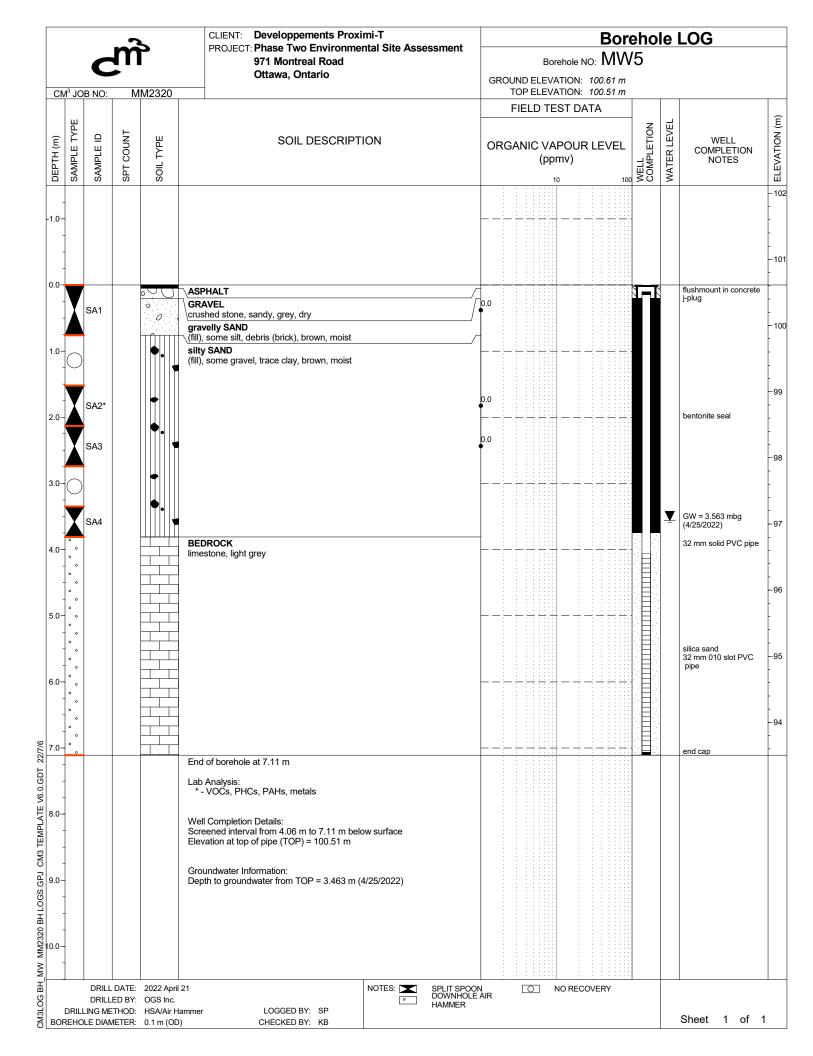
APPENDIX A

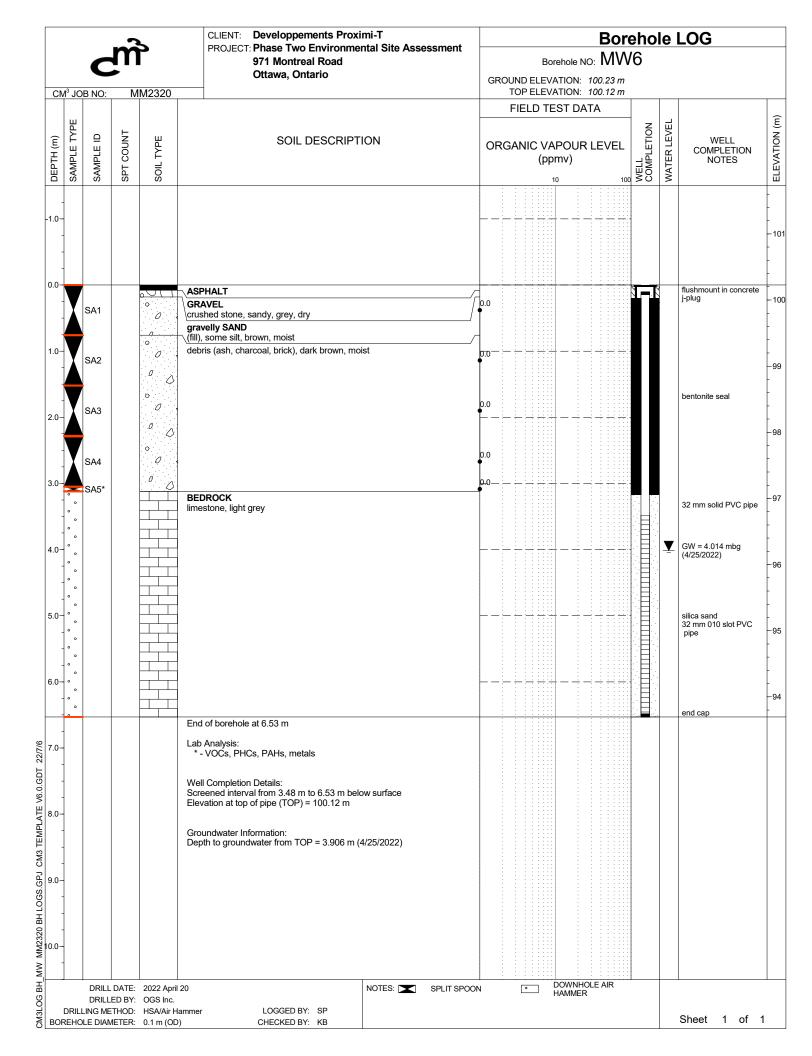
Finalized Field Logs

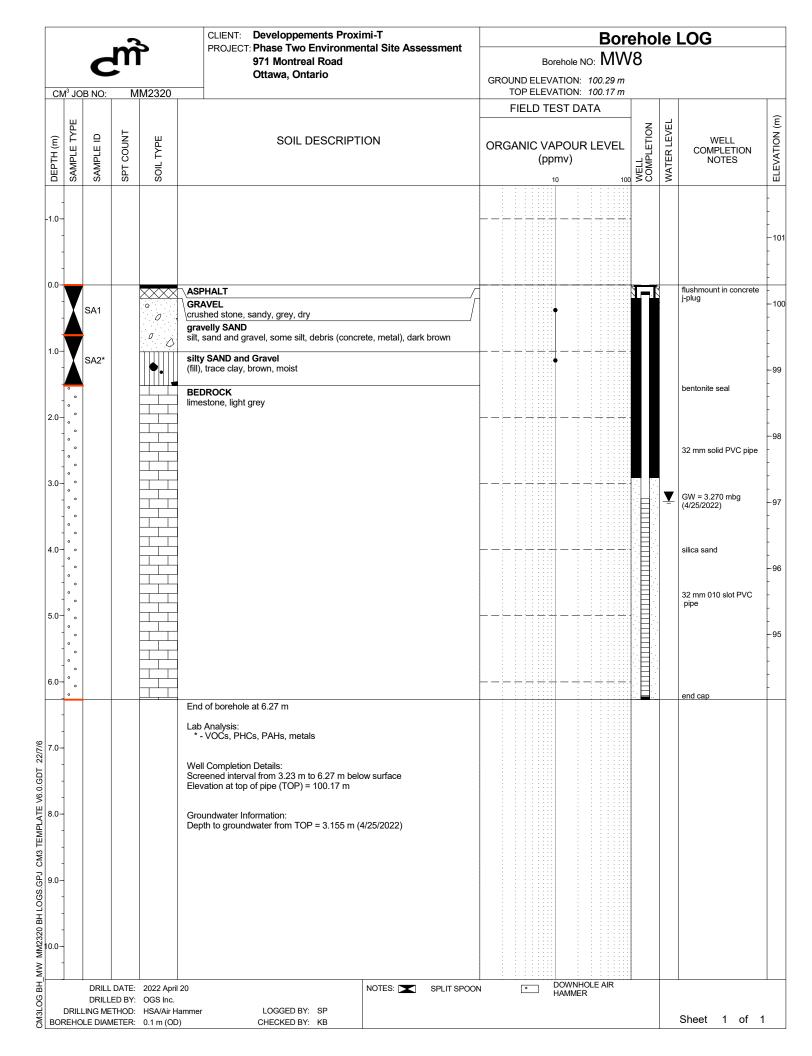

Phase Two Environmental Site Assessment


971 Montreal Road Ottawa, Ontario


Developpements Proximi-T Inc.


MM2320


	CLIENT: Developpements Proximi-T PROJECT: Phase Two Environmental Site Assessment			Borehole LOG				
			C	/		971 Montreal Road Ottawa, Ontario	Borehole NO: MW1 GROUND ELEVATION: 101.08 m	
	СМ	I ³ JO	B NO:	M	M2320		TOP ELEVATION: 100.89 m FIELD TEST DATA	
	UEPIH (m)	SAMPLE TYPE	SAMPLE ID	SPT COUNT	SOIL TYPE	SOIL DESCRIPTION	ORGANIC VAPOUR LEVEL (ppmv) 10 100	MATER LEVEL MATER LEVEL MOLTION MM MET MATER LEVEL
-1	0.							-102
0	.0-					ASPHALT		flushmount in concrete - 101
1	- - - -0.	X	SA1* SA2			GRAVEL crushed stone, sandy, grey, dry gravelly SAND (fill), some dark organics, trace clay, brown, moist		j-plug - - - - - - - - - - - - - - - - - - -
2	- - - - -0	X	SA3 SA4				0.0 0.0 0.0	bentonite seal
3	- - -0. -		SA5**			BEDROCK limestone, light grey	0.0	- 98
4	- -0. -							32 mm solid PVC pipe 97 GW = 4.505 mbg (7/16/2020)
5	- -0. -							silica sand -96 -32 mm 010 slot PVC pipe
6	- -0. -							95
7	- 0.							 end cap94
V6.0.GDT	- - - - -					End of borehole at 7.16 m Lab Analysis: * - metals ** - VOCs, PHCs Well Completion Details: Screened interval from 4.11 m to 7.16 m below surface Elevation at top of pipe (TOP) = 100.89 m		
CM3LOG BH_MW_MM2320 BH LOGS.GPJ_CM3 TEMPLATE	-0. - - - .0-					Groundwater Information: Depth to groundwater from TOP = 4.320 m (7/16/2020)		
			DRILL _ING ME	.ed by: ethod:	2020 July Downing HSA/Core 0.21 m (O	LOGGED BY: AC		Sheet 1 of 1



		5	CLIENT: Developpements Proximi-T PROJECT: Phase Two Environmental Site Assessment	Borehole LOG				
	c ^m		Γ	971 Montreal Road	Borehole NO: MW7			
C		DB NO:	M	M2320	Ottawa, Ontario	GROUND ELEVATION: 99.93 m TOP ELEVATION: 99.82 m		
						FIELD TEST DATA		
DEPTH (m)	SAMPLE TYPE	SAMPLE ID	SPT COUNT	SOIL TYPE	SOIL DESCRIPTION	ORGANIC VAPOUR LEVEL (ppmv)	MATER LEVEL MATER LEVEL MATER LEVEL	
-1.0 [.]	-						- -101 -	
							- 100	
0.0	X	SA1*		•	ASPHALT GRAVEL crushed stone, sandy, grey, dry	0.0		
1.0	- ° °				silty SAND (fill), some gravel, trace clay, brown, dry BEDROCK imestone, light grey		- -99 -	
	- 0 - 0 - 0						bentonite seal	
2.0								
3.0	•						- -97 32 mm solid PVC pipe	
	- ° °						GW = 3.579 mbg (4/25/2022) -96	
4.0							·	
5.0	- • •						32 mm 010 slot PVC pipe silica sand	
	- 0 - 0 - 0						-94	
6.0	- 0 0						end cap	
9/2/3	-				End of borehole at 6.35 m Lab Analysis: * - VOCs, PHCs, PAHs, metals			
V6.0.GDT 2					Well Completion Details: Screened interval from 3.30 m to 6.35 m below surface Elevation at top of pipe (TOP) = 99.82 m			
0.8					Groundwater Information: Depth to groundwater from TOP = 3.474 m (4/25/2022)			
. S.GPJ CM3 .	-							
20 BH LOG	-							
CM3LOG BH_MW_MM2320 BH LOGS.GPJ_CM3 TEMPLATE V6.0.GDT_227/16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-							
OG BH		DRILL	ED BY:	2022 April 20 OGS Inc.		OON DOWNHOLE AIR HAMMER		
во BO				HSA/Air Ham 0.1 m (OD)	mer LOGGED BY: SP CHECKED BY: KB		Sheet 1 of 1	

APPENDIX B

Certificates of Analysis

Phase Two Environmental Site Assessment

971 Montreal Road Ottawa, Ontario

Developpements Proximi-T Inc.

MM2320

RELIABLE.

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Certificate of Analysis

CM3 Environmental Inc.

5710 Akins Road Ottawa, ON K2S 1B8 Attn: Marc MacDonald

Client PO: 971 Montreal Rd, Ottawa Project: MM2320 Custody: 125626

Report Date: 17-Jul-2020 Order Date: 10-Jul-2020

Order #: 2028608

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID	Client ID
2028608-01	BH1- SA1
2028608-02	BH1- SA5
2028608-03	BH2- SA1
2028608-04	BH2- SA5
2028608-05	BH3- SA3

Approved By:

Dale Robertson, BSc Laboratory Director

Any use of these results implies your agreement that our total liability in connection with this work, however arising, shall be limited to the amount paid by you for this work, and that our employees or agents shall not under any circumstances be liable to you in connection with this work.

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date	Analysis Date
PHC F1	CWS Tier 1 - P&T GC-FID	13-Jul-20	14-Jul-20
PHC F4G (gravimetric)	CWS Tier 1 - Extraction Gravimetric	16-Jul-20	16-Jul-20
PHCs F2 to F4	CWS Tier 1 - GC-FID, extraction	11-Jul-20	16-Jul-20
REG 153: Metals by ICP/MS, soil	EPA 6020 - Digestion - ICP-MS	15-Jul-20	15-Jul-20
REG 153: VOCs by P&T GC/MS	EPA 8260 - P&T GC-MS	13-Jul-20	14-Jul-20
Solids, %	Gravimetric, calculation	17-Jul-20	16-Jul-20

OTTAWA • MISSISSAUGA • HAMILTON • CALGARY • KINGSTON • LONDON • NIAGARA • WINDSOR • RICHMOND HILL

Report Date: 17-Jul-2020 Order Date: 10-Jul-2020

Client PO: 971 Montreal Rd, Ottawa

Order #: 2028608

Report Date: 17-Jul-2020 Order Date: 10-Jul-2020

	Client ID: Sample Date: Sample ID: MDL/Units	BH1- SA1 10-Jul-20 13:30 2028608-01 Soil	BH1- SA5 10-Jul-20 13:50 2028608-02 Soil	BH2- SA1 10-Jul-20 15:45 2028608-03 Soil	BH2- SA5 10-Jul-20 15:50 2028608-04 Soil
Physical Characteristics	INDE/ONITS		<u> </u>	ļ	
% Solids	0.1 % by Wt.	83.2	87.2	92.8	75.4
Metals			!	ļ	ł
Antimony	1.0 ug/g dry	<1.0	-	<1.0	-
Arsenic	1.0 ug/g dry	3.6	-	5.6	-
Barium	1.0 ug/g dry	86.4	-	68.6	-
Beryllium	0.5 ug/g dry	<0.5	-	<0.5	-
Boron	5.0 ug/g dry	<5.0	-	5.4	-
Cadmium	0.5 ug/g dry	<0.5	-	<0.5	-
Chromium	5.0 ug/g dry	19.6	-	15.8	-
Cobalt	1.0 ug/g dry	5.1	-	7.8	-
Copper	5.0 ug/g dry	12.7	-	27.8	-
Lead	1.0 ug/g dry	16.9	-	97.3	-
Molybdenum	1.0 ug/g dry	<1.0	-	2.2	-
Nickel	5.0 ug/g dry	13.0	-	22.6	-
Selenium	1.0 ug/g dry	<1.0	-	<1.0	-
Silver	0.3 ug/g dry	<0.3	-	<0.3	-
Thallium	1.0 ug/g dry	<1.0	-	<1.0	-
Uranium	1.0 ug/g dry	<1.0	-	1.0	-
Vanadium	10.0 ug/g dry	24.0	-	24.2	-
Zinc	20.0 ug/g dry	36.3	-	61.2	-
Volatiles			•	•	1
Acetone	0.50 ug/g dry	-	<0.50	-	<0.50
Benzene	0.02 ug/g dry	-	<0.02	-	<0.02
Bromodichloromethane	0.05 ug/g dry	-	<0.05	-	<0.05
Bromoform	0.05 ug/g dry	-	<0.05	-	<0.05
Bromomethane	0.05 ug/g dry	-	<0.05	-	<0.05
Carbon Tetrachloride	0.05 ug/g dry	-	<0.05	-	<0.05
Chlorobenzene	0.05 ug/g dry	-	<0.05	-	<0.05
Chloroform	0.05 ug/g dry	-	<0.05	-	<0.05
Dibromochloromethane	0.05 ug/g dry	-	<0.05	-	<0.05
Dichlorodifluoromethane	0.05 ug/g dry	-	<0.05	-	<0.05
1,2-Dichlorobenzene	0.05 ug/g dry	-	<0.05	-	<0.05
1,3-Dichlorobenzene	0.05 ug/g dry	-	<0.05	-	<0.05
1,4-Dichlorobenzene	0.05 ug/g dry	-	<0.05	-	<0.05
1,1-Dichloroethane	0.05 ug/g dry	-	<0.05	-	<0.05

Client PO: 971 Montreal Rd, Ottawa

Order #: 2028608

Report Date: 17-Jul-2020 Order Date: 10-Jul-2020

Project Description: MM2320

Γ	Client ID: Sample Date: Sample ID: MDL/Units	BH1- SA1 10-Jul-20 13:30 2028608-01 Soil	BH1- SA5 10-Jul-20 13:50 2028608-02 Soil	BH2- SA1 10-Jul-20 15:45 2028608-03 Soil	BH2- SA5 10-Jul-20 15:50 2028608-04 Soil
1,2-Dichloroethane	0.05 ug/g dry	-	<0.05	-	<0.05
1,1-Dichloroethylene	0.05 ug/g dry	-	<0.05	-	<0.05
cis-1,2-Dichloroethylene	0.05 ug/g dry	-	<0.05	-	<0.05
trans-1,2-Dichloroethylene	0.05 ug/g dry	-	<0.05	-	<0.05
1,2-Dichloropropane	0.05 ug/g dry	-	<0.05	-	<0.05
cis-1,3-Dichloropropylene	0.05 ug/g dry	-	<0.05	-	<0.05
trans-1,3-Dichloropropylene	0.05 ug/g dry	-	<0.05	-	<0.05
1,3-Dichloropropene, total	0.05 ug/g dry	-	<0.05	-	<0.05
Ethylbenzene	0.05 ug/g dry	-	<0.05	-	<0.05
Ethylene dibromide (dibromoethane, 1,2-)	0.05 ug/g dry	-	<0.05	-	<0.05
Hexane	0.05 ug/g dry	-	<0.05	-	<0.05
Methyl Ethyl Ketone (2-Butanone)	0.50 ug/g dry	-	<0.50	-	<0.50
Methyl Isobutyl Ketone	0.50 ug/g dry	-	<0.50	-	<0.50
Methyl tert-butyl ether	0.05 ug/g dry	-	<0.05	-	<0.05
Methylene Chloride	0.05 ug/g dry	-	<0.05	-	<0.05
Styrene	0.05 ug/g dry	-	<0.05	-	<0.05
1,1,1,2-Tetrachloroethane	0.05 ug/g dry	-	<0.05	-	<0.05
1,1,2,2-Tetrachloroethane	0.05 ug/g dry	-	<0.05	-	<0.05
Tetrachloroethylene	0.05 ug/g dry	-	<0.05	-	<0.05
Toluene	0.05 ug/g dry	-	<0.05	-	<0.05
1,1,1-Trichloroethane	0.05 ug/g dry	-	<0.05	-	<0.05
1,1,2-Trichloroethane	0.05 ug/g dry	-	<0.05	-	<0.05
Trichloroethylene	0.05 ug/g dry	-	<0.05	-	<0.05
Trichlorofluoromethane	0.05 ug/g dry	-	<0.05	-	<0.05
Vinyl chloride	0.02 ug/g dry	-	<0.02	-	<0.02
m,p-Xylenes	0.05 ug/g dry	-	<0.05	-	<0.05
o-Xylene	0.05 ug/g dry	-	<0.05	-	<0.05
Xylenes, total	0.05 ug/g dry	-	<0.05	-	<0.05
4-Bromofluorobenzene	Surrogate	-	97.6%	-	96.9%
Dibromofluoromethane	Surrogate	-	122%	-	122%
Toluene-d8	Surrogate	-	103%	-	103%
Hydrocarbons	7			1	
F1 PHCs (C6-C10)	7 ug/g dry	-	<7	-	<7
F2 PHCs (C10-C16)	4 ug/g dry	-	<4	-	<4
F3 PHCs (C16-C34)	8 ug/g dry	-	88	-	<8
F4 PHCs (C34-C50)	6 ug/g dry	-	162 [1]	-	<6

Report Date: 17-Jul-2020 Order Date: 10-Jul-2020

Project Description: MM2320

	Client ID: Sample Date:		BH1- SA5 10-Jul-20 13:50	BH2- SA1 10-Jul-20 15:45	BH2- SA5 10-Jul-20 15:50
	Sample ID: 2028608-01		2028608-02	2028608-03	2028608-04
	MDL/Units	Soil	Soil	Soil	Soil
F4G PHCs (gravimetric)	50 ug/g dry	-	252	-	-

Client PO: 971 Montreal Rd, Ottawa

Report Date: 17-Jul-2020

Order Date: 10-Jul-2020

	Client ID: Sample Date:	BH3- SA3 10-Jul-20 10:30	-	-	-
	Sample ID:	2028608-05	-	-	-
	MDL/Units	Soil	-	-	-
Physical Characteristics	0 4 94 1 194				T
% Solids	0.1 % by Wt.	82.1	-	-	-
Volatiles	0.50 ug/g dry		1		Г
Acetone		<0.50	-	-	-
Benzene	0.02 ug/g dry	<0.02	-	-	-
Bromodichloromethane	0.05 ug/g dry	<0.05	-	-	-
Bromoform	0.05 ug/g dry	<0.05	-	-	-
Bromomethane	0.05 ug/g dry	<0.05	-	-	-
Carbon Tetrachloride	0.05 ug/g dry	<0.05	-	-	-
Chlorobenzene	0.05 ug/g dry	<0.05	-	-	-
Chloroform	0.05 ug/g dry	<0.05	-	-	-
Dibromochloromethane	0.05 ug/g dry	<0.05	-	-	-
Dichlorodifluoromethane	0.05 ug/g dry	<0.05	-	-	-
1,2-Dichlorobenzene	0.05 ug/g dry	<0.05	-	-	-
1,3-Dichlorobenzene	0.05 ug/g dry	<0.05	-	-	-
1,4-Dichlorobenzene	0.05 ug/g dry	<0.05	-	-	-
1,1-Dichloroethane	0.05 ug/g dry	<0.05	-	-	-
1,2-Dichloroethane	0.05 ug/g dry	<0.05	-	-	-
1,1-Dichloroethylene	0.05 ug/g dry	<0.05	-	-	-
cis-1,2-Dichloroethylene	0.05 ug/g dry	<0.05	-	-	-
trans-1,2-Dichloroethylene	0.05 ug/g dry	<0.05	-	-	-
1,2-Dichloropropane	0.05 ug/g dry	<0.05	-	-	-
cis-1,3-Dichloropropylene	0.05 ug/g dry	<0.05	-	-	-
trans-1,3-Dichloropropylene	0.05 ug/g dry	<0.05	-	-	-
1,3-Dichloropropene, total	0.05 ug/g dry	<0.05	-	-	-
Ethylbenzene	0.05 ug/g dry	<0.05	-	-	-
Ethylene dibromide (dibromoethane, 1	0.05 ug/g dry	<0.05	-	-	-
Hexane	0.05 ug/g dry	<0.05	-	-	-
Methyl Ethyl Ketone (2-Butanone)	0.50 ug/g dry	<0.50	-	-	-
Methyl Isobutyl Ketone	0.50 ug/g dry	<0.50	-	-	-
Methyl tert-butyl ether	0.05 ug/g dry	<0.05	-	-	-
Methylene Chloride	0.05 ug/g dry	<0.05	-	-	-
Styrene	0.05 ug/g dry	<0.05	-	-	-
1,1,1,2-Tetrachloroethane	0.05 ug/g dry	<0.05	-	-	-
1,1,2,2-Tetrachloroethane	0.05 ug/g dry	<0.05	-	-	-

Client PO: 971 Montreal Rd, Ottawa

Report Date: 17-Jul-2020 Order Date: 10-Jul-2020

	-		-		
	Client ID:	BH3- SA3	-	-	-
	Sample Date:	10-Jul-20 10:30	-	-	-
	Sample ID:	2028608-05	-	-	-
	MDL/Units	Soil	-	-	-
Tetrachloroethylene	0.05 ug/g dry	<0.05	-	-	-
Toluene	0.05 ug/g dry	<0.05	-	-	-
1,1,1-Trichloroethane	0.05 ug/g dry	<0.05	-	-	-
1,1,2-Trichloroethane	0.05 ug/g dry	<0.05	-	-	-
Trichloroethylene	0.05 ug/g dry	<0.05	-	-	-
Trichlorofluoromethane	0.05 ug/g dry	<0.05	-	-	-
Vinyl chloride	0.02 ug/g dry	<0.02	-	-	-
m,p-Xylenes	0.05 ug/g dry	<0.05	-	-	-
o-Xylene	0.05 ug/g dry	<0.05	-	-	-
Xylenes, total	0.05 ug/g dry	<0.05	-	-	-
4-Bromofluorobenzene	Surrogate	96.1%	-	-	-
Dibromofluoromethane	Surrogate	121%	-	-	-
Toluene-d8	Surrogate	103%	-	-	-

Method Quality Control: Blank

Report Date: 17-Jul-2020

Order Date: 10-Jul-2020

Project Description: MM2320

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	ND	7	ug/g						
F2 PHCs (C10-C16)	ND	4	ug/g						
F3 PHCs (C16-C34)	ND	8	ug/g						
F4 PHCs (C34-C50)	ND	6	ug/g						
F4G PHCs (gravimetric)	ND	50	ug/g						
Metals									
Antimony	ND	1.0	ug/g						
Arsenic	ND	1.0	ug/g						
Barium	ND	1.0	ug/g						
Beryllium	ND	0.5	ug/g						
Boron	ND	5.0	ug/g						
Cadmium	ND	0.5	ug/g						
Chromium	ND	5.0	ug/g						
Cobalt	ND	1.0	ug/g						
Copper	ND	5.0	ug/g						
Lead	ND	1.0	ug/g						
Molybdenum	ND	1.0	ug/g						
Nickel	ND	5.0	ug/g						
Selenium	ND	1.0	ug/g						
Silver	ND	0.3	ug/g						
Thallium	ND	1.0	ug/g						
Uranium	ND	1.0	ug/g						
Vanadium	ND	10.0	ug/g						
Zinc	ND	20.0	ug/g						
Volatiles									
Acetone	ND	0.50	ug/g						
Benzene	ND	0.02	ug/g						
Bromodichloromethane	ND	0.05	ug/g						
Bromoform	ND	0.05	ug/g						
Bromomethane	ND	0.05	ug/g						
Carbon Tetrachloride	ND	0.05	ug/g						
Chlorobenzene	ND	0.05	ug/g						
Chloroform	ND	0.05	ug/g						
Dibromochloromethane	ND	0.05	ug/g						
Dichlorodifluoromethane	ND	0.05	ug/g						
1,2-Dichlorobenzene	ND	0.05 0.05	ug/g						
1,3-Dichlorobenzene	ND ND	0.05	ug/g						
1,4-Dichlorobenzene 1,1-Dichloroethane	ND	0.05	ug/g						
1,2-Dichloroethane	ND	0.05	ug/g						
1,1-Dichloroethylene	ND	0.05	ug/g						
cis-1,2-Dichloroethylene	ND	0.05	ug/g ug/g						
trans-1,2-Dichloroethylene	ND	0.05	ug/g ug/g						
1,2-Dichloropropane	ND	0.05	ug/g ug/g						
cis-1,3-Dichloropropylene	ND	0.05	ug/g ug/g						
trans-1,3-Dichloropropylene	ND	0.05	ug/g						
1,3-Dichloropropene, total	ND	0.05	ug/g						
Ethylbenzene	ND	0.05	ug/g						
Ethylene dibromide (dibromoethane, 1,2	ND	0.05	ug/g						
Hexane	ND	0.05	ug/g						
Methyl Ethyl Ketone (2-Butanone)	ND	0.50	ug/g						
Methyl Isobutyl Ketone	ND	0.50	ug/g						
Methyl tert-butyl ether	ND	0.05	ug/g						
Methylene Chloride	ND	0.05	ug/g						
Styrene	ND	0.05	ug/g						
1,1,1,2-Tetrachloroethane	ND	0.05	ug/g						
1,1,2,2-Tetrachloroethane	ND	0.05	ug/g						
Tetrachloroethylene	ND	0.05	ug/g						
Toluene	ND	0.05	ug/g						

Report Date: 17-Jul-2020

Order Date: 10-Jul-2020

Project Description: MM2320

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
1,1,1-Trichloroethane	ND	0.05	ug/g						
1,1,2-Trichloroethane	ND	0.05	ug/g						
Trichloroethylene	ND	0.05	ug/g						
Trichlorofluoromethane	ND	0.05	ug/g						
Vinyl chloride	ND	0.02	ug/g						
m,p-Xylenes	ND	0.05	ug/g						
o-Xylene	ND	0.05	ug/g						
Xylenes, total	ND	0.05	ug/g						
Surrogate: 4-Bromofluorobenzene	8.30		ug/g		104	50-140			
Surrogate: Dibromofluoromethane	9.78		ug/g		122	50-140			
Surrogate: Toluene-d8	6.87		ug/g		85.8	50-140			

Method Quality Control: Duplicate

Report Date: 17-Jul-2020 Order Date: 10-Jul-2020

Project Description: MM2320

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	ND	7	ug/g dry	ND			NC	40	
F2 PHCs (C10-C16)	ND	4	ug/g dry	ND			NC	30	
F3 PHCs (C16-C34)	ND	8	ug/g dry	ND			NC	30	
F4 PHCs (C34-C50)	ND	6	ug/g dry	ND			NC	30	
Metals		-							
Antimony	ND	1.0	ug/g dry	ND			NC	30	
Arsenic	2.2	1.0	ug/g dry	2.0			6.8	30	
Barium	12.2	1.0	ug/g dry	10.5			14.9	30	
Beryllium	ND	0.5	ug/g dry	ND			NC	30	
Boron	ND	5.0	ug/g dry	ND			NC	30	
Cadmium	ND	0.5	ug/g dry	ND			NC	30	
Chromium	10.7	5.0	ug/g dry	8.1			28.0	30	
Cobalt	2.8	1.0	ug/g dry	2.2			22.3	30	
Copper	ND	5.0	ug/g dry	ND			NC	30	
Lead	3.7	1.0	ug/g dry	3.5			5.8	30	
Molybdenum	ND	1.0	ug/g dry	ND			NC	30	
Nickel	5.3	5.0	ug/g dry	ND			NC	30	
Selenium	ND	1.0	ug/g dry	ND			NC	30	
Silver	ND	0.3	ug/g dry	ND			NC	30	
Thallium	ND	1.0	ug/g dry	ND			NC	30	
Uranium	ND	1.0	ug/g dry	ND			NC	30	
Vanadium	27.8	10.0	ug/g dry	16.0			NC	30	
Zinc	ND	20.0	ug/g dry	ND			NC	30	
Physical Characteristics									
% Solids	86.3	0.1	% by Wt.	86.4			0.1	25	
Volatiles									
Acetone	ND	0.50	ug/g dry	ND			NC	50	
Benzene	ND	0.02	ug/g dry	ND			NC	50	
Bromodichloromethane	ND	0.05	ug/g dry	ND			NC	50	
Bromoform	ND	0.05	ug/g dry	ND			NC	50	
Bromomethane	ND	0.05	ug/g dry	ND			NC	50	
Carbon Tetrachloride	ND	0.05	ug/g dry	ND			NC	50	
Chlorobenzene	ND	0.05	ug/g dry	ND			NC	50	
Chloroform	ND	0.05	ug/g dry	ND			NC	50	
Dibromochloromethane	ND	0.05	ug/g dry	ND			NC	50	
Dichlorodifluoromethane	ND	0.05	ug/g dry	ND			NC	50	
1,2-Dichlorobenzene	ND	0.05	ug/g dry	ND			NC	50	
1,3-Dichlorobenzene	ND	0.05	ug/g dry	ND			NC	50	
1,4-Dichlorobenzene	ND	0.05	ug/g dry	ND			NC	50	
1,1-Dichloroethane	ND	0.05	ug/g dry	ND			NC	50	
1,2-Dichloroethane	ND	0.05	ug/g dry	ND			NC	50	
1,1-Dichloroethylene	ND	0.05	ug/g dry	ND			NC	50	
cis-1,2-Dichloroethylene	ND	0.05	ug/g dry	ND			NC	50	
trans-1,2-Dichloroethylene	ND	0.05	ug/g dry	ND			NC	50	
1,2-Dichloropropane	ND	0.05	ug/g dry	ND			NC	50	
cis-1,3-Dichloropropylene	ND	0.05	ug/g dry	ND			NC	50	
trans-1,3-Dichloropropylene	ND	0.05	ug/g dry	ND			NC	50	
Ethylbenzene	ND	0.05	ug/g dry ug/g dry	ND			NC	50	
Ethylene dibromide (dibromoethane, 1,2	ND	0.05	ug/g dry ug/g dry	ND			NC	50	
Hexane	ND	0.05	ug/g dry ug/g dry	ND			NC	50	
Methyl Ethyl Ketone (2-Butanone)	ND	0.05					NC	50	
Methyl Isobutyl Ketone	ND	0.50	ug/g dry ug/g dry	ND ND			NC	50 50	
	ND	0.50					NC	50 50	
Methyl tert-butyl ether Methylene Chloride	ND	0.05	ug/g dry	ND ND			NC	50 50	
Styrene	ND ND	0.05	ug/g dry				NC	50 50	
1,1,1,2-Tetrachloroethane	ND	0.05	ug/g dry	ND ND			NC	50 50	
		0.05	ug/g dry	ND			NC	50	

Analyte

Method Quality Control: Duplicate

ntrol: Duplicate Reporting Source %REC RPD Result Limit Units Result %REC Limit RPD Limit Notes	Ottawa				٢	roject Descri	ption: MMZ32
Reporting Source %REC RPD							
	ntrol: Duplicate						
	Re			%REC	RPD		Notes

1,1,2,2-Tetrachloroethane	ND	0.05	ug/g dry	ND			NC	50	
Tetrachloroethylene	ND	0.05	ug/g dry	ND			NC	50	
Toluene	ND	0.05	ug/g dry	ND			NC	50	
1,1,1-Trichloroethane	ND	0.05	ug/g dry	ND			NC	50	
1,1,2-Trichloroethane	ND	0.05	ug/g dry	ND			NC	50	
Trichloroethylene	ND	0.05	ug/g dry	ND			NC	50	
Trichlorofluoromethane	ND	0.05	ug/g dry	ND			NC	50	
Vinyl chloride	ND	0.02	ug/g dry	ND			NC	50	
m,p-Xylenes	ND	0.05	ug/g dry	ND			NC	50	
o-Xylene	ND	0.05	ug/g dry	ND			NC	50	
Surrogate: 4-Bromofluorobenzene	9.13		ug/g dry		100	50-140			
Surrogate: Dibromofluoromethane	11.1		ug/g dry		122	50-140			
Surrogate: Toluene-d8	9.28		ug/g dry		102	50-140			

Report Date: 17-Jul-2020 Order Date: 10-Jul-2020

Analyte

Hydrocarbons F1 PHCs (C6-C10)

trans-1,2-Dichloroethylene

cis-1,3-Dichloropropylene

trans-1,3-Dichloropropylene

Ethylene dibromide (dibromoethane, 1,2-

1,2-Dichloropropane

Ethylbenzene

Method Quality Control: Spike

RPD

Limit

RPD

%REC

Limit

80-120

Report Date: 17-Jul-2020 Order Date: 10-Jul-2020

Project Description: MM2320

Notes

F2 PHCs (C10-C16)	105	4	ug/g	ND	116	60-140
F3 PHCs (C16-C34)	285	8	ug/g	ND	129	60-140
F4 PHCs (C34-C50)	172	6	ug/g	ND	123	60-140
F4G PHCs (gravimetric)	960	50	ug/g	ND	96.0	80-120
Metals						
Antimony	41.1	1.0	ug/g	ND	81.4	70-130
Arsenic	48.3	1.0	ug/g	ND	95.0	70-130
Barium	49.2	1.0	ug/g	4.2	90.0	70-130
Beryllium	48.7	0.5	ug/g	ND	97.1	70-130
Boron	43.8	5.0	ug/g	ND	86.7	70-130
Cadmium	44.3	0.5	ug/g	ND	88.6	70-130
Chromium	50.6	5.0	ug/g	ND	94.8	70-130
Cobalt	47.9	1.0	ug/g	ND	94.0	70-130
Copper	47.5	5.0	ug/g	ND	91.8	70-130
Lead	47.3	1.0	ug/g	1.4	91.9	70-130
Molybdenum	46.3	1.0	ug/g	ND	92.4	70-130
Nickel	47.7	5.0	ug/g	ND	91.8	70-130
Selenium	46.8	1.0	ug/g	ND	93.5	70-130
Silver	46.7	0.3	ug/g	ND	93.2	70-130
Thallium	46.8	1.0	ug/g	ND	93.5	70-130
Uranium	48.0	1.0	ug/g	ND	95.8	70-130
Vanadium	58.2	10.0	ug/g	ND	104	70-130
Zinc	48.4	20.0	ug/g	ND	89.1	70-130
/olatiles						
Acetone	9.47	0.50	ug/g	ND	94.7	50-140
Benzene	4.66	0.02	ug/g	ND	116	60-130
Bromodichloromethane	4.54	0.05	ug/g	ND	114	60-130
Bromoform	4.63	0.05	ug/g	ND	116	60-130
Bromomethane	3.53	0.05	ug/g	ND	88.3	50-140
Carbon Tetrachloride	4.51	0.05	ug/g	ND	113	60-130
Chlorobenzene	4.53	0.05	ug/g	ND	113	60-130
Chloroform	4.36	0.05	ug/g	ND	109	60-130
Dibromochloromethane	4.19	0.05	ug/g	ND	105	60-130
Dichlorodifluoromethane	2.99	0.05	ug/g	ND	74.7	50-140
1,2-Dichlorobenzene	4.31	0.05	ug/g	ND	108	60-130
1,3-Dichlorobenzene	4.22	0.05	ug/g	ND	106	60-130
1,4-Dichlorobenzene	4.00	0.05	ug/g	ND	100	60-130
1,1-Dichloroethane	4.70	0.05	ug/g	ND	117	60-130
1,2-Dichloroethane	4.84	0.05	ug/g	ND	121	60-130
1,1-Dichloroethylene	4.34	0.05	ug/g	ND	108	60-130
cis-1,2-Dichloroethylene	3.94	0.05	ug/g	ND	98.5	60-130
() D D		0.05	,			00 400

Reporting

Limit

7

Result

190

4.68

4.44

4.89

4.59

4.59

4.12

0.05

0.05

0.05

0.05

0.05

0.05

Source

Result

ND

Units

ug/g

%REC

94.9

OTTAWA • MISSISSAUGA • HAMILTON • CALGARY • KINGSTON • LONDON • NIAGARA • WINDSOR • RICHMOND HILL

ug/g

ug/g

ug/g

ug/g

ug/g

ug/g

ND

ND

ND

ND

ND

ND

117

111

122

115

115

103

60-130

60-130

60-130

60-130

60-130

60-130

Method Quality Control: Spike

Report Date: 17-Jul-2020 Order Date: 10-Jul-2020

Project Description: MM2320

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hexane	4.73	0.05	ug/g	ND	118	60-130			
Methyl Ethyl Ketone (2-Butanone)	11.7	0.50	ug/g	ND	117	50-140			
Methyl Isobutyl Ketone	12.3	0.50	ug/g	ND	123	50-140			
Methyl tert-butyl ether	12.1	0.05	ug/g	ND	121	50-140			
Methylene Chloride	4.64	0.05	ug/g	ND	116	60-130			
Styrene	4.72	0.05	ug/g	ND	118	60-130			
1,1,1,2-Tetrachloroethane	4.78	0.05	ug/g	ND	120	60-130			
1,1,2,2-Tetrachloroethane	4.42	0.05	ug/g	ND	111	60-130			
Tetrachloroethylene	4.69	0.05	ug/g	ND	117	60-130			
Toluene	4.20	0.05	ug/g	ND	105	60-130			
1,1,1-Trichloroethane	4.49	0.05	ug/g	ND	112	60-130			
1,1,2-Trichloroethane	4.95	0.05	ug/g	ND	124	60-130			
Trichloroethylene	4.24	0.05	ug/g	ND	106	60-130			
Trichlorofluoromethane	4.03	0.05	ug/g	ND	101	50-140			
Vinyl chloride	3.23	0.02	ug/g	ND	80.6	50-140			
m,p-Xylenes	9.31	0.05	ug/g	ND	116	60-130			
o-Xylene	4.67	0.05	ug/g	ND	117	60-130			
Surrogate: 4-Bromofluorobenzene	8.12		ug/g		102	50-140			
Surrogate: Dibromofluoromethane	9.78		ug/g		122	50-140			
Surrogate: Toluene-d8	7.42		ug/g		92.8	50-140			

Sample Qualifiers :

1: GC-FID signal did not return to baseline by C50

QC Qualifiers :

Sample Data Revisions

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected MDL: Method Detection Limit Source Result: Data used as source for matrix and duplicate samples %REC: Percent recovery. RPD: Relative percent difference. NC: Not Calculated

Soil results are reported on a dry weight basis when the units are denoted with 'dry'. Where %Solids is reported, moisture loss includes the loss of volatile hydrocarbons.

CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.

- F1 range corrected for BTEX.

- F2 to F3 ranges corrected for appropriate PAHs where available.

- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.

- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.

- When reported, data for F4G has been processed using a silica gel cleanup.

GPARACEL LABORATORIES LTD.					: 2028608			(Lab	Orde Use	Only)			• (n Of Lab Use	e Only	
Client Name: CM3 Env. Normal al Contact Name: Alden, Marce Address: S710 Alcins Rd., Stitts Telephone: 613-915-0627	rille, O.N		Proji Quot PO # E-ma	il: (A1	rein Rd.	01	tan	ne				□ 1 d □ 2 d	Tur lay	Page_ narou	nd Tin	
Regulation 153/04 Other Table 1 Res/Park Med/Fine REG 558 Table 2 Ind/Comm Coarse CCME	Regulation PWQ0 MISA			urface	S (Soil/Sed.) GW Water) SS (Storm/ Paint) A (Air) O (C	Sanitary Sewer)						Rei	quired	Analy	rsis		
□ Table 3 □ Agri/Other □ SU - Sani	SU - Storm	Matrix	Air Volume	of Containers	Samp	le Taken	Cs F1-F4+BTEX	S		Metals by ICP	,	B (HWS)					
Sample ID/Location Name		ŝ	Air	#	Date	Time	PHCs	vocs	PAHs	δ.	^ω Σ	8		-			
2 Atot64-545		ς ζ	-	2	07/10/20	1530			_	×,	+	-					
3 BH2 - SAI		5	1	2		1250	X	Х	-		+	-			(7	-	
4 B1+2 - 5A5		5	-	2		3:45			-	*	-	-		-			
5 BH3 - 5A3		5		1		3:50	×	-	+	+	-	-					
6	į.)				\$4 10:30	+	X	+	+	+	-		-		-	
7								-	+	+	+	\vdash		<u>.</u>			
8							$\left \right $	+	+	+	+	H				17	
9		_					$\left \cdot \right $	+	╉	+	+						
10		_					$\left \cdot \right $	+	╉	+	+					<i>п</i> .е.	1
omments:											Met	hod a	f Delive	ery:	12	~	i
elinquished By (Sign): Oldar 72	Received By Driv	rer/De	pot:		$= f_{\rm B} f_{\rm g} \sin^2 \theta \sin^2 \theta \sin^2 \theta d\theta$	Received at Lab:				- 10	Veri	fied B	y:	RE	Wan	B	
ate/Time: 27/16 622	Date/Time:					Date/Time:	10	-2	01	7	Pate	/Tim	e: J.	NH NH	(0,20	10	17:5
Chain of Custody (Env.) xIsx	Temperature:				°C	Temperature: 🥎	1	0		-	PH V	erifie	ed:	By:			

C PARAC LABORATORIES	Paracel					urent Blvd. K1G 4J8 47 acellabs.com .os.com		acel Order (Lab Use 2 8		NTO.	hain Ol (Lab U 54	se Only)	
Client Name: CM3			Projec	t Ref:	MM 23	20				· ·	Page	of	
Contact Name: Alder			Quote	#:							Turnaro	und Tir	ne
Address:			PO #:							1 da	y i		🗆 3 day
Telephone: 613-915 - 062 7	7		E-mail:	91	den e cu	3 cnv.mr	mark	al. con	M	Date Requ			🛛 Regul
										1			
Regulation 153/04 Ot Table 1 Res/Park Med/Fine REG 55	ther Regulation	1			(Soil/Sed.) GW (ater) SS (Storm/				R	equired Ana	lysis		
Table 2 Ind/Comm Coarse CCME			saa (Sri		aint) A (Air) O (-		11	TT			TT
Table 3 Agri/Other SU-Sa		-	1	50			-						
Table 7 Mun:				ainer	Sam	ole Taken							
For RSC: Yes No		×	Air Volume	Containers	Juni	ac raken							
Sample ID/Location Name		Matrix	Vir Vo	of	Date	Time	-3						
		2	q	#	butt		K				+	+	+-+
		-					×				++	+	+-+-
2						431			+		┼┼-	+	+-+
3													
4			2				_						\vdash
5													
6													
7													
8												1	
9												1	
10												+	
Comments: Missing Sculle From				ted	on 07,	110/20				od of Delivery: Drop	Pox		
Relinquished By (Sign):	Received By Dr	river/D	epot:			Received at Lab:	Down	1 Dl	1/Ma Veria	N.			
Relinquished By (Print): Alder Crossma	Date/Time:		1316			Date/Time:	-		1.49 Date/	The second	2	2	\$20
Date/Time: 07/13/20, 4:	Temperature				°C		28.		pH Ve	erified:	By:	20	008

Chain of Custody (Blank) xlsx

Revision 3.0

RELIABLE.

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Certificate of Analysis

CM3 Environmental Inc.

5710 Akins Road Ottawa, ON K2S 1B8 Attn: Marc MacDonald

Client 60: 971 Montreal Rd 6roject: MM2320 Custody: P7244

Report Date: 2P-Apr-2022 Order Date: 20-Apr-2022

Order #: 2217317

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID	Client ID
2217317-01	MW4 SA1
2217317-02	MW4 SA3
2217317-03	MW5 SA1
2217317-04	MW5 SA2
2217317-05	MW6 SA2
2217317-06	MW6 SA5
2217317-07	MW7 SA1
2217317-08	MW8 SA1
2217317-09	MW8 SA2
2217317-10	DUP 1

Approved By:

Mark Foto

Mark Foto, M.Sc. Lab Supervisor

Any use of these results implies your agreement that our total liability in connection with this work, however arising, shall be limited to the amount paid by you for this work, and that our employees or agents shall not under any circumstances be liable to you in connection with this work.

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date	Analysis Date
pH, soil	EPA 150.1 - pH probe @ 25 °C, CaCl buffered ext.	20-Apr-22	21-Apr-22
PHC F1	CWS Tier 1 - P&T GC-FID	22-Apr-22	23-Apr-22
PHC F4G (gravimetric)	CWS Tier 1 - Extraction Gravimetric	26-Apr-22	26-Apr-22
PHCs F2 to F4	CWS Tier 1 - GC-FID, extraction	21-Apr-22	23-Apr-22
REG 153: Metals by ICP/MS, soil	EPA 6020 - Digestion - ICP-MS	22-Apr-22	22-Apr-22
REG 153: PAHs by GC-MS	EPA 8270 - GC-MS, extraction	21-Apr-22	22-Apr-22
REG 153: VOCs by P&T GC/MS	EPA 8260 - P&T GC-MS	22-Apr-22	23-Apr-22
Solids, %	Gravimetric, calculation	21-Apr-22	22-Apr-22

Report Date: 26-Apr-2022 Order Date: 20-Apr-2022

Certificate of Analysis

Client: CM3 Environmental Inc. Client PO: 971 Montreal Rd Order #: 2217317

Report Date: 26-Apr-2022

Order Date: 20-Apr-2022

	Client ID: Sample Date: Sample ID: MDL/Units	MW4 SA1 19-Apr-22 09:00 2217317-01 Soil	MW4 SA3 19-Apr-22 09:00 2217317-02 Soil	MW5 SA1 19-Apr-22 09:00 2217317-03 Soil	MW5 SA2 19-Apr-22 09:00 2217317-04 Soil
Physical Characteristics	in DE officio		!	ļ	
% Solids	0.1 % by Wt.	93.3	89.8	85.0	93.2
General Inorganics			•		
рН	0.05 pH Units	-	-	-	7.96
Metals					
Antimony	1.0 ug/g dry	<1.0	<1.0	<1.0	<1.0
Arsenic	1.0 ug/g dry	3.3	4.4	4.4	13.0
Barium	1.0 ug/g dry	148	141	74.6	157
Beryllium	0.5 ug/g dry	<0.5	0.7	<0.5	0.6
Boron	5.0 ug/g dry	8.0	12.1	5.7	12.5
Cadmium	0.5 ug/g dry	<0.5	<0.5	<0.5	<0.5
Chromium	5.0 ug/g dry	12.8	34.1	16.9	18.7
Cobalt	1.0 ug/g dry	4.6	8.7	4.7	6.4
Copper	5.0 ug/g dry	13.5	27.1	12.2	22.5
Lead	1.0 ug/g dry	13.2	13.6	31.6	28.4
Molybdenum	1.0 ug/g dry	1.3	5.1	<1.0	4.3
Nickel	5.0 ug/g dry	14.9	22.0	11.2	24.5
Selenium	1.0 ug/g dry	<1.0	<1.0	<1.0	<1.0
Silver	0.3 ug/g dry	<0.3	<0.3	<0.3	<0.3
Thallium	1.0 ug/g dry	<1.0	<1.0	<1.0	<1.0
Uranium	1.0 ug/g dry	<1.0	<1.0	<1.0	1.3
Vanadium	10.0 ug/g dry	14.3	32.8	23.9	18.7
Zinc	20.0 ug/g dry	24.5	38.3	44.4	34.9
Volatiles				ļ	ļ
Acetone	0.50 ug/g dry	<0.50	<0.50	<0.50	<0.50
Benzene	0.02 ug/g dry	<0.02	<0.02	<0.02	<0.02
Bromodichloromethane	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
Bromoform	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
Bromomethane	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
Carbon Tetrachloride	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
Chlorobenzene	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
Chloroform	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
Dibromochloromethane	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
Dichlorodifluoromethane	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
1,2-Dichlorobenzene	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
1,3-Dichlorobenzene	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05

Client PO: 971 Montreal Rd

Order #: 2217317

Report Date: 26-Apr-2022 Order Date: 20-Apr-2022

Project Description: MM2320

	Client ID: Sample Date: Sample ID: MDL/Units	MW4 SA1 19-Apr-22 09:00 2217317-01 Soil	MW4 SA3 19-Apr-22 09:00 2217317-02 Soil	MW5 SA1 19-Apr-22 09:00 2217317-03 Soil	MW5 SA2 19-Apr-22 09:00 2217317-04 Soil
1,4-Dichlorobenzene	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
1,1-Dichloroethane	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
1,2-Dichloroethane	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
1,1-Dichloroethylene	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
cis-1,2-Dichloroethylene	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
trans-1,2-Dichloroethylene	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
1,2-Dichloropropane	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
cis-1,3-Dichloropropylene	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
trans-1,3-Dichloropropylene	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
1,3-Dichloropropene, total	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
Ethylbenzene	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
Ethylene dibromide (dibromoethane, 1,2-)	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
Hexane	0.05 ug/g dry	< 0.05	<0.05	<0.05	<0.05
Methyl Ethyl Ketone (2-Butanone)	0.50 ug/g dry	<0.50	<0.50	<0.50	<0.50
Methyl Isobutyl Ketone	0.50 ug/g dry	<0.50	<0.50	<0.50	<0.50
Methyl tert-butyl ether	0.05 ug/g dry	< 0.05	<0.05	<0.05	<0.05
Methylene Chloride	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
Styrene	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
1,1,1,2-Tetrachloroethane	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
1,1,2,2-Tetrachloroethane	0.05 ug/g dry	< 0.05	<0.05	<0.05	<0.05
Tetrachloroethylene	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
Toluene	0.05 ug/g dry	< 0.05	<0.05	<0.05	<0.05
1,1,1-Trichloroethane	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
1,1,2-Trichloroethane	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
Trichloroethylene	0.05 ug/g dry	< 0.05	<0.05	<0.05	<0.05
Trichlorofluoromethane	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
Vinyl chloride	0.02 ug/g dry	<0.02	<0.02	<0.02	<0.02
m,p-Xylenes	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
o-Xylene	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
Xylenes, total	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
4-Bromofluorobenzene	Surrogate	106%	125%	128%	121%
Dibromofluoromethane	Surrogate	105%	108%	109%	103%
Toluene-d8	Surrogate	93.5%	105%	110%	103%
Hydrocarbons	7		1		,
F1 PHCs (C6-C10)	7 ug/g dry	7	<7	<7	<7
F2 PHCs (C10-C16)	4 ug/g dry	17	<40 [1]	<4	7

OTTAWA + MISSISSAUGA + HAMILTON + KINGSTON + LONDON + NIAGARA + WINDSOR + RICHMOND HILL

Client PO: 971 Montreal Rd

Order #: 2217317

Report Date: 26-Apr-2022 Order Date: 20-Apr-2022

	Client ID: Sample Date: Sample ID:	MW4 SA1 19-Apr-22 09:00 2217317-01	MW4 SA3 19-Apr-22 09:00 2217317-02	MW5 SA1 19-Apr-22 09:00 2217317-03	MW5 SA2 19-Apr-22 09:00 2217317-04
	MDL/Units	Soil	Soil	Soil	Soil
F3 PHCs (C16-C34)	8 ug/g dry	92	445	74	50
F4 PHCs (C34-C50)	6 ug/g dry	266 [2]	1110 [2]	159 [2]	96
F4G PHCs (gravimetric)	50 ug/g dry	150	1360	365	-
Semi-Volatiles					-
Acenaphthene	0.02 ug/g dry	<0.02	<0.02	0.10	<0.02
Acenaphthylene	0.02 ug/g dry	<0.02	<0.02	<0.02	<0.02
Anthracene	0.02 ug/g dry	<0.02	<0.02	0.24	<0.02
Benzo [a] anthracene	0.02 ug/g dry	<0.02	<0.02	0.29	0.04
Benzo [a] pyrene	0.02 ug/g dry	<0.02	0.03	0.22	0.05
Benzo [b] fluoranthene	0.02 ug/g dry	<0.02	0.03	0.25	0.06
Benzo [g,h,i] perylene	0.02 ug/g dry	<0.02	0.05	0.11	0.04
Benzo [k] fluoranthene	0.02 ug/g dry	<0.02	<0.02	0.15	0.03
Chrysene	0.02 ug/g dry	<0.02	0.02	0.24	0.04
Dibenzo [a,h] anthracene	0.02 ug/g dry	<0.02	<0.02	0.04	<0.02
Fluoranthene	0.02 ug/g dry	<0.02	0.02	0.74	0.08
Fluorene	0.02 ug/g dry	<0.02	<0.02	0.15	<0.02
Indeno [1,2,3-cd] pyrene	0.02 ug/g dry	<0.02	<0.02	0.12	0.03
1-Methylnaphthalene	0.02 ug/g dry	<0.02	<0.02	0.04	<0.02
2-Methylnaphthalene	0.02 ug/g dry	<0.02	<0.02	0.05	<0.02
Methylnaphthalene (1&2)	0.04 ug/g dry	<0.04	<0.04	0.09	<0.04
Naphthalene	0.01 ug/g dry	<0.01	<0.01	0.06	<0.01
Phenanthrene	0.02 ug/g dry	<0.02	<0.02	0.85	0.06
Pyrene	0.02 ug/g dry	<0.02	0.02	0.56	0.07
2-Fluorobiphenyl	Surrogate	122%	119%	106%	123%
Terphenyl-d14	Surrogate	116%	109%	98.5%	117%

Client PO: 971 Montreal Rd

Order #: 2217317

Report Date: 26-Apr-2022

Order Date: 20-Apr-2022

Project Description: MM2320

	Client ID: Sample Date: Sample ID: MDL/Units	MW6 SA2 19-Apr-22 09:00 2217317-05 Soil	MW6 SA5 19-Apr-22 09:00 2217317-06 Soil	MW7 SA1 19-Apr-22 09:00 2217317-07 Soil	MW8 SA1 19-Apr-22 09:00 2217317-08 Soil
Physical Characteristics	MDL/Onits	001		001	001
% Solids	0.1 % by Wt.	89.5	78.3	91.5	88.5
Metals	ĮĮ_				
Antimony	1.0 ug/g dry	<1.0	<1.0	<1.0	<1.0
Arsenic	1.0 ug/g dry	6.4	9.2	9.0	3.6
Barium	1.0 ug/g dry	186	90.8	94.0	65.1
Beryllium	0.5 ug/g dry	0.6	0.5	0.6	<0.5
Boron	5.0 ug/g dry	9.5	10.7	9.5	6.2
Cadmium	0.5 ug/g dry	<0.5	<0.5	<0.5	<0.5
Chromium	5.0 ug/g dry	28.4	19.2	20.4	14.8
Cobalt	1.0 ug/g dry	10.6	4.5	8.0	4.1
Copper	5.0 ug/g dry	24.9	21.8	23.1	11.4
Lead	1.0 ug/g dry	37.2	31.8	50.0	61.2
Molybdenum	1.0 ug/g dry	3.3	2.0	2.7	<1.0
Nickel	5.0 ug/g dry	29.8	15.4	26.8	10.7
Selenium	1.0 ug/g dry	<1.0	<1.0	<1.0	<1.0
Silver	0.3 ug/g dry	<0.3	<0.3	<0.3	<0.3
Thallium	1.0 ug/g dry	<1.0	<1.0	<1.0	<1.0
Uranium	1.0 ug/g dry	1.2	1.1	1.0	<1.0
Vanadium	10.0 ug/g dry	30.7	22.5	24.6	17.7
Zinc	20.0 ug/g dry	44.6	52.1	76.1	1340
Volatiles			-		
Acetone	0.50 ug/g dry	<0.50	<0.50	<0.50	<0.50
Benzene	0.02 ug/g dry	<0.02	<0.02	<0.02	<0.02
Bromodichloromethane	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
Bromoform	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
Bromomethane	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
Carbon Tetrachloride	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
Chlorobenzene	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
Chloroform	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
Dibromochloromethane	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
Dichlorodifluoromethane	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
1,2-Dichlorobenzene	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
1,3-Dichlorobenzene	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
1,4-Dichlorobenzene	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
1,1-Dichloroethane	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05

OTTAWA . MISSISSAUGA . HAMILTON . KINGSTON . LONDON . NIAGARA . WINDSOR . RICHMOND HILL

Order #: 2217317

Report Date: 26-Apr-2022 Order Date: 20-Apr-2022

Project Description: MM2320

	Client ID: Sample Date: Sample ID: MDL/Units	MW6 SA2 19-Apr-22 09:00 2217317-05 Soil	MW6 SA5 19-Apr-22 09:00 2217317-06 Soil	MW7 SA1 19-Apr-22 09:00 2217317-07 Soil	MW8 SA1 19-Apr-22 09:00 2217317-08 Soil
1,2-Dichloroethane	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
1,1-Dichloroethylene	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
cis-1,2-Dichloroethylene	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
trans-1,2-Dichloroethylene	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
1,2-Dichloropropane	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
cis-1,3-Dichloropropylene	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
trans-1,3-Dichloropropylene	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
1,3-Dichloropropene, total	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
Ethylbenzene	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
Ethylene dibromide (dibromoethane, 1	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
Hexane	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
Methyl Ethyl Ketone (2-Butanone)	0.50 ug/g dry	<0.50	<0.50	<0.50	<0.50
Methyl Isobutyl Ketone	0.50 ug/g dry	<0.50	<0.50	<0.50	<0.50
Methyl tert-butyl ether	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
Methylene Chloride	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
Styrene	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
1,1,1,2-Tetrachloroethane	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
1,1,2,2-Tetrachloroethane	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
Tetrachloroethylene	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
Toluene	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
1,1,1-Trichloroethane	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
1,1,2-Trichloroethane	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
Trichloroethylene	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
Trichlorofluoromethane	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
Vinyl chloride	0.02 ug/g dry	<0.02	<0.02	<0.02	<0.02
m,p-Xylenes	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
o-Xylene	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
Xylenes, total	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
4-Bromofluorobenzene	Surrogate	101%	131%	93.6%	123%
Dibromofluoromethane	Surrogate	107%	108%	105%	101%
Toluene-d8	Surrogate	99.4%	112%	104%	106%
Hydrocarbons	Į			·	
F1 PHCs (C6-C10)	7 ug/g dry	<7	<7	<7	<7
F2 PHCs (C10-C16)	4 ug/g dry	15	<4	<4 8	
F3 PHCs (C16-C34)	8 ug/g dry	47	32	90	<80 [1]

OTTAWA . MISSISSAUGA . HAMILTON . KINGSTON . LONDON . NIAGARA . WINDSOR . RICHMOND HILL

Client PO: 971 Montreal Rd

Order #: 2217317

Report Date: 26-Apr-2022 Order Date: 20-Apr-2022

Project Description: MM2320

	Client ID: Sample Date: Sample ID:	MW6 SA2 19-Apr-22 09:00 2217317-05	MW6 SA5 19-Apr-22 09:00 2217317-06	MW7 SA1 19-Apr-22 09:00 2217317-07	MW8 SA1 19-Apr-22 09:00 2217317-08
r	MDL/Units	Soil	Soil	Soil	Soil
F4 PHCs (C34-C50)	6 ug/g dry	79	12	259 [2]	272 [2]
F4G PHCs (gravimetric)	50 ug/g dry	-	-	164	384
Semi-Volatiles					
Acenaphthene	0.02 ug/g dry	<0.02	<0.02	<0.02	0.04
Acenaphthylene	0.02 ug/g dry	<0.02	<0.02	<0.02	<0.02
Anthracene	0.02 ug/g dry	0.02	0.03	<0.02	0.08
Benzo [a] anthracene	0.02 ug/g dry	0.08	0.04	0.03	0.19
Benzo [a] pyrene	0.02 ug/g dry	0.10	0.04	0.04	0.16
Benzo [b] fluoranthene	0.02 ug/g dry	0.11	0.05	0.05	0.18
Benzo [g,h,i] perylene	0.02 ug/g dry	0.07	0.03	0.04	0.10
Benzo [k] fluoranthene	0.02 ug/g dry	0.05	0.02	0.02	0.10
Chrysene	0.02 ug/g dry	0.08	0.05	0.03	0.20
Dibenzo [a,h] anthracene	0.02 ug/g dry	<0.02	<0.02	<0.02	0.03
Fluoranthene	0.02 ug/g dry	0.16	0.07	0.06	0.40
Fluorene	0.02 ug/g dry	<0.02	<0.02	<0.02	0.04
Indeno [1,2,3-cd] pyrene	0.02 ug/g dry	0.06	0.03	0.02	0.10
1-Methylnaphthalene	0.02 ug/g dry	<0.02	<0.02	<0.02	<0.02
2-Methylnaphthalene	0.02 ug/g dry	<0.02	<0.02	<0.02	<0.02
Methylnaphthalene (1&2)	0.04 ug/g dry	<0.04	<0.04	<0.04	<0.04
Naphthalene	0.01 ug/g dry	<0.01	0.01	<0.01	<0.01
Phenanthrene	0.02 ug/g dry	0.07	0.07	0.04	0.31
Pyrene	0.02 ug/g dry	0.14	0.06	0.05	0.31
2-Fluorobiphenyl	Surrogate	128%	129%	130%	121%
Terphenyl-d14	Surrogate	123%	128%	122%	120%

OTTAWA + MISSISSAUGA + HAMILTON + KINGSTON + LONDON + NIAGARA + WINDSOR + RICHMOND HILL

Client PO: 971 Montreal Rd

Order #: 2217317

Report Date: 26-Apr-2022

Order Date: 20-Apr-2022

	Client ID: Sample Date: Sample ID:	MW8 SA2 19-Apr-22 09:00 2217317-09	DUP 1 19-Apr-22 09:00 2217317-10	- - -	
Physical Characteristics	MDL/Units	Soil	Soil	-	-
% Solids	0.1 % by Wt.	87.0	83.7	_	
General Inorganics	0.1.70 29 114	87.0	03.7	-	-
pH	0.05 pH Units	7.66	_	-	_
Metals			<u> </u>	Į	ļI
Antimony	1.0 ug/g dry	<1.0	<1.0	-	-
Arsenic	1.0 ug/g dry	5.7	6.0	-	-
Barium	1.0 ug/g dry	81.0	161	-	-
Beryllium	0.5 ug/g dry	<0.5	0.6	-	-
Boron	5.0 ug/g dry	11.5	9.7	-	-
Cadmium	0.5 ug/g dry	<0.5	<0.5	-	-
Chromium	5.0 ug/g dry	21.0	26.5	-	-
Cobalt	1.0 ug/g dry	5.2	9.3	-	-
Copper	5.0 ug/g dry	22.5	23.5	-	-
Lead	1.0 ug/g dry	45.8	30.2	-	-
Molybdenum	1.0 ug/g dry	1.5	3.1	-	-
Nickel	5.0 ug/g dry	16.2	28.1	-	-
Selenium	1.0 ug/g dry	<1.0	<1.0	-	-
Silver	0.3 ug/g dry	<0.3	<0.3	-	-
Thallium	1.0 ug/g dry	<1.0	<1.0	-	-
Uranium	1.0 ug/g dry	<1.0	1.2	-	-
Vanadium	10.0 ug/g dry	22.5	28.1	-	-
Zinc	20.0 ug/g dry	184	44.9	-	-
Volatiles			•	1	·
Acetone	0.50 ug/g dry	<0.50	<0.50	-	-
Benzene	0.02 ug/g dry	<0.02	<0.02	-	-
Bromodichloromethane	0.05 ug/g dry	<0.05	<0.05	-	-
Bromoform	0.05 ug/g dry	<0.05	<0.05	-	-
Bromomethane	0.05 ug/g dry	<0.05	<0.05	-	-
Carbon Tetrachloride	0.05 ug/g dry	<0.05	<0.05	-	-
Chlorobenzene	0.05 ug/g dry	<0.05	<0.05	-	-
Chloroform	0.05 ug/g dry	<0.05	<0.05	-	-
Dibromochloromethane	0.05 ug/g dry	<0.05	<0.05	-	-
Dichlorodifluoromethane	0.05 ug/g dry	<0.05	<0.05	-	-
1,2-Dichlorobenzene	0.05 ug/g dry	<0.05	<0.05	-	-
1,3-Dichlorobenzene	0.05 ug/g dry	<0.05	<0.05	-	-

Order #: 2217317

Report Date: 26-Apr-2022 Order Date: 20-Apr-2022

Project Description: MM2320

	Client ID: Sample Date: Sample ID: MDL/Units	MW8 SA2 19-Apr-22 09:00 2217317-09 Soil	DUP 1 19-Apr-22 09:00 2217317-10 Sojl	- - -	
1,4-Dichlorobenzene	0.05 ug/g dry	<0.05	<0.05	-	-
1,1-Dichloroethane	0.05 ug/g dry	<0.05	<0.05	-	-
1,2-Dichloroethane	0.05 ug/g dry	<0.05	<0.05	-	-
1,1-Dichloroethylene	0.05 ug/g dry	<0.05	<0.05	-	-
cis-1,2-Dichloroethylene	0.05 ug/g dry	<0.05	<0.05	-	-
trans-1,2-Dichloroethylene	0.05 ug/g dry	<0.05	<0.05	-	-
1,2-Dichloropropane	0.05 ug/g dry	<0.05	<0.05	-	-
cis-1,3-Dichloropropylene	0.05 ug/g dry	<0.05	<0.05	-	-
trans-1,3-Dichloropropylene	0.05 ug/g dry	<0.05	<0.05	-	-
1,3-Dichloropropene, total	0.05 ug/g dry	<0.05	<0.05	-	-
Ethylbenzene	0.05 ug/g dry	<0.05	<0.05	-	-
Ethylene dibromide (dibromoethane, 1	0.05 ug/g dry	<0.05	<0.05	-	-
Hexane	0.05 ug/g dry	<0.05	<0.05	-	-
Methyl Ethyl Ketone (2-Butanone)	0.50 ug/g dry	<0.50	<0.50	-	-
Methyl Isobutyl Ketone	0.50 ug/g dry	<0.50	<0.50	-	-
Methyl tert-butyl ether	0.05 ug/g dry	<0.05	<0.05	-	-
Methylene Chloride	0.05 ug/g dry	<0.05	<0.05	-	-
Styrene	0.05 ug/g dry	<0.05	<0.05	-	-
1,1,1,2-Tetrachloroethane	0.05 ug/g dry	<0.05	<0.05	-	-
1,1,2,2-Tetrachloroethane	0.05 ug/g dry	<0.05	<0.05	-	-
Tetrachloroethylene	0.05 ug/g dry	<0.05	<0.05	-	-
Toluene	0.05 ug/g dry	<0.05	<0.05	-	-
1,1,1-Trichloroethane	0.05 ug/g dry	<0.05	<0.05	-	-
1,1,2-Trichloroethane	0.05 ug/g dry	<0.05	<0.05	-	-
Trichloroethylene	0.05 ug/g dry	<0.05	<0.05	-	-
Trichlorofluoromethane	0.05 ug/g dry	<0.05	<0.05	-	-
Vinyl chloride	0.02 ug/g dry	<0.02	<0.02	-	-
m,p-Xylenes	0.05 ug/g dry	<0.05	<0.05	-	-
o-Xylene	0.05 ug/g dry	<0.05	<0.05	-	-
Xylenes, total	0.05 ug/g dry	<0.05	<0.05	-	-
4-Bromofluorobenzene	Surrogate	122%	103%	-	-
Dibromofluoromethane	Surrogate	106%	111%	-	-
Toluene-d8	Surrogate	108%	101%	-	-
Hydrocarbons				· · · · · · · · · · · · · · · · · · ·	
F1 PHCs (C6-C10)	7 ug/g dry	<7	8	-	-

OTTAWA . MISSISSAUGA . HAMILTON . KINGSTON . LONDON . NIAGARA . WINDSOR . RICHMOND HILL

Client PO: 971 Montreal Rd

Order #: 2217317

Report Date: 26-Apr-2022 Order Date: 20-Apr-2022

Project Description: MM2320

			DUP 1		
	Client ID: Sample Date:	MW8 SA2 19-Apr-22 09:00	19-Apr-22 09:00	-	-
	Sample Date. Sample ID:	2217317-09	2217317-10	-	-
	MDL/Units	Soil	Soil	-	-
F2 PHCs (C10-C16)	4 ug/g dry	<4	20	-	-
F3 PHCs (C16-C34)	8 ug/g dry	56	57	-	-
F4 PHCs (C34-C50)	6 ug/g dry	80	93	-	-
Semi-Volatiles			•		
Acenaphthene	0.02 ug/g dry	0.04	<0.02	-	-
Acenaphthylene	0.02 ug/g dry	<0.02	0.02	-	-
Anthracene	0.02 ug/g dry	0.09	0.03	-	-
Benzo [a] anthracene	0.02 ug/g dry	0.17	0.08	-	-
Benzo [a] pyrene	0.02 ug/g dry	0.16	0.10	-	-
Benzo [b] fluoranthene	0.02 ug/g dry	0.19	0.12	-	-
Benzo [g,h,i] perylene	0.02 ug/g dry	0.09	0.08	-	-
Benzo [k] fluoranthene	0.02 ug/g dry	0.11	0.06	-	-
Chrysene	0.02 ug/g dry	0.16	0.08	-	-
Dibenzo [a,h] anthracene	0.02 ug/g dry	0.03	0.02	-	-
Fluoranthene	0.02 ug/g dry	0.37	0.16	-	-
Fluorene	0.02 ug/g dry	0.04	<0.02	-	-
Indeno [1,2,3-cd] pyrene	0.02 ug/g dry	0.09	0.08	-	-
1-Methylnaphthalene	0.02 ug/g dry	<0.02	<0.02	-	-
2-Methylnaphthalene	0.02 ug/g dry	<0.02	<0.02	-	-
Methylnaphthalene (1&2)	0.04 ug/g dry	<0.04	<0.04	-	-
Naphthalene	0.01 ug/g dry	<0.01	<0.01	-	-
Phenanthrene	0.02 ug/g dry	0.31	0.08	-	-
Pyrene	0.02 ug/g dry	0.29	0.14	-	-
2-Fluorobiphenyl	Surrogate	126%	125%	-	-
Terphenyl-d14	Surrogate	137%	129%	-	-

OTTAWA + MISSISSAUGA + HAMILTON + KINGSTON + LONDON + NIAGARA + WINDSOR + RICHMOND HILL

Client PO: 971 Montreal Rd

Method Quality Control: Blank

Report Date: 26-Apr-2022

Order Date: 20-Apr-2022

Project Description: MM2320

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	ND	7	ug/g						
F2 PHCs (C10-C16)	ND	4	ug/g						
F3 PHCs (C16-C34)	ND	8	ug/g						
F4 PHCs (C34-C50)	ND	6	ug/g						
F4G PHCs (gravimetric)	ND	50	ug/g						
Metals									
Antimony	ND	1.0	ug/g						
Arsenic	ND	1.0	ug/g						
Barium	ND	1.0	ug/g						
Beryllium	ND	0.5	ug/g						
Boron	ND	5.0	ug/g						
Cadmium	ND	0.5	ug/g						
Chromium	ND	5.0	ug/g						
Cobalt	ND	1.0	ug/g						
Copper	ND	5.0	ug/g						
Lead	ND	1.0	ug/g						
Molybdenum	ND	1.0	ug/g						
Nickel	ND	5.0	ug/g						
Selenium	ND	1.0	ug/g						
Silver	ND	0.3	ug/g						
Thallium	ND	1.0	ug/g						
Uranium	ND	1.0 10.0	ug/g						
Vanadium Zinc	ND ND	20.0	ug/g						
Semi-Volatiles	ND	20.0	ug/g						
	ND	0.00							
Acenaphthene Acenaphthylene	ND ND	0.02 0.02	ug/g						
Acenaphinylene	ND	0.02	ug/g ug/g						
Benzo [a] anthracene	ND	0.02	ug/g ug/g						
Benzo [a] pyrene	ND	0.02	ug/g						
Benzo [b] fluoranthene	ND	0.02	ug/g						
Benzo [g,h,i] perylene	ND	0.02	ug/g						
Benzo [k] fluoranthene	ND	0.02	ug/g						
Chrysene	ND	0.02	ug/g						
Dibenzo [a,h] anthracene	ND	0.02	ug/g						
Fluoranthene	ND	0.02	ug/g						
Fluorene	ND	0.02	ug/g						
Indeno [1,2,3-cd] pyrene	ND	0.02	ug/g						
1-Methylnaphthalene	ND	0.02	ug/g						
2-Methylnaphthalene	ND	0.02	ug/g						
Methylnaphthalene (1&2)	ND	0.04	ug/g						
Naphthalene	ND	0.01	ug/g						
Phenanthrene	ND	0.02	ug/g						
Pyrene	ND	0.02	ug/g		100	50 4 40			
Surrogate: 2-Fluorobiphenyl	1.60		ug/g		120	50-140			
Surrogate: Terphenyl-d14	1.62		ug/g		122	50-140			
Volatiles									
Acetone	ND	0.50	ug/g						
Benzene Bromodichloromethane	ND	0.02	ug/g						
Bromodicnioromethane Bromoform	ND ND	0.05 0.05	ug/g						
Bromonethane	ND	0.05	ug/g						
Carbon Tetrachloride	ND	0.05	ug/g ug/g						
Chlorobenzene	ND	0.05	ug/g ug/g						
Chloroform	ND	0.05	ug/g ug/g						
Dibromochloromethane	ND	0.05	ug/g ug/g						
Dichlorodifluoromethane	ND	0.05	ug/g						
1.2-Dichlorobenzene	ND	0.05	ug/g						
	ND	0.05	սց/ց						

OTTAWA . MISSISSAUGA . HAMILTON . KINGSTON . LONDON . NIAGARA . WINDSOR . RICHMOND HILL

Client PO: 971 Montreal Rd

Method Quality Control: Blank

Report Date: 26-Apr-2022

Order Date: 20-Apr-2022

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
1,3-Dichlorobenzene	ND	0.05	ug/g						
1,4-Dichlorobenzene	ND	0.05	ug/g						
1,1-Dichloroethane	ND	0.05	ug/g						
1,2-Dichloroethane	ND	0.05	ug/g						
1,1-Dichloroethylene	ND	0.05	ug/g						
cis-1,2-Dichloroethylene	ND	0.05	ug/g						
trans-1,2-Dichloroethylene	ND	0.05	ug/g						
1,2-Dichloropropane	ND	0.05	ug/g						
cis-1,3-Dichloropropylene	ND	0.05	ug/g						
trans-1,3-Dichloropropylene	ND	0.05	ug/g						
1,3-Dichloropropene, total	ND	0.05	ug/g						
Ethylbenzene	ND	0.05	ug/g						
Ethylene dibromide (dibromoethane, 1,2	ND	0.05	ug/g						
Hexane	ND	0.05	ug/g						
Methyl Ethyl Ketone (2-Butanone)	ND	0.50	ug/g						
Methyl Isobutyl Ketone	ND	0.50	ug/g						
Methyl tert-butyl ether	ND	0.05	ug/g						
Methylene Chloride	ND	0.05	ug/g						
Styrene	ND	0.05	ug/g						
1,1,1,2-Tetrachloroethane	ND	0.05	ug/g						
1,1,2,2-Tetrachloroethane	ND	0.05	ug/g						
Tetrachloroethylene	ND	0.05	ug/g						
Toluene	ND	0.05	ug/g						
1,1,1-Trichloroethane	ND	0.05	ug/g						
1,1,2-Trichloroethane	ND	0.05	ug/g						
Trichloroethylene	ND	0.05	ug/g						
Trichlorofluoromethane	ND	0.05	ug/g						
Vinyl chloride	ND	0.02	ug/g						
m,p-Xylenes	ND	0.05	ug/g						
o-Xylene	ND	0.05	ug/g						
Xylenes, total	ND	0.05	ug/g						
Surrogate: 4-Bromofluorobenzene	3.88		ug/g		121	50-140			
Surrogate: Dibromofluoromethane	3.85		ug/g		120	50-140			
Surrogate: Toluene-d8	3.13		ug/g		97.7	50-140			

Method Quality Control: Duplicate

Report Date: 26-Apr-2022

Order Date: 20-Apr-2022

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
General Inorganics									
pH	7.67	0.05	pH Units	7.65			0.3	2.3	
Hydrocarbons									
F1 PHCs (C6-C10)	ND	7	ug/g	ND			NC	40	
F2 PHCs (C10-C16)	ND	4	ug/g	ND			NC	30	
F3 PHCs (C16-C34)	22	8	ug/g	26			15.5	30	
F4 PHCs (C34-C50)	8	6	ug/g	8			0.0	30	
Metals									
Antimony	3.4	1.0	ug/g	ND			NC	30	
Arsenic	1.1	1.0	ug/g	ND			NC	30	
Barium	20.4	1.0	ug/g	19.8			2.8	30	
Beryllium	ND	0.5	ug/g	ND ND			NC NC	30 30	
Boron Cadmium	ND ND	5.0 0.5	ug/g	ND			NC	30	
Chromium	ND	5.0	ug/g ug/g	ND			NC	30	
Cobalt	1.1	1.0	ug/g	1.0			6.0	30	
Copper	8.4	5.0	ug/g	8.2			1.9	30	
Lead	95.6	1.0	ug/g	88.3			8.0	30	
Molybdenum	2.9	1.0	ug/g	2.6			13.2	30	
Nickel	ND	5.0	ug/g	ND			NC	30	
Selenium Silver	ND	1.0	ug/g	ND			NC NC	30	
Thallium	ND ND	0.3 1.0	ug/g ug/g	ND ND			NC	30 30	
Uranium	ND	1.0	ug/g	ND			NC	30	
Vanadium	ND	10.0	ug/g	ND			NC	30	
Zinc	73.7	20.0	ug/g	71.6			3.0	30	
Physical Characteristics									
% Solids	93.5	0.1	% by Wt.	93.5			0.0	25	
Semi-Volatiles			5						
Acenaphthene	ND	0.02	ug/g	ND			NC	40	
Acenaphthylene	ND	0.02	ug/g	ND			NC	40	
Anthracene	ND	0.02	ug/g	ND			NC	40	
Benzo [a] anthracene	ND	0.02	ug/g	ND			NC	40	
Benzo [a] pyrene Benzo [b] fluoranthene	ND ND	0.02 0.02	ug/g	ND ND			NC NC	40 40	
Benzo [g,h,i] perylene	ND	0.02	ug/g ug/g	ND			NC	40	
Benzo [k] fluoranthene	ND	0.02	ug/g	ND			NC	40	
Chrysene	ND	0.02	ug/g	ND			NC	40	
Dibenzo [a,h] anthracene	ND	0.02	ug/g	ND			NC	40	
Fluoranthene	ND	0.02	ug/g	ND			NC	40	
Fluorene	ND	0.02	ug/g	ND			NC	40	
Indeno [1,2,3-cd] pyrene	ND	0.02	ug/g	ND			NC	40	
1-Methylnaphthalene 2-Methylnaphthalene	ND ND	0.02 0.02	ug/g ug/g	ND ND			NC NC	40 40	
Naphthalene	ND	0.02	ug/g	ND			NC	40	
Phenanthrene	ND	0.02	ug/g	ND			NC	40	
Pyrene	ND	0.02	ug/g	ND			NC	40	
Surrogate: 2-Fluorobiphenyl	1.36		ug/g		80.5	50-140			
Surrogate: Terphenyl-d14	1.36		ug/g		80.6	50-140			
Volatiles									
Acetone	ND	0.50	ug/g	ND			NC	50	
Benzene	ND	0.02	ug/g	ND			NC	50	
Bromodichloromethane Bromoform	ND ND	0.05 0.05	ug/g	ND ND			NC NC	50 50	
Bromotorm Bromomethane	ND	0.05	ug/g ug/g	ND			NC	50 50	
Carbon Tetrachloride	ND	0.05	ug/g ug/g	ND			NC	50	
			-3'9						

Method Quality Control: Duplicate

Report Date: 26-Apr-2022

Order Date: 20-Apr-2022

Project Description: MM2320

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
, and yes	Result	Linint	Units	Result	%REC	Limit	RPD	Limit	Notes
Chlorobenzene	ND	0.05	ug/g	ND			NC	50	
Chloroform	ND	0.05	ug/g	ND			NC	50	
Dibromochloromethane	ND	0.05	ug/g	ND			NC	50	
Dichlorodifluoromethane	ND	0.05	ug/g	ND			NC	50	
1,2-Dichlorobenzene	ND	0.05	ug/g	ND			NC	50	
1,3-Dichlorobenzene	ND	0.05	ug/g	ND			NC	50	
1,4-Dichlorobenzene	ND	0.05	ug/g	ND			NC	50	
1,1-Dichloroethane	ND	0.05	ug/g	ND			NC	50	
1,2-Dichloroethane	ND	0.05	ug/g	ND			NC	50	
1,1-Dichloroethylene	ND	0.05	ug/g	ND			NC	50	
cis-1,2-Dichloroethylene	ND	0.05	ug/g	ND			NC	50	
trans-1,2-Dichloroethylene	ND	0.05	ug/g	ND			NC	50	
1,2-Dichloropropane	ND	0.05	ug/g	ND			NC	50	
cis-1,3-Dichloropropylene	ND	0.05	ug/g	ND			NC	50	
trans-1,3-Dichloropropylene	ND	0.05	ug/g	ND			NC	50	
Ethylbenzene	ND	0.05	ug/g	ND			NC	50	
Ethylene dibromide (dibromoethane, 1,2	ND	0.05	ug/g	ND			NC	50	
Hexane	ND	0.05	ug/g	ND			NC	50	
Methyl Ethyl Ketone (2-Butanone)	ND	0.50	ug/g	ND			NC	50	
Methyl Isobutyl Ketone	ND	0.50	ug/g	ND			NC	50	
Methyl tert-butyl ether	ND	0.05	ug/g	ND			NC	50	
Methylene Chloride	ND	0.05	ug/g	ND			NC	50	
Styrene	ND	0.05	ug/g	ND			NC	50	
1,1,1,2-Tetrachloroethane	ND	0.05	ug/g	ND			NC	50	
1,1,2,2-Tetrachloroethane	ND	0.05	ug/g	ND			NC	50	
Tetrachloroethylene	ND	0.05	ug/g	ND			NC	50	
Toluene	ND	0.05	ug/g	ND			NC	50	
1,1,1-Trichloroethane	ND	0.05	ug/g	ND			NC	50	
1,1,2-Trichloroethane	ND	0.05	ug/g	ND			NC	50	
Trichloroethylene	ND	0.05	ug/g	ND			NC	50	
Trichlorofluoromethane	ND	0.05	ug/g	ND			NC	50	
Vinyl chloride	ND	0.02	ug/g	ND			NC	50	
m,p-Xylenes	ND	0.05	ug/g	ND			NC	50	
o-Xylene	ND	0.05	ug/g	ND			NC	50	
Surrogate: 4-Bromofluorobenzene	6.35		ug/g		139	50-140			
Surrogate: Dibromofluoromethane	5.40		ug/g		118	50-140			
Surrogate: Toluene-d8	5.42		ug/g		118	50-140			
y	-				-				

OTTAWA + MISSISSAUGA + HAMILTON + KINGSTON + LONDON + NIAGARA + WINDSOR + RICHMOND HILL

Chrysene

Fluorene

Fluoranthene

Naphthalene

Pyrene

Volatiles

Acetone

Benzene

Phenanthrene

Benzo [a] pyrene

Benzo [b] fluoranthene

Benzo [g,h,i] perylene

Benzo [k] fluoranthene

Dibenzo [a,h] anthracene

Indeno [1,2,3-cd] pyrene

Surrogate: 2-Fluorobiphenyl

Surrogate: Terphenyl-d14

1-Methylnaphthalene

2-Methylnaphthalene

Method Q

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	232	7	ug/g	ND	116	80-120			
F2 PHCs (C10-C16)	113	4	ug/g	ND	110	60-140			
F3 PHCs (C16-C34)	320	8	ug/g	26	116	60-140			
F4 PHCs (C34-C50)	202	6	ug/g	8	122	60-140			
F4G PHCs (gravimetric)	980	50	ug/g	ND	98.0	80-120			
Vetals									
Antimony	45.9	1.0	ug/g	ND	91.8	70-130			
Arsenic	55.7	1.0	ug/g	ND	111	70-130			
Barium	56.7	1.0	ug/g	7.9	97.6	70-130			
Beryllium	53.6	0.5	ug/g	ND	107	70-130			
Boron	52.2	5.0	ug/g	ND	102	70-130			
Cadmium	44.4	0.5	ug/g	ND	88.6	70-130			
Chromium	54.6	5.0	ug/g	ND	106	70-130			
Cobalt	52.7	1.0	ug/g	ND	105	70-130			
Copper	54.4	5.0	ug/g	ND	102	70-130			
Lead	91.6	1.0	ug/g	35.3	112	70-130			
Molybdenum	52.8	1.0	ug/g	1.0	103	70-130			
Nickel	52.0	5.0	ug/g	ND	102	70-130			
Selenium	51.6	1.0	ug/g	ND	103	70-130			
Silver	39.8	0.3	ug/g	ND	79.6	70-130			
Thallium	46.2	1.0	ug/g	ND	92.5	70-130			
Uranium	53.3	1.0	ug/g	ND	107	70-130			
Vanadium	55.9	10.0	ug/g	ND	107	70-130			
Zinc	79.8	20.0	ug/g	28.6	102	70-130			
Semi-Volatiles									
Acenaphthene	0.198	0.02	ug/g	ND	93.8	50-140			
Acenaphthylene	0.170	0.02	ug/g	ND	80.6	50-140			
Anthracene	0.168	0.02	ug/g	ND	79.6	50-140			
Benzo [a] anthracene	0.167	0.02	ug/g	ND	78.8	50-140			

ND

ug/g

80.0

114

81.3

103

84.3

84.3

83.7

88.1

84.8

104

111

98.7

81.7

83.7

117

117

83.1

106

50-140

50-140

50-140

50-140

50-140

50-140

50-140

50-140

50-140

50-140

50-140

50-140

50-140

50-140

50-140

50-140

50-140

60-130

Report Date: 26-Apr-2022

Order Date: 20-Apr-2022

Project Description: MM2320

OTTAWA - MISSISSAUGA - HAMILTON - KINGSTON - LONDON - NIAGARA - WINDSOR - RICHMOND HILL

0.169

0.240

0.172

0.218

0.178

0.178

0.177

0.186

0.179

0.220

0.235

0.208

0.173

0.177

1.97

1.98

8.31

4.24

0.02

0.02

0.02

0.02

0.02

0.02

0.02

0.02

0.02

0.02

0.02

0.01

0.02

0.02

0.50

0.02

Method Quality Control: Spike

Report Date: 26-Apr-2022

Order Date: 20-Apr-2022

Project Description: MM2320

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Bromodichloromethane	4.50	0.05	ug/g	ND	112	60-130			
Bromoform	4.29	0.05	ug/g	ND	107	60-130			
Bromomethane	4.84	0.05	ug/g	ND	121	50-140			
Carbon Tetrachloride	4.25	0.05	ug/g	ND	106	60-130			
Chlorobenzene	4.27	0.05	ug/g	ND	107	60-130			
Chloroform	4.50	0.05	ug/g	ND	112	60-130			
Dibromochloromethane	4.05	0.05	ug/g	ND	101	60-130			
Dichlorodifluoromethane	4.38	0.05	ug/g	ND	109	50-140			
1,2-Dichlorobenzene	4.56	0.05	ug/g	ND	114	60-130			
1,3-Dichlorobenzene	4.17	0.05	ug/g	ND	104	60-130			
1,4-Dichlorobenzene	4.80	0.05	ug/g	ND	120	60-130			
1,1-Dichloroethane	4.46	0.05	ug/g	ND	112	60-130			
1,2-Dichloroethane	4.18	0.05	ug/g	ND	105	60-130			
1,1-Dichloroethylene	4.14	0.05	ug/g	ND	103	60-130			
cis-1,2-Dichloroethylene	4.41	0.05	ug/g	ND	110	60-130			
trans-1,2-Dichloroethylene	4.27	0.05	ug/g	ND	107	60-130			
1,2-Dichloropropane	4.02	0.05	ug/g	ND	101	60-130			
cis-1,3-Dichloropropylene	4.28	0.05	ug/g	ND	107	60-130			
trans-1,3-Dichloropropylene	3.84	0.05	ug/g	ND	96.0	60-130			
Ethylbenzene	3.94	0.05	ug/g	ND	98.4	60-130			
Ethylene dibromide (dibromoethane, 1,2	3.97	0.05	ug/g	ND	99.3	60-130			
Hexane	3.21	0.05	ug/g	ND	80.2	60-130			
Methyl Ethyl Ketone (2-Butanone)	7.98	0.50	ug/g	ND	79.8	50-140			
Methyl Isobutyl Ketone	9.33	0.50	ug/g	ND	93.3	50-140			
Methyl tert-butyl ether	13.3	0.05	ug/g	ND	133	50-140			
Methylene Chloride	3.41	0.05	ug/g	ND	85.2	60-130			
Styrene	3.93	0.05	ug/g	ND	98.3	60-130			
1,1,1,2-Tetrachloroethane	4.60	0.05	ug/g	ND	115	60-130			
1,1,2,2-Tetrachloroethane	3.93	0.05	ug/g	ND	98.3	60-130			
Tetrachloroethylene	4.29	0.05	ug/g	ND	107	60-130			
Toluene	4.69	0.05	ug/g	ND	117	60-130			
1,1,1-Trichloroethane	4.51	0.05	ug/g	ND	113	60-130			
1,1,2-Trichloroethane	4.07	0.05	ug/g	ND	102	60-130			
Trichloroethylene	4.11	0.05	ug/g	ND	103	60-130			
Trichlorofluoromethane	4.70	0.05	ug/g	ND	118	50-140			
Vinyl chloride	4.62	0.02	ug/g	ND	116	50-140			
m,p-Xylenes	8.80	0.05	ug/g	ND	110	60-130			
o-Xylene	4.52	0.05	ug/g	ND	113	60-130			
Surrogate: 4-Bromofluorobenzene	2.17		ug/g		67.7	50-140			
Surrogate: Dibromofluoromethane	3.50		ug/g		110	50-140			
Surrogate: Toluene-d8	3.37		ug/g		105	50-140			

OTTAWA + MISSISSAUGA + HAMILTON + KINGSTON + LONDON + NIAGARA + WINDSOR + RICHMOND HILL

Qualifier Notes:

Sample Qualifiers :

1: Elevated detection limits due to the nature of the sample matrix.

2: GC-FID signal did not return to baseline by C50

Sample Data Revisions

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected MDL: Method Detection Limit Source Result: Data used as source for matrix and duplicate samples %REC: Percent recovery. RPD: Relative percent difference. NC: Not Calculated

Soil results are reported on a dry weight basis when the units are denoted with 'dry'. Where %Solids is reported, moisture loss includes the loss of volatile hydrocarbons.

CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.

- F1 range corrected for BTEX.

- F2 to F3 ranges corrected for appropriate PAHs where available.

- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.

- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.

- When reported, data for F4G has been processed using a silica gel cleanup.

G PARACE		Para	acel	D: 2	2217317	t. Dm	Paracel Order Number (Lab Use Only)				r	Chain Of Custody (Lab Use Only) Nº 67244			
Contact Name: CM3 Contact Name: Scun Parsons				ect Ref:	971	Montrea	1 R	d					Page	e of	
Address: San Parsons			Quo	te #:									-	ound Tir	
Address: STID ALIAS Rd	oT			PO#: MM2320										3 day	
Telephone:			E-ma		larc + Sc	ran						□ 2 da Date Req			Regular
REG 153/04 REG 406/19 O	ther Regulation											Date Neu	uireu.		
Table 1 Res/Park Med/Fine REG 5		1			S (Soil/Sed.) GW Nater) SS (Storm/						Rec	quired An	alysis		
Table 2 Ind/Comm Coarse CCME	🗆 misa				Paint) A (Air) O (C		q	1					TT		T T
Table 3 Agri/Other SU-Si	ani 🗌 SU - Storm			e rs			Metals	P	PHC	Voc	0				
TableMun:			a	taine	Samp	le Taken	Fee (s	PAH	5	6	PH				
For RSC: Yes No Other:		Matrix	Air Volume	of Containers			()								
Sample ID/Location Name		Ň	Air	0 22	Date	Time	3								
MW4 SAI		S		2	Apr 19-23	2		1	-	1			++		
104 313		1											++		
3 MWS SAI															
4 MW5 SA2											7				
5 MW6 SA2											-			_	
6 MW6 SAS							++			++	-		+	_	
7 MW7 SAI									+	++			┼┼-		
8 MW8 SAI								+	+	++				_	
9 MWB SA2									+	++					
10 DUP 1		d		Ţ			+	V	\downarrow	+	-			_	
omments:				N	Q -					- 18		11.00			
										M	ethod (of Delivery.	h	N	
elinquished By (Sign):	Received By Dri	ver/De	pot:			Received at Pab:				Ve	erified B	. J	LOF	12	Xc
elinquished By (Print):	Date/Time:	18.8 1.65				Co	-	_	_			f			
ate/Time: Arr 20, 27	Temperature:			1.4	0.5	Date/Tipe	22	22	and the second second	Da Da	ite/Tim	RAC	10	2011	6:18
ain of Custody (Blank) xisx		2025	200	<u>а</u> б.,	°C Revision 4.0	Temperature:	16		,C	pH	Verifie	ed: 🗆	By:		- 12

RELIABLE.

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Certificate of Analysis

CM3 Environmental Inc.

5710 Akins Road Ottawa, ON K2S 1B8 Attn: Alden Crossman

Client PO: 971 Montreal Road Project: MM2320 Custody: 125625

Report Date: 21-Jul-2020 Order Date: 16-Jul-2020

Order #: 2029408

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID	Client ID
2029408-01	MW1
2029408-02	MW2
2029408-03	MW3

Approved By:

Dale Robertson, BSc Laboratory Director

Any use of these results implies your agreement that our total liability in connection with this work, however arising, shall be limited to the amount paid by you for this work, and that our employees or agents shall not under any circumstances be liable to you in connection with this work.

Order #: 2029408

Report Date: 21-Jul-2020 Order Date: 16-Jul-2020

Project Description: MM2320

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date	Analysis Date
Metals, ICP-MS	EPA 200.8 - ICP-MS	17-Jul-20	17-Jul-20
PHC F1	CWS Tier 1 - P&T GC-FID	16-Jul-20	17-Jul-20
PHCs F2 to F4	CWS Tier 1 - GC-FID, extraction	20-Jul-20	20-Jul-20
REG 153: VOCs by P&T GC/MS	EPA 624 - P&T GC-MS	16-Jul-20	17-Jul-20

Client PO: 971 Montreal Road

Order #: 2029408

Report Date: 21-Jul-2020

Order Date: 16-Jul-2020

Project Description: MM2320

	Client ID: Sample Date: Sample ID: MDL/Units	MW1 16-Jul-20 10:20 2029408-01 Water	MW2 16-Jul-20 10:50 2029408-02 Water	MW3 16-Jul-20 11:10 2029408-03 Water	- - - -
Metals			!	1	·
Antimony	0.5 ug/L	0.6	0.6	<0.5	-
Arsenic	1 ug/L	<1	2	<1	-
Barium	1 ug/L	224	143	104	-
Beryllium	0.5 ug/L	<0.5	<0.5	<0.5	-
Boron	10 ug/L	117	95	49	-
Cadmium	0.1 ug/L	<0.1	<0.1	<0.1	-
Chromium	1 ug/L	<1	<1	<1	-
Cobalt	0.5 ug/L	0.5	1.4	0.6	-
Copper	0.5 ug/L	9.2	4.1	3.8	-
Lead	0.1 ug/L	0.1	0.1	0.2	-
Molybdenum	0.5 ug/L	12.6	6.7	1.5	-
Nickel	1 ug/L	7	5	2	-
Selenium	1 ug/L	1	<1	<1	-
Silver	0.1 ug/L	<0.1	<0.1	<0.1	-
Sodium	200 ug/L	710000	195000	41000	-
Thallium	0.1 ug/L	0.2	<0.1	0.4	-
Uranium	0.1 ug/L	25.2	13.7	0.7	-
Vanadium	0.5 ug/L	<0.5	0.8	<0.5	-
Zinc	5 ug/L	20	7	6	-
Volatiles	•			•	
Acetone	5.0 ug/L	<5.0	<5.0	<5.0	-
Benzene	0.5 ug/L	<0.5	<0.5	<0.5	-
Bromodichloromethane	0.5 ug/L	<0.5	<0.5	<0.5	-
Bromoform	0.5 ug/L	<0.5	<0.5	<0.5	-
Bromomethane	0.5 ug/L	<0.5	<0.5	<0.5	-
Carbon Tetrachloride	0.2 ug/L	<0.2	<0.2	<0.2	-
Chlorobenzene	0.5 ug/L	<0.5	<0.5	<0.5	-
Chloroform	0.5 ug/L	5.7	4.9	6.7	-
Dibromochloromethane	0.5 ug/L	<0.5	<0.5	<0.5	-
Dichlorodifluoromethane	1.0 ug/L	<1.0	<1.0	<1.0	-
1,2-Dichlorobenzene	0.5 ug/L	<0.5	<0.5	<0.5	-
1,3-Dichlorobenzene	0.5 ug/L	<0.5	<0.5	<0.5	-
1,4-Dichlorobenzene	0.5 ug/L	<0.5	<0.5	<0.5	-
1,1-Dichloroethane	0.5 ug/L	<0.5	<0.5	<0.5	-
1,2-Dichloroethane	0.5 ug/L	<0.5	<0.5	<0.5	-

Client PO: 971 Montreal Road

Report Date: 21-Jul-2020 Order Date: 16-Jul-2020

Project Description: MM2320

-	Client ID: Sample Date: Sample ID:	MW1 16-Jul-20 10:20 2029408-01	MW2 16-Jul-20 10:50 2029408-02	MW3 16-Jul-20 11:10 2029408-03	- - -
	MDL/Units	Water	Water	Water	-
1,1-Dichloroethylene	0.5 ug/L	<0.5	<0.5	<0.5	-
cis-1,2-Dichloroethylene	0.5 ug/L	<0.5	<0.5	<0.5	-
trans-1,2-Dichloroethylene	0.5 ug/L	<0.5	<0.5	<0.5	-
1,2-Dichloropropane	0.5 ug/L	<0.5	<0.5	<0.5	-
cis-1,3-Dichloropropylene	0.5 ug/L	<0.5	<0.5	<0.5	-
trans-1,3-Dichloropropylene	0.5 ug/L	<0.5	<0.5	<0.5	-
1,3-Dichloropropene, total	0.5 ug/L	<0.5	<0.5	<0.5	-
Ethylbenzene	0.5 ug/L	<0.5	<0.5	<0.5	-
Ethylene dibromide (dibromoethane, 1,2-)	0.2 ug/L	<0.2	<0.2	<0.2	-
Hexane	1.0 ug/L	<1.0	<1.0	<1.0	-
Methyl Ethyl Ketone (2-Butanone)	5.0 ug/L	<5.0	<5.0	<5.0	-
Methyl Isobutyl Ketone	5.0 ug/L	<5.0	<5.0	<5.0	-
Methyl tert-butyl ether	2.0 ug/L	<2.0	<2.0	<2.0	-
Methylene Chloride	5.0 ug/L	<5.0	<5.0	<5.0	-
Styrene	0.5 ug/L	<0.5	<0.5	<0.5	-
1,1,1,2-Tetrachloroethane	0.5 ug/L	<0.5	<0.5	<0.5	-
1,1,2,2-Tetrachloroethane	0.5 ug/L	<0.5	<0.5	<0.5	-
Tetrachloroethylene	0.5 ug/L	<0.5	<0.5	<0.5	-
Toluene	0.5 ug/L	<0.5	<0.5	<0.5	-
1,1,1-Trichloroethane	0.5 ug/L	<0.5	<0.5	<0.5	-
1,1,2-Trichloroethane	0.5 ug/L	<0.5	<0.5	<0.5	-
Trichloroethylene	0.5 ug/L	<0.5	<0.5	<0.5	-
Trichlorofluoromethane	1.0 ug/L	<1.0	<1.0	<1.0	-
Vinyl chloride	0.5 ug/L	<0.5	<0.5	<0.5	-
m,p-Xylenes	0.5 ug/L	<0.5	<0.5	<0.5	-
o-Xylene	0.5 ug/L	<0.5	<0.5	<0.5	-
Xylenes, total	0.5 ug/L	<0.5	<0.5	<0.5	-
4-Bromofluorobenzene	Surrogate	102%	101%	101%	-
Dibromofluoromethane	Surrogate	110%	121%	117%	-
Toluene-d8	Surrogate	97.2%	98.3%	97.3%	-
Hydrocarbons					
F1 PHCs (C6-C10)	25 ug/L	<25	<25	<25	-
F2 PHCs (C10-C16)	100 ug/L	<100	<100	<100	-
F3 PHCs (C16-C34)	100 ug/L	360	320	260	-
F4 PHCs (C34-C50)	100 ug/L	100	140	119	-

Method Quality Control: Blank

Report Date: 21-Jul-2020

Order Date: 16-Jul-2020

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	ND	25	ug/L						
F2 PHCs (C10-C16)	ND	100	ug/L						
F3 PHCs (C16-C34)	ND	100	ug/L						
F4 PHCs (C34-C50)	ND	100	ug/L						
Metals									
Antimony	ND	0.5	ug/L						
Arsenic	ND	1	ug/L						
Barium	ND	1	ug/L						
Beryllium	ND	0.5	ug/L						
Boron	ND	10	ug/L						
Cadmium	ND	0.1	ug/L						
Chromium	ND	1	ug/L						
Cobalt	ND	0.5	ug/L						
Copper	ND	0.5	ug/L						
Lead	ND	0.1	ug/L						
Molybdenum	ND	0.5	ug/L						
Nickel	ND	1	ug/L						
Selenium	ND	1	ug/L						
Silver	ND	0.1	ug/L						
Sodium	ND	200	ug/L						
Thallium	ND	0.1	ug/L						
Uranium	ND	0.1	ug/L						
Vanadium	ND	0.5	ug/L						
Zinc	ND	5	ug/L						
Volatiles			0						
Acetone	ND	5.0	ug/L						
Benzene	ND	0.5	ug/L						
Bromodichloromethane	ND	0.5	ug/L ug/L						
Bromoform	ND	0.5	-						
Bromomethane	ND	0.5	ug/L						
Carbon Tetrachloride	ND	0.2	ug/L						
Chlorobenzene	ND	0.2	ug/L ug/L						
Chloroform	ND	0.5	-						
		0.5	ug/L						
Dibromochloromethane	ND		ug/L						
Dichlorodifluoromethane	ND	1.0	ug/L						
1,2-Dichlorobenzene	ND	0.5	ug/L						
1,3-Dichlorobenzene	ND	0.5	ug/L						
1,4-Dichlorobenzene	ND	0.5	ug/L						
1,1-Dichloroethane	ND	0.5	ug/L						
1,2-Dichloroethane	ND	0.5	ug/L						
1,1-Dichloroethylene	ND	0.5	ug/L						
cis-1,2-Dichloroethylene	ND	0.5	ug/L						
trans-1,2-Dichloroethylene	ND	0.5	ug/L						
1,2-Dichloropropane	ND	0.5	ug/L						
cis-1,3-Dichloropropylene	ND	0.5	ug/L						
trans-1,3-Dichloropropylene	ND	0.5	ug/L						
1,3-Dichloropropene, total	ND	0.5	ug/L						
Ethylbenzene	ND	0.5	ug/L						
Ethylene dibromide (dibromoethane, 1,2	ND	0.2	ug/L						
Hexane	ND	1.0	ug/L						
Methyl Ethyl Ketone (2-Butanone)	ND	5.0	ug/L						
Methyl Isobutyl Ketone	ND	5.0	ug/L						
Methyl tert-butyl ether	ND	2.0	ug/L						
Methylene Chloride	ND	5.0	ug/L						
Styrene	ND	0.5	ug/L						
1,1,1,2-Tetrachloroethane	ND	0.5	ug/L						
1,1,2,2-Tetrachloroethane	ND	0.5	ug/L						
Tetrachloroethylene	ND	0.5	ug/L						

Order #: 2029408

Report Date: 21-Jul-2020

Order Date: 16-Jul-2020

Project Description: MM2320

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
1,1,1-Trichloroethane	ND	0.5	ug/L						
1,1,2-Trichloroethane	ND	0.5	ug/L						
Trichloroethylene	ND	0.5	ug/L						
Trichlorofluoromethane	ND	1.0	ug/L						
Vinyl chloride	ND	0.5	ug/L						
m,p-Xylenes	ND	0.5	ug/L						
o-Xylene	ND	0.5	ug/L						
Xylenes, total	ND	0.5	ug/L						
Surrogate: 4-Bromofluorobenzene	82.1		ug/L		103	50-140			
Surrogate: Dibromofluoromethane	85.1		ug/L		106	50-140			
Surrogate: Toluene-d8	79.1		ug/L		98.9	50-140			

Method Quality Control: Duplicate

Report Date: 21-Jul-2020

Order Date: 16-Jul-2020

		Reporting		Source		%REC		RPD	
Analyte	Result	Limit	Units	Result	%REC	Limit	RPD	Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	ND	25	ug/L	ND			NC	30	
Metals			3,						
	1 10	0.5	119/1	0.75			NC	20	
Antimony Arsenic	1.10 ND	0.5 1	ug/L	0.75 ND			NC NC	20 20	
Barium	360	1	ug/L ug/L	341			5.4	20	
Beryllium	ND	0.5	ug/L	ND			NC	20	
Boron	40	10	ug/L	41			2.2	20	
Cadmium	ND	0.1	ug/L	ND			NC	20	
Chromium	ND	1	ug/L	ND			NC	20	
Cobalt	2.06	0.5	ug/L	2.05			0.1	20	
Copper	9.30	0.5	ug/L	9.24			0.6	20	
Lead	0.88	0.1	ug/L	0.91			3.5	20	
Molybdenum	3.23	0.5	ug/L	3.15			2.6	20	
Nickel	3.6	1	ug/L	3.7			0.6	20	
Selenium	ND	1	ug/L	ND			NC	20	
Silver	ND	0.1	ug/L	ND			NC	20	
Sodium	780000	2000	ug/L	832000			6.5	20	
Thallium	ND	0.1	ug/L	ND			NC	20	
Uranium	5.1	0.1	ug/L	5.3			2.8	20	
Vanadium	1.18	0.5	ug/L	1.25			6.1	20	
Zinc	7	5	ug/L	7			7.4	20	
Volatiles									
Acetone	ND	5.0	ug/L	ND			NC	30	
Benzene	ND	0.5	ug/L	ND			NC	30	
Bromodichloromethane	ND	0.5	ug/L	ND			NC	30	
Bromoform	ND	0.5	ug/L	ND			NC	30	
Bromomethane	ND	0.5	ug/L	ND			NC	30	
Carbon Tetrachloride	ND	0.2	ug/L	ND			NC NC	30 30	
Chlorobenzene Chloroform	ND ND	0.5 0.5	ug/L	ND ND			NC	30	
Dibromochloromethane	ND	0.5	ug/L ug/L	ND			NC	30	
Dichlorodifluoromethane	ND	1.0	ug/L	ND			NC	30	
1,2-Dichlorobenzene	ND	0.5	ug/L	ND			NC	30	
1,3-Dichlorobenzene	ND	0.5	ug/L	ND			NC	30	
1,4-Dichlorobenzene	ND	0.5	ug/L	ND			NC	30	
1,1-Dichloroethane	ND	0.5	ug/L	ND			NC	30	
1,2-Dichloroethane	ND	0.5	ug/L	ND			NC	30	
1,1-Dichloroethylene	ND	0.5	ug/L	ND			NC	30	
cis-1,2-Dichloroethylene	ND	0.5	ug/L	ND			NC	30	
trans-1,2-Dichloroethylene	ND	0.5	ug/L	ND			NC	30	
1,2-Dichloropropane	ND	0.5	ug/L	ND			NC	30	
cis-1,3-Dichloropropylene	ND	0.5	ug/L	ND			NC	30	
trans-1,3-Dichloropropylene	ND	0.5	ug/L	ND			NC	30	
Ethylbenzene	ND	0.5	ug/L	ND			NC	30	
Ethylene dibromide (dibromoethane, 1,2	ND	0.2	ug/L	ND			NC	30	
Hexane	ND	1.0	ug/L	ND			NC	30	
Methyl Ethyl Ketone (2-Butanone)	ND	5.0	ug/L	ND			NC	30	
Methyl Isobutyl Ketone	ND	5.0	ug/L	ND			NC	30	
Methyl tert-butyl ether	ND	2.0	ug/L	ND			NC	30	
Methylene Chloride	ND	5.0	ug/L	ND			NC	30	
Styrene	ND	0.5	ug/L	ND			NC	30	
1,1,1,2-Tetrachloroethane	ND	0.5	ug/L	ND			NC	30	
1,1,2,2-Tetrachloroethane	ND	0.5	ug/L	ND			NC	30	
Tetrachloroethylene	ND	0.5	ug/L	ND			NC	30	
Toluene	ND	0.5	ug/L	ND			NC	30	
1,1,1-Trichloroethane 1,1,2-Trichloroethane	ND ND	0.5 0.5	ug/L	ND ND			NC NC	30 30	
	ND	0.5	ug/L	ND			NC	30	

Client PO: 971 Montreal Road

Method Quality Control: Duplicate	e								
Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Trichloroethylene	ND	0.5	ug/L	ND			NC	30	
Trichlorofluoromethane	ND	1.0	ug/L	ND			NC	30	
Vinyl chloride	ND	0.5	ug/L	ND			NC	30	
m,p-Xylenes	ND	0.5	ug/L	ND			NC	30	
o-Xylene	ND	0.5	ug/L	ND			NC	30	
Surrogate: 4-Bromofluorobenzene	82.3		ug/L		103	50-140			
Surrogate: Dibromofluoromethane	91.7		ug/L		115	50-140			
Surrogate: Toluene-d8	77.0		ug/L		96.3	50-140			

Report Date: 21-Jul-2020

Order Date: 16-Jul-2020
Project Description: MM2320

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	1590	25	ug/L	ND	79.6	68-117			
F2 PHCs (C10-C16)	1670	100	ug/L	ND	105	60-140			
F3 PHCs (C16-C34)	4230	100	ug/L	ND	108	60-140			
F4 PHCs (C34-C50)	2400	100	ug/L	ND	96.6	60-140			
Metals			0						
Antimony	42.5	0.5	ug/L	ND	85.0	80-120			
Arsenic	42.3 50.3	1	ug/L	ND	101	80-120			
Barium	46.8	1	ug/L	ND	93.5	80-120			
Beryllium	40.0	0.5	ug/L	ND	95.8	80-120			
Boron	41	10	ug/L	ND	82.8	80-120			
Cadmium	46.8	0.1	ug/L	ND	93.6	80-120			
Chromium	40.0	1	ug/L	ND	93.0 98.9	80-120			
Cobalt	43.3	0.5	ug/L	ND	95.6	80-120			
Copper	47.8	0.5	ug/L	ND	93.0 91.5	80-120			
Lead	44.3	0.0	ug/L	ND	88.7	80-120			
Molybdenum	44.9	0.5	ug/L	ND	89.8	80-120			
Nickel	44.9	1	ug/L	ND	93.3	80-120			
Selenium	40.0	1	ug/L	ND	95.5 95.7	80-120			
Silver	46.7	0.1	ug/L	ND	93.5	80-120			
Sodium	9000	200	ug/L	ND	90.0	80-120			
Thallium	9000 45.9	0.1	ug/L	ND	90.0 91.9	80-120 80-120			
Uranium	43.9	0.1	-	ND	94.9	80-120			
Vanadium	47.5	0.1	ug/L ug/L	ND	94.9 96.8	80-120 80-120			
Zinc	40.4 39	5	ug/L	7	90.8 65.3	80-120 80-120		<i></i>	QM-07
		5	ug/L	1	05.5	00-120		G	2101-07
Volatiles									
Acetone	83.8	5.0	ug/L	ND	83.8	50-140			
Benzene	39.0	0.5	ug/L	ND	97.6	60-130			
Bromodichloromethane	33.6	0.5	ug/L	ND	84.0	60-130			
Bromoform	43.9	0.5	ug/L	ND	110	60-130			
Bromomethane	32.1	0.5	ug/L	ND	80.2	50-140			
Carbon Tetrachloride	28.5	0.2	ug/L	ND	71.2	60-130			
Chlorobenzene	34.8	0.5	ug/L	ND	86.9	60-130			
Chloroform	34.7	0.5	ug/L	ND	86.7	60-130			
Dibromochloromethane	31.5	0.5	ug/L	ND	78.8	60-130			
Dichlorodifluoromethane	28.7	1.0	ug/L	ND	71.8	50-140			
1,2-Dichlorobenzene	30.9	0.5	ug/L	ND	77.2	60-130			
1,3-Dichlorobenzene	29.6	0.5	ug/L	ND	74.1	60-130			
1,4-Dichlorobenzene	30.5	0.5	ug/L	ND	76.2	60-130			
1,1-Dichloroethane	31.8	0.5	ug/L	ND	79.5	60-130			
1,2-Dichloroethane	46.1	0.5	ug/L	ND	115	60-130			
1,1-Dichloroethylene	29.7	0.5	ug/L	ND	74.4	60-130			
cis-1,2-Dichloroethylene	37.4	0.5	ug/L	ND	93.4	60-130			
trans-1,2-Dichloroethylene	33.6	0.5	ug/L	ND	84.0	60-130			
1,2-Dichloropropane	39.6	0.5	ug/L	ND	99.0	60-130			
cis-1,3-Dichloropropylene	41.6	0.5	ug/L	ND	104	60-130			
trans-1,3-Dichloropropylene	37.3	0.5	ug/L	ND	93.2	60-130			
Ethylbenzene	34.4	0.5	ug/L	ND	86.0	60-130			

Report Date: 21-Jul-2020

Order Date: 16-Jul-2020

Project Description: MM2320

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hexane	34.8	1.0	ug/L	ND	87.1	60-130			
Methyl Ethyl Ketone (2-Butanone)	107	5.0	ug/L	ND	107	50-140			
Methyl Isobutyl Ketone	115	5.0	ug/L	ND	115	50-140			
Methyl tert-butyl ether	90.3	2.0	ug/L	ND	90.3	50-140			
Methylene Chloride	32.0	5.0	ug/L	ND	80.1	60-130			
Styrene	34.6	0.5	ug/L	ND	86.4	60-130			
1,1,1,2-Tetrachloroethane	32.6	0.5	ug/L	ND	81.4	60-130			
1,1,2,2-Tetrachloroethane	37.3	0.5	ug/L	ND	93.2	60-130			
Tetrachloroethylene	32.6	0.5	ug/L	ND	81.6	60-130			
Toluene	35.3	0.5	ug/L	ND	88.2	60-130			
1,1,1-Trichloroethane	31.2	0.5	ug/L	ND	77.9	60-130			
1,1,2-Trichloroethane	40.1	0.5	ug/L	ND	100	60-130			
Trichloroethylene	37.0	0.5	ug/L	ND	92.6	60-130			
Trichlorofluoromethane	32.8	1.0	ug/L	ND	82.0	60-130			
Vinyl chloride	34.8	0.5	ug/L	ND	86.9	50-140			
m,p-Xylenes	69.6	0.5	ug/L	ND	87.0	60-130			
o-Xylene	35.5	0.5	ug/L	ND	88.8	60-130			
Surrogate: 4-Bromofluorobenzene	80.5		ug/L		101	50-140			
Surrogate: Dibromofluoromethane	91.5		ug/L		114	50-140			
Surrogate: Toluene-d8	76.2		ug/L		95.3	50-140			

QC Qualifiers :

QM-07: The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on other acceptable QC.

Sample Data Revisions

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected MDL: Method Detection Limit Source Result: Data used as source for matrix and duplicate samples %REC: Percent recovery. RPD: Relative percent difference. NC: Not Calculated

CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.

- F1 range corrected for BTEX.

- F2 to F3 ranges corrected for appropriate PAHs where available.

- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.

- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.

- When reported, data for F4G has been processed using a silica gel cleanup.

Report Date: 21-Jul-2020

Order Date: 16-Jul-2020 Project Description: MM2320

C PARACEL): 2029408			(Lab	Use	r Nun Only) {08			•	(L	n Of (ab Use 256	e Only)		
Client Name: CM3			Proje	ct Ref:	MA 23	20 1								1	Page	of		
Contact Name: Alden, Marc			Quote		CM3 Au	les								Turr	narour	nd Tin	ne	
Address: \$ 710 Akms hd., Stit	tsville, ON		PO #:	(171 Month	eal had							🗆 1 da	ıy			🗆 3 da	ау
			E-mai		Wen e		hm	nte	1, (m)		🗆 2 da	, ,			Reg	<u></u> gular
Telephone: 613-915-0627				n	nare e	1						Da	te Req	uired:				
Regulation 153/04 Other	Regulation	N	latrix 1	Type:	S (Soil/Sed.) GW (Ground Water)												
Table 1 Res/Park Med/Fine REG 558	PWQ0			rface V	Water) SS (Storm/	Sanitary Sewer)						Rec	quired /	Analy	iis			
Table 2 Ind/Comm Coarse CCME CCME	🗆 misa			P (P	Paint) A (Air) O (O	ither)												
Table 3 Agri/Other SU - Sani	SU - Storm			lers			BTE			٩								
Table 7 Mun:			ame	Containers	Samp	le Taken	F1-F4+BTEX			by ICP								
For RSC: Yes No Other:		Matrix	Air Volume	of Co			PHCs F	vocs	PAHS	tals	5	B (HWS)						
Sample ID/Location Name		5 GW	Ä	#	Date	Time	-	-	PA	ž	B IS	B						L
2 mw2					07/16/20	10:20	X		_	X	_							
3 MW 3		Gir		4		10:50	_	X	_	×	_			<u> </u>		-	3	-
4		Gu		4	U	11:10	X	×	_	X	-							,
							+	\square			_							
5						_	_											
6																		
7																		
8																		
9																		
10							-		_		_						_	
Comments:											Me	thod o	Deliver	ry:				
Relinquished By (Sign):	Derived D. D.:	In		S. Comer							33		1)10	IP	60	X		
Ulle Z	Received By Dri	ver/De	pot:			Received at Lab:	ove	٨	C	bhn	mai	ified B	y:	R	en	0		
Relinquished By (Print): Alden Chossman	Date/Time:				医 : 图 不同	Date gime: 16	20	30	1	2.1	Dat	e/Time	e: Ju	171	6,207	10	12:3	25
Date/Time: 07/16/20, 12:00 11	1 Temperature:		J.		°C	Temperature	7.3		С	87.5	pH \	Verifie	ed: 🖓	By:	100	1917	5	3
Chain of Custody (Env.) xlsx					Revision 3.0	and the second sec						v 20.4 ° 40 °	2.542	1111	0.000	0	V	10.00

RELIABLE.

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Certificate of Analysis

CM3 Environmental Inc.

5710 Akins Road Ottawa, ON K2S 1B8 Attn: Alden Crossman

Client 60: 971 Pontreal Road 6roject: P P 2320 Custody: 125M40

Report Date: 27-Jul-2020 Order Date: 23-Jul-2020

Order #: 2030393

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID	Client ID
2030393-01	MW1
2030393-02	MW2
2030393-03	MW3

Approved By:

Dale Robertson, BSc Laboratory Director

Any use of these results implies your agreement that our total liability in connection with this work, however arising, shall be limited to the amount paid by you for this work, and that our employees or agents shall not under any circumstances be liable to you in connection with this work.

Order #: 2030393

Report Date: 27-Jul-2020 Order Date: 23-Jul-2020

Project Description: MM2320

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date	Analysis Date
Chloroform	EPA 624 - P&T GC-MS	24-Jul-20	26-Jul-20

OTTAWA • MISSISSAUGA • HAMILTON • CALGARY • KINGSTON • LONDON • NIAGARA • WINDSOR • RICHMOND HILL

Client PO: 971 Montreal Road

Report Date: 27-Jul-2020 Order Date: 23-Jul-2020

Project Description: MM2320

	Client ID: Sample Date: Sample ID: MDL/Units	MW1 23-Jul-20 09:45 2030393-01 Water	MW2 23-Jul-20 10:00 2030393-02 Water	MW3 23-Jul-20 10:15 2030393-03 Water	- - - -
Volatiles Chloroform	0.5 ug/L	2.0	1.9	1.2	_
Dibromofluoromethane	Surrogate	111%	118%	112%	-

OTTAWA • MISSISSAUGA • HAMILTON • CALGARY • KINGSTON • LONDON • NIAGARA • WINDSOR • RICHMOND HILL

Order #: 2030393

Report Date: 27-Jul-2020

Order Date: 23-Jul-2020

Project Description: MM2320

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Volatiles									
Chloroform Surrogate: Dibromofluoromethane	ND 89.5	0.5	ug/L <i>ug/L</i>		112	50-140			

Order #: 2030393

Report Date: 27-Jul-2020

Order Date: 23-Jul-2020

Project Description: MM2320

Method Quality Control: Duplicate

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Volatiles									
Chloroform Surrogate: Dibromofluoromethane	5.45 95.1	0.5	ug/L <i>ug/L</i>	6.09	119	50-140	11.1	30	

Report Date: 27-Jul-2020

Order Date: 23-Jul-2020

Project Description: MM2320

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Volatiles									
Chloroform	35.0	0.5	ug/L	ND	87.4	60-130			
Surrogate: Dibromofluoromethane	93.9		ug/L		117	50-140			

Qualifier Notes:

None

Sample Data Revisions

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected MDL: Method Detection Limit Source Result: Data used as source for matrix and duplicate samples %REC: Percent recovery. RPD: Relative percent difference. NC: Not Calculated

COPARAC LABORATORIES					nt Blvd. 1G 4J8 Ilabs.com		icel C (Lab 73	Use	Only	()	r			in Of ((Lab Use 1256	Only)	ody	
Client Name: CM3		Project	Ref:	MM23	20)				Page /	of [
		Quote	#:	CM3 Bo	tes								Ти	rnarou	nd Tim	ie	
Contact Name: Alden, Marc Address: S710 Aring Row Stittsville, ON		PO #:	9	41	al hoad								1 day			🖻 3 da	y
		E-mail:	۹	Iden e cm?		utul			1.1				2 day		1	🗆 Reg	ular
Telephone: 613 - 915 -0627				are e "								Date	e Require	d:			
Regulation 153/04 Other Regulation				1.99 S							_	н,					
Table 1 Res/Park Med/Fine REG 558 PWQO	1			S (Soil/Sed.) GW (G /ater) SS (Storm/Sa							1	Requ	ired Ana	lysis			
Table 2 Ind/Comm Coarse CCME MISA			P (P	aint) A (Air) O (Ot	her)							Τ	Ţ	1			
□ Table 3 □ Agri/Other □ SU - Sani □ SU - Storm			SI			F1-F4+BTEX							Ś				
Table 7 Mun:		a	Containers	Sample	Taken	-F4+			by ICI				040				
For RSC: Yes No Other:	Matrix	Air Volume	f Con			Cs F1	c	Hs	Metals by ICP		=	B (HWS)	Chloroforn				
Sample ID/Location Name	Š	Air	# of	Date	Time	PHCs	vocs	PAHS	Ň	Ч	Ş	ß					
1 MWI	6w		2	07/23/20	9:45								\times				/
2 MW2	Gh		2		10:00								X	_			v
3 MW3	Gn		2	L	10:15								X			- 1	
4																	
5																÷	
6																	
7			-	a a a a a					1.1				a state a	1.1.1.			
8															1		
9			· · · · p			1		-					7 - 40	11.1 - A B A	and details the		
10																	
Comments:					1						Meth	-	Delivery:	Boy	(
Relinquished By (Sign): Received By Or	river/D	epot:			Received at Lab	Ow/	٨	(Til	m	Verifi	ed By	-	2	-		
Relinquished By (Print): // Ja Carto Date/Time:					Date/ Times 3	20	29	1	0.1	174	Date)	Time;	77	3-7	\sum_{i}	[1]	>
Date/Time: 07/23/20 11:00 Temperature:				°C	Temperature:		_	°C	013		pH V	erified	±□	By: C	-/	1//-	<u> </u>

Chain of Custody (Env.) xlsx

Revision 3.0

RELIABLE.

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Certificate of Analysis

CM3 Environmental Inc.

5710 Akins Road Ottawa, ON K2S 1B8 Attn: Marc MacDonald

Client PO: 971 Montreal Rd Project: MM2320 Custody: 58960

Report Date: 9-May-2022 Order Date: 3-May-2022

Order #: 2219215

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID	Client ID
2219215-01	MW1
2219215-02	MW2
2219215-03	MW3
2219215-04	MW5
2219215-05	MW8
2219215-06	DUP 1
2219215-07	Trip Blank
2219215-08	Trip Spike

Approved By:

Dale Robertson, BSc Laboratory Director

Any use of these results implies your agreement that our total liability in connection with this work, however arising, shall be limited to the amount paid by you for this work, and that our employees or agents shall not under any circumstances be liable to you in connection with this work.

Order #: 2219215

Report Date: 09-May-2022 Order Date: 3-May-2022

Project Description: MM2320

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date	Analysis Date
Metals, ICP-MS	EPA 200.8 - ICP-MS	3-May-22	4-May-22
PHC F1	CWS Tier 1 - P&T GC-FID	5-May-22	5-May-22
PHCs F2 to F4	CWS Tier 1 - GC-FID, extraction	5-May-22	6-May-22
REG 153: PAHs by GC-MS	EPA 625 - GC-MS, extraction	6-May-22	7-May-22
REG 153: VOCs by P&T GC/MS	EPA 624 - P&T GC-MS	5-May-22	5-May-22

Client PO: 971 Montreal Rd

Order #: 2219215

Report Date: 09-May-2022 Order Date: 3-May-2022

Project Description: MM2320

	Client ID: Sample Date: Sample ID: MDL/Units	MW1 03-May-22 09:00 2219215-01 Water	MW2 03-May-22 09:00 2219215-02 Water	MW3 03-May-22 09:00 2219215-03 Water	MW5 03-May-22 09:00 2219215-04 Water
Metals					
Antimony	0.5 ug/L	0.6	0.6	<0.5	<0.5
Arsenic	1 ug/L	<1	3	<1	<1
Barium	1 ug/L	74	107	25	95
Beryllium	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Boron	10 ug/L	50	67	39	43
Cadmium	0.1 ug/L	<0.1	<0.1	<0.1	<0.1
Chromium	1 ug/L	<1	<1	<1	<1
Cobalt	0.5 ug/L	<0.5	1.2	<0.5	<0.5
Copper	0.5 ug/L	3.4	1.9	1.0	2.0
Lead	0.1 ug/L	<0.1	<0.1	<0.1	<0.1
Molybdenum	0.5 ug/L	6.3	7.4	0.6	10.5
Nickel	1 ug/L	2	9	1	4
Selenium	1 ug/L	1	<1	<1	<1
Silver	0.1 ug/L	<0.1	<0.1	<0.1	<0.1
Sodium	200 ug/L	417000	117000	75700	382000
Thallium	0.1 ug/L	<0.1	<0.1	0.2	0.1
Uranium	0.1 ug/L	5.3	14.8	1.5	3.8
Vanadium	0.5 ug/L	0.5	0.9	<0.5	<0.5
Zinc	5 ug/L	12	7	<5	15
Volatiles					
Acetone	5.0 ug/L	<5.0	<5.0	<5.0	<5.0
Benzene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Bromodichloromethane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Bromoform	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Bromomethane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Carbon Tetrachloride	0.2 ug/L	<0.2	<0.2	<0.2	<0.2
Chlorobenzene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Chloroform	0.5 ug/L	0.6	<0.5	<0.5	<0.5
Dibromochloromethane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Dichlorodifluoromethane	1.0 ug/L	<1.0	<1.0	<1.0	<1.0
1,2-Dichlorobenzene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
1,3-Dichlorobenzene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
1,4-Dichlorobenzene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
1,1-Dichloroethane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
1,2-Dichloroethane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5

OTTAWA . MISSISSAUGA . HAMILTON . KINGSTON . LONDON . NIAGARA . WINDSOR . RICHMOND HILL

Client PO: 971 Montreal Rd

Order #: 2219215

Report Date: 09-May-2022 Order Date: 3-May-2022

Project Description: MM2320

Γ	Client ID: Sample Date: Sample ID: MDL/Units	MW1 03-May-22 09:00 2219215-01 Water	MW2 03-May-22 09:00 2219215-02 Water	MW3 03-May-22 09:00 2219215-03 Water	MW5 03-May-22 09:00 2219215-04 Water
1,1-Dichloroethylene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
cis-1,2-Dichloroethylene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
trans-1,2-Dichloroethylene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
1,2-Dichloropropane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
cis-1,3-Dichloropropylene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
trans-1,3-Dichloropropylene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
1,3-Dichloropropene, total	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Ethylene dibromide (dibromoethane, 1,2-)	0.2 ug/L	<0.2	<0.2	<0.2	<0.2
Hexane	1.0 ug/L	<1.0	<1.0	<1.0	<1.0
Methyl Ethyl Ketone (2-Butanone)	5.0 ug/L	<5.0	<5.0	<5.0	<5.0
Methyl Isobutyl Ketone	5.0 ug/L	<5.0	<5.0	<5.0	<5.0
Methyl tert-butyl ether	2.0 ug/L	<2.0	<2.0	<2.0	<2.0
Methylene Chloride	5.0 ug/L	<5.0	<5.0	<5.0	<5.0
Styrene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
1,1,1,2-Tetrachloroethane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
1,1,2,2-Tetrachloroethane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Tetrachloroethylene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Toluene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
1,1,1-Trichloroethane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
1,1,2-Trichloroethane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Trichloroethylene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Trichlorofluoromethane	1.0 ug/L	<1.0	<1.0	<1.0	<1.0
Vinyl chloride	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
m,p-Xylenes	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
o-Xylene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Xylenes, total	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
4-Bromofluorobenzene	Surrogate	120%	120%	118%	120%
Dibromofluoromethane	Surrogate	129%	131%	127%	127%
Toluene-d8	Surrogate	104%	105%	105%	104%
Hydrocarbons	•				
F1 PHCs (C6-C10)	25 ug/L	<25	<25	<25	<25
F2 PHCs (C10-C16)	100 ug/L	<100	<100	<100	<100
F3 PHCs (C16-C34)	100 ug/L	<100	<100	<100	<100
F4 PHCs (C34-C50)	100 ug/L	<100	<100	<100	<100
semi-Volatiles	•		•	•	•

OTTAWA . MISSISSAUGA . HAMILTON . KINGSTON . LONDON . NIAGARA . WINDSOR . RICHMOND HILL

Client PO: 971 Montreal Rd

Order #: 2219215

Report Date: 09-May-2022 Order Date: 3-May-2022

Project Description: MM2320

	r		1	1	
	Client ID:	MW1	MW2	MW3	MW5
	Sample Date:	03-May-22 09:00 2219215-01	03-May-22 09:00 2219215-02	03-May-22 09:00 2219215-03	03-May-22 09:00 2219215-04
	Sample ID:	Water	Water	Water	Water
	MDL/Units		1		
Acenaphthene	0.05 ug/L	<0.05	<0.05	<0.05	<0.05
Acenaphthylene	0.05 ug/L	<0.05	<0.05	<0.05	<0.05
Anthracene	0.01 ug/L	<0.01	<0.01	<0.01	<0.01
Benzo [a] anthracene	0.01 ug/L	<0.01	<0.01	<0.01	<0.01
Benzo [a] pyrene	0.01 ug/L	<0.01	<0.01	<0.01	<0.01
Benzo [b] fluoranthene	0.05 ug/L	<0.05	<0.05	<0.05	<0.05
Benzo [g,h,i] perylene	0.05 ug/L	<0.05	<0.05	<0.05	<0.05
Benzo [k] fluoranthene	0.05 ug/L	<0.05	<0.05	<0.05	<0.05
Chrysene	0.05 ug/L	<0.05	<0.05	<0.05	<0.05
Dibenzo [a,h] anthracene	0.05 ug/L	<0.05	<0.05	<0.05	<0.05
Fluoranthene	0.01 ug/L	<0.01	<0.01	<0.01	<0.01
Fluorene	0.05 ug/L	<0.05	<0.05	<0.05	<0.05
Indeno [1,2,3-cd] pyrene	0.05 ug/L	<0.05	<0.05	<0.05	<0.05
1-Methylnaphthalene	0.05 ug/L	<0.05	<0.05	<0.05	<0.05
2-Methylnaphthalene	0.05 ug/L	0.17	<0.05	<0.05	<0.05
Methylnaphthalene (1&2)	0.10 ug/L	0.17	<0.10	<0.10	<0.10
Naphthalene	0.05 ug/L	0.53	<0.05	<0.05	<0.05
Phenanthrene	0.05 ug/L	<0.05	<0.05	<0.05	<0.05
Pyrene	0.01 ug/L	0.04	0.03	<0.01	0.03
2-Fluorobiphenyl	Surrogate	101%	81.8%	94.0%	86.4%
Terphenyl-d14	Surrogate	128%	102%	109%	107%

Client PO: 971 Montreal Rd

Order #: 2219215

Report Date: 09-May-2022 Order Date: 3-May-2022

order Date: 0-May-2022

Project Description: MM2320

	Client ID: Sample Date: Sample ID: MDL/Units	MW8 03-May-22 09:00 2219215-05 Water	DUP 1 03-May-22 09:00 2219215-06 Water	Trip Blank 02-May-22 09:00 2219215-07 Water	Trip Spike 02-May-22 09:00 2219215-08 Water
Metals					
Antimony	0.5 ug/L	<0.5	0.6	-	-
Arsenic	1 ug/L	6	3	-	-
Barium	1 ug/L	75	104	-	-
Beryllium	0.5 ug/L	<0.5	<0.5	-	-
Boron	10 ug/L	144	66	-	-
Cadmium	0.1 ug/L	<0.1	<0.1	-	-
Chromium	1 ug/L	<1	<1	-	-
Cobalt	0.5 ug/L	3.7	1.1	-	-
Copper	0.5 ug/L	<0.5	2.1	-	-
Lead	0.1 ug/L	0.9	<0.1	-	-
Molybdenum	0.5 ug/L	1.7	7.2	-	-
Nickel	1 ug/L	8	9	-	-
Selenium	1 ug/L	<1	<1	-	-
Silver	0.1 ug/L	<0.1	<0.1	-	-
Sodium	200 ug/L	61900	112000	-	-
Thallium	0.1 ug/L	0.6	<0.1	-	-
Uranium	0.1 ug/L	0.6	15.5	-	-
Vanadium	0.5 ug/L	<0.5	0.9	-	-
Zinc	5 ug/L	<5	7	-	-
Volatiles			• •		
Acetone	5.0 ug/L	<5.0	<5.0	<5.0	71.4 [2]
Benzene	0.5 ug/L	<0.5	<0.5	<0.5	29.6 [2]
Bromodichloromethane	0.5 ug/L	<0.5	<0.5	<0.5	42.4 [2]
Bromoform	0.5 ug/L	<0.5	<0.5	<0.5	42.8 [2]
Bromomethane	0.5 ug/L	<0.5	<0.5	<0.5	38.6 [2]
Carbon Tetrachloride	0.2 ug/L	<0.2	<0.2	<0.2	36.9 [2]
Chlorobenzene	0.5 ug/L	<0.5	<0.5	<0.5	36.0 [2]
Chloroform	0.5 ug/L	<0.5	<0.5	<0.5	31.0 [2]
Dibromochloromethane	0.5 ug/L	<0.5	<0.5	<0.5	42.2 [2]
Dichlorodifluoromethane	1.0 ug/L	<1.0	<1.0	<1.0	44.5 [2]
1,2-Dichlorobenzene	0.5 ug/L	<0.5	<0.5	<0.5	35.1 [2]
1,3-Dichlorobenzene	0.5 ug/L	<0.5	<0.5	<0.5	35.3 [2]
1,4-Dichlorobenzene	0.5 ug/L	<0.5	<0.5	<0.5	34.3 [2]
1,1-Dichloroethane	0.5 ug/L	<0.5	<0.5	<0.5	32.8 [2]

OTTAWA . MISSISSAUGA . HAMILTON . KINGSTON . LONDON . NIAGARA . WINDSOR . RICHMOND HILL

Order #: 2219215

Report Date: 09-May-2022 Order Date: 3-May-2022

Project Description: MM2320

Γ	Client ID: Sample Date: Sample ID: MDL/Units	MW8 03-May-22 09:00 2219215-05 Water	DUP 1 03-May-22 09:00 2219215-06 Water	Trip Blank 02-May-22 09:00 2219215-07 Water	Trip Spike 02-May-22 09:00 2219215-08 Water
1,2-Dichloroethane	0.5 ug/L	<0.5	<0.5	<0.5	38.2 [2]
1,1-Dichloroethylene	0.5 ug/L	<0.5	<0.5	<0.5	43.7 [2]
cis-1,2-Dichloroethylene	0.5 ug/L	<0.5	<0.5	<0.5	29.3 [2]
trans-1,2-Dichloroethylene	0.5 ug/L	<0.5	<0.5	<0.5	39.4 [2]
1,2-Dichloropropane	0.5 ug/L	<0.5	<0.5	<0.5	35.2 [2]
cis-1,3-Dichloropropylene	0.5 ug/L	<0.5	<0.5	<0.5	39.6 [2]
trans-1,3-Dichloropropylene	0.5 ug/L	<0.5	<0.5	<0.5	33.6 [2]
1,3-Dichloropropene, total	0.5 ug/L	<0.5	<0.5	<0.5	73.2 [2]
Ethylbenzene	0.5 ug/L	<0.5	<0.5	<0.5	34.7 [2]
Ethylene dibromide (dibromoethane, 1	0.2 ug/L	<0.2	<0.2	<0.2	39.9 [2]
Hexane	1.0 ug/L	<1.0	<1.0	<1.0	31.6 [2]
Methyl Ethyl Ketone (2-Butanone)	5.0 ug/L	<5.0	<5.0	<5.0	76.5 [2]
Methyl Isobutyl Ketone	5.0 ug/L	<5.0	<5.0	<5.0	77.0 [2]
Methyl tert-butyl ether	2.0 ug/L	<2.0	<2.0	<2.0	81.7 [2]
Methylene Chloride	5.0 ug/L	<5.0	<5.0	13.5	33.2 [2]
Styrene	0.5 ug/L	<0.5	<0.5	<0.5	41.3 [2]
1,1,1,2-Tetrachloroethane	0.5 ug/L	<0.5	<0.5	<0.5	43.2 [2]
1,1,2,2-Tetrachloroethane	0.5 ug/L	<0.5	<0.5	<0.5	43.1 [2]
Tetrachloroethylene	0.5 ug/L	<0.5	<0.5	<0.5	36.5 [2]
Toluene	0.5 ug/L	<0.5	<0.5	<0.5	37.4 [2]
1,1,1-Trichloroethane	0.5 ug/L	<0.5	<0.5	<0.5	32.9 [2]
1,1,2-Trichloroethane	0.5 ug/L	<0.5	<0.5	<0.5	43.1 [2]
Trichloroethylene	0.5 ug/L	<0.5	<0.5	<0.5	30.4 [2]
Trichlorofluoromethane	1.0 ug/L	<1.0	<1.0	<1.0	41.4 [2]
Vinyl chloride	0.5 ug/L	<0.5	<0.5	<0.5	34.6 [2]
m,p-Xylenes	0.5 ug/L	<0.5	<0.5	<0.5	65.9 [2]
o-Xylene	0.5 ug/L	<0.5	<0.5	<0.5	32.8 [2]
Xylenes, total	0.5 ug/L	<0.5	<0.5	<0.5	98.8 [2]
4-Bromofluorobenzene	Surrogate	120%	119%	121%	116% [2]
Dibromofluoromethane	Surrogate	127%	128%	127%	105% [2]
Toluene-d8	Surrogate	106%	105%	104%	101% [2]
Hydrocarbons	Į		!	ļ	
F1 PHCs (C6-C10)	25 ug/L	<25	<25	-	-
F2 PHCs (C10-C16)	100 ug/L	<100	<100	-	-
F3 PHCs (C16-C34)	100 ug/L	<100	<100	-	-

OTTAWA . MISSISSAUGA . HAMILTON . KINGSTON . LONDON . NIAGARA . WINDSOR . RICHMOND HILL

Client PO: 971 Montreal Rd

Order #: 2219215

Report Date: 09-May-2022 Order Date: 3-May-2022

Project Description: MM2320

	Client ID: Sample Date: Sample ID: MDL/Units	MW8 03-May-22 09:00 2219215-05 Water	DUP 1 03-May-22 09:00 2219215-06 Water	Trip Blank 02-May-22 09:00 2219215-07 Water	Trip Spike 02-May-22 09:00 2219215-08 Water
F4 PHCs (C34-C50)	100 ug/L	<100	<100	-	-
Semi-Volatiles	· · ·				
Acenaphthene	0.05 ug/L	<0.05	<0.05	-	-
Acenaphthylene	0.05 ug/L	<0.05	<0.05	-	-
Anthracene	0.01 ug/L	<0.01	<0.01	-	-
Benzo [a] anthracene	0.01 ug/L	<0.01	<0.01	-	-
Benzo [a] pyrene	0.01 ug/L	<0.01	<0.01	-	-
Benzo [b] fluoranthene	0.05 ug/L	<0.05	<0.05	-	-
Benzo [g,h,i] perylene	0.05 ug/L	0.05	<0.05	-	-
Benzo [k] fluoranthene	0.05 ug/L	<0.05	<0.05	-	
Chrysene	0.05 ug/L	<0.05	<0.05	22 09:00 02-May-22 09:00 02- 215-06 2219215-07 2 ater Water 2 100 - 2 0.05 - 2 0.05 - 2 0.05 - 2 0.01 - 2 0.01 - 2 0.05 - 2 0.01 - 2 0.05 - 2 0.05 - 2 0.05 - 2 0.05 - 2 0.05 - 2 0.05 - 2 0.05 - 2 0.05 - 2 0.05 - 2 0.05 - 2 0.05 - 2 0.05 - 2 0.05 - 2 0.05 - 2 0.05 - 2 0.05 - 2 0.05	
Dibenzo [a,h] anthracene	0.05 ug/L	<0.05	<0.05	-	-
Fluoranthene	0.01 ug/L	<0.01	<0.01	-	-
Fluorene	0.05 ug/L	<0.05	<0.05	-	-
Indeno [1,2,3-cd] pyrene	0.05 ug/L	<0.05	<0.05	-	-
1-Methylnaphthalene	0.05 ug/L	<0.05	<0.05	-	-
2-Methylnaphthalene	0.05 ug/L	<0.05	<0.05	2219215-06 2219215-07 Water Water <100	
Methylnaphthalene (1&2)	0.10 ug/L	<0.10	<0.10	-	-
Naphthalene	0.05 ug/L	<0.05	<0.05	-	-
Phenanthrene	0.05 ug/L	<0.05	<0.05	-	-
Pyrene	0.01 ug/L	0.04	0.03	-	-
2-Fluorobiphenyl	Surrogate	101%	85.1%		-
Terphenyl-d14	Surrogate	123%	110%	-	-

Method Quality Control: Blank

Report Date: 09-May-2022

Order Date: 3-May-2022

Project Description: MM2320

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	ND	25	ug/L						
F2 PHCs (C10-C16)	ND	100	ug/L						
F3 PHCs (C16-C34)	ND	100	ug/L						
F4 PHCs (C34-C50)	ND	100	ug/L						
Metals									
Antimony	ND	0.5	ug/L						
Arsenic	ND	1	ug/L						
Barium	ND	1	ug/L						
Beryllium	ND	0.5	ug/L						
Boron	ND	10	ug/L						
Cadmium	ND	0.1	ug/L						
Chromium	ND	1	ug/L						
Cobalt	ND	0.5	ug/L						
Copper	ND	0.5	ug/L						
Lead	ND	0.1	ug/L						
Molybdenum	ND	0.5	ug/L						
Nickel	ND	1	ug/L						
Selenium	ND	1	ug/L						
Silver	ND	0.1	ug/L						
Sodium	ND	200	ug/L						
Thallium	ND	0.1	ug/L						
Uranium	ND	0.1	ug/L						
Vanadium	ND	0.5	ug/L						
Zinc	ND	5	ug/L						
Semi-Volatiles									
Acenaphthene	ND	0.05	ug/L						
Acenaphthylene	ND	0.05	ug/L						
Anthracene	ND	0.01	ug/L						
Benzo [a] anthracene	ND	0.01	ug/L						
Benzo [a] pyrene	ND	0.01	ug/L						
Benzo [b] fluoranthene	ND	0.05	ug/L						
Benzo [g,h,i] perylene	ND	0.05	ug/L						
Benzo [k] fluoranthene	ND	0.05	ug/L						
Chrysene	ND	0.05	ug/L						
Dibenzo [a,h] anthracene	ND	0.05	ug/L						
Fluoranthene	ND	0.01	ug/L						
Fluorene	ND	0.05	ug/L						
Indeno [1,2,3-cd] pyrene	ND	0.05	ug/L						
1-Methylnaphthalene	ND	0.05	ug/L						
2-Methylnaphthalene Methylnaphthalene (1&2)	ND ND	0.05 0.10	ug/L						
Naphthalene	ND	0.05	ug/L ug/L						
Phenanthrene	ND	0.05	ug/L						
2	ND	0.03							
Pyrene Surrogate: 2-Fluorobiphenyl	17.9	0.01	ug/L <i>ug/L</i>		89.6	50-140			
Surrogate: Terphenyl-d14	24.5		ug/L		123	50-140			
Volatiles	24.0		ug/L		125	50-140			
Acetone	ND	5.0	ug/L						
Benzene	ND	0.5	ug/L						
Bromodichloromethane	ND	0.5	ug/L						
Bromoform	ND	0.5	ug/L						
Bromomethane	ND	0.5	ug/L						
Carbon Tetrachloride	ND	0.2	ug/L						
Chlorobenzene Chloroform	ND	0.5	ug/L						
	ND ND	0.5	ug/L						
Dibromochloromethane Dichlorodifluoromethane	ND	0.5 1.0	ug/L ug/L						
1,2-Dichlorobenzene	ND	0.5	ug/L ug/L						
		0.0	ug/L						

OTTAWA - MISSISSAUGA - HAMILTON - KINGSTON - LONDON - NIAGARA - WINDSOR - RICHMOND HILL

Client PO: 971 Montreal Rd

Order #: 2219215

Report Date: 09-May-2022

Order Date: 3-May-2022

Project Description: MM2320

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
1,3-Dichlorobenzene	ND	0.5	ug/L						
1,4-Dichlorobenzene	ND	0.5	ug/L						
1,1-Dichloroethane	ND	0.5	ug/L						
1,2-Dichloroethane	ND	0.5	ug/L						
1,1-Dichloroethylene	ND	0.5	ug/L						
cis-1,2-Dichloroethylene	ND	0.5	ug/L						
trans-1,2-Dichloroethylene	ND	0.5	ug/L						
1,2-Dichloropropane	ND	0.5	ug/L						
cis-1,3-Dichloropropylene	ND	0.5	ug/L						
trans-1,3-Dichloropropylene	ND	0.5	ug/L						
1,3-Dichloropropene, total	ND	0.5	ug/L						
Ethylbenzene	ND	0.5	ug/L						
Ethylene dibromide (dibromoethane, 1,2-	ND	0.2	ug/L						
Hexane	ND	1.0	ug/L						
Methyl Ethyl Ketone (2-Butanone)	ND	5.0	ug/L						
Methyl Isobutyl Ketone	ND	5.0	ug/L						
Methyl tert-butyl ether	ND	2.0	ug/L						
Methylene Chloride	ND	5.0	ug/L						
Styrene	ND	0.5	ug/L						
1,1,1,2-Tetrachloroethane	ND	0.5	ug/L						
1,1,2,2-Tetrachloroethane	ND	0.5	ug/L						
Tetrachloroethylene	ND	0.5	ug/L						
Toluene	ND	0.5	ug/L						
1,1,1-Trichloroethane	ND	0.5	ug/L						
1,1,2-Trichloroethane	ND	0.5	ug/L						
Trichloroethylene	ND	0.5	ug/L						
Trichlorofluoromethane	ND	1.0	ug/L						
Vinyl chloride	ND	0.5	ug/L						
m,p-Xylenes	ND	0.5	ug/L						
o-Xylene	ND	0.5	ug/L						
Xylenes, total	ND	0.5	ug/L						
Surrogate: 4-Bromofluorobenzene	97.6		ug/L		122	50-140			
Surrogate: Dibromofluoromethane	104		ug/L		130	50-140			
Surrogate: Toluene-d8	85.1		ug/L		106	50-140			

1,1,2-Trichloroethane

Method Quality Control: Duplicate

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	ND	25	ug/L	ND			NC	30	
Metals			3,						
	0.50	0.5							
Antimony	0.52	0.5	ug/L	0.92			NC	20	
Arsenic	ND	1	ug/L	ND			NC	20	
Barium	33.4	1	ug/L	35.9			7.2 NC	20 20	
Beryllium	ND 52	0.5	ug/L	ND 54				20	
Boron Cadmium	52 ND	10 0.1	ug/L	54 ND			4.3 NC	20	
Chromium	3.1	1	ug/L	ND			NC	20	
Cobalt	0.88	0.5	ug/L	0.93			5.3	20	
Copper	3.54	0.5	ug/L ug/L	3.22			9.7	20	
Lead	0.45	0.5	ug/L	0.77			9.7 NC	20	
Molybdenum	2.76	0.5		3.04			9.7	20	
Nickel	43.6	0.5	ug/L ug/L	3.04 47.1			9.7 7.7	20	
Selenium	43.0 ND	1	ug/L	47.1 ND			NC	20	
Silver	ND	0.1	ug/L	ND			NC	20	
Soliver	37200	200	ug/L	41200			10.3	20	
Thallium	37200 ND	200	ug/L	41200 ND			NC	20	
Uranium	0.9	0.1	ug/L	1.0			8.2	20	
Vanadium	ND	0.1	ug/L	ND			NC	20	
Zinc	6	5	ug/L	6			5.2	20	
Volatiles	0	5	ug/L	0			0.2	20	
Acetone	ND	5.0	ug/L	ND			NC	30	
Benzene	ND	0.5	ug/L	ND			NC	30	
Bromodichloromethane	5.22	0.5	ug/L	4.28			19.8	30	
Bromoform	ND	0.5	ug/L	ND			NC	30	
Bromomethane	ND	0.5	ug/L	ND			NC	30	
Carbon Tetrachloride	ND	0.2	ug/L	ND			NC	30	
Chlorobenzene	ND	0.5	ug/L	ND			NC	30	
Chloroform	7.65	0.5	ug/L	6.70			13.2	30	
Dibromochloromethane	2.38	0.5	ug/L	1.89			23.0	30	
Dichlorodifluoromethane	ND	1.0	ug/L	ND			NC	30	
1,2-Dichlorobenzene	ND	0.5	ug/L	ND			NC	30	
1,3-Dichlorobenzene	ND	0.5	ug/L	ND			NC	30	
1,4-Dichlorobenzene	ND	0.5	ug/L	ND			NC	30	
1,1-Dichloroethane	ND	0.5	ug/L	ND			NC	30	
1,2-Dichloroethane	ND	0.5	ug/L	ND			NC	30	
1,1-Dichloroethylene	ND	0.5	ug/L	ND			NC	30	
cis-1,2-Dichloroethylene	ND	0.5	ug/L	ND			NC	30	
trans-1,2-Dichloroethylene	ND	0.5	ug/L	ND			NC	30	
1,2-Dichloropropane	ND	0.5	ug/L	ND			NC	30	
cis-1,3-Dichloropropylene	ND	0.5	ug/L	ND			NC	30	
trans-1,3-Dichloropropylene	ND	0.5	ug/L	ND			NC	30	
Ethylbenzene	ND	0.5	ug/L	ND			NC	30	
Ethylene dibromide (dibromoethane, 1,2-	ND	0.2	ug/L	ND			NC	30	
Hexane	ND	1.0	ug/L	ND			NC	30	
Methyl Ethyl Ketone (2-Butanone)	ND	5.0	ug/L	ND			NC	30	
Methyl Isobutyl Ketone	ND	5.0	ug/L	ND			NC	30	
Methyl tert-butyl ether	ND	2.0	ug/L	ND			NC	30	
Methylene Chloride	ND	5.0	ug/L	ND			NC	30	
Styrene	ND	0.5	ug/L	ND			NC	30	
1,1,1,2-Tetrachloroethane	ND	0.5	ug/L	ND			NC	30	
1,1,2,2-Tetrachloroethane	ND	0.5	ug/L	ND			NC	30	
Tetrachloroethylene	ND	0.5	ug/L	ND			NC	30	
Toluene	ND	0.5	ug/L	ND			NC	30	
1,1,1-Trichloroethane	ND	0.5	ug/L	ND			NC	30	
		0 5							

Report Date: 09-May-2022

Order Date: 3-May-2022

Project Description: MM2320

ug/L

ND

ND

0.5

NC

30

Client PO: 971 Montreal Rd

Order #: 2219215

Report Date: 09-May-2022 Order Date: 3-May-2022

Project Description: MM2320

Method Quality Control: Duplicate

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Trichloroethylene	ND	0.5	ug/L	ND			NC	30	
Trichlorofluoromethane	ND	1.0	ug/L	ND			NC	30	
Vinyl chloride	ND	0.5	ug/L	ND			NC	30	
m,p-Xylenes	ND	0.5	ug/L	ND			NC	30	
o-Xylene	ND	0.5	ug/L	ND			NC	30	
Surrogate: 4-Bromofluorobenzene	94.8		ug/L		119	50-140			
Surrogate: Dibromofluoromethane	98.6		ug/L		123	50-140			
Surrogate: Toluene-d8	84.3		ug/L		105	50-140			

Chrysene

Fluorene

Fluoranthene

Naphthalene

Pvrene

Volatiles Acetone

Benzene

Phenanthrene

Benzo [a] pyrene

Benzo [b] fluoranthene

Benzo [g,h,i] perylene Benzo [k] fluoranthene

Dibenzo [a,h] anthracene

Indeno [1,2,3-cd] pyrene

Surrogate: 2-Fluorobiphenyl

Surrogate: Terphenyl-d14

Bromodichloromethane

1-Methylnaphthalene

2-Methylnaphthalene

Method Qua

Method Quality Control: S	pike								
Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	1980	25	ug/L	ND	98.9	68-117			
F2 PHCs (C10-C16)	1500	100	ug/L	ND	93.9	60-140			
F3 PHCs (C16-C34)	4400	100	ug/L	ND	112	60-140			
F4 PHCs (C34-C50)	2970	100	ug/L	ND	120	60-140			
letals									
Arsenic	44.0	1	ug/L	ND	87.8	80-120			
Barium	124	1	ug/L	73.8	99.6	80-120			
Beryllium	40.3	0.5	ug/L	ND	80.6	80-120			
Boron	45	10	ug/L	ND	90.1	80-120			
Cadmium	44.7	0.1	ug/L	ND	89.4	80-120			
Chromium	55.6	1	ug/L	ND	110	80-120			
Cobalt	50.7	0.5	ug/L	0.93	99.5	80-120			
Copper	47.4	0.5	ug/L	3.22	88.4	80-120			
Lead	41.2	0.1	ug/L	0.77	80.9	80-120			
Molybdenum	51.9	0.5	ug/L	3.04	97.8	80-120			
Nickel	89.8	1	ug/L	47.1	85.3	80-120			
Selenium	44.9	1	ug/L	1.0	87.7	80-120			
Silver	46.1	0.1	ug/L	ND	92.2	80-120			
Sodium	8690	200	ug/L	ND	86.9	80-120			
Thallium	42.2	0.1	ug/L	ND	84.3	80-120			
Uranium	49.7	0.1	ug/L	1.0	97.5	80-120			
Vanadium	56.6	0.5	ug/L	ND	113	80-120			
Zinc	46	5	ug/L	ND	92.6	80-120			
emi-Volatiles									
Acenaphthene	4.97	0.05	ug/L	ND	99.4	50-140			
Acenaphthylene	4.32	0.05	ug/L	ND	86.4	50-140			
Anthracene	4.29	0.01	ug/L	ND	85.7	50-140			
Benzo [a] anthracene	4.46	0.01	ug/L	ND	89.3	50-140			

ug/L

ND

96.2

128

98.3

122

98.3

111

88.3

88.3

109

96.8

104

99.9

84.0

87.4

104

132

92.8

109

109

50-140

50-140

50-140

50-140

50-140

50-140

50-140

50-140

50-140

50-140

50-140

50-140

50-140

50-140

50-140

50-140

50-140 60-130

60-130

4.81

6.39

4.92

6.09

4.92

5.55

4.42

4.41

5.46

4.84

5.20

4.99

4.20

4.37

20.7

26.5

92.8

43.7

43.7

0.01

0.05

0.05

0.05

0.05

0.05

0.01

0.05

0.05

0.05

0.05

0.05

0.05

0.01

5.0

0.5

0.5

Report Date: 09-May-2022

Order Date: 3-May-2022

Project Description: MM2320

Order #: 2219215

Report Date: 09-May-2022 Order Date: 3-May-2022

order Date: 0-May-2022

Project Description: MM2320

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Bromoform	45.0	0.5	ug/L	ND	112	60-130			
Bromomethane	36.0	0.5	ug/L	ND	89.9	50-140			
Carbon Tetrachloride	41.6	0.2	ug/L	ND	104	60-130			
Chlorobenzene	34.1	0.5	ug/L	ND	85.3	60-130			
Chloroform	34.9	0.5	ug/L	ND	87.2	60-130			
Dibromochloromethane	37.9	0.5	ug/L	ND	94.8	60-130			
Dichlorodifluoromethane	32.8	1.0	ug/L	ND	82.0	50-140			
1,2-Dichlorobenzene	34.4	0.5	ug/L	ND	86.0	60-130			
1,3-Dichlorobenzene	35.9	0.5	ug/L	ND	89.7	60-130			
1,4-Dichlorobenzene	34.9	0.5	ug/L	ND	87.3	60-130			
1,1-Dichloroethane	30.2	0.5	ug/L	ND	75.5	60-130			
1,2-Dichloroethane	35.0	0.5	ug/L	ND	87.5	60-130			
1,1-Dichloroethylene	36.0	0.5	ug/L	ND	90.1	60-130			
cis-1,2-Dichloroethylene	39.5	0.5	ug/L	ND	98.8	60-130			
trans-1,2-Dichloroethylene	38.3	0.5	ug/L	ND	95.8	60-130			
1,2-Dichloropropane	35.9	0.5	ug/L	ND	89.8	60-130			
cis-1,3-Dichloropropylene	42.1	0.5	ug/L	ND	105	60-130			
trans-1,3-Dichloropropylene	40.9	0.5	ug/L	ND	102	60-130			
Ethylbenzene	32.6	0.5	ug/L	ND	81.5	60-130			
Ethylene dibromide (dibromoethane, 1,2	41.7	0.2	ug/L	ND	104	60-130			
Hexane	37.6	1.0	ug/L	ND	94.0	60-130			
Methyl Ethyl Ketone (2-Butanone)	86.6	5.0	ug/L	ND	86.6	50-140			
Methyl Isobutyl Ketone	71.0	5.0	ug/L	ND	71.0	50-140			
Methyl tert-butyl ether	94.8	2.0	ug/L	ND	94.8	50-140			
Methylene Chloride	30.2	5.0	ug/L	ND	75.4	60-130			
Styrene	44.9	0.5	ug/L	ND	112	60-130			
1,1,1,2-Tetrachloroethane	39.2	0.5	ug/L	ND	98.0	60-130			
1,1,2,2-Tetrachloroethane	41.6	0.5	ug/L	ND	104	60-130			
Tetrachloroethylene	36.8	0.5	ug/L	ND	92.0	60-130			
Toluene	35.2	0.5	ug/L	ND	87.9	60-130			
1,1,1-Trichloroethane	34.6	0.5	ug/L	ND	86.6	60-130			
1,1,2-Trichloroethane	40.2	0.5	ug/L	ND	100	60-130			
Trichloroethylene	29.5	0.5	ug/L	ND	73.8	60-130			
Trichlorofluoromethane	40.5	1.0	ug/L	ND	101	60-130			
Vinyl chloride	30.4	0.5	ug/L	ND	75.9	50-140			
m,p-Xylenes	63.9	0.5	ug/L	ND	79.9	60-130			
o-Xylene	31.2	0.5	ug/L	ND	78.1	60-130			
Surrogate: 4-Bromofluorobenzene	94.6		ug/L		118	50-140			
Surrogate: Dibromofluoromethane	94.9		ug/L		119	50-140			
Surrogate: Toluene-d8	79.7		ug/L		99.7	50-140			

Sample Qualifiers :

2: VOC Trip Spike prepared at 40 ug/L for all parameters, except for m/p-Xylene which is at 80 ug/L and ketones at 100 ug/L.

QC Qualifiers :

Sample Data Revisions

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected MDL: Method Detection Limit Source Result: Data used as source for matrix and duplicate samples %REC: Percent recovery. RPD: Relative percent difference. NC: Not Calculated

CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.

- F1 range corrected for BTEX.

- F2 to F3 ranges corrected for appropriate PAHs where available.

- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.

- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.

- When reported, data for F4G has been processed using a silica gel cleanup.

Report Date: 09-May-2022 Order Date: 3-May-2022

Project Description: MM2320

GPARACE LABORATORIES L	Para	ncel]	D: (221	9215	Blvd. 4J8 bs.com		(Lab	Order Use C)nly)			Cł N	(Lal	b Use (only)	
Client Name: CM3			Projec		971 1	ontical Ro	1			i Sais		1		Pa	ige	of	
Contact Name: Karl Bilys Address: S710 Aktras Rd Telephone: 613 839 2323	06		PO #: E-mail		MM232 Wrl + Sea	ふたれた	ў н. 1 ў		72				1 day 2 day Requ		round] 3 day Regular
Regulation 153/04 Othe	er Regulation				S (Soil/Sed.) GW (Nater) SS (Storm/						Re	quire	d Anal	ysis			
Table 2 Ind/Comm Coarse CCME Table 3 Agri/Other SU-Sani Table 7 For RSC: Yes No Other:	☐ MISA ☐ SU - Storm	Matrix	Air Volume	of Containers	Paint) A (Air) O (C Samp	lther)	Voc	PHCFF	PAH	Mehals ICP		194 1944			1 1	· · ·	
Sample ID/Location Name		ŝ Gw	Air	°# 5	Date May 3-23	Time	1	-	1					,	41 		
2 MW2 3 MW3				-		No. 1 Provide the state of the	7)a - 14 (am - 2		n ng li	
4 MWS	n 1990 - Angel States (m. 1990) 1990 - Angel States (m. 1990)	- 	,														
5 MWg 6 DUP 1				V	V											3 - 1 - 1 - 1	
7 TITE Blank 8 TITE SPIKE		J		2	May 02,	9022	2	×	K	K		V V	0	C			
9 10				NP-2					i T				_		-	-	1
Comments: Meta	uls Frelo	(4	Ŧ(+	ere	rd						Method	Dn	ivery:	ſ	300		
Relinquished By (Sign):	Received By Dr	iver/De	pot:			Received at Lab:			bh.	mai	Verifiec Date/Ti	i By:	1	BA	Am 22	14	SUL
Date/Time: May 3-22 Chain of Custody (Blank) xlsx	Temperature:				°C Revision 3.0	Temperature:	,2	°C		10.5	pH Veri			By:	(L.	5:44

COPARACE IIIIII	icel]								Only)				n Of Custody Lab Use Only) 58960		
Client Name: CM3 Contact Name:		Proje Quote		971 Mo.	itical Ro	1	M		Lak			Pa	ige	of	
Contact Name: Karl Bilys Address: S710 Akras Rd of	.4.)	PO #:		and the		1						Turna	roun	d Time	
STID THETAS RIL OF		E-mai	94 A.	Mm2320	1900 - 19	- (41.) 1	2 7 ³		<u></u>	<u>1 1</u>	🗆 1 da] 3 day
Telephone: b/2 C= 0727	context of	1	1	curl + Sean							🗆 2 day			2	Regula
Telephone: 6/3 & 3 Q 2323 Regulation 153/04 Other Regulation										Da	te Requ	lired:		<u></u>	<u>71</u>
				S (Soil/Sed.) GW (G		1883				Requir	ed Ana	lvsis			1
	10	SW (Su		Water) SS (Storm/Sa Paint) A (Air) O (Oth			1214	ie.		2310	142	1			
Table 3 Agri/Other SU - Sani SU - Storm	-			P. d. F.		-0	PT	P	Mekals	6					
Table 7 Mun:		ne	Containers	Sample	Taken	00	PHC	PAH							
For RSC: Yes No	trix	Air Volume				3-7	F.F.	1	D D C		30 - 3	4. N	a u		
Sample ID/Location Name	Matrix	Air	fo #	Date	Time		4		ľ						
$1 M \omega I$	ĠW		5	May 3-23		1	4	1	1						1 .
2 MWZ			1	1997 - 19 B		3						e. l	- 6		
3 mw3	3			· · · · · · · · · · · · · · · · · · ·	and a second			$ \uparrow$			1	fr me d		27	
4 MWS				1			\square		\square				-	5.00-74	
5 MW8					Contraction of the second		Ħ					-	-		1
6 DUP 1				V		1	$ \uparrow$		$\left \right $				\neg	- +	1
7 TIP Blank			à	May 02,9	199	t		F			0	7			
8 TETP SPIKE	1		2	1 mg V ngo	V	ł	$\widehat{\mathbf{x}}$	\mathbf{k}		Ť	10	Z		·	2
9			2.7 m - 1	V			~~	AX			14	$\langle Q \rangle$	-	_	-
10		_	_									\rightarrow			
Comments:		- / 1		1						·	1000		N. Her	24-515.91	
metals Field	4	τ(+	lit	a					IM	ethod of D		6	Bay		
elinquished By (Sign):	ver/Dep	ot:			Received at Lab:		r	210	Ve Ve	rified By:	op	00	VVX	•	
elinquished By (Print): See Park Date/Time:					Jimeep	10.17	Constant of the local diversity of the local	bh	And in case of the local division of	to Mar	5	5)(Tr	12.8.2	
ate/Time: Nu. 2-22 Temperature:					emperature:	p92		12:			lay		22	15	:44
hain of Custody (Blank) xlsx				Revision 3.0	emperature:15	,2	°C		pH	Verified:	¥	By:	1	5	

RELIABLE.

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Certificate of Analysis

CM3 Environmental Inc.

5710 Akins Road Ottawa, ON K2S 1B8 Attn: Marc MacDonald

Client PO: 971 Montreal Rd Project: MM2320 Custody: 137077

Report Date: 10-May-2022 Order Date: 4-May-2022

Order #: 2219312

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID	Client ID
2219312-01	MW4
2219312-02	MW6
2219312-03	MW7

Approved By:

Dale Robertson, BSc Laboratory Director

Any use of these results implies your agreement that our total liability in connection with this work, however arising, shall be limited to the amount paid by you for this work, and that our employees or agents shall not under any circumstances be liable to you in connection with this work.

Order #: 2219312

Report Date: 10-May-2022 Order Date: 4-May-2022

Project Description: MM2320

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date	Analysis Date
Metals, ICP-MS	EPA 200.8 - ICP-MS	5-May-22	5-May-22
PHC F1	CWS Tier 1 - P&T GC-FID	5-May-22	6-May-22
PHCs F2 to F4	CWS Tier 1 - GC-FID, extraction	9-May-22	9-May-22
REG 153: PAHs by GC-MS	EPA 625 - GC-MS, extraction	9-May-22	9-May-22
REG 153: VOCs by P&T GC/MS	EPA 624 - P&T GC-MS	5-May-22	6-May-22

Client PO: 971 Montreal Rd

Order #: 2219312

I

Report Date: 10-May-2022

-

Order Date: 4-May-2022 Project Description: MM2320

22 09:00 12-01	04-May-22 09:00 2219312-02	04-May-22 09:00 2219312-03	-
ter	Water	Water	-
.5	<0.5	<0.5	-
1	2	<1	-
3	95	101	-
.5	<0.5	<0.5	-
)	41	61	-
.1	<0.1	<0.1	-

I

MW7

MW6

	Client ID:	MW4	04-May-22 09:00	MW7	-
	Sample Date: Sample ID:	04-May-22 09:00 2219312-01	2219312-02	04-May-22 09:00 2219312-03	-
	MDL/Units	Water	Water	Water	-
Metals			ł		
Antimony	0.5 ug/L	<0.5	<0.5	<0.5	-
Arsenic	1 ug/L	<1	2	<1	-
Barium	1 ug/L	113	95	95 101	
Beryllium	0.5 ug/L	<0.5	<0.5	<0.5	-
Boron	10 ug/L	60	41	61	-
Cadmium	0.1 ug/L	<0.1	<0.1	<0.1	-
Chromium	1 ug/L	<1	<1	<1	-
Cobalt	0.5 ug/L	<0.5	<0.5	0.5	-
Copper	0.5 ug/L	1.3	1.8	1.1	-
Lead	0.1 ug/L	<0.1	<0.1	<0.1	-
Molybdenum	0.5 ug/L	3.6	6.2	10.0	-
Nickel	1 ug/L	1	4	2	-
Selenium	1 ug/L	<1	<1	1	-
Silver	0.1 ug/L	<0.1	<0.1	<0.1	-
Sodium	200 ug/L	74100	64800	72500	-
Thallium	0.1 ug/L	<0.1	<0.1	<0.1	-
Uranium	0.1 ug/L	0.8	1.5	1.1	-
Vanadium	0.5 ug/L	<0.5	0.6	<0.5	-
Zinc	5 ug/L	<5	<5	6	-
Volatiles					
Acetone	5.0 ug/L	6.8	<5.0	<5.0	-
Benzene	0.5 ug/L	<0.5	<0.5	<0.5	-
Bromodichloromethane	0.5 ug/L	<0.5	<0.5	<0.5	-
Bromoform	0.5 ug/L	<0.5	<0.5	<0.5	-
Bromomethane	0.5 ug/L	<0.5	<0.5	<0.5	-
Carbon Tetrachloride	0.2 ug/L	<0.2	<0.2	<0.2	-
Chlorobenzene	0.5 ug/L	<0.5	<0.5	<0.5	-
Chloroform	0.5 ug/L	<0.5	<0.5	<0.5	-
Dibromochloromethane	0.5 ug/L	<0.5	<0.5	<0.5	-
Dichlorodifluoromethane	1.0 ug/L	<1.0	<1.0	<1.0	-
1,2-Dichlorobenzene	0.5 ug/L	<0.5	<0.5	<0.5	-
1,3-Dichlorobenzene	0.5 ug/L	<0.5	<0.5	<0.5	-
1,4-Dichlorobenzene	0.5 ug/L	<0.5	<0.5	<0.5	-
1,1-Dichloroethane	0.5 ug/L	<0.5	<0.5	<0.5	-
1,2-Dichloroethane	0.5 ug/L	<0.5	<0.5	<0.5	-

Client ID:

MW4

Client PO: 971 Montreal Rd

Report Date: 10-May-2022 Order Date: 4-May-2022

Project Description: MM2320

Γ	Client ID: Sample Date: Sample ID: MDL/Units	MW4 04-May-22 09:00 2219312-01 Water	MW6 04-May-22 09:00 2219312-02 Water	MW7 04-May-22 09:00 2219312-03 Water	- - - -
1,1-Dichloroethylene	0.5 ug/L	<0.5	<0.5	<0.5	-
cis-1,2-Dichloroethylene	0.5 ug/L	<0.5	<0.5	<0.5	-
trans-1,2-Dichloroethylene	0.5 ug/L	<0.5	<0.5 <0.5		-
1,2-Dichloropropane	0.5 ug/L	<0.5	<0.5	<0.5	-
cis-1,3-Dichloropropylene	0.5 ug/L	<0.5	<0.5	<0.5	-
trans-1,3-Dichloropropylene	0.5 ug/L	<0.5	<0.5	<0.5	-
1,3-Dichloropropene, total	0.5 ug/L	<0.5	<0.5	<0.5	-
Ethylbenzene	0.5 ug/L	<0.5	<0.5	<0.5	-
Ethylene dibromide (dibromoethane, 1,2-)	0.2 ug/L	<0.2	<0.2	<0.2	-
Hexane	1.0 ug/L	<1.0	<1.0	<1.0	-
Methyl Ethyl Ketone (2-Butanone)	5.0 ug/L	<5.0	<5.0	<5.0	-
Methyl Isobutyl Ketone	5.0 ug/L	<5.0	<5.0	<5.0	-
Methyl tert-butyl ether	2.0 ug/L	<2.0	<2.0	<2.0	-
Methylene Chloride	5.0 ug/L	<5.0	<5.0	<5.0	-
Styrene	0.5 ug/L	<0.5	<0.5	<0.5	-
1,1,1,2-Tetrachloroethane	0.5 ug/L	<0.5	<0.5	<0.5	-
1,1,2,2-Tetrachloroethane	0.5 ug/L	<0.5	<0.5	<0.5	-
Tetrachloroethylene	0.5 ug/L	<0.5	<0.5	<0.5	-
Toluene	0.5 ug/L	<0.5	<0.5	<0.5	-
1,1,1-Trichloroethane	0.5 ug/L	<0.5	<0.5	<0.5	-
1,1,2-Trichloroethane	0.5 ug/L	<0.5	<0.5	<0.5	-
Trichloroethylene	0.5 ug/L	<0.5	<0.5	<0.5	-
Trichlorofluoromethane	1.0 ug/L	<1.0	<1.0	<1.0	-
Vinyl chloride	0.5 ug/L	<0.5	<0.5	<0.5	-
m,p-Xylenes	0.5 ug/L	<0.5	<0.5	<0.5	-
o-Xylene	0.5 ug/L	<0.5	<0.5	<0.5	-
Xylenes, total	0.5 ug/L	<0.5	<0.5	<0.5	-
4-Bromofluorobenzene	Surrogate	121%	119%	119%	-
Dibromofluoromethane	Surrogate	120%	120%	120%	-
Toluene-d8	Surrogate	105%	105%	107%	-
Hydrocarbons	i		i	i	
F1 PHCs (C6-C10)	25 ug/L	<25	<25	<25	-
F2 PHCs (C10-C16)	100 ug/L	<100	<100	<100	-
F3 PHCs (C16-C34)	100 ug/L	337	<100	243	-
F4 PHCs (C34-C50)	100 ug/L	257	<100	157	-
Semi-Volatiles					

OTTAWA . MISSISSAUGA . HAMILTON . KINGSTON . LONDON . NIAGARA . WINDSOR . RICHMOND HILL

Client PO: 971 Montreal Rd

Report Date: 10-May-2022 Order Date: 4-May-2022

Project Description: MM2320

	Client ID: Sample Date: Sample ID: MDL/Units	MW4 04-May-22 09:00 2219312-01 Water	MW6 04-May-22 09:00 2219312-02 Water	MW7 04-May-22 09:00 2219312-03 Water	- - -
Acenaphthene	0.05 ug/L	-	<0.05	<0.05	-
Acenaphthylene	0.05 ug/L	-	<0.05	<0.05	-
Anthracene	0.01 ug/L	-	<0.01	<0.01	-
Benzo [a] anthracene	0.01 ug/L	-	<0.01	<0.01	-
Benzo [a] pyrene	0.01 ug/L	-	<0.01	<0.01	-
Benzo [b] fluoranthene	0.05 ug/L	-	<0.05	<0.05	-
Benzo [g,h,i] perylene	0.05 ug/L	-	<0.05	<0.05	-
Benzo [k] fluoranthene	0.05 ug/L	-	<0.05	<0.05	-
Chrysene	0.05 ug/L	-	<0.05	<0.05	-
Dibenzo [a,h] anthracene	0.05 ug/L	-	<0.05	<0.05	-
Fluoranthene	0.01 ug/L	-	<0.01	<0.01	-
Fluorene	0.05 ug/L	-	<0.05	<0.05	-
Indeno [1,2,3-cd] pyrene	0.05 ug/L	-	<0.05	<0.05	-
1-Methylnaphthalene	0.05 ug/L	-	<0.05	<0.05	-
2-Methylnaphthalene	0.05 ug/L	-	<0.05	<0.05	-
Methylnaphthalene (1&2)	0.10 ug/L	-	<0.10	<0.10	-
Naphthalene	0.05 ug/L	-	0.17	0.17	-
Phenanthrene	0.05 ug/L	-	<0.05	<0.05	-
Pyrene	0.01 ug/L	-	0.02	<0.01	-
2-Fluorobiphenyl	Surrogate	-	76.3%	101%	-
Terphenyl-d14	Surrogate	-	82.6%	109%	-

Method Quality Control: Blank

Report Date: 10-May-2022

Order Date: 4-May-2022

Project Description: MM2320

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	ND	25	ug/L						
F2 PHCs (C10-C16)	ND	100	ug/L						
F3 PHCs (C16-C34)	ND	100	ug/L						
F4 PHCs (C34-C50)	ND	100	ug/L						
Metals			0						
		0.5	"						
Antimony	ND	0.5	ug/L						
Arsenic	ND	1	ug/L						
Barium	ND	1	ug/L						
Beryllium	ND	0.5	ug/L						
Boron	ND	10	ug/L						
Cadmium	ND	0.1	ug/L						
Chromium	ND	1	ug/L						
Cobalt	ND	0.5	ug/L						
Copper	ND	0.5	ug/L						
Lead	ND	0.1	ug/L						
Molybdenum	ND	0.5	ug/L						
Nickel	ND	1	ug/L						
Selenium	ND	1	ug/L						
Silver	ND	0.1	ug/L						
Sodium	ND	200	ug/L						
Thallium	ND	0.1	ug/L						
Uranium	ND	0.1	ug/L						
Vanadium 	ND	0.5	ug/L						
Zinc	ND	5	ug/L						
Semi-Volatiles									
Acenaphthene	ND	0.05	ug/L						
Acenaphthylene	ND	0.05	ug/L						
Anthracene	ND	0.01	ug/L						
Benzo [a] anthracene	ND	0.01	ug/L						
Benzo [a] pyrene	ND	0.01	ug/L						
Benzo [b] fluoranthene	ND	0.05	ug/L						
Benzo [g,h,i] perylene	0.091	0.05	ug/L						
Benzo [k] fluoranthene	ND	0.05	ug/L						
Chrysene	ND	0.05	ug/L						
Dibenzo [a,h] anthracene	ND	0.05	ug/L						
Fluoranthene	ND	0.01	ug/L						
Fluorene	ND	0.05	ug/L						
Indeno [1,2,3-cd] pyrene	ND	0.05	ug/L						
1-Methylnaphthalene	ND	0.05	ug/L						
2-Methylnaphthalene	ND	0.05	ug/L						
Methylnaphthalene (1&2)	ND	0.10	ug/L						
Naphthalene	ND	0.05	ug/L						
Phenanthrene	ND	0.05	ug/L						
Pyrene	0.035	0.01	ug/L						
Surrogate: 2-Fluorobiphenyl	17.9		ug50		78.2	89-169			
Surrogate: 4erphenyl-/ 16	2L.T		ug50		117	89-169			
Volatiles									
Acetone	ND	5.0	ug/L						
Benzene	ND	0.5	ug/L						
Bromodichloromethane	ND	0.5	ug/L						
Bromoform	ND	0.5	ug/L						
Bromomethane	ND	0.5	ug/L						
Carbon Tetrachloride	ND	0.2	ug/L						
Chlorobenzene	ND	0.5	ug/L						
Chloroform	ND	0.5	ug/L						
Dibromochloromethane	ND	0.5	ug/L						
Dichlorodifluoromethane	ND	1.0	ug/L						
1,2-Dichlorobenzene	ND	0.5	ug/L						
.,		0.0	~g/ L						

OTTAWA - MISSISSAUGA - HAMILTON - KINGSTON - LONDON - NIAGARA - WINDSOR - RICHMOND HILL

Client PO: 971 Montreal Rd

Order #: 2219312

Report Date: 10-May-2022

Order Date: 4-May-2022

Project Description: MM2320

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
1,3-Dichlorobenzene	ND	0.5	ug/L						
1,4-Dichlorobenzene	ND	0.5	ug/L						
1,1-Dichloroethane	ND	0.5	ug/L						
1,2-Dichloroethane	ND	0.5	ug/L						
1,1-Dichloroethylene	ND	0.5	ug/L						
cis-1,2-Dichloroethylene	ND	0.5	ug/L						
trans-1,2-Dichloroethylene	ND	0.5	ug/L						
1,2-Dichloropropane	ND	0.5	ug/L						
cis-1,3-Dichloropropylene	ND	0.5	ug/L						
trans-1,3-Dichloropropylene	ND	0.5	ug/L						
1,3-Dichloropropene, total	ND	0.5	ug/L						
Ethylbenzene	ND	0.5	ug/L						
Ethylene dibromide (dibromoethane, 1,2	ND	0.2	ug/L						
Hexane	ND	1.0	ug/L						
Methyl Ethyl Ketone (2-Butanone)	ND	5.0	ug/L						
Methyl Isobutyl Ketone	ND	5.0	ug/L						
Methyl tert-butyl ether	ND	2.0	ug/L						
Methylene Chloride	ND	5.0	ug/L						
Styrene	ND	0.5	ug/L						
1,1,1,2-Tetrachloroethane	ND	0.5	ug/L						
1,1,2,2-Tetrachloroethane	ND	0.5	ug/L						
Tetrachloroethylene	ND	0.5	ug/L						
Toluene	ND	0.5	ug/L						
1,1,1-Trichloroethane	ND	0.5	ug/L						
1,1,2-Trichloroethane	ND	0.5	ug/L						
Trichloroethylene	ND	0.5	ug/L						
Trichlorofluoromethane	ND	1.0	ug/L						
Vinyl chloride	ND	0.5	ug/L						
m,p-Xylenes	ND	0.5	ug/L						
o-Xylene	ND	0.5	ug/L						
Xylenes, total	ND	0.5	ug/L						
Surrogate: 6-dro3 oBuorobenmene	7f .z		ug 50		122	89-169			
Surrogate: Dibro3 oBuoro3 ethane	196		ug50		1L9	89-169			
Surrogate: 40luene-/ T	T8.1		ug50		19z	89-169			

Tetrachloroethylene

1,1,1-Trichloroethane

1,1,2-Trichloroethane

Toluene

Method Quality Control: Duplicate

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	ND	25	ug/L	ND			NC	30	
Metals			5						
	0.00	0.5		1.00			NO	00	
Antimony	2.33	0.5	ug/L	1.26			NC	20	
Arsenic	ND	1	ug/L	ND			NC	20	
Barium	57.8	1	ug/L	58.6			1.5	20	
Beryllium	ND	0.5	ug/L	ND			NC	20	
Boron	410	10	ug/L	396			3.5	20	
Cadmium	ND	0.1	ug/L	ND			NC	20	
Chromium	ND	1	ug/L	ND			NC	20	
Cobalt	3.15	0.5	ug/L	3.27			3.5	20	
Copper	17.7	0.5	ug/L	18.3			3.3	20	
Lead	0.41	0.1	ug/L	0.39			4.2	20	
Molybdenum	41.8	0.5	ug/L	42.0			0.5	20	
Nickel	9.3	1	ug/L	9.6			2.8	20	
Selenium	10.0	1	ug/L	9.7			3.5	20	
Silver	ND	0.1	ug/L	ND			NC	20	
Sodium	255000	200	ug/L	273000			6.7	20	
Thallium	0.13	0.1	ug/L	0.13			4.1	20	
Uranium	19.1	0.1	ug/L	19.5			2.0	20	
Vanadium	1.50	0.5	ug/L	1.54			2.8	20	
Zinc	9	5	ug/L	9			1.8	20	
/olatiles									
Acetone	ND	5.0	ug/L	ND			NC	30	
Benzene	ND	0.5	ug/L	ND			NC	30	
Bromodichloromethane	5.22	0.5	ug/L	4.28			19.8	30	
Bromoform	ND	0.5	ug/L	ND			NC	30	
Bromomethane	ND	0.5	ug/L	ND			NC	30	
Carbon Tetrachloride	ND	0.2	ug/L	ND			NC	30	
Chlorobenzene	ND	0.5	ug/L	ND			NC	30	
Chloroform	7.65	0.5	ug/L	6.70			13.2	30	
Dibromochloromethane	2.38	0.5	ug/L	1.89			23.0	30	
Dichlorodifluoromethane	ND	1.0	ug/L	ND			NC	30	
1,2-Dichlorobenzene	ND	0.5	ug/L	ND			NC	30	
1,3-Dichlorobenzene	ND	0.5	ug/L	ND			NC	30	
1,4-Dichlorobenzene	ND	0.5	ug/L	ND			NC	30	
1,1-Dichloroethane	ND	0.5	ug/L	ND			NC	30	
1,2-Dichloroethane	ND	0.5	ug/L	ND			NC	30	
1,1-Dichloroethylene	ND	0.5	ug/L	ND			NC	30	
cis-1,2-Dichloroethylene	ND	0.5	ug/L	ND			NC	30	
trans-1,2-Dichloroethylene	ND	0.5	ug/L	ND			NC	30	
1,2-Dichloropropane	ND	0.5	ug/L	ND			NC	30	
cis-1,3-Dichloropropylene	ND	0.5	ug/L	ND			NC	30	
trans-1,3-Dichloropropylene	ND	0.5	ug/L	ND			NC	30	
Ethylbenzene	ND	0.5	ug/L	ND			NC	30	
Ethylene dibromide (dibromoethane, 1,2	ND	0.2	ug/L	ND			NC	30	
Hexane	ND	1.0	ug/L	ND			NC	30	
Methyl Ethyl Ketone (2-Butanone)	ND	5.0	ug/L	ND			NC	30	
Methyl Isobutyl Ketone	ND	5.0	ug/L	ND			NC	30	
Methyl tert-butyl ether	ND	2.0	ug/L	ND			NC	30	
Methylene Chloride	ND	5.0	ug/L	ND			NC	30	
Styrene	ND	5.0 0.5	ug/L ug/L	ND			NC	30	
1,1,1,2-Tetrachloroethane	ND	0.5	-	ND			NC	30	
1,1,2,2-Tetrachloroethane	ND	0.5	ug/L ug/L	ND			NC	30	
I, I, 2, 2- IEIrachioroethane	ND	0.5	ug/L				NC	30 30	

Order #: 2219312

Report Date: 10-May-2022

Order Date: 4-May-2022

Project Description: MM2320

ug/L

ug/L

ug/L

ug/L

ND

ND

ND

ND

ND

ND

ND

ND

0.5

0.5

0.5

0.5

NC

NC

NC

NC

30

30

30

30

Client PO: 971 Montreal Rd

Order #: 2219312

Report Date: 10-May-2022 Order Date: 4-May-2022

Project Description: MM2320

Method Quality Control: Duplicate

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Trichloroethylene	ND	0.5	ug/L	ND			NC	30	
Trichlorofluoromethane	ND	1.0	ug/L	ND			NC	30	
Vinyl chloride	ND	0.5	ug/L	ND			NC	30	
m,p-Xylenes	ND	0.5	ug/L	ND			NC	30	
o-Xylene	ND	0.5	ug/L	ND			NC	30	
Surrogate: 6-dro3 oBuorobenmene	76.T		ug50		117	89-169			
Surrogate: Dibro3 oBuoro3 ethane	7T.z		ug50		12L	89-169			
Surrogate: 4oluene-/ T	T6.L		ug50		198	89-169			

Method Quality Control: Spike

1980 1360 4250 3340 42.4 52.2 106	25 100 100 100 0.5 1	ug/L ug/L ug/L ug/L	ND ND ND ND	98.9 84.8 109	68-117 60-140		
1360 4250 3340 42.4 52.2 106	100 100 100 0.5	ug/L ug/L ug/L	ND ND	84.8	60-140		
4250 3340 42.4 52.2 106	100 100 100 0.5	ug/L ug/L	ND				
3340 42.4 52.2 106	100 0.5	ug/L ug/L		109	CO 110		
42.4 52.2 106	0.5	-			60-140		
52.2 106		-		135	60-140		
52.2 106		ug/l					
52.2 106			1.26	82.3	80-120		
106		ug/L	ND	102	80-120		
	1	ug/L	58.6	94.6	80-120		
39.2							QM-07
		-					
		-					
		-					QM-07
		-					
		-					
		-					QS-02
		-					Q0-02
		-					
		-					
11	5	ug/L	ND	55.7	00-120		
5 74	0.05	ua/l	ND	115	50-140		
		-					
		-					
		-					
		-					
		-					
		-					
		-					
		-					
		-					
		-					
		-					
		-					
		-					
2L.T		ug50		117	89-169		
		-					
92.8	5.0	ug/L	ND	92.8	50-140		
43.7	0.5	ug/L	ND	109	60-130		
	$\begin{array}{c} 39.2\\ 46\\ 44.7\\ 49.2\\ 56.0\\ 62.9\\ 40.1\\ 87.8\\ 58.0\\ 55.8\\ 51.9\\ 7950\\ 43.1\\ 60.5\\ 48.3\\ 47\\ 5.74\\ 5.77\\ 5.20\\ 4.81\\ 5.15\\ 5.09\\ 5.01\\ 5.08\\ 5.15\\ 5.57\\ 5.04\\ 5.57\\ 5.04\\ 5.57\\ 5.51\\ 5.38\\ 5.21\\ 5.38\\ 5.21\\ 5.91\\ 5.20\\ 5.91\\ 5.9$	39.2 0.5 46 10 44.7 0.1 49.2 1 56.0 0.5 62.9 0.5 40.1 0.1 87.8 0.5 58.0 1 55.8 1 51.9 0.1 7950 200 43.1 0.1 60.5 0.1 48.3 0.5 47 5 5.74 0.05 5.17 0.05 5.20 0.01 4.81 0.01 5.15 0.05 5.01 0.05 5.04 0.01 5.57 0.05 5.51 0.05 5.51 0.05 5.51 0.05 5.20 0.01 5.57 0.05 5.64 0.01 5.57 0.05 5.21 0.05 5.20 0.01 21.1 $2L.7$ 92.8 5.0	39.2 0.5 ug/L 46 10 ug/L 44.7 0.1 ug/L 56.0 0.5 ug/L 62.9 0.5 ug/L 40.1 0.1 ug/L 87.8 0.5 ug/L 58.0 1 ug/L 58.0 1 ug/L 51.9 0.1 ug/L 7950 200 ug/L 43.1 0.1 ug/L 43.3 0.5 ug/L 43.3 0.5 ug/L 47 5 ug/L 47 5 ug/L 5.74 0.05 ug/L 5.17 0.05 ug/L 5.16 0.01 ug/L 5.15 0.01 ug/L 5.08 0.05 ug/L 5.04 0.01 ug/L 5.57 0.05 ug/L 5.51 0.05 ug/L 5.20	39.2 0.5 ug/L ND 46 10 ug/L ND 44.7 0.1 ug/L ND 49.2 1 ug/L ND 56.0 0.5 ug/L 18.3 40.1 0.1 ug/L 0.39 87.8 0.5 ug/L 42.0 58.0 1 ug/L 9.7 51.9 0.1 ug/L ND 7950 200 ug/L ND 7950 200 ug/L ND 43.1 0.1 ug/L ND 47 5 ug/L ND 47 5 ug/L ND 5.74 0.05 ug/L ND 5.17 0.05 ug/L ND 5.17 0.05 ug/L ND 5.17 0.05 ug/L ND 5.16	39.2 0.5 ug/L ND 78.4 46 10 ug/L ND 91.1 44.7 0.1 ug/L ND 89.2 49.2 1 ug/L ND 98.3 56.0 0.5 ug/L 3.27 106 62.9 0.5 ug/L 0.33 79.3 87.8 0.5 ug/L 42.0 91.7 58.0 1 ug/L 9.6 96.8 55.8 1 ug/L 9.7 92.3 51.9 0.1 ug/L ND 104 7950 200 ug/L ND 104 7950 200 ug/L ND 96.6 47 5 ug/L ND 96.6 47 5 ug/L ND 103 5.20 0.01 ug/L ND 103 5.20 0.01 ug/L ND 102 5.15 0.05	39.2 0.5 ug/L ND 78.4 80-120 46 10 ug/L ND 91.1 80-120 44.7 0.1 ug/L ND 89.2 80-120 49.2 1 ug/L ND 98.3 80-120 62.9 0.5 ug/L 3.27 106 80-120 62.9 0.5 ug/L 3.27 106 80-120 40.1 0.1 ug/L 0.39 79.3 80-120 58.0 1 ug/L 9.6 96.8 80-120 58.0 1 ug/L 9.7 92.3 80-120 51.9 0.1 ug/L ND 104 80-120 43.1 0.1 ug/L ND 79.5 80-120 43.3 0.5 ug/L ND 79.5 80-120 43.3 0.5 ug/L ND 96.6 80-120 47 5 ug/L ND 103 50-140 5.17 0.05 ug/L ND 103	39.2 0.5 ug/L ND 78.4 80-120 46 10 ug/L ND 91.1 80-120 44.7 0.1 ug/L ND 98.3 80-120 49.2 1 ug/L ND 98.3 80-120 66.0 0.5 ug/L 3.27 106 80-120 62.9 0.5 ug/L 18.3 89.1 80-120 40.1 0.1 ug/L 0.39 79.3 80-120 58.0 1 ug/L 9.6 96.8 80-120 58.8 1 ug/L ND 104 80-120 7950 200 ug/L ND 79.5 80-120 43.1 0.1 ug/L 0.13 85.8 80-120 443.3 0.5 ug/L ND 93.7 80-120 448.3 0.5 ug/L ND 93.7 80-120 47 5 ug/L ND 103 50-140 5.17 0.05 ug/L ND 103

Report Date: 10-May-2022 Order Date: 4-May-2022

Project Description: MM2320

OTTAWA + MISSISSAUGA + HAMILTON + KINGSTON + LONDON + NIAGARA + WINDSOR + RICHMOND HILL

Certificate of Analysis Client: CM3 Environmental Inc. Client PO: 971 Montreal Rd

Order #: 2219312

Report Date: 10-May-2022

Order Date: 4-May-2022

Project Description: MM2320

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Bromodichloromethane	43.7	0.5	ug/L	ND	109	60-130			
Bromoform	45.0	0.5	ug/L	ND	112	60-130			
Bromomethane	36.0	0.5	ug/L	ND	89.9	50-140			
Carbon Tetrachloride	41.6	0.2	ug/L	ND	104	60-130			
Chlorobenzene	34.1	0.5	ug/L	ND	85.3	60-130			
Chloroform	34.9	0.5	ug/L	ND	87.2	60-130			
Dibromochloromethane	37.9	0.5	ug/L	ND	94.8	60-130			
Dichlorodifluoromethane	32.8	1.0	ug/L	ND	82.0	50-140			
1,2-Dichlorobenzene	34.4	0.5	ug/L	ND	86.0	60-130			
1,3-Dichlorobenzene	35.9	0.5	ug/L	ND	89.7	60-130			
1,4-Dichlorobenzene	34.9	0.5	ug/L	ND	87.3	60-130			
1,1-Dichloroethane	30.2	0.5	ug/L	ND	75.5	60-130			
1,2-Dichloroethane	35.0	0.5	ug/L	ND	87.5	60-130			
1,1-Dichloroethylene	36.0	0.5	ug/L	ND	90.1	60-130			
cis-1,2-Dichloroethylene	39.5	0.5	ug/L	ND	98.8	60-130			
trans-1,2-Dichloroethylene	38.3	0.5	ug/L	ND	95.8	60-130			
1,2-Dichloropropane	35.9	0.5	ug/L	ND	89.8	60-130			
cis-1,3-Dichloropropylene	42.1	0.5	ug/L	ND	105	60-130			
trans-1,3-Dichloropropylene	40.9	0.5	ug/L	ND	102	60-130			
Ethylbenzene	32.6	0.5	ug/L	ND	81.5	60-130			
Ethylene dibromide (dibromoethane, 1,2	41.7	0.2	ug/L	ND	104	60-130			
Hexane	37.6	1.0	ug/L	ND	94.0	60-130			
Methyl Ethyl Ketone (2-Butanone)	86.6	5.0	ug/L	ND	86.6	50-140			
Methyl Isobutyl Ketone	71.0	5.0	ug/L	ND	71.0	50-140			
Methyl tert-butyl ether	94.8	2.0	ug/L	ND	94.8	50-140			
Methylene Chloride	30.2	5.0	ug/L	ND	75.4	60-130			
Styrene	44.9	0.5	ug/L	ND	112	60-130			
1,1,1,2-Tetrachloroethane	39.2	0.5	ug/L	ND	98.0	60-130			
1,1,2,2-Tetrachloroethane	41.6	0.5	ug/L	ND	104	60-130			
Tetrachloroethylene	36.8	0.5	ug/L	ND	92.0	60-130			
Toluene	35.2	0.5	ug/L	ND	87.9	60-130			
1,1,1-Trichloroethane	34.6	0.5	ug/L	ND	86.6	60-130			
1,1,2-Trichloroethane	40.2	0.5	ug/L	ND	100	60-130			
Trichloroethylene	29.5	0.5	ug/L	ND	73.8	60-130			
Trichlorofluoromethane	40.5	1.0	ug/L	ND	101	60-130			
Vinyl chloride	30.4	0.5	ug/L	ND	75.9	50-140			
m,p-Xylenes	63.9	0.5	ug/L	ND	79.9	60-130			
o-Xylene	31.2	0.5	ug/L	ND	78.1	60-130			
Surrogate: 6-dro3 oBuorobenmene	76.z		ug50		11T	89-169			
Surrogate: Dibro3 oBuoro3 ethane	76.7		ug50		117	89-169			
Surrogate: 4oluene-/ T	f 7.f		ug50		77.f	89-169			

OTTAWA . MISSISSAUGA . HAMILTON . KINGSTON . LONDON . NIAGARA . WINDSOR . RICHMOND HILL

Certificate of Analysis Client: CM3 Environmental Inc. Client PO: 971 Montreal Rd

QC Qualifiers :

- QM-07: The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on other acceptable QC.
- QS-02 : Spike level outside of control limits. Analysis batch accepted based on other QC included in the batch.

Sample Data Revisions

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected MDL: Method Detection Limit Source Result: Data used as source for matrix and duplicate samples %REC: Percent recovery. RPD: Relative percent difference. NC: Not Calculated

CCME PHC a//itional inBor3 ation:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.

- F1 range corrected for BTEX.

- F2 to F3 ranges corrected for appropriate PAHs where available.

- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.

- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.

- When reported, data for F4G has been processed using a silica gel cleanup.

Report Date: 10-May-2022 Order Date: 4-May-2022

Project Description: MM2320

GPARACEL	Paracel ID: 2219312					Paracel Order Number (Lab Use Only) 2219312				Chain Of Custody (Lab Use Only) Nº 137077					
Client Name: CM3		Proje Quot	ect Ref:	971	Montreal	(R	d			2				of <u>/</u>	
Address: S710 Aking Rd OTT		PO #:	<u> </u>	MM 23	20	<u>)</u>	<u>5</u> 2	1	100	4			rnaround		
Telephone: 613 830 2323		E-mai	il:	karl + S			7					1 day 2 day Require	d:		3 day Regula
REG 153/04 REG 406/19 Other Regulation Table 1 Res/Park Med/Fine REG 558 PWQO			urface	S (Soil/Sed.) GW (Nater) SS (Storm/S Paint) A (Air) O (Ot	anitary Sewer)					Re	quired	d Analys	is		
Table 2 Ind/Comm Coarse CCME MISA Table 3 Agri/Other SU-Sani SU-Storm Table 7 For RSC: Yes No Other:	Matrix	Air Volume	of Containers		e Taken	PHCs F1-F4+BTEX	vocs	st	Metals by ICP		L.	(SWH)			
Sample ID/Location Name		Air	22	Date	Time	-		PAHs		Ъ	Cr	B			_
$\frac{1}{2}$ MWG	60		4	May 4-22	·	1		_	V						
3 MW7	2		S			1		1	1		~~			- 1 p	12
4		19			n naga tang tang tang tang tang tang tan				V.	 	· · · · ·	· · · · · · · ·			
5															
6															
7															
9				ALC AND A											7
.0															
Inquished By (Sign):Received By Dri			14	reel	Received 200		2			Methoo Verified	NO	ivery:	<u> </u>		
linquished By (Print): Date/Time:					Ste	¥		-			Q - 2	Ł	tem		
te/Time: May 4-22 Temperature:				°C	Date/Time: May 4 Temperature: 4	122	- 9 °C	:29		Date/Ti		1	4,22 BV:	13:1	
nain of Custody (Env) xlsx	335			Revision 4.0	Temperature 1	5.2	C			pH Veri	med: f	/	or.	B-s	

RELIABLE.

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Certificate of Analysis

CM3 Environmental Inc.

5710 Akins Road Ottawa, ON K2S 1B8 Attn: Marc MacDonald

Client PO: 971 Montreal Project: MM2320 Custody: 137089

Report Date: 12-May-2022 Order Date: 5-May-2022

Order #: 2219536

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID 2219536-01

Client ID MW4

Approved By:

Dale Robertson, BSc Laboratory Director

Any use of these results implies your agreement that our total liability in connection with this work, however arising, shall be limited to the amount paid by you for this work, and that our employees or agents shall not under any circumstances be liable to you in connection with this work.

Certificate of Analysis Client: CM3 Environmental Inc. Client PO: 971 Montreal Order #: 2219536

Report Date: 12-May-2022 Order Date: 5-May-2022

Project Description: MM2320

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date	Analysis Date
REG 153: PAHs by GC-MS	EPA 625 - GC-MS, extraction	10-May-22	11-May-22

Certificate of Analysis

Client: CM3 Environmental Inc. Client PO: 971 Montreal Order #: 2219536

Report Date: 12-May-2022

Order Date: 5-May-2022

Project Description: MM2320

Sample Date Sample Date Sample Date Sample Date MDL/Unter05-Mail 2219536-01 WaterSent-VolatileMarSent-Volatile0.05 w/L<0.05Acenaphthylene0.05 w/L<0.05 </th <th></th> <th>or:</th> <th>N 1) 4 / 4</th> <th>I .</th> <th></th> <th></th>		or:	N 1) 4 / 4	I .		
Sample Display 2219536-01 Water - - - - Semi-Volatiles -		Client ID:	MW4	-	-	-
MDL/UnitsWaterIIISemi-VolatilesAcenaphthene0.05 ug/L<0.05			-	_	-	-
Semi-Volatiles - - - Acenaphthene 0.05 ug/L <0.05 - - - Acenaphthylene 0.05 ug/L <0.05 - - - Anthracene 0.01 ug/L <0.01 - - - Benzo [a] anthracene 0.01 ug/L <0.01 - - - Benzo [a] prene 0.01 ug/L <0.01 - - - Benzo [a] anthracene 0.05 ug/L <0.05 - - - Benzo [b] fluoranthene 0.05 ug/L <0.05 - - - - Benzo [g,h.i] perylene 0.05 ug/L <0.05 - - - - Benzo [g,h.j] perylene 0.05 ug/L <0.05 - - - - Benzo [g,h.j] perylene 0.05 ug/L <0.05 - - - - Benzo [g,h.j] perylene 0.05 ug/L <0.05 - - - - Benzo [g,h.j] perylene						_
Accenaphthene 0.05 ug/L <0.05 ug/L	Somi-Volatilos	MDL/Units	Water		_	_
Acenaphthylene 0.05 ug/L <0.05 - - - Acenaphthylene 0.01 ug/L <0.01		0.05.44		1		
Anthracene 0.01 ug/L <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01	Acenaphthene	-	<0.05	-	-	-
Number No.01 No.01 <t< td=""><td>Acenaphthylene</td><td>0.05 ug/L</td><td><0.05</td><td>-</td><td>-</td><td>-</td></t<>	Acenaphthylene	0.05 ug/L	<0.05	-	-	-
Benzo [a] pyrene 0.01 ug/L <0.01 . . Benzo [a] pyrene 0.05 ug/L <0.05	Anthracene	0.01 ug/L	<0.01	-	-	-
Dense (a) pyrote Dense (a) pyrote Dense (a) pyrote Dense (a) pyrote Benzo (b) fluoranthene 0.05 ug/L <0.05	Benzo [a] anthracene	0.01 ug/L	<0.01	-	-	-
Interpretention Interpretention Interpretention Interpretention Benzo [g,h,] perylene 0.05 ug/L <0.05	Benzo [a] pyrene	0.01 ug/L	<0.01	-	-	-
Lonax (g)m/ psychol Lonax (g)m/ psychol <thlonax (g)m="" psychol<="" th=""> Lonax (g)m/ psychol <thlonax (g)m="" psychol<="" th=""> Lonax (g)m/ psychol</thlonax></thlonax>	Benzo [b] fluoranthene	0.05 ug/L	<0.05	-	-	-
Christer Influence Image: Construction of the	Benzo [g,h,i] perylene	0.05 ug/L	<0.05	-	-	-
Dibenzo [a,h] anthracene 0.05 ug/L <0.05 - - - Fluoranthene 0.01 ug/L <0.01	Benzo [k] fluoranthene	0.05 ug/L	<0.05	-	-	-
Fluoranthene 0.01 ug/L <0.01 - - Fluoranthene 0.01 ug/L <0.01	Chrysene	0.05 ug/L	<0.05	-	-	-
Fluorene 0.05 ug/L <0.05 - - - Indeno [1,2,3-cd] pyrene 0.05 ug/L <0.05	Dibenzo [a,h] anthracene	0.05 ug/L	<0.05	-	-	-
Indend Indendd Indenddd Indenddd Indenddd Indenddd Indenddd Indenddd Indenddd Indenddd Indenddd Indendddd Indendddd Indendddd Indendddd Indendddd Indendddd Indendddd Indendddd Indenddddddd Indendddddddd Indendddddddddd Indenddddddddddddddd Indendddddddddddddddddddddddddddddddddd	Fluoranthene	0.01 ug/L	<0.01	-	-	-
Interfer	Fluorene	0.05 ug/L	<0.05	-	-	-
2-Methylnaphthalene 0.05 ug/L <0.05 - - - Methylnaphthalene (1&2) 0.10 ug/L <0.10	Indeno [1,2,3-cd] pyrene	0.05 ug/L	<0.05	-	-	-
Methylnaphthalene (1&2) 0.10 ug/L <0.10 _ _ _ Naphthalene 0.05 ug/L 0.78 _ _ _ Phenanthrene 0.05 ug/L 0.11 _ _ _ Pyrene 0.01 ug/L 0.03 _ _ _	1-Methylnaphthalene	0.05 ug/L	<0.05	-	-	-
Naphthalene 0.05 ug/L 0.78 - - - - Phenanthrene 0.05 ug/L 0.11 - - - - Pyrene 0.01 ug/L 0.03 - - - -	2-Methylnaphthalene	0.05 ug/L	<0.05	-	-	-
Phenanthrene 0.05 ug/L 0.11 - - - - Pyrene 0.01 ug/L 0.03 - - - -	Methylnaphthalene (1&2)	0.10 ug/L	<0.10	-	-	-
Pyrene 0.01 ug/L 0.03 - - -	Naphthalene	0.05 ug/L	0.78	-	-	-
	Phenanthrene	0.05 ug/L	0.11	-	-	-
2-Fluorobiphenyl Surrogate 101%	Pyrene	0.01 ug/L	0.03	-	-	-
	2-Fluorobiphenyl	Surrogate	101%	-	-	-
Terphenyl-d14 Surrogate 104%	Terphenyl-d14	Surrogate	104%	-	-	-

OTTAWA - MISSISSAUGA - HAMILTON - KINGSTON - LONDON - NIAGARA - WINDSOR - RICHMOND HILL

Certificate of Analysis Client: CM3 Environmental Inc.

Client PO: 971 Montreal

Method Quality Control: Blank

Report Date: 12-May-2022

Order Date: 5-May-2022

Project Description: MM2320

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Semi-Volatiles									
Acenaphthene	ND	0.05	ug/L						
Acenaphthylene	ND	0.05	ug/L						
Anthracene	ND	0.01	ug/L						
Benzo [a] anthracene	ND	0.01	ug/L						
Benzo [a] pyrene	ND	0.01	ug/L						
Benzo [b] fluoranthene	ND	0.05	ug/L						
Benzo [g,h,i] perylene	ND	0.05	ug/L						
Benzo [k] fluoranthene	ND	0.05	ug/L						
Chrysene	ND	0.05	ug/L						
Dibenzo [a,h] anthracene	ND	0.05	ug/L						
Fluoranthene	ND	0.01	ug/L						
Fluorene	ND	0.05	ug/L						
Indeno [1,2,3-cd] pyrene	ND	0.05	ug/L						
1-Methylnaphthalene	ND	0.05	ug/L						
2-Methylnaphthalene	ND	0.05	ug/L						
Methylnaphthalene (1&2)	ND	0.10	ug/L						
Naphthalene	ND	0.05	ug/L						
Phenanthrene	ND	0.05	ug/L						
Pyrene	ND	0.01	ug/L						
Surrogate: 2-Fluorobiphenyl	19.0		ug/L		94.9	50-140			
Surrogate: Terphenyl-d14	23.0		ug/L		115	50-140			

Certificate of Analysis Client: CM3 Environmental Inc. Client PO: 971 Montreal

Method Quality Control: Spike

Report Date: 12-May-2022 Order Date: 5-May-2022

Project Description: MM2320

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Semi-Volatiles									
Acenaphthene	4.28	0.05	ug/L	ND	85.7	50-140			
Acenaphthylene	3.60	0.05	ug/L	ND	72.1	50-140			
Anthracene	3.61	0.01	ug/L	ND	72.3	50-140			
Benzo [a] anthracene	3.38	0.01	ug/L	ND	67.7	50-140			
Benzo [a] pyrene	3.78	0.01	ug/L	ND	75.7	50-140			
Benzo [b] fluoranthene	4.69	0.05	ug/L	ND	93.8	50-140			
Benzo [g,h,i] perylene	3.78	0.05	ug/L	ND	75.6	50-140			
Benzo [k] fluoranthene	4.68	0.05	ug/L	ND	93.6	50-140			
Chrysene	3.97	0.05	ug/L	ND	79.5	50-140			
Dibenzo [a,h] anthracene	4.30	0.05	ug/L	ND	86.0	50-140			
Fluoranthene	3.69	0.01	ug/L	ND	73.7	50-140			
Fluorene	3.95	0.05	ug/L	ND	79.1	50-140			
Indeno [1,2,3-cd] pyrene	4.17	0.05	ug/L	ND	83.4	50-140			
1-Methylnaphthalene	4.35	0.05	ug/L	ND	87.1	50-140			
2-Methylnaphthalene	4.61	0.05	ug/L	ND	92.1	50-140			
Naphthalene	4.36	0.05	ug/L	ND	87.2	50-140			
Phenanthrene	3.66	0.05	ug/L	ND	73.2	50-140			
Pyrene	3.72	0.01	ug/L	ND	74.5	50-140			
Surrogate: 2-Fluorobiphenyl Surrogate: Terphenyl-d14	17.7 21.8		ug/L ug/L		88.4 109	50-140 50-140			

Certificate of Analysis Client: CM3 Environmental Inc.

Client PO: 971 Montreal

None

Sample Data Revisions

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected MDL: Method Detection Limit Source Result: Data used as source for matrix and duplicate samples %REC: Percent recovery. RPD: Relative percent difference. NC: Not Calculated

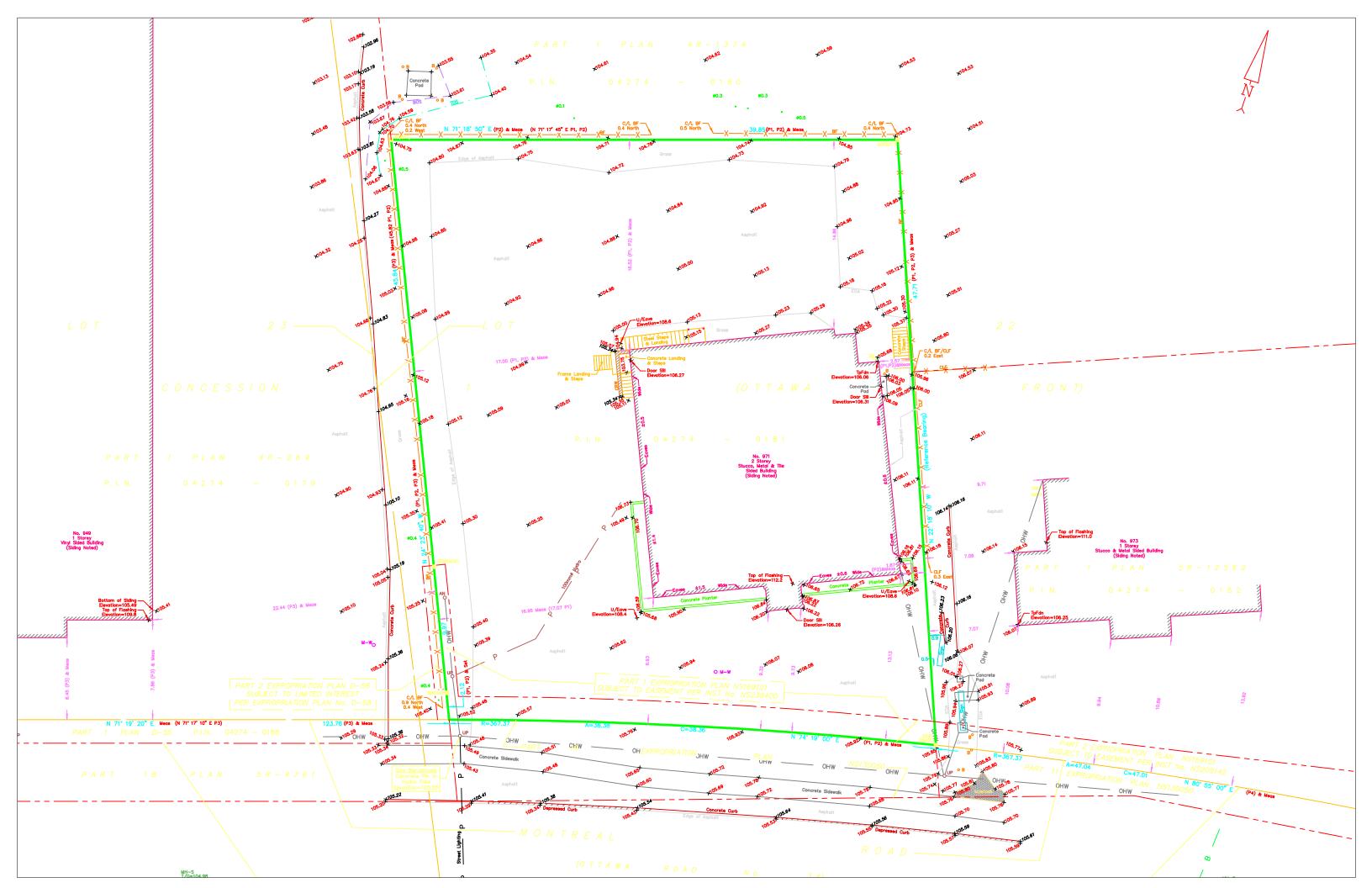
GPARACEL							Paracel Order Number (Lab Use Only) 2219536				Chain Of Custody (Lab Use Only) № 137089					
Client Name: CM3		Projed	t Ref:	971	Montica	1			- A		N.		Page /	of	31	
Address: STIO AKENS ROOT		Quote	#:		1 (1)				jan de la composition de la composition Composition de la composition de la comp	2		Tur	naroun	d Time	e	
Address: S710 Atras Rd OT		PO #:	2	MM 23	20				2	77		1 day			🗆 3 day	
Telephone: 613 838 2323		E-mail:		Sean + ku	arl						1	2 day Required	l:	(Regular	
REG 153/04 REG 406/19 Other Regulation	N	1atrix T	ype:	S (Soil/Sed.) GW (Gr	ound Water)		Y			Re	nuirer	l Analysi				
Table 1 Res/Park Med/Fine REG 558 PWQ0			rface V	Vater) SS (Storm/Sar	itary Sewer)	1			_	ne	quiree					
Table 2 Ind/Comm Coarse CCME MISA		1	P (P	aint) A (Air) O (Oth	er)	TEX									- 1	
Table 3 Agri/Other SU - Sani SU - Storm SU - Storm			ners			F1-F4+BTEX			by ICP							
□ Table Z Mun: For RSC: □ Yes □ No □ Other:		Air Volume	Containers	Sample	laken							(S)				
Sample ID/Location Name	Matrix	Air Vo	# of C	Date	Time	PHCs	vocs	PAHs	Metals	БH	Cr	B (HWS)				
1 MW4	60		2	May 5-22		-	-	7	~		Ŭ					
2		<i></i>		1075-0-	-	-					· · ·			(mater)		
3						-										
4		1						-			1				-Oran In	
5	\square					<u> </u>										
6																
7	\square		-											-		
8	\square					-								\square		
9	-					-							-	\vdash		
10	1					1							-	1		
Comments: Preservative re.	MOI)ed	f	іом РНС	bottles	1				Metho		elivery: Nalk	-1n		esti (
Received By (Sign))river/C	epot:		na aparaten na tan an an	Received at Lab:	B	Sa	Ň	A. CLAY	Verifi		c-	RE	z	arabi, estrutura T	
telinquished By (Print): Scan Parons Date/Time:			49 <u>7</u> .	Yelanami	Date/Time:	5,1			:5)	Date/	Time:	That	57	12	17:0F	
Date/Time: May 5-22 Temperature				°C	the second se	5.5				pH Ve	erified:		By:		+ +	

(

Chain of Custody (EnV) xlsx

Revision 4.0

APPENDIX C


Survey

Phase Two Environmental Site Assessment

971 Montreal Road Ottawa, Ontario

Developpements Proximi-T Inc.

MM2320

