Supplementary Phase 2 Environmental Site Assessment and Remedial Options Assessment 191 and 193 Lees Avenue Ottawa, Ontario

Revision: 0 (Final)

Prepared for: City of Ottawa Real Estate Partnerships & Development Office Realty Services Branch 110 Laurier Ave. W., 5th Floor Ottawa, ON K1P 1J1

Prepared by:

1 Raymond St., Suite 200 Ottawa, Ontario K1R 1A2 Tel: (613) 232-2525 Fax: (613) 232-7149

www.geofirma.com

Document ID: 11-200-11_Lees Ave Suppl Phase 2 ESA and ROA_R0

February 4, 2013

Titler	Supplementary Phase 2 Environmental Site Assessment and Remedial		
rille:	Options Assessment, 191 and 193 Lees Avenue, Ottawa, Ontario		
Client:	City of Ottawa, Realty Services Branch		
Document ID:	11-200-11_Lees Ave Suppl Phase 2 ESA and ROA_R0		
Revision Number:	0 Date: February 4, 2013		
Propared by:	Kenneth Raven, Sean Sterling, Richard Jackson, Jean-Francois Dion,		
Frepared by.	Vanessa Scharf		
Reviewed by:	Sean Sterling and Kenneth Raven		
Approved by:	Kenneth Raven, P.Eng., P.Geo.		

EXECUTIVE SUMMARY

Geofirma Engineering Ltd. was retained by the City of Ottawa – Realty Services Branch to complete a Supplementary Phase 2 Environmental Site Assessment (ESA) of the property addressed as 191 and 193 Lees Avenue, Ottawa, Ontario. The Supplementary Phase 2 ESA was completed as follow-up to an initial Phase 2 ESA and Phase 1 ESA completed and submitted to the City under separate covers.

191 Lees Avenue is currently the Lees Avenue Transitway Station. 193 Lees Avenue is vacant adjoining land located immediately north of the Lees Avenue Campus of the University of Ottawa located at 200 Lees Avenue. The assessed site includes 191 and 193 Lees Avenue, excluding a small parcel owned by Enbridge Gas, and including the adjoining City of Ottawa street rights-of-way. The Lees Avenue Transitway Station property is the site of the former Ottawa coal and oil manufactured gas plant, that operated from the early 1920s to 1957. Extensive subsurface investigations and historical reviews of land use and subsurface conditions were completed at the site in 1986-87 following the discovery of coal tar in the adjacent Rideau River in April 1986.

The overall City objectives for assessment of the 191 and 193 Lees Avenue site are the following:

- 1. Provide an up-dated assessment of the environmental condition of the property in accordance with current MOE O.Reg. 153/04 site condition standards;
- Assessment of potential suitability of the site for research, demonstration and application of innovative soil remediation technologies (e.g., STAR – Self-sustaining Treatment for Active Remediation, currently under development at the University of Western Ontario, Faculty of Engineering); and
- 3. Assessment of re-development constraints for currently undeveloped lands around the Transitway Station.

The Supplementary Phase 2 ESA scope of work included the following major activities:

- Reinstatement/salvage or decommissioning of currently unusable groundwater monitoring wells remnant from the 1986/1987 investigations in accordance with O.Reg. 903;
- Drilling, soil sampling and soil screening of seven boreholes completed to the top of till or refusal to better define soil quality to support evaluation of remedial technologies for the site;
- Installation of seven new groundwater monitoring wells to access the deep alluvium or fill to better define groundwater quality to support evaluation of remedial technologies for the site.
- Submission of 42 separate soil samples for laboratory analysis of metals, PAH and/or PHC-F1/BTEX;
- Submission of 37 groundwater samples for analysis of PAH and PHC-F1/BTEX;
- Surveying of new and existing monitoring wells for elevation, position, water level and product thickness; and
- Completion of an assessment of potentially suitable remedial options for coal tar contamination including innovative in-situ remedial technologies (e.g., STAR) as well as more conventional remedial technologies.

The results of the Supplementary Phase 2 ESA and the initial Phase 2 ESA show that the distribution of coal tar contamination from both visual/olfactory observation and laboratory chemical testing is consistent with the distribution described on 1986 and 1987. Coal tar is present within the deep

alluvium and to a lesser extent the shallow alluvium and fill units primarily on the east side of the Transitway below the parking lot. The highest concentrations of coal tar chemicals (i.e., PAH) were found in the fill and deep alluvium to the top of the low permeability basal till unit over the eastern half of the parking lot. Typically coal tar is found in this part of the site at elevations of 53 to 50 mASL at depths of 7 to 10 mBGS. This coal tar appears to be pooled on top of the basal till unit. The occurrence of coal tar at BH12-11 (and historically at OW120B) is consistent with historical movement of coal tar down the sloping till surface to the southeast of the parking lot. Coal tar was also observed within the shallow fill of BH/MW12-13, which was drilled into the former relief gas holding tank, and in the shallow fill and deep alluvium at BH/MW12-15, near the former boiler house tar storage area. The former relief gas holder appears to have an intact base.

Laboratory chemical testing for typical coal gasification plant waste chemicals shows that PAH and PHC-F1/BTEX remain the chemicals of concerns at the site. Metals and cyanide in soil and groundwater were either not detected (cyanide in soil and groundwater) or were found only sporadically in site soil and groundwater at moderately elevated concentrations.

On the west side of the Transitway there are limited exceedences of MOE standards for soil for PAH, PHC-F1/BTEX or metals at five locations. Groundwater west of the Transitway does not show exceedences of MOE standards for metals, PAH, free cyanide and PHC-F1/BTEX at the 15 locations sampled in 2012. These are quite limited exceedences given the historical land use and results of earlier investigations, and these results suggest some redevelopment potential may exist for land located west of the Transitway Station.

PAH and PHC-F1/BTEX exceedences of MOE standards are more frequent and widespread on the east side of the Transitway below the existing parking lot, consistent with visual and olfactory observations of coal tar occurrence in this area. This identified contamination in the shallow fill and the deep alluvium poses a significant impediment to redevelopment of parking lot area. Soil metals, PAH and BTEX exceedences and groundwater PAH and PHC-F1 exceedences of MOE standards were found at BH/MW12-11 on 193 Lees Avenue in proximity to adjacent University of Ottawa land. Soil PAH and BTEX exceedences of MOE standards were also found east of the Lees Avenue overpass at BH12-12 and BH12-16 on 193 Lees Avenue.

Assessment of potentially applicable remedial technologies and strategies for coal tar contamination at the Lees Avenue site identified four strategies combining multiple remediation activities as warranting further consideration. These four strategies can be broadly described as:

- 1. Excavation and Off-site Combustion.
- 2. Partial Excavation and In-situ Combustion.
- 3. Partial Excavation and In-situ Stabilization; and
- 4. Risk Management and Risk Assessment.

Each of these remedial strategies has different benefits and limitations and even if successful may allow varying degrees of development (i.e. risk management and risk assessment strategy may not allow subsurface development). These strategies also incorporate other aspects such as engineered barriers and institutional controls. Class 5 cost estimates are provided for each strategy for comparison and evaluation purposes only; Class 4 cost estimates should be prepared for each of these strategies as part of a more detailed remedial feasibility study.

TABLE OF CONTENTS

1	INTRODUCTION	1
	1.1 Site Description	1
	1.2 Background and Study Objectives	1
	1.3 Scope of Work	4
	1.4 Report Organization	5
2	CONCEPTUAL SITE MODEL	6
	2.1 Geological Framework	6
	2.2 Hydrostratigraphic Units	10
	2.2.1 Fill Unit	10
	2.2.2 Alluvium Unit	10
	2.2.3 Basal Glacial Till Unit	10
	2.2.4 Shale bedrock	
	2.4 Potential Contaminating Activities	12
	2.5 Areas of Potential Environmental Concern	13
	2.6 Soil and Groundwater Contamination	13
		. 10
3	FIELD INVESTIGATION METHODOLOGY	15
	3.1 Health and Safety Plan	15
	3.2 Well Rehabilitation	15
	3.3 Site Inspection and Utility Locates	16
	3.4 Borehole Drilling	16
	3.4.1 Decontamination Procedures	. 18
	3.4.2 Waste Material Management	18
	3.5 Logging and Soil Sampling/Screening	19
	3.6 Soil Quality Analyses	19
	3.7 Monitoring Well Installation	21
	3.8 Elevation and GPS Surveying	21
	3.9 Water Level Monitoring	21
	3.10 Well Purging and Groundwater Sampling	22
	3.11 Quality Assurance/Quality Control Program	23
4	SITE INVESTIGATION RESULTS	24
	4.1 Evaluation of Applicable Regulatory Standards	24
	4.2 Soil Texture	24
	4.3 Site Stratigraphy	24
	4.4 Groundwater Flow	25
	4.5 Soil Quality	31
	4.5.1 Coal Tar Occurrence	. 31
	4.5.2 Laboratory Chemical Results	. 33
	4.6 Groundwater Quality	35
	4.6.1 Free Product Occurrence	. 35
	4.0.2 Laboratory Unemical Results	. აე აი

	4.8 Summary of Site Conditions	
	4.8.1 Updated Conceptual Site Model	
	4.8.2 Soil and Groundwater Quality Exceedences	
	4.8.3 Coal Tar Presence	
5	REMEDIAL OPTIONS ASSESSEMNT	40
	5.1 Remedial Action Objectives	40
	5.2 Screening of Potentially Applicable Remedial Technologies	40
	5.2.1 Excavation and Off-Site Disposal	41
	5.2.2 Treatment	45
	5.2.2.1 Ex-situ Treatment	45
	5.2.2.2 In-situ Treatment	
	5.2.3 Engineered Containment	55
	5.2.3.1 Cap/Cover Site	55
	5.2.3.2 DNAPL Recovery	55
	5.2.3.3 Hydraulic Control	
	5.2.3.4 Containment Barriers	
	5.2.3.5 In-situ Solidification and Stabilization	
	5.2.3.6 In-situ Geochemical Stabilization	
	5.2.4 Institutional Controls	
	5.5 Technical issues	
	5.4 Proposed Remedial Strategies	
	5.5 Comparative Assessment of Proposed Remedial Strategies	61
6	CONCLUSIONS AND RECOMMENDATIONS	65
7	REFERENCES	67
8	CLOSURE	69

LIST OF FIGURES

Figure 1.1	Site Location	2
Figure 1.2	Site Layout	3
Figure 2.1	Site Layout, Historical Gas Plant Structures (APECs) and Historical	
-	Boreholes/Monitoring Wells	7
Figure 2.2	Conceptual Site Model – Cross Section A-A'	8
Figure 2.3	Conceptual Site Model – Cross Section B-B'	9
Figure 3.1	Location of Supplementary Phase 2 ESA Boreholes and Monitoring Wells	17
Figure 4.1	Till Surface Elevation	26
Figure 4.2	Bedrock Surface Elevation	27
Figure 4.3	Till Thickness	28
Figure 4.4	Groundwater Flow in Deep Alluvium – September/October 2012	29
Figure 4.5	Visible Oil and Tar Occurrences	32
Figure 4.6	Summary of Phase 2 ESA Soil and Groundwater Quality Exceedences	39
Figure 5.1	Example of a Rigid Structure Used During Environmental Remediation	44
Figure 5.2	Surface Equipment for Ex-Situ Thermal Desorption Treatment	46
Figure 5.3	Example of Biopile Technology Used to Treat Petroleum Contamination	47
Figure 5.4	Surface Equipment Layout for a Pilot Test of STAR Technology at a Cresol	
	Manufacturing Facility in Newark New Jersey	49
Figure 5.5	Schematic of Application of In-Situ Thermal Desorption at a Hydrocarbon	
	Contaminated Site	51
Figure 5.6	Layout of Equipment for Surfactant-Enhanced Remediation of NAPL (TCE)	
	Contamination at Hill Air Force Base, Utah	53
Figure 5.7	Outer Barrier Wall Construction using Cutter Soil Mixing at US EPA's Brunswick,	
	Georgia Superfund Site	57

LIST OF TABLES

Table 3.1 Summary of Purpose and Rationale for New Boreholes and Groundwa		g
	Wells	18
Table 3.2	Summary of Soil Samples Submitted for Laboratory Testing	20
Table 3.3	Summary of Historical Groundwater Monitoring Wells Sampled in 2012	22
Table 4.1	Groundwater Depths and Elevations	30
Table 4.2	Summary of Elevations of Visible Coal Tar during Drilling of Historical and 2012 Boreholes	33
Table 4.3	Summary of Duplicate Sample Identifiers for Soil and Groundwater Analyses	37
Table 5.1	Summary of Screening Evaluation of Remedial Technologies for Coal Tar Contamination at Lees Avenue Transitway Site	42
Table 5.2	Comparative Assessment of Remedial Strategies for Coal Tar Contamination at Lees Avenue Transitway Site	62

LIST OF APPENDICES

APPENDIX A	Borehole Stratigraphic and Instrumentation Logs
APPENDIX B	Soil and Groundwater Analytical Results Tables
APPENDIX C	Soil Texture Tables
APPENDIX D	Laboratory Analytical Reports
APPENDIX E	MOE Well Records

1 INTRODUCTION

Geofirma Engineering Ltd. was retained by the City of Ottawa – Realty Services Branch to complete a Supplementary Phase 2 Environmental Site Assessment (ESA) and Remedial Options Assessment (ROA) of the property addressed as 191 and 193 Lees Avenue, Ottawa, Ontario. The Supplementary Phase 2 ESA was completed as follow-up to a Phase 1 ESA (Geofirma Engineering Ltd., 2012a) and the Phase 2 ESA (Geofirma Engineering Ltd., 2012b) completed and submitted to the City under separate covers. The Phase 2 ESA recommended that supplementary Phase 2 ESA work be undertaken to better delineate the nature and extent of soil and groundwater contamination identified in the Phase 2 ESA and that a formal assessment of remedial options be completed before proceeding with any particular promising cleanup technology.

The Supplementary Phase 2 ESA and Remedial Options Assessment reported herein was completed in accordance with a proposed work plan prepared by Geofirma Engineering Ltd. (2012c), dated July 30, 2012. This work was completed under City of Ottawa Standing Offer RFSO 0190-91843-S01 – Phase 1 and 2 Environmental Site Assessments with Geofirma Engineering Ltd.

1.1 Site Description

191 Lees Avenue is currently the Lees Avenue Transitway Station. 193 Lees Avenue is vacant adjoining land located immediately north of the Lees Avenue Campus of the University of Ottawa located at 200 Lees Avenue. The assessed site includes 191 and 193 Lees Avenue, excluding a small parcel owned by Enbridge Gas, and including the adjoining City of Ottawa street rights-of-way. Figure 1.1 shows the location of the site and Figure 1.2 shows the boundaries of the site assessed as part of this work plotted on a recent 2008 air photo of the property with municipal street addresses.

1.2 Background and Study Objectives

The Lees Avenue Transitway Station property is the site of the former Ottawa coal and oil manufactured gas plant, that operated from the early 1920s to 1957. Extensive subsurface investigations and historical reviews of land use and subsurface conditions were completed at the site in 1986-87 following the discovery of coal tar in the adjacent Rideau River in April 1986. The Phase 1 ESA provides a summary description of site history and previous subsurface investigations completed at 191 and 193 Lees Avenue.

The initial investigations of the Lees Avenue Transitway Station site and surrounding area were completed over 25 years ago by Conestoga Rovers & Associates Limited (1986a, 1986b) for the Regional Municipality of Ottawa-Carleton, and by Intera Technologies Ltd. (1987) for the Ontario Ministry of the Environment (MOE). Provincial environmental quality guidelines and standards for typical coal gasification plant wastes were not available at the time of these investigations. Consequently, there was considerable uncertainty in the environmental condition of the site today and the ability to redevelop the site in accordance with current MOE guidance and regulations.

In 2012, the City of Ottawa completed a Phase 2 ESA of the site based on drilling and testing of soil and groundwater quality from 12 boreholes and groundwater monitoring wells.

 $G: \label{eq:started} G: \label{eq:started$

The overall City objectives for assessment of the 191 and 193 Lees Avenue site are the following:

- 1. Provide an up-dated assessment of the environmental condition of the property in accordance with current MOE O.Reg. 153/04 site condition standards (MOE, 2011a);
- Assessment of potential suitability of the site for research, demonstration and application of innovative soil remediation technologies (e.g., STAR – Self-sustaining Treatment for Active Remediation, currently under development at the University of Western Ontario, Faculty of Engineering); and
- 3. Assessment of re-development constraints for currently undeveloped lands around the Transitway Station.

1.3 Scope of Work

The Supplementary Phase 2 ESA and Remedial Options Assessment scope of work included the following activities and rationale to broadly meet the City overall objectives for the site:

- 1. Reinstatement/salvage or decommissioning of currently unusable groundwater monitoring wells remnant from the 1986/1987 investigations in accordance with O.Reg. 903.
- 2. Additional drilling, soil sampling, monitoring well installation to define soil and groundwater conditions on University of Ottawa property to delineate the extent of metals, PAH, PHC-F1/BTEX and coal tar contamination southeast of BH/MW12-11.
- 3. Additional drilling soil sampling and laboratory testing to better define the distribution and physical and chemical properties of coal tar in the deep alluvium over the eastern half of the Transitway Station parking lot, and within the former relief gas holder to further and more accurately assess contamination and the potential application of STAR and other remediation technologies at the Lees Avenue site.
- 4. Additional soil quality testing for metals, PAH and PHC-F1/BTEX on the west side of the Transitway to delineate and confirm the low levels of contamination identified in the initial Phase 2 ESA.
- 5. A second round of water level monitoring and groundwater sampling of all accessible groundwater monitoring wells for PAH and PHC-F1-BTEX to confirm the initial groundwater quality results.
- 6. A remedial options assessment of STAR, other innovative in-situ remedial technologies and more conventional ex-situ remedial alternatives before advancing or selecting STAR as a potential preferred remedial technology for the identified coal tar contamination at the site.

Neither the Phase 1 ESA/ Phase 2 ESA completed earlier, nor the supplementary investigation described herein, have been specifically planned to support filing of a Record of Site Condition for the property in accordance with the amended O.Reg. 153/04.

1.4 Report Organization

This report is organized into eight Sections and five Appendices.

Section 1 provides an introduction to the site, including site description, background, study objectives, work scope and organization of the report.

Section 2 provides a summary description of understanding of site conditions presented in the Phase 1 ESA and Phase 2 ESA reports as a Conceptual Site Model (CSM). Section 2 describes the geological framework, hydrostratigraphic units, the groundwater flow system, potential historical contaminating activities, areas of potential environmental concern, and the soil and groundwater contamination. The CSM is presented in Section 2 to provide rationale and context to the Supplementary Phase 2 ESA investigations as well as the evaluation of remedial options.

Section 3 provides a summary description of the methodology and scope of site investigations including environmental, health and safety planning, site inspection, clearance of underground utilities, well rehabilitation, borehole drilling, soil sampling and screening, monitoring well installation, water level surveys, groundwater sampling and field quality assurance procedures.

Section 4 summarizes the results of the field and laboratory investigations including assessments of soil and groundwater quality, groundwater elevations and interpreted flow directions, and nature and extent of soil and groundwater contamination and updated assessment of the conceptual site model.

Section 5 also provides a screening and assessment of the potential application of conventional and innovative in-situ soil remediation technologies for coal tar contamination at the site including STAR (Self-sustaining Treatment for Active Remediation).

Section 6 provides conclusions and recommendations of the work.

Sections 7 and 8 contain a list of report references and a report closure.

Appendix A contains borehole stratigraphic and instrumentation logs of the seven new boreholes and groundwater monitoring wells installed as part of the current supplementary Phase 2 ESA study, as well as the 12 boreholes and monitoring wells installed as part of the initial Phase 2 ESA. Appendix B contains summary tables of soil and groundwater quality analytical results from all sampling and testing completed in 2012, including results from the initial and supplementary Phase 2 ESAs. Appendix C summarizes the results of soil grain size and hydrometer testing to determine soil texture completed as part of the initial Phase 2 ESA. Laboratory analytical reports for the 2012 soil and groundwater sampling and testing completed in this supplementary Phase 2 ESA are included in Appendix D. The MOE well records for the seven new wells are given in Appendix E.

2 CONCEPTUAL SITE MODEL

In accordance with MOE (2011b) guidance, a Conceptual Site Model (CSM) was prepared for the 191 and 193 Lees Avenue site as part of the Phase 1 and 2 ESAs (Geofirma Engineering Ltd., 2012a; 2012b). The CSM was prepared based on review of historical site investigations, 2011 inspection of the site and the 2012 Phase 2 ESA and was prepared to guide Supplementary Phase 2 ESA work. The CSM includes plan and cross-sectional figures and narrative text describing: on-site buildings and structures, underground utilities, areas of potential contaminating activity (PCA), areas of potential environmental concern (APEC), historical occurrences of soil and groundwater quality that exceed current MOE standards, summary of hydrostratigraphic units and elevation tops, contaminant release and migration mechanisms for aqueous and non-aqueous phase liquid contaminants, and role of uncertainty in data that are used to develop the CSM. Figure 2.1 shows the site layout, historical gas plant structures, APECs and historical boreholes and monitoring wells.

Figure 2.2 illustrates the CSM along a vertical cross section constructed from southwest to northeast across the site. Figure 2.3 shows the CSM along a vertical cross section constructed northwest to southeast east of the Transitway. Figure 2.1 shows the location of the cross sections as well as the site layout, historical gas plant structures, and boreholes and monitoring wells. Figures 2.2 and 2.3 show the geological and hydrostratigraphic units, the occurrence of buried former gas plant structures that are APECs today, the pattern of groundwater flow to the deep groundwater collection system installed below the Transitway bus lanes, and the presence of pooled and residual saturation coal tar in the subsurface of the site. Figures 2.2 and 2.3 are based on current and historical investigations including the results of the Supplementary Phase 2 ESA borehole drilling and sampling.

The following sections describe the elements of the CSM that are important to understanding the geology and hydrogeology of the site and the nature and scope of the Supplementary Phase 2 ESA program developed for the site. The following sections describe geological framework, hydrostratigraphic units, groundwater flow system, potential contaminating activities, areas of potential environmental concern, and soil and groundwater contaminants as reported in the Phase 1 ESA. These CSM elements are subsequently updated in Section 4 based on the results of the Supplementary Phase 2 ESA.

2.1 Geological Framework

The geological framework for the site was initially described by Conestoga-Rovers & Associates Limited (1986a, 1986b) and Intera Technologies Ltd. (1987). This geological framework was subsequently updated based on the results of the Phase 2 ESA completed in early 2012. The geological framework consists of four distinct geological layers:

- Sandy granular fill, cinders, ashes, and construction debris, 3-5 m thick @ 0-5 mBGS, deeper near and below the Transitway;
- Silty and fine sand alluvium interbedded with silty clays and coarse sand and gravels, generally coarser with depth, 3-8 m thick @ 3-10 mBGS;
- Dense, basal sandy silt glacial till with some clay and gravel, 0-4m thick @ 7-11 mBGS; and
- Fractured and weathered black shale of the Billings Formation @ depths of 10-12 mBGS, shallower below the Transitway and the bus ramp.

 $[\]label{eq:g:loss} G: \label{eq:g:loss} G: \label{eq:g:loss} G: \label{eq:g:loss} C: \label{eq:g:loss} G: \label{eq:g:loss} C: \label{$

Α' А OW 112 -BH12-10 -G 16 -BH 100 - OW 507 - BH12-09 - BH12-13 OW 503 OW 116 OW 109 OW 113 BH 128 G 11 G 14 8 Ш Bus Ramp Transitway 65-Former Current Relief Apartment Former Gas Building Condenser Holder House 60-FILL Elevation (mASL) 55-0 ALLUVIUM TILL 50-45-SHALE BEDROCK 40-Legend FILL Vertical Exaggeration = 5XBorehole/Testpit Location Approximate Horizontal Scale ALLUVIUM - fine sand and gravel Water level - December 1986 T 25 50 m GLACIAL TILL Coal Tar Contamination SHALE BEDROCK Former Gas Plant Structure Conceptual Site Model - Cross Section A-A' Prepared by: DMP/ADG Supplementary Phase 2 ESA & Remedial Options Assessment rma Reviewed by: KGR **Engineering Ltd** FIGURE 2.2 Doc. No.: 11-200-11_A-A Cross Section_R0.dwg Date: 17-Jan-13

The dense till is absent in several areas below the Transitway Station parking lot and below the Transitway bus lanes. The upper few metres of the bedrock are weathered and fractured.

2.2 Hydrostratigraphic Units

Based on the geological framework, field hydraulic testing and review of water level measurements, the hydrogeology of the 191 and 193 Lees Avenue site can be simplified into four hydrostratigraphic units. A hydrostratigraphic unit is a subsurface unit or group of units that has similar hydraulic characteristics and is defined to facilitate hydrogeological interpretation and analysis.

Based on the initial work described by Intera Technologies Ltd. (1987) and the Phase 2 ESA (Geofirma Engineering Ltd., 2012b), four hydrostratigraphic units exist at the site; fill, alluvium, basal till and shale bedrock. These four hydrostratigraphic units are described in detail below.

2.2.1 <u>Fill Unit</u>

The fill hydrostratigraphic unit is typically comprised of sandy granular anthropogenic material and consists of cinders, ash, wood, brick and metal construction debris. Remnant foundations from former gas plant structures are also likely present. As described above, it is on average 3-5 m thick and found at 0-5 mBGS, deeper and thicker near and below the Transitway. The fill unit is typically permeable (10⁻⁷ to 10⁻⁴ m/s) and unsaturated, although some perched water tables are found within the fill layer due to buried concrete foundations and some lower permeability silty layers. The fill unit is typically more permeable than the underlying alluvium. Metal, PAH, PHC and BTEX contamination has been observed and is expected to be present in the fill unit due to former land uses.

2.2.2 <u>Alluvium Unit</u>

The alluvium hydrostratigraphic unit is comprised of silt and fine sand with interbedded sand, gravel and clay. It represents reworked fluvial deposits of the former Ottawa River drainage channel. As described above, it is on average 3-8 m thick and found at 3-10 mBGS. Based on grain size analyses and field testing, the hydraulic conductivity of the alluvium ranges from 10⁻⁸ to 10⁻⁴ m/s. Consistent with the increasing grain size with depth, the alluvium unit is typically more permeable at depth than near surface.

The alluvium unit is the main permeable and saturated unit at the site and transmits most of the groundwater across the site and to the Transitway groundwater collection system. Because of the thickness of this unit, groundwater monitoring has historically been completed in both the upper (shallow) and lower (deep) parts of the alluvium. The more permeable deep part of the alluvium is the more important part of the unit given the potential for accumulation of coal tar on the underlying dense low permeability glacial till and considering contamination migration by groundwater movement at the site. Soil and groundwater contamination have been observed within the alluvium unit.

2.2.3 Basal Glacial Till Unit

The basal glacial till is of low permeability and separates the permeable alluvium from the moderately permeable upper part of the underlying bedrock. The glacial till is a dense compact unit that is unlikely to transmit large volumes of water and appears in places to act as a confining unit to the

underlying bedrock (i.e., at OW-125A-86). The hydraulic conductivity of the basal glacial till unit has been estimated at less than 10⁻⁸ m/s.

As described above, the basal glacial till is patchy and is absent in some areas below the Transitway bus lanes and parking lot. Maximum thickness at the site is about 5 m with the unit found at depths of 7-11 mBGS. The basal glacial till unit has typically not shown evidence of soil or groundwater contamination by gas plant wastes.

The upper surface of the dense basal glacial till is important in assessing the migration potential of denser-than-water coal tar at the 191 and 193 Lees Avenue site. The elevation of the upper surface of the basal glacial till unit is based on interpolation of all of the information from historical drilling investigations, as well as from the six interpreted geological cross-sections given in the Intera Technologies Ltd (1987) report. There are depressions in the till surface below the former relief gas holder, below the current groundwater treatment building, below some of the Transitway and near OW-120-86. Generally, till surface elevation rises both eastward and westward from the Transitway.

The thickness of the basal glacial till surface is important in assessing the historical potential for downward contaminant migration into the underlying bedrock. The thickness of the glacial till unit interpolated from available data on the elevations of the till surface and the top of the bedrock surface. The till thickness at the 191 and 193 Lees Avenue site ranges from 0 to about 5 m. The till is absent below the former relief gas holder and in several pockets below and near the bus lanes of the Lees Avenue Transitway Station.

2.2.4 Shale Bedrock

The bedrock is primarily competent black shale of the Billing Formation. It is typically found at depths of 10-12 mBGS. Observations of core and field hydraulic testing shows the upper several metres of the bedrock unit is weathered and fractured with average hydraulic conductivity of 10⁻⁶ to 10⁻⁵ m/s. The deeper more intact parts of the bedrock unit will have hydraulic conductivity of less than 10⁻⁸ m/s comparable to that of the basal glacial till. Historical investigations of the bedrock did not conclusively show evidence of gas plant wastes.

The elevation of the upper surface of the bedrock unit is based on interpolation of the all of the information from historical drilling investigations, as well as from the six interpreted geological cross-sections given in the Intera Technologies Ltd (1987) report. The bedrock surface is relatively flat lying, typically found at elevations of 48 to 50 mASL at the site.

2.3 Groundwater Flow System

The groundwater flow system at the 191 and 193 Lees Avenue property is complicated by the presence of several hydraulic sinks the most important of which is the Lees Avenue groundwater collection system installed below the bus lanes of the Transitway Station. In addition to this major sink, additional drainage works exist below the bus ramp and underground parking garages at 169, 170, 171, 180 and 190 Lees Avenue. Most of the groundwater flow at the site occurs within the permeable alluvium unit, in particular the deep alluvium unit.

The lowest point of the Transitway groundwater collection system is about 50 mASL and the Lees Avenue pumping wet well extends to an elevation of about 45 mASL. The bus ramp is also underdrained but to a lesser extent than the bus lanes of the Transitway.

The underground parking garages of 169, 170, 171, 180 and 190 Lees Avenue (see Figure 1.2 for locations of these addresses) are typically drained to an elevation of less than 54 mASL, which is the elevation of the lower-most parking levels in these buildings. For reference the average water level in the nearby Rideau River approximates 56.5 mASL.

The interpreted historical pattern of groundwater flow in the deep alluvium is based on data available in May and December 1986. This was the last comprehensive set of water level measurements and hence the last integrated assessment of groundwater flow made for the Lees Avenue area. The 1986 data clearly shows the significant drawdown effect of the Transitway Station groundwater collection system on groundwater flow in the area of 191 and 193 Lees Avenue. These data show all the groundwater at 191 and 193 Lees Avenue property appears to be collected by the Transitway Station groundwater collection system and that with this collection system in place there is no off-site migration of groundwater from 191 and 193 Lees Avenue. Patterns of groundwater flow within the overlying shallow alluvium and fill units and in the underlying upper bedrock are expected to be like the pattern for the deep alluvium.

Potential revisions to the 1986 groundwater flow pattern may have occurred due to development of the apartment building at 171 Lees Avenue in about 1991. The underground parking garage at 171 Lees Avenue may create a groundwater divide at the west end of the site and divert groundwater flow to the west toward the parking garage underdrains.

2.4 Potential Contaminating Activities

The primary potential contaminating activity at the 191 and 193 Lees Avenue site, as per MOE (2011b) guidance is the operation of the coal and oil gasification plants, which under the amended O. Reg. 153/04 (Table 2 of Appendix D) are item 38 – Coal Gasification.

The range of potential contaminants at coal gasification plant sites is discussed in Intera Technologies Ltd. (1987). The major types of wastes and by-products likely to be present at former coal gasification plants include, in order of significance:

- Coal tar and oil tar;
- Sludges;
- Tar liquors and ammonia liquors;
- Spent iron oxide;
- Ash, slag and cinders; and
- Dust, off-grade coal and coke.

Tar residues and sludges were produced in the gas cleanup process during the cooling, condensation and scrubbing of the raw gas. On-site storage areas include underground tar tanks and wells located in proximity to the gas condenser and gas purifying houses. Tars typically contained up to 80 PAH with lesser amounts of aromatic hydrocarbons (e.g., BTEX) and phenolics. Coal and oil tar is

typically a dense non-aqueous phase liquid (DNAPL) contaminant, which can migrate in directions independent of groundwater flow directions, and be long-term sources of dissolved PAH and BTEX contamination. Coal and oil tar at former gasification plant sites are typically found as pools within former gas plant structures (e.g., relief and main gas holders, underground tar tanks and wells), as pools within depressions in low-permeability surfaces (e.g., dense till), and as residual saturation ganglia and pockets in granular materials (Raven and Beck, 1992)

Spent iron oxide is a waste product created from removal of sulphur and nitrogen-containing impurities from manufactured gas by adsorption onto iron oxide. These wastes contain high concentrations of sulphur, cyanide and ammonia compounds, most of which are chemically bound with iron. These waste products created the need to analyse for free cyanide in soil and groundwater samples in the Phase 2 ESA. However, detections of free cyanide in soil and groundwater in the Phase 2 ESA were typically low and not dectable.

Ash, slag, cinders, dust, off-grade coal and coke were most likely landfilled at the gas plant site or on land adjacent to the gas plant site. These waste materials are generally inert but are sources of trace metal contamination which should be analysed in the Phase 2 ESA.

2.5 Areas of Potential Environmental Concern

Areas of Potential Environmental Concern (APECs) for the 191 and 193 Lees Avenue are discussed in the Phase 1 ESA and are listed and shown in Figure 2.1. The 18 identified APEC are all former manufactured gas plant structures. APEC 18 – the main gas holding tank is not located on the 191 and 193 Lees Avenue site but was located on the adjacent 169 and 171 Lees Avenue property. It was remediated in 1987.

In addition to these 18 APECs, the entire former manufactured gas plant site is considered an APEC based on routine spillage of tars and disposal of other gas plant wastes (ash, cinders, coal, coke and spent oxide) on the property.

2.6 Soil and Groundwater Contamination

PAH, BTEX, phenolics, PHC, heavy metals, cyanide, sulphur and nitrogen compounds are the most likely contaminants at former coal and oil gasification plant sites (Environmental Research and Technology Inc. and Koppers Co. Inc., 1984; Intera Technologies Ltd, 1987). Review of historical soil and groundwater testing at the site (Conestoga-Rovers & Associates Limited, 1986b; Intera Technologies Ltd. 1987; Geofirma Engineering Ltd., 2012b) and comparison of these data to current MOE (2011a) soil and groundwater quality standards shows that the following chemical parameters are priority analytes for the Supplementary Phase 2 ESA:

- PAH in soil and groundwater;
- PHC-F1/BTEX in soil and groundwater; and
- Heavy metals in soil.

PAH and BTEX were frequently analysed in soil and groundwater samples collected as part of the 1986 and 2012 investigations of the 191 and 193 Lees Avenue site. The reported concentrations of the vast majority of samples collected from the site in 1986 and many of 2012 samples exceed current

MOE (2011a) standards in both soil and groundwater. Consequently, PAH and PHC-F1/BTEX remain important chemicals to be analysed in the Supplementary Phase 2 ESA.

Phenols while potentially a groundwater contaminant at the Lees Avenue site were analysed in groundwater in 1986 and were found to not be present in significantly elevated concentrations. The maximum phenol concentration reported from 1986 analyses of groundwater was 369 μ g/L, much less than the current MOE standard of 12,000 μ g/L.

Ammonia, a nitrogen-based indicator chemical was analysed in 1986 groundwaters, and found to be elevated with a maximum detected concentration of 443,000 μ g/L. However, ammonia is not an MOE listed contaminant in O.Reg.153/04, and hence analysing for this chemical would not help in assessing the condition of the site today against current MOE standards.

PHCs were not analysed in soil or groundwater samples in 1986, as they were not considered to be important indicator parameters for coal gasification plant wastes. Although Bunker C oil was stored at the site, the recent testing of soil and groundwater at two locations at the site by Golder Associates Ltd. (2011) shows that conventional PHCs are likely not important contaminants for the Lees Avenue site today. There were no exceedences current MOE standards for PHCs in soil or groundwater, where the same samples showed exceedences of MOE standards for PAHs. This indicates that today PAH are better indicator parameters of former gas plant contamination than PHCs.

Cyanide was not routinely analysed in 1986 investigations as no guidelines were available for that chemical compound. Thiocyanate (SCN) was analysed as an indicator parameter in groundwater samples collected in 1986 and was reported to be present in elevated concentrations of up to 29,700 μ g/L (OW109B-86), near the former gas purifying house. However, testing of soil and groundwater samples in the 2012 Phase 2 ESA for free cyanide showed that free cyanide is not a contaminant of concern at Lees Avenue. None of the 37 soil samples showed detections of free cyanide and none of the 27 groundwater samples showed exceedences of MOE standards (note maximum CN⁻ was 10 μ g/L, much less than the MOE standard of 66 μ g/L).

Heavy metals commonly associated with coal, ash and cinders (e.g., arsenic, copper, lead, zinc, etc.) were not analysed in soil samples collected in the 1986 investigations as the focus of the 1986 investigations was delineation of coal tar contamination. Heavy metals were analysed in 1986 groundwater samples and these were not found to be elevated. Soil and groundwater samples from the Phase 2 ESA were analysed for metals in 2012. Based on these 1986 and 2012 analyses, metals in soil remain potential contaminants of concern and metals in groundwater are not a concern for the proposed Supplementary Phase 2 ESA.

3 FIELD INVESTIGATION METHODOLOGY

Project-related field activities were conducted by Geofirma between September 24 and October 29, 2012 and included:

- Preparation and implementation of Environment, Health and Safety Plan;
- Rehabilitation of several 1986 groundwater monitoring wells that were found to be inaccessible for sampling in the 2012 Phase 2 ESA;
- Site inspection and utility locates;
- Borehole drilling;
- Soil screening and sampling;
- Monitoring well installation;
- Elevation and GPS surveying of boreholes/monitoring wells;
- Water level and product level monitoring;
- Groundwater purging and sampling; and
- Implementation of quality assurance/ quality control program.

Access to all field work sites, except for groundwater monitoring wells OW507A, OW507B, OW507C, BH-001, OW122A, OW122B and OW122C was granted by the City of Ottawa. Access to the OW507-series wells located on the MTO right-of-way of Highway 417 was granted by the Ontario Ministry of Transportation through Encroachment Permit EC-2011-420-98 issued to Geofirma Engineering Ltd. on October 19, 2012. Access to wells BH-001 and OW122-series wells located on University of Ottawa property was granted through a Consent to Enter dated September 20, 2012.

3.1 Health and Safety Plan

Given the hazardous nature of coal tar contamination, it was necessary to develop a site-specific Environment, Health and Safety Plan (EHSP) for the Supplementary Phase 2 ESA. The EHSP described procedures and protocols for ensuring protection of the environment and worker health and safety during the intrusive Supplementary Phase 2 ESA investigations. The EHSP described:

- Purpose, scope and responsibilities of the plan;
- Background and environmental concerns;
- Site operations;
- Use of personal protective equipment;
- Waste material handling and disposal;
- Site restoration; and
- Emergency procedures and contingency plan.

3.2 Well Rehabilitation

All of the six proposed well rehabilitations were completed: OW109B, OW110A, OW110B, OW111A,

OW111B and OW116B. The wells were rehabilitated using a vacuum truck and vacuum wand. Water levels were collected for all wells, and three of the wells were sampled. OW109B, OW110B and OW111A did not contain a sufficient volume of water for sampling or did not recover to produce sufficient water for sampling following well purging.

3.3 Site Inspection and Utility Locates

All but one of the proposed borehole locations were cleared of underground utilities/structures including telephone, gas, hydro and private utilities by Ottawa Valley Locates prior to the advancement of the boreholes. Three of the ten boreholes mentioned in the proposal were not drilled for the following reasons:

- The proposed location for a borehole and well north of BH/MW12-11 and its surrounding area could not be cleared for locates and thus was not drilled.
- The proposed location for a borehole and well at the northern limit of the parking lot adjacent to the Transitway south of Lees Avenue on University of Ottawa property was not drilled as an existing well (BH-001) was used in its place.
- The proposed location for a borehole and well north of OW109B and east of OW116B was not drilled as rehabilitation of these two nearby wells eliminated the need for a borehole and well at this location.

Clearance of overhead obstructions was completed as part of an initial site inspection prior to finalizing drilling locations.

3.4 Borehole Drilling

Seven boreholes (BH12-13 to BH12-19) were drilled in various locations on the site in September 2012 under the supervision of Geofirma personnel. Borehole drilling was completed using a direct push Geoprobe 7822DT drill rig operated by Strata Drilling Group of Richmond Hill, Ontario.

Boreholes were advanced through the overburden using the direct push, dual-tube method consisting of an outer steel tube 83 mm in diameter and 1.5 m long, fitted with a hollow steel inner tube that was in turn lined with a clear plastic tube. The assembly was hammered pneumatically into the ground. Following each 1.5 m long advancement (or less depending on soil conditions), the inner barrel was returned to the surface and the clear plastic tube containing the bored soil was extruded and split lengthwise. Soil logging and sampling procedure are described in Section 3.5.

The locations of boreholes are shown on Figure 3.1. The rationale for the location of these seven new monitoring wells is provided below in Table 3.1.

Boreholes were typically terminated at the top of till to help delineate the coal tar plume in the overlying permeable alluvial soils and to minimize the risk of creating a contaminant migration pathway through the till with the underlying bedrock. If the till was inadvertently drilled to depths greater than about 0.3-0.5 m, the borehole was backfilled with bentonite pellets to a depth of at least original top of till surface. Bentonite backfilling was not deemed necessary at any of the newly drilled boreholes.

 $[\]label{eq:G:DataProjectLeesAve_Maps_11-200-11_Lees_SupplementalPhaseII_11-200-11_LeesAve_Figure3_1_LocationOfWellsSampled2012.mxd$

	LEGEND		
	F	Road	
177	c	Current Building Footprint	
Road	S 2	012 Borehole/Monitoring Well	
	ତ ⊢ ୨	listorical Monitoring Well Sampled in Fall 2012	
	S H N ir	listorical Monitoring Well lot Suitable for Sampling n Fall 2012	
	s s	ite Boundary	
	F	ormer Gas Plant Structure	
	F F	ormer Gas Mains/Underground Piping	
	<u>Historical Gas P</u>	lant Structures (APECs)	
	1 Water Gas Reli 2 Tar Well Adace	ef Holding Tank nt to the Old Water	
Y	Gas Plant 3 Surface and Ur Storage Tank	nderground Gas Oil s	
γ	4 Water Gas House 5 Tar Storage Area in Boiler House		
	6 Ammonia Liquo 7 Tar Pump Hous	or/Tar Well se	
	8 Underground T 9 "Bunker C" Oil	ar Separator Tank	
	10 Two tar dehydrators		
	12 Tar, Ammonia,	Liquor, Separator and	
	House	s South of Fullying	
	13 Condenser Ho 14 Retort House	use	
	15 Sump		
	16 Gas Metering 17 Coal Shed	House	
	18 Gas Holder Tank		
	Figure 3.1 - Location of Phase 2 ESA Boreholes and Monitoring Wells		
-	Sca	ale 1:1,700	
	0 10 20 40 60 80 Meters		
	Projection: NAD 83 MTM Zone 9 Source: City of Ottawa, Geobase Canada		
	PROJECT No. 11-200-11		
	PROJECT Supplementary Phase 2 ESA & Remedial Options Assessment 191 & 193 Lees Avenue, Ottawa		
	DESIGN: ADG CAD/GIS: ADG CHECK: KGR REV: 0		
	DATE: 21/01/2013		

Table 3.1 Summary of Purpose and Rationale for New Boreholes and Groundwater Monitoring Wells

Borehole/Well Designation	Hydrostratigraphic Unit Monitored	Purpose/Rationale	
BH/MW12-13	Fill	Assess coal tar presence within former relief gas holder	
BH/MW12-14	Deep Alluvium	Assess extent of coal tar pool in deep alluvium	
BH/MW12-15	Deep Alluvium	Assess coal tar presence in deep alluvium near APEC 5 (Boiler House Tar Storage)	
BH/MW12-16	Deep Alluvium	Assess eastern extent of coal tar presence in deep alluvium	
BH/MW12-17	Deep Alluvium	Assess soil and groundwater quality in area west of Transitway	
BH/MW12-18	Deep Alluvium	Assess soil and groundwater quality in area west of Transitway	
BH/MW12-19	Deep Alluvium	Assess soil and groundwater quality in area west of Transitway	

Exceptions to this drilling protocol include BH12-13 which was terminated at refusal on the suspected base of the relief gas holding tank, BH12-17 that was drilled about 1.0 m into the till with the well screen straddling the deep alluvium and till, and BH12-19 which did not encounter till.

3.4.1 <u>Decontamination Procedures</u>

Clean, de-contaminated drilling and sampling equipment was used at each drilling location. The core barrel was lined with a new disposable plastic sleeves at each sampling interval to prevent cross contamination. Drilling equipment such as augers, rods and core barrels, was also decontaminated by removal of excess material through brushing, followed by steam-cleaning when necessary. Smaller field equipment such as sampling implements, probes, metres etc. were decontaminated using a three-step technique of soapy water wash, methanol wipe (where equipment allowed), and a distilled water rinse.

Decontamination was conducted in a dedicated area with sufficient tarps and/or berms to contain any contaminated fluid. All wash water resulting from decontamination of equipment and personnel was contained, drummed and disposed of with monitoring well purge waters in an appropriate manner. Further details regarding decontamination procedures were included in the Environment, Health and Safety Plan.

3.4.2 Waste Material Management

As part of the plan for management of waste materials, Geofirma established a storage and staging area in the corner of the parking lot to the east of the Transitway station. This storage and staging area was used for temporary storage of drummed drill cuttings and containers for wash water and development water prior to testing and final disposal. The storage and staging area was fenced with lockable gates to provide secure storage of excess waste materials generated in this project.

Soil cuttings were collected at each borehole location, inspected for evidence of contamination, and drummed for disposal. The drums were transported to a common location following collection. Following completion of drilling, a composite sample of all drummed soil cuttings was submitted for laboratory analysis in accordance with Ontario Regulation 558, for subsequent disposal at a local licensed landfill. A total of 2 drums of soil cuttings and a total of 1,000L of oily decontamination and

well purging water were collected and contained in the Supplementary Phase 2 ESA investigation. All solid and liquid waste materials were collected by Triangle Pump Service of Ottawa, Ontario for disposal at licensed facilities under MOE manifests.

3.5 Logging and Soil Sampling/Screening

The recovered soil samples were logged in the field for soil stratigraphy, texture, moisture, and visual and olfactory evidence of contamination. The recovered soil samples were then split into one or more samples depending on amount of recovery and number of distinct soil intervals. Samples were collected in re-sealable plastic bags for soil vapour screening. Sample intervals selected for laboratory analysis were then transferred into laboratory-supplied glass jars.

Bagged soil samples were allowed to reach ambient temperature and soil headspace organic vapour concentrations were measured in the field using a Gastec Combustible Gas Indicator (CGI) operated in methane elimination mode and calibrated to a high (44% Lower Explosive Limit) and low (400 parts per million) concentration hexane standard and a photoionization detector (PID) calibrated by Pine Environmental using isobutylene.

3.6 Soil Quality Analyses

Parameters of concern for the soil sampling program include heavy metals, polycyclic aromatic hydrocarbons (PAHs) and PHC-F1/benzene, ethylbenzene, toluene, and xylenes (BTEX).

Jarred soil samples were stored on ice in a cooler for possible laboratory submission. Soil samples to be submitted for PHC-F1/BTEX parameters were jarred immediately after collection and placed on ice in laboratory-supplied bottles.

In general, samples were selected for laboratory analysis based on results of CGI and PID readings, visual/olfactory evidence of contamination, and to provide spatial and depth coverage of the site. Two to eight soil samples from each of the seven newly installed boreholes were collected and submitted to the laboratory for analyses and two blind duplicate samples were collected and analysed for QA/QC purposes. As shown on Table 3.2, a total of 42 separate soil samples were submitted for laboratory analyses. Table 3.2 also summarizes the depth and hydrostratigraphic unit of all soil samples submitted from each borehole for laboratory analyses. Samples for metals analyses were preferentially selected from the fill unit. Samples for PAH and PHC-F1/BTEX were selected throughout the soil column based on visual, olfactory and instrument evidence of contamination.

Jarred soil samples selected for laboratory analyses were stored and shipped in a cooler with ice packs and submitted to Paracel Laboratories Ltd. of Ottawa, Ontario, a CALA certified analytical laboratory, operating under standard chain of custody procedures.

Soil conditions and laboratory analytical results are discussed in Section 4.

Borehole ID	Depth Interval (mBGS)	Laboratory Analysis	Hydrostratigraphic Unit
BH12-13	3.05 - 4.57	PHC-F1/BTEX	Fill
	4.57 - 4.87	Metals, PAH, PHC-F1/BTEX	Fill
BH12-14	0.00 - 1.52	Metals	Fill
	1.52 - 2.29	РАН	Fill
	3.05 - 3.81	Metals	Fill
	4.57 - 5.34	PHC-F1/BTEX	Fill
	6.10 - 6.86	PHC-F1/BTEX	Fill
	6.86 - 7.62	Metals, PAH	Fill/Shallow Alluvium
	8.38 - 9.14	PAH, PHC-F1/BTEX	Deep Alluvium
BH12-15	1.83 - 2.29	РАН	Fill
	2.29 - 3.05	Metals	Fill
	3.05 - 3.20	PHC-F1/BTEX	Shallow Alluvium
	3.81 - 4.57	РАН	Shallow Alluvium
	4.57 - 5.34	PHC-F1/BTEX	Shallow Alluvium
	6.10 - 6.86	Metals, PAH	Deep Alluvium
	6.86 - 7.62	PHC-F1/BTEX	Deep Alluvium
	8.38 - 8.69	Metals, PAH	Deep Alluvium
BH12-16	1.52 - 2.15	Metals, PAH, PHC-F1/BTEX	Fill
	3.81 - 4.57	Metals, PAH	Shallow Alluvium
	4.57 - 4.88	PHC-F1/BTEX	Shallow Alluvium
	4.88 - 5.64	РАН	Shallow Alluvium
	6.86 - 7.62	Metals	Deep Alluvium
	7.62 - 8.38	PHC-F1/BTEX	Deep Alluvium
BH12-17	1.52 - 2.29	Metals, PAH	Fill
	3.05 - 3.81	РАН	Fill
	4.57 - 5.33	PHC-F1/BTEX	Fill
	6.10 - 6.86	Metals	Fill/Shallow Alluvium
	6.86 - 7.62	Metals, PAH	Alluvium
	7.62 - 8.38	PHC-F1/BTEX	Alluvium
	8.38 - 9.14	PHC-F1/BTEX	Deep Alluvium
BH12-18	0.00 - 1.52	Metals, PAH, PHC-F1/BTEX	Fill
	1.52 – 2.29	Metals	Fill
	2.29 - 3.05	Metals, PAH	Fill
	3.05 - 3.81	PHC-F1/BTEX	Fill
	5.33 - 6.10	РАН	Shallow Alluvium
	7.62 - 8.38	PHC-F1/BTEX	Deep Alluvium
BH12-19	0.00 - 1.52	Metals	Fill
	3.05 - 3.81	PHC-F1/BTEX	Fill
	3.81 - 4.57	Metals, PAH	Fill
	4.57 - 5.33	Metals, PAH, PHC-F1/BTEX	Fill
	6.10 - 6.86	PHC-F1/BTEX	Shallow Alluvium
	6.86 - 7.62	РАН	Deep Alluvium

Table 3.2	Summary of Soil Samples Submitted for Laboratory Testing
-----------	--

3.7 Monitoring Well Installation

Groundwater monitoring wells were installed in all 7 boreholes drilled during the program described above. All well installations were completed by Strata Drilling Group, an MOE licensed well installer, in accordance with Ontario Regulation 903. Water well records were submitted to MOE by Strata, on behalf of the City of Ottawa. Individual well records were submitted for the seven shallow wells – BH/MW12-13 to BH/MW12-19. Copies of the MOE well records are provided in Appendix E. The MOE well tags were affixed to each individual well.

One monitoring interval was typically installed at each borehole location to access the permeable deep alluvium. Exceptions to this protocol include MW12-13 which was installed in the fill layer and MW12-17 which was installed across the deep alluvium/till interface. MW12-14, MW12-17 to MW12-19 were instrumented with a conventional 51 mm diameter, Schedule 40 PVC (10 slot) well screens, 1.5 metres in length, finished to ground surface with flush-threaded PVC risers. MW12-13, MW12-15 and MW12-16 were instrumented with a conventional 38mm diameter, Schedule 40 PVC (10 slot) well screens, 1.5 metres in length, finished to ground surface with flush-threaded PVC risers. The smaller size was required in some cases due to flowing sand partially collapsing in the borehole. A silica sand pack was placed around the screened interval, topped with a bentonite seal to surface. A steel flush-mount casing or steel protective casing was cemented into place at each location.

Each new groundwater monitoring well and historical well to be sampled were equipped with a dedicated Waterra[™] foot valve and high-density polyethylene tubing to allow collection of groundwater samples.

3.8 Elevation and GPS Surveying

A site survey was completed on September 27 and 28, and October 3, 2012. The locations of all newly drilled monitoring wells and existing wells to be sampled (Figure 3.1) were located with reference to existing site features. Elevations of borehole ground surface and monitoring well top of casing (TOC) were referenced to known benchmarks (other monitoring wells) and measured to the nearest 0.001 m using a Nikon XL level. Geodetic elevations were reported in metres above sea level (mASL) based on surveying of monitoring wells by Geofirma in February 2012.

GPS readings of horizontal position were taken at each well using a Garmin Etrek Legend to an accuracy of 6m. The locations of all monitoring wells surveyed and sampled in the Supplementary Phase 2 ESA are included on Figure 3.1. The TOC elevations and the GPS locations of all new monitoring wells are included on the borehole logs given in Appendix A.

3.9 Water Level Monitoring

Geofirma completed groundwater monitoring, including the measurement of depth to water level and liquid phase hydrocarbon (LPH), if any, on September 27 and October 23, 2012. Measurements were referenced to the TOC, to the nearest 0.001 m. A Solinst electronic oil-water interface meter was used for this task. The interface probe was thoroughly cleaned with a methyl alcohol and distilled water solution between each well to prevent cross contamination.

3.10 Well Purging and Groundwater Sampling

One round of groundwater sampling was performed; collected samples were analysed for PAH and PHC-F1/BTEX. Groundwater samples were collected from the 19 2012 wells (7 installed in September and 12 installed in February 2012) and from 15 wells of the existing monitoring well network. Table 3.3 lists the historical groundwater monitoring wells that were sampled. Figure 3.1 shows the location of the new and historical groundwater monitoring wells that were sampled, and historical wells that were not suitable for sampling. Wells OW109B, OW110B, OW111A, OW122A and E-115B that were originally proposed to be sampled, were not sampled due to insufficient water or dry conditions.

Borehole/Well Designation	Hydrostratigraphic Unit Monitored	Purpose/Rationale	
BH-001*	Shallow Alluvium	Assess groundwater quality and flow in shallow alluvium	
OW109A-86	Shale Bedrock	Assess groundwater quality and flow in bedrock near APECs 13 and 14	
OW110A-86	Shale Bedrock	Assess groundwater quality and flow in bedrock	
OW111B-86	Deep Alluvium	Assess groundwater quality and flow in deep alluvium	
OW112A-86	Shale Bedrock	Assess groundwater quality in former downgradient area of contamination	
OW112B-86	Deep Alluvium	Assess groundwater quality in former downgradient area of contamination	
OW116A-86	Shale Bedrock	Assess groundwater quality and flow in bedrock on western side of site	
OW116B-86	Till	Assess groundwater quality and flow in till on western side of site	
OW116C-86	Shallow Alluvium	Assess groundwater quality and flow in shallow alluvium on western side of site	
OW122B-86*	Till and Deep Alluvium	Assess off-site groundwater flow system in deep alluvium	
OW122C-86*	Shallow Alluvium	Assess off-site groundwater flow system in shallow alluvium	
OW507B-86**	Deep Alluvium	Assess off-site groundwater flow system in deep alluvium near APEC 1	
OW507C-86**	Shallow Alluvium	Assess off-site groundwater flow system in shallow alluvium near APEC 1	
E-006	Deep Alluvium	Assess groundwater quality and flow in deep alluvium	
E-115A	Deep Alluvium	Assess groundwater quality and flow in deep alluvium	
* located on University of Ottawa property; ** located on MTO property:			

Table 3.3 Summary of Historical Groundwater Monitoring Wells Sampled in 2012

Monitoring wells were purged of three well volumes or three times dry in order to reduce groundwater turbidity and to remove fine-grained sediments that may have accumulated inside the well casing subsequent to the drilling program or over time for existing wells. Purging was also completed to remove the "stagnant" water from the well and surrounding annulus. Well purging was accomplished by removing water from the wells at a rate fast enough to hydraulically stress the formation and to resuspend and extract sediment from the bottom, where present. Purging was conducted using a dedicated 5/8" LDPE tubing and foot valve. The foot valve was positioned at the bottom of each well and was agitated during pumping to disturb and extract any sediment. The outlet was directed into a graduated 20L pail for cumulative purge volume measurements. Purge waters was drummed for later testing and disposal as described on Section 3.4.2. The pumping rate was generally kept between 1.5 to 2 L/minute or as fast as the well could recharge. Following well purging, the LDPE tubing was dedicated to each well, for subsequent groundwater sampling.

Groundwater sampling was completed from October 1 to 29, 2012. The low-flow sampling was used for the collection of groundwater samples from the monitoring wells. The low flow method was employed to collect samples that were free of suspended fine-grained particles (which can sorb otherwise immobile contaminants) and to minimize the potential loss of any volatile constituents. Sampling was accomplished using a Master flow peristaltic pump. A short section of 3/8" silicon tubing was installed at the pump head and was attached to the dedicated $\frac{1}{4}$ " LDPE tubing in the well. The pump intake was positioned in the center of the saturated screen interval or approximately 0.3m above the well bottom. The silicone tubing and $\frac{1}{4}$ " LDPE outlet tubing were replaced at each well.

The flow rate of the peristaltic pump was adjusted based on the hydraulic performance of each well to achieve a minimal, stabilized drawdown at a constant flow rate less than 0.5 L/min. The ¼" discharge tubing was cut approximately 10 cm from the silicon tubing at the outlet of the peristaltic pump, and the groundwater was transferred into clean, laboratory prepared sample containers that were labelled prior to sample collection.

Parameters of concern for the groundwater sampling program included PAHs and PHC-F1/BTEX. One groundwater sample was submitted from each of 34 monitoring wells (19 2012 installed and 15 historical).

Upon collection, the samples were placed in laboratory-supplied insulated coolers with ice packs and submitted to Paracel Laboratories of Ottawa Ontario under a chain-of-custody within 24 hours of collection.

3.11 Quality Assurance/Quality Control Program

Geofirma maintains a Quality Management System (QMS) certified and registered as ISO9001:2008. All relevant Geofirma QMS Procedures, Work Instructions and Field Protocols were strictly adhered to during the completion of the assignment.

As well as internal laboratory QC performed by Paracel Laboratories of Ottawa, Ontario, field quality control samples were collected. A total of two blind duplicate soil samples and three blind duplicate groundwater samples were collected for QA/QC purposes. One field blank groundwater sample was also prepared in the field based on circulation of deionized water through the field sampling equipment. Blind duplicate and field blank samples were analysed for analytes of interest – metals, PAH and PHC-F1/BTEX.

4 SITE INVESTIGATION RESULTS

4.1 Evaluation of Applicable Regulatory Standards

Soil and groundwater quality analytical results were compared to current MOE (2011a) provincial standards mandated under O.Reg. 153/04. Given the fact that the property and surrounding area is serviced by municipal water supply, full depth, non-potable (MOE Table 3) standards are applicable. Based on the observed soil texture and results of grain size/hydrometer analyses (see Section 4.2), site soils are predominately coarse textured under O.Reg. 153/04.

Current land use at the site is commercial (Transitway Station and parking lot at 191 Lees Avenue) and vacant land (open field at 193 Lees Avenue). Given the City need to assess future development potential for the site, soil and groundwater quality are compared to both residential/ parkland and commercial/industrial land use standards.

4.2 Soil Texture

Laboratory grain size analysis was not performed for the supplementary portion of this investigation. The soil textures observed during the supplementary drilling were consistent with those from the initial Phase 2 ESA drilling completed in February/March 2012. The results from the February/March 2012 sieve and sieve/hydrometer analyses for determination of grain size distributions of site soils are given in Tables C.1 and C.2 of Appendix C. Tables C.1 and C.2 show that 10 of the 12 soil samples submitted to grain size analysis are considered coarse textured by MOE under O.Reg. 153/04. These analytical results, in conjunction with soil texture observations recorded during soil sampling (see borehole stratigraphic logs in Appendix A) and historical data, indicate that soil quality standards for coarse-textured soils are applicable to the site.

4.3 Site Stratigraphy

All of the boreholes drilled for the Supplementary Phase 2 ESA comprised stratigraphic profiles consistent with expectations based on previous drilling programs and the historical CSM described in Section 2.2 of this report and the initial Phase 2 ESA report. Shallow anthropogenic fill represents the surficial soil, which is underlain by fine sand to silt/clay alluvium, which in turn is underlain by dense sandy clay till. The fill unit is predominately coarse-grained sand with some silt and gravel, and traces of ash and construction debris. The fill thickness ranged from 2.2 m (BH12-16) to 7.3 m (BH12-14), with an average thickness of about 5 m. The underlying silty to sandy alluvium containing some gravel and clay ranged in thickness from 1.8 m (BH12-14) to 7.25 m (BH12-16), with an average thickness of about 3.3 m.

The basal glacial till is of low permeability and separates the permeable alluvium from the moderately permeable upper part of the underlying bedrock. The glacial till is a dense compact unit that is unlikely to transmit large volumes of water and appears in places to act as a confining unit to the underlying bedrock (i.e., at OW-125A-86). The hydraulic conductivity of the basal glacial till unit has been estimated at less than 10⁻⁸ m/s.

The basal glacial till is patchy and is absent in some areas below the Transitway bus lanes and parking lot. Maximum thickness at the site is about 4 m with the unit found at depths of 7-11 mBGS. The basal glacial till unit has typically not shown evidence of soil or groundwater contamination by gas

plant wastes.

The upper surface of the dense basal glacial till is important in assessing the migration potential of denser-than-water coal tar at the 191 and 193 Lees Avenue site. Figure 4.1 shows the interpolated surface of the basal till unit based on the surface presented in the Phase 1 ESA updated with the results of the 2012 drilling programs. Where till is absent the elevation of the till surface in Figure 4.1 is taken as the top of bedrock. The till surface based on the 2012 borehole data is very similar to that presented in the Phase 1 ESA Report based on historical borehole information. Figure 4.1 shows that there are depressions in the till surface below the former relief gas holder, below the current groundwater treatment building, below some of the Transitway and near OW-120-86. Generally, till surface elevation rises both eastward and westward from the Transitway.

Figures 4.2 and 4.3 show the bedrock surface elevation and till thickness plots, respectively, updated with the 2012 drilling information. Because drilling was terminated in the upper metre of the till, the bedrock surfaces and till thicknesses shown in Figures 4.2 and 4.3 are the same as those shown in the Phase 1 ESA Report and the initial Phase 2 ESA Report.

The thickness of the basal glacial till surface is important in assessing the historical potential for downward contaminant migration into the underlying bedrock. Figure 4.3 shows the thickness of the glacial till unit interpolated from available data on the elevations of the till surface and the top of the bedrock surface (Figure 4.2). Figure 4.3 shows that the till thickness at the 191 and 193 Lees Avenue site ranges from 0 to about 5 m. Figure 4.3 shows that the till is absent below the former relief gas holder and in several pockets below and near the bus lanes of the Lees Avenue Transitway Station.

4.4 Groundwater Flow

The groundwater flow system at the 191 and 193 Lees Avenue property is complicated by the presence of several hydraulic sinks, the most important of which is the Lees Avenue groundwater collection system installed below the bus lanes of the Transitway Station. In addition to this major sink, additional drainage works exist below the bus ramp and underground parking garages at 169, 170, 171, 180 and 190 Lees Avenue. The vast majority of groundwater flow at the site occurs within the permeable alluvium unit, in particular the deep alluvium unit.

The lowest point of the Transitway groundwater collection system is about 50 mASL and the Lees Avenue pumping wet well extends below to an elevation of about 45 mASL. The bus ramp is also under-drained but to a lesser extent than the bus lanes of the Transitway.

The underground parking garages of 169, 170, 171, 180 and 190 Lees Avenue are typically drained to an elevation of less than 54 mASL, which is the elevation of the lower-most parking levels in these buildings. For reference, the average water level in the nearby Rideau River approximates 56.5 mASL.

Measured groundwater elevations from September/October 2012 investigations are summarized in Table 4.1. Water level information for the deep alluvium unit are contoured and shown in Figure 4.4 to illustrate the patterns of horizontal groundwater flow in the deep alluvium. The patterns of horizontal groundwater flow shown in Figure 4.4 are drawn based on water level data from 8 accessible historical wells, 18 of the wells installed in 2012 (MW12-13 is a fill unit well) and the historical

 $G: \label{eq:gamma} G: \$

G:\Data\Project\LeesAve\Maps\11-200-11_Lees_SupplementalPhaseII\11-200-11_LeesAve_Figure4_2_BedrockSurface.mxd

G:\Data\Project\LeesAve\Maps\11-200-11_Lees_SupplementalPhaseII\11-200-11_LeesAve_Figure4_3_TillThickness.mxd

LEGEND

Road

Current Building Footprint

Monitoring Well

Borehole or Monitoring Well

Geotechnical Borehole

Site Boundary

Former Gas Plant Structure

Former Gas Mains/Underground Piping

Till Thickness (m)

-	
	0 - 0.5
	0.5 - 1
	1 - 1.5
	1.5 - 2
	2 - 2.5
	2.5 - 3
	3 - 3.5
	3.5 - 4
	4 - 4.5
	4.5 - 5
	5 - 5.5
	5.5 - 6
	6 - 6.5
	6.5 - 7
	7 - 7.5
	7.5 - 8

Figure 4.3 - Till Thickness

			Scale 1	:1,100		
0	10	20	Me	40 eters	60	80
Proj Sou	ection: rce: City	NAD 83 M / of Ottav	1TM Zone va, Geob	e 9 ase Cana	ada	
PRO	JECT No.	11-200-11	L			
PRO.	^{рест} & 19	Supple Remec 91 & 19	ementa lial Op 93 Lee	ary Pho otions s Aver	ase 2 ESA Assessme nue, Otta	A ent wa
DES CAD CHE REV:	IGN: ADG /GIS: VM CK: KGR 0	S S		•	Geofi	rma
	E. 21/01	/2012			Enginee	ring Lta

	Ground	Top of Well		Water	Water			
Monitoring	Surface	PVC Biser	Measurement	l evel	Level			
Well ID	Elevation	Flevation	Date	Depth Elevation Hy		Hydrostratigraphic Unit		
-	(m ASL)	(m ASL)		(m BTR)	(m ASL)			
MW12-01	59.19	59.06	27-Sep-12	3.72	55.34	Deep Alluvium		
MW12-02	53.98	53.82	27-Sep-12	1.70	52.12	Deep Alluvium		
MW12-03	59.55	60.50	27-Sep-12	8.86	51.64	Deep Alluvium		
MW12-04	59.69	60.50	27-Sep-12	9.32	51.18	Deep Alluvium		
MW12-05	58.37	58.26	27-Sep-12	5.03	53.23	Deep Alluvium		
MW12-06	59.54	60.37	27-Sep-12	8.25	52.12	Deep Alluvium		
MW12-07	59.41	59.29	27-Sep-12	6.65	52.64	Deep Alluvium		
MW12-08	59.69	59.50	09-Oct-12	6.39	53.11	Deep Alluvium		
MW12-09	59.99	59.87	27-Sep-12	6.57	53.30	Deep Alluvium		
MW12-10	60.22	60.13	27-Sep-12	7.71	52.42	Deep Alluvium		
MW12-11	62.22	63.08	27-Sep-12	9.32	53.75	Deep Alluvium		
MW12-12	60.92	61.65	27-Sep-12	7.10	54.56	Deep Alluvium		
MW12-13	59.81	59.73	27-Sep-12	3.62	56.11	Fill		
MW12-14	60.47	60.42	27-Sep-12	7.22	53.20	Deep Alluvium		
MW12-15	59.50	59.39	27-Sep-12	6.64	52.75	Deep Alluvium		
MW12-16	61.02	61.88	27-Sep-12	7.11	54.77	Deep Alluvium		
MW12-17	59.16	60.10	27-Sep-12	9.21	50.90	Deep Alluvium		
MW12-18	59.59	60.70	27-Sep-12	8.21	52.49	Deep Alluvium		
MW12-19	59.05	60.14	27-Sep-12	7.75	52.39	Deep Alluvium		
BH-001	61.92	61.80	02-Oct-12	4.58	57.22	Shallow Alluvium		
E-006	59.37	59.26	27-Sep-12	8.64	50.63	Deep Alluvium		
E-115A	60.07	59.94	27-Sep-12	8.45	51.50	Deep Alluvium		
E-115B		59.97	27-Sep-12	dry		Shallow Alluvium		
OW109A	59.80	59.89	27-Sep-12	8.40	51.50	Shale Bedrock		
OW109B	59.80	60.23	27-Sep-12	7.50	52.74	Deep Alluvium		
OW110A	60.18	60.57	27-Sep-12	8.34	52.23	Shale Bedrock		
OW110B	60.22	60.44	27-Sep-12	dry		Deep Alluvium		
OW111A	60.93	61.42	27-Sep-12	8.76	52.66	Shale Bedrock		
OW111B	60.93	61.22	27-Sep-12	8.86	52.35	Deep Alluvium		
OW112A	60.75	61.28	27-Sep-12	6.47	54.81	Shale Bedrock		
OW112B	60.76	61.41	27-Sep-12	6.88	54.53	Deep Alluvium		
OW116A	55.69	56.04	27-Sep-12	2.67	53.36	Shale Bedrock		
OW116B	56.03	56.07	27-Sep-12	2.67	53.40	Till		
OW116C	55.59	56.28	27-Sep-12	2.85	53.43	Shallow Alluvium		
OW122A			27-Sep-12	dry		Shale Bedrock		
OW122B	61.45	61.85	27-Sep-12	6.93	54.92	Deep Alluvium		
OW122C	61.45	61.70	27-Sep-12	7.10	54.60	Shallow Alluvium		
OW507C	59.13	59.63	23-Oct-12	5.06	54.57	Shallow Alluvium		
OW507B	59.17	59.63	23-Oct-12	6.19	53.45	Deep Alluvium		
OW507A	59.17	59.58	23-Oct-12	12.72	46.86	Shale Bedrock		

Notes:

All measurments in metres (m) unless stated otherwise

-- = not measured

mBTR = metres below top of riser

mASL = metres above sea level

interpretations of groundwater flow developed from other open and accessible wells in 1986 as summarized in the Phase 1 ESA (Geofirma Engineering Ltd., 2012a).

The patterns of groundwater flow in the deep alluvium shown in Figure 4.4 are very similar to those interpreted in 1986. Figure 4.4 clearly shows the continued significant drawdown effect of the Transitway Station groundwater collection system on groundwater flow in the area of 191 and 193 Lees Avenue. Figure 4.4 shows that the groundwater at 191 and 193 Lees Avenue property appears to be collected by the Transitway Station groundwater in the deep alluvium across the 191 and 193 Lees Avenue site.

The noteworthy changes in water levels between 1986 and 2012 occur to the west of the Transitway Station, with lower water levels measured in 2012 compared to 1986. These lower water levels are likely reflecting the interception of groundwater below the new underground parking garages constructed at 171 Lees Avenue in 1987 and 1988.

4.5 Soil Quality

4.5.1 <u>Coal Tar Occurrence</u>

Table 4.2 and Figure 4.5 summarize the occurrences of visible oil and coal tar contamination from historical and 2012 borehole drilling and soil sampling. Table 4.2 shows the elevations of occurrence of visible oil and tar in boreholes during borehole drilling. Most coal tar occurrences are within the granular fill and deeper sandy alluvium. Coal tar presence on the top of the tight basal till was frequently reported (e.g., OW111B, OW112B, OW120B, BH/MW12-09, BH/MW12-10, BH/MW12-11 and BH/MW12-15) confirming the important role that the upper till surface plays in controlling the migration and distribution of coal tar in the subsurface of the site. Coal tar was also observed within the shallow fill of BH/MW12-13, which was drilled into the former relief gas holding tank, and in the shallow fill at BH/MW12-15. The relief gas holding tank is likely still partially intact underground and is containing some amount of coal tar. The borehole ended within the fill at refusal, likely because the rig was unable to push through the remnants of the base of holding tank.

Figure 4.5 shows the record of historical and 2012 occurrences of visible oil and tar in boreholes and excavations at the 191 and 193 Lees Avenue site superimposed on the historical gas plant structures shown in Figure 2.1. Also shown on Figure 4.5 is the area of confirmed visible oil and tar occurrence observed during excavation of the bus Transitway lanes for installation of the groundwater collection system in 1986.

Based on the known persistence and low solubility of coal tar in groundwater systems (Raven and Beck, 1992), it is reasonable to assume that occurrences of visible coal tar noted in 1986, most likely remain at the site today. This assumption is supported by the observation of coal tar blebs during groundwater sampling in 2012 for those wells that were reported in 1986 as having coal tar present (i.e., OW112B). Persistence of coal tar from 1986 to 2012 is also supported by the results of drilling of 2012 wells proximal to areas previously reported in 1986 to have coal tar present (i.e., BH/MW12-09, BH/MW12-10, BH/MW12-11, BH/MW12-13, BH/MW12-15).

G:\Data\Project\LeesAve\Maps\11-200-11_Lees_SupplementalPhaseII\11-200-11_LeesAve_Figure4_5_OilTar.mxd

Well Designation	Report Reference	Elevation of Visible Coal Tar During Drilling (mASL)			
BH101-86	Conestoga-Rovers & Associates Ltd (1986b)	56.00 to 54.70			
BH103-86	Conestoga-Rovers & Associates Ltd (1986b)	57.63 to 55.12			
BH104-86	Conestoga-Rovers & Associates Ltd (1986b)	56.5 to 52.00			
BH105-86	Conestoga-Rovers & Associates Ltd (1986b)	54.9 to 53.8			
BH6-86	Conestoga-Rovers & Associates Ltd (1986b)	56.97 to 56.93			
BH106-86	Conestoga-Rovers & Associates Ltd (1986b)	59.41 to 54.84			
OW111B-86	Conestoga-Rovers & Associates Ltd (1986b)	53.54 to 51.16			
OW112B-86	Conestoga-Rovers & Associates Ltd (1986b)	49.62 to 49.04			
OW120B-86	Conestoga-Rovers & Associates Ltd (1986b)	60.02 to 59.00			
OW120B-86	Conestoga-Rovers & Associates Ltd (1986b)	53.01 to 52.00			
BH130-86	Conestoga-Rovers & Associates Ltd (1986b)	50.88 to 50.03			
G7	Golder Associates Ltd. (1986)	50.41 to 49.83			
G10	Golder Associates Ltd. (1986)	51.64 to 50.57			
G11	Golder Associates Ltd. (1986)	55.87 to 54.11			
G13	Golder Associates Ltd. (1986)	55.34 to 53.81			
G16	Golder Associates Ltd. (1986)	57.0 to 50.5			
G18	Golder Associates Ltd. (1986)	56.5 to 56.27			
E10	Golder Associates Ltd. (1986)	58.13 to 57.21			
M1	RMOC (1979)	57.76 to 55.63			
BH/MW12-09	Geofirma Engineering Ltd. (2012b)	53.9 to 50.1			
BH/MW12-10	Geofirma Engineering Ltd. (2012b)	52.3 to 51.7			
BH/MW12-11	Geofirma Engineering Ltd. (2012b)	52.4 to 50.8			
BH/MW12-13	Current Report	57.9 to 56.8			
BH/MW12-15	Current Report	57.5 to 55.0 & 51.1 to 50.8			

Table 4.2	Summary of Elevations of Visible Coal Tar during Drilling of Historical and 2012
Boreholes	

Figure 4.5 shows that the most frequent occurrences of oil and tar contamination were below the Lees Avenue Transitway parking lot, but other occurrence were also reported south of Lees Avenue on University of Ottawa property, and in the northern part of the parcel of land located between the bus ramp and the Transitway near the former gas condenser house. Most reported occurrences of visible oil and tar were on lands located east of the Transitway near APECs 1 to 9.

4.5.2 Laboratory Chemical Results

The results of the 2012 soil laboratory analysis for metals, PAH, PHC-F1/BTEX and pH/cyanide are summarized in Tables B.1, B.2, B.3 and B.4, respectively, in Appendix B. Complete laboratory certificates of analysis from the current investigation are included in Appendix D. Soil analytical results were compared to relevant MOE Table 3 standards for residential/parkland and commercial/industrial land use as indicated in Section 4.1.

A review of the soil analytical results from the February and September 2012 sampling for the site indicates the following:

• Metals contamination of fill is generally low level and not widespread. There was only one instance of contamination of the native soils, which was in the deep alluvium unit of BH12-15. Three of the 19 soil samples submitted for metals in September 2012 exceeded MOE Table 3 standards for residential/parkland land use. The exceedences for the September round of drilling and sampling were noted for mercury at BH12-13 and BH12-15.

In addition, data from the initial Phase 2 ESA showed that 6 of the 35 soil samples submitted for metals exceeded MOE Table 3 standards for residential/parkland land use. The exceedences were noted for barium, cadmium, chromium, cobalt, copper, lead, mercury, molybdenum, silver and zinc at BH12-04, BH12-06 or BH12-11. BH12-04 and BH12-18 were the only locations where metal concentrations exceeded commercial/industrial standards.

PAH contamination is present in the fill and in the underlying native alluvium, predominately on the eastern side of the Transitway in the vicinity of the former gas plant structures and APECs 1 through 9. Nine of the 19 soil samples submitted for PAH from September 2012 sampling exceeded MOE Table 3 standards for at least one analyte for both residential/parkland and commercial/industrial land use. The most frequently reported exceedences were for heavy PAH including benzo(a)pyrene, molecular weight carcinogenic benzo(a)anthracene, benzo(b)fluoranthene, benzo(k)fluoranthene, dibenzo(a,h)anthracene and indeno(1,2,3-cd)pyrene. However, exceedences were also noted for low molecular weight PAH including naphthalene and methylnaphthalenes. The highest PAH concentrations were found in boreholes BH12-13 and BH12-15, the former in the fill and the latter in the fill and deep alluvium. As discussed in Section 4.5.1, BH12-13 was drilled into the former water gas relief holding tank; this structure likely houses a certain amount of coal tar remaining from the former gas plant activities. These highest PAH analytical results correspond with the observations of coal tar presence in recovered soil samples made in the field.

In addition, data from the initial Phase 2 ESA showed that 12 of the 35 soil fill samples submitted for PAH exceeded MOE Table 3 standards for both residential/parkland and commercial/industrial land use. Elevated PAH concentrations were found in boreholes BH12-09, BH12-10 and BH12-11 in the fill and below depths of 3 m within the deep alluvium.

 Five of the 20 soil samples submitted of BTEX/PHC F1 from September 2012 exceeded MOE Table 3 standards for residential/parkland land use for at least one analyte. Four samples exceeded MOE Table 3 standards for commercial industrial land use for at least one analyte. Benzene was the most frequently reported analyte exceeding MOE Table 3 standards. The exceedences of MOE Table 3 standards were found in BH12-13, BH12-14, BH12-16 and BH12-19, generally in the areas where PAH exceedences were reported. The soil quality exceedences for PHC-F1/BTEX were from samples collected below a depth of 3 m in the fill and alluvium with the exception of BH/MW12-16 where the exceedence occurs near the surface.

In addition, data from the initial Phase 2 ESA showed that 8 of the 34 soil fill samples submitted for BTEX/PHC F1 exceeded MOE Table 3 standards for residential/parkland land use for at least one analyte. Seven samples exceeded MOE Table 3 standards for commercial/industrial land use for

at least one analyte. The exceedences of MOE Table 3 standards were found in BH12-03, BH12-09, BH12-10, BH12-11 and BH12-12, generally in the areas where coal tar was observed and PAH exceedences were reported.

- No soil samples were submitted from the September 2012 work for analysis of free cyanide. All 35 samples submitted for free cyanide from the initial Phase 2 ESA showed non-detectable concentrations at a method detection limit of 0.03 μg/g, which is below MOE Table 3 standard of 0.051 μg/g.
- No soil samples were submitted from the September 2012 work for analysis of pH. The 12 soil samples submitted for pH analysis from the initial Phase 2 ESA showed pH of 7.4 to 8.20 with an average measurement of 7.8. This is considered neutral pH and is likely buffered by carbonate content of the native soils in the area.

4.6 Groundwater Quality

4.6.1 Free Product Occurrence

Measurement and observation of free product occurrence in monitoring wells was reported from the September/October 2012 monitoring and sampling based on oil-water interface probe (see Section 3.9) and observations of free product blebs or sheen on collected purge waters. No measurable thickness of floating product was reported from the oil-water interface probe survey. Although the interphase probe did indicate sinking product below the water table in several monitoring wells (e.g., MW12-10, MW12-13 and MW12-15), the data were not considered reliable enough to quantify product thickness. Blebs of coal tar were reported in the collected purge water from wells OW112B, MW12-09, MW12-10, MW12-11, MW12-13 and MW12-15 located in the vicinity of the former gas plant structures and APECs 1 through 9. These results are consistent with the results of visible oil and tar presence during drilling of these boreholes (see Section 4.5.1) and from historical 1986/1987 investigations and the initial Phase 2 ESA work.

4.6.2 Laboratory Chemical Results

The results of the March/April and October 2012 groundwater laboratory analysis for metals and free cyanide, PAH and PHC-F1-BTEX are summarized in Tables B.5, B.6 and B.7, respectively, in Appendix B. Complete laboratory certificates of analysis from the current September/October 2012 investigation are included in Appendix D. Groundwater analytical results were compared to relevant MOE Table 3 standards for non-potable groundwater as indicated in Section 4.1. MOE Table 3 non-potable groundwater standards are the same for both residential/parkland and commercial/ industrial land use.

A review of the groundwater analytical results from the March/April and October 2012 sampling for the site indicates the following:

• Metals and cyanide contamination of groundwater is not a concern at the site. There was only one exceedence of MOE Table 3 standards for non-potable groundwater in the 26 samples submitted from the initial Phase 2 ESA, and that was from well E-006 for sodium. The detected concentration of sodium at 2,750 mg/L only marginally exceeded the MOE standard of 2,300 mg/L.

No groundwater samples were submitted from the October 2012 work for analysis of metals and free cyanide.

 PAH contamination of groundwater exceeding MOE Table 3 standards primarily occurs in areas of identified coal tar contamination of soil. Exceedences of MOE Table 3 standards for several light to heavy molecular weight PAH were found in fill or deep alluvium groundwater at OW112B, MW12-09, MW12-10, MW12-11, MW12-13 and MW12-14 from a total of 34 samples submitted in October 2012. Low levels of soluble PAH (e.g., naphthalene and phenanthrene) were found at several other wells. These PAH occurrences in groundwater are consistent with the solubility and sorption characteristics of PAH.

The results of the October 2012 groundwater sampling confirm the results of the initial Phase 2 ESA which showed PAH groundwater quality exceedences at wells OW112B, MW12-09, MW12-10 and MW12-11.

 PHC-F1 and BTEX exceedences of MOE Table 3 non-potable groundwater standards are limited to those boreholes with evidence of coal tar presence and/or PAH exceedences of MOE Table 3 standards. PHC-F1, benzene exceedences were found at OW112B, MW12-09, MW12-10, MW12-11 (spring 2012 only), MW12-13 and MW12-14. The very high concentrations of PHC-F1 measured in fall 2012 sampling at MW12-09 indicate the presence of free product.

The results of the October 2012 groundwater sampling generally confirm the results of the initial Phase 2 ESA which showed groundwater quality exceedences for PHC-F1 and BTEX at wells OW112B, MW12-09 and MW12-10. A PHC-F1 exceedence measured in March 2012 at MW12-11 was not detected in October 2012 sampling.

4.7 Quality Assurance - Quality Control Results

Laboratory analyses in the current investigation were completed by Paracel Laboratories, a CALA (Canadian Association for Laboratory Accreditation)-certified laboratory. Paracel completed all analyses in accordance with internal laboratory QC programs that included referenceable standardized analytical methods and procedures and use of laboratory quality control samples. Certificates of quality control were provided by Paracel for all completed analyses. These certificates summarize standardized analytical methods, and the laboratory's results for laboratory QA/QC samples including replicate samples, process blanks, standard surrogate additions and matrix spikes. Complete laboratory analytical reports for Geofirma's September/October 2012 sampling program are provided in Appendix D. Laboratory field blank and blind duplicate analyses are included on the summary analytical tables in Appendix B.

Geofirma review of Paracel QA/QC certificates indicates that all analytical results fell within acceptable QA/QC limits for constituent recovery as defined by the protocols for the analytical methods.

Blind duplicate samples were collected for soil and groundwater analysis to assess the reproducibility and precision of the field sampling and analytical work. The following Table 4.3 summarizes the blind duplicate sample naming convention that allows correlation of duplicate analytical results with original analytical results.

Blind Duplicate Sample	Original Sample	Lab Analytical Parameters		
Soil				
BH12-DUP1	BH12-15 SA8	Metals, PAH		
BH12-DUP1	BH12-15 SA4	PHC-F1/BTEX		
BH12-DUP2	BH12-16 SA5	Metals, PAH		
BH12-DUP2 BH12-16 SA6		PHC-F1/BTEX		
Groundwater				
MWD1	E-115A	PAH, PHC-F1/BTEX		
MWD2	MW12-13	PAH, PHC-F1/BTEX		
MWD3	OW112A	PAH, PHC-F1/BTEX		

Table 4.3	Summary of Duplicate Sample Identifiers for Soil and Groundwater Analyses
-----------	---

Analytical result precision was determined as relative percent differences from blind duplicate analyses. Relative percent difference (RPD) between sets of duplicate groundwater and soil samples was calculated as follows:

$$RPD = \frac{|X_1 - X_2|}{\bar{X}}$$

where:

 X_1 = concentration of original sample

 X_2 = concentration of duplicate sample

 \overline{X} = average concentration of original and duplicate sample

The calculated relative percent differences for samples with detections greater than five times the analytical method detection limit was determined for sets of analytical suites for both soil and groundwater. For soil metals, PAH and PHC-F1/BTEX, the average RPD values were 42%, 77% and 22%, respectively. For groundwater, PAH and PHC-F1/BTEX the average RPD values were 17% and 18%, respectively. These average RPDs are in accordance with expectations based on expected contaminant distribution and behaviour in soil and groundwater and indicate good analytical precision and reproducibility.

A field blank identified as FB was prepared in the field using laboratory-supplied sample bottles, deionized water and groundwater sampling equipment. PAH and PHC-F1/BTEX were not detected in the field blank.

Based on review of the laboratory and field QA/QC documentation, the soil and groundwater analytical results from 2012 sampling are considered of acceptable quality and can be used in this report without qualification.

4.8 Summary of Site Conditions

4.8.1 Updated Conceptual Site Model

The results of the 2012 subsurface investigations confirm the central elements of the Conceptual Site Model (CSM) described in Section 2 of this report. The site stratigraphy, hydrostratigraphic units and groundwater flow system as described in Section 4.3 and 4.4 of this report are entirely consistent with the CSM. The thickness and elevation of the fill, alluvium and basal glacial till units evident from the 2012 drilling and soil sampling are very similar to expectations based on the CSM developed from earlier investigations. The 2012 groundwater flow system is largely unchanged from that evident in 1986. Groundwater at the 191 and 193 Lees Avenue site is captured by the Lees Avenue Transitway Station pumping system.

4.8.2 Soil and Groundwater Quality Exceedences

Laboratory chemical testing for typical coal gasification plant waste chemicals shows that PAH and PHC-F1/BTEX remain the chemicals of concerns at the site. Metals and cyanide in soil and groundwater were either not detected (cyanide in soil and groundwater) or were found only sporadically in site soil and groundwater at elevated concentrations.

Figure 4.6 summarizes the locations where soil and groundwater samples collected in March/April and/or September/October 2012 were found to exceed MOE (2011a) Table 3 standards for residential/parkland land use. Figure 4.6 also shows those sampled boreholes and wells that showed evidence of the presence of coal tar during soil and groundwater sampling. Application of commercial/industrial land use results in essentially the same distribution of exceedences.

Figure 4.6 shows that there are five areas exceedences of MOE standards for soil for PAHs (one location), PHC-F1/BTEX (two locations) and metals (two locations) on the west side of the Transitway. Groundwater west of the Transitway does not show exceedences of MOE standards for metals, PAH, free cyanide and PHC-F1/BTEX at the 15 sampling locations. These are quite limited exceedences given the historical land use and results of earlier investigations. Figure 4.6 also shows that PAH and PHC-F1/BTEX exceedences of MOE standards are more frequent and widespread on the east side of the Transitway, consistent with visual and olfactory observations of coal tar occurrence in this area.

4.8.3 Coal Tar Presence

The distribution of coal tar contamination from both visual/olfactory observation and laboratory chemical testing observed in 2012 is consistent with the distribution described in 1986 and 1987. Coal tar is present within the deep alluvium and to a lesser extent the shallow alluvium and fill units primarily on the east side of the Transitway below the parking lot. The highest concentrations of coal tar chemicals (i.e., PAH) were most often found in the fill and in the deep alluvium to the top of the low permeability basal till unit over the eastern half of the parking lot. Typically, coal tar is found in this part of the site at elevations of 53 to 50 mASL at depths of 7 to 10 mBGS (e.g., BH12-09, BH12-10 and BH12-15). This coal tar appears to be pooled on top of the basal till unit. The occurrence of coal tar at BH12-11 (and historically at OW120B) is consistent with historical movement of coal tar within the fill and deep alluvium and down the sloping till surface to the southeast of the parking lot. Coal tar is also shown to be present at shallow depths of 1.9 to 3.0 mBGS (elevations of 57.9 to 56.8 mASL) within fill in the former relief gas holder (BH12-13) and in BH12-15.

5 REMEDIAL OPTIONS ASSESSEMNT

Due to the location of the Lees Avenue site in relation to the proposed light rail transit route (along existing OC Transpo Transitway) with a rail station planned at the Lees Avenue site, as well as the close proximity of 191 and 193 Lees Avenue to the University of Ottawa and downtown, the Lees Avenue site has a high re-development potential and therefore sufficient potential property value that the City is considering remedial measures.

The following sections provide a description and initial screening of potentially applicable remedial technologies for coal tar contaminated sites, and a comparative evaluation of the retained remedial technologies to the Lees Avenue site. The intent of the screening and comparative evaluation of remedial technologies at this stage is not to recommend any single technology to move forward with, but rather to give an overview of options and to narrow the search down to a few technologies that warrant further consideration and evaluation.

Based on the results of historical and recent subsurface investigations, the contaminants of concern at the 191 and 193 Lees Avenue site are NAPL coal tar, and specifically PAH and PHC-F1/BTEX in soil and groundwater. Metals, pH, and free cyanide are not contaminants of concern at the site.

5.1 Remedial Action Objectives

For the Lees Avenue site, the following five remedial action objectives have been established, which will form the basis for the screening and comparative assessment of remedial technologies:

- 1) At a minimum, eliminate or mitigate all significant threats to public health and the environment (likely already achieving this);
- 2) Minimize or eliminate any offsite migration of contamination (likely already achieving this);
- 3) Remove, to the extent practical, the source of contamination (including historical gas holders and piping and NAPL phase as much as practical);
- 4) Restoration of the site to a condition that future development can occur both above and below grade; and,
- 5) Minimize or eliminate the need for and costs associated with the onsite OC Transpo Transitway groundwater collection and treatment system.

5.2 Screening of Potentially Applicable Remedial Technologies

A variety of remedial technologies have been developed and tested to address the remediation of viscous non-aqueous phase liquids (NAPLs) like coal tar and creosote. Some rely on traditional geotechnical methods to fix the NAPL in place, others seek to destroy in-situ by oxidation or combustion, while yet others seek to encapsulate the NAPL in-situ. Agencies in the US, such as the Environmental Protection Agency (EPA) and the Interstate Technology & Regulatory Council (ITRC), have conducted lengthy evaluations of the various remedial technologies. As a reference point, conventional excavation and off-site disposal remediation is also described.

The remedial technologies considered here are:

- 1) Excavation and Off-Site Disposal
- 2) Treatment
 - a) Ex-situ Treatment
 - i. Combustion (Co-burning)
 - ii. Thermal Desorption
 - iii. Bioremediation (Slurry Phase Bioreactors, Landfarming, Biopiles)
 - b) In-situ Treatment
 - i. Combustion (Smouldering)
 - ii. Thermal Treatment Methods
 - iii. Intrinsic Bioremediation
 - iv. Surfactant Enhanced Remediation
 - v. Chemical Oxidation
- 3) Engineered Containment
 - a) Cap/Cover site
 - b) DNAPL Recovery Wells
 - c) Hydraulic Control
 - d) Containment Barriers
 - e) In-situ Solidification and Stabilization
 - f) In-situ Geochemical Stabilization
- 4) Institutional Controls

Table 5.1 summarizes the screening evaluation of these remedial technologies by considering effectiveness to meet the remedial action objectives, ease to implement at the site, and cost. Estimated unit costs are presented at this stage for general information only and are not considered to be a deciding factor during this screening stage. The general principles of each technology and the particular constraints/concerns on its use at Lees Avenue are described in the following sections. Although each technology is discussed independently, the best path forward will likely include multiple treatment activities (i.e., excavation and off-site treatment or disposal of some contaminated material, followed by smaller area(s) of in-situ treatment and containment with ongoing monitoring costs) to address various chemical components.

5.2.1 Excavation and Off-Site Disposal

Excavation and off-site disposal is described as the reference remedial technology against which other more innovative remedial technologies may be assessed. It is a proven but costly technology that has historically been applied to numerous coal tar and creosote contaminated sites. Excavation and dewatering addresses both soil and groundwater/NAPL contamination. During excavation, an engineered barrier (i.e., sheet piling or cement-soil impermeable wall) would be required around the site and/or perimeter groundwater extraction wells would need to be installed to assist with groundwater dewatering issues. Also, in order to deal with logistical issues of fugitive emissions, the entire excavation area would require covering with an inflatable or rigid structure equipped with air remediation equipment prior to discharging to the outside environment along with completion of the soil excavation in stages or phases. Figure 5.1 shows an example of a rigid structure used during an

Approach or Technology	Technology sub-category	Effectiveness	Implementability	Cost		
Excavation and Off-Site Disposal	Excavate above till (above ~ 10m)	Effective	Difficult - overwhelm capacity of exiting collection and treatment system? - air releases (odours) - large offsite waste disposal costs - dewaterling	Very High Excavation \$2M-\$5M excavation and site containment Disposal \$30-\$50 per tonne non-hazardous waste (~\$1M-\$3 \$400-500 per tonne hazardous waste (~\$6.4-\$12M		
	Excavate below till (to bedrock)	Questionable - extent of contamination below till is unknown and assumed to be low	Difficult - potential to provide pathway for tar and contaminated groundwater into bedrock	Very High Excavation \$2M-\$5M excavation and site containment Disposal \$30-\$50 per tonne non-hazardous waste (~\$1M-\$3N \$400-500 per tonne hazardous waste (~\$6.4-\$12M)		
Ex-Situ Treatment	Combustion (Co-burning)	Effective	Moderate - technology proven but availability of contractor is unknown	Medium to High Excavation \$2M-\$5M excavation and site containment Treatment \$50-\$150 per tonne for soils \$150-\$350 per tonne for tar		
	Thermal Desorption	Effective - proven at other MGP sites	Moderate - space onsite to set up facility may be an issue - technology proven - no known locally permitted facility	Medium Excavation \$2M-\$5M excavation and site containment Treatment \$100 to \$200 per tonne		
	Bioremediation (Slurry Phase Bioreactors, Landfarming, Biopiles)	Still in development stage - high concentrations may reduce effectiveness	Difficult - technology not proven - not enough space onsite	Medium to High Excavation \$2M-\$5M excavation and site containment Treatment \$75 per cubic metre - landfarming \$100 to \$200 per cubic metre - biopiles \$150 to \$250 per cubic metre - bioreactor		
In-Situ Treatment	Combustion (Smouldering)	Seems effective but ultimately unknown at this stage (still in development)	Difficult - ability to direct and control combustion - fate and effect of combustion by-products at Transitway - damage to existing infrastructure	Medium \$100 to \$150 per cubic metre		
	Thermal Treatment Methods (in-situ thermal desportion, electrical resistance heating, in-situ steam injection)	Seems effective but ultimately unknown at this stage	Difficult - ability to direct and control thermal heating process in heterogenous environment - fate and effect of thermal heating by-products at Transitway - damage to existing infrastructure	Medium to High \$120 to \$300 per cubic metre		

tends below till, his stage
tends below till, his stage
his stage
s of NAPL
s of NAPL

Approach or Technology	Technology sub-category	Effectiveness	Implementability	Cost
In-Situ Treatment (Continued)	Intrinsic Bioremediation	Seems effective but large volume of NAPL makes this technology only feasible in conjunction with more aggressive remediation strategy (i.e. Excavation).	Difficult - not effective where large volumes of DNAPL present	Low ~\$50 per cubic metre
	Surfactant-Enhanced Remediation	The difficulty is achieving contact between surfactant and contaminated soil in heterogenious environment - therefore ultimate effectiveness unknown at this time	Difficult - not effective with DNAPL - ability to direct and control surfactant contact process in heterogenous environment - fate and effect of surfactant and surfactant-coal tar mixture by-products at Transitway - damage to existing infrastructure	Medium to High \$150-\$250 per cubic metre
	In-situ Chemical Oxidation (ISCO)	Seems effective but ultimately unknown at this stage	Difficult - ability to direct and control ISCO contact process in heterogeneous environment	Medium to High \$150-\$250 per cubic metre
Engineered Containment	Cap/cover site	Effective to reduce exposure Not effective in limiting migration	Easy	Low ~\$5 to \$20 per square metre surface
	DNAPL recovery wells	Effective to remove DNAPL but connectivity not well understood	Easy	Low to Medium ~\$1 per litre DNAPL
	Hydraulic Control (similar to current system)	Effective to reduce mobilization	Difficult	Low to Medium ~\$50K to \$100K per year
	Containment Barriers	Effective to reduce mobilization	Easy	Low ~\$50 per square metre wall surface
	In-situ Solidification and Stabilization (S/S)	Effective to reduce mobilization	Difficult	Low \$20-\$30 per cubic metre
	In-situ Geochemical Stabilization (ISGS)	Seems effective but ultimately unknown at this stage	Difficult - ability to direct and control ISGS contact process in heterogeneous environment	Low \$10-\$50 per cubic metre
Institutional Controls	Access controls, H&S Plans, Long- Term Monitoring (similar to present)	 Effective - exposure to workers not Effective in limiting migration 	Easy	Low ~\$10K to \$100K per year

Table 5.1 Summary of Screening Evaluation of Remedial Technologies for Coal Tar Contamination at Lees Avenue Transitway Site

Status for Consideration
Not Retained - not effective with large volumes of NAPL
Not Retained - not effective with large volumes of NAPL
Not Retained - not effective with large volumes of NAPL
Retained - current conditions have ~1-2 m soil cover and asphalt parking lot
Not Retained - DNAPL plume is too widespread for this to be effective
Retained - current conditions have Transitway collection and treatment system Retained
Retained
Not Retained - not a proven technology
Retained

environmental remediation.

Figure 5.1 Example of a Rigid Structure Used During Environmental Remediation

Given current provincial waste management regulations, much of this heavily contaminated material would in all likelihood be considered hazardous liquid and solid industrial waste. For the purpose of cost estimates and logistical planning, 50% is assumed to be classified as hazardous (16,000 to 24,000 tonnes) and 50% contaminated but not hazardous. In order to access this deep contamination approximately 1-2 metres thick (8,000 to 16,000 m³ or 16,000 to 32,000 tonnes) of marginally contaminated material would need to be excavated and sorted for off-site disposal and possible on-site reuse. Similarly, for the purpose of cost estimates and logistical planning 25% of this (4,000 to 8,000 tonnes) is assumed to be contaminated and 75% assumed to be re-usable onsite. Another 4-5 m (30,000 to 40,000 m³ or 60,000 to 80,000 tonnes) of uncontaminated soil would require excavation and stockpiling for re-use onsite.

Benefits of this remedial option include that all of any remaining manufactured gas plant infrastructure (gas holders, piping, etc.) and contaminated soil are removed from site, thereby allowing full development on the site to the depth of remediation. Constraints and concerns for application of excavation and off-site disposal at the Lees Avenue site include the control of groundwater inflow to the excavation, fugitive releases of coal tar and elevated dissolved PAH/BTEX to the Transitway Station groundwater collection and treatment system, fugitive releases to ambient air due to exposure of coal tar volatiles during excavation activities, and off-site waste disposal costs. Estimated costs associated with excavation and offsite disposal are approximately \$30 to \$50 per tonne to deal with disposal of non-hazardous waste (36,000 to 56,000 tonnes), approximately \$400 to \$500 per tonne of hazardous material (16,000 to 24,000 tonnes), and \$2M to \$5M for excavation activities and other special equipment and environmental health and safety associated with such a grossly contaminated site.

Excavation and off-site disposal methods are further considered as potentially applicable remediation technologies for coal tar NAPL at the Lees Avenue site.

5.2.2 <u>Treatment</u>

Most remediation technologies can be performed either in the ground without disturbing the contamination (in-situ) or in a controlled environment after the material has been removed from the ground (ex-situ). In general, ex-situ treatment is (a) more expensive due to the added costs associated with excavation of soil, and (b) quicker to reduce concentrations due to the controlled environment and ability to ensure optimum contact between treatment technology and the contaminated soil. In-situ treatment on the other hand is (a) less of a hazard to workers due to the fact that grossly contaminated soil and groundwater is not excavated and exposed/transported, and (b) less disruptive to site operations and nearby community.

5.2.2.1 Ex-situ Treatment

The ex-situ treatment technologies presented below primarily address soil contamination without treatment of groundwater or NAPL. Any ex-situ treatment technology will involve excavation of the contaminated soil and will have the same logistical challenges as excavation and disposal such as dewatering to control groundwater/NAPL inflow during excavation and treatment/disposal of this water/NAPL, and covering the site with a structure equipped with air treatment to deal with fugitive air emissions. Ex-situ treatment technologies can be performed on-site or near site using a mobile facility or off-site at a permanent, licensed facility. For the Lees Avenue site, space is at a premium as the area of contamination requiring excavation is essentially the entire parking lot which is bounded on the west by the Transitway Station, on the south and east by Lees Avenue and on the north by Highway 417, therefore off-site ex-situ treatment is preferred.

Combustion - Co-Burning

Co-burning involves the combustion of coal tar and tar contaminated soils with coal in utility boilers (i.e. stokers, cyclones, and those fired by pulverized coal). Contaminated soils are screened to remove oversized material and blended with coal feedstock in the range of 5 to 10 percent coal.

Benefits of this technology are that it reduces the amount of waste requiring disposal and it destroys organic wastes. Limitations include limited contractor availability, and the possibility for long-term impacts on boiler efficiency, maintenance and operation. Estimated costs for co-burning are \$50 to \$150 per tonne for soils and \$150 to \$350 per tonne for tar.

Co-burning treatment is further considered as a potentially applicable remediation technology for coal tar NAPL at the Lees Avenue site.

Thermal Desorption

Thermal desorption has been successfully used to remediate soils containing coal tar wastes since the early 1980's, achieving concentration reductions of more than 98 percent for TPHs, BTEX compounds, PAHs, and cyanide. Thermal desorption uses temperatures ranging from 100°C to 650°C to heat soil and volatilize chemicals that are sorbed to soil. Lower temperatures (100°C - 450°C) are usually sufficient to desorb VOCs and many PAH compounds, while higher temperatures

(up to 650°C) are required to desorb higher-molecular weight PAHs. Off-gassing chemicals are treated, and the cleaned air is vented to the atmosphere. This technology can be completed either on-site with a mobile unit or off-site at a facility. The treated soil is cooled with water and stockpiled awaiting confirmation sampling concentrations prior to being returned to the excavation or disposed on off-site.

Figure 5.2 shows the surface equipment required for ex-situ thermal desorption treatment at a site in New Jersey with a similar size to the 191 Lees Avenue parking lot.

 Figure 5.2
 Surface Equipment for Ex-Situ Thermal Desorption Treatment

Benefits of this technology include high production rates if using larger equipment and proven removal of total and carcinogenic PAHs. Limitations of this technology include potential air emissions of by-products that may need treatment, high organic content soil (e.g., peat) is not suitable, and wet soil (saturated) requires dewatering prior to treatment. Treatment rates range from 8 to 45 tons per hour depending on the size of dryer unit used. Estimated costs for thermal desorption range from approximately \$100 to \$200 per tonne of soil, including general contracting (excavation), confirmation sampling, management, permits and transportation.

Ex-situ thermal desorption treatment is further considered as a potentially applicable remediation technology for coal tar NAPL at the Lees Avenue site.

Bioremediation - Slurry Phase Bioreactors, Biopiles, Landfarming

Slurry phase biological treatment involves mixing excavated soil with water to form a suspension of solids and subsequently treating the soil in a controlled environment (bioreactor) where nutrients and

oxygen (possibly microorganisms if necessary) are mixed with the mixture. The mixture of soil and water is completed after the soil is physically separated into gravel, sand, and debris and the ratio of soil to water is dependent upon the concentration of contaminants of concern, the rate of biodegradation and the physical nature of the soils. The slurry typically contains 10 to 50 percent solids by weight. Upon completion of biodegradation, the soil slurry is dewatered using a variety of filters, clarifiers and other dewatering devices. The rate and extent of degradation for a particular site will vary depending on the specific soil conditions and contaminant concentrations. A preliminary treatability study will need to be completed and should identify amendment mixtures that best promote microbial activity, percent reduction and lowest achievable concentration limit of contaminant and potential degradation rate.

Biopile treatment is a variation of composting where excavated soils are mixed with soil amendments (i.e. nutrients, moisture, or bulking agents such as wood chips) and placed in piles in a treatment area. Typically, biopiles require a leachate collection system and some form of aeration. Figure 5.3 shows an example of a biopile used to treat petroleum contamination.

Figure 5.3 Example of Biopile Technology Used to Treat Petroleum Contamination

Similarly, landfarming involves placing contaminated soil in linear beds approximately 18 inches deep and periodically turning the soil or tilling it to aerate the waste. Nutrients can be added as necessary to promote the degradation of contaminants.

Benefits of this technology include the shorter treatment times compared to in-situ treatment and more certainty about the uniformity of treatment compared to in-situ. Limitations of this technology include the need for space on ground surface to stockpile the waste semi-long term while the biodegradation process occurred, high costs associated with dewatering treated fine-grained soil, heterogeneous and

clayey soils can create serious materials handling problems, and non-recycled wastewaters require disposal. Bioremediation is not effective for NAPL or higher molecular-weight hydrocarbons, and the treatment process is slower that other, more aggressive technologies. Estimated costs associated with the various ex-situ bioremediation technologies are approximately \$75 per cubic metre (landfarming), \$100 to \$200 per cubic metre (biopiles), and \$200 to \$250 per cubic metre (bioreactor).

Ex-situ bioremediation is not further considered as a potentially applicable remediation technology for the Lees Avenue site due to its unproven success with the large volumes of expected coal tar DNAPL.

5.2.2.2 In-situ Treatment

The in-situ treatment technologies presented below are considered based on their effectiveness and ability to clean up both soil and contaminated groundwater/NAPL at the Lees Avenue site. The benefits of in-situ treatment include not having to deal with fugitive releases of air emissions or groundwater/NAPL dewatering issues. The primary limitation with in-situ treatment is that it is difficult in heterogeneous soils to ensure adequate physical contact and treatment time between the remedial technology and the contamination of interest. The volume of material requiring in-situ treatment is not fully understood, however for the purpose of this assessment it is assumed that approximately 4-5 m (30,000 to 40,000 m³) will require treatment.

Smouldering/Combustion

STAR (Self-sustaining Treatment for Active Remediation) was identified in the Phase 1 ESA as an innovative in-situ treatment for non-aqueous phase liquid (NAPL) hydrocarbon contamination such as coal tar that might have application at 191 and 193 Lees Avenue. It was developed at Western University (formerly the University of Western Ontario). The technology is being marketed and applied in Canada through Geosyntec Consultants, Guelph Ontario. STAR is a smouldering combustion technology that is applicable to coal tar both above and below the water table provided hydrocarbon concentrations are sufficient to support smouldering combustion. It requires control of the subsurface combustion or smouldering process through preheating to 200° C to 400° C and controlled injection of air (oxygen) to ignite coal tar NAPL and maintain/control the combustion process. Such preheating and air delivery would be achieved through a network of boreholes and stainless-steel casings/ screened wells. Figure 5.4 shows the STAR pilot test at a DuPont former cresol manufacturing facility in Newark, New Jersey.

Based on communication with Western University and Geosyntec Consultants, the site characterization information necessary for assessment of application of the STAR technology to the Lees Avenue Transitway Station site include the following:

- Presence or absence of coal tar NAPL;
- Location and extent of coal tar NAPL (i.e. connectivity of NAPL occurrences);
- Geology of the coal tar NAPL zone and the geology of the zone above and below the zone; and
- Chemical data on soil PAH/BTEX concentration, and NAPL composition.

Figure 5.4 Surface Equipment Layout for a Pilot Test of STAR Technology at a Cresol Manufacturing Facility in Newark, New Jersey

The most critical data to screen STAR for potential demonstration are the geology and soils chemical data. The data collected as part of the Phase 2 ESAs indicate the following information relevant to assessment of STAR technology application at the site:

- Coal tar as DNAPL is present at saturation levels within the lower 2-4 m of deep sandy alluvium located over the eastern half of Transitway Station parking lot and in the shallow fill at both residual and full saturation levels. The continuity of coal tar contamination in these areas is uncertain.
- The deeper coal tar contamination in the sandy alluvium is found typically below the groundwater table within coarse-textured soil consisting of gravel to silt (see grain size analysis for BH12-09, sample 7.31-7.92 mBGS). The geology below and above this coal tar contaminated zone is dense basal till and sandy alluvium, respectively.
- The largest volume of shallow coal tar contamination is found above the groundwater table in sandy silty clay fill within (BH12-13) the former relief gas holder located in the northeast corner of the Transitway Station parking lot. The coal tar contamination rests on the assumed concrete base of the former gas plant structure.
- Chemical concentrations of total priority PAH and PHC-F1/BTEX in these coal tar contaminated areas (BH12-09, BH12-10, BH12-13) approximate several hundred to several thousand μg/g, and several hundred μg/g, respectively.

Consultation with the company responsible for marketing and field implementation of STAR indicates that these deep coal tar contaminated soils are potentially suitable for STAR technology demonstration. However, additional soil texture and chemical/coal tar delineation testing is recommended to obtain a better understanding of potential STAR demonstration locations, and to effectively design a pilot scale demonstration. STAR and other in-situ and ex situ coal tar remediation technologies are expensive and often complex remedial methods to apply at former manufactured coal gas plant sites. Successful application is often dictated by a good understanding of subsurface conditions, site application constraints and technology limitations and realistic assessment of achievable clean-up goals.

Benefits of this technology include the fact that DNAPL is destroyed in-situ with minimal disturbance to surface activities and neighbouring community. Constraints and concerns for STAR application at the Lees Avenue site include the ability to direct and control the combustion process in a heterogeneous subsurface environment where coal tar is preferentially present in the coarser-grained soil units, the fate and effect of combustion by-products (carbon monoxide and carbon dioxide) on the Transitway Station and Station visitors, and the potential for combustion damage to underground infrastructure (e.g., storm water and groundwater collection drains below the Transitway) due to uncontrolled combustion and movement of the combustion front. Estimate costs associated with STAR treatment technology are approximately \$100 to \$150 per cubic metre.

Smouldering/combustion methods (e.g., STAR) are further considered as potentially applicable remediation technologies for coal tar NAPL at the Lees Avenue site.

Thermal Treatment Methods

Thermal treatment methods are based on the application of heat to subsurface contamination to desorb, mobilize or destroy NAPL coal tar in-situ. Three thermal methods are potentially applicable to the Lees Avenue site:

- a) In-situ thermal desorption;
- b) Electrical resistance heating; and
- c) In-situ steam injection.

In-situ thermal desorption (ITSD) was developed by Shell Oil using its experience in thermally enhanced oil recovery. At a site like Lees Avenue, electrical heaters would be installed in stainless steel wells within the NAPL zone to destroy and vaporize the contaminants. The thermal wells would be placed on 2-metre centers in order to achieve an in-situ soil temperature of >250°C. In soil or rock, heat flows from heater wells out into the formation by grain-to-grain contact (in soil) and across solid objects (rocks), i.e., by thermal conduction. The fluids (water, air, NAPL) in contact with the solids also heat up at the same time. The heat moves out radially from each thermal well until the heat fronts overlap.

Figure 5.5 shows a schematic of vapor extraction wells recovering the volatilized contaminants and groundwater that are prevented from being emitted from the treated zone because of a surface vapor barrier.

Figure 5.5 Schematic of Application of In-Situ Thermal Desorption at a Hydrocarbon Contaminated Site

Electrical resistance heating uses arrays of electrodes installed around a central neutral electrode to create a concentrated flow of current toward the central point. Resistance to flow in the soils generates heat greater than 100°C, producing steam and readily mobile contaminants that are recovered via vacuum extraction and processed at the surface. Electrical resistance heating is an extremely rapid form of remediation with case studies of effective treatment of soil and groundwater in less than 40 days. Three-phase heating and six-phase soil heating are varieties of this technology (Cummings, 2012).

In-situ steam injection is also borrowed from enhanced oil recovery technology. The steam heats the soil and groundwater and enhances the release of contaminants from the soil matrix by decreasing viscosity and accelerating volatilization. Steam injection may also destroy some contaminants. As steam is injected through a series of wells within and around a source area, the steam zone grows radially around each injection well. The steam front drives the contamination to a system of ground-water extraction wells in the saturated zone and soil vapor extraction wells in the vadose zone (Cummings, 2012).

Any choice of these thermal remediation technologies will require careful consideration even before pilot testing. It will be critical to carefully control the zones where heat is applied so that unwanted side effects causing infrastructure damage or failure are prevented. Constraints and concerns for thermal remediation technology application at the Lees Avenue site include the ability to direct and control the heating process in a heterogeneous subsurface environment, the fate and effect of fugitive releases including heating by-products (i.e., gases) and steam on the Transitway Station and Station visitors, and the potential for heating-related damage to underground infrastructure.

Benefits of in-situ thermal treatment for Lees Avenue include that it will work in a wide range of soil types, treatment is possible in areas where excavation is not possible, and minimal disruption to nearby neighborhoods or operations (Transitway). Limitations to in-situ treatment include high utility costs, thermal desorption works best in unsaturated conditions, and the unknown effectiveness of electrical resistance heating and steam injection technologies with NAPLs. Estimated costs for in-situ thermal treatment are \$120 to \$300 per cubic metre.

Thermal treatment methods are further considered as a potentially applicable remediation technologies for coal tar NAPL at the Lees Avenue site with a focus on in-situ thermal desorption.

Intrinsic Bioremediation

Bioremediation has been used to attenuate groundwater contamination associated with the dissolution of coal-tar NAPL, however the effective application of intrinsic bioremediation relies on removing the NAPL source zone and the presence of strong oxidants in the groundwater, such as dissolved oxygen (Neuhauser et al., 2009). This is because the electron transfer reactions that are mediated by microbes in the groundwater function only in aqueous electrolytes; coal-tar NAPL is a non-aqueous liquid that provides no terminal electron accepting species, such as dissolved oxygen, to which electrons may be transferred and no electrolytic function. Therefore, the use of bioremediation is not considered feasible as a stand-alone remediation strategy but could be considered in conjunction with a remediation technique that removes the NAPL phase.

Benefits of in-situ bioremediation include low cost, low effort, and the lack of major equipment and disruption to the site and neighbouring community. Limitations to this technology include that it does not work effectively with NAPL, and difficulty with distributing dissolved oxygen in a heterogeneous subsurface environment. Costs associated with in-situ bioremediation are estimated at approximately \$500K to \$1M for short term capital costs and setup and approximately \$1M to \$3M for 20 years of long-term monitoring and adjustments.

Intrinsic bioremediation is not further considered as a potentially applicable remediation technology for the Lees Avenue site due to its unproven success with the large volumes of expected coal tar DNAPL.

Surfactant-Enhanced Remediation

Surfactant-enhanced remediation of coal tar NAPL involves the injection and contact of a surfactant to mobilize and remove coal tar from the subsurface. It would involve the sweeping of a coal tar contaminated zone via a network of surfactant injection wells and extraction wells, and treatment and/or disposal of the captured coal tar and surfactant groundwater mixture.

Surfactant-enhanced remediation of coal tar NAPL was undertaken at the pilot scale at a former Manufactured Gas Plant (MGP) site in Indiana by Young et al. (2002). Initially heated water was injected into the alluvial aquifer containing coal-tar NAPL to reduce its viscosity and allow it to be displaced by the subsequent injection of a surfactant/polymer flood. The presence of polymer in the surfactant solution – again a method developed for enhanced oil recovery – acts to raise the viscosity of the injectate to improve mobilization of the NAPL, i.e., to prevent viscous fingering of a lower viscosity fluid through the coal tar.

Figure 5.6 shows the layout of the injection and extraction wells and the surfactant storage tanks, and the miscellaneous surface control equipment for application of a surfactant-enhance remediation of the TCE NAPL zone at Hill Air Force Base in Utah.

•Total Remediation Time = 35 days

Figure 5.6 Layout of Equipment for Surfactant-Enhanced Remediation of NAPL (TCE) Contamination at Hill Air Force Base, Utah

Mobilization occurs due to the decrease in interfacial tension caused by the surfactant contacting the NAPL and releasing it from the soil, to which it is sorbed, and the polymer acting as a snow plough to drive the NAPL to a recovery well. More than 80% of the coal-tar NAPL in the treated zone was removed by the surfactant flood, of which most was recovered as mobilized NAPL in the extraction wells.

Benefits of surfactant-enhanced remediation include that the technology is proven in controlled settings to enhance DNAPL solubility and mobility. Constraints and concerns for surfactant-enhanced remediation technology application at the Lees Avenue site include the ability to direct and control the surfactant contact process in a heterogeneous subsurface environment, the fate and effect of fugitive surfactant and surfactant-coal tar mixture releases to the Transitway groundwater collection and treatment system, and uncontrolled downward coal tar NAPL migration and releases due to enhanced mobilization. Estimated costs associated with surfactant-enhanced remediation are \$150 to \$250 per cubic metre.

Surfactant-enhanced remediation is not further considered as a potentially applicable remediation technology for the Lees Avenue site due to its unproven success with the large volumes of expected coal tar DNAPL.

In-situ Chemical Oxidation (ISCO)

In-situ chemical oxidation remediation of coal tar NAPL involves the injection and contact of liquid oxidants to chemically destroy coal tar in the subsurface. At sites like Lees Avenue it would involve the injection of liquid oxidants to a coal tar contaminated zone via a network of injection wells and possibly use of extraction wells to control oxidant sweep.

The injection of permanganate, hydrogen peroxide (Fenton's solution), persulfate or other oxidant solutions into zones of coal-tar NAPL contamination has been attempted frequently with many claims of success by vendors. This typically involves the injection of oxidant solutions into the NAPL zone of a contaminated aquifer through injection wells with the reaction being allowed to proceed without extraction of treated groundwater. This implies that the NAPL zone is sufficiently well characterised so that the injected solution is brought into contact with the NAPL causing its dissolution and subsequent oxidation. It is attractive because it is inexpensive, rapid and relatively unaffected by the nature of the contaminant (Basel and Nelson, 2000).

Independent observers have identified a number of problems with ISCO projects, including the bypassing of the NAPL zone by the injectate because it has a lower hydraulic conductivity due to the occlusion of the NAPL-filled pores and, in the case of permanganate solutions, the precipitation of manganese oxides in the contaminated zones (Thomson et al., 2008). Furthermore, Thomson and colleagues (2008) at the University of Waterloo have undertaken a series of field tests of ISCO remediation of coal-tar creosote, a distilled form of coal tar, at Canadian Forces Base Borden. Posttreatment, they monitored the downgradient plume of polycyclic aromatic hydrocarbons (PAHs) that was generated by the coal-tar creosote NAPL zone over periods of 1, 2 and 4 years. While over 2 years there was a decreased in dissolved PAH discharge from the NAPL zone, by 4 years there was a rebound in PAH concentrations to "*pre-treatment levels or higher*." They concluded that "*there was no long-term (years) impact on the ability of this coal tar creosote source zone to generate a multicomponent plume*", i.e., the ISCO treatment failed to remediate the NAPL zone.

Benefits of ISCO include that the technology is proven and is effective at destroying source material (DNAPL) and the general benefits associated with in-situ treatment (no excavation required). Limitations of ISCO include that it is not as effective with higher molecular weight PAHs, with NAPL phase, or in high organic content (i.e. peat). The common limitation with all in-situ technologies also remains - the potential inability to control the chemical oxidant contact process in a heterogeneous subsurface environment. Estimated costs for ISCO are between \$150 and \$250 per cubic metre.

Consequently, in-situ chemical oxidation is not further considered as a potentially applicable remediation technology for the Lees Avenue site due to its unproven success with the large volumes of expected coal tar DNAPL.

5.2.3 Engineered Containment

Engineered containment as a remedial alternative is applicable to soil, groundwater and NAPL source zones at the site. The goal with engineered containment does not include remediation of the site but rather prevention of contact with the contaminated soil and prevention of groundwater/NAPL mobilization off-site. Therefore, these technologies are included as options to maintain the sites current conditions and prevent further migration of contamination offsite in conjunction with other, more aggressive remedial options and not as stand-alone remedial options. For groundwater and NAPL, effective containment can be achieved by constructing and maintaining physical barriers or systems that prevent potential migration. Examples of these alternatives include caps/covers, sheet pile walls, soil-bentonite cut-off walls, and active hydraulic control including groundwater and DNAPL recovery wells. Each of these alternatives is discussed below.

5.2.3.1 Cap/Cover Site

Engineering controls at ground surface refer to a cap or cover of the site to provide an effective control of contaminant pathways to future workers and pedestrians. This alternative was included for completeness of this evaluation. This remedial option is considered to already be in place at the site since the majority of the site is covered in asphalt and used as a parking lot. The effectiveness of this cover for long term containment should be evaluated. This remedial option, which could be installed either at ground surface or at depth, is considered as a supporting remediation technology at the Lees Avenue site if it is used in conjunction with other more aggressive remediation strategies. Estimated costs for the Lees Avenue site is approximately \$100K to \$500K. This form of engineered containment is further considered as a potentially applicable option with other remedial technologies at the Lees Avenue site.

5.2.3.2 DNAPL Recovery

DNAPL recovery wells are simply large diameter wells constructed in known DNAPL source areas with the purpose of providing a reservoir for DNAPL to collect in and allowing removal of this DNAPL by active pumping. This remedial technology is intended to slowly achieve lower DNAPL volumes over a long-term schedule. Active pumping could change this option into a pump-and-treat system to collect DNAPL and treat contaminated groundwater. Long-term costs associated with this option are high with minimal success for site cleanup, therefore this remedial option is not considered as a potentially applicable remediation technology at the Lees Avenue site. Estimated costs for the Lees Avenue site is approximately \$100K to \$200K start-up costs with \$500K to \$2M ongoing operating costs. This form of engineered containment is not further considered as a potentially applicable option with other remedial technologies at the Lees Avenue site due to the large volume of coal tar NAPL.

5.2.3.3 Hydraulic Control

Hydraulic control measures are intended to establish capture zones strategically located and sufficiently large to prevent off-site migration of contaminants. The current groundwater collection and treatment system associated with the OC Transpo Transitway drain is effectively acting as a hydraulic control as evidenced by the local groundwater flow directions measured and presented in Figure 4.4. Any active remediation that may be implemented at the Lees Avenue site needs to consider the effect on the current treatment system and the potential that this system will require upgrades or a complete re-design. This remedial option is considered as a supporting remediation technology at the Lees

Avenue site if it is used in conjunction with other more aggressive remediation strategies. Estimated costs for the Lees Avenue site is assumed to be the same as operating costs of the current system, approximately \$50K to \$100K per year. This form of engineered containment is further considered as a potentially applicable option with other remedial technologies at the Lees Avenue site.

5.2.3.4 Containment Barriers

Containment barriers such as metal sheet pilling or Waterloo barrier are methods that are intended to isolate or prevent contaminated groundwater or NAPL from mobilizing past the barrier. The perimeter of the Lees Avenue parking lot is estimated to be approximately 500 metres and the depth required for containment barrier installation is approximately 10 to 11 metres, therefore requiring approximately 17,500 square metres of containment wall. These methods could be used to prevent contamination migration off of the subject property, or conversely to prevent contamination from migrating onto a neighbouring property. This type of remedial measure can effectively be used in conjunction with other, more aggressive remedial technologies to assist in controlling the movement of chemicals during in-situ treatment. Estimated costs for the Lees Avenue site are assumed to be approximately \$50 to \$80 per square metre of wall. This form of engineered containment is further considered as a potentially applicable option with other remedial technologies at the Lees Avenue site.

5.2.3.5 In-situ Solidification and Stabilization

The principal remedial goal of solidification/stabilization (S/S) methods is to reduce the dissolved flux of contaminants, typically PAHs and BTEX compounds, which are dissolving from the coal-tar NAPL zone within an aquifer, by encapsulating the contaminants within a solid matrix that minimises their mobility and leaching. Solidification involves the mechanical mixing of the contamination into a solid form such that the exposed surface area of the NAPL is much reduced and also its solubility. Thus solidification traps the contaminant in cementitious or other solid matrix. Stabilization is the process whereby chemical reactions occur to limit the release or leaching of compounds from the contaminant. Therefore, stabilization is meant to bind free-phase (mobile) and residual NAPL and immobilize it within the solid matrix.

At the Lees Avenue site in-situ S/S could involve deep cementitious soil mixing using augers to either encircle or to entomb the complete zone of coal tar NAPL contamination located below the Transitway Station parking lot. Such an application of in-situ S/S would have a long-term beneficial effect on the volumes of groundwater being pumped and treated in the Transitway groundwater collection and treatment system.

A relevant S/S project was that conducted in 2009 at Sag Harbor on Long Island, New York at a former MGP site in the downtown area (ENR New York, 2009). The project required excavation of 37,000 tons of surficial contaminated soil from the upper 15 cm of the site. In order to prevent excessive groundwater infiltration into the excavation area, a soil-mix wall was installed composed of Portland cement mixed with native soils; this wall stabilized 6,500 tons of saturated soils. Subsequently, the dewatering flow rates averaged ~240 m³/day (60,000 gals/d), which was treated onsite and discharged to the harbor over a distance of one km. Furthermore, the wall also acted as a foundation, reduced vibration and noise to the community and generally helped expedite the work.

An attractive feature of cement-based S/S is that it can incorporate contaminant sorbents such as clays and activated carbon used either as a pre-treatment or as additives in the cement mix. Figure 5.7 shows a soil mix barrier wall (soil+cement+clay) being constructed at a Superfund site with a design criterion of 1×10^{-8} m/s.

Figure 5.7 Outer Barrier Wall Construction using Cutter Soil Mixing at US EPA's Brunswick, Georgia Superfund Site

Paria and Yuet (2006) have discussed the application of cementitious S/S remediation in light of its use at the Sydney Tar Ponds, Cape Breton, Nova Scotia. They indicated the following beneficial aspects of cementitious S/S remediation:

- 1) Relatively low cost and ease of use and processing;
- The composition of Portland cement is consistent, thus eliminating a variable in the design of S/S projects;
- 3) Good long-term physical and chemical stability;
- 4) Good impact and comprehensive strength;
- 5) Non-toxic reagents;
- 6) Resistant to biodegradation; and
- 7) Low hydraulic conductivity.

Benefits of S/S technology include the ability to immobilize contaminants without full remediation. Constraints and concerns for in-situ S/S remediation technology application at the Lees Avenue site include the adverse effects of up-gradient groundwater mounding, fugitive mobilization of dissolved coal tar contamination outside of the treatment area (e.g., on University of Ottawa property) and adverse effect on the current sand filtration and activated carbon treatment systems due to pH

increases associated with cement injection. Estimated costs associated with S/S technology are approximately \$20 to \$30 per cubic metre with approximately 80,000 m³ onsite (8000 m² x 10m depth). This form of engineered containment is further considered as a potentially applicable option with other remedial technologies at the Lees Avenue site.

5.2.3.6 In-situ Geochemical Stabilization

In-situ geochemical stabilization (ISGS) using a permanganate solution is somewhat similar to S/S. This technology has been applied at creosote and MGP sites (Mueller et al., 2011), in particular by Beazer East of Pittsburgh PA, a major owner of creosote-contaminated sites. ISGS, according to Mueller et al. (2011) involves the injection of a catalyzed sodium permanganate solution in order to produce a crystalline, aluminum hydrosilicate crust around NAPL ganglia. The resulting compound is meant to immobilize the NAPL, plug pore throats, reduce hydraulic conductivity and contaminant solubility and reduce the contaminant mass.

At the Lees Avenue site, it would involve the injection of treatment solutions to a coal tar contaminated zone via a network of injection wells and possibly use of extraction wells to improve treatment solution contact with coal tar.

A pilot test of ISGS was conducted at a Superfund site in Gainesville, Florida and the results were reviewed by an independent panel including a Geofirma engineer. While Mueller et al. (2011) claim an average reduction of total PAHs of 50% and a reduction in hydraulic conductivity due to the plugging of 27-81% of pore space, the independent panel noted that the sweep of the injected solution was poor, i.e., much of the NAPL was not contacted by the injected solution.

Despite this negative conclusion, the US EPA has approved the large-scale application of ISGS at the Gainesville site. Previous application of ISGS at a site in Denver, Colorado also produced results that the vendor claimed to be evidence of success, but an independent observer was skeptical of this conclusion.

Benefits of ISGS include that the technology is proven and is effective at immobilizing NAPL, along with the general benefits associated with in-situ treatment (no excavation required). Limitations of ISGS include that it has not been proven as a full-scale field remediation technology, as well as the common in-situ treatment technology constraint of the potential inability to control the chemical oxidant contact process in a heterogeneous subsurface environment. Estimated costs for ISGS are between \$100 and \$200 per cubic metre.

Similar to in-situ chemical oxidation, in-situ geochemical stabilization is not further considered as a potentially applicable remediation technology for coal tar NAPL at the Lees Avenue site due to the large volume of coal tar DNAPL present.

5.2.4 Institutional Controls

Institutional controls include access control measures, deed restrictions, and established procedures for managing excavation below grade. The specific details of institutional controls would be established depending on the remedial action implemented and the intended future land use. Examples of access controls include fencing, security and general site monitoring are intended to prevent uninformed persons from creating a potential exposure pathway to contamination. Deed

restrictions, environmental easements and/or MOE Certificates of Property Use are legal documents that inform any potential future property owners of the environmental conditions and any restrictions in place. Procedures for managing excavation below grade include establishing plans for ensuring worker health and safety as well as managing any contaminated soil and groundwater encountered during excavation. Like engineering containment, institutional controls are not intended to be a remediation option but rather are useful tools to minimize exposure to contamination. Typically, institutional controls are implemented in conjunction with and to support other active remedial measures. Estimated costs for institutional controls are wide ranging depending on what is required and could range from \$10K to \$100K per year. Institutional controls are further considered as part of any remedial strategy.

5.3 Technical Issues

The implementability and effectiveness of any of the above-described remedial technologies for use at the Lees Avenue site is constrained by the following site conditions:

- 1) Significant groundwater inflows (~50 to 90 L/min) to the groundwater collection and treatment system underlying the Transitway;
- 2) Presence of buildings, highways and subsurface infrastructure that inhibit the implementation of all technologies; and
- 3) The irreducible uncertainties in the spatial distribution of the NAPL.

The proximity of the Rideau River, Highway 417 and much-drained surface surrounding the Lees Avenue site indicates that there will be problems in dewatering the site should this be required for remediation. Most of the technologies discussed above do not require dewatering, but some (e.g., smouldering and thermal) may function better in the absence of substantial groundwater flow through the treatment zone.

The presence of major infrastructure foundations has to be carefully considered in the application of thermal technologies. This necessitates the ability to quickly control the progress of remediation should damage occur or appear to be imminent if remediation were to continue. Some of the technologies discussed above may be difficult to control once they have been initiated, e.g., smouldering. This is perhaps the criterion of greatest importance in technology selection.

Finally, because there are always uncertainties in the volume and mobility of viscous NAPLs in the subsurface, the remedial technology chosen must be robust in the sense that it should be able to be employed satisfactorily where unexpectedly high NAPL volumes are encountered. In such conditions, thermal and smouldering technologies might be advantageous.

5.4 Proposed Remedial Strategies

Due to the fact that the majority of the coal tar DNAPL is interpreted to be under the parking lot at 191 Lees to the east of the Transitway, this remedial options assessment is focused solely on this parking lot area and does not attempt to address contamination outside of this area. Incorporating remedial options for contamination outside of this area should be considered once off-site contamination distribution is better understood and as remediation alternatives are finalized.

As discussed above, the best path forward for the Lees Avenue site will likely be a remedial strategy that incorporates multiple remedial technologies and activities. Considering this, various combinations of the retained remedial activities were considered together to provide the following seven remedial strategies for 191 Lees Avenue parking lot east of the Transitway:

Strategy 1: Excavation and Off-site Disposal. This strategy involves excavation to the bottom of coal tar which is theoretically coincident with the top of till (approximately 10 to 11 mBGS), off-site disposal of all contaminated material and underground infrastructure (gas holder and piping), engineered containment and dewatering/treatment of groundwater, treatment of air emissions, and ongoing institutional controls.

Strategy 2: Excavation and Ex-situ Combustion Treatment. This strategy involves excavation to bottom of coal tar which is theoretically coincident with the top of till (approximately 10 to 11 mBGS) and off-site combustion of excavated material, disposal of any remnant underground infrastructure (e.g., relief gas holder and piping) with engineered containment around site and ongoing institutional controls. Excavated material will be sorted and if more cost effective, non-hazardous material may be disposed of or treated using another ex-situ technology. For cost estimating purposes as part of this comparative assessment, all excavated material is assumed to be treated by ex-situ combustion.

Strategy 3: Excavation and Ex-situ Thermal Desorption Treatment. This strategy involves excavation to bottom of coal tar which is theoretically coincident with the top of till (approximately 10 to 11 mBGS) and off-site treatment using thermal desorption technology, disposal of any remnant underground infrastructure (e.g., relief gas holder and piping) with engineered containment around site and ongoing institutional controls.

Strategy 4: Partial Excavation and In-situ Combustion Treatment. This strategy involves partial excavation in vicinity of relief gas holder to remove and dispose of any contaminated soil and remnant underground infrastructure associated with historical coal tar operations followed by in-situ combustion treatment (STAR) with engineered containment around site and ongoing institutional controls.

Strategy 5: Partial Excavation and In-situ Thermal Treatment. This strategy involves partial excavation in vicinity of relief gas holder to remove and dispose of any contaminated soil and remnant underground infrastructure associated with historical coal tar operations followed by in-situ thermal treatment with engineered containment around site and ongoing institutional controls.

Strategy 6: Partial Excavation and In-situ Stabilization. This strategy involves excavation to top of coal tar (approximately 6 mBGS), removal and disposal of any contaminated soil and remnant underground infrastructure associated with historical coal tar operations followed by in-situ stabilization at depth of coal tar contaminated material with ongoing institutional controls.

Strategy 7: Risk Management and Risk Assessment. This strategy involves continue operating Transitway collection and treatment system with consideration for upgrades if necessary, with completion of an ecological and human health risk assessment in accordance with O.Reg. 153/04, and implementation of risk management measures to be defined by the risk assessment.

5.5 Comparative Assessment of Proposed Remedial Strategies

Table 5.2 presents a comparative matrix of the seven remedial strategies discussed above for the Lees Avenue site. Each remedial strategy is evaluated with respect to the following criteria:

- 1) Overall Protection of Human Health and Environment
- 2) Ability to meet MOE Standards
- 3) Long-Term Effectiveness and Permanence (allow development below grade)
- 4) Reduction of Toxicity, Mobility and Volume
- 5) Short-Term Impacts and Effectiveness
- 6) Minimize or Eliminate Need for and Costs Associated with Current Treatment System
- 7) Implementability
- 8) Cost

The estimated costs presented in this section for each remedial technology are based on limited data and are intended to provide a relative context for evaluation among various technologies. For the purpose of this assessment, these cost estimates were prepared with the focus solely on the volumes of estimated soil contamination below the parking lot area at 191 Lees Avenue because it could be more easily defined and contains the bulk of the contaminated area as defined in the Phase II ESA. These remedial strategies and this assessment are also applicable to areas with contamination outside of this parking lot and these additional volumes of contaminated soil and associated costs can be added at a later stage when there is more information to define the scope of work.

These cost estimates should be considered as Class 5 cost estimates as defined by the Association for the Advancement of Cost Engineering (AACE, 1997) with a margin of error of approximately -20% to +100%. By definition, Class 5 cost estimates are generally prepared based on very limited information, the end usage is strategic business planning purposes (screening or feasibility) and they are usually made using professional judgement.

The evaluation was completed qualitatively as having either a low, medium or high desirability with respect to each criterion. Upon review, it became apparent that each of the remedial technology options satisfies the remedial action objectives to some degree and each technology has challenges, therefore it is not surprising that most were rated with an overall moderate desirability for use at the Lees Avenue site. However, if combustion technology is feasible (in-situ or ex-situ) this would be a preferred technology since it not only removes but destroys coal tar NAPL phase as well as dissolved phase.

Based on this evaluation, the following four options are considered worthy of further investigation research for use at the Lees Avenue site:

- Strategy 2: Excavation and Ex-situ Combustion Treatment.
- Strategy 4: Partial Excavation and In-situ Combustion Treatment
- Strategy 6: Partial Excavation and In-situ Stabilization
- Strategy 7: Risk Management and Risk Assessment

			<u> </u>					
		Strategy 1	Strategy 2	Strategy 3	Strategy 4	Strategy 5	Strategy 6	Strategy 7
Criteria	Sub-Criteria	Excavate above till (above ~ 10m) and offsite disposal	Excavation and Ex-Situ Combustion (Co-burning)	Excavation and Ex-situ Thermal Desorption	Partial Excvation In-situ Combustion (Smouldering)	Partial Excavation In-situ Thermal Treatment Methods	Partial Excavation and In-situ Solidification and Stabilization	Risk Management Risk Assessment
Overall Protection of Human	Human Health	H	Н	Н	М	M	Н	Н
Health and Environment	Environment	М	M-H	M-H	М	H	Н	L
	Overall Rating	High	High	High	Moderate	Moderate	High	Moderate
MOE Standards	Soil	Ĥ	H	Ĥ	М	М	L	L
	Groundwater	Н	Н	Н	М	М	L	L
	Overall Rating	High	High	High	Moderate	Moderate	Low	Low
Long-Term Effectiveness and	Achieve Goals?	Н	Н	Н	М	М	Н	М
Permanence (allow development	Remaining Risk	Н	Н	Н	М	М	Н	L
below grade?)	Reliability of Success	Н	Н	М	М	М	Н	М
	Permanance	Н	Н	Н	М	М	L	М
	Overall Rating	High	High	High	Moderate	Moderate	High	Moderate
Reduction of Toxicity, Mobility and Volume	Amount of Material Destroyed or treated	Н	Н	Н	М	М	L	L
	Degree of Toxicity, Mobility, or Volume reduced	Н	н	Н	н	Н	н	L
	Irreversibility	Н	Н	H	Н	H	L	L
	Residuals Remaining	Н	Н	H	М	М	L	L
	Overall Rating	High	High	High	Moderate-High	Moderate	Moderate	Low
Short-Term Impacts and Effectiveness	Protection of Community during Remedial Action	L	L	L	н	Н	Н	Н
	Environmental Impacts	L	L	М	М	М	Н	Н
	Time Required to Meet Remedial Objectives (develop below grade)	L	L	L	М	L	М	Н
	Protection of Workers	L	L	L	М	М	М	Н
	Overall Rating	Low	Low	Low	Moderate	Moderate	Moderate	High
Implementability	Technical Feasibility	Н	Н	М	М	М	М	Н
	Administrative Feasibility	L	L	L	L	Н	М	Н
	Availability of Services	Н	М	М	М	М	М	Н
	Overall Rating	Moderate	Moderate	Moderate	Moderate	Moderate-High	Moderate	High
Reduce Need for Current	Reduce Need	М	М	М	M	М	Н	L
Collection/Treatment System	Lower Costs	Н	Н	Н	М	Μ	Н	L
	Overall Rating	Moderate	Moderate	Moderate	Moderate	Moderate	Moderate	Low
Cost*	Capital Costs	L (\$10-21M)	M (\$7-24M)	M (\$7-16M)	M (\$5-9M)	M (\$4-12M)	L (\$5-8M)	H (\$1-3M)
	O&M Costs	Н	Н	Н	М	Μ	Н	Н
	Contingency	L (50%)	L (50%)	L (50%)	L (50%)	L (50%)	L (50%)	Н
	Overall Rating	Low	Moderate	Moderate	Moderate	Moderate	Moderate	High
Overall Rating		Moderate	Moderate-High	Moderate	Moderate-High	Moderate	Moderate-High	Moderate-High

Table 5.2 Comparative Assessment of Remedial Strategies for the Coal Tar Contamination at Lees Avenue Transitway Site

Legend:

Low = not desireable; Moderate = Possibly Desireable; High = Desireable

* = Cost estimates provided are considered to be Class 5 cost estimates, as defined by the Association for the Advancement of Cost Engineering (1997) and for the purpopse of this compartive assessment of strategies, focus only on the parking lot area at 191 Lees Avenue because this was a well defined area that incorporates most of the identified contamination as coal tar DNAPL. Areas on 191 and 193 Lees Avenue that are impacted by coal tar contamination can also be included in later stages of feasibility studies as more information is known and the scope of work is better defined.

Strategy 1 is not recommended for further consideration as a stand-alone strategy due to the high costs associated with disposal of hazardous material and the fact that excavation and off-site disposal are incorporated as an optional component to all other active remedial strategies where cost effective.

Strategy 2 is recommended for further consideration due to the fact that it is intended to remove all contamination from the site and destroy this contamination, therefore not requiring disposal, which is considered to be cheaper compared to excavation and off-site disposal of hazardous material. Excavation is the most certain of all remedial options to remove contamination and this strategy meets all five of the remedial action objectives. Fully removing all contamination will provide the best development opportunities, remove any future concerns of mobilization or exposure to contamination, and reduce the reliance on the existing Transitway collection and treatment system. As discussed above, excavated material will be sorted and if more cost effective, non-hazardous material may be disposed of or treated using another ex-situ technology.

Strategy 3 is not recommended for further consideration due to the fact that thermal desorption is most effective if low temperatures can be used to remove all contaminants from the soil and the fact that after the desorption process is complete, the by-product still requires disposal. For coal tar contaminated soils, thermal desorption requires heating of excavated material to very high temperatures in order to remove the higher molecular weight PAH compounds from the soil. If such high temperatures are required, this strategy was dropped in favour of ex-situ combustion which also used high temperatures but does not have the added costs to dispose of the desorbed chemical by-product.

Strategy 4 is recommended for further consideration due to its ability to fully destroy all of the coal tar contamination with minimal disturbance to surface operations and neighbouring community at the site, and its low cost compared to excavation and ex-situ combustion. This strategy is being retained for consideration based on the assumption that the major concerns with containing and controlling the combustion reaction in the ground in such proximity to an active public transit station, underground infrastructure, and provincial highway can be overcome. Assuming this strategy is effective at the Lees Avenue site, it meets all five of the remedial action objectives. It will provide full development opportunities, remove any future concerns of mobilization or exposure to contamination, and reduce the reliance on the existing Transitway collection and treatment system. Lab bench-scale tests and a pilot test would be necessary before this treatment strategy was recommended, therefore acquiring some of this information is the logical next step.

Strategy 5, similar to strategy 3, is not recommended for further consideration due to the fact that thermal desorption is most effective if low temperatures can be used to remove all contaminants from the soil and the fact that after the desorption process is complete, the by-product still requires removal from the subsurface and ultimate disposal. Also, like strategy 3, this strategy was dropped in favour of in-situ combustion which does not require the removal and ultimate disposal of desorbed chemical by-products from the subsurface.

Strategy 6 is recommended for further consideration due to its balanced approach of minimal disturbance to subsurface contamination, removal of contaminated infrastructure and soil down the interpreted top of grossly contaminated coal tar soil with DNAPL, locking the contamination in place to prevent mobility of contaminants, and its lower cost compared to other remedial strategies. Strategy 6 meets most of the five remedial action objectives. It will provide reasonable development

opportunities, reduce any future concerns of mobilization or exposure to contamination, and reduce the reliance on the existing Transitway collection and treatment system.

Strategy 7 is recommended for further consideration due to its low cost and minimal disruption to the site and surrounding neighbourhoods. The limitations associated with Strategy 7 are more certain than the other strategies and include not meeting three of the identified remedial objectives outlined in Section 5.1 (not removing any contamination, restrictions on subsurface development, and long-term reliance on the existing Transitway groundwater collection and treatment system in its current capacity) as well uncertainty of MOE approval of risk assessment and scope of resultant risk management measures. However, due to the benefits associated with this strategy (low cost and minimal disruption, i.e., status quo) at this time, it has been retained for further consideration as a comparison strategy.

6 CONCLUSIONS AND RECOMMENDATIONS

The results of the Supplementary Phase 2 ESA and Remedial Options Assessment described in this report support the following conclusions.

- 1. The site stratigraphy, hydrostratigraphic units and groundwater flow system determined from the initial and supplementary 2012 investigations are entirely consistent with the Conceptual Site Model defined based on 1986 and 1987 data. The thickness and elevation of the fill, alluvium and basal glacial till units evident from the 2012 drilling and soil sampling are very similar to expectations based on the CSM developed from earlier investigations. The 2012 groundwater flow system defined in March/April and September/October is largely unchanged from that evident in 1986. Groundwater at the 191 and 193 Lees Avenue site is captured by the Lees Avenue Transitway Station pumping system.
- 2. The distribution of coal tar contamination from both visual/olfactory observation and laboratory chemical testing is consistent with the distribution described on 1986 and 1987. Coal tar is present within the deep alluvium and to a lesser extent the shallow alluvium and fill units primarily on the east side of the Transitway below the parking lot. The highest concentrations of coal tar chemicals (i.e., PAH) were found in the fill and deep alluvium to the top of the low permeability basal till unit over the eastern half of the parking lot. Typically, coal tar is found in this part of the site at elevations of 53 to 50 mASL at depths of 7 to 10 mBGS. This coal tar appears to be pooled on top of the basal till unit. The occurrence of coal tar at BH12-11 (and historically at OW120B) is consistent with historical movement of coal tar down the sloping till surface to the southeast of the parking lot. Coal tar was also observed within the shallow fill of BH/MW12-13, which was drilled into the former relief gas holding tank, and in the shallow fill and deep alluvium at BH/MW12-15, near the former boiler house tar storage area. The former relief gas holder appears to have an intact base.
- 3. Laboratory chemical testing for typical coal gasification plant waste chemicals shows that PAH and PHC-F1/BTEX remain the chemicals of concerns at the site. Metals and cyanide in soil and groundwater were either not detected (cyanide in soil and groundwater) or were found only sporadically in site soil and groundwater at moderately elevated concentrations.
- 4. There are limited exceedences of MOE standards for soil for PAH, PHC-F1/BTEX and metals at five locations on the west side of the Transitway. Groundwater west of the Transitway does not show exceedences of MOE standards for metals, PAH, free cyanide and PHC-F1/BTEX at the 15 locations sampled in 2012. These are quite limited exceedences given the historical land use and results of earlier investigations, and these results suggest some redevelopment potential may exist for land located west of the Transitway Station.
- 5. PAH and PHC-F1/BTEX exceedences of MOE standards are more frequent and widespread on the east side of the Transitway below the existing parking lot, consistent with visual and olfactory observations of coal tar occurrence in this area. This identified contamination in the shallow fill and the deep alluvium poses a significant impediment to redevelopment of parking lot area.
- 6. Soil metals, PAH and BTEX exceedences and groundwater PAH and PHC-F1 exceedences of MOE standards were found at BH/MW12-11 on 193 Lees Avenue in proximity to adjacent

University of Ottawa land. Soil PAH and BTEX exceedences of MOE standards were also found east of the Lees Avenue overpass at BH12-12 and BH12-16 on 193 Lees Avenue.

- 7. Screening of potentially applicable remedial technologies for coal tar contamination identified the following treatment technologies that warrant further consideration to remediate the 191 Lees Avenue site to a level such that subsurface development may occur: combustion treatment (exsitu co-burning and in-situ smouldering (STAR)), and thermal treatment .technologies (ex-situ and in-situ). In addition, excavation, off-site disposal, engineering barriers to reduce mobility of contaminants and institutional controls are all worthy of consideration to augment the treatment technologies identified above.
- 8. Comparative assessment of potentially applicable remedial strategies for coal tar contamination at the 191 Lees Avenue site identified four strategies combining multiple remediation activities as warranting further consideration. These four strategies can be broadly described as [1] excavation and offsite combustion, [2] partial excavation and in-situ combustion, [3] partial excavation and in-situ stabilization, and [4] risk management and risk assessment. Each of these remedial strategies have different benefits and limitations and even if successful may allow varying degrees of development (i.e. do nothing and risk assessment strategy may not allow subsurface development). These strategies also incorporate other aspects such as engineered barriers and institutional controls.

Based on these conclusions, the following recommendations are offered:

- Complete a feasibility study that further investigates the potential effectiveness and develop a Class 4 cost estimate, in accordance with AACE (1997) cost estimate classification, for the four recommended remedial strategies such that one remedial strategy will be recommended, and a second retained as a backup strategy, based on a similar comparative assessment as shown above. A Class 4 cost estimate, by definition, has a margin of error of approximately -15% to +50%, generally prepared based on limited information where the level of project definition is typically 1 to 15%, and the end usage is concept or feasibility study.
- 2. Complete any necessary preliminary tests required to prepare for a pilot study such as a lab-bench scale test for in-situ combustion/smouldering using STAR technology and any similar tests required to confirm the effectiveness of thermal treatment technologies.

7 REFERENCES

Association for the Advancement of Cost Engineering (AACE), 1997. AACE International Recommended Practice No. 17R-97, Cost Estimate Classification System, August 12.

Basel, M.D. and C.H. Nelson, 2000. Overview of in situ chemical oxidation: Status and lessons learned. *In:* Treating Dense Nonaqueous Phase Liquids (DNAPLs), Proceedings of the Second International Conference on Remediation of Chlorinated and Recalcitrant Compounds. Monterrey, California, May 22-25, 2000, Battelle Press, Columbus Ohio, pp. 117-124.

Conestoga-Rovers & Associates Limited, 1986a. Overview of Preliminary Hydrogeological Data, Lees Avenue Transitway, Report prepared for Regional Municipality of Ottawa Carleton, July.

Conestoga-Rovers & Associates Limited, 1986b. Interim Report, Hydrogeological Investigation Lees Avenue Transitway, Report prepared for Regional Municipality of Ottawa Carleton, August 11.

Cumming, J., 2012, Thermal Treatment: In Situ, Overview. CLU-IN web site, US EPA, updated 2012-12-21, http://clu-in.org/techfocus/default.focus/sec/thermal_treatment:_in_situ/cat/overview/.

ENR New York, 2009, National Grid Sag Harbor Former MGP Site Remediation – Sag Harbor, N.Y., http://newyork.construction.com/features/2009/1201_NationalGridSagHarbor.asp.

Environmental Research and Technology Inc. and Koppers Co. Inc., 1984. Handbook on Manufactured Gas Plant Sites, Report prepared for Utility Solid Waste Activities Group, Superfund Committee, Washington, D.C.

Geofirma Engineering Ltd., 2012a. Phase 1 Environmental Site Assessment, 191 and 193 Lees Avenue, Ottawa, Ontario, Final Report to City of Ottawa, Revision R0, January 17.

Geofirma Engineering Ltd., 2012b. Phase 2 Environmental Site Assessment, 191 and 193 Lees Avenue, City of Ottawa, Final Report to City of Ottawa, Revision R0, June 27.

Geofirma Engineering Ltd., 2012c. Proposed Supplementary Phase 2 ESA and Remedial Options Assessment - 191 and 193 Lees Avenue, City of Ottawa, Letter to City of Ottawa, Revision R1, July 30.

Geological Survey of Canada, 1979, Generalized Bedrock Geology, Ottawa-Hull, Ontario and Quebec, Map 1508A, Scale 1:125,000, Ottawa.

Geological Survey of Canada, 1982, Surficial Geology – Ottawa-Hull, Ontario and Quebec, Map 1506A, Scale 1:50,000, Ottawa.

Golder Associates Ltd., 2011. Factual Scoped Phase II Environmental Site Assessment, Ottawa Light Rail Transit (OLRT) Ottawa, Ontario, Draft Report prepared for Capital Transit Partners, Ottawa, December.

Golder Associates Ltd., 1986. Factual Data to M.M. Dillon Ltd., Subsurface Information, Oil Leak, East Transitway, Ottawa, Ontario, Report # 861-2176 prepared for M.M. Dillon Ltd.

Intera Technologies Ltd., 1987. Lees Avenue Hydrogeologic Study, Final Report prepared for Ontario Ministry of the Environment, Volumes I and II, May 15.

Mueller, J., J. Moreno, J. Valkenburg, G. Council, J. Erickson, T. Al, D. Loomer, M. Slenska, and M. Brourman, 2011, In situ geochemical stabilization (ISGS) for NAPL management. Accessed from http://dev.adventusgroup.com/pdfs/presentations/Moreno_ISGS_SustainabilityLive_MAY2011.pdf.

Neuhauser, E.F., J.A. Ripp, N.A. Azzolina, E.L. Madsen, D.M. Mauro and T. Taylor, 2009. Monitored natural attenuation of manufactured gas plant tar mono- and polycyclic aromatic hydrocarbons in ground water: A 14-year field study. Ground Water Monitoring & Remediation, Vol. 29, No. 3, pp.66-76.

Ontario Geological Survey, 1984. Preliminary Geological Map P.2716 – Paleozoic Geology, Ottawa Area, Southern Ontario, Scale 1:50,000, Toronto.

Ontario Ministry of the Environment (MOE), 2011a. Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act. April

Ontario Ministry of the Environment (MOE), 2011b.Guide for Completing Phase One Environmental Site Assessments under Ontario Regulation 153/04, PIBS 8485e, June, Queen's Printer for Ontario.

Paria, S., and P. K. Yuet, 2006, Solidification-stabilization of organic and inorganic contaminants using Portland cement: a literature review. Environmental Review 14 217-255 (doi: 10.1139/A06-004).

Raven, K.G. and P. Beck, 1992. Coal tar and creosote contamination in Ontario. In: Proceedings of the International Conference on Subsurface Contamination by Immiscible Fluids, Calgary, Alberta, April 18-20, 1990, ed. K.U Weyer, pp. 401-410, A.A Balkema, Rotterdam.

Regional Municipality of Ottawa-Carleton, 1979. Interdepartmental Correspondence File No. RG3015-5, Soil Information on Section between Queensway and Lees Avenue – Southeast Transitway Corridor (Mann Avenue to Riverside Drive).

Thomson, N.R., M.J. Fraser, C. Lamarche, J.F. Barker and S.P. Forsey, 2008, Rebound of a coal tar creosote plume following partial source zone treatment with permanganate. Journal of Contaminant Hydrology 102: 154-171.

Young, C.M., and seven others, 2002, In-situ remediation of coal tar-impacted soil by polymersurfactant flooding. Paper 2C-33, in A.R. Gavaskar and A.S.C. Chen (Editors), Remediation of Chlorinated and Recalcitrant Compounds – 2002, Battelle Press, Columbus, Ohio.

8 CLOSURE

This report has been prepared for the exclusive use of the City of Ottawa, Realty Services Branch using methodologies for conducting a Phase 2 Environmental Site Assessment and Remedial Options Assessment that is acceptable within the profession. Historical and current data obtained from subsurface investigations represent the conditions about a limited area surrounding the sampling location at the time of the sampling and as such can be expected to be variable with respect to location and time. Geofirma Engineering Ltd. has exercised professional judgment in collecting and analysing the information and in formulating recommendations based on the results of the study. The evaluation and assessment contained in the report have been prepared based on conditions in evidence at the time of the site investigations and on the basis of information provided to Geofirma. Accordingly, Geofirma cannot accept responsibility for any deficiency, misstatement or inaccuracy contained in this report as a result of misstatements, omissions, misrepresentations, or fraudulent acts of persons providing information.

The mandate of Geofirma Engineering Ltd. is to perform the given tasks within the guidelines prescribed by the client and with the quality and due diligence expected within the profession. No other warranty or representation expressed or implied, as to the accuracy of the information or recommendations is included or intended in this report.

Geofirma hereby disclaims any liability or responsibility to any person or party, other than the party to whom this report is addressed, for any loss, damage, expense, fines or penalties which may arise or result from the use of any information or recommendations contained in this report by any other party. Any use of this report constitutes acceptance of the limits of Geofirma's liability. Geofirma's liability extends only to its client and only for the total amount of fees received from the client for this specific project and not to other parties who may obtain this report.

Respectfully Submitted,

Geofirma Engineering Ltd.

Kenneth Raven, P.Eng., P.Geo. Principal and Senior Hydrogeologist

Jean Glerlin

Sean Sterling, P.Eng., P.Geo. Senior Hydrogeologist

APPENDIX A

Borehole Stratigraphic and Instrumentation Logs

BH/MW12-01 to BH/MW12-19

Borehole Number: BH/MW12-01

Project Number: 11-200-7

Client: City of Ottawa

Site Location: 191 Lees Ave

Coordinates: 447453E, 5029445N (UTM Zone 18)

Drilling Method: Hollow Stem Auger with Split Spoon

MOE Well ID: A122889

Date Completed: 22-Feb-12

Supervisor: SNS

Ground Surface Elevation: 59.19 mASL

Borehole Number: BH/MW12-01

Project Number: 11-200-7

Client: City of Ottawa

Site Location: 191 Lees Ave

Coordinates: 447453E, 5029445N (UTM Zone 18)

Drilling Method: Hollow Stem Auger with Split Spoon

MOE Well ID: A122889

Date Completed: 22-Feb-12

Supervisor: SNS

Ground Surface Elevation: 59.19 mASL

Borehole Number: BH/MW12-02

Project Number: 11-200-7

Client: City of Ottawa

Site Location: 191 Lees Avenue

Doc: 11-200-7_Well Installation_MW12-02

Template: 2011 Geofirma Template

Coordinates: 447453E, 5029442N (UTM Zone 18)

Drilling Method: Hollow Stem Auger with Split Spoons

MOE Well ID: A122889

Date Completed: 17-Feb-12

Supervisor: JFD

Ground Surface Elevation: 53.98 mASL

Date of Water Level Measurement: 7-Mar-12

DEPTH BGS	SAMPLES	LAB SAMPLE	BLOW COUNT	CGI (ppm)	PID (ppm)	POG	STRATIGRAPHIC DESCRIPTION	INSTALLATION		
ft m -1							GROUND SURFACE	MW12-02		
1 1				0	0.5		FILL Coarse sand, brown, moist. - gravely for upper 1.8 mBGS	e casing		
2 3 1 1		x		0	0.9		- Ash and fibrous membrane in 0.6 to 1.4 mBGS section	Int protectiv		
4 5		x		15	0.35			Flush mou ole diamete		
6 2							SAND Fine to medium-grained, grey, wet.	mm boreh		
7		х		50	0.15		CLAY Dark grey, wet.	203 mBGS well so		
8 9 1		x		25	0.1		SAND Brown to grayish brown, wet. - Normal grading from fine-grained to medium- grained from 2.3 to 3.0 mBGS	a sand		
10 ¹¹ 3 11 ¹¹		x		25	0.15		- Reverse grading from medium to fine-grained from 3.0 to 3.7 mBGS	tonite plug Silic: Wa		
12 13 13 4				0	0.1	၆ ရင်္ခန် ရင်္ခ နစ် ရင်္ခန် ရင်္ နစ် ရင်္ခန် ရင်္ခ နစ် ရင်္ခန် ရင်္ခ	TILL Dark brown clay with some gravel and pebbles, wet.	B		
14 15 15							BOREHOLE TERMINATED Total depth of BH12-02 4.0 mBGS	Total depth of MW12-02 3.23 mBGS		
Prepare	Prepared by: VMS									
Reviewe	ed b	y: JF	-D/ME	EB/KG	R		Page 1 of 1	🐪 💽 Geofirma		

Engineering Ltd

Borehole Number: BH/MW12-03

Project Number: 11-200-7

Client: City of Ottawa

Site Location: 191 Lees Avenue

Coordinates: 447493E, 5029425N (UTM Zone 18)

Drilling Method: Hollow Stem Auger with Split Spoons

MOE Well ID: A122889

Date Completed: 16-Feb-12

Supervisor: JFD

Ground Surface Elevation: 59.55 mASL

DEPTH BGS	SAMPLES	LAB SAMPLE	BLOW COUNT	CGI (ppm)	PID (ppm)	LOG	STRATIGRAPHIC DESCRIPTION	INSTALLATION	
ft m -4								MW12-03	
-3 -2 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	II						GROUND SURFACE	ctive casing	
1				0	11		Sand with trace gravel, Brown to dark brown, dry to moist.	seal t protect	
2 3 4 4				0	13			Bentonite	
5		x		0	26				
6 7 7 8		x		0	0.70		- Ash at 1.8-2.4 and 4.3-5.5 mBGS	VC well riser	
9				0	0.39			50mm F	
10 ¹ 3 11 ¹ 12 ¹		x		23	0.35			203 mm boi	
13 4				0	0.20				
14 15 16		x		0	2.3		- Odour in the following intervals: 4.9-5.5 and 6.1-7.3 mBGS		
Prepare	d by	/: VN	/IS						
Reviewe	ed b	y: JF	D/ME	EB/KG	R		Page 1 of 2	: Geofirma	
Doc: 11 Templat	Doc: 11-200-7_Well Installation_MW12-03								

Borehole Number: BH/MW12-03

Project Number: 11-200-7

Client: City of Ottawa

Site Location: 191 Lees Avenue

Coordinates: 447493E, 5029425N (UTM Zone 18)

Drilling Method: Hollow Stem Auger with Split Spoons

MOE Well ID: A122889

Date Completed: 16-Feb-12

Supervisor: JFD

Ground Surface Elevation: 59.55 mASL

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$									
10 3 0.45 SAND 19 6 0.45 Grey and dark brown, moist to wet. - Gravely from from 5.6 to 7.0 mBGS									
20 21 21 X 0 0.85 - medium to coarse-grained from 5.5 to 6.7 mBGS									
22 - Silty from 5.5 to 5.6 and 7.0 to 7.9 mBGS 23 - 7 0 0 0.35 - Fine to medium-grained from 6.7 to 7.9 mBGS									
20 8 27 0 0.20 0.20 0 0.20									
20 BOREHOLE TERMINATED Total depth of MW12-03 29 9 30 1 30 1 1 31 32 1									
33 10 34 10									
Prepared by: VMS									
Reviewed by: JFD/MEB/KGR Page 2 of 2									
Doc: 11-200-7_Well Installation_MW12-03									

Borehole Number: BH/MW12-04

Project Number: 11-200-7

Client: City of Ottawa

Site Location: 191 Lees Avenue

Coordinates: 447506E, 5029403N (UTM Zone 18)

Drilling Method: Hollow Stem Auger with Split Spoons

MOE Well ID: A122889

Date Completed: 16-Feb-12

Supervisor: JFD

Ground Surface Elevation: 59.69 mASL

DEPTH BGS	SAMPLES	LAB SAMPLE	BLOW COUNT	CGI (ppm)	PID (ppm)	POG	STRATIGRAPHIC DESCRIPTION	INSTALLATION
ft m -3 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1		x x x x x x		0 0 35 0 0 50 60 50	0.1 0.05 0 10 380 0.15 0.25 0.40 0.65		GROUND SURFACE FILL Medium to coarse-grained sand with trace gravel and silty sections, brown to dark brown, dry to moist - Boulder around 1.2 to 1.8 mBGS (almost 0% recovery) - Silty sections from 0.61 to 1.2 and 1.8 to 4.1	203 mm borehole diameter 50mm PVC well riser
Prepare Reviewe Doc: 11 Templat	Prepared by: VMS Reviewed by: JFD/MEB/KGR Page 1 of 2 Doc: 11-200-7_Well Installation_MW12-04 Template: 2011 Geofirma Template							

Borehole Number: BH/MW12-04

Project Number: 11-200-7

Client: City of Ottawa

Site Location: 191 Lees Avenue

Coordinates: 447506E, 5029403N (UTM Zone 18)

Drilling Method: Hollow Stem Auger with Split Spoons

MOE Well ID: A122889

Date Completed: 16-Feb-12

Supervisor: JFD

Ground Surface Elevation: 59.69 mASL

DEPTH BGS	SAMPLES	LAB SAMPLE	BLOW COUNT	CGI (ppm)	PID (ppm)	DOT	STRATIGRAPHIC DESCRIPTION	INSTALLATION	
18 19 20 - 6				25	0.30		SAND Medium to coarse-grained with traces of gravel, tan to grey, moist to wet		
21		x		70	1.8				
23 7		x		100	1.3		- Fine-grained from 7.0 to 8.5 mBGS		
25				65	0.65				
26 8 27 28				100	0.55		- Cobble at 8.4 mBGS	well screen	
29				26	0.15			19 mBGs	
30		x		120	0.35	6 8 9 9 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	TILL Clay with some gravel and pebbles, grey, wet	50 Silica sa	
32 33 34 35							BOREHOLE TERMINATED Total depth of BH12-04 9.6 mBGS	Total depth of MW12-04	
36 11									
37									
Prepare	d b	y: VN	MS					C. C.	
Reviewe	ed b	oy: JF		EB/KG	BR Nation N	111/10	Page 2 of 2	Geofirma	
Templat	Doc: 11-200-7_Well Installation_MW12-04 Engineering Ltd								

Borehole Number: BH/MW12-05

Project Number: 11-200-7

Client: City of Ottawa

Site Location: 191 Lees Avenue

Coordinates: 447473E, 5029361N (UTM Zone 18)

Drilling Method: Hollow Stem Auger with Split Spoons

MOE Well ID: A122889

Date Completed: 21-Feb-12

Supervisor: JFD

Ground Surface Elevation: 58.37 mASL

DEPTH BGS	SAMPLES	LAB SAMPLE	BLOW COUNT	CGI (ppm)	PID (ppm)	LOG	STRATIGRAPHIC DESCRIPTION	INSTALLATION	
ft m -1							GROUND SURFACE	MW12-05	
0 1 2				0	1.0		FILL Medium to coarse-grained sand with gravelly and silty section, brown and grey. One bed of grey clay, dry.	seal	
3 		x		0	0.40		- Gravelly from 0.61 to 1.2 mBGS	Bentonite	
5				0	0		- Silty from 1.7 to 1.8 and 3.0 to 3.7 mBGS	Flus	
-2 7				0	0		- Clay section from 2.0 to 3.0 mBGS	Tiser	
9 1 1				0	0			e diameter	
		x		0	0		- Brown fibrous membrane at 3.2 mBGS	3 mm borehol 50n	
13 4				0	0			ß	
14									
Prepare	d b	y: VN	ΛS						
Review	ed b	y: JF	FD/ME	EB/KG	R -	NA/40	Page 1 of 2	Geofirma	
Doc: 11	Doc: 11-200-7_Well Installation_MW12-05 Engineering Ltd								

Borehole Number: BH/MW12-05

Project Number: 11-200-7

Client: City of Ottawa

Site Location: 191 Lees Avenue

Coordinates: 447473E, 5029361N (UTM Zone 18)

Drilling Method: Hollow Stem Auger with Split Spoons

MOE Well ID: A122889

Date Completed: 21-Feb-12

Supervisor: JFD

Ground Surface Elevation: 58.37 mASL

DEPTH BGS	SAMPLES	LAB SAMPLE	BLOW COUNT	CGI (ppm)	PID (ppm)	DOJ	STRATIGRAPHIC DESCRIPTION	INSTALLATION	
16							SAND Fine to medium-grained, silty, grey to		
							brownish grey, moist to wet.		
17		х		0	0		- Trace gravel 3.7 to 5.5 mBGS		
18							- Black cobble at 5.5 mBGS	BGS	
19		Х		0	0			vel 5	
<u></u> 20 <u>−</u> 6									
								Mat	
21				0	0				
22	╢							•	
								sand	
		X		0	0			llica	
24	╢					<u>, , , , , , , , , , , , , , , , , , , </u>	ТШ	Nell s	
25				0	0	6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	Clay with some gravel and pebbles with		
						(840) (60) (60) (60)	trace sand streaks, grey, wet.		
26 8						5-9 <u>5</u> -9	BOREHOLE TERMINATED		
27							Total depth of BH12-05	7.92 mBGS	
							7.92 mBGS		
28									
29									
9									
31-	31 1								
Prepare	d b	y: VN	/IS						
Reviewe	ed b	y: JF	D/ME	EB/KG	R		Page 2 of 2	Geofirma	
Templai	Doc: 11-200-7_Well Installation_MW12-05 Engineering Ltd								

Borehole Number: BH/MW12-06

Project Number: 11-200-7

Client: City of Ottawa

Site Location: 191 Lees Avenue

Coordinates: 447499E, 5029384N (UTM Zone 18)

Drilling Method: Hollow Stem Auger with Split Spoons

MOE Well ID: A122889

Date Completed: 21-Feb-12

Supervisor: JFD

Ground Surface Elevation: 59.54 mASL

DEPTH BGS	SAMPLES	LAB SAMPLE	BLOW COUNT	CGI (ppm)	PID (ppm)	LOG	STRATIGRAPHIC DESCRIPTION	INSTALLATIO	NC
ft m								MW12-06	
-3 -2 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -2 -1 -1 -2 -1 -2 -2 -1 -2 -2 -1 -2 -2 -2 -2 -2 -2 -2 -1 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2		x		20	0.30		GROUND SURFACE FILL Silty, trace gravel, brown and grey, dry. - Ash beds at 1.07 to 1.22 and 1.8 to 1.9 mBGS	Bentonite seal	Stick up casing
5				0	0.05			•	1
6 2 7 8		x		0	0.15		- Very soft from 1.8 to 4.3 mBGS		PVC well rise
9 10				0	0.05			ole diameter	50mm
11 12		х		25	0.05			8 mm boreho	
13 4				0	26			503	
Prepareo	d by	: VN	1S						
Reviewe	d b	y: JF	D/ME	B/KG	R	111110	Page 1 of 3	Geofi	rma
Template	Doc: 11-200-7_Well Installation_MW12-06 Engineering Ltd								

Borehole Number: BH/MW12-06

Project Number: 11-200-7

Client: City of Ottawa

T T

Site Location: 191 Lees Avenue

Coordinates: 447499E, 5029384N (UTM Zone 18)

Drilling Method: Hollow Stem Auger with Split Spoons

MOE Well ID: A122889

Date Completed: 21-Feb-12

Supervisor: JFD

Ground Surface Elevation: 59.54 mASL

Date of Water Level Measurement: 7-Mar-12

DEPTH BGS	SAMPLES	LAB SAMPLE	BLOW COUNT	CGI (ppm)	PID (ppm)	FOG	STRATIGRAPHIC DESCRIPTION	INSTALLATION	
14	\parallel			-			SAND		
15		x		10	360		Medium to coarse-grained with fine- grained silty bed and gravelly sections, grey, moist to wet.		
16 _ 5	I						- Silty fine-grained bed from 4.3 to 4.8 mBGS		
17		Х		25			- Gravelly from 4.3 to 5.5 and 6.7 to 8.5 mBGS		
18	╢								
19				5					
20 6									
21				30					
22									
23 7		Y		50					
20 .				00					
24									
25				25					
26 8							- Mild odour in 7.9 to 8.5 mBGS interval		
27				25			,	BGS	
28		-						8.1 •	
29				15	0.20			a san	
30 9							- Boulder at 9.2 mBGS	Sillic	
Prepared by: VMS Reviewed by: JED/MER/KCP									
Reviewed by: JFD/MEB/KGR Page 2 of 3 Geofirma Doc: 11-200-7_Well Installation_MW12-06									

Template: 2011 Geofirma Template

Borehole Number: BH/MW12-06

Project Number: 11-200-7

Client: City of Ottawa

Site Location: 191 Lees Avenue

Coordinates: 447499E, 5029384N (UTM Zone 18)

Drilling Method: Hollow Stem Auger with Split Spoons

MOE Well ID: A122889

Date Completed: 21-Feb-12

Supervisor: JFD

Ground Surface Elevation: 59.54 mASL

Borehole Number: BH/MW12-07

Project Number: 11-200-7

Client: City of Ottawa

Site Location: 191 Lees Avenue

Coordinates: 447495E, 5029473N (UTM Zone 18)

Drilling Method: Hollow Stem Auger with Split Spoons

MOE Well ID: A122889

Date Completed: 15-Feb-12

Supervisor: JFD

Ground Surface Elevation: 59.41 mASL

Borehole Number: BH/MW12-07

Project Number: 11-200-7

Client: City of Ottawa

Site Location: 191 Lees Avenue

Coordinates: 447495E, 5029473N (UTM Zone 18)

Drilling Method: Hollow Stem Auger with Split Spoons

MOE Well ID: A122889

Date Completed: 15-Feb-12

Supervisor: JFD

Ground Surface Elevation: 59.41 mASL

DEPTH BGS	SAMPLES	LAB SAMPLE	BLOW COUNT	CGI (ppm)	PID (ppm)	POG	STRATIGRAPHIC DESCRIPTION	INSTALLATION		
14 15 16		×		0	29		SAND Medium to coarse-grained with fine- grained silty bed and gravelly sections, grey, moist to wet. - Silty fine-grained bed from 4.3 to 4.8 mBGS			
17 17				0	20		- Gravelly from 4.3 to 5.5 and 6.7 to 8.5 mBGS			
18 19 19 6 20		x		0	67			Sentonite seal		
21				0	65					
22 23 24 24				0	0			.85 mBGS		
25		x		0	8.0		- Mild odour in 7.9 to 8.5 mBGS interval	water level 6		
27 28				0	1.4		- Boulder at 9.2 mBGS			
L_∃ Prenare	d b	v. //N	/IS							
Reviewe	ed b	y: JF	-D/ME	EB/KG	R		Page 2 of 3	Geofirma		
Doc: 11-	Doc: 11-200-7_Well Installation_MW12-07									
Templat	Template: 2011 Geofirma Template									

Borehole Number: BH/MW12-07

Project Number: 11-200-7

Client: City of Ottawa

Site Location: 191 Lees Avenue

Coordinates: 447495E, 5029473N (UTM Zone 18)

Drilling Method: Hollow Stem Auger with Split Spoons

MOE Well ID: A122889

Date Completed: 15-Feb-12

Supervisor: JFD

Ground Surface Elevation: 59.41 mASL

Borehole Number: BH/MW12-08

Project Number: 11-200-7

Client: City of Ottawa

Site Location: 191 Lees Avenue

Coordinates: 447565E, 5029487N (UTM Zone 18)

Drilling Method: Hollow Stem Auger with Split Spoons

MOE Well ID: A122889

Date Completed: 14-Feb-12

Supervisor: JFD

Ground Surface Elevation: 59.69 mASL

DEPTH BGS	SAMPLES	LAB SAMPLE	BLOW COUNT	CGI (ppm)	PID (ppm)	LOG	STRATIGRAPHIC DESCRIPTION	INSTALLATION	
ft m -1								MW12-08	
		x		50	480		FILL Coarse-grained sand with some gravel, grey and brown, dry to moist.	ve casing	
2 3 		x		0	6.3		- Black stain from 0.9 to 1.2 mBGS	nt protecti	
4 5				0	7.7		- Ash from 1.2 to 1.8 mBGS	Flush mou	
6 2 7 1 2				0	730			0mm PVC wel	
8 9 10 10 3				0	7000		- Strong odour from 2.1 to 3.7 mBGS	20 Deter	
11		x		25				borehole dian	
13 4				50	80			203 mm l	
15									
Prenare	d b	V. //W	//S		I	e sectored.			
Reviewe	ed b	y: JF	 FD/ME	EB/KG	R		Page 1 of 2	Geofirma	
Doc: 11	Doc: 11-200-7_Well Installation_MW12-08								
Templat	Template: 2011 Geofirma Template								

Borehole Number: BH/MW12-08

Project Number: 11-200-7

Client: City of Ottawa

Site Location: 191 Lees Avenue

Template: 2011 Geofirma Template

Coordinates: 447565E, 5029487N (UTM Zone 18)

Drilling Method: Hollow Stem Auger with Split Spoons

MOE Well ID: A122889

Date Completed: 14-Feb-12

Supervisor: JFD

Ground Surface Elevation: 59.69 mASL

DEPTH BGS	SAMPLES	LAB SAMPLE	BLOW COUNT	CGI (ppm)	PID (ppm)	DOJ	STRATIGRAPHIC DESCRIPTION	INSTALLATION	
17 5		x		150	55		SAND Fine to medium-grained with one clayey sand section with some gravel, grey, moist to wet.		
18 19 20 6				0	970		- Black stain and odour from 4.3 to 5.5 mBGS - Strong odour and sheen from 4.9 to 5.5 and 6.1 to 7.3 mBGS		
21				70			- Grey clayey sand section with some gravel from 5.2 to 6.1 mBGS	· · · · · · · · · · · · · · · · · · ·	
23 7				0	280		Mild adapt from 7.2 to 7.0 mPCS	el 6.6 mBGS	
24		x		0				a sandWater leve	
20 8 27 4 4				0	7.7			C well scree	
28 29 1 9 30				0	0.85	ု ရ () ရ စ) စံရ () ရ စ) စံရ () ရ စ စံရ () ရ စ	TILL Clay and sand with some gravel and	50mm PV	
31							BOREHOLE TERMINATED Total depth of BH12-08	Total depth of MW12-08 9.1 mBGS	
33 10	33 10 9.1 mBGS								
Prepared by: VMS Reviewed by: JFD/MEB/KGR Doc: 11-200-7 Well Installation MW12-08									

Borehole Number: BH/MW12-09

Project Number: 11-200-7

- Client: City of Ottawa
- Site Location: 191 Lees Avenue

Coordinates: 447596E, 5029472N (UTM Zone 18)

Drilling Method: Hollow Stem Auger with Split Spoons

MOE Well ID: A122889

Date Completed: 13-Feb-12

Supervisor: JFD

Ground Surface Elevation: 59.99 mASL

DEPTH BGS	SAMPLES	LAB SAMPLE	BLOW COUNT	CGI (ppm)	PID (ppm)	DOT	STRATIGRAPHIC DESCRIPTION	INSTALLATION
ft m -1								MW12-09
0							GROUND SURFACE	
1		х		0	38		FILL Sand with grey clay bed, brown	ke casing
2 3 1		x		0	11		- Trace black staining from 0.61 to 1.3 mBGS	nount protecti
4 5				0	3.4			Flush
7 1 8				0	3.7		• · ·	PVC well rise
9 10 10				0	360		- Clay bed from 2.4 to 2.6 mBGS - Black staining from 2.6 to 4.9 mBGS	20 20 20
10 11		х		0	820			le diameter
13 14				100	570		- Odour from 3.7 to 4.9 mBGS	3 mm boreho
15		х		275	440			20:
Prepared by: VMS								
Reviewe	d by 200	/:JF -7 V	D/ME Vell Ir	:B/KG ostalla	K tion N	/////12_0	Page 1 of 3	
Template: 2011 Geofirma Template								

Borehole Number: BH/MW12-09

Project Number: 11-200-7

Client: City of Ottawa

Site Location: 191 Lees Avenue

Coordinates: 447596E, 5029472N (UTM Zone 18)

Drilling Method: Hollow Stem Auger with Split Spoons

MOE Well ID: A122889

Date Completed: 13-Feb-12

Supervisor: JFD

Ground Surface Elevation: 59.99 mASL

DEPTH BGS	SAMPLES	LAB SAMPLE	BLOW COUNT	CGI (ppm)	PID (ppm)	LOG L	STRATIGRAPHIC DESCRIPTION	INSTALLATION
				110	250		SAND Fine-grained silty, some gravel, grey, moist to wet - Strong odour from 4.9 to 6.1 mBGS	intonite seal
19 6				75	54			Ĕ
20		x		50	98		- Coal tar on soil from 6.1 to 9.1 mBGS	
22 7				50	49			BGS mBGS
25		x		10	45			Vater level 6
26 8 27 8				12.5	95			well screen
28 29 1 9				48	720		- Pure coal tar present from 8.8 to 9.9 mBGS	50mm PVC v
30 31				15	4100			
Prepared by: VMS Reviewed by: JFD/MEB/KGR Doc: 11-200-7_Well Installation_MW12-09 Template: 2011 Geofirma Template								

Borehole Number: BH/MW12-09

Project Number: 11-200-7

Client: City of Ottawa

Site Location: 191 Lees Avenue

Coordinates: 447596E, 5029472N (UTM Zone 18)

Drilling Method: Hollow Stem Auger with Split Spoons

MOE Well ID: A122889

Date Completed: 13-Feb-12

Supervisor: JFD

Ground Surface Elevation: 59.99 mASL

Borehole Number: BH/MW12-10

Project Number: 11-200-7

Client: City of Ottawa

Site Location: 191 Lees Avenue

Template: 2011 Geofirma Template

Coordinates: 447574E, 5029449N (UTM Zone 18)

Drilling Method: Hollow Stem Auger with Split Spoons

MOE Well ID: A122889

Date Completed: 15-Feb-12

Supervisor: JFD

Ground Surface Elevation: 60.22 mASL

DEPTH BGS	SAMPLES	LAB SAMPLE	BLOW COUNT	CGI (ppm)	PID (ppm)	LOG	STRATIGRAPHIC DESCRIPTION	INSTALLATION
ft m -1								MW12-10
		x		50			FILL Medium to fine-grained sand with some gravel and silty sections, tan to brown, dry to moist.	e casing
2 3 1		х		0	98		- Some gravel from 0 to 1.2 mBGS	t protectiv
4 5		x		0			- Ash bed from 1.15 to 1.2 mBGS - Silty from 1.2 to 3.7 mBGS	
6 2 7 1 2				0				VC well riser
9 10 10		x		75				50mm P
				60				m borehole
13 4		x		40	81			203 T
15 16				25				
17 17				0	68			
Prepared by: VMS								
Reviewed by: JFD/MEB/KGR Page 1 of 2								
Doc: 11-	-20(ן-7_	Well	nstalla	ation_N	viw12-	10	Engineering Ltd

Borehole Number: BH/MW12-10

Project Number: 11-200-7

Client: City of Ottawa

Site Location: 191 Lees Avenue

Coordinates: 447574E, 5029449N (UTM Zone 18)

Drilling Method: Hollow Stem Auger with Split Spoons

MOE Well ID: A122889

Date Completed: 15-Feb-12

Supervisor: JFD

Ground Surface Elevation: 60.22 mASL

DEPTH BGS	SAMPLES	LAB SAMPLE	BLOW COUNT	CGI (ppm)	PID (ppm)	DOJ	STRATIGRAPHIC DESCRIPTION	INSTALLATION
18 19 				0	35		SAND Fine to medium-grained, interbedded silty sand and sand, grey, moist to wet. - silty clay bed from 5.2 to 5.3 mBGS	ionite seal
20				0	64		- Odour from 5.2 to 5.3, 6.1 to 7.3 mBGS	Bear
23 7				25	20			
25				20	5.6			
27				0	28		- Some gravel from 7.9 to 8.5 mbgs - Odour, stained soil and coal tar from 7.9 to 9.6 mBGS	al 7.8 mBGS
29 9		х		150	470			Water leve C well scree
31		x		400	830	ද්ග් විශ් දේශ්	TILL	50mm PV
33 10							Clay with some gravel and pebbles, grey, wet.	Total depth of MW12-10 9.8 mBGS
34							BOREHOLE TERMINATED Total depth of BH12-10	
35 36							9.8 MBGS	
Prepared by: VMS								
Reviewed by: JFD/MEB/KGR Page 2 of 2								
Doc: 11-200-7_Well Installation_MW12-10 Engineering Ltd								

Borehole Number: BH/MW12-11

Project Number: 11-200-7

Client: City of Ottawa

Site Location: 193 (200) Lees Avenue

Template: 2011 Geofirma Template

Coordinates: 447632E, 5029406N (UTM Zone 18)

Drilling Method: Hollow Stem Auger with Split Spoons

MOE Well ID: A122887

Date Completed: 17-Feb-12

Supervisor: JFD

Ground Surface Elevation: 62.22 mASL

DEPTH BGS	SAMPLES	LAB SAMPLE	BLOW COUNT	CGI (ppm)	PID (ppm)	LOG	STRATIGRAPHIC DESCRIPTION	INSTALLATION
ft m -3 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1		X X X X X	1S	0 0 30 50 10 25 75 30 30	0.15 0.10 0.90 0.10 20 280 400 230 380		GROUND SURFACE FILL Medium to fine-grained sand, with sections of silty and/or some gravel, brown, dry to moist. - Some ash present in 0.6 to 1.2, 1.8 to 3.0 mBGS - Several layers of construction tar paper at 3.0 mBGS - Boulder at 3.5 mBGS	Bentonite seal 50m PVC well riser
Reviewed by: JFD/MEB/KGR Page 1 of 2								

Borehole Number: BH/MW12-11

Project Number: 11-200-7

Template: 2011 Geofirma Template

Client: City of Ottawa

Site Location: 193 (200) Lees Avenue

Coordinates: 447632E, 5029406N (UTM Zone 18)

Drilling Method: Hollow Stem Auger with Split Spoons

MOE Well ID: A122887

Date Completed: 17-Feb-12

Supervisor: JFD

Ground Surface Elevation: 62.22 mASL

DEPTH BGS	SAMPLES	LAB SAMPLE	BLOW COUNT	CGI (ppm)	PID (ppm)	DOG	STRATIGRAPHIC DESCRIPTION	INSTALLATION
20 21		x		60	400			
22 23 7				50	400		0.000	
24				25	400		SAND Medium-grained sand with some gravel, black and tan, moist to wet.	
26 8	╢			0	0		- Boulder at 7.3 mBGS - Odour from 7.9 to 9.7 mBGS	
28				0	0			S.
29 9 30				0	30			8.4 mB
31		x		0	35			er level
32 33 10				0	15		- Coal tar and sheen from 9.8 to 11.4 mBGS	Mat National Contraction
34 35				0	23			screen
36 11		x		50	79			ca sand
38	11					<u>, , , , , , , , , , , , , , , , , , , </u>	TILL ∖ Clay with some gravel and pebbles, grey, /	50mm Silli
³⁹ 12 40							wet.	Total depth of MW12-11 11.6 mBGS
41 42							BOREHOLE TERMINATED Total depth of BH12-11 11.6 mBGS	
Reviewed by: JFD/MEB/KGR Page 2 of 2								
Doc: 11-200-7_Well Installation_MW12-11 Page 2 of 2 Engineering Ltd								

Borehole Number: BH/MW12-12

Project Number: 11-200-7

Client: City of Ottawa

Site Location: 193 (200) Lees Avenue

Template: 2011 Geofirma Template

Coordinates: 447662E, 5029461N (UTM Zone 18)

Drilling Method: Hollow Stem Auger with Split Spoons

MOE Well ID: A122887

Date Completed: 22-Feb-12

Supervisor: JFD

Ground Surface Elevation: 60.92 mASL

DEPTH BGS	SAMPLES	LAB SAMPLE	BLOW COUNT	CGI (ppm)	PID (ppm)	LOG	STRATIGRAPHIC DESCRIPTION	INSTALLATION
ft m -3 -2 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1				90 55 10 5 0 30 25	 78 0 		GROUND SURFACE FILL Fine to medium-grained sand, brown and grey, dry to moist. -Brick from 1.1 to 1.2 mBGS - Concrete from 1.8 to 2.4 mBGS - Wood from 2.4 to 2.45 mBGS - Wood from 2.4 to 2.45 mBGS	203 mm borehole diameter
Prepared by: VMS Reviewed by: JFD/MEB/KGR Page 1 of 2 Geofirma Doc: 11-200-7_Well Installation_MW12-12 Engineering Ltd								

Borehole Number: BH/MW12-12

Project Number: 11-200-7

Client: City of Ottawa

Site Location: 193 (200) Lees Avenue

Coordinates: 447662E, 5029461N (UTM Zone 18)

Drilling Method: Hollow Stem Auger with Split Spoons

MOE Well ID: A122887

Date Completed: 22-Feb-12

Supervisor: JFD

Ground Surface Elevation: 60.92 mASL

Borehole Number: BH/MW12-13

Project Number: 11-200-11 Client: City of Ottawa Site Location: 191, 193 Lees Ave, Ottawa, Ontario Coordinates: 447588E, 5029476N (UTM Zone 18) Drilling Method: Direct push Drilling Rig: Geoprobe 7822 DT

MOE Well ID: A135005 Date Completed: 25-Sep-12 Supervisor: JFD Logged By: JFD Ground Surface Elevation: 59.81 Date of Water Level Measurement: 27-Sep-12

DEPTH BGS	SAMPLES	LAB SAMPLE	BLOW COUNT	CGI (ppm)	PID (ppm)	DOG	STRATIGRAPHIC DESCRIPTION	INSTALLATION
							GROUND SURFACE	BH/MW12-13
0 1 1 1 1 1 1 1 3 1 1 4				5.5	0		FILL Silty clay with some gravel, fine to medium grained, loose, non-plastic, grey, dry	Flush mount protective casing
5 6 7 7 8 9 9				7.7	0			38 mm PVC riser Bentonite seal
10		x		2000	40k		Pure phase coal tar, staining, black, dry	Silica sand Silica sand 38 mm PVC screen
10 16 17 18 19 20 18 19 20 10 21 22 23 24 24 25 26 27 28 29 30 314 34 35 36 37 36 37		X		4500	20k		Gravely sand, pure phase coal tar, sheen with staining, medium grained, loose, non-plastic, black, dry BOREHOLE TERMINATED Total Depth of BH/MW12-13 4.88 mBGS	Static Water Levels at 3.62 mBGS
39 Prepare Review Doc: 11	ed By red By 1-200	/: JFC y: KG -11_E) iR BHLO	GS.GP			Page 1 of 1	Geofirma Engineering Ltd

Borehole Number: BH/MW12-14

Project Number: 11-200-11 Client: City of Ottawa Site Location: 191, 193 Lees Ave, Ottawa, Ontario Coordinates: 447603E, 5029449N (UTM Zone 18) Drilling Method: Direct push Drilling Rig: Geoprobe 7822 DT

MOE Well ID: A135004 Date Completed: 25-Sep-12 Supervisor: JFD Logged By: JFD Ground Surface Elevation: 60.47 Date of Water Level Measurement: 27-Sep-12

DEPTH BGS	SAMPLES	LAB SAMPLE	BLOW COUNT	CGI (ppm)	PID (ppm)	DOL	STRATIGRAPHIC DESCRIPTION	INSTALLATION		
ft m o ≢ o							GROUND SURFACE	BH/MW12-14		
		x		6	50		FILL Gravel with clay and sand, fine to medium grained, loose, low plasticity, brown to dark brown, dry	Flush mount protective casing		
5 6 7 7		x		320	20		Black staining from 1.22 to 1.52 mBGS			
8 9 10 3			`	21	30		Sand, fine grained, loose, non-plastic, brown, dry	51mm PVC riser		
11 12 13		X		16	0			Bentonite seal		
13 <u>4</u> 14 <u>1</u> 15 <u>1</u>				5.2	0					
16 17 18		X		6.3	120					
19 19 20				54	40					
21 22 		x		170	390		Coal tar odour, grey			
23 - 7 24 - 1 25 - 1		x		230	100		SAND Silty with some gravel, fine to medium grained,			
26 <u>8</u> 27 <u>8</u>				41	210		loose, low plasticity, grey, wet Strong coal tar odour	Silica sand		
28 29 30		x		170	140	ETTTX/X	TILL r			
31 32							Clayey sand with some silt and gravel, fine to medium grained, dense, non-plastic, dark brown, moist to dry	Static Water Levels at 7.22 mBGS		
33 10 34 35 10							BOREHOLE TERMINATED Total Depth of BH/MW12-14 9.14 mBGS			
36 11 37 37 38 38										
39 <u>–</u>		,								
Review	ed B	y: JEL y: KG	s R				Page 1 of 1	Geofirma		
Doc: 11 Templa	Doc: 11-200-11_BHLOGS.GPJ									

Borehole Number: BH/MW12-15

Project Number: 11-200-11 Client: City of Ottawa Site Location: 191, 193 Lees Ave, Ottawa, Ontario Coordinates: 447536E, 5029478N (UTM Zone 18) Drilling Method: Direct push Drilling Rig: Geoprobe 7822 DT

MOE Well ID: A135003 Date Completed: 25-Sep-12 Supervisor: JFD Logged By: JFD Ground Surface Elevation: 59.50 Date of Water Level Measurement: 27-Sep-12

DEPTH BGS	SAMPLES	LAB SAMPLE	BLOW COUNT	CGI (ppm)	PID (ppm)	DOG	STRATIGRAPHIC DESCRIPTION	INSTALLATION		
ft m 0 1 0 1 1 1 2 1 3 1 4 1 4 1 1				2.3	0		GROUND SURFACE ASPHALT Black FILL Silty gravel with trace of clay, fine to medium grained, compact, non-plastic, grey, dry	BH/MW12-15 Flush mount protective casing		
5 6 7 7		x		79.5	5		Sand, fine to medium grained, loose,			
8 9 10 3		x		68.3	20		Black staining, coal tar	38 mm PVC riser		
11 12		X		18.1	100		Gravel with some silt, fine grained, loose, non-plastic, dry	Bentonite seal		
13 4 14 1 15 1		x		31.6	5		SAND medium to coarse grained, loose, non-plastic, bands of black staining, brown, dry			
16 <u>5</u> 17		x		7.5	100					
18 19 20				7.7	50		Black staining			
21 22		x		20.8	80		Some Gravel and trace of silt, fine to medium grained, loose, non-plastic, slight coal tar			
23—7 24— 25—		x		5	125		odour, brown, moist to wet Fine grained, loose, non-plastic, coal tar odour, grey, wet			
26 8 27 8				3	40			Silica sand 38mm PVC screen		
28 29 30 31		X		21.7	80	<u>ØHIKIN</u>	Strong coal tar odour, black staining, coal tar TILL Refusal at 8.99 mBGS, inferred till.	Static Water Levels		
31							BOREHOLE TERMINATED Total Depth of BH/MW12-15 8.99 mBGS	at 6.64 mBGS		
Prepare Review	ed By	/: JFD y: KG	iR				Page 1 of 1	Geofirma		
Templa	Doc: 11-200-11_BHLOGS.GPJ Template: GEOFIRMA_TEMPLATE.GDT									

Borehole Number: BH/MW12-16

Project Number: 11-200-11 Client: City of Ottawa Site Location: 191, 193 Lees Ave, Ottawa, Ontario Coordinates: 447670E, 5029487N (UTM Zone 18) Drilling Method: Direct push Drilling Rig: Geoprobe 7822 DT

MOE Well ID: A135006 Date Completed: 26-Sep-12 Supervisor: JFD Logged By: JFD Ground Surface Elevation: 61.02 Date of Water Level Measurement: 27-Sep-12

DEPTH BGS	SAMPLES	LAB SAMPLE	BLOW COUNT	CGI (ppm)	PID (ppm)	FOG	STRATIGRAPHIC DESCRIPTION	INSTALLATION		
Ldggg ^f ^m ⁻² -1 ¹ -1 ¹ -2 ² -1 ¹ -1 ² -1 ² -1 ¹ -1 ² -1 ² -1 ¹ -1 ² -1 ² -1 ² -1 ¹ -1 ² -1 ³ -1 ² -1 ³ -1 ¹ -1 ² -	SAMP	real control of the second sec		0 1.6 330 8 8 11 6 4 2.5 2 0.2 1.5	a a a a a a a a a a a a a a		GROUND SURFACE TOPSOIL Brown FILL Silty sand with gravel, fine to medium grained, loose, non-plastic, brown, dry Coal tar odour, black staining Gravel with clay, fine grained, dense, low plasticity, brown, dry Coal tar odour, black staining Auger, no recovery CLAY With gravel and trace of sand, fine grained, dense, low plasticity, slight coal tar odour, black staining, dark brown, dry Silty with sand and gravel, fine grained, dense, low plasticity, dark grey, moist SAND Medium grained, compact, non-plastic, grey, moist Slight coal tar odour, wet	BH/MW12-16		
30 31 32 33 33 4 35				1	0		TILL Clay with some gravel, fine grained, compact, non-plastic, dark brown BOREHOLE TERMINATED	Static Water Levels at 6.64 mBGS		
36 11 37 Prepar Review Doc: 1	9.75 mBGS Prepared By: JFD Reviewed By: KGR Doc: 11-200-11_BHLOGS.GPJ Page 1 of 1 Doc: 11-200-11_BHLOGS.GPJ									

Borehole Number: BH/MW12-17

Project Number: 11-200-11 Client: City of Ottawa Site Location: 191, 193 Lees Ave, Ottawa, Ontario Coordinates: 447511E, 5029415N (UTM Zone 18) Drilling Method: Direct push Drilling Rig: Geoprobe 7822 DT

MOE Well ID: A135000 Date Completed: 24-Sep-12 Supervisor: JFD Logged By: JFD Ground Surface Elevation: 59.16 Date of Water Level Measurement: 27-Sep-12

DEPTH BGS	SAMPLES	LAB SAMPLE	BLOW COUNT	CGI (ppm)	PID (ppm)	POG	STRATIGRAPHIC DESCRIPTION	INSTALLATION	
f m -4	T					<pre>{}</pre>	GROUND SURFACE	BH/MW12-17	
2 2 3 4 4 5 5				4.2	10		FILL Sand, fine to medium grained, loose, non-plastic, brown, moist		
6 7 7		X		13	0				
8 9 10				6	0			38mm PVC riser	
11 12		x		5.3	325				
13 4 14 1 15 1				4.6	10		Sand with trace of clay, fine to medium grained, loose, non-plastic, brown, moist	Bentonite seal	
165 17		x		7.6					
18 19 20 6				2.6	0				
21 21 22		x		2.5	0		SAND Sand, medium to coarse grained, loose,		
23 7 24 25		x		3.9	5		non-plastic, brown, moist		
26 8 27		x		4.5	100		Clay beds at 7.01 and 8.80 mBGS (~5cm thickness), non-plastic, light grey, dry		
28 29 30		x		14.5	25	Kali	TILL Clev with some silt, sond and group! fing to	 ✓ 38mm PVC screen ✓ Silica sand 	
31 32				4.0	75		medium grained, dense, non-plastic, slight odour, dark brown, moist to dry		
33 10 34 35 10							BOREHOLE TERMINATED Total Depth of BH/MW12-17 9.75 mBGS	Static Water Levels at 8.27 mBGS	
Prepar Review Doc: 1 Templa	Prepared By: JFD Reviewed By: KGR Page 1 of 1 Doc: 11-200-11_BHLOGS.GPJ Template: GEOFIRMA_TEMPLATE.GDT								
BOREHOLE STRATIGRAPHIC AND INSTRUMENTATION LOG

Borehole Number: BH/MW12-18

Project Number: 11-200-11 Client: City of Ottawa Site Location: 191, 193 Lees Ave, Ottawa, Ontario Coordinates: 447480E, 5029380N (UTM Zone 18) Drilling Method: Direct push Drilling Rig: Geoprobe 7822 DT

MOE Well ID: A135002 Date Completed: 24-Sep-12 Supervisor: JFD Logged By: JFD Ground Surface Elevation: 59.59 Date of Water Level Measurement: 27-Sep-12

DEPTH BGS	SAMPLES	LAB SAMPLE	BLOW COUNT	CGI (ppm)	PID (ppm)	DOG	STRATIGRAPHIC DESCRIPTION	INSTALLATION
ft m -4								BH/MW12-18
-1 0 - 0							GROUND SURFACE	casing
1						$\widetilde{\otimes}$	TOPSOIL Brown, dry	
2 3 4 5 5		x		1.4	125		FILL Sitly clayey sand with some gravel, ash and brick, fine grained, compact, non-plastic, black staining, brown, dry	
6 7 7		x		5.2	50		Sand with some gravel and trace of clay and ash, fine grained, loose, non-plastic, black staining, brown, dry	
9		x		4.9	50		Sand, medium grained, loose, non-plastic, brown, dry	
10 - 3 11 - 12 - 12 - 12 - 12 - 12 - 12 - 12 -		x		3.4	125		Clay with trace of gravel, fine grained, dense, plastic, grey, wet	51mm PVC riser Bentonite seal
13 4 14 1 15 1				3.8	25		Silty sand with some clay, fine grained, dense, high plasticity, grey, wet	
165 17				1.8	25			
18 19 20		x		3.1	0	~~~~~	SAND Silty sand, fine grained, compact, high plasticity, grey, wet	
21 22				2	0			
23 7 24 25				1.2	0		Sand, medium grained, loose, non-plastic, dark grey, wet	
26 8 27		x		0.9	150		Silty sand with trace of clay, fine grained, dense, medium plasticity, brown, wet	Silica sand
28 29				2.1	0	6791X/X	TU 1	
30 - 9 31 - 1						(JK)5773	Clay with silt and gravel, fine grained, dense, medium plasticity, dark grey, dry	Static Water Levels
32 33 34 35							BOREHOLE TERMINATED Total Depth of BH/MW12-18 9.14 mBGS	at 7.11 mBGS
Prepar Review Doc: 1	ed By red By 1-200	r: JFC y: KG -11_E) iR BHLO(GS.GF		CDT	Page 1 of 1	Geofirma Engineering Ltd

BOREHOLE STRATIGRAPHIC AND INSTRUMENTATION LOG

Borehole Number: BH/MW12-19

Project Number: 11-200-11 Client: City of Ottawa Site Location: 191, 193 Lees Ave, Ottawa, Ontario Coordinates: 447485E, 5029432N (UTM Zone 18) Drilling Method: Direct push

Drilling Rig: Geoprobe 7822

MOE Well ID: A135001 Date Completed: 24-Sep-12 Supervisor: JFD Logged By: JFD Ground Surface Elevation: 59.05 Date of Water Level Measurement: 27-SEP-12

DEPTH BGS	SAMPLES	LAB SAMPLE	BLOW COUNT	CGI (ppm)	PID (ppm)	POG	STRATIGRAPHIC DESCRIPTION	INSTALLATION
$ \begin{array}{c} \mathfrak{k} & \mathfrak{m} \\ -4 & -3 & -2 \\ -1 & 0 & 0 \\ 1 & 2 & 3 \\ 4 & 5 \\ 6 & 7 & 8 \\ 9 & 10 & 11 \\ 12 & 3 \\ 4 & 5 \\ 6 & 7 \\ 8 & 9 \\ 10 & 11 \\ 12 & 13 \\ 14 & 15 \\ 16 & 17 \\ 18 & 19 \\ 20 & 10 \\ 11 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 1$	eed By	X X X X X		3.2 5.1 5.2 5.3 5.4 3.2 2.2 2.3	0 200 175 175 250 175 175		GROUND SURFACE TOPSOIL Brown, dry FILL Sand, fine grained, loose, non-plastic, brown, moist Sand with some gravel and traces of ash, fine to medium grained, loose, non-plastic, brown, moist Gravel, Black staining SAND Sand, fine to medium grained, loose, non-plastic, slight coal tar odour, grey, wet Silty sand, fine grained, compact, non-plastic, slight coal tar odour, grey, wet BOREHOLE TERMINATED Total Depth of BH/MW12-19 7.62 mBGS	BH/WW12-19
Review Doc: 1 Templ	ved B 1-200 ate: G	y: KG -11_E EOF	rr 3hlo(Irma	GS.GF _TEMF	›J PLATE.	.GDT	Page 1 of 1	Geofirma Engineering Ltd

APPENDIX B

Soil and Groundwater Analytical Results Tables Table B.1 – Soil Analytical Results – Metals Table B.2 – Soil Analytical Results – Polycyclic Aromatic Hydrocarbons Table B.3 – Soil Analytical Results - PHC-F1 and BTEX Table B.4 – Soil Analytical Results - pH and Cyanide Table B.5 – Groundwater Analytical Results – Metals and Cyanide Table B.6 – Groundwater Analytical Results - Polycyclic Aromatic Hydrocarbons Table B.7 – Groundwater Analytical Results – PHC-F1 and BTEX

Notes for Soil Analytical Results

Notes:

All units are $\mu g/g$ unless otherwise noted

NV = No Value

-- = Parameter not analysed

mBGS = Meters below ground surface

*The boron standards are for hot water soluble extract for all surface soils. For subsurface soils the standards are for total boron (mixed strong acid digest), as ecological criteria are not considered.

- **The methylnaphthalene standards are applicable to both 1-methylnaphthalene and 2-methylnaphthalene, with the provision that if both are detected the sum of the two must not exceed the standard
- ***F1 fraction does not include BTEX; however, the proponent has the choice as to whether or not to subtract BTEX from the analytical result.

< Parameter concentraton is less than method detection limit (MDL)

**** MDL is greater than MOE standards.

MOE = Soil, Groundwater and Sediment Standards for use under Part XV.1 of the Environmental Protection Act, April 2011

Table 3 = Full depth generic site condition standards in a non-potable groundwater condition for coarse textured soil

bold = indicates concentrations which exceed MOE 2011 Table 3 standards for residential/parkland land use

= indicates concentrations which exceed MOE 2011 Table 3 standards for commercial/industrial land use

Parameter	MOE	MOE	BH12-01				BH12-02			BH1	2-03	
Sample Depth (mBGS)>	Table 3	Table 3	1.52-2.13	2.74-3.35	3.96-4.57	0.6-1.22	Duplicate	2.43-3.05	1.82-2.43	3.05-3.65	4.26-4.87	Duplicate
Date Sampled>	Com/Ind	Res/Park	22-Feb-12	22-Feb-12	22-Feb-12	17-Feb-12						
Antimony	40	7.5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Arsenic	18	18	2	<1	2	1	1	3	3	<1	<1	2
Barium	670	390	157	43	58	209	168	69	125	57	16	42
Beryllium	8	4	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Boron (total)	120	120	7.4	<5	<5	15.1	10.9	6.9	6.7	5.0	6.3	9.7
Cadmium	1.9	1.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Chromium Total	160	160	39	12	10	8	8	11	18	8	6	10
Cobalt	80	22	6	5	5	3	3	6	5	3	3	6
Copper	230	140	17	6	13	6	7	26	19	7	6	14
Lead	120	120	7	3	4	6	5	9	90	3	2	6
Mercury	3.9	0.27	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.2	<0.1	<0.1	<0.1
Molybdenum	40	6.9	<1	<1	1	3	2	3	1	1	2	2
Nickel	270	100	18	13	14	13	11	19	13	8	6	17
Selenium	5.5	2.4	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Silver	40	20	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Thallium	3.3	1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Uranium	33	23	<1	<1	<1	<1	<1	1	<1	<1	1	1
Vanadium	86	86	48	15	17	<10	<10	18	26	17	13	16
Zinc	340	340	31	39	<20	<20	<20	<20	86	<20	<20	<20

Table B.1_Metals - Page 1 of 7 Commercial / Industrial Soil Residential / Parkland Soil

Parameter	MOE	MOE		BH12-04			BH12-05			BH12-06	
Sample Depth (mBGS)>	Table 3	Table 3	0.6-1.22	1.82-2.43	2.43-3.05	0.6-1.22	3.05-3.65	5.48-6.09	0.6-1.22	1.82-2.43	4.87-5.48
Date Sampled>	Com/Ind	Res/Park	17-Feb-12	17-Feb-12	17-Feb-12	21-Feb-12	21-Feb-12	21-Feb-12	21-Feb-12	21-Feb-12	21-Feb-12
Antimony	40	7.5	<1	3	<1	<1	<1	<1	<1	<1	<1
Arsenic	18	18	6	9	13	1	<1	<1	5	2	<1
Barium	670	390	94	486	43	243	63	18	87	282	22
Beryllium	8	4	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.5	<0.5	<0.5
Boron (total)	120	120	6.8	64.4	8.0	11.3	<5	<5	11.4	9.8	<0.5
Cadmium	1.9	1.2	<0.5	6.8	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Chromium Total	160	160	22	2410	17	9	13	<5	24	27	<5
Cobalt	80	22	6	29	5	3	5	2	6	7	3
Copper	230	140	18	9780	13	5	12	5	20	14	6
Lead	120	120	44	486	4	7	2	1	29	8	2
Mercury	3.9	0.27	0.3	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Molybdenum	40	6.9	1	5870	14	2	1	<1	13	7	2
Nickel	270	100	17	97	11	14	9	<5	15	16	6
Selenium	5.5	2.4	<1	<1	<1	<1	<1	<1	<1	<1	<1
Silver	40	20	<0.3	44.5	<0.3	<0.3	<0.3	<0.3	0.4	<0.3	<0.3
Thallium	3.3	1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Uranium	33	23	<1	<1	<1	<1	<1	<1	<1	<1	<1
Vanadium	86	86	32	31	35	<10	26	<10	23	35	11
Zinc	340	340	53	5010	<20	<20	<20	<20	26	28	<20

Table B.1_Metals - Page 2 of 7 Commercial / Industrial Soil Residential / Parkland Soil

Parameter	MOE	MOE		BH12-07			BH12-08			BH12-09	
Sample Depth (mBGS)>	Table 3	Table 3	0.6-1.22	3.65-4.26	4.26-4.87	0-0.6	0.6-1.22	7.31-7.92	0-0.6	0.6-1.22	9.75-10.21
Date Sampled>	Com/Ind	Res/Park	15-Feb-12	15-Feb-12	15-Feb-12	14-Feb-12	14-Feb-12	14-Feb-12	13-Feb-12	13-Feb-12	13-Feb-12
Antimony	40	7.5	<1	<1	<1	<1	<1	<1	<1	<1	<1
Arsenic	18	18	<1	3	<1	<1	<1	<1	1	3	2
Barium	670	390	38	82	24	63	60	15	48	35	111
Beryllium	8	4	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Boron (total)	120	120	<5	<5	<5	8.0	<5	<5	5.6	<5.0	7.6
Cadmium	1.9	1.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Chromium Total	160	160	7	13	6	10	11	5	10	9	17
Cobalt	80	22	4	10	3	2	4	2	4	3	7
Copper	230	140	12	23	7	<5	10	5	9	8	17
Lead	120	120	2	8	2	6	3	2	14	12	6
Mercury	3.9	0.27	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Molybdenum	40	6.9	<1	3	<1	<1	<1	<1	1	1	1
Nickel	270	100	10	28	7	10	10	<5	11	8	19
Selenium	5.5	2.4	<1	<1	<1	<1	<1	<1	<1	<1	<1
Silver	40	20	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Thallium	3.3	1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Uranium	33	23	<1	2	<1	<1	<1	<1	<1	<1	1
Vanadium	86	86	20	22	12	13	19	11	22	15	26
Zinc	340	340	<20	<20	<20	<20	<20	<20	<20	<20	21

Table B.1_Metals - Page 3 of 7 Commercial / Industrial Soil Residential / Parkland Soil

Parameter	MOE	MOE		BH12-10			BH12-11			BH12-12	
Sample Depth (mBGS)>	Table 3	Table 3	0.6-1.22	1.22-1.82	8.53-9.1	0.6-1.22	2.43-3.05	3.05-3.65	0.6-1.22	3.05-3.65	6.7-7.31
Date Sampled>	Com/Ind	Res/Park	15-Feb-12	15-Feb-12	15-Feb-12	17-Feb-12	17-Feb-12	17-Feb-12	22-Feb-12	22-Feb-12	22-Feb-12
Antimony	40	7.5	<1	<1	<1	<1	3	<1	<1	<1	<1
Arsenic	18	18	1	<1	<1	<1	5	2	2	2	<1
Barium	670	390	40	34	13	20	182	109	68	56	17
Beryllium	8	4	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Boron (total)	120	120	<5	<5	<5	5.6	8.1	7.9	<5	7.0	<5
Cadmium	1.9	1.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Chromium Total	160	160	10	9	6	6	23	17	9	15	7
Cobalt	80	22	4	4	3	2	8	6	3	7	3
Copper	230	140	9	27	6	5	81	22	7	17	7
Lead	120	120	10	8	2	3	168	32	10	7	2
Mercury	3.9	0.27	<0.1	<0.1	<0.1	<0.1	4.4	0.1	<0.1	<0.1	<0.1
Molybdenum	40	6.9	<1	<1	<1	6	8	2	<1	2	<1
Nickel	270	100	10	9	7	<5	16	16	7	23	7
Selenium	5.5	2.4	<1	<1	<1	<1	<1	1	<1	<1	<1
Silver	40	20	<0.3	<0.3	<0.3	<0.3	0.5	<0.3	<0.3	<0.3	<0.3
Thallium	3.3	1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Uranium	33	23	<1	<1	<1	<1	<1	1	<1	1	<1
Vanadium	86	86	30	17	<10	16	26	30	12	21	15
Zinc	340	340	<20	<20	<20	<20	128	34	<20	25	<20

Table B.1_Metals - Page 4 of 7 Commercial / Industrial Soil Residential / Parkland Soil

Parameter	MOE	MOE	BH12-13		BH12-14			BH1	2-15	
Sample Depth (mBGS)>	Table 3	Table 3	4.57-4.87	0.0-1.52	3.05-3.81	6.86-7.62	2.29-3.05	6.10-6.86	Duplicate	8.38-8.69
Date Sampled>	Com/Ind	Res/Park	25-Sep-12							
Antimony	40	7.5	<1	<1	<1	<1	<1	<1	<1	<1
Arsenic	18	18	<1	<1	<1	<1	<1	<1	<1	<1
Barium	670	390	46	43	14	51	11	20	21	15
Beryllium	8	4	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Boron (total)	120	120								
Cadmium	1.9	1.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Chromium Total	160	160	10	7	5	8	6	9	8	10
Cobalt	80	22	3	3	2	4	3	3	3	4
Copper	230	140	6	10	<5	8	5	7	6	8
Lead	120	120	23	24	1	2	2	29	8	3
Mercury	3.9	0.27	3.3	<0.1	<0.1	<0.1	0.7	<0.1	<0.1	0.3
Molybdenum	40	6.9	<1	<1	<1	<1	<1	<1	<1	<1
Nickel	270	100	9	7	<5	8	6	7	6	10
Selenium	5.5	2.4	<1	<1	<1	<1	1	<1	<1	<1
Silver	40	20	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Thallium	3.3	1	<1	<1	<1	<1	<1	<1	<1	<1
Uranium	33	23								
Vanadium	86	86	20	13	12	14	12	11	<10	<10
Zinc	340	340	27	<20	<20	<20	<20	<20	<20	<20

Table B.1_Metals - Page 5 of 7 Commercial / Industrial Soil Residential / Parkland Soil

Parameter	MOE	MOE		BH1	2-16			BH12-17			BH12-18	
Sample Depth (mBGS)>	Table 3	Table 3	1.52-2.15	3.81-4.57	Duplicate	6.86-7.62	1.52-2.29	6.10-6.86	6.86-7.62	0-1.52	1.52- 2.29	2.29-3.05
Date Sampled>	Com/Ind	Res/Park	26-Sep-12	26-Sep-12	26-Sep-12	26-Sep-12	24-Sep-12	24-Sep-12	24-Sep-12	24-Sep-12	24-Sep-12	24-Sep-12
Antimony	40	7.5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Arsenic	18	18	<1	<1	<1	<1	<1	<1	<1	3	1	<1
Barium	670	390	385	48	58	22	25	18	110	67	80	385
Beryllium	8	4	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.7
Boron (total)	120	120										
Cadmium	1.9	1.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Chromium Total	160	160	12	9	10	5	8	<5	17	11	13	42
Cobalt	80	22	3	6	7	3	3	3	6	5	5	12
Copper	230	140	8	15	15	6	8	6	14	25	8	19
Lead	120	120	47	7	11	2	2	1	3	98	5	5
Mercury	3.9	0.27	0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.1	<0.1	<0.1
Molybdenum	40	6.9	<1	<1	<1	<1	<1	<1	<1	1	<1	<1
Nickel	270	100	7	15	16	6	6	6	12	14	11	26
Selenium	5.5	2.4	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Silver	40	20	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Thallium	3.3	1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Uranium	33	23										
Vanadium	86	86	21	13	14	11	15	<10	26	22	22	51
Zinc	340	340	30	21	23	<20	<20	<20	25	46	21	61

Table B.1_Metals - Page 6 of 7 Commercial / Industrial Soil Residential / Parkland Soil

Parameter	MOE	MOE		BH12-19	
Sample Depth (mBGS)>	Table 3	Table 3	0.0-1.52	3.81-4.57	4.57- 5.33
Date Sampled>	Com/Ind	Res/Park	24-Sep-12	24-Sep-12	24-Sep-12
Antimony	40	7.5	<1	<1	<1
Arsenic	18	18	<1	<1	<1
Barium	670	390	49	16	26
Beryllium	8	4	<0.5	<0.5	<0.5
Boron (total)	120	120			
Cadmium	1.9	1.2	<0.5	<0.5	<0.5
Chromium Total	160	160	16	<5	7
Cobalt	80	22	5	3	4
Copper	230	140	11	7	9
Lead	120	120	14	1	2
Mercury	3.9	0.27	<0.1	<0.1	<0.1
Molybdenum	40	6.9	<1	<1	<1
Nickel	270	100	10	5	7
Selenium	5.5	2.4	<1	<1	<1
Silver	40	20	<0.3	<0.3	<0.3
Thallium	3.3	1	<1	<1	<1
Uranium	33	23			
Vanadium	86	86	19	10	13
Zinc	340	340	33	<20	<20

Table B.1_Metals - Page 7 of 7 Commercial / Industrial Soil Residential / Parkland Soil

Parameter	MOE	MOE		BH12-01		BH1	2-02		BH1	2-03	
Sample Depth (mBGS)>	Table 3	Table 3	2.74-3.35	5.18-5.79	7.62-8.22	0.6-1.22	3.05-3.65	1.22-1.82	3.05-3.65	6.09-6.7	Duplicate
Date Sampled>	Com/Ind	Res/Park	22-Feb-12	22-Feb-12	22-Feb-12	17-Feb-12	17-Feb-12	17-Feb-12	17-Feb-12	17-Feb-12	17-Feb-12
Acenaphthene	96	7.9	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Acenaphthylene	0.15	0.15	<0.02	<0.02	<0.02	0.03	<0.02	0.14	<0.02	<0.02	<0.02
Anthracene	0.67	0.67	<0.02	<0.02	<0.02	<0.02	<0.02	0.09	<0.02	<0.02	<0.02
Benzo[a]anthracene	0.96	0.5	<0.02	<0.02	<0.02	0.02	<0.02	0.48	0.02	0.03	0.04
Benzo[a]pyrene	0.3	0.3	<0.02	<0.02	<0.02	<0.02	<0.02	0.25	<0.02	0.02	0.04
Benzo[b]fluoranthene	0.96	0.78	<0.02	<0.02	<0.02	<0.02	<0.02	0.69	0.02	0.02	0.04
Benzo[g,h,i]perylene	9.6	6.6	<0.02	<0.02	<0.02	<0.02	<0.02	0.26	<0.02	<0.02	<0.02
Benzo[k]fluoranthene	0.96	0.78	<0.02	<0.02	<0.02	<0.02	<0.02	0.47	<0.02	<0.02	0.04
1,1-Biphenyl	52	0.31	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Chrysene	9.6	7	<0.02	<0.02	<0.02	0.04	0.02	0.55	0.03	0.04	0.06
Dibenzo[a,h]anthracene	0.1	0.1	<0.02	<0.02	<0.02	<0.02	<0.02	0.07	<0.02	<0.02	<0.02
Fluoranthene	9.6	0.69	<0.02	<0.02	<0.02	<0.02	<0.02	0.28	0.02	0.02	0.04
Fluorene	62	62	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Indeno[1,2,3-cd]pyrene	0.76	0.38	<0.02	<0.02	<0.02	<0.02	<0.02	0.31	<0.02	<0.02	<0.02
1-Methylnaphthalene	NV	NV	<0.02	<0.02	<0.02	0.02	<0.02	<0.02	<0.02	<0.02	<0.02
2-Methylnaphthalene	NV	NV	<0.02	<0.02	<0.02	0.03	<0.02	0.02	<0.02	<0.02	0.02
Methylnaphthalene (1&2)	76	0.99	<0.04	<0.04	<0.04	0.05	<0.04	0.04	<0.04	<0.04	<0.04
Naphthalene	9.6	0.6	<0.01	<0.01	<0.01	0.03	0.03	0.04	0.03	0.21	0.53
Phenanthrene	12	6.2	<0.02	<0.02	<0.02	0.04	0.03	0.10	0.03	0.04	0.06
Pyrene	96	78	<0.02	<0.02	<0.02	0.03	<0.02	0.37	0.03	0.03	0.05

Parameter	MOE	MOE		BH12-04			BH12-05			BH12-06	
Sample Depth (mBGS)>	Table 3	Table 3	2.43-3.05	6.09-6.7	9.1-9.75	0.6-1.22	3.05-3.65	6.7-7.31	1.82-2.43	4.26-4.87	6.7-7.31
Date Sampled>	Com/Ind	Res/Park	17-Feb-12	17-Feb-12	17-Feb-12	21-Feb-12	21-Feb-12	21-Feb-12	21-Feb-12	21-Feb-12	21-Feb-12
Acenaphthene	96	7.9	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Acenaphthylene	0.15	0.15	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Anthracene	0.67	0.67	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.04	<0.02	<0.02
Benzo[a]anthracene	0.96	0.5	0.04	<0.02	<0.02	0.03	<0.02	<0.02	0.08	<0.02	<0.02
Benzo[a]pyrene	0.3	0.3	0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.06	<0.02	<0.02
Benzo[b]fluoranthene	0.96	0.78	0.03	<0.02	<0.02	0.03	<0.02	<0.02	0.08	<0.02	<0.02
Benzo[g,h,i]perylene	9.6	6.6	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.03	<0.02	<0.02
Benzo[k]fluoranthene	0.96	0.78	<0.02	<0.02	<0.02	0.03	<0.02	<0.02	0.06	<0.02	<0.02
1,1-Biphenyl	52	0.31	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.03	<0.02	<0.02
Chrysene	9.6	7	0.03	<0.02	0.02	0.03	<0.02	<0.02	0.08	<0.02	<0.02
Dibenzo[a,h]anthracene	0.1	0.1	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Fluoranthene	9.6	0.69	0.06	<0.02	<0.02	0.04	<0.02	<0.02	0.12	<0.02	<0.02
Fluorene	62	62	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Indeno[1,2,3-cd]pyrene	0.76	0.38	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.03	<0.02	<0.02
1-Methylnaphthalene	NV	NV	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.15	<0.02	<0.02
2-Methylnaphthalene	NV	NV	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.20	<0.02	<0.02
Methylnaphthalene (1&2)	76	0.99	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	0.35	<0.04	<0.04
Naphthalene	9.6	0.6	<0.01	0.28	0.01	0.01	<0.01	<0.01	0.21	<0.01	<0.01
Phenanthrene	12	6.2	0.03	0.03	0.04	0.02	<0.02	<0.02	0.14	<0.02	<0.02
Pyrene	96	78	0.06	<0.02	0.02	0.04	<0.02	<0.02	0.12	<0.02	<0.02

Parameter	MOE	MOE		BH12-07			BH12-08			BH12-09	
Sample Depth (mBGS)>	Table 3	Table 3	2.43-3.05	5.48-6.09	8.53-9.14	0-0.6	3.05-3.65	7.31-7.92	3.05-3.65	6.09-6.7	9.75-10.21
Date Sampled>	Com/Ind	Res/Park	15-Feb-12	15-Feb-12	15-Feb-12	14-Feb-12	14-Feb-12	14-Feb-12	13-Feb-12	13-Feb-12	13-Feb-12
Acenaphthene	96	7.9	0.04	<0.02	<0.02	<0.02	1.89	<0.02	16.4	1.01	0.12
Acenaphthylene	0.15	0.15	0.84	<0.02	0.02	<0.02	1.66	<0.02	2.33	1.65	2.40
Anthracene	0.67	0.67	0.41	<0.02	<0.02	<0.02	0.71	<0.02	38.2	2.88	0.70
Benzo[a]anthracene	0.96	0.5	0.68	<0.02	<0.02	0.03	1.54	<0.02	48.3	2.79	0.67
Benzo[a]pyrene	0.3	0.3	0.70	<0.02	<0.02	0.03	1.25	<0.02	34.4	2.10	0.49
Benzo[b]fluoranthene	0.96	0.78	1.00	<0.02	<0.02	0.05	0.55	<0.02	37.4	2.05	0.35
Benzo[g,h,i]perylene	9.6	6.6	0.28	<0.02	<0.02	0.02	0.44	<0.02	9.30	0.56	0.14
Benzo[k]fluoranthene	0.96	0.78	0.71	<0.02	<0.02	0.02	0.44	<0.02	25.5	1.19	0.26
1,1-Biphenyl	52	0.31	0.06	<0.02	<0.02	<0.02	<0.02	<0.02	1.56	0.44	0.49
Chrysene	9.6	7	0.60	<0.02	0.03	0.05	1.64	<0.02	44.2	2.48	0.58
Dibenzo[a,h]anthracene	0.1	0.1	0.12	<0.02	<0.02	<0.02	0.20	<0.02	2.79	0.19	0.04
Fluoranthene	9.6	0.69	1.05	<0.02	<0.02	0.03	2.77	<0.02	91.6	6.64	0.86
Fluorene	62	62	0.09	<0.02	0.03	<0.02	0.71	<0.02	19.9	2.10	1.20
Indeno[1,2,3-cd]pyrene	0.76	0.38	0.33	<0.02	<0.02	<0.02	0.38	<0.02	9.26	0.57	0.12
1-Methylnaphthalene	NV	NV	0.18	0.04	0.04	<0.02	0.47	<0.02	3.80	3.36	4.09
2-Methylnaphthalene	NV	NV	0.28	0.07	0.07	<0.02	<0.02	<0.02	6.40	6.07	6.57
Methylnaphthalene (1&2)	76	0.99	0.46	0.11	0.12	<0.04	0.47	<0.04	10.2	9.42	10.7
Naphthalene	9.6	0.6	0.23	0.11	0.07	<0.01	0.19	<0.01	14.6	11.3	10.9
Phenanthrene	12	6.2	0.43	0.04	0.07	0.02	0.08	<0.02	139	9.02	2.81
Pyrene	96	78	0.97	0.02	0.03	0.03	4.90	<0.02	77.3	6.33	1.46

Parameter	MOE	MOE		BH12-10			BH1	2-11			BH12-12	
Sample Depth (mBGS)>	Table 3	Table 3	0-0.6	3.65-4.26	9.14-9.75	4.26-4.87	9.14-9.75	Duplicate	10.97-11.58	0.6-1.22	3.05-3.65	9.14-9.75
Date Sampled>	Com/Ind	Res/Park	15-Feb-12	15-Feb-12	15-Feb-12	17-Feb-12	17-Feb-12	17-Feb-12	17-Feb-12	22-Feb-12	22-Feb-12	22-Feb-12
Acenaphthene	96	7.9	0.03	<0.02	52.7	4.37	0.16	0.16	<0.40	0.03	<0.02	<0.02
Acenaphthylene	0.15	0.15	1.38	0.23	84.7	<0.4****	1.46	0.84	3.06	0.31	<0.02	0.03
Anthracene	0.67	0.67	0.59	0.17	43.5	10.8	1.48	0.50	1.24	0.22	<0.02	<0.02
Benzo[a]anthracene	0.96	0.5	0.35	0.35	35.8	38.4	2.71	0.73	1.14	0.66	<0.02	<0.02
Benzo[a]pyrene	0.3	0.3	2.10	0.28	28.1	28.3	2.43	0.59	0.79	0.76	<0.02	<0.02
Benzo[b]fluoranthene	0.96	0.78	1.55	0.29	18.9	27.5	1.49	0.47	0.9	1.00	<0.02	<0.02
Benzo[g,h,i]perylene	9.6	6.6	1.13	0.11	7.70	7.23	0.54	0.14	<0.40	0.43	<0.02	<0.02
Benzo[k]fluoranthene	0.96	0.78	1.24	0.21	12.5	18.2	1.17	0.30	<0.40	0.58	<0.02	<0.02
1,1-Biphenyl	52	0.31	0.06	<0.02	24.5	<0.4****	0.08	0.10	0.66	<0.02	<0.02	<0.02
Chrysene	9.6	7	0.49	0.31	31.6	32.9	2.72	0.73	1.21	0.62	<0.02	<0.02
Dibenzo[a,h]anthracene	0.1	0.1	0.39	0.04	2.41	2.28	0.21	0.05	<0.40****	0.13	<0.02	<0.02
Fluoranthene	9.6	0.69	0.27	0.45	53.8	70.8	3.48	0.83	1.19	1.16	<0.02	<0.02
Fluorene	62	62	0.16	0.14	64.1	3.71	0.38	0.43	1.83	0.05	<0.02	<0.02
Indeno[1,2,3-cd]pyrene	0.76	0.38	0.95	0.11	6.80	7.76	0.57	0.15	<0.40****	0.40	<0.02	<0.02
1-Methylnaphthalene	NV	NV	0.47	0.14	199	<0.4	0.28	0.34	6.04	0.02	<0.02	0.16
2-Methylnaphthalene	NV	NV	0.94	0.05	356	0.50	0.06	0.08	7.29	0.03	<0.02	<0.02
Methylnaphthalene (1&2)	76	0.99	1.41	0.19	554	0.87	0.34	0.42	13.3	0.05	<0.04	0.16
Naphthalene	9.6	0.6	1.15	0.07	671	2.12	0.25	0.32	15.6	0.06	<0.01	0.02
Phenanthrene	12	6.2	0.34	0.50	150	35.3	2.36	1.28	3.39	0.64	<0.02	<0.02
Pyrene	96	78	0.55	0.87	90.8	56.4	6.48	1.51	2.12	1.03	<0.02	<0.02

Parameter	MOE	MOE	BH12-13		BH12-14			BH1	2-15	
Sample Depth (mBGS)>	Table 3	Table 3	4.57-4.87	1.52-2.29	6.86-7.62	8.38-9.24	1.83-2.29	3.81-4.57	Duplicate	8.38-8.69
Date Sampled>	Com/Ind	Res/Park	25-Sep-12							
Acenaphthene	96	7.9	14.2	<0.02	1.19	0.07	0.66	<1	<0.4	<1
Acenaphthylene	0.15	0.15	180	<0.02	3.62	1.28	18.4	17.7	5.02	15.9
Anthracene	0.67	0.67	66.8	<0.02	<0.4	<0.02	5.21	19.1	2.05	9.40
Benzo[a]anthracene	0.96	0.5	36.7	0.06	<0.4	<0.02	17.6	30.4	6.80	23.9
Benzo[a]pyrene	0.3	0.3	33.2	0.05	<0.4****	<0.02	22.2	27.6	7.20	22.9
Benzo[b]fluoranthene	0.96	0.78	21.5	0.05	<0.4	<0.02	25.1	32.1	8.18	28.5
Benzo[g,h,i]perylene	9.6	6.6	18.4	<0.02	<0.4	<0.02	12.3	14.1	4.11	12.2
Benzo[k]fluoranthene	0.96	0.78	14.6	0.03	<0.4	<0.02	16.8	19.8	5.38	18.9
1,1-Biphenyl	52	0.31	34.9	<0.02	<0.4****	0.07	<0.4****	<1****	<0.4****	<1****
Chrysene	9.6	7	37.6	0.05	<0.4	<0.02	15.8	26.5	6.47	22.1
Dibenzo[a,h]anthracene	0.1	0.1	5.42	<0.02	<0.4****	<0.02	4.00	4.97	1.35	4.29
Fluoranthene	9.6	0.69	61.0	0.08	<0.4	<0.02	44.6	81.9	14.0	52.0
Fluorene	62	62	87.2	<0.02	<0.4	<0.02	0.73	3.07	<0.4	1.15
Indeno[1,2,3-cd]pyrene	0.76	0.38	12.6	0.02	<0.4****	<0.02	12.7	14.2	3.87	12.2
1-Methylnaphthalene	NV	NV	308	<0.02	7.63	2.05	0.42	<1	<0.4	<1
2-Methylnaphthalene	NV	NV	580	<0.02	4.20	2.25	0.53	<1	<0.4	<1
Methylnaphthalene (1&2)	76	0.99	889	<0.04	11.8	4.30	0.95	<2****	<0.8	<2****
Naphthalene	9.6	0.6	1750	<0.01	24.0	10.8	1.76	1.95	1.09	2.93
Phenanthrene	12	6.2	141	<0.02	<0.4	<0.02	0.88	11.7	0.84	4.19
Pyrene	96	78	106	0.08	<0.4	<0.02	42.4	76.6	15.0	55.7

Parameter	MOE	MOE		BH1	2-16			BH12-17			BH12-18	
Sample Depth (mBGS)>	Table 3	Table 3	0.15-1.52	3.05-3.81	Duplicate	4.88-5.64	1.52-2.29	3.05-3.81	6.86-7.62	0.0-1.52	2.29-3.05	5.33-6.10
Date Sampled>	Com/Ind	Res/Park	26-Sep-12	26-Sep-12	26-Sep-12	26-Sep-12	24-Sep-12	24-Sep-12	24-Sep-12	24-Sep-12	24-Sep-12	24-Sep-12
Acenaphthene	96	7.9	0.81	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<1	<0.02	<0.02
Acenaphthylene	0.15	0.15	8.88	0.04	0.02	<0.02	0.13	0.02	<0.02	3.81	<0.02	0.02
Anthracene	0.67	0.67	8.08	0.02	<0.02	<0.02	0.14	<0.02	<0.02	5.48	<0.02	<0.02
Benzo[a]anthracene	0.96	0.5	20.4	0.09	0.05	<0.02	0.16	0.03	<0.02	8.62	<0.02	0.03
Benzo[a]pyrene	0.3	0.3	9.94	0.04	<0.02	<0.02	0.12	<0.02	<0.02	5.59	<0.02	<0.02
Benzo[b]fluoranthene	0.96	0.78	27.6	0.13	0.07	<0.02	0.12	<0.02	<0.02	11.7	<0.02	0.02
Benzo[g,h,i]perylene	9.6	6.6	10.2	0.05	0.03	<0.02	0.08	<0.02	<0.02	4.68	<0.02	<0.02
Benzo[k]fluoranthene	0.96	0.78	14.2	0.10	0.05	<0.02	0.08	<0.02	<0.02	7.31	<0.02	<0.02
1,1-Biphenyl	52	0.31	0.47	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<1	<0.02	<0.02
Chrysene	9.6	7	18.7	0.12	0.07	<0.02	0.17	0.03	<0.02	8.51	<0.02	0.03
Dibenzo[a,h]anthracene	0.1	0.1	4.56	<0.02	<0.02	<0.02	0.02	<0.02	<0.02	1.66	<0.02	<0.02
Fluoranthene	9.6	0.69	49.3	0.13	0.06	<0.02	0.22	0.02	<0.02	14.1	<0.02	0.03
Fluorene	62	62	3.00	<0.02	<0.02	<0.02	0.04	<0.02	<0.02	1.17	<0.02	<0.02
Indeno[1,2,3-cd]pyrene	0.76	0.38	11.4	0.06	0.03	<0.02	0.07	<0.02	<0.02	4.43	<0.02	<0.02
1-Methylnaphthalene	NV	NV	1.44	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<1	<0.02	<0.02
2-Methylnaphthalene	NV	NV	1.09	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<1	<0.02	<0.02
Methylnaphthalene (1&2)	76	0.99	2.53	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<2****	<0.04	<0.04
Naphthalene	9.6	0.6	2.01	0.01	0.01	<0.01	0.03	<0.01	<0.01	0.76	<0.01	<0.01
Phenanthrene	12	6.2	27.1	0.06	0.03	<0.02	0.14	<0.02	<0.02	4.71	<0.02	<0.02
Pyrene	96	78	40.3	0.11	0.05	<0.02	0.41	0.04	<0.02	14.4	<0.02	0.05

Parameter	MOE	MOE		BH12-19	
Sample Depth (mBGS)>	Table 3	Table 3	3.81-4.57	4.57-5.33	6.86-7.62
Date Sampled>	Com/Ind	Res/Park	24-Sep-12	24-Sep-12	24-Sep-12
Acenaphthene	96	7.9	<0.02	<0.02	<0.02
Acenaphthylene	0.15	0.15	<0.02	<0.02	<0.02
Anthracene	0.67	0.67	<0.02	<0.02	<0.02
Benzo[a]anthracene	0.96	0.5	<0.02	<0.02	<0.02
Benzo[a]pyrene	0.3	0.3	<0.02	<0.02	<0.02
Benzo[b]fluoranthene	0.96	0.78	<0.02	<0.02	<0.02
Benzo[g,h,i]perylene	9.6	6.6	<0.02	<0.02	<0.02
Benzo[k]fluoranthene	0.96	0.78	<0.02	<0.02	<0.02
1,1-Biphenyl	52	0.31	<0.02	<0.02	<0.02
Chrysene	9.6	7	<0.02	<0.02	<0.02
Dibenzo[a,h]anthracene	0.1	0.1	<0.02	<0.02	<0.02
Fluoranthene	9.6	0.69	<0.02	<0.02	<0.02
Fluorene	62	62	<0.02	<0.02	<0.02
Indeno[1,2,3-cd]pyrene	0.76	0.38	<0.02	<0.02	<0.02
1-Methylnaphthalene	NV	NV	0.03	<0.02	<0.02
2-Methylnaphthalene	NV	NV	0.03	<0.02	<0.02
Methylnaphthalene (1&2)	76	0.99	0.05	<0.04	<0.04
Naphthalene	9.6	0.6	0.50	0.07	<0.01
Phenanthrene	12	6.2	<0.02	<0.02	<0.02
Pyrene	96	78	<0.02	<0.02	<0.02

Parameter	MOE	MOE	BH1	2-01	BH1	2-02		BH1	2-03	
Sample Depth (mBGS)>	Table 3	Table 3	5.18-5.79	7.62-8.22	1.82-2.43	3.05-3.65	3.05-3.65	4.87-5.48	6.09-6.7	Duplicate
Date Sampled>	Com/Ind	Res/Park	22-Feb-12	22-Feb-12	17-Feb-12	17-Feb-12	17-Feb-12	17-Feb-12	17-Feb-12	17-Feb-12
F1 PHCs	55	55	<7		<7	<7	9	49	77	79
Benzene	0.32	0.21	<0.02	<0.02	<0.02	<0.02	0.02	0.17	4.24	2.44
Ethylbenzene	9.5	2	< 0.05	<0.05	<0.05	<0.05	0.14	6.14	18.5	19.8
Toluene	68	2.3	<0.05	<0.05	<0.05	<0.05	<0.05	0.06	0.34	0.26
Xylenes, m,p-	NV	NV	< 0.05	<0.05	<0.05	<0.05	<0.05	1.55	10.6	11.6
Xylene, o-	NV	NV	<0.05	<0.05	<0.05	<0.05	<0.05	1.46	8.05	8.87
Xylenes, Total	26	3.1	<0.05	<0.05	<0.05	<0.05	0.08	3.02	18.6	20.5

Parameter	MOE	MOE		BH12-04			BH12-05			BH12-06	
Sample Depth (mBGS)>	Table 3	Table 3	1.22-1.82	3.65-4.26	6.7-7.31	3.05-3.65	4.87-5.48	6.7-7.31	3.05-3.65	6.7-7.31	9.14-9.75
Date Sampled>	(µg/g)	Res/Park	17-Feb-12	17-Feb-12	17-Feb-12	21-Feb-12	21-Feb-12	21-Feb-12	21-Feb-12	21-Feb-12	21-Feb-12
F1 PHCs	55	55	<7	<7	<7	<7	18	<7	<7	<7	21
Benzene	0.32	0.21	<0.02	<0.02	0.11	<0.02	<0.02	<0.02	<0.02	0.07	<0.02
Ethylbenzene	9.5	2	<0.05	<0.05	0.81	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Toluene	68	2.3	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Xylenes, m,p-	NV	NV	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Xylene, o-	NV	NV	<0.05	<0.05	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Xylenes, Total	26	3.1	<0.05	<0.05	0.09	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05

Parameter	MOE	MOE		BH12-07			BH12-08			BH12-09	
Sample Depth (mBGS)>	Table 3	Table 3	0.6-1.22	2.43-3.05	8.53-9.14	0-0.6	3.05-3.65	4.87-5.48	4.26-4.87	7.31-7.92	9.75-10.21
Date Sampled>	(µg/g)	Res/Park	15-Feb-12	15-Feb-12	15-Feb-12	14-Feb-12	14-Feb-12	14-Feb-12	13-Feb-12	13-Feb-12	13-Feb-12
F1 PHCs	55	55	<7	<7	<7	<7	<7	<7	<70****	9	<7
Benzene	0.32	0.21	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.60	0.05	3.63
Ethylbenzene	9.5	2	0.11	<0.05	<0.05	<0.05	<0.05	<0.05	25.1	7.34	3.99
Toluene	68	2.3	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	17.7	0.57	5.26
Xylenes, m,p-	NV	NV	0.12	< 0.05	0.08	<0.05	<0.05	<0.05	84.8	4.55	8.39
Xylene, o-	NV	NV	0.05	<0.05	<0.05	<0.05	0.07	<0.05	45.1	4.06	3.75
Xylenes, Total	26	3.1	0.17	<0.05	0.11	<0.05	0.10	<0.05	130	8.61	12.1

Parameter	MOE	MOE		BH12-10			BH1	12-11			BH12-12	
Sample Depth (mBGS)>	Table 3	Table 3	0-0.6	2.43-3.05	9.14-9.75	2.43-3.05	6.09-6.70	Duplicate	10.97-11.58	0.6-1.22	6.09-6.7	9.14-9.75
Date Sampled>	(µg/g)	Res/Park	15-Feb-12	15-Feb-12	15-Feb-12	17-Feb-12	17-Feb-12	17-Feb-12	17-Feb-12	22-Feb-12	22-Feb-12	22-Feb-12
F1 PHCs	55	55	<7	<7	171	<7	<7	<7	<7	<7	<7	<7
Benzene	0.32	0.21	0.03	<0.02	20.4	0.09	0.52	0.46	0.05	<0.02	<0.02	3.19
Ethylbenzene	9.5	2	<0.05	<0.05	76.5	<0.05	<0.05	<0.05	1.09	<0.05	0.06	0.37
Toluene	68	2.3	0.09	<0.05	79.8	0.26	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Xylenes, m,p-	NV	NV	0.06	<0.05	130	0.09	<0.05	<0.05	0.86	< 0.05	0.05	0.06
Xylene, o-	NV	NV	<0.05	<0.05	59.2	<0.05	<0.05	<0.05	0.50	<0.05	<0.05	0.08
Xylenes, Total	26	3.1	0.09	<0.05	189	0.13	0.06	<0.05	1.36	<0.05	0.06	0.15

11-200-11_Soil Analytical Results_R0.xlsx Prepared by: VMS Reviewed by: JFD, KGR Date: 11-Jan-13

Table B.3_PHC_BTEX - Page 1 of 2 Commercial / Industrial Soil Residential / Parkland Soil

Parameter	MOE	MOE	BH1	2-13		BH12-14			BH1	2-15	
Sample Depth (mBGS)>	Table 3	Table 3	3.05-4.57	4.57-4.87	4.57-5.34	6.10-6.86	8.38-9.14	3.05-3.80	Duplicate	4.57-5.34	6.86-7.62
Date Sampled>	(µg/g)	Res/Park	25-Sep-12								
F1 PHCs	55	55	238	18700	<7	<7	18	<7	<7	<7	<7
Benzene	0.32	0.21	44.2	107	<0.02	0.07	0.19	<0.02	<0.02	<0.02	<0.02
Ethylbenzene	9.5	2	15.4	23.7	<0.05	<0.05	8.48	<0.05	<0.05	<0.05	<0.05
Toluene	68	2.3	135	199	<0.05	0.10	<0.05	<0.05	0.05	<0.05	<0.05
Xylenes, m,p-	NV	NV	78.6	215	<0.05	0.35	0.58	<0.05	0.31	<0.05	<0.05
Xylene, o-	NV	NV	31.1	80.9	<0.05	0.17	3.45	<0.05	0.12	<0.05	<0.05
Xylenes, Total	26	3.1	110	296	<0.05	0.52	4.03	<0.05	0.42	<0.05	<0.05

Parameter	MOE	MOE		BH1	2-16			BH12-17			BH12-18	
Sample Depth (mBGS)>	Table 3	Table 3	0.15-1.52	4.57-4.88	Duplicate	7.62-8.38	4.57-5.33	7.62-8.38	8.38-9.14	0.0-1.52	3.05-3.81	7.62-8.38
Date Sampled>	(µg/g)	Res/Park	26-Sep-12	26-Sep-12	26-Sep-12	26-Sep-12	24-Sep-12	24-Sep-12	24-Sep-12	24-Sep-12	24-Sep-12	24-Sep-12
F1 PHCs	55	55	30	<7	9	<7	<7	<7	<7	<7	<7	<7
Benzene	0.32	0.21	0.35	0.05	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Ethylbenzene	9.5	2	0.73	0.08	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Toluene	68	2.3	0.75	0.20	0.09	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Xylenes, m,p-	NV	NV	1.30	0.36	0.19	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Xylene, o-	NV	NV	0.43	0.13	0.08	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Xylenes, Total	26	3.1	1.73	0.50	0.27	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05

Parameter	MOE	MOE		BH12-19	
Sample Depth (mBGS)>	Table 3	Table 3	3.05-3.81	4.57-5.33	6.10-6.86
Date Sampled>	(µg/g)	Res/Park	24-Sep-12	24-Sep-12	24-Sep-12
F1 PHCs	55	55	<7	<7	<7
Benzene	0.32	0.21	<0.02	0.35	0.17
Ethylbenzene	9.5	2	<0.02	<0.05	<0.05
Toluene	68	2.3	<0.05	0.18	0.16
Xylenes, m,p-	NV	NV	<0.05	0.05	0.08
Xylene, o-	NV	NV	<0.05	<0.05	<0.05
Xylenes, Total	26	3.1	<0.05	0.08	0.12

Table B.4 - Soil Analytical Results - pH and Cyanide in μ g/g

Parameter	MOE	MOE		BH1	2-01			BH1	2-02	
Sample Depth (mBGS)>	Table 3	Table 3	1.52-2.13	2.74-3.35	3.96-4.57	5.18-5.79	0.6-1.22	Duplicate	1.22-1.82	2.43-3.05
Date Sampled>	Com/Ind	Res/Park	22-Feb-12	22-Feb-12	22-Feb-12	22-Feb-12	17-Feb-12	17-Feb-12	17-Feb-12	17-Feb-12
рН	NV	NV				8.20			7.95	
Free Cyanide	0.051	0.051	<0.03	<0.03	<0.03		<0.03	<0.03		<0.03

Parameter	MOE	MOE	BH12-03					BH12-04			
Sample Depth (mBGS)>	Table 3	Table 3	1.82-2.43	3.05-3.65	4.26-4.87	Duplicate	4.87-5.48	0.6-1.22	1.82-2.43	2.43-3.05	6.7-7.31
Date Sampled>	(µg/g)	Res/Park	17-Feb-12								
рН	NV	NV					7.57				7.86
Free Cyanide	0.051	0.051	<0.03	<0.03	<0.03	<0.03		<0.03	<0.03	<0.03	

Parameter	MOE	MOE		BH1	2-05		BH12-06				
Sample Depth (mBGS)>	Table 3	Table 3	0.6-1.22	3.05-3.65	4.87-5.48	5.48-6.09	0.6-1.22	1.82-2.43	3.05-3.65	4.87-5.48	
Date Sampled>	(µg/g)	Res/Park	21-Feb-12								
рН	NV	NV			7.93				7.40		
Free Cyanide	0.051	0.051	< 0.03	<0.03		<0.03	<0.03	<0.03		<0.09	

Parameter	MOE	MOE		BH1	2-07		BH12-08				
Sample Depth (mBGS)>	Table 3	Table 3	0.6-1.22 3.65-4.26 4.26-4.87 7.31-7.92				0-0.6	0.6-1.22	4.87-5.48	7.31-7.92	
Date Sampled>	(µg/g)	Res/Park	15-Feb-12	15-Feb-12	15-Feb-12	15-Feb-12	14-Feb-12	14-Feb-12	14-Feb-12	14-Feb-12	
рН	NV	NV				7.93			7.51		
Free Cyanide	0.051	0.051	<0.03	<0.03	<0.03		<0.03	<0.03		<0.03	

Parameter	MOE	MOE		BH1	2-09		BH12-10				
Sample Depth (mBGS)>	Table 3	Table 3	0-0.6	0.6-1.22	7.31-7.92	9.75-10.21	0.6-1.22	1.22-1.82	2.43-3.05	8.53-9.14	
Date Sampled>	(µg/g)	Res/Park	13-Feb-12	13-Feb-12	13-Feb-12	13-Feb-12	15-Feb-12	15-Feb-12	15-Feb-12	15-Feb-12	
рН	NV	NV			7.78				7.79		
Free Cyanide	0.051	0.051	<0.03	<0.03		< 0.03	<0.03	<0.03		<0.03	

Parameter	MOE	MOE		BH1	2-11		BH12-12			
Sample Depth (mBGS)>	Table 3	Table 3	0.6-1.22	2.43-3.05	3.05-3.65	6.09-6.7	0.6-1.22	3.05-3.65	6.09-6.7	6.7-7.31
Date Sampled>	(µg/g)	Res/Park	17-Feb-12	17-Feb-12	17-Feb-12	17-Feb-12	22-Feb-12	Duplicate	22-Feb-12	22-Feb-12
рН	NV	NV				7.92			7.97	
Free Cyanide	0.051	0.051	<0.03	<0.03	<0.03		<0.03	<0.03		<0.03

Table B.4_GenChem - Page 1 of 1 Commercial / Industrial Soil Residential / Parkland Soil

Notes for Groundwater Analytical Results

Notes:

All units are $\mu g/L$ unless otherwise noted

NA = Not applicable because no standard is required for that parameter

- -- = Parameter not analysed
- ** The methylnaphthalene standards are applicable to both 1-methylnaphthalene and 2-methylnaphthalene, with the provision that if both are detected the sum of the two must not exceed the standard
- *** F1 fraction does not include BTEX; however, the proponent has the choice as to whether or not to subtract BTEX from the analytical result.
- MOE = Soil, Groundwater and Sediment Standards for use under Part XV.1 of the Environmental Protection Act, April 2011
- < Parameter concentraton is less than method detection limit (MDL)
- **** MDL is greater than MOE standards.
- Table 3 = Full depth generic site condition standards, coarse textured soil in a non-potable groundwater condition

bold = indicates concentrations which exceed MOE 2011 Table 3 standards for non-potable groundwater

Table B.5 - Groundwater Analytical Results - Metals and Cyanide in μ g/L

Parameter	MOE	E-006	E-115A	MW12-01	MW12-02	MW12-03	MW12-04	MW12-05	MW12-06
	Table 3								
Date Sampled>	non-potable	12-Mar-12	14-Mar-12	14-Mar-12	14-Mar-12	14-Mar-12	14-Mar-12	12-Mar-12	12-Mar-12
Antimony	20,000	<0.5	<0.5	0.7	<0.5	0.6	0.5	0.6	<0.5
Arsenic	1,900	<1	<1	<1	<1	2	<1	<1	<1
Barium	29,000	92	181	123	49	38	20	42	63
Beryllium	67	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Boron (total)	45,000	73	147	176	26	128	169	65	86
Cadmium	2.7	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Chromium	810	8	13	10	16	10	9	8	13
Cobalt	66	1.3	1	3.3	0.9	1.6	4.5	1.8	0.9
Copper	87	3.8	0.7	2.1	1.1	1.2	1.8	2.1	1.3
Lead	25	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Magnesium	NV	96,100	45,200	91,900	30,400	45,800	41,900	179,000	62,600
Manganese	NV	98	110	364	172	97	545	162	305
Mercury	0.29		<0.1					<0.1	
Molybdenum	9,200	2.9	2.2	16.8	6.0	4.9	5.5	21.5	0.8
Nickel	490	14	4	17	6	8	26	10	5
Selenium	63	<1	<1	<1	<1	<1	2	<1	<1
Silver	1.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.3
Sodium	2,300,000	2,750,000	351,000	1,690,000	222,000	64,100	182,000	1,980,000	1,590,000
Thallium	510	<0.1	<0.1	0.1	<0.1	<0.1	<0.1	<0.1	0.1
Uranium	420	0.6	1.5	4.1	1	1.9	4.1	3.7	0.2
Vanadium	250	<0.5	7.3	1.4	4.3	12.4	11.9	0.9	2.8
Zinc	1,100	<5	<5	<5	<5	6	9	5	<5
Free Cyanide	66	<2	<2	<2	<2	<2	<2	10	5

Table B.5 - Groundwater Analytical Results - Metals and	Cyanide in µg/L
---	-----------------

Parameter	MOE	MW12-07	MW12-08	MW12-09	MW12-10	MW12-11	MW12-12	OW109A	OW112A
	Table 3								
Date Sampled>	non-potable	12-Mar-12	09-Mar-12	09-Mar-12	09-Mar-12	12-Mar-12	12-Mar-12	14-Mar-12	12-Mar-12
Antimony	20,000	0.6	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Arsenic	1,900	2	<1	<1	1	<1	<1	<1	<1
Barium	29,000	162	64	49	58	57	41	185	5,130
Beryllium	67	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Boron (total)	45,000	56	60	65	56	264	44	481	278
Cadmium	2.7	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Chromium	810	16	14	8	28	12	12	9	1
Cobalt	66	1.5	0.7	0.6	0.7	0.7	0.9	0.8	1.3
Copper	87	1.1	1.3	0.9	1.1	0.9	19.5	0.8	16.5
Lead	25	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Magnesium	NV	59,500	47,200	44,400	45,000	58,000	69,900	72,400	104,000
Manganese	NV	284	110	58	60	117	208	141	629
Mercury	0.29	<0.1		<0.1		<0.1	<0.1	<0.1	
Molybdenum	9,200	7.7	4.3	1.8	0.9	0.9	4.3	1.2	<0.5
Nickel	490	9	5	6	6	6	7	3	5
Selenium	63	<1	<1	<1	<1	<1	<1	1	<1
Silver	1.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Sodium	2,300,000	1,200,000	548,000	1,160,000	1,460,000	374,000	1,360,000	698,000	1,300,000
Thallium	510	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Uranium	420	2.8	0.9	0.5	<0.1	0.3	13.8	0.1	<0.1
Vanadium	250	3.9	6.2	2.4	8.5	6.9	2.3	1.6	1.9
Zinc	1,100	5	8	<5	<5	6	<5	8	<5
Free Cyanide	66	<2	<2	<2	<2	<2	<2	6	<2

Table B.5 - Groundwater Analytical Results - Metals and Cyanide in μ g/L

Parameter	MOE	OW	112B	OW116A	OW116C	OW122B	OW	122C	OW507C
	Table 3		Duplicate					Duplicate	
Date Sampled>	non-potable	14-Mar-12	14-Mar-12	13-Mar-12	14-Mar-12	13-Mar-12	13-Mar-12	13-Mar-12	16-Apr-12
Antimony	20,000	<0.5	<0.5	<0.5	<0.5	<0.5	0.8	0.7	<0.5
Arsenic	1,900	<1	<1	<1	<1	<1	<1	<1	<1
Barium	29,000	41	40	393	23	37	45	46	12
Beryllium	67	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Boron (total)	45,000	61	57	840	88	579	364	390	67
Cadmium	2.7	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Chromium	810	9	8	12	19	10	7	7	13
Cobalt	66	<0.5	<0.5	<0.5	0.8	0.6	<0.5	<0.5	4.1
Copper	87	0.8	0.8	<0.5	1.7	1.4	0.7	0.7	2.6
Lead	25	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.3
Magnesium	NV	43,600	42,300	7,990	137,000	156,000	193,000	195,000	
Manganese	NV	98	99	11	237	30	156	160	
Mercury	0.29						<0.1	<0.1	<0.1
Molybdenum	9,200	2.7	2.8	<0.5	1.1	0.8	5.7	5.6	8.3
Nickel	490	5	5	<1	6	6	2	2	143
Selenium	63	<1	<1	<1	<1	<1	1	1	14
Silver	1.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Sodium	2,300,000	911,000	889,000	313,000	1,980,000	241,000	185,000	182,000	1,050,000
Thallium	510	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.2
Uranium	420	0.2	0.2	<0.1	<0.1	<0.1	0.1	0.1	1.6
Vanadium	250	1.3	1.4	3.6	3.6	2.5	1.6	1.6	14.3
Zinc	1,100	6	<5	<5	5	<5	<5	<5	6
Free Cyanide	66	<2	<2	<2	<2	<2	<2	<2	<2

Table B.5 - Groundwater Analytical Results - Metals and Cyanide in μ g/L

Parameter	MOE	OWS	507B	Field Blank
	Table 3		Duplicate	
Date Sampled>	non-potable	16-Apr-12	16-Apr-12	19-Apr-12
Antimony	20,000	<0.5	<0.5	<0.05
Arsenic	1,900	<1	<1	<1
Barium	29,000	99	96	<1
Beryllium	67	<0.5	<0.5	<0.5
Boron (total)	45,000	40	42	<10
Cadmium	2.7	<0.1	<0.1	<0.1
Chromium	810	6	7	<1
Cobalt	66	<0.5	<0.5	<0.5
Copper	87	<0.5	0.5	<0.5
Lead	25	0.2	0.2	<0.1
Magnesium	NV			
Manganese	NV			
Mercury	0.29	<0.1	<0.1	<0.1
Molybdenum	9,200	0.8	0.7	<0.5
Nickel	490	3	3	<1
Selenium	63	<1	<1	<1
Silver	1.5	<0.1	<0.1	<0.1
Sodium	2,300,000	154,000	157,000	<200
Thallium	510	<0.1	<0.1	<0.1
Uranium	420	<0.1	<0.1	<0.1
Vanadium	250	3.3	3.5	<0.5
Zinc	1,100	<5	<5	<5
Free Cyanide	66	<2	<2	<2

Parameter	MOE	BH-001	E-(006		E-115A		MW1	2-01
	Table 3						Duplicate		
Date Sampled>	non-potable	04-Oct-12	12-Mar-12	05-Oct-12	14-Mar-12	02-Oct-12	02-Oct-12	14-Mar-12	03-Oct-12
Acenaphthene	600	<0.25	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Acenaphthylene	1.8	<0.25	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Anthracene	2.4	<0.05	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Benzo[a]anthracene	4.7	<0.05	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Benzo[a]pyrene	0.81	<0.05	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Benzo[b]fluoranthene	0.75	<0.25	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Benzo[g,h,i]perylene	0.2	<0.25****	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Benzo[k]fluoranthene	0.4	<0.25	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Biphenyl	1,000	<0.25	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Chrysene	1	<0.25	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Dibenzo[a,h]anthracene	0.52	<0.25	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Fluoranthene	130	<0.05	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Fluorene	400	<0.25	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Indeno[1,2,3-cd]pyrene	0.2	<0.25****	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Methylnaphthalene, 1-	NV	<0.25	<0.05	0.06	<0.05	<0.05	<0.05	<0.05	<0.05
Methylnaphthalene, 2-	NV	<0.25	< 0.05	0.08	<0.05	<0.05	<0.05	<0.05	<0.05
Methylnaphthalene, 2-(1-)-**	1,800	<0.05	<0.1	0.13	<0.10	<0.10	<0.10	<0.10	<0.10
Naphthalene	1,400	<0.25	0.54	0.25	0.31	<0.05	<0.05	0.27	<0.05
Phenanthrene	580	<0.25	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Pyrene	68	0.07	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01

Parameter	MOE	MW1	2-02	MW1	2-03	MW1	2-04	MW1	2-05
	Table 3								
Date Sampled>	non-potable	14-Mar-12	01-Oct-12	14-Mar-12	03-Oct-12	14-Mar-12	03-Oct-12	12-Mar-12	03-Oct-12
Acenaphthene	600	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Acenaphthylene	1.8	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Anthracene	2.4	<0.01	<0.01	0.02	<0.01	<0.01	<0.01	0.02	<0.01
Benzo[a]anthracene	4.7	<0.01	<0.01	0.06	<0.01	<0.01	<0.01	<0.01	<0.01
Benzo[a]pyrene	0.81	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Benzo[b]fluoranthene	0.75	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Benzo[g,h,i]perylene	0.2	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Benzo[k]fluoranthene	0.4	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Biphenyl	1,000	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.01
Chrysene	1	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Dibenzo[a,h]anthracene	0.52	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Fluoranthene	130	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.08	<0.01
Fluorene	400	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.08	<0.05
Indeno[1,2,3-cd]pyrene	0.2	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Methylnaphthalene, 1-	NV	< 0.05	<0.05	<0.05	<0.05	<0.05	0.06	<0.05	<0.05
Methylnaphthalene, 2-	NV	<0.05	<0.05	<0.05	<0.05	<0.05	0.08	<0.05	<0.05
Methylnaphthalene, 2-(1-)-**	1,800	<0.10	<0.10	<0.10	0.11	<0.10	0.14	<0.10	<0.10
Naphthalene	1,400	<0.05	<0.05	0.06	<0.05	<0.05	0.10	0.12	0.09
Phenanthrene	580	<0.05	<0.05	0.07	<0.05	0.08	<0.05	0.62	<0.05
Pyrene	68	<0.01	0.01	0.16	<0.01	0.05	<0.01	0.08	<0.01

Parameter	MOE	MW1	2-06	MW1	2-07	MW1	2-08	MW	12-09
	Table 3								
Date Sampled>	non-potable	12-Mar-12	01-Oct-12	12-Mar-12	04-Oct-12	09-Mar-12	02-Oct-12	09-Mar-12	02-Oct-12
Acenaphthene	600	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<2.50	<50
Acenaphthylene	1.8	< 0.05	<0.05	<0.05	<0.05	0.06	<0.05	241	60.8
Anthracene	2.4	<0.01	<0.01	0.03	<0.01	0.03	<0.01	12.5	11.7
Benzo[a]anthracene	4.7	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	12.4	<10****
Benzo[a]pyrene	0.81	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	7.77	<10****
Benzo[b]fluoranthene	0.75	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	6.97	<50****
Benzo[g,h,i]perylene	0.2	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<2.5****	<50****
Benzo[k]fluoranthene	0.4	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	5.02	<50****
Biphenyl	1,000	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	32.4	<50
Chrysene	1	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	12.5	<50****
Dibenzo[a,h]anthracene	0.52	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<2.5****	<50****
Fluoranthene	130	<0.01	<0.01	<0.05	<0.01	0.06	0.02	12.1	15
Fluorene	400	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	42.8	<50
Indeno[1,2,3-cd]pyrene	0.2	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<2.5****	<50****
Methylnaphthalene, 1-	NV	< 0.05	<0.05	0.08	<0.05	0.08	<0.05	447	132
Methylnaphthalene, 2-	NV	< 0.05	<0.05	0.11	<0.05	0.09	0.06	842	212
Methylnaphthalene, 2-(1-)-**	1,800	<0.10	<0.10	0.19	<0.10	0.17	<0.10	1320	344
Naphthalene	1,400	0.63	0.29	0.53	0.15	0.43	0.12	7120	1210
Phenanthrene	580	0.12	<0.05	0.17	0.08	0.15	<0.05	50.3	<50
Pyrene	68	0.05	0.02	0.08	<0.01	0.09	0.03	20	23.1

Parameter	MOE	MW	12-10	MW1	2-11	MW1	2-12	MW	2-13
	Table 3								Duplicate
Date Sampled>	non-potable	09-Mar-12	02-Oct-12	12-Mar-12	04-Oct-12	12-Mar-12	04-Oct-12	02-Oct-12	02-Oct-12
Acenaphthene	600	128	36.3	2.76	2.72	0.07	<0.05	<50	<50
Acenaphthylene	1.8	317	48.3	73.1	59.2	0.32	<0.05	<50****	77.3
Anthracene	2.4	69.4	7.12	2.94	5.02	0.02	<0.01	11.7	19.9
Benzo[a]anthracene	4.7	84	<5****	<0.05	3.38	<0.01	<0.01	<10****	<10****
Benzo[a]pyrene	0.81	59.9	<5****	<0.05	3.10	<0.01	<0.01	<10****	<10****
Benzo[b]fluoranthene	0.75	50.6	<25****	<0.25	3.24	< 0.05	<0.05	<50****	<50****
Benzo[g,h,i]perylene	0.2	21.1	<25****	<0.25****	1.30	< 0.05	<0.05	<50****	<50****
Benzo[k]fluoranthene	0.4	36.5	<25****	<0.25	1.25	<0.05	<0.05	<50****	<50****
Biphenyl	1,000	76.3	<25	<0.25	3.94	<0.05	<0.05	<50	<50
Chrysene	1	75.5	<25****	<0.25	3.24	< 0.05	<0.05	<50****	<50****
Dibenzo[a,h]anthracene	0.52	<2.5****	<25****	<0.25	0.57	<0.05	<0.05	<50****	<50****
Fluoranthene	130	90.8	12	3.07	6.14	<0.01	<0.01	21.2	24.6
Fluorene	400	140	25.1	13.4	12.6	<0.05	<0.05	<50	<50
Indeno[1,2,3-cd]pyrene	0.2	15.2	<25****	<2.5****	1.32	<0.05	<0.05	<50****	<50****
Methylnaphthalene, 1-	NV	1040	247	148	98.5	1.48	<0.05	163	277
Methylnaphthalene, 2-	NV	1850	295	142	7.73	<0.05	<0.05	240	301
Methylnaphthalene, 2-(1-)-**	1,800	2890	542	290	106	1.48	<0.10	404	578
Naphthalene	1,400	7350	1680	1,510	91.1	1.31	<0.05	800	981
Phenanthrene	580	300	45.5	15.8	13.1	0.15	<0.05	53.9	69
Pyrene	68	150	19.3	4.82	11.9	0.05	<0.01	30.4	40.8

Parameter	MOE	MW12-14	MW12-15	MW12-16	MW12-17	MW12-18	MW12-19	OW1	09A
	Table 3								
Date Sampled>	non-potable	05-Oct-12	02-Oct-12	02-Oct-12	05-Oct-12	03-Oct-12	03-Oct-12	14-Mar-12	03-Oct-12
Acenaphthene	600	<50	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Acenaphthylene	1.8	19.0	0.19	0.14	<0.05	<0.05	0.10	0.21	<0.05
Anthracene	2.4	<1	0.05	0.03	<0.01	0.02	0.03	<0.01	<0.01
Benzo[a]anthracene	4.7	<10****	0.23	<0.01	<0.01	0.09	0.09	<0.01	<001
Benzo[a]pyrene	0.81	<1****	0.19	<0.01	<0.01	0.04	0.05	<0.01	<0.01
Benzo[b]fluoranthene	0.75	<5****	0.21	<0.05	<0.05	0.09	0.09	<0.05	<0.01
Benzo[g,h,i]perylene	0.2	<5****	0.08	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Benzo[k]fluoranthene	0.4	<5****	0.08	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Biphenyl	1,000	<5	0.08	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Chrysene	1	<5****	0.08	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Dibenzo[a,h]anthracene	0.52	<5****	0.08	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Fluoranthene	130	<1	0.42	0.05	<0.01	0.12	0.09	<0.01	<0.01
Fluorene	400	<5	0.08	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Indeno[1,2,3-cd]pyrene	0.2	<5****	0.08	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Methylnaphthalene, 1-	NV	38.8	0.09	0.19	0.12	0.09	0.06	<0.05	0.10
Methylnaphthalene, 2-	NV	37.6	0.12	0.20	0.17	0.09	0.08	<0.05	0.14
Methylnaphthalene, 2-(1-)-**	1,800	76.4	0.21	0.39	0.29	0.18	0.14	<0.10	0.24
Naphthalene	1,400	631	0.38	0.76	0.91	0.18	0.24	0.81	0.29
Phenanthrene	580	<5	0.06	0.10	<0.05	0.20	0.11	0.09	<0.05
Pyrene	68	<1	0.45	0.06	<0.01	0.12	0.11	<0.01	<0.01

Parameter	MOE	OW110A	OW111B		OW112A			OW112B	
	Table 3					Duplicate		Duplicate	
Date Sampled>	non-potable	01-Oct-12	09-Oct-12	12-Mar-12	02-Oct-12	02-Oct-12	14-Mar-12	14-Mar-12	05-Oct-12
Acenaphthene	600	<0.05	<0.05	<0.05	0.07	0.08	<12	<12	<10
Acenaphthylene	1.8	<0.05	0.80	<0.05	0.23	0.23	302	278	127
Anthracene	2.4	<0.01	0.02	0.03	0.09	0.11	57.6	60.8	3.46
Benzo[a]anthracene	4.7	<0.01	0.04	<0.01	0.15	0.20	51.4	47.7	<2
Benzo[a]pyrene	0.81	<0.01	<0.01	<0.01	0.09	0.12	33.6	30.7	<2****
Benzo[b]fluoranthene	0.75	<0.01	<0.05	<0.05	0.08	0.10	29.6	23.7	<10****
Benzo[g,h,i]perylene	0.2	<0.05	<0.05	<0.05	<0.05	<0.05	18.1	14.9	<10****
Benzo[k]fluoranthene	0.4	<0.05	<0.05	<0.05	<0.05	0.08	<12****	13.9	<10****
Biphenyl	1,000	<0.05	0.11	< 0.05	<0.05	<0.05	45.1	42.5	19.7
Chrysene	1	<0.05	<0.05	<0.05	0.12	0.17	47	42.1	<10****
Dibenzo[a,h]anthracene	0.52	<0.05	<0.05	< 0.05	<0.05	<0.05	<12****	<12****	<10****
Fluoranthene	130	<0.01	0.06	0.05	0.10	0.14	59.4	54	<2
Fluorene	400	<0.05	0.07	<0.05	0.12	0.12	111	101	20.1
Indeno[1,2,3-cd]pyrene	0.2	<0.05	<0.05	<0.05	<0.05	<0.05	14.3	<12****	<10****
Methylnaphthalene, 1-	NV	<0.05	2.50	0.09	0.23	0.27	623	581	312
Methylnaphthalene, 2-	NV	0.09	0.36	0.11	0.30	0.34	701	657	212
Methylnaphthalene, 2-(1-)-**	1,800	0.13	2.86	0.20	0.53	0.61	1320	1240	524
Naphthalene	1,400	0.21	2.24	0.58	0.46	0.47	4830	4440	2560
Phenanthrene	580	<0.05	0.11	0.10	0.34	0.43	195	179	18.4
Pyrene	68	<0.05	0.09	0.07	0.21	0.28	104	94.7	5.09

Parameter	MOE	OW	116A	OW116B	OW	116C	OW	122B
	Table 3							
Date Sampled>	non-potable	13-Mar-12	01-Oct-12	01-Oct-12	14-Mar-12	03-Oct-12	13-Mar-12	04-Oct-12
Acenaphthene	600	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Acenaphthylene	1.8	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Anthracene	2.4	<0.01	<0.01	<0.01	0.02	<0.01	<0.01	<0.01
Benzo[a]anthracene	4.7	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Benzo[a]pyrene	0.81	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Benzo[b]fluoranthene	0.75	<0.01	<0.01	<0.01	<0.05	<0.05	<0.05	<0.05
Benzo[g,h,i]perylene	0.2	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Benzo[k]fluoranthene	0.4	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Biphenyl	1,000	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Chrysene	1	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Dibenzo[a,h]anthracene	0.52	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Fluoranthene	130	<0.01	<0.01	<0.01	0.04	<0.01	<0.01	<0.01
Fluorene	400	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Indeno[1,2,3-cd]pyrene	0.2	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Methylnaphthalene, 1-	NV	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Methylnaphthalene, 2-	NV	< 0.05	0.06	0.07	0.05	0.05	<0.05	<0.05
Methylnaphthalene, 2-(1-)-**	1,800	<0.10	<0.10	0.11	<0.10	<0.10	<0.10	<0.10
Naphthalene	1,400	0.41	0.3	0.77	0.18	0.30	0.39	0.63
Phenanthrene	580	< 0.05	<0.05	<0.05	0.07	<0.05	<0.05	<0.05
Pyrene	68	<0.01	<0.05	<0.05	0.05	<0.01	<0.01	<0.01

Parameter	MOE		OW122C		OW	507C		OW507B	
	Table 3		Duplicate					Duplicate	
Date Sampled>	non-potable	13-Mar-12	13-Mar-12	04-Oct-12	16-Apr-12	29-Oct-12	19-Apr-12	19-Apr-12	29-Oct-12
Acenaphthene	600	<0.05	<0.05	<0.05		0.25	<0.05	<0.05	<0.05
Acenaphthylene	1.8	<0.05	5.47	<0.05	0.94	0.77	<0.05	<0.05	<0.05
Anthracene	2.4	<0.01	0.06	<0.01	0.02	0.03	<0.01	<0.01	<0.01
Benzo[a]anthracene	4.7	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Benzo[a]pyrene	0.81	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Benzo[b]fluoranthene	0.75	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Benzo[g,h,i]perylene	0.2	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Benzo[k]fluoranthene	0.4	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Biphenyl	1,000	<0.05	<0.05	<0.05	0.25	0.18	<0.05	<0.05	<0.05
Chrysene	1	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Dibenzo[a,h]anthracene	0.52	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Fluoranthene	130	<0.01	<0.01	<0.01	0.02	<0.01	<0.01	<0.01	<0.01
Fluorene	400	<0.05	0.28	<0.05	0.13	0.08	<0.05	<0.05	<0.05
Indeno[1,2,3-cd]pyrene	0.2	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Methylnaphthalene, 1-	NV	<0.05	0.14	<0.05	0.1	0.05	<0.05	<0.05	0.06
Methylnaphthalene, 2-	NV	<0.05	0.17	<0.05	0.08	0.05	0.6	0.07	0.15
Methylnaphthalene, 2-(1-)-**	1,800	<0.10	0.31	<0.10	0.18	0.10	<0.10	0.11	0.21
Naphthalene	1,400	0.64	13.9	0.84	0.36	0.08	0.67	0.66	0.26
Phenanthrene	580	<0.05	0.38	<0.05	0.08	0.06	<0.05	<0.05	<0.05
Pyrene	68	<0.01	0.04	<0.01	0.03	0.03	<0.01	<0.01	0.04

Parameter	MOE	Field	Blank
	Table 3		
Date Sampled>	non-potable	19-Apr-12	29-Oct-12
Acenaphthene	600	<0.05	<0.05
Acenaphthylene	1.8	<0.05	<0.05
Anthracene	2.4	<0.01	<0.01
Benzo[a]anthracene	4.7	<0.01	<0.01
Benzo[a]pyrene	0.81	<0.01	<0.01
Benzo[b]fluoranthene	0.75	<0.05	<0.05
Benzo[g,h,i]perylene	0.2	<0.05	<0.05
Benzo[k]fluoranthene	0.4	<0.05	<0.05
Biphenyl	1,000	<0.05	<0.05
Chrysene	1	<0.05	<0.05
Dibenzo[a,h]anthracene	0.52	<0.05	<0.05
Fluoranthene	130	<0.01	<0.01
Fluorene	400	<0.05	<0.05
Indeno[1,2,3-cd]pyrene	0.2	<0.05	<0.05
Methylnaphthalene, 1-	NV	<0.05	<0.05
Methylnaphthalene, 2-	NV	<0.05	<0.05
Methylnaphthalene, 2-(1-)-**	1,800	<0.10	<0.10
Naphthalene	1,400	0.1	<0.05
Phenanthrene	580	<0.05	<0.05
Pyrene	68	<0.01	<0.01

Table B.7 - Groundwater Analytical Results - PHC - F1 and BTEX in $\mu g/L$

Parameter	MOE	BH-001	E-(006		E-115A		MW12-01	
	Table 3						Duplicate		
Date Sampled>	non-potable	04-Oct-12	12-Mar-12	05-Oct-12	14-Mar-12	02-Oct-12	02-Oct-12	14-Mar-12	03-Oct-12
F1 PHCs (C6-C10)***	750	<25	<25	<25	<25	<25	<25	<25	<25
Benzene	44	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	2,300	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Toluene	18,000	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Xylenes, m,p-	NV	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Xylene, o-	NV	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Xylenes, Total	4,200	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5

Parameter	MOE	MW1	2-02	MW1	2-03	MW12-04		MW12-05	
	Table 3								
Date Sampled>	non-potable	14-Mar-12	01-Oct-12	14-Mar-12	03-Oct-12	14-Mar-12	03-Oct-12	12-Mar-12	03-Oct-12
F1 PHCs (C6-C10)***	750	<25	<25	<25	<25	<25	<25	<25	<25
Benzene	44	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	2,300	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Toluene	18,000	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Xylenes, m,p-	NV	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Xylene, o-	NV	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Xylenes, Total	4,200	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5

Parameter	MOE	MW1	2-06	MW1	2-07	MW1	2-08	MW12-09	
	Table 3								
Date Sampled>	non-potable	12-Mar-12	01-Oct-12	12-Mar-12	04-Oct-12	09-Mar-12	02-Oct-12	09-Mar-12	02-Oct-12
F1 PHCs (C6-C10)***	750	<25	<25	<25	<25	<25	<25	2200	52200000
Benzene	44	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	7210	18600
Ethylbenzene	2,300	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	956	1860
Toluene	18,000	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	13000	3850
Xylenes, m,p-	NV	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	3680	2250
Xylene, o-	NV	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	1820	1400
Xylenes, Total	4,200	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	5500	3650

Table B.7 - Groundwater Analytical Results - PHC - F1 and BTEX in μ g/L

Parameter	MOE	MW12-10		MW1	MW12-11		MW12-12		MW12-13	
	Table 3								Duplicate	
Date Sampled>	non-potable	09-Mar-12	02-Oct-12	12-Mar-12	04-Oct-12	12-Mar-12	04-Oct-12	02-Oct-12	02-Oct-12	
F1 PHCs (C6-C10)***	750	5500	1340	1770	<25	<25	<25	5520	5550	
Benzene	44	5150	307	30	<0.5	38.4	<0.5	775	6390	
Ethylbenzene	2,300	2490	2580	510	<0.5	6.8	<0.5	3760	2180	
Toluene	18,000	4490	275	17	<0.5	<0.5	<0.5	958	1210	
Xylenes, m,p-	NV	1170	1530	317	<0.5	4.7	<0.5	4120	2480	
Xylene, o-	NV	878	1010	218	<0.5	1.0	<0.5	2460	1640	
Xylenes, Total	4,200	2050	2540	535	<0.5	5.7	<0.5	6580	4120	

Parameter	MOE	MW12-14	MW12-15	MW12-16	MW12-17	MW12-18	MW12-19	OW1	09A
	Table 3								
Date Sampled>	non-potable	05-Oct-12	02-Oct-12	02-Oct-12	05-Oct-12	03-Oct-12	03-Oct-12	14-Mar-12	03-Oct-12
F1 PHCs (C6-C10)***	750	<25	<25	<25	<25	<25	<25	<25	<25
Benzene	44	110	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	2,300	657	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Toluene	18,000	45.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Xylenes, m,p-	NV	168	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Xylene, o-	NV	692	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Xylenes, Total	4,200	860	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5

Parameter	MOE	OW110A	OW111B	OW112A			OW112B		
	Table 3					Duplicate		Duplicate	
Date Sampled>	non-potable	01-Oct-12	09-Oct-12	12-Mar-12	02-Oct-12	02-Oct-12	14-Mar-12	14-Mar-12	05-Oct-12
F1 PHCs (C6-C10)***	750	<25	<25	<25	<25	<25	3850	3900	<1250****
Benzene	44	<0.5	34.3	<0.5	<0.5	<0.5	1090	1080	695
Ethylbenzene	2,300	<0.5	6.9	<0.5	<0.5	<0.5	553	569	644
Toluene	18,000	<0.5	1	<0.5	<0.5	<0.5	3950	3900	2030
Xylenes, m,p-	NV	<0.5	3.4	<0.5	<0.5	<0.5	1580	1600	965
Xylene, o-	NV	<0.5	3.7	<0.5	<0.5	<0.5	830	836	494
Xylenes, Total	4,200	<0.5	7.1	<0.5	<0.5	<0.5	2410	2430	1460

Table B.7 - Groundwater Analytical Results - PHC - F1 and BTEX in μ g/L

Parameter	MOE	OW116A		OW116B	OW1	16C	OW122B	
	Table 3							
Date Sampled>	non-potable	13-Mar-12	01-Oct-12	01-Oct-12	14-Mar-12	03-Oct-12	13-Mar-12	04-Oct-12
F1 PHCs (C6-C10)***	750	<25	<25	<25	<25	<25	<25	<25
Benzene	44	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	2,300	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Toluene	18,000	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Xylenes, m,p-	NV	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Xylene, o-	NV	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Xylenes, Total	4,200	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5

Parameter	MOE	OW122C			OW507C		OW507B		
	Table 3		Duplicate					Duplicate	
Date Sampled>	non-potable	13-Mar-12	13-Mar-12	04-Oct-12	16-Apr-12	29-Oct-12	16-Apr-12	16-Apr-12	29-Oct-12
F1 PHCs (C6-C10)***	750	<25	<25	<25	<25	<25	<25	<25	<25
Benzene	44	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	2,300	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Toluene	18,000	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Xylenes, m,p-	NV	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Xylene, o-	NV	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Xylenes, Total	4,200	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5

Parameter	MOE	Field Blank		
	Table 3			
Date Sampled>	non-potable	19-Apr-12	29-Oct-12	
F1 PHCs (C6-C10)***	750	<25	<25	
Benzene	44	<0.5	<0.5	
Ethylbenzene	2,300	<0.5	<0.5	
Toluene	18,000	<0.5	<0.5	
Xylenes, m,p-	NV	<0.5	<0.5	
Xylene, o-	NV	<0.5	<0.5	
Xylenes, Total	4,200	<0.5	<0.5	

APPENDIX C

Soil Texture Tables

 Table C.1 – Grain Size Distribution – Sieve Results

 Table C.2 – Grain Size Distribution – Sieve and Hydrometer Results

Table C.1 - Grain Size Distribution - Sieve Results in %

Parameter		BH12-02	BH12-03	BH12-04	BH12-05	BH12-06	BH12-07	BH12-10	BH12-11	BH12-12
Sample Depth (mBGS)>	Size	1.22-1.82	4.87-5.48	6.70-7.31	4.87-5.48	3.05-3.65	7.31-7.92	2.43-3.05	6.09-6.70	6.09-6.70
Date Sampled>	mm	17-Feb-12	17-Feb-12	17-Feb-12	21-Feb-12	21-Feb-12	15-Feb-12	15-Feb-12	17-Feb-12	22-Feb-12
Cobbles	>19	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Coarse Gravel	<19 to 4.75	3.40	10.4	2.2	12.1	6.0	1.30	10.00	14.40	<0.1
Fine Gravel	<4.75 to 2	11.3	18.5	2.4	16.9	11.2	3.2	3.8	13.3	0.2
Coarse Sand to Medium Sand	<2 to 0.425	21.5	41.5	24.8	27.9	14.8	7.7	13.4	31.7	3.6
Fine Sand to Very Fine Sand	<0.425 to 0.075	11.1	15.4	53.5	18.2	5.8	37.7	62.8	25.6	86
Silt and Clay	<0.075	52.7	14.3	17.1	24.9	62.2	50	9.9	14.9	10.2
MOE Soil Texture Classification		M&F	С	С	С	M&F	С	С	С	С

Notes:

M&F = Medium and Fine Textured

C = Coarse Textured

Table C.2 - Grain Size Distribution, Sieve and Hydrometer Results in %

Parameter		BH12-01	BH12-08	BH12-09
Sample Depth (mBGS)>	Size	5.18-5.79	4.87-5.48	7.31-7.92
Date Sampled>	mm	22-Feb-12	14-Feb-12	13-Feb-12
Coarse Gravel	>4.75	1.60	0.30	4.80
Fine Gravel	>2-4.75	1.30	1.70	4.40
Very Coarse Sand	>1-2	0.9	1	2.4
Coarse Sand	>0.5-1	1	1.7	5.9
Medium Sand	>0.25-0.5	1	5.9	18.8
Fine Sand	>0.1-0.25	1.5	30	31.3
Very Fine Sand	>0.05-0.1	19.5	34.4	17.7
Silt	>0.002-0.05	64.1	23	10.8
Clay	<=0.002	9.4	2	4
MOE Soil Texture Classification		С	С	С

Notes:

M&F = Medium and Fine Textured

C = Coarse Textured

APPENDIX D

Laboratory Analytical Reports

RELIABLE.

Head Office 300-2319 St. Laurent Blvd. Ottawa, Ontario K1G 4J8 p: 1-800-749-1947 e: paracel@paracellabs.com

www.paracellabs.com

OTTAWA • KINGSTON • NIAGARA • MISSISSAUGA • SARNIA

Certificate of Analysis

Geofirma Engineering Ltd.

Suite 200, 1 Raymond St. Ottawa, ON K1R 1A2 Attn: Sean Sterling

Client Projec Custo Phone: (613) 232-2525 Fax: (613) 232-7149

PO: 45064625	Report Date: 16-Nov-2012
ct: 11-200-11/ 191 Lees Ave	Order Date: 25-Sep-2012
dy: 94616/5	Revised Report Order #: 1239131

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID	Client ID
1239131-01	MW12-17 SA2
1239131-02	MW12-17 SA4
1239131-03	MW12-17 SA6
1239131-04	MW12-17 SA8
1239131-05	MW12-17 SA9
1239131-06	MW12-17 SA10
1239131-07	MW12-17 SA11
1239131-08	MW12-19 SA4
1239131-09	MW12-19 SA1
1239131-10	MW12-19 SA8
1239131-11	MW12-19 SA5
1239131-12	MW12-19 SA3
1239131-13	MW12-19 SA7
1239131-14	MW12-18 SA1
1239131-15	MW12-18 SA3
1239131-16	MW12-18 SA2
1239131-17	MW12-18 SA7
1239131-18	MW12-18 SA4
1239131-19	MW12-18 SA10

Approved By:

Mark Frata

Mark Foto, M.Sc. For Dale Robertson, BSc Laboratory Director

Any use of these results implies your agreement that our total liability in connection with this work, however arising shall be limited to the amount paid by you for this work, and that our employees or agents shall not under circumstances be liable to you in connection with this work

Client: Geofirma Engineering Ltd. Client PO: 45064625

Project Description: 11-200-11/ 191 Lees Ave

Order #: 1239131

Report Date: 16-Nov-2012 Order Date: 25-Sep-2012

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date	Analysis Date	
BTEX	EPA 8260 - P&T GC-MS	26-Sep-12	29-Sep-12	
CCME PHC F1	CWS Tier 1 - P&T GC-FID	26-Sep-12	29-Sep-12	
Mercury	EPA 7471A - CVAA, digestion	2-Oct-12	3-Oct-12	
Metals	EPA 6020 - Digestion - ICP-MS	27-Sep-12	27-Sep-12	
PAHs by GC-MS, standard scan	EPA 8270 - GC-MS, extraction	28-Sep-12	2-Oct-12	
Solids, %	Gravimetric, calculation	27-Sep-12	27-Sep-12	

P: 1-800-749-1947 E: paracel@paracellabs.com WWW.PARACELLABS.COM OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 2 of 18

Order #: 1239131

Report Date: 16-Nov-2012 Order Date:25-Sep-2012

Client: Geofirma Engineering Ltd.

ient PO: 45064625 Project Description: 11-200-11/ 191 Lees Ave								
	Client ID: Sample Date: Sample ID:	MW12-17 SA2 24-Sep-12 1239131-01 Soil	MW12-17 SA4 24-Sep-12 1239131-02 Soil	MW12-17 SA6 24-Sep-12 1239131-03 Soil	MW12-17 SA8 24-Sep-12 1239131-04 Soil			
Physical Characteristics	MDL/Units	301	501	301	3011			
	0.1 % by Wt	02.5	02.0	03.0	04.0			
Metals		93.5	93.9	90.0	94.0			
Antimony	1 ug/g dry	<1	-	-	<1			
Arsenic	1 ug/g dry	<1	-	-	<1			
Barium	1 ug/g dry	25	-	-	18			
Beryllium	0.5 ug/g dry	<0.5	-	-	<0.5			
Cadmium	0.5 ug/g dry	<0.5	-	-	<0.5			
Calcium	200 ug/g dry	15000	-	-	17300			
Chromium	5 ug/g dry	8	-	-	<5			
Cobalt	1 ug/g dry	3	-	-	3			
Copper	5 ug/g dry	8	-	-	6			
Iron	200 ug/g dry	7000	-	-	6890			
Lead	1 ug/g dry	2	-	-	1			
Magnesium	200 ug/g dry	2490	-	-	3180			
Manganese	5 ug/g dry	143	-	-	89			
Mercury	0.1 ug/g dry	<0.1	-	-	<0.1			
Molybdenum	1 ug/g dry	<1	-	-	<1			
Nickel	5 ug/g dry	6	-	-	6			
Potassium	200 ug/g dry	605	-	-	467			
Selenium	1 ug/g dry	<1	-	-	<1			
Silver	0.3 ug/g dry	<0.3	-	-	<0.3			
Sodium	50 ug/g dry	249	-	-	225			
Thallium	1 ug/g dry	<1	-	-	<1			
Tin	5 ug/g dry	<5	-	-	<5			
Vanadium	10 ug/g dry	15	-	-	<10			
Zinc	20 ug/g dry	<20	-	-	<20			
Volatiles								
Benzene	0.02 ug/g dry	-	-	<0.02	-			
Ethylbenzene	0.05 ug/g dry	-	-	<0.05	-			
Toluene	0.05 ug/g dry	-	-	<0.05	-			
m,p-Xylenes	0.05 ug/g dry	-	-	<0.05	-			
o-Xylene	0.05 ug/g dry	-	-	<0.05	-			
Xylenes, total	0.05 ug/g dry	-	-	<0.05	-			
Toluene-d8	Surrogate	-	-	105%	-			

P: 1-800-749-1947 E: paracel@paracellabs.com

WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3 SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 3 of 18

Client: Geofirma Engineering Ltd.

Order #: 1239131

Report Date: 16-Nov-2012 Order Date:25-Sep-2012

Client PO: 45064625		Project Description: 11-200-11/ 191 Lees Ave							
	Client ID: Sample Date:	MW12-17 SA2 24-Sep-12	MW12-17 SA4 24-Sep-12	MW12-17 SA6 24-Sep-12	MW12-17 SA8 24-Sep-12				
	Sample ID: MDI /Unite	1239131-01 Soil	1239131-02 Soil	1239131-03 Soil	1239131-04 Soil				
Hydrocarbons	MDL/Onits		00						
F1 PHCs (C6-C10)	7 ug/g dry	-	-	<7	-				
Semi-Volatiles	1			1	1				
Acenaphthene	0.02 ug/g dry	<0.02	<0.02	-	-				
Acenaphthylene	0.02 ug/g dry	0.13	0.02	-	-				
Anthracene	0.02 ug/g dry	0.14	<0.02	-	-				
Benzo [a] anthracene	0.02 ug/g dry	0.16	0.03	-	-				
Benzo [a] pyrene	0.02 ug/g dry	0.12	<0.02	-	-				
Benzo [b] fluoranthene	0.02 ug/g dry	0.12	<0.02	-	-				
Benzo [g,h,i] perylene	0.02 ug/g dry	0.08	<0.02	-	-				
Benzo [k] fluoranthene	0.02 ug/g dry	0.08	<0.02	-	-				
Biphenyl	0.02 ug/g dry	<0.02	<0.02	-	-				
Chrysene	0.02 ug/g dry	0.17	0.03	-	-				
Dibenzo [a,h] anthracene	0.02 ug/g dry	0.02	<0.02	-	-				
Fluoranthene	0.02 ug/g dry	0.22	0.02	-	-				
Fluorene	0.02 ug/g dry	0.04	<0.02	-	-				
Indeno [1,2,3-cd] pyrene	0.02 ug/g dry	0.07	<0.02	-	-				
1-Methylnaphthalene	0.02 ug/g dry	<0.02	<0.02	-	-				
2-Methylnaphthalene	0.02 ug/g dry	<0.02	<0.02	-	-				
Methylnaphthalene (1&2)	0.04 ug/g dry	<0.04	<0.04	-	-				
Naphthalene	0.01 ug/g dry	0.03	<0.01	-	-				
Phenanthrene	0.02 ug/g dry	0.14	<0.02	-	-				
Pyrene	0.02 ug/g dry	0.41	0.04	-	-				
2-Fluorobiphenyl	Surrogate	103%	92.5%	-	-				
Terphenyl-d14	Surrogate	98.5%	103%	-	-				

P: 1-800-749-1947 E: paracel@paracellabs.com WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3

SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 4 of 18

Client: Geofirma Engineering Ltd.

Order #: 1239131

Report Date: 16-Nov-2012 Order Date: 25-Sep-2012

Client PO: 45064625		Project Description: 11-200-11/ 191 Lees Ave						
	Client ID: Sample Date: Sample ID: MDI /Units	MW12-17 SA9 24-Sep-12 1239131-05 Soil	MW12-17 SA10 24-Sep-12 1239131-06 Soil	MW12-17 SA11 24-Sep-12 1239131-07 Soil	MW12-19 SA4 24-Sep-12 1239131-08 Soil			
Physical Characteristics								
% Solids	0.1 % by Wt.	91.3	91.2	91.3	94.3			
Metals				1	-			
Antimony	1 ug/g dry	<1	-	-	<1			
Arsenic	1 ug/g dry	<1	-	-	<1			
Barium	1 ug/g dry	110	-	-	16			
Beryllium	0.5 ug/g dry	<0.5	-	-	<0.5			
Cadmium	0.5 ug/g dry	<0.5	-	-	<0.5			
Calcium	200 ug/g dry	14200	-	-	14300			
Chromium	5 ug/g dry	17	-	-	<5			
Cobalt	1 ug/g dry	6	-	-	3			
Copper	5 ug/g dry	14	-	-	7			
Iron	200 ug/g dry	12200	-	-	7600			
Lead	1 ug/g dry	3	-	-	1			
Magnesium	200 ug/g dry	6050	-	-	2810			
Manganese	5 ug/g dry	256	-	-	80			
Mercury	0.1 ug/g dry	<0.1	-	-	<0.1			
Molybdenum	1 ug/g dry	<1	-	-	<1			
Nickel	5 ug/g dry	12	-	-	5			
Potassium	200 ug/g dry	2040	-	-	416			
Selenium	1 ug/g dry	<1	-	-	<1			
Silver	0.3 ug/g dry	<0.3	-	-	<0.3			
Sodium	50 ug/g dry	393	-	-	221			
Thallium	1 ug/g dry	<1	-	-	<1			
Tin	5 ug/g dry	<5	-	-	<5			
Vanadium	10 ug/g dry	26	-	-	10			
Zinc	20 ug/g dry	25	-	-	<20			
Volatiles								
Benzene	0.02 ug/g dry	-	<0.02	<0.02	-			
Ethylbenzene	0.05 ug/g dry	-	<0.05	<0.05	-			
Toluene	0.05 ug/g dry	-	<0.05	<0.05	-			
m,p-Xylenes	0.05 ug/g dry	-	<0.05	<0.05	-			
o-Xylene	0.05 ug/g dry	-	<0.05	<0.05	-			
Xylenes, total	0.05 ug/g dry	-	<0.05	<0.05	-			

P: 1-800-749-1947 E: paracel@paracellabs.com

WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3 SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 5 of 18

Client: Geofirma Engineering Ltd.

Order #: 1239131

Report Date: 16-Nov-2012 Order Date: 25-Sep-2012

Client PO: 45064625		Project Description: 11-200-11/ 191 Lees Ave						
	Client ID: Sample Date: Sample ID:	MW12-17 SA9 24-Sep-12 1239131-05 Soil	MW12-17 SA10 24-Sep-12 1239131-06 Soil	MW12-17 SA11 24-Sep-12 1239131-07 Soil	MW12-19 SA4 24-Sep-12 1239131-08 Soil			
Toluono-d8	Surrogate	0011	106%	105%	001			
Hydrocarbons	Guilogato	-	100 /8	10378	_			
F1 PHCs (C6-C10)	7 ug/g dry	-	-7	-7				
Semi-Volatiles	00 9							
Acenaphthene	0.02 ug/g dry	<0.02	-	-	<0.02			
Acenaphthylene	0.02 ug/g dry	<0.02	-	-	<0.02			
Anthracene	0.02 ug/g dry	<0.02	-	-	<0.02			
Benzo [a] anthracene	0.02 ug/g dry	<0.02	-	-	<0.02			
Benzo [a] pyrene	0.02 ug/g dry	<0.02	-	-	<0.02			
Benzo [b] fluoranthene	0.02 ug/g dry	<0.02	-	-	<0.02			
Benzo [g,h,i] perylene	0.02 ug/g dry	<0.02	-	-	<0.02			
Benzo [k] fluoranthene	0.02 ug/g dry	<0.02	-	-	<0.02			
Biphenyl	0.02 ug/g dry	<0.02	-	-	<0.02			
Chrysene	0.02 ug/g dry	<0.02	-	-	<0.02			
Dibenzo [a,h] anthracene	0.02 ug/g dry	<0.02	-	-	<0.02			
Fluoranthene	0.02 ug/g dry	<0.02	-	-	<0.02			
Fluorene	0.02 ug/g dry	<0.02	-	-	<0.02			
Indeno [1,2,3-cd] pyrene	0.02 ug/g dry	<0.02	-	-	<0.02			
1-Methylnaphthalene	0.02 ug/g dry	<0.02	-	-	0.03			
2-Methylnaphthalene	0.02 ug/g dry	<0.02	-	-	0.03			
Methylnaphthalene (1&2)	0.04 ug/g dry	<0.04	-	-	0.05			
Naphthalene	0.01 ug/g dry	<0.01	-	-	0.50			
Phenanthrene	0.02 ug/g dry	<0.02	-	-	<0.02			
Pyrene	0.02 ug/g dry	<0.02	-	-	<0.02			
2-Fluorobiphenyl	Surrogate	97.5%	-	-	70.2%			
Terphenyl-d14	Surrogate	105%	-	-	75.9%			

P: 1-800-749-1947 E: paracel@paracellabs.com www.paracellabs.com OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3 SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 6 of 18

Client: Geofirma Engineering Ltd.

Order #: 1239131

Report Date: 16-Nov-2012 Order Date: 25-Sep-2012

Client PO: 45064625		Project Description	: 11-200-11/ 191 Lees	s Ave	
	Client ID:	MW12-19 SA1	MW12-19 SA8	MW12-19 SA5	MW12-19 SA3
	Sample Date:	24-Sep-12	24-Sep-12	24-Sep-12	24-Sep-12
	Sample ID:	1239131-09	1239131-10	1239131-11	1239131-12
Physical Characteristics	MDL/Units	5011	5011	5011	5011
	0.1 % by Wt	02.7	95 /	04.7	04.4
Metals	0.1 /0 09 111	93.7	05.4	94.7	94.4
Antimony	1 ug/g dry	<1	_	<1	-
Arsenic	1 ug/g dry	<1	-	<1	-
Barium	1 ug/g dry	49	-	26	-
Beryllium	0.5 ug/g dry	<0.5	-	<0.5	-
Cadmium	0.5 ug/g dry	<0.5	-	<0.5	-
Calcium	200 ug/g dry	16800	-	12000	-
Chromium	5 ug/g dry	16	-	7	-
Cobalt	1 ug/g dry	5	-	4	-
Copper	5 ug/g dry	11	-	9	-
Iron	200 ug/g dry	9300	-	6850	-
Lead	1 ug/g dry	14	-	2	-
Magnesium	200 ug/g dry	3320	-	2810	-
Manganese	5 ug/g dry	201	-	151	-
Mercury	0.1 ug/g dry	<0.1	-	<0.1	-
Molybdenum	1 ug/g dry	<1	-	<1	-
Nickel	5 ug/g dry	10	-	7	-
Potassium	200 ug/g dry	1030	-	632	-
Selenium	1 ug/g dry	<1	-	<1	-
Silver	0.3 ug/g dry	<0.3	-	<0.3	-
Sodium	50 ug/g dry	200	-	205	-
Thallium	1 ug/g dry	<1	-	<1	-
Tin	5 ug/g dry	<5	-	<5	-
Vanadium	10 ug/g dry	19	-	13	-
Zinc	20 ug/g dry	33	-	<20	-
Volatiles				1	
Benzene	0.02 ug/g dry	-	-	0.35	<0.02
Ethylbenzene	0.05 ug/g dry	-	-	<0.05	<0.05
Toluene	0.05 ug/g dry	-	-	0.18	<0.05
m,p-Xylenes	0.05 ug/g dry	-	-	0.05	<0.05
o-Xylene	0.05 ug/g dry	-	-	<0.05	<0.05
Xylenes, total	0.05 ug/g dry	-	-	0.08	< 0.05

P: 1-800-749-1947 E: paracel@paracellabs.com

WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3 SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 7 of 18

Client: Geofirma Engineering Ltd.

Order #: 1239131

Report Date: 16-Nov-2012 Order Date: 25-Sep-2012

Client PO: 45064625		Project Description: 11-200-11/ 191 Lees Ave						
	Client ID: Sample Date: Sample ID: MDL/Units	MW12-19 SA1 24-Sep-12 1239131-09 Soil	MW12-19 SA8 24-Sep-12 1239131-10 Soil	MW12-19 SA5 24-Sep-12 1239131-11 Soil	MW12-19 SA3 24-Sep-12 1239131-12 Soil			
Toluene-d8	Surrogate	-	-	105%	106%			
Hydrocarbons								
F1 PHCs (C6-C10)	7 ug/g dry	-	-	<7	<7			
Semi-Volatiles								
Acenaphthene	0.02 ug/g dry	-	<0.02	<0.02	-			
Acenaphthylene	0.02 ug/g dry	-	<0.02	<0.02	-			
Anthracene	0.02 ug/g dry	-	<0.02	<0.02	-			
Benzo [a] anthracene	0.02 ug/g dry	-	<0.02	<0.02	-			
Benzo [a] pyrene	0.02 ug/g dry	-	<0.02	<0.02	-			
Benzo [b] fluoranthene	0.02 ug/g dry	-	<0.02	<0.02	-			
Benzo [g,h,i] perylene	0.02 ug/g dry	-	<0.02	<0.02	-			
Benzo [k] fluoranthene	0.02 ug/g dry	-	<0.02	<0.02	-			
Biphenyl	0.02 ug/g dry	-	<0.02	<0.02	-			
Chrysene	0.02 ug/g dry	-	<0.02	<0.02	-			
Dibenzo [a,h] anthracene	0.02 ug/g dry	-	<0.02	<0.02	-			
Fluoranthene	0.02 ug/g dry	-	<0.02	<0.02	-			
Fluorene	0.02 ug/g dry	-	<0.02	<0.02	-			
Indeno [1,2,3-cd] pyrene	0.02 ug/g dry	-	<0.02	<0.02	-			
1-Methylnaphthalene	0.02 ug/g dry	-	<0.02	<0.02	-			
2-Methylnaphthalene	0.02 ug/g dry	-	<0.02	<0.02	-			
Methylnaphthalene (1&2)	0.04 ug/g dry	-	<0.04	<0.04	-			
Naphthalene	0.01 ug/g dry	-	<0.01	0.07	-			
Phenanthrene	0.02 ug/g dry	-	<0.02	<0.02	-			
Pyrene	0.02 ug/g dry	-	<0.02	<0.02	-			
2-Fluorobiphenyl	Surrogate	-	81.9%	72.5%	-			
Terphenyl-d14	Surrogate	-	86.5%	82.9%	-			

P: 1-800-749-1947 E: paracel@paracellabs.com www.paracellabs.com OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3 SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 8 of 18

Client: Geofirma Engineering Ltd.

Order #: 1239131

Report Date: 16-Nov-2012 Order Date: 25-Sep-2012

Client PO: 45064625		Project Description: 11-200-11/ 191 Lees Ave						
	Client ID: Sample Date: Sample ID:	MW12-19 SA7 24-Sep-12 1239131-13	MW12-18 SA1 24-Sep-12 1239131-14	MW12-18 SA3 24-Sep-12 1239131-15	MW12-18 SA2 24-Sep-12 1239131-16			
	MDL/Units	Soil	Soil	Soil	Soil			
Physical Characteristics	0.1.0/ bu W4	00.0	00.0	70.4	00.0			
% Solids	0.1 % by Wt.	90.3	93.0	70.1	89.2			
Antimony	1 ua/a drv	_	<1	<1	<1			
Arsenic	1 µg/g dry	_	3	<1	1			
Barium	1 µg/g dry	-	67	385	80			
Bervillium	0.5 µg/g dry		<0.5	0.7	<0.5			
Cadmium	0.5 µg/g dry	_	<0.5	<0.5	<0.5			
Calcium	200 µg/g dry		48700	14800	18200			
Chromium	5 µg/g dry	_	11	42	13			
Cobalt	1 µg/g dry		5	12	5			
Copper	5 µg/g dry		25	12	8			
Iron	200 µg/g dry		12100	24800	11100			
load			08	5	5			
Magnocium	200 µg/g dry		90	9850	4180			
Magnesium	5 µg/g dry		299	3030	4100			
Marganese		-	0.1	-0.1	200			
Melubdenum		-	1	<0.1	<0.1			
Niekol	Fug/g dry	-	14	<1	<1			
Nickei	200 ug/g dry	-	14	20	11			
Polassium	200 ug/g dry	-	884	5250	899			
Selenium	i ug/g dry	-	<1	<1	<1			
Silver	0.3 ug/g dry	-	<0.3	<0.3	<0.3			
Sodium	50 ug/g dry	-	221	857	234			
Thallium	1 ug/g dry	-	<1	<1	<1			
Tin	5 ug/g dry	-	<5	<5	<5			
Vanadium	10 ug/g dry	-	22	51	22			
Zinc	20 ug/g dry	-	46	61	21			
	0.00 ug/g dru	0.17	0.00					
Benzene	0.02 ug/g dry	0.17	<0.02	-	-			
	0.05 ug/g dry	<0.05	<0.05	-	-			
Ioiuene		0.16	<0.05	-	-			
m,p-Xylenes	0.05 ug/g dry	0.08	<0.05	-	-			
o-Xylene	0.05 ug/g dry	<0.05	<0.05	-	-			
Xylenes, total	0.05 ug/g dry	0.12	< 0.05	-	-			

P: 1-800-749-1947 E: paracel@paracellabs.com

WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3 SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 9 of 18

Client: Geofirma Engineering Ltd.

Order #: 1239131

Report Date: 16-Nov-2012 Order Date: 25-Sep-2012

Client PO: 45064625		Project Description: 11-200-11/ 191 Lees Ave						
	Client ID: Sample Date: Sample ID: MDL/Units	MW12-19 SA7 24-Sep-12 1239131-13 Soil	MW12-18 SA1 24-Sep-12 1239131-14 Soil	MW12-18 SA3 24-Sep-12 1239131-15 Soil	MW12-18 SA2 24-Sep-12 1239131-16 Soil			
Toluene-d8	Surrogate	107%	107%	-	-			
Hydrocarbons								
F1 PHCs (C6-C10)	7 ug/g dry	<7	<7	-	-			
Semi-Volatiles								
Acenaphthene	0.02 ug/g dry	-	<1.00 [1]	<0.02	-			
Acenaphthylene	0.02 ug/g dry	-	3.81	<0.02	-			
Anthracene	0.02 ug/g dry	-	5.48	<0.02	-			
Benzo [a] anthracene	0.02 ug/g dry	-	8.62	<0.02	-			
Benzo [a] pyrene	0.02 ug/g dry	-	5.59	<0.02	-			
Benzo [b] fluoranthene	0.02 ug/g dry	-	11.7	<0.02	-			
Benzo [g,h,i] perylene	0.02 ug/g dry	-	4.68	<0.02	-			
Benzo [k] fluoranthene	0.02 ug/g dry	-	7.31	<0.02	-			
Biphenyl	0.02 ug/g dry	-	<1.00 [1]	<0.02	-			
Chrysene	0.02 ug/g dry	-	8.51	<0.02	-			
Dibenzo [a,h] anthracene	0.02 ug/g dry	-	1.66	<0.02	-			
Fluoranthene	0.02 ug/g dry	-	14.1	<0.02	-			
Fluorene	0.02 ug/g dry	-	1.17	<0.02	-			
Indeno [1,2,3-cd] pyrene	0.02 ug/g dry	-	4.43	<0.02	-			
1-Methylnaphthalene	0.02 ug/g dry	-	<1.00 [1]	<0.02	-			
2-Methylnaphthalene	0.02 ug/g dry	-	<1.00 [1]	<0.02	-			
Methylnaphthalene (1&2)	0.04 ug/g dry	-	<2.00 [1]	<0.04	-			
Naphthalene	0.01 ug/g dry	-	0.76	<0.01	-			
Phenanthrene	0.02 ug/g dry	-	4.71	<0.02	-			
Pyrene	0.02 ug/g dry	-	14.4	<0.02	-			
2-Fluorobiphenyl	Surrogate	-	61.8%	68.9%	-			
Terphenyl-d14	Surrogate	-	73.4%	69.7%	-			

P: 1-800-749-1947 E: paracel@paracellabs.com WWW.PARACELLABS.COM OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3 SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 10 of 18

Client: Geofirma Engineering Ltd.

Order #: 1239131

Report Date: 16-Nov-2012 Order Date: 25-Sep-2012

Client PO: 45064625		Project Description: 11-200-11/ 191 Lees Ave					
	Client ID: Sample Date: Sample ID:	MW12-18 SA7 24-Sep-12 1239131-17	MW12-18 SA4 24-Sep-12 1239131-18	MW12-18 SA10 24-Sep-12 1239131-19	- - -		
	MDL/Units	Soil	Soil	Soil	-		
Physical Characteristics					1		
% Solids	0.1 % by Wt.	92.5	78.5	90.6	-		
Volatiles			1	1	1		
Benzene	0.02 ug/g dry	-	<0.02	<0.02	-		
Ethylbenzene	0.05 ug/g dry	-	<0.05	<0.05	-		
Toluene	0.05 ug/g dry	-	<0.05	<0.05	-		
m,p-Xylenes	0.05 ug/g dry	-	<0.05	<0.05	-		
o-Xylene	0.05 ug/g dry	-	<0.05	<0.05	-		
Xylenes, total	0.05 ug/g dry	-	<0.05	<0.05	-		
Toluene-d8	Surrogate	-	106%	106%	-		
Hydrocarbons							
F1 PHCs (C6-C10)	7 ug/g dry	-	<7	<7	-		
Semi-Volatiles	- I I		1	1	1		
Acenaphthene	0.02 ug/g dry	<0.02	-	-	-		
Acenaphthylene	0.02 ug/g dry	0.02	-	-	-		
Anthracene	0.02 ug/g dry	<0.02	-	-	-		
Benzo [a] anthracene	0.02 ug/g dry	0.03	-	-	-		
Benzo [a] pyrene	0.02 ug/g dry	<0.02	-	-	-		
Benzo [b] fluoranthene	0.02 ug/g dry	0.02	-	-	-		
Benzo [g,h,i] perylene	0.02 ug/g dry	<0.02	-	-	-		
Benzo [k] fluoranthene	0.02 ug/g dry	<0.02	-	-	-		
Biphenyl	0.02 ug/g dry	<0.02	-	-	-		
Chrysene	0.02 ug/g dry	0.03	-	-	-		
Dibenzo [a,h] anthracene	0.02 ug/g dry	<0.02	-	-	-		
Fluoranthene	0.02 ug/g dry	0.03	-	-	-		
Fluorene	0.02 ug/g dry	<0.02	-	-	-		
Indeno [1,2,3-cd] pyrene	0.02 ug/g dry	<0.02	-	-	-		
1-Methylnaphthalene	0.02 ug/g dry	<0.02	-	-	-		
2-Methylnaphthalene	0.02 ug/g dry	<0.02	-	-	-		
Methylnaphthalene (1&2)	0.04 ug/g dry	<0.04	-	-	-		
Naphthalene	0.01 ug/g dry	<0.01	-	-	-		
Phenanthrene	0.02 ug/g dry	<0.02	-	-	-		
Pyrene	0.02 ug/g dry	0.05	-	-	-		
2-Fluorobiphenyl	Surrogate	85.5%	-	-	-		

P: 1-800-749-1947 E: paracel@paracellabs.com

WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3 SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 11 of 18

Order #: 1239131

Certificate of Analysis

Report Date: 16-Nov-2012 Order Date:25-Sep-2012

Client: Geofirma Engineering Ltd.

Client PO: 45064625		Project Description: 11-200-11/ 191 Lees Ave					
	Client ID:	MW12-18 SA7	MW12-18 SA4	MW12-18 SA10	-		
	Sample Date:	24-Sep-12	24-Sep-12	24-Sep-12	-		
	Sample ID:	1239131-17	1239131-18	1239131-19	-		
	MDL/Units	Soil	Soil	Soil	-		
Terphenyl-d14	Surrogate	91.6%	-	-	-		

P: 1-800-749-1947 E: paracel@paracellabs.com WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8

NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3

SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 12 of 18

Client: Geofirma Engineering Ltd.

Client PO: 45064625

Method Quality Control: Blank

Order #: ⁻	1239131

Report Date: 16-Nov-2012 Order Date: 25-Sep-2012

Project Description: 11-200-11/ 191 Lees Ave

	Reporting			Source	%REC	EC RPD			
Analyte	Result	Ĺimit	Units	Result	%REC	Limit	RPD	Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	ND	7	ug/g						
Metals									
Antimony	ND	1	ug/g						
Arsenic	ND	1	ug/g						
Barium	ND	1	ug/g						
Beryllium	ND	0.5	ug/g						
Cadmium	ND	0.5	ug/g						
Calcium	ND	200	ug/g						
Chromium	ND	5	ug/g						
Cobalt	ND	I E	ug/g						
ling		200	ug/g						
Lead	ND	200	ug/g						
Magnesium	ND	200	ug/g ug/g						
Mercury	ND	0.1	ua/a						
Manganese	ND	5	ug/g						
Molybdenum	ND	1	ug/g						
Nickel	ND	5	ug/g						
Potassium	ND	200	ug/g						
Selenium	ND	1	ug/g						
Silver	ND	0.3	ug/g						
Sodium	ND	50	ug/g						
		I E	ug/g						
Vanadium		10	ug/g						
Zinc	ND	20	ug/g						
Somi Volotiloo	NB	20	ug/g						
Sellii-volatiles		0.00							
		0.02	ug/g						
Acenaphinyiene		0.02	ug/g						
Renzo [a] anthracene		0.02	ug/g						
Benzo [a] pyrene	ND	0.02	ug/g						
Benzo [b] fluoranthene	ND	0.02	ug/g						
Benzo [g,h,i] perylene	ND	0.02	ug/g						
Benzo [k] fluoranthene	ND	0.02	ug/g						
Biphenyl	ND	0.02	ug/g						
Chrysene	ND	0.02	ug/g						
Dibenzo [a,h] anthracene	ND	0.02	ug/g						
Fluoranthene	ND	0.02	ug/g						
Fluorene		0.02	ug/g						
1 Mothylpanhthalono		0.02	ug/g						
2-Methylnaphthalene		0.02	ug/g						
Methylnaphthalene (1&2)	ND	0.02	ug/g ua/a						
Naphthalene	ND	0.01	ua/a						
Phenanthrene	ND	0.02	ug/g						
Pyrene	ND	0.02	ug/g						
Surrogate: 2-Fluorobiphenyl	1.23		ug/g		92.6	50-140			
Surrogate: Terphenyl-d14	0.945		ug/g		70.9	50-140			
Volatiles									
Benzene	ND	0.02	ua/a						
Ethylbenzene	ND	0.05	ug/a						
Toluene	ND	0.05	ug/g						
m,p-Xylenes	ND	0.05	ug/g						
o-Xylene	ND	0.05	ug/g						

P: 1-800-749-1947 E: paracel@paracellabs.com

WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3 SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

St. N. 7T 5T7

Page 13 of 18

Client: Geofirma Engineering Ltd.

Client PO: 45064625

11 200 11/101 -+ -. .. •

Report Date: 16-Nov-2012

Order Date:25-Sep-2012

Order #: 1239131

Pro	oject Descriptio	n: 11-200-11/	191 Lees Ave

Method Quality Control: Blank												
Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes			
Xylenes, total Surrogate: Toluene-d8	ND 8.53	0.05	ug/g <i>ug/g</i>		107	50-140						

P: 1-800-749-1947 E: paracel@paracellabs.com WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3

NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 14 of 18

Client: Geofirma Engineering Ltd.

Client PO: 45064625

o-Xylene

Surrogate: Toluene-d8

Method Quality Control: Duplicate

Analvte	Besult	Reporting Limit	Linite	Source	%BEC	%REC	BPD	RPD Limit	Notes
	riooun		Onits	nesuit	/011LO	Linnit		Liiiii	Notes
Hvdrocarbons									
F1 PHCs (C6-C10)	ND	7	ug/g dry	ND				40	
Metals									
Antimony		1	ua/a dry				0.0	30	
Arsenic	13	1	ug/g dry	1.2			5.6	30	
Barium	181	1	ug/g dry	180			0.0	30	
Bervllium	0.54	0.5	ug/g dry	0.56			4.2	30	
Cadmium	ND	0.5	ug/g dry	ND			0.0	30	
Calcium	113000	200	ua/a dry	112000			1.2	30	
Chromium	11.9	5	ua/a drv	12.1			1.5	30	
Cobalt	4.4	1	ua/a drv	4.5			2.7	30	
Copper	10.1	5	ua/a drv	9.8			3.4	30	
Iron	9560	200	ua/a drv	9660			1.0	30	
Lead	4.0	1	ug/g dry	4.1			0.6	30	
Magnesium	11500	200	ug/g dry	11500			0.0	30	
Mercury	ND	0.1	ug/g dry	ND			0.0	35	
Manganese	285	5	ug/g dry	285			0.1	30	
Molybdenum	1.5	1	ug/g dry	ND			0.0	30	
Nickel	11.3	5	ug/g dry	11.0			2.5	30	
Potassium	1400	200	ug/g dry	1570			11.1	30	
Selenium	ND	1	ug/g dry	ND			0.0	30	
Silver	ND	0.3	ug/g dry	ND			0.0	30	
Sodium	516	50	ug/g dry	519			0.5	30	
Thallium	ND	1	ug/g dry	ND			0.0	30	
Tin	ND	5	ug/g dry	ND			0.0	30	
Vanadium	18.7	10	ug/g dry	18.8			0.7	30	
Zinc	ND	20	ug/g dry	20.4			0.0	30	
Physical Characteristics									
% Solids	79.4	0.1	% by Wt.	80.9			1.9	25	
Volatiles									
Benzene	ND	0.02	ua/a drv	ND				50	
Ethylbenzene	ND	0.05	ug/g drv	0.058			0.0	50	
Toluene	ND	0.05	ug/g drv	0.055			0.0	50	
m,p-Xylenes	ND	0.05	ug/g dry	ND				50	

ug/g dry

ug/g dry

ND

ND

106

50-140

Project Description: 11-200-11/ 191 Lees Ave

P: 1-800-749-1947 E: paracel@paracellabs.com

ND

4.88

0.05

E: PARACEL@PARACELLABS.COM Ottawa, C WWW.PARACELLABS.COM MISSI: 6645 Kitic

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

 MISSISSAUGA
 SARNIA

 6645 Kitimat Rd. Unit #27
 123 Christina St. N.

 Mississauga, ON L5N 6J3
 Sarnia, ON N7T 577

Order #: 1239131

Report Date: 16-Nov-2012 Order Date:25-Sep-2012

50

Client: Geofirma Engineering Ltd.

Client PO: 45064625

Hvdrocarbons F1 PHCs (C6-C10)

Analyte

Metals Antimony

Arsenic

Barium

Beryllium

Cadmium

Biphenyl

Chrysene

Fluorene

Fluoranthene

Benzo [k] fluoranthene

Dibenzo [a,h] anthracene

Indeno [1,2,3-cd] pyrene

1-Methylnaphthalene

2-Methylnaphthalene

Method Quality Control: Spike

Ore	der #:	12391	31

%REC

Limit

80-120

70-130

70-130

70-130

70-130

70-130

Report Date: 16-Nov-2012 Order Date:25-Sep-2012

Notes

RPD

Limit

RPD

Project Description: 11-200-11/ 191 Lees Ave

Units

ug/g

ug/L

ug/L

ug/L

ug/L

ug/L

Source

Result

ND

0.01

0.5

72.1

0.22

ND

%REC

91.5

94.5

85.6

91.4

107

86.0

QS-02

QS-02

Calcium	869		ug/L	ND	86.9	70-130	
Chromium	50.1		ug/L	4.8	90.5	70-130	
Cobalt	47.8		ug/L	1.8	92.0	70-130	
Copper	49.5		ug/L	3.9	91.2	70-130	
Iron	4480		ug/L	3860	61.7	70-130	
Lead	48.0		ug/L	1.6	92.7	70-130	
Magnesium	5370		ug/L	4590	77.2	70-130	
Mercury	1.26	0.1	ug/g	ND	84.0	72-128	
Manganese	47.7		ug/L	ND	95.3	70-130	
Molybdenum	43.1		ug/L	0.1	85.9	70-130	
Nickel	50.2		ug/L	4.4	91.5	70-130	
Potassium	1450		ug/L	626	81.9	70-130	
Selenium	43.5		ug/L	0.1	86.7	70-130	
Silver	33.7		ug/L	0.02	67.3	70-130	
Sodium	1030		ug/L	208	82.7	70-130	
Thallium	58.6		ug/L	ND	117	70-130	
Tin	46.0		ug/L	0.2	91.8	70-130	
Vanadium	53.0		ug/L	7.5	90.9	70-130	
Zinc	48.1		ug/L	8.1	79.8	70-130	
Semi-Volatiles							
Acenaphthene	0.134	0.02	ug/g	ND	70.2	50-140	
Acenaphthylene	0.139	0.02	ug/g	ND	72.8	50-140	
Anthracene	0.125	0.02	ug/g	ND	65.3	50-140	
Benzo [a] anthracene	0.122	0.02	ug/g	ND	63.6	50-140	
Benzo [a] pyrene	0.107	0.02	ug/g	ND	56.2	50-140	
Benzo [b] fluoranthene	0.109	0.02	ug/g	ND	56.9	50-140	
Benzo [g,h,i] perylene	0.118	0.02	ug/g	ND	61.9	50-140	

Reporting

. Limit

7

Result

183

47.3

43.3

118

53.9

43.0

Pyrene Surrogate: 2-Fluorobiphenyl

Volatiles

Naphthalene

Phenanthrene

P: 1-800-749-1947 E : PARACEL@PARACELLABS.COM

WWW.PARACELLABS.COM

0.115

0.166

0.137

0.120

0.111

0.173

0.142

0.112

0.123

0.122

0.141

0.133

1.04

0.02

0.02

0.02

0.02

0.02

0.02

0.02

0.02

0.02

0.01

0.02

0.02

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8

ug/g

ND

60.4

86.8

71.5

62.7

58.2

90.5

74.3

58.5

64.2

63.7

73.7

69.8

68.1

50-140

50-140

50-140

50-140

50-140

50-140

50-140

50-140 50-140

50-140

50-140

50-140

50-140

NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3 SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 16 of 18

Client: Geofirma Engineering Ltd.

Client PO: 45064625

Toluene

o-Xylene

m,p-Xylenes

Project Description: 11-200-11/ 191 Lees Ave

ug/g

ug/g

ug/g

ND

ND

ND

69.9

91.6

105

	Report Date: 16-Nov-2012
	Order Date:25-Sep-2012
is at Descriptions 11, 200, 11/101 Lass Aug	

50-140

50-140

50-140

Method Quality Control: Spike Reporting Source %REC Result Units %REC Analyte . Limit Result Limit Benzene 0.918 ND 50-140 0.02 97.1 ug/g Ethylbenzene 2.14 0.05 ug/g ND 95.2 50-140

0.05

0.05

0.05

7.65

6.24

2.87

P: 1-800-749-1947 E: paracel@paracellabs.com WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

123 Christina St. N. Sarnia, ON N7T 5T7

Page 17 of 18

RPD

Limit

Notes

RPD

SARNIA

Client: Geofirma Engineering Ltd.

Report Date: 16-Nov-2012 Order Date: 25-Sep-2012

Qualifier Notes:

Client PO: 45064625

Sample Qualifiers :

1: Elevated detection limit because of dilution required due to high target analyte concentration.

QC Qualifiers :

QS-02 : Spike level outside of control limits. Analysis batch accepted based on other QC included in the batch.

Sample Data Revisions

None

Work Order Revisions / Comments:

Revision 1 - this report includes revised client Sample ID's.

Other Report Notes:

n/a: not applicable ND: Not Detected MDL: Method Detection Limit Source Result: Data used as source for matrix and duplicate samples %REC: Percent recovery. RPD: Relative percent difference.

Soil results are reported on a dry weight basis when the units are denoted with 'dry'. Where %Solids is reported, moisture loss includes the loss of volatile hydrocarbons.

CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.

- F1 range corrected for BTEX.

- F2 to F3 ranges corrected for appropriate PAHs where available.

- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.

- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.

P: 1-800-749-1947 E: paracel@paracellabs.com WWW.PARACELLABS.COM OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3

SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 18 of 18

GPARACEL	ED. NSIV	Head Office 300-2319 St. Ottawa, Onta p: 1-800-749- c: paracel@n			e St. La ntario 49-19 @para	urent Blv K1G 4Jl 47 acellabs.o	Chain of Custody (Lab Use Only) N? 94616											
OTTAWA KINGSTON								s.com			Page	of	A					
Client Name: Gubticon Q			ŝ.	Project Reference	11-ZOO	-11		1		1		1		TAT: Vi Regular [13 Day				
Contact Name: Sean Stecling		Quote #	ty of a	tto	W	a	1			1	IAI. Regular [15 Day							
Address: 1 Raymond St Suite 200				PO #	1										2 Day	- 1	1 Day	
Otawa ON				Email Address:	lang c	poh	MG	.(6						Date Re	quired:			+
Telephone: 613-232-2525				5511	er mye g	1-11		1										
Criteria: O. Reg. 153/04 Table O. Reg. 153/11 (Current) T	able	RSC	Filing	O. Reg. 558/00	PWQO] CCN	IE	SUI	B (St	orm)	[] SU	B (Sanitar	y) Muni	cipality:_			Other:	
Matrix Type: S (Soil/Sed.) GW (Ground Water) SW (Surface Water) SS	(Storm/S	anitary S	ewer) P	(Paint) A (Air) O (Other)			8	8/18			Requ	ired A	nalyses	equir	ed		
Paracel Order Number: 23913	X	/olume	Containers	Sample	Taken	F1-F4+BTEX			s by ICP/MS +		WS)	u'n size	K4F7	Sture	0			
Sample ID/Location Name	Matr	Air V	# of (Date	Time	PHCs	VOC	PAHs	Metal	Hg	CrVI B (H)	Gre	BTE	W				
1 MILIZ-19 SAD RAC 830	Soil	4	1	24-Sep-12		-	-	V	~	1					-1X	8507	nl-	P
2 MULT - 19 SAU / RAG 831			1	1				/				V			- 2x	850	mi-	
3 MILLIZ-19 SAL RAG 832			2										1	V	-128	5000	241	Vial
4 MULT-19 SA8 BAG 833			1						1	/					- 12	250	mL-	
5 MULT-19 SA9 RAG 834			1		9.40				V	/					-	1		
6 MW12-19 SAID RAG 235			2										\checkmark	V	- 1X	1200	nl t	i via
7 MW12-19 SALL RAG 83/	d.		2										~	\checkmark	-1x	2500	12+1	Via
8 MW12-21 544 BAG 837			1					X	X	1					- IX	250	mz	-
9 MUL 2-21 SAL BAG 838			1						X	/						V		
10 MW12-21 SA8 / RAG 839	V	in the second	1		3-			X				X			- 8/	\$ 8 50	mL	-
Comments: * Brain size analyses not soil May contain high conce	ntra	uirec tion	l; a	dd Hg to 1. moistur	samples e not rea	i b quin	ein ed o	g	an ext	ali ra	pa	d for ramete	r pe	tals; r Sear	Method	of Deliv	ery: IP	
Relinquished By (Print & Sign): Received by Driver/De			ver/Dep	Not: Received at Lab:				Perific	nified By:									
Million De see 121222	Date/Ti Temper	me: Z	5/0	9/12 Z:3.	O AM. Date/	Time	DP	15	90 °C	8	0	4.00	Date/I pH Ve	ime: 5	ept By:	26el	12 le	2:03

Chain of Custody (Env) - Rev 0.2 December 2011

6	PARACEL TRUSTED RESPONSI LABORATORIES LTD. RELIABLE				VE.			H 3 C p e	Head Office 300-2319 St. Laurent Blvd. Ottawa, Ontario K1G 4J8 p: 1-800-749-1947 e: paracel@paracellabs.com					Chain of Custody (Lab Use Only) Nº 94615							
OTTAW	′A ⊛ KINGSTON ⊛ NIAGARA ® MISSISSA	UGA	SAF	RNIA				W	www.paracellabs.com					Page Q of A							
Client Na Contact N	me: Geograma Engineering Name: a)			Project Reference: Quote #	11-2005	-11		_					1		TAT:),	Regu	ar	[]3]	Day	
Address:	Jean Dening				PO #		19		-							1	2 Day	I	[]1]	Day	
					Email Address:			,							1	Date Req	uired:				
Telephone: 613-232-2525					3ste	rlinge	2 9	20	ńr	M	4.1	07	η								-
Criteria	I: [] O. Reg. 153/04 Table [] O. Reg. 153/11 (Current) T	fable	[RSC	Filing	O. Reg. 558/00	PWQO] CCN	IE (SU	B (St	orm)	\$1	JB (Sani	tary)	Munici	pality:			[]0	her:	
Matrix T	ype: S (Soil/Sed.) GW (Ground Water) SW (Surface Water) SS	(Storm/S	anitary S	ewer) P ((Paint) A (Air) O (O	(ther)							Rec	uire	d Ana	alyses	>nc	t rea	quir	ed	
Parace	l Order Number:		e	iners	Germalia	Takan	+BTEX			SM/dS			Į	-++	SUR	ize					
	239131	trix	Volum	f Conta	Sample	Такси	Cs F1-F4	Cs	Hs	tals by IC		1/	HWS)	XU- A	nsist	Anains					
	Sample ID/Location Name	Ma	Air	0 #	Date	Time	Hd	VO	PA	Me	Hg	C		1	5	0	NV	91-10	014	E 111	io l
1	MW12-21 5A5 BAG 840	5011		2	24-5EP-12		_	_	X	X	1	+		-			-14	apur	A	11	int .
2	MW12-21 5A3 BAG 841			2	1		-	-		-		-	7		X		-18	20	1/IL	+ 11	191 -
3	MW12-21 SA7 BAG 842			2			-	-		_		+	<u> </u>		X		11	0000	V .	+ 211	inl
4	MW12-20 SAI BAG 843			2			-	_	X	X	<u> </u>	-					1 1 X	200	111-	FIV	1911 -
5	MW 12-20 SA 3 BAG 844						_	-	X	X	/	_	_	_	_		1X	250	m	L ·	
6	MW12-20 5A 2 BAG845			1		-	_	-	_	X	/	_	_	-			-	+	+		
7	MW12-26 SA5			1			_						_	-		X	-	\downarrow	-		
8	MW12-20 SA7, BAG846			١			_	-	X			_	_	-	(11	19/1	mD	1 1	rial.
9	MW12-20 SAY BAG 847			2			_							X	X		+1X	1000		τ	1101
10	MW12-20 SA10BAG848	V		2	V								\rangle	<	X		Meth	vd of D	eliver	<i>.</i>	
Comm	ents: Soil many contain high c	SNC+	entr	ati	ons												Pic	K	UP		
Relinqui	shed By (Print & Sign): Elanic Brooks	Receive	ed by Dri	iver/Dep	Stouse	Rece	ived at	Lab:	N				710	1	/erified	IBy:			11	1	<u></u>
Date/Tin	Mik J	Date/Ti Temper	ime: Z.	5/09	9/17 730 C	PM. Date Tem	/Time: peratur	e:	19.4	y t	010		04,(10 II P	Date/Ti oH Ver	me: ified]	By:	26		k k	2101

Chain of Custody (Env) - Rev 0.2 December 2011

RELIABLE.

Head Office 300-2319 St. Laurent Blvd. Ottawa, Ontario K1G 4J8 p: 1-800-749-1947 e: paracel@paracellabs.com

www.paracellabs.com

OTTAWA 🔹 KINGSTON 🔹 NIAGARA 🔹 MISSISSAUGA 🔹 SARNIA

Certificate of Analysis

Geofirma Engineering Ltd.

Suite 200, 1 Raymond St. Ottawa, ON K1R 1A2 Attn: Sean Sterling

Phone: (613) 232-2525 Fax: (613) 232-7149

Client PO: 45064625	Report Date: 9-Oct-2012
Project: 11-200-11/ 191 Lees Ave	Order Date: 27-Sep-2012
Custody: 94614/3	Order #: 1239202

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID	Client ID
1239202-01	MW12-15 SA2
1239202-02	MW12-15 SA3
1239202-03	MW12-15 SA4
1239202-04	MW12-15 SA5
1239202-05	MW12-15 SA6
1239202-06	MW12-15 SA8
1239202-07	MW12-15 SA9
1239202-08	MW12-15 SA11
1239202-09	MW12-DUP1
1239202-10	MW12-14 SA1
1239202-11	MW12-14 SA2
1239202-12	MW12-14 SA4
1239202-13	MW12-14 SA6
1239202-14	MW12-14 SA8
1239202-15	MW12-14 SA9
1239202-16	MW12-14 SA11
1239202-17	MW12-13 SA3
1239202-18	MW12-13 SA4

Approved By:

Mark Foto

Mark Foto, M.Sc. For Dale Robertson, BSc Laboratory Director

Any use of these results implies your agreement that our total liability in connection with this work, however arising shall be limited to the amount paid by you for this work, and that our employees or agents shall not under circumstances be liable to you in connection with this work

Client: Geofirma Engineering Ltd. Client PO: 45064625

Project Description: 11-200-11/ 191 Lees Ave

Order #: 1239202

Report Date: 09-Oct-2012 Order Date:27-Sep-2012

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date	Analysis Date
BTEX	EPA 8260 - P&T GC-MS	28-Sep-12	3-Oct-12
CCME PHC F1	CWS Tier 1 - P&T GC-FID	28-Sep-12	3-Oct-12
Mercury	EPA 7471A - CVAA, digestion	28-Sep-12	28-Sep-12
Metals	EPA 6020 - Digestion - ICP-MS	28-Sep-12	29-Sep-12
PAHs by GC-MS, standard scan	EPA 8270 - GC-MS, extraction	27-Sep-12	2-Oct-12
Solids, %	Gravimetric, calculation	28-Sep-12	28-Sep-12

P: 1-800-749-1947 E: paracel@paracellabs.com WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3

NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 2 of 19

Order #: 1239202

Client: Geofirma Engineering Ltd.

nt PO· 15061675

Report Date: 09-Oct-2012 Order Date:27-Sep-2012

Client PO: 45064625		Project Description: 11-200-11/ 191 Lees Ave									
	Client ID: Sample Date: Sample ID:	MW12-15 SA2 25-Sep-12 1239202-01 Soil	MW12-15 SA3 25-Sep-12 1239202-02 Soil	MW12-15 SA4 25-Sep-12 1239202-03 Soil	MW12-15 SA5 25-Sep-12 1239202-04 Soil						
Physical Characteristics	MDL/Units	001	001	001	001						
% Solids	0.1 % by Wt.	78.4	95.7	95.6	96.3						
Metals		_									
Antimony	1 ug/g dry	-	<1	-	-						
Arsenic	1 ug/g dry	-	<1	-	-						
Barium	1 ug/g dry	-	11	-	-						
Beryllium	0.5 ug/g dry	-	<0.5	-	-						
Cadmium	0.5 ug/g dry	-	<0.5	-	-						
Calcium	200 ug/g dry	-	11800	-	-						
Chromium	5 ug/g dry	-	6	-	-						
Cobalt	1 ug/g dry	-	3	-	-						
Copper	5 ug/g dry	-	5	-	-						
Iron	200 ug/g dry	-	6430	-	-						
Lead	1 ug/g dry	-	2	-	-						
Magnesium	200 ug/g dry	-	3610	-	-						
Manganese	5 ug/g dry	-	80	-	-						
Mercury	0.1 ug/g dry	-	0.7	-	-						
Molybdenum	1 ug/g dry	-	<1	-	-						
Nickel	5 ug/g dry	-	6	-	-						
Potassium	200 ug/g dry	-	629	-	-						
Selenium	1 ug/g dry	-	1	-	-						
Silver	0.3 ug/g dry	-	<0.3	-	-						
Sodium	50 ug/g dry	-	229	-	-						
Thallium	1 ug/g dry	-	<1	-	-						
Tin	5 ug/g dry	-	<5	-	-						
Vanadium	10 ug/g dry	-	12	-	-						
Zinc	20 ug/g dry	-	<20	-	-						
Volatiles											
Benzene	0.02 ug/g dry	-	-	<0.02	-						
Ethylbenzene	0.05 ug/g dry	-	-	<0.05	-						
Toluene	0.05 ug/g dry	-	-	<0.05	-						
m,p-Xylenes	0.05 ug/g dry	-	-	<0.05	-						
o-Xylene	0.05 ug/g dry	-	-	<0.05	-						
Xylenes, total Toluene-d8	0.05 ug/g dry Surrogate		-	<0.05	-						

P: 1-800-749-1947 E: paracel@paracellabs.com

WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3

SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 3 of 19

Order #: 1239202

Client: Geofirma Engineering Ltd.

Report Date: 09-Oct-2012 Order Date:27-Sep-2012

Client PO: 45064625		Project Description	: 11-200-11/ 191 Lees	s Ave	
	Client ID: Sample Date: Sample ID:	MW12-15 SA2 25-Sep-12 1239202-01 Soil	MW12-15 SA3 25-Sep-12 1239202-02 Soil	MW12-15 SA4 25-Sep-12 1239202-03 Soil	MW12-15 SA5 25-Sep-12 1239202-04 Soil
Hvdrocarbons	MDL/Onits	001	001	001	001
F1 PHCs (C6-C10)	7 ug/g dry	_	-	<7	_
Semi-Volatiles	I				
Acenaphthene	0.02 ug/g dry	0.66	-	-	<1.00 [1]
Acenaphthylene	0.02 ug/g dry	18.4	-	-	17.7
Anthracene	0.02 ug/g dry	5.21	-	-	19.1
Benzo [a] anthracene	0.02 ug/g dry	17.6	-	-	30.4
Benzo [a] pyrene	0.02 ug/g dry	22.2	-	-	27.6
Benzo [b] fluoranthene	0.02 ug/g dry	25.1	-	-	32.1
Benzo [g,h,i] perylene	0.02 ug/g dry	12.3	-	-	14.1
Benzo [k] fluoranthene	0.02 ug/g dry	16.8	-	-	19.8
Biphenyl	0.02 ug/g dry	<0.40 [1]	-	-	<1.00 [1]
Chrysene	0.02 ug/g dry	15.8	-	-	26.5
Dibenzo [a,h] anthracene	0.02 ug/g dry	4.00	-	-	4.97
Fluoranthene	0.02 ug/g dry	44.6	-	-	81.9
Fluorene	0.02 ug/g dry	0.73	-	-	3.07
Indeno [1,2,3-cd] pyrene	0.02 ug/g dry	12.7	-	-	14.2
1-Methylnaphthalene	0.02 ug/g dry	0.42	-	-	<1.00 [1]
2-Methylnaphthalene	0.02 ug/g dry	0.53	-	-	<1.00 [1]
Methylnaphthalene (1&2)	0.04 ug/g dry	0.95	-	-	<2.00 [1]
Naphthalene	0.01 ug/g dry	1.76	-	-	1.95
Phenanthrene	0.02 ug/g dry	0.88	-	-	11.7
Pyrene	0.02 ug/g dry	42.4	-	-	76.6
2-Fluorobiphenyl	Surrogate	65.4%	-		64.3%
Terphenyl-d14	Surrogate	71.2%	-	-	84.1%

P: 1-800-749-1947 E: paracel@paracellabs.com WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3

SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 4 of 19

Client: Geofirma Engineering Ltd.

Clie nt PO· 15061675

Order #: 1239202

Report Date: 09-Oct-2012 Order Date:27-Sep-2012

Client PO: 45064625		Project Description: 11-200-11/ 191 Lees Ave					
	Client ID: Sample Date: Sample ID:	MW12-15 SA6 25-Sep-12 1239202-05	MW12-15 SA8 25-Sep-12 1239202-06	MW12-15 SA9 25-Sep-12 1239202-07	MW12-15 SA11 25-Sep-12 1239202-08		
	MDL/Units	Soil	Soil	Soil	Soil		
Physical Characteristics	0.1.0/ by W/t						
% Solids	0.1 % Dy Wt.	95.7	93.0	87.5	95.8		
Antimony	1 ua/a drv		~1	_	-1		
Arconio	1 µa/a dry	-	<1	-	<1		
Arsenic	1 µg/g dry	-	20	-	<u>۲</u>		
Danulium	0.5 µg/g dry	-	20	-	15		
Cedmium		-	<0.5	-	<0.5		
	200 ug/g dry	-	<0.5	-	<0.5		
	5 ug/g dry	-	16600	-	23300		
Chromium	3 ug/g dry	-	9	-	10		
Cobalt	Fug/g dry	-	3	-	4		
Copper	5 ug/g dry	-	1	-	8		
Iron	200 ug/g ury	-	6160	-	7390		
Lead	Tug/g ary	-	29	-	3		
Magnesium	200 ug/g dry	-	4190	-	5140		
Manganese	5 ug/g dry	-	90	-	121		
Mercury	0.1 ug/g dry	-	<0.1	-	0.3		
Molybdenum	1 ug/g dry	-	<1	-	<1		
Nickel	5 ug/g dry	-	7	-	10		
Potassium	200 ug/g dry	-	655	-	835		
Selenium	1 ug/g dry	-	<1	-	<1		
Silver	0.3 ug/g dry	-	<0.3	-	<0.3		
Sodium	50 ug/g dry	-	276	-	281		
Thallium	1 ug/g dry	-	<1	-	<1		
Tin	5 ug/g dry	-	<5	-	<5		
Vanadium	10 ug/g dry	-	11	-	<10		
Zinc	20 ug/g dry	-	<20	-	<20		
Volatiles					-		
Benzene	0.02 ug/g dry	<0.02	-	<0.02	-		
Ethylbenzene	0.05 ug/g dry	<0.05	-	<0.05	-		
Toluene	0.05 ug/g dry	<0.05	-	<0.05	-		
m,p-Xylenes	0.05 ug/g dry	<0.05	-	<0.05	-		
o-Xylene	0.05 ug/g dry	<0.05	-	<0.05	-		
Xylenes, total	0.05 ug/g dry	<0.05	-	< 0.05	-		

P: 1-800-749-1947 E: paracel@paracellabs.com

WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3

SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 5 of 19

Client: Geofirma Engineering Ltd.

Order #: 1239202

Report Date: 09-Oct-2012 Order Date:27-Sep-2012

Client PO: 45064625	Project Description: 11-200-11/ 191 Lees Ave					
	Client ID: Sample Date: Sample ID: MDL/Units	MW12-15 SA6 25-Sep-12 1239202-05 Soil	MW12-15 SA8 25-Sep-12 1239202-06 Soil	MW12-15 SA9 25-Sep-12 1239202-07 Soil	MW12-15 SA11 25-Sep-12 1239202-08 Soil	
Toluene-d8	Surrogate	106%	-	105%	-	
Hydrocarbons						
F1 PHCs (C6-C10)	7 ug/g dry	<7	-	<7	-	
Semi-Volatiles						
Acenaphthene	0.02 ug/g dry	-	-	-	<1.00 [1]	
Acenaphthylene	0.02 ug/g dry	-	-	-	15.9	
Anthracene	0.02 ug/g dry	-	-	-	9.40	
Benzo [a] anthracene	0.02 ug/g dry	-	-	-	23.9	
Benzo [a] pyrene	0.02 ug/g dry	-	-	-	22.9	
Benzo [b] fluoranthene	0.02 ug/g dry	-	-	-	28.5	
Benzo [g,h,i] perylene	0.02 ug/g dry	-	-	-	12.2	
Benzo [k] fluoranthene	0.02 ug/g dry	-	-	-	18.9	
Biphenyl	0.02 ug/g dry	-	-	-	<1.00 [1]	
Chrysene	0.02 ug/g dry	-	-	-	22.1	
Dibenzo [a,h] anthracene	0.02 ug/g dry	-	-	-	4.29	
Fluoranthene	0.02 ug/g dry	-	-	-	52.0	
Fluorene	0.02 ug/g dry	-	-	-	1.15	
Indeno [1,2,3-cd] pyrene	0.02 ug/g dry	-	-	-	12.2	
1-Methylnaphthalene	0.02 ug/g dry	-	-	-	<1.00 [1]	
2-Methylnaphthalene	0.02 ug/g dry	-	-	-	<1.00 [1]	
Methylnaphthalene (1&2)	0.04 ug/g dry	-	-	-	<2.00 [1]	
Naphthalene	0.01 ug/g dry	-	-	-	2.93	
Phenanthrene	0.02 ug/g dry	-	-	-	4.19	
Pyrene	0.02 ug/g dry	-	-	-	55.7	
2-Fluorobiphenyl	Surrogate	-	-	-	50.0%	
Terphenyl-d14	Surrogate	-	-	-	64.1%	

P: 1-800-749-1947 E: paracel@paracellabs.com WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3

SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 6 of 19

Client: Geofirma Engineering Ltd.

Order #: 1239202

Report Date: 09-Oct-2012 Order Date:27-Sep-2012

Client PO: 45064625		Project Description: 11-200-11/ 191 Lees Ave					
	Client ID: Sample Date: Sample ID: MDI (Units	MW12-DUP1 25-Sep-12 1239202-09 Soil	MW12-14 SA1 25-Sep-12 1239202-10 Soil	MW12-14 SA2 25-Sep-12 1239202-11 Soil	MW12-14 SA4 25-Sep-12 1239202-12 Soil		
Physical Characteristics	WDL/OTIIts	001	001	0011	0011		
% Solids	0.1 % by Wt.	92.4	84.9	85.4	97.4		
Metals							
Antimony	1 ug/g dry	<1	<1	-	<1		
Arsenic	1 ug/g dry	<1	<1	-	<1		
Barium	1 ug/g dry	21	43	-	14		
Beryllium	0.5 ug/g dry	<0.5	<0.5	-	<0.5		
Cadmium	0.5 ug/g dry	<0.5	<0.5	-	<0.5		
Calcium	200 ug/g dry	17900	16600	-	8690		
Chromium	5 ug/g dry	8	7	-	5		
Cobalt	1 ug/g dry	3	3	-	2		
Copper	5 ug/g dry	6	10	-	<5		
Iron	200 ug/g dry	7300	8320	-	8150		
Lead	1 ug/g dry	8	24	-	1		
Magnesium	200 ug/g dry	3860	5000	-	2730		
Manganese	5 ug/g dry	82	177	-	57		
Mercury	0.1 ug/g dry	<0.1	<0.1	-	<0.1		
Molybdenum	1 ug/g dry	<1	<1	-	<1		
Nickel	5 ug/g dry	6	7	-	<5		
Potassium	200 ug/g dry	638	617	-	292		
Selenium	1 ug/g dry	<1	<1	-	<1		
Silver	0.3 ug/g dry	<0.3	<0.3	-	<0.3		
Sodium	50 ug/g dry	256	360	-	285		
Thallium	1 ug/g dry	<1	<1	-	<1		
Tin	5 ug/g dry	<5	<5	-	<5		
Vanadium	10 ug/g dry	<10	13	-	12		
Zinc	20 ug/g dry	<20	<20	-	<20		
Volatiles							
Benzene	0.02 ug/g dry	<0.02	-	-	-		
Ethylbenzene	0.05 ug/g dry	<0.05	-	-	-		
Toluene	0.05 ug/g dry	0.05	-	-	-		
m,p-Xylenes	0.05 ug/g dry	0.31	-	-	-		
o-Xylene	0.05 ug/g dry	0.12	-	-	-		
Xylenes, total	0.05 ug/g dry	0.42	-	-	-		

P: 1-800-749-1947 E: paracel@paracellabs.com

WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3 SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 7 of 19

Client: Geofirma Engineering Ltd.

Order #: 1239202

Report Date: 09-Oct-2012 Order Date:27-Sep-2012

Client PO: 45064625	Project Description: 11-200-11/ 191 Lees Ave					
	Client ID: Sample Date: Sample ID: MDL/Units	MW12-DUP1 25-Sep-12 1239202-09 Soil	MW12-14 SA1 25-Sep-12 1239202-10 Soil	MW12-14 SA2 25-Sep-12 1239202-11 Soil	MW12-14 SA4 25-Sep-12 1239202-12 Soil	
Toluene-d8	Surrogate	105%	-	-	-	
Hydrocarbons						
F1 PHCs (C6-C10)	7 ug/g dry	<7	-	-	-	
Semi-Volatiles						
Acenaphthene	0.02 ug/g dry	<0.40 [1]	-	<0.02	-	
Acenaphthylene	0.02 ug/g dry	5.02	-	<0.02	-	
Anthracene	0.02 ug/g dry	2.05	-	<0.02	-	
Benzo [a] anthracene	0.02 ug/g dry	6.80	-	0.06	-	
Benzo [a] pyrene	0.02 ug/g dry	7.20	-	0.05	-	
Benzo [b] fluoranthene	0.02 ug/g dry	8.18	-	0.05	-	
Benzo [g,h,i] perylene	0.02 ug/g dry	4.11	-	<0.02	-	
Benzo [k] fluoranthene	0.02 ug/g dry	5.38	-	0.03	-	
Biphenyl	0.02 ug/g dry	<0.40 [1]	-	<0.02	-	
Chrysene	0.02 ug/g dry	6.47	-	0.05	-	
Dibenzo [a,h] anthracene	0.02 ug/g dry	1.35	-	<0.02	-	
Fluoranthene	0.02 ug/g dry	14.0	-	0.08	-	
Fluorene	0.02 ug/g dry	<0.40 [1]	-	<0.02	-	
Indeno [1,2,3-cd] pyrene	0.02 ug/g dry	3.87	-	0.02	-	
1-Methylnaphthalene	0.02 ug/g dry	<0.40 [1]	-	<0.02	-	
2-Methylnaphthalene	0.02 ug/g dry	<0.40 [1]	-	<0.02	-	
Methylnaphthalene (1&2)	0.04 ug/g dry	<0.80 [1]	-	<0.04	-	
Naphthalene	0.01 ug/g dry	1.09	-	<0.01	-	
Phenanthrene	0.02 ug/g dry	0.84	-	<0.02	-	
Pyrene	0.02 ug/g dry	15.0	-	0.08	-	
2-Fluorobiphenyl	Surrogate	62.0%	-	78.2%	-	
Terphenyl-d14	Surrogate	71.0%	-	51.1%	-	

P: 1-800-749-1947 E: paracel@paracellabs.com WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3

SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 8 of 19

Order #: 1239202

Report Date: 09-Oct-2012 Order Date:27-Sep-2012

Client: Geofirma Engineering Ltd.

Client PO: 45064625	Project Description: 11-200-11/ 191 Lees Ave					
	Client ID: Sample Date: Sample ID:	MW12-14 SA6 25-Sep-12 1239202-13	MW12-14 SA8 25-Sep-12 1239202-14	MW12-14 SA9 25-Sep-12 1239202-15	MW12-14 SA11 25-Sep-12 1239202-16	
	MDL/Units	Soil	Soil	Soil	Soil	
Physical Characteristics						
% Solids	0.1 % by Wt.	94.6	85.3	90.9	89.8	
Antimony	1 ug/g dp/			-1		
Anumony	1 ug/g dry	-	-	<1	-	
Arsenic	1 ug/g dry	-	-	<1 E1	-	
Barium		-	-	51	-	
Beryllium	0.5 ug/g dry	-	-	<0.5	-	
Cadmium	0.5 ug/g dry	-	-	<0.5	-	
Calcium	200 ug/g dry	-	-	14400	-	
Chromium	5 ug/g dry	-	-	8	-	
Cobalt	1 ug/g dry	-	-	4	-	
Copper	5 ug/g dry	-	-	8	-	
Iron	200 ug/g dry	-	-	7900	-	
Lead	1 ug/g dry	-	-	2	-	
Magnesium	200 ug/g dry	-	-	4380	-	
Manganese	5 ug/g dry	-	-	114	-	
Mercury	0.1 ug/g dry	-	-	<0.1	-	
Molybdenum	1 ug/g dry	-	-	<1	-	
Nickel	5 ug/g dry	-	-	8	-	
Potassium	200 ug/g dry	-	-	838	-	
Selenium	1 ug/g dry	-	-	<1	-	
Silver	0.3 ug/g dry	-	-	<0.3	-	
Sodium	50 ug/g dry	-	-	366	-	
Thallium	1 ug/g dry	-	-	<1	-	
Tin	5 ug/g dry	-	-	<5	-	
Vanadium	10 ug/g dry	-	-	14	-	
Zinc	20 ug/g dry	-	-	<20	-	
Volatiles			1	1		
Benzene	0.02 ug/g dry	<0.02	0.07	-	0.19	
Ethylbenzene	0.05 ug/g dry	<0.05	<0.05	-	8.48	
Toluene	0.05 ug/g dry	<0.05	0.10	-	<0.05	
m,p-Xylenes	0.05 ug/g dry	<0.05	0.35	-	0.58	
o-Xylene	0.05 ug/g dry	<0.05	0.17	-	3.45	
Xylenes, total	0.05 ug/g dry	<0.05	0.52	-	4.03	

P: 1-800-749-1947 E: paracel@paracellabs.com

WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3 SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 9 of 19

Client: Geofirma Engineering Ltd.

Client PO: 45064625

Order #: 1239202

Report Date: 09-Oct-2012 Order Date:27-Sep-2012

Client PO: 45064625	Project Description: 11-200-11/ 191 Lees Ave					
	Client ID: Sample Date: Sample ID:	MW12-14 SA6 25-Sep-12 1239202-13	MW12-14 SA8 25-Sep-12 1239202-14	MW12-14 SA9 25-Sep-12 1239202-15	MW12-14 SA11 25-Sep-12 1239202-16	
	MDL/Units	Soil	Soil	Soil	Soil	
Toluene-d8	Surrogate	104%	103%	-	101%	
Hydrocarbons						
F1 PHCs (C6-C10)	7 ug/g dry	<7	<7	-	18	
Semi-Volatiles			T			
Acenaphthene	0.02 ug/g dry	-	-	1.19	0.07	
Acenaphthylene	0.02 ug/g dry	-	-	3.62	1.28	
Anthracene	0.02 ug/g dry	-	-	<0.40 [1]	<0.02	
Benzo [a] anthracene	0.02 ug/g dry	-	-	<0.40 [1]	<0.02	
Benzo [a] pyrene	0.02 ug/g dry	-	-	<0.40 [1]	<0.02	
Benzo [b] fluoranthene	0.02 ug/g dry	-	-	<0.40 [1]	<0.02	
Benzo [g,h,i] perylene	0.02 ug/g dry	-	-	<0.40 [1]	<0.02	
Benzo [k] fluoranthene	0.02 ug/g dry	-	-	<0.40 [1]	<0.02	
Biphenyl	0.02 ug/g dry	-	-	<0.40 [1]	0.07	
Chrysene	0.02 ug/g dry	-	-	<0.40 [1]	<0.02	
Dibenzo [a,h] anthracene	0.02 ug/g dry	-	-	<0.40 [1]	<0.02	
Fluoranthene	0.02 ug/g dry	-	-	<0.40 [1]	<0.02	
Fluorene	0.02 ug/g dry	-	-	<0.40 [1]	<0.02	
Indeno [1,2,3-cd] pyrene	0.02 ug/g dry	-	-	<0.40 [1]	<0.02	
1-Methylnaphthalene	0.02 ug/g dry	-	-	7.63	2.05	
2-Methylnaphthalene	0.02 ug/g dry	-	-	4.20	2.25	
Methylnaphthalene (1&2)	0.04 ug/g dry	-	-	11.8	4.30	
Naphthalene	0.01 ug/g dry	-	-	24.0	10.8	
Phenanthrene	0.02 ug/g dry	-	-	<0.40	<0.02	
Pyrene	0.02 ug/g dry	-	-	<0.40	<0.02	
2-Fluorobiphenyl	Surrogate	-	-	64.4%	78.6%	
Terphenyl-d14	Surrogate	-	-	75.0%	62.6%	

P: 1-800-749-1947 E: paracel@paracellabs.com WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3

SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 10 of 19

Physical Characteristics

Client: Geofirma Engineering Ltd.

Client PO: 45064625

Order #: 1239202

_

Report Date: 09-Oct-2012 Order Date:27-Sep-2012

_

-

Sample Date: 25-Sep-12 25-Sep-12 -1239202-17 1239202-18 Sample ID: -Soil Soil **MDL/Units** _ Т T Т 00 N 00 F

MW12-13 SA4

Project Description: 11-200-11/191 Lees Ave

MW12-13 SA3

Client ID:

% Solids	0.1 % by Wt.	82.0	82.5	-	-
Metals					
Antimony	1 ug/g dry	-	<1	-	-
Arsenic	1 ug/g dry	-	<1	-	-
Barium	1 ug/g dry	-	46	-	-
Beryllium	0.5 ug/g dry	-	<0.5	-	-
Cadmium	0.5 ug/g dry	-	<0.5	-	-
Calcium	200 ug/g dry	-	57200	-	-
Chromium	5 ug/g dry	-	10	-	-
Cobalt	1 ug/g dry	-	3	-	-
Copper	5 ug/g dry	-	6	-	-
Iron	200 ug/g dry	-	6750	-	-
Lead	1 ug/g dry	-	23	-	-
Magnesium	200 ug/g dry	-	5080	-	-
Manganese	5 ug/g dry	-	140	-	-
Mercury	0.1 ug/g dry	-	3.3	-	-
Molybdenum	1 ug/g dry	-	<1	-	-
Nickel	5 ug/g dry	-	9	-	-
Potassium	200 ug/g dry	-	1020	-	-
Selenium	1 ug/g dry	-	<1	-	-
Silver	0.3 ug/g dry	-	<0.3	-	-
Sodium	50 ug/g dry	-	727	-	-
Thallium	1 ug/g dry	-	<1	-	-
Tin	5 ug/g dry	-	<5	-	-
Vanadium	10 ug/g dry	-	20	-	-
Zinc	20 ug/g dry	-	27	-	-
Volatiles					
Benzene	0.02 ug/g dry	44.2	107	-	-
Ethylbenzene	0.05 ug/g dry	15.4	23.7	-	-
Toluene	0.05 ug/g dry	135	199	-	-
m,p-Xylenes	0.05 ug/g dry	78.6	215	-	-
o-Xylene	0.05 ug/g dry	31.1	80.9	-	-
Xylenes, total	0.05 ug/g dry	110	296	-	-

P: 1-800-749-1947 E: PARACEL@PARACELLABS.COM

WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3 SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 11 of 19

Client: Geofirma Engineering Ltd.

Client PO: 45064625

Order #: 1239202

Report Date: 09-Oct-2012 Order Date:27-Sep-2012

Project Description: 11-200-11/ 191 Lees Ave

	Client ID: Sample Date: Sample ID:	MW12-13 SA3 25-Sep-12 1239202-17	MW12-13 SA4 25-Sep-12 1239202-18	- -	
	MDL/Units	Soil	Soil	-	-
Toluene-d8	Surrogate	98.9%	90.6%	-	-
Hydrocarbons			-	-	-
F1 PHCs (C6-C10)	7 ug/g dry	238	18700	-	-
Semi-Volatiles			1		
Acenaphthene	0.02 ug/g dry	-	14.2	-	-
Acenaphthylene	0.02 ug/g dry	-	180	-	-
Anthracene	0.02 ug/g dry	-	66.8	-	-
Benzo [a] anthracene	0.02 ug/g dry	-	36.7	-	-
Benzo [a] pyrene	0.02 ug/g dry	-	33.2	-	-
Benzo [b] fluoranthene	0.02 ug/g dry	-	21.5	-	-
Benzo [g,h,i] perylene	0.02 ug/g dry	-	18.4	-	-
Benzo [k] fluoranthene	0.02 ug/g dry	-	14.6	-	-
Biphenyl	0.02 ug/g dry	-	34.9	-	-
Chrysene	0.02 ug/g dry	-	37.6	-	-
Dibenzo [a,h] anthracene	0.02 ug/g dry	-	5.42	-	-
Fluoranthene	0.02 ug/g dry	-	61.0	-	-
Fluorene	0.02 ug/g dry	-	87.2	-	-
Indeno [1,2,3-cd] pyrene	0.02 ug/g dry	-	12.6	-	-
1-Methylnaphthalene	0.02 ug/g dry	-	308	-	-
2-Methylnaphthalene	0.02 ug/g dry	-	580	-	-
Methylnaphthalene (1&2)	0.04 ug/g dry	-	889	-	-
Naphthalene	0.01 ug/g dry	-	1750	-	-
Phenanthrene	0.02 ug/g dry	-	141	-	-
Pyrene	0.02 ug/g dry	-	106	-	-
2-Fluorobiphenyl	Surrogate	-	65.9%	-	-
Terphenyl-d14	Surrogate	-	69.2%	-	-

P: 1-800-749-1947 E: paracel@paracellabs.com

WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3 SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 12 of 19

Client: Geofirma Engineering Ltd.

Client PO: 45064625

Method Quality Control: Blank

Order #:	1239202

Report Date: 09-Oct-2012 Order Date:27-Sep-2012

Project Description: 11-200-11/ 191 Lees Ave

		Reporting		Source		%REC		RPD	
Analyte	Result	Limit	Units	Result	%REC	Limit	RPD	Limit	Notes
Hydrocarbons		_	,						
F1 PHCs (C6-C10)	ND	7	ug/g						
Metals									
Antimony	ND	1	ug/g						
Arsenic	ND	1	ug/g						
Barium	ND	1	ug/g						
Beryllium	ND	0.5	ug/g						
Cadmium	ND	0.5	ug/g						
Chromium		200	ug/g						
Cobalt		1	ug/g						
Copper	ND	5	ug/g						
Iron	ND	200	ug/g						
Lead	ND	1	ug/g						
Magnesium	ND	200	ug/g						
Mercury	ND	0.1	ug/g						
Manganese	ND	5	ug/g						
Molybdenum	ND	1	ug/g						
Nickel	ND	5	ug/g						
Polassium		200	ug/g						
Silver		03	ug/g						
Sodium	ND	50	ug/g ug/g						
Thallium	ND	1	ua/a						
Tin	ND	5	ug/g						
Vanadium	ND	10	ug/g						
Zinc	ND	20	ug/g						
Semi-Volatiles									
Acenaphthene	ND	0.02	ua/a						
Acenaphthylene	ND	0.02	ug/g						
Anthracene	ND	0.02	ug/g						
Benzo [a] anthracene	ND	0.02	ug/g						
Benzo [a] pyrene	ND	0.02	ug/g						
Benzo [b] fluoranthene	ND	0.02	ug/g						
Benzo [g,n,i] perviene	ND	0.02	ug/g						
Binhenyl		0.02	ug/g						
Chrysene		0.02	ug/g ug/g						
Dibenzo [a,h] anthracene	ND	0.02	ua/a						
Fluoranthene	ND	0.02	ug/g						
Fluorene	ND	0.02	ug/g						
Indeno [1,2,3-cd] pyrene	ND	0.02	ug/g						
1-Methylnaphthalene	ND	0.02	ug/g						
2-Methylnaphthalene	ND	0.02	ug/g						
Nethylnaphthalene (1&2)	ND	0.04	ug/g						
Phenanthrane		0.01	ug/g						
Pyrene		0.02	ug/g						
Surrogate: 2-Eluorobiphenvl	1.30	0.02	ug/g ua/a		97.4	50-140			
Surrogate: Terphenyl-d14	1.01		ug/g		75.9	50-140			
Volatiles			0.0			-			
Renzene	ND	0.02	ua/a						
Ethylbenzene	ND	0.05	ug/g						
Toluene	ND	0.05	ug/a						
m,p-Xylenes	ND	0.05	ug/g						
o-Xylene	ND	0.05	ug/g						

P: 1-800-749-1947 E: paracel@paracellabs.com

WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3 Niagara Falls, ON L2J 0.

123 Christina St. N. Sarnia, ON N7T 5T7

Page 13 of 19

Client: Geofirma Engineering Ltd.

Client PO: 45064625

Project Description: 11-200-11/ 191 Lees Ave

Order #: 1239202

Report Date: 09-Oct-2012 Order Date:27-Sep-2012

Method	Quality	Control: Blank	
memou	Quanty		

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Xylenes, total Surrogate: Toluene-d8	ND 8.37	0.05	ug/g <i>ug/g</i>		105	50-140			

P: 1-800-749-1947 E: paracel@paracellabs.com WWW.PARACELLABS.COM OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

SARNIA 123 Christina St. N. Samia, ON N7T 5T7

Page 14 of 19

Client: Geofirma Engineering Ltd.

Client PO: 45064625

Hvdrocarbons F1 PHCs (C6-C10)

Analyte

Metals Antimony

Arsenic

Barium

Beryllium

Cadmium

Chromium

Magnesium

Manganese

Potassium

Selenium

Molybdenum

Calcium

Cobalt

Copper

Mercury

Nickel

Silver

Tin

Zinc

Sodium

Thallium

Vanadium

% Solids

Semi-Volatiles

Physical Characteristics

Iron

Lead

Method Quality Control: Duplicate

Order #: 1239202
Development Detex 00 Oct 20

%REC

Limit

Report Date: 09-Oct-2012 Order Date:27-Sep-2012

Notes

RPD

Limit

40

30

30

30

30

30

30

30

30

30

30

30

30

35

30

30

30

30

30

30

30

30

30

30

30

25

RPD

12.9

0.0

10.2

0.0

9.5

11.7

8.7

4.6

1.6

7.5

0.5

7.1

0.6

5.2

0.0

4.3

6.3

0.0

0.0

8.4

0.0

4.4

4.4

6.4

3.4

Project Description: 11-200-11/ 191 Lees Ave

Units

ug/g dry

% by Wt.

Source

Result

ND

17.4

ND

50.5

ND

1.72

2740

41.0

8.5

51.1

19100

52.1

5560

0.669

278

ND

26.2

1450

ND

ND

721

ND

5.5

30.4

413

82.5

%REC

Reporting

. Limit

7

1

1

1

0.5

0.5

200

5

1

5

200

1

200

0.1

5

1

5

200

1

0.3

50

1

5

10

20

0.1

Result

ND

19.9

ND

55.9

ND

1.89

3080

44.7

8.9

51.9

20600

51.8

5970

0.665

293

ND

27.3

1540

ND

ND

663

ND

5.8

31.7

441

85.3

	E: PARACEL@PARACELLABS.COM		MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3		SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7				Page 15 of 19	
	P: 1-800-749-1947	IS COM	OTTAWA 300-2319 St. Lat Ottawa, ON K1G	urent Blvd.	NIAGAR 5415 Morn Niagara Fal	A FALLS ing Glory Crt. Is, ON L2J 0A3				
Ethylbenzene	ND	0.05	ug/g dry	ND				50		
Volatiles Benzene	ND	0.02	ug/g dry	ND				50		
Surrogate: Terphenyl-d14	1.12		ug/g dry	ND	66.1	50-140				
Surrogate: 2-Fluorobiphenyl	1.04		ug/g dry	ND	61.1	50-140				
Pyrene	49.0	0.40	ug/g dry	42.4			14.4	40		
Phenanthrene	0.779	0.40	ua/a drv	0.879			12.1	40		
Nanhthalene	0.358	0.40	ug/g dry	1 76			133.0	40	QB-04	
1-Methylnaphthalene		0.40	ug/g dry	0.420			0.0	40		
Indeno [1,2,3-cd] pyrene	14.7	0.40	ug/g dry	12.7			15.1	40		
Fluorene	0.790	0.40	ug/g dry	0.732			7.6	40		
Fluoranthene	51.3	0.40	ug/g dry	44.6			13.9	40		
Dibenzo [a,h] anthracene	4.70	0.40	ug/g dry	4.00			16.0	40		
Chrysene	19.0	0.40	ug/g dry	15.8			18.6	40		
Biphenyl	ND	0.40	ug/g dry	ND				40	GEN07	
Benzo [k] fluoranthene	18.1	0.40	ua/a drv	16.8			7.5	40		
Benzo [a,h,i] pervlene	14.2	0.40	ug/g dry	12.3			14.3	40		
Benzo [b] fluoranthene	32.0	0.40	ug/g dry	22.2			20.0	40		
Benzo [a] antifiacene	20.9	0.40	ug/g dry	17.0			20.9	40		
Anthracene Renze [a] enthracene	4.69	0.40	ug/g dry	5.21			10.5	40		
Acenaphthylene	21.2	0.40	ug/g dry	18.4			14.1	40		
		0.10		0.000			10.0	10		

Client: Geofirma Engineering Ltd.

Client PO: 45064625

Project Description: 11-200-11/ 191 Lees Ave

Report Date: 09-Oct-2012 Order Date:27-Sep-2012

Method Quality Control: Duplicate

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Toluene	ND	0.05	ug/g dry	ND				50	
m,p-Xylenes	ND	0.05	ug/g dry	ND				50	
o-Xylene	ND	0.05	ug/g dry	ND				50	
Surrogate: Toluene-d8	8.86		ug/g dry	ND	106	50-140			

P: 1-800-749-1947 E: paracel@paracellabs.com WWW.PARACELLABS.COM OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 16 of 19

Client: Geofirma Engineering Ltd.

Client PO: 45064625

Method Quality Control: Snike

Oldel #. 1239202
Report Date: 09-Oct-20 Order Date: 27 Sep 20

Project Description: 11-200-11/ 191 Lees Ave

-Oct-2012 -Sep-2012

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hvdrocarbons									
F1 PHCs (C6-C10)	185	7	ug/g	ND	92.4	80-120			
Motale			00						
	55.0		ug/l	7.0	07.0	70 120			
Arsonic	13.4		ug/L		88.3	70-130			
Barium	70.0		ug/L	20.2	00.5 00.7	70-130			
Bendlium	70.0 50.1		ug/L	0.12	00.0	70-130			
Cadmium	46.0		ug/L	0.12	99.9 90 7	70-130			
Calcium	2080		ug/L	1090	90.7	70-130			
Chromium	63.1		ug/L	16.4	93.1	70-130			
Cobalt	51 1		ug/L	3.4	95.4	70-130			
Copper	66.3		ug/L	20.4	00. 4 01 7	70-130			
Iron	9040		ug/L	7640	140	70-130		C	20-92
Lead	63 7		ug/L	20.8	85.8	70-130			
Magnesium	3300		ug/L	2220	107	70-130			
Magnesium	1 79	0.1	ug/E	0 669	75.0	72-128			
Manganese	56 5	0.1	ug/g	19.8	73.4	70-130			
Molybdenum	42 9		ug/L	0.3	85.3	70-130			
Nickel	58.3		ug/L	10.5	95.6	70-130			
Potassium	1610		ug/L	579	103	70-130			
Selenium	45.4		ug/L	0.3	90.2	70-130			
Silver	39.0		ug/L	0.07	77.9	70-130			
Sodium	4400		ug/L	288	411	70-130		C	05-02
Thallium	55.8		ug/L	0.1	111	70-130			20 02
Tin	49.0		ug/L	22	93.6	70-130			
Vanadium	57.9		ug/L	12.1	91.6	70-130			
Zinc	222		ug/L	165	114	70-130			
			ug/L	100		10 100			
Semi-volatiles	0 4 47	0.00			00.0	50 4 40			
Acenaphthene	0.147	0.02	ug/g	ND	88.2	50-140			
Acenaphtnylene	0.170	0.02	ug/g	ND	102	50-140			
Anthracene	0.148	0.02	ug/g	ND	88.7	50-140			
Benzo [a] anthracene	0.144	0.02	ug/g	ND	86.4	50-140			
Benzo [a] pyrene	0.141	0.02	ug/g	ND	84.6 75.0	50-140			
Benzo [b] liuorantnene	0.126	0.02	ug/g	ND	/5.8	50-140			
Benzo [k] fluerenthene	0.145	0.02	ug/g		07.3 00 E	50-140			
Denzo [K] nuorantnene Diabaavd	0.134	0.02	ug/g		0.JO	50-140			
Chrysone	0.169	0.02	ug/g		01 7	50-140			
Chrysene Dibenze [e b] enthreeene	0.153	0.02	ug/g		91.7	50-140			
	0.101	0.02	ug/g		90.0	50-140			
Fluorancie	0.137	0.02	ug/g		106	50-140			
	0.176	0.02	ug/g		06.4	50-140			
1 Methylpephthelepe	0.101	0.02	ug/g		90.4 66 0	50-140			
2 Mothylnaphthalono	0.111	0.02	ug/g		72.0	50-140			
Z-wearymaphilialene	0.122	0.02	ug/g		73.3 77 4	50-140			
Phononthropo	0.129	0.01	ug/g		07 E	50 140			
	0.140	0.02	ug/g		07.0 QA 0	50-140			
i yichic Surragata: 2 Eluarabinhanul	0.150	0.02	ug/g	ND	90.2 00 1	50-140			
	1.17		ug/g		00.1	50-140			

Volatiles

P: 1-800-749-1947 E: paracel@paracellabs.com

WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3

SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 17 of 19

Client: Geofirma Engineering Ltd.

Client PO: 45064625

m,p-Xylenes

o-Xylene

Project Description: 11-200-11/ 191 Lees Ave

ug/g

ug/g

ND

ND

90.1

95.5

60-130

60-130

Report Date: 09-Oct-2012 Order Date:27-Sep-2012

Notes

Method Quality Con	Method Quality Control: Spike									
Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit		
Benzene	3.94	0.02	ug/g	ND	98.5	60-130				
Ethylbenzene	3.62	0.05	ug/g	ND	90.5	60-130				
Toluene	4.61	0.05	ug/g	ND	115	60-130				

0.05

0.05

7.21

3.82

P: 1-800-749-1947 E: paracel@paracellabs.com WWW.PARACELLABS.COM OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 18 of 19

Client PO: 45064625

Certificate of Analysis

Client: Geofirma Engineering Ltd.

Project Description: 11-200-11/ 191 Lees Ave

Qualifier Notes:

Sample Qualifiers :

1: Elevated detection limit because of dilution required due to high target analyte concentration.

QC Qualifiers :

GEN07: Elevated detection limit because of dilution required due to high target analyte concentration.

QR-04 : Duplicate results exceeds RPD limits due to non-homogeneous matrix.

QS-02 : Spike level outside of control limits. Analysis batch accepted based on other QC included in the batch.

Sample Data Revisions

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected MDL: Method Detection Limit Source Result: Data used as source for matrix and duplicate samples %REC: Percent recovery. RPD: Relative percent difference.

Soil results are reported on a dry weight basis when the units are denoted with 'dry'. Where %Solids is reported, moisture loss includes the loss of volatile hydrocarbons.

CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.

- F1 range corrected for BTEX.
- F2 to F3 ranges corrected for appropriate PAHs where available.
- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.
- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.

P :	1-800-749-1947
Ε:	PARACEL@PARACELLABS.COM
WW	W.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3 SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 19 of 19

GPARACEL	L TRUSTED . RESPONSIVE . TD. RELIABLE . MISSISSAUGA © SARNIA					Head Office 300-2319 St. Laurent Blvd. Ottawa, Ontario K1G 4J8 p: 1-800-749-1947 e: paracel@paracellabs.com www.paracellabs.com				m	Chain of Custody (Lab Use Only) Nº 94614								
OTTAWA [®] KINGSTON [®] NIAGARA [®] MISS	SSAUGA	◉ SAR	NIÁ			-		W	ww.pa	irace	llabs.	com		1	Page	of			
Client Name: Geofirma				Project Reference:	11-200-1					1	4			TAT: W Regular []3 Day					
Contact Name: Jean Sterling				Quote #			_					1							
Address: 1 Raymond Street				PO #				2											
Hura, ON			1	Email Address:	· . A	Gra	10 (0						Date Required:					
Telephone: 613-232-2525				SSILIN	ing@ge	011111	10,0	. 4				10 1		·		1.1	Athan		
Criteria: O. Reg. 153/04 Table O. Reg. 153/11 (Cur	rent) Table	RSC	Filing	O. Reg. 558/00	PWQO] CCM	E []	SUI	8 (Stori	n)	1 SUB	(Sanitary) Muni	cipanty:			Ouldr:		
Matrix Type: S (Soil/Sed.) GW (Ground Water) SW (Surface Wat	er) SS (Storm/S	Sanitary Se	wer) P (Paint) A (Air) O (C	Other)							Requi	ed Ai	alyses			-	1	
Paracel Order Number: 239202	xi	Volume	Containers	Sample	Taken	s F1-F4+BTEX	s	S	uls by ICP/MS		(MS)	TEX/F1	ain Size						
Sample ID/Location Name	Sample ID/Location Name		# of	Date	Time	PHC	VOC	PAH	Meta	CrV 0	B (F	Ø	J	-				4	-
1 MW11-15 SA2 BAGSS6	Soil		1	25-Sep-12				V						- 1X	350	ml		1	-
2 MULT-15 SA3 RAG 857	1		1						\checkmark	/					\vee				-
3 MILIZ-15 SAH BAG 858			2									\checkmark	-	1X 1	20 W	2+	VICA	/	
4 MILLIA - 15 505 RAG 859			1					1					~	1X	250	mL-	1	/	1
5 MULL IS SAL BAG SLOO			2									\checkmark	-	18	1200	Lti	vial	1	'
6 MUD IC SAG DAG QUI			1						\checkmark	/				- 18	250	ml.	-	/	1
7 MWA 16 SA9 DAG 200			2			1					0	1		11.	1201	mi +	+ 1 via	11 -	1
8 MULTILE SAID			1										\vee	-1X	250	mi	-	-	1
9 MULTO SALL RAC 8/03			1					1	\checkmark	1					V				1
10 MILLA DUN DA PLA	F V							V		1		\checkmark		-121	aumi	+2	x 2501	12+1	VA
Comments: heavily contaminated so	imples ((0a	1 to	er)	DRO SAL	nolo	5	cr	h	olo	l ii	nstea	dI	sear	Method	Parc	ery: zceł		
Relinquished By (Print & Sign):	Recen	ed by Dri	ver/Depo	ot:	Rece	ived at	Lab:					G ICS	Verifi	ed By:	112		.1		
Melanie Brooks Rook	Date/1	ime: Z	101	Couse 112 3:3	PAR. Date	MI Time:	S	201	26	II is	2	5.25	Date/1	Times.	Sep	1.27	112		2
Date/Time: 26-SEP-12 / 14:10	Temp	erature:	1 1	°C	Tem	perature	: 18	19	_°C				pH Ve	erified	By:		1 A		

Chain of Custody (Env) - Rev 0.2 December 2011

OPARACEL	TR RE RE	USTE SPO LIAB	ED. NSIV LE.	Ε.		Head Office 300-2319 St. Laurent Blvd. Ottawa, Ontario K1G 4J8 p: 1-800-749-1947 e: paracel@paracellabs.com www.paracellabs.com				om	Chain of Custody (Lab Use Only) Nº 94613							
OTTAWA [®] KINGSTON [®] NIAGARA [®] MISSISSA	AUGA	• SAR	INIA	www.para				arace	labs.c	com		Page <u>2</u> of <u>2</u>						
Client Name: Geoficen a				Project Reference: //-200-//					TAT: KRegular [] 3 Day									
Contact Name: Sean Steeling				Quote #						Ì				112 Day [11 Day				
Address: 1 Raymond St,				PO #										112 Day 111 Day				
OHawa, ON			-	Email Address:	esteclina	Qqe	ofir	na	CG					Date Required:				
Telephone: 613-232-2525					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		UP I	L CL ID	1/644		I CI ID	/Canitar	A Munic	inality		[]	Other	
Criteria: O. Reg. 153/04 Table O. Reg. 153/11 (Current)	Table	[] RSC	Filing	O. Reg. 558/00	PWQO	ICCN	IE [500	0 (210	nn) (1900	(Sama)) would	ipany			Control and	Harden and a second
Matrix Type: S (Soil/Sed.) GW (Ground Water) SW (Surface Water) SS	S (Storm/S	anitary Se	ewer) P	Paint) A (Air) O (Other)							Requi	red An	alyses				-
Paracel Order Number: 239202	ix	Volume	Containers	Sample	Taken	s F1-F4+BTEX	S	S	als by ICP/MS		(SMI	ain size	TH / FT					
Sample ID/Location Name	Matr	Air	# of	Date	Time	PHC	VOC	PAH	Meta	Hg CrV	B (H	30	Ď					
1 MW12-14 SAL BAG 8/05	Soil		1	25-50p-12					1	/				-1	X 250	iml	-	/
2 MILIA - 14 SA2 RAG 8/0/0	1		1	1				~							1			/
3 MW12-14 SA4 BAG867			1						V	1								/
4 MW12-14 SA5			1									\checkmark			V			/
5 MW12-14 SA6 BAG868			2											- 1	1201	nl f	7 Via	- /
6 MW12-14 SAS BAG868			2										V	~	V			-
7 MW12-14 SA9 BAG 870			1					1	\vee	1	-			-7	k 850	mL	-	1
8 MW12-14 SAN 13AG 871			١					V						-1	× 250	mL-	1/10	1 -
9 MW13-13 SA183 RAG 872			2								_			-1	X 120	ML	+11/10	1 -
10 MWW-13 SAY BAG 873	J		2	V				V	\checkmark	V			\checkmark	-	K J.h	of Deliv	<u>1 / / / / a</u>	1
Comments: Heavily contaminated samp	les (1	coal	tar)												P	avo	rel	
Relinquished By (Print & Sign): Melance Brooples Ma Lin R MA	Receive Date/T	ed by Dri	ver/Dep	ot: Scouse 9/12 31	Reco 36 ₂₀ Date	eived at M e/Time.	Lab: C Se	Pt	21	7	15	125	Verifie	d By:	lept	-1-1-	12	20
Date/Time: 26-SEP-12/14:10	Tempe	rature:	/ /	°C	Tem	nperatur	'e:'	8.4	_°C				pH Ve	rified []	Β∮:	<i>P</i>	J/H	

Chain of Custody (Env) - Rev 0.2 December 2011

1

RELIABLE.

Head Office 300-2319 St. Laurent Blvd. Ottawa, Ontario K1G 4J8 p: 1-800-749-1947 e: paracel@paracellabs.com

www.paracellabs.com

OTTAWA 🔹 KINGSTON 🔹 NIAGARA 🔹 MISSISSAUGA 🔹 SARNIA

Certificate of Analysis

Geofirma Engineering Ltd.

Suite 200, 1 Raymond St. Ottawa, ON K1R 1A2 Attn: Sean Sterling

Phone: (613) 232-2525 Fax: (613) 232-7149

Client PO: 45064625	Report Date: 5-Oct-2012
Project: 11-200-11/ 191 Lees Ave	Order Date: 26-Sep-2012
Custody: 4629	Order #: 1239209

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID	Client ID
1239209-01	MW12-16 SA2
1239209-02	MW12-16 SA5
1239209-03	MW12-16 SA6
1239209-04	MW12-16 SA7
1239209-05	MW12-16 SA9
1239209-06	MW12-16 SA10
1239209-07	MW12-DUP2

Approved By:

Mark Foto

Mark Foto, M.Sc. For Dale Robertson, BSc Laboratory Director

Any use of these results implies your agreement that our total liability in connection with this work, however arising shall be limited to the amount paid by you for this work, and that our employees or agents shall not under circumstances be liable to you in connection with this work

Client: Geofirma Engineering Ltd. Client PO: 45064625

Project Description: 11-200-11/ 191 Lees Ave

Order #: 1239209

Report Date: 05-Oct-2012 Order Date:26-Sep-2012

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date	Analysis Date
BTEX	EPA 8260 - P&T GC-MS	28-Sep-12	3-Oct-12
CCME PHC F1	CWS Tier 1 - P&T GC-FID	28-Sep-12	3-Oct-12
Mercury	EPA 7471A - CVAA, digestion	28-Sep-12	28-Sep-12
Metals	EPA 6020 - Digestion - ICP-MS	28-Sep-12	29-Sep-12
PAHs by GC-MS, standard scan	EPA 8270 - GC-MS, extraction	27-Sep-12	2-Oct-12
Solids, %	Gravimetric, calculation	28-Sep-12	28-Sep-12

P: 1-800-749-1947 E: paracel@paracellabs.com WWW.PARACELLABS.COM OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8

4J8 SARNIA

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3 SARNIA

SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 2 of 13

Client: Geofirma Engineering Ltd.

Clie nt PO· 15061675 Report Date: 05-Oct-2012 Order Date:26-Sep-2012

Client PO: 45064625		Project Description	: 11-200-11/ 191 Lees	s Ave	
	Client ID: Sample Date: Sample ID:	MW12-16 SA2 26-Sep-12 1239209-01 Soil	MW12-16 SA5 26-Sep-12 1239209-02 Soil	MW12-16 SA6 26-Sep-12 1239209-03 Soil	MW12-16 SA7 26-Sep-12 1239209-04 Soil
Physical Characteristics	MDL/ONITS	001	001	001	001
% Solids	0.1 % by Wt.	79.3	94.5	91.8	92.6
Metals					
Antimony	1 ug/g dry	<1	<1	-	-
Arsenic	1 ug/g dry	<1	<1	-	-
Barium	1 ug/g dry	385	48	-	-
Beryllium	0.5 ug/g dry	<0.5	<0.5	-	-
Cadmium	0.5 ug/g dry	<0.5	<0.5	-	-
Calcium	200 ug/g dry	38100	60000	-	-
Chromium	5 ug/g dry	12	9	-	-
Cobalt	1 ug/g dry	3	6	-	-
Copper	5 ug/g dry	8	15	-	-
Iron	200 ug/g dry	11100	8870	-	-
Lead	1 ug/g dry	47	7	-	-
Magnesium	200 ug/g dry	11000	5350	-	-
Manganese	5 ug/g dry	249	185	-	-
Mercury	0.1 ug/g dry	0.2	<0.1	-	-
Molybdenum	1 ug/g dry	<1	<1	-	-
Nickel	5 ug/g dry	7	15	-	-
Potassium	200 ug/g dry	1200	976	-	-
Selenium	1 ug/g dry	<1	<1	-	-
Silver	0.3 ug/g dry	<0.3	<0.3	-	-
Sodium	50 ug/g dry	210	175	-	-
Thallium	1 ug/g dry	<1	<1	-	-
Tin	5 ug/g dry	<5	<5	-	-
Vanadium	10 ug/g dry	21	13	-	-
Zinc	20 ug/g dry	30	21	-	-
Volatiles					-
Benzene	0.02 ug/g dry	0.35	-	0.05	-
Ethylbenzene	0.05 ug/g dry	0.73	-	0.08	-
Toluene	0.05 ug/g dry	0.75	-	0.20	-
m,p-Xylenes	0.05 ug/g dry	1.30	-	0.36	-
o-Xylene	0.05 ug/g dry	0.43	-	0.13	-
Xylenes, total	0.05 ug/g dry	1.73	-	0.50	-
Toluene-d8	Surrogate	101%	-	104%	-

P: 1-800-749-1947 E: paracel@paracellabs.com

WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3

SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 3 of 13

Client: Geofirma Engineering Ltd.

Order #: 1239209

Report Date: 05-Oct-2012 Order Date:26-Sep-2012

Client PO: 45064625		Project Description: 11-200-11/ 191 Lees Ave								
	Client ID: Sample Date: Sample ID:	MW12-16 SA2 26-Sep-12 1239209-01	MW12-16 SA5 26-Sep-12 1239209-02	MW12-16 SA6 26-Sep-12 1239209-03	MW12-16 SA7 26-Sep-12 1239209-04					
	MDL/Units	Soil	Soil	Soil	Soil					
Hydrocarbons			1	1	1					
F1 PHCs (C6-C10)	7 ug/g dry	30	-	<7	-					
Semi-Volatiles										
Acenaphthene	0.02 ug/g dry	0.81	<0.02	-	<0.02					
Acenaphthylene	0.02 ug/g dry	8.88	0.04	-	<0.02					
Anthracene	0.02 ug/g dry	8.08	0.02	-	<0.02					
Benzo [a] anthracene	0.02 ug/g dry	20.4	0.09	-	<0.02					
Benzo [a] pyrene	0.02 ug/g dry	9.94	0.04	-	<0.02					
Benzo [b] fluoranthene	0.02 ug/g dry	27.6	0.13	-	<0.02					
Benzo [g,h,i] perylene	0.02 ug/g dry	10.2	0.05	-	<0.02					
Benzo [k] fluoranthene	0.02 ug/g dry	14.2	0.10	-	<0.02					
Biphenyl	0.02 ug/g dry	0.47	<0.02	-	<0.02					
Chrysene	0.02 ug/g dry	18.7	0.12	-	<0.02					
Dibenzo [a,h] anthracene	0.02 ug/g dry	4.56	<0.02	-	<0.02					
Fluoranthene	0.02 ug/g dry	49.3	0.13	-	<0.02					
Fluorene	0.02 ug/g dry	3.00	<0.02	-	<0.02					
Indeno [1,2,3-cd] pyrene	0.02 ug/g dry	11.4	0.06	-	<0.02					
1-Methylnaphthalene	0.02 ug/g dry	1.44	<0.02	-	<0.02					
2-Methylnaphthalene	0.02 ug/g dry	1.09	<0.02	-	<0.02					
Methylnaphthalene (1&2)	0.04 ug/g dry	2.53	<0.04	-	<0.04					
Naphthalene	0.01 ug/g dry	2.01	0.01	-	<0.01					
Phenanthrene	0.02 ug/g dry	27.1	0.06	-	<0.02					
Pyrene	0.02 ug/g dry	40.3	0.11	-	<0.02					
2-Fluorobiphenyl	Surrogate	98.4%	76.0%	-	70.9%					
Terphenyl-d14	Surrogate	85.7%	53.5%	-	61.0%					

P: 1-800-749-1947 E: paracel@paracellabs.com WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3

SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 4 of 13

Client: Geofirma Engineering Ltd.

Order #: 1239209

Report Date: 05-Oct-2012 Order Date:26-Sep-2012

Client PO: 45064625		Project Description: 11-200-11/ 191 Lees Ave								
	Client ID: Sample Date: Sample ID:	MW12-16 SA9 26-Sep-12 1239209-05 Soil	MW12-16 SA10 26-Sep-12 1239209-06 Soil	MW12-DUP2 26-Sep-12 1239209-07 Soil						
Physical Characteristics	MDL/UNIts	0011	001	301	_					
% Solids	0.1 % by Wt.	85.7	86.0	95.6	-					
Metals										
Antimony	1 ug/g dry	<1	-	<1	-					
Arsenic	1 ug/g dry	<1	-	<1	-					
Barium	1 ug/g dry	22	-	58	-					
Beryllium	0.5 ug/g dry	<0.5	-	<0.5	-					
Cadmium	0.5 ug/g dry	<0.5	-	<0.5	-					
Calcium	200 ug/g dry	11100	-	62000	-					
Chromium	5 ug/g dry	5	-	10	-					
Cobalt	1 ug/g dry	3	-	7	-					
Copper	5 ug/g dry	6	-	15	-					
Iron	200 ug/g dry	7890	-	10100	-					
Lead	1 ug/g dry	2	-	11	-					
Magnesium	200 ug/g dry	3500	-	6170	-					
Manganese	5 ug/g dry	73	-	201	-					
Mercury	0.1 ug/g dry	<0.1	-	<0.1	-					
Molybdenum	1 ug/g dry	<1	-	<1	-					
Nickel	5 ug/g dry	6	-	16	-					
Potassium	200 ug/g dry	480	-	1140	-					
Selenium	1 ug/g dry	<1	-	<1	-					
Silver	0.3 ug/g dry	<0.3	-	<0.3	-					
Sodium	50 ug/g dry	369	-	199	-					
Thallium	1 ug/g dry	<1	-	<1	-					
Tin	5 ug/g dry	<5	-	<5	-					
Vanadium	10 ug/g dry	11	-	14	-					
Zinc	20 ug/g dry	<20	-	23	-					
Volatiles										
Benzene	0.02 ug/g dry	-	<0.02	<0.02	-					
Ethylbenzene	0.05 ug/g dry	-	<0.05	<0.05	-					
Toluene	0.05 ug/g dry	-	<0.05	0.09	-					
m,p-Xylenes	0.05 ug/g dry	-	<0.05	0.19	-					
o-Xylene	0.05 ug/g dry	-	<0.05	0.08	-					
Xylenes, total	0.05 ug/g dry	-	<0.05	0.27	-					

P: 1-800-749-1947 E: paracel@paracellabs.com

WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3

SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 5 of 13

Client: Geofirma Engineering Ltd.

Order #: 1239209

Report Date: 05-Oct-2012 Order Date:26-Sep-2012

Client PO: 45064625		Project Descriptior	n: 11-200-11/ 191 Lees	Ave	
	Client ID: Sample Date: Sample ID:	MW12-16 SA9 26-Sep-12 1239209-05	MW12-16 SA10 26-Sep-12 1239209-06	MW12-DUP2 26-Sep-12 1239209-07	
F	MDL/Units	Soil	Soil	Soil	-
Toluene-d8	Surrogate	-	104%	103%	-
Hydrocarbons					1
F1 PHCs (C6-C10)	7 ug/g dry	-	<7	9	-
Semi-Volatiles					
Acenaphthene	0.02 ug/g dry	-	-	<0.02	-
Acenaphthylene	0.02 ug/g dry	-	-	0.02	-
Anthracene	0.02 ug/g dry	-	-	<0.02	-
Benzo [a] anthracene	0.02 ug/g dry	-	-	0.05	-
Benzo [a] pyrene	0.02 ug/g dry	-	-	<0.02	-
Benzo [b] fluoranthene	0.02 ug/g dry	-	-	0.07	-
Benzo [g,h,i] perylene	0.02 ug/g dry	-	-	0.03	-
Benzo [k] fluoranthene	0.02 ug/g dry	-	-	0.05	-
Biphenyl	0.02 ug/g dry	-	-	<0.02	-
Chrysene	0.02 ug/g dry	-	-	0.07	-
Dibenzo [a,h] anthracene	0.02 ug/g dry	-	-	<0.02	-
Fluoranthene	0.02 ug/g dry	-	-	0.06	-
Fluorene	0.02 ug/g dry	-	-	<0.02	-
Indeno [1,2,3-cd] pyrene	0.02 ug/g dry	-	-	0.03	-
1-Methylnaphthalene	0.02 ug/g dry	-	-	<0.02	-
2-Methylnaphthalene	0.02 ug/g dry	-	-	<0.02	-
Methylnaphthalene (1&2)	0.04 ug/g dry	-	-	<0.04	-
Naphthalene	0.01 ug/g dry	-	-	0.01	-
Phenanthrene	0.02 ug/g dry	-	-	0.03	-
Pyrene	0.02 ug/g dry	-	-	0.05	-
2-Fluorobiphenyl	Surrogate	-	-	87.8%	-
Terphenyl-d14	Surrogate	-	-	62.2%	-

P: 1-800-749-1947 E: paracel@paracellabs.com WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3

SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 6 of 13

Client: Geofirma Engineering Ltd.

Client PO: 45064625

Method Quality Control: Blank

Order #:	1239209

Report Date: 05-Oct-2012 Order Date:26-Sep-2012

Project Description: 11-200-11/ 191 Lees Ave

		Reporting		Source		%REC		RPD	
Analyte	Result	Limit	Units	Result	%REC	Limit	RPD	Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	ND	7	ug/g						
Metals									
Antimony		1	ua/a						
Arsenic	ND	1	ug/g						
Barium	ND	1	ug/g						
Bervllium	ND	0.5	ua/a						
Cadmium	ND	0.5	ua/a						
Calcium	ND	200	ug/g						
Chromium	ND	5	ug/g						
Cobalt	ND	1	ug/g						
Copper	ND	5	ug/g						
Iron	ND	200	ug/g						
Lead	ND	1	ug/g						
Magnesium	ND	200	ug/g						
Mercury	ND	0.1	ug/g						
Manganese	ND	5	ug/g						
Molybdenum	ND	1	ug/g						
Nickel	ND	5	ug/g						
Potassium		200	ug/g						
Selenium			ug/g						
Silver		0.3	ug/g						
Thallium		50 1	ug/g						
Tin	ND	5	ug/g						
Vanadium	ND	10	ug/g ug/g						
Zinc	ND	20	ug/g						
Somi Volatilos			ug, g						
Senn-volatiles		0.00							
Acenaphthylene		0.02	ug/g						
Acenaphiliyiene		0.02	ug/g						
Renze [a] anthracene		0.02	ug/g						
Benzo [a] antifiacene Benzo [a] avrene		0.02	ug/g						
Benzo [b] fluoranthene	ND	0.02	ug/g ug/g						
Benzo [a h i] pervlene	ND	0.02	ug/g						
Benzo [k] fluoranthene	ND	0.02	ua/a						
Biphenyl	ND	0.02	ua/a						
Chrysene	ND	0.02	ug/g						
Dibenzo [a,h] anthracene	ND	0.02	ug/g						
Fluoranthene	ND	0.02	ug/g						
Fluorene	ND	0.02	ug/g						
Indeno [1,2,3-cd] pyrene	ND	0.02	ug/g						
1-Methylnaphthalene	ND	0.02	ug/g						
2-Methylnaphthalene	ND	0.02	ug/g						
Methylnaphthalene (1&2)	ND	0.04	ug/g						
Naphthalene	ND	0.01	ug/g						
Phenanthrene		0.02	ug/g						
Pyrene	1 20	0.02	ug/g		074	50 140			
Surragete: Z-FIU01000001111111	1.30		ug/g		97.4 75.0	50-140 50 140			
Sunoyale. Terphenyi-u14	1.01		ug/g		75.9	50-140			
Volatiles									
Benzene	ND	0.02	ug/g						
Ethylbenzene	ND	0.05	ug/g						
Ioluene	ND	0.05	ug/g						
m,p-xyienes	ND	0.05	ug/g						
o-xyiene	ND	0.05	ug/g						

WWW.PARACELLABS.COM

P: 1-800-749-1947 E: paracel@paracellabs.com

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3

SARNIA

123 Christina St. N. Sarnia, ON N7T 5T7

Page 7 of 13

Client: Geofirma Engineering Ltd.

Client PO: 45064625

Project Description: 11-200-11/ 191 Lees Ave

Order #: 1239209

Report Date: 05-Oct-2012 Order Date:26-Sep-2012

Mathad	Quality	Control: Blank	
meliiou	Quality	CUIILIUI. DIAIIK	

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Xylenes, total Surrogate: Toluene-d8	ND 8.37	0.05	ug/g <i>ug/g</i>		105	50-140			

P: 1-800-749-1947 E: paracel@paracellabs.com WWW.PARACELLABS.COM OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 8 of 13

Client: Geofirma Engineering Ltd.

Client PO: 45064625

Method Quality Control: Duplicate

Order #: 1239209

Report Date: 05-Oct-2012

Project Description: 11-200-11/ 191 Lees Ave

Order Date:26-Sep-2012

		Reporting		Source		%REC		RPD	
Analyte	Result	Limit	Units	Result	%REC	Limit	RPD	Limit	Notes
Hydrocerbono									
F1 PHCs (C6-C10)	ND	7	ua/a dry	ND				40	
Matala	ND	7	ug/g ury	ND				40	
	10.0	4	ua/a day	174			10.0	20	
Anumony	19.9 ND	1	ug/g dry	17.4 ND			12.9	30	
Barium	55.9	1	ug/g dry	50.5			10.2	30	
Beryllium	ND	0.5	ug/g dry	ND			0.0	30	
Cadmium	1.89	0.5	ug/g dry	1.72			9.5	30	
Calcium	3080	200	ug/g dry	2740			11.7	30	
Chromium	44.7	5	ug/g dry	41.0			8.7	30	
Cobalt	8.9	1	ug/g dry	8.5			4.6	30	
Copper	51.9	5	ug/g ary	51.1			1.6	30	
Lead	20000	200	ug/g dry	52 1			7.5	30	
Magnesium	5970	200	ug/g dry	5560			7.1	30	
Mercury	0.665	0.1	ug/g dry	0.669			0.6	35	
Manganese	293	5	ug/g dry	278			5.2	30	
Molybdenum	ND	1	ug/g dry	ND			0.0	30	
Nickel	27.3	5	ug/g dry	26.2			4.3	30	
Potassium	1540	200	ug/g dry	1450			6.3	30	
Selenium		0.3	ug/g dry				0.0	30	
Sodium	663	0.3 50	ug/g dry	721			0.0	30	
Thallium	ND	1	ua/a drv	ND			0.0	30	
Tin	5.8	5	ug/g dry	5.5			4.4	30	
Vanadium	31.7	10	ug/g dry	30.4			4.4	30	
Zinc	441	20	ug/g dry	413			6.4	30	
Physical Characteristics									
% Solids	85.3	0.1	% by Wt.	82.5			3.4	25	
Semi-Volatiles									
Acenaphthene	0.774	0.40	ug/g dry	0.656			16.6	40	
Acenaphthylene	21.2	0.40	ug/g dry	18.4			14.1	40	
Anthracene	4.69	0.40	ug/g dry	5.21			10.5	40	
Benzo [a] anthracene	20.9	0.40	ug/g dry	17.0			16.9	40	
Benzo [b] fluoranthene	32.0	0.40	ug/g dry	22.2			20.0	40	
Benzo [a,h,i] pervlene	14.2	0.40	ua/a drv	12.3			14.3	40	
Benzo [k] fluoranthene	18.1	0.40	ug/g dry	16.8			7.5	40	
Biphenyl	ND	0.40	ug/g dry	ND				40	GEN07
Chrysene	19.0	0.40	ug/g dry	15.8			18.6	40	
Dibenzo [a,h] anthracene	4.70	0.40	ug/g dry	4.00			16.0	40	
Fluoranthene	51.3	0.40	ug/g dry	44.6			13.9	40	
Fluorene Indeno [1, 2, 3-cd] pyrene	0.790	0.40	ug/g dry	127			7.0 15.1	40 40	
1-Methylnaphthalene	ND	0.40	ug/g dry ug/a dry	0.420			0.0	40	
2-Methylnaphthalene	ND	0.40	ug/g dry	0.527			0.0	40	
Naphthalene	0.358	0.20	ug/g dry	1.76			133.0	40	QR-04
Phenanthrene	0.779	0.40	ug/g dry	0.879			12.1	40	
Pyrene	49.0	0.40	ug/g dry	42.4	o. (50 4 40	14.4	40	
Surrogate: 2-Fluorobiphenyl	1.04		ug/g dry	ND	61.1	50-140			
Surrogate: Terpnenyi-a14	1.12		ug/g ary	ND	66.1	50-140			
Volatiles		0.00	<i>,</i> .					= -	
Benzene Ethylbenzene		0.02	ug/g dry	ND				50 E0	
	ND	0.05	ug/g ury	ND				50	
		1	0.T.T.A.W.A		NTACAR	EALLS			

P: 1-800-749-1947 E: paracel@paracellabs.com

300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8

5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

WWW.PARACELLABS.COM

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3 SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 9 of 13

Client: Geofirma Engineering Ltd.

Client PO: 45064625

Surrogate: Toluene-d8

Project Description: 11-200-11/ 191 Lees Ave

ND

ND

106

50-140

Method Quality Control: Duplicate Reporting Source %REC RPD Analyte . Limit Result %REC RPD Units Result Limit Limit Notes ND 0.05 ND 50 Toluene ug/g dry ND m,p-Xylenes ND 0.05 ug/g dry 50 o-Xylene 50

ug/g dry

ug/g dry

ND

8.86

0.05

P: 1-800-749-1947 E: PARACEL@PARACELLABS.COM WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8

MISSISSAUGA

NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

123 Christina St. N. Sarnia, ON N7T 5T7

Page 10 of 13

Order #: 1239209

Report Date: 05-Oct-2012 Order Date:26-Sep-2012

6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3

SARNIA

Client: Geofirma Engineering Ltd.

Client PO: 45064625

Method Quality Control: Snike

Order #: 1239209
Report Date: 05-Oct-20

Project Description: 11-200-11/ 191 Lees Ave

-Oct-2012 Order Date:26-Sep-2012

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hvdrocarbons									
F1 PHCs (C6-C10)	185	7	ua/a	ND	92.4	80-120			
Motale			00						
Antimony	55 9		ug/l	7.0	97.9	70-130			
Arsonic	43 A		ug/L		88.3	70-130			
Barium	70.0		ug/L	20.2	99.7	70-130			
Beryllium	50.1		ug/L	0.12	99.9	70-130			
Cadmium	46.0		ug/L	0.69	90.7	70-130			
Calcium	2080		ug/L	1090	99.1	70-130			
Chromium	63 1		ug/L	16.4	93.3	70-130			
Cobalt	51.1		ug/L	3.4	95.4	70-130			
Copper	66.3		ug/L	20.4	91 7	70-130			
Iron	9040		ug/L	7640	140	70-130		C	0.5-02
Lead	63 7		ug/L	20.8	85.8	70-130			
Magnesium	3300		ug/L	2220	107	70-130			
Mercury	1 79	0.1	ug/c	0.669	75.0	72-128			
Manganese	56.5	0.1	ug/g	19.8	73.4	70-130			
Molybdenum	42.9		ug/L	0.3	85.3	70-130			
Nickel	58.3		ug/L	10.5	95.6	70-130			
Potassium	1610		ug/L	579	103	70-130			
Selenium	45.4		ug/L	0.3	90.2	70-130			
Silver	39.0		ug/L	0.07	77.9	70-130			
Sodium	4400		ug/L	288	411	70-130		C	05-02
Thallium	55.8		ua/L	0.1	111	70-130			
Tin	49.0		ua/L	2.2	93.6	70-130			
Vanadium	57.9		ua/L	12.1	91.6	70-130			
Zinc	222		ug/L	165	114	70-130			
Semi-Volatiles			Ū						
Acenaphthene	0 147	0.02	na/a	ND	88.2	50-140			
Acenaphthylene	0.147	0.02	ug/g	ND	102	50-140			
Anthracene	0.148	0.02	ug/g	ND	88.7	50-140			
Benzo [a] anthracene	0.144	0.02	ug/g	ND	86.4	50-140			
Benzo [a] pyrene	0.141	0.02	ug/g	ND	84.6	50-140			
Benzo [b] fluoranthene	0.126	0.02	ua/a	ND	75.8	50-140			
Benzo [a.h.i] pervlene	0.145	0.02	ua/a	ND	87.3	50-140			
Benzo [k] fluoranthene	0.134	0.02	ua/a	ND	80.5	50-140			
Biphenvl	0.189	0.02	ua/a	ND	113	50-140			
Chrysene	0.153	0.02	ua/a	ND	91.7	50-140			
Dibenzo [a.h] anthracene	0.161	0.02	ua/a	ND	96.6	50-140			
Fluoranthene	0.137	0.02	ug/g	ND	82.3	50-140			
Fluorene	0.176	0.02	ug/g	ND	106	50-140			
Indeno [1,2,3-cd] pyrene	0.161	0.02	ug/g	ND	96.4	50-140			
1-Methylnaphthalene	0.111	0.02	ug/g	ND	66.9	50-140			
2-Methylnaphthalene	0.122	0.02	ug/g	ND	73.3	50-140			
Naphthalene	0.129	0.01	ug/g	ND	77.4	50-140			
Phenanthrene	0.146	0.02	ug/g	ND	87.5	50-140			
Pyrene	0.150	0.02	ug/g	ND	90.2	50-140			
Surrogate: 2-Fluorobiphenyl	1.17		ug/g		88.1	50-140			
			50						

Volatiles

P: 1-800-749-1947 E: paracel@paracellabs.com

WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3

SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 11 of 13

Client: Geofirma Engineering Ltd.

Client PO: 45064625

Toluene

o-Xylene

m,p-Xylenes

Project Description: 11-200-11/ 191 Lees Ave

ND

ND

ND

115

90.1

95.5

60-130

60-130

60-130

Method Quality Control: Spike										
Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes	
Benzene	3.94	0.02	ug/g	ND	98.5	60-130				
Ethylbenzene	3.62	0.05	ug/g	ND	90.5	60-130				

ug/g

ug/g

ug/g

4.61

7.21

3.82

0.05

0.05

0.05

P: 1-800-749-1947 E: paracel@paracellabs.com WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3

NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7 Order #: 1239209

Report Date: 05-Oct-2012 Order Date:26-Sep-2012

Page 12 of 13

Client: Geofirma Engineering Ltd.

Client PO: 45064625

QC Qualifiers :

GEN07 : Elevated detection limit because of dilution required due to high target analyte concentration.

QR-04 : Duplicate results exceeds RPD limits due to non-homogeneous matrix.

QS-02 : Spike level outside of control limits. Analysis batch accepted based on other QC included in the batch.

Sample Data Revisions

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected MDL: Method Detection Limit Source Result: Data used as source for matrix and duplicate samples %REC: Percent recovery. RPD: Relative percent difference.

Soil results are reported on a dry weight basis when the units are denoted with 'dry'. Where %Solids is reported, moisture loss includes the loss of volatile hydrocarbons.

CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.

- F1 range corrected for BTEX.

- F2 to F3 ranges corrected for appropriate PAHs where available.

- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.

- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.

: 1-800-749-1947 PARACEL@PARACELLABS.COM

WWW.PARACELLABS.COM

300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8

NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3 SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 13 of 13

Report Date: 05-Oct-2012

Order Date:26-Sep-2012 Project Description: 11-200-11/ 191 Lees Ave

OTTAWA

C	PARA LABORATORI	CEL es ltd.	TRUSTED . RESPONSIVE . RELIABLE .						Head Office 300-2319 St. Laurent Blvd. Ottawa, Ontario K1G 4J8 p: 1-800-749-1947 e: paracel@paracellabs.com				Chain of Custody (Lab Use Only) N? 4629						
OTTAWA KINGSTON NIAGARA MISSISSAUGA SAI) SAF	INIA			WV	vw.para	cellabs.	com			Р	age 1	_ of _	1		1
Client M Contact Address Telepho	name: <u>Geofirma</u> Name: <u>Sean Steclina</u> : I Raymond St. offaction	Hirma n Stecling nond si, ottawa				Project Reference: [] - Z 00 -]] Quote #							TAT: MRegular []3 Day []2 Day []1 Day Date Required:						
Critor	10 5-232-250	() Bas 152/11/0	77-11	LDCC	17714 I	2210	Ingle gev	hyma, (1	1				<u> </u>						
Matria	Emp 8 (6-1/6-1) ON (0]	10. Reg. 135/11 (Current)	1 able	KSC	Filing	1 O. Reg. 558/00	TIPWQ0 T	CCME] SUB	(Storm)	SUB	(Sanitar	y) Muni	cipality:			Other: _		
Dama	Type: S (Soil/Sed.) GW (Ground Wa	ter) SW (Surface Water) S	S (Storm/Sa	anitary Se	ewer) P (Paint) A (Air) O (0	Other)					Requ	ired A	nalyses					
rarac	23920	9	rix	Volume	Containers	Sample	e Taken	AH	EX/F1	als (ICP)	isture	2				×			
	Sample ID/Location	n Name	Mat	Air	fo #	Date	Time	A	19	met	ρщ								
1	MW12-16 SA2	BAG 874	soil		2	26-Sep-12		V	V	\checkmark	2	1	1×25	Tom2	+1V	ial -	-	1	1
2	MW12-16 SAS	BAG 875	1		1			\checkmark		\checkmark		1	122	50m				1	
3	MW12-16 SAL	BAG 876			2				\checkmark			14	1×18	lo mi	+1	vial		/	
4	MWIZ-IL SA7	RAG 877			1			/)	189	50m	L -			/	
5	MW12-16SA9	BAG 878			1					\checkmark				V.				/	
6	MW12-16 SA10	BAG 879	\checkmark		2	\checkmark			\checkmark			<i>ia</i> -	181	20 m	pL+	Via		/	
7	MW12-DUPA	BAG 880	11		4			\checkmark	V	V			127	20m	L + a	X 25	mil	+14	alv
8																			
9								1											
10																			
Comm	ents:														Method	of Deliv	ery:		
Relinqui	shed By (Print & Sign): Vanessa Scha	cf	Received Date/Tin	d by Driv	Depo	use aliz 3:3	Receiv	ed at Lab: MC	at	2101	2 5		Verified				1	2	c
Date/Tin	ne: 26-Sep-12 /144	3	Tempera	iture:	16	C	Tempe	rature:	ST8 "	2		04.9	pH Ver	fied	By:	A	A	24	0

Chain of Custody (Blank) - Rev 0.0 December 2011

RELIABLE.

Head Office 300-2319 St. Laurent Blvd. Ottawa, Ontario K1G 4J8 p: 1-800-749-1947 e: paracel@paracellabs.com

www.paracellabs.com

OTTAWA 🔹 KINGSTON 🔹 NIAGARA 🔹 MISSISSAUGA 🔹 SARNIA

Certificate of Analysis

Geofirma Engineering Ltd.

Suite 200, 1 Raymond St. Ottawa, ON K1R 1A2 Attn: Sean Sterling

Phone: (613) 232-2525 Fax: (613) 232-7149

Client PO: 45064625	Report Date: 11-Oct-2012
Project: 11-200-11/ 191 Lees Ave	Order Date: 2-Oct-2012
Custody: 93812	Order #: 1240076

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID	Client ID
1240076-01	MW12-02
1240076-02	OW116A
1240076-03	OW116B
1240076-04	MW12-06
1240076-05	OW110A

Approved By:

Mark Foto

Mark Foto, M.Sc. For Dale Robertson, BSc Laboratory Director

Any use of these results implies your agreement that our total liability in connection with this work, however arising shall be limited to the amount paid by you for this work, and that our employees or agents shall not under circumstances be liable to you in connection with this work

Client: Geofirma Engineering Ltd. Client PO: 45064625

Project Description: 11-200-11/ 191 Lees Ave

Order #: 1240076

Report Date: 11-Oct-2012 Order Date:2-Oct-2012

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date An	alysis Date
BTEX	EPA 624 - P&T GC-MS	5-Oct-12	6-Oct-12
CCME PHC F1	CWS Tier 1 - P&T GC-FID	5-Oct-12	6-Oct-12
PAHs by GC-MS, standard scan	EPA 625 - GC-MS, extraction	10-Oct-12	11-Oct-12

P: 1-800-749-1947 E: paracel@paracellabs.com WWW.PARACELLABS.COM OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 2 of 8

OPARACEL

Certificate of Analysis

Client: Geofirma Engineering Ltd.

Order #: 1240076

Report Date: 11-Oct-2012 Order Date:2-Oct-2012

Client PO: 45064625		Project Description: 11-200-11/ 191 Lees Ave								
	Client ID: Sample Date: Sample ID: MDI //Inite	MW12-02 01-Oct-12 1240076-01 Water	OW116A 01-Oct-12 1240076-02 Water	OW116B 01-Oct-12 1240076-03 Water	MW12-06 01-Oct-12 1240076-04 Water					
Volatiles	WDE/Onits									
Benzene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5					
Ethylbenzene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5					
Toluene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5					
m,p-Xylenes	0.5 ug/L	<0.5	<0.5	<0.5	<0.5					
o-Xylene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5					
Xylenes, total	0.5 ug/L	<0.5	<0.5	<0.5	<0.5					
Toluene-d8	Surrogate	95.0%	112%	111%	110%					
Hydrocarbons					-					
F1 PHCs (C6-C10)	25 ug/L	<25	<25	<25	<25					
Semi-Volatiles										
Acenaphthene	0.05 ug/L	<0.05	<0.05	<0.05	<0.05					
Acenaphthylene	0.05 ug/L	<0.05	<0.05	<0.05	<0.05					
Anthracene	0.01 ug/L	<0.01	<0.01	<0.01	<0.01					
Benzo [a] anthracene	0.01 ug/L	<0.01	<0.01	<0.01	<0.01					
Benzo [a] pyrene	0.01 ug/L	<0.01	<0.01	<0.01	<0.01					
Benzo [b] fluoranthene	0.05 ug/L	<0.05	<0.05	<0.05	<0.05					
Benzo [g,h,i] perylene	0.05 ug/L	<0.05	<0.05	<0.05	<0.05					
Benzo [k] fluoranthene	0.05 ug/L	<0.05	<0.05	<0.05	<0.05					
Biphenyl	0.05 ug/L	<0.05	<0.05	<0.05	<0.05					
Chrysene	0.05 ug/L	<0.05	<0.05	<0.05	<0.05					
Dibenzo [a,h] anthracene	0.05 ug/L	<0.05	<0.05	<0.05	<0.05					
Fluoranthene	0.01 ug/L	<0.01	<0.01	<0.01	<0.01					
Fluorene	0.05 ug/L	<0.05	<0.05	<0.05	<0.05					
Indeno [1,2,3-cd] pyrene	0.05 ug/L	<0.05	<0.05	<0.05	<0.05					
1-Methylnaphthalene	0.05 ug/L	<0.05	<0.05	<0.05	<0.05					
2-Methylnaphthalene	0.05 ug/L	<0.05	0.06	0.07	<0.05					
Methylnaphthalene (1&2)	0.10 ug/L	<0.10	<0.10	0.11	<0.10					
Naphthalene	0.05 ug/L	<0.05	0.30	0.77	0.29					
Phenanthrene	0.05 ug/L	<0.05	<0.05	<0.05	<0.05					
Pyrene	0.01 ug/L	0.01	<0.01	<0.01	0.02					
2-Fluorobiphenyl	Surrogate	93.0%	83.3%	81.2%	84.3%					
Terphenyl-d14	Surrogate	82.5%	84.0%	77.8%	79.9%					

P: 1-800-749-1947 E: paracel@paracellabs.com

WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3

Page 3 of 8

Client: Geofirma Engineering Ltd.

Order #: 1240076

Report Date: 11-Oct-2012 Order Date:2-Oct-2012

Client PO: 45064625		Project Description: 11-200-11/ 191 Lees Ave							
	Client ID:	OW110A	-	-	-				
	Sample Date:	01-Oct-12	-	-	-				
	Sample ID: MDI /Units	Water	-	-	-				
Volatiles	MDE/Onits								
Benzene	0.5 ug/L	<0.5	-	-	-				
Ethylbenzene	0.5 ug/L	<0.5	-	-	-				
Toluene	0.5 ug/L	<0.5	-	-	-				
m,p-Xylenes	0.5 ug/L	<0.5	-	-	-				
o-Xylene	0.5 ug/L	<0.5	-	-	-				
Xylenes, total	0.5 ug/L	<0.5	-	-	-				
Toluene-d8	Surrogate	111%	-	-	-				
Hydrocarbons									
F1 PHCs (C6-C10)	25 ug/L	<25	-	-	-				
Semi-Volatiles									
Acenaphthene	0.05 ug/L	<0.05	-	-	-				
Acenaphthylene	0.05 ug/L	<0.05	-	-	-				
Anthracene	0.01 ug/L	<0.01	-	-	-				
Benzo [a] anthracene	0.01 ug/L	<0.01	-	-	-				
Benzo [a] pyrene	0.01 ug/L	<0.01	-	-	-				
Benzo [b] fluoranthene	0.05 ug/L	<0.05	-	-	-				
Benzo [g,h,i] perylene	0.05 ug/L	<0.05	-	-	-				
Benzo [k] fluoranthene	0.05 ug/L	<0.05	-	-	-				
Biphenyl	0.05 ug/L	<0.05	-	-	-				
Chrysene	0.05 ug/L	<0.05	-	-	-				
Dibenzo [a,h] anthracene	0.05 ug/L	<0.05	-	-	-				
Fluoranthene	0.01 ug/L	<0.01	-	-	-				
Fluorene	0.05 ug/L	<0.05	-	-	-				
Indeno [1,2,3-cd] pyrene	0.05 ug/L	<0.05	-	-	-				
1-Methylnaphthalene	0.05 ug/L	<0.05	-	-	-				
2-Methylnaphthalene	0.05 ug/L	0.09	-	-	-				
Methylnaphthalene (1&2)	0.10 ug/L	0.13	-	-	-				
Naphthalene	0.05 ug/L	0.21	-	-	-				
Phenanthrene	0.05 ug/L	<0.05	-	-	-				
Pyrene	0.01 ug/L	<0.01	-	-	-				
2-Fluorobiphenyl	Surrogate	103%	-	-	-				
Terphenyl-d14	Surrogate	77.9%	-	-	-				

P: 1-800-749-1947 E: paracel@paracellabs.com

WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3 SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 4 of 8

Client: Geofirma Engineering Ltd.

Client PO: 45064625

Method Quality Control: Blank

	Report Date: 11-Oct-2012
	Order Date:2-Oct-2012
Project Description: 11-200-11/ 191 Lees Ave	

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hvdrocarbons									
F1 PHCs (C6-C10)	ND	25	ug/L						
Semi-Volatiles			Ū						
	ND	0.05	ug/l						
Acenaphthylene	ND	0.05	ug/L						
Anthracene	ND	0.00	ug/L						
Benzo [a] anthracene	ND	0.01	ug/L						
Benzo [a] pyrene	ND	0.01	ug/L						
Benzo [b] fluoranthene	ND	0.05	ug/L						
Benzo [g,h,i] perylene	ND	0.05	ug/L						
Benzo [k] fluoranthene	ND	0.05	ug/L						
Biphenyl	ND	0.05	ug/L						
Chrysene	ND	0.05	ug/L						
Dibenzo [a,h] anthracene	ND	0.05	ug/L						
Fluoranthene	ND	0.01	ug/L						
Fluorene	ND	0.05	ug/L						
Indeno [1,2,3-cd] pyrene	ND	0.05	ug/L						
1-Methylnaphthalene	ND	0.05	ug/L						
2-Methylnaphthalene (180)		0.05	ug/L						
Nethylnaphthalene (1&2)		0.10	ug/L						
Reporterono		0.05	ug/L						
Pyropo		0.05	ug/L						
Surrogate: 2-Eluorobinhenvl	18.9	0.01	ug/L		94.6	50-140			
Surrogate: Terphenyl-d1/	15.0		ug/L		75 1	50-140			
	15.0		ug/L		75.1	50-140			
Volatiles									
Benzene	ND	0.5	ug/L						
Ethylbenzene	ND	0.5	ug/L						
Toluene	ND	0.5	ug/L						
m,p-Xylenes	ND	0.5	ug/L						
o-Xylene	ND	0.5	ug/L						
Xylenes, total	ND	0.5	ug/L		110	50 4 40			
Surrogate: 101uene-08	36.0		ug/L		112	50-140			

P: 1-800-749-1947 E: paracel@paracellabs.com

WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3 orning Glory Crt. Falls, ON L2J 0A3

SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 5 of 8

Order #: 1240076

Client: Geofirma Engineering Ltd.

Client PO: 45064625

Project Description: 11-200-11/ 191 Lees Ave

Report Date: 11-Oct-2012

Order Date:2-Oct-2012

Method Quality Control: Duplicate										
Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes	
Hydrocarbons										
F1 PHCs (C6-C10)	ND	25	ug/L	ND				30		
Volatiles										
Benzene	ND	0.5	ug/L	ND				30		
Ethylbenzene	ND	0.5	ug/L	ND				30		
Toluene	ND	0.5	ug/L	ND				30		
m,p-Xylenes	ND	0.5	ug/L	ND				30		
o-Xylene	ND	0.5	ug/L	ND				30		
Surrogate: Toluene-d8	30.6		ug/L	ND	95.6	50-140				

P: 1-800-749-1947 E: paracel@paracellabs.com WWW.PARACELLABS.COM OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 6 of 8

Order #: 1240076

Client: Geofirma Engineering Ltd.

Client PO: 45064625

Method Quality Control: Spike

Order #: 1240076

%REC

Report Date: 11-Oct-2012 Order Date:2-Oct-2012

Notes

RPD

RPD

Project Description: 11-200-11/ 191 Lees Ave

Units

Source

%REC

Analyte	Result	Limit	Units	Result	%REC	Limit	RPD	Limit	Not
Hydrocarbons									
F1 PHCs (C6-C10)	1790	25	ug/L	ND	89.6	68-117			
Semi-Volatiles									
Acenaphthene	3.89	0.05	ug/L	ND	77.8	50-140			
Acenaphthylene	4.50	0.05	ug/L	ND	90.0	50-140			
Anthracene	4.44	0.01	ug/L	ND	88.8	50-140			
Benzo [a] anthracene	4.11	0.01	ug/L	ND	82.3	50-140			
Benzo [a] pyrene	3.56	0.01	ug/L	ND	71.2	50-140			
Benzo [b] fluoranthene	4.53	0.05	ug/L	ND	90.6	50-140			
Benzo [g,h,i] perylene	3.58	0.05	ug/L	ND	71.5	50-140			
Benzo [k] fluoranthene	4.95	0.05	ug/L	ND	99.0	50-140			
Biphenyl	3.72	0.05	ug/L	ND	74.4	50-140			
Chrysene	4.71	0.05	ug/L	ND	94.3	50-140			
Dibenzo [a,h] anthracene	4.71	0.05	ug/L	ND	94.2	50-140			
Fluoranthene	3.78	0.01	ug/L	ND	75.7	50-140			
Fluorene	3.92	0.05	ug/L	ND	78.3	50-140			
Indeno [1,2,3-cd] pyrene	4.13	0.05	ug/L	ND	82.5	50-140			
1-Methylnaphthalene	4.88	0.05	ug/L	ND	97.5	50-140			
2-Methylnaphthalene	4.49	0.05	ug/L	ND	89.8	50-140			
Naphthalene	4.07	0.05	ug/L	ND	81.4	50-140			
Phenanthrene	4.34	0.05	ug/L	ND	86.8	50-140			
Pyrene	4.20	0.01	ug/L	ND	83.9	50-140			
Surrogate: 2-Fluorobiphenyl	20.4		ug/L		102	50-140			
Volatiles									
Benzene	22.1	0.5	ug/L	ND	55.3	50-140			
Ethylbenzene	39.6	0.5	ug/L	ND	98.9	50-140			
Toluene	28.6	0.5	ug/L	ND	71.5	50-140			
m,p-Xylenes	85.3	0.5	ug/L	ND	107	50-140			
o-Xylene	43.0	0.5	ug/L	ND	107	50-140			

Reporting

Result

P: 1-800-749-1947 E: PARACEL@PARACELLABS.COM

WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3

SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 7 of 8

Client: Geofirma Engineering Ltd.

Client PO: 45064625

Project Description: 11-200-11/ 191 Lees Ave

Qualifier Notes:

None

Sample Data Revisions

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected MDL: Method Detection Limit Source Result: Data used as source for matrix and duplicate samples %REC: Percent recovery. RPD: Relative percent difference.

CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.

- F1 range corrected for BTEX.
- F2 to F3 ranges corrected for appropriate PAHs where available.
- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.
- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.

Report Date: 11-Oct-2012 Order Date:2-Oct-2012

P: 1-800-749-1947 E: paracel@paracellabs.com WWW.PARACELLABS.COM OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3

SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 8 of 8

6	BPARA LABORATO	ACEL RIES LTD.	TF RE RE	TRUSTED. Head Office 300-2319 St. Laurent Blvd. 300-2319 St. Laurent Blvd. RESPONSIVE. Ottawa, Ontario K1G 4J8 P: 1-800-749-1947 e: paracel@paracellabs.co					L Chain of Custody (Lab Use Only) Om 93812											
ΟΤΤΑ	WA ® KINGSTON ®	NIAGARA MISSIS	SAUGA	● SAI	RNIA					W	ww.p	arace	llabs.	com			Page	of .	4	
Client I Contact Address Telepho	Name: Geofinma Name: Sean S S: I Raymon Otau	Engineering tening of st. suite ac sa on s25	20			Project Reference Quote # PO # Email Address: SSter It	" -200- ity of 0! ng@geof	Han	va a.(° GY	n	1				TAT:	XI Regula 2 Day quired:	r [];	3 Day 1 Day	
Criter	ia: [] O. Reg. 153/04 Table .	nd Weter) SW (Surface Water)	nt) Table	RSC	Filing [] O. Reg. 558/00	Other)	CCME	: []	SUE	(Stor	rm) [ISUB	(Sanitar)	y) Munic	alvses			Other:	
Danas	al Onden Namehan	nu water) Sw (Surface water)	- 33 (Storing)	T	ewei) r (Ouler)	1×1						I		1				-
rarac	24007	le	rix	Volume	Containers	Sample	e Taken	l 's F1-F4+BTE	S	Is	als by ICP/MS	_	IWS)	HH	HC-FI	XAL				
	Sample ID/Loc	ation Name	Mat	Air	# of	Date	Time	PHC	NOV	PAH	Meta	Hg CrV	B (H	0	0	80				
1	MW12-02	BAG 882	GW		3	1-0CT-12	11:05					_		X	X	X				1.1
2	BWIIGA	BAG 883			1		11.18							X	\times	×				/
3	OWIIGB	BAG 884					11:32							X	X	X				- /
4	MW12-06	BAG 885					12:08							X	X	X				/
5	OWIGA	BAG 886	V		V		12:56							X	\times	Х				/
6		0																	<u> </u>	
7														<u> </u>			·			
8											_	_								-
9											_	_	_		-					
10																	Mail			1
Comm	ents: ay have high	n levels of	Co	nta	miv	ation											Pig	K UD	ry:	
Relinqui	shed By (Print & Sign):	The Third of S	Receive	d by Dri	ver/Depo	1: Teaure	Receiv	red at L	ab:						Verifie	d By:		1	1	
	M. G. K	17	Date/Ti	me: 0	2/11	0/12 10.	Date/	Time:	CT	02.	201	1	1	0.45	Date/T	ime:	rt.	2/12	11	:25
Date/Tir	ne: 2-00T-12 /A	1.30	Temper	ature:	1 1	C	Temp	erature:	9.	1	°C				pH Ve	rified	By:	N	A	

Chain of Custody (Env) - Rev 0.2 December 2011

RELIABLE.

Head Office 300-2319 St. Laurent Blvd. Ottawa, Ontario K1G 4J8 p: 1-800-749-1947 e: paracel@paracellabs.com

www.paracellabs.com

OTTAWA • KINGSTON • NIAGARA • MISSISSAUGA • SARNIA

Certificate of Analysis

Geofirma Engineering Ltd.

1 Raymond St., Suite 200 Ottawa, ON K1R 1A2 Attn: Jean Francois Dion

Phone: (613) 232-2525 Fax: (613) 232-7149

Project: 11-200-11/191 Lees Ave	Order Date: 29-Oct-2012
Custody: 4317	Order #: 1244020

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID **Client ID** 1244020-01 OW507b 1244020-02 OW507c 1244020-03 FB

Approved By:

Mark Fato

Mark Foto, M.Sc. For Dale Robertson, BSc Laboratory Director

Any use of these results implies your agreement that our total liability in connection with this work, however arising shall be limited to the amount paid by you for this work, and that our employees or agents shall not under circumstances be liable to you in connection with this work

Client: Geofirma Engineering Ltd. Client PO: 45064625

Project Description: 11-200-11/191 Lees Ave

Order #: 1244020

Report Date: 05-Nov-2012 Order Date: 29-Oct-2012

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date A	nalysis Date
BTEX	EPA 624 - P&T GC-MS	2-Nov-12	3-Nov-12
CCME PHC F1	CWS Tier 1 - P&T GC-FID	2-Nov-12	3-Nov-12
PAHs by GC-MS, standard scan	EPA 625 - GC-MS, extraction	30-Oct-12	31-Oct-12

P: 1-800-749-1947 E: paracel@paracellabs.com WWW.PARACELLABS.COM OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 2 of 7

Client: Geofirma Engineering Ltd.

Order #: 1244020

Report Date: 05-Nov-2012 Order Date: 29-Oct-2012

Client PO: 45064625 Volatiles Benzene Ethylbenzene Toluene m,p-Xylenes o-Xylene Xylenes, total		Project Descriptior	: 11-200-11/191 Lees	Ave	
	Client ID:	OW507b	OW507c	FB	-
	Sample Date:	29-Oct-12	29-Oct-12	29-Oct-12	-
	Sample ID:	1244020-01 Water	1244020-02 Water	1244020-03 Water	-
Volatiles	MDL/Units	Walei	Water	Water	-
Benzene	0.5 ug/L	~0.5	<0.5	<0.5	-
Ethylbenzene	0.5 ug/L	<0.5	<0.5	<0.5	
Toluene	0.5 ug/L	<0.5	<0.5	<0.5	
m p-Xylenes	0.5 ug/L	<0.5	<0.5	<0.5	-
o-Xvlene	0.5 ug/L	<0.5	<0.5	<0.5	-
Xylenes, total	0.5 ug/L	<0.5	<0.5	<0.5	-
Toluene-d8	Surrogate	92.6%	96.6%	94.9%	-
Hydrocarbons	<u> </u>		1	I	1
F1 PHCs (C6-C10)	25 ug/L	<25	<25	<25	-
Semi-Volatiles					
Acenaphthene	0.05 ug/L	<0.05	0.25	<0.05	-
Acenaphthylene	0.05 ug/L	<0.05	0.77	<0.05	-
Anthracene	0.01 ug/L	<0.01	0.03	<0.01	-
Benzo [a] anthracene	0.01 ug/L	<0.01	<0.01	<0.01	-
Benzo [a] pyrene	0.01 ug/L	<0.01	<0.01	<0.01	-
Benzo [b] fluoranthene	0.05 ug/L	<0.05	<0.05	<0.05	-
Benzo [g,h,i] perylene	0.05 ug/L	<0.05	<0.05	<0.05	-
Benzo [k] fluoranthene	0.05 ug/L	<0.05	<0.05	<0.05	-
Biphenyl	0.05 ug/L	<0.05	0.18	<0.05	-
Chrysene	0.05 ug/L	<0.05	<0.05	<0.05	-
Dibenzo [a,h] anthracene	0.05 ug/L	<0.05	<0.05	<0.05	-
Fluoranthene	0.01 ug/L	<0.01	<0.01	<0.01	-
Fluorene	0.05 ug/L	<0.05	0.08	<0.05	-
Indeno [1,2,3-cd] pyrene	0.05 ug/L	<0.05	<0.05	<0.05	-
1-Methylnaphthalene	0.05 ug/L	0.06	0.05	<0.05	-
2-Methylnaphthalene	0.05 ug/L	0.15	0.05	<0.05	-
Methylnaphthalene (1&2)	0.10 ug/L	0.21	0.10	<0.10	-
Naphthalene	0.05 ug/L	0.26	0.08	<0.05	-
Phenanthrene	0.05 ug/L	<0.05	0.06	<0.05	-
Pyrene	0.01 ug/L	0.04	0.03	<0.01	-
2-Fluorobiphenyl	Surrogate	85.1%	65.1%	65.1%	-
Terphenyl-d14	Surrogate	96.1%	89.0%	100%	-

P: 1-800-749-1947 E: paracel@paracellabs.com

WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8

NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3 SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 3 of 7

Client: Geofirma Engineering Ltd.

Client PO: 45064625

Hydrocarbons F1 PHCs (C6-C10)

Semi-Volatiles

Analyte

Method Quality Control: Blank

Report Da
Order D

%REC

%REC

Limit

Report Date: 05-Nov-2012 Order Date: 29-Oct-2012

RPD

Limit

Notes

RPD

Project Description: 11-200-11/191 Lees Ave

Units

ug/L

Source

Result

Acenaphthene ND 0.05 ug/L Acenaphthylene ND 0.05 ug/L Anthracene ND 0.01 uğ/L Benzo [a] anthracene ND 0.01 ug/L Benzo [a] pyrene 0.01 ug/L ND Benzo [b] fluoranthene ug/L ND 0.05 Benzo [g,h,i] perylene Benzo [k] fluoranthene uğ/L ND 0.05 ND 0.05 uğ/L Biphenyl ND 0.05 ug/L Chrysene ND 0.05 ug/L Dibenzo [a,h] anthracene uğ/L ND 0.05 ug/L Fluoranthene ND 0.01 0.05 ug/L Fluorene ND Indeno [1,2,3-cd] pyrene ND 0.05 ug/L 1-Methylnaphthalene ug/L ND 0.05 2-Methylnaphthalene ND 0.05 ug/L Methylnaphthalene (1&2) ND 0.10 ug/L Naphthalene ND 0.05 ug/L uğ/L Phenanthrene ND 0.05 Pyrene ND 0.01 ug/L Surrogate: 2-Fluorobiphenyl 80.5 50-140 16.1 ug/L Surrogate: Terphenyl-d14 50-140 23.6 ug/L 118 Volatiles Benzene ND 0.5 ug/L Ethylbenzene ND 0.5 uğ/L Toluene ND 0.5 ug/L m,p-Xylenes ND 0.5 ug/L o-Xylene ND 0.5 uğ/L Xylenes, total ND 0.5 ug/L ug/L Surrogate: Toluene-d8 30.9 96.7 50-140

Reporting

Limit

25

Result

ND

P: 1-800-749-1947
E: paracel@paracellabs.com

WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3 SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 4 of 7

Order #: 1244020

Client: Geofirma Engineering Ltd.

Client PO: 45064625

Project Description: 11-200-11/191 Lees Ave

Order #: 1244020

Report Date: 05-Nov-2012 Order Date: 29-Oct-2012

Method Quality Control: Duplicate												
Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes			
Hydrocarbons												
F1 PHCs (C6-C10)	ND	25	ug/L	ND				30				
Volatiles												
Benzene	ND	0.5	ug/L	ND				30				
Ethylbenzene	ND	0.5	ug/L	ND				30				
Toluene	ND	0.5	ug/L	ND				30				
m,p-Xylenes	ND	0.5	ug/L	ND				30				
o-Xylene	ND	0.5	ug/L	ND				30				
Surrogate: Toluene-d8	31.4		ug/L	ND	98.1	50-140						

P: 1-800-749-1947 E: paracel@paracellabs.com WWW.PARACELLABS.COM OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 5 of 7

Client: Geofirma Engineering Ltd.

Client PO: 45064625

Method Quality Control: Spike

	Order #:	1244020
--	----------	---------

Report Date: 05-Nov-2012

Project Description: 11-200-11/191 Lees Ave

Order Date:29-Oct-2012

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	1710	25	ug/L	ND	85.5	68-117			
Semi-Volatiles									
Acenaphthene	5.30	0.05	ug/L	ND	106	50-140			
Acenaphthylene	5.80	0.05	ug/L	ND	116	50-140			
Anthracene	5.48	0.01	ug/L	ND	110	50-140			
Benzo [a] anthracene	4.94	0.01	ug/L	ND	98.8	50-140			
Benzo [a] pyrene	5.24	0.01	ug/L	ND	105	50-140			
Benzo [b] fluoranthene	3.96	0.05	ug/L	ND	79.1	50-140			
Benzo [g,h,i] perylene	5.32	0.05	ug/L	ND	106	50-140			
Benzo [k] fluoranthene	3.82	0.05	ug/L	ND	76.3	50-140			
Biphenyl	5.79	0.05	ug/L	ND	116	50-140			
Chrysene	4.45	0.05	ug/L	ND	89.0	50-140			
Dibenzo [a,h] anthracene	5.10	0.05	ug/L	ND	102	50-140			
Fluoranthene	4.91	0.01	ug/L	ND	98.1	50-140			
Fluorene	5.08	0.05	ug/L	ND	102	50-140			
Indeno [1,2,3-cd] pyrene	5.18	0.05	ug/L	ND	104	50-140			
1-Methylnaphthalene	4.61	0.05	ug/L	ND	92.3	50-140			
2-Methylnaphthalene	4.93	0.05	ug/L	ND	98.5	50-140			
Naphthalene	4.50	0.05	ug/L	ND	89.9	50-140			
Phenanthrene	5.79	0.05	ug/L	ND	116	50-140			
Pyrene	6.08	0.01	ug/L	ND	122	50-140			
Surrogate: 2-Fluorobiphenyl	15.0		ug/L		75.1	50-140			
Volatiles									
Benzene	30.8	0.5	ug/L	ND	77.0	50-140			
Ethylbenzene	35.5	0.5	ug/L	ND	88.8	50-140			
Toluene	33.0	0.5	ug/L	ND	82.6	50-140			
m,p-Xylenes	70.6	0.5	ug/L	ND	88.2	50-140			
o-Xylene	37.6	0.5	ug/L	ND	94.0	50-140			

P: 1-800-749-1947 E: paracel@paracellabs.com

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3

SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 6 of 7

WWW.PARACELLABS.COM

Client: Geofirma Engineering Ltd.

Client PO: 45064625

Project Description: 11-200-11/191 Lees Ave

Qualifier Notes:

None

Sample Data Revisions

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected MDL: Method Detection Limit Source Result: Data used as source for matrix and duplicate samples %REC: Percent recovery. RPD: Relative percent difference.

CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.

- F1 range corrected for BTEX.
- F2 to F3 ranges corrected for appropriate PAHs where available.
- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.
- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.

Report Date: 05-Nov-2012 Order Date:29-Oct-2012

P: 1-800-749-1947 E: paracel@paracellabs.com www.paracellabs.com OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3

SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 7 of 7

COPARACEL LABORATORIES LTD.	TRUSTED . RESPONSIVE . D. RELIABLE .				H G G F F	Head Office 300-2319 St. Laurent Blvd. Ottawa, Ontario K1G 4J8 p: 1-800-749-1947 e: paracel@paracellabs.com			Chain of Custody (Lab Use Only) Nº 4317				y	
OTTAWA KINGSTON NIAGARA MISSISS	TAWA 🖲 KINGSTON 🖲 NIAGARA 🖲 MISSISSAUGA 🖲 SARNIA					V	ww.para	cellabs.co	m		P	age /	of)	
Client Name: <u>Stoftmæ Eng It</u> , Contact Name: JP Degn Address:	Vame: <u>Geofune English</u> 1 Name: <u>A Dean</u> s: <u>PO#</u> Email Address: <u>N D D</u>					- // FOHQUQ. []2 Day []1 Da					[] 3 Day [] 1 Day			
Telephone: 53-290-4005				JFL)0n(26	eofi	na.	Can	Date K	equirea:			
Criteria: O. Reg. 153/04 Table K O. Reg. 153/11 (Current)	Table 3	[]RSC	Filing] O. Reg. 558/00	PWQO] CCME	[]SUB	Storm) []	SUB (Sanita	ury) Muni	cipality:		[]0(her:
Matrix Type: S (Soil/Sed.) GW (Ground Water) SW (Surface Water) SS	6 (Storm/S	anitary Se	ewer) P (Paint) A (Air) O (Ot	her)				Req	uired A	nalvses			
Paracel Order Number:	rix	Volume	Containers	Sample	Taken	4H	CX L							
Sample ID/Location Name	Mat	Air	Jo #	Date	Time	1	Bte							
1 OW 507 b BAH195	GW		3	29-0ct-12		X	X		_					+
2 OW 507C BAH 196	1			1		×	×							
3 + B BAH 197.	J.		J	U.		X	X							+
4														
5				· .										
7	1													
8					-					. 4				
9				· · · ·				<u></u>						
10						1								
omments: City of Ottawa	L_	jok	>	zer J	F. S	C .						Method c	of Delivery:	
elinquished By (Print & Sign):	Received	d by Driv	er/Depor	EOUSE	Receiv	ed at Lab: NEEP(RN	aid.	11.0	Verified	By:	a	P	2,
ate/Time: 29- Oct - 10:00 An	Tempera	iture:	19	<u>12 10 27</u>	Tempe	rature: 1	129,2	uld	11.20	Date/Tir	ne:	QC	76	1/6
a 1- UCJ = 10.00 M	1 empera	Chain	of Cus	stody (Blank) -	Tempe Rev 0.0 De	rature: 1	• <u>2011</u>			pH Veri	fied E	5:	11:5	

RELIABLE.

Head Office 300-2319 St. Laurent Blvd. Ottawa, Ontario K1G 4J8 p: 1-800-749-1947 e: paracel@paracellabs.com

www.paracellabs.com

OTTAWA • KINGSTON • NIAGARA • MISSISSAUGA • SARNIA

Certificate of Analysis

Geofirma Engineering Ltd.

Suite 200, 1 Raymond St. Ottawa, ON K1R 1A2 Attn: Sean Sterling

Client PO: 45064625 Project: 11-200-11/ 191 Lees Ave Custody: 94611

Phone: (613) 232-2525 Fax: (613) 232-7149

Report Date: 16-Nov-2012	
Order Date: 5-Oct-2012	
Revised Report Order #: 1240349	

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID	Client ID
1240349-01	MW12-14
1240349-02	E-006
1240349-03	MW19-17
1240349-04	OW112B

Approved By:

Mark Foto

Mark Foto, M.Sc. For Dale Robertson, BSc Laboratory Director

Any use of these results implies your agreement that our total liability in connection with this work, however arising shall be limited to the amount paid by you for this work, and that our employees or agents shall not under circumstances be liable to you in connection with this work

Client: Geofirma Engineering Ltd. Client PO: 45064625

Project Description: 11-200-11/ 191 Lees Ave

Order #: 1240349

Report Date: 16-Nov-2012 Order Date:5-Oct-2012

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date Analys	is Date
BTEX	EPA 624 - P&T GC-MS	11-Oct-12 11	-Oct-12
CCME PHC F1	CWS Tier 1 - P&T GC-FID	11-Oct-12 11	-Oct-12
PAHs by GC-MS, standard scan	EPA 625 - GC-MS, extraction	16-Oct-12 16	-Oct-12

P: 1-800-749-1947 E: paracel@paracellabs.com WWW.PARACELLABS.COM OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 2 of 7

Client: Geofirma Engineering Ltd.

Order #: 1240349

Report Date: 16-Nov-2012 Order Date:5-Oct-2012

Client PO: 45064625		Project Description: 11-200-11/ 191 Lees Ave					
	Client ID: Sample Date: Sample ID:	MW12-14 05-Oct-12 1240349-01	E-006 05-Oct-12 1240349-02	MW19-17 05-Oct-12 1240349-03	OW112B 05-Oct-12 1240349-04		
	MDL/Units	Water	Water	Water	Water		
volatiles	0.5.40%						
Benzene	0.5 ug/L	110	<0.5	<0.5	695		
Ethylbenzene	0.5 ug/L	657 [1]	<0.5	<0.5	644		
Toluene	0.5 ug/L	45.5	<0.5	<0.5	2030		
m,p-Xylenes	0.5 ug/L	168	<0.5	<0.5	965		
o-Xylene	0.5 ug/L	692 [1]	<0.5	<0.5	494		
Xylenes, total	0.5 ug/L	860 [1]	<0.5	<0.5	1460		
Toluene-d8	Surrogate	94.5%	104%	101%	104%		
Hydrocarbons	05		Γ		1		
F1 PHCs (C6-C10)	25 Ug/L	<25	<25	<25	<1250		
Semi-Volatiles	0.05.00/1			0.05			
Acenaphthene	0.05 ug/L	<5.00 [2]	<0.05	<0.05	<10.0 [2]		
Acenaphthylene	0.05 ug/L	19.0	<0.05	<0.05	127		
Anthracene	0.01 ug/L	<1.00 [2]	<0.01	<0.01	3.46		
Benzo [a] anthracene	0.01 ug/L	<1.00 [2]	<0.01	<0.01	<2.00 [2]		
Benzo [a] pyrene	0.01 ug/L	<1.00 [2]	<0.01	<0.01	<2.00 [2]		
Benzo [b] fluoranthene	0.05 ug/L	<5.00 [2]	<0.05	<0.05	<10.0 [2]		
Benzo [g,h,i] perylene	0.05 ug/L	<5.00 [2]	<0.05	<0.05	<10.0 [2]		
Benzo [k] fluoranthene	0.05 ug/L	<5.00 [2]	<0.05	<0.05	<10.0 [2]		
Biphenyl	0.05 ug/L	<5.00 [2]	<0.05	<0.05	19.7		
Chrysene	0.05 ug/L	<5.00 [2]	<0.05	<0.05	<10.0 [2]		
Dibenzo [a,h] anthracene	0.05 ug/L	<5.00 [2]	<0.05	<0.05	<10.0 [2]		
Fluoranthene	0.01 ug/L	<1.00 [2]	<0.01	<0.01	<2.00 [2]		
Fluorene	0.05 ug/L	<5.00 [2]	<0.05	<0.05	20.1		
Indeno [1,2,3-cd] pyrene	0.05 ug/L	<5.00 [2]	<0.05	<0.05	<10.0 [2]		
1-Methylnaphthalene	0.05 ug/L	38.8	0.06	0.12	312		
2-Methylnaphthalene	0.05 ug/L	37.6	0.08	0.17	212		
Methylnaphthalene (1&2)	0.10 ug/L	76.4	0.13	0.29	524		
Naphthalene	0.05 ug/L	631	0.25	0.91	2560		
Phenanthrene	0.05 ug/L	<5.00 [2]	<0.05	<0.05	18.4		
Pyrene	0.01 ug/L	<1.00 [2]	<0.01	<0.01	5.09		
2-Fluorobiphenyl	Surrogate	80.4%	83.0%	83.6%	66.2%		
Terphenyl-d14	Surrogate	88.0%	99.5%	99.7%	60.9%		

P: 1-800-749-1947 E: paracel@paracellabs.com

WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3

Page 3 of 7

Client: Geofirma Engineering Ltd.

Client PO: 45064625

Method Quality Control: Blank

Report Date: 16-Nov-2012
Order Date:5-Oct-2012

Project Description: 11-200-11/ 191 Lees Ave

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	ND	25	ug/L						
Semi-Volatiles			0						
Aconantitiona		0.05	ug/l						
Acenaphthylene		0.05	ug/L						
Actinapititiyiene		0.05	ug/L						
Renzo [a] anthracene		0.01	ug/L						
Benzo [a] pyrene		0.01	ug/L						
Benzo [b] fluoranthene		0.01	ug/L						
Benzo [a h i] pervlene	ND	0.00	ug/L						
Benzo [k] fluoranthene	ND	0.05	ug/L						
Biphenyl	ND	0.05	ug/L						
Chrysene	ND	0.05	ug/L						
Dibenzo [a.h] anthracene	ND	0.05	ug/L						
Fluoranthene	ND	0.01	ug/L						
Fluorene	ND	0.05	ug/L						
Indeno [1,2,3-cd] pyrene	ND	0.05	ug/L						
1-Methylnaphthalene	ND	0.05	ug/L						
2-Methylnaphthalene	ND	0.05	ug/L						
Methylnaphthalene (1&2)	ND	0.10	ug/L						
Naphthalene	ND	0.05	ug/L						
Phenanthrene	ND	0.05	ug/L						
Pyrene	ND	0.01	ug/L						
Surrogate: 2-Fluorobiphenyl	18.7		ug/L		93.5	50-140			
Surrogate: Terphenyl-d14	19.8		ug/L		98.9	50-140			
Volatiles									
Benzene	ND	0.5	ua/l						
Fthylbenzene	ND	0.5	ug/L						
Toluene	ND	0.5	ug/L						
m.p-Xvlenes	ND	0.5	ua/L						
o-Xvlene	ND	0.5	ua/L						
Xvlenes, total	ND	0.5	ua/L						
		0.0	~ 9' -						

P: 1-800-749-1947 E: paracel@paracellabs.com

WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3

SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 4 of 7

Order #: 1240349

Client: Geofirma Engineering Ltd.

Client PO: 45064625

Project Description: 11-200-11/ 191 Lees Ave

Order #: 1240349

Report Date: 16-Nov-2012 Order Date:5-Oct-2012

Method Quality Control: Duplicate									
Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	ND	25	ug/L	ND				30	
Volatiles									
Benzene	ND	0.5	ug/L	ND				30	
Ethylbenzene	ND	0.5	ug/L	ND				30	
Toluene	ND	0.5	ug/L	ND				30	
m,p-Xylenes	ND	0.5	ug/L	ND				30	
o-Xylene	ND	0.5	ug/L	ND				30	
Surrogate: Toluene-d8	29.5		ug/L	ND	92.2	50-140			

P: 1-800-749-1947 E: paracel@paracellabs.com WWW.PARACELLABS.COM OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 5 of 7

Client: Geofirma Engineering Ltd.

Client PO: 45064625

Method Quality Control: Spike

Report Date: 16-Nov-2012 Order Date:5-Oct-2012

Project Description: 11-200-11/ 191 Lees Ave

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	1670	25	ug/L	ND	83.6	68-117			
Semi-Volatiles									
Acenaphthene	3.82	0.05	ua/L	ND	76.5	50-140			
Acenaphthylene	4.16	0.05	ug/L	ND	83.2	50-140			
Anthracene	3.33	0.01	ug/L	ND	66.6	50-140			
Benzo [a] anthracene	3.54	0.01	ug/L	ND	70.8	50-140			
Benzo [a] pyrene	3.12	0.01	ug/L	ND	62.4	50-140			
Benzo [b] fluoranthene	3.78	0.05	ug/L	ND	75.6	50-140			
Benzo [g,h,i] perylene	3.78	0.05	ug/L	ND	75.6	50-140			
Benzo [k] fluoranthene	4.43	0.05	ug/L	ND	88.7	50-140			
Biphenyl	3.89	0.05	ug/L	ND	77.8	50-140			
Chrysene	3.74	0.05	ug/L	ND	74.8	50-140			
Dibenzo [a,h] anthracene	4.75	0.05	ug/L	ND	95.1	50-140			
Fluoranthene	3.47	0.01	ug/L	ND	69.3	50-140			
Fluorene	3.66	0.05	ug/L	ND	73.3	50-140			
Indeno [1,2,3-cd] pyrene	4.11	0.05	ug/L	ND	82.3	50-140			
1-Methylnaphthalene	4.82	0.05	ug/L	ND	96.3	50-140			
2-Methylnaphthalene	4.44	0.05	ug/L	ND	88.8	50-140			
Naphthalene	4.17	0.05	ug/L	ND	83.4	50-140			
Phenanthrene	4.18	0.05	ug/L	ND	83.7	50-140			
Pyrene	4.07	0.01	ug/L	ND	81.3	50-140			
Surrogate: 2-Fluorobiphenyl	19.7		ug/L		98.6	50-140			
Volatiles									
Benzene	48.2	0.5	ug/L	ND	120	50-140			
Ethylbenzene	27.1	0.5	ug/L	ND	67.8	50-140			
Toluene	36.8	0.5	ug/L	ND	92.1	50-140			
m,p-Xylenes	77.6	0.5	ug/L	ND	97.0	50-140			
o-Xylene	43.8	0.5	ug/L	ND	109	50-140			

P: 1-800-749-1947 E: paracel@paracellabs.com

WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3 SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 6 of 7

Client: Geofirma Engineering Ltd.

Project Description: 11-200-11/ 191 Lees Ave

Qualifier Notes:

Client PO: 45064625

Sample Qualifiers :

2: Elevated detection limit because of dilution required due to high target analyte concentration.

1: This result exceeds the calibration range of the instrument. The result may be biased low.

Sample Data Revisions

None

Work Order Revisions / Comments:

Revision 1 - this report includes revised client Sample ID's.

Other Report Notes:

n/a: not applicable ND: Not Detected MDL: Method Detection Limit Source Result: Data used as source for matrix and duplicate samples %REC: Percent recovery. RPD: Relative percent difference.

CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.

- F1 range corrected for BTEX.

- F2 to F3 ranges corrected for appropriate PAHs where available.

- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.

- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.

P: 1-800-749-1947 E: paracel@paracellabs.com WWW.PARACELLABS.COM OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3

SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 7 of 7

CARACEL LABORATORIES LTD.	TF RE RE	IUST SPC ELIAE	ED. NSI\ BLE.	/E.				Head Office 300-2319 St. Laurent Blv Ottawa, Ontario K1G 4Ji p: 1-800-749-1947 e: paracel@paracellabs.com				d. 3 (Lab Use Only) com 94611					
Client Name: Gevfirma Contact Name: Seen Sterling Address: I Raymond St, Suite Zoo				Project Reference: 11-200-11 Quote # City of Ottawa PO # Email Address:						TAT: Regular 3 Day 2 Day 1 Day Date Required:							
Telephone: 613-232-2525 Criteria: [10. Reg. 153/04 Table [10. Reg. 153/11 (Current)]	Table	LIRSC	Filing 1	55Te	erling Qg	40 fi	m	() UB (S	m		t (Canita	nà Muni	ninelitur			104	
Matrix Type: S (Soil/Sed.) GW (Ground Water) SW (Surface Water) SS	S (Storm/S	anitary S	ewer) P	(Paint) A (Air) O (Other)	I CCML	110	00 (3	ionn <i>y</i>	1 201	Requ	ired A	nalyses			Outer: "	
Paracel Order Number: 1240349	ix	Volume	Containers	Sample	e Taken	F1-F4+BTEX		s by ICP/MS		VS)	IC-F1	EK					
Sample ID/Location Name	Matr	Air V	# of	Date	Time	PHCs	PAHs	Metal	Hg	B (HV	bt	BI					f
1 MW12-14 BAGSTUNGKY	seit	-	3	5-0CT-12	9:40		V				V						1
2 E-006 BAG 977			1		10:36		V	1			V	1					1
3 MW12-19 BAG 978					11:35		L				~	/)
4 OWILDB BAG979	d		\downarrow	T	10:00		1				V	1					
5													1.1				
6																	
7												t.					
8																	
9																	
10																	
Comments: May be contaminated in	ith	(0,	J.	tar										Method	of Delive	ry: D	
Relinquished By (Print & Sign): Varussa Schart Junior Chart	Received	by Driv	er/Depoi	coust.	Receive	ed at Lat): JAN	10.0				Verified	IBy: AC			1	5
Date/Time:	Date/Tin Tempera	ie: 02		112 24	Date/Ti Temper	me: () ature: _	10) 7 _°E	112	0	3.57	Date/Time: Oct 5/12 5:1 (e					

Chain of Custody (Env) - Rev 0.2 December 2011

RELIABLE.

Head Office 300-2319 St. Laurent Blvd. Ottawa, Ontario K1G 4J8 p: 1-800-749-1947 e: paracel@paracellabs.com

www.paracellabs.com

OTTAWA 🔹 KINGSTON 🔹 NIAGARA 🔹 MISSISSAUGA 🔹 SARNIA

Certificate of Analysis

Geofirma Engineering Ltd.

Suite 200, 1 Raymond St. Ottawa, ON K1R 1A2 Attn: Sean Sterling

Phone: (613) 232-2525 Fax: (613) 232-7149

Client PO: 45064625	Report Date: 15-Oct-2012
Project: 11-200-11/ 191 Lees Ave	Order Date: 4-Oct-2012
Custody: 94612	Order #: 1240284

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID	Client ID
1240284-01	MW12-11
1240284-02	MW12-12
1240284-03	OW122C
1240284-04	OW122B
1240284-05	BH001
1240284-06	MW12-07

Approved By:

Mark Foto

Mark Foto, M.Sc. For Dale Robertson, BSc Laboratory Director

Any use of these results implies your agreement that our total liability in connection with this work, however arising shall be limited to the amount paid by you for this work, and that our employees or agents shall not under circumstances be liable to you in connection with this work

Client: Geofirma Engineering Ltd. Client PO: 45064625

Project Description: 11-200-11/ 191 Lees Ave

Order #: 1240284

Report Date: 15-Oct-2012 Order Date:4-Oct-2012

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date	Analysis Date
BTEX	EPA 624 - P&T GC-MS	10-Oct-12	10-Oct-12
CCME PHC F1	CWS Tier 1 - P&T GC-FID	10-Oct-12	10-Oct-12
PAHs by GC-MS, standard scan	EPA 625 - GC-MS, extraction	12-Oct-12	12-Oct-12

P: 1-800-749-1947 E: paracel@paracellabs.com WWW.PARACELLABS.COM OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 2 of 8

Client: Geofirma Engineering Ltd.

Order #: 1240284

Report Date: 15-Oct-2012 Order Date:4-Oct-2012

Client PO: 45064625		Project Description: 11-200-11/ 191 Lees Ave							
	Client ID: Sample Date: Sample ID: MDI /Units	MW12-11 04-Oct-12 1240284-01 Water	MW12-12 04-Oct-12 1240284-02 Water	OW122C 04-Oct-12 1240284-03 Water	OW122B 04-Oct-12 1240284-04 Water				
Volatiles	MDE/ONIG								
Benzene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5				
Ethylbenzene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5				
Toluene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5				
m,p-Xylenes	0.5 ug/L	<0.5	<0.5	<0.5	<0.5				
o-Xylene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5				
Xylenes, total	0.5 ug/L	<0.5	<0.5	<0.5	<0.5				
Toluene-d8	Surrogate	86.7%	84.6%	87.4%	87.1%				
Hydrocarbons									
F1 PHCs (C6-C10)	25 ug/L	<25	<25	<25	<25				
Semi-Volatiles			1	1					
Acenaphthene	0.05 ug/L	2.72	<0.05	<0.05	<0.05				
Acenaphthylene	0.05 ug/L	59.2	<0.05	<0.05	<0.05				
Anthracene	0.01 ug/L	5.02	<0.01	<0.01	<0.01				
Benzo [a] anthracene	0.01 ug/L	3.38	<0.01	<0.01	<0.01				
Benzo [a] pyrene	0.01 ug/L	3.10	<0.01	<0.01	<0.01				
Benzo [b] fluoranthene	0.05 ug/L	3.24	<0.05	<0.05	<0.05				
Benzo [g,h,i] perylene	0.05 ug/L	1.30	<0.05	<0.05	<0.05				
Benzo [k] fluoranthene	0.05 ug/L	1.25	<0.05	<0.05	<0.05				
Biphenyl	0.05 ug/L	3.94	<0.05	<0.05	<0.05				
Chrysene	0.05 ug/L	3.24	<0.05	<0.05	<0.05				
Dibenzo [a,h] anthracene	0.05 ug/L	0.57	<0.05	<0.05	<0.05				
Fluoranthene	0.01 ug/L	6.14	<0.01	<0.01	<0.01				
Fluorene	0.05 ug/L	12.6	<0.05	<0.05	<0.05				
Indeno [1,2,3-cd] pyrene	0.05 ug/L	1.32	<0.05	<0.05	<0.05				
1-Methylnaphthalene	0.05 ug/L	98.5	<0.05	<0.05	<0.05				
2-Methylnaphthalene	0.05 ug/L	7.73	<0.05	<0.05	<0.05				
Methylnaphthalene (1&2)	0.10 ug/L	106	<0.10	<0.10	<0.10				
Naphthalene	0.05 ug/L	91.1	<0.05	0.84	0.63				
Phenanthrene	0.05 ug/L	13.1	<0.05	<0.05	<0.05				
Pyrene	0.01 ug/L	11.9	<0.01	<0.01	<0.01				
2-Fluorobiphenyl	Surrogate	81.2%	86.0%	89.4%	86.8%				
Terphenyl-d14	Surrogate	79.6%	101%	109%	117%				

P: 1-800-749-1947 E: paracel@paracellabs.com

WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8

NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3 SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3

Page 3 of 8

Client: Geofirma Engineering Ltd.

Report Date: 15-Oct-2012 Order Date:4-Oct-2012

Client PO: 45064625 Project Description: 11-200-11/ 191 Lees Ave							
	Client ID:	BH001	MW12-07	-	-		
	Sample Date:	04-Oct-12	04-Oct-12	-	-		
	Sample ID:	1240204-00 Water	1240204-00 Water	-	-		
Volatiles	MDL/Units	Water	Water	_	_		
Benzene	0.5 ug/L	<0.5	<0.5	-	-		
Ethylbenzene	0.5 ug/L	<0.5	<0.5	-	-		
Toluene	0.5 ug/L	<0.5	<0.5	-	-		
m,p-Xylenes	0.5 ug/L	<0.5	<0.5	-	-		
o-Xylene	0.5 ug/L	<0.5	<0.5	-	-		
Xylenes, total	0.5 ug/L	<0.5	<0.5	-	-		
Toluene-d8	Surrogate	85.1%	87.1%	-	-		
Hydrocarbons							
F1 PHCs (C6-C10)	25 ug/L	<25	<25	-	-		
Semi-Volatiles			-	-	-		
Acenaphthene	0.05 ug/L	<0.25 [1] [2]	<0.05	-	-		
Acenaphthylene	0.05 ug/L	<0.25 [1] [2]	<0.05	-	-		
Anthracene	0.01 ug/L	<0.05 [1] [2]	<0.01	-	-		
Benzo [a] anthracene	0.01 ug/L	<0.05 [1] [2]	<0.01	-	-		
Benzo [a] pyrene	0.01 ug/L	<0.05 [1] [2]	<0.01	-	-		
Benzo [b] fluoranthene	0.05 ug/L	<0.25 [1] [2]	<0.05	-	-		
Benzo [g,h,i] perylene	0.05 ug/L	<0.25 [1] [2]	<0.05	-	-		
Benzo [k] fluoranthene	0.05 ug/L	<0.25 [1] [2]	<0.05	-	-		
Biphenyl	0.05 ug/L	<0.25 [1] [2]	<0.05	-	-		
Chrysene	0.05 ug/L	<0.25 [1] [2]	<0.05	-	-		
Dibenzo [a,h] anthracene	0.05 ug/L	<0.25 [1] [2]	<0.05	-	-		
Fluoranthene	0.01 ug/L	<0.05 [1] [2]	<0.01	-	-		
Fluorene	0.05 ug/L	<0.25 [1] [2]	<0.05	-	-		
Indeno [1,2,3-cd] pyrene	0.05 ug/L	<0.25 [1] [2]	<0.05	-	-		
1-Methylnaphthalene	0.05 ug/L	<0.25 [1] [2]	<0.05	-	-		
2-Methylnaphthalene	0.05 ug/L	<0.25 [1] [2]	<0.05	-	-		
Methylnaphthalene (1&2)	0.10 ug/L	<0.50 [1] [2]	<0.10	-	-		
Naphthalene	0.05 ug/L	<0.25 [1] [2]	0.15	-	-		
Phenanthrene	0.05 ug/L	<0.25 [1] [2]	0.08	-	-		
Pyrene	0.01 ug/L	0.07 [1] [2]	<0.01	-	-		
2-Fluorobiphenyl	Surrogate	-	88.3%	-	-		
Terphenyl-d14	Surrogate	-	108%	-	-		

P: 1-800-749-1947 E: paracel@paracellabs.com

WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3

SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 4 of 8

Client: Geofirma Engineering Ltd.

Client PO: 45064625

Method Quality Control: Blank

	neport but
	Order D
Project Description: 11-200-11	/ 191 Lees Ave

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs $(C6-C10)$		25	ua/l						
	ND	20	ug/L						
Semi-volatiles									
Acenaphthene	ND	0.05	ug/L						
Acenaphthylene	ND	0.05	ug/L						
Anthracene	ND	0.01	ug/L						
Benzo [a] anthracene	ND	0.01	ug/L						
Benzo [a] pyrene	ND	0.01	ug/L						
Benzo [b] fluoranthene	ND	0.05	ug/L						
Benzo [g,h,i] perylene	ND	0.05	ug/L						
Benzo [k] fluoranthene	ND	0.05	ug/L						
Biphenyl	ND	0.05	ug/L						
Chrysene	ND	0.05	ug/L						
Dibenzo [a,h] anthracene	ND	0.05	ug/L						
Fluoranthene	ND	0.01	ug/L						
Fluorene	ND	0.05	ug/L						
Indeno [1,2,3-cd] pyrene	ND	0.05	ug/L						
1-Methylnaphthalene	ND	0.05	ug/L						
2-Methylnaphthalene	ND	0.05	ug/L						
Methylnaphthalene (1&2)	ND	0.10	ug/L						
Naphthalene	ND	0.05	ug/L						
Phenanthrene	ND	0.05	ug/L						
Pyrene	ND 04.0	0.01	ug/L		104	50 140			
Surrogate: 2-Fluorobipnenyi	24.8		ug/L		124	50-140			
Surrogate: Terphenyl-d14	21.0		ug/L		105	50-140			
Volatiles									
Benzene	ND	0.5	ug/L						
Ethylbenzene	ND	0.5	ug/L						
Toluene	ND	0.5	ug/L						
m,p-Xylenes	ND	0.5	ug/L						
o-Xylene	ND	0.5	ug/L						
Xylenes, total	ND	0.5	ug/L						
Surrogate: Toluene-d8	28.1		ug/L		87.8	50-140			

P: 1-800-749-1947 E: paracel@paracellabs.com

WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8

NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3 SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3 Order #: 1240284

Report Date: 15-Oct-2012 Order Date:4-Oct-2012

Client: Geofirma Engineering Ltd.

Method Quality Control: Duplicate

Client PO: 45064625

Project Description: 11-200-11/ 191 Lees Ave

Order #: 1240284

Report Date: 15-Oct-2012 Order Date:4-Oct-2012

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons F1 PHCs (C6-C10)	ND	25	ua/L	ND				30	
Volatiles			- <u>9</u> , _						
Benzene	ND	0.5	ug/L	ND				30	
Ethylbenzene	ND	0.5	ug/L	ND				30	
Toluene	ND	0.5	ug/L	ND				30	
m.p-Xvlenes	ND	0.5	ua/L	ND				30	
o-Xvlene	ND	0.5	ug/L	ND				30	
Surrogate: Toluene-d8	29.5		ug/L	ND	92.2	50-140			

P: 1-800-749-1947 E: paracel@paracellabs.com WWW.PARACELLABS.COM OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 6 of 8

Client: Geofirma Engineering Ltd.

Client PO: 45064625

Method Quality Control: Spike

Order #: 1240284

Report Date: 15-Oct-2012 Order Date:4-Oct-2012

Project Description: 11-200-11/ 191 Lees Ave

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hvdrocarbons									
F1 PHCs (C6-C10)	1670	25	ug/L	ND	83.6	68-117			
Semi-Volatiles									
Acenaphthene	3.95	0.05	ug/L	ND	79.0	50-140			
Acenaphthylene	3.76	0.05	ug/L	ND	75.1	50-140			
Anthracene	3.78	0.01	ug/L	ND	75.5	50-140			
Benzo [a] anthracene	3.93	0.01	ug/L	ND	78.6	50-140			
Benzo [a] pyrene	3.28	0.01	ug/L	ND	65.7	50-140			
Benzo [b] fluoranthene	4.11	0.05	ug/L	ND	82.1	50-140			
Benzo [g,h,i] perylene	4.22	0.05	ug/L	ND	84.3	50-140			
Benzo [k] fluoranthene	5.32	0.05	ug/L	ND	106	50-140			
Biphenyl	3.97	0.05	ug/L	ND	79.3	50-140			
Chrysene	3.98	0.05	ug/L	ND	79.7	50-140			
Dibenzo [a,h] anthracene	5.61	0.05	ug/L	ND	112	50-140			
Fluoranthene	3.99	0.01	ug/L	ND	79.8	50-140			
Fluorene	4.08	0.05	ug/L	ND	81.6	50-140			
Indeno [1,2,3-cd] pyrene	4.86	0.05	ug/L	ND	97.1	50-140			
1-Methylnaphthalene	5.25	0.05	ug/L	ND	105	50-140			
2-Methylnaphthalene	4.55	0.05	ug/L	ND	91.0	50-140			
Naphthalene	4.29	0.05	ug/L	ND	85.8	50-140			
Phenanthrene	4.38	0.05	ug/L	ND	87.6	50-140			
Pyrene	4.48	0.01	ug/L	ND	89.6	50-140			
Surrogate: 2-Fluorobiphenyl	24.7		ug/L		124	50-140			
Volatiles									
Benzene	48.2	0.5	ug/L	ND	120	50-140			
Ethylbenzene	27.1	0.5	ug/L	ND	67.8	50-140			
Toluene	36.8	0.5	ug/L	ND	92.1	50-140			
m,p-Xylenes	77.6	0.5	ug/L	ND	97.0	50-140			
o-Xylene	43.8	0.5	ug/L	ND	109	50-140			
			-						

P: 1-800-749-1947 E: paracel@paracellabs.com

WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

123 Christina St. N. Sarnia, ON N7T 5T7

SARNIA

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3

Page 7 of 8

Client: Geofirma Engineering Ltd.

Qualifier Notes:

Client PO: 45064625

Sample Qualifiers :

1: Elevated Reporting Limit due to matrix interference.

2: Surrogates not available due to extract dilution.

Sample Data Revisions

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected MDL: Method Detection Limit Source Result: Data used as source for matrix and duplicate samples %REC: Percent recovery. RPD: Relative percent difference.

CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.

- F1 range corrected for BTEX.

- F2 to F3 ranges corrected for appropriate PAHs where available.

- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.

- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.

P: 1-800-749-1947 E: paracel@paracellabs.com WWW.PARACELLABS.COM OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3 Niagara Falls, ON L2J 0A: SARNIA

123 Christina St. N. Sarnia, ON N7T 5T7

Page 8 of 8

Report Date: 15-Oct-2012 Order Date:4-Oct-2012

Ottawa, ON KIG 4J8

OTTAWA ® KINGSTON ® NIAGARA ® MISSIS	RACEL TRUSTED					/E .			Head Office 300-2319 St. Laurent Blvd. Ottawa, Ontario K1G 4J8 p: 1-800-749-1947 e: paracel@paracellabs.com www.paracellabs.com				Chain of Custody (Lab Use Only) Nº 94612 Page V of V					
Client Name: Cappenda				Project Reference:	11-700	-11		1	-						/		-	
Contact Name: Sogn Starling			-	Quote #	11 000	+1		12	t		t			TAT:	MRegul	ar [3 Day	
Address: 21 Raymond street Suite 200				PO #	110			-	-	1	÷		-		2 Day	1	I Day	
Offawa				Email Address:	1 1	0		0		<u> </u>				Date R	equired:			
Telephone: 613-232-2525			1	3	sterling	6	zeo	firr	na	,co	5							
Criteria: O. Reg. 153/04 Table O. Reg. 153/11 (Curren	t) Table	[RSC	Filing	O. Reg. 558/00	PWQO	CCM	4E [j su	B (St	orm)] SUI	8 (Sanitai	ry) Muni	cipality;			Other:	
Matrix Type: S (Soil/Sed.) GW (Ground Water) SW (Surface Water)	SS (Storm/S	anitary S	ewer) P	Paint) A (Air) O (C	Other)							Requ	ired Aı	ialyses				
Paracel Order Number:	rix	Volume	Containers	Sample	Taken	s F1-F4+BTEX	S	S	ds by ICP/MS		(SM	10-F1	ΓEX					
Sample ID/Location Name	Mat	Air	# of	Date	Time	PHC	VOC	PAH	Meta	Hg	B (H	P	Â	×				
1 MW/2-11 BAG936	GW		3	4-0CT-12				Y				1	V					
2 MW12-12 BAG 937			3					1				/	V					
3 OW122C BAG 938			3					\checkmark				1	1		4			
4 OWIZZB BAG 939			3					/					V					
5 BHOOI BAG940			3		2				,				V	0.1				
6 MN12-07 BAG941	\downarrow		3					V										1
7															2			
8																		
9																		
10																		
Comments: may contain contaminated	sam	ples	(ce	altar)	a ng										Method	of Deliv	ery:	
Relinquished By (Print & Sign): Vanessa Schart Vanena Schart	Receive Date/Tir	d by Driv ne: 04	er/Depo Dr	Touse In H:31	Receiv	ed at M	Lab:) c +	4	73	5.	30	Verifie Date/Ti	I By: M C me:	Oct 4	fla	1	25
Date/Time: 4-007-12 12:53	Tempera	uture:		C	Tempe	rature	: 11	e.2	°C				pH Ver	ified]	Ву:	<u>^</u>	H	

Chain of Custody (Env) - Rev 0.2 December 2011

RELIABLE.

Head Office 300-2319 St. Laurent Blvd. Ottawa, Ontario K1G 4J8 p: 1-800-749-1947 e: paracel@paracellabs.com

www.paracellabs.com

OTTAWA • KINGSTON • NIAGARA • MISSISSAUGA • SARNIA

Certificate of Analysis

Geofirma Engineering Ltd.

Suite 200, 1 Raymond St. Ottawa, ON K1R 1A2 Attn: Sean Sterling

Client PO: 45064625 Project: 11-200-11/ 191 Le Custody: 5004

Phone: (613) 232-2525 Fax: (613) 232-7149

	Report Date: 16-Nov-2012
ees Ave	Order Date: 3-Oct-2012
	Revised Report Order #: 1240186

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID	Client ID
1240186-01	MW12-19
1240186-02	MW12-03
1240186-03	MW12-04
1240186-04	OW109A
1240186-05	MW12-18
1240186-06	MW12-01
1240186-07	OW116C
1240186-08	MW12-05

Approved By:

Mark Fato

Mark Foto, M.Sc. For Dale Robertson, BSc Laboratory Director

Any use of these results implies your agreement that our total liability in connection with this work, however arising shall be limited to the amount paid by you for this work, and that our employees or agents shall not under circumstances be liable to you in connection with this work

Client: Geofirma Engineering Ltd. Client PO: 45064625

Project Description: 11-200-11/ 191 Lees Ave

Order #: 1240186

Report Date: 16-Nov-2012 Order Date:3-Oct-2012

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date Analys	is Date
BTEX	EPA 624 - P&T GC-MS	5-Oct-12 9)-Oct-12
CCME PHC F1	CWS Tier 1 - P&T GC-FID	5-Oct-12 8	8-Oct-12
PAHs by GC-MS, standard scan	EPA 625 - GC-MS, extraction	11-Oct-12 12	2-Oct-12

P: 1-800-749-1947 E: paracel@paracellabs.com WWW.PARACELLABS.COM OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 2 of 8

Client: Geofirma Engineering Ltd.

Order #: 1240186

Report Date: 16-Nov-2012 Order Date:3-Oct-2012

Client PO: 45064625		Project Descriptior	n: 11-200-11/ 191 Lee	s Ave	
	Client ID: Sample Date: Sample ID: MDI /Units	MW12-19 03-Oct-12 1240186-01 Water	MW12-03 03-Oct-12 1240186-02 Water	MW12-04 03-Oct-12 1240186-03 Water	OW109A 03-Oct-12 1240186-04 Water
Volatiles	MDL/ONIG				
Benzene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Toluene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
m,p-Xylenes	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
o-Xylene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Xylenes, total	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Toluene-d8	Surrogate	100%	102%	102%	102%
Hydrocarbons					
F1 PHCs (C6-C10)	25 ug/L	<25	<25	<25	<25
Semi-Volatiles			-		
Acenaphthene	0.05 ug/L	<0.05	<0.05	<0.05	<0.05
Acenaphthylene	0.05 ug/L	0.10	<0.05	<0.05	<0.05
Anthracene	0.01 ug/L	0.03	<0.01	<0.01	<0.01
Benzo [a] anthracene	0.01 ug/L	0.09	<0.01	<0.01	<0.01
Benzo [a] pyrene	0.01 ug/L	0.05	<0.01	<0.01	<0.01
Benzo [b] fluoranthene	0.05 ug/L	0.09	<0.05	<0.05	<0.05
Benzo [g,h,i] perylene	0.05 ug/L	<0.05	<0.05	<0.05	<0.05
Benzo [k] fluoranthene	0.05 ug/L	<0.05	<0.05	<0.05	<0.05
Biphenyl	0.05 ug/L	0.07	<0.05	<0.05	0.05
Chrysene	0.05 ug/L	0.08	<0.05	<0.05	<0.05
Dibenzo [a,h] anthracene	0.05 ug/L	<0.05	<0.05	<0.05	<0.05
Fluoranthene	0.01 ug/L	0.09	<0.01	<0.01	<0.01
Fluorene	0.05 ug/L	<0.05	<0.05	<0.05	<0.05
Indeno [1,2,3-cd] pyrene	0.05 ug/L	<0.05	<0.05	<0.05	<0.05
1-Methylnaphthalene	0.05 ug/L	0.06	<0.05	0.06	0.10
2-Methylnaphthalene	0.05 ug/L	0.08	<0.05	0.08	0.14
Methylnaphthalene (1&2)	0.10 ug/L	0.14	0.11	0.14	0.24
Naphthalene	0.05 ug/L	0.24	<0.05	0.10	0.29
Phenanthrene	0.05 ug/L	0.11	<0.05	<0.05	<0.05
Pyrene	0.01 ug/L	0.11	<0.01	<0.01	<0.01
2-Fluorobiphenyl	Surrogate	90.1%	86.8%	86.9%	84.3%
Terphenyl-d14	Surrogate	85.6%	95.5%	85.3%	103%

P: 1-800-749-1947 E: paracel@paracellabs.com

WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3

SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 3 of 8

Client: Geofirma Engineering Ltd.

Order #: 1240186

Report Date: 16-Nov-2012 Order Date:3-Oct-2012

Client PO: 45064625		Project Descriptior	n: 11-200-11/ 191 Lees	s Ave	
	Client ID: Sample Date: Sample ID: MDL/Units	MW12-18 03-Oct-12 1240186-05 Water	MW12-01 03-Oct-12 1240186-06 Water	OW116C 03-Oct-12 1240186-07 Water	MW12-05 03-Oct-12 1240186-08 Water
Volatiles					
Benzene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Toluene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
m,p-Xylenes	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
o-Xylene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Xylenes, total	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Toluene-d8	Surrogate	102%	104%	103%	101%
Hydrocarbons					
F1 PHCs (C6-C10)	25 ug/L	<25	<25	<25	<25
Semi-Volatiles	0.07 //		1		1
Acenaphthene	0.05 ug/L	<0.05	<0.05	<0.05	<0.05
Acenaphthylene	0.05 ug/L	<0.05	<0.05	<0.05	<0.05
Anthracene	0.01 ug/L	0.02	<0.01	<0.01	<0.01
Benzo [a] anthracene	0.01 ug/L	0.09	<0.01	<0.01	<0.01
Benzo [a] pyrene	0.01 ug/L	0.04	<0.01	<0.01	<0.01
Benzo [b] fluoranthene	0.05 ug/L	0.09	<0.05	<0.05	<0.05
Benzo [g,h,i] perylene	0.05 ug/L	<0.05	<0.05	<0.05	<0.05
Benzo [k] fluoranthene	0.05 ug/L	0.10	<0.05	<0.05	<0.05
Biphenyl	0.05 ug/L	0.05	<0.05	<0.05	<0.05
Chrysene	0.05 ug/L	0.06	<0.05	<0.05	<0.05
Dibenzo [a,h] anthracene	0.05 ug/L	<0.05	<0.05	<0.05	<0.05
Fluoranthene	0.01 ug/L	0.12	<0.01	<0.01	<0.01
Fluorene	0.05 ug/L	<0.05	<0.05	<0.05	<0.05
Indeno [1,2,3-cd] pyrene	0.05 ug/L	<0.05	<0.05	<0.05	<0.05
1-Methylnaphthalene	0.05 ug/L	0.09	<0.05	<0.05	<0.05
2-Methylnaphthalene	0.05 ug/L	0.09	<0.05	0.05	<0.05
Methylnaphthalene (1&2)	0.10 ug/L	0.18	<0.10	<0.10	<0.10
Naphthalene	0.05 ug/L	0.18	<0.05	0.30	0.09
Phenanthrene	0.05 ug/L	0.20	<0.05	<0.05	<0.05
Pyrene	0.01 ug/L	0.12	<0.01	<0.01	<0.01
2-Fluorobiphenyl	Surrogate	107%	80.8%	79.0%	82.2%
Terphenyl-d14	Surrogate	95.9%	85.8%	87.1%	87.6%

P: 1-800-749-1947 E: paracel@paracellabs.com

WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3

SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 4 of 8

Client: Geofirma Engineering Ltd.

Client PO: 45064625

Method Quality Control: Blank

	Report Dat
	Order D
alast Deseriation, 11,200,11/101 Lass Aug	

Project Description: 11-200-11/ 191 Lees Ave

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
					,				
Hydrocarbons									
F1 PHCs (C6-C10)	ND	25	ug/L						
Semi-Volatiles									
Acenaphthene	ND	0.05	ug/L						
Acenaphthylene	ND	0.05	ug/L						
Anthracene	ND	0.01	ug/L						
Benzo [a] anthracene	ND	0.01	ug/L						
Benzo [a] pyrene	ND	0.01	ug/L						
Benzo [b] fluoranthene	ND	0.05	ug/L						
Benzo [g,h,i] perylene	ND	0.05	ug/L						
Benzo [k] fluoranthene	ND	0.05	ug/L						
Biphenyl	ND	0.05	ug/L						
Chrysene	ND	0.05	ug/L						
Dibenzo [a,h] anthracene	ND	0.05	ug/L						
Fluoranthene	ND	0.01	ug/L						
Fluorene	ND	0.05	ug/L						
Indeno [1,2,3-cd] pyrene	ND	0.05	ug/L						
1-Methylnaphthalene	ND	0.05	ug/L						
2-Methylnaphthalene	ND	0.05	ug/L						
Methylnaphthalene (1&2)	ND	0.10	ug/L						
Naphthalene	ND	0.05	ug/L						
Phenanthrene	ND	0.05	ug/L						
Pyrene	ND	0.01	ug/L						
Surrogate: 2-Fluorobiphenyl	18.4		ug/L		92.2	50-140			
Surrogate: Terphenyl-d14	17.3		ug/L		86.6	50-140			
Volatiles									
Benzene	ND	0.5	ug/L						
Ethylbenzene	ND	0.5	ug/L						
Toluene	ND	0.5	ug/L						
m,p-Xylenes	ND	0.5	ug/L						
o-Xylene	ND	0.5	ug/L						
Xylenes, total	ND	0.5	ug/L						
Surrogate: Toluene-d8	36.0		ug/L		112	50-140			

P: 1-800-749-1947 E: paracel@paracellabs.com

WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3 Report Date: 16-Nov-2012 Order Date:3-Oct-2012

Order #: 1240186

Page 5 of 8

Client: Geofirma Engineering Ltd.

Client PO: 45064625

Project Description: 11-200-11/ 191 Lees Ave

Order #: 1240186

Report Date: 16-Nov-2012 Order Date:3-Oct-2012

Method Quality Control: Duplicate										
Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes	
Hydrocarbons										
F1 PHCs (C6-C10)	ND	25	ug/L	ND				30		
Volatiles										
Benzene	ND	0.5	ug/L	ND				30		
Ethylbenzene	ND	0.5	ug/L	ND				30		
Toluene	ND	0.5	ug/L	ND				30		
m,p-Xylenes	ND	0.5	ug/L	ND				30		
o-Xylene	ND	0.5	ug/L	ND				30		
Surrogate: Toluene-d8	30.6		ug/L	ND	95.6	50-140				

P: 1-800-749-1947 E: paracel@paracellabs.com WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8

NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3

SARNIA

123 Christina St. N. Sarnia, ON N7T 5T7

Page 6 of 8

Client: Geofirma Engineering Ltd.

Client PO: 45064625

Method Quality Control: Spike

Order #: 124018	6
	-

Report Date: 16-Nov-2012 Order Date:3-Oct-2012

Project Description: 11-200-11/ 191 Lees Ave

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	1790	25	ug/L	ND	89.6	68-117			
Semi-Volatiles									
Acenaphthene	3.75	0.05	ug/L	ND	75.0	50-140			
Acenaphthylene	1.60	0.05	ug/L	ND	32.1	50-140			
Anthracene	3.22	0.01	ug/L	ND	64.5	50-140			
Benzo [a] anthracene	3.59	0.01	ug/L	ND	71.8	50-140			
Benzo [a] pyrene	3.43	0.01	ug/L	ND	68.6	50-140			
Benzo [b] fluoranthene	3.67	0.05	ug/L	ND	73.4	50-140			
Benzo [g,h,i] perylene	3.21	0.05	ug/L	ND	64.2	50-140			
Benzo [k] fluoranthene	3.98	0.05	ug/L	ND	79.6	50-140			
Biphenyl	4.05	0.05	ug/L	ND	80.9	50-140			
Chrysene	3.74	0.05	ug/L	ND	74.7	50-140			
Dibenzo [a,h] anthracene	3.66	0.05	ug/L	ND	73.2	50-140			
Fluoranthene	3.54	0.01	ug/L	ND	70.8	50-140			
Fluorene	4.18	0.05	ug/L	ND	83.7	50-140			
Indeno [1,2,3-cd] pyrene	3.35	0.05	ug/L	ND	67.0	50-140			
1-Methylnaphthalene	4.66	0.05	ug/L	ND	93.2	50-140			
2-Methylnaphthalene	4.05	0.05	ug/L	ND	81.0	50-140			
Naphthalene	3.64	0.05	ug/L	ND	72.9	50-140			
Phenanthrene	3.93	0.05	ug/L	ND	78.6	50-140			
Pyrene	3.91	0.01	ug/L	ND	78.1	50-140			
Surrogate: 2-Fluorobiphenyl	18.0		ug/L		89.8	50-140			
Volatiles									
Benzene	22.1	0.5	ug/L	ND	55.3	50-140			
Ethylbenzene	39.6	0.5	ug/L	ND	98.9	50-140			
Toluene	28.6	0.5	ug/L	ND	71.5	50-140			
m,p-Xylenes	85.3	0.5	ug/L	ND	107	50-140			
o-Xylene	43.0	0.5	ug/L	ND	107	50-140			

P: 1-800-749-1947 E: paracel@paracellabs.com

WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3 SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 7 of 8

Client: Geofirma Engineering Ltd.

Client PO: 45064625

Project Description: 11-200-11/ 191 Lees Ave

Qualifier Notes:

None

Sample Data Revisions

None

Work Order Revisions / Comments:

Revision 1 - this report includes revised client Sample ID's.

Other Report Notes:

n/a: not applicable ND: Not Detected MDL: Method Detection Limit Source Result: Data used as source for matrix and duplicate samples %REC: Percent recovery. RPD: Relative percent difference.

CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.

- F1 range corrected for BTEX.
- F2 to F3 ranges corrected for appropriate PAHs where available.
- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.
- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.

Report Date: 16-Nov-2012 Order Date:3-Oct-2012

P: 1-800-749-1947 E: paracel@paracellabs.com WWW.PARACELLABS.COM OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3 SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 8 of 8

OTTAWA © KINGSTON © NIAGARA © MISSIS	TRU RES REI SAUGA @	JSTED . SPONSI IABLE . SARNIA	VE.		H 30 0 p: e: w	ead Off 20-2319 ttawa, C 1-800- parace ww.para	ice St. Lauren Intario K10 749-1947 I@paracella Icellabs.cor	t Blvd. à 4J8 abs.com n	N	Chain ((Lab O I Page _	of Custor Use Only) 5004	ly
Contact Name: <u>Sean Storling</u> Address: <u>Raymond Stable</u> <u>Ottawa ON</u> Telephone: <u>613-232-2525</u> Criteria: [10. Reg. 153/04 Table _ [10. Reg. 153/11 (Curre	re 200	Proje Quoti PO # Emai	ct Reference: 11-2 e # City 0 1 Address: 35terli 1 J O. Reg. 558/00	200-11 f 0tta NGC gec 1 1 PWQ0 1	wa Airn Iccme	Na.co	5777 (Storm) []	SUB (Sanita	TAT: [/F []2 Date Requir ry) Municipal	degular Day ed:	[]3 Day []1 Day	Diher:
Matrix Type: S (Soil/Sed.) GW (Ground Water) SW (Surface Water)	SS (Storm/San	iitary Sewer) P	(Paint) A (Air) O (C)ther)				Requ	uired Analy	/ses		
Paracel Order Number:	rix	Volume	Sample	: Taken	AH	HC-FI	XIII					
Sample ID/Location Name	Mat	Air Air Aof	Date	Time	P	à	(A)					
1 MW12-21 BAG908	BW	3	3-007-12		X	X	X					1
2 MW12-03 BAG 909					X	X	X					1
3 MW12-04 BAG 910					X	X	X					1
4 OWIOGA BAG 711					X	X	X					/
5 MW12-20 BAG 912			100.00		X	X	X					/
6 MW12-01 BAG913					X	X	X					1
⁷ OWILGE BAG 914					X	X	X					1
8 MW12-05 BAG915	V	V	V		X	\times	\times					/
9			0									
10												
may contain high conce	trad	tions								Metho	d of Delivery OK V/	
Relinquished By (Print & Sign): Melane Brooks	Received	by Driver/Dep	ot: 1945E	Receiv S()	ed at Lab: NEPP	ORA			Verified By:	IC		L
Date/Time: 3-00T-12/14:00	Date/Time Temperati	:: 03/10 ire:	112 3:56 °C	PM. Date/T Tempe	ime: () rature: []	T03	2012	05,15	Date/Time: pH Verified	I By:	3/11	16-06

Chain of Custody (Blank) - Rev 0.0 December 2011

RELIABLE.

Head Office 300-2319 St. Laurent Blvd. Ottawa, Ontario K1G 4J8 p: 1-800-749-1947 e: paracel@paracellabs.com

www.paracellabs.com

OTTAWA 🔹 KINGSTON 🔹 NIAGARA 🔹 MISSISSAUGA 🔹 SARNIA

Certificate of Analysis

Geofirma Engineering Ltd.

Suite 200, 1 Raymond St. Ottawa, ON K1R 1A2 Attn: Sean Sterling

Phone: (613) 232-2525 Fax: (613) 232-7149

Client PO: 45064625	Report Date: 12-Oct-2012
Project: 11-200-11/ 191 Lees Ave	Order Date: 2-Oct-2012
Custody: 93814/3	Order #: 1240110

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID	Client ID
1240110-01	E115-Deep
1240110-02	MWD1
1240110-03	MW12-15
1240110-04	MW12-08
1240110-05	MW12-13
1240110-06	MWD2
1240110-07	MW12-09
1240110-08	MW12-10
1240110-09	MW12-16
1240110-10	OW112A
1240110-11	MWD3

Approved By:

Mark Foto

Mark Foto, M.Sc. For Dale Robertson, BSc Laboratory Director

Any use of these results implies your agreement that our total liability in connection with this work, however arising shall be limited to the amount paid by you for this work, and that our employees or agents shall not under circumstances be liable to you in connection with this work

Client: Geofirma Engineering Ltd. Client PO: 45064625

Project Description: 11-200-11/ 191 Lees Ave

Order #: 1240110

Report Date: 12-Oct-2012 Order Date:2-Oct-2012

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date	Analysis Date
BTEX	EPA 624 - P&T GC-MS	5-Oct-12	6-Oct-12
CCME PHC F1	CWS Tier 1 - P&T GC-FID	5-Oct-12	6-Oct-12
PAHs by GC-MS, standard scan	EPA 625 - GC-MS, extraction	9-Oct-12	11-Oct-12

P: 1-800-749-1947 E: paracel@paracellabs.com WWW.PARACELLABS.COM OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 2 of 9

Client: Geofirma Engineering Ltd.

Order #: 1240110

Report Date: 12-Oct-2012 Order Date:2-Oct-2012

Client PO: 45064625	PO: 45064625 Project Description: 11-200-11/ 191 Lees Ave							
	Client ID: Sample Date: Sample ID: MDL /Unite	E115-Deep 02-Oct-12 1240110-01 Water	MWD1 02-Oct-12 1240110-02 Water	MW12-15 02-Oct-12 1240110-03 Water	MW12-08 02-Oct-12 1240110-04 Water			
Volatiles	WDE/Onits							
Benzene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5			
Ethylbenzene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5			
Toluene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5			
m,p-Xylenes	0.5 ug/L	<0.5	<0.5	<0.5	<0.5			
o-Xylene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5			
Xylenes, total	0.5 ug/L	<0.5	<0.5	<0.5	<0.5			
Toluene-d8	Surrogate	110%	112%	111%	109%			
Hydrocarbons					-			
F1 PHCs (C6-C10)	25 ug/L	<25	<25	<25	<25			
Semi-Volatiles			Т	T	T			
Acenaphthene	0.05 ug/L	<0.05	<0.05	<0.05	<0.05			
Acenaphthylene	0.05 ug/L	<0.05	<0.05	0.19	<0.05			
Anthracene	0.01 ug/L	<0.01	<0.01	0.05	<0.01			
Benzo [a] anthracene	0.01 ug/L	<0.01	<0.01	0.23	<0.01			
Benzo [a] pyrene	0.01 ug/L	<0.01	<0.01	0.19	<0.01			
Benzo [b] fluoranthene	0.05 ug/L	<0.05	<0.05	0.21	<0.05			
Benzo [g,h,i] perylene	0.05 ug/L	<0.05	<0.05	0.08	<0.05			
Benzo [k] fluoranthene	0.05 ug/L	<0.05	<0.05	0.12	<0.05			
Biphenyl	0.05 ug/L	<0.05	<0.05	<0.05	<0.05			
Chrysene	0.05 ug/L	<0.05	<0.05	0.22	<0.05			
Dibenzo [a,h] anthracene	0.05 ug/L	<0.05	<0.05	<0.05	<0.05			
Fluoranthene	0.01 ug/L	<0.01	<0.01	0.42	0.02			
Fluorene	0.05 ug/L	<0.05	<0.05	<0.05	<0.05			
Indeno [1,2,3-cd] pyrene	0.05 ug/L	<0.05	<0.05	0.09	<0.05			
1-Methylnaphthalene	0.05 ug/L	<0.05	<0.05	0.09	<0.05			
2-Methylnaphthalene	0.05 ug/L	<0.05	<0.05	0.12	0.06			
Methylnaphthalene (1&2)	0.10 ug/L	<0.10	<0.10	0.21	<0.10			
Naphthalene	0.05 ug/L	<0.05	<0.05	0.38	0.12			
Phenanthrene	0.05 ug/L	<0.05	<0.05	0.06	<0.05			
Pyrene	0.01 ug/L	<0.01	<0.01	0.45	0.03			
2-Fluorobiphenyl	Surrogate	88.5%	87.9%	107%	97.8%			
Terphenyl-d14	Surrogate	76.5%	91.8%	91.8%	90.6%			

P: 1-800-749-1947 E: paracel@paracellabs.com

WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8

NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3

SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 3 of 9

Client: Geofirma Engineering Ltd.

Order #: 1240110

Report Date: 12-Oct-2012 Order Date:2-Oct-2012

Client PO: 45064625		Project Description: 11-200-11/ 191 Lees Ave							
	Client ID: Sample Date: Sample ID:	MW12-13 02-Oct-12 1240110-05	MWD2 02-Oct-12 1240110-06	MW12-09 02-Oct-12 1240110-07	MW12-10 02-Oct-12 1240110-08				
Valatilaa	MDL/Units	Water	Water	Water	Water				
Volatiles	0.5 µg/l	776	6200	19600	207				
	0.5 ug/L	775	6390	1000	307				
	0.5 ug/L	3760	2180	1860	2580				
Toluene	0.5 ug/L	958	1210	3850	275				
m,p-Xylenes	0.5 ug/L	4120	2480	2250	1530				
o-Xylene	0.5 ug/L	2460	1640	1400	1010				
Xylenes, total	0.5 ug/L	6580	4120	3650	2540				
Toluene-d8	Surrogate	108%	107%	87.6%	113%				
Hydrocarbons					1				
F1 PHCs (C6-C10)	25 ug/L	5520	5550	52200000	1340				
Semi-Volatiles				1	1				
Acenaphthene	0.05 ug/L	<50.0 [1] [2]	<50.0 [1] [2]	<50.0 [1] [2]	36.3 [2]				
Acenaphthylene	0.05 ug/L	<50.0 [1] [2]	77.3 [2]	60.8 [2]	48.3 [2]				
Anthracene	0.01 ug/L	11.7 [2]	19.9 [2]	11.7 [2]	7.12 [2]				
Benzo [a] anthracene	0.01 ug/L	<10.0 [1] [2]	<10.0 [1] [2]	<10.0 [1] [2]	<5.00 [1] [2]				
Benzo [a] pyrene	0.01 ug/L	<10.0 [1] [2]	<10.0 [1] [2]	<10.0 [1] [2]	<5.00 [1] [2]				
Benzo [b] fluoranthene	0.05 ug/L	<50.0 [1] [2]	<50.0 [1] [2]	<50.0 [1] [2]	<25.0 [1] [2]				
Benzo [g,h,i] perylene	0.05 ug/L	<50.0 [1] [2]	<50.0 [1] [2]	<50.0 [1] [2]	<25.0 [1] [2]				
Benzo [k] fluoranthene	0.05 ug/L	<50.0 [1] [2]	<50.0 [1] [2]	<50.0 [1] [2]	<25.0 [1] [2]				
Biphenyl	0.05 ug/L	<50.0 [1] [2]	<50.0 [1] [2]	<50.0 [1] [2]	<25.0 [1] [2]				
Chrysene	0.05 ug/L	<50.0 [1] [2]	<50.0 [1] [2]	<50.0 [1] [2]	<25.0 [1] [2]				
Dibenzo [a,h] anthracene	0.05 ug/L	<50.0 [1] [2]	<50.0 [1] [2]	<50.0 [1] [2]	<25.0 [1] [2]				
Fluoranthene	0.01 ug/L	21.2 [2]	24.6 [2]	15.0 [2]	12.0 [2]				
Fluorene	0.05 ug/L	<50.0 [1] [2]	<50.0 [1] [2]	<50.0 [1] [2]	25.1 [2]				
Indeno [1,2,3-cd] pyrene	0.05 ug/L	<50.0 [1] [2]	<50.0 [1] [2]	<50.0 [1] [2]	<25.0 [1] [2]				
1-Methylnaphthalene	0.05 ug/L	163 [2]	277 [2]	132 [2]	247 [2]				
2-Methylnaphthalene	0.05 ug/L	240 [2]	301 [2]	212 [2]	295 [2]				
Methylnaphthalene (1&2)	0.10 ug/L	404 [2]	578 [2]	344 [2]	542 [2]				
Naphthalene	0.05 ug/L	800 [2]	981 [2]	1210 [2]	1680 [2]				
Phenanthrene	0.05 ug/L	53.9 [2]	69.0 [2]	<50.0 [1] [2]	45.5 [2]				
Pyrene	0.01 ug/L	30.4 [2]	40.8 [2]	23.1 [2]	19.3 [2]				

P: 1-800-749-1947 E: paracel@paracellabs.com

WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3

SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 4 of 9

Client: Geofirma Engineering Ltd.

Order #: 1240110

Report Date: 12-Oct-2012 Order Date:2-Oct-2012

Client PO: 45064625		Project Descriptior	n: 11-200-11/ 191 Lees	s Ave	
	Client ID: Sample Date: Sample ID: MDI /Units	MW12-16 02-Oct-12 1240110-09 Water	OW112A 02-Oct-12 1240110-10 Water	MWD3 02-Oct-12 1240110-11 Water	
Volatiles	WDE/Onits				
Benzene	0.5 ug/L	<0.5	<0.5	<0.5	-
Ethylbenzene	0.5 ug/L	<0.5	<0.5	<0.5	-
Toluene	0.5 ug/L	<0.5	<0.5	<0.5	-
m,p-Xylenes	0.5 ug/L	<0.5	<0.5	<0.5	-
o-Xylene	0.5 ug/L	<0.5	<0.5	<0.5	-
Xylenes, total	0.5 ug/L	<0.5	<0.5	<0.5	-
Toluene-d8	Surrogate	115%	115%	115%	-
Hydrocarbons					
F1 PHCs (C6-C10)	25 ug/L	<25	<25	<25	-
Semi-Volatiles					1
Acenaphthene	0.05 ug/L	<0.05	0.07	0.08	-
Acenaphthylene	0.05 ug/L	0.14	0.23	0.23	-
Anthracene	0.01 ug/L	0.03	0.09	0.11	-
Benzo [a] anthracene	0.01 ug/L	<0.01	0.15	0.20	-
Benzo [a] pyrene	0.01 ug/L	<0.01	0.09	0.12	-
Benzo [b] fluoranthene	0.05 ug/L	<0.05	0.08	0.10	-
Benzo [g,h,i] perylene	0.05 ug/L	<0.05	<0.05	<0.05	-
Benzo [k] fluoranthene	0.05 ug/L	<0.05	<0.05	0.08	-
Biphenyl	0.05 ug/L	<0.05	<0.05	<0.05	-
Chrysene	0.05 ug/L	<0.05	0.12	0.17	-
Dibenzo [a,h] anthracene	0.05 ug/L	<0.05	<0.05	<0.05	-
Fluoranthene	0.01 ug/L	0.05	0.10	0.14	-
Fluorene	0.05 ug/L	<0.05	0.12	0.12	-
Indeno [1,2,3-cd] pyrene	0.05 ug/L	<0.05	<0.05	<0.05	-
1-Methylnaphthalene	0.05 ug/L	0.19	0.23	0.27	-
2-Methylnaphthalene	0.05 ug/L	0.20	0.30	0.34	-
Methylnaphthalene (1&2)	0.10 ug/L	0.39	0.53	0.61	-
Naphthalene	0.05 ug/L	0.76	0.46	0.47	-
Phenanthrene	0.05 ug/L	0.10	0.34	0.43	-
Pyrene	0.01 ug/L	0.06	0.21	0.28	-
2-Fluorobiphenyl	Surrogate	86.7%	101%	98.1%	-
Terphenyl-d14	Surrogate	78.3%	79.0%	75.7%	-

P: 1-800-749-1947 E: paracel@paracellabs.com

BS.COM Ottawa, 0

WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3 SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 5 of 9

Client: Geofirma Engineering Ltd.

Client PO: 45064625

Method Quality Control: Blank

				Order Date:2-0	Oct-2012
	Project Descriptio	n: 11-200-11/ 191 Le	es Ave		
nk					
	Reporting	Source	%BEC	RPD	

Analyte	Result	Limit	Units	Result	%REC	Limit	RPD	Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	ND	25	ug/L						
Semi-Volatiles			- 5						
Acenaphthene	ND	0.05	ua/L						
Acenaphthylene	ND	0.05	ug/L						
Anthracene	ND	0.01	ug/L						
Benzo [a] anthracene	ND	0.01	ug/L						
Benzo [a] pyrene	ND	0.01	ug/L						
Benzo [b] fluoranthene	ND	0.05	ug/L						
Benzo [g,h,i] pervlene	ND	0.05	ug/L						
Benzo [k] fluoranthene	ND	0.05	ug/L						
Biphenyl	ND	0.05	ug/L						
Chrysene	ND	0.05	ug/L						
Dibenzo [a,h] anthracene	ND	0.05	ug/L						
Fluoranthene	ND	0.01	ug/L						
Fluorene	ND	0.05	ug/L						
Indeno [1,2,3-cd] pyrene	ND	0.05	ug/L						
1-Methylnaphthalene	ND	0.05	ug/L						
2-Methylnaphthalene	ND	0.05	ug/L						
Methylnaphthalene (1&2)	ND	0.10	ug/L						
Naphthalene	ND	0.05	ug/L						
Phenanthrene	ND	0.05	ug/L						
Pyrene	ND	0.01	ug/L						
Surrogate: 2-Fluorobiphenyl	18.9		ug/L		94.6	50-140			
Surrogate: Terphenyl-d14	15.0		ug/L		75.1	50-140			
Volatiles									
Benzene	ND	05	ua/l						
Ethylbenzene	ND	0.5	ug/L						
Toluene	ND	0.5	ug/L						
m n-Xylenes	ND	0.5	ug/L						
o-Xvlene	ND	0.5	ug/L						
Xvlenes total	ND	0.5	ug/L						
Surrogate: Toluene-d8	36.0	0.0	ua/l		112	50-140			
	20.0		~g [,] =			500			

P: 1-800-749-1947 E: paracel@paracellabs.com

WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3 I L2J 0A3

SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 6 of 9

Order #: 1240110

Report Date: 12-Oct-2012

Client: Geofirma Engineering Ltd.

Client PO: 45064625

Project Description: 11-200-11/ 191 Lees Ave

Report Date: 12-Oct-2012

Order #: 1240110

Order Date:2-Oct-2012

Method Quality Control: Duplicate									
Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	ND	25	ug/L	ND				30	
Volatiles									
Benzene	ND	0.5	ug/L	ND				30	
Ethylbenzene	ND	0.5	ug/L	ND				30	
Toluene	ND	0.5	ug/L	ND				30	
m,p-Xylenes	ND	0.5	ug/L	ND				30	
o-Xylene	ND	0.5	ug/L	ND				30	
Surrogate: Toluene-d8	30.6		ug/L	ND	95.6	50-140			

P: 1-800-749-1947 E: paracel@paracellabs.com WWW.PARACELLABS.COM OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 7 of 9

Client: Geofirma Engineering Ltd.

Client PO: 45064625

Method Quality Control: Spike

|--|

Report Date: 12-Oct-2012 Order Date:2-Oct-2012

Project Description: 11-200-11/ 191 Lees Ave

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	1790	25	ug/L	ND	89.6	68-117			
Semi-Volatiles									
Acenaphthene	3.89	0.05	ug/L	ND	77.8	50-140			
Acenaphthylene	4.50	0.05	ug/L	ND	90.0	50-140			
Anthracene	4.44	0.01	ug/L	ND	88.8	50-140			
Benzo [a] anthracene	4.11	0.01	ug/L	ND	82.3	50-140			
Benzo [a] pyrene	3.56	0.01	ug/L	ND	71.2	50-140			
Benzo [b] fluoranthene	4.53	0.05	ug/L	ND	90.6	50-140			
Benzo [g,h,i] perylene	3.58	0.05	ug/L	ND	71.5	50-140			
Benzo [k] fluoranthene	4.95	0.05	ug/L	ND	99.0	50-140			
Biphenyl	3.72	0.05	ug/L	ND	74.4	50-140			
Chrysene	4.71	0.05	ug/L	ND	94.3	50-140			
Dibenzo [a,h] anthracene	4.71	0.05	ug/L	ND	94.2	50-140			
Fluoranthene	3.78	0.01	ug/L	ND	75.7	50-140			
Fluorene	3.92	0.05	ug/L	ND	78.3	50-140			
Indeno [1,2,3-cd] pyrene	4.13	0.05	ug/L	ND	82.5	50-140			
1-Methylnaphthalene	4.88	0.05	ug/L	ND	97.5	50-140			
2-Methylnaphthalene	4.49	0.05	ug/L	ND	89.8	50-140			
Naphthalene	4.07	0.05	ug/L	ND	81.4	50-140			
Phenanthrene	4.34	0.05	ug/L	ND	86.8	50-140			
Pyrene	4.20	0.01	ug/L	ND	83.9	50-140			
Surrogate: 2-Fluorobiphenyl	20.4		ug/L		102	50-140			
Volatiles									
Benzene	22.1	0.5	ug/L	ND	55.3	50-140			
Ethylbenzene	39.6	0.5	ug/L	ND	98.9	50-140			
Toluene	28.6	0.5	ug/L	ND	71.5	50-140			
m,p-Xylenes	85.3	0.5	ug/L	ND	107	50-140			
o-Xylene	43.0	0.5	ug/L	ND	107	50-140			

P: 1-800-749-1947 E: paracel@paracellabs.com

WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3

SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 8 of 9

Client PO: 45064625

Certificate of Analysis

Client: Geofirma Engineering Ltd.

Report Date: 12-Oct-2012 Order Date:2-Oct-2012

Qualifier Notes:

Sample Qualifiers :

1: Elevated detection limit because of dilution required due to high target analyte concentration.

2: Surrogates not available due to extract dilution.

Sample Data Revisions

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected MDL: Method Detection Limit Source Result: Data used as source for matrix and duplicate samples %REC: Percent recovery. RPD: Relative percent difference.

CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.

- F1 range corrected for BTEX.

- F2 to F3 ranges corrected for appropriate PAHs where available.

- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.

- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.

P: 1-800-749-1947 E: paracel@paracellabs.com WWW.PARACELLABS.COM OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3 SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 9 of 9

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	TAT: X [Regular []3 Day] 2 Day []1 Day Date Required: icipality: Inalyses
Matrix Type: S (Soil/Sed.) GW (Ground Water) SW (Surface Water) SS (Storm/Sanitary Sewer) P (Paint) A (Air) O (Other) Required Analy Paracel Order Number: Sample Taken Sa	Analyses
Paracel Order Number: Sample ID/Location Name Sumple Taken Sample Taken Sumple	L X
Sample ID/Location Name \overrightarrow{x}	
1 E 115 - Deep BAG 887 GW 3 2007-12 X X X 2 MWDI BAG 888 I I X X X 3 MW12-15 BAG 889 I I X X X 4 MW12-68 BAG 890 X X X X 5 MW12-13 BAG 891 I X X X 6 MWD2 BAG 892 I X X X 7 MW12-09 BAG 893 I X X X 8 MW12-10 BAG 895 I X X X 9 MW12-16 BAG 895 I X X X	φ
2 MWD1 BAG 888 X X 3 MW12-15 BAG 889 X X 4 MW12-08 BAG 890 X X 5 MW12-13 BAG 891 X X 6 MWD2 BAG 892 X X 7 MW12-09 BAG 893 X X 8 MW12-10 BAG 894 X X 9 MW12-16 BAG 895 X X	4
3 mw12-15 BAG 889 X X 4 mw12-68 BAG 890 X X 5 mw12-13 BAG 891 X X 6 mw02 BAG 892 X X 7 mw12-09 BAG 893 X X 8 Mw12-10 BAG 894 X X 9 Mw12-16 BAG 895 X X	X
4 mwi2-68 BAG 890 X X 5 mwi2-13 BAG 891 X X 6 mwD2 BAG 892 X X 7 mwi2-09 BAG 893 X X 8 Mwi2-10 BAG 894 X X 9 Mwi2-16 BAG 895 X X	× /
5 MW12-13 BAG 891 X X 6 MWD2 BAG 892 X X 7 MW12-09 BAG 893 X X 8 MW12-10 BAG 894 X X 9 MW12-16 BAG 895 X X	X
6 MWD2 BAG 892 X X 7 MW12-09 BAG 893 X X 8 MW12-10 BAG 894 X X 9 MW12-16 BAG 895 X X	X
7 MW12-09 BAG 893 X X X 8 MW12-10 BAG 894 X X X 9 MW12-16 BAG 895 X X X	X
8 MW12-10 BAG 894 XXX 9 MW12-16 BAG 895 XXXX	× /
9 MW12-16 BAG 895 1	X
	- X
10 OWILZA BAG896 XXXX	- / Method of Delivery
Comments:	Pick - Up
Relinquished By (Print & Sign): Received by Driver/Depot: Received at Lab: Verified By Melane Brocks Dec/Time: DEc/USE SUNDEPORN M Date/Time: DZ/10/12 3*46pzz Date/Time: 04'30 Date/Time:	ied Ry:

Chain of Custody (Env) - Rev 0.2 December 2011

OTTA	PARACEL LABORATORIES LTD.	TF RE RE GAUGA	RUST ESPC ELIAE © SAI	ED. DNSIV BLE.	/E .					Head 300-2 Ottav p: 1-8 e: pa	I Offic 2319 va, O 300-7 racel parac	ce St. Lau ntario 49-19- @para cellabs	urent Blv K1G 4J 47 cellabs. s.com	rd. 8 com	N	Chair (La V Pag	h Use O 938	istody ^{nly)} 813	
Contact Address Telepho Criter	name: <u>Geofirma Engineering</u> Name: <u>Sean Sterling</u> : : : : : : : : : : : : : : : : : : :) Table	[] RSC	Filing	Project Reference: Quote # PO # Email Address: SSex J O. Reg. 558/00	11-260- ling@gg []PWQ0 [eoRiv ICCN	~~~~ 1E	a.1	OM IB (St	orm)	SU	B (Sanita	ry) Muni	Date Re	NRegula 2 Day quired:	u 	3 Day 1 Day Other: _	
Matrix '	Type: S (Soil/Sed.) GW (Ground Water) SW (Surface Water) 5	SS (Storm/S	Ganitary S	ewer) P	(Paint) A (Air) O (O	Other)							Requ	ired Ai	nalyses	ï			
Parac	el Order Number: 24011D	rix	Volume	Containers	Sample	Taken	s F1-F4+BTEX	N	S	als by ICP/MS		WS)	AH	IC-FI	TEX				
	Sample ID/Location Name	Mat	Air	# of	Date	Time	PHC	VOO	PAH	Meta	Hg	CrV B (H	CT CT	đ	(X)	ļ			
1	MWD3 BAG 897	GW		3	2-00T-12		_					_	X	X	X	<u> </u>		<u> </u>	/
2							_			_		_							
3							-	-	-	┝		+							
4							+	-	-	╞		-	-						
6	16						+	-	-	-	\square	+				-		<u> </u>	
7							+	-	-			-			-				
8							+	-	\vdash	-		-			-	-	-		
9							+	-	\vdash	┢		+				-			
10		1							1			+	-	-		-	-	-	
Comm	ents:				1									1		Method	of Deliv	ery:)	
Relinqui	shed By (Print & Sign): Melance Breaks	Receive	d by Driv	ver/Depo	L OUSE	Recei	ived at	Lab: LPO	AN				17	Verifie	d By: MU			·L	5
Date/Tim	MUKIA	Date/Tit	ne: Di	2/10	112 3:4	Date/	Time:	UC.	10	200	6/2	0	4.70	Date/T	ime: 1	Ret 2	12	15:	33
Date/111	~ 20CT-12/14:55	Tempera	udre:		L	remp	craute		V	_ C				pri ve	inteo []	Dy:	N	<u>n</u>	

Chain of Custody (Env) - Rev 0.2 December 2011

RELIABLE.

Head Office 300-2319 St. Laurent Blvd. Ottawa, Ontario K1G 4J8 p: 1-800-749-1947 e: paracel@paracellabs.com

www.paracellabs.com

OTTAWA • KINGSTON • NIAGARA • MISSISSAUGA • SARNIA

Certificate of Analysis

Geofirma Engineering Ltd.

1 Raymond St., Suite 200 Ottawa, ON K1R 1A2 Attn: Jean Francois Dion

Client PO: 45064625 Project: 11-200-11/ 191 Lees Ave Custody: 2573

Phone: (613) 232-2525 Fax: (613) 232-7149

Revised Report	Order #: 1241065
Ord	er Date: 9-Oct-2012
Repor	t Date: 25-Oct-2012

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID **Client ID** 1241065-01

Approved By:

Mark Frata

Mark Foto, M.Sc. For Dale Robertson, BSc Laboratory Director

Any use of these results implies your agreement that our total liability in connection with this work, however arising shall be limited to the amount paid by you for this work, and that our employees or agents shall not under circumstances be liable to you in connection with this work

Client: Geofirma Engineering Ltd. Client PO: 45064625

Project Description: 11-200-11/ 191 Lees Ave

Order #: 1241065

Report Date: 25-Oct-2012 Order Date:9-Oct-2012

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date Analysis Date	Э
BTEX	EPA 624 - P&T GC-MS	12-Oct-12 14-Oct-1	2
CCME PHC F1	CWS Tier 1 - P&T GC-FID	12-Oct-12 14-Oct-1	2
PAHs by GC-MS, standard scan	EPA 625 - GC-MS, extraction	16-Oct-12 16-Oct-1	2

P: 1-800-749-1947 E: paracel@paracellabs.com WWW.PARACELLABS.COM OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 2 of 7

Order #: 1241065

Report Date: 25-Oct-2012 Order Date:9-Oct-2012

Client: Geofirma Engineering Ltd. Client PO: 45064625

lient PO: 45064625		Project Description	11-200-11/ 191 Lees	Ave	
	Client ID:	-0₩111A ←	<u> </u>	-	-
	Sample Date:	09-Oct-12	-	-	-
	Sample ID:	Water	JW111B	-	-
Volatiles	WDL/OIIIts	Wator			
Benzene	0.5 ug/L	34.3	-	-	-
Ethylbenzene	0.5 ug/L	6.9	-	-	-
Toluene	0.5 ug/L	1.0	-	-	-
m,p-Xylenes	0.5 ug/L	3.4	-	-	-
o-Xylene	0.5 ug/L	3.7	-	-	-
Xylenes, total	0.5 ug/L	7.1	-	-	-
Toluene-d8	Surrogate	97.1%	-	-	-
Hydrocarbons					
F1 PHCs (C6-C10)	25 ug/L	<25	-	-	-
Semi-Volatiles			<u>.</u>		
Acenaphthene	0.05 ug/L	<0.05	-	-	-
Acenaphthylene	0.05 ug/L	0.80	-	-	-
Anthracene	0.01 ug/L	0.02	-	-	-
Benzo [a] anthracene	0.01 ug/L	0.04	-	-	-
Benzo [a] pyrene	0.01 ug/L	<0.01	-	-	-
Benzo [b] fluoranthene	0.05 ug/L	<0.05	-	-	-
Benzo [g,h,i] perylene	0.05 ug/L	<0.05	-	-	-
Benzo [k] fluoranthene	0.05 ug/L	<0.05	-	-	-
Biphenyl	0.05 ug/L	0.11	-	-	-
Chrysene	0.05 ug/L	<0.05	-	-	-
Dibenzo [a,h] anthracene	0.05 ug/L	<0.05	-	-	-
Fluoranthene	0.01 ug/L	0.06	-	-	-
Fluorene	0.05 ug/L	0.07	-	-	-
Indeno [1,2,3-cd] pyrene	0.05 ug/L	<0.05	-	-	-
1-Methylnaphthalene	0.05 ug/L	2.50	-	-	-
2-Methylnaphthalene	0.05 ug/L	0.36	-	-	-
Methylnaphthalene (1&2)	0.10 ug/L	2.86	-	-	-
Naphthalene	0.05 ug/L	2.24	-	-	-
Phenanthrene	0.05 ug/L	0.11	-	-	-
Pyrene	0.01 ug/L	0.09	-	-	-
2-Fluorobiphenyl	Surrogate	95.8%	-	-	-
Terphenyl-d14	Surrogate	99.1%	-	-	-

P: 1-800-749-1947 E: paracel@paracellabs.com

WWW.PARACELLABS.COM

300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8

OTTAWA

NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3

SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 3 of 7

Client: Geofirma Engineering Ltd.

Client PO: 45064625

Xylenes, total

Surrogate: Toluene-d8

Method Quality Control: Blank

	Order Da
Project Description: 11-200-11/ 191 Lees Ave	

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocorbono									
		05							
F1 PHCs (C6-C10)	ND	25	ug/L						
Semi-Volatiles									
Acenaphthene	ND	0.05	ug/L						
Acenaphthylene	ND	0.05	ug/L						
Anthracene	ND	0.01	ug/L						
Benzo [a] anthracene	ND	0.01	ug/L						
Benzo [a] pyrene	ND	0.01	ug/L						
Benzo [b] fluoranthene	ND	0.05	ug/L						
Benzo [g,h,i] perylene	ND	0.05	ug/L						
Benzo [k] fluoranthene	ND	0.05	ug/L						
Biphenyl	ND	0.05	ug/L						
Chrysene	ND	0.05	ug/L						
Dibenzo [a,h] anthracene	ND	0.05	ug/L						
Fluoranthene	ND	0.01	ug/L						
Fluorene	ND	0.05	ug/L						
Indeno [1,2,3-cd] pyrene	ND	0.05	ug/L						
1-Methylnaphthalene	ND	0.05	ug/L						
2-Methylnaphthalene	ND	0.05	ug/L						
Methylnaphthalene (1&2)	ND	0.10	ug/L						
Naphthalene	ND	0.05	ug/L						
Phenanthrene	ND	0.05	ug/L						
Pyrene	ND	0.01	ug/L						
Surrogate: 2-Fluorobiphenyl	18.7		ug/L		93.5	50-140			
Surrogate: Terphenyl-d14	19.8		ug/L		98.9	50-140			
Volatiles									
Benzene	ND	0.5	ug/L						
Ethylbenzene	ND	0.5	ug/L						
Toluene	ND	0.5	ug/L						
m,p-Xylenes	ND	0.5	ug/L						
o-Xylene	ND	0.5	ug/L						

P: 1-800-749-1947 E: paracel@paracellabs.com

ND

31.2

0.5

ug/L

ug/L

WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3

NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

97.3

50-140

 SARNIA

 nit #27
 123 Christina St. N.

 5N 6J3
 Sarnia, ON N7T 5T7

Order #: 1241065

Report Date: 25-Oct-2012 Order Date:9-Oct-2012

Client: Geofirma Engineering Ltd.

Client PO: 45064625

Project Description: 11-200-11/ 191 Lees Ave

Order #: 1241065

Report Date: 25-Oct-2012 Order Date:9-Oct-2012

Method Quality Control: Duplicate										
Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes	
Hydrocarbons										
F1 PHCs (C6-C10)	589	25	ug/L	576			2.2	30		
Volatiles										
Benzene	13.6	0.5	ug/L	11.7			15.4	30		
Ethylbenzene	ND	0.5	ug/L	ND				30		
Toluene	2.53	0.5	ug/L	2.52			0.4	30		
m,p-Xylenes	214	0.5	ug/L	188			13.1	30		
o-Xylene	39.4	0.5	ug/L	35.5			10.3	30		
Surrogate: Toluene-d8	31.3		ug/L	ND	97.8	50-140				

P: 1-800-749-1947 E: paracel@paracellabs.com WWW.PARACELLABS.COM OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 5 of 7

Client: Geofirma Engineering Ltd.

Client PO: 45064625

Method Quality Control: Spike

Order #: 1241065

Report Date: 25-Oct-2012 Order Date:9-Oct-2012

Project Description: 11-200-11/ 191 Lees Ave

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	1760	25	ug/L	ND	88.0	68-117			
Semi-Volatiles									
Acenaphthene	3.82	0.05	ug/L	ND	76.5	50-140			
Acenaphthylene	4.16	0.05	ug/L	ND	83.2	50-140			
Anthracene	3.33	0.01	ug/L	ND	66.6	50-140			
Benzo [a] anthracene	3.54	0.01	ug/L	ND	70.8	50-140			
Benzo [a] pyrene	3.12	0.01	ug/L	ND	62.4	50-140			
Benzo [b] fluoranthene	3.78	0.05	ug/L	ND	75.6	50-140			
Benzo [g,h,i] perylene	3.78	0.05	ug/L	ND	75.6	50-140			
Benzo [k] fluoranthene	4.43	0.05	ug/L	ND	88.7	50-140			
Biphenyl	3.89	0.05	ug/L	ND	77.8	50-140			
Chrysene	3.74	0.05	ug/L	ND	74.8	50-140			
Dibenzo [a,h] anthracene	4.75	0.05	ug/L	ND	95.1	50-140			
Fluoranthene	3.47	0.01	ug/L	ND	69.3	50-140			
Fluorene	3.66	0.05	ug/L	ND	73.3	50-140			
Indeno [1,2,3-cd] pyrene	4.11	0.05	ug/L	ND	82.3	50-140			
1-Methylnaphthalene	4.82	0.05	ug/L	ND	96.3	50-140			
2-Methylnaphthalene	4.44	0.05	ug/L	ND	88.8	50-140			
Naphthalene	4.17	0.05	ug/L	ND	83.4	50-140			
Phenanthrene	4.18	0.05	ug/L	ND	83.7	50-140			
Pyrene	4.07	0.01	ug/L	ND	81.3	50-140			
Surrogate: 2-Fluorobiphenyl	19.7		ug/L		98.6	50-140			
Volatiles									
Benzene	33.2	0.5	ua/L	ND	83.1	60-130			
Ethylbenzene	42.9	0.5	ug/L	ND	107	60-130			
Toluene	35.2	0.5	ug/L	ND	87.9	60-130			
m.p-Xvlenes	88.8	0.5	ug/L	ND	111	60-130			
o-Xylene	46.0	0.5	ug/L	ND	115	60-130			

P: 1-800-749-1947 E: PARACEL@PARACELLABS.COM

WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3

SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 6 of 7

Client: Geofirma Engineering Ltd.

Client PO: 45064625

Project Description: 11-200-11/ 191 Lees Ave

Report Date: 25-Oct-2012 Order Date:9-Oct-2012

Qualifier Notes:

None

Sample Data Revisions

None

Work Order Revisions / Comments:

Revision 1 - This report includes an updated client Sample ID.

Other Report Notes:

n/a: not applicable ND: Not Detected MDL: Method Detection Limit Source Result: Data used as source for matrix and duplicate samples %REC: Percent recovery. RPD: Relative percent difference.

CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.

- F1 range corrected for BTEX.
- F2 to F3 ranges corrected for appropriate PAHs where available.
- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.
- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.

P: 1-800-749-1947 E: paracel@paracellabs.com www.paracellabs.com OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3

SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 7 of 7

PARACEL TRUST LABORATORIES LTD. RELIA				ED . NSIVE . 3LE .				Head Office 300-2319 St. Laurent Blvd. Ottawa, Ontario K1G 4J8 p: 1-800-749-1947 e: paracel@paracellabs.com			Chain of Custody (Lab Use Only) N? 2573				
OTTAWA @ KINGSTON @ NIAGARA @ MISSISS	AUGA	SAR	INIA			V	/ww.para	cellabs.com			H	Page 1	of)	
Client Name: Best China Eng L Contact Name: FOIOW Address: Telephone: 613-290-4005 Criteria: []O. Reg. 153/04 Table [X.O. Reg. 153/11 (Current	RSC	Project Quote / PO # Email / CF	Reference: //. # City of Address: DION C	-203- 6 OttAI Geof	11 NA CCME	o, ()	UB (Sanitar	Date Ro	Regu []2 Day equired:	lar y	[]3 Day []1 Day	Diher		
Matrix Type: S (Soil/Sed.) GW (Ground Water) SW (Surface Water) S	S (Storm/Sa	anitary Se	ewer) P (Paint) A (Air) O ((Other)				Requ	ired A	nalyses	;			
Paracel Order Number:			S								1			-	
241065 Sample ID/Location Name	Matrix	Air Volume	t of Containe	Date	e Taken Time	Btor +f	HVA							1	
1 OW 11/6 RAHOOLO	(Lu)	-	3	9-10t-12	17:30	X	X		_	+					1
2			-	1001-10	10.0	1				-	-				
3									-	-					
4									_	-	-				
5														-	
6										1					
7														_	
8							1				-				
9										-	-				
10											-				
Comments:	- I				1							Method COUR	of Deliver IER	y:	
reeninguisnea by armit & sign: A U.o.2	Receive	d by Dri	ver Depo	nav	Receiv	ed at Lab	RN			Verifie	d By:		• [,
Date/Time: Q-Oct-12 14:38	Date/Til Temper	ne: ature:	0.	ic is a second	Date/T Tempe	ime: () rature: 1	CT09. 9.1	2018	04.10	Date/Ti pH Ver	inel (Det By:	3 3	4	Sla

Chain of Custody (Blank) - Rev 0.0 December 2011

APPENDIX E

MOE Well Records

Nacessments recorded in fiver and interval of the second s	() Ont	ario	Ministr the Env	y of vironment	ſ	Well Tag	J No. (Place S	Sticker ar	nd/or Print Below)	S-13 Regulation	308	Montario Wat	ell R	ecord	
Wall Control Concerns Information Charles Area Final Actives	Measurements	record	ed in: 🗂 M	etric 🗌 Impe	rial				AISSOOS	-		Page_		of	
High Nerre Construction Construction Construction Construction Well Address Construction Note Constr	Well Owner'	s Info	mation												
Value Value <th< td=""><td>First Name</td><td>2,</td><td>ottan</td><td>ast Name / Orga</td><td>nization</td><td>rad</td><td>Caren</td><td>1</td><td>E-mail Address</td><td></td><td></td><td></td><td>Well (</td><td>Constructed</td></th<>	First Name	2,	ottan	ast Name / Orga	nization	rad	Caren	1	E-mail Address				Well (Constructed	
Interact Are W. S.H. Orthold Output Address of Woll Location (Sines Muchan Name) Tooreship Lot Correstent CompOnition (Sines Muchan Name) Corresting Optimize Protocol CompOnition (Sines Lang, Louing, Moreling, Mor	Mailing Address	s (Street	Number/Nam	ne)		M	unicipality		Province	Postal Code	. -	Telephone N	10. (inc.	area code)	
Well Location Conversion	110 La	arie	- Ave	2 W. 5	H.		ottawa	R.	ON	KIPIF	211				
Applie Control Control <th< td=""><td>Well Location</td><td>n Llocatio</td><td>n (Street Nun</td><td>ber/Name)</td><td></td><td>T</td><td>ownshin</td><td></td><td></td><td>Lot</td><td></td><td>Concession</td><td></td><td></td></th<>	Well Location	n Llocatio	n (Street Nun	ber/Name)		T	ownshin			Lot		Concession			
Data State Province	19/ 20	20S	Avend	2			ownomp				-				
UTIM Contractions Zero Earlier, Nothing Status Number UTIM Contractions Address (Sec North Section, S	County/District/	Municip	ality			C	ity/Town/Village	e			Provin	ce	Postal	Code	
Construction Set of the se	UTM Coordinate	s Zone	Easting	Northin SIGIISO	ng 294	185 M	unicipal Plan a	and Sublo	ot Number		Other	1110			
Cancel Locar Most Contracts Other Resonance Support Description Fig. Bit Count Status Fig. Status Fig. Status Status Fig. Status	Overburden a	nd Bed	rock Materia	IIs/Abandonm	ent Seal	ing Reco	rd (see instructio	ons on the	back of this form)				Dep	th (<i>m/ft</i>)	
Bit-m Sum Sum </td <td>General Colour</td> <td></td> <td>Most Comm</td> <td>on Material</td> <td></td> <td>Othe</td> <td>er Materials</td> <td><u></u></td> <td>Gener</td> <td></td> <td></td> <td></td> <td>From</td> <td>To</td>	General Colour		Most Comm	on Material		Othe	er Materials	<u></u>	Gener				From	To	
But of the second se	DIN		6 29	phalo		- 6	Fill.		c. D.	ð .			21	· >1	
Effy Serie Serie March Athenue	Ban		- hay	·			Fill C. L.		2050	1 / 8			> 101	X M	
Annular Space Results of Weil Yinki Training Control Annular Space Year Status Year Status Mathod Scatu Mathod Scatus Mathod Scatus Mathod Scatus Mathod Scatus Mathod Scatus Mathod Scatus Mathod Mathod Mathod Scatus	64		20	ing .			5.17		12.20	Hard	3	C	2:70	7 7.08	
Annular Space Results of Well Yield Testing Dept Set at (mit) Type of Saure Used (mit) Volume Single (mit) The Well Yield Testing Dept Set at (mit) Type of Saure Used (mit) Well Yield Testing The Well Yield Testing Diamond States of Well Yield Testing The Weil Yield Testing The Weil Yield Testing States of Tool One of Construction Well Weil Weil Weil The Weil Yield Testing Promp Georemined Retary Commined Beorg Depting ratio phony (SPM) 2 2 Method of Construction Weil Weil Weil Weil Beorg (Monthod Construction Record - Casing Construction Record - Screen (States of Weil Yield Testing) Purpting ratio phony (SPM) 4 4 The Weil Weil Weil Weil (Severation (States of Weil Yield Construction (States of Weil Yield Constates (States of Weil Yield Construction (¥														
Annular Space Results of Well Yield Esting Peth Set at I/W1 Type of Sealari Used (Material and Type) Values Placed (m2/17) After fast of xell yield, valar vals. Time Valar Level Time Water Level Time Valar Level (m2/17) 31 31 31/8 Bublick (Lup) Time Valar Level Time Water Level Time Valar Level (m2/17) 31 31/8 Bublick (Lup) Time Valar Level (m2/17) Time Valar Level (m2/17) 31 31/8 Bublick (Lup) Time Valar Level (m2/17) Time Valar Level (m2/17) 31 31/8 Bublick (Lup) Time Valar Level (m2/17) Time Valar Level (m2/17) 31 31/8 Bublick (Lup) Time Valar Level (m2/17) Time Valar Level (m2/17) 31 31/8 Bublick (Lup) Time Valar Level (m2/17) Time Valar Level (m2/17) 31 31/8 Bublick (Lup) Time Valar Level (m2/17) Time Valar Level (m2/17) 31 31/8 Bublick (Lup) Time Valar Level (m2/17) Time Valar Level (m2/17) 31 31/8 Bublick (Lup) Time Valar Level (m2/17) Time Valar Level (m2/17) 31 31/8 Bublick														5)	
Annular Space Results of Well Yield Testing Pepth Set at (m) Type of Sealart Used (m) Volume Priced (m) 0 3.1 Flusher J (Gradient Type) 0 3.1 Flusher J (Gradient Type) 1 3.1 Y 86 3.1 Y 86 S.A. 1 1 1 2 2 1 1 1 1 2 2 2 1 1 1 2 2 2 1 1 1 2 2 2 1 1 1 2 2 2 1 1 1 2 2 2 1 1 1 2 2 2 1 1 1 2 2 2 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 <															
Ansular Space Depth Set at (m/t) Trye of Sealurit Used (mint) Output feature and Trye Draw Down Recovery 31															
Results of Weil Vield Testing Deprive of Selatin Used (Metric and Ype) Weil Vield Testing Construction Results of Weil Construction Results of Weil Results of Weil Results of Weil Construction Results of Weil Results of Weil Results of Weil Results of Weil Results of Weil Results of Weil Results of Weil Results of Weil Results of Weil Results of Weil Results of Weil <th c<="" td=""><td></td><td>0</td><td></td><td></td><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td><td>and and a second</td><td></td><td></td></th>	<td></td> <td>0</td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>and and a second</td> <td></td> <td></td>		0			_							and and a second		
Reservery Reservery Reservery Control (Metric) and Type) Control (Metric) and Type) O 31 S1 S1 S But (Control (Metric) and Type) Control (Metric) and San Control (Metric) (M													1.4		
Prom To Identified and Type (m/lt)" 0 3/ F (ush of (and the second s	Depth Set at	(<i>m/ft</i>)		Annular Spa	Used		Volume Pl	aced	After test of well vield.	Results of We water was:	Dr.	d Testing aw Down	R	ecovery	
Ones State Output Notice State 31 3.1 3.8 Matheward	From	То		(Material and Ty	(pe)	,	(m³/ft³)	Clear and sand fr	ee	Time (min)	Water Leve	Time	Water Level	
31 31 31 31 1 1 31 41% 5 cd. 1 1 1 Cable Tool Diamond Putting Developing 3 3 Cable Tool Diamond Potting Developing 4 4 Rotary (Reversitional) Jeating Donestic Municipal Developing 4 4 Participal Convertional Jeatus of Weil Developing 4 4 4 Participal Convertional Jeatus of Weil Developing 4 4 4 Participal Convertional Jeatus of Weil Developing 4 4 4 Diameter Construction Record - Casing Instance of Pumping (mR) 10 10 10 Participal Convertee Network Presso Presso 15 15 15 15 One two DR Magnering Weil Depth (mR) Presso 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 <td>D</td> <td>31.</td> <td>Fh</td> <td>ishnont/</td> <td>Comin</td> <td>ede,</td> <td></td> <td>Marki</td> <td>If pumping discontinue</td> <td>d give reason:</td> <td>Static</td> <td>(11/11)</td> <td>(11111)</td> <td>(111/11)</td>	D	31.	Fh	ishnont/	Comin	ede,		Marki	If pumping discontinue	d give reason:	Static	(11/11)	(11111)	(111/11)	
3.1 4.8 S.A.1 Image: Construction Pump intake set at (m/tt) 2 2 Image: Construction Pump intake set at (m/tt) 3 3 Image: Construction Pump intake set at (m/tt) 3 3 Image: Construction Pump intake set at (m/tt) 4 4 Image: Construction Pump intake set at (m/tt) 4 4 Image: Construction Pump intake set at (m/tt) 4 4 Image: Construction Pump intake set at (m/tt) 4 4 Image: Construction Pump intake set at (m/tt) 4 4 Image: Construction Pump intake set at (m/tt) 10 10 Image: Construction Pump intake set at (m/tt) 10 10 Image: Construction Pump intake set at (m/tt) 20 20 Image: Construction Pump intake set at (m/tt) 20 20 20 Image: Construction Pump intake set at (m/tt) 20 20 20 Image: Construction Pump intake set at (m/tt) 20 20 20 Image: Construction Pump intake set at (m/tt)	.3/ 3	~	31	8 Bat	m i te	- chip)			a, give reason.	Level		1		
Method of Construction Well Use 3 3 Cable Tool Deamond Public Commercial Not used Rotary (Coversion) Derived in the second (minicpal) Not used 4 4 Berring Diracian (minicpal) Deveatoring 10 10 Berring Diracian (minicpal) Deveatoring 10 10 Other interest end October (minicpal) Method of Construction Record - Casing Not used 10 10 Individual (minicpal) Open Hole OR Material (minicpal) Depth (minit) Recommended pump depth (minit) 20 20 Individual (minicpal) Depth (minit) Recommended pump depth (minit) Recommended pump rate (mini / GPM) 15 15 Individual (minicpal) Depth (minit) Recommended pump rate (mini / GPM) 20 20 Individual (minicpal) Depth (minit) Recommended pump rate (minit) 20 20 Individual (minit) Construction Record - Screen Depth (minit) Depth (minit) Recommended pump rate (minit) 20 50 50 Outrisine (minit) Record (minit) Depth (minit) Depth	3.1 4	88	5	ad.		0			Pump intake set at /m	2/ft)			1.		
Method of Construction Well Use Pumping rate (<i>Vimin/ GPM</i>) 3 3 Caber Tool Damond Public Commercial Not used Developing Rotary (Conventional) Diving Diving Diving Diving Diving Individual 5 5 Art percussion Diving Diving Diving Diving Individual 5 5 Inside Construction Record - Casing Status of Well Mater Supply 10 10 10 Inside Construction Record - Casing Tool modes Prevention of pumping (mit) 15 15 10 1							35				2		2		
Cable Tool Diamond Public Commercial Okt used Retary (Reventional) Detting Commercial Domestic Demestic Boring Orging Digging Inside Domestic Demestic Air percussion Didestical Construction Record - Casing Status of Well Inside Open Hole OR Naterial Water Supply Inside Construction Record - Casing Status of Well Inside Open Hole OR Naterial Water Supply Inside Open Hole OR Naterial Well Percenting Heat (Construction Record - Casing Status of Well Recommended pump depth (mtl) 20 20 (Construction Record - Casing Construction Record - Casing Status of Well Recommended pump depth (mtl) 25 25 (Construction Record - Screen Observation and Construction (Imin / GPM) 40 40 40 Outcide Material Depth (mtl) Observation and/oned, Precise 80 60 (Construction Record - Screen Observation and/oned, Precise Status of Well Yes No Water found at Depth Kind of Water:	Method	of Cor	nstruction			Well Us	e		Pumping rate (I/min / 0	GPM)	3		3		
Retary (Conventional) Letting Domestic Municipal Developing Municipal Developing Retary (Conventional) Digging Image Digging Image Municipal Developing Mu	Cable Tool		Diamond	Public	[ot used	Duration of pumping		4		4		
Biologing Digging Impaide Cooling & Air Conditioning Other, specify Other, specify Industrial Inside Open Hole OP Material Wall Open Hole OP Material Industrial Inside Open Hole OP Material Theophysics Theophysics Industrial Industrial Inside Open Hole OP Material Theophysics Theophysics Industrial Industrial Inside Open Hole OP Material Theophysics Theophysics Industrial Industrial Inside Open Hole OP Material Theophysics Theophysics Industrial	Rotary (Conv	entional) rse)	Driving	Domes	tic [ck [Municipa	e De	onitoring	hrs +n	nin	5		5		
Arr perclassion Industrial Other, specify Other, specify Inside Open Hole OR Material Inside Open Hole OR Material Value of Construction Record - Casing Explanetad (m/h) Observation Construction Record - Casing Explacement Well Prior To Recharge Viell Replacement Well Observation Arrow Recharge Viell Observation Arrow Recharge Viell Observation Record - Screen Observation and/or Outside Material Dampter (Pastic, Galvanized, Fibred) Value found at Depth Stot No. From To Construction Record - Screen Observation and/or Outside Material Diameter (Pastic, Galvanized, Steel) Stot No. Depth (m/h) Planeter (Pastic, Galvanized, Steel) Water found at Depth Stot No. Water found at Depth Kind of Water: Fresh Untested (m/h) Gas Other, specify Water found at Depth Kind of Water: Fresh Untested	Boring		Digging		n [Cooling	& Air Conditionir	ng	Final water level end of	f pumping (m/ft)	10		10		
Construction Record - Casing Status of Well Inside (cm/in) Open Hole OR Material (cm/in) Wall Depth (m/it) Water Supply Replacement Well 4 Open Hole OR Material (cm/in) Wall Depth (m/it) Water Supply Replacement Well Recommended pump depth (m/it) 20 20 4 0 30 30 30 30 4 0 40 40 40 40 4 0 40 40 40 40 0	Other, specif	phe	et push	_ Other,	specify			_	If flowing give rate (I/n	nin / GPM)	15		15		
Inside Dameter (cm/in) Open Hole OR Material (cm/in) Wall Depth (m/t) Water Supply Image: Concrete, Plastic, Steely 36.8 3.35 Recharge Well Recharge Well Recharge Well Image: Concrete, Plastic, Steely 36.8 3.35 Recharge Well Recharge Well Recharge Well Image: Concrete, Plastic, Steely 36.8 3.35 Recharge Well Recharge Well Recharge Well Image: Construction Record - Screen Outside Material Soit No. Depth (m/t) Image: Construction Record - Screen Image: Construction Record - Screen Outside Material Soit No. From To Image: Construction Record - Screen Outside Material Soit No. From To Image: Construction Record - Screen Water found at Depth Kind of Water: From To Image: Construction Record - Screen Image: Construction Record - Screen Water found at Depth Kind of Water: From To Construction Recommended pump rate Recommended pump rate		Cor	struction R	ecord - Casing			Status of	Well			20		20		
(cm/in) Concrete, Plastic, Steel) (cm/in) From To Image: Concrete, Plastic, Steel) S68 S.35 Recharge Well Image: Concrete, Plastic, Steel) Siot No. Construction Recharge Well Image: Construction Record - Screen Construction Construction Recharge Well Outside Diameter (min) Material (Plastic, Galvanized, Steel) Stot No. Depth (m/ft) Image: Construction Record - Screen Other, specify Material (Minitrient Supply) Material (Material Record - Screen Value Could at Depth Kind of Water: Fresh Untested (m/ft) Depth (m/ft) Diameter From Depth (m/ft) Diameter From Minitorial Mell Water found at Depth Kind of Water: Fresh Untested (m/ft) Galvanized Minitorial Information Business Address (Street Number/Name) Well Contractor Succers No Well Contractor Comments: <td>Inside C Diameter (C</td> <td>open Hole Galvanize</td> <td>oR Material d, Fibreglass,</td> <td>Wall Thickness</td> <td>Depth</td> <td>(m/ft)</td> <td>Water Sup</td> <td>oply ent Well</td> <td>Recommended pump</td> <td>o depth (m/ft)</td> <td>25</td> <td></td> <td>25</td> <td></td>	Inside C Diameter (C	open Hole Galvanize	oR Material d, Fibreglass,	Wall Thickness	Depth	(m/ft)	Water Sup	oply ent Well	Recommended pump	o depth (m/ft)	25		25		
Image Provide a map below following instructions on the back. Image Provide a map below following instructions on the back. Image Provide a map below following instructions on the back. Image Provide a map below following instructions on the back. Image Provide a map below following instructions on the back. Image Provide a map below following instructions on the back. Image Provide a map below following instructions on the back. Image Provide a map below following instructions on the back. Image Provide a map below following instructions on the back. Image Provide a map below following instructions on the back. Image Provide a map below following instructions on the back. Image Provide a map below following instructions on the back. Image Provide a map below following instructions on the back. Image Provide a map below following instructions on the back. Image Provide a map below following instructions on the back. Image Provide a map below following instructions on the back. Image Provide a map below following instructions on the back. Image Provide a map below following instructions on the back. Image Provide a map below following instructions on the back. Image Provide a map below following instructions on the back. Image Provide a map below following instructions on the back. <td< td=""><td>(cm/in) C</td><td>oncrete,</td><td>Plastic, Steel)</td><td>(cm/in)</td><td>()</td><td>200</td><td>Test Hole</td><td>14/-11</td><td>Recommended pump</td><td>rate</td><td>20</td><td></td><td>20</td><td></td></td<>	(cm/in) C	oncrete,	Plastic, Steel)	(cm/in)	()	200	Test Hole	14/-11	Recommended pump	rate	20		20		
Well production (l/min / GPM) 40 40 Well production (l/min / GPM) 40 40 Outside Abandoned, 50 50 Construction Record - Screen Image: Construction Record - Screen 50 60 60 Outside Material Boandoned, other, specify Abandoned, other, specify Please provide a map below following instructions on the back. V8A Mater Details Hole Diameter Mater Screen Mater Screen Water found at Depth Kind of Water: From To Configure Water found at Depth Kind of Water: Fresh Untested From To (m/t) Gas Other, specify Mater Mater Mater Water found at Depth Kind of Water: Fresh Untested From To (m/t) Gas Other, specify Mater Mater Mater Mater Water found at Depth Kind of Water: Fresh Untested Mater Mater Mater (m/t) Gas Other, specify Mater Mater Mater Mater Mater <td>7.05</td> <td>plus</td> <td>sole</td> <td>. 20.0</td> <td></td> <td>5.55</td> <td>- Dewatering</td> <td>g Well</td> <td>(Vmin / GPM)</td> <td></td> <td>40</td> <td></td> <td>10</td> <td></td>	7.05	plus	sole	. 20.0		5.55	- Dewatering	g Well	(Vmin / GPM)		40		10		
Alteration Construction Record - Screen Outside Disinfected? Outside Disinfected? Outside Material (Plastic, Galvanized, Steel) Slot No. From To Abandoned, Poor Water Quality Abandoned, other, specify Other, specify Water found at Depth Kind of Water: Fresh Untested (m/tt) Gas							Observation Monitoring	n and/or Hole	Well production (I/min	/ GPM)	40		40		
Construction Record - Screen Abandoned, Instituction Supply Outside Material Diameter Plastic, Galvanized, Steel Sid No. From To Sid No. Water Quality Abandoned, Poor Water Quality Abandoned, other, specify Other, specify Other, specify Water found at Depth Kind of Water: Fresh Untested Depth (m/ft) From To Water found at Depth Kind of Water: Fresh Untested Depth (m/ft) From To Water found at Depth Kind of Water: Fresh Untested Untested (m/ft) Gas Other, specify Untested Water found at Depth Kind of Water: Fresh Water found at Depth Kind of Water: Fresh Well Contractor and Well Technician Information Business Name of Well Contractor Well Contractor's Licence No. Well contractor Well Contractor's Licence No. Well contractor Well Contractor's Licence No.	· · · · ·						Alteration	ion)	Disinfected?		50		50		
Construction Record - Screen Depth (m/ft) Abandoned, Poor Outside Diameter (cm/ft) Material (Plastic, Galvanized, Steel) Stot No. Depth (m/ft) Abandoned, other, specify Please provide a map below following instructions on the back. Vater Outside (m/ft) Mater Details Hole Diameter Matherial (m/ft) Matherial (m							Abandone	d,	Yes No		60		60		
Outside Diameter (m/in) Material (Plastic, Galvanized, Steel) Slot No. Depth (m/ft) From Depth (m/ft) a bandoned, other, specify Please provide a map below following instructions on the back. 1.84 10 3.35 4.64 0 0 0 0 1.84 10 3.35 4.64 0 0 0 0 0 1.84 10 3.35 4.64 0 0 0 0 0 1.84 10 3.35 4.64 0 0 0 0 0 1.84 10 3.35 4.64 0		Co	onstruction R	ecord - Screen				d, Poor		Map of W	ell Loo	cation		2 August	
(cm/in) 10 10 specify 1.81 10 3.35 1.85 0 1.81 0 3.35 1.85 0 0.16 1.81 0 0.16 specify 0 0 1.82 0 3.35 1.85 0 0.16 model 1.81 0 0.16 specify 0 0 0 0 1.83 0.16 1.85 0.16 Depth (m/ft) Diameter model	Outside Diameter (Pl	Ma astic, Gal	aterial vanized, Steel)	Slot No.	Depth	(<i>m/ft</i>)	Water Qua	ality d, other,	Please provide a map	below following	Instruct	ions on the r	раск.		
Water Details Hole Diameter Water found at Depth Kind of Water: Fresh Untested Depth (m/ft) Diameter (m/ft) Gas Other, specify 0 48.8 6.4 Water found at Depth Kind of Water: Fresh Untested 0 6.4 (m/ft) Gas Other, specify 0 0 0 0 Water found at Depth Kind of Water: Fresh Untested 0 0 0 Well Contractor and Well Technician Information 0 0 0 0 0 0 Business Address (Street Number/Name) Municipality Comments: Comments: 0		1	1	10 3	25	405	specify	1 Ant		glielles	1				
Water Details Hole Diameter Water found at Depth Kind of Water: Fresh Untested Depth (m/ft) Diameter (m/ft) Gas Other, specify Other Gas Other, specify Other Water found at Depth Kind of Water: Fresh Untested Other Gas Other, specify Other Water found at Depth Kind of Water: Fresh Untested Other Other Gas Other, specify Other Other Well Contractor's Licence No. Other Other Gas Other Other Other Gas Other Other Gas Other Other Other Other Other Other Other </td <td>7.00</td> <td>plus</td> <td>in c</td> <td>10 -</td> <td>.32</td> <td>7.63</td> <td>Other, spe</td> <td>cify</td> <td></td> <td>MNI</td> <td>2-1</td> <td>2</td> <td></td> <td></td>	7.00	plus	in c	10 -	.32	7.63	Other, spe	cify		MNI	2-1	2			
Water Details Hole Diameter Water found at Depth Kind of Water: Fresh Untested (m/ft) Gas Other, specify Depth (m/ft) Diameter Water found at Depth Kind of Water: Fresh Untested Untested (m/ft) Gas Other, specify Untested Untested Untested Business Name of Well Contractor Well Contractor's Licence No. Well Contractor's Licence No. Untested Business Address (Street Number/Name) Municipality Comments: Comments:	Maddreson and an	1111224-144									-				
(m/ft) Gas Other, specify From To (cm/in) Water found at Depth Kind of Water: Fresh Untested 4 6 (m/ft) Gas Other, specify - - - - Water found at Depth Kind of Water: Fresh Untested - - - Water found at Depth Kind of Water: Fresh Untested -	Water found at	t Depth	Water Det Kind of Wate	r: Fresh	ntested	H Dept	ble Diameter	Diameter		Jr	e pr	S			
Water found at Depth Kind of Water: Fresh Untested (m/ft) Gas Other, specify Image: Contractor and Well Technician Information Water found at Depth Kind of Water: Fresh Untested (m/ft) Gas Other, specify Image: Contractor and Well Technician Information Business Name of Well Contractor Well Contractor's Licence No. Business Address (Street Number/Name) Municipality Comments:	(<i>m/ft</i>)	Gas	Other, spe	cify		From	To	(cm/in)							
(m/rti) Gas Other, specify Water found at Depth Kind of Water: Fresh (m/rti) Gas Other, specify Well Contractor and Well Technician Information Business Name of Well Contractor Well Contractor's Licence No. Business Address (Street Number/Name) Municipality Comments:	Water found at	t Depth	Kind of Wate	r: Fresh	ntested	0	4.80	0.25							
(m/ft) Gas Other, specify Well Contractor and Well Technician Information Business Name of Well Contractor Well Contractor's Licence No. Business Address (Street Number/Name) Municipality Comments:	(m/ft) Water found at	Gas Depth	Other, spe	r: Fresh	ntested										
Well Contractor and Well Technician Information Business Name of Well Contractor Well Contractor's Licence No. Business Address (Street Number/Name) Municipality	(<i>m/ft</i>)	Gas	Other, spe	cify											
Business Address (Street Number/Name) Municipality Comments:	Pueine - M	We	ell Contracto	or and Well Te	chniciar	n Informa	tion								
Business Address (Street Number/Name) Municipality Comments:	Skad	Soi/	Same	h.		We	a Contractor's Lic	ence No.	4						
I THE ING TO THE PART OF THE THE AND THE IS	Business Addre	ess (Stre	et Number/Na	me)	1 0	Mu	nicipality	1.11	Comments:	1.1.1					

Well owner's Date Package Delivered information package delivered Date Work Completed

Yes
No

 Y
 Y
 Y
 M
 M
 D
 D

 Date Work Completed

741483335

Ministry Use Only

z156921

Audit No.

the second second	an and a substantian A	A. A. Aret	
Province	Postal Code	Business E-mail Address	
ON	698106	wrecordsf st	nota soil comm.
Bus.Telephone No. (iii	nc. area code) Name	e of Well Technician (Last Nan	ne, First Name)
905764	9304	Beath Brid	20
Well Technician's Licer	nce No. Signature of	Technician and/or Contractor	Date Submitted
561	6	\sim	201229426
0506E (2007/12) © Q	ueen's Printer for Ontario	o, 2007	Contractor's Copy

800		
Ont	ario	Minis
	and	the E

0506E (2007/12) © Queen's Printer for Ontario, 2007

0

D)

Ministry of the Environment

Well Tag No. (Place Sticker and/or Print Below)

ABSODY

S-13085 Well Record Regulation 903 Ontario Water Resources Act

of Page

Measurements rec	corded in: 🛛 Me	etric 🗌 Imperial			A15-2007			Page_		of		
Well Owner's In	nformation											
First Name	all La	st Name / Organizat	on	CAR	E-mail Address				Well C	onstructed		
LITY OF	- UTIUNA		DIAL	Loren	Drawings	Destal Cada		Talanhana N	by Wel	I Owner		
Mailing Address (Sti	ier Ave	W. 5 F	1	ottawa	DAC	Postal Code	51					
Well Location												
Address of Well Loc	cation (Street Num	ber/Name)	T	ownship		Lot		Concession				
191 6	Lees Av	erse										
County/District/Mun	nicipality		C	City/Town/Village	Province Postal					Code		
UTM Coordinates 7	one Easting	Northing	N	Aunicipal Plan and Suble	lot Number Other							
NAD 83	184141716	0185101219	440									
Overburden and E	Bedrock Material	Is/Abandonment S	ealing Reco	rd (see instructions on the	back of this form)							
General Colour	Most Commo	on Material	Oth	er Materials	Gener	al Description			Dept From			
BIR	Aspl	alt	Cru	vel	flood				0	.31		
Ban	Sad	vel .	Layered	Sold .			.31	3.1				
Ban	Sad	14.	Layered	Soil.			3.1	.6.1				
Gra	Sal.	:12.	noist.			1	6.1	8.53				
Cont	cla.		1.1	1 a sovel	heigh	Hard		8	52.	914		
0.0	- Cury		7/1	, 9	10131	900.						
						16-54185			*			
		Annular Space			R	esults of W	ell Yiel	d Testing				
Depth Set at (<i>m/ft</i> From To	<i>t</i>)	Type of Sealant Used (Material and Type)		Volume Placed (m ³ /ft ³)	After test of well yield, v	vater was: ee	Time	Water Level	Time	Water Level		
0 .31	Flu	shinas t/cn	vere		Other, specify		(min)	(<i>m/ft</i>)	(min)	(m/ft)		
3172) 3/8	11 B.L le	chic		If pumping discontinue	d, give reason:	Level	113				
	a 70	pertain	chips				1		1			
1.72 1.1	1 5	and .			Pump intake set at (m	n/ft)	2		2			
							3		3			
Method of	Construction		Well Us)e	Pumping rate (I/min / 0	GPM)						
Cable Tool		Public		rcial Not used	Duration of pumping		4		4			
Rotary (Conventio			Test Ho	le Monitoring	hrs +n	nin	5		5			
Boring	Digging		Cooling	& Air Conditioning	Final water level end of	f pumping (m/ft)	10		10			
Other, <i>specify</i>		Other, specif	y		If flowing give rate (//n	nin (CPM)	15		15			
	Construction Re	cord - Casing		Status of Well			20		20			
Inside Open	Hole OR Material	Wall De	pth (<i>m/ft</i>)	Water Supply	Recommended pump	depth (m/ft)	20		20			
(cm/in) Concre	rete, Plastic, Steel)	(cm/in) From	То	Replacement Well Test Hole			25		25			
5.2 pl	Lashic	.39 0	7.62	Recharge Well	(<i>I/min / GPM</i>)	rate	30		30			
				Dewatering Well Observation and/or	Well production (//min	(GPM)	40		40			
				Monitoring Hole			50		50			
				(Construction)	Disinfected?		60		60			
				Abandoned, Insufficient Supply								
Outside	Construction Re	cord - Screen	nth (m/ft)	Abandoned, Poor	Please provide a map	below following	instruct	tions on the b	ack.			
Diameter (cm/in) (Plastic,	Material , Galvanized, Steel)	Slot No. From		Abandoned, other,		1 1 1	n,					
103 01	1.1.	10 76	1914	specify		Land	xef		8			
6.03 10	4.207:1	. 10 10	a. tirt	Other, specify		N	1w	12-15	7			
				·				M				
Water found at Da	Water Deta		ed Dep	tole Diameter		0,	n b	4				
	Gas Other spec		From	To (cm/in)								
Water found at Dep	epth Kind of Water	Fresh Untest	ed O	9.14 10.92								
(<i>m/ft</i>)	Gas Other, spec	cify										
Water found at Dep	epth Kind of Water	Fresh Untest	ed									
(<i>m/π</i>) [] G	Well Contractor	r and Well Technic	-	tion								
Business Name of V	Well Contractor		We We	ell Contractor's Licence No.								
Stricts 50	il Somp	hay.		12411								
Business Address (Street Number/Nar	ne)	M	unicipality	Comments:							
Province	Postal Code	Business E-mail	Address	Johnord Mill								
ON	LYBILC	6 wreends	pistal	soil.com	Well owner's Date P	ackage Deliver	ed	Minis	try Use	Only		
Bus.Telephone No. ((inc. area code) Nar	me of Well Technicia	n (Last Name,	First Name)		YYMM	DD	Audit No.	150	2000		
19057699304 Beatty Brian					delivered Date V	Vork Completed	1	· Z.	LJC	1966		
	b Signature	or rechnician and/or	Contractor Da	ROW BOMBAS		4292	35	Received				

					C	1205	OC	
the	Ontario Minis the El	try of nvironment	Well Ta	ag No. (Place Sticker a	nd/or Print Below)	1) V	Ontario Water	Record
Measurer	ments recorded in:	Metric 🗌 Imperial			A135003 Megu	1411011 303	Page	of
Well Ow First Nam	vner's Information	Last Name / Organiza	ation		E-mail Address			
City Mailing As	of ottay	va clo	Brad	Carew			by	ell Constructed Well Owner
	Laurie Ave	w 5 F	L	Ottawa	Province Postal	Code PI \ IJ I	Telephone No. (inc. area code)
Well Loc	cation	Imber/Name)		Township			Concession	
191	Lees Aven	-C		rownsnip	LOU		Concession	
County/Di	strict/Municipality			City/Town/Village		Provi Ont	nce Po tario	stal Code
UTM Coon	dinates Zone Easting	SIZIS SIGIAL	9461	Municipal Plan and Subl	ot Number	Other		
Overburg	and Bedrock Mater	ials/Abandonment	Sealing Reco	ord (see instructions on the	e back of this form)			
General C	Colour Most Com	mon Material	Ot	her Materials	General Descr	iption	From	Depth (<i>m/ft)</i> m To
Rea	ASP4	1.	6	ravel	that.	NA	0	.31
Row	Se Se	1.	gr	S. 1.t.	Layerd Ja	for.	2.0	u cit
Gy	5	ond	3	silt.	soft wet	,	6	1 8.99
, t					,			4
-								
		Annular Space			Results o	of Well Yie	ld Testing	
Depth S From	Set at (<i>m/ft)</i> To	Type of Sealant Use (Material and Type)	d	Volume Placed (m ³ /ft ³)	After test of well yield, water was	Di	raw Down	Recovery
0	31 FT.	shood / Ca	erche		Other, specify	(min)	(<i>m/ft</i>) (<i>mi</i>	n) (m/ft)
-31	7.16 3/8	Betite	Chips		If pumping discontinued, give rea	Ison: Level		
7.16	8.91	Sand.			Pump intake set at (m/ft)	1	1	
						2	2	
Met	hod of Construction		Well Us		Pumping rate (I/min / GPM)	3	3	
Rotary (Conventional) Usering			al Dewatering	Duration of pumping	5	5	
Boring				& Air Conditioning	Final water level end of pumping	(<i>m/ft</i>) 10	1	0
Other, s	specify <u>pired</u> fush	Other, speci	fy		If flowing give rate (I/min / GPM)	15	1:	5
Inside	Construction R Open Hole OR Material	ecord - Casing	pth (<i>m/ft</i>)	Status of Well	Recommended nump depth (m	20	20	0
Diameter (cm/in)	(Galvanized, Fibreglass, Concrete, Plastic, Steel)	Thickness (cm/in) From	То	Replacement Well		25	2:	5
4.03	plastic	368 0	7:47		Recommended pump rate (<i>I/min / GPM</i>)	30	30	0
	1			Observation and/or	Well production (I/min / GPM)	40	40)
					Disinfected?	50	50)
				Abandoned, Insufficient Supply	Yes No	60	60	
Outside	Material	ecord - Screen	pth (<i>m/ft</i>)	Abandoned, Poor Water Quality	Please provide a map below follo	of Well Loc wing instruct	ions on the back.	
(cm/in)	(Plastic, Galvanized, Steel)	From	То	Abandoned, other, specify	1 1.00	24 1	1.1.1.15	
4.82	plastic	10 7.4	7 8.49	Other, specify	Later	-21 101	W1.2-12	
					On	Ma	D	
Water four	nd at Depth Kind of Water	r: Fresh Untest	ed _ Dept	th (<i>m/ft</i>) Diameter				
(n Water four	n/ft) Gas Other, spe	cify	ed O	To (cm/in) 8.99 8.25				
(17	n/ft) Gas Other, spe	cify						
water toun	n/ft) Gas Other, spe	r: Urresh Untest	ed					
Puciness N	Well Contracto	r and Well Technic	ian Informat	tion				
Stock	Soil Samo	lin	We	Il Contractor's Licence No.				
Business A	ddress (Street Number/Na	me)	OI X	nicipality	Comments:			
Province	Postal Code	Business E-mail A	ddress	L II				
Bus.Telepho	one No. (inc. area code) Na	me of Well Technician	S C Sthe	First Name)	Well owner's Date Package Del	ivered	Ministry U Audit No.	se Only
1905	7649304	Bea th	Bri	an	delivered Date Work Compl	M D D eted	z 15	6920
1316	Bignature	or rechnician and/or	Sontractor Dat	VV20988	No ROVIDR	205	Received	
	10) 00 1 0 1 0	ario 2007				3		

Contractor's Copy

Well Tag No. (Place Sticker and/or Print Below) 5-13085 Well Record								ecord		
	the En	vironment	ial distance		ABSOOG	Regulation	903 On	Page	r Reso	ources Act
Well Owner's								Fage		
First Name		ast Name / Orgar	nization		E-mail Address				Well C	Constructed
Mailing Address (S	O + () Hawa	C/D Dr	ad Caren	Province	Postal Code	Te	elephone No	by We	II Owner
110 Laur	ier Are	\mathcal{W}_{i}	5 ⁺⁰ Fl	Ottawa	DN	KIV PUF	51			
Well Location						ll et		opeoplep	1	
Address of Well Lo		Avenue		ownsnip		LOI		Oncession		
County/District/Mu	unicipality		С	ity/Town/Village			Province	e	Postal	Code
UTM Coordinates	Zone Easting	Northing		Iunicipal Plan and Sublo	t Number		Other			
NAD 8 3	184476	67502	29463							
Overburden and	Bedrock Materi	als/Abandonme	nt Sealing Reco	rd (see instructions on the	back of this form)	al Description			Dept	th (<i>m/ft</i>)
Rine	Taysai		5			co fo .		F	rom >	To
RAM	Sai		6174	Í.	Corko c	fot		. (31	3.1
Rom	5	/	3.5	nerol.	iferd d	En 2		2	1	GI
Con	Cry Sel. Silticly					anered		6	1	9.14
1	300				1013					
							1.1			
		Annular Spa	ce		F	Results of We	II Yield	Testing		
Depth Set at (m.	/ft)	Type of Sealant I	Jsed	Volume Placed	After test of well yield,	water was:	Drav	w Down	Re	
0 73	3/8"	Baster Le	chivs	(117710)	Other, specify	ee	(min)	(<i>m/ft</i>)	(min)	(<i>m/ft</i>)
722 916	1	S.J.	F		If pumping discontinue	d, give reason:	Static Level			
e. 300 1.0		-u-					1		1	
					Pump intake set at (n	n/ft)	2		2	
					Pumping rate (I/min /	GPM)	3		3	
	f Construction		Well Us	e			4		4	
Rotary (Conven	tional)	Domesti	c 🗌 Municipa	al Dewatering	Duration of pumping hrs + n	nin	5		5	
Boring			Cooling	& Air Conditioning	Final water level end o	f pumping (m/ft)	10		10	
Air percussion		Other, s	l pecify	和建制的出现可以	15.0		15		15	
	Construction R	ecord - Casing		Status of Well	If flowing give rate (I/m	nin / GPM)	20		20	
Inside Ope Diameter (Gal	n Hole OR Material	Wall	Depth (<i>m/ft</i>)	Water Supply	Recommended pump	depth (m/ft)	20		20	
(cm/in) Cond	crete, Plastic, Steel)	(cm/in) F	rom To	Test Hole	Recommended pump	rate	25		25	
7.05 P	isshe	368 0	> 1.64	Recharge Well Dewatering Well	(I/min / GPM)		30		30	
				Observation and/or	Well production (I/min	/ GPM)	40		40	
		- 化元素 和			Disinfected?		50		50	- 18. C
				Abandoned,	Yes No		60		60	
	Construction R	ecord - Screen		Abandoned, Poor		Map of W	ell Loca	ition		
Outside Diameter (Plast	Material ic, Galvanized, Steel)	Slot No.	Depth (<i>m/ft</i>)	Water Quality Abandoned, other,	Please provide a map	below following	Instructio	ns on the ba	CK.	
USI	di hie	10 7	62 914	specify	L	tracce	9	11		
1.00 p	042			Other, specify		MI	N 19	16		
	NA/-A Da	6-11-								
Water found at D	epth Kind of Wate	r: Fresh Ur	itested Dept	th (<i>m/ft</i>) Diameter		n	May	P		
(m/ft)	Gas Other, spe	ecify	From	To (cm/in)		0,	1			
Water found at D	Gas Other so	r:FreshUr	itested	9.11 10.11						
Water found at D	epth Kind of Wate	r: Fresh Ur	itested							
(m/ft)	Gas Other, spe	ecify								
Business Name of	Well Contractor	or and Well Tec	nnician Informat	tion ell Contractor's Licence No.						
Stratz S	oil sam	Parti	7	121411		ale a				
Business Address	(Street Number/Na	r creek	RJ. ML	Inicipality	Comments:					
Province	Postal Code	Business E-m	ail Address	1 - 1/-						
Bug Talash	EMB16	P WREE	ASC SVAS	First Nama	Well owner's Date P	ackage Delivere	d	Minist Audit No	ry Use	e Only
90576	(inc. area code) Na 99304	Beat	M Bria	First Name)	delivered Y Y	YYMM	DD	Ζ 1	150	3955
Well Technician's Lie	cence No. Signature	of Technician an	d/or Contractor Da	te Submitted	Yes Date V		2. C			
0506E (2007/12)	Queen's Printer for On	tario, 2007	100	Contractor's Con	V NO	Y DX PRI M	e o l	Received	1997 - 1997 - 19 19	
				Source S cob	International states in the second states of the					

						C 12	080			
0. Onta	rio Minist	ry of	Well Ta	g No. (Place Sticker a	nd/or Print Below)	5-12	000	We	IR	ecord
Measurements re	ecorded in:	Aetric Imperia			A135000	Regulation	1 903 On	Page	er Reso	of
Well Owner's	Information									
First Name	C alla	ast Name / Organiz	ation	0	E-mail Address	•			Well C	onstructed
Mailing Address (Street Number/Nar	ne) (10	Drad	Aunicipality	Province	Postal Code	Te	elephone No	by Wel	Owner
110 Lau	irier Ar	eW5	Fl.	ottana	On	KIPI	51			
Well Location										
Address of Well L	ees Ave	nber/Name)		ownship		Lot		oncession		
County/District/M	unicipality		C	City/Town/Village			Province	e	Postal	Code
UTM Coordinates	Zone , Easting	, Northing	N	O (TRWNS	ot Number		Onta	r10		
NAD 8 3	18447	509502	9418							
Overburden and	Bedrock Materia	als/Abandonment	Sealing Reco	rd (see instructions on the	back of this form)			and the second	Depth	ר (<i>m/ft</i>)
General Colour	Wost Comm		Oth		Gene	rai Description		F	rom	То
Rand	Sal	<i>q</i> + 1 1			- Pd 1	LOOM				. UI
france	Cill	•	gene		chi co	yeras,		1	10	201
and	Sill		CL.	7	Solo L	eyers.		0	0	52.8
Col.	T'TI		21174		11 1			(.	62	8.84
- 7	1101.				riard .			0.	5	
		Annular Space				Results of We	ell Yield	Testing		
Depth Set at (m. From To	/ft)	Type of Sealant Us (Material and Type	ed	Volume Placed (m ³ /ff ³)	After test of well yield,	water was:	Drav	w Down	Re	covery
0 7.	01 3/8	Bhota Le	c hips	(Other, specify		(min)	(m/ft)	(min)	(m/ft)
7.01 8.9	84 6	1	- 1-		If pumping discontinue	ed, give reason:	Static Level			
		~~~~ ·					1		1	
					Pump intake set at (r	m/ft)	2		2	
Method o	E Construction		Woll He		Pumping rate (I/min /	GPM)	3		3	
		Public		rcial 🗌 Not used	Duration of pumping		4		4	
Rotary (Convent	tional) U Jetting	Domestic Livestock	Municipa	al Dewatering	hrs + r	nin	5		5	
Boring	Digging		Cooling	& Air Conditioning	Final water level end c	of pumping (m/ft)	10		10	
Other, specify _		_ Other, spe	cify		If flowing give rate (//	min / GPM)	15		15	
	Construction R	ecord - Casing		Status of Well			20		20	
Diameter (Galv	n Hole OR Material vanized, Fibreglass,	Wall L Thickness	$\frac{Deptn(m/tt)}{To}$	Water Supply     Replacement Well	Recommended pump	o depth (m/ft)	25		25	
Conc	I CIC, FIASUC, SICEI)	39 0	777	Recharge Well	Recommended pump	o rate	30		30	
D. P	4.SM		1,20	Dewatering Well			40		40	
				Monitoring Hole	Well production (I/mir	n / GPM)	50		50	
				Alteration (Construction)	Disinfected?		60		60	
	Construction D		Internet and the second	Abandoned, Insufficient Supply		Man of M		4	00	
Outside	Material		Depth ( <i>m/ft</i> )	Abandoned, Poor Water Quality	Please provide a map	below following	instruction	ns on the ba	ck.	
(cm/in) (Plasti	c, Galvanized, Steel)	From From	m To	Abandoned, other, <i>specify</i>		1 And	61			2
6.03	shohic .	10 1.3	2 8.84			Carlo	1010	1 - 7	717	7
								in M	-0	
Water found at D	Water Det		H	lole Diameter			U		P	
( <i>m/ft</i> )	Gas Other, spe	cify	From	To (cm/in)						
Water found at De	epth Kind of Water	: Fresh Unte	sted O	8.61 10.91						
( <i>m/ft</i> ) Water found at De	Gas Other, spe	cify	sted							
( <i>m/ft</i> )	Gas Other, spe	cify								
Business Name of	Well Contractor	r and Well Techn	ician Informat	tion	1. 1.					
Stark S	oil Sam	plac	Ve							
Business Address	(Street Number/Na	me)	Mu	nicipality	Comments:					
5 111	en and									

0506E (2007/12) © Queen's Printer for Ontario, 2007

Province

**Contractor's Copy** 

Well owner's information package delivered

Yes

No

Date Package Delivered

YYYYMM

201120993

Date Work Completed

Ministry Use Only

z156918

Audit No.

Postal Code LIYBICO Business E-mail Address LIYBICO Breends Bruch Soil. Con

15			5-13085								
Ontario Ministry of the Environment			Well Ta	Well Tag No. (Place Sticker and/or Print Below)		Regulation 903 Ontario Water Resources Act					
Measurements	recorded in:	Netric 🗌 Imperia			AISSOOD		Pa	age	of		
Well Owner'	s Information	ast Name / Organiz	ation		E-mail Address						
City of ottawa clo Brad Caren					L-mail Address			by Weil	Constructed ell Owner		
Mailing Address (Street Number/Name)			th FI	Municipality	Province Postal Code		Telepho	one No. <i>(inc</i> .	area code)		
Well Location	n										
Address of Well	Location (Street Nu		Lot	Conce	ssion						
County/District/Municipality City/Town/Village					Province			Postal	Postal Code		
UTM Coordinate	s Zone Easting	Northing	N	Municipal Plan and Suble	ot Number C		Ontario				
NAD 8	3 184479	517502	9450					-			
Overburden a General Colour	nd Bedrock Materi Most Comn	als/Abandonment	Sealing Reco	ord (see instructions on the ner Materials	back of this form) Gener		Dep	th ( <i>m/ft</i> )			
Brm	TUSS		Sm	1.	Saft Course			From	6/		
Brin	Sad	1.	9-20	vel	Layered Saits.		-	.61	3.66		
Gry	Silt	, sel.	C	loy	Soft.			3.66	6.1		
cy	day'		sl	ty sal.	raisd, sate.			6.1	8.84		
	/								R		
					No.						
						*					
		Annular Space			F	Results of We	Il Yield Test	ing			
Depth Set at From	( <i>m/ft</i> ) To	Type of Sealant Us (Material and Type	ed )	Volume Placed (m ³ /ft ³ )	After test of well yield, w	water was:	Draw Dov Time Water	vn R	ecovery Water Level		
0 7	1.01 3/8	" But de	chips		Other, specify		(min) (m/	(ft) (min)	(m/ft)		
7.01 8	.84 Sad	-	0		If pumping discontinue	d, give reason:	Level		<u></u>		
					Rump intake set at (m	2/ft)	1	1			
1.0.1						wity	2	2			
Method	of Construction		Well Us	se	Pumping rate (I/min / 0	GPM)	3	3			
Cable Tool Rotary (Conv	entional)	Public Domestic	Comme	ercial Not used	Duration of pumping		4	4	<u></u>		
Rotary (Reverse)     Driving     Livestock     Boring     Digging     Dirding			Test Ho	ble Monitoring	hrs + min Final water level end of pumping (m/ft)		5	5			
□ Air percussion □ Industrial □ Other specify		Irrigation	Coolina		Final water level end of	f pumping (m/ft)	10	10			
Other. specify	n v	Irrigation	Cooling		Final water level end of	f pumping (m/ft)	10	10			
Air percussion	Construction R	Irrigation     Industrial     Other, spe ecord - Casing	└ Cooling	Status of Well	Final water level end of	f pumping (m/ft) nin / GPM)	10	10 15			
Air percussion Other, <i>specify</i> Inside O Diameter (C	Construction R Pen Hole OR Material Salvanized, Fibreglass,	Irrigation     Industrial     Other, spe eccord - Casing Wall Thickness	Cify	Status of Well Water Supply Replacement Well	Final water level end of If flowing give rate (I/n Recommended pump	f pumping <i>(m/ft)</i> nin / GPM) depth <i>(m/ft)</i>	10 15 20 25	10 15 20			
Air percussion Other, specify Inside Diameter (cm/in)	Construction R Pen Hole OR Material Salvanized, Fibreglass, oncrete, Plastic, Steel)	Irrigation     Industrial     Other, spe eccord - Casing Wall Thickness (cm/in)	Cooling	Status of Well  Water Supply  Replacement Well  Crest Hole  Replaying Wall	Final water level end of If flowing give rate (l/n Recommended pump Recommended pump	f pumping (m/ft) nin / GPM) depth (m/ft) rate	10       15       20       25       30	10 15 20 25 30			
Air percussion Other, specify Inside Diameter (cm/in)	Construction R Pipen Hole OR Material Salvanized, Fibreglass, oncrete, Plastic, Steel)	Irrigation     Industrial     Other, spe ecord - Casing Wall Thickness (cm/in)	Cooling	Status of Well       Water Supply       Replacement Well       Test Hole       Recharge Well       Dewatering Well	Final water level end of If flowing give rate (l/n Recommended pump (l/min / GPM)	f pumping (m/ft) nin / GPM) depth (m/ft) rate	10       15       20       25       30	10 15 20 25 30 40			
Air percussion Other, specify Inside Diameter (cm/in) Ca	Construction R pen Hole OR Material alvanized, Fibreglass, oncrete, Plastic, Steel) PLAC	Irrigation     Industrial     Other, spe ecord - Casing Wall Thickness (cm/in)     Fro	Cooling	Status of Well         Water Supply         Replacement Well         Test Hole         Recharge Well         Dewatering Well         Observation and/or         Monitoring Hole	Final water level end of If flowing give rate (I/n Recommended pump (I/min / GPM) Well production (I/min	f pumping (m/ft) nin / GPM) depth (m/ft) rate / GPM)	10       15       20       25       30       40	10 15 20 25 30 40			
Air percussion Other, specify Inside Diameter (cm/in)	Construction R Pagen Hole OR Material Jalvanized, Fibreglass, oncrete, Plastic, Steel) PLSC	Irrigation     Industrial     Other, spe ecord - Casing Wall Thickness (cm/in)	Cooling	Status of Well         Water Supply         Replacement Well         Test Hole         Recharge Well         Dewatering Well         Observation and/or Monitoring Hole         Alteration (Construction)	Final water level end of If flowing give rate (I/n Recommended pump (I/min / GPM) Well production (I/min Disinfected?	f pumping (m/ft) nin / GPM) depth (m/ft) rate / GPM)	10       15       20       25       30       40       50	10 15 20 25 30 40 50 60			
Air percussion Other, specify Inside Diameter (cm/in)	Construction R	Irrigation     Industrial     Other, spe ecord - Casing Wall Thickness (cm/in)     Screen	Cooling	Status of Well         Water Supply         Replacement Well         Test Hole         Recharge Well         Dewatering Well         Observation and/or Monitoring Hole         Alteration (Construction)         Abandoned, Insufficient Supply	Final water level end of If flowing give rate (l/n Recommended pump (l/min / GPM) Well production (l/min Disinfected?	f pumping (m/ft) nin / GPM) depth (m/ft) rate / GPM) Map of W	10       15       20       25       30       40       50       60	10 15 20 25 30 40 50 60			
Outside Diameter	Construction R pen Hole OR Material Salvanized, Fibreglass, oncrete, Plastic, Steel)		Cooling	Status of Well         Water Supply         Replacement Well         Test Hole         Recharge Well         Dewatering Well         Observation and/or Monitoring Hole         Alteration (Construction)         Abandoned, Insufficient Supply         Abandoned, Poor Water Quality         Abandoned, other	Final water level end of If flowing give rate (l/n Recommended pump (l/min / GPM) Well production (l/min Disinfected? Yes No	f pumping (m/ft) nin / GPM) depth (m/ft) rate / GPM) Map of We below following	10         15         20         25         30         40         50         60	10 15 20 25 30 40 50 60			
Air percussion         Other, specify         Inside       O         Diameter       (C         (cm/in)       C         S       A         Outside       Diameter         Diameter       (CH/R)         Outside       (Pla         Diameter       (CH/R)	Construction R pen Hole OR Material Salvanized, Fibreglass, oncrete, Plastic, Steel) Construction R Material astic, Galvanized, Steel)		Cooling	Status of Well         Water Supply         Replacement Well         Recharge Well         Dewatering Well         Observation and/or Monitoring Hole         Alteration         (Construction)         Abandoned, Insufficient Supply         Abandoned, Poor Water Quality         Abandoned, other, specify	Final water level end of If flowing give rate (l/n Recommended pump (l/min / GPM) Well production (l/min Disinfected? Yes No Please provide a map	f pumping (m/ft) nin / GPM) depth (m/ft) rate / GPM) Map of W. below following	10         15         20         25         30         40         50         60	10       15       20       25       30       40       50       60			
Air percussion         Other, specify         Inside       O         Diameter       (G         (Cm/in)       Cd         S       A         Outside       Diameter         Diameter       (Planeter         (Cm/in)       (Planeter         Outside       O         Diameter       (Planeter         (Cm/in)       (Planeter         (Cm/in)       (Planeter         (Cm/in)       (Planeter         (O       O         (Cm/in)       (Planeter         (Cm/in)       (Planeter         (O       O         (Cm/in)       (Planeter         (D       O         (D       O         (D       O         (D       O         (D       O         (D       O	Construction R pen Hole OR Material Salvanized, Fibreglass, oncrete, Plastic, Steel) PLSC Construction R Material astic, Galvanized, Steel) PLSC		Cooling     Cooling     Cooling     Depth (m/ft)     T     7.32     Depth (m/ft)     T     Cooling     Cooling     T	Status of Well         Water Supply         Replacement Well         Test Hole         Recharge Well         Dewatering Well         Observation and/or Monitoring Hole         Alteration         (Construction)         Abandoned, Poor Water Quality         Abandoned, other, specify         Other, specify	Final water level end of If flowing give rate (I/n Recommended pump (I/min / GPM) Well production (I/min Disinfected? Yes No Please provide a map	f pumping (m/ft) nin / GPM) depth (m/ft) rate / GPM) Map of Wr below following	10         15         20         25         30         40         50         60	10 15 20 25 30 40 50 60			
Air percussion         Other, specify         Inside       O         Diameter       (C         (CM/in)       C         S       Image: Comparison of the system of the sys	Construction R pen Hole OR Material Salvanized, Fibreglass, oncrete, Plastic, Steel) Construction R Material astic, Galvanized, Steel)		Cooling      cify  Depth (m/ft)      T      7.32  Depth (m/ft)      T      7.32	Status of Well         Water Supply         Replacement Well         Test Hole         Recharge Well         Dewatering Well         Observation and/or Monitoring Hole         Alteration (Construction)         Abandoned, Poor Water Quality         Abandoned, other, specify	Final water level end of If flowing give rate (I/n Recommended pump (I/min / GPM) Well production (I/min Disinfected? Yes No Please provide a map	f pumping (m/ft) nin / GPM) depth (m/ft) rate / GPM) Map of W. below following May May /	10         15         20         25         30         40         50         60	10 15 20 25 30 40 50 60 the back.			
Air percussion Other, specify Inside Diameter (cm/in) Cutside Diameter (cm/in) Cutside Diameter (cm/in) (Pla Water found at	Construction R pen Hole OR Material Salvanized, Fibreglass, oncrete, Plastic, Steel) Construction R Material astic, Galvanized, Steel)		Cooling	Status of Well         Water Supply         Replacement Well         Test Hole         Recharge Well         Dewatering Well         Observation and/or Monitoring Hole         Alteration (Construction)         Abandoned, Insufficient Supply         Abandoned, Poor Water Quality         Abandoned, other, specify         Other, specify         Hole Diameter         th (m/ft)         Diameter	Final water level end of If flowing give rate (I/n Recommended pump (I/min / GPM) Well production (I/min Disinfected? Yes No Please provide a map	f pumping (m/ft) nin / GPM) depth (m/ft) rate / GPM) Map of W. below following Multiple Multiple Multi Multiple Multiple Multiple Multiple Multiple M	10         15         20         25         30         40         50         60	10 15 20 25 30 40 50 60 the back.			
Air percussion         Other, specify         Inside       O         Diameter       O         (cm/in)       O         S       Image: Comparison of the system of the syst	Construction R pen Hole OR Material Salvanized, Fibreglass, oncrete, Plastic, Steel)  Construction R Material astic, Galvanized, Steel)  Material astic, Galvanized, Steel)  Material astic, Galvanized, Steel)  Construction R Material Construction		Cooling	Status of Well         Water Supply         Replacement Well         Rescharge Well         Dewatering Well         Observation and/or         Monitoring Hole         Alteration         (Construction)         Abandoned,         Insufficient Supply         Abandoned,         Insufficient Supply         Abandoned, other,         specify         Other, specify         Other, specify         Hole Diameter         To         (cm/in)         St. & Y         10.9.9	Final water level end of If flowing give rate (I/n Recommended pump (I/min / GPM) Well production (I/min Disinfected? Yes No	f pumping (m/ft) nin / GPM) depth (m/ft) rate / GPM) Map of W below following May May I MW I	10         15         20         25         30         40         50         60	10 15 20 25 30 40 50 60 the back.			
Air percussion Other, specify Diameter (cm/in) Cutside Diameter (cm/in) Cutside Diameter (cm/in) Cutside Diameter (cm/in) Cutside Diameter (cm/in) Water found at (m/ft)	Construction R pen Hole OR Material Salvanized, Fibreglass, oncrete, Plastic, Steel)  Construction R Material astic, Galvanized, Steel)  Material astic, Galvanized, Steel)  Water De Depth Kind of Wate Gas Other, spe Gas Other, spe		Cooling	Status of Well         Water Supply         Replacement Well         Recharge Well         Dewatering Well         Observation and/or         Monitoring Hole         Alteration         (Construction)         Abandoned,         Insufficient Supply         Abandoned,         Insufficient Supply         Abandoned, other,         specify         Other, specify	Final water level end of If flowing give rate (I/n Recommended pump (I/min / GPM) Well production (I/min Disinfected? Yes No Please provide a map	f pumping (m/ft) nin / GPM) depth (m/ft) rate / GPM) Map of Wr below following May Mw / Om	10         15         20         25         30         40         50         60	10 15 20 25 30 40 50 60 the back.			
Air percussion Other, specify Inside Diameter (cm/in) Cutside Diameter (cm/in) Cutside Diameter (cm/in) Cutside Diameter (cm/in) Cutside Diameter (cm/in) Cutside Diameter (cm/in) Cutside Diameter (cm/in) Cutside Diameter (cm/in) Cutside Diameter (cm/in) Cutside Diameter (cm/in) Cutside Diameter (cm/in) Cutside Diameter (cm/in) Cutside Diameter (cm/in) Cutside Diameter (cm/in) Cutside Diameter (cm/in) Cutside Diameter (cm/in) Cutside Diameter (cm/in) Cutside Diameter (cm/in) Cutside Diameter (cm/in) Cutside Diameter (cm/in) Cutside Diameter (cm/in) Cutside Diameter (cm/in) Cutside Diameter (cm/in) Cutside Diameter (cm/in) Cutside Diameter (cm/in) Cutside Diameter (cm/in) Cutside Diameter (cm/in) Cutside Diameter (cm/in) Cutside Diameter (cm/in) Cutside Diameter (cm/in) Cutside Diameter (cm/in) Cutside Diameter (cm/in) Cutside Diameter (cm/in) Cutside Cutside Cutside Cutside Cutside Cutside Cutside Cutside Cutside Cutside Cutside Cutside Cutside Cutside Cutside Cutside Cutside Cutside Cutside Cutside Cutside Cutside Cutside Cutside Cutside Cutside Cutside Cutside Cutside Cutside Cutside Cutside Cutside Cutside Cutside Cutside Cutside Cutside Cutside Cutside Cutside Cutside Cutside Cutside Cutside Cutside Cutside Cutside Cutside Cutside Cutside Cutside Cutside Cutside Cutside Cutside Cutside Cutside Cutside Cutside Cutside Cutside Cutside Cutside Cutside Cutside Cutside Cutside Cutside Cutside Cutside Cutside Cutside Cutside Cutside Cutside Cutside Cutside Cutside Cutside Cutside Cutside Cutside Cutside Cutside Cutside Cutside Cutside Cutside Cutside Cutside Cutside Cutside Cutside Cutside Cutside Cutside Cutside Cutside Cutside Cutside Cutside Cutside Cutside Cutside Cutside Cutside Cutside Cutside Cutside Cutside Cutside Cutside Cutside Cutside Cutside Cutside Cutside Cutside Cutside Cutside Cutside Cutside Cutside Cutside Cutside Cutside Cutside Cutside Cutside Cutside Cutside Cutside Cutside Cutside Cutside Cutside Cutside Cutside Cutside Cutside Cutside Cutside Cutside Cutside Cutside Cutside Cutside Cutside	Construction R pen Hole OR Material Salvanized, Fibreglass, oncrete, Plastic, Steel)  Construction R Material astic, Galvanized, Steel)  Material astic, Galvanized, Steel)  Material astic, Galvanized, Steel)  Construction R Material astic, Galvanized, Steel)  Kind of Wate Gas Other, spe Depth Kind of Wate		Cooling	Status of Well         Water Supply         Replacement Well         Erest Hole         Recharge Well         Dewatering Well         Observation and/or Monitoring Hole         Alteration         (Construction)         Abandoned, Insufficient Supply         Abandoned, Poor Water Quality         Abandoned, other, specify         Other, specify         Hole Diameter To         Yo         Status of Well	Final water level end of If flowing give rate (I/n Recommended pump (I/min / GPM) Well production (I/min Disinfected? Yes No Please provide a map	f pumping (m/ft) nin / GPM) depth (m/ft) rate / GPM) Map of W. below following MAD of May of	10         15         20         25         30         40         50         60	10 15 20 25 30 40 50 60 the back.			
Air percussion Other, specify Inside Diameter (cm/in) Outside Diameter (cm/in) Outside Diameter (cm/in) Water found at (m/ft) Water found at (m/ft)	Construction R pen Hole OR Material Salvanized, Fibreglass, oncrete, Plastic, Steel)  Construction R Material astic, Galvanized, Steel)  Water De Depth Kind of Wate Gas Other, spe Depth Kind of Wate Gas Other, spe Well Contracted		Cooling cify Depth (m/ft) m To 7.32 Depth (m/ft) m To 32 8.8 Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling Cooling	Status of Well         Water Supply         Replacement Well         Test Hole         Recharge Well         Dewatering Well         Observation and/or Monitoring Hole         Alteration (Construction)         Abandoned, Insufficient Supply         Abandoned, Poor Water Quality         Abandoned, Poor Water Quality         Other, specify         Other, specify         Hole Diameter         To         Status         Y         IO.egy	Final water level end of If flowing give rate (I/n Recommended pump (I/min / GPM) Well production (I/min Disinfected? Yes No Please provide a map	f pumping (m/ft) nin / GPM) depth (m/ft) rate / GPM) Map of W below following MAD / MW / On	10         15         20         25         30         40         50         60	10 15 20 25 30 40 50 60 the back.			
Air percussion Other, specify Inside Diameter (CM/in) Outside Diameter (CM/in) Outside Diameter (CM/in) Water found at (m/ft) Water found at (m/ft) Water found at (m/ft) Business Name	Construction R pen Hole OR Material Salvanized, Fibreglass, oncrete, Plastic, Steel)  Construction R Material astic, Galvanized, Steel)  Material astic, Galvanized, Steel)  Material astic, Galvanized, Steel)  Material Gas Other, spe Depth Kind of Wate Gas Other, spe Uepth Contractor  Well Contractor		Cooling	Status of Well         Water Supply         Replacement Well         Test Hole         Recharge Well         Dewatering Well         Observation and/or Monitoring Hole         Alteration (Construction)         Abandoned, Insufficient Supply         Abandoned, Poor Water Quality         Abandoned, other, specify         Other, specify         Other, specify         Insufficient Supply         Abandoned, Other, specify         Other, specify         Insufficient Supply         Abandoned, Other, Specify         Insufficient Supply         Abandoned, Poor         Water Quality         Abandoned, Other, specify         Insufficient Supply         Insufficient Supply         Abandoned, Insufficient Supply         Insufficient Supply	Final water level end of If flowing give rate ( <i>l/n</i> Recommended pump ( <i>l/min / GPM</i> ) Well production ( <i>l/min</i> Disinfected? Yes No	f pumping (m/ft) nin / GPM) depth (m/ft) rate / GPM) Map of W. below following MWV / On	10         15         20         25         30         40         50         60	10 15 20 25 30 40 50 60 the back.			
Air percussion Other, specify Diameter (cm/in) Cutside Diameter (cm/in) Cutside Diameter (cm/in) Cutside Diameter (cm/in) Cutside Diameter (cm/in) Water found at (m/ft) Water found at (m/ft) Water found at (m/ft) Water found at (m/ft) Water found at (m/ft) Water found at (m/ft)	Construction R  pen Hole OR Material Salvanized, Fibreglass, oncrete, Plastic, Steel)  Construction R  Material astic, Galvanized, Steel)  Material astic, Galvanized, Steel)  Water De Depth Kind of Wate Gas Other, spa Depth Kind of Wate Gas Other, spa Set Othe		Cooling	Status of Well         Water Supply         Replacement Well         Test Hole         Recharge Well         Dewatering Well         Observation and/or Monitoring Hole         Alteration (Construction)         Abandoned, Insufficient Supply         Abandoned, Poor Water Quality         Abandoned, other, <i>specify</i> Other, <i>specify</i> tother, <i>specify</i> Dother, specify         tother         Kange         Insufficient Supply         Abandoned, other, specify         Other, specify         Insufficient Supply         Abandoned, other, specify         Insufficient Supply         Abandoned, other, specify         Insufficient Supply         Insufficient Supply	Final water level end of If flowing give rate (I/n Recommended pump (I/min / GPM) Well production (I/min Disinfected? Yes No Please provide a map	f pumping (m/ft) nin / GPM) depth (m/ft) rate / GPM) Map of Wr below following MWV / ON	10         15         20         25         30         40         50         60	10 15 20 25 30 40 50 60 the back.			
Air percussion Other, specify Inside Diameter (cm/in) Outside Diameter (cm/in) Outside Diameter (cm/in) Outside Diameter (cm/in) Outside Diameter (cm/in) Outside Diameter (cm/in) Outside Diameter (cm/in) Outside Diameter (cm/in) Outside Diameter (cm/in) Outside Diameter (cm/in) Outside Diameter (cm/in) Outside Diameter (cm/in) Outside Diameter (cm/in) Outside Diameter (cm/in) Outside Diameter (cm/in) Outside Diameter (cm/in) Outside Diameter (cm/in) Outside Diameter (cm/in) Outside Diameter (cm/in) Outside Diameter (cm/in) Outside Diameter (cm/in) Outside Diameter (cm/in) Outside Diameter (cm/in) Outside Diameter (cm/in) Outside Diameter (cm/in) Outside Diameter (cm/in) Outside Diameter (cm/in) Outside Diameter (cm/in) Outside Diameter (cm/in) Outside Diameter (cm/in) Outside Diameter (cm/in) Outside Diameter (cm/in) Outside Diameter (cm/in) Outside Diameter (cm/in) Outside Diameter (cm/in) Outside Diameter (cm/in) Outside Diameter (cm/in) Outside Diameter (cm/in) Outside Diameter (cm/in) Outside Diameter (cm/in) Outside Diameter (cm/in) Outside Diameter (cm/in) Outside Diameter (cm/in) Outside Diameter (cm/in) Outside Diameter (cm/in) Outside Diameter (cm/in) Outside Diameter (cm/in) Outside (cm/in) Outside Diameter (cm/in) Outside (cm/in) Outside (cm/in) Outside (cm/in) Outside (cm/in) Outside (cm/in) Outside (cm/in) Outside (cm/in) Outside (cm/in) Outside (cm/in) Outside (cm/in) Outside (cm/in) Outside (cm/in) Outside (cm/in) Outside (cm/in) Outside (cm/in) Outside (cm/in) Outside (cm/in) Outside (cm/in) Outside (cm/in) Outside (cm/in) Outside (cm/in) Outside (cm/in) Outside (cm/in) Outside (cm/in) Outside (cm/in) Outside (cm/in) Outside (cm/in) Outside (cm/in) Outside (cm/in) Outside (cm/in) Outside (cm/in) Outside (cm/in) Outside (cm/in) Outside (cm/in) Outside (cm/in) Outside (cm/in) Outside (cm/in) Outside (cm/in) Outside (cm/in) Outside (cm/in) Outside (cm/in) Outside (cm/in) Outside (cm/in) Outside (cm/in) Outside (cm/in) Outside (cm/in) Outside (cm/in) Outside (cm/in) Outside (cm/in) Outside (cm/in) O	Construction R pen Hole OR Material Salvanized, Fibreglass, oncrete, Plastic, Steel)  Construction R Material astic, Galvanized, Steel)  Water De Depth Kind of Wate Gas Other, spe Depth Kind of Wate Gas Other, spe Well Contractor Siss (Street Number/Na		Cooling Cify Depth (m/ft) m To 7.3 Q Depth (m/ft) m To 2 8 8 Control 1 Sted Dep From Sted Dep From Sted Output Sted Output Ste	Status of Well         Water Supply         Replacement Well         Test Hole         Recharge Well         Dewatering Well         Observation and/or Monitoring Hole         Alteration (Construction)         Abandoned, Insufficient Supply         Abandoned, Poor Water Quality         Abandoned, other, specify         Other, specify         toth (m/ft)         Diameter To         toth (m/ft)         Status         IO Generation         wition         ell Contractor's Licence No.         unicipality         Mathematicality         Mathematicality	Final water level end of If flowing give rate (I/n Recommended pump (I/min / GPM) Well production (I/min Disinfected? Yes No Please provide a map UM Comments:	f pumping (m/ft) nin / GPM) depth (m/ft) rate / GPM) Map of W below following MAL	10         15         20         25         30         40         50         60	10 10 20 25 30 40 50 60 the back.			
Air percussion Other, specify Inside Diameter (cm/in) Outside Diameter (cm/in) Outside Diameter (cm/in) Water found at (m/ft) Water found at (m/ft) Water found at (m/ft) Water found at (m/ft) Province	Construction R pen Hole OR Material Salvanized, Fibreglass, oncrete, Plastic, Steel)  Construction R Material astic, Galvanized, Steel)  Water De Depth Kind of Wate Gas Other, spe Depth Kind of Wate Gas Other, spe Sector Secto		Cooling	Status of Well         Water Supply         Replacement Well         Test Hole         Recharge Well         Dewatering Well         Observation and/or Monitoring Hole         Alteration         (Construction)         Abandoned, Insufficient Supply         Abandoned, Poor Water Quality         Other, specify         Other, specify         Hole Diameter         To         To         Water Quality         Abandoned, other, specify         Other, specify         Insufficient Supply         Abandoned, Poor Water Quality         Abandoned, Other, specify         Insufficient Supply         Abandoned, To         Insufficient Supply         Abandoned, Poor Water Quality         Abandoned, Other, specify         Insufficient Supply         Base of Dogs         Insufficient Supply         Base of Dogs         Insufficient Supply         Base of Dogs         Insufficient Supply         Insufficient Supply         Insufficient Supply         Insufficient Supply         Insufficient Supply         Insufficient Supply	Final water level end of If flowing give rate (I/n Recommended pump (I/min / GPM) Well production (I/min Disinfected? Yes No Please provide a map Grownents: Well owner's Date P	f pumping (m/ft) nin / GPM) depth (m/ft) rate / GPM) Map of W below following MAD / MW / On ackage Delivere	10       15       20       25       30       40       50       60	10 15 20 25 30 40 50 60 the back.			
Air percussion Other, specify Diameter (cm/in) Cutside Diameter (cm/in) Cutside Diameter (cm/in) Cutside Diameter (cm/in) Water found at (m/ft) Water found at (m/ft) Water found at (m/ft) Water found at (m/ft) Water found at (m/ft) Province Bus. Telephone N	Construction R  pen Hole OR Material Salvanized, Fibreglass, oncrete, Plastic, Steel)  Construction R  Material astic, Galvanized, Steel)  Water De Depth Kind of Wate Gas Other, spe Depth Kind of Wate Gas Other, spe Use Contractor Sis (Street Number/Na Postal Code No, (inc. area code) Na		Cooling	Status of Well         Water Supply         Replacement Well         Test Hole         Recharge Well         Dewatering Well         Observation and/or         Monitoring Hole         Alteration         (Construction)         Abandoned,         Insufficient Supply         Abandoned,         Insufficient Supply         Abandoned, other,         specify         Other, specify         Other, specify         Notion         Status Of Mell         Dewater Quality         Abandoned, other,         specify         Other, specify         Interactor's Licence No.         Atternation         Interactor's Licence No.         Abandoned, Humility         Abandoned, other, specify         Interactor's Licence No.         Abandoned, Humility         Abandoned, Insufficient Supply         Status         Interactor's Licence No.         Abandoned, Humility         Abandoned, Humility         Abandoned, Humility         Abandoned, Humility         Abandoned, Humility         Abandoned, Humility     <	Final water level end of If flowing give rate (I/n Recommended pump (I/min / GPM) Well production (I/min Disinfected? Yes No Please provide a map Comments: Well owner's Date P information package delivered	f pumping (m/ft) nin / GPM) depth (m/ft) rate / GPM) Map of W. below following May of W. below following May of W. below following	10         15         20         25         30         40         50         60	10         10         15         20         25         30         40         50         60			
Air percussion Other, specify Inside Diameter (cm/in) Cutside Diameter (cm/in) Cutside Diameter (cm/in) Cutside Diameter (cm/in) Water found at (m/ft) Water found (m/ft) Water found	Construction R pen Hole OR Material Salvanized, Fibreglass, oncrete, Plastic, Steel)  Construction R Material astic, Galvanized, Steel)  Water De Material astic, Galvanized, Steel)  Water De Gas Other, spe Depth Kind of Wate Gas Other, spe Depth Kind of Wate Gas Other, spe User Contractor Siss (Street Number/Na Postal Code No, (inc. area code) Na Licence No. Signature		Cooling	Status of Well         Water Supply         Replacement Well         Test Hole         Recharge Well         Dewatering Well         Observation and/or         Monitoring Hole         Alteration         (Construction)         Abandoned,         Insufficient Supply         Abandoned,         Insufficient Supply         Abandoned, other,         specify         Other, specify         Other, specify         Noter Contractor's Licence No.         Incipality         Abands.dum         Mathematication         Contractor's Licence No.         Incipality         Mathematication         First Name)         Image: Alternation         Abands.dum	Final water level end of If flowing give rate (I/n Recommended pump (I/min / GPM) Well production (I/min Disinfected? Yes No Please provide a map Comments: Well owner's Date P information package elivered Yes Date V Date W	f pumping (m/ft) in / GPM) depth (m/ft) rate / GPM) Map of W below following May of W for the following for the fo	10         15         20         25         30         40         50         60	10         10         15         20         25         30         40         50         60			

Donta	nrio Ministr	ry of	Well Ta	g No. (Place Sticker a	nd/or Print Below)	1308	کار We	II R	ecord
Measurements r	ecorded in: 🖄	Vironment letric 🗌 Imperi	al		Al 35001 Regula	tion 903 C	Intario Wate Page	er Rese	of
Well Owner's	Information								
First Name Last Name / Organization City of Otama Clo Brad Carew Mailing Address (Street Number/Name) Municipality Hard Carew					E-mail Address       Well Constructed by Well Owner         Province       Postal Code       Telephone No. (inc. area code)				
Well Location				1 311		- (# (ga			
Address of Well L	ocation (Street Nur	Lot		Concession					
County/District/Municipality City/Town/Village				Provin	ce	Postal	Code		
UTM Coordinates NAD   8   3	Zone Easting	Northing	ot Number	Other	ario				
Overburden and General Colour	Overburden and Bedrock Materials/Abandonment Sealing Record (see instructions on the					back of this form)     General Description			th ( <i>m/ft</i> )
Bron	m Topsoil		S		Saft Carre			> rom	GI
Brin	Brin Sal.		-estates. g. mel.		Sold.			61	4.57
Cay	Clay		Si	14.	layered. Sold.		4.	57	7.62
1	1								
									<u> 1.6</u>
		Annular Space	e		Results of	Well Yiel	d Testing		
Depth Set at (m From T	n/ft) o	Type of Sealant L (Material and Typ	lsed e)	Volume Placed (m ³ /ft ³ )	After test of well yield, water was:	Dra	aw Down Water Level	Re Time	covery Water Level
0 5	79 318	11 Brokaite	chijs		Other, specify	(min)	(m/ft)	(min)	(m/ft)
5.79 7.	G2 S	and.	0	100 C	If pumping discontinued, give reas	Dn: Level			
					Pump intake set at (m/ft)	1		1	
						2		2	
Method of Construction Well Use					Pumping rate (I/min / GPM)	3		3	
Cable Tool	itional)	Public Domestic	Comme	rcial INot used	Duration of pumping	4		4	
Rotary (Reverse     Boring	e) Driving	Livestock	Cooling	le Monitoring & Air Conditioning	Final water level end of pumping (i	5 n/ft) 10		5	<u></u>
Air percussion	_ 00 0		ecify			10		10	
	Construction R	ecord - Casing		Status of Well	If flowing give rate ( <i>l/min / GPM</i> )	20		20	
Inside Ope Diameter (Gal	en Hole OR Material vanized, Fibreglass,	Wall Thickness	Depth ( <i>m/ft</i> )	Water Supply Replacement Well	Recommended pump depth (m/h	25		25	
(cm/in) Con	crete, Plastic, Steel)	(cm/in) 11			Recommended pump rate	30		30	
	1 14 34 2	~ 1 ~	6.1	Dewatering Well		40		40	
				- Monitoring Hole	Well production (I/min / GPM)	50		50	
				- (Construction)	Disinfected?	60		60	
	Construction R	ecord - Screen		Insufficient Supply     Abandoned Poor	Map of	Well Loc	ation	L. A. S. S.	
Outside Material Diameter (Plastic, Galvanized, Steel) Slot No. From To Abandoned, other,					Please provide a map below following instructions on the back.				
	N de	10 1	1762	specify	Lahell	el			
0.07	pusos	.0 6		Other, specify	MU	VA	202/10	1	
	Water Det	ails		lole Diameter		~~~~	M		
Water found at D	Pepth Kind of Water	Fresh Unt	ested Dep From	th ( <i>m/ft)</i> Diameter To ( <i>cm/in</i> )			1 7		
(m/ft)GasOther, specify       7.62 10.93         Water found at Depth Kind of Water:FreshUntested       7.62 10.93									······································
(m/ft) Gas Other, specify									
( <i>m/ft</i> )	Gas Other, spe	cify							
Business Name o	Well Contractor	r and Well Tech	nician Informat	tion					
Strada Se	sil Semp	lite	VVE						
Business Address	Street Number/Na	me))	KRI B	inicipality	Comments:	2			
Province	Postal Code	Business E-ma	il Address	Jada La					
Bus.Telephone No	(inc. area code) Na	me of Well Techni	cian (Last Name	First Name)	Well owner's Date Package Deli	vered	Ministr Audit No.	y Use	Only
package delivered delivered Date Work Completed Z 15691								;919	
Well Technician's Licence No. Signature of Technician and/or Contractor Date Submitted									
0506E (2007/12)	Queen's Printer for Ont	ario. 2007		Contractor's Con		st D D	I YOOGIVOU		