UNIVERSITY OF OTTAWA

UNIVERSITY OF OTTAWA FACULTY OF HEALTH SCIENCES BUILDING STORMWATER MANAGEMENT REPORT

OCTOBER 07, 2021

UNIVERSITY OF OTTAWA FACULTY OF HEALTH SCIENCES BUILDING STORMWATER MANAGEMENT REPORT

UNIVERSITY OF OTTAWA

2ND SUBMISSION

PROJECT NO.: 211-01094-01 CLIENT REF: BT20-18477 DATE: OCTOBER 13, 2021

WSP SUITE 300 2611 QUEENSVIEW DRIVE OTTAWA, ON, CANADA K2B 8K2

T: +1 613 829-2800 F: +1 613 829-8299 WSP.COM

REVISION HISTORY

FIRST ISSUE

June 21 st , 2021	Draft SWM Report		
Prepared by	Reviewed by	Approved By	
мо	JW	МН	
SECOND ISSUE			
October 13 th , 2021	SWM Report		
Prepared by	Reviewed by	Approved By	
мо	мн	МН	

SIGNATURES

PREPARED BY

Designer, Water Resources

October 7th, 2021

APPROVED¹ BY

Michelle Hughes, M.Sc., P.Eng. Team Lead, Water Resources October 7th, 2021

WSP Canada Inc. ("WSP") prepared this report solely for the use of the intended recipient, UNIVERSITY OF OTTAWA, in accordance with the professional services agreement. The intended recipient is solely responsible for the disclosure of any information contained in this report. The content and opinions contained in the present report are based on the observations and/or information available to WSP at the time of preparation. If a third party makes use of, relies on, or makes decisions in accordance with this report, said third party is solely responsible for such use, reliance or decisions. WSP does not accept responsibility for damages, if any, suffered by any third party as a result of decisions made or actions taken by said third party based on this report. This limitations statement is considered an integral part of this report.

The original of this digital file will be conserved by WSP for a period of not less than 10 years. As the digital file transmitted to the intended recipient is no longer under the control of WSP, its integrity cannot be assured. As such, WSP does not guarantee any modifications made to this digital file subsequent to its transmission to the intended recipient.

¹ Approval of this document is an administrative function indicating readiness for release and does not impart legal liability on to the Approver for any technical content contained herein. Technical accuracy and fit-for-purpose of this content is obtained through the review process. The Approver shall ensure the applicable review process has occurred prior to signing the document.

CONTRIBUTORS

CLIENT

University of Ottawa

WSP

Water Resources, Designer

Meaghan O'Neill

Water Resources, Team Lead

Michelle Hughes

wsp

TABLE OF CONTENTS

1	INTRODUCTION	1
1.1	Scope	1
1.2	Site Location	1
1.3	Stormwater Management Plan Objectives	2
1.4	Design Criteria	2
2	PRE-DEVELOPMENT CONDITIONS	3
2.1	General	3
• •	Rainfall Information	
2.2		4
2.2 2.3	Allowable Flow Rates	
		4
2.3	Allowable Flow Rates	4 5
2.3 3	Allowable Flow Rates	4 5 5
2.3 3 3.1	Allowable Flow Rates POST-DEVELOPMENT CONDITIONS General	4 5 5 6

wsp

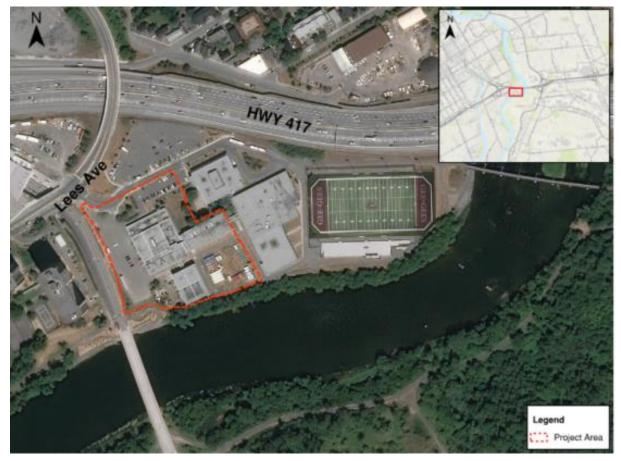
TABLES

TABLE 1: PRE-DEVELOPMENT PEAK FLOW RATE
CALCULATIONS (BASED ON $T_D = 10$
MINUTES, C = 0.5)4
TABLE 2: PROPOSED LAND-USE AREA
BREAKDOWN6
TABLE 3: SUMMARY OF HYDROCAD MODELLING
RESULTS7

FIGURES

APPENDICES

- A EXHIBITS
- B CALCULATIONS & HYDROCAD OUTPUT
- C SUPPORTING DOCUMENTS


1 INTRODUCTION

1.1 SCOPE

WSP Canada Inc. was retained by the University of Ottawa to prepare a Stormwater Management (SWM) report for the proposed construction of a five storey Faculty of Health Sciences building at the University of Ottawa's Lees Campus. This SWM report examines the potential water quality and quantity impacts of the proposed development and summarizes how each will be addressed in accordance with applicable guidelines.

1.2 SITE LOCATION

The proposed development is located at 200 Lees Avenue, Ottawa, Ontario. The subject site is bounded by the 417 to the north, the LRT line to the west, and the Rideau River to the east and south. The location of the proposed development is illustrated in Figure 1.

Figure 1: Project Location

1.3 STORMWATER MANAGEMENT PLAN OBJECTIVES

The objectives of the stormwater management plan are as follows:

- → Collect and review background information.
- → Determine the site-specific stormwater management requirements to ensure that the proposals are in conformance with the applicable Provincial, Municipal and Conservation Authority stormwater management and development guidelines.
- \rightarrow Evaluate various stormwater management practices that meet the applicable SWM and development requirements and recommend a preferred strategy.
- → Prepare a stormwater management report documenting the strategy along with the technical information necessary for the justification and sizing of the proposed stormwater management facilities.

1.4 DESIGN CRITERIA

Design criteria were taken from the Owner's Statement of Requirements Volume 1. Criteria for the University of Ottawa Lees Campus are as follows:

- → Stormwater Quantity- control post-development flows (2 to 100-year storm events) to the 2-year predevelopment discharge with a runoff coefficient that is the lesser of the actual runoff coefficient or 0.5 per City of Ottawa Standards for a redevelopment (OSDG Section 8.3.7.3)
- → Stormwater Quality- enhanced level of protection per the City of Ottawa, the Rideau Valley Conservation Authority (RVCA) and the Ministry of Environment, Conservation and Parks (MECP) requirements shall be met (80% TSS removal)

2 PRE-DEVELOPMENT CONDITIONS

2.1 GENERAL

The University of Ottawa's Lees Campus is comprised of a building complex (divided into five blocks, A to E), paved parking areas along the north and west boundaries, and a turf sports field at the east end of the property. The site is accessed via an entrance off Lees Avenue at the north west corner of the site.

As can be seen in Figure 2, the subject site for the proposed development is only a portion of the overall Lees Campus, consisting of three of the five blocks (B, C, and D) of the existing building complex, the east parking area, and a portion the north parking area (south of the access road). The subject site is a 1.92 ha parcel of land with a runoff coefficient of 0.69. As discussed in section 1.4, per City of Ottawa criteria, a runoff coefficient of 0.5 was used when evaluating pre-development peak flows. Figures showing exiting drainage and land use are also shown on Exhibits 1 and 2 found in **Appendix A**.

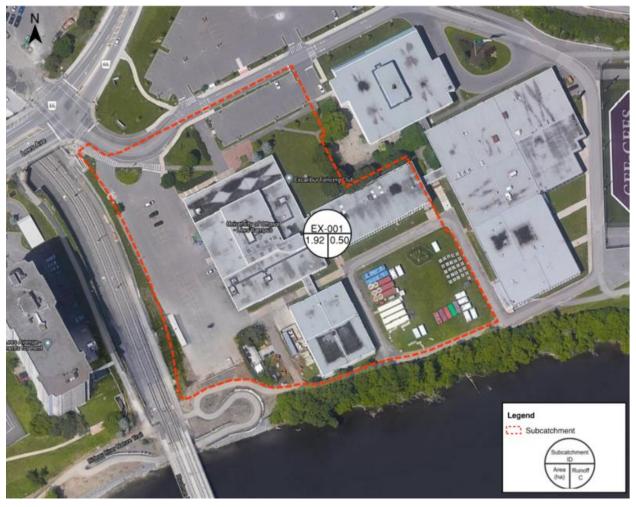


Figure 2: Existing Conditions Catchment Area

2.2 RAINFALL INFORMATION

The rainfall intensity is calculated in accordance with Section 5.4.2 of the Ottawa Sewer Design Guidelines (October, 2012):

Where;

$$i = \left[\frac{A}{(Td+C)^B}\right]$$

- A, B, C = regression constants for each return period (defined in section 5.4.2)
- i = rainfall intensity (mm/hour)
- Td = storm duration (minutes)

The IDF parameters/regression constants are per the Ottawa Sewer Design Guidelines (October, 2012).

2.3 ALLOWABLE FLOW RATES

As noted in section 1.4, relevant policies from the City of Ottawa Sewer Design Guidelines and the Owner's Statement of Requirements require that post development discharge rates from the site match the pre-development 2-year storm event peak discharge rate (0.20m³/s).

HydroCAD software was used to calculate the pre-development peak flow rates for the 2 through 100-year storm events, results are summarized in Table 1. Detailed HydroCAD output is included in **Appendix B**.

Table 1: Pre-Development Peak Flow Rate Calculation	ns (Based on $T_d = 10$ minutes, C = 0.5)
---	---

RETURN PERIOD (Years)	RAINFALL INTENSITY, I (mm/hour)	SITE PEAK FLOW RATE (m ³ /sec)
2	76.8	0.20
5	104.2	0.27
10	122.1	0.32
25	144.7	0.38
50	161.5	0.42
100	178.6	0.47

3 POST-DEVELOPMENT CONDITIONS

3.1 GENERAL

The proposed University of Ottawa Lees Campus project includes the demolition of Blocks B, C, and D of the existing building complex, excavation of contaminated soil, and the construction of a new five store Faculty of Health Sciences Building.

Vehicular access off Lees Avenue, as well as building Blocks A and E, the north parking area, and the sports field are outside of the proposed development boundaries and are not included in the scope of this report.

An estimated area breakdown of the proposed site layout is summarized in Table 2 and shown on Figure 3. Exhibits showing the proposed drainage strategy and proposed land use are shown on Exhibits 3 and Exhibit 4 and found in **Appendix A**.

Figure 3: Proposed Conditions Catchment Areas

Table 2: Proposed Land-Use Area Breakdown

CATCHMENT ID	AREA (ha)	% COVERAGE OF PROJECT AREA	RUNOFF COEFFICIENT
Un-Controlled Drainage Areas			
PR-001	0.25	13%	0.52 (0.65*)
PR-002	0.19	10%	0.68 (0.85*)
PR-004	0.11	6%	0.26 (0.33*)
Sub Total	0.55	29%	0.52 (0.65*)
Controlled Drainage Areas			
PR-003	1.37	71%	0.63 (0.79*)
Sub Total	1.37	71%	0.63 (0.79*)
TOTAL PROJECT AREA	1.92	100%	0.60 (0.75*)

*Runoff coefficients increased by 25% for the 100-year storm per the City of Ottawa Sewer Design Guidelines (Section 5.4.5.2.1)

To meet the stormwater management objectives, as defined by the design criteria outlined in Section 1.4, the following components have been proposed:

- → Underground storage chambers (Stormtech MC 4500 or equivalent)
- \rightarrow 100mm flow control device on proposed sewer outlet
- → Oil and Grit Separator (OGS) unit (STORMCON SDD3-1200 or equivalent)

The application and sizing of these proposed stormwater management facilities is outlined in the following sections.

3.2 WATER QUANTITY

As noted previously, it is required that the post-development discharge rate from the site be controlled to the predevelopment 2-year peak flow.

Proposed features to achieve these targets include;

- \rightarrow 538m³ underground storage chambers
- \rightarrow 100mm orifice plate

HydroCAD software has been used to model the behaviour of the proposed SWM system and determine its response under various storm events. The software calculates flow rates and related storage values. In addition, the software helps identify the critical duration for different components of the system. The critical storm duration (100-year) for peak discharge from the site occurs at 10 minutes, however, the maximum storage utilized occurs at 114 minutes.

Due to site geometry and building placement, there are areas on the site that can not be controlled (PR-001, PR-002, PR-004) and so remain captured by the existing storm system. The west edge of the site will continue to drain to the existing storm sewer that runs along the west edge of the property and outlets to the Rideau River to the south. The north and east edge of the property (PR-002 and PR-004) will continue to drain to the existing storm sewer running along the east edge of the site and discharging to the Rideau River.

The entire controlled portion of the site (PR-003) will be detained in the proposed underground storage unit and released at a controlled rate through a suitably sized orifice plate into the existing sewer running along the east side of the site immediately prior to being released into the Rideau River. The proposed flow control device and proposed inverts have been placed such that runoff collected south of the proposed building will be directed back into the tank prior to being released through the flow control device. It was determined using HydroCAD software

that Stormtech MC-4500 storage chambers (or equivalent) with a storage volume of 538 m³ and outflow controlled with a 100 mm orifice plate is sufficient to achieve the quantity control requirements. In December 2020, a Remediation Action Plan was prepared by Geosyntec for the west portion of the 200 Lees Avenue site (TR0885B_uOttawa_RAP_200Lees Ave Ottawa ON_FINAL). This report states that there is ongoing groundwater collection and treatment just northwest of the site at the City of Ottawa's Transit Station groundwater collection system. The study found that groundwater is strongly influenced by the presence of the system with the groundwater from the site directed largely to the northwest (Geosyntec 2020). In order to prevent additional mobilization of contaminated groundwater, the storage chambers are proposed with an impermeable liner as to prevent excessive infiltration, beyond what will naturally infiltrate in the softscape areas.

A summary of the modeling results is provided in Table 3, detailed HydroCAD output is included in Appendix B.

Return Period (Years)	Time of Conc. (min)	Utilized Storage	Total Flow Leaving Site	Allowable 100-yr Flow Rate
		(m³)	(m³/s)	(m³/s)
100 (Peak Discharge)	10	299	0.20	0.20
100 (Peak Storage)	114	538	0.06	0.20

Table 3: Summary of HydroCAD Modelling Results

3.3 WATER QUALITY

As noted previously, a single controlled outlet location is proposed at the south end of the site into the existing storm sewer discharging to the Rideau River. A STORMCON SDD3-1200 (or equivalent) OGS is proposed to achieve a minimum 80% TSS removal for the entire controlled area of the site (PR-003). The location of the proposed OGS unit is shown on Exhibit 3 found in **Appendix A**.

In August, 2013, an Amended Environmental Compliance Approval (ECA) was issued by the MECP regarding stormwater management works to serve the Block A renovation and the addition of an open air stadium on Lees Campus. The ECA states as part of this work, a Stormceptor STC 2000 OGS unit was installed that treats a 1.22 ha area of the site. The existing OGS has been sized to provide 80% TSS removal for the 1.22 ha drainage area with an overall imperviousness of 80%. The 1.22 ha area treated by the existing OGS includes the north parking, which will continue to be parking area under proposed conditions shown on Exhibit 3 as PR-002. Under proposed conditions, the north parking area will maintain the existing drainage patterns and approximate overall imperviousness, therefore, this area will be treated by the existing OGS unit.

As previously discussed, the western and eastern edges of the site will be drained uncontrolled to the existing storm system. These areas (PR-001 and PR-004) are primarily grass, landscaped, and pathway area and will have no vehicular traffic. Therefore, it is assumed that these areas will be free of typical sediment-generating activities and that runoff will leave effectively unchanged and can be considered clean for the purposes of water quality assessment. However, permanent and low maintenance catch basin inserts, that provide a minimum 50% TSS removal, are proposed in existing catch basins that receive uncontrolled flow to further reduce the impact to the receiving Rideau River.

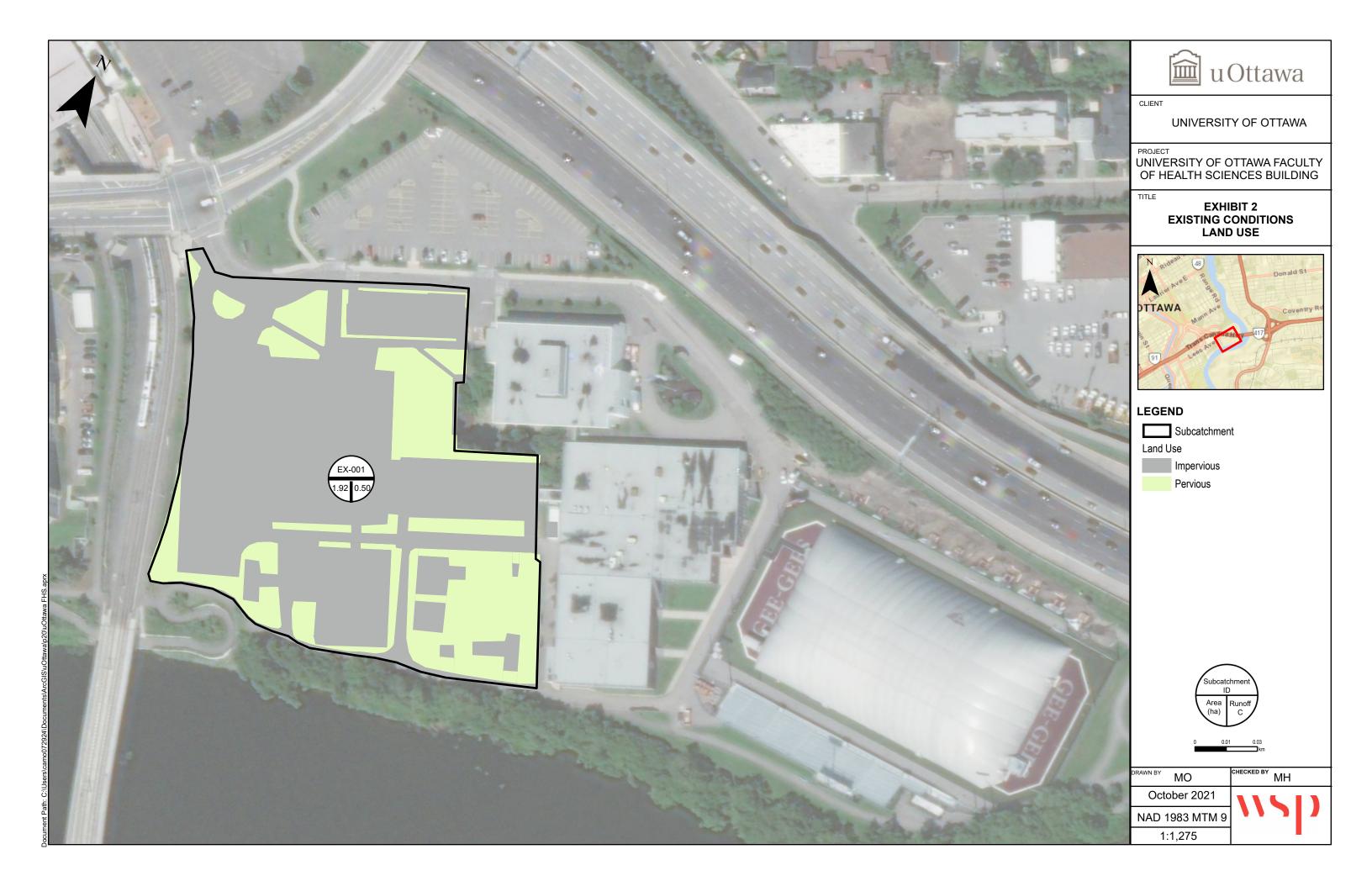
4 CONCLUSIONS

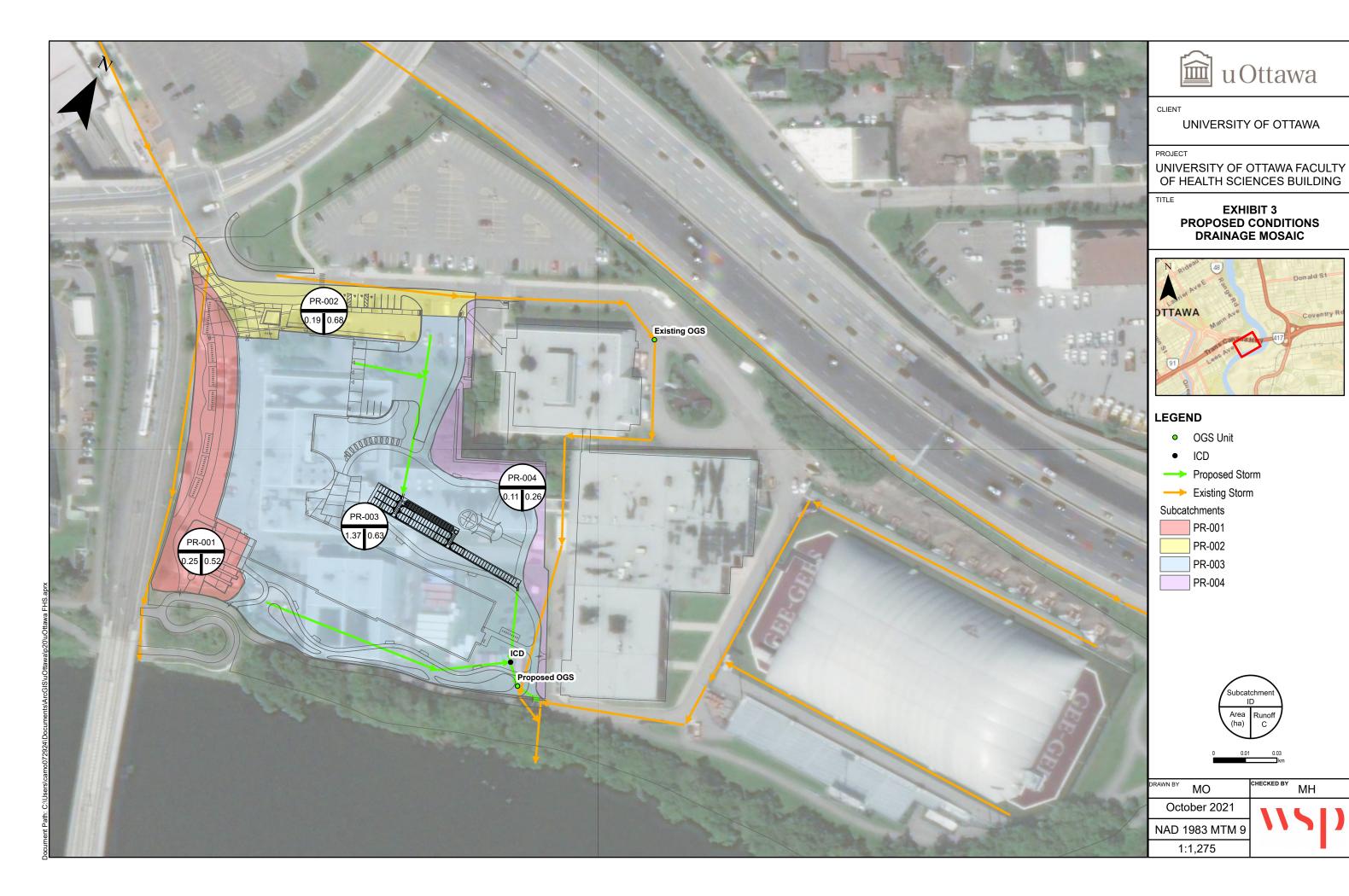
A stormwater management report has been prepared to support the design of the proposed University of Ottawa Faculty of Health Sciences Building at the Lees Campus in the City of Ottawa. The key points are summarized below.

WATER QUALITY

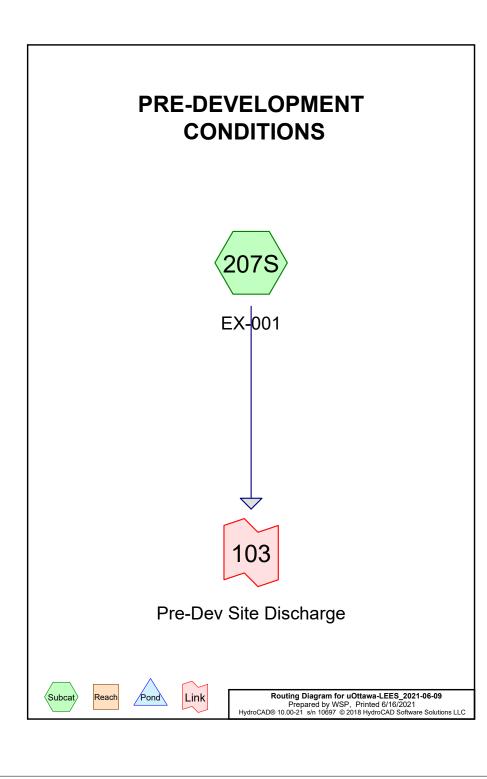
An OGS unit (a STORMCON SDD3-1200 or equivalent) is proposed at the outlet of the proposed sewer system into the existing storm sewer draining to the Rideau River to meet MECP Enhanced treatment standards (80% TSS removal).

WATER QUANTITY


Controlled runoff from the site will be detained in a 538m³ underground storage unit (Stormtech MC-4500 Chambers, or equivalent) and released at a controlled rate using a 100mm orifice plate.


This report has demonstrated the proposed SWM strategy will address stormwater management related impacts from this project and meet the applicable design requirements.

A EXHIBITS



B CALCULATIONS & HYDROCAD OUTPUT

uOttawa-LEES_2021-06-09

Prepared by WSP HydroCAD® 10.00-21 s/n 10697 © 2018 HydroCAD Software Solutions LLC

Area Listing (selected nodes)

Printed 6/16/2021

Page 2

Area (sq-meters)	С	Description (subcatchment-numbers)
19,200.0	0.50	(207S)
19,200.0	0.50	TOTAL AREA

uOttawa-LEES	2021-06-09
--------------	------------

Prepared by WSP HydroCAD® 10.00-21 s/n 10697 © 2018 HydroCAD Software Solutions LLC

Soil Listing (selected nodes)

Printed 6/16/2021

Page 3

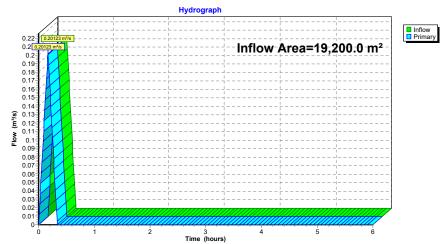
Area (sq-meters)	Soil Group	Subcatchment Numbers
0.0	HSG A	
0.0	HSG B	
0.0	HSG C	
0.0	HSG D	
19,200.0	Other	207S
19,200.0		TOTAL AREA

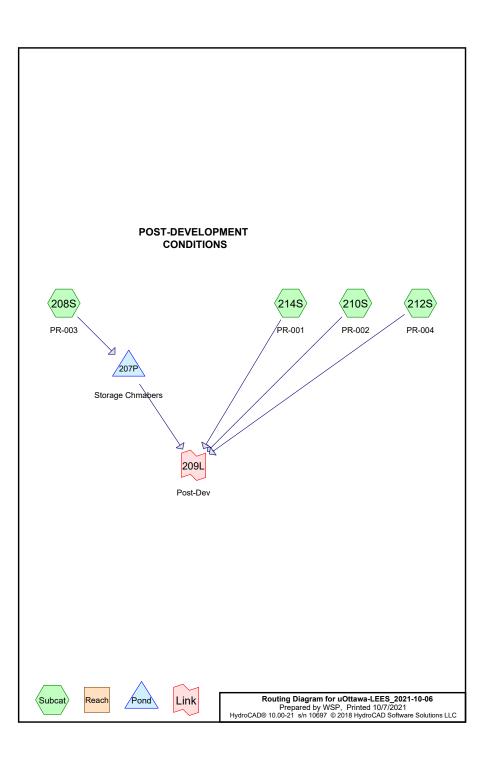
uOttawa-LEES_2021-06-09

Prepared by WS lydroCAD® 10.00		© 2018 HydroCA	D Software Solu	tions LLC	Printed	6/16/2021 Page 4	
		Ground Cov	ers (selected	nodes)			
HSG-A	HSG-B	HSG-C	HSG-D	Other	Total	Ground	Subc
(sq-meters)	(sq-meters)	(sq-meters)	(sq-meters)	(sq-meters)	(sq-meters)	Cover	Num
0.0	0.0	0.0	0.0	19,200.0	19,200.0		
0.0	0.0	0.0	0.0	19,200.0	19,200.0	TOTAL	
						AREA	

Prepared by WSP HydroCAD® 10.00-21_s/n 10697_© 2018 F	Printed 6/16/2021 HydroCAD Software Solutions LLC Page 5
	0.00-6.00 hrs, dt=0.01 hrs, 601 points
	ational method, Rise/Fall=1.0/1.0 xTc ⊦Trans method - Pond routing by Stor-Ind method
Subcatchment207S: EX-001	Runoff Area=1.9200 ha 0.00% Impervious Runoff Depth=6 mm Tc=10.0 min C=0.50 Runoff=0.20123 m³/s 122.8 m³
Link 103: Pre-Dev Site Discharge	Inflow=0.20123 m³/s 122.8 m³ Primary=0.20123 m³/s 122.8 m³
	m ² Runoff Volume = 122.8 m ³ Average Runoff Depth = 6 mm

uOttawa-LEES_2021-06-09 Ottawa 2-Year Duration=10 min, Integraded by WSP Prepared by WSP Pr HydroCAD® 10.00-21 s/n 10697 © 2018 HydroCAD Software Solutions LLC Pr	nten=76.8 mm/hr rinted 6/16/2021 Page 6
Summary for Subcatchment 207S: EX-001	
Runoff = 0.20123 m ³ /s @ 0.17 hrs, Volume= 122.8 m ³ , Depth=	6 mm
Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= 0.00-6.00 hrs, dt= 0.01 Ottawa 2-Year Duration=10 min, Inten=76.8 mm/hr	hrs
Area (ha) C Description	
1.9200 0.50	
1.9200 100.00% Pervious Area	
Tc Length Slope Velocity Capacity Description (min) (meters) (m/m) (m/sec) (m³/s)	
10.0 Direct Entry,	
Subcatchment 207S: EX-001 Hydrograph 0.22 0.19 0.22 0.19 0.13 0.14 0.15 0.15 0.15 0.15 0.15 0.15 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	n, 17- 13- 13- 13- 13- 14- 14- 14- 14- 14- 14- 14- 14- 14- 14
0.02 0.01 0.01 0.01 0.01 1 2 3 4 5 Time (hours)	6


uOttawa-LEES_2021-06-09	Ottawa 2-Year Duration=10 min,	Inten=76.8 mm/hr
Prepared by WSP		Printed 6/16/2021
HydroCAD® 10.00-21 s/n 10697 © 2018 HydroC	AD Software Solutions LLC	Page 7


Summary for Link 103: Pre-Dev Site Discharge

Inflow Are	ea =	19,200.0 m²,	0.00% Impervious, Inflow	Depth = 6 mm	for 2-Year event
Inflow	=	0.20123 m³/s @	0.17 hrs, Volume=	122.8 m ³	
Primary	=	0.20123 m³/s @	0.17 hrs, Volume=	122.8 m ³ , Atter	n= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-6.00 hrs, dt= 0.01 hrs

Link 103: Pre-Dev Site Discharge

uOttawa-LEES_2021-10-06

Prepared by WSP HydroCAD® 10.00-21 s/n 10697 © 2018 HydroCAD Software Solutions LLC

Area Listing (selected nodes)

Printed 10/7/2021

Page 2

Area	С	Description
(sq-meters)		(subcatchment-numbers)
13,700.0	0.79	Controlled (208S)
1,900.0	0.85	Uncontrolled (210S)
1,200.0	0.33	Uncontrolled (212S)
2,500.0	0.65	Uncontrolled (214S)
19,300.0	0.75	TOTAL AREA

uOttawa-LEES_2021-10-06	Ottawa 100-Year Duration=10 min, Inten=178.6 mm/
Prepared by WSP HydroCAD® 10.00-21 s/n 10697 © 2	Printed 10/7/202 2018 HydroCAD Software Solutions LLC Page
Runoff	an=0.00-6.00 hrs, dt=0.01 hrs, 601 points by Rational method, Rise/Fall=1.0/1.0 xTc r-Ind+Trans method - Pond routing by Stor-Ind method
Subcatchment208S: PR-003	Runoff Area=1.3700 ha 0.00% Impervious Runoff Depth=24 mm Tc=10.0 min C=0.79 Runoff=0.52742 m³/s 322.0 m
Subcatchment210S: PR-002	Runoff Area=0.1900 ha 0.00% Impervious Runoff Depth=25 mm Tc=10.0 min C=0.85 Runoff=0.07870 m³/s 48.0 m
Subcatchment212S: PR-004	Runoff Area=0.1200 ha 0.00% Impervious Runoff Depth=10 mm Tc=10.0 min C=0.33 Runoff=0.01930 m³/s 11.8 m
Subcatchment214S: PR-001	Runoff Area=0.2500 ha 0.00% Impervious Runoff Depth=19 mn Tc=10.0 min C=0.65 Runoff=0.07919 m³/s 48.3 m
Pond 207P: Storage Chmabers	Peak Elev=59.910 m Storage=299.0 m³ Inflow=0.52742 m³/s 322.0 m Outflow=0.02380 m³/s 322.0 m
Link 209L: Post-Dev	Inflow=0.19716 m³/s 430.1 m Primary=0.19716 m³/s 430.1 m

 Total Runoff Area = 19,300.0 m²
 Runoff Volume = 430.1 m³
 Average Runoff Depth = 22 mm

 100.00% Pervious = 19,300.0 m²
 0.00% Impervious = 0.0 m²

Ottawa-LEE Prepared by WS lydroCAD® 10.00	SP		D Software Solu	tions LLC	Printed	10/7/2021 Page 3	
		Ground Cov	ers (selected	nodes)			
HSG-A (sq-meters)	HSG-B (sq-meters)	HSG-C (sq-meters)	HSG-D (sq-meters)	Other (sq-meters)	Total (sq-meters)	Ground Cover	Subca Numbe
0.0	0.0	0.0	0.0	13,700.0	13,700.0	Controlle d	
0.0	0.0	0.0	0.0	5,600.0	5,600.0	Uncontrol	

0.0

19,300.0

0.0

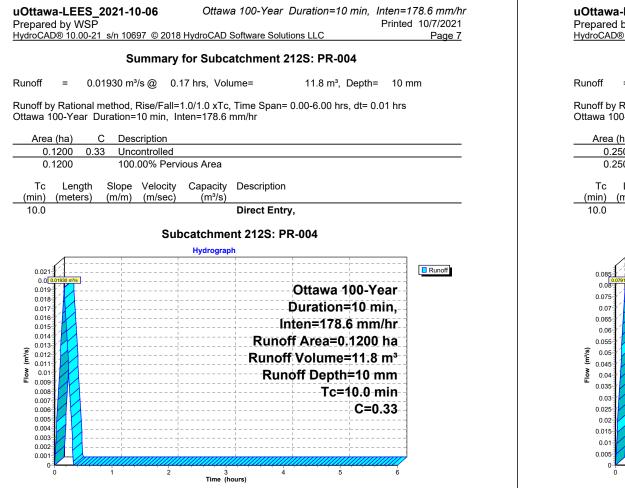
0.0

0.0

led

AREA

19,300.0 TOTAL


uOttawa-LEES_2021-10-06 Ottawa 100-Year Duration=10 min, Inten=178.6 mm/hr Prepared by WSP Printed 10/7/2021 HydroCAD® 10.00-21 s/n 10697 © 2018 HydroCAD Software Solutions LLC Page 5	uOttawa-LEES_2021-10-06 Ottawa 100-Year Duration=10 min, Inten=1 Prepared by WSP Printed HydroCAD® 10.00-21 s/n 10697 © 2018 HydroCAD Software Solutions LLC Printed
Summary for Subcatchment 208S: PR-003	Summary for Subcatchment 210S: PR-002
Runoff = 0.52742 m ³ /s @ 0.17 hrs, Volume= 322.0 m ³ , Depth= 24 mm	Runoff = 0.07870 m³/s @ 0.17 hrs, Volume= 48.0 m³, Depth= 25 m
Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= 0.00-6.00 hrs, dt= 0.01 hrs Ottawa 100-Year Duration=10 min, Inten=178.6 mm/hr	Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= 0.00-6.00 hrs, dt= 0.01 hrs Ottawa 100-Year Duration=10 min, Inten=178.6 mm/hr
Area (ha) C Description	Area (ha) C Description
1.3700 0.79 Controlled	0.1900 0.85 Uncontrolled
1.3700 100.00% Pervious Area	0.1900 100.00% Pervious Area
Tc Length Slope Velocity Capacity Description _(min) (meters) (m/m) (m/sec) (m³/s)	Tc Length Slope Velocity Capacity Description _(min) (meters) (m/m) (m/sec) (m³/s)
10.0 Direct Entry,	10.0 Direct Entry,
Subcatchment 208S: PR-003	Subcatchment 210S: PR-002
Hydrograph	Hydrograph
0.5(0.52742 m/s)	0.085
Offawa 100-Year	Ottawa 100-Year
Duration=10 min,	0.075 0.07
0.45-	0.065 Inten=178.6 mm/hr
0.4 + 1	0.06
0.35 Runoff Area=1,3700 ha	0.055 Runoff Area=0.1900 ha
المعادية المعادي	الالات 0.05 € 0.05 € 0.05 € 0.05 € 0.05 € 0.05 € 0.05 € 0.05 € 0.05 € 0.05 € 0.05 € 0.05 € 0.05 € 0.05 € 0.05 €
المعنى	≧ 0.04
1	-0.035
⁰² C=0.79	0.03 0.025
0.15	0.02
0.1	0.015
0.05	0.01
0 1 2 3 4 5 6 Time (hours)	0 1 2 3 4 5 6 Time (hours)

Ottawa 100-Year Duration=10 min, Inten=178.6 mm/hr

Printed 10/7/2021

Page 6

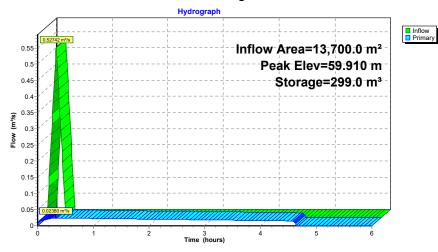
Runoff

uOttawa-LEES_2021-10-06 Prepared by WSP	Ottawa 100-Year	Duration=10 min,	Inten=178.6 mm/hr Printed 10/7/2021
HydroCAD® 10.00-21 s/n 10697 © 2018	HydroCAD Software Solu	utions LLC	Page 8
Summary	for Subcatchment	214S: PR-001	
Runoff = 0.07919 m³/s @ 0.1	7 hrs, Volume=	48.3 m ³ , Depth	= 19 mm
Runoff by Rational method, Rise/Fall=1 Ottawa 100-Year Duration=10 min, In		= 0.00-6.00 hrs, dt= 0	0.01 hrs
Area (ha) C Description			
0.2500 0.65 Uncontrolled			
0.2500 100.00% Pervi	ous Area		
Tc Length Slope Velocity (min) (meters) (m/m) (m/sec)	Capacity Descriptior (m³/s)	1	
10.0	Direct Ent	ry,	
Sub	catchment 214S: F	PR-001	
0.085	·		Runoff
0.08	·	Ottawa 100-	Year -
0.07	·	Duration=10	min,
0.065	 	nten=178.6 mi	m/hr⁻
0.055	Runc	off Area=0.250	0 ha
€ 0.05 0.045	Runo	ff Volume=48.	3⁻m³
(0.045 0.045	Rui	noff Depth=19	mm
0.035	·	Tc=10.0	
0.025	·	C=	0.65
0.02	·	· - +	
0.01		· - +	
0.005			

uOttawa-LEES_2021-10-06	Ottawa 100-Year Duration=10 min,	Inten=178.6 mm/hr
Prepared by WSP		Printed 10/7/2021
HydroCAD® 10.00-21 s/n 10697 © 2018 H	ydroCAD Software Solutions LLC	Page 9

Summary for Pond 207P: Storage Chmabers

Inflow Are	a =	13,700.0 m²,	0.00% Impervious, Inflow D	epth = 24 mm	for 100-Year event
Inflow	=	0.52742 m³/s @	0.17 hrs, Volume=	322.0 m ³	
Outflow	=	0.02380 m³/s @	0.33 hrs, Volume=	322.0 m ³ , Atten=	= 95%, Lag= 9.5 min
Primary	=	0.02380 m³/s @	0.33 hrs, Volume=	322.0 m ³	

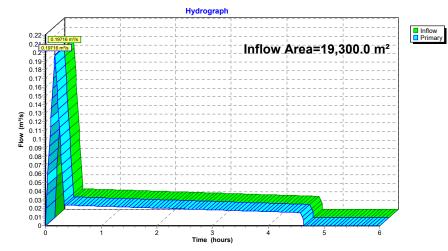

Routing by Stor-Ind method, Time Span= 0.00-6.00 hrs, dt= 0.01 hrs Peak Elev= 59.910 m @ 0.33 hrs Surf.Area= 417.0 m² Storage= 299.0 m³

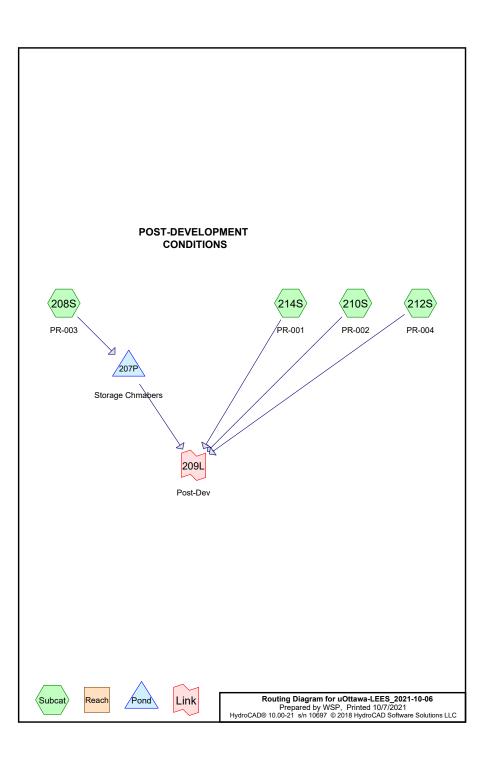
Plug-Flow detention time= 119.5 min calculated for 321.4 m³ (100% of inflow) Center-of-Mass det. time= 119.7 min (129.7 - 10.0)

Volume	Inv	ert Ava	il.Stora	age S	Storage I	Description	
#1	59.200	m	834.0	m³ C	ustom	Stage Data (F	Prismatic)Listed below (Recalc)
#2	58.680	m	3.1			Round Pipe	
				L	.= 28.41	m S= 0.0186	6 m/m
			837.1	m³ T	otal Ava	ailable Storage	e
Elevatio	n	Surf.Area		Inc.S	Store	Cum.Stor	e
_(meters	5) (sq-meters)	(cu	bic-me	ters)	(cubic-meters	s <u>)</u>
59.20	0	417.0			0.0	0.	.0
61.20	0	417.0		8	34.0	834.	.0
Device	Routing	In	vert (Dutlet I	Devices		
#1	Primary	58.68	0 m 1	100 mr	n Vert.	Orifice/Grate	C= 0.630

Primary OutFlow Max=0.02380 m³/s @ 0.33 hrs HW=59.909 m (Free Discharge) 1=Orifice/Grate (Orifice Controls 0.02380 m³/s @ 3.03 m/s)

Pond 207P: Storage Chmabers


uOttawa-LEES_2021-10-06	Ottawa 100-Year Duration=10 min,	Inten=178.6 mm/hr
Prepared by WSP		Printed 10/7/2021
HydroCAD® 10.00-21 s/n 10697 © 2018 Hy	/droCAD Software Solutions LLC	Page 10


Summary for Link 209L: Post-Dev

Inflow Are	ea =	19,300.0 m²,	0.00% Impervious, Inflow	Depth = 22 mm	for 100-Year event
Inflow	=	0.19716 m³/s @	0.17 hrs, Volume=	430.1 m ³	
Primary	=	0.19716 m³/s @	0.17 hrs, Volume=	430.1 m ³ , Atten	i= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-6.00 hrs, dt= 0.01 hrs

Link 209L: Post-Dev

uOttawa-LEES_2021-10-06

Prepared by WSP HydroCAD® 10.00-21 s/n 10697 © 2018 HydroCAD Software Solutions LLC

Area Listing (selected nodes)

Printed 10/7/2021

Page 2

Area	С	Description	
(sq-meters)		(subcatchment-numbers)	
13,700.0	0.79	Controlled (208S)	
1,900.0	0.85	Uncontrolled (210S)	
1,200.0	0.33	Uncontrolled (212S)	
2,500.0	0.65	Uncontrolled (214S)	
19,300.0	0.75	TOTAL AREA	

uOttawa-LEES_2021-10-06 Prepared by WSP	Ottawa 100-Year Duration=114 min, Inten=34.2 mi Printed 10/7/2
	018 HydroCAD Software Solutions LLC Pag
Runoff	an=0.00-6.00 hrs, dt=0.01 hrs, 601 points by Rational method, Rise/Fall=1.0/1.0 xTc -Ind+Trans method . Pond routing by Stor-Ind method
Subcatchment208S: PR-003	Runoff Area=1.3700 ha 0.00% Impervious Runoff Depth=51 r Tc=10.0 min C=0.79 Runoff=0.10293 m³/s 704.0
Subcatchment210S: PR-002	Runoff Area=0.1900 ha 0.00% Impervious Runoff Depth=55 r Tc=10.0 min C=0.85 Runoff=0.01536 m³/s 105.1
Subcatchment212S: PR-004	Runoff Area=0.1200 ha 0.00% Impervious Runoff Depth=21 r Tc=10.0 min C=0.33 Runoff=0.00377 m³/s 25.8
Subcatchment214S: PR-001	Runoff Area=0.2500 ha 0.00% Impervious Runoff Depth=42 r Tc=10.0 min C=0.65 Runoff=0.01545 m³/s 105.7
Pond 207P: Storage Chmabers	Peak Elev=60.482 m Storage=537.6 m ³ Inflow=0.10293 m ³ /s 704.0 Outflow=0.02901 m ³ /s 521.5
Link 209L: Post-Dev	Inflow=0.06327 m³/s 758.1 Primary=0.06327 m³/s 758.1

 Total Runoff Area = 19,300.0 m²
 Runoff Volume = 940.6 m³
 Average Runoff Depth = 49 mm

 100.00% Pervious = 19,300.0 m²
 0.00% Impervious = 0.0 m²

uOttawa-LEE Prepared by WS HydroCAD® 10.00	SP		D Software Solu	tions LLC	Printed	10/7/2021 Page 3	
		Ground Cov	ers (selected	nodes)			
HSG-A (sq-meters)	HSG-B (sq-meters)	HSG-C (sq-meters)	HSG-D (sq-meters)	Other (sq-meters)	Total (sq-meters)	Ground Cover	Subca Numb∉
0.0	0.0	0.0	0.0	13,700.0	13,700.0	Controlle d	
0.0	0.0	0.0	0.0	5,600.0	5,600.0	Uncontrol	

0.0

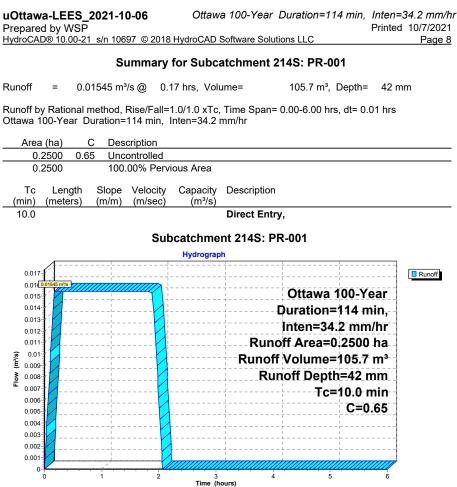
19,300.0

0.0

0.0

0.0

led


AREA

19,300.0 TOTAL

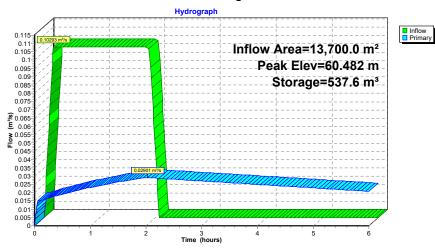
uOttawa-LEES_2021-10-06 Prepared by WSP HydroCAD® 10 00-21 s/n 10697 © 2	Ottawa 100-Year Duration=114 min, Inten=34.2 mm/hr Printed 10/7/2021 2018 HydroCAD Software Solutions LLC Page 5	uOttawa-L Prepared by HydroCAD® 1
-	ary for Subcatchment 208S: PR-003	<u>injuroci, be</u>
Runoff = 0.10293 m ³ /s @	0.17 hrs, Volume= 704.0 m ³ , Depth= 51 mm	Runoff =
Runoff by Rational method, Rise/F Ottawa 100-Year Duration=114 m	all=1.0/1.0 xTc, Time Span= 0.00-6.00 hrs, dt= 0.01 hrs in, Inten=34.2 mm/hr	Runoff by Ra Ottawa 100-
Area (ha) C Descriptio	n	Area (ha
1.3700 0.79 Controlled		0.190
1.3700 100.00% F	Pervious Area	0.190
Tc Length Slope Velo (min) (meters) (m/m) (m/s		Tc L (min) (m
10.0	Direct Entry,	10.0
	Subcatchment 208S: PR-003	
	Hydrograph	
0.115		0.017
0.11		0.01(0.0153)
0.1	Ottawa 100-Year	0.015
0.095	Duration=114 min,	0.014
0.085	Inten=34.2 mm/hr	0.013
0.075	Runoff Area=1.3700 ha	0.012
0.07 (10.065 0.065 0.065 0.065	Runoff Volume=704.0 m ³	(デ 0.01 単 0.009
€ 0.06	Runoff Depth=51 mm	
8 0.055 1 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−	· · · · · · · · · · · · · · · · · · ·	§ 0.008 ≝ 0.007
0.045	Tc=10.0 min	0.006
0.035	C=0.79	0.005
	•	0.004
0.025		
0.025 0.02 0.015		0.003
0.02		0.003

Prepared by WSP		Inten=34.2 mm/hr Printed 10/7/2021
HydroCAD® 10.00-21 s/n 10697 © 2018 HydroCAD Software Solution	ns LLC	Page 6
Summary for Subcatchment 21	0S: PR-002	
Runoff = 0.01536 m³/s @ 0.17 hrs, Volume=	105.1 m ³ , Depth=	55 mm
Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= 0 Ottawa 100-Year Duration=114 min, Inten=34.2 mm/hr	.00-6.00 hrs, dt= 0.	01 hrs
Area (ha) C Description		
0.1900 0.85 Uncontrolled		
0.1900 100.00% Pervious Area		
Tc Length Slope Velocity Capacity Description (min) (meters) (m/m) (m/sec) (m³/s)		
10.0 Direct Entry,		
Subcatchment 210S: PR-	-002	
Hydrograph		
0.017		Runoff
0.011 0.01536 m ³ /s	Ottawa 100-Y	oar
0.013	uration=114 n	
0.012	nten=34.2 mm	n/hr
0.011 0.011 Runof	f Area=0.1900	ha
	Volume=105.1	m³ -
€ 0.009 ≹ 0.008	off Depth=55 r	nm
§ 0.008		
0.006	Tc=10.0 ı	
0.005	C=0	.85
0.004		
0.003		
0.002		
0 1 2 3 4 Time (hours)	5	6

uOttawa-LEES_2021-10-06	Ottawa 100-Year Duration=114 min,	Inten=34.2 mm/hr
Prepared by WSP		Printed 10/7/2021
HydroCAD® 10.00-21 s/n 10697 © 2018 Hy	droCAD Software Solutions LLC	Page 9

Summary for Pond 207P: Storage Chmabers

Inflow Are	ea =	13,700.0 m²,	0.00% Impervious,	Inflow Depth = 51 mm	for 100-Year event
Inflow	=	0.10293 m³/s @	0.17 hrs, Volume=	704.0 m ³	
Outflow	=	0.02901 m³/s @	2.02 hrs, Volume=	521.5 m ³ , Atter	n= 72%, Lag= 111.0 min
Primary	=	0.02901 m³/s @	2.02 hrs, Volume=	521.5 m³	-

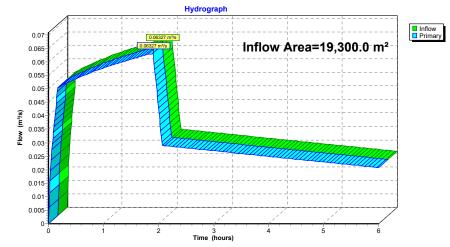

Routing by Stor-Ind method, Time Span= 0.00-6.00 hrs, dt= 0.01 hrs Peak Elev= 60.482 m @ 2.02 hrs Surf.Area= 417.0 m² Storage= 537.6 m³

Plug-Flow detention time= 134.6 min calculated for 521.5 m³ (74% of inflow) Center-of-Mass det. time= 119.8 min (181.8 - 62.0)

Volume	Inve	ert Avail.	Storage	Storage I	Description				
#1	59.200	m 8	334.0 m³	Custom	Custom Stage Data (Prismatic)Listed below (Recalc)				
#2	58.680	m	3.1 m³		375 mm Round Pipe Storage				
				L= 28.41	m S= 0.0186	m/m			
		8	337.1 m³	Total Ava	ailable Storage				
Elevatio (meters		Surf.Area sq-meters)		ic.Store meters)	Cum.Store (cubic-meters	-			
59.20	0	417.0		0.0	0.0	0			
61.20	0	417.0		834.0	834.0	0			
Device	Routing	Inve	ert Outl	et Devices					
#1	Primary	58.680	m 100	mm Vert.	Orifice/Grate	C= 0.630			

Primary OutFlow Max=0.02901 m³/s @ 2.02 hrs HW=60.482 m (Free Discharge) 1=Orifice/Grate (Orifice Controls 0.02901 m³/s @ 3.69 m/s)

Pond 207P: Storage Chmabers


uOttawa-LEES_2021-10-06	Ottawa 100-Year Duration=114 mii	n, Inten=34.2 mm/hr
Prepared by WSP		Printed 10/7/2021
HydroCAD® 10.00-21 s/n 10697 © 2018	3 HydroCAD Software Solutions LLC	Page 10

Summary for Link 209L: Post-Dev

Inflow Are	a =	19,300.0 m²,	0.00% Impervious, I	nflow Depth > 39	9 mm fo	or 100-Year event
Inflow	=	0.06327 m³/s @	1.90 hrs, Volume=	758.1 m³		
Primary	=	0.06327 m³/s @	1.90 hrs, Volume=	758.1 m³,	Atten= 0)%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-6.00 hrs, dt= 0.01 hrs

C SUPPORTING DOCUMENTS

PROJECT INFORMATION

ENGINEERED PRODUCT MANAGER:	HAIDER NASRULLAH 647-850-9417 HAIDER.NASRULLAH@ADS-PIPE.COM
ADS SALES REP:	MICHAEL REID 613-882-4186 MICHAEL.REID@ADS-PIPE.COM
PROJECT NO:	S229751
ADS SITE COORDINATOR:	MATTHEW BEGHIN 519-710-3687 MATTHEW.BEGHIN@ADS-PIPE.COM

UOTTAWA HEALTH SCIENCE BUILDING

OTTAWA, ON.

MC-4500 STORMTECH CHAMBER SPECIFICATIONS

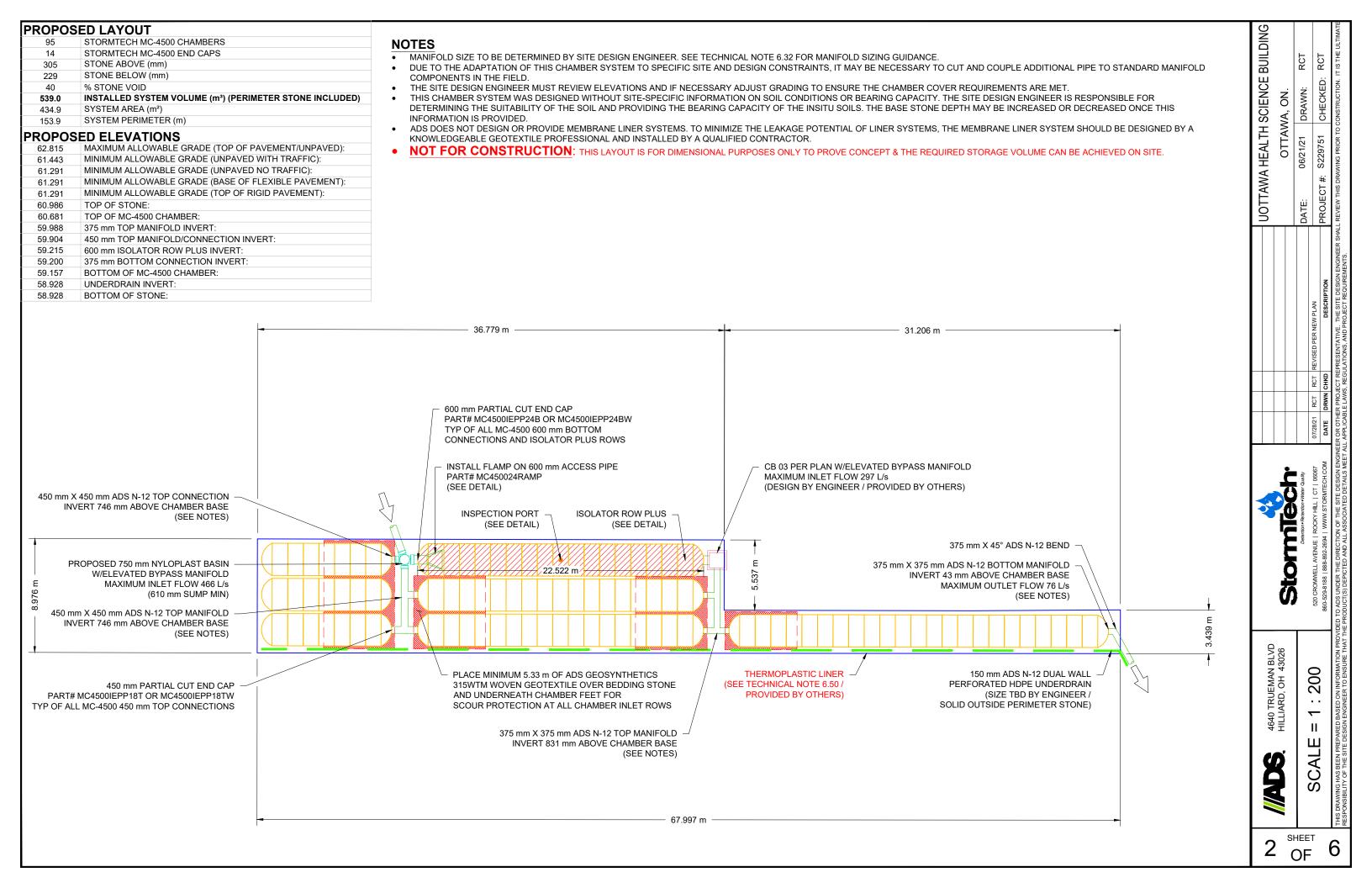
- CHAMBERS SHALL BE STORMTECH MC-4500. 1.
- 2. CHAMBERS SHALL BE ARCH-SHAPED AND SHALL BE MANUFACTURED FROM VIRGIN, IMPACT-MODIFIED POLYPROPYLENE COPOLYMERS
- CHAMBERS SHALL BE CERTIFIED TO CSA B184, "POLYMERIC SUB-SURFACE STORMWATER MANAGEMENT STRUCTURES", AND MEET 3. THE REQUIREMENTS OF ASTM F2418-16a, "STANDARD SPECIFICATION FOR POLYPROPYLENE (PP) CORRUGATED WALL STORMWATER COLLECTION CHAMBERS" CHAMBER CLASSIFICATION 60x101.
- CHAMBER ROWS SHALL PROVIDE CONTINUOUS, UNOBSTRUCTED INTERNAL SPACE WITH NO INTERNAL SUPPORTS THAT WOULD 4 IMPEDE FLOW OR LIMIT ACCESS FOR INSPECTION.
- THE STRUCTURAL DESIGN OF THE CHAMBERS, THE STRUCTURAL BACKFILL, AND THE INSTALLATION REQUIREMENTS SHALL ENSURE THAT THE LOAD FACTORS SPECIFIED IN THE AASHTO LRFD BRIDGE DESIGN SPECIFICATIONS, SECTION 12.12, ARE MET FOR: 1) LONG-DURATION DEAD LOADS AND 2) SHORT-DURATION LIVE LOADS, BASED ON THE CSA S6 CL-625 TRUCK AND THE AASHTO DESIGN TRUCK WITH CONSIDERATION FOR IMPACT AND MULTIPLE VEHICLE PRESENCES.
- CHAMBERS SHALL BE DESIGNED, TESTED AND ALLOWABLE LOAD CONFIGURATIONS DETERMINED IN ACCORDANCE WITH ASTM F2787, 6 "STANDARD PRACTICE FOR STRUCTURAL DESIGN OF THERMOPLASTIC CORRUGATED WALL STORMWATER COLLECTION CHAMBERS". LOAD CONFIGURATIONS SHALL INCLUDE: 1) INSTANTANEOUS (<1 MIN) AASHTO DESIGN TRUCK LIVE LOAD ON MINIMUM COVER 2) MAXIMUM PERMANENT (75-YR) COVER LOAD AND 3) ALLOWABLE COVER WITH PARKED (1-WEEK) AASHTO DESIGN TRUCK.
- REQUIREMENTS FOR HANDLING AND INSTALLATION: 7
 - TO MAINTAIN THE WIDTH OF CHAMBERS DURING SHIPPING AND HANDLING, CHAMBERS SHALL HAVE INTEGRAL, INTERLOCKING STACKING LUGS.
 - TO ENSURE A SECURE JOINT DURING INSTALLATION AND BACKFILL, THE HEIGHT OF THE CHAMBER JOINT SHALL NOT BE LESS THAN 75 mm (3").
 - TO ENSURE THE INTEGRITY OF THE ARCH SHAPE DURING INSTALLATION, a) THE ARCH STIFFNESS CONSTANT AS DEFINED IN SECTION 6.2.8 OF ASTM F2418 SHALL BE GREATER THAN OR EQUAL TO 450 LBS/IN/IN. AND b) TO RESIST CHAMBER DEFORMATION DURING INSTALLATION AT ELEVATED TEMPERATURES (ABOVE 23° C / 73° F), CHAMBERS SHALL BE PRODUCED FROM REFLECTIVE GOLD OR YELLOW COLORS.
- ONLY CHAMBERS THAT ARE APPROVED BY THE SITE DESIGN ENGINEER WILL BE ALLOWED. UPON REQUEST BY THE SITE DESIGN ENGINEER OR OWNER. THE CHAMBER MANUFACTURER SHALL SUBMIT A STRUCTURAL EVALUATION FOR APPROVAL BEFORE DELIVERING CHAMBERS TO THE PROJECT SITE AS FOLLOWS:
 - THE STRUCTURAL EVALUATION SHALL BE SEALED BY A REGISTERED PROFESSIONAL ENGINEER.
 - THE STRUCTURAL EVALUATION SHALL DEMONSTRATE THAT THE SAFETY FACTORS ARE GREATER THAN OR EQUAL TO 1.95 FOR DEAD LOAD AND 1.75 FOR LIVE LOAD, THE MINIMUM REQUIRED BY ASTM F2787 AND BY SECTIONS 3 AND 12.12 OF THE AASHTO LRFD BRIDGE DESIGN SPECIFICATIONS FOR THERMOPLASTIC PIPE.
 - THE TEST DERIVED CREEP MODULUS AS SPECIFIED IN ASTM F2418 SHALL BE USED FOR PERMANENT DEAD LOAD DESIGN EXCEPT THAT IT SHALL BE THE 75-YEAR MODULUS USED FOR DESIGN.
- CHAMBERS AND END CAPS SHALL BE PRODUCED AT AN ISO 9001 CERTIFIED MANUFACTURING FACILITY. 9

IMPORTANT - NOTES FOR THE BIDDING AND INSTALLATION OF MC-4500 CHAMBER SYSTEM

- STORMTECH MC-4500 CHAMBERS SHALL NOT BE INSTALLED UNTIL THE MANUFACTURER'S REPRESENTATIVE HAS COMPLETED A PRE-CONSTRUCTION MEETING WITH THE INSTALLERS.
- STORMTECH MC-4500 CHAMBERS SHALL BE INSTALLED IN ACCORDANCE WITH THE "STORMTECH MC-3500/MC-4500 CONSTRUCTION GUIDE". 2.
- 3. CHAMBERS ARE NOT TO BE BACKFILLED WITH A DOZER OR EXCAVATOR SITUATED OVER THE CHAMBERS. STORMTECH RECOMMENDS 3 BACKFILL METHODS:
 - STONESHOOTER LOCATED OFF THE CHAMBER BED.
 - BACKFILL AS ROWS ARE BUILT USING AN EXCAVATOR ON THE FOUNDATION STONE OR SUBGRADE. BACKFILL FROM OUTSIDE THE EXCAVATION USING A LONG BOOM HOE OR EXCAVATOR.
- 4. THE FOUNDATION STONE SHALL BE LEVELED AND COMPACTED PRIOR TO PLACING CHAMBERS.
- JOINTS BETWEEN CHAMBERS SHALL BE PROPERLY SEATED PRIOR TO PLACING STONE. 5.
- MAINTAIN MINIMUM 230 mm (9") SPACING BETWEEN THE CHAMBER ROWS. 6.
- INLET AND OUTLET MANIFOLDS MUST BE INSERTED A MINIMUM OF 300 mm (12") INTO CHAMBER END CAPS. 7.
- EMBEDMENT STONE SURROUNDING CHAMBERS MUST BE A CLEAN, CRUSHED, ANGULAR STONE WELL GRADED BETWEEN 3/4" AND 2" (20-50 mm). 8.
- STONE SHALL BE BROUGHT UP EVENLY AROUND CHAMBERS SO AS NOT TO DISTORT THE CHAMBER SHAPE. STONE DEPTHS SHOULD NEVER 9 DIFFER BY MORE THAN 300 mm (12") BETWEEN ADJACENT CHAMBER ROWS.
- STONE MUST BE PLACED ON THE TOP CENTER OF THE CHAMBER TO ANCHOR THE CHAMBERS IN PLACE AND PRESERVE ROW SPACING. 10
- 11. THE CONTRACTOR MUST REPORT ANY DISCREPANCIES WITH CHAMBER FOUNDATION MATERIAL BEARING CAPACITIES TO THE SITE DESIGN ENGINEER.
- ADS RECOMMENDS THE USE OF "FLEXSTORM CATCH IT" INSERTS DURING CONSTRUCTION FOR ALL INLETS TO PROTECT THE SUBSURFACE 12. STORMWATER MANAGEMENT SYSTEM FROM CONSTRUCTION SITE RUNOFF.

NOTES FOR CONSTRUCTION EQUIPMENT

- STORMTECH MC-4500 CHAMBERS SHALL BE INSTALLED IN ACCORDANCE WITH THE "STORMTECH MC-3500/MC-4500 CONSTRUCTION GUIDE". 1
- THE USE OF EQUIPMENT OVER MC-4500 CHAMBERS IS LIMITED: 2.
 - NO EQUIPMENT IS ALLOWED ON BARE CHAMBERS.
 - NO RUBBER TIRED LOADER, DUMP TRUCK, OR EXCAVATORS ARE ALLOWED UNTIL PROPER FILL DEPTHS ARE REACHED IN ACCORDANCE WITH THE "STORMTECH MC-3500/MC-4500 CONSTRUCTION GUIDE".
 - WEIGHT LIMITS FOR CONSTRUCTION EQUIPMENT CAN BE FOUND IN THE "STORMTECH MC-3500/MC-4500 CONSTRUCTION GUIDE".
- 3. FULL 900 mm (36") OF STABILIZED COVER MATERIALS OVER THE CHAMBERS IS REQUIRED FOR DUMP TRUCK TRAVEL OR DUMPING.

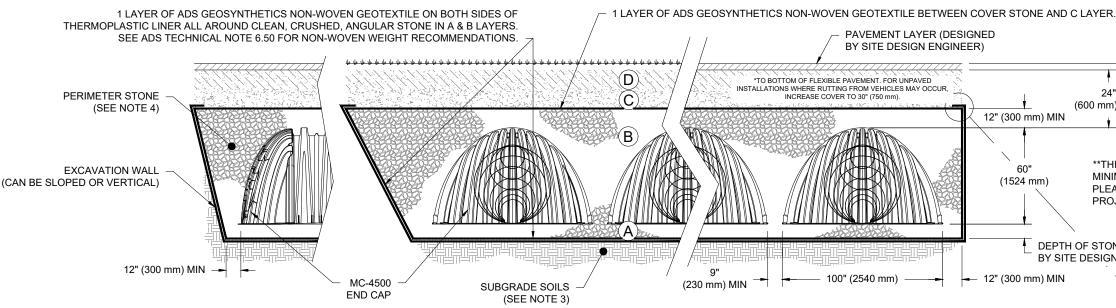

USE OF A DOZER TO PUSH EMBEDMENT STONE BETWEEN THE ROWS OF CHAMBERS MAY CAUSE DAMAGE TO CHAMBERS AND IS NOT AN ACCEPTABLE BACKFILL METHOD. ANY CHAMBERS DAMAGED BY USING THE "DUMP AND PUSH" METHOD ARE NOT COVERED UNDER THE STORMTECH STANDARD WARRANTY

CONTACT STORMTECH AT 1-888-892-2694 WITH ANY QUESTIONS ON INSTALLATION REQUIREMENTS OR WEIGHT LIMITS FOR CONSTRUCTION EQUIPMENT.

02021 ADS INC

ACCEPTABLE FILL MATERIALS: STORMTECH MC-4500 CHAMBER SYSTEMS

	MATERIAL LOCATION	DESCRIPTION	AASHTO MATERIAL CLASSIFICATIONS	СОМРА
D	FINAL FILL: FILL MATERIAL FOR LAYER 'D' STARTS FROM THE TOP OF THE 'C' LAYER TO THE BOTTOM OF FLEXIBLE PAVEMENT OR UNPAVED FINISHED GRADE ABOVE. NOTE THAT PAVEMENT SUBBASE MAY BE PART OF THE 'D' LAYER	ANY SOIL/ROCK MATERIALS, NATIVE SOILS, OR PER ENGINEER'S PLANS. CHECK PLANS FOR PAVEMENT SUBGRADE REQUIREMENTS.	N/A	PREPARI INSTALL
С	INITIAL FILL: FILL MATERIAL FOR LAYER 'C' STARTS FROM THE TOP OF THE EMBEDMENT STONE ('B' LAYER) TO 24" (600 mm) ABOVE THE TOP OF THE CHAMBER. NOTE THAT PAVEMENT SUBBASE MAY BE A PART OF THE 'C' LAYER.	GRANULAR WELL-GRADED SOIL/AGGREGATE MIXTURES, <35% FINES OR PROCESSED AGGREGATE. MOST PAVEMENT SUBBASE MATERIALS CAN BE USED IN LIEU OF THIS LAYER.	AASHTO M145 ¹ A-1, A-2-4, A-3 OR AASHTO M43 ¹ 3, 357, 4, 467, 5, 56, 57, 6, 67, 68, 7, 78, 8, 89, 9, 10	BEGIN COMP THE CHAMBE 12" (300 mm) WELL GRAI
В	EMBEDMENT STONE: FILL SURROUNDING THE CHAMBERS FROM THE FOUNDATION STONE ('A' LAYER) TO THE 'C' LAYER ABOVE.	CLEAN, CRUSHED, ANGULAR STONE	AASHTO M43 ¹ 3, 4	
А	FOUNDATION STONE: FILL BELOW CHAMBERS FROM THE SUBGRADE UP TO THE FOOT (BOTTOM) OF THE CHAMBER.	CLEAN, CRUSHED, ANGULAR STONE	AASHTO M43 ¹ 3, 4	PLATE COM

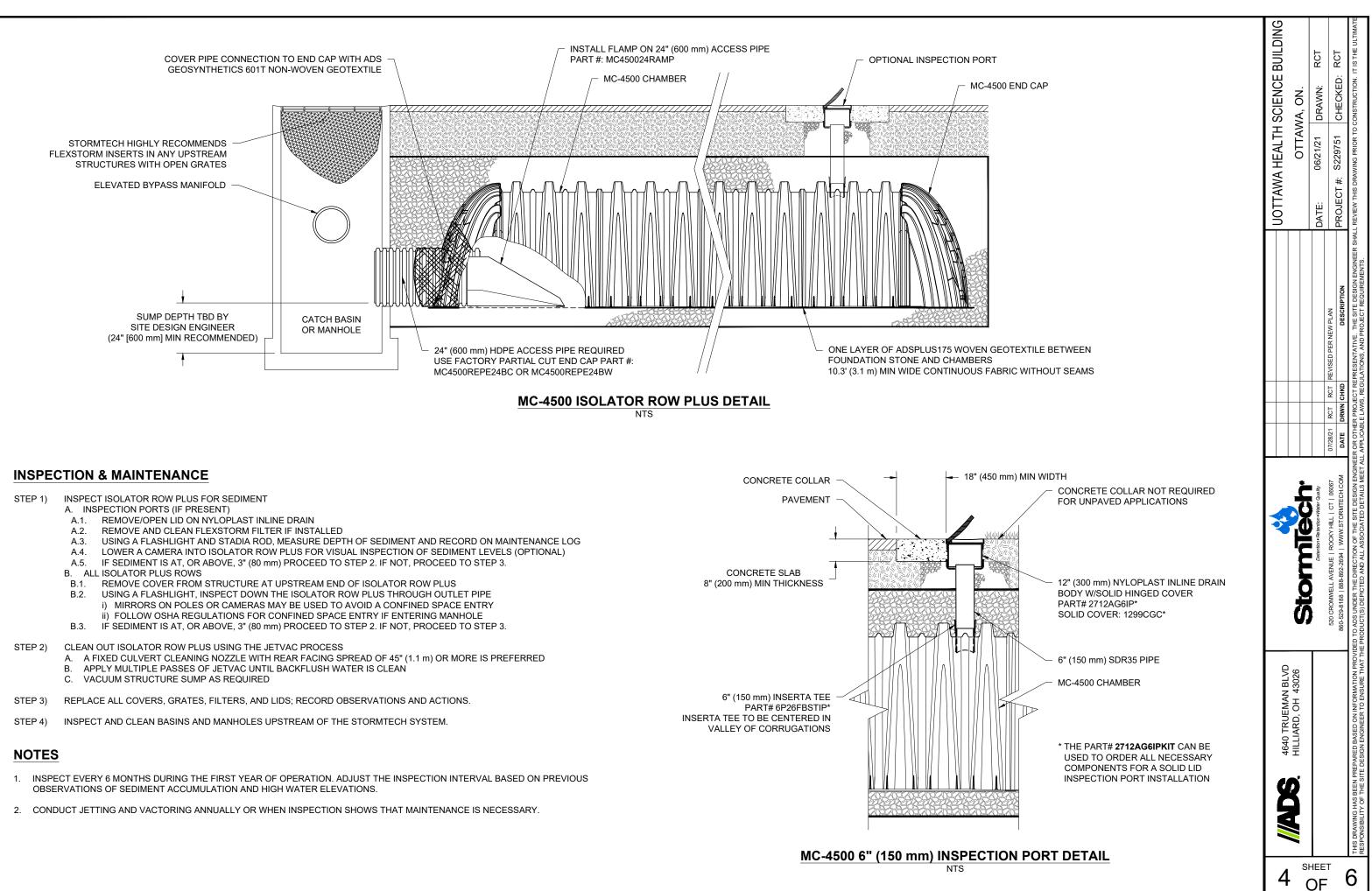

PLEASE NOTE:

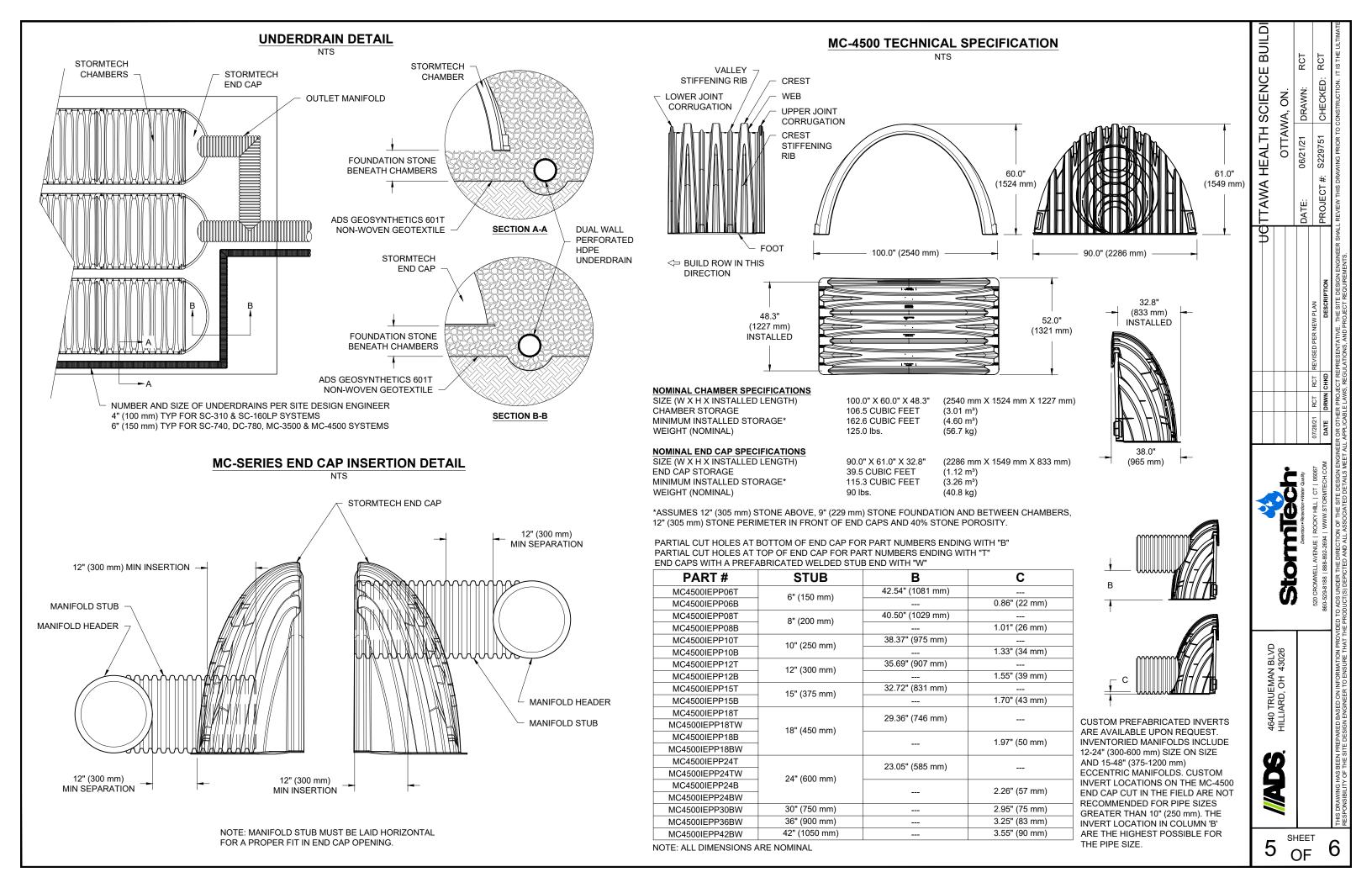
THE LISTED AASHTO DESIGNATIONS ARE FOR GRADATIONS ONLY. THE STONE MUST ALSO BE CLEAN, CRUSHED, ANGULAR. FOR EXAMPLE, A SPECIFICATION FOR #4 STONE WOULD STATE: "CLEAN, CRUSHED, ANGULAR NO. 4 (AASHTO M43) STONE". 1.

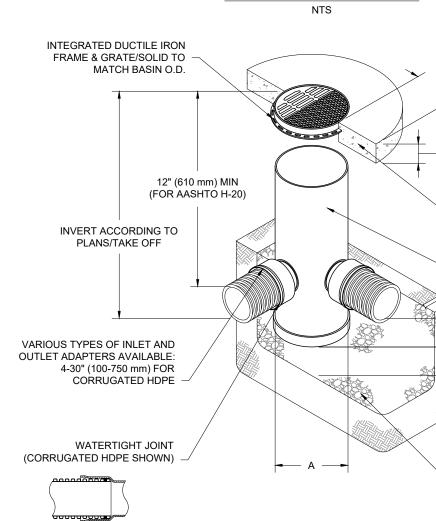
STORMTECH COMPACTION REQUIREMENTS ARE MET FOR 'A' LOCATION MATERIALS WHEN PLACED AND COMPACTED IN 9" (230 mm) (MAX) LIFTS USING TWO FULL COVERAGES WITH A VIBRATORY COMPACTOR. 2.

WHERE INFILTRATION SURFACES MAY BE COMPROMISED BY COMPACTION, FOR STANDARD DESIGN LOAD CONDITIONS, A FLAT SURFACE MAY BE ACHIEVED BY RAKING OR DRAGGING WITHOUT COMPACTION EQUIPMENT. FOR SPECIAL LOAD DESIGNS, CONTACT STORMTECH FOR 3 COMPACTION REQUIREMENTS.

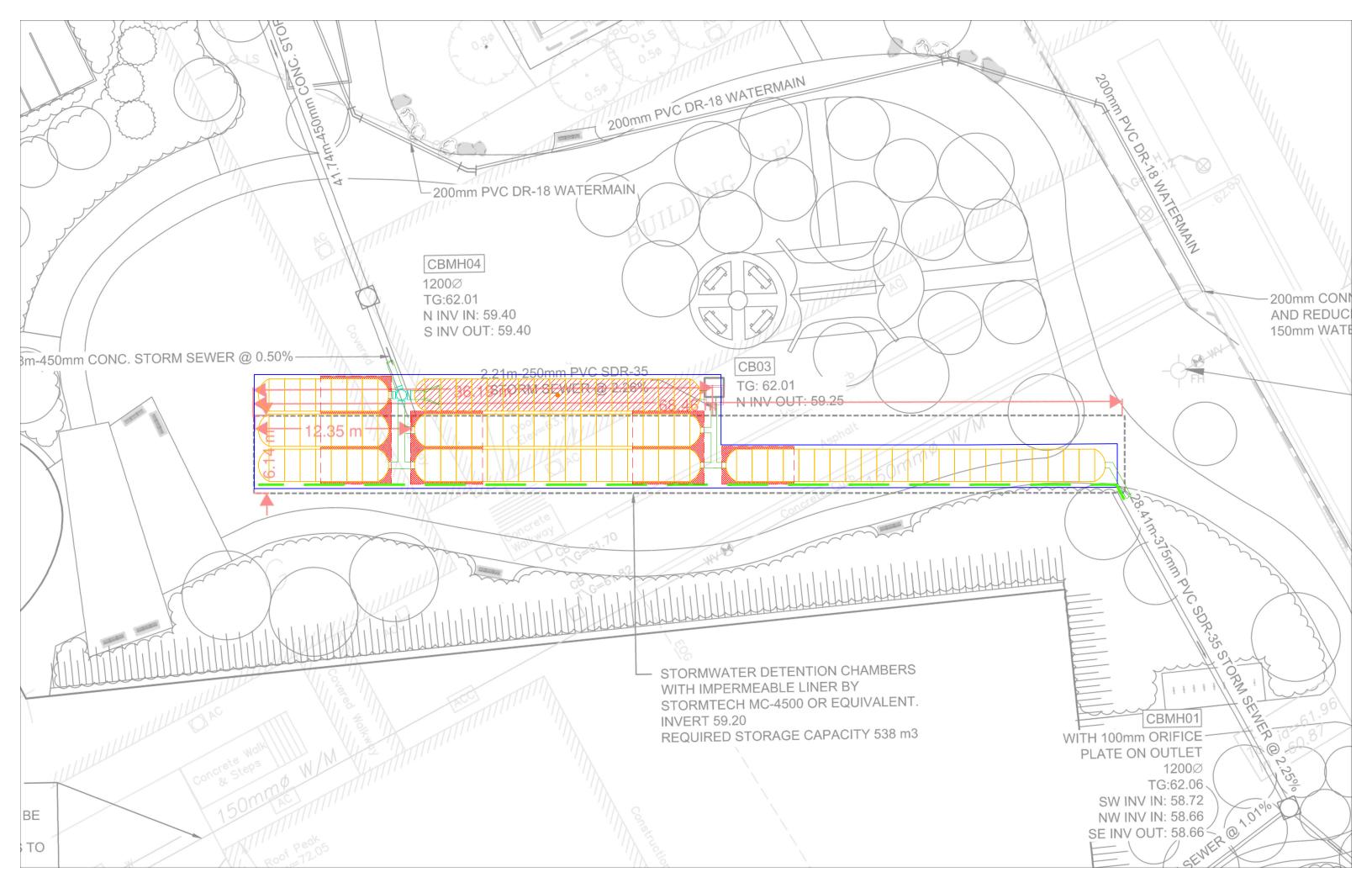
ONCE LAYER 'C' IS PLACED, ANY SOIL/MATERIAL CAN BE PLACED IN LAYER 'D' UP TO THE FINISHED GRADE. MOST PAVEMENT SUBBASE SOILS CAN BE USED TO REPLACE THE MATERIAL REQUIREMENTS OF LAYER 'C' OR 'D' AT THE SITE DESIGN ENGINEER'S DISCRETION. 4




NOTES:


NON-WOVEN GEOTEXTILE

- CHAMBERS SHALL MEET THE REQUIREMENTS OF ASTM F2418-16a, "STANDARD SPECIFICATION FOR POLYPROPYLENE (PP) CORRUGATED WALL STORMWATER COLLECTION CHAMBERS" CHAMBER CLASSIFICATION 60x101 1.
- 2. MC-4500 CHAMBERS SHALL BE DESIGNED IN ACCORDANCE WITH ASTM F2787 "STANDARD PRACTICE FOR STRUCTURAL DESIGN OF THERMOPLASTIC CORRUGATED WALL STORMWATER COLLECTION CHAMBERS".
- THE SITE DESIGN ENGINEER IS RESPONSIBLE FOR ASSESSING THE BEARING RESISTANCE (ALLOWABLE BEARING CAPACITY) OF THE SUBGRADE SOILS AND THE DEPTH OF FOUNDATION STONE WITH CONSIDERATION 3 FOR THE RANGE OF EXPECTED SOIL MOISTURE CONDITIONS.
- 4. PERIMETER STONE MUST BE EXTENDED HORIZONTALLY TO THE EXCAVATION WALL FOR BOTH VERTICAL AND SLOPED EXCAVATION WALLS.
- 5. REQUIREMENTS FOR HANDLING AND INSTALLATION:
 - TO MAINTAIN THE WIDTH OF CHAMBERS DURING SHIPPING AND HANDLING, CHAMBERS SHALL HAVE INTEGRAL, INTERLOCKING STACKING LUGS.
 - TO ENSURE A SECURE JOINT DURING INSTALLATION AND BACKFILL, THE HEIGHT OF THE CHAMBER JOINT SHALL NOT BE LESS THAN 3".
 - TO ENSURE THE INTEGRITY OF THE ARCH SHAPE DURING INSTALLATION, a) THE ARCH STIFFNESS CONSTANT AS DEFINED IN SECTION 6.2.8 OF ASTM F2418 SHALL BE GREATER THAN OR EQUAL TO 500 LBS/IN/IN. • AND b) TO RESIST CHAMBER DEFORMATION DURING INSTALLATION AT ELEVATED TEMPERATURES (ABOVE 73° F / 23° C), CHAMBERS SHALL BE PRODUCED FROM REFLECTIVE GOLD OR YELLOW COLORS.


BUILDING RCT 5 U TTAWA HEALTH SCIENCE PACTION / DENSITY REQUIREMENT CHECKED DRAWN: NO. ARE PER SITE DESIGN ENGINEER'S PLANS, PAVED OTTAWA, LLATIONS MAY HAVE STRINGENT MATERIAL AND PREPARATION REQUIREMENTS. 06/21/21 S229751 MPACTIONS AFTER 24" (600 mm) OF MATERIAL OVER BERS IS REACHED. COMPACT ADDITIONAL LAYERS IN # **PROJECT** : m) MAX LIFTS TO A MIN. 95% PROCTOR DENSITY FOR RADED MATERIAL AND 95% RELATIVE DENSITY FOR DATE: PROCESSED AGGREGATE MATERIALS. <u>0</u> NO COMPACTION REQUIRED. COMPACT OR ROLL TO ACHIEVE A FLAT SURFACE.^{2,3} 7.0' 24' (2.1 m) (600 mm) MIN* MAX **THIS CROSS SECTION DETAIL REPRESENTS Storm MINIMUM REQUIREMENTS FOR INSTALLATION. PLEASE SEE THE LAYOUT SHEET(S) FOR PROJECT SPECIFIC REQUIREMENTS. DEPTH OF STONE TO BE DETERMINED BY SITE DESIGN ENGINEER 9" (230 mm) MIN NON-WOVEN GEOTEXTILE 4640 TRUEMAN BLVD HILLIARD, OH 43026 EARTH THERMOPLASITC LINER OVERLAP ON TOP SEVERAL INCHES TO ANCHOR ANGULAR STONE THERMOPLASTIC LINER DETAIL SHEET 3 6 OF

SHTO H-20) ARE FOR GUIDELINE PUPOSES ONLY. ACTUAL CONCRETE SLAB MUST BE DESIGNED GUING CONSIDERATION FOR LOCAL SOL CONDITIONS, TRAFFIC LOADING & OTHER APPLICABLE DESIGN FACTORS ADAPTER ANGLES VARIABLE DESIGN FACTORS ADAPTER ANGLES VARIABLE DESIGN FACTORS ADAPTER ANGLES VARIABLE OF 300° ACCORDING TO PLANS If (152 mm) MIN ON 30° (750 mm)) If (152 mm) MIN ON 8-24° (200-600 mm), If (152 mm) CONTENT AND AND ADD AND FIALS DO 000 MIN APPLICABLE ADD ADD ADD ADD ADD ADD ADD ADD ADD AD	NYLOPLAST DR	AIN BASIN				E BUILDING		RCT	D: RCT
ACCORDING TO PLANS VARIABLE SUMP DEPTH ACCORDING TO PLANS (19 (122 mm) MIN ON 3-24* (200-600 mm), 10* (124 mm) MIN ON 3-24* (200-600 mm), 10* (122 mm) MIN ON 3-24* (200-600 mm), 10* (122 mm) MIN ON 3-24* (200-600 mm), 10* (122 mm) MIN ON 3-24* (200-600 mm), 6* (152 mm) MIN ON 3-24* (200-600 mm), 6* (152 mm) MIN ON 3-24* (200-600 mm), 6* (152 mm) MIN ON 3-24* (200-600 mm), 10* (120 mm), 10* (120 mm), 00* (120 mm), 10* (120 m	I0 mm) MIN ASHTO H-20)		MIN WIDTH AASHTO H-20 CO 8" (203 mm) MIN TRAFFIC LOADS: ARE FOR GUIDEL ACTUAL CONCRE DESIGNED GIVIN LOCAL SOIL CON LOADING & OTHE	I THICKNESS CONCRETE DIMENSI INE PUPOSES ONLY. ETE SLAB MUST BE G CONSIDERATION FO DITIONS, TRAFFIC	OR	UOTTAWA HEALTH SCIENCE BUILDING	OTTAWA, ON.	06/21/21	
B-30* (200-750 mm) GRATES/SOLID COVERS SHALL BE DUCTILE IRON PER ASTM A536 GRADE 70-50-05 B-30* (200-750 mm) GRATES/SOLID COVERS SHALL BE DUCTILE IRON PER ASTM A536 GRADE 70-50-05 T2-30* (300-750 mm) FRAMES SHALL BE DUCTILE IRON PER ASTM A536 GRADE 70-50-05 DRAIN BASIN TO BE CUSTSOM MANUFACTURED ACCORDING TO PLAN DETAILS. DRAIN BASIN TO BE CUSTSOM MANUFACTURED ACCORDING TO PLAN DETAILS. DRAIN BASIN TO BE CUSTE DIATION MANUFACTURED ACCORDING TO PLAN DETAILS. DRAIN BASIN TO BE CUSTSOM MANUFACTURED ACCORDING TO PLAN DETAILS. DRAIN BASIN TO BE CUSTE DIATION MANUFACTURED ACCORDING TO PLAN DETAILS. DRAIN BASIN TO BE CUSTE IRON PER ASTM A536 GRADE 70-50-05 DRAIN BASIN TO BE CUSTSOM MANUFACTURED ACCORDING TO PLAN DETAILS. DRAIN BASIN TO BE CUSTE DIATIONER ASTMADE ASST TO BCILD COVER OPTIONS BASIN OF LOD ADDIATED TIMETOR MANTON: WWW.WYLOPLAST-US.COM TO ORDER CALL: 800-821-8710 STANDARD AASHTO HOULD INFORMATION: WWW.NYLOPLAST-US.COM TO TO REAL SERVICE ACONTROLOGANA TO ASSHTO H-20 10* 2810AG PEDESTRIAN LIGHT 12* REAL REAL REAL REAL DECOMPRENTIAN SOLID 10* 2810AG PEDESTRIAN STANDARD AASHTO 10* 2810AG PEDESTRIAN STANDARD AASHTO 12* REAL REAL REAL REAL REAL REAL REAL REAL			ACCORDING TO 1	PLANS VARIABLE SUMP DEF ACCORDING TO PLA mm) MIN ON 8-24" (20	NS 00-600 mm),			REVISED PER NEW PLAN	DESCRIPTI
BACKFILL MATERIAL BELOW AND TO SIDES OF STRUCTURE SHALL BE ASTM D2321 CLASS I OR II CRUSHED STORE OR GRAVEL AND BE PLACED UNIFORMATIN 127 (305 mm) LIFTS AND COMPACTED TO MIN OF 90% Wy BY BUDDIN WY BY BUDDIN DIFTS AND COMPACTED TO MIN OF 90% B-30' (200-750 mm) GRATES/SOLID COVERS SHALL BE DUCTILE IRON PER ASTM A536 GRADE 70-50-05 B-30' (200-750 mm) FRAMES SHALL BE DUCTILE IRON PER ASTM A536 GRADE 70-50-05 B-30' (200-750 mm) FRAMES SHALL BE DUCTILE IRON PER ASTM A536 GRADE 70-50-05 B-30' (200-750 mm) FRAMES SHALL BE DUCTILE IRON PER ASTM A536 GRADE 70-50-05 B-30' (200-750 mm) FRAMES SHALL BE DUCTILE IRON PER ASTM A536 GRADE 70-50-05 B-30' (200-750 mm) FRAMES SHALL BE DUCTILE IRON PER ASTM A536 GRADE 70-50-05 B-30' (200-750 mm) FRAMES SHALL BE DUCTILE IRON PER ASTM A536 GRADE 70-50-05 B-30' (200-750 mm) FRAMES SHALL BE DUCTILE IRON PER ASTM A536 GRADE 70-50-05 B-30' (200-750 mm) FRAMES SHALL BE DUCTILE IRON PER ASTM A536 GRADE 70-50-05 B-30' (200-750 mm) FRAMES SHALL BE DUCTILE IRON PER ASTM A536 GRADE 70-50-05 B-30' (200-750 mm) FRAMES SHALL BE DUCTILE IRON PER ASTM A536 GRADE 70-50-05 B-30' (200-750 mm) FRAMES SHALL BE DUCTILE IRON PER ASTM A536 GRADE 70-50-05 B-30' (200-750 mm) FRAMES SHALL BE DUCTILE IRON PER ASTM A536 GRADE 70-50-05 COUDATA GRADE 70-50' (200-750 mm) FRAMES SHALL BE DUCTILE IRON PER ASTM A536 GRADE 70-50' (200-750 mm) FRAMES SHALL BE DUCTILE IRON PER ASTM A536 GRADE 70-50' (200-750 mm) FRAMES SHALL BE DUCTILE IRON PER ASTM A536 GRADE 70-50-05 COUDATA GRADE 70' (200-750 mm) FRAMES SHALL BE DUCTILE IRON PER ASTM A536 GRADE 70-50' (200-750 mm) FRAMES SHALL BE DUCTILE IRON PER ASTM A536 GRADE 70-50-05 COUDATA GRADE 70' (200-750 mm) FRAMES SHALL BE DUCTILE IRON PER ASTM A536 CRAE 70-50-05					m)				
BACKFILL MATERIAL BELOW AND TO SIDES OF STRUCTURE SHALL BE ASTIM D2321 CLASS 10 RI IC RUSHED STONE OR GRAVEL AND BE PLACED UNIFORMLY IN 12" (305 mm) LIFTS AND COMPACTED TO MIN OF 90% B-30" (200-750 mm) GRATES/SOLID COVERS SHALL BE DUCTILE IRON PER ASTM A536 GRADE 70-50-05 12-30" (300-750 mm) GRATES/SOLID COVERS SHALL BE DUCTILE IRON PER ASTM A536 GRADE 70-50-05 12-30" (300-750 mm) FRAMES SHALL BE DUCTILE IRON PER ASTM A536 GRADE 70-50-05 DRAIN BASIN TO BE CUSTOM MANUFACTURED ACCORDING TO PLAN DETAILS DRAINAGE CONNECTION STUB JOINT TIGHTNESS SHALL CONFORM TO ASTM D3212 FOR COMPLETE DESIGN AND PRODUCT INFORMATION: WWW.NYLOPLAST-US.COM TO ORDER CALL: 800-821-6710			ÿ						
750 mm) 2830AG AASHTO H-20 H-20 AASHTO H-20 SHEET -	GRADE 70-50-05 12-30" (300-750 mm) FRAMES DRAIN BASIN TO BE CUSTON DRAINAGE CONNECTION ST FOR CORRUGATED HDPE (A FOR COMPLETE DESIGN ANI	SHALL BE DUCTILE IR MANUFACTURED AC UB JOINT TIGHTNESS DS & HANCOR DUAL W D PRODUCT INFORMA	OF STRUCTURE S CLASS I OR II CRU AND BE PLACED U LIFTS AND COMP/ BE DUCTILE IRON PE CON PER ASTM A536 G CORDING TO PLAN DI SHALL CONFORM TO VALL) & SDR 35 PVC	HALL BE ASTM D2321 ISHED STONE OR GR JNIFORMLY IN 12" (30 ACTED TO MIN OF 909 R ASTM A536 GRADE 70-50-05 ETAILS ASTM D3212	AVEL 5 mm)	3130 VERONA AVE	BUFORD, GA 30518 PHN (770) 932-2443	Nyloplast FAX (770) 932-2490 www.nyloplast-us.com	
750 mm) 2830AG AASHTO H-20 H-20 AASHTO H-20 SHEET -		1]	BLVD	026		
750 mm) 2830AG AASHTO H-20 H-20 AASHTO H-20 SHEET -	8" 2808AG	PEDESTRIAN LIGHT	STANDARD LIGHT			MAN E	OH 43		
750 mm) 2830AG AASHTO H-20 H-20 AASHTO H-20 SHEET -	10" 2810AC	PEDESTRIAN LIGHT	STANDARD LIGHT	SOLID LIGHT DUTY		TRUE	IARD,		
750 mm) 2830AG AASHTO H-20 H-20 AASHTO H-20 SHEET -	12" 28124G	PEDESTRIAN	STANDARD AASHTO	-	-	4640	HILL		
750 mm) 2830AG AASHTO H-20 H-20 AASHTO H-20 SHEET -	15"	PEDESTRIAN	STANDARD AASHTO	SOLID			Ď		
750 mm) 2830AG AASHTO H-20 H-20 AASHTO H-20 SHEET -		PEDESTRIAN	STANDARD AASHTO	SOLID		Š	5		
750 mm) 2830AG AASHTO H-20 H-20 AASHTO H-20 SHEET -	18" (450 mm) 2818AG			00115	1		L		
	2818AG								

Project: uOttawa Health Science Bldg Rev1

Height of	Incremental Single	Incremental	Incremental	Incremental End	Incremental	Incremental Chamber, End	Cumulative	
System	Chamber	Single End Cap	Chambers	Cap	Stone	Cap and Stone	System	Elevation
(mm)	(cubic meters)	(cubic meters)	(cubic meters)	(cubic meters)	(cubic meters)	(cubic meters)	(cubic meters)	(meters)
2057	0.00	0.00	0.00	0.00	4.420	4.42	539.04	60.99
2032 2007	0.00	0.00	0.00	0.00	4.420	4.42 4.42	534.62	60.96 60.93
1981	0.00 0.00	0.00	0.00 0.00	0.00	4.420 4.420	4.42	530.21 525.79	60.93
1956	0.00	0.00	0.00	0.00	4.420	4.42	521.38	60.88
1930	0.00	0.00	0.00	0.00	4.420	4.42	516.96	60.86
1905	0.00	0.00	0.00	0.00	4.420	4.42	512.54	60.83
1880	0.00	0.00	0.00	0.00	4.420	4.42	508.13	60.81
1854	0.00	0.00	0.00	0.00	4.420	4.42	503.71	60.78
1829	0.00	0.00	0.00	0.00	4.420	4.42	499.29	60.76
1803	0.00	0.00	0.00	0.00	4.420	4.42	494.88	60.73
1778 1753	0.00 0.00	0.00 0.00	0.00 0.11	0.00 0.01	4.420 4.370	4.42 4.49	490.46 486.04	60.71 60.68
1727	0.00	0.00	0.31	0.01	4.290	4.61	481.56	60.66
1702	0.00	0.00	0.44	0.02	4.230	4.69	476.95	60.63
1676	0.01	0.00	0.56	0.03	4.180	4.77	472.25	60.60
1651	0.01	0.00	0.72	0.03	4.110	4.87	467.48	60.58
1626	0.01	0.00	1.22	0.04	3.910	5.17	462.61	60.55
1600	0.02	0.00	1.79	0.05	3.680	5.52	457.44	60.53
1575	0.02	0.00	2.15	0.06	3.530	5.74	451.92	60.50
1549 1524	0.03 0.03	0.01 0.01	2.44 2.70	0.07 0.09	3.410 3.300	5.93 6.09	446.18 440.25	60.48 60.45
1524	0.03	0.01	2.70	0.09	3.300	6.09	440.25 434.16	60.45 60.43
1473	0.03	0.01	3.13	0.11	3.120	6.36	427.93	60.40
1448	0.03	0.01	3.32	0.12	3.040	6.48	421.57	60.38
1422	0.04	0.01	3.50	0.13	2.970	6.59	415.09	60.35
1397	0.04	0.01	3.66	0.14	2.900	6.70	408.50	60.33
1372	0.04	0.01	3.82	0.15	2.830	6.80	401.80	60.30
1346	0.04	0.01	3.96	0.16	2.770	6.89	395.01	60.27
1321	0.04	0.01	4.10	0.17	2.710	6.98	388.11	60.25 60.22
1295 1270	0.04 0.05	0.01 0.01	4.24 4.36	0.19 0.20	2.650 2.590	7.07 7.15	381.13 374.06	60.22
1245	0.05	0.01	4.48	0.20	2.540	7.23	366.91	60.17
1219	0.05	0.02	4.60	0.22	2.490	7.30	359.68	60.15
1194	0.05	0.02	4.71	0.22	2.440	7.38	352.38	60.12
1168	0.05	0.02	4.81	0.23	2.400	7.44	345.00	60.10
1143	0.05	0.02	4.92	0.24	2.350	7.51	337.56	60.07
1118	0.05	0.02	5.01	0.25	2.310	7.57	330.04	60.05
1092	0.05	0.02	5.11	0.25	2.270	7.63	322.47	60.02
1067	0.05	0.02	5.20	0.27	2.230	7.70	314.84	59.99
1041 1016	0.06 0.06	0.02	5.28 5.37	0.28	2.190 2.150	7.75 7.81	307.14 299.39	59.97 59.94
991	0.06	0.02	5.45	0.29	2.120	7.86	291.58	59.92
965	0.06	0.02	5.52	0.30	2.090	7.91	283.72	59.89
940	0.06	0.02	5.60	0.31	2.050	7.96	275.81	59.87
914	0.06	0.02	5.67	0.32	2.020	8.01	267.84	59.84
889	0.06	0.02	5.74	0.33	1.990	8.06	259.83	59.82
864	0.06	0.02	5.81	0.33	1.960	8.10	251.78	59.79
838	0.06	0.02	5.87	0.34	1.930	8.14	243.68	59.77
813 787	0.06 0.06	0.02 0.03	5.93 5.99	0.34 0.35	1.910 1.880	8.18 8.22	235.54 227.35	59.74 59.72
762	0.06	0.03	6.05	0.36	1.850	8.26	219.13	59.69
737	0.06	0.03	6.10	0.36	1.830	8.30	210.87	59.66
711	0.06	0.03	6.16	0.36	1.810	8.33	202.57	59.64
686	0.07	0.03	6.21	0.37	1.780	8.37	194.24	59.61
660	0.07	0.03	6.26	0.38	1.760	8.40	185.88	59.59
635	0.07	0.03	6.30	0.38	1.740	8.43	177.48	59.56
610 584	0.07	0.03	6.35	0.39	1.720 1.710	8.46	169.05	59.54 59.51
584 559	0.07 0.07	0.03 0.03	6.39 6.43	0.38 0.40	1.710 1.680	8.48 8.51	160.59 152.11	59.51 59.49
533	0.07	0.03	6.43	0.40	1.670	8.54	143.59	59.49 59.46
508	0.07	0.03	6.51	0.40	1.650	8.56	135.05	59.44
483	0.07	0.03	6.54	0.41	1.640	8.59	126.49	59.41
457	0.07	0.03	6.58	0.41	1.620	8.61	117.90	59.39
432	0.07	0.03	6.61	0.41	1.610	8.63	109.29	59.36
406	0.07	0.03	6.64	0.42	1.590	8.65	100.66	59.33
381	0.07	0.03	6.67	0.42	1.580	8.67	92.01	59.31
356	0.07	0.03	6.69	0.42	1.570	8.68	83.35	59.28
330 305	0.07 0.07	0.03 0.03	6.72 6.74	0.43 0.43	1.560 1.550	8.70 8.72	74.66 65.96	59.26 59.23
279	0.07	0.03	6.76	0.43	1.540	8.73	57.24	59.23
254	0.07	0.03	6.80	0.44	1.520	8.76	48.51	59.18
229	0.00	0.00	0.00	0.00	4.420	4.42	39.75	59.16
203	0.00	0.00	0.00	0.00	4.420	4.42	35.33	59.13
178	0.00	0.00	0.00	0.00	4.420	4.42	30.91	59.11
152	0.00	0.00	0.00	0.00	4.420	4.42	26.50	59.08
127	0.00	0.00	0.00	0.00	4.420	4.42	22.08	59.06
102	0.00	0.00	0.00	0.00	4.420	4.42	17.67	59.03
76 51	0.00	0.00	0.00	0.00	4.420 4.420	4.42 4.42	13.25 8.83	59.00 58.98
25	0.00	0.00	0.00	0.00	4.420	4.42	4.42	58.98 58.95
	2.00	2.00	2.00	2.00				

OTTAWA HEALTH SCIENCE BUILDING

DRAWING INDEX

TITLE	SHEET NO
COVER SHEET	1 OF 4
SIZING REPORT	2 OF 4
SDD PLAN	3 OF 4
OVERLAY SHEET	4 OF 4

MANHOLES AND
OPSE
2. CO
REPRESENTA
MEETING AN
3. ENGINEER
DOCUMENTATIO
COORDINATE SI

- 5.

CHECK - REQUIRED MATERIALS AND EQUIPMENT

PLANS, SIZING, OR SYSTEM DESIGNS.

	PROJEC	T INFORMATIC	N
SITE CONTACT	PHIL ALLEN	416-286-5990	PHILALLEN@STORMCON.CA
ENGINEER / TECHNICAL SPECIALIST	PARTH PUSHKARNA, EIT	647-278-7339	PARTHP@STORMCON.CA
SALES REP:	GREG DZIEWIECKI PARTH PUSHKARNA	437-231-6080 647-278-7339	GREGD@STORMCON.CA PARTHP@STORMCON.CA
PROJECT NO:	21-1.00-SDD3		

NOTES FOR BIDDING AND INSTALLATIONS

- CONTRACTORS ARE EXPECTED TO COMPREHEND AND USE THE MOST CURRENT INSTALLATION INSTRUCTIONS PRIOR TO BEGINNING A SYSTEM INSTALLATION. FOR THE MOST CURRENT INSTRUCTIONS, CONTACT STORMCON AT (647) 463-9803 OR VISIT WWW.STORMCON.CA.
- 2. CONTACT STORMCON AT LEAST TWO WEEKS PRIOR TO SYSTEM INSTALLATION TO ARRANGE FOR A PRE-CONSTRUCTION MEETING.
- 3. USE SDD3 INSTALLATION INSTRUCTIONS AS A GUIDELINE ONLY FOR MINIMUM/MAXIMUM REQUIREMENTS, ACTUAL DESIGN MAY VARY, REFER TO APPROVED CONSTRUCTION DRAWINGS FOR JOB-SPECIFIC DETAILS. ENGINEERING DRAWINGS SUPERSEDE ALL PROVIDED DOCUMENTATION.
- 4. ANY DISCREPANCIES WITH THE SYSTEM SUB-GRADE SOIL'S BEARING CAPACITY MUST BE REPORTED TO THE GEOTECHNICAL ENGINEER.
- 5. EROSION AND SEDIMENT-CONTROL MEASURES MUST MEET LOCAL CODES AND THE DESIGN ENGINEER'S SPECIFICATIONS THROUGHOUT THE ENTIRE SITE CONSTRUCTION PROCESS.

NOTE: THESE SHOP DRAWINGS MAY CONTAIN COMPONENTS INCLUDING BUT NOT LIMITED TO MANHOLES, CATCH BASINS, STORM PIPES AND FITTINGS, MANIFOLDS, CASTINGS AND OTHER NECESSARY APPURTENANCES THAT MAY NOT BE SUPPLIED BY STORMCON. IT IS THE RESPONSIBILITY OF THE CONTRACTOR AND/OR SUPPLIER TO CONFIRM THE MATERIALS PROVIDED.

GENERAL NOTES

D APPURTENANCES TO FOLLOW DIVISION 700 OF D OR APPLICABLE LOCAL STANDARDS. OORDINATE WITH MANUFACTURER'S ATIVE/DISTRIBUTOR FOR PRE-CONSTRUCTION ND SITE INSPECTION DURING INSTALLATION. RING DRAWINGS SUPERSEDE ALL PROVIDED ON. REFER TO SITE ENGINEERS FOR ADDITIONAL INSTRUCTIONS. SDD3 INSTALLATION ACTIVITIES WITH OTHER SITE ACTIVITIES ALL DIMENSIONS ARE IN MILLIMETERS UNLESS NOTED OTHERWISE 6. THE SUB-GRADE AND SIDE BACKFILL TO BE COMPACTED TO 95% SPD OR AS DIRECTED BY THE QUALIFIED ENGINEER. 7. CONFIRM GEOTECHNICAL SOIL EVALUATION BY A QUALIFIED ENGINEER TO DETERMINE SUITABILITY OF STRUCTURAL INSTALLATION

8. CONFIRM FOR BURIED UNDERGROUND UTILITIES INCLUDING GAS, ELECTRICAL, PIPELINES OR CONDUITS 9. WHEN INSTALLED IN CONFORMANCE TO THE INSTALLATION GUIDELINES, SDD3 CAN HANDLE STANDARD CL-625 TRUCK LOADING. FOR NON-STANDARD LOADS CONTACT MANUFACTURER'S REPRESENTATIVE/DISTRIBUTOR 10. PROTECT THE INSTALLATION AGAINST DAMAGE WITH CONSTRUCTION TAPE. FENCING OR OTHER MEANS TILL THE CONSTRUCTION IS COMPLETE.

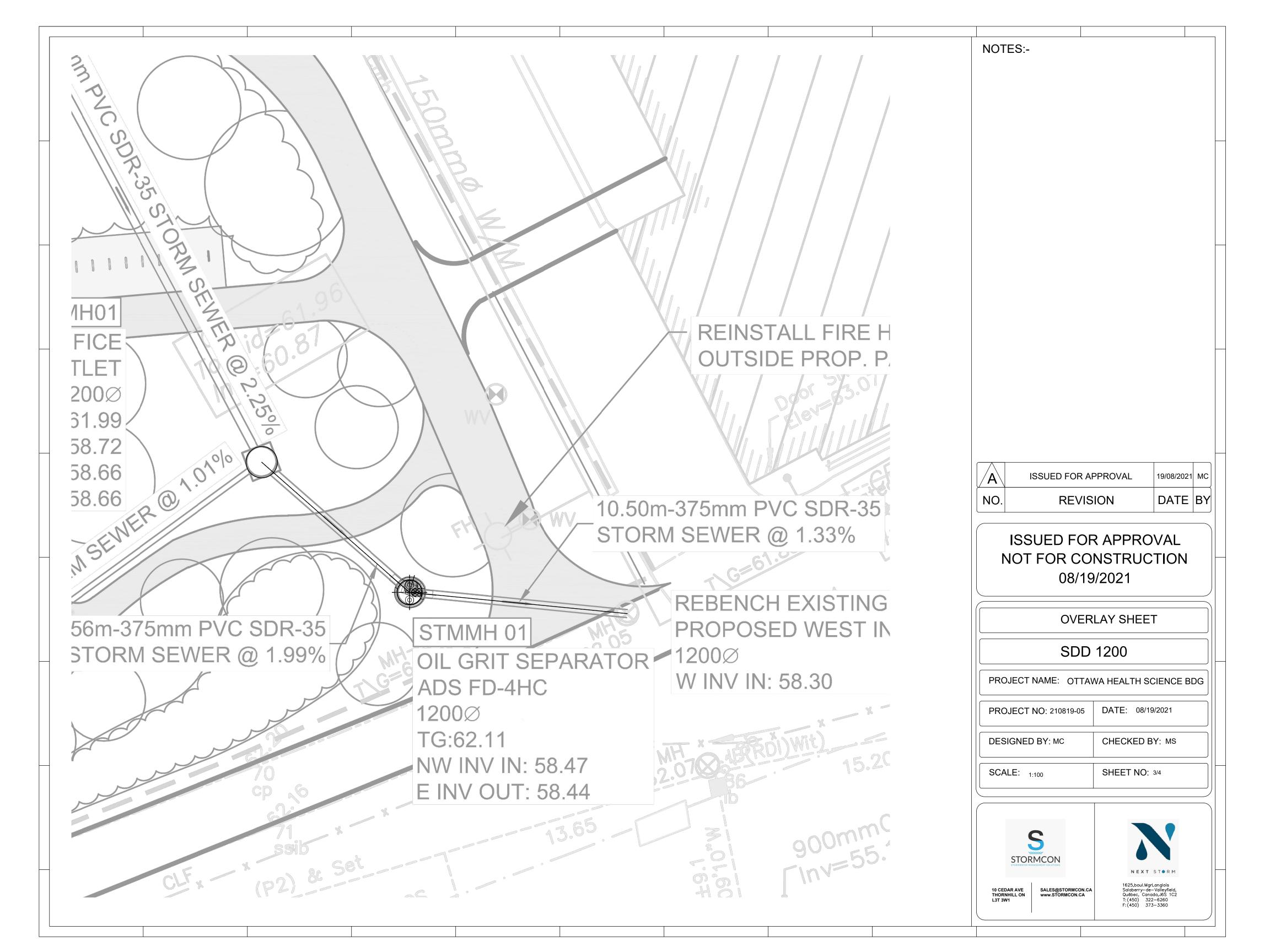
11. ENSURE THAT CONSTRUCTION FOLLOWS APPLICABLE FEDERAL, PROVINCIAL, LOCAL, MUNICIPAL AND LOCAL LAWS, ORDNANCES, REGULATIONS AND SAFETY REQUIREMENTS.

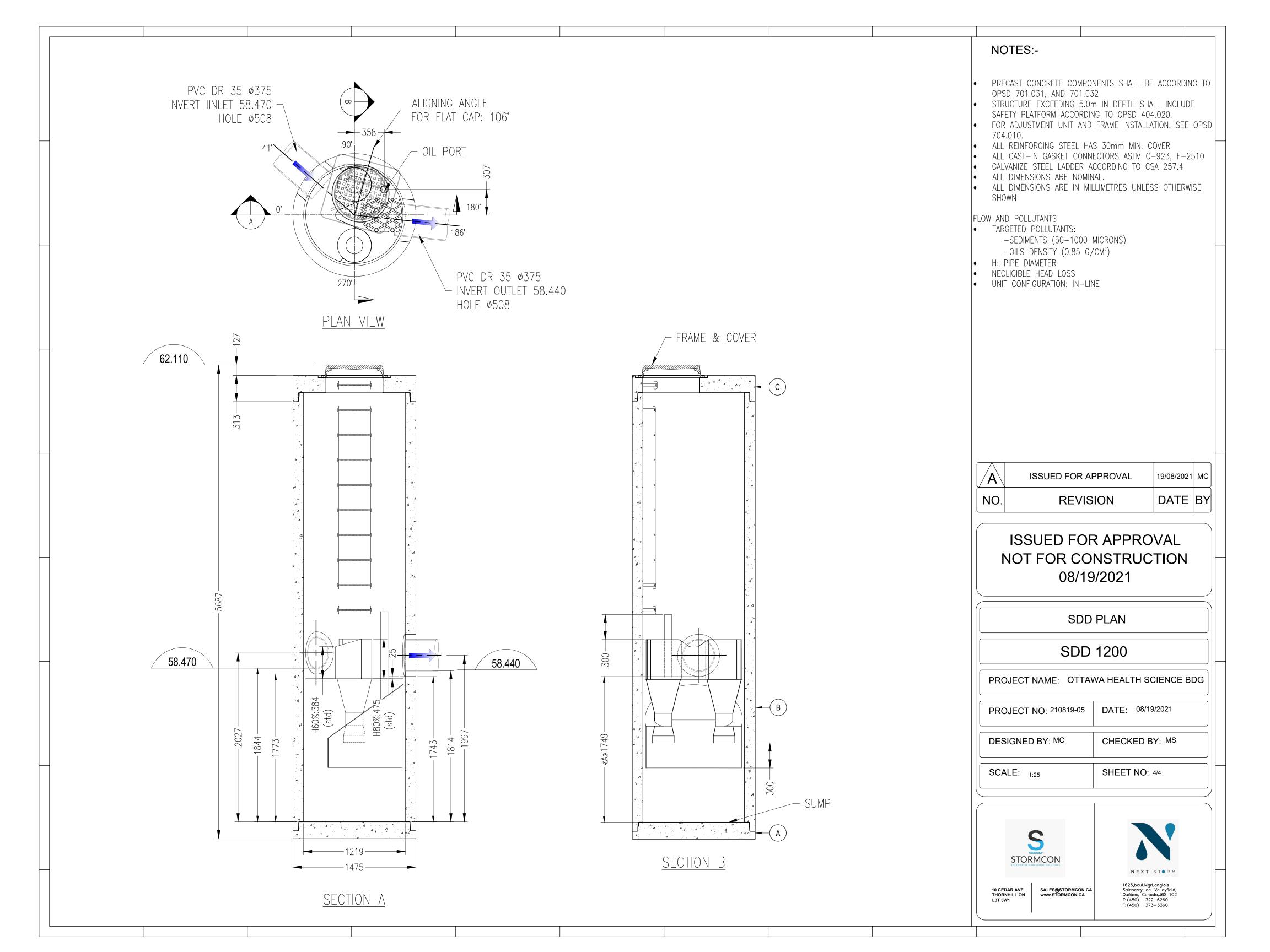
 ALL SDD3 COMPONENTS AND ACCESSORIES AS SPECIFIED IN THE ENGINEER'S PLANS INCLUDING FRAME AND COVER. LADDER ND RISER . RECIPROCATING SAW OR ROUTER TRANSIT OR LASER LEVEL MEASURING DEVICE COMPACTION EQUIPMENT ACCEPTABLE FILL MATERIAL AS SHOWN IN INSTALLATION INSTRUCTIONS.

THIS DRAWING WAS PREPARED TO SUPPORT THE PROJECT ENGINEER OF RECORD FOR THE PROPOSED SYSTEM. IT IS THE ULTIMATE RESPONSIBILITY OF THE PROJECT ENGINEER OF RECORD TO ENSURE THAT THE SDD3 SYSTEM'S DESIGN IS IN FULL COMPLIANCE WITH ALL APPLICABLE LAWS AND REGULATIONS. IT IS THE CONTRACTOR OF RECORD'S RESPONSIBILITY TO ENSURE THAT THE STORMCON PRODUCTS ARE DESIGNED IN ACCORDANCE WITH STORMCON'S MINIMUM REQUIREMENTS. STORMCON DOES NOT APPROVE

ISSUED FOR APPROVAL $\langle \mathsf{A} \rangle$ 19/08/2021 MC DATE BY REVISION NO **ISSUED FOR APPROVAL** NOT FOR CONSTRUCTION 08/19/2021 COVER SHEET SDD 1200 PROJECT NAME: OTTAWA HEALTH SCIENCE BDG DATE: 08/19/2021 PROJECT NO: 210819-05 DESIGNED BY: MC CHECKED BY: MS SCALE: NTS SHEET NO: 1/4 S **STORMCON** NEXT STORM

> 1625,boul.MgrLanglois Salaberry—de—Valleyfield, Québec, Canada,J6S 1C2 T: (450) 322-6260 F: (450) 373-3360 SALES@STORMCON.CA www.STORMCON.CA


10 CEDAR AVE THORNHILL ON L3T 3W1



R	ESULTS SUMMAI	RY
Model	TSS	Volume
SDD3-1200	80.59%	100.0%
SDD3-1500	83.21%	100.0%
SDD3-1800	85.62%	100.0%
SDD3-2400	88.22%	100.0%
SDD3-3000	89.56%	100.0%
SDD3-3200	89.88%	100.0%
SDD3-3600	90.58%	100.0%
SDD3-4000	90.93%	100.0%

					•	·			ļ				
										OTES:	-		
9													
Ũ		StormCon S		G REPORT									
STORMCON		Stormeont											
ROJECT INFORMATION	J				SITE INFORMAT	TION AND SIZING CRI	TERIA						
roject Name :	UOttawa Health	Science Building			Site Area (hecta	ares)	1.37						
ocation	Ott	awa			Cumulative run	off	0.63						
nit :	0	GS			Target TSS remo	oval (%)	80%						
					Rainfall station	:	Ottawa 37 yrs						
					Particle Size Dis	stribution	ETV						
ORMWATER TREATEN	MENT RECOMME	NDATION											
R	ESULTS SUMMAI	RY											
Model	TSS	Volume	 										
SDD3-1200 SDD3-1500	80.59% 83.21%	100.0% 100.0%											
SDD3-1800	85.62%	100.0%											
SDD3-2400	88.22%	100.0%											
SDD3-3000 SDD3-3200	89.56% 89.88%	100.0% 100.0%	1										
SDD3-3600	90.58%	100.0%											
SDD3-4000	90.93%	100.0%											
ecommended Model	SDD3-1200												
Annual TSS removal	Manhole	No Bypass Flow	Maximum Flow	Maximum Pipe	Oil Storage	Sediment Storage	Height from invert to	Treatment		A	ISSUED FOR	APPROVAL	19/08/202
	Manhole Diameter (mm)	No Bypass Flow (lps)	Maximum Flow (lps)	Maximum Pipe Diameter (mm)		Sediment Storage Capacity (m ³)	Height from invert to SDD floor (m)	Treatment area (m ²)		A			
efficiency (%) ¹	Diameter (mm)	(lps)	(lps)	Diameter (mm)	Capacity (L)	Capacity (m ³)	SDD floor (m)	area (m²)		A NO.		APPROVAL	
				and the second						NO.	REV	SION	DATE
efficiency (%) ¹ 80.59%	Diameter (mm) 1220	(lps)	(lps)	Diameter (mm)	Capacity (L)	Capacity (m ³)	SDD floor (m)	area (m²)		NO.		SION	DATE
efficiency (%) ¹ 80.59%	Diameter (mm) 1220	(lps)	(lps)	Diameter (mm)	Capacity (L)	Capacity (m ³)	SDD floor (m)	area (m²)		NO.	REV	ISION OR APPR	DATE
efficiency (%) ¹ 80.59% ETAILED SDD3 SIZING I	Diameter (mm) 1220 REPORT	(lps) 27 Loading Rate	(lps) 51 Loading Rate	Diameter (mm) 475 Total Rainfall	Capacity (L) 284.00 Removal	Capacity (m ³) 0.98 Cumulative rainfall	SDD floor (m) 1.74	area (m ²) 1.17		NO.	REV SUED FC T FOR CO	ISION OR APPR ONSTRU	DATE
efficiency (%) ¹ 80.59% ETAILED SDD3 SIZING I Cainfall Interval Point (mm/hr) ²	Diameter (mm) 1220 REPORT Flow Rate (Lps)	(lps) 27 Loading Rate (Lps/m ²)	(lps) 51 Loading Rate (Lpm/m ²)	Diameter (mm) 475 Total Rainfall (%)	Capacity (L) 284.00 Removal Efficiency (%)	Capacity (m ³) 0.98 Cumulative rainfall volume (%)	SDD floor (m) 1.74 Relative Efficiency (%)	area (m ²) 1.17		NO.	REV SUED FC T FOR CO	ISION OR APPR	DATE
efficiency (%) ¹ 80.59% ETAILED SDD3 SIZING I ainfall Interval Point (mm/hr) ² 0.50	Diameter (mm) 1220 REPORT Flow Rate (Lps) 1.2	(lps) 27 Loading Rate (Lps/m ²) 1.0	(lps) 51 Loading Rate (Lpm/m ²) 61.5	Diameter (mm) 475 Total Rainfall (%) 9.32%	Capacity (L) 284.00 Removal Efficiency (%) 91.19	Capacity (m ³) 0.98 Cumulative rainfall volume (%) 9.32%	SDD floor (m) 1.74 Relative Efficiency (%) 8.50%	area (m ²) 1.17		NO.	REV SUED FC T FOR CO 08/1	ISION OR APPR ONSTRU 9/2021	DATE ROVAL ICTION
efficiency (%) ¹ 80.59% ETAILED SDD3 SIZING I ainfall Interval Point (mm/hr) ²	Diameter (mm) 1220 REPORT Flow Rate (Lps)	(lps) 27 Loading Rate (Lps/m ²)	(lps) 51 Loading Rate (Lpm/m ²)	Diameter (mm) 475 Total Rainfall (%)	Capacity (L) 284.00 Removal Efficiency (%)	Capacity (m ³) 0.98 Cumulative rainfall volume (%)	SDD floor (m) 1.74 Relative Efficiency (%)	area (m ²) 1.17		NO.	REV SUED FC T FOR CO 08/1	ISION OR APPR ONSTRU	DATE ROVAL ICTION
efficiency (%) ¹ 80.59% ETAILED SDD3 SIZING I ainfall Interval Point (mm/hr) ² 0.50 1.00 1.50 2.00	Diameter (mm) 1220 REPORT Flow Rate (Lps) 1.2 2.4 3.6 4.8	(lps) 27 Loading Rate (Lps/m ²) 1.0 2.1 3.1 4.1	(lps) 51 Loading Rate (Lpm/m ²) 61.5 123.1 184.6 246.1	Diameter (mm) 475 Total Rainfall (%) 9.32% 10.73% 10.34% 7.84%	Capacity (L) 284.00 Removal Efficiency (%) 91.19 89.67 88.00 85.07	Capacity (m ³) 0.98 Cumulative rainfall volume (%) 9.32% 20.04% 30.39% 38.23%	SDD floor (m) 1.74 Relative Efficiency (%) 8.50% 9.62% 9.10% 6.67%	area (m ²) 1.17		NO.	REVI SUED FC T FOR CO 08/1 SIZII	ISION OR APPR ONSTRU 9/2021 NG REPOR	DATE ROVAL ICTION
efficiency (%) ¹ 80.59% TAILED SDD3 SIZING I ainfall Interval Point (mm/hr) ² 0.50 1.00 1.50 2.00 3.00	Diameter (mm) 1220 REPORT Flow Rate (Lps) 1.2 2.4 3.6 4.8 7.2	(lps) 27 Loading Rate (Lps/m ²) 1.0 2.1 3.1 4.1 6.2	(lps) 51 Loading Rate (Lpm/m ²) 61.5 123.1 184.6 246.1 369.2	Diameter (mm) 475 Total Rainfall (%) 9.32% 9.32% 10.73% 10.34% 7.84% 16.39%	Capacity (L) 284.00 Removal Efficiency (%) 91.19 89.67 88.00 85.07 78.38	Capacity (m ³) 0.98 Cumulative rainfall volume (%) 9.32% 20.04% 30.39% 38.23% 54.62%	SDD floor (m) 1.74 Relative Efficiency (%) 8.50% 9.62% 9.10% 6.67% 12.85%	area (m ²) 1.17		NO.	REVI SUED FC T FOR CO 08/1 SIZII	ISION OR APPR ONSTRU 9/2021	DATE ROVAL ICTION
efficiency (%) ¹ 80.59% TAILED SDD3 SIZING ainfall Interval Point (mm/hr) ² 0.50 1.00 1.50 2.00 3.00 4.00 5.00	Diameter (mm) 1220 REPORT Flow Rate (Lps) 1.2 2.4 3.6 4.8 7.2 9.6 12.0	(lps) 27 Loading Rate (Lps/m ²) 1.0 2.1 3.1 4.1 6.2 8.2 10.3	(lps) 51 Loading Rate (Lpm/m ²) 61.5 123.1 184.6 246.1 369.2 492.2 615.3	Diameter (mm) 475 Total Rainfall (%) 9.32% 9.32% 10.73% 10.34% 7.84% 16.39% 9.09% 7.83%	Capacity (L) 284.00 Removal Efficiency (%) 91.19 89.67 88.00 85.07 78.38 76.77 76.80	Capacity (m ³) 0.98 Cumulative rainfall volume (%) 9.32% 20.04% 30.39% 38.23% 54.62% 63.71% 71.55%	SDD floor (m) 1.74 Relative Efficiency (%) 8.50% 9.62% 9.10% 6.67% 12.85% 6.98% 6.01%	area (m ²) 1.17			REVI SUED FC T FOR CO 08/1 SIZII	SION OR APPR ONSTRU 9/2021 NG REPOR	DATE COVAL ICTION
efficiency (%) ¹ 80.59% ETAILED SDD3 SIZING ainfall Interval Point (mm/hr) ² 0.50 1.00 1.50 2.00 3.00 4.00 5.00 6.00	Diameter (mm) 1220 REPORT Flow Rate (Lps) 1.2 2.4 3.6 4.8 7.2 9.6 12.0 14.4	(lps) 27 Loading Rate (Lps/m ²) 1.0 2.1 3.1 4.1 6.2 8.2 10.3 12.3	(lps) 51 Loading Rate (Lpm/m ²) 61.5 123.1 184.6 246.1 369.2 492.2 615.3 738.3	Diameter (mm) 475 Total Rainfall (%) 9.32% 10.73% 10.34% 7.84% 16.39% 9.09% 7.83% 5.11%	Capacity (L) 284.00 Removal Efficiency (%) 91.19 89.67 88.00 85.07 78.38 76.77 76.80 76.43	Capacity (m ³) 0.98 Cumulative rainfall volume (%) 9.32% 20.04% 30.39% 38.23% 54.62% 63.71% 71.55% 76.65%	SDD floor (m) 1.74 Relative Efficiency (%) 8.50% 9.62% 9.10% 6.67% 12.85% 6.98% 6.01% 3.90%	area (m ²) 1.17			REVI SUED FC T FOR CO 08/1 SIZII	SION OR APPR ONSTRU 9/2021 NG REPOR	DATE CVAL ICTION
efficiency (%) ¹ 80.59% ETAILED SDD3 SIZING ainfall Interval Point (mm/hr) ² 0.50 1.00 1.50 2.00 3.00 4.00 5.00	Diameter (mm) 1220 REPORT Flow Rate (Lps) 1.2 2.4 3.6 4.8 7.2 9.6 12.0	(lps) 27 Loading Rate (Lps/m ²) 1.0 2.1 3.1 4.1 6.2 8.2 10.3 12.3 12.3 14.4 16.4	(lps) 51 Loading Rate (Lpm/m ²) 61.5 123.1 184.6 246.1 369.2 492.2 615.3	Diameter (mm) 475 Total Rainfall (%) 9.32% 9.32% 10.73% 10.34% 7.84% 16.39% 9.09% 7.83%	Capacity (L) 284.00 Removal Efficiency (%) 91.19 89.67 88.00 85.07 78.38 76.77 76.80	Capacity (m ³) 0.98 Cumulative rainfall volume (%) 9.32% 20.04% 30.39% 38.23% 54.62% 63.71% 71.55%	SDD floor (m) 1.74 Relative Efficiency (%) 8.50% 9.62% 9.10% 6.67% 12.85% 6.98% 6.01%	area (m ²) 1.17		NO. IS NC	REVI SUED FC T FOR CO 08/1 SIZII SIZII	ISION OR APPR ONSTRU 9/2021 NG REPOR D 1200 AWA HEALTH	DATE COVAL ICTION
efficiency (%) ¹ 80.59% TAILED SDD3 SIZING ainfall Interval Point (mm/hr) ² 0.50 1.00 1.50 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00	Diameter (mm) 1220 REPORT Flow Rate (Lps) 1.2 2.4 3.6 4.8 7.2 9.6 12.0 14.4 16.8 19.2 21.6	(lps) 27 Loading Rate (Lps/m ²) 1.0 2.1 3.1 4.1 6.2 8.2 10.3 12.3 14.4 16.4 18.5	(lps) 51 Loading Rate (Lpm/m ²) 61.5 123.1 184.6 246.1 369.2 492.2 615.3 738.3 861.4 984.4 1107.5	Diameter (mm) 475 Total Rainfall (%) 9.32% 9.32% 10.73% 10.34% 7.84% 16.39% 9.09% 7.83% 5.11% 2.99% 3.48% 2.29%	Capacity (L) 284.00 Removal Efficiency (%) 91.19 89.67 88.00 85.07 78.38 76.77 76.80 76.43 76.06 75.69 74.29	Capacity (m ³) 0.98 Cumulative rainfall volume (%) 9.32% 9.32% 20.04% 30.39% 38.23% 54.62% 63.71% 71.55% 76.65% 79.64% 83.12% 85.41%	SDD floor (m) 1.74 Relative Efficiency (%) 8.50% 9.62% 9.10% 6.67% 12.85% 6.98% 6.01% 3.90% 2.27% 2.63% 1.70%	area (m ²) 1.17		NO. IS NC	REVI SUED FC T FOR CO 08/1 SIZII	ISION OR APPR ONSTRU 9/2021 NG REPOR D 1200 AWA HEALTH	DATE COVAL ICTION
efficiency (%) ¹ 80.59% TAILED SDD3 SIZING ainfall Interval Point (mm/hr) ² 0.50 1.00 1.50 2.00 3.00 4.00 5.00 6.00 7.00 8.00	Diameter (mm) 1220 REPORT Flow Rate (Lps) 1.2 2.4 3.6 4.8 7.2 9.6 12.0 14.4 16.8 19.2	(lps) 27 Loading Rate (Lps/m ²) 1.0 2.1 3.1 4.1 6.2 8.2 10.3 12.3 12.3 14.4 16.4	(lps) 51 Loading Rate (Lpm/m ²) 61.5 123.1 184.6 246.1 369.2 492.2 615.3 738.3 861.4 984.4	Diameter (mm) 475 Total Rainfall (%) 9.32% 10.73% 10.34% 7.84% 16.39% 9.09% 7.83% 5.11% 2.99% 3.48%	Capacity (L) 284.00 Removal Efficiency (%) 91.19 89.67 88.00 85.07 78.38 76.77 76.80 76.43 76.06 75.69	Capacity (m ³) 0.98 Cumulative rainfall volume (%) 9.32% 20.04% 30.39% 38.23% 54.62% 63.71% 63.71% 71.55% 76.65% 79.64% 83.12%	SDD floor (m) 1.74 Relative Efficiency (%) 8.50% 9.62% 9.10% 6.67% 12.85% 6.98% 6.01% 3.90% 2.27% 2.63%	area (m ²) 1.17		NO. IS NC	REVI SUED FC T FOR CO 08/1 SIZII SIZII SDI CT NAME: OTT	ISION OR APPR ONSTRU 9/2021 NG REPOR D 1200 AWA HEALTH DATE: 0	DATE
efficiency (%) ¹ 80.59% TAILED SDD3 SIZING CARPT (mm/hr) ² 0.50 0.50 0.50 0.50 0.50 0.00 0.00 0.0	Diameter (mm) 1220 REPORT Flow Rate (Lps) 1.2 2.4 3.6 4.8 7.2 9.6 12.0 14.4 16.8 19.2 21.6 24.0 24.0 26.4 28.8	(lps) 27 Loading Rate (Lps/m ²) 1.0 2.1 3.1 4.1 6.2 8.2 10.3 12.3 12.3 12.3 14.4 16.4 18.5 20.5 22.6 24.6	(lps) 51 Loading Rate (Lpm/m ²) 61.5 123.1 184.6 246.1 369.2 492.2 615.3 738.3 861.4 984.4 1107.5 1230.6 1353.6 1353.6 1476.7	Diameter (mm) 475 Total Rainfall (%) 9.32% 9.32% 10.73% 10.34% 7.84% 16.39% 9.09% 7.83% 5.11% 2.99% 3.48% 2.29% 1.23% 1.47% 2.27%	Capacity (L) 284.00 Removal Efficiency (%) 91.19 89.67 88.00 85.07 78.38 76.77 76.80 76.43 76.06 75.69 74.29 72.74 71.20 70.64	Capacity (m ³) 0.98 Cumulative rainfall volume (%) 9.32% 9.32% 20.04% 30.39% 30.39% 38.23% 54.62% 63.71% 71.55% 76.65% 79.64% 83.12% 85.41% 85.41% 86.64% 88.10% 90.37%	SDD floor (m) 1.74 Relative Efficiency (%) 8.50% 9.62% 9.10% 6.67% 12.85% 6.98% 6.01% 3.90% 2.27% 2.63% 1.70% 0.89% 1.04% 1.60%	area (m ²) 1.17		NO. IS NC	REVI SUED FC T FOR CO 08/1 SIZII SIZII	ISION OR APPR ONSTRU 9/2021 NG REPOR D 1200 AWA HEALTH	DATE
efficiency (%) ¹ 80.59% TAILED SDD3 SIZING TAILED SDD3 SIZING Contemporate (mm/hr) ² 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.00 0.100 0.500 0.00 0.	Diameter (mm) 1220 REPORT Flow Rate (Lps) 1.2 2.4 3.6 4.8 7.2 9.6 12.0 12.0 14.4 16.8 19.2 21.6 24.0 26.4 28.8 36.0	(lps) 27 Loading Rate (Lps/m ²) 1.0 2.1 3.1 4.1 6.2 8.2 10.3 12.3 14.4 16.4 18.5 20.5 22.6 24.6 30.8	(lps) 51 Loading Rate (Lpm/m ²) 61.5 123.1 184.6 246.1 369.2 492.2 615.3 738.3 861.4 984.4 1107.5 1230.6 1353.6 1476.7 1845.8	Diameter (mm) 475 Total Rainfall (%) 9.32% 9.32% 10.73% 10.34% 7.84% 16.39% 9.09% 7.83% 5.11% 2.99% 3.48% 2.29% 1.23% 1.47% 2.27% 3.52%	Capacity (L) 284.00 284.00 Removal Efficiency (%) 91.19 89.67 88.00 85.07 78.38 76.77 76.80 76.43 76.06 75.69 74.29 72.74 71.20 70.64 70.73	Capacity (m ³) 0.98 Cumulative rainfall volume (%) 9.32% 9.32% 20.04% 30.39% 38.23% 54.62% 63.71% 54.62% 63.71% 71.55% 76.65% 79.64% 83.12% 85.41% 85.41% 85.41% 86.64% 88.10% 90.37% 93.89%	SDD floor (m) 1.74 Relative Efficiency (%) 8.50% 9.62% 9.10% 6.67% 12.85% 6.98% 6.01% 3.90% 2.27% 2.63% 1.70% 0.89% 1.04% 1.60% 2.49%	area (m ²) 1.17		NO. IS NC PROJEC PROJEC	REVI SUED FC T FOR CO 08/1 SIZII SIZII SDI CT NAME: OTT CT NO: 210819-05 ED BY: MC	ISION OR APPR ONSTRU 9/2021 NG REPOR D 1200 AWA HEALTH DATE: 0	DATE
efficiency (%) ¹ 80.59% TAILED SDD3 SIZING CALLED	Diameter (mm) 1220 REPORT Flow Rate (Lps) 1.2	(lps) 27 Loading Rate (Lps/m ²) 1.0 2.1 3.1 4.1 6.2 8.2 10.3 12.3 14.4 16.4 18.5 20.5 22.6 24.6 30.8 41.0 0.0	(lps) 51 51 Loading Rate (Lpm/m ²) 61.5 123.1 184.6 246.1 369.2 492.2 615.3 738.3 861.4 984.4 1107.5 1230.6 1353.6 1476.7 1845.8 2461.1 0.0	Diameter (mm) 475 Total Rainfall (%) 9.32% 9.32% 10.73% 10.34% 7.84% 16.39% 9.09% 7.83% 16.39% 9.09% 7.83% 5.11% 2.99% 3.48% 2.29% 1.23% 1.47% 2.27% 3.52% 6.11% 0.00%	Capacity (L) 284.00 Removal Efficiency (%) 91.19 89.67 88.00 85.07 78.38 76.77 76.80 76.43 76.43 76.06 75.69 74.29 72.74 71.20 70.64 70.73 91.60	Capacity (m ³) 0.98 Cumulative rainfall volume (%) 9.32% 9.32% 20.04% 30.39% 38.23% 54.62% 63.71% 71.55% 76.65% 79.64% 83.12% 85.41% 85.41% 85.41% 85.41% 85.41% 100.00%	SDD floor (m) 1.74 Relative Efficiency (%) 8.50% 9.62% 9.10% 6.67% 12.85% 6.98% 6.01% 3.90% 2.27% 2.63% 1.70% 0.89% 1.04% 1.60% 2.49% 4.32% 0.00%	area (m ²) 1.17		NO. IS NC	REVI SUED FC T FOR CO 08/1 SIZII SIZII SDI CT NAME: OTT CT NO: 210819-05 ED BY: MC	ISION OR APPR ONSTRU 9/2021 NG REPOR D 1200 AWA HEALTH DATE: 0	DATE
efficiency (%) ¹ 80.59% TAILED SDD3 SIZING Control Strain (mm/hr) ²	Diameter (mm) 1220 REPORT Flow Rate (Lps) 1.2 1.2 2.4 3.6 4.8 7.2 9.6 12.0 14.4 16.8 19.2 24.0 14.4 16.8 19.2 21.6 24.0 14.4 16.8 19.2 21.6 24.0 19.2 21.6 24.0 28.8 36.0 48.0 0.0 0.0	(lps) 27 Loading Rate (Lps/m ²) 1.0 2.1 3.1 4.1 6.2 8.2 10.3 12.3 14.4 16.4 18.5 20.5 20.5 22.6 24.6 30.8 41.0 0.0	(lps) 51 51 Loading Rate (Lpm/m ²) 61.5 123.1 184.6 246.1 369.2 492.2 615.3 738.3 861.4 984.4 1107.5 1230.6 1353.6 1476.7 1845.8 2461.1 0.0 0.0	Diameter (mm) 475 Total Rainfall (%) 9.32% 9.32% 10.73% 10.73% 10.34% 7.84% 16.39% 9.09% 7.83% 5.11% 2.99% 3.48% 2.29% 1.23% 1.23% 1.23% 1.47% 2.27% 3.52% 6.11% 0.00%	Capacity (L) 284.00 Removal Efficiency (%) 91.19 91.19 89.67 88.00 85.07 78.38 76.77 76.80 76.43 76.43 76.06 75.69 74.29 72.74 71.20 70.64 70.73 91.60 91.60	Capacity (m ³) 0.98 Cumulative rainfall volume (%) 9.32% 9.32% 20.04% 30.39% 30.39% 38.23% 54.62% 63.71% 63.71% 71.55% 76.65% 75.65% 76.65% 79.64% 83.12% 83.12% 83.12% 83.12% 85.41% 86.64% 88.10% 90.37% 93.89% 100.00% 100.00%	SDD floor (m) 1.74 Relative Efficiency (%) 8.50% 9.62% 9.10% 6.67% 12.85% 6.98% 6.01% 3.90% 2.27% 2.63% 1.70% 0.89% 1.04% 1.60% 2.49% 4.32% 0.00%	area (m ²) 1.17		NO. IS NC PROJEC PROJEC	REVI SUED FC T FOR CO 08/1 SIZII SIZII SDI CT NAME: OTT CT NO: 210819-05 ED BY: MC	ISION OR APPR ONSTRU 9/2021 NG REPOR D 1200 AWA HEALTH DATE: 0	DATE
efficiency (%) ¹ 80.59% TAILED SDD3 SIZING TAILED SDD3 SIZING ainfall Interval Point (mm/hr) ² 0.50 1.00 1.50 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 11.00 12.00 15.00 20.00 0.00	Diameter (mm) 1220 REPORT Flow Rate (Lps) 1.2	(lps) 27 Loading Rate (Lps/m ²) 1.0 2.1 3.1 4.1 6.2 8.2 10.3 12.3 14.4 16.4 18.5 20.5 22.6 24.6 30.8 41.0 0.0	(lps) 51 51 Loading Rate (Lpm/m ²) 61.5 123.1 184.6 246.1 369.2 492.2 615.3 738.3 861.4 984.4 1107.5 1230.6 1353.6 1476.7 1845.8 2461.1 0.0	Diameter (mm) 475 Total Rainfall (%) 9.32% 9.32% 10.73% 10.34% 7.84% 16.39% 9.09% 7.83% 16.39% 9.09% 7.83% 5.11% 2.99% 3.48% 2.29% 1.23% 1.47% 2.27% 3.52% 6.11% 0.00%	Capacity (L) 284.00 Removal Efficiency (%) 91.19 89.67 88.00 85.07 78.38 76.77 76.80 76.43 76.43 76.06 75.69 74.29 72.74 71.20 70.64 70.73 91.60	Capacity (m ³) 0.98 Cumulative rainfall volume (%) 9.32% 9.32% 20.04% 30.39% 38.23% 54.62% 63.71% 71.55% 76.65% 79.64% 83.12% 85.41% 85.41% 85.41% 85.41% 85.41% 100.00%	SDD floor (m) 1.74 Relative Efficiency (%) 8.50% 9.62% 9.10% 6.67% 12.85% 6.98% 6.01% 3.90% 2.27% 2.63% 1.70% 0.89% 1.04% 1.60% 2.49% 4.32% 0.00%	area (m ²) 1.17		NO. IS NC PROJEC PROJEC	REVI SUED FC T FOR CO 08/1 SIZII SIZII SDI CT NAME: OTT CT NO: 210819-05 ED BY: MC	ISION OR APPR ONSTRU 9/2021 NG REPOR D 1200 AWA HEALTH DATE: 0	DATE
efficiency (%) ¹ 80.59% TAILED SDD3 SIZING TAILED SDD3 SIZING ainfall Interval Point (mm/hr) ² 0.50 1.00 1.50 2.00 3.00 4.00 5.00 6.00 7.00 6.00 7.00 6.00 7.00 8.00 9.00 10.00 11.00 11.00 11.00 12.00 15.00 20.00 0.00 0.00	Diameter (mm) 1220 REPORT Flow Rate (Lps) 1.2 2.4 3.6 4.8 7.2 9.6 1.2 2.4 3.6 4.8 7.2 9.6 12.0 14.4 16.8 19.2 21.6 24.0 26.4 28.8 36.0 48.0 0.0	(lps) 27 Loading Rate (Lps/m ²) 1.0 2.1 3.1 4.1 6.2 8.2 10.3 12.3 14.4 16.4 18.5 20.5 22.6 24.6 30.8 41.0 0.0 0.0 0.0 0.0 0.0	(lps) 51 51 Loading Rate (Lpm/m ²) 61.5 123.1 184.6 246.1 369.2 492.2 615.3 738.3 861.4 984.4 1107.5 1230.6 1353.6 1353.6 1353.6 1353.6 1353.6 1353.6 1353.6 1476.7 1845.8 2461.1 0.0 0.0 0.0	Diameter (mm) 475 Total Rainfall (%) 9.32% 9.32% 10.73% 10.73% 10.34% 7.84% 16.39% 9.09% 7.83% 5.11% 2.99% 3.48% 2.29% 1.23% 1.23% 1.23% 1.47% 2.27% 3.52% 6.11% 0.00%	Capacity (L) 284.00 Removal Efficiency (%) 91.19 89.67 88.00 85.07 78.38 76.77 76.80 76.43 76.74 76.06 75.69 74.29 72.74 71.20 70.64 70.73 91.60 91.60 91.60 91.60 91.60	Capacity (m ³) 0.98 Cumulative rainfall volume (%) 9.32% 9.32% 20.04% 30.39% 30.39% 38.23% 54.62% 63.71% 63.71% 71.55% 76.65% 75.65% 76.65% 79.64% 83.12% 83.12% 83.12% 83.12% 85.41% 86.64% 88.10% 90.37% 93.89% 100.00% 100.00%	SDD floor (m) 1.74 Relative Efficiency (%) 8.50% 9.62% 9.10% 6.67% 12.85% 6.98% 6.01% 3.90% 2.27% 2.63% 1.70% 0.89% 1.04% 1.60% 2.49% 4.32% 0.00%	area (m ²) 1.17		NO. IS NC PROJEC PROJEC	REVI SUED FC T FOR CO 08/1 SIZII SIZII SDI CT NAME: OTT CT NO: 210819-05 ED BY: MC	ISION OR APPR ONSTRU 9/2021 NG REPOR D 1200 AWA HEALTH DATE: 0	DATE
efficiency (%) ¹ 80.59% TAILED SDD3 SIZING TAILED SDD3 SIZING ainfall Interval Point (mm/hr) ² 0.50 1.00 1.00 1.50 2.00 3.00 4.00 5.00 6.00 7.00 6.00 7.00 8.00 9.00 10.00 11.00 11.00 11.00 11.00 12.00 15.00 20.00 0.00 0.00	Diameter (mm) 1220 REPORT Flow Rate (Lps) 1.2 2.4 3.6 4.8 7.2 9.6 12.0 12	(lps) 27 Loading Rate (Lps/m ²) 1.0 2.1 3.1 4.1 6.2 8.2 10.3 12.3 14.4 16.4 18.5 20.5 22.6 24.6 30.8 41.0 0.0 0.0 0.0 0.0	(lps) 51 Loading Rate (Lpm/m ²) 61.5 123.1 184.6 246.1 369.2 492.2 615.3 738.3 861.4 984.4 1107.5 1230.6 1353.6 1476.7 1845.8 2461.1 0.0 0.0 0.0	Diameter (mm) 475 Total Rainfall (%) 9.32% 9.32% 10.73% 10.73% 10.34% 7.84% 16.39% 9.09% 7.83% 5.11% 2.99% 3.48% 2.29% 1.23% 1.23% 1.23% 1.47% 2.27% 3.52% 6.11% 0.00%	Capacity (L) 284.00 Removal Efficiency (%) 91.19 89.67 88.00 85.07 78.38 76.77 76.80 76.43 76.43 76.06 75.69 74.29 72.74 71.20 70.64 70.73 91.60 91.60 91.60 91.60 91.60	Capacity (m ³) 0.98 Cumulative rainfall volume (%) 9.32% 9.32% 20.04% 30.39% 30.39% 38.23% 54.62% 63.71% 63.71% 71.55% 76.65% 75.65% 76.65% 79.64% 83.12% 83.12% 83.12% 83.12% 85.41% 86.64% 88.10% 90.37% 93.89% 100.00% 100.00%	SDD floor (m) 1.74 Relative Efficiency (%) 8.50% 9.62% 9.10% 6.67% 12.85% 6.98% 6.01% 3.90% 2.27% 2.63% 1.70% 0.89% 1.04% 1.60% 2.49% 4.32% 0.00%	area (m ²) 1.17		NO. IS NC PROJEC PROJEC	REVI SUED FC T FOR CO 08/1 SIZII SIZII SDI CT NAME: OTT CT NO: 210819-05 ED BY: MC	ISION OR APPR ONSTRU 9/2021 NG REPOR D 1200 AWA HEALTH DATE: 0	DATE
80.59% ETAILED SDD3 SIZING Cainfall Interval Point (mm/hr) ² 0.50 1.00 1.50 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 11.00 11.00 12.00 15.00 20.00 0.00 0.00	Diameter (mm) 1220 REPORT Flow Rate (Lps) 1.2 2.4 3.6 4.8 7.2 9.6 1.2 2.4 3.6 4.8 7.2 9.6 12.0 14.4 16.8 19.2 21.6 24.0 26.4 28.8 36.0 48.0 0.0	(lps) 27 27 Loading Rate (Lps/m ²) 1.0 2.1 3.1 4.1 6.2 8.2 10.3 12.3 10.3 10.3 10.3 10.3 10.3 10.3 10.3 10	(lps) 51 Loading Rate (Lpm/m ²) 61.5 123.1 184.6 246.1 369.2 492.2 615.3 738.3 861.4 984.4 1107.5 1230.6 1353.6 1476.7 1845.8 2461.1 0.0 1353.6 1476.7 1845.8 2461.1 0.0 0.0 0.0 0.0 0.0 0.0	Diameter (mm) 475 Total Rainfall (%) 9.32% 9.32% 10.73% 10.34% 7.84% 16.39% 9.09% 7.83% 5.11% 2.99% 3.48% 2.29% 1.23% 1.23% 1.23% 1.23% 1.47% 2.27% 3.52% 6.11% 0.00% 0.00%	Capacity (L) 284.00 Removal Efficiency (%) 91.19 89.67 88.00 85.07 78.38 76.77 76.80 76.43 76.74 76.06 75.69 74.29 72.74 71.20 70.64 70.73 91.60 91.60 91.60 91.60 91.60	Capacity (m ³) 0.98 Cumulative rainfall volume (%) 9.32% 9.32% 20.04% 30.39% 38.23% 54.62% 63.71% 71.55% 76.65% 79.64% 83.12% 85.41% 85.41% 85.41% 86.64% 88.10% 90.37% 93.89% 100.00% 100.00% 100.00% 100.00%	SDD floor (m) 1.74 Relative Efficiency (%) 8.50% 9.62% 9.10% 6.67% 12.85% 6.98% 6.01% 3.90% 2.27% 2.63% 1.70% 0.89% 1.04% 1.60% 2.49% 4.32% 0.00%	area (m ²) 1.17		NO. IS NC PROJEC PROJEC DESIGN SCALE:	REVI SUED FC T FOR CO 08/1 SIZII SIZII SDI CT NAME: OTT CT NO: 210819-05 ED BY: MC	ISION OR APPR ONSTRU 9/2021 NG REPOR D 1200 AWA HEALTH DATE: 0	DATE
efficiency (%) ¹ 80.59% ETAILED SDD3 SIZING Control Strain and the second strain and th	Diameter (mm) 1220 REPORT Flow Rate (Lps) 1.2 2.4 3.6 4.8 7.2 9.6 1.2 2.4 3.6 4.8 7.2 9.6 12.0 14.4 16.8 19.2 21.6 24.0 26.4 28.8 36.0 48.0 0.0	(lps) 27 27 Loading Rate (Lps/m ²) 1.0 2.1 3.1 4.1 6.2 8.2 10.3 12.3 10.3 10.3 10.3 10.3 10.3 10.3 10.3 10	(lps) 51 51 Loading Rate (Lpm/m ²) 61.5 123.1 184.6 246.1 369.2 492.2 615.3 738.3 861.4 984.4 1107.5 1230.6 1353.6 1353.6 1353.6 1353.6 1353.6 1353.6 1353.6 1476.7 1845.8 2461.1 0.0 0.0 0.0	Diameter (mm) 475 Total Rainfall (%) 9.32% 9.32% 10.73% 10.73% 10.34% 7.84% 16.39% 9.09% 7.83% 5.11% 2.99% 3.48% 2.29% 1.23% 1.23% 1.23% 1.47% 2.27% 3.52% 6.11% 0.00%	Capacity (L) 284.00 Removal Efficiency (%) 91.19 89.67 88.00 85.07 78.38 76.77 76.80 76.43 76.43 76.06 75.69 74.29 72.74 71.20 70.64 70.73 91.60 91.60 91.60 91.60 91.60	Capacity (m ³) 0.98 Cumulative rainfall volume (%) 9.32% 9.32% 20.04% 30.39% 30.39% 38.23% 54.62% 63.71% 63.71% 71.55% 76.65% 75.65% 76.65% 79.64% 83.12% 83.12% 83.12% 83.12% 85.41% 86.64% 88.10% 90.37% 93.89% 100.00% 100.00%	SDD floor (m) 1.74 Relative Efficiency (%) 8.50% 9.62% 9.10% 6.67% 12.85% 6.98% 6.01% 3.90% 2.27% 2.63% 1.70% 0.89% 1.04% 1.60% 2.49% 4.32% 0.00% 0.00%	area (m ²) 1.17		NO. IS NC PROJEC PROJEC DESIGN SCALE:	SUED FC SUED FC 08/1 SIZII SIZII SDI CT NAME: OTT CT NO: 210819-05 ED BY: MC NTS	ISION PRAPPR DNSTRU 9/2021 NG REPOF D 1200 AWA HEALTH DATE: 0 CHECKE SHEET N	VCTION RT I SCIENCE B 8/19/2021 D BY: MS O: 2/4
efficiency (%) ¹ 80.59% ETAILED SDD3 SIZING Cainfall Interval Point (mm/hr) ² 0.50 0.50 1.00 1.50 2.00 3.00 4.00 5.00 6.00 7.00 6.00 7.00 8.00 9.00 10.00 11.00 11.00 11.00 12.00 15.00 20.00 0.00 0.00	Diameter (mm) 1220 REPORT Flow Rate (Lps) I.2 I.2 I.2 I.2 I.2 I.2 I.2 I.2 I.2 I.	(lps) 27 Loading Rate (Lps/m ²) 1.0 2.1 3.1 4.1 6.2 8.2 10.3 12.3 14.4 16.4 18.5 20.5 22.6 24.6 30.8 41.0 0.0 24.6 30.8 41.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	(lps) 51 51 Loading Rate (Lpm/m ²) 61.5 123.1 184.6 246.1 369.2 492.2 615.3 738.3 861.4 984.4 1107.5 1230.6 1353.6 1476.7 1845.8 2461.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Diameter (mm) 475 Total Rainfall (%) 9.32% 9.32% 10.73% 10.34% 7.84% 16.39% 9.09% 7.83% 5.11% 2.99% 3.48% 2.29% 1.23% 1.23% 1.23% 1.23% 1.23% 1.47% 2.27% 3.52% 6.11% 0.00% 0.00%	Capacity (L) 284.00 Removal Efficiency (%) 91.19 89.67 88.00 85.07 78.38 76.77 76.80 76.43 76.43 76.06 75.69 74.29 72.74 71.20 70.64 70.73 91.60 91.60 91.60 91.60 91.60	Capacity (m ³) 0.98 Cumulative rainfall volume (%) 9.32% 9.32% 20.04% 30.39% 38.23% 54.62% 63.71% 71.55% 76.65% 79.64% 83.12% 85.41% 85.41% 85.41% 86.64% 88.10% 90.37% 93.89% 100.00% 100.00% 100.00% 100.00%	SDD floor (m) 1.74 Relative Efficiency (%) 8.50% 9.62% 9.10% 6.67% 12.85% 6.98% 6.01% 3.90% 2.27% 2.63% 1.70% 0.89% 1.04% 1.60% 2.49% 4.32% 0.00% 0.00%	area (m ²) 1.17		NO. IS NC PROJEC PROJEC DESIGN SCALE:	REVI SUED FC DESCENDE SUED FC 08/1 SIZII SIZII SIZII SIZII SIZII SIZII SIZII SIZII	ISION PRAPPR DNSTRU 9/2021 NG REPOF D 1200 AWA HEALTH DATE: 0 CHECKE SHEET N	DATE

Ω								
J		StormCon S	SDD3 SIZING	G REPORT				
STORMCON								
ROJECT INFORMATION	N				SITE INFORMAT	ION AND SIZING CRI	TERIA	
							4.07	
-	UOttawa Health				Site Area (hecta		1.37	
ocation nit :	Otta				Cumulative run		0.63 80%	
]]			Target TSS remo			
					Particle Size Dis		Ottawa 37 yrs ETV	
						Instition	LIV	
ORMWATER TREATEN	MENT RECOMME	NDATION						
RI Model	ESULTS SUMMAF	Volume						
SDD3-1200	80.59%	100.0%						
SDD3-1500 SDD3-1800	83.21% 85.62%	100.0% 100.0%						
SDD3-2400	88.22%	100.0%						
SDD3-3000 SDD3-3200	89.56%	100.0%						
SDD3-3200 SDD3-3600	89.88% 90.58%	100.0% 100.0%						
SDD3-4000	90.93%	100.0%						
ecommended Model	SDD3-1200							
Annual TSS removal	Manhole	No Bypass Flow	Maximum Flow	Maximum Pipe	Oil Storage	Sediment Storage	Height from invert to	Treatment
efficiency (%) ¹	Diameter (mm)			Diameter (mm)		Capacity (m ³)	SDD floor (m)	area (m²)
80.59%	1220							
	1220	27	51	475	284.00	0.98	1.74	1.17
	1220	27	51	475	284.00	0.98	1.74	1.17
		27	51	475	284.00	0.98	1.74	1.17
TAILED SDD3 SIZING							1.74	1.17
TAILED SDD3 SIZING		Loading Rate	Loading Rate	Total Rainfall	Removal	Cumulative rainfall	1.74 Relative Efficiency (%)	1.17
TAILED SDD3 SIZING	REPORT Flow Rate (Lps)	Loading Rate (Lps/m ²)	Loading Rate (Lpm/m ²)	Total Rainfall (%)	Removal Efficiency (%)			1.17
TAILED SDD3 SIZING ainfall Interval Point (mm/hr) ² 0.50 1.00	REPORT Flow Rate (Lps) 1.2 2.4	Loading Rate (Lps/m ²) 1.0 2.1	Loading Rate (Lpm/m ²) 61.5 123.1	Total Rainfall (%) 9.32% 10.73%	Removal Efficiency (%) 91.19 89.67	Cumulative rainfall volume (%) 9.32% 20.04%	Relative Efficiency (%) 8.50% 9.62%	1.17
TAILED SDD3 SIZING ainfall Interval Point (mm/hr) ² 0.50 1.00 1.50	REPORT Flow Rate (Lps) 1.2 2.4 3.6	Loading Rate (Lps/m ²) 1.0 2.1 3.1	Loading Rate (Lpm/m ²) 61.5 123.1 184.6	Total Rainfall (%) 9.32% 10.73% 10.34%	Removal Efficiency (%) 91.19 89.67 88.00	Cumulative rainfall volume (%) 9.32% 20.04% 30.39%	Relative Efficiency (%) 8.50% 9.62% 9.10%	1.17
TAILED SDD3 SIZING ainfall Interval Point (mm/hr) ² 0.50 1.00 1.50 2.00 3.00	REPORT Flow Rate (Lps) 1.2 2.4 3.6 4.8 7.2	Loading Rate (Lps/m ²) 1.0 2.1 3.1 4.1 6.2	Loading Rate (Lpm/m ²) 61.5 123.1 184.6 246.1 369.2	Total Rainfall (%) 9.32% 10.73% 10.34% 7.84% 16.39%	Removal Efficiency (%) 91.19 89.67 88.00 85.07 78.38	Cumulative rainfall volume (%) 9.32% 20.04% 30.39% 38.23% 54.62%	Relative Efficiency (%) 8.50% 9.62% 9.10% 6.67% 12.85%	1.17
TAILED SDD3 SIZING ainfall Interval Point (mm/hr) ² 0.50 1.00 1.50 2.00 3.00 4.00	REPORT Flow Rate (Lps) 1.2 2.4 3.6 4.8 7.2 9.6	Loading Rate (Lps/m ²) 1.0 2.1 3.1 4.1 6.2 8.2	Loading Rate (Lpm/m ²) 61.5 123.1 184.6 246.1 369.2 492.2	Total Rainfall (%) 9.32% 10.73% 10.34% 7.84% 16.39% 9.09%	Removal Efficiency (%) 91.19 89.67 88.00 85.07 78.38 76.77	Cumulative rainfall volume (%) 9.32% 20.04% 30.39% 38.23% 54.62% 63.71%	Relative Efficiency (%) 8.50% 9.62% 9.10% 6.67% 12.85% 6.98%	1.17
TAILED SDD3 SIZING ainfall Interval Point (mm/hr) ² 0.50 1.00 1.50 2.00 3.00 4.00 5.00 6.00	REPORT Flow Rate (Lps) 1.2 2.4 3.6 4.8 7.2 9.6 12.0 14.4	Loading Rate (Lps/m ²) 1.0 2.1 3.1 4.1 6.2 8.2 10.3 12.3	Loading Rate (Lpm/m ²) 61.5 123.1 184.6 246.1 369.2 492.2 615.3 738.3	Total Rainfall (%) 9.32% 10.73% 10.34% 7.84% 16.39% 9.09% 7.83% 5.11%	Removal Efficiency (%) 91.19 89.67 88.00 85.07 78.38 76.77 76.80 76.43	Cumulative rainfall volume (%) 9.32% 20.04% 30.39% 38.23% 54.62% 63.71% 71.55% 76.65%	Relative Efficiency (%) 8.50% 9.62% 9.10% 6.67% 12.85% 6.98% 6.01% 3.90%	1.17
TAILED SDD3 SIZING ainfall Interval Point (mm/hr) ² 0.50 1.00 1.50 2.00 3.00 4.00 5.00 6.00 7.00	REPORT Flow Rate (Lps) 1.2 2.4 3.6 4.8 7.2 9.6 12.0 14.4 16.8	Loading Rate (Lps/m ²) 1.0 2.1 3.1 4.1 6.2 8.2 10.3 12.3 14.4	Loading Rate (Lpm/m ²) 61.5 123.1 184.6 246.1 369.2 492.2 615.3 738.3 861.4	Total Rainfall (%) 9.32% 10.73% 10.34% 7.84% 16.39% 9.09% 7.83% 5.11% 2.99%	Removal Efficiency (%) 91.19 89.67 88.00 85.07 78.38 76.77 76.80 76.43 76.06	Cumulative rainfall volume (%) 9.32% 20.04% 30.39% 38.23% 54.62% 63.71% 71.55% 76.65% 79.64%	Relative Efficiency (%) 8.50% 9.62% 9.10% 6.67% 12.85% 6.98% 6.01% 3.90% 2.27%	1.17
TAILED SDD3 SIZING ainfall Interval Point (mm/hr) ² 0.50 1.00 1.50 2.00 3.00 4.00 5.00 6.00	REPORT Flow Rate (Lps) 1.2 2.4 3.6 4.8 7.2 9.6 12.0 14.4 16.8 19.2 21.6	Loading Rate (Lps/m ²) 1.0 2.1 3.1 4.1 6.2 8.2 10.3 12.3 14.4 16.4 18.5	Loading Rate (Lpm/m ²) 61.5 123.1 184.6 246.1 369.2 492.2 615.3 738.3 861.4 984.4 1107.5	Total Rainfall (%) 9.32% 10.73% 10.34% 7.84% 16.39% 9.09% 7.83% 5.11% 2.99% 3.48% 2.29%	Removal Efficiency (%) 91.19 89.67 88.00 85.07 78.38 76.77 76.80 76.43 76.06 75.69 74.29	Cumulative rainfall volume (%) 9.32% 20.04% 30.39% 38.23% 54.62% 63.71% 71.55% 76.65% 79.64% 83.12% 85.41%	Relative Efficiency (%) 8.50% 9.62% 9.10% 6.67% 12.85% 6.98% 6.01% 3.90% 2.27% 2.63% 1.70%	1.17
ETAILED SDD3 SIZING ainfall Interval Point (mm/hr) ² 0.50 1.00 1.50 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00	REPORT Flow Rate (Lps) 1.2 2.4 3.6 4.8 7.2 9.6 12.0 14.4 16.8 19.2 21.6 24.0	Loading Rate (Lps/m ²) 1.0 2.1 3.1 4.1 6.2 8.2 10.3 12.3 14.4 16.4 18.5 20.5	Loading Rate (Lpm/m ²) 61.5 123.1 184.6 246.1 369.2 492.2 615.3 738.3 861.4 984.4 1107.5 1230.6	Total Rainfall (%) 9.32% 10.73% 10.34% 7.84% 16.39% 9.09% 7.83% 5.11% 2.99% 3.48% 2.29% 1.23%	Removal Efficiency (%) 91.19 89.67 88.00 85.07 76.38 76.77 76.80 76.43 76.06 75.69 74.29 72.74	Cumulative rainfall volume (%) 9.32% 20.04% 30.39% 38.23% 54.62% 63.71% 63.71% 71.55% 76.65% 79.64% 83.12% 85.41% 85.41%	Relative Efficiency (%) 8.50% 9.62% 9.10% 6.67% 12.85% 6.98% 6.01% 3.90% 2.27% 2.63% 1.70% 0.89%	1.17
ETAILED SDD3 SIZING ainfall Interval Point (mm/hr) ² 0.50 1.00 1.50 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00	REPORT Flow Rate (Lps) 1.2 2.4 3.6 4.8 7.2 9.6 12.0 14.4 16.8 19.2 21.6 24.0 26.4 28.8	Loading Rate (Lps/m ²) 1.0 2.1 3.1 4.1 6.2 8.2 10.3 12.3 14.4 16.4 18.5 20.5 22.6 24.6	Loading Rate (Lpm/m ²) 61.5 123.1 184.6 246.1 369.2 492.2 615.3 738.3 861.4 984.4 1107.5	Total Rainfall (%) 9.32% 10.73% 10.34% 7.84% 16.39% 9.09% 7.83% 5.11% 2.99% 3.48% 2.29%	Removal Efficiency (%) 91.19 89.67 88.00 85.07 78.38 76.77 76.80 76.43 76.06 75.69 74.29	Cumulative rainfall volume (%) 9.32% 20.04% 30.39% 38.23% 54.62% 63.71% 71.55% 76.65% 79.64% 83.12% 85.41%	Relative Efficiency (%) 8.50% 9.62% 9.10% 6.67% 12.85% 6.98% 6.01% 3.90% 2.27% 2.63% 1.70%	1.17
TAILED SDD3 SIZING ainfall Interval Point (mm/hr) ² 0.50 1.00 1.50 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 11.00 12.00 15.00	REPORT Flow Rate (Lps) 1.2 2.4 3.6 4.8 7.2 9.6 12.0 14.4 16.8 19.2 21.6 24.0 26.4 28.8 36.0	Loading Rate (Lps/m ²) 1.0 2.1 3.1 4.1 6.2 8.2 10.3 12.3 14.4 16.4 18.5 20.5 22.6 24.6 30.8	Loading Rate (Lpm/m ²) 61.5 123.1 184.6 246.1 369.2 492.2 615.3 738.3 861.4 984.4 1107.5 1230.6 1353.6 1476.7 1845.8	Total Rainfall (%) 9.32% 10.73% 10.34% 7.84% 16.39% 9.09% 7.83% 5.11% 2.99% 3.48% 2.29% 1.23% 1.47% 2.27% 3.52%	Removal Efficiency (%) 91.19 89.67 88.00 85.07 78.38 76.77 76.80 76.43 76.66 75.69 74.29 72.74 71.20 70.64 70.73	Cumulative rainfall volume (%) 9.32% 20.04% 30.39% 38.23% 54.62% 63.71% 71.55% 76.65% 79.64% 83.12% 85.41% 86.64% 88.10% 90.37% 93.89%	Relative Efficiency (%) 8.50% 9.62% 9.10% 6.67% 12.85% 6.98% 6.01% 3.90% 2.27% 2.63% 1.70% 0.89% 1.04% 1.60% 2.49%	1.17
TAILED SDD3 SIZING ainfall Interval Point (mm/hr) ² 0.50 1.00 1.50 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 11.00 12.00	REPORT Flow Rate (Lps) 1.2 2.4 3.6 4.8 7.2 9.6 12.0 14.4 16.8 19.2 21.6 24.0 26.4 28.8	Loading Rate (Lps/m ²) 1.0 2.1 3.1 4.1 6.2 8.2 10.3 12.3 14.4 16.4 18.5 20.5 22.6 24.6	Loading Rate (Lpm/m ²) 61.5 123.1 184.6 246.1 369.2 492.2 615.3 738.3 861.4 984.4 1107.5 1230.6 1353.6 1476.7	Total Rainfall (%) 9.32% 10.73% 10.34% 7.84% 16.39% 9.09% 7.83% 5.11% 2.99% 3.48% 2.29% 1.23% 1.47% 2.27%	Removal Efficiency (%) 91.19 89.67 88.00 85.07 76.80 76.77 76.80 76.43 76.64 75.69 74.29 72.74 71.20 70.64	Cumulative rainfall volume (%) 9.32% 20.04% 30.39% 38.23% 54.62% 63.71% 71.55% 76.65% 79.64% 83.12% 85.41% 88.10% 90.37%	Relative Efficiency (%) 8.50% 9.62% 9.10% 6.67% 12.85% 6.98% 6.01% 3.90% 2.27% 2.63% 1.70% 0.89% 1.04% 1.60%	1.17
TAILED SDD3 SIZING ainfall Interval Point (mm/hr) ² 0.50 1.00 1.50 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 11.00 12.00 15.00 20.00 0.00	REPORT Flow Rate (Lps) 1.2 2.4 3.6 4.8 7.2 9.6 12.0 14.4 16.8 19.2 21.6 24.0 26.4 28.8 36.0 48.0 0.0 0.0	Loading Rate (Lps/m ²) 1.0 2.1 3.1 4.1 6.2 8.2 10.3 12.3 14.4 16.4 18.5 20.5 22.6 24.6 30.8 41.0 0.0 0.0	Loading Rate (Lpm/m ²) 61.5 123.1 184.6 246.1 369.2 492.2 615.3 738.3 861.4 984.4 1107.5 1230.6 1353.6 1476.7 1845.8 2461.1 0.0 0.0	Total Rainfall (%) 9.32% 10.73% 10.34% 7.84% 16.39% 9.09% 7.83% 5.11% 2.99% 3.48% 2.29% 1.23% 1.47% 2.27% 3.52% 6.11% 0.00%	Removal Efficiency (%) 91.19 89.67 88.00 85.07 76.77 76.80 76.77 76.80 76.72 76.80 76.43 76.06 75.69 72.74 71.20 70.64 70.73 91.60 91.60	Cumulative rainfall volume (%) 9.32% 20.04% 30.39% 38.23% 54.62% 63.71% 71.55% 76.65% 79.64% 83.12% 85.41% 86.64% 90.37% 93.89% 100.00% 100.00%	Relative Efficiency (%) 8.50% 9.62% 9.10% 6.67% 12.85% 6.98% 6.01% 3.90% 2.27% 2.63% 1.70% 0.89% 1.04% 1.60% 2.49% 4.32% 0.00%	1.17
ETAILED SDD3 SIZING ainfall Interval Point (mm/hr) ² 0.50 1.00 1.50 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 11.00 12.00 15.00 20.00 0.00	REPORT Flow Rate (Lps) 1.2 2.4 3.6 4.8 7.2 9.6 12.0 14.4 16.8 19.2 21.6 24.0 26.4 28.8 36.0 48.0 0.0	Loading Rate (Lps/m ²) 1.0 2.1 3.1 4.1 6.2 8.2 10.3 12.3 14.4 16.4 18.5 20.5 22.6 24.6 30.8 41.0 0.0	Loading Rate (Lpm/m ²) 61.5 123.1 184.6 246.1 369.2 492.2 615.3 738.3 861.4 984.4 1107.5 1230.6 1353.6 1476.7 1845.8 2461.1 0.0	Total Rainfall (%) 9.32% 10.73% 10.34% 7.84% 16.39% 9.09% 7.83% 5.11% 2.99% 3.48% 2.29% 1.23% 1.47% 2.27% 3.52% 6.11% 0.00%	Removal Efficiency (%) 91.19 89.67 88.00 85.07 78.38 76.77 76.80 76.43 76.66 75.69 74.29 72.74 71.20 70.64 70.73 91.60	Cumulative rainfall volume (%) 9.32% 20.04% 30.39% 38.23% 54.62% 63.71% 71.55% 76.65% 79.64% 83.12% 85.41% 86.64% 88.10% 90.37% 93.89% 100.00%	Relative Efficiency (%) 8.50% 9.62% 9.10% 6.67% 12.85% 6.98% 6.01% 3.90% 2.27% 2.63% 1.70% 0.89% 1.04% 1.60% 2.49% 4.32% 0.00%	1.17
ETAILED SDD3 SIZING ainfall Interval Point (mm/hr) ² 0.50 1.00 1.50 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 11.00 12.00 15.00 20.00 0.00	REPORT Flow Rate (Lps) 1.2 2.4 3.6 4.8 7.2 9.6 12.0 14.4 16.8 19.2 21.6 24.0 26.4 28.8 36.0 48.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Loading Rate (Lps/m ²) 1.0 2.1 3.1 4.1 6.2 8.2 10.3 12.3 14.4 16.4 18.5 20.5 22.6 24.6 30.8 41.0 0.0 0.0 0.0 0.0 0.0	Loading Rate (Lpm/m ²) 61.5 123.1 184.6 246.1 369.2 492.2 615.3 738.3 861.4 984.4 1107.5 1230.6 1353.6 1476.7 1845.8 2461.1 0.0 0.0 0.0 0.0	Total Rainfall (%) 9.32% 10.73% 10.34% 7.84% 16.39% 9.09% 7.83% 5.11% 2.99% 3.48% 2.29% 1.23% 1.47% 2.27% 3.52% 6.11% 0.00%	Removal Efficiency (%) 91.19 89.67 88.00 85.07 76.77 76.80 76.74 76.60 75.69 74.29 72.74 71.20 70.64 70.73 91.60 91.60 91.60 91.60 91.60 91.60 91.60 91.60 91.60 91.60 91.60 91.60	Cumulative rainfall volume (%) 9.32% 20.04% 30.39% 38.23% 54.62% 63.71% 71.55% 76.65% 79.64% 83.12% 85.41% 86.64% 90.37% 93.89% 100.00% 100.00%	Relative Efficiency (%) 8.50% 9.62% 9.10% 6.67% 12.85% 6.98% 6.01% 3.90% 2.27% 2.63% 1.70% 0.89% 1.04% 1.60% 2.49% 4.32% 0.00%	1.17
ETAILED SDD3 SIZING ainfall Interval Point (mm/hr) ² 0.50 1.00 1.50 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 11.00 12.00 15.00 20.00 0.00	Flow Rate (Lps) 1.2 2.4 3.6 4.8 7.2 9.6 12.0 14.4 16.8 19.2 21.6 24.0 26.4 36.0 48.0 0.0 0.0 0.0 0.0 0.0 0.0	Loading Rate (Lps/m ²) 1.0 2.1 3.1 4.1 6.2 8.2 10.3 12.3 14.4 16.4 18.5 20.5 22.6 24.6 30.8 41.0 0.0 0.0 0.0 0.0	Loading Rate (Lpm/m ²) 61.5 123.1 184.6 246.1 369.2 492.2 615.3 738.3 861.4 984.4 1107.5 1230.6 1353.6 1476.7 1845.8 2461.1 0.0 0.0 0.0	Total Rainfall (%) 9.32% 10.73% 10.34% 7.84% 16.39% 9.09% 7.83% 5.11% 2.99% 3.48% 2.29% 1.23% 1.47% 2.27% 3.52% 6.11% 0.00%	Removal Efficiency (%) 91.19 89.67 88.00 85.07 76.77 76.80 76.77 76.80 76.77 76.80 76.73 76.06 75.69 72.74 71.20 70.64 70.73 91.60 91.60 91.60 91.60 91.60	Cumulative rainfall volume (%) 9.32% 20.04% 30.39% 38.23% 54.62% 63.71% 71.55% 76.65% 79.64% 83.12% 85.41% 86.64% 90.37% 93.89% 100.00% 100.00%	Relative Efficiency (%) 8.50% 9.62% 9.10% 6.67% 12.85% 6.98% 6.01% 3.90% 2.27% 2.63% 1.70% 0.89% 1.04% 1.60% 2.49% 4.32% 0.00%	1.17
ETAILED SDD3 SIZING ainfall Interval Point (mm/hr) ² 0.50 1.00 1.50 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 11.00 12.00 15.00 20.00 0.00	REPORT Flow Rate (Lps) 1.2 2.4 3.6 4.8 7.2 9.6 12.0 14.4 16.8 19.2 21.6 24.0 26.4 28.8 36.0 48.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Loading Rate (Lps/m ²) 1.0 2.1 3.1 4.1 6.2 8.2 10.3 12.3 14.4 16.4 18.5 20.5 22.6 24.6 30.8 41.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Loading Rate (Lpm/m ²) 61.5 123.1 184.6 246.1 369.2 492.2 615.3 738.3 861.4 984.4 1107.5 1230.6 1353.6 1476.7 1845.8 2461.1 0.0 0.0 0.0 0.0	Total Rainfall (%) 9.32% 10.73% 10.34% 7.84% 16.39% 9.09% 7.83% 5.11% 2.99% 3.48% 2.29% 1.23% 1.47% 2.27% 3.52% 6.11% 0.00%	Removal Efficiency (%) 91.19 89.67 88.00 85.07 76.73 76.77 76.80 76.72 76.80 75.69 74.29 72.74 71.20 70.64 70.73 91.60 91.60 91.60 91.60 91.60 91.60 91.60 91.60 91.60 91.60 91.60 91.60 91.60 91.60	Cumulative rainfall volume (%) 9.32% 20.04% 30.39% 38.23% 54.62% 63.71% 71.55% 76.65% 79.64% 83.12% 85.41% 86.64% 90.37% 93.89% 100.00% 100.00%	Relative Efficiency (%) 8.50% 9.62% 9.10% 6.67% 12.85% 6.98% 6.01% 3.90% 2.27% 2.63% 1.70% 0.89% 1.04% 1.60% 2.49% 4.32% 0.00%	
ETAILED SDD3 SIZING ainfall Interval Point (mm/hr) ² 0.50 1.00 1.50 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 11.00 12.00 15.00 20.00 0.00 0.00 0.00	REPORT Flow Rate (Lps) 1.2 2.4 3.6 4.8 7.2 9.6 12.0 14.4 16.8 19.2 21.6 24.0 24.0 24.0 24.0 24.0 26.4 28.8 36.0 48.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Loading Rate (Lps/m ²) 1.0 2.1 3.1 4.1 6.2 8.2 10.3 12.3 14.4 16.4 18.5 20.5 22.6 24.6 30.8 41.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Loading Rate (Lpm/m ²) 61.5 123.1 184.6 246.1 369.2 492.2 615.3 738.3 861.4 984.4 1107.5 1230.6 1353.6 1476.7 1845.8 2461.1 0.0 1476.7 1845.8 2461.1 0.0 0.0 0.0 0.0 0.0	Total Rainfall (%) 9.32% 10.73% 10.34% 7.84% 16.39% 9.09% 7.83% 5.11% 2.99% 3.48% 2.29% 1.23% 1.47% 2.27% 3.52% 6.11% 0.00% 0.00% 0.00%	Removal Efficiency (%) 91.19 89.67 88.00 85.07 76.73 76.77 76.80 76.72 76.80 75.69 74.29 72.74 71.20 70.64 70.73 91.60 91.60 91.60 91.60 91.60 91.60 91.60 91.60 91.60 91.60 91.60 91.60 91.60 91.60	Cumulative rainfall volume (%) 9.32% 20.04% 30.39% 38.23% 54.62% 63.71% 71.55% 76.65% 79.64% 83.12% 85.41% 86.64% 88.10% 90.37% 93.89% 100.00% 100.00% 100.00% 100.00%	Relative Efficiency (%) 8.50% 9.62% 9.10% 6.67% 12.85% 6.98% 6.01% 3.90% 2.27% 2.63% 1.70% 0.89% 1.04% 1.60% 2.49% 4.32% 0.00% 0.00%	1.17
TAILED SDD3 SIZING ainfall Interval Point (mm/hr) ² 0.50 1.00 1.50 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 11.00 12.00 15.00 20.00 0.00	REPORT Flow Rate (Lps) 1.2 2.4 3.6 4.8 7.2 9.6 12.0 14.4 16.8 19.2 21.6 24.0 24.0 24.0 24.0 24.0 26.4 28.8 36.0 48.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Loading Rate (Lps/m ²) 1.0 2.1 3.1 4.1 6.2 8.2 10.3 12.3 14.4 16.4 18.5 20.5 22.6 24.6 30.8 41.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Loading Rate (Lpm/m ²) 61.5 123.1 184.6 246.1 369.2 492.2 615.3 738.3 861.4 984.4 1107.5 1230.6 1353.6 1476.7 1845.8 2461.1 0.0 1476.7 1845.8 2461.1 0.0 0.0 0.0 0.0 0.0	Total Rainfall (%) 9.32% 10.73% 10.34% 7.84% 16.39% 9.09% 7.83% 5.11% 2.99% 3.48% 2.29% 1.23% 1.47% 2.27% 3.52% 6.11% 0.00% 0.00% 0.00%	Removal Efficiency (%) 91.19 89.67 88.00 85.07 76.73 76.77 76.80 76.72 76.80 75.69 74.29 72.74 71.20 70.64 70.73 91.60 91.60 91.60 91.60 91.60 91.60 91.60 91.60 91.60 91.60 91.60 91.60 91.60 91.60	Cumulative rainfall volume (%) 9.32% 20.04% 30.39% 38.23% 54.62% 63.71% 71.55% 76.65% 79.64% 83.12% 85.41% 86.64% 88.10% 90.37% 93.89% 100.00% 100.00% 100.00% 100.00%	Relative Efficiency (%) 8.50% 9.62% 9.10% 6.67% 12.85% 6.98% 6.01% 3.90% 2.27% 2.63% 1.70% 0.89% 1.04% 1.60% 2.49% 4.32% 0.00% 0.00%	1.17

