

Phase Two Environmental Site Assessment 770 and 774 Bronson Avenue and 557 Cambridge Street, Ottawa, Ontario

Client:

SEC 774 Bronson C/O KTS Ontario Properties 265 Carling Avenue Ottawa, Ontario K1S 1E2

Type of Document:

Final

Project Number:

OTT-22019409-A0

Prepared By:

Leah Wells, P.Eng.

Reviewed By:

Patricia Stelmack, M.Sc., P.Eng.

EXP Services Inc. 100-2650 Queensview Drive Ottawa, Ontario K2B 8H6 t: +1.613.688.1899 f: +1.613.225.7337

Date Submitted:

2024-06-24

Legal Notification

This report was prepared by EXP Services Inc. for the account of SEC 774 Bronson.

Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. EXP Services Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this project.

Executive Summary

EXP Services Inc. (EXP) was retained by Katasa Group to conduct a Phase Two Environmental Site Assessment (ESA) of the property located at 770 and 774 Bronson Avenue and 557 Cambridge Street in Ottawa, Ontario (hereinafter referred to as the 'Phase Two property'). The purpose of the investigation was to support the filing of a Record of Site Condition (RSC).

The objective of the Phase Two ESA investigation was to assess the quality of the groundwater conditions within the areas of potential environmental concern (APEC) identified in a Phase One ESA prepared by EXP. The most recent use of the property was for commercial purposes and the proposed future use will be residential and commercial. Consequently, in accordance with Regulation 153/04, as amended, an RSC must be filed.

The Phase Two property has the municipal addresses of 770 Bronson Avenue, 774 Bronson Avenue, and 557 Cambridge Street in Ottawa, Ontario. The Phase Two property is irregular in shape and has a total area of approximately 0.45 hectares. The approximate centroid coordinates are NAD83 18T 445213 m E and 5027661 m N.

The property at 770 Bronson Avenue is vacant and currently used as a parking lot. It is legally described as Part Lots 1 and 2, Registered Plan 28, City of Ottawa. The property identification number (PIN) is 04103-0205 (LT).

The property at 774 Bronson Avenue is vacant and currently used as a parking lot. It is legally described as Lots 3 and 4, Registered Plan 28, City of Ottawa. The PIN is 04103-0125 (LT).

The property at 557 Cambridge Street is vacant and currently used as a parking lot. It is legally described as Lot 37 and Part Lot 38, Registered Plan 28, Part 4 Registered Plan 5R14360, City of Ottawa. The PIN is 04103-0215 (LT).

The most recent use of the property was commercial. The proposed future use of the property is residential and commercial. A new building will be constructed at the Phase Two property. The building will have one or two levels of underground parking, ground-level commercial space, and upper-level residential units.

The Phase Two property, and all other properties located, in whole or in part, within 250 metres of the boundaries of The Phase Two property is located in the physiographic region known as the Ottawa Formation. The bedrock in the area consists of limestone with some shaley partings. Bedrock is present at a depth of less than 2 metres below ground surface (mbgs), which is approximately 75 metres above sea level (masl). Therefore, in accordance with Section 43.1 of Regulation 153/04, the Phase Two property is a shallow soil property.

Beneath any fill, the surficial geology of the Phase Two is characterised by Champlain Sea deposits of plain till.

Topographically, the Phase Two study area slopes downwards towards the southwest. The regional groundwater flow direction is anticipated to be to the north/northeast towards the Ottawa River. However, the local groundwater flow direction may be influenced by the presence of Dow's Lake, which is approximately 400 metres southwest of the Phase Two property. Dow's Lake is the closest water body to the Phase Two property and is a man-made lake on the Rideau Canal, which flows to the northeast towards the Ottawa River.

The Phase Two property, and all other properties located, in whole or in part, within 250 metres of the boundaries of the Phase Two property, are supplied by a municipal drinking water system, as defined in the *Safe Drinking Water Act*, provided by the City of Ottawa. Further, the Phase Two property is not located in an area designated in the municipal official plan as a well-head protection area and no properties within the Phase Two study area have a well that is being used or is intended for use as a source of potable water. Thus, in accordance with Section 35 of Ontario Regulation 153/04, non-potable water standards apply to the Phase Two property.

No wells used as a source of potable water or for agricultural purposes were observed on the Phase Two property or on any property within 250 metres of the Phase Two property.

The Phase Two property is not located within an area of natural significance, and it does not include land that is within 30 metres of an area of natural significance. In accordance with Section 41 of Ontario Regulation 153/04, the Phase Two property is not an environmentally sensitive area.

Although there were no buildings on the Phase Two property at the time of the investigation, the Phase Two property, and surrounding area are serviced by municipal water, storm and sanitary sewers, natural gas, hydro and telecommunication. Since the water table is within the bedrock, the presence of utilities is not expected to affect possible migration of contaminants once buildings are constructed on the Phase Two property.

The following on-site potentially contaminating activities (PCA) were identified:

- PCA #10 Commercial Autobody Shops 770 Bronson Avenue (Phase Two property) Former service garage;
- PCA #28 Gasoline and Associated Products Storage in Fixed Tanks 770 Bronson Avenue (Phase Two property) –
 Former gas station with three UST;
- PCA #28 Gasoline and Associated Products Storage in Fixed Tanks 770 Bronson Avenue (Phase Two property) –
 Former heating oil AST along west interior building wall;
- PCA #28 Gasoline and Associated Products Storage in Fixed Tanks 770 Bronson Avenue (Phase Two property) –
 Former waste oil AST along the south exterior wall of the garage building;
- PCA #28 Gasoline and Associated Products Storage in Fixed Tanks 774 Bronson Avenue (Phase Two property) –
 Former heating oil AST in the former north residential building;
- PCA #28 Gasoline and Associated Products Storage in Fixed Tanks 774 Bronson Avenue (Phase Two property) –
 Former heating oil AST in the south residential building;
- PCA #28 Gasoline and Associated Products Storage in Fixed Tanks 774 Bronson Avenue (Phase Two property) –
 Former heating oil AST in the former commercial building;
- PCA #28 Gasoline and Associated Products Storage in Fixed Tanks 557 Cambridge Street (Phase Two property) –
 Former heating oil AST in the south office building;
- PCA #28 Gasoline and Associated Products Storage in Fixed Tanks 557 Cambridge Street (Phase Two property) –
 Former heating oil AST in the middle office building;
- PCA #28 Gasoline and Associated Products Storage in Fixed Tanks 557 Cambridge Street (Phase Two property) –
 Former heating oil AST in the north office building;
- PCA #28 Gasoline and Associated Products Storage in Fixed Tanks 557 Cambridge Street (Phase Two property) –
 Oil skimmings collected in former commercial building on east side of 557 Cambridge Street;
- PCA #30 Importation of Fill Material of Unknown Quantity Entire Phase Two property Fill material brought to site to backfill excavations, including tank nest and building foundations;
- PCA #31 Ink Manufacturing, Processing and Bulk Storage 774 Bronson Avenue Former commercial printing operation on south part of parcel (former address of 784 Bronson Avenue);
- PCA #59 Wood Treating and Preservative Facility and Bulk Storage of Treated and Preserved Wood Products 557
 Cambridge Avenue (Phase Two property) Western part of the site was historically used for wood treating; and
- PCA #Other Application of de-icing salt All former paved areas throughout the Phase Two Property.

By definition, all of the above PCA have resulted in APEC on the Phase Two property.

The following PCA have been identified in the Phase Two study area:

- PCA #10 Commercial Autobody Shops 400 Bell Street (125 m west) Former garage with UST;
- PCA #28 Gasoline and Associated Products Storage in Fixed Tanks 400 Bell Street (125 m west) Former garage with UST;

- PCA #28 Gasoline and Associated Products Storage in Fixed Tanks 735 Carling Avenue (225 m west) Former gas station with three UST;
- PCA #28 Gasoline and Associated Products Storage in Fixed Tanks 748 Bronson Avenue (now 265 Carling Avenue)
 (40 m north) Former gas station;
- PCA #37 Operation of Dry Cleaning Equipment (where chemicals are used) 786-788 Bronson Street (immediately south of Phase Two property) – Former dry cleaner;
- PCA #46 Rail Yards, Tracks and Spurs Between Cambridge Street and Dow's Lake (150 m southwest) Rail spurs
 at the Fraserfield Lumber Yard in early 1900s;
- PCA #55 Transformer Manufacturing, Processing and Use 227 Carling Avenue (now 247 Glebe Avenue) (60 m northeast) – Hydro sub station; and,
- PCA #59 Wood Treating and Preservative Facility and Bulk Storage of Treated and Preserved Wood Products –
 Between Cambridge Street and Dow's Lake (150 m southwest) Former Fraserfield Lumber Yard.

The former dry-cleaning operation at 786-788 Bronson Avenue is immediately adjacent and south of the Phase Two property and may have resulted in contamination to the Phase Two property. Therefore, this PCA results in an APEC on the Phase Two property.

The former gas station at 735 Carling Avenue, the former lumber yard and rail spur lines at Fraserfield Lumber yard, and the former garage at 400 Bell Street were all located over 150 m from the Phase Two property. Due to the separation distance from the Phase Two property and the low hydraulic conductivity of the bedrock, these operations were not considered to result in APEC on the Phase Two property.

The former gas station at 265 Carling Avenue and the hydro substation at 247 Glebe Avenue are located approximately 40 m north and 60 m northeast, respectively. The potential contaminants of concern associated with the former gas station at 265 Carling Avenue are the same as those associated with the former gas station on the Phase Two property itself. Thus, if groundwater is present with such contaminants, the source will be assumed to be the former gas station on the Phase Two property itself. The potential contaminants of concern associated with the hydro substation are polychlorinated biphenyls (PCB), which are relatively non-motile and, therefore, unlikely to migrate to the Phase Two property. Further, these two PCA are located downgradient of the Phase Two property, based on the inferred regional flow direction. Therefore, these operations were located downgradient of the Phase Two property and were determined not to result in APEC on the Phase Two property.

Ontario Regulation 153/04 defines an APEC as an area on a property where one or more contaminants are potentially present. The following APECs were identified on the Phase Two property, as shown in Table EX-1:

Table EX-1: Areas of Potential Environmental Concern

Area of Potential Environmental Concern (APEC)	Location of APEC on Phase One Property	Potentially Contaminating Activity (PCA)	Location of PCA (On-Site or Off- Site)	Contaminants of Potential Concern	Media Potentially Impacted (Groundwater, Soil and/or Sediment)
1. Former automotive garage at 770 Bronson Avenue	Garage building footprint	ling footprint PCA #10 – Commercial autobody shop On-Sit		BTEX, PHC, VOC, metals	Soil and groundwater
2. Former gas station at 770 Bronson Avenue	Northeast part of the Phase Two property	' Associated Products On-		BTEX, PHC, VOC, metals	Soil and groundwater

			Location			
Area of Potential Environmental Concern (APEC)	Location of APEC on Phase One Property	Potentially Contaminating Activity (PCA)	of PCA (On-Site or Off- Site)	Contaminants of Potential Concern	Media Potentially Impacted (Groundwater, Soil and/or Sediment)	
3. Former heating oil AST at 770 Bronson Avenue	Along west interior building wall	PCA #28 – Gasoline and Associated Products Storage in Fixed Tanks	On-site	BTEX, PHC, VOC, PAH	Soil and groundwater	
4. Former waste oil AST at 770 Bronson Avenue	Along south exterior building wall	PCA #28 – Gasoline and Associated Products Storage in Fixed Tanks	On-site	BTEX, PHC, VOC, PAH, metals	Soil and groundwater	
5. Former heating oil AST in the north residential building at 774 Bronson Avenue	Former north residential building footprint	PCA #28 – Gasoline and Associated Products Storage in Fixed Tanks	On-site	BTEX, PHC, VOC, PAH	Soil and groundwater	
6. Former heating oil AST in the south residential building at 774 Bronson Avenue	Former south residential building footprint	PCA #28 – Gasoline and Associated Products Storage in Fixed Tanks	On-site	BTEX, PHC, VOC, PAH	Soil and groundwater	
7. Former heating oil AST in the commercial building at 774 Bronson Avenue	Former building footprint in southeast corner of Phase Two property	PCA #28 – Gasoline and Associated Products Storage in Fixed Tanks	On-site	BTEX, PHC, VOC, PAH	Soil and groundwater	
8. Former heating oil AST in the south commercial building at 557 Cambridge Street	Former building footprint on southwest corner of 557 Cambridge Street	PCA #28 – Gasoline and Associated Products Storage in Fixed Tanks	On-site	BTEX, PHC, VOC, PAH	Soil and groundwater	
9. Former heating oil AST in the centre commercial building at 557 Cambridge Street	Former building footprint adjacent to west-centre property line of 557 Cambridge Street	PCA #28 – Gasoline and Associated Products Storage in Fixed Tanks	On-site	BTEX, PHC, VOC, PAH	Soil and groundwater	
10. Former heating oil AST in the north commercial building at 557 Cambridge Street	Former building footprint on northwest corner of 557 Cambridge Street	PCA #28 – Gasoline and Associated Products Storage in Fixed Tanks	On-site	BTEX, PHC, VOC, PAH	Soil and groundwater	
11. Oil skimmings collected at former contractors' yard at 557 Cambridge Street	Within building footprint of former contractor building in south-centre part of Phase Two property	PCA #28 – Gasoline and Associated Products Storage in Fixed Tanks	On-site	BTEX, PHC, PAH	Soil and groundwater	
12. Fill used to backfill former UST excavations and former building footprints	Entire Phase Two property	PCA #30 – Importation of Fill Material of Unknown Quality	On-site	BTEX, PHC, PAH, metals	Soil	
13. Former commercial printing operation	Former building footprint in southeast corner of Phase Two property	PCA #31 – Ink Manufacturing, Processing and Bulk Storage	On-site	VOC	Groundwater	
14. Former dry cleaner at 786-788 Bronson Avenue	Along south property line shared with former dry cleaner	PCA #37 – Operation of Dry Cleaning Equipment (where chemicals are used)	Off-site	voc	Groundwater	

Area of Potential Environmental Concern (APEC)	Environmental Concern Location of APEC on Phase One Property		Location of PCA (On-Site or Off- Site)	Contaminants of Potential Concern	Media Potentially Impacted (Groundwater, Soil and/or Sediment)
15. Former treated lumber storage at 557 Cambridge Street	West part of the Phase Two property	PCA #59 – Wood Treating and Preservative Facility and Bulk Storage of Treated and Preserved Wood Products	On-site	PAH, PHC, Chlorophenols	Soil and groundwater
16. All former paved areas throughout the	Former paved driveways and parking lots at Phase	PCA #Other –	On site EC SAR		Soil
Phase Two Property	Two property	Application of de-icing On-site EC, SAR salt		3011	

On August 11, 2022, EXP collected groundwater samples from the existing monitoring wells (BH 15-1 to BH15-3, BH15-5) at 770 Bronson Avenue. None of the monitoring wells installed at 774 Bronson Avenue or 557 Cambridge Street were still present. Four groundwater samples, plus a field duplicate, were submitted for analysis of PHC, VOC, and PAH. BH15-4 could not be sampled due to insufficient sample volume. All of the samples were within the applicable Table 7 SCS for all parameters analysed.

The drilling program was completed between January 9 and 11, 2024, by Strata Drilling (Strata), a licensed well contractor. Strata advanced fifteen boreholes (BH1 to BH15) across the Phase Two property, using a Massenza M13 track-mounted drill. Ten of the boreholes (MW4 to MW13) were completed as monitoring wells.

Thirteen soil samples and one duplicate sample were submitted for analysis of VOC, PHC, and PAH; and fifteen samples and one duplicate sample were submitted for analysis of metals, and inorganics (EC and SAR). All of the soil samples met the Table 7 SCS with the exception of the following:

- MW13 SS1 exceeded the Table 7 SCS for PHC F3;
- BH2 SS1, BH3 SS1, MW4 SS2, MW6 SS1, MW12 SS1, and MW13 SS1 exceeded the Table 7 SCS for various PAH parameters;
- BH1 SS1 exceeded the Table 7 SCS for lead, and BH2 SS1 exceeded the Table 7 CS for cadmium, lead, and zinc; and,
- BH1 SS1, BH2 S1, BH3 SS1, MW6 SS1, MW7 SS1, MW8 SS1 (and duplicate), MW9 SS1, MW10 SS1, and MW13 SS1 exceeded the Table 7 SCS for electrical conductivity and/or sodium adsorption ratio.

In accordance with Section 49.1 of Regulation 153/04 if, in the opinion of the Qualified Person, the applicable SCS at the Phase Two property are exceeded solely due to the application of a substance to surfaces for the safety of vehicular or pedestrian traffic under conditions of snow or ice or both, the applicable SCS is deemed not to be exceeded. Road salt is considered to have been applied to the driving and parking surfaces on the Phase Two property. As all of the boreholes/monitoring wells with elevated sodium absorption ratio and conductivity levels were located in a parking lot, for the purpose of this investigation, the elevated sodium absorption ratio and conductivity levels in the soil samples are deemed not to exceed the Table 7 SCS.

Between January 23 and 25, 2024, ten groundwater samples, and a field duplicate were submitted for analysis of VOC, PHC, PAH, and metals. It was noted that the groundwater samples collected from MW10 and MW13 slightly exceeded the Table 7 SCS for benzene. The remaining samples met the Table 3 SCS for all remaining parameters analyzed.

On February 5, 2024, a second sample was collected from MW10 and MW13 and submitted for analysis of BTEX. Both of the samples were below the detection limits for benzene, which were exceeded in the initial samples.

A new building will be constructed at the Phase Two property. The building will have one or two levels of underground parking, ground-level commercial space, and upper-level residential units. The potential on-site human receptors include indoor and outdoor long-term workers, indoor and outdoor short-term workers, residents (adult, teen, child, toddler and infant), property visitors (adult, teen, child, toddler and infant), and outdoor construction workers.

The potential on-site exposure pathways for the construction workers are incidental soil and groundwater ingestion, soil particulate inhalation, soil and groundwater dermal contact, ambient vapour inhalation, and vapour skin contact. The potential on-site exposure pathways for the short-term and long-term outdoor workers (who are not exposed directly to subsurface soil and groundwater) are incidental surface soil ingestion, surface soil particulate inhalation, surface soil dermal contact, and vapour skin contact. The potential on-site exposure pathway for the property residents, the long-term and short-term indoor workers and visitors is indoor air inhalation.

While the footprint of the building that is being planned will occupy most of the Phase Two property, there will be a landscaped area surrounding the building. Therefore, The Phase Two property is capable of supporting some ecological receptors. Relevant ecological receptors include terrestrial vegetation (bushes, grasses and weeds); soil invertebrates (earthworms, millipedes and beetles); birds (seagulls, pigeons, sparrows and robins); and small terrestrial mammals (moles, voles, and mice).

The potential on-site exposure pathways for terrestrial vegetation are root uptake of soil and groundwater and stem and foliar uptake of vapours from soil and groundwater. The potential on-site exposure pathways for soil invertebrates are soil particulate inhalation, soil and groundwater dermal contact, soil and groundwater ingestion, and vapour inhalation, and plant and animal tissue ingestion. The potential on-site exposure pathways for mammals and birds are soil particulate inhalation, soil dermal contact, soil ingestion, vapour inhalation, and plant and animal tissue ingestion.

PHC, PAH and metals impacted soil has been identified on the Phase Two property. As there were no groundwater exceedances identified on the Phase Two property, the contamination does not appear to be migrating. It is recommended that the impacted soil be removed from the Phase Two property when the property is re-developed.

The Qualified Person can confirm that the Phase Two Environmental Site Assessment was conducted per the requirements of Ontario Regulation 153/04, as amended, and in accordance with generally accepted professional practices.

This executive summary is a brief synopsis of the report and should not be read in lieu of reading the report in its entirety.

Table of Contents

Legal N	Notification	
Execut	tive Summary	i
List of	f Figures	x
List of	f Appendices	xi
1.0	Introduction	
1.1		
1.2	·	
1.3		
1.4		
2.0	Background Information	
2.1	Physical Setting	4
2.2	Past Investigations	4
3.0	Scope of the Investigation	8
3.1	Overview of Site Investigation	8
3.2	Scope of Work	8
3.3	Media Investigated	8
3.4	Phase One Conceptual Site Model	8
3.4.	1 Buildings and Structures	9
3.4.2	.2 Water Bodies and Groundwater Flow Direction	9
3.4.3	3 Areas of Natural Significance	9
3.4.4	4 Water Wells	9
3.4.	5 Potentially Contaminating Activity	9
3.4.0	6 Areas of Potential Environmental Concern	11
3.4.	7 Underground Utilities	12
3.4.8	8 Subsurface Stratigraphy	13

3.4.9	9 Uncertainty Analysis	13
3.5	Deviations from Sampling and Analysis Plan	13
3.6	Impediments	13
4.0	Investigation Method	14
4.1	General	14
4.2	Drilling	14
4.3	Soil Sampling	14
4.4	Field Screening Measurements	14
4.5	Groundwater: Monitoring Well Installation	15
4.6	Groundwater: Field Measurement and Water Quality Parameters	15
4.7	Groundwater: Sampling	15
4.8	Sediment: Sampling	16
4.9	Analytical Testing	16
4.10	Residue Management	16
4.11	Elevation Surveying	16
4.12	Quality Assurance and Quality Control Measures	17
5.0	Review and Evaluation	18
5.1	Geology	18
5.2	Groundwater: Elevations and Flow Direction	18
5.3	Groundwater: Hydraulic Gradients	19
5.4	Soil: Field Screening	21
5.5	Soil: Quality	21
5.6	Groundwater: Quality	
<i>5.7</i>	Chemical Transformation and Contaminant Sources	22
5.7.1	1 Pathways and Receptors	22
5.7.2		
5.7.3		
5.7.4		

	5.8	Sediment: Quality	24
	5.9	Quality Assurance and Quality Control Results	24
6.	.0	Phase Two Conceptual Site Model	25
	6.1	Introduction	25
	6.2	Current and Proposed Future Uses	25
	6.3	Physical Site Description	25
	6.4	Potentially Contaminating Activities	26
	6.5	Areas of Potential Environmental Concern/Potential Contaminants of Concern	27
	6.6	Buildings and Structures	29
	6.7	Water Bodies and Groundwater Flow Direction	29
	6.8	Areas of Natural Significance	29
	6.9	Water Wells	29
	6.10	Utilities	30
	6.11	Geological and Hydrogeological	30
	6.12	Applicable Site Condition Standards	31
	6.13	Soil Sampling	32
	6.14	Groundwater Sampling	33
	6.15	Contaminants of Concern	33
	6.16	Chemical Transformation and Contaminant Sources	33
	6.17	Climatic Conditions	34
	6.18	Human Health Exposure Pathways and Receptors	34
	6.19	Ecological Exposure Pathways and Receptors	34
7.	.0	Conclusion	35
8.	.0	References	36
<u> </u>	0	General Limitations	27

List of Figures

- Figure 1 Site Location Plan
- Figure 2 Site Plan
- Figure 3 Phase One Conceptual Site Model
- Figure 4 Groundwater Contour Plan (February 2024)
- Figure 5 Cross Section Plan
- Figure 6 Cross Sections A-A' and B-B'
- Figure 7 Soil Analytical Results PHC & VOC
- Figure 8 Soil Analytical Results PAH
- Figure 9 Soil Analytical Results Inorganics
- Figure 10 Soil Cross Sections A-A', B-B', C-C' PHC & VOC
- Figure 11 Soil Cross Sections A-A', B-B', C-C' PAH
- Figure 12 Soil Cross Sections A-A', B-B', C-C' Inorganics
- Figure 13 Groundwater Analytical Results PHC & VOC
- Figure 14 Groundwater Analytical Results PAH
- Figure 15 Groundwater Analytical Results Inorganics
- Figure 16 Groundwater Cross Sections A-A', B-B', C-C' PHC & VOC
- Figure 17 Groundwater Cross Sections A-A', B-B', C-C' PAH
- Figure 18 Groundwater Cross Sections A-A', B-B', C-C' Inorganics
- Figure 19 Human Health Receptors and Exposure Pathways
- Figure 20 Ecological Receptors and Exposure Pathways

List of Appendices

Appendix A: Figures
Appendix B: Survey Plan

Appendix C: Sampling and Analysis Plan

Appendix D: Borehole Logs

Appendix E: Hydraulic Conductivity
Appendix F: Analytical Summary Tables

Appendix G: Laboratory Certificates of Analysis

1.0 Introduction

EXP Services Inc. (EXP) was retained by Katasa Group to conduct a Phase Two Environmental Site Assessment (ESA) of the property located at 770 and 774 Bronson Avenue and 557 Cambridge Street in Ottawa, Ontario (hereinafter referred to as the 'Phase Two property'). The purpose of the investigation was to support the filing of a Record of Site Condition (RSC).

The objective of the Phase Two ESA investigation was to assess the quality of the groundwater conditions within the areas of potential environmental concern (APEC) identified in a Phase One ESA prepared by EXP. The most recent use of the property was for commercial purposes and the proposed future use will be residential and commercial. Consequently, in accordance with Regulation 153/04, as amended, an RSC must be filed.

This report has been prepared in accordance with the Phase Two ESA standard as defined by Ontario Regulation 153/04 (as amended), and in accordance with generally accepted professional practices. Subject to this standard of care, EXP makes no express or implied warranties regarding its services and no third-party beneficiaries are intended. Limitation of liability, scope of report and third-party reliance are outlined in Section 8 of this report.

1.1 Site Description

The Phase Two property has the municipal addresses of 770 Bronson Avenue, 774 Bronson Avenue, and 557 Cambridge Street in Ottawa, Ontario. The Phase Two property is irregular in shape and has a total area of approximately 0.45 hectares. The approximate centroid coordinates are NAD83 18T 445213 m E and 5027661 m N. A site location plan is provided as Figure 1 in Appendix A.

The property at 770 Bronson Avenue is vacant and currently used as a parking lot. It is legally described as Part Lots 1 and 2, Registered Plan 28, City of Ottawa. The property identification number (PIN) is 04103-0205 (LT).

The property at 774 Bronson Avenue is vacant and currently used as a parking lot. It is legally described as Lots 3 and 4, Registered Plan 28, City of Ottawa. The PIN is 04103-0125 (LT).

The property at 557 Cambridge Street is vacant and currently used as a parking lot. It is legally described as Lot 37 and Part Lot 38, Registered Plan 28, Part 4 Registered Plan 5R14360, City of Ottawa. The PIN is 04103-0215 (LT).

Site identification details are provided in Table 1.

Table 1: Site Identification Details

Civic Address	770 and 774 Bronson Avenue, 557 Cambridge Street, Ottawa, Ontario		
Current Land Use	Commercial		
Proposed Future Land Use	Commercial and Residential		
Property Identification Number	04103-0205, 04103-0125, 04103-0215		
UTM Coordinates	NAD83 18T 445213 m E and 5027661 m N		
Site Area	0.45 hectares		
Property Owner	10467855 Canada Inc.		

A survey plan of the Phase Two property was completed by Annis, O'Sullivan, and Vollebekk Ltd. in November 2015. A copy of the survey plan is provided in Appendix B.

1.2 Property Ownership

The registered owner of the Phase One property is 10467855 Canada Inc. Authorization to proceed with this investigation on behalf of the property owner was provided by Ms. Tanya Chowieri, Acquisition and Project Development for Katasa Groupe. Contact information is 301-69 rue Jean-Proulx, Gatineau, Quebec, J8Z 1W2.

1.3 Current and Proposed Future Use

The most recent use of the property was commercial. The proposed future use of the property is residential and commercial. A new building will be constructed at the Phase Two property. The building will have one or two levels of underground parking, ground-level commercial space, and upper-level residential units. Since the past use of the property was commercial land use, an RSC must be filed, per Ontario Regulation 153/04.

1.4 Applicable Site Condition Standards

Analytical results obtained for soil and groundwater samples were compared to Site Condition Standards (SCS) established under subsection 169.4(1) of the Environmental Protection Act, and presented in the document entitled *Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act*, 2011. This document provides tabulated background SCS (Table 1) applicable to environmentally sensitive sites and effects-based generic SCS (Tables 2 to 9) applicable to non-environmentally sensitive sites. The effects-based SCS (Tables 2 to 9) are protective of human health and the environment for different groundwater conditions (potable and non-potable), land use scenarios (residential, parkland, institutional, commercial, industrial, community and agricultural/other), soil texture (coarse or medium/fine) and restoration depth (full or stratified).

Table 1 to 9 SCS are summarized as follows:

- Table 1 applicable to sites where background concentrations must be met (full depth), such as sensitive sites where site-specific criteria have not been derived
- Table 2 applicable to sites with potable groundwater and full depth restoration
- Table 3 applicable to sites with non-potable groundwater and full depth restoration
- Table 4 applicable to sites with potable groundwater and stratified restoration
- Table 5 applicable to sites with non-potable groundwater and stratified restoration
- Table 6 applicable to sites with potable groundwater and shallow soils (bedrock encountered at depths of 2 metres or less across one-third or more of the site)
- Table 7 applicable to sites with non-potable groundwater and shallow soils (bedrock encountered at depths of 2 metres or less across one-third or more of the site)
- Table 8 applicable to sites with potable groundwater and that are within 30 m of a water body
- Table 9 applicable to sites with non-potable groundwater and that are within 30 m of a water body

Application of the generic or background SCS to a specific site is based on a consideration of site conditions related to soil pH, thickness and extent of overburden material, and proximity to an area of environmental sensitivity or of natural significance. For some chemical parameters, consideration is also given to soil textural classification with SCS having been derived for both coarse and medium-fine textured soil conditions.

For assessment purposes, EXP selected the 2011 Table 7 SCS in a non-potable groundwater condition for residential/parkland/institutional property use and coarse textured soils. The selection of these categories was based on the following factors:

- The predominant soil type on the Phase Two property was considered to be coarse textured, based on field observations;
- There was no intention to carry out a stratified restoration at the Phase Two property;
- More than two-thirds of the Phase Two property has an overburden thickness less than 2 metres;
- The Phase Two property is not located within 30 metres of a surface water body;
- The Phase Two property, and all other properties located, in whole or in part, within 250 metres of the boundaries of the Phase Two property, are supplied by a municipal drinking water system provided by the City of Ottawa;
- The Phase Two property is not located in an area designated in the municipal official plan as a well-head protection area and no properties within the Phase Two study area have a well that is being used or is intended for use as a source of potable water;
- The Phase Two property is not within an area of natural significance; does not include, nor is it adjacent to an area of natural significance, nor is it part of such an area; and, it does not include land that is within 30 metres of an area of natural significance, nor is it part of such an area;
- The soil at the Phase Two property has a pH value between 5 and 9 for surficial soils; and, between 5 and 11 for subsurface soils;
- The Phase Two property is planned for future residential and commercial use; and
- It is the opinion of the Qualified Person who oversaw this work that the Phase Two property is not a sensitive site.

Based on the above considerations:

- In accordance with Section 35 of Ontario Regulation 153/04, non-potable water standards apply to the Phase Two property;
- In accordance with Section 41 of Ontario Regulation 153/04, the Phase Two property is not an environmentally sensitive area; and
- The Phase Two property is a shallow soil property, as defined in Section 43.1 of Regulation 153/04.

2.0 Background Information

2.1 Physical Setting

The Phase Two property has the municipal addresses 770 and 774 Bronson Avenue, and 557 Cambridge Street in Ottawa, Ontario. The Phase Two property is located in a residential/commercial area near the intersection of Carling Avenue and Bronson Avenue, as shown on Figure 1 in Appendix A. The Phase Two property is irregular in shape and has an area of approximately 0.45 hectares. At the time of the current investigation, the Phase Two property was occupied by a parking lot. A site plan showing the Phase Two property is presented as Figure 2 in Appendix A.

The Phase Two property is located in the physiographic region known as the Ottawa Formation. The bedrock in the area consists of limestone with some shaley partings. Bedrock is present at a depth of less than 2 metres below ground surface (mbgs), which is approximately 75 metres above sea level (masl). Therefore, in accordance with Section 43.1 of Regulation 153/04, the Phase Two property is a shallow soil property.

Beneath any fill, the surficial geology of the Phase Two is characterised by Champlain Sea deposits of plain till.

Topographically, the Phase Two study area slopes downwards towards the southwest. The regional groundwater flow direction is anticipated to be to the north/northeast towards the Ottawa River. However, the local groundwater flow direction may be influenced by the presence of Dow's Lake, which is approximately 400 metres southwest of the Phase Two property. Dow's Lake is the closest water body to the Phase Two property and is a man-made lake on the Rideau Canal, which flows to the northeast towards the Ottawa River.

The Phase Two property, and all other properties located, in whole or in part, within 250 metres of the boundaries of the Phase Two property, are supplied by a municipal drinking water system, as defined in the *Safe Drinking Water Act*, provided by the City of Ottawa. Further, the Phase Two property is not located in an area designated in the municipal official plan as a well-head protection area and no properties within the Phase Two study area have a well that is being used or is intended for use as a source of potable water. Thus, in accordance with Section 35 of Ontario Regulation 153/04, non-potable water standards apply to the Phase Two property.

No wells used as a source of potable water or for agricultural purposes were observed on the Phase Two property or on any property within 250 metres of the Phase Two property.

The Phase Two property is not located within an area of natural significance, and it does not include land that is within 30 metres of an area of natural significance. In accordance with Section 41 of Ontario Regulation 153/04, the Phase Two property is not an environmentally sensitive area.

2.2 Past Investigations

EXP reviewed the following reports:

- Phase One Environmental Site Assessment, 770 Bronson Avenue, Ottawa, Ontario, August 2015 prepared by Golder Associates;
- Phase Two Environmental Site Assessment, 770 Bronson Avenue, Ottawa, Ontario, August 2015 prepared by Golder Associates;
- Phase 1 Environmental Site Assessment, 774 Bronson Avenue and 557 Cambridge Street South, Ottawa, Ontario, December 2015 prepared by WSP Canada Inc.;
- Phase Two Environmental Site Assessment, 774 Bronson Avenue and 557 Cambridge Street, Ottawa, Ontario, March 2016 prepared by WSP Canada Inc.;
- Technical Memorandum, Remedial Action Plan, August 2016 prepared by Golder Associates;

- Phase I Environmental Site Assessment, 770-774 Bronson Avenue, Ottawa, Ontario, April 2020 prepared by Paterson Group Inc.; and
- Phase One Environmental Site Assessment, 770 and 774 Bronson Avenue and 557 Cambridge Street, Ottawa, Ontario,
 September 2022 prepared by EXP Services Inc.

In 2015, five boreholes (BH15-1 to BH15-5) were advanced at 770 Bronson Avenue by Golder, all of which were completed as monitoring wells. All of the wells were installed in the bedrock, which was present between 2.4 and 3.1 metres below ground surface (mbgs). Surficial soil generally consisted of sand and gravel fill material. No native soil was identified on the site. Groundwater was not present in the overburden. The groundwater flow direction was observed to be to the north towards Carling Avenue. It was inferred that utilities along Carling Avenue were influencing the direction of local groundwater flow.

Eight soil samples and four groundwater samples were submitted for analysis of volatile organic compounds (VOC), petroleum hydrocarbons (PHC), and polycyclic aromatic hydrocarbons (PAH). Soil and groundwater samples were compared to the Table 7 site condition standards (SCS) for non-potable groundwater and residential land use. All of the samples met the Table 7 SCS for all parameters analysed, with the exception of one sample from BH15-4 which exceeded the SCS for PHC F3. The sample which exceeded the Table 7 SCS was taken at a depth of 0.3 to 0.8 mbgs. A sample taken from the same borehole, but deeper (1.5 to 2.1 mbgs) met the Table 7 SCS. It was inferred that the source of the exceedance was likely a surface spill. Approximately 150 m³ of PHC impacted soil was identified in the northeast corner of the site. No impact was identified below 1.5 mbgs, and no groundwater contamination was identified. It was recommended that the impacted soil be excavated and sent to a landfill for appropriate off-site disposal.

In March 2015, groundwater sampling was conducted at 770 Bronson Avenue by Golder. Four groundwater samples (BH15-1 to BH15-4), and a duplicate were collected and submitted for analysis of PHC, VOC, and PAH. A groundwater sample was not collected from BH15-5, as that well was installed for geotechnical/hydrogeological purposes. One of the groundwater samples (BH15-2) exceeded the Table 7 SCS for benzene, and three groundwater samples (BH15-1, BH15-2, BH15-3) and the duplicate exceeded the Table 7 SCS for chloroform.

In 2016, six boreholes (BH15-1 to BH15-6) were advanced at 557 Cambridge Street and 774 Bronson Avenue by WSP, four of which (BH15-2, BH15-3B, BH15-4, and BH15--6) were completed as nested monitoring wells. Surficial geology generally consisted of 1 to 2 metres of fill material overlying limestone bedrock. Bedrock was encountered in all boreholes between 0.8 and 2.2 mbgs. Two hydrogeologic units were identified at the site, the shallow overburden/weathered bedrock aquifer, and the deeper bedrock aquifer. Groundwater flow direction was determined to be to the southwest in both the shallow and deep aquifer.

During the WSP January 2016 investigation, three soil samples and a duplicate were submitted for analysis of PHC and VOC, PAH, and metals. Two samples (BH15-4 and BH15-6) exceeded the SCS for lead, one sample (BH15-5) exceeded the SCS for nickel, and one sample (BH15-4) exceeded the SCS for mercury and cyanide. One sample (BH15-1) exceeded the SCS for multiple PAHs. The remaining samples met the Table 7 SCS for all parameters analysed.

In January, February and March 2016, groundwater sampling was conducted by WSP at 557 Cambridge Street and 774 Bronson Avenue. Groundwater sampling was conducted over multiple days due to limited sampled volume. A total of 20 samples and three duplicates were submitted for analysis of BTEX; seven samples and one duplicate were submitted for analysis of PHC; 19 samples and three duplicates were submitted for analysis of VOC, seven samples and one duplicate were submitted for analysis of PAH, and eight samples and one duplicate were submitted for analysis of metals and inorganics. Benzene was detected in the initial groundwater sample from BH15-3A. As the exceedance was very close to the Table 7 SCS criteria for benzene (0.83 ug/L vs 0.5 ug/L), and additional two rounds of samples were conducted at this location. Benzene was below the detection limits in both subsequent sampling events. Chloroform exceedances were detected in all five of the monitoring wells installed in the bedrock. To facilitate bedrock drilling, municipal water was likely used to cool the drill bits during bedrock coring activities. Chloroform is generated at municipal water treatment plants when chlorine is used to kill bacteria in the water. It is likely that the source of the chloroform was the municipal water used for drilling.

On August 11, 2022, EXP conducted an additional round of groundwater sampling of the monitoring wells at 770 Bronson Avenue. None of the monitoring wells installed at 774 Bronson Avenue or 557 Cambridge Street were still present. Four groundwater samples (BH15-1, BH15-2, BH15-3, and BH15-5) and a duplicate were submitted for analysis of PHC, VOC and PAH. All of the samples were within the Tables 7 SCS for all parameters analysed.

EXP prepared a report entitled *Phase One Environmental Site Assessment, 770 and 774 Bronson Avenue and 557 Cambridge Street, Ottawa, Ontario,* dated September 2022. Based on the results of the Phase One ESA, EXP identified 16 areas of potential environmental concern (APEC) within the Phase One study area. Contaminants of potential concern (COPC) were identified to be petroleum hydrocarbons F1 to F4 (PHC), benzene, toluene, ethylbenzene, xylenes (BTEX), volatile organic compounds (VOC), polycyclic aromatic hydrocarbons (PAH), metals, chlorophenols, electrical conductivity (EC), and sodium adsorption ratio (SAR). A summary of the Phase One ESA Update findings is provided in Table 2.

Table 2: Findings of Phase One ESA

Area of Potential Environmental Concern (APEC)	Location of APEC on Phase One Property	Potentially Contaminating Activity (PCA)	Location of PCA (On-Site or Off- Site)	Contaminants of Potential Concern	Media Potentially Impacted (Groundwater, Soil and/or Sediment)
1. Former automotive garage at 770 Bronson Avenue	Garage building footprint	PCA #10 – Commercial autobody shop	On-Site	BTEX, PHC, VOC, metals	Soil and groundwater
2. Former gas station at 770 Bronson Avenue	Northeast part of the Phase Two property	PCA #28 – Gasoline and Associated Products Storage in Fixed Tanks	On-site	BTEX, PHC, VOC, metals	Soil and groundwater
3. Former heating oil AST at 770 Bronson Avenue	Along west interior building wall	PCA #28 – Gasoline and Associated Products Storage in Fixed Tanks	On-site	BTEX, PHC, VOC, PAH	Soil and groundwater
4. Former waste oil AST at 770 Bronson Avenue	Along south exterior building wall	PCA #28 – Gasoline and Associated Products Storage in Fixed Tanks	On-site	BTEX, PHC, VOC, PAH, metals	Soil and groundwater
5. Former heating oil AST in the north residential building at 774 Bronson Avenue	Former north residential building footprint	PCA #28 – Gasoline and Associated Products Storage in Fixed Tanks	On-site	BTEX, PHC, VOC, PAH	Soil and groundwater
6. Former heating oil AST in the south residential building at 774 Bronson Avenue	Former south residential building footprint	PCA #28 – Gasoline and Associated Products Storage in Fixed Tanks	On-site	BTEX, PHC, VOC, PAH	Soil and groundwater
7. Former heating oil AST in the commercial building at 774 Bronson Avenue	Former building footprint in southeast corner of Phase Two property	PCA #28 – Gasoline and Associated Products Storage in Fixed Tanks	On-site BTEX, PHC, VOC, PAH		Soil and groundwater
8. Former heating oil AST in the south commercial building at 557 Cambridge Street	Former building footprint on southwest corner of 557 Cambridge Street	PCA #28 – Gasoline and Associated Products Storage in Fixed Tanks	On-site	BTEX, PHC, VOC, PAH	Soil and groundwater
9. Former heating oil AST in the centre commercial building at 557 Cambridge Street	Former building footprint adjacent to west-centre property line of 557 Cambridge Street	PCA #28 – Gasoline and Associated Products Storage in Fixed Tanks	On-site	BTEX, PHC, VOC, PAH	Soil and groundwater

Area of Potential Environmental Concern (APEC)	Location of APEC on Phase One Property	Potentially Contaminating Activity (PCA)	Location of PCA (On-Site or Off- Site)	Contaminants of Potential Concern	Media Potentially Impacted (Groundwater, Soil and/or Sediment)
10. Former heating oil AST in the north commercial building at 557 Cambridge Street	Former building footprint on northwest corner of 557 Cambridge Street	PCA #28 – Gasoline and Associated Products Storage in Fixed Tanks	On-site	BTEX, PHC, VOC, PAH	Soil and groundwater
11. Oil skimmings collected at former contractors' yard at 557 Cambridge Street	Within building footprint of former contractor building in south-centre part of Phase Two property	PCA #28 – Gasoline and Associated Products Storage in Fixed Tanks	On-site	BTEX, PHC, PAH	Soil and groundwater
12. Fill used to backfill former UST excavations and former building footprints	Entire Phase Two property	PCA #30 – Importation of Fill Material of Unknown Quality	On-site	BTEX, PHC, PAH, metals	Soil
13. Former commercial printing operation	Former building footprint in southeast corner of Phase Two property	PCA #31 – Ink Manufacturing, Processing and Bulk Storage	On-site	VOC	Groundwater
14. Former dry cleaner at 786-788 Bronson Avenue	Along south property line shared with former dry cleaner	PCA #37 – Operation of Dry Cleaning Equipment (where chemicals are used)	Off-site	voc	Groundwater
15. Former treated lumber storage at 557 Cambridge Street	West part of the Phase Two property	PCA #59 – Wood Treating and Preservative Facility and Bulk Storage of Treated and Preserved Wood Products	On-site	PAH, PHC, Chlorophenols	Soil and groundwater
16. All former paved areas throughout the Phase Two Property	Former paved driveways and parking lots at Phase Two property	PCA #Other – Application of de-icing salt	On-site	EC, SAR	Soil

The Phase One ESA Update was conducted per the requirements of Ontario Regulation 153/04, as amended, and in accordance with generally accepted professional practices.

3.0 Scope of the Investigation

3.1 Overview of Site Investigation

The objective of the Phase Two ESA was to assess the quality of soil and groundwater on the Phase Two property.

The most recent use of the property was commercial. The proposed future use of the property is residential and commercial. Since the past use of the property was commercial land use, a Record of Site Condition (RSC) must be filed, per Ontario Regulation 153/04.

The investigation consisted of pre-remedial drilling, installation of monitoring wells, and soil and groundwater sampling.

3.2 Scope of Work

The scope of work for the Phase Two ESA was as follows:

- Drilling 15 pre-remedial boreholes on the subject property and completing 10 of them as monitoring wells;
- Collecting soil samples as drilling progresses;
- Collecting groundwater samples from the new monitoring wells and five existing monitoring wells;
- Submitting soil and groundwater samples for laboratory analysis of the COPC, which were determined to be PHC,
 VOC, BTEX, PAH, and/or metals;
- Comparing the results of the soil and groundwater chemical analyses to applicable criteria, as set out by the Ontario Ministry of the Environment, Conservation and Parks (MECP);
- · Conducting an elevation survey of the boreholes;
- Conducting hydraulic conductivity tests in two monitoring wells;
- Measuring groundwater levels to determine groundwater elevations and to infer the groundwater flow direction;
- Preparing a report summarizing the results of the assessment activities.

This report has been prepared in accordance with the Phase Two ESA standard as defined by Ontario Regulation 153/04 (as amended), and in accordance with generally accepted professional practices. Subject to this standard of care, EXP makes no express or implied warranties regarding its services and no third-party beneficiaries are intended. Limitation of liability, scope of report and third-party reliance are outlined in Section 8 of this report.

3.3 Media Investigated

The Phase Two ESA included the investigation of soil and groundwater on the Phase Two property. There are no water bodies on the Phase Two property, therefore sediment sampling was not required.

The contaminants of potential concern (COPC) identified in the Phase One ESA were identified as target parameters for this Phase Two ESA. The APEC and COPC identified in the Phase One ESA are outlined in Section 2.2.

3.4 Phase One Conceptual Site Model

The Phase One conceptual site model (CSM) was developed by considering the following physical characteristics and pathways. The CSM showing the topography of the site, inferred groundwater flow, general site features, APEC, and PCA is shown in Figures 2 and 3 in Appendix A.

3.4.1 Buildings and Structures

No buildings were present on the Phase Two property at the time of this investigation.

Historically, a multi-tenanted commercial building constructed *circa* 1915 was present at 774 Bronson Avenue. These buildings were demolished circa 2014 and the property is currently used as a parking lot.

The property at 770 Bronson was formerly occupied by a gas station/garage constructed *circa* 1930. The building was demolished in 2023 and the property is currently occupied by parking lot.

The property at 557 Cambridge Street was first developed *circa* 1925 for commercial purposes. The buildings were demolished circa 2014 and the property is currently used as a parking lot.

3.4.2 Water Bodies and Groundwater Flow Direction

Topographically, the Phase Two study area slopes downwards towards the southwest. The regional groundwater flow direction is anticipated to be to the north/northeast towards the Ottawa River. However, the local groundwater flow direction may be influenced by the presence of Dow's Lake, which is approximately 400 metres southwest of the Phase Two property. Dow's Lake is the closest water body to the Phase Two property and is a man-made lake on the Rideau Canal, which flows to the northeast towards the Ottawa River.

3.4.3 Areas of Natural Significance

The Phase Two property is not located within an area of natural significance, and it does not include land that is within 30 metres of an area of natural significance. In accordance with Section 41 of Ontario Regulation 153/04, the Phase Two property is not an environmentally sensitive area.

3.4.4 Water Wells

The Phase Two property, and all other properties located, in whole or in part, within 250 metres of the boundaries of the Phase Two property, are supplied by a municipal drinking water system, as defined in the *Safe Drinking Water Act*, provided by the City of Ottawa. Further, the Phase Two property is not located in an area designated in the municipal official plan as a well-head protection area and no properties within the Phase Two study area have a well that is being used or is intended for use as a source of potable water. Thus, in accordance with Section 35 of Ontario Regulation 153/04, non-potable water standards apply to the Phase Two property.

No wells used as a source of potable water or for agricultural purposes were observed on the Phase Two property or on any property within 250 metres of the Phase Two property.

3.4.5 Potentially Contaminating Activity

The following on-site potentially contaminating activities (PCA) were identified:

- PCA #10 Commercial Autobody Shops 770 Bronson Avenue (Phase Two property) Former service garage;
- PCA #28 Gasoline and Associated Products Storage in Fixed Tanks 770 Bronson Avenue (Phase Two property) –
 Former gas station with three UST;
- PCA #28 Gasoline and Associated Products Storage in Fixed Tanks 770 Bronson Avenue (Phase Two property) –
 Former heating oil AST along west interior building wall;
- PCA #28 Gasoline and Associated Products Storage in Fixed Tanks 770 Bronson Avenue (Phase Two property) –
 Former waste oil AST along the south exterior wall of the garage building;

- PCA #28 Gasoline and Associated Products Storage in Fixed Tanks 774 Bronson Avenue (Phase Two property) –
 Former heating oil AST in the former north residential building;
- PCA #28 Gasoline and Associated Products Storage in Fixed Tanks 774 Bronson Avenue (Phase Two property) –
 Former heating oil AST in the south residential building;
- PCA #28 Gasoline and Associated Products Storage in Fixed Tanks 774 Bronson Avenue (Phase Two property) –
 Former heating oil AST in the former commercial building;
- PCA #28 Gasoline and Associated Products Storage in Fixed Tanks 557 Cambridge Street (Phase Two property) –
 Former heating oil AST in the south office building;
- PCA #28 Gasoline and Associated Products Storage in Fixed Tanks 557 Cambridge Street (Phase Two property) –
 Former heating oil AST in the middle office building;
- PCA #28 Gasoline and Associated Products Storage in Fixed Tanks 557 Cambridge Street (Phase Two property) –
 Former heating oil AST in the north office building;
- PCA #28 Gasoline and Associated Products Storage in Fixed Tanks 557 Cambridge Street (Phase Two property) –
 Oil skimmings collected in former commercial building on east side of 557 Cambridge Street;
- PCA #30 Importation of Fill Material of Unknown Quantity Entire Phase Two property Fill material brought to site to backfill excavations, including tank nest and building foundations;
- PCA #31 Ink Manufacturing, Processing and Bulk Storage 774 Bronson Avenue Former commercial printing operation on south part of parcel (former address of 784 Bronson Avenue);
- PCA #59 Wood Treating and Preservative Facility and Bulk Storage of Treated and Preserved Wood Products 557
 Cambridge Avenue (Phase Two property) Western part of the site was historically used for wood treating; and
- PCA #Other Application of de-icing salt All former paved areas throughout the Phase Two Property.

By definition, all of the above PCA have resulted in APEC on the Phase Two property.

The following PCA have been identified in the Phase Two study area:

- PCA #10 Commercial Autobody Shops 400 Bell Street (125 m west) Former garage with UST;
- PCA #28 Gasoline and Associated Products Storage in Fixed Tanks 400 Bell Street (125 m west) Former garage with UST;
- PCA #28 Gasoline and Associated Products Storage in Fixed Tanks 735 Carling Avenue (225 m west) Former gas station with three UST;
- PCA #28 Gasoline and Associated Products Storage in Fixed Tanks 748 Bronson Avenue (now 265 Carling Avenue)
 (40 m north) Former gas station;
- PCA #37 Operation of Dry Cleaning Equipment (where chemicals are used) 786-788 Bronson Street (immediately south of Phase Two property) – Former dry cleaner;
- PCA #46 Rail Yards, Tracks and Spurs Between Cambridge Street and Dow's Lake (150 m southwest) Rail spurs
 at the Fraserfield Lumber Yard in early 1900s;
- PCA #55 Transformer Manufacturing, Processing and Use 227 Carling Avenue (now 247 Glebe Avenue) (60 m northeast) – Hydro sub station; and,
- PCA #59 Wood Treating and Preservative Facility and Bulk Storage of Treated and Preserved Wood Products –
 Between Cambridge Street and Dow's Lake (150 m southwest) Former Fraserfield Lumber Yard.

The former dry-cleaning operation at 786-788 Bronson Avenue is immediately adjacent and south of the Phase Two property and may have resulted in contamination to the Phase Two property. Therefore, this PCA results in an APEC on the Phase Two property.

The former gas station at 735 Carling Avenue, the former lumber yard and rail spur lines at Fraserfield Lumber yard, and the former garage at 400 Bell Street were all located over 150 m from the Phase Two property. Due to the separation distance from the Phase Two property and the low hydraulic conductivity of the bedrock, these operations were not considered to result in APEC on the Phase Two property.

The former gas station at 265 Carling Avenue and the hydro substation at 247 Glebe Avenue are located approximately 40 m north and 60 m northeast, respectively. The potential contaminants of concern associated with the former gas station at 265 Carling Avenue are the same as those associated with the former gas station on the Phase Two property itself. Thus, if groundwater is present with such contaminants, the source will be assumed to be the former gas station on the Phase Two property itself. The potential contaminants of concern associated with the hydro substation are polychlorinated biphenyls (PCB), which are relatively non-motile and, therefore, unlikely to migrate to the Phase Two property. Further, these two PCA are located downgradient of the Phase Two property, based on the inferred regional flow direction. Therefore, these operations were located downgradient of the Phase Two property and were determined not to result in APEC on the Phase Two property.

3.4.6 Areas of Potential Environmental Concern

The APEC identified are summarized in Table 3.

Table 3: Areas of Potential Environmental Concern

Area of Potential Environmental Concern (APEC)	Location of APEC on Phase One Property	Potentially Contaminating Activity (PCA)	Location of PCA (On-Site or Off- Site)	Contaminants of Potential Concern	Media Potentially Impacted (Groundwater, Soil and/or Sediment)
1. Former automotive garage at 770 Bronson Avenue	Garage building footprint	PCA #10 – Commercial autobody shop	On-Site	BTEX, PHC, VOC, metals	Soil and groundwater
2. Former gas station at 770 Bronson Avenue	Northeast part of the Phase Two property	PCA #28 – Gasoline and Associated Products Storage in Fixed Tanks	On-site	BTEX, PHC, VOC, metals	Soil and groundwater
3. Former heating oil AST at 770 Bronson Avenue	Along west interior building wall	PCA #28 – Gasoline and Associated Products Storage in Fixed Tanks	On-site	BTEX, PHC, VOC, PAH	Soil and groundwater
4. Former waste oil AST at 770 Bronson Avenue	Along south exterior building wall	PCA #28 – Gasoline and Associated Products Storage in Fixed Tanks	On-site	BTEX, PHC, VOC, PAH, metals	Soil and groundwater
5. Former heating oil AST in the north residential building at 774 Bronson Avenue	Former north residential building footprint	PCA #28 – Gasoline and Associated Products Storage in Fixed Tanks	On-site	BTEX, PHC, VOC, PAH	Soil and groundwater
6. Former heating oil AST in the south residential building at 774 Bronson Avenue	Former south residential building footprint	PCA #28 – Gasoline and Associated Products Storage in Fixed Tanks	On-site	BTEX, PHC, VOC, PAH	Soil and groundwater
7. Former heating oil AST in the commercial building at 774 Bronson Avenue	Former building footprint in southeast corner of Phase Two property	of Associated Products		BTEX, PHC, VOC, PAH	Soil and groundwater

Area of Potential Environmental Concern (APEC)	Location of APEC on Phase One Property	Potentially Contaminating Activity (PCA)	Location of PCA (On-Site or Off- Site)	Contaminants of Potential Concern	Media Potentially Impacted (Groundwater, Soil and/or Sediment)
8. Former heating oil AST in the south commercial building at 557 Cambridge Street	Former building footprint on southwest corner of 557 Cambridge Street	PCA #28 – Gasoline and Associated Products Storage in Fixed Tanks	On-site	BTEX, PHC, VOC, PAH	Soil and groundwater
9. Former heating oil AST in the centre commercial building at 557 Cambridge Street	Former building footprint adjacent to west-centre property line of 557 Cambridge Street	PCA #28 – Gasoline and Associated Products Storage in Fixed Tanks	On-site	BTEX, PHC, VOC, PAH	Soil and groundwater
10. Former heating oil AST in the north commercial building at 557 Cambridge Street	Former building footprint on northwest corner of 557 Cambridge Street	PCA #28 – Gasoline and Associated Products Storage in Fixed Tanks	On-site	BTEX, PHC, VOC, PAH	Soil and groundwater
11. Oil skimmings collected at former contractors' yard at 557 Cambridge Street	Within building footprint of former contractor building in south-centre part of Phase Two property	PCA #28 – Gasoline and Associated Products Storage in Fixed Tanks	On-site	BTEX, PHC, PAH	Soil and groundwater
12. Fill used to backfill former UST excavations and former building footprints	Entire Phase Two property	PCA #30 – Importation of Fill Material of Unknown Quality	On-site	BTEX, PHC, PAH, metals	Soil
13. Former commercial printing operation	Former building footprint in southeast corner of Phase Two property	PCA #31 – Ink Manufacturing, Processing and Bulk Storage	On-site	VOC	Groundwater
14. Former dry cleaner at 786-788 Bronson Avenue	Along south property line shared with former dry cleaner	PCA #37 – Operation of Dry Cleaning Equipment (where chemicals are used)	Off-site	VOC	Groundwater
15. Former treated lumber storage at 557 Cambridge Street	West part of the Phase Two property	PCA #59 – Wood Treating and Preservative Facility and Bulk Storage of Treated and Preserved Wood Products	On-site	PAH, PHC, Chlorophenols	Soil and groundwater
16. All former paved areas throughout the Phase Two Property	Former paved driveways and parking lots at Phase Two property	PCA #Other – Application of de-icing salt	On-site	EC, SAR	Soil

3.4.7 Underground Utilities

Although there were no buildings on the Phase Two property at the time of the investigation, the Phase Two property, and surrounding area are serviced by municipal water, storm and sanitary sewers, natural gas, hydro and telecommunication. Since the water table is within the bedrock, the presence of utilities is not expected to affect possible migration of contaminants once buildings are constructed on the Phase Two property.

3.4.8 Subsurface Stratigraphy

The Phase Two property is located in the physiographic region known as the Ottawa Formation. The bedrock in the area consists of limestone with some shaley partings. Bedrock is present at a depth of less than 2 metres below ground surface (mbgs), which is approximately 75 metres above sea level (masl). Therefore, in accordance with Section 43.1 of Regulation 153/04, the Phase Two property is a shallow soil property.

Beneath any fill, the surficial geology of the Phase Two is characterised by Champlain Sea deposits of plain till.

3.4.9 Uncertainty Analysis

The CSM is a simplification of reality, which aims to provide a description and assessment of any areas where potentially contaminating activity that occurred within the Phase Two study area may have adversely affected the Phase Two property. All information collected during this investigation, including records, interviews, and site reconnaissance, has contributed to the formulation of the CSM.

Information was assessed for consistency, however, EXP has confirmed neither the completeness nor the accuracy of any of the records that were obtained or of any of the statements made by others. All reasonable inquiries to obtain accessible information were made, as required by Schedule D, Table 1, Mandatory Requirements for Phase Two Environmental Site Assessment Reports. The CSM reflects our best interpretation of the information that was available during this investigation.

3.5 Deviations from Sampling and Analysis Plan

The field investigative and sampling program was carried out following the requirements of the Phase Two property, as described in Section 4.

No significant deviations from the SAAP, as provided in Appendix C, were reported that affected the sampling and data quality objectives for the Phase Two property. During the August 2022 groundwater sampling event conducted by EXP, BH15-4 could not be sampled due to insufficient sample volume.

3.6 Impediments

No impediments were encountered during this investigation.

4.0 Investigation Method

4.1 General

The current investigation was performed following requirements given under Ontario Regulation 153/04 and in accordance with generally accepted professional practices. The scope of work included pre-remediation drilling with soil and groundwater sampling. Groundwater samples from five pre-existing monitoring wells (BH15-1 to BH15-5) at 770 Bronson Avenue were also collected during this investigation.

4.2 Drilling

Prior to the commencement of drilling, the locations of underground public utilities including telephone, natural gas and electrical lines were marked at the subject property by public locating companies. A private utility locating contractor was also retained to clear the individual borehole locations.

The drilling program was completed between January 9 and 11, 2024, by Strata Drilling (Strata), a licensed well contractor. Strata advanced fifteen boreholes (BH1 to BH15) across the Phase Two property, using a Massenza M13 track-mounted drill. Ten of the boreholes (MW4 to MW13) were completed as monitoring wells. The boreholes instrumented with monitoring wells were augured to refusal, then advanced through bedrock using percussion drilling to a depth of 4.6 to 6.7 m below ground surface (mbgs). The remaining boreholes were terminated at refusal between 0.8 and 2.0 mbgs.

EXP staff continuously monitored the drilling activities to log the stratigraphy observed from the recovered samples, to record the depth of the samples, and to record total depths of borings. Field observations are documented on the borehole logs provided in Appendix D.

The locations of the boreholes from the previous and current investigations are shown on Figure 4 in Appendix A.

4.3 Soil Sampling

The soil sampling during the completion of this Phase Two ESA was undertaken in general accordance with the SAAP presented in Appendix C.

Direct-push continuous tube samplers were used to collect soil samples within the overburden. Soil samples were submitted for laboratory analysis of PHC, VOC, BTEX, PAH, metals, electrical conductivity, sodium adsorption ratio, and/or pH.

Soil samples were selected for laboratory analysis based on visual and olfactory evidence of impacts, where observed. Soil samples identified for possible laboratory analysis were placed directly into pre-cleaned, laboratory-supplied glass sample jars/vials. Samples to be analysed for PHC fraction F1 and BTEX were collected using a soil core sampler and placed into vials containing methanol as a preservative. The jars and vials were sealed with Teflon-lined lids to minimize headspace and reduce the potential for induced volatilization during storage/transport prior to analysis. All soil samples were placed in clean coolers containing ice prior to and during transportation to the subcontracted laboratory. The samples were transported/submitted within 48 hours of collection to the laboratory following chain of custody protocols for chemical analysis.

4.4 Field Screening Measurements

Soil samples were placed in a sealed Ziploc plastic bag and allowed to reach ambient temperature prior to field screening with a combustible vapour meter calibrated to hexane gas prior to use. The field screening measurements were made by inserting the instrument's probe into the plastic bag while manipulating the sample to ensure volatilization of the soil gases. These 'headspace' readings provide a real-time indication of the relative concentration of combustible vapours encountered in the subsurface during drilling and are used to aid in the assessment of the vertical and horizontal extent of potential impacts and the selection of soil samples for analysis.

Readings of petroleum vapour concentrations in the soil samples collected during the drilling investigation were recorded using an RKI Eagle 2, where there was sufficient recovery. This instrument is designed to detect and measure concentrations of combustible gas in the atmosphere to within 5 parts per million by volume (ppmv) from 0 ppmv to 200 ppmv, 10 ppmv increments from 200 ppmv to 1,000 ppmv, 50 ppmv increments from 1,000 ppmv to 10,000 ppmv, and 250 ppmv increments above 10,000 ppmv. It is equipped with two ranges of measurement, reading concentrations in ppmv or in percentage lower explosive limit (% LEL). The RKI Eagle 2 instrument can determine combustible vapour concentrations in the range equivalent to 0 to 11,000 ppmv of hexane.

The instrument was configured to eliminate any response from methane for all sampling conducted at the subject property. Instrument calibration is checked on a daily basis in both the ppmv range and % LEL range using standard gases comprised of known concentrations of hexane (400 ppmv, 40% LEL) in air. If the instrument readings are within ±10% of the standard gas value, then the instrument is deemed to be calibrated, however if the readings are greater than ±10% of the standard gas value then the instrument is re-calibrated prior to use.

4.5 Groundwater: Monitoring Well Installation

Monitoring wells were installed in 10 of the boreholes (MW-4 to MW-13). The monitoring wells were installed in general accordance with the Ontario Water Resources Act - R.R.O. 1990, Regulation 903 (as amended).

All monitoring wells were installed within the bedrock. The monitoring wells consisted of a 50-mm diameter Schedule 40 PVC screen that was 3.0 m long and a 50-mm diameter Schedule 40 PVC riser. The annular space around the wells was backfilled with sand to an average height of 0.3 m above the top of the screen. All wells were completed with flushmount casings. Following installation, all of the monitoring wells were developed by removing between three and ten well volumes using Waterra tubing and a foot valve.

As part of EXP's 2024 investigation, ten monitoring wells were installed across the Phase Two property. Measures taken to minimize the potential for cross contamination or the introduction of contaminants during well construction included:

- The use of well pipe components (e.g. riser pipe and well screens) with factory machined threaded flush coupling
 joints
- Construction of wells without the use of glues or adhesives
- Removing the protective plastic wraps from well components at the time of borehole insertion to prevent contact with the ground and other surfaces
- Cleaning or disposal of drilling equipment between sampling locations

Details of the monitoring well installations are shown on the borehole logs provided in Appendix D.

4.6 Groundwater: Field Measurement and Water Quality Parameters

Field measurement of water quality parameters is described in Section 4.7.

All measurements of petroleum vapours in the monitor riser were made with an RKI Eagle 2 in methane elimination mode. Immediately after removing the well cap, the collection tube of the Eagle was inserted into the riser and the peak instrument reading was recorded. EXP used a Heron water level tape to measure the static water level in each monitoring well. The measuring tape was cleaned with phosphate-free soap and tap water, rinsed with distilled water after each measurement.

4.7 Groundwater: Sampling

All groundwater samples were collected via a low flow sampling technique using a multi probe water quality meter. Prior to collecting the groundwater samples, water quality field parameters (turbidity, dissolved oxygen, conductivity, temperature, pH, and oxidation reduction potential) were monitored until stable readings were achieved to ensure that the samples

collected were representative of actual groundwater conditions. These parameters are considered to be stable when three consecutive readings meet the following conditions:

- Turbidity: within 10% for values greater than 5 nephelometric turbidity units (NTU), or three values less than 5 NTU;
- Dissolved oxygen: within 10% for values greater than 0.5 mg/L, or three values less than 0.5 mg/L;
- Conductivity: within 3%;
- Temperature: ± 1°C;
- pH: ± 0.1 unit; and,
- Oxidation reduction potential: ±10 millivolts.

When stabilization occurs, equilibrium between groundwater within a monitor and the surrounding formation water is attained. As such, samples collected when stabilization occurs are considered to be representative of formation water.

The groundwater sampling during the completion of this Phase Two ESA was undertaken in general accordance with the SAAP presented in Appendix C. The groundwater samples were placed in clean coolers containing ice packs prior to and during transportation to the laboratory. The samples were transported to the laboratory within 48 hours of collection with a chain of custody.

Four groundwater samples, collected from pre-existing monitoring wells MW15-1, MW15-2, MW15-3, and MW15-5 at 770 Bronson Avenue, were submitted for analysis of PHC, VOC, and PAH in August 2022. The new monitoring wells were sampled between January 23 and 25, 2024. Ten groundwater samples and one duplicate sample were submitted for analysis of VOC, PHC, and PAH. An additional sample was collected from MW10 and MW13 on February 5, 2024, and submitted for analysis of BTEX.

4.8 Sediment: Sampling

There are no water bodies present on the Phase Two property, therefore sediment sampling was not required.

4.9 Analytical Testing

The contracted laboratory selected to perform chemical analysis on all soil and groundwater samples was AGAT. AGAT is an accredited laboratory under the Standards Council of Canada/Canadian Association for Laboratory Accreditation in accordance with ISO/IEC 17025:1999- General Requirements for the Competence of Testing and Calibration Laboratories.

4.10 Residue Management

Soil cuttings and purge water from the Golder investigation were collected in sealed drums and stored on site for disposal by the property owner.

Fluids from cleaning drilling equipment were disposed of by the driller at their facility.

4.11 Elevation Surveying

An elevation survey was conducted by EXP. The ground surface elevation of the new boreholes as well as the existing monitoring wells installed in 2015 by Golder were surveyed relative to a geodetic reference. The Universal Transverse Mercator (UTM) coordinates of each monitoring well were also recorded so that their locations could be plotted accurately.

4.12 Quality Assurance and Quality Control Measures

All soil and groundwater samples were placed in coolers containing ice packs prior to and during transportation to the contract laboratory, AGAT. AGAT is accredited to the ISO/IEC 17025:2005 standard - *General Requirements for the Competence of Testing and Calibration Laboratories*.

A QA/QC program was also implemented to ensure that the analytical results received are accurate and dependable. A QA/QC program is a system of documented checks that validate the reliability of the data. Quality Assurance is a system that ensures that quality control procedures are correctly performed and documented. Quality Control refers to the established procedures observed both in the field and in the laboratory, designed to ensure that the resulting end data meet intended quality objectives. The QA/QC program implemented by EXP incorporated the following components:

- Collecting and analysing field duplicate samples to ensure analytical precision;
- Using dedicated and/or disposable sampling equipment;
- Following proper decontamination protocols to minimize cross-contamination;
- Maintaining field notes and completing field forms to document field activities; and
- Using only laboratory-supplied sample containers and following prescribed sample protocols, including using proper
 preservation techniques, meeting sample hold times, and documenting sample transmission on chains of custody,
 to ensure the integrity of the samples is maintained.

AGAT's QA/QC program involved the systematic analysis of control standards for the purpose of optimizing the measuring system as well as establishing system precision and accuracy and included calibration standards, method blanks, reference standards, spiked samples, surrogates and duplicates.

5.0 Review and Evaluation

5.1 Geology

A layer of asphalt approximately 50 mm thick was present at surface in all of the boreholes at 770 Bronson Avenue (BH11-BH-13), while all hard surfaces had been removed at 774 Bronson Avenue and 557 Cambridge Street prior to the current investigation.

In general, surficial geology consisted of sand and gravel fill material overlying bedrock. The fill material was noted to contain debris, including wood, ash, asphalt, and brick fragments. The texture of the soil is considered to be coarse.

Bedrock was encountered between 0.6 to 2.4 mbgs. It is noted that bedrock was shallower on the south part of the Phase Two Property (774 Bronson Avenue and 557 Cambridge Street) than the north part (770 Bronson Avenue).

A plan view showing cross-sections is provided as Figure 4 in Appendix A, while the Phase Two property geology is depicted in cross-sections on Figure 5 in Appendix A.

In the Ottawa area, the regional aquifers consist of both bedrock and overburden sources, with the two key aquifers consisting of the highly weathered and fractured portion of the upper bedrock surface and overlying sand and gravel deposits (contact zone aquifer) and deeper bedrock aquifers.

In southeastern Ontario, there are four main bedrock aguifers:

- Nepean-March-Oxford Aquifer
- Rockcliffe Aquifer
- Ottawa Group Aquifer
- Billing-Carlsbad-Queenston Aquifer

In the vicinity of the Phase Two Property, the primary bedrock aquifer is the Ottawa Group. This aquifer is considered to have marginal to variable water yielding capacity.

The contact zone aquifer, which generally includes the sand and gravel deposits and underlying fractured bedrock, is present across the Ottawa region, with more than 90% of the water extracted in eastern Ontario is extracted from the Contact Zone Aquifer. The contact zone aquifer varies in thickness across the region due to the large variation in the zone of upper bedrock fracturing. Regional groundwater flow in both the contact zone and bedrock have been interpreted to be to the northeast towards the Ottawa River, generally following bedrock topography.

5.2 Groundwater: Elevations and Flow Direction

On February 5, 2024, EXP measured groundwater levels in accessible monitoring wells at the Phase Two property. The groundwater elevations ranged between 1.54 and 5.28 metres below top of monitoring well. Three of the monitoring wells (MW4, BH15-01, BH15-04) were not accessible at this time.

Groundwater monitoring and elevation data are provided below.

Table 5.1: Monitoring and Elevation Data

-											
	Monitoring Well ID	Grade Elevation (masl)	Top of Casing Elevation (masl)	Screen Depth (mbgs)	Depth to LNAPL (mbgs)	Depth to Groundwater (mbTOC)	Groundwater Elevation (masl)				
	MW4	74.56	74.46	3.0 to 6.1	-	-	-				
Ī	MW5	73.84	73.76	3.0 to 6.1	N/A	2.83	70.93				
ĺ	MW6	74.05	73.95	3.0 to 6.1	N/A	2.36	71.59				

Monitoring Well ID	Grade Elevation (masl)	Top of Casing Elevation (masl)	Screen Depth (mbgs)	Depth to LNAPL (mbgs)	Depth to Groundwater (mbTOC)	Groundwater Elevation (masl)
MW7	74.38	74.26	1.5 to 4.6	N/A	2.61	71.65
MW8	74.36	74.28	3.0 to 6.1	N/A	1.54	72.74
MW9	74.75	74.62	3.0 to 6.1	N/A	2.93	71.69
MW10	75.02	74.87	3.0 to 6.1	N/A	5.08	69.79
MW11	75.78	75.71	3.0 to 6.1	N/A	4.99	70.72
MW12	76.02	75.93	3.6 to 6.7	N/A	3.79	72.14
MW13	76.11	76.04	3.6 to 6.7	N/A	3.77	72.27
BH15-01	75.76	75.66	4.1 to 5.6	-	-	-
BH15-02	75.72	75.66	4.4 to 5.9	N/A	2.41	73.25
BH15-03	75.82	75.72	4.4 to 5.9	N/A	2.63	73.09
BH15-04	75.65	75.60	4.4 to 6.0	-	-	-
BH15-05	74.45	74.42	7.8 to 15.3	N/A	5.28	69.14

Notes: Elevations were measured to a geodetic datum

LNAPL – light non-aqueous phase liquid

ppmv – parts per million by volume mbgs – metres below ground surface

masl – metres above sea level

mbTOC – metres below top of monitor casing

ND – non-detectable N/A – not applicable

Based on the groundwater elevations, a groundwater contour plan was prepared by EXP. The groundwater flow direction was determined to be to the southwest towards Dow's Lake. The groundwater contour plan is provided as Figure 6 in Appendix A.

EXP notes that groundwater levels depend on the size of the fractures that are intercepted as drilling progresses. Groundwater levels can also be influenced by seasonal changes, the presence of subsurface structures, or fill, however, based on the presence of the water table within the bedrock and the proximity to Dow's Lake and the Rideau Canal, it is unlikely that any of these factors significantly impact the groundwater flow direction. We note that the Rideau canal flows to the northeast to the Ottawa River.

5.3 Groundwater: Hydraulic Gradients

The horizontal hydraulic gradient was estimated for the groundwater flow components identified in the aquifer based on the February 2024 groundwater elevations.

The horizontal hydraulic gradient is calculated across the using the following equation:

 $i = \Delta h/\Delta s$

Where,

i = horizontal hydraulic gradient;

 Δh (m) = groundwater elevation difference; and,

 Δs (m) = separation distance.

The average horizontal hydraulic gradient was calculated to be 0.12 m/m.

A rising head test was conducted on two monitoring wells (MW4 and MW7). The rising head test requires that the static water level be measured in each monitoring well prior to the removal of groundwater. Groundwater is removed from the monitoring well using a bailer. After the water level has been sufficiently lowered, an interface probe is lowered into the

monitor as quickly as possible to measure the new water level. The time at which the new water level is measured is noted as time equal to zero. Water level readings are subsequently taken at frequent intervals. Both the water levels and the time they were taken are recorded.

The frequency of the time measurement is determined by the rate at which the water level recovers to the static water level. Measurements are taken until at least 70% recovery has been achieved or, in cases where recovery is extremely slow until it is deemed that a sufficient amount of time has elapsed. Using the Hvorslev model, the hydraulic conductivity for the monitoring well was calculated.

All water level measurements were made with a Heron oil/water interface probe. Both the probe and the measuring tape that come into contact with liquids within a monitor are cleaned with phosphate-free soap and tap water, rinsed with distilled water and then finally rinsed with methanol after each hydraulic conductivity test is concluded.

Table 5.2: Rising Head Tests

Monitoring Well ID	Horizon	Screen Depth (mbgs)		Water Level after Purging (mbToC)	Recovery to 37% of Static (s)	Hydraulic Conductivity (cm/s)
MW4	Bedrock	3.0 to 6.1	2.08	4.88	8,180	9.86 x 10 ⁻⁸
MW7	Bedrock	1.5 to 4.6	2.58	2.66	620	1.30 x 10 ⁻⁶

Notes: mbTOC – metres below top of monitor casing

The hydraulic conductivity was calculated to be approximately 9.9×10^{-8} cm/s in MW4 and approximately 1.3×10^{-6} cm/s in MW4. The data are indicative of different size fractures that were intercepted at the two depths. The data and the calculations for the hydraulic conductivity testing are provided in Appendix E.

Vertical gradients were not calculated.

5.4 Soil: Field Screening

The methodology for the collection of soil vapour concentration measurements is described in Section 4.4. Field screening data is presented in the borehole logs in Appendix D.

Inspection of the soil and bedrock cores retrieved from the boreholes did not indicate the presence of sheen, the presence of a separate organic phase, or other evidence of a non-aqueous phase liquid (NAPL. Staining was observed in soil samples retrieved from MW-11 and MW-13. Petroleum odours were observed in soil samples retrieved from MW-13.

5.5 Soil: Quality

Chemical analyses were performed on selected soil samples recovered from the boreholes on the Phase Two property.

Thirteen soil samples and one duplicate sample were submitted for analysis of VOC, PHC, and PAH; and fifteen samples and one duplicate sample were submitted for analysis of metals, and inorganics (EC and SAR). All of the soil samples met the Table 7 SCS with the exception of the following:

- MW13 SS1 exceeded the Table 7 SCS for PHC F3;
- BH2 SS1, BH3 SS1, MW4 SS2, MW6 SS1, MW12 SS1, and MW13 SS1 exceeded the Table 7 SCS for various PAH parameters;
- BH1 SS1 exceeded the Table 7 SCS for lead, and BH2 SS1 exceeded the Table 7 CS for cadmium, lead, and zinc; and,
- BH1 SS1, BH2 S1, BH3 SS1, MW6 SS1, MW7 SS1, MW8 SS1 (and duplicate), MW9 SS1, MW10 SS1, and MW13 SS1 exceeded the Table 7 SCS for electrical conductivity and/or sodium adsorption ratio.

In accordance with Section 49.1 of Regulation 153/04 if, in the opinion of the Qualified Person, the applicable SCS at the Phase Two property are exceeded solely due to the application of a substance to surfaces for the safety of vehicular or pedestrian traffic under conditions of snow or ice or both, the applicable SCS is deemed not to be exceeded. Road salt is considered to have been applied to the driving and parking surfaces on the Phase Two property. As all of the boreholes/monitoring wells with elevated sodium absorption ratio and conductivity levels were located in a parking lot, for the purpose of this investigation, the elevated sodium absorption ratio and conductivity levels in the soil samples are deemed not to exceed the Table 7 SCS.

The soil results are summarized in Tables 1 to 3 in Appendix F and are shown in plan view on Figures 7 to 9 and on cross-sections on Figures 10 to 12 in Appendix A.

Copies of the laboratory Certificates of Analysis are provided in Appendix G.

5.6 Groundwater: Quality

All groundwater samples were collected via a low flow sampling technique. Water quality parameters (such as water level, temperature, dissolved oxygen, conductivity, salinity, pH, oxygen reduction potential and turbidity) were monitored in order to ensure that the samples collected were representative of actual groundwater conditions.

On August 11, 2022, EXP collected groundwater samples from the existing monitoring wells (BH 15-1 to BH15-3, BH15-5) at 770 Bronson Avenue. None of the monitoring wells installed at 774 Bronson Avenue or 557 Cambridge Street were still present. Four groundwater samples, plus a field duplicate, were submitted for analysis of PHC, VOC, and PAH. BH15-4 could not be sampled due to insufficient sample volume. All of the samples were within the applicable Table 7 SCS for all parameters analysed.

Between January 23 and 25, 2024, ten groundwater samples, and a field duplicate were submitted for analysis of VOC, PHC, PAH, and metals. It was noted that the groundwater samples collected from MW10 and MW13 slightly exceeded the Table 7 SCS for benzene. The remaining samples met the Table 3 SCS for all remaining parameters analyzed.

On February 5, 2024, a second sample was collected from MW10 and MW13 and submitted for analysis of BTEX. Both of the samples were below the detection limits for benzene, which were exceeded in the initial samples.

Analytical results are included in Tables 4 to 6 in Appendix F and are shown in plan view on Figures 13 to 15 and on cross-sections on Figures 16 to 18 in Appendix A.

Copies of the laboratory Certificates of Analysis are provided in Appendix G.

5.7 Chemical Transformation and Contaminant Sources

A variety of physical, chemical and biochemical mechanisms affect the fate and transport of the potential COC in soil and groundwater, the contribution of which is dependent on the soil and groundwater conditions at the Phase Two property, as well as the chemical/physical properties of the COC. Relevant fate and transport mechanisms are natural attenuation mechanisms, including advection mixing, mechanical dispersion/molecular diffusion, phase partitions (i.e. sorption and volatilization), and possibly abiotic or biotic chemical reactions, which effectively reduce COC concentrations.

PAH and metals-impacted soil has been identified on the south part of the Phase Two property. As there were no groundwater exceedances identified on the Phase Two property, the contamination does not appear to be migrating.

5.7.1 Pathways and Receptors

A new building will be constructed at the Phase Two property. The building will have one or two levels of underground parking, ground-level commercial space, and upper-level residential units. The potential on-site human receptors include indoor and

outdoor long-term workers, indoor and outdoor short-term workers, residents (adult, teen, child, toddler and infant), property visitors (adult, teen, child, toddler and infant), and outdoor construction workers.

The potential on-site exposure pathways for the construction workers are incidental soil and groundwater ingestion, soil particulate inhalation, soil and groundwater dermal contact, ambient vapour inhalation, and vapour skin contact.

The potential on-site exposure pathways for the short-term and long-term outdoor workers (who are not exposed directly to subsurface soil and groundwater) are incidental surface soil ingestion, surface soil particulate inhalation, surface soil dermal contact, and vapour skin contact.

The potential on-site exposure pathway for the property residents, the long-term and short-term indoor workers and visitors is indoor air inhalation.

A diagram identifying the release mechanisms, contaminant transport pathway, human receptors, exposure points and routes of exposure are shown on Figure 19 in Appendix A.

While the footprint of the building that is being planned will occupy most of the Phase Two property, there will be a landscaped area surrounding the building. Therefore, The Phase Two property is capable of supporting some ecological receptors. Relevant ecological receptors include terrestrial vegetation (bushes, grasses and weeds); soil invertebrates (earthworms, millipedes and beetles); birds (seagulls, pigeons, sparrows and robins); and small terrestrial mammals (moles, voles, and mice).

The potential on-site exposure pathways for terrestrial vegetation are root uptake of soil and groundwater and stem and foliar uptake of vapours from soil and groundwater.

The potential on-site exposure pathways for soil invertebrates are soil particulate inhalation, soil and groundwater dermal contact, soil and groundwater ingestion, and vapour inhalation, and plant and animal tissue ingestion.

The potential on-site exposure pathways for mammals and birds are soil particulate inhalation, soil dermal contact, soil ingestion, vapour inhalation, and plant and animal tissue ingestion.

A diagram identifying the release mechanisms, contaminant transport pathway, ecological receptors, exposure points and routes of exposure are shown on Figure 20 in Appendix A.

It is recommended that the impacted soil be removed from the Phase Two property when the property is re-developed.

5.7.2 Evidence of Non-Aqueous Phase Liquid

Inspection of the groundwater monitoring wells did not indicate the presence of non-aqueous phase liquid (NAPL).

5.7.3 Maximum Concentrations

Contaminants that exceeded the applicable standards included:

Soil: PHC fraction F3, acenaphthylene, anthracene, benzo[a]anthracene, benzo[a]pyrene, benzo[b]fluoranthene, benzo[k]fluoranthene, dibenzo[a,h]anthracene, fluoranthene, indeno[1,2,3-cd]pyrene, cadmium, lead, and zinc.

Groundwater: None.

Maximum soil and groundwater concentrations are provided in Tables 7 and 8 in Appendix F.

5.7.4 Climatic Conditions

It is noted that climatic or meteorological conditions may influence the distribution and migration of COCs at the Phase Two property. Seasonal fluctuations in groundwater due to cyclical increases and decreases in precipitation can affect groundwater recharge and hence flow direction. Groundwater levels may be elevated in the spring and fall due to snow melt

and/or increases in precipitation, and groundwater levels may be lowered in the winter and summer due to snow storage and/or increased evaporation. Such fluctuations have the potential to increase the vertical distribution of COCs in the capillary zone, as well as alter the direction of groundwater flow paths based on changes in infiltration rates.

However, based on the conditions observed at the Phase Two property and the fact that acceptable soil concentrations were noted in the soil horizon above bedrock surface (which is above the water table), it is not anticipated that the climatic or meteorological changes have had any impact on the distribution of soil contaminants. As no groundwater impacts were identified on the site prior to remediation, migration of impacted groundwater is not considered a concern at the Phase Two property.

5.8 Sediment: Quality

There are no water bodies on the Phase Two property, therefore sediment sampling was not required.

5.9 Quality Assurance and Quality Control Results

Quality assurance and quality control measures were taken during the field activities to meet the objectives of the sampling and quality assurance plan to collect unbiased and representative samples to characterize existing conditions in the fill materials and groundwater at the site. QA/QC measures, included:

- Collection and analysis of blind duplicate soil and groundwater samples to ensure sample collection precision;
- Analysis of a groundwater field blank for all parameters that were analysed to assess potential impact during sampling;
- Using dedicated and/or disposable sampling equipment;
- Following proper decontamination protocols to minimize cross-contamination;
- Maintaining field notes and completing field forms to document on-site activities; and
- Using only laboratory supplied sample containers and following prescribed sample protocols, including proper preservation, meeting sample hold times, proper chain of custody documentation, to ensure integrity of the samples.

BV Labs' QA/QC program consisted of the preparation and analysis of laboratory duplicate samples to assess precision and sample homogeneity, method blanks to assess analytical bias, spiked blanks and QC standards to evaluate analyte recovery, matrix spikes to evaluate matrix interferences and surrogate compound recoveries to evaluate extraction efficiency. The laboratory QA/QC results are presented in the Quality Assurance Report provided in the Certificates of Analysis prepared by BV Labs. The QA/QC results are reported as percent recoveries for matrix spikes, spiked blanks and QC standards, relative percent difference for laboratory duplicates and analyte concentrations for method blanks.

Review of the laboratory QA/QC results reported indicated that they were mostly within acceptable control limits or below applicable alert criteria for the sampled media and analytical test groups. Further data qualifications are not required.

For QA/QC purposes, the analytical sample results are quantitatively evaluated by calculating the relative percent difference (RPD) between the samples and their duplicates. To accurately calculate a statistically valid RPD, the concentration of the analytes found in both the original and duplicate sample must be greater than five times the reporting detection limit (RDL).

The results of the RPD calculations are provided in Tables 9 to 14 in Appendix F. All of the RPD for were either not calculable or within the applicable alert limits except for barium, boron, and uranium in the groundwater sample pairs Since the metals results were within the Table 7 SCS, the deviation should have no material effect on the conclusions presented in this report.

6.0 Phase Two Conceptual Site Model

6.1 Introduction

A Conceptual Site Model (CSM) provides a narrative, graphical and tabulated description integrating information related to the Phase Two property's geologic and hydrogeological conditions, areas of potential environmental concern/potential contaminating activities, the presence and distribution of contaminants of concern, contaminant fate and transport, and potential exposure pathways.

EXP Services Inc. (EXP) was retained by Katasa Group to conduct a Phase Two Environmental Site Assessment (ESA) of the property located at 770 and 774 Bronson Avenue and 557 Cambridge Street in Ottawa, Ontario (hereinafter referred to as the 'Phase Two property'). The purpose of the investigation was to support the filing of a Record of Site Condition (RSC).

The objective of the Phase Two ESA investigation was to assess the quality of the groundwater conditions within the areas of potential environmental concern (APEC) identified in a Phase One ESA prepared by EXP. The most recent use of the property was for commercial purposes and the proposed future use will be residential and commercial. Consequently, in accordance with Regulation 153/04, as amended, an RSC must be filed.

6.2 Current and Proposed Future Uses

The most recent use of the property was commercial. The proposed future use of the property is residential and commercial. A new building will be constructed at the Phase Two property. The building will have one or two levels of underground parking, ground-level commercial space, and upper-level residential units.

6.3 Physical Site Description

The Phase Two property has the municipal addresses of 770 Bronson Avenue, 774 Bronson Avenue, and 557 Cambridge Street in Ottawa, Ontario. The Phase Two property is irregular in shape and has a total area of approximately 0.45 hectares. The approximate centroid coordinates are NAD83 18T 445213 m E and 5027661 m N. A site location plan is provided as Figure 1 in Appendix A.

The property at 770 Bronson Avenue is vacant and currently used as a parking lot. It is legally described as Part Lots 1 and 2, Registered Plan 28, City of Ottawa. The property identification number (PIN) is 04103-0205 (LT).

The property at 774 Bronson Avenue is vacant and currently used as a parking lot. It is legally described as Lots 3 and 4, Registered Plan 28, City of Ottawa. The PIN is 04103-0125 (LT).

The property at 557 Cambridge Street is vacant and currently used as a parking lot. It is legally described as Lot 37 and Part Lot 38, Registered Plan 28, Part 4 Registered Plan 5R14360, City of Ottawa. The PIN is 04103-0215 (LT).

Refer to Table 6.1 for the Site identification information.

Table 6.1: Site Identification Details

Civic Address	770 and 774 Bronson Avenue, 557 Cambridge Street, Ottawa, Ontario			
Current Land Use	Commercial			
Proposed Future Land Use	Commercial and Residential			
Property Identification Number	04103-0205, 04103-0125, 04103-0215			
UTM Coordinates	NAD83 18T 445213 m E and 5027661 m N			

Site Area	0.45 hectares
Property Owner	10467855 Canada Inc.

6.4 Potentially Contaminating Activities

The following on-site potentially contaminating activities (PCA) were identified:

- PCA #10 Commercial Autobody Shops 770 Bronson Avenue (Phase Two property) Former service garage;
- PCA #28 Gasoline and Associated Products Storage in Fixed Tanks 770 Bronson Avenue (Phase Two property) –
 Former gas station with three UST;
- PCA #28 Gasoline and Associated Products Storage in Fixed Tanks 770 Bronson Avenue (Phase Two property) –
 Former heating oil AST along west interior building wall;
- PCA #28 Gasoline and Associated Products Storage in Fixed Tanks 770 Bronson Avenue (Phase Two property) –
 Former waste oil AST along the south exterior wall of the garage building;
- PCA #28 Gasoline and Associated Products Storage in Fixed Tanks 774 Bronson Avenue (Phase Two property) –
 Former heating oil AST in the former north residential building;
- PCA #28 Gasoline and Associated Products Storage in Fixed Tanks 774 Bronson Avenue (Phase Two property) –
 Former heating oil AST in the south residential building;
- PCA #28 Gasoline and Associated Products Storage in Fixed Tanks 774 Bronson Avenue (Phase Two property) –
 Former heating oil AST in the former commercial building;
- PCA #28 Gasoline and Associated Products Storage in Fixed Tanks 557 Cambridge Street (Phase Two property) –
 Former heating oil AST in the south office building;
- PCA #28 Gasoline and Associated Products Storage in Fixed Tanks 557 Cambridge Street (Phase Two property) –
 Former heating oil AST in the middle office building;
- PCA #28 Gasoline and Associated Products Storage in Fixed Tanks 557 Cambridge Street (Phase Two property) –
 Former heating oil AST in the north office building;
- PCA #28 Gasoline and Associated Products Storage in Fixed Tanks 557 Cambridge Street (Phase Two property) –
 Oil skimmings collected in former commercial building on east side of 557 Cambridge Street;
- PCA #30 Importation of Fill Material of Unknown Quantity Entire Phase Two property Fill material brought to site to backfill excavations, including tank nest and building foundations;
- PCA #31 Ink Manufacturing, Processing and Bulk Storage 774 Bronson Avenue Former commercial printing operation on south part of parcel (former address of 784 Bronson Avenue);
- PCA #59 Wood Treating and Preservative Facility and Bulk Storage of Treated and Preserved Wood Products 557
 Cambridge Avenue (Phase Two property) Western part of the site was historically used for wood treating; and
- PCA #Other Application of de-icing salt All former paved areas throughout the Phase Two Property.

By definition, all of the above PCA have resulted in APEC on the Phase Two property.

The following PCA have been identified in the Phase Two study area:

PCA #10 – Commercial Autobody Shops – 400 Bell Street (125 m west) – Former garage with UST;

- PCA #28 Gasoline and Associated Products Storage in Fixed Tanks 400 Bell Street (125 m west) Former garage with UST;
- PCA #28 Gasoline and Associated Products Storage in Fixed Tanks 735 Carling Avenue (225 m west) Former gas station with three UST;
- PCA #28 Gasoline and Associated Products Storage in Fixed Tanks 748 Bronson Avenue (now 265 Carling Avenue)
 (40 m north) Former gas station;
- PCA #37 Operation of Dry Cleaning Equipment (where chemicals are used) 786-788 Bronson Street (immediately south of Phase Two property) – Former dry cleaner;
- PCA #46 Rail Yards, Tracks and Spurs Between Cambridge Street and Dow's Lake (150 m southwest) Rail spurs
 at the Fraserfield Lumber Yard in early 1900s;
- PCA #55 Transformer Manufacturing, Processing and Use 227 Carling Avenue (now 247 Glebe Avenue) (60 m northeast) – Hydro sub station; and,
- PCA #59 Wood Treating and Preservative Facility and Bulk Storage of Treated and Preserved Wood Products –
 Between Cambridge Street and Dow's Lake (150 m southwest) Former Fraserfield Lumber Yard.

The former dry-cleaning operation at 786-788 Bronson Avenue is immediately adjacent and south of the Phase Two property and may have resulted in contamination to the Phase Two property. Therefore, this PCA results in an APEC on the Phase Two property.

The former gas station at 735 Carling Avenue, the former lumber yard and rail spur lines at Fraserfield Lumber yard, and the former garage at 400 Bell Street were all located over 150 m from the Phase Two property. Due to the separation distance from the Phase Two property and the low hydraulic conductivity of the bedrock, these operations were not considered to result in APEC on the Phase Two property.

The former gas station at 265 Carling Avenue and the hydro substation at 247 Glebe Avenue are located approximately 40 m north and 60 m northeast, respectively. The potential contaminants of concern associated with the former gas station at 265 Carling Avenue are the same as those associated with the former gas station on the Phase Two property itself. Thus, if groundwater is present with such contaminants, the source will be assumed to be the former gas station on the Phase Two property itself. The potential contaminants of concern associated with the hydro substation are polychlorinated biphenyls (PCB), which are relatively non-motile and, therefore, unlikely to migrate to the Phase Two property. Further, these two PCA are located downgradient of the Phase Two property, based on the inferred regional flow direction. Therefore, these operations were located downgradient of the Phase Two property and were determined not to result in APEC on the Phase Two property.

6.5 Areas of Potential Environmental Concern/Potential Contaminants of Concern

The following APEC were identified on the Phase Two property, as shown in Table 6.3 below:

Table 6.3: Areas of Potential Environmental Concern

Area of Potential Environmental Concern (APEC)	Location of APEC on Phase One Property	Potentially Contaminating Activity (PCA)	Location of PCA (On-Site or Off- Site)	Contaminants of Potential Concern	Media Potentially Impacted (Groundwater, Soil and/or Sediment)
1. Former automotive garage at 770 Bronson Avenue	Garage building footprint	PCA #10 – Commercial autobody shop	On-Site	BTEX, PHC, VOC, metals	Soil and groundwater

Area of Potential Environmental Concern (APEC)	Location of APEC on Phase One Property	Potentially Contaminating Activity (PCA)	Location of PCA (On-Site or Off- Site)	Contaminants of Potential Concern	Media Potentially Impacted (Groundwater, Soil and/or Sediment)
2. Former gas station at 770 Bronson Avenue	Northeast part of the Phase Two property	PCA #28 – Gasoline and Associated Products Storage in Fixed Tanks	On-site	BTEX, PHC, VOC, metals	Soil and groundwater
3. Former heating oil AST at 770 Bronson Avenue	Along west interior building wall	PCA #28 – Gasoline and Associated Products Storage in Fixed Tanks	On-site	BTEX, PHC, VOC, PAH	Soil and groundwater
4. Former waste oil AST at 770 Bronson Avenue	Along south exterior building wall	PCA #28 – Gasoline and Associated Products Storage in Fixed Tanks	On-site	BTEX, PHC, VOC, PAH, metals	Soil and groundwater
5. Former heating oil AST in the north residential building at 774 Bronson Avenue	Former north residential building footprint	PCA #28 – Gasoline and Associated Products Storage in Fixed Tanks	On-site	BTEX, PHC, VOC, PAH	Soil and groundwater
6. Former heating oil AST in the south residential building at 774 Bronson Avenue	Former south residential building footprint	PCA #28 – Gasoline and Associated Products Storage in Fixed Tanks	On-site	BTEX, PHC, VOC, PAH	Soil and groundwater
7. Former heating oil AST in the commercial building at 774 Bronson Avenue	Former building footprint in southeast corner of Phase Two property	PCA #28 – Gasoline and Associated Products Storage in Fixed Tanks	On-site	BTEX, PHC, VOC, PAH	Soil and groundwater
8. Former heating oil AST in the south commercial building at 557 Cambridge Street	Former building footprint on southwest corner of 557 Cambridge Street	PCA #28 – Gasoline and Associated Products Storage in Fixed Tanks	On-site	BTEX, PHC, VOC, PAH	Soil and groundwater
9. Former heating oil AST in the centre commercial building at 557 Cambridge Street	Former building footprint adjacent to west-centre property line of 557 Cambridge Street	PCA #28 – Gasoline and Associated Products Storage in Fixed Tanks	On-site	BTEX, PHC, VOC, PAH	Soil and groundwater
10. Former heating oil AST in the north commercial building at 557 Cambridge Street	Former building footprint on northwest corner of 557 Cambridge Street	PCA #28 – Gasoline and Associated Products Storage in Fixed Tanks	On-site	BTEX, PHC, VOC, PAH	Soil and groundwater
11. Oil skimmings collected at former contractors' yard at 557 Cambridge Street	Within building footprint of former contractor building in south-centre part of Phase Two property	PCA #28 – Gasoline and Associated Products Storage in Fixed Tanks	On-site	BTEX, PHC, PAH	Soil and groundwater
12. Fill used to backfill former UST excavations and former building footprints	Entire Phase Two property	PCA #30 – Importation of Fill Material of Unknown Quality	On-site	BTEX, PHC, PAH, metals	Soil
13. Former commercial printing operation	Former building footprint in southeast corner of Phase Two property	PCA #31 – Ink Manufacturing, Processing and Bulk Storage	On-site	VOC	Groundwater

Area of Potential Environmental Concern (APEC)	Location of APEC on Phase One Property	Potentially Contaminating Activity (PCA)	Location of PCA (On-Site or Off- Site)	Contaminants of Potential Concern	Media Potentially Impacted (Groundwater, Soil and/or Sediment)
14. Former dry cleaner at 786-788 Bronson Avenue	Along south property line shared with former dry cleaner	PCA #37 – Operation of Dry Cleaning Equipment (where chemicals are used)	Off-site	VOC	Groundwater
15. Former treated lumber storage at 557 Cambridge Street	West part of the Phase Two property	PCA #59 – Wood Treating and Preservative Facility and Bulk Storage of Treated and Preserved Wood Products	On-site	PAH, PHC, Chlorophenols	Soil and groundwater
16. All former paved areas throughout the Phase Two Property	Former paved driveways and parking lots at Phase Two property	PCA #Other — Application of de-icing salt	On-site	EC, SAR	Soil

The locations of the PCA and APEC are shown on Figures 2 and 3 in Appendix A.

6.6 Buildings and Structures

No buildings were present on the Phase Two property at the time of this investigation.

Historically, a multi-tenanted commercial building constructed *circa* 1915 was present at 774 Bronson Avenue. These buildings were demolished circa 2014 and the property is currently used as a parking lot.

The property at 770 Bronson was formerly occupied by a gas station/garage constructed *circa* 1930. The building was demolished in 2023 and the property is currently occupied by parking lot.

The property at 557 Cambridge Street was first developed *circa* 1925 for commercial purposes. The buildings were demolished circa 2014 and the property is currently used as a parking lot.

6.7 Water Bodies and Groundwater Flow Direction

Topographically, the Phase Two study area slopes downwards towards the southwest. The regional groundwater flow direction is anticipated to be to the north/northeast towards the Ottawa River. However, the local groundwater flow direction may be influenced by the presence of Dow's Lake, which is approximately 400 metres southwest of the Phase Two property. Dow's Lake is the closest water body to the Phase Two property and is a man-made lake on the Rideau Canal, which flows to the northeast towards the Ottawa River.

6.8 Areas of Natural Significance

The Phase Two property is not located within an area of natural significance, and it does not include land that is within 30 metres of an area of natural significance. In accordance with Section 41 of Ontario Regulation 153/04, the Phase Two property is not an environmentally sensitive area.

6.9 Water Wells

The Phase Two property, and all other properties located, in whole or in part, within 250 metres of the boundaries of the Phase Two property, are supplied by a municipal drinking water system, as defined in the *Safe Drinking Water Act*, provided by the City of Ottawa. Further, the Phase Two property is not located in an area designated in the municipal official plan as a

well-head protection area and no properties within the Phase Two study area have a well that is being used or is intended for use as a source of potable water. Thus, in accordance with Section 35 of Ontario Regulation 153/04, non-potable water standards apply to the Phase Two property.

No wells used as a source of potable water or for agricultural purposes were observed on the Phase Two property or on any property within 250 metres of the Phase Two property.

6.10 Utilities

Although there were no buildings on the Phase Two property at the time of the investigation, the Phase Two property, and surrounding area are serviced by municipal water, storm and sanitary sewers, natural gas, hydro and telecommunication. Since the water table is within the bedrock, the presence of utilities is not expected to affect possible migration of contaminants once buildings are constructed on the Phase Two property.

6.11 Geological and Hydrogeological

The Phase Two property is located in the physiographic region known as the Ottawa Formation. The bedrock in the area consists of limestone with some shaley partings. Bedrock is present at a depth of less than 2 metres below ground surface (mbgs), which is approximately 75 metres above sea level (masl). Therefore, in accordance with Section 43.1 of Regulation 153/04, the Phase Two property is a shallow soil property.

Beneath any fill, the surficial geology of the Phase Two is characterised by Champlain Sea deposits of plain till.

A layer of asphalt approximately 50 mm thick was present at surface in all of the boreholes at 770 Bronson Avenue (BH11-BH-13), while all hard surfaces had been removed at 774 Bronson Avenue and 557 Cambridge Street prior to the current investigation.

In general, surficial geology consisted of sand and gravel fill material overlying bedrock. The fill material was noted to contain debris, including wood, ash, asphalt, and brick fragments. The texture of the soil is considered to be coarse.

Bedrock was encountered between 0.6 to 2.4 mbgs. It is noted that bedrock was shallower on the south part of the Phase Two Property (774 Bronson Avenue and 557 Cambridge Street) than the north part (770 Bronson Avenue).

A plan view showing cross-sections is provided as Figure 4 in Appendix A, while the Phase Two property geology is depicted in cross-sections on Figure 5 in Appendix A.

In the Ottawa area, the regional aquifers consist of both bedrock and overburden sources, with the two key aquifers consisting of the highly weathered and fractured portion of the upper bedrock surface and overlying sand and gravel deposits (contact zone aquifer) and deeper bedrock aquifers.

In southeastern Ontario, there are four main bedrock aguifers:

- Nepean-March-Oxford Aguifer
- Rockcliffe Aguifer
- Ottawa Group Aquifer
- Billing-Carlsbad-Queenston Aquifer

In the vicinity of the Phase Two Property, the primary bedrock aquifer is the Ottawa Group. This aquifer is considered to have marginal to variable water yielding capacity.

The contact zone aquifer, which generally includes the sand and gravel deposits and underlying fractured bedrock, is present across the Ottawa region, with more than 90% of the water extracted in eastern Ontario is extracted from the Contact Zone Aquifer. The contact zone aquifer varies in thickness across the region due to the large variation in the zone of upper bedrock

fracturing. Regional groundwater flow in both the contact zone and bedrock have been interpreted to be to the northeast towards the Ottawa River, generally following bedrock topography.

On February 5, 2024, EXP measured groundwater levels in accessible monitoring wells at the Phase Two property. The groundwater elevations ranged between 1.54 and 5.28 metres below top of monitoring well. Three of the monitoring wells (MW4, BH15-01, BH15-04) were not accessible at this time.

Based on the groundwater elevations, a groundwater contour plan was prepared by EXP. The groundwater flow direction was determined to be to the southwest towards Dow's Lake. The groundwater contour plan is provided as Figure 6 in Appendix A.

EXP notes that groundwater levels depend on the size of the fractures that are intercepted as drilling progresses. Groundwater levels can also be influenced by seasonal changes, the presence of subsurface structures, or fill, however, based on the presence of the water table within the bedrock and the proximity to Dow's Lake and the Rideau Canal, it is unlikely that any of these factors significantly impact the groundwater flow direction. We note that the Rideau canal flows to the northeast to the Ottawa River..

6.12 Applicable Site Condition Standards

For assessment purposes, EXP selected the 2011 Table 7 SCS in a non-potable groundwater condition for residential/parkland/institutional property use and coarse textured soils. The selection of these categories was based on the following factors:

- The predominant soil type on the Phase Two property was considered to be coarse textured, based on field observations;
- There was no intention to carry out a stratified restoration at the Phase Two property;
- More than two-thirds of the Phase Two property has an overburden thickness less than 2 metres;
- The Phase Two property is not located within 30 metres of a surface water body;
- The Phase Two property, and all other properties located, in whole or in part, within 250 metres of the boundaries of the Phase Two property, are supplied by a municipal drinking water system provided by the City of Ottawa;
- The Phase Two property is not located in an area designated in the municipal official plan as a well-head protection
 area and no properties within the Phase Two study area have a well that is being used or is intended for use as a
 source of potable water;
- The Phase Two property is not within an area of natural significance; does not include, nor is it adjacent to an area
 of natural significance, nor is it part of such an area; and, it does not include land that is within 30 metres of an area
 of natural significance, nor is it part of such an area;
- The soil at the Phase Two property has a pH value between 5 and 9 for surficial soils; and, between 5 and 11 for subsurface soils;
- The Phase Two property is planned for future residential and commercial use; and
- It is the opinion of the Qualified Person who oversaw this work that the Phase Two property is not a sensitive site.

Based on the above considerations:

• In accordance with Section 35 of Ontario Regulation 153/04, non-potable water standards apply to the Phase Two property;

- In accordance with Section 41 of Ontario Regulation 153/04, the Phase Two property is not an environmentally sensitive area; and
- The Phase Two property is a shallow soil property, as defined in Section 43.1 of Regulation 153/04. Scope of the Investigation

The current investigation was performed following requirements given under Ontario Regulation 153/04 and in accordance with generally accepted professional practices. The scope of work included pre-remediation drilling with soil and groundwater sampling. Groundwater samples from five pre-existing monitoring wells (BH15-1 to BH15-5) at 770 Bronson Avenue were also collected during this investigation.

Prior to the commencement of drilling, the locations of underground public utilities including telephone, natural gas and electrical lines were marked at the subject property by public locating companies. A private utility locating contractor was also retained to clear the individual borehole locations.

The drilling program was completed between January 9 and 11, 2024, by Strata Drilling (Strata), a licensed well contractor. Strata advanced fifteen boreholes (BH1 to BH15) across the Phase Two property, using a Massenza M13 track-mounted drill. Ten of the boreholes (MW4 to MW13) were completed as monitoring wells. The boreholes instrumented with monitoring wells were augured to refusal, then advanced through bedrock using percussion drilling to a depth of 4.6 to 6.7 m below ground surface (mbgs). The remaining boreholes were terminated at refusal between 0.8 and 2.0 mbgs.

6.13 Soil Sampling

Chemical analyses were performed on selected soil samples recovered from the boreholes on the Phase Two property.

Thirteen soil samples and one duplicate sample were submitted for analysis of VOC, PHC, and PAH; and fifteen samples and one duplicate sample were submitted for analysis of metals, and inorganics (EC and SAR). All of the soil samples met the Table 7 SCS with the exception of the following:

- MW13 SS1 exceeded the Table 7 SCS for PHC F3;
- BH2 SS1, BH3 SS1, MW4 SS2, MW6 SS1, MW12 SS1, and MW13 SS1 exceeded the Table 7 SCS for various PAH parameters;
- BH1 SS1 exceeded the Table 7 SCS for lead, and BH2 SS1 exceeded the Table 7 CS for cadmium, lead, and zinc; and,
- BH1 SS1, BH2 S1, BH3 SS1, MW6 SS1, MW7 SS1, MW8 SS1 (and duplicate), MW9 SS1, MW10 SS1, and MW13 SS1 exceeded the Table 7 SCS for electrical conductivity and/or sodium adsorption ratio.

In accordance with Section 49.1 of Regulation 153/04 if, in the opinion of the Qualified Person, the applicable SCS at the Phase Two property are exceeded solely due to the application of a substance to surfaces for the safety of vehicular or pedestrian traffic under conditions of snow or ice or both, the applicable SCS is deemed not to be exceeded. Road salt is considered to have been applied to the driving and parking surfaces on the Phase Two property. As all of the boreholes/monitoring wells with elevated sodium absorption ratio and conductivity levels were located in a parking lot, for the purpose of this investigation, the elevated sodium absorption ratio and conductivity levels in the soil samples are deemed not to exceed the Table 7 SCS.

The soil results are shown in plan view on Figures 7 to 9 and on cross-sections on Figures 10 to 12 in Appendix A.

6.14 Groundwater Sampling

All groundwater samples were collected via a low flow sampling technique. Water quality parameters (such as water level, temperature, dissolved oxygen, conductivity, salinity, pH, oxygen reduction potential and turbidity) were monitored in order to ensure that the samples collected were representative of actual groundwater conditions.

On August 11, 2022, EXP collected groundwater samples from the existing monitoring wells (BH 15-1 to BH15-3, BH15-5) at 770 Bronson Avenue. None of the monitoring wells installed at 774 Bronson Avenue or 557 Cambridge Street were still present. Four groundwater samples, plus a field duplicate, were submitted for analysis of PHC, VOC, and PAH. BH15-4 could not be sampled due to insufficient sample volume. All of the samples were within the applicable Table 7 SCS for all parameters analysed.

Between January 23 and 25, 2024, ten groundwater samples, and a field duplicate were submitted for analysis of VOC, PHC, PAH, and metals. It was noted that the groundwater samples collected from MW10 and MW13 slightly exceeded the Table 7 SCS for benzene. The remaining samples met the Table 3 SCS for all remaining parameters analyzed.

On February 5, 2024, a second sample was collected from MW10 and MW13 and submitted for analysis of BTEX. Both of the samples were below the detection limits for benzene, which were exceeded in the initial samples.

Analytical results are shown in plan view on Figures 13 to 15 and on cross-sections on Figures 16 to 18 in Appendix A.

6.15 Contaminants of Concern

Potential contaminants of concern (COC) that were identified on the Phase Two property included:

- Soil: BTEX, PHC, VOC, PAH, and metals
- Groundwater: BTEX, PHC, VOC, PAH, and metals

Prior to remediation, soil in the vicinity of BH-5 and BH-7 exceeded the Table 7 SCS. Contaminants that exceeded the applicable standards included:

Soil: PHC fraction F3, acenaphthylene, anthracene, benzo[a]anthracene, benzo[a]pyrene, benzo[b]fluoranthene, benzo[k]fluoranthene, dibenzo[a,h]anthracene, fluoranthene, indeno[1,2,3-cd]pyrene, cadmium, lead, and zinc.

Groundwater: None.

Inspection of the groundwater monitoring wells did not indicate the presence of non-aqueous phase liquid (NAPL).

6.16 Chemical Transformation and Contaminant Sources

A variety of physical, chemical and biochemical mechanisms affect the fate and transport of the potential COC in soil and groundwater, the contribution of which is dependent on the soil and groundwater conditions at the Phase Two property, as well as the chemical/physical properties of the COC. Relevant fate and transport mechanisms are natural attenuation mechanisms, including advection mixing, mechanical dispersion/molecular diffusion, phase partitions (i.e. sorption and volatilization), and possibly abiotic or biotic chemical reactions, which effectively reduce COC concentrations.

PAH and metals-impacted soil has been identified on the south part of the Phase Two property. As there were no groundwater exceedances identified on the Phase Two property, the contamination does not appear to be migrating.

It is recommended that the impacted soil be removed from the Phase Two property when the property is re-developed.

6.17 Climatic Conditions

It is noted that climatic or meteorological conditions may influence the distribution and migration of COCs at the Phase Two property. Seasonal fluctuations in groundwater due to cyclical increases and decreases in precipitation can affect groundwater recharge and hence flow direction. Groundwater levels may be elevated in the spring and fall due to snow melt and/or increases in precipitation, and groundwater levels may be lowered in the winter and summer due to snow storage and/or increased evaporation. Such fluctuations have the potential to increase the vertical distribution of COCs in the capillary zone, as well as alter the direction of groundwater flow paths based on changes in infiltration rates.

However, based on the conditions observed at the Phase Two property and the fact that acceptable soil concentrations were noted in the soil horizon above bedrock surface (which is above the water table), it is not anticipated that the climatic or meteorological changes have had any impact on the distribution of soil contaminants. As no groundwater impacts were identified on the site prior to remediation, migration of impacted groundwater is not considered a concern at the Phase Two property.

6.18 Human Health Exposure Pathways and Receptors

A new building will be constructed at the Phase Two property. The building will have one or two levels of underground parking, ground-level commercial space, and upper-level residential units. The potential on-site human receptors include indoor and outdoor long-term workers, indoor and outdoor short-term workers, residents (adult, teen, child, toddler and infant), property visitors (adult, teen, child, toddler and infant), and outdoor construction workers.

The potential on-site exposure pathways for the construction workers are incidental soil and groundwater ingestion, soil particulate inhalation, soil and groundwater dermal contact, ambient vapour inhalation, and vapour skin contact.

The potential on-site exposure pathways for the short-term and long-term outdoor workers (who are not exposed directly to subsurface soil and groundwater) are incidental surface soil ingestion, surface soil particulate inhalation, surface soil dermal contact, and vapour skin contact.

The potential on-site exposure pathway for the property residents, the long-term and short-term indoor workers and visitors is indoor air inhalation.

A diagram identifying the release mechanisms, contaminant transport pathway, human receptors, exposure points and routes of exposure are shown on Figure 19 in Appendix A.

6.19 Ecological Exposure Pathways and Receptors

While the footprint of the building that is being planned will occupy most of the Phase Two property, there will be a landscaped area surrounding the building. Therefore, The Phase Two property is capable of supporting some ecological receptors. Relevant ecological receptors include terrestrial vegetation (bushes, grasses and weeds); soil invertebrates (earthworms, millipedes and beetles); birds (seagulls, pigeons, sparrows and robins); and small terrestrial mammals (moles, voles, and mice).

The potential on-site exposure pathways for terrestrial vegetation are root uptake of soil and groundwater and stem and foliar uptake of vapours from soil and groundwater.

The potential on-site exposure pathways for soil invertebrates are soil particulate inhalation, soil and groundwater dermal contact, soil and groundwater ingestion, and vapour inhalation, and plant and animal tissue ingestion.

The potential on-site exposure pathways for mammals and birds are soil particulate inhalation, soil dermal contact, soil ingestion, vapour inhalation, and plant and animal tissue ingestion.

A diagram identifying the release mechanisms, contaminant transport pathway, ecological receptors, exposure points and routes of exposure are shown on Figure 20 in Appendix A.

P.L. STELMACK

SEC 774 Bronson Phase Two Environmental Site Assessment 770 and 774 Bronson Avenue and 557 Cambridge Street, Ottawa, Ontario OTT-22019409-A0 June 24, 2024

7.0 Conclusion

PHC, PAH and metals impacted soil has been identified on the Phase Two property. As there were no groundwater exceedances identified on the Phase Two property, the contamination does not appear to be migrating. It is recommended that the impacted soil be removed from the Phase Two property when the property is re-developed.

The Qualified Person can confirm that the Phase Two Environmental Site Assessment was conducted per the requirements of Ontario Regulation 153/04, as amended, and in accordance with generally accepted professional practices.

Leah Wells, P.Eng. Environmental Engineer Earth and Environment Patricia Stelmack, M.Sc., P.Eng. Senior Project Manager Earth and Environment

8.0 References

This study was conducted in accordance with the applicable Regulations, Guidelines, Policies, Standards, Protocols and Objectives. Specific reference is made to the following documents:

- Freeze and Cherry, Groundwater, Prentice Hall, 1979.
- Golder Associates, Phase One Environmental Site Assessment, 770 Bronson Avenue, Ottawa, Ontario, August 2015.
- Golder Associates, Phase Two Environmental Site Assessment, 770 Bronson Avenue, Ottawa, Ontario, August 2015.
- Golder Associates, Technical Memorandum, Remedial Action Plan, August 2016.
- Exp Services Inc., Phase One Environmental Site Assessment, 770 and 774 Bronson Avenue and 557 Cambridge Street, Ottawa, Ontario, September 2022.
- Ontario Ministry of the Environment, Conservation and Parks, Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario, December 1996.
- Ontario Ministry of the Environment, Conservation and Parks, Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act, April 15, 2011.
- Ontario Ministry of the Environment, Conservation and Parks, *Guide for Completing Phase Two Environmental Site Assessments under Ontario Regulation 153/04*, June 2011.
- Ontario Ministry of the Environment, Conservation and Parks, Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act, July 1, 2011.
- Ontario Ministry of the Environment, Conservation and Parks, Management of Excess Soil A Guide for Best Management Practices, January 2014.
- Ontario Regulation 153/04, made under the Environmental Protection Act, as amended.
- Ontario R.R.O. 1990, Regulation 347, made under the Environmental Protection Act, as amended.
- Ontario R.R.O. 1990, Regulation 903, made under the Water Resources Act, as amended.
- Paterson Group Inc., Phase I Environmental Site Assessment, 770-774 Bronson Avenue, Ottawa, Ontario, April 2020.
- WSP Canada Inc., Phase 1 Environmental Site Assessment, 774 Bronson Avenue and 557 Cambridge Street South, Ottawa, Ontario, December 2015.
- WSP Canada Inc., Phase Two Environmental Site Assessment, 774 Bronson Avenue and 557 Cambridge Street, Ottawa, Ontario, March 2016.

9.0 General Limitations

Basis of Report

This report ("Report") is based on site conditions known or inferred by the investigation undertaken as of the date of the Report. Should changes occur which potentially impact the condition of the site the recommendations of EXP may require reevaluation. Where special concerns exist, or SEC 774 Bronson ("the Client") has special considerations or requirements, these should be disclosed to EXP to allow for additional or special investigations to be undertaken not otherwise within the scope of investigation conducted for the purpose of the Report.

Reliance on Information Provided

The evaluation and conclusions contained in the Report are based on conditions in evidence at the time of site inspections and information provided to EXP by the Client and others. The Report has been prepared for the specific site, development, building, design or building assessment objectives and purpose as communicated by the Client. EXP has relied in good faith upon such representations, information and instructions and accepts no responsibility for any deficiency, misstatement or inaccuracy contained in the Report as a result of any misstatements, omissions, misrepresentation or fraudulent acts of persons providing information. Unless specifically stated otherwise, the applicability and reliability of the findings, recommendations, suggestions or opinions expressed in the Report are only valid to the extent that there has been no material alteration to or variation from any of the information provided to exp. If new information about the environmental conditions at the Site is found, the information should be provided to EXP so that it can be reviewed and revisions to the conclusions and/or recommendations can be made, if warranted.

Standard of Care

The Report has been prepared in a manner consistent with the degree of care and skill exercised by engineering consultants currently practicing under similar circumstances and locale. No other warranty, expressed or implied, is made. Unless specifically stated otherwise, the Report does not contain environmental consulting advice.

Complete Report

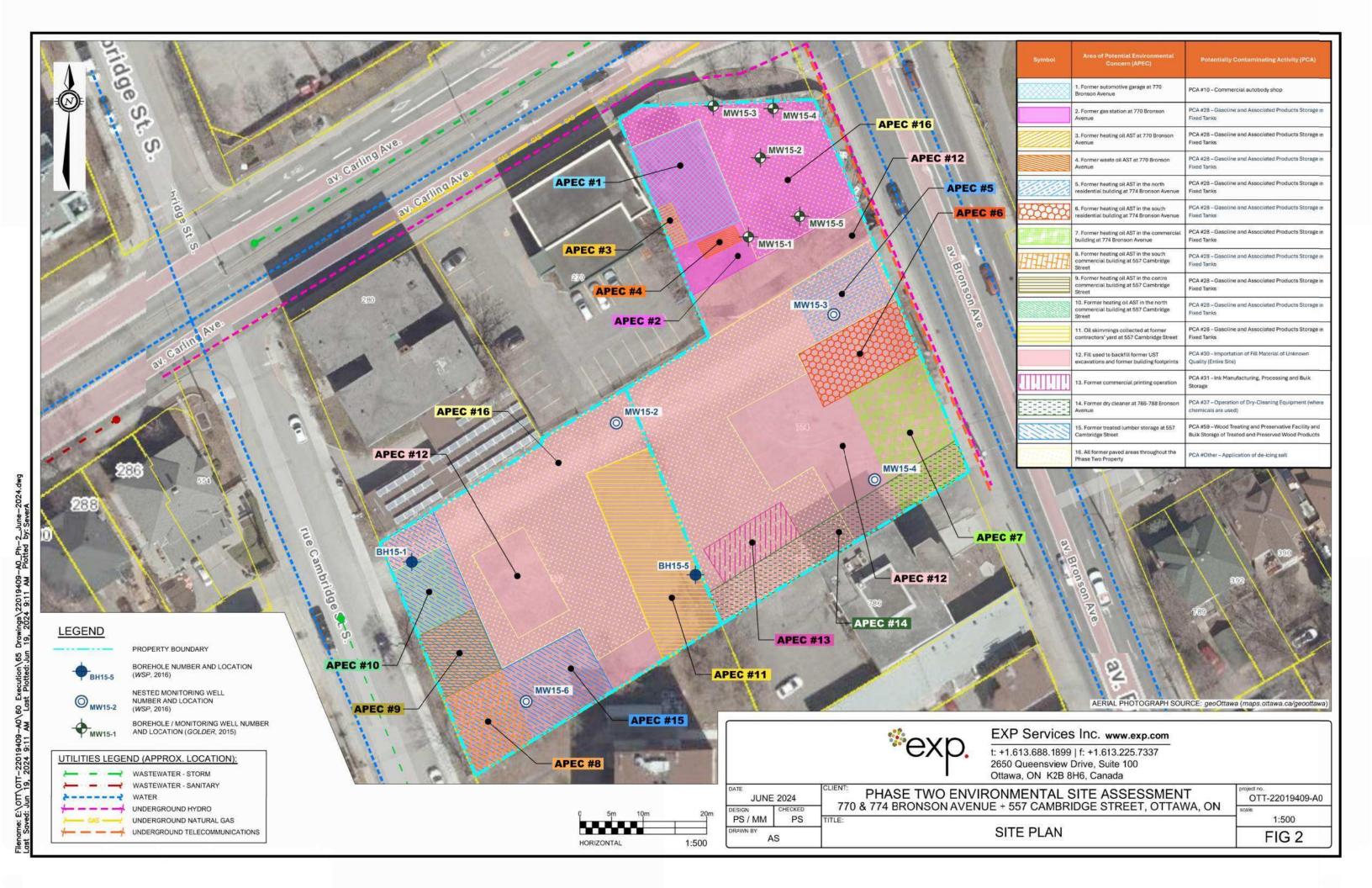
All documents, records, data and files, whether electronic or otherwise, generated as part of this assignment form part of the Report. This material includes, but is not limited to, the terms of reference given to EXP by the Client, communications between EXP and the Client, other reports, proposals or documents prepared by EXP for the Client in connection with the site described in the Report. In order to properly understand the suggestions, recommendations and opinions expressed in the Report, reference must be made to the Report in its entirety. EXP is not responsible for use by any party of portions of the Report.

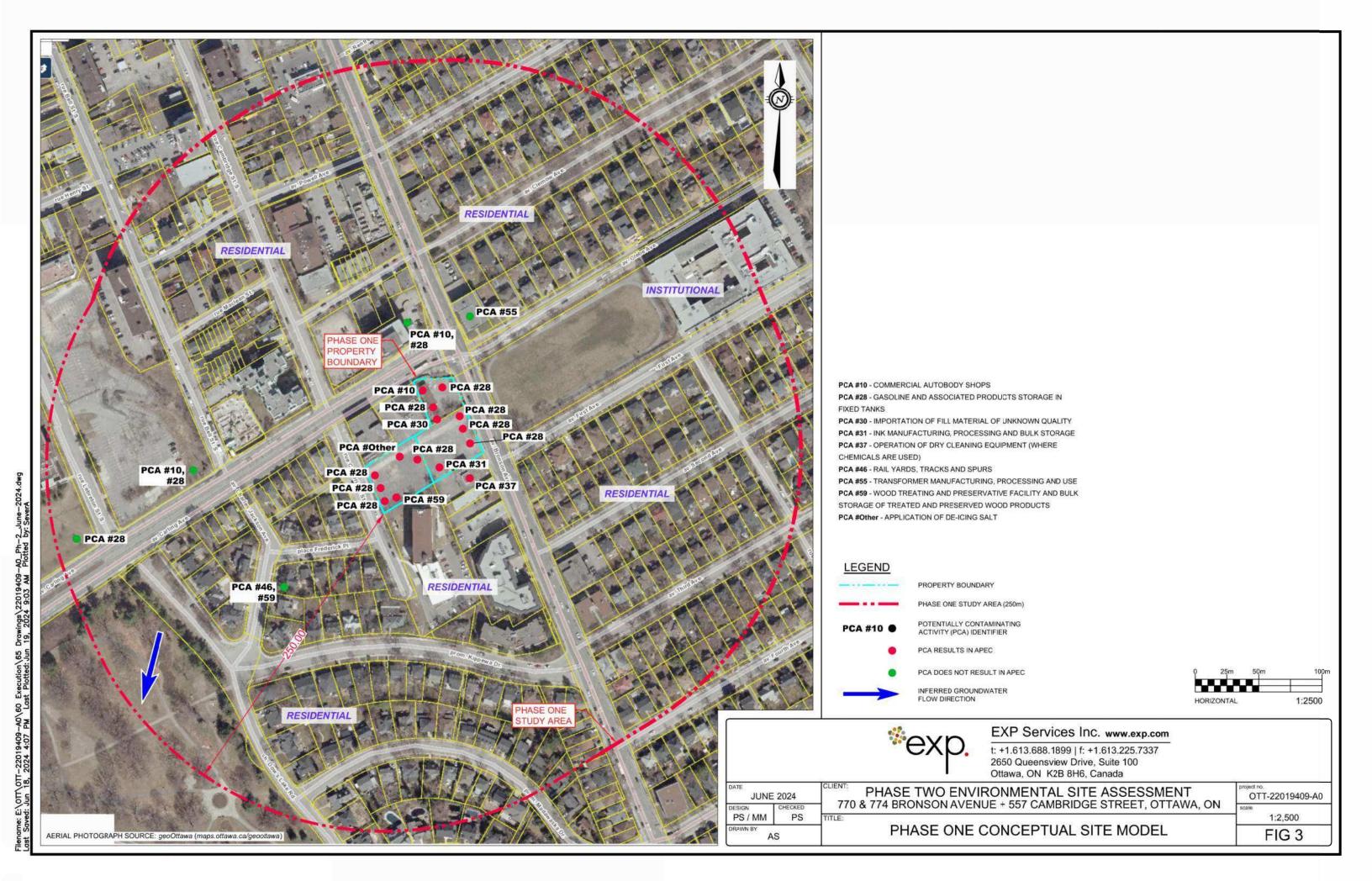
Use of Report

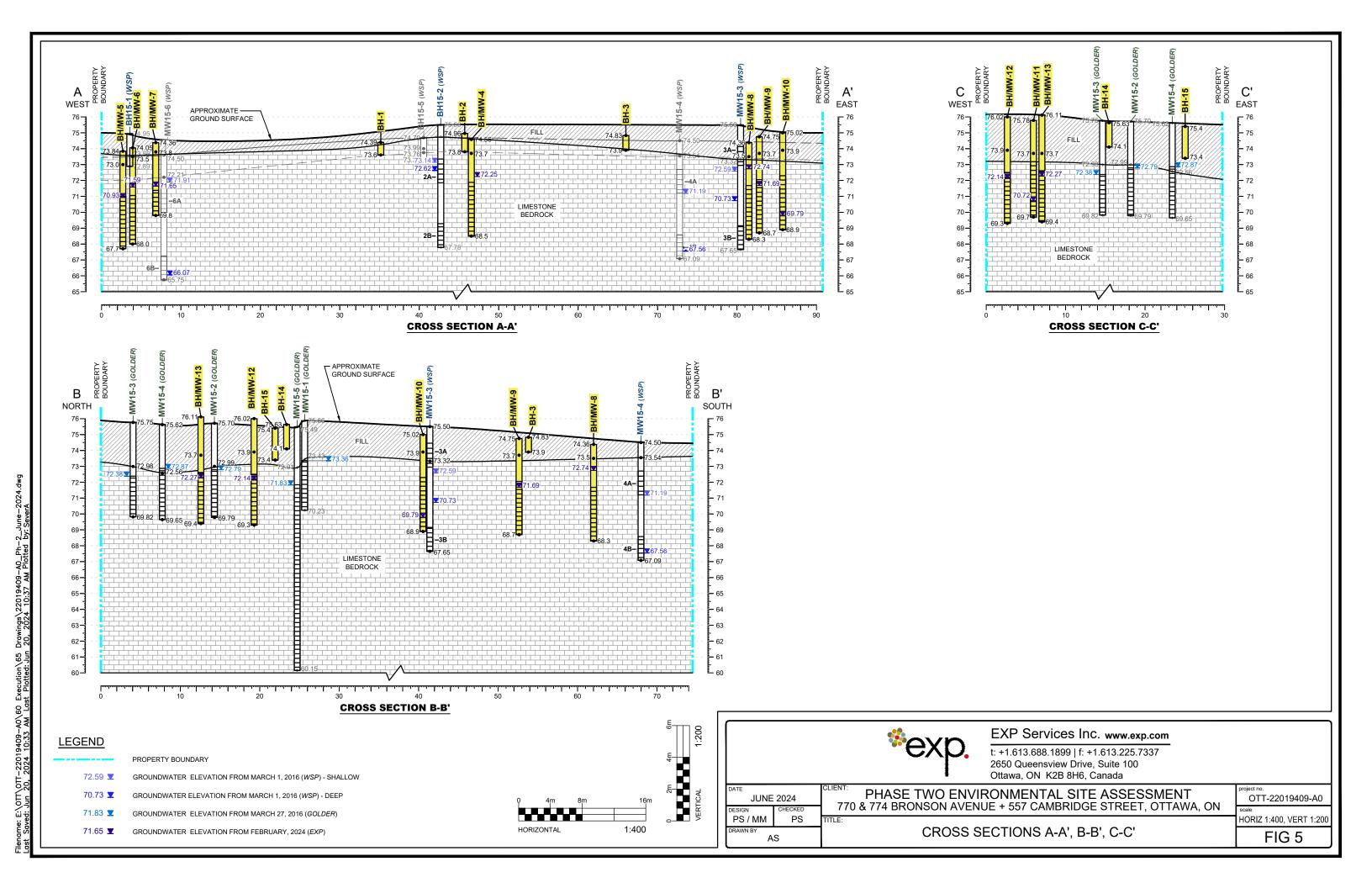
The information and opinions expressed in the Report, or any document forming part of the Report, are for the sole benefit of the Client. No other party may use or rely upon the Report in whole or in part without the written consent of EXP. Any use of the Report, or any portion of the Report, by a third party are the sole responsibility of such third party. EXP is not responsible for damages suffered by any third party resulting from unauthorised use of the Report.

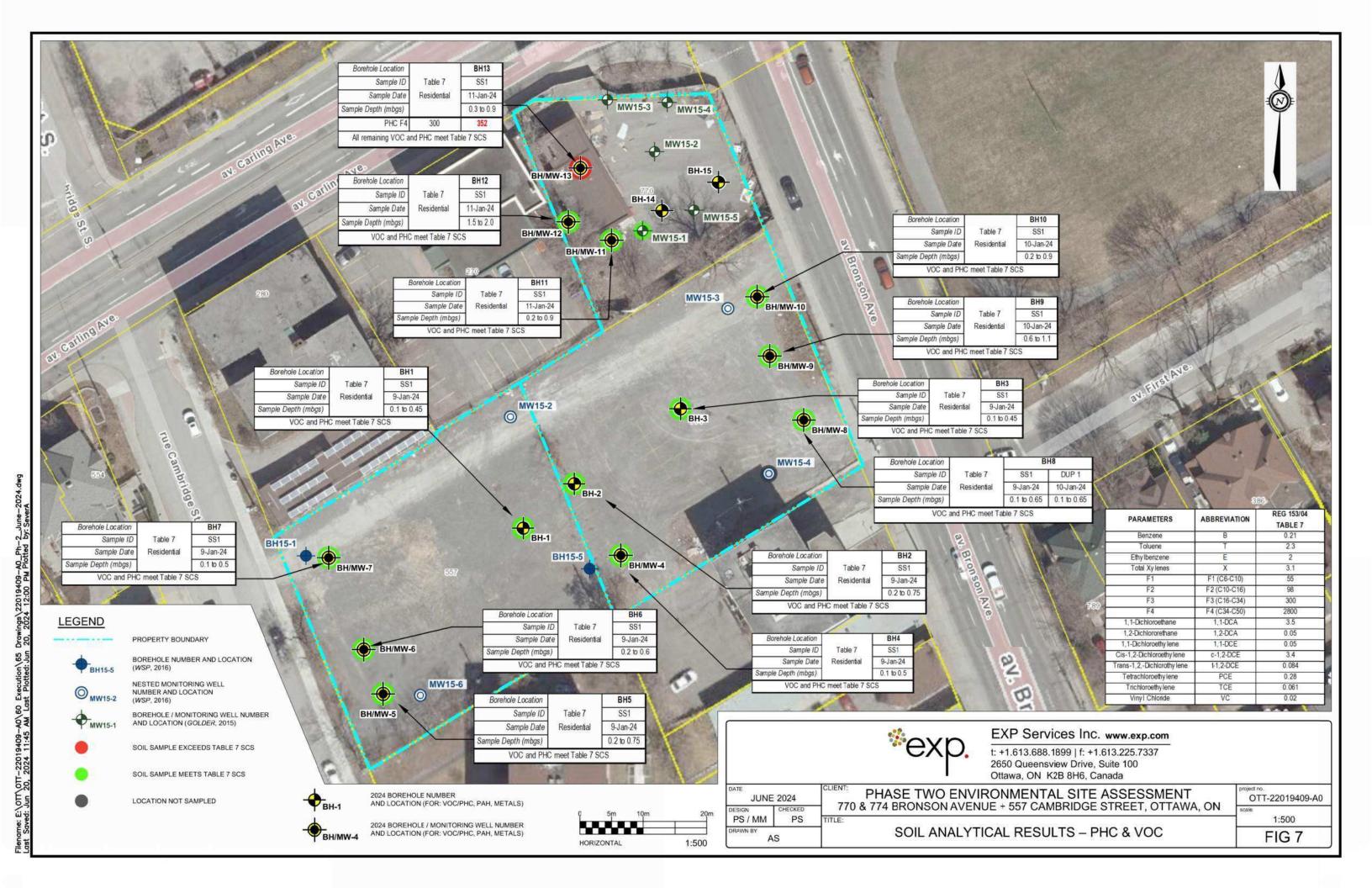
Report Format

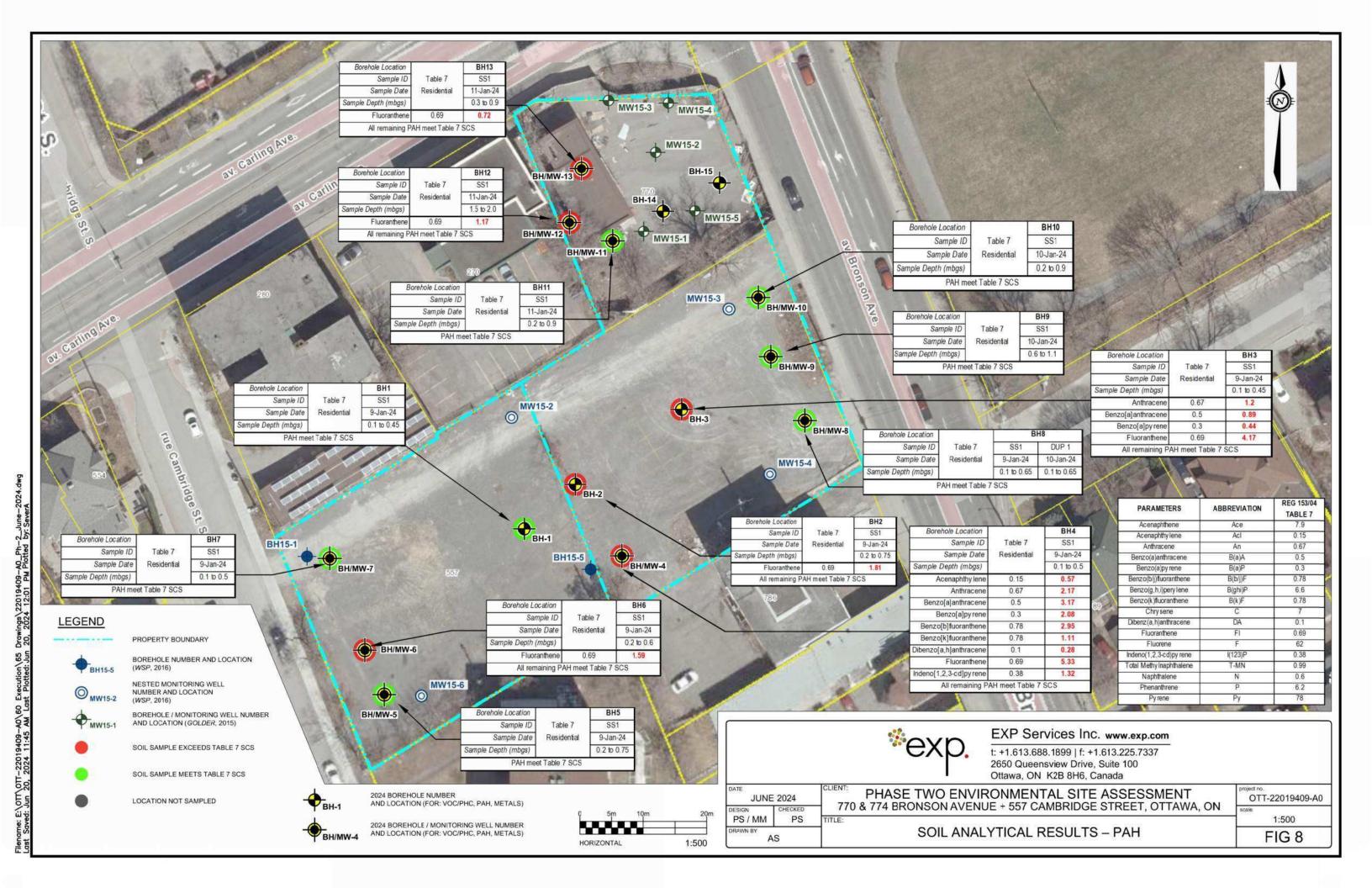
Where EXP has submitted both electronic file and a hard copy of the Report, or any document forming part of the Report, only the signed and sealed hard copy shall be the original documents for record and working purposes. In the event of a dispute or discrepancy, the hard copy shall govern. Electronic files transmitted by EXP utilize specific software and hardware systems. EXP makes no representation about the compatibility of these files with the Client's current or future software and hardware systems. Regardless of format, the documents described herein are EXP's instruments of professional service and shall not be altered without the written consent of EXP.

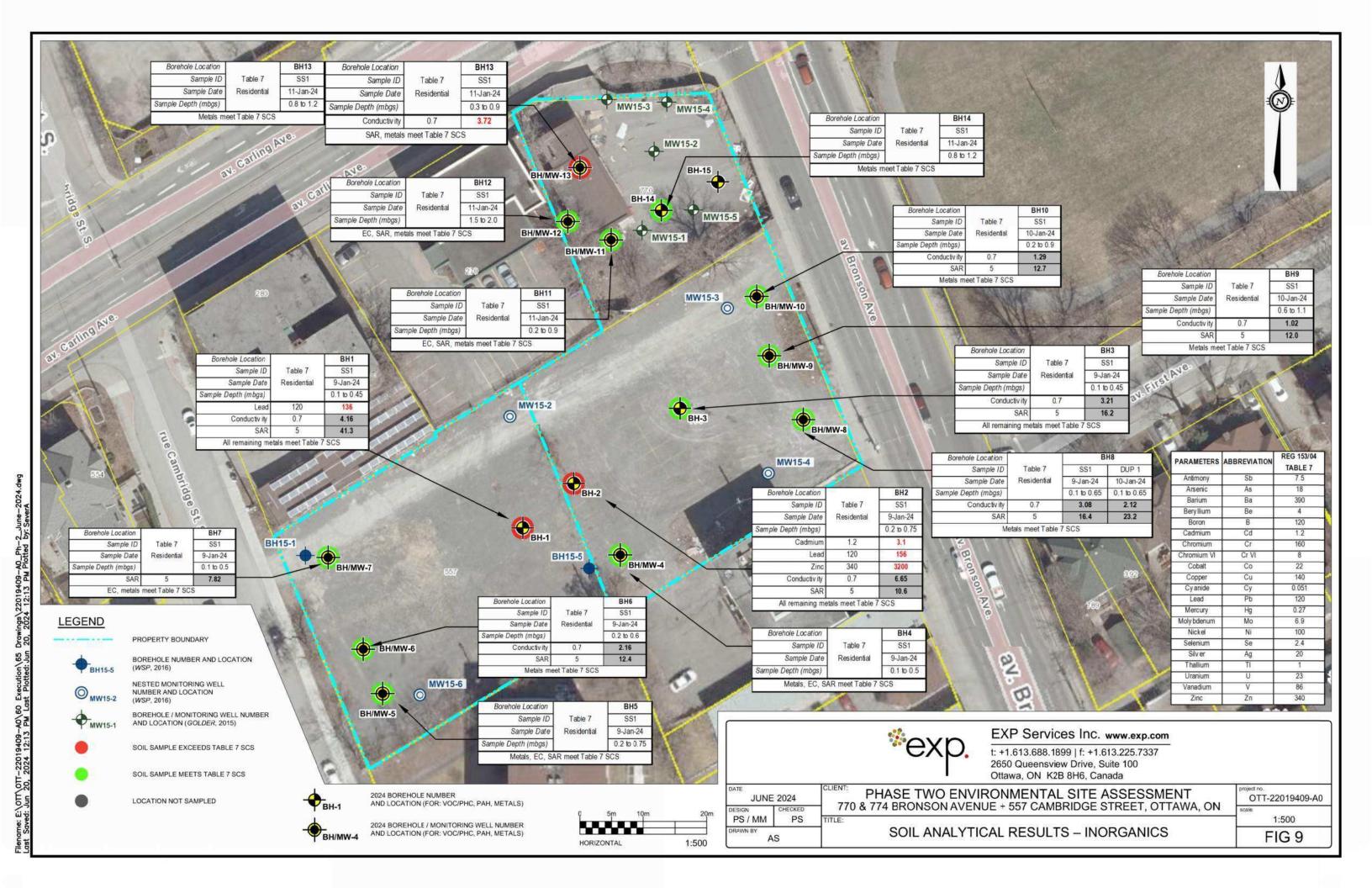


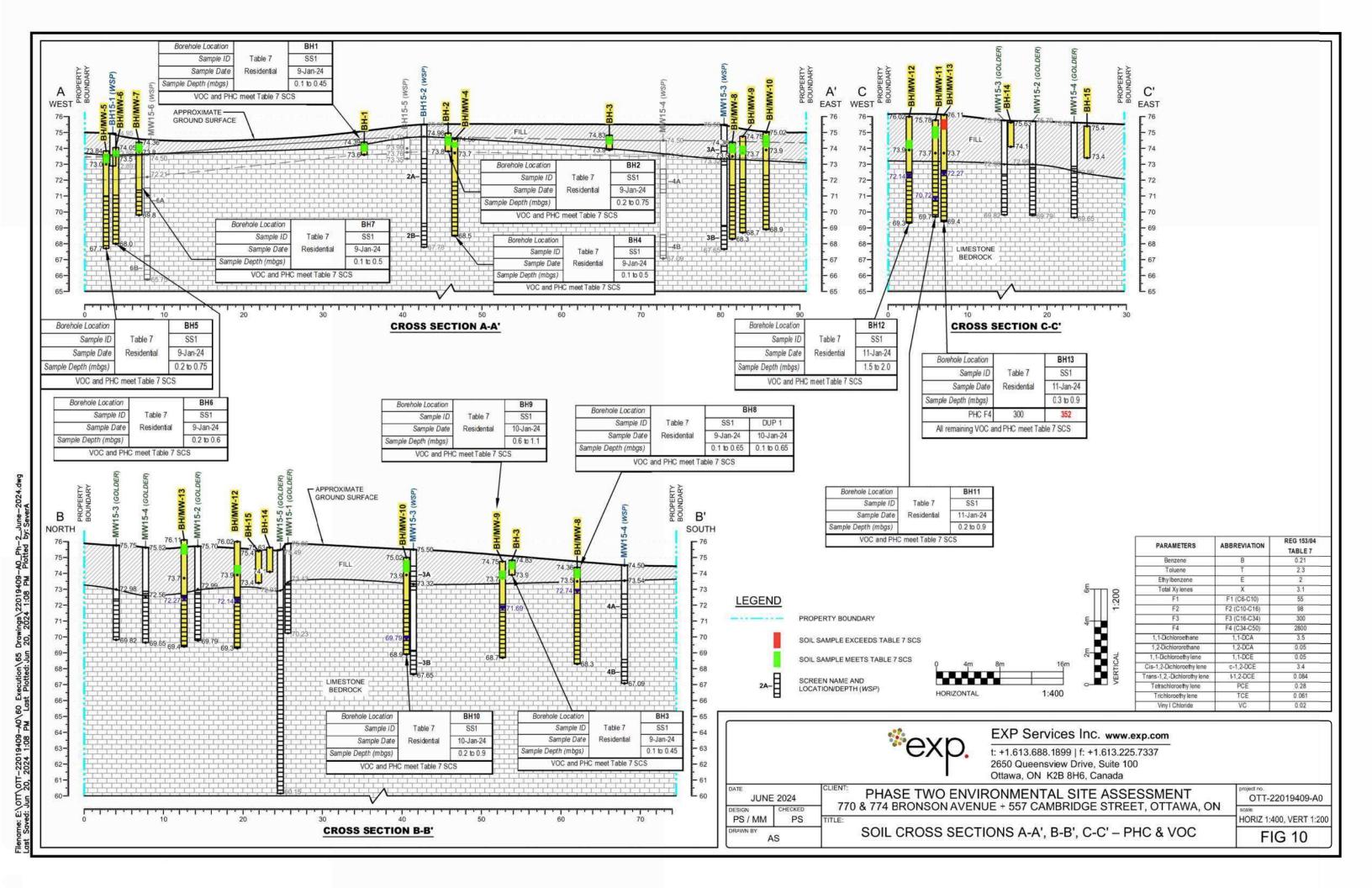

EXP Services Inc.

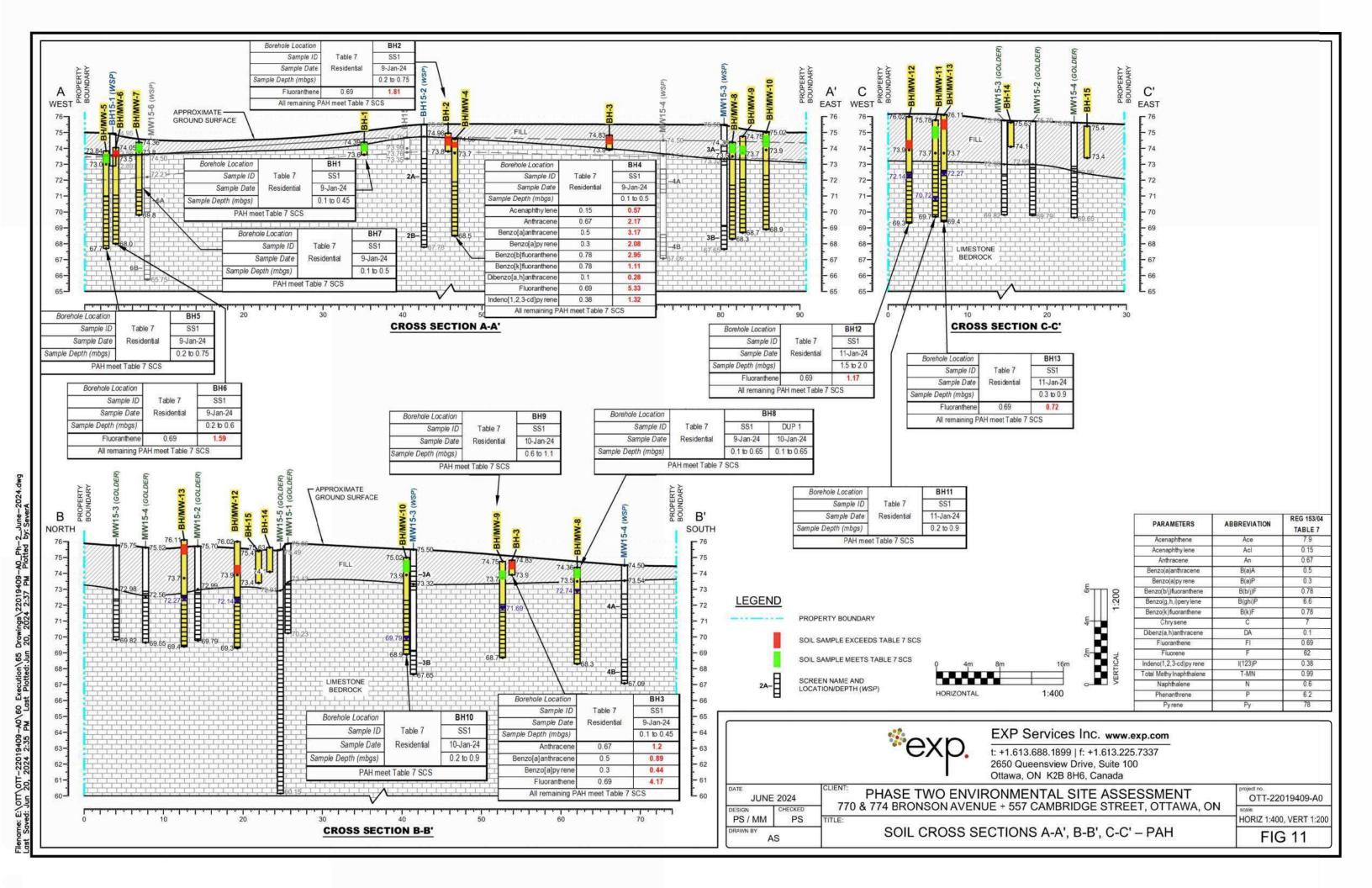

SEC 774 Bronson Phase Two Environmental Site Assessment 770 and 774 Bronson Avenue and 557 Cambridge Street, Ottawa, Ontario OTT-22019409-A0 June 24, 2024

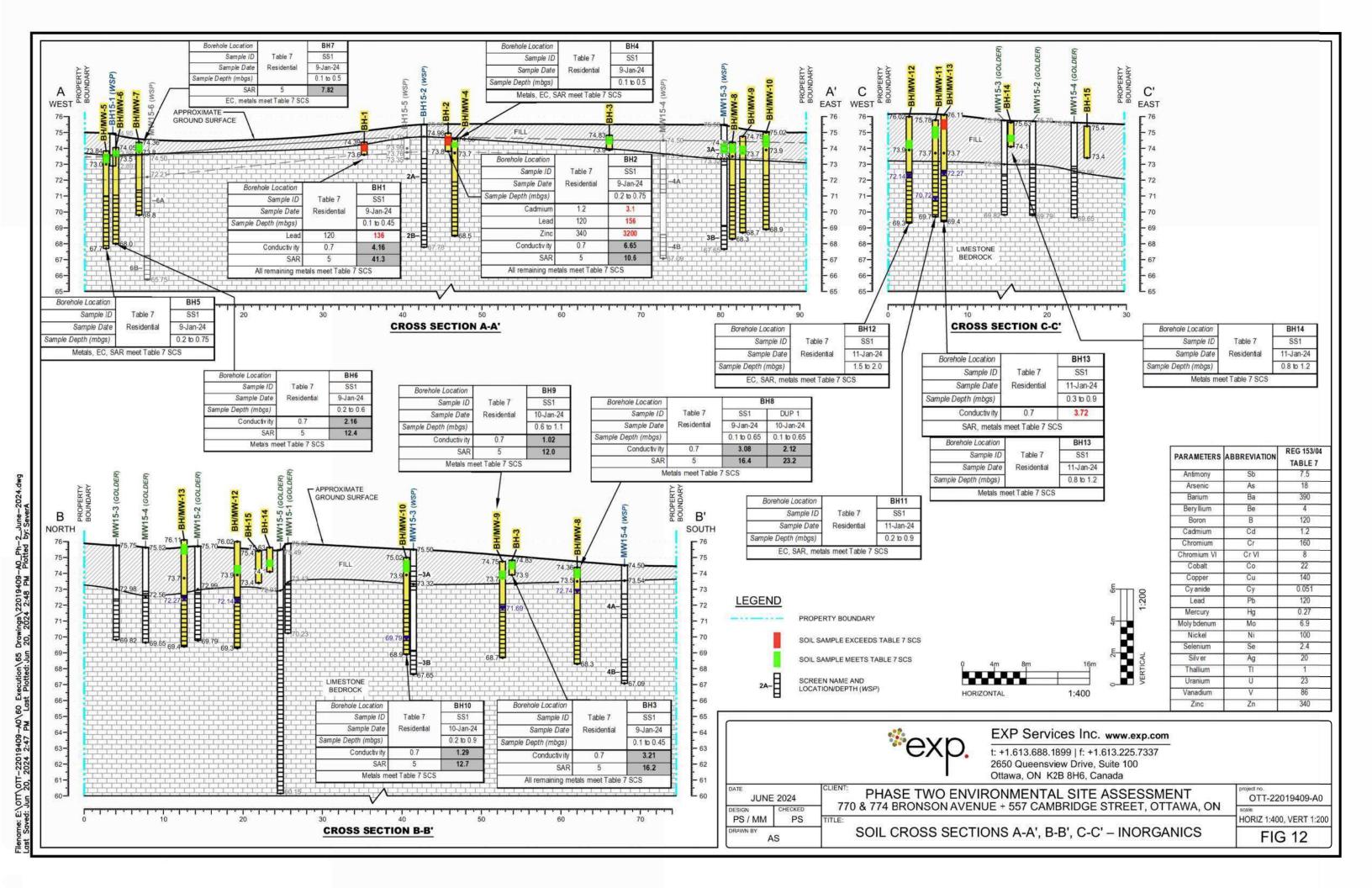

Appendix A: Figures

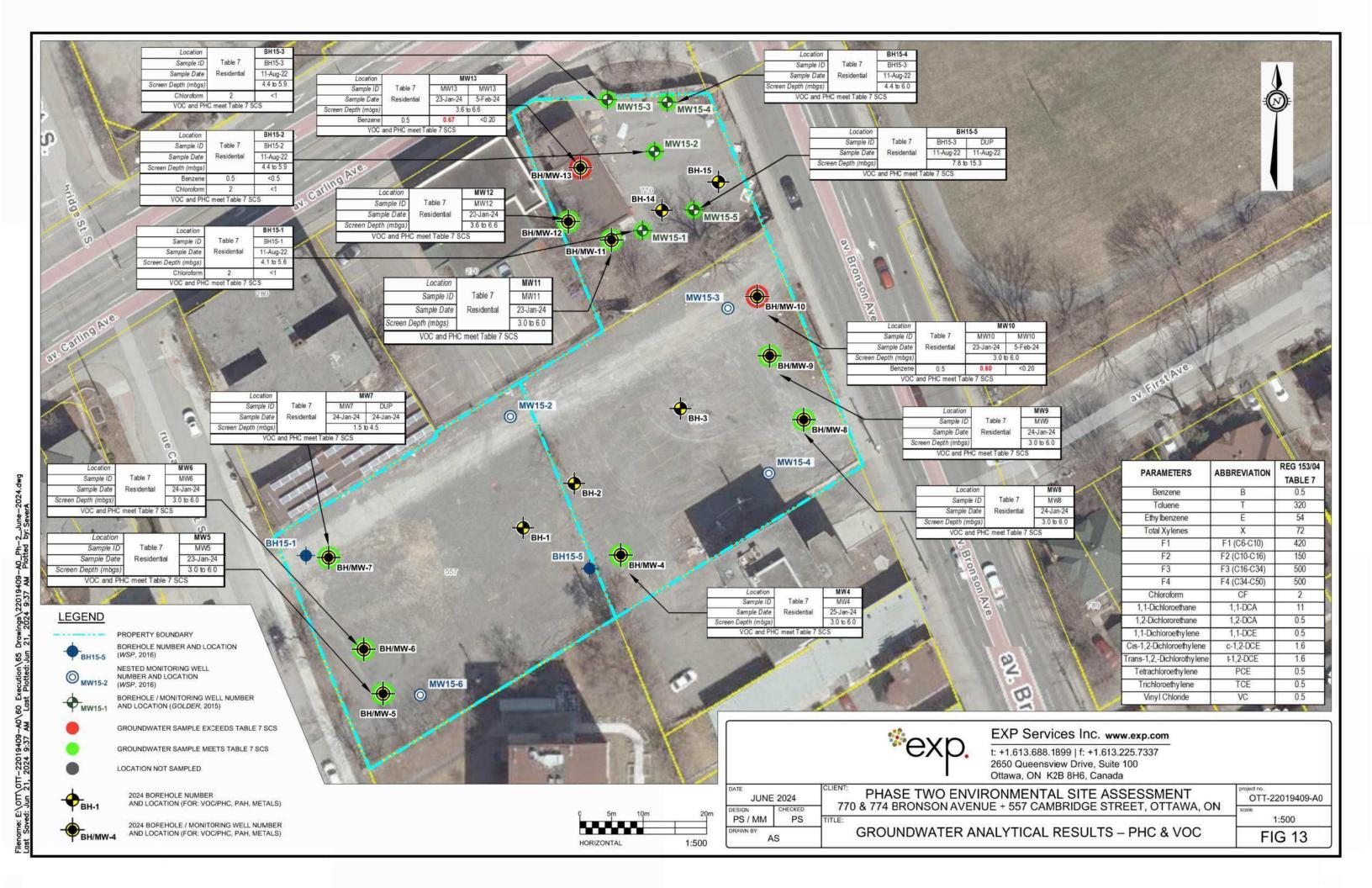


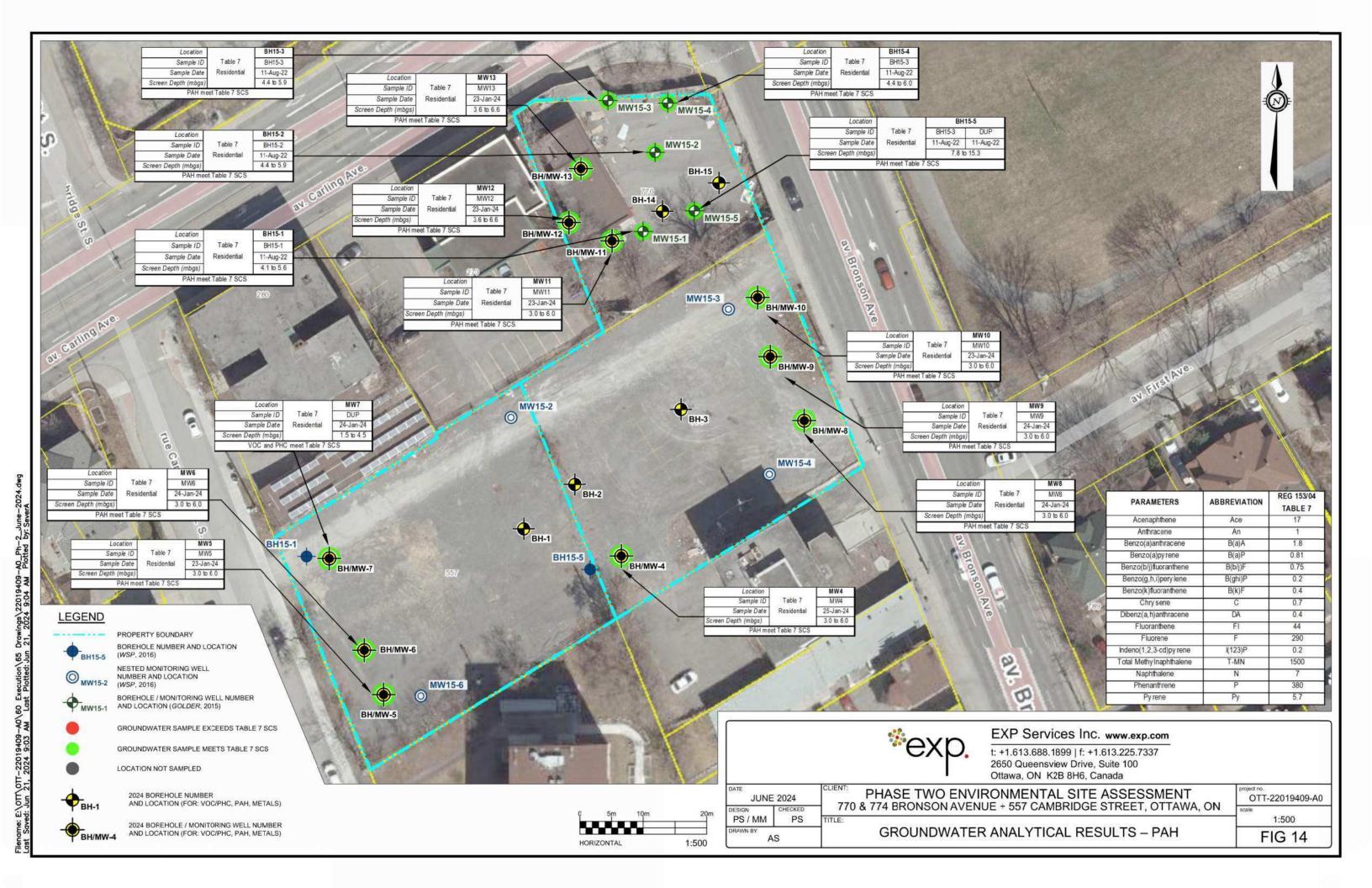


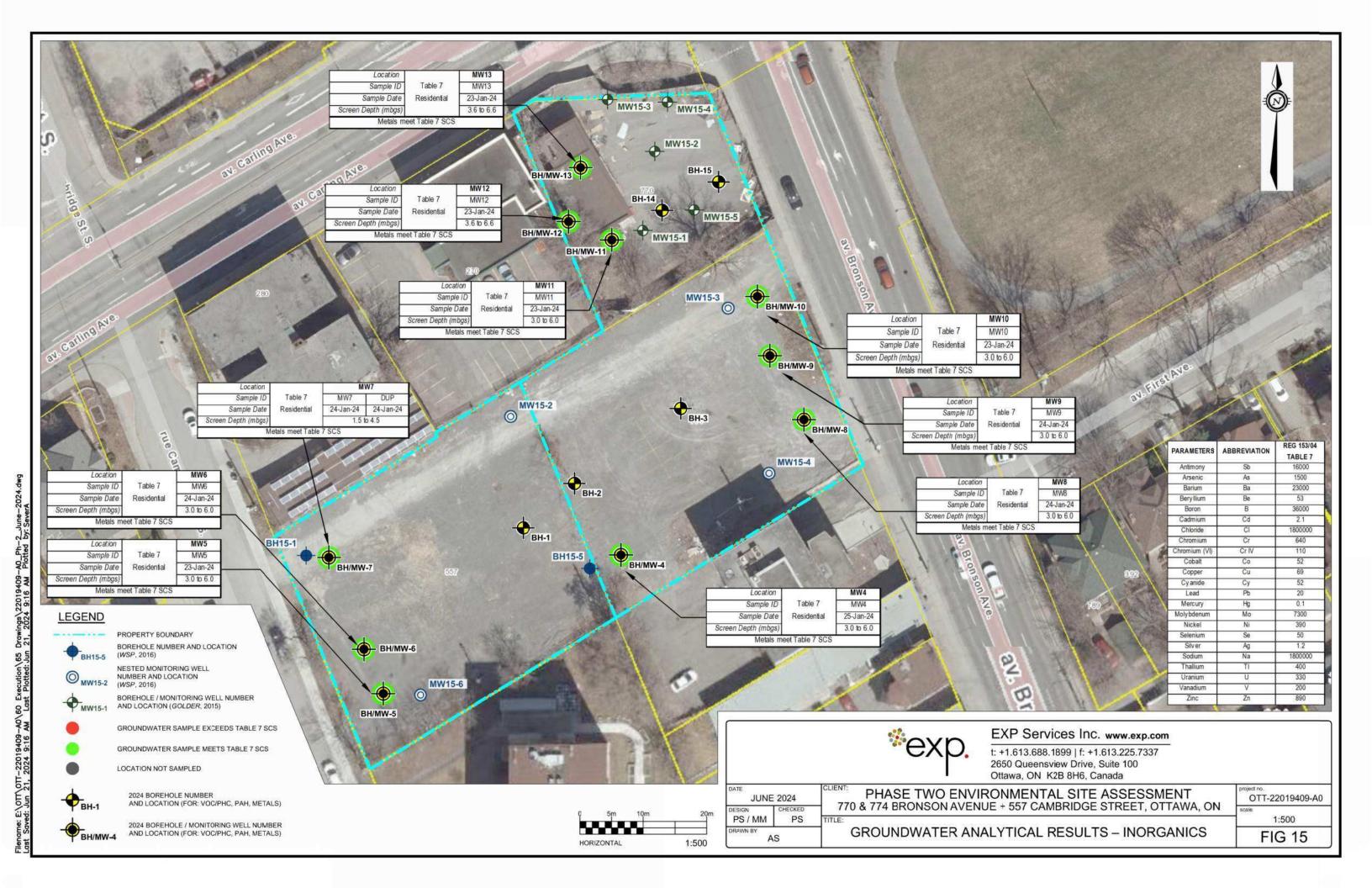


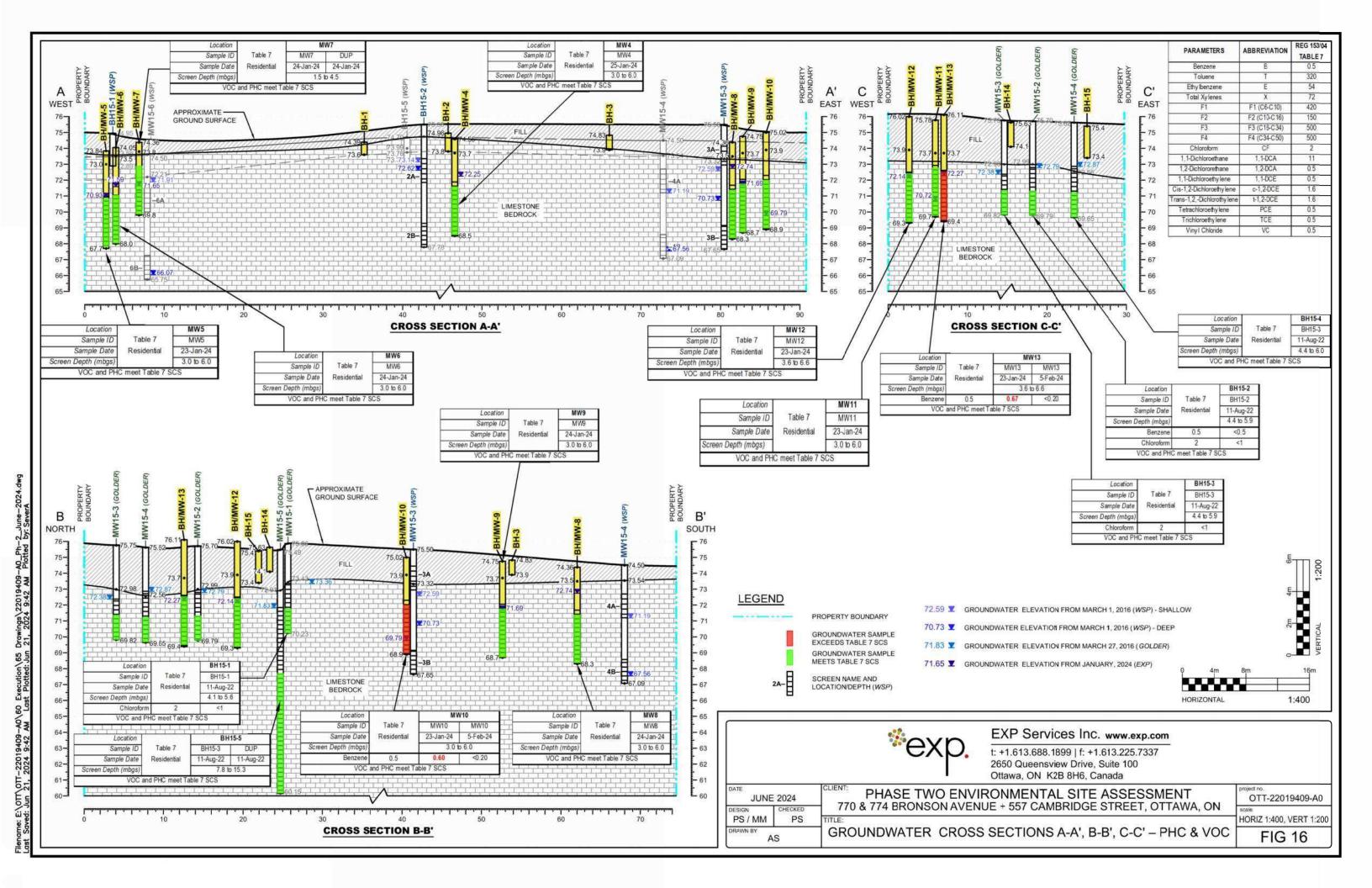


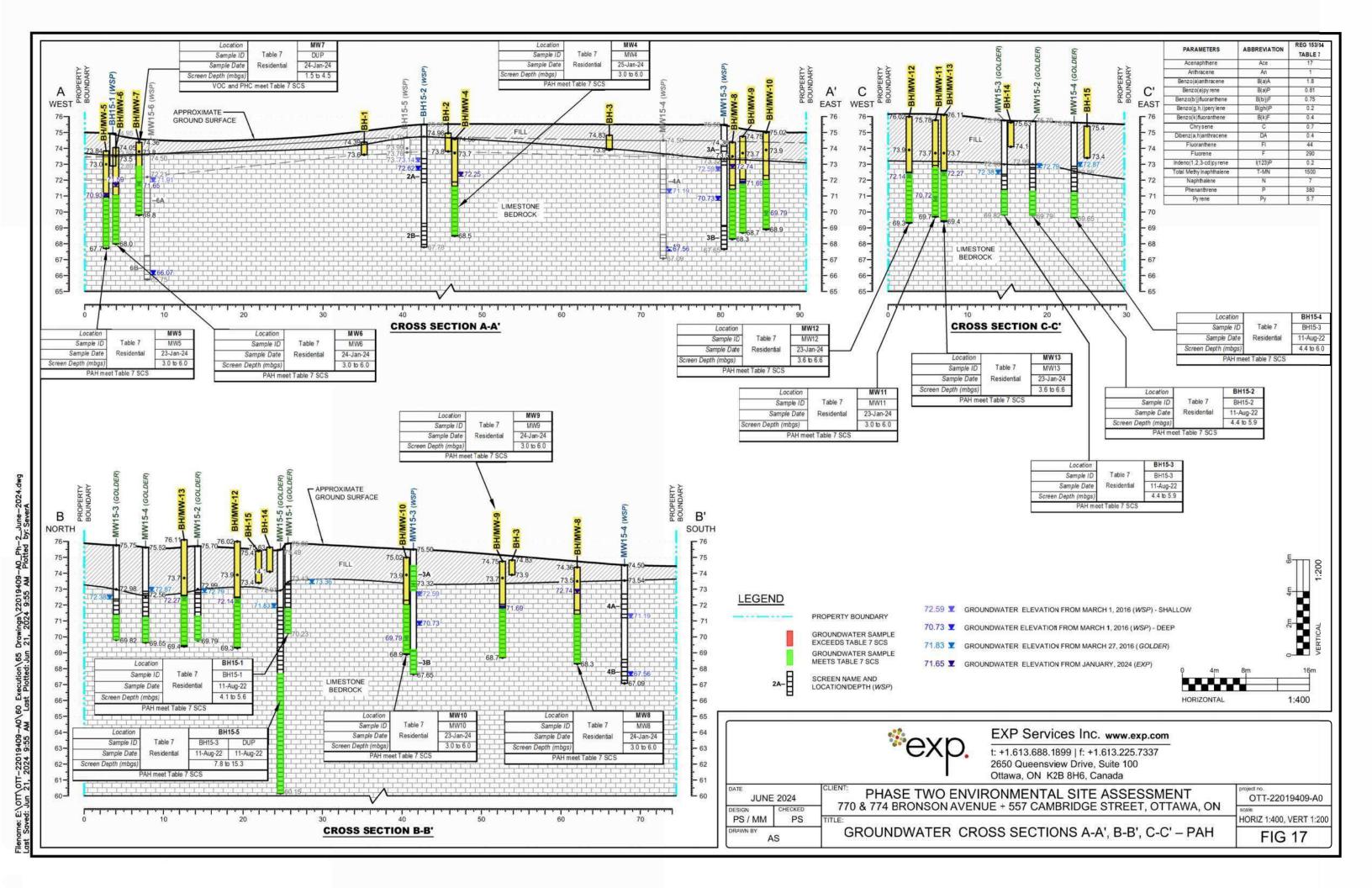


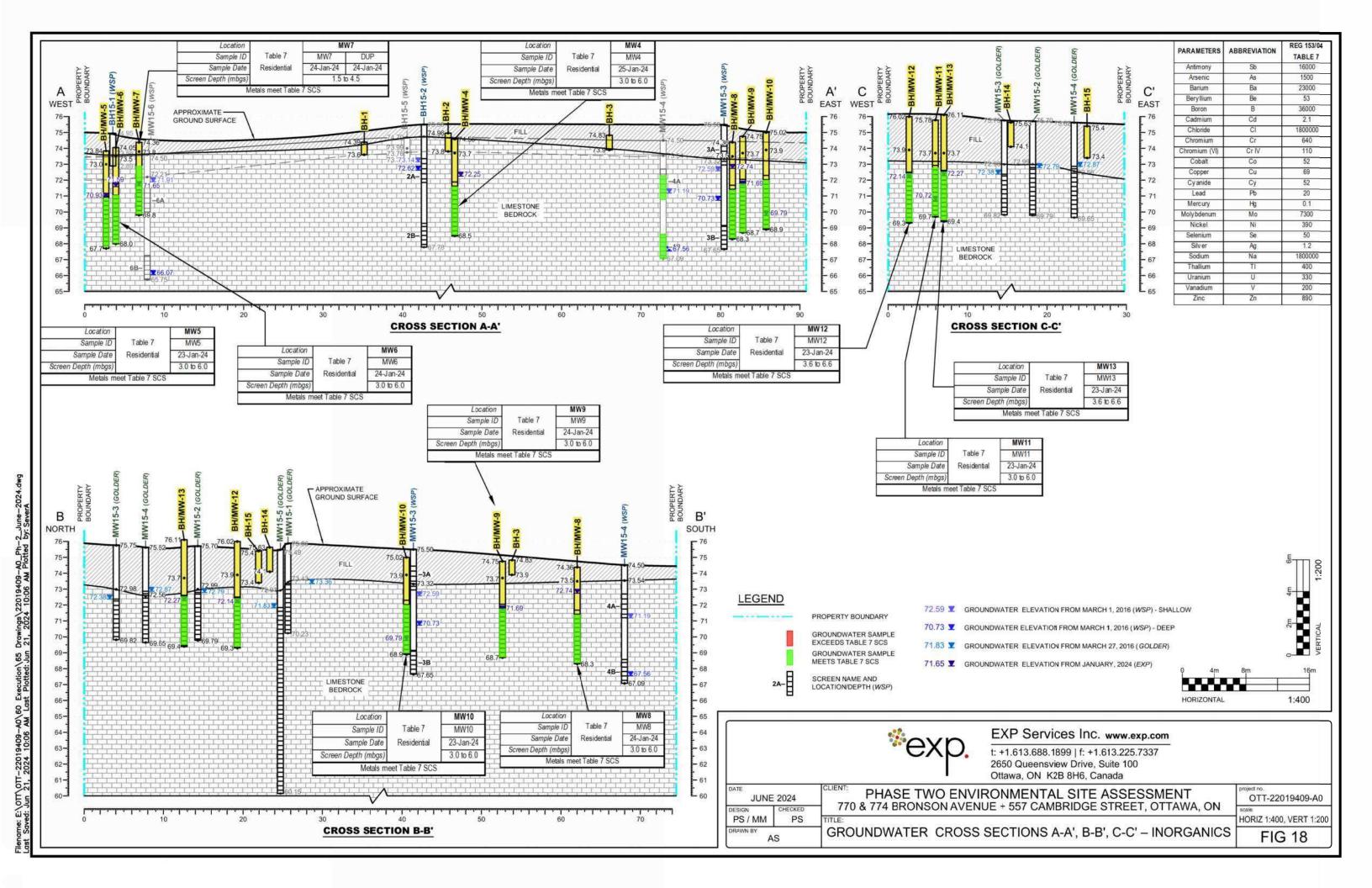












EXP Services Inc.

SEC 774 Bronson Phase Two Environmental Site Assessment 770 and 774 Bronson Avenue and 557 Cambridge Street, Ottawa, Ontario OTT-22019409-A0 June 24, 2024

Appendix B: Survey Plan

EXP Services Inc.

SEC 774 Bronson Phase Two Environmental Site Assessment 770 and 774 Bronson Avenue and 557 Cambridge Street, Ottawa, Ontario OTT-22019409-A0 June 24, 2024

Appendix C: Sampling and Analysis Plan

OTT-220194909-A0

Phase II ESA – 770 and 774 Bronson Avenue and 557 Cambridge Street, Ottawa, Ontario 2022 Sampling and Analysis Plan

Objective

Investigate the groundwater in existing on-site monitoring wells at the subject property. There
are five existing monitoring wells (MW15-1, MW15-2, MW15-3, MW15-4 and MW15-5), all of
which are located on the 770 Bronson Avenue part of the property.

Areas of Potential Environmental Concern

A list of the PCA, APEC that are to be evaluated as part of this 2022 assessment, including the parameters to be analyzed in groundwater, and the monitoring well identifier(s) that were pre-existing were sampled during the current investigation is provided in Table 1 below. It is noted that the groundwater sampling program only assessed APEC #2. Groundwater parameters to be analyzed include petroleum hydrocarbons (PHC) F1 to F4, benzene, toluene, ethylbenzene, xylenes (BTEX), volatile organic compounds (VOC), and polycyclic aromatic hydrocarbons (PAH).

Table 1: Potentially Contaminating Activities and Areas of Potential Environmental Concern

Potentially Contaminating Activity (PCA) and Area of Potential Environmental Concern (APEC)	Contaminants of Potential Concern (COPC) and Media Potentially Impacted*	Monitoring Well, as Shown on Figure 1
#2. Former gas station at 770 Bronson Avenue	, ,	MW15-1, MW15-2, MW-15-3, MW15-4, and MW15-5

The environmental work will be undertaken in accordance with Ontario Regulation 153/04.

Scope of Work

- Check the entire property to determine if there are existing monitoring wells on 774 Bronson Avenue and 557 Cambridge Avenue.
- Develop wells by purging approximately three well volumes of groundwater, until the purged water becomes clear, or the monitoring well becomes dry. Record the amount of water purged.
- Measure depth to water and headspace readings prior to sampling same day.
- Sample MW15-1, MW15-2, MW15-3, MW15-4 and MW15-5 (at 770 Bronson Avenue) and any
 other monitoring well that is identified on the subject property using a low flow sampling method.
 Field duplicates should be submitted at a frequency of no less than 10% (i.e 1 duplicate if 10 or
 fewer samples are collected).

SEC 774 Bronson Sampling and Analysis Plan Phase II ESA 770 and 774 Bronson Avenue and 557 Cambridge Street, Ottawa, Ontario OTT-22019409-A0

- Using low-flow sampling equipment, monitor water quality field parameters until stable readings are achieved. Stability is deemed to be achieved when three consecutive readings meet the following conditions:
 - Turbidity: within 10% for values greater than 5 nephelometric turbidity units (NTU), or three values less than 5 NTU;
 - Dissolved oxygen: within 10% for values greater than 0.5 mg/L, or three values less than
 0.5 mg/L;
 - Conductivity: within 3%;
 - Temperature: ± 1°C;
 - o pH: ± 0.1 unit; and,
 - Oxidation reduction potential: ±10 millivolts.
- Groundwater samples should be submitted to Caduceon for analysis of PHC, VOC, and PAH.

On the chains of custody, use EXP project number OTT-22019409-A0 in the Project Reference section.

If there are no obvious signs of visual or olfactory impact, groundwater may be purged to the ground. If there are signs of impact, it may be placed in drums for future removal.

OTT-220194909-A0

Phase II ESA – 770 and 774 Bronson Avenue and 557 Cambridge Street, Ottawa, Ontario 2024 Sampling and Analysis Plan

Objectives

- Investigate the soil and groundwater on-site to address the 15 APECs identified.
- Prepare a report to be used for a Site Plan Application and to file a Record of Site Condition

Areas of Potential Environmental Concern

A list of the PCA, APEC that are to be evaluated as part of this 2024 assessment, including the parameters to be analyzed in soil and groundwater, and the monitoring well identifier(s) that will be drilled during the current investigation is provided in Table 1 below. Parameters to be analyzed include petroleum hydrocarbons (PHC) F1 to F4, volatile organic compounds (VOC), metals and inorganics (including electrical conductivity (EC), sodium adsorption ratio (SAR), pH), and polycyclic aromatic hydrocarbons (PAH),

Table 1: Potentially Contaminating Activities and Areas of Potential Environmental Concern

Potentially Contaminating Activity (PCA) and Area of Potential Environmental Concern (APEC)	Contaminants of Potential Concern (COPC) and Media Potentially Impacted*	Monitoring Well, as Shown on Figure 1
#1. Former automotive garage at 770 Bronson Avenue	VOC, PHC F1 to F4, PAH, metals in soil; VOC, PHC F1 to F4, PAH, metals in groundwater	MW-13
#2. Former gas station at 770 Bronson Avenue	VOC, PHC F1 to F4, PAH, metals in soil; VOC, PHC F1 to F4, PAH, metals in groundwater	MW-11, BH14, BH15
#3. Former heating oil AST at 770 Bronson Avenue	VOC, PHC F1 to F4, PAH, metals in soil; VOC, PHC F1 to F4, PAH, metals in groundwater	MW-12
#4. Former waste oil AST at 770 Bronson Avenue	VOC, PHC F1 to F4, PAH, metals in soil; VOC, PHC F1 to F4, PAH, metals in groundwater	MW-11
#5. Former heating oil AST in the north residential building at 774 Bronson Avenue	VOC, PHC F1 to F4, PAH, metals in soil; VOC, PHC F1 to F4, PAH, metals in groundwater	MW-10
#6. Former heating oil AST in the south residential building at 774 Bronson Avenue	VOC, PHC F1 to F4, PAH, metals in soil; VOC, PHC F1 to F4, PAH, metals in groundwater	MW-9

Potentially Contaminating Activity (PCA) and Area of Potential Environmental Concern (APEC)	Contaminants of Potential Concern (COPC) and Media Potentially Impacted*	Monitoring Well, as Shown on Figure 1
#7. Former heating oil AST in the commercial building at 774 Bronson Avenue	VOC, PHC F1 to F4, PAH, metals in soil; VOC, PHC F1 to F4, PAH, metals in groundwater	MW-8
#8. Former heating oil AST in the south commercial building at 557 Cambridge Street	VOC, PHC F1 to F4, PAH, metals in soil; VOC, PHC F1 to F4, PAH, metals in groundwater	MW-5
#9. Former heating oil AST in the centre commercial building at 557 Cambridge Street	VOC, PHC F1 to F4, PAH, metals in soil; VOC, PHC F1 to F4, PAH, metals in groundwater	MW-6
#10. Former heating oil AST in the north commercial building at 557 Cambridge Street	VOC, PHC F1 to F4, PAH, metals in soil; VOC, PHC F1 to F4, PAH, metals in groundwater	MW-7
#11. Oil skimmings collected at former contractors' yard at 557 Cambridge Street	VOC, PHC F1 to F4, PAH, metals in soil	BH1
#12. Fill used to backfill former UST excavations and former building footprints	VOC, PHC F1 to F4, PAH, metals in soil	внз
#13. Former commercial printing operation	VOC, PHC F1 to F4, PAH, metals in soil; VOC, PHC F1 to F4, PAH, metals in groundwater	MW-4
#14. Former dry cleaner at 786-788 Bronson Avenue	VOC, PHC F1 to F4, PAH, metals in soil; VOC, PHC F1 to F4, PAH, metals in groundwater	BH2, MW-4
#15. Former treated lumber storage at 557 Cambridge Street	VOC, PHC F1 to F4, PAH, metals in soil; VOC, PHC F1 to F4, PAH, metals in groundwater	MW-5

^{*}Soil refers to worst-case sample.

The environmental work will be undertaken in accordance with Ontario Regulation 153/04.

Scope of Work

- Drilling 15 pre-remedial boreholes on the Phase Two property and completing 10 of them as monitoring wells (MW-4 to MW-13) to a max depth of 7 metres below grade.
- The monitoring wells should have a 3 metre PVC screened interval with an appropriate length of PVC riser pipe.
- Equip the monitoring wells with flush-mount casings.
- In the overburden, use a geoprobe with a core sampler to collect soil samples at 0.6 metre intervals.
- For each soil sample, log colour, grain size, moisture content, density, structures, texture, staining, odour, and field vapour readings.

SEC 774 Bronson Sampling and Analysis Plan Phase II ESA 770 and 774 Bronson Avenue and 557 Cambridge Street, Ottawa, Ontario OTT-22019409-A0

- Develop wells using an inertial pump or bailer and record observations regarding development, including colour/clarity, presence of sheen/odour at the beginning of purging and once purging is complete, and approximate volume of water purged.
- Sample MW-4 to MW-13 using low flow sampling method. Measure depth to water and petroleum vapours in each well prior to sampling.

Soil and Groundwater Sampling

Table 2: Soil Sampling and Groundwater Plan

Sample Location	Depth of Borehole	Monitoring Well (Y/N) and Depth	Soil Analysis	Groundwater Analysis
BH1	Up to 7.0 mbgs	No	VOC, PHC F1 to F4, PAH, metals including EC, SAR, pH in soil (worst-case/water table depth)	N/A
BH2	Up to 7.0 mbgs	No	VOC, PHC F1 to F4, PAH, metals including EC, SAR, pH in soil (worst-case/water table depth)	N/A
внз	Up to 7.0 mbgs	No	VOC, PHC F1 to F4, PAH, metals including EC, SAR, pH in soil (worst-case/water table depth)	N/A
MW-4	Up to 7.0 mbgs	Yes – 1 to 2 m below water table	VOC, PHC F1 to F4, PAH, metals including EC, SAR, pH in soil (worst-case/water table depth)	PHC, VOC, PAH, Metals
MW-5	Up to 7.0 mbgs	Yes – 1 to 2 m below water table	VOC, PHC F1 to F4, PAH, metals including EC, SAR, pH in soil (worst-case/water table depth)	PHC, VOC, PAH, Metals
MW – 6	Up to 7.0 mbgs	Yes – 1 to 2 m below water table	VOC, PHC F1 to F4, PAH, metals including EC, SAR, pH in soil (worst-case/water table depth)	PHC, VOC, PAH, Metals
MW-7	Up to 7.0 mbgs	Yes – 1 to 2 m below water table	VOC, PHC F1 to F4, PAH, metals including EC, SAR, pH in soil (worst-case/water table depth)	PHC, VOC, PAH, Metals
MW-8	Up to 7.0 mbgs	Yes – 1 to 2 m below water table	VOC, PHC F1 to F4, PAH, metals including EC, SAR, pH in soil (worst-case/water table depth)	PHC, VOC, PAH, Metals
MW-10	Up to 7.0 mbgs	Yes – 1 to 2 m below water table	VOC, PHC F1 to F4, PAH, metals including EC, SAR, pH in soil (worst-case/water table depth)	PHC, VOC, PAH, Metals
MW-11	Up to 7.0 mbgs	Yes – 1 to 2 m below water table	VOC, PHC F1 to F4, PAH, metals including EC, SAR, pH in soil (worst-case/water table depth)	PHC, VOC, PAH, Metals
MW-12	Up to 7.0 mbgs	Yes – 1 to 2 m below water table	VOC, PHC F1 to F4, PAH, metals including EC, SAR, pH in soil (worst-case/water table depth)	PHC, VOC, PAH, Metals

SEC 774 Bronson Sampling and Analysis Plan Phase II ESA 770 and 774 Bronson Avenue and 557 Cambridge Street, Ottawa, Ontario OTT-22019409-A0

Sample Location	Depth of Borehole	Monitoring Well (Y/N) and Depth	Soil Analysis	Groundwater Analysis
MW-13	Up to 7.0 mbgs	Yes – 1 to 2 m below water table	VOC, PHC F1 to F4, PAH, metals including EC, SAR, pH in soil (worst-case/water table depth)	PHC, VOC, PAH, Metals
BH14	Up to 7.0 mbgs	No	VOC, PHC F1 to F4, PAH, metals (worst-case/water table depth)	N/A
BH15	Up to 7.0 mbgs	No	VOC, PHC F1 to F4, PAH, metals (worst-case/water table depth)	N/A

Note: N/A: Indicates analysis was not conducted

Soil samples should be submitted to AGAT Laboratories for analysis. On the chains of custody, use EXP project number OTT-22019409-A0 in the Project Reference section.

Groundwater Sampling

- Develop wells by purging approximately three well volumes of groundwater, until the purged water becomes clear, or the monitoring well becomes dry. Record the amount of water purged.
- Measure depth to water and headspace readings prior to sampling same day.
- Use low-flow sampling techniques to collect groundwater samples from MW-4 to MW-13, as well as 10% field duplicates. (1 duplicate for VOC, PHC F1-F4, PAH, Metals)
- Using low-flow sampling equipment, monitor water quality field parameters until stable readings were achieved. Stability is deemed to be achieved when three consecutive readings meet the following conditions:
 - Turbidity: within 10% for values greater than 5 nephelometric turbidity units (NTU), or three values less than 5 NTU;
 - Dissolved oxygen: within 10% for values greater than 0.5 mg/L, or three values less than 0.5 mg/L;
 - Conductivity: within 3%;
 - Temperature: ± 1°C;
 - o pH: ± 0.1 unit; and,
 - Oxidation reduction potential: ±10 millivolts.

Groundwater samples should be submitted to AGAT Laboratories for analysis. On the chains of custody, use EXP project number OTT-22019409-A0 in the Project Reference section.

If there are no obvious signs of visual or olfactory impact, groundwater may be purged to the ground. If there are signs of impact, it may be placed in drums for future removal.

EXP Services Inc.

SEC 774 Bronson Phase Two Environmental Site Assessment 770 and 774 Bronson Avenue and 557 Cambridge Street, Ottawa, Ontario OTT-22019409-A0 June 24, 2024

Appendix D: Borehole Logs

Explanation of Terms Used on Borehole Records SOIL DESCRIPTION

Terminology describing common soil genesis:

Topsoil: Mixture of soil and humus capable of supporting good vegetative growth.

Peat: Fibrous fragments of visible and invisible decayed organic matter.

Fill:

Where fill is designated on the borehole log it is defined as indicated by the sample recovered during the boring process. The reader is cautioned that fills are heterogeneous in nature and variable in density or degree of compaction. The borehole description may therefore not be applicable as a general description of site fill materials. All fills should be expected to contain obstruction such as wood, large concrete pieces or subsurface basements, floors, tanks, etc.; none of these may have been encountered in the boreholes. Since boreholes cannot accurately define the contents of the fill, test pits are recommended to provide supplementary information. Despite the use of test pits, the heterogeneous nature of fill will leave some ambiguity as to the exact composition of the fill. Most fills contain pockets, seams, or layers of organically contaminated soil. This organic material can result in the generation of methane gas and/or significant ongoing and future settlements. Fill at this site may have been monitored for the presence of methane gas and, if so, the results are given on the borehole logs. The monitoring process does not indicate the volume of gas that can be potentially generated nor does it pinpoint the source of the These readings are to advise of the presence of gas only, and a detailed study is recommended for sites where any explosive gas/methane is detected. Some fill material may be contaminated by toxic/hazardous waste that renders it unacceptable for deposition in any but designated land fill sites; unless specifically stated the fill on this site has not been tested for contaminants that may be considered toxic or hazardous. This testing and a potential hazard study can be undertaken if requested. In most residential/commercial areas undergoing reconstruction, buried oil tanks are common and are generally not detected in a conventional geotechnical site investigation.

Till:

The term till on the borehole logs indicates that the material originates from a geological process associated with glaciation. Because of this geological process the till must be considered heterogeneous in composition and as such may contain pockets and/or seams of material such as sand, gravel, silt or clay. Till often contains cobbles (60 to 200 mm) or boulders (over 200 mm). Contractors may therefore encounter cobbles and boulders during excavation, even if they are not indicated by the borings. It should be appreciated that normal sampling equipment cannot differentiate the size or type of any obstruction. Because of the horizontal and vertical variability of till, the sample description may be applicable to a very limited zone; caution is therefore essential when dealing with sensitive excavations or dewatering programs in till materials.

Terminology describing soil structure:

Desiccated: having visible signs of weathering by oxidization of clay minerals, shrinkage cracks, etc.

Stratified: alternating layers of varying material or color with the layers greater than 6 mm thick.

Laminated: alternating layers of varying material or color with the layers less than 6 mm thick.

Fissured: material breaks along plane of fracture.

Varved: composed of regular alternating layers of silt and clay.

Slickensided: fracture planes appear polished or glossy, sometimes striated.

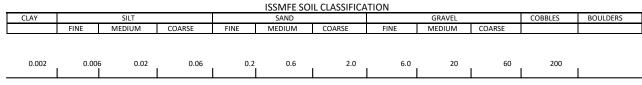
Blocky: cohesive soil that can be broken down into small angular lumps which resist further

breakdown.

Lensed: inclusion of small pockets of different soil, such as small lenses of sand scattered through

a mass of clay; not thickness.

Seam: a thin, confined layer of soil having different particle size, texture, or color from materials


above and below.

Homogeneous: same color and appearance throughout.

Well Graded: having wide range in grain sized and substantial amounts of all predominantly on grain size.

Uniformly Graded: predominantly on grain size.

All soil sample descriptions included in this report follow the ASTM D2487-11 Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System). The system divides soils into three major categories: (1) coarse grained, (2) fine-grained, and (3) highly organic. The soil is then subdivided based on either gradation or plasticity characteristics. The system provides a group symbol (e.g., SM) and group name (e.g., silty sand) for identification. The classification excludes particles larger than 76 mm. Please note that, with the exception of those samples where a grain size analysis has been made, all samples are classified visually in accordance with ASTM D2488-09a Standard Practice for Description and Identification of Soils (Visual-Manual Procedure). Visual classification is not sufficiently accurate to provide exact grain sizing or precise differentiation between size classification systems. Others may use different classification systems; one such system is the ISSMFE Soil Classification.

EQUIVALENT GRAIN DIAMETER IN MILLIMETRES

CLAY (PLASTIC) TO	FINE	MEDIUM	CRS.	FINE	COARSE
SILT (NONPLASTIC)		SAND		G	RAVEL

UNIFIED SOIL CLASSIFICATION

Terminology describing materials outside the USCS, (e.g., particles larger than 76 mm, visible organic matter, construction debris) is based upon the proportion of these materials present and as described below in accordance with Note 16 in ASTM D2488-09a:

Table a: Percent or Proportion of Soil, Pp						
	Criteria					
Trace	Particles are present but estimated to be less than 5%					
Few	5≤Pp≤10%					
Little	15≤Pp≤25%					
Some	30≤Pp≤45%					
Mostly	50≤Pp≤100%					

The standard terminology to describe cohesionless soils includes the compactness as determined by the Standard Penetration Test 'N' value:

Table b: Apparent Density of Cohesionless Soil						
'N' Value (blows/0.3 m)						
Very Loose	N<5					
Loose 5≤N<10						
Compact 10≤N<30						
Dense 30≤N<50						
Very Dense	50≤N					

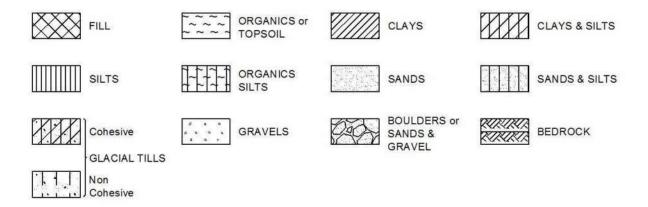

The standard terminology to describe cohesive soils includes consistency, which is based on undrained shear strength as measured by insitu vane tests, penetrometer tests, unconfined compression tests or similar field and laboratory analysis, Standard Penetration Test 'N' values can also be used to provide an approximate indication of the consistency and shear strength of fine grained, cohesive soils:

Table C: Consistency of Cohesive Soil						
Consistency Vane Shear Measurement (kPa) 'N' Valu						
Very Soft	<12.5	<2				
Soft	12.5-25					
Firm	25-50					
Stiff	50-100					
Very Stiff	ry Stiff 100-200					
Hard	Hard >200					

Note: 'N' Value - The Standard Penetration Test records the number of blows of a 140 pound (64kg) hammer falling 30 inches (760mm), required to drive a 2 inch (50.8mm) O.D. split spoon sampler 1 foot (305mm). For split spoon samples where full penetration is not achieved, the number of blows is reported over the sampler penetration in meters (e.g. 50/0.15).

STRATA PLOT

Strata plots symbolize the soil or bedrock description. They are combinations of the following basic symbols:

WATER LEVEL MEASUREMENT

Log of Borehole BH-1

Project No:	OTT-22019409-A0	<u> </u>	-	CV
,	011 22010400 710		Figure No. 1	
Project:	Phase Two Environmental Site Assessment			
Location:	770 and 774 Bronson Avenue, Ottawa, Ontario		Page. <u>1</u> of <u>1</u>	_
Date Drilled:	January 09, 2024'	Split Spoon Sample	Combustible Vapour Reading	
Drill Type:	CME-75 Truck-Mounted Drill Rig	Auger Sample	Natural Moisture Content	×
Dilli Type.	CIVIL-73 Truck-Wouthled Drill Nig	SPT (N) Value	Atterberg Limits	\longmapsto
Datum:	Geodetic Elevation	Dynamic Cone Test ———	Undrained Triaxial at	⊕
		Shelby Tube	% Strain at Failure	Ψ
Logged by:	Ph.O Checked by: M.MC	Shear Strength by +	Shear Strength by Penetrometer Test	A

				Vane Te	31			Ś			ometer i				
S		Geodetic	D	St	andard P	enetra	tion Te	est N Valu	ie	Comb	ustible Va 250	pour Readi 500 7	ng (ppm)	Š	Natura
G M B O L	SOIL DESCRIPTION	Elevation	Elevation p 20 40 60 80		Natural Moisture Content %		nt %	۱ ۵	Unit W						
	m 74.20			Shear	Strength 50	100	15	50 21	kPa 00	Atterberg Limits (% Dry Weight) 20 40 60					kN/m ³
	FILL Sandy clay, some crushed gravel, brown, moist, no odours, no stains	74.39	0											1	SS1
	— moist, no sadars, no stains	73.6					.,							\setminus	
	Auger Refusal at 0.8 m Depth	73.6													

NOTES:

LOG OF BOREHOLE

- Borehole data requires interpretation by EXP before use by others
- 2. Borehole was backfilled upon completion of drilling.
- 3. Field work supervised by an EXP representative.
- 4. See Notes on Sample Descriptions
- 5. Log to be read with EXP Report OTT-22019409-A0

WATER LEVEL RECORDS							
Date	Water Level (m)	Hole Open To (m)					

	CORE DRILLING RECORD								
Run No.	Depth (m)	% Rec.	RQD %						
	()								

	Log o	f Bo	D	rehole ₋	Bh	<u>1-2</u>				0	X
Project No:	OTT-22019409-A0			_			-·		2		/\
Project:	Phase Two Environmental Site Assessment	ent					Figure No.	1 .	<u> </u>		
Location:	770 and 774 Bronson Avenue, Ottawa, C	Ontario					Page.		of <u>1</u>		
Date Drilled:	January 09, 2024'			Split Spoon Sample			Combustible \	√apour F	Reading		
Drill Type:	CME-75 Truck-Mounted Drill Rig			Auger Sample SPT (N) Value		II	Natural Moisto		ent F		X →
Datum:	Geodetic Elevation			Dynamic Cone Test Shelby Tube		_	Undrained Tria % Strain at Fa				\oplus
Logged by:	Ph.O Checked by: M.MC			Shear Strength by Vane Test		+ s	Shear Strengt Penetrometer				A
S Y M B O L	SOIL DESCRIPTION	Geodetic Elevation m 74.96	Depth	Standard Penetration 20 40 Shear Strength 50 100	60 150	Value 80 kPa 200	Combustible \ 250 Natural M Atterberg Li 20	500 oisture Co	750 ontent %	SAMPLES	Natu Unit V kN/n
FILL	the day, some modulin gravel, cruebod		0		33.133.1	34:33:				: 1	

				Т		Stan	dard F	Pene	etratio	n Te	st N	Valu	e	Co	mbu	stible Va	oour Re	eadin	g (ppm)	s	
G W L	N N	SOIL DESCRIPTION	Geodetic Elevation	D e		20	• 1	40		60		v a iu 81			2	50	500	75	0	Ă M M	Natur Unit V
Ľ	SYMBOL	GOIL DEGUNIF HON	m	t h	Shea		ength			150		20	kPa	A	ivat Atterb	ural Mois erg Limit	sture Co ts (% D 40	onten Ory We		SAMP-IES	kN/n
		FILL	74.96	0	:::::	:::::		10	<u> </u>	::1	· · · · ·	:::	, <u>, , , , , , , , , , , , , , , , , , ,</u>			Ĭ			·	17	
		Sandy clay, some meduim gravel, crushed asphalt, brown, moist, no odours, no stain	ָ <u> </u>							::[::::			‡:::	:::	3333	<u> </u>	SS
		– aspirait, brown, moist, no ododis, no stain							:::: :::::				· i · j · j · i ·	T	; .:				· (-) ·]/\	
				_		#		::	::::	::							‡ ;:::	333	3333	\forall	00
	\bowtie		73.8	⊥'		::::			::::								1:::		****	₽	SS
		Auger Refusal at 1.2 m Depth																			
									<u> </u>										::::		
	TES: Boreho use by	le data requires interpretation by EXP before others	WATE		Water	r	ORE		lole C)per	า		Run	ı	Dep	DRE DR		G RE		R	QD %
2.	Boreho	le was backfilled upon completion of drilling. ork supervised by an EXP representative.		L	evel (r	m)			To (ı	<u>m)</u>			No.		(m))					
4.	See No	ites on Sample Descriptions																			
5.	Log to I	be read with EXP Report OTT-22019409-A0																			

NOTES:

- Borehole data requires interpretation by EXP before use by others
- $2. \\ Borehole\ was\ backfilled\ upon\ completion\ of\ drilling.$
- 3. Field work supervised by an EXP representative.
- 4. See Notes on Sample Descriptions
- 5.Log to be read with EXP Report OTT-22019409-A0

WATER LEVEL RECORDS								
Date	Water Level (m)	Hole Open To (m)						

	CORE DRILLING RECORD								
Run	Depth	% Rec.	RQD %						
No.	(m)								

Log of Borehole BH-3

			100	-x
Project No:	OTT-22019409-A0		Figure No. 3	
Project:	Phase Two Environmental Site Assessment			
Location:	770 and 774 Bronson Avenue, Ottawa, Ontario		Page1_ of _1_	_
Date Drilled:	January 09, 2024'	Split Spoon Sample	Combustible Vapour Reading	
Drill Type:	CME-55 Track-Mounted Drill Rig	Auger Sample SPT (N) Value O	Natural Moisture Content Atterberg Limits	× ⊢—≎
Datum:	Geodetic Elevation	Dynamic Cone Test Shelby Tube	Undrained Triaxial at % Strain at Failure	\oplus
Logged by:	Ph.O Checked by: M.MC	Shear Strength by + S	Shear Strength by Penetrometer Test	A

G X	0011 5-5-5-5-5-5-5-5-5-5-5-5-5-5-5-5-5-5-5	Geodetic	De	Sta			netration T				250	500	r Readir	50	A M	Natur Unit V
G M B O L	SOIL DESCRIPTION	Elevation	h	Shear S		ngth			kPa	Atte			e Conte % Dry W		MAMP-LEO	Unit \ kN/n
<u></u>	FILL Silty clay, some fine gravel, crushed brick and concrete pieces, brown, moist, no odours, no stains	74.83	0		50		00 15	50 2	200		20	40	6	60	S	SS
	Auger Refusal at 0.9m Depth	73.9													1 X	SS
NOTES: 1. Boreh use b	nole data requires interpretation by EXP before y others	WAT		EVEL RE Water Level (m)			Hole Ope	en	Run No.	De	CORE	DRILL	ING RE			QD %
3. Field	work supervised by an EXP representative. Notes on Sample Descriptions be read with EXP Report OTT-22019409-A0			20v0r (111)			10 (111)		140.	(,					

- Borehole data requires interpretation by EXP before use by others
- 2. Borehole was backfilled upon completion of drilling.
- 3. Field work supervised by an EXP representative.
- 4. See Notes on Sample Descriptions
- 5.Log to be read with EXP Report OTT-22019409-A0

WATER LEVEL RECORDS								
Date	Water Level (m)	Hole Open To (m)						

	CORE DRILLING RECORD									
Run No.	Depth (m)	% Rec.	RQD %							

Dr	oloo	t No:		f Bo)	rehole _.	MV	<u>/-4</u>					e	XX
	-	t No:	OTT-22019409-A0 Phase Two Environmental Site Assessm	ont					Figure N	lo	4			
	ojec catio								Pag	je. <u>1</u>	_ of _	1_		
			770 and 774 Bronson Avenue, Ottawa,	Ontario										
			January 10, 2024'		-	Split Spoon Sample Auger Sample		3 ■		tible Vapo Noisture C		ing		□ X
Dr	ill Ty	pe:	CME-55 Rubber Track-Mounted Drill Rig		-	SPT (N) Value)	Atterberg	Limits		I		→
Da	atum:	:	Geodetic Elevation		-	Dynamic Cone Test Shelby Tube		-		d Triaxial at Failure				\oplus
Lo	gged	d by:	Ph.O Checked by: M.MC			Shear Strength by Vane Test	\$	 - S		rength by neter Tes				•
G	S			Geodetic	D				25		0 75	50	SA M P	Natural
G W L	M B O		SOIL DESCRIPTION	Elevation m	p t h	Shear Strength	60	80 kPa	Natu Atterb	ıral Moistu erg Limits (nt % eight)	PLE	Unit Wt. kN/m ³
	×		sand, crushed rock, concrete and wood s, light grey to dark brown, moist, no	_74.56	0	50 100	150	200	20	0 40	6	0	S	SS1
		– BED	r, no stains ROCK sal at 0.9 m depth air hammer from 0.9	73.7	1								: <u>/</u> \	
			6.1 m depths.									3 () () () () () () () () () (
¥		_	-	72.25	2							333		
		_	-		3									
		_	-		4									
		_	-											
		_	-	_	5									
		- 	-	68.5	6						::::::::::::::::::::::::::::::::::::::	3 () () () () () () () () () (
		В	orehole terminated at 6.1 m Depth											

BH LOGS - KEMPTVILLE.GPJ TROW OTTAWA.GDT 3/25/24

LOG OF BOREHOLE

- Borehole data requires interpretation by EXP before use by others
- 2. A 50 mm diameter monitoring well was installed, as shown.
- 3. Field work supervised by an EXP representative.
- 4. See Notes on Sample Descriptions
- 5. Log to be read with EXP Report OTT-22019409-A0

WA	RDS	
Date	Water Level (m)	Hole Open To (m)

	CORE DRILLING RECORD								
Run	Depth	% Rec.	RQD %						
No.	(m)								

Project No:	OTT-22019409-A0									F	Figure I	No.		5		_	
Project:	Phase Two Environmental Site A	ssessme	ent								Ū	_	1		1		'
ocation:	770 and 774 Bronson Avenue, C	Ottawa, C	Ontario							_		J	_				
ate Drilled:	January 09, 2024'				Split Spoon S		ple				Combus				ding		
rill Type:	CME-55 Track-Mounted Drill Rig				Auger Sampl SPT (N) Valu			-			Natural Atterber			ntent	ĺ		× →
atum:	Geodetic Elevation				Dynamic Cor Shelby Tube	е Те	est	_	_		Undrain % Strain			t			\oplus
ogged by:	Ph.O Checked by: N	M.MC	_		Shear Streng Vane Test	th by	y	•	+ s		Shear S Penetro	trength	by				•
S Y M B O L	SOIL DESCRIPTION		Geodetic Elevation	D e p t	20	4	netration T 10 6	est N \		ie 0 kPa	Na	:50 tural Moi	500 sture	7 Conte	ng (ppm) 50 nt %	S A M P	Natura Unit W
 			m 73.84	h 0	Shear Streng		00 1	50	20	кРа 00 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Allen	berg Lim 20	40		veigni.) 30 7	ES	kN/m
FILL Silty: broke	= sand, fine gravel, crushed asphalt, en rock pieces, no odour, no stains	some –				:::: :::::											SS1
Refu	ROCK sal at 0.8 m depth, air hammer fror	m 0.8	73.0	1		() () () () () () () ()								100		: V_\	
m to	6.1m depths	-				;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;		.5 () (.5 () (100			
		_	71.65	2		<u>₹.</u> 1.		-5 () (-5 () (3 3 3 3 3			100			
		_	71.03			3:1: 2:1:		:33; :33; :33;									
		_		3		:::: :::::											
		-				:::: :::::::::::::::::::::::::::::::::											
				4	3313113									100			
				ľ													
		-						- 						1 : 2 :			
		_		5		:::: ::::			:::		3 (3) 3			133	3333		
								·			-				3 ()		
		_						:3 3:1									
			67.7	6	· · · · · · · · · · · · · · · · · · ·	<u>∵i:</u>		·> :- i		· (·) · · (·		-5:5:1: -5:5:1:		1000 1000	-5 (-1-		
B	orehole Terminated at 6.1 m Dep	pui															
OTES:			WATE	٦L	EVEL RECOR	RDS] [C	ORE DE	RILLIN	NG RI	ECORD		
Borehole data r use by others	requires interpretation by EXP before	Date			Water evel (m)		Hole Ope	en	1	Run No.	Dep (m	th		% Re			QD %
shown.	eter monitoring well was installed, as				(/		. • (111)			. 101	(11)	,					
See Notes on S	Sample Descriptions with EXP Report OTT-22019409-A0																

- Borehole data requires interpretation by EXP before use by others
- 2. A 50 mm diameter monitoring well was installed, as shown.
- 3. Field work supervised by an EXP representative.
- 4. See Notes on Sample Descriptions
- 5. Log to be read with EXP Report OTT-22019409-A0

WA	TER LEVEL RECO	RDS
Date	Water Level (m)	Hole Open To (m)

	CORE DF	RILLING RECOR	D
Run No.	Depth (m)	% Rec.	RQD %
	, ,		

roject No:	OTT-22019409-A0	g o							F	igure N	No.	6	3	_	
roject:	Phase Two Environmental Site	Assessme	ent						-	Pa	_		 f 1		•
ocation:	770 and 774 Bronson Avenue,	Ottawa, 0	Ontario						_						
ate Drilled:	January 09, 2024'			-	Split Spoon S	•		⊴		Combus			-		
rill Type:	CME-55 Track-Mounted Drill Rig	g			Auger Sampl SPT (N) Valu					Natural I			nt	<u> </u>	× ⊸
atum:	Geodetic Elevation			-	Dynamic Cor Shelby Tube	e Test	_	-		Undraine % Strain					\oplus
ogged by:	Ph.O Checked by:_	M.MC			Shear Streng Vane Test	th by		+		Shear St Penetror					•
S Y M B O L	SOIL DESCRIPTION		Geodetic Elevation	D e p t	Standar 20 Shear Streng		Test N V	alue 80		25 Nat	50 5 ural Mois	500 sture Co	ading (ppm 750 ntent % y Weight)	- M P	Natura Unit W
₽ FILL		_	74.05	h 0	50		50 1	200		2	-	40 .I	60 60	:: \ E S	kN/m ³
Silty :	: sand, with fine gravel, rock and as s, brown, moist, no odour, no sta	•													SS1
BEDI Refu	rs, brown, moist, no coour, no sta ROCK Isal at 0.6 m depth, air hammer fr 6.1m depths		73.5	1										÷/ :::/	N N
		_		2											
		-	71.38	3								+ : · · · ·		*** *** ***	
		_													
		-		4											
		_		5										3	
			68.0	6							.; .; .; .; .; .; .; .; .;				
В	orehole Terminated at 6.1 m De	epth													
OTES:	intermediate by EVD L		WATE	RL	EVEL RECO	RDS		Γ		CC	RE DR	ILLING	RECOR		
Borehole data ruse by others	equires interpretation by EXP before	Dat	е	L	Water evel (m)	Hole Ope To (m)			Run No.	Dept (m)		% l	Rec.	F	QD %
shown. Field work supe See Notes on S	eter monitoring well was installed, as ervised by an EXP representative. Sample Descriptions with EXP Report OTT-22019409-A0														

- Borehole data requires interpretation by EXP before use by others
- 2. A 50 mm diameter monitoring well was installed, as shown.
- 3. Field work supervised by an EXP representative.
- 4. See Notes on Sample Descriptions
- 5. Log to be read with EXP Report OTT-22019409-A0

WA ⁻	TER LEVEL RECO	RDS
Date	Water Level (m)	Hole Open To (m)

	CORE DE	RILLING RECOR	D
Run No.	Depth (m)	% Rec.	RQD %

Date Drilled: January 09, 2024' Split Spoon Sample Augus Spoon Sample Augus Spoon Sample Augus Sample Spoon Sp		Phase Two Environmental Site A	Assessment										Fig	ure N	_		7			
January 09, 2024' Irill Type: CME-55 Track-Mounted Drill Rig Jatum: Geodetic Elevation Ogged by: Ph.O Checked by: M.MC Solic Sample Solic Sample Auger Sample Dynamic Cone Test Shear Sharingh by Hospital Strength by Solic DesCRIPTION Solic DesCRIPTION Solic DesCRIPTION Solic DesCRIPTION Solic DesCRIPTION Solic DesCRIPTION FILL Sirily sand, silty clay, some fine gravel, -trown, moist, no odour, no stain. BEDBOCK Refusal at 0.6 m depth, air hammer from 0.6 m to 4.6 m depths. Trial Water Strength by Borehole Terminated at 4.6 m Depth Borehole Terminated at 9.50 m depth, air hammer from 0.6 Water Strength by Augus Sample Sprit (N) Value Dynamic Cone Test Shear Sharingh by Penellometer Tast Strength by Penellometer Tast Shear Sharingh by Penellometer	Project: .ocation:			ario								_		Pa	ge	1_	of _	1_	-	
Augur Sample					-	nlit C=	or Cc	mn!-			┍	_	C.	mb···	tible V	no:	Door!	lina		
atum: Geodetic Elevation paged by: Ph.O Checked by: M.MC Soil DESCRIPTION Soil DESCRIPTION FILL Sity Sand, Sity clay, some fine gravel, -brown, moist, no odour, no stain. BEDROCK Refusal to 6 m depth, air hammer from 0.6 m to 4.6 m depths. Borehole Terminated at 4.6 m Depth Borehole Terminated at 4.6 m Depth Water Refusel Combating for Stain at Failure Physhamic Core Feet Shelby: Tube Shear Steength by Penerizonation Test N Value Soil DESCRIPTION Geodatic Elevation 74.38 FILL Sity Sand, Sity clay, some fine gravel, -brown, moist, no odour, no stain. 74.48 75.88 File Sand Sity Sand Sity Clay Soil Soil Soil Soil Soil Soil Soil Soil			1		Α	uger S	ample	lipie			_		Na	tural	Moistur	e Con		ing		□ ×
Solic DESCRIPTION Solic DESCRIPTION FILL Jerown, moist, no odour, no stain. Benker Stream of the properties of the p			1			. ,		Test			0				•				-	—⊖ ⊕
SOIL DESCRIPTION SOIL DESCRIPTION FILL Silly sand, silty clay, some fine gravel, rorwn, most, no odour, no stain. ReDROCK Refusal at 0.6 m depth, air hammer from 0.6 To 4.6 m depths. 71.43 Refusal at 0.6 m depth air hammer from 0.6 Refusal at 0.6 m depth air hammer from 0.6 Water Level Records Water Hele Open Water Hele Open Combatilists vision Refusal depths Combatilists vision Refusal depths Combatilists vision Refusal depths Combatilists vision Refusal depths Run Depth Combatilists vision Refusal depths Run Depth Run Depth % 76/8 Run Depth 9 % 78			M MC					by												₩
SOIL DESCRIPTION FILL Silty and, silty clay, some fine gravel, brown, moist, no odour, no stain. Refusal at 0.6 m depth, air hammer from 0.6 m to 4.6 m depths. 71.43 Borehole Terminated at 4.6 m Depth Trick Water Level Records Water Hole Open Water Level Records Concentic Date of the author of the au	oggod by.	Oncoked by.	IVI.IVIO					Бу			S		Pe	netro	meter T	est				
FILL Silly sand, silty clay, some fine gravel, brown, moist, no odour, no stain. Refusal at 0.6 m depth, air hammer from 0.6 m to 4.6 m depths. 71.43 a 7	S				e									2	50	500	75	50	1	Natura
FILL Silty sand, silty clay, some fine gravel, brown, moist, no odour, no stain. BEDROCK Refusal at 0.6 m depths, air hammer from 0.6 m to 4.6 m depths. 71.43 3 71.43 BOPHOLE Terminated at 4.6 m Depth BORGOCK Refusal at 0.6 m depths. Water Level Records Run Depth % Run Depth	B O L	SOIL DESCRIPTION		m	p t h	Shear S	Strength					kPa	1	Nat Atterb	ural Moi berg Limi	sture (ts (%	Conter Dry W	nt % leight)	L	
Description interpretation by EXP before Description in conduct, no stain. — 73.8 Description in to 4.6 m depth, air hammer from 0.6 m to 4.6 m depths. This is a state of the state of				38	°			100		<u> </u>				 						SS1
Refusal at 0.6 m depths, air hammer from 0.6 m to 4.6 m depths. - 71.43 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	brov	vn, moist, no odour, no stain.		8	:				: : : : : : : : : : : : : : : : : : :			· • · • · • · • · • · • · • · • · • · •		: : : : : : : : : : : : : : : : : : :						331
TES. Borehole Terminated at 4.6 m Depth WATER LEVEL RECORDS Date Water Hole Open Run Depth CORE DRILLING F Run Depth % R		fusal at 0.6 m depth, air hammer fro	om 0.6		1				::::: ::::::					:::: ::::::						
Borehole Terminated at 4.6 m Depth Second Content of the Conten	M mu	э 4.0 m чершs.																		
Borehole Terminated at 4.6 m Depth Go.8			7																	
Borehole Terminated at 4.6 m Depth Go.8) -		_		2) (1.5 (.		1.3.							· · · · · · · · ·		
Borehole Terminated at 4.6 m Depth Go. 8											::::									
Borehole Terminated at 4.6 m Depth Go.8				71 43					! •			· • · · · · · · · · · · · · · · · · · ·								
Borehole Terminated at 4.6 m Depth					3															
Borehole Terminated at 4.6 m Depth			-						: : : : : : : : : : : : : : : : : : :											
Borehole Terminated at 4.6 m Depth					4				::::::: :-:::::			·		:::: :-:::						
Borehole Terminated at 4.6 m Depth TES: WATER LEVEL RECORDS Borehole data requires interpretation by EXP before WATER LEVEL RECORDS Date Water Hole Open Run Depth % Records																				
DTES: Borehole data requires interpretation by EXP before use by others WATER LEVEL RECORDS Date Water Hole Open Run Depth % Re		Borehole Terminated at 4.6 m De		8	井				! : : : : : : :		::		+	 						
Borehole data requires interpretation by EXP before use by others WATER LEVEL RECORDS CORE DRILLING R Water Hole Open Run Depth % Re																				
Borehole data requires interpretation by EXP before use by others Water Hole Open Run Depth % Re																				
				WATEF		/EL RE	ECORI	os						CO	ORE DR		IG RE	:COR	DD	
A 50 mm diameter monitoring well was installed, as shown.	. Borehole data	requires interpretation by EXP before		WATEF	V	/ater	ECORI	Hol						Dep	th		IG RE			RQD %

- Borehole data requires interpretation by EXP before use by others
- 2. A 50 mm diameter monitoring well was installed, as shown.
- 3. Field work supervised by an EXP representative.
- 4. See Notes on Sample Descriptions
- 5. Log to be read with EXP Report OTT-22019409-A0

WA	TER LEVEL RECO	RDS
Date	Water Level (m)	Hole Open To (m)

	CORE DE	RILLING RECOR	D
Run No.	Depth (m)	% Rec.	RQD %

-	OTT-22019409-A0							Figure No	D	8			
_	Phase Two Environmental Site Assessme							Page	e. 1	of	1_		•
_	770 and 774 Bronson Avenue, Ottawa, C	Ontario											
ate Drilled: J	anuary 10, 2024'			lit Spoon S		×		Combustib			ng		□ X
rill Type: <u>C</u>	CME-55 Track-Mounted Drill Rig			ger Sampl T (N) Valu		C	_	Natural Mo		ontent	-		^
atum: <u>G</u>	Seodetic Elevation			namic Cor elby Tube	ne Test		- I	Undrained % Strain a					\oplus
ogged by: P	h.O Checked by: M.MC	_	Sh	ear Streng ne Test	jth by	 	•	Shear Stre Penetrome					A
S Y M B	SOIL DESCRIPTION	Geodetic Elevation	D e p	Standar 20	d Penetration		ilue 80	Combustit 250	50		0		Natura Unit W
B O L	SOIL BLOOKII HOW	m 74.36	t s	hear Streng	gth 100		kPa 200	Atterber 20	g Limits 40	(% Dry We	eight)	L E S	kN/m ³
brick pi stain. BEDRO Refusa	al at 0.9 m depth, air hammer from 0.9	73.5	1									\bigvee	SS1
111 10 6.	1 m depths.	72.45	33333										
	_		3										
	_		4										
-	_		5										
Bord	ehole Terminated at 6.1 m Depth	68.3											
	uires interpretation by EXP before	WATE		EL RECO						LING RE		-	ND 0/
use by others	Date r monitoring well was installed, as	e		ater el (m)	Hole O To (n		Run No.	Depth (m)		% Rec		K	QD %

LOG OF BOREHOLE BH LOGS - KEMPTVILLE.GPJ TROW OTTAWA.GDT 3/25/24

3. Field work supervised by an EXP representative.

5. Log to be read with EXP Report OTT-22019409-A0

4. See Notes on Sample Descriptions

Project No:	Log o'	f Bo)I	rehc	le	<u>N</u>	IW				0		е	хр
Project:	Phase Two Environmental Site Assessment	ent							Figure I	-	9	-		ı
Location:	770 and 774 Bronson Avenue, Ottawa, 0	Ontario							Pa	ge	of			
Date Drilled:	January 10, 2024'			Split Spoon	Sample	<u> </u>	×	1	Combus	stible V	apour Rea	dina		П
Drill Type:	CME-55 Track-Mounted Drill Rig		-	Auger Sam	ole]	Natural	Moistur	e Content	9		×
Datum:	Geodetic Elevation		-	SPT (N) Val Dynamic Co				· -	Atterber Undrain	ed Tria	xial at	ŀ		⊕
Logged by:	Ph.O Checked by: M.MC	_	-	Shelby Tube Shear Stren Vane Test			+ S	•	% Strair Shear S Penetro	trength	by			▲
G M B O	SOIL DESCRIPTION	Geodetic Elevation m	D e p t	20 Shear Strei	40 ngth	tration Te)	80 kPa	2 Nat	50 tural Mo	isture Conte iits (% Dry V	'50 ent %	SAMPLES	Natural Unit Wt. kN/m ³
	sand, meduim gravel, grey, moist, no / ır, no stain /_	74.75 74.5	0	50	100	15	0	200		20	40	60	Š	SS1 SS2
and no st	c pieces in the tube from 0.6 m to 1.1 m $ igspace$	73.7	1											SS3
Refu	ns. <u>ROCK</u> usal at 1.1 m depth, air hammer from 1.1 [–] 6.1 m depths.	_	2				-3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3							
	- -	71.48	3											
	-	71.40												
	_	-	4									361		
	-	-	5											
В	orehole Terminated at 6.1 m Depth	68.7	6				· · · · · · · · · · · · · · · · · · ·							
NOTES:		WATE	RL	LEVEL RECO	ORDS				CC	DRE DE	RILLING R	ECORD		
Borehole data use by others	requires interpretation by EXP before Dat			Water Level (m)	H	ole Opei To (m)	n	Run No.	Dep (m	th	% Re			QD %
shown.	eter monitoring well was installed, as ervised by an EXP representative.			_5701 (III)		. 🗸 (111)		140.	,,,,,	,				

LOG OF BOREHOLE BH LOGS - KEMPTVILLE. GPJ TROW OTTAWA.GDT 3/25/24

4. See Notes on Sample Descriptions

5. Log to be read with EXP Report OTT-22019409-A0

Project No:	Log of	Во	r	ehol	е	<u>M</u>	<u>W</u>			Na	10	**(9	xp
Project:	Phase Two Environmental Site Assessme	ent							Figure	_		- 1		- 1
Location:	770 and 774 Bronson Avenue, Ottawa, C	Ontario							Pa	ige	of			
Date Drilled: 、	January 10, 2024'			Split Spoon	Samp	ole	Σ	1	Combu	stible Va	apour Read	dina		
Drill Type:	CME-55 Track-Mounted Drill Rig		-	Auger Samp	le		0	0	Natural	Moistur	e Content			×
-	Geodetic Elevation		-	SPT (N) Valu Dynamic Co		st		- -	Undrair	rg Limits ned Triax	dal at	I		⊕
-	Ph.O Checked by: M.MC		-	Shelby Tube Shear Streng		,			Shear S	n at Fail Strength	by			⊕
00 7 -				Vane Test `	, ,		-	3	Penetro	meter T	est			_
GW BO L	SOIL DESCRIPTION	Geodetic Elevation m	D e p t h	20 Shear Stren	4 gth		0	80 kPa	:	250	pour Readi 500 7 sture Conte its (% Dry V	50	SAMPLIES	Natural Unit Wt. kN/m ³
FILL Fine s	and, with meduim gravel, brown, moist,	75.02 74.7	0	50	10	00 15	50	200		20	40 (50 	S	004
FILL Sandy BEDF Refusi	clay, brown, moist, no odour, no stains	73.9	1										\setminus	SS1
_	_		2											
	- - -	-	3										-	
	- - -	69.32	5										-	
		68.9	6	33.13			· · · · · · · · · · · · · · · · · · ·							
Boi	rehole Terminated at 6.1 m Depth													
NOTES:		\A/A-T-		EVEL PEGG	DDC.					OBC 25				
	quires interpretation by EXP before Dat			EVEL RECO Water		Hole Ope	n	Run	C De _l		RILLING RI % Re		R	QD %
•	er monitoring well was installed, as		l	Level (m)		To (m)		No.	(n					

LOG OF BOREHOLE BH LOGS - KEMPTVILLE. GPJ TROW OTTAWA.GDT 3/25/24

3. Field work supervised by an EXP representative.

5. Log to be read with EXP Report OTT-22019409-A0

4. See Notes on Sample Descriptions

Project No:	OTT-22019409-A0								•	No	11			·/\
Project:	Phase Two Environmental Site Assessm	ent							Figure	_	11 1 of	_		- 1
Location:	770 and 774 Bronson Avenue, Ottawa,	Ontario							Pa	age	or			
Date Drilled:	January 11, 2024'		_	Split Spo	on Samı	ole		⊴	Combu	ıstible V	apour Rea	ding		
Drill Type:	CME-55 Track-Mounted Drill Rig			Auger Sa						l Moistui erg Limit	e Content	L		X ⊕
Datum:	Geodetic Elevation		_	Dynamic	Cone Te	est		- -	Undrai	ned Tria: in at Fail	xial at	•		⊕
Logged by:	Ph.O Checked by: M.MC			Shelby To Shear Str Vane Tes	ength by	/	_	 - 	Shear	Strength ometer 1	by			A
S Y M B O	SOIL DESCRIPTION	Geodetic Elevation m	D e p t) 4	netration 7	Test N V	alue 80 kPa		250	apour Read 500 7 isture Conte its (% Dry V	750	SA M P L	Natural Unit Wt. kN/m³
ASP FILI	HALT ~50 mm thick	75.78 75.7	0	5) <u>1</u>	00 1	50	200		20	40	60	Š	SS1
odou FILI Sand	sand, meduim gravel, grey, moist, no r, no stain. graphy clay, broken rock pieces, brown, t, no odour, black stains.	75.0	1											SS2
inois	t, no ododi, biack stains.	73.7	2											SS3
Refu	ROCK usal at 2.1 m depth, air hammer from 2.1 6.1 m depths.													
	- -	_	3											
	-	_	4											
	-	70.44	5											
	orehole Terminated at 6.1 m Depth	69.7	6		· [· 2 · 2 ·] · · [· 2 · 2 ·] · · [· 2 · 2 ·] · · [· 2 · 2 ·] ·					: ::::::				
NOTES:		\\\\\	- 	EVEL RE	COPDS		· · · · ·			ODE D	RILLING R	ECOPD		
1. Borehole data use by others	requires interpretation by EXP before	te	i\ L	Water		Hole Op	en	Run		pth	% Re		R	QD %

LOG OF BOREHOLE BH LOGS - KEMPTVILLE. GPJ TROW OTTAWA.GDT 3/25/24

2. A 50 mm diameter monitoring well was installed, as shown. 3. Field work supervised by an EXP representative.

5. Log to be read with EXP Report OTT-22019409-A0

4. See Notes on Sample Descriptions

Project No:	Log of	Во	r	ehol	e <u>M</u>	W-	<u>-12</u>			E	X
Project:	Phase Two Environmental Site Assessm	ent					1	Figure No.	12		
Location:	770 and 774 Bronson Avenue, Ottawa,						_	Page.	of		
Date Drilled:	· · · · ·	Ontario									
			-	Split Spoon S Auger Samp	•			Combustible V Natural Moistu	apour Reading re Content		×
Drill Type:	CME-55 Track-Mounted Drill Rig		-	SPT (N) Valu				Atterberg Limit		<u> </u>	—
Datum:	Geodetic Elevation		-	Shelby Tube				% Strain at Fa	lure		\oplus
Logged by:	Ph.O Checked by: M.MC	_		Shear Streng Vane Test	th by	+ s		Penetrometer			•
S Y M B O	SOIL DESCRIPTION	Geodetic Elevation m	D e p t	20 Shear Stren			lue 80 kPa	250	apour Reading (ppn 500 750 sisture Content % nits (% Dry Weight)	ΙÁ	Natural Unit Wt.
L	HALT ~50 mm thick	76.02 76.0	0	50	100 1	150 2	200	20	40 60	<u> </u>	/
	dy clay, broken concrete and brick -es, brown, moist, no odours, no stains									X	SS1
	-		1			100000					SS2
		73.9	2	2		1.3 2.1.3					SS3
Refu	ROCK usal at 2.1 m depth, air hammer from 2.1 6.7 m depths	-	3	3							
	- - - -	70.68	5 6	\$ 							
	-			 							
Be	orehole Terminated at 6.7 m Depth	69.3		1.00							
											<u> </u>
	requires interpretation by EXP before		RL	LEVEL RECO Water	RDS Hole Op	en	Run	CORE D	RILLING RECOR		RQD %
2.A 50 mm diame shown. 3.Field work supe 4. See Notes on S	eter monitoring well was installed, as ervised by an EXP representative. Sample Descriptions with EXP Report OTT-22019409-A0	te	<u>l</u>	Level (m)	To (m		No.	(m)		,	

- Borehole data requires interpretation by EXP before use by others
- 2.A 50 mm diameter monitoring well was installed, as shown.
- 3. Field work supervised by an EXP representative.
- 4. See Notes on Sample Descriptions
- 5. Log to be read with EXP Report OTT-22019409-A0

WA	TER LEVEL RECO	RDS
Date	Water Level (m)	Hole Open To (m)

	CORE DF	RILLING RECOR	D
Run No.	Depth (m)	% Rec.	RQD %

Project No:	OTT-22019409-A0		' 1	CHOI	e <u>IVII</u>	/ V -		Figure No.	13	ϵ	XŁ
Project:	Phase Two Environmental Site Assess	ment					_	Figure No. Page.	1 of 1		- 1
Location:	770 and 774 Bronson Avenue, Ottawa	a, Ontario					_	rage.	0i	-	
Date Drilled:	January 11, 2024'		_	Split Spoon S	Sample	\boxtimes		Combustible \	apour Reading		
Drill Type:	CME-55 Track-Mounted Drill Rig		_	Auger Sampl SPT (N) Valu				Natural Moistu Atterberg Limi		_	×
Datum:	Geodetic Elevation		_	Dynamic Cor				Undrained Tria % Strain at Fa	xial at	•	\oplus
Logged by:	Ph.O Checked by: M.MC			Shelby Tube Shear Streng Vane Test	th by	+ s		Shear Strengtl Penetrometer	by		A
S Y M B O L	SOIL DESCRIPTION	Geodetic Elevation m 76.11		'	d Penetration Tes 40 60 gth 100 150		80 kPa	250	apour Reading (ppr 500 750 isture Content % nits (% Dry Weight)	I A	Natural Unit Wt. kN/m ³
FILL Sand piece petro	HALT ~50 mm thick by clay, broken concrete and brick s, possible cobbles, gravel, Black oil, eleum odour c oil found at 2.4 m depth.	73.7	1								SS1
Refu m to	ROCK usal at 2.4 m depth, air hammer from 2.4 6.7 m depths.	7	3 4 1 5 6								
NOTES: 1. Borehole data i	requires interpretation by EXP before		ĒR Ι	EVEL RECOI			Run		RILLING RECOF		ROD %
use by others		Date		Water _evel (m)	Hole Open To (m)		Run No.	Depth (m)	% Rec.	R	RQD %
2. A 50 mm diameter monitoring well was installed, as shown. 3. Field work supervised by an EXP representative. 4. See Notes on Sample Descriptions 5. Log to be read with EXP Report OTT-22019409-A0											

LOG OF BOREHOLE BH LOGS - KEMPTVILLE.GPJ TROW OTTAWA.GDT 3/25/24

Log of Borehole BH-14

Project No:	<u>OTT-22019409-A0</u>	f Bo	r	eho	le	<u>B</u>	H-		Figure N	lo.	14	**(\ominus	хр
Project:	Phase Two Environmental Site Assessm	nent							Figure N		l of	_		1
Location:	770 and 774 Bronson Avenue, Ottawa,	Ontario							Pa	ge	01			
Date Drilled:	January 11, 2024'		_	Split Spoon S	Samı	ple	Σ	3	Combus	tible Vap	our Read	ding		
Drill Type:	CME-75 Truck-Mounted Drill Rig		_	Auger Sample SPT (N) Value				_	Natural I	Moisture	Content	L		X ⊕
Datum:	Geodetic Elevation		_	Dynamic Cor		est		_	Undraine	ed Triaxia at Failur				⊕
Logged by:	Ph.O Checked by: M.MC			Shelby Tube Shear Streng Vane Test	ith b	y	-	 	Shear S	trength b meter Te	y			A
S Y M B O L	SOIL DESCRIPTION	Geodetic Elevation m	D e p t h	20 Shear Stren	gth		60	80 kPa	2	ural Moist erg Limits	00 7 ure Conte (% Dry V	nt % Veight)	SAMPLES	Natural Unit Wt. kN/m ³
XX ∖ASP	HALT ~50 mm thick	75.63 75.6	0	50	1	00 1	50	200		0 4	0 6	50 	s .\/	
thick	ANULAR 'A' FILL (BASE) ~200 mm sand and gravel, light brown, moist, no ir, no stain	75.4												SS1
FILL Fine		74.1	1									3 2 1 3		SS2
NOTES:		WATE	RL	EVEL RECO	RDS	3			CC	RE DRII	LING RI	ECORD		
Borehole data use by others	requires interpretation by EXP before Date Date Date Date Date Date Date Dat	ate	L	Water Level (m)		Hole Ope		Run No.	Dep		% Re	C.	R	QD %

LOG OF BOREHOLE BH LOGS - KEMPTVILLE.GPJ TROW OTTAWA.GDT 3/25/24

2. Borehole was backfilled upon completion of drilling. 3. Field work supervised by an EXP representative.

5.Log to be read with EXP Report OTT-22019409-A0

4. See Notes on Sample Descriptions

Log of Borehole BH-15

Project No:	OTT-22019409-A0	f Bo) 	eho	le ₋	B	<u>H-</u>		Figure N	۸n	15		E	xp
Project:	Phase Two Environmental Site Assessm	ent							Pa	_	1 of			
Location:	770 and 774 Bronson Avenue, Ottawa, 0	Ontario							, 4,	go		<u> </u>		
Date Drilled:	January 11, 2024'		_	Split Spoon S	Sample		\boxtimes	l			pour Re	-		
Drill Type:	CME-55 Track-Mounted Drill Rig		_	Auger Sample SPT (N) Value					Natural I Atterber		e Conten	t	<u> </u>	× ⊸
Datum:	Geodetic Elevation		_	Dynamic Cor					Undraine % Strain	ed Triax	ial at			\oplus
Logged by:	Ph.O Checked by: M.MC			Shelby Tube Shear Streng Vane Test	th by		+ s		Shear S Penetro	trength	by			•
G M B O I	SOIL DESCRIPTION	Geodetic Elevation m		20 Shear Streng	-	6	0	80 kPa	2	50	sture Con ts (% Dry	750 tent % Weight)	SAMPLES	Natural Unit Wt. kN/m ³
	HALT ~50 mm thick ANULAR 'A' FILL (BASE) ~ 550 mm	75.4 75.4 74.8	0	50	100	15	0 2	200			40	60		SS1
Fine	sand and gravel, brown, moist, no f, no stain												## \\	}
FILL Fine	sand, some brocken rock pieces, brown, t, no odours, no stains		1				· · · · · · · · · · · · · · · · · · ·							SS2
	Auger Refusal at 2 m Depth	73.4	2				*****						<u> </u>	SS3
NOTES:	requires interpretation by EXP before	WATE	ERL	LEVEL RECO	RDS				CC	RE DR	RILLING F	RECOR		
use by others	requires interpretation by EXP before Date of drilling.	te		Water Level (m)		e Ope o (m)	n	Run No.	Dept (m)		% R	ec.	R	RQD %
	ervised by an EXP representative.												1	

LOG OF BOREHOLE BH LOGS - KEMPTVILLE.GPJ TROW OTTAWA.GDT 3/25/24

4. See Notes on Sample Descriptions

5. Log to be read with EXP Report OTT-22019409-A0

EXP Services Inc.

SEC 774 Bronson Phase Two Environmental Site Assessment 770 and 774 Bronson Avenue and 557 Cambridge Street, Ottawa, Ontario OTT-22019409-A0 June 24, 2024

Appendix E: Hydraulic Conductivity

770 Bronson Avenue, Ottawa Rising Head Test Analysis Hvorslev Method (1951)

MW4

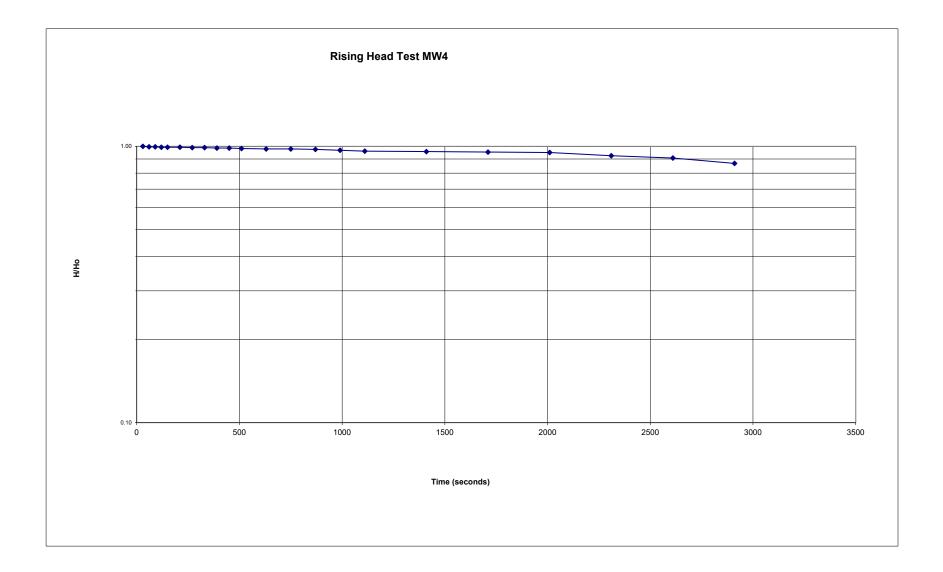
 \mathbf{H}_0 2.08 m (st

evel in metres)			
Water Level	Drawdown	H-h/H-h0	Recovery to Original
(m)	(m)		Water Level (%)
4.88	2.80	1.00	0
4.88	2.80	1.00	0
4.87	2.79	1.00	0
4.87	2.79	1.00	0
4.86	2.78	0.99	1
4.86	2.78	0.99	1
4.86	2.78	0.99	1
4.85	2.77	0.99	1
4.85	2.77	0.99	1
4.84	2.76	0.99	1
4.84	2.76	0.99	1
4.83	2.75	0.98	2
4.82	2.74	0.98	2
4.82	2.74	0.98	2
4.81	2.73	0.98	3
4.79	2.71	0.97	3
4.77	2.69	0.96	4
4.76	2.68	0.96	4
4.75	2.67	0.95	5
4.74	2.66	0.95	5
4.67	2.59	0.93	8
4.62	2.54	0.91	9
4.51	2.43	0.87	13
	4.88 4.88 4.87 4.86 4.85 4.85 4.84 4.83 4.82 4.81 4.79 4.76 4.74 4.67 4.67 4.62	Water Level (m) Drawdown (m) 4.88 2.80 4.87 2.79 4.86 2.78 4.86 2.78 4.85 2.77 4.85 2.77 4.84 2.76 4.83 2.75 4.82 2.74 4.81 2.73 4.79 2.71 4.77 2.69 4.76 2.68 4.75 2.67 4.74 2.66 4.67 2.59 4.62 2.54	Water Level (m) Drawdown (m) H-h/H-h0 4.88 2.80 1.00 4.87 2.79 1.00 4.87 2.79 1.00 4.86 2.78 0.99 4.86 2.78 0.99 4.85 2.77 0.99 4.84 2.76 0.99 4.84 2.76 0.99 4.83 2.75 0.98 4.82 2.74 0.98 4.81 2.73 0.98 4.82 2.74 0.98 4.79 2.71 0.97 4.77 2.69 0.96 4.76 2.68 0.96 4.75 2.67 0.95 4.74 2.66 0.95 4.67 2.59 0.93 4.62 2.54 0.91

To constant= 0.37

K=

L/R In(L/R) 122.0 4.804021


input

r=

0.0032 (pipe radius)
3.05 (effective screen length, if straddles water)
0.03 (hole radius) L=

R= To= 8180

K= 9.86E-10 m/sec 9.86E-08 cm/sec

770 Bronson Avenue, Ottawa Rising Head Test Analysis Hvorslev Method (1951)

MW7

 \mathbf{H}_0 2.58 m (st

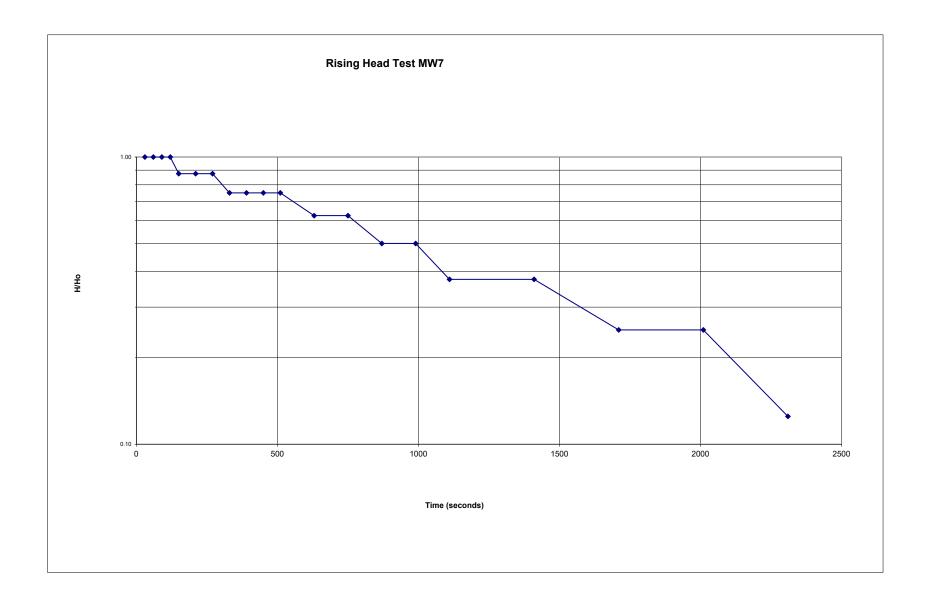
static water le	evel in metres)			
Time	Water Level	Drawdown	H-h/H-h0	Recovery to Original
(sec)	(m)	(m)		Water Level (%)
0	2.66	0.08	1.00	0
30	2.66	0.08	1.00	0
60	2.66	0.08	1.00	0
90	2.66	0.08	1.00	0
120	2.66	0.08	1.00	0
150	2.65	0.07	0.87	13
210	2.65	0.07	0.87	13
270	2.65	0.07	0.87	13
330	2.64	0.06	0.75	25
390	2.64	0.06	0.75	25
450	2.64	0.06	0.75	25
510	2.64	0.06	0.75	25
630	2.63	0.05	0.62	38
750	2.63	0.05	0.62	38
870	2.62	0.04	0.50	50
990	2.62	0.04	0.50	50
1110	2.61	0.03	0.37	63
1410	2.61	0.03	0.37	63
1710	2.6	0.02	0.25	75
2010	2.6	0.02	0.25	75
2310	2.59	0.01	0.12	88

To constant= 0.37

K=

L/R In(L/R) 122.0 4.804021

input


r=

0.0032 (pipe radius)
3.05 (effective screen length, if straddles water)
0.03 (hole radius) L=

R=

To= 620

K= 1.30E-08 m/sec 1.30E-06 cm/sec

EXP Services Inc.

SEC 774 Bronson Phase Two Environmental Site Assessment 770 and 774 Bronson Avenue and 557 Cambridge Street, Ottawa, Ontario OTT-22019409-A0 June 24, 2024

Appendix F: Analytical Summary Tables

Table 1 - Analytical Results in Soil - PHC and VOC 770 and 775 Bronson Avenue, 557 Cambridge Street, Ottawa, ON OTT-22019409-A0

OTT-22019409-A0																
Parameter		MECP Table 7 1	BH1 SS1	BH2 SS1	внз SS1	MW4 SS1	MW5 SS1	MW6 SS1	MW7 SS1	MW8 SS1	DUP1 (Field Duplicate to MW8 SS1)	MW9 SS1	MW10 SS1	MW11 SS1	MW12 SS1	MW13 SS1
Sampling Date	Units		9-Jan-2024	9-Jan-2024	9-Jan-2024	10-Jan-2024	9-Jan-2024	9-Jan-2024	9-Jan-2024	10-Jan-2024	10-Jan-2024	10-Jan-2024	10-Jan-2024	11-Jan-2024	11-Jan-2024	11-Jan-2024
Sample Depth (mbgs)			0.1 to 0.45	0.2 to 0.75	0.1 to 0.45	0.1 to 0.5	0.2 to 0.75	0.2 to 0.6	0.1 to 0.5	0.1 to 0.65	0.1 to 0.65	0.6 to 1.1	0.2 to 0.9	0.2 to 0.9	1.5 to 2.0	0.3 to 0.9
Date of Analysis		Orange	18-Jan-2024	18-Jan-2024	18-Jan-2024	15-Jan-2024	18-Jan-2024	18-Jan-2024	18-Jan-2024	15-Jan-2024	15-Jan-2024	15-Jan-2024	15-Jan-2024	18-Jan-2024	18-Jan-2024	18-Jan-2024
Certificate of Analysis			24Z110204	24Z110204	24Z110204	24Z110615	24Z110204	24Z110204	24Z110204	24Z110615	24Z110615	24Z110615	24Z110615	24Z111530	24Z111530	24Z111530
Volatile Organic Compounds										•						
Acetone	ug/g dry	16	< 0.50	< 0.50	<0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<0.50	< 0.50	< 0.50	<0.50	< 0.50
Benzene	ug/g dry	0.21	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020
Bromodichloromethane	ug/g dry	13	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	<0.050	< 0.050	< 0.050	< 0.050	< 0.050
Bromoform	ug/g dry	0.27	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	<0.050	< 0.050	< 0.050	< 0.050	<0.050
Bromomethane	ug/g dry	0.05	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050
Carbon Tetrachloride	ug/g dry	0.05	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	<0.050	< 0.050	< 0.050	< 0.050	<0.050
Chlorobenzene	ug/g dry	2.4	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050
Chloroform	ug/g dry	0.05	< 0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050
Dibromochloromethane	ug/g dry	9.4	< 0.050	<0.050	<0.050	<0.050	<0.050	< 0.050	<0.050	<0.050	< 0.050	<0.050	< 0.050	<0.050	<0.050	<0.050
Dichlorodifluoromethane	ug/g dry	16	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050
1,2-Dichlorobenzene	ug/g dry	3.4	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	<0.050	< 0.050	< 0.050	< 0.050	< 0.050
1,3-Dichlorobenzene	ug/g dry	4.8	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050
1,4-Dichlorobenzene	ug/g dry	0.083	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050
1,1-Dichloroethane	ug/g dry	3.5	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050
1,2-Dichloroethane	ug/g dry	0.05	< 0.050	< 0.050	<0.050	<0.050	< 0.050	<0.050	<0.050	< 0.050	< 0.050	<0.050	<0.050	<0.050	<0.050	<0.050
1,1-Dichloroethylene	ug/g dry	0.05	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050
cis-1,2-Dichloroethylene	ug/g dry	3.4	< 0.050	< 0.050	<0.050	<0.050	< 0.050	<0.050	<0.050	< 0.050	< 0.050	< 0.050	<0.050	<0.050	<0.050	<0.050
trans-1,2-Dichloroethylene	ug/g dry	0.084	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050
1,2-Dichloropropane	ug/g dry	0.05	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050
1,3-Dichloropropene, total	ug/g dry	0.05	< 0.050	< 0.050	<0.050	<0.050	< 0.050	<0.050	<0.050	< 0.050	< 0.050	< 0.050	<0.050	<0.050	<0.050	<0.050
Ethylbenzene	ug/g dry	2	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050
Ethylene dibromide	ug/g dry	0.05	< 0.050	< 0.050	<0.050	<0.050	< 0.050	<0.050	<0.050	< 0.050	< 0.050	< 0.050	<0.050	<0.050	<0.050	<0.050
Hexane	ug/g dry	2.8	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050
Methyl Ethyl Ketone	ug/g dry	16	< 0.50	<0.50	<0.50	<0.50	< 0.50	<0.50	<0.50	< 0.50	< 0.50	<0.50	< 0.50	<0.50	<0.50	< 0.50
Methyl Isobutyl Ketone	ug/g dry	1.7	<0.50	<0.50	<0.50	<0.50	< 0.50	<0.50	<0.50	< 0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Methyl tert-butyl ether	ug/g dry	0.75	< 0.050	< 0.050	<0.050	<0.050	< 0.050	<0.050	<0.050	< 0.050	< 0.050	<0.050	<0.050	<0.050	<0.050	<0.050
Methylene Chloride	ug/g dry	0.1	< 0.050	<0.050	< 0.050	<0.050	< 0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	< 0.050	<0.050
Styrene	ug/g dry	0.7	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	<0.050	< 0.050	< 0.050	< 0.050	< 0.050
1,1,1,2-Tetrachloroethane	ug/g dry	0.058	<0.050	< 0.050	<0.050	<0.050	< 0.050	<0.050	<0.050	< 0.050	< 0.050	<0.050	<0.050	<0.050	<0.050	<0.050
1,1,2,2-Tetrachloroethane	ug/g dry	0.5	< 0.050	<0.050	< 0.050	<0.050	< 0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	< 0.050	<0.050
Tetrachloroethylene	ug/g dry	0.28	< 0.050	<0.050	< 0.050	<0.050	< 0.050	< 0.050	<0.050	<0.050	< 0.050	<0.050	<0.050	<0.050	< 0.050	<0.050
Toluene	ug/g dry	2.3	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020
1,1,1-Trichloroethane	ug/g dry	0.38	< 0.050	<0.050	< 0.050	<0.050	< 0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	< 0.050	<0.050
1,1,2-Trichloroethane	ug/g dry	0.05	< 0.050	<0.050	< 0.050	<0.050	< 0.050	< 0.050	<0.050	<0.050	< 0.050	<0.050	<0.050	<0.050	< 0.050	<0.050
Trichloroethylene	ug/g dry	0.061	<0.050	<0.050	< 0.050	<0.050	< 0.050	<0.050	<0.050	<0.050	< 0.050	< 0.050	<0.050	<0.050	< 0.050	<0.050
Trichlorofluoromethane	ug/g dry	4	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050
Vinyl Chloride	ug/g dry	0.02	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020
Xylenes, total	ug/g dry	3.1	< 0.050	<0.050	< 0.050	<0.050	< 0.050	< 0.050	<0.050	< 0.050	< 0.050	< 0.050	< 0.050	<0.050	< 0.050	< 0.050
Petroleum Hydrocarbons																
F1 PHC (C6 - C10) - BTEX*	ug/g dry	55	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
F2 PHC (C10-C16)	ug/g dry	98	<10	<10	<10	12	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
F3 PHC (C16-C34)	ug/g dry	300	221	<50	<50	62	<50	<50	<50	<50	<50	<50	<50	<50	78	352
F4 PHC (C34-C50)**	ug/g dry	2800	81	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	56
NOTES:																

Ontario Ministry of Environment, Conservation and Parks (MECP), Soil, Groundwater and Sediment Standards for use under Part XV.1 of the Environmental Protection Act, April 2011, Table 7 Generic Site Condition Standards for

 $Shallow \ Soils \ in \ a \ Non-Potable \ Ground \ Water \ Condition \ for \ Residential/Parkland/Institutional \ Property \ Use \ (coarse \ textured \ soils)$

F1 fraction does not include BTEX.

** In instances where the PHC F2 to F4 chromatogram did not reach baseline, the F4 fraction result shown is the highest value obtained via the gas chromatograph/flame ionization detection method or the gravimetric method.

ND Non-detectable results are shown as "< (RDL)" where RDL represents the reporting detection limit.

NV No Value N/A Not Applicable Parameter not analyzed m bgs Metres below ground surface

Indicates soil exceedance of MECP Table 7 generic site condition standard for coarse textured soil and residential/parkland/institutional property use

Table 2 - Analytical Results in Soil - PAH 770 and 775 Bronson Avenue, 557 Cambridge Street, Ottawa, ON OTT-22019409-A0

Parameter	Units	MECP Table 7 ¹	BH1 SS1	BH2 SS1	BH3 SS1	MW4 SS1	MW5 SS1	MW6 SS1	MW7 SS1	MW8 SS1	DUP1 (Field Duplicate to MW8 SS1)	MW9 SS1	MW10 SS1	MW11 SS1	MW12 SS1	MW13 SS1
Sampling Date			9-Jan-2024	9-Jan-2024	9-Jan-2024	10-Jan-2024	9-Jan-2024	9-Jan-2024	9-Jan-2024	10-Jan-2024	10-Jan-2024	10-Jan-2024	10-Jan-2024	11-Jan-2024	11-Jan-2024	11-Jan-2024
Sample Depth (mbgs)			0.1 to 0.45	0.2 to 0.75	0.1 to 0.45	0.1 to 0.5	0.2 to 0.75	0.2 to 0.6	0.1 to 0.5	0.1 to 0.65	0.1 to 0.65	0.6 to 1.1	0.2 to 0.9	0.2 to 0.9	1.5 to 2.0	0.3 to 0.9
Date of Analysis		Orange	18-Jan-2024	18-Jan-2024	18-Jan-2024	15-Jan-2024	18-Jan-2024	18-Jan-2024	18-Jan-2024	15-Jan-2024	15-Jan-2024	15-Jan-2024	15-Jan-2024	18-Jan-2024	18-Jan-2024	18-Jan-2024
Paracel Certificate of Analysis			24Z110204	24Z110204	24Z110204	24Z110615	24Z110204	24Z110204	24Z110204	24Z110615	24Z110615	24Z110615	24Z110615	24Z111530	24Z111530	24Z111530
Semi-Volatiles																
Acenaphthene	ug/g dry	7.9	< 0.05	0.08	0.28	1.97	< 0.05	< 0.05	< 0.05	<0.05	<0.05	<0.05	< 0.05	< 0.05	0.12	< 0.05
Acenaphthylene	ug/g dry	0.15	< 0.05	<0.05	0.06	0.57	<0.05	<0.05	< 0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	< 0.05	<0.05
Anthracene	ug/g dry	0.67	< 0.05	0.43	1.2	2.17	<0.05	0.38	< 0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	0.25	0.13
Benzo[a]anthracene	ug/g dry	0.5	<0.05	0.25	0.89	3.17	< 0.05	0.15	< 0.05	0.06	<0.05	<0.05	<0.05	0.08	0.42	0.31
Benzo[a]pyrene	ug/g dry	0.3	<0.05	0.19	0.44	2.08	0.08	0.18	<0.05	<0.05	<0.05	<0.05	<0.05	0.09	0.26	0.19
Benzo[b]fluoranthene	ug/g dry	0.78	<0.05	0.36	0.62	2.95	0.12	0.21	<0.05	0.09	<0.05	<0.05	<0.05	0.14	0.38	0.32
Benzo[g,h,i]perylene	ug/g dry	6.6	<0.05	0.12	0.19	1.33	<0.05	0.08	<0.05	<0.05	<0.05	<0.05	<0.05	0.11	0.16	0.14
Benzo[k]fluoranthene	ug/g dry	0.78	< 0.05	0.15	0.33	1.11	0.07	0.13	< 0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	0.16	0.13
Chrysene	ug/g dry	7	0.09	0.58	1.23	3.33	0.13	0.34	< 0.05	0.06	<0.05	<0.05	< 0.05	0.12	0.52	0.34
Dibenzo[a,h]anthracene	ug/g dry	0.1	<0.05	<0.05	<0.05	0.28	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Fluoranthene	ug/g dry	0.69	0.28	1.81	4.17	5.33	0.35	1.59	<0.05	0.07	<0.05	<0.05	<0.05	0.2	1.17	0.72
Fluorene	ug/g dry	62	< 0.05	0.17	0.54	1.49	<0.05	0.14	<0.05	<0.05	< 0.05	<0.05	<0.05	<0.05	0.17	0.05
Indeno[1,2,3-cd]pyrene	ug/g dry	0.38	<0.05	0.08	0.16	1.32	<0.05	0.06	< 0.05	< 0.05	<0.05	<0.05	<0.05	0.08	0.13	0.11
Methylnaphthalene (1&2)	ug/g dry	0.99	<0.05	<0.05	0.23	0.87	<0.05	<0.05	< 0.05	< 0.05	<0.05	<0.05	<0.05	< 0.05	< 0.05	<0.05
Naphthalene	ug/g dry	0.6	<0.05	<0.05	0.16	0.44	<0.05	0.06	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05
Phenanthrene	ug/g dry	6.2	0.17	1.6	3.96	5.8	0.17	1.48	<0.05	<0.05	<0.05	<0.05	<0.05	0.19	1.33	0.56
Pyrene	ug/g dry	78	0.25	1.5	3.12	3.96	0.28	1.23	< 0.05	0.06	<0.05	<0.05	<0.05	0.15	0.92	0.6

NOTES:

1

Ontario Ministry of Environment, Conservation and Parks (MECP), Soil, Groundwater and Sediment Standards for use under Part XV.1 of the Environmental Protection Act, April 2011, Table 7 Generic Site

Condition Standards for Shallow Soils in a Non-Potable Ground Water Condition for Residential/Parkland/Institutional Property Use (coarse textured soils)

ND Non-detectable results are shown as "< (RDL)" where RDL represents the reporting detection limit.

NV No Value
N/A Not Applicable
- Parameter not analyzed
m bgs Metres below ground surface

Indicates soil exceedance of MECP Table 7 generic site condition standard for coarse textured soil and residential/parkland/institutional property use

Table 3 - Analytical Results in Soil - Inorganic Parameters 770 and 775 Bronson Avenue, 557 Cambridge Street, Ottawa, ON OTT-22019409-A0

011-22013403-A0																		
Parameter	Units	MECP Table 7 ²	BH1 SS1	BH2 SS1	BH3 SS1	MW4 SS1	MW5 SS1	MW6 SS1	MW7 SS1	MW8 SS1	DUP1 (Field Duplicate to MW8 SS1)	MW9 SS1	MW10 SS1	MW11 SS1	MW12 SS1	MW13 SS1	BH14 SS1	BH15 SS1
Sampling Date	Offics		9-Jan-2024	9-Jan-2024	9-Jan-2024	10-Jan-2024	9-Jan-2024	9-Jan-2024	9-Jan-2024	10-Jan-2024	10-Jan-2024	10-Jan-2024	10-Jan-2024	11-Jan-2024	11-Jan-2024	11-Jan-2024	11-Jan-2024	11-Jan-2024
Sample Depth (mbgs)			0.1 to 0.45	0.2 to 0.75	0.1 to 0.45	0.1 to 0.5	0.2 to 0.75	0.2 to 0.6	0.1 to 0.5	0.1 to 0.65	Field Duplicate	0.6 to 1.1	0.2 to 0.9	0.2 to 0.9	1.5 to 2.0	0.3 to 0.9	0.8 to 1.2	0.8 to 1.2
Date of Analysis		Orange	18-Jan-2024	18-Jan-2024	18-Jan-2024	15-Jan-2024	18-Jan-2024	18-Jan-2024	18-Jan-2024	15-Jan-2024	15-Jan-2024	15-Jan-2024	15-Jan-2024	18-Jan-2024	18-Jan-2024	18-Jan-2024	18-Jan-2024	18-Jan-2024
Certificate of Analysis			24Z110204	24Z110204	24Z110204	24Z110615	24Z110204	24Z110204	24Z110204	24Z110615	of MW8 SS1	24Z110615	24Z110615	24Z111530	24Z111530	24Z111530	24Z111530	24Z111530
Metals																		
Antimony	ug/g dry	7.5	<0.8	0.8	<0.8	2.2	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	0.9	<0.8	2	<0.8	<0.8
Arsenic	ug/g dry	18	2	18	2	8	6	5	5	8	9	3	2	18	9	6	2	3
Barium	ug/g dry	390	86.9	192	337	87.8	73.6	102	62.8	44.2	45.5	76.9	73.1	149	118	171	74.3	99.2
Beryllium	ug/g dry	4	<0.5	0.6	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.5	<0.5	0.5	<0.5	<0.5	<0.5	<0.5
Boron	ug/g dry	120	<5	8	5	7	5	<5	<5	6	6	7	6	<5	7	9	8	10
Cadmium	ug/g dry	1.2	0.9	3.1	<0.5	0.6	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Chromium	ug/g dry	160	16	25	6	21	17	21	13	12	10	18	17	20	17	16	12	13
Cobalt	ug/g dry	22	4.8	7.6	2.9	4.4	5.5	5.8	6.4	8.2	8.4	6.4	5.9	7.4	5.4	4.9	4.9	6.5
Copper	ug/g dry	140	13.3	31.3	4.3	26.7	13.6	16.8	19.1	12	9.6	14.7	14.7	21.5	14.9	15.9	16.3	19.4
Lead	ug/g dry	120	136	156	7	106	58	105	50	46	36	7	6	103	103	113	6	8
Molybdenum	ug/g dry	6.9	0.8	3.1	0.5	1.8	1.1	1.3	1.5	3.5	3.9	0.7	<0.5	2.1	1.6	1.3	0.8	1.2
Nickel	ug/g dry	100	11	19	8	16.0	12	13	15	15.0	15.0	14.0	12.0	15.0	12.0	12	11	15
Selenium	ug/g dry	2.4	<0.8	1.2	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8
Silver	ug/g dry	20	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Thallium	ug/g dry	1	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Uranium	ug/g dry	23	< 0.50	0.83	<0.50	<0.50	0.63	0.53	0.52	0.7	0.7	0.81	0.73	1.27	0.58	0.59	0.56	0.62
Vanadium	ug/g dry	86	23.1	35.6	5.8	30.9	20.2	22.9	19.1	16.7	12.7	26.8	25.7	27.1	21.5	21.8	19.2	25.1
Zinc	ug/g dry	340	257	3200	20	312	78	105	69	28	21	22	20	105	112	169	28	35
General Inorganics																		
Conductivity	mS/cm	0.7	4.16	6.65	3.21	0.445	0.278	2.16	0.671	3.08	2.12	1.02	1.29	0.457	0.495	3.72	-	-
SAR	-	5	41.3	10.6	16.9	3.81	1.52	12.4	7.82	16.4	23.2	12	12.7	0.704	0.577	2.01	-	-
рН	pH Units	5 to 9	7.94	7.41	8.13	7.82	7.93	7.96	8.16	7.86	8.01	8.31	7.89	7.53	8.01	8.04	-	-
NOTES:					· ·											· ·		

NOTES:

1

Ontario Ministry of Environment, Conservation and Parks (MECP), Soil, Groundwater and Sediment Standards for use under Part XV.1 of the Environmental Protection Act, April 2011, Table 7 Generic Site

Condition Standards for Shallow Soils in a Non-Potable Ground Water Condition for Residential/Parkland/Institutional Property Use (coarse textured soils)

ND Non-detectable results are shown as "< (RDL)" where RDL represents the reporting detection limit.

NV No Value

N/A Not Applicable
- Parameter not analyzed

- Parameter not analyzed m bgs Metres below ground surface

indicates soil exceedance of MECP Table 7 generic site condition standard for coarse textured soil and residential/parkland/institutional property use

Table 4 - Analytical Results in Groundwater - PHC and VOC 770 and 775 Bronson Avenue, 557 Cambridge Street, Ottawa, ON

OTT-22019409-A0

Parameter		MECP Table 7 ²	MW15-1	MW15-2	MW15-3	MW15-5	(Field Duplicate	MW4	MW5	MW6	MW7	DUP1 (Field Duplice MW7)	MW8	MW9	MW10	MW10	MW11	MW12	MW13	MW13
Sampling Date	Units		11-Aug-2022	11-Aug-2022	11-Aug-2022	11-Aug-2022	11-Aug-2022	25-Jan-2024	23-Jan-2024	24-Jan-2024	24-Jan-2024	24-Jan-2024	24-Jan-2024	24-Jan-2024	23-Jan-2024	5-Feb-2024	23-Jan-2024	23-Jan-2024	23-Jan-2024	5-Feb-2024
Screen Depth (mbgs)		Dark Orange	4.1 to 5.6	4.4 to 5.9	4.4 to 5.9	7.82 to 15.34	7.82 to 15.34	3.0 to 6.0	3.0 to 6.0	3.0 to 6.0	1.5 to 4.5	1.5 to 4.5	3.0 to 6.0	3.0 to 6.0	3.0 to 6.0	3.0 to 6.0	3.0 to 6.0	3.6 to 6.6	3.6 to 6.6	3.6 to 6.6
Date of Analysis			18-Aug-2022	18-Aug-2022	18-Aug-2022	18-Aug-2022	18-Aug-2022	1-Feb-2024	31-Jan-2024	31-Jan-2024	31-Jan-2024	31-Jan-2024	31-Jan-2024	31-Jan-2024	31-Jan-2024	7-Feb-2024	31-Jan-2024	31-Jan-2024	31-Jan-2024	7-Feb-2024
Certificate of Analysis			B22-25709	B22-25709	B22-25709	B22-25709	B22-25709	24Z115058	24Z114812	24Z114812	24Z114812	24Z114812	24Z114812	24Z114812	24Z114812	24Z117784	24Z114812	24Z114812	24Z114812	24Z117784
Volatile Organic Compounds																				
Acetone	ug/L	100000	< 30	< 30	< 30	< 30	< 30	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	<1.0	<1.0	<1.0	-
Benzene	ug/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	<0.20	0.29	<0.20	<0.20	<0.20	<0.20	<0.20	0.60	<0.20	0.46	0.34	0.67	<0.20
Bromodichloromethane	ug/L	67000	< 2	< 2	< 2	< 2	< 2	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	-	<0.20	<0.20	<0.20	<u> </u>
Bromoform	ug/L	5	< 5	< 5	< 5	< 5	< 5	<0.10	<0.10	<0.10	<0.10	< 0.10	< 0.10	<0.10	<0.10	-	<0.10	<0.10	< 0.10	-
Bromomethane	ug/L	0.89	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	-	<0.20	<0.20	<0.20	-
Carbon Tetrachloride	ug/L	0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	-	<0.20	<0.20	<0.20	-
Chlorobenzene	ug/L	140	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	-	<0.10	<0.10	<0.10	-
Chloroform	ug/L	2	< 1	< 1	< 1	< 1	< 1	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	-	<0.20	<0.20	<0.20	-
Dibromochloromethane	ug/L	65000	< 2	< 2	< 2	< 2	< 2	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	-	<0.10	<0.10	<0.10	-
Dichlorodifluoromethane	ug/L	3500	< 2	< 2	< 2	< 2	< 2	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	-	<0.40	<0.40	<0.40	-
1,2-Dichlorobenzene	ug/L	150	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	-	<0.10	<0.10	<0.10	-
1,3-Dichlorobenzene	ug/L	7600	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	-	<0.10	<0.10	<0.10	-
1,4-Dichlorobenzene	ug/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	-	<0.10	<0.10	<0.10	-
1,1-Dichloroethane	ug/L	11	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	-	<0.30	<0.30	<0.30	-
1,2-Dichloroethane	ug/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20		<0.20	<0.20	<0.20	
1,1-Dichloroethylene	ug/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	<0.30	<0.30	<0.30 <0.20	<0.30	<0.30	<0.30	<0.30 <0.20	<0.30	-	<0.30 <0.20	<0.30	<0.30	-
cis-1,2-Dichloroethylene	ug/L	1.6	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5	< 0.5	<0.20	<0.20 <0.20	<0.20	<0.20 <0.20	<0.20 <0.20	<0.20 <0.20	<0.20	<0.20		<0.20	<0.20 <0.20	<0.20 <0.20	-
trans-1,2-Dichloroethylene 1,2-Dichloropropane	ug/L ug/L	1.6 0.58	< 0.5	< 0.5	< 0.5	< 0.5 < 0.5	< 0.5 < 0.5	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20 <0.20		<0.20	<0.20	<0.20	-
1,3-Dichloropropene, total	ug/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	<0.20	<0.20	<0.20	<0.20	<0.30	<0.20	<0.20	<0.30		<0.20	<0.20	<0.30	-
Ethylbenzene	ug/L	54	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	0.13	0.12	0.66	<0.10
Ethylene dibromide	ug/L	0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	-	<0.10	<0.10	<0.10	
Hexane	ug/L	5	< 5	< 5	< 5	< 5	< 5	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	-	<0.20	<0.20	<0.20	-
Methyl Ethyl Ketone	ug/L	21000	<20	< 20	< 20	< 20	< 20	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	<1.0	<1.0	<1.0	
Methyl Isobutyl Ketone	ug/L	5200	< 20	< 20	< 20	< 20	< 20	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	<1.0	<1.0	<1.0	
Methyl tert-butyl ether	ug/L	15	< 2	< 2	< 2	< 2	< 2	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	-	<0.20	<0.20	<0.20	-
Methylene Chloride	ug/L	26	< 5	< 5	< 5	< 5	< 5	<0.30	<0.30	<0.30	<0.30	<0.30	< 0.30	<0.30	<0.30	-	<0.30	<0.30	< 0.30	-
Styrene	ug/L	43	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	<0.10	<0.10	< 0.10	<0.10	< 0.10	< 0.10	<0.10	<0.10	-	<0.10	< 0.10	<0.10	_
1,1,1,2-Tetrachloroethane	ug/L	1.1	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	-	<0.10	<0.10	<0.10	-
1,1,2,2-Tetrachloroethane	ug/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	-	<0.10	<0.10	<0.10	-
Tetrachloroethylene	ug/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	-	<0.20	<0.20	<0.20	-
Toluene	ug/L	320	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.29	1.24	<0.20	<0.20	<0.20	0.76	<0.20	1.00	0.32	0.54	<0.20	0.39	<0.20
1,1,1-Trichloroethane	ug/L	23	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.30	<0.30	<0.30	<0.30	< 0.30	< 0.30	<0.30	< 0.30	-	<0.30	<0.30	<0.30	- 1
1,1,2-Trichloroethane	ug/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	-	<0.20	<0.20	<0.20	-
Trichloroethylene	ug/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	-	<0.20	<0.20	<0.20	-
Trichlorofluoromethane	ug/L	2000	< 5	< 5	< 5	< 5	< 5	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	-	<0.40	<0.40	<0.40	-
Vinyl Chloride	ug/L	0.50	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	-	<0.17	<0.17	<0.17	-
Xylenes, total	ug/L	72	< 1.1	< 1.1	< 1.1	< 1.1	< 1.1	0.46	0.35	0.39	<0.20	<0.20	0.70	<0.20	<0.20	<0.20	0.35	0.35	1.34	<0.20
Petroleum Hydrocarbons																				
F1 PHC (C6 - C10) - BTEX*	ug/L	420	< 25	< 25	< 25	< 25	< 25	<25	<25	<25	<25	<25	<25	<25	<25	-	<25	<25	<25	-
F2 PHC (C10-C16)	ug/L	150	< 50	< 50	< 50	< 50	< 50	<100	<100	<100	<100	<100	<100	<100	<100	-	<100	<100	<100	
F3 PHC (C16-C34)	ug/L	500	< 400	< 400	< 400	< 400	< 400	<200	<200	<200	<200	<200	<200	<200	<200	-	<200	<200	<200	-
F4 PHC (C34-C50)**	ug/L	500	< 400	< 400	< 400	< 400	< 400	<200	<200	<200	<200	<200	<200	<200	<200	-	<200	<200	<200	

NOTES:

- Ontario Ministry of Environment, Conservation and Parks (MECP), Soil, Groundwater and Sediment Standards for use under Part XV.1 of the Environmental Protection Act, April 2011, Table 7 Generic Site Condition Standards for Shallow Soils in a Non-Potable Ground Water Condition for Residential/Parkland/Institutional Property Use (coarse textured soils)
- * F1 fraction does not include BTEX.
- ** In instances where the PHC F2 to F4 chromatogram did not reach baseline, the F4 fraction result shown is the highest value obtained via the gas chromatograph/flame ionization detection method or the gravimetric method.
- ND Non-detectable results are shown as "< (RDL)" where RDL represents the reporting detection limit.
- NV No Value
- N/A Not Applicable
- Parameter not analyzed
- m bgs Metres below ground surface
 - Indicates groundwater exceedance of MECP Table 7 generic site condition standard for coarse textured soil and residential/parkland/institutional property use

Table 5 - Analytical Results in Groundwater - PAH 770 and 775 Bronson Avenue, 557 Cambridge Street, Ottawa, ON

OTT-22019409-A0

011-22013403-A0																		
Parameter		MECP Table 7 ²	MW15-1	MW15-2	MW15-3	MW15-5	Dup 1 (Field Duplicate MW15-5)	MW4	MW5	MW6	MW7	DUP1 (Field Duplice MW7)	MW8	MW9	MW10	MW11	MW12	MW13
Sampling Date	Units		11-Aug-2022	11-Aug-2022	11-Aug-2022	11-Aug-2022	11-Aug-2022	25-Jan-2024	23-Jan-2024	24-Jan-2024	24-Jan-2024	24-Jan-2024	24-Jan-2024	24-Jan-2024	23-Jan-2024	23-Jan-2024	23-Jan-2024	23-Jan-2024
Screen Depth (mbgs)		Dark Orange	4.1 to 5.6	4.4 to 5.9	4.4 to 5.9	7.82 to 15.34	7.82 to 15.34	3.0 to 6.0	3.0 to 6.0	3.0 to 6.0	1.5 to 4.5	Field Duplicate	3.0 to 6.0	3.0 to 6.0	3.0 to 6.0	3.0 to 6.0	3.6 to 6.6	3.6 to 6.6
Date of Analysis		Dark Oralige	18-Aug-2022	18-Aug-2022	18-Aug-2022	18-Aug-2022	18-Aug-2022	1-Feb-2024	31-Jan-2024	31-Jan-2024	31-Jan-2024	31-Jan-2024	31-Jan-2024	31-Jan-2024	31-Jan-2024	31-Jan-2024	31-Jan-2024	31-Jan-2024
Certificate of Analysis			B22-25709	B22-25709	B22-25709	B22-25709	B22-25709	24Z115058	24Z114812	24Z114812	24Z114812	of MW7	24Z114812	24Z114812	24Z114812	24Z114812	24Z114812	24Z114812
Semi-Volatiles																		
Acenaphthene	ug/L	17	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Acenaphthylene	ug/L	1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Anthracene	ug/L	1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	< 0.10
Benzo[a]anthracene	ug/L	1.8	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Benzo[a]pyrene	ug/L	0.81	0.012	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	<0.01	<0.01	< 0.01	<0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo[b]fluoranthene	ug/L	0.75	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	< 0.10
Benzo[g,h,i]perylene	ug/L	0.2	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Benzo[k]fluoranthene	ug/L	0.4	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.10	<0.10	< 0.10	<0.10	<0.10	<0.10	<0.10	<0.10	< 0.10	< 0.10	< 0.10
Chrysene	ug/L	0.7	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.10	<0.10	< 0.10	<0.10	<0.10	<0.10	<0.10	<0.10	< 0.10	< 0.10	< 0.10
Dibenzo[a,h]anthracene	ug/L	0.4	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Fluoranthene	ug/L	44	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Fluorene	ug/L	290	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Indeno[1,2,3-cd]pyrene	ug/L	0.2	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Methylnaphthalene (1&2)	ug/L	1500	< 1	< 1	< 1	< 1	< 1	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Naphthalene	ug/L	7	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Phenanthrene	ug/L	380	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Pyrene	ug/L	5.7	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20

NOTES:

Ontario Ministry of Environment, Conservation and Parks (MECP), Soil, Groundwater and Sediment Standards for use under Part XV.1 of the Environmental Protection Act, April 2011, Table 7 Generic Site Condition Standards for Shallow Soils in a Non-

Potable Ground Water Condition for Residential/Parkland/Institutional Property Use (coarse textured soils)

ND Non-detectable results are shown as "< (RDL)" where RDL represents the reporting detection limit.

NV No Value
N/A Not Applicable
- Parameter not analyzed
m bgs Metres below ground surface

Indicates goundwater exceedance of MECP Table 7 generic site condition standard for coarse textured soil and residential/parkland/institutional property use

Table 6 - Analytical Results in Groundwater - Inorganics 770 and 775 Bronson Avenue, 557 Cambridge Street, Ottawa, ON OTT-22019409-A0

011-22019409-A0			1				ı						
Parameter		MECP Table 7 ²	MW4	MW5	MW6	MW7	DUP1 (Field Duplice MW7)	MW8	MW9	MW10	MW11	MW12	MW13
Sampling Date	Units		25-Jan-2024	23-Jan-2024	24-Jan-2024	24-Jan-2024	24-Jan-2024	24-Jan-2024	24-Jan-2024	23-Jan-2024	23-Jan-2024	23-Jan-2024	23-Jan-2024
Screen Depth (mbgs)		Dark Orange	3.0 to 6.0	3.0 to 6.0	3.0 to 6.0	1.5 to 4.5	1.5 to 4.5	3.0 to 6.0	3.0 to 6.0	3.0 to 6.0	3.0 to 6.0	3.6 to 6.6	3.6 to 6.6
Date of Analysis		Dark Orange	1-Feb-2024	31-Jan-2024	31-Jan-2024	31-Jan-2024	31-Jan-2024	31-Jan-2024	31-Jan-2024	31-Jan-2024	31-Jan-2024	31-Jan-2024	31-Jan-2024
Certificate of Analysis			24Z115058	24Z114812	24Z114812	24Z114812	of MW7	24Z114812	24Z114812	24Z114812	24Z114812	24Z114812	24Z114812
Metals & Inorganics													
Antimony	ug/L	16000	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Arsenic	ug/L	1500	1	12.3	<1.0	2.2	3	6.6	<1.0	<1.0	<1.0	2.3	2.3
Barium	ug/L	23000	249	561	346	188	201	292	447	227	145	178	251
Beryllium	ug/L	53	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Boron	ug/L	36000	281	134	649	56.3	56.5	332	572	692	367	503	446
Cadmium	ug/L	2.1	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Chromium	ug/L	640	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
Cobalt	ug/L	52	2.47	0.96	0.77	<0.50	<0.50	7.37	3.87	2.42	1.34	2.17	1.41
Copper	ug/L	69	1.7	<1.0	1.2	1.6	1.3	1.9	<1.0	1.4	1.8	<1.0	<1.0
Lead	ug/L	20	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Molybdenum	ug/L	7300	4.74	4.96	1.67	4.32	2.89	6.88	1.72	5.4	3.25	2.6	6.1
Nickel	ug/L	390	9.3	2	2.2	1.4	2.2	19.4	8.2	3.6	5.8	7	4.5
Selenium	ug/L	50	<1.0	<1.0	1.2	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Silver	ug/L	1.2	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Thallium	ug/L	400	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
Uranium	ug/L	330	2.22	1.03	2.24	1.25	1.24	5.46	2.28	2.52	2.18	2.88	1.12
Vanadium	ug/L	200	<0.40	0.49	0.4	<0.40	<0.40	0.54	<0.40	0.63	<0.40	0.41	<0.40
Zinc	ug/L	890	5.8	<5.0	5.9	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	5.2

1

Ontario Ministry of Environment, Conservation and Parks (MECP), Soil, Groundwater and Sediment Standards for use under Part XV.1 of the Environmental Protection Act, April 2011, Table 7 Generic Site Condition Standards for Shallow Soils in a Non-Potable Ground Water Condition for Residential/Parkland/Institutional Property

Use (coarse textured soils)

Non-detectable results are shown as "ND (RDL)" where RDL represents the reporting detection limit. ND

NV No Value Not Applicable N/A Parameter not analyzed

Metres below ground surface m bgs

Indicates goundwater exceedance of MECP Table 7 generic site condition standard for coarse textured soil and residential/parkland/institutional property use

Table 7 - Maximum Concentration - Soil 770 and 775 Bronson Avenue, 557 Cambridge Street, Ottawa, ON OTT-22019409-A0

Parameter	Sample Location	Sample Depth (mbgs)	Sampling Date	Maximum Concentration	MECP Table
Metals and Inorganics		•			
Antimony	MW4 SS1	0.1 to 0.5	10-Jan-2024	2.2	7.5
Arsenic	BH2 SS1, MW11 SS1	0.2 to 0.9	9&11-Jan-2024	18	18
Barium	BH3 SS1	0.1 to 0.45	9-Jan-2024	337	390
Beryllium	BH2 SS1	0.2 to 0.75	9-Jan-2024	0.6	4
Boron	BH15 SS1	0.8 to 1.2	11-Jan-2024	10	120
Cadmium	BH2 SS1	0.2 to 0.75	9-Jan-2024	3.1	1.2
Chromium	BH2 SS1	0.2 to 0.75	9-Jan-2024	25	160
Cobalt	BH2 SS1	0.2 to 0.75	9-Jan-2024	7.6	22
Copper	BH2 SS1	0.2 to 0.75	9-Jan-2024	31.3	140
Lead	BH2 SS1	0.2 to 0.75	9-Jan-2024	156	120
Molybdenum	MW8 SS1	0.1 to 0.65	9-Jan-2024	3.9	6.9
Nickel	BH2 SS1	0.2 to 0.75	9-Jan-2024	19	100
Selenium	BH2 SS1	0.2 to 0.75	9-Jan-2024	1.2	2.4
Silver	All sampling locations	0.0 to 2.0	All sampling dates	<0.5	20
Thallium	All sampling locations	0.0 to 2.0	All sampling dates	<0.5	1
Uranium	MW11 SS1	0.2 to 0.9	11-Jan-2024	1.27	23
Vanadium	BH2 SS1	0.2 to 0.75	9-Jan-2024	35.6	86
Zinc	BH2 SS1	0.2 to 0.75	9-Jan-2024	3200	340
Conductivity	BH2 SS1	0.2 to 0.75	9-Jan-2024	6.65 mS/cm	0.7 mS/cm
SAR	BH2 SS1	0.2 to 0.75	9-Jan-2024	41.3 (no units)	5 (no units
Polycyclic Aromatic Hydrocar	bons				
Acenaphthene	MW4 SS1	0.1 to 0.5	10-Jan-2024	1.97	7.9
Acenaphthylene	MW4 SS1	0.1 to 0.5	10-Jan-2024	0.57	0.15
Anthracene	MW4 SS1	0.1 to 0.5	10-Jan-2024	2.17	0.67
Benzo[a]anthracene	MW4 SS1	0.1 to 0.5	10-Jan-2024	3.17	0.5
Benzo[a]pyrene	MW4 SS1	0.1 to 0.5	10-Jan-2024	2.08	0.3
Benzo[b]fluoranthene	MW4 SS1	0.1 to 0.5	10-Jan-2024	2.95	0.78
Benzo[g,h,i]perylene	MW4 SS1	0.1 to 0.5	10-Jan-2024	1.33	6.6
Benzo[k]fluoranthene	MW4 SS1	0.1 to 0.5	10-Jan-2024	1.11	0.78
Chrysene	MW4 SS1	0.1 to 0.5	10-Jan-2024	3.33	7
Dibenzo[a,h]anthracene	MW4 SS1	0.1 to 0.5	10-Jan-2024	0.28	0.1
Fluoranthene	MW4 SS1	0.1 to 0.5	10-Jan-2024	5.33	0.69
Fluorene	MW4 SS1	0.1 to 0.5	10-Jan-2024	1.49	62
ndeno[1,2,3-cd]pyrene	MW4 SS1	0.1 to 0.5	10-Jan-2024	1.32	0.38
Methylnaphthalene (1&2)	MW4 SS1	0.1 to 0.5	10-Jan-2024	0.87	0.99
Naphthalene	MW4 SS1	0.1 to 0.5	10-Jan-2024	0.44	0.6
Phenanthrene	MW4 SS1	0.1 to 0.5	10-Jan-2024	5.8	6.2
Pyrene	MW4 SS1	0.1 to 0.5	10-Jan-2024	3.96	78
Petroleum Hydrocarbons					
F1 PHC (C6 - C10) - BTEX	All sampling locations	0.0 to 2.0	All sampling dates	<5	55
F2 PHC (C10-C16)	MW4 SS1	0.1 to 0.5	10-Jan-2024	12	98
F3 PHC (C16-C34)	MW13 SS1	0.3 to 0.9	11-Jan-2024	352	300
F4 PHC (C34-C50)	BH1 SS1	0.1 to 0.45	9-Jan-2024	81	2800
Volatile Organic Compounds	5112 552	0.1 to 0.45	3 3411 2021	01	2000
Acetone	All sampling locations	0.0 to 2.0	All sampling dates	< 0.50	16
Benzene	All sampling locations	0.0 to 2.0	All sampling dates	<0.020	0.21
Bromodichloromethane	All sampling locations	0.0 to 2.0	All sampling dates	<0.050	13
Bromoform	All sampling locations	0.0 to 2.0	All sampling dates	<0.050	0.27
Bromomethane	All sampling locations	0.0 to 2.0	All sampling dates	<0.050	0.05
Carbon Tetrachloride	All sampling locations	0.0 to 2.0	All sampling dates	<0.050	0.05
Chlorobenzene	All sampling locations	0.0 to 2.0	All sampling dates	<0.050	2.4
Chloroform	All sampling locations	0.0 to 2.0	All sampling dates	<0.050	0.05
Dibromochloromethane	All sampling locations	0.0 to 2.0	All sampling dates	<0.050	9.4
Dichlorodifluoromethane	All sampling locations	0.0 to 2.0	All sampling dates	<0.050	16
1,2-Dichlorobenzene	All sampling locations	0.0 to 2.0	All sampling dates	<0.050 <0.050	3.4 4.8
1,3-Dichlorobenzene	All sampling locations	0.0 to 2.0	All sampling dates		
1,4-Dichlorobenzene	All sampling locations	0.0 to 2.0 0.0 to 2.0	All sampling dates	<0.050 <0.050	0.083 3.5
I,1-Dichloroethane	All sampling locations		All sampling dates		
1,2-Dichloroethane	All sampling locations	0.0 to 2.0	All sampling dates	<0.050	0.05
I,1-Dichloroethylene	All sampling locations	0.0 to 2.0	All sampling dates	<0.050	0.05
is-1,2-Dichloroethylene	All sampling locations	0.0 to 2.0	All sampling dates	<0.050	3.4
rans-1,2-Dichloroethylene	All sampling locations	0.0 to 2.0	All sampling dates	<0.050	0.084
1,2-Dichloropropane	All sampling locations	0.0 to 2.0	All sampling dates	<0.050	0.05
1,3-Dichloropropene, total	All sampling locations	0.0 to 2.0	All sampling dates	<0.050	0.05
Ethylbenzene	All sampling locations	0.0 to 2.0	All sampling dates	<0.050	2
Ethylene dibromide	All sampling locations	0.0 to 2.0	All sampling dates	<0.050	0.05
Hexane	All sampling locations	0.0 to 2.0	All sampling dates	<0.050	2.8
Methyl Ethyl Ketone	All sampling locations	0.0 to 2.0	All sampling dates	<0.50	16
Methyl Isobutyl Ketone	All sampling locations	0.0 to 2.0	All sampling dates	<0.50	1.7
Methyl tert-butyl ether	All sampling locations	0.0 to 2.0	All sampling dates	<0.050	0.75
Methylene Chloride	All sampling locations	0.0 to 2.0	All sampling dates	<0.050	0.1
	All sampling locations	0.0 to 2.0	All sampling dates	<0.050	0.7
	All sampling locations	0.0 to 2.0	All sampling dates	<0.050	0.058
1,1,1,2-Tetrachloroethane		0.0 to 2.0	All sampling dates	<0.050	0.5
1,1,1,2-Tetrachloroethane	All sampling locations	0.0 .00		0.050	0.28
1,1,1,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane		0.0 to 2.0	All sampling dates	< 0.050	0.20
1,1,1,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane Tetrachloroethylene	All sampling locations		All sampling dates All sampling dates	<0.050	2.3
Styrene 1,1,1,2-Tetrachloroethane 1,1,1,2-Tetrachloroethane Fetrachloroethylene Foluene 1,1,1-Trichloroethane	All sampling locations All sampling locations	0.0 to 2.0			
I,1,1,2-Tetrachloroethane I,1,2,2-Tetrachloroethane Fetrachloroethylene Foluene I,1,1-Trichloroethane	All sampling locations All sampling locations All sampling locations All sampling locations	0.0 to 2.0 0.0 to 2.0 0.0 to 2.0	All sampling dates All sampling dates	<0.020	2.3
1,1,1,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane Tetrachloroethylene Toluene 1,1,1-Trichloroethane 1,1,2-Trichloroethane	All sampling locations	0.0 to 2.0 0.0 to 2.0	All sampling dates All sampling dates All sampling dates	<0.020 <0.050	2.3 0.38
1,1,1,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane Tetrachloroethylene Toluene 1,1,1-Trichloroethane 1,1,2-Trichloroethane Trichloroethylene	All sampling locations	0.0 to 2.0 0.0 to 2.0 0.0 to 2.0 0.0 to 2.0 0.0 to 2.0	All sampling dates All sampling dates All sampling dates All sampling dates	<0.020 <0.050 <0.050 <0.050	2.3 0.38 0.05
I,1,1,2-Tetrachloroethane I,1,2,2-Tetrachloroethane Tetrachloroethylene Toluene I,1,1-Trichloroethane I,1,2-Trichloroethane	All sampling locations	0.0 to 2.0 0.0 to 2.0 0.0 to 2.0 0.0 to 2.0	All sampling dates All sampling dates All sampling dates	<0.020 <0.050 <0.050	2.3 0.38 0.05 0.061

Results are shown in ppm unless otherwise indicated

NV - No value

Non-detectable results are shown as "< (RDL)" where RDL represents the reporting detection limit.

Ontario Ministry of Environment, Conservation and Parks (MECP), Soil, Groundwater and Sediment Standards for use under Part XV.1 of the Environmental Protection Act, April 2011, Table 7 Generic Site Condition Standards for Shallow Soils in a Non-Potable Ground Water Condition for Residential/Parkland/Institutional Property Use Property Use (coarse textured soils)

Table 8 - Maximum Concentration - Groundwater 770 and 775 Bronson Avenue, 557 Cambridge Street, Ottawa, ON OTT-22019409-A0

Parameter	Sample Location	Screen Depth (mbgs)	Sampling Date	Maximum Concentration	MECP Table 7
Metals and Inorganics Antimony	All sampling locations	1.5 to 15.3	All sampling dates	<1.0	16000
Antimony	MW5	3.0 to 6.0	23-Jan-2024	12.3	1500
Barium	MW5	3.0 to 6.0	23-Jan-2024	561	23000
Beryllium	All sampling locations	1.5 to 15.3	All sampling dates	<0.50	53
Boron	MW10	3.0 to 6.0	23-Jan-2024	692	36000
Cadmium	All sampling locations	1.5 to 15.3	All sampling dates	<0.20	2.1
Chromium	All sampling locations	1.5 to 15.3	All sampling dates	<2.0	640
Cobalt	MW8	3.0 to 6.0	24-Jan-2024	7.37	52
Copper	All sampling locations	1.5 to 15.3	All sampling dates	1.7	69
Lead	All sampling locations	1.5 to 15.3	All sampling dates	<0.50	20
Molybdenum	MW8	3.0 to 6.0	24-Jan-2024	6.88	7300
Nickel	MW8	3.0 to 6.0	24-Jan-2024	19.4	390
Selenium Silver	MW6	3.0 to 6.0	24-Jan-2024	1.2 <0.20	50 1.2
Thallium	All sampling locations All sampling locations	1.5 to 15.3 1.5 to 15.3	All sampling dates All sampling dates	<0.20	400
Uranium	MW8	3.0 to 6.0	24-Jan-2024	5.46	330
Vanadium	MW6	3.0 to 6.0	24-Jan-2024	0.63	200
Zinc	MW4	3.0 to 6.0	25-Jan-2024	5.8	890
Polycyclic Aromatic Hydrocarb	ons			I.	
Acenaphthene	All sampling locations	1.5 to 15.3	All sampling dates	<0.20	17
Acenaphthylene	All sampling locations	1.5 to 15.3	All sampling dates	<0.20	1
Anthracene	All sampling locations	1.5 to 15.3	All sampling dates	<0.10	1
Benzo[a]anthracene	All sampling locations	1.5 to 15.3	All sampling dates	<0.20	1.8
Benzo[a]pyrene	MW15-1	4.1 to 5.6	18-Aug-2022	0.012	0.81
Benzo[b]fluoranthene	All sampling locations	1.5 to 15.3	All sampling dates	<0.10	0.75
Benzo[g,h,i]perylene	All sampling locations	1.5 to 15.3	All sampling dates	<0.20	0.2
Benzo[k]fluoranthene	All sampling locations	1.5 to 15.3	All sampling dates	<0.10	0.4
Chrysene	All sampling locations	1.5 to 15.3	All sampling dates	<0.10	0.7
Dibenzo[a,h]anthracene	All sampling locations	1.5 to 15.3	All sampling dates	<0.20	0.4
Fluoranthene	All sampling locations	1.5 to 15.3	All sampling dates	<0.20	44
Fluorene	All sampling locations	1.5 to 15.3	All sampling dates	<0.20	290
Indeno[1,2,3-cd]pyrene	All sampling locations	1.5 to 15.3	All sampling dates	<0.20	0.2
Methylnaphthalene (1&2)	All sampling locations	1.5 to 15.3	All sampling dates	<1	1500
Naphthalene	All sampling locations	1.5 to 15.3	All sampling dates	<0.20	7
Phenanthrene	All sampling locations	1.5 to 15.3	All sampling dates	<0.10	380
Pyrene	All sampling locations	1.5 to 15.3	All sampling dates	<0.20	5.7
Petroleum Hydrocarbons					
F1 PHC (C6 - C10) - BTEX	All sampling locations	1.5 to 15.3	All sampling dates	<5 <100	420 150
F2 PHC (C10-C16) F3 PHC (C16-C34)	All sampling locations	1.5 to 15.3 1.5 to 15.3	All sampling dates	<400	500
F4 PHC (C34-C50)	All sampling locations All sampling locations	1.5 to 15.3	All sampling dates All sampling dates	<400	500
	All sampling locations	1.5 (0 15.5	All sallipling dates	~400	500
Volatile Organic Compounds					
Volatile Organic Compounds	MW15-1 MW15-2 MW15-3 MW15-5	4.1 to 15.3	11-Aug-2022	< 30	100000
Acetone	MW15-1, MW15-2, MW15-3, MW15-5 MW15-1, MW15-2, MW15-3, MW15-5	4.1 to 15.3	11-Aug-2022 11-Aug-2022	< 30	100000
Acetone Benzene	MW15-1, MW15-2, MW15-3, MW15-5	4.1 to 15.3	11-Aug-2022	< 0.5	0.5
Acetone					
Acetone Benzene Bromodichloromethane	MW15-1, MW15-2, MW15-3, MW15-5 MW15-1, MW15-2, MW15-3, MW15-5	4.1 to 15.3 4.1 to 15.3	11-Aug-2022 11-Aug-2022	< 0.5 < 2	0.5 67000
Acetone Benzene Bromodichloromethane Bromoform	MW15-1, MW15-2, MW15-3, MW15-5 MW15-1, MW15-2, MW15-3, MW15-5 MW15-1, MW15-2, MW15-3, MW15-5	4.1 to 15.3 4.1 to 15.3 4.1 to 15.3	11-Aug-2022 11-Aug-2022 11-Aug-2022	< 0.5 < 2 < 5	0.5 67000 5
Acetone Benzene Bromodichloromethane Bromoform Bromomethane	MW15-1, MW15-2, MW15-3, MW15-5 MW15-1, MW15-2, MW15-3, MW15-5 MW15-1, MW15-2, MW15-3, MW15-5 MW15-1, MW15-2, MW15-3, MW15-5	4.1 to 15.3 4.1 to 15.3 4.1 to 15.3 4.1 to 15.3	11-Aug-2022 11-Aug-2022 11-Aug-2022 11-Aug-2022	< 0.5 < 2 < 5 < 0.5	0.5 67000 5 0.89
Acetone Benzene Bromodichloromethane Bromoform Bromomethane Carbon Tetrachloride	MW15-1, MW15-2, MW15-3, MW15-5 MW15-1, MW15-2, MW15-3, MW15-5 MW15-1, MW15-2, MW15-3, MW15-5 MW15-1, MW15-2, MW15-3, MW15-5 MW15-1, MW15-2, MW15-3, MW15-5	4.1 to 15.3 4.1 to 15.3 4.1 to 15.3 4.1 to 15.3 4.1 to 15.3	11-Aug-2022 11-Aug-2022 11-Aug-2022 11-Aug-2022 11-Aug-2022	< 0.5 < 2 < 5 < 0.5 < 0.2	0.5 67000 5 0.89 0.2
Acetone Benzene Bromodichloromethane Bromoform Bromomethane Carbon Tetrachloride Chlorobenzene	MW15-1, MW15-2, MW15-3, MW15-5 MW35-1, MW15-2, MW15-3, MW35-5 MW35-1, MW15-2, MW35-3, MW35-5 MW35-1, MW15-2, MW35-3, MW35-5	4.1 to 15.3 4.1 to 15.3	11-Aug-2022 11-Aug-2022 11-Aug-2022 11-Aug-2022 11-Aug-2022 11-Aug-2022	<0.5 < 2 < 5 < 0.5 < 0.2 < 0.5 < 1 < 2	0.5 67000 5 0.89 0.2 140 2 65000
Acetone Benzene Bromodichloromethane Bromoform Bromoform Bromoform Carbon Tetrachloride Chlorobenzene Chloroform Dibromochloromethane Dichlorodifluoromethane	MW15-1, MW15-2, MW15-3, MW15-5 MW15-1, MW15-2, MW15-3, MW15-5	4.1 to 15.3 4.1 to 15.3	11-Aug-2022 11-Aug-2022 11-Aug-2022 11-Aug-2022 11-Aug-2022 11-Aug-2022 11-Aug-2022 11-Aug-2022 11-Aug-2022 11-Aug-2022	<0.5 <2 <5 <0.5 <0.2 <0.5 <0.2 <0.5 <1 <2 <2 <2	0.5 67000 5 0.89 0.2 140 2 65000 3500
Acetone Benzene Bromodichloromethane Bromodichloromethane Bromomethane Carbon Tetrachloride Chlorobenzene Chloroform Dibromochloromethane Dichlorodifluoromethane 1,2-Dichlorobenzene	MW15-1, MW15-2, MW15-3, MW15-5 MW15-1, MW15-2, MW15-3, MW15-5, MW15-1, MW15-2, MW15-3, MW15-5 MW35-1, MW15-2, MW15-3, MW35-5 MW35-1, MW15-2, MW15-3, MW35-5 MW15-1, MW15-2, MW15-3, MW35-5 MW35-1, MW15-2, MW15-3, MW35-5 MW35-1, MW15-2, MW15-3, MW35-5 MW35-1, MW15-2, MW15-3, MW35-5 MW35-1, MW15-2, MW15-3, MW35-5	4.1 to 15.3 4.1 to 15.3	11-Aug-2022 11-Aug-2022 11-Aug-2022 11-Aug-2022 11-Aug-2022 11-Aug-2022 11-Aug-2022 11-Aug-2022 11-Aug-2022 11-Aug-2022 11-Aug-2022	<0.5 <2 <5 <0.5 <0.2 <0.5 <1 <2 <2 <2 <0.5	0.5 67000 5 0.89 0.2 140 2 65000 3500
Acetone Benzene Bernodichloromethane Bromodichloromethane Bromoform Bromomethane Carbon Tetrachloride Chlorobenzene Chloroforom Dibromochloromethane 1,2-Dichlorodifluoromethane 1,3-Dichlorobenzene 1,3-Dichlorobenzene	MW15-1, MW15-2, MW15-3, MW15-5 MW15-1, MW15-2, MW15-3, MW15-5, MW15-1, MW15-2, MW15-3, MW15-5 MW15-1, MW15-2, MW15-3, MW15-5	4.1 to 15.3 4.1 to 15.3	11-Aug-2022 11-Aug-2022 11-Aug-2022 11-Aug-2022 11-Aug-2022 11-Aug-2022 11-Aug-2022 11-Aug-2022 11-Aug-2022 11-Aug-2022 11-Aug-2022 11-Aug-2022	<0.5 <2 <5 <0.5 <0.05 <0.05 <0.05 <1 <2 <0.5 <1 <2 <0.5 <1 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	0.5 67000 5 0.89 0.2 140 2 65000 3500 150 7600
Acetone Benzene Bromodichloromethane Bromoform Bromomethane Carbon Tetrachloride Chlorobenzene Chloroform Dibromochloromethane Dichlorodifluoromethane 1,2-Dichlorobenzene 1,4-Dichlorobenzene	MW15-1, MW15-2, MW15-3, MW15-5 MW35-1, MW15-2, MW15-3, MW35-5 MW35-1, MW35-2, MW15-3, MW35-5 MW35-1, MW35-2, MW15-3, MW35-5 MW35-1, MW35-2, MW15-3, MW35-5 MW35-1, MW35-2, MW35-3, MW35-5	4.1 to 15.3 4.1 to 15.3	11-Aug-2022 11-Aug-2022 11-Aug-2022 11-Aug-2022 11-Aug-2022 11-Aug-2022 11-Aug-2022 11-Aug-2022 11-Aug-2022 11-Aug-2022 11-Aug-2022 11-Aug-2022 11-Aug-2022	<0.5 <2 <5 <0.5 <0.2 <0.5 <0.2 <0.5 <1 <2 <2 <2 <0.5 <1 <2 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	0.5 67000 5 0.89 0.2 140 2 65000 3500 150 7600
Acetone Benzene Bromodichloromethane Bromodirhoromethane Bromoform Bromoform Bromoform Carbon Tetrachloride Chlorobenzene Chloroform Dibromochloromethane Dichlorodifluoromethane 1,2-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,1-Dichlorobenzene	MW15-1, MW15-2, MW15-3, MW15-5 MW35-1, MW15-2, MW15-3, MW35-5 MW35-1, MW15-2, MW35-3, MW35-5 MW35-1, MW15-2, MW35-3, MW35-5	4.1 to 15.3 4.1 to 15.3	11-Aug-2022 11-Aug-2022 11-Aug-2022 11-Aug-2022 11-Aug-2022 11-Aug-2022 11-Aug-2022 11-Aug-2022 11-Aug-2022 11-Aug-2022 11-Aug-2022 11-Aug-2022 11-Aug-2022 11-Aug-2022	<0.5 <2 <5 <0.5 <0.0 <0.0 <0.0 <1 <2 <2 <2 <0.5 <1 <2 <2 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	0.5 67000 5 0.89 0.2 140 2 65000 3500 150 7600 0.5
Acetone Benzene Bernodichloromethane Bromodichloromethane Bromodrom Bromomethane Carbon Tetrachloride Chlorobenzene Chloroform Dibromochloromethane Dibromochloromethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobehane 1,2-Dichlorobehane	MW15-1, MW15-2, MW15-3, MW15-5	4.1 to 15.3 4.1 to 15.3	11-Aug-2022 11-Aug-2022 11-Aug-2022 11-Aug-2022 11-Aug-2022 11-Aug-2022 11-Aug-2022 11-Aug-2022 11-Aug-2022 11-Aug-2022 11-Aug-2022 11-Aug-2022 11-Aug-2022 11-Aug-2022 11-Aug-2022 11-Aug-2022	<0.5 <2 <5 <0.5 <0.2 <0.5 <0.2 <0.5 <1 <2 <2 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	0.5 67000 5 0.89 0.2 140 2 65000 3500 150 7600 0.5 11
Acetone Benzene Bernene Bromodichloromethane Bromoform Bromomethane Carbon Tetrachloride Chlorobenzene Chloroform Dibromochloromethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,1-Dichlorobenzene 1,2-Dichlorobenzene 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethane	MW15-1, MW15-2, MW15-3, MW15-5 MW35-1, MW15-2, MW15-3, MW35-5 MW35-1, MW15-2, MW35-3, MW35-5 MW35-1, MW35-2, MW35-3, MW35-5 MW35-1, MW35-2, MW35-3, MW35-5 MW35-1, MW35-2, MW35-3, MW35-5	4.1 to 15.3 4.1 to 15.3	11-Aug-2022	<0.5 <2 <5 <0.5 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <	0.5 67000 5 0.89 0.2 140 2 65000 3500 150 7600 0.5 11
Acetone Benzene Bernodichloromethane Bromodichloromethane Bromoform Bromomethane Carbon Tetrachloride Chlorobenzene Chloroform Dibromochloromethane Dichlorodifluoromethane 1,2-Dichlorobenzene 1,4-Dichlorobenzene 1,1-Dichlorobenzene 1,2-Dichloroethylene cis-1,2-Dichloroethylene cis-1,2-Dichloroethylene	MW15-1, MW15-2, MW15-3, MW15-5 MW35-1, MW15-2, MW15-3, MW35-5 MW35-1, MW15-2, MW35-3, MW35-5 MW35-1, MW15-2, MW35-3, MW35-5 MW35-1, MW15-2, MW35-3, MW35-5 MW35-1, MW15-2, MW35-3, MW35-5 MW35-1, MW35-2, MW35-3, MW35-5	4.1 to 15.3 4.1 to 15.3	11-Aug-2022	<0.5 <2 <5 <0.5 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <	0.5 67000 5 0.89 0.2 140 2 65000 3500 150 7600 0.5 11 0.5 0.5
Acetone Benzene Bernene Bromodichloromethane Bromoform Bromomethane Carbon Tetrachloride Chlorobenzene Chloroform Dibromochloromethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,1-Dichlorobenzene 1,2-Dichlorobenzene 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,1-Dichloroethane	MW15-1, MW15-2, MW15-3, MW15-5 MW35-1, MW15-2, MW15-3, MW35-5 MW35-1, MW15-2, MW35-3, MW35-5 MW35-1, MW35-2, MW35-3, MW35-5 MW35-1, MW35-2, MW35-3, MW35-5 MW35-1, MW35-2, MW35-3, MW35-5	4.1 to 15.3 4.1 to 15.3	11-Aug-2022	<0.5 <2 <5 <0.5 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <	0.5 67000 5 0.89 0.2 140 2 65000 3500 150 7600 0.5 11
Acetone Benzene Bernodichloromethane Bromodichloromethane Bromodorm Bromomethane Carbon Tetrachloride Chlorobenzene Chloroform Dibromochloromethane Dibromochloromethane Dibrohordifluoromethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,1-Dichlorobenzene 1,1-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorothane 1,2-Dichlorothane 1,2-Dichlorothylene trans-1,2-Dichlorothylene trans-1,2-Dichlorothylene trans-1,2-Dichlorothylene	MW15-1, MW15-2, MW15-3, MW15-5 MW315-1, MW15-2, MW15-3, MW315-3, M	4.1 to 15.3 4.1 to 15.3	11-Aug-2022	<0.5 <2 <5 <0.5 <0.2 <0.5 <0.2 <0.5 <1 <2 <2 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	0.5 67000 5 0.89 0.2 140 2 65000 3500 150 7600 0.5 11 0.5 0.5
Acetone Benzene Bernene Bromodichloromethane Bromoform Bromomethane Carbon Tetrachloride Chlorobenzene Chloroform Dibromochloromethane Dichlorodfluoromethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorothane 1,2-Dichlorothane 1,2-Dichlorothane 1,2-Dichlorothane 1,2-Dichlorothane 1,2-Dichlorothylene tis-1,2-Dichlorothylene tis-1,2-Dichlorothylene 1,2-Dichloroppane	MW15-1, MW15-2, MW15-3, MW15-5 MW35-1, MW15-2, MW15-3, MW35-5 MW35-1, MW15-2, MW35-3, MW35-5 MW35-1, MW35-2, MW35-3, MW35-5	4.1 to 15.3 4.1 to 15.3	11-Aug-2022	<0.5 <0.5 <0.5 <0.5 <0.0 <0.5 <0.0 <0.5 <0.1 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	0.5 67000 5 0.89 0.2 140 2 65000 3500 150 7600 0.5 11 0.5 0.5 1.6 1.6
Acetone Benzene Bernene Bromodichloromethane Bromodichloromethane Bromodichloromethane Bromodichloromethane Carbon Tetrachloride Chlorobenzene Chloroforom Dibromochloromethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,3-Dichlorobenzene 1,1-Dichloroethane 1,2-Dichloroethylene cis-1,2-Dichloroethylene cis-1,2-Dichloroethylene 1,3-Dichloropropane	MW15-1, MW15-2, MW15-3, MW15-5 MW35-1, MW15-2, MW15-3, MW35-5 MW35-1, MW35-2, MW35-3, MW35-5	4.1 to 15.3 4.1 to 15.3	11-Aug-2022	<0.5 <2 <5 <0.5 <0.5 <0.05 <0.02 <0.5 <1 <2 <2 <2 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	0.5 67000 5 0.89 0.2 140 2 65000 3500 150 0.5 11 0.5 0.5 1.6 0.58
Acetone Benzene Bernoelichloromethane Bromodichloromethane Bromodichloromethane Bromoform Bromomethane Carbon Tetrachloride Chlorobenzene Chloroform Dibromochloromethane Dichlorodifluoromethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,1-Dichlorothylorobenzene 1,1-Dichlorothyl	MW15-1, MW15-2, MW15-3, MW15-5 MW35-1, MW15-2, MW15-3, MW35-5 MW35-1, MW35-2, MW35-3, MW35-5	4.1 to 15.3	11-Aug-2022	<0.5 <0.5 <0.2 <0.5 <0.0 <0.0 <0.0 <0.5 <0.5 <0.5 <0.5	0.5 67000 5 0.89 0.2 140 2 65000 3500 150 0.5 111 0.5 1.6 1.6 0.58 0.5 54
Acetone Benzene Bernodichloromethane Bromodichloromethane Bromodorm Bromomethane Carbon Tetrachloride Chlorobenzene Chloroform Dibromochloromethane Dibromochloromethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorothane 1,2-Dichlorothane 1,2-Dichlorothane 1,2-Dichlorothylene 1,2-Dichlorothylene 1,2-Dichloropenzene 1,3-Dichloropenzene Ethylbenzene Ethylbenzene Ethylbenzene	MW15-1, MW15-2, MW15-3, MW15-5 MW35-1, MW15-2, MW15-3, MW35-5 MW35-1, MW35-2, MW35-3, MW35-5	4.1 to 15.3	11-Aug-2022	<0.5 <2 <2 <0.5 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0	0.5 67000 5 0.89 0.2 140 2 65000 3500 150 7600 0.5 11 0.5 0.5 1.6 0.58 0.5 54
Acetone Benzene Bernodichloromethane Bromodichloromethane Bromoform Bromomethane Carbon Tetrachloride Chlorobenzene Chloroform Dibromochloromethane 1,2-Dichloromethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,1-Dichlorobenzene 1,1-Dichlorothoromethane 1,2-Dichlorothoromethane 1,2-Dichlorothoromethane 1,2-Dichlorothorothylene 1,2-Dichlorothorothylene 1,2-Dichloroethylene 1,2-Dichloropethylene 1,3-Dichloropethylene	MW15-1, MW15-2, MW15-3, MW15-5 MW35-1, MW15-2, MW15-3, MW35-5 MW35-1, MW35-2, MW35-3, MW35-5	4.1 to 15.3	11-Aug-2022	<0.5 <0.5 <0.5 <0.5 <0.5 <0.0 <0.5 <0.1 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	0.5 67000 5 0.89 0.2 140 2 65000 3500 150 0.5 11 0.5 0.5 0.5 0.5 1.6 0.58 0.5 54 0.2 5
Acetone Benzene Benzene Bromodichloromethane Bromodichloromethane Bromoform Bromomethane Carbon Tetrachloride Chlorobenzene Chloroform Dibromochloromethane Dichlorodifluoromethane 1,1-Dichloromethane 1,1-Dichloromethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethylene cis-1,2-Dichloroethylene trans-1,2-Dichloroethylene trans-1,2-Dichloropenpene 1,3-Dichloropenpene 1,3-Dichloropenpene 1,3-Dichloropenpene 1,3-Dichloropenpene trans-1,2-Dichloropenpene trans-1,2-Dichloropenpene trans-1,2-Dichloropenpene trans-1,2-Dichloropenpene trans-1,3-Dichloropenpene trans-1,4-Dichloropenpene trans-1,4-Dichloropenpe	MW15-1, MW15-2, MW15-3, MW15-5 MW35-1, MW15-2, MW15-3, MW35-5 MW35-1, MW15-2, MW35-3, MW35-5 MW35-1, MW35-2, MW35-3, MW35-5	4.1 to 15.3	11-Aug-2022	<0.5 <0.5 <0.5 <0.5 <0.0 <0.0 <0.0 <0.0	0.5 67000 5 0.89 0.2 140 2 65000 3500 150 7600 0.5 11 0.5 1.6 1.6 0.5 5 4 0.2 5
Acetone Benzene Benzene Bromodichloromethane Bromodichloromethane Bromodichloromethane Carbon Tetrachloride Chlorobenzene Chloroform Dibromochloromethane Dibromochloromethane Dibromochloromethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorotethane 1,2-Dichlorotethane 1,2-Dichlorotethylene cis-1,2-Dichloroethylene trans-1,2-Dichloroethylene trans-1,2-Dichloropropane 1,3-Dichloropropane 1,3-Dichloropropane 1,3-Dichloropropane Ethylene dibromide Hexane Methyl Ethyl Ketone Methyl Istyl Ketone	MW15-1, MW15-2, MW15-3, MW15-5 MW35-1, MW15-2, MW15-3, MW35-5 MW35-1, MW15-2, MW35-3, MW35-5 MW35-1, MW15-2, MW35-3, MW35-5 MW35-1, MW35-2, MW35-3, MW35-5	4.1 to 15.3	11-Aug-2022	<0.5 <0.5 <0.2 <0.5 <0.0 <0.0 <0.0 <0.5 <0.5 <0.5 <0.5	0.5 67000 5 0.89 0.2 140 2 65000 3500 150 0.5 11 0.5 1.6 1.6 0.58 5 4 0.2 5 21000 5200
Acetone Benzene Benzene Bromodichloromethane Bromodichloromethane Bromoform Bromodichloromethane Carbon Tetrachloride Chlorobenzene Chlorobenzene Chloroform Dibromochloromethane Dichlorodifluoromethane 1,1-Dichloromethane 1,1-Dichloromethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethylene cis-1,2-Dichloroethylene trans-1,2-Dichloroethylene trans-1,2-Dichloropenpene, total Ethylbenzene Ethylene dibromide Hexane Methyl Ethyl Ketone Methyl Isobutyl Ketone Methyl Ethyl Ketone Methyl Isobutyl Ketone Methyl Isobutyl Ether Methylene Chloride Styrene	MW15-1, MW15-2, MW15-3, MW15-5 MW35-1, MW15-2, MW15-3, MW35-5 MW35-1, MW35-2, MW35-3, MW35-5	4.1 to 15.3	11-Aug-2022	<0.5 <0.5 <0.5 <0.0 <0.0 <0.0 <0.0 <0.0	0.5 67000 5 0.89 0.2 140 2 65000 3500 150 7600 0.5 11 0.5 0.5 1.6 0.58 0.5 5 0.5 5 0.5 5 10.5 5 0.5 11 0.5 1.6 1.6 0.58 0.5 1.6 0.58 0.5 1.6 0.58 0.5 1.6 0.58 0.5 1.6 0.58 0.5
Acetone Benzene Benzene Bromodichloromethane Bromodichloromethane Bromodichloromethane Carbon Tetrachloride Chlorobenzene Chloroform Dibromochloromethane Dibromochloromethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorothane 1,2-Dichlorothane 1,2-Dichlorothane 1,2-Dichlorothane 1,2-Dichlorothylene ctans-1,2-Dichloropenzene 1,1-Dichloropenzene Ethylene dibromide Hexane Methyl Ethyl Ketone Methyl tetr-buryl ether Methylene Chloride Styrene 1,1,1,2-Tetrachloroethane	MW15-1, MW15-2, MW15-3, MW15-5 MW35-1, MW15-2, MW15-3, MW35-5 MW35-1, MW15-2, MW35-3, MW35-5 MW35-1, MW35-2, MW35-3, MW35-5	4.1 to 15.3	11-Aug-2022	<0.5 <0.5 <0.2 <0.5 <0.0 <0.0 <0.0 <0.0 <0.5 <0.0 <0.5 <0.0 <0.0	0.5 67000 5 0.89 0.2 140 2 65000 3500 150 0.5 11 0.5 1.6 1.6 0.58 0.5 54 0.2 5 21000 5200 15 26 43 1.1
Acetone Benzene Benzene Bromodichloromethane Bromodichloromethane Bromoform Bromomethane Carbon Tetrachloride Chlorobenzene Chloroform Dibromochloromethane 1,2-Dichloromethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,3-Dichlorobenzene 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethylene 1,2-Dichloroethylene 1,2-Dichloropethylene 1,2-Dichloropethylene 1,2-Dichloropethylene 1,2-Dichloropethylene 1,2-Dichloropethylene 1,3-Dichloropethylene 1,3-Dichloropethylene 1,3-Dichloropethylene 1,3-Dichloropethylene 1,3-Dichloropethylene 1,3-Dichloropethylene 1,3-Dichloropethylene Ethylene Mibromide Hexane Methyl Ethyl Ketone Methyl Styly Ketone Methyl Styly Ketone Methyl Styly Ketone Methyl Styly Ketone Methyl Stracholoroethane 1,1,1,2-Tetrachloroethane	MW15-1, MW15-2, MW15-3, MW15-5 MW35-1, MW15-2, MW15-3, MW15-5 MW35-1, MW15-2, MW15-3, MW35-5 MW35-1, MW15-2, MW35-3, MW35-5 MW35-1, MW15-2, MW35-3, MW35-5 MW35-1, MW35-2, MW35-3, MW35-5	4.1 to 15.3	11-Aug-2022	<pre><0.5 <0.5 <0.2 <0.5 <0.5 <0.0 <0.5 <0.5 <0.5 <0.5 <0.5</pre>	0.5 67000 5 0.89 0.2 140 2 65000 3500 0.5 1150 0.5 0.5 1.6 0.58 0.5 54 0.2 5 21000 5 22 6 43 1.1 0.5
Acetone Benzene Benzene Bernodichloromethane Bromodichloromethane Bromodichloromethane Bromodichloromethane Bromodichloromethane Carbon Tetrachloride Chlorobenzene Chloroform Dibromochloromethane Dichlorodifluoromethane Dichlorodifluoromethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,1-Dichlorobenzene 1,1-Dichloroethylene cis-1,2-Dichloroethylene tis-1,2-Dichloroethylene tis-1,2-Dichloropenzene 1,3-Dichloropenzene 1,3-Dichloropenzene Ethylbene dibromide Hexane Methyl Ethyl Ketone Methyl Isboutyl Ketone Methyl Isboutyl Ketone Methyl Isboutyl Ketone Methyl Isboutyl Ketone Methyl Hertyl Hertyl Ketone Methyl Herty	MW15-1, MW15-2, MW15-3, MW15-5 MW35-1, MW15-2, MW15-3, MW35-5 MW35-1, MW35-2, MW35-3, MW35-5	4.1 to 15.3	11-Aug-2022	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	0.5 67000 5 0.89 0.2 140 2 65000 3500 150 0.5 11 0.5 0.5 2 12 0.5 2 140 0.5 0.5 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6
Acetone Benzene Benzene Bromodichloromethane Bromodichloromethane Bromodichloromethane Carbon Tetrachloride Chlorobenzene Chloroform Dibromochloromethane Dibromochloromethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichloroethane 1,2-Dichloroethylene cis-1,2-Dichloroethylene trans-1,2-Dichloroethylene trans-1,2-Dichloropenpen, total Ethylbenzene Ethylene dibromide Hexane Methyl Ethyl Ketone Methyl tetr-butyl ether Methyl tetr-butyl ether Methylene Chloride Styrene 1,1,1,2-Tetrachloroethane 1,1,2-Tetrachloroethane 1,1,2-Tetrachloroethane Tetrachloroethane Tetrachloroethane Tetrachloroethane Tetrachloroethane Tetrachloroethane Tetrachloroethylene	MW15-1, MW15-2, MW15-3, MW15-5 MW35-1, MW15-2, MW15-3, MW35-5 MW35-1, MW35-2, MW35-3, MW35-5	4.1 to 15.3	11-Aug-2022	<0.5 <0.5 <0.5 <0.0 <0.0 <0.0 <0.0 <0.0	0.5 67000 5 0.89 0.2 140 2 65000 3500 150 0.5 1.6 1.6 1.6 2.2 5 21000 5200 15 22 66 43 1.1 0.5 320
Acetone Benzene Benzene Beromodichloromethane Bromodichloromethane Bromodorm Bromomethane Carbon Tetrachloride Chlorobenzene Chloroform Dibromochloromethane Dibromochloromethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorotethane 1,2-Dichlorotethane 1,2-Dichlorotethane 1,2-Dichlorotethane 1,2-Dichlorotethane 1,2-Dichlorotethylene trans-1,2-Dichlorotethylene trans-1,2-Dichloropenpene 1,2-Dichloropenpene 1,2-Dichloro	MW15-1, MW15-2, MW15-3, MW15-5 MW35-1, MW15-2, MW15-3, MW35-5 MW35-1, MW15-2, MW35-3, MW35-5 MW35-1, MW35-2, MW35-3, MW35-5	4.1 to 15.3	11-Aug-2022	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	0.5 67000 5 0.89 0.2 140 2 65000 3500 150 7600 0.5 11 0.5 1.6 0.58 0.5 5 21000 5200 15 26 11 0.5 5 21 2000 22 23
Acetone Benzene Benzene Bernodichloromethane Bromodichloromethane Bromodichloromethane Carbon Tetrachloride Chlorobenzene Chloroform Dibromochloromethane 1,2-Dichloromethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,3-Dichlorobenzene 1,3-Dichlorotenzene 1,2-Dichlorotenzene 1,3-Dichlorotenzene 1,3-Dichloro	MW15-1, MW15-2, MW15-3, MW15-5 MW35-1, MW15-2, MW15-3, MW35-5 MW35-1, MW35-2, MW35-3, MW35-5	4.1 to 15.3	11-Aug-2022	<pre><0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5</pre>	0.5 67000 5 0.89 0.2 140 2 65000 3500 0.5 150 0.5 1.6 1.6 1.6 2 5 2 2 2 2 3 0.5
Acetone Benzene Benzene Bernodichloromethane Bromodichloromethane Bromodichloromethane Bromodichloromethane Bromodichloromethane Carbon Tetrachloride Chlorobenzene Chlorobenzene Chloroform Dibromochloromethane Dichlorodifluoromethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,1-Dichlorobenzene 1,1-Dichloroethane 1,1-Dichloroethylene cis-1,2-Dichloroethylene tis-1,2-Dichloropenzene 1,3-Dichloropenzene 1,3-Dichloropenzene 1,3-Dichloropenzene Ethylbene dibromide Hexane Methyl Ethyl Ketone Methyl Isobutyl Ketone Methyl Isobutyl Ketone Methyl Isobutyl Ketone Methyl Ethyl Ketone Methyl Isobutyl ether Methylene Chloride Styrene 1,1,1,2-Tetrachloroethane 1,1,1,2-Trichloroethane Toluene 1,1,1,1-Trichloroethane 1,1,1,1-Trichloroethane 1,1,1,2-Trichloroethane Trichloroethylene	MW15-1, MW15-2, MW15-3, MW15-5 MW35-1, MW15-2, MW15-3, MW35-5 MW35-1, MW15-2, MW35-3, MW35-5 MW35-1, MW35-2, MW35-3, MW35-5	4.1 to 15.3	11-Aug-2022	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	0.5 67000 5 0.89 0.2 140 2 65000 3500 150 76000 0.5 11 0.5 1.6 1.6 2 2 1000 5200 15 2 6 43 1.1 1.1 0.5 0.5 320 23 0.5 0.5
Acetone Benzene Benzene Beromodichloromethane Bromodichloromethane Bromodichloromethane Carbon Tetrachloride Chlorobenzene Chloroform Dibromochloromethane Dibromochloromethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethylene cts-1,2-Dichloroethylene trans-1,2-Dichloropenzene 1,1-Dichloropenzene 1,1-Dichloropenzene 1,1-Dichloroethylene trans-1,2-Dichloroethylene trans-1,2-Dichloropenzene 1,1-Dichloropenzene 1,1-Dichloropenzene 1,1-Dichloropenzene 1,1-Dichloropenzene Lybichloropenzene Lybichlo	MW15-1, MW15-2, MW15-3, MW15-5 MW35-1, MW15-2, MW15-3, MW35-5 MW35-1, MW15-2, MW35-3, MW35-5 MW35-1, MW35-2, MW35-3, MW35-5	4.1 to 15.3	11-Aug-2022	<pre><0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5</pre>	0.5 67000 5 0.89 0.2 140 2 65000 3500 150 0.5 11 0.5 1.6 1.6 0.58 0.5 5 21000 5200 15 26 43 1.1 0.5 0.5 320 23 0.5 0.5 5 2000
Acetone Benzene Benzene Bernodichloromethane Bromodichloromethane Bromodichloromethane Bromodichloromethane Bromodichloromethane Carbon Tetrachloride Chlorobenzene Chlorobenzene Chloroform Dibromochloromethane Dichlorodifluoromethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,1-Dichlorobenzene 1,1-Dichloroethane 1,1-Dichloroethylene cis-1,2-Dichloroethylene tis-1,2-Dichloropenzene 1,3-Dichloropenzene 1,3-Dichloropenzene 1,3-Dichloropenzene Ethylbene dibromide Hexane Methyl Ethyl Ketone Methyl Isobutyl Ketone Methyl Isobutyl Ketone Methyl Isobutyl Ketone Methyl Ethyl Ketone Methyl Isobutyl ether Methylene Chloride Styrene 1,1,1,2-Tetrachloroethane 1,1,1,2-Trichloroethane Toluene 1,1,1,1-Trichloroethane 1,1,1,1-Trichloroethane 1,1,1,2-Trichloroethane Trichloroethylene	MW15-1, MW15-2, MW15-3, MW15-5 MW35-1, MW15-2, MW15-3, MW35-5 MW35-1, MW15-2, MW35-3, MW35-5 MW35-1, MW35-2, MW35-3, MW35-5	4.1 to 15.3	11-Aug-2022	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	0.5 67000 5 0.89 0.2 140 2 65000 3500 150 76000 0.5 11 0.5 1.6 1.6 2 2 1000 5200 15 2 6 43 1.1 1.1 0.5 0.5 320 23 0.5 0.5

Results are shown in ppb unless otherwise indicated NV - No value

Non-detectable results are shown as "< (RDL)" where RDL represents the reporting detection limit.

Ontario Ministry of Environment, Conservation and Parks (MECP), Soil, Groundwater and Sediment Standards for use under Part XV.1 of the Environmental Protection Act, April 2011, Table 7 Generic Site Condition Standards for Shallow Soils in a Non-Potable Ground Water Condition for Residential/Parkland/Institutional Property Use Property Use (coarse textured soils)

Table 9 - Relative Percent Differences - PHC and VOC in Soil 770 and 775 Bronson Avenue, 557 Cambridge Street, Ottawa, ON OTT-22019409-A0

Parameter	Units	RDL	MW8 SS1	DUP1	RPD (%)	Alert Limit (%)
	J	KDL	10-Jan-2024	10-Jan-2024	KPD (%)	Alert Limit (%)
Petroleum Hydrocarbons						
F1 PHC (C6 - C10) - BTEX	ug/g dry	7	<10	<10	nc	60
F2 PHC (C10-C16)	ug/g dry	4	<10	<10	nc	60
F3 PHC (C16-C34)	ug/g dry	8	<50	<50	nc	60
F4 PHC (C34-C50)	ug/g dry	6	<50	140	nc	60
Volatiles						
Acetone	ug/g dry	0.50	<0.50	<0.50	nc	100
Benzene	ug/g dry	0.02	<0.020	<0.020	nc	100
Bromodichloromethane	ug/g dry	0.05	<0.050	<0.050	nc	100
Bromoform	ug/g dry	0.05	<0.050	<0.050	nc	100
Bromomethane	ug/g dry	0.05	<0.050	<0.050	nc	100
Carbon Tetrachloride	ug/g dry	0.05	<0.050	<0.050	nc	100
Chlorobenzene	ug/g dry	0.05	<0.050	<0.050	nc	100
Chloroform	ug/g dry	0.05	<0.050	<0.050	nc	100
Dibromochloromethane	ug/g dry	0.05	<0.050	<0.050	nc	100
Dichlorodifluoromethane	ug/g dry	0.05	<0.050	<0.050	nc	100
1,2-Dichlorobenzene	ug/g dry	0.05	<0.050	<0.050	nc	100
1,3-Dichlorobenzene	ug/g dry	0.05	<0.050	<0.050	nc	100
1,4-Dichlorobenzene	ug/g dry	0.05	<0.050	<0.050	nc	100
1,1-Dichloroethane	ug/g dry	0.05	<0.050	<0.050	nc	100
1,2-Dichloroethane	ug/g dry	0.05	<0.050	<0.050	nc	100
1,1-Dichloroethylene	ug/g dry	0.05	<0.050	<0.050	nc	100
cis-1,2-Dichloroethylene	ug/g dry	0.05	<0.050	<0.050	nc	100
trans-1,2-Dichloroethylene	ug/g dry	0.05	<0.050	<0.050	nc	100
1,2-Dichloropropane	ug/g dry	0.05	<0.050	<0.050	nc	100
cis-1,3-Dichloropropylene	ug/g dry	0.05	<0.030	<0.030	nc	100
trans-1,3-Dichloropropylene	ug/g dry	0.05	<0.040	<0.040	nc	100
1,3-Dichloropropene, total	ug/g dry	0.05	<0.050	<0.050	nc	100
Ethylbenzene	ug/g dry	0.05	<0.050	<0.050	nc	100
Ethylene dibromide (dibromoethane, 1,2-)	ug/g dry	0.05	<0.050	<0.050	nc	100
Hexane	ug/g dry	0.05	<0.050	<0.050	nc	100
Methyl Ethyl Ketone (2-Butanone)	ug/g dry	0.50	<0.50	<0.50	nc	100
Methyl Isobutyl Ketone	ug/g dry	0.50	<0.50	<0.50	nc	100
Methyl tert-butyl ether	ug/g dry	0.05	<0.050	<0.050	nc	100
Methylene Chloride	ug/g dry	0.05	<0.050	<0.050	nc	100
Styrene	ug/g dry	0.05	<0.050	<0.050	nc	100
1,1,1,2-Tetrachloroethane	ug/g dry	0.05	<0.050	<0.050	nc	100
1,1,2,2-Tetrachloroethane	ug/g dry	0.05	<0.050	<0.050	nc	100
Tetrachloroethylene	ug/g dry	0.05	<0.050	<0.050	nc	100
Toluene	ug/g dry	0.05	<0.020	<0.020	nc	100
1,1,1-Trichloroethane	ug/g dry	0.05	<0.050	<0.050	nc	100
1,1,2-Trichloroethane	ug/g dry	0.05	<0.050	<0.050	nc	100
Trichloroethylene	ug/g dry	0.05	<0.050	<0.050	nc	100
Trichlorofluoromethane	ug/g dry	0.05	<0.050	<0.050	nc	100
Vinyl Chloride	ug/g dry	0.02	<0.020	<0.020	nc	100
m/p-Xylene	ug/g dry	0.05	<0.020	<0.020	nc	100
o-Xylene	ug/g dry	0.05	<0.020	<0.020	nc	100
Xylenes, total	ug/g dry	0.05	<0.050	<0.050	nc	100

All results on dry weight basis; Non-detectable results are shown as "< (RDL)" where RDL represents the reporting detection limit.

- means "not analysed"

nc means "not calculable" - one (or both) of the results are $<5x\ RDL$

Exceedances of alert limits are shown in $\underline{\text{\bf bold}}$

Table 10 - Relative Percent Differences - PAH in Soil 770 and 775 Bronson Avenue, 557 Cambridge Street, Ottawa, ON OTT-22019409-A0

Parameter	Units	RDL	MW8 SS1	DUP1	RPD (%)	Alert Limit (%)
			10-Jan-2024	10-Jan-2024	1	
Polycyclic Aromatic Hydrocarbor	s					
Acenaphthene	ug/g dry	0.02	<0.0050	<0.0050	nc	80
Acenaphthylene	ug/g dry	0.02	<0.0050	<0.0050	nc	80
Anthracene	ug/g dry	0.02	<0.0050	<0.0050	nc	80
Benzo[a]anthracene	ug/g dry	0.02	<0.0050	0.02	nc	80
Benzo[a]pyrene	ug/g dry	0.02	<0.0050	0.02	nc	80
Benzo[b]fluoranthene	ug/g dry	0.02	<0.010	0.035	nc	80
Benzo[g,h,i]perylene	ug/g dry	0.02	<0.0050	0.015	nc	80
Benzo[k]fluoranthene	ug/g dry	0.02	<0.0050	0.0099	nc	80
Chrysene	ug/g dry	0.02	<0.0050	0.02	nc	80
Dibenzo[a,h]anthracene	ug/g dry	0.02	<0.0050	<0.0050	nc	80
Fluoranthene	ug/g dry	0.02	0.0084	0.035	nc	80
Fluorene	ug/g dry	0.02	<0.0050	<0.0050	nc	80
Indeno[1,2,3-cd]pyrene	ug/g dry	0.02	<0.0050	0.0099	nc	80
Methylnaphthalene (1&2)	ug/g dry	0.04	<0.0071	< 0.0071	nc	80
Naphthalene	ug/g dry	0.01	<0.0050	<0.0050	nc	80
Phenanthrene	ug/g dry	0.02	<0.0050	0.02	nc	80
Pyrene	ug/g dry	0.02	0.0084	0.03	nc	80

Analysis by Paracel Labratories Ltd.

All results on dry weight basis; Non-detectable results are shown as "ND (RDL)" where RDL represents the reporting detection limit.

- means "not analysed"

nc means "not calculable" - one (or both) of the results are <5x RDL

Exceedances of alert limits are shown in **bold**

Table 11 - Relative Percent Differences - Inorganics in Soil 770 and 775 Bronson Avenue, 557 Cambridge Street, Ottawa, ON OTT-22019409-A0

Parameter	Units	RDL	MW8 SS1	DUP1	RPD (%)	Alert Limit (%)
			10-Jan-2024	10-Jan-2024		
Metals						
Antimony	ug/g dry	1.0	<0.8	<0.8	nc	60
Arsenic	ug/g dry	1.0	8	9	12	60
Barium	ug/g dry	1.0	44.2	45.5	3	60
Beryllium	ug/g dry	0.5	<0.5	<0.5	nc	60
Boron	ug/g dry	5.0	6	6	nc	60
Cadmium	ug/g dry	0.5	<0.5	<0.5	nc	60
Chromium	ug/g dry	5.0	12	10	nc	60
Cobalt	ug/g dry	1.0	8.2	8.4	2	60
Copper	ug/g dry	5.0	12	9.6	nc	60
Lead	ug/g dry	1.0	46	36	24	60
Molybdenum	ug/g dry	1.0	3.5	3.9	nc	60
Nickel	ug/g dry	5.0	15	15	nc	60
Selenium	ug/g dry	1.0	<0.8	<0.8	nc	60
Silver	ug/g dry	0.3	<0.5	<0.5	nc	60
Thallium	ug/g dry	1.0	<0.5	<0.5	nc	60
Uranium	ug/g dry	1.0	0.7	0.7	nc	60
Vanadium	ug/g dry	10.0	16.7	12.7	nc	60
Zinc	ug/g dry	20.0	28	21	nc	60

All results on dry weight basis; Non-detectable results are shown as "< (RDL)" where RDL represents the reporting detection limit.

- means "not analysed"

nc means "not calculable" - one (or both) of the results are <5x RDL

Exceedances of alert limits are shown in $\underline{\textbf{bold}}$

Table 12 - Relative Percent Differences - PHC and VOC in Groundwater 770 and 775 Bronson Avenue, 557 Cambridge Street, Ottawa, ON OTT-22019409-A0

Parameter	Units	RDL	MW15-5	DUP 1	RPD (%)	Alert Limit (%)
			11-Aug-2022	11-Aug-2022	, ,	
Petroleum Hydrocarbons						
F1 PHC (C6 - C10) - BTEX	ug/L	25	< 25	< 25	nc	60
F2 PHC (C10-C16)	ug/L	100	< 50	< 50	nc	60
F3 PHC (C16-C34)	ug/L	100	< 400	< 400	nc	60
F4 PHC (C34-C50)	ug/L	100	< 400	< 400	nc	60
Volatiles						
Acetone	ug/L	5.0	< 30	< 30	nc	60
Benzene	ug/L	0.5	< 0.5	< 0.5	nc	60
Bromodichloromethane	ug/L	0.5	< 2	< 2	nc	60
Bromoform	ug/L	0.5	< 5	< 5	nc	60
Bromomethane	ug/L	0.5	< 0.5	< 0.5	nc	60
Carbon Tetrachloride	ug/L	0.2	< 0.2	< 0.2	nc	60
Chlorobenzene	ug/L	0.5	< 0.5	< 0.5	nc	60
Chloroform	ug/L	0.5	< 1	< 1	nc	60
Dibromochloromethane	ug/L	0.5	< 2	< 2	nc	60
Dichlorodifluoromethane	ug/L	1.0	< 2	< 2	nc	60
1,2-Dichlorobenzene	ug/L	0.5	< 0.5	< 0.5	nc	60
1,3-Dichlorobenzene	ug/L	0.5	< 0.5	< 0.5	nc	60
1,4-Dichlorobenzene	ug/L	0.5	< 0.5	< 0.5	nc	60
1,1-Dichloroethane	ug/L	0.5	< 0.5	< 0.5	nc	60
1,2-Dichloroethane	ug/L	0.5	< 0.5	< 0.5	nc	60
1,1-Dichloroethylene	ug/L	0.5	< 0.5	< 0.5	nc	60
cis-1,2-Dichloroethylene	ug/L	0.5	< 0.5	< 0.5	nc	60
trans-1,2-Dichloroethylene	ug/L	0.5	< 0.5	< 0.5	nc	60
1,2-Dichloropropane	ug/L	0.5	< 0.5	< 0.5	nc	60
cis-1,3-Dichloropropylene	ug/L	0.5	< 0.5	< 0.5	nc	60
trans-1,3-Dichloropropylene	ug/L	0.5	< 0.5	< 0.5	nc	60
1,3-Dichloropropene, total	ug/L	0.5	< 0.5	< 0.5	nc	60
Ethylbenzene	ug/L	0.5	< 0.5	< 0.5	nc	60
Ethylene dibromide (dibromoethane, 1,2-)	ug/L	0.2	< 0.2	< 0.2	nc	60
Hexane	ug/L	1.0	< 5	< 5	nc	60
Methyl Ethyl Ketone (2-Butanone)	ug/L	5.0	< 20	< 20	nc	60
Methyl Isobutyl Ketone	ug/L	5.0	< 20	< 20	nc	60
Methyl tert-butyl ether	ug/L	2.0	< 2	< 2	nc	60
Methylene Chloride	ug/L	5.0	< 5	< 5	nc	60
Styrene	ug/L	0.5	< 0.5	< 0.5	nc	60
1,1,1,2-Tetrachloroethane	ug/L	0.5	< 0.5	< 0.5	nc	60
1,1,2,2-Tetrachloroethane	ug/L	0.5	< 0.5	< 0.5	nc	60
Tetrachloroethylene	ug/L	0.5	< 0.5	< 0.5	nc	60
Toluene	ug/L	0.5	< 0.5	< 0.5	nc	60
1,1,1-Trichloroethane	ug/L	0.5	< 0.5	< 0.5	nc	60
1,1,2-Trichloroethane	ug/L	0.5	< 0.5	< 0.5	nc	60
Trichloroethylene	ug/L	0.5	< 0.5	< 0.5	nc	60
Trichlorofluoromethane	ug/L	1.0	< 5	< 5	nc	60
Vinyl Chloride	ug/L	0.5	< 0.2	< 0.2	nc	60
m/p-Xylene	ug/L	0.5	< 1.0	< 1.0	nc	60
o-Xylene	ug/L	0.5	< 0.5	< 0.5	nc	60
Xylenes, total	ug/L	0.5	< 1.1	< 1.1	nc	60

Non-detectable results are shown as "< (RDL)" where RDL represents the reporting detection limit.

- means "not analysed"

nc means "not calculable" - one (or both) of the results are <5x RDL

Exceedances of alert limits are shown in $\underline{\textbf{bold}}$

Table 12 - Relative Percent Differences - PHC and VOC in Groundwater 770 and 775 Bronson Avenue, 557 Cambridge Street, Ottawa, ON OTT-22019409-A0

Parameter	Units	RDL	MW7	DUP1	RPD (%)	Alert Limit (%)
			24-Jan-2024	24-Jan-2024		
Petroleum Hydrocarbons						
F1 PHC (C6 - C10) - BTEX	ug/L	25	<25	<25	nc	60
F2 PHC (C10-C16)	ug/L	100	<100	<100	nc	60
F3 PHC (C16-C34)	ug/L	100	<200	<200	nc	60
F4 PHC (C34-C50)	ug/L	100	<200	<200	nc	60
Volatiles						
Acetone	ug/L	5.0	<1.0	<1.0	nc	60
Benzene	ug/L	0.5	<0.20	<0.20	nc	60
Bromodichloromethane	ug/L	0.5	<0.20	<0.20	nc	60
Bromoform	ug/L	0.5	<0.10	<0.10	nc	60
Bromomethane	ug/L	0.5	<0.20	<0.20	nc	60
Carbon Tetrachloride	ug/L	0.2	<0.20	<0.20	nc	60
Chlorobenzene	ug/L	0.5	<0.10	<0.10	nc	60
Chloroform	ug/L	0.5	<0.20	<0.20	nc	60
Dibromochloromethane	ug/L	0.5	<0.10	<0.10	nc	60
Dichlorodifluoromethane	ug/L	1.0	<0.40	<0.40	nc	60
1,2-Dichlorobenzene	ug/L	0.5	<0.10	<0.10	nc	60
1,3-Dichlorobenzene	ug/L	0.5	<0.10	<0.10	nc	60
1,4-Dichlorobenzene	ug/L	0.5	<0.10	<0.10	nc	60
1,1-Dichloroethane	ug/L	0.5	<0.30	<0.30	nc	60
1,2-Dichloroethane	ug/L	0.5	<0.20	<0.20	nc	60
1,1-Dichloroethylene	ug/L	0.5	<0.30	<0.30	nc	60
cis-1,2-Dichloroethylene	ug/L	0.5	<0.20	<0.20	nc	60
trans-1,2-Dichloroethylene	ug/L	0.5	<0.20	<0.20	nc	60
1,2-Dichloropropane	ug/L	0.5	<0.20	<0.20	nc	60
cis-1,3-Dichloropropylene	ug/L	0.5	<0.30	<0.30	nc	60
trans-1,3-Dichloropropylene	ug/L	0.5	<0.10	<0.10	nc	60
1,3-Dichloropropene, total	ug/L	0.5	<0.10	<0.10	nc	60
Ethylbenzene	ug/L	0.5	<0.20	<0.20	nc	60
Ethylene dibromide (dibromoethane, 1,2-)	ug/L	0.2	<1.0	<1.0	nc	60
Hexane	ug/L	1.0	<1.0	<1.0	nc	60
Methyl Ethyl Ketone (2-Butanone)	ug/L	5.0	<0.20	<0.20	nc	60
Methyl Isobutyl Ketone	ug/L	5.0	<0.30	<0.30	nc	60
Methyl tert-butyl ether	ug/L	2.0	<0.10	<0.10	nc	60
Methylene Chloride	ug/L	5.0	<0.10	<0.10	nc	60
Styrene	ug/L	0.5	<0.10	<0.10	nc	60
1,1,1,2-Tetrachloroethane	ug/L	0.5	<0.20	<0.20	nc	60
1,1,2,2-Tetrachloroethane	ug/L	0.5	<0.20	<0.20	nc	60
Tetrachloroethylene	ug/L	0.5	<0.30	<0.30	nc	60
Toluene	ug/L	0.5	<0.20	<0.20	nc	60
1,1,1-Trichloroethane	ug/L	0.5	<0.20	<0.20	nc	60
1,1,2-Trichloroethane	ug/L	0.5	<0.40	<0.40	nc	60
Trichloroethylene	ug/L	0.5	<0.17	<0.17	nc	60
Trichlorofluoromethane	ug/L	1.0	<0.20	<0.20	nc	60
Vinyl Chloride	ug/L	0.5	<0.20	<0.20	nc	60
Xylenes, total	ug/L	0.5	<0.20	<0.20	nc	60

Non-detectable results are shown as "< (RDL)" where RDL represents the reporting detection limit.

- means "not analysed"

nc means "not calculable" - one (or both) of the results are <5x RDL

Exceedances of alert limits are shown in $\underline{\textbf{bold}}$

Table 13 - Relative Percent Differences - PAH in Groundwater 770 and 775 Bronson Avenue, 557 Cambridge Street, Ottawa, ON OTT-22019409-A0

Parameter	Units	RDL	MW15-5	DUP 1	RPD (%)	Alert Limit (%)
			11-Aug-2022	11-Aug-2022		
Polycyclic Aromatic Hydrocarbons						
Acenaphthene	ug/L	0.05	< 0.05	< 0.05	nc	60
Acenaphthylene	ug/L	0.05	< 0.05	< 0.05	nc	60
Anthracene	ug/L	0.01	< 0.05	< 0.05	nc	60
Benzo[a]anthracene	ug/L	0.01	< 0.05	< 0.05	nc	60
Benzo[a]pyrene	ug/L	0.01	< 0.01	< 0.01	nc	60
Benzo[b]fluoranthene	ug/L	0.05	< 0.05	< 0.05	nc	60
Benzo[g,h,i]perylene	ug/L	0.05	< 0.05	< 0.05	nc	60
Benzo[k]fluoranthene	ug/L	0.05	< 0.05	< 0.05	nc	60
Chrysene	ug/L	0.05	< 0.05	< 0.05	nc	60
Dibenzo[a,h]anthracene	ug/L	0.05	< 0.05	< 0.05	nc	60
Fluoranthene	ug/L	0.01	< 0.05	< 0.05	nc	60
Fluorene	ug/L	0.05	< 0.05	< 0.05	nc	60
Indeno[1,2,3-cd]pyrene	ug/L	0.05	< 0.05	< 0.05	nc	60
1-Methylnaphthalene	ug/L	0.05	< 0.05	< 0.05	nc	60
2-Methylnaphthalene	ug/L	0.05	< 0.05	< 0.05	nc	60
Methylnaphthalene (1&2)	ug/L	0.10	< 1	< 1	nc	60
Naphthalene	ug/L	0.05	< 0.05	< 0.05	nc	60
Phenanthrene	ug/L	0.05	< 0.05	< 0.05	nc	60
Pyrene	ug/L	0.01	< 0.05	< 0.05	mc	60

Non-detectable results are shown as "< (RDL)" where RDL represents the reporting detection limit.

- means "not analysed"

nc means "not calculable" - one (or both) of the results are <5x RDL

Exceedances of alert limits are shown in $\underline{\text{\bf bold}}$

Parameter	Units	RDL	MW7	DUP1	RPD (%)	Alert Limit (%)
			24-Jan-2024	24-Jan-2024		
Polycyclic Aromatic Hydrocarbons						
Acenaphthene	ug/L	0.05	<0.20	<0.20	nc	60
Acenaphthylene	ug/L	0.05	<0.20	<0.20	nc	60
Anthracene	ug/L	0.01	<0.10	<0.10	nc	60
Benzo[a]anthracene	ug/L	0.01	<0.20	<0.20	nc	60
Benzo[a]pyrene	ug/L	0.01	<0.01	<0.01	nc	60
Benzo[b]fluoranthene	ug/L	0.05	<0.10	<0.10	nc	60
Benzo[g,h,i]perylene	ug/L	0.05	<0.20	<0.20	nc	60
Benzo[k]fluoranthene	ug/L	0.05	<0.10	<0.10	nc	60
Chrysene	ug/L	0.05	<0.10	<0.10	nc	60
Dibenzo[a,h]anthracene	ug/L	0.05	<0.20	<0.20	nc	60
Fluoranthene	ug/L	0.01	<0.20	<0.20	nc	60
Fluorene	ug/L	0.05	<0.20	<0.20	nc	60
Indeno[1,2,3-cd]pyrene	ug/L	0.05	<0.20	<0.20	nc	60
Methylnaphthalene (1&2)	ug/L	0.10	<0.20	<0.20	nc	60
Naphthalene	ug/L	0.05	<0.20	<0.20	nc	60
Phenanthrene	ug/L	0.05	<0.10	<0.10	nc	60
Pyrene	ug/L	0.01	<0.20	<0.20	mc	60

NOTES:

Non-detectable results are shown as "< (RDL)" where RDL represents the reporting detection limit.

- means "not analysed"

nc means "not calculable" - one (or both) of the results are <5x RDL

Exceedances of alert limits are shown in $\underline{\text{\bf bold}}$

Table 14 - Relative Percent Differences - Metals in Groundwater 770 and 775 Bronson Avenue, 557 Cambridge Street, Ottawa, ON OTT-22019409-A0

Parameter	Units	RDL	MW7	DUP1	RPD (%)	Alert Limit (%)
			24-Jan-2024	24-Jan-2024		
Metals						
Antimony	ug/L	0.5	<0.50	0.62	nc	40
Arsenic	ug/L	1	<1.0	<1.0	nc	40
Barium	ug/L	1	190	77	<u>85</u>	40
Beryllium	ug/L	0.5	<0.50	<0.50	nc	40
Boron	ug/L	10	61	300	<u>132</u>	40
Cadmium	ug/L	0.1	<0.10	<0.10	nc	40
Chromium	ug/L	1	<5.0	<5.0	nc	40
Cobalt	ug/L	0.5	1.1	1.2	nc	40
Copper	ug/L	0.5	1.7	1.7	nc	40
Lead	ug/L	0.1	<0.50	<0.50	nc	40
Molybdenum	ug/L	0.5	2	4.7	nc	40
Nickel	ug/L	1	2.5	3.4	nc	40
Selenium	ug/L	1	460000	520000	12	40
Silver	ug/L	0.1	<2.0	2.9	nc	40
Sodium	ug/L	200	<0.10	<0.10	nc	40
Thallium	ug/L	0.1	<0.050	0.074	nc	40
Uranium	ug/L	0.1	1.8	3.1	<u>53</u>	40
Vanadium	ug/L	0.5	<0.50	<0.50	nc	40
Zinc	ug/L	5	<5.0	<5.0	nc	40

Non-detectable results are shown as "< (RDL)" where RDL represents the reporting detection limit.

- means "not analysed"

nc means "not calculable" - one (or both) of the results are <5x RDL

Exceedances of alert limits are shown in **bold**

EXP Services Inc.

SEC 774 Bronson Phase Two Environmental Site Assessment 770 and 774 Bronson Avenue and 557 Cambridge Street, Ottawa, Ontario OTT-22019409-A0 June 24, 2024

Appendix G: Laboratory Certificates of Analysis

CLIENT NAME: EXP SERVICES INC

2650 QUEENSVIEW DRIVE, UNIT 100

OTTAWA, ON K2B8H6

(613) 688-1899

ATTENTION TO: Mark McCalla

PROJECT: OTT-22019409-A0

AGAT WORK ORDER: 24Z110204

SOIL ANALYSIS REVIEWED BY: Sukhwinder Randhawa, Inorganic Team Lead

TRACE ORGANICS REVIEWED BY: Neli Popnikolova, Senior Chemist

DATE REPORTED: Jan 18, 2024

PAGES (INCLUDING COVER): 16 VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

*Notes		

Disclaimer:

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may
 incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 30 days after receipt unless a Long Term Storage Agreement is signed and returned. Some specialty analysis may
 be exempt, please contact your Client Project Manager for details.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of
 merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines
 contained in this document.
- All reportable information as specified by ISO/IEC 17025:2017 is available from AGAT Laboratories upon request.
- For environmental samples in the Province of Quebec: The analysis is performed on and results apply to samples as received. A temperature above 6°C upon receipt, as indicated in the Sample Reception Notification (SRN), could indicate the integrity of the samples has been compromised if the delay between sampling and submission to the laboratory could not be minimized.

AGAT Laboratories (V1)

Page 1 of 16

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA)

Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA) AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.

AGAT WORK ORDER: 24Z110204 PROJECT: OTT-22019409-A0 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: EXP SERVICES INC SAMPLING SITE:

ATTENTION TO: Mark McCalla SAMPLED BY:Philip Oliveira

O. Reg. 153(511) - Metals (Including Hydrides) (Soil)

DATE RECEIVED: 2024-01-10									3		
			CRIPTION: PLE TYPE: SAMPLED:	MW5 Soil 2024-01-09 10:00	MW6 Soil 2024-01-09 12:00	MW7 Soil 2024-01-09 13:30	BH1 Soil 2024-01-09 14:30		BH2 Soil 2024-01-09 14:45		BH3 Soil 2024-01-09 15:00
Parameter	Unit	G/S	RDL	5579523	5579534	5579535	5579537	RDL	5579538	RDL	5579539
Antimony	μg/g		0.8	<0.8	<0.8	<0.8	<0.8	8.0	0.8	8.0	<0.8
Arsenic	μg/g		1	6	5	5	2	1	18	1	2
Barium	μg/g		2.0	73.6	102	62.8	86.9	2.0	192	2.0	337
Beryllium	μg/g		0.5	<0.5	<0.5	<0.5	<0.5	0.5	0.6	0.5	<0.5
Boron	μg/g		5	5	<5	<5	<5	5	8	5	5
Cadmium	μg/g		0.5	<0.5	<0.5	<0.5	0.9	0.5	3.1	0.5	<0.5
Chromium	μg/g		5	17	21	13	16	5	25	5	6
Cobalt	μg/g		0.8	5.5	5.8	6.4	4.8	0.8	7.6	0.8	2.9
Copper	μg/g		1.0	13.6	16.8	19.1	13.3	1.0	31.3	1.0	4.3
Lead	μg/g		1	58	105	50	136	1	156	1	7
Molybdenum	μg/g		0.5	1.1	1.3	1.5	0.8	0.5	3.1	0.5	0.5
Nickel	μg/g		1	12	13	15	11	1	19	1	8
Selenium	μg/g		0.8	<0.8	<0.8	<0.8	<0.8	0.8	1.2	0.8	<0.8
Silver	μg/g		0.5	<0.5	<0.5	<0.5	<0.5	0.5	<0.5	0.5	<0.5
Thallium	μg/g		0.5	<0.5	<0.5	<0.5	<0.5	0.5	<0.5	0.5	<0.5
Uranium	μg/g		0.50	0.63	0.53	0.52	<0.50	0.50	0.83	0.50	< 0.50
Vanadium	μg/g		2.0	20.2	22.9	19.1	23.1	2.0	35.6	2.0	5.8
Zinc	μg/g		5	78	105	69	257	50	3200	5	20

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard 5579538 Dilution required, RDL has been increased accordingly.

Analysis performed at AGAT Toronto (unless marked by *)

OHANTERED OF SHOULD OF SHO

AGAT WORK ORDER: 24Z110204

PROJECT: OTT-22019409-A0

CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

5835 COOPERS AVENUE

MISSISSAUGA, ONTARIO

CLIENT NAME: EXP SERVICES INC ATTENTION TO: Mark McCalla SAMPLED BY:Philip Oliveira SAMPLING SITE:

O. Rea.	. 153(51	I) - ORPs	(Soil)
---------	----------	-----------	--------

DATE RECEIVED: 2024-01-10								[DATE REPORTE	D: 2024-01-18
	SAMPLE DESCRIP		PLE TYPE:	MW5 Soil 2024-01-09 10:00	Soil Soil 024-01-09 2024-01-09		BH1 Soil 2024-01-09 14:30	BH2 Soil 2024-01-09 14:45	BH3 Soil 2024-01-09 15:00	
Parameter	Unit	G/S	RDL	5579523	5579534	13:30 5579535	5579537	5579538	5579539	
Electrical Conductivity (2:1)	mS/cm		0.005	0.278	2.16	0.671	4.16	6.65	3.21	
pH, 2:1 CaCl2 Extraction	pH Units		NA	7.93	7.96	8.16	7.94	7.41	8.13	
Sodium Adsorption Ratio (2:1) (Calc.)	N/A		N/A	1.52	12.4	7.82	41.3	10.6	16.9	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

5579523-5579539 EC was determined on the DI water extract obtained from the 2:1 leaching procedure (2 parts DI water:1 part soil). pH was determined on the 0.01M CaCl2 extract obtained from 2:1 leaching procedure (2 parts extraction fluid:1 part wet soil). SAR is a calculated parameter.

Analysis performed at AGAT Toronto (unless marked by *)

AGAT WORK ORDER: 24Z110204 PROJECT: OTT-22019409-A0 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: EXP SERVICES INC

SAMPLING SITE:

ATTENTION TO: Mark McCalla SAMPLED BY:Philip Oliveira

O. Reg. 153(511) - PAHs (So	oil)
-----------------------------	------

DATE RECEIVED: 2024-01-10			DATE REPORTED: 2024							
		SAMPLE DESCRIPTION: SAMPLE TYPE: DATE SAMPLED:	MW5 Soil 2024-01-09 10:00	MW6 Soil 2024-01-09 12:00	MW7 Soil 2024-01-09 13:30	BH1 Soil 2024-01-09 14:30	BH2 Soil 2024-01-09 14:45	BH3 Soil 2024-01-09 15:00		
Parameter	Unit	G/S RDL	5579523	5579534	5579535	5579537	5579538	5579539		
Naphthalene	μg/g	0.05	< 0.05	0.06	< 0.05	<0.05	< 0.05	0.16		
Acenaphthylene	μg/g	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.06		
Acenaphthene	μg/g	0.05	< 0.05	<0.05	< 0.05	< 0.05	0.08	0.28		
Fluorene	μg/g	0.05	< 0.05	0.14	< 0.05	<0.05	0.17	0.54		
Phenanthrene	μg/g	0.05	0.17	1.48	<0.05	0.17	1.60	3.96		
Anthracene	μg/g	0.05	< 0.05	0.38	< 0.05	< 0.05	0.43	1.20		
Fluoranthene	μg/g	0.05	0.35	1.59	< 0.05	0.28	1.81	4.17		
Pyrene	μg/g	0.05	0.28	1.23	< 0.05	0.25	1.50	3.12		
Benz(a)anthracene	μg/g	0.05	< 0.05	0.15	< 0.05	< 0.05	0.25	0.89		
Chrysene	μg/g	0.05	0.13	0.34	< 0.05	0.09	0.58	1.23		
Benzo(b)fluoranthene	μg/g	0.05	0.12	0.21	< 0.05	< 0.05	0.36	0.62		
Benzo(k)fluoranthene	μg/g	0.05	0.07	0.13	< 0.05	< 0.05	0.15	0.33		
Benzo(a)pyrene	μg/g	0.05	0.08	0.18	< 0.05	< 0.05	0.19	0.44		
ndeno(1,2,3-cd)pyrene	μg/g	0.05	< 0.05	0.06	< 0.05	< 0.05	0.08	0.16		
Dibenz(a,h)anthracene	μg/g	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.05		
Benzo(g,h,i)perylene	μg/g	0.05	< 0.05	0.08	< 0.05	< 0.05	0.12	0.19		
1 and 2 Methlynaphthalene	μg/g	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.23		
Moisture Content	%	0.1	14.8	9.4	5.1	5.4	12.6	7.0		
Surrogate	Unit	Acceptable Limits								
Naphthalene-d8	%	50-140	70	70	70	60	70	75		
Acridine-d9	%	50-140	70	70	105	85	75	80		
Terphenyl-d14	%	50-140	85	70	80	85	75	110		

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

5579523-5579539 Results are based on the dry weight of the soil.

Note: The result for Benzo(b)Fluoranthene is the total of the Benzo(b)&j)Fluoranthene isomers because the isomers co-elute on the GC column. 2- and 1-Methyl Naphthalene is a calculated parameter. The calculated value is the sum of 2-Methyl Naphthalene and 1-Methyl Naphthalene.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

NPopukolof

AGAT WORK ORDER: 24Z110204 PROJECT: OTT-22019409-A0

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: EXP SERVICES INC

SAMPLING SITE:

ATTENTION TO: Mark McCalla SAMPLED BY:Philip Oliveira

O. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Soil)

DATE RECEIVED: 2024-01-10							1	DATE REPORTED: 2024-01-18		
		SAMPLE DESCRIPT	ION: MW5	MW6	MW7	BH1	BH2	ВН3		
		SAMPLE T	YPE: Soil	Soil	Soil	Soil	Soil	Soil		
		DATE SAMP	LED: 2024-01-09 10:00	9 2024-01-09 12:00	2024-01-09 13:30	2024-01-09 14:30	2024-01-09 14:45	2024-01-09 15:00		
Parameter	Unit	G/S RD	L 5579523	5579534	5579535	5579537	5579538	5579539		
F1 (C6 to C10)	μg/g	5	<5	<5	<5	<5	<5	<5		
F1 (C6 to C10) minus BTEX	μg/g	5	<5	<5	<5	<5	<5	<5		
F2 (C10 to C16)	μg/g	10	<10	<10	<10	<10	<10	<10		
F2 (C10 to C16) minus Naphthalene	μg/g	10	<10	<10	<10	<10	<10	<10		
F3 (C16 to C34)	μg/g	50	<50	<50	<50	221	<50	<50		
F3 (C16 to C34) minus PAHs	μg/g	50	<50	<50	<50	220	<50	<50		
F4 (C34 to C50)	μg/g	50	<50	<50	<50	81	<50	<50		
Gravimetric Heavy Hydrocarbons	μg/g	50) NA	NA	NA	NA	NA	NA		
Moisture Content	%	0.	1 14.8	9.4	5.1	5.4	12.6	7.0		
Surrogate	Unit	Acceptable Lim	its							
Toluene-d8	%	50-140	102	99	103	101	101	106		
Terphenyl	%	60-140	83	92	87	100	94	89		

Comments: RDL - Reported Detection Limit: G / S - Guideline / Standard

5579523-5579539 Results are based on sample dry weight.

The C6-C10 fraction is calculated using toluene response factor.

C6-C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX. The calculated parameter is non-accredited. The parameters that are components of the calculation are

The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and n-C34.

Gravimetric Heavy Hydrocarbons are not included in the Total C16-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons >C50 are present. The chromatogram has returned to baseline by the retention time of nC50.

Total C6 - C50 results are corrected for BTEX and PAH contributions.

C>10 - C16 (F2- Naphthalene) is a calculated parameter. The calculated value is F2 - Naphthalene.

C>16 - C34 (F3-PAH) is a calculated parameter. The calculated value is F3-PAH (PAH: sum of Phenanthrene, Benzo(a)anthracene. Benzo(b)fluoranthene, Benzo(k)fluoranthene, Benzo(a)pyrene, Fluoranthene, Dibenzo(a,h)anthracene, Indeno(1,2,3-c,d)pyrene and Pyrene).

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 + nC34 average.

Linearity is within 15%.

Extraction and holding times were met for this sample.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

AGAT WORK ORDER: 24Z110204 PROJECT: OTT-22019409-A0 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: EXP SERVICES INC SAMPLING SITE:

ATTENTION TO: Mark McCalla SAMPLED BY:Philip Oliveira

O. Reg. 153(511) - VOCs (with PHC) (Soil)

DATE RECEIVED: 2024-01-10							ı	DATE REPORTED: 2024-01-18		
		SAMPLE DESCRIPTION: SAMPLE TYPE: DATE SAMPLED:	Soil 2024-01-09 10:00	MW6 Soil 2024-01-09 12:00	MW7 Soil 2024-01-09 13:30	BH1 Soil 2024-01-09 14:30	BH2 Soil 2024-01-09 14:45	BH3 Soil 2024-01-09 15:00		
Parameter	Unit	G/S RDL	5579523	5579534	5579535	5579537	5579538	5579539		
Dichlorodifluoromethane	μg/g	0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.05		
Vinyl Chloride	ug/g	0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02		
Bromomethane	ug/g	0.05	<0.05	<0.05	< 0.05	< 0.05	<0.05	<0.05		
Trichlorofluoromethane	ug/g	0.05	<0.05	< 0.05	<0.05	< 0.05	<0.05	<0.05		
Acetone	ug/g	0.50	< 0.50	< 0.50	<0.50	< 0.50	< 0.50	<0.50		
1,1-Dichloroethylene	ug/g	0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.05	<0.05		
Methylene Chloride	ug/g	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.05		
Trans- 1,2-Dichloroethylene	ug/g	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05		
Methyl tert-butyl Ether	ug/g	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05		
1,1-Dichloroethane	ug/g	0.02	< 0.02	< 0.02	<0.02	<0.02	<0.02	<0.02		
Methyl Ethyl Ketone	ug/g	0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<0.50		
Cis- 1,2-Dichloroethylene	ug/g	0.02	< 0.02	<0.02	<0.02	< 0.02	< 0.02	<0.02		
Chloroform	ug/g	0.04	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04	<0.04		
1,2-Dichloroethane	ug/g	0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	<0.03		
1,1,1-Trichloroethane	ug/g	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.05		
Carbon Tetrachloride	ug/g	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.05		
Benzene	ug/g	0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	<0.02		
1,2-Dichloropropane	ug/g	0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	<0.03		
Trichloroethylene	ug/g	0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	<0.03		
Bromodichloromethane	ug/g	0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.05	<0.05		
Methyl Isobutyl Ketone	ug/g	0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50		
1,1,2-Trichloroethane	ug/g	0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04		
Toluene	ug/g	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05		
Dibromochloromethane	ug/g	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05		
Ethylene Dibromide	ug/g	0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04		
Tetrachloroethylene	ug/g	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05		
1,1,1,2-Tetrachloroethane	ug/g ug/g	0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04		
Chlorobenzene	ug/g	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05		
Ethylbenzene	ug/g	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05		

Certified By:

NPopukolof

AGAT WORK ORDER: 24Z110204 PROJECT: OTT-22019409-A0 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: EXP SERVICES INC

SAMPLING SITE:

ATTENTION TO: Mark McCalla SAMPLED BY:Philip Oliveira

O. Reg. 153(511) - VOCs (with PHC) (Soil)

DATE RECEIVED: 2024-01-10							Ι	DATE REPORTED	: 2024-01-18
	S	AMPLE DESCRIPTION: SAMPLE TYPE:	MW5 Soil	MW6 Soil	MW7 Soil	BH1 Soil	BH2 Soil	BH3 Soil	
Parameter	Unit	DATE SAMPLED:	2024-01-09 10:00 5579523	2024-01-09 12:00 5579534	2024-01-09 13:30 5579535	2024-01-09 14:30 5579537	2024-01-09 14:45 5579538	2024-01-09 15:00 5579539	
m & p-Xylene		0.05	< 0.05	<0.05	< 0.05	< 0.05	< 0.05	<0.05	
Bromoform	ug/g	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
	ug/g								
Styrene	ug/g	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
1,1,2,2-Tetrachloroethane	ug/g	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
o-Xylene	ug/g	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.05	
1,3-Dichlorobenzene	ug/g	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	
1,4-Dichlorobenzene	ug/g	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	
1,2-Dichlorobenzene	ug/g	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	
Xylenes (Total)	ug/g	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	
1,3-Dichloropropene (Cis + Trans)	μg/g	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	
n-Hexane	μg/g	0.05	< 0.05	<0.05	< 0.05	< 0.05	< 0.05	<0.05	
Moisture Content	%	0.1	14.8	9.4	5.1	5.4	12.6	7.0	
Surrogate	Unit	Acceptable Limits							
Toluene-d8	% Recovery	50-140	102	99	103	101	101	106	
4-Bromofluorobenzene	% Recovery	50-140	80	83	80	78	78	78	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

5579523-5579539 The sample was analyzed using the high level technique. The sample was extracted using methanol, a small amount of the methanol extract was diluted in water and the purge & trap GC/MS analysis was performed. Results are based on the dry weight of the soil.

Xylenes total is a calculated parameter. The calculated value is the sum of m&p-Xylene + o-Xylene.

1,3-Dichloropropene total is a calculated parameter. The calculated value is the sum of Cis-1,3-Dichloropropene and Trans-1,3-Dichloropropene.

The calculated parameters are non-accredited. The parameters that are components of the calculation are accredited.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

Quality Assurance

CLIENT NAME: EXP SERVICES INC PROJECT: OTT-22019409-A0

SAMDI ING SITE.

AGAT WORK ORDER: 24Z110204
ATTENTION TO: Mark McCalla
SAMPLED BY:Philip Oliveira

SAMPLING SITE:				SAMP	LED B	Y:Philip	Olive	ıra											
				Soi	I Ana	alysis	8												
RPT Date: Jan 18, 2024				UPLICAT	E		REFEREI	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MATRIX SPIKE						
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured Value		ptable nits	Recovery		ptable nits	Recovery		ptable nits				
		lu lu	-	-			value	Lower	Upper		Lower	Upper		Lower	Upper				
O. Reg. 153(511) - Metals (Inclu	ıding Hydride	es) (Soil)																	
Antimony	5579523	5579523	<0.8	<0.8	NA	< 0.8	132%	70%	130%	86%	80%	120%	76%	70%	130%				
Arsenic	5579523	5579523	6	5	18.2%	< 1	116%	70%	130%	109%	80%	120%	122%	70%	130%				
Barium	5579523	5579523	73.6	70.3	4.6%	< 2.0	102%	70%	130%	99%	80%	120%	114%	70%	130%				
Beryllium	5579523	5579523	< 0.5	< 0.5	NA	< 0.5	102%	70%	130%	113%	80%	120%	107%	70%	130%				
Boron	5579523	5579523	5	<5	NA	< 5	74%	70%	130%	103%	80%	120%	92%	70%	130%				
Cadmium	5579523	5579523	<0.5	<0.5	NA	< 0.5	118%	70%	130%	100%	80%	120%	118%	70%	130%				
Chromium	5579523	5579523	17	15	NA	< 5	96%	70%	130%	107%	80%	120%	120%	70%	130%				
Cobalt	5579523	5579523	5.5	5.0	9.5%	< 0.8	101%	70%	130%	109%	80%	120%	121%	70%	130%				
Copper	5579523	5579523	13.6	12.2	10.9%	< 1.0	90%	70%	130%	105%	80%	120%	101%	70%	130%				
Lead	5579523	5579523	58	52	10.9%	< 1	107%	70%	130%	100%	80%	120%	91%	70%	130%				
Molybdenum	5579523	5579523	1.1	1.0	NA	< 0.5	109%	70%	130%	108%	80%	120%	125%	70%	130%				
Nickel	5579523	5579523	12	11	8.7%	< 1	103%	70%	130%	108%	80%	120%	115%	70%	130%				
Selenium	5579523	5579523	<0.8	<0.8	NA	< 0.8	112%	70%	130%	113%	80%	120%	122%	70%	130%				
Silver	5579523	5579523	< 0.5	<0.5	NA	< 0.5	124%	70%	130%	102%	80%	120%	109%	70%	130%				
Thallium	5579523	5579523	<0.5	<0.5	NA	< 0.5	95%	70%	130%	102%	80%	120%	129%	70%	130%				
Uranium	5579523	5579523	0.63	0.58	NA	< 0.50	117%	70%	130%	107%	80%	120%	123%	70%	130%				
Vanadium	5579523	5579523	20.2	18.6	8.2%	< 2.0	96%	70%	130%	108%	80%	120%	118%	70%	130%				
Zinc	5579523	5579523	78	71	9.4%	< 5	100%	70%	130%	108%	80%	120%	103%	70%	130%				

Comments: NA Signifies Not Applicable.

Duplicate NA: results are under 5X the RDL and will not be calculated.

More than 90% of the elements met acceptance limits and overall data quality is acceptable for use. For a multi-element scan up to 10% of analytes may exceed the quoted limits by up to 10% absolute.

O. Reg. 153(511) - ORPs (Soil)

Electrical Conductivity (2:1)	5579523 5579523	0.278	0.236	16.3%	< 0.005	109%	80%	120%
pH, 2:1 CaCl2 Extraction	5580818	7.75	7.68	0.9%	NA	102%	80%	120%
Sodium Adsorption Ratio (2:1) (Calc.)	5579523 5579523	1.52	1.33	13.3%	NA			

Comments: NA signifies Not Applicable.

pH duplicates QA acceptance criteria was met relative as stated in Table 5-15 of Analytical Protocol document.

Certified By:

AGAT QUALITY ASSURANCE REPORT (V1)

Page 8 of 16

Quality Assurance

CLIENT NAME: EXP SERVICES INC PROJECT: OTT-22019409-A0

SAMPLING SITE:

AGAT WORK ORDER: 24Z110204
ATTENTION TO: Mark McCalla
SAMPLED BY:Philip Oliveira

			Trac	e Or	gani	cs Ar	nalys	is							
RPT Date: Jan 18, 2024				UPLICAT	E		REFERE	NCE MA	TERIAL	METHOD	BLANK	SPIKE	МАТ	RIX SPI	KE
PARAMETER	Batch	Sample Id	Dup #1	Dup #2	RPD	Method Blank	Measured Value		eptable mits	Recovery	1 1 10	ptable nits	Recovery	1 1 10	ptable mits
		I.G					Value	Lower	Upper		Lower	Upper		Lower	Upper
O. Reg. 153(511) - PHCs F1 - F	4 (with PAHs a	nd VOC)	(Soil)												
F1 (C6 to C10)	5579539 5	579539	<5	<5	NA	< 5	128%	60%	140%	112%	60%	140%	90%	60%	140%
F2 (C10 to C16)	5580657		< 10	< 10	NA	< 10	122%	60%	140%	87%	60%	140%	83%	60%	140%
F3 (C16 to C34)	5580657		< 50	< 50	NA	< 50	117%	60%	140%	100%	60%	140%	112%	60%	140%
F4 (C34 to C50)	5580657		< 50	< 50	NA	< 50	67%	60%	140%	89%	60%	140%	98%	60%	140%
O. Reg. 153(511) - VOCs (with	PHC) (Soil)														
Dichlorodifluoromethane	5579539 5	579539	< 0.05	< 0.05	NA	< 0.05	118%	50%	140%	109%	50%	140%	79%	50%	140%
Vinyl Chloride	5579539 5	579539	< 0.02	< 0.02	NA	< 0.02	104%	50%	140%	104%	50%	140%	117%	50%	140%
Bromomethane	5579539 5	579539	< 0.05	< 0.05	NA	< 0.05	100%	50%	140%	105%	50%	140%	95%	50%	140%
Trichlorofluoromethane	5579539 5	579539	< 0.05	< 0.05	NA	< 0.05	100%	50%	140%	104%	50%	140%	93%	50%	140%
Acetone	5579539 5	579539	<0.50	<0.50	NA	< 0.50	103%	50%	140%	107%	50%	140%	81%	50%	140%
1,1-Dichloroethylene	5579539 5	579539	<0.05	< 0.05	NA	< 0.05	91%	50%	140%	95%	60%	130%	89%	50%	140%
Methylene Chloride	5579539 5	579539	< 0.05	< 0.05	NA	< 0.05	102%	50%	140%	105%	60%	130%	106%	50%	140%
Trans- 1,2-Dichloroethylene	5579539 5	579539	< 0.05	< 0.05	NA	< 0.05	94%	50%	140%	99%	60%	130%	116%	50%	140%
Methyl tert-butyl Ether	5579539 5	579539	< 0.05	< 0.05	NA	< 0.05	71%	50%	140%	63%	60%	130%	102%	50%	140%
1,1-Dichloroethane	5579539 5	579539	<0.02	< 0.02	NA	< 0.02	99%	50%	140%	77%	60%	130%	70%	50%	140%
Methyl Ethyl Ketone	5579539 5	579539	<0.50	<0.50	NA	< 0.50	99%	50%	140%	104%	50%	140%	95%	50%	140%
Cis- 1,2-Dichloroethylene	5579539 5		<0.02	<0.02	NA	< 0.02	95%	50%		79%	60%	130%	75%	50%	140%
Chloroform	5579539 5		<0.04	<0.04	NA	< 0.04	93%	50%	140%	84%	60%	130%	75%	50%	140%
1,2-Dichloroethane	5579539 5		< 0.03	< 0.03	NA	< 0.03	97%	50%	140%	99%	60%	130%	100%	50%	140%
1,1,1-Trichloroethane	5579539 5		<0.05	< 0.05	NA	< 0.05	100%	50%	140%	95%	60%	130%	81%	50%	140%
Carbon Tetrachloride	5579539 5	579539	<0.05	<0.05	NA	< 0.05	92%	50%	140%	87%	60%	130%	78%	50%	140%
Benzene	5579539 5		<0.02	<0.02	NA	< 0.02	101%	50%		89%	60%	130%	84%	50%	140%
1,2-Dichloropropane	5579539 5		< 0.03	< 0.03	NA	< 0.03	104%	50%		86%	60%	130%	78%	50%	140%
Trichloroethylene	5579539 5		< 0.03	< 0.03	NA	< 0.03	95%	50%	140%	85%	60%	130%	80%	50%	140%
Bromodichloromethane	5579539 5	579539	<0.05	< 0.05	NA	< 0.05	93%	50%	140%	84%	60%	130%	75%	50%	140%
Methyl Isobutyl Ketone	5579539 5	579539	<0.50	<0.50	NA	< 0.50	99%	50%	140%	100%	50%	140%	78%	50%	140%
1,1,2-Trichloroethane	5579539 5		<0.04	<0.04	NA	< 0.04	92%	50%	140%	75%	60%	130%	86%	50%	140%
Toluene	5579539 5		< 0.05	< 0.05	NA	< 0.05	105%	50%	140%	97%	60%	130%	89%	50%	140%
Dibromochloromethane	5579539 5	579539	< 0.05	< 0.05	NA	< 0.05	97%		140%	105%		130%	89%		140%
Ethylene Dibromide	5579539 5		<0.04	<0.04	NA	< 0.04	94%	50%	140%	106%	60%	130%	73%	50%	140%
Tetrachloroethylene	5579539 5	579539	<0.05	<0.05	NA	< 0.05	104%	50%	140%	97%	60%	130%	89%	50%	140%
1,1,1,2-Tetrachloroethane	5579539 5		<0.03	<0.03	NA	< 0.03	86%		140%	72%		130%	84%	50%	140%
Chlorobenzene	5579539 5		<0.05	<0.05	NA	< 0.05	96%		140%	90%		130%	88%		140%
Ethylbenzene	5579539 5		<0.05	<0.05	NA	< 0.05	101%		140%	105%		130%	82%		140%
m & p-Xylene	5579539 5		<0.05	<0.05	NA	< 0.05	102%		140%	107%		130%	82%		140%
Bromoform	5579539 5	579539	<0.05	<0.05	NA	< 0.05	84%	50%	140%	80%	60%	130%	86%	50%	140%
Styrene	5579539 5		<0.05	< 0.05	NA	< 0.05	97%		140%	96%		130%	68%		140%
1,1,2,2-Tetrachloroethane	5579539 5		<0.05	< 0.05	NA	< 0.05	94%		140%	96%		130%	83%		140%
o-Xylene	5579539 5		<0.05	< 0.05	NA	< 0.05	105%		140%	91%		130%	81%		140%

AGAT QUALITY ASSURANCE REPORT (V1)

Page 9 of 16

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Quality Assurance

CLIENT NAME: EXP SERVICES INC
PROJECT: OTT-22019409-A0
SAMPLING SITE:

AGAT WORK ORDER: 24Z110204
ATTENTION TO: Mark McCalla
SAMPLED BY:Philip Oliveira

57 tim 2110 51121								- 7 (1011		1 .1 11111P	Onve				
Trace Organics Analysis (Continued)															
RPT Date: Jan 18, 2024	RPT Date: Jan 18, 2024			DUPLICATE F			REFERENCE MATERIAL			METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample Id	Dup #1	Dup #2	RPD	Method Blank	Measured Value		ptable nits	Recovery	1 :	ptable nits	Recovery		ptable nits
							Value	Lower	Upper		Lower	Upper		Lower	Upper
1,3-Dichlorobenzene	5579539 5	5579539	<0.05	<0.05	NA	< 0.05	91%	50%	140%	105%	60%	130%	83%	50%	140%
1,4-Dichlorobenzene	5579539 5	5579539	<0.05	< 0.05	NA	< 0.05	90%	50%	140%	106%	60%	130%	86%	50%	140%
1,2-Dichlorobenzene	5579539 5	5579539	< 0.05	< 0.05	NA	< 0.05	87%	50%	140%	104%	60%	130%	81%	50%	140%
n-Hexane	5579539 \$	5579539	<0.05	<0.05	NA	< 0.05	62%	50%	140%	78%	60%	130%	97%	50%	140%
O. Reg. 153(511) - PAHs (Soil)															
Naphthalene	5580533		< 0.05	< 0.05	NA	< 0.05	67%	50%	140%	80%	50%	140%	60%	50%	140%
Acenaphthylene	5580533		< 0.05	< 0.05	NA	< 0.05	97%	50%	140%	85%	50%	140%	78%	50%	140%
Acenaphthene	5580533		< 0.05	< 0.05	NA	< 0.05	108%	50%	140%	93%	50%	140%	73%	50%	140%
Fluorene	5580533		< 0.05	< 0.05	NA	< 0.05	115%	50%	140%	98%	50%	140%	75%	50%	140%
Phenanthrene	5580533		<0.05	<0.05	NA	< 0.05	111%	50%	140%	90%	50%	140%	88%	50%	140%
Anthracene	5580533		<0.05	<0.05	NA	< 0.05	112%	50%	140%	93%	50%	140%	78%	50%	140%
Fluoranthene	5580533		< 0.05	< 0.05	NA	< 0.05	110%	50%	140%	75%	50%	140%	88%	50%	140%
Pyrene	5580533		< 0.05	< 0.05	NA	< 0.05	105%	50%	140%	80%	50%	140%	73%	50%	140%
Benz(a)anthracene	5580533		< 0.05	< 0.05	NA	< 0.05	101%	50%	140%	80%	50%	140%	73%	50%	140%
Chrysene	5580533		<0.05	<0.05	NA	< 0.05	111%	50%	140%	90%	50%	140%	80%	50%	140%
Benzo(b)fluoranthene	5580533		<0.05	<0.05	NA	< 0.05	75%	50%	140%	78%	50%	140%	78%	50%	140%
Benzo(k)fluoranthene	5580533		< 0.05	< 0.05	NA	< 0.05	77%	50%	140%	95%	50%	140%	73%	50%	140%
Benzo(a)pyrene	5580533		< 0.05	< 0.05	NA	< 0.05	112%	50%	140%	93%	50%	140%	93%	50%	140%
Indeno(1,2,3-cd)pyrene	5580533		< 0.05	< 0.05	NA	< 0.05	68%	50%	140%	73%	50%	140%	93%	50%	140%
Dibenz(a,h)anthracene	5580533		<0.05	<0.05	NA	< 0.05	71%	50%	140%	85%	50%	140%	73%	50%	140%
Benzo(g,h,i)perylene	5580533		<0.05	<0.05	NA	< 0.05	75%	50%	140%	110%	50%	140%	90%	50%	140%

Comments: When the average of the sample and duplicate results is less than 5x the RDL, the Relative Percent Difference (RPD) will be indicated as Not Applicable (NA).

Certified By:

QC Exceedance

CLIENT NAME: EXP SERVICES INC

PROJECT: OTT-22019409-A0

AGAT WORK ORDER: 24Z110204

ATTENTION TO: Mark McCalla

RPT Date: Jan 18, 2024		REFERENC	E MATER	IAL	METHOD	BLANK	SPIKE	MAT	RIX SPII	KE
PARAMETER	Sample Id	Measured	Accepta Limit	te	Recovery	Acceptable Limits		Recovery	Acceptable Limits	
		Value	Lower	Jpper	,		Upper	,		Upper

O. Reg. 153(511) - Metals (Including Hydrides) (Soil)

Antimony 5579523 132% 70% 130% 86% 80% 120% 76% 70% 130%

Comments: NA Signifies Not Applicable.

Duplicate NA: results are under 5X the RDL and will not be calculated.

More than 90% of the elements met acceptance limits and overall data quality is acceptable for use. For a multi-element scan up to 10% of analytes may exceed the quoted limits by up to 10% absolute.

Method Summary

CLIENT NAME: EXP SERVICES INC PROJECT: OTT-22019409-A0

SAMPLING SITE:

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Soil Analysis	-		
Antimony	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Arsenic	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Barium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Beryllium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Boron	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Cadmium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Chromium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Cobalt	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Copper	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Lead	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Molybdenum	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Nickel	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Selenium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Silver	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Thallium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Uranium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Vanadium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Zinc	MET 93 -6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Electrical Conductivity (2:1)	INOR-93-6075	modified from MSA PART 3, CH 14 and SM 2510 B	PC TITRATE
pH, 2:1 CaCl2 Extraction	INOR-93-6075	modified from EPA 9045D, MCKEAGUE 3.11 E3137	PC TITRATE
Sodium Adsorption Ratio (2:1) (Calc.)	INOR-93-6007	modified from EPA 6010D & Analytical Protocol	ICP/OES

Method Summary

CLIENT NAME: EXP SERVICES INC PROJECT: OTT-22019409-A0

SAMPLING SITE:

PARAMETER AGAT S.O.P LITERATURE REFERENCE ANALYTICAL TEC Trace Organics Analysis modified from EPA 3570 and EPA 8270E GC/MS Acenaphthylene ORG-91-5106 modified from EPA 3570 and EPA 8270E GC/MS Acenaphthene ORG-91-5106 modified from EPA 3570 and EPA 8270E GC/MS Fluorene ORG-91-5106 modified from EPA 3570 and EPA 8270E GC/MS Phenanthrene ORG-91-5106 modified from EPA 3570 and EPA 8270E GC/MS Anthracene ORG-91-5106 modified from EPA 3570 and EPA 8270E GC/MS Fluoranthene ORG-91-5106 modified from EPA 3570 and EPA 8270E GC/MS Pyrene ORG-91-5106 modified from EPA 3570 and EPA 8270E GC/MS Benz(a)anthracene ORG-91-5106 modified from EPA 3570 and EPA 8270E GC/MS Chrysene ORG-91-5106 modified from EPA 3570 and EPA 8270E GC/MS Benzo(b)fluoranthene ORG-91-5106 modified from EPA 3570 and EPA 8270E GC/MS Benzo(k)fluoranthene ORG-91-5106 modified from EPA 3570 and EPA 8270E GC/MS Benzo(a)pyrene <t< th=""><th>HNIQUE</th></t<>	HNIQUE
Naphthalene ORG-91-5106 modified from EPA 3570 and EPA across acro	
Naphthalene ORG-91-5106 8270E GC/MS Acenaphthylene ORG-91-5106 modified from EPA 3570 and EPA 8270E GC/MS Acenaphthene ORG-91-5106 modified from EPA 3570 and EPA 8270E GC/MS Fluorene ORG-91-5106 modified from EPA 3570 and EPA 8270E GC/MS Phenanthrene ORG-91-5106 modified from EPA 3570 and EPA 8270E GC/MS Anthracene ORG-91-5106 modified from EPA 3570 and EPA 8270E GC/MS Fluoranthene ORG-91-5106 modified from EPA 3570 and EPA 8270E GC/MS Pyrene ORG-91-5106 modified from EPA 3570 and EPA 8270E GC/MS Benz(a)anthracene ORG-91-5106 modified from EPA 3570 and EPA 8270E GC/MS Chrysene ORG-91-5106 modified from EPA 3570 and EPA 8270E GC/MS Benzo(b)filuoranthene ORG-91-5106 modified from EPA 3570 and EPA 8270E GC/MS Benzo(k)fluoranthene ORG-91-5106 modified from EPA 3570 and EPA 62/MS GC/MS Benzo(k)fluoranthene ORG-91-5106 modified from EPA 3570 and EPA 62/MS GC/MS Benzo(a)pyrene	
Acenaphthene ORG-91-5106 8270E GC/MS Acenaphthene ORG-91-5106 8270E GC/MS Fluorene ORG-91-5106 8270E GC/MS Fluorene ORG-91-5106 8270E GC/MS Phenanthrene ORG-91-5106 8270E GC/MS Phenanthrene ORG-91-5106 8270E GC/MS Anthracene ORG-91-5106 8270E GC/MS Anthracene ORG-91-5106 8270E GC/MS Fluoranthene ORG-91-5106 8270E GC/MS Fluoranthene ORG-91-5106 8270E GC/MS Pyrene ORG-91-5106 8270E GC/MS Benz(a)anthracene ORG-91-5106 8270E GC/MS Benz(a)anthracene ORG-91-5106 8270E GC/MS Benz(b)fluoranthene ORG-91-5106 8270E GC/MS Benzo(b)fluoranthene ORG-91-5106 8270E GC/MS Benzo(b)fluoranthene ORG-91-5106 8270E GC/MS Benzo(b)fluoranthene ORG-91-5106 8270E GC/MS Benzo(b)fluoranthene ORG-91-5106 8270E GC/MS Benzo(a)pyrene ORG-91-5106 Modified from EPA 3570 and EPA GC/MS Benzo(a)pyrene ORG-91-5106 Modified from EPA 3570 and EPA GC/MS Benzo(a)pyrene ORG-91-5106 Modified from EPA 3570 and EPA GC/MS Benzo(a)pyrene ORG-91-5106 Modified from EPA 3570 and EPA GC/MS Benzo(a)pyrene ORG-91-5106 Modified from EPA 3570 and EPA GC/MS Benzo(a)pyrene ORG-91-5106 Modified from EPA 3570 and EPA GC/MS Benzo(a)pyrene ORG-91-5106 Modified from EPA 3570 and EPA GC/MS Benzo(a)pyrene ORG-91-5106 Modified from EPA 3570 and EPA GC/MS Benzo(a)pyrene ORG-91-5106 Modified from EPA 3570 and EPA GC/MS Benzo(a)pyrene ORG-91-5106 Modified from EPA 3570 and EPA GC/MS Benzo(b)pyrene ORG-91-5106 Modified from EPA 3570 and EPA GC/MS Benzo(b)pyrene ORG-91-5106 Modified from EPA 3570 and EPA GC/MS Benzo(b)pyrene ORG-91-5106 Modified from EPA 3570 and EPA GC/MS Benzo(b)pyrene ORG-91-5106 Modified from EPA 3570 and EPA GC/MS Benzo(b)pyrene ORG-91-5106 Modified from EPA 3570 and EPA GC/MS Benzo(b)pyrene ORG-91-5106 Modified from EPA 3570 and EPA GC/MS Benzo(b)pyrene ORG-91-5106 Modified from EPA 3570 and EPA GC/MS	
Fluorene	
Phenanthrene ORG-91-5106 8270E GC/MS Phenanthrene ORG-91-5106 modified from EPA 3570 and EPA 8270E Anthracene ORG-91-5106 modified from EPA 3570 and EPA 8270E Fluoranthene ORG-91-5106 modified from EPA 3570 and EPA 8270E Pyrene ORG-91-5106 modified from EPA 3570 and EPA 8270E Benz(a)anthracene ORG-91-5106 modified from EPA 3570 and EPA 8270E Chrysene ORG-91-5106 modified from EPA 3570 and EPA 8270E Benzo(b)fluoranthene ORG-91-5106 modified from EPA 3570 and EPA 8270E Benzo(b)fluoranthene ORG-91-5106 modified from EPA 3570 and EPA 8270E Benzo(k)fluoranthene ORG-91-5106 modified from EPA 3570 and EPA 8270E Benzo(a)pyrene ORG-91-5106 modified from EPA 3570 and EPA 8270E Benzo(a)pyrene ORG-91-5106 modified from EPA 3570 and EPA 8270E Dibenz(a,h)anthracene ORG-91-5106 modified from EPA 3570 and EPA 8270E Dibenz(a,h)anthracene ORG-91-5106 modified from EPA 3570 and EPA 8270E Benzo(g,h,i)perylene ORG-91-5106 modified from EPA 3570 and EPA GC/MS Benzo(g,h,i)perylene ORG-91-5106 modified from EPA 3570 and EPA GC/MS Benzo(g,h,i)perylene ORG-91-5106 modified from EPA 3570 and EPA GC/MS Benzo(g,h,i)perylene ORG-91-5106 modified from EPA 3570 and EPA GC/MS Benzo(g,h,i)perylene ORG-91-5106 modified from EPA 3570 and EPA GC/MS Benzo(g,h,i)perylene ORG-91-5106 modified from EPA 3570 and EPA GC/MS Benzo(g,h,i)perylene ORG-91-5106 modified from EPA 3570 and EPA GC/MS Benzo(g,h,i)perylene ORG-91-5106 modified from EPA 3570 and EPA GC/MS Benzo(g,h,i)perylene ORG-91-5106 modified from EPA 3570 and EPA GC/MS Benzo(g,h,i)perylene ORG-91-5106 modified from EPA 3570 and EPA GC/MS Benzo(g,h,i)perylene ORG-91-5106 modified from EPA 3570 and EPA GC/MS Benzo(g,h,i)perylene ORG-91-5106 modified from EPA 3570 and EPA GC/MS Benzo(g,h,i)perylene ORG-91-5106 modified from EPA 3570 and EPA GC/MS	
Anthracene ORG-91-5106 8270E GC/MS Anthracene ORG-91-5106 modified from EPA 3570 and EPA 8270E Fluoranthene ORG-91-5106 modified from EPA 3570 and EPA 8270E Pyrene ORG-91-5106 modified from EPA 3570 and EPA 8270E Benz(a) anthracene ORG-91-5106 modified from EPA 3570 and EPA 8270E Chrysene ORG-91-5106 modified from EPA 3570 and EPA 8270E Benzo(b) fluoranthene ORG-91-5106 modified from EPA 3570 and EPA 8270E Benzo(k) fluoranthene ORG-91-5106 modified from EPA 3570 and EPA 8270E Benzo(a) pyrene ORG-91-5106 modified from EPA 3570 and EPA 8270E Benzo(a) pyrene ORG-91-5106 modified from EPA 3570 and EPA 8270E Indeno(1,2,3-cd) pyrene ORG-91-5106 modified from EPA 3570 and EPA 8270E Dibenz(a,h) anthracene ORG-91-5106 modified from EPA 3570 and EPA 8270E Benzo(g,h,i) perylene ORG-91-5106 modified from EPA 3570 and EPA 8270E Benzo(g,h,i) perylene ORG-91-5106 modified from EPA 3570 and EPA 8270E Benzo(g,h,i) perylene ORG-91-5106 modified from EPA 3570 and EPA 8270E Benzo(g,h,i) perylene ORG-91-5106 modified from EPA 3570 and EPA 8270E Benzo(g,h,i) perylene ORG-91-5106 modified from EPA 3570 and EPA 8270E Benzo(g,h,i) perylene ORG-91-5106 modified from EPA 3570 and EPA 8270E Benzo(g,h,i) perylene ORG-91-5106 modified from EPA 3570 and EPA 8270E Benzo(g,h,i) perylene ORG-91-5106 modified from EPA 3570 and EPA 8270E Benzo(g,h,i) perylene ORG-91-5106 modified from EPA 3570 and EPA 8270E Benzo(g,h,i) perylene ORG-91-5106 modified from EPA 3570 and EPA 8270E	
### Price	
Pyrene ORG-91-5106 8270E GC/MS Pyrene ORG-91-5106 modified from EPA 3570 and EPA 8270E GC/MS Benz(a)anthracene ORG-91-5106 modified from EPA 3570 and EPA 8270E GC/MS Chrysene ORG-91-5106 modified from EPA 3570 and EPA 8270E GC/MS Benzo(b)fluoranthene ORG-91-5106 modified from EPA 3570 and EPA 8270E GC/MS Benzo(k)fluoranthene ORG-91-5106 modified from EPA 3570 and EPA 8270E GC/MS Benzo(a)pyrene ORG-91-5106 modified from EPA 3570 and EPA 8270E GC/MS Indeno(1,2,3-cd)pyrene ORG-91-5106 modified from EPA 3570 and EPA 8270E GC/MS Dibenz(a,h)anthracene ORG-91-5106 modified from EPA 3570 and EPA 8270E GC/MS Benzo(g,h,i)perylene ORG-91-5106 modified from EPA 3570 and EPA 8270E GC/MS 1 and 2 Methlynaphthalene ORG-91-5106 modified from EPA 3570 and EPA 8270E GC/MS Naphthalene-d8 ORG-91-5106 modified from EPA 3570 and EPA 8270E GC/MS	
Pyrene ORG-91-5106 8270E GC/MS Benz(a)anthracene ORG-91-5106 modified from EPA 3570 and EPA 8270E GC/MS Chrysene ORG-91-5106 modified from EPA 3570 and EPA 8270E GC/MS Benzo(b)fluoranthene ORG-91-5106 modified from EPA 3570 and EPA 8270E GC/MS Benzo(k)fluoranthene ORG-91-5106 modified from EPA 3570 and EPA 8270E GC/MS Benzo(a)pyrene ORG-91-5106 modified from EPA 3570 and EPA 8270E GC/MS Indeno(1,2,3-cd)pyrene ORG-91-5106 modified from EPA 3570 and EPA 8270E GC/MS Dibenz(a,h)anthracene ORG-91-5106 modified from EPA 3570 and EPA 8270E GC/MS Benzo(g,h,i)perylene ORG-91-5106 modified from EPA 3570 and EPA 8270E GC/MS 1 and 2 Methlynaphthalene ORG-91-5106 modified from EPA 3570 and EPA 8270E GC/MS Naphthalene-d8 ORG-91-5106 modified from EPA 3570 and EPA 8270E GC/MS	
Benz(a) anthracene ORG-91-5106 8270E GC/MS Chrysene ORG-91-5106 modified from EPA 3570 and EPA 8270E GC/MS Benzo(b) fluoranthene ORG-91-5106 modified from EPA 3570 and EPA 8270E GC/MS Benzo(k) fluoranthene ORG-91-5106 modified from EPA 3570 and EPA 8270E GC/MS Benzo(a) pyrene ORG-91-5106 modified from EPA 3570 and EPA 8270E GC/MS Indeno(1,2,3-cd) pyrene ORG-91-5106 modified from EPA 3570 and EPA 8270E GC/MS Dibenz(a,h) anthracene ORG-91-5106 modified from EPA 3570 and EPA 8270E GC/MS Benzo(g,h,i) perylene ORG-91-5106 modified from EPA 3570 and EPA 8270E GC/MS 1 and 2 Methlynaphthalene ORG-91-5106 modified from EPA 3570 and EPA 8270E GC/MS Naphthalene-d8 ORG-91-5106 modified from EPA 3570 and EPA 8270E GC/MS	
Benzo(b)fluoranthene ORG-91-5106 8270E modified from EPA 3570 and EPA GC/MS Benzo(k)fluoranthene ORG-91-5106 modified from EPA 3570 and EPA GC/MS Benzo(a)pyrene ORG-91-5106 modified from EPA 3570 and EPA GC/MS Indeno(1,2,3-cd)pyrene ORG-91-5106 modified from EPA 3570 and EPA GC/MS Dibenz(a,h)anthracene ORG-91-5106 modified from EPA 3570 and EPA GC/MS Benzo(g,h,i)perylene ORG-91-5106 modified from EPA 3570 and EPA GC/MS I and 2 Methlynaphthalene ORG-91-5106 modified from EPA 3570 and EPA GC/MS Naphthalene-d8 ORG-91-5106 modified from EPA 3570 and EPA GC/MS Recommendation of the part	
Benzo(k)fluoranthene ORG-91-5106 8270E GC/MS Benzo(k)fluoranthene ORG-91-5106 modified from EPA 3570 and EPA 8270E Benzo(a)pyrene ORG-91-5106 modified from EPA 3570 and EPA 8270E modified from EPA 3570 and EPA 8270E Indeno(1,2,3-cd)pyrene ORG-91-5106 modified from EPA 3570 and EPA 8270E	
Benzo(a)pyrene ORG-91-5106 8270E GC/MS Benzo(a)pyrene ORG-91-5106 modified from EPA 3570 and EPA 8270E Indeno(1,2,3-cd)pyrene ORG-91-5106 modified from EPA 3570 and EPA 8270E Dibenz(a,h)anthracene ORG-91-5106 modified from EPA 3570 and EPA 8270E Benzo(g,h,i)perylene ORG-91-5106 modified from EPA 3570 and EPA 8270E Benzo(g,h,i)perylene ORG-91-5106 modified from EPA 3570 and EPA 8270E 1 and 2 Methlynaphthalene ORG-91-5106 modified from EPA 3570 and EPA 8270E Naphthalene-d8 ORG-91-5106 modified from EPA 3570 and EPA 8270E Maphthalene-d8 ORG-91-5106 modified from EPA 3570 and EPA 8270E GC/MS	
Benzo(a)pyrene ORG-91-5106 8270E GC/MS Indeno(1,2,3-cd)pyrene ORG-91-5106 modified from EPA 3570 and EPA 8270E GC/MS Dibenz(a,h)anthracene ORG-91-5106 modified from EPA 3570 and EPA 8270E GC/MS Benzo(g,h,i)perylene ORG-91-5106 modified from EPA 3570 and EPA 8270E GC/MS 1 and 2 Methlynaphthalene ORG-91-5106 modified from EPA 3570 and EPA 8270E GC/MS Naphthalene-d8 ORG-91-5106 modified from EPA 3570 and EPA 8270E GC/MS	
Dibenz(a,h)anthracene ORG-91-5106 8270E GC/MS Benzo(g,h,i)perylene ORG-91-5106 modified from EPA 3570 and EPA 8270E GC/MS 1 and 2 Methlynaphthalene ORG-91-5106 modified from EPA 3570 and EPA 8270E GC/MS Naphthalene-d8 ORG-91-5106 modified from EPA 3570 and EPA 8270E GC/MS	
Benzo(g,h,i)perylene ORG-91-5106 8270E modified from EPA 3570 and EPA 8270E GC/MS 1 and 2 Methlynaphthalene ORG-91-5106 modified from EPA 3570 and EPA 8270E GC/MS Naphthalene-d8 ORG-91-5106 modified from EPA 3570 and EPA 8270E GC/MS	
Benzo(g,n,i)perylene ORG-91-5106 8270E GC/MS 1 and 2 Methlynaphthalene ORG-91-5106 modified from EPA 3570 and EPA 8270E GC/MS Naphthalene-d8 ORG-91-5106 modified from EPA 3570 and EPA 8270E GC/MS	
Naphthalene-d8 ORG-91-5106 8270E modified from EPA 3570 and EPA 8270E	
Naphthalene-d8 ORG-91-5106 8270E	
Acridine-d9 ORG-91-5106 modified from EPA 3570 and EPA 8270E GC/MS	
Terphenyl-d14 ORG-91-5106 modified from EPA 3570 and EPA 8270E GC/MS	
Moisture Content VOL-91-5009 modified from CCME Tier 1 Method BALANCE	
F1 (C6 to C10) VOL-91-5009 modified from CCME Tier 1 Method (P&T)GC/FID	
F1 (C6 to C10) minus BTEX VOL-91-5009 modified from CCME Tier 1 Method P&T GC/FID	
Toluene-d8 VOL-91- 5001 modified from EPA 5030B & EPA 8260D (P&T)GC/MS	
F2 (C10 to C16) VOL-91-5009 modified from CCME Tier 1 Method GC/FID	
F2 (C10 to C16) minus Naphthalene VOL-91-5009 modified from CCME Tier 1 Method GC/FID	
F3 (C16 to C34) VOL-91-5009 modified from CCME Tier 1 Method GC/FID	
F3 (C16 to C34) minus PAHs VOL-91-5009 modified from CCME Tier 1 Method GC/FID	
F4 (C34 to C50) VOL-91-5009 modified from CCME Tier 1 Method GC/FID	
Gravimetric Heavy Hydrocarbons VOL-91-5009 modified from CCME Tier 1 Method BALANCE	
Terphenyl VOL-91-5009 modified from CCME Tier 1 Method GC/FID	
Dichlorodifluoromethane VOL-91-5002 modified from EPA 5035A and EPA 8260D (P&T)GC/MS	

Method Summary

CLIENT NAME: EXP SERVICES INC PROJECT: OTT-22019409-A0

SAMPLING SITE:

DADAMETED	4047000	LITERATURE REFERENCE	<u> </u>
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Vinyl Chloride	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Bromomethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Trichlorofluoromethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Acetone	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,1-Dichloroethylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Methylene Chloride	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Trans- 1,2-Dichloroethylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Methyl tert-butyl Ether	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,1-Dichloroethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Methyl Ethyl Ketone	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Cis- 1,2-Dichloroethylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Chloroform	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,2-Dichloroethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,1,1-Trichloroethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Carbon Tetrachloride	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Benzene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,2-Dichloropropane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Trichloroethylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Bromodichloromethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Methyl Isobutyl Ketone	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,1,2-Trichloroethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Toluene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Dibromochloromethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Ethylene Dibromide	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Tetrachloroethylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,1,1,2-Tetrachloroethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Chlorobenzene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Ethylbenzene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS

Method Summary

CLIENT NAME: EXP SERVICES INC PROJECT: OTT-22019409-A0

SAMPLING SITE:

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
m & p-Xylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Bromoform	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Styrene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,1,2,2-Tetrachloroethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
o-Xylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,3-Dichlorobenzene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,4-Dichlorobenzene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,2-Dichlorobenzene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Xylenes (Total)	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,3-Dichloropropene (Cis + Trans)	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
n-Hexane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Toluene-d8	VOL-91-5002	modified from EPA 5035A & EPA 8260D	(P&T)GC/MS
4-Bromofluorobenzene	VOL-91-5002	modified from EPA 5035A & EPA 8260D	(P&T)GC/MS

5835 Coopers Avenue Mississauga, Ontario L4Z 1Y2 Ph: 905.712 5100 Fax: 905.712 5122 webearth.agatlabs.com

Laboratory Use Only
Work Order #: 242110704
Cooler Quantity: M-16 Malls Arrival Temperatures: 9 6 8 9 8 8 5 2 5
Custody Seal Intact: Yes No No Notes:

Chain of Custody Reco	orc	d
-----------------------	-----	---

Chain of Custody Record If this is a Drinking Water sample, please u	use Drinking Water Chain of Custody Form (potable w	ater consumed by humans)	Arrival Temperatures: 10 8 9 8				
Report Information: Company: Contact: Contact	Regulatory Requirements: (Please check all applicable boxes)	se check all applicable boxes) Notes:					
Address: May May May DR. OPPAWA	Table Indicate One Indicate One Indicate One	Sewer Use Sanitary Storm	Turnaround Time (TAT) Required:				
Phone: 613 - 688 - 1899 Fax:	Res/Park Agriculture Soil Texture (Check One)	Prov. Water Quality Objectives (PWQO)	Regular TAT 5 to 7 Business Days Rush TAT (Rush Surcharges Apply) 3 Business 2 Business Next Business				
2. Email: Philps Olivera (exf. con	Coarse CCME	Other Indicate One	Days OR Date Required (Rush Surcharges May Apply):				
Project Information: Project: OTT - 220 19409 - A0 Site Location:	Is this submission for a Record of Site Condition? Yes ————————————————————————————————————	Report Guideline on Certificate of Analysis Yes - No - N	Please provide prior notification for rush TAT *TAT is exclusive of weekends and statutory holidays For 'Same Day' analysis, please contact your AGAT CPM				
Sampled By: AGAT Quote #: Please note: If guotation number is not provided, client will be billed full price for analysis.	Sample Matrix Legend	0. Reg 153	O. Regi O. Red 400				
Invoice Information: Company: Contact: Address: Email: Bill To Same: Yes No Bill To Sam	B Biota GW Ground Water O Oil P Paint S Soil SD Sediment SW Surface Water	& Inorganics & Inorganics CrVI, Club, CluwSB 3-CrVI, Club, CluwSB 3-F44 PHCS F445 If required Clubs Club	Landfill Disposal Characterization TcDP: 100 1				
Sample Identification Sampled Sampled Containers	Comments/	Metals & Metals & Analyze PAHs PCBs	Excess Excess SPLP: C Excess SPLP: C Excess Ph. ICP				
MW 5 In 09/24 10hom 5 MW 6 12ham 1 MW 7 13h30 M 14h30 M	5						
BH2 14h45 M							
AM PM AM PM	4.8		1				
AM PM AM PM							
Samples Relinquished By (Print Name and Sign): HILL DLIVE IRA 01-07-24 Time	Samples Received By (Print Name and Sign): Samples Received By (Print Name and Sign):	Date ON IC	Drag.				
Sapiples Relinquished By (Print Name and Sen): Date OI /10 /2 4 Time OI /10 /2 4 TSh3c	Samples Received By (Print Name and Sign):	Date	Nº: T 129318 Yellow Copy - AGAT White Copy- AGAT Page 16 of 16 2021				

CLIENT NAME: EXP SERVICES INC

2650 QUEENSVIEW DRIVE, UNIT 100

OTTAWA, ON K2B8H6

(613) 688-1899

ATTENTION TO: Mark McCalla

PROJECT: OTT-22019409-A0

AGAT WORK ORDER: 24Z110615

SOIL ANALYSIS REVIEWED BY: Nivine Basily, Inorganic Team Lead TRACE ORGANICS REVIEWED BY: Neli Popnikolova, Senior Chemist

DATE REPORTED: Jan 19, 2024

PAGES (INCLUDING COVER): 16 VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

*Notes	

Disclaimer:

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may
 incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 30 days after receipt unless a Long Term Storage Agreement is signed and returned. Some specialty analysis may
 be exempt, please contact your Client Project Manager for details.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of
 merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines
 contained in this document.
- All reportable information as specified by ISO/IEC 17025:2017 is available from AGAT Laboratories upon request.
- For environmental samples in the Province of Quebec: The analysis is performed on and results apply to samples as received. A temperature above 6°C upon receipt, as indicated in the Sample Reception Notification (SRN), could indicate the integrity of the samples has been compromised if the delay between sampling and submission to the laboratory could not be minimized.

AGAT Laboratories (V1)

Page 1 of 16

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA)

Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA) AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.

ATTENTION TO: Mark McCalla

SAMPLED BY:Philip Oliverira

AGAT WORK ORDER: 24Z110615 PROJECT: OTT-22019409-A0 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: EXP SERVICES INC SAMPLING SITE:

O. Reg. 153(511) - Metals (Including Hydrides) (Soil)

DATE RECEIVED: 2024-01-10									DATE REPORTED: 2024-01-15
		SAMPLE DES	CRIPTION:	MW4	MW8	MW9	MW10	Dup1	
		SAM	PLE TYPE:	Soil	Soil	Soil	Soil	Soil	
Paramatan	11	DATE S	SAMPLED:	2024-01-10 09:45	2024-01-10 11:50	2024-01-10 13:00	2024-01-10 14:00	2024-01-10 15:00	
Parameter	Unit	G/5	RDL	5580650 2.2	5580654	5580655	5580656	5580657	
Antimony	μg/g		0.8		<0.8	<0.8	<0.8	<0.8	
Arsenic	μg/g		1	8	8	3	2	9	
Barium	μg/g		2.0	87.8	44.2	76.9	73.1	45.5	
Beryllium	μg/g		0.5	<0.5	<0.5	0.5	<0.5	<0.5	
Boron	μg/g		5	7	6	7	6	6	
Cadmium	μg/g		0.5	0.6	<0.5	<0.5	<0.5	<0.5	
Chromium	μg/g		5	21	12	18	17	10	
Cobalt	μg/g		8.0	4.4	8.2	6.4	5.9	8.4	
Copper	μg/g		1.0	26.7	12.0	14.7	14.7	9.6	
_ead	μg/g		1	106	46	7	6	36	
Molybdenum	μg/g		0.5	1.8	3.5	0.7	<0.5	3.9	
Nickel	μg/g		1	16	15	14	12	15	
Selenium	μg/g		0.8	<0.8	<0.8	<0.8	<0.8	<0.8	
Silver	μg/g		0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
Thallium	μg/g		0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
Jranium	μg/g		0.50	<0.50	0.70	0.81	0.73	0.70	
/anadium	μg/g		2.0	30.9	16.7	26.8	25.7	12.7	
Zinc	μg/g		5	312	28	22	20	21	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

Analysis performed at AGAT Toronto (unless marked by *)

CHARTERED S NIVER BASILY O CHEMIST

AGAT WORK ORDER: 24Z110615

PROJECT: OTT-22019409-A0

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: EXP SERVICES INC ATTENTION TO: Mark McCalla SAMPLED BY:Philip Oliverira SAMPLING SITE:

O. Reg. 153(511) - Ol	RPs (Soil)	
-----------------------	------------	--

DATE RECEIVED: 2024-01-10								ı	DATE REPORTED: 2024-01-16
		SAMPLE DESCRIPTION:		MW4	MW8	MW9	MW10	Dup1	
		_	PLE TYPE: SAMPLED:	Soil 2024-01-10	Soil 2024-01-10	Soil 2024-01-10	Soil 2024-01-10	Soil 2024-01-10	
				09:45	11:50	13:00	14:00	15:00	
Parameter	Unit	G/S	RDL	5580650	5580654	5580655	5580656	5580657	
Electrical Conductivity (2:1)	mS/cm		0.005	0.445	3.08	1.02	1.29	2.12	
pH, 2:1 CaCl2 Extraction	pH Units		NA	7.82	7.86	8.31	7.89	8.01	
Sodium Adsorption Ratio (2:1) (Calc.)	N/A		N/A	3.81	16.4	12.0	12.7	23.2	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

5580650-5580657 EC was determined on the DI water extract obtained from the 2:1 leaching procedure (2 parts DI water:1 part soil). pH was determined on the 0.01M CaCl2 extract obtained from 2:1 leaching procedure (2 parts extraction fluid:1 part wet soil). SAR is a calculated parameter.

Analysis performed at AGAT Toronto (unless marked by *)

NIVINE BASILY

AGAT WORK ORDER: 24Z110615 PROJECT: OTT-22019409-A0 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: EXP SERVICES INC
SAMPLING SITE:
ATTENTION TO: Mark McCalla
SAMPLED BY:Philip Oliverira

O. Reg. 153(511) - PAHs (Soil)

DATE RECEIVED: 2024-01-10								DATE REPORTED: 2024-01-18
		SAMPLE DESCRIPTION: SAMPLE TYPE: DATE SAMPLED:	MW4 Soil 2024-01-10 09:45	MW8 Soil 2024-01-10 11:50	MW9 Soil 2024-01-10 13:00	MW10 Soil 2024-01-10 14:00	Dup1 Soil 2024-01-10 15:00	
Parameter	Unit	G/S RDL	5580650	5580654	5580655	5580656	5580657	
Naphthalene	μg/g	0.05	0.44	< 0.05	< 0.05	< 0.05	< 0.05	
Acenaphthylene	μg/g	0.05	0.57	< 0.05	< 0.05	< 0.05	< 0.05	
Acenaphthene	μg/g	0.05	1.97	< 0.05	< 0.05	< 0.05	< 0.05	
Fluorene	μg/g	0.05	1.49	< 0.05	< 0.05	< 0.05	< 0.05	
Phenanthrene	μg/g	0.05	5.80	< 0.05	< 0.05	< 0.05	< 0.05	
Anthracene	μg/g	0.05	2.17	< 0.05	< 0.05	< 0.05	< 0.05	
Fluoranthene	μg/g	0.05	5.33	0.07	< 0.05	< 0.05	< 0.05	
Pyrene	μg/g	0.05	3.96	0.06	< 0.05	< 0.05	< 0.05	
Benz(a)anthracene	μg/g	0.05	3.17	0.06	< 0.05	< 0.05	< 0.05	
Chrysene	μg/g	0.05	3.33	0.06	< 0.05	< 0.05	< 0.05	
Benzo(b)fluoranthene	μg/g	0.05	2.95	0.09	< 0.05	< 0.05	< 0.05	
Benzo(k)fluoranthene	μg/g	0.05	1.11	< 0.05	< 0.05	< 0.05	< 0.05	
Benzo(a)pyrene	μg/g	0.05	2.08	< 0.05	< 0.05	< 0.05	< 0.05	
Indeno(1,2,3-cd)pyrene	μg/g	0.05	1.32	< 0.05	< 0.05	< 0.05	< 0.05	
Dibenz(a,h)anthracene	μg/g	0.05	0.28	< 0.05	< 0.05	< 0.05	< 0.05	
Benzo(g,h,i)perylene	μg/g	0.05	1.33	< 0.05	< 0.05	< 0.05	< 0.05	
1 and 2 Methlynaphthalene	μg/g	0.05	0.87	< 0.05	< 0.05	< 0.05	< 0.05	
Moisture Content	%	0.1	22.9	10.8	7.7	12.8	10.9	
Surrogate	Unit	Acceptable Limits						
Naphthalene-d8	%	50-140	70	75	75	70	80	
Acridine-d9	%	50-140	80	75	75	110	80	
Terphenyl-d14	%	50-140	70	75	105	75	90	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

5580650-5580657 Results are based on the dry weight of the soil.

Note: The result for Benzo(b)Fluoranthene is the total of the Benzo(b)&j)Fluoranthene isomers because the isomers co-elute on the GC column. 2- and 1-Methyl Naphthalene is a calculated parameter. The calculated value is the sum of 2-Methyl Naphthalene and 1-Methyl Naphthalene.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

AGAT WORK ORDER: 24Z110615 PROJECT: OTT-22019409-A0

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: EXP SERVICES INC

SAMPLING SITE:

ATTENTION TO: Mark McCalla SAMPLED BY:Philip Oliverira

O. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Soil)

DATE RECEIVED: 2024-01-10									DATE REPORTED: 2024-01-18
	SAMPLE DESCRIPTION:		MW4	MW8	MW9	MW10	Dup1		
		SAMPL	E TYPE:	Soil	Soil	Soil	Soil	Soil	
		DATE SAMPLED:		2024-01-10 09:45	2024-01-10 11:50	2024-01-10 13:00	2024-01-10 14:00	2024-01-10 15:00	
Parameter	Unit	G/S	RDL	5580650	5580654	5580655	5580656	5580657	
F1 (C6 to C10)	μg/g		5	<5	<5	<5	<5	<5	
F1 (C6 to C10) minus BTEX	μg/g		5	<5	<5	<5	<5	<5	
F2 (C10 to C16)	μg/g		10	12	<10	<10	<10	<10	
F2 (C10 to C16) minus Naphthalene	μg/g		10	12	<10	<10	<10	<10	
F3 (C16 to C34)	μg/g		50	62	<50	<50	<50	<50	
F3 (C16 to C34) minus PAHs	μg/g		50	<50	<50	<50	<50	<50	
F4 (C34 to C50)	μg/g		50	<50	<50	<50	<50	<50	
Gravimetric Heavy Hydrocarbons	μg/g		50	NA	NA	NA	NA	NA	
Moisture Content	%		0.1	22.9	10.8	7.7	12.8	10.9	
Surrogate	Unit	Acceptable	Limits						
Toluene-d8	%	50-14	0	104	104	102	103	100	
Terphenyl	%	60-14	0	71	85	94	77	93	

Comments: RDL - Reported Detection Limit: G / S - Guideline / Standard

5580650-5580657 Results are based on sample dry weight.

The C6-C10 fraction is calculated using toluene response factor.

C6-C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX. The calculated parameter is non-accredited. The parameters that are components of the calculation are

The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and n-C34.

Gravimetric Heavy Hydrocarbons are not included in the Total C16-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons >C50 are present. The chromatogram has returned to baseline by the retention time of nC50.

Total C6 - C50 results are corrected for BTEX and PAH contributions.

C>10 - C16 (F2- Naphthalene) is a calculated parameter. The calculated value is F2 - Naphthalene.

C>16 - C34 (F3-PAH) is a calculated parameter. The calculated value is F3-PAH (PAH: sum of Phenanthrene, Benzo(a)anthracene. Benzo(b)fluoranthene, Benzo(k)fluoranthene, Benzo(a)pyrene, Fluoranthene, Dibenzo(a,h)anthracene, Indeno(1,2,3-c,d)pyrene and Pyrene).

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 + nC34 average.

Linearity is within 15%.

Extraction and holding times were met for this sample.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

AGAT WORK ORDER: 24Z110615 PROJECT: OTT-22019409-A0 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: EXP SERVICES INC

SAMPLING SITE:

ATTENTION TO: Mark McCalla

SAMPLED BY:Philip Oliverira

O. Reg. 153(511) -	· VOCs (with PHC) (Soil)
--------------------	-------------------------	---

DATE RECEIVED: 2024-01-10									DATE REPORTED: 2024-01-15
		SAMPLE DATE SAM	SAMPLE DESCRIPTION: SAMPLE TYPE: DATE SAMPLED:		MW8 Soil 2024-01-10 11:50	MW9 Soil 2024-01-10 13:00	MW10 Soil 2024-01-10 14:00	Dup1 Soil 2024-01-10 15:00	
Parameter	Unit		RDL	5580650	5580654	5580655	5580656	5580657	
Dichlorodifluoromethane	μg/g		0.05	<0.05	< 0.05	<0.05	<0.05	< 0.05	
Vinyl Chloride	ug/g		0.02	<0.02	< 0.02	< 0.02	<0.02	< 0.02	
Bromomethane	ug/g		0.05	<0.05	< 0.05	< 0.05	<0.05	< 0.05	
Trichlorofluoromethane	ug/g		0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	
Acetone	ug/g		0.50	< 0.50	<0.50	<0.50	< 0.50	< 0.50	
1,1-Dichloroethylene	ug/g		0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	
Methylene Chloride	ug/g		0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	
Trans- 1,2-Dichloroethylene	ug/g		0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	
Methyl tert-butyl Ether	ug/g		0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	
1,1-Dichloroethane	ug/g		0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	
Methyl Ethyl Ketone	ug/g		0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
Cis- 1,2-Dichloroethylene	ug/g		0.02	<0.02	< 0.02	<0.02	<0.02	< 0.02	
Chloroform	ug/g		0.04	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04	
1,2-Dichloroethane	ug/g		0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	
1,1,1-Trichloroethane	ug/g		0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	
Carbon Tetrachloride	ug/g		0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	
Benzene	ug/g		0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	
1,2-Dichloropropane	ug/g		0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	
Trichloroethylene	ug/g		0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	
Bromodichloromethane	ug/g		0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	
Methyl Isobutyl Ketone	ug/g		0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
1,1,2-Trichloroethane	ug/g		0.04	<0.04	< 0.04	<0.04	<0.04	< 0.04	
Toluene	ug/g		0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	
Dibromochloromethane	ug/g		0.05	< 0.05	< 0.05	<0.05	< 0.05	< 0.05	
Ethylene Dibromide	ug/g		0.04	<0.04	<0.04	<0.04	< 0.04	< 0.04	
Tetrachloroethylene	ug/g		0.05	< 0.05	< 0.05	<0.05	< 0.05	< 0.05	
1,1,1,2-Tetrachloroethane	ug/g		0.04	<0.04	<0.04	<0.04	<0.04	<0.04	
Chlorobenzene	ug/g		0.05	< 0.05	< 0.05	<0.05	< 0.05	< 0.05	
Ethylbenzene	ug/g		0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	

Certified By:

NPopukolof

AGAT WORK ORDER: 24Z110615 PROJECT: OTT-22019409-A0 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: EXP SERVICES INC

SAMPLING SITE:

ATTENTION TO: Mark McCalla SAMPLED BY:Philip Oliverira

O. Reg. 153(511) - VOCs (with PHC) (Soil)

DATE RECEIVED: 2024-01-10								DATE REPORTED: 2024-01-15
	S	SAMPLE DESCRIPTION: SAMPLE TYPE:	MW4 Soil	MW8 Soil	MW9 Soil	MW10 Soil	Dup1 Soil	
		DATE SAMPLED:	2024-01-10 09:45	2024-01-10 11:50	2024-01-10 13:00	2024-01-10 14:00	2024-01-10 15:00	
Parameter	Unit	G/S RDL	5580650	5580654	5580655	5580656	5580657	
m & p-Xylene	ug/g	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	
Bromoform	ug/g	0.05	< 0.05	<0.05	< 0.05	< 0.05	< 0.05	
Styrene	ug/g	0.05	< 0.05	<0.05	< 0.05	<0.05	< 0.05	
1,1,2,2-Tetrachloroethane	ug/g	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	
o-Xylene	ug/g	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	
1,3-Dichlorobenzene	ug/g	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	
1,4-Dichlorobenzene	ug/g	0.05	< 0.05	< 0.05	< 0.05	<0.05	< 0.05	
1,2-Dichlorobenzene	ug/g	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	
Xylenes (Total)	ug/g	0.05	< 0.05	< 0.05	< 0.05	<0.05	< 0.05	
1,3-Dichloropropene (Cis + Trans)	μg/g	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	
n-Hexane	μg/g	0.05	< 0.05	< 0.05	< 0.05	<0.05	< 0.05	
Moisture Content	%	0.1	22.9	10.8	7.7	12.8	10.9	
Surrogate	Unit	Acceptable Limits						
Toluene-d8	% Recovery	50-140	104	104	102	103	100	
4-Bromofluorobenzene	% Recovery	50-140	86	86	86	88	86	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

5580650-5580657 The sample was analyzed using the high level technique. The sample was extracted using methanol, a small amount of the methanol extract was diluted in water and the purge & trap GC/MS analysis was performed. Results are based on the dry weight of the soil.

Xylenes total is a calculated parameter. The calculated value is the sum of m&p-Xylene + o-Xylene.

1,3-Dichloropropene total is a calculated parameter. The calculated value is the sum of Cis-1,3-Dichloropropene and Trans-1,3-Dichloropropene.

The calculated parameters are non-accredited. The parameters that are components of the calculation are accredited.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

Quality Assurance

CLIENT NAME: EXP SERVICES INC PROJECT: OTT-22019409-A0

AGAT WORK ORDER: 24Z110615 ATTENTION TO: Mark McCalla SAMDI ED RV-Dhilin Oliverira

SAMPLING SITE:			SAMPLED BY:Philip Oliverira												
	Soil Analysis														
RPT Date:			Г	UPLICAT	E		REFEREN	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MATRIX SPIKE		
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured Value		ptable nits	Recovery	Acceptable Limits		Recovery	1 :	eptable mits
		IG.					Value	Lower	Upper		Lower	Upper		Lower	Upper
O. Reg. 153(511) - Metals (Incl	uding Hydride	s) (Soil)													
Antimony	5580810		<0.8	<0.8	NA	< 0.8	136%	70%	130%	86%	80%	120%	81%	70%	130%
Arsenic	5580810		2	2	NA	< 1	109%	70%	130%	98%	80%	120%	119%	70%	130%
Barium	5580810		22.4	22.3	0.4%	< 2.0	99%	70%	130%	98%	80%	120%	116%	70%	130%
Beryllium	5580810		< 0.5	< 0.5	NA	< 0.5	100%	70%	130%	102%	80%	120%	122%	70%	130%
Boron	5580810		<5	<5	NA	< 5	77%	70%	130%	100%	80%	120%	111%	70%	130%
Cadmium	5580810		<0.5	<0.5	NA	< 0.5	111%	70%	130%	100%	80%	120%	129%	70%	130%
Chromium	5580810		10	11	NA	< 5	97%	70%	130%	109%	80%	120%	125%	70%	130%
Cobalt	5580810		4.2	4.2	0.0%	< 0.8	90%	70%	130%	92%	80%	120%	106%	70%	130%
Copper	5580810		9.0	8.8	2.2%	< 1.0	93%	70%	130%	100%	80%	120%	111%	70%	130%
Lead	5580810		3	3	NA	< 1	105%	70%	130%	93%	80%	120%	113%	70%	130%
Molybdenum	5580810		<0.5	<0.5	NA	< 0.5	106%	70%	130%	101%	80%	120%	128%	70%	130%
Nickel	5580810		8	8	0.0%	< 1	94%	70%	130%	94%	80%	120%	110%	70%	130%
Selenium	5580810		<0.8	<0.8	NA	< 0.8	113%	70%	130%	94%	80%	120%	116%	70%	130%
Silver	5580810		< 0.5	< 0.5	NA	< 0.5	105%	70%	130%	99%	80%	120%	118%	70%	130%
Thallium	5580810		<0.5	<0.5	NA	< 0.5	101%	70%	130%	96%	80%	120%	126%	70%	130%
Uranium	5580810		<0.50	<0.50	NA	< 0.50	112%	70%	130%	98%	80%	120%	122%	70%	130%
Vanadium	5580810		20.0	20.4	2.0%	< 2.0	102%	70%	130%	103%	80%	120%	115%	70%	130%
Zinc	5580810		22	23	NA	< 5	99%	70%	130%	98%	80%	120%	117%	70%	130%

Comments: NA Signifies Not Applicable.

Duplicate NA: results are under 5X the RDL and will not be calculated.

More than 90% of the elements met acceptance limits and overall data quality is acceptable for use. For a multi-element scan up to 10% of analytes may exceed the quoted limits by up to 10% absolute.

O. Reg. 153(511) - ORPs (Soil)

Electrical Conductivity (2:1)	5582581	0.221	0.238	7.6%	< 0.005	108%	80%	120%	
pH, 2:1 CaCl2 Extraction	5580818	7.75	7.68	0.8%	NA	102%	80%	120%	
Sodium Adsorption Ratio (2:1)	5582581	0.873	0.857	1.8%	NA				

Comments: NA signifies Not Applicable.

pH duplicates QA acceptance criteria was met relative as stated in Table 5-15 of Analytical Protocol document.

Certified By:

Quality Assurance

CLIENT NAME: EXP SERVICES INC PROJECT: OTT-22019409-A0

SAMPLING SITE:

AGAT WORK ORDER: 24Z110615
ATTENTION TO: Mark McCalla
SAMPLED BY:Philip Oliverira

			Trac	e Or	gani	cs Ar	nalys	is							
RPT Date:			0	UPLICAT	E		REFERE	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
	s	Sample				Method Blank	Measured		ptable nits		Lir	ptable			ptable nits
PARAMETER	Batch	ld	Dup #1	Dup #2	RPD	Diam	Value	Lower	Upper	Recovery	Lower		Recovery	Lower	
O. Reg. 153(511) - PAHs (Soil)											1	1			
Naphthalene	5580657 558	0657	< 0.05	< 0.05	NA	< 0.05	81%	50%	140%	90%	50%	140%	75%	50%	140%
Acenaphthylene	5580657 558	0657	< 0.05	< 0.05	NA	< 0.05	100%	50%	140%	80%	50%	140%	75%	50%	140%
Acenaphthene	5580657 558	0657	< 0.05	< 0.05	NA	< 0.05	102%	50%	140%	88%	50%	140%	73%	50%	140%
Fluorene	5580657 558	0657	< 0.05	< 0.05	NA	< 0.05	89%	50%	140%	85%	50%	140%	83%	50%	140%
Phenanthrene	5580657 558	80657	< 0.05	< 0.05	NA	< 0.05	101%	50%	140%	93%	50%	140%	73%	50%	140%
Anthracene	5580657 558	0657	<0.05	<0.05	NA	< 0.05	103%	50%	140%	85%	50%	140%	73%	50%	140%
Fluoranthene	5580657 558	0657	< 0.05	< 0.05	NA	< 0.05	96%	50%	140%	88%	50%	140%	73%	50%	140%
Pyrene	5580657 558	0657	< 0.05	< 0.05	NA	< 0.05	94%	50%	140%	85%	50%	140%	73%	50%	140%
Benz(a)anthracene	5580657 558	80657	< 0.05	< 0.05	NA	< 0.05	85%	50%	140%	80%	50%	140%	85%	50%	140%
Chrysene	5580657 558	80657	<0.05	<0.05	NA	< 0.05	112%	50%	140%	90%	50%	140%	70%	50%	140%
Benzo(b)fluoranthene	5580657 558	0657	<0.05	<0.05	NA	< 0.05	69%	50%	140%	80%	50%	140%	80%	50%	140%
Benzo(k)fluoranthene	5580657 558	0657	< 0.05	< 0.05	NA	< 0.05	110%	50%	140%	85%	50%	140%	78%	50%	140%
Benzo(a)pyrene	5580657 558	0657	< 0.05	< 0.05	NA	< 0.05	88%	50%	140%	95%	50%	140%	70%	50%	140%
Indeno(1,2,3-cd)pyrene	5580657 558	0657	< 0.05	< 0.05	NA	< 0.05	72%	50%	140%	85%	50%	140%	78%	50%	140%
Dibenz(a,h)anthracene	5580657 558	80657	< 0.05	<0.05	NA	< 0.05	77%	50%	140%	83%	50%	140%	90%	50%	140%
Benzo(g,h,i)perylene	5580657 558	80657	<0.05	<0.05	NA	< 0.05	90%	50%	140%	80%	50%	140%	90%	50%	140%
O. Reg. 153(511) - PHCs F1 - F	4 (with PAHs and	d VOC)	(Soil)												
F1 (C6 to C10)	5582542		<5	<5	NA	< 5	123%	60%	140%	99%	60%	140%	105%	60%	140%
F2 (C10 to C16)	5580657 558	0657	< 10	< 10	NA	< 10	122%	60%	140%	87%	60%	140%	83%	60%	140%
F3 (C16 to C34)	5580657 558	0657	< 50	< 50	NA	< 50	117%	60%	140%	100%	60%	140%	112%	60%	140%
F4 (C34 to C50)	5580657 558	80657	< 50	< 50	NA	< 50	67%	60%	140%	89%	60%	140%	98%	60%	140%
O. Reg. 153(511) - VOCs (with	PHC) (Soil)														
Dichlorodifluoromethane	5582542		< 0.05	< 0.05	NA	< 0.05	97%	50%	140%	93%	50%	140%	75%	50%	140%
Vinyl Chloride	5582542		< 0.02	< 0.02	NA	< 0.02	99%	50%	140%	118%	50%	140%	100%	50%	140%
Bromomethane	5582542		< 0.05	< 0.05	NA	< 0.05	97%	50%	140%	88%	50%	140%	89%	50%	140%
Trichlorofluoromethane	5582542		< 0.05	< 0.05	NA	< 0.05	104%	50%	140%	103%	50%	140%	77%	50%	140%
Acetone	5582542		<0.50	<0.50	NA	< 0.50	104%	50%	140%	84%	50%	140%	94%	50%	140%
1,1-Dichloroethylene	5582542		< 0.05	< 0.05	NA	< 0.05	107%	50%	140%	118%	60%	130%	81%	50%	140%
Methylene Chloride	5582542		< 0.05	< 0.05	NA	< 0.05	107%	50%	140%	117%	60%	130%	108%	50%	140%
Trans- 1,2-Dichloroethylene	5582542		<0.05	< 0.05	NA	< 0.05	116%	50%	140%	116%	60%	130%	77%	50%	140%
Methyl tert-butyl Ether	5582542		< 0.05	< 0.05	NA	< 0.05	70%	50%	140%	73%	60%	130%	87%	50%	140%
1,1-Dichloroethane	5582542		<0.02	<0.02	NA	< 0.02	115%	50%	140%	117%	60%	130%	82%	50%	140%
Methyl Ethyl Ketone	5582542		<0.50	<0.50	NA	< 0.50	85%	50%	140%	92%	50%	140%	92%	50%	140%
Cis- 1,2-Dichloroethylene	5582542		< 0.02	< 0.02	NA	< 0.02	109%	50%	140%	107%	60%	130%	88%	50%	140%
Chloroform	5582542		< 0.04	< 0.04	NA	< 0.04	110%	50%	140%	100%	60%	130%	92%	50%	140%
1,2-Dichloroethane	5582542		< 0.03	< 0.03	NA	< 0.03	112%	50%	140%	117%	60%	130%	103%	50%	140%
1,1,1-Trichloroethane	5582542		<0.05	<0.05	NA	< 0.05	110%	50%	140%	106%	60%	130%	92%	50%	140%
Carbon Tetrachloride	5582542		<0.05	<0.05	NA	< 0.05	108%	50%	140%	104%	60%	130%	81%	50%	140%

AGAT QUALITY ASSURANCE REPORT (V1)

Page 9 of 16

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Quality Assurance

CLIENT NAME: EXP SERVICES INC

PROJECT: OTT-22019409-A0

SAMPLING SITE:

AGAT WORK ORDER: 24Z110615

ATTENTION TO: Mark McCalla

SAMPLED BY:Philip Oliverira

	7	race	Org	anics	Ana	alysis	(Coi	ntin	ued	l)					
RPT Date:	te: DUPLICATE REFERENCE MATERIAL METHOD BLANK SPIKE MATR								RIX SPI	KE					
PARAMETER	Batch	Sample Id	Dup #1 Dup #		RPD	Method Blank	Measured Value	Acceptable Limits		Recovery	1 :-	ptable	Recovery		ptable
		Iu	-	-			value	Lower	Upper		Lower	Upper		Lower	Upper
Benzene	5582542		< 0.02	< 0.02	NA	< 0.02	114%	50%	140%	102%	60%	130%	97%	50%	140%
1,2-Dichloropropane	5582542		< 0.03	< 0.03	NA	< 0.03	114%	50%	140%	100%	60%	130%	97%	50%	140%
Trichloroethylene	5582542		< 0.03	< 0.03	NA	< 0.03	113%	50%	140%	101%	60%	130%	92%	50%	140%
Bromodichloromethane	5582542		<0.05	<0.05	NA	< 0.05	111%	50%	140%	100%	60%	130%	92%	50%	140%
Methyl Isobutyl Ketone	5582542		<0.50	<0.50	NA	< 0.50	96%	50%	140%	91%	50%	140%	85%	50%	140%
1,1,2-Trichloroethane	5582542		< 0.04	< 0.04	NA	< 0.04	100%	50%	140%	102%	60%	130%	113%	50%	140%
Toluene	5582542		< 0.05	< 0.05	NA	< 0.05	102%	50%	140%	111%	60%	130%	100%	50%	140%
Dibromochloromethane	5582542		< 0.05	< 0.05	NA	< 0.05	118%	50%	140%	105%	60%	130%	88%	50%	140%
Ethylene Dibromide	5582542		<0.04	<0.04	NA	< 0.04	105%	50%	140%	105%	60%	130%	94%	50%	140%
Tetrachloroethylene	5582542		<0.05	<0.05	NA	< 0.05	107%	50%	140%	112%	60%	130%	94%	50%	140%
1,1,1,2-Tetrachloroethane	5582542		< 0.04	< 0.04	NA	< 0.04	97%	50%	140%	81%	60%	130%	101%	50%	140%
Chlorobenzene	5582542		< 0.05	< 0.05	NA	< 0.05	104%	50%	140%	108%	60%	130%	105%	50%	140%
Ethylbenzene	5582542		< 0.05	< 0.05	NA	< 0.05	79%	50%	140%	105%	60%	130%	92%	50%	140%
m & p-Xylene	5582542		<0.05	<0.05	NA	< 0.05	108%	50%	140%	103%	60%	130%	93%	50%	140%
Bromoform	5582542		<0.05	<0.05	NA	< 0.05	96%	50%	140%	117%	60%	130%	120%	50%	140%
Styrene	5582542		< 0.05	< 0.05	NA	< 0.05	112%	50%	140%	86%	60%	130%	86%	50%	140%
1,1,2,2-Tetrachloroethane	5582542		< 0.05	< 0.05	NA	< 0.05	94%	50%	140%	109%	60%	130%	112%	50%	140%
o-Xylene	5582542		< 0.05	< 0.05	NA	< 0.05	100%	50%	140%	102%	60%	130%	96%	50%	140%
1,3-Dichlorobenzene	5582542		<0.05	<0.05	NA	< 0.05	119%	50%	140%	94%	60%	130%	102%	50%	140%
1,4-Dichlorobenzene	5582542		<0.05	<0.05	NA	< 0.05	118%	50%	140%	93%	60%	130%	104%	50%	140%
1,2-Dichlorobenzene	5582542		< 0.05	< 0.05	NA	< 0.05	118%	50%	140%	91%	60%	130%	102%	50%	140%
n-Hexane	5582542		< 0.05	< 0.05	NA	< 0.05	106%	50%	140%	109%	60%	130%	107%	50%	140%

Comments: When the average of the sample and duplicate results is less than 5x the RDL, the Relative Percent Difference (RPD) will be indicated as Not Applicable (NA).

QC Exceedance

CLIENT NAME: EXP SERVICES INC

PROJECT: OTT-22019409-A0

AGAT WORK ORDER: 24Z110615

ATTENTION TO: Mark McCalla

RPT Date:		REFERENC	E MATERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Sample Id	Measured	Acceptable Limits	Recovery	Lin	ptable nits	Recovery	Lin	ptable nits
		Value	Lower Uppe	_ ··· · ,	Lower	Upper	,		Upper

O. Reg. 153(511) - Metals (Including Hydrides) (Soil)

Antimony 136% 70% 130% 86% 80% 120% 81% 70% 130%

Comments: NA Signifies Not Applicable.

Duplicate NA: results are under 5X the RDL and will not be calculated.

More than 90% of the elements met acceptance limits and overall data quality is acceptable for use. For a multi-element scan up to 10% of analytes may exceed the quoted limits by up to 10% absolute.

Method Summary

CLIENT NAME: EXP SERVICES INC PROJECT: OTT-22019409-A0

SAMPLING SITE:

SAMPLING SITE.		SAMPLED BT.Fillip Oliverila										
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE									
Soil Analysis												
Antimony	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS									
Arsenic	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS									
Barium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS									
Beryllium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS									
Boron	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS									
Cadmium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS									
Chromium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS									
Cobalt	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS									
Copper	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS									
Lead	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS									
Molybdenum	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS									
Nickel	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS									
Selenium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS									
Silver	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS									
Thallium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS									
Uranium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS									
Vanadium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS									
Zinc	MET 93 -6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS									
Electrical Conductivity (2:1)	INOR-93-6075	modified from MSA PART 3, CH 14 and SM 2510 B	PC TITRATE									
pH, 2:1 CaCl2 Extraction	INOR-93-6075	modified from EPA 9045D, MCKEAGUE 3.11 E3137	PC TITRATE									
Sodium Adsorption Ratio (2:1) (Calc.)	INOR-93-6007	modified from EPA 6010D & Analytica Protocol	I ICP/OES									

Method Summary

CLIENT NAME: EXP SERVICES INC PROJECT: OTT-22019409-A0

SAMPLING SITE:

B. B	1017055		ANALYTICAL TECHNIQUE					
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE					
Trace Organics Analysis								
Naphthalene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS					
Acenaphthylene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS					
Acenaphthene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS					
Fluorene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS					
Phenanthrene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS					
Anthracene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS					
Fluoranthene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS					
Pyrene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS					
Benz(a)anthracene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS					
Chrysene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS					
Benzo(b)fluoranthene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS					
Benzo(k)fluoranthene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS					
Benzo(a)pyrene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS					
Indeno(1,2,3-cd)pyrene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS					
Dibenz(a,h)anthracene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS					
Benzo(g,h,i)perylene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS					
1 and 2 Methlynaphthalene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS					
Naphthalene-d8	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS					
Acridine-d9	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS					
Terphenyl-d14	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS					
Moisture Content	VOL-91-5009	modified from CCME Tier 1 Method	BALANCE					
F1 (C6 to C10)	VOL-91-5009	modified from CCME Tier 1 Method	(P&T)GC/FID					
F1 (C6 to C10) minus BTEX	VOL-91-5009	modified from CCME Tier 1 Method	P&T GC/FID					
Toluene-d8	VOL-91- 5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS					
F2 (C10 to C16)	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID					
F2 (C10 to C16) minus Naphthalene	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID					
F3 (C16 to C34)	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID					
F3 (C16 to C34) minus PAHs	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID					
F4 (C34 to C50)	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID					
Gravimetric Heavy Hydrocarbons	VOL-91-5009	modified from CCME Tier 1 Method	BALANCE					
Terphenyl	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID					
Dichlorodifluoromethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS					

Method Summary

CLIENT NAME: EXP SERVICES INC PROJECT: OTT-22019409-A0

SAMPLING SITE:

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Vinyl Chloride	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Bromomethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Trichlorofluoromethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Acetone	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,1-Dichloroethylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Methylene Chloride	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Trans- 1,2-Dichloroethylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Methyl tert-butyl Ether	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,1-Dichloroethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Methyl Ethyl Ketone	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Cis- 1,2-Dichloroethylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Chloroform	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,2-Dichloroethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,1,1-Trichloroethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Carbon Tetrachloride	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Benzene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,2-Dichloropropane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Trichloroethylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Bromodichloromethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Methyl Isobutyl Ketone	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,1,2-Trichloroethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Toluene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Dibromochloromethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Ethylene Dibromide	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Tetrachloroethylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,1,1,2-Tetrachloroethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Chlorobenzene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Ethylbenzene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS

Method Summary

CLIENT NAME: EXP SERVICES INC PROJECT: OTT-22019409-A0

SAMPLING SITE:

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
m & p-Xylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Bromoform	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Styrene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,1,2,2-Tetrachloroethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
o-Xylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,3-Dichlorobenzene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,4-Dichlorobenzene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,2-Dichlorobenzene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Xylenes (Total)	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,3-Dichloropropene (Cis + Trans)	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
n-Hexane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Toluene-d8	VOL-91-5002	modified from EPA 5035A & EPA 8260D	(P&T)GC/MS
4-Bromofluorobenzene	VOL-91-5002	modified from EPA 5035A & EPA 8260D	(P&T)GC/MS

Have feedback?

Scan here for a guick survey!

5835 Coopers Avenue Mississauga, Ontario L4Z 1Y2 Ph: 905,712.5100 Fax: 905.712.51.22

Laboratory Use	Only
Work Order #: 2	12110615
Cooler Quantity: ()	e-noice/packs
Arrival Temperatures:	35850
	2.1 12.0 11.9
Custody Seal Intact:	□Yes □No □I

				quion sur		2	, Hillin	W	eueari	.11.agai	uaus.c	OIII	С	ooler Qu	uantity:	On			110	e/p	achs	
Chain of Custody Reco	ord If this is a I	Orlnking Water	sample, plea	se use Drin	king Water Chain of C	Custody Form (potab	le water o	consum	ed by h	umans)		1	А	rrival Te	mpera	tures;	3	5	2	.2	6.0	
Report Information: Company:	ERVICES	inc		(Piease	gulatory Requi a check all applicable bóxes)	*	s n/f			70.1			1977	ustody S lotes:	Seal Int	tact;		es.		□No ed	□N	1//
Address: 2650 OUSE	McCalle USVIEW DR	OTTA	IWA .	- Ta	egulation 153/04 able	Regulation 406		Sev			Storm			ırnard egular		Time	-			ired:	/S	
Phone: Reports to be sent to:				2000]Res/Park]Agriculture	Regulation 558		Pro		er Qua			Ru	ısh TA	(Rush S	Surcharg						
1. Email: Mark of Mich. Olive	Ila @ saf	com			Cexture (Check One) Coarse Fine	CCME		Oth		775				∐ Da	Busine ays			Days	iness	ges May	Next Busin Day	ie:
Project Information:				Is	this submission	U. 200 200		port		eline					DE							
Site Location:	220194		0	- 11550	cord of Site Con			Yes			No.				AT is ex	clusive	of we	ekend	ds and		sh TAT ry holidays • AGAT CPM	20
AGAT Quote #: EX Standing	Of Po:		anaiysis.	San	nple Matrix Leg	end	И, DOC	0.	Reg 1	53				0. Reg 558	- 10	eg 406						
Invoice Information: Company: Contact: Address: Email:	Bi	II To Same: Ye	No 🗆	GW O P S SD SW	Ground Water Oil Paint Soil Sediment Surface Water		Field Filtered - Metals, Hg, CrVI,	& Inorganics	□ crvi, □ Hg, □ HWSB	1-F4 PHCs	A		oclors 🗆	Jisposal Characterization TCLP: A&I □VoCs □ABNs □B(a)P□P	on 406 SPLP Rainwater Leac Metals ☐ VOCs ☐ SVOCs	Regulation 406 Characterization Package pH, ICPMS Metals, BTEX, F1-F4	sture	V	0	4		
Sample Identification	Date Sampled	Time Sampled	# of Containers	Sample Matrix	Comm Special In:		Y/N	Metals	Metals	Y	VOC	PCBs	PCBs: Aroclors	Landfill Disposal TCLP: □M&I □VC	Regulatio SPLP: □	Regulation 406 pH, ICPMS Meta	Corrosivity:	SA	M	9		
1. mw4	01-10-2		4	5	A THE	1950			X	X	X)	(7			χ	X	X	1000	
2. mw8 3. mw9		13hoc AM							+	1												-
4. mu 10		14hor PM		110	0								8									
5. Dup 1 6.	V	1500 AM PM AM PM		1				29%	V	T.	4	V						V	V	V	23,455	
7,		AM PM					G As															
		444					1000															

Pink Copy - Glent | White Copy - Add | White Copy - Add | 100 | 20

Any and all products and/or services provided by AGAT Labb are pursuant to the terms and conditions as set forth at www.agatlabs.com/termsandconditions unless otherwise agreed in a current written contractual document

11.		
Samples Relinques by Stant Nagricand Signs: Date Time Samples Registred By (Print Name and Sign): Date	Time	
Samples Reging (short B) (Print Narry and Sign):	2- Times.	_
Philip Mivern	9:43 m	-
Aumples Refinquished By (Print Name and Sign): Date Oliving Samples Received By (Print Name and Sign): Date	Time N°:	:

Page

CLIENT NAME: EXP SERVICES INC

2650 QUEENSVIEW DRIVE, UNIT 100

OTTAWA, ON K2B8H6

(613) 688-1899

ATTENTION TO: Mark McCalla

PROJECT: OTT-22019409-A0

AGAT WORK ORDER: 24Z111530

SOIL ANALYSIS REVIEWED BY: Nivine Basily, Inorganic Team Lead TRACE ORGANICS REVIEWED BY: Neli Popnikolova, Senior Chemist

DATE REPORTED: Jan 18, 2024

PAGES (INCLUDING COVER): 15 VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

*Notes	

Disclaimer:

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may
 incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 30 days after receipt unless a Long Term Storage Agreement is signed and returned. Some specialty analysis may
 be exempt, please contact your Client Project Manager for details.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other
 third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the
 services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of
 merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines
 contained in this document.
- All reportable information as specified by ISO/IEC 17025:2017 is available from AGAT Laboratories upon request.
- For environmental samples in the Province of Quebec: The analysis is performed on and results apply to samples as received. A temperature above 6°C upon receipt, as indicated in the Sample Reception Notification (SRN), could indicate the integrity of the samples has been compromised if the delay between sampling and submission to the laboratory could not be minimized.

AGAT Laboratories (V1)

Page 1 of 15

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA)

Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA) AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.

AGAT WORK ORDER: 24Z111530

PROJECT: OTT-22019409-A0

ATTENTION TO: Mark McCalla

SAMPLED BY:Philip Oliveira

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: EXP SERVICES INC SAMPLING SITE:

O. Reg. 153(511) - Metals (Including Hydrides) (Soil)

DATE RECEIVED: 2024-01-11									DATE REPORTED: 2024-01-18
		SAMPLE DES	CRIPTION:	MW11	MW12	MW13	BH 14	BH 15	
		SAMI	PLE TYPE:	Soil	Soil	Soil	Soil	Soil	
Parameter	11		SAMPLED:	2024-01-11 09:00	2024-01-11 10:15	2024-01-11 12:00	2024-01-11 14:30	2024-01-11 14:15	
Parameter	Unit	G/S	RDL	5583264	5583265	5583266	5583267	5583268	
Antimony	μg/g		0.8	0.9	<0.8	2.0	<0.8	<0.8	
Arsenic	μg/g		1	18	9	6	2	3	
Barium	μg/g		2.0	149	118	171	74.3	99.2	
Beryllium	μg/g		0.5	0.5	<0.5	<0.5	<0.5	<0.5	
Boron	μg/g		5	<5	7	9	8	10	
Cadmium	μg/g		0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
Chromium	μg/g		5	20	17	16	12	13	
Cobalt	μg/g		8.0	7.4	5.4	4.9	4.9	6.5	
Copper	μg/g		1.0	21.5	14.9	15.9	16.3	19.4	
Lead	μg/g		1	103	103	113	6	8	
Molybdenum	μg/g		0.5	2.1	1.6	1.3	0.8	1.2	
Nickel	μg/g		1	15	12	12	11	15	
Selenium	μg/g		0.8	<0.8	<0.8	<0.8	<0.8	<0.8	
Silver	μg/g		0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
Гhallium	μg/g		0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
Jranium	μg/g		0.50	1.27	0.58	0.59	0.56	0.62	
Vanadium	μg/g		2.0	27.1	21.5	21.8	19.2	25.1	
Zinc	μg/g		5	105	112	169	28	35	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

Analysis performed at AGAT Toronto (unless marked by *)

NIVINE BASILY

AGAT WORK ORDER: 24Z111530

PROJECT: OTT-22019409-A0

ATTENTION TO: Mark McCalla SAMPLED BY:Philip Oliveira 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

SAMPLING SITE:

O. Reg. 153(511) - ORPs (Soil)

					9 (/		7
DATE RECEIVED: 2024-01-11							DATE REPORTED: 2024-01-18
		SAMPLE DES	CRIPTION:	MW11	MW12	MW13	
		SAM	PLE TYPE:	Soil	Soil	Soil	
		DATE	SAMPLED:	2024-01-11 09:00	2024-01-11 10:15	2024-01-11 12:00	
Parameter	Unit	G/S	RDL	5583264	5583265	5583266	
Electrical Conductivity (2:1)	mS/cm		0.005	0.457	0.495	3.72	
pH, 2:1 CaCl2 Extraction	pH Units		NA	7.53	8.01	10.4	
Sodium Adsorption Ratio (2:1) (Calc.)	N/A		N/A	0.704	0.577	2.01	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

5583264-5583266 EC was determined on the DI water extract obtained from the 2:1 leaching procedure (2 parts DI water:1 part soil). pH was determined on the 0.01M CaCl2 extract obtained from 2:1 leaching procedure (2 parts extraction fluid:1 part wet soil). SAR is a calculated parameter.

Analysis performed at AGAT Toronto (unless marked by *)

CLIENT NAME: EXP SERVICES INC

OMATTERED S NIVER BABLY O GHEMIST OF MANY DOCK

CLIENT NAME: EXP SERVICES INC

Certificate of Analysis

AGAT WORK ORDER: 24Z111530 PROJECT: OTT-22019409-A0

ATTENTION TO: Mark McCalla

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

SAMPLING SITE:

SAMPLED BY:Philip Oliveira

O. Reg. 153(511) - PAHs (Soil)

DATE RECEIVED: 2024-01-11						DATE REPORTED: 2024-01-18
		SAMPLE DESCRIPTION: SAMPLE TYPE: DATE SAMPLED:	MW11 Soil 2024-01-11 09:00	MW12 Soil 2024-01-11 10:15	MW13 Soil 2024-01-11 12:00	
Parameter	Unit	G/S RDL	5583264	5583265	5583266	
Naphthalene	μg/g	0.05	< 0.05	<0.05	< 0.05	
Acenaphthylene	μg/g	0.05	< 0.05	< 0.05	<0.05	
Acenaphthene	μg/g	0.05	< 0.05	0.12	< 0.05	
Fluorene	μg/g	0.05	< 0.05	0.17	0.05	
Phenanthrene	μg/g	0.05	0.19	1.33	0.56	
Anthracene	μg/g	0.05	< 0.05	0.25	0.13	
Fluoranthene	μg/g	0.05	0.20	1.17	0.72	
Pyrene	μg/g	0.05	0.15	0.92	0.60	
Benz(a)anthracene	μg/g	0.05	0.08	0.42	0.31	
Chrysene	μg/g	0.05	0.12	0.52	0.34	
Benzo(b)fluoranthene	μg/g	0.05	0.14	0.38	0.32	
Benzo(k)fluoranthene	μg/g	0.05	< 0.05	0.16	0.13	
Benzo(a)pyrene	μg/g	0.05	0.09	0.26	0.19	
Indeno(1,2,3-cd)pyrene	μg/g	0.05	0.08	0.13	0.11	
Dibenz(a,h)anthracene	μg/g	0.05	< 0.05	< 0.05	< 0.05	
Benzo(g,h,i)perylene	μg/g	0.05	0.11	0.16	0.14	
1 and 2 Methlynaphthalene	μg/g	0.05	< 0.05	< 0.05	< 0.05	
Moisture Content	%	0.1	13.8	13.4	13.1	
Surrogate	Unit	Acceptable Limits				
Naphthalene-d8	%	50-140	70	70	70	
Acridine-d9	%	50-140	80	95	70	
Terphenyl-d14	%	50-140	75	90	120	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

5583264-5583266 Results are based on the dry weight of the soil.

Note: The result for Benzo(b)Fluoranthene is the total of the Benzo(b)&j)Fluoranthene isomers because the isomers co-elute on the GC column. 2- and 1-Methyl Naphthalene is a calculated parameter. The calculated value is the sum of 2-Methyl Naphthalene and 1-Methyl Naphthalene.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

NPoprukolof

AGAT WORK ORDER: 24Z111530 PROJECT: OTT-22019409-A0

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: EXP SERVICES INC

SAMPLING SITE:

ATTENTION TO: Mark McCalla SAMPLED BY:Philip Oliveira

O. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Soil)

DATE RECEIVED: 2024-01-11						DATE REPORTED: 2024-01-18
		SAMPLE DESCRIPTION SAMPLE TYPE DATE SAMPLES	E: Soil	MW12 Soil 2024-01-11 10:15	MW13 Soil 2024-01-11 12:00	
Parameter	Unit	G/S RDL	5583264	5583265	5583266	
F1 (C6 to C10)	μg/g	5	<5	<5	<5	
F1 (C6 to C10) minus BTEX	μg/g	5	<5	<5	<5	
F2 (C10 to C16)	μg/g	10	<10	<10	<10	
F2 (C10 to C16) minus Naphthalene	μg/g	10	<10	<10	<10	
F3 (C16 to C34)	μg/g	50	<50	78	352	
F3 (C16 to C34) minus PAHs	μg/g	50	<50	73	349	
F4 (C34 to C50)	μg/g	50	<50	<50	56	
Gravimetric Heavy Hydrocarbons	μg/g	50	NA	NA	NA	
Moisture Content	%	0.1	13.8	13.4	13.1	
Surrogate	Unit	Acceptable Limits				
Toluene-d8	%	50-140	106	107	103	
Terphenyl	%	60-140	70	83	62	

Comments: RDL - Reported Detection Limit: G / S - Guideline / Standard

5583264-5583266 Results are based on sample dry weight.

The C6-C10 fraction is calculated using toluene response factor.

C6-C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX. The calculated parameter is non-accredited. The parameters that are components of the calculation are

The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and n-C34.

Gravimetric Heavy Hydrocarbons are not included in the Total C16-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons >C50 are present. The chromatogram has returned to baseline by the retention time of nC50.

Total C6 - C50 results are corrected for BTEX and PAH contributions.

C>10 - C16 (F2- Naphthalene) is a calculated parameter. The calculated value is F2 - Naphthalene.

C>16 - C34 (F3-PAH) is a calculated parameter. The calculated value is F3-PAH (PAH: sum of Phenanthrene, Benzo(a)anthracene. Benzo(b)fluoranthene, Benzo(k)fluoranthene, Benzo(a)pyrene, Fluoranthene, Dibenzo(a,h)anthracene, Indeno(1,2,3-c,d)pyrene and Pyrene).

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 + nC34 average.

Linearity is within 15%.

Extraction and holding times were met for this sample.

Analysis performed at AGAT Toronto (unless marked by *)

AGAT WORK ORDER: 24Z111530 PROJECT: OTT-22019409-A0 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: EXP SERVICES INC SAMPLING SITE:

ATTENTION TO: Mark McCalla SAMPLED BY:Philip Oliveira

O. Reg. 153(511	- VOCs (with	ı PHC) (Soil)

DATE RECEIVED: 2024-01-11						DATE REPORTED: 2024-01-18
		SAMPLE DESCRIPTION: SAMPLE TYPE: DATE SAMPLED:	MW11 Soil 2024-01-11 09:00	MW12 Soil 2024-01-11 10:15	MW13 Soil 2024-01-11 12:00	
Parameter	Unit	G/S RDL	5583264	5583265	5583266	
Dichlorodifluoromethane	μg/g	0.05	<0.05	<0.05	< 0.05	
Vinyl Chloride	ug/g	0.02	< 0.02	<0.02	<0.02	
Bromomethane	ug/g	0.05	< 0.05	<0.05	< 0.05	
Trichlorofluoromethane	ug/g	0.05	< 0.05	< 0.05	< 0.05	
Acetone	ug/g	0.50	< 0.50	< 0.50	< 0.50	
1,1-Dichloroethylene	ug/g	0.05	< 0.05	<0.05	< 0.05	
Methylene Chloride	ug/g	0.05	< 0.05	< 0.05	< 0.05	
Trans- 1,2-Dichloroethylene	ug/g	0.05	< 0.05	< 0.05	< 0.05	
Methyl tert-butyl Ether	ug/g	0.05	< 0.05	< 0.05	< 0.05	
1,1-Dichloroethane	ug/g	0.02	< 0.02	< 0.02	< 0.02	
Methyl Ethyl Ketone	ug/g	0.50	< 0.50	< 0.50	< 0.50	
Cis- 1,2-Dichloroethylene	ug/g	0.02	< 0.02	< 0.02	< 0.02	
Chloroform	ug/g	0.04	< 0.04	< 0.04	< 0.04	
1,2-Dichloroethane	ug/g	0.03	< 0.03	< 0.03	< 0.03	
1,1,1-Trichloroethane	ug/g	0.05	< 0.05	< 0.05	< 0.05	
Carbon Tetrachloride	ug/g	0.05	< 0.05	< 0.05	< 0.05	
Benzene	ug/g	0.02	< 0.02	< 0.02	< 0.02	
1,2-Dichloropropane	ug/g	0.03	< 0.03	< 0.03	< 0.03	
Trichloroethylene	ug/g	0.03	< 0.03	< 0.03	< 0.03	
Bromodichloromethane	ug/g	0.05	< 0.05	< 0.05	< 0.05	
Methyl Isobutyl Ketone	ug/g	0.50	<0.50	< 0.50	<0.50	
1,1,2-Trichloroethane	ug/g	0.04	< 0.04	<0.04	< 0.04	
Toluene	ug/g	0.05	< 0.05	< 0.05	< 0.05	
Dibromochloromethane	ug/g	0.05	< 0.05	< 0.05	< 0.05	
Ethylene Dibromide	ug/g	0.04	< 0.04	<0.04	< 0.04	
Tetrachloroethylene	ug/g	0.05	<0.05	<0.05	<0.05	
1,1,1,2-Tetrachloroethane	ug/g	0.04	<0.04	<0.04	<0.04	
Chlorobenzene	ug/g	0.05	<0.05	<0.05	<0.05	
Ethylbenzene	ug/g	0.05	<0.05	<0.05	< 0.05	

Certified By:

NPopukolof

AGAT WORK ORDER: 24Z111530 PROJECT: OTT-22019409-A0 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: EXP SERVICES INC SAMPLING SITE:

ATTENTION TO: Mark McCalla SAMPLED BY:Philip Oliveira

O. Reg.	. 153(511) - VOCs ((with PHC)) (Soil)

DATE RECEIVED: 2024-01-11						DATE REPORTED: 2024-01-18
	S	SAMPLE DESCRIPTION: SAMPLE TYPE:	MW11 Soil	MW12 Soil	MW13 Soil	
		DATE SAMPLED:	2024-01-11 09:00	2024-01-11 10:15	2024-01-11 12:00	
Parameter	Unit	G/S RDL	5583264	5583265	5583266	
m & p-Xylene	ug/g	0.05	< 0.05	< 0.05	< 0.05	
Bromoform	ug/g	0.05	< 0.05	< 0.05	< 0.05	
Styrene	ug/g	0.05	< 0.05	< 0.05	< 0.05	
1,1,2,2-Tetrachloroethane	ug/g	0.05	< 0.05	< 0.05	< 0.05	
o-Xylene	ug/g	0.05	< 0.05	< 0.05	< 0.05	
1,3-Dichlorobenzene	ug/g	0.05	< 0.05	< 0.05	< 0.05	
1,4-Dichlorobenzene	ug/g	0.05	<0.05	< 0.05	< 0.05	
1,2-Dichlorobenzene	ug/g	0.05	< 0.05	< 0.05	< 0.05	
Xylenes (Total)	ug/g	0.05	< 0.05	< 0.05	< 0.05	
1,3-Dichloropropene (Cis + Trans)	μg/g	0.05	< 0.05	< 0.05	< 0.05	
n-Hexane	μg/g	0.05	< 0.05	< 0.05	< 0.05	
Moisture Content	%	0.1	13.8	13.4	13.1	
Surrogate	Unit	Acceptable Limits				
Toluene-d8	% Recovery	50-140	106	107	103	
4-Bromofluorobenzene	% Recovery	50-140	78	83	76	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

5583264-5583266 The sample was analyzed using the high level technique. The sample was extracted using methanol, a small amount of the methanol extract was diluted in water and the purge & trap GC/MS analysis was performed. Results are based on the dry weight of the soil.

Xylenes total is a calculated parameter. The calculated value is the sum of m&p-Xylene + o-Xylene.

1,3-Dichloropropene total is a calculated parameter. The calculated value is the sum of Cis-1,3-Dichloropropene and Trans-1,3-Dichloropropene.

The calculated parameters are non-accredited. The parameters that are components of the calculation are accredited.

Analysis performed at AGAT Toronto (unless marked by *)

Quality Assurance

CLIENT NAME: EXP SERVICES INC PROJECT: OTT-22019409-A0

SAMPLING SITE:

AGAT WORK ORDER: 24Z111530
ATTENTION TO: Mark McCalla
SAMPLED BY:Philip Oliveira

SAMPLING SITE:			;	AWP	LED R	Y:Philip	Olive	ıra							
				Soi	I Ana	alysis	S								
RPT Date: Jan 18, 2024			DUPLICATE				REFERE	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		ptable nits	Recovery	1 :	ptable nits	Recovery	1 1 1 1 1	ptable nits
		ld					Value	Lower	Upper	,	Lower	Upper	,	Lower	Upper
O. Reg. 153(511) - Metals (Inc	luding Hydride	s) (Soil)													
Antimony	5582373		<0.8	<0.8	NA	< 0.8	122%	70%	130%	105%	80%	120%	77%	70%	130%
Arsenic	5582373		5	5	0.0%	< 1	106%	70%	130%	103%	80%	120%	120%	70%	130%
Barium	5582373		49.1	47.8	2.7%	< 2.0	99%	70%	130%	99%	80%	120%	113%	70%	130%
Beryllium	5582373		< 0.5	< 0.5	NA	< 0.5	84%	70%	130%	99%	80%	120%	107%	70%	130%
Boron	5582373		7	8	NA	< 5	78%	70%	130%	102%	80%	120%	105%	70%	130%
Cadmium	5582373		<0.5	<0.5	NA	< 0.5	102%	70%	130%	101%	80%	120%	123%	70%	130%
Chromium	5582373		18	17	NA	< 5	102%	70%	130%	104%	80%	120%	119%	70%	130%
Cobalt	5582373		3.9	3.8	NA	< 0.8	91%	70%	130%	101%	80%	120%	106%	70%	130%
Copper	5582373		25.9	26.5	2.3%	< 1.0	90%	70%	130%	107%	80%	120%	100%	70%	130%
Lead	5582373		26	26	0.0%	< 1	99%	70%	130%	94%	80%	120%	103%	70%	130%
Molybdenum	5582373		<0.5	<0.5	NA	< 0.5	100%	70%	130%	107%	80%	120%	124%	70%	130%
Nickel	5582373		9	8	11.8%	< 1	95%	70%	130%	106%	80%	120%	112%	70%	130%
Selenium	5582373		<0.8	<0.8	NA	< 0.8	78%	70%	130%	105%	80%	120%	123%	70%	130%
Silver	5582373		<0.5	<0.5	NA	< 0.5	97%	70%	130%	102%	80%	120%	109%	70%	130%
Thallium	5582373		<0.5	<0.5	NA	< 0.5	103%	70%	130%	96%	80%	120%	123%	70%	130%
Uranium	5582373		0.60	0.61	NA	< 0.50	111%	70%	130%	103%	80%	120%	117%	70%	130%
Vanadium	5582373		24.7	24.3	1.6%	< 2.0	101%	70%	130%	108%	80%	120%	123%	70%	130%
Zinc	5582373		101	101	0.0%	< 5	100%	70%	130%	108%	80%	120%	112%	70%	130%

Comments: NA Signifies Not Applicable.

Duplicate NA: results are under 5X the RDL and will not be calculated.

O. Reg. 153(511) - ORPs (Soil)

Electrical Conductivity (2:1)	5585164	3.20	3.24	1.1%	< 0.005	110%	80%	120%
pH, 2:1 CaCl2 Extraction	5580818	7.75	7.68	0.8%	NA	102%	80%	120%
Sodium Adsorption Ratio (2:1)	5582543	0.193	0.188	2.7%	NA			

Comments: NA signifies Not Applicable.

pH duplicates QA acceptance criteria was met relative as stated in Table 5-15 of Analytical Protocol document.

Quality Assurance

CLIENT NAME: EXP SERVICES INC PROJECT: OTT-22019409-A0

SAMPLING SITE:

AGAT WORK ORDER: 24Z111530
ATTENTION TO: Mark McCalla
SAMPLED BY:Philip Oliveira

PARAMETER				Trac	ce Or	gani	cs Ar	nalys	is									
PARAMETER	RPT Date: Jan 18, 2024			Г	UPLICAT	E		REFERE	NCE MA	TERIAL	METHOD	BLAN	(SPIKE	MAT	RIX SPI	KE		
Columb C	DARAMETER	Ratch		Dup #1	Dun #2	RPN			Measured Limite				Recovery	1 1 11		Recovery		ptable nits
FI (C6 To Co10)	TANAMETER	Buton	ld	Sup #1	Dup #2	5		Value	Lower	Upper	11000101		Upper	Hoodvery	Lower	Uppe		
F2 (C10 to C16)	O. Reg. 153(511) - PHCs F1 - F	4 (with PAHs	and VOC)	(Soil)					•			•			•			
F3 (C16 to C24)	F1 (C6 to C10)	5582552		<5	<5	NA	< 5	96%	60%	140%	111%	60%	140%	99%	60%	140%		
F4 (C34 to C50)	F2 (C10 to C16)	5580789		< 10	< 10	NA	< 10	113%	60%	140%	98%	60%	140%	86%	60%	1409		
Naphthalene 5582579	F3 (C16 to C34)	5580789		66	57	NA	< 50	117%	60%	140%	99%	60%	140%	111%	60%	1409		
Naphthalene 5582579	F4 (C34 to C50)	5580789		< 50	< 50	NA	< 50	95%	60%	140%	91%	60%	140%	107%	60%	140°		
Acenaphthylene 5582579	O. Reg. 153(511) - PAHs (Soil)																	
Accamphthene 5582579	Naphthalene	5582579		< 0.05	< 0.05	NA	< 0.05	87%	50%	140%	80%	50%	140%	73%	50%	140		
Fluorante	Acenaphthylene	5582579		< 0.05	< 0.05	NA	< 0.05	99%	50%	140%	85%	50%	140%	115%	50%	140		
Phenanthrene 5582579	Acenaphthene	5582579		< 0.05	< 0.05	NA	< 0.05	113%	50%	140%	105%	50%	140%	78%	50%	140		
Anthracene 5582579	Fluorene	5582579		< 0.05	< 0.05	NA	< 0.05	115%	50%	140%	105%	50%	140%	75%	50%	140		
Fluoranthene 5582579	Phenanthrene	5582579		<0.05	<0.05	NA	< 0.05	97%	50%	140%	110%	50%	140%	105%	50%	140		
Pyrene 5582579	Anthracene	5582579		<0.05	<0.05	NA	< 0.05	73%	50%	140%	88%	50%	140%	110%	50%	140		
Senzo(a)anthracene 5582579	luoranthene	5582579		< 0.05	< 0.05	NA	< 0.05	81%	50%	140%	108%	50%	140%	93%	50%	140		
Chrysene 5582579	Pyrene	5582579		< 0.05	< 0.05	NA	< 0.05	72%	50%	140%	108%	50%	140%	85%	50%	140		
Senzo(b)fluoranthene 5582579	Benz(a)anthracene	5582579		< 0.05	< 0.05	NA	< 0.05	77%	50%	140%	85%	50%	140%	80%	50%	140		
Renzo (k) Fluoranthene 5582579	Chrysene	5582579		<0.05	<0.05	NA	< 0.05	89%	50%	140%	93%	50%	140%	80%	50%	140		
Senzo (a) pyrene 5582579 <0.05 <0.05 NA < 0.05 66% 50% 140% 73% 50% 140% 80% 50% 140% 78% 50% 140% 90% 50% 140% 90% 50% 140% 90% 50% 140% 90% 50% 140% 90% 50% 140% 90% 50% 140% 90% 50% 140% 90% 50% 140% 90% 50% 140% 100% 50% 140% 100% 50% 140% 100% 50% 140% 100% 50% 140% 100% 50% 140% 100% 50% 140% 100% 50% 140% 100% 50% 140% 100% 50% 140% 100% 50% 140% 100% 50% 140% 100% 50% 140% 100% 50% 140% 100% 50% 140% 100% 50% 140% 100% 50% 140% 100% 50% 140% 100% 50% 140% 100% 50% 140% 50% 140% 100% 50% 140% 50% 140% 100% 50% 140% 50% 140% 100% 50% 140% 50% 140% 100% 50% 140% 50% 140% 100% 50% 140% 50% 140% 100% 50% 140% 100% 50% 140% 50% 140% 100% 50% 140% 50% 140% 100% 50% 140% 100% 50% 140% 50% 140% 100% 50% 140% 100% 50% 140% 50% 140% 100% 50% 140% 100% 50% 140% 100% 50% 140% 100% 50% 140% 100%	Benzo(b)fluoranthene	5582579		<0.05	<0.05	NA	< 0.05	117%	50%	140%	78%	50%	140%	78%	50%	140		
Ademon(1,2,3-cd)pyrene 5582579	Benzo(k)fluoranthene	5582579		< 0.05	< 0.05	NA	< 0.05	90%	50%	140%	83%	50%	140%	80%	50%	140		
Senzo(g,h,i)perylene 5582579 <0.05 <0.05 NA <0.05 76% 50% 140% 80% 50% 140% 75% 50%	Benzo(a)pyrene	5582579		<0.05	< 0.05	NA	< 0.05	66%	50%	140%	73%	50%	140%	80%	50%	140		
Senzo(g,h,i)perylene 5582579 <0.05 <0.05 NA <0.05 89% 50% 140% 78% 50% 140% 90% 50% 50% 50% 50% 50% 50% 50% 50% 50% 5	ndeno(1,2,3-cd)pyrene	5582579		<0.05	< 0.05	NA	< 0.05	66%	50%	140%	78%	50%	140%	78%	50%	140		
D. Reg. 153(511) - VOCs (with PHC) (Soil) Dichlorodifluoromethane 5582552 <0.05 <0.05 NA <0.05 93% 50% 140% 94% 50% 140% 67% 50% 70% 70% 50% 70% 70% 50% 70% 70% 50% 70% 70% 70% 50% 70% 70% 70% 70% 70% 70% 70% 70% 70% 7	Dibenz(a,h)anthracene	5582579		<0.05	<0.05	NA	< 0.05	76%	50%	140%	80%	50%	140%	75%	50%	140		
Composition	Benzo(g,h,i)perylene	5582579		<0.05	<0.05	NA	< 0.05	89%	50%	140%	78%	50%	140%	90%	50%	140		
Vinyl Chloride 5582552 <0.02 <0.02 NA <0.02 108% 50% 140% 108% 50% 140% 112% 50% 50% 50% 50% 50% 140% 107% 50% 5	D. Reg. 153(511) - VOCs (with	PHC) (Soil)																
State Stat	Dichlorodifluoromethane	5582552		< 0.05	< 0.05	NA	< 0.05	93%	50%	140%	94%	50%	140%	67%	50%	140		
Trichlorofluoromethane 5582552	/inyl Chloride	5582552		< 0.02	< 0.02	NA	< 0.02	108%	50%	140%	108%	50%	140%	112%	50%	140		
Acetone 5582552 <0.50 <0.50 NA <0.50 114% 50% 140% 101% 50% 140% 114% 50% 140% 101% 50% 140% 114% 50% 140% 101% 50% 140% 114% 50% 140% 101% 50% 140% 101% 50% 140% 101% 50% 140% 100% 60% 130% 117% 50% 140% 100% 60% 130% 104% 50% 140% 100% 60% 130% 104% 50% 140% 100% 60% 130% 104% 50% 140% 100% 60% 130% 83% 50% 140% 100% 60% 130% 83% 50% 140% 100% 60% 130% 83% 50% 140% 100% 60% 130% 83% 50% 140% 100% 60% 130% 83% 50% 140% 100% 60% 130% 83% 50% 140% 100% 60% 130% 66% 50% 1,1-Dichloroethane 5582552 <0.05 <0.05 NA <0.05 70% 50% 140% 79% 60% 130% 99% 50% 140% 102% 60% 130% 99% 50% 140% 102% 60% 130% 99% 50% 140% 102% 60% 130% 99% 50% 140% 102% 60% 130% 99% 50% 140% 90% 60% 130% 92% 50% 140% 90% 60% 130% 92% 50% 140% 90% 60% 130% 92% 50% 140% 90% 60% 130% 90% 50% 140% 90% 60% 130% 90% 50% 140% 90% 60% 130% 90% 50% 140% 90% 60% 130% 90% 50% 120% 90% 50% 120% 90% 50% 120% 90% 50% 120% 90% 50% 120% 90% 50% 120% 90% 50% 120% 90% 50% 120% 90% 50% 120%	Bromomethane	5582552		< 0.05	< 0.05	NA	< 0.05	108%	50%	140%	103%	50%	140%	107%	50%	140		
,1-Dichloroethylene 5582552	richlorofluoromethane	5582552		< 0.05	< 0.05	NA	< 0.05	103%	50%	140%	100%	50%	140%	99%	50%	140		
Methylene Chloride 5582552 <0.05 <0.05 NA < 0.05 103% 50% 140% 96% 60% 130% 104% 50 Trans- 1,2-Dichloroethylene 5582552 <0.05	Acetone	5582552		<0.50	<0.50	NA	< 0.50	114%	50%	140%	101%	50%	140%	114%	50%	140		
Trans-1,2-Dichloroethylene 5582552 <0.05 <0.05 NA < 0.05 107% 50% 140% 100% 60% 130% 83% 50 Methyl tert-butyl Ether 5582552 <0.05	,1-Dichloroethylene	5582552		<0.05	< 0.05	NA	< 0.05	115%	50%	140%		60%	130%	117%	50%	140		
Wethyl tert-butyl Ether 5582552 <0.05	Methylene Chloride	5582552		<0.05	< 0.05	NA	< 0.05	103%	50%	140%	96%	60%	130%	104%	50%	140		
1,1-Dichloroethane 5582552 <0.02 <0.02 NA < 0.02 108% 50% 140% 102% 60% 130% 99% 50 Methyl Ethyl Ketone 5582552 <0.50 <0.50 NA < 0.50 93% 50% 140% 90% 50% 140% 79% 50 Cis- 1,2-Dichloroethylene 5582552 <0.02 <0.02 NA < 0.02 99% 50% 140% 94% 60% 130% 92% 50 Chloroform 5582552 <0.04 <0.04 NA < 0.04 98% 50% 140% 90% 60% 130% 90% 50 1,2-Dichloroethane 5582552 <0.03 <0.03 NA < 0.03 92% 50% 140% 99% 60% 130% 88% 50	Frans- 1,2-Dichloroethylene	5582552		< 0.05	< 0.05	NA	< 0.05	107%	50%	140%	100%	60%	130%	83%	50%	140		
Methyl Ethyl Ketone 5582552 <0.50 <0.50 NA <0.50 93% 50% 140% 90% 50% 140% 79% 50 cis- 1,2-Dichloroethylene 5582552 <0.02 <0.02 NA <0.02 99% 50% 140% 94% 60% 130% 92% 50 chloroform 5582552 <0.04 <0.04 NA <0.04 98% 50% 140% 90% 60% 130% 90% 50% 2-Dichloroethane 5582552 <0.03 <0.03 NA <0.03 92% 50% 140% 99% 60% 130% 88% 50	Methyl tert-butyl Ether	5582552		< 0.05	< 0.05	NA	< 0.05	70%	50%	140%	79%	60%	130%	66%	50%	140		
Cis- 1,2-Dichloroethylene 5582552 <0.02 <0.02 NA < 0.02 99% 50% 140% 94% 60% 130% 92% 50 Chloroform 5582552 <0.04	,1-Dichloroethane	5582552		<0.02	<0.02	NA	< 0.02	108%	50%	140%	102%	60%	130%	99%	50%	140		
thloroform 5582552 <0.04 <0.04 NA <0.04 98% 50% 140% 90% 60% 130% 90% 50% 2-Dichloroethane 5582552 <0.03 <0.03 NA <0.03 92% 50% 140% 99% 60% 130% 88% 50% 50% 140% 99% 60% 130% 88% 50% 50% 140% 99% 60% 130% 88% 50% 50% 50% 50% 50% 50% 50% 50% 50% 50	• •	5582552		<0.50		NA	< 0.50	93%	50%	140%	90%	50%	140%	79%	50%	140		
,2-Dichloroethane 5582552 <0.03 <0.03 NA <0.03 92% 50% 140% 99% 60% 130% 88% 50	Cis- 1,2-Dichloroethylene	5582552		< 0.02	< 0.02	NA	< 0.02	99%	50%	140%	94%	60%	130%	92%	50%	140		
	Chloroform	5582552		<0.04	< 0.04	NA	< 0.04	98%	50%	140%	90%	60%	130%	90%	50%	140		
14.4 Table walkers	,2-Dichloroethane	5582552		< 0.03	< 0.03	NA	< 0.03	92%	50%	140%	99%	60%	130%	88%	50%	140		
1,1,1-Trichloroethane 5582552 <0.05 <0.05 NA < 0.05 88% 50% 140% 79% 60% 130% 111% 50	1,1,1-Trichloroethane	5582552		<0.05	<0.05	NA	< 0.05	88%	50%	140%	79%	60%	130%	111%	50%	140		
Carbon Tetrachloride 5582552 <0.05 <0.05 NA < 0.05 87% 50% 140% 74% 60% 130% 70% 50	Carbon Tetrachloride	5582552		<0.05	<0.05	NA	< 0.05	87%	50%	140%	74%	60%	130%	70%	50%	140		

AGAT QUALITY ASSURANCE REPORT (V1)

Page 9 of 15

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Quality Assurance

CLIENT NAME: EXP SERVICES INC

PROJECT: OTT-22019409-A0

SAMPLING SITE:

AGAT WORK ORDER: 24Z111530

ATTENTION TO: Mark McCalla

SAMPLED BY:Philip Oliveira

Trace Organics Analysis (Continued)															
RPT Date: Jan 18, 2024			С	UPLICAT	E		REFERE	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample Id	Dup #1	Dup #2	RPD	Method Blank	Measured Value		ptable nits	Recovery	1 1 1	ptable nits	Recovery		ptable nits
		Iu	-	-			value	Lower	Upper		Lower	Upper		Lower	Upper
Benzene	5582552		<0.02	<0.02	NA	< 0.02	106%	50%	140%	89%	60%	130%	99%	50%	140%
1,2-Dichloropropane	5582552		< 0.03	< 0.03	NA	< 0.03	94%	50%	140%	79%	60%	130%	82%	50%	140%
Trichloroethylene	5582552		< 0.03	< 0.03	NA	< 0.03	87%	50%	140%	102%	60%	130%	104%	50%	140%
Bromodichloromethane	5582552		<0.05	<0.05	NA	< 0.05	76%	50%	140%	98%	60%	130%	86%	50%	140%
Methyl Isobutyl Ketone	5582552		<0.50	<0.50	NA	< 0.50	107%	50%	140%	100%	50%	140%	74%	50%	140%
1,1,2-Trichloroethane	5582552		< 0.04	< 0.04	NA	< 0.04	93%	50%	140%	119%	60%	130%	99%	50%	140%
Toluene	5582552		< 0.05	< 0.05	NA	< 0.05	115%	50%	140%	111%	60%	130%	97%	50%	140%
Dibromochloromethane	5582552		< 0.05	< 0.05	NA	< 0.05	89%	50%	140%	99%	60%	130%	72%	50%	140%
Ethylene Dibromide	5582552		<0.04	<0.04	NA	< 0.04	105%	50%	140%	111%	60%	130%	87%	50%	140%
Tetrachloroethylene	5582552		<0.05	<0.05	NA	< 0.05	84%	50%	140%	96%	60%	130%	105%	50%	140%
1,1,1,2-Tetrachloroethane	5582552		< 0.04	< 0.04	NA	< 0.04	98%	50%	140%	96%	60%	130%	93%	50%	140%
Chlorobenzene	5582552		< 0.05	< 0.05	NA	< 0.05	112%	50%	140%	109%	60%	130%	96%	50%	140%
Ethylbenzene	5582552		< 0.05	< 0.05	NA	< 0.05	102%	50%	140%	102%	60%	130%	84%	50%	140%
m & p-Xylene	5582552		<0.05	<0.05	NA	< 0.05	99%	50%	140%	93%	60%	130%	82%	50%	140%
Bromoform	5582552		<0.05	< 0.05	NA	< 0.05	75%	50%	140%	82%	60%	130%	89%	50%	140%
Styrene	5582552		< 0.05	< 0.05	NA	< 0.05	82%	50%	140%	79%	60%	130%	82%	50%	140%
1,1,2,2-Tetrachloroethane	5582552		< 0.05	< 0.05	NA	< 0.05	117%	50%	140%	119%	60%	130%	110%	50%	140%
o-Xylene	5582552		< 0.05	< 0.05	NA	< 0.05	102%	50%	140%	97%	60%	130%	88%	50%	140%
1,3-Dichlorobenzene	5582552		<0.05	<0.05	NA	< 0.05	103%	50%	140%	95%	60%	130%	92%	50%	140%
1,4-Dichlorobenzene	5582552		<0.05	<0.05	NA	< 0.05	103%	50%	140%	98%	60%	130%	91%	50%	140%
1,2-Dichlorobenzene	5582552		< 0.05	< 0.05	NA	< 0.05	106%	50%	140%	96%	60%	130%	84%	50%	140%
n-Hexane	5582552		< 0.05	< 0.05	NA	< 0.05	112%	50%	140%	110%	60%	130%	83%	50%	140%

Comments: When the average of the sample and duplicate results is less than 5x the RDL, the Relative Percent Difference (RPD) will be indicated as Not Applicable (NA).

Method Summary

CLIENT NAME: EXP SERVICES INC PROJECT: OTT-22019409-A0

SAMPLING SITE:

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Soil Analysis	-		
Antimony	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Arsenic	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Barium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Beryllium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Boron	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Cadmium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Chromium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Cobalt	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Copper	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Lead	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Molybdenum	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Nickel	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Selenium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Silver	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Thallium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Uranium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Vanadium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Zinc	MET 93 -6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Electrical Conductivity (2:1)	INOR-93-6075	modified from MSA PART 3, CH 14 and SM 2510 B	PC TITRATE
pH, 2:1 CaCl2 Extraction	INOR-93-6075	modified from EPA 9045D, MCKEAGUE 3.11 E3137	PC TITRATE
Sodium Adsorption Ratio (2:1) (Calc.)	INOR-93-6007	modified from EPA 6010D & Analytical Protocol	ICP/OES

Method Summary

CLIENT NAME: EXP SERVICES INC PROJECT: OTT-22019409-A0

SAMPLING SITE:

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Trace Organics Analysis		-	'
Naphthalene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Acenaphthylene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Acenaphthene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Fluorene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Phenanthrene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Anthracene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Fluoranthene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Pyrene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Benz(a)anthracene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Chrysene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Benzo(b)fluoranthene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Benzo(k)fluoranthene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Benzo(a)pyrene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Indeno(1,2,3-cd)pyrene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Dibenz(a,h)anthracene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Benzo(g,h,i)perylene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
1 and 2 Methlynaphthalene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Naphthalene-d8	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Acridine-d9	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Terphenyl-d14	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Moisture Content	VOL-91-5009	modified from CCME Tier 1 Method	BALANCE
F1 (C6 to C10)	VOL-91-5009	modified from CCME Tier 1 Method	(P&T)GC/FID
F1 (C6 to C10) minus BTEX	VOL-91-5009	modified from CCME Tier 1 Method	P&T GC/FID
Toluene-d8	VOL-91- 5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
F2 (C10 to C16)	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID
F2 (C10 to C16) minus Naphthalene	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID
F3 (C16 to C34)	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID
F3 (C16 to C34) minus PAHs	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID
F4 (C34 to C50)	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID
Gravimetric Heavy Hydrocarbons	VOL-91-5009	modified from CCME Tier 1 Method	BALANCE
Terphenyl	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID
Dichlorodifluoromethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS

Method Summary

CLIENT NAME: EXP SERVICES INC PROJECT: OTT-22019409-A0

SAMPLING SITE:

SAMPLING SITE:		SAMPLED BY:PIII	p =
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Vinyl Chloride	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Bromomethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Trichlorofluoromethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Acetone	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,1-Dichloroethylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Methylene Chloride	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Trans- 1,2-Dichloroethylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Methyl tert-butyl Ether	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,1-Dichloroethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Methyl Ethyl Ketone	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Cis- 1,2-Dichloroethylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Chloroform	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,2-Dichloroethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,1,1-Trichloroethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Carbon Tetrachloride	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Benzene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,2-Dichloropropane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Trichloroethylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Bromodichloromethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Methyl Isobutyl Ketone	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,1,2-Trichloroethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Toluene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Dibromochloromethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Ethylene Dibromide	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Tetrachloroethylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,1,1,2-Tetrachloroethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Chlorobenzene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Ethylbenzene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS

Method Summary

CLIENT NAME: EXP SERVICES INC PROJECT: OTT-22019409-A0

SAMPLING SITE:

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
m & p-Xylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Bromoform	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Styrene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,1,2,2-Tetrachloroethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
o-Xylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,3-Dichlorobenzene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,4-Dichlorobenzene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,2-Dichlorobenzene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Xylenes (Total)	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,3-Dichloropropene (Cis + Trans)	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
n-Hexane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Toluene-d8	VOL-91-5002	modified from EPA 5035A & EPA 8260D	(P&T)GC/MS
4-Bromofluorobenzene	VOL-91-5002	modified from EPA 5035A & EPA 8260D	(P&T)GC/MS

Have feedback?

Scan here for a quick survey!

5835 Coopers Avenue Mississauga, Ontario L4Z 1Y2 Ph: 905.712.5100 Fax: 905.712.5122 webearth.agatlabs.com

Laboratory Use	Only	Maria V	
Work Order #: 2	1211	530	e ledit
Cooler Quantity:	0-10	pack)
Arrival Temperatures:	24	12.2	2.4
	1.3	1121	1.6
Custody Seal Intact:	□Yes	□No	₽ħ/A

Page 15 of 15

Chain of Custody Record	If this is a Drinking Water sample, please use Drinking Water Chain of Custody Form (potable water consumed by humans)
Chall of Custody Record	If this is a Drinking Water sample, please use Drinking Water Chain of Custody Form (potable water consumed by humans)

Report Information: Company: Contact: Report Information: Selvices MARK McCalla	1110	Regulatory Requirements: (Please check all applicable boxes)		Custody Seal Intact: Yes No MA/A Notes: BAGGO SUC
Address: 2650 QUEENSVIEW	DR.	Regulation 153/04 ☐ Regulation 406 Table ☐ Indicate One ☐ Indica	Sanitary Storm	Turnaround Time (TAT) Required: Regular TAT
Phone: Reports to be sent to: 1. Email: Philip Oliveira @	p. com	Res/Park Agriculture Soil Texture (Check One) Coarse Regulation 558	Prov. Water Quality Objectives (PWQO) Other	Rush TAT (Rush Surcharges Apply) 3 Business
Project Information: Project: OTT- 220 10	1409 - AD	Is this submission for a Record of Site Condition? Yes No	Report Guideline on Certificate of Analysis Yes No	OR Date Required (Rush Surcharges May Apply): Please provide prior notification for rush TAT *TAT is exclusive of weekends and statutory holidays
Sampled By: AGAT Quote #: PO:	lira	CONTROL DICE	0 Pag 153	For 'Same Day' analysis, please contact your AGAT CPM O. Reg 0. Reg 406
Company:	ill To Same: Yes No D	Sample Matrix Legend GW Ground Water O Oil P Paint S Soil SD Sediment SW Surface Water	Metals & Inorganics Metals & Inorganics Metals DCN', DHg, DHWSB BTEX (1.1-14 PHCs) VOC PAHS PCBS	PCBs: Arodors Landfill Disposal Characterization TCLP: TCLP: TMAI TOLY Regulation 406 SPLP Rainwater Leach SPLP: Medals TOUS SPLP: Medals TOUS SPLP Corrosivity: Moisture Sulphide SAAR Corrosivity: Moisture Sulphide
Sample Identification Date Sampled		mple Comments/ atrix Special Instructions	Metals A A A A A A A A A A A A A A A A A A A	PCBs: Arrod Landfill Disy TCLP: □ M&s Regulation pH, ICPMS: Corrosivity:
1. MW 11 2. MW 12 3. MW 13 4. BH 14 5. RH 15	19h00 AM 4 10h15 AM 4 12h00 AM 1 14h30 AM 1	<i>S</i>	× × × × × × × × × × × × × × × × × × ×	X X X X X X X X X X X X X X X X X X X
6.	AM PM			
7. 8.	AM PM AM PM			
9.	AM PM		F B ESS II STEAM	
10.	AM PM			
11.	AM PM			
Samples Relinquished By Print Plane and Signs Samples Relinquished By Print Plane and Signs Amples Relinquished By (Print Rome and Signs)	Date 11-11-24 Time Time Date Time 15h3	Samples Received by Weins Marie and Sign):	Date O)/}	124 Time 15h10 2/24 Time Page of 1 Time No. 159 No. 151729

Any and all products and/or services provided by AGAT Labs are pursuant to the terms and conditions as set forth at www.agatlabs.com/termsandconditions unless otherwise agreed in a current written contractual document.

CLIENT NAME: EXP SERVICES INC

2650 QUEENSVIEW DRIVE, UNIT 100

OTTAWA, ON K2B8H6

(613) 688-1899

ATTENTION TO: Mark McCalla

PROJECT: OTT-22019409-AO

AGAT WORK ORDER: 24Z114812

TRACE ORGANICS REVIEWED BY: Neli Popnikolova, Senior Chemist WATER ANALYSIS REVIEWED BY: Yris Verastegui, Inorganic Team Lead

DATE REPORTED: Jan 31, 2024

PAGES (INCLUDING COVER): 19 VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

*Notes	

Disclaimer:

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may
 incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 30 days after receipt unless a Long Term Storage Agreement is signed and returned. Some specialty analysis may
 be exempt, please contact your Client Project Manager for details.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other
 third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the
 services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of
 merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines
 contained in this document.
- All reportable information as specified by ISO/IEC 17025:2017 is available from AGAT Laboratories upon request.
- For environmental samples in the Province of Quebec: The analysis is performed on and results apply to samples as received. A temperature above 6°C upon receipt, as indicated in the Sample Reception Notification (SRN), could indicate the integrity of the samples has been compromised if the delay between sampling and submission to the laboratory could not be minimized.

AGAT Laboratories (V1)

Page 1 of 19

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA)

Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA) AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.

AGAT WORK ORDER: 24Z114812 PROJECT: OTT-22019409-AO 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: EXP SERVICES INC

SAMPLING SITE:

ATTENTION TO: Mark McCalla SAMPLED BY:Philip Oliveira

O. Reg. 153(511) - PAHs (Water)

DATE RECEIVED: 2024-01-25							I	DATE REPORTE	ED: 2024-01-31	
		SAMPLE DESCRIPTION: SAMPLE TYPE: DATE SAMPLED:	MW12 Water 2024-01-23 11:15	MW11 Water 2024-01-23 13:30	MW13 Water 2024-01-23 14:45	MW5 Water 2024-01-23 16:30	MW7 Water 2024-01-24 10:35	MW6 Water 2024-01-24 11:45	MW8 Water 2024-01-24 13:45	MW9 Water 2024-01-24 14:50
Parameter	Unit	G / S RDL	5604775	5604777	5604778	5604779	5604781	5604782	5604783	5604784
Naphthalene	μg/L	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Acenaphthylene	μg/L	0.20	< 0.20	<0.20	<0.20	< 0.20	<0.20	<0.20	< 0.20	< 0.20
Acenaphthene	μg/L	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Fluorene	μg/L	0.20	< 0.20	<0.20	<0.20	< 0.20	<0.20	<0.20	<0.20	< 0.20
Phenanthrene	μg/L	0.10	<0.10	<0.10	<0.10	< 0.10	<0.10	<0.10	<0.10	< 0.10
Anthracene	μg/L	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	< 0.10
Fluoranthene	μg/L	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	< 0.20
Pyrene	μg/L	0.20	< 0.20	<0.20	<0.20	< 0.20	<0.20	<0.20	<0.20	< 0.20
Benzo(a)anthracene	μg/L	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	< 0.20
Chrysene	μg/L	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Benzo(b)fluoranthene	μg/L	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Benzo(k)fluoranthene	μg/L	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	< 0.10
Benzo(a)pyrene	μg/L	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	< 0.01
Indeno(1,2,3-cd)pyrene	μg/L	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Dibenz(a,h)anthracene	μg/L	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	< 0.20
Benzo(g,h,i)perylene	μg/L	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
2-and 1-methyl Napthalene	μg/L	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Sediment			1	1	1	1	1	1	1	1
Surrogate	Unit	Acceptable Limits								
Naphthalene-d8	%	50-140	79	82	76	82	79	94	81	78
Acridine-d9	%	50-140	112	112	112	99	99	88	115	103
Terphenyl-d14	%	50-140	90	72	111	82	101	76	76	111

AGAT WORK ORDER: 24Z114812 PROJECT: OTT-22019409-AO

O. Reg. 153(511) - PAHs (Water)

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: EXP SERVICES INC

SAMPLING SITE:

ATTENTION TO: Mark McCalla SAMPLED BY:Philip Oliveira

DATE RECEIVED: 2024-01-25				DATE REPORTED: 2024-01-31
	CAMPLE DECODIDATION.	BANA/4 O	DUD4	

					211121121121121112111111111111111111111
	S	SAMPLE DESCRIPTION:	MW10	DUP1	
		SAMPLE TYPE:	Water	Water	
		DATE SAMPLED:	2024-01-25 10:30	2024-01-24 09:30	
Parameter	Unit	G/S RDL	5604785	5604786	
Naphthalene	μg/L	0.20	<0.20	<0.20	
Acenaphthylene	μg/L	0.20	<0.20	<0.20	
Acenaphthene	μg/L	0.20	<0.20	<0.20	
Fluorene	μg/L	0.20	<0.20	<0.20	
Phenanthrene	μg/L	0.10	<0.10	<0.10	
Anthracene	μg/L	0.10	<0.10	<0.10	
Fluoranthene	μg/L	0.20	< 0.20	<0.20	
Pyrene	μg/L	0.20	<0.20	<0.20	
Benzo(a)anthracene	μg/L	0.20	<0.20	<0.20	
Chrysene	μg/L	0.10	<0.10	<0.10	
Benzo(b)fluoranthene	μg/L	0.10	<0.10	<0.10	
Benzo(k)fluoranthene	μg/L	0.10	<0.10	<0.10	
Benzo(a)pyrene	μg/L	0.01	<0.01	<0.01	
Indeno(1,2,3-cd)pyrene	μg/L	0.20	<0.20	<0.20	
Dibenz(a,h)anthracene	μg/L	0.20	<0.20	<0.20	
Benzo(g,h,i)perylene	μg/L	0.20	<0.20	<0.20	
2-and 1-methyl Napthalene	μg/L	0.20	<0.20	<0.20	
Sediment			1	1	
Surrogate	Unit	Acceptable Limits			
Naphthalene-d8	%	50-140	77	81	
Acridine-d9	%	50-140	109	103	
Terphenyl-d14	%	50-140	87	100	

Comments:

RDL - Reported Detection Limit; G / S - Guideline / Standard

5604775-5604786 Sediment parameter is comment only based on visual inspection of the sample prior to extraction and is not an accredited test.

Legend: 1 = no sediment present; 2 = sediment present; 3 = sediment present in trace amount

Note: The result for Benzo(b)Fluoranthene is the total of the Benzo(b)&(j)Fluoranthene isomers because the isomers co-elute on the GC column.

2- and 1-Methyl Naphthalene is a calculated parameter. The calculated value is the sum of 2-Methyl Naphthalene and 1-Methyl Naphthalene. The calculated parameter is non-accredited. The parameters that are components of the calculation are accredited.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

NPoprukoloj

AGAT WORK ORDER: 24Z114812 PROJECT: OTT-22019409-AO 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: EXP SERVICES INC

SAMPLING SITE:

ATTENTION TO: Mark McCalla SAMPLED BY:Philip Oliveira

O. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Water)

DATE RECEIVED: 2024-01-25							[DATE REPORT	ED: 2024-01-31	
	S	SAMPLE DESCRIPTION: SAMPLE TYPE:	MW12 Water	MW11 Water	MW13 Water	MW5 Water	MW7 Water	MW6 Water	MW8 Water	MW9 Water
Parameter	Unit	DATE SAMPLED: G/S RDL	2024-01-23 11:15 5604775	2024-01-23 13:30 5604777	2024-01-23 14:45 5604778	2024-01-23 16:30 5604779	2024-01-24 10:35 5604781	2024-01-24 11:45 5604782	2024-01-24 13:45 5604783	2024-01-24 14:50 5604784
F1 (C6 to C10)	μg/L	25	<25	<25	<25	<25	<25	<25	<25	<25
F1 (C6 to C10) minus BTEX	μg/L	25	<25	<25	<25	<25	<25	<25	<25	<25
F2 (C10 to C16)	μg/L	100	<100	<100	<100	<100	<100	<100	<100	<100
F2 (C10 to C16) minus Naphthalene	μg/L	100	<100	<100	<100	<100	<100	<100	<100	<100
F3 (C16 to C34)	μg/L	100	<100	<100	<100	<100	<100	<100	<100	<100
F3 (C16 to C34) minus PAHs	μg/L	100	<100	<100	<100	<100	<100	<100	<100	<100
F4 (C34 to C50)	μg/L	100	<100	<100	<100	<100	<100	<100	<100	<100
Gravimetric Heavy Hydrocarbons	μg/L	500	NA							
Sediment			1	1	1	1	1	1	1	1
Surrogate	Unit	Acceptable Limits								
Toluene-d8	%	50-140	108	103	105	104	100	102	102	102
Terphenyl	% Recovery	60-140	75	71	91	95	82	79	78	95

AGAT WORK ORDER: 24Z114812 PROJECT: OTT-22019409-AO

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: EXP SERVICES INC

SAMPLING SITE:

ATTENTION TO: Mark McCalla SAMPLED BY:Philip Oliveira

O. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Water)

DATE RECEIVED: 2024-01-25					DATE REPORTED: 2024-01-31
	S	AMPLE DESCRIPTION: SAMPLE TYPE:	MW10 Water	DUP1 Water	
		DATE SAMPLED:	2024-01-25 10:30	2024-01-24 09:30	
Parameter	Unit	G/S RDL	5604785	5604786	
F1 (C6 to C10)	μg/L	25	<25	<25	
-1 (C6 to C10) minus BTEX	μg/L	25	<25	<25	
F2 (C10 to C16)	μg/L	100	<100	<100	
-2 (C10 to C16) minus Naphthalene	μg/L	100	<100	<100	
F3 (C16 to C34)	μg/L	100	<100	<100	
F3 (C16 to C34) minus PAHs	μg/L	100	<100	<100	
F4 (C34 to C50)	μg/L	100	<100	<100	
Gravimetric Heavy Hydrocarbons	μg/L	500	NA	NA	
Sediment			1	1	
Surrogate	Unit	Acceptable Limits			
Foluene-d8	%	50-140	102	103	
Terphenyl	% Recovery	60-140	62	96	

Comments: RDL - Reported Detection Limit: G / S - Guideline / Standard

5604775-5604786 The C6-C10 fraction is calculated using toluene response factor.

C6-C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX. The calculated parameter is non-accredited. The parameters that are components of the calculation are accredited.

The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and n-C34.

Gravimetric Heavy Hydrocarbons are not included in the Total C16-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons >C50 are present. The chromatogram has returned to baseline by the retention time of nC50.

Total C6 - C50 results are corrected for BTEX and PAH contributions.

C>10 - C16 (F2- Naphthalene) is a calculated parameter. The calculated value is F2 - Naphthalene.

C>16 - C34 (F3-PAH) is a calculated parameter. The calculated value is F3-PAH (PAH: sum of Phenanthrene, Benzo(a)anthracene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Benzo(a)pyrene,

Fluoranthene, Dibenzo(a,h)anthracene, Indeno(1,2,3-c,d)pyrene and Pyrene).

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 + nC34 average.

Linearity is within 15%.

Extraction and holding times were met for this sample.

Sediment parameter is comment only based on visual inspection of the sample prior to extraction and is not an accredited test.

Legend: 1 = no sediment present; 2 = sediment present; 3 = sediment present in trace amounts

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

NPoprukoloj

AGAT WORK ORDER: 24Z114812 PROJECT: OTT-22019409-AO 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: EXP SERVICES INC SAMPLING SITE:

ATTENTION TO: Mark McCalla SAMPLED BY:Philip Oliveira

O. Reg. 153(511) - VOCs (with PHC) (Water)

DATE RECEIVED: 2024-01-25								DATE REPORTI	ED: 2024-01-31	
		SAMPLE DESCRIPTION: SAMPLE TYPE: DATE SAMPLED:	MW12 Water 2024-01-23 11:15	MW11 Water 2024-01-23 13:30	MW13 Water 2024-01-23 14:45	MW5 Water 2024-01-23 16:30	MW7 Water 2024-01-24 10:35	MW6 Water 2024-01-24 11:45	MW8 Water 2024-01-24 13:45	MW9 Water 2024-01-24 14:50
Parameter	Unit	G/S RDL	5604775	5604777	5604778	5604779	5604781	5604782	5604783	5604784
Dichlorodifluoromethane	μg/L	0.40	< 0.40	<0.40	<0.40	<0.40	< 0.40	<0.40	<0.40	< 0.40
Vinyl Chloride	μg/L	0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17
Bromomethane	μg/L	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Trichlorofluoromethane	μg/L	0.40	< 0.40	< 0.40	<0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40
Acetone	μg/L	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,1-Dichloroethylene	μg/L	0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30
Methylene Chloride	μg/L	0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30
trans- 1,2-Dichloroethylene	μg/L	0.20	<0.20	< 0.20	< 0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Methyl tert-butyl ether	μg/L	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
1,1-Dichloroethane	μg/L	0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30
Methyl Ethyl Ketone	μg/L	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
cis- 1,2-Dichloroethylene	μg/L	0.20	<0.20	< 0.20	< 0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Chloroform	μg/L	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
1,2-Dichloroethane	μg/L	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
1,1,1-Trichloroethane	μg/L	0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30
Carbon Tetrachloride	μg/L	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Benzene	μg/L	0.20	0.34	0.46	0.67	0.29	<0.20	<0.20	< 0.20	<0.20
1,2-Dichloropropane	μg/L	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Trichloroethylene	μg/L	0.20	<0.20	< 0.20	< 0.20	<0.20	<0.20	<0.20	< 0.20	<0.20
Bromodichloromethane	μg/L	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Methyl Isobutyl Ketone	μg/L	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,1,2-Trichloroethane	μg/L	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Toluene	μg/L	0.20	<0.20	0.54	0.39	1.24	<0.20	<0.20	0.76	<0.20
Dibromochloromethane	μg/L	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Ethylene Dibromide	μg/L	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Tetrachloroethylene	μg/L	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
1,1,1,2-Tetrachloroethane	μg/L	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Chlorobenzene	μg/L	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Ethylbenzene	μg/L	0.10	0.12	0.13	0.66	<0.10	<0.10	<0.10	<0.10	<0.10

Certified By:

NPopukolof

AGAT WORK ORDER: 24Z114812 PROJECT: OTT-22019409-AO 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: EXP SERVICES INC

SAMPLING SITE:

ATTENTION TO: Mark McCalla SAMPLED BY:Philip Oliveira

O. Reg. 153(511) - VOCs (with PHC) (Water)

DATE RECEIVED: 2024-01-25							DATE REPORTED: 2024-01-31						
	S	AMPLE DESCRIPTION: SAMPLE TYPE:		MW11 Water	MW13 Water	MW5 Water	MW7 Water	MW6 Water	MW8 Water	MW9 Water			
		DATE SAMPLED:	2024-01-23 11:15	2024-01-23 13:30	2024-01-23 14:45	2024-01-23 16:30	2024-01-24 10:35	2024-01-24 11:45	2024-01-24 13:45	2024-01-24 14:50			
Parameter	Unit	G/S RDL	5604775	5604777	5604778	5604779	5604781	5604782	5604783	5604784			
m & p-Xylene	μg/L	0.20	<0.20	<0.20	<0.20	0.35	<0.20	0.39	0.49	< 0.20			
Bromoform	μg/L	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	< 0.10			
Styrene	μg/L	0.10	< 0.10	< 0.10	<0.10	<0.10	<0.10	<0.10	< 0.10	< 0.10			
1,1,2,2-Tetrachloroethane	μg/L	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	< 0.10			
o-Xylene	μg/L	0.10	0.35	0.35	1.34	<0.10	<0.10	<0.10	0.21	< 0.10			
1,3-Dichlorobenzene	μg/L	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	< 0.10			
1,4-Dichlorobenzene	μg/L	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	< 0.10			
1,2-Dichlorobenzene	μg/L	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	< 0.10			
1,3-Dichloropropene	μg/L	0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30			
Xylenes (Total)	μg/L	0.20	0.35	0.35	1.34	0.35	<0.20	0.39	0.70	<0.20			
n-Hexane	μg/L	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20			
Surrogate	Unit	Acceptable Limits											
Toluene-d8	% Recovery	50-140	108	103	105	104	100	102	102	102			
4-Bromofluorobenzene	% Recovery	50-140	92	93	99	94	91	91	92	92			

AGAT WORK ORDER: 24Z114812 PROJECT: OTT-22019409-AO 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: EXP SERVICES INC
SAMPLING SITE:
ATTENTION TO: Mark McCalla
SAMPLED BY:Philip Oliveira

		0	Reg. 153(511) - VOCs (\	with PHC) (Water)
DATE RECEIVED: 2024-01-25					DATE REPORTED: 2024-01-31
		SAMPLE DESCRIPTION: SAMPLE TYPE: DATE SAMPLED:	MW10 Water 2024-01-25 10:30	DUP1 Water 2024-01-24 09:30	
Parameter	Unit	G / S RDL 0.40	5604785	5604786	
Dichlorodifluoromethane	μg/L		<0.40	<0.40	
Vinyl Chloride	μg/L	0.17	<0.17 <0.20	<0.17 <0.20	
Bromomethane Frichlorofluoromethane	μg/L	0.20	<0.20	<0.20 <0.40	
	μg/L	0.40			
Acetone	μg/L	1.0	<1.0	<1.0	
1,1-Dichloroethylene	μg/L	0.30	<0.30	<0.30	
Methylene Chloride	μg/L	0.30	<0.30	<0.30	
rans- 1,2-Dichloroethylene	μg/L	0.20	<0.20	<0.20	
Methyl tert-butyl ether	μg/L	0.20	<0.20	<0.20	
,1-Dichloroethane	μg/L	0.30	<0.30	<0.30	
Methyl Ethyl Ketone	μg/L	1.0	<1.0	<1.0	
cis- 1,2-Dichloroethylene	μg/L	0.20	<0.20	<0.20	
Chloroform	μg/L	0.20	<0.20	<0.20	
1,2-Dichloroethane	μg/L	0.20	<0.20	<0.20	
1,1,1-Trichloroethane	μg/L	0.30	<0.30	<0.30	
Carbon Tetrachloride	μg/L	0.20	<0.20	<0.20	
Benzene	μg/L	0.20	0.60	<0.20	
1,2-Dichloropropane	μg/L	0.20	<0.20	<0.20	
Trichloroethylene	μg/L	0.20	<0.20	<0.20	
Bromodichloromethane	μg/L	0.20	<0.20	<0.20	
Methyl Isobutyl Ketone	μg/L	1.0	<1.0	<1.0	
1,1,2-Trichloroethane	μg/L	0.20	<0.20	<0.20	
Гoluene	μg/L	0.20	1.00	<0.20	
Dibromochloromethane	μg/L	0.10	<0.10	<0.10	
Ethylene Dibromide	μg/L	0.10	<0.10	<0.10	
Tetrachloroethylene	μg/L	0.20	<0.20	<0.20	
1,1,1,2-Tetrachloroethane	μg/L	0.10	<0.10	<0.10	
Chlorobenzene	μg/L	0.10	<0.10	<0.10	
Ethylbenzene	μg/L	0.10	<0.10	<0.10	

AGAT WORK ORDER: 24Z114812 PROJECT: OTT-22019409-AO 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: EXP SERVICES INC
SAMPLING SITE:
ATTENTION TO: Mark McCalla
SAMPLED BY:Philip Oliveira

		0	. Reg. 153(511) - VOCs	s (with PHC) (Water)
DATE RECEIVED: 2024-01-25					DATE REPORTED: 2024-01-31
	S	AMPLE DESCRIPTION:	MW10	DUP1	
		SAMPLE TYPE:		Water	
		DATE SAMPLED:	2024-01-25 10:30	2024-01-24 09:30	
Parameter	Unit	G/S RDL	5604785	5604786	
m & p-Xylene	μg/L	0.20	<0.20	<0.20	
Bromoform	μg/L	0.10	<0.10	<0.10	
Styrene	μg/L	0.10	< 0.10	<0.10	
1,1,2,2-Tetrachloroethane	μg/L	0.10	<0.10	<0.10	
o-Xylene	μg/L	0.10	0.18	<0.10	
1,3-Dichlorobenzene	μg/L	0.10	<0.10	<0.10	
1,4-Dichlorobenzene	μg/L	0.10	<0.10	<0.10	
1,2-Dichlorobenzene	μg/L	0.10	<0.10	<0.10	
1,3-Dichloropropene	μg/L	0.30	< 0.30	<0.30	
Xylenes (Total)	μg/L	0.20	<0.20	<0.20	
n-Hexane	μg/L	0.20	<0.20	<0.20	
Surrogate	Unit	Acceptable Limits			
Toluene-d8	% Recovery	50-140	102	103	
4-Bromofluorobenzene	% Recovery	50-140	90	93	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

5604775-5604786 Xylenes total is a calculated parameter. The calculated value is the sum of m&p-Xylene and o-Xylene.

1,3-Dichloropropene total is a calculated parameter. The calculated value is the sum of Cis-1,3-Dichloropropene and Trans-1,3-Dichloropropene.

The calculated parameter is non-accredited. The parameters that are components of the calculation are accredited.

Analysis performed at AGAT Toronto (unless marked by *)

AGAT WORK ORDER: 24Z114812 PROJECT: OTT-22019409-AO 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: EXP SERVICES INC

SAMPLING SITE:

ATTENTION TO: Mark McCalla SAMPLED BY:Philip Oliveira

O. Reg. 153(511) - Metals (Including Hydrides) (Water)

DATE RECEIVED: 2024-01-25								1	DATE REPORTI	ED: 2024-01-31	
		SAMPLE DESCF SAMPL	RIPTION: E TYPE:	MW12 Water	MW11 Water	MW13 Water	MW5 Water	MW7 Water	MW6 Water	MW8 Water	MW9 Water
Parameter	Unit	DATE SA G / S	MPLED:	2024-01-23 11:15 5604775	2024-01-23 13:30 5604777	2024-01-23 14:45 5604778	2024-01-23 16:30 5604779	2024-01-24 10:35 5604781	2024-01-24 11:45 5604782	2024-01-24 13:45 5604783	2024-01-24 14:50 5604784
Dissolved Antimony	μg/L		1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Dissolved Arsenic	μg/L		1.0	2.3	<1.0	2.3	12.3	2.2	<1.0	6.6	<1.0
Dissolved Barium	μg/L		2.0	178	145	251	561	188	346	292	447
Dissolved Beryllium	μg/L		0.50	< 0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Dissolved Boron	μg/L		10.0	503	367	446	134	56.3	649	332	572
Dissolved Cadmium	μg/L		0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Dissolved Chromium	μg/L		2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
Dissolved Cobalt	μg/L		0.50	2.17	1.34	1.41	0.96	<0.50	0.77	7.37	3.87
Dissolved Copper	μg/L		1.0	<1.0	1.8	<1.0	<1.0	1.6	1.2	1.9	<1.0
Dissolved Lead	μg/L		0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
Dissolved Molybdenum	μg/L		0.50	2.6	3.25	6.10	4.96	4.32	1.67	6.88	1.72
Dissolved Nickel	μg/L		1.0	7.0	5.8	4.5	2.0	1.4	2.2	19.4	8.2
Dissolved Selenium	μg/L		1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.2	<1.0	<1.0
Dissolved Silver	μg/L		0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Dissolved Thallium	μg/L		0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30
Dissolved Uranium	μg/L		0.50	2.88	2.18	1.12	1.03	1.25	2.24	5.46	2.28
Dissolved Vanadium	μg/L		0.40	0.41	< 0.40	< 0.40	0.49	< 0.40	0.40	0.54	< 0.40
Dissolved Zinc	μg/L		5.0	<5.0	<5.0	5.2	<5.0	<5.0	5.9	<5.0	<5.0

Certified By:

Yris Verástegui

AGAT WORK ORDER: 24Z114812 PROJECT: OTT-22019409-AO 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: EXP SERVICES INC

SAMPLING SITE:

ATTENTION TO: Mark McCalla

SAMPLED BY:Philip Oliveira

DATE RECEIVED: 2024-01-25 SAMPLE DESCRIPTION: SAMPLE TYPE: DATE SAMPLE DESCRIPTION: DATE SAMPLE TYPE: DATE SAMPLE DESCRIPTION: DESCRIPTION: DESCRIPTION: DATE SAMPLE DESCRIPTION: DES											
DATE RECEIVED: 2024-01-25						DATE REPORTED: 2024-01-31					
	ę	SAM	PLE TYPE:	Water 2024-01-25	Water 2024-01-24						
Parameter	Unit	G/S	RDL	5604785	5604786						
Dissolved Antimony	μg/L		1.0	<1.0	<1.0						
Dissolved Arsenic	μg/L		1.0	<1.0	3.0						
Dissolved Barium	μg/L		2.0	227	201						
Dissolved Beryllium	μg/L		0.50	< 0.50	< 0.50						
Dissolved Boron	μg/L		10.0	692	56.5						
Dissolved Cadmium	μg/L		0.20	<0.20	<0.20						
Dissolved Chromium	μg/L		2.0	<2.0	<2.0						
Dissolved Cobalt	μg/L		0.50	2.42	< 0.50						
Dissolved Copper	μg/L		1.0	1.4	1.3						
Dissolved Lead	μg/L		0.50	< 0.50	< 0.50						
Dissolved Molybdenum	μg/L		0.50	5.40	2.89						
Dissolved Nickel	μg/L		1.0	3.6	2.2						
Dissolved Selenium	μg/L		1.0	<1.0	<1.0						
Dissolved Silver	μg/L		0.20	<0.20	<0.20						
Dissolved Thallium	μg/L		0.30	< 0.30	< 0.30						
Dissolved Uranium	μg/L		0.50	2.52	1.24						
Dissolved Vanadium	μg/L		0.40	0.63	<0.40						

< 5.0

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

μg/L

5.0

< 5.0

5604775-5604786 Metals analysis completed on a filtered sample.

Analysis performed at AGAT Toronto (unless marked by *)

Dissolved Zinc

Certified By:

Yris Verastegui

Quality Assurance

CLIENT NAME: EXP SERVICES INC PROJECT: OTT-22019409-AO

SAMPLING SITE:

AGAT WORK ORDER: 24Z114812
ATTENTION TO: Mark McCalla
SAMPLED BY:Philip Oliveira

			Trac	e Or	gani	cs Ar	nalys	is							
RPT Date: Jan 31, 2024				UPLICAT	E		REFERE	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		ptable nits	Recovery	Lie	ptable nits	Recovery		ptable nits
TANAMETEN	Daten	ld	Бар #1	Dup #2	111111		Value	Lower	Upper	riccovery		Upper	riccovery	Lower	Uppe
O. Reg. 153(511) - PHCs F1 - F	F4 (with PAHs	and VOC)	(Water)				•								
F1 (C6 to C10)	5604786	5604786	<25	<25	NA	< 25	86%	60%	140%	87%	60%	140%	92%	60%	140%
F2 (C10 to C16)	5595057		< 100	< 100	NA	< 100	102%	60%	140%	81%	60%	140%	91%	60%	140%
F3 (C16 to C34)	5595057		< 100	< 100	NA	< 100	106%	60%	140%	69%	60%	140%	86%	60%	140%
F4 (C34 to C50)	5595057		< 100	< 100	NA	< 100	65%	60%	140%	96%	60%	140%	111%	60%	140%
O. Reg. 153(511) - VOCs (with	PHC) (Water)														
Dichlorodifluoromethane	5604786	5604786	< 0.40	< 0.40	NA	< 0.40	103%	50%	140%	91%	50%	140%	73%	50%	140%
Vinyl Chloride	5604786	5604786	< 0.17	<0.17	NA	< 0.17	116%	50%	140%	117%	50%	140%	122%	50%	140%
Bromomethane	5604786	5604786	<0.20	<0.20	NA	< 0.20	102%	50%	140%	89%	50%	140%	90%	50%	140%
Trichlorofluoromethane	5604786 5	5604786	< 0.40	< 0.40	NA	< 0.40	100%	50%	140%	92%	50%	140%	90%	50%	140%
Acetone	5604786 5	5604786	<1.0	<1.0	NA	< 1.0	78%	50%	140%	75%	50%	140%	70%	50%	140%
1,1-Dichloroethylene	5604786 5	5604786	<0.30	<0.30	NA	< 0.30	82%	50%	140%	79%	60%	130%	90%	50%	140%
Methylene Chloride	5604786	5604786	< 0.30	< 0.30	NA	< 0.30	105%	50%	140%	103%	60%	130%	107%	50%	140%
trans- 1,2-Dichloroethylene	5604786	5604786	< 0.20	< 0.20	NA	< 0.20	76%	50%	140%	69%	60%	130%	76%	50%	140%
Methyl tert-butyl ether	5604786	5604786	< 0.20	< 0.20	NA	< 0.20	99%	50%	140%	99%	60%	130%	84%	50%	140%
1,1-Dichloroethane	5604786 5	5604786	<0.30	<0.30	NA	< 0.30	82%	50%	140%	73%	60%	130%	78%	50%	140%
Methyl Ethyl Ketone	5604786 5	5604786	<1.0	<1.0	NA	< 1.0	81%	50%	140%	98%	50%	140%	114%	50%	140%
cis- 1,2-Dichloroethylene	5604786	5604786	<0.20	< 0.20	NA	< 0.20	91%	50%	140%	81%	60%	130%	89%	50%	140%
Chloroform	5604786	5604786	<0.20	< 0.20	NA	< 0.20	88%	50%	140%	80%	60%	130%	87%	50%	140%
1,2-Dichloroethane	5604786	5604786	< 0.20	< 0.20	NA	< 0.20	85%	50%	140%	76%	60%	130%	98%	50%	140%
1,1,1-Trichloroethane	5604786 5	5604786	<0.30	<0.30	NA	< 0.30	81%	50%	140%	110%	60%	130%	102%	50%	140%
Carbon Tetrachloride	5604786 5	5604786	<0.20	<0.20	NA	< 0.20	90%	50%	140%	116%	60%	130%	107%	50%	140%
Benzene	5604786	5604786	<0.20	< 0.20	NA	< 0.20	95%	50%	140%	89%	60%	130%	95%	50%	140%
1,2-Dichloropropane	5604786 5	5604786	<0.20	< 0.20	NA	< 0.20	90%	50%	140%	81%	60%	130%	86%	50%	140%
Trichloroethylene	5604786 5	5604786	<0.20	< 0.20	NA	< 0.20	99%	50%	140%	90%	60%	130%	100%	50%	140%
Bromodichloromethane	5604786 5	5604786	<0.20	<0.20	NA	< 0.20	89%	50%	140%	80%	60%	130%	87%	50%	140%
Methyl Isobutyl Ketone	5604786 5	5604786	<1.0	<1.0	NA	< 1.0	112%	50%	140%	81%	50%	140%	84%	50%	140%
1,1,2-Trichloroethane	5604786 5	5604786	<0.20	< 0.20	NA	< 0.20	117%	50%	140%	105%	60%	130%	117%	50%	140%
Toluene	5604786 5	5604786	<0.20	< 0.20	NA	< 0.20	111%	50%	140%	100%	60%	130%	113%	50%	140%
Dibromochloromethane	5604786 5	5604786	<0.10	< 0.10	NA	< 0.10	101%	50%	140%	99%	60%	130%	98%	50%	140%
Ethylene Dibromide	5604786 5	5604786	<0.10	<0.10	NA	< 0.10	115%	50%	140%	104%	60%	130%	107%	50%	140%
Tetrachloroethylene	5604786 5	5604786	<0.20	<0.20	NA	< 0.20	119%	50%	140%	110%	60%	130%	118%	50%	140%
1,1,1,2-Tetrachloroethane	5604786 5	5604786	<0.10	<0.10	NA	< 0.10	106%	50%	140%	117%	60%	130%	110%	50%	140%
Chlorobenzene	5604786 5	5604786	<0.10	<0.10	NA	< 0.10	112%	50%	140%	101%		130%	116%	50%	140%
Ethylbenzene	5604786 5	5604786	<0.10	<0.10	NA	< 0.10	101%	50%	140%	93%	60%	130%	101%	50%	140%
m & p-Xylene	5604786 5	5604786	<0.20	<0.20	NA	< 0.20	102%	50%	140%	92%	60%	130%	102%	50%	140%
Bromoform	5604786 5	5604786	<0.10	<0.10	NA	< 0.10	98%	50%	140%	106%	60%	130%	94%	50%	140%
Styrene	5604786 5	5604786	<0.10	<0.10	NA	< 0.10	92%	50%	140%	80%	60%	130%	94%	50%	140%
1,1,2,2-Tetrachloroethane	5604786 5	5604786	<0.10	<0.10	NA	< 0.10	116%	50%	140%	103%	60%	130%	117%	50%	140%
o-Xylene	5604786 5	5604786	<0.10	< 0.10	NA	< 0.10	104%	50%	140%	90%	60%	130%	102%	50%	140%

AGAT QUALITY ASSURANCE REPORT (V1)

Page 12 of 19

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Quality Assurance

CLIENT NAME: EXP SERVICES INC

PROJECT: OTT-22019409-AO

SAMPLING SITE:

AGAT WORK ORDER: 24Z114812

ATTENTION TO: Mark McCalla

SAMPLED BY:Philip Oliveira

SAMPLING SITE.							`			ı .Fillip	Onve	ıια			
	-	Trace	Org	anics	Ana	lysis	(Coı	ntin	ued	l)					
RPT Date: Jan 31, 2024				UPLICAT	E		REFERE	NCE MA	TERIAL	METHOD	BLANK	SPIKE	МАТ	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured Value		ptable nits	Recovery	Lie	ptable nits	Recovery	Lin	ptable nits
		lu lu					value	Lower	Upper		Lower	Upper		Lower	Upper
1,3-Dichlorobenzene	5604786	5604786	<0.10	<0.10	NA	< 0.10	116%	50%	140%	98%	60%	130%	111%	50%	140%
1,4-Dichlorobenzene	5604786	5604786	<0.10	<0.10	NA	< 0.10	117%	50%	140%	98%	60%	130%	115%	50%	140%
1,2-Dichlorobenzene	5604786	5604786	<0.10	< 0.10	NA	< 0.10	117%	50%	140%	97%	60%	130%	112%	50%	140%
n-Hexane	5604786	5604786	<0.20	<0.20	NA	< 0.20	113%	50%	140%	106%	60%	130%	111%	50%	140%
O. Reg. 153(511) - PAHs (Water)															
Naphthalene	5604775	5604775	<0.20	< 0.20	NA	< 0.20	104%	50%	140%	76%	50%	140%	94%	50%	140%
Acenaphthylene	5604775	5604775	<0.20	< 0.20	NA	< 0.20	72%	50%	140%	76%	50%	140%	88%	50%	140%
Acenaphthene	5604775	5604775	<0.20	< 0.20	NA	< 0.20	112%	50%	140%	96%	50%	140%	98%	50%	140%
Fluorene	5604775	5604775	<0.20	< 0.20	NA	< 0.20	105%	50%	140%	76%	50%	140%	81%	50%	140%
Phenanthrene	5604775	5604775	<0.10	<0.10	NA	< 0.10	111%	50%	140%	81%	50%	140%	84%	50%	140%
Anthracene	5604775	5604775	<0.10	<0.10	NA	< 0.10	102%	50%	140%	81%	50%	140%	80%	50%	140%
Fluoranthene	5604775	5604775	<0.20	< 0.20	NA	< 0.20	115%	50%	140%	84%	50%	140%	88%	50%	140%
Pyrene	5604775	5604775	<0.20	< 0.20	NA	< 0.20	111%	50%	140%	83%	50%	140%	86%	50%	140%
Benzo(a)anthracene	5604775	5604775	<0.20	< 0.20	NA	< 0.20	94%	50%	140%	84%	50%	140%	77%	50%	140%
Chrysene	5604775	5604775	<0.10	<0.10	NA	< 0.10	110%	50%	140%	106%	50%	140%	107%	50%	140%
Benzo(b)fluoranthene	5604775	5604775	<0.10	<0.10	NA	< 0.10	112%	50%	140%	86%	50%	140%	94%	50%	140%
Benzo(k)fluoranthene	5604775	5604775	<0.10	< 0.10	NA	< 0.10	119%	50%	140%	108%	50%	140%	114%	50%	140%
Benzo(a)pyrene	5604775	5604775	<0.01	< 0.01	NA	< 0.01	113%	50%	140%	77%	50%	140%	86%	50%	140%
Indeno(1,2,3-cd)pyrene	5604775	5604775	<0.20	< 0.20	NA	< 0.20	81%	50%	140%	113%	50%	140%	95%	50%	140%
Dibenz(a,h)anthracene	5604775	5604775	<0.20	<0.20	NA	< 0.20	100%	50%	140%	108%	50%	140%	87%	50%	140%
Benzo(g,h,i)perylene	5604775	5604775	<0.20	<0.20	NA	< 0.20	101%	50%	140%	107%	50%	140%	75%	50%	140%

Comments: When the average of the sample and duplicate results is less than 5x the RDL, the Relative Percent Difference (RPD) will be indicated as Not Applicable (NA).

Quality Assurance

CLIENT NAME: EXP SERVICES INC PROJECT: OTT-22019409-AO

AGAT WORK ORDER: 24Z114812
ATTENTION TO: Mark McCalla
SAMPLED BY:Philip Oliveira

SAMPLING SITE:							9	SAMPI	LED B	Y:Philip	Olive	ira			
				Wate	er Ar	alys	is								
RPT Date: Jan 31, 2024				UPLICAT	E		REFEREN	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured Value		ptable nits	Recovery	Acceptable Limits		Recovery	Acceptable Limits	
		"	-				value	Lower	Upper		Lower	Upper		Lower	Upper
O. Reg. 153(511) - Metals (Inc	luding Hydride	es) (Water))					•							
Dissolved Antimony	5604775	5604775	<1.0	<1.0	NA	< 1.0	101%	70%	130%	100%	80%	120%	109%	70%	130%
Dissolved Arsenic	5604775	5604775	2.3	<1.0	NA	< 1.0	106%	70%	130%	98%	80%	120%	114%	70%	130%
Dissolved Barium	5604775	5604775	178	183	2.8%	< 2.0	93%	70%	130%	94%	80%	120%	110%	70%	130%
Dissolved Beryllium	5604775	5604775	< 0.50	< 0.50	NA	< 0.50	108%	70%	130%	106%	80%	120%	108%	70%	130%
Dissolved Boron	5604775	5604775	503	472	6.4%	< 10.0	102%	70%	130%	107%	80%	120%	99%	70%	130%
Dissolved Cadmium	5604775	5604775	<0.20	<0.20	NA	< 0.20	100%	70%	130%	100%	80%	120%	105%	70%	130%
Dissolved Chromium	5604775	5604775	<2.0	<2.0	NA	< 2.0	102%	70%	130%	98%	80%	120%	106%	70%	130%
Dissolved Cobalt	5604775	5604775	2.17	1.61	NA	< 0.50	103%	70%	130%	100%	80%	120%	103%	70%	130%
Dissolved Copper	5604775	5604775	<1.0	1.2	NA	< 1.0	99%	70%	130%	101%	80%	120%	100%	70%	130%
Dissolved Lead	5604775	5604775	<0.50	< 0.50	NA	< 0.50	100%	70%	130%	99%	80%	120%	98%	70%	130%
Dissolved Molybdenum	5604775	5604775	2.6	2.9	10.9%	< 0.50	105%	70%	130%	102%	80%	120%	108%	70%	130%
Dissolved Nickel	5604775	5604775	7.0	6.0	15.4%	< 1.0	105%	70%	130%	97%	80%	120%	99%	70%	130%
Dissolved Selenium	5604775	5604775	<1.0	1.2	NA	< 1.0	102%	70%	130%	97%	80%	120%	111%	70%	130%
Dissolved Silver	5604775	5604775	<0.20	< 0.20	NA	< 0.20	102%	70%	130%	95%	80%	120%	87%	70%	130%
Dissolved Thallium	5604775	5604775	<0.30	<0.30	NA	< 0.30	101%	70%	130%	100%	80%	120%	99%	70%	130%
Dissolved Uranium	5604775	5604775	2.88	2.91	1.0%	< 0.50	104%	70%	130%	100%	80%	120%	105%	70%	130%
Dissolved Vanadium	5604775	5604775	0.41	< 0.40	NA	< 0.40	102%	70%	130%	103%	80%	120%	106%	70%	130%
Dissolved Zinc	5604775	5604775	< 5.0	< 5.0	NA	< 5.0	102%	70%	130%	102%	80%	120%	104%	70%	130%

Comments: NA signifies Not Applicable.

Duplicate NA: results are under 5X the RDL and will not be calculated.

Certified By:

Inis Verastegui

Method Summary

CLIENT NAME: EXP SERVICES INC PROJECT: OTT-22019409-AO

SAMPLING SITE:

AGAT WORK ORDER: 24Z114812 ATTENTION TO: Mark McCalla SAMPLED BY:Philip Oliveira

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
	AGAT 5.0.P	LITERATURE REFERENCE	ANALTTICAL TECHNIQUE
Trace Organics Analysis		modified from EDA 2510C and EDA	
Naphthalene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Acenaphthylene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Acenaphthene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Fluorene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Phenanthrene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Anthracene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Fluoranthene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Pyrene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Benzo(a)anthracene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Chrysene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Benzo(b)fluoranthene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Benzo(k)fluoranthene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Benzo(a)pyrene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Indeno(1,2,3-cd)pyrene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Dibenz(a,h)anthracene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Benzo(g,h,i)perylene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
2-and 1-methyl Napthalene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Naphthalene-d8	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Acridine-d9	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Terphenyl-d14	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Sediment			N/A
F1 (C6 to C10)	VOL-91-5010	modified from MOE PHC-E3421	(P&T)GC/FID
F1 (C6 to C10) minus BTEX	VOL-91-5010	modified from MOE PHC-E3421	P&T GC/FID
Toluene-d8	VOL-91- 5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
F2 (C10 to C16)	VOL-91-5010	modified from MOE PHC-E3421	GC/FID
F2 (C10 to C16) minus Naphthalene	VOL-91-5010	modified from MOE PHC-E3421	GC/FID
F3 (C16 to C34)	VOL-91-5010	modified from MOE PHC-E3421	GC/FID
F3 (C16 to C34) minus PAHs	VOL-91-5010	modified from MOE PHC-E3421	GC/FID
F4 (C34 to C50)	VOL-91-5010	modified from MOE PHC-E3421	GC/FID
Gravimetric Heavy Hydrocarbons	VOL-91-5010	modified from MOE PHC-E3421	BALANCE
Terphenyl	VOL-91-5010	modified from MOE PHC-E3421	GC/FID
Dichlorodifluoromethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS

Method Summary

CLIENT NAME: EXP SERVICES INC PROJECT: OTT-22019409-AO

SAMPLING SITE:

ATTENTION TO: Mark McCalla SAMPLED BY:Philip Oliveira

AGAT WORK ORDER: 24Z114812

SAMPLING SITE:		SAMPLED BY:PIIIIP Oliveira					
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE				
Vinyl Chloride	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS				
Bromomethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS				
Trichlorofluoromethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS				
Acetone	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS				
1,1-Dichloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS				
Methylene Chloride	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS				
trans- 1,2-Dichloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS				
Methyl tert-butyl ether	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS				
1,1-Dichloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS				
Methyl Ethyl Ketone	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS				
cis- 1,2-Dichloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS				
Chloroform	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS				
1,2-Dichloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS				
1,1,1-Trichloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS				
Carbon Tetrachloride	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS				
Benzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS				
1,2-Dichloropropane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS				
Trichloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS				
Bromodichloromethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS				
Methyl Isobutyl Ketone	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS				
1,1,2-Trichloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS				
Toluene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS				
Dibromochloromethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS				
Ethylene Dibromide	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS				
Tetrachloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS				
1,1,1,2-Tetrachloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS				
Chlorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS				
Ethylbenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS				

Method Summary

CLIENT NAME: EXP SERVICES INC PROJECT: OTT-22019409-AO

SAMPLING SITE:

AGAT WORK ORDER: 24Z114812
ATTENTION TO: Mark McCalla
SAMPLED BY:Philip Oliveira

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
m & p-Xylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Bromoform	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Styrene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,1,2,2-Tetrachloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
o-Xylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,3-Dichlorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,4-Dichlorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,2-Dichlorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,3-Dichloropropene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Xylenes (Total)	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
n-Hexane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Toluene-d8	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
4-Bromofluorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS

Method Summary

CLIENT NAME: EXP SERVICES INC PROJECT: OTT-22019409-AO

SAMPLING SITE:

AGAT WORK ORDER: 24Z114812
ATTENTION TO: Mark McCalla
SAMPLED BY:Philip Oliveira

SAMIFEING SITE.		SAME LED BY: Fining Onventa						
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE					
Water Analysis		'						
Dissolved Antimony	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS					
Dissolved Arsenic	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS					
Dissolved Barium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS					
Dissolved Beryllium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS					
Dissolved Boron	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS					
Dissolved Cadmium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS					
Dissolved Chromium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS					
Dissolved Cobalt	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS					
Dissolved Copper	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS					
Dissolved Lead	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS					
Dissolved Molybdenum	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS					
Dissolved Nickel	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS					
Dissolved Selenium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS					
Dissolved Silver	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS					
Dissolved Thallium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS					
Dissolved Uranium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS					
Dissolved Vanadium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS					
Dissolved Zinc	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS					

Chain of Custody Record

mw7 mullo

mw9

01-24-24

Have feedback? Scan here for a quick survey!

Ph: 905.712.5100 Fax: 905.712.5122 webearth.agatlabs.com

5835 Coopers Avenue Mississauga, Ontario L4Z 1Y2

	v	Vork Orc	ler#:	245	2114	1812		
	A	Cooler Q arrival Te Custody Notes:	emperat	tures:	6	Dage LIC D /+ C	5 10 5 10 1 10	0.3 1.9
	Re	egular ush TA	TAT (Rush s Busine ays	Surcharges SS	Apply)) Requirence of the property o	ess Days	
			AT is ex	clusive	of wee	notification kends and	statutory h	olidays
PCBs	PCBs: Aroclors	Landfill Disposal Characterization TCLP: u.o rcl.P: u.o rcl.P: u.o rcl.P: □ M&l □ Vocs □ ABNs □ R(a)P □ PCBs ∞ mg	Regulation 406 SPLP Rainwater Leach O SPLP: ☐ Metals ☐ VOCS ☐ SVOCS	Regulation 406 Characterization Package ph. ICPMS Metals, BTEX, F1-F4	Corrosivity: ☐ Moisture ☐ Sulphide			Potentially Hazardous or High Concentration (Y/N)
12	5/2 2	4 1; 6 Tim	3hc	30	B	Page	of	T

Page 19 of 19

Laboratory Use Only

Report Information: Company:	CERVICES IN	c	Regulatory R	Requirements:	1000					
Contact: mix	nex mccalla	2	Regulation 153	/04 Regulation 4	06		wer Us Sanitary		Storm	
	VEENSVIEW DA	- 1	Table	Table	One	-	Regio	on	-	
Phone: 613-688 - 189 Reports to be sent to: 2-2	7 To 15		☐ Res/Park ☐ Agriculture	Regulation 5	58 [er Qua s (PWÇ	_	
1. Email: Mark. M	ALL RELL	um	Soil Texture (Check Of	CCME	Į	Oth	er			
2. Email:	liveina a exp	Com	Fine		1		Indicat	e One		
Project Information: Project: Site Location: Sampled By:	1.p. Oliveira	0	Is this subm			eport rtifica Yes	ate o			S
AGAT Quote #: EXP Standing 01	not provided, client will be billed full price for	analysis.	Sample Matrix		Crvi, DOC	0.	. Reg 1	53		
Contact: Account	Bill To Same: YOUR SENS VIEW DR.	es No	GW Ground Wat O Oil P Paint S Soil SD Sediment SW Surface Wat		Eleid Filtered - Metais, Hg, Cr	k Inorganics	- □ crvl, □ Hg, □ HWSB	E1-F4 PHCs		
Sample Identification	Date Time Sampled Sampled	# of Containers	Sample Matrix Spe	Comments/ ecial Instructions	Y/N	Metals	Metals -	-	200	DAMC
1. mullo	10: 00 04 441 - 6	120	0.1	EWART.	V	V		V	V	ĺ
1. mw/2	01-23-24 11his P	M X	GW			A		Δ	1	2

	2.
d	3.
	4.
HGA!	5.
- volum	6.
ANIII M	7.
^	8.
HGA	9.
CODIA	10.
MOIIA	11.
-	Sample
- Client	Sampl
PIIIK CODY	Sintol
	Discourse

CLIENT NAME: EXP SERVICES INC

2650 QUEENSVIEW DRIVE, UNIT 100

OTTAWA, ON K2B8H6

(613) 688-1899

ATTENTION TO: Mark McCalla

PROJECT: OTT-22019409-AO

AGAT WORK ORDER: 24Z115058

TRACE ORGANICS REVIEWED BY: Neli Popnikolova, Senior Chemist WATER ANALYSIS REVIEWED BY: Nivine Basily, Inorganic Team Lead

DATE REPORTED: Feb 01, 2024

PAGES (INCLUDING COVER): 14 VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

*Notes	

Disclaimer:

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may
 incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 30 days after receipt unless a Long Term Storage Agreement is signed and returned. Some specialty analysis may
 be exempt, please contact your Client Project Manager for details.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other
 third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the
 services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of
 merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines
 contained in this document.
- All reportable information as specified by ISO/IEC 17025:2017 is available from AGAT Laboratories upon request.
- For environmental samples in the Province of Quebec: The analysis is performed on and results apply to samples as received. A temperature above 6°C upon receipt, as indicated in the Sample Reception Notification (SRN), could indicate the integrity of the samples has been compromised if the delay between sampling and submission to the laboratory could not be minimized.

AGAT Laboratories (V1)

Page 1 of 14

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA)

Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA) AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.

AGAT WORK ORDER: 24Z115058 PROJECT: OTT-22019409-AO 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: EXP SERVICES INC

SAMPLING SITE:

ATTENTION TO: Mark McCalla SAMPLED BY:Philip Olivera

SAMPLING SITE:				SAMPLED BY:Philip Olivera
			O. Reg.	153(511) - PAHs (Water)
DATE RECEIVED: 2024-01-25				DATE REPORTED: 2024-02-01
	,	SAMPLE DESCRIPTION: SAMPLE TYPE: DATE SAMPLED:	MW4 Water 2024-01-25 16:00	
Parameter	Unit	G/S RDL	5608927	
Naphthalene	μg/L	0.20	<0.20	
Acenaphthylene	μg/L	0.20	<0.20	
Acenaphthene	μg/L	0.20	<0.20	
Fluorene	μg/L	0.20	<0.20	
Phenanthrene	μg/L	0.10	< 0.10	
Anthracene	μg/L	0.10	< 0.10	
Fluoranthene	μg/L	0.20	<0.20	
Pyrene	μg/L	0.20	<0.20	
Benzo(a)anthracene	μg/L	0.20	<0.20	
Chrysene	μg/L	0.10	<0.10	
Benzo(b)fluoranthene	μg/L	0.10	< 0.10	
Benzo(k)fluoranthene	μg/L	0.10	< 0.10	
Benzo(a)pyrene	μg/L	0.01	<0.01	
Indeno(1,2,3-cd)pyrene	μg/L	0.20	<0.20	
Dibenz(a,h)anthracene	μg/L	0.20	< 0.20	
Benzo(g,h,i)perylene	μg/L	0.20	< 0.20	
2-and 1-methyl Napthalene	μg/L	0.20	<0.20	
Sediment			2	
Surrogate	Unit	Acceptable Limits		
Naphthalene-d8	%	50-140	75	
Acridine-d9	%	50-140	109	
Terphenyl-d14	%	50-140	71	

Comments:

RDL - Reported Detection Limit; G / S - Guideline / Standard

5608927

Sediment parameter is comment only based on visual inspection of the sample prior to extraction and is not an accredited test.

Legend: 1 = no sediment present; 2 = sediment present; 3 = sediment present in trace amount

Note: The result for Benzo(b)Fluoranthene is the total of the Benzo(b)&(j)Fluoranthene isomers because the isomers co-elute on the GC column.

2- and 1-Methyl Naphthalene is a calculated parameter. The calculated value is the sum of 2-Methyl Naphthalene and 1-Methyl Naphthalene. The calculated parameter is non-accredited. The parameters that are components of the calculation are accredited.

Analysis performed at AGAT Toronto (unless marked by *)

AGAT WORK ORDER: 24Z115058 PROJECT: OTT-22019409-AO 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: EXP SERVICES INC

SAMPLING SITE:

SAMPLED BY:Philip Olivera

ATTENTION TO: Mark McCalla

DATE RECEIVED: 2024-01-25	DATE REPORTED: 2024-02-0

DATE RECEIVED: 2024-01-25				DATE REPORTED: 2024-02-01
	SA	AMPLE DESCRIPTION:	MW4	
		SAMPLE TYPE:	Water	
		DATE SAMPLED:	2024-01-25 16:00	
Parameter	Unit	G/S RDL	5608927	
=1 (C6 to C10)	μg/L	25	<25	
F1 (C6 to C10) minus BTEX	μg/L	25	<25	
=2 (C10 to C16)	μg/L	100	<100	
F2 (C10 to C16) minus Naphthalene	μg/L	100	<100	
=3 (C16 to C34)	μg/L	100	<100	
F3 (C16 to C34) minus PAHs	μg/L	100	<100	
F4 (C34 to C50)	μg/L	100	<100	
Gravimetric Heavy Hydrocarbons	μg/L	500	NA	
Sediment			2	
Surrogate	Unit	Acceptable Limits		
Toluene-d8	%	50-140	104	
Terphenyl	% Recovery	60-140	81	

O. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Water)

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

5608927

The C6-C10 fraction is calculated using toluene response factor.

C6–C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX. The calculated parameter is non-accredited. The parameters that are components of the calculation are accredited.

The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and n-C34.

Gravimetric Heavy Hydrocarbons are not included in the Total C16-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons > C50 are present. The chromatogram has returned to baseline by the retention time of nC50.

Total C6 - C50 results are corrected for BTEX and PAH contributions.

C>10 - C16 (F2- Naphthalene) is a calculated parameter. The calculated value is F2 - Naphthalene.

C>16 - C34 (F3-PAH) is a calculated parameter. The calculated value is F3-PAH (PAH: sum of Phenanthrene, Benzo(a)anthracene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Benzo(a)pyrene,

Fluoranthene, Dibenzo(a,h)anthracene, Indeno(1,2,3-c,d)pyrene and Pyrene).

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 + nC34 average.

Linearity is within 15%.

Extraction and holding times were met for this sample.

Sediment parameter is comment only based on visual inspection of the sample prior to extraction and is not an accredited test.

Legend: 1 = no sediment present; 2 = sediment present; 3 = sediment present in trace amounts

Analysis performed at AGAT Toronto (unless marked by *)

AGAT WORK ORDER: 24Z115058 PROJECT: OTT-22019409-AO 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: EXP SERVICES INC
SAMPLING SITE:
ATTENTION TO: Mark McCalla
SAMPLED BY:Philip Olivera

O. Reg. 153(511) - VOCs (with PHC) (Water)									
DATE RECEIVED: 2024-01-25				DATE REPORTED: 2024-02-01					
	Ç	SAMPLE DESCRIPTION: SAMPLE TYPE: DATE SAMPLED:	MW4 Water 2024-01-25 16:00						
Parameter	Unit	G/S RDL	5608927						
Dichlorodifluoromethane	μg/L	0.40	<0.40						
Vinyl Chloride	μg/L	0.17	<0.17						
Bromomethane	μg/L	0.20	<0.20						
Trichlorofluoromethane	μg/L	0.40	<0.40						
Acetone	μg/L	1.0	<1.0						
1,1-Dichloroethylene	μg/L	0.30	< 0.30						
Methylene Chloride	μg/L	0.30	< 0.30						
trans- 1,2-Dichloroethylene	μg/L	0.20	<0.20						
Methyl tert-butyl ether	μg/L	0.20	<0.20						
1,1-Dichloroethane	μg/L	0.30	< 0.30						
Methyl Ethyl Ketone	μg/L	1.0	<1.0						
cis- 1,2-Dichloroethylene	μg/L	0.20	<0.20						
Chloroform	μg/L	0.20	<0.20						
1,2-Dichloroethane	μg/L	0.20	<0.20						
1,1,1-Trichloroethane	μg/L	0.30	< 0.30						
Carbon Tetrachloride	μg/L	0.20	<0.20						
Benzene	μg/L	0.20	<0.20						
1,2-Dichloropropane	μg/L	0.20	<0.20						
Trichloroethylene	μg/L	0.20	<0.20						
Bromodichloromethane	μg/L	0.20	<0.20						
Methyl Isobutyl Ketone	μg/L	1.0	<1.0						
1,1,2-Trichloroethane	μg/L	0.20	<0.20						
Toluene	μg/L	0.20	0.29						
Dibromochloromethane	μg/L	0.10	<0.10						
Ethylene Dibromide	μg/L	0.10	<0.10						
Tetrachloroethylene	μg/L	0.20	<0.20						
1,1,1,2-Tetrachloroethane	μg/L	0.10	<0.10						
Chlorobenzene	μg/L	0.10	<0.10						
Ethylbenzene	μg/L	0.10	<0.10						

ATTENTION TO: Mark McCalla

SAMPLED BY:Philip Olivera

AGAT WORK ORDER: 24Z115058 PROJECT: OTT-22019409-AO 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: EXP SERVICES INC
SAMPLING SITE:

O. Reg. 153(511) - VOCs (with PHC) (Water)

DATE RECEIVED: 2024-01-25

SAMPLE DESCRIPTION: MW4

SAMPLE TYPE: Water

		DATE SAMPLED:	2024-01-25 16:00	
Parameter	Unit	G/S RDL	5608927	
m & p-Xylene	μg/L	0.20	0.29	
Bromoform	μg/L	0.10	<0.10	
Styrene	μg/L	0.10	<0.10	
1,1,2,2-Tetrachloroethane	μg/L	0.10	< 0.10	
o-Xylene	μg/L	0.10	0.17	
1,3-Dichlorobenzene	μg/L	0.10	<0.10	
1,4-Dichlorobenzene	μg/L	0.10	<0.10	
1,2-Dichlorobenzene	μg/L	0.10	<0.10	
1,3-Dichloropropene	μg/L	0.30	< 0.30	
Xylenes (Total)	μg/L	0.20	0.46	
n-Hexane	μg/L	0.20	<0.20	
Surrogate	Unit	Acceptable Limits		
Toluene-d8	% Recovery	50-140	104	
4-Bromofluorobenzene	% Recovery	50-140	92	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

5608927 Xylenes total is a calculated parameter. The calculated value is the sum of m&p-Xylene and o-Xylene.

1,3-Dichloropropene total is a calculated parameter. The calculated value is the sum of Cis-1,3-Dichloropropene and Trans-1,3-Dichloropropene.

The calculated parameter is non-accredited. The parameters that are components of the calculation are accredited.

Analysis performed at AGAT Toronto (unless marked by *)

AGAT WORK ORDER: 24Z115058 PROJECT: OTT-22019409-AO 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: EXP SERVICES INC

SAMPLING SITE:

ATTENTION TO: Mark McCalla

SAMPLED BY:Philip Olivera

O. Reg. 153(511) - Metals (Including Hydrides) (Water)

DATE RECEIVED: 2024-01-2	5			DATE REPORTED: 2024-
	S	AMPLE DESCRIPTIO	N: MW4	
		SAMPLE TYP	E: Water	
		DATE SAMPLE	D: 2024-01-25 16:00	
Parameter	Unit	G/S RDL	5608927	
Dissolved Antimony	μg/L	1.0	<1.0	
Dissolved Arsenic	μg/L	1.0	1.0	
Dissolved Barium	μg/L	2.0	249	
Dissolved Beryllium	μg/L	0.50	<0.50	
Dissolved Boron	μg/L	10.0	281	
Dissolved Cadmium	μg/L	0.20	<0.20	
Dissolved Chromium	μg/L	2.0	<2.0	
Dissolved Cobalt	μg/L	0.50	2.47	
Dissolved Copper	μg/L	1.0	1.7	
Dissolved Lead	μg/L	0.50	<0.50	
Dissolved Molybdenum	μg/L	0.50	4.74	
Dissolved Nickel	μg/L	1.0	9.3	
Dissolved Selenium	μg/L	1.0	<1.0	
Dissolved Silver	μg/L	0.20	<0.20	
Dissolved Thallium	μg/L	0.30	<0.30	
Dissolved Uranium	μg/L	0.50	2.22	
Dissolved Vanadium	μg/L	0.40	<0.40	
Dissolved Zinc	μg/L	5.0	5.8	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

5608927 Metals analysis completed on a filtered sample.

Analysis performed at AGAT Toronto (unless marked by *)

CHARTERED BY CHARTERED BY CHEMIST ON THE CHARTER BASILY OF CHEMIST OF CHEMIST OF CHARTER BASILY OF CHA

Quality Assurance

CLIENT NAME: EXP SERVICES INC PROJECT: OTT-22019409-AO

ATTENTION TO: Mark McCalla SAMPLED BY:Philip Olivera

AGAT WORK ORDER: 24Z115058

SAMPLING SITE:

Trace Organics Analysis DUPLICATE REFERENCE MATERIAL METHOD BLANK SPIKE RPT Date: Feb 01, 2024 MATRIX SPIKE Method Acceptable Acceptable Acceptable Sample Massurad Blank Limits **PARAMETER** Batch Dup #1 Dup #2 RPD Recovery Recovery Value Lower Upper Lower Upper Lower Upper O. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Water) F1 (C6 to C10) 5604786 < 25 86% 87% 92% 140% <25 NA 60% 140% 60% 140% 60% F2 (C10 to C16) 5608112 140% < 100 < 100 NA < 100 107% 60% 140% 101% 60% 140% 87% 60% F3 (C16 to C34) 5608112 < 100 < 100 NΑ < 100 116% 60% 140% 81% 60% 140% 67% 60% 140% F4 (C34 to C50) 5608112 < 100 < 100 NΑ < 100 78% 60% 140% 76% 60% 140% 100% 60% 140% O. Reg. 153(511) - PAHs (Water) 50% Naphthalene 5604775 < 0.20 < 0.20 NA < 0.20 104% 50% 140% 76% 140% 94% 50% 140% Acenaphthylene 5604775 72% 50% 76% 88% 140% < 0.20 < 0.20 NA < 0.20140% 50% 140% 50% 5604775 50% 96% 140% Acenaphthene < 0.20 < 0.20 NA < 0.20 112% 140% 50% 140% 98% 50% Fluorene 5604775 < 0.20 < 0.20 NA < 0.20 105% 50% 140% 76% 50% 140% 81% 50% 140% Phenanthrene 5604775 < 0.10 < 0.10 NA < 0.10 111% 50% 140% 81% 50% 140% 84% 50% 140% Anthracene 5604775 < 0.10 < 0.10 NA < 0.10 102% 50% 140% 81% 50% 140% 80% 50% 140% Fluoranthene 5604775 < 0.20 < 0.20 NA < 0.20 50% 140% 84% 140% 88% 50% 140% 115% 50% Pyrene 5604775 < 0.20 < 0.20 NA < 0.20 111% 50% 140% 83% 50% 140% 86% 50% 140% Benzo(a)anthracene 5604775 < 0.20 < 0.20 NΑ < 0.20 94% 50% 140% 84% 50% 140% 77% 50% 140% 106% 140% Chrysene 5604775 < 0.10 < 0.10 NA < 0.10 110% 50% 140% 50% 140% 107% 50% < 0.10 140% Benzo(b)fluoranthene 5604775 < 0.10 < 0.10 NA 112% 50% 140% 86% 50% 140% 94% 50% Benzo(k)fluoranthene 5604775 < 0.10 < 0.10 NA < 0.10 119% 50% 140% 108% 50% 140% 114% 50% 140% 5604775 < 0.01 < 0.01 NA < 0.01 113% 50% 140% 77% 50% 140% 86% 50% 140% Benzo(a)pyrene 5604775 NA 81% 50% 140% 113% 95% 140% Indeno(1,2,3-cd)pyrene < 0.20 < 0.20 < 0.20 50% 140% 50% 140% Dibenz(a,h)anthracene 5604775 < 0.20 < 0.20 NA < 0.20 100% 50% 140% 108% 50% 140% 87% 50% Benzo(g,h,i)perylene 5604775 < 0.20 < 0.20 NA < 0.20 101% 50% 140% 107% 50% 140% 75% 50% 140% O. Reg. 153(511) - VOCs (with PHC) (Water) Dichlorodifluoromethane 5604786 < 0.40 < 0.40 NA < 0.40 103% 50% 140% 91% 50% 140% 73% 50% 140% Vinyl Chloride 5604786 < 0.17 < 0.17 NA < 0.17 116% 50% 140% 117% 50% 140% 122% 50% 140% Bromomethane 5604786 102% 89% 90% 140% < 0.20 < 0.20 NA < 0.20 50% 140% 50% 140% 50% 140% Trichlorofluoromethane 5604786 < 0.40 100% 50% 140% 92% 140% 90% 50% < 0.40 < 0.40 NA 50% 5604786 78% 50% 140% 75% 140% 70% 50% 140% Acetone <1.0 NA 50% <1.0 < 1.0 < 0.30 1,1-Dichloroethylene 5604786 < 0.30 79% 130% 90% 50% 140% NA < 0.3082% 50% 140% 60% Methylene Chloride 140% 5604786 < 0.30 < 0.30 NA < 0.30 105% 50% 140% 103% 60% 130% 107% 50% trans- 1,2-Dichloroethylene 5604786 < 0.20 < 0.20 NA < 0.20 76% 50% 140% 69% 60% 130% 76% 50% 140% Methyl tert-butyl ether 5604786 < 0.20 < 0.20 NA < 0.20 99% 50% 140% 99% 60% 130% 84% 50% 140% 1,1-Dichloroethane 5604786 < 0.30 < 0.30 82% 50% 140% 73% 130% 78% 50% 140% NA < 0.30 60% Methyl Ethyl Ketone 5604786 98% 114% 140% <1.0 <1.0 NA < 1.0 81% 50% 140% 50% 140% 50% cis- 1,2-Dichloroethylene 5604786 < 0.20 < 0.20 NA < 0.20 91% 50% 140% 81% 60% 130% 89% 50% 140% Chloroform 5604786 < 0.20 < 0.20 NA < 0.20 88% 50% 140% 80% 60% 130% 87% 50% 140% 1,2-Dichloroethane 5604786 < 0.20 76% 130% 140% < 0.20 NA < 0.20 85% 50% 140% 60% 98% 50% 5604786 < 0.30 140% 110% 130% 102% 50% 140% 1.1.1-Trichloroethane < 0.30 NA < 0.30 81% 50% 60% 5604786 < 0.20 90% 50% 140% 116% 60% 130% 107% 50% 140% Carbon Tetrachloride < 0.20 NA < 0.20

AGAT QUALITY ASSURANCE REPORT (V1)

Page 7 of 14

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Quality Assurance

CLIENT NAME: EXP SERVICES INC

PROJECT: OTT-22019409-AO

SAMPLING SITE:

AGAT WORK ORDER: 24Z115058

ATTENTION TO: Mark McCalla

SAMPLED BY:Philip Olivera

	Trace Organics Analysis (Continued)														
RPT Date: Feb 01, 2024			DUPLICATE				REFERENCE MATERIAL			METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample Id	Dup #1	Dup #2	RPD	Method Blank	Measured Value	Acceptable Limits		Recovery	Accel Recovery Lim		Recovery	1 :	ptable nits
		iu	-	-			value	Lower	Upper	_	Lower	Upper		Lower	Upper
Benzene	5604786		<0.20	<0.20	NA	< 0.20	95%	50%	140%	89%	60%	130%	95%	50%	140%
1,2-Dichloropropane	5604786		< 0.20	< 0.20	NA	< 0.20	90%	50%	140%	81%	60%	130%	86%	50%	140%
Trichloroethylene	5604786		< 0.20	< 0.20	NA	< 0.20	99%	50%	140%	90%	60%	130%	100%	50%	140%
Bromodichloromethane	5604786		<0.20	<0.20	NA	< 0.20	89%	50%	140%	80%	60%	130%	87%	50%	140%
Methyl Isobutyl Ketone	5604786		<1.0	<1.0	NA	< 1.0	112%	50%	140%	81%	50%	140%	84%	50%	140%
1,1,2-Trichloroethane	5604786		<0.20	< 0.20	NA	< 0.20	117%	50%	140%	105%	60%	130%	117%	50%	140%
Toluene	5604786		<0.20	< 0.20	NA	< 0.20	111%	50%	140%	100%	60%	130%	113%	50%	140%
Dibromochloromethane	5604786		<0.10	< 0.10	NA	< 0.10	101%	50%	140%	99%	60%	130%	98%	50%	140%
Ethylene Dibromide	5604786		<0.10	<0.10	NA	< 0.10	115%	50%	140%	104%	60%	130%	107%	50%	140%
Tetrachloroethylene	5604786		<0.20	<0.20	NA	< 0.20	119%	50%	140%	110%	60%	130%	118%	50%	140%
1,1,1,2-Tetrachloroethane	5604786		<0.10	< 0.10	NA	< 0.10	106%	50%	140%	117%	60%	130%	110%	50%	140%
Chlorobenzene	5604786		<0.10	< 0.10	NA	< 0.10	112%	50%	140%	101%	60%	130%	116%	50%	140%
Ethylbenzene	5604786		< 0.10	< 0.10	NA	< 0.10	101%	50%	140%	93%	60%	130%	101%	50%	140%
m & p-Xylene	5604786		<0.20	<0.20	NA	< 0.20	102%	50%	140%	92%	60%	130%	102%	50%	140%
Bromoform	5604786		<0.10	<0.10	NA	< 0.10	98%	50%	140%	106%	60%	130%	94%	50%	140%
Styrene	5604786		<0.10	< 0.10	NA	< 0.10	92%	50%	140%	80%	60%	130%	94%	50%	140%
1,1,2,2-Tetrachloroethane	5604786		<0.10	< 0.10	NA	< 0.10	116%	50%	140%	103%	60%	130%	117%	50%	140%
o-Xylene	5604786		<0.10	< 0.10	NA	< 0.10	104%	50%	140%	90%	60%	130%	102%	50%	140%
1,3-Dichlorobenzene	5604786		<0.10	<0.10	NA	< 0.10	116%	50%	140%	98%	60%	130%	111%	50%	140%
1,4-Dichlorobenzene	5604786		<0.10	<0.10	NA	< 0.10	117%	50%	140%	98%	60%	130%	115%	50%	140%
1,2-Dichlorobenzene	5604786		<0.10	< 0.10	NA	< 0.10	117%	50%	140%	97%	60%	130%	112%	50%	140%
n-Hexane	5604786		<0.20	<0.20	NA	< 0.20	113%	50%	140%	106%	60%	130%	111%	50%	140%

Comments: When the average of the sample and duplicate results is less than 5x the RDL, the Relative Percent Difference (RPD) will be indicated as Not Applicable (NA).

Quality Assurance

CLIENT NAME: EXP SERVICES INC PROJECT: OTT-22019409-AO

AGAT WORK ORDER: 24Z115058
ATTENTION TO: Mark McCalla
SAMPLED BY:Philip Olivera

SAMPLING SITE:						SAMPLED BY:Philip Olivera										
				Wate	er Ar	nalys	is									
RPT Date: Feb 01, 2024			DUPLICATE			REFEREN	NCE MA	TERIAL	L METHOD BLANK SPIKE			MATRIX SPIKE				
PARAMETER	Batch	Sample Id	Dup #1	Dup #2	RPD		Measured Value		ptable nits	Recovery	Acceptable Limits		Recovery	1 :-	eptable mits	
		IG	•				value	Lower	Upper		Lower	Upper		Lower	Upper	
O. Reg. 153(511) - Metals (Including Hydrides) (Water)																
Dissolved Antimony	5608928		<1.0	<1.0	NA	< 1.0	101%	70%	130%	100%	80%	120%	92%	70%	130%	
Dissolved Arsenic	5608928		<1.0	<1.0	NA	< 1.0	102%	70%	130%	99%	80%	120%	109%	70%	130%	
Dissolved Barium	5608928		10.0	10.1	1.0%	< 2.0	93%	70%	130%	96%	80%	120%	103%	70%	130%	
Dissolved Beryllium	5608928		< 0.50	< 0.50	NA	< 0.50	102%	70%	130%	103%	80%	120%	108%	70%	130%	
Dissolved Boron	5608928		40.3	37.3	NA	< 10.0	103%	70%	130%	105%	80%	120%	102%	70%	130%	
Dissolved Cadmium	5608928		<0.20	<0.20	NA	< 0.20	101%	70%	130%	99%	80%	120%	107%	70%	130%	
Dissolved Chromium	5608928		<2.0	<2.0	NA	< 2.0	100%	70%	130%	102%	80%	120%	106%	70%	130%	
Dissolved Cobalt	5608928		1.64	1.60	NA	< 0.50	103%	70%	130%	103%	80%	120%	103%	70%	130%	
Dissolved Copper	5608928		<1.0	<1.0	NA	< 1.0	101%	70%	130%	100%	80%	120%	97%	70%	130%	
Dissolved Lead	5608928		<0.50	< 0.50	NA	< 0.50	101%	70%	130%	101%	80%	120%	89%	70%	130%	
Dissolved Molybdenum	5608928		<0.50	0.68	NA	< 0.50	104%	70%	130%	109%	80%	120%	111%	70%	130%	
Dissolved Nickel	5608928		4.1	4.1	NA	< 1.0	102%	70%	130%	102%	80%	120%	98%	70%	130%	
Dissolved Selenium	5608928		<1.0	2.3	NA	< 1.0	103%	70%	130%	99%	80%	120%	112%	70%	130%	
Dissolved Silver	5608928		< 0.20	< 0.20	NA	< 0.20	105%	70%	130%	103%	80%	120%	95%	70%	130%	
Dissolved Thallium	5608928		<0.30	<0.30	NA	< 0.30	102%	70%	130%	101%	80%	120%	92%	70%	130%	
Dissolved Uranium	5608928		<0.50	<0.50	NA	< 0.50	97%	70%	130%	105%	80%	120%	99%	70%	130%	
Dissolved Vanadium	5608928		< 0.40	< 0.40	NA	< 0.40	103%	70%	130%	105%	80%	120%	113%	70%	130%	
Dissolved Zinc	5608928		168	162	3.6%	< 5.0	102%	70%	130%	101%	80%	120%	97%	70%	130%	

Comments: NA signifies Not Applicable.

Duplicate NA: results are under 5X the RDL and will not be calculated.

CHEMIST OF CHEMIST OF

Method Summary

CLIENT NAME: EXP SERVICES INC PROJECT: OTT-22019409-AO

SAMPLING SITE:

AGAT WORK ORDER: 24Z115058
ATTENTION TO: Mark McCalla
SAMPLED BY:Philip Olivera

SAMPLING SITE:		SAMPLED BY:PI	p 0				
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE				
Trace Organics Analysis							
Naphthalene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS				
Acenaphthylene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS				
Acenaphthene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS				
Fluorene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS				
Phenanthrene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS				
Anthracene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS				
Fluoranthene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS				
Pyrene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS				
Benzo(a)anthracene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS				
Chrysene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS				
Benzo(b)fluoranthene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS				
Benzo(k)fluoranthene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS				
Benzo(a)pyrene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS				
Indeno(1,2,3-cd)pyrene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS				
Dibenz(a,h)anthracene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS				
Benzo(g,h,i)perylene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS				
2-and 1-methyl Napthalene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS				
Naphthalene-d8	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS				
Acridine-d9	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS				
Terphenyl-d14	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS				
Sediment			N/A				
F1 (C6 to C10)	VOL-91-5010	modified from MOE PHC-E3421	(P&T)GC/FID				
F1 (C6 to C10) minus BTEX	VOL-91-5010	modified from MOE PHC-E3421	P&T GC/FID				
Toluene-d8	VOL-91- 5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS				
F2 (C10 to C16)	VOL-91-5010	modified from MOE PHC-E3421	GC/FID				
F2 (C10 to C16) minus Naphthalene	VOL-91-5010	modified from MOE PHC-E3421	GC/FID				
F3 (C16 to C34)	VOL-91-5010	modified from MOE PHC-E3421	GC/FID				
F3 (C16 to C34) minus PAHs	VOL-91-5010	modified from MOE PHC-E3421	GC/FID				
F4 (C34 to C50)	VOL-91-5010	modified from MOE PHC-E3421	GC/FID				
Gravimetric Heavy Hydrocarbons	VOL-91-5010	modified from MOE PHC-E3421	BALANCE				
Terphenyl	VOL-91-5010	modified from MOE PHC-E3421	GC/FID				
Dichlorodifluoromethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS				

Method Summary

CLIENT NAME: EXP SERVICES INC PROJECT: OTT-22019409-AO

SAMPLING SITE:

ATTENTION TO: Mark McCalla SAMPLED BY:Philip Olivera

AGAT WORK ORDER: 24Z115058

SAMPLING SITE:		SAMPLED BY:Phil	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Vinyl Chloride	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Bromomethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Trichlorofluoromethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Acetone	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,1-Dichloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Methylene Chloride	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
trans- 1,2-Dichloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Methyl tert-butyl ether	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,1-Dichloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Methyl Ethyl Ketone	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
cis- 1,2-Dichloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Chloroform	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,2-Dichloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,1,1-Trichloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Carbon Tetrachloride	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Benzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,2-Dichloropropane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Trichloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Bromodichloromethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Methyl Isobutyl Ketone	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,1,2-Trichloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Toluene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Dibromochloromethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Ethylene Dibromide	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Tetrachloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,1,1,2-Tetrachloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Chlorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Ethylbenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS

Method Summary

CLIENT NAME: EXP SERVICES INC PROJECT: OTT-22019409-AO

SAMPLING SITE:

AGAT WORK ORDER: 24Z115058
ATTENTION TO: Mark McCalla
SAMPLED BY:Philip Olivera

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE				
m & p-Xylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS				
Bromoform	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS				
Styrene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS				
1,1,2,2-Tetrachloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS				
o-Xylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS				
1,3-Dichlorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS				
1,4-Dichlorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS				
1,2-Dichlorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS				
1,3-Dichloropropene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS				
Xylenes (Total)	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS				
n-Hexane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS				
Toluene-d8	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS				
4-Bromofluorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS				

Method Summary

CLIENT NAME: EXP SERVICES INC PROJECT: OTT-22019409-AO

SAMPLING SITE:

AGAT WORK ORDER: 24Z115058
ATTENTION TO: Mark McCalla
SAMPLED BY:Philip Olivera

O,		OAIII EED DTI IIII OIIVEIU							
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE						
Water Analysis									
Dissolved Antimony	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS						
Dissolved Arsenic	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS						
Dissolved Barium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS						
Dissolved Beryllium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS						
Dissolved Boron	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS						
Dissolved Cadmium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS						
Dissolved Chromium	MET-93-6103	modified from EPA 200 8 and EPA							
Dissolved Cobalt	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS						
Dissolved Copper	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS						
Dissolved Lead	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS						
Dissolved Molybdenum	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS						
Dissolved Nickel	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS						
Dissolved Selenium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS						
Dissolved Silver	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS						
Dissolved Thallium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS						
Dissolved Uranium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS						
Dissolved Vanadium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS						
Dissolved Zinc	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS						

Have feedback?

Scan here for a quick survey!

Ph: 905.712.5100 Fax: 905.712,5122

Laboratory Use Only 5835 Coopers Avenue Mississauga, Ontario L4Z 1Y2 Work Order #: 24215055 webearth_agatlabs.com

Cooler Quantity: One - 100 DOCKS

Chain of Custody Record If this is	a Drinking Water	sample, ple	ase use Drin	nking Water Chain of Custody Form (potab	le water	consum	ed by hi	ımans			1	Arrival	Tempera	atures:	4	610	1.5	14.	3
Report Information: Company: Contact: Report Information: Exp Services Many Many Many Many Many Many Many Many	in	c.	(Pleas	gulatory Requirements: e check all applicable boxes)								Custod	y Seal Ir		UYes UYes		3.1 □No ce	13	MN/A
Address: 2650 QUEEDSVIEW	De		17	egulation 153/04 Regulation 406		Se Se	ver Use anitary		Storm	-	Turnaround Time (TAT) Required:								
Phone: Reports to be sent to: 1. Email: Phone: Ph		Com	Soil 1	ableindicate One			Region v. Wate ectives er	r Qua (PW0			R	egula ush T	AT (Rush 3 Busin Days	Surcharg ess	5 t	o 7 Busir Business ys	ness Daj	Next B	
Project Information:		6		s this submission for a	R	eport			on	18			ON But	e negai	rea (reasi	Garanai	Boo Mid	, Apply).	
Project: 011-220/9403-40 Site Location: Philip Divers			- 100	Record of Site Condition? Certificate of Analysis ☐ Yes ☐ No ☐ Yes ☐ No						Please provide prior notification for rush TAT *TAT is exclusive of weekends and statutory holidays For 'Same Day' analysis, please contact your AGAT CPM									
AGAT Quote #: Standay Of See PO: Please note: If guylation number is not provided, client		Lik *	San	nple Matrix Legend	DOC	0	Reg 15	3		Г		0. Re 558		leg 406					To the second
Invoice Information: Company: Contact: Address: Email:	Bill To Same: Ye		GW	MATHEMATICAL PROPERTY.	Field Filtered - Metals, Hg, CrVI,	Inorganics	Metals - □ CrVI, □ Hg, □ HWSB	1-F4 PHCS			PCBs: Aroclors	Landfill Disposal Characterization TCLP: TCLP: ☐M& ☐VoCs ☐ABNs ☐B(a)P☐PCBs	106 SPLP Rainw	406 Characterizz	□ Moisture □				iv Hazardous or High Concentration
Sample Identification Date Sampled	Time Sampled	# of Containers	Sample	Comments/ Special Instructions	Y/N	Metals	Metals	BTEX F1-F4	VOC	PCBs	PCBs: A	Landfill TCLP:	Regulat	Regulation of the ICPMS P	Sorrosi				Citoptic
1. MWH 01-15-3		58	GW	E III	V	X		X	_				0,						- I
2.	AN PN		4					129											9
3. *** = *** ***	AN PN																	154	5
4.	AN PN		Tale								40		100						
5.	AN PN		T IV			Total I	1-				16								
6.	AN PN		L-S		- 2	ige.		Ť.			TOTAL TOTAL		100					V	6
7.	AN PN		1.010		0	Ahi.					le F		erit v						2.0
8.	AN PN					17.00					5		1000				103	puld	
9,	AM PM					13-1		.6					1007					10	×
10.	AN PN			And I				ш			ixu		161						
11.	AN PN	w 7		THE PLANT OF THE PARTY OF THE P				7			Ħ.		TH.						
Samples Relinquished By Print Name and Sign): Samples Relinquished By 1970; Same and Sign): Samples Relinquished By 1970; Same and Sign):	Date O/-25-	Time /b	130	Samples Received By (Print Namy and Sign): Samples Received By (Print Name and Sign):		o T	0	uT.	29	01/2		Ti	leh o-si		in.	Page	/ of	1	

CLIENT NAME: EXP SERVICES INC

2650 QUEENSVIEW DRIVE, UNIT 100

OTTAWA, ON K2B8H6

(613) 688-1899

ATTENTION TO: Mark McCalla

PROJECT: OTT-22019409-AO

AGAT WORK ORDER: 24Z117784

TRACE ORGANICS REVIEWED BY: Radhika Chakraberty, Trace Organics Lab Manager

DATE REPORTED: Feb 07, 2024

PAGES (INCLUDING COVER): 5 VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

*Notes	

Disclaimer:

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may
 incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 30 days after receipt unless a Long Term Storage Agreement is signed and returned. Some specialty analysis may be exempt, please contact your Client Project Manager for details.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other
 third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the
 services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of
 merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines
 contained in this document.
- All reportable information as specified by ISO/IEC 17025:2017 is available from AGAT Laboratories upon request.
- For environmental samples in the Province of Quebec: The analysis is performed on and results apply to samples as received. A temperature above 6°C upon receipt, as indicated in the Sample Reception Notification (SRN), could indicate the integrity of the samples has been compromised if the delay between sampling and submission to the laboratory could not be minimized.

AGAT Laboratories (V1)

Page 1 of 5

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA)

Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA) AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.

AGAT WORK ORDER: 24Z117784 PROJECT: OTT-22019409-AO MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

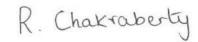
5835 COOPERS AVENUE

CLIENT NAME: EXP SERVICES INC

SAMPLING SITE:

ATTENTION TO: Mark McCalla SAMPLED BY:Philip Oliveira

	O. Reg. 153(511) - BTEX (Water)											
DATE RECEIVED: 2024-02-05					DATE REPORTED: 2024-02-07							
	S	AMPLE DESCRIPTION:	MW10	MW13								
		SAMPLE TYPE:	Water	Water								
		DATE SAMPLED:	2024-02-05 13:00	2024-02-05 14:00								
Parameter	Unit	G/S RDL	5628628	5628629								
Benzene	μg/L	0.20	<0.20	<0.20								
Toluene	μg/L	0.20	0.32	<0.20								
Ethylbenzene	μg/L	0.10	< 0.10	< 0.10								
m & p-Xylene	μg/L	0.20	0.27	<0.20								
o-Xylene	μg/L	0.10	0.22	< 0.10								
Xylenes (Total)	μg/L	0.20	0.49	<0.20								
Surrogate	Unit	Acceptable Limits										
Toluene-d8	% Recovery	50-140	101	105								
4-Bromofluorobenzene	% Recovery	50-140	104	103								


Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

5628628-5628629 Results relate only to the items tested.

Xylenes total is a calculated parameter. The calculated value is the sum of m&p-Xylene + o-Xylene. The calculated parameter is non-accredited. The parameters that are components of the calculation are

accredited.

Analysis performed at AGAT Toronto (unless marked by *)

Quality Assurance

CLIENT NAME: EXP SERVICES INC PROJECT: OTT-22019409-AO

SAMDI ING SITE.

AGAT WORK ORDER: 24Z117784
ATTENTION TO: Mark McCalla
SAMPLED BY:Philip Oliveira

SAMPLING SITE:								AWIPL	בט פ	Y:Philip	Olive	ıra					
			Trac	e Or	gani	cs Ar	nalys	is									
RPT Date: Feb 07, 2024			DUPLICATE RE		REFEREN	REFERENCE MATERIAL		METHOD BLANK SPIKE		MATRIX SPIKE		KE					
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Blank Measured	Acceptable Limits Recove		Measured Limits		Recovery	Acceptable Limits		Recovery	Acceptable Limits	
TANAMETER		ld			Value	Lower	Upper		Lower	Upper	,		Upper				
O. Reg. 153(511) - BTEX (Water)																	
Benzene	5623564		<0.20	< 0.20	NA	< 0.20	97%	50%	140%	84%	60%	130%	117%	50%	140%		
Toluene	5623564		<0.20	< 0.20	NA	< 0.20	92%	50%	140%	85%	60%	130%	89%	50%	140%		
Ethylbenzene	5623564		<0.10	< 0.10	NA	< 0.10	72%	50%	140%	75%	60%	130%	70%	50%	140%		
m & p-Xylene	5623564		<0.20	< 0.20	NA	< 0.20	110%	50%	140%	106%	60%	130%	80%	50%	140%		
o-Xylene	5623564		< 0.10	< 0.10	NA	< 0.10	84%	50%	140%	79%	60%	130%	67%	50%	140%		

Comments: When the average of the sample and duplicate results is less than 5x the RDL, the Relative Percent Difference (RPD) will be indicated as Not Applicable (NA).

Certified By:

R. Chakraberty

Method Summary

CLIENT NAME: EXP SERVICES INC PROJECT: OTT-22019409-AO

AGAT WORK ORDER: 24Z117784
ATTENTION TO: Mark McCalla
SAMPLED BY:Philip Oliveira

SAMPLING SITE:		SAMPLED BY:Ph	ilip Oliveira
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Trace Organics Analysis			
Benzene	VOL-91-5001	modified from EPA SW-846 5030C & 8260D	(P&T)GC/MS
Toluene	VOL-91-5001	modified from EPA SW-846 5030C & 8260D	(P&T)GC/MS
Ethylbenzene	VOL-91-5001	modified from EPA SW-846 5030C & 8260D	(P&T)GC/MS
m & p-Xylene	VOL-91-5001	modified from EPA SW-846 5030C & 8260D	(P&T)GC/MS
o-Xylene	VOL-91-5001	modified from EPA SW-846 5030C & 8260D	(P&T)GC/MS
Xylenes (Total)	VOL-91-5001	modified from EPA SW-846 5030C & 8260D	(P&T)GC/MS
Toluene-d8	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
4-Bromofluorobenzene	VOL-91- 5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS

Have feedback?

Scan here for a quick survey!

Regulatory Requirements:

Regulation 406

Regulation 558

CCME

□ No

Comments/

Special Instructions

Table Indicate One

5835 Coopers Avenue Mississauga, Ontario L4Z 1Y2 Ph: 905.712,5100 Fax: 905.712.5122 webearth.agatlabs.com

Sewer Use

Other

☐ Yes

Sanitary Storm

Prov. Water Quality

Report Guideline on

Certificate of Analysis

O. Reg 153

Objectives (PWQO)

Laboratory Lies Only

anulatui	y use	Ulliy	,		
Vork Order #:	24	七	117	7	81

Cooler Quantity:	40 -
Arrival Temperatures:	10.8110.7110.8

Custody Seal Intact: Yes Notes: Digger C □N/A

Turnaround	Time	(TAT)	Required:
------------	------	-------	-----------

Regular TAT 5 to 7 Business Days Rush TAT (Rush Surcharges Apply)

> 3 Business **Next Business**

OR Date Required (Rush Surcharges May Apply):

Please provide prior notification for rush TAT *TAT is exclusive of weekends and statutory holidays

For 'Same Day' analysis, please contact your AGAT CPM

Sample Matrix Legend

Is this submission for a

Record of Site Condition?

GW	Ground Water	
0	Oil	

Paint

Matrix

Sediment Surface Water Field Filtered - Metals, Hg, CrVI, DOC □ HWSB CrNI, DHg,

F1-F4 PHCs

☐ No

□ B(a)P □ PCBs Sulphide

O. Reg 406

SPLP | Metals | VOCs

BTEX VOC

DULLER CONTROL OF STREET				.E.J.
amples Replived By (Print Name and Sign):	21/23	105 74h31		The second
amples Received By (Print Name and Sign):	. Dafe		Page _/	of
mples Received By (Print Name and Sign):	Date	Time Union	No. T _ 1	522

Chain of Custody Record

If this is a Drinking Water sample, please use Drinking Water Chain of Custody Form (potable water consumed by humans)

(Please check all applicable boxes) Regulation 153/04

Table Indicate One

☐Ind/Com

Res/Park

Coarse Fine

☐ Yes

☐ Agriculture

Soil Texture (Check One)

Report Inform	mation:
Company:	EXP SERVICES INC.
Contact:	mack mcCill
Address:	2650 QUEENSVIEW DR.
	OTTAWA
Phone:	615-68-1899 Fav.
Reports to be sent to:	100.
1. Email:	- Wlark. McCalle (@ exp. con
	Mila Nii O
2. Email:	- Philip. Oliveira @ exp. com.
Project Inform	
Project:	DTT-220 19409 - AD
Site Location:	
Site Location.	
Sampled By:	Ability Oliveira
Sampled By:	1001 11 000
	Please note: If quotation number is not provided, client will be billed full price for analysis.
Sampled By:	Please note: If quotation number is not provided, client will be billed full price for analysis.
Sampled By: AGAT Quote #:	Please note: If quotation number is not provided, client will be billed full price for analysis.
Sampled By: AGAT Quote #:	Please note: If quotation number is not provided, client will be billed full price for analysis.

Email: Date Time # of Sample Sample Identification Sampled Sampled Containers

AGAT 8.

1. 2. 3. 4.

5. 6. 7.

9.

10. 11.

Pink Copy - Client 1 Yellow Copy

AM PM

AM PM AM PM

resumt to the terms and conditions as set forth at www.agatlabs.com/termsandconditions unless otherwise agreed in a current written or

Potentially Hazardous or High

Final Report

C.O.C.: G105027 **REPORT No. B22-25709**

Report To:

EXP Services Inc

Caduceon Environmental Laboratories

2378 Holly Lane

Ottawa Ontario K1V 7P1 Tel: 613-526-0123

Fax: 613-526-1244

DATE RECEIVED: 12-Aug-22

Ottawa ON K2B 8H6 Canada

Attention: Mark McCalla

2650 Queensview Drive, Suite 100

JOB/PROJECT NO .:

DATE REPORTED: 18-Aug-22 SAMPLE MATRIX: Groundwater

P.O. NUMBER:

OTT-22019409-AO

WATERWORKS NO.

Parameter	Qty	Site Analyzed	Analyst Initials	Date Analyzed	Lab Method	Reference Method
Comment	5	Default Site	KPR	15-Aug-22	C-comment	-
Comment	5	Default Site	JE	17-Aug-22	C-comment purg RH	-
SVOC	5	Kingston	law	16-Aug-22	C-NAB-S-001 (k)	EPA 8270
SVOC	5	Kingston	law	16-Aug-22	C-NAB-W-001 (k)	EPA 8270
PHC(F2-F4)	5	Kingston	KPR	15-Aug-22	C-PHC-W-001 (k)	MOE E3421
VOC's	5	Richmond Hill	JE	16-Aug-22	C-VOC-02 (rh)	EPA 8260
PHC(F1)	5	Richmond Hill	JE	17-Aug-22	C-VPHW-01 (rh)	MOE E3421

μg/g = micrograms per gram (parts per million) and is equal to mg/Kg

F1 C6-C10 hydrocarbons in μg/g, (F1-btex if requested)

F2 C10-C16 hydrocarbons in μg/g, (F2-napth if requested)

F3 C16-C34 hydrocarbons in µg/g, (F3-pah if requested)

F4 C34-C50 hydrocarbons in μg/g

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

Any deviations from the method are noted and reported for any particular sample.

nC6 and nC10 response factor is within 30% of response factor for toluene:

nC10,nC16 and nC34 response factors within 10% of each other:

C50 response factors within 70% of nC10+nC16+nC34 average:

Linearity is within 15%:

All results expressed on a dry weight basis.

Unless otherwise noted all chromatograms returned to baseline by the retention

time of nC50.

Unless otherwise noted all extraction, analysis, QC requirements and limits for holding time were met. If analyzed for F4 and F4G they are not to be summed but the greater of the two numbers are to be used in application to the CWS PHC

QC will be made available upon request.

O. Reg. 153 - Soil, Ground Water and Sediment Standards Tbl. 1 - GW (μg/L) - Table 1 - Ground Water

R.L. = Reporting Limit

Test methods may be modified from specified reference method unless indicated by an * Site Analyzed=K-Kingston,W-Windsor,O-Ottawa,R-Richmond Hill,B-Barrie

Tahir Yapici Ph.D

Lab Manager - Ottawa District

Final Report

C.O.C.: G105027 REPORT No. B22-25709

Report To:

EXP Services Inc

2650 Queensview Drive, Suite 100 Ottawa ON K2B 8H6 Canada **Attention:** Mark McCalla

DATE RECEIVED: 12-Aug-22

DATE REPORTED: 18-Aug-22

SAMPLE MATRIX: Groundwater

Caduceon Environmental Laboratories

2378 Holly Lane

Ottawa Ontario K1V 7P1 Tel: 613-526-0123 Fax: 613-526-1244

JOB/PROJECT NO.:

302,1110020111011

P.O. NUMBER: OTT-22019409-AO

WATERWORKS NO.

	Client I.D.		MW15-1	MW15-5	MW15-2	MW15-3	O. Re	g. 153
	Sample I.D).	B22-25709-1	B22-25709-2	B22-25709-3	B22-25709-4	Tbl. 1 - GW	
	Date Colle	cted	11-Aug-22	11-Aug-22	11-Aug-22	11-Aug-22	(µg/L)	
Parameter	Units	R.L.						
PHC F1 (C6-C10)	μg/L	25	< 25	< 25	< 25	< 25	420	
Comment-purgeable	-		-	-	-	-		
PHC F2 (>C10-C16)	μg/L	50	< 50	< 50	< 50	< 50	150	
PHC F3 (>C16-C34)	μg/L	400	< 400	< 400	< 400	< 400	500	
PHC F4 (>C34-C50)	μg/L	400	< 400	< 400	< 400	< 400	500	
Comment-extractable	-		-	-	-	-		
Acetone	μg/L	30	< 30	< 30	< 30	< 30	2700	
Benzene	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.5	
Bromodichloromethane	μg/L	2	< 2	< 2	< 2	< 2	2	
Bromoform	μg/L	5	< 5	< 5	< 5	< 5	5	
Bromomethane	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.89	
Carbon Tetrachloride	μg/L	0.2	< 0.2	< 0.2	< 0.2	< 0.2	0.2	
Monochlorobenzene (Chlorobenzene)	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.5	
Chloroform	μg/L	1	< 1	< 1	< 1	< 1	2	
Dibromochloromethane	μg/L	2	< 2	< 2	< 2	< 2	2	
Dichlorobenzene,1,2-	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.5	
Dichlorobenzene,1,3-	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.5	
Dichlorobenzene,1,4-	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.5	
Dichlorodifluoromethane	μg/L	2	< 2	< 2	< 2	< 2	590	
Dichloroethane,1,1-	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.5	
Dichloroethane,1,2-	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.5	
Dichloroethylene,1,1-	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.5	
Dichloroethene, cis-1,2-	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5	1.6	
Dichloroethene, trans-1,2-	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5	1.6	
Dichloropropane,1,2-	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.5	
Dichloropropene, cis-1,3-	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5		

O. Reg. 153 - Soil, Ground Water and Sediment Standards

Tbl. 1 - GW (µg/L) - Table 1 - Ground Water

R.L. = Reporting Limit

Test methods may be modified from specified reference method unless indicated by an * Site Analyzed=K-Kingston,W-Windsor,O-Ottawa,R-Richmond Hill,B-Barrie

Tahir Yapici Ph.D

Lab Manager - Ottawa District

Final Report

C.O.C.: G105027 **REPORT No. B22-25709**

Report To:

EXP Services Inc

2650 Queensview Drive, Suite 100 Ottawa ON K2B 8H6 Canada Attention: Mark McCalla

DATE RECEIVED: 12-Aug-22

DATE REPORTED: 18-Aug-22

SAMPLE MATRIX: Groundwater

Caduceon Environmental Laboratories

2378 Holly Lane

Ottawa Ontario K1V 7P1 Tel: 613-526-0123 Fax: 613-526-1244

JOB/PROJECT NO .:

P.O. NUMBER: OTT-22019409-AO

WATERWORKS NO.

	Client I.D.		MW15-1	MW15-5	MW15-2	MW15-3	O. Re	g. 153
	Sample I.I).	B22-25709-1	B22-25709-2	B22-25709-3	B22-25709-4	Tbl. 1 - GW	
	Date Colle	cted	11-Aug-22	11-Aug-22	11-Aug-22	11-Aug-22	(µg/L)	
Parameter	Units	R.L.						
Dichloropropene, trans- 1,3-	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
Dichloropropene 1,3- cis+trans	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.5	
Ethylbenzene	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.5	
Dibromoethane,1,2- (Ethylene Dibromide)	μg/L	0.2	< 0.2	< 0.2	< 0.2	< 0.2	0.2	
Hexane	μg/L	5	< 5	< 5	< 5	< 5	5	
Methyl Ethyl Ketone	μg/L	20	< 20	< 20	< 20	< 20	400	
Methyl Isobutyl Ketone	μg/L	20	< 20	< 20	< 20	< 20	640	
Methyl-t-butyl Ether	μg/L	2	< 2	< 2	3	< 2	15	
Dichloromethane (Methylene Chloride)	μg/L	5	< 5	< 5	< 5	< 5	5	
Styrene	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.5	
Tetrachloroethane,1,1,1,2-	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5	1.1	
Tetrachloroethane,1,1,2,2-	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.5	
Tetrachloroethylene	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.5	
Toluene	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.8	
Trichloroethane,1,1,1-	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.5	
Trichloroethane,1,1,2-	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.5	
Trichloroethylene	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.5	
Trichlorofluoromethane	μg/L	5	< 5	< 5	< 5	< 5	150	
Vinyl Chloride	μg/L	0.2	< 0.2	< 0.2	< 0.2	< 0.2	0.5	
Xylene, m,p-	μg/L	1.0	< 1.0	< 1.0	< 1.0	< 1.0		
Xylene, o-	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
Xylene, m,p,o-	μg/L	1.1	< 1.1	< 1.1	< 1.1	< 1.1	72	
Acenaphthene	μg/L	0.05	< 0.05	< 0.05	< 0.05	< 0.05	4.1	

O. Reg. 153 - Soil, Ground Water and Sediment Standards

Tbl. 1 - GW (µg/L) - Table 1 - Ground Water

R.L. = Reporting Limit

Test methods may be modified from specified reference method unless indicated by an * Site Analyzed=K-Kingston, W-Windsor, O-Ottawa, R-Richmond Hill, B-Barrie

Tahir Yapici Ph.D Lab Manager - Ottawa District

Final Report

C.O.C.: G105027 REPORT No. B22-25709

Report To:

EXP Services Inc

2650 Queensview Drive, Suite 100 Ottawa ON K2B 8H6 Canada **Attention:** Mark McCalla

DATE RECEIVED: 12-Aug-22

DATE REPORTED: 18-Aug-22

SAMPLE MATRIX: Groundwater

Caduceon Environmental Laboratories

2378 Holly Lane

Ottawa Ontario K1V 7P1 Tel: 613-526-0123 Fax: 613-526-1244

JOB/PROJECT NO.:

P.O. NUMBER: OTT-22019409-AO

WATERWORKS NO.

	Client I.D. Sample I.D. Date Collected		MW15-1	MW15-5	MW15-2	MW15-3	O. Re	g. 153
			B22-25709-1	B22-25709-2	B22-25709-3	B22-25709-4		
_			11-Aug-22	11-Aug-22	11-Aug-22	11-Aug-22	(µg/L)	
Parameter	Units	R.L.						
Acenaphthylene	μg/L	0.05	< 0.05	< 0.05	< 0.05	< 0.05	1	
Anthracene	μg/L	0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.1	
Benzo(a)anthracene	μg/L	0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.2	
Benzo(a)pyrene	μg/L	0.01	0.012	< 0.01	< 0.01	< 0.01	0.01	
Benzo(b)fluoranthene	μg/L	0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.1	
Benzo(b+k)fluoranthene	μg/L	0.1	< 0.1	< 0.1	< 0.1	< 0.1		
Benzo(g,h,i)perylene	μg/L	0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.2	
Benzo(k)fluoranthene	μg/L	0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.1	
Chrysene	μg/L	0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.1	
Dibenzo(a,h)anthracene	μg/L	0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.2	
Fluoranthene	μg/L	0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.4	
Fluorene	μg/L	0.05	< 0.05	< 0.05	< 0.05	< 0.05	120	
Indeno(1,2,3,-cd)pyrene	μg/L	0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.2	
Methylnaphthalene,1-	μg/L	0.05	< 0.05	< 0.05	< 0.05	< 0.05	2	
Methylnaphthalene,2-	μg/L	0.05	< 0.05	< 0.05	< 0.05	< 0.05	2	
Methylnaphthalene 2-(1-)	μg/L	1	< 1	< 1	< 1	< 1	2	
Naphthalene	μg/L	0.05	< 0.05	< 0.05	< 0.05	< 0.05	7	
Phenanthrene	μg/L	0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.1	
Pyrene	μg/L	0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.2	
2-Fluorobiphenyl (SS)	% rec.	10	86.0	95.0	92.0	86.0		
Terphenyl-d14 (SS)	% rec.	10	99.0	108	105	104		

O. Reg. 153 - Soil, Ground Water and Sediment Standards Tbl. 1 - GW ($\mu g/L$) - Table 1 - Ground Water

R.L. = Reporting Limit

Test methods may be modified from specified reference method unless indicated by an * Site Analyzed=K-Kingston,W-Windsor,O-Ottawa,R-Richmond Hill,B-Barrie

Tahir Yapici Ph.D Lab Manager - Ottawa District

Final Report

C.O.C.: G105027 REPORT No. B22-25709

Report To:

EXP Services Inc

2650 Queensview Drive, Suite 100 Ottawa ON K2B 8H6 Canada **Attention:** Mark McCalla

DATE RECEIVED: 12-Aug-22

DATE REPORTED: 18-Aug-22

SAMPLE MATRIX: Groundwater

Caduceon Environmental Laboratories

2378 Holly Lane

Ottawa Ontario K1V 7P1 Tel: 613-526-0123 Fax: 613-526-1244

JOB/PROJECT NO.:

P.O. NUMBER: OTT-22019409-AO

WATERWORKS NO.

	Client I.D. Sample I.D. Date Collected		Dup 1 B22-25709-5 11-Aug-22	O. Reg. 153 Tbl. 1 - GW (µg/L)
Parameter	Units	R.L.		
PHC F1 (C6-C10)	μg/L	25	< 25	420
Comment-purgeable	-		-	
PHC F2 (>C10-C16)	μg/L	50	< 50	150
PHC F3 (>C16-C34)	μg/L	400	< 400	500
PHC F4 (>C34-C50)	μg/L	400	< 400	500
Comment-extractable	-		-	
Acetone	μg/L	30	< 30	2700
Benzene	μg/L	0.5	< 0.5	0.5
Bromodichloromethane	μg/L	2	< 2	2
Bromoform	μg/L	5	< 5	5
Bromomethane	μg/L	0.5	< 0.5	0.89
Carbon Tetrachloride	μg/L	0.2	< 0.2	0.2
Monochlorobenzene (Chlorobenzene)	μg/L	0.5	< 0.5	0.5
Chloroform	μg/L	1	< 1	2
Dibromochloromethane	μg/L	2	< 2	2
Dichlorobenzene,1,2-	μg/L	0.5	< 0.5	0.5
Dichlorobenzene,1,3-	μg/L	0.5	< 0.5	0.5
Dichlorobenzene,1,4-	μg/L	0.5	< 0.5	0.5
Dichlorodifluoromethane	μg/L	2	< 2	590
Dichloroethane,1,1-	μg/L	0.5	< 0.5	0.5
Dichloroethane,1,2-	μg/L	0.5	< 0.5	0.5
Dichloroethylene,1,1-	μg/L	0.5	< 0.5	0.5
Dichloroethene, cis-1,2-	μg/L	0.5	< 0.5	1.6
Dichloroethene, trans-1,2-	μg/L	0.5	< 0.5	1.6
Dichloropropane,1,2-	μg/L	0.5	< 0.5	0.5
Dichloropropene, cis-1,3-	μg/L	0.5	< 0.5	

O. Reg. 153 - Soil, Ground Water and Sediment Standards

Tbl. 1 - GW (µg/L) - Table 1 - Ground Water

R.L. = Reporting Limit

Test methods may be modified from specified reference method unless indicated by an *

Site Analyzed=K-Kingston,W-Windsor,O-Ottawa,R-Richmond Hill,B-Barrie

Tahir Yapici Ph.D

Lab Manager - Ottawa District

Final Report

C.O.C.: G105027 REPORT No. B22-25709

Report To:

EXP Services Inc

2650 Queensview Drive, Suite 100 Ottawa ON K2B 8H6 Canada **Attention:** Mark McCalla

DATE RECEIVED: 12-Aug-22

DATE REPORTED: 18-Aug-22

SAMPLE MATRIX: Groundwater

Caduceon Environmental Laboratories

2378 Holly Lane

Ottawa Ontario K1V 7P1 Tel: 613-526-0123

Fax: 613-526-1244

JOB/PROJECT NO.:

P.O. NUMBER: OTT-22019409-AO

WATERWORKS NO.

	Client I.D. Sample I.D. Date Collected		Dup 1 B22-25709-5 11-Aug-22	O. Reg. 153 Tbl. 1 - GW (μg/L)
Parameter	Units	R.L.		
Dichloropropene, trans- 1,3-	μg/L	0.5	< 0.5	
Dichloropropene 1,3- cis+trans	μg/L	0.5	< 0.5	0.5
Ethylbenzene	μg/L	0.5	< 0.5	0.5
Dibromoethane,1,2- (Ethylene Dibromide)	μg/L	0.2	< 0.2	0.2
Hexane	μg/L	5	< 5	5
Methyl Ethyl Ketone	μg/L	20	< 20	400
Methyl Isobutyl Ketone	μg/L	20	< 20	640
Methyl-t-butyl Ether	μg/L	2	< 2	15
Dichloromethane (Methylene Chloride)	μg/L	5	< 5	5
Styrene	μg/L	0.5	< 0.5	0.5
Tetrachloroethane,1,1,1,2-	μg/L	0.5	< 0.5	1.1
Tetrachloroethane,1,1,2,2-	μg/L	0.5	< 0.5	0.5
Tetrachloroethylene	μg/L	0.5	< 0.5	0.5
Toluene	μg/L	0.5	< 0.5	0.8
Trichloroethane,1,1,1-	μg/L	0.5	< 0.5	0.5
Trichloroethane,1,1,2-	μg/L	0.5	< 0.5	0.5
Trichloroethylene	μg/L	0.5	< 0.5	0.5
Trichlorofluoromethane	μg/L	5	< 5	150
Vinyl Chloride	μg/L	0.2	< 0.2	0.5
Xylene, m,p-	μg/L	1.0	< 1.0	
Xylene, o-	μg/L	0.5	< 0.5	
Xylene, m,p,o-	μg/L	1.1	< 1.1	72
Acenaphthene	μg/L	0.05	< 0.05	4.1

O. Reg. 153 - Soil, Ground Water and Sediment Standards

Tbl. 1 - GW (µg/L) - Table 1 - Ground Water

R.L. = Reporting Limit

Test methods may be modified from specified reference method unless indicated by an *

Site Analyzed=K-Kingston,W-Windsor,O-Ottawa,R-Richmond Hill,B-Barrie

Tahir Yapici Ph.D Lab Manager - Ottawa District

The analytical results reported herein refer to the samples as received. Reproduction of this analytical report in full or in part is prohibited without prior consent from Caduceon Environmental Laboratories.

Final Report

C.O.C.: G105027 REPORT No. B22-25709

Report To:

EXP Services Inc

2650 Queensview Drive, Suite 100 Ottawa ON K2B 8H6 Canada **Attention:** Mark McCalla

DATE RECEIVED: 12-Aug-22

DATE REPORTED: 18-Aug-22

SAMPLE MATRIX: Groundwater

Caduceon Environmental Laboratories

2378 Holly Lane

Ottawa Ontario K1V 7P1 Tel: 613-526-0123 Fax: 613-526-1244

JOB/PROJECT NO.:

P.O. NUMBER: OTT-22019409-AO

WATERWORKS NO.

	Client I.D. Sample I.D. Date Collected		Dup 1		eg. 153
			B22-25709-5	Tbl. 1 - GW	1
			11-Aug-22	(µg/L)	
Parameter	Units	R.L.			
Acenaphthylene	μg/L	0.05	< 0.05	1	
Anthracene	μg/L	0.05	< 0.05	0.1	
Benzo(a)anthracene	μg/L	0.05	< 0.05	0.2	
Benzo(a)pyrene	μg/L	0.01	< 0.01	0.01	
Benzo(b)fluoranthene	μg/L	0.05	< 0.05	0.1	
Benzo(b+k)fluoranthene	μg/L	0.1	< 0.1		
Benzo(g,h,i)perylene	μg/L	0.05	< 0.05	0.2	
Benzo(k)fluoranthene	μg/L	0.05	< 0.05	0.1	
Chrysene	μg/L	0.05	< 0.05	0.1	
Dibenzo(a,h)anthracene	μg/L	0.05	< 0.05	0.2	
Fluoranthene	μg/L	0.05	< 0.05	0.4	
Fluorene	μg/L	0.05	< 0.05	120	
Indeno(1,2,3,-cd)pyrene	μg/L	0.05	< 0.05	0.2	
Methylnaphthalene,1-	μg/L	0.05	< 0.05	2	
Methylnaphthalene,2-	μg/L	0.05	< 0.05	2	
Methylnaphthalene 2-(1-)	μg/L	1	< 1	2	
Naphthalene	μg/L	0.05	< 0.05	7	
Phenanthrene	μg/L	0.05	< 0.05	0.1	
Pyrene	μg/L	0.05	< 0.05	0.2	
2-Fluorobiphenyl (SS)	% rec.	10	100		
Terphenyl-d14 (SS)	% rec.	10	110		

O. Reg. 153 - Soil, Ground Water and Sediment Standards Tbl. 1 - GW ($\mu g/L$) - Table 1 - Ground Water

R.L. = Reporting Limit

Test methods may be modified from specified reference method unless indicated by an * Site Analyzed=K-Kingston,W-Windsor,O-Ottawa,R-Richmond Hill,B-Barrie

Tahir Yapici Ph.D Lab Manager - Ottawa District

Final Report

C.O.C.: G105027 REPORT No. B22-25709

Report To:

EXP Services Inc

2650 Queensview Drive, Suite 100 Ottawa ON K2B 8H6 Canada **Attention:** Mark McCalla

DATE RECEIVED: 12-Aug-22

DATE REPORTED: 18-Aug-22

SAMPLE MATRIX: Groundwater

Caduceon Environmental Laboratories

2378 Holly Lane

Ottawa Ontario K1V 7P1 Tel: 613-526-0123 Fax: 613-526-1244

JOB/PROJECT NO.:

P.O. NUMBER: OTT-22019409-AO

WATERWORKS NO.

Summary of Exceedances

Table 1 - Ground Water							
MW15-1	Found Value	Limit					
Benzo(a)pyrene (μg/L)	0.012	0.01					

O. Reg. 153 - Soil, Ground Water and Sediment Standards Tbl. 1 - GW ($\mu g/L$) - Table 1 - Ground Water

R.L. = Reporting Limit

Test methods may be modified from specified reference method unless indicated by an * Site Analyzed=K-Kingston,W-Windsor,O-Ottawa,R-Richmond Hill,B-Barrie

Tahir Yapici Ph.D Lab Manager - Ottawa District