

Phase Two Environmental Site Assessment 1055 Klondike Road Ottawa, Ontario

Submitted to:

Brian Saumure, Maple Leaf Homes C/O Novatech 240 Michael Cowpland Drive, Suite 200 Ottawa, Ontario K2M 1P6

Phase Two Environmental Site Assessment 1055 Klondike Road Ottawa, Ontario

> May 17, 2019 Project: 64153.85 - V02

GEMTEC Consulting Engineers and Scientists Limited 32 Steacie Drive Ottawa, ON, Canada K2K 2A9

May 17, 2019

File: 64153.85 - V02

Brian Saumure, Maple Leaf Homes C/O Brian Saumure, Maple Leaf Homes 240 Michael Cowpland Drive, Suite 200 Ottawa, Ontario K2M 1P6

Attention: Mr. Brian Saumure

Re: Phase Two Environmental Site Assessment 1055 Klondike, Ottawa, Ontario

Enclosed is our Phase Two ESA report for the above noted project based on the scope of work presented in our proposal. This report was prepared by Nicole Soucy, B.A.Sc, M.A.Sc. with senior review performed by Katherine Rispoli, M.A.Sc., P.Eng.

Nicole Soucy, B.A.Sc., M.A.Sc.

mali

Katherine Rispoli, M.A.Sc., P.Eng., ing.

Enclosures

P:\0. Files\64100\64153.85\Phase Two ESA\64153.85_PhaseIIESA_RPT01_V02_2019-05-17.docx

EXECUTIVE SUMMARY

The Phase One Environmental Site Assessment (ESA) report previously carried out for the subject property recommended that a Phase Two ESA investigation be carried out for the property located at 1055 Klondike Road in Ottawa, Ontario (hereafter referred to as "the subject property"). The Phase Two ESA investigated three (3) Areas of Potential Environmental Concern (APECs) identified in the Phase One ESA:

APEC 1: Former Aboveground Fuel Storage Tank

Evidence from one AST was observed during the site reconnaissance. The vent and fill pipes were observed along the eastern wall of the existing structure. The AST was identified in the basement with an approximate capacity of 900 litres and installed in 2003. The tank was likely used for heating oil storage. Due to the nature of the products stored, the contaminants of concern for soil and groundwater were PHC, and BTEX.

APEC 2: Potential Impacts from Offsite Dry cleaning facility

An offsite dry cleaning facility was identified during the site reconnaissance in the study area. Based on the proximity to the subject site, potential environmental concern to the subject site relating to the historic dry cleaning activities may be present along the northwest property boundary of the subject property. Due to the nature of the products stored, the contaminants of concern for soil and groundwater were VOCs.

APEC 3: Debris and fill of unknown origin during the fire

On June 10, 2018, a fire occurred on the subject site following the initial Phase I ESA site visit. The fire significantly damaged the structures on the subject site, and they were demolished following the fire. Based on a visual site inspection, the area within the historic building footprint was filled in. It is our understanding that the AST was removed prior to fire. Due to the fill material and debris within the building footprint and to confirm no fuel was leaked prior to or during the fire, the contaminants of concern for soil and groundwater were PHCs, BTEX, and for soil only were metals and PAHs.

The Phase Two ESA investigation was carried out from March 2018 to March 2019. The components of the Phase Two ESA investigation consisted of sampling three boreholes completed and sampling from three monitoring wells installed on the site. Soil and groundwater samples were collected and submitted to Paracel Laboratories Ltd. of Ottawa, Ontario for laboratory analyses of selected parameters.

The data collected during the sampling indicated that the overburden of the site is generally brown silt and sand overlaying brown silt and clay (weathered crust).

The groundwater levels measured in the monitoring wells BH18-1, BH18-3 and BH18-5 on May 14, 2018 were 2.9, 6.8, and 5.9 metres below ground surface respectively (or elevation 74.8, 71.2, and 71.9 metres geodetic respectively). The groundwater level measured in the monitoring well BH19-2 on April 4, 2019 was 6.3 metres below ground surface (or elevation 71.8 metres geodetic).

The Phase Two ESA investigated the APECs identified in the Phase One ESA and the results of the investigation for each APEC are summarized below:

APEC 1: Aboveground Fuel Storage Tank

Groundwater results indicated PHC F3 contaminated groundwater at monitoring well locations BH18-5 and BH18-3 in May 2018. To confirm the exceedance and assess the groundwater conditions following the fire, additional groundwater sampling following monitoring well development was recommended and carried out in August 2018. The monitoring well BH18-3 was re-sampled for PHCs and BTEX in August 2018. The results were non-detect for all parameters analyzed. Due to low water levels, the monitoring well at BH18-5 could not be resampled. To address this, an additional monitoring well BH19-2 was advanced in March 2019 between the former aboveground fuel storage tank and BH18-5. The groundwater sample from BH19-1 was submitted for PHCs and BTEX, and no exceedances were identified. No PHCs and BTEX impacted soil was identified during the investigation.

APEC 2: Potential Impacts from Offsite Dry cleaning facility

Soil and groundwater results from BH18-5 did not identify any VOC contaminated soils or groundwater.

APEC 3: Debris and fill of unknown origin during the fire

Soil results indicated zinc contaminated soil at GS-N, a grab sample collected the within the footprint of the former structure. No PAH, BTEX, or PHC impacted soil or groundwater were identified.

Discussion

Based on the results of the current investigation, it is expected that contaminated soil as defined by current MECP regulations will be encountered during the proposed construction in the area of GS-N within the former building footprint. Based on the nature of the contaminants identified (Zinc) and debris identified in the former building footprint, it is recommended that soil and debris be disposed of at an approved facility subject to a toxicity characteristic leaching procedure (TCLP) analysis and confirmatory sampling be carried out by a Qualified Person, as defined by O.Reg. 153/04.

TABLE OF CONTENTS

1.0 IN	ITRODUCTION	1
1.1	Phase Two Property Description	1
1.2	Phase Two Property Ownership	1
1.3	Current and Future Land Uses	1
1.4	Applicable Site Condition Standard	1
2.0 BA	ACKGROUND INFORMATION	3
2.1	Physical Setting	3
2.2	Past Investigations	
3.0 SC	COPE OF INVESTIGATION	5
3.1	Overview of Site Investigation	5
3.2	Media Investigated	5
3.2	J - 5	
3.2	2.2 Areas of Potential Environmental Concern	6
3.3	Deviations from Sampling and Analysis Plan	7
4.0 IN	IVESTIGATION METHODS	8
4.1	General	8
4.2	Borehole Drilling	8
4.3	Soil Sampling	8
4.4	Groundwater Field Measurements	8
4.5	Groundwater Sampling	
4.6	Analytical Testing	8
4.7	Elevation Surveying	
4.8	Quality Assurance and Quality Control Measures	9
5.0 RE	EVIEW AND EVALUATION OF INFORMATION	10
5.1	Geology	10
5.1	.1 Topsoil	10
5.1	5	
5.1	-	
5.1		
5.1		
5.1 5.1		
5.2	Groundwater Elevations	
5.3	Site Condition Standards	
5.4	Soil Quality	12

V

5.	5	Groundwater Quality	3
5.	6	Quality Assurance and Quality Control Results1	4
SOI	L SA	MPLES1	4
GRO	DUNI	DWATER SAMPLES1	4
5.	7	Phase Two Conceptual Site Model1	
	5.7.	1 Potentially Contaminating Activities1	5
	5.7.2	2 Subsurface Structures1	5
	5.7.3	3 Physical Settings and Hydrogeological Characteristics of the Subject Property1	5
	5.7.4	4 Identified Contamination and Impacted Medium on the Subject Property1	5
	APE	C 1: Aboveground Fuel Storage Tank1	5
	5.7.5	5 Summary of Identified Impacts1	6
6.0	со	NCLUSIONS1	7
	APE	C 1: Aboveground Fuel Storage Tank1	8
		C 2: Potential Impacts from Offsite Dry cleaning facility1	
7.0	LIN	IITATION OF LIABILITY1	9
8.0	RE	FERENCES2	21

LIST OF TABLES

Table 3.1: Areas of Potential Environmental Concern	6
Table 5.1: Groundwater Elevations	11
Table 5.2: Soil Descriptions and Analytical Testing Summary	13
Table 5.3: Analytical Groundwater summary	14

LIST OF FIGURES

Figure 1	Key Plan
Figure 2	Borehole Location Plan

LIST OF APPENDICES

Appendix A	Soil - Laboratory Certificates of Analysis
Appendix B	Groundwater - Laboratory Certificate of Analysis
Appendix C	Record of Boreholes

1.0 INTRODUCTION

GEMTEC Consulting Engineers and Scientists Ltd. (GEMTEC) was retained by Novatech to carry out a Phase Two Environmental Site Assessment (ESA) for the property located at 1055 Klondike Road, in Ottawa, Ontario (hereafter referred to as "the subject property"). The general location of the subject property is illustrated on the Key Plan, Figure 1.

The purpose of the Phase Two ESA was to investigate the Areas of Potential Environmental Concern (APECs) identified in the updated Phase One ESA dated October 2018, and to assess the potential for environmental impacts at the subject property. This Phase Two ESA was completed in general accordance with Ontario Regulation 153/04.

1.1 Phase Two Property Description

The subject property is approximately 11 acres in size. The legal description for 1055 Klondike Road is Part of Lot 11, Concession 4, being Part 3 on Plan 5R-3477, City of Ottawa, PIN 04527-0091.

1.2 Phase Two Property Ownership

The subject property was owned by Village at the Schoolyard Inc. as of October 2017. The contact person for the subject property Brian Saumure at 613-913-9330.

1.3 Current and Future Land Uses

The historical land use is agricultural and residential (most recently vacant). Historical land use in the study area was predominantly agricultural with commercial developments concentrated to the south along March Road starting in 2009. It is understood that the proposed future use of the property is residential.

In accordance with Section 168.3.1 of the Environmental Protection Act (Ministry of Environment, December 31, 2011) a Record of Site Condition is not required to be filed for the subject property.

1.4 Applicable Site Condition Standard

Site restoration standards were selected for this site in accordance with the requirements of Ontario Regulation 153/04, Record of Site Condition – Part XV.1 of the Environmental Protection Act (O. Reg. 153/04, Ministry of Environment, October 31, 2011).

The following information was considered in selecting the site condition standards:

- The site and surrounding properties are serviced with municipal water;
- The current and proposed property use is residential;

1

- The overburden thickness in the area of the APEC investigated is greater than 2 metres; and,
- The subject property is within 30 metres of a water body.

Based on the above, the MECP Table 9 Generic Site Condition Standards (SCS) for Use within 30 m of a Water Body in a Non-Potable Groundwater Condition was selected for the subject property.

2.0 BACKGROUND INFORMATION

2.1 Physical Setting

The subject property was first developed for agricultural use sometime before 1934. Structures are visible on the south and northwest portion the subject property in the 1934 aerial photograph and the structures on the northeast portion are removed before 1976. Additional development has occurred to the east between 1976 and 1991. Residential subdivision development is visible in the study area between 2005 and 2008. Construction for the commercial development west of the subject property occurred between 2008 and 2011, where commercial structures are now visible.

The subject property is at an elevation of approximately 70 metres above sea level. Surrounding topography generally slopes gradually northwest. Groundwater flow often reflects topographic features and typically flows toward nearby lakes, rivers and wetland areas. Based on the topography of the area, it is expected that the local shallow groundwater flow is the northwest, towards Shirley's Brook.

2.2 Past Investigations

An updated Phase One ESA was completed by GEMTEC Consulting Engineers and Scientists Ltd. for the subject property in October 2018 and is provided in the report titled "Phase One Environmental Site Assessment, 1055 Klondike Road, Ottawa, Ontario". The Phase One ESA was carried out by or under the supervision of the qualified person in general accordance with Ontario Regulation 153/04 made under the Environmental Protection Act. The following APECs were determined through the Phase One ESA to exist for the subject property:

APEC 1: Former Aboveground Fuel Storage Tank

Evidence from one aboveground fuel storage tank (AST) was observed during the site reconnaissance. The vent and fill pipes were observed along the eastern wall of the existing structure. The AST was identified in the basement with an approximate capacity of 900 litres and installed in 2003. The tank was likely used for heating oil storage. Due to the nature of the products stored, the contaminants of concern for soil and groundwater are petroleum hydrocarbons (PHCs), benzene, toluene, ethylbenzene and xylene (BTEX).

APEC 2: Potential Impacts from Offsite Dry cleaning facility

An offsite dry cleaning facility was identified during the site reconnaissance in the study area. Based on the proximity to the subject site, potential environmental concern to the subject site relating to the historic dry cleaning activities may be present along the northwest property boundary of the subject property. Due to the nature of the products stored, the contaminants of concern for soil and groundwater are volatile organic compounds (VOCs).

APEC 3: Debris and fill of unknown origin during the fire

On June 10, 2018, a fire occurred on the subject site following the initial Phase I ESA site visit. The fire significantly damaged the structures on the subject site, and they were demolished following the fire. Based on a visual site inspection, the area within the historic building footprint was filled in. It is our understanding that the AST was removed prior to fire. Due to the fill material and debris within the building footprint and to confirm no fuel was leaked prior to or during the fire, the contaminants of concern for soil and groundwater are PHCs, BTEX, and for soil are metals and Polycyclic Aromatic Hydrocarbons (PAHs).

Based on the results from the updated Phase One ESA, a Phase Two ESA was recommended for the subject property in order to investigate the APECs.

3.0 SCOPE OF INVESTIGATION

3.1 Overview of Site Investigation

The objectives of the Phase Two ESA were based on the results of the Phase One ESA and are as follows:

- To document the presence or absence of contaminants in the soil or groundwater on, in or under the subject property, specifically within the areas of the APECs;
- To identify the locations of, and concentrations of contaminants in the soil or groundwater on, in or under the subject property, if applicable; and,
- To assess if the subject property meets the applicable Ministry of Environment, Conservation and Parks (MECP) Site Condition Standards (SCS).

It is noted that, the presence or absence of contaminants was investigated at discrete sampling locations using a limited number of samples.

The following tasks were completed during the Phase Two ESA:

- A sampling and analysis plan was prepared;
- Seven boreholes were drilled on the subject site between 2018 and 2019, five on March 8 and 9, 2018 (BH18-1, BH18-2, BH18-3, BH18-4, and BH18-5), and two on March 14, 2019 (BH19-1, BH19-2);
- Samples were collected from three of the 2018 (BH18-1, BH18-3, and BH18-5) boreholes at the time of drilling;
- Following the fire in 2018, two soil grab samples (GS-M, GS-N) were also collected in the vicinity of the former building footprint;
- A total of six soil samples including one duplicate were submitted to the analytical laboratory for analysis of contaminants of concern;
- Four of the boreholes were completed as monitoring wells (BH18-1, BH18-3, BH18-5, and BH19-2), and groundwater samples were collected from three of the four locations and submitted to the analytical laboratory for analysis of contaminants of concern;
- An additional groundwater sample was collected from one of the wells (MW18-3 SA3 from BH18-3) in August 2018, following the fire that occurred on the subject site;
- The analytical results were compared with the applicable MECP SCS; and,
- A Phase Two ESA report was prepared.

3.2 Media Investigated

This Phase Two ESA included sampling and analysis of soil and groundwater. No sediment or surface water sampling was conducted as no water bodies are present on the subject property. The rationale for sampling the soil and groundwater was to investigate the potential for contamination at the APECs identified in the Phase One ESA.

The soil quality at discrete locations on the subject property was assessed by collecting soil samples from three borehole locations numbered BH18-1, BH18-3, and BH18-5. Soil samples were field preserved in methanol and submitted for laboratory analysis of the identified contaminants of concern. Two grab samples (GS-M, and GS-N) were also collected from the subject site following the fire that occurred in 2018. The locations of the sampling locations are provided on Figure 2.

The groundwater quality at the subject property was assessed by collecting groundwater samples from three of the four monitoring well locations. Groundwater samples were collected in laboratory supplied bottles using dedicated sampling equipment.

3.2.1 Potentially Contaminating Activities

The following potentially contaminating activities were identified to create an APEC on the subject property:

- Former Aboveground Fuel Storage Tank;
- Potential Impacts from Offsite Dry cleaning facility; and,
- Debris and fill of unknown origin during the fire.

3.2.2 Areas of Potential Environmental Concern

The APECs on the subject property are summarized in Table 3.1.

Table 3.1: Areas of Potential Environmental Concern

APEC	Location of APEC on Phase One Property	PCA	Location of PCA	Contaminants of Potential Concern	Media Potentially Impacted		
APEC 1	Near aboveground fuel storage tank	Fuel storage	On site	 PHCs¹ BTEX² 	Soil Groundwater		
APEC 2	Near west property Dry Cleaning boundary		Off site	• VOCs ³	Soil Groundwater		
APEC 3	Near the location of the demolished structures on the subject site		On site	 PHC BTEX PAH⁴ Metals 	Soil Groundwater		
1 2 3	PHCs – Petroleum hydrocarbons BTEX – Benzene, toluene, ethylbenzene and xylene VOCs – Volatile organic compounds PAHs – Polycyclic Aromatic Hydrocarbons						

3.3 Deviations from Sampling and Analysis Plan

Site visits occurred more often than anticipated in order to collect the groundwater samples due to low groundwater yields in the monitoring wells. Furthermore, the 2019 program was driven by geotechnical analysis (GEMTEC, 2019), however the monitoring well installation at MW19-2 was completed based on the calculated groundwater flow direction and identified PHC F3 exceedance in 2018.

4.0 INVESTIGATION METHODS

4.1 General

Boreholes were drilled and soil samples collected March 8 and 9, 2018, and March 14, 2019 following that groundwater samples were collected May 17, 2018, August 3, 2018, and April 8, 2019. Soil and groundwater samples were collected independently and submitted to a CALA-accredited laboratory, Paracel Laboratories Ltd., for chemical analyses of selected parameters.

4.2 Borehole Drilling

Boreholes were advanced at the subject property using a CME truck mounted power auger drill rig, supplied and operated by George Downing Estate Drilling Ltd. of Grenville-sur-la-Rouge, Quebec.

4.3 Soil Sampling

Soil samples were collected following the Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario (MOE, 1996). Soil samples were collected from the subsurface and placed directly into sample jars and resealable zipper bags using nitrile gloves. Approximately 5-gram soil samples were also obtained using new disposable syringes and placed into methanol preserved vials.

4.4 Groundwater Field Measurements

A Heron Instruments oil/water interface meter was used to measure some or all of the groundwater levels on March 15, 2018, May 14, 2018, July 27, 2018, October 4, 2018, March 22, 2019, and April 4, 2019. Free petroleum product was not detected in any of the on-site monitoring wells.

4.5 Groundwater Sampling

Groundwater samples were collected following the Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario (MOE, 1996). All groundwater samples were collected in laboratory supplied bottles, using a peristaltic pump with dedicated tubing. Prior to sampling, the monitoring wells were developed by purging the wells. All groundwater samples were stored in a cooler and were submitted to Paracel Laboratories for analyses of selected parameters.

4.6 Analytical Testing

Laboratory analysis of soil samples and groundwater samples was carried out by Paracel Laboratories located at 2319 St Laurent Blvd, Ottawa, Ontario.

4.7 Elevation Surveying

The ground surface elevations at the location of the boreholes were determined using a Trimble R10 global positioning system. The coordinates of the boreholes are referenced to NAD83 (CSRS) Epoch 2010, vertical network CGVD2013 and are considered to be accurate within the tolerance of the instrument. The ground surface elevations are provided on the Sample Location Plan, Figure 2.

4.8 Quality Assurance and Quality Control Measures

Soil Samples

Soil samples were collected in clear glass jars and vials containing methanol preservative supplied by the laboratory. In the field, a pen or permanent marker was used to record the date of sampling and sample number; the jars were pre-labelled with the client name (GEMTEC), and project number. A chain of custody was completed to include the information for each sample collected.

A new pair of nitrile gloves was worn for collecting each of the soil samples to minimize cross contamination between samples and to protect staff from exposure to contaminants. The samples were collected directly into laboratory supplied jars. The samples for the vials containing the methanol preservative were collected using new plastic syringes supplied by the laboratory.

The soil samples collected in the laboratory supplied containers were immediately preserved in the field by placing the samples in a laboratory supplied cooler. Soil samples were submitted seven (7) days after their collection, well within the maximum allowable holding time.

Groundwater

The groundwater samples were collected in laboratory supplied bottles and vials specific to the requested analysis. In the field, a pen or permanent marker was used to record the date of sampling and sample number; the jars were pre-labelled with the client name (GEMTEC), and project number.

A new pair of nitrile gloves was worn during the collection of each of the groundwater samples to minimize cross contamination between samples and to protect staff from exposure to contaminants. Groundwater was sampled from the wells using dedicated sampling equipment for each well. No cleaning procedures were required as the gloves and dedicated sampling equipment were disposed of following each sample collection.

The groundwater samples collected in the laboratory supplied containers were immediately cooled in the field by placing the samples in a laboratory supplied cooler. Groundwater samples were submitted to the laboratory the same day for analysis, well within the maximum allowable holding time.

5.0 REVIEW AND EVALUATION OF INFORMATION

5.1 Geology

The subsurface conditions described below indicate the conditions at the specific test locations only. Boundaries between zones are often not distinct, but rather are transitional and have been interpreted. The precision with which subsurface conditions are indicated depends on the frequency and recovery of samples, the method of sampling and the uniformity of the subsurface conditions. Subsurface conditions at other than the test locations may vary from the conditions encountered in boreholes.

The soil descriptions in this letter are based on commonly accepted methods of classification and identification employed in practice. Classification and identification of soil involves judgment and GEMTEC does not guarantee descriptions as exact, but infers accuracy to the extent that is common in current geotechnical practice. For a more detailed description of the soils please see the Geotechnical report completed by GEMTEC (GEMTEC, 2018b and GEMTEC, 2019).

The subsurface stratigraphy as identified during the borehole drilling is presented on the Record of Borehole sheets (Appendix C) and summarized below.

5.1.1 Topsoil

A layer of topsoil was encountered from ground surface at borehole location 18-1. The topsoil is composed of dark brown to brown silty sand/ sandy silt with organic material. The thickness of the topsoil layer was approximately 310 millimetres.

5.1.2 Granular Driveway Material

A layer of grey crushed sand and gravel was encountered from ground surface at borehole 18-3 which was advanced through the existing driveway at this site. The granular material has a thickness of about 150 millimetres.

5.1.3 Fill Material

Fill material was encountered below the granular driveway material at borehole 18-3 and from ground surface at borehole 18-5. The fill material can be described as dark brown to brown silty sand with organic material and grey brown silty clay with pockets of dark brown organic material. The fill material extends to depths of about 0.9 and 3.3 metres below ground surface (elevations 74.6 and 77.9 metres, geodetic datum) at the location of boreholes 18-3 and 18-5, respectively.

5.1.4 Silt and Sand

Deposits of silty sand were encountered below the topsoil and fill material at all borehole locations. The silty sand can be described as grey brown to brown silty sand with trace roots at borehole 18-3 and with trace wood at borehole location 18-5.

The thickness of the sand ranges from 1.4 to 2.0 metres and extends to depths of about 0.3 to 0.9 metres below ground surface.

A native deposit of brown silty sand with trace wood was encountered in borehole 18-5 at a depth of about 3.3 metres below ground surface. The silty sand has a thickness of about 1.5 metres and extends to a depth of about 4.7 metres below surface.

5.1.5 Sand

Native deposits of sand were encountered below the silty sand at borehole location 18-3, at a depth ranging from about 2.5 to 3.1 metres below ground surface. The sand can be described as brown, fine to medium grained with trace to some silt and was layered with grey brown silty sand at borehole 18-2. The thickness of the sand ranges from 0.6 to 1.1 metres and extends to depths of about 2.1 to 3.1 metres below ground surface.

5.1.6 Weathered Crust (Silt and Clay)

Native deposits of weathered, grey brown silt and clay with trace amounts of sand (weathered crust) were encountered underlying the sand and silty sand at all borehole locations. The weathered crust was encountered at depths ranging from about 2.3 to 3.3 metres below ground surface. Borehole 18-1 was terminated within the weathered crust at a depth of about 5.9 metres below ground surface (elevation 71.8 metres, geodetic datum).

5.1.7 Silty Clay

The grey brown silty clay weathered crust transitions to grey silty clay at depths of about 6.1 to 7.6 metres below ground surface in borehole 18-3. Borehole 18-3 was terminated within the grey silty clay at a depth of about 8.2 metres below ground surface.

5.2 Groundwater Elevations

Monitoring wells were installed in four of the boreholes in order to measure stabilized groundwater conditions.

The groundwater levels measured in the monitoring wells are presented on the Record of Borehole sheets (Appendix C) and summarized in Table 5.2 below.

Location	Measurement Date	Groundwater Depth Below Ground Surface (metres)	Geodetic Elevation (metres)
	15-Mar-18	2.0	75.7
BH 18-1	14-May-18	2.9	74.8
	22-Mar-19	2.2	75.5
BH 18-3	15-Mar-18	6.3	72.5

Table 5.1: Groundwater Elevations

Location	Measurement Date	Groundwater Depth Below Ground Surface (metres)	Geodetic Elevation (metres)
	14-May-18	6.8	72.0
	27-Jul-18	7.6	71.2
	15-Mar-18	5.5	72.3
	14-May-18	5.9	71.9
BH 18-5	27-Jul-18	6.7	73.5
	04-Oct-18	Dry	Dry
	22-Mar-19	Dry	Dry
BH19-1	22-Mar-19	6.7	71.8
B119-1	04-Apr-19	5.1	73.4

It should be noted that the groundwater levels may be higher during wet periods of the year such as the early spring or following periods of precipitation.

5.3 Site Condition Standards

Site restoration standards were selected for this site in accordance with the requirements of Ontario Regulation 153/04, Record of Site Condition – Part XV.1 of the Environmental Protection Act (O. Reg. 153/04, Ministry of Environment, October 31, 2011).

The following information was considered in selecting the site condition standards:

- The site and surrounding properties are serviced with municipal water;
- Part of the property is within 30 m of a body of water;
- The current property use is residential; and,
- The overburden thickness in the area of the APEC investigated is greater than 2 metres.

Based on the above, the MECP Table 9 Generic Site Condition Standards for use within 30 m of a Water Body in a Non-Potable Groundwater Condition for Residential Property Use (coarse grained soils) was selected for the subject property. Soil results will also be compared to MECP Table 3 Full Depth Generic Site Condition Standards in a Non-Potable Groundwater Condition, and MECP Table 1 Full Depth Background Site Condition Standards. Groundwater Samples were also compared to the City of Ottawa Sewer and Storm Sewer Guidelines.

5.4 Soil Quality

The laboratory certificates of analysis for the selected soil samples are presented in Appendix A. The locations and depths of the selected soil samples submitted for laboratory analysis are summarized in the following table:

Borehole / Monitoring Well	Sample	Sample Description	Depth Interval (m bgs ¹)	Metals	VOCs ²	PAHS ³	PHCs F1 to F4 ⁴	BTEX ⁵
BH18-1	SA3	Brown silt and sand	1.52 – 2.29				√	~
BH18-3	SA9	Grey brown silt and clay	6.10 – 6.71				\checkmark	~
BH18-301 ⁶	SA9	Grey brown silt and clay	6.10 – 6.71				\checkmark	~
BH18-5	SA8	Grey brown silt and clay	5.33 – 5.94		~		\checkmark	
Grab Sample	GS-N	Brown silty sand with brick, glass and wood debris	0.30	✓		~	V	\checkmark
Grab Sample	GS-M	Brown silty sand, plastic debris	0.30	~		✓	\checkmark	~

Table 5.2: Soil Descriptions and Analytical Testing Summary

1. m bgs – metres below ground surface

2. VOCs – Volatile Organic Compounds

3. PAHs – Polycyclic Aromatic Hydrocarbon

4. PHCs F1 to F4 – Petroleum Hydrocarbon Fractions in the F1 to F4 ranges

5. BTEX – Benzene, Toluene, Ethylbenzene, Xylene

6. BH18-102 is a duplicate of borehole BH18-2

The following provides a summary of the analytical results of the soil samples:

The soil sample results exceed the applicable MECP Table 1, 3 and 9 SCS for:
 Zinc at GS-N.

The analytical soil results from the laboratory certificates of analysis were compared with the applicable standards, the results are summarized in Table A1.

5.5 Groundwater Quality

The laboratory certificates of analysis for the groundwater samples are presented in Appendix B. The location, date and parameters analysed are summarized in Table 5.5.

Table 5.3: Analytical Groundwater summary

Monitoring Well	Date	VOCs ¹	BTEX ²	PHCs F1 to F4 ³
			ing well no	
BH 18-1		vicir	nity of APE	ECs
BH18-3	14-May-18		\checkmark	\checkmark
DITIO-3	03-Aug-18		\checkmark	\checkmark
BH18-5	14-May-18	\checkmark		\checkmark
BH19-2	08-Apr-19		\checkmark	\checkmark

- 1. VOCs Volatile Organic Compounds
- 2. BTEX Benzene, Toluene, Ethylbenzene, Xylene
- 3. PHCs F1 to F4 Petroleum Hydrocarbon Fractions in the F1 to F4 ranges

The analytical groundwater results from the laboratory certificates of analysis were compared with the applicable standards, the results are summarized in Table A2.

The following provides a summary of the analytical results of the groundwater samples:

 The groundwater sample for MW18-5 exceeded the MECP Table 1, and 9 SCS for PHC F3.

5.6 Quality Assurance and Quality Control Results

SOIL SAMPLES

One (1) duplicate soil sample was submitted to Paracel Laboratories Ltd. for analysis of selected parameters. The soil sample BH18-301 SA9 is a duplicate of sample BH18-3 SA9. The results of the duplicate soil samples are similar to the results of the original sample and no significant differences were noted.

The Laboratory QA/QC results for the soil analyses are included with the soil laboratory analytical data provided in Appendix A. Soil sample holding times were met, and laboratory quality control blanks, duplicates and spikes and surrogate compound recoveries met applicable industry criteria.

GROUNDWATER SAMPLES

No duplicate groundwater samples were submitted to Paracel Laboratories Ltd. for analysis.

The Laboratory QA/QC results for the groundwater analyses are included with the groundwater laboratory analytical data provided in Appendix B. Groundwater sample holding times were met, and laboratory quality control blanks, duplicates and spikes and surrogate compound recoveries met applicable industry criteria.

Based on the measures discussed above, sample collection and handling protocols are considered acceptable and associated analytical results reproducible. The quality of the field data and laboratory data from the investigation was sufficient in that decision making was not affected, and the overall objectives of the investigation and assessment were met.

5.7 Phase Two Conceptual Site Model

5.7.1 Potentially Contaminating Activities

The Phase One ESA identified the following potentially contaminating activities on the subject property:

- Former Aboveground Fuel Storage Tank;
- Potential Impacts from Offsite Dry cleaning facility; and,
- Debris and fill of unknown origin during the fire.

A description and assessment of areas where potentially contaminating activities have occurred and areas of potential environmental concern are summarized in Table 3.1.

5.7.2 Subsurface Structures

Services including hydro, natural gas, sanitary and storm sewer were identified to exist on the subject property. There is potential that they may affect contaminant distribution and transport.

5.7.3 Physical Settings and Hydrogeological Characteristics of the Subject Property

Surficial and bedrock geology maps of the Ottawa area indicate that the overburden in the vicinity of the subject property generally consists of clay and silt and sand and gravel with a thickness ranging from 5 to 10 metres. The bedrock is mapped as Paleozoic sandstone and dolostone of the March Formation.

Groundwater levels and elevations were plotted using Surfer 15. The plot indicates that the groundwater flow direction is to the northwest towards Shirley's Brook.

5.7.4 Identified Contamination and Impacted Medium on the Subject Property

The Phase Two ESA investigated the APECs identified in the Phase One ESA and the results of the investigation for each APEC are summarized below:

APEC 1: Aboveground Fuel Storage Tank

Groundwater results indicated PHC F3 contaminated groundwater at monitoring well locations BH18-5 and BH18-3 in May 2018. To confirm the exceedance and assess the groundwater conditions following the fire, additional groundwater sampling following monitoring well development was recommended and carried out in August 2018. The monitoring well BH18-3 was re-sampled for PHCs and BTEX in August 2018. The results were non-detect for all parameters analyzed. Due to low water levels, the monitoring well at BH18-5 could not be

resampled. To address this, an additional monitoring well BH19-2 was advanced in March 2019 between the former aboveground fuel storage tank and BH18-5. The groundwater sample from BH19-1 was submitted for PHCs and BTEX, and no exceedances were identified. No PHCs and BTEX impacted soil was identified during the investigation.

APEC 2: Potential Impacts from Offsite Dry cleaning facility

During the site reconnaissance, a dry cleaner was identified within the study area. Analytical results from BH18-5 did not identify any VOC contaminated soils or groundwater.

APEC 3: Debris and fill of unknown origin during the fire

Based on site visit and review of news document, it was identified that a fire occurred on the subject site, causing major damage to the onsite structures resulting in demolition of the structures. Analytical results indicated zinc contaminated soils at GS-N, a grab sample collected at the within the footprint of the structure where the fire occurred. No PAH, BTEX, or PHC impacted soil or groundwater were identified.

5.7.5 Summary of Identified Impacts

A soil exceedance was identified in the vicinity of the former building footprint for zinc.

6.0 CONCLUSIONS

The Phase One ESA report previously carried out for the subject property recommended that a Phase Two ESA investigation be carried out for the property located at 1055 Klondike Road in Kanata, Ontario (hereafter referred to as "the subject property"). The Phase Two ESA investigated the three APECs identified in the Phase One ESA:

APEC 1: Former Aboveground Fuel Storage Tank

Evidence from one AST was observed during the site reconnaissance. The vent and fill pipes were observed along the eastern wall of the existing structure. The AST was identified in the basement with an approximate capacity of 900 litres and installed in 2003. The tank was likely used for heating oil storage. Due to the nature of the products stored, the contaminants of concern for soil and groundwater were PHC, and BTEX.

APEC 2: Potential Impacts from Offsite Dry cleaning facility

An offsite dry cleaning facility was identified during the site reconnaissance in the study area. Based on the proximity to the subject site, potential environmental concern to the subject site relating to the historic dry cleaning activities may be present along the northwest property boundary of the subject property. Due to the nature of the products stored, the contaminants of concern for soil and groundwater were VOCs.

APEC 3: Debris and fill of unknown origin during the fire

On June 10, 2018, a fire occurred on the subject site following the initial Phase I ESA site visit. The fire significantly damaged the structures on the subject site, and they were demolished following the fire. Based on a visual site inspection, the area within the historic building footprint was filled in. It is our understanding that the AST was removed prior to fire. Due to the fill material and debris within the building footprint and to confirm no fuel was leaked prior to or during the fire, the contaminants of concern for soil and groundwater were PHCs, BTEX, and for soil only were metals and PAHs.

The Phase Two ESA investigation was carried out from March 2018 to March 2019. The components of the Phase Two ESA investigation consisted of sampling three boreholes completed and sampling from three monitoring wells installed on the site. Soil and groundwater samples were collected and submitted to Paracel Laboratories Ltd. of Ottawa, Ontario for laboratory analyses of selected parameters.

The data collected during the sampling indicated that the overburden of the site is generally brown silt and sand overlaying brown silt and clay (weathered crust).

The groundwater levels measured in the monitoring wells BH18-1, BH18-3 and BH18-5 on May 14, 2018 were 2.9, 6.8, and 5.9 metres below ground surface respectively (or elevation 74.8, 71.2, and 71.9 metres geodetic respectively). 2018 groundwater levels and elevations were plotted using Surfer 15, which indicated a west-northwest groundwater flow direction towards Shirley's Brook. The groundwater level measured in the monitoring well BH19-2 on April 4, 2019 was 6.3 metres below ground surface (or elevation 71.8 metres geodetic).

The Phase Two ESA investigated the APECs identified in the Phase One ESA and the results of the investigation for each APEC are summarized below:

APEC 1: Aboveground Fuel Storage Tank

Groundwater results indicated PHC F3 contaminated groundwater at monitoring well locations BH18-5 and BH18-3 in May 2018. To confirm the exceedance and assess the groundwater conditions following the fire, additional groundwater sampling following monitoring well development was recommended and carried out in August 2018. The monitoring well BH18-3 was re-sampled for PHCs and BTEX in August 2018. The results were non-detect for all parameters analyzed. Due to low water levels, the monitoring well at BH18-5 could not be resampled. To address this, an additional monitoring well BH19-2 was advanced in March 2019 between the former aboveground fuel storage tank and BH18-5. The groundwater sample from BH19-1 was submitted for PHCs and BTEX, and no exceedances were identified. No PHCs and BTEX impacted soil was identified during the investigation.

APEC 2: Potential Impacts from Offsite Dry cleaning facility

Soil and groundwater results from BH18-5 did not identify any VOC contaminated soils or groundwater.

APEC 3: Debris and fill of unknown origin during the fire

Soil results indicated zinc contaminated soil at GS-N, a grab sample collected at the within the footprint of the former structure. No PAH, BTEX, or PHC impacted soil or groundwater were identified.

Discussion

Based on the results of the current investigation, it is expected that contaminated soil as defined by current MECP regulations will be encountered during the proposed construction in the area of GS-N within the former building footprint. Based on the nature of the contaminants identified (Zinc) and debris identified in the former building footprint, it is recommended that soil and debris be disposed of at an approved facility subject to a toxicity characteristic leaching procedure (TCLP) analysis and confirmatory sampling be carried out by a Qualified Person, as defined by O.Reg. 153/04.

7.0 LIMITATION OF LIABILITY

This report and the work referred to within it have been undertaken by GEMTEC Consulting Engineers and Scientists Ltd (GEMTEC), and prepared for Brian Saumure, Maple Leaf Homes and is intended for the exclusive use of Brian Saumure, Maple Leaf Homes. This report may not be relied upon by any other person or entity without the express written consent of GEMTEC and Brian Saumure, Maple Leaf Homes. Nothing in this report is intended to provide a legal opinion.

The investigation undertaken by GEMTEC with respect to this report and any conclusions or recommendations made in this report reflect the best judgements of GEMTEC based on the site conditions observed during the investigations undertaken at the date(s) identified in the report and on the information available at the time the report was prepared.

This report has been prepared for the application noted and it is based, in part, on visual observations made at the site, subsurface investigations at discrete locations and depths and laboratory analyses of specific chemical parameters and material during a specific time interval, all as described in the report. Unless otherwise stated, the findings contained in this report cannot be extrapolated or extended to previous or future site conditions, portions of the site that were unavailable for direct investigation, subsurface locations on the site that were not investigated directly, or chemical parameters, materials or analysis which were not addressed. Chemical parameters other than those addressed by the investigation described in this report may exist in soil and groundwater elsewhere on the site, the chemical parameters addressed in the report may exist in soil and groundwater at other locations at the site that were not investigated and concentrations of the chemical parameters addressed which are different than those reported may exist at other locations on the site than those from where the samples were taken.

Should new information become available during future work, including excavations, borings or other studies, GEMTEC should be requested to review the information and, if necessary, reassess the conclusions presented herein.

We trust this report provides sufficient information for your present purposes. If you have any questions concerning this report, please do not hesitate to contact our office.

Λ

Nicole Soucy, B.A.Sc., M.A.Sc. Environmental Scientist

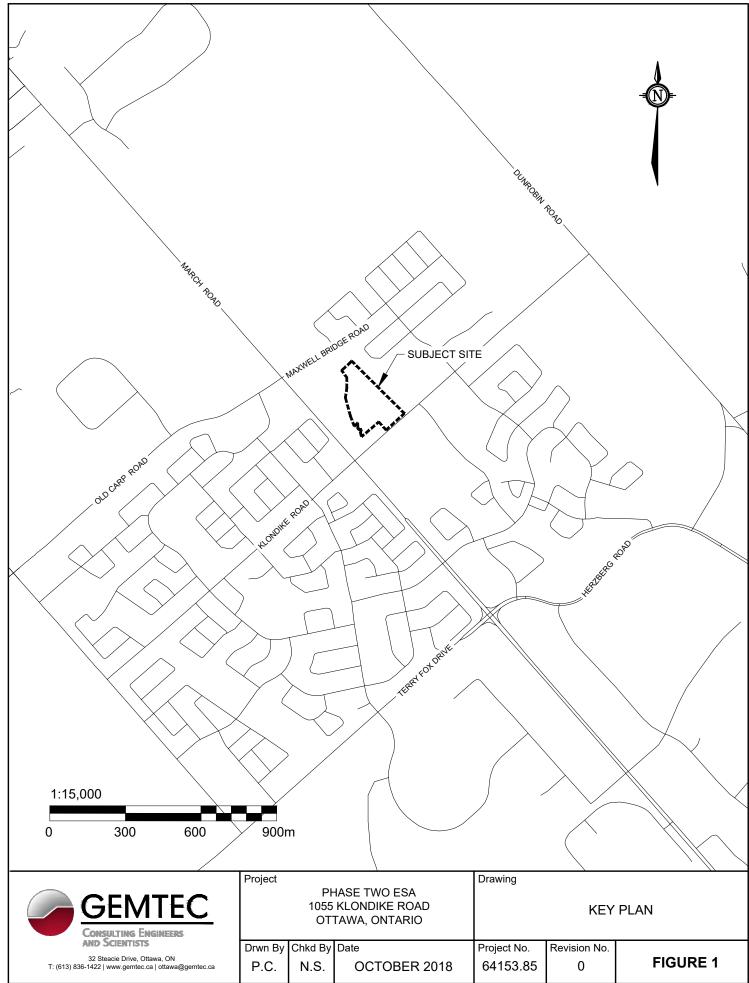
Katherine Rispoli, P.Eng., ing., M.A.Sc. Environmental Engineer

8.0 **REFERENCES**

GEMTEC Consulting Engineers and Scientists Limited (GEMTEC). Phase Two Environmental Site Assessment, 1055 Klondike Road, Ottawa, Ontario. October 2018a.

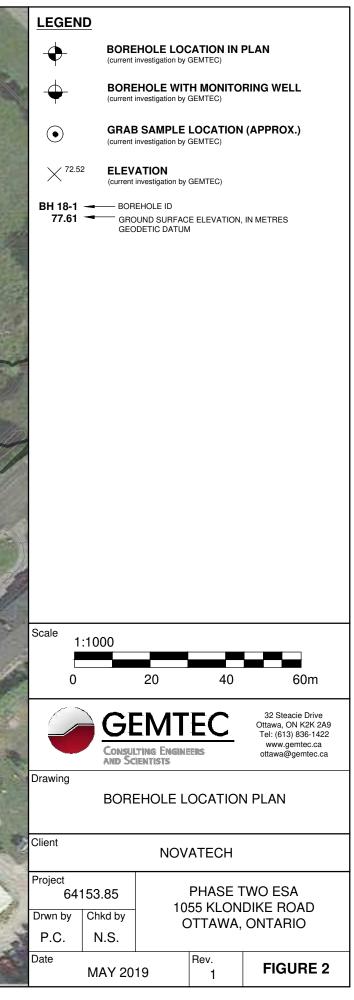
GEMTEC Consulting Engineers and Scientists Limited (GEMTEC). Geotechnical Investigation, Proposed Residential Subdivision, 1055 Klondike Road, Ottawa, Ontario. April 2018b.

GEMTEC Consulting Engineers and Scientists Limited (GEMTEC). Supplemental Geotechnical Investigation, Proposed Residential Subdivision, 1055 Klondike Road, Ottawa, Ontario. April 2019.


Google Earth™ Satellite Imagery, 2019

Ontario Ministry of the Environment (MOE). Revised December 1996. Guidance on sampling and analytical methods for use at contaminated sites in Ontario.

Ontario Ministry of the Environment (MOE), 2011. Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act, April.


Ontario Regulation 153/04, Made under the Environmental Protection Act, Part XV.1 – Records of Site Condition. October 31, 2011 updated July 28, 2017.

P:\0. Files\64100\64153.85\Phase Two ESA\Drafting\Drawings\64153.85_PhaseTwoESA_FG1_V01_2018-10-02.dwg, FG1-KP, 18/10/02 2:27:48 PM

TABLE A1 SOIL ANALYTICAL RESULTS

			Sample Location:		1055 Klon	dike Road	
			Sample ID: ratory Sample ID: Date Sampled:	MW18-1 SA3 1812403-01 16-02-18	MW18-3 SA9 1812403-02 16-02-18	MW18-5 SA8 1812403-03 16-02-18	MW18-301 SA9 1812403-04 16-02-18
Parameter	Units	RDL	MECP Table 9*				
Physical Characteristics							
% Solids	% by Wt.	0.1	NS	81.8	66.1	72.8	64.0
Volatiles							
Acetone	ug/g dry	0.50	0.5 ug/g dry	ND (0.50)	N/A	ND (0.50)	N/A
Benzene	ug/g dry	0.02	0.02 ug/g dry	ND (0.02)	N/A	ND (0.02)	N/A
Bromodichloromethane	ug/g dry	0.05	0.05 ug/g dry	ND (0.05)	N/A	ND (0.05)	N/A
Bromoform	ug/g dry	0.05	0.05 ug/g dry	ND (0.05)	N/A	ND (0.05)	N/A
Bromomethane	ug/g dry	0.05	0.05 ug/g dry	ND (0.05)	N/A	ND (0.05)	N/A
Carbon Tetrachloride	ug/g dry	0.05	0.05 ug/g dry	ND (0.05)	N/A	ND (0.05)	N/A
Chlorobenzene	ug/g dry	0.05	0.05 ug/g dry	ND (0.05)	N/A	ND (0.05)	N/A
Chloroform	ug/g dry	0.05	0.05 ug/g dry	ND (0.05)	N/A	ND (0.05)	N/A
Dibromochloromethane	ug/g dry	0.05	0.05 ug/g dry	ND (0.05)	N/A	ND (0.05)	N/A
Dichlorodifluoromethane	ug/g dry	0.05	0.05 ug/g dry	ND (0.05)	N/A	ND (0.05)	N/A
1,2-Dichlorobenzene	ug/g dry	0.05	0.05 ug/g dry	ND (0.05)	N/A	ND (0.05)	N/A
1,3-Dichlorobenzene	ug/g dry	0.05	0.05 ug/g dry	ND (0.05)	N/A	ND (0.05)	N/A
1,4-Dichlorobenzene	ug/g dry	0.05	0.05 ug/g dry	ND (0.05)	N/A	ND (0.05)	N/A
1,1-Dichloroethane	ug/g dry	0.05	0.05 ug/g dry	ND (0.05)	N/A	ND (0.05)	N/A
1,2-Dichloroethane	ug/g dry	0.05 0.05	0.05 ug/g dry	ND (0.05)	N/A N/A	ND (0.05)	N/A N/A
1,1-Dichloroethylene cis-1,2-Dichloroethylene	ug/g dry	0.05	0.05 ug/g dry	ND (0.05)	N/A	ND (0.05) ND (0.05)	N/A N/A
trans-1,2-Dichloroethylene	ug/g dry	0.05	0.05 ug/g dry 0.05 ug/g dry	ND (0.05) ND (0.05)	N/A	ND (0.05)	N/A N/A
1,2-Dichloropropane	ug/g dry ug/g dry	0.05	0.05 ug/g dry	ND (0.05)	N/A	ND (0.05)	N/A N/A
cis-1,3-Dichloropropylene	ug/g dry	0.05	NS	ND (0.05)	N/A	ND (0.05)	N/A
trans-1,3-Dichloropropylene	ug/g dry	0.05	NS	ND (0.05)	N/A	ND (0.05)	N/A
1,3-Dichloropropene, total	ug/g dry	0.05	0.05 ug/g dry	ND (0.05)	N/A	ND (0.05)	N/A
Ethylbenzene	ug/g dry	0.05	0.05 ug/g dry	ND (0.05)	N/A	ND (0.05)	N/A
Ethylene dibromide	ug/g dry	0.05	0.05 ug/g dry	ND (0.05)	N/A	ND (0.05)	N/A
Hexane	ug/g dry	0.05	0.05 ug/g dry	ND (0.05)	N/A	ND (0.05)	N/A
Methyl Ethyl Ketone	ug/g dry	0.50	0.5 ug/g dry	ND (0.50)	N/A	ND (0.50)	N/A
Methyl Isobutyl Ketone	ug/g dry	0.50	0.5 ug/g dry	ND (0.50)	N/A	ND (0.50)	N/A
Methyl tert-butyl ether	ug/g dry	0.05	0.05 ug/g dry	ND (0.05)	N/A	ND (0.05)	N/A
Methylene Chloride	ug/g dry	0.05	0.05 ug/g dry	ND (0.05)	N/A	ND (0.05)	N/A
Styrene	ug/g dry	0.05	0.05 ug/g dry	ND (0.05)	N/A	ND (0.05)	N/A
1,1,1,2-Tetrachloroethane	ug/g dry	0.05	0.05 ug/g dry	ND (0.05)	N/A	ND (0.05)	N/A
1,1,2,2-Tetrachloroethane	ug/g dry	0.05	0.05 ug/g dry	ND (0.05)	N/A	ND (0.05)	N/A
Tetrachloroethylene	ug/g dry	0.05	0.05 ug/g dry	ND (0.05)	N/A	ND (0.05)	N/A
Toluene	ug/g dry	0.05	0.2 ug/g dry	ND (0.05)	N/A	ND (0.05)	N/A
1,1,1-Trichloroethane	ug/g dry	0.05	0.05 ug/g dry	ND (0.05)	N/A	ND (0.05)	N/A
1,1,2-Trichloroethane	ug/g dry	0.05	0.05 ug/g dry	ND (0.05)	N/A	ND (0.05)	N/A
Trichloroethylene	ug/g dry	0.05	0.05 ug/g dry	ND (0.05)	N/A	ND (0.05)	N/A
Trichlorofluoromethane	ug/g dry	0.05	0.25 ug/g dry	ND (0.05)	N/A	ND (0.05)	N/A
Vinyl Chloride	ug/g dry	0.02	0.02 ug/g dry	ND (0.02)	N/A	ND (0.02)	N/A
m/p-Xylene	ug/g dry	0.05	NS	ND (0.05)	N/A	ND (0.05)	N/A
o-Xylene	ug/g dry	0.05	NS	ND (0.05)	N/A	ND (0.05)	N/A
Xylenes, total	ug/g dry	0.05	0.05 ug/g dry	ND (0.05)	N/A	ND (0.05)	N/A
Benzene	ug/g dry	0.02	0.02 ug/g dry	N/A	ND (0.02)	N/A	ND (0.02)
Ethylbenzene	ug/g dry	0.05	0.05 ug/g dry	N/A	ND (0.05)	N/A	ND (0.05)
Toluene	ug/g dry	0.05	0.2 ug/g dry	N/A	ND (0.05)	N/A	ND (0.05)
m/p-Xylene	ug/g dry	0.05	NS	N/A	ND (0.05)	N/A	ND (0.05)
o-Xylene	ug/g dry	0.05	NS	N/A	ND (0.05)	N/A	ND (0.05)
Xylenes, total	ug/g dry	0.05	0.05 ug/g dry	N/A	ND (0.05)	N/A	ND (0.05)
Hydrocarbons							
F1 PHCs (C6-C10)	ug/g dry	7	25 ug/g dry	ND (7)	ND (7)	ND (7)	ND (7)
F2 PHCs (C10-C16)	ug/g dry	4	10 ug/g dry	ND (4)	ND (4)	ND (4)	ND (4)
F3 PHCs (C16-C34)	ug/g dry	8	240 ug/g dry	ND (8)	ND (8)	ND (8)	ND (8)
F4 PHCs (C34-C50)	ug/g dry	6	120 ug/g dry	ND (6)	ND (6)	ND (6)	ND (6)

Notes:

1 RDL - Reported Detection Limit

2 N/A - Not Analyzed

3 NS - No Standard

4 ND- Non-detect

5 * - Table 9: Generic Site Condition Standards for Use within 30 metres of Water Body in a Non-Potable Groundwater Condition (MOE, April 15, 2011)

6 Bold - Exceeds MECP Table 9 SCS

TABLE A2 **GROUNDWATER ANALYTICAL RESULTS**

					Sample Location:		ndike Road		
Parameter	Units	RDL	MECP Table 9*	City of Ottawa Sanitary Sewer Geuidelines**	Sample ID: Laboratory Sample ID: Date Sampled: City of Ottawa	BH18-3 SA1 1820545-01 17-05-18	MW 18-3 GW3 1831559-01 03-08-18	BH18-5 SA1 1820545-02 17-05-18	BH19-2 1915143-01 08-04-19
Volatiles									
Acetone	ug/L	5.0	100000 ug/L	NS	NS	N/A	N/A	ND (5.0)	N/A
Benzene	ug/L	0.5	44 ug/L	10 ug/L	2 ug/L	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)
Bromodichloromethane	ug/L	0.5	67000 ug/L	350 ug/L	NS	N/A	N/A	ND (0.5)	N/A
Bromoform	ug/L	0.5	380 ug/L	630 ug/L	NS	N/A	N/A	ND (0.5)	N/A
Bromomethane	ug/L	0.5	5.6 ug/L	110 ug/L	NS	N/A	N/A	ND (0.5)	N/A
Carbon Tetrachloride	ug/L	0.2	0.79 ug/L	57 ug/L	NS	N/A	N/A	ND (0.2)	N/A
Chlorobenzene	ug/L	0.5	500 ug/L	57 ug/L	NS	N/A	N/A	ND (0.5)	N/A
Chloroform	ug/L	0.5	2.4 ug/L	80 ug/L	2 ug/L	N/A	N/A	ND (0.5)	N/A
Dibromochloromethane	ug/L	0.5	65000 ug/L	57 ug/L	NS	N/A	N/A	ND (0.5)	N/A
Dichlorodifluoromethane	ug/L	1.0	3500 ug/L	NS	NS	N/A	N/A	ND (1.0)	N/A
1,2-Dichlorobenzene	ug/L	0.5	4600 ug/L	88 ug/L	5.6 ug/L	N/A	N/A	ND (0.5)	N/A
1,3-Dichlorobenzene	ug/L	0.5	7600 ug/L	36 ug/L	NS	N/A	N/A	ND (0.5)	N/A
1,4-Dichlorobenzene	ug/L	0.5	8 ug/L	17 ug/L	6.8 ug/L	N/A	N/A	ND (0.5)	N/A
1,1-Dichloroethane	ug/L	0.5	320 ug/L	200 ug/L	NS	N/A	N/A	ND (0.5)	N/A
1,2-Dichloroethane	ug/L	0.5	1.6 ug/L	210 ug/L	NS	N/A	N/A	ND (0.5)	N/A
1,1-Dichloroethylene	ug/L	0.5	1.6 ug/L	40 ug/L	NS	N/A	N/A	ND (0.5)	N/A
cis-1,2-Dichloroethylene	ug/L	0.5	1.6 ug/L	200 ug/L	5.6 ug/L	N/A	N/A	ND (0.5)	N/A
trans-1,2-Dichloroethylene	ug/L	0.5	1.6 ug/L	200 ug/L	NS	N/A	N/A	ND (0.5)	N/A
1,2-Dichloropropane	ug/L	0.5	16 ug/L	850 ug/L	NS	N/A	N/A	ND (0.5)	N/A
cis-1,3-Dichloropropylene	ug/L	0.5	NS	70 ug/L	NS	N/A	N/A	ND (0.5)	N/A
trans-1,3-Dichloropropylene	ug/L	0.5	NS	70 ug/L	5.6 ug/L	N/A	N/A	ND (0.5)	N/A
1,3-Dichloropropene, total	ug/L	0.5	5.2 ug/L	NS	NS	N/A	N/A	ND (0.5)	N/A
Ethylbenzene	ug/L	0.5	1800 ug/L	57 ug/L	2 ug/L	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)
Ethylene dibromide	ug/L	0.2	0.25 ug/L	NS	NS	N/A	N/A	ND (0.2)	N/A
Hexane	ug/L	1.0	51 ug/L	NS	NS	N/A	N/A	ND (1.0)	N/A
Methyl Ethyl Ketone	ug/L	5.0	470000 ug/L	NS	NS	N/A	N/A	ND (5.0)	N/A
Methyl Isobutyl Ketone	ug/L	5.0	140000 ug/L	NS	NS	N/A	N/A	ND (5.0)	N/A
Methyl tert-butyl ether	ug/L	2.0	190 ug/L	NS	NS	N/A	N/A	ND (2.0)	N/A
Methylene Chloride	ug/L	5.0	610 ug/L	211 ug/L	5.2 ug/L	N/A	N/A	ND (5.0)	N/A
Styrene	ug/L	0.5	1300 ug/L	40 ug/L	NS	N/A	N/A	ND (0.5)	N/A
1,1,1,2-Tetrachloroethane	ug/L	0.5	3.3 ug/L	NS	NS	N/A	N/A	ND (0.5)	N/A
1,1,2,2-Tetrachloroethane	ug/L	0.5	3.2 ug/L	40 ug/L	17 ug/L	N/A	N/A	ND (0.5)	N/A
Tetrachloroethylene	ug/L	0.5	1.6 ug/L	50 ug/L	4.4 ug/L	N/A	N/A	ND (0.5)	N/A
Toluene	ug/L	0.5	14000 ug/L	80 ug/L	2 ug/L	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)
1,1,1-Trichloroethane	ug/L	0.5	640 ug/L	54 ug/L	NS	N/A	N/A	ND (0.5)	N/A
1,1,2-Trichloroethane	ug/L	0.5	4.7 ug/L	800 ug/L	NS	N/A	N/A	ND (0.5)	N/A
Trichloroethylene	ug/L	0.5	1.6 ug/L	54 ug/L	7.6 ug/L	N/A	N/A	ND (0.5)	N/A
Trichlorofluoromethane	ug/L	1.0	2000 ug/L	20 ug/L	NS	N/A	N/A	ND (1.0)	N/A
Vinyl Chloride	ug/L	0.5	0.5 ug/L	400 ug/L	NS	N/A	N/A	ND (0.5)	N/A
m/p-Xylene	ug/L	0.5	NS	NS	NS	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)
o-Xylene	ug/L	0.5	NS	NS	NS	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)
Xylenes, total	ug/L	0.5	3300 ug/L	320 ug/L	4.4 ug/L	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)
Hydrocarbons									
F1 PHCs (C6-C10)	ug/L	25	420 ug/L	NS	NS	ND (25)	ND (25)	ND (25)	ND (25)
F2 PHCs (C10-C16)	ug/L	100	150 ug/L	NS	NS	ND (100)	ND (100)	ND (100)	ND (100)
F3 PHCs (C16-C34)	ug/L	100	500 ug/L	NS	NS	334	ND (100)	548	ND (100)
F4 PHCs (C34-C50)	ug/L	100	500 ug/L	NS	NS	ND (100)	ND (100)	113	ND (100)

Notes:

1 RDL - Reported Detection Limit

2 N/A - Not Analyzed

3 NS - No Standard

4 ND- Non-detect

5 * - Table 9: Generic Site Condition Standards for Use within 30 metres of Water Body in a Non-Potable Groundwater Condition (MOE, April 15, 2011)

6 ** - City of Ottawa Sanitary Sewer Use Guideline (By-Law No. 2003-514)
7 *** - City of Ottawa Storm Sewer Use Guideline (By-Law No. 2003-514)
8 Bold - Exceeds MECP Table 9 SCS

9 <u>Underlined</u> - Exceeds Ottawa Sanitary Sewer Guidelines
10 *Italicized* - Exceeds Ottawa Storm Sewer Guidelines

Report to: Gemstone Corporation Project: 64551.03

APPENDIX A

Soil - Laboratory Certificates of Analysis

RELIABLE.

Certificate of Analysis

GEMTEC Consulting Engineers and Scientists Limited

32 Steacie Drive Kanata, ON K2K 2A9 Attn: Katherine Rispoli

Client PO: Project: 64153.85 Custody: 116349

Report Date: 27-Mar-2018 Order Date: 21-Mar-2018

Order #: 1812403

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID **Client ID** 1010100 01

1812403-01	BH18-1 SA-3
1812403-02	BH18-3 SA-9
1812403-03	BH18-5 SA-8
1812403-04	BH18-301 SA-9

Approved By:

Nack Frata

Mark Foto, M.Sc. Lab Supervisor

Any use of these results implies your agreement that our total liability in connection with this work, however arising, shall be limited to the amount paid by you for this work, and that our employees or agents shall not under any circumstances be liable to you in connection with this work.

Certificate of Analysis **Client: GEMTEC Consulting Engineers and Scientists Limited Client PO:**

Order #: 1812403

Report Date: 27-Mar-2018 Order Date: 21-Mar-2018

Project Description: 64153.85

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date	Analysis Date
BTEX by P&T GC-MS	EPA 8260 - P&T GC-MS	22-Mar-18	22-Mar-18
PHC F1	CWS Tier 1 - P&T GC-FID	22-Mar-18	22-Mar-18
PHCs F2 to F4	CWS Tier 1 - GC-FID, extraction	21-Mar-18	22-Mar-18
REG 153: VOCs by P&T GC/MS	EPA 8260 - P&T GC-MS	22-Mar-18	22-Mar-18
Solids, %	Gravimetric, calculation	26-Mar-18	26-Mar-18

Project Description: 64153.	B5
-----------------------------	----

Г	Client ID: Sample Date: Sample ID:	BH18-1 SA-3 09-Mar-18 1812403-01 Soil	BH18-3 SA-9 09-Mar-18 1812403-02 Soil	BH18-5 SA-8 08-Mar-18 1812403-03 Soil	BH18-301 SA-9 09-Mar-18 1812403-04 Soil
Physical Characteristics	MDL/Units	301	301	301	301
% Solids	0.1 % by Wt.	81.8	66.1	72.8	64.0
Volatiles		0110	00.1		0110
Acetone	0.50 ug/g dry	<0.50	-	<0.50	-
Benzene	0.02 ug/g dry	<0.02	-	<0.02	-
Bromodichloromethane	0.05 ug/g dry	<0.05	-	<0.05	-
Bromoform	0.05 ug/g dry	<0.05	-	<0.05	-
Bromomethane	0.05 ug/g dry	<0.05	-	<0.05	-
Carbon Tetrachloride	0.05 ug/g dry	<0.05	-	<0.05	-
Chlorobenzene	0.05 ug/g dry	<0.05	-	<0.05	-
Chloroform	0.05 ug/g dry	<0.05	-	<0.05	-
Dibromochloromethane	0.05 ug/g dry	<0.05	-	<0.05	-
Dichlorodifluoromethane	0.05 ug/g dry	<0.05	-	<0.05	-
1,2-Dichlorobenzene	0.05 ug/g dry	<0.05	-	<0.05	-
1,3-Dichlorobenzene	0.05 ug/g dry	<0.05	-	<0.05	-
1,4-Dichlorobenzene	0.05 ug/g dry	<0.05	-	<0.05	-
1,1-Dichloroethane	0.05 ug/g dry	<0.05	-	<0.05	-
1,2-Dichloroethane	0.05 ug/g dry	<0.05	-	<0.05	-
1,1-Dichloroethylene	0.05 ug/g dry	<0.05	-	<0.05	-
cis-1,2-Dichloroethylene	0.05 ug/g dry	<0.05	-	<0.05	-
trans-1,2-Dichloroethylene	0.05 ug/g dry	<0.05	-	<0.05	-
1,2-Dichloropropane	0.05 ug/g dry	<0.05	-	<0.05	-
cis-1,3-Dichloropropylene	0.05 ug/g dry	<0.05	-	<0.05	-
trans-1,3-Dichloropropylene	0.05 ug/g dry	<0.05	-	<0.05	-
1,3-Dichloropropene, total	0.05 ug/g dry	<0.05	-	<0.05	-
Ethylbenzene	0.05 ug/g dry	<0.05	-	<0.05	-
Ethylene dibromide (dibromoethan	0.05 ug/g dry	<0.05	-	<0.05	-
Hexane	0.05 ug/g dry	<0.05	-	<0.05	-
Methyl Ethyl Ketone (2-Butanone)	0.50 ug/g dry	<0.50	-	<0.50	-
Methyl Isobutyl Ketone	0.50 ug/g dry	<0.50	-	<0.50	-
Methyl tert-butyl ether	0.05 ug/g dry	<0.05	-	<0.05	-
Methylene Chloride	0.05 ug/g dry	<0.05	-	<0.05	-
Styrene	0.05 ug/g dry	<0.05	-	<0.05	-
1,1,1,2-Tetrachloroethane	0.05 ug/g dry	<0.05	-	<0.05	-
1,1,2,2-Tetrachloroethane	0.05 ug/g dry	<0.05	-	<0.05	-
Tetrachloroethylene	0.05 ug/g dry	<0.05	-	<0.05	-

Order #: 1812403

Report Date: 27-Mar-2018

Order Date: 21-Mar-2018

Report Date: 27-Mar-2018 Order Date: 21-Mar-2018

Project Description: 64153.85

	Client ID: Sample Date: Sample ID: MDL/Units	BH18-1 SA-3 09-Mar-18 1812403-01 Soil	BH18-3 SA-9 09-Mar-18 1812403-02 Soil	BH18-5 SA-8 08-Mar-18 1812403-03 Soil	BH18-301 SA-9 09-Mar-18 1812403-04 Soil
Toluene	0.05 ug/g dry	<0.05	-	<0.05	-
1,1,1-Trichloroethane	0.05 ug/g dry	<0.05	-	<0.05	-
1,1,2-Trichloroethane	0.05 ug/g dry	<0.05	-	<0.05	-
Trichloroethylene	0.05 ug/g dry	<0.05	-	<0.05	-
Trichlorofluoromethane	0.05 ug/g dry	<0.05	-	<0.05	-
Vinyl chloride	0.02 ug/g dry	<0.02	-	<0.02	_
m,p-Xylenes	0.05 ug/g dry	< 0.05	-	<0.05	_
o-Xylene	0.05 ug/g dry	<0.05	-	<0.05	_
Xylenes, total	0.05 ug/g dry	<0.05	-	<0.05	_
4-Bromofluorobenzene	Surrogate	88.9%	-	91.8%	-
Dibromofluoromethane	Surrogate	109%	-	111%	-
Toluene-d8	Surrogate	92.7%	-	92.5%	-
Benzene	0.02 ug/g dry	-	<0.02	-	<0.02
Ethylbenzene	0.05 ug/g dry	-	<0.05	-	<0.05
Toluene	0.05 ug/g dry	-	<0.05	-	<0.05
m,p-Xylenes	0.05 ug/g dry	-	<0.05	-	<0.05
o-Xylene	0.05 ug/g dry	-	<0.05	-	<0.05
Xylenes, total	0.05 ug/g dry	-	<0.05	-	<0.05
Toluene-d8	Surrogate	-	94.5%	-	95.5%
Hydrocarbons					
F1 PHCs (C6-C10)	7 ug/g dry	<7	<7	<7	<7
F2 PHCs (C10-C16)	4 ug/g dry	<4	<4	<4	<4
F3 PHCs (C16-C34)	8 ug/g dry	<8	<8	<8	<8
F4 PHCs (C34-C50)	6 ug/g dry	<6	<6	<6	<6

Order #: 1812403

Report Date: 27-Mar-2018

Order Date: 21-Mar-2018

Project Description: 64153.85

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	ND	7	ug/g						
F2 PHCs (C10-C16)	ND	4	ug/g						
F3 PHCs (C16-C34)	ND	8	ug/g						
F4 PHCs (C34-C50)	ND	6	ug/g						
Volatiles									
Acetone	ND	0.50	ug/g						
Benzene	ND	0.02	ug/g						
Bromodichloromethane	ND	0.05	ug/g						
Bromoform	ND	0.05	ug/g						
Bromomethane	ND	0.05	ug/g						
Carbon Tetrachloride	ND	0.05	ug/g						
Chlorobenzene	ND	0.05	ug/g						
Chloroform	ND	0.05	ug/g						
Dibromochloromethane	ND	0.05	ug/g						
Dichlorodifluoromethane	ND	0.05	ug/g						
1,2-Dichlorobenzene	ND	0.05	ug/g						
1,3-Dichlorobenzene	ND	0.05	ug/g						
1,4-Dichlorobenzene	ND	0.05	ug/g						
1,1-Dichloroethane	ND	0.05	ug/g						
1,2-Dichloroethane	ND	0.05	ug/g						
1,1-Dichloroethylene	ND	0.05	ug/g						
cis-1,2-Dichloroethylene	ND	0.05	ug/g						
trans-1,2-Dichloroethylene	ND	0.05	ug/g						
1,2-Dichloropropane	ND	0.05	ug/g						
cis-1,3-Dichloropropylene	ND	0.05	ug/g						
trans-1,3-Dichloropropylene 1,3-Dichloropropene, total	ND	0.05 0.05	ug/g						
Ethylbenzene	ND ND	0.05	ug/g						
	ND	0.05	ug/g						
Ethylene dibromide (dibromoethane Hexane	ND	0.05	ug/g						
Methyl Ethyl Ketone (2-Butanone)	ND	0.50	ug/g ug/g						
Methyl Isobutyl Ketone	ND	0.50	ug/g ug/g						
Methyl tert-butyl ether	ND	0.05	ug/g						
Methylene Chloride	ND	0.05	ug/g ug/g						
Styrene	ND	0.05	ug/g						
1,1,1,2-Tetrachloroethane	ND	0.05	ug/g						
1,1,2,2-Tetrachloroethane	ND	0.05	ug/g						
Tetrachloroethylene	ND	0.05	ug/g						
Toluene	ND	0.05	ug/g						
1,1,1-Trichloroethane	ND	0.05	ug/g						
1,1,2-Trichloroethane	ND	0.05	ug/g						
Trichloroethylene	ND	0.05	ug/g						
Trichlorofluoromethane	ND	0.05	ug/g						
Vinyl chloride	ND	0.02	ug/g						
m,p-Xylenes	ND	0.05	ug/g						
o-Xylene	ND	0.05	ug/g						
Xylenes, total	ND	0.05	ug/g						
Surrogate: 4-Bromofluorobenzene	3.00		ug/g		93.9	50-140			
Surrogate: Dibromofluoromethane	3.63		ug/g		113	50-140			
Surrogate: Toluene-d8	3.08		ug/g		96.4	50-140			
Benzene	ND	0.02	ug/g						
Ethylbenzene	ND	0.05	ug/g						
Toluene	ND	0.05	ug/g						
m,p-Xylenes	ND	0.05	ug/g						
o-Xylene	ND	0.05	ug/g						
Xylenes, total	ND	0.05	ug/g						
Surrogate: Toluene-d8	3.08		ug/g		96.4	50-140			
-			00						

Order #: 1812403

Report Date: 27-Mar-2018

Order Date: 21-Mar-2018

Project Description: 64153.85

Method Quality Control: Duplicate

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	ND	7	ug/g dry	ND				40	
F2 PHCs (C10-C16)	ND	4	ug/g dry	ND				30	
F3 PHCs (C16-C34)	37	8	ug/g dry	28			28.5	30	
F4 PHCs (C34-C50)	33	6	ug/g dry	37			11.8	30	
Physical Characteristics									
% Šolids	90.3	0.1	% by Wt.	90.0			0.4	25	
Volatiles									
Acetone	ND	0.50	ug/g dry	ND				50	
Benzene	ND	0.02	ug/g dry	ND				50	
Bromodichloromethane	ND	0.05	ug/g dry	ND				50	
Bromoform	ND	0.05	ug/g dry	ND				50	
Bromomethane	ND	0.05	ug/g dry	ND				50	
Carbon Tetrachloride	ND	0.05	ug/g dry	ND				50	
Chlorobenzene	ND	0.05	ug/g dry	ND				50	
Chloroform	ND	0.05	ug/g dry	ND				50	
Dibromochloromethane	ND	0.05	ug/g dry	ND				50	
Dichlorodifluoromethane	ND	0.05	ug/g dry	ND				50	
1,2-Dichlorobenzene	ND	0.05	ug/g dry	ND				50	
1,3-Dichlorobenzene	ND	0.05	ug/g dry	ND				50	
1,4-Dichlorobenzene	ND	0.05	ug/g dry	ND				50	
1,1-Dichloroethane	ND	0.05	ug/g dry	ND				50	
1,2-Dichloroethane	ND	0.05	ug/g dry	ND				50	
1,1-Dichloroethylene	ND	0.05	ug/g dry	ND				50	
cis-1,2-Dichloroethylene	ND	0.05	ug/g dry	ND				50	
trans-1,2-Dichloroethylene	ND	0.05	ug/g dry	ND				50	
1,2-Dichloropropane	ND	0.05	ug/g dry	ND				50	
cis-1,3-Dichloropropylene	ND	0.05	ug/g dry	ND				50	
trans-1,3-Dichloropropylene	ND	0.05	ug/g dry	ND				50	
Ethylbenzene	ND	0.05	ug/g dry	ND				50	
Ethylene dibromide (dibromoethane	ND	0.05	ug/g dry	ND				50	
Hexane	ND	0.05	ug/g dry	ND				50	
Methyl Ethyl Ketone (2-Butanone)	ND	0.50	ug/g dry	ND				50	
Methyl Isobutyl Ketone	ND	0.50	ug/g dry	ND				50	
Methyl tert-butyl ether	ND	0.05	ug/g dry	ND				50	
Methylene Chloride	ND	0.05	ug/g dry	ND				50	
Styrene	ND	0.05	ug/g dry	ND				50	
1,1,1,2-Tetrachloroethane	ND	0.05	ug/g dry	ND				50	
1,1,2,2-Tetrachloroethane	ND	0.05	ug/g dry	ND				50	
Tetrachloroethylene	ND	0.05	ug/g dry	ND				50	
Toluene	ND	0.05	ug/g dry	ND				50	
1,1,1-Trichloroethane	ND	0.05	ug/g dry	ND				50	
1,1,2-Trichloroethane	ND	0.05	ug/g dry	ND				50	
Trichloroethylene	ND	0.05	ug/g dry	ND				50	
Trichlorofluoromethane	ND	0.05	ug/g dry	ND				50	
Vinyl chloride	ND	0.02	ug/g dry	ND				50	
m,p-Xylenes	ND	0.05	ug/g dry	ND				50	
o-Xylene	ND	0.05	ug/g dry	ND				50	
Surrogate: 4-Bromofluorobenzene	2.13	0.00	ug/g dry		93.0	50-140			
Surrogate: Dibromofluoromethane	2.03		ug/g dry		88.6	50-140			
Surrogate: Toluene-d8	2.03		ug/g dry ug/g dry		94.8	50-140 50-140			
Benzene	2.76 ND	0.02	ug/g dry ug/g dry	ND	54.0	50-140		50	
Ethylbenzene	ND	0.02	ug/g dry ug/g dry	ND				50 50	
Toluene	ND	0.05		ND				50 50	
	ND	0.05	ug/g dry	ND				50 50	
m,p-Xylenes o-Xylene	ND	0.05	ug/g dry	ND				50 50	
Surrogate: Toluene-d8	2.18	0.05	ug/g dry	ND	94.8	50-140		50	
ourroyale. Ioluene-uo	2.10		ug/g dry		34.0	50-140			

Method Quality Control: Spike

Report Date: 27-Mar-2018

Order Date: 21-Mar-2018

Project Description: 64153.85

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	189	7	ug/g		94.4	80-120			
F2 PHCs (C10-C16)	94	4	ug/g	ND	101	60-140			
F3 PHCs (C16-C34)	238	8	ug/g	28	109	60-140			
F4 PHCs (C34-C50)	170	6	ug/g	37	103	60-140			
Volatiles									
Acetone	11.0	0.50	ug/g		110	50-140			
Benzene	4.64	0.02	ug/g		116	60-130			
Bromodichloromethane	4.67	0.05	ug/g		117	60-130			
Bromoform	4.50	0.05	ug/g		113	60-130			
Bromomethane	4.93	0.05	ug/g		123	50-140			
Carbon Tetrachloride	5.05	0.05	ug/g		126	60-130			
Chlorobenzene	3.61	0.05	ug/g		90.2	60-130			
Chloroform	4.84	0.05	ug/g		121	60-130			
Dibromochloromethane	3.49	0.05	ug/g		87.4	60-130			
Dichlorodifluoromethane	3.78	0.05	ug/g		94.4	50-140			
1,2-Dichlorobenzene	3.39	0.05	ug/g		84.6	60-130			
1,3-Dichlorobenzene	3.34	0.05	ug/g		83.6	60-130			
1,4-Dichlorobenzene	3.42	0.05	ug/g		85.5	60-130			
1,1-Dichloroethane	4.63	0.05	ug/g		116	60-130			
1,2-Dichloroethane	4.76	0.05	ug/g		119	60-130			
1,1-Dichloroethylene	3.99	0.05	ug/g		99.6	60-130			
cis-1,2-Dichloroethylene	4.42	0.05	ug/g		110	60-130			
trans-1,2-Dichloroethylene	3.47	0.05	ug/g		86.8	60-130			
1,2-Dichloropropane	4.49	0.05	ug/g		112	60-130			
cis-1,3-Dichloropropylene	4.78	0.05	ug/g		119	60-130			
trans-1,3-Dichloropropylene	4.97	0.05	ug/g		124	60-130			
Ethylbenzene	3.94	0.05	ug/g		98.5	60-130			
Ethylene dibromide (dibromoethane	3.44	0.05	ug/g		85.9	60-130			
Hexane	3.85	0.05	ug/g		96.1	60-130			
Methyl Ethyl Ketone (2-Butanone)	9.08	0.50	ug/g		90.8	50-140			
Methyl Isobutyl Ketone	10.5	0.50	ug/g		105	50-140			
Methyl tert-butyl ether	11.3	0.05	ug/g		113	50-140			
Methylene Chloride	4.64	0.05	ug/g		116	60-130			
Styrene	3.87	0.05	ug/g		96.7	60-130			
1,1,1,2-Tetrachloroethane	3.72	0.05	ug/g		92.9	60-130			
1,1,2,2-Tetrachloroethane	4.48	0.05	ug/g		112	60-130			
Tetrachloroethylene	3.72	0.05	ug/g		92.9	60-130			
Toluene	3.67	0.05	ug/g		91.7	60-130			
1,1,1-Trichloroethane	5.04	0.05	ug/g		126	60-130			
1,1,2-Trichloroethane	4.62	0.05	ug/g		115	60-130			
Trichloroethylene	4.34	0.05	ug/g		109	60-130			
Trichlorofluoromethane	4.82	0.05	ug/g		121	50-140			
Vinyl chloride	4.61	0.02	ug/g		115	50-140			
m,p-Xylenes	8.08	0.05	ug/g		101	60-130			
o-Xylene	4.11	0.05	ug/g		103	60-130			
Surrogate: 4-Bromofluorobenzene	2.33		ug/g		72.9	50-140			
Benzene	4.64	0.02	ug/g		116	60-130			
Ethylbenzene	3.94	0.05	ug/g		98.5	60-130			
Toluene	3.67	0.05	ug/g		91.7	60-130			
m,p-Xylenes	8.08	0.05	ug/g		101	60-130			
o-Xylene	4.11	0.05	ug/g		103	60-130			

Qualifier Notes:

None

Sample Data Revisions

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected MDL: Method Detection Limit Source Result: Data used as source for matrix and duplicate samples %REC: Percent recovery. RPD: Relative percent difference.

Soil results are reported on a dry weight basis when the units are denoted with 'dry'. Where %Solids is reported, moisture loss includes the loss of volatile hydrocarbons.

CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.

- F1 range corrected for BTEX.
- F2 to F3 ranges corrected for appropriate PAHs where available.
- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.
- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.

GPARACEL	RE		ED . NSIV LE .		P	arac										(Lab U	Custor se Ouly)	
LABORATORIES LT	D.								••••							Page	0f	
Client Name: GEMTEC				Project Reference	64153	85	5								Tu	rnaro	ind Tin	
Contact Name: K. RISPOU				Quote #										01	Day		03	Day
ddress: 32 STEACIFE				PO #			_	_					_	,	Day		K [™] R	egular
	() () ()			Email Address:	Kathar	ine.	nis	por	lia	9	em	te.c	a			juired:		egunu
Telephone: (613) 836 - 1422										·				Da		D Othe		
Criteria: 0. Reg. 153/04 (As Amended) Table 1 🗆 RS	SC Filing	O. Reg	, 558/00	D D PWQO D	CCME II S	UB (St	ouu)	03	OR	San	itary) Municip	anty: _			LI OLAC	G	
Matrix Type: S (Soil/Sed.) GW (Ground Water) SW (Surface Wate	r) SS (Storm/S	anitary S	ewer) P	(Paint) A (Air) O (Other)	Re	quir	ed A	nal	ses		0.00						
Paracel Order Number: 1812403	Matrix	Air Volume	of Containers	Sample	Taken	PHCs F1-F4+BTEX	vocs	PAHs	Metals by ICP	Hg	CrVI	(HWS) (HWS)						
Sample ID/Location Name	5	~	#	MAR 9/18	THIL		X			-	Ť		1	20	ML	+v	ral	1
1 BUB-1 SA-3	5	-	2	4		X	1	t	F	F	T		1	1		1		
2 BUR-3 5A-9	S	-	2	MAR 6/19	2PM	X	-	T	t	T	T		-					
3 BM18-5 SA-8	S	-	2	March 9/8	and the second se	X	1	1		t	T		-	-	,			
1 BH18-301 SA-9	3	-	-	hundred Alo		-	-	t	t	T	1							
5		-	-			+	1	1	t	1	T		-	-				
6		-	-			-	1	T	t	1	T		-	-				
7		-	-			+	t	T	t	T	Г							
8		-	-				1		T	T	T		-					
9		-	-				t	T	t	T	t							
to Comments:								-				JI			M	ethod of i	velivery:	0
Relinguished By (Sign):			iver Dep	91:		eived at	K	2		1.	0	104	•	ified By:	Ka	6		-
Relinquished By (Print): K. KISPOU Date/Time: MAR 21/2018	Date/Ti	ime: rature:		°C.	and the second se	e/Time: iperatury	0	2/0	V	10	7	10 1		Verified	LIR	Mal	40 7	- ripr

Chain of Custody (Env) - Rev 0.7 Feb. 2016

RELIABLE.

Certificate of Analysis

GEMTEC Consulting Engineers and Scientists Limited

32 Steacie Drive Kanata, ON K2K 2A9 Attn: Nicole Soucy

Client PO: Project: 64153.85 Custody: 115677

Report Date: 10-Aug-2018 Order Date: 3-Aug-2018

Order #: 1831557

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID	Client ID
1831557-01	GS-N
1831557-02	GS-M

Approved By:

Dale Robertson, BSc Laboratory Director

Any use of these results implies your agreement that our total liability in connection with this work, however arising, shall be limited to the amount paid by you for this work, and that our employees or agents shall not under any circumstances be liable to you in connection with this work.

Order #: 1831557

Report Date: 10-Aug-2018 Order Date: 3-Aug-2018 Project Description: 64153.85

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date	Analysis Date
BTEX by P&T GC-MS	EPA 8260 - P&T GC-MS	5-Aug-18	8-Aug-18
PHC F1	CWS Tier 1 - P&T GC-FID	5-Aug-18	8-Aug-18
PHCs F2 to F4	CWS Tier 1 - GC-FID, extraction	7-Aug-18	8-Aug-18
REG 153: Metals by ICP/MS, soil	EPA 6020 - Digestion - ICP-MS	7-Aug-18	8-Aug-18
REG 153: PAHs by GC-MS	EPA 8270 - GC-MS, extraction	7-Aug-18	9-Aug-18
Solids, %	Gravimetric, calculation	7-Aug-18	7-Aug-18

Report Date: 10-Aug-2018

Order Date: 3-Aug-2018

Project Description: 64153.85

	Client ID:	GS-N	GS-M	-]
	Sample Date:	08/03/2018 09:00	08/03/2018 09:00	-	-
	Sample ID:	1831557-01	1831557-02	-	-
	MDL/Units	Soil	Soil	-	-
Physical Characteristics	<u> </u>				
% Solids	0.1 % by Wt.	88.0	84.1	-	-
Metals	<u> </u>				
Antimony	1.0 ug/g dry	<1.0	<1.0	-	-
Arsenic	1.0 ug/g dry	2.4	<1.0	-	-
Barium	1.0 ug/g dry	55.5	41.4	-	-
Beryllium	0.5 ug/g dry	<0.5	<0.5	-	-
Boron	5.0 ug/g dry	<5.0	<5.0	-	-
Cadmium	0.5 ug/g dry	<0.5	<0.5	-	-
Chromium	5.0 ug/g dry	19.0	16.3	-	-
Cobalt	1.0 ug/g dry	4.7	4.1	-	-
Copper	5.0 ug/g dry	17.0	8.5	-	-
Lead	1.0 ug/g dry	95.7	19.5	-	-
Molybdenum	1.0 ug/g dry	<1.0	<1.0	-	-
Nickel	5.0 ug/g dry	10.3	9.5	-	-
Selenium	1.0 ug/g dry	<1.0	<1.0	-	-
Silver	0.3 ug/g dry	<0.3	<0.3	-	-
Thallium	1.0 ug/g dry	<1.0	<1.0	-	-
Uranium	1.0 ug/g dry	<1.0	<1.0	-	-
Vanadium	10.0 ug/g dry	24.8	21.3	-	-
Zinc	20.0 ug/g dry	439	46.1	-	-
Volatiles					
Benzene	0.02 ug/g dry	<0.02	<0.02	-	-
Ethylbenzene	0.05 ug/g dry	<0.05	<0.05	-	-
Toluene	0.05 ug/g dry	<0.05	<0.05	-	-
m,p-Xylenes	0.05 ug/g dry	<0.05	<0.05	-	-
o-Xylene	0.05 ug/g dry	<0.05	<0.05	-	-
Xylenes, total	0.05 ug/g dry	<0.05	<0.05	-	-
Toluene-d8	Surrogate	101%	107%	-	-
Hydrocarbons	<u> </u>				
F1 PHCs (C6-C10)	7 ug/g dry	<7	<7	-	-
F2 PHCs (C10-C16)	4 ug/g dry	<4	<4	-	-
F3 PHCs (C16-C34)	8 ug/g dry	<8	<8	-	-
F4 PHCs (C34-C50)	6 ug/g dry	<6	<6	-	-
Semi-Volatiles				-	
Acenaphthene	0.02 ug/g dry	<0.02	<0.02	-	-

Report Date: 10-Aug-2018 Order Date: 3-Aug-2018

Project Description: 64153.85

			00.11		1
	Client ID: Sample Date:	GS-N 08/03/2018 09:00	GS-M 08/03/2018 09:00	-	-
	Sample ID:	1831557-01	1831557-02	-	-
	MDL/Units	Soil	Soil	-	-
Acenaphthylene	0.02 ug/g dry	<0.02	<0.02	-	-
Anthracene	0.02 ug/g dry	<0.02	<0.02	-	-
Benzo [a] anthracene	0.02 ug/g dry	<0.02	<0.02	-	-
Benzo [a] pyrene	0.02 ug/g dry	0.03	<0.02	-	-
Benzo [b] fluoranthene	0.02 ug/g dry	0.02	<0.02	-	-
Benzo [g,h,i] perylene	0.02 ug/g dry	0.02	<0.02	-	-
Benzo [k] fluoranthene	0.02 ug/g dry	<0.02	<0.02	-	-
Chrysene	0.02 ug/g dry	0.03	<0.02	-	-
Dibenzo [a,h] anthracene	0.02 ug/g dry	<0.02	<0.02	-	-
Fluoranthene	0.02 ug/g dry	0.04	<0.02	-	-
Fluorene	0.02 ug/g dry	<0.02	<0.02	-	-
Indeno [1,2,3-cd] pyrene	0.02 ug/g dry	<0.02	<0.02	-	-
1-Methylnaphthalene	0.02 ug/g dry	<0.02	<0.02	-	-
2-Methylnaphthalene	0.02 ug/g dry	<0.02	<0.02	-	-
Methylnaphthalene (1&2)	0.04 ug/g dry	<0.04	<0.04	-	-
Naphthalene	0.01 ug/g dry	<0.01	<0.01	-	-
Phenanthrene	0.02 ug/g dry	0.02	<0.02	-	-
Pyrene	0.02 ug/g dry	0.03	<0.02	-	-
2-Fluorobiphenyl	Surrogate	67.2%	54.2%	-	-
Terphenyl-d14	Surrogate	70.4%	70.9%	-	-

Order #: 1831557

Report Date: 10-Aug-2018

Order Date: 3-Aug-2018

Project Description: 64153.85

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	ND	7	ug/g						
F2 PHCs (C10-C16)	ND	4	ug/g						
F3 PHCs (C16-C34)	ND	8	ug/g						
F4 PHCs (C34-C50)	ND	6	ug/g						
Metals									
Antimony	ND	1.0	ug/g						
Arsenic	ND	1.0	ug/g						
Barium	ND	1.0	ug/g						
Beryllium	ND	0.5	ug/g						
Boron	ND	5.0	ug/g						
Cadmium	ND	0.5	ug/g						
Chromium	ND	5.0	ug/g						
Cobalt	ND ND	1.0 5.0	ug/g						
Copper Lead	ND	1.0	ug/g ug/g						
Molybdenum	ND	1.0	ug/g ug/g						
Nickel	ND	5.0	ug/g						
Selenium	ND	1.0	ug/g						
Silver	ND	0.3	ug/g						
Thallium	ND	1.0	ug/g						
Uranium	ND	1.0	ug/g						
Vanadium	ND	10.0	ug/g						
Zinc	ND	20.0	ug/g						
Semi-Volatiles									
Acenaphthene	ND	0.02	ug/g						
Acenaphthylene	ND	0.02	ug/g						
Anthracene	ND	0.02	ug/g						
Benzo [a] anthracene	ND	0.02	ug/g						
Benzo [a] pyrene	ND	0.02	ug/g						
Benzo [b] fluoranthene	ND ND	0.02	ug/g						
Benzo [g,h,i] perylene Benzo [k] fluoranthene	ND	0.02 0.02	ug/g						
Chrysene	ND	0.02	ug/g ug/g						
Dibenzo [a,h] anthracene	ND	0.02	ug/g ug/g						
Fluoranthene	ND	0.02	ug/g						
Fluorene	ND	0.02	ug/g						
Indeno [1,2,3-cd] pyrene	ND	0.02	ug/g						
1-Methylnaphthalene	ND	0.02	ug/g						
2-Methylnaphthalene	ND	0.02	ug/g						
Methylnaphthalene (1&2)	ND	0.04	ug/g						
Naphthalene	ND	0.01	ug/g						
Phenanthrene	ND	0.02	ug/g						
Pyrene	ND	0.02	ug/g			50 140			
Surrogate: 2-Fluorobiphenyl Surrogate: Terphenyl-d14	1.48 1.46		ug/g		111 109	50-140 50-140			
	1.40		ug/g		109	50-140			
Volatiles		0.00	,						
Benzene	ND	0.02	ug/g						
Ethylbenzene	ND	0.05	ug/g						
Toluene m a Vulence	ND	0.05	ug/g						
m,p-Xylenes o-Xylene	ND ND	0.05 0.05	ug/g						
Xylenes, total	ND	0.05	ug/g ug/g						
Surrogate: Toluene-d8	3.17	0.00	ug/g ug/g		99.1	50-140			
Currogale. Toluche do	0.17		ug/y		55.1	50 140			

Order #: 1831557

Report Date: 10-Aug-2018

Order Date: 3-Aug-2018

Project Description: 64153.85

Method Quality Control: Duplicate

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	ND	7	ug/g dry	ND				40	
F2 PHCs (C10-C16)	8	4	ug/g dry	7			11.9	30	
F3 PHCs (C16-C34)	189	8	ug/g dry	183			3.2	30	
F4 PHCs (C34-C50)	56	6	ug/g dry	59			4.3	30	
Metals									
Antimony	2.3	1.0	ug/g dry	ND			0.0	30	
Arsenic	3.8	1.0	ug/g dry	3.7			3.0	30	
Barium	65.1	1.0	ug/g dry	59.9			8.3	30	
Beryllium	ND	0.5	ug/g dry	ND			0.0	30	
Boron	14.2	5.0	ug/g dry	10.2			32.5	30	
Cadmium	ND	0.5	ug/g dry	ND			0.0	30	
Chromium	13.9	5.0	ug/g dry	13.0			6.9	30	
Cobalt	4.6	1.0	ug/g dry	4.4			3.9	30	
Copper	22.4	5.0	ug/g dry	21.8			2.9	30	
Lead	50.2	1.0	ug/g dry	48.6			3.2	30	
Molybdenum	ND	1.0	ug/g dry	ND			0.0	30	
Nickel	11.9	5.0	ug/g dry	11.3			5.2	30	
Selenium	ND	1.0	ug/g dry	ND			0.0	30	
Silver	ND	0.3	ug/g dry	ND			0.0	30	
Thallium	ND	1.0	ug/g dry	ND			0.0	30	
Uranium	ND	1.0	ug/g dry	ND			0.0	30	
Vanadium	23.4	10.0	ug/g dry	22.0			6.1	30	
Zinc	151	20.0	ug/g dry	147			2.2	30	
Physical Characteristics	01.4	0.1	0/ 10. 14/4	01.0			0.1	05	
% Solids	91.4	0.1	% by Wt.	91.3			0.1	25	
Semi-Volatiles			, .	.					
Acenaphthene	ND	0.02	ug/g dry	ND				40	
Acenaphthylene	ND	0.02	ug/g dry	ND			0.0	40	
Anthracene	ND	0.02	ug/g dry	ND			0.0	40	
Benzo [a] anthracene	ND	0.02	ug/g dry	ND			0.0	40	
Benzo [a] pyrene	ND	0.02	ug/g dry	0.026			0.0	40	
Benzo [b] fluoranthene	ND	0.02	ug/g dry	0.024			0.0	40	
Benzo [g,h,i] perylene	ND	0.02	ug/g dry	0.022			0.0	40	
Benzo [k] fluoranthene	ND	0.02	ug/g dry	ND 0.026			0.0	40	
Chrysene	ND	0.02	ug/g dry	0.026			0.0	40	
Dibenzo [a,h] anthracene Fluoranthene	ND 0.022	0.02 0.02	ug/g dry	ND 0.025			1E 1	40 40	QR-01
			ug/g dry	0.035			45.1		GU-01
Fluorene	ND	0.02	ug/g dry	ND			0.0	40 40	
Indeno [1,2,3-cd] pyrene 1-Methylnaphthalene	ND ND	0.02 0.02	ug/g dry	ND ND			0.0	40 40	
2-Methylnaphthalene	ND	0.02	ug/g dry ug/g dry	ND				40 40	
Naphthalene	ND	0.02		ND			0.0	40 40	
Phenanthrene	ND	0.01	ug/g dry ug/g dry	0.022			0.0	40 40	
Pyrene	0.024	0.02	ug/g dry ug/g dry	0.022			25.3	40	
Surrogate: 2-Fluorobiphenyl	1.08	0.02	ug/g dry ug/g dry	0.001	71.2	50-140	20.0	-10	
Surrogate: Terphenyl-d14	1.08		ug/g dry ug/g dry		71.2	50-140 50-140			
Volatiles			00-1			-			
Benzene	ND	0.02	ug/g dry	ND				50	
Ethylbenzene	ND	0.02	ug/g dry ug/g dry	ND				50 50	
Toluene	ND	0.05		ND				50 50	
m,p-Xylenes	ND	0.05	ug/g dry ug/g dry	ND				50 50	
o-Xylene	ND	0.05	ug/g dry ug/g dry	ND				50 50	
Surrogate: Toluene-d8	3.71	0.05	ug/g dry ug/g dry		105	50-140		50	
Ganogale. Ioluene-uo	5.71		ug/g ury		105	50-140			

Order #: 1831557

Report Date: 10-Aug-2018

Order Date: 3-Aug-2018

Project Description: 64153.85

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	205	7	ug/g		103	80-120			
F2 PHCs (C10-C16)	93	4	ug/g	7	99.9	60-140			
F3 PHCs (C16-C34)	399	8	ug/g	183	102	60-140			
F4 PHCs (C34-C50)	220	6	ug/g	59	121	60-140			
Metals									
Antimony	44.1		ug/L	ND	87.4	70-130			
Arsenic	44.6		ug/L	1.5	86.2	70-130			
Barium	73.1		ug/L	24.0	98.3	70-130			
Beryllium	49.3		ug/L	ND	98.3	70-130			
Boron	50.9		ug/L	ND	93.5	70-130			
Cadmium	44.8		ug/L	ND	89.4	70-130			
Chromium	54.4		ug/L	5.2	98.4	70-130			
Cobalt	50.3		ug/L	1.8	97.0	70-130			
Copper	57.1		ug/L	8.7	96.8	70-130			
Lead	67.7		ug/L	19.4	96.5	70-130			
Molybdenum	43.4		ug/L	ND	86.3	70-130			
Nickel	52.7		ug/L	ND	96.4	70-130			
Selenium	42.7		ug/L	ND	85.3	70-130			
Silver	44.0		ug/L	ND	87.9	70-130			
Thallium	49.6		ug/L	ND	99.1	70-130			
Uranium	50.7		ug/L	ND	101	70-130			
Vanadium	60.0		ug/L	ND	102	70-130			
Zinc	103		ug/L	58.9	88.0	70-130			
Semi-Volatiles			0						
Acenaphthene	0.117	0.02	ug/g	ND	61.7	50-140			
Acenaphthylene	0.098	0.02	ug/g	ND	51.6	50-140			
Anthracene	0.103	0.02	ug/g	ND	54.4	50-140			
Benzo [a] anthracene	0.134	0.02	ug/g	ND	70.9	50-140			
Benzo [a] pyrene	0.129	0.02	ug/g	0.026	54.5	50-140			
Benzo [b] fluoranthene	0.169	0.02	ug/g	0.024	77.1	50-140			
Benzo [g,h,i] perylene	0.157	0.02	ug/g	0.022	71.4	50-140			
Benzo [k] fluoranthene	0.155	0.02	ug/g	ND	81.7	50-140			
Chrysene	0.174	0.02	ug/g	0.026	78.2	50-140			
Dibenzo [a,h] anthracene	0.132	0.02	ug/g	ND	69.8	50-140			
Fluoranthene	0.117	0.02	ug/g	0.035	43.3	50-140		C	QM-06
Fluorene	0.106	0.02	ug/g	ND	56.0	50-140			
Indeno [1,2,3-cd] pyrene	0.147	0.02	ug/g	ND	77.6	50-140			
1-Methylnaphthalene	0.116	0.02	ug/g	ND	61.3	50-140			
2-Methylnaphthalene	0.128	0.02	ug/g	ND	67.8	50-140			
Naphthalene	0.133	0.01	ug/g	ND	70.0	50-140			
Phenanthrene	0.129	0.02	ug/g	0.022	56.6	50-140			
Pyrene	0.118	0.02	ug/g	0.031	46.0	50-140		C	QM-06
Surrogate: 2-Fluorobiphenyl	1.08		ug/g		71.3	50-140		-	
Volatiles									
Benzene	4.84	0.02	ug/g		121	60-130			
Ethylbenzene	5.04	0.05	ug/g		126	60-130			
Toluene	4.25	0.05	ug/g		106	60-130			
m,p-Xylenes	9.68	0.05	ug/g		121	60-130			

Qualifier Notes:

QC Qualifiers :

QM-06 : Due to noted non-homogeneity of the QC sample matrix, the spike recoveries were out side the accepted range. Batch data accepted based on other QC.

QR-01 : Duplicate RPD is high, however, the sample result is less than 10x the MDL.

Sample Data Revisions

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected MDL: Method Detection Limit Source Result: Data used as source for matrix and duplicate samples %REC: Percent recovery. RPD: Relative percent difference.

Soil results are reported on a dry weight basis when the units are denoted with 'dry'. Where %Solids is reported, moisture loss includes the loss of volatile hydrocarbons.

CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.

- F1 range corrected for BTEX.

- F2 to F3 ranges corrected for appropriate PAHs where available.

- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.

- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.

GPARACEL	RE		ED. NSIV		Par	acel			_				m		(1	.ab Use	Custody Only) 1567	
LABORATORIES LTD	•														Pa	ge I	of]	
Client Name: Gemer				Project Reference Quote #	6415	3.8	5		_					011		aroun	d Time 03I	
Contact Name: Nicole Soury				PO #					-	-	-			-	, uj			~~
32 Steacle Dr. Telephone: 613-836-1422				Email Address: Nicole	2.5040	6	Je	mte		(9				Date	Day Requi	red:	₩Re	gular
Criteria: 00. Reg. 153/04 (As Amended) Table _ CRSC F	iling 🗆	O. Reg	, 558/00				£		_	_	tary)) Mur	icipality:		0	Other:		
Matrix Type: S (Soil/Sed.) GW (Ground Water) SW (Surface Water) S						100		ed A										
Paracel Order Number: 1831557- Soil 1831559- Water		Air Volume	# of Containers	Sample		s F1+F4+BTEX			Is by ICP			WS)						
Sample ID/Location Name	Matrix	Air	h of	Date	Time	PHCs	VOCS	PAHs	Metals	Hg	CEVI	B (HWS)						
GS-N	5		3	3/8/18		X		X	X					- 2	50m	1+	1 via	-
2 GS-M	1		1			X		X	X							1		
3 GS-COMP7						_							_		×2	-		
· GS-E HOUD		-				+	-	-	-	_	_	_		- ?	50n	nr-t	140	1
5 GS-W	V	-				+	-	+	-	_			-	+-	+		-	-
6 GS-5	GW	-	3			X	-	-	-	-	-			-	+	V	1	1
7 MW18-3 GW3	000	-	0	V		^	+	1	F	-	-			+	-	+	-	1
8	-	-	-			+	\vdash	F						+-	-	+	-	1
9	-	-	-			+	-	t	F	-	-			+	+	1	1	1
C mments:									-						Mesho	d or Deli	very:	
Relinquished By (Sign):		1		Louse	0	ived at 1	ab: E(ZR	N			QV	MI	iel By	6			-
Relinquished By (Print): K.R. (SPO)	Date/Ti Temper		3/00	8/18 10	25 Date 911. Tem	Time: perature	A 6	XX	0%	20	15	01		Time: erified []	By:	328	3:0	21pm

Chain of Custody (Env) - Rev 0.7 Feb. 2016

APPENDIX B

Groundwater - Laboratory Certificate of Analysis

RELIABLE.

Certificate of Analysis

GEMTEC Consulting Engineers and Scientists Limited

32 Steacie Drive Kanata, ON K2K2A9 Attn: Lucas Moran

Client PO: Project: 64153.85 Custody: 116409

Report Date: 22-May-2018 Order Date: 17-May-2018

Order #: 1820545

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID	Client ID
1820545-01	BH18-3 SA1
1820545-02	BH18-5 SA1

Approved By:

ZMYC

Tim McCooeye Senior Advisor

Any use of these results implies your agreement that our total liability in connection with this work, however arising, shall be limited to the amount paid by you for this work, and that our employees or agents shall not under any circumstances be liable to you in connection with this work.

Report Date: 22-May-2018 Order Date: 17-May-2018

Order #: 1820545

Project Description: 64153.85

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date	Analysis Date
BTEX by P&T GC-MS	EPA 624 - P&T GC-MS	19-May-18	19-May-18
PHC F1	CWS Tier 1 - P&T GC-FID	19-May-18	19-May-18
PHCs F2 to F4	CWS Tier 1 - GC-FID, extraction	19-May-18	19-May-18
REG 153: VOCs by P&T GC/MS	EPA 624 - P&T GC-MS	19-May-18	19-May-18

Client: GEMTEC Consulting Engineers and Scientists Limited

Certificate of Analysis

Client PO:

Order #: 1820545

Report Date: 22-May-2018

Order Date: 17-May-2018

Project Description: 64153.85

BH18-5 SA1 **Client ID:** BH18-3 SA1 Sample Date: 05/17/2018 09:50 05/17/2018 11:00 _ 1820545-01 1820545-02 Sample ID: Water Water **MDL/Units** _ Volatiles 5.0 ug/L Acetone _ <5.0 _ _ 0.5 ug/L Benzene <0.5 _ -_ 0.5 ug/L Bromodichloromethane <0.5 -0.5 ug/L Bromoform <0.5 _ _ 0.5 ug/L Bromomethane _ <0.5 -_ 0.2 ug/L <0.2 Carbon Tetrachloride -_ -0.5 ug/L Chlorobenzene <0.5 ---0.5 ug/L Chloroform <0.5 ---0.5 ug/L Dibromochloromethane <0.5 --1.0 ug/L Dichlorodifluoromethane <1.0 _ -0.5 ug/L 1,2-Dichlorobenzene <0.5 _ 0.5 ug/L 1.3-Dichlorobenzene < 0.5 _ _ _ 0.5 ug/L <0.5 1,4-Dichlorobenzene _ -_ 0.5 ug/L 1,1-Dichloroethane <0.5 _ -_ 0.5 ug/L 1,2-Dichloroethane <0.5 _ _ -0.5 ug/L 1,1-Dichloroethylene <0.5 -_ _ 0.5 ug/L cis-1,2-Dichloroethylene <0.5 -_ -0.5 ug/L trans-1,2-Dichloroethylene < 0.5 _ _ 0.5 ug/L <0.5 1,2-Dichloropropane -_ _ 0.5 ug/L cis-1,3-Dichloropropylene <0.5 _ 0.5 ug/L trans-1,3-Dichloropropylene <0.5 -0.5 ug/L 1,3-Dichloropropene, total <0.5 _ --0.5 ug/L Ethylbenzene <0.5 ---0.2 ug/L Ethylene dibromide (dibromoethai <0.2 _ --1.0 ug/L Hexane <1.0 _ --5.0 ug/L Methyl Ethyl Ketone (2-Butanone) <5.0 _ 5.0 ug/L Methyl Isobutyl Ketone <5.0 _ 2.0 ug/L <2.0 Methyl tert-butyl ether _ -_ 5.0 ug/L Methylene Chloride <5.0 -_ -0.5 ug/L Styrene <0.5 -_ _ 1,1,1,2-Tetrachloroethane 0.5 ug/L <0.5 -_ -0.5 ug/L 1,1,2,2-Tetrachloroethane <0.5 -_ _ 0.5 ug/L Tetrachloroethylene _ <0.5 -_ 0.5 ug/L Toluene < 0.5 _ _ -0.5 ug/L 1,1,1-Trichloroethane _ <0.5 --

Report Date: 22-May-2018 Order Date: 17-May-2018

Project Description: 64153.85

	Client ID: Sample Date:	BH18-3 SA1 05/17/2018 09:50	BH18-5 SA1 05/17/2018 11:00	-	-
	Sample Date: Sample ID:	1820545-01	1820545-02	-	-
	MDL/Units	Water	Water	-	-
1,1,2-Trichloroethane	0.5 ug/L	-	<0.5	-	-
Trichloroethylene	0.5 ug/L	-	<0.5	-	-
Trichlorofluoromethane	1.0 ug/L	-	<1.0	-	-
Vinyl chloride	0.5 ug/L	-	<0.5	-	-
m,p-Xylenes	0.5 ug/L	-	<0.5	-	-
o-Xylene	0.5 ug/L	-	<0.5	-	-
Xylenes, total	0.5 ug/L	-	<0.5	-	-
4-Bromofluorobenzene	Surrogate	-	93.2%	-	-
Dibromofluoromethane	Surrogate	-	92.5%	-	-
Toluene-d8	Surrogate	-	95.5%	-	-
Benzene	0.5 ug/L	<0.5	-	-	-
Ethylbenzene	0.5 ug/L	<0.5	-	-	-
Toluene	0.5 ug/L	<0.5	-	-	-
m,p-Xylenes	0.5 ug/L	<0.5	-	-	-
o-Xylene	0.5 ug/L	<0.5	-	-	-
Xylenes, total	0.5 ug/L	<0.5	-	-	-
Toluene-d8	Surrogate	96.2%	-	-	-
Hydrocarbons					
F1 PHCs (C6-C10)	25 ug/L	<25	<25	-	-
F2 PHCs (C10-C16)	100 ug/L	<100	<100	-	-
F3 PHCs (C16-C34)	100 ug/L	334	548	-	-
F4 PHCs (C34-C50)	100 ug/L	<100	113	-	-

Order #: 1820545

Report Date: 22-May-2018 Order Date: 17-May-2018

Project Description: 64153.85

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	ND	25	ug/L						
F2 PHCs (C10-C16)	ND	100	ug/L						
F3 PHCs (C16-C34)	ND	100	ug/L						
F4 PHCs (C34-C50)	ND	100	ug/L						
Volatiles									
Acetone	ND	5.0	ug/L						
Benzene	ND	0.5	ug/L						
Bromodichloromethane	ND	0.5	ug/L						
Bromoform	ND	0.5	ug/L						
Bromomethane	ND	0.5	ug/L						
Carbon Tetrachloride	ND	0.2	ug/L						
Chlorobenzene	ND	0.5	ug/L						
Chloroform	ND	0.5	ug/L						
Dibromochloromethane	ND	0.5	ug/L						
Dichlorodifluoromethane	ND	1.0	ug/L						
1,2-Dichlorobenzene	ND	0.5	ug/L						
1,3-Dichlorobenzene	ND	0.5	ug/L						
1,4-Dichlorobenzene	ND	0.5	ug/L						
1,1-Dichloroethane	ND	0.5	ug/L						
1,2-Dichloroethane	ND	0.5	ug/L						
1,1-Dichloroethylene	ND	0.5	ug/L						
cis-1,2-Dichloroethylene	ND	0.5	ug/L						
trans-1,2-Dichloroethylene	ND	0.5	ug/L						
1,2-Dichloropropane	ND	0.5	ug/L						
cis-1,3-Dichloropropylene	ND	0.5	ug/L						
trans-1,3-Dichloropropylene	ND	0.5	ug/L						
1,3-Dichloropropene, total	ND	0.5	ug/L						
Ethylbenzene	ND	0.5	ug/L						
Ethylene dibromide (dibromoethane	ND	0.2	ug/L						
Hexane Mathud Ethud Katana (2 Butanana)	ND	1.0	ug/L						
Methyl Ethyl Ketone (2-Butanone)	ND	5.0	ug/L						
Methyl Isobutyl Ketone	ND	5.0	ug/L						
Methyl tert-butyl ether	ND ND	2.0 5.0	ug/L						
Methylene Chloride Styrene	ND	0.5	ug/L						
1,1,1,2-Tetrachloroethane	ND	0.5	ug/L ug/L						
1,1,2,2-Tetrachloroethane	ND	0.5	ug/L						
Tetrachloroethylene	ND	0.5	ug/L						
Toluene	ND	0.5	ug/L						
1,1,1-Trichloroethane	ND	0.5	ug/L						
1,1,2-Trichloroethane	ND	0.5	ug/L						
Trichloroethylene	ND	0.5	ug/L						
Trichlorofluoromethane	ND	1.0	ug/L						
Vinyl chloride	ND	0.5	ug/L						
m,p-Xylenes	ND	0.5	ug/L						
o-Xylene	ND	0.5	ug/L						
Xylenes, total	ND	0.5	ug/L						
Surrogate: 4-Bromofluorobenzene	75.2		ug/L		94.0	50-140			
Surrogate: Dibromofluoromethane	81.2		ug/L		102	50-140			
Surrogate: Toluene-d8	76.3		ug/L		95.4	50-140			
Benzene	ND	0.5	ug/L		00.4	00 170			
Ethylbenzene	ND	0.5	ug/L						
Toluene	ND	0.5	ug/L						
m,p-Xylenes	ND	0.5	ug/L						
o-Xylene	ND	0.5	ug/L						
Xylenes, total	ND	0.5	ug/L						
Surrogate: Toluene-d8	76.3	0.0	ug/L		95.4	50-140			
			- 3, -						

Method Quality Control: Duplicate

Report Date: 22-May-2018

Order Date: 17-May-2018

Project Description: 64153.85

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	ND	25	ug/L	ND				30	
Volatiles									
Acetone	ND	5.0	ug/L	ND				30	
Benzene	ND	0.5	ug/L	ND				30	
Bromodichloromethane	ND	0.5	ug/L	ND				30	
Bromoform	ND	0.5	ug/L	ND				30	
Bromomethane	ND	0.5	ug/L	ND				30	
Carbon Tetrachloride	ND	0.2	ug/L	ND				30	
Chlorobenzene	ND	0.5	ug/L	ND				30	
Chloroform	ND	0.5	ug/L	ND				30	
Dibromochloromethane	ND	0.5	ug/L	ND				30	
Dichlorodifluoromethane	ND	1.0	ug/L	ND				30	
1,2-Dichlorobenzene	ND	0.5	ug/L	ND				30	
1,3-Dichlorobenzene	ND	0.5	ug/L	ND				30	
1,4-Dichlorobenzene	ND	0.5	ug/L	ND				30	
1,1-Dichloroethane	ND	0.5	ug/L	ND				30	
1,2-Dichloroethane	ND	0.5	ug/L	ND				30	
1,1-Dichloroethylene	ND	0.5	ug/L	ND				30	
cis-1,2-Dichloroethylene	ND	0.5	ug/L	ND				30	
trans-1,2-Dichloroethylene	ND	0.5	ug/L	ND				30	
1,2-Dichloropropane	ND	0.5	ug/L	ND				30	
cis-1,3-Dichloropropylene	ND	0.5	ug/L	ND				30	
trans-1,3-Dichloropropylene	ND	0.5	ug/L	ND				30 30	
Ethylbenzene	ND ND	0.5 0.2	ug/L	ND ND				30	
Ethylene dibromide (dibromoethane Hexane	ND	1.0	ug/L ug/L	ND				30	
Methyl Ethyl Ketone (2-Butanone)	ND	5.0	ug/L	ND				30	
Methyl Isobutyl Ketone	ND	5.0	ug/L	ND				30	
Methyl tert-butyl ether	ND	2.0	ug/L	ND				30	
Methylene Chloride	ND	5.0	ug/L	ND				30	
Styrene	ND	0.5	ug/L	ND				30	
1,1,1,2-Tetrachloroethane	ND	0.5	ug/L	ND				30	
1,1,2,2-Tetrachloroethane	ND	0.5	ug/L	ND				30	
Tetrachloroethylene	ND	0.5	ug/L	ND				30	
Toluene	ND	0.5	ug/L	ND				30	
1,1,1-Trichloroethane	ND	0.5	ug/L	ND				30	
1,1,2-Trichloroethane	ND	0.5	ug/L	ND				30	
Trichloroethylene	ND	0.5	ug/L	ND				30	
Trichlorofluoromethane	ND	1.0	ug/L	ND				30	
Vinyl chloride	ND	0.5	ug/L	ND				30	
m,p-Xylenes	ND	0.5	ug/L	ND				30	
o-Xylene	ND	0.5	ug/L	ND				30	
Surrogate: 4-Bromofluorobenzene	75.4		ug/L		94.2	50-140			
Surrogate: Dibromofluoromethane	72.4		ug/L		90.6	50-140			
Surrogate: Toluene-d8	76.9		ug/L		96.1	50-140			
Benzene	ND	0.5	ug/L	ND				30	
Ethylbenzene	ND	0.5	ug/L	ND				30	
Toluene	ND	0.5	ug/L	ND				30	
m,p-Xylenes	ND	0.5	ug/L	ND				30	
o-Xylene Surrogate: Toluene-d8	ND 76.9	0.5	ug/L	ND	96.1	50-140		30	
Surrugale. IUIUEIIE-UO	10.9		ug/L		90.1	50-140			

Method Quality Control: Spike

Report Date: 22-May-2018

Order Date: 17-May-2018

Project Description: 64153.85

Analyte	Result	Reporting Limit	Units	Source %REC Result	, %REC Limit	RPD	RPD Limit	Notes
Hydrocarbons								
F1 PHCs (C6-C10)	1930	25	ug/L	96.6	68-117			
F2 PHCs (C10-C16)	2250	100	ug/L	125	60-140			
F3 PHCs (C16-C34)	4300	100	ug/L	116	60-140			
F4 PHCs (C34-C50)	2990	100	ug/L	120	60-140			
Volatiles								
Acetone	79.4	5.0	ug/L	79.4	50-140			
Benzene	39.8	0.5	ug/L	99.6	60-130			
Bromodichloromethane	35.1	0.5	ug/L	87.7	60-130			
Bromoform	31.6	0.5	ug/L	78.9	60-130			
Bromomethane	51.1	0.5	ug/L	128	50-140			
Carbon Tetrachloride	35.4	0.2	ug/L	88.5	60-130			
Chlorobenzene	43.9	0.5	ug/L	110	60-130			
Chloroform	36.2	0.5	ug/L	90.4	60-130			
Dibromochloromethane	35.3	0.5	ug/L	88.4	60-130			
Dichlorodifluoromethane	43.0	1.0	ug/L	108	50-140			
1,2-Dichlorobenzene	39.1	0.5	ug/L	97.8	60-130			
1,3-Dichlorobenzene	39.6	0.5	ug/L	99.0	60-130			
1,4-Dichlorobenzene	39.1	0.5	ug/L	97.8	60-130			
1,1-Dichloroethane	42.4	0.5	ug/L	106	60-130			
1,2-Dichloroethane	41.6	0.5	ug/L	104	60-130			
1,1-Dichloroethylene	43.1	0.5	ug/L	108	60-130			
cis-1,2-Dichloroethylene	37.3	0.5	ug/L	93.2	60-130			
trans-1,2-Dichloroethylene	44.6	0.5	ug/L	111	60-130			
1,2-Dichloropropane	41.6	0.5	ug/L	104	60-130			
cis-1,3-Dichloropropylene	28.9	0.5	ug/L	72.2	60-130			
trans-1,3-Dichloropropylene	30.2	0.5	ug/L	75.5	60-130			
Ethylbenzene	41.2	0.5	ug/L	103	60-130			
Ethylene dibromide (dibromoethane	43.2	0.2	ug/L	108	60-130			
Hexane	47.6	1.0	ug/L	119	60-130			
Methyl Ethyl Ketone (2-Butanone)	82.2	5.0	ug/L	82.2	50-140			
Methyl Isobutyl Ketone	80.9	5.0	ug/L	80.9	50-140			
Methyl tert-butyl ether	96.9	2.0	ug/L	96.9	50-140			
Methylene Chloride	44.6	5.0	ug/L	112	60-130			
Styrene	44.2	0.5	ug/L	111	60-130			
1,1,1,2-Tetrachloroethane	44.2	0.5	ug/L	110	60-130			
1,1,2,2-Tetrachloroethane	51.2	0.5	ug/L	128	60-130			
Tetrachloroethylene	48.7	0.5	ug/L	122	60-130			
Toluene	42.9	0.5	ug/L	107	60-130			
1,1,1-Trichloroethane	37.7	0.5	ug/L	94.3	60-130			
1,1,2-Trichloroethane	42.2	0.5	ug/L	105	60-130			
Trichloroethylene	39.3	0.5	ug/L	98.2	60-130			
Trichlorofluoromethane	45.1	1.0	ug/L	113	60-130			
Vinyl chloride	42.5	0.5	ug/L	106	50-140			
m,p-Xylenes	90.6	0.5	ug/L	113	60-130			
o-Xylene	45.6	0.5	ug/L	114	60-130			
Surrogate: 4-Bromofluorobenzene	72.0	-	ug/L	90.0	50-140			
Benzene	39.8	0.5	ug/L	99.6	60-130			
Ethylbenzene	41.2	0.5	ug/L	103	60-130			
Toluene	42.9	0.5	ug/L	107	60-130			
m,p-Xylenes	90.6	0.5	ug/L	113	60-130			
o-Xylene	45.6	0.5	ug/L	114	60-130			
	-0.0	0.0	ug/L	114	00 100			

Qualifier Notes:

None

Sample Data Revisions

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected MDL: Method Detection Limit Source Result: Data used as source for matrix and duplicate samples %REC: Percent recovery. RPD: Relative percent difference.

CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.

- F1 range corrected for BTEX.
- F2 to F3 ranges corrected for appropriate PAHs where available.
- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.
- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.

GPARACEL				acel ID: 18					Ottav p: 1-8	319 a, Oi 100-7	St. Lau ntario 49-194	rent Blvd. K1G 4J8 7 cellabs.com	Nº 116409		
LABORATORIES LTD														Page	of
Client Name: Gentec				Project Reference	64153.85	>							-	Furnarou	
Contact Name: LUCAS MORAN				Quote #						_	_		🗆 l Da	y	🗆 3 Day
Address: 32 Steacie Dr. Kanata Telephone: 613-836-1422 Criteria: XO. Reg. 153/04 (As Amended) Table 1 @ RSC				1PO # Email Address: [_ucas.mor	5AA	9 4C	mte	۹۲,	Ca.			□ 2 Day Date Required:		Regular
Telephone: 6 3-836-1422				C.C. Kati	erine, n	sp	oliQ	Pge	m	ec	,CA	icinality:	Date N	D Other	
						1.11					1 JAIMU	cipany.		to order	
Matrix Type: S (Soil/Sed.) GW (Ground Water) SW (Surface Water)	SS (Storm/S	anitary Sev	ver) P	(Paint) A (Air) O (Other)	Rec	uired	Ana	lyses	-					
Paracel Order Number: 1823545	lrix.	Air Volume	of Containers	Sample	Taken	S F1-F4+BTE	8	Metals by ICP		2	B (HWS)			2	
Sample ID/Location Name	Matrix	Air	*	Date	Time	PHC	VOCS			CrVI	B ()	_			
1 BH 18-3 541	IGW		3	May 17/18	9:50 ym	X	///	*	-	-		_			
2 BH18-5 SAI	1GW		3	May 17/19	11:00 am	X	X	+	-	-	\vdash	_			
3			_			-		┢	+	-	\vdash		-		
4	-		-			-		┢	┝	-	+				
5					_	-		+	+	+	+	-			++
6	-	_				-		+	+	1	H			-	+++
7	-					-	+	╈	t	t	H				
8								+	t	t		_			
9	+					-		+	1	T					
Comments: Sample #1 Analyze for	or PH	Cs +	bto	c only			<u> </u>		-					Method of Do	livery: 1K-in
Relinquished By (Sign)	K	d by Drivi and n	a	V	Receive	M	Re	~	e	-		Val	1112	1	1200
Relinquished By (Print) Lucas Moran Date Time: May 17/18 11:25 am	Date/Ti Temper	me: <u>Ma</u> ature: 8	717		35 Date/Ti Temper			J _c	U	12	5	pH V	Finne: U arified[] E	wy/	ian s

Chain of Custody (Env) - Rev 0.7 Feb. 2016

RELIABLE.

Certificate of Analysis

GEMTEC Consulting Engineers and Scientists Limited

32 Steacie Drive Kanata, ON K2K 2A9 Attn: Nicole Soucy

Client PO: Project: 64153.85 Custody: 115677

Report Date: 10-Aug-2018 Order Date: 3-Aug-2018

Order #: 1831559

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID **Client ID** MW18-3 GW3 1831559-01

Approved By:

Dale Robertson, BSc Laboratory Director

Any use of these results implies your agreement that our total liability in connection with this work, however arising, shall be limited to the amount paid by you for this work, and that our employees or agents shall not under any circumstances be liable to you in connection with this work.

Report Date: 10-Aug-2018 Order Date: 3-Aug-2018

Order #: 1831559

Project Description: 64153.85

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date Analysis Date
BTEX by P&T GC-MS	EPA 624 - P&T GC-MS	7-Aug-18 7-Aug-18
PHC F1	CWS Tier 1 - P&T GC-FID	6-Aug-18 7-Aug-18
PHCs F2 to F4	CWS Tier 1 - GC-FID, extraction	9-Aug-18 9-Aug-18

Client: GEMTEC Consulting Engineers and Scientists Limited

Certificate of Analysis

Xylenes, total

Report Date: 10-Aug-2018

-

Order Date: 3-Aug-2018

Project Description: 64153.85

Client PO: Client ID: MW18-3 GW3 -Sample Date: 08/03/2018 09:00 ---1831559-01 Sample ID: -Water **MDL/Units** -_ -Volatiles 0.5 ug/L Benzene <0.5 ---0.5 ug/L Ethylbenzene < 0.5 ---0.5 ug/L Toluene <0.5 -_ -0.5 ug/L m,p-Xylenes <0.5 ---0.5 ug/L o-Xylene <0.5 ---0.5 ug/L

<0.5

Toluene-d8	Surrogate	94.8%	-	-	-
Hydrocarbons					
F1 PHCs (C6-C10)	25 ug/L	<25	-	-	-
F2 PHCs (C10-C16)	100 ug/L	<100	-	-	-
F3 PHCs (C16-C34)	100 ug/L	<100	-	-	-
F4 PHCs (C34-C50)	100 ug/L	<100	-	-	-

-

-

Order #: 1831559

Report Date: 10-Aug-2018 Order Date: 3-Aug-2018

Project Description: 64153.85

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	ND	25	ug/L						
F2 PHCs (C10-C16)	ND	100	ug/L						
F3 PHCs (C16-C34)	ND	100	ug/L						
F4 PHCs (C34-C50)	ND	100	ug/L						
Volatiles									
Benzene	ND	0.5	ug/L						
Ethylbenzene	ND	0.5	ug/L						
Toluene	ND	0.5	ug/L						
m,p-Xylenes	ND	0.5	ug/L						
o-Xylene	ND	0.5	ug/L						
Xylenes, total	ND	0.5	ug/L						
Surrogate: Toluene-d8	72.5		ug/L		90.6	50-140			

Order #: 1831559

Report Date: 10-Aug-2018 Order Date: 3-Aug-2018

Project Description: 64153.85

Method Quality Control: Duplicate

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons		05						00	
F1 PHCs (C6-C10) Volatiles	ND	25	ug/L	ND				30	
Benzene	ND	0.5	ug/L	ND				30	
Ethylbenzene Toluene	ND ND	0.5 0.5	ug/L ug/L	ND ND				30 30	
m,p-Xylenes	ND	0.5	ug/L	ND				30	
o-Xylene <i>Surrogate: Toluene-d8</i>	ND 74.2	0.5	ug/L <i>ug/L</i>	ND	92.7	50-140		30	

Order #: 1831559

Report Date: 10-Aug-2018 Order Date: 3-Aug-2018

Project Description: 64153.85

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	1760	25	ug/L		88.0	68-117			
F2 PHCs (C10-C16)	1780	100	ug/L		111	60-140			
F3 PHCs (C16-C34)	5050	100	ug/L		129	60-140			
F4 PHCs (C34-C50)	3140	100	ug/L		127	60-140			
Volatiles									
Benzene	35.5	0.5	ug/L		88.7	60-130			
Ethylbenzene	40.1	0.5	ug/L		100	60-130			
Toluene	37.9	0.5	ug/L		94.8	60-130			
m,p-Xylenes	84.2	0.5	ug/L		105	60-130			
o-Xylene	41.9	0.5	ug/L		105	60-130			
Surrogate: Toluene-d8	66.6		ug/L		83.3	50-140			

Qualifier Notes:

None

Sample Data Revisions

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected MDL: Method Detection Limit Source Result: Data used as source for matrix and duplicate samples %REC: Percent recovery. RPD: Relative percent difference.

CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.

- F1 range corrected for BTEX.
- F2 to F3 ranges corrected for appropriate PAHs where available.
- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.
- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.

GPARACEL	RE	UST SPO		/E	Para	11301				80.			lvd. J8 .com		(Lab Use	Custody Only) 1567	
LABORATORIES LTD	•												1		Pa	se I	of]	
Client Name: Gemiec				Project Reference	e 6415	3.8	\$5	_	_	_	_					aroun	d Time	::
Contact Name: Nicele Soury		_		PO#		_			_		_			011	Day		D 3E)ay
32 Steacie Dr.				Email Address:		-				-				021	Day		Re	gular
Telephone: 613-836-1422				nicol	e.souc	°,	Jer	nte	c.0	9				Date	Requi	red:	~ `	
Criteria: 00. Reg. 153/04 (As Amended) Table _ GRSC	Filing C	10. Rej	g. 558/0	A CONTRACTOR OF A CONTRACTOR O			£		17.07		ry) M	lunicipa	lity:	- <u>1</u> -	D	Other:		
Matrix Type: S (Soil/Sed.) GW (Ground Water) SW (Surface Water) S	8 (Storm?	Sanitary S	sewer) P	(Paint) A (Air) O	(Other)	Re	quire	d A	naly	ses								
Paracel Order Number: 1831557- Soil 1831559- Ucher	rix	Air Volume	# of Containers	Sample	e Taken	PHCs F1-F4+BTEX			Is by ICP		WS)							
Sample ID/Location Name	Matrix	Air	to #	Date	Time	PHC	VOCs	PAHs	Metals by	Hg. C-VI	B (HWS)							
1 GS-N	5		3	3/8/18		X		X	X					- 2	TOM	+	via	-
2 GS-M	1		1			X		X	X						1			
3 GS-COMP7	\square													-7	xal	Um	ļ	
· GS-E } AOU)						-								.2	50m	1.+	1 via	•
s GS-W						-	\square	_		_	_							
· GS-5	V		V					_	_	_	-		_	-		V		
7 MW18-3 GW3	GW		3	V		X		_	-	+	-	_		_	_			
8	-					+	\vdash	_	-	+	-		-	-	-			
9						+	\vdash	-	-	+	-			-				
C mments:	I									_	1			1	Method	of Dalie	one	
N. COMMITTEE															A	· · ·	6	
Relipquished By (Sign):	Receive	d by Driv	er Depoi	Trouse	Recei	red at L	and. ER	R	N		201	(M)	Verifie	d By	6		<u>cı</u>	<u>ن</u>
Relinquished By (Print): K.R ISPAL	1.000 PT2014	11.7.7.200.000	3/08	3/18 10	C MOTOR STATE OF STATE		AU	60		1917	Ø	.03	Date/Ti	ime. (35/0	328	3:2	10h
Date Time: AUA 3/2018	Temper	iture:			Temp	erature:	611		'c'		台东		pll Ver	ilied[]	Ву:			

Chain of Custody (Env) - Rev 0.7 Feb. 2016

APPENDIX C

Record of Boreholes

CLIENT: Novatech PROJECT: 1055 Klondike JOB#: 64153.85

LOCATION: See Borehole Location Plan, Figure 2

Ð	SOIL PROFILE	1	-				SAMF	PLE DATA	ыN			
METHES BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	RECOVERY (mm)	BLOWS/0.3m	LABORATORY ANALYSES	COMBUSTIBLE VAPOUR CONCENTRATION (ppm)	ODOUR	TPH (mg/kg)	MONITORING WELL INSTALLATION AND NOTES
2	Ground Surface Dark brown silty sand, some organic material (TOPSOIL) Brown SILT and SAND Very stiff to stiff, grey brown SILT and CLAY (WEATHERED CRUST)		77.69 77.4 0.00 75.4 0.31	2 3 4 5 6 7	50 D.O. 50 D.O. 50 D.O. 50 D.O. 50 D.O. 50 D.O. 50 D.O. 50 D.O.							Above ground protector Bentonite TOP OF SCREEN ELEV: 76.17 m Filter sand 50 mm diameter, 3m length slotted PVC screen BOTTOM OF SCREEN ELEV: 73.12 m BOTTOM OF SCREEN ELEV: 73.12 m Groundwater level observed at about 2.0 metres below surface grade (elevation 75.7 metres, geodetic datum) on March 15, 2018. GROUNDWATER OBSERVATIONS DATE DEPTH (m) ELEVATIONS May. 14/18 2.90 ¥ 74.79 Mar. 22/19 2.23 ¥ 75.46

CLIENT: Novatech PROJECT: 1055 Klondike JOB#: 64153.85

LOCATION: See Borehole Location Plan, Figure 2

SHEET:1 OF 1DATUM:GeodeticBORING DATE:Mar 8 2018

CLIENT: Novatech PROJECT: 1055 Klondike

JOB#: 64153.85

LOCATION: See Borehole Location Plan, Figure 2

	OC O	SOIL PROFILE	r	1		1		SAMF	PLE DATA	u z				
METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	түре	RECOVERY (mm)	BLOWS/0.3m	LABORATORY ANALYSES	COMBUSTIBLE VAPOUR CONCENTRATION (ppm)	ODOUR	TPH (mg/kg)	MO	NITORING WELL NSTALLATION AND NOTES
0 -		Ground Surface Grey, crushed sand and gravel, trace silt (DRIVEWAY MATERIAL)		78.79 78.6 0.00	1	50		46						Above ground protector Bentonite
		Dark brown and brown silty sand, some gravel, and organic material (FILL MATERIAL)		77.9		D.O.								
1		Brown SILT and SAND		0.15	2	50 D.O.		7						Auger cuttings
2					3	50 D.O.		7						
3		Brown, fine to medium grained SAND, trace to some silt		<u>76.3</u> 0.91 75.7	4	50 D.O.		5						
	ieter er	Very stiff to stiff, grey brown SILT and CLAY (WEATHERED CRUST)		2.49	5	50 D.O.		4						
4	150 mm Diameter Power Auger				6	50 D.O.		3						Bentonite Filter sand
5	1				7	50 D.O.		4						Filter sand TOP OF SCREEN ELEV.: 74.22 m
6					8	50 D.O.		3						50 mm diameter, 3m length slotted
Ū					9	50 D.O.		2						PVC screen
7					10	50 D.O.								
8		Stiff, grey Silty Clay		71.2 3.05 70.6 7.63	11	50 D.O.		1						BOTTOM OF SCREEP ELEV.: 71.17 m
													GROUN	DWATER OBSERVATIONS
													DATE Mar. 15/18	DEPTH (m) ELEVATION 6.30 ∑ 72.49
													May. 14/18 Jul. 27/18	6.80 ▼ 71.99 7.60 ▼ 71.19
	Co	SEMTEC											L	DGGED: AN

CLIENT:Novatech PROJECT:1055 Klondike JOB#: 64153.85 LOCATION: See Borehole Location Plan, Figure 2

No. Description Stat. MON LE Stat. NON LE Stat. NON LE Montrolling 1 Description Stat. Domain Stat. Domain
0 Dark brown slity sand / sandy slit. 3 4 7.4 1 50 3 3 1 Brown SILT and SAND, trace roots 7 0.00 1 50.0 7 2 Brown SILT and SAND, trace roots 75.5 2 50 7 7 0.00 1 50.0 7 3 50 0.0 1 50.0 1 0.0 1 50.0 1 4 11.2 4 50.0 4 0.0 4 0.0 4 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0

CLIENT: Novatech PROJECT: 1055 Klondike JOB#: 64153.85

SHEET:1 OF 1DATUM:GeodeticBORING DATE:Mar 8 2018

	\Box	SOIL PROFILE						SAM	PLE DATA	z			
METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	RECOVERY (mm)	BLOWS/0.3m	LABORATORY ANALYSES	COMBUSTIBLE VAPOUR CONCENTRATION (ppm)	ODOUR	TPH (mg/kg)	MONITORING WELL INSTALLATION AND NOTES
0 1 2 3 4 5 6 7 [United Content of Content o		Ground Surface Grey brown silty clay, with dark brown pockets, some organic material (FILL MATERIAL) Brown silty sand, trace wood Very stiff to stiff, grey brown SILT and CLAY (WEATHERED CRUST) Auger refusal on possible bedrock End of borehole		77.80 74.5 0.00 73.1 3.25	1 2 3 4 5 6 7 8 9 10 11	50 D.O. 50 D.00 50 D.O. 50 D.O. 50 D.O. 50 50 50 D.O. 50 50 50 50 50 50 50 50 50 50 50 50 50		8 5 3 4 5 5 5 5 3 2 2 50 0.13	n				Above ground protector Bentonite Bentonite Filter sand TOP OF SCREEN ELEV:: 75.36 m 50 mm diameter, 3m length slotted PVC screen SUM Well observed to b dry on October , 2018, and March 22, 2019. GROUNDWATER OBSERVATIONS DATE DEPTH (m) DATE DEPTH (m) Jul. 27/18 6.70 Y 7

CLIENT:NovatechPROJECT:1055 Kondike RoadJOB#:64153.85

LOCATION: See Borehole Location Plan, Figure 1

Bround Surface Dark brown silty sand with organic haterial (TOPSOIL) Doose, brown SILTY SAND	STRATA PLOT	ELEV. DEPTH (m) 77.98 77.98 0.15	1B 2 3	SS SS SS SS	L COVERY (mm)		COMBUSTIBLE VAPOUR CONCENTRATION (ppm)	ODOUR	трн (mg/kg)	MONITORING WELL INSTALLATION AND NOTES
Dark brown silty sand with organic naterial (TOPSOIL) oose, brown SILTY SAND		77.83 0.15 75.82	2 3	SS SS	3 7 7 7					
	MMM			SS SS	4 5 2	-				
		<u>70.98</u> 7.00	8	TO SS TO	2	-				Backfilled with auger cuttings
tiff, grey SILTY CLAY										
ind of Borehole Refusal on inferred Bedrock		9.14								
		efusal on inferred Bedrock	efusal on inferred Bedrock	etwise of Borehole 68.84 9.14 9.14 9.14 9.14 9.14	nd of Borehole efusal on inferred Bedrock	nd of Borehole fusal on inferred Bedrock 9.14 9.14	And of Borehole fusal on inferred Bedrock 9.14 9.14 9.14 9.14 9.14 9.14 9.14 9.14	etusal on inferred Bedrock	hd of Borehole Pfusal on inferred Bedrock	end of Borehole pfusal on inferred Bedrock 9.14 9.14 9.14 9.14 9.14 9.14 9.14 9.14

JOE	8#:	 1055 Kondike Road 64153.85 N: See Borehole Location Plan, Figure 1 										SHEET: 1 OF 1 DATUM: CGVD2013 BORING DATE: Mar 14 2019
J	OD	SOIL PROFILE					AMPL	E DATA	щN			
METRES	BORING METHOD	DESCRIPTION	ELEV. DEPTH (m)	NUMBER	ТҮРЕ	RECOVERY (mm)	BLOWS/0.3m	LABORATORY ANALYSES	COMBUSTIBLE VAPOUR CONCENTRATION (ppm)	ODOUR	TPH (mg/kg)	MONITORING WELL INSTALLATION AND NOTES
0		Ground Surface Soil stratigraphy not logged	78.55									
1 2 3 4 5 6 7 8	Power Auger Hollow Stem Auger (210mm OD)	End of Borehole	<u>69.71</u> 8.84									Backfilled with auger cuttings Bentonite seal Bentonite seal TOP OF SCREEN ELEV: 72.76 m Filter sand 50 millimetre diameter PVC screen BOTTOM OF SCREEN ELEV: 69.71 m
												DATE DEPTH (m) ELEVATIO Mar. 19/22 6.70 ✓ 71.8 Apr. 04/19 5.10 ▼ 73.45
												LOGGED: BWW

civil geotechnical environmental field services materials testing civil géotechnique environnementale surveillance de chantier service de laboratoire des matériaux