Forum/SLP 112 Nelson Limited Partnership

112-134 Nelson Street Stormwater Management Report

July 25, 2023

112-134 Nelson Street Stormwater Management Report

Forum/SLP 112 Nelson Limited Partnership

Confidential Issue for City Review Project No.: 211-04788-00 Date: July 25, 2023

WSP Suite 300 2611 Queensview Drive Ottawa, ON, Canada K2B 8K2

T: +1 613 829-2800 F: +1 613 829-8299 wsp.com

Revision History

FIRST ISSUE

July 16, 2021	First Submission						
Prepared by	Reviewed by	Approved By					
Kathryn Kerker Water Resources E.I.T.	Michelle Hughes, P.Eng Team Lead, Water Resources	Michelle Hughes, P.Eng Team Lead, Water Resources					
REVISION 1		1					
August 27, 2021	Second submission						
Prepared by	Reviewed by	Approved By					
Kathryn Kerker Water Resources E.I.T.	Michelle Hughes, P.Eng Team Lead, Water Resources	Michelle Hughes, P.Eng Team Lead, Water Resources					
REVISION 2							
February 10, 2023	Third Submission						
Prepared by	Reviewed by	Approved By					
Kathryn Kerker Water Resources E.I.T.	Alex Sereda, P.Eng. Project Engineer	Alex Sereda, P.Eng. Project Engineer					
REVISION 3		1	1				
July 25, 2023	Third Submission						
Prepared by	Reviewed by	Approved By					
Kathryn Kerker Water Resources E.I.T.	Alex Sereda, P.Eng. Project Engineer	Alex Sereda, P.Eng. Project Engineer					

Signatures

Prepared by

thy kan

Kathryn Kerker Water Resources E.I.T.

July 25, 2023

APPROVED BY

Date

July 25, 2023

Alex Sereda, P.Eng. Project Engineer Date

WSP Canada Inc. prepared this report solely for the use of the intended recipient, Forum/SLP 112 Nelson Limited Partnership, in accordance with the professional services agreement. The intended recipient is solely responsible for the disclosure of any information contained in this report. The content and opinions contained in the present report are based on the observations and/or information available to WSP Canada Inc. at the time of preparation. If a third party makes use of, relies on, or makes decisions in accordance with this report, said third party is solely responsible for such use, reliance or decisions. WSP Canada Inc. does not accept responsibility for damages, if any, suffered by any third party as a result of decisions made or actions taken by said third party based on this report. This limitations statement is considered an integral part of this report.

The original of this digital file will be conserved by WSP Canada Inc. for a period of not less than 10 years. As the digital file transmitted to the intended recipient is no longer under the control of WSP Canada Inc., its integrity cannot be assured. As such, WSP Canada Inc. does not guarantee any modifications made to this digital file subsequent to its transmission to the intended recipient.

vsp

1	INTRODUCTION	1
1.1	Scope	1
1.2	Site Location	1
1.3	Stormwater Management Plan Objectives	1
1.4	Design Criteria	2
2	PRE-DEVELOPMENT CONDITIONS	3
2.1	General	3
2.2	Rainfall Information	3
2.3	Allowable Flow Rates	3
3	POST-DEVELOPMENT CONDITIONS	5
3.1	General	5
3.2	Water Quantity	7
3.3	Water Quality	8
4	CONCLUSIONS	9

vsp

Tables

Table 2-1: Pre-Development Peak Flow Rate
Calculations (Runoff Coefficient,
C = 0.50 and $T_c=10$ min)4Table 3-1: Post-development area breakdown 5Table 3-2: Summary of Modelling Results 8

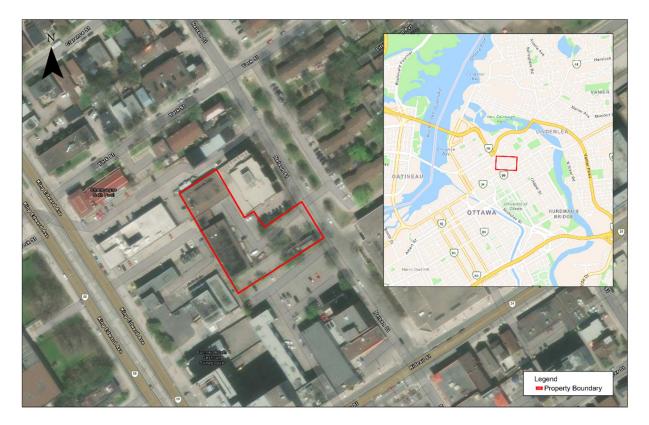
Figures

Figure 1: Site Location	1
Figure 2: Proposed Drainage Areas	6

vsp

Appendices

- A Pre-consultation meeting minutes (October 22, 2020)
- **B** Pre-Development Stormwater Management Calculations
- **C** HydroCAD Model Output
- C-1 100-Year Analysis (Peak Discharge, T_c = 24 Min)
- C-2 100-Year Analysis (Peak Storage, T_c = 29 Min)
- **D** OGS Sizing


1 INTRODUCTION

1.1 Scope

WSP Canada Inc. was retained by FORUM/SLP 112 Nelson Limited Partnership to conduct a stormwater management study in support of proposals to develop a 9-storey residential building on land which previously contained a two-storey multi-tenant warehouse with surface parking.

1.2 Site Location

The site is located at 112 Nelson Street, Ottawa, Ontario, between Rideau Street and York Street. The location of the proposed development is illustrated in **Figure 1**.

Figure 1: Site Location

1.3 Stormwater Management Plan Objectives

The objectives of the stormwater management (SWM) study are as follows:

- Collect and review background information.
- Confirm applicable SWM design criteria with City of Ottawa staff.
- Evaluate various SWM practices that meet the stormwater management requirements and recommend a preferred strategy—specifically related to the applicable quantity and quality control criteria.

1.4 Design Criteria

Design criteria were confirmed through pre-consultation with the city of Ottawa held on October 22, 2020 (Meeting minutes included in **Appendix A**), with follow-up email on April 14, 2021. Criteria for 112 Nelson Street are as follows:

Water Quantity Control and Discharge to Municipal Infrastructure

- Stormwater must be controlled to the peak flow for the 2-year pre-development storm event. Runoff must be detained onsite to control all storm events up to and including the 100-year event.
- Allowable Runoff coefficient (C): C = the lesser of the existing pre-development conditions to a maximum of 0.5 (OSDG 8.3.7.3)
- Time of concentration (Tc): Tc = pre-development (Calculated); maximum Tc = 10 min

Water Quality

- RVCA requires enhanced water quality protection (80% TSS removal) be provided on-site

2 PRE-DEVELOPMENT CONDITIONS

2.1 General

Currently the land proposed for the new development contains a two-storey multi-tenant warehouse with surface parking. The overall existing site has an estimated runoff coefficient of 0.90. The total study area (i.e. portion of the site affected by the proposed works) is 0.36 ha.

2.2 Rainfall Information

The rainfall intensity is calculated in accordance with Section 5.4.2 of the Ottawa Sewer Design Guidelines (October 2012):

$$i = \left[\frac{A}{(T_d + C)^B}\right]$$

Where;

- A, B, C = regression constants for each return period (defined in section 5.4.2)
- i = rainfall intensity (mm/hour)
- T_d = storm duration (minutes)
- The IDF parameters/regression constants are included in Appendix B.

2.3 Allowable Flow Rates

As noted in **Section 1.4**, post-development stormwater runoff from the 2-year to 100year design storms must not exceed the pre-development peak 2-year flow rate, calculated using a runoff coefficient being the lesser of 0.50 or existing conditions. In this instance existing conditions have a runoff coefficient of 0.90, therefore a value of 0.5 has been used to calculate the allowable release rate.

The area will discharge east to a 450 mm concrete storm pipe on Nelson Street through a new storm connection. The calculated peak flow rates for the site in the predevelopment condition are summarized below in Table 2-1.

Table 2-1: Pre-Development Peak Flow Rate Calculations (Runoff Coefficient, C = 0.50 and T_c=10 min)

Return Period (Years)	Rainfall Intensity (mm/hour)	Peak Flow Rate (I/s)	Target Release Rate (I/s)
2	76.8	39	
5	104.2	53	
10	122.1	62	39
25	144.7	81	
50	161.5	98	
100	178.6	113	

3 POST-DEVELOPMENT CONDITIONS

3.1 General

The site will be developed with a new 9-storey residential building. The developed site will have a runoff coefficient of 0.72 and study area of 0.365 ha. A cistern will be used to control the peak discharge of the newly developed site to 39 L/s. Figure 2 shows the proposed controlled and uncontrolled drainage areas for the developed site. The post-development area breakdown in shown in Table 3-1.

Uncontrolled areas of the site are small and along the property boundary. These uncontrolled areas cannot be captured due to grading constraints. The cistern outflow to Nelson Street is overcontrolled to account for these areas.

Note that this report should be read in conjunction with the proposed site servicing drawing package—specifically drawings C001 (Servicing Plan) and C002 (Grading Plan).

	Area (ha)	Runoff Coefficient
Controlled area		
Impervious	0.266	0.90
Pervious	0.092	0.20
Total controlled	0.358	0.72
Uncontrolled area		
Impervious	0.007	0.90
Pervious	0.001	0.20
Total Uncontrolled	0.008	0.82
Total	0.365	0.72

Table 3-1: Post-development area breakdown

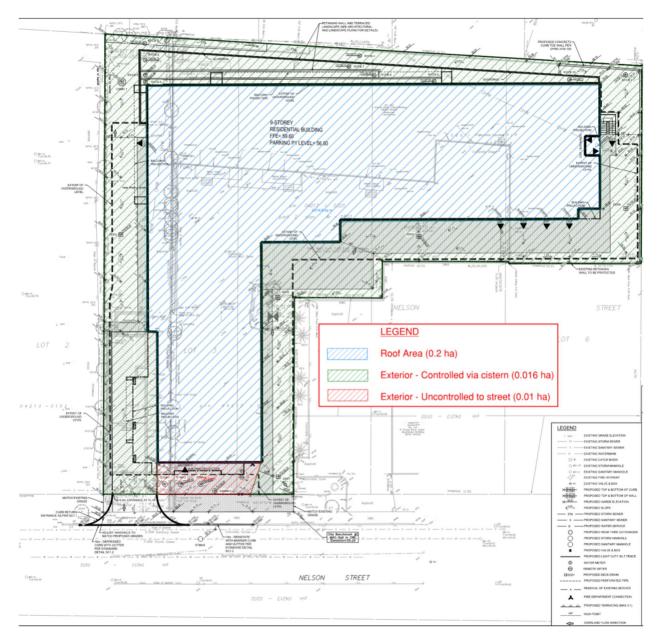


Figure 2: Proposed Drainage Areas

3.2 Water Quantity

As noted in **Section 2.3**, the target allowable discharge rate to the Nelson Street sewer is 39 L/s. This is equivalent to the peak runoff rate under pre-development conditions during a 2-year design storm event with a runoff coefficient of 0.50. Compliance with the 100-yr target offsite discharge rate will be achieved through use of a cistern with outlet control prior to discharge into the Nelson Street storm sewer.

It is noted that a small portion of the study area will not drain to the proposed cistern. Post-development runoff calculations have accounted for uncontrolled runoff from these areas, and the following analysis results report on the cumulative release rates from the study area (controlled plus uncontrolled). There are no external areas draining to the site.

A HydroCAD model of the project was created and includes:

- Cistern (minimum volume 90 m³), with outlet controlled using flow control ICD (130mm orifice) to detain 0.3575 ha of the new development with a runoff coefficient of 0.72 (+25% for 100-year event as per OSDG 5.4.5.2.1; C = 0.90).
- Uncontrolled runoff from 0.0075 ha area with C = 0.82 (+25% for 100-year event as per OSDG 5.4.5.2.1; C = 1.0).

The Modified Rational Method (an inherent subroutine of the HydroCAD software) has been used for the modelling exercise, and the model has informed the maximum storage volume used in the cistern based on the proposed flow. The peak flow rate generated from the uncontrolled drainage area within the project site and controlled flow from the cistern is 39 L/s, which meets the total allowable 100-year release rate of 39 L/s. Modelling results are summarized below in **Table 3-1** and shown in **Appendix C**.

Note that results provided below describe performance of the proposed system at multiple storm durations, which have been solved iteratively within HydroCAD to represent critical conditions (i.e. maximum storage utilized within storage features, and peak release rate at the system discharge point). The results demonstrate that the target allowable 100-year release rate is satisfied at all durations. In this case the duration for peak discharge and peak storage are the same.

Table 3-2: Summary of Modelling Results								
Return Period (Years)	Time of Conc. (min)	Utilized Storage (m³)	Peak Water Elevation in storage (m)	Peak Flow Rate at control (L/s)	Total Flow Leaving Site* (L/s)	Allowable 100-yr Flow Rate (L/s)		
100-year (Peak Discharge and Peak Storage)	30	89.3	58.163	38	39	39		

Table 3-2: Summary of Modelling Results

*'Total Flow Leaving Site' includes uncontrolled area and cistern discharge.

3.3 Water Quality

As noted in section 1.4, quality control is required to provide enhanced water quality treatment of the site (80% TSS removal). An OGS unit (Stormceptor EFO4 or equivalent) will be installed just upstream of the city storm sewer connection to provide the required quality treatment. OGS sizing is provided in **Appendix D**.

4 CONCLUSIONS

A stormwater management plan has been prepared to support the site plan application for the 112 Nelson Street development in the City of Ottawa. The key points are summarized below.

WATER QUANTITY

Runoff collected from the project site will be directed to a cistern with a minimum storage volume of 90 m³ to control the 100-year event. The peak 100-year discharge from the site is 39 L/s, which meets the allowable release rate of 39 L/s.

WATER QUALITY

Water treatment is provided by an OGS unit placed just upstream of the city storm sewer connection.

This report demonstrates that the proposed SWM strategy will address stormwater management related impacts from this project and meet the requirements of the City of Ottawa.

APPENDIX

Pre-Application Consultation Meeting Minutes

112 Nelson

PC2020-0262

October 22, 2020, Videoconference Call

Applicant Team (invitees)

- Paul Black, Fotenn
- Aly Damji, Forum Equity
- Hoa Nguyen, Forum Equity
- Jeremy Silburt, Smart Living Properties
- Dany Elsalibi, Smart Living Properties
- Bob Woodman, Woodman Architects
- Juan Gomez, Woodman Architects
- Christopher Gordon, CHG Transportation
- Andrew Harte, CHG Transportation

Lowertown Community Association

• Warren Waters

City of Ottawa

- Andrew McCreight, Planner, File Lead
- John Wu, Engineering
- Christopher Moise, Urban Design
- Wally Dubyk, Transportation

Subject: 112 Nelson Street

Opening & attendee introduction

- Introduction of meeting attendees
- Andrew explained NDA process with Lowertown CA.

Project Overview (applicant team)

Intro to team and partnership

- Presentation and Intro made to forum equity and smart living properties partnership and business approach.
 - **Note**: Staff request a copy of the presentation made during the meeting.
- Development focuses on millennial form housing.

- Forum has worked on various Ottawa projects, as well as student residents in Manitoba, and many rental projects.
- Proposed development is intended for Rental.
- Location is priority for our projects, and target active transit tenants
- All inclusive rental package, and tenant mix
- Fully furnished suites etc.
- Rental affordability with efficient units and location with amenity proximity etc. Tenants will be enjoying the outside of the unit with quality amenities in the building and surrounding neighbourhood

Proposal Overview

- Goal of project is to try to design the building to meet zoning as close as possible.
- The built form and envelope is intended to meet previous Schedule as much as possible.
- Parking complies with plans submitted, but there will likely be a request to further reduce parking requirement.
- Biggest difference from previous rezoning concept (and approval) is the building is now 10-storeys, but fits within previous zoning height.
- Architect description
 - Previous proposal was 150+ condo type units. We are looking at very different market (rental) and creating flexible use spaces.
 - Looking to maintain 10% as 3-bedroom units.
 - Fit within the envelope but not necessarily maximizing.
 - Meeting envelope and setbacks
 - Change of use to high-rise but within permitted form.
 - Residential building
 - o Amenity interior and roof-top. Meet calc. requirements
 - o 342 keys (units)
 - This is not specifically designed for student. May include student but looking for young professionals etc.

Preliminary Comments from Related Discipline

Andrew McCreight - File Lead

- The Pre-con Form notes Site Plan but based on the discussion it is clear that a Zoning By-law amendment will be required as well.
- Provided a brief overview of the ownership, site history and previous rezoning application (recently approved via Omnibus Report)
- Question was raised about the design if the intent was for the design to result in every "suite" satisfying the definition of a dwelling unit?
 - Answer: Jeremy all units will be designed to comply as dwelling units.

- Section 37 requirements will require re-negotiation based on the changes to the proposed development.
 - Applicant acknowledged.
- Any submission needs to provide a clear breakdown of the how the proposed GFA compares to the previous rezoning concept.
 - Planning Rationale to include a section of S. 37. See guidelines.
- The assessment and rationale that the built form and envelopment is consistent with the previous approval, except going to 10-storeys, is not accurate. Comparing this proposal to the approved Zoning Schedule highlights some concerning inconsistencies, such as the height (storeys), but also some of the stepbacks have not been incorporated.
- Staff fully expect that building heights (including storeys), setbacks and stepbacks previously established and approved through the Omnibus Report will be maintained.
- The design seems to intentionally maximize the number of units in this development and in a manner that is not desirable.
 - Floor heights seem to be squeezed to the minimum code requirement and paired with exceptionally small units
 - The concept incorporates dwelling units within the P1 garage level. This seems unnecessary and may contribute to a discussion around overdevelopment.
- Visitor parking the zoning provision specific to minimum of 6 spaces was based on the previous concept. More visitor parking should be provided and relate the number of units.
- Waste Room access does not appear sufficient, at least for City collection. Consider the number of units proposed and design the waste/recycling room accordingly.
- Part of the business plan presentation spoke to tenants having excellent access to amenity outside of their unit. With the proposal development concept, which raises concern about the number and type of units proposed, it will be very important to see proper indoor Amenity Areas for ease of access by all tenants.
- Bicycle parking the desire to achieve a 1:1 ratio is supported but further the design and location of bike parking for ease of use. Bicycle rooms within parking garage may work, but they need to be easy to access with a bike. Prefer to see a ground floor facility. Also look at option for visitor bicycle parking.
- More information will be required on affordable housing relative to the previous S.
 37 items.
- Discuss this proposal with the Ward Councillor as he may have other ideas in mind for S. 37, and for the proposed development in general.
- Further pre-consultation is strongly recommended in response to comments received. The current proposal raises many concerns, and with the high-level issues addressed, staff can provide more detailed feedback.

<u>Christopher – Urban Design</u>

- Convincing business plan
 - o Location
 - Quality design with efficient spaces, shared amenities, quality finishes etc.
 - Convenience
 - Shortage of rental housing, proforma, small units, amenities.
- However, while the strong business plan discussion is appreciated, but the missing piece is how the building itself contributes to the immediate community and the design of the City.

Specific Areas of Concern:

- The project is ten storeys and triggers the tall building guidelines and this proposal doesn't come close to meeting the max 750m² floorplate. Bringing this proposal down to nine storeys would avoid that.
- Would like further analysis of building relationship with surrounding context, especially planned function. Provide visualization.
- It might be helpful to see how this proposal relates to its surrounding properties within their planned context. Perhaps some modelling with ghosted blocks that illustrate what could be built around it to investigate side yard conditions.
- How the building presents a street scale and how the design relates to the context of Nelson.
- The massing and materiality of the design seems akin to a campus building on a green field site, so additional investigation would be valuable to recognize the diverse local context.
- No balconies which are a common way to visually break up a long facade and provide an architectural element that signifies a residential use.
- Concern about livability of below grade units. More elaboration of this approach needs to be provided (perhaps with a section).
- Quality of life of the building needs further description from a built form and design perspective. Not sure the business plan idea has translated into this form. This is not a convincing proposal.
- The P1 level units are very concerning.
- There is no landscaping plan provided yet and this will be a critical component of the success of the design and how it stitches itself into the context of the block as a whole.

Other

• This building will be highly visible in the middle of a downtown block, and although it does not sit within one of the City's Design Priority Areas we

recommend the proposal consider attending an Informal visit (prior to a full submission and is not a public meeting), with the City's UDRP to further discuss and evaluate various scenarios of development for the whole site;

• A Design Brief is a required submittal for all site plan applications. Please see the Design Brief Terms of Reference provided for details and consult the City's website for details regarding the UDRP schedule (if applicable).

John Wu - Engineering

- Major concern is to check sanitary capacity.
- Storm and water should not cause any concerns.
- Noise study will be required due to proximity of Rideau and King Edward.
- Jeremy similar number of occupants from previous proposal, so capacity should not be an issue.

Wally - Transportation

- The remaining steps (Forecasting & Analysis) of the TIA report to be submitted during the Site Plan application. All other Transportation comments have been noted by the consultant and should be addressed on the site plan.
- Applicant
 - We will be further discussing additional transit demand strategies with staff such as car share, e-bike spaces etc.

Preliminary Comments from Community Association Representatives:

Warren is currently the only member from Lowertown Community Association who has signed the non-disclosure agreement.

- Welcome to the neighbourhood. There is an affordability emergency.
- We need more family housing.
- We do welcome student and young professions.
- You will receive concerns about this being a student bunkhouse.
- Beautiful neighbourhood and I recommend you get to know your neighbours and get to know the people who are affected by this development.
- City don't hold up good housing projects.
- Investment with rental real estate with high turnover results in higher rents and increasement. Don't make this your business approach.
- Increase stress on infrastructure and more property taxes etc.

Note: there was a response discussion about Development Charges, and application process

Next Steps:

- Warren has signed non-disclosure agreement. If the applicant decides to go to the public, please email Warren to break this agreement. Andrew must be copied on such an e-mail if this occurs.
- Recommend consulting the Ward Councillor, as well as Lowertown Community Association.
- The plans and studies list will be provided for submission requirements.

McCaughey, Stephen

From:	Wu, John <john.wu@ottawa.ca></john.wu@ottawa.ca>
Sent:	Wednesday, April 14, 2021 11:10 AM
To:	McCaughey, Stephen
Subject:	RE: 112 Nelson St Design Criteria from Pre-consultation
Follow Up Flag:	Follow up
Flag Status:	Flagged

Please use C 0.5, 2 year's storm to restrict up to 100 year's storm on site.

From: McCaughey, Stephen <Stephen.Mccaughey@wsp.com>
Sent: April 14, 2021 11:06 AM
To: Wu, John <John.Wu@ottawa.ca>
Cc: Blanchette, Erin <Erin.Blanchette@wsp.com>
Subject: 112 Nelson St. - Design Criteria from Pre-consultation

CAUTION: This email originated from an External Sender. Please do not click links or open attachments unless you recognize the source.

ATTENTION : Ce courriel provient d'un expéditeur externe. Ne cliquez sur aucun lien et n'ouvrez pas de pièce jointe, excepté si vous connaissez l'expéditeur.

I understand you're the engineering contact for this 112 Nelson St. proposed development and possible re-zoning.

We'll be generating the proposed water and sanitary demands shortly but what isn't clear from the pre-consultation minutes is what are the stormwater management requirements for this site development?

Thanks very much,

Stephen McCaughey, P.Eng. Project Engineer Municipal Infrastructure

wsp

T +1 613-690-3955 (Direct) T +1 613-829-2800 (Office)

300-2611 Queensview Drive Ottawa, Ontario K2B 8K2 Canada

wsp.com

restricted disclosure under applicable law. This message is for the sole use of the intended recipient(s). Any unauthorized use, disclosure, viewing, copying, alteration, dissemination or distribution of, or reliance on, this message is strictly prohibited. If you have received this message in error, or you are not an authorized or intended recipient, please notify the sender immediately by replying to this message, delete this message and all copies from your e-mail system and destroy any printed copies. You are receiving this communication because you are listed as a current WSP contact. Should you have any questions regarding WSP's electronic communications policy, please consult our Anti-Spam Commitment at www.wsp.com/casl. For any concern or if you believe you should not be receiving this message to <a href="http://casl.com/casl.c

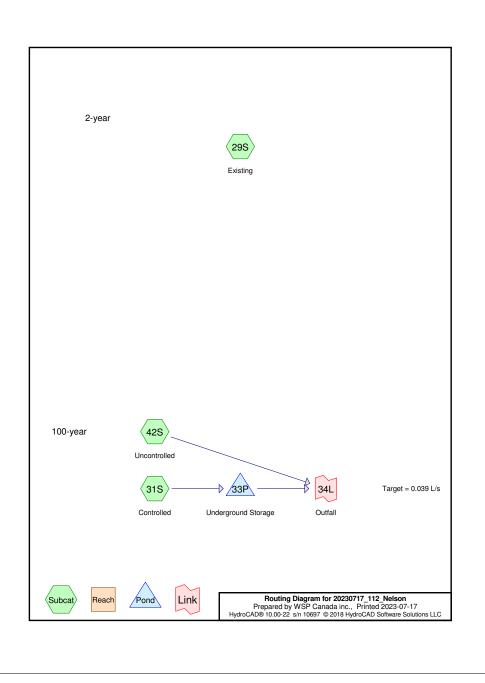
AVIS : Ce message, incluant tout fichier l'accompagnant (« le message »), peut contenir des renseignements ou de l'information privilégiés, confidentiels, propriétaires ou à divulgation restreinte en vertu de la loi. Ce message est destiné à l'usage exclusif du/des destinataire(s) voulu(s). Toute utilisation non permise, divulgation, lecture, reproduction, modification, diffusion ou distribution est interdite. Si vous avez reçu ce message par erreur, ou que vous n'êtes pas un destinataire autorisé ou voulu, veuillez en aviser l'expéditeur immédiatement et détruire le message et toute copie électronique ou imprimée. Vous recevez cette communication car vous faites partie des contacts de WSP. Si vous avez des questions concernant la politique de communications électroniques de WSP, veuillez consulter notre Engagement anti-pourriel au <u>www.wsp.com/lcap</u>. Pour toute question ou si vous croyez que vous ne devriez pas recevoir ce message, prière de le transférer au <u>conformitelcap@wsp.com</u> afin que nous puissions rapidement traiter votre demande. Notez que ce ne sont pas tous les messages transmis par WSP qui constituent des messages electroniques commerciaux.

-LAEmHhHzdJzBITWfa4Hgs7pbKI

I

This e-mail originates from the City of Ottawa e-mail system. Any distribution, use or copying of this e-mail or the information it contains by other than the intended recipient(s) is unauthorized. Thank you.

Le présent courriel a été expédié par le système de courriels de la Ville d'Ottawa. Toute distribution, utilisation ou reproduction du courriel ou des renseignements qui s'y trouvent par une personne autre que son destinataire prévu est interdite. Je vous remercie de votre collaboration.


APPENDIX

ST.				Project:	112 Nelson S	Street	No.:	211-04788-00	
				By:	KK		Date:	2021-07-14	Pag
				Checked:	MH		Checked:	2021-07-14	
SWM C	ALCULATIONS- Pre-I	Developm	ent Peak Fl	ow					
Calculatio	n of existing runoff rate is	undertaken ı	using the Ratio	onal Method:		Q = 2.7	'8CiA		
	Where:	Q = peak flo	ow rate (litres/s	second)					
		C = runoff c	oefficient						
		i = rainfall in	itensity (mm/h	our)					
		A = catchme	ent area (hecta	ares)					
Site Area,	Δ	2,948	m ²						
Site Area,		0.29	hectares						
Olie Alea.			neciales						
Runoff Co	efficient, C	0.50							
Runoff Co	tensity calculated in accor		City of Ottawa	Sewer Desig	n Guidelines (section 5.4.2	2):		
Runoff Co	tensity calculated in accorr $i = \left[\frac{1}{C}\right]$ Where:	dance with C $\frac{A}{Td + C)^B}$ A, B, C = re i = rainfall in	gression cons itensity (mm/h	tants for eacl our)	n return perioc	d (defined in	,	1.2)	
Runoff Co	tensity calculated in accorr $i = \left[\frac{1}{C}\right]$ Where:	dance with C $\frac{A}{Td + C)^B}$ A, B, C = re i = rainfall in	gression cons	tants for eacl our)	n return perioc		,	4.2)	
Runoff Co	tensity calculated in accorr $i = \left[\frac{1}{C}\right]$ Where:	dance with C $\frac{A}{Td + C)^B}$ A, B, C = re i = rainfall in	gression cons itensity (mm/h	tants for eacl our)	n return perioc 10 r 25	d (defined in	,	4.2)	
Runoff Co	tensity calculated in accord $i = \left[\frac{1}{C}\right]$ Where: urn Period (Years) A	dance with C $\frac{A}{Td + C)^{B}}$ A, B, C = re- i = rainfall in Td = storm of 2 733.0	gression cons Itensity (mm/h duration (minu 5 998.1	tants for eacl our) tes) 1,174.2	n return perioc 10 r 25 1,402.9	d (defined in minutes 50 1,569.6	section 5.4	7	
Runoff Co	tensity calculated in according to the second tensity of tensity	dance with C $\frac{A}{Td + C)^B}$ A, B, C = re- i = rainfall in Td = storm of 2 733.0 0.810	gression cons itensity (mm/h duration (minu <u>5</u> 998.1 0.814	tants for each our) tes) 1,174.2 0.816	n return period 10 r 25 1,402.9 0.819	d (defined in minutes 50 1,569.6 0.820	section 5.4 100* 1,735.7 0.820	7	
Runoff Co	tensity calculated in according tensity calculated in according to the second	dance with C $\frac{A}{Td + C)^B}$ A, B, C = re- i = rainfall in Td = storm of 2 733.0 0.810 6.199	gression cons itensity (mm/h duration (minu 998.1 0.814 6.053	tants for each our) tes) 1,174.2 0.816 6.014	10 r 10 r 1,402.9 0.819 6.018	d (defined in minutes 50 1,569.6 0.820 6.014	section 5.4 100* 1,735.7 0.820 6.014	7	
Runoff Co	tensity calculated in accord $i = \begin{bmatrix} \\ \hline \\$	dance with C $\frac{A}{Td + C)^{B}}$ A, B, C = reaction is a start of the start of th	gression cons itensity (mm/h duration (minu 998.1 0.814 6.053 10	tants for eacl our) tes) 1,174.2 0.816 6.014 10	n return perioc 10 r 25 1,402.9 0.819 6.018 10	d (defined in minutes 50 1,569.6 0.820 6.014 10	100* 1,735.7 0.820 6.014 10	7	
Runoff Co	tensity calculated in accord $i = \begin{bmatrix} \\ \hline \hline \\ \hline$	dance with C $\frac{A}{Td + C)^B}$ A, B, C = re i = rainfall in Td = storm of 2 733.0 0.810 6.199 10 76.8	gression cons itensity (mm/h duration (minu 998.1 0.814 6.053 10 104.2	tants for each our) tes) 1,174.2 0.816 6.014 10 122.1	n return perioc 10 r 1,402.9 0.819 6.018 10 144.7	d (defined in minutes 50 1,569.6 0.820 6.014 10 161.5	100* 1,735.7 0.820 6.014 10 178.6	7	
Runoff Co	tensity calculated in accord $i = \begin{bmatrix} \\ \hline (,,,,,,, .$	dance with C $\frac{A}{Td + C)^B}$ A, B, C = re i = rainfall in Td = storm of 2 733.0 0.810 6.199 10 76.8 0.50	gression cons itensity (mm/h duration (minu 998.1 0.814 6.053 10 104.2 0.50	tants for each our) tes) 1,174.2 0.816 6.014 10 122.1 0.50	10 r 10 r 25 1,402.9 0.819 6.018 10 144.7 0.50	d (defined in minutes 50 1,569.6 0.820 6.014 10 161.5 0.50	100* 1,735.7 0.820 6.014 10 178.6 0.50	7	
Runoff Co Rainfall in Ret	tensity calculated in accord $i = \begin{bmatrix} \\ \hline \\$	dance with C $A = \frac{A}{Td + C)^B}$ A, B, C = re i = rainfall in Td = storm of 2 733.0 0.810 6.199 10 76.8 0.50 1.00	gression cons itensity (mm/h duration (minu 998.1 0.814 6.053 10 104.2 0.50 1.00	tants for each our) tes) 1,174.2 0.816 6.014 10 122.1 0.50 1.00	10 r 10 r 25 1,402.9 0.819 6.018 10 144.7 0.50 1.10	d (defined in minutes 50 1,569.6 0.820 6.014 10 161.5 0.50 1.20	100* 1,735.7 0.820 6.014 10 178.6 0.50 1.25	7	
Runoff Co Rainfall in Ret	tensity calculated in accord $i = \begin{bmatrix} \\ \hline (,,,,,,, .$	dance with C $\frac{A}{Td + C)^B}$ A, B, C = re i = rainfall in Td = storm of 2 733.0 0.810 6.199 10 76.8 0.50 1.00 0.50	gression cons itensity (mm/h duration (minu 998.1 0.814 6.053 10 104.2 0.50 1.00 0.50	tants for each our) tes) 1,174.2 0.816 6.014 10 122.1 0.50 1.00 0.50	10 r 10 r 25 1,402.9 0.819 6.018 10 144.7 0.50 1.10 0.55	d (defined in minutes 50 1,569.6 0.820 6.014 10 161.5 0.50 1.20 0.60	100* 1,735.7 0.820 6.014 10 178.6 0.50 1.25 0.63	7	
Runoff Co Rainfall in Ret	tensity calculated in accord $i = \begin{bmatrix} \\ \hline \\$	dance with C $A = \frac{A}{Td + C)^B}$ A, B, C = re i = rainfall in Td = storm of 2 733.0 0.810 6.199 10 76.8 0.50 1.00	gression cons itensity (mm/h duration (minu 998.1 0.814 6.053 10 104.2 0.50 1.00	tants for each our) tes) 1,174.2 0.816 6.014 10 122.1 0.50 1.00	10 r 10 r 25 1,402.9 0.819 6.018 10 144.7 0.50 1.10	d (defined in minutes 50 1,569.6 0.820 6.014 10 161.5 0.50 1.20	100* 1,735.7 0.820 6.014 10 178.6 0.50 1.25	7	

APPENDIX

20230717_112_Nelson	
Prepared by WSP Canada inc.	Printed 2023-07-17
HydroCAD® 10.00-22 s/n 10697 © 2018 HydroCAD Software Solutions LLC	Page 2

Area Listing (all nodes)

Area (sq-meters)	С	Description (subcatchment-numbers)
2,947.7	0.50	(29S)
3,575.0	0.90	Controlled Area (0.718) (31S)
75.0	1.00	Uncontrolled Area (0.819) (42S)
6,597.7	0.72	TOTAL AREA

20230717_112_Nelson Prepared by WSP Canada inc. HydroCAD® 10.00-22 s/n 10697 © 2018 HydroCAD Software Solutions LLC

Printed 2023-07-17

Page 3

Soil Listing (all nodes)

Area (sq-meters)	Soil Group	Subcatchment Numbers
0.0	HSG A	
0.0	HSG B	
0.0	HSG C	
0.0	HSG D	
6,597.7	Other	29S, 31S, 42S
6,597.7		TOTAL AREA

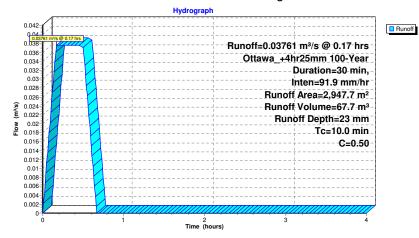
F	20230717_112 Prepared by WS HydroCAD® 10.00	SP Canada ind		AD Software Solu	itions LLC	Printe	ed 2023-07-17 Page 4
			Ground	Covers (all no	odes)		
	HSG-A (sq-meters)	HSG-B (sq-meters)	HSG-C (sq-meters)	HSG-D (sq-meters)	Other (sq-meters)	Total (sq-meters)	Ground Cover
	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	2,947.7 3,575.0	2,947.7 3,575.0	Controlled

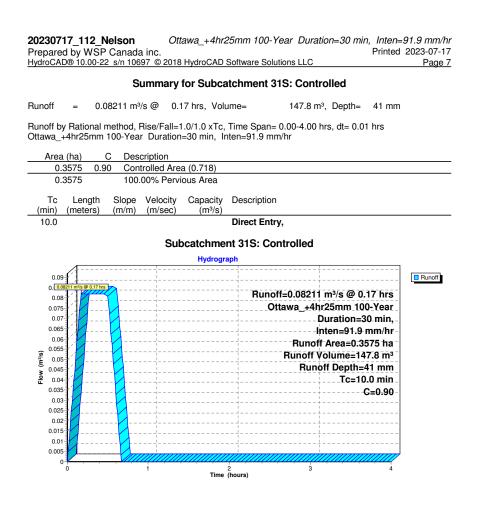
						AREA
0.0	0.0	0.0	0.0	6,597.7	6,597.7	TOTAL
						Area (0.819)
0.0	0.0	0.0	0.0	75.0	75.0	Uncontrolled
						Area (0.718)
0.0	0.0	0.0	0.0	3,575.0	3,575.0	Controlled

	0ttawa_+4hr25mm 100-Year Duration=30 m	,					
Prepared by WSP Canada inc. HydroCAD® 10.00-22 s/n 10697 © 20	8 HydroCAD Software Solutions LLC	Printed 2023-07-17					
HydroCAD@ 10:00-22 S/II 10097 @ 20	18 Hydrocad Soltware Solutions LLC	Page 5					
Time spa	an=0.00-4.00 hrs, dt=0.01 hrs, 401 points						
Runoffb	y Rational method, Rise/Fall=1.0/1.0 xTc						
Reach routing by Stor	Ind+Trans method - Pond routing by Stor-Ind	method					
Subcatchment 29S: Existing	Runoff Area=2,947.7 m ² 0.00% Imperviou Tc=10.0 min C=0.50 Runo						
Subcatchment 31S: Controlled	Runoff Area=0.3575 ha 0.00% Imperviou Tc=10.0 min C=0.90 Runoff						
Subcatchment 42S: Uncontrolled	Runoff Area=0.0075 ha 100.00% Imperviou Tc=10.0 min C=1.00 Run						
Pond 33P: Underground Storage	Peak Elev=58.163 m Storage=89.3 m ³ Inflow Outflow	=0.08211 m ³ /s 147.8 m ³ =0.03791 m ³ /s 147.8 m ³					
Link 34L: Outfall	Inflow	=0.03898 m ³ /s 151.2 m ³					
	Primary	=0.03898 m ³ /s 151.2 m ³					
Total Runoff Area = 6,597.7 m ² Runoff Volume = 218.9 m ³ Average Runoff Depth = 33 mm 98.86% Pervious = 6,522.7 m ² 1.14% Impervious = 75.0 m ²							

20230717_112_Nelson	Ottawa_+4hr25mm 100-Year L	Duration=30 min, Inten=91.9 mm/hr
Prepared by WSP Canada inc.		Printed 2023-07-17
HydroCAD® 10.00-22 s/n 10697 ©	2018 HydroCAD Software Solutions L	LC Page 6

Summary for Subcatchment 29S: Existing


Runoff = 0.03761 m³/s @ 0.17 hrs, Volume=


67.7 m³, Depth= 23 mm

Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= 0.00-4.00 hrs, dt= 0.01 hrs Ottawa_+4hr25mm 100-Year Duration=30 min, Inten=91.9 mm/hr

	A	rea (m²)	С	Description	า	
		495.0	0.50			
		140.5	0.50			
		67.5	0.50			
		59.2	0.50			
		274.4	0.50			
		1,827.0	0.50			
		54.5	0.50			
		5.2	0.50			
_		24.4	0.50			
		2,947.7	0.50	Weighted A	Average	
		2,947.7		100.00% P	ervious Area	1
	Tc	Length	Slop	e Velocity	Capacity	Description
_	(min)	(meters)	(m/n	n) (m/sec)	(m³/s)	
	10.0					Direct Entry,

Subcatchment 29S: Existing

	2018 HydroCAD Software So	olutions LLC	Printed 2023-07-17 Page 8
Summa	ary for Subcatchment 4	2S: Uncontrolled	
noff = 0.00191 m ³ /s @	0.17 hrs, Volume=	3.4 m ³ , Depth=	46 mm
noff by Rational method, Rise/F			hrs
tawa_+4hr25mm 100-Year Dur	,	nm/hr	
Area (ha) C Description	on Iled Area (0.819)		
	Impervious Area		
Tc Length Slope Velo	ocity Capacity Description	on	
min) (meters) (m/m) (m/s	sec) (m³/s)		
10.0	Direct En	itry,	
:	Subcatchment 42S: Un	controlled	
/	Hydrograph		
0.002			Runoff
0.002		off=0.00191 m³/s @ 0.1	
0.002		Ottawa_+4hr25mm 100 Duration=30	
0.002		Inten=91.9 n	
0.001		Runoff Area=0.00	
	·	Runoff Volume=3	
		Tc=10.	
0.001 0.001 0.001			
0.001 0.001 0.001 0.001 0.001 0.001			=1.00-
0.001 0.001 0.001 0.001 0.001 0.001 0.001			=1 .00 -
§ 0.001 § 0.001 § 0.001 § 0.001 § 0.001 § 0.001 9 0.001 9 0.001 9 0.001 9 0.001			=1.00 -
6 0.001 7 0.001 7 7			=1.00 -
§ 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.000			=1.00 -
(%) 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000	2 Time (hours)		=1.00 -

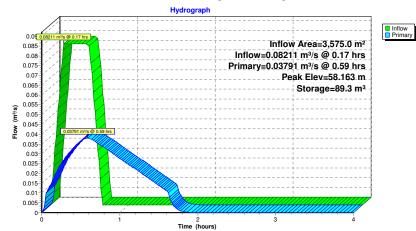
20230717_112_Nelson	Ottawa_+4hr25mm 100-Year	Duration=30 min, Inten=91.9 mm/hr
Prepared by WSP Canada inc.		Printed 2023-07-17
HydroCAD® 10.00-22 s/n 10697 ©	2018 HydroCAD Software Solutions	LLC Page 9

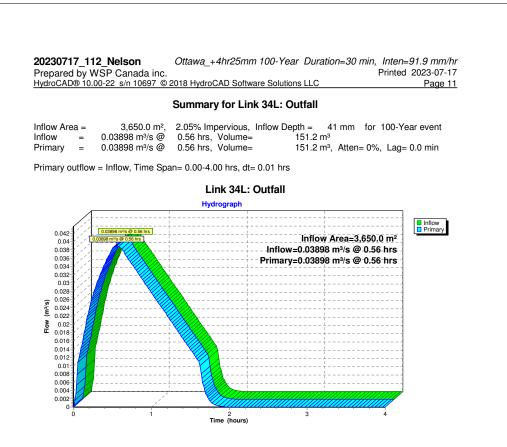
Summary for Pond 33P: Underground Storage

[44] Hint: Outlet device #1 is below defined storage

Inflow Are	a =	3,575.0 m ² ,	0.00% Impervious, Inflow	Depth = 41 mm	for 100-Year event
Inflow	=	0.08211 m³/s @	0.17 hrs, Volume=	147.8 m ³	
Outflow	=	0.03791 m³/s @	0.59 hrs, Volume=	147.8 m ³ , Atter	n= 54%, Lag= 25.2 min
Primary	=	0.03791 m³/s @	0.59 hrs, Volume=	147.8 m³	

Routing by Stor-Ind method, Time Span= 0.00-4.00 hrs, dt= 0.01 hrs Peak Elev= 58.163 m @ 0.59 hrs Surf.Area= 90.0 m² Storage= 89.3 m³


Plug-Flow detention time= 27.2 min calculated for 147.4 m^{s} (100% of inflow) Center-of-Mass det. time= 27.3 min (47.3 - 20.0)


Volume	e In	vert Ava	ail.Storage	Storage I	Description	
#1	57.17	'0 m	254.7 m ³	Custom	Stage Data (Pi	rismatic) Listed below
Elevat _(mete		Surf.Area (sq-meters)		c.Store neters)	Cum.Store (cubic-meters	-
57.1	70	90.0		0.0	0.0	0
58.1	70	90.0		90.0	90.0	0
60.0	000	90.0		164.7	254.7	7
Device	Routin	g Ir	nvert Outle	et Devices		
#1	Primar	y 57.05	50 m 130 i	mm Vert. (Orifice/Grate	C= 0.630

Primary OutFlow Max=0.03791 m³/s @ 0.59 hrs HW=58.163 m (Free Discharge) -1=Orifice/Grate (Orifice Controls 0.03791 m³/s @ 2.86 m/s)

20230717_112_Nelson	Ottawa_+4hr25mm 100-Year L	Duration=30 min, Inten=91.9 mm/hr
Prepared by WSP Canada inc.		Printed 2023-07-17
HydroCAD® 10.00-22 s/n 10697 ©	2018 HydroCAD Software Solutions L	LC Page 10

Pond 33P: Underground Storage

APPENDIX



Stormceptor* EF Sizing Report

Runoff Coefficient 'c': 0.90 Particle Size Distribution: Fine Net Annual Sedimer
Nearest Rainfall Station: OTTAWA MACDONALD-CARTIER INT'L AP Designer Name: Kathryn Kerker NCDC Rainfall Station Id: 6000 besigner Company: WSP VCDC Rainfall Data: 37 besigner Email: kathryn.kerker@wsp.com Site Name: 5 613-690-1206 EOR Name: Site Name: 0.24 EOR Company: EOR Company: Orainage Area (ha): 0.24 EOR Email: EOR Phone: Runoff Coefficient 'c': 0.90 EOR Phone: EOR Phone: Particle Size Distribution: Fine Net Annual Sedimer
INT'L APDesigner Company:WSPNCDC Rainfall Station Id:6000Designer Email:kathryn.kerker@wsp.comVears of Rainfall Data:37Designer Phone:613-690-1206Site Name:EOR Name:EOR Company:EOR Company:Drainage Area (ha):0.24EOR Email:EOR Email:WSPIto.00EOR Phone:Ito.00Runoff Coefficient 'c':0.90Net Annual Sedimer
Years of Rainfall Data: 37 Site Name: Designer Phone: Drainage Area (ha): 0.24 % Imperviousness: 100.00 Runoff Coefficient 'c': 0.90 Particle Size Distribution: Fine
Site Name: EOR Name: Drainage Area (ha): 0.24 % Imperviousness: 100.00 Runoff Coefficient 'c': 0.90
Site Name: Drainage Area (ha): 0.24 % Imperviousness: 100.00 Runoff Coefficient 'c': 0.90 Particle Size Distribution: Fine EOR Company: EOR Email: EOR Phone: Net Annual Sedimer
Drainage Area (ha): 0.24 % Imperviousness: 100.00 Runoff Coefficient 'c': 0.90 Particle Size Distribution: Fine EOR Company: EOR Company: EOR Email: EOR Phone: Net Annual Sedimer
% Imperviousness: 100.00 Runoff Coefficient 'c': 0.90 Particle Size Distribution: Fine Net Annual Sedimer
Runoff Coefficient 'c': 0.90 Particle Size Distribution: Fine Net Annual Sedimer
Particle Size Distribution: Fine Net Annual Sedimer
Target TSS Removal (%): 80.0 (TSS) Load Reductio Sizing Summary
Required Water Quality Runoff Volume Capture (%): 90.00 Stormceptor TSS Remote TS
Estimated Water Quality Flow Rate (L/s): 7.81 Model Provided
Dil / Fuel Spill Risk Site? Yes EFO4 84
Upstream Flow Control? Yes EFO6 89
Upstream Orifice Control Flow Rate to Stormceptor (L/s): 31.00 EFO8 91
Site Sediment Transport Rate (kg/ha/yr):EFO1293

Forterra

NO PRODUCT SUBSTITUTIONS SHALL BE ACCEPTED UNLESS SUBMITTED 10 DAYS PRIOR TO PROJECT BID DATE, OR AS DIRECTED BY THE ENGINEER OF RECORD.

STANDARD DETAIL **NOT FOR CONSTRUCTION**

<u> </u>							The design and information shown on this drawing is provided as a service to the project owner, engineer	and contractor by Imbrium Systems ("Imbrium"). Neither this drawing, nor any part thereof, may be used exercised or another is non-money where	used, reproduced or mouned in any manuer wander the prior witten consent of imbrium. Feilure to comply is done at the user's own fisk and imbrium expressio	discialms any liability or responsibility for such use. If discrepancies between the supplied information upon	which the drawing is based and actual field conditions are encountered as site work progresses, these	the repairing a must be reported to a must the must be reported for re-evaluation of the design. Imbring incomplete or liability for designs besed on missing, incomplete or	inaccurate information supplied by others.
		1K		<u> </u>	A			####	####	####	JSK	JSK	BY
PLA	A A	(STANDAF			. ()			####	####	####	UPDATES	INITIAL RELEASE	REVISION DESCRIPTION
								####	####	####	6/8/18	5/26/17	DATE
< _	4	Å Å						####	####	####	٢	0	MARK
PL SEE CONTACT Y SED ON THE BE OCATION OR C FIGURATION RE STRUCTURE (I	AN VIEW OUR LOCA ST AVAILAE ONNECTIO	At a a a a a a a a a a a a a a a a a a a	EPTOR RI MATION AT MAY BE NE	THE TIME		ME ED		Storn Conton®	5		24078 18-860-980		SCALE = NTS
STORMCEPT STRUCTURE WATER QUA PEAK FLOW RETURN PEF DRAINAGE A	OR MODI ID LITY FLO RATE (L/s RIOD OF F	EL W RATE (L	Ef _/s)	JIREM ⁼ 4	ENT	* * * * *				Indrinum	7037 RIDGE ROAD, SUITE 350, HANOVER, MD 21076 USA 888-279-8826 CA 800-568-4801 INTL +1-416-360-99	The StrichardsPricht Scients is provincings of the Charlos of The Fro Australia Patent for 800,164 - 707,123 - 720,008 - 774401 Austral Patent Canadian Patent	Mo. 2005 Discretization for the state of
DRAINAGE A	. ,	ERVIOUS	NESS (%))		*	DAT 5/2	E: 26/20	017				
PIPE DATA:	I.E.	MAT'L	DIA	SLOPE	%	HGL		IGNE					
INLET #1	*	*	*	*	+	*	CHE	CKED	D:	A	PPRC	OVED:	
INLET #2 OUTLET	*	*	*	*	+	*	BS PRO	F JECT	No.:	_	SP	INCE	No.:
* PER ENGIN							EF	4		,	*		
							οHE	er:	1		OF	1	