

Hydrogeological and Impact Assessment Report

Proposed Commercial Development, 301 Somme Street, Ottawa, Ontario

Consolidated Fastfrate (Ottawa) Holdings Inc.

September 22, 2022

→ The Power of Commitment

Contents

1.	Introc	duction	1
2.	Back	ground	2
	2.1	Site Description	2
	2.2	Regional Setting	2
	2.3	Previous Investigations	2
3.	Metho	odology	3
	3.1	Existing Local Water Supplies	3
	3.2	Health and Safety	4
	3.3	Site Inspection and Well Survey	5
	3.4	Aquifer Performance Testing	5
		3.4.1 Test Well Information	5
		3.4.2 Pumping Test Methodology	6
4.	Geolo	ogy and Hydrogeology	6
	4.1	Site Geology	6
	4.2	Site Hydrogeology	7
		4.2.1 Hydrostratigraphic Units	7
		4.2.2 Groundwater Levels	7
	4.3	Aquifer Performance Assessment	8
		4.3.1 Pumping Test	8
		4.3.2 Summary of Aquifer Performance	8
		4.3.3 Water Quality 4.3.3.1 Water Treatment	9 13
		4.3.4 Well Interference	13
		4.3.4.1 Interference Assessment	14
	4.4	15	
5.	Wate	r Quality Impact Assessment	15
6.	Const	truction Dewatering	16
		6.1.1 Groundwater Sampling for Construction Dewatering	16
7.	Sumn	mary and Recommendations	16
8.	Refer	rences	18
9.	State	ment of Limitations	19

Table Index

Table 3.1	Summary of MECP Well Record Data	4
Table 4.1	Water Level Summary	7
Table 4.2	Aquifer Performance Testing Summary	8
Table 4.3	Test Well Water Quality Summary	9
Table 4.4	Distance Between Pumping Well and Observation Wells	14
Table 4.5	Maximum Drawdowns in Pumping and Observation Wells	14

Figure Index

Site Location Plan	21
Concept Plan	22
Regional Topography	23
Physiography	24
Surficial Geology	25
Quaternary Geology	26
Bedrock Geology	27
Well Locations	28
	Site Location Plan Concept Plan Regional Topography Physiography Surficial Geology Quaternary Geology Bedrock Geology Well Locations

Appendices

- Appendix A MECP Well Records
- Appendix B Photographs
- Appendix C Well Record A342117 and WSP Well Certificate
- Appendix D Calibration Records
- Appendix E Aquifer Performance Testing
- Appendix F Water Well Certificates of Analyses
- Appendix G MacLellan Water Treatment Recommendations
- Appendix H Observation Well Hydrographs
- Appendix I Storm Sewer Use Certificate of Analysis

1. Introduction

GHD Limited (GHD) was retained by Consolidated Fastfrate (Ottawa) Holdings Inc. to conduct a hydrogeological impact assessment in support of a proposed commercial development at the intersection of Rideau Road and Somme Street in Ottawa (the Site). The municipal address is 301 Somme Street, Ottawa, Ontario and is geographically located at Lot 26, Gloucester Concession 6 from the Rideau River. The Site encompasses an area on the order of 7.0 ha (17.4 acres) and is currently vacant of structures. The development will be privately serviced with a well and septic system. The location of the Site is provided on the **Site Location Plan, Figure 1**.

The purpose of this hydrogeological and impact assessment was to assess the groundwater conditions to evaluate that sufficient drinking water supply exists for the proposed development in accordance with the City of Ottawa Hydrogeological and Terrain Analysis Guidelines (HTAG). Groundwater conditions were assessed through a constant rate pumping test and data collection to evaluate potential impacts to the local groundwater regime (quality and quantity).

The scope of work included a desktop review of available geological and groundwater mapping; a review of the Ministry of the Environment, Conservation and Parks (MECP) well records; a water well survey within 500 m of the development; and a 12-hour, constant rate pumping test with recovery measurements.

This report is organized into the following sections:

Section 1.0 – Introduction: Outlines the purpose, objectives and scope of work, and presents the report organization.

Section 2.0 – Background: Provides a description of the existing Site conditions, background information and surrounding land uses, as well as an outline of the proposed development. The regional environmental setting, including the physiography, topography, surface water features in the vicinity, and the surficial geology is presented.

Section 3.0 – Methodology: Describes the field activities and methodologies used to assess the groundwater supply and quality and to evaluate potential impacts associated with the undertaking.

Section 4.0 – Geology and Hydrogeology: Provides a detailed description of the Site geology, hydrogeology, and the hydraulic properties of the underlying stratigraphy and aquifer.

Section 5.0 – Water Quality Impact Assessment: Provides information regarding the water quality impact related to the proposed septic system.

Section 6.0 – Construction Dewatering: Provides a summary of the shallow groundwater quality compared to the Ottawa Storm Sewer Use By-Law 2003-514, which addresses discharge to the Municipal sewage system for potential construction dewatering.

Section 7.0 – Summary and Conclusions: Provides a summary of the assessment findings. Sections 8 and 9 provide a Statement of Limitations and References. The Figures and Appendices are provided following the text of this report, as indicated in the Table of Contents. Tabulated data is presented in tables within the text.

The factual data, interpretations and recommendations contained in this report pertain to a specific project as described in the report and are not applicable to any other project or site location. This report should be read in conjunction with the Statement of Limitations appended to this report. The reader's attention is specifically drawn to this information, as it is essential for the proper use and interpretation of this report.

2. Background

2.1 Site Description

The Site is located at the intersection of Rideau Road and Somme Street in Ottawa, Ontario. The parcel has the municipal address of 301 Somme Street and currently vacant of structures. Surrounding lots consisted of commercial / industrial lots to the west and south, undeveloped and forested lands and a few residential lots. The lands to the north, east and south are privately serviced for water and sanitary services; with municipally services lots located to the west of the Site. Findlay Creek flows from west to east along the northern Site boundary on the south side of Rideau Road.

The proposed development is to consist of a one-storey warehouse with office space and various amenities covering a total building area of 8,641 square metres (m²) with a projected occupancy of 36 staff. The Site will also have asphalt parking, a stormwater pond and septic bed area as depicted in the **Concept Plan, Figure 2**. The drilled water well location is also shown on **Figure 2** and will service the development.

2.2 Regional Setting

The Site is relatively flat with the regional topography sloping generally towards the east / northeast. Topographic relief is on the order of 3 to 4 metres across the Site. Regional topography is provided as **Figure 3**. Excess surface water is directed towards ditches alongside the Site with drainage generally to the east / northeast.

The Site is situated within the physiographic region known as the Russell and Prescott Sand Plains. In the United Counties of Prescott and Russell, and the Regional Municipality of Ottawa-Carleton, there is a group of large sand plains separated by the clays of the lower Ottawa Valley. The plains cover an area of nearly 1500 square kilometers and a level surface of about 85 metres above sea level. The plains were originally a continuous delta that was built by the Ottawa River into the Champlain Sea. The plains are as thick as 6 to 10 m in some areas (Chapman and Putnam, 1984). The local physiography is illustrated on **Figure 4** showing the Site is within a sand plains with Peat and Muck to the north and Limestone Plains to the west.

Surficial geology mapping on **Figure 5** indicates the Site is a mix of organic deposits, coarse textured glaciolacustrine deposits and Paleozoic bedrock. Based upon GHD's previous geotechnical work (GHD, 2020), the upper soils are comprised of fill. Underlying the fill is native silty sand / sandy silt followed by a glacial till (GHD, 2020).

The Quaternary geology (**Figure 6**) suggests carbonate and clastic sedimentary rock exposed at surface or covered by a discontinuous thin layer of drift. Bedrock outcrops are common in the area; however, were not observed on the Site.

The bedrock is Dolostone / Sandstone of the Beekmantown group (**Figure 7**). Based upon water well records, bedrock was found varying from 8.5 metres below ground surface (mbgs) to 14.0 mbgs at the Site. Golder's report also outlined the Gloucester Fault, a major northwest-southeast trending, steeply dipping structural feature in close proximity and northeast of the Site.

2.3 Previous Investigations

GHD and others have completed various studies at the Site. GHD has considered them, where applicable, in this report. The studies include:

- GHD Limited, November 2, 2021. Hydrogeological Assessment Large Sewage Disposal System. Rideau Road and Somme Street. Ottawa Ontario. Project No. 12565773-01
- GHD Limited, April 12, 2021. Terrain Analysis. Septic Assessment and Percolation Rate Evaluation. Proposed Commercial Development – Rideau Road and Somme Street. Gloucester Con 6 from Rideau River, Lot 26, Ottawa Ontario. Project No. 11220832-01

- GHD Limited, January 19, 2021. Hydrogeological Assessment Report. Proposed Commercial Development Rideau Road and Somme Street. Gloucester Con 6 from Rideau River, Lot 26, Ottawa Ontario. Project No. 11220832-01;
- GHD Limited, September 10, 2020. Geotechnical Investigation. Warehouse and Offices. Intersection of Rideau Street and Somme Street, Ottawa Ontario. Project No. 11215612-01;
- Stormwater Management Report. Hawthorne Industrial Park, Report Reference. No. JLR 20983, by J.L. Richards & Associates Limited, dated February 2009 (Revised May 2009);
- Geotechnical Study Subdivision Plan, Hawthorne Industrial Park, Report Reference No. T020556-A1, by Inspec-Sol, dated May 4, 2009;
- Phase II Environmental Site Assessment and Hydrogeological Assessment, Report Reference No. 045804 (12), by Conestoga-Rovers & Associates, dated September 2008; and
- Hydrogeological Investigation, Terrain Analysis and Impact Assessment, Proposed Industrial Subdivision, Report Reference. No. 08-1122-0215, by Golder Associates, dated December 2008.

3. Methodology

To achieve the purpose and objectives of this assessment, the following activities were undertaken:

- Review of existing local water supplies by reviewing MECP water well records within 500 m of the Site;
- Completion of a Health and Safety Plan for field activities;
- Site inspection and well survey of local water wells within approximately 500 m of the pumping test wellhead;
- Aquifer performance testing and water level monitoring of observation wells

3.1 Existing Local Water Supplies

The Site and areas surrounding the Site are generally privately serviced with municipal services present to the west of the Site. Physical and hydraulic data are presented on MECP well records (**Appendix A**). The well records indicate a mix of overburden materials (fill, sand, clay, gravel etc.) overlying bedrock including shale, sandstone, limestone and quartz. Based upon the well records, there is one (1) primary bedrock aquifer in this immediate area that is tapped by drilled wells. Of the 17 records, seven (7) are for monitoring wells and will not be considered further within this discussion.

The groundwater was generally described as "fresh" in the well records reviewed. The information from the MECP data indicates that all ten (10) wells were drilled bedrock wells averaging a depth of about 41 m. The bedrock wells encountered water at an average depth of 31 m with pumping rates averaging nearly 100 L/min. No flowing artesian wells were reported.

No dug / bored well records were reviewed. Shallow dug / bored wells are susceptible to large seasonal fluctuations in the groundwater. The result is that shallow wells are also more prone to becoming dry in the winter and summer months. From a quality perspective, shallow dug / bored wells are generally difficult to seal at the surface and therefore considered to be susceptible to shallow sources of contamination and are not recommended for this commercial development.

Table 3.1 summarizes the data reviewed in the well records within 500 m of the Site:

	hary of MECP Well Record L				
	Drilled Wells (C	Bored Wells: 0 (0%) Overburden): 0 (0%) s (Bedrock): 10 (59%) S SUMMARY: 10			
		Statistical S	Summary		
Parameters	Drilled – C	Verburden	Drilled–	Bedrock	
WELL YIELDS Range Average			19 to 680 L/min 99.1 L/min	5 to 180 USgpm 26.2 USgpm	
REPORTED YIELDS	Freq	uency	Frequency		
Not Reported Dry 0 to 1 USgpm 2 to 4 USgpm 5 to 9 USgpm ≥10 USgpm	0 0 0 0 0 0	0% 0% 0% 0% 0%	0 0 0 6 4	0% 0% 0% 60% 40%	
STATIC WATER LEVELS Range Average		-	2.3 to 14.2 m 8.4 m	7.5 to 46.6 ft 27.6 ft	
WATER ENCOUNTERED Range Average	 		9.1 to 75.0 m 31.2 m	30 to 246 ft 103.5 ft	
WELL DEPTH Range Average			17.4 to 75.6 m 40.8 m	57 to 248 ft 133.9 ft	

Table 3.1 Summary of MECP Well Record Data

Notes:

Data based on MECP well record information (refer to **Appendix A** for well information).

*Abandonments, well upgrades and unknown well records are not included in the statistical data summarized in Table 3.1

3.2 Health and Safety

A Site-specific Health and Safety Plan (HASP) was prepared for implementation during the field investigation program. The HASP presents the visually observed Site conditions to identify potential physical hazards to field personnel. Required personal protective equipment was also listed in the HASP. It is mandatory for all GHD personnel involved in the field program, to read and have a copy of the HASP available at the Site during the investigative work. Health and Safety requirements in the HASP were implemented during the field investigation program.

In addition to the abovementioned safety measures, GHD's safety protocol related to COVID-19 issues was implemented and preventive measures were reinforced.

3.3 Site Inspection and Well Survey

The field work was conducted on August 9 and 10, 2022 by GHD to observe the general surficial characteristics of the Site, neighbouring lands and complete the well survey and pumping test. The Site consists of undeveloped lands. Photographs are provided in **Appendix B**.

GHD observed the drilled water well and a monitoring well on the Site. Other water wells in the vicinity of the Site were also observed. No surface water was observed on the Site.

The well survey was conducted on August 9, 2022 and involved collecting water levels from local area wells. There is one home within 500 m of the Site located at 4885 Hawthorne Road. This residential dwelling utilizes a drilled well that was measured by GHD to be 15 metres deep. The owner did not indicate any issues with water quantity or quality. The owner also provided authorization to use the well for monitoring purposes during our pumping test.

GHD also collected information from commercial properties located at 3500 Rideau Road to the west (MECP tag no. A018916), 5213 Hawthorne Road to the south (MECP tag no. A342260) and 300 Somme Street to the south (MECP tag no. A305146). No issues were communicated to GHD regarding the wells from these commercial properties. These wells were also monitored during GHD's pumping test. The locations of the various water wells / observation wells utilized for monitoring in this assessment and included in the well survey is provided on the **Well Location Plan**, **Figure 8**. The MECP tag numbers are referenced on **Figure 8**.

3.4 Aquifer Performance Testing

3.4.1 Test Well Information

An onsite drilled well was utilized for assessment of the local aquifer via a pumping test. The well was constructed by Air Rock Drilling Co Ltd with drilling completed on July 27, 2022. The well has a MECP well tag number of A342117 and its location is shown on **Figure 2**. The water well record and Certificate of Well Compliance is provided in **Appendix C**.

A summary of the information presented on the water well record, is as follows:

- Drilled to total depth of 42.7 m (140 feet). The well record indicates overburden materials consisting of gravel, hardpan and boulders to 14 m (46 feet) followed by grey and black limestone with white sandstone mix to the depth of the well. The well is considered to be a confined well within the sandstone;
- Water was encountered at 39 m and 40.8 m (128 and 134 feet) and was not tested. The static water level was 8.6 m resulting in an available drawdown of 34.1 m to the bottom of the well;
- Construction was completed on July 27, 2022. Constructed with steel casing to 15.8 m (52 feet) then open hole to the bottom of the well. From grade to 15.8 m, the annular space was grouted and sealed with neat cement slurry with a total volume of about 0.4 cubic metres (~12.5 cubic feet). As per previous recommendations, the well was constructed with greater than 6 m of casing and 2 m into the bedrock;
- The well was tested by the drillers at 75.6 litres per minute or L/min (20 gallons per minute or gpm) resulting in a drawdown of 0.7 m or about 2% of the available drawdown. The well is recommended for pumping at 75.6 L/min; and
- The well is drilled 4 m from the proposed building and 3 m from a proposed paved walkway. The ground surface
 is to be positively sloped away from the water well in all directions (refer to the inset illustrated on Figure 2).

Adjacent water wells, monitoring well MW22-1 and a residential well that were monitored during testing are illustrated on **Figure 8**.

3.4.2 Pumping Test Methodology

GHD completed a constant rate pumping test of well A342117 on August 9, 2022 to assess aquifer conditions and evaluate the availability of a suitable groundwater resource for the proposed commercial development. The pumping test was conducted for twelve (12) hours at a constant rate of 37.8 L/min (10 gpm). Recovery measurements were collected after the pumping was completed.

A submersible pump was installed in the well to conduct the testing. Water levels in the pumped water well, adjacent observation wells and an onsite shallow monitoring well were monitored throughout the aquifer performance testing. Measurements were collected manually and through the use of data loggers to evaluate drawdown, recovery and the potential of mutual interference with adjacent wells. The discharge water was directed away from the pumped well a distance of about 30 m downgradient and also away from observation wells. This practice safeguards against artificial recharge of the well from occurring during the pumping test.

The pumped water well was chlorinated in advance of the pumping test. Non-detect chlorine levels were confirmed in the field prior to bacteria sampling conducted at the water well.

Water samples were collected throughout the testing and submitted to SGS Environmental Laboratories (SGS), a CALA accredited analytical laboratory for the testing. Water samples were collected for the following parameters:

- Polycyclic aromatic hydrocarbons (sampled after 12 hours of pumping);
- Volatile organic compounds (sampled after 12 hours of pumping);
- Petroleum hydrocarbons fractions F1 F4 (sampled after 12 hours of pumping);
- Trace metals (filtered) (sampled after 12 hours of pumping);
- Bacteriological parameters including total coliform; E.coli, fecal coliform (sampled after 1, 6 and 12 hours of pumping); and
- General chemistry, Ottawa subdivision package and D-5-5 parameters.

Field measurements of methane, pH, temperature, free chlorine, turbidity, and conductivity were completed with a turbidity meter, Hach Pocket Pro+ Multi 2 and chlorine meter. Water levels were collected from the pumped water well using a dedicated, audible water level meter and a data logger. Water levels were also collected from neighbouring wells using an audible water level meter. Calibration of these instruments / equipment was completed prior to the pumping test. The calibration records are provided in **Appendix D**.

4. Geology and Hydrogeology

The following sections provide a detailed description of the geology and hydrogeology of the Site, based on the results of the investigations completed and on the available background information.

4.1 Site Geology

Based upon information reviewed within GHD's geotechnical report, the following are the predominant surficial materials and geologic deposits that underlie the Site:

- Ground Cover and Fill (ground surface up to 6 m thick) topsoil, silty sand to gravel to silty clay fill
- Native sandy silt / silty sand (depths ranging from 8.2 to 11.9 mbgs)
- Bedrock (8.2 to 14.0 mbgs)

The depths of the materials listed above vary within the Site and have been simplified for purposes of this report.

4.2 Site Hydrogeology

4.2.1 Hydrostratigraphic Units

The primary hydrostratigraphic units (i.e. aquifer/aquitard units) underlying the Site include the following:

- Shallow, unconfined unit of fill and native soil and upper bedrock zone
 - Shallow groundwater found within the fill
 - Shallow unit is not suitable as a water supply
- Deeper confined aquifer within the sandstone bedrock generally at depths between about 25 m and 40 mbgs. This is the aquifer tapped by the drilled well on the Site.

4.2.2 Groundwater Levels

Water levels were obtained from the new supply well (MECP tag no. A342117), a monitoring well installed on the Site (MW22-1), and the nearby commercial and residential wells shown in **Table 4.1** on August 9, 2022 prior to the commencement of the pumping test. The data is summarized in **Table 4.1**. Based upon the water levels obtained from these wells, the groundwater flow tapped by the drilled wells is generally in an easterly direction including northeast and southeast components (note: groundwater elevations are based upon regional topographic contours and are for the purposes of evaluation potentiometric elevations only). Shallow groundwater flow tapped by monitoring wells was not assessed.

Lootion	Description	Ground	Depth of Well	Water Level (mbgs)	Potentiometric Elevation (masl)	
Location	Description	Elevation* (m)	(mbgs)	August 9, 2022		
A342117	New Site water well	91.1	42.7	7.31	85.8	
MW22-1	New Site monitoring well	91.4	3.7	2.05	89.4	
4885 Hawthorne Rd	Residential well	85	15.2	0.95	84.1	
3500 Rideau Rd	A018916 – Commercial property	100	35.4	11.80	88.2	
5213 Hawthorne Rd	A342260 – Commercial property	95	>30	10.60	84.4	
TW-5	A295342	90	29.9	6.70	83.3	
300 Somme St	A305146 – Commercial property	85	42.7	7.42	77.6	

Table 4.1	Water Level Summary
-----------	---------------------

Notes:

masl = metres above sea level

*Elevations estimated from regional topographic contours provided on Figure 3; and elevations on the Site are based upon a topographic elevations provided to GHD. The elevations provided are for the purposes of evaluating potentiometric elevations and should not be relied upon as a legal survey or topographic elevation survey.

4.3 Aquifer Performance Assessment

The following sections discuss the pumping test results and coefficients, well interference and water quality.

4.3.1 Pumping Test

The pumping test was commenced on August 9, 2022. The results of the constant rate pumping test including field testing data are graphically presented in **Appendix E**.

The water level during the pumping test at A342117 is illustrated on **Figures E-1** and **E-2** showing water level versus time. The plot shows a slow, minimal drawdown of the water level over the course of the 12-hour test at 37.8 L/min. After 12 hours of pumping, the water level was 8.7 metres below top of pipe (mbtp). The maximum drawdown was about 0.8 m over the course of the testing with about 30.3 m of available drawdown above the pump remaining. Approximately 2.5% of the available drawdown was used during the pumping test. A total groundwater volume of about 27,215 L was pumped during the testing. Based upon the septic design flow calculations, about 12,000 L/day has been estimated. Actual groundwater usage is expected to be much less than 12,000 L/day for the warehouse and offices.

Recovery measurements were collected manually for 60 minutes after pumping ceased. The water level recovered about 50% in one (1) hour and fully recovered 100% in seven (7) hours. The estimated transmissivity for the pumped water well was 33.4 m²/day (2238 gpd/ft) based on the drawdown and 26.7 m²/day (1791 gpd/ft) based on the recovery period and represents a high transmissivity. The specific capacity for this well is calculated to be 48.5 L/min/m based upon the pumping test completed.

The plotted data indicates the aquifer that this well is tapped into can safely provide long-term quantities of groundwater at a pumping rate of 37.8 L/min (10 gpm) based upon the pumping test completed.

Pumping tests were completed previously within a test well located on the Site (i.e. TW2) within the same sandstone aquifer. The test well, TW2, was pumped in 1994, 2008 and in 2020 at 67 L/min, 55 L/min, and 60 L/min, respectively. The drawdowns of these tests were similar to our drawdown at the new well ranging from about 1.1 m to 1.2 m. Static water levels from TW-2 were also similar ranging from 3.15 mbgs in 1994 to 6.90 mbgs in 2020, indicating that development in this area including quarries on nearby properties has not resulted in significant negative effects to the underlying water supply aquifer.

4.3.2 Summary of Aquifer Performance

The following Table 4.2 summarizes the data and coefficients obtained from the pumping test.

Well No.	Step No.	Yield		Test		ne Maximum drawdown		Available Drawdown*		Specific Capacity		Estimated Transmissivity	
		gpm	L/min	Туре	min	feet	metres	feet	metres	gpm/ft	L/min/m	gpd/ft	m²/day
	1	0	0	Static	0	0	0	103.3	31.5				
A342117	2	10	37.8	Const.	720	2.6	0.8	100.7	30.7	3.9	48.5	2238	33.4
	3	0	0	Recvy.	50% recovery in 1 hour; 100% recovery in 7 hours							1791	26.7

 Table 4.2
 Aquifer Performance Testing Summary

Notes:

gpm = gallons per minute; gpd/ft = gallons per day per foot

Static water level at the pumped well A342117 was 7.96 metres below top of pipe (7.31 metres below ground surface) at the start of the testing.

[&]quot;Recvy" refers to Recovery measurements; "Const" refers to the Constant Rate test conducted for 720 minutes.

^{*}Available Drawdown refers to the height of water in the well above the pump.

4.3.3 Water Quality

Groundwater samples from the pumped well were obtained for laboratory testing during the course of the pumping test for the purpose of water quality analyses. The well was sampled after one (1) hour; at six (6) hours; and at the end of the constant rate test on August 9, 2022. The water samples were delivered to SGS laboratories in Lakefield, ON. Certificates of chemical analyses are presented in **Appendix F**. The water quality data are summarized and compared with the Ontario Drinking Water Standards (ODWS)¹ in **Table 4.3**. Regulation 153/04 parameters are also compared with the Table 2 Standards in a Potable Ground Water Condition for all property uses including a commercial property use². For the Regulation 153/04 parameters, the most stringent standard was used for comparison purposes.

Devenuentev	Pumpe	d Water Well	A342117	O.Reg. 153 –	ODWS		
Parameter	1 hr	6 hrs	12 hrs	Table 2	MAC / IMAC	AO/OG	
Bacteriological (Colony Formi	ng Units)						
Total Coliform			3	NS	<6*	NS	
E.coli			0	NS	0	NS	
Fecal coliform			0	NS	0	NS	
Background			33	NS	NS	NS	
Heterotrophic Plate Count			55	NS	NS	NS	
Semi-Volatile Organic Compo	unds (µg/L)						
Acenaphthene			<0.1	4.1	NS	NS	
Acenaphthylene			<0.1	1	NS	NS	
Anthracene			<0.1	2.4	NS	NS	
Benzo(a)anthracene			<0.1	1	NS	NS	
Benzo(a)pyrene			<0.01	0.01	0.01	NS	
Benzo(b+j)fluoranthene			<0.1	NS	NS	NS	
Benzo(ghi)perylene			<0.2	0.2	NS	NS	
Benzo(k)fluoranthene			<0.1	0.1	NS	NS	
Chrysene			<0.1	0.1	NS	NS	
Dibenzo(a,h)anthracene			<0.1	0.2	NS	NS	
Fluoranthene			<0.1	0.41	NS	NS	
Fluorene			<0.1	120	NS	NS	
Indeno(1,2,3-cd)pyrene			<0.2	0.2	NS	NS	
1-Methylnaphthalene			<0.5		NS	NS	
2-Methylnaphthalene			<0.5	3.2	NS	NS	
Naphthalene			<0.5	11	NS	NS	
Phenanthrene			<0.1	1	NS	NS	
Pyrene			<0.1	4.1	NS	NS	

Table 4.3 Test Well Water Quality Summary

¹ Technical Support Document for Ontario Drinking Water Standards, Objectives and Guidelines. June 2003, revised June 2006.

² Ministry of the Environment, April 15, 2011. Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act.

Downwolfor	Pumpe	ed Water Well	A342117	O.Reg. 153 –	ODWS	
Parameter	1 hr	6 hrs	12 hrs	Table 2	MAC / IMAC	AO/OG
Volatile Organic Compounds (µ		_				
Acetone			<30	2700	NS	NS
Bromomethane			<0.5	0.89	NS	NS
Carbon tetrachloride			<0.2	0.79	5	NS
Chlorobenzene			<0.5	30	NS	NS
Chloroform			<0.5	2.4	NS	NS
1,2-Dichlorobenzene			<0.5	3	20	3
1,3-Dichlorobenzene			<0.5	59	NS	NS
1,4-Dichlorobenzene			<0.5	1	5	1
Dichlorofluoromethane			<2	590	NS	NS
1,1-Dichloroethane			<0.5	5	NS	NS
1,2-Dichloroethane			<0.5	1.6	5	NS
1,1-Dichloroethylene			<0.5	1.6	NS	NS
trans-1,2-Dichloroethane			<0.5	1.6	NS	NS
cis-1,2-Dichloroethane			<0.5	1.6	NS	NS
1,2-Dichloropropane			<0.5	5	NS	NS
cis-1,3-Dichloropropane			<0.5	NS	NS	NS
trans-1,3-Dichloropropane			<0.5	NS	NS	NS
1,3-Dichloropropene			<0.5	0.5	NS	NS
Ethylene Dibromide			<0.2	0.2	NS	NS
Hexane			<1	51	NS	NS
Methyl Ethyl Ketone			<20	1000	NS	NS
Methyl Isobutyl Ketone			<20	400	NS	NS
Methyl Tert-Butyl Ether			<2	15	NS	NS
Methylene Chloride			<0.5	50	NS	NS
Styrene			<0.5	5.4	NS	NS
Tetrachloroethylene			<0.5	1.6	30	NS
1,1,1,2-Tetrachloroethane			<0.5	1.1	NS	NS
1,1,2,2-Tetrachloroethane			<0.5	1	NS	NS
1,1,1-Trichloroethane			<0.5	200	NS	NS
1,1,2-Trichloroethane			<0.5	4.7	NS	NS
Trichloroethylene			<0.5	1.6	5	NS
Trichlorofluoromethane			<5	150	NS	NS
Vinyl Chloride			<0.2	0.5	2	NS
Benzene			<0.5	5	5	NS
Toluene			<0.5	24	NS	24
Ethylbenzene			<0.5	2.4	NS	2.4

	Pumpe	d Water Well A	A342117	O.Reg. 153 –	ODWS		
Parameter	1 hr	6 hrs	12 hrs	Table 2	MAC / IMAC	AO/OG	
Xylenes			<0.5	300	NS	300	
Bromodichloromethane			<0.5	16	NS	NS	
Bromoform			<0.5	25	NS	NS	
Dibromochloromethane			<0.5	25	NS	NS	
Petroleum Hydrocarbons			1	1	1		
PHC F1 (C ₆ – C ₁₀)			<25	750	NS	NS	
PHC F2 (C ₁₀ – C ₁₆)			<100	150	NS	NS	
PHC F3 (C ₁₆ – C ₃₄)			<200	500	NS	NS	
PHC F4 (C ₃₄ – C ₅₀)			<200	500	NS	NS	
PHC F4 Gravimetric			Yes ¹	500	NS	NS	
Trace Metals (dissolved) (mg	ı/L)		1	1	1		
Aluminum	<0.001	<0.001	<0.001	NS	NS	0.1	
Arsenic	0.0006	0.0004	0.0004	0.25	0.025	NS	
Boron	0.199	0.216	0.216	5	5	NS	
Barium	0.09451	0.09889	0.09880	1	1	NS	
Beryllium	<0.000007	<0.000007	0.000011	0.004	NS	NS	
Cobalt	0.000094	0.0000910	0.000082	0.0038	NS	NS	
Calcium	103	112	117	NS	NS	NS	
Cadmium	0.000016	0.000017	0.000020	0.0027	0.005	NS	
Copper	<0.0002	<0.0002	<0.0002	0.087	NS	1	
Chromium	0.00012	<0.00008	<0.00008	0.05	0.05	NS	
Iron	0.369	0.276	0.481	NS	NS	0.3	
Magnesium	47.8	53.4	53.5	NS	NS	NS	
Manganese	0.175	0.173	0.171	NS	NS	0.05	
Mercury	<0.00001	<0.00001	<0.00001	0.00029	0.001	NS	
Molybdenum	0.02195	0.02931	0.03188	0.07	NS	NS	
Nickel	0.0014	0.0013	0.0012	0.1	NS	NS	
Sodium	54.5	57.4	57.0	490	NS	200 (20*)	
Lead	<0.00009	<0.00009	<0.00009	0.01	0.01	NS	
Silver	<0.00005	<0.00005	<0.00005	0.0015	NS	NS	
Strontium	5.15	5.91	5.92	NS	NS	NS	
Thallium	<0.000005	<0.000005	<0.000005	0.002	NS	NS	
Antimony	<0.0009	<0.0009	<0.0009	0.006	0.006	NS	
Selenium	0.00015	0.00020	0.00011	0.01	0.01	NS	
Uranium	0.000219	0.000227	0.000219	0.02	0.02	NS	
Vanadium	0.00011	0.00008	0.00009	0.0062	NS	NS	
Zinc	<0.002	<0.002	<0.002	1.1	NS	5	

Douromotou	Pumpe	d Water Well	A342117	O.Reg. 153 –	ODWS		
Parameter	1 hr	6 hrs	12 hrs	Table 2	MAC / IMAC	AO/OG	
General Chemistry Parameters (u	nits listed per	r parameter)					
Tannin + Lignin (mg phenol/L)	0.32	0.34	0.40	NS	NS	NS	
Alkalinity (mg/L as CaCO ₃)	265	261	261	NS	NS	30 – 500	
Carbonate (mg/L as CaCO ₃)	<2	<2	<2	NS	NS	NS	
Bicarbonate (mg/L as CaCO ₃)	265	261	261	NS	NS	NS	
рН	8.14	8.20	8.23	NS	NS	6.5 – 8.5	
Conductivity (µS/cm)	1180	1290	1350	NS	NS	NS	
Total Dissolved Solids (mg/L)	763	914	914	NS	NS	500	
Colour (TCU)	3	<3	<3	NS	NS	5	
Turbidity (NTU)	2.5	2.89	4.21	NS	NS	5	
Organic Nitrogen (mg/L)	<0.05	<0.05	<0.05	NS	NS	0.15	
Total Kjeldahl Nitrogen (mg/L)	0.18	0.17	0.16	NS	NS	NS	
Ammonia + Ammonium (mg/L)	0.19	0.17	0.17	NS	NS	NS	
Nitrite (as N mg/L)	<0.003	<0.003	<0.003	NS	1	NS	
Nitrate (as N mg/L)	<0.006	<0.006	<0.006	NS	10	NS	
Chloride (mg/L)	62	66	68	790	NS	250	
Hydrogen Sulphide	<0.02	<0.02	<0.02	NS	NS	0.05	
Sulphide (mg/L)	<0.02	<0.02	<0.02	NS	NS	NS	
Sulphate (mg/L)	300	370	400	NS	NS	500	
Dissolved Organic Carbon (mg/L)	2	2	2	NS	NS	5	
Hardness (mg/L as CaCO ₃)	453	500	511	NS	NS	80 – 100	
Ryznar Stability Index	6.4	6.2	6.2	NS	NS	NS	
Potassium	7.16	7.56	7.39	NS	NS	NS	

Notes:

"1' denotes that PHC F4 gravimetric returned to baseline

"<" indicates concentrations are less than laboratory reporting limits

MAC = maximum acceptable concentration; IMAC – Interim MAC; AO / OG = aesthetic objective / operational guideline

Bold / shaded indicates the concentration exceeds the ODWS AO / OG. There are no exceedances of MAC or IMAC (health related).

*The aesthetic objective for sodium in drinking water is 200 mg/L. When the sodium concentration exceeds 20 mg/L, this information should be communicated to those on sodium restricted diets.

The laboratory analyses confirmed that there were no health-related parameter exceedances of the ODWS. VOCs, PAHs and PHCS were reported below detection limits and meet all Ontario Regulation Table 2 Standards for the parameters tested in a potable groundwater condition for all property uses.

In general, the test results indicate the majority of parameters meet the ODWS with the exception of the aesthetic objectives for:

- Hardness;
- Total Dissolved Solids;
- Manganese; and
- Iron.

Elevated hardness is related to the overburden materials containing calcium and to a lesser extent, magnesium. Elevated hardness, iron and manganese are common traits of groundwater supplies in Southern Ontario and can be treated using commercially available treatment equipment such as a water softener. The iron and manganese are within treatable limits. Although hardness in excess of 500 mg/L is considered very hard, a maximum treatable value is not provided within the D-5-5 Guideline. Treatment for hardness (and other parameters) is provided in the following sub-section.

Total dissolved solids (TDS) were also elevated above its aesthetic objective of 500 mg/L. TDS may be the result of hard water including calcium and/or magnesium as well as other constituents such as sodium and chloride. Treatment consideration is provided in the following sub-section. The Ryznar Stability Index was calculated to be between 6.2 and 6.4 which is within the neutral range and therefore incrustation and corrosion are not considered to be problematic due to the elevated TDS.

Turbidity was reported as less than 5 NTU in the laboratory samples and ranged from 3.25 to 1.2 NTU at the wellhead. These values indicated acceptable turbidity.

The bacteriological results were three (3) colony forming units per 100 mL (CFU) for total coliform which is acceptable for raw water as fecal coliform and E.coli are zero CFU. The residual chlorine residual was measured in the field at the wellhead prior to testing and confirmed to be non-detect.

As a proactive measure, GHD recommends that bacteriological treatment (i.e. ultraviolet (UV) treatment) be used at a minimum. As it is anticipated that this well system will be regulated and will require treatment to meet appropriate standards to ensure potable water is available to employees and visitors.

To supplement the analytical data, field measurements were obtained throughout the pumping test by GHD. At the end of the pump test, the groundwater at the well head had a conductivity of 1.35 mS/cm, a water temperature of 16.0 degrees Celsius, a pH of 7.82, a chlorine residual of 0 mg/L and turbidity of 1.2 NTU. There was no methane detected within the water.

4.3.3.1 Water Treatment

MacLellan Water Treatment (MacLellan) was contacted to provide water treatment based upon the pumped well chemistry. Based upon the chemistry provided from the pumping test, MacLellan provided recommendations for water treatment. Their report is provided in **Appendix G** and summarized below:

- a. Installation of a filtration system for iron that utilizes a manganese greensand filter with chlorine regeneration. This filter would also remove a certain amount of manganese.
- b. Installation of an activated carbon filter to remove residual chlorine and organically-complexed metals.
- c. Install a water softener to soften the water to improve the aesthetics of the water and protect the water disinfection system and water-using appliances (hot water tanks, etc.) in the facility from fouling due to hard water scale. A twin alternating system was recommended to ensure that softening is uninterrupted.
- d. Disinfection of the water will be provided with ultraviolet (UV) disinfection. The unit will be sized to allow adequate flow to the facility and will be equipped with turbidity-reducing cartridge-style prefilters to screen out particles that bacteria might shelter behind while passing through the UV light.
- e. As the concentration of sodium in the water is already slightly high, the use of a water softener will increase the sodium content of the treated water by about 300 mg/L. Therefore, one or more point of use reverse osmosis (RO) units will be installed to remove sodium at locations (like lunch rooms) where staff will actually consume the water. The RO units will be equipped with small storage tanks so that pre-treated water will be ready on demand.

Based upon the MacLellan report, the water can be treated for use at the proposed commercial facility.

4.3.4 Well Interference

In order to assess the potential for hydraulic connection between the pumped water well A342117 and neighbouring wells were monitored during the pumping test. Data logger water levels were installed at each of the observation wells during the pumping test and the data is provided in **Appendix H**. Manual water levels at TW-5, A305146, A342260

and A018916 were collected prior to and after the pumping test was conducted between August 3 and August 18, 2022. The data illustrates the water level conditions during this time as well as during the pumping test.

The approximate linear distances between the pumped water well and observation wells are provided in **Table 4.4** based upon the locations plotted on **Figure 8**.

	Distances between Pumped Water Well A342117 and Observation Wells (metres)							
Location	MW22-1	4885 Hawthorne Rd.	TW-5	A305146	A018916	A342260		
Pumped well A342117	45	630	570	140	475	640		

Notes:

Distances based upon locations identified on **Well Locations, Figure 8**. MW = monitoring well

The following table provides the manual water levels collected during the pumping test at the observation wells monitored during the pumping test.

Location	Water Level (start of test) mbgs	Water Level (end of test) mbgs	Drawdown (m)
A342117 (pumped water well)	7.31	8.11	-0.80
MW22-1	2.05	1.95	+0.10
4885 Hawthorne Road	0.95	0.93	+0.02
TW-5	6.70	6.71	-0.01
A305146	7.42	7.69	-0.27
A018916	11.85	11.81	+0.04
A342260	10.62	10.59	+0.03

 Table 4.5
 Maximum Drawdowns in Pumping and Observation Wells

Notes:

Negative drawdown (denoted by minus sign and RED text) indicates water level lowered during the testing Positive drawdown (denoted by plus sign and BLACK text) indicates water level was rising during the testing

4.3.4.1 Interference Assessment

Prior to the pumping test, data loggers were installed within the adjacent wells including TW-5, A305146, 4885 Hawthorne Road, A342260 and A018916 to collect background water levels. Water levels were also collected from these locations during the pumping test and after the pumping test was completed. The data was collected was used to evaluate groundwater level trends and to aid in assessing hydraulic connection between the overburden and bedrock aquifer, and, within the bedrock aquifer itself.

There was no drawdown attributable to pumping at the pumped well within the monitoring well MW22-1 indicating that there is no vertical hydraulic connection between the overburden groundwater and confined bedrock aquifer that A342117 draws from.

There was no drawdown measured at water wells A018916, A342260 or 4885 Hawthorne Road and minimal drawdown within TW-5 throughout the duration of the pumping test. The drawdown at TW-5 was about one (1) cm based upon the data logger readings and is considered negligible. No impacts are expected at these wells as a result of future usage of the water well on the Site.

The results of the interference monitoring did illustrate a hydraulic connection between the pumping well A342117 and A305146 about 140 m to the south. Both wells are drilled to 42.7 m (140 feet) and are expected to tap into the same aquifer unit. The drawdown at this well was manually measured to be about 27 cm during the pumping test and the

data logger shows a similar water level response in A305146, albeit to a lower magnitude, as the pumped well. The data confirms that these wells are confined within the same aquifer unit and are hydraulically connected. With the drawdown of 27 cm (less than 1% of the available drawdown within this well), about 35 m of available drawdown remains within the well.

The testing showed that the pumping of nearly 30,000 L resulted in the usage of about 2.5% of the available drawdown of the pumped well. As daily usage is expected to be below 10,000 L/day, the pump test results indicate that there is sufficient water quantity below the Site for the planned development with without significant interference to future and existing neighbouring wells. In our professional opinion, the risk of interference is minimal.

4.4 Septic Waste Disposal

The septic waste disposal system is being designed by others. The septic will be about 25 m from the water well, maintaining the minimum 15 m horizontal buffer as per the Ontario Building Code.

5. Water Quality Impact Assessment

Procedure D-5-4 provides a methodology for assessing potential impact to downgradient groundwater resources as a result of the installation of private sewage disposal systems on a development property. The procedure is to consider the following:

- Lot Size Considerations
- System Isolation Considerations
- Contaminant Attenuation Considerations

Using D-5-4 as a guide, the proponent is to determine the background nitrate concentration in the receiving groundwater; demonstrate that the area is not hydrogeologically sensitive; and, demonstrate that the maximum nitrate limit prescribed by the procedure will not be exceeded in the receiving groundwater at the downgradient site boundary.

However, this guideline does not apply to Large Subsurface Sewage Disposal Systems (i.e. septic effluent of greater than 10,000 L/day). The projected design septic effluent for this Site is on the order 12,000 L/day. If the septic effluent from the Site was to be less than 10,000 L/day, then the Procedure would also not be applicable as the development area is greater than one (1) hectare

GHD completed a hydrogeological assessment for a large subsurface septic system (GHD report dated November 2, 2021). Based upon the impact assessment, tertiary treatment will be required. Based upon the impact assessment, the proposed sewage system will have no significant impact on the groundwater aquifer, shallow water or any downgradient receptors that utilize groundwater.

6. Construction Dewatering

A water sample was collected from the monitoring well (MW22-1) for purposes of establishing the water quality should excavations extend into the shallow groundwater and require dewatering. Depending upon the construction activities, dewatering to remove groundwater seepage, surface water runoff and precipitation may be required to ensure safe and dry working conditions.

6.1.1 Groundwater Sampling for Construction Dewatering

On August 9, 2022, a groundwater sample was collected from MW22-1 (referred to "Piezo" in the certificate of analysis). The sample was submitted to SGS for analysis of parameters described in City of Ottawa By Law 2003-514, which addresses discharge to the Municipal sewage system. The analytical results are summarized within the certificates of analysis in **Appendix I**.

Based upon the analytical results, and upon comparison with the City of Ottawa criteria, the following parameters exceeded the criteria:

- Total suspended solids; and,
- Manganese.

The results represent total concentrations including dissolved and sorbed particulate. Based on these observations, the water discharged from an excavation would require treatment (i.e. filtration) to minimize the particulate and reduce the total concentrations to meet the City of Ottawa criteria. The discharge would be expected to be a combination of groundwater, surface water runoff and precipitation into the excavation and would require further assessment to verify its quality. City of Ottawa approval, sewer-use discharge permit and pre-treatment will be required prior to discharge to a drainage ditch or sewer.

7. Summary and Recommendations

Supporting data upon which our conclusions and recommendations are based have been presented in the foregoing sections of this report. The following conclusions and recommendations are governed by the physical properties of the subsurface materials that were encountered at the Site and assume that they are representative of the overall Site conditions. It should be noted that these conclusions and recommendations are intended for use by the designers only. Contractors bidding on or undertaking any work at the Site should examine the factual results of the assessment, satisfy themselves as to the adequacy of the information for construction, and make their own interpretation of this factual data as it affects their proposed construction techniques, equipment capabilities, costs, sequencing, and the like. Comments, techniques, or recommendations pertaining to construction should not be constructions to the contractor.

Based on the results of the hydrogeological and impact assessment, the pumped water well has sufficient water of good quality and quantity to provide ample supply of potable groundwater for the proposed commercial development while preserving the long-term water quality of the aquifer complex. In the certification letter WSP has indicated that the new water well, A342117, was properly constructed and adequately sealed in accordance with Ontario Regulation 903. The well will have adequate separation from the proposed building and future septic area. Based upon the pumping test, there was marginal interference between an adjacent well; however, the interference is not considered significant to impact the operation of the wells. Based on the data collected no vertical hydraulic connection between the shallow overburden groundwater and the bedrock aquifer unit was identified. In the long-term, it is our opinion that the bedrock aquifer tested can support the commercial development with minimal to negligible impact to neighbouring wells.

The water quality, as indicated in the MacLellan report, can be treated to meet the needs of the proposed facility. The treatment is to consist of filters, water softening, UV disinfection and RO at selected point(s) of consumption such as lunch room(s).

Based upon the impact assessment, water quality impacts are not expected provided that the waste disposal system is properly constructed. The waste disposal system will be a large subsurface system that, based upon the daily design, will exceed 10,000 L/day of septic effluent. The actual daily septic effluent is expected to be much less than 10,000 L/day. No impact is anticipated on downgradient baseline water quality functions or to the existing water bearing aquifers.

Should construction dewatering of shallow water be required, filtration of the pumped water will be required to remove particulate and ensure that total suspended solids and manganese concentrations meet the City of Ottawa storm sewer use by-law criteria. No significant impacts from construction dewatering are anticipated.

It is our opinion that the results of this hydrogeologic and impact assessment support the development of the proposed commercial development.

All of Which is Respectfully Submitted,

GHD

Jason Geraldi, M.Sc., C.Che Project Manager

Steven Granie

Steve Gagné, H.B.Sc. Associate, Project Director

Sept. 22/22 UMITED MEMBER ROBERT W. NECK 2262 Withod V. N TA R LO

Robert Neck, P.Geo. (Lindited) Senior Geoscientist

8. References

Chapman and Putnam, 1966. The Physiography of Southern Ontario, 2nd Edition. University of Toronto Press.

Chapman and Putnam, 1984. The Physiography of Southern Ontario, 3rd Edition. Ministry of Natural Resources.

- City of Ottawa, March 2021. Hydrogeological and Terrain Analysis Guidelines.
- Conestoga-Rovers & Associates, September 2008. Phase II Environmental Site Assessment and Hydrogeological Assessment. Report Ref. No. 045804 (12)

Environmental Protection Act, R.S.O. 1990, and associated regulations.

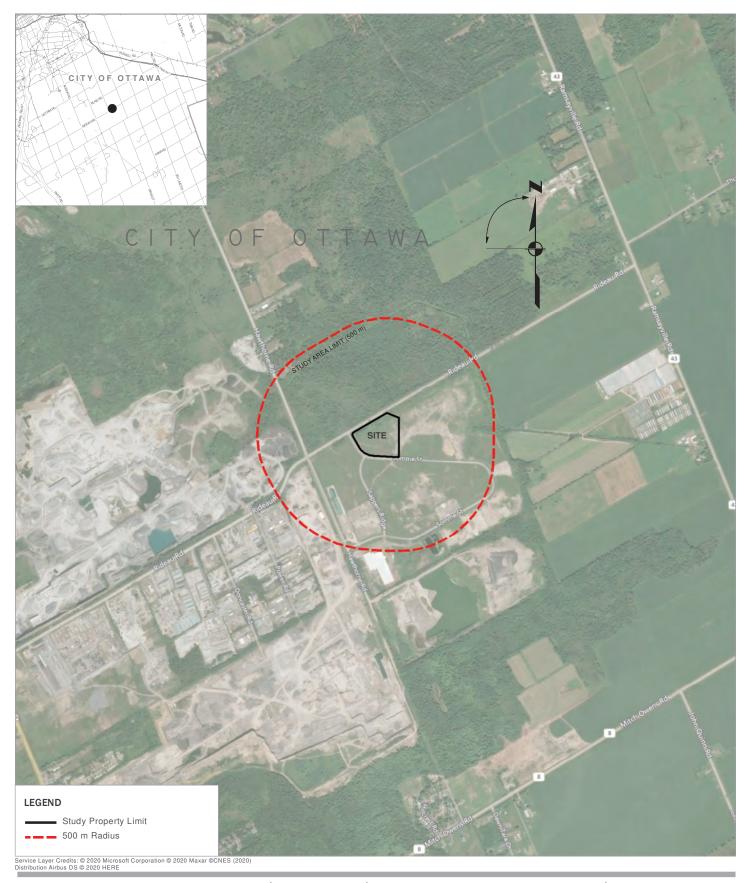
Fetter, C.W., 1994. Applied Hydrogeology, 3rd Edition.

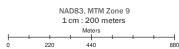
Freeze, R.A. and J.A. Cherry. 1979. Groundwater.

- GHD Limited, November 2, 2021. Hydrogeological Assessment Large Sewage Disposal System. Rideau Road and Somme Street. Ottawa Ontario. Proj. No. 12565773-01
- GHD Limited, April 12, 2021. Terrain Analysis. Septic Assessment and Percolation Rate Evaluation. Proposed Commercial Development – Rideau Road and Somme Street. Gloucester Con 6 from Rideau River, Lot 26, Ottawa Ontario. Proj. No. 11220832-01
- GHD Limited, January 19, 2021. Hydrogeological Assessment Report. Proposed Commercial Development Rideau Road and Somme Street. Gloucester Con 6 from Rideau River, Lot 26, Ottawa Ontario. Proj. No. 11220832-01;
- GHD Limited, September 10, 2020. Geotechnical Investigation. Warehouse and Offices. Intersection of Rideau Street and Somme Street, Ottawa Ontario. Proj. No. 11215612-01.
- Golder Associates, December 2008. Hydrogeological Investigation, Terrain Analysis and Impact Assessment, Proposed Industrial Subdivision, Report Ref. No. 08-1122-0215.
- Inspec-Sol, May 4, 2009. Geotechnical Study Subdivision Plan, Hawthorne Industrial Park, Report Ref. No. T020556-A1.
- J.L. Richards & Associates Limited, February 2009 (Revised May 2009). Stormwater Management Report. Hawthorne Industrial Park, Report Ref. No. JLR 20983.
- Occupational Health and Safety Act, R.S.O. 1990, and associated regulations.

Ontario Geological Survey, 2003. Surficial Geology of Southern Ontario.

- Ontario Ministry of the Environment, 2011. Ontario Regulation 153/04: Records of Site Condition Part XV.1 of the Act (*Environmental Protection Act* 153/04, as amended).
- Ontario Ministry of the Environment. June 2003. Revised June 2006. Technical Support Document for Ontario Drinking Water Standards, Objectives and Guidelines.
- Ontario Ministry of the Environment and Energy. August 1996. D-5-4 Individual On-Site Sewage Systems: Water Quality Impact Risk Assessment.
- Ontario Ministry of the Environment and Energy. August 1996. D-5-5 Private Wells: Water Supply Assessment.


9. Statement of Limitations

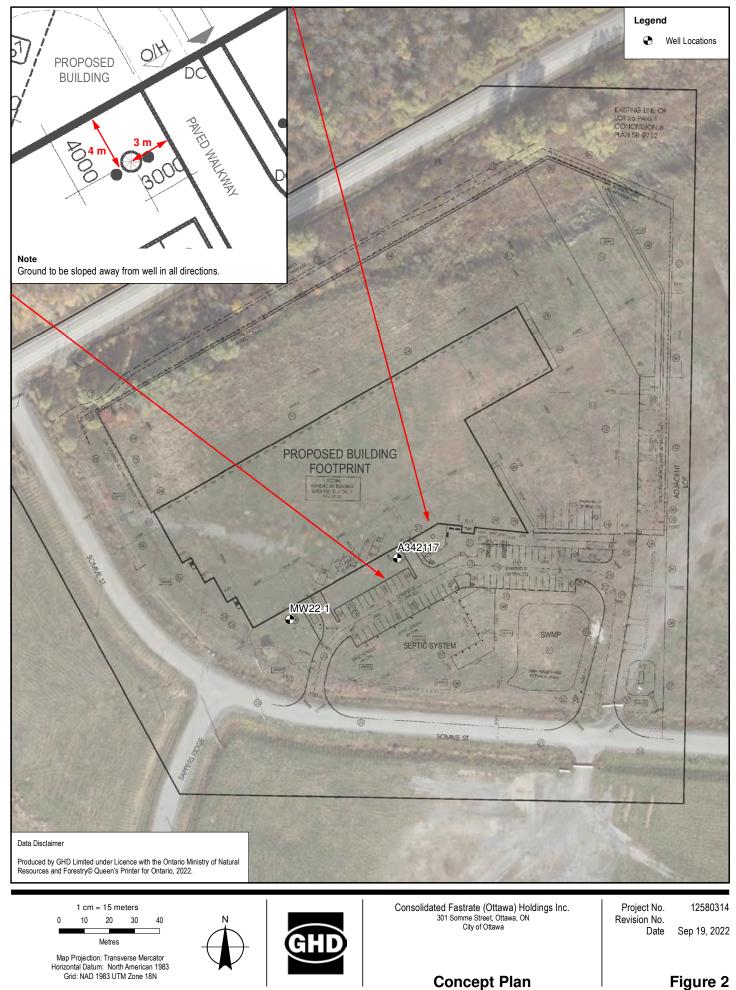

This report is intended solely for Consolidated Fastfrate (Ottawa) Holdings Inc. in assessing the hydrogeological aspects of the Site (301 Somme Street, Ottawa, Ontario) and is prohibited for use by others without GHD's prior written consent. This report is considered GHD's professional work product and shall remain the sole property of GHD. Any unauthorized reuse, redistribution of or reliance on the report shall be at the Client and recipient's sole risk, without liability to GHD. Client shall defend, indemnify and hold GHD harmless from any liability arising from or related to Client's unauthorized distribution of the report. No portion of this report may be used as a separate entity; it is to be read in its entirety and shall include all supporting drawings and appendices.

The recommendations made in this report are in accordance with our present understanding of the project, the current site use, ground surface elevations and conditions, and are based on the work scope approved by the Client and described in the report. The services were performed in a manner consistent with that level of care and skill ordinarily exercised by members of hydrogeological engineering professions currently practicing under similar conditions in the same locality. No other representations, and no warranties or representations of any kind, either expressed or implied, are made. Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties.

All details of design and construction are rarely known at the time of completion of a hydrogeological study. The recommendations and comments made in the study report are based on our subsurface investigation and resulting understanding of the project, as defined at the time of the study. We should be retained to review our recommendations when the drawings and specifications are complete. Without this review, GHD will not be liable for any misunderstanding of our recommendations or their application and adaptation into the final design.

Figures

ATTRIBUTION STATEMENTS


Produced by GHD Limited under Licence with the Ontario Ministry of Natural Resources and Forestry[®] Queen's Printer for Ontario, 2020 (2020).

Resources and Forestry® Queen's Printer for K:\GIS_PROJECTS\GHD\CA- Consolidated Fastfrate (Ottawa) Holdings Inc. RIDEAU ROAD & SOMME STREET CITY OF OTTAWA ONTARIO

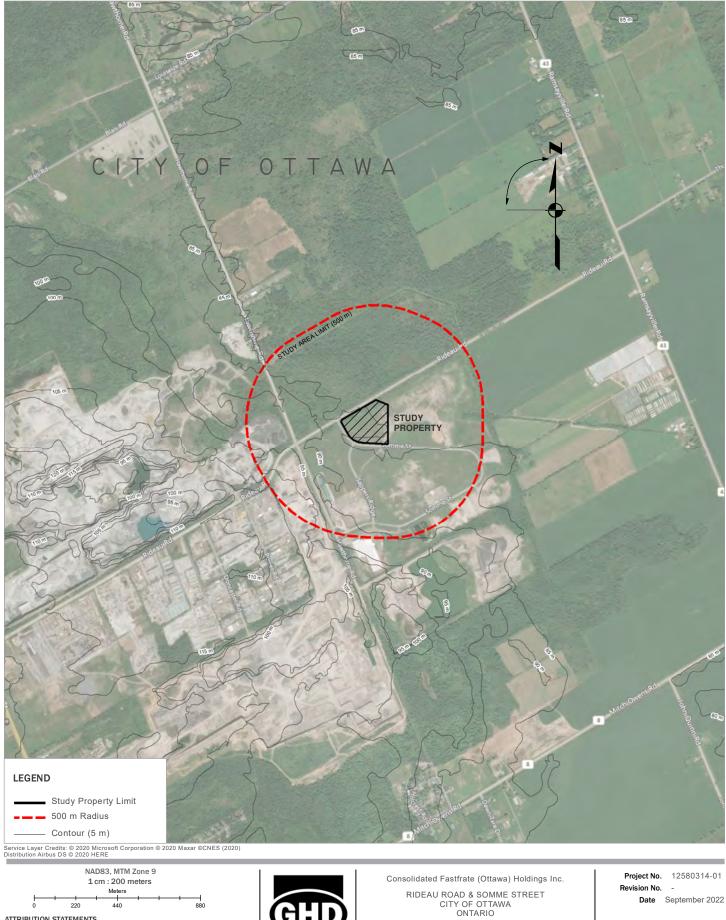
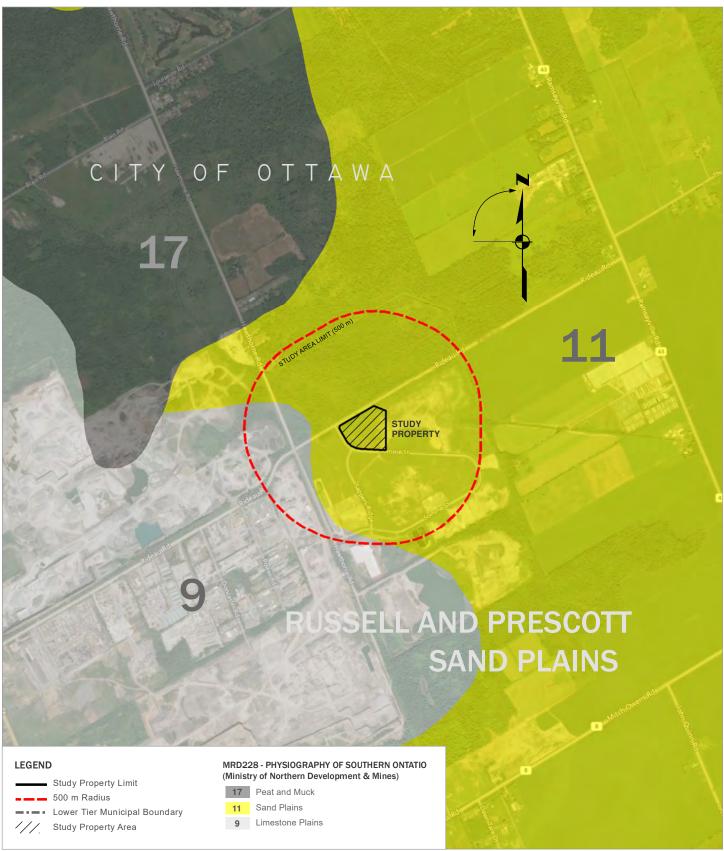

HYDROGEOLOGY ASSESSMENT SITE LOCATION PLAN Project No.12580314-01Revision No.1DateSeptember 2022

FIGURE 1

Created by: Will Pridhan

Q:\GIS\PROJECTS\12580000s\12580314\Layouts\202209_RPT001\12580314_202209_RPT001_GIS002 - Concept Plan.mxd Print date: 19 Sep 2022 - 11:48

HYDROGEOLOGY ASSESSMENT


REGIONAL TOPOGRAPHY

ATTRIBUTION STATEMENTS

- MRD128-REV. Ontario Geological Survey 2010. Surficial geology of southern Ontario; Ontario Geological Survey, Miscellaneous Release—Data 128 Revised.
- Produced by GHD Limited under Licence with the Ontario Ministry of Natural Resources and Forestry® Queen's Printer for Ontario, 2020 (2020).

K:\GIS_PROJECTS\GHD\CA-

FIGURE 3 ad by: Will

Service Layer Credits: © 2020 Microsoft Corporation © 2020 Maxar ©CNES (2020) Distribution Airbus DS © 2020 HERE

NAD83, MTM Zone 9 1 cm : 200 meters Meters 220 440

880

ATTRIBUTION STATEMENTS

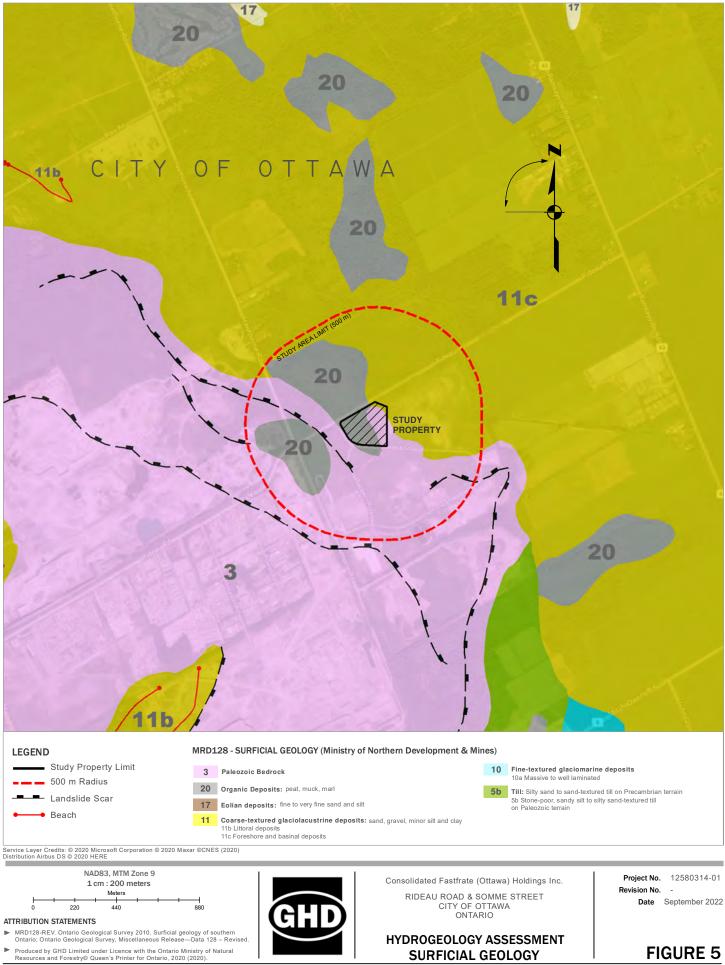
- MRD228-REV. Chapman, L.J. and Putnam, D.F. 2007. Physiography of southern Ontario; Ontario Geological Survey, Miscellaneous Release—Data 228.
- Produced by GHD Limited under Licence with the Ontario Ministry of Natural Resources and Forestry@ Queen's Printer for Ontario, 2020 (2020).

K:\GIS_PROJECTS\GHD\CA-

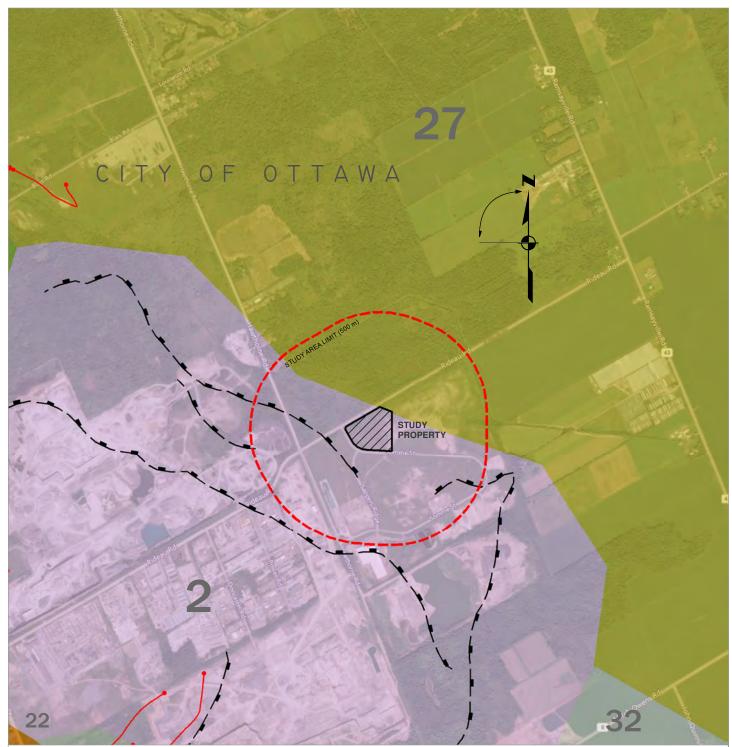
FIGURE 4 Created by: Will Pridham

Project No. 12580314-01

Date September 2022


Revision No. -

Consolidated Fastfrate (Ottawa) Holdings Inc.


RIDEAU ROAD & SOMME STREET CITY OF OTTAWA ONTARIO

HYDROGEOLOGY ASSESSMENT

PHYSIOGRAPHY

Created by: Will Pridha

LEGEND

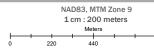
Study Property Limit

Landslide Scar

Beach

EDS014 - QUATERNARY GEOLOGY (Ministry of Northern Development & Mines)

32 Organic deposits: peat, muck and marl


880

27 Glaciomarine and marine deposits: sand, gravelly sand and gravel nearshore and beach deposits

 22 Glaciofluvial ice-contact deposits: gravel and sand minor till includes esker, kame, end moraine, ice-marginal delta and subaqueous fan deposits
 2 Bedrock:

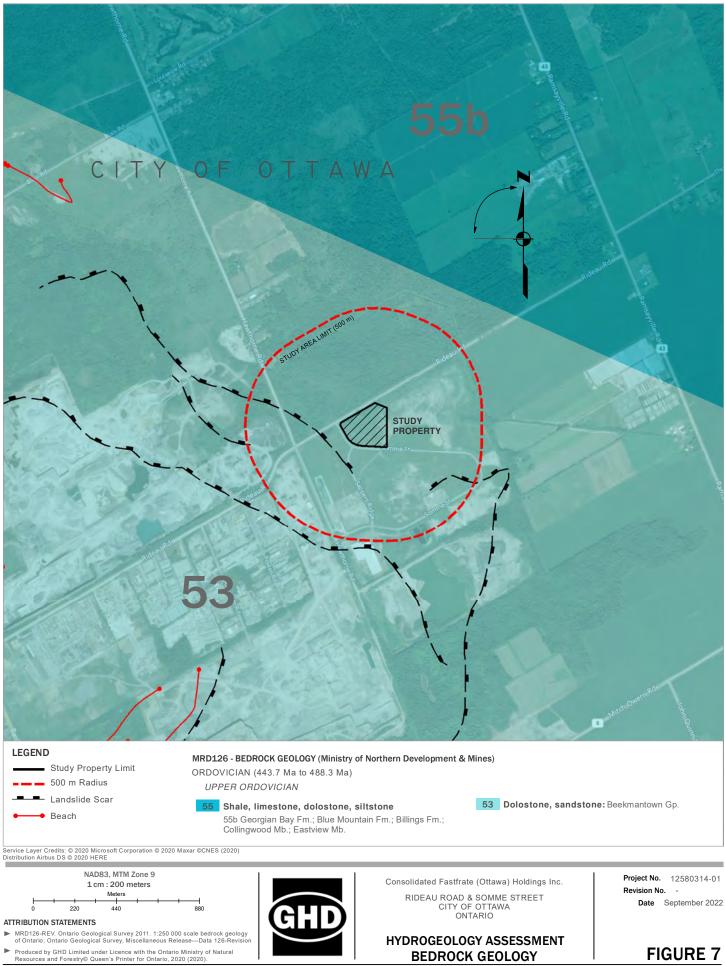
undifferentiated carbonate and clastic sedimentary rock, exposed at surface or covered by a discontinuous, thin layer of drift

Service Layer Credits: © 2020 Microsoft Corporation © 2020 Maxar ©CNES (2020) Distribution Airbus DS © 2020 HERE

ATTRIBUTION STATEMENTS

- EDS014-REV. Ontario Geological Survey, 1997. Quaternary geology, seamless coverage of the province of Ontario: Ontario Geological Survey, Data Set 14.
- Produced by GHD Limited under Licence with the Ontario Ministry of Natural Resources and Forestry® Queen's Printer for Ontario, 2020 (2020).

GHD


Consolidated Fastfrate (Ottawa) Holdings Inc. RIDEAU ROAD & SOMME STREET CITY OF OTTAWA ONTARIO

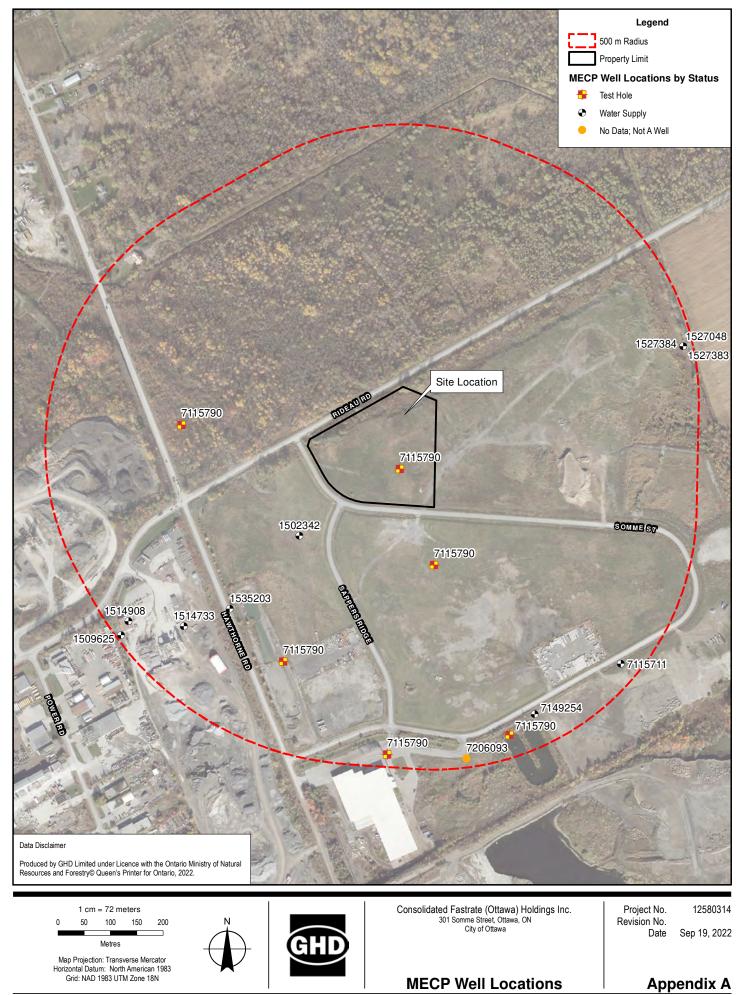
HYDROGEOLOGY ASSESSMENT QUATERNARY GEOLOGY Project No. 12580314-01 Revision No. -Date September 2022

FIGURE 6

K:\GIS_PROJECTS\GHD\CA-

Created by: Will Pridh

K:\GIS_PROJECTS\GHD\CA-


Created by: Will Pridha

Q:(GIS\PROJECTS\12580000s\12580314\Layouts\202209_RPT001\12580314_202209_RPT001_GIS003 - Well Location Plan.mxd Print date: 19 Sep 2022 - 10:31 Data source: © City of Ottawa, 2019; New Warehouse & Cross Dock Facility, Civitas Group, 2022-06-13

Appendices

Appendix A MECP Well Records

Q:(GIS)PROJECTS\12580000s\12580314\Layouts\202209_RPT001\12580314_202209_RPT001_GIS00A - MECP Well Locations.mxd Print date: 19 Sep 2022 - 13:21 Data source: © City of Ottawa, 2019; New Warehouse & Cross Dock Facility, Civitas Group, 2022-06-13; Water Well Information System (WWIS), MECP, 2022-09-19

MECP WELL RECORD LISTINGS

Ministry of the Environment, Conservation & Parks (MECP)

© Water Well Information System (WWIS). Ministry of the Environment, Conservation, and Parks. 2021. Powered by Location Intelligence

DISCLAIMER: All effort has been taken to ensure the accuracy of the data is the same as the source. There are instances where the original PDF document is different and in those cases, the PDF should be used instead.

1	Eastin Northin Elev (mas	g: 5017092.00	Latitude: Longitude:	45.30598 -75.555767	Well ID: 150)2342
WELL LOCATION	Lot: Con: Municipality: Township: Street: City: Well Status: Prim. Use: Sec. Use: Boring Method	026 06 OTTAWA-CARLETON GLOUCESTER TC n/a Water Supply n/a Domestic	OWNSHIP		Tag: Audit No: Contractor License: Well Completion Date: Received Date: Well Depth (m): Depth to Bedrock (m): Depth to Water: Water Kind:	3504 11/30/1950 12/06/1951 17.3736 27 ft FRESH
PUMP TEST	Test Method: Pump Set (m): SWL (ft) Final Level: Pump Rate: Recom. Rate:	CLEAR n/a 13 18 ft 1 GPM n/a GPM			Pipe ID: Pump Test ID Flowing: Pump Duration (hr): Pump Duration (m):	10572955 991502342 N 0 30

CASING DETAILS

Layer Value of "0" denotes a Null value and cannot be stratified and ordered.

Layer	Case ID	Casing Diamter	Diamter Units	Material	Top Depth	Bottom Depth
1	930041541	5	inch	STEEL	n/a	27 ft
2	930041542	5	inch	OPEN HOLE	n/a	57 ft

FORMATION DETAILS

Layer Value of "0" denotes a Null value and cannot be stratified and ordered.

Layer	Material	Material 2	Material 3	Colour	Top Depth	Bottom Dep	oth
1	PREV. DRILLED	n/a	n/a	n/a	0	27 1	ft
2	SANDSTONE	n/a	n/a	n/a	27	57 1	ft

End of Record

18 Easti Elev (ma	ng: 5016902.00 Longitude: -75.560087	
Lot: Con: Municipality: Township: Street: City:	026 05 OTTAWA-CARLETON GLOUCESTER TOWNSHIP n/a	Tag: Audit No:Contractor License:3002Well Completion Date:05/04/1968Received Date:06/12/1968
Well Status: Prim. Use: Sec. Use: Boring Metho	Water Supply n/a n/a d: Cable Tool	Well Depth (m):58.5216Depth to Bedrock (m):0Depth to Water:ftWater Kind:FRESH
Test Method: Pump Set (m) SWL (ft) Final Level: Pump Rate: Recom. Rate:	CLEAR n/a 36 63 ft 180 GPM 180 GPM	Pipe ID: 10580227 Pump Test ID 991509625 Flowing: N Pump Duration (hr): 24 Pump Duration (m): 0

Contains information licensed under the Open Government Licence - Ontario (2021).

CASING DETAILS

Layer Value of "0" denotes a Null value and cannot be stratified and ordered.

Layer	Case ID	Casing Diamter	Diamter Units	Material	Top Depth	Bottom Depth
1	930055956	10	inch	STEEL	n/a	18 ft
2	930055957	9	inch	OPEN HOLE	n/a	192 ft

FORMATION DETAILS

Layer Value of "0" denotes a Null value and cannot be stratified and ordered.

Layer	Material	Material 2	Material 3	Colour	Top Depth	Bottom D	epth
1	SANDSTONE	n/a	n/a	BROWN	0	52	ft
2	QUARTZITE	n/a	n/a	GREY	52	72	ft
3	SANDSTONE	n/a	n/a	WHITE	72	160	ft
4	SANDSTONE	n/a	n/a	GREY	160	192	ft

End of Record

							End	of Record
	Eastin	a: 456210.80	Latitude:	45.304418			Well ID:	1722
1	8 Northing		Longitude:				15	4/33
	Elev (mas							
N	Lot:	026	1				Tag:	
E	Con: Municipality:	05 OTTAWA-CARLETON				0 a m fm	Audit No:	4547
OCATION	Township:	GLOUCESTER TO					actor License: mpletion Date:	1517 04/15/1975
S	Street:	GLOUCESTER TO	WINGHIE				Received Date:	07/08/1975
Ľ	City:	n/a					Coontou Buto.	01/00/10/0
	-							
_	Well Status:	Water Supply					Vell Depth (m):	35.3568
WELL	Prim. Use:	n/a					Bedrock (m):	2
N	Sec. Use:	n/a				D	epth to Water:	ft
	Boring Method:	Cable I ool					Water Kind:	FRESH
⊢	Test Method:	CLOUDY					Pipe ID:	10585273
TEST	Pump Set (m):						Pump Test ID	991514733
Ë	SWL (ft)	40					Flowing:	N
<u> </u>	Final Level:	65 ft				Pump	Duration (hr):	1
PUMP	Pump Rate:	10 GPM				Pump	Duration (m):	20
٥.	Recom. Rate:	5 GPM						
	Layer Value	of "0" denotes a Null va						
			g Diamter D 5	iamter Units inch	Material STEEL	Top Depth	Bottom Depth 18 ft	
			5 5	inch		n/a n/a	18 ft 116 ft	
	2 9	30004075	5	inch	OPEN HOLE	n/a	110 11	
	FORMA	TION DETAILS						
	Layer Value	of "0" denotes a Null va	lue and cannot be s	tratified and orde	red.			
	Layer	Material	Material 2	Material 3	3 Colour	Top Depth	Bottom Depth	
	1	TOPSOIL	SAND	n/a	BROWN	0	2 ft	
	2	SHALE	n/a	n/a	BROWN	2	10 ft	
	3	LIMESTONE	n/a	n/a	GREY	10	116 ft	
							End	of Record
	Easting	a: 456104.80	Latitude:	45.304492			Well ID:	4908
1	8 Northing		Longitude:	-75.559911			15	4300
	Elev (masl): 101.82						
-	Lot:	026		1			Tag:	
OCATION	Con:	05					Audit No:	
Ę	Municipality:	OTTAWA-CARLETON				Contr	actor License:	1558
0	Township:	GLOUCESTER TO	WNSHIP			Well Cor	mpletion Date:	08/15/1975
Ō	Street:					F	Received Date:	09/11/1975
	City:	n/a						
	Well Status:	Water Supply				14	Vell Depth (m):	75.5904
	Prim. Use:	n/a					Bedrock (m):	75.5904 0
WELL	Sec. Use:	Domestic					epth to Water:	ft
\leq	Boring Method:					5	Water Kind:	Not stated
								•
	Test Method:						Pipe ID:	

Page 2 of 10

Contains information licensed under the Open Government Licence - Ontario (2021).

991514908 N 1 0	ID ng: hr):	Pipe Pump Test Flowi p Duration (I p Duration (i					/a 0 00 ft 5 GPM GPM	Test Method: Pump Set (m): SWL (ft) Final Level: Pump Rate: Recom. Rate:
							DETAILS	
	Jonth	Pottom D	Top Dopth	Motorial		alue and cannot be s		-
	ft	Bottom D 196	Top Depth n/a	Material STEEL	iamter Units inch	g Diamter D	ise ID Casin 065185	Layer 1
	ft	248	n/a	OPEN HOLE	inch	6	065186	
					ratified and ordered	alue and cannot be s	ON DETAILS	
	Depth	Bottom D	Top Depth	Colour	Material 3	Material 2	Material	Layer
	ft	1	0	n/a	FRACTURED	ROCK	FILL	1
	ft	40	1	GREY	n/a	n/a	IMESTONE	2
	ft	196	40	WHITE	n/a	HARD	ANDSTONE	3
	ft	248	196	WHITE	n/a	n/a	ANDSTONE	4
of Record	End o							
7048		Well ID:			45.309274 -75.546472		457162.00 5017453.00 82.18	Eastir Northir Elev (mas
		-						
130025	ag: No:	ا Audit I					26 16	Lot: Con:
1558		tractor Licen	Cor				TTAWA-CARLETON	Municipality:
04/19/1993		ompletion Da					LOUCESTER TO	Township:
05/06/1993	ate:	Received Da					10	Street: City:
							a	ony.
41.148		Well Depth (/ater Supply	Well Status:
0		to Bedrock (Depth				/a	Prim. Use:
ft Not stated		Depth to Wat Water Ki					/a ir Percussion	Sec. Use: Boring Method
	ID .	Dine						
10597297 991527048		Pipe Pump Test					/a /a	Test Method: Pump Set (m):
991527040 N		Flowi					a 1	SWL (ft)
1	-	p Duration (I	Pun				30 ft	Final Level:
0	m):	p Duration (Pur				5 GPM GPM	Pump Rate: Recom. Rate:
					ratified and ordered	alue and cannot be s	DETAILS "0" denotes a Null v	
		Bottom D	Top Depth	Material	iamter Units			Layer
	ft	31	n/a	STEEL	inch	6	085230	
	ft #	75	n/a	OPEN HOLE	inch	6	085231	
	ft	135	n/a	OPEN HOLE	inch	6	085232	3
					ratified and ardered	alue and cannot be s		
	Depth	Bottom D	Top Depth	Colour	Material 3	Material 2	Material	Layer
	ft	9	0	BROWN	FILL	ROCK	CLAY	1
	ft	15	9	GREY	n/a	BOULDERS	HARDPAN	2
	ft	33	15	GREY	n/a	SOFT	IMESTONE	3
	ft	135	33	WHITE	n/a	HARD	ANDSTONE	4
of Record	End o							
		Well ID:			45.309274 -75.546472	_	457162.00 5017453.00 82.18	Eastir Northin Elev (mas
7383								1
/ 383	ag:	т			I		26	Lot:
135946	ag: No:	Audit I					6	Con:
135946 1558	ag: No: Ise:	Audit I tractor Licen					6 TTAWA-CARLETON	Con: Municipality:
135946	ag: No: ise: ate:	Audit I					6	Con:

Stree		n/a		1		I	Received Date:	09/21/1993
Well Prim Sec.	Status: . Use: Use:	Water Supply n/a n/a Air Percussion				Depth t	Well Depth (m): o Bedrock (m): Depth to Water: Water Kind:	30.48 28 ft Not stated
Set Pump SWL SWL Final Pump	Method: p Set (m): (ft) Level: p Rate: om. Rate:	CLOUDY n/a 7 15 ft 20 GPM 5 GPM					Pipe ID: Pump Test ID Flowing: o Duration (hr): p Duration (m):	10597603 991527383 N 1 0
		of "0" denotes a Null	value and cannot be s	tratified and ord	lered.			
			· ·	iamter Units		Top Depth	Bottom Depth	
		30085613	6	inch	STEEL	n/a	39 ft	
	2 9	30085614	6	inch	OPEN HOLE	n/a	100 ft	
		TION DETAIL of "0" denotes a Null	S value and cannot be s	tratified and ord	lered.			
	Layer	Material	Material 2	Material		Top Depth	Bottom Depth	
	1	SAND	STONES	n/a	BROWN	0	5 ft	
	2	HARDPAN	BOULDERS	n/a	GREY	5	28 ft	
	3	SANDSTONE	HARD	n/a	GREY	28	100 ft	
							End	of Record
18	Easting Northing Elev (mas	g: 5017453.00		45.309274 -75.546472			Well ID: 152	7384
	icipality: nship: et:	026 06 OTTAWA-CARLETO GLOUCESTER T n/a				Well Co	Tag: Audit No: ractor License: mpletion Date: Received Date:	135944 1558 08/16/1993 09/21/1993
Prim.		Water Supply n/a Air Percussion				Depth t	Nell Depth (m): o Bedrock (m): Depth to Water: Water Kind:	30.48 0 ft Not stated
SH Pum SWL SWL Final Pum	Method: p Set (m): (ft) Level: p Rate: om. Rate:	CLOUDY n/a 22 24 ft 15 GPM 5 GPM					Pipe ID: Pump Test ID Flowing: o Duration (hr): p Duration (m):	10597604 991527384 N 1 0
		of "0" denotes a Null	value and cannot be s	tratified and ord	lered.			
	Layer	Case ID Casi	ng Diamter D	iamter Units	Material	Top Depth	Bottom Depth	
		30085615	6	inch	STEEL	n/a	22 ft	
	2 9	30085616	6	inch	OPEN HOLE	n/a	100 ft	
		TION DETAIL of "0" denotes a Null Material SANDSTONE	S value and cannot be s Material 2 HARD	Material		Top Depth 0	Bottom Depth 100 ft	
	•	UNE		n/a	GIVET	U	100 ft	
							End	of Record
18	Easting Northing Elev (mas	g: 5016953.00		45.30472 -75.557449			Well ID: 153	5203
Lot:							Tag:	A018916

Page 4 of 10

LOCATION	Lot: Con: Municipality: Township: Street: City:	06 OTTAWA-CARLET GLOUCESTER 3500 RIDEAU GLOUCESTER	TOWNSHIP ROAD				Tag: Audit No: tractor License: ompletion Date: Received Date:	A018916 Z19099 1119 10/27/2004 11/26/2004
WELL	Well Status: Prim. Use: Sec. Use: Boring Method	Water Supply n/a n/a : Air Percussion				Depth	Well Depth (m): to Bedrock (m): Depth to Water: Water Kind:	42.67 4 n ô !
PUMP TEST	Test Method: Pump Set (m): SWL (ft) Final Level: Pump Rate: Recom. Rate:	14.18 15.8m 75.7LPM 75.7LPM					Pipe ID: Pump Test ID Flowing: np Duration (hr): np Duration (m):	11181474 11189805 n/a 1 0
		G DETAILS e of "0" denotes a Nu	ll value and cannot be	stratified and orde	ered.			
	Layer	Case ID Cas	sing Diamter	Diamter Units	Material	Top Depth	Bottom Depth	
	1 9	930843335	15. 88	cm	STEEL	0	6.7 m	
	2 9	930843336	n/a	cm	OPEN HOLE	6.09	42.67 m	
		TION DETAI	LS II value and cannot be	stratified and orde	ered.			
	Layer	Material	Material 2	Material	3 Colour	Top Depth	Bottom Depth	
	1	GRAVEL	TOPSOIL	n/a	n/a	0	1.21 m	
	2	SANDSTONE	n/a	n/a	GREY	1.21	35.05 m	
	3	LIMESTONE	SANDSTONE	n/a	GREY	35.05	42.67 m	
							End	of Record
1	Eastin 7 Northin Elev (mas	ig: 4794755.00		: 45.303821 : -75.547937			Well ID: 711	5711
7	Lot:	026		I			Tag:	A068335
NO	Con:	06					Audit No:	Z84410
LOCATI	Municipality: Township: Street: City:	OTTAWA-CARLET GLOUCESTER TW #5 GLOUCESTER	TOWNSHIP				tractor License: ompletion Date: Received Date:	1558 09/26/2008 12/02/2008
WELL	Well Status: Prim. Use: Sec. Use:	Water Supply n/a Industrial				Depth	Well Depth (m): to Bedrock (m): Depth to Water:	29.86 n/a n2:
	Boring Method	: Rotary (Air)					Water Kind:	Untested
PUMP TEST	Test Method: Pump Set (m): SWL (ft) Final Level: Pump Rate: Recom. Rate:	CLEAR 22.85 6.85 9.99m 54.6LPM 45.5LPM					Pipe ID: Pump Test ID Flowing: np Duration (hr): np Duration (m):	1002442328 1002442329 n/a 6 0
			ll value and cannot be	stratified and and	arad			
	Layer value		sing Diamter	Diamter Units	Material	Top Depth	Bottom Depth	
		002442337	15.	cm	STEEL	-0.45	12.8 m	
				otrotific d and available	- and			
	Layer Value Layer	Material	Il value and cannot be Material 2	Material		Top Depth	Bottom Depth	
	Layer 1	TOPSOIL	STONES	FILL	BROWN	0	1.21 m	
	2	TOPSOIL	STONES	SANDY		1.21	3.96 m	
	3	SANDSTONE	n/a	HARD	GREY	3.96	29.86 m	
							E	of Decord
				Page 5	o of 10		End	of Record
				-				

Well ID:	7445700
	/115/90

1	7 Northin Elev (mas	-	Longitude	e: -75.556139					5/90
_	Lot:	026					T	aq:	A074584
OCATION	Con:	06					Audit N	•	M02897
Ĕ	Municipality:	OTTAWA-CARLETO	N			Cont	ractor Licens		1844
X	Township:	GLOUCESTER					mpletion Da		07/15/2008
Ö	Street:		ROAD AT RIDEAU	J ROAD			Received Da		11/26/2008
	City:	Ottawa							
	Well Status:	Test Hole				,	Well Depth (r	n):	7.6
	Prim. Use:	n/a				Depth t	to Bedrock (r	n):	n/a
WEL	Sec. Use:	n/a				Γ	Depth to Wat	er:	
>	Boring Method	: n/a					Water Kir	nd:	
LS	Test Method:	n/a					Pipe		1002782586
LES	Pump Set (m):	n/a n/a 1.7					Pump Test I		1002782562
	SWL (ft) Final Level:	1.7 Ri/alm				Dum	Flowin	-	n/a
\leq	Pump Rate:						p Duration (h p Duration (r		n/a n/a
PUMP	Recom. Rate:	n/a n/a m				Full	p Duration (i		II/a
	Laver Value	diaemAILS							
			ing Diamter	Diamter Units		Top Depth	Bottom D	-	
		00077822579	n/a	n/a	PLASTIC	n/a	3	m	
		002782525	n/a	n/a	PLASTIC	n/a	1.5	m	
		002782570	n/a	n/a	PLASTIC	n/a	3	m	
	0 1	0027822597	n/a	n/a	PLASTIC	n/a	1.37	m	
	0 1	002782561	n/a	n/a	PLASTIC	n/a	1.5	m	
	0 1	002782588	n/a	n/a	PLASTIC	n/a	1.5	m	
	• •			n/a	LAGING	II/a	1.5		
	0 1	002782552	n/a	n/a	PLASTIC	n/a	1.22	m	
	0 1 0 1	002282552 002282534							
	0 1	00,22782534 00,227822543	n/a	n/a	PLASTIC	n/a	1.22	m	
	0 1 0 1 FORMA	00/2782534 00/27822543 n/a TR/20N DETAIL	n/a n/a n/a	n/a n/a n/a	PLASTIC PLASTIC PLASTIC	n/a n/a	1.22 0.6	m m	
	0 1 0 1 FORMA Layer Value	00/2782534 00/27822543 n/a n/a N DETAIL of "0" denotes a Nul	n/a n/a n/a S value and cannot be	n/a n/a n/a e stratified and ord	PLASTIC PLASTIC PLASTIC ered.	n/a n/a n/a	1.22 0.6 2.13	m m m	
	0 1 0 1 FORMA Layer Value	00/2782534 00/2782543 n/a Tri/aN DETAIL of "0" denotes a Nul Material	n/a n/a S Value and cannot be Material 2	n/a n/a n/a e stratified and ord Material	PLASTIC PLASTIC PLASTIC ered. 3 Colour	n/a n/a n/a Top Depth	1.22 0.6 2.13 Bottom D	m m m	
	0 1 0 1 FORMA Layer Value Layer 1	002782534 002782543 n/a of "0" denotes a Nul Material FINE SAND	n/a n/a S value and cannot be Material 2 SILT	n/a n/a e stratified and ord Material DENSE	PLASTIC PLASTIC PLASTIC ered. 3 Colour GREY	n/a n/a n/a Top Depth 0	1.22 0.6 2.13 Bottom D 0.9	m m m epth m	
	0 1 0 1 FORMA Layer Value Layer 1 2	002782534 002782543 n/a of "0" denotes a Null Material FINE SAND FILL	n/a n/a S value and cannot be <u>Material 2</u> SILT SAND	n/a n/a e stratified and ord Material DENSE SILT	PLASTIC PLASTIC PLASTIC ered. 3 Colour E GREY BROWN	n/a n/a n/a Top Depth 0 0.9	1.22 0.6 2.13 Bottom D 0.9 4.7	m m epth m	
	0 1 0 1 FORMA Layer Value Layer 1	002782534 002782543 n/a of "0" denotes a Nul Material FINE SAND	n/a n/a S value and cannot be Material 2 SILT	n/a n/a e stratified and ord Material DENSE	PLASTIC PLASTIC PLASTIC ered. 3 Colour E GREY BROWN GREY	n/a n/a n/a Top Depth 0	1.22 0.6 2.13 Bottom D 0.9	m m m epth m	

Latitude: 45.303818

Easting: 555808.00

		End	of Record
Easting: <null> Northing: <null> Elev (masl): 94.41</null></null>	Latitude: 45.302584 Longitude: -75.55063		15790
Lot: 026 Con: 06 Municipality: OTTAWA-CARLETON Township: GLOUCESTER TO' Street: HAWTHORNE RO City: Ottawa	WNSHIP AD AT RIDEAU ROAD	Tag: Audit No: Contractor License: Well Completion Date: Received Date:	A074584 M02897 1844 07/15/2008 11/26/2008
Well Status: Test Hole Prim. Use: n/a Sec. Use: n/a Boring Method: n/a		Well Depth (m): Depth to Bedrock (m): Depth to Water: Water Kind:	0 n/a
Test Method: n/a Pump Set (m): n/a SWL (ft) 1.3 Final Level: n/a Pump Rate: n/a Recom. Rate: n/a CASING		Pipe ID: Pump Test ID Flowing: Pump Duration (hr): Pump Duration (m):	1002782595 1002782535 n/a n/a n/a
	lue and cannot be stratified and ordered.		n/a

Page 6 of 10

Layer	Case ID	Casing Diamter	Diamter Units	Material	Top Depth	Bottom Depth
0	1002782588	n/a	n/a	PLASTIC	n/a	1.5 m
0	1002782570	n/a	n/a	PLASTIC	n/a	3 m
0	1002782543	n/a	n/a	PLASTIC	n/a	2.13 m
0	1002782561	n/a	n/a	PLASTIC	n/a	1.5 m
0	1002782525	n/a	n/a	PLASTIC	n/a	1.5 m
0	1002782534	n/a	n/a	PLASTIC	n/a	0.6 m
0	1002782597	n/a	n/a	PLASTIC	n/a	1.37 m
0	1002782552	n/a	n/a	PLASTIC	n/a	1.22 m
0	1002782579	n/a	n/a	PLASTIC	n/a	3 m

FORMATION DETAILS Layer Value of "0" denotes a Null value and cannot be stratified and ordered.

Layer	Material	Material 2	Material 3	Colour	Top Depth	Bottom D	epth
1	FINE SAND	SILT	DENSE	GREY	0	0.9	m
2	FILL	SAND	SILT	BROWN	0.9	4.7	m
3	SAND	SILT	n/a	GREY	4.7	6	m
4	TILL	SAND	GRAVEL	BROWN	6	7.6	m

End of Record

n/a Easting Elev (masl	g: <null></null>		: 45.302237 : -75.553598	3		Well ID:	4 1	5790
Lot: Con: Municipality: Township: Street: City:	026 06 OTTAWA-CARLETON GLOUCESTER TO HAWTHORNE RO Ottawa	OWNSHIP	ROAD		Well Co	T Audit I ractor Licen ompletion Da Received Da	se: ate:	A074584 M02897 1844 07/08/2008 11/26/2008
Well Status: Prim. Use: Sec. Use: Boring Method:	Test Hole n/a n/a n/a				Depth t	Well Depth (to Bedrock (Depth to Water Ki	m): ter:	0 n/a
Test Method: Pump Set (m): SWL (ft) Final Level: Pump Rate: Recom. Rate:	n/a n/a 3.6 R/a m n/a m					Pipe Pump Test Flowi p Duration (I p Duration (ID ng: hr):	1002782586 1002782535 n/a n/a n/a
Layer	diversion denotes a Null v Margine ID Casin		stratified and ord Diamter Units n/a	s Material	Top Depth n/a	Bottom D		
0 10 0 10	h/a 0027 82597 0027 82543	n/a n/a n/a	n/a n/a n/a n/a	PLASTIC PLASTIC PLASTIC PLASTIC	n/a n/a n/a	1.22 1.37 2.13 1.5	m m m m	
0 10 0 10	002782579 002782561	n/a n/a n/a	n/a n/a n/a	PLASTIC PLASTIC PLASTIC	n/a n/a n/a	3 1.5 0.6	m m m	
0 10	n/a	n/a n/a	n/a n/a	PLASTIC PLASTIC	n/a n/a	3 1.5	m m	
	of "0" denotes a Null v Material		stratified and or Materia		Top Depth	Bottom D	enth	
1 2	FINE SAND FILL	SILT SAND	DENS SILT	E GREY	0 0.9	0.9 4.7	m m	
3 4	SAND TILL	SILT SAND	n/a GRAVE	GREY EL BROWN	4.7 6	6 7.6	m m	
Easting	a: <null></null>	1	: 45.307135			Well ID:	End	of Record

	Easting:	<null></null>	Latitude:	45.307135	Well ID: 7115790
n/a	Northing:	<null></null>	Longitude:	-75.55334	1113130
	Elev (masl):		1		
				Page 7 of 10	

A074584	ag:	т			1		53	103.53 026	.ot:
M02897	No:	Audit						06	on:
1844		ractor Licen						OTTAWA-CA	lunicipality:
07/15/2008		mpletion Da						GLOUCES	ownship:
11/26/2008	ate:	Received Da			ROAD	OAD AT RIDEAU	JRNE RO	HAWTHO Ottawa	Street: Sity:
0	m).	Well Depth (,					Test Hole	Vell Status:
0 n/a		o Bedrock (n/a	rim. Use:
1/4		Depth to Wa						n/a	ec. Use:
		Water Ki							Boring Method
1002782532	ID:	Pipe						n/a	est Method:
1002782571	ID	Pump Test						n/a n/a 1.7	ump Set (m):
n/a	-	Flowi	_						WL (ft)
n/a		p Duration (ĥ/a im	inal Level:
n/a	m):	p Duration (Pum					n/a n/a m n/a m	ump Rate: Recom. Rate:
							LS	1	CASING
					stratified and ordere	alue and cannot be		off g" denotes	Layer Value
	Depth	Bottom D	Top Depth	Material	Diamter Units	0		Case ID	Layer
	m	1.5	n/a	PLASTIC	n/a	n/a			
	m	1.37	n/a	PLASTIC	n/a	n/a	'n	002782597	0 1
	m	1.5	n/a	PLASTIC	n/a	n/a		002782561	
	m	3	n/a	PLASTIC	n/a	n/a) n	002782579	0 1
	m	1.5	n/a	PLASTIC	n/a	n/a		002782525	
	m	0.6	n/a	PLASTIC	n/a	n/a	l n		0 1
	m	2.13	n/a	PLASTIC	n/a	n/a	3 n	062782543	0 1
	m	1.22	n/a	PLASTIC	n/a	n/a	2 n	0022782552	0 1
	m	3	n/a	PLASTIC	n/a	n/a) n	00,2278129570	0 1
	Depth m	Bottom D	Top Depth 0	Colour GREY	Material 3 DENSE	alue and cannot be Material 2 SILT	es a Null val rial AND	Materi FINE SAI	Layer Value Layer 1
	m m m	0.9 4.7 6	0 0.9 4.7	GREY BROWN GREY	Material 3 DENSE SILT n/a	ralue and cannot be Material 2 SILT SAND SILT	es a Null val rial AND - D	ri/an DE of "0" denotes Materi FINE SAI FILL SAND	Layer Value Layer 1 2 3
	m m m m	0.9 4.7	0 0.9	GREY BROWN	Material 3 DENSE SILT	ralue and cannot be Material 2 SILT SAND	es a Null val rial AND - D	n/a N DE of "0" denotes <u>Materi</u> FINE SAI FILL	Layer Value <mark>Layer</mark> 1 2
of Record	m m m m	0.9 4.7 6 7.6	0 0.9 4.7	GREY BROWN GREY	Material 3 DENSE SILT n/a GRAVEL	ralue and cannot be Material 2 SILT SAND SILT SAND	es a Null val rial AND - D	Tr/an DE of "0" denotes Materi FINE SAI FILL SAND TILL	Layer Value Layer 1 2 3 4
of Record 5790	m m m m	0.9 4.7 6	0 0.9 4.7	GREY BROWN GREY	Material 3 DENSE SILT n/a	ralue and cannot be Material 2 SILT SAND SILT SAND Latitude:	es a Null val rial AND - D - >	Tr/an DE of "0" denotes FINE SAI FINE SAI FILL SAND TILL g: <null> g: <null></null></null>	Layer Value Layer 1 2 3 4 Eastin Northin
of Record 5790	m m m m	0.9 4.7 6 7.6	0 0.9 4.7	GREY BROWN GREY	Material 3 DENSE SILT n/a GRAVEL 45.305492	ralue and cannot be Material 2 SILT SAND SILT SAND Latitude:	es a Null val rial AND - D - >	Tr/an DE of "0" denotes FINE SAI FINE SAI FILL SAND TILL g: <null> g: <null></null></null>	Layer Value Layer 1 2 3 4 Eastin
5790 A074584 M02897	m m m End Cag: No:	0.9 4.7 6 7.6 Well1D: T Audit 1	0 0.9 4.7 6	GREY BROWN GREY	Material 3 DENSE SILT n/a GRAVEL 45.305492	ralue and cannot be Material 2 SILT SAND SILT SAND Latitude:	es a Null val rial AND - D - >	Tr/an DE of "0" denotes Materi FINE SAI FINE SAI FILL SAND TILL g: <null> g: <null> g: <null> l): 94.41</null></null></null>	Layer Value Layer 1 2 3 4 Eastin Northin Elev (mas cot: con:
A074584 M02897 1844	m m m End End ag: No: ise:	0.9 4.7 6 7.6 Well ID: T Audit I ractor Licen	0 0.9 4.7 6	GREY BROWN GREY	Material 3 DENSE SILT n/a GRAVEL 45.305492	Alue and cannot be Material 2 SILT SAND SILT SAND Latitude: Longitude:	es a Null vai Tital AND - D - - - - - - - - - - - - -	Tr/an DE of "0" denotes FINE SAI FINE SAI FILL SAND TILL g: <null> g: <null> g: <null> 026 06 OTTAWA-CA</null></null></null>	Layer Value Layer 1 2 3 4 Eastin Northin Elev (mas cot: con: funicipality:
A074584 M02897 1844 07/14/2008	m m m End End ag: No: se: ate:	0.9 4.7 6 7.6 Well ID: T Audit I ractor Licen ompletion Da	0 0.9 4.7 6 Cont Well Co	GREY BROWN GREY	Material 3 DENSE SILT n/a GRAVEL 45.305492 -75.552495	Alue and cannot be Material 2 SILT SAND SILT SAND Latitude: Longitude:	es a Null val Tital AND - D - - - - - CARLETON STER TO	Tr/an DE of "0" denotes FINE SAI FINE SAID TILL SAND TILL g: <null> g: <null> g: <null> 1): 94.41 026 06 OTTAWA-CA GLOUCES</null></null></null>	Layer Value Layer 1 2 3 4 Eastin Northin Elev (mas cot: con: funicipality: fownship:
A074584 M02897 1844	m m m End End ag: No: se: ate:	0.9 4.7 6 7.6 Well ID: T Audit I ractor Licen	0 0.9 4.7 6 Cont Well Co	GREY BROWN GREY	Material 3 DENSE SILT n/a GRAVEL 45.305492 -75.552495	Alue and cannot be Material 2 SILT SAND SILT SAND Latitude: Longitude:	es a Null val Tital AND - D - - - - - CARLETON STER TO	Tr/an DE of "0" denotes FINE SAI FINE SAID TILL SAND TILL g: <null> g: <null> g: <null> 1): 94.41 026 06 OTTAWA-CA GLOUCES</null></null></null>	Layer Value Layer 1 2 3 4 Eastin Northin Elev (mas cot: con: funicipality:
A074584 M02897 1844 07/14/2008 11/26/2008	m m End Gag: No: se: ate: ate:	0.9 4.7 6 7.6 Well ID: T Audit 1 ractor Licen ompletion Da Received Da	0 0.9 4.7 6 Cont Well Co	GREY BROWN GREY	Material 3 DENSE SILT n/a GRAVEL 45.305492 -75.552495	Alue and cannot be Material 2 SILT SAND SILT SAND Latitude: Longitude:	es a Null val Tital AND - D - - - - - - - - - - - - -	Tr/aN DE of "0" denotes FINE SAI FINE SAI FILL SAND TILL 32 (<null> 9: <null> 9: <null> 026 06 0TTAW-CA GLOUCES HAWTHO Ottawa</null></null></null>	Layer Value Layer 1 2 3 4 Eastin Northin Elev (mas con: Municipality: cownship: Street: Street:
57790 A074584 M02897 1844 07/14/2008 11/26/2008	m m m End Gag: No: Ise: ate: ate: m):	0.9 4.7 6 7.6 Well ID: T Audit I ractor Licen ompletion Da	0 0.9 4.7 6 Cont Well Co	GREY BROWN GREY	Material 3 DENSE SILT n/a GRAVEL 45.305492 -75.552495	Alue and cannot be Material 2 SILT SAND SILT SAND Latitude: Longitude:	es a Null val Tital AND - D - - - - - - - - - - - - -	Tr/an DE of "0" denotes FINE SAI FINE SAI FILL SAND TILL g: <null> g: <null> g: <null> 026 06 OTTAWA-CA GLOUCES HAWTHO</null></null></null>	Layer Value Layer 1 2 3 4 Eastin Northin Elev (mas cot: con: Municipality: rownship: street:
57790 A074584 M02897 1844 07/14/2008 11/26/2008	m m m End Gag: No: se: ate: ate: m): m):	0.9 4.7 6 7.6 WellID: T Audit I ractor Licen Dampletion Da Received Da	0 0.9 4.7 6 Cont Well Co Depth t	GREY BROWN GREY	Material 3 DENSE SILT n/a GRAVEL 45.305492 -75.552495	Alue and cannot be Material 2 SILT SAND SILT SAND Latitude: Longitude:	es a Null val Tital AND - D - - - - - - - - - - - - -	Tr/aN DE of "0" denotes FINE SAI FINE SAI FILL SAND TILL 32 Control GLOUCES HAWTHO Ottawa Test Hole	Layer Value Layer 1 2 3 4 Eastin Northin Elev (mas cot: comship: itreet: city: Vell Status:
57790 A074584 M02897 1844 07/14/2008 11/26/2008	m m m End ag: No: se: ate: ate: m): m): ter:	0.9 4.7 6 7.6 WellID: T Audit I ractor Licen Dampletion Da Received Da Well Depth (to Bedrock (0 0.9 4.7 6 Cont Well Co Depth t	GREY BROWN GREY	Material 3 DENSE SILT n/a GRAVEL 45.305492 -75.552495	Alue and cannot be Material 2 SILT SAND SILT SAND Latitude: Longitude:	es a Null val Tital AND - D - - - - - - - - - - - - -	Tr/a N DE of "0" denotes FINE SAI FINE SAI FILL SAND TILL g: <null> g: <null> g: <null> 026 06 0TTAWA-CA GLOUCES HAWTHO Ottawa Test Hole n/a n/a</null></null></null>	Layer Value Layer 1 2 3 4 Eastin Northin Elev (mas cot: con: Aunicipality: ownship: Street: City: Vell Status: Prim. Use:
57790 A074584 M02897 1844 07/14/2008 11/26/2008 0 n/a 1002782595	m m m End d ag: No: se: ate: ate: ate: m): ter: nd: ID:	0.9 4.7 6 7.6 Well ID: T Audit I ractor Licen pompletion Da Received Da Received Da Well Depth (Depth to Wai Water Ki Pipe	0 0.9 4.7 6 Cont Well Co Depth t	GREY BROWN GREY	Material 3 DENSE SILT n/a GRAVEL 45.305492 -75.552495	Alue and cannot be Material 2 SILT SAND SILT SAND Latitude: Longitude:	es a Null val Tital AND - D - - - - - - - - - - - - -	Tr/aN DE of "0" denotes FINE SAI FINE SAI FILL SAND TILL 32 92 (Layer Value Layer 1 2 3 4 Eastin Northin Elev (mas cot: con: Municipality: cownship: cornship: c
A074584 M02897 1844 07/14/2008 11/26/2008 0 n/a 1002782595 1002782595	m m m End ag: No: se: ate: ate: ate: ate: ind: ID: ID:	0.9 4.7 6 7.6 Well ID: T Audit I ractor Licen mpletion Da Received Da Received Da Well Depth (Depth to War Water Ki Pipe Pump Test	0 0.9 4.7 6 Cont Well Co Depth t	GREY BROWN GREY	Material 3 DENSE SILT n/a GRAVEL 45.305492 -75.552495	Alue and cannot be Material 2 SILT SAND SILT SAND Latitude: Longitude:	es a Null val Tital AND - D - - - - - - - - - - - - -	Tr/aN DE of "0" denotes FINE SAI FINE SAI FILL SAND TILL 32 92 (Layer Value Layer 1 2 3 4 Eastin Northin Elev (mas ot: con: Aunicipality: fownship: Street: City: Vell Status: Prim. Use: Sec. Use: Boring Method fest Method: Pump Set (m):
4074584 M02897 1844 07/14/2008 11/26/2008 0 n/a 1002782595 1002782594 n/a	m m m End ag: No: se: ate: ate: ate: ate: ind: ID: ID ng:	0.9 4.7 6 7.6 Well ID: T Audit I ractor Licen ompletion Da Received Da Received Da Well Depth (to Bedrock (Depth to Wai Water Ki Pipe Pump Test Flowi	0 0.9 4.7 6 Vell Co Vell Co	GREY BROWN GREY	Material 3 DENSE SILT n/a GRAVEL 45.305492 -75.552495	Alue and cannot be Material 2 SILT SAND SILT SAND Latitude: Longitude:	es a Null val Tital AND - D - - - - - - - - - - - - -	Tr/a N DE of "0" denotes FINE SAI FINE SAI FILL SAND TILL 9: <null> 9: <null> 9: <null> 026 06 OTTAWA-CA GLOUCES HAWTHO Ottawa Test Hole n/a n/a r/a T.3</null></null></null>	Layer Value Layer Layer 1 2 3 4 Eastin Northin Elev (mas ot: con: Aunicipality: conship: Street: City: Vell Status: City: Vell Status: City: Vell Status: City: Coring Method Cest Method: Comp Set (m): CityL (ft)
57790 A074584 M02897 1844 07/14/2008 11/26/2008 0 n/a 1002782595 1002782595 1002782544 n/a n/a	m m m End ag: No: se: ate: ate: m): se: ate: nd: lD: lD ng: hr):	0.9 4.7 6 7.6 Well ID: T Audit 1 ractor Licen ompletion Da Received Da Received Da Well Depth (to Bedrock (Depth to War Water Ki Pipe Pump Test Flowi p Duration (I	0 0.9 4.7 6 Cont Well Co Depth t	GREY BROWN GREY	Material 3 DENSE SILT n/a GRAVEL 45.305492 -75.552495	Alue and cannot be Material 2 SILT SAND SILT SAND Latitude: Longitude:	es a Null val Tital AND - D - - - - - - - - - - - - -	Tr/a N DE of "0" denotes FINE SAI FINE SAI FILL SAND TILL g: <null> g: <null> g: <null> 026 06 OTTAWA-CA GLOUCES HAWTHO Ottawa Test Hole n/a n/a r/a T/3 R/a m</null></null></null>	Layer Value Layer 1 2 3 4 Eastin Northin Elev (mas cot: con: Aunicipality: conship: street: city: Vell Status: rim. Use: sec. Use: soring Method rest Method: rump Set (m): SWL (ft) rimal Level:
57790 A074584 M02897 1844 07/14/2008 11/26/2008 0 n/a 1002782595	m m m End ag: No: se: ate: ate: m): se: ate: nd: lD: lD ng: hr):	0.9 4.7 6 7.6 Well ID: T Audit I ractor Licen ompletion Da Received Da Received Da Well Depth (to Bedrock (Depth to Wai Water Ki Pipe Pump Test Flowi	0 0.9 4.7 6 Cont Well Co Depth t	GREY BROWN GREY	Material 3 DENSE SILT n/a GRAVEL 45.305492 -75.552495	Alue and cannot be Material 2 SILT SAND SILT SAND Latitude: Longitude:	es a Null val Tital AND - D - - - - - - - - - - - - -	Tr/a N DE of "0" denotes FINE SAI FINE SAI FILL SAND TILL 9: <null> 9: <null> 94.41 026 06 0TTAWA-CA GLOUCES HAWTHO Ottawa Test Hole n/a n/a n/a n/a n/a m/a m/a m/a m/a m/a m/a m/a m/a m/a m</null></null>	Layer Value Layer Layer 1 2 3 4 Eastin Northin Elev (mas ot: con: Aunicipality: conship: Street: City: Vell Status: City: Vell Status: City: Vell Status: City: Coring Method Cest Method: Comp Set (m): CityL (ft)
A074584 M02897 1844 07/14/2008 11/26/2008 0 n/a 1002782595 1002782595 1002782544 n/a n/a	m m m End ag: No: se: ate: ate: m): se: ate: nd: lD: lD ng: hr):	0.9 4.7 6 7.6 Well ID: T Audit 1 ractor Licen ompletion Da Received Da Received Da Well Depth (to Bedrock (Depth to War Water Ki Pipe Pump Test Flowi p Duration (I	0 0.9 4.7 6 Cont Well Co Depth t	GREY BROWN GREY	Material 3 DENSE SILT n/a GRAVEL 45.305492 -75.552495 ROAD	Alue and cannot be Material 2 SILT SAND SILT SAND Latitude: Longitude: N DWNSHIP DAD AT RIDEAU	es a Null vai Tital AND - D - - - - - - - - - - - - -	Tr/a N DE of "0" denotes FINE SAI FINE SAI FINE SAI FILL SAND TILL 9: <null> 9: <null> 9: <null> 026 06 0TTAWA-CA GLOUCES HAWTHO Ottawa Test Hole n/a n/a r/a n/a T.3 H/a m n/a mAIL</null></null></null>	Layer Value Layer 1 2 3 4 Eastin Northin Elev (mas ot: con: Aunicipality: cownship: co
57790 A074584 M02897 1844 07/14/2008 11/26/2008 0 n/a 1002782595 1002782595 1002782544 n/a n/a	m m m m End d ag: No: se: ate: ate: ate: ate: ind: ID: ID: ID: ID: ng: hr): m):	0.9 4.7 6 7.6 Well ID: T Audit I ractor Licen ompletion Da Received Da Received Da Well Depth (Depth to Wai Water Ki Pipe Pump Test Flowi p Duration ()	0 0.9 4.7 6 Vell Co Depth t	GREY BROWN GREY BROWN	Material 3 DENSE SILT n/a GRAVEL 45.305492 -75.552495 ROAD	ralue and cannot be	es a Null val	Tr/a N DE of "0" denotes FINE SAI FINE SAI FINE SAI FILL SAND TILL 9: <null> 9: <null> 9: <null> 94.41 026 06 0TTAWA-CA GLOUCES HAWTHO Ottawa Test Hole n/a n/a n/a n/a n/a n/a n/a m/a m/a m/a m/a m/a m/a m/a m/a m/a m</null></null></null>	Layer Value Layer 1 2 3 4 Eastin Northin Elev (mas oct: con: Municipality: cownship: coris funicipality: cownship: cownship: covnship: c
57790 A074584 M02897 1844 07/14/2008 11/26/2008 0 n/a 1002782595 1002782595 1002782544 n/a n/a	m m m m End d ag: No: se: ate: ate: ate: ate: ate: iD: iD iD iD ing: hr): m):	0.9 4.7 6 7.6 Well ID: T Audit I ractor Licen ompletion Da Received Da Received Da Well Depth (Depth to Wai Water Ki Pipe Pump Test Flowi p Duration (i p Duration (i	0 0.9 4.7 6 Vell Co Vell Co Depth t Pum Pum	GREY BROWN GREY BROWN	Material 3 DENSE SILT n/a GRAVEL 45.305492 -75.552495 ROAD	ralue and cannot be Material 2 SILT SAND SILT SAND Latitude: Latitude: Longitude: N DWNSHIP DAD AT RIDEAU	es a Null val rial AND - D - - - - - - - - - - - - -	Tr/a N DE of "0" denotes FINE SAI FINE SAI FILL SAND TILL g: <null> g: <null> g: <null> g: <null> 026 06 0TTAWA-CA GLOUCES HAWTHO Ottawa Test Hole n/a n/a n/a n/a n/a n/a n/a n/a mAla mAla MamAIL communication communication fill sand sand sand sand sand sand sand sand</null></null></null></null>	Layer Value Layer Value Layer 1 2 3 4 Eastin Northin Elev (mas cot: Con: Aunicipality: Counship: Street: City: Vell Status: Prim. Use: Socing Method rest Method: Power State: Case:
57790 A074584 M02897 1844 07/14/2008 11/26/2008 0 n/a 1002782595 1002782595 1002782544 n/a n/a	m m m m End d ag: No: se: ate: ate: ate: ate: ind: ID: ID: ID: ID: ng: hr): m):	0.9 4.7 6 7.6 Well ID: T Audit I ractor Licen ompletion Da Received Da Received Da Well Depth (Depth to Wai Water Ki Pipe Pump Test Flowi p Duration ()	0 0.9 4.7 6 Vell Co Depth t	GREY BROWN GREY BROWN	Material 3 DENSE SILT n/a GRAVEL 45.305492 -75.552495 ROAD	ralue and cannot be	es a Null val rial AND - D - - - - - - - - - - - - -	Tr/a N DE of "0" denotes FINE SAI FINE SAI FINE SAI FILL SAND TILL 9: <null> 9: <null> 9: <null> 94.41 026 06 0TTAWA-CA GLOUCES HAWTHO Ottawa Test Hole n/a n/a n/a n/a n/a n/a n/a m/a m/a m/a m/a m/a m/a m/a m/a m/a m</null></null></null>	Layer Value Layer Value Layer 1 2 3 4 Eastin Northin Elev (mas cot: con: Municipality: cownship: cownship: cownship: cownship: com: Municipality: cownship: com: Municipality: cownship: com: Municipality: cownship: com: Municipality: cownship: com: Municipality: cownship: com: Municipality: cownship: com: Municipality: cownship: com: Municipality: cownship: com: Municipality: cownship: com: Municipality: cownship: com: Municipality: cownship: com: Municipality: cownship: com: Cast Method: Cast Method:

0	1002782534	n/a	n/a	PLASTIC	n/a	0.6	m
0	1002782588	n/a	n/a	PLASTIC	n/a	1.5	m
0	1002782579	n/a	n/a	PLASTIC	n/a	3	m
0	1002782552	n/a	n/a	PLASTIC	n/a	1.22	m
0	1002782570	n/a	n/a	PLASTIC	n/a	3	m
0	1002782543	n/a	n/a	PLASTIC	n/a	2.13	m
0	1002782561	n/a	n/a	PLASTIC	n/a	1.5	m

FORMATION DETAILS

Layer Value of "0" denotes a Null value and cannot be stratified and ordered.

Layer	Material	Material 2	Material 3	Colour	Top Depth	Bottom De	epth
1	FINE SAND	SILT	DENSE	GREY	0	0.9	m
2	FILL	SAND	SILT	BROWN	0.9	4.7	m
3	SAND	SILT	n/a	GREY	4.7	6	m
4	TILL	SAND	GRAVEL	BROWN	6	7.6	m

n	Eastin Northin Elev (mas	g: <null></null>		e: 45.307865 e: -75.55865			Well ID:	'11	5790
LOCATION	Lot: Con: Municipality: Township: Street: City:	026 06 OTTAWA-CARLETC GLOUCESTER HAWTHORNE I Ottawa		J ROAD		Well Co	Ta Audit N ractor Licens ompletion Da Received Da	se: te:	A074584 M02897 1844 07/14/2008 11/26/2008
WELL	Well Status: Prim. Use: Sec. Use: Boring Method	Test Hole n/a n/a : n/a				Depth	Well Depth (r to Bedrock (r Depth to Wat Water Kir	n): er:	0 n/a
PUMP TEST	Test Method: Pump Set (m): SWL (ft) Final Level: Pump Rate: Recom. Rate: CASINC Layer Value	n/a n/a fi/a m n/a m n/a m fi/a m fi/a m fi/a m fi/a m fi/a m	value and cannot be	e stratified and o	rdered.		Pipe Pump Test I Flowir p Duration (r p Duration (r	D ng: nr):	1002782599 1002782589 n/a n/a n/a
	Layer		ing Diamter	Diamter Uni		Top Depth	Bottom D	epth	
	0 1	000000000000000000000000000000000000000	n/a	n/a	PLASTIC	n/a	1.5	m	
	0 1	002782525	n/a	n/a	PLASTIC	n/a	1.5	m	
	0 1	002782543	n/a	n/a	PLASTIC	n/a	2.13	m	
	0 1	002737824534	n/a	n/a	PLASTIC	n/a	0.6	m	
	0 1	00/2782561	n/a	n/a	PLASTIC	n/a	1.5	m	
		002782579	n/a	n/a	PLASTIC	n/a	3	m	
	0 1	002782552	n/a	n/a	PLASTIC	n/a	1.22	m	
	0 1	092782597	n/a	n/a	PLASTIC	n/a	1.37	m	
		0 0/2a78/29 570 n/a	n/a	n/a	PLASTIC	n/a	3	m	
	FORMA	TAN DETAIL	S						
	Layer Value	of "0" denotes a Nul	value and cannot be	e stratified and o	rdered.				
	Layer	Material	Material 2	Materia	al 3 Colour	Top Depth	Bottom D	epth	
	1	FINE SAND	SILT	DENS	GREY	0	0.9	m	

0.9 n	n
4.7 n	n
6 n	n
7.6 n	n
	4.7 r 6 r

Lot:

A082844

End of Record

Page 9 of 10

LOCATION	Lot: Con: Municipality: Township: Street: City:	OTTAWA-CARLETON GLOUCESTER TOWNSHIP TW#7 HOAWTHORNE RD.	Tag: Audit No: Contractor License: Well Completion Date: Received Date:	A082844 Z101832 1558 05/25/2010 08/04/2010
WELL	Well Status: Prim. Use: Sec. Use:	GLOUCESTER Water Supply n/a n/a : Rotary (Reverse)	Well Depth (m): Depth to Bedrock (m): Depth to Water: Water Kind:	29.86 n/a mt Untested
PUMP TEST	Test Method: Pump Set (m): SWL (ft) Final Level: Pump Rate: Recom. Rate:	CLEAR 23.38 4.41 7.01m 27.3LPM 27.3LPM	Pipe ID: Pump Test ID Flowing: Pump Duration (hr): Pump Duration (m):	1003263559 1003263560 n/a 6 0
		DETAILS of "0" denotes a Null value and cannot be stratified and	ordered.	

Layer	Case ID	Casing Diamter	Diamter Units	Material	Top Depth	Bottom Depth
1	1003263568	15. 86	cm	STEEL	-0.45	6.4 m

FORMATION DETAILS

Layer Value of "0" denotes a Null value and cannot be stratified and ordered.

Layer	Material	Material 2	Material 3	Colour	Top Depth	Bottom Depth
1	TOPSOIL	STONES	PACKED	BROWN	0	4.26 m
2	SANDSTONE	n/a	HARD	GREY	4.26	29.86 m

End of Record

	Easting	g: <null></null>	Latitude:	45.302183	Well ID: 72	06093
n	a Northing	g: <null></null>	Longitude:	-75.551672	2	
	Elev (mas	l): 89.57				
z	Lot:	027		1	Tag:	A089801
0	Con:	06			Audit No:	Z103282
Ē	Municipality:	OTTAWA-CARLETON			Contractor License:	3749
4	Township:	GLOUCESTER TO	WNSHIP		Well Completion Date:	07/18/2013
ŏ	Street:	35 SAPPERS RIDO	GE		Received Date:	08/12/2013
	City:	Ottawa				
	Well Status:	<null></null>			Well Depth (m):	47.244
1	Prim. Use:	n/a			Depth to Bedrock (m):	n/a
ME	Sec. Use:	n/a			Depth to Water:	ft
>	Boring Method:	Rotary (Convent.)			Water Kind:	FRESH
⊢	Test Method:	CLEAR			Pipe ID:	1004977760
S E	Pump Set (m):	130			Pump Test ID	1004977761
Ē	SWL (ft)	25			Flowing:	n/a
٥.	Final Level:	34 ft			Pump Duration (hr):	1
MP	Pump Rate:	10 GPM			Pump Duration (m):	n/a
P	Recom. Rate:	n/a GPM				

CASING DETAILS

Layer Value of "0" denotes a Null value and cannot be stratified and ordered.

Layer	Case ID	Casing Diamter	Diamter Units	Material	Top Depth	Bottom Depth
1	1004977768	5.	inch	STEEL	40	-2 ft
		625				

FORMATION DETAILS

Layer Value of "0" denotes a Null value and cannot be stratified and ordered.

n/a					
n, a	LOOSE	n/a	0	8	ft
GRAVEL	PACKED	GREY	8	24	ft
n/a	n/a	n/a	24	155	ft
	- ,	· · · · · · · · · · · · · · · · · · ·			

End of Record

Page 10 of 10

Appendix B Photographs

Photo 1 - View of drilled water well on the Site used during pumping test and proposed building area showing ground improvement.

Photo 2 - View of ground improvement area.

Site Photographs

Photo 3 - Wellhead at pumped water well A342117.

Photo 4 - Observation well (ID A305146) used during pumping test for monitoring of potential interference effects.

Site Photographs

Photo 5 - Observation well (ID A295342) used during pumping test for monitoring of potential interference effects.

Photo 6 - Observation well (ID A342260) used during pumping test for monitoring of potential interference effects.

Site Photographs

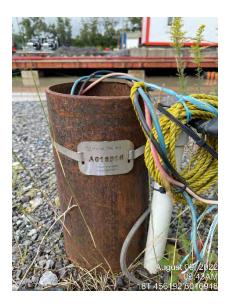


Photo 7 - Observation well (ID A018916) used during pumping test for monitoring of potential interference effects.

Photo 8 - Observation well at 4885 Hawthorne Road used during pumping test for monitoring of potential interference effects.

Site Photographs

Appendix C Well Record A342117 and WSP Well Certificate

CERTIFICATE OF WELL COMPLIANCE

I (Jeremy Hanna) AIR ROCK DRILLING CO. LTD. - DO HEREBY CERTIFY

that I am licensed to drill water wells in the Province of Ontario, and that I have

supervised the drilling of the water well on the property of : STERATE CONSOLIDATED HOLDING OWNER: ouce 3 AN# OUCE Ottawa-Carleton / Geographical Township of

I CERTIFY FURTHER that, I am aware of the well drilling requirements, the guidelines, recommendations and regulations of the Ministry of the Environment governing well installations in the Province of Ontario, and the standards specified in any subdivision agreement and hydrogeological report applicable to this site and City Standards.

AND DO HEREBY CERTIFY THAT the said well has been drilled, cased, grouted (cement or bentonite) as applicable and constructed in strict conformity with the standards required.

JUL Signed this Day of Jeremy Hanna (T3632) Air Rock Drilling Co. Ltd. (C-7681

The Engineer on behalf of the Landowner set out above, Certifies that he/she has inspected the well and it was constructed in accordance with the specifications in O.Reg 903, this report and the Hydrogeological Report with regards to casing length and grouting requirements.

		POFESSION	
	Signed this 16th	day of Aug 2022 3 PROFESSIONAL SHOT	
		R.A. PASSMORE 100008723 202511	
	Elathi-	2022-09-16 PAGA 342117	
	(Engineer)	NCE OF ON	
•••	Shaping our future together Ensemble, formons notre avenir	city of OTRAWS Ville d'Ottigwa	1.
	<u>.</u>	Client Service Sentre Centre de Service 2007	

	Ontario 🕅	Ministry of the Er Conservation and		Well Ta	ag#:A34	2117 Below)			Record
	Measurements recorde		Imperial	A	342	117	Regulation 903	B Ontario Water Re Page	of
	Well Owner's Infon				- 10-1	(
	First Name	and the second		frate	/AHL	E-mail Address	s Inc		i Constructed Vell Owner
	Mailing Address (Street 1	Number/Name)	1000	Munic	ipality	Province	Postal Code	Telephone No. (in	~
	SOV Y1 Well Location	estar J	Tleet.	/(01	1001,0	soquer, O	NR RIP	1 DING	
	Address of Well Location			Towns	SIAUC	ESTER	0122640	Doncession D7 6 P	F.
	Couply/District/MURICipal		ETERTIA (City		A STEP	2 Drai	vince Post Itario	
	UTM Operatinates Zone.	Easting	Northing		ipal Plan and Su	ibiot Number	Oth		Laboratoria de la construcción d
	NAC 8 3 8	ack Materials/Aban	Johnment Sea		ee instructions or	441-1380 1 the back of this form)			
	General Colour	Nost Common Meteri	el :	Other Ma	aterials	Genar	al Description	De From	pth (mla)
		gravel	, Has	d la	nE	culder		0'	46'
	(Greya B	lackh	ines	tone	ME	hite Sond	Stoner	Wix 46'	140
	i								
								- 1	
			i						
	Dooth Sat at (math		er Space Balant Used		/olume Placed	R After test of well yield, w	esults of Well Yie		ecovery
	Depth Set at (m(1) From To	(Material a	and Type)	7	(m@D)	Clear and sand fre		Water Level Time	
	50 0' 1	Negtion	nent D	wry	12.48	If pumping discentinued		100 24	301711
							1	29.3 1	19.2
						Pump intake set at (n(m)		9.4 2	19-1
	Method of Constr			Weil Use		Pumping rate (Vmin 4GP		A.5 3	7.1_
	Rotary (Conventional)		mestic	Commercial Municipal	Not used	Duration of pumping	4	$P_{1}6$ $\frac{4}{2}$	H.
,	Boring	Digging Digging	gation 🗌	Test Hole Cooling & Air Co	Monitoring Inditioning	Final water level end of p		19.7 5 79.9 10-	A.
	Air percussion		lustrial ner, specify			If flowing give rate (Vmin/G		$R_{\rm D}$ i 15	8-24
	inside Open Hole OR	Action Record - Cas Material Wall	ing Depth (m		atus of Well ater Supply	Recommended pump de	20 1	30,3 20	10-0-
-	Diameter (cm(in) (Galvanized, Fib Concrete, Plasti	reglass, Thickness	From		placement Well st Hole	100'	25	30.4 25	
(6/49 5100	Q188"	+2' 5		echarge Well watering Well	(Vmin/GPM)	30	30,5 30	
-	6" Open.	the i	52' 1	40 00	servation and/or initioning Hole	Well production (I/mix/GP		30-6 40	
-				(Cc	eration Instruction)	Disinfested?	50 5	30.7 50	
-	Constru	ction Record - Scre	en	ins	andoned, ufficient Supply andoned, Poor	Yes) No	603 Map of Well Loca		¥
-	Outside Diameter (Plastic, Galvanize	d, Steel) Sict No.	Depth (m/	Wa	andoned, Poor ater Quality andoned, other,	Please provide a map be	low following instru		
-	(cm/in) (i lastic, Galvaria				ecify	la	d.		N
-					ier, specify	Rideau	17,50		-
7					meter	KICC	Ľ.		Å
	Vater found at Depth Kind	ther, specify		Depth (m/ft) From To	Diameter (cm/in)	- \		710	
V	Vater found at Depth Kind of 34-tm/00 Gas 00	of Water: Fresh	Unipsted C	52	93/4	43	01		
V	Vater found at Depth Kind of	of Water: Fresh		2' Ko	64	Somm Somm	E		
		her, specify	echnician Inf	ormation		SAR	EET		
Bi L	usiness Name of Well Contr		Col IT	Well Contract	tor's Licence No.				•
5	usiness Address (Street Nur	nber/Name)	Prod	Municipality	1	Comments:	20.0	10	E-
Pr	ovince Postal C		-mail Address	Fichn	nend	147-00(Mae	100	11
C Bu	Telephone No. (inc. area co	ADZO de) Name of Well Teo	chnician () ast N	ame, First Nor		Well owner's Date Packa	· · · · · · · · · · · · · · · · · · ·	Ministry Use O	nly
(10 HANI	VA JA	eremi	-/	package Seifvered Date Work	XUMRO		047
	3630	Anna Colo			10 20 20	Desto	manl	eceived.	
050	6E (2020/05) @ Queen's Printer	r før Ontario/ 2920		Minis	stry's Copy		L	· · · · · · · · · · · · · · · · · · ·	

Ministry's	Copy
------------	------

Appendix D Calibration Records

		Project number:	12580314	
Date (mm/dd/yyyy):	08/09/2022	Project name:	Consolidated Fastfrate, <u>HydroG Assessment</u>	
User (print name):	Jason Geraldi			
		Location:	301 Somme Street, Ottawa	
Additional equipmer (S/N 15100E283721)	nt control numbers and de	scriptions: <u>Hach</u>	Pocket Colorimeter II	

Field procedure before use:

		Check when completed
•	Check batteries are charged. Replace AAA batteries if needed.	\boxtimes
•	Review applicable MSDS sheets for the DPD foil pillows (21055-69 & 21056-69 – in equipment case).	\boxtimes
•	Proceed with a Spec $\sqrt{10}$ Secondary Standard repeatability test if required. Please note that this test is done at the shop. Please see pages 1-43 and 1-44 (Pocket Colorimeter) or 1-47 and 1-48 (Pocket Colorimeter II) of instruction manual.	
•	Proceed with a User-Entered Calibration if the project requires it. This is usually done at the shop. Please see pages 2-15 to 2-27 in instruction manual.	

Filing: Field file

Signature:

Control number:	PET-TE-25	Project number:	12580314
Date (mm/dd/yyyy):	08/09/2022	Project name:	Consolidated Fastfrate
User (print name):	Jason Geraldi		HydroG Assessment
		Location:	301 Somme Street,
			Ottawa
Calibration solution(s): AutoCal Stand	ard	
Lot #(s):	1GJ470		
Supplier(s):	Maxim		
Expiration date(s): OCT/22		
Additional information	on: Horiba U-52 (S/N)	(PX0PRWK)	

Field procedure before use:

		Check when completed
•	Wash the sensors in distilled water.	
•	Fill the calibration beaker to line on the beaker with auto-cal solution.	
•	Immerse the probe into the beaker, and turn the power on.	
•	For the U-10: press the MODE key to put the unit into the MAINT mode, and set the lower cursor to AUTO.	\boxtimes
•	For the U-22: press the CAL key in one of the measurement modes.	
•	Press the ENT key to start the AUTO calibration. When calibration is complete, the readout will show END.	
•	Switch to MEAS mode, and check the calibration in AUTO-CAL solution.	\boxtimes
•	The instrument is ready for use.	
Nc	te: Conductivity measured in mS/cm not μ S/cm as commonly measured by pocket meters. Multiply value by 1,000 to convert to μ S/cm.	

Filing: Field file Signature:

Control number:	PET-TE-3	Project number:	12580314	
Date (mm/dd/yyyy):	08/09/2022	Project name:	Consolidated	l Fastfrate
User (print name):	Jason Geraldi		HydroG Asse	essment
		Location:	301 Somme S	
			Ottawa	
Additional equipmen	it control numbers and desc	criptions: Gaste	ech NP-204 nat	ural gas
	thane detection at wellhead			gui
Field procedure bef	ore use:			
				Check when completed
Check for damag	es			\boxtimes
-	ment has been properly calibr	ated		\boxtimes
	ment has been property callor	alco		
Note: The equipmen print out.	nt does not require a data entr	ry sheet, so only one	page will	

Filing: Field file

Signature:

Control number: Date (mm/dd/yyyy): User (print name):	PET-WL-25 08/09/2022 Jason Geraldi	Project number: Project name: Location:	12580314 Consolidated Fastfrate HydroG Assessment 301 Somme Street,
Additional equipmen S/N 4009-T	t control numbers and de	scriptions: <u>Heror</u>	Ottawa n Instruments, Dipper-T 100 m,

Field procedure before use:

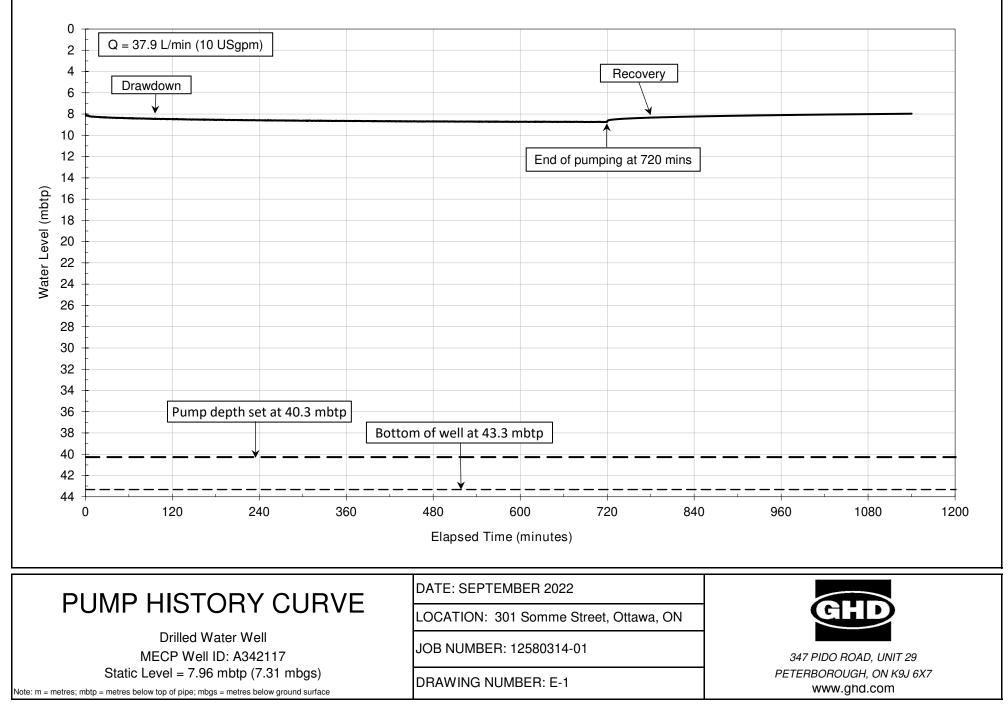
		Check when completed
•	Check for broken or missing parts.	
•	Check battery	\boxtimes
•	Check operation of buzzer.	\boxtimes
•	Check operation of signal light.	\boxtimes
•	Test probe in water to ensure unit operates, both visually and audibly.	\boxtimes
•	Check cable.	\boxtimes

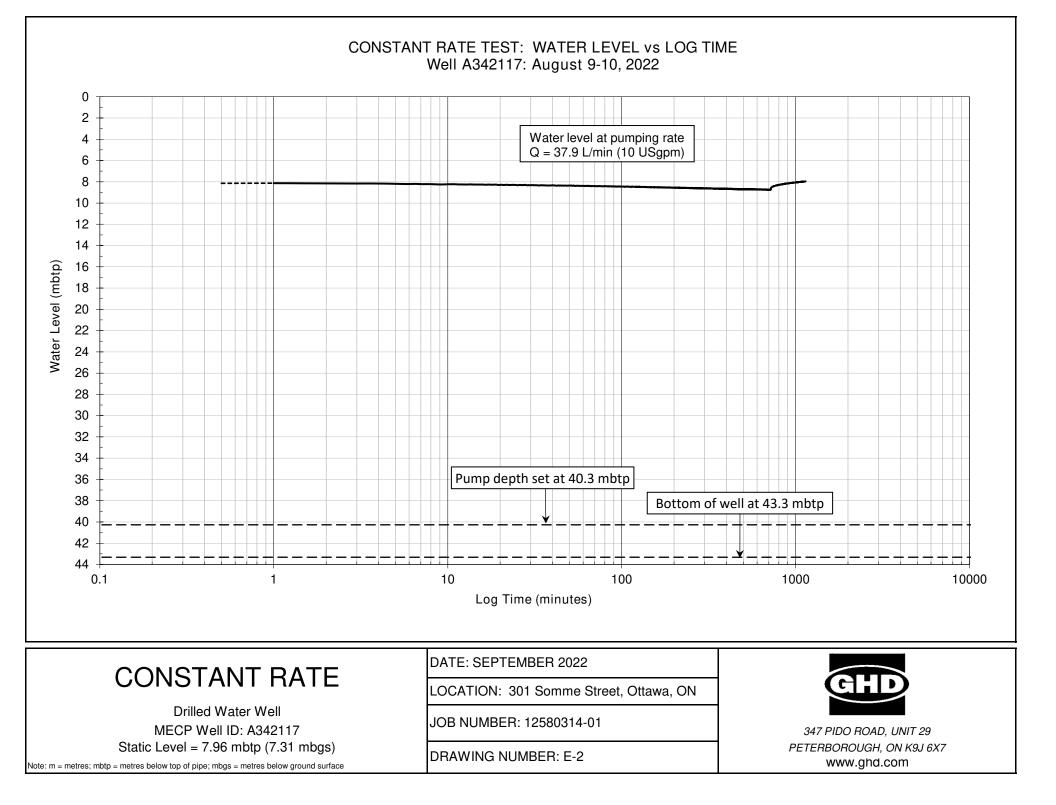
Filing:	Field	file
Signatu	ure:	

е	\wedge
	1/19
_	

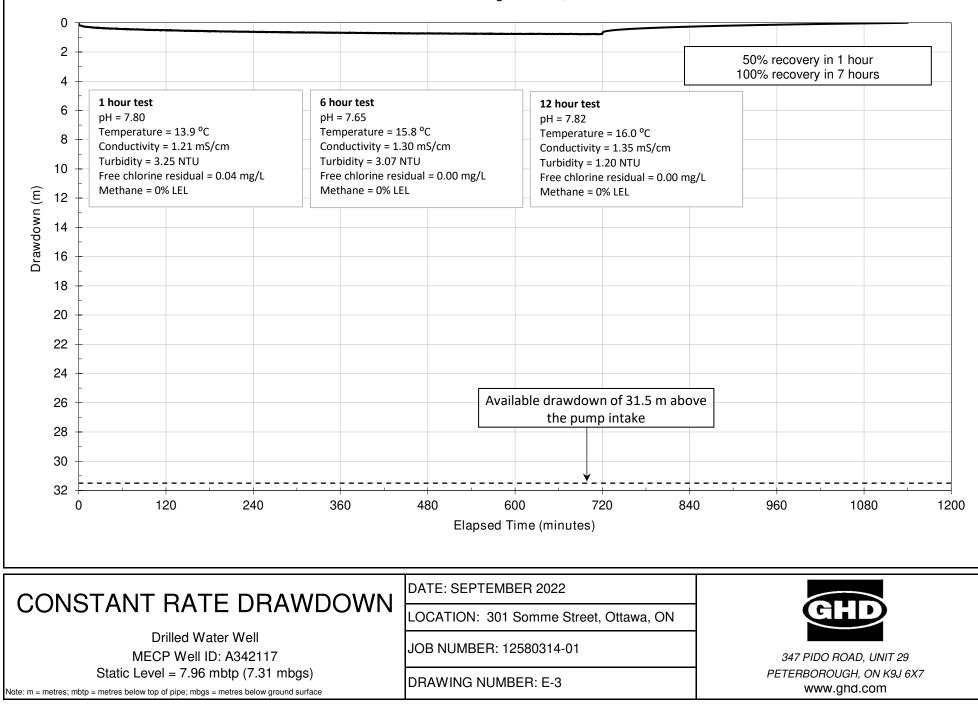
Control number: Date (mm/dd/yyyy): User (print name):	PET-WL-34 08/09/2022 Jason Geraldi	Project number: Project name:	12580314 Consolidated Fastfrate HydroG Assessment	
, , , , , , , , , , , , , , , , , , ,		Location:	301 Somme Street,	
			Ottawa	
Additional equipment control numbers and descriptions: <u>Waterra, WS-2 Closed Reel,</u> S/N WS2-00518				

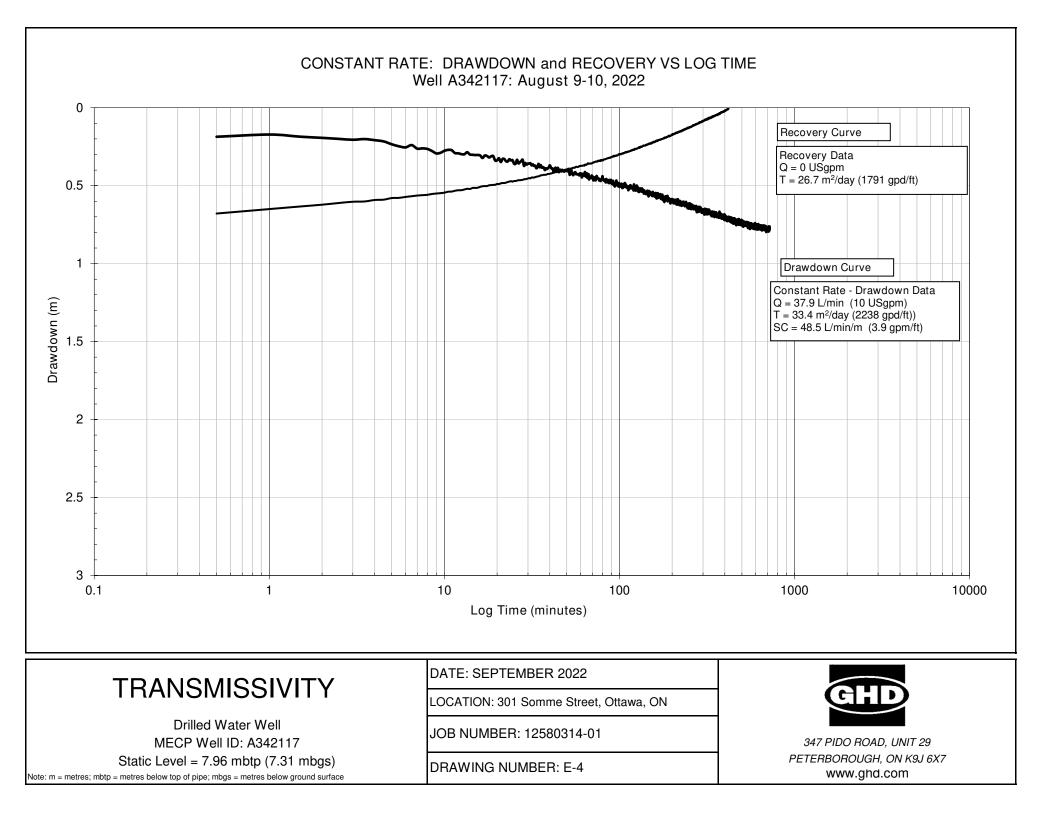
Field procedure before use:


		Check when completed
•	Check for broken or missing parts.	
•	Check battery	\boxtimes
•	Check operation of buzzer.	\boxtimes
•	Check operation of signal light.	\boxtimes
•	Test probe in water to ensure unit operates, both visually and audibly.	\boxtimes
•	Check cable.	\boxtimes


Filing: Field file Signature:

\cap	
In	


Appendix E Aquifer Performance Testing


PUMP HISTORY CURVE Well A342117: August 9-10, 2022

CONSTANT RATE DRAWDOWN, RECOVERY AND TESTING DETAILS Well A342117: August 9-10, 2022

Appendix F Water Well Certificates of Analyses

GHD Limited - 735

Attn : Jason Geraldi

347 Pido Rd., Unit #29 Peterborough, ON K9J 6Z8, Canada

Phone: 705-749-3317 Fax:705-749-9248 Project : 12580314-01

17-August-2022

Date Rec. :	10 August 2022
LR Report:	CA15144-AUG22
Reference:	PO#:735-003858,
	12580314-01, Jason
	Geraldi

Copy: #1

CERTIFICATE OF ANALYSIS Final Report

Analysis	1: Analysis Start Date	2: Analysis Start Time	3: Analysis Completed Date	4: Analysis Completed Time	6: A342117 12hr
Sample Date & Time					09-Aug-22 19:07
Temp Upon Receipt [°C]	***	***	***	***	***
Total Coliform [cfu/100mL]	11-Aug-22	14:01	15-Aug-22	15:25	3
E.coli [cfu/100mL]	11-Aug-22	14:01	15-Aug-22	15:25	0
Fecal Coliform [cfu/100mL]	11-Aug-22	14:01	15-Aug-22	15:25	0
Background [cfu/100mL]	11-Aug-22	14:01	15-Aug-22	15:25	33
HPC [cfu/1mL]	11-Aug-22	14:01	15-Aug-22	15:25	55

MAC - Maximum Acceptable Concentration AO/OG - Aesthetic Objective / Operational Guideline NR - Not reportable under applicable drinking water regulations as per client.

Temperature of Sample upon Receipt: 13 degrees C Cooling Agent Present: Yes Custody Seal Present: Yes

Chain of Custody Number: 024625

Jill Cumpbell

Jill Campbell, B.Sc.,GISAS Project Specialist, Environment, Health & Safety

Page 1 of 1

Results relate only to the sample tested. Data reported represents the sample submitted to SGS. Reproduction of this analytical report in full or in part is prohibited without prior written approval. Please refer to SGS General Conditions of Services located at https://www.sgs.ca/en/terms-and-conditions (Printed copies are available upon request.) Test method information available upon request. "Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples. SGS Canada Inc. Environment-Health & Safety statement of conformity decision rule does not consider uncertainty when analytical results are compared to a specified standard or regulation.

GHD Limited - 735

Attn : Jason Geraldi

347 Pido Rd., Unit #29 Peterborough, ON K9J 6Z8, Canada

Phone: 705-749-3317 Fax:705-749-9248 Project : 12580314-01

22-September-2022

 Date Rec. :
 10 August 2022

 LR Report:
 CA15142-AUG22

 Reference:
 PO#:735-003858, 12580314-01, Jason Geraldi

2

Copy:

CERTIFICATE OF ANALYSIS Final Report - Revised

Analysis	1: Anakasia Otart		3:	4:	5:	6:	7: A342117 1hr	8:	9:	
Analysis Stari Date		Analysis Start Analysis Analysis Time Completed Date Completed Time			MAC	AO/OG	A342117 Inr	A342117 6hr	A342117 12hr	
Sample Date & Time							09-Aug-22 08:07	09-Aug-22 13:07	09-Aug-22 19:07	
Temp Upon Receipt [°C]	***	***	***	***	***	***	***	***	***	
Tannin+Lignin [mg phenol/L]	16-Aug-22	13:12	17-Aug-22	13:09			0.32	0.34	0.40	
Alkalinity [mg/L as CaCO3]	15-Aug-22	15:41	17-Aug-22	12:21		30-500	265	261	261	
CO3 [mg/L as CaCO3]	15-Aug-22	15:41	17-Aug-22	12:21			< 2	< 2	< 2	
HCO3 [mg/L as CaCO3]	15-Aug-22	15:41	24-Aug-22	10:32			265	261	261	
Temperature @ pH [°C]	15-Aug-22	15:41	24-Aug-22	10:32			21.9	21.7	20.5	
pH [No unit]	15-Aug-22	15:41	17-Aug-22	12:21		6.5-8.5	8.14	8.20	8.23	
Conductivity [uS/cm]	15-Aug-22	15:41	17-Aug-22	12:21			1180	1290	1350	
TDS [mg/L]	15-Aug-22	08:47	17-Aug-22	12:04			763	914	914	
Colour [TCU]	15-Aug-22	11:22	16-Aug-22	12:52			3	< 3	< 3	
Turbidity [NTU]	10-Aug-22	17:53	11-Aug-22	09:56	1	5	2.50	2.89	4.21	
Organic N [mg/L]	15-Aug-22	16:28	19-Aug-22	14:07			< 0.05	< 0.05	< 0.05	
TKN [as N mg/L]	15-Aug-22	16:28	17-Aug-22	09:37			0.18	0.17	0.16	
NH3+NH4 [as N mg/L]	18-Aug-22	19:31	19-Aug-22	14:07			0.19	0.17	0.17	
NO2 [as N mg/L]	16-Aug-22	11:08	16-Aug-22	13:46	1		<0.003	<0.003	<0.003	
NO3 [as N mg/L]	16-Aug-22	11:08	16-Aug-22	13:46	10		<0.006	<0.006	<0.006	
NO2+NO3 [as N mg/L]	16-Aug-22	11:08	16-Aug-22	13:46			<0.006	<0.006	<0.006	
CI [mg/L]	17-Aug-22	14:11	18-Aug-22	16:18			62	66	68	

0003057687

Page 1 of 4

Results relate only to the sample tested. Data reported represents the sample submitted to SGS. Reproduction of this analytical report in full or in part is prohibited without prior written approval. Please refer to SGS General Conditions of Services located at https://www.sgs.ca/en/terms-and-conditions (Printed copies are available upon request.)

Test method information available upon request. "Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples. SGS Canada Inc. Environment-Health & Safety statement of conformity decision rule does not consider uncertainty when analytical results are compared to a specified standard or regulation.

	8: A342117 6hr	7: A342117 1hr	6: AO/OG	5: MAC	4: Analysis npleted Time	3: Analysis Completed Date Con		1: Analysis Start Date	Analysis
9 40	370	300			16:18	18-Aug-22	14:37	17-Aug-22	SO4 [mg/L]
2	2	2			08:37	16-Aug-22	12:00	15-Aug-22	DOC [mg/L]
51	500	453			10:47	22-Aug-22	11:55	16-Aug-22	Hardness [mg/L as CaCO3]
0.00	0.004	0.016			14:03	17-Aug-22	11:55	16-Aug-22	AI (tot) [mg/L]
< 0.00	< 0.001	< 0.001	0.1		10:47	22-Aug-22	11:55	16-Aug-22	AI (diss) [mg/L]
0.000	0.0006	0.0006			14:03	17-Aug-22	11:55	16-Aug-22	As (tot) [mg/L]
0.000	0.0004	0.0006		0.025	10:47	22-Aug-22	11:55	16-Aug-22	As (diss) [mg/L]
2. 0.19	0.192	0.188			14:03	17-Aug-22	11:55	16-Aug-22	B (tot) [mg/L]
0.21	0.216	0.199		5	10:47	22-Aug-22	11:55	16-Aug-22	B (diss) [mg/L]
0.0902	0.08734	0.08335			14:03	17-Aug-22	11:55	16-Aug-22	Ba (tot) [mg/L]
0.0988	0.09889	0.09451		1	10:47	22-Aug-22	11:55	16-Aug-22	Ba (diss) [mg/L]
< 0.00000	< 0.00007	< 0.000007			14:03	17-Aug-22	11:55	16-Aug-22	Be (tot) [mg/L]
0.00001	< 0.00007	< 0.000007			10:47	22-Aug-22	11:55	16-Aug-22	Be (diss) [mg/L]
0.00006	0.000084	0.000100			14:03	17-Aug-22	11:55	16-Aug-22	Co (tot) [mg/L]
0.0008	0.000091	0.000094			10:47	22-Aug-22	11:55	16-Aug-22	Co (diss) [mg/L]
5 16	156	135			14:03	17-Aug-22	11:55	16-Aug-22	Ca (tot) [mg/L]
2 11	112	103			10:48	22-Aug-22	11:55	16-Aug-22	Ca (diss) [mg/L]
0.00002	0.000025	0.000016			14:04	17-Aug-22	11:55	16-Aug-22	Cd (tot) [mg/L]
0.00002	0.000017	0.000016		0.005	10:48	22-Aug-22	11:55	16-Aug-22	Cd (diss) [mg/L]
< 0.000	0.0003	0.0006			14:04	17-Aug-22	11:55	16-Aug-22	Cu (tot) [mg/L]
< 0.000	< 0.0002	< 0.0002	1		10:48	22-Aug-22	11:55	16-Aug-22	Cu (diss) [mg/L]
0.0001	0.00035	0.00040			14:04	17-Aug-22	11:55	16-Aug-22	Cr (tot) [mg/L]
< 0.0000	< 0.00008	0.00012		0.05	10:48	22-Aug-22	11:55	16-Aug-22	Cr (diss) [mg/L]
0.65	0.881	0.653			14:04	17-Aug-22	11:55	16-Aug-22	Fe (tot) [mg/L]
0.48	0.276	0.369			10:48	22-Aug-22	11:55	16-Aug-22	Fe (diss) [mg/L]
9.5	9.15	8.73			12:28	22-Sep-22	11:55	16-Aug-22	K (tot) [mg/L]
7.3	7.56	7.16			12:53	22-Sep-22	11:55	16-Aug-22	K (diss) [mg/L]
69.	66.0	58.5			14:04	17-Aug-22	11:55	16-Aug-22	Mg (tot) [mg/L]
53.	53.4	47.8			10:48	22-Aug-22	11:55	16-Aug-22	Mg (diss) [mg/L]
0.19	0.187	0.172			14:04	17-Aug-22	11:55	16-Aug-22	Mn (tot) [mg/L]
0.17	0.173	0.175			10:48	22-Aug-22	11:55	16-Aug-22	Mn (diss) [mg/L]
0.0343	0.03083	0.02270			14:04	17-Aug-22	11:55	16-Aug-22	Mo (tot) [mg/L]
	0.02931	0.02195			10:48	22-Aug-22	11:55	16-Aug-22	Mo (diss) [mg/L]
0.000	0.0007	0.0007			14:04	17-Aug-22	11:55	16-Aug-22	Ni (tot) [mg/L]
	0.0013	0.0014			10:48	22-Aug-22	11:55	16-Aug-22	Ni (diss) [mg/L]
	64.3	60.4			14:04	17-Aug-22	11:55	16-Aug-22	Na (tot) [mg/L]

Page 2 of 4

Results relate only to the sample tested. Data reported represents the sample submitted to SGS. Reproduction of this analytical report in full or in part is prohibited without prior written approval. Please refer to SGS General Conditions of Services located at https://www.sgs.ca/en/terms-and-conditions (Printed copies are available upon request.)

Test method information available upon request. "Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples.

SGS Canada Inc. Environment-Health & Safety statement of conformity decision rule does not consider uncertainty when analytical results are compared to a specified standard or regulation.

 Project :
 12580314-01

 LR Report :
 CA15142-AUG22

Analysis	1:		3:	4:	5:	6:	7:	8:	9:
	Analysis Start Date	Analysis Start Time Co	Analysis ompleted Date Cor	Analysis	MAC	AO/OG	A342117 1hr	A342117 6hr	A342117 12hr
Na (diss) [mg/L]	16-Aug-22	11:55	22-Aug-22	10:48	20*	200	54.5	57.4	57.0
Pb (tot) [mg/L]	16-Aug-22	11:55	17-Aug-22	14:04			< 0.00009	< 0.00009	< 0.00009
Pb (diss) [mg/L]	16-Aug-22	11:55	22-Aug-22	10:48	0.01		< 0.00009	< 0.00009	< 0.00009
Ag (tot) [mg/L]	16-Aug-22	11:55	17-Aug-22	14:04			< 0.00005	< 0.00005	< 0.00005
Ag (diss) [mg/L]	16-Aug-22	11:55	22-Aug-22	10:49			< 0.00005	< 0.00005	< 0.00005
Sr (tot) [mg/L]	16-Aug-22	11:55	17-Aug-22	14:04			5.66	6.35	6.65
Sr (diss) [mg/L]	16-Aug-22	11:55	22-Aug-22	10:49			5.15	5.91	5.92
TI (tot) [mg/L]	16-Aug-22	11:55	17-Aug-22	14:04			< 0.000005	< 0.000005	< 0.000005
TI (diss) [mg/L]	16-Aug-22	11:55	22-Aug-22	10:49			< 0.000005	< 0.000005	< 0.000005
Sb (tot) [mg/L]	16-Aug-22	11:55	17-Aug-22	14:05			< 0.0009	< 0.0009	< 0.0009
Sb (diss) [mg/L]	16-Aug-22	11:55	22-Aug-22	10:49	0.006		< 0.0009	< 0.0009	< 0.0009
Se (tot) [mg/L]	16-Aug-22	11:55	17-Aug-22	14:05			< 0.00004	< 0.00004	< 0.00004
Se (diss) [mg/L]	16-Aug-22	11:55	22-Aug-22	10:49	0.01		0.00015	0.00020	0.00011
U (tot) [mg/L]	16-Aug-22	11:55	17-Aug-22	14:05			0.000166	0.000201	0.000204
U (diss) [mg/L]	16-Aug-22	11:55	22-Aug-22	10:49	0.02		0.000219	0.000227	0.000219
V (tot) [mg/L]	16-Aug-22	11:55	17-Aug-22	14:05			0.00021	0.00016	0.00014
V (diss) [mg/L]	16-Aug-22	11:55	22-Aug-22	10:49			0.00011	0.00008	0.00009
Zn (tot) [mg/L]	16-Aug-22	11:55	17-Aug-22	14:05			< 0.002	< 0.002	< 0.002
Zn (diss) [mg/L]	16-Aug-22	11:55	22-Aug-22	10:49		5	< 0.002	< 0.002	< 0.002
Cation Sum [meq/L]							14.37	16.23	16.93
Anion Sum [meq/L]							13.29	14.78	15.46
Anion-Cation Balance [% difference]							3.9	4.67	4.53
Ion Ratio							1.08	1.1	1.09
TDS (calculated) [mg/L]							775	879	923
Conductivity (calc) [uS/cm]							1383	1550	1619
Langelier's Index [@ 4° C]							0.7	0.81	0.85
Saturation pH [pHs @ 4°C]							7.44	7.39	7.38
Ryznar Stability Ind [no unit]	09-Sep-22	10:04	09-Sep-22	10:04			6.4	6.2	6.2

MAC - Maximum Acceptable Concentration

OnLine LIMS

AO/OG - Aesthetic Objective / Operational Guideline

NR - Not reportable under applicable Provincial drinking water regulations as per client.

Total phospuorous includes all Ortho-phosphates as well as Organics and hydrolyzable Phosphorous.

Temperature of Sample upon Receipt: 13 degrees C Cooling Agent Present: Yes Custody Seal Present: Yes

0003057687

Page 3 of 4

Results relate only to the sample tested. Data reported represents the sample submitted to SGS. Reproduction of this analytical report in full or in part is prohibited without prior written approval. Please refer to SGS General Conditions of Services located at https://www.sgs.ca/en/terms-and-conditions (Printed copies are available upon request.)

Test method information available upon request. "Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples.

SGS Canada Inc. Environment-Health & Safety statement of conformity decision rule does not consider uncertainty when analytical results are compared to a specified standard or regulation.

 Project :
 12580314-01

 LR Report :
 CA15142-AUG22

Chain of Custody Number: 015249

Ryzner Stabuility Index calculated as per the following link with an assumed water temperatur of 20 $^{\circ}$ C.

https://www.lenntech.com/calculators/ryznar/index/ryznar.htm

Revision 1 - total and dissolved potassium data included. Only dissolved hardness reported

Brad Moore Hon. B.Sc Project Specialist, Environment, Health & Safety

0003057687

Page 4 of 4 Results relate only to the sample tested. Data reported represents the sample submitted to SGS. Reproduction of this analytical report in full or in part is prohibited without prior written approval. Please refer to SGS General Conditions of Services located at https://www.sgs.ca/en/terms-and-conditions (Printed copies are available upon request.)

Test method information available upon request. "Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples. SGS Canada Inc. Environment-Health & Safety statement of conformity decision rule does not consider uncertainty when analytical results are compared to a specified standard or regulation.

GHD Limited - 735

Attn : Jason Geraldi

347 Pido Rd., Unit #29 Peterborough, ON K9J 6Z8, Canada

Phone: 705-749-3317 Fax:705-749-9248 Project: 12580314-01

18-August-2022

Date Rec. :	10 August 2022
LR Report:	CA15143-AUG22
Reference:	PO#:735-003858,
	12580314-01, Jason
	Geraldi

1

Copy:

CERTIFICATE OF ANALYSIS Final Report

Analysis	1: Date Extracted / Digested	3: Analysis Completed Date	6: RL	7: A342117 12hr
Sample Date & Time	Digoolou	Build		09-Aug-22 19:07
1.1.8 PAHs (sVOC)	***	***	***	***
Acenaphthene [µg/L]	15-Aug-22	17-Aug-22	0.1	< 0.1
Acenaphthylene [µg/L]	15-Aug-22	17-Aug-22	0.1	< 0.1
Anthracene [µg/L]	15-Aug-22	17-Aug-22	0.1	< 0.1
Benzo(a)anthracene [µg/L]	15-Aug-22	17-Aug-22	0.1	< 0.1
Benzo(a)pyrene [µg/L]	15-Aug-22	17-Aug-22	0.01	< 0.01
Benzo(b+j)fluoranthe [µg/L]	15-Aug-22	17-Aug-22	0.1	< 0.1
Benzo(ghi)perylene [µg/L]	15-Aug-22	17-Aug-22	0.2	< 0.2
Benzo(k)fluoranthene [µg/L]	15-Aug-22	17-Aug-22	0.1	< 0.1
Chrysene [µg/L]	15-Aug-22	17-Aug-22	0.1	< 0.1
Dibenzo(a,h)anthrace [µg/L]	15-Aug-22	17-Aug-22	0.1	< 0.1
Fluoranthene [µg/L]	15-Aug-22	17-Aug-22	0.1	< 0.1
Fluorene [µg/L]	15-Aug-22	17-Aug-22	0.1	< 0.1
Indeno(1,2,3-cd)pyre [µg/L]	15-Aug-22	17-Aug-22	0.2	< 0.2
1-Methylnaphthalene [µg/L]	15-Aug-22	17-Aug-22	0.5	< 0.5
2-Methylnaphthalene [µg/L]	15-Aug-22	17-Aug-22	0.5	< 0.5
Methylnaphthalene, 2 [µg/L]	15-Aug-22	17-Aug-22	0.5	< 0.5
Naphthalene [µg/L]	15-Aug-22	17-Aug-22	0.5	< 0.5
Phenanthrene [µg/L]	15-Aug-22	17-Aug-22	0.1	< 0.1
Pyrene [µg/L]	15-Aug-22	17-Aug-22	0.1	< 0.1
Surrogates - SVOCs	***	***	***	***
Surr 2-Methylnaphtha [Surr Rec %]	15-Aug-22	17-Aug-22		86
Surr Fluoranthene-D1 [Surr Rec %]	15-Aug-22	17-Aug-22		97
Surr 2-Fluorobipheny [Surr Rec %]	15-Aug-22	17-Aug-22		82
Surr 4-Terphenyl-d14 [Surr Rec %]	15-Aug-22	17-Aug-22		92

0003015254

Results relate only to the sample tested. Data reported represents the sample submitted to SGS. Reproduction of this analytical report in full or in part is prohibited without prior written approval. Please refer to SGS General Conditions of Services located at https://www.sgs.ca/en/terms-and-conditions (Printed copies are available upon request.) Test method information available upon request. "Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples. SGS Canada Inc. Environment-Health & Safety statement of conformity decision rule does not consider uncertainty when analytical results are compared to a specified standard or regulation.

Analysis	1: Date	3: Analysis	6: RL	7: A342117 12hr	
	Extracted / Digested	Completed Date	KL.	A342117 1211	
1.1.10 VOC	***	***	***	***	
Acetone [µg/L]	13-Aug-22	15-Aug-22	30	< 30	
Bromomethane [µg/L]	13-Aug-22	15-Aug-22	0.5	< 0.5	
Carbon tetrachloride [µg/L]	13-Aug-22	15-Aug-22	0.2	< 0.2	
Chlorobenzene [µg/L]	13-Aug-22	15-Aug-22	0.5	< 0.5	
Chloroform [µg/L]	13-Aug-22	15-Aug-22	0.5	< 0.5	
1,2-Dichlorobenzene [µg/L]	13-Aug-22	15-Aug-22	0.5	< 0.5	
1,3-Dichlorobenzene [µg/L]	13-Aug-22	15-Aug-22	0.5	< 0.5	
1,4-Dichlorobenzene [µg/L]	13-Aug-22	15-Aug-22	0.5	< 0.5	
Dichlorodifluorometh [µg/L]	13-Aug-22	15-Aug-22	2	< 2	
1,1-Dichloroethane [µg/L]	13-Aug-22	15-Aug-22	0.5	< 0.5	
1,2-Dichloroethane [µg/L]	13-Aug-22	15-Aug-22	0.5	< 0.5	
1,1-Dichloroethylene [µg/L]	13-Aug-22	15-Aug-22	0.5	< 0.5	
trans-1,2-Dichloroet [µg/L]	13-Aug-22	15-Aug-22	0.5	< 0.5	
cis-1,2-Dichloroethe [µg/L]	13-Aug-22	15-Aug-22	0.5	< 0.5	
1,2-Dichloropropane [µg/L]	13-Aug-22	15-Aug-22	0.5	< 0.5	
cis-1,3-Dichloroprop [µg/L]	13-Aug-22	15-Aug-22	0.5	< 0.5	
trans-1,3-Dichloropr [µg/L]	13-Aug-22	15-Aug-22	0.5	< 0.5	
1,3-dichoropropene [µg/L]	13-Aug-22	15-Aug-22	0.5	< 0.5	
Ethylenedibromide [µg/L]	13-Aug-22	15-Aug-22	0.2	< 0.2	
n-Hexane [µg/L]	13-Aug-22	15-Aug-22	1	< 1	
MEK [µg/L]	13-Aug-22	15-Aug-22	20	< 20	
MIBK [µg/L]	13-Aug-22	15-Aug-22	20	< 20	
MtBE [µg/L]	13-Aug-22	15-Aug-22	2	< 2	
Methylene Chloride [µg/L]	13-Aug-22	15-Aug-22	0.5	< 0.5	
Styrene [µg/L]	13-Aug-22	15-Aug-22	0.5	< 0.5	
Tetrachloroethylene [µg/L]	13-Aug-22	15-Aug-22	0.5	< 0.5	
1,1,1,2-Tetrachloroe [µg/L]	13-Aug-22	15-Aug-22	0.5	< 0.5	
1,1,2,2-Tetrachloroe [µg/L]	13-Aug-22	15-Aug-22	0.5	< 0.5	
1,1,1-Trichloroethan [µg/L]	13-Aug-22	15-Aug-22	0.5	< 0.5	
1,1,2-Trichloroethan [µg/L]	13-Aug-22	15-Aug-22	0.5	< 0.5	
Trichloroethylene [µg/L]	13-Aug-22	15-Aug-22	0.5	< 0.5	
Trichlorofluorometha [µg/L]	13-Aug-22	15-Aug-22	5	< 5	
Vinyl Chloride [µg/L]	13-Aug-22	15-Aug-22	0.2	< 0.2	
1.1.11 BTEX	***	***	***	***	
Benzene [µg/L]	13-Aug-22	15-Aug-22	0.5	< 0.5	
Ethylbenzene [µg/L]	13-Aug-22	15-Aug-22	0.5	< 0.5	
Toluene [µg/L]	13-Aug-22	15-Aug-22	0.5	< 0.5	
Xylene (total) [µg/L]	13-Aug-22	15-Aug-22	0.5	< 0.5	
m-p-xylene [µg/L]	13-Aug-22	15-Aug-22	0.5	< 0.5	
o-xylene [µg/L]	13-Aug-22	15-Aug-22	0.5	< 0.5	
1.1.9 THMs (VOC)	***	***	***	***	

Results relate only to the sample tested. Data reported represents the sample submitted to SGS. Reproduction of this analytical report in full or in part is prohibited without prior written approval. Please refer to SGS General Conditions of Services located at https://www.sgs.ca/en/terms-and-conditions (Printed copies are available upon request.) Test method information available upon request. "Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples. SGS Canada Inc. Environment-Health & Safety statement of conformity decision rule does not consider uncertainty when analytical results are compared to a specified standard or regulation.

000301525

Analysis	1: Date Extracted / Digested	3: Analysis Completed Date	6: RL	7: A342117 12hr
Bromodichloromethane [µg/L]	13-Aug-22	15-Aug-22	0.5	< 0.5
Bromoform [µg/L]	13-Aug-22	15-Aug-22	0.5	< 0.5
Dibromochloromethane [µg/L]	13-Aug-22	15-Aug-22	0.5	< 0.5
Surrogates (VOCs)	***	***	***	***
Surr 1,2-Dichloroeth [Surr Rec %]	13-Aug-22	15-Aug-22		101
Surr 2-Bromo-1-Chlor [Surr Rec %]	13-Aug-22	15-Aug-22		85
Surr 4-Bromofluorobe [Surr Rec %]	13-Aug-22	15-Aug-22		90
1.1.6 PHCs	***	***	***	***
F1 (C6-C10) [µg/L]	12-Aug-22	15-Aug-22	25	< 25
F1-BTEX (C6-C10) [µg/L]	12-Aug-22	15-Aug-22		< 25
F2 (C10-C16) [µg/L]	15-Aug-22	18-Aug-22	100	< 100
F3 (C16-C34) [µg/L]	15-Aug-22	18-Aug-22	200	< 200
F4 (C34-C50) [µg/L]	15-Aug-22	18-Aug-22	200	< 200
Baseline at nC50 [Yes / No]	15-Aug-22	18-Aug-22		YES

CCME Method Compliance: Analyses were conducted using analytical procedures that comply with the Reference Method for the CWS for Petroleum Hydrocarbons in Soil and have been validated for use at the SGS laboratory, Lakefield, ON site.

Quality Compliance: Instrument performance / calibration quality criteria were met and extraction and analysis limits for holding times were met.

nC6 and nC10 response factors within 30% of response factor for toluene: YES nC10, nC16 and nC34 response factors within 10% of the average response for the three compounds: YES

C50 response factors within 70% of nC10 + nC16 + nC34 average: YES Linearity is within 15%: YES

Benzo(b)fluoranthene results for comparison to the standard are reported as benzo(b+j)fluoranthene. Benzo(b)fluoranthene and benzo(j)fluoranthene co-elute and cannot be reported individually by the analytical method used.

Temperature of Sample upon Receipt: 13 degrees C Cooling Agent Present: Yes Custody Seal Present: Yes

Chain of Custody Number: 024624

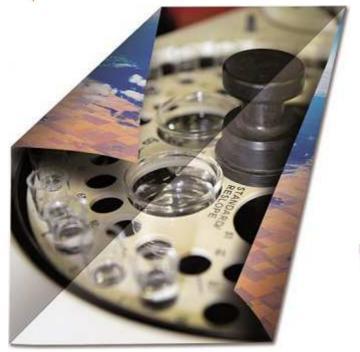
Methylene Chloride LCS; Recovery is outside control limits; the overall quality control for this analysis has been assessed and was determined to be acceptable. Acetone matrix spike; recovery for this parameter is outside control limits; the overall quality control for this analysis has been assessed and was determined to be acceptable.

F3(C16-C34) Dup RPD is outside control limits. The average of the two duplicates is less than five times the RL, therefore greater uncertainty is expected.

Results relate only to the sample tested. Data reported represents the sample submitted to SGS. Reproduction of this analytical report in full or in part is prohibited without prior written approval. Please refer to SGS General Conditions of Services located at https://www.sgs.ca/en/terms-and-conditions (Printed copies are available upon request.) Test method information available upon request. "Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples. SGS Canada Inc. Environment-Health & Safety statement of conformity decision rule does not consider uncertainty when analytical results are compared to a specified standard or regulation.

Project : 12580314-01 LR Report : CA15143-AUG22

0003015254


Jill Cumpbell

Jill Campbell, B.Sc.,GISAS Project Specialist, Environment, Health & Safety

Results relate only to the sample tested. Data reported represents the sample submitted to SGS. Reproduction of this analytical report in full or in part is prohibited without prior written approval. Please refer to SGS General Conditions of Services located at https://www.sgs.ca/en/terms-and-conditions (Printed copies are available upon request.) Test method information available upon request. "Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples. SGS Canada Inc. Environment-Health & Safety statement of conformity decision rule does not consider uncertainty when analytical results are compared to a specified standard or regulation.

Page 4 of 4

CA14875-SEP22 R1

12580314-01

Prepared for

GHD Limited - 735

First Page

CLIENT DETAILS		LABORATORY DETAILS	
Client	GHD Limited - 735	Project Specialist	Brad Moore Hon. B.Sc
		Laboratory	SGS Canada Inc.
Address	347 Pido Rd., Unit #29	Address	185 Concession St., Lakefield ON, K0L 2H0
	Peterborough, ON		
	K9J 6Z8. Canada		
Contact	Jason Geraldi	Telephone	705-652-2143
Telephone	705-749-3317	Facsimile	705-652-6365
Facsimile	705-749-9248	Email	brad.moore@sgs.com
Email	Jason.Geraldi@ghd.com	SGS Reference	CA14875-SEP22
Project	12580314-01	Received	09/21/2022
Order Number		Approved	09/27/2022
Samples	Ground Water (3)	Report Number	CA14875-SEP22 R1
		Date Reported	09/27/2022

COMMENTS

MAC - Maximum Acceptable Concentration

AO/OG - Aesthetic Objective / Operational Guideline

NR - Not reportable under applicable Provincial drinking water regulations as per client.

Temperature of Sample upon Receipt: 13 degrees C Cooling Agent Present: Yes Custody Seal Present: Yes

Chain of Custody Number: 015249

SIGNATORIES

TABLE OF CONTENTS

SGS			FINAL F	REPORT		CA14875-SEP22 R1						
								Client: GHD Limited - 735				
								Project: 12580314-01				
								Project Manager: Jason Geraldi				
								Samplers: Jason Geraldi				
MATRIX: WATER			ę	Sample Number	7	8	9					
MATRIA. WATER				Sample Name	A342117 1HR	A342117 6HR	A342117 12HR					
				Sample Name	Ground Water	Ground Water	Ground Water					
L1 = ODWS_AO_OG / WATER / Table 4 - Drinking Water - Reg O.				-								
L2 = ODWS_MAC / WATER / Table 1,2 and 3 - Drinking Water - R	-			Sample Date	09/08/2022	09/08/2022	09/08/2022					
Parameter	Units	RL	L1	L2	Result	Result	Result					
General Chemistry												
Hydrogen Sulphide	mg/L	0.02	0.05		< 0.02	< 0.02	< 0.02					
Metals and Inorganics												
Sulphide	mg/L	0.02			< 0.02	< 0.02	< 0.02					
Other (ORP)												
Mercury (dissolved)	mg/L	0.00001		0.001	< 0.00001	< 0.00001	< 0.00001					

EXCEEDANCE SUMMARY

No exceedances are present above the regulatory limit(s) indicated

QC SUMMARY

Mercury by CVAAS

Method: EPA 7471A/SM 3112B | Internal ref.: ME-CA-IENVISPE-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	CS/Spike Blank Recovery Limits (%)		Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike			Spike Recovery		ery Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Mercury (dissolved)	EHG0048-SEP22	mg/L	0.00001	< 0.00001	ND	20	101	80	120	121	70	130

Sulphide by SFA

Method: SM 4500 | Internal ref.: ME-CA-IENVISFA-LAK-AN-008

Parameter	QC batch	Units	RL	Method	Duj	plicate	LC	LCS/Spike Blank Recovery Limits (%)		Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike			Spike Recovery		ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Sulphide	SKA0224-SEP22	mg/L	0.02	<0.02	ND	20	100	80	120	NA	75	125

QC SUMMARY

Method Blank: a blank matrix that is carried through the entire analytical procedure. Used to assess laboratory contamination.

Duplicate: Paired analysis of a separate portion of the same sample that is carried through the entire analytical procedure. Used to evaluate measurement precision.

LCS/Spike Blank: Laboratory control sample or spike blank refer to a blank matrix to which a known amount of analyte has been added. Used to evaluate analyte recovery and laboratory accuracy without sample matrix effects.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate laboratory accuracy with sample matrix effects.

Reference Material: a material or substance matrix matched to the samples that contains a known amount of the analyte of interest. A reference material may be used in place of a matrix spike.

RL: Reporting limit

RPD: Relative percent difference

AC: Acceptance criteria

Multielement Scan Qualifier: as the number of analytes in a scan increases, so does the chance of a limit exceedance by random chance as opposed to a real method problem. Thus, in multielement scans, for the LCS and matrix spike, up to 10% of the analytes may exceed the quoted limits by up to 10% absolute and the spike is considered acceptable.

Duplicate Qualifier: for duplicates as the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL. Matrix Spike Qualifier: for matrix spikes, as the concentration of the native analyte increases, the uncertainty of the matrix spike recovery increases. Thus, the matrix spike acceptance limits apply only when the concentration of the matrix spike is greater than or equal to the concentration of the native analyte.

LEGEND

FOOTNOTES

NSS Insufficient sample for analysis.

RL Reporting Limit.

- ↑ Reporting limit raised.
- ↓ Reporting limit lowered.
- NA The sample was not analysed for this analyte
- ND Non Detect

Results relate only to the sample tested.

Data reported represent the sample as submitted to SGS. Solid samples expressed on a dry weight basis.

"Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples.

Analysis conducted on samples submitted pursuant to or as part of Reg. 153/04, are in accordance to the "Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act and Excess Soil Quality" published by the Ministry and dated March 9, 2004 as amended.

SGS provides criteria information (such as regulatory or guideline limits and summary of limit exceedances) as a service. Every attempt is made to ensure the criteria information in this report is accurate and current, however, it is not guaranteed. Comparison to the most current criteria is the responsibility of the client and SGS assumes no responsibility for the accuracy of the criteria levels indicated.

SGS Canada Inc. statement of conformity decision rule does not consider uncertainty when analytical results are compared to a specified standard or regulation. This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/terms_and_conditions.htm.

The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Reproduction of this analytical report in full or in part is prohibited.

This report supersedes all previous versions.

-- End of Analytical Report --

Appendix G MacLellan Water Treatment Recommendations

Telephone: Toll-Free: Fax: Website: Email:

Address:

388 Millhaven Road P.O. Box 392 Odessa, ON KOH 2H0

Report for GHD – Ottawa Warehouse Project

(613) 386-0550

1-800-200-0865

www.mwater.ca

info@mwater.ca

613-386-9889

September 21, 2022

Introduction

This report has been prepared based on water quality information that was provided to MacLellan Water. The principal purpose of this report is to make recommendations for a water treatment system for the warehouse facility. Maximum was use is estimated at 10 000 L per day although 5000 L per day is expected to be a more typical use.

Water Quality

Several sets of water quality information were provided, corresponding to samples collected at different times during pumping of the well. Although there was some variation among the samples, the results were broadly similar. We have used the last set of samples when discussing specific numbers in this report. The following parameters returned noteworthy values:

Turbidity

Turbidity is a measure of the "cloudiness" of the water. Turbidity is a concern because the materials that cause turbidity can interfere with disinfection efforts. The operational limit for turbidity is 1 NTU. The turbidity of this water was measured at 4.21 NTU.

Hardness

Water is considered hard when the hardness exceeds 100 mg/L. This water was measured with a hardness of 689 mg/L.

Iron

The aesthetic limit for iron is 0.3 mg/L. Above this limit, it can cause problems with colour, staining, and taste in the water. The concentration of iron in this water was measured at 0.481 mg/L. A further 0.175 mg/L of iron was present in a form where it is bound up with organic matter.

Manganese

The aesthetic limit for manganese is 0.05 mg/L. Above this limit, it can cause problems with colour, staining, and taste similar to those caused by iron. The concentration of manganese in this water was measured at 0.171 mg/L.

Sodium

People consuming water with a sodium content above 20 mg/L are encouraged to inform their physician. This is so that the physician can take the sodium content of the drinking water into consideration should it ever become necessary to prescribe a low sodium diet for medical reasons.

Above 200 mg/L sodium has a negative aesthetic effect in that it imparts a disagreeable, salty tang to the water.

The concentration of sodium in this water was measured at 67.6 mg/L.

Langelier's Index

The Langelier's Index (LI) is a calculation that assesses the "character" of the water. Water with an LI below -0.5 is aggressive and will tend to corrode metal pipes, fixtures, and appliances. Water with an LI from -0.5 to +0.5 is neutral. Water with an LI of more than +0.5 will tend to form hard water scale at an appreciably accelerated rate.

The LI is temperature dependent. The LI of this water was calculated at +0.85 at 4°C. It will actually be even higher for water that has warmed up to room temperature while sitting inside the building.

Recommendations

The following items are presented for your consideration. It is assumed that they would be carried out at the appropriate time in the construction of the facility. MacLellan Water would be happy to provide price estimates to carry out the recommended work.

1. A submersible pump should be installed in the well and connected to the building with pipe and wire that are run inside protective conduit. An appropriate pressure system will need to be installed inside the building.

2. A filtration system for iron should be installed. There are a number of options for this, but the best would be a manganese greensand filter with chlorine regeneration. The filter will also remove a certain amount of manganese.

3. An activated carbon filter should be installed to both remove residual chlorine and organically-complexed metals.

4. A water softener should be used to soften the water. This will improve the aesthetics of the water. More importantly, it will protect the water disinfection system and water-using appliances (hot water tanks, etc.) in the facility from fouling due to hard water scale.

A twin alternating softener system will be used. With this system, one tank remains in service until its capacity is exhausted. The second tank then takes over softening duties while the first tank regenerates. This ensures an uninterrupted supply of softened water and allows the use of smaller, less expensive softening equipment than a single tank model.

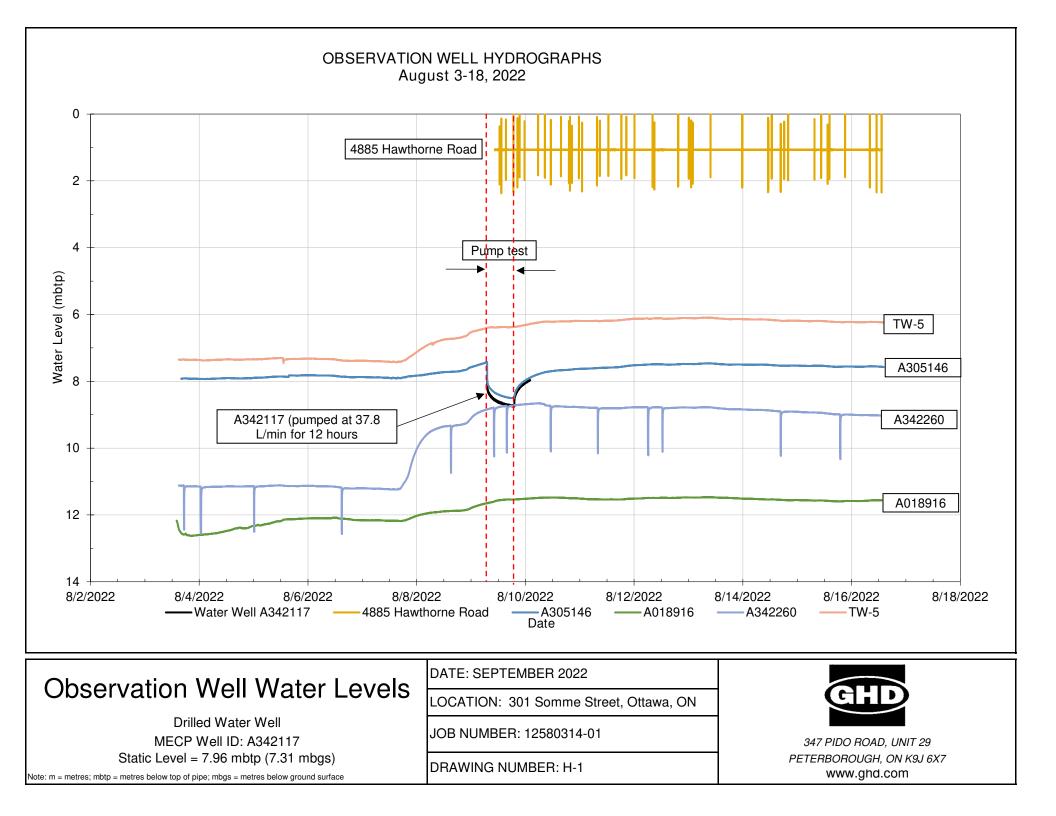
5. Disinfection of the water will be provided with ultra violet (UV) disinfection. Depending on preferences for redundancy, this may involve one or two units. Depending on preferences, these may be fairly straight forward units or units equipped with sensors and automatic fail-safe shutoffs.

Regardless, the unit(s) will be sized to allow adequate flow to the facility and will be equipped with turbidity-reducing cartridge-style prefilters to screen out particles that bacteria might shelter behind while passing through the UV light.

6. The concentration of sodium in the water is already slightly high. The use of a water softener will increase the sodium content of the treated water by about 300 mg/L to a total of about 360 mg/L.

One or more point of use reverse osmosis (RO) units will be installed to remove sodium at locations (like lunch rooms) where people will actually consume the water. This is done in preference to treating all the water in the facility because the output of RO units is slow. The RO units will be equipped with small storage tanks so that pre-treated water will be ready on demand.

7. MacLellan Water will arrange a servicing schedule to ensure that all the equipment remains in proper working order.


Conclusion

We hope that this report contains all the information you require. Please do not hesitate to contact me with any questions. We would be happy to provide price estimates for this work once a few additional details have been established.

Sincerely,

William Vander Wilp MacLellan Water Treatment and Pumps 1-800-200-0865 x 24

Appendix H Observation Well Hydrographs

Appendix I Storm Sewer Use Certificate of Analysis

GHD Limited - 735

Attn : Jason Geraldi

347 Pido Rd., Unit #29 Peterborough, ON K9J 6Z8, Canada

Phone: 705-749-3317 Fax:705-749-9248 Monitoring Well MW22-1

Ottawa Storm Bylaw 2003-514

Project: 12580314-01

18-August-2022

Date Rec. :	10 August 2022
LR Report:	CA15141-AUG22
Reference:	PO#:735-003858,
	12580314-01, Jason
	Geraldi

#1

0003016134

Сору:

CERTIFICATE OF ANALYSIS Final Report

Analysis	1: Analysis Start Date	3: Analysis Completed Date	5: Ottawa Storm By-law Limit	6: RL	7: Piezo
Sample Date & Time					09-Aug-22 18:00
Ecoli [cfu/100mL]	11-Aug-22	15-Aug-22	200	2	< 2
pH [No unit]	11-Aug-22	16-Aug-22	9	0.05	6.86
BOD5 [mg/L]	11-Aug-22	16-Aug-22	25	2	< 4
TSS [mg/L]	13-Aug-22	15-Aug-22	15	2	92
4AAP-Phenolics [mg/L]	12-Aug-22	15-Aug-22	0.008	0.002	0.003
CN(T) [mg/L]	11-Aug-22	12-Aug-22	0.02	0.01	< 0.01
Hg (tot) [mg/L]	15-Aug-22	16-Aug-22	0.0004	0.00001	0.00002
As (tot) [mg/L]	17-Aug-22	18-Aug-22	0.02	0.0002	0.0033
Cd (tot) [mg/L]	17-Aug-22	18-Aug-22	0.008	0.000003	0.000055
Cr (tot) [mg/L]	17-Aug-22	18-Aug-22	0.08	0.00008	0.00206
Cu (tot) [mg/L]	17-Aug-22	18-Aug-22	0.04	0.0002	0.0071
Pb (tot) [mg/L]	17-Aug-22	18-Aug-22	0.12	0.00001	0.00192
Mn (tot) [mg/L]	17-Aug-22	18-Aug-22	0.05	0.00001	1.37
Ni (tot) [mg/L]	17-Aug-22	18-Aug-22	0.08	0.0001	0.0046
P (tot) [mg/L]	17-Aug-22	18-Aug-22	0.4	0.003	0.156
Se (tot) [mg/L]	17-Aug-22	18-Aug-22	0.02	0.00004	0.00025
Ag (tot) [mg/L]	17-Aug-22	18-Aug-22	0.12	0.00005	< 0.00005
Zn (tot) [mg/L]	17-Aug-22	18-Aug-22	0.04	0.002	0.011
PCB (tot) [mg/L]	12-Aug-22	15-Aug-22	0.0004	0.0001	< 0.0001
PAHs (total) [mg/L]	16-Aug-22	17-Aug-22	0.006		0.001
7Hdibenzo(c,g)carbaz [mg/L]	16-Aug-22	17-Aug-22		0.0001	< 0.0001
Anthracene [mg/L]	16-Aug-22	17-Aug-22		0.0001	< 0.0001
Benzo(a)anthracene [mg/L]	16-Aug-22	17-Aug-22		0.0001	0.0002
Benzo(a)pyrene [mg/L]	16-Aug-22	17-Aug-22		0.0001	0.0001

Page 1 of 3

Results relate only to the sample tested. Data reported represents the sample submitted to SGS. Reproduction of this analytical report in full or in part is prohibited without prior written approval. Please refer to SGS General Conditions of Services located at https://www.sgs.ca/en/terms-and-conditions (Printed copies are available upon request.) Test method information available upon request. "Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples. SGS Canada Inc. Environment-Health & Safety statement of conformity decision rule does not consider uncertainty when analytical results are compared to a specified standard or regulation.

Project : 12580314-01 LR Report : CA15141-AUG22

Analysis	1: Analysis Start Date	3: Analysis Completed Date	5: Ottawa Storm By-law Limit	6: RL	7: Piezo
Benzo(b+j)fluoranthe [mg/L]	16-Aug-22	17-Aug-22		0.0001	0.0002
Benzo[e]pyrene [mg/L]	16-Aug-22	17-Aug-22		0.0001	0.0001
Benzo(ghi)perylene [mg/L]	16-Aug-22	17-Aug-22		0.0002	0.0003
Benzo(k)fluoranthene [mg/L]	16-Aug-22	17-Aug-22		0.0001	< 0.0001
Chrysene [mg/L]	16-Aug-22	17-Aug-22		0.0001	< 0.0001
Dibenzo(a,h)anthrace [mg/L]	16-Aug-22	17-Aug-22		0.0001	< 0.0001
Dibenzo(a,i)pyrene [mg/L]	16-Aug-22	17-Aug-22		0.0001	< 0.0001
Dibenzo(a,j)acridine [mg/L]	16-Aug-22	17-Aug-22		0.0001	< 0.0001
Fluoranthene [mg/L]	16-Aug-22	17-Aug-22		0.0001	0.0002
Perylene [mg/L]	16-Aug-22	17-Aug-22		0.0005	< 0.0005
Phenanthrene [mg/L]	16-Aug-22	17-Aug-22		0.0001	0.0001
Pyrene [mg/L]	16-Aug-22	17-Aug-22		0.0001	0.0002
Naphthalene [mg/L]	16-Aug-22	17-Aug-22	0.0064	0.0005	< 0.0005
Hexachlorobenzene [mg/L]	16-Aug-22	17-Aug-22	0.00004	0.0001	< 0.0001
Benzene [mg/L]	16-Aug-22	17-Aug-22	0.002	0.0005	< 0.0005
Chloroform [mg/L]	16-Aug-22	17-Aug-22	0.002	0.0005	< 0.0005
1,2-Dichlorobenzene [mg/L]	16-Aug-22	17-Aug-22	0.0056	0.0005	< 0.0005
1,4-Dichlorobenzene [mg/L]	16-Aug-22	17-Aug-22	0.0068	0.0005	< 0.0005
cis-1,2-Dichloroethe [mg/L]	16-Aug-22	17-Aug-22	0.0056	0.0005	< 0.0005
trans-1,3-Dichloropr [mg/L]	16-Aug-22	17-Aug-22	0.0056	0.0005	< 0.0005
Ethylbenzene [mg/L]	16-Aug-22	17-Aug-22	0.002	0.0005	< 0.0005
Methylene Chloride [mg/L]	16-Aug-22	17-Aug-22	0.0052	0.0005	< 0.0005
1,1,2,2-Tetrachloroe [mg/L]	16-Aug-22	17-Aug-22	0.017	0.0005	< 0.0005
Tetrachloroethylene [mg/L]	16-Aug-22	17-Aug-22	0.0044	0.0005	< 0.0005
Toluene [mg/L]	16-Aug-22	17-Aug-22	0.002	0.0005	< 0.0005
Trichloroethylene [mg/L]	16-Aug-22	17-Aug-22	0.0076	0.0005	< 0.0005
Xylene (total) [mg/L]	16-Aug-22	17-Aug-22	0.0044	0.0005	< 0.0005
m-p-xylene [mg/L]	16-Aug-22	17-Aug-22		0.0005	< 0.0005
o-xylene [mg/L]	16-Aug-22	17-Aug-22		0.0005	< 0.0005
Nonylphenol [mg/L]	15-Aug-22	17-Aug-22	0.001	0.001	< 0.001
Nonylphenol Ethoxyla [mg/L]	15-Aug-22	17-Aug-22	0.01	0.01	< 0.01
Nonylphenol diethoxy [mg/L]	15-Aug-22	17-Aug-22		0.01	< 0.01
Nonylphenol monoetho [mg/L]	15-Aug-22	17-Aug-22		0.01	< 0.01

RL - SGS Reporting Limit

•

OnLine LIMS

Nonylphenol Ethoxylates is the sum of nonylphenol monoethoxylate and nonylphenol diethoxylate.

```
Temperature of Sample upon Receipt: 10 degrees C
Cooling Agent Present: Yes
Custody Seal Present: Yes
```

Chain of Custody Number: 015194

Page 2 of 3

ust o

Results relate only to the sample tested. Data reported represents the sample submitted to SGS. Reproduction of this analytical report in full or in part is prohibited without prior written approval. Please refer to SGS General Conditions of Services located at https://www.sgs.ca/en/terms-and-conditions (Printed copies are available upon request.) Test method information available upon request. "Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples. SGS Canada Inc. Environment-Health & Safety statement of conformity decision rule does not consider uncertainty when analytical results are compared to a specified standard or regulation.

Ottawa Storm Bylaw 2003-514

Project : 12580314-01 LR Report : CA15141-AUG22

Jill Cumpbell

Jill Campbell, B.Sc.,GISAS Project Specialist, Environment, Health & Safety

0003016134

Results relate only to the sample tested. Data reported represents the sample submitted to SGS. Reproduction of this analytical report in full or in part is prohibited without prior written approval. Please refer to SGS General Conditions of Services located at https://www.sgs.ca/en/terms-and-conditions (Printed copies are available upon request.) Test method information available upon request. "Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples. SGS Canada Inc. Environment-Health & Safety statement of conformity decision rule does not consider uncertainty when analytical results are compared to a specified standard or regulation.

ghd.com

\rightarrow The Power of Commitment