

Engineers, Planners & Landscape Architects

Engineering

Land/Site Development

Municipal Infrastructure

Environmental/ Water Resources

Traffic/ Transportation

Recreational

Planning

Land/Site Development

Planning Application Management

Municipal Planning

Urban Design

Expert Witness (OLT)

Wireless Industry

Landscape Architecture

Streetscapes & Public Amenities

Open Space, Parks & Recreation

Community & Residential

Commercial & Institutional

Environmental Restoration

Proposed Residential Development 1500 Merivale Road

Serviceability and Stormwater Management Report

Proposed Residential Development 1500 Merivale Road

Serviceability and Stormwater Master Plan

Prepared for:

Claridge Homes

Prepared By:

NOVATECH Suite 200, 240 Michael Cowpland Drive Ottawa, Ontario K2M 1P6

> September 3, 2021 December 09, 2022 March 21, 2024 September 27, 2024 Revised: November 29, 2024

> > Novatech File: 121009 Ref No. R-2021-121

November 29, 2024

City of Ottawa Planning, Infrastructure and Economic Development Department Planning and Infrastructure Approvals Branch 110 Laurier Avenue West, 4th Floor Ottawa ON, K1P 1J1

Attention: Lisa Stern, Planner

Dear Sir:

Reference: 1500 Merivale Road - Claridge Development Serviceability and Stormwater Master Plan

Please find enclosed the 'Servicing Report' for the above noted project. This report is submitted in support of the site plan application and outlines how the site will be serviced with public infrastructure.

Should you have any questions or require additional information, please contact the undersigned.

Yours truly,

NOVATECH 7 Marconch

Greg MacDonald, P. Eng. Director, Land Development and Public Sector Infrastructure

cc: Vincent, Denomme, Claridge Homes

TABLE OF CONTENTS

1.0	INTRODUCTION	. 1
1.1	Existing Conditions	. 1
1.2	Proposed Development	. 1
2.0	SITE CONSTRAINTS	. 2
3.0	SANITARY SEWER	. 3
3.1	Design Criteria	4
3.2	Merivale System (Phase 1)	
3.3	Baseline System (Phase 4-6)	
3.4	Clyde/ Merivale System (Phases, 2-3 & 7-11)	
4.0	STORM SERVICING	
4.1	Stormwater Management Criteria	
	1.1 Minor System (Storm Sewers)	
	1.2 Major System	
	1.3 Water Quality Control	
4.2		
	2.1 Allowable Release Rates	
	2.2 Orifice Controls	
4	2.3 Water Quality Controls	
4.3	On-Site Storage	. 8
4	3.1 Overland Flow and Surface Storage (Major System)	. 8
4	3.2 Underground Storage	. 8
4.4		
	4.1 Design Storms	
	4.2 Model Development	
	4.3 Storm Drainage Areas	
4.5	J 5 J	
	5.1 Orifice Controls	
	5.2 Allowable Release Rate – Parkwood Hills	
	5.3 Peak Flows	
	5.4 Hydraulic Grade Line5.5 Underground Storage Volumes	
4.6		
5.0	WATERMAIN	
	Ultimate Build-out	
-	1.1 Merivale System	
-	1.2 Baseline System	
6.0	EROSION AND SEDIMENT CONTROL	
7.0	CONCLUSIONS AND RECOMMENDATIONS	22
8.0	CLOSURE	23
		-

List of Figures

Figure 1	Key Plan	
Figure 2	Existing Conditions	
Figure 3	Site Plan	
Figure 4	Phasing Plan	
Figure 5	Existing Stormwater Management Plan	
Figure 6	Pressure Zone Plan	
<u>Tables</u>		
Table 4.1:St	orm Sewer Design Parameters	7
Table 4.2: P	inecrest Creek Allowable Release Rates	7
Table 4.3: H	ydrologic Modeling Parameters	
Table 4.4: C	Prifice Parameters	
Table 4.5: P	er Phase Allowable Release Rates	
	eak Flows	
Table 4.7: S	torm Sewer Hydraulic Grade Line	
	torage Required	
	onding Depths at Catchbasins (100yr Event)	
Table 5.1: M	Ierivale Road Domestic Water Demand Summary	
Table 5.2 Ba	aseline Road Domestic Water Demand Summary	
Table 5.3: M	Ierivale Road Domestic Water Demand Summary	
Table 5.4: V	/ater Boundary Conditions	
	/ater Analysis Summary	
Table 5.5: V	/ater Boundary Conditions and Hydraulic Analysis Summary	

Appendices

Appendix A Pre - Consultation Meeting Minutes	1
Appendix B Sanitary Servicing	
Appendix C Storm Servicing	
Appendix D Stormwater Management	
Appendix E Water Servicing	
Appendix F Servicing Study Guidelines Checklist	

List of Drawings

Notes and Details General Servicing	121009-NDGP
Notes and Details Grading	121009-NDGR
Erosion and Sediment Control Plan	121009-ESC
General Plan of Services (East)	121009-GP2
General Plan of Services (West)	121009-GP3
Grading Plan (East)	121009-GR2
Grading Plan (West)	121009-GR3
Plan & Profile Street 1 1+000.00 - 1+324.77	121009-PR1
Plan & Profile Clyde Sanitary Connection 2+000.00-2+166.93	121009-PR2
Plan & Profile Private Road 2+000.00 - 2+260.27	121009-PR3
Stormwater Management Plan	121009-SWM
Sanitary Drainage Area Plan	121009-SAN

1.0 INTRODUCTION

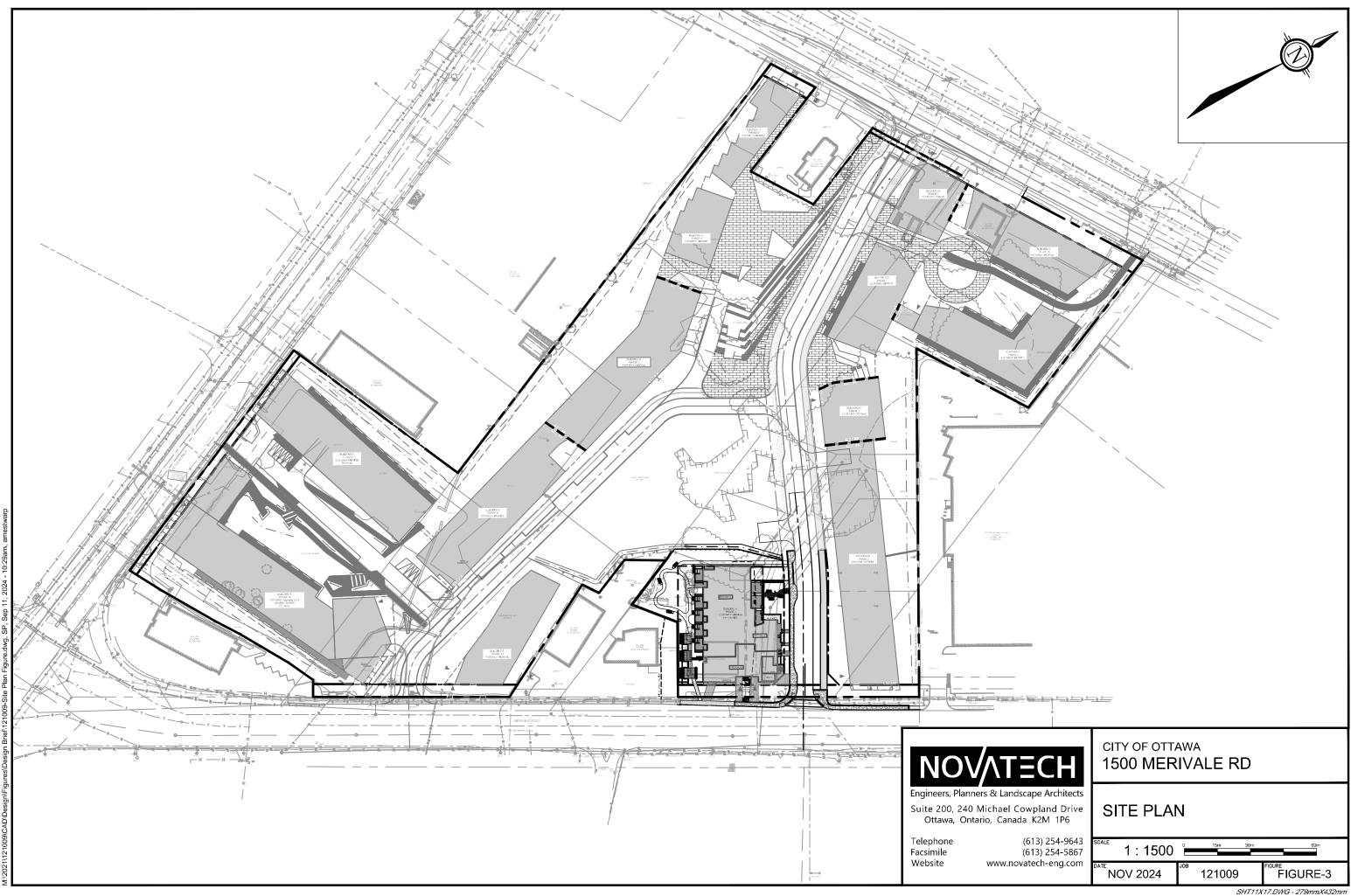
Novatech has been retained by Claridge Homes to prepare a Serviceability and Stormwater Management Report for the proposed development located at 1500 Merivale Road within the City of Ottawa. The proposed site is denoted as Part of Lots 18,19, 20, and 21, Registered Plan 30, City of Ottawa. This report is prepared as a master Servicing and Stormwater Master plan for the subject lands. **Figure 1** Key Plan shows the site location.

1.1 Existing Conditions

The subject site has an approximate area of 6.06 hectares (ha). Presently the site contains a Midas auto shop, and a restaurant named Green Papaya fronting Baseline Road. Fronting Merivale Road the site contains the existing Kimway Crescent, and remnants of various commercial buildings that have since been demolished. Due to the previous developments, there are various concrete and asphalt rubble piles throughout the site, along with abandoned building foundations and services. Towards the north property line behind the existing commercial buildings fronting Baseline Road, there is an undeveloped area of approximately 1.0ha containing trees and shrubs. The site has a grade variance of approximately 7.7m (102.00 – 94.30m) from Baseline Road to Merivale Road. The site drains primarily from the north-west to the south-east.

The site is bound by an existing Tim Hortons, and Baseline Road to the north, existing retail (Loblaws, Dollar Tree, Starbucks) to the east, Astral Media Radio Gp Ottawa, Hi Fresh Foods, The Sea Food Grill, and Merivale Road to the south, and Existing Commercial (Suya Joint/ African Grill, Frisby Tire Co, and Motor Sports World), existing asphalt parking and Clyde Avenue to the west. The existing asphalt parking area to the west near the intersection of Clyde and Baseline Road is currently planned to be developed with a Dymon storage facility and has an active City of Ottawa development number of D07-12-17-0131. **Figure 2** shows the existing site conditions.

1.2 Proposed Development


The subject site is designated as 'General Urban Area' on Schedule B of the City of Ottawa's Official Plan, with frontage onto Baseline Road, Clyde Avenue, and Merivale Road, all of which have an Arterial Mainstreet designation. The property is zoned 'Arterial Mainstreet' (AM10[2217] H(34)).

The proposed development will include a public road, a private road, a public parkette, and 11 apartment buildings ranging in 6-11 storeys in height. The proposed development will be constructed in numerous phases over the span of 15 years. The proposed apartment buildings will be complete with underground parking structures with five (5) entrances from the various phases. The site will include a proposed local public roadway (currently named Street 1) which will interconnect Merivale Road and Baseline Road, and a proposed Private Road which will have access from the proposed Street 1 and Merivale Road. The proposed Street 1 will provide direct access to Phases 1-5 and the public parkette, while phases 6-11 will be accessed from the proposed private roadway. For pedestrian circulation a multi-use pathway is proposed within the Street 1 right-of-way which will provide pedestrian circulation between Baseline Road and Merivale Road. Refer to **Figure 3: Site Plan** for details.

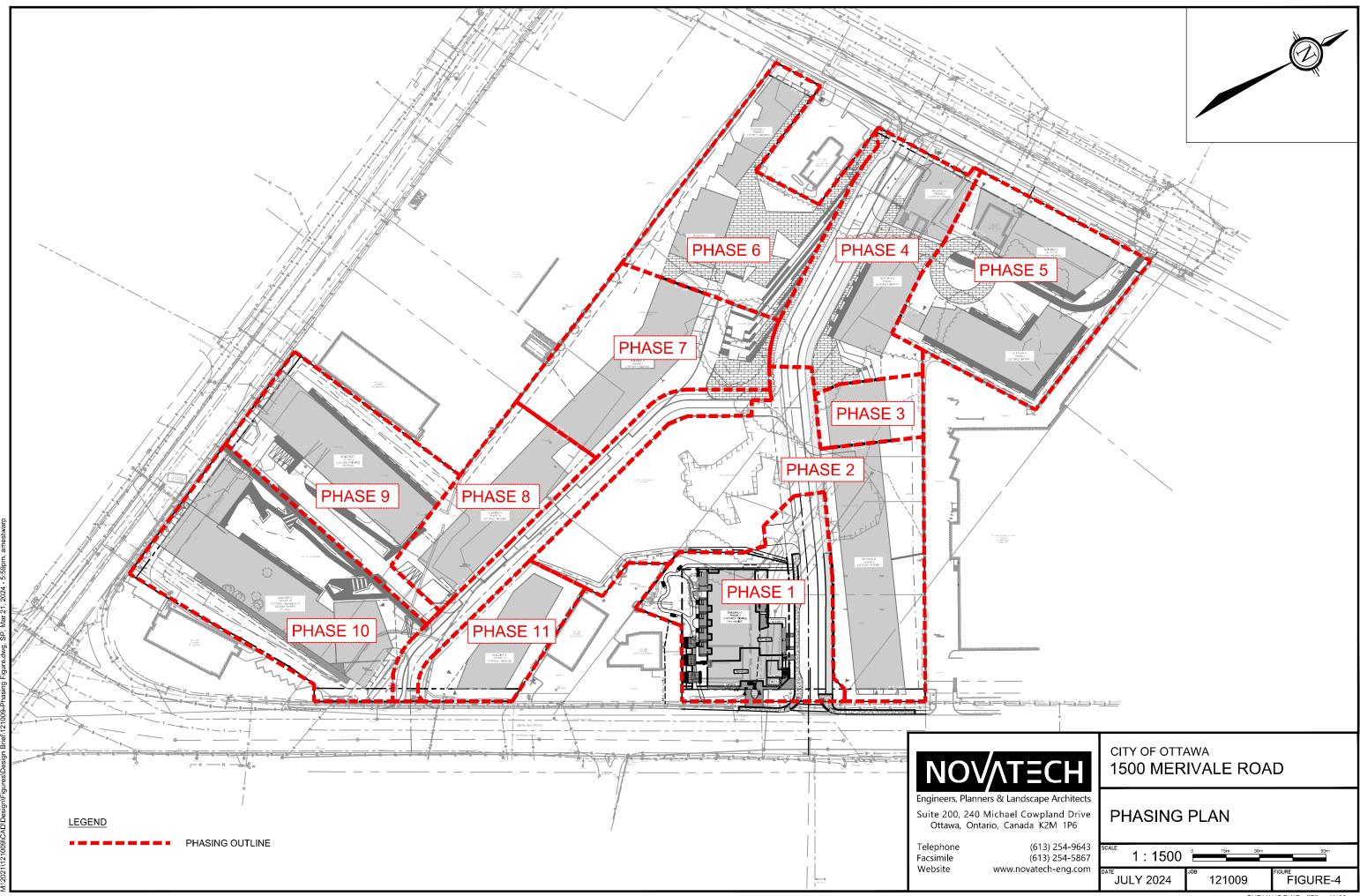
A B B B B B B B B B B B B B B B B B B B	ve la	ARTING AND
Image: Notice of Control		CITY OF OTTAWA 1500 MERIVALE RD KEYPLAN SCALE N.T.S DATE DEC 2022 JOB 121009 FIGURE-1

SHT8X11.DWG - 216mmx279mm

A summary of the 11 development phases are provided below:

- Phase 1:
 - 10-storeys with 118 dwellings, and approx. 153m² of commercial;
- Phase 2:
 - o 9-storeys with 276 dwellings, and approx. 136.26 m² of commercial;
- Phase 3:
 - 11-storeys with 67 dwellings;
- Phase 4:
 - 9-storeys with 227 dwellings, and approx. 118m² of commercial;
- Phase 5:
 - \circ 9-storeys with a total of 257 dwellings, and approx. 102 m² of commercial;
- Phase 6:
 - $\circ~$ 9-storeys with 196 dwellings, and approx. 57 m^2 of commercial;
- Phase 7:
 - o 9-storeys with 162 dwellings;
- Phase 8:
 - o 9-storeys with 198 dwellings;
- Phase 9:
 - \circ 9-storeys with 212 dwellings, and approx. 156 m² of commercial;
- Phase 10:
 - \circ 11-storeys with 287 dwellings and approx. 412 m² of commercial;
- Phase 11:
 - \circ 6-storeys with 85 dwellings and approx. 170 m² of commercial;

In total, the proposed development will consist of 2088 apartment dwellings and approximately 1320 m² of commercial space. The entire site will include parking spaces for residents and visitors. Phase 1 of the proposed development is anticipated to be built out by 2027. The ultimate buildout year of the development is anticipated to be in 2038. Refer to **Figure 4: Phasing Plan** for details.


2.0 SITE CONSTRAINTS

Ξ.

lovatech

A geotechnical investigation was completed by Paterson Group Inc. and a report prepared entitled 'Geotechnical Investigation, Proposed Multi-Storey Building Complex, 1500 Merivale Road' dated February 23, 2021. The report included the following findings:

- Generally, the subsurface profile across the site consists of an approximate 0.8 to 2.6 m thickness of fill underlain by bedrock.
- the long-term groundwater table can be expected at approximate depths of 2.5 to 3.5 m below the existing ground surface. However, it should be noted that groundwater levels are subject to seasonal fluctuations. Therefore, the groundwater level could vary at the time of construction.
- Existing foundation walls and other construction debris should be entirely removed from , within the perimeters of the proposed buildings. Under paved areas, existing

construction remnants, such as foundation walls, should be excavated to a minimum of 1 m below final grade.

- The excavation side slopes above the groundwater level extending to a maximum depth of 3 m should be excavated at 1H:1V or shallower. The shallower slope is required for excavation below groundwater level. The subsurface soils are considered to be a Type 2 and 3 soil according to the Occupational Health and Safety Act and Regulations for Construction Projects.0
- A temporary Ministry of Environment, Conservation and Parks (MECP) permit to take water (PTTW) may be required if more than 400,000 L/day of ground and/or surface water are to be pumped during the construction phase. At least 4 to 5 months should be allowed for completion of the application and issuance of the permit by the MECP.
- For typical ground or surface water volumes being pumped during the construction phase, typically between 50,000 to 400,000 L/day, it is required to register on the Environmental Activity and Sector Registry (EASR). A minimum of two to four weeks should be allotted for completion of the EASR registration and the Water Taking and Discharge Plan to be prepared by a Qualified Person as stipulated under O.Reg. 63/16. If a project qualifies for a PTTW based upon anticipated conditions, an EASR will not be allowed as a temporary dewatering measure while awaiting the MECP review of the PTTW application.

3.0 SANITARY SEWER

There are existing sanitary sewers within the surrounding Merivale Road, Clyde Avenue, and Baseline Road rights-of-way. There is an existing 200mm diameter sanitary sewer within Merivale Road right-of-way, a 200mm diameter sanitary within the Clyde Avenue right-of-way, and a 300mm sanitary within the Baseline Road right-of-way. Through correspondence with the City of Ottawa it is understood that there are capacity issues within the surrounding sanitary systems that will affect the design of the development. As such the proposed site flows will be split between the surrounding roadways as permitted by the available sewer capacities as detailed in the following sections.

3.1 Design Criteria

Sanitary flows for the proposed development were calculated using criteria from Section 4 of the City of Ottawa Sewer Design Guidelines and the Ontario Building Code as follows:

	Decidential Average Flow	- 290 L /aanita/day
٠	Residential Average Flow	= 280 L/capita/day
٠	Single	=3.4 Person/unit
٠	Townhome unit	= 2.7 Person/unit
٠	Studio Apartment	= 1.4 Person/unit
٠	1 Bed apartment	= 1.4 Person/unit
٠	2 Bed apartment	= 2.1 Person/unit
٠	3 Bed apartment	= 3.1 Person/unit
٠	Commercial flow	= 75 L/9.3m²/day
٠	Parkland flow	= 1 unit/ hectare
٠	Residential Peaking Factor	= Harmon Equation (max peaking factor = 4.0)
٠	Commercial Peaking Factor	= 1.0
•	Peak Extraneous Flows (Infiltration)	= 0.33L/s/ha

3.2 Merivale System (Phase 1)

The Phase One (1) portion of the site will be serviced by utilizing an existing 200mm diameter service on the site which connects to the Merivale Road sanitary sewer along the eastern property boundary. Based on the data available the existing sewer was installed in 1961 and is composed of asbestos cement. The sewer flows to the south-east down Gilbey Drive and is nearly at capacity.

The peak sanitary flow including infiltration for the Phase One (1) development was calculated to be **2.72 L/s**. Through correspondence with the City of Ottawa Senior Water Resources Engineer it is understood that the Merivale/Gilbey system has capacity to take the Phase One (1) development.

Detailed sanitary flow calculations, and correspondence are provided in **Appendix B** for reference.

3.3 Baseline System (Phase 4-6)

Phases Four to Six (4-6) will each have a proposed 200mm sanitary service, for a total of three (3) service connections. The proposed services will connect to the existing 200mm and 300mm diameter sanitary sewers within the Baseline Road right-of-way. Based on the available data the existing sanitary sewers were installed in 1958 and 1965 and are composed of reinforced concrete. The sewer flows to the west down Baseline Road and has capacity for future developments.

The peak sanitary flows for Phases 4, 5, and 6 are **4.06** L/s, **4.92** L/s, and **3.92** L/s, respectively, for a total proposed flow of **12.9** L/s to the existing Baseline Road sanitary sewer system. Through correspondence with the City of Ottawa Senior Water Resources Engineer it is understood that the Baseline system has capacity for the proposed flows.

Detailed sanitary flow calculations, and correspondence are provided in **Appendix B** for reference.

3.4 Clyde/ Merivale System (Phases, 2-3 & 7-11)

Phases Two to Three (2-3), and Seven to Eleven (7-11), will be serviced by a proposed sanitary sewer system that will direct flows to Clyde Avenue. The proposed sewer system will consist of pipes ranging in size from 200-250mm in diameter and will be routed under proposed Street 1, the proposed Private Road, and an easement along the back of Phase Ten (10). Based on the available data the existing 200mm diameter sanitary sewers within Clyde Avenue were installed in 1977 and are composed of asbestos cement. The existing Clyde sanitary sewer flows north into the Granton Avenue sewer system.

Through correspondence with the City of Ottawa it is understood that the existing sewer is at capacity and has no allowance for the proposed development. It is also understood that the City has plans to extend the existing Merivale Road sanitary sewer up from Cleto to Baseline to alleviate capacity issues and provide allowances for future developments. It is proposed to service the proposed development with the above noted extension.

The peaked design flow from the proposed connection will be **22.20 L/s**, at an invert of **92.10m**. Detailed sanitary flow calculations, and correspondence are provided in **Appendix B** for reference.

4.0 STORM SERVICING

Storm servicing for the 1500 Merivale development will be provided using a dual drainage system: Runoff will be stored and conveyed by an underground storm sewers and storage cisterns (minor system), while flows from large storm events which exceed the capacity of the minor system will be conveyed overland along defined overland flow routes (major system). Runoff from the site is tributary to two outlets:

- The Pinecrest Creek subwatershed via the storm sewers on Baseline Road; and
- The Parkwood Hills subwatershed via the storm sewers on Merivale Road.

There are 900-1050mm diameter storm sewers within the Merivale Road right-of-way, a 375mm diameter storm sewer within the Clyde Avenue right-of-way, and a 300mm diameter storm sewer within the Baseline Road right-of-way. In the present condition the existing commercial sites along Baseline Road drain to private sewers and ultimately the Baseline Road storm sewer systems. The remainder of the site sheet drains to the Merivale Road and Clyde Avenue rights-of-way.

It is proposed to service the proposed site with two (2) connections to the existing Merivale Road storm sewer system, and six (6) connections to the Baseline Road sewer system. Each building will have 2 building services, one (1) uncontrolled outlet for foundation drains, and one (1) controlled outlet to provide quantity control. Refer to the General Plan of Services (drawings 121009-GP1 & GP2) for details.

4.1 Stormwater Management Criteria

The stormwater management criteria used in the design of the proposed development have been based on the *Pinecrest Creek/ Westboro Stormwater Management Retrofit Study* (J.F. Sabourin & Associates Inc, dated May 2011), and the *City of Ottawa Sewer Design Guidelines* (City of Ottawa, dated October 2012), and Technical Bulletins PIEDTB-2016-01, ISTB-2018-01, ISTB-2018-02, and ISTB-2018-03.

4.1.1 Minor System (Storm Sewers)

- Storm sewers are to be designed using the Rational Method for a 2-year return period;
- Underground storage chambers are to be provided to store runoff and attenuate peak flows which exceed the following allowable release rates:
 - For areas tributary to the Pinecrest Creek subwatershed:
 - Minimum on-site retention of the 10mm design storm;
 - Peak flows from the 25mm storm event are not to exceed 5.8L/s/ha;
 - 1:100-year peak flows from the site are not to exceed 33.5L/s/ha;
 - For areas tributary to the Parkwood Hills subwatershed:
 - Peak flows are not to exceed the pre-development peak flow calculated using either the pre-development runoff coefficient or a coefficient of C=0.5, whichever is lower, for a 2-year storm event with a 10-minute time of concentration;

4.1.2 Major System

- Provide on-site storage for storm runoff which exceeds the allowable minor system release rate from the site up to and including the 100-year design event;
- Ponding depths are not to exceed 0.35m (static + dynamic) and are not to be within 0.30m (vertical) to the nearest building opening;
- No surface ponding for storms up to and including the 2-year event.

4.1.3 Water Quality Control

- A minimum depth of 300mm amended soil shall be provided below all landscaped areas;
- Per the Pinecrest Creek/ Westboro guidelines, TSS removal is inherent due to the onsite retention in landscaped areas and detention of the 25mm storm event;
- Where possible, implement lot-level and conveyance best management practices to maximize the potential for water quality treatment.

4.2 Storm Sewer Design (Minor System)

The proposed storm sewers have been designed using the Rational Method to convey peak flows associated with a 2-year return period. The storm sewer design sheet is provided in **Appendix C**. The corresponding Storm Drainage Area Plan (**121009-STM**) is provided at the back of this report.

The design criteria used in sizing the storm sewers are summarized below in Table 4.1.

Parameter	Design Criteria				
Local Roads	2 Year Return Period				
Storm Sewer Design	Rational Method				
IDF Rainfall Data	Ottawa Sewer Design Guidelines				
Initial Time of Concentration (Tc)	10 min				
Minimum Velocity	0.8 m/s				
Maximum Velocity	3.0 m/s				
Minimum Diameter	250 mm				

Table 4.1:Storm Sewer Design Parameters

4.2.1 Allowable Release Rates

As outlined in the stormwater management criteria, the allowable release rate from the site is dependent on the subwatershed that the sewer is outletting to.

Pinecrest Creek Subwatershed

For areas tributary to the Pinecrest Creek subwatershed:

- Peak flows from the 25mm storm event are not to exceed 5.8L/s/ha;
- 1:100-year peak flows from the site are not to exceed 33.5L/s/ha;

As such, peak flows for the phases tributary to the Pinecrest Creek Subwatershed are as follows:

 Table 4.2: Pinecrest Creek Allowable Release Rates

Phase	hase Total Area 25mm Flow (ha) (L/s)		100-year Flow (L/s)	
PH04	0.242	1	8	
PH05	0.618	4	21	
PH06	0.472	3	16	

As noted in the criteria, the first 10mm of rainfall is required to be captured on site. To meet this criteria, rainwater harvesting, green roofs, and/or infiltration of the runoff should be considered at the detailed design stage.

Parkwood Hills Subwatershed

For areas tributary to the Parkwood Hills subwatershed:

• Peak flows are not to exceed the pre-development peak flow calculated using either the pre-development runoff coefficient or a coefficient of C=0.5, whichever is lower, for a 2-year storm event with a 10-minute time of concentration.

Under existing conditions, the site consists of a combination of paved areas, gravel, forested areas, and sparsely grassed areas, which give an approximate runoff coefficient of C=0.51. As such, a runoff coefficient of C=0.5 has been used in the Rational Method calculation for the allowable release rate. Calculations as follows:

 $Q_{allowable}$ =2.78CiA where; C =0 .5 i = 76.81 mm/hr (for a 2-year event and Tc of 10 mins) A = 4.806 ha (refer to DWG for total drainage area tributary to the outlet) $Q_{allowable}$ = 2.78 * 0.5 * 76.81 * 4.806 $Q_{allowable}$ = 513.1 L/s

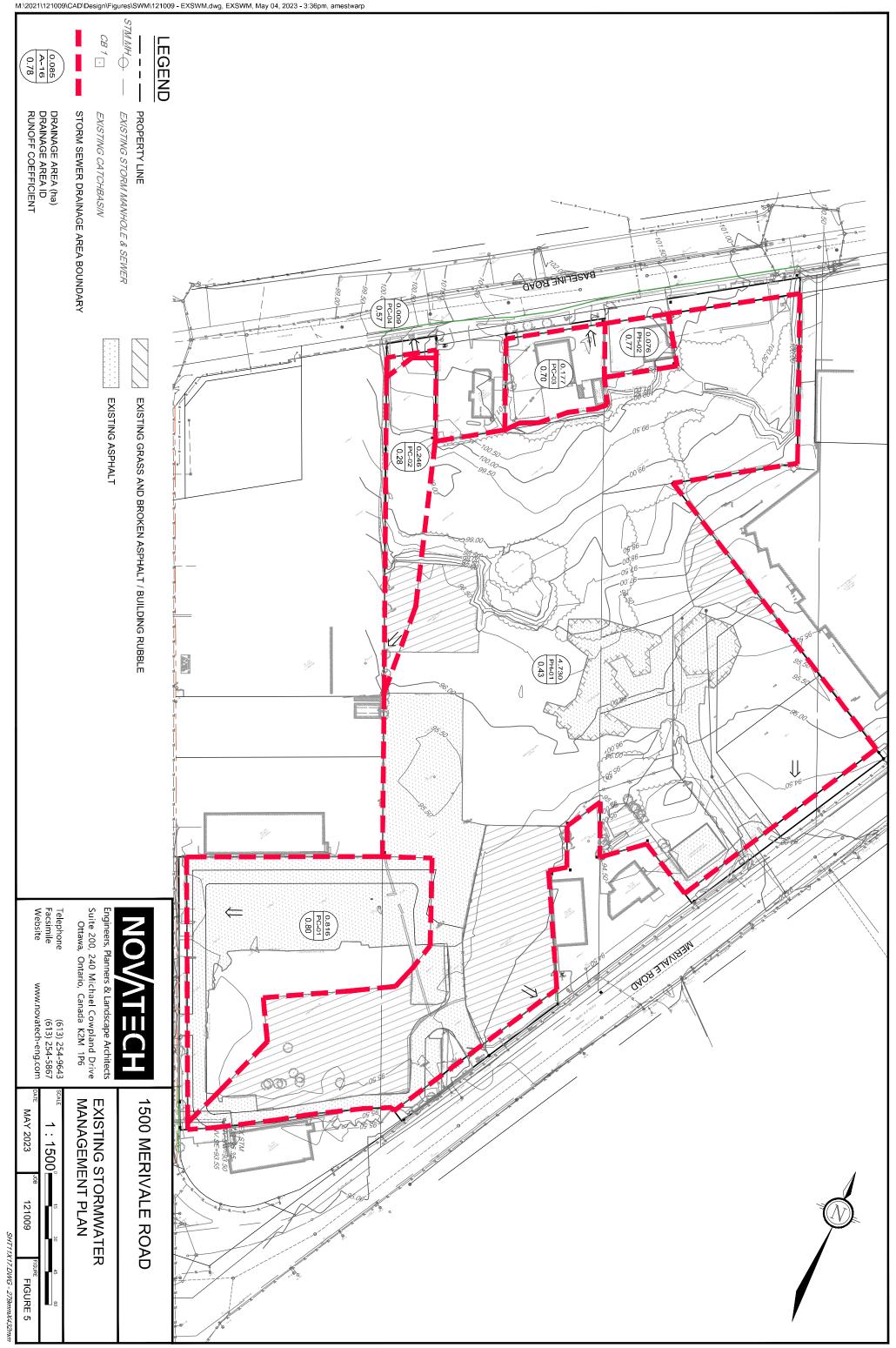
4.2.2 Orifice Controls

Inflows to the storm sewer from the public and private roadways will be controlled by inlet control devices (ICDs) within the roadway catchbasins. ICDs have been sized to ensure there is no ponding in the right-of-ways during the 2-year storm event.

4.2.3 Water Quality Controls

Per the Pinecrest Creek/ Westboro guidelines, TSS removal is inherent due to the on-site retention in landscaped areas and detention of the 25mm storm event. For outflows tributary to the sewer on Merivale Road, water quality treatment will be provided by OGS units installed upstream of the final outlet to the Merivale Road storm sewer. A Stormceptor EFO6 is proposed in place of MH101 and a Stormceptor EFO8 is proposed in place of MH301. Details of the proposed OGS units have been provided in **Appendix D**.

4.3 On-Site Storage


Due to the combination of the slope of the site limiting ponding within the ROW, parking areas being entirely underground, and restrictive release rates, a substantial amount of underground storage will be required to control peak flows from the site to the allowable release rates. A total storage volume of approximately 3,750 m³ is required across the entire site.

4.3.1 Overland Flow and Surface Storage (Major System)

Due to the slope of the site, there is very little surface storage within the right-of-ways along both the public and private roadways. Three ponding areas will provide a small amount of surface storage during storm events larger than the 2-year.

4.3.2 Underground Storage

As the allowable release rates for each storm event are quite restrictive, underground storage will be required to attenuate runoff from the site, to ensure the allowable release rates for all

storm events is not exceeded. Each phase will have its own storage cistern, sized to limit peak flows to the storm sewer to a per-hectare allowable release rate. Storage cisterns will generally be located within the parking garages for each phase, with stormwater pumped out to the receiving sewer at the allowable release rate.

Phase 1 will require approximately 293m³ to contain runoff for all storm events, controlling to the allowable release rate, up to and including the stress-test event (100-year +20%). Details of the Phase 1 storage cistern are provided on **121009-NDGP**.

4.4 Hydrologic & Hydraulic Modeling

The *City of Ottawa Sewer Design Guidelines* (October 2012) requires hydrologic modeling for all dual drainage systems. The performance of the proposed storm drainage system for the proposed development was evaluated using the PCSWMM hydrologic/ hydraulic model.

The PCSWMM model schematics and 100-year model output data are provided in **Appendix D**. Digital copies of the modeling files for all storm events are provided with the digital report submission.

4.4.1 Design Storms

The hydrologic analysis was completed using the following synthetic design storms and historical storms. The IDF parameters used to generate the design storms were taken from the *Ottawa Design Guidelines - Sewer* (October 2012).

<u>Chicago Storms</u>: 25mm 4-hour Chicago storm 2-year 3-hour Chicago storm 5-year 3-hour Chicago storm 100-year 3-hour Chicago storm <u>SCS Type II Storms:</u> 2-year 12-hour SCS Type II storm 5-year 12-hour SCS Type II storm 100-year 12-hour SCS Type II storm

The 3-hour Chicago distribution generates the highest peak flows for both the minor and major systems and was determined to be the critical storm distribution for the design of the storm drainage system.

The proposed drainage system has also been stress tested using a 3-hour Chicago design storm that has a 20% higher intensity and total volume compared to the 100-year event.

4.4.2 Model Development

The PCSWMM model has been developed to account for both minor and major system flows from the proposed development and ensure appropriate storage is provided such that the allowable release rates to each of the outlets are not exceeded. The results of the analysis were used to:

- Determine the total major and minor system runoff from the site;
- Determine the required underground storage volume;
- Calculate the storm sewer hydraulic grade line for the 100-year storm event;
- Evaluate overland flow depths and ponding volumes during the 100-year event.

Although the site is to be developed in multiple phases, the model was built assuming full buildout of the site and includes all phases of the proposed development. This was done to determine the allowable per hectare release rate for each phase and to determine the approximate underground storage volumes for each future phase.

Infiltration

Infiltration losses for all catchment areas were modeled using Horton's infiltration equation, which defines the infiltration capacity of the soil over the duration of a precipitation event using a decay function that ranges from an initial maximum infiltration rate to a minimum rate as the storm progresses. The default values for the City of Ottawa were used for all catchments.

Horton's Equation:	Initial infiltration rate:	f _o = 76.2 mm/hr
$f(t) = f_c + (f_o - f_c)e^{-k(t)}$	Final infiltration rate:	f _c = 13.2 mm/hr
	Decay Coefficient:	k = 4.14/hr

Depression Storage

The default values for depression storage in the City of Ottawa were used for all catchments.

- Depression Storage (pervious areas): 4.67 mm
- Depression Storage (impervious areas): 1.57 mm

The building rooftops are flat and will provide some depression storage.

Equivalent Width

'Equivalent Width' refers to the width of the sub-catchment flow path. This parameter (Table 5.1) is calculated as described in the *Sewer Design Guidelines, October 2012, Section 5.4.5.6.*

Impervious Values

Runoff coefficients for each subcatchment area were determined based on the proposed site plan. Refer to the Storm Drainage Area Plan (**121009-STM**) for details. Percent impervious values were calculated using the following formula:

$$\%imp = \frac{c - 0.2}{0.7}$$

4.4.3 Storm Drainage Areas

For modeling purposes, the 1500 Merivale lands have been divided into subcatchments based on the drainage areas tributary to each inlet of the proposed storm sewer system. The subcatchment areas are shown on the Storm Drainage Area Plan (**121009-STM**) at the back of this report.

The hydrologic parameters for each subcatchment were developed based on the Site Plan (**Figure 3**) and drawing **121009-STM** specified above. An overview of the modeling parameters is provided in **Table 4.3**. Subcatchment parameters for Phases 2-11 have been lumped into a single catchment area for ease of modelling. At the detailed design stage for each phase, the model will be updated with more detailed catchments for the phase in question.

Area ID	Catchment Area	Runoff Coefficient	Percent Impervious	No Depression	Flow Path Length	Equivalent Width	Average Slope
	(ha)	(C)	(%)	(%)	(m)	(m)	(%)
Roadway	Roadways						
A-01a	0.079	0.78	83%	0%	12.94	61.04	2.5%
A-01b	0.114	0.55	50%	0%	17.55	64.98	2.5%
A-02a	0.043	0.72	74%	0%	8.85	48.57	2.5%
A-02b	0.068	0.74	77%	0%	14.29	47.57	2.5%
A-03a	0.033	0.81	87%	0%	9.11	36.23	2.5%
A-03b	0.046	0.75	79%	0%	13.97	32.93	2.5%
A-04a	0.082	0.86	94%	0%	20.22	40.55	2.5%
A-04b	0.066	0.74	77%	0%	18.48	35.72	2.5%
A-05a	0.078	0.90	100%	0%	18.25	42.73	2.5%
A-05b	0.068	0.75	79%	0%	14.29	47.59	2.5%
A-06a	0.042	0.90	100%	0%	14.32	29.34	2.5%
A-06b	0.039	0.74	77%	0%	14.31	27.25	2.5%
B-01a	0.099	0.82	89%	0%	14.85	66.69	2.5%
B-01b	0.050	0.80	86%	0%	9.74	51.36	2.5%
B-02a	0.029	0.84	91%	0%	10.47	27.70	2.5%
B-02b	0.018	0.90	100%	0%	8.66	20.79	2.5%
B-03a	0.138	0.85	93%	0%	16.43	84.00	2.5%
B-03b	0.054	0.66	66%	0%	5.20	103.88	2.5%
B-04a	0.007	0.90	100%	0%	2.92	23.94	2.5%
B-04b	0.011	0.65	64%	0%	5.04	21.81	2.5%
B-05	0.130	0.86	94%	0%	22.26	58.40	2.5%
Building	Phases						
BLDG1	0.151	0.90	100%	0%	30.53	49.46	0.5%
P1-1	0.106	0.51	44%	0%	26.55	51.22	0.5%
P1-2	0.031	0.61	59%	0%	26.55	51.22	0.5%
BLDG2	0.243	0.90	100%	0%	-	-	0.5%
P2-1	0.163	0.20	0%	0%	-	-	0.5%
PH02	0.406	0.62	60%	0%	34.14	118.94	0.5%
BLDG3	0.076	0.90	100%	0%	-	-	0.5%
P3-01	0.065	0.20	0%	0%	-	-	0.5%
PH03	0.141	0.58	54%	0%	41.07	34.33	0.5%
BLDG4	0.242	0.90	100%	0%	-		0.5%
PH04	0.242	0.90	100%	0%	86.46	27.99	0.5%
BLDG5	0.336	0.90	100%	0%	-	-	0.5%
P5-1	0.181	0.70	71%	0%	-	-	0.5%

 Table 4.3: Hydrologic Modeling Parameters

Area ID	Catchment Area	Runoff Coefficient	Percent Impervious	No Depression	Flow Path Length	Equivalent Width	Average Slope
	(ha)	(C)	(%)	(%)	(m)	(m)	(%)
P5-2	0.101	0.45	36%	0%	-	-	0.5%
PH05	0.618	0.77	81%	0%	73.28	84.28	0.5%
BLDG6	0.190	0.90	100%	0%	-	-	0.5%
P6-1	0.093	0.20	0%	0%	-	-	0.5%
P6-2	0.189	0.76	80%	0%	-	-	0.5%
PH06	0.472	0.71	72%	0%	54.86	86.04	0.5%
BLDG7	0.192	0.90	100%	0%	-	-	0.5%
P7-1	0.115	0.32	17%	0%	-	-	0.5%
PH07	0.307	0.68	69%	0%	42.17	72.80	0.5%
BLDG8	0.191	0.90	100%	0%	-	-	0.5%
P8-1	0.134	0.34	20%	0%	-	-	0.5%
PH08	0.325	0.67	67%	0%	32.95	98.62	0.5%
BLDG9	0.202	0.90	100%	0%	-	-	0.5%
P9-1	0.273	0.81	87%	0%	-	-	0.5%
P9-2	0.126	0.33	19%	0%	-	-	0.5%
PH09	0.601	0.74	77%	0%	95.06	63.26	0.5%
BLDG10	0.326	0.90	100%	0%	-	-	0.5%
P10-1	0.154	0.45	36%	0%	-	-	0.5%
P10-2	0.061	0.40	29%	0%	-	-	0.5%
P10-3	0.088	0.39	27%	0%	-	-	0.5%
PH10	0.629	0.67	67%	0%	94.74	66.36	0.5%
BLDG11	0.111	0.90	100%	0%	-	-	0.5%
P11-1	0.040	0.90	100%	0%	-	-	0.5%
P11-2	0.049	0.20	0%	0%	-	-	0.5%
PH11	0.200	0.73	76%	0%	34.23	58.44	0.5%
Park & Di	irect Runoff						
PARK1	0.519	0.40	29%	0%	55.30	94.22	1.7%
D-02	0.004	0.90	100%	0%	2.82	14.18	0.5%
D-04	0.011	0.20	0%	0%	3.41	32.23	0.5%

4.5 Minor System Design and Analysis

The following sections outline the model parameters and results of the PCSWMM model, pertaining to the minor system (storm sewers).

4.5.1 Orifice Controls

Inflows to the storm sewer were modeled based on the characteristics of each inlet. Inflows to the storm sewer are based on the orifice specified for the inlet and the maximum depth of ponding. Orifices have been sized to limit the outlet peak flows. Details are outlined as follows in **Table 4.4**.

	Max.		Calculated	Model Results*			
Structure	Diameter (mm)	Head (2yr) (m)	2yr Capture Rate (L/s)	2yr Approach Flow (L/s)	2yr Capture Rate (L/s)	100yr Approach Flow (L/s)	100yr Capture Rate (L/s)
CB01	152	1.10	52.4	18.9	18.8	97.4	50.7
CB02	178	1.09	71.4	19.6	19.5	100.1	66.4
CB03	83	1.18	16.1	14.2	9.3	46.4	19.4
CB04	83	1.14	15.9	18.5	11.1	70.9	19.4
CB05	83	1.44	17.8	16.5	9.3	45.3	19.4
CB06	83	1.39	17.5	16.4	9.2	57.9	19.4
CB07	102	1.20	24.6	30.5	10.7	76.3	20.8
CB08	83	1.14	15.9	17.7	9.1	55.3	19.4
CB09	83	1.40	17.6	20.3	6.4	48.5	12.5
CB10	83	1.19	16.2	14.2	7.4	41.2	17.4
CB11	83	1.39	17.5	9.0	5.3	20.8	11.0
CB12	83	1.18	16.1	6.5	4.0	18.7	10.1
CB13	152	1.12	52.8	21.8	21.7	56.3	52.4
CB14	83	1.16	16.0	10.5	10.3	36.0	16.3
CB15	83	1.16	16.0	5.7	2.8	14.2	6.3
CB16	83	1.16	16.0	3.8	2.7	8.9	5.9
CB17	102	1.75	29.7	27.7	27.3	68.0	30.7
CB18	83	1.76	19.7	8.4	8.1	61.2	20.0
CB19	83	1.16	16.0	11.0	0.8	29.7	2.2
CB20	83	1.16	16.0	1.6	1.1	5.2	3.6
CB21	127	1.19	37.9	36.3	36.0	90.9	40.4

Table 4.4: Orifice Parameters

*From PCSWMM Model, 2-year & 100-year 3-hour Chicago storm distribution

4.5.2 Allowable Release Rate – Parkwood Hills

As noted in Section 4.2.1, the allowable release rate to the Parkwood Hills subwatershed, which the Merivale storm sewer is tributary to, is 513 L/s. To determine a per-hectare release rate which could be applied to each of the development Phases tributary to the Merivale outlets, the total flow from the ROWs and park area was determined by modelling it without any inflows from the various blocks. The flow from the ROWs and park alone accounted for approximately 413L/s, leaving 100L/s to be split between Phases 1-3, and 7-11. Allowable release rates on a per-phase basis are outlined in the table below.

Total area from Phases 1-3 & 7-11	= 2.896 ha
Allowable per-phase release rate	= 100L/s / 2.896ha
	= 35 L/s/ha

Phase ID Area (ha)		Allowable Release Rate (L/s)
PH1	0.287	10
PH2	0.406	14
PH3	0.141	5
PH7	0.307	11
PH8	0.325	11
PH9	0.601	21
PH10	0.629	22
PH11	0.200	7

Table 4.5: Pe	r Phase	Allowable	Release Rates

4.5.3 Peak Flows

The modeled peak flows at the various outlets of the 1500 Merivale site for each storm event (25mm, 2-year to 100-year+20%) are summarized in **Table 4.6**. An expanded table with the SCS storm event outflows is provided in **Appendix D**.

Storm Distribut	tion->	3hr Chicago				
Return Period->	>	25mm	2yr	5yr	100yr	100yr +20%
To Merivale	North Outlet (Minor System)	96	130	177	283	319
Road/	South Outlet (Minor System)	96	131	140	173	192
Parkwood Hills Minor System	Total to Merivale (Minor System)	192	261	317	456	511
To Merivale	Direct Runoff	1	1	2	6	8
Road/	North Outlet (Major System)	0	0	0	59	156
Parkwood Hills Major	South Outlet (Major System)	0	0	0	17	24
System	Total to Merivale (Major System)	1	1	2	82	188
TOTAL to Meriv	/ale Road	193	193	262	319	538
To Baseline/	To Baseline/ Phase 4		3	5	8	9
Pinecrest	Phase 5	4	5	10	18	21
Creek	Phase 6	3	4	4	15	17

Table 4.6: Peak Flows

The results of the PCSWMM analysis indicate that outflows from the proposed development to the Pinecrest Creek subwatershed will not exceed allowable release rates as outlined in **Section 4.2.1**, **Table 4.2**.

Inflows to the Merivale Road minor system (Parkwood Hills subwatershed) will not exceed the allowable release rate for all storm events. However, peak flows from the major system during the 100-year event bring the total release rate above the allowable 513 L/s during the 100-year event. Given the downstream boundary conditions in the Merivale storm sewer are at the manhole T/G, there is significant backup of flows into the 1500 Merivale development sewer and surcharging from the manholes within the development. As such, storage provided within the

ROW by the low points is taken over by outflows from the storm sewers, resulting in overland flow to Merivale Road.

4.5.4 Hydraulic Grade Line

The results of the analysis were used to determine if there would be any surcharging from the storm sewer system during the 100-year storm event. As noted above, since the downstream boundary conditions during the 100-year event are at the manhole T/G already and buildings are to have underground parking areas, HGL elevations were analyzed on the clearance from the T/G and not clearance to the USF. There will be no habitable basements within the development, and backwater valves will be placed on the storm outlets for the foundation drains and cisterns, which will both be pumped into the receiving storm sewers.

The **Table 4.7** provides a summary of the 100-year HGL elevation at each storm manhole within the proposed development, as well as a summary of the HGL elevations for a 20% increase (rainfall intensity and total precipitation) in the 100-year design event.

Manhole ID	MH Invert Elevation	T/G Elevation	HGL Elevation 100yr-3hr	HGL Elevation 100yr-3hr +20%	Clearance from T/G (100yr)	Clearance from T/G (100yr+20%)
	(m)	(m)	(m)	(m)	(m)	(m)
MH101	92.24	94.12	94.11	94.12	0.01	0.00
MH102	92.27	94.08	94.11	94.13	-0.03	-0.05
MH103	92.42	94.06	94.13	94.15	-0.07	-0.09
MH104	92.58	94.70	94.17	94.27	0.53	0.43
MH105	93.88	96.58	94.39	94.53	2.19	2.05
MH106	94.35	97.19	94.52	94.62	2.67	2.57
MH107	94.88	97.99	95.04	95.05	2.95	2.94
MH108	95.89	98.61	96.01	96.01	2.60	2.60
MH109	98.63	101.58	98.70	98.71	2.88	2.87
MH301	92.62	94.56	94.59	94.59	-0.03	-0.03
MH302	92.70	94.55	94.59	94.59	-0.04	-0.04
MH303	92.75	94.49	94.59	94.59	-0.10	-0.10
MH304	92.80	94.52	94.60	94.60	-0.08	-0.08
MH305	92.89	94.58	95.60	94.60	-1.02	-0.02
MH306	93.01	95.06	90.61	94.61	4.45	0.45
MH307	93.07	95.70	94.62	94.62	1.08	1.08
MH308	93.33	95.87	94.68	94.69	1.19	1.18
MH309	93.74	96.27	94.70	94.71	1.57	1.56
MH310	94.02	96.50	94.72	94.73	1.78	1.77
MH311	94.89	97.19	94.93	94.94	2.26	2.25

Table 4.7: Storm Sewer Hydraulic Grade Line

4.5.5 Underground Storage Volumes

Approximate underground storage volumes for each phase are outlined in **Table 4.8**. During the detailed design stage for each phase, the exact required volume will be refined.

Phase	Area	Storage Required (m³)	Storage Required per Hectare (m ³ /ha)
PH01	0.287	258	899
PH02	0.406	334	824
PH03	0.141	27	191
PH04	0.242	124	513
PH05	0.618	291	470
PH06	0.472	202	428
PH07	0.307	160	521
PH08	0.325	305	939
PH09	0.601	696	1158
PH10	0.629	665	1058
PH11	0.2	310	1548

Table 4.8: Storage Required

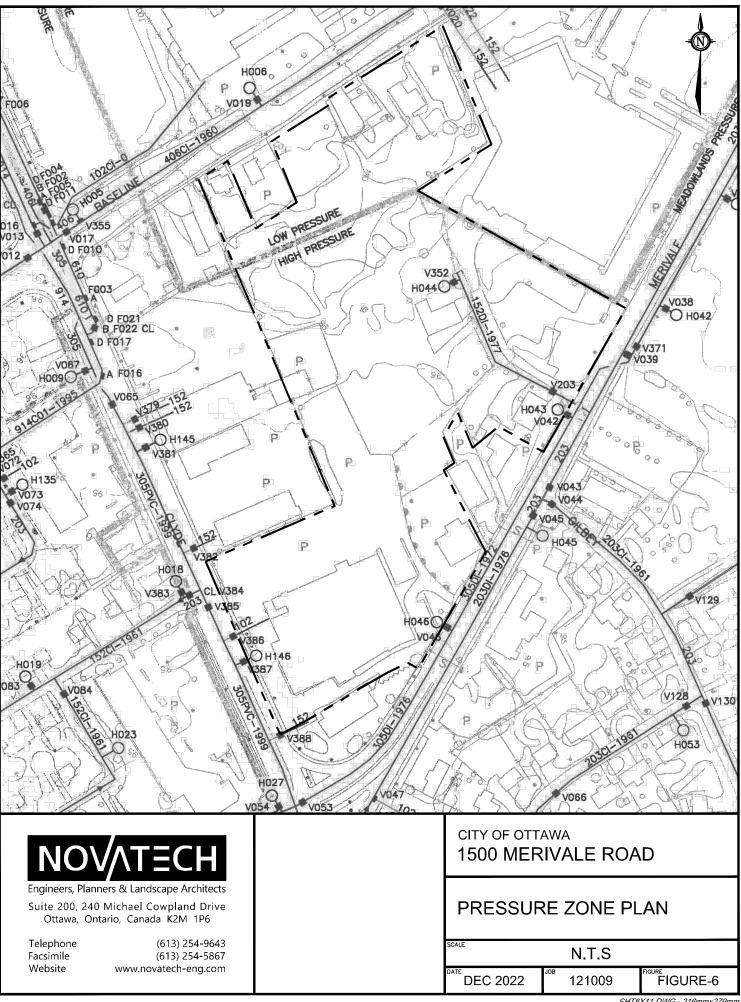
4.6 Major System Design and Analysis

The major system network was evaluated using the PCSWMM model to ensure that the ponding depths conform to City standards. A summary of ponding depths and volumes for the 100-year event is provided in **Table 4.9**. Ponding depths for all storm events (2yr to 100yr+20%) are provided in **Appendix D**.

Structure	T/G	Max. S Ponding Dep	g (Spill		2-yr	Min. Adjacent Building		
Structure	(m)	Elev. (m)	Depth (m)	Elev. (m)	Depth (m)	Cascading Flow?	Cascade Depth	Opening (m)
		• •		. ,	• •	-	(m)	
CB01	93.95	94.07	0.12	92.99	0.00	N	0.00	94.22
CB02	93.95	94.07	0.12	92.94	0.00	N	0.00	94.22
CB13	94.44	94.55	0.11	93.51	0.00	N	0.00	94.70
CB14	94.44	94.55	0.11	93.76	0.00	N	0.00	94.70
CB17	95.70	95.84	0.14	95.43	0.00	N	0.00	95.99
CB18	95.70	95.84	0.14	94.24	0.00	N	0.00	95.99
CB21	96.60	96.80	0.20	96.48	0.00	N	0.00	96.95

5.0 WATERMAIN

The subject property is within both the City of Ottawa pressure Zone ME, and Zone 2W2C. The pressure zone split crosses through the northern portion of the subject site. There is an existing 300mm diameter ductile Iron watermain within the Merivale Road right-of-way, a 300mm diameter PVC watermain within the Clyde Avenue right-of-way, and a 400mm diameter cast iron watermain in the Baseline Road right-of-way. The proposed development will include a 200mm public watermain within the proposed Street 1, and Private Road rights-of-way which will connect to the existing Merivale Road watermain in two (2) locations. Phases 1-3, and 7-11 will be serviced from the proposed watermain within the Street 1, and Private Road rights-of way. Phases 4-6 will be serviced by connecting each phase directly to the existing 400mm watermain within the Baseline Road right-of-way.


As per the City of Ottawa Technical Bulletin ISDTB-2014-02, each proposed building service will consist of twin 200mm watermains separated by an isolation valve in the right-of-way. The proposed buildings will be sprinklered and equipped with Siamese connections. Each Siamese connection has been placed to be within 45m of a fire hydrant. Refer to the General Plan of Services drawing (121009-GP1&2), and the Coverage plans included in **Appendix E** for details.

As noted above the Merivale Road and Baseline Road watermain are within two (2) distinct pressure zones. As such the on-site water servicing will not be interconnected. Refer to **Figure 6:** Pressure Zone Plan for details.

For this site the water demands will be detailed by Phase, and pressure zone. Water demands have been calculated using criteria from Section 4 of the City of Ottawa Water Distribution Guidelines and the Ontario Building Code. The required fire demands have been calculated using the Fire Underwriters Survey (FUS) Guidelines. The water demand and fire flow calculations are provided in **Appendix E** for reference. A summary of the water demand and fire flows are provided in **Table 5.1**, and **Table 5.2** below.

Phase	Population	Ave. Daily Demand (L/s)	Max. Daily Demand (L/s)	Peak Hour Demand (L/s)	Fire Flow (L/s)
Phase 1	229	0.759	1.881	4.128	67
Phase 2	440	1.437	3.580	7.868	83
Phase 3	126	0.408	1.021	2.246	33
Phase 7	262	0.848	2.120	4.665	83
Phase 8	301	0.976	2.439	5.367	100
Phase 9	326	1.072	2.665	5.854	100
Phase 10	478	1.587	3.928	8.618	117
Phase 11	173	0.576	1.423	3.121	67
Park		0.002	0.005	0.010	N/A
Total	2320.5	7.66	19.06	41.88	

Table 5.1: Merivale Road Domestic Water Demand Summary

SHT8X11.DWG - 216mmx279mm

Phase	Population	Ave. Daily Demand (L/s)	Max. Daily Demand (L/s)	Peak Hour Demand (L/s)	Fire Flow (L/s)
Phase 4	354	1.160	2.888	6.347	100
Phase 5	426	1.389	3.463	7.613	133
Phase 6	337	1.096	2.735	6.014	117
Total	1117	3.64	9.09	19.974	

Table 5.2 Baseline Road Domestic Water Demand Summary

The water demand information for the site was previously submitted for a slightly lower site demand for the Merivale Road connection as summarized in **Table 5.3** below.

Table 5.3: Merivale Road Domestic Water Demand Summa	ry
--	----

Phase	Population	Ave. Daily Demand (L/s)	Max. Daily Demand (L/s)	Peak Hour Demand (L/s)	Fire Flow (L/s)
Total	2320.5	7.62	18.95	41.63	

The slight difference in demand is considered negligible and would have a negligible impact on the boundary Head elevations. The above water demand information based was submitted to the City for boundary conditions from the City's water model. Refer to **Table 5.4** for a summary of the boundary conditions.

Table 5.4: Water Boundary Conditions

Criteria	Demand (L/s)	Head (m)	
Connection 1 (Merivale Road) – Zone ME			
Max HGL	7.62	157.9	
Min HGL	41.63	144.7	
Max Day + Fire Flow	135.95	152.8	
Connection 2 (Merivale Road) – Zone ME			
Max HGL	7.62	157.9	
Min HGL	41.63	144.7	
Max Day + Fire Flow	135.95	152.8	
Connection 3 (Baseline Road) – Zone 2W2C [Phase 6]			
Max HGL	1.096	133.0	
Min HGL	6.014	124.9	
Max Day + Fire Flow	135.735	127.5	

Novatech

Criteria	[Demand (L/s)		Head (m)
Connection 4 (Baseline Road) – Zone 2W2C [Phase 4]				
Max HGL		1.160		133.0
Min HGL		6.347		124.9
Max Day + Fire Flow		135.88		127.4
Connection 5 (Baseline Road) – Zone 2W2C [Phase 5]				
Max HGL		1.389		133.0
Min HGL		7.613		124.9
Max Day + Fire Flow		136.463		127.2

5.1 Ultimate Build-out

The following is an analysis of the complete build-out of the development. A detailed analysis for each phase will be completed with the future site plan applications.

5.1.1 Merivale System

The above boundary conditions were used to create a hydraulic model using EPANET for analyzing the performance of the proposed watermain system for three theoretical conditions: 1) High Pressure check under Average Day conditions, 2) Peak Hour Demand, 3) Maximum Day + Fire Flow Demand. The following **Table 5.4** provides a summary of the results from the hydraulic water model.

Table 5.5: Water Analysis Summary

Condition	Demand (L/s)	Min/Max Allowable Operating Pressures (psi)	Limits of Design Operating Pressures (psi)
High Pressure	7.62 L/s	80psi (Max)	90.74psi
Maximum Daily Demand and Fire Flow	101.95 L/s	20psi (Min)	68.48psi
Peak Hour	10.97 L/s	40psi (Min)	63.85psi

The above table lists the worst-case pressures from the water model analysis.

The hydraulic analysis indicates that the system can provide adequate pressures and flow to meet the domestic and fire flow requirements for the site. Due to pressures being above 80psi pressure reducing valves will be required on the proposed services. Refer to **Appendix E** for detailed water demand calculations, and City of Ottawa boundary conditions.

5.1.2 Baseline System

The above boundary conditions were used for analyzing the performance of the proposed and existing watermain systems for three theoretical conditions:

- 1) High Pressure check under Average Day conditions
- 2) Peak Hour demand
- 3) Maximum Day + Fire Flow demand.

Refer to **Table 5.5** for a summary of the proposed boundary conditions and hydraulic analysis.

Criteria	Head (m)	Pressure ¹ (psi)	Pressure Requirements (psi)
Connection 3 (Baseline Road			
Max HGL	133.0	49.14	< 80psi
Min HGL	124.9	37.63	> 40psi
Max Day + Fire Flow	127.5	42.32	> 20psi
Connection 4 (Baseline Road) – Zone 2W2C [Phase 4]			
Max HGL	133.0	47.22	< 80psi
Min HGL	124.9	35.71	> 40psi
Max Day + Fire Flow	127.4	39.26	> 20psi
Connection 5 (Baseline Road) – Zone 2W2C [Phase 5]			
Max HGL	133.0	48.63	< 80psi
Min HGL	124.9	37.11	> 40psi
Max Day + Fire Flow	127.2	40.38	> 20psi

Table 5.6: Water Bounda	ry Conditions and H	ydraulic Analysis Summary
-------------------------	---------------------	---------------------------

¹Pressure based on a Water Entry elevation of 98.44m for phase 6, 99.79m for phase 4, 98.80m for phase 5

The hydraulic analysis indicates that the system can provide adequate pressures and flow to meet the domestic and fire flow requirements in all scenarios other than the peak hour. As the proposed buildings are mid-rise apartments, the buildings will include pumps for the upper floors which will regulate the internal water pressures and mitigate any low pressures encountered during the peak hour. Refer to **Appendix E** for detailed water demand calculations, and City of Ottawa boundary conditions.

6.0 EROSION AND SEDIMENT CONTROL

Temporary erosion and sediment control measures will be implemented on-site during construction in accordance with the Best Management Practices for Erosion and Sediment Control. This includes the following temporary measures:

- Filter socks (catchbasin inserts) will be placed in existing and proposed catchbasins and catchbasin manholes, and will remain in place until vegetation has been established and construction is completed;
- Silt fencing will be placed along the surrounding construction limits;
- Mud mats will be installed at the site entrances;
- Strawbale or rock check dams will be installed in swales and ditches;
- The contractor will be required to perform regular street sweeping and cleaning as required, to suppress dust and to provide safe and clean roadways adjacent to the construction site;

Erosion and sediment control measures should be inspected daily and after every rain event to determine maintenance, repair or replacement requirements. Sediments or granulars that enter site sewers shall be removed immediately by the contractor. These measures will be implemented prior to the commencement of construction and maintained in good order until vegetation has been established. Refer to the Erosion and Sediment Control Plan (drawing 121009-ESC) for additional information.

7.0 CONCLUSIONS AND RECOMMENDATIONS

Sanitary Servicing

The analysis of the existing and proposed sanitary system confirms the following:

- It is proposed to service the Phase 1 development utilizing the existing 200mm sanitary service to Merivale Road
- Phases 2-3, and 7-11 will be serviced by a proposed 200-250mm diameter sanitary sewer that will connect to the future Merivale Road sanitary expansion as noted on the IMP
- Phases 4-6 will be serviced by individual 200mm diameter sanitary services to Baseline Road
- There is adequate capacity within city infrastructure downstream from the development for Phase 1, and Phases 4-6. Adequate capacity for Phases 2-3 and 7-11 will be provided following the future sanitary expansion along Merivale Road.

Stormwater Management

The following provides a summary of the storm sewer and stormwater management system:

- The proposed storm sewer systems are to connect to the 900mm and 1050mm diameter storm sewers in the Merivale Road right-of-way. The sewer systems will provide storm conveyance for Phases 1-3, and 7-11
- Phases 4-6 will be serviced by direction connections to the existing storm sewers within the Baseline Road right-of-way
- Stormwater control for the individual phases will be provided by cisterns within the P1 parking levels.
- As per the proposed grading plans, major overland flow routes have been provided to the surrounding rights-of-way.

<u>Watermain</u>

The analysis of the existing and proposed watermain network confirms the following:

- The proposed 200mm diameter water main proposed under Street 1 and the Private Road with two proposed connections to the existing watermain within the Merivale Road right-of-way has capacity to service the development.
- Phases 4-6 will be serviced by the existing Baseline Road watermain system with individual dual services separated by Isolation valves. The proposed buildings will require pumps to increase the pressure during the peak hour event.
- There are adequate pressures in the existing watermain infrastructure to meet the required domestic demands for the development.
- There is adequate flow to service the proposed fire protections system.

Erosion and Sediment control

• Erosion and sediment control measures (i.e. filter fabric, catchbasin inserts, silt fences, etc.) will be implemented prior to construction and are to remain in place until vegetation is established.

8.0 CLOSURE

This report is respectfully submitted for review and approval. Please contact the undersigned should you have questions or require additional information.

NOVATECH

Prepared by:

Anthony Mestwarp, P.Eng Project Manager Land Development Engineering

Stormwater Modeling by:

Kallie Auld, P.Eng. Project Manager Water Resources

Report Reviewed by:

Greg MacDonald, P.Eng. Director, Land Development and Public Sector Infrastructure Appendix A Pre - Consultation Meeting Minutes

ADDRESS 1500 Merivale Road Pre-Consultation Meeting Minutes Meeting Date: March 25, 2021

Attendee	Role	Organization
Lisa Stern	File Lead	City of Ottawa
Mark Young	Urban Designer	
Santosh Kuruvilla	Infrastructure Project Manager	
Mike Giampa	Transportation Project Manager	
Louise Cerveny	Parks Planner	
Kersten Nitsche	Planner	Fotenn
Brian Casagrande	Planner	
Vincent Denomme	Landowner	Claridge Homes
Neil Malhotra	Landowner	
Nathan Godlovitch	Architect	Evoq Architecture
Sayeh Jolan		
Etienne Forget		
Brad Byvelds		Novatech
Jennifer Luong		
Doug Yonson	Community Association	Fisher Heights Area Community
	Representative	Association
Tony Sroka	Community Association	
	Representative	

Comments from the Applicant:

- **1.** Have proposed a built form that meets the zoning.
- 2. Have proposed a mainly a mid-rise residential built form with approximately 2000 units.
- **3.** A public park is proposed at the south end of the site.
- 4. The build out of the site will occur over time. Build out may take 20 years.

Planning Comments:

- 1. The application will require a complex site plan application. The application form, timeline and fees can be found <u>here</u>.
- 2. The subject lands are designated Arterial Mainstreet in the City's Official Plan and are zoned Zoning: AM10[2217] H(34)
 - a. Exception: for lots greater in area than 1250 m², 2% of the total lot area must be provided as outdoor communal space located at grade anywhere on the lot and such area can also be used towards complying with any amenity area requirements
- 3. The site is within the boundaries of the Merivale Road Secondary Plan.
- 4. Please keep apprised of the direction in the draft Official Plan.
- 5. Guidelines for Arterial Mainstreets, TOD development, Bird Friendly Design Guidelines apply.
- 6. There was a motion made at Council to *"add the completion of an urban design analysis of the Merivale Triangle to the Planning, Infrastructure and Economic Development Department's multi-year workplan, and direct staff to undertake this analysis as soon as feasible".*

- 7. Please provide a Planning Rationale which discusses how the proposal meets the intent of policy and guidelines. A high quality built form and pedestrian oriented public realm is expected.
- 8. In light of the amenity space requirements of the site specific zoning exception and the requirement to provide parkland on site, please discuss the objectives/rationale for the open space network provided in the Planning Rationale report and how it meets the intent of the Secondary Plan and relevant guidelines.
- 9. While it is recognized that the proposal conforms to the Zoning of the site, staff strongly recommend consideration of varying building typologies and heights to visually break up the site, provide opportunities for placemaking and to provide increased densities in proximity to Rapid Transit.
- 10. Both the Arterial Mainstreet designation and the Secondary Plan speak to providing a mix of uses a mix of uses that is compact in urban form, and pedestrian-oriented and transit friendly places. Please examine providing commercial/retail uses at grade to animate roadway frontages and public space.
- 11. The secondary plan recognizes that this property is very complex and are subject to a number of development constraints arising from the existing development pattern and the complexity of the land ownership. The secondary plan states that as a result, proposals to develop this area may be considered on a staged basis to accommodate a transition to a more coordinated and integrated built form. It is not clear that the proposed plan considers transitions to surrounding properties.
 - Please provide a concept and phasing plan for the entire triangle area to ensure that non-participatory properties can be developed in a logical and cohesive fashion.
 - Provide a concept plan to show how surrounding properties will develop and be integrated with park uses and illustrate how loading and access on adjacent sites can be integrated/buffered.
- 12. Connectivity through the site to BRT is important to provide for active transportation connections and to meet the objectives of the OP, Secondary Plan and applicable guidelines. The Secondary Plan specifically contemplates a roadway and cycling access through the site. Public access should be provided through the site. Public Roadway would be preferable to provide public frontage on Park, consolidate accesses between sites and provide public access to BRT.
- 13. Please consider building placement and orientation to frame public/private roadways to compliment the configuration of adjacent buildings. Please consider orienting buildings so that the massing reinforces the street/private way edge.
- 14. Please consider breaking up the long buildings provide opportunities for physical and visual connections. Connections should be provided to create pedestrian and cycling links and overall site permeability. Connections to/from surrounding properties to the park/open space and BRT should be considered in design.
- 15. Staff appreciates the provision of underground parking. Please ensure that the extent of underground parking structures will not inhibit the provision of large tree planting on the site.
- 16. Staff would appreciate the opportunity for further consultation/discussion as the proposal is refined in order provide more detailed comments regarding public space, infrastructure and access.
- 17. Please consult with the Ward Councillor and Community Association prior to submission.

Urban Design:

1. Please ensure that the proposed applications conform to the Merivale Road Secondary Plan.

2. Please consult and address the Design Guidelines prepared for the Secondary Planning area by the Planning Partnership in 1998. These guidelines provide additional guidance that should be considered and addressed based on Secondary Plan policy 5.2:

5.2 The Urban Design Guidelines developed as part of the Secondary Plan process are instrumental in the formulation and achievement of the land use and design vision for the Merivale Road Corridor. Although some of the policies of this Plan derived difficulty from the Urban Design Guidelines and are intended to assist in the achievement of this vision, it must be demonstrated to the satisfaction of the City that development proposals comply with their specific direction and general intent.

- 3. A site of this size requires a Neighbourhood Approach to Planning vs. a Site Planning Approach.
- 4. The current approach appears to be rooted in a Campus approach and does not appear to consider a higher-level approach to neighbourhood building.
- 5. There is a need to look at the entire picture and the surrounding context of this site and use this to inform the design. This should consider how abutting sites can be integrated into the new neighbourhood fabric if and when they redevelop. Many of the adjacency relationships shown are not appropriate. This is considered in the Secondary Plan policies and should be provided as part of a design brief submission.
 - 3.1.1.2 1.a. viii. Lands within the triangle formed by Merivale Road, Clyde Avenue and Baseline Road are subject to a number of development constraints arising from the existing development pattern and the complexity of the land ownership. As a result, proposals to develop this area may be considered on a staged basis to accommodate a transition to a more coordinated and integrated built room.
- 6. Additional Connectivity and permeability should be sought, in the form of additional publicly accessible connections, including public streets as indicated in the Secondary Plan.

3.1.4.1.1.a.ii Road systems should be introduced within large blocks, particularly those on the east side of Merivale Road and the Clyde Avenue/Merivale Road/Baseline Road "triangle", to increase their permeability and to distribute traffic more evenly while minimizing the number of driveways on Merivale Road and Clyde Avenue.

3.1.3.1.1.a.i. Council shall require that new roads be incorporated in proposals for development and redevelopment along Merivale Road. Conceptual corridors for some of these roads have been identified on Schedule 2 while others, such as in the area of the triangle of lands formed by Merivale Road, Clyde Avenue and Baseline Road will be identified during the review of development applications.

3.1.3.1.1.a.ii. New roads required by Council are not necessarily intended to be in public ownership in all cases but may be privately-built roads designed to public road standards.

7. Creation of a meaningful public realm both internal and external to the site is key to the success of the project. Need to consider which elements will make that public realm a success. Elements should include:

- a. At grade activation and animation both internal and external to the site. Secondary Plan 3.1.1.2.1.a.vii
- b. Enhancements in the treatment of the public realm along all three arterial road frontages. Secondary Plan 3.1.1.3
- c. Active transportation connections through the site for pedestrians and cyclists. Secondary Plan 3.1.2.2
- d. Provision of an urban tree canopy in the neighbourhood.
- e. The incorporation of a public park as a focal point for the neighbourhood.
- f. Built form relationships to the public realm.
- g. Shadowing and Wind impacts on the public realm.
- h. The provision of grade related units.
- i. Ensuring that parking and "functional" (loading, refuse collection etc.) elements to the project are not prominent in the public realm.
- 8. The proposal will be subject to Urban Design Review Panel. A pre-consultation with the Panel is recommended as a first step in the design process.
- 9. A Design Brief will be required in support of the application. A Terms of Reference is attached.
- 10. PRUD staff support the concept of a green passage and pedestrian connectivity in a north/south orientation across the site. There is a serious concern that this grand design gesture will be pinched at north end in the vicinity of the Tim Horton's Site. The connection point to Baseline Road needs to be strengthened.
- 11. PRUD staff appreciate the applicants desire to locate as much parking below grade as possible.
- 12. PRUD are concerned with a lack of mixed uses on-site. The approach to solely residential is not appropriate in the planning of a site/neighbourhood of this size. Secondary Plan Policy 3.2.1.2 requires the following:

Residential uses located adjacent to Merivale Road shall only be permitted to be located above ground level retail or office uses. Stand alone residential uses may not be permitted at locations fronting onto Merivale Road or Clyde Avenue.

- 13. PRUD staff are concerned with the lack of consideration and setbacks to abutting sites, and the proposed orientation of dwelling units.
- 14. PRUD staff question the use of only a Bar built form for the entire site. Consideration should be given to a combination of built forms, and buildings including the use of high-rise typologies.
- 15. Please consider buffering from existing and proposed loading areas/back of house functions early in the design process. Secondary Plan 3.1.3.3.
- 16. Please be aware of the recent Council adopted motion related to the design of these lands.

<u>Parks</u>

- 1. Further Parks conditions and requirements for parkland dedication will apply upon review of formal development submission.
- 2. Maximum Parkland dedication will be taken on the development site, based on the total amount of land developed or the number of units per hectare, which ever is greatest.
- 3. In the event that there is a change in the proposed use, block area, residential product and/or number of dwelling units within the Final Plan, the required parkland dedication will also be subject to change.
- 4. The surrounding streets of Baseline, Clyde and Merivale are busy, often congested and do not provide the necessary and safe frontage for a park. One large and centrally located park parcel is required to provide maximum benefit to the new community and surrounding neighbourhoods.

- 5. Small parkettes on remnant, undevelopable land will not be considered.
- 6. A facility fit plan for the park is required. The overall plan shall include park layout, proposed amenities, grading plan and tree planting plan.
- 7. No encumbrances on the park land are permitted including utilities, stormwater management facilities, or overland drainage from the development.
- 8. Park servicing is required.
- 9. Pedestrian linkages (as registered easements) from the surrounding roads offering access to the park and circulation through the site are required. As indicated in the, "useable and clearly identifiable network of open space" as indicated in the Merivale Road Secondary Plan (P.9).
- 10. Consider impact of north wind/tunnel effect through the development and to the park location and open spaces.

Transportation:

- 1. Proceed to TIA step2, scoping. The application will not be deemed complete until the submission of the draft step 2-4, including the functional draft RMA package (if applicable) and/or monitoring report (if applicable).
- 2. Although a full review of the TIA Strategy report (Step 4) is not required prior to an application, it is strongly recommended.
- 3. Synchro files are required at Step 4.
- 4. Please note that all new applications (pre-consultation meetings dated after March 3, 2021) must use the NEW TRANS Trip Generation Manual when forecasting site generated trips using this manual. The TRANS committee (a joint transportation planning committee serving the National Capital region) finalized a new manual early in March 2021. The document will be available in French and English on the TRANS website http://www.ncr-trans-rcn.ca/surveys/2009-trip-generation.
- 5. Any access to Baseline Road must be coordinated with the Baseline BRT reconstruction and will be right in right out only due to the ultimate center median. Full movement access may be provided on Merivale Road subject to the TIA analysis and enough spacing from any existing traffic control. All road modifications are at the applicant's cost.
- 6. ROW protection on Baseline and Merivale is 44.5 m and 37.5m.
- 7. Corner sight triangles: 5m x 5m minimum.
- 8. A Road Noise Impact Study is required
- 9. ROW protections are:
 - Baseline is 30 m, protected for 44.5 m
 - Clyde is 30 m, protection is 34 m
 - Merivale is 30 m, protection is 44.5 m

Infrastructure:

- The Servicing Study Guidelines for Development Applications are available at the following link: <u>https://ottawa.ca/en/city-hall/planning-and-development/information-</u> <u>developers/development-application-review-process/development-application-</u> <u>submission/guide-preparing-studies-and-plans</u>
- Record drawings and utility plans are available for purchase from the City's Information Centre. Contact the City's Information Centre by email at <u>informationcentre@ottawa.ca</u> or by phone at (613) 580-2424 x44455
- 3. Stormwater quantity control criteria:

- a. Discharge to the north (baseline) will have to follow the very strict Pinecrest creek criteria (full retention/infiltation of first 10 mm and then control the remainder of the flow to 34.5 L/s/ha).
- b. Discharge to Merivale, will go into Parkwood hills, which only has 2 year capacity. Will need to control to the 2 year using C=0.5, but we will also need to enter their flow into our flood risk model to see what the downstream impact is. Most of the site already drains there, so we will just confirm the impact of their flows in the model.

- 4. Potential outlets and allowable sanitary discharge Please see attached email from Eric Tousignant, dated March 19, 2021.
- 5. Existing sanitary sewers are available on Merivale Road (200 mm dia.), Clyde Ave. (200 mm dia.), and Baseline Road (300 mm dia.).
- 6. Existing storm sewers are available on Merivale Road (900 mm dia.), Clyde Ave. (375 mm dia.), and Baseline Rd. (300 mm dia.).
- 7. Existing watermains are available on Merivale Road (203 mm dia., 305 mm dia.), Clyde Ave. (305 mm dia.), and Baseline Road (406 mm dia.).
- 8. Looping is required for water.
- 9. Stormwater quality control Consult with the Conservation Authority (RVCA) for their requirements. Include the correspondence with RVCA in the stormwater/site servicing report.
- 10. Please note that as per Technical Bulletin PIEDTB-2016-01 section 8.3.11.1 (p.12 of 14) there shall be no surface ponding on private parking areas during the 2-year storm rainfall event. Depending on the SWM strategy proposed underground or additional underground storage may be required to satisfy this requirement.

- 11. Please note that the minimum orifice dia. for a plug style ICD is 83mm and the minimum flow rate from a vortex ICD is 6 L/s in order to reduce the likelihood of plugging.
- 12. Please provide an Existing Conditions/Removals Plan as part of the engineering drawing set. Any existing services are to be removed or abandoned in accordance with City standards.
- 13. As per the City of Ottawa Slope Stability Guidelines for Development Applications an engineering report is required for any retaining walls proposed 1.0 m or greater in height within the subject site that addresses the global stability of the wall and provides structural details. A Retaining Wall Stability Analysis Report and Retaining Wall Structural Details are required to be provided from a Professional Engineer licensed in the Province of Ontario that demonstrates the proposed retaining wall structure has been assessed for global instability as per City standards. Please ensure the analysis and required documentation are provided as part of the submission to address this comment.
- 14. Emergency routes will need to be satisfactory to Fire Services. Please show fire routes on the site plan. For information regarding fire route provisions, please consult with Kevin Heiss at <u>kevin.heiss@ottawa.ca</u>.
- 15. Clearly show and label the property lines on all sides of the property.
- 16. Clearly show and label all the easements (if any) on the property, on all plans.
- 17. When calculating the post development composite runoff coefficient (C), please provide a drawing showing the individual drainage area and its runoff coefficient.
- 18. When using the modified rational method to calculate the storage requirements for the site, the underground storage should not be included in the overall available storage. The modified rational method assumes that the restricted flow rate is constant throughout the storm which, in this case, underestimates the storage requirement prior to the 1:100-year head elevation being reached. Alternately, if you wish to include the underground storage, you may use an assumed average release rate equal to 50% of the peak allowable rate. Otherwise, disregard the underground storage as available storage or provide modeling to support the design.
- 19. Engineering plans are to be submitted on standard A1 size (594mm x 841mm) sheets.
- 20. Phase 1 ESA and Phase 2 ESA must conform to clause 4.8.4 of the Official Plan that requires that development applications conform to Ontario Regulation 153/04.
- 21. Provide the following information for water main boundary conditions:
 - a. Location map with water service connection location(s).
 - b. Average daily demand (l/s).
 - c. Maximum daily demand (I/s).
 - d. Maximum hourly demand (I/s).
 - e. Fire flow demand (provide detailed fire flow calculations based on Fire Underwriters survey (FUS) Water Supply for Public Fire Protection). Exposure separation distances shall be defined on a figure to support the FUS calculation and required fire flow (RFF).
- 22. Hydrant capacity shall be assessed to demonstrate the RFF can be achieved. Please identify which hydrants are being considered to meet the RFF on a fire hydrant coverage plan as part of the boundary conditions request.
- 23. If you are proposing any exterior light fixtures, all must be included and approved as part of the site plan approval. Therefore, the lights must be clearly identified by make, model and part number. All external light fixtures must meet the criteria for full cut-off classification as recognized by the Illuminating Engineering Society of North America (IESNA or IES), and must result in minimal light spillage onto adjacent properties (as a guideline, 0.5 fc is normally the maximum allowable spillage). In order to satisfy these criteria, the applicant must provide certification from an acceptable professional engineer. The location of all exterior fixtures, a

table showing the fixture types (including make, model, part number), and the mounting heights must be included on a plan.

24. As per Ottawa Sewer Design Guideline section 4.4.4.7, a monitoring maintenance hole shall be required just inside the property line for all non-residential and multi residential buildings connections from a private sewer to a public sewer. See the sewer use By-law 2003-514(14) monitoring devices for details.

Forestry

TCR requirements:

- 1. a Tree Conservation Report (TCR) must be supplied for review along with the suite of other plans/reports required by the City
 - a. an approved TCR is a requirement of Site Plan approval.
- 2. As of January 1 2021, any removal of privately or publicly (City) owned trees 10cm or larger in diameter requires a tree permit issued under the Tree Protection Bylaw (Bylaw 2020 340); the permit will be based on an approved TCR and made available at or near plan approval.
- 3. The Planning Forester from Planning and Growth Management as well as foresters from Forestry Services will review the submitted TCR
 - a. If tree removal is required, both municipal and privately-owned trees will be addressed in a single permit issued through the Planning Forester
 - b. Compensation may be required for city owned trees if so, it will need to be paid prior to the release of the tree permit
- 4. the TCR must list all trees on site by species, diameter and health condition
- 5. the TCR must list all trees on adjacent sites if they have a critical root zone that extends onto the development site
- 6. If trees are to be removed, the TCR must clearly show where they are, and document the reason they cannot be retained
- 7. All retained trees must be shown and all retained trees within the area impacted by the development process must be protected as per City guidelines available at Tree Protection Specification or by searching Ottawa.ca
 - a. securities may be required for retained trees
 - b. the location of tree protection fencing must be shown on a plan
 - c. show the critical root zone of the retained trees if they are in/near disturbance areas
 - d. if excavation will occur within the critical root zone, please indicate the limits of excavation
- 8. the City encourages the retention of healthy trees; if possible, please seek opportunities for retention of trees that will contribute to the design/function of the site.
- 9. For more information on the process or help with tree retention options, contact Mark Richardson mark.richardson@ottawa.ca or on City of Ottawa

LP tree planting requirements:

For additional information on the following please contact Adam.Palmer@Ottawa.ca Minimum Setbacks

- Maintain 1.5m from sidewalk or MUP/cycle track.
- Maintain 2.5m from curb
- Coniferous species require a minimum 4.5m setback from curb, sidewalk or MUP/cycle track/pathway.

- Maintain 7.5m between large growing trees, and 4m between small growing trees. Park or open space planting should consider 10m spacing.
- Adhere to Ottawa Hydro's planting guidelines (species and setbacks) when planting around overhead primary conductors.

Tree specifications

- Minimum stock size: 50mm tree caliper for deciduous, 200cm height for coniferous.
- Maximize the use of large deciduous species wherever possible to maximize future canopy coverage
- Tree planting on city property shall be in accordance with the City of Ottawa's Tree Planting Specification; and include watering and warranty as described in the specification (can be provided by Forestry Services).
- Plant native trees whenever possible
- No root barriers, dead-man anchor systems, or planters are permitted.
- No tree stakes unless necessary (and only 1 on the prevailing winds side of the tree) Hard surface planting
 - Curb style planter is highly recommended
 - No grates are to be used and if guards are required, City of Ottawa standard (which can be provided) shall be used.
 - Trees are to be planted at grade

Soil Volume

• Please ensure adequate soil volumes are met:

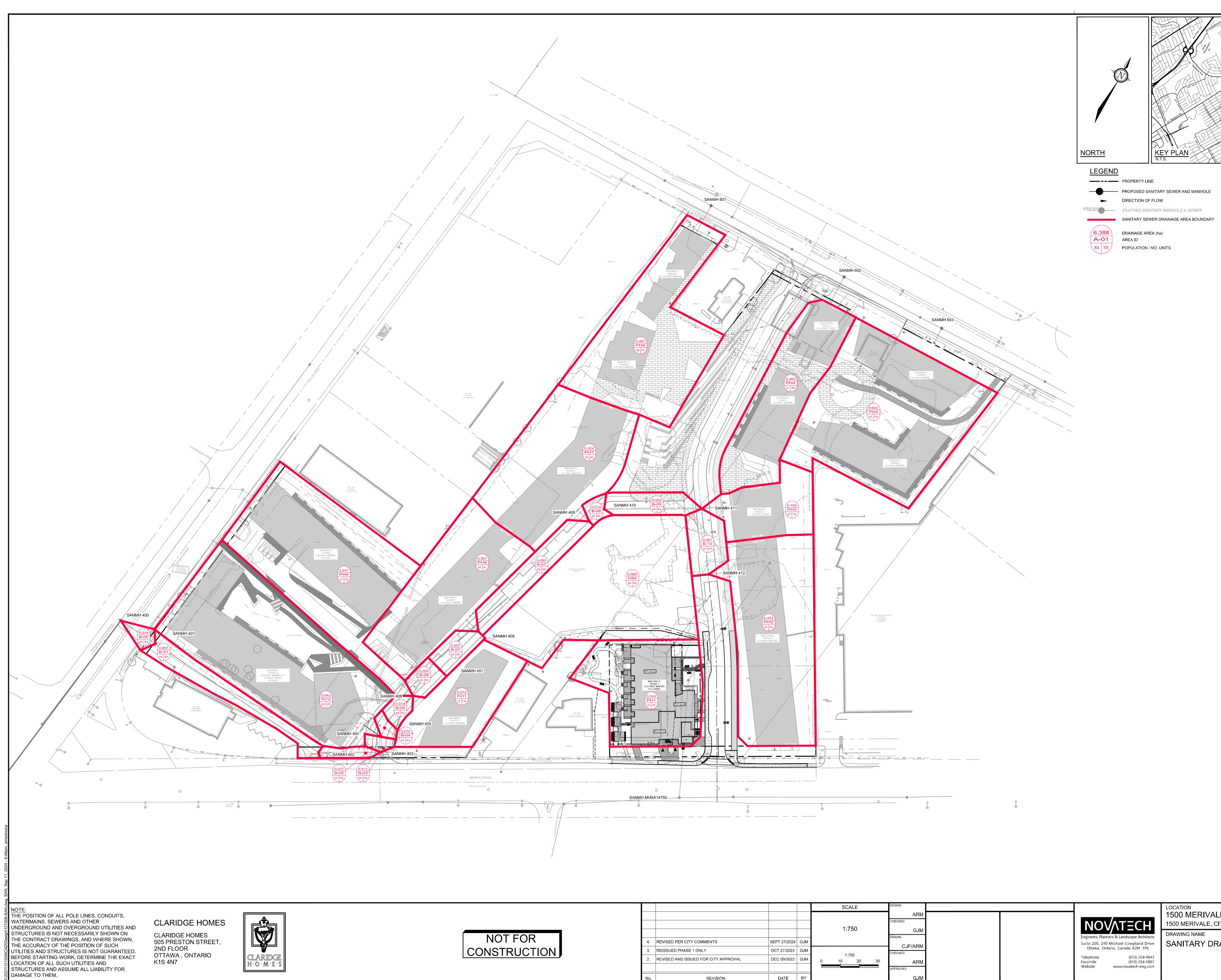
Tree Type/Size	Single Tree Soil Volume (m3)	Multiple Tree Soil Volume (m3/tree)
	volume (ms)	volume (ms/tree)
Ornamental	15	9
Columnar	15	9
Small	20	12
Medium	25	15
Large	30	18
Conifer	25	15

Please note that these soil volumes are not applicable in cases with Sensitive Marine Clay. Sensitive Marine Clay

• Please follow the City's 2017 Tree Planting in Sensitive Marine Clay guidelines

Fisher Heights Area Community Association:

1. Please see attached letters from D. Yonson and T. Sroka representing the interests of the CA.


Please refer to the links to <u>"Guide to preparing studies and plans"</u> and fees for general information. Additional information is available related to <u>building permits</u>, <u>development charges</u>, and the <u>Accessibility Design Standards</u>. Be aware that other fees and permits may be required, outside of the development review process. You may obtain background drawings by contacting informationcentre@ottawa.ca.

These pre-con comments are valid for one year. If you submit a development application(s) after this time, you may be required to meet for another pre-consultation meeting and/or the submission

requirements may change. You are as well encouraged to contact us for a follow-up meeting if the plan/concept will be further refined.

Please contact me at Lisa.Stern@ottawa.ca or at 613-580-2424 extension 21108 if you have any questions.

Appendix B Sanitary Servicing

					SCALE
					1:750
					1.750
NOT FOR	4.	REVISED PER CITY COMMENTS	SEPT 27/2024	GJM	
	3.	REISSUED PHASE 1 ONLY	OCT 27/2023	GJM	1.750
	2.	REVISED AND ISSUED FOR CITY APPROVAL	DEC 09/2022	GJМ	1:750 0 10 2
	No	REVISION	DATE	BY	

1500 MERIVALE 1500 MERIVALE, CITY OF OTTAWA SANITARY DRAINAGE PLAN

N
ò
<u></u>
0
\sum
S
Ň
-
, I
5
\mathcal{Q}
\Box
റ
⇒
~
ш
☴
FILE No.D07-12-21-0152
~
C
-

	12-2
PROJECT No.	D07-1
121009	DO.
REV	No
REV #4	FILE
DRAWING No.	≻
121009-SAN	CIT
⁻ LANB1.DWG - 1000mmx707mm ТҮ PLAN No. 18612	7

SANITARY SEWER DESIGN SHEET

Novatech Project #: <mark>121009 Project Name: 1500 Merivale Rd</mark> Date Prepared: <mark>11/23/2022</mark> Date Revised: 8/21/2024 Input By: Curtis Ferguson, E.I.T. Reviewed By: Anthony Mestwarp, P.Eng Drawing Reference: 121009 - SAN Legend: PROJECT SPECIFIC INFO USER DESIGN INPUT CUMILATIVE CELL CALCULATED DESIGN CELL OUTPUT

	LOCATIO	ON												DEI	MAND											DESIGN	CAPACITY			
										RE	SIDENTIAL FL	ow						co	MMERCIAL FL	∟ow		EXTRAN. FLOW	TOTAL DESIGN FLOW		PROPOSI		PIPE SIZING	/ DESIGN		
STREET	AREA	FROM MH	то мн	STUDIO	1 BED	2 BED	3 BED	TOWN HOME	PARK AREA (ha)	POPULATION (in 1000's)	CUMULATIVE POPULATION (in 1000's)	PEAK FACTOR M	AVG POPULATION FLOW Q(q) (L/s)	PEAKED DESIGN POP FLOW Q(p) (L/s)	DRAINAGE AREA (ha.)	CUMULATIVE RES DRAINAGE AREA (ha.)	COMMERICAL AREA (m)	CUMULATIVE COMMERICAL AREA (m)	AVG DESIGN COMMERICAL FLOW Q (c) (L/s)		PEAKED DESIGN ICI FLOW Q (C) (L/s)	DESIGN EXTRAN. FLOW Q(e) (L/s)	TOTAL DESIGN FLOW Q(D) (L/s)		PIPE SIZE (mm) AND MATERIAL (m)	ROUGH. (n)	DESIGN GRADE (%)	CAPACITY (L/s)		Qpeak Design / Qcap
Dhaon 1	PH1	etup	EX.14750		74	28	15	7	0.000	0.229	0.229	3.50	0.74	2.60	MERIVAI 0.310	LE ROAD - 0.310	PHASE 1 153.000	153.000	0.01	1.00	0.01	0.10	2.72	27.6	200 PVC 0.203	0.013	0.95	33.4	1.03	8.1%
Phase 1	РПІ	3108	EA.14750		74	20	15	· ·	0.000	0.229	0.229	3.30	0.74						0.01	1.00	0.01	0.10	2.12	27.0	200 PVC 0.203	0.013	0.95	33.4	1.03	0.170
Public Road	PH2	STUB	412	9	218	27	14	8	0.000	0.440	0.440	3.40	1.42	4.85	<u>_YDE AVEN</u> 0.474	UE - PHAS 0.474	SES 2-3 & 7- 136.260	11 136.260	0.01	1.00	0.01	0.16	5.01	11.0	200 PVC 0.203	0.013	1.00	34.2	1.06	14.7%
Public Road	PARK	STUB	412	0	0	0	0	0	0.560	0.002	0.002	3.77	0.01	0.02	0.560	0.560	0.000	0.000	0.00	1.00	0.00	0.18	0.21	9.0	200 PVC 0.203	0.013	1.00	34.2	1.06	0.6%
Public Road	B-11	412	411	0	0	0	0	0	0.000	0.000	0.441	3.40	1.43	4.87	0.061	1.095	0.000	136.260	0.01	1.00	0.01	0.36	5.24	35.0	200 PVC 0.203	0.013	0.65	27.6	0.85	19.0%
Public Road	PH3	STUB	411	0	21	46	0	0	0.000	0.126	0.126	3.57	0.41	1.46	0.155	0.155	0.000	0.000	0.00	1.00	0.00	0.05	1.51	11.0	200 PVC 0.203	0.013	1.00	34.2	1.06	4.4%
Private Road Private Road	B-10 B-09	411 410	410 409	0	0	0	0	0	0.000 0.000	0.000 0.000	0.567 0.567	3.36 3.36	1.84 1.84	6.17 6.17	0.055 0.014	1.305 1.319	0.000	136.260 136.260	0.01 0.01	1.00 1.00	0.01 0.01	0.43 0.44	6.61 6.62	51.8 10.3	200 PVC 0.203 200 PVC 0.203	0.013 0.013	0.35 0.35	20.2 20.2		32.7% 32.7%
Private Road	PH7	STUB	409	0	119	35	0	8	0.000	0.262	0.262	3.48	0.85	2.95	0.424	0.424	0.000	0.000	0.00	1.00	0.00	0.14	3.09	8.8	200 PVC 0.203	0.013	1.00	34.2	1.06	9.0%
Private Road	B-08	408	408	0	0	0	0	0	0.000	0.000	0.829	3.28	2.69	8.82	0.093	1.836	0.000	136.260	0.01	1.00	0.01	0.61	9.43	82.9	200 PVC 0.203	0.013	0.35	20.2	0.62	46.6%
Private Road	PH8	STUB	408	16	153	23	0	6	0.000	0.301	0.301	3.46	0.98	3.38	0.361	0.361	0.000	0.000	0.00	1.00	0.00	0.12	3.50	8.8	200 PVC 0.203	0.013	1.00	34.2	1.06	10.2%
Private Road	B-07	408	407	0	0	0	0	0	0.000	0.000	1.130	3.21	3.66	11.76	0.037	2.234	0.000	136.260	0.01	1.00	0.01	0.74	12.51		200 PVC 0.203	0.013	0.35	20.2		61.8%
Private Road	PH11		407	1 0	43	14	22	5	0.000	0.173	0.173	3.54 3.18	0.56	1.98 13.42	0.212	0.212	0.000	170.000	0.02	1.00	0.02	0.07	2.07 14.26		200 PVC 0.203	0.013	1.00	34.2		6.0% 70.5%
Private Road Private Road	B-06 PH9		406 406	0		0 42	0	0	0.000	0.326	0.326	3.18	4.22	3.65	0.026	0.547	156.360	306.260 156.360	0.03	1.00	0.03	0.82	3.84	8.8	200 PVC 0.203 200 PVC 0.203	0.013	0.35	20.2 34.2		11.2%
												0.10																		
Private Road Private Road	B-05 B-04	406 405	405 404	0	0	0	0	0	0.000	0.000 0.000	1.629 1.629	3.12 3.12	5.28 5.28	16.49 16.49	0.018 0.010	3.037 3.047	0.000	462.620 462.620	0.04	1.00 1.00	0.04 0.04	1.00 1.01	17.53 17.53	18.7 9.4	250 PVC 0.254 250 PVC 0.254	0.013	0.25 0.25	31.0 31.0		56.5% 56.5%
Private Road	PH10	STUB	404	0	190	89	8	0	0.000	0.478	0.478	3.39	1.55	5.24	0.643	0.643	412.300	412.300	0.04	1.00	0.04	0.21	5.49	11.3	200 PVC 0.203	0.013	1.00	34.2	1.06	16.1%
Private Road Private Road	B-03 B-02	404 403	403 402	0	0	0	0	0	0.000	0.000 0.000	2.107 2.107	3.05 3.05	6.83 6.83	20.85 20.85	0.011 0.017	3.701 3.718	0.000 0.000	874.920 874.920	0.08	1.00 1.00	0.08 0.08	1.22 1.23	22.16 22.16	8.1 33.3	250 PVC 0.254 250 PVC 0.254	0.013 0.013	0.25 0.25	31.0 31.0		71.4% 71.5%
Private Road Private Road	B-01 B-00	402 401	401 400	0	0	0	0	0	0.000	0.000	2.107 2.107	3.05 3.05	6.83 6.83	20.85 20.85	0.097 0.015	3.815 3.830	0.000	874.920 874.920	0.08 0.08	1.00 1.00	0.08 0.08	1.26 1.26	22.20 22.20	104.1 22.0	250 PVC 0.254 250 PVC 0.254	0.013 0.013	0.25 0.25	31.0 31.0		71.6% 71.6%
				I		J									BASELINE	E ROAD- P	HASES 4-6										I			
Phase 4	PH4	STUB	602	8	181	28	10	0	0.000	0.354	0.354	3.44	1.15	3.95	0.300	0.300	118.110	118.110	0.01	1.00	0.01	0.10	4.06	15.0	200 PVC 0.203	0.013	1.00	34.2	1.06	11.9%
Phase 5	PH5	STUB	603	10	170	65	12	0	0.000	0.426	0.426	3.41	1.38	4.70	0.622	0.622	101.950	101.950	0.01	1.00	0.01	0.21	4.92	8.8	200 PVC 0.203	0.013	1.00	34.2	1.06	14.4%
Phase 6	PH6	STUB	601	20	120	33	23	0	0.000	0.337	0.337	3.45	1.09	3.76	0.461	0.461	56.990	56.990	0.01	1.00	0.01	0.15	3.92		200 PVC 0.203	0.013	1.00	34.2	1.06	11.4%
DEMAND EQUAT Design Paramete 1. Q(D) = 2. Q(p) = 3. q Avg capita 4. M = Harmon Fc 5. K = 6. Park flow is cor Park Demand = 7. Q(e) =	rs: Q(p) + Q((P x q x M 280 ormula (ma 0.8 0.8 onsidered d = 1	M x K / 86,4 L/per/day aximum of	4.0) to a single	Q(e) = E Q(p) = P K = Harr P = Resi	Peak Desi extraneous opulation mon Corre idential P	s Flow (L n Flow (L ection Fa opulatior	L/sec) /sec) actor n Q(c) = In <u>Commer</u> [idustrial / r <u>cial</u> Design =	1.4 Commer	<u>2 Bed</u> 2.1 cial / Instituti <u>Commercial</u> 75	<u>3 Bed</u> 3.1 onal Flow (L/se	<u>Townhome</u> 2.7 ec) L/9.3m2/day	<u>Single</u> 3.4											Q full= (1/i Where :	Y EQUATION n) A R^(2/3)So^(1/2) : Q full = Capacity (L/s n = Manning coeffici A = Flow area (m ²) R = Wetter periment So = Pipe Slope/grad	ent of rougi er (m)	nness (0.013)			
						<u>!</u>	<u>ICI Peak *</u> I	Design =	1.0	1.5	* ICI Peak = 1.	.0 Default, 1.	if ICI in contri	ibuting area is	s >20% (desig	n only)														

From: Tousignant, Eric <Eric.Tousignant@ottawa.ca>
Sent: Thursday, August 11, 2022 10:03 AM
To: Anthony Mestwarp <a.mestwarp@novatech-eng.com>
Cc: Greg MacDonald <g.Macdonald@novatech-eng.com>; Curtis Ferguson <c.ferguson@novatech-eng.com>
Subject: RE: 121009 - 1500 Merivale

Hi Anthony

I don't have concerns with the proposed 2.6 L/s for phase 1 going to the existing Merivale Road outlet.

Regards Eric

Eric Tousignant, P.Eng.

Senior Water Resources Engineer/ Ingénieur principal en resources hydriques Infrastructure and Water Services / services d'infrastructure et d'eau 613-580-2424 ext 25129 Vacation Notice : Note that I will be away on vacation from July 25th to August 12, but will be checking emails periodically to forward them to appropriate staff. From: Anthony Mestwarp <<u>a.mestwarp@novatech-eng.com</u>> Sent: August 08, 2022 11:56 AM To: Tousignant, Eric <<u>Eric.Tousignant@ottawa.ca</u>> Cc: Greg MacDonald <<u>g.Macdonald@novatech-eng.com</u>>; Curtis Ferguson <<u>c.ferguson@novatech-eng.com</u>> Subject: 121009 - 1500 Merivale

CAUTION: This email originated from an External Sender. Please do not click links or open attachments unless you recognize the source. ATTENTION : Ce courriel provient d'un expéditeur externe. Ne cliquez sur aucun lien et n'ouvrez pas de pièce jointe, excepté si vous connaissez l'expéditeur.

Hi Eric,

Following up after our meeting, the Phase 1 statistics are as follows:

- 68 1 Bedroom Units
- **25** 2 Bedroom Units
- 15 3 Bedroom Units
- 7 Ground floor townhome units
- 168.62m2 of commercial area
- 0.48ha of drainage area
 - Total population of 213 people
 - Total design flow of 2.6L/s

Please let us know if you require any further information to review the phase 1 flows.

Thanks,

Anthony Mestwarp, P.Eng., Project Engineer | Land Development Engineering

NOVATECH Engineers, Planners & Landscape Architects

240 Michael Cowpland Drive, Suite 200, Ottawa, ON, K2M 1P6 | Tel: 613.254.9643 Ext. 216 | Fax: 613.254.5867 The information contained in this email message is confidential and is for exclusive use of the addressee.

This e-mail originates from the City of Ottawa e-mail system. Any distribution, use or copying of this e-mail or the information it contains by other than the intended recipient(s) is unauthorized. Thank you.

Le présent courriel a été expédié par le système de courriels de la Ville d'Ottawa. Toute distribution, utilisation ou reproduction du courriel ou des renseignements qui s'y trouvent par une personne autre que son destinataire prévu est interdite. Je vous remercie de votre collaboration.

From: Tousignant, Eric <Eric.Tousignant@ottawa.ca>
Sent: Wednesday, July 20, 2022 2:32 PM
To: Anthony Mestwarp <a.mestwarp@novatech-eng.com>
Cc: Curtis Ferguson <c.ferguson@novatech-eng.com>; Kuruvilla, Santhosh <Santhosh.Kuruvilla@ottawa.ca>; Greg MacDonald
<g.Macdonald@novatech-eng.com>
Subject: RE: 121009 - Sanitary Flows

Hi Anthony

The Merivale outlet is going through Granton where there is flooding history. Our preliminary analysis showed that we could take 18 L/s per second, but that was before we reached flooding levels and there is no appetite at the city to take such a risk. Also, Novatach requested 22 L/s in another email and that would have been problematic. The city just spent significant funds to solve the flooding issues in this area following the 2004 event, therefore the community would not like the idea of us taking this system beyond its capacity.

Eric

From: Anthony Mestwarp <a.mestwarp@novatech-eng.com>
Sent: July 20, 2022 1:46 PM
To: Tousignant, Eric <<u>Eric.Tousignant@ottawa.ca</u>>
Cc: Curtis Ferguson <<u>c.ferguson@novatech-eng.com</u>>; Kuruvilla, Santhosh <<u>Santhosh.Kuruvilla@ottawa.ca</u>>; Greg MacDonald
<<u>g.Macdonald@novatech-eng.com</u>>;
Subject: RE: 121009 - Sanitary Flows

CAUTION: This email originated from an External Sender. Please do not click links or open attachments unless you recognize the source.

ATTENTION : Ce courriel provient d'un expéditeur externe. Ne cliquez sur aucun lien et n'ouvrez pas de pièce jointe, excepté si vous connaissez l'expéditeur.

Hi Eric,

Can you please elaborate? I understand from previous correspondence that there was some capacity available in the Clyde system (correspondence attached). Are you saying that the previously noted capacity has been allocated to other developments in the area? If so, is there any capacity left available for the 1500 Merivale development, or will the development be unable to proceed until the extension is completed.

I would appreciate any clarification you can provide, so that we can accurately relay the information to the client.

Thanks,

Anthony Mestwarp, P.Eng., Project Engineer | Land Development Engineering

NOVATECH Engineers, Planners & Landscape Architects

240 Michael Cowpland Drive, Suite 200, Ottawa, ON, K2M 1P6 | Tel: 613.254.9643 Ext. 216 | Fax: 613.254.5867 The information contained in this email message is confidential and is for exclusive use of the addressee.

From: Tousignant, Eric <<u>Eric.Tousignant@ottawa.ca</u>>
Sent: Wednesday, July 20, 2022 1:13 PM
To: Anthony Mestwarp <<u>a.mestwarp@novatech-eng.com</u>>
Cc: Curtis Ferguson <<u>c.ferguson@novatech-eng.com</u>>; Kuruvilla, Santhosh <<u>Santhosh.Kuruvilla@ottawa.ca</u>>; Greg MacDonald
<<u>g.Macdonald@novatech-eng.com</u>>
Subject: RE: 121009 - Sanitary Flows

Hi Anthony

There is no capacity in the Clyde and Merivale sewers (the one that drains westward via Granton). This is why we have added an extension of the Merivale Sanitary sewer (from Cleto to Baseline) in the IMP.

Eric

Eric Tousignant, P.Eng.

Senior Water Resources Engineer/ Ingénieur principal en resources hydriques Infrastructure and Water Services / services d'infrastructure et d'eau 613-580-2424 ext 25129

Vacation Notice : Note that I will be away on vacation from July 25th to August 12, but will be checking emails periodically to forward them to appropriate staff.

From: Anthony Mestwarp <a.mestwarp@novatech-eng.com>
Sent: July 20, 2022 12:15 PM
To: Tousignant, Eric <<u>Eric.Tousignant@ottawa.ca</u>>
Cc: Curtis Ferguson <<u>c.ferguson@novatech-eng.com</u>>; Kuruvilla, Santhosh <<u>Santhosh.Kuruvilla@ottawa.ca</u>>; Greg MacDonald
<<u>g.Macdonald@novatech-eng.com</u>>
Subject: RE: 121009 - Sanitary Flows

CAUTION: This email originated from an External Sender. Please do not click links or open attachments unless you recognize the source.

ATTENTION : Ce courriel provient d'un expéditeur externe. Ne cliquez sur aucun lien et n'ouvrez pas de pièce jointe, excepté si vous connaissez l'expéditeur.

Hi Eric,

Thanks for getting back to me. Are there any issues with the proposed flows to the Clyde and Merivale connections?

The first 3 phases of the site are proposed to serviced by the Merivale connection. Depending on the timing of the Baseline works we may need to adjust the buildout (phasing of the future development), phases 4, 5, and 6 are serviced from Baseline. If timing is an issue we can coordinate with the client to assess constructing the phases serviced by the Clyde connection (phases 7-10) prior to Baseline. Can you please let us know once timing becomes available.

Thanks,

Anthony Mestwarp, P.Eng., Project Engineer | Land Development Engineering

NOVATECH Engineers, Planners & Landscape Architects

240 Michael Cowpland Drive, Suite 200, Ottawa, ON, K2M 1P6 | Tel: 613.254.9643 Ext. 216 | Fax: 613.254.5867 The information contained in this email message is confidential and is for exclusive use of the addressee.

From: Tousignant, Eric <<u>Eric.Tousignant@ottawa.ca</u>>
Sent: Friday, July 15, 2022 3:23 PM
To: Anthony Mestwarp <<u>a.mestwarp@novatech-eng.com</u>>
Cc: Curtis Ferguson <<u>c.ferguson@novatech-eng.com</u>>; Kuruvilla, Santhosh <<u>Santhosh.Kuruvilla@ottawa.ca</u>>; Greg MacDonald
<<u>g.Macdonald@novatech-eng.com</u>>
Subject: RE: 121009 - Sanitary Flows

Hi Anthony

Yes we did. At this time, we only have some capacity in the baseline system. As such, we have recommended an extension northward to the Merrivale sanitary sewer and this has been added to the current Infrastructure Master Plan. I don't have any information on the timing of this work though.

Eric

From: Anthony Mestwarp <a.mestwarp@novatech-eng.com>
Sent: July 15, 2022 3:13 PM
To: Tousignant, Eric <Eric.Tousignant@ottawa.ca>
Cc: Curtis Ferguson <c.ferguson@novatech-eng.com>; Kuruvilla, Santhosh <Santhosh.Kuruvilla@ottawa.ca>; Greg MacDonald
<g.Macdonald@novatech-eng.com>
Subject: RE: 121009 - Sanitary Flows

CAUTION: This email originated from an External Sender. Please do not click links or open attachments unless you recognize the source.

ATTENTION : Ce courriel provient d'un expéditeur externe. Ne cliquez sur aucun lien et n'ouvrez pas de pièce jointe, excepté si vous connaissez l'expéditeur.

Hi Eric,

I hope you are doing well. Have you had a chance to review the proposed flows for the 1500 Merivale site, that GMAC previously sent?

They are as follows:

Presently:

Merivale: 8.98L/s

Clyde: 15.11 L/s

Baseline: 15.97L/s

Please let us know if you require any further information.

Thanks,

Anthony Mestwarp, P.Eng., Project Engineer | Land Development Engineering

NOVATECH Engineers, Planners & Landscape Architects

240 Michael Cowpland Drive, Suite 200, Ottawa, ON, K2M 1P6 | Tel: 613.254.9643 Ext. 216 | Fax: 613.254.5867 The information contained in this email message is confidential and is for exclusive use of the addressee.

From: Greg MacDonald <g.Macdonald@novatech-eng.com>
Sent: Monday, June 13, 2022 2:16 PM
To: santhosh.kuruvilla@ottawa.ca
Cc: Tousignant, Eric <Eric.Tousignant@ottawa.ca>; Anthony Mestwarp <a.mestwarp@novatech-eng.com>; Curtis Ferguson
<c.ferguson@novatech-eng.com>
Subject: FW: 121009 - Sanitary Flows

Hi Santhosh,

Per your request to Anthony please see below and attached for sanitary flows.

I am also attaching the General Plans of Services and Cross Section of the loop road which shows the placement of utilities in a 14.5 m roadway cross-section. Can you please provide your comments/concurrence on this roadway cross section.

Thanks.

Greg MacDonald, P. Eng. Director, Land Development and Public Sector Infrastructure

NOVATECH Engineers, Planners & Landscape Architects 240 Michael Cowpland Drive, Suite 200, Ottawa, ON, K2M 1P6 | Tel: 613.254.9643 x279 | Cell: 613.890.9705 | Fax: 613.254.5867 The information contained in this email message is confidential and is for exclusive use of the addressee

From: Anthony Mestwarp <<u>a.mestwarp@novatech-eng.com</u>> Sent: Wednesday, June 8, 2022 1:28 PM To: Greg MacDonald <<u>g.Macdonald@novatech-eng.com</u>> Cc: Curtis Ferguson <<u>c.ferguson@novatech-eng.com</u>> Subject: 121009 - Sanitary Flows

Hi GMAC,

As previously discussed.

Find attached the sanitary flow calculations for the current 1500 Merivale layout. We should get this out for coordination with the City as soon as possible to determine if the currently proposed layout is feasible.

Presently:

Merivale: 8.98L/s Clyde: 15.11 L/s Baseline: 15.97L/s Please let me know if you want me to reach out to the city directly to keep things moving forward.

Regards,

Anthony Mestwarp, P.Eng., Project Engineer | Land Development Engineering

NOVATECH Engineers, Planners & Landscape Architects

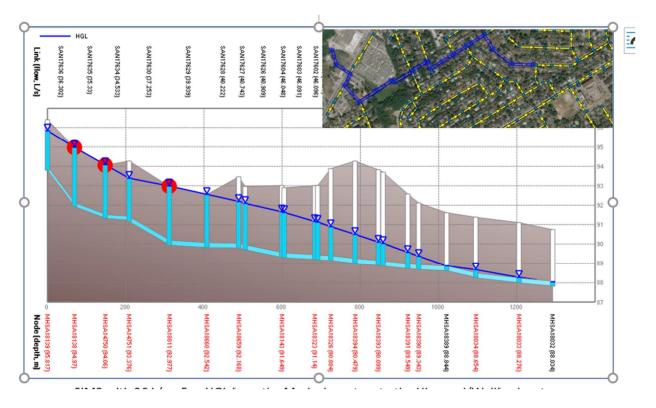
240 Michael Cowpland Drive, Suite 200, Ottawa, ON, K2M 1P6 | Tel: 613.254.9643 Ext. 216 | Fax: 613.254.5867

The information contained in this email message is confidential and is for exclusive use of the addressee.

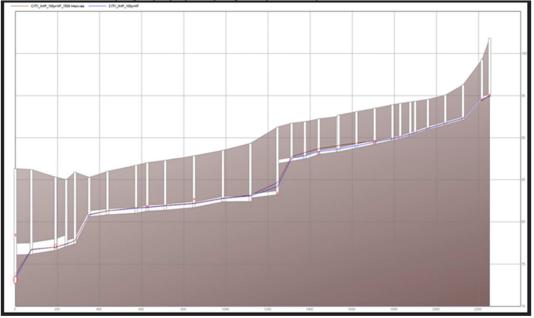
This e-mail originates from the City of Ottawa e-mail system. Any distribution, use or copying of this e-mail or the information it contains by other than the intended recipient(s) is unauthorized. Thank you.

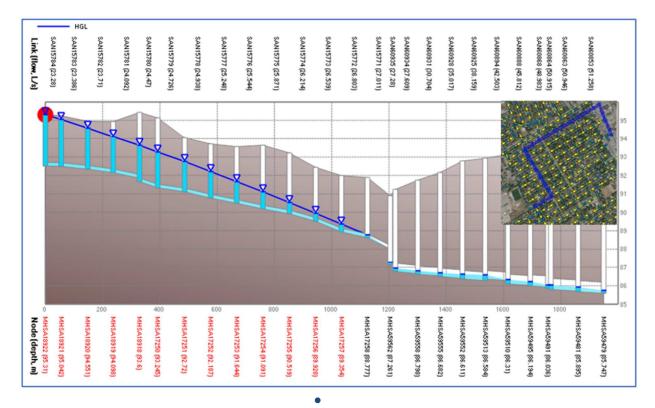
Le présent courriel a été expédié par le système de courriels de la Ville d'Ottawa. Toute distribution, utilisation ou reproduction du courriel ou des renseignements qui s'y trouvent par une personne autre que son destinataire prévu est interdite. Je vous remercie de votre collaboration.

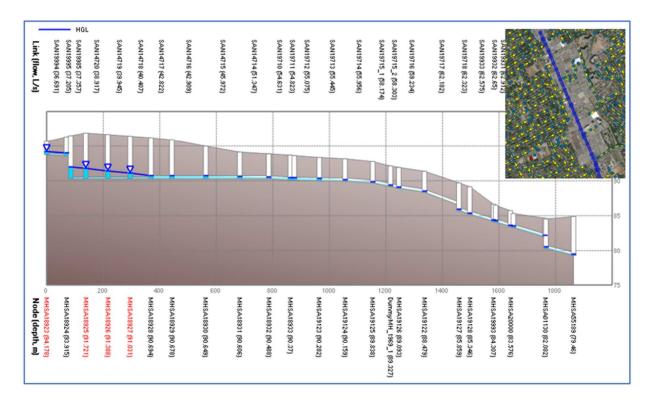
From: Tousignant, Eric <<u>Eric.Tousignant@ottawa.ca</u>>
Sent: Thursday, January 28, 2021 9:11 AM
To: Greg MacDonald <<u>g.Macdonald@novatech-eng.com</u>>
Cc: Surprenant, Eric <<u>Eric.Surprenant@ottawa.ca</u>>
Subject: RE: 1500 Merivale Road (former CJOH Site)


Hi Greg

We just finished running a series of scenarios through our Flood Risk Profile model and have come to the following conclusions.


• We looked at various outlets and added either the full 36 L/s flow or half of it (18 L/s) assuming that a flow spilt scenario would be possible. The four outlets are shown below and are 1 (Merviale Road draining through Parkwood Hills), 2 (Baseline, draining west to the Woodroffe Collector), 3 (Merivale, drainage west on Granton then South to the Lynwood Collector via Viewmount) and 4 (Merivale Draining South to the Lynwood Collector).


• Outlet #1 is the natural drainage point for this sanitary system, however the Parkwood Hills system was never designed for such a large domestic input at it's upstream end. When we add the 36 L/s flow to it, we get significant surcharge that reaches basement elevation and even the ground. See image below. This system does not work for 36 L/s or even 18 L/s.


 Outlet #2 is Baseline Road. We added other proposed development flow (from recent Development applications) at that location as well as the 36 L/s. This system can Handle the 36 L/s, but we are using up all remaining capacity. The HGL is still well below basements though. This would be a possible outlet, however due to topography, pumping may be required to reach it.

• Outlet #3 is on Merivale, in which the sanitary sewer turns west on Granton before eventually reaching the Lynwood Collector via Viewmount. This system also has limited capacity and cannot take the proposed 36 L/s as shown in the figure below. We did find however that it could handle half the flow (18 L/s) should a flow split scenario be required.

• The last outlet (#4) is on Merivale, South of Clyde. This system continues down Merivale and goes to the Lynwood Collector. It does have Capacity for the 36 L/s, except that the upper pipes become surcharged. Pumping to the system would be required with a forcemain approximately 700 m long (private forcemain in city ROW using a permit of occupation) so that it can discharge downstream of the surcharged pipe sections. Alternatively, the flow could be split between this system and the system going west along Granton. Gravity connections to these systems may be feasible pending further analysis,

I hope this help in hour analysis Greg. Contact me if you have any questions.

Eric

Eric Tousignant, P.Eng.

Senior Water Resources Engineer Infrastructure Services 613-580-2424 ext 25129

From: Greg MacDonald <<u>g.Macdonald@novatech-eng.com</u>> Sent: January 20, 2021 11:37 AM To: Tousignant, Eric <<u>Eric.Tousignant@ottawa.ca</u>> Cc: Surprenant, Eric <<u>Eric.Surprenant@ottawa.ca</u>> Subject: 1500 Merivale Road (former CJOH Site)

CAUTION: This email originated from an External Sender. Please do not click links or open attachments unless you recognize the source.

ATTENTION : Ce courriel provient d'un expéditeur externe. Ne cliquez sur aucun lien et n'ouvrez pas de pièce jointe, excepté si vous connaissez l'expéditeur.

The estimated peak sanitary flow for 1500 Merivale Road (former CJOH site), based on 2000 residential units and site area of 0.58 ha. is 36 L/sec.

Thanks.

Greg MacDonald, P. Eng.

Director, Land Development and Public Sector Infrastructure

NOVATECH Engineers, Planners & Landscape Architects

240 Michael Cowpland Drive, Suite 200, Ottawa, ON, K2M 1P6 | Tel: 613.254.9643 x279 | Cell: 613.890.9705 | Fax: 613.254.5867 The information contained in this email message is confidential and is for exclusive use of the addressee

From: Tousignant, Eric <<u>Eric.Tousignant@ottawa.ca</u>>
Sent: Thursday, January 14, 2021 1:08 PM
To: Greg MacDonald <<u>g.Macdonald@novatech-eng.com</u>>
Subject: RE: 861 Clyde Avenue

Hi Greg

I will have to go back and check this. I recall looking into it and the property at the Southeast Corner on Baseline and Merivale actually drains into Parkwood hills and does not go west along Baseline. I had discussions with Eric Surprenant about that in December and was waiting for sanitary flow estimates from the property in question. Do you have the estimated sanitary flows? It just a question to adding this flow to our new floor risk profile model.

As for 861 Clyde, I never heard back from Construction Services and I have contacted them again. I will be pushing them more this time. From what I recall, you were looking at a significant flow contribution and I am sure that it was not accounted for at the time of the sewer upgrade design. Again, in this case, I may simply go the route of adding the flows to the flood risk profile model to see the downstream impact. Do you have the flow estimate for this property?

Eric

Eric Tousignant, P.Eng.

Senior Water Resources Engineer Infrastructure Services 613-580-2424 ext 25129

From: Greg MacDonald <<u>g.Macdonald@novatech-eng.com</u>> Sent: January 07, 2021 9:30 AM To: Tousignant, Eric <<u>Eric.Tousignant@ottawa.ca</u>> Subject: RE: 861 Clyde Avenue

CAUTION: This email originated from an External Sender. Please do not click links or open attachments unless you recognize the source.

ATTENTION : Ce courriel provient d'un expéditeur externe. Ne cliquez sur aucun lien et n'ouvrez pas de pièce jointe, excepté si vous connaissez l'expéditeur.

Hi Eric,

Hope you enjoyed the holidays. I am just following up on two projects:

- 1. 861 Clyde. I understand that City is replacing sewers on Carling Avenue and want to make sure they are sized for the proposed development at 861 Clyde Avenue. A site plan submission was made before Christmas.
- 2. The property at southeast corner of Baseline and Merivale, bounded on south by Clyde. I believe your people were looking into downstream infrastructure on Baseline west of Merivale.

Thanks and Happy New Year!

Greg MacDonald, P. Eng.

Director, Land Development and Public Sector Infrastructure

NOVATECH Engineers, Planners & Landscape Architects

240 Michael Cowpland Drive, Suite 200, Ottawa, ON, K2M 1P6 | Tel: 613.254.9643 x279 | Cell: 613.890.9705 | Fax: 613.254.5867 The information contained in this email message is confidential and is for exclusive use of the addressee

From: Tousignant, Eric <<u>Eric.Tousignant@ottawa.ca</u>>
Sent: Wednesday, June 17, 2020 11:44 AM
To: Greg MacDonald <<u>g.Macdonald@novatech-eng.com</u>>
Subject: RE: 861 Clyde Avenue

Hi Greg

I did not forget about you ③ I have forward your information to constructions services and they are looking at the impact of the future flows on their design.

I will let know more when I hear back from them.

Eric

From: Greg MacDonald <g.Macdonald@novatech-eng.com>
Sent: June 12, 2020 9:50 AM
To: Tousignant, Eric <Eric.Tousignant@ottawa.ca
Subject: RE: 861 Clyde Avenue</pre>

CAUTION: This email originated from an External Sender. Please do not click links or open attachments unless you recognize the source.

ATTENTION : Ce courriel provient d'un expéditeur externe. Ne cliquez sur aucun lien et n'ouvrez pas de pièce jointe, excepté si vous connaissez l'expéditeur.

For 2000 units 36 L/sec.

Greg MacDonald, P. Eng.

Director, Land Development and Public Sector Infrastructure

NOVATECH Engineers, Planners & Landscape Architects

240 Michael Cowpland Drive, Suite 200, Ottawa, ON, K2M 1P6 | Tel: 613.254.9643 x279 | Cell: 613.890.9705 | Fax: 613.254.5867 The information contained in this email message is confidential and is for exclusive use of the addressee

From: Tousignant, Eric <<u>Eric.Tousignant@ottawa.ca</u>>
Sent: Friday, June 12, 2020 9:44 AM
To: Greg MacDonald <<u>g.Macdonald@novatech-eng.com</u>>
Subject: RE: 861 Clyde Avenue

Hi Greg

I doubt that such a change in land use and density would have been accounted for in a local rehab project. Regardless I have forwarded your question to the engineer looking after this rehab project as well as those working on the Infrastructure master plan. In the meantime, can you give me an estimate of your peak flows? We can add that to our flood risk profile PCSWMM model to see the impact.

Eric

Eric Tousignant, P.Eng.

Senior Water Resources Engineer Infrastructure Services 613-580-2424 ext 25129 From: Greg MacDonald <g.Macdonald@novatech-eng.com>
Sent: June 11, 2020 5:45 PM
To: Tousignant, Eric <<u>Eric.Tousignant@ottawa.ca</u>>
Subject: 861 Clyde Avenue

CAUTION: This email originated from an External Sender. Please do not click links or open attachments unless you recognize the source.

ATTENTION : Ce courriel provient d'un expéditeur externe. Ne cliquez sur aucun lien et n'ouvrez pas de pièce jointe, excepté si vous connaissez l'expéditeur.

Hi Eric,

Hope all is well. Out client just purchased the property at 861 Clyde Avenue (East side of Clyde directly adjacent to 417) and they are planning an extensive development of up to 2000 units, 6 or seven high rise buildings. I understand that JL Richards is designing the upgrade of sanitary sewer on Carling from Churchill to the Cave Creek Collector on Carling at Kirkwood. We just want to ensure that our site will be accounted for at the density I provided. Can you please advise?

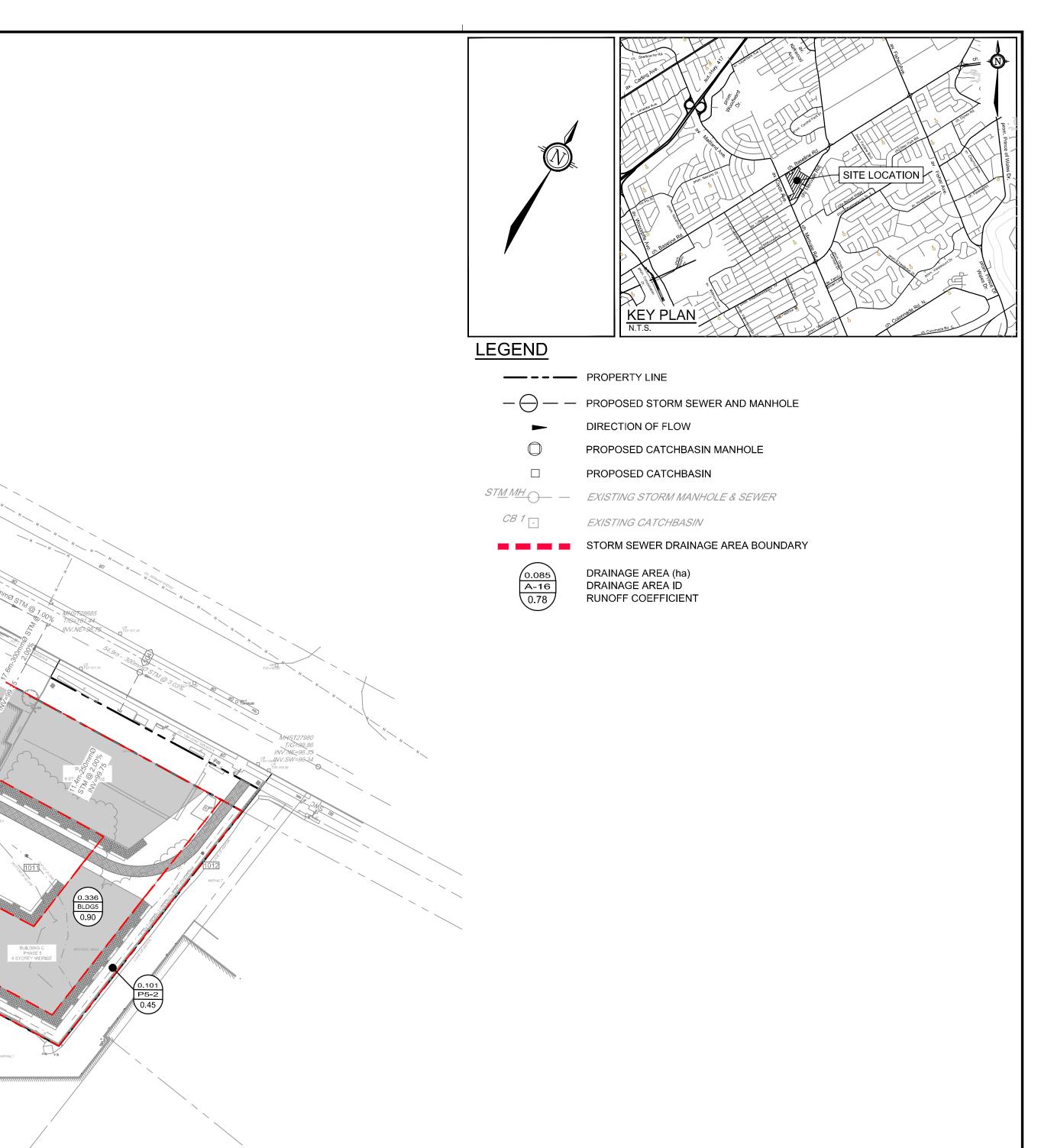
Thanks.

I.

Greg MacDonald, P. Eng.

Director, Land Development and Public Sector Infrastructure


NOVATECH Engineers, Planners & Landscape Architects


240 Michael Cowpland Drive, Suite 200, Ottawa, ON, K2M 1P6 | Tel: 613.254.9643 x279 | Cell: 613.890.9705 | Fax: 613.254.5867 The information contained in this email message is confidential and is for exclusive use of the addressee

This e-mail originates from the City of Ottawa e-mail system. Any distribution, use or copying of this e-mail or the information it contains by other than the intended recipient(s) is unauthorized. Thank you.

Le présent courriel a été expédié par le système de courriels de la Ville d'Ottawa. Toute distribution, utilisation ou reproduction du courriel ou des renseignements qui s'y trouvent par une personne autre que son destinataire prévu est

Appendix C Storm Servicing

CALE	DESIGN		LOCATION
	ARM		1500 MERIVALE
.750	CHECKED	NOVATECH	1500 MERIVALE, CITY OF OTTAWA
:750	GJM		DRAWING NAME
	DRAWN	Engineers, Planners & Landscape Architects	
	CJF/ARM	Suite 200, 240 Michael Cowpland Drive Ottawa, Ontario, Canada K2M 1P6	STORM DRAINAGE AREA
1:750	CHECKED		PLAN
20 30	ARM	Telephone(613) 254-9643Facsimile(613) 254-5867	
	APPROVED	Website www.novatech-eng.com	
	GJM		

\sim
ìð
~
ò
Ŷ
÷
\sim
ЪĽ.
\sim
<u> </u>
~
5
g
Ď
20
<u>10.00</u>
No.DC
<u>, Е No DC</u>
ILE No.DC
FILE No.DC
FILE No.DC
Y FILE No.DC
TY FILE No.DC
CITY FILE No.D07-12-21-0152

	2-2
PROJECT No.	- 1
121009	No.D07-1
REV	
REV #4	FILE
DRAWING No.	≻
SWM	CIT
PLANB1.DWG - 1000mmx707mm TY PLAN No. 18612	7

I	× 4	e de la	11.11	10.00																		Engineers	Planners & Landso	ape Architects
		Nov	atech Project #: Project Name:	121009 15000 Merivale	e Road - Claridg	je Inc.					PROJECT SPEC													
			Date Prepared: Date Revised:	12/21/2021							CUMILATIVE CE	LL												
			Date Revised:	3/21/2024							CALCOLATED													
			Date Revised Date Revised																					
				Curtis Ferguso Anthony Mestw							USER AS-BUILT	INPUT												
		Drav	ving Reference:		varp, r .Eng																			
										DEMA	ND										CAP	ACITY		
	LOCATION					A	REA								FLOW					PROP	OSED SEWER		DESIGN	
		1 .			Parkland			1	1	Time of	Ra	in Intensity	/		TOTAL	1			 FS		1	1		QPEAK
From MH	То МН	Area ID	Hardscape	Landscaping	Faikialiu	Total Area	Weighted Runoff	Indivi 2.78 AR	Accum 2.78 AR	Concentratio		(mm/hr)		Peak Flow	UNRESTRICTED PEAK FLOW		SIZE /			DESIGN	CAPACITY	FULL FLOW VELOCITY	TIME OF FLOW	DESIGN
						<i>"</i>	Coefficient			n	2yr	5yr	100yr		(QDesign)	LENGTH	MATERIAL		ROUGHNESS	GRADE				/ QFULL
			0.90	0.20	0.40	(ha)				(min.) STREET	1 - PUBLIC SEV	ER RUN (1	00 SERIES)	(L/s)	(L/s)	(m)	(mm / type)	(m)		(%)	(L/s)	(m/s)	(min.)	(%)
			0.042	0.000		0.042	0.90	0.11																
		A-06A	0.000					0.00	_															
		4.005	0.031	0.009		0.039	0.74	0.08	-															
109	109	A-06B	0.000					0.00	-															
109	108	A-05A	0.078	0.000		0.078	0.90	0.19	-															
		A-00A	0.000			0.000	0.75	0.00	0.50	10.00	70.04			40.00										
		A-05B	0.054	0.015		0.068	0.75	0.14	0.52	10.00	76.81			40.20	40.2	78.1	300 PVC	0.3048	0.013	3.00	174.7	2.39	0.54	23.0%
			0.000	0.000		0.000		0.00	0.00	10.00 10.54	74.78			0.00 39.14										
108	107		0.000	0.000		0.000		0.00	0.00	10.54	14.10			0.00	39.1	13.7	300 PVC	0.3048	0.013	3.00	174.7	2.39	0.10	22.4%
			0.000	0.005		0.082	0.86	0.00	0.00	10.54				0.00										
		A-04A	0.000					0.00	-															
107	106		0.051	0.015		0.066	0.74	0.00	0.85	10.64	74.44			63.63										
		A-04B	0.000					0.00	0.00	10.64 10.64				0.00	63.6	17.3	300 PVC	0.3048	0.013	3.00	174.7	2.39	0.12	36.4%
106	105		0.000	0.000		0.000		0.00	0.85	10.76 10.76	74.01			63.26 0.00	63.3	13.0	300 PVC	0.3048	0.013	3.00	174.7	2.39	0.09	36.2%
100	100		0.000					0.00	0.00	10.76				0.00	66.5	10.0	3001 00	0.0040	0.010	0.00	174.7	2.00	0.00	00.270
			0.076	0.000		0.076	0.90	0.19																
		BLDG3	0.000					0.00	-															
BLDG3	105		0.000	0.065		0.065	0.20	0.04	0.23	10.00	76.81			17.40		10.5	050 010	0.054	0.040	4.00		4.00	0.17	05.00/
		P3-1	0.000					0.00	0.00	10.00 10.00				0.00	15.9	12.5	250 PVC	0.254	0.013	1.00	62.0	1.22	0.17	25.6%
			0.028	0.004		0.033	0.81	0.07																
		A-03a	0.000	0.004		0.000	0.01	0.00	-															
			0.000	0.010		0.046	0.75	0.00	_															
		A-03b	0.000					0.00	-															
105	104	4.00	0.032	0.011		0.043	0.72	0.09	-															
		A-02a	0.000					0.00	_															
		A-02b	0.053	0.015		0.068	0.74	0.14	1.48 0.00	10.85 10.85	73.69			108.74	108.7	57.6	375 PVC	0.381	0.013	2.00	258.7	2.27	0.42	42.0%
			0.000					0.00	0.00	10.85				0.00				0.001	0.070	2.00	200.1		02	
			0.000	0.000	0.519	0.519	0.40	0.58	0.58	10.00	76.81			44.30										
PARK	104	PARK1	0.000					0.00	0.00	10.00 10.00				0.00	44.3	8.1	300 PVC	0.3048	0.013	1.00	100.9	1.38	0.10	43.9%
				0.007		0.000		0.00			70.04			140.07										
104	103		0.000	0.000		0.000		0.00	2.05 0.00	11.27 11.27	72.24			148.27 0.00	148.3	29.9	525 CONC	0.5334	0.013	0.30	245.7	1.10	0.45	60.3%
		<u> </u>	0.000	0.014		0.079	0.78	0.00 0.17	0.00	11.27				0.00										
		A-01a	0.000	0.014		0.079	0.70	0.00						0.00										
103	102		0.000	0.057		0.114	0.55	0.00 0.17	2.40	11.73	70.76			0.00										
		A-01b	0.000					0.00	0.00	11.73				0.00	169.6	22.4	600 CONC	0.6096	0.013	0.30	350.8	1.20	0.31	48.3%
L			0.000	1	1			0.00	0.00	11.73				0.00		1								

										DEM	AND										CAP	ACITY		
	LOCATION					AF	REA								FLOW					PROPO	SED SEWER	PIPE SIZING / D	ESIGN	
From MH	То МН	Area ID	Hardscape	E Landscaping	Parkland	Total Area	Weighted Runoff Coefficient	Indivi 2.78 AR	Accum 2.78 AR	Time of Concentratio n		in Intensit (mm/hr) 5yr	y 100yr	Peak Flow	TOTAL UNRESTRICTED PEAK FLOW (QDesign)	LENGTH	P SIZE / MATERIAL	IPE PROPERT	IES ROUGHNESS	DESIGN GRADE	CAPACITY	FULL FLOW VELOCITY	TIME OF FLOW	QPEAK DESIGN / QFULL
			0.90	0.20	0.40	(ha)				(min.)				(L/s)	(L/s)	(m)	(mm / type)	(m)		(%)	(L/s)	(m/s)	(min.)	(%)
		BLDG1	0.151 0.000 0.000	0.000		0.151	0.90	0.38 0.00 0.00																
BLDG1	103	P1-1	0.046 0.000 0.000	0.060		0.106	0.51	0.15 0.00 0.00																
		P1-2	0.018 0.000 0.000	0.013		0.031	0.61	0.05 0.00 0.00	0.20 0.00 0.00	10.00 10.00 10.00	76.81			15.55 0.00 0.00	15.5	6.8	250 PVC	0.254	0.013	1.00	62.0	1.22	0.09	25.1%
		BLDG2	0.243 0.000 0.000	0.000		0.243	0.90	0.61																
BLDG2	102	P2-1	0.000 0.000 0.000	0.163		0.163	0.20	0.09 0.00 0.00	0.70 0.00 0.00	10.00 10.00 10.00	76.81			53.59 0.00 0.00	53.6	13.3	300 PVC	0.3048	0.013	1.00	100.9	1.38	0.16	53.1%
102	101		0.000	0.000		0.000		0.00	3.30 0.00 0.00	12.04 12.04 12.04	69.78			230.08 0.00	230.1	7.2	675 CONC	0.6858	0.013	0.30	480.3	1.30	0.09	47.9%
101	EXMH		0.000	0.000		0.000		0.00 0.00 0.00 0.00	3.30 0.00 0.00	12.04 12.13 12.13 12.13	69.50			229.14 0.00 0.00	229.1	21.2	675 CONC	0.6858	0.013	0.30	480.3	1.30	0.27	47.7%
										1	Private Road (300 SERIE	S)			0								<u></u>
		B-04a	0.007 0.000 0.000 0.007	0.000		0.007	0.90	0.02 0.00 0.00 0.02																
311	310	B-04b	0.007 0.000 0.000 0.123	0.004		0.130	0.86	0.02 0.00 0.00 0.31	0.35	10.00	76.81			26.79										
		B-05	0.000 0.000 0.000	0.000		0.000		0.00 0.00 0.00	0.00 0.00 0.35	10.00 10.00 10.34	75.51			0.00 0.00 26.34	26.8	38.5	300 PVC	0.3048	0.013	1.83	136.5	1.87	0.34	19.6%
310 	309		0.000 0.000 0.000 0.000	0.000		0.000		0.00 0.00 0.00 0.00	0.00 0.00 0.35 0.00	10.34 10.34 10.43 10.43	75.18			0.00 0.00 26.22 0.00	26.3	10.5 22.1	300 PVC 375 PVC	0.3048	0.013	2.00	142.7 224.0	1.96	0.09	18.5%
			0.000	0.000		0.192	0.90	0.00	0.00	10.43				0.00							220			
BLDG 7	308	BLDG7	0.000 0.000 0.020	0.095		0.115	0.32	0.00 0.00 0.10	0.58	10.00	76.81			44.71		40.2	200 DVC	0.2040	0.010	1.00	400.0	4.00	0.40	44.00/
		P7-1	0.000					0.00	0.00	10.00				0.00	44.7	10.3	300 PVC	0.3048	0.013	1.00	100.9	1.38	0.12	44.3%
308	307	B-03a	0.128 0.000 0.000	0.010		0.138	0.85	0.32 0.00 0.00																
		B-03b	0.035 0.000 0.000 0.027	0.019		0.054	0.66	0.10 0.00 0.00 0.07	1.35 0.00 0.00	10.62 10.62 10.62	74.50			100.87 0.00 0.00	100.9	60.9	450 PVC	0.4572	0.013	0.30	162.9	0.99	1.02	61.9%
307	306	B-02a	0.000 0.000 0.015	0.002		0.018	0.77	0.00 0.00 0.04	1.46	11.64	71.02			103.73										
		B-02b	0.000 0.000					0.00 0.00	0.00 0.00	11.64 11.64				0.00	103.7	25.7	525 CONC	0.5334	0.013	0.20	200.6	0.90	0.48	51.7%
BLDG8	306	BLDG8	0.191 0.000 0.000	0.000		0.191	0.90	0.48 0.00 0.00						10.15										
		P8-1	0.027 0.000 0.000	0.107		0.134	0.34	0.13 0.00 0.00	0.60 0.00 0.00	10.00 10.00 10.00	76.81			46.46 0.00 0.00	46.5	10.3	300 PVC	0.3048	0.013	1.00	100.9	1.38	0.12	46.1%
306	305		0.000 0.000 0.000	0.000		0.000		0.00 0.00 0.00	2.07 0.00 0.00	12.12 12.12 12.12	69.52			143.59 0.00 0.00	143.6	23.0	525 CONC	0.5334	0.013	0.20	200.6	0.90	0.43	71.6%
305	304		0.000 0.000 0.000	0.000		0.000		0.00 0.00 0.00	2.07 0.00 0.00	12.55 12.55 12.55	68.24			140.94 0.00 0.00	140.9	6.0	525 CONC	0.5334	0.013	0.20	200.6	0.90	0.11	70.2%

	OCATION								DEMA	ND										CAP	ACITY		
Ľ	OCATION				A	REA								FLOW					PROPO	DSED SEWER I	PIPE SIZING / D	ESIGN	
From MH	To MH	Area ID	Hardscape Landsc	Parkland	Total Area	Weighted Runoff	Indivi 2.78 AR	Accum 2.78 AR	Time of Concentratio n	F 2yr	Rain Intensity (mm/hr) 5yr	100yr	Peak Flow	TOTAL UNRESTRICTED PEAK FLOW	LENGTH	SIZE /	IPE PROPERTI	ES ROUGHNESS	DESIGN	CAPACITY	FULL FLOW VELOCITY	TIME OF FLOW	QPEAK DESIGN / QFULL
			0.90 0.2	0 0.40	(ha)	Coefficient			(min.)	_,.		,	(L/s)	(QDesign) (L/s)	(m)	MATERIAL (mm / type)	(m)		GRADE (%)	(L/s)	(m/s)	(min.)	(%)
BLDG 9	304	BLDG9 P9-2	0.202 0.00 0.000 0.023 0.10 0.023 0.10		0.202	0.90	0.51 0.00 0.00 0.11 0.00																
		P9-1	0.000 0.237 0.03 0.000 0.000	6	0.273	0.81	0.00 0.61 0.00 0.00	1.23 0.00 0.00	10.00 10.00 10.00	76.81			94.83 0.00 0.00	94.8	10.4	375 PVC	0.381	0.013	1.00	182.9	1.60	0.11	51.8%
BLDG 11	304	BLDG11 P11-1	0.111 0.00 0.000 0.000 0.040 0.00 0.000		0.111	0.90	0.28 0.00 0.00 0.10 0.00																
		P11-2	0.000 0.000 0.04 0.000 0.000		0.049	0.20	0.00 0.03 0.00 0.00	0.41 0.00 0.00	10.00 10.00 10.00	76.81			31.12 0.00 0.00	31.1	3.7	250 PVC	0.254	0.013	1.00	62.0	1.22	0.05	50.2%
304	303	B-01a B-02b	0.088 0.01 0.000 0.000 0.043 0.000		0.099	0.82	0.23 0.00 0.00 0.11 0.00	4.04	12.66 12.66	67.91			274.54 0.00	274.5	12.0	675 CONC	0.6858	0.013	0.20	392.2	1.06	0.19	70.0%
303	302		0.000 0.000 0.00 0.000 0.000		0.000		0.00 0.00 0.00 0.00	0.00 4.04 0.00 0.00	12.66 12.85 12.85 12.85	67.37			0.00 272.33 0.00 0.00	272.3	9.9	675 CONC	0.6858	0.013	0.20	392.2	1.06	0.16	69.4%
302	301		0.000 0.00 0.000 0.000	0	0.000		0.00 0.00 0.00	4.04 0.00 0.00	13.00 13.00 13.00	66.92			270.55 0.00 0.00	270.5	3.9	675 CONC	0.6858	0.013	0.20	392.2	1.06	0.06	69.0%
BLDG 10	301	BLDG 10 P10-1 P10-2 P10-3	0.326 0.00 0.000 0.000 0.055 0.09 0.000 0.000 0.017 0.04 0.000 0.000 0.000 0.000 0.000 0.000 0.024 0.06	8	0.326	0.90	0.82 0.00 0.19 0.00 0.00 0.00 0.00 0.00 0.10 0.00	<u>1.17</u> 0.00	10.00 10.00	76.81			90.08 0.00	90.1	13.5	375 PVC	0.381	0.013	1.00	182.9	1.60	0.14	49.2%
301	300		0.000 0.000 0.000 0.000 0.000	0	0.000		0.00 0.00 0.00 0.00	0.00 5.22 0.00 0.00	10.00 13.06 13.06 13.06	66.75			0.00 348.14 0.00 0.00	348.1	21.5	750 CONC	0.762	0.013	0.25	580.7	1.27	0.28	60.0%

	OCATION									DEM	AND										CAP	ACITY		
LL	OCATION					А	REA								FLOW					PROP	OSED SEWER	PIPE SIZING / D	ESIGN	
From MH	То	Area ID	Hardscape	Landscaping	Parkland	Total Area	Weighted	Indivi	Accum	Time of Concentratio		in Intensity (mm/hr)	/	Peak	TOTAL UNRESTRICTED				ES		CAPACITY	FULL FLOW	TIME OF	QPEAK DESIGN
	МН			0.20	0.40		Runoff Coefficient	2.78 AR	2.78 AR	n (min.)	2yr	5yr	100yr	Flow (L/s)	PEAK FLOW (QDesign)	LENGTH	SIZE / MATERIAL	_	ROUGHNESS	DESIGN GRADE		VELOCITY	FLOW	/ QFULL
			0.90	0.20	0.40	(ha)					BASELINE SEWER	RUN (PH	ASE4)	(L/S)	(L/s)	(m)	(mm / type)	(m)		(%)	(L/s)	(m/s)	(min.)	(%)
		I	0.242	0.000		0.242	0.90	0.61	0.61	10.00	76.81		102-1)	46.56										
BLDG 4	503	BLDG 4	0.000					0.00	0.00	10.00				0.00	46.6	17.3	300 PVC	0.3048	0.013	2.00	142.7	1.96	0.15	32.6%
			0.000					0.00	0.00	10.00				0.00										
	1	n			1					E	BASELINE SEWER	R RUN (PHA	ASE5)			a.	1	-			l.			
		BLDG5	0.336	0.000		0.336	0.90	0.84	-															
		BLDG5	0.000					0.00	-															
			0.130	0.050		0.181	0.70	0.35																
BLDG5	EX	P5-1	0.000	0.050		0.101	0.70	0.00	-															
			0.000					0.00	-															
			0.036	0.065		0.101	0.45	0.13	1.32	10.00	76.81			101.48										
		P5-2	0.000					0.00	0.00	10.00				0.00	101.5	17.6	300 PVC	0.3048	0.013	2.00	142.7	1.96	0.15	71.1%
			0.000					0.00	0.00	10.00				0.00										
										E	BASELINE SEWER	r run (Ph <i>i</i>	ASE3)											
			0.190	0.000		0.190	0.90	0.48	_															
		BLDG3	0.000					0.00	_															
			0.000	0.105		0.105	0.20	0.00																
BLDG6	502	P6-1	-17.000	17.000		0.105	0.20	0.00	-															
BLDG0	502	10-1	0.000	17.000				0.00	-															
			0.153	0.037		0.189	0.76	0.40	0.94	10.00	76.81			71.91										
		P6-2	0.000	0.001				0.00	0.00	10.00				0.00	71.9	17.6	300 PVC	0.3048	0.013	1.00	100.9	1.38	0.21	71.3%
			0.000					0.00	0.00	10.00				0.00										
<u>DEMAND EQUATION</u> Q = 2.78 AIR		Where	A = Area in he R = Weighted I = Rainfall int	runoff coefficie tensity in millim	ent (increased l leters per hour	(mm/hr)	year) esented in the C	ity of Ottawa S	ewer Design G	Guidelines (Oct.	2012)							<u>CAPACITY EC</u> Q full= (1/n) A	<u>UATION</u> R^(2/3)So^(1/2		Q full = Capad n = Manning d A = Flow area R = Wetter pe So = Pipe Slo	coefficient of rou (m ²) rimenter (m)	ughness (0.013	3)

Appendix D Stormwater Management

TABLE 5A: Post-Development Runoff Coefficient "C" - Phase 1

_				5 Year Event		100 Year Event		
ſ	Area	0.4	Ha	"C"	C _{avg}	"C" + 25%	*C _{avg}	
ĺ	Total	Hard	0.117	0.90		1.00		* Remainder assumed hard due t
	0.287	Roof	0.151	0.90	0.85	1.00	0.95	*Roof area based on building foot
	0.287	Soft	0.019	0.20		0.25		* Soft area based on parkland dee

TABLE 5B: 2 YEAR EVENT QUANTITY STORAGE REQUIREMENT - Phase 1

0.287 =Area (ha) 0.85 = C

0.00	-0					
Return Period	Time (min)	Intensity (mm/hr)	Flow Q (L/s)	Allowable Runoff (L/s)	Net Flow to be Stored (L/s)	Storage Req'd (m ³)
	15	61.77	42.03	10.0	32.03	28.83
	20	52.03	42.03 10.0 3. 35.41 10.0 2	25.41	30.49	
2 YEAR	25	45.17	30.74	10.0	20.74	31.11
	30	40.04	27.25	10.0	17.25	31.05
	35	36.06	24.54	10.0	14.54	30.53

TABLE 5C: 5 YEAR EVENT QUANTITY STORAGE REQUIREMENT - Phase 1

0.287 =Area (ha)

					Net Flow	
Return	Time	Intensity	Flow	Allowable	to be	•
Period	(min)	(mm/hr)	Q (L/s)	Runoff (L/s)	Stored (L/s)	Req'd (m ³)
	25	60.90	41.44	10.0	31.44	Storage (L/s) Req'd (m ³) 4 47.16 0 48.06 2 48.34 7 48.16
	30	53.93	36.70	10.0	26.70	48.06
5 YEAR	35	48.52	33.02	10.0	23.02	48.34
	40	44.18	30.07	10.0	20.07	48.16
	45	40.63	27.65	10.0	17.65	47.65

TABLE 5D: 100 YEAR EVENT QUANTITY STORAGE REQUIREMENT - Phase 1

TABLE OD. TOUTEAR EVENT GOARTHT OTORAGE REGOMEMENT -THUSET								
0.287	=Area (ha)							
0.95	= C							
					Net Flow			
Return	Time	Intensity	Flow	Allowable	to be	Storage		
Period	(min)	(mm/hr)	Q (L/s)	Runoff (L/s)	Stored (L/s)	Req'd (m ³)		
	55	59.62	45.17	10.0	35.17	116.06		
	60	55.89	42.35	10.0	32.35	116.44		
100 YEAR	65	52.65	39.88	10.0	29.88	116.55		
	70	49.79	37.72	10.0	27.72	116.43		
	75	47.26	35.80	10.0	25.80	116.10		

TABLE 5E: 100+20 YEAR EVENT QUANTITY STORAGE REQUIREMENT - Phase 1

0.287 =Area (ha)

0.95	= C					
Return Period	Time (min)	Intensity (mm/hr)	Flow Q (L/s)	Allowable Runoff (L/s)	Net Flow to be Stored (L/s)	Storage Req'd (m ³)
	70	59.75	45.26	10.0	35.26 1	148.11
	75	56.71	42.96	10.0	32.96	148.32
100 YEAR +20%	80	53.99	40.90	10.0	30.90	148.33
	85	51.54	39.05	10.0	29.05	148.16
	90	49.33	37.37	10.0	27.37	147.82

Equations:

Flow Equation

Q = 2.78 x C x I x A

Where:

C is the runoff coefficient

I is the rainfall intensity, City of Ottawa IDF

A is the total drainage area

Runoff Coefficient Equation

 $C_{5} = (A_{hard} \times 0.9 + A_{soft} \times 0.2)/A_{Tot}$ $C_{100} = (A_{hard} \times 1.0 + A_{soft} \times 0.25)/A_{Tot}$

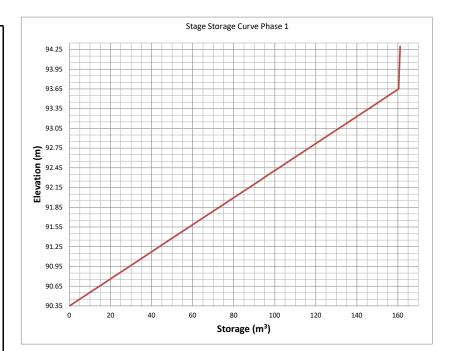


TABLE 5F: Structure information - Phase 1

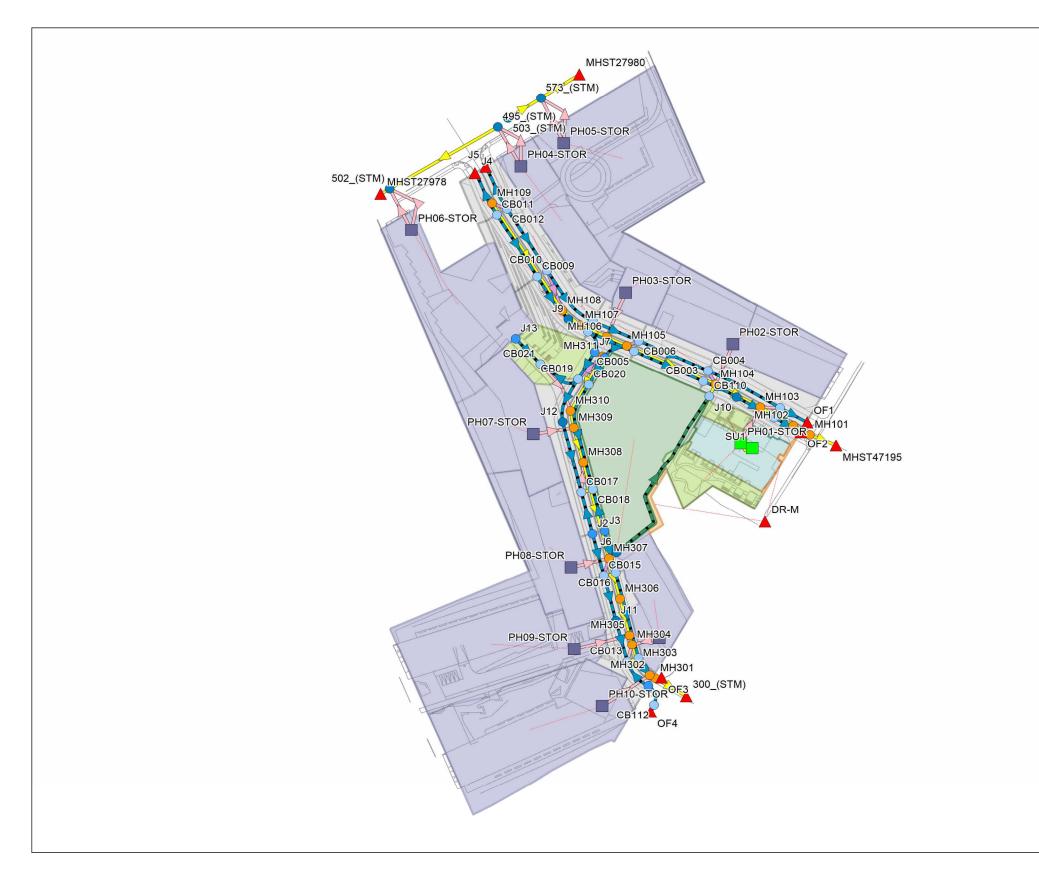
Structures	Size Dia.(mm)	Area (m ²)	T/G	Inv IN	Inv OUT
STORAGE TANK	N/A	48.59	90.30	N/A	n/a

TABLE 5G: Storage Provided - Phase 1

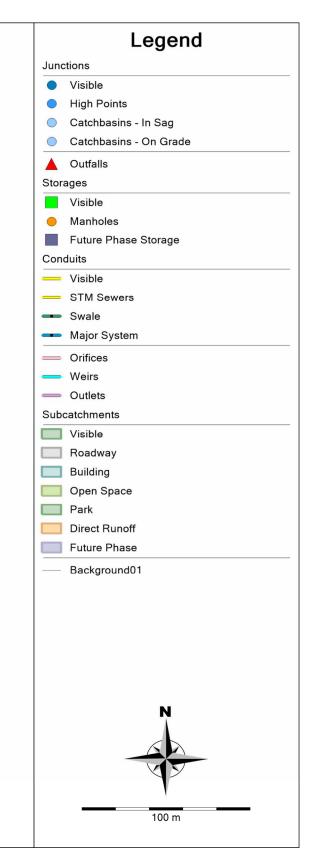
1	Underground	TANK	System	
	Volume	Volume	Depth	Elevation
	(m ³)*	(m ³)	(m)	(m)
1	0.00	0.00	0.00	90.350
1	4.86	4.86	0.10	90.450
1	9.72	9.72	0.20	90.550
1	14.58	14.58	0.30	90.650
1	19.44	19.44	0.40	90.750
	24.29	24.29	0.50	90.850
	29.15	29.15	0.60	90.950
	34.01	34.01	0.70	91.050
1	38.87	38.87	0.80	91.150
1	43.73	43.73	0.90	91.250
1	48.59	48.59	1.00	91.350
1	53.45	53.45	1.10	91.450
1	58.31	58.31	1.20	91.550
1	63.17	63.17	1.30	91.650
Topk Storeg	68.03	68.03	1.40	91.750
Tank Storag	72.88	72.88	1.50	91.850
1	77.74	77.74	1.60	91.950
1	82.60	82.60	1.70	92.050
1	87.46	87.46	1.80	92.150
1	92.32	92.32	1.90	92.250
1	97.18	97.18	2.00	92.350
1	102.04	102.04	2.10	92.450
1	106.90	106.90	2.20	92.550
1	111.76	111.76	2.30	92.650
1	116.62	116.62	2.40	92.750
1	121.47	121.47	2.50	92.850
1	126.33	126.33	2.60	92.950
1	131.19	131.19	2.70	93.050
1	136.05	136.05	2.80	93.150
1	140.91	140.91	2.90	93.250
1	145.77	145.77	3.00	93.350
1	150.63	150.63	3.10	93.450
1	155.49	155.49	3.20	93.550
Top of tank	160.35	160.35	3.30	93.650
1	160.46	160.46	3.40	93.750
1	160.52	160.52	3.45	93.800
1 _	160.63	160.63	3.55	93.900
Riser	160.74	160.74	3.65	94.000
1	160.86	160.86	3.75	94.100
1	160.97	160.97	3.85	94.200
Proposed Lid elev	161.08	161.08	3.95	94.300

Control Device		PUMP			
Design Event	Flow (L/S)	Depth (m)	Elev (m)	Outlet dia. (mm)	Required Volume (m ³)
1:2 Year	10.0	0.64	90.99	250.00	31.11
1:5 Year	10.0	0.99	91.34	250.00	48.34
1:100 Year	10.0	2.40	92.75	250.00	116.55
1:100+20% Year	10.0	3.05	93.40	200.00	148.33

1500 Merivale Post-Development Model Parameters


NOV	ΛΤΞϹΗ
Engineers, Planner	s & Landscape Architects

Arres ID	Catchment	Runoff	Percent	No	Flow Path	Equivalent	Average
Area ID	Area	Coefficient	Impervious	Depression	Length	Width	Slope
	(ha)	(C)	(%)	(%)	(m)	(m)	(%)
Roadways	•					· · · · · ·	
A-01a	0.079	0.78	83%	0%	12.94	61.04	2.5%
A-01b	0.114	0.55	50%	0%	17.55	64.98	2.5%
A-02a	0.043	0.72	74%	0%	8.85	48.57	2.5%
A-02b	0.068	0.74	77%	0%	14.29	47.57	2.5%
A-03a	0.033	0.81	87%	0%	9.11	36.23	2.5%
A-03b	0.046	0.75	79%	0%	13.97	32.93	2.5%
A-04a	0.082	0.86	94%	0%	20.22	40.55	2.5%
A-04b	0.066	0.74	77%	0%	18.48	35.72	2.5%
A-05a	0.078	0.90	100%	0%	18.25	42.73	2.5%
A-05b	0.068	0.75	79%	0%	14.29	47.59	2.5%
A-06a	0.042	0.90	100%	0%	14.32	29.34	2.5%
A-06b	0.039	0.74	77%	0%	14.31	27.25	2.5%
B-01a	0.099	0.82	89%	0%	14.85	66.69	2.5%
B-01b	0.050	0.80	86%	0%	9.74	51.36	2.5%
B-02a	0.029	0.84	91%	0%	10.47	27.70	2.5%
B-02b	0.018	0.90	100%	0%	8.66	20.79	2.5%
B-03a	0.138	0.85	93%	0%	16.43	84.00	2.5%
B-03b	0.054	0.66	66%	0%	5.20	103.88	2.5%
B-04a	0.007	0.90	100%	0%	2.92	23.94	2.5%
B-04b	0.011	0.65	64%	0%	5.04	21.81	2.5%
B-05	0.130	0.86	94%	0%	22.26	58.40	2.5%
Building Phase	es						
BLDG1	0.151	0.90	100%	0%	30.53	49.46	0.5%
P1-1	0.106	0.51	44%	0%	26.55	51.22	0.5%
P1-2	0.031	0.61	59%	0%	26.55	51.22	0.5%
BLDG2	0.243	0.90	100%	0%	-	-	0.5%
P2-1	0.163	0.20	0%	0%	-	-	0.5%
PH02	0.406	0.62	60%	0%	34.14	118.94	0.5%
BLDG3	0.076	0.90	100%	0%	-	-	0.5%
P3-01	0.065	0.20	0%	0%	-	-	0.5%
PH03	0.141	0.58	54%	0%	41.07	34.33	0.5%
BLDG4	0.242	0.90	100%	0%	-	-	0.5%
PH04	0.242	0.90	100%	0%	86.46	27.99	0.5%
BLDG5	0.336	0.90	100%	0%	-	-	0.5%
P5-1	0.181	0.70	71%	0%	-	-	0.5%
P5-2	0.101	0.45	36%	0%	-	-	0.5%

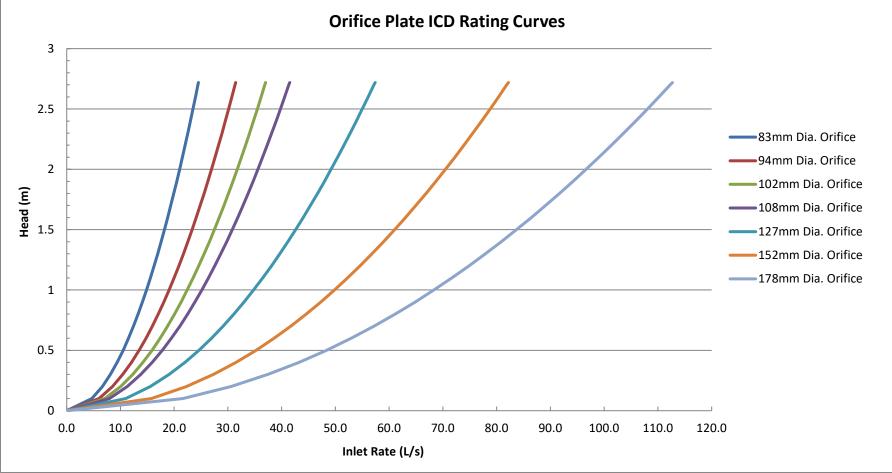

1500 Merivale Post-Development Model Parameters

NOV	ΛΤΞϹΗ				
Engineers, Planners & Landscape Architects					

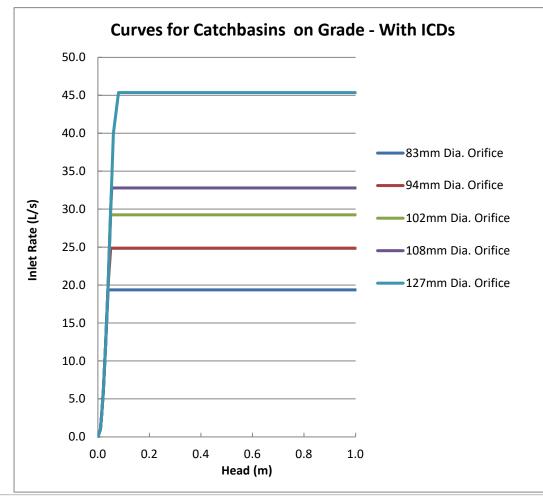
Area ID	Catchment Area (ha)	Runoff Coefficient (C)	Percent Impervious (%)	No Depression (%)	Flow Path Length (m)	Equivalent Width (m)	Average Slope (%)		
Roadways									
A-01a	0.079	0.78	83%	0%	12.94	61.04	2.5%		
PH05	0.618	0.77	81%	0%	73.28	84.28	0.5%		
BLDG6	0.190	0.90	100%	0%	-	-	0.5%		
P6-1	0.093	0.20	0%	0%	-	-	0.5%		
P6-2	0.189	0.76	80%	0%	-	-	0.5%		
PH06	0.472	0.71	72%	0%	54.86	86.04	0.5%		
BLDG7	0.192	0.90	100%	0%	-	-	0.5%		
P7-1	0.115	0.32	17%	0%	-	-	0.5%		
PH07	0.307	0.68	69%	0%	42.17	72.80	0.5%		
BLDG8	0.191	0.90	100%	0%	-	-	0.5%		
P8-1	0.134	0.34	20%	0%	-	-	0.5%		
PH08	0.325	0.67	67%	0%	32.95	98.62	0.5%		
BLDG9	0.202	0.90	100%	0%	-	-	0.5%		
P9-1	0.273	0.81	87%	0%	-	-	0.5%		
P9-2	0.126	0.33	19%	0%	-	-	0.5%		
PH09	0.601	0.74	77%	0%	95.06	63.26	0.5%		
BLDG10	0.326	0.90	100%	0%	-	-	0.5%		
P10-1	0.154	0.45	36%	0%	-	-	0.5%		
P10-2	0.061	0.40	29%	0%	-	-	0.5%		
P10-3	0.088	0.39	27%	0%	-	-	0.5%		
PH10	0.629	0.67	67%	0%	94.74	66.36	0.5%		
BLDG11	0.111	0.90	100%	0%	-	-	0.5%		
P11-1	0.040	0.90	100%	0%	-	-	0.5%		
P11-2	0.049	0.20	0%	0%	-	-	0.5%		
PH11	0.200	0.73	76%	0%	34.23	58.44	0.5%		
Park & Direct I									
PARK1	0.519	0.40	29%	0%	55.30	94.22	1.7%		
D-02	0.004	0.90	100%	0%	2.82	14.18	0.5%		
D-04	0.011	0.20	0%	0%	3.41	32.23	0.5%		

Storm Distribution->				3hr Chicage	C			12hr SCS	
Return Period->		25mm	2yr	5yr	100yr	100yr +20%	2yr	5yr	100yr
To Merivale Road/	North Outlet (Minor System)	96	130	177	283	319	77	203	391
Parkwood Hills	South Outlet (Minor System)	96	131	140	173	192	82	128	332
Minor System	Total to Merivale (Minor System)	192	261	317	456	511	158	331	723
To Merivale Road/	Direct Runoff	1	1	2	6	8	1	1	3
Parkwood Hills	North Outlet (Major System)	0	0	0	59	156	0	0	0
	South Outlet (Major System)	0	0	0	17	24	0	0	0
Major System	Total to Merivale (Major System)	1	1	2	82	188	1	1	3
TOTAL to Merivale Ro	bad	193	262	319	538	698	159	333	726
To Baseline/	Phase 4	1	3	5	8	9	4	5	8
Pinecrest Creek	Phase 5	4	5	10	18	21	7	11	19
Fillecrest Creek	Phase 6	3	4	4	15	17	4	6	17

1500 Merivale Inlet Control Device Parameters



		Max. Head	Calculated 2vr		Model I	Results*	
Structure	Diameter		Calculated 2yr Capture Rate	2yr	2yr	100yr	100yr
		(2yr)	Capture Rate	Approach Flow	Capture Rate	Approach Flow	Capture Rate
	(mm)	(m)	(L/s)	(L/s)	(L/s)	(L/s)	(L/s)
CB01	152	1.10	52.4	18.9	18.8	97.4	50.7
CB02	178	1.09	71.4	19.6	19.5	100.1	66.4
CB03	83	1.18	16.1	14.2	9.3	46.4	19.4
CB04	83	1.14	15.9	18.5	11.1	70.9	19.4
CB05	83	1.44	17.8	16.5	9.3	45.3	19.4
CB06	83	1.39	17.5	16.4	9.2	57.9	19.4
CB07	102	1.20	24.6	30.5	10.7	76.3	20.8
CB08	83	1.14	15.9	17.7	9.1	55.3	19.4
CB09	83	1.40	17.6	20.3	6.4	48.5	12.5
CB10	83	1.19	16.2	14.2	7.4	41.2	17.4
CB11	83	1.39	17.5	9.0	5.3	20.8	11.0
CB12	83	1.18	16.1	6.5	4.0	18.7	10.1
CB13	152	1.12	52.8	21.8	21.7	56.3	52.4
CB14	83	1.16	16.0	10.5	10.3	36.0	16.3
CB15	83	1.16	16.0	5.7	2.8	14.2	6.3
CB16	83	1.16	16.0	3.8	2.7	8.9	5.9
CB17	102	1.75	29.7	27.7	27.3	68.0	30.7
CB18	83	1.76	19.7	8.4	8.1	61.2	20.0
CB19	83	1.16	16.0	11.0	0.8	29.7	2.2
CB20	83	1.16	16.0	1.6	1.1	5.2	3.6
CB21	127	1.19	37.9	36.3	36.0	90.9	40.4


*From PCSWMM Model, 2-year & 100-year 3-hour Chicago storm distribution

1500 Merivale ICD Rating Curves

Curb Inlet Catchbasins on Continuous Grade

Depth vs. Captured Flow Curve

A standard depth vs. captured flow curve for catch basins on a continuous grade was provided to Novatech by City staff for use in a dual-drainage model of an existing residential neighbourhood. This standard curve was derived using the inlet curves in Appendix 7A of the Ottawa Sewer Design Guidelines.

Novatech reviewed the methodology used to create this standard curve (described below) and determined that it was suitable for general use in other dual-drainage models.

- MTO Design Chart 4.04 provides the relationship between the gutter flow rate (Q_1) and flow spread (T) for Barrier Curb. - MTO Design Chart 4.12 provides the relationship between flow spread (T) and flow depth (D).

- The relationship between the gutter flow rate (Q_t) and flow depth (D) was determined for different road slopes using the above charts and Manning's equation (refer to pages 58-60 of the MTO Drainage Management Manual – Part 2);

- The relationship between approach flow (Q_t) and captured flow (Q_c) was determined for different road slopes using the design chart for Barrier Curb with Gutter (Appendix 7-A.2).

- Using the above information, a family of curves was developed to characterize the relationship between flow depth and captured flow for curb inlet catchbasins on different road slopes. The results of this exercise can be summarized as follows:

- For a given flow depth, the gutter flow rate (\mathbf{Q}_t) increases as the road slope increases.

- The capture efficiency (Q_c) of curb inlet catchbasins decrease as the road slope increases.

- The net result is that the relationship between flow depth and capture rate is largely independent of road slope: While approach flow vs. captured flow (Q_t vs. Q_c) varies significantly with road grade, flow depth vs. captured flow (D vs. Q_c) does not.

Since there was very little difference in the flow depth vs. captured flow curves for different road slopes, this family of curves was averaged to create a single standard curve for use in dual-drainage models.

Inlet Control Devices

The standard depth vs. capture flow curve was modified to account for the installation of ICDs in curb inlet catchbasins on continuous grade. Separate inlet curves were created for each standard ICD orifice size by capping the inlet rate on the depth vs. capture flow curve at the maximum flow rate through the ICD at a head of 1.2m (depth from centerline of CB lead to top of CICB frame).

1500 Merivale **ROW Ponding Depths**

Chrysterre	T/G		c Ponding Depth)		2-yr	Event (3hr)			5-yr	Event (3hr)			100-y	r Event (3hr)			100-yr Ev	vent (+20%) (3	hr)
Structure	(m)	Elev. (m)	Depth (m)	Elev. (m)	Depth (m)	Cascading Flow?	Cascade Depth (m)	Elev. (m)	Depth (m)	Cascading Flow?	Cascade Depth (m)	Elev. (m)	Depth (m)	Cascading Flow?	Cascade Depth (m)	Elev. (m)	Depth (m)	Cascading Flow?	Cascade Depth (m)
CB01	93.95	94.07	0.12	92.99	0.00	N	0.00	93.73	0.00	N	0.00	94.12	0.17	Y	0.05	94.15	0.20	Y	0.08
CB02	93.95	94.07	0.12	92.94	0.00	N	0.00	93.73	0.00	N	0.00	94.12	0.17	Y	0.05	94.15	0.20	Y	0.08
CB13	94.44	94.55	0.11	93.51	0.00	N	0.00	94.05	0.00	N	0.00	94.59	0.15	Y	0.04	94.60	0.16	Y	0.05
CB14	94.44	94.55	0.11	93.76	0.00	N	0.00	94.35	0.00	N	0.00	94.59	0.15	Y	0.04	94.60	0.16	Y	0.05
CB17	95.70	95.84	0.14	95.43	0.00	N	0.00	95.77	0.07	N	0.00	95.83	0.13	N	0.00	95.85	0.15	Y	0.01
CB18	95.70	95.84	0.14	94.24	0.00	N	0.00	94.75	0.00	N	0.00	95.83	0.13	N	0.00	95.85	0.15	Y	0.01
CB21	96.60	96.80	0.20	96.48	0.00	N	0.00	96.63	0.03	N	0.00	96.76	0.16	N	0.00	96.82	0.22	Y	0.02

Engineers, Planners & Landscape Architects

Manhole ID	MH Invert Elevation	T/G Elevation	HGL Elevation - 100yr4hr	HGL Elevation - 100yr4hr+20%	Clearance from T/G (100yr)	Clearance from T/G (100yr+20%)
	(m)	(m)	(m)	(m)	(m)	(m)
MH101	92.24	94.12	94.11	94.12	0.01	0.00
MH102	92.27	94.08	94.11	94.13	-0.03	-0.05
MH103	92.42	94.06	94.13	94.15	-0.07	-0.09
MH104	92.58	94.70	94.17	94.27	0.53	0.43
MH105	93.88	96.58	94.39	94.53	2.19	2.05
MH106	94.35	97.19	94.52	94.62	2.67	2.57
MH107	94.88	97.99	95.04	95.05	2.95	2.94
MH108	95.89	98.61	96.01	96.01	2.60	2.60
MH109	98.63	101.58	98.70	98.71	2.88	2.87
MH301	92.62	94.56	94.59	94.59	-0.03	-0.03
MH302	92.70	94.55	94.59	94.59	-0.04	-0.04
MH303	92.75	94.49	94.59	94.59	-0.10	-0.10
MH304	92.80	94.52	94.60	94.60	-0.08	-0.08
MH305	92.89	94.58	95.60	94.60	-1.02	-0.02
MH306	93.01	95.06	90.61	94.61	4.45	0.45
MH307	93.07	95.70	94.62	94.62	1.08	1.08
MH308	93.33	95.87	94.68	94.69	1.19	1.18
MH309	93.74	96.27	94.70	94.71	1.57	1.56
MH310	94.02	96.50	94.72	94.73	1.78	1.77
MH311	94.89	97.19	94.93	94.94	2.26	2.25

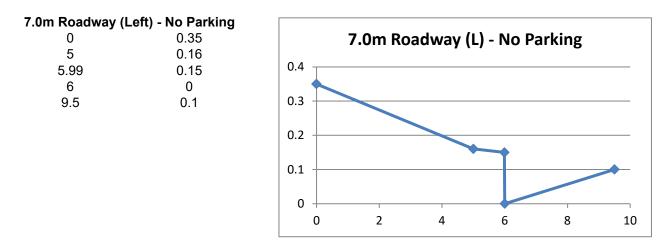
1500 Merivale Design Storm Time Series Data 4-hour Chicago Design Storms

C25m	m-4.stm
Duration	Intensity
min	mm/hr
0:00	0
0:10	1.51
0:20	1.75
0:30	2.07
0:40	2.58
0:50	3.46
1:00	5.39
1:10	13.44
1:20	56.67
1:30	17.77
1:40	9.12
1:50	6.14
2:00	4.65
2:10	3.76
2:20	3.17
2:30	2.74
2:40	2.43
2:50	2.18
3:00	1.98
3:10	1.81
3:20	1.68
3:30	1.56
3:40	1.47
3:50	1.38
4:00	1.31

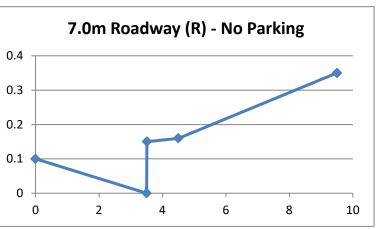
1500 Merivale Design Storm Time Series Data 3-hour Chicago Design Storms

C25mr	m-3.stm	C2-	3.stm	C5-3	3.stm
Duration	Intensity	Duration	Intensity	Duration	Intensity
min	mm/hr	min	mm/hr	min	mm/hr
0:00	0	0:00	0	0:00	0
0:10	2.21	0:10	2.81	0:10	3.68
0:20	2.75	0:20	3.5	0:20	4.58
0:30	3.68	0:30	4.69	0:30	6.15
0:40	5.73	0:40	7.3	0:40	9.61
0:50	14.29	0:50	18.21	0:50	24.17
1:00	60.28	1:00	76.81	1:00	104.19
1:10	18.9	1:10	24.08	1:10	32.04
1:20	9.7	1:20	12.36	1:20	16.34
1:30	6.53	1:30	8.32	1:30	10.96
1:40	4.94	1:40	6.3	1:40	8.29
1:50	3.99	1:50	5.09	1:50	6.69
2:00	3.37	2:00	4.29	2:00	5.63
2:10	2.92	2:10	3.72	2:10	4.87
2:20	2.58	2:20	3.29	2:20	4.3
2:30	2.32	2:30	2.95	2:30	3.86
2:40	2.1	2:40	2.68	2:40	3.51
2:50	1.93	2:50	2.46	2:50	3.22
3:00	1.79	3:00	2.28	3:00	2.98

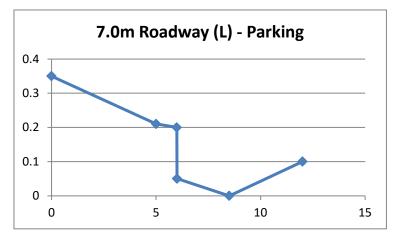
1500 Merivale Design Storm Time Series Data 3-hour Chicago Design Storms


C100	-3.stm	C100-3+	20%.stm
Duration	Intensity	Duration	Intensity
min	mm/hr	min	mm/hr
0:00	0	0:00	0
0:10	6.05	0:10	6:14
0:20	7.54	0:20	9.05
0:30	10.16	0:30	12.19
0:40	15.97	0:40	19.16
0:50	40.65	0:50	48.78
1:00	178.56	1:00	214.27
1:10	54.05	1:10	64.86
1:20	27.32	1:20	32.78
1:30	18.24	1:30	21.89
1:40	13.74	1:40	16.49
1:50	11.06	1:50	13.27
2:00	9.29	2:00	11.15
2:10	8.02	2:10	9.62
2:20	7.08	2:20	8.5
2:30	6.35	2:30	7.62
2:40	5.76	2:40	6.91
2:50	5.28	2:50	6.34
3:00	4.88	3:00	5.86

1500 Merivale Design Storm Time Series Data SCS Design Storms

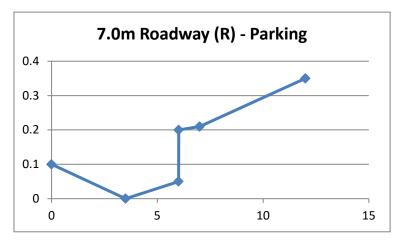


S2-12	2.stm	S5-1	2.stm	S10	0-12.stm
Duration	Intensity	Duration	Intensity	Duratio	n Intensity
min	mm/hr	min	mm/hr	min	mm/hr
0:00	0.00	0:00	0	0:00	0
0:30	1.27	0:30	1.69	0:30	2.82
1:00	0.59	1:00	0.79	1:00	1.31
1:30	1.10	1:30	1.46	1:30	2.44
2:00	1.10	2:00	1.46	2:00	2.44
2:30	1.44	2:30	1.91	2:30	3.19
3:00	1.27	3:00	1.69	3:00	2.82
3:30	1.69	3:30	2.25	3:30	3.76
4:00	1.69	4:00	2.25	4:00	3.76
4:30	2.29	4:30	3.03	4:30	5.07
5:00	2.88	5:00	3.82	5:00	6.39
5:30	4.57	5:30	6.07	5:30	10.14
6:00	36.24	6:00	48.08	6:00	80.38
6:30	9.23	6:30	12.25	6:30	20.47
7:00	4.06	7:00	5.39	7:00	9.01
7:30	2.71	7:30	3.59	7:30	6.01
8:00	2.37	8:00	3.15	8:00	5.26
8:30	1.86	8:30	2.47	8:30	4.13
9:00	1.95	9:00	2.58	9:00	4.32
9:30	1.27	9:30	1.69	9:30	2.82
10:00	1.02	10:00	1.35	10:00	2.25
10:30	1.44	10:30	1.91	10:30	3.19
11:00	0.93	11:00	1.24	11:00	2.07
11:30	0.85	11:30	1.12	11:30	1.88
12:00	0.85	12:00	1.12	12:00	1.88



7.0m Roadway (R	ight) - No Parking	Г
0	0.1	
3.5	0	
3.51	0.15	
4.5	0.16	
9.5	0.35	

eft) - No Parking
0.35
0.21
0.2
0.05
0
0.1



1500 Merivale Roadway Cross-Sections

7.0m Roadway (Right) - No Parking

0	0.1
3.5	0
6	0.05
6.01	0.2
7	0.21
12	0.35

2.5000 Raingagel

2.5000 Raingagel 2.5000 Raingagel

2.5000 Raingagel

							A03b
EPA STORM WATER N	MANAGEMENT MODEL -	VERSION	5.2 (Buil	d 5.2.4)			CB006
							A04a
							CB007
	Detailed design of		~				A04b CB008
	mum elevation drop tive offset ignore			302-301			A05a
	tive offset ignore						CB009
	mum elevation drop			C16			A05b
	mum elevation drop						CB010
WARNING 04: minir	mum elevation drop	used for	r Conduit	C26			A06a
WARNING 04: minir	mum elevation drop	used for	r Conduit	C32			CB011 A06b
	mum depth increase						CB012
	mum depth increase						B01a
	mum depth increase mum depth increase						CB013
	mum depth increase						B01b
	mum depth increase						CB014 B02a
	mum depth increase						CB015
WARNING 02: maxir	mum depth increase	d for Noo	de J13				B02b
WARNING 02: maxir	mum depth increase	d for Noo	de PH01-ST	OR			CB016
							B03a
******							CB017 B03b
Element Count							CB018
Number of rain ga	1 2006						
							B04a
							B04a CB019
Number of subcato Number of nodes	chments 37						CB019 B04b
Number of subcate	chments 37 81						CB019 B04b CB020
Number of subcate Number of nodes Number of links Number of pollute	chments 37 81 102 ants 0						CB019 B04b CB020 B-05
Number of subcate Number of nodes Number of links	chments 37 81 102 ants 0						CB019 B04b CB020 B-05 CB021
Number of subcate Number of nodes Number of links Number of pollute	chments 37 81 102 ants 0						CB019 B04b CB020 B-05
Number of subcato Number of nodes Number of links Number of polluta Number of land us	chments 37 81 102 ants 0						CB019 B04b CB020 B-05 CB021 BLDG01
Number of subcato Number of nodes Number of links Number of polluta Number of land us	chments 37 81 102 ants 0 ses 0						CB019 B04b CB020 B-05 CB021 BLDG01 PH01-STOR P01-1 PH01-STOR
Number of subcato Number of nodes Number of links Number of polluta Number of land us	chments 37 81 102 ants 0 ses 0						CB019 B04b CB020 B-05 CB021 BLDG01 PH01-STOR P01-1 PH01-STOR P01-2
Number of subcato Number of nodes Number of links Number of pollutk Number of land us Raingage Summary	chments 37 81 102 ants 0 ses 0		:	Data	Recording		CB019 B04b CB020 B-05 CB021 BLDG01 PH01-STOR P01-1 PH01-STOR P01-2 PH01-STOR
Number of subcato Number of nodes Number of pollutks Number of pollutk Number of land us Raingage Summary ************************************	chments 37 81 102 ants 0 ses 0 Data Source			Туре	Interval		CB019 B04b CB020 B-05 CB021 BLDG01 PH01-STOR P01-1 PH01-STOR P01-2
Number of subcato Number of nodes Number of links Number of polluta Number of land us Raingage Summary	chments 37 81 102 ants 0 ses 0 Data Source			Туре	Interval		CB019 B04b CB020 B-05 CB021 BLDG01 PH01-STOR P01-1 PH01-STOR P01-2 PH01-STOR PH02
Number of subcato Number of nodes Number of links Number of polluta Number of land us Raingage Summary	chments 37 81 102 ants 0 ses 0 Data Source			Туре	Interval		CB019 B04b CB020 B-05 CCB021 BLDG01 PH01-STOR P01-1 PH01-STOR P01-2 PH01-STOR PH02 PH02 PH02 PH03 PH03 PH03 PH03-STOR
Number of subcato Number of nodes Number of links Number of polluta Number of land us Raingage Summary	chments 37 81 102 ants 0 ses 0 Data Source			Туре	Interval		CB019 B04b CB020 B=05 CB021 BLDG01 PH01-STOR P01-1 PH01-STOR PH02-2 PH02-STOR PH02 PH02-STOR PH03 PH03-STOR PH04
Number of subcato Number of nodes Number of links Number of polluta Number of land us Raingage Summary Raingage Summary Raingagel	chments 37 81 102 ants 0 ses 0 Data Source 03-C100yr-3hr			Туре	Interval		CB019 B04b CB020 B-05 CB021 BLDG01 PH01-STOR P01-1 PH01-STOR PH02 PH02-STOR PH03 PH03-STOR PH04 PH04-STOR
Number of subcato Number of notes Number of links Number of land us Raingage Summary Name Raingagel	chments 37 102 ants 0 ses 0 Data Source 03-C100yr-3hr			Туре	Interval		CB019 B04b CB020 B=05 CB021 BLDG01 PH01-STOR P01-1 PH01-STOR PH02-2 PH02-STOR PH02 PH02-STOR PH03 PH03-STOR PH04
Number of subcato Number of nodes Number of links Number of polluta Number of land us Raingage Summary Raingage Summary Raingagel	chments 37 81 102 ants 0 ses 0 Data Source 			Туре	Interval		CB019 B04b CB020 B-05 CCB021 BLDG01 PH01-STOR P01-1 PH01-STOR P01-2 PH01-STOR PH02 PH02-STOR PH03 PH03-STOR PH04 PH04 PH05
Number of subcato Number of nodes Number of polluts Number of polluts Number of land us Raingage Summary Raingagel Raingagel	chments 37 81 102 ants 0 ses 0 Data Source 			Type INTENSITY	Interval 10 min.		CB019 B04b CB020 B-05 CB021 BLDG01 PH01-STOR P01-1 PH01-STOR P01-2 PH01-STOR PH02 PH02-STOR PH03 PH03-STOR PH04 PH04-STOR PH05 PH05-STOR PH06 PH06-STOR
Number of subcato Number of nodes Number of links Number of land us Raingage Summary Raingagel Raingagel Subcatchment Summ Name Let	chments 37 81 102 ants 0 ses 0 Data Source 03-C100yr-3hr **** mary **** Area	Width	%Imperv	Type INTENSITY %Slope	Interval 10 min. Rain Gage		CB019 B04b CB020 B-05 CB021 BLDG01 PH01-STOR P01-1 PH01-STOR PH01-STOR PH02 PH02-STOR PH03 PH03-STOR PH04 PH04-STOR PH05 PH05-STOR PH06 PH07
Number of subcato Number of nodes Number of links Number of polluta Number of land us Raingage Summary Raingage Summary Subcatchment Sumr Subcatchment Sumr Name tlet	chments 37 81 102 ants 0 ses 0 Data Source 03-C100yr-3hr ***** mary ***** Area	Width	%Imperv	Type INTENSITY %Slope	Interval 10 min. Rain Gage		CB019 B04b CB020 B-05 CB021 BLDG01 PH01-STOR P01-1 PH01-STOR PH02 PH02-STOR PH03 PH03-STOR PH04 PH04-STOR PH04 PH04-STOR PH06 PH06-STOR PH07 PH07-STOR
Number of subcato Number of notes Number of links Number of land us Raingage Summary Raingage Raingagel Subcatchment Summ Name tlet	chments 37 102 ants 0 ses 0 Data Source 03-C100yr-3hr **** mary **** Area	Width	%Imperv	Type INTENSITY %Slope	Interval 10 min. Rain Gage		CB019 B04b CB020 B-05 CB021 BLDG01 PH01-STOR P01-1 PH01-STOR PH01-STOR PH02-STOR PH02 PH02-STOR PH03 PH03-STOR PH04 PH04-STOR PH05 PH05-STOR PH05 PH05-STOR PH06 PH06-STOR PH07 PH07 PH08
Number of subcato Number of nodes Number of links Number of land us Raingage Summary Raingagel Raingagel Subcatchment Sum Name Liet	chments 37 102 ants 0 ses 0 Data Source 03-C100yr-3hr **** mary **** Area	Width	%Imperv	Type INTENSITY %Slope	Interval 10 min. Rain Gage		CB019 B04b CB020 B-05 CB021 BLDG01 PH01-STOR P01-1 PH01-STOR PH02 PH02-STOR PH03 PH03-STOR PH04 PH04-STOR PH04 PH04-STOR PH06 PH06-STOR PH07 PH07-STOR
Number of subcato Number of notes Number of links Number of polluta Number of land us Raingage Summary Raingagel Raingagel Subcatchment Summ Name tlet	chments 37 81 102 ants 0 ses 0 Data Source 03-C100yr-3hr ***** mary ***** Area 	Width 61.04	%Imperv	Type INTENSITY %Slope 2.5000	Interval 10 min. Rain Gage Raingagel		CB019 B04b CB020 B-05 CB021 BLDG01 PH01-STOR P01-1 PH01-STOR PH01-STOR PH02 PH02-STOR PH03 PH03-STOR PH04 PH04-STOR PH05 PH05-STOR PH05 PH05-STOR PH07 PH07 PH07 PH08 PH08-STOR
Number of subcato Number of nodes Number of links Number of land us Raingage Summary Raingage Summary Subcatchment Sum Subcatchment Sum Name tlet 	chments 37 81 102 ants 0 ses 0 Data Source 03-C100yr-3hr ***** mary ***** Area 	Width 61.04	%Imperv 83.00	Type INTENSITY %Slope 2.5000	Interval 10 min. Rain Gage Raingagel		CB019 B04b CB020 B-05 CB021 BLDG01 PH01-STOR P01-1 PH01-STOR PH01-STOR PH02 PH02-STOR PH03 PH03-STOR PH04 PH04-STOR PH05 PH05-STOR PH06 PH05-STOR PH07 PH07 PH07 PH07 PH08 PH08-STOR PH09 PH09-STOR PH09 PH09-STOR PH10
Number of subcato Number of nodes Number of links Number of polluta Number of land us Raingage Summary Raingage Raingagel Subcatchment Sumr Name tlet A01a 001 A01b 002 A02a	chments 37 102 ants 0 ses 0 Data Source 03-C100yr-3hr **** Mary **** Area 0.08 0.11	Width 61.04 64.98	%Imperv 83.00	Type INTENSITY &Slope 2.5000 2.5000	Interval 10 min. Rain Gage Raingagel Raingagel		CB019 B04b CB020 B-05 CCB021 BLDG01 PH01-STOR P01-1 PH01-STOR PH02 PH02-STOR PH03 PH03-STOR PH04 PH04 PH05-STOR PH05 PH05-STOR PH06 PH06-STOR PH07 PH07-STOR PH09 PH09-STOR PH09 PH09-STOR
Number of subcato Number of nodes Number of links Number of links Number of land us Raingage Summary Raingagel Raingagel Subcatchment Summ Subcatchment Summ Name tlet 	chments 37 81 102 ants 0 ses 0 Data Source 03-C100yr-3hr **** mary **** Area 0.08 0.11 0.04	Width 61.04 64.98 48.57	%Imperv 83.00 50.00 74.00	Type INTENSITY &Slope 2.5000 2.5000 2.5000	Interval 10 min. Rain Gage Raingagel Raingagel Raingagel		CB019 B04b CB020 B-05 CB021 BLDG01 PH01-STOR P01-1 PH01-STOR PH01-STOR PH02-STOR PH03 PH03-STOR PH04 PH04-STOR PH05 PH05-STOR PH05 PH05-STOR PH06 PH06-STOR PH08 PH08-STOR PH08 PH09-STOR PH09 PH09-STOR PH09 PH09-STOR PH09 PH09-STOR PH09 PH09-STOR PH10 PH10-STOR PH11
Number of subcato Number of nodes Number of links Number of links Number of land us Raingage Summary Raingagel Subcatchment Summ Subcatchment Summ Name tlet 	chments 37 81 102 ants 0 ses 0 Data Source 03-C100yr-3hr **** mary **** Area 0.08 0.11 0.04	Width 61.04 64.98	%Imperv 83.00 50.00 74.00	Type INTENSITY &Slope 2.5000 2.5000 2.5000	Interval 10 min. Rain Gage Raingagel Raingagel		CB019 B04b CB020 B-05 CB021 BLDG01 PH01-STOR P01-1 PH01-STOR PH01-STOR PH02 PH02-STOR PH03 PH03-STOR PH04 PH04-STOR PH05 PH05-STOR PH05 PH05-STOR PH07 PH07-STOR PH07 PH07-STOR PH08 PH08-STOR PH09 PH09-STOR PH10 PH10-STOR PH11 PH11-STOR
Number of subcato Number of nodes Number of links Number of links Number of land us Raingage Summary Raingagel Raingagel Subcatchment Summ Subcatchment Summ Name tlet 	chments 37 81 102 ants 0 ses 0 Data Source 03-C100yr-3hr **** mary **** Area 0.08 0.11 0.04	Width 61.04 64.98 48.57 47.57	%Imperv 83.00 50.00 74.00 77.00	Type INTENSITY %Slope 2.5000 2.5000 2.5000 2.5000	Interval 10 min. Rain Gage Raingagel Raingagel Raingagel		CB019 B04b CB020 B-05 CB021 BLDG01 PH01-STOR P01-1 PH01-STOR PH01-STOR PH02-STOR PH03 PH03-STOR PH04 PH04-STOR PH05 PH05-STOR PH05 PH05-STOR PH06 PH06-STOR PH08 PH08-STOR PH08 PH09-STOR PH09 PH09-STOR PH09 PH09-STOR PH09 PH09-STOR PH09 PH09-STOR PH10 PH10-STOR PH11

CB003				
A05b CB010	0.07	47.59	79.00	2.5000 Raingagel
A06a CB011	0.04	29.34	100.00	2.5000 Raingagel
A06b	0.04	27.25	77.00	2.5000 Raingagel
CB012				
B01a CB013	0.10	66.69	89.00	2.5000 Raingagel
B01b CB014	0.05	51.36	86.00	2.5000 Raingagel
B02a	0.03	27.70	91.00	2.5000 Raingagel
CB015 B02b	0.02	20.79	100.00	2.5000 Raingagel
CB016 B03a	0.14	84.00	93.00	2.5000 Raingagel
CB017 B03b	0.05	103.88	66.00	2.5000 Raingagel
CB018				
B04a CB019	0.01	23.94	100.00	2.5000 Raingagel
B04b CB020	0.01	21.81	64.00	2.5000 Raingagel
B-05	0.13	58.40	94.00	2.5000 Raingagel
CB021 BLDG01	0.15	49.46	100.00	0.5000 Raingagel
PH01-STOR				
P01-1 PH01-STOR	0.11	39.92	44.00	0.5000 Raingagel
P01-2	0.03	30.33	59.00	0.5000 Raingagel
PH01-STOR PH02	0.41	118.94	60.00	0.5000 Raingagel
PH02-STOR PH03	0.14	34.33	10.00	0.5000 Raingagel
PH03-STOR				
PH04 PH04-STOR	0.24	27.99	100.00	0.5000 Raingagel
PH05 PH05-STOR	0.62	84.28	81.00	0.5000 Raingagel
PH06 PH06-STOR	0.47	86.04	72.00	0.5000 Raingagel
PH07	0.31	72.80	69.00	0.5000 Raingagel
PH07-STOR PH08	0.33	98.62	67.00	0.5000 Raingagel
PH08-STOR PH09	0.60	63.26	77.00	0.5000 Raingagel
PH09-STOR				
PH10 PH10-STOR	0.63	66.36	67.00	0.5000 Raingagel
PH11 PH11-STOR	0.20	58.44	76.00	0.5000 Raingagel
xD-02	0.00	14.18	100.00	0.5000 Raingagel
DR-M				

0.05

0.08

0.07

0.08

32.93

40.55

35.72

42.73

79.00

94.00

77.00

100.00

_ _

17.3 3.00

xD-04 DR-M	0.01	32.23	0.00	0.5000 Raingagel
xPARK01 J6	0.52	94.22	29.00	1.7000 Raingagel

************** Node Summary *****

**********		T		Decided	D
Namo	Туре	Flow	Max.	Ponded	Inflow
495 (STM)	JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION	99.36	1.79	0.0	
502 (STM)	JUNCTION	97.72	1.83	0.0	
503 (STM)	JUNCTION	98.99	2.33	0.0	
573 (STM)	JUNCTION	98.75	1.74	0.0	
СВ001	JUNCTION	92.77	1.66	0.0	
CB002	JUNCTION	92.77	1.66	0.0	
CB003	JUNCTION	94.89	0.35	0.0	
CB004	JUNCTION	94.85	0.35	0.0	
CB005	JUNCTION	96.32	0.35	0.0	
CB006	JUNCTION	96.27	0.35	0.0	
CB007	JUNCTION	97.72	0.35	0.0	
CB008	JUNCTION	97.65	0.35	0.0	
CB009	JUNCTION	100.00	0.35	0.0	
CB010	JUNCTION	99.79	0.35	0.0	
CB011	JUNCTION	101.60	0.35	0.0	
CB012	JUNCTION	101.39	0.35	0.0	
CB013	JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION	93.24	1.65	0.0	
CB014	JUNCTION JUNCTION	93.24	1.65	0.0	
CB015	JUNCTION	95.42	0.35	0.0	
CB016	JUNCTION JUNCTION	95.42	0.35	0.0	
CB017	JUNCTION	93.90	2.25	0.0	
CB018	JUNCTION	93.90	2.25	0.0	
CB019	JUNCTION JUNCTION	96.80	0.35		
CB020	JUNCTION	96.80	0.35	0.0	
CB021	JUNCTION	95.35	1.60	0.0	
CB110	JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION	92.89	2.01	0.0	
CB112	JUNCTION	93.32	1.55	0.0	
J1	JUNCTION	94.55	0.35	0.0	
J10	JUNCTION	94.46	0.35	0.0	
J11	JUNCTION	94.91	0.35	0.0	
J12	JUNCTION	96.37	0.35	0.0	
J13	JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION	96.95	0.35	0.0	
J2	JUNCTION	95.84	0.35	0.0	
J3	JUNCTION	95.84	0.35	0.0	
J6	JUNCTION	95.79	0.30	0.0	
J7	JUNCTION	97.16	0.35	0.0	
J8	JUNCTION	97.16	0.35	0.0	
J9	JUNCTION	98.31	0.35	0.0	
300_(STM)	JUNCTION OUTFALL OUTFALL OUTFALL OUTFALL	92.12 0.00 101.95 101.95	1.20	0.0	
DR-M	OUTFALL	0.00	0.00	0.0	
J4	OUTFALL	101.95	0.35	0.0	
J5	OUTFALL	101.95	0.35	0.0	
MHST27978	OUTFALL	97.28 97.90	0.60	0.0	
MHST27980	OUTFALL OUTFALL	97.90	0.33	0.0	
MHST47195	OUTFALL	91.50	1.36	0.0	

OF1	OUTFALL	94 07	0.35	0.0	
OF2	OUTFALL	94.07	0.35	0.0	
OF3	OUTFALL	94.07 94.55	0.35	0.0	
OF4	OUTFALL	94.55	0.35	0.0	
MH101	OUTFALL STORAGE STORAGE			0.0	
MH102	STORAGE	92.24 92.27	1.81	0.0	
MH103	STORAGE STORAGE STORAGE	92.42	1.81 1.64	0.0	
MH104	STORAGE	92.58	2.12	0.0	
MH105	STORAGE	93.88	2.70	0.0	
MH106	STORAGE	94.35 94.88	2.70 2.84 3.11	0.0	
MH107	STORAGE	94.88	3.11	0.0	
MH108	STORAGE STORAGE	95.89	2.72	0.0	
MH109		98.63	2.95 1.94 1.85	0.0	
MH301	STORAGE	92.62	1.94	0.0	
MH302	STORAGE STORAGE	92.70	1.85	0.0	
MH303	STORAGE	92.75 92.80	1.74	0.0	
MH304	STORAGE			0.0	
MH305	STORAGE	92.89		0.0	
MH 3 0 6	STORAGE STORAGE	93.01		0.0	
MH307	STORAGE	93.07	2.63	0.0	
MH 3 0 8	STORAGE STORAGE STORAGE STORAGE STORAGE STORAGE STORAGE STORAGE STORAGE STORAGE STORAGE STORAGE STORAGE STORAGE STORAGE STORAGE	93.33	2.54 2.53	0.0	
MH 3 0 9	STORAGE	93.74	2.53	0.0	
MH310	STORAGE	94.02	2.48	0.0	
MH311	STORAGE	94.89 93.00	2.30	0.0	
PH01-STOR	STORAGE	93.00	3.00	0.0	
PH02-STOR	STORAGE	93.00	2.00	0.0	
PH03-STOR	STORAGE	94.40 99.50	2.00 2.00	0.0	
PH04-STOR	STORAGE	99.50		0.0	
PH05-STOR	STORAGE	99.00	2.00	0.0	
PH06-STOR	STORAGE	97.80	2.00	0.0	
PH07-STOR	STORAGE	94.30	2.00	0.0	
PH08-STOR	STORAGE	93.70	2.00 2.00 2.00	0.0	
PH09-STOR	STORAGE	93.50	2.00	0.0	
PH10-STOR	STORAGE	93.50	2.00	0.0	
PH11-STOR	STORAGE	93.50		0.0	
SU1	STORAGE	93.00	2.00	0.0	
* * * * * * * * * * * *					
Link Summary					

Name	From Node	To Node	Type	Length	8
Slope Roughness			- 1		-
101-MV	MH101	MHST47195	CONDUIT	17.1	
0.3502 0.0130					
102-101		MH101	CONDUIT	11.3	
0.1774 0.0130					
		MH102	CONDUIT	22.4	
0.3131 0.0130					
104-103	MH104	MH103	CONDUIT	29.9	
0.2676 0.0130					
105-104		MH104	CONDUIT	57.7	
1.9950 0.0130 106-105		MH105	CONDUIT	13.1	
2.9892 0.0130		MILUJ	CONDUTT	13.1	
2.5052 0.0150					

MH106

CONDUIT

107-106

MH107

67.7

26.5

26.6

26.4

26.4

5.0

28.5

26.1

54.2

20.0

13.3

5.0

44.8

44.8

42.0

21.3

32.2

14.1

29.8

14.7

118.3

8.2

74.3

23.0

27.0

6.3

19.3 -

28.7 -

4.7 -

CONDUIT

ORIFICE

ORIFICE

CONDUIT

CB018

CB017

CB018

CB015

CB016

CB018

CB013

CB014

CB013

CB112

CB014

CB010

CB009

CB008

CB021

CB007

CB005

CB110

MH104

MHST27978

502_(STM)

573_(STM)

MHST27980

MH103

MH103

J7

J9

OF4

OF3

J4

J11

108-107		MH108	MH107	CONDUIT	13.8		C21		CB020
109-108		MH109	MH108	CONDUIT	78.2		1.6251 C22	0.0160	J2
301-MV		MH301	300_(STM)	CONDUIT	21.5		0.4522 C23	0.0160	J3
302-301		MH302	MH301	CONDUIT	3.9		0.5263 C24	0.0160	J2
303-302	0.0130	MH303	MH302	CONDUIT	9.9		1.5885 C25	0.0160	J3
304-303		MH304	MH303	CONDUIT	12.0		1.5922 C26 0.0061	0.0160	CB017
305-304		MH305	MH 3 0 4	CONDUIT	6.0		C26_1 1.7971	0.0160	CB015
306-305		MH306	MH305	CONDUIT	23.0		C26_2 1.7943	0.0160	J11
307-306		MH307	MH306	CONDUIT	25.7		C27 1.8080	0.0160	CB016
308-307	0.0130	MH308	MH307	CONDUIT	60.9		C28 0.5709	0.0160	CB014
309-308 1.5376	0.0130	MH309	MH308	CONDUIT	22.1		C29 0.5503	0.0160	J1
	0.0130	MH310	MH309	CONDUIT	10.5		C3 1.2201	0.0160	CB011
311-310 2.0020	0.0130	MH311	MH310	CONDUIT	38.5		C30 0.2261	0.0160	J1
C1 0.7293	0.0160	СВ019	CB021	CONDUIT	27.4		C31 0.6339	0.0160	CB112
C10 4.0761	0.0160	J8	CB005	CONDUIT	20.6		C32 0.0061	0.0160	CB013
C11 4.6430	0.0160	CB008	CB006	CONDUIT	29.8		C4 3.5753	0.0160	CB012
C12 3.1674 C13	0.0160	CB006 CB005	CB004 CB003	CONDUIT	44.9 44.9		C5 3.5752 C6	0.0160	CB011 CB010
3.1898 C14	0.0160	СВ003	СВ003	CONDUIT	44.9		5.1019 C7	0.0160	J13
1.8703 C15	0.0160	СВ002	OF1	CONDUIT	18.6	_	1.6443 C7 1	0.0160	СВ009
0.6454 C16	0.0160	SU1	PH01-STOR	CONDUIT	9.4		5.2761 C7 2	0.0160	J9
0.0033 C16 1	0.0130	СВ003	J10	CONDUIT	22.0		4.1715 C8	0.0160	CB007
1.9669 C16 2	0.0160	J10	CB001	CONDUIT	25.4		4.7103 C9	0.0160	CB007
1.9981 C17	0.0160	CB001	OF2	CONDUIT	18.3	-	3.8068 ParkSwa	0.0160 le	J6
0.6563 C18	0.0160	J7	CB019	CONDUIT	19.0		1.0056 STM-206		CB110
1.8925 C19	0.0160	J8	CB020	CONDUIT	19.0) 502_(STM)
1.8936 C2	0.0160	CB012	J5	CONDUIT	28.6	-	STM-211		495_(STM)
1.9557 C20	0.0160	CB001	CB002	CONDUIT	5.0		2.2081 STM-263	(STM)	503_(STM)
0.0061 C20_1 1.5023	0.0160	CB019	J12	CONDUIT	28.6		STM-264	0.0100 _(STM) 0.0100	573_(STM)
C20_2 1.4577	0.0160	J12	CB017	CONDUIT	44.6		OCB001 OCB002	0.010U	CB001 CB002
1.4011	0.0100						UCBUU2		00002

OCB013	CB013	MH304	OR	IFICE		
OCB014	CB014	MH 3 0 4	OR	IFICE		
OCB017	CB017	MH 3 0 8	OR	IFICE		
OCB018	CB018	MH 3 0 8	OR	IFICE		
OCB021	CB021	MH310	OR	IFICE		
OHP01	PH01-STOR	MH103	OR	IFICE		
OPH02	PH02-STOR	MH104	OR	IFICE		
OPH03	PH03-STOR	MH106		IFICE		
OPH04a	PH04-STOR	495_(STM)		IFICE		
OPH04b	PH04-STOR	495_(STM)		IFICE		
OPH05a	PH05-STOR	573_(STM)		IFICE		
OPH05b	PH05-STOR	573_(STM)		IFICE		
OPH06a	PH06-STOR	502_(STM)		IFICE		
OPH06b	PH06-STOR	502_(STM)		IFICE		
OPH07	PH07-STOR	MH309		IFICE		
OPH08	PH08-STOR	MH307		IFICE		
OPH09	PH09-STOR	MH305		IFICE		
OPH10	PH10-STOR	MH302		IFICE		
OPH11	PH11-STOR	MH304 SU1		IFICE		
W1	PH01-STOR		WE			
OCB003	CB003	MH104		FLET		
OCB004	CB004	MH104		FLET		
OCB005	CB005	MH105		TLET		
OCB006	CB006	MH105		TLET		
OCB007	CB007	MH107		TLET		
OCB008	CB008	MH107		TLET		
OCB009	CB009	MH108		TLET		
OCB010	CB010	MH108		FLET		
OCB011 OCB012	CB011 CB012	MH109 MH109		FLET FLET		
OCB012 OCB015	CB012 CB015	MH109 MH307		TLET		
OCB015 OCB016	CB015 CB016	MH307 MH307		TLET		
OCB019	CB019	MH307 MH311		TLET		
OCB020	CB020	MH311 MH311		TLET		
000020	65020	HIIGTI	00	1001		
********	****					
Cross Sectio						
		Full	Full	Hvd.	Max.	No. of
Full				-		
Conduit	Shape	Depth	Area	Rad.	Width	Barrels
Flow						
101-MV	CIRCULAR	0.68	0.36	0.17	0.68	1
497.46						
	CIRCULAR	0.68	0.36	0.17	0.68	1
354.04						
	CIRCULAR	0.60	0.28	0.15	0.60	1
343.60		0.50		0.10	0 5 0	
104-103 222.47	CIRCULAR	0.53	0.22	0.13	0.53	1
	CIRCULAR	0.30	0.11	0 00	0 30	1
247.66	CIRCULAR	0.38	0.11	0.09	0.38	Ť
106-105	CIRCULAR	0.30	0.07	0.07	0.30	1
167.20	01100 Britt	0.50	0.07	0.07	0.00	+
107-106	CIRCULAR	0.30	0.07	0.07	0.30	1
1 67 69						

108-107 167.01	CIRCULAR	0.30	0.07	0.07	0.30	1
109-108	CIRCULAR	0.30	0.07	0.07	0.30	1
167.36 301-MV	CIRCULAR	0.75	0.44	0.19	0.75	1
536.38 302-301	CIRCULAR	0.68	0.36	0.17	0.68	1
74.70 303-302	CIRCULAR	0.68	0.36	0.17	0.68	1
378.34 304-303	CIRCULAR	0.68	0.36	0.17	0.68	1
342.95						-
305-304 249.81	CIRCULAR	0.60	0.28	0.15	0.60	1
306-305 200.73	CIRCULAR	0.53	0.22	0.13	0.53	1
307-306 189.70	CIRCULAR	0.53	0.22	0.13	0.53	1
308-307 155.06	CIRCULAR	0.45	0.16	0.11	0.45	1
309-308 217.42	CIRCULAR	0.38	0.11	0.09	0.38	1
310-309	CIRCULAR	0.30	0.07	0.07	0.30	1
133.43 311-310	CIRCULAR	0.30	0.07	0.07	0.30	1
136.83 C1	RECT_OPEN	0.35	2.45	0.32	7.00	1
6095.17 C10	ROW-R-NoPark	0.35	1.72	0.18	9.50	1
6868.05 C11	ROW-L-NoPark	0.35	1.72	0.19	9.50	1
7569.40 C12	ROW-L-NoPark	0.35	1.72	0.19	9.50	1
6251.92 C13	ROW-R-NoPark	0.35	1.72	0.19	9.50	1
6075.65						-
C14 4804.15	ROW-L-NoPark	0.35	1.72	0.19	9.50	1
C15 2822.08	ROW-L-NoPark	0.35	1.72	0.19	9.50	1
C16 136.77	CIRCULAR	1.00	0.79	0.25	1.00	1
C16_1 4770.88	ROW-R-NoPark	0.35	1.72	0.18	9.50	1
C16_2 7662.35	ROW-R-Park	0.35	2.36	0.22	12.00	1
C17	ROW-R-Park	0.35	2.36	0.22	12.00	1
4391.36 C18	ROW-R-NoPark	0.35	1.72	0.18	9.50	1
4679.79 C19	ROW-L-NoPark	0.35	1.72	0.19	9.50	1
4833.96 C2	ROW-R-NoPark	0.35	1.72	0.18	9.50	1
4757.29 C20	RECT OPEN	0.35	1.75	0.31	5.00	1
388.67 C20 1	ROW-R-NoPark	0.35	1.72	0.18	9.50	1
4169.54						
C20_2 6544.53	ROW-R-Park	0.35	2.36	0.22	12.00	1

C21 4478.17	ROW-L-NoPark	0.35	1.72	0.19	9.50	1
C22 3726.89	ROW-L-Park	0.35	2.36	0.23	12.00	1
C23 2467.90	ROW-R-NoPark	0.35	1.72	0.18	9.50	1
C24 6831.88	ROW-R-Park	0.35	2.36	0.22	12.00	1
C25 4432.61	ROW-L-NoPark	0.35	1.72	0.19	9.50	1
C26 388.67	RECT_OPEN	0.35	1.75	0.31	5.00	1
C26_1 7266.70	ROW-R-Park	0.35	2.36	0.22	12.00	1
C26_2 4556.76	ROW-R-NoPark	0.35	1.72	0.18	9.50	1
C27 4723.43	ROW-L-NoPark	0.35	1.72	0.19	9.50	1
4723.43 C28 2654.32	ROW-L-NoPark	0.35	1.72	0.19	9.50	1
C29 2605.88	ROW-L-NoPark	0.35	1.72	0.19	9.50	1
C3 3880.19	ROW-L-NoPark	0.35	1.72	0.19	9.50	1
C30 1617.47	ROW-R-NoPark	0.35	1.72	0.18	9.50	1
C31 2708.36	ROW-R-NoPark	0.35	1.72	0.18	9.50	1
C32 388.67	RECT_OPEN	0.35	1.75	0.31	5.00	1
C4 6642.28	ROW-L-NoPark	0.35	1.72	0.19	9.50	1
C5 6432.24	ROW-R-NoPark	0.35	1.72	0.18	9.50	1
C6 7934.60	ROW-L-NoPark	0.35	1.72	0.19	9.50	1
C7 9151.84	RECT_OPEN	0.35	2.45	0.32	7.00	1
C7_1 12451.05	ROW-R-Park	0.35	2.36	0.22	12.00	1
C7_2 6947.93	ROW-R-NoPark	0.35	1.72	0.18	9.50	1
C8 7383.04	ROW-R-NoPark	0.35	1.72	0.18	9.50	1
C9 6637.32	ROW-R-NoPark	0.35	1.72	0.18	9.50	1
ParkSwale 210.86	TRIANGULAR	0.30	0.27	0.14	1.80	1
STM-206_(STM) 131.52	CIRCULAR	0.30	0.07	0.07	0.30	1
STM-211_(1)_(STM 188.02	4) CIRCULAR	0.30	0.07	0.07	0.30	1
STM-211_(STM) 186.81	CIRCULAR	0.30	0.07	0.07	0.30	1
STM-263_(STM) 125.73	CIRCULAR	0.30	0.07	0.07	0.30	1
STM-264_(STM) 218.97	CIRCULAR	0.30	0.07	0.07	0.30	1

Transect ******					
Transact	ROW-L-NoPark				
Area:	ROW-L-NOPALK				
	0.0005	0.0020	0.0045	0.0080	0.012
	0.0180	0.0245	0.0320	0.0404	0.049
	0.0604	0.0719	0.0844	0.0979	0.112
	0.1263	0.1406	0.1549	0.1692	0.183
	0.1977	0.2124	0.2297	0.2485	0.268
	0.2883	0.3094	0.3312	0.3537	0.377
	0.4010	0.4258	0.4513	0.4776	0.504
	0.5324	0.5609	0.5902	0.6202	0.651
	0.6825	0.7148	0.7478	0.7816	0.816
	0.8514	0.8874	0.9242	0.9617	1.000
Hrad:	0.0314	0.00/4	0.9242	0.9017	1.000
iiraa.	0.0182	0.0364	0.0546	0.0727	0.090
	0.1091	0.1273	0.1455	0.1637	0.181
	0.2000	0.2182	0.2364	0.2546	0.285
	0.3210	0.3566	0.3920	0.4273	0.462
	0.4975	0.4819	0.4544	0.4893	0.522
	0.5533	0.5828	0.6108	0.6374	0.662
	0.6867	0.7096	0.7315	0.7524	0.002
	0.7917	0.8102	0.8279	0.8450	0.861
	0.8774	0.8102	0.8279	0.9219	0.00
	0.9494	0.9626	0.9754	0.9879	1.000
Width:	0.9494	0.9626	0.9734	0.90/9	1.000
width:	0.0258	0.0517	0.0775	0.1034	0.129
	0.1550	0.1809	0.2067	0.2325	0.12:
	0.2842	0.3101	0.3359	0.3617	0.250
	0.2842	0.3101	0.3359	0.3617	0.369
	0.3692	0.4112			0.515
			0.4765 0.5734	0.4958	
	0.5346	0.5540		0.5928	0.612
	0.6316 0.7285	0.6510	0.6704 0.7673	0.6898	0.709
				0.7867	
	0.8255	0.8449	0.8643	0.8837	0.903
	0.9224	0.9418	0.9612	0.9806	1.000
Transect	ROW-L-Park				
Area:					
	0.0009	0.0035	0.0079	0.0141	0.022
	0.0318	0.0433	0.0561	0.0697	0.084
	0.0991	0.1149	0.1314	0.1487	0.160
	0.1843	0.2021	0.2199	0.2378	0.255
	0.2734	0.2913	0.3091	0.3269	0.344
	0.3626	0.3804	0.3983	0.4163	0.436
	0.4572	0.4791	0.5017	0.5251	0.549
	0.5741	0.5997	0.6260	0.6531	0.680
	0.7095	0.7388	0.7688	0.7996	0.831
	0.8635	0.8965	0.9302	0.9648	1.000
Hrad:					
	0.0151	0.0302	0.0453	0.0605	0.075
	0.0907	0.1058	0.1280	0.1505	0.172
	0.1933	0.2138	0.2338	0.2533	0.280
	0.1900				
	0.3096	0.3391	0.3686	0.3980 0.5442	0.427

	0.6021	0.6310	0.6599	0.6575	0.6219
	0.6508	0.6782	0.7043	0.7290	0.7525
	0.7749	0.7962	0.8165	0.8359	0.8543
	0.8719	0.8887	0.9047	0.9201	0.9348
	0.9489	0.9624	0.9755	0.9880	1.0000
Width:					
	0.0496	0.0992	0.1487	0.1983	0.2479
	0.2975	0.3471	0.3717	0.3922	0.4126
	0.4331	0.4535	0.4740	0.4944	0.5003
	0.5003	0.5004	0.5004	0.5005	0.5005
	0.5005	0.5006	0.5006	0.5007	0.5007
	0.5007	0.5008	0.5008	0.5256	0.5833
	0.6042	0.6250	0.6458	0.6667	0.6875
	0.7083	0.7292	0.7500	0.7708	0.7917
	0.8125	0.8333	0.8542	0.8750	0.8958
	0.9167	0.9375	0.9583	0.9792	1.0000
Propost P	OW-R-NoParl	,			
Area:	tow-R-NOFall	~			
	0.0005	0.0020	0.0045	0.0080	0.0125
	0.0180	0.0245	0.0320	0.0404	0.0499
	0.0604	0.0719	0.0844	0.0979	0.1121
	0.1263	0.1406	0.1549	0.1692	0.1834
	0.1977	0.2124	0.2297	0.2485	0.2681
	0.2883	0.3094	0.3312	0.3537	0.3770
	0.4010	0.4258	0.4513	0.4776	0.5046
	0.5324	0.5609	0.5902	0.6202	0.6510
	0.6825	0.7148	0.7478	0.7816	0.8161
	0.8514	0.8874	0.9242	0.9617	1.0000
Hrad:					
	0.0191	0.0382	0.0572	0.0763	0.0954
	0.1145	0.1336	0.1526	0.1717	0.1908
	0.2099	0.2290	0.2481	0.2671	0.2990
	0.3358	0.3723	0.4085	0.4444	0.4801
	0.5155	0.4991	0.4706	0.5060	0.5393
	0.5706	0.6001	0.6280	0.6544	0.6794
	0.7030	0.7255	0.7469	0.7672	0.7866
	0.8051	0.8228	0.8398	0.8560	0.8716
	0.8866	0.9010	0.9149	0.9283	0.9412
	0.9537	0.9658	0.9776	0.9889	1.0000
Width:					
	0.0258	0.0517	0.0775	0.1034	0.1292
	0.1550	0.1809	0.2067	0.2325	0.2584
	0.2842	0.3101	0.3359	0.3617	0.3692
	0.3692	0.3693	0.3693	0.3694	0.3694
	0.3695	0.4112	0.4765	0.4958	0.5152
	0.5346	0.5540	0.5734	0.5928	0.6122
	0.6316	0.6510	0.6704	0.6898	0.7091
	0.7285	0.7479	0.7673	0.7867	0.8061
	0.8255	0.8449	0.8643	0.8837	0.9030
		0.9418	0.9612	0.9806	1.0000
	0.9224	0.9410			
Fransect F		0.9410			
	OW-R-Park				
	0.0009	0.0035	0.0079	0.0141	0.0221
Transect F Area:	OW-R-Park			0.0141 0.0697 0.1487	0.0221 0.0841 0.1665

	0.1843	0.2021	0.2199	0.2378	0.25
	0.2734	0.2913	0.3091	0.3269	0.34
	0.3626	0.3804	0.3983	0.4163	0.43
	0.4572	0.4791	0.5017	0.5251	0.54
	0.5741	0.5997	0.6260	0.6531	0.68
	0.7095	0.7388	0.7688	0.7996	0.83
	0.8635	0.8965	0.9302	0.9648	1.00
Hrad:	0.0150	0 0010	0.0460	0.0005	0 07
	0.0156	0.0313	0.0469	0.0625	0.07
	0.0938	0.1094	0.1323	0.1556	0.17
	0.1999 0.3195	0.2210	0.2417 0.3795	0.2619	0.28
	0.4686	0.4980	0.5273	0.5564	0.43
	0.4000	0.4980	0.5273	0.5564	0.58
	0.6620	0.6892	0.7150	0.7395	0.03
	0.7846	0.8054	0.8251	0.8439	0.86
	0.8786	0.8948	0.9101	0.9248	0.93
	0.9521	0.9649	0.9771	0.9888	1.00
Width:	0.0021	0.0010	0.0772	0.9000	1.00
	0.0496	0.0992	0.1487	0.1983	0.24
	0.2975	0.3471	0.3717	0.3922	0.41
	0.4331	0.4535	0.4740	0.4944	0.50
	0.5003	0.5004	0.5004	0.5005	0.50
	0.5005	0.5006	0.5006	0.5007	0.50
	0.5007	0.5008	0.5008	0.5256	0.58
	0.6042	0.6250	0.6458	0.6667	0.68
	0.7083	0.7292	0.7500	0.7708	0.79
	0.8125	0.8333	0.8542	0.8750	0.89
	0.8125 0.9167	0.8333 0.9375		0.8750 0.9792	
* * * * * * * * *	0.9167		0.8542		
Analysis	0.9167		0.8542		
Analysis ********	0.9167 ******* Options ******	0.9375	0.8542		
Analysis ******** Flow Unit	0.9167	0.9375	0.8542		0.89
Analysis ******** Flow Unit Process N	0.9167 Options	0.9375 LPS	0.8542		
Analysis ********* Flow Unit Process M Rainfal	0.9167 Options ******* S Models: 11/Runoff	0.9375 LPS YES	0.8542		
Analysis ******** Flow Unit Process M Rainfal RDII	0.9167 	0.9375 LPS YES NO	0.8542		
Analysis ******** Flow Unit Process M Rainfal RDII Snowmel	0.9167 Options 	0.9375 LPS YES NO NO	0.8542		
Analysis ******** Flow Unit Process M Rainfal RDII Snowmel Groundw	0.9167 Options ******* Ss fodels: .l/Runoff ater	0.9375 LPS NO NO NO	0.8542		
Analysis ******** Flow Unit Process M Rainfal RDII Snowmel Groundw Flow Ro	0.9167 Options 	0.9375 LPS YES NO NO NO YES	0.8542		
Analysis ********* Flow Unit Process N Rainfal RDII Snowmel Groundw Flow Ro Ponding	0.9167 Options 	0.9375 LPS NO NO NO NO YES NO	0.8542		
Analysis ********* Flow Unit Process M Rainfal RDII Snowmel Groundw Flow Ro Ponding Water (0.9167 Options ******* Ss Models: 1/Runoff vater puting g Allowed	0.9375 LPS NO NO NO NO NO NO NO	0.8542		
Analysis ********* Flow Unit Process M Rainfal RDII Snowmel Groundw Flow Rc Ponding Water Q Infiltrat	0.9167 Options ****** is Models: 1/Runoff vater vater yatlowed yallowed Quality	0.9375 LPS YES NO NO YES NO NO HORTC	0.8542 0.9583		
Analysis ********* Flow Unit Process N Rainfal RDII . Snowmel Groundw Flow Ro Ponding Water Q Infiltrat Flow Rout	0.9167 Options States Codels: Cl/Runoff Cl/Run	0.9375 LPS NO NO NO NO NO NO NO NO NO	0.8542 0.9583 DN AVE		
Analysis ********* Flow Unit Process N Rainfal RDII Snowmel Groundw Flow Ro Ponding Water Q Infiltrat Flow Rout Surcharge	0.9167 Options ****** Ss Models: 1/Runoff vater outing yallowed yuality tion Method ing Method	0.9375 LPS NO NO NO NO NO NO NO NO NO NO DYNWZ	0.8542 0.9583 DN AVE AN	0.9792	
Analysis ********* Flow Unit Process N Rainfal RDII Snowmel Groundw Flow Rout Flow Rout Flow Rout Surcharge Starting	0.9167 Options 	0.9375 LPS YES NO NO NO NO NO HORTO DYNNA EXTRA 11/21	0.8542 0.9583 DN VVE NN //2022 00:0(0.9792	
Analysis ********* Flow Unit Process N Rainfal RDII . Snowmel Groundw Flow Ro Water (Unfiltrat Flow Rout Surcharge Ending Da	0.9167 Options ******* Ss Models: .l/Runoff vater g Allowed yallowed yuality tion Method ing Method Date	0.9375 LPS NO NO NO NO NO NO DYNW DYNW EXTR¥ 11/21 11/22	0.8542 0.9583 DN VVE NN //2022 00:0(0.9792	
Analysis Flow Unit Flow Unit Process b Rainfal RDII Snowmely Flow Row Ponding Water (C Infiltrat Flow Rowt Surcharge Starting Ending DE Anteceder Report Ti	0.9167 Options ****** S fodels: 1/Runoff vater y ater yater yater yater yater yat	0.9375 LPS NO N	0.8542 0.9583 DN VVE NN L/2022 00:00 2/2022 00:00	0.9792	
Analysis ******** Flow Unit Process b Rainfal RDII Snowmel Groundw Flow Rot Ponding Water (Unfiltrat Flow Rout Surcharge Starting Ending Da Anteceder Report Ti Wet Time	0.9167 Options Options States Ul/Runoff States States States States Step Step Step Step Options Step Options Step Options Step Options Step Options Step Options Step Options Step Options Options Step Options Options Step Options Options Step Options Opti	0.9375 LPS YES NO NO NO NO NO NO DYNWJ EXTRJ 11/22 0.0 00:01 00:01	0.8542 0.9583 0.95900 0.959000 0.959000 0.9590000000000	0.9792	
Analysis Flow Unit Flow Unit Round RDII Snowmel Groundw Flow Rc Ponding Water C Surcharge Starting Ending Da Anteceder Report Ti Wet Time Dry Time	0.9167 Options Options Models: 1/Runoff outing yallowed yuality ing Method puality tion Method Date the the the the step Step	0.9375 LPS NO N	0.8542 0.9583 DN VVE NN /2022 00:00 2/2022 00:00 1:00 1:00	0.9792	
Analysis Flow Unit Flow Unit Process N Rainfal RDII Snowmel Groundw Flow Rc Ponding Water (Infiltrat Flow Rout Surcharge Starting Ending De Anteceder Report Time Dry Time Routing D	0.9167 Options 	0.9375 LPS YES NO N	0.8542 0.9583 DN VVE NN /2022 00:00 2/2022 00:00 1:00 1:00	0.9792	
Analysis ******** Flow Unit Process b Rainfal RDII Snowmel Groundw Flow Rot Ponding Water (2 Infiltrat Flow Rout Surcharge Starting De Anteceder Report Tim Wet Time Roy Time Routing 1 Variable	0.9167 Options Options Content Options Content Options	0.9375 LPS YES NO NO NO NO NO DYNWJ EXTRJ 11/22 0.0 00:01 00:01 00:01 2.00	0.8542 0.9583 DN VVE NN /2022 00:00 2/2022 00:00 1:00 1:00	0.9792	
Analysis ******** Flow Unit RDII Snowmel Groundw Flow Rot Ponding Water Q Infiltrat Flow Rout Starting Ending De Anteceder Report Ti Wet Time Dry Time Routing 1 Variable Maximum 7 Variable	0.9167 Options Options Options Oddels: 1/Runoff Options Option	0.9375 LPS NO DYNM/ EXTR/ 2	0.8542 0.9583 DN VVE NN /2022 00:00 2/2022 00:00 1:00 1:00	0.9792	
Analysis ******** Flow Unit Process N Rainfal RDII Snowmel Groundw Flow Roundw Water (Infiltrat Flow Round Surcharge Starting Ending De Anteceder Report Time Dry Time Routing D Variable Maximum 1 Number of Number of Starts Number of Starts	0.9167 Options Options Content Options Content Options	0.9375 LPS NO N	0.8542 0.9583 0.9590 0.9590 0.9590 0.9590000000000	0.9792	

www.cunoff Quantity Continuity	Volume hectare-m	Depth

nitial LID Storage	0.007	1.103
otal Precipitation	0.434	71.667
vaporation Loss	0.000	0.000
nfiltration Loss	0.086	14.162
urface Runoff	0.349	57.561
inal Storage	0.007	1.104
ontinuity Error (%)	-0.079	
*****	Volume	Volume
low Routing Continuity	hectare-m	10^6 ltr

ry Weather Inflow	0.000	0.000
et Weather Inflow	0.349	3.487
roundwater Inflow	0.000	0.000
DII Inflow	0.000	0.000
xternal Inflow	0.043	0.435
xternal Outflow	0.391	3.915
looding Loss	0.000	0.000
vaporation Loss	0.000	0.000
xfiltration Loss	0.000	0.000
nitial Stored Volume	0.009	0.091
inal Stored Volume	0.010	0.096
ontinuity Error (%)	0.036	

ighest Continuity Errors		
lode J12 (16.47%)		
iode CB020 (-2.63%)		
lode CB016 (-1.54%)		

ime-Step Critical Elements		
* * * * * * * * * * * * * * * * * * * *		
ink 302-301 (32.50%)		
* * * * * * * * * * * * * * * * * * * *	****	
ighest Flow Instability Ind	lexes	
* * * * * * * * * * * * * * * * * * * *		
ink OPH05a (24)		
ink C31 (6)		
ink STM-263_(STM) (5)		
ink STM-211_(1)_(STM) (4)		
*****	* * * * *	
lost Frequent Nonconverging	Nodes	
lose rreduenc wonconverdind		

Node 300_(STM) (0.01%) Node DR-M (0.01%) Node J4 (0.01%) Node J5 (0.01%) Node MHST27978 (0.01%)

Routing Time Step Summary			

Minimum Time Step	:	0.50	sec
Average Time Step	:	1.86	sec
Maximum Time Step	:	2.00	sec
% of Time in Steady State	:	0.00	
Average Iterations per Step	:	2.00	
% of Steps Not Converging	:	0.01	
Time Step Frequencies	:		
2.000 - 1.516 sec	:	87.03	8
1.516 - 1.149 sec	:	11.75	8
1.149 - 0.871 sec	:	0.70	8
0.871 - 0.660 sec	:	0.29	8
0.660 - 0.500 sec	:	0.24	8

Perv	Total	Total			Total	Total	Imperv
					Evap	Infil	Runoff
		Runof					
				mm	mm	mm	mm
		.0^6 ltr					
A01a			71.67	0.00	0.00	7.41	59.58
4.79	64.37	0.05	38.24	0.898			
A01b				0.00	0.00	22.10	35.89
	49.65	0.06					
A02a				0.00	0.00	11.34	53.12
7.32	60.44	0.03					
A02b			71.67		0.00	10.06	55.27
	61.73		32.56				
A03a			71.67		0.00	5.66	62.45
3.68	66.13		16.08				
A03b 5.90	62.61		71.67 22.11		0.00	9.17	56.71
	62.61		71.67		0.00	0 61	67 46
A04a 1.70	69 16		40.34		0.00	2.61	67.46
A04b	05.10		40.34		0.00	10.08	55.27
	61.70		31.51		0.00	10.00	55.27
0.45 A05a	01.70		71.67		0.00	0.00	71.77
0.00	71.77		38.69		0.00	0.00	/1.//
A05b	/±•//		71.67		0 00	9.18	56.71
		0.04			0.00	2.10	50.71

No6a 71.67 0.00 70.00 0.00 71.78 No6b 71.67 0.00 0.00 10.06 55.27 6.45 61.73 0.02 18.67 0.861 0.00 4.79 63.88 3.11 66.99 0.07 48.36 0.935 0.00 6.09 61.73 3.96 65.70 0.03 24.32 0.917 0.00 3.91 65.32 2.55 67.88 0.02 14.21 0.947 0.00 0.00 71.78 B02a 71.67 0.00 0.00 0.00 71.78 0.01 8.93 1.002 B03b 71.67 0.00 0.00 14.81 47.35 B04 71.67 0.00 0.00 14.81 47.35 B04 71.67 0.00 0.00 14.81 47.35 B04 71.67 0.00 0.00 17.74 B04 71.67 0.00 0.00 2.61 <td< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td<>							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					0.00	0.00	71.78
6.45 61.73 0.02 18.67 0.06 0.00 4.79 63.88 B01a 71.67 0.00 0.00 6.09 61.73 B01b 71.67 0.00 0.00 6.09 61.73 B02a 71.67 0.00 0.00 3.91 65.32 2.55 67.88 0.02 14.21 0.947 B03a 71.67 0.00 0.00 3.05 66.75 B03b 71.67 0.00 0.00 3.05 66.75 B03b 71.67 0.00 0.00 14.81 47.35 B04b 71.67 0.00 0.00 14.81 47.35 B04b 71.67 0.00 0.00 14.81 47.35 B04b 71.67 0.00 0.00 15.69 45.92 10.16 56.08 0.01 5.18 78.67 0.00 0.00 71.74 B04b 71.67 0.00 0.00 2.61 67.46 1.70 B04b 71.67 0.00 0.00 22.60		71.78					
Bola 0.07 48.36 0.935 0.00 4.79 63.88 3.11 66.99 0.07 48.36 0.935 0.00 6.09 61.73 3.96 65.70 0.03 24.32 0.917 0.00 3.91 65.32 2.55 67.88 0.02 14.21 0.947 0.00 3.05 66.75 B02a 71.67 0.00 0.00 3.05 66.75 1.89 B03a 71.67 0.00 0.00 14.81 47.35 9.60 56.96 0.325.51 0.00 0.00 14.81 47.35 9.60 71.67 0.00 0.00 15.69 45.92 10.16 56.08 0.01 5.18 0.783 1.67 0.00 1.74 904 71.67 0.00 0.00 2.61 67.46 1.70 69.16 0.965 71.67 0.00 0.00 2.60 42.35 901-2 71.67					0.00	10.06	55.27
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		61.73					
B01b 71.67 0.00 0.00 6.09 61.73 3.96 65.70 0.03 24.32 0.917 0.00 3.91 65.32 2.55 67.88 0.02 14.21 0.947 0.00 3.91 65.32 B02b 71.67 0.00 0.00 3.05 66.75 B03a 71.67 0.00 0.00 3.05 66.75 1.98 68.73 0.09 67.79 0.00 0.00 14.81 47.35 B04a 71.67 0.00 0.00 14.81 47.35 B04a 71.67 0.00 0.00 15.69 45.92 10.16 56.08 0.01 5.18 0.783 71.67 0.00 0.00 71.72 B1DG01 71.67 0.00 0.00 2.61 67.46 1.97 41.97 0.14 34.80 586 6 P01-2 71.67 0.00 0.00 2.60 42.35		cc 00			0.00	4.79	63.88
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		66.99			0.00	C 00	(1 7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		65 70			0.00	6.09	61./3
2.5567.880.0214.210.9470.000.0071.78B02b71.670.000.003.0566.751.9868.730.9967.790.959B03b71.670.000.0014.8147.35S6056.960.0325.510.795B04a71.670.000.0014.8147.35B04a71.670.000.0014.8147.35B04b71.670.000.0015.6945.9210.1656.080.015.180.783B-0571.670.000.002.6167.461.7069.160.0963.950.965BLDG0171.670.000.0029.7731.5741.9741.970.0434.880.586PH0271.670.000.0022.6042.3549.1849.180.0214.540.686PH0371.670.000.0018.3743.0410.3053.350.22155.270.744PH0371.670.000.0014.2149.498.0257.500.18125.710.879PH0771.670.000.0014.2149.499.0251.6371.670.000.0014.2149.499.0271.670.000.0014.2149.499.0271.670.000.0014.9455.219.1471.67		05.70			0 00	3 01	65 32
BO2b 71.67 0.00 0.00 71.78 B03a 71.67 0.00 0.00 3.05 66.75 B03a 71.67 0.00 0.00 3.05 66.75 1.98 68.73 0.09 67.79 0.959 0.00 14.81 47.35 9.60 56.96 0.03 25.51 0.795 0.00 14.81 47.35 B04a 71.67 0.00 0.00 15.69 45.92 10.16 56.08 0.01 5.18 0.783 1.000 0.00 71.72 B04b 71.67 0.00 0.00 2.61 67.46 1.70 69.16 0.09 63.95 0.965 1.172 BLDG01 71.67 0.00 0.00 2.977 31.57 41.97 41.97 0.04 34.88 0.586 1.67 PD1-1 71.67 0.00 0.00 18.37 43.04 10.30 53.35 0.22		67.88			0.00	3.91	05.52
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		07.00			0.00	0.00	71.78
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		71.78					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	B03a		71.67	0.00	0.00	3.05	66.75
9.60 56.96 0.03 25.51 0.795 0.00 0.00 71.74 B04a 71.67 0.00 0.00 0.00 71.74 B04b 71.67 0.00 0.00 15.69 45.92 10.16 56.08 0.01 5.18 0.783 0.00 0.00 2.61 67.46 1.70 69.16 0.09 63.95 0.965 0.00 0.00 2.61 67.46 1.70 69.16 0.09 63.95 0.965 0.00 2.61 67.46 0.00 71.72 0.11 74.79 0.00 0.00 29.77 31.57 41.97 41.97 0.04 34.88 0.586 21.67 0.00 0.00 22.60 42.35 49.18 0.02 14.54 0.686 22.60 42.35 43.04 10.30 53.35 0.22 155.27 0.744 71.67 0.00 0.00 44.16 71.8 PH03 71.67 0.00 0.00 0.00 12.94 51.63 <	1.98	68.73	0.09 67.79	0.959			
B04a71.670.000.000.0071.740.0071.740.013.471.0010.0015.6945.9210.1656.080.015.180.7830.002.6167.461.7069.160.0963.950.9650.002.0071.720.0071.720.1174.791.00171.670.000.0029.779.0071.720.1174.791.00171.670.000.0022.6041.9741.970.0434.880.58671.670.000.0022.6042.35901-271.670.000.0018.3743.0471.670.000.0018.3743.0410.3053.350.22155.270.74471.6971.6971.6971.69PH0471.670.000.0012.9451.6371.690.0071.690.17115.841.00071.6971.67PH0571.670.000.0012.9451.637.1458.770.28193.880.82071.63PH0771.670.000.0014.2149.498.0257.500.18134.120.79171.67PH0871.670.000.0015.0048.068.6656.720.18134.120.79171.67PH0971.670.000.0010.8555.21PH0971.670.000	B03b		71.67	0.00	0.00	14.81	47.35
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9.60	56.96					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					0.00	0.00	71.74
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		71.74					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		5.0.00			0.00	15.69	45.92
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		56.08			0.00	0 61	67 A.C
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		69.16			0.00	2.61	67.46
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		09.10			0 00	0 00	71 72
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		71.72			0.00	0.00	11.12
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					0.00	29.77	31.57
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		41.97					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	P01-2		71.67	0.00	0.00	22.60	42.35
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	49.18	49.18	0.02 14.54	0.686			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					0.00	18.37	43.04
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		53.35					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		07 50			0.00	44.16	7.18
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		27.53			0.00	0.00	71 60
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		71 69			0.00	0.00	/1.69
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		/1.05			0 00	8 74	58 08
PH06 71.67 0.00 0.00 12.94 51.63 7.14 58.77 0.28 193.88 0.820 14.21 49.49 8.02 57.50 0.18 125.71 0.802 14.21 49.49 8.02 57.50 0.18 125.71 0.802 15.00 48.06 8.66 56.72 0.18 134.12 0.791 15.00 48.06 8.66 56.72 0.18 134.12 0.791 15.00 48.04 7.68 55.72 0.35 229.40 0.708 15.97 48.04 7.68 55.72 0.35 229.40 0.708 10.80 54.51 6.41 60.92 0.12 88.93 0.850 10.80 54.51 xD=04 71.67 0.00 0.00 10.80 54.51 xD=04 71.67 0.00 0.00 17.78 0.00 1.98 1.002 xD=04 71.67 0.00 0.00		62.97			0.00	0.74	50.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					0.00	12.94	51.63
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7.14	58.77	0.28 193.88	0.820			
PH08 71.67 0.00 0.00 15.00 48.06 8.66 56.72 0.18 134.12 0.791 1	PH07			0.00	0.00	14.21	49.49
	8.02	57.50					
PH09 71.67 0.00 0.00 10.85 55.21 5.64 60.85 0.37 245.37 0.849 9 PH10 71.67 0.00 0.00 15.97 48.04 7.68 55.72 0.35 229.40 0.778 9 PH11 71.67 0.00 0.00 10.80 54.51 6.41 60.92 0.12 88.93 0.850 10.80 54.51 xD-02 71.67 0.00 0.00 10.80 54.51 xD-04 71.67 0.00 0.00 44.09 0.00 27.65 27.65 0.00 4.12 0.386 20.81					0.00	15.00	48.06
5.64 60.85 0.37 245.37 0.849 PH0 71.67 0.00 0.00 15.97 48.04 7.68 55.72 0.35 229.40 0.778 7.68 54.51 PH1 71.67 0.00 0.00 10.80 54.51 6.41 60.92 0.12 88.93 0.850 71.67 0.00 0.00 71.78 0.00 71.78 0.00 1.98 1.002 71.67 0.00 0.00 44.09 0.00 27.65 27.65 0.00 4.12 0.386 20.81 71.67 0.00 20.00 36.38 20.81		56.72					
PH10 71.67 0.00 0.00 15.97 48.04 7.68 55.72 0.35 229.40 0.778 PH11 71.67 0.00 0.00 10.80 54.51 6.41 60.92 0.12 88.93 0.850 0.00 71.78 0.00 71.78 0.00 1.98 1.002 71.78 xD-04 71.67 0.00 0.00 4.12 0.386 0.00 27.65 27.65 0.00 4.12 0.386 20.81 20.81 20.81 20.81 20.81 </td <td></td> <td>60 0F</td> <td></td> <td></td> <td>0.00</td> <td>10.85</td> <td>55.21</td>		60 0F			0.00	10.85	55.21
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		60.85			0 00	15 07	49 04
PH11 71.67 0.00 0.00 10.80 54.51 6.41 60.92 0.12 88.93 0.850 0		55 72			0.00	13.97	40.04
6.41 60.92 0.12 88.93 0.850 xD-02 71.67 0.00 0.00 71.78 0.00 71.78 0.00 1.98 1.002 xD-04 71.67 0.00 0.00 44.09 0.00 27.65 27.65 0.00 4.12 0.386 20.81		55.72			0 00	10 80	54 51
xD-02 71.67 0.00 0.00 71.78 0.00 71.78 0.00 1.98 1.002 71.67 0.00 0.00 71.78 xD-04 71.67 0.00 0.00 44.09 0.00 27.65 27.65 0.00 4.12 0.386 71.67 0.00 36.38 20.81		60.92			0.00	10.00	01.01
xD-04 71.67 0.00 0.00 44.09 0.00 27.65 27.65 0.00 4.12 0.386 20.81 xPARK01 71.67 0.00 0.00 36.38 20.81	xD-02		71.67	0.00	0.00	0.00	71.78
27.65 27.65 0.00 4.12 0.386 xPARK01 71.67 0.00 0.00 36.38 20.81	0.00	71.78	0.00 1.98	1.002			
xPARK01 71.67 0.00 0.00 36.38 20.81	xD-04		71.67		0.00	44.09	0.00
		27.65					
35.33 35.33 0.18 119.47 0.493					0.00	36.38	20.81
	35.33	35.33	0.18 119.47	0.493			

Node Depth Summary

Node	Type JUNCTION JUNC	Average Depth Meters	Maximum Depth Meters	Maximum HGL Meters	Time Occu davs	of Max rrence hr:min	Reported Max Depti Meters
495_(STM)	JUNCTION	0.02	0.04	99.40	0	02:02	0.0
502_(STM)	JUNCTION	0.13	0.18	97.90	0	01:56	0.1
503_(STM)	JUNCTION	0.37	0.38	99.37	0	00:01	0.3
573_(STM)	JUNCTION	0.61	0.64	99.39	0	00:01	0.6
CB001	JUNCTION	0.05	1.35	94.12	0	01:11	1.3
CB002	JUNCTION	0.05	1.35	94.12	0	01:11	1.3
CB003	JUNCTION	0.00	0.05	94.94	0	01:10	0.0
CB004	JUNCTION	0.00	0.06	94.91	0	01:10	0.0
CB005	JUNCTION	0.00	0.04	96.36	0	01:10	0.0
CB006	JUNCTION	0.00	0.05	96.32	0	01:10	0.0
CB007	JUNCTION	0.00	0.04	97.76	0	01:10	0.0
CB008	JUNCTION	0.00	0.04	97.69	0	01:10	0.0
CB009	JUNCTION	0.00	0.03	100.03	0	01:10	0.0
CB010	JUNCTION	0.00	0.04	99.83	0	01:10	0.0
CB011	JUNCTION	0.00	0.03	101.63	0	01:10	0.0
CB012	JUNCTION	0.00	0.03	101.42	0	01:10	0.0
CB013	JUNCTION	0.05	1.35	94.59	0	01:19	1.3
CB014	JUNCTION	0.05	1.35	94.59	0	01:19	1.3
CB015	JUNCTION	0.00	0.02	95.44	0	01:10	0.0
CB016	JUNCTION	0.00	0.02	95.44	0	01:10	0.0
CB017	JUNCTION	0.06	1.93	95.83	0	01:10	1.9
CB018	JUNCTION	0.05	1.93	95.83	0	01:11	1.9
CB019	JUNCTION	0.00	0.01	96.81	0	01:08	0.0
CB020	JUNCTION	0.00	0.02	96.82	0	01:10	0.0
CB021	JUNCTION	0.04	1.41	96.76	0	01:12	1.4
CB110	JUNCTION	0.04	1.33	94.22	0	01:14	1.3
CB112	JUNCTION	1.23	1.27	94.59	0	01:19	1.2
J1	JUNCTION	0.00	0.04	94.59	0	01:19	0.0
J10	JUNCTION	0.00	0.03	94.49	0	01:10	0.0
J11	JUNCTION	0.00	0.03	94.94	0	01:10	0.0
J12	JUNCTION	0.00	0.01	96.38	0	01:12	0.0
J13	JUNCTION	0.00	0.00	96.95	0	00:00	0.0
J2	JUNCTION	0.00	0.00	95.84	0	00:00	0.0
J3	JUNCTION	0.00	0.00	95.84	0	00:00	0.0
J6	JUNCTION	0.02	0.25	96.04	0	01:13	0.2
J7	JUNCTION	0.00	0.05	97.21	0	01:10	0.0
J8	JUNCTION	0.00	0.00	97.16	0	00:00	0.0
J9	JUNCTION	0.00	0.05	98.35	0	01:08	0.0
300 (STM)	OUTFALL	0.62	2.47	94.59	0	01:15	2.4
DR-M	OUTFALL	0.00	0.00	0.00	0	00:00	0.0
J4	OUTFALL	0.00	0.00	101.95	0	00:00	0.0
J5	OUTFALL	0.00	0.00	101.95	0	00:00	0.0
MHST27978	OUTFALL	0.58	0.58	97.86	0	00:00	0.5
MHST27980	OUTFALL	1.46	1.46	99.36	0 0	00:00	1.4
MHST47195	OUTFALL	0.80	2.59	94.09	0 0	01:15	2.5
OF1	OUTFALL.	0.00	0.05	94.12	ñ	01:12	0.0
OF2	OUTFALL	0.00	0.05	94.12	0	01:11	0.0
OF3	OUTFALL	0.00	0.04	94 59	0	01.19	0.0
OF4	OUTFALL	0.00	0.04	94 59	0	01.19	0.0
MH101	STORACE	0.00	1 87	94.30	0	01.15	1.8
MH101 MH102	STORAGE	0.12	1 0/	24.11 0/ 11	0	01.15	1.8
MH102 MH103	STORAGE	0.12	1 71	24.11 04.12	0	01.15	1.8
MUT103	STORAGE	0.10	1./1	94.13	U	01:10	1./

MH104	STORAGE	0.09	1.59	94.17	0	01:11 01:11 01:10 01:10	1.59
MH105	STORAGE	0.02	0.51	94.39	0	01:11	0.51
MH106	STORAGE	0.01	0.18	94.53	0	01:10	0.17
MH107	STORAGE	0.01	0.16	95.04	0	01:10	0.16
MH108	STORAGE	0.01	0.12	95.04 96.01 98.70 94.59 94.59 94.59 94.59 94.60 94.61 94.62 94.68	0	01:10	0.12
MH109	STORAGE	0.00	0.07	98.70	0	01:10	0.07
MH301	STORAGE	0.15	1.97	94.59	0	01:16	1.97
MH302	STORAGE	0.13	1.89	94.59	0	01:16	1.89
MH303	STORAGE	0.12	1.84	94.59	0	01:16	1.84
MH 3 0 4	STORAGE	0.12	1.79	94.59	0	01:16	1.79
MH305	STORAGE	0.10	1.71	94.60	0	01:15	1.71
MH306	STORAGE	0.09	1.60	94.61	0	01:15	1.60
MH307	STORAGE	0.08	1.55	94.62	0	01:15	1.55
MH308	STORAGE	0.06	1.35	94.68	0	01:16	1.35
MH309	STORAGE	0.04	0.96	94.70	0	01:16	0.95
MH310	STORAGE	0.02	0.70	94.72	0	01:16	0.69
MH311	STORAGE	0.00	0.04	94.93	0	01:08	0.04
PH01-STOR	STORAGE	0.20	1.04	94.62 94.68 94.70 94.72 94.93 94.04 94.05	0	01:55	1.04
PH02-STOR	STORAGE	0.19	1.05	94.05	0	01:52	1.05
PH03-STOR	STORAGE	0.09	0.85	95.25	0	01:52	0.85
PH04-STOR	STORAGE	0.46	1.53	101.03	0	02:02	1.53
PH05-STOR	STORAGE	0.66	1.64	100.64	0	01:57	1.64
PH06-STOR	STORAGE	0.52	1.70	99.50	0	01:52	1.70
PH07-STOR	STORAGE	0.28	1.51	95.81	0	01:49	1.51
PH08-STOR	STORAGE	0.21	0.92	94.62	0	01:51	0.92
PH09-STOR	STORAGE	0.21	0.87	94.37	0	01:57	0.87
PH10-STOR	STORAGE	0.19	0.87	94.04 94.05 95.25 101.03 100.64 99.50 95.81 94.62 94.37 94.37 94.12	0	01:56	0.87
				94.12 93.00			0.62

Total Flow		Maximum	Maximum			Lateral	
Inflow Balance		Lateral	Total	Time of Ma	ıx	Inflow	
Volume Error		Inflow	Inflow	Occurrenc	e	Volume	
Node ltr Percent				-		10^6 ltr	
	JUNCTION	0.00	7.74	0 02:0	12	0	
	JUNCTION	0.00	43.92	0 01:5	64	0	
	JUNCTION	0.00	0.10	0 00:0	1	0	
	JUNCTION	0.00	18.44	0 01:5	5	0	
	JUNCTION	38.24	98.53	0 01:1	.0	0.0509	
CB002 0.003 0.005	JUNCTION	49.44	100.22	0 01:1	.0	0.0566	

CB003 0.0508	-0.033	JUNCTION	20.54	46.41	0	01:10	0.026
CB004	0.242	JUNCTION	32.56	70.86	0	01:10	0.042
CB005 0.0554	0.004	JUNCTION	16.08	45.28	0	01:10	0.0218
CB006 0.0616	-0.056	JUNCTION	22.11	57.93	0	01:10	0.0288
CB007 0.102	-0.019	JUNCTION	40.34	76.28	0	01:10	0.0567
CB008 0.0652	-0.003	JUNCTION	31.51	55.34	0	01:10	0.0407
CB009 0.0676	-0.062	JUNCTION	38.69	48.48	0	01:10	0.056
CB010 0.0514	-0.007	JUNCTION	32.68	41.24	0	01:10	0.0426
CB011 0.0302	-0.013	JUNCTION	20.83	20.83	0	01:10	0.0302
CB012 0.0241	-0.010	JUNCTION	18.67	18.67	0	01:10	0.0241
CB013 0.0785	0.037	JUNCTION	48.36	56.27	0	01:10	0.0663
CB014 0.0407	0.000	JUNCTION	24.32	36.53	0	01:10	0.0329
CB015 0.0197	-0.145	JUNCTION	14.21	14.21	0	01:10	0.0197
CB016 0.0129	-1.517	JUNCTION	8.93	8.93	0	01:10	0.0129
CB017 0.0952 CB018	0.316	JUNCTION	67.79 25.51	67.95 61.33	0	01:10	0.0949
0.0417 CB019	0.121	JUNCTION	3.47	29.73	0	01:10	0.00502
0.0362 CB020	0.890	JUNCTION	5.18	5.18	0	01:10	0.00502
0.00617 CB021	-2.558	JUNCTION	63.95	90.91	0	01:10	0.0899
0.122 CB110	-0.604	JUNCTION	0.00	103.75	0	01:13	0.00000
0.183 CB112	-0.008	JUNCTION	0.00	6.04	0	01:18	0
0.00314 J1	0.123	JUNCTION	0.00	7.02	0	01:17	0
0.00339 J10	1.449	JUNCTION	0.00	26.97	0	01:10	0
0.0204 J11	-0.442	JUNCTION	0.00	7.94	0	01:10	0
0.00898 J12	-0.271	JUNCTION	0.00	0.55	0	01:10	0
0.000422 J13	19.711	JUNCTION	0.00	0.00	0	00:00	0
J2	.000 ltr	JUNCTION	0.00	0.00	0	00:00	0
J3	.000 ltr	JUNCTION	0.00	0.00	0	00:00	0
0 0 J6 0.183	-0.017	JUNCTION	119.47	119.47	0	01:10	0.183
J7 0.0312	0.012	JUNCTION	0.00	26.26	0	01:10	0
0.0312	0.012						

J8 0	0.000 ltr	JUNCTION	0.00	0.00	0	00:00	0	
J9 0.0451	0.118	JUNCTION	0.00	35.94	0	01:10	0	
300_(S 1.6		OUTFALL	0.00	173.33	0	01:08	0	
DR-M 0.00583	0.000	OUTFALL	6.11	6.11	0	01:10	0.00583	
J4	0.000 ltr	OUTFALL	0.00	0.00	0	00:00	0	
J5	0.000 ltr	OUTFALL	0.00	0.00	0	00:00	0	
MHST27		OUTFALL	0.00	65.15	0	02:00	0	
MHST27 0.39		OUTFALL	0.00	18.43	0	01:55	0	
MHST47		OUTFALL	0.00	282.63	0	01:05	0	
OF1 0.0117	0.000	OUTFALL	0.00	18.03	0	01:12	0	
OF2 0.0247	0.000	OUTFALL	0.00	41.12	0	01:11	0	
OF3 0.00643	0.000	OUTFALL	0.00	11.34	0	01:19	0	
OF4 0.00317	0.000	OUTFALL	0.00	5.62	0	01:19	0	
MH101 1.02	0.008	STORAGE	0.00	286.57	0	01:05	0	
MH102 1.02	0.031	STORAGE	0.00	294.34	0	01:05	0	
MH103 1.03	-0.042	STORAGE	0.00	305.40	0	01:05	0	
MH104 0.731	-0.321	STORAGE	0.00	245.90	0	01:11	0	
MH105	0.359	STORAGE	0.00	131.74	0	01:09	0	
MH106 0.191	0.023	STORAGE	0.00	93.03	0	01:10	0	
MH107 0.153	0.097	STORAGE	0.00	91.21	0	01:10	0	
MH108 0.0833	0.000	STORAGE	0.00	51.01	0	01:10	0	
MH109 0.0338	-0.003	STORAGE	0.00	21.13	0	01:10	0	
MH301 1.59	0.002	STORAGE	0.00	173.33	0	01:08	0	
MH302 1.61	0.001	STORAGE	0.00	166.25	0	01:03	0	
MH303 1.24	0.012	STORAGE	0.00	166.36	0	01:03	0	
MH304 1.25	-0.017	STORAGE	0.00	172.98	0	01:03	0	
MH305 1.03	-0.045	STORAGE	0.00	117.48	0	01:08	0	
MH306 0.645	-0.035	STORAGE	0.00	111.63	0	01:05	0	
MH307 0.643	-0.234	STORAGE	0.00	118.59	0	01:05	0	
MH308 0.435	0.427	STORAGE	0.00	117.04	0	01:09	0	

	STORAGE	0.00	69.66	0	01:09	0
0.309 -0.033						
MH310 0.132 0.010	STORAGE	0.00	75.97	0	01:09	0
MH311	STORAGE	0.00	5.86	0	01:10	0
0.00878 0.681						
	STORAGE	124.21	131.52	0	01:10	0.168
0.176 0.000						
	STORAGE	155.27	166.17	0	01:10	0.217
0.228 -0.000						
	STORAGE	19.72	19.72	0	01:10	0.0388
0.0389 -0.000						
	STORAGE	115.84	115.84	0	01:10	0.174
0.174 0.000						
	STORAGE	269.32	269.32	0	01:10	0.389
0.467 0.001						
	STORAGE	193.88	193.88	0	01:10	0.277
0.285 -0.000						
	STORAGE	125.71	125.71	0	01:10	0.177
0.177 -0.000						
	STORAGE	134.12	137.24	0	01:10	0.184
0.188 0.000						
	STORAGE	245.37	257.54	0	01:10	0.366
0.383 0.000						
	STORAGE	229.40	242.55	0	01:10	0.35
0.368 0.000						
	STORAGE	88.93	93.45	0	01:10	0.122
0.13 0.000						
SU1	STORAGE	0.00	0.00	0	00:00	0
0 0.000 ltr						

Surcharging occurs when water rises above the top of the highest conduit.

Туре	Hours Surcharged	Max. Height Above Crown Meters	Min. Depth Below Rim Meters
JUNCTION	24.00	0.082	1.948
JUNCTION	24.00	0.075	1.098
STORAGE	1.06	1.185	0.010
STORAGE	1.05	1.164	0.000
STORAGE	1.02	1.100	0.000
STORAGE	0.91	1.217	0.000
STORAGE	0.90	1.188	0.000
STORAGE	0.87	1.139	0.000
STORAGE	0.86	1.115	0.000
STORAGE	0.86	1.106	0.000
	JUNCTION JUNCTION STORAGE STORAGE STORAGE STORAGE STORAGE STORAGE	Type Surcharged JUNCTION 24.00 JUNCTION 24.00 STORAGE 1.06 STORAGE 1.05 STORAGE 0.91 STORAGE 0.90 STORAGE 0.87 STORAGE 0.86	Hours Above Crown Type Surcharged Meters JUNCTION 24.00 0.082 JUNCTION 24.00 0.075 STORAGE 1.06 1.185 STORAGE 1.02 1.100 STORAGE 0.91 1.217 STORAGE 0.90 1.188 STORAGE 0.87 1.139 STORAGE 0.86 1.115

37			flooded.
NO	noues	were	IIOOQEQ.

		Average	Avg	Evap	Exfil	Maximum	Max	Time o
Max Ma			Pcnt	Pcnt	Pcnt	Volume	Pcnt	
Storage hr:min	ce Outflow e Unit LPS	1000 m³	Full	Loss	Loss	1000 m³	Full	days
MH101 01:15	282.63	0.000	6.2	0.0	0.0	0.003	99.5	0
MH102)1:12	286.57	0.000	6.5	0.0	0.0	0.005	100.0	0
MH103		0.000	6.2	0.0	0.0	0.003	100.0	0
01:11 MH104		0.000	4.1	0.0	0.0	0.003	74.9	0
01:11 MH105	237.83	0.000	0.6	0.0	0.0	0.001	19.0	0
01:11 MH106	130.89	0.000	0.4	0.0	0.0	0.000	6.2	0
01:10 MH107	92.94	0 000	03	0 0	0.0	0 000	5.1	0
1:10	91.21							
MH108 1:10	51.01		0.2				4.2	
MH109 1:10	21.11	0.000	0.1	0.0	0.0	0.000	2.4	0
MH301 1:13	151.08	0.000	7.7	0.0	0.0	0.002	100.0	0
MH302 1:13	160.31	0.000	6.9	0.0	0.0	0.002	100.0	0
MH303		0.000	6.7	0.0	0.0	0.002	100.0	0
1:12 MH304	159.04	0.000	6.7	0.0	0.0	0.002	100.0	0
1:12 MH305	166.36	0.000	6.0	0.0	0.0	0.002	100.0	0
1:14 MH306	111.84	0.000	4.2	0.0	0.0	0.002	77.9	0
1:15 MH307	110.10				0.0		58.8	
1:15	111.63		2.4				53.0	0 0
	101.25							
MH309 1:16	71.77	0.000	1.4	0.0	0.0	0.001	37.8	0
MH310 1:16	62.14	0.000	0.7	0.0	0.0	0.001	28.0	0
MH311 1:08		0.000	0.1	0.0	0.0	0.000	1.8	0
PH01-S1	FOR	0.028	6.8	0.0	0.0	0.140	34.6	0
1:55	10.43							

PH02-STOR	0.033	9.5	0.0	0.0	0.184	52.5	0
01:52 15.13							
PH03-STOR	0.002	4.4	0.0	0.0	0.023	42.5	0
01:52 4.17							
PH04-STOR	0.037	22.9	0.0	0.0	0.124	76.6	0
02:02 7.74							
PH05-STOR	0.142	32.8	0.0	0.0	0.355	82.1	0
01:57 18.41							
PH06-STOR	0.063	25.8	0.0	0.0	0.207	85.0	0
01:52 14.96							
PH07-STOR	0.022	13.8	0.0	0.0	0.123	75.6	0
01:49 10.24							
PH08-STOR	0.034	10.3	0.0	0.0	0.149	46.0	0
01:51 9.28							
PH09-STOR	0.073	10.4	0.0	0.0	0.306	43.5	0
01:57 18.51							
PH10-STOR	0.065	9.6	0.0	0.0	0.293	43.3	0
01:56 19.64							
PH11-STOR	0.030	8.4	0.0	0.0	0.109	31.0	0
01:56 5.27							
SU1	0.000	0.0	0.0	0.0	0.000	0.0	0
00:00 0.00							

	Flow	Avg	Max	Total
	Freq	Flow	Flow	Volume
Outfall Node	Pcnt	LPS	LPS	10^6 ltr
300_(STM)	99.09	21.78	173.33	1.595
DR-M	14.48	0.53	6.11	0.006
J4	0.00	0.00	0.00	0.000
J5	0.00	0.00	0.00	0.000
MHST27978	99.23	15.88	65.15	1.289
MHST27980	72.58	7.15	18.43	0.390
MHST47195	85.97	16.18	282.63	1.023
OF1	1.30	9.78	18.03	0.012
OF2	1.28	21.15	41.12	0.025
OF3	1.36	5.20	11.34	0.006
OF4	5.15	0.67	5.62	0.003
System	34.59	98.32	440.87	4.349

-*****************

Link	Туре	Flow	Time of Max Occurrence days hr:min	Veloc	Max/ Full Flow	Max/ Full Depth
101-MV	CONDUIT	282.63	0 01:05	0.81	0.57	1.00

102-101	CONDUIT	286.57	0	01:05	0.83	0.81	1.00
103-102	CONDUIT	294.34	0	01:05	1.11	0.86	1.00
104-103	CONDUIT	226.45	0	01:11	1.05	1.02	1.00
105-104	CONDUIT	130.89	0		2.18	0.53	1.00
106-105	CONDUIT	92.94	0		2.42	0.56	0.79
107-106	CONDUIT	91.21	0	01:10	2.42	0.54	0.54
108-107	CONDUIT	51.01	0	01:10	2.06	0.31	0.38
109-108	CONDUIT	21.11	0		1.62	0.13	0.24
301-MV	CONDUIT	173.33	0	01:08	0.78	0.32	1.00
302-301	CONDUIT	160.31	0	01:03	0.99	2.15	1.00
303-302	CONDUIT	159.04	0	01:03	0.83	0.42	1.00
304-303	CONDUIT	166.36	0	01:03	0.87	0.49	1.00
305-304	CONDUIT	117.48	0	01:08	0.92	0.47	1.00
306-305	CONDUIT	110.10	0	01:30	0.98	0.55	1.00
307-306	CONDUIT	111.63	0	01:05	0.98	0.59	1.00
308-307	CONDUIT	101.25	0	01:05	1.14	0.65	1.00
309-308	CONDUIT	71.77	0	01:09	1.36	0.33	1.00
310-309	CONDUIT	62.14	0	01:09	1.71	0.47	1.00
311-310	CONDUIT	5.88	0	01:08	0.96	0.04	0.57
C1	CONDUIT	26.96	0	01:08	0.19	0.00	0.25
C10	CHANNEL	0.00	0	00:00	0.00	0.00	0.06
C11	CHANNEL	35.82	0	01:10	0.94	0.00	0.13
C12	CHANNEL	38.31	0	01:10	0.74	0.01	0.16
C13	CHANNEL	25.87	0	01:10	0.74	0.00	0.13
C14	CHANNEL	50.81	0	01:10	0.75	0.01	0.32
C15	CHANNEL	18.03	0	01:12	0.09	0.01	0.31
C16	CONDUIT	0.00	0	00:00	0.00	0.00	0.50
C16_1	CHANNEL	26.97	0	01:10	0.89	0.01	0.12
C16_2	CHANNEL	26.92	0	01:10	0.54	0.00	0.28
C17	CHANNEL	41.12	0	01:11	0.10	0.01	0.31
C18	CHANNEL	26.26	0	01:10	1.30	0.01	0.10
C19	CHANNEL	0.00	0	00:00	0.00	0.00	0.02
C2	CHANNEL	0.00	0	00:00	0.00	0.00	0.04
C20	CONDUIT	42.97	0	01:10	0.28	0.11	0.11
C20_1	CHANNEL	0.55	0	01:10	0.43	0.00	0.03
C20_2	CHANNEL	0.22	0	01:12	0.15	0.00	0.17
C21	CHANNEL	1.53	0	01:10	0.31	0.00	0.20
C22	CHANNEL	0.00	0	00:00	0.00	0.00	0.16
C23	CHANNEL	0.00	0	00:00	0.00	0.00	0.18
C24	CHANNEL	0.00	0	00:00	0.00	0.00	0.03
C25 C26	CHANNEL	0.00 34.92	0	00:00 01:10	0.00	0.00	0.03
C26 1	CONDUIT CHANNEL	34.92 7.94	0	01:10	0.28	0.09	0.07
C26_1 C26_2	CHANNEL	7.94	0	01:10	0.36	0.00	0.07
C27	CHANNEL	3.00	0	01:10	0.49	0.00	0.24
C28	CHANNEL	11.34	0	01:10	0.38	0.00	0.23
C29	CHANNEL	7.02	0	01:19	0.10	0.00	0.27
C3	CHANNEL	0.00	0	00:00	0.00	0.00	0.04
C30	CHANNEL	6.04	0	00:00	0.13	0.00	0.15
C31	CHANNEL	5.62	0		0.13	0.00	0.14
C32	CONDUIT	12.99	0		0.14	0.03	0.15
C4	CHANNEL	8.56	0		0.14	0.00	0.09
C5	CHANNEL	9.79	0	01:10	0.63	0.00	0.08
C6	CHANNEL	23.83	0		0.82	0.00	0.12
C7	CONDUIT	0.00	0	00:00	0.00	0.00	0.23
C7 1	CHANNEL	35.94	0	01:10	0.64	0.00	0.11
C7 2	CHANNEL	35.94	0	01:10	1.10	0.01	0.12
-							

STM-211_(1)_(STM) STM-211_(STM) STM-263_(STM)	CONDUIT	7.74	0	01:13 02:00 02:02	0.7	15 (0.49 0.79 0.35 0.04 0.00 0.08	0.37
STM-263_(STM)	CONDUIT			00:01	0.0	0 0	0.00	1.00
STM-264_(STM)	CONDUIT			01:55	0.2	26 (0.08	1.00
OCB001	ORIFICE			01:05				1.00
OCB002	ORIFICE			01:05				1.00
OCB013	ORIFICE			01:04				1.00
OCB014	ORIFICE			01:04				1.00
OCB017	ORIFICE			01:07				1.00
OCB018	ORIFICE			01:07				1.00
OCB021	ORIFICE			01:12				1.00
OHP01	ORIFICE			02:06				1.00
OPH02	ORIFICE			02:06				1.00
OPH03	ORIFICE			01:52				1.00
OPH04a OPH04b	ORIFICE ORIFICE	2.51 5.23		02:02				1.00
OPH04b OPH05a	ORIFICE			02:02				1.00
OPH05a OPH05b				01:57				1.00
OPH05D OPH06a	ORIFICE ORIFICE			01:57				1.00
OPH06b	ORIFICE			01:52				1.00
OPH07	ORIFICE			01:49				1.00
OPH08	ORIFICE			01:51				1.00
OPH09	ORIFICE			01:57				1.00
OPH10	ORIFICE			01:56				1.00
OPH11	ORIFICE			01:14				1.00
W1	WEIR	0.00		00:00				0.00
OCB003	DUMMY	19.40		01:02				
OCB004	DUMMY	19.40		01:02				
OCB005	DUMMY	19.40	0	01:03				
OCB006	DUMMY	19.40	0	01:03				
OCB007	DUMMY	20.81	0	01:10				
OCB008	DUMMY	19.40		01:03				
OCB009	DUMMY	12.54	0	01:10				
OCB010	DUMMY	17.37	0	01:10				
OCB011	DUMMY	11.04		01:10				
OCB012	DUMMY	10.09		01:10				
OCB015	DUMMY	6.27		01:10				
OCB016	DUMMY	5.93		01:10				
OCB019	DUMMY	2.22		01:08				
OCB020	DUMMY	3.64	0	01:10				
******	* * * * * * * * * *							
Flow Classificati								
	Adjusted		F1	raction o	f Time	in Flo	ow Clas	ss
	/Actual	Up	Do	own Sub	Sup	Up	Down	Norm
Inlet								
Conduit Ctrl	Length	Dry Dry	r Di	ry Crit	Crit	Crit	Crit	Ltd

C16_2 0.00 C17 0.00 C18 0.00 C19 0.00 C2 0.00 C20 0.00 C20_1 0.00 C20_2 0.00 C21 0.00 C22 0.00 C23 0.00 C24 0.00 C25 0.00 C26 0.00 C26_1 0.00 C26_2 0.00 C27 0.00 C28 0.00 C29 0.00 C3 0.00 C30 0.00 C31 0.00 C32 0.00 C4 0.00 C5 0.00 C6 0.00 C7 0.00 C7_1 0.00 C7_2 С8 0.00

 101-MV	1.00	0.00	0.01	0.00	0.99	0.00	0.00	0.00	0.54
0.00									
102-101 0.00	1.00	0.00	0.00	0.00	0.40	0.01	0.00	0.59	0.00
103-102 0.00	1.00	0.00	0.00	0.00	0.07	0.00	0.00	0.93	0.00
104-103 0.00	1.00	0.00	0.00	0.00	0.05	0.00	0.00	0.95	0.00
105-104	1.00	0.00	0.00	0.00	0.05	0.00	0.00	0.95	0.03
0.00 106-105	1.00	0.00	0.00	0.00	0.01	0.01	0.00	0.99	0.01
0.00 107-106	1.00	0.00	0.00	0.00	0.06	0.07	0.00	0.87	0.13
0.00 108-107	1.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00
0.00 109-108	1.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00
0.00 301-MV	1.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.10
0.00 302-301	1.00	0.00	0.00	0.00	0.09	0.00	0.00	0.91	0.00
0.00									
303-302 0.00	1.00	0.00	0.00	0.00	0.28	0.00	0.00	0.72	0.00
304-303 0.00	1.00	0.00	0.00	0.00	0.07	0.00	0.00	0.93	0.00
305-304 0.00	1.00	0.00	0.00	0.00	0.05	0.00	0.00	0.95	0.00
306-305 0.00	1.00	0.00	0.00	0.00	0.05	0.00	0.00	0.95	0.00
307-306	1.00	0.00	0.00	0.00	0.74	0.00	0.00	0.26	0.00
0.00 308-307	1.00	0.00	0.00	0.00	0.04	0.00	0.00	0.96	0.00
0.00 309-308	1.00	0.00	0.00	0.00	0.04	0.01	0.00	0.95	0.02
0.00 310-309	1.00	0.00	0.00	0.00	0.03	0.00	0.00	0.97	0.01
0.00 311-310	1.00	0.00	0.00	0.00	0.02	0.00	0.00	0.98	0.02
0.00 C1	1.00	0.82	0.00	0.00	0.02	0.00	0.00	0.16	0.02
0.00 C10	1.00	0.83	0.17	0.00	0.00	0.00	0.00	0.00	0.00
0.00 C11	1.00	0.78	0.02	0.00	0.07	0.13	0.00	0.00	0.01
0.00 C12	1.00	0.79	0.03	0.00	0.05	0.12	0.00	0.00	0.99
0.00 C13	1.00	0.82	0.01	0.00	0.04	0.13	0.00	0.00	0.02
0.00 C14	1.00	0.81	0.00	0.00	0.02	0.00	0.00	0.17	0.02
0.00 C15	1.00	0.98	0.01	0.00	0.01	0.00	0.00	0.00	0.94
0.00									
C16 0.00	1.00	0.01	0.00	0.00	0.99	0.00	0.00	0.00	0.00
C16_1 0.00	1.00	0.00	0.84	0.00	0.04	0.13	0.00	0.00	0.87

1.00	0.00	0.00	0.00	0.02	0.00	0.00	0.98	0.02
1.00	0.98	0.01	0.00	0.01	0.00	0.00	0.00	0.94
1.00	0.00	0.00	0.00	0.84	0.16	0.00	0.00	0.00
1.00	0.86	0.14	0.00	0.00	0.00	0.00	0.00	0.00
1.00	0.83	0.17	0.00	0.00	0.00	0.00	0.00	0.00
1.00	0.99	0.00	0.00	0.01	0.00	0.00	0.00	0.00
1.00	0.00	0.82	0.00	0.07	0.11	0.00	0.00	0.94
1.00	0.00	0.00	0.00	0.02	0.00	0.00	0.98	0.02
1.00	0.86	0.00	0.00	0.02	0.00	0.00	0.12	0.02
1.00	0.98	0.02	0.00	0.00	0.00	0.00	0.00	0.00
1.00	0.98	0.02	0.00	0.00	0.00	0.00	0.00	0.00
1.00	0.83	0.17	0.00	0.00	0.00	0.00	0.00	0.00
1.00	0.84	0.16	0.00	0.00	0.00	0.00	0.00	0.00
1.00	0.99	0.00	0.00	0.01	0.00	0.00	0.00	0.00
1.00	0.00	0.83	0.00	0.16	0.01	0.00	0.00	0.98
1.00	0.00	0.00	0.00	0.02	0.00	0.00	0.98	0.02
1.00	0.84	0.00	0.00	0.03	0.00	0.00	0.13	0.03
1.00	0.97	0.01	0.00	0.02	0.00	0.00	0.00	0.94
1.00	0.00	0.00	0.00	0.02	0.00	0.00	0.98	0.01
1.00	0.81	0.19	0.00	0.00	0.00	0.00	0.00	0.00
1.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.97
1.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.92
1.00	0.98	0.00	0.00	0.02	0.00	0.00	0.00	0.00
1.00	0.79	0.03	0.00	0.13	0.04	0.00	0.00	0.99
1.00	0.75	0.05	0.00	0.07	0.12	0.00	0.00	0.99
1.00	0.78	0.03	0.00	0.06	0.13	0.00	0.00	0.99
1.00	0.98	0.02	0.00	0.00	0.00	0.00	0.00	0.00
1.00	0.00	0.77	0.00	0.11	0.11	0.00	0.00	0.99
1.00	0.00	0.00	0.00	0.82	0.18	0.00	0.00	0.00
1.00	0.76	0.01	0.00	0.10	0.13	0.00	0.00	0.01

C9 0.00	1.00	0.00	0.77	0.00	0.15	0.08	0.00	0.00	0.99	
ParkSwale	1.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	
STM-206_(STM)	1.00	0.00	0.00	0.00	0.05	0.00	0.00	0.95	0.00	
STM-211_(1)_(STM)	1.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.05	
STM-211_(STM) 0.00	1.00	0.00	0.01	0.00	0.96	0.03	0.00	0.00	1.00	
STM-263_(STM) 0.00	1.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	
STM-264_(STM) 0.00	1.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	

Conduit		Upstream	Dnstream	Normal Flow	Capacity Limited
101-MV	1.07			0.01	
102-101	1.05	1.05	1.06	0.01	0.01
103-102	1.02	1.02	1.05	0.01	0.01
104-103	0.98	0.98	1.02	0.01	0.03
105-104	0.05	0.05	0.98	0.01	0.01
106-105	0.01	0.01	0.04	0.01	0.01
301-MV	0.91	0.91	0.93	0.01	0.01
302-301	0.91	0.91	0.91	1.03	0.74
303-302	0.89	0.89	0.90	0.01	0.01
304-303	0.86	0.86	0.87	0.01	0.01
305-304	0.86	0.86	0.86	0.01	0.01
306-305	0.84	0.84	0.86	0.01	0.01
307-306	0.81	0.81	0.84	0.01	0.01
308-307	0.71	0.71	0.81	0.01	0.01
309-308	0.50	0.50	0.71	0.01	0.01
310-309	0.43	0.43	0.49	0.01	0.01
311-310	0.01	0.01	0.38	0.01	0.01
C16	0.01	0.01	0.71	0.01	0.01
STM-206_(STM)	0.94	0.94	0.98	0.01	0.01
STM-263 (STM)	24.00	24.00	24.00	0.01	0.01
STM-264 (STM)	24.00	24.00	24.00	0.01	0.01

Analysis begun on: Thu Nov 21 09:48:32 2024 Analysis ended on: Thu Nov 21 09:48:34 2024 Total elapsed time: 00:00:02

Γ

Stormceptor* EF Sizing Report

	Ottawa OTTAWA CDA RCS				
Nearest Rainfall Station: Climate Station Id:	OTTAWA CDA RCS		Project Number:	64165	
Climate Station Id:			Designer Name:	Kallie Auld	
	6105978		Designer Company:	Novatech	
Years of Rainfall Data:	20		Designer Email:	k.auld@novatech-	eng.com
			Designer Phone:	613-254-9643	
Site Name:	1500 Merivale (N)		EOR Name:		
Drainage Area (ha):	2.113		EOR Company:		
% Imperviousness:	57.00		EOR Email:		
Runoff C	oefficient 'c': 0.64	-	EOR Phone:		
	F :				
Particle Size Distribution:	Fine				l Sediment
Target TSS Removal (%):	80.0				Reduction
Required Water Quality Runc		90.00		Sizing S	ummary
Estimated Water Quality Flov	v Rate (L/s):	43.78		Stormceptor	TSS Removal
Oil / Fuel Spill Risk Site?		Yes		Model	Provided (%)
Upstream Flow Control?		No		EFO4	66
Peak Conveyance (maximum)	Flow Rate (L/s):	300.00		EFO6	80
Influent TSS Concentration (n	ng/L):	200		EFO8	87
Estimated Average Annual Se	diment Load (kg/yr):	1311		EFO10	92
Estimated Average Annual Se	diment Volume (L/yr):	1066		EFO12	95
				Stormceptor EFO	Model: El

THIRD-PARTY TESTING AND VERIFICATION

► Stormceptor® EF and Stormceptor® EFO are the latest evolutions in the Stormceptor® oil-grit separator (OGS) technology series, and are designed to remove a wide variety of pollutants from stormwater and snowmelt runoff. These technologies have been third-party tested in accordance with the Canadian ETV Procedure for Laboratory Testing of Oil-Grit Separators and performance has been third-party verified in accordance with the ISO 14034 Environmental Technology Verification (ETV) protocol.

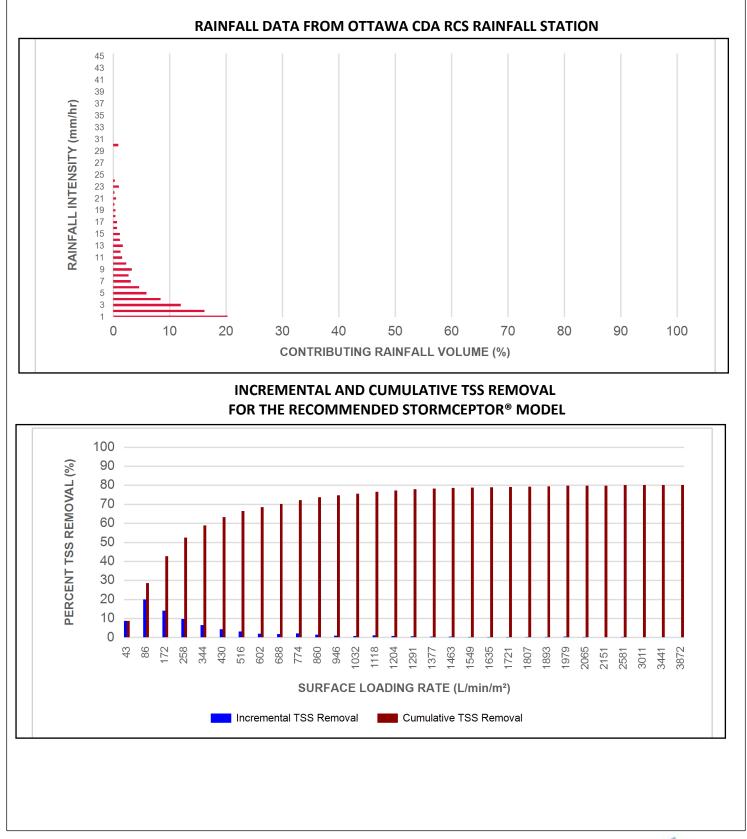
PERFORMANCE

► Stormceptor® EF and EFO remove stormwater pollutants through gravity separation and floatation, and feature a patentpending design that generates positive removal of total suspended solids (TSS) throughout each storm event, including highintensity storms. Captured pollutants include sediment, free oils, and sediment-bound pollutants such as nutrients, heavy metals, and petroleum hydrocarbons. Stormceptor is sized to remove a high level of TSS from the frequent rainfall events that contribute the vast majority of annual runoff volume and pollutant load. The technology incorporates an internal bypass to convey excessive stormwater flows from high-intensity storms through the device without resuspension and washout (scour) of previously captured pollutants. Proper routine maintenance ensures high pollutant removal performance and protection of downstream waterwavs.

PARTICLE SIZE DISTRIBUTION (PSD)

► The **Canadian ETV PSD** shown in the table below was used, or in part, for this sizing. This is the identical PSD that is referenced in the Canadian ETV *Procedure for Laboratory Testing of Oil-Grit Separators* for both sediment removal testing and scour testing. The Canadian ETV PSD contains a wide range of particle sizes in the sand and silt fractions, and is considered reasonably representative of the particle size fractions found in typical urban stormwater runoff.

Particle	Percent Less	Particle Size	Percent
Size (µm)	Than	Fraction (µm)	Fercent
1000	100	500-1000	5
500	95	250-500	5
250	90	150-250	15
150	75	100-150	15
100	60	75-100	10
75	50	50-75	5
50	45	20-50	10
20	35	8-20	15
8	20	5-8	10
5	10	2-5	5
2	5	<2	5



Rainfall Intensity (mm / hr)	Percent Rainfall Volume (%)	Cumulative Rainfall Volume (%)	Flow Rate (L/s)	Flow Rate (L/min)	Surface Loading Rate (L/min/m²)	Removal Efficiency (%)	Incremental Removal (%)	Cumulative Removal (%)
0.50	8.6	8.6	1.89	113.0	43.0	100	8.6	8.6
1.00	20.3	29.0	3.77	226.0	86.0	98	20.0	28.6
2.00	16.2	45.2	7.54	453.0	172.0	87	14.1	42.7
3.00	12.0	57.2	11.31	679.0	258.0	81	9.7	52.4
4.00	8.4	65.6	15.08	905.0	344.0	77	6.5	58.9
5.00	5.9	71.6	18.86	1131.0	430.0	72	4.3	63.2
6.00	4.6	76.2	22.63	1358.0	516.0	69	3.2	66.4
7.00	3.1	79.3	26.40	1584.0	602.0	65	2.0	68.4
8.00	2.7	82.0	30.17	1810.0	688.0	64	1.8	70.1
9.00	3.3	85.3	33.94	2036.0	774.0	63	2.1	72.2
10.00	2.3	87.6	37.71	2263.0	860.0	63	1.4	73.7
11.00	1.6	89.2	41.48	2489.0	946.0	62	1.0	74.6
12.00	1.3	90.5	45.25	2715.0	1032.0	61	0.8	75.5
13.00	1.7	92.2	49.03	2942.0	1118.0	59	1.0	76.5
14.00	1.2	93.5	52.80	3168.0	1204.0	57	0.7	77.2
15.00	1.2	94.6	56.57	3394.0	1291.0	55	0.6	77.8
16.00	0.7	95.3	60.34	3620.0	1377.0	53	0.4	78.2
17.00	0.7	96.1	64.11	3847.0	1463.0	50	0.4	78.5
18.00	0.4	96.5	67.88	4073.0	1549.0	48	0.2	78.7
19.00	0.4	96.9	71.65	4299.0	1635.0	45	0.2	78.9
20.00	0.2	97.1	75.42	4525.0	1721.0	43	0.1	79.0
21.00	0.5	97.5	79.20	4752.0	1807.0	41	0.2	79.2
22.00	0.2	97.8	82.97	4978.0	1893.0	39	0.1	79.3
23.00	1.0	98.8	86.74	5204.0	1979.0	37	0.4	79.7
24.00	0.3	99.1	90.51	5431.0	2065.0	36	0.1	79.8
25.00	0.0	99.1	94.28	5657.0	2151.0	34	0.0	79.8
30.00	0.9	100.0	113.14	6788.0	2581.0	28	0.3	80.0
35.00	0.0	100.0	131.99	7920.0	3011.0	24	0.0	80.0
40.00	0.0	100.0	150.85	9051.0	3441.0	22	0.0	80.0
45.00	0.0	100.0	169.70	10182.0	3872.0	19	0.0	80.0
			Es	timated Ne	t Annual Sedim	ent (TSS) Loa	d Reduction =	80 %

Climate Station ID: 6105978 Years of Rainfall Data: 20

	Maximum Pipe Diameter / Peak Conveyance										
Stormceptor EF / EFO	Model Diameter		Model Diameter		Min Angle Inlet / Outlet Pipes	Max Inle Diame	•	Max Outl Diamo	•		nveyance Rate
	(m)	(ft)		(mm)	(in)	(mm)	(in)	(L/s)	(cfs)		
EF4 / EFO4	1.2	4	90	609	24	609	24	425	15		
EF6 / EFO6	1.8	6	90	914	36	914	36	990	35		
EF8 / EFO8	2.4	8	90	1219	48	1219	48	1700	60		
EF10 / EFO10	3.0	10	90	1828	72	1828	72	2830	100		
EF12 / EFO12	3.6	12	90	1828	72	1828	72	2830	100		

SCOUR PREVENTION AND ONLINE CONFIGURATION

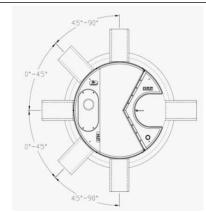
Stormceptor® EF and EFO feature an internal bypass and superior scour prevention technology that have been demonstrated in third-party testing according to the scour testing provisions of the Canadian ETV Procedure for Laboratory Testing of Oil-Grit Separators, and the exceptional scour test performance has been third-party verified in accordance with the ISO 14034 ETV protocol. As a result, Stormceptor EF and EFO are approved for online installation, eliminating the need for costly additional bypass structures, piping, and installation expense.

DESIGN FLEXIBILITY

► Stormceptor[®] EF and EFO offers design flexibility in one simplified platform, accepting stormwater flow from a single inlet pipe or multiple inlet pipes, and/or surface runoff through an inlet grate. The device can also serve as a junction structure, accommodate a 90-degree inlet-to-outlet bend angle, and can be modified to ensure performance in submerged conditions.

OIL CAPTURE AND RETENTION

► While Stormceptor[®] EF will capture and retain oil from dry weather spills and low intensity runoff, **Stormceptor[®] EFO** has demonstrated superior oil capture and greater than 99% oil retention in third-party testing according to the light liquid reentrainment testing provisions of the Canadian ETV **Procedure for Laboratory Testing of Oil-Grit Separators**. Stormceptor EFO is recommended for sites where oil capture and retention is a requirement.



INLET-TO-OUTLET DROP

Elevation differential between inlet and outlet pipe inverts is dictated by the angle at which the inlet pipe(s) enters the unit.

0° - 45° : The inlet pipe is 1-inch (25mm) higher than the outlet pipe.

45° - 90° : The inlet pipe is 2-inches (50mm) higher than the outlet pipe.

HEAD LOSS

The head loss through Stormceptor EF is similar to that of a 60-degree bend structure. The applicable K value for calculating minor losses through the unit is 1.1. For submerged conditions the applicable K value is 3.0.

					FUII		apacity					
Stormceptor EF / EFO	Moo Diam		Pipe In	(Outlet vert to Floor)	Oil Vo	lume	Sedi	mended ment nce Depth *	Maxiı Sediment ^v	-	Maxin Sediment	-
	(m)	(ft)	(m)	(ft)	(L)	(Gal)	(mm)	(in)	(L)	(ft³)	(kg)	(lb)
EF4 / EFO4	1.2	4	1.52	5.0	265	70	203	8	1190	42	1904	5250
EF6 / EFO6	1.8	6	1.93	6.3	610	160	305	12	3470	123	5552	15375
EF8 / EFO8	2.4	8	2.59	8.5	1070	280	610	24	8780	310	14048	38750
EF10 / EFO10	3.0	10	3.25	10.7	1670	440	610	24	17790	628	28464	78500
EF12 / EFO12	3.6	12	3.89	12.8	2475	655	610	24	31220	1103	49952	137875

Pollutant Capacity

*Increased sump depth may be added to increase sediment storage capacity ** Average density of wet packed sediment in sump = 1.6 kg/L (100 lb/ft³)

Feature	Benefit	Feature Appeals To
Patent-pending enhanced flow treatment and scour prevention technology	Superior, verified third-party performance	Regulator, Specifying & Design Engineer
Third-party verified light liquid capture and retention for EFO version	Proven performance for fuel/oil hotspot	
Functions as bend, junction or inlet structure	locations Design flexibility	Site Owner Specifying & Design Engineer
Minimal drop between inlet and outlet	Site installation ease	Contractor
Large diameter outlet riser for inspection and maintenance	Easy maintenance access from grade	Maintenance Contractor & Site Owner

STANDARD STORMCEPTOR EF/EFO DRAWINGS

For standard details, please visit http://www.imbriumsystems.com/stormwater-treatment-solutions/stormceptor-ef

STANDARD STORMCEPTOR EF/EFO SPECIFICATION

For specifications, please visit http://www.imbriumsystems.com/stormwater-treatment-solutions/stormceptor-ef

STANDARD PERFORMANCE SPECIFICATION FOR "OIL GRIT SEPARATOR" (OGS) STORMWATER QUALITY TREATMENT DEVICE

PART 1 – GENERAL

1.1 WORK INCLUDED

This section specifies requirements for selecting, sizing, and designing an underground Oil Grit Separator (OGS) device for stormwater quality treatment, with third-party testing results and a Statement of Verification in accordance with ISO 14034 Environmental Management – Environmental Technology Verification (ETV).

1.2 REFERENCE STANDARDS & PROCEDURES

ISO 14034:2016 Environmental management – Environmental technology verification (ETV)

Canadian Environmental Technology Verification (ETV) Program's **Procedure for Laboratory Testing of Oil-Grit Separators**

1.3 SUBMITTALS

1.3.1 All submittals, including sizing reports & shop drawings, shall be submitted upon request with each order to the contractor then forwarded to the Engineer of Record for review and acceptance. Shop drawings shall detail all OGS components, elevations, and sequence of construction.

1.3.2 Alternative devices shall have features identical to or greater than the specified device, including: treatment chamber diameter, treatment chamber wet volume, sediment storage volume, and oil storage volume.

1.3.3 Unless directed otherwise by the Engineer of Record, OGS stormwater quality treatment product substitutions or alternatives submitted within ten days prior to project bid shall not be accepted. All alternatives or substitutions submitted shall be signed and sealed by a local registered Professional Engineer, based on the exact same criteria detailed in Section 3, in entirety, subject to review and approval by the Engineer of Record.

PART 2 – PRODUCTS

2.1 OGS POLLUTANT STORAGE

The OGS device shall include a sump for sediment storage, and a protected volume for the capture and storage of petroleum hydrocarbons and buoyant gross pollutants. The minimum sediment & petroleum hydrocarbon storage capacity shall be as follows:

1.19 m³ sediment / 265 L oil

3.48 m³ sediment / 609 L oil

8.78 m³ sediment / 1,071 L oil

17.78 m³ sediment / 1,673 L oil

31.23 m³ sediment / 2.476 L oil

- 2.1.1 4 ft (1219 mm) Diameter OGS Units:
 - 6 ft (1829 mm) Diameter OGS Units: 8 ft (2438 mm) Diameter OGS Units:

 - 10 ft (3048 mm) Diameter OGS Units:
 - 12 ft (3657 mm) Diameter OGS Units:

PART 3 – PERFORMANCE & DESIGN

3.1 GENERAL

The OGS stormwater quality treatment device shall be verified in accordance with ISO 14034:2016 Environmental management – Environmental technology verification (ETV). The OGS stormwater quality treatment device shall

remove oil, sediment and gross pollutants from stormwater runoff during frequent wet weather events, and retain these pollutants during less frequent high flow wet weather events below the insert within the OGS for later removal during maintenance. The Manufacturer shall have at least ten (10) years of local experience, history and success in engineering design, manufacturing and production and supply of OGS stormwater quality treatment device systems, acceptable to the Engineer of Record.

3.2 SIZING METHODOLOGY

The OGS device shall be engineered, designed and sized to provide stormwater quality treatment based on treating a minimum of 90 percent of the average annual runoff volume and a minimum removal of an annual average 60% of the sediment (TSS) load based on the Particle Size Distribution (PSD) specified in the sizing report for the specified device. Sizing of the OGS shall be determined by use of a minimum ten (10) years of local historical rainfall data provided by Environment Canada. Sizing shall also be determined by use of the sediment removal performance data derived from the ISO 14034 ETV third-party verified laboratory testing data from testing conducted in accordance with the Canadian ETV protocol Procedure for Laboratory Testing of Oil-Grit Separators, as follows:

3.2.1 Sediment removal efficiency for a given surface loading rate and its associated flow rate shall be based on sediment removal efficiency demonstrated at the seven (7) tested surface loading rates specified in the protocol, ranging 40 L/min/m² to 1400 L/min/m², and as stated in the ISO 14034 ETV Verification Statement for the OGS device.

3.2.2 Sediment removal efficiency for surface loading rates between 40 L/min/m² and 1400 L/min/m² shall be based on linear interpolation of data between consecutive tested surface loading rates.

3.2.3 Sediment removal efficiency for surface loading rates less than the lowest tested surface loading rate of 40 $L/min/m^2$ shall be assumed to be identical to the sediment removal efficiency at 40 $L/min/m^2$. No extrapolation shall be allowed that results in a sediment removal efficiency that is greater than that demonstrated at 40 $L/min/m^2$.

3.2.4 Sediment removal efficiency for surface loading rates greater than the highest tested surface loading rate of 1400 L/min/m² shall assume zero sediment removal for the portion of flow that exceeds 1400 L/min/m², and shall be calculated using a simple proportioning formula, with 1400 L/min/m² in the numerator and the higher surface loading rate in the denominator, and multiplying the resulting fraction times the sediment removal efficiency at 1400 L/min/m².

The OGS device shall also have sufficient annual sediment storage capacity as specified and calculated in Section 2.1.

3.3 CANADIAN ETV or ISO 14034 ETV VERIFICATION OF SCOUR TESTING

The OGS device shall have Canadian ETV or ISO 14034 ETV Verification of third-party scour testing conducted in accordance with the Canadian ETV Program's **Procedure for Laboratory Testing of Oil-Grit Separators**.

3.3.1 To be acceptable for on-line installation, the OGS device must demonstrate an average scour test effluent concentration less than 10 mg/L at each surface loading rate tested, up to and including 2600 L/min/m².

3.4 LIGHT LIQUID RE-ENTRAINMENT SIMULATION TESTING

The OGS device shall have Canadian ETV or ISO 14034 ETV Verification of completed third-party Light Liquid Re-entrainment Simulation Testing in accordance with the Canadian ETV **Program's Procedure for Laboratory Testing of Oil-Grit Separators,** with results reported within the Canadian ETV or ISO 14034 ETV verification. This reentrainment testing is conducted with the device pre-loaded with low density polyethylene (LDPE) plastic beads as a surrogate for light liquids such as oil and fuel. Testing is conducted on the same OGS unit tested for sediment removal to

assess whether light liquids captured after a spill are effectively retained at high flow rates.

3.4.1 For an OGS device to be an acceptable stormwater treatment device on a site where vehicular traffic occurs and the potential for an oil or fuel spill exists, the OGS device must have reported verified performance results of greater than 99% cumulative retention of LDPE plastic beads for the five specified surface loading rates (ranging 200 L/min/m² to 2600 L/min/m²) in accordance with the Light Liquid Re-entrainment Simulation Testing within the Canadian ETV Program's **Procedure for Laboratory Testing of Oil-Grit Separators.** However, an OGS device shall not be allowed if the Light Liquid Re-entrainment Simulation Testing was performed with screening components within the OGS device that are effective at retaining the LDPE plastic beads, but would not be expected to retain light liquids such as oil and fuel.

Province:	Ontario		Project Nan	ne:	1500 Merivale (N)			
City:	Ottawa		Project Number:		64165			
Nearest Rainfall Station:	fall Station: OTTAWA CDA RCS			Designer Name:		Kallie Auld		
Climate Station Id:		Designer Company:		Novatech				
Years of Rainfall Data:		Designer Email:		k.auld@novatech-eng.com				
		Designer Phone:		613-254-9643				
Site Name:	1500 Merivale (S)		EOR Name:					
Drainage Area (ha):	prainage Area (ha): 2.8			ny:				
% Imperviousness:	75.00		EOR Email:					
Runoff Co	efficient 'c': 0.75	-	EOR Phone:					
Particle Size Distribution:	Fine							
					Net Annua			
arget TSS Removal (%): 80.0					(TSS) Load	ummary		
Required Water Quality Runoff Volume Capture (%):		90.00				-		
Estimated Water Quality Flow	67.78			Stormceptor	TSS Removal			
Oil / Fuel Spill Risk Site?	Yes			Model	Provided (%)			
Upstream Flow Control?	No			EFO4	57			
Peak Conveyance (maximum)	130.00			EFO6	73			
Influent TSS Concentration (m	200			EFO8	82			
Estimated Average Annual Sec	2343			EFO10	88			
Estimated Average Annual Sec	1905			EFO12	91			
					ormceptor EFO			
	Estima	ated Net A	nnual Sed	iment (TS	S) Load Reduct	ion (%): 8		
			Notor Our	lity Dunof	f Volume Capt	ure (%): >		

THIRD-PARTY TESTING AND VERIFICATION

► Stormceptor® EF and Stormceptor® EFO are the latest evolutions in the Stormceptor® oil-grit separator (OGS) technology series, and are designed to remove a wide variety of pollutants from stormwater and snowmelt runoff. These technologies have been third-party tested in accordance with the Canadian ETV Procedure for Laboratory Testing of Oil-Grit Separators and performance has been third-party verified in accordance with the ISO 14034 Environmental Technology Verification (ETV) protocol.

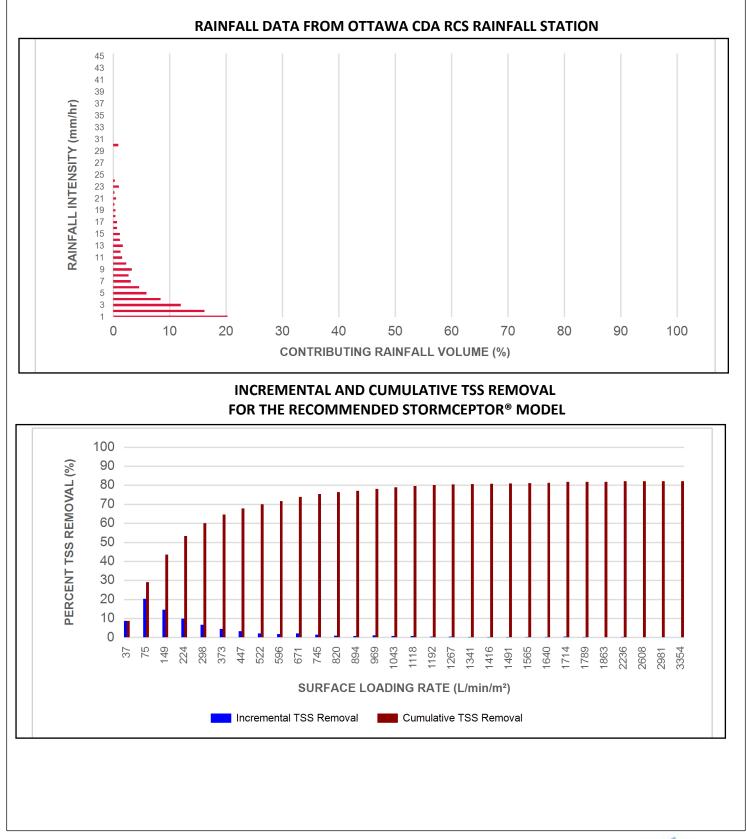
PERFORMANCE

► Stormceptor® EF and EFO remove stormwater pollutants through gravity separation and floatation, and feature a patentpending design that generates positive removal of total suspended solids (TSS) throughout each storm event, including highintensity storms. Captured pollutants include sediment, free oils, and sediment-bound pollutants such as nutrients, heavy metals, and petroleum hydrocarbons. Stormceptor is sized to remove a high level of TSS from the frequent rainfall events that contribute the vast majority of annual runoff volume and pollutant load. The technology incorporates an internal bypass to convey excessive stormwater flows from high-intensity storms through the device without resuspension and washout (scour) of previously captured pollutants. Proper routine maintenance ensures high pollutant removal performance and protection of downstream waterwavs.

PARTICLE SIZE DISTRIBUTION (PSD)

► The **Canadian ETV PSD** shown in the table below was used, or in part, for this sizing. This is the identical PSD that is referenced in the Canadian ETV *Procedure for Laboratory Testing of Oil-Grit Separators* for both sediment removal testing and scour testing. The Canadian ETV PSD contains a wide range of particle sizes in the sand and silt fractions, and is considered reasonably representative of the particle size fractions found in typical urban stormwater runoff.

Particle	Percent Less	Particle Size	Percent
Size (µm)	Than	Fraction (µm)	Fercent
1000	100	500-1000	5
500	95	250-500	5
250	90	150-250	15
150	75	100-150	15
100	60	75-100	10
75	50	50-75	5
50	45	20-50	10
20	35	8-20	15
8	20	5-8	10
5	10	2-5	5
2	5	<2	5



Rainfall Intensity (mm / hr)	Percent Rainfall Volume (%)	Cumulative Rainfall Volume (%)	Flow Rate (L/s)	Flow Rate (L/min)	Surface Loading Rate (L/min/m²)	Removal Efficiency (%)	Incremental Removal (%)	Cumulative Removal (%)
0.50	8.6	8.6	2.92	175.0	37.0	100	8.6	8.6
1.00	20.3	29.0	5.84	350.0	75.0	100	20.3	29.0
2.00	16.2	45.2	11.68	701.0	149.0	89	14.5	43.5
3.00	12.0	57.2	17.51	1051.0	224.0	82	9.9	53.3
4.00	8.4	65.6	23.35	1401.0	298.0	79	6.7	60.0
5.00	5.9	71.6	29.19	1751.0	373.0	75	4.5	64.5
6.00	4.6	76.2	35.03	2102.0	447.0	72	3.3	67.8
7.00	3.1	79.3	40.87	2452.0	522.0	68	2.1	69.9
8.00	2.7	82.0	46.70	2802.0	596.0	65	1.8	71.7
9.00	3.3	85.3	52.54	3153.0	671.0	64	2.1	73.8
10.00	2.3	87.6	58.38	3503.0	745.0	64	1.5	75.3
11.00	1.6	89.2	64.22	3853.0	820.0	63	1.0	76.3
12.00	1.3	90.5	70.06	4203.0	894.0	62	0.8	77.1
13.00	1.7	92.2	75.89	4554.0	969.0	62	1.1	78.1
14.00	1.2	93.5	81.73	4904.0	1043.0	61	0.7	78.9
15.00	1.2	94.6	87.57	5254.0	1118.0	59	0.7	79.6
16.00	0.7	95.3	93.41	5604.0	1192.0	57	0.4	80.0
17.00	0.7	96.1	99.25	5955.0	1267.0	56	0.4	80.4
18.00	0.4	96.5	105.08	6305.0	1341.0	54	0.2	80.6
19.00	0.4	96.9	110.92	6655.0	1416.0	52	0.2	80.8
20.00	0.2	97.1	116.76	7006.0	1491.0	49	0.1	80.9
21.00	0.5	97.5	122.60	7356.0	1565.0	47	0.2	81.1
22.00	0.2	97.8	128.44	7706.0	1640.0	45	0.1	81.2
23.00	1.0	98.8	134.27	8056.0	1714.0	43	0.4	81.7
24.00	0.3	99.1	140.11	8407.0	1789.0	41	0.1	81.8
25.00	0.0	99.1	145.95	8757.0	1863.0	39	0.0	81.8
30.00	0.9	100.0	175.14	10508.0	2236.0	33	0.3	82.1
35.00	0.0	100.0	204.33	12260.0	2608.0	28	0.0	82.1
40.00	0.0	100.0	233.52	14011.0	2981.0	25	0.0	82.1
45.00	0.0	100.0	262.71	15763.0	3354.0	22	0.0	82.1
			Es	timated Ne	t Annual Sedim	ent (TSS) Loa	d Reduction =	82 %

Climate Station ID: 6105978 Years of Rainfall Data: 20

	Maximum Pipe Diameter / Peak Conveyance										
Stormceptor EF / EFO	Model Diameter		Model Diameter		Min Angle Inlet / Outlet Pipes	Max Inle Diame	•	Max Outl Diamo	•		nveyance Rate
	(m)	(ft)		(mm)	(in)	(mm)	(in)	(L/s)	(cfs)		
EF4 / EFO4	1.2	4	90	609	24	609	24	425	15		
EF6 / EFO6	1.8	6	90	914	36	914	36	990	35		
EF8 / EFO8	2.4	8	90	1219	48	1219	48	1700	60		
EF10 / EFO10	3.0	10	90	1828	72	1828	72	2830	100		
EF12 / EFO12	3.6	12	90	1828	72	1828	72	2830	100		

SCOUR PREVENTION AND ONLINE CONFIGURATION

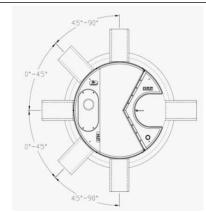
Stormceptor® EF and EFO feature an internal bypass and superior scour prevention technology that have been demonstrated in third-party testing according to the scour testing provisions of the Canadian ETV Procedure for Laboratory Testing of Oil-Grit Separators, and the exceptional scour test performance has been third-party verified in accordance with the ISO 14034 ETV protocol. As a result, Stormceptor EF and EFO are approved for online installation, eliminating the need for costly additional bypass structures, piping, and installation expense.

DESIGN FLEXIBILITY

► Stormceptor[®] EF and EFO offers design flexibility in one simplified platform, accepting stormwater flow from a single inlet pipe or multiple inlet pipes, and/or surface runoff through an inlet grate. The device can also serve as a junction structure, accommodate a 90-degree inlet-to-outlet bend angle, and can be modified to ensure performance in submerged conditions.

OIL CAPTURE AND RETENTION

► While Stormceptor[®] EF will capture and retain oil from dry weather spills and low intensity runoff, **Stormceptor[®] EFO** has demonstrated superior oil capture and greater than 99% oil retention in third-party testing according to the light liquid reentrainment testing provisions of the Canadian ETV **Procedure for Laboratory Testing of Oil-Grit Separators**. Stormceptor EFO is recommended for sites where oil capture and retention is a requirement.



INLET-TO-OUTLET DROP

Elevation differential between inlet and outlet pipe inverts is dictated by the angle at which the inlet pipe(s) enters the unit.

0° - 45° : The inlet pipe is 1-inch (25mm) higher than the outlet pipe.

45° - 90° : The inlet pipe is 2-inches (50mm) higher than the outlet pipe.

HEAD LOSS

The head loss through Stormceptor EF is similar to that of a 60-degree bend structure. The applicable K value for calculating minor losses through the unit is 1.1. For submerged conditions the applicable K value is 3.0.

					FUII		apacity					
Stormceptor EF / EFO	Model Diameter		Depth (Outlet Pipe Invert to Sump Floor)		Oil Volume		Sedi	mended ment nce Depth *	Maximum Sediment Volume '		Maxin Sediment	-
	(m)	(ft)	(m)	(ft)	(L)	(Gal)	(mm)	(in)	(L)	(ft³)	(kg)	(lb)
EF4 / EFO4	1.2	4	1.52	5.0	265	70	203	8	1190	42	1904	5250
EF6 / EFO6	1.8	6	1.93	6.3	610	160	305	12	3470	123	5552	15375
EF8 / EFO8	2.4	8	2.59	8.5	1070	280	610	24	8780	310	14048	38750
EF10 / EFO10	3.0	10	3.25	10.7	1670	440	610	24	17790	628	28464	78500
EF12 / EFO12	3.6	12	3.89	12.8	2475	655	610	24	31220	1103	49952	137875

Pollutant Capacity

*Increased sump depth may be added to increase sediment storage capacity ** Average density of wet packed sediment in sump = 1.6 kg/L (100 lb/ft³)

Feature	Benefit	Feature Appeals To		
Patent-pending enhanced flow treatment and scour prevention technology	Superior, verified third-party performance	Regulator, Specifying & Design Engineer		
Third-party verified light liquid capture	Proven performance for fuel/oil hotspot			
and retention for EFO version	locations	Site Owner		
Functions as bend, junction or inlet structure	Design flexibility	Specifying & Design Engineer		
Minimal drop between inlet and outlet	Site installation ease	Contractor		
Large diameter outlet riser for inspection and maintenance	Easy maintenance access from grade	Maintenance Contractor & Site Owner		

STANDARD STORMCEPTOR EF/EFO DRAWINGS

For standard details, please visit http://www.imbriumsystems.com/stormwater-treatment-solutions/stormceptor-ef

STANDARD STORMCEPTOR EF/EFO SPECIFICATION

For specifications, please visit http://www.imbriumsystems.com/stormwater-treatment-solutions/stormceptor-ef

STANDARD PERFORMANCE SPECIFICATION FOR "OIL GRIT SEPARATOR" (OGS) STORMWATER QUALITY TREATMENT DEVICE

PART 1 – GENERAL

1.1 WORK INCLUDED

This section specifies requirements for selecting, sizing, and designing an underground Oil Grit Separator (OGS) device for stormwater quality treatment, with third-party testing results and a Statement of Verification in accordance with ISO 14034 Environmental Management – Environmental Technology Verification (ETV).

1.2 REFERENCE STANDARDS & PROCEDURES

ISO 14034:2016 Environmental management – Environmental technology verification (ETV)

Canadian Environmental Technology Verification (ETV) Program's **Procedure for Laboratory Testing of Oil-Grit Separators**

1.3 SUBMITTALS

1.3.1 All submittals, including sizing reports & shop drawings, shall be submitted upon request with each order to the contractor then forwarded to the Engineer of Record for review and acceptance. Shop drawings shall detail all OGS components, elevations, and sequence of construction.

1.3.2 Alternative devices shall have features identical to or greater than the specified device, including: treatment chamber diameter, treatment chamber wet volume, sediment storage volume, and oil storage volume.

1.3.3 Unless directed otherwise by the Engineer of Record, OGS stormwater quality treatment product substitutions or alternatives submitted within ten days prior to project bid shall not be accepted. All alternatives or substitutions submitted shall be signed and sealed by a local registered Professional Engineer, based on the exact same criteria detailed in Section 3, in entirety, subject to review and approval by the Engineer of Record.

PART 2 – PRODUCTS

2.1 OGS POLLUTANT STORAGE

The OGS device shall include a sump for sediment storage, and a protected volume for the capture and storage of petroleum hydrocarbons and buoyant gross pollutants. The minimum sediment & petroleum hydrocarbon storage capacity shall be as follows:

1.19 m³ sediment / 265 L oil

3.48 m³ sediment / 609 L oil

8.78 m³ sediment / 1,071 L oil

17.78 m³ sediment / 1,673 L oil

31.23 m³ sediment / 2.476 L oil

- 2.1.1 4 ft (1219 mm) Diameter OGS Units:
 - 6 ft (1829 mm) Diameter OGS Units: 8 ft (2438 mm) Diameter OGS Units:

 - 10 ft (3048 mm) Diameter OGS Units:
 - 12 ft (3657 mm) Diameter OGS Units:

PART 3 – PERFORMANCE & DESIGN

3.1 GENERAL

The OGS stormwater quality treatment device shall be verified in accordance with ISO 14034:2016 Environmental management – Environmental technology verification (ETV). The OGS stormwater quality treatment device shall

remove oil, sediment and gross pollutants from stormwater runoff during frequent wet weather events, and retain these pollutants during less frequent high flow wet weather events below the insert within the OGS for later removal during maintenance. The Manufacturer shall have at least ten (10) years of local experience, history and success in engineering design, manufacturing and production and supply of OGS stormwater quality treatment device systems, acceptable to the Engineer of Record.

3.2 SIZING METHODOLOGY

The OGS device shall be engineered, designed and sized to provide stormwater quality treatment based on treating a minimum of 90 percent of the average annual runoff volume and a minimum removal of an annual average 60% of the sediment (TSS) load based on the Particle Size Distribution (PSD) specified in the sizing report for the specified device. Sizing of the OGS shall be determined by use of a minimum ten (10) years of local historical rainfall data provided by Environment Canada. Sizing shall also be determined by use of the sediment removal performance data derived from the ISO 14034 ETV third-party verified laboratory testing data from testing conducted in accordance with the Canadian ETV protocol Procedure for Laboratory Testing of Oil-Grit Separators, as follows:

3.2.1 Sediment removal efficiency for a given surface loading rate and its associated flow rate shall be based on sediment removal efficiency demonstrated at the seven (7) tested surface loading rates specified in the protocol, ranging 40 L/min/m² to 1400 L/min/m², and as stated in the ISO 14034 ETV Verification Statement for the OGS device.

3.2.2 Sediment removal efficiency for surface loading rates between 40 L/min/m² and 1400 L/min/m² shall be based on linear interpolation of data between consecutive tested surface loading rates.

3.2.3 Sediment removal efficiency for surface loading rates less than the lowest tested surface loading rate of 40 $L/min/m^2$ shall be assumed to be identical to the sediment removal efficiency at 40 $L/min/m^2$. No extrapolation shall be allowed that results in a sediment removal efficiency that is greater than that demonstrated at 40 $L/min/m^2$.

3.2.4 Sediment removal efficiency for surface loading rates greater than the highest tested surface loading rate of 1400 L/min/m² shall assume zero sediment removal for the portion of flow that exceeds 1400 L/min/m², and shall be calculated using a simple proportioning formula, with 1400 L/min/m² in the numerator and the higher surface loading rate in the denominator, and multiplying the resulting fraction times the sediment removal efficiency at 1400 L/min/m².

The OGS device shall also have sufficient annual sediment storage capacity as specified and calculated in Section 2.1.

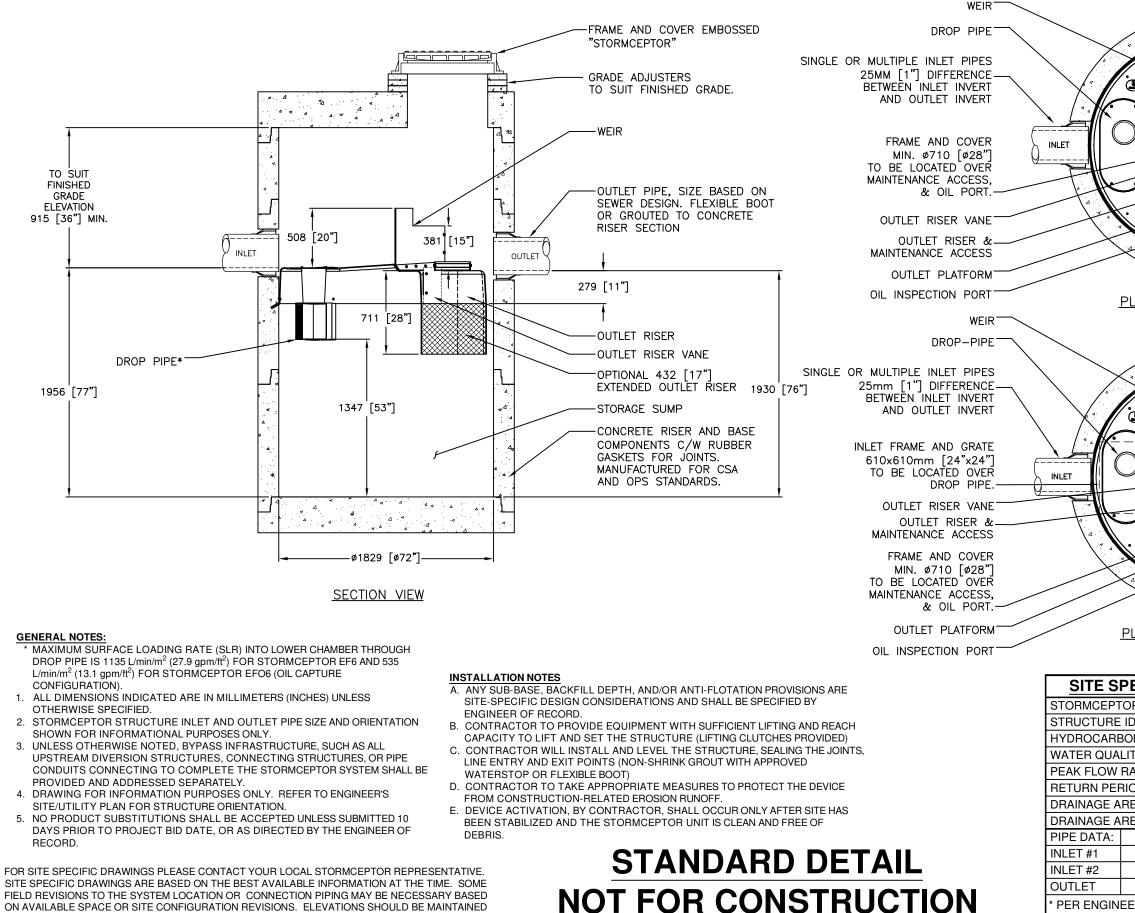
3.3 CANADIAN ETV or ISO 14034 ETV VERIFICATION OF SCOUR TESTING

The OGS device shall have Canadian ETV or ISO 14034 ETV Verification of third-party scour testing conducted in accordance with the Canadian ETV Program's **Procedure for Laboratory Testing of Oil-Grit Separators**.

3.3.1 To be acceptable for on-line installation, the OGS device must demonstrate an average scour test effluent concentration less than 10 mg/L at each surface loading rate tested, up to and including 2600 L/min/m².

3.4 LIGHT LIQUID RE-ENTRAINMENT SIMULATION TESTING

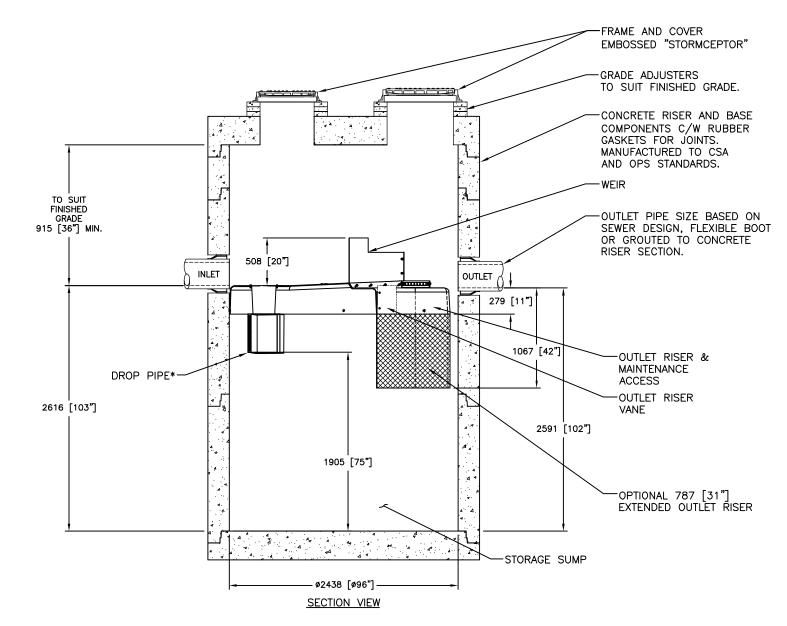
The OGS device shall have Canadian ETV or ISO 14034 ETV Verification of completed third-party Light Liquid Re-entrainment Simulation Testing in accordance with the Canadian ETV **Program's Procedure for Laboratory Testing of Oil-Grit Separators,** with results reported within the Canadian ETV or ISO 14034 ETV verification. This reentrainment testing is conducted with the device pre-loaded with low density polyethylene (LDPE) plastic beads as a surrogate for light liquids such as oil and fuel. Testing is conducted on the same OGS unit tested for sediment removal to



assess whether light liquids captured after a spill are effectively retained at high flow rates.

3.4.1 For an OGS device to be an acceptable stormwater treatment device on a site where vehicular traffic occurs and the potential for an oil or fuel spill exists, the OGS device must have reported verified performance results of greater than 99% cumulative retention of LDPE plastic beads for the five specified surface loading rates (ranging 200 L/min/m² to 2600 L/min/m²) in accordance with the Light Liquid Re-entrainment Simulation Testing within the Canadian ETV Program's **Procedure for Laboratory Testing of Oil-Grit Separators.** However, an OGS device shall not be allowed if the Light Liquid Re-entrainment Simulation Testing was performed with screening components within the OGS device that are effective at retaining the LDPE plastic beads, but would not be expected to retain light liquids such as oil and fuel.

DRAWING NOT TO BE USED FOR CONSTRUCTION


ON AVAILABLE SPACE OR SITE CONFIGURATION REVISIONS. ELEVATIONS SHOULD BE MAINTAINED

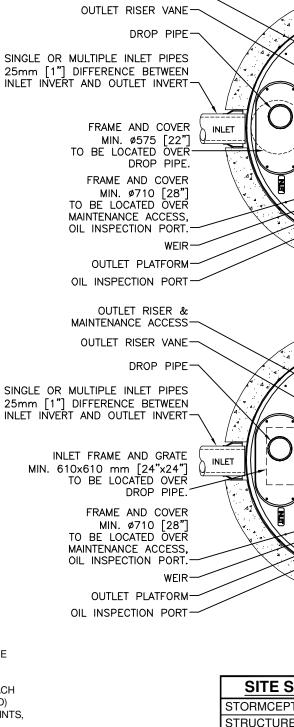
EXCEPT WHERE NOTED ON BYPASS STRUCTURE (IF REQUIRED)

PER ENGINE

						2 P 2	C B)	Adu		5	.	
	A		200			The design and information shown on this drawing is provided as a service to the project owner, engineer	and contractor by Imbrium Systems ("Imbrium"). Neither this drawing, nor any part thereof, may be	_	discialms any liability or responsibility for such use. If discrepencies between the supplied information upon	which the drawing is based and actual field conditions are encountered as site work progresses, these	unscreptiones must be reported to innortum immoute for re-evaluation of the design. Imbrium accepts no liability for designs besed on missing, incomplete or	Inaccurate information supplied by others.
				Ň			####	####	####	JSK	JSK	ВΥ
		0.		DUTL	====() =====)		####	####	####	OUTLET PLATFORM	INITIAL RELEASE	REVISION DESCRIPTION
<u>plan vie</u>	<u>ew (sta</u>	NDARD)				####	####	####	6/8/18	05/26/17	DATE
	Z 4 A						####	####	####	-	0	MARK
		ET TOF			ET							SCALE = NTS
PECIFIC	DATA	REQL	JIREMI	=N	TS				_	407 FAIRVIEW DRIVE, WHITBY, ON L1N 3A9 IF 800-685-4801 CA 416-980-9800 INTL +1-416-980-9800	CONNER PATTERNA A No. 200,047	
OR MODE		EF							E	107 Fairview Drive, Whitby, On L1N 349 585-4801 ca 416-980-9800 INTL +1-418-98	ONE OF THE FOL	
ID					*				2	0-9900	IN CIVE ON M RUND - 779401 Ten Press	
ON STOR					*				Q	W DRNE A 416-80	6 MOTICIER (+ 707,189 - 7)	
RATE (L/s)		-, 5)			*				E	FAIRVIE 4801 C	TON EVENTEM 1 Int His. 680,10	
IOD OF P		W (yrs)			*					407	LICONCEP Autom Pa	84
REA (HA)					*	DAT	E:			l⊭	ž	1. Ī
REA IMPE				_{0/}	*	10/	13/2	2017			NI:	
I.E. *	MAT'L *	DIA *	SLOPE	70	HGL *	JS				JSK		
*	*	*	*		*	CHE BS	CKED F):		SP	OVED	:
*	*	*	*		*		JECT O6	No.:	S	EQUE	INCE	No.:
ER OF R	ECORD					SHE				0		
								1	1	OF	1	

DRAWING NOT TO BE USED FOR CONSTRUCTION

GENERAL NOTES:


- * MAXIMUM SURFACE LOADING RATE (SLR) INTO LOWER CHAMBER THROUGH DROP PIPE IS 1135 L/min/m² (27.9 gpm/ft²) FOR STORMCEPTOR EF8 AND 535 L/min/m² (13.1 gpm/ft²) FOR STORMCEPTOR EFO8 (OIL CAPTURE CONFIGURATION).
- ALL DIMENSIONS INDICATED ARE IN MILLIMETERS (INCHES) UNLESS OTHERWISE SPECIFIED.
- STORMCEPTOR STRUCTURE INLET AND OUTLET PIPE SIZE AND ORIENTATION 2 SHOWN FOR INFORMATIONAL PURPOSES ONLY.
- UNLESS OTHERWISE NOTED, BYPASS INFRASTRUCTURE, SUCH AS ALL 3. UPSTREAM DIVERSION STRUCTURES, CONNECTING STRUCTURES, OR PIPE CONDUITS CONNECTING TO COMPLETE THE STORMCEPTOR SYSTEM SHALL BE E. DEVICE ACTIVATION, BY CONTRACTOR, SHALL OCCUR ONLY AFTER SITE HAS PROVIDED AND ADDRESSED SEPARATELY.
- DRAWING FOR INFORMATION PURPOSES ONLY. REFER TO ENGINEER'S 4. SITE/UTILITY PLAN FOR STRUCTURE ORIENTATION.
- NO PRODUCT SUBSTITUTIONS SHALL BE ACCEPTED UNLESS SUBMITTED 10 5 DAYS PRIOR TO PROJECT BID DATE, OR AS DIRECTED BY THE ENGINEER OF RECORD.

FOR SITE SPECIFIC DRAWINGS PLEASE CONTACT YOUR LOCAL STORMCEPTOR REPRESENTATIVE. SITE SPECIFIC DRAWINGS ARE BASED ON THE BEST AVAILABLE INFORMATION AT THE TIME. SOME FIELD REVISIONS TO THE SYSTEM LOCATION OR CONNECTION PIPING MAY BE NECESSARY BASED ON AVAILABLE SPACE OR SITE CONFIGURATION REVISIONS. ELEVATIONS SHOULD BE MAINTAINED EXCEPT WHERE NOTED ON BYPASS STRUCTURE (IF REQUIRED)

INSTALLATION NOTES

- A. ANY SUB-BASE, BACKFILL DEPTH, AND/OR ANTI-FLOTATION PROVISIONS ARE SITE-SPECIFIC DESIGN CONSIDERATIONS AND SHALL BE SPECIFIED BY ENGINEER OF RECORD.
- B. CONTRACTOR TO PROVIDE EQUIPMENT WITH SUFFICIENT LIFTING AND REACH CAPACITY TO LIFT AND SET THE STRUCTURE (LIFTING CLUTCHES PROVIDED)
- C. CONTRACTOR WILL INSTALL AND LEVEL THE STRUCTURE, SEALING THE JOINTS, LINE ENTRY AND EXIT POINTS (NON-SHRINK GROUT WITH APPROVED WATERSTOP OR FLEXIBLE BOOT)
- D. CONTRACTOR TO TAKE APPROPRIATE MEASURES TO PROTECT THE DEVICE FROM CONSTRUCTION-RELATED EROSION RUNOFF.
- BEEN STABILIZED AND THE STORMCEPTOR UNIT IS CLEAN AND FREE OF DEBRIS

STANDARD DETAIL **NOT FOR CONSTRUCTION**

OUTLET RISER & MAINTENANCE ACCESS

						The design and information shown on this drawing is provided as a service to the project owner, engineer			_			inaccurate information supplied by others.
				\			####	####	####	JSK	JSK	₽
INLET I I I I I I I I I I I I I	(STAND/						####	####	####	OUTLET PLATFORM	INITIAL RELEASE	REVISION DESCRIPTION
×***		a.h.					####	####	####	6/8/18	5/26/17	DATE
						Π	####	####	####	-	0	MARK
INLET PLAN VIEW									j j j j j j			SCALE = NTS
										0000-090		
STE SPECIFIC STORMCEPTOR MODEL				ΕN	15	1		ç		Y, ON L1N 3A INTL +1-4164	Therouon	A Long to A
STRUCTURE ID		EF			*				5	D.YATIH	E ORINOREO	
HYDROCARBON STORA	GE REC	ע'D <u>(L</u>)			*					EW DRIVE, W CA 416-960-91	International Contraction	
WATER QUALITY FLOW	RATE (L	_/s)			*	1	-	4		51	CALLER AND A	A DK TH AN
PEAK FLOW RATE (L/s)		\A/ (\.me)			*	1				407 FAIR F 800-565-4801	MACEPTOR 6	
RETURN DEDIOD OF DE		vv (yis)			*	Ł				8 ⊭		
RETURN PERIOD OF PE			\		*	DATE 10/	: 13/2	017				
RETURN PERIOD OF PE DRAINAGE AREA (HA) DRAINAGE AREA IMPER	VIOUSN	NE22 (%)	/ 1									
DRAINAGE AREA (HA) DRAINAGE AREA IMPER PIPE DATA: I.E. I	MAT'L	DIA	SLOPE	%	HGL	DESI	GNED			RAW		
DRAINAGE AREA (HA) DRAINAGE AREA IMPER PIPE DATA: I.E. I INLET #1 *	MAT'L *	DIA *	SLOPE	%	*	DESI JSI CHEC	GNED 〈 CKED:	t.		JSK		
DRAINAGE AREA (HA)DRAINAGE AREA IMPERPIPE DATA:I.E.INLET #1*INLET #2	MAT'L	DIA	SLOPE	%		DESI JSI CHEC BSI	GNED KED:	:	A ,	JSK PPRO	OVED:	
DRAINAGE AREA (HA)DRAINAGE AREA IMPERPIPE DATA:I.E.INLET #1*INLET #2	MAT'L * *	DIA * *	SLOPE	%	*	DESI JSI CHEC BSI	GNED KED: F JECT I	:	A ,	JSK PPRO		

Appendix E Water Servicing

Proposed Development Conditions - Baseline Connections

	Building B Phase 4	Building C Phase 5	Building D Phase 6	Totals
Studio	8	10	20	38
1 Bed Apartment	181	170	120	471
2 Bed Apartment	28	65	33	126
3 Bed Apartment	10	12	23	45
Townhome	0	0	0	0
Number of units	227	257	196	680
Population	354.4	425.7	336.6	1116.7
Total Res Daily Volume	99232.00	119196.00	94248.00	312676.00
Commercial area (m2)	118.11	101.95	56.99	277.05
Total Com Daily Volume	952.5	822.18	459.60	2234.27
Total Daily Volume (Liters)	100184.5	120018.2	94707.60	314910.3
Avg Day Demand (L/s)	1.160	1.389	1.096	3.64
Max Day Demand (L/s)	2.888	3.463	2.735	9.09
Peak Hour Demand (L/s)	6.347	7.613	6.014	19.974

Proposed Development Conditions - Merivale Connection

r toposed bevelopment (Building A Phase 1		Building B Phase 3	Building D Phase 7	Building D Phase 8	Building D Phase 9	Building E Phase 10	Building E Phase 11	Park	Totals
Studio	1	9	0	0	16	0	0	1		27
1 Bed Apartment	74	218	21	119	153	170	190	43		988
2 Bed Apartment	28	27	46	35	23	42	89	14		304
3 Bed Apartment	15	14	0	0	0	0	8	22		59
Townhome	7	8	0	8	6	0	0	5		34
Park Area (ha)	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	0.56	0.56
Number of units	125	276	67	162	198	212	287	85	n/a	1412
Population	229.2	439.5	126	261.7	301.1	326.2	477.7	172.7	n/a	2334.1
Total Res Daily Volume	64176.00	123060.00	35280.00	73276.00	84308.00	91336.00	133756.00	48356.00	156.8	653704.80
Commercial area (m2)	168.52	135.26	n/a	n/a	n/a	156.36	412.3	170	n/a	1042.44
Total Com Daily Volume	1359.03	1090.81	0.00	0.00	0.00	1260.97	3325.00	1370.97	0.00	8406.77
Total Daily Volume (Liters)	65535.0	124150.8	35280.0	73276.0	84308.0	92597.0	137081.0	49727.0	156.8	662111.6
Avg Day Demand (L/s)	0.759	1.437	0.408	0.848	0.976	1.072	1.587	0.576	0.002	7.66
Max Day Demand (L/s)	1.881	3.580	1.021	2.120	2.439	2.665	3.928	1.423	0.005	19.06
Peak Hour Demand (L/s)	4.128	7.868	2.246	4.665	5.367	5.854	8.618	3.121	0.010	41.88

Design Parameters

Use	Daily	/ Demand Volume	Source
Studio	1.4	Person/unit	
1 Bed Apartment	1.4	Person/unit	
2 Bed Apartment	2.1	Person/unit	City of Ottawa Sewer Design Guidelines
3 Bed Apartment	3.1	Person/unit	City of Ottawa Sewer Design Guidelines
Townhome Unit	2.7	Person/unit	
Average Residential Flow	280	L/c/day	
Park	1	unit/ha	Flow assumed to be equivelent to a single unit per park hectare
Commerical:	75	L/9.3m2/day	Daily Demands from OBC Table 8.2.1.3

Residential Peaking Factors City of Ottawa Water Distrubution Guidelines:

Conditions	Peaking Fa	Units	
Maximum Day	2.5	x avg day	L/c/day
Peak Hour	2.2	x max day	L/c/day

Commercial Peaking Factors City of Ottawa Water Distribution Guidelines

Conditions	Peaking Fa	Units	
Maximum Day	1.5	x avg day	L/c/day
Peak Hour	1.8	x max day	L/c/day

As per 2020 Fire Underwriter's Survey Guidelines

Novatech Project #: 121009 Project Name: 1500 Merivale Road Date: 11/23/2022 Input By: Curtis Ferguson, E.I.T. Reviewed By: Anthony Mestwarp, P.Eng

Legend

Input by User

No Information or Input Required

Building Description: Phase 4 - 11 Storey Tower, 9 Storey Midrise

Step			Choose		Value Used	Total Fir Flow (L/min)
	-	Base Fire I	Flow	·		
	Construction Ma	terial		Mult	iplier	
	Coefficient	Type V - Wood frame		1.5		
1	related to type	Type IV - Mass Timber		Varies		
-	of construction	Type III - Ordinary construction		1	0.6	
	C	Type II - Non-combustible construction		0.8		
	•	Type I - Fire resistive construction (2 hrs)	Yes	0.6		
	Floor Area					
		Podium Level Footprint (m ²)	2084			
		Total Floors/Storeys (Podium)	9			
	Α	Tower Footprint (m ²)	753			
2	A	Total Floors/Storeys (Tower)	2			
		Protected Openings (1 hr)	Yes			
		A, Total Effective Floor Area (m ²)			3,126	
	_	Base fire flow without reductions				
	F	$F = 220 C (A)^{0.5}$	-			7,000
		Reductions or Su	ircharges			
	Occurrency here	rd reduction or surcharge	•	Poduction	/Surcharge	
	Occupancy naza		FUS Table 3		Surcharge	
		Non-combustible	X	-25%		
3	(4)	Limited combustible	Yes	-15%	4.50/	F 0.50
	(1)	Combustible		0%	-15%	5,950
		Free burning		15% 25%		
	Omrindelan Dadeea	Rapid burning	FUO Table 4	25% Redu	ation	
	Sprinkler Reduc		FUS Table 4			
		Adequately Designed System (NFPA 13)	Yes	-30%	-30%	
		Standard Water Supply	Yes	-10%	-10%	
4	(2)	Fully Supervised System	Yes	-10%	-10%	-2,231
	(-)		Cumula	tive Sub-Total	-50%	2,201
		Area of Sprinklered Coverage (m ²)	15196.5	75%		
			Cu	mulative Total	-38%	
	Exposure Surch	arge per	FUS Table 5		Surcharge	
		North Side	>30m		0%	
5		East Side	10.1 - 20 m		15%	
5	(3)	South Side	Firewall-2hr		0%	1,488
		West Side	20.1 - 30 m		10%	
	Cumu			mulative Total	25%	
		Results	6			
		Total Required Fire Flow, rounded to ne	arest 1000L/min		L/min	5,000
6	(1) + (2) + (3)	(2,000 L/min < Fire Flow < 45,000 L/min)		or	L/s	83
		(2,000 L/IIIII > Fire FIOW > 43,000 L/IIIIII)		or	USGPM	1,321
7		Required Duration of Fire Flow (hours)			Hours	1.75
7	Storage Volume	Required Volume of Fire Flow (m ³)			m ³	525

As per 2020 Fire Underwriter's Survey Guidelines

Novatech Project #: 121009

NOVATECH

Engineers, Planners & Landscape Architects

Input by User

Legend

No Information or Input Required

Building Description: Phase 5 - 9 & 6 Storey Midrise

Input By: Curtis Ferguson, E.I.T. Reviewed By: Anthony Mestwarp, P.Eng

Project Name: 1500 Merivale Road Date: 11/23/2022

Step			Choose		Value Used	Total Fir Flow
		Base Fire Flo	w			(L/min)
	Construction Ma	aterial		Multi	plier	
	Ocofficient	Type V - Wood frame		1.5	-	
1	Coefficient related to type	Type IV - Mass Timber		Varies		
•	of construction	Type III - Ordinary construction		1	0.6	
	C	Type II - Non-combustible construction		0.8		
	•	Type I - Fire resistive construction (2 hrs)	Yes	0.6		
	Floor Area					
		Building Footprint (m ²)	3349			
	Α	Number of Floors/Storeys	9			
2	^	Protected Openings (1 hr)	Yes			
		Area of structure considered (m ²)			5,024	
	_	Base fire flow without reductions				
	F	$F = 220 C (A)^{0.5}$	-			9,000
		Reductions or Sur	charges			
	Occupancy haza	rd reduction or surcharge	FUS Table 3	Reduction/	Surcharge	
		Non-combustible		-25%		
•		Limited combustible	Yes	-15%		
3	(1)	Combustible		0%	-15%	7,650
		Free burning		15%	-	,
		Rapid burning		25%		
	Sprinkler Reduction		FUS Table 4	Redu	ction	
	-	Adequately Designed System (NFPA 13)	Yes	-30%	-30%	
		Standard Water Supply	Yes	-10%	-10%	
4		Fully Supervised System	Yes	-10%	-10%	
	(2)		Cumulati	ve Sub-Total	-50%	-2,869
		Area of Sprinklered Coverage (m²)	22605	75%		
				ulative Total	-37%	
	Exposure Surch	arge	FUS Table 5		Surcharge	
		North Side	>30m		0%	
		East Side	10.1 - 20 m		15%	
5		South Side	10.1 - 20 m		15%	
	(3)	West Side	10.1 - 20 m		15%	3,443
		Cumulative Total		45%		
		Results				
		Total Required Fire Flow, rounded to near	arest 1000L/min		L/min	8,000
6	(1) + (2) + (3)	$(2.000 \mid min < Eiro Elow < 45.000 \mid min)$		or	L/s	133
		(2.000 J/min < Fire Flow < 45.000 J/min)		or	USGPM	2,114

As per 2020 Fire Underwriter's Survey Guidelines

NOVATECH Engineers, Planners & Landscape Architects

Novatech Project #: 121009 Project Name: 1500 Merivale Road Date: 11/23/2022 Input By: Curtis Ferguson, E.I.T. Reviewed By: Anthony Mestwarp, P.Eng

Legend Input by User

No Information or Input Required

Building Description: Phase 6 - 9 Storey Midrise

Step			Choose		Value Used	Total Fire Flow (L/min)	
		Base Fire Flo	w			(2/1111)	
	Construction Ma	aterial		Multi	iplier		
	Coefficient	Type V - Wood frame		1.5			
1	related to type	Type IV - Mass Timber		Varies			
•	of construction	Type III - Ordinary construction		1	0.6		
	C	Type II - Non-combustible construction		0.8			
	-	Type I - Fire resistive construction (2 hrs)	Yes	0.6			
	Floor Area						
		Building Footprint (m ²)	1752				
	Α	Number of Floors/Storeys	9				
2	~	Protected Openings (1 hr)	Yes				
		Area of structure considered (m ²)			2,628		
	F	Base fire flow without reductions				7 000	
	- F	$F = 220 C (A)^{0.5}$	-			7,000	
		Reductions or Sur	charges				
	Occupancy haza	ard reduction or surcharge	FUS Table 3	Reduction/	/Surcharge		
		Non-combustible		-25%			
3		Limited combustible	Yes	-15%			
3	(1)	Combustible		0%	-15%	5,950	
	.,	Free burning		15%			
		Rapid burning		25%			
	Sprinkler Reduction		FUS Table 4	Redu	ction		
		Adequately Designed System (NFPA 13)	Yes	-30%	-30%		
		Standard Water Supply	Yes	-10%	-10%		
4	(0)	Fully Supervised System	Yes	-10%	-10%	0.004	
	(2)		Cumulati	ve Sub-Total	-50%	-2,231	
		Area of Sprinklered Coverage (m ²)	11826	75%			
			Cum	ulative Total	-38%		
	Exposure Surch	arge	FUS Table 5		Surcharge		
	-	North Side	>30m		0%		
		East Side	3.1 - 10 m		20%		
5	(0)	South Side	Firewall-2hr		0%	0.070	
	(3)	West Side	0 - 3 m		25%	2,678	
			Cumulative Total		45%		
		Results					
		Total Required Fire Flow, rounded to nea	arest 1000L/mir	ı	L/min	6,000	
					1./-	400	
6	(1) + (2) + (3)	(2,000 L/min < Fire Flow < 45,000 L/min)		or	L/s	100	

As per 2020 Fire Underwriter's Survey Guidelines

Novatech Project #: 121009

NOVATECH

Engineers, Planners & Landscape Architects

Input by User

Legend

No Information or Input Required

Building Description: Phase 1 - 10 Storey Building

Input By: Curtis Ferguson, E.I.T. Reviewed By: Anthony Mestwarp, P.Eng

Project Name: 1500 Merivale Road Date: 11/22/2022

Step			Choose		Value Used	Total Fire Flow (L/min)
		Base Fire Flo	w			(
	Construction Ma	iterial		Mult	iplier	
	Coefficient	Type V - Wood frame		1.5		
1	related to type	Type IV - Mass Timber		Varies		
	of construction	Type III - Ordinary construction		1	0.6	
	С	Type II - Non-combustible construction		0.8		
		Type I - Fire resistive construction (2 hrs)	Yes	0.6		
	Floor Area					
		Building Footprint (m ²)	1395			
	Α	Number of Floors/Storeys	10			
2		Protected Openings (1 hr)	Yes			
		Area of structure considered (m ²)			2,093	
	F	Base fire flow without reductions				6,000
		$F = 220 C (A)^{0.5}$				6,000
	-	Reductions or Surd	harges			
	Occupancy haza	rd reduction or surcharge	FUS Table 3	Reduction	/Surcharge	
		Non-combustible		-25%	_	
3		Limited combustible	Yes	-15%		
3	(1)	Combustible		0%	-15%	5,100
		Free burning		15%		
		Rapid burning		25%		
	Sprinkler Reduc	tion	FUS Table 4	Redu	ction	
		Adequately Designed System (NFPA 13)	Yes	-30%	-30%	
		Standard Water Supply	Yes	-10%	-10%	
4	(2)	Fully Supervised System	Yes	-10%	-10%	4 0 4 0
	(2)		Cumulati	ve Sub-Total	-50%	-1,919
		Area of Sprinklered Coverage (m ²)	10500	75%		
			Cum	ulative Total	-38%	
	Exposure Surch	arge	FUS Table 5		Surcharge	
		North Side	>30m		0%	
		East Side	>30m		0%	
5	(2)	South Side	20.1 - 30 m		10%	510
	(3)	West Side	>30m		0%	510
		Cumulative Total		10%		
	•	Results			II	
		Total Required Fire Flow, rounded to nea	arest 1000L/mir	1	L/min	4,000
					1/2	67
6	(1) + (2) + (3)	(2,000 L/min < Fire Flow < 45,000 L/min)		or	L/s	67

As per 2020 Fire Underwriter's Survey Guidelines

Novatech Project #: 121009

NOVATECH

Engineers, Planners & Landscape Architects

Input by User

Legend

No Information or Input Required

Building Description: Phase 2 - 9 Storey Building

Project Name: 1500 Merivale Road Date: 11/22/2022

Input By: Curtis Ferguson, E.I.T. Reviewed By: Anthony Mestwarp, P.Eng

Step			Choose		Value Used	Total Fire Flow (L/min)
		Base Fire Flo	w			(Ľ/ШП)
	Construction Ma	aterial		Multi	plier	
	Coefficient	Type V - Wood frame		1.5		
1	related to type	Type IV - Mass Timber		Varies		
•	of construction	Type III - Ordinary construction		1	0.6	
	C	Type II - Non-combustible construction		0.8		
		Type I - Fire resistive construction (2 hrs)	Yes	0.6		
	Floor Area					
		Building Footprint (m ²)	2431			
	Α	Number of Floors/Storeys	9			
2	^	Protected Openings (1 hr)	Yes			
		Area of structure considered (m ²)			3,647	
	F	Base fire flow without reductions				0.000
	E E	$F = 220 C (A)^{0.5}$				8,000
		Reductions or Sur	harges			
	Occupancy haza	and reduction or surcharge	FUS Table 3	Reduction/	Surcharge	
		Non-combustible		-25%		
3		Limited combustible	Yes	-15%		
3	(1)	Combustible		0%	-15%	6,800
	.,	Free burning		15%		
		Rapid burning		25%		
	Sprinkler Reduction		FUS Table 4	Redu	ction	
		Adequately Designed System (NFPA 13)	Yes	-30%	-30%	
		Standard Water Supply	Yes	-10%	-10%	
4	(0)	Fully Supervised System	Yes	-10%	-10%	
	(2)		Cumulati	ve Sub-Total	-50%	-2,550
		Area of Sprinklered Coverage (m²)	16409	75%		
				ulative Total	-37%	
	Exposure Surch	arge	FUS Table 5		Surcharge	
		North Side	20.1 - 30 m		10%	
		East Side	>30m		0%	
5	(0)	South Side	>30m		0%	
	(3)	West Side	Firewall-2hr		0%	680
		Cumulative Total		10%		
		Results				
		Total Required Fire Flow, rounded to nea	arest 1000L/min	1	L/min	5,000
6	(1) + (2) + (3)	$(2.000 \mid min < Eiro Elow < 45.000 \mid min)$		or	L/s	83
0		(2,000 L/min < Fire Flow < 45,000 L/min)				

As per 2020 Fire Underwriter's Survey Guidelines

Novatech Project #: 121009

NOVATECH

Engineers, Planners & Landscape Architects

Input by User

Legend

No Information or Input Required

Building Description: Phase 3 - 11 Storey Tower

Project Name: 1500 Merivale Road Date: 11/23/2022

Input By: Curtis Ferguson, E.I.T. Reviewed By: Anthony Mestwarp, P.Eng

Step			Choose		Value Used	Total Fire Flow (L/min)
		Base Fire Flo	w		Letter L	
	Construction Ma	aterial		Multi	iplier	
	Coefficient	Type V - Wood frame		1.5		
1	related to type	Type IV - Mass Timber		Varies		
•	of construction	Type III - Ordinary construction		1	0.6	
	С	Type II - Non-combustible construction		0.8		
	_	Type I - Fire resistive construction (2 hrs)	Yes	0.6		
	Floor Area					
		Building Footprint (m ²)	763			
	Α	Number of Floors/Storeys	11			
2		Protected Openings (1 hr)	Yes			
		Area of structure considered (m ²)			1,145	
	F	Base fire flow without reductions				4,000
	Г	$F = 220 C (A)^{0.5}$				4,000
	-	Reductions or Sure	charges			
	Occupancy haza	ard reduction or surcharge	FUS Table 3	Reduction/	Surcharge	
		Non-combustible		-25%		
3		Limited combustible	Yes	-15%		
3	(1)	Combustible		0%	-15%	3,400
		Free burning		15%		
		Rapid burning		25%		
	Sprinkler Reduction		FUS Table 4	Redu	ction	
		Adequately Designed System (NFPA 13)	Yes	-30%	-30%	
		Standard Water Supply	Yes	-10%	-10%	
4	(2)	Fully Supervised System	Yes	-10%	-10%	-1,275
	(2)		Cumulati	ve Sub-Total	-50%	-1,275
		Area of Sprinklered Coverage (m ²)	6295	75%		
			Cum	nulative Total	-38%	
	Exposure Surch	arge	FUS Table 5		Surcharge	
		North Side	20.1 - 30 m		10%	
		East Side	Firewall-2hr		0%	
5	(3)	South Side	>30m		0%	340
	(3)	West Side	Firewall-2hr		0%	340
		Cumulative Total		10%		
	8	Results			1	
		Total Required Fire Flow, rounded to nea	arest 1000L/mir	ı	L/min	2,000
6	(1) + (2) + (3)			or	L/s	33
6	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(2,000 L/min < Fire Flow < 45,000 L/min)				

As per 2020 Fire Underwriter's Survey Guidelines

Novatech Project #: 121009

NOVATECH

Engineers, Planners & Landscape Architects

Legend

Input by User No Information or Input Required

Building Description: Phase 7 - 9 Storey Midrise

Project Name: 1500 Merivale Road Date: 11/23/2022

Input By: Curtis Ferguson, E.I.T. Reviewed By: Anthony Mestwarp, P.Eng

Step			Choose		Value Used	Total Fire Flow (L/min)	
		Base Fire Flo	w			(=/////	
	Construction Ma	iterial		Multi	iplier		
	Coefficient	Type V - Wood frame		1.5			
1	related to type	Type IV - Mass Timber		Varies			
•	of construction	Type III - Ordinary construction		1	0.6		
	С	Type II - Non-combustible construction		0.8			
		Type I - Fire resistive construction (2 hrs)	Yes	0.6			
	Floor Area		_				
		Building Footprint (m ²)	1920				
	Α	Number of Floors/Storeys	9				
2		Protected Openings (1 hr)	Yes				
		Area of structure considered (m ²)			2,880		
	F	Base fire flow without reductions				7 000	
		$F = 220 C (A)^{0.5}$				7,000	
		Reductions or Surd	harges				
	Occupancy haza	rd reduction or surcharge	FUS Table 3	Reduction/	Surcharge		
		Non-combustible		-25%			
3		Limited combustible	Yes	-15%			
3	(1)	Combustible		0%	-15%	5,950	
	.,	Free burning		15%			
		Rapid burning		25%			
	Sprinkler Reduction		FUS Table 4	Redu	ction		
		Adequately Designed System (NFPA 13)	Yes	-30%	-30%		
		Standard Water Supply	Yes	-10%	-10%		
4	(0)	Fully Supervised System	Yes	-10%	-10%		
	(2)		Cumulati	ve Sub-Total	-50%	-2,231	
		Area of Sprinklered Coverage (m ²)	12960	75%			
				ulative Total	-38%		
	Exposure Surch	arge	FUS Table 5		Surcharge		
		North Side	Firewall-2hr		0%		
		East Side	>30m		0%		
5	(0)	South Side	Firewall-2hr		0%		
	(3)	West Side	10.1 - 20 m		15%	893	
			Cumulative Total		15%		
		Results					
		Total Required Fire Flow, rounded to nea	arest 1000L/min	1	L/min	5,000	
6	(1) + (2) + (3)			or	L/s	83	
		(2,000 L/min < Fire Flow < 45,000 L/min)		or	USGPM	1,321	

As per 2020 Fire Underwriter's Survey Guidelines

Novatech Project #: 121009

NOVATECH

Engineers, Planners & Landscape Architects

Input by User

Legend

No Information or Input Required

Building Description: Phase 8 - 9 Storey Midrise

Project Name: 1500 Merivale Road Date: 11/23/2022

Input By: Curtis Ferguson, E.I.T. Reviewed By: Anthony Mestwarp, P.Eng

Step			Choose		Value Used	Total Fire Flow (L/min)	
	•	Base Fire Flo	w				
	Construction Ma	aterial		Multi	iplier		
	Coefficient	Type V - Wood frame		1.5			
1	related to type	Type IV - Mass Timber		Varies			
•	of construction	Type III - Ordinary construction		1	0.6		
	С	Type II - Non-combustible construction		0.8			
	_	Type I - Fire resistive construction (2 hrs)	Yes	0.6			
	Floor Area						
		Building Footprint (m ²)	1910				
	Α	Number of Floors/Storeys	9				
2		Protected Openings (1 hr)	Yes				
		Area of structure considered (m ²)			2,865		
	F	Base fire flow without reductions				7,000	
	E E	$F = 220 C (A)^{0.5}$				7,000	
		Reductions or Sure	harges				
	Occupancy haza	ard reduction or surcharge	FUS Table 3	Reduction/	Surcharge		
		Non-combustible		-25%			
3		Limited combustible	Yes	-15%			
3	(1)	Combustible		0%	-15%	5,950	
		Free burning		15%			
		Rapid burning		25%			
	Sprinkler Reduction		FUS Table 4	Redu	ction		
		Adequately Designed System (NFPA 13)	Yes	-30%	-30%		
		Standard Water Supply	Yes	-10%	-10%		
4	(2)	Fully Supervised System	Yes	-10%	-10%	-2,231	
	(2)		Cumulati	ve Sub-Total	-50%	-2,231	
		Area of Sprinklered Coverage (m ²)	12893	75%			
			Cum	ulative Total	-38%		
	Exposure Surch	arge	FUS Table 5		Surcharge		
		North Side	Firewall-2hr		0%		
		East Side	20.1 - 30 m		10%		
5	(3)	South Side	20.1 - 30 m		10%	2.083	
	(3)	West Side	10.1 - 20 m		15%	2,003	
			Cumulative Total		35%		
		Results					
		Total Required Fire Flow, rounded to nea	arest 1000L/mir	1	L/min	6,000	
6	(1) + (2) + (3)	(2,000 L/min < Fire Flow < 45,000 L/min)		or	L/s	100	
		12.000 L/11111 N FILE FIOW N 40.000 L/[[[[1]]		or	USGPM	1,585	

As per 2020 Fire Underwriter's Survey Guidelines

Novatech Project #: 121009

NOVATECH

Engineers, Planners & Landscape Architects

Input by User

Legend

No Information or Input Required

Building Description: Phase 9 - 9 Storey Midrise

Project Name: 1500 Merivale Road Date: 11/24/2022

Input By: Curtis Ferguson, E.I.T. Reviewed By: Anthony Mestwarp, P.Eng

Step			Choose		Value Used	Total Fire Flow (L/min)
	•	Base Fire Flo	w			
	Construction Ma	aterial		Multi	iplier	
	Coefficient	Type V - Wood frame		1.5		
1	related to type	Type IV - Mass Timber		Varies		
•	of construction	Type III - Ordinary construction		1	0.6	
	С	Type II - Non-combustible construction		0.8		
	_	Type I - Fire resistive construction (2 hrs)	Yes	0.6		
	Floor Area					
		Building Footprint (m ²)	2024			
	Α	Number of Floors/Storeys	9			
2		Protected Openings (1 hr)	Yes			
		Area of structure considered (m ²)			3,036	
	F	Base fire flow without reductions				7,000
	•	$F = 220 C (A)^{0.5}$				7,000
		Reductions or Sur	charges			
	Occupancy haza	ard reduction or surcharge	FUS Table 3	Reduction/	Surcharge	
		Non-combustible		-25%	_	
3		Limited combustible	Yes	-15%		
3	(1)	Combustible		0%	-15%	5,950
		Free burning		15%		
		Rapid burning		25%		
	Sprinkler Reduction		FUS Table 4	Redu	ction	
		Adequately Designed System (NFPA 13)	Yes	-30%	-30%	
		Standard Water Supply	Yes	-10%	-10%	
4	(2)	Fully Supervised System	Yes	-10%	-10%	-2,246
	(2)		Cumulati	ve Sub-Total	-50%	-2,240
		Area of Sprinklered Coverage (m ²)	13750	75%		
			Cum	ulative Total	-38%	
	Exposure Surch	arge	FUS Table 5		Surcharge	
		North Side	10.1 - 20 m		15%	
		East Side	10.1 - 20 m		15%	
5	(3)	South Side	20.1 - 30 m		10%	2,380
	(3)	West Side	>30m		0%	2,000
		Cumulative Total		40%		
		Results			. I	
		Total Required Fire Flow, rounded to nea	arest 1000L/mir	ı	L/min	6,000
6	(1) + (2) + (3)	(2,000 L/min < Fire Flow < 45,000 L/min)		or	L/s	100
		$\mathbf{U} \in \mathcal{U} \cup \mathcal{U} \cup \mathcal{U} \cup \mathcal{U} \cup \mathcal{U} \subseteq \mathcal{U} \cup $		or	USGPM	1,585

As per 2020 Fire Underwriter's Survey Guidelines

Novatech Project #: 121009 Project Name: 1500 Merivale Road Date: 11/23/2022 Input By: Curtis Ferguson, E.I.T. Reviewed By: Anthony Mestwarp, P.Eng

Legend

Input by User

No Information or Input Required

Building Description: Phase 10 - 9 Storey Midrise & 11 Storey Tower

Step			Choose		Value Used	Total Fire Flow (L/min)
		Base Fire I	Flow			
	Construction Ma	terial		Mult	iplier	
	Coefficient	Type V - Wood frame		1.5		
1	related to type	Type IV - Mass Timber		Varies		
	of construction	Type III - Ordinary construction		1	0.6	
	С	Type II - Non-combustible construction		0.8		
	_	Type I - Fire resistive construction (2 hrs)	Yes	0.6		
	Floor Area					
		Podium Level Footprint (m ²)	3263	_		
		Total Floors/Storeys (Podium)	9	_		
	Α	Tower Footprint (m ²)	873	_		
2	^	Total Floors/Storeys (Tower)	2	_		
		Protected Openings (1 hr)	Yes			
		A, Total Effective Floor Area (m ²)			4,895	
	F	Base fire flow without reductions				0 000
	F	$F = 220 C (A)^{0.5}$	-			9,000
	•	Reductions or Su	urcharges			
Occupancy hazard reduction or surcharge FUS Table 3					/Surcharge	
	occupancy naza	Non-combustible		-25%	_	
-		Limited combustible	Yes	-15%		
3	(1)	Combustible	100	0%	-15%	7,650
	(-)	Free burning		15%		.,
		Rapid burning		25%		
	Sprinkler Reduction FUS Table 4			Redu	ction	
	•	Adequately Designed System (NFPA 13)	Yes	-30%	-30%	
		Standard Water Supply	Yes	-10%	-10%	
4		Fully Supervised System	Yes	-10%	-10%	
•	(2)			tive Sub-Total	-50%	-2,869
		Area of Sprinklered Coverage (m²)	23335	75%	-0070	
		Area of Sprinklered Coverage (III)		mulative Total	-38%	
	Exposure Surch		FUS Table 5		-30 /0 Surcharge	
	Exposure Surch	North Side	20.1 - 30 m		10%	
		East Side	>30m		0%	
5	(3)	South Side	10.1 - 20 m		15%	1,913
	(0)	West Side	>30m	-	0%	1,010
				mulative Total		
		Results			2070	
		Total Required Fire Flow, rounded to ne			L/min	7,000
6	(1) + (2) + (3)	•		or	L/s	117
		(2,000 L/min < Fire Flow < 45,000 L/min)		or	USGPM	1,849
7		Required Duration of Fire Flow (hours)			Hours	2
	Storage Volume Required Duration of Fire Flow (nours) Required Volume of Fire Flow (m ³)				110010	4

As per 2020 Fire Underwriter's Survey Guidelines

Novatech Project #: 121009

NOVATECH

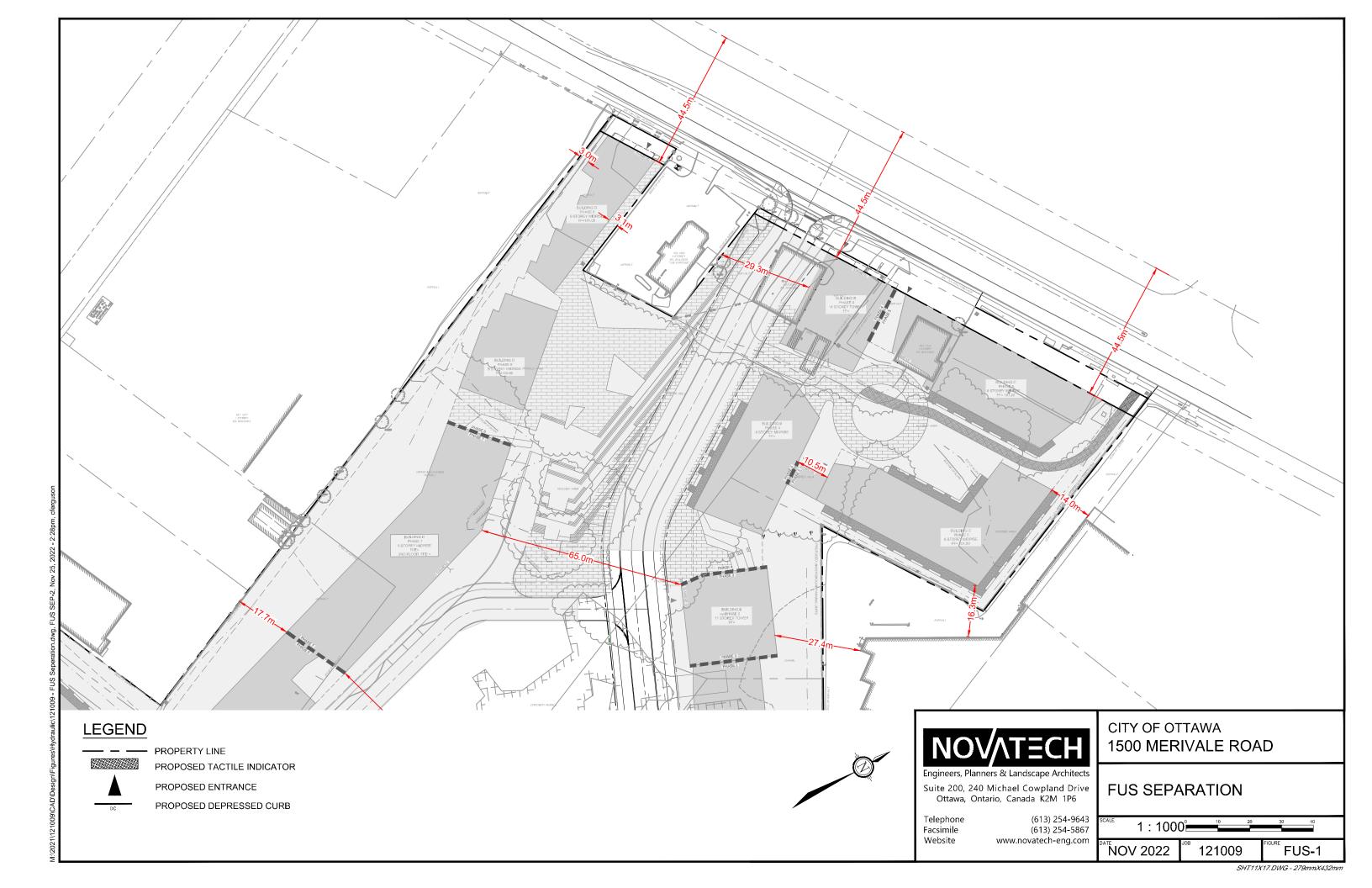
Engineers, Planners & Landscape Architects

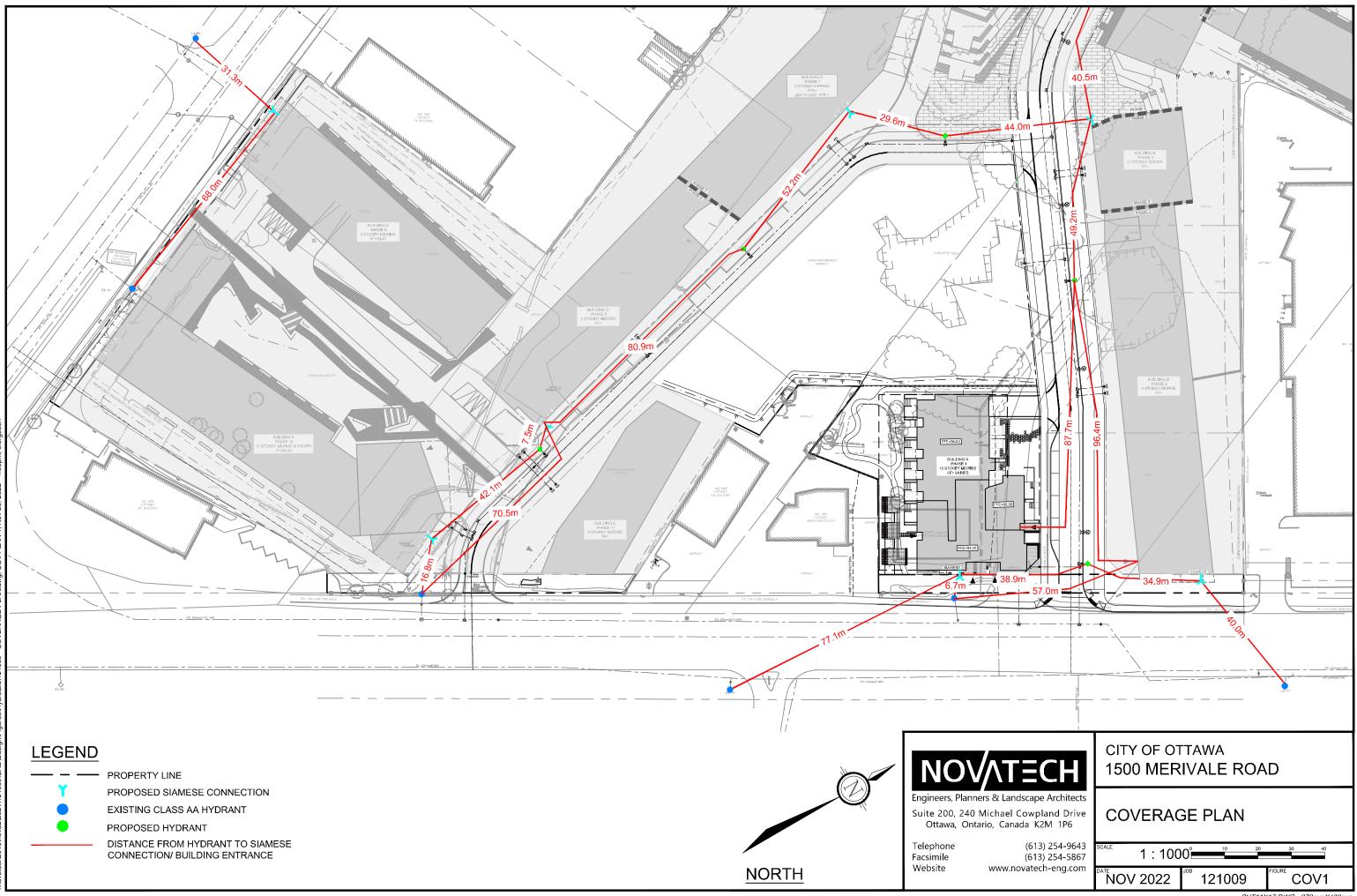
Input by User

Legend

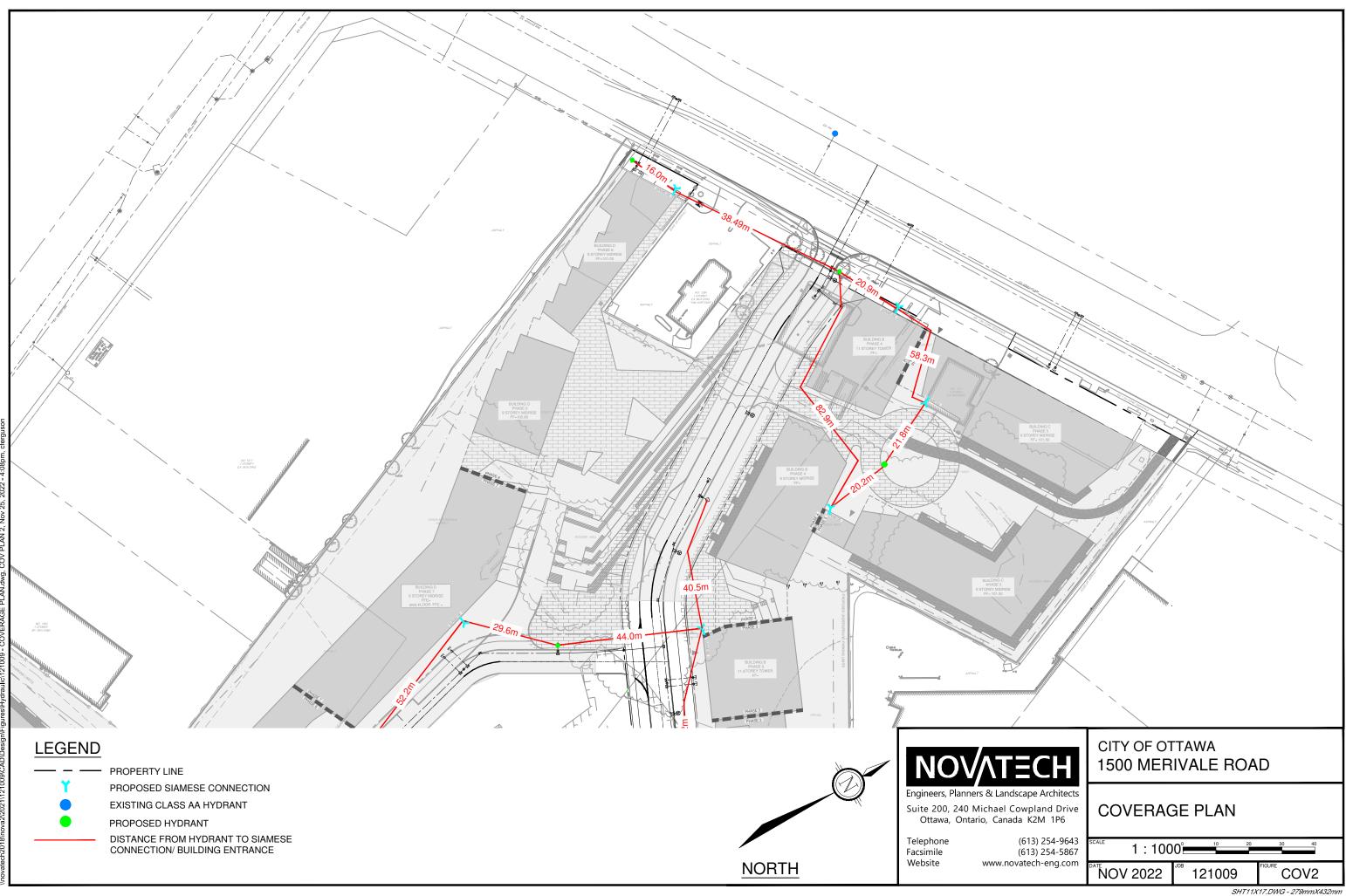
No Information or Input Required

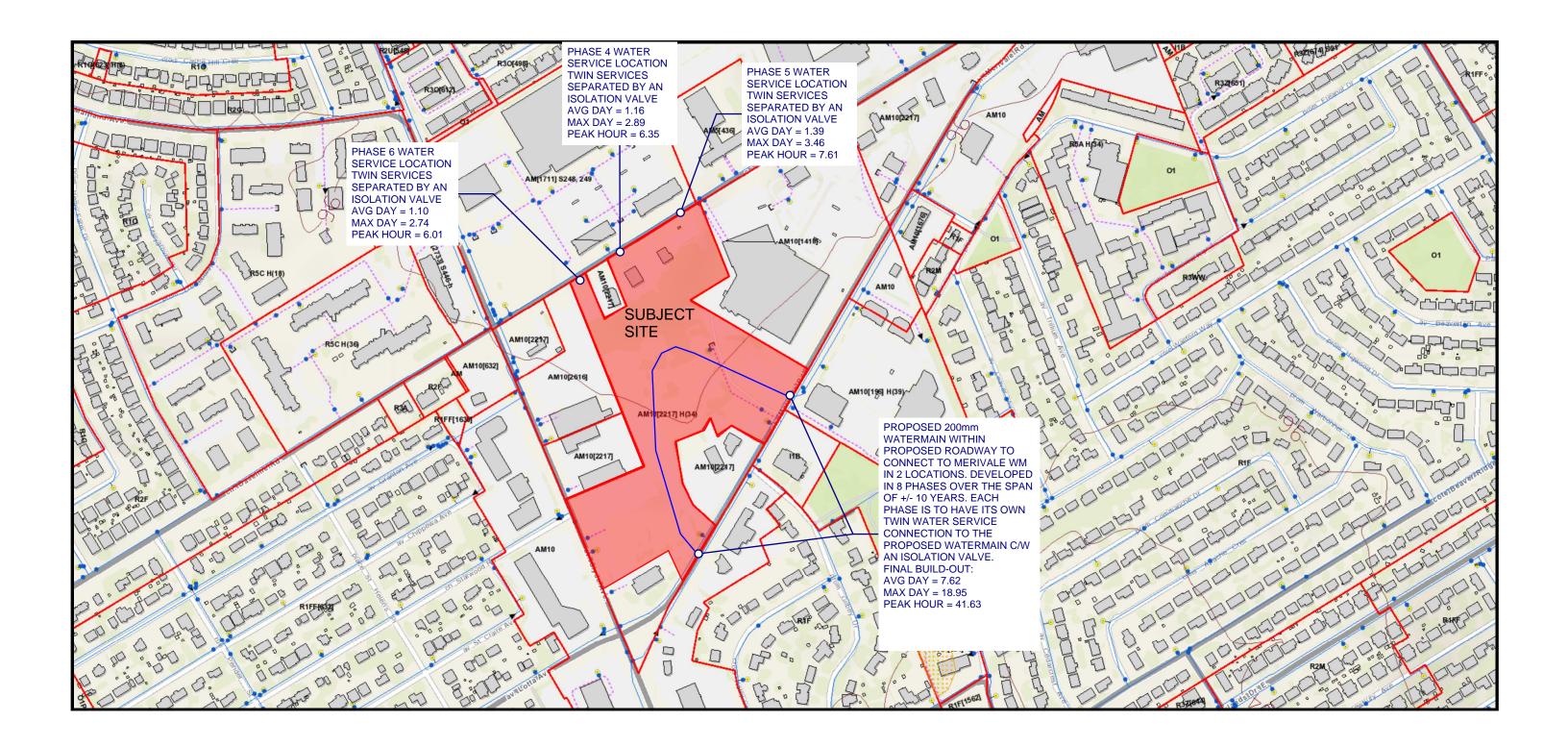
Building Description: Phase 11 - 6 Storey Midrise


Project Name: 1500 Merivale Road Date: 11/24/2022


Input By: Curtis Ferguson, E.I.T. Reviewed By: Anthony Mestwarp, P.Eng

Step			Choose		Value Used	Total Fire Flow (L/min)
	•	Base Fire Flo	w			
	Construction Ma	aterial		Mult	Multiplier	
1	Coefficient related to type of construction	Type V - Wood frame Type IV - Mass Timber Type III - Ordinary construction Type II - Non-combustible construction		1.5 Varies 1 0.8	0.6	
	С	Type I - Fire resistive construction (2 hrs)	Yes	0.6		
	Floor Area					
2	Α	Building Footprint (m ²) Number of Floors/Storeys Protected Openings (1 hr) Area of structure considered (m ²)	1125 6 Yes		1,688	
	F	Base fire flow without reductions	_		1,000	5,000
		$\mathbf{F} = 220 \mathbf{C} (\mathbf{A})^{0.5}$				
	1	Reductions or Surc	<u> </u>			
	Occupancy haza	rd reduction or surcharge	FUS Table 3		/Surcharge	
3	(1)	Non-combustible Limited combustible Combustible Free burning Rapid burning	Yes	-25% -15% 0% 15% 25%	-15%	4,250
	Sprinkler Reduction		FUS Table 4	Redu	ction	
4	(2)	Adequately Designed System (NFPA 13) Standard Water Supply Fully Supervised System	Yes Yes Yes	-30% -10% -10% ve Sub-Total	-30% -10% -10% - 50%	-1,594
		Area of Sprinklered Coverage (m²)	5063	75%	-50 %	
	From a score Ocume h		Cum	ulative Total	-38%	
	Exposure Surch	arge North Side	FUS Table 5		Surcharge 0%	
5	(3)	East Side South Side	3.1 - 10 m >30m		20% 0%	1.275
	(3)	West Side	20.1 - 30 m Cum	ulative Total	10% 30%	.,
	<u>I</u>	Results				
		Total Required Fire Flow, rounded to nea	arest 10001 /min	1	L/min	4,000
6	(1) + (2) + (3)	(2,000 L/min < Fire Flow < 45,000 L/min)		or or	L/s USGPM	67 1,057
					000111	1,001




SHT11X17.DWG - 279mmX432mm

SHT11X17.DWG - 279mmX432mm

https://maps.ottawa.ca/geoottawa/

From: Nathan Godlovitch <ngodlovitch@evoqarchitecture.com>
Sent: Wednesday, May 11, 2022 2:03 PM
To: Curtis Ferguson <c.ferguson@novatech-eng.com>; Sayeh Jolan <sjolan@evoqarchitecture.com>; Christine
Hannouche <channouche@evoqarchitecture.com>
Cc: Anthony Mestwarp <a.mestwarp@novatech-eng.com>
Subject: RE: 121009 - 1500 Merivale Rd - Detail Confirmation

Hi Curtis

Poured concrete construction, Modified Fire Resistive (2h).

There will be firewalls between adjacent phases with horizontal exits. I will check parking extent... I think we are awaiting an understanding with the city before finalizing but I will verify.

Regards,

Nathan

Nathan Godlovitch, Arch OAQ

ARCHITECTE, COLLABORATEUR ARCHITECT, ASSOCIATE

1435, RUE ST-ALEXANDRE, BUREAU 1000 MONTRÉAL, QC H3A 2G4 T. 514.393.9490 / 477 C. 514.270.3071

EVOQ ARCHITECTURE ANCIENNEMENT / FORMERLY FGMDA

AVIS DE CONFIDENTIALITÉ: Ce courriel peut contenir de l'information confidentielle. Nous vous demandons de le supprimer immédiatement si vous n'en êtes pas le destinataire. CONFIDENTIALITY NOTICE: This email may contain confidential information. If you are not the intended recipient, please delete immediately.

Pensez avant d'imprimer l \bigoplus_{x} Think before you print l

AVIS DE CONFIDENTIALITÉ : Ce courriel peut contenir de l'information privilégiée et confidentielle. Nous vous demandons de le détruire immédiatement si vous n'êtes pas le destinataire. CONFIDENTIALITY NOTICE: This email may contain information that is privileged and confidential. Please delete immediately if you are not the intended recipient. From: Curtis Ferguson <c.ferguson@novatech-eng.com>
Sent: May 11, 2022 1:45 PM
To: Nathan Godlovitch <ngodlovitch@evoqarchitecture.com>; Sayeh Jolan <sjolan@evoqarchitecture.com>; Christine
Hannouche <channouche@evoqarchitecture.com>
Cc: Anthony Mestwarp <a.mestwarp@novatech-eng.com>
Subject: RE: 121009 - 1500 Merivale Rd - Detail Confirmation

Nathan,

•

Please ignore questions about Occupancy Hazard Reduction or Surcharge below.

Instead please confirm;

- Construction Material
 - o Modified Fire Resistive Construction (2 hrs) or
 - Fire Resistive Construction (>3hrs)

Apologizes for the confusion.

Curtis Ferguson, B.A.Sc., E.I.T. | Land Development

NOVATECH Engineers, Planners & Landscape Architects

240 Michael Cowpland Drive, Suite 200, Ottawa, ON, K2M 1P6 | Tel: 613.254.9643 EXT: 331 | Fax: 613.254.5867 The information contained in this email message is confidential and is for exclusive use of the addressee.

Montreal, March 21, 2024

Curtis Ferguson Novatech 240 Michael Cowpland Dr., Suite 200 OTTAWA, ON, K2M 1P6

RE: 1500 Merivale – Phase 1 EVOQ Project Ref : 9426-20-00

Curtis,

This letter is to certify that the project 1500 Merivale, Phase 1 and all subsequent phases as currently anticipated, will be built as *Fire-resistive construction (Type 1)* with structural elements being built of 2-hour rated poured-in-place concrete and minor elements in protected structural steel satisfying the conditions below:

As per the FUS, a building is considered to be of Fire-resistive construction (Type I) when all structural elements, walls, arches, floors, and roofs are constructed with a minimum 2-hour fire resistance rating, and all materials used in the construction of the structural elements, walls, arches, floors, and roofs are constructed with non-combustible materials.

Yours truly, EVOQ ARCHITECTURE INC.

Nathan Godlovitch, OAQ

Cc: Greg MacDonald, Novatech Anthony Mertwarp, Novatech Vincent Denomme, Claridge Homes

PRINCIPALS DIRECTORS ALAIN FOURNIER JULIA GERSOVITZ, O.C. ROSANNE MOSS GEORGES DROLET GIOVANNI DIODATI DIMA COOK ERIC MOUTQUIN SAMI TANNOURY

ARCHITECTS

ARCHITECTS ASSOCIATES DIRECTORS LENA BUCHINGER ROXANNE GAUTHIER ERIC STEIN

ASSOCIATES MATTEO CENDAMO JAMES CURTISS LISE DESJARDINS G. CATHERINE FANOUS NATHAN GODLOVITCH MARIANNE LEROUX SYBIL MCKENNA NEIL MCNULTY GILLES PRUD'HOMME MARIE-FRANCE TURGEON From: Nathan Godlovitch <ngodlovitch@evoqarchitecture.com>
Sent: Wednesday, November 30, 2022 11:36 AM
To: Anthony Mestwarp <a.mestwarp@novatech-eng.com>
Cc: Sayeh Jolan <sjolan@evoqarchitecture.com>; Curtis Ferguson <c.ferguson@novatech-eng.com>
Subject: RE: 121009 - 1500 Merivale - FUS Email Confirmation

Hi Anthony

Responses below:

I do not have the Criteria by which the water supply is considered 'standard'. Building is fully sprinklered an has 121 residential units and 153 m2 commercial. No Pool anticipated.

Regards,

Nathan

From: Anthony Mestwarp <<u>a.mestwarp@novatech-eng.com</u>>
Sent: November 30, 2022 11:04 AM
To: Nathan Godlovitch <<u>ngodlovitch@evoqarchitecture.com</u>>
Cc: Sayeh Jolan <<u>sjolan@evoqarchitecture.com</u>>; Curtis Ferguson <<u>c.ferguson@novatech-eng.com</u>>
Subject: RE: 121009 - 1500 Merivale - FUS Email Confirmation

Hi Nathan,

I was unable to find your response to the below email. Can you please reconfirm regarding the updated design if the below sprinkler criteria applies to the revised site.

Thanks,

Anthony Mestwarp, P.Eng., Project Engineer | Land Development Engineering

NOVATECH Engineers, Planners & Landscape Architects

240 Michael Cowpland Drive, Suite 200, Ottawa, ON, K2M 1P6 | Tel: 613.254.9643 Ext. 216 | Fax: 613.254.5867 The information contained in this email message is confidential and is for exclusive use of the addressee.

From: Curtis Ferguson <<u>c.ferguson@novatech-eng.com</u>>
Sent: Monday, July 18, 2022 10:28 AM
To: Nathan Godlovitch <<u>ngodlovitch@evoqarchitecture.com</u>>
Cc: Sayeh Jolan <<u>sjolan@evoqarchitecture.com</u>>; Anthony Mestwarp <<u>a.mestwarp@novatech-eng.com</u>>
Subject: 121009 - 1500 Merivale - FUS Email Confirmation

Nathan,

I'm aware we've had this conversation over the phone previously but we need email records confirming the following;

Please clarify below for fire flow calculations:

- Sprinkler Reduction;
 - Adequately Designed System (NFPA 13) Y OR N YES
 - Standard Water Supply Y OR N NOT IN OUR FIELD OF EXPERTISE. What would constitute a standard water supply? It will be whatever is necessary to service a 121 unit residential building fully sprinklered.
 - Fully Supervised System Y OR N YES

Curtis Ferguson, B.A.Sc., E.I.T. | Land Development

NOVATECH Engineers, Planners & Landscape Architects

240 Michael Cowpland Drive, Suite 200, Ottawa, ON, K2M 1P6 | Tel: 613.254.9643 EXT: 331 | Fax: 613.254.5867

The information contained in this email message is confidential and is for exclusive use of the addressee.

AVIS DE CONFIDENTIALITÉ : Le présent courriel en provenance d'EVOQ Architecture peut contenir des renseignements confidentiels ou privilégiés. Si vous avez vous reçu ce message par erreur, nous vous prions d'en aviser immédiatement l'expéditeur, de supprimer ce courriel et d'en détruire toute copie.

CONFIDENTIALITY NOTICE: The present email communication from EVOQ Architecture may contain information that is confidential or privileged. If you have received this email in error, please notify the sender and destroy this email immediately as well as any copies you may have of it.

AVIS DE CONFIDENTIALITÉ : Le présent courriel en provenance d'EVOQ Architecture peut contenir des renseignements confidentiels ou privilégiés. Si vous avez vous reçu ce message par erreur, nous vous prions d'en aviser immédiatement l'expéditeur, de supprimer ce courriel et d'en détruire toute copie.

CONFIDENTIALITY NOTICE: The present email communication from EVOQ Architecture may contain information that is confidential or privileged. If you have received this email in error, please notify the sender and destroy this email immediately as well as any copies you may have of it.

From: Surprenant, Eric <Eric.Surprenant@ottawa.ca>
Sent: Tuesday, January 10, 2023 8:53 AM
To: Anthony Mestwarp <a.mestwarp@novatech-eng.com>
Cc: Dieme, Abi <Abibatou.Dieme@ottawa.ca>
Subject: Fw: 1500 Merivale Water Boundary Conditions

Hello Anthony,

The following are boundary conditions, HGL, for hydraulic analysis at 1500 Merivale Road (zone ME) assumed to be connected to the 406 mm on Baseline Road (Zone 2W2C), as well as a 203 mm internal loop connected to the 305 mm on Merivale Road (see attached PDF for location).

	Merivale R M	toad (Zone E)	Baseline Road (Zone 2W2C)			
	Connection 1	Connection 2	Connection 3	Connection 4	Connection 5	
	HGL (m)	HGL (m)	HGL (m)	HGL (m)	HGL (m)	
Min HGL	144.7	144.7	124.9	124.9	124.9	
Max HGL	157.9	157.9	133.0	133.0	133.0	
Max Day + FF (117 L/s)	152.8	152.8	N/A	N/A	N/A	
Max Day + FF (133 L/s)	N/A	N/A	127.5	127.4	127.2	

The maximum pressure is estimated to be more than 80 psi. A pressure check at completion of construction is recommended to determine if pressure control is required.

These are for current conditions and are based on computer model simulation.

Disclaimer: The boundary condition information is based on current operation of the city water distribution system. The computer model simulation is based on the best information available at the time. The operation of the water distribution system can change on a regular basis, resulting in a variation in boundary conditions. The physical properties of watermains deteriorate over time, as such must be assumed in the absence of actual field test data. The variation in physical watermain properties can therefore alter the results of the computer model simulation.

Thanks

Eric Surprenant, CET Sr, Project Manager, Infrastructure Projects, West Planning, Real Estate & Economic Development 613 580-2424 ext.: 27794

Absence Alert:

 From: Anthony Mestwarp <a.mestwarp@novatech-eng.com</td>

 Sent: December 6, 2022 13:21

 To: Surprenant, Eric <<u>Eric.Surprenant@ottawa.ca</u>>

 Cc: Curtis Ferguson <<u>c.ferguson@novatech-eng.com</u>>; Dieme, Abi <<u>Abibatou.Dieme@ottawa.ca</u>>

 Subject: RE: 1500 Merivale Water Boundary Conditions

CAUTION: This email originated from an External Sender. Please do not click links or open attachments unless you recognize the source. ATTENTION : Ce courriel provient d'un expéditeur externe. Ne cliquez sur aucun lien et n'ouvrez pas de pièce jointe, excepté si vous connaissez l'expéditeur.

Hi Eric,

Presently phases 4-6 each are shown with individual connections to Baseline.

Phases 1-3 and 7-11 will be serviced by a proposed watermain on-site which will connect to Merivale in two locations as noted on the attached watermain connection figure.

Presently we are planning for a detailed submission of phase 1 and a serviceability level for the remaining phases. Please let me know if you have any questions.

Regards,

Anthony Mestwarp, P.Eng., Project Engineer | Land Development Engineering

NOVATECH Engineers, Planners & Landscape Architects

240 Michael Cowpland Drive, Suite 200, Ottawa, ON, K2M 1P6 | Tel: 613.254.9643 Ext. 216 | Fax: 613.254.5867 The information contained in this email message is confidential and is for exclusive use of the addressee.

From: Surprenant, Eric <<u>Eric.Surprenant@ottawa.ca</u>>
Sent: Tuesday, December 6, 2022 12:22 PM
To: Anthony Mestwarp <<u>a.mestwarp@novatech-eng.com</u>>
Cc: Curtis Ferguson <<u>c.ferguson@novatech-eng.com</u>>; Dieme, Abi <<u>Abibatou.Dieme@ottawa.ca</u>>
Subject: Fw: 1500 Merivale Water Boundary Conditions

Hello Anthony,

I just wanted to advise you that Abi will be taking over the review of this application. I have forwarded the Boundary Conditions request and wanted to confirm the approach we would like to take.

Proposed Development Conditions - Baseline Connections										
	Building B Phase 4	Building C Phase 5	Building D Phase 6	Totals 38						
Studio	8	10	20							
1 Bed Apartment	181	170	120	471						
2 Bed Apartment	28	65	33	126						
3 Bed Apartment	10	12	23	45						
Townhome	0	0	0	0						
Number of units	227	257	196	680						
Population	354.4	425.7	336.6	1116.7						
Total Res Daily Volume	99232.00	119196.00	94248.00	312676.00						
Commercial area (m2)	118.11	101.95	56.99	277.05						
Total Com Daily Volume	952.5	822.18	459.60	2234.27						
Total Daily Volume (Liters	100184.5	120018.2	94707.60	314910.3						
Avg Day Demand (L/s)	1.160	1.389	1.096	3.64						
Max Day Demand (L/s)	2.888	3.463	2.735	9.09						
Peak Hour Demand (L/s)	6.347	7.613	6.014	19.974						

Proposed Development Conditions - Merivale Connection

	Building A Phase 1	Building B Phase 2	Building B Phase 3	Building D Phase 7	Building D Phase 8	Building D Phase 9	Building E Phase 10	Building E Phase 11	Park	Totals
Studio	1	9	0	0	16	0	0	1		27
1 Bed Apartment	71	218	21	119	153	170	190	43		985
2 Bed Apartment	25	27	46	35	23	42	89	14		301
3 Bed Apartment	14	14	0	0	0	0	8	22		58
Townhome	7	8	0	8	6	0	0	5		34
Park Area (ha)	n/a	n/a	0.56	0.56						
Number of units	118	276	67	162	198	212	287	85	n/a	1405
Population	215.6	439.5	126	261.7	301.1	326.2	477.7	172.7	n/a	2320.5
Total Res Daily Volume	60368.00	123060.00	35280.00	73276.00	84308.00	91336.00	133756.00	48356.00	156.8	649896.80
Commercial area (m2)	168.52	135.26	n/a	n/a	n/a	156.36	412.3	170	n/a	1042.44

The Boundary conditions would be provided as 3 sets of Boundary Conditons given their connection points, instead of for every single phase.

So 1st would include Phases 1, 2, 3

2nd would include Phases 4, 5, 6

and 3rd would include Phases 7 through 11.

Please confirm what the plans are for looping internally and at what Phases.

Please also let me know if you have any questions or concerns with this approach.

Thanks

Eric Surprenant, CET

Sr, Project Manager, Infrastructure Projects, West

Planning, Real Estate & Economic Development

613 580-2424 ext.: 27794

Please take note that due to current COVID situation, I am working remotely and Phone communications and messaging may not be reliable at this time. Preferred method of communications will be e-mails during this period. If your preference is telephone communication, please indicate this via e-mail and provide a contact telephone number.

Absence Alert:

From: Anthony Mestwarp <a.mestwarp@novatech-eng.com
Sent: November 30, 2022 3:34 PM
To: Kuruvilla, Santhosh <<u>Santhosh.Kuruvilla@ottawa.ca</u>
Cc: Curtis Ferguson <<u>c.ferguson@novatech-eng.com</u>
; Greg MacDonald <<u>g.Macdonald@novatech-eng.com</u>
Subject: RE: 1500 Merivale Water Boundary Conditions

CAUTION: This email originated from an External Sender. Please do not click links or open attachments unless you recognize the source. ATTENTION : Ce courriel provient d'un expéditeur externe. Ne cliquez sur aucun lien et n'ouvrez pas de pièce jointe, excepté si vous connaissez l'expéditeur.

Hi Santhosh,

I hope you are doing well.

Please find attached the updated water calculations for the 1500 Merivale site per the revised site plan.

They are also summarized below:

Merivale:

```
      Phase 1:
      Avg day = 0.714, Max day = 1.77, Peak hour = 3.885, FUS= 67

      Phase 2:
      Avg day = 1.437, Max day = 3.580, Peak hour = 7.868, FUS= 83

      Phase 3:
      Avg day = 0.408, Max day = 1.021, Peak hour = 2.246, FUS= 33

      Phase 7:
      Avg day = 0.848, Max day = 2.120, Peak hour = 4.665, FUS= 83

      Phase 8:
      Avg day = 0.976, Max day = 2.439, Peak hour = 5.367, FUS= 100

      Phase 9:
      Avg day = 1.072, Max day = 2.665, Peak hour = 5.854, FUS= 100

      Phase 10:
      Avg day = 1.587, Max day = 3.928, Peak hour = 8.618, FUS= 117

      Phase 11:
      Avg day = 0.576, Max day = 1.423, Peak hour = 3.121, FUS= 67

      Park
      :
      Avg day = 0.002, Max day = 0.005, Peak hour = 0.010, FUS= N/A
```

Total : <u>Avg day</u> = 7.62, <u>Max day</u> = 18.95, <u>Peak hour</u> = 41.63 <u>FUS</u> (highest 117L/s)

Baseline Avenue:

 Phase 4:
 Avg day = 1.160, Max day = 2.888, Peak hour = 6.347, FUS= 83

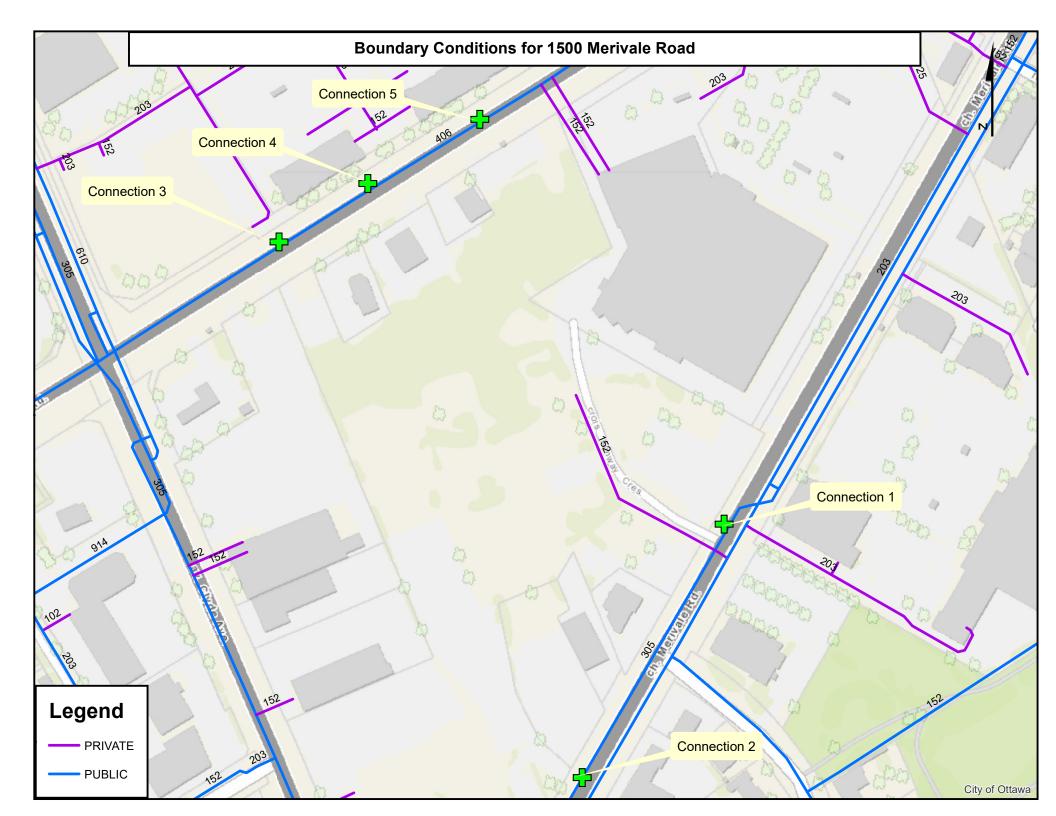
 Phase 5:
 Avg day = 1.389, Max day = 3.463, Peak hour = 7.613, FUS= 133

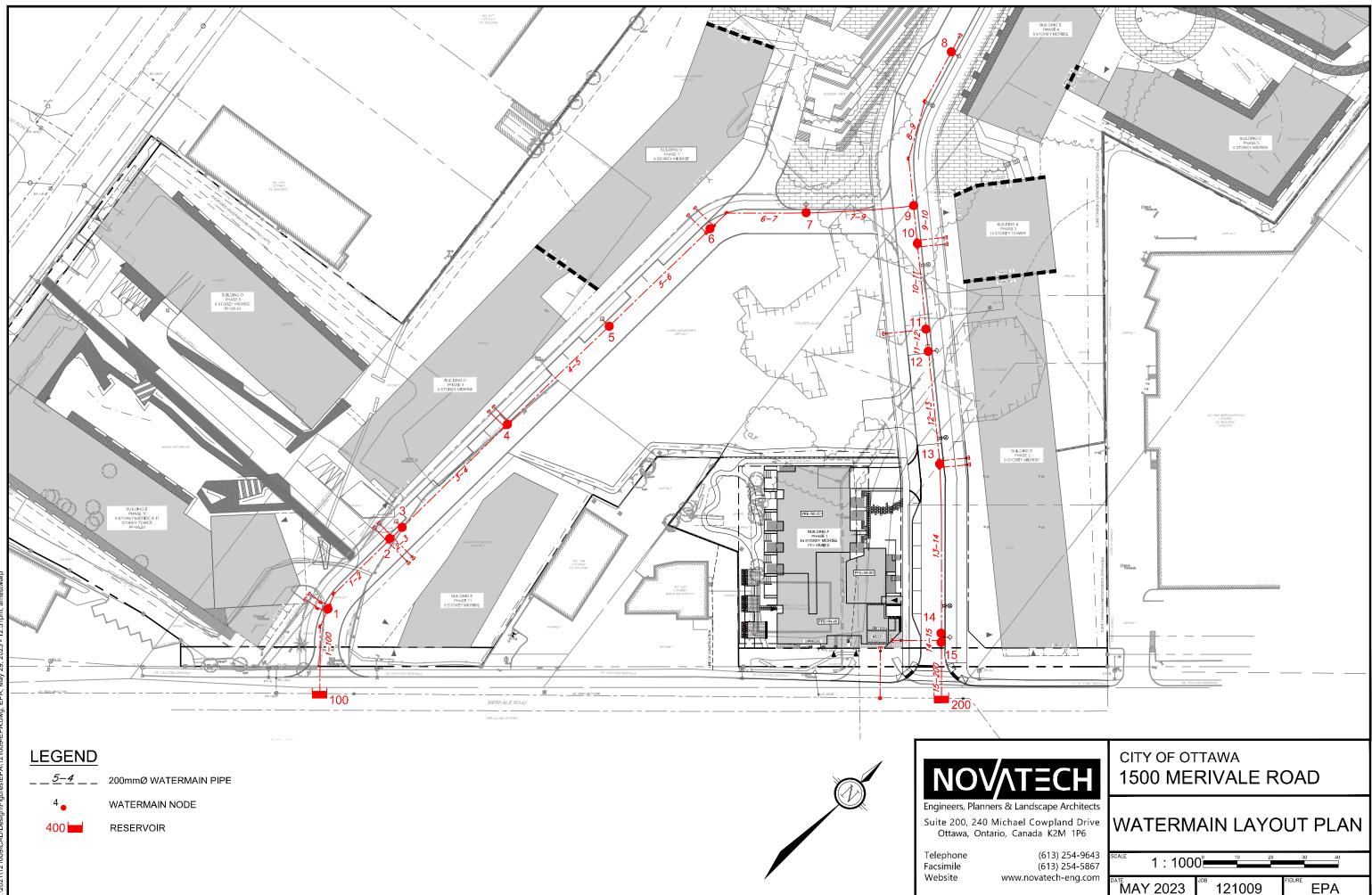
 Phase 6:
 Avg day = 1.096, Max day = 2.735, Peak hour = 6.014, FUS= 100

Total : <u>Avg day</u> = 3.64, <u>Max day</u> = 9.09, <u>Peak hour</u> = 19.974 <u>FUS</u> (highest 133L/s)

As you are aware the site will be developed over a number of years.

Calculations and figures are attached for your referance.


Please let us know if you require anything further.


Thanks,

Anthony Mestwarp, P.Eng., Project Engineer | Land Development Engineering

NOVATECH Engineers, Planners & Landscape Architects

240 Michael Cowpland Drive, Suite 200, Ottawa, ON, K2M 1P6 | Tel: 613.254.9643 Ext. 216 | Fax: 613.254.5867 The information contained in this email message is confidential and is for exclusive use of the addressee.

SHT11X17.DWG - 279mmX432mm

		Pipe Data		
Pipe	Length	Diameter Nominal	Diameter Actual	Roughness
	(m)	(mm)	(mm)	Coefficient
100-1	25.55	200	204	110
1-2	21.81	200	204	110
2-3	5	200	204	110
3-4	43.66	200	204	110
4-5	41.98	200	204	110
5-6	41.61	200	204	110
6-7	54.07	200	204	110
7-9	32.02	200	204	110
8-9	48.32	200	204	110
9-10	11.22	200	204	110
10-11	25.59	200	204	110
12	6.57	200	204	110
12-13	33.61	200	204	110
13-14	51.34	200	204	110
14-15	1	200	204	110
15-200	17.17	200	204	110

4

		High F	Pressure Cl	neck			
Node	Elevation	Demand	Head	Pres	sure	Age*	
	(m)	(LPS)	(m)	(m)	(PSI)	(hrs)	
1	94.5	1.59	157.9	63.4	90.15	0.05	
2	94.64	1.65	157.89	63.25	89.94	0.13	
3(HYD)	94.74	0	157.89	63.15	89.80	0.17	
4	95.79	0.98	157.89	62.1	88.30	0.53	
5(HYD)	95.75	0	157.89	62.14	88.36	3.72	
6	96.38	0.85	157.89	61.51	87.47	2.66	
7(HYD)	96.88	0	157.89	61.01	86.75	1.3	
8(HYD)	99.64	0	157.89	58.25	82.83	72	Maximum Age
9	97.27	0	157.89	60.62	86.20	0.9	
10	96.73	0.41	157.89	61.16	86.97	0.76	
11	95.79	0	157.89	62.1	88.30	0.55	
12	95.59	0	157.89	62.3	88.59	0.5	
13	94.56	1.44	157.89	63.33	90.05	0.23	
14	94.09	0.71	157.9	63.81	90.74	0.05	Maximum Pressure
15	94.10	0	157.9	63.8	90.72	0.05	1
100	N/A	-4.33	157.9		0.00	0	
200	N/A	-3.29	157.9		0.00	0]

* Age is based on a boundary age of 0 hrs

1m of head = 1.42197 PSI

	Maximum	Daily Dem	and and Fi	re Flow		
	Node 3	B (HYD) - 117	L/s Fire Dem	nand		
Node	Elevation	Demand	Head	Pres	sure	
	(m)	(LPS)	(m)	(m)	(PSI)	
1	94.5	3.93	151.31	56.81	80.78	
2	94.64	4.09	149.97	55.33	78.68	
3(HYD)	94.74	117	149.51	54.77	77.88	
4	95.79	2.44	149.80	54.01	76.80	
5(HYD)	95.75	0	150.13	54.38	77.33	
6	96.38	2.12	150.46	54.08	76.90	
7(HYD)	96.88	0	150.94	54.06	76.87	
8(HYD)	99.64	0	151.23	51.59	73.36	Minimum P
9	97.27	0	151.23	53.96	76.73	
10	96.73	1.02	151.34	54.61	77.65	
11	95.79	0	151.60	55.81	79.36	
12	95.59	0	151.67	56.08	79.74	
13	94.56	3.58	151.99	57.43	81.66	
14	94.09	1.77	152.54	58.45	83.11	
15	94.10	0	152.60	58.50	83.19	
100	N/A	-94.52	152.80	0.00	0.00	
200	N/A	-41.43	152.80	0.00	0.00	

Pressure

	Maximum	Daily Dem	and and Fi	re Flow		
	Node 5	5 (HYD) - 100	L/s Fire Dem	and		
Node	Elevation	Demand	Head	Pres	sure	
	(m)	(LPS)	(m)	(m)	(PSI)	
1	94.5	3.93	151.96	57.46	81.71	
2	94.64	4.09	151.23	56.59	80.47	
3(HYD)	94.74	0	150.99	56.25	79.99	
4	95.79	2.44	149.92	54.13	76.97	
5(HYD)	95.75	100	148.94	53.19	75.63	
6	96.38	2.12	149.44	53.06	75.45	
7(HYD)	96.88	0	150.14	53.26	75.73	
8(HYD)	99.64	0	150.56	50.92	72.41	Minimum Pre
9	97.27	0	150.56	53.29	75.78	
10	96.73	1.02	150.73	54.00	76.79	
11	95.79	0	151.10	55.31	78.65	
12	95.59	0	151.21	55.62	79.09	
13	94.56	3.58	151.67	57.11	81.21	
14	94.09	1.77	152.44	58.35	82.97	
15	94.10	0	152.52	58.42	83.07	
100	N/A	-69.61	152.80	0.00	0.00	
200	N/A	-49.34	152.80	0.00	0.00	

ressure

	Maximum	Daily Dem	and and Fi	re Flow		
	Node	7 (HYD) - 83I	_/s Fire Dem	and		
Node	Elevation	Demand	Head	Pres	sure	
	(m)	(LPS)	(m)	(m)	(PSI)	
1	94.5	3.93	152.35	57.85	82.26	
2	94.64	4.09	151.97	57.33	81.52	
3(HYD)	94.74	0	151.86	57.12	81.22	
4	95.79	2.44	151.33	55.54	78.98	
5(HYD)	95.75	0	150.87	55.12	78.38	
6	96.38	2.12	150.40	54.02	76.81	
7(HYD)	96.88	83	149.86	52.98	75.34	
8(HYD)	99.64	0	150.32	50.68	72.07	Minimum Pre
9	97.27	0	150.32	53.05	75.44	
10	96.73	1.02	150.51	53.78	76.47	
11	95.79	0	150.92	55.13	78.39	
12	95.59	0	151.04	55.45	78.85	
13	94.56	3.58	151.55	56.99	81.04	
14	94.09	1.77	152.40	58.31	82.92	
15	94.10	0	152.49	58.39	83.03	
100	N/A	-50.04	152.80	0.00	0.00	1
200	N/A	-51.91	152.80	0.00	0.00]

ressure

	Maximum	Daily Dem	and and Fi	re Flow		
	Node	8 (HYD) - 83L	./s Fire Dem	and		
Node	Elevation	Demand	Head	Pres	sure	
	(m)	(LPS)	(m)	(m)	(PSI)	
1	94.5	3.93	152.4	57.9	82.33	
2	94.64	4.09	152.07	57.43	81.66	
3(HYD)	94.74	0	151.98	57.24	81.39	
4	95.79	2.44	151.52	55.73	79.25	
5(HYD)	95.75	0	151.13	55.38	78.75	
6	96.38	2.12	150.73	54.35	77.28	
7(HYD)	96.88	0	150.27	53.39	75.92	
8(HYD)	99.64	83	147.80	48.16	68.48	Minimum Pressure
9	97.27	0	150.00	52.73	74.98	
10	96.73	1.02	150.21	53.48	76.05	
11	95.79	0	150.68	54.89	78.05	
12	95.59	0	150.82	55.23	78.54	
13	94.56	3.58	151.40	56.84	80.82	
14	94.09	1.77	152.36	58.27	82.86	
15	94.10	0	152.46	58.36	82.99	
100	N/A	-46.76	152.80	0.00	0.00	
200	N/A	-55.19	152.80	0.00	0.00	

	Maximum	Daily Dem	and and Fi	re Flow		
	Node 1	2 (HYD) - 83	L/s Fire Dem	nand		1
Node	Elevation	Demand	Head	Pres	sure	1
	(m)	(LPS)	(m)	(m)	(PSI)	
1	94.5	3.93	152.48	57.98	82.45	
2	94.64	4.09	152.23	57.59	81.89	
3(HYD)	94.74	0	152.16	57.42	81.65	
4	95.79	2.44	151.82	56.03	79.67	
5(HYD)	95.75	0	151.53	55.78	79.32	
6	96.38	2.12	151.23	54.85	78.00	
7(HYD)	96.88	0	150.90	54.02	76.81	
8(HYD)	99.64	0	150.70	51.06	72.61	Minimum Pr
9	97.27	0	150.70	53.43	75.98	
10	96.73	1.02	150.62	53.89	76.63	
11	95.79	0	150.47	54.68	77.75	
12	95.59	83	150.42	54.83	77.97	
13	94.56	3.58	151.12	56.56	80.43	
14	94.09	1.77	152.27	58.18	82.73	
15	94.10	0	152.39	58.29	82.89	_
100	N/A	-41.3	152.80	0.00	0.00	
200	N/A	-60.65	152.80	0.00	0.00	

ressure

	Maximum	Daily Dem	and and Fi	re Flow		
	Node 1	I5 (HYD) - 67	L/s Fire Dem	nand		
Node	Elevation	Demand	Head	Pres	sure	
	(m)	(LPS)	(m)	(m)	(PSI)	
1	94.5	3.93	152.7	58.2	82.76	
2	94.64	4.09	152.64	58.00	82.47	
3(HYD)	94.74	0	152.63	57.89	82.32	
4	95.79	2.44	152.56	56.77	80.73	
5(HYD)	95.75	0	152.52	56.77	80.73	
6	96.38	2.12	152.47	56.09	79.76	
7(HYD)	96.88	0	152.43	55.55	78.99	
8(HYD)	99.64	0	152.41	52.77	75.04	Minimum Pressure
9	97.27	0	152.41	55.14	78.41	
10	96.73	1.02	152.40	55.67	79.16	
11	95.79	0	152.38	56.59	80.47	
12	95.59	0	152.38	56.79	80.75	
13	94.56	3.58	152.36	57.80	82.19	
14	94.09	1.77	152.35	58.26	82.84	
15	94.10	67	152.35	58.25	82.83	
100	N/A	-21.8	152.80	0.00	0.00	
200	N/A	-64.15	152.80	0.00	0.00	

	PEAK HOUR					
Node	Elevation	Demand	Head	Pres	sure	
	(m)	(LPS)	(m)	(m)	(PSI)	
1	94.5	8.62	144.59	50.09	71.23	
2	94.64	8.98	144.54	49.90	70.96	
3(HYD)	94.74	0.00	144.54	49.80	70.81	
4	95.79	5.37	144.53	48.74	69.31	
5(HYD)	95.75	0.00	144.53	48.78	69.36	
6	96.38	4.66	144.53	48.15	68.47	
7(HYD)	96.88	0.00	144.53	47.65	67.76	
8(HYD)	99.64	0.00	144.54	44.90	63.85	
9	97.27	0.00	144.54	47.27	67.22	
10	96.73	2.25	144.54	47.81	67.98	
11	95.79	0.01	144.55	48.76	69.34	
12	95.59	0.00	144.55	48.96	69.62	
13	94.56	7.87	144.57	50.01	71.11	
14	94.09	3.88	144.65	50.56	71.89	
15	94.10	0.00	144.66	50.56	71.89	
100	N/A	-23.63	144.70	0.00	0.00	
200	N/A	-18.01	144.70	0.00	0.00	

Minimum Pressure

**************************************	******	******** E P A N		******	********	*
*			ater Quali			*
*	•	is tor Pi Version 2	pe Network	S		*
	*****			*******	*****	
Link - Node Ta	able:					
Link	Start	End		Length	Diameter	-
ID	Node	Node		m	mm	
100-1	100	1		25.55	204	-
1-2	1	2		21.81	204	
2-3	2	3(HYD)		5	204	
3-4	3(HYD)	4		43.66	204	
4-5	4	5(HYD)		41.98	204	
5-6	5(HYD)	6		41.61	204	
6-7	6	7(HYD)		54.07	204	
7-9	7(HYD)	9		32.02	204	
8-9	8(HYD)	9		48.32	204	
9-10	9	10		11.22	204	
10-11	10	11		25.59	204	
12	11	12(HYD)		6.57	204	
12-13	12(HYD)	13		33.61	204	
13-14	13	14		51.34	204	
14-15	14	15(HYD)		1	204	
15-200	15(HYD)	200		17.17	204	
Node Results	(Average Day):					_
Node ID	Demand LPS	Head m	Pressure m	Quality		-
1	1.59	157.90	63.40	0.05		-
2	1.65	157.89	63.25	0.13		
_ 3(HYD)	0.00	157.89	63.15	0.17		
4	0.98	157.89	62.10	0.53		
5(HYD)	0.00	157.89	62.14	3.72		
6	0.85	157.89	61.51	2.66		
7(HYD)	0.00	157.89	61.01	1.30		
8(HYD)	0.00	157.89	58.25	72.00		
9	0.00	157.89	60.62	0.90		
10	0.41	157.89	61.16	0.76		
11	0.00	157.89	62.10	0.55		
12	0.00	157.89	62.30	0.50		
13	1.44	157.89	63.33	0.23		
14	0.71	157.90	63.81	0.05		
15	0.00	157.90	63.80	0.05		
100	-4.33	157.90	0.00		Reservoir	
200	-3.29	157.90	0.00		Reservoir	

*	EPANET					
*	Hydraulic and Water Quality					
*	Analy	sis for Pipe M	letworks	*		
*	-	Version 2.2		*		
********	******	**********	*******	******		
Link Results(Average	Day):					
Link	Flow	VelocityUnit	Headloss	Status		
ID	LPS	m/s	m/km			
100-1	4.33	0.13	0.18	Open		
1-2	2.74	0.08	0.09	Open		
2-3	1.10	0.03	0.02	Open		
3-4	1.10	0.03	0.01	Open		
4-5	0.12	0.00	0.00	Open		
5-6	0.12	0.00	0.00	Open		
6-7	-0.73	0.02	0.01	Open		
7-9	-0.73	0.02	0.01	Open		
8-9	0.00	0.00	0.00	Open		
9-10	-0.73	0.02	0.01	Open		
10-11	-1.14	0.03	0.02	Open		
12	-1.14	0.03	0.02	Open		
12-13	-1.14	0.03	0.01	Open		
13-14	-2.58	0.08	0.07	Open		
14-15	-3.29	0.10	0.39	Open		
15-200	-3.29	0.10	0.11	Open		

**************************************	************			**********	********* *		
*	Hydro	E P A N E T Hydraulic and Water Quality					
*	•		pe Networks	/	k k		
*	Analys	Version 2			*		
******	*****		• =	*****	*******		
Node Results	(Max Day + Fire	e Flow- No	de 3-Phase 1	10):			
Node	Demand	Head	Pressure	Quality			
ID	LPS	m	m	Qualley			
1		151 21	 56.81				
1 2	4.09			0.00			
Z 3(HYD)			55.55				
4	2.44		54.01				
4 5(HYD)	0.00		54.38				
. ,	2.12						
6 7(HYD)	0.00	150.46					
• •	0.00	150.94	51.59	0.00			
8(HYD) 9	0.00	151.23	53.96	0.00			
				0.00			
10 11	1.02	151.34					
	0.00 0.00		55.81				
12(HYD) 13			56.08 57.43				
14	3.58 1.77						
15(HYD)	0.00	152.60	58.50	0.00 0.00 Paca	nunin		
100 200	-94.52	152.80 152.80	0.00 0.00	0.00 Rese 0.00 Rese			
200	-41.45	152.00	0.00	0.00 Rese			
Link Results	(Max Day + Fire	e Flow- No	de 3-Phase 1	L0):			
Link	Flow	VelocityU	nit Headloss	s Status			
ID	LPS	m/s	m/km				
 100-1	94.52	2.89	 58.13	Open			
1-2	90.59	2.89	61.72	Open			
2-3	86.51	2.65	91.62	Open			
3-4	-30.49	0.93	6.64	Open			
4-5	-32.93	1.01	7.81	Open			
5-6	-32.93	1.01	8.02	Open			
6-7	-35.05	1.01	8.88	Open			
7-9	-35.05	1.07	8.94	Open			
8-9	0.00	0.00	0.00	Open			
9-10	-35.05	1.07	10.26	Open			
10-11	-36.07	1.10	10.03	Open			
12	-36.08	1.10	10.03	Open			
12-13	-36.08	1.10	9.39	Open			
13-14	-39.66	1.10	9.39 10.74	Open			
14-15	-41.43	1.21	57.04	Open			
15-200	-41.43	1.27	11.73	Open			
1 200	-+1.4)	1.2/		open			

	******			****************				
*	Hydraulic and Water Quality							
<pre>* Analysis for Pipe Networks * Version 2.2 ***********************************</pre>								
Node Results (Max Day + Fire	NO	de 5-Phase a	8): 				
Node			Pressure	Quality				
ID	LPS	m 	m 					
1		151.96		0.00				
2	4.09		56.59					
3(HYD)	0.00			0.00				
4	2.44			0.00				
5(HYD)	100.00			0.00				
6 7(UVD)	2.12 0.00	149.44 150.14		0.00 0.00				
7(HYD)								
8(HYD)		150.56		0.00 0.00				
9	0.00 1.02	150.56						
10 11	0.00	150.73 151.10		0.00 0.00				
	0.00	151.10		0.00				
12(HYD) 13	3.58			0.00				
14	1.77			0.00				
14 15(HYD)	0.00		58.42					
100	-69.61		0.00					
200	-49.34							
200	-7.9-	192.00	0.00					
Link Results (Max Day + Fire	e Flow- No	de 5-Phase 8	8):				
Link	Flow	VelocityU	nit Headlos	s Status				
ID	LPS	m/s	m/km					
100-1	69.61	2.13	32.82	Open				
1-2	65.69	2.01	33.67	Open				
2-3	61.60	1.88	47.60	Open				
3-4	61.60	1.88	24.52	Open				
4-5	59.16	1.81	23.22	Open				
5-6	-40.84	1.25	11.98	Open				
6-7	-42.96	1.31	12.98	Open				
7-9	-42.96	1.31	13.06	Open				
8-9	0.00	0.00	0.00	Open				
9-10	-42.96	1.31	15.04	Open				
10-11	-43.98	1.35	14.54	Open				
12	-43.99	1.35	16.45	Open				
12-13	-43.99	1.35	13.59	Open				
13-14	-47.57	1.46	15.06	Open				
14-15	-49.34	1.51	80.48	Open				
15-200	-49.34	1.51	16.23	Open				

	********			******				
*	EFANEI							
*	Hydraulic and Water Quality							
*	Analysis for Pipe Networks Version 2.2							

Node Results (M								
Node	Demand	 Head	Pressure	Ouality				
ID	LPS	m	m					
1	3.93	152.35	57.85	0.00				
2	4.09	151.97	57.33	0.00				
3(HYD)	0.00			0.00				
4	2.44	151.33	55.54	0.00				
5(HYD)	0.00	150.87	55.12	0.00				
6	2.12	150.40	54.02					
7(HYD)	83.00	149.86	52.98	0.00				
8(HYD)	0.00	150.32	50.68	0.00				
9	0.00	150.32	53.05	0.00				
10	1.02							
11	0.00			0.00				
12(HYD)	0.00	151.04		0.00				
13	3.58			0.00				
14	1.77		58.31					
15(HYD)	0.00		58.39					
100	-50.04		0.00					
200	-51.91	152.80	0.00	0.00 Reservoir				
Link Resultss (Max Day + Fir	e Flow- N	ode 7-Phase	7):				
Link	Flow	VelocityU	nit Headlos	s Status				
ID	LPS	m/s	m/km					
100-1	50.04	1.53	17.72	Open				
1-2	46.11	1.41	17.29	Open				
2-3	42.02	1.29	22.78	Open				
3-4	42.02	1.29	12.04	Open				
4-5	39.58	1.21	10.99	Open				
5-6	39.58	1.21	11.30	Open				
6-7	37.46	1.15	10.05	Open				
7-9	-45.54	1.39	14.55	Open				
8-9	0.00	0.00	0.00	Open				
9-10	-45.54	1.39	16.79	Open				
10-11	-46.56	1.42	16.17	Open				
12	-46.56	1.42	18.32	Open				
12-13	-46.56	1.42	15.11	Open				
13-14	-50.14	1.53	16.61	Open				
14-15	-51.91	1.59	88.98	Open				
15-200	-51.91	1.59	17.84	Open				

******	*****	******	*****	******	**			
*		EPAN	ЕТ		*			
*	Hydraulic and Water Quality							
*	Analysis for Pipe Networks							
* Version 2.2								
*********	*******	*******	*******	*****	**			
Node Results	(Max Day + Fire	e Flow- No	de 8-Phase	4):				
Node			Pressure	Quality				
ID	LPS	m 	m 					
1			57.90					
2	4.09		57.43					
3(HYD)	0.00			0.00				
4	2.44			0.00				
5(HYD)	0.00		55.38	0.00				
6	2.12		54.35					
7(HYD)	0.00		53.39					
8(HYD)	83.00			0.00				
9	0.00							
10	1.02			0.00				
11	0.00			0.00				
12(HYD)	0.00			0.00				
13	3.58							
14	1.77		58.27					
15(HYD)	0.00		58.36					
100	-46.76		0.00					
200	-55.19	152.80	0.00	0.00 Reservoir				
Link Results	(Max Day + Fire	e Flow- No	de 8-Phase	4):				
Link	Flow	VelocityU	nit Headlos	s Status				
ID	LPS	m/s	m/km					
100-1	46.76	1.43	15.61	Open				
1-2	42.83	1.31	15.05	Open				
2-3	38.74	1.19	19.49	Open				
3-4	38.74	1.19	10.36	Open				
4-5	36.30	1.11	9.36	Open				
5-6	36.30	1.11	9.62	Open				
6-7	34.18	1.05	8.48	Open				
7-9	34.18	1.05	8.53	Open				
8-9	-83.00	2.54	45.54	Open				
9-10	-48.82	1.49	19.13	Open				
10-11	-49.84	1.52	18.37	Open				
12	-49.84	1.52	20.83	Open				
12-13	-49.84	1.52	17.15	Open				
13-14	-53.42	1.63	18.69	Open				
14-15	-55.19	1.69	100.40	Open				
15-200	-55.19	1.69	19.99	Open				

**********	*****	******	*****	******	*****			
*		EPAN	ЕТ		*			
*	Hydraulic and Water Quality							
*	Analysis for Pipe Networks							
*	,	Version 2			*			
**********	******	*******	**********	*******	******			
Node Results ((Max Day + Fir	e Flow- No	de 12-Phase	2):				
Node	Demand	Head	Pressure	Quality				
ID	LPS	m 	m					
1	3.93	152.48	57.98	0.00				
2	4.09							
3(HYD)	0.00			0.00				
4	2.44			0.00				
5(HYD)	0.00	151.53		0.00				
6	2.12	151.23						
7(HYD)	0.00							
8(HYD)	0.00							
9	0.00			0.00				
10	1.02			0.00				
11	0.00			0.00				
12(HYD)	83.00	150.42	54.83	0.00				
13	3.58	151.12	56.56	0.00				
14	1.77	152.27	58.18	0.00				
15(HYD)	0.00	152.39	58.29	0.00				
100	-41.30	152.80	0.00	0.00	Reservoir			
200	-60.65	152.80	0.00	0.00	Reservoir			
Link Results ((Max Day + Fir	e Flow- No	de 12-Phase	2):				
Link	Flow	VelocityU	nit Headloss	s Stat	 cus			
ID	LPS	m/s	m/km					
100-1	41.30	1.26	12.38	Open				
1-2	37.37	1.14	11.64	0pen				
2-3	33.28	1.02	14.55	Open				
3-4	33.28	1.02	7.81	Open				
4-5	30.84	0.94	6.91	Open				
5-6	30.84	0.94	7.10	Open				
6-7	28.72	0.88	6.13	Open				
7-9	28.72	0.88	6.17	0pen				
8-9	0.00	0.00	0.00	Open				
9-10	28.72	0.88	7.05	0pen				
10-11	27.70	0.85	6.12	Open				
12	27.70	0.85	6.88	Open				
12-13	-55.30	1.69	20.82	0pen				
13-14	-58.88	1.80	22.39	0pen				
14-15	-60.65	1.86	120.92	0pen				
15-200	-60.65	1.86	23.82	0pen				

*****	******	<*******	*****	******	*****			
*	EPANET							
*	Hydraulic and Water Quality							
*	Analysis for Pipe Networks							
* Version 2.2								
***********	********	*******	*********	******	******			
Node Results (N	Max Day + Fire	e Flow- No	de 15-Phase	1):				
Node			Pressure	Quality				
ID	LPS	m 	m 					
1		152.70						
2	4.09							
3(HYD)	0.00			0.00				
4	2.44			0.00				
5(HYD)	0.00			0.00				
6	2.12							
7(HYD)	0.00							
8(HYD)	0.00							
9	0.00							
10	1.02			0.00				
11	0.00	152.38		0.00				
12(HYD)	0.00	152.38		0.00				
13	3.58			0.00				
14	1.77							
15(HYD)	67.00							
100	-21.80		0.00		Reservoir			
200	-64.15	152.80	0.00	0.00	Reservoir			
Link Results (N	Max Day + Fire	e Flow- No	de 15-Phase	1):				
Link	Flow	VelocityU	nit Headloss	s Stat	tus			
ID	LPS	m/s	m/km					
100-1	21.80		3.76	Open				
1-2	17.87	0.55	2.91	0pen				
2-3	13.78	0.42	2.67	0pen				
3-4	13.78	0.42	1.52	0pen				
4-5	11.34	0.35	1.07	0pen				
5-6	11.34	0.35	1.10	0pen				
6-7	9.22	0.28	0.74	0pen				
7-9	9.22	0.28	0.74	0pen				
8-9	0.00	0.00	0.00	0pen				
9-10	9.22	0.28	0.83	0pen				
10-11	8.20	0.25	0.63	0pen				
12	8.20	0.25	0.69	0pen				
12-13	8.20	0.25	0.59	0pen				
13-14	4.62	0.14	0.20	0pen				
14-15	2.85	0.09	0.30	0pen				
15-200	-64.15	1.96	26.44	0pen				

*		EPANET						
*	Hydraulic and Water Quality							
*	Analysis for Pipe Networks Version 2.2							
VEFSION 2.2 ***********************************								
	(PEAK HOUR):							
	Dowond							
Node ID	LPS	meau	Pressure m	Quality				
 1	8.62	 1 <i>4</i> 4 59	50.09	а оо				
2	8.98		49.90					
- 3(HYD)	0.00			0.00				
4	5.37			0.00				
5(HYD)	0.00	144.53		0.00				
5	4.66		48.15	0.00				
7(HYD)	0.00		47.65					
B(HYD)	0.00		44.90					
9	0.00		47.27					
10	2.25	144.54	47.81	0.00				
11	0.01	144.55	48.76	0.00				
12	0.00	144.55	48.96	0.00				
L3	7.87	144.57	50.01	0.00				
L4	3.88	144.65	50.56	0.00				
15	0.00	144.66	50.56	0.00				
L00	-23.63	144.70	0.00	0.00	Reservoir			
200	-18.01	144.70	0.00	0.00	Reservoir			
ink Results	(PEAK HOUR):							
_ink	Flow	VelocityU	nit Headlos	s Stat	tus			
ID	LPS	m/s	m/km					
L00-1	23.63	0.72	4.37	Open				
L-2	15.01	0.46	2.09	0pen				
2-3	6.04	0.18	0.55	0pen				
3-4	6.04	0.18	0.33	0pen				
1-5	0.67	0.02	0.01	0pen				
5-6	0.67	0.02	0.01	0pen				
5-7	-4.00	0.12	0.16	0pen				
7-9	-4.00	0.12	0.16	0pen				
8-9	0.00	0.00	0.00	0pen				
9-10	-4.00	0.12	0.17	0pen				
L0-11	-6.24	0.19	0.38	0pen				
12	-6.25	0.19	0.42	0pen				
12-13	-6.25	0.19	0.36	0pen				
13-14	-14.12	0.43	1.58	0pen				
14-15	-18.01	0.55	11.05	0pen				
15-200	-18.01	0.55	2.49	0pen				

<u>C</u>	ALCULATED WATER DEMNADS
Conne	ection 3 - (Baseline Road) [Phase 6]
<u>Water Demands</u> Average Day (Maximum HGL)= Maximum Day = Peak Hour (Minimum HGL) = Fire Flow (FUS) =	6.01 L/s
City of Ottawa Boundary Condition	<u>IS:</u>
Bounday conditions based on connec	tion to 400mm dia. Watermain in Baseline Road
Average Day (Maximum HGL)= Peak Hour (Minimum HGL) = Max Day + Fire =	
<u>Watermain Analysis</u>	
Water Entry Elevation =	98.44 m
High Pressure Test = Max. HGL -Wat High Pressure =	ter Entry Elevation x 1.42197 PSI/m < 80 PSI 49.14 PSI
Low Pressure Test = Min. HGL - Wate Low Pressure =	er Entry Elevation x 1.42197 PSI/m > 40 PSI 37.63 PSI
Max Day + Fire Test = Max Day + Fire Max Day + Fire =	e Flow - Water Entry Elevation x 1.42197 PSI/m > 20 PSI 41.32 PSI

CALCULATED WATER DEMNADS				
<u>Connect</u>	<u>ion 4 - (Baseline Road) [Phase 4]</u>			
<u>Water Demands</u> Average Day (Maximum HGL)= Maximum Day = Peak Hour (Minimum HGL) = Fire Flow (FUS) =	1.16 L/s 2.89 L/s 6.35 L/s 100.00 L/s			
City of Ottawa Boundary Conditions:				
Bounday conditions based on connectior	n to 400mm dia. Watermain in Baseline Road			
Average Day (Maximum HGL)= Peak Hour (Minimum HGL) = Max Day + Fire =	133 m 124.9 m 127.4 m			
<u>Watermain Analysis</u>				
Water Entry Elevation	99.79 m			
High Pressure Test = Max. HGL -Water I High Pressure =	Entry Elevation x 1.42197 PSI/m < 80 PSI 47.22 PSI			
Low Pressure Test = Min. HGL - Water E Low Pressure =	Entry Elevation x 1.42197 PSI/m > 40 PSI 35.71 PSI			
Max Day + Fire Test = Max Day + Fire F Max Day + Fire =	low - Water Entry Elevation x 1.42197 PSI/m > 20 PSI 39.26 PSI			

<u>CA</u>	LCULATED WATER DEMNADS
Conne	<u>ction 5 - (Baseline Road) [Phase 5]</u>
<u>Water Demands</u> Average Day (Maximum HGL)= Maximum Day = Peak Hour (Minimum HGL) = Fire Flow (FUS) =	1.39 L/s 3.46 L/s 7.61 L/s 133.00 L/s
City of Ottawa Boundary Conditions	<u>.</u>
Bounday conditions based on connecti	on to 400mm dia. Watermain in Baseline Road
Average Day (Maximum HGL)= Peak Hour (Minimum HGL) = Max Day + Fire =	133 m 124.9 m 127.2 m
<u>Watermain Analysis</u>	
Water Entry Elevation =	98.80 m
High Pressure Test = Max. HGL -Wate High Pressure =	r Entry Elevation x 1.42197 PSI/m < 80 PSI 48.63 PSI
Low Pressure Test = Min. HGL - Water Low Pressure =	Entry Elevation x 1.42197 PSI/m > 40 PSI 37.11 PSI
Max Day + Fire Test = Max Day + Fire Max Day + Fire =	Flow - Water Entry Elevation x 1.42197 PSI/m > 20 PSI 40.38 PSI

Appendix F Servicing Study Guidelines Checklist

4.1 General Content	Addressed (Y/N/NA)	Section	Comments
Executive Summary (for larger reports only).	NA		
Date and revision number of the report.	Y	COVER	COVER 2
Location map and plan showing municipal address, boundary, and layout of proposed development.	Y	DWGS	ALL DRAWINGS
Plan showing the site and location of all existing services.	Y	DWG	GP
Development statistics, land use, density, adherence to zoning and official plan, and reference to applicable subwatershed and watershed plans that provide context to which individual developments must adhere.	Y	1.0	INTRODUCTION
Summary of Pre-consultation Meetings with City and other approval agencies.	Y	APP A	
Reference and confirm conformance to higher level studies and reports (Master Servicing Studies, Environmental Assessments, Community Design Plans), or in the case where it is not in conformance, the proponent must provide justification and develop a defendable design criteria.	Y	REPORT	ALL SECTIONS
Statement of objectives and servicing criteria.	Y	REPORT	SECTION 3,4,5
Identification of existing and proposed infrastructure available in the immediate area.	Y	DWG	GP
Identification of Environmentally Significant Areas, watercourses and Municipal Drains potentially impacted by the proposed development (Reference can be made to the Natural Heritage Studies, if available).	NA		
Concept level master grading plan to confirm existing and proposed grades in the development. This is required to confirm the feasibility of proposed stormwater management and drainage, soil removal and fill constraints, and potential impacts to neighboring properties. This is also required to confirm that the proposed grading will not impede existing major system flow paths.	Y	DWG	GR

4.1 General Content	Addressed (Y/N/NA)	Section	Comments
Identification of potential impacts of proposed piped services on private services (such as wells and septic fields on adjacent lands) and mitigation required to address potential impacts.	NA		
Proposed phasing of the development, if applicable.	Y	REPORT	FIGURE 4
Reference to geotechnical studies and recommendations concerning servicing.	Y	2/DWG	SECTION 2 AND GR/GP
All preliminary and formal site plan submissions should have the following information:			
Metric scale	Y		ALL DRAWINGS
North arrow (including construction North)	Y		ALL DRAWINGS
Key plan	Y		ALL DRAWINGS
Name and contact information of applicant and property owner	Y		DRAWINGS/REPORT SECTION 1
Property limits including bearings and dimensions	Y		REPORT
Existing and proposed structures and parking areas	Y		ALL DRAWINGS
Easements, road widening and rights-of-way	Y		ALL DRAWINGS
Adjacent street names	Y		ALL DRAWINGS

4.2 Water	Addressed (Y/N/NA)	Section	Comments
Confirm consistency with Master Servicing Study, if available.	NA		
Availability of public infrastructure to service proposed development.	Y	2 TO 4	DWG GP
Identification of system constraints.	NA		
Identify boundary conditions.	Y	5.0	REPORT
Confirmation of adequate domestic supply and pressure.	Y	5.0	REPORT
Confirmation of adequate fire flow protection and confirmation that fire flow is calculated as per the Fire Underwriter's Survey. Output should show available fire flow at locations throughout the development.	Y	5.0	APPENDIX D
Provide a check of high pressures. If pressure is found to be high, an assessment is required to confirm the application of pressure reducing valves.	Y	5.1	REPORT
Definition of phasing constraints. Hydraulic modeling is required to confirm servicing for all defined phases of the project including the ultimate design.	Y	4.0	REPORT
Address reliability requirements such as appropriate location of shut-off valves.	Y	DWGS	GP
Check on the necessity of a pressure zone boundary modification.	Y	5.0	REPORT/APPENDIX D
Reference to water supply analysis to show that major infrastructure is capable of delivering sufficient water for the proposed land use. This includes data that shows that the expected demands under average day, peak hour and fire flow conditions provide water within the required pressure range.	Y	5.0	REPORT/APPENDIX D
Description of the proposed water distribution network, including locations of proposed connections to the existing system, provisions for necessary looping, and appurtenances (valves, pressure reducing valves, valve chambers, and fire hydrants) including special metering provisions.	Y	5.0	REPORT/GP
Description of off-site required feedermains, booster pumping stations, and other water infrastructure that will be ultimately required to service proposed development, including financing, interim facilities, and timing of implementation.	Y	3.0	REPORT/APPENDIX B
Confirmation that water demands are calculated based on the City of Ottawa Design Guidelines.	Y	REPORT	APPENDIX B-D
Provision of a model schematic showing the boundary conditions locations, streets, parcels, and building locations for reference.	Y	REPORT	APPENDIX D

4.3 Wastewater	Addressed (Y/N/NA)	Section	Comments
Summary of proposed design criteria (Note: Wet-weather flow criteria should not deviate from the City of Ottawa Sewer Design Guidelines. Monitored flow data from relatively new infrastructure cannot be used to justify capacity requirements for proposed infrastructure).	Y	3 TO 5	APPENDIX B-D
Confirm consistency with Master Servicing Study and/or justifications for deviations.	NA		
Consideration of local conditions that may contribute to extraneous flows that are higher than the recommended flows in the guidelines. This includes groundwater and soil conditions, and age and condition of sewers.	Y	3.0	APPENDIX B
Description of existing sanitary sewer available for discharge of wastewater from proposed development.	Y	3.0	GP
Verify available capacity in downstream sanitary sewer and/or identification of upgrades necessary to service the proposed development. (Reference can be made to previously completed Master Servicing Study if applicable)	Y	REPORT	APPENDIX B
Calculations related to dry-weather and wet-weather flow rates from the development in standard MOE sanitary sewer design table (Appendix 'C') format.	NA		
Description of proposed sewer network including sewers, pumping stations, and forcemains.	Y	3 TO 5	REPORT
Discussion of previously identified environmental constraints and impact on servicing (environmental constraints are related to limitations imposed on the development in order to preserve the physical condition of watercourses, vegetation, soil cover, as well as protecting against water quantity and quality).	NA		
Pumping stations: impacts of proposed development on existing pumping stations or requirements for new pumping station to service development.	NA		
Forcemain capacity in terms of operational redundancy, surge pressure and maximum flow velocity.	NA		
Identification and implementation of the emergency overflow from sanitary pumping stations in relation to the hydraulic grade line to protect against basement flooding.	NA		
Special considerations such as contamination, corrosive environment etc.	NA		

4.4 Stormwater	Addressed (Y/N/NA)	Section	Comments
Description of drainage outlets and downstream constraints including legality of outlet (i.e. municipal drain, right-of-way, watercourse, or private property).	Y	3 TO 5	REPORT, GP
Analysis of the available capacity in existing public infrastructure.	Y	REPORT	APPENDIX B
A drawing showing the subject lands, its surroundings, the receiving watercourse, existing drainage patterns and proposed drainage patterns.	Y	DWG'S	GR, STM
Water quantity control objective (e.g. controlling post- development peak flows to pre-development level for storm events ranging from the 2 or 5 year event (dependent on the receiving sewer design) to 100 year return period); if other objectives are being applied, a rationale must be included with reference to hydrologic analyses of the potentially affected subwatersheds, taking into account long-term cumulative effects.	Y	4.0	APPENDIX C
Water Quality control objective (basic, normal or enhanced level of protection based on the sensitivities of the receiving watercourse) and storage requirements.	Y	4.0	APPENDIX C
Description of stormwater management concept with facility locations and descriptions with references and supporting information.	Y	4.0	APPENDIX C
Set-back from private sewage disposal systems.	NA		
Watercourse and hazard lands setbacks.	NA		
Record of pre-consultation with the Ontario Ministry of Environment and the Conservation Authority that has jurisdiction on the affected watershed.	N/A		
Confirm consistency with sub-watershed and Master Servicing Study, if applicable study exists.	Ν		
Storage requirements (complete with calcs) and conveyance capacity for 5 yr and 100 yr events.	Y		APPENDIX D
Identification of watercourse within the proposed development and how watercourses will be protected, or, if necessary, altered by the proposed development with applicable approvals.	NA		
Calculate pre and post development peak flow rates including a description of existing site conditions and proposed impervious areas and drainage catchments in comparison to existing conditions.	Y	4.0	APPENDIX D
Any proposed diversion of drainage catchment areas from one outlet to another.	NA		
Proposed minor and major systems including locations and sizes of stormwater trunk sewers, and SWM facilities.	Y	DWG	GP
If quantity control is not proposed, demonstration that downstream system has adequate capacity for the post- development flows up to and including the 100-year return period storm event.	Y	REPORT	APPENDIX D

4.4 Stormwater	Addressed (Y/N/NA)	Section	Comments
Identification of municipal drains and related approval requirements.	NA		
Description of how the conveyance and storage capacity will be achieved for the development.	Y	4.0	APPENDIX D
100 year flood levels and major flow routing to protect proposed development from flooding for establishing minimum building elevations (MBE) and overall grading.	Y	4.0	APPENDIX D
Inclusion of hydraulic analysis including HGL elevations.	Y	4.0	APPENDIX D
Description of approach to erosion and sediment control during construction for the protection of receiving watercourse or drainage corridors.	Y	DWG	ESC
Identification of floodplains – proponent to obtain relevant floodplain information from the appropriate Conservation Authority. The proponent may be required to delineate floodplain elevations to the satisfaction of the Conservation Authority if such information is not available or if information does not match current conditions.	N/A		
Identification of fill constrains related to floodplain and geotechnical investigation.	Y	2.0	REPORT

4.5 Approval and Permit Requirements	Addressed (Y/N/NA)	Section	Comments
Conservation Authority as the designated approval agency for modification of floodplain, potential impact on fish habitat, proposed works in or adjacent to a watercourse, cut/fill permits and Approval under Lakes and Rivers Improvement Act. The Conservation Authority is not the approval authority for the Lakes and Rivers Improvement Act. Where there are Conservation Authority regulations in place, approval under the Lakes and Rivers Improvement Act is not required, except in cases of dams as defined in the Act.	NA		
Application for Certificate of Approval (CofA) under the Ontario Water Resources Act.	NA		
Changes to Municipal Drains.	NA		
Other permits (National Capital Commission, Parks Canada, Public Works and Government Services Canada, Ministry of Transportation etc.)	NA		

4.6 Conclusion	Addressed (Y/N/NA)	Section	Comments
Clearly stated conclusions and recommendations.	Y	6.0	REPORT
Comments received from review agencies including the City of Ottawa and information on how the comments were addressed. Final sign-off from the responsible reviewing agency.	NA		
All draft and final reports shall be signed and stamped by a professional Engineer registered in Ontario.	Y	ALL	ALL DWGS, REPORT