

J+B ENGINEERING INC. WWW.JANDB-INC.COM

STORMWATER MANAGEMENT REPORT

FOR THE PROPERTY LOCATED AT

8605 PROMENADE CAMPEAU DRIVE, OTTAWA, ON

Prepared By:

J+B Engineering Inc. 25 Centurian Drive, Suite 201 Markham, Ontario L3R 5N8

December 18, 2020

Stormwater Management Study

Table of Contents

1.	INTRODUCTION	3
1.1	Study Area	3
1.2	Objectives of Drainage and Stormwater Management Study	3
2.	EXISTING SITE DRAINAGE CONDITIONS	4
3.	PROPOSED STORMWATER MANAGEMENT PLAN	4
3.1	Quantity Control	4
3.2	Quality Control	5
4.	SUMMARY AND CONCLUSIONS	6
Арре	ndix	7

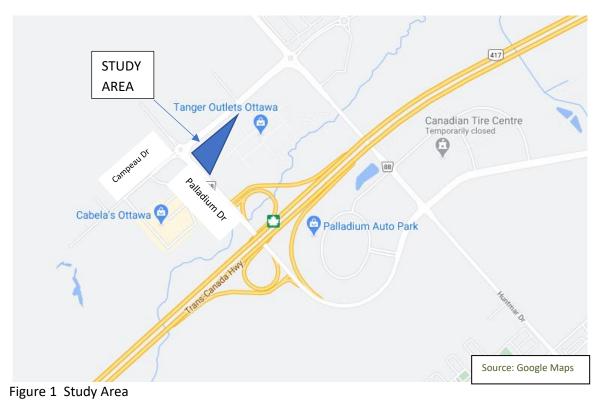
Table 1: Provided Storage Volume based on 100 Year Event	5

Figure 1 Study Area	3
---------------------	---

1. INTRODUCTION

1.1 Study Area

The subject property is located at the south-east corner of Campeau Drive & Palladium Drive, Ottawa ON. The civic address for this property is 8605 Campeau Drive, Ottawa and is shown in FIGURE 1.


The proposed development will consist of two commercial buildings with associated drive-thru and a retail gas station and are described as follows:

- Commercial building 1: C-store + A&W restaurant and associated drive-thru
- Commercial building 2: commercial space and associated drive-thru. Tenant not yet selected.
- Retail Gas Station: fuel dispensers, underground tanks and canopy

1.2 Objectives of Drainage and Stormwater Management Study

The objectives of the stormwater management study are to develop a strategy for the project that will:

- Identify potential stormwater runoff impacts to the receiving watercourses from the proposed development area.
- Address concerns from the review agencies including the City of Ottawa and the Ministry of Environment (MOE) for the preparation of a Stormwater Management study for quantity & quality purposes.
- Provide an appropriate site drainage system for safe operational use.

2. EXISTING SITE DRAINAGE CONDITIONS

The subject property is approximately 1.18ha in size and is currently undeveloped with no storm infrastructure in place. Based on existing topography, the site drains in the south east direction into an existing conveyance swale and eventually towards the Tanger Mall Outlet parking lot.

According to the Design Brief - Kanata West Business Park (KWBP) – Phase 5, 425 Huntmar Drive report prepared by IBI, the subject property is part of the overall development and is identified as Block 135A (Table 4.2) with a contribution area of 1.12 ha with an established allowable release rate of 257 L/s and required storage of 111m³. This parcel is designed to discharge to Pond 6 East (Figure 1 of KWBP – Phase 5 Design Brief) located to the east of the Tanger Mall Outlet and will provide both quantity and quality treatment.

3. PROPOSED STORMWATER MANAGEMENT PLAN

3.1 Quantity Control

Considering the proposed development is approximately $\sim 5\%$ larger in size 1.18ha when compared the KWBP Design Brief, in which Block 135A was based on 1.12ha, we have increased the required storage by 5% to 116.55m³ and maintained the same allowable release rate.

To achieve the required-on site storage, an orifice pipe is provided by utilizing the following formula:

$$Q = C A \sqrt{2 g h} \leftarrow Equation (2)$$

Where $Q := Flow$ Rate Through Orifice $(m^3/sec) = Q_{Allowable}$
 $C := Contraction Coefficient = 0.60 (For Orifice Plate)$
 $A := Area of Orifice Plate (m^2)$
 $g := Acceleration Due To Gravity (m/sec^2) = 9.81 (m/sec^2)$
 $h := Pressure Head To Be Dissipated (m)$

By trial and error calculations, and setting the maximum ponding elevation at 102.90, a 200mm orifice pipe is required to control the flow to below the allowable release rate of $0.257 \text{ m}^3/\text{s}$.

$$Q = \frac{(0.80)\pi \left(\frac{0.200}{2}\right)^2}{\sqrt{2 * 9.81 * \left(103.20 - 100.18 - \left(\frac{0.200}{2}\right)\right)}}$$
$$Q = 0.1902 \text{ m}^3/\text{sec} < 0.257 \text{ m}^3/\text{sec}$$

The 200mm orifice tube will create a total of 140.37m³ of storage within the subject property utilizing a combination of surface ponding and storm infrastructure which is summarize in the following table.

4

	Diameter	Area	Maximum.	Invert	Volume
			Water level		
Structure	(mm)	(m ²)			(m ³)
CB#01	600x600	0.36	103.20	101.45	0.63
CB#02	600x600	0.36	103.20	101.03	0.78
CB#03	600x600	0.36	102.90	101.00	0.68
CB.MH#01	1200.00	1.13	103.20	101.16	2.31
CB.MH#02	1200.00	1.13	103.20	100.84	2.67
CB.MH#03	1200.00	1.13	103.20	100.55	3.00
STM.MH#01	1200.00	1.13	103.18	100.18	3.39
Sum					13.46

	Diameter	Area	Length	Volume
U/G Conduit	(m)	(m ²)	(m)	(m ³)
1	150.00	0.02	106.50	1.88
2	250.00	0.05	153.50	7.53
Sum				9.42

Surface ponding	
Ponding Area 1	84.87
Ponding Area 2	32.62
Total Surface Ponding	117.49

Storage Volume For 100-Year Even	Storage Volume For 100-Year Event (m ³)						
Catch Basins & Manholes	13.46						
Surface Ponding	117.49						
Underground Pipes	9.42						
Total Provided	140.37						

Table 1: Provided Storage Volume based on 100 Year Event

Therefore, the 200mm orifice tube will control the release rate of the site to $0.1902m^3$ /s which is lower than the allowable rel ease rate of $0.257m^3$ /s and will be providing $140.37m^3$ of storage is more than the required storage of $116.55m^3$.

3.2 Quality Control

For quality control purposes, a Stormceptor EFO8 is placed at the outlet of the storm system prior to discharge into the existing municipal storm system on Campeau Drive. The EFO8 is sized for the full development of the property which has a contribution area of 1.18ha and imperviousness 70%. The EFO8 is projected to remove approximately 84% of TSS and treat 99% of runoff as per pg. 5 of STC sizing report located in the Appendix.

5

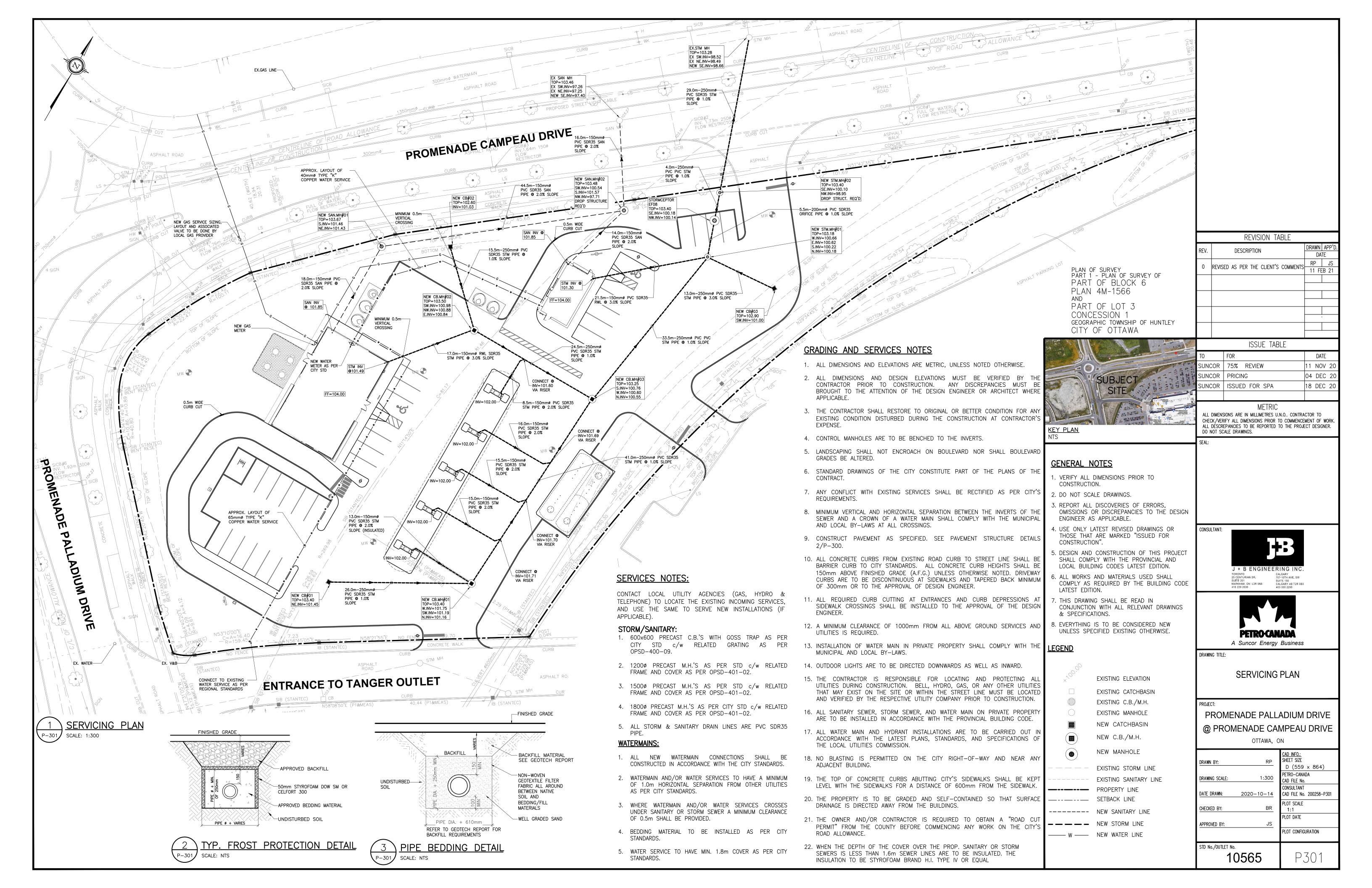

4. SUMMARY AND CONCLUSIONS

In summary, all required conditions for the City of Ottawa have been satisfied as follows:

- There is no increase in Stormwater flow from the Site and within the established allowable release rate as per the KWBP Design Brief.
- The SWM facilities provide ENHANCED LEVEL of protection.
- The proposed development will not have adverse affects on adjacent properties.

This SWM Report satisfies all requirements for stormwater quantity & quality control.

James Sam, P.Eng Tel (416) 229-2636 ext 205 Fax (416) 226-6965 j.sam@jandb-inc.com


8605 Campeau Drive Ottawa, ON

Stormwater Management Study

Appendix site servicing plan stormceptor efo8 tank

MARKHAM (HEAD OFFICE 25 CENTURIAN DR, SUITE 201, MARKHAM, ON L3R 5N8 T: 416 229 2636 F: 416 229 6965 7

ince:	Ontario	Project Name	: Kanata			
y:	Ottawa	Project Numb	er: 200258			
earest Rainfall Station:	OTTAWA MACDONALD-CAR	RTIER Designer Nam	ne: Binay Rajbhan	Binay Rajbhandari		
	INT'L AP	Designer Com	npany: J+B Engineerir	ıg		
ICDC Rainfall Station Id:	6000	Designer Ema	il: b.rajbhandari(@jandb-inc.com		
ears of Rainfall Data:	37	Designer Pho	ne: 416-229-2636			
	PCOE Dromonado Composiu	EOR Name:				
Site Name:	8605 Promenade Campeau	EOR Company	y:			
Drainage Area (ha):	1.18	EOR Email:				
Runoff Coefficient 'c':	0.69	EOR Phone:				
Particle Size Distribution: Fine				nual Sediment		
Target TSS Removal (%):	80.0			ad Reduction		
Required Water Quality Run	off Volume Capture (%):	90.00	Sizin	g Summary		
Required Water Quality Runoff Volume Capture (%): Estimated Water Quality Flow Rate (L/s):		29.43	Stormcept			
· · · · · · · · · · · · · · · · · · ·			Model	Provided (%		
Oil / Fuel Spill Risk Site?		Yes	EFO4	69		
Upstream Flow Control?		No	EFO6	79		
Peak Conveyance (maximum) Flow Rate (L/s):		EFO8	84		
Site Sediment Transport Rate	(ka/ba/wa):		EFO10	87		
	- (Ng/11d/y1).		EFO12	89		
		Recomme	ended Stormceptor E	FO Model: E		
	Estimate	ed Net Annual Sedir	ment (TSS) Load Red	uction (%):		
		Water Ouali	ty Runoff Volume Ca	apture (%): 💦		
		-	•	• • •		

THIRD-PARTY TESTING AND VERIFICATION

► Stormceptor® EF and Stormceptor® EFO are the latest evolutions in the Stormceptor® oil-grit separator (OGS) technology series, and are designed to remove a wide variety of pollutants from stormwater and snowmelt runoff. These technologies have been third-party tested in accordance with the Canadian ETV Procedure for Laboratory Testing of Oil-Grit Separators and performance has been third-party verified in accordance with the ISO 14034 Environmental Technology Verification (ETV) protocol.

PERFORMANCE

► Stormceptor® EF and EFO remove stormwater pollutants through gravity separation and floatation, and feature a patentpending design that generates positive removal of total suspended solids (TSS) throughout each storm event, including highintensity storms. Captured pollutants include sediment, free oils, and sediment-bound pollutants such as nutrients, heavy metals, and petroleum hydrocarbons. Stormceptor is sized to remove a high level of TSS from the frequent rainfall events that contribute the vast majority of annual runoff volume and pollutant load. The technology incorporates an internal bypass to convey excessive stormwater flows from high-intensity storms through the device without resuspension and washout (scour) of previously captured pollutants. Proper routine maintenance ensures high pollutant removal performance and protection of downstream waterwavs.

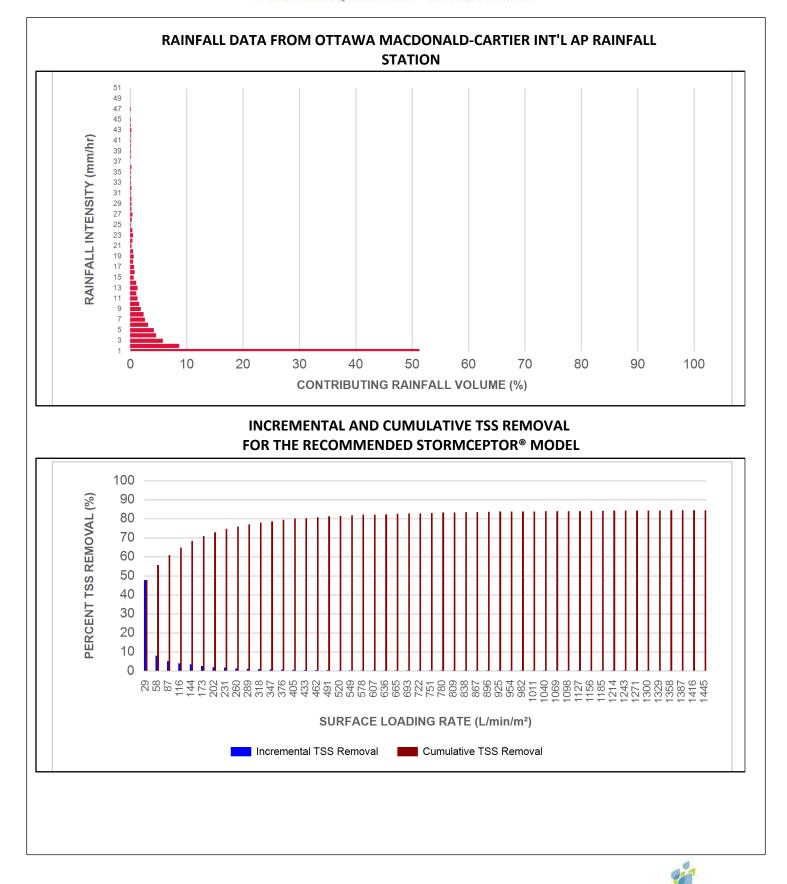
PARTICLE SIZE DISTRIBUTION (PSD)

► The **Canadian ETV PSD** shown in the table below was used, or in part, for this sizing. This is the identical PSD that is referenced in the Canadian ETV **Procedure for Laboratory Testing of Oil-Grit Separators** for both sediment removal testing and scour testing. The Canadian ETV PSD contains a wide range of particle sizes in the sand and silt fractions, and is considered reasonably representative of the particle size fractions found in typical urban stormwater runoff.

Particle	Percent Less	Particle Size	Percent
Size (µm)	Than	Fraction (µm)	reicent
1000	100	500-1000	5
500	95	250-500	5
250	90	150-250	15
150	75	100-150	15
100	60	75-100	10
75	50	50-75	5
50	45	20-50	10
20	35	8-20	15
8	20	5-8	10
5	10	2-5	5
2	5	<2	5

x

Rainfall Intensity (mm / hr)	Percent Rainfall Volume (%)	Cumulative Rainfall Volume (%)	Flow Rate (L/s)	Flow Rate (L/min)	Surface Loading Rate (L/min/m²)	Removal Efficiency (%)	Incremental Removal (%)	Cumulative Removal (%)
1	51.3	51.3	2.26	136.0	29.0	93	47.7	47.7
2	8.7	60.0	4.53	272.0	58.0	92	8.0	55.7
3	5.8	65.8	6.79	407.0	87.0	89	5.2	60.9
4	4.6	70.4	9.05	543.0	116.0	86	3.9	64.8
5	4.2	74.6	11.32	679.0	144.0	83	3.5	68.3
6	3.2	77.8	13.58	815.0	173.0	79	2.5	70.8
7	2.6	80.4	15.84	951.0	202.0	76	2.0	72.8
8	2.4	82.8	18.11	1086.0	231.0	73	1.8	74.6
9	1.9	84.7	20.37	1222.0	260.0	71	1.3	75.9
10	1.6	86.3	22.63	1358.0	289.0	69	1.1	77.0
11	1.3	87.6	24.90	1494.0	318.0	66	0.9	77.9
12	1.1	88.7	27.16	1630.0	347.0	63	0.7	78.6
13	1.3	90.0	29.43	1766.0	376.0	61	0.8	79.3
14	1.1	91.1	31.69	1901.0	405.0	58	0.6	80.0
15	0.6	91.7	33.95	2037.0	433.0	57	0.3	80.3
16	0.8	92.5	36.22	2173.0	462.0	56	0.5	80.8
17	0.7	93.2	38.48	2309.0	491.0	55	0.4	81.2
18	0.5	93.7	40.74	2445.0	520.0	54	0.3	81.4
19	0.6	94.3	43.01	2580.0	549.0	54	0.3	81.8
20	0.5	94.8	45.27	2716.0	578.0	53	0.3	82.0
21	0.2	95.0	47.53	2852.0	607.0	52	0.1	82.1
22	0.4	95.4	49.80	2988.0	636.0	52	0.2	82.3
23	0.5	95.9	52.06	3124.0	665.0	52	0.3	82.6
24	0.4	96.3	54.32	3259.0	693.0	52	0.2	82.8
25	0.1	96.4	56.59	3395.0	722.0	51	0.1	82.8



Rainfall Intensity (mm / hr)	Percent Rainfall Volume (%)	Cumulative Rainfall Volume (%)	Flow Rate (L/s)	Flow Rate (L/min)	Surface Loading Rate (L/min/m²)	Removal Efficiency (%)	Incremental Removal (%)	Cumulative Removal (%)
26	0.3	96.7	58.85	3531.0	751.0	51	0.2	83.0
27	0.4	97.1	61.11	3667.0	780.0	51	0.2	83.2
28	0.2	97.3	63.38	3803.0	809.0	51	0.1	83.3
29	0.2	97.5	65.64	3938.0	838.0	51	0.1	83.4
30	0.2	97.7	67.90	4074.0	867.0	51	0.1	83.5
31	0.1	97.8	70.17	4210.0	896.0	51	0.1	83.6
32	0.2	98.0	72.43	4346.0	925.0	50	0.1	83.7
33	0.1	98.1	74.69	4482.0	954.0	50	0.1	83.7
34	0.1	98.2	76.96	4617.0	982.0	50	0.1	83.8
35	0.1	98.3	79.22	4753.0	1011.0	50	0.1	83.8
36	0.2	98.5	81.49	4889.0	1040.0	50	0.1	83.9
37	0.0	98.5	83.75	5025.0	1069.0	49	0.0	83.9
38	0.1	98.6	86.01	5161.0	1098.0	49	0.0	84.0
39	0.1	98.7	88.28	5297.0	1127.0	49	0.0	84.0
40	0.1	98.8	90.54	5432.0	1156.0	49	0.0	84.1
41	0.1	98.9	92.80	5568.0	1185.0	48	0.0	84.1
42	0.1	99.0	95.07	5704.0	1214.0	48	0.0	84.2
43	0.2	99.2	97.33	5840.0	1243.0	48	0.1	84.2
44	0.1	99.3	99.59	5976.0	1271.0	47	0.0	84.3
45	0.1	99.4	101.86	6111.0	1300.0	47	0.0	84.3
46	0.0	99.4	104.12	6247.0	1329.0	47	0.0	84.3
47	0.1	99.5	106.38	6383.0	1358.0	47	0.0	84.4
48	0.0	99.5	108.65	6519.0	1387.0	46	0.0	84.4
49	0.0	99.5	110.91	6655.0	1416.0	46	0.0	84.4
50	0.0	99.5	113.17	6790.0	1445.0	45	0.0	84.4
				Estimated Net	Annual Sedim	ent (TSS) Loa	d Reduction =	84 %

Stormceptor[®]EF Sizing Report

Stormceptor[®]EF Sizing Report

Maximum Pipe Diameter / Peak Conveyance											
Stormceptor EF / EFO	· I Model Diameter		Model Diameter Min Angle Inlet / M Outlet Pipes		et Pipe eter	Max Outlet Pipe Diameter		Peak Conveyance Flow Rate			
	(m)	(ft)		(mm)	(in)	(mm)	(in)	(L/s)	(cfs)		
EF4 / EFO4	1.2	4	90	609	24	609	24	425	15		
EF6 / EFO6	1.8	6	90	914	36	914	36	990	35		
EF8 / EFO8	2.4	8	90	1219	48	1219	48	1700	60		
EF10 / EFO10	3.0	10	90	1828	72	1828	72	2830	100		
EF12 / EF012	3.6	12	90	1828	72	1828	72	2830	100		

SCOUR PREVENTION AND ONLINE CONFIGURATION

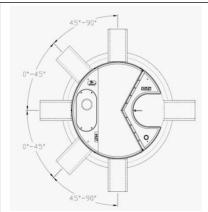
Stormceptor® EF and EFO feature an internal bypass and superior scour prevention technology that have been demonstrated in third-party testing according to the scour testing provisions of the Canadian ETV Procedure for Laboratory Testing of Oil-Grit Separators, and the exceptional scour test performance has been third-party verified in accordance with the ISO 14034 ETV protocol. As a result, Stormceptor EF and EFO are approved for online installation, eliminating the need for costly additional bypass structures, piping, and installation expense.

DESIGN FLEXIBILITY

► Stormceptor[®] EF and EFO offers design flexibility in one simplified platform, accepting stormwater flow from a single inlet pipe or multiple inlet pipes, and/or surface runoff through an inlet grate. The device can also serve as a junction structure, accommodate a 90-degree inlet-to-outlet bend angle, and can be modified to ensure performance in submerged conditions.

OIL CAPTURE AND RETENTION

► While Stormceptor® EF will capture and retain oil from dry weather spills and low intensity runoff, **Stormceptor® EFO** has demonstrated superior oil capture and greater than 99% oil retention in third-party testing according to the light liquid reentrainment testing provisions of the Canadian ETV **Procedure for Laboratory Testing of Oil-Grit Separators**. Stormceptor EFO is recommended for sites where oil capture and retention is a requirement.



x

INLET-TO-OUTLET DROP

Elevation differential between inlet and outlet pipe inverts is dictated by the angle at which the inlet pipe(s) enters the unit.

x

0° - 45° : The inlet pipe is 1-inch (25mm) higher than the outlet pipe.

45° - 90° : The inlet pipe is 2-inches (50mm) higher than the outlet pipe.

HEAD LOSS

The head loss through Stormceptor EF is similar to that of a 60-degree bend structure. The applicable K value for calculating minor losses through the unit is 1.1. For submerged conditions the applicable K value is 3.0.

Pollutant Capacity													
Stormceptor EF / EFO	Model Diameter		Pipe In	epth (Outlet pe Invert to Oil Volume ump Floor)			Sedi	mended ment nce Depth *	Maxiı Sediment ^v		Maximum Sediment Mass **		
	(m)	(ft)	(m)	(ft)	(L)	(Gal)	(mm)	(in)	(L)	(ft³)	(kg)	(lb)	
EF4 / EFO4	1.2	4	1.52	5.0	265	70	203	8	1190	42	1904	5250	
EF6 / EFO6	1.8	6	1.93	6.3	610	160	305	12	3470	123	5552	15375	
EF8 / EFO8	2.4	8	2.59	8.5	1070	280	610	24	8780	310	14048	38750	
EF10 / EFO10	3.0	10	3.25	10.7	1670	440	610	24	17790	628	28464	78500	
EF12 / EFO12	3.6	12	3.89	12.8	2475	655	610	24	31220	1103	49952	137875	

*Increased sump depth may be added to increase sediment storage capacity

** Average density of wet packed sediment in sump = $1.6 \text{ kg/L} (100 \text{ lb/ft}^3)$

Feature	Benefit	Feature Appeals To				
Patent-pending enhanced flow treatment		Regulator, Specifying & Design Engineer				
and scour prevention technology Third-party verified light liquid capture	performance Proven performance for fuel/oil hotspot	Regulator, Specifying & Design Engineer,				
and retention for EFO version	locations	Site Owner				
Functions as bend, junction or inlet structure	Design flexibility	Specifying & Design Engineer				
Minimal drop between inlet and outlet	Site installation ease	Contractor				
Large diameter outlet riser for inspection and maintenance	Easy maintenance access from grade	Maintenance Contractor & Site Owner				

STANDARD STORMCEPTOR EF/EFO DRAWINGS

For standard details, please visit http://www.imbriumsystems.com/stormwater-treatment-solutions/stormceptor-ef STANDARD STORMCEPTOR EF/EFO SPECIFICATION

For specifications, please visit http://www.imbriumsystems.com/stormwater-treatment-solutions/stormceptor-ef

STANDARD PERFORMANCE SPECIFICATION FOR "OIL GRIT SEPARATOR" (OGS) STORMWATER QUALITY TREATMENT DEVICE

PART 1 – GENERAL

1.1 WORK INCLUDED

This section specifies requirements for selecting, sizing, and designing an underground Oil Grit Separator (OGS) device for stormwater quality treatment, with third-party testing results and a Statement of Verification in accordance with ISO 14034 Environmental Management – Environmental Technology Verification (ETV).

1.2 REFERENCE STANDARDS & PROCEDURES

ISO 14034:2016 Environmental management – Environmental technology verification (ETV)

Canadian Environmental Technology Verification (ETV) Program's **Procedure for Laboratory Testing of Oil-Grit Separators**

1.3 SUBMITTALS

1.3.1 All submittals, including sizing reports & shop drawings, shall be submitted upon request with each order to the contractor then forwarded to the Engineer of Record for review and acceptance. Shop drawings shall detail all OGS components, elevations, and sequence of construction.

1.3.2 Alternative devices shall have features identical to or greater than the specified device, including: treatment chamber diameter, treatment chamber wet volume, sediment storage volume, and oil storage volume.

1.3.3 Unless directed otherwise by the Engineer of Record, OGS stormwater quality treatment product substitutions or alternatives submitted within ten days prior to project bid shall not be accepted. All alternatives or substitutions submitted shall be signed and sealed by a local registered Professional Engineer, based on the exact same criteria detailed in Section 3, in entirety, subject to review and approval by the Engineer of Record.

PART 2 – PRODUCTS

2.1 OGS POLLUTANT STORAGE

The OGS device shall include a sump for sediment storage, and a protected volume for the capture and storage of petroleum hydrocarbons and buoyant gross pollutants. The minimum sediment & petroleum hydrocarbon storage capacity shall be as follows:

2.1.1 4 ft (1219 mm) Diameter OGS Units:
6 ft (1829 mm) Diameter OGS Units:
8 ft (2438 mm) Diameter OGS Units:
10 ft (3048 mm) Diameter OGS Units:
12 ft (3657 mm) Diameter OGS Units:

 $\begin{array}{l} 1.19 \ m^3 \ sediment \ / \ 265 \ L \ oil \\ 3.48 \ m^3 \ sediment \ / \ 609 \ L \ oil \\ 8.78 \ m^3 \ sediment \ / \ 1,071 \ L \ oil \\ 17.78 \ m^3 \ sediment \ / \ 1,673 \ L \ oil \\ 31.23 \ m^3 \ sediment \ / \ 2,476 \ L \ oil \\ \end{array}$

PART 3 – PERFORMANCE & DESIGN

3.1 GENERAL

The OGS stormwater quality treatment device shall be verified in accordance with ISO 14034:2016 Environmental management – Environmental technology verification (ETV). The OGS stormwater quality treatment device shall

remove oil, sediment and gross pollutants from stormwater runoff during frequent wet weather events, and retain these pollutants during less frequent high flow wet weather events below the insert within the OGS for later removal during maintenance. The Manufacturer shall have at least ten (10) years of local experience, history and success in engineering design, manufacturing and production and supply of OGS stormwater quality treatment device systems, acceptable to the Engineer of Record.

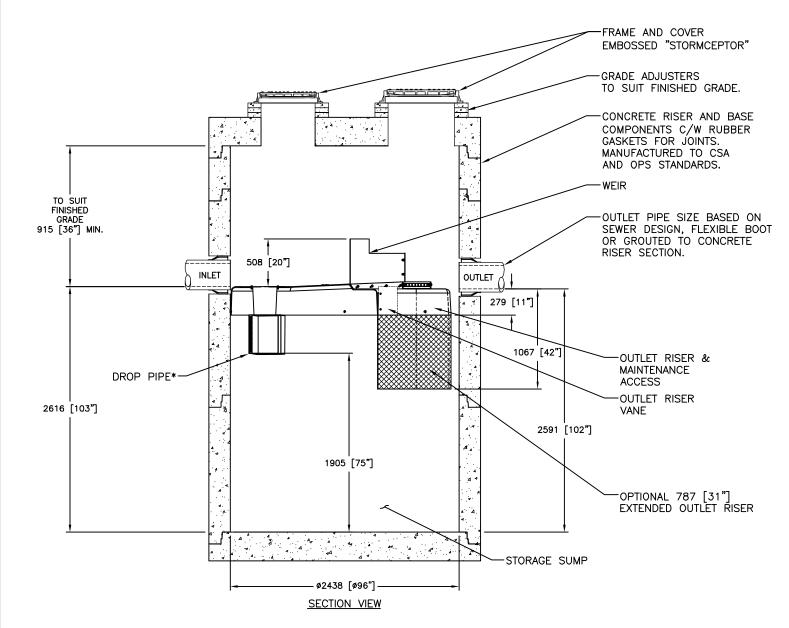
3.2 SIZING METHODOLOGY

The OGS device shall be engineered, designed and sized to provide stormwater quality treatment based on treating a minimum of 90 percent of the average annual runoff volume and a minimum removal of an annual average 60% of the sediment (TSS) load based on the Particle Size Distribution (PSD) specified in the sizing report for the specified device. Sizing shall be determined using historical rainfall data and a sediment removal performance curve derived from the actual third-party verified laboratory testing data. The OGS device shall also have sufficient annual sediment storage capacity as specified and calculated in Section 2.1.

3.3 CANADIAN ETV or ISO 14034 ETV VERIFICATION OF SCOUR TESTING

The OGS device shall have Canadian ETV or ISO 14034 ETV Verification of third-party scour testing conducted in accordance with the Canadian ETV Program's **Procedure for Laboratory Testing of Oil-Grit Separators.**

3.3.1 To be acceptable for on-line installation, the OGS device must demonstrate an average scour test effluent concentration less than 10 mg/L at each surface loading rate tested, up to and including 2600 L/min/m².

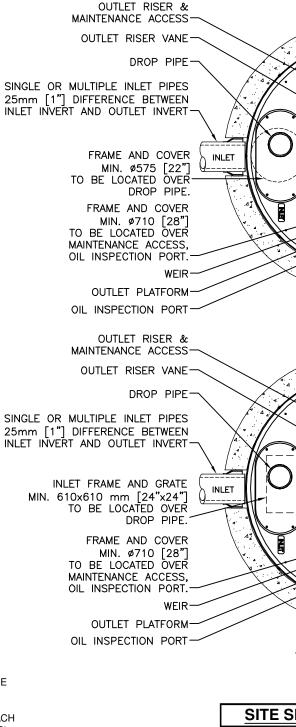

3.4 LIGHT LIQUID RE-ENTRAINMENT SIMULATION TESTING

The OGS device shall have Canadian ETV or ISO 14034 ETV Verification of completed third-party Light Liquid Re-entrainment Simulation Testing in accordance with the Canadian ETV **Program's Procedure for Laboratory Testing of Oil-Grit Separators**, with results reported within the Canadian ETV or ISO 14034 ETV verification. This reentrainment testing is conducted with the device pre-loaded with low density polyethylene (LDPE) plastic beads as a surrogate for light liquids such as oil and fuel. Testing is conducted on the same OGS unit tested for sediment removal to assess whether light liquids captured after a spill are effectively retained at high flow rates.

3.4.1 For an OGS device to be an acceptable stormwater treatment device on a site where vehicular traffic occurs and the potential for an oil or fuel spill exists, the OGS device must have reported verified performance results of greater than 99% cumulative retention of LDPE plastic beads for the five specified surface loading rates (ranging 200 L/min/m2 to 2600 L/min/m2) in accordance with the Light Liquid Re-entrainment Simulation Testing within the Canadian ETV Program's **Procedure for Laboratory Testing of Oil-Grit Separators.** However, an OGS device shall not be allowed if the Light Liquid Re-entrainment Simulation Testing was performed with screening components within the OGS device that are effective at retaining the LDPE plastic beads, but would not be expected to retain light liquids such as oil and fuel.

DRAWING NOT TO BE USED FOR CONSTRUCTION

GENERAL NOTES:


- * MAXIMUM SURFACE LOADING RATE (SLR) INTO LOWER CHAMBER THROUGH DROP PIPE IS 1135 L/min/m² (27.9 gpm/ft²) FOR STORMCEPTOR EF8 AND 535 L/min/m² (13.1 gpm/ft²) FOR STORMCEPTOR EFO8 (OIL CAPTURE CONFIGURATION).
- ALL DIMENSIONS INDICATED ARE IN MILLIMETERS (INCHES) UNLESS OTHERWISE SPECIFIED.
- STORMCEPTOR STRUCTURE INLET AND OUTLET PIPE SIZE AND ORIENTATION 2 SHOWN FOR INFORMATIONAL PURPOSES ONLY.
- UNLESS OTHERWISE NOTED, BYPASS INFRASTRUCTURE, SUCH AS ALL 3. UPSTREAM DIVERSION STRUCTURES, CONNECTING STRUCTURES, OR PIPE CONDUITS CONNECTING TO COMPLETE THE STORMCEPTOR SYSTEM SHALL BE E. DEVICE ACTIVATION, BY CONTRACTOR, SHALL OCCUR ONLY AFTER SITE HAS PROVIDED AND ADDRESSED SEPARATELY.
- DRAWING FOR INFORMATION PURPOSES ONLY. REFER TO ENGINEER'S SITE/UTILITY PLAN FOR STRUCTURE ORIENTATION.
- NO PRODUCT SUBSTITUTIONS SHALL BE ACCEPTED UNLESS SUBMITTED 10 5 DAYS PRIOR TO PROJECT BID DATE, OR AS DIRECTED BY THE ENGINEER OF RECORD.

FOR SITE SPECIFIC DRAWINGS PLEASE CONTACT YOUR LOCAL STORMCEPTOR REPRESENTATIVE. SITE SPECIFIC DRAWINGS ARE BASED ON THE BEST AVAILABLE INFORMATION AT THE TIME. SOME FIELD REVISIONS TO THE SYSTEM LOCATION OR CONNECTION PIPING MAY BE NECESSARY BASED ON AVAILABLE SPACE OR SITE CONFIGURATION REVISIONS. ELEVATIONS SHOULD BE MAINTAINED EXCEPT WHERE NOTED ON BYPASS STRUCTURE (IF REQUIRED)

INSTALLATION NOTES

- A. ANY SUB-BASE, BACKFILL DEPTH, AND/OR ANTI-FLOTATION PROVISIONS ARE SITE-SPECIFIC DESIGN CONSIDERATIONS AND SHALL BE SPECIFIED BY ENGINEER OF RECORD.
- B. CONTRACTOR TO PROVIDE EQUIPMENT WITH SUFFICIENT LIFTING AND REACH CAPACITY TO LIFT AND SET THE STRUCTURE (LIFTING CLUTCHES PROVIDED)
- C. CONTRACTOR WILL INSTALL AND LEVEL THE STRUCTURE, SEALING THE JOINTS, LINE ENTRY AND EXIT POINTS (NON-SHRINK GROUT WITH APPROVED WATERSTOP OR FLEXIBLE BOOT)
- D. CONTRACTOR TO TAKE APPROPRIATE MEASURES TO PROTECT THE DEVICE FROM CONSTRUCTION-RELATED EROSION RUNOFF.
- BEEN STABILIZED AND THE STORMCEPTOR UNIT IS CLEAN AND FREE OF DEBRIS

STANDARD DETAIL **NOT FOR CONSTRUCTION**

						The design and information shown on this drewing is provided as a service to the project owner, engineer and contractor by informing Systems (mature). Neither this drawing, nor any part thereof, mary ba	_	diactarims any labitity or responsibility for such use. If discretancias bakwaan the surplied information upon	-		inaccurate information supplied by others.
					1	####	####	####	JSK	JSK	Ŗ
	() AN VIEW	W (STAND	0			####	####	####	OUTLET PLATFORM	INITIAL RELEASE	REVISION DESCRIPTION
	* 4		· · ·			###	####	####	6/8/18	5/26/17	DATE
						####	####	####	-	0	MARK
PLAN VIEW (INLET TOP)							Stormceptor [®] El				
SITE SPI		<u>~ האד </u>	REOI			4			3A9 5-860-8800	WIND PATENTS	
STORMCEPTO			EF			-		E	Y, ON L1N 3A9 INTL +1-416-86	COT THE FOLLO	
STRUCTURE IE)				*			D	ATHW	TONE ON MO	A DESCRIPTION OF THE PARTY OF T
	HYDROCARBON STORAGE REQ'D (L) * WATER QUALITY FLOW RATE (L/s) *							0	TEW DRIVE, CA 416-960	- 707,100 - 724	
PEAK FLOW RA			_/5/		*					TOH BYBITEM IS with the BB2,164	
RETURN PERIOD OF PEAK FLOW (yrs) *							407 FAIR				
DRAINAGE AREA (HA) *											
DRAINAGE ARE PIPE DATA:	EA IMPE	ERVIOUSI MAT'L	NESS (%) DIA		* % HGL	10/13/ DESIGN			RAW	Nŀ	
INLET #1	I.⊑. *	WATL *	DIA *	SLOPE *	% HGL *	JSK			JSK		
INLET #2	*	*	*	*	*	CHECKE BSF	.D:	A	*	OVED:	
OUTLET							PROJECT No.: SEQUE			INCE	No.:
* PER ENGINEER OF RECORD							EFO8 * SHEET: 1 OF 1				
* PER ENGINEE	R OF R	ECORD							*		