

FINAL REPORT

Phase Two Environmental Site Assessment

New Civic Development for the Ottawa Hospital - Parkade

Submitted to:

Parsons Inc.

1223 Michael Street Suite 100 Ottawa, ON K1J 7T2

Submitted by:

Golder Associates Ltd.

1931 Robertson Road Ottawa, ON, K2H 5B7 +1 613 592 9600

21451149 Rev1

September 2021

Distribution List

1 copy (.pdf) - Parsons Inc.

1 copy (.pdf) - Golder Associates Ltd.

Record of Issue

Company	Client Contact	Version	Date Issued	Comment
Parsons Inc.	Ronald Clarke	Rev 0	July 23, 2021	Draft for client review
Parsons Inc.	Ronald Clarke	Rev 1	September 16, 2021	Final Report

Table of Contents

1.0	EXEC	UTIVE SUMMARY	1
2.0	INTRO	DDUCTION	2
	2.1	Site Description	2
	2.2	Current and Proposed Future Uses	2
	2.3	Applicable Site Condition Standard	2
3.0	BAC	(GROUND INFORMATION	3
	3.1	Physical Setting	3
	3.2	Past Investigations	4
	3.2.1	Phase One ESA	4
4.0	SCOF	PE OF THE INVESTIGATION	7
	4.1	Overview of Site Investigation	7
	4.2	Media Investigated	8
	4.3	Phase One Conceptual Site Model	9
	4.4	Deviations from Sampling and Analysis Plan	.10
	4.5	Impediments	.10
5.0	INVE	STIGATION METHOD	.10
	5.1	General	.10
	5.2	Drilling	.11
	5.3	Soil: Sampling	.11
	5.4	Field Screening Measurements	.12
	5.5	Groundwater: Monitoring Well Installation	.12
	5.6	Groundwater: Field Measurements for Water Quality Parameters	.12
	5.7	Groundwater: Sampling	.13
	5.8	Sediment: Sampling	.13
	5.9	Analytical Testing	.13
	5.10	Residue Management Procedures	.13

	5.11	Elevation Surveying1	4
	5.12	Quality Assurance and Quality Control Measures1	4
6.0	REVIE	W AND EVALUATION1	5
	6.1	Geology1	5
	6.2	Groundwater: Elevations and Flow Direction1	6
	6.3	Groundwater: Hydraulic Gradients1	6
	6.4	Coarse Soil Texture1	6
	6.5	Soil: Field Screening1	6
	6.6	Soil: Quality1	7
	6.7	Groundwater: Quality1	9
	6.8	Sediment: Quality2	2
	6.9	Data Quality Review2	2
	6.10	Phase Two Conceptual Site Model	3
7.0	CONC	LUSIONS	1
7.1	Additi	onal Considerations3	2
8.0	REFE	RENCES	3
9.0	LIMIT	ATIONS	4
10.0	SIGN	ATURES	5

APPENDED TABLES

- Table 1 Monitoring Well Construction Details
- Table 2 Groundwater Monitoring
- Table 3 Groundwater Elevations
- Table 4 Summary of Soil Samples Submitted for Laboratory Analysis
- Table 5 Summary of Groundwater Samples Submitted for Laboratory Analysis
- Table 6a Analytical Results for General Chemistry in Soil Samples
- Table 6b Analytical Results for Metals in Soil Samples
- Table 6c Analytical Results for Petroleum Hydrocarbons in Soil Samples

- Table 6d Analytical Results for Polycyclic Aromatic Hydrocarbons in Soil Samples
- Table 6e Analytical Results for Volatile Organic Compounds in Soil Samples
- Table 6f Quality Assurance and Control for Soil Samples
- Table 7a Analytical Results for Other Regulated Parameters in Groundwater Samples
- Table 7b Analytical Results for Metals in Groundwater Samples
- Table 7c Analytical Results for Petroleum Hydrocarbons in Groundwater Samples
- Table 7d Analytical Results for Polycyclic Aromatic Hydrocarbons in Groundwater Samples
- Table 7e Analytical Results for Volatile Organic Compounds in Groundwater Samples
- Table 7f Quality Assurance and Control for Groundwater Samples

FIGURES

- Figure 1 Key Plan
- Figure 2 Site Plan
- Figure 3 Topographic Map and Areas of Natural Significance
- Figure 4 Shallow Groundwater Elevations and Flow Direction
- Figure 5 Soil Exceedances and Delineation
- Figure 6 Groundwater Exceedances and Delineation
- Figure 7 Interpreted Cross Section A A'

APPENDICES

APPENDIX A Sampling and Analysis Plan

APPENDIX B Record of Borehole Logs

APPENDIX C Certificates of Analysis

APPENDIX D Historic Analytical Data

APPENDIX E Historical Borehole Logs

1.0 EXECUTIVE SUMMARY

Golder Associated Ltd. (Golder) was retained by Parsons Inc. (Parsons) on behalf of the Ottawa Hospital to conduct two Phase Two Environmental Site Assessments (ESA) of the property located at the southwest corner of Preston Street and Carling Avenue, Ottawa, Ontario (the "Site" or the "Phase Two Property"). The location of the Phase Two Property is provided in Figure 1. The legal description of the Phase Two Property is: Part of Lot 1, Concession BRF, Part 1 of Registered Plan 5R14003.

Golder previously completed a Phase One ESA for the Site, the results of which were documented in the report titled "*Phase One Environmental Site Assessment, The Ottawa Hospital - New Civic Campus*", dated March 2021 (file number 19127064). Based on the findings of the Phase One ESA, Golder completed this Phase Two ESA investigation.

The analytical results from the 2021 sampling and analysis program indicate that the reported concentrations of polycyclic aromatic hydrocarbons (PAHs) in three soil samples, vanadium in one soil sample, electrical conductivity in one soil sample, sodium and chloride in one groundwater sample, and chloroform in two groundwater samples did not meet the applicable Ministry of Environment, Conservation and Parks (MECP) Table 7 site condition standards. The reported concentrations of all other parameters tested in soil and groundwater were below the Table 7 generic site condition standards for commercial property use with coarse soil texture and non-potable groundwater.

The PAH soils impacts identified across the Site appear to be the result of former site use as a landfill and demolition debris from the previous presence of buildings on Site. The vanadium impacts in the one soil sample are within the range of concentrations found within local area clays and is likely attributed to the natural background. The sodium and chloride impacts identified for groundwater and electrical conductivity in the one soil sample at the Site are expected to be related to road salt use within the parking area, however, it is noted that impacts associated with the application of salt for safety purposes are not considered to represent an exceedance of the standard. The slight chloroform exceedances identified for groundwater Site are expected be due to the use of tap water during rock coring for these boreholes and will not likely be persistent. As such, groundwater at the Phase Two Property meets the applicable site condition standards.

Impacts identified in current and historic soil samples are not considered to present a contaminant mass contributing to groundwater contamination. This is supported by no COCs identified in soil samples being present above regulatory guidelines in groundwater samples. It is anticipated that the identified soil impacts which are within fill materials which will be removed during soil excavation activities related to the development of the parkade structure.

Contaminants of concern identified in groundwater at the Site (chloride, sodium, and chloroform) appear to be related to localized short-term activities (drilling) or due to the application of salt for safety purpose which is not considered an exceedance and are not to the identified APECs. Thus, contaminant migration in groundwater is not expected to be an issue of concern for the Site.

Based on the results of the soil and groundwater samples submitted as part of this Phase Two ESA, remediation of PAH impacts in the fill material is recommended prior to redevelopment into a commercial parkade.

2.0 INTRODUCTION

2.1 Site Description

Golder was retained by Parsons to conduct a Phase Two ESA of the Phase Two Property. Authorization to proceed with this investigation was received from Ronald Clarke of Parsons on March 30, 2021The property is comprised of two parcels of land, as indicated below.

- Parcel A, a stand-alone municipal parcel located at 520 Preston Street which is owned by Public Service and Procurement Canada (PSPC) and is leased to the Ottawa Hospital and consists of a commercial parking lot associated with Dow's Pavilion and a landscaped area; and
- Parcel B, a portion of the parcel of land located at 930 Carling Avenue which owned by PSPC and is leased to the Ottawa Hospital and consists of the Queen Juliana Park. It is separated from Parcel A by railway tracks associated with the O-Train.

The location of the Phase Two Property, including property boundaries, is provided in Figure 1. It is noted that the proposed parkade structure will connect the two parcels by passing over the rail corridor but for the purpose of the Phase Two ESA, the rail corridor is off-Site. The legal description of the Phase Two Property is provided below.

	520 Preston Street and Part of 930 Carling Avenue, Ottawa, Ontario
Property Identification Number	Part of PIN 04088-0001(LT) and 04088-0002(LT)
Legal Description	Part of Lot 1, Concession BRF, Part 1 of Registered Plan 5R14003
Size of the Phase Two Property	4.39 ha

2.2 Current and Proposed Future Uses

The current land use of the Phase Two Property is commercial (520 Preston Street) and parkland (930 Carling Avenue). Parcel A consists of a commercial parking lot associated with Dow's Pavilion and a landscaped area, and Parcel B consists of the Queen Juliana Park.

The proposed future use of the Phase Two Property is commercial; Golder understands the Site is to be developed as a parking structure with a green roof for the Ottawa Hospital. No Record of Site Condition (RSC) is required for the Phase Two Property as the intended land use as a parking structure is not considered a change to a more sensitive land use.

2.3 Applicable Site Condition Standard

The analytical results of the samples collected for this Phase Two ESA were compared to the Table 7 generic site condition standards (commercial property use, coarse soil texture, non-potable groundwater) presented in the MECP document "*Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act*", dated 15 April 2011. The applicable site condition standards were selected based on the following rationale:

The Phase Two Property is supplied by the City of Ottawa municipal drinking water system. No wells were identified on Site or on neighbouring properties that are used or intended for use as a source of water;

- The Phase Two Property is not located in an area designated in a municipal official plan as a well-head protection area or other designation identified by the municipality for the protection of ground water;
- There are no known areas of natural significance located on or within 30 meters of the Phase Two Property, as described in Section 41;
- Based on the present and prior environmental site investigations, there is less than 2 m of overburden above bedrock on over one-third of the Site;
- Based on field observations and prior environmental site investigations the overburden at the Site is considered to be coarse textured;
- The nearest permanent watercourse is the Dow's Lake located approximately 50 m east of Parcel A;
- The pH of shallow fill was reported to be outside the acceptable range of 5≤pH≤9, in one sample of fill. Given the fill is expected to be removed as part of the parkade construction and the pH of sub-surface soil meets the requirement that 5≤pH≤11, it is not considered a sensitive site as a result of the pH; and
- The intended use for the Phase Two Property is commercial.

3.0 BACKGROUND INFORMATION

This section presents the background conditions of the Phase Two Property including a description of the physical setting and a summary of past investigations conducted.

The objectives of the Phase Two ESA were to obtain information about environmental conditions in the soil and groundwater on, in, or under the Site. The objectives of this Phase Two ESA were achieved by:

- Developing an understanding of the geological and hydrogeological conditions at the Phase Two Property; and,
- Conducting field sampling for all contaminants of concern (COCs) associated with each area of potential environmental concern (APEC) identified in the Phase One ESA.

3.1 Physical Setting

The nearest surface water body is the Dow's Lake, located approximately 50 m east of the northeastern boundary of the Phase Two Property. There are no known areas of natural significance located on or within 30 meters of the Phase Two Property. Land uses surrounding the Phase Two Property are residential and commercial, as shown on Figure 2.

The topography of the Phase Two Property and surrounding areas is generally flat with slight downward slope toward Dow's Lake in the northeast; there is a steep slope along on the southwestern boundary of Parcel B and rail tracks cut through bedrock between Parcels A and B. Storm water either infiltrates through landscaped or unfinished surfaces or is directed toward catch basins located on the paved portion of the Site. Golder understands that the rail tracks intercept groundwater locally.

3.2 Past Investigations

3.2.1 Phase One ESA

Golder conducted a Phase One ESA entitled, "*Phase One Environmental Site Assessment, The Ottawa Hospital-New Civic Campus*", dated April 2020, to assess the likelihood of soil and/or groundwater contamination resulting from historic or present activities at the Site and surrounding area. This included a review of available historical records and investigations of the Site and surrounding area, interviews with persons familiar with the Site, and a Site reconnaissance. The APECs and associated COCs identified in the 2020 Phase One ESA which are relevant to the Site are summarized below.

APEC	Description	
APEC 1 : Former Dow's Lake Landfill	Former Dow's Lake Landfill at Parcel A. No municipal solid waste noted at the Site during previous investigations (landfilled material limited to soil and demolition debris). Fill of unknown quality.	PHCs ¹ , BTEX, VOCs, PAHs, Metals, and Inorganics
APEC 2: Demolition debris from former office building	Demolition debris from the demolition of a former office building on Parcel B with documented PAH (federal guidelines) and metals (federal guidelines and provincial standards) impacts within the fill layer.	PHCs, BTEX, PAHs, Metals, and Inorganics
APEC 3 : Imported fill materials of unknown quality	Unknown quality of imported fill materials associated with various building construction and site development activities across the Site.	PHCs, BTEX, PAHs, Metals, and Inorganics

This report was prepared by the Qualified Person and will be relied upon for the Phase Two investigation.

During completion of the Phase One ESA, Golder reviewed the following reports which were partially or completely related to the Site to develop an understanding of the environmental conditions at the Site and surrounding properties. Analytical results from these reports were, in part, relied upon in making conclusions regarding presence of contamination relating to identified APECs to the Site. Which data was relied upon will be discusses in the Conceptual Site Model (Section 6.10).

- "Phase I/II ESA for Dow's Lake Landfill", Phase I/II Environmental Site Assessment, Former Dow's Lake Landfill, National Capital Commission Property Asset #784 Ottawa, Ontario, dated January 2004, prepared by INTERA Engineering Ltd. for NCC.
- "Screening Level Risk Assessment", Screening Level Risk Assessment, Former Dow's Lake Landfill and Commissioner's Park, NCC Property Assets #96654 and #784 Ottawa, Ontario, dated October 2005, prepared by INTERA Engineering Ltd. for NCC.
- "Supplemental Phase II ESA for Dow's Lake Landfill", Supplemental Phase II Environmental Site Assessment, Former Dow's Lake Landfill, National Capital Commission Property Assets #784 Ottawa, Ontario, dated November 2004, prepared by INTERA Engineering Ltd. for NCC.

¹ The following abbreviations are used in the table above: petroleum hydrocarbon fractions F1-F4 (PHCs), benzene, toluene, ethylbenzene, and xylene (BTEX), polycyclic aromatic hydrocarbons (PAHs), and volatile organic compounds (VOCs).

- "2017 Phase II ESA", Phase II Environmental Site Assessment, New Ottawa Hospital Civic Campus, Ottawa ON, dated September 2017, prepared by Stantec Consulting Ltd. for PSPC.
- "2017 Paterson ESA", Environmental Investigation of Subsurface Conditions, Proposed New Hospital Campus, Former Sir John Carling Building Complex, Central Experimental Farm, Ottawa ON, dated September 2017, prepared by Paterson Group Inc. for Cleland Jardine Engineering Ltd.

Phase I/II ESA for Dow's Lake Landfill

This investigation consisted of a Phase I ESA and Phase II ESA for Parcel A. The Phase I ESA was conducted to determine the potential environmental liability with subsequent Phase II ESA completed to evaluate presence of soil and groundwater contamination resulting from former landfill activities. Noteworthy findings from review of this report are discussed below:

- Findings of the Phase I ESA identified that Parcel A was used as a landfill prior to 1924. No other issues of significant environmental concern were identified.
- As part of the Phase II ESA, six boreholes (BH1 through BH6) were completed with three extended into bedrock (approximately 6 mbgs) to install monitoring wells. Overburden soil consisted of predominantly sandy fill material with some wood waste.
- Soil samples were analyzed for one or more of Total Petroleum Hydrocarbon (TPHs), volatile organic compounds (VOCs), polycyclic aromatic hydrocarbons (PAHs) and/or metals. One sample, collected from 0.8-2.1 meter below ground surface (mbgs), collected from BH5 exceeded Canadian Council of Ministers of the Environment (CCME) criteria for benzo[a]anthracene and benzo[b]fluoranthene, and exceeded both CCME and Ministry of Environmental (now Ministry of the Environment, Conservation and Parks (MECP)) criteria at that time for benzo[a]pyrene. No other exceedances in soil samples were identified.
- Groundwater samples were analyzed for TPH, VOCs, PAHs general chemistry and/or metals from two monitoring wells. Samples from both wells exceeded applicable CCME standards for sulphate, manganese and sodium. No MECP exceedances were identified.
- The analytical results for soil and groundwater indicated poor quality fill material in Parcel A as well as salt application to the parking lot on Parcel A.
- Additional boreholes were recommended to conduct soil sampling for investigating extent of PAH impacts and groundwater sampling to identify potential discharge of contaminants into Dow's Lake.

Supplemental Phase II ESA for Dow's Lake Landfill

This investigation was completed for Parcel A of the Site, formerly occupied by the Dow's Lake Landfill, to investigate soil and groundwater quality. Noteworthy findings from review of this report are discussed below:

A total of six boreholes (not installed with monitoring wells) were advanced to inferred bedrock refusal encountered approximately 3 mbgs. Overburden soil consisted primarily of fill materials including sand and gravel with wood waste and some sandy silt layers. No groundwater wells were installed based on previous groundwater quality results from adjacent property down-gradient of Parcel A.

- Soil samples collected from each borehole were tested for PAHs. A single sample, 04-BH6-2, (out of total nine analyzed), collected from a depth of 0.61 to 1.22 mbgs, exceeded CCME criteria for benzo[a]anthracene, benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[ghi]perylene, indeno[1,2,3-c,d]pyrene, naphthalene, and phenanthrene, as well as exceeded both CCME and MECP criteria for benzo[a]pyrene at that time.
- Existing monitoring wells, completed as part of previous investigations, were used to take water level measurements which indicated that groundwater flow was southwest towards the railway tracks. Given groundwater flow was expected towards Dow's Lake (to the east), it was inferred that rail tracks cut through bedrock may influence shallow groundwater in this area.
- Recommendations made included:
 - Conduct an inspection and sampling of groundwater seeps along the OC Transpo rail line cut to address the issue of potential groundwater migration from the former landfill to the north-northwest.
 - Conduct annual groundwater monitoring at the former landfill and the downgradient Traffic Circle property for two years commencing August 2005, to monitor groundwater quality, and ensure stability of contaminants. Following two years of monitoring, decommissioning of the wells would likely be recommended.
 - Conduct a screening level risk assessment (SLRA) on the property to address the soil exceedances for various PAH parameters.

Screening Level Risk Assessment (SLRA)

This investigation was completed following soil and groundwater impacts identified at Parcel A (former Dow's Lake landfill) and adjacent property east of Preston Street, also known as Commissioners Park. Both these lands were owned by NCC and had known impacts of metal and PAH contamination in soil as well as groundwater. Noteworthy findings from the review of this report are discussed below:

- SLRA consisted of human health and ecological components. Supplementary sampling and testing of surficial soil, groundwater and surface water were undertaken as part of this investigation to augment the database of soil, groundwater and surface water quality for use in this SLRA.
- Subsurface conditions in the area were known, based on previous investigations, to consist of sandy fill, wood waste and other waste materials such as brick, glass, wood, asphalt, slag and ash.
- With regards to health hazards, detected contaminants (PAHs and metals) identified in soil were not inferred to pose unacceptable health risks to park visitors, parks construction workers or park maintenance workers.
- Ecological SLRA did not indicate that contaminants of concern (COC) in soil pose an unacceptable ecological health risk to terrestrial receptors.
- No indication of adverse effect to Dow's Lake water quality from contaminant transport by groundwater was observed, given available groundwater data at that time.
- Given, no unacceptable human health or ecological hazards and risks were identified to be posed by the presence of soil and groundwater contamination, no requirements for active intervention or other risk management was recommended.

2017 Phase II ESA

This investigation was conducted, for due-diligence purposes, following recommendation based on the findings of the 2017 Phase I ESA. Noteworthy findings of this assessment are discussed below:

- Ten boreholes were advanced with all ten being installed with monitoring wells. Six existing monitoring wells at the Site were also sampled for groundwater analysis. The overburden in the areas investigated at the Site generally consisted of topsoil fill/asphalt underlain by silt / silty sand. Bedrock or inferred bedrock was encountered at depths ranging from 0.91 to 5.49 mbgs.
- Exceedances of CCME guidelines for some PAH concentrations were found in three locations and some metal exceedances were found in two locations. This indicated poor quality of imported fill materials, given these were observed in shallow soil samples (within top 1.5 mbgs). The metal concentrations also exceeded applicable provincial regulatory standards. In addition, Electrical conductivity and pH values exceeded the provincial standards in one soil sample. There were additional exceedances of the provincial background standards.
- Groundwater flow in the shallow soil was interpreted to flow north towards Ottawa River, and may have been influenced by steep elevation drop on the northern portion of the Site. Thirteen groundwater samples were analyzed with exceedances of various metals and inorganic parameters above the applicable CCME guidelines with sodium being the only exceedance of the provincial standards.

2017 Paterson ESA

This investigation was conducted concurrently with a geotechnical investigation and included Parcel C (off site). A total of 13 boreholes, nine of which were installed with monitoring wells, were completed to a maximum depth of 11.2 mbgs. Noteworthy findings from review of this report are discussed below.

- Subsurface stratigraphy consisted of asphalt or topsoil overlying fill over glacial till deposit. Auger refusals were encountered at all borehole locations between 2.0 and 11.2 mbgs, indicating variable overburden thickness.
- A total of 12 soil samples were submitted for laboratory analysis of PHCs F1 to F4, BTEX and/or metals. Concentrations of vanadium above MECP Table 3 standards, and concentrations of barium, chromium and cobalt above MECP Table 1 were observed. Vanadium was linked to naturally occurring metals in the clay and was not a contaminant. It is noted that the investigation did not include PAH sampling in soil.
- Nine groundwater samples were analyzed for PHCs, BTEX and PAHs with no exceedance of MECP Table 1 or 3 standards for any parameters observed in any of the samples.

4.0 SCOPE OF THE INVESTIGATION

4.1 **Overview of Site Investigation**

The Phase Two ESA investigation activities were completed between April 28, 2021 and June 11, 2021 and included the following tasks:

Health and Safety Plan: Preparation of a Health and Safety Plan for internal and subcontractor use prior to initiating any field work at the Site.

- Utility Clearances: Coordination of utility clearances with local utility companies along with retaining the services of a private locator to assess for possible services in the areas of the proposed test locations.
- Borehole Advancement and Monitoring Well Installation: The borehole drilling and monitoring well installation program included drilling of 13 boreholes, 6 of which were completed as groundwater monitoring wells used for groundwater sampling at the Site. The rationale for the selected location of the boreholes is provided in the Sampling and Analysis Plan (SAP) provided in Appendix A. The locations of the boreholes and monitoring wells are provided on Figure 2. The monitoring well construction details are presented in Appended Table 1.
- Soil Sampling: Selected soil samples were collected between May 13, 2021 and June 11, 2021 from the boreholes. Soil samples were submitted for chemical analysis of one or more of the following: petroleum hydrocarbons (PHCs), benzene, toluene, ethylbenzene, and xylene (BTEX), polycyclic aromatic hydrocarbons (PAHs), volatile organic compounds (VOCs), metals, hydride-forming metals, and/or other regulated parameters (ORPs).
- Groundwater Monitoring and Sampling: Groundwater samples were collected on May 27, 2021. Groundwater samples were submitted for analysis of one or more of the following: PHCs, BTEX, PAHs, VOCs, metals, hydride-forming metals, and/or other regulated parameters.
- Surveying: An elevation survey for the boreholes and monitoring wells advanced as part of the Phase Two ESA investigation was completed on May 28, 2021 and June 25, 2021.
- Reporting: Golder compiled and assessed the field and laboratory results from the above-noted activities into this report.

The Phase Two investigation was carried out in general accordance with Golder's standard operating procedures, which conform to the requirements of O. Reg. 153/04. The data from the Phase Two ESA investigation completed by Golder at the Site were incorporated into a single Phase Two ESA report following the Phase Two ESA report format required by O. Reg. 153/04.

There were no impediments or access limitations that would affect the conclusions of this Phase Two ESA report.

4.2 Media Investigated

To address the potential environmental issues identified in the Phase One ESA, the Phase Two ESA field program included sampling of subsurface soil and of groundwater from wells screened within the overburden and bedrock at the Site. No sediment was present at the Site and therefore no sediment sampling was completed. A summary of media investigated, and the applicable contaminants of potential concern are provided in Appended Tables 3 and 4. The SAP (Appendix A) outlines the rationale for the field investigation activities carried out at the Site and the associated methodologies used to meet the objectives of this Phase Two ESA.

4.3 Phase One Conceptual Site Model

A Conceptual Site Model (CSM) of the Site (as required by O.Reg. 153/04) is presented in the series of Figures 1 to 3 (Figure 1: Key Plan, Figure 2: Site Plan, Figure 3: Topographic Map and Areas of Natural Significance).

The combined set of figures shows the following for the Site:

- Existing buildings and structures (if present);
- Water bodies and Areas of Natural Significance (if present);
- Roads (including names); and
- Uses of properties adjacent to the Site.

The following describes the CSM for the Site based on the information obtained and reviewed as part of the Phase One ESA:

- The Site, occupying approximately 4.39 ha (10.84 acres), consists of an irregular shaped parcel of land bounded by Carling Avenue (northwest), Preston Street (northeast), Prince of Wales Drive (southeast), and Sherwood Drive (southwest). Two land parcels (Parcel A and B) form the entire Site and are managed by separate entities.
- At the time of the Site visit, general features included parking lot associated with the Dow's Lake Pavilion on Parcel A and parkland (Queen Juliana Park) on Parcel B. No interior areas of any buildings or structure (former SJCB west annex, Bell building or Dara Tennis Club building) were accessible at the time of the Site visit. In addition, snow cover on the ground restricted visual observations of majority exterior areas other than asphalt paved roadways and parking area.
- Wells for monitoring and testing purposes were installed at the Site according to previous reports reviewed; however, were not observed at the time of the Site visit due to snow cover on the ground.
- The nearest permanent watercourse is the Dow's Lake located approximately 50 m east of Parcel A of the Site. Based on previously completed subsurface investigations that evaluated groundwater flow direction based on water levels measured in groundwater monitoring wells, regional groundwater flows northward towards Ottawa River located approximately 2.75 km north of the Site. However, shallow groundwater flow may be influenced by the presence of Dow's Lake to the northeast and O-Train rail tracks which cut through bedrock between Parcel A and B.
- Stratigraphy at the Site consists of till, plain with local relief (<5 m) on the northern portion of the Site. The depth to bedrock across the Site is variable and generally decreases from south to north. Typical bedrock depth for Parcel A is between 1 to 2 mbgs whereas Parcel B is between 5 to 10 mbgs.</p>
- Based on previous subsurface investigations, stratigraphy primarily consisted of topsoil, fill or asphalt, underlain by sandy silt to silty clay.
- At the time of the Phase One ESA, the surrounding properties within the Phase One Study Area included:
 - West: Bounded by Carling Avenue Drive followed by government office buildings including Dominion Observatory as well as farming lands associated with Agriculture and Agri-Food Canada's (AAFC) Central Experiment Farm (CEF).

- North: Bounded by Preston Street and Carling Avenue followed by parkland northeast (across Preston Street) and commercial land uses northwest (across Carling Avenue) of the Site.
- South: Bounded by Sherwood Drive followed by the vacant Sir John Carling Building (SJCB) West Annex, which was under demolition, a building occupied by Bell (Building 61), tennis courts with a clubhouse, and vacant landscaped area under the CEF.
- East: Bounded by Prince of Wales Drive followed by either Dow's Lake (east of Parcel A) and few government office buildings.
- A total of 21 potentially contaminating activities (PCAs) were identified within the Phase One Study Area, as shown on Figure 2. Based on site characteristics and the locations of these PCAs, a total of three APECs were identified for the Site (also shown on Figure 2).

4.4 Deviations from Sampling and Analysis Plan

The SAP, provided in Appendix A, outlines the rationale for the field investigation activities carried out at the Site and the associated methodologies used to meet the objectives of this Phase Two ESA. This plan, dated 11 May 2021, covers the activities undertaken during the Phase Two ESA. The procedures described in the SAP were generally followed with modifications as described below:

- Borehole BH21-05 was developed as a monitoring well and sampled instead of BH21-04 as bedrock coring was not completed at BH21-04;
- No groundwater sample was collected for MW17-1 as it could not be located and was presumed to be decommissioned;
- No groundwater sample or water level information was collected for BH21-01 because the well was dry at the time of sampling; and
- Only one soil duplicate sample was submitted due to low soil yields(1 in 17 samples); less than the recommended 1 duplicate sample per 10 primary samples.

No further material deviations from the SAP were identified in the course of the investigation. The deviations from the SAP are not expected to affect the completeness of the Site characterization.

4.5 Impediments

No physical impediments to the Phase Two ESA investigation were encountered. Access to the Phase Two Property was not denied or restricted.

5.0 INVESTIGATION METHOD

5.1 General

The following sections describe the field investigation methodology employed during the Phase Two ESA. The field work was conducted between May 14 and June 11, 2021.

Prior to initiating the field work, Golder developed and implemented Site-specific protocols to protect the health and safety of its employees and subcontractors through the preparation of a Site-specific Health and Safety Plan. An assessment of potential health and safety hazards at the Phase Two Property and those associated with the proposed work was completed each day of the field program. Health and safety tailgate meetings were held with

Golder's subcontractors each day prior to completion of the field work. The document was reviewed and signed on-Site by field personnel prior to commencing work. Additionally, prior to any intrusive investigations, including drilling, Golder completed public and private utility clearances.

5.2 Drilling

Between May 13, 2021 and June 11, 2021, 13 boreholes were advanced to depths of 1.02 to 7.27 metres below ground surface (mbgs). Borehole locations are provided in Figure 2. A description of the quality assurance/ quality control measures taken to minimize the potential for cross-contamination between sampling locations is provided in Section 5.12.

Boreholes were advanced by George Downing Estate Drilling Ltd. (Downing) using a mobile CME-75 track mount drill rig. During borehole drilling activities, overburden soil samples were collected using split spoon soil sampling equipment and augered using 108 mm outside diameter (OD) solid stem augers.

Soil samples were collected at 0.76 m intervals via the split-spoon method using a 0.61 m (2 ft) long, 5.08 cm (2 inch) diameter stainless steel split spoon sampling system. Split-spoons were decontaminated between sample locations.

Bedrock was encountered at 1.02 to 2.97 mbgs; thus, bedrock coring was completed for all boreholes other than BH21-01 and BH21-08. A 200 mm OD, 108 mm inner diameter (ID), hollow stem auger was used to advance the boreholes to bedrock. The cored portion of all boreholes other than BH21-07 was advanced using 91.82 mm OD NW casing and a 75.7 mm OD NQ core barrel. To facilitate geotechnical testing, the cored potion of BH21-07 was advanced using 117.48 mm OD HW casing, and a 96 mm OD HQ core barrel.

Monitoring wells were installed to straddle the water table within the bedrock unit with the exception of BH21-01, installed in the overburden, which was dry.

5.3 Soil: Sampling

Soil samples were collected from undisturbed locations and split in the field into two components. One component was placed into laboratory-prepared container with minimal headspace and stored in a cooler for potential laboratory analysis. The second component was placed inside a plastic bag for field screening. Field screening included describing the soil sample, and noting the presence of any staining, odour and/or debris. A photoionization detector (RKI Eagle 2) calibrated to hexane and isobutylene and operated in methane elimination mode was used to measure the total combustible gas and organic vapour concentration in the headspace in the sealed plastic bag.

As per the SAP, provided in Appendix A, at least one soil sample was submitted from each test location. Where the results of field screening indicated the presence of potentially impacted soil, an additional soil sample at greater depth, if available, was submitted for laboratory analysis to vertically delineate impacts. Due to shallow soils at the site, deeper samples were not available at most borehole locations.

One soil sample representing "worst-case" conditions at each sampling location was selected for laboratory analysis based on the field headspace screening measurements, visual observations (e.g., staining, discoloration and/or free product, if any), and olfactory observations (if any). Soil samples were submitted to the analytical laboratory under chain-of-custody procedures. A summary of the soil samples submitted for analysis is provided in Appended Table 4.

Geologic descriptions, visual and olfactory observations, and results of field headspace measurements are presented on the Record of Borehole sheets in Appendix B.

5.4 Field Screening Measurements

Field measurements of sample headspace concentration were made using the equipment listed below.

Equipment Parameters Detected		Detection Limit	Precision	Accuracy	Calibration Standard
RKI Eagle 2	Combustible gas	0-50,000 ppm	NA	±5%	Hexane (1,650 ppm)
RKI Eagle 2	Total organic vapour	0-2,000 ppm	NA	±5%	Isobutylene (100 ppm)

Instruments were calibrated daily, with daily calibration checks, to known concentrations of hexane and isobutylene, were completed by Golder.

5.5 Groundwater: Monitoring Well Installation

Groundwater monitoring wells were installed by Downing using 32- or 38-mm ID Schedule 40 polyvinyl chloride (PVC) casing and 32- or 38-mm ID Schedule 40 PVC well screens (#10 slot size), which were brought to the Site in sealed plastic bags. The annular space was filled with #1, #2, or #3 silica filter sand to at least 30 cm above the well screen. The monitoring well was sealed with bentonite from the top of the sand pack and completed using a flush-mount (BH21-01) or stick-up (BH21-02 through BH21-10) casing. The riser pipes were sealed with a J-plug. Monitoring well installation details are provided in Appended Table 1. A description of the quality assurance/quality control measures taken to minimize the potential for cross-contamination between sampling locations is provided in Section 5.12.

Following drilling, the monitoring wells were developed on May 20 and 21, 2021 and June 11, 2021 in accordance with Golder Standard Operating Procedures (SOPs) by removing up to ten well volumes, or by purging to dry three times if the well was considered a "low yield" monitoring well, using dedicated Waterra® pumps (tubing with foot valves). During monitoring well development, qualitative observations were made of water colour, clarity, and the presence or absence of any hydrocarbon sheen or odours.

5.6 Groundwater: Field Measurements for Water Quality Parameters

Groundwater indicator parameters including turbidity, temperature, pH, conductivity, dissolved oxygen, and oxidation-reduction potential (ORP) were measured prior to sampling to ensure adequate well development and purging. A Horiba U-52 water quality meter was used to measure groundwater quality during monitoring well development and groundwater sampling. The instrument was calibrated using factory supplied solutions as specified in the table below. Field measurements are provided in Appended Table 2.

Equipment	Parameter	Detection Limit	Precision	Accuracy	Calibration Standard
Horiba U-52	Turbidity	0 to 800 NTU	0.1 NTU	± 5% of reading or ± 1 NTU	
Horiba U-52	Temperature	-5 to 50 °C	n/a	n/a	
Horiba U-52	рН	0 to 14 units	0.01/0.1 units	± 0.1 units	4.00 unit and 7.00 unit solution
Horiba U-52	Conductivity	0 to 100 mS/cm	0.1 mS/cm	± 1% of full scale	1.413 ms/cm solution
Horiba U-52	Dissolved Oxygen	0 to 50 mg/L	0.01 mg/L	±0.2 mg/L	
Horiba U-52	ORP	-2000 to 2000 mV	1 mV	± 15 mV	

5.7 Groundwater: Sampling

Each monitoring well was purged prior to sample collection. During purging, qualitative observations were made of water colour, clarity, and the presence of hydrocarbon sheen or odour. Purging was completed by pumping at least three well volumes or, where the well was considered a "low-yield" monitoring well, by purging at least one half of the well volume. Groundwater sampling was carried out on May 27, 2021.

Groundwater samples were placed in laboratory-prepared containers and stored in a cooler with ice or in a refrigerator until delivery to the analytical laboratory under chain-of-custody procedures. A summary of the groundwater samples submitted for analysis is presented in Appended Table 4.

5.8 Sediment: Sampling

No sediment samples were collected as part of this investigation.

5.9 Analytical Testing

The contact information for the analytical laboratory: AGAT Laboratories Inc.(AGAT), 5730 Coopers Avenue, Mississauga, Ontario, L4Z 2E9 (Hina Siddiqui, 905-712-5126).

The analytical laboratory is accredited in accordance with the International Standard ISO/IEC 17025 (CALA) (General Requirement for the Competence of Testing and Calibration Laboratories, May 5, 2005, as amended) and the standards for proficiency testing developed by the Standards Council of Canada, the Canadian Association for Laboratory Accreditation or another accreditation body accepted by the MECP.

5.10 Residue Management Procedures

All residues produced during the investigation (e.g., soil cuttings from drilling, groundwater from well development purging, wash water from equipment decontamination) were placed in sealed drums and stored at the Phase Two Property for disposal by the owner.

5.11 Elevation Surveying

Elevations were determined relative to sea level, following calibration to the following benchmark:

ON_Ottawa Base: easting: 372,181.260 m, northing: 5026,864.287 m. elevation: 95.231 masl, datum: NAD 1983 (Canadian Spatial Reference System 2010), Zone: Modified TM Zone 09, Geoid Model: CGVD 1928

5.12 Quality Assurance and Quality Control Measures

Golder's quality assurance program for environmental investigations was implemented to ensure that analytical data obtained by the investigation were valid and representative. The quality assurance program included the following measures:

- The use of standard operating procedures for all field investigation activities;
- All monitoring wells were developed following installation to remove fine particles from the filter pack and any fluids introduced during drilling;
- Monitoring wells were appropriately purged prior to groundwater sample collection to remove stagnant water from the well bore and improve sample representativeness, minimizing sample agitation and aeration to the extent practicable;
- The collection of field duplicate samples at a frequency of 1 duplicate for every 17 samples;
- The collection of at least one trip blank for sampling events that include the analysis of volatile organic compounds in groundwater;
- Initial calibration of field equipment was performed at the start of each field day, with a daily checks of calibration, as needed, using a standard of known concentration;
- Soil and groundwater samples were handled and stored in accordance with the sample collection and preservation requirement of the MECP "Protocol for Analytical Methods Used in the Assessment of Properties Under Part XV.I of the Environmental Protection Act", 1 July 2011. Samples were collected directly into pre-cleaned, laboratory-supplied sample containers with the appropriate preservative for the analyte group (if applicable). Upon collection, samples were placed in insulated coolers with ice for storage and transport to the analytical laboratory under chain-of-custody documentation;
- Dedicated sampling equipment (tubing and footvalves) and clean disposable Nitrile[™] gloves were used at each sampling location to prevent cross-contamination. All non-dedicated sampling equipment (e.g., water level meters, split spoons) was decontaminated between sampling locations. Sampling equipment in contact with sampling media was cleaned by mechanical means: washed with a phosphate-free, laboratory-grade detergent (e.g., LiquiNox) and, if necessary, an appropriate desorbing wash solution; and thoroughly rinsed with analyte-free water;
- Detailed field records documenting the methods and circumstances of collection for each field sample were prepared at the time of sample collection. Each sample was assigned a unique sample identification number recorded in the field notes, along with the date and time of sample collection, the sample matrix, and the requested analyses; and
- The submission of samples to the analytical laboratory in accordance with standard chain-of-custody procedures.

A summary of the primary and duplicate samples collected between May 13 and 27, 2021 is shown below, for further detail, please refer to Appended Tables 3 and 4.

Submission Date	Media	Sample ID	Duplicate ID	Trip Blanks
21 May 2021	Soil	BH21-02 SA2, BH21-03 SA2, BH21-03 SA3, BH21-04 SA3, BH21-05 SA1, BH21-06 SA2, BH21-07 SA2, BH21-07 SA3, B21-11 SA1, BH21-13 SA1, BH21-13 SA3 (12 samples)	BH21-03 SA22	NA
28 May 2021	Soil	BH21-08 SA1, BH21-09 SA2, BH21-10 SA1, BH21-10 SA2, BH21-12 SA1 (5 samples)	NA	NA
22 June 2021	Soil	BH21-01 (1 sample)	NA	NA
27 May 2021	Groundwater	BH21-02, BH21-03, BH21-05, BH21-06, BH21- 10, MW17-2 (6 samples)	DUP-3	Trip Blank

6.0 REVIEW AND EVALUATION

This section of the report presents a review and evaluation of the results of the drilling, monitoring and sampling activities conducted as part of the Phase Two ESA.

6.1 Geology

The soil conditions encountered during the borehole drilling programs are presented in the Record of Borehole sheets provided in Appendix B, as well as in the cross-section presented in Figure 7. The subsurface soil conditions encountered during the investigation generally consisted of the following:

- Topsoil was generally encountered between ground surface and a maximum depth of 0.3 mbgs which consisted of brown to dark brown silty sand, sandy silt, or gravelly silty sand with organics. At BH21-01, concrete was encountered at ground surface to a maximum depth of 0.05 mbgs;
- Fill was encountered between 0.10 to depths ranging between 0.8 to 3.8 mbgs which consisted of brown, dark brown, or grey-brown silty sand, sandy silt, or gravelly silty sand; silty clay was encountered in BH21-13; black molting, cobble, brick, concrete, and other waste was observed in several boreholes;
- Glacial till was encountered between 1.5 and 1.7 mbgs at BH21-03 and 0.8 and 3.0 mbgs in BH21-13 which consisted of grey or grey-brown gravelly silty sand; native soils were not observed in any other boreholes;
- At BH21-05, concrete was encountered between 1.25 and 1.79 m bgs underlain by fill between 1.79 to 1.95 mbgs; and
- Bedrock was encountered at depths between 1.2 and 3.8 mbgs.

Based on the soil conditions encountered in the boreholes, the shaley limestone bedrock is considered to be an unconfined aquifer. Only one groundwater horizon was identified, ranging from 62.3 to 65.8 masl; the investigation was restricted to this aquifer.

6.2 Groundwater: Elevations and Flow Direction

All monitoring wells were used in the interpretation of shallow groundwater contours and shallow groundwater flow direction. Any temporary fluctuation in water levels on the Phase Two Property is not anticipated to affect the conclusions of the Phase Two ESA.

The location and depth of the screens for the six new monitoring wells (BH21-01, BH21-02, BH21-03, BH21-05, BH21-06, and BH21-10) were selected based on the APECs being investigated and to facilitate triangulation of groundwater flow direction on each side of the O-train rock cut. The wells were generally installed to straddle the water table however; due to not wishing to screen across distinct groundwater horizons (i.e., bedrock and overlying native or fill), screening of the water table was not possible at all locations. At BH21-01, groundwater was not encountered to a depth of investigation of 1.91 mbgs during drilling. A summary of the monitoring well construction details is presented in Appended Table 1. No evidence of petroleum hydrocarbon free product or sheen in groundwater was observed.

The groundwater elevations of at each monitoring well are summarized in Appended Table 3. Groundwater measurements ranged from 2.03 to 3.65 metres below top of pipe (mbtop) or between 62.30 to 65.82 metres above sea level (masl) on May 27, 2021. The measured groundwater elevations from May 27, 2001 are illustrated on Figure 4 along with the inferred direction of groundwater flow based on site topography and historical investigation results. Groundwater flow is expected to flow to the O-train rock cut which is dewatered from both Parcel A (southwest direction) and Parcel B (northeast direction).

Seasonal fluctuation in water levels on the Site should be expected. Given the limited number of monitoring events, seasonal trends could not be identified; however shallow groundwater water levels are typically highest following the spring recharge and decline throughout the summer and fall months into the winter. At the time of groundwater sample collection (May 27, 2021), the saturated screen length at the sampled locations ranged from 1.66 m (BH21-03) to 3.30 m (BH21-05).

6.3 Groundwater: Hydraulic Gradients

The average horizontal hydraulic gradient was estimated for shallow groundwater conditions based on water levels collected on May 27, 2021. The horizontal hydraulic gradient for shallow groundwater conditions was 0.033 m/m along the majority of the site, with a less steep gradient of 0.022 m/m along the southern Site boundary.

Vertical hydraulic gradients were not calculated as no nested monitoring well pairs were installed.

6.4 Coarse Soil Texture

Based on field observations, more than 50% of particles (by mass) in the soil were equal to or greater than 75 μ m in mean diameter. Further, prior sieve analysis results classified the soil texture at the Site as being coarse-grained (Stantec, 2016). Accordingly, soil at the Phase Two Property is considered to be coarse-textured.

6.5 Soil: Field Screening

Headspace vapour measurements were conducted on the soil samples collected from the borehole indicated in in the Record of Borehole sheets provided in Appendix B. Combustible gas vapour ranged from non-detect to 160 ppm, measured at BH21-13 between 1.52 - 2.13 mbgs, and organic vapour measurements ranged from non-detect to 1 ppm.

6.6 Soil: Quality

Appended Table 4 provides a summary of the soil samples submitted for analysis and the associated test parameters. The analytical results of soil samples are presented in Appended Tables 6a to 6e. Laboratory Certificates of Analysis for the soil samples are included in Appendix C.

Golder completed soil sampling at the Site during borehole advancement between May 13, 2021 and June 11, 2021. The soil samples were submitted to AGAT for analysis of one or more of the following parameters: metals, inorganics, VOC, BTEX, PAH, PCB and/or PHC.

A summary of the number of soil samples analyzed and the number of soil samples exceeding the Table 7 site condition standards for commercial properties with coarse soils and non-potable groundwater is provided below.

Parameter	Number of soil samples analyzed	Number of soil samples exceeding the MECP Table 7 Standards
Electrical Conductivity	14	1
Sodium Adsorption Ratio	15	0
Cyanide	1	0
Metals and Metal Hydride	14	1
BTEX and PHC F1-F4	15	0
PAH	16	3
VOC	4	0

The soil samples that exceeded the Table 7 site condition standards for commercial properties with coarse soils and non-potable groundwater are summarized below.

Location	Sample	Date	Parameter Group	Parameter	MECP Table 7 Standards ¹ (µg/g)	Concentration (µg/g)
DUD4 04			Other regulated Parameters	Electrical conductivity	1400 µS/cm	2,660 µS/cm
BH21-01	21-01 SA2	06/11/2021	РАН	Benzo[a]pyrene	0.3	0.46
			ГАП	Dibenzo[a,h]anthracene	0.1	0.29
				Anthracene	0.67	0.84
	BH21-02 SA2	SA2 2021-05-18	РАН	Benzo[a]anthracene	0.96	2.61
BU24.02				Benzo[a]pyrene	0.3	1.86
BH21-02				Benzo[b]fluoranthene	0.96	2.39
				Benzo[k]fluoranthene	0.96	0.98
				Dibenzo[a,h]anthracene	0.1	0.26
BH21-04	BH21-04 SA3	2021-05-13	Metals	Vanadium	86	104
BH21-07	BH21-07 SA2	2021-05-17	PAH	Benzo[a]pyrene	0.3	0.38

Electrical conductivity and PAH impacts identified at BH21-01, PAH impacts identified for BH21-02 and vanadium impacts for BH21-04 are expected extend to bedrock, at 1.91, 1.27, and 3.81 mbgs, respectively. The elevated electrical conductivity is inferred to be related to application of road salt within the parking lot and is not considered to be an exceedance of the Table 7 standard. A deeper soil sample (BH21-07 SA3) collected from 1.52 to 1.65 mbgs at BH21-07 did not exceed the standards and are considered to be vertically delineated.

Historical soil samples reported by others in 2003, 2004, 2005 and 2017 were also assessed for regulatory guideline exceedances (Appendix D). A summary of the number of historical soil samples analyzed and the number of historical soil samples exceeding the Table 7 site condition standards for commercial properties with coarse soils is provided below. Only samples that were analyzed using current laboratory methods were considered while reviewing historical results (e.g., only PHC, F1-F4 and VOC data collected in 2011 and later).

Parameter	Number of historical soil samples assessed	Number of historical soil samples exceeding the MECP Table 7 Standards
Cyanide, Electrical Conductivity, Fluoride, Sodium Adsorption Ratio, and/or pH	2	0
Metals and/or Metal Hydride	11	0
PHC F1-F4	3	0
BTEX	3	0
РАН	15	4
VOC	3	0
Phenol	2	0
Pesticide	1	0
РСВ	2	0
Dioxin and Furan	1	0

Historic soil sample exceedances of Table 7 site condition standards for commercial properties with coarse soils and non-potable groundwater are summarized below.

Location	Sample	Date	Parameter Group	Parameter	MECP Table 7 Standards ¹ (µg/g)	Concentration (µg/g)
	BH5 BH5-2-3 2003-10-28 PA		Anthracene	0.67	0.68	
			Benzo[a]anthracene	0.96	1.8	
BH5		2003-10-28	PAH	Benzo[a]pyrene	0.3	1.4
			Benzo[b]fluoranthene	0.96	2	
				Dibenzo[a,h]anthracene	0.1	0.28

Location	Sample	Date	Parameter Group	Parameter	MECP Table 7 Standards¹ (μg/g)	Concentration (µg/g)
				Acenaphthylene	0.15	0.5
				Anthracene	0.67	1.5
				Benzo[a]anthracene	0.96	3.4
04-BH6ª	04-BH6-2	2004-08-31	РАН	Benzo[a]pyrene	0.3	2.7
04-010~	04-010-2	2004-00-31	ГАП	Benzo[b]fluoranthene	0.96	3.5
				Benzo[k]fluoranthene	0.96	1.4
				Dibenzo[a,h]anthracene	0.1	0.48
				Indeno[1,2,3-cd]pyrene	0.76	1.4
		2005-05-31	PAHs	Anthracene	0.67	2.4
				Benzo[a]anthracene	0.96	5.6
				Benzo[a]pyrene	0.3	4.2
SS-1ª	SS-1			Benzo[b]fluoranthene	0.96	6.6
				Dibenzo[a,h]anthracene	0.1	0.4
				Fluoranthene	9.6	14
				Indeno[1,2,3-cd]pyrene	0.76	2
SS-4	SS-4	2005 05 21		Benzo[a]pyrene	0.3	0.78
33-4	33-4	2005-05-31	PAHs	Dibenzo[a,h]anthracene	0.1	0.16

^a04-BH6 is located off-Site. SS-1 which exceeds for PAH parameters is located partially off-site (composite of three surface soil samples, one of which was on Site). Fill material at these locations, although off-Site are likely to be representative of the fill material on Site as they attributed to the same PCA.

6.7 Groundwater: Quality

Monitoring well construction details are summarized in Appended Table 1 and a list of groundwater samples submitted for laboratory analysis is provided in Appended Table 5. The analytical results for groundwater samples are summarized in Appended Tables 7a through 7e, along with the applicable Table 7 site condition standards. Laboratory certificates of analysis for groundwater are provided in Appendix C.

Golder completed sampling of monitoring wells at the Site on 27 May 2021. A summary of the number of groundwater samples analyzed and number of samples exceeding the Table 7 site condition standards is provided below:

Parameter	Number of groundwater samples analyzed	Number of groundwater samples exceeding the 2011 MECP Table 7 Standards
Chloride and Sodium	6	1
Metals and Metal Hydrides	6	0
BTEX and PHC F1-F4	6	0
РАН	6	0
VOC	6	2

Groundwater sample exceedances of Table 7 site condition standards for commercial properties with coarse soils and non-potable groundwater are summarized below.

Location	Sample	Date	Parameter Group	Parameter	MECP Table 7 Standards ¹ (µg/L)	Concentration (µg/L)					
BH21-02	BH21-02	2021-05-27	Other Regulated	Chloride	1,800,000	3,390,000					
DI 12 1-02	DI 12 1-02	D1121-02	DI 12 1-02	DI 12 1-02	2021-03-21	Regulated Parameters	0	•	Sodium	1,800,000	2,180,000
BH21-05	BH21-05	2021-05-27	VOC	Chloroform	2.0	2.09					
BH21-06	BH21-06	2021-05-27	VOC	Chloroform	2.0	2.09					

The sodium and chloride impacts identified for the groundwater sample collected at BH21-02 are expected to be related to used of road salt for safety purposes in the parking lot. The chloroform exceedances identified for BH21-05 and BH21-06 are considered to be related to the use of potable water during rock coring for these boreholes. Residual chlorine in potable water can react with natural organic matter in the subsurface to form chloroform. These exceedances are expected to be localized and short lived. It is also noted where an exceedance is solely attributed to the application salt for safety purposes (i.e. sodium and chloride) it is not considered exceeding the standard. As such, groundwater at the Phase Two Property meets the applicable site condition standards.

In addition to the numerical standards, the MECP sets out aesthetic standards relating to the presence of petroleum hydrocarbon product. Specifically, a property does not meet the site condition standards if there is evidence of free product, including but not limited to, visible petroleum hydrocarbon film or sheen present on groundwater, surface water or in any groundwater or surface water samples. Monitoring for free phase product was conducted during groundwater sample collection. No evidence of free product or sheen in groundwater was observed.

Historical groundwater samples reported by others in 2016 and 2017 were also assessed for regulatory guideline exceedances (Appendix D). Further historic groundwater samples were reported in 2004 and 2005; these sample were not evaluated as they were considered to be too old to be representative of current Site conditions. A summary of the number of historical groundwater samples analyzed and the number of historical groundwater samples exceeding the Table 7 site condition standards for commercial properties with coarse soils is provided below.

Parameter	Number of historical groundwater samples assessed	Number of historical groundwater samples exceeding the MECP Table 7 Standards
Other Regulated Parameters	6	1
Metals and/or Metal Hydride	7	0
PHC F1-F4	5	0
BTEX	6	0
РАН	9	0
VOC	6	02
Phenols	4	0
Pesticide	1	0
РСВ	4	0
Dioxin and Furan	3	0

Historic groundwater exceedances of Table 7 site condition standards for commercial properties with coarse soils and non-potable groundwater are summarized below.

Location	Sample	Date	Parameter Group	Parameter	MECP Table 7 Standards¹ (µg/g)	Concentration (µg/L)
MW4	MW4	2017-08-03	Other Regulated Parameters	Chloride	1,800,000	3,000,000

The historic chloride impact identified for the groundwater sample collected at MW4 is inferred to be related to road salt use within the parking area. As previously stated, this is not considered to be an exceedance as it is associated with the application of salt for safety purposes.

According to the "Guidance for Addressing Chloroform at a Record of Site Condition Property" the applicable site condition standards for chloroform need not to be considered to be exceeded if the Site meet the below two criteria:

- The source of chloroform is only associated with water from a treated municipal water supply; and
- A soil and groundwater concentrations are numerically equal to or lower than the values listed in Table A of the guideline.

² Detection limits for 1,1,2,2-Tetrachloroethane, 1,1,2-Trichloroethane, 1,1-Dichloroethylene, 1,2-Dibromoethane, 1,2-Dichloropropane, 1,4-Dichlorobenzene, Bromomethane, Carbon Tetrachloride, and/or Vinyl Chloride were above regulatory guidelines for four samples.

Based on the Phase One ESA investigation completed for the Site by Golder in 2021, there was no known source of chloroform or other trihalomethanes on the Site or within the study area.

The concentration of chloroform in all soil samples collected during the Phase Two investigation were below the laboratory detection limits (<0.04 μ g/g), which is below Table A guideline (2.3 μ g/g). The concentration of chloroform in all groundwater samples collected from the Site were below Table A guideline (25 µg/L).

The Site meets the two criteria outlined above. It is therefore the opinion of the Qualified Person, that the chloroform exceedances in groundwater samples were likely associated with the use of potable water during bedrock coring. As such, groundwater at the Phase Two Property meets the applicable site condition standards.

6.8 Sediment: Quality

No sediment samples were collected as part of this investigation.

6.9 **Data Quality Review**

The quality assurance assessment of the field duplicate sample results was conducted according to the MECP document "Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act", March 9, 2004 (amended in July 2009 and effective as of July 1, 2011) ("Analytical Protocol").

To determine the precision of the analytical methods and field sampling procedures, blind duplicate samples were collected during soil and groundwater sampling. Precision is determined by the relative percent difference (RPD) between the duplicate and original samples and was calculated as follows:

Where

$$RPD = \frac{|x_1 - x_2|}{x_m}$$

 x_1 initial sample results x2 duplicate sample results x_m mean of x_1 , x_2

The analytical results of the primary and duplicate soil and groundwater samples are presented in appended Tables 5f and 6f, respectively. RPD results for most analyzed parameters were under the maximum 10% to 50% acceptance criteria, depending on medium and parameter, specified in the Analytical Protocol. Analytical parameters which did not meet the acceptance criteria specified within the Analytical Protocol are listed in the table below.

Medium	Sample	Parameter	Unit	Concentration	Calculated RPD (%)	Acceptance Criteria (%)
	BH21-03 SA2	Barium	uala	339	48.35	30
Soil	BH21-03 SA22 (dup)	Danum	µg/g	207	40.33	
301	BH21-03 SA2	Lood	hð\ð	75	EC 44	20
	BH21-03 SA22 (dup)	Lead		42	56.41	30
Groundwater	BH21-03			103,000	50.72	20
Groundwater	DUP-3	Chloride	µg/L	173,000	50.72	20

The RPD limits indicated above and in Appended Tables 5f and 6f are used to evaluate laboratory duplicates. The elevated soil duplicate concentration is attributed to inherent sample heterogeneity in soil samples. The results indicate that there is some variability in the soil quality within samples and that lead and barium concentrations may vary up to $\pm 50\%$ of the reported values. Further, chloride concentrations in groundwater may exceed the measured concentration, however any elevated concentrations are considered to be related to use of road salt for safety purposes and therefore do not represent and exceedance of the Table 7 standard at the Site.

A trip blank sample was submitted with groundwater samples collected on May 27, 2021 and analyzed for BTEX. No detectable concentrations were found in the trip blank sample. The quality of the analytical results is further supported by analytical laboratory's internal quality assurance program that includes laboratory blanks, spikes, surrogates and duplicate samples.

All certificates of analysis or analytical reports received pursuant to clause 47(2) (b) of the regulation comply with subsection 47(3). A certificate of analysis or analytical report has been received for each sample submitted for analysis and is provided in Appendix C.

A laboratory QAQC violation was identified for selenium in soil sample BH21-13 SA1 due to reference material measurement being outside of the acceptable range. The laboratory provided the following comment addressing this QAQC violation "For a multi-element scan for laboratory control standards and matrix spikes, up to 10% of analytes may exceed the quoted limits by up to 10%."

Accordingly, the analytical data generated during the investigation are considered to be valid and representative and may be used in this Phase Two ESA without further qualification.

6.10 Phase Two Conceptual Site Model

The Phase Two conceptual site model is presented in the following sections.

POTENTIAL SOURCES OF CONTAMINATION

Potentially Contaminating Activities

Based on the information obtained as part of the Phase One ESA, the following PCAs were identified within the Phase One Study Area. The location of each PCA is provided in Figure 2.

PCA Location ID	Location	PCA	Information Source	Rationale for Potential Contribution of the PCA to an APEC
n/a	Across the Site	30. Importation of Fill Material of Unknown Quality. Imported fill materials associated with various building construction and site development activities across the Site.	Site Observations, Previous Reports	The PCA is located on-Site and as such is considered an APEC.
A	Parcel A of the Site	30. Importation of Fill Material of Unknown Quality. Former Dow's Lake landfill on Parcel A with documented impacts to soil and groundwater. No municipal solid waste identified.	Previous Reports	The PCA is located on-Site with known impact to soil and groundwater. As such, this is considered an APEC.

PCA Location ID	Location	PCA	Information Source	Rationale for Potential Contribution of the PCA to an APEC
В	Parcel B of the Site	Demolition debris from office building on Parcel B with documented PAHs (federal guidelines) and metals (federal guidelines and provincial standards) impacts within fill layer.	Site Observations, Previous Reports, Aerial Photographs	Given the potential presence of demolition debris across majority of Parcel B, this on-Site PCA is considered an APEC.
С	Off-Site. Approximately 130 m south of the Site	Building demolition debris in fill layer associated with former SJCB building footprint with documented exceedance of PAHs, metals and/or phenols in soil (fill) and groundwater (compared to federal guidelines with limited exceedances of provincial standards at one location).	Site Observations, Previous Reports, Aerial Photographs	Given inferred distance of this PCA from the Site, it is not considered as an APEC for the Site.
D	Off-Site. Approximately 130 to 230 m southeast of the Site	55. Electricity Generator, Transformation and Power Station (Hydro Ottawa Sub- Station). Three concrete pad mounted transformers in the vicinity of the SJCB West Annex building.	Site Observations	Given inferred distance of this PCA from the Site, it is not considered as an APEC for the Site.
E	Off-Site. Approximately 200 m southeast of the Site	28. Gasoline and Associated Products Storage in Fixed Tanks. Former hydraulic oil elevator located in West Annex of SJCB.	Site Observations, Previous Reports	Given inferred distance of this PCA from the Site, it is not considered as an APEC for the Site.
F1 and F2	Off-Site. Approximately 125 m to 200 m south of the Site	Reported glycol leak from parking ramp system of SJCB East Annex	Site Observations, Previous Reports	Given inferred distance of this PCA from the Site, it is not considered as an APEC for the Site.
G1, G2 and G3	Off-Site. Approximately 130 m south of the Site	28. Gasoline and Associated Products Storage in Fixed Tanks. Three former diesel ASTs reportedly associated with SJCB.	Site Observations, Previous Reports	Given inferred distance of this PCA from the Site, it is not considered as an APEC for the Site.
н	Off-Site. Approximately 120 m northeast of the Site	37. Operation of Dry-Cleaning Equipment (where chemicals are used). Peloso Cleaners at 489 Preston Street	Site Observations, ERIS Report ³	Given inferred down-gradient location of this PCA compared to the Site and separation by roadways with associated underground utilities, it is not considered as an APEC for the Site.
I	Off-Site. Approximately 70 m northwest of the Site	28. Gasoline and Associated Products Storage in Fixed Tanks. Gasoline and Diesel USTs at 350 Loretta Avenue	Site Observations, ERIS Report, HLUI	Given inferred cross-gradient location of this PCA compared to the Site and separation by roadways with associated underground utilities, it is not considered as an APEC for the Site.

³ The following abbreviations are used in the table above: Environmental Risk Information Services (ERIS), Historic Land Use Inventory (HLUI), and Fire Insurance Plans (FIPs).

PCA Location ID	Location	РСА	Information Source	Rationale for Potential Contribution of the PCA to an APEC
J	Off-Site. Approximately 50 m north of the Site	10. Commercial Autobody Shops. Auto Service garage with four USTs at 829 Carling Avenue	Site Observations, HLUI	Given inferred down-gradient location of this PCA compared to the Site, separation by a roadway with underground utilities between this PCA and Site, as well as absence of any reported spills associated the USTs, this PCA is not considered an APEC for the Site.
к	Off-Site. Approximately 140 m northeast of the Site	28. Gasoline and Associated Products Storage in Fixed Tanks. Retail fuel outlet at 485 Preston Street	Site Observations, ERIS Report, HLUI	Given inferred cross-gradient location of this PCA compared to the Site, distance as well as separation by roadways with associated underground utilities between this PCA and Site, it is not considered as an APEC for the Site.
L	Off-Site. Approximately 100 m northeast of the Site	28. Gasoline and Associated Products Storage in Fixed Tanks. Four USTs at 1001 Queen Elizabeth Drive	Site Observations, ERIS Report	Given inferred cross-gradient location of this PCA compared to the Site, distance as well as separation by roadways with associated underground utilities between this PCA and Site, it is not considered as an APEC for the Site.
М	Off-Site. Approximately 90 m north of the Site	28. Gasoline and Associated Products Storage in Fixed Tanks. Retail fuel outlet with USTs at 505 Preston Street	Site Observations, ERIS Report, HLUI	Given inferred down-gradient location of this PCA compared to the Site, distance as well as separation by roadways with associated underground utilities between this PCA and Site, it is not considered as an APEC for the Site.
N	Off-Site. Approximately 100 m northwest of the Site	28. Gasoline and Associated Products Storage in Fixed Tanks. Retail fuel outlet with USTs at 111 Sherwood Drive	Site Observations, HLUI	Given inferred down- to cross- gradient location of this PCA compared to the Site, distance as well as separation by roadways with associated underground utilities between this PCA and Site, it is not considered as an APEC for the Site.
ο	Off-Site. Approximately 40 m north of parcel A	<i>33. Metal Treatment, Coating,</i> <i>Plating and Finishing.</i> Campbell Steel and Iron Works Ltd at 855 Carling Avenue	FIPs	Given inferred down-gradient location of this PCA compared to the Site, distance as well as separation by roadways with associated underground utilities between this PCA and Site, it is not considered as an APEC for the Site.

PCA Location ID	Location	PCA	Information Source	Rationale for Potential Contribution of the PCA to an APEC
Р	Off-Site. Approximately 200 m northeast of the Site	37. Operation of Dry Cleaning Equipment (where chemicals are used. Hunter Cleaners at 787 Carling Avenue	FIPs	Given inferred down- to cross- gradient location of this PCA compared to the Site, distance as well as separation by roadways with associated underground utilities between this PCA and Site, it is not considered as an APEC for the Site.
Q	Off-Site. Approximately 50 m northwest of the Site	28. Gasoline and Associated Products Storage in Fixed Tanks. Retail fuel outlet with USTs at 531 Preston Street	FIPs	Given inferred down-gradient location of this PCA compared to the Site, distance as well as separation by roadways with associated underground utilities between this PCA and Site, it is not considered as an APEC for the Site.
R	Off-Site. Approximately 100 m north of the Site	28. Gasoline and Associated Products Storage in Fixed Tanks. Fuel oil Depot with eight USTs at 140 Hickory Street	FIPs	Given inferred down-gradient location of this PCA compared to the Site, distance as well as separation by roadways with associated underground utilities between this PCA and Site, it is not considered as an APEC for the Site.
s	Off-Site. Between Parcel A and B	46. Rail Yards, Tracks and Spurs. Railway tracks, located between Parcel A and B, currently used by O-Train <u>.</u>	Site Observations, Aerial Photographs	Given this off-Site PCA is located at a lower elevation compared to the Site, any fill related issues likely have been removed at the time of installation of these railway tracks.
n/a	Off-Site. Entire parcel adjacent to the southern boundary of the Site	40: Pesticides (including Herbicides, Fungicides and Anti-Fouling Agents) Manufacturing, Processing, Bulk Storage and Large-Scale Applications. Pesticide application associated with former farming activities on the parcel adjacent to southern boundary of the Site.	Aerial Photographs	Given inferred distance of this PCA from the Site, it is not considered as an APEC for the Site.

Areas of Potential Environmental Concern

A summary of the APECs identified at the Phase One Property is provided in the Table below. The location of each APEC is presented in Figure 2.

APEC	Description	COCs
APEC 1 : Former Dow's Lake Landfill	Former Dow's Lake Landfill at Parcel A. No municipal solid waste noted at the Site during previous investigations (landfilled material limited to soil and demolition debris). Fill of unknown quality.	PHCs ⁴ , BTEX, VOCs, PAHs, Metals, and Inorganics
APEC 2: Demolition debris from former office building	debris from former (federal guidelines and provincial standards) impacts within the fill	
APEC 3 : Imported fill materials of unknown quality	Unknown quality of imported fill materials associated with various building construction and site development activities across the Site.	PHCs, BTEX, PAHs, Metals, and Inorganics

PHYSICAL SETTING

Stratigraphy

A representative geologic cross-section of the Site, oriented parallel to the interpreted groundwater flow direction, is presented in Figure 7. In general, the subsurface soil conditions encountered in the boreholes and test pits consisted of surficial topsoil and fill with the following characteristics:

- Topsoil was generally encountered between ground surface and a maximum depth of 0.3 mbgs which consisted of brown to dark brown silty sand, sandy silt, or gravelly silty sand with organics. At BH21-01, concrete was encountered at ground surface to a maximum depth of 0.05 mbgs;
- Fill was encountered between 0.10 to depths ranging between 0.8 to 3.8 mbgs which consisted of brown, dark brown, or grey-brown silty sand, sandy silt, or gravelly silty sand; silty clay was encountered in BH21-13; black molting, cobble, brick, concrete, and other waste was observed in several boreholes;
- Glacial till was encountered between 1.5 and 1.7 mbgs at BH21-03 and 0.8 and 3.0 mbgs in BH21-13 which consisted of grey or grey-brown gravelly silty sand; native soils were not observed in any other boreholes;
- At BH21-05, concrete was encountered between 1.25 and 1.79 m bgs underlain by fill between 1.79 to 1.95 m bgs; and
- Bedrock was encountered at depths between 1.2 and 3.8 mbgs.

Given that the average thickness of overburden at the Site is less than 2 m, the Site is considered to be a shallow soil property as defined by O.Reg. 153/04 (as amended).

Depth to Bedrock

Limestone bedrock was either encountered or inferred (refusal at BH21-01, BH21-04, 21-08 and BH21-11) in all boreholes starting between 1.2 and 3.8 mbgs during the Phase Two investigation.

⁴ The following abbreviations are used in the table above: petroleum hydrocarbon fractions F1-F4 (PHCs), benzene, toluene, ethylbenzene, and xylene (BTEX), polycyclic aromatic hydrocarbons (PAHs), and volatile organic compounds (VOCs).

Hydrogeological Characteristics

Regional groundwater flow follows the topography of the Site, primarily southwest to on Parcel A and northeast on Parcel B towards the rock cut for the O-train. Regional groundwater is expected to flow north to the Ottawa River located approximately 2.8 km north of the Site.

Groundwater levels were measured in the monitoring wells located across the Site on May 27, 2021. Figure 4 shows groundwater elevations and the interpreted groundwater flow direction. Groundwater elevations ranged from 62.30 to 64.03 masl on May 27, 2021.

At the time of groundwater sample collection (May 27, 2021), the saturated screen length at the sampled locations ranged from 1.66 m (BH21-03) to 3.30 m (BH21-05).

The average horizontal hydraulic gradient was estimated for shallow groundwater conditions based on water levels collected on May 27, 2021, and the inferred groundwater contours presented on Figure 4. The horizontal hydraulic gradient for shallow groundwater conditions was 0.033 m/m along the majority of the site, with a less steep gradient of 0.022 m/m along the southern Site boundary.

Vertical hydraulic gradients were not calculated as no nested monitoring well pairs were installed on the parkade property.

Depth to Groundwater

Groundwater elevations ranged from 2.03 to 3.65 metres below top of pipe (mbtop) on May 27, 2021.

SITE CONDITION STANDARDS

Environmentally Sensitive Areas

There are no areas of natural significance located on or within 30 meters of the Phase Two Property. Three surface soil samples (up to 1.5 mbgs) and one subsurface soil sample (greater than 1.5 mbgs) were submitted for pH analysis as part of prior investigations (Stantec, 2017). The reported pH of three of the four samples met the requirements that the pH of surface soil is $5 \le pH \le 9$ and the pH of sub-surface soil is $5 \le pH \le 11$; with pH values ranging from 7.51 (MW17-03 SS01) to 7.66 (MW17-02 SS01). Surface soil sample MW17-01 SS01 exceeded the pH requirements with a value of 11.3. The elevated pH was inferred to be related to concrete material in the fill. Golder understands that this material will be removed during construction and does not constitute an environmentally sensitive site. In accordance with this prior report, and planned redevelopment at the Site, Golder deems Section 41 of the Regulation to not apply to the Phase Two Property.

Shallow Soil Property or Water Body

Bedrock was encountered at a minimum depth of 1.2 metres below ground surface. The property does not include all or part of a water body and is not adjacent to a water body or include land that is within 30 metres of a water body. Accordingly, Section 43.1 of the Regulation does t apply to the Phase Two Property (shallow soil property).

Imported Soil

Fill of unknown quality has been imported onto the Phase Two Property during various building construction and site development activities across the Site. Fill was identified throughout the Phase Two Property to a maximum depth of 3.8 mbgs. This PCA was investigated as part of APEC 3; no contaminant impacts were identified.

Proposed Buildings and Other Structures

There are currently no structures located on-Site. The Site is proposed to be developed with commercial land use as a parkade structure for the new Civic development for the Ottawa Hospital.

DELINEATION OF CONTAMINANT IMPACTS

APEC 1

PAH impacts have been identified for the current soil sample collected at BH21-02 and historical soil sample BH5 these samples are delineated by bedrock encountered at 1.27 and 1.52 mbgs, respectively. At one location within APEC 1, elevated electrical conductivity was noted. Elevated conductivity at this location was attributed to application of road salt for safety purposes and was therefore not considered to be and exceedance of the Table 7 Standards.

The sodium and chloride impacts identified for the current groundwater sample collected at BH21-02 and historic groundwater sample collected at MW4 are expected to be related to road salt use within the parking area, and it is the opinion of the Qualified Person that groundwater for APEC 1 at the Phase Two Property meets the applicable site condition standards.

APEC 2

Vanadium impacts identified for BH21-04 are delineated by the presence of bedrock at 3.81 mbgs. The PAH (benzo[a]pyrene) impacts identified for BH21-07 are considered to constrained to the upper soil layers (above 1.37 mbgs) and are vertically delineated by a deeper soil sample that had concentrations measured below the applicable site condition standards. Vanadium is commonly associated with marine clay from eastern Ontario. Given the concentration of vanadium is within the range commonly present in local soils and the fill was documented to contain silty clay it is the QPs determination that the vanadium is of natural origin and therefore meets the standard.

Elevated concentrations of chloroform were identified in groundwater samples collected from BH21-05 and BH21-06 (2.08 μ g/L compared to the Table 7 standard of 2 μ g/L). These concentrations are inferred to be due to the use of potable water during rock coring (chloroform can be produced as a byproduct). It is the opinion of the Qualified Person that groundwater for APEC 2 at the Phase Two Property meets the applicable site condition standards.

APEC 3

No contaminant impacts were identified specifically for APEC 3; however impacts identified in APEC 1 and 2 could also be attributed to APEC 3, as all are fill related impacts.

Contaminant Distribution

PAH and vanadium identified for soils appear to be present across the middle and northern portions of the Site. The horizontal extents of impact are shown on Figure 5.

Sodium and chloride impacts to groundwater appear to be limited to the western portion of Parcel A, whereas chloroform impacts appear to be limited to the southern and eastern portions of Parcel B.

Potential Reason for Discharge into the Environment at the Site

PAH impacts identified to soils identified across Parcels A and B the Site appear to be the result of former site use as a landfill (Parcel A) and demolition debris or poor quality fill material (Parcel B – ash was noted to be in the fill sample at this location).

Vanadium impacts identified for BH21-04 are delineated by the presence of bedrock at 3.81 mbgs. The PAH (benzo[a]pyrene) impacts identified for BH21-07 are considered to constrained to the upper soil layers (above 1.37 mbgs) and are vertically delineated by a deeper soil sample that had concentrations measured below the applicable site condition standards. Vanadium is commonly associated with marine clay from eastern Ontario. Given the concentration of vanadium is within the range commonly present in local soils and the fill was documented to contain silty clay it is the QPs determination that the vanadium is of natural origin and therefore meets the standard.

The elevated concentration of sodium and chloride in groundwater identified within Parcel A of the Site are expected to be related to road salt use within the parking area and are not considered to represent an exceedance of the Table 7 standards.

The elevated chloroform concentrations identified within Parcel B of the Site are expected be due to the use of potable water during rock coring for these boreholes and are not considered to represent an exceedance of the Table 7 standards. Additionally they are expected to be localized and short lived.

Utilities, specifically storm sewers run through the parking area of Parcel A. The depth of the storm sewers is unknown and may influence groundwater flow at a local level. The rock cut for the O-train is expected to dewater groundwater between Parcel A and Parcel B and would intersect groundwater from both parcels. As no groundwater contamination has been identified at the Site, subsurface structures and utilities would not represent a preferred pathway for contaminant migration.

Subsurface Structures and Utilities

Contaminant Migration

Impacts identified in current and historic soil samples are not considered to present a contaminant mass contributing to groundwater contamination, as the water table is located below the upper bedrock horizon. This is supported by no COCs identified in soil samples being present above regulatory guidelines in groundwater samples. It is anticipated that the identified soil impacts which are limited to fill will be removed during soil excavation activities related to the development of the parkade structure.

No exceedances of the site condition standards for groundwater were identified at the site and thus, contaminant migration in groundwater is not expected to be an issue of concern for the Site.

The presence of the O-Train subsurface structure at the Site is expected to act as a preferential pathway to groundwater flow as the structure intersects the water table. However, no groundwater contamination has been identified at the Site.

Meteorological and Climatic Considerations

Seasonal fluctuation in water levels on the Site should be expected. Given the limited number of monitoring events seasonal trends could not be identified; however shallow groundwater water levels are typically highest following the spring recharge and decline throughout the summer and fall months into the winter.

Soil Vapour Intrusion Pathways

Soil vapour intrusion is not anticipated because the impacts are expected to be related to the use of tap water during rock coring for these boreholes and are not anticipated to be present elsewhere on Site.

Lateral and Vertical Distribution of Contaminants

The lateral extent of soil impacts is identified in Figure 5. Exceedances are known to exist north of the Site boundary, extending to Carling Avenue. The fill material noted on Site is heterogeneous and areas of poor fill quality may exist outside of the area identified on Figure 5. The depth of soil impacts is generally delineated by the presence of shallow bedrock, however, at one location (BH21-7), PAH impacts were vertically delineated with a deeper fill soil sample which did not contain ash.

POTENTIAL EXPOSURE PATHWAYS AND RECEPTORS

It is anticipated that the identified soil impacts which are limited to fill will be removed during soil excavation activities related to the development of the parkade structure; therefore, potential release and transport mechanisms, exposure pathways and human and ecological receptors are not considered further. The Occupational Health and Safety Plan developed for construction of the Parkade structure should consider the presence of elevated concentrations and include risk mitigation measures for construction workers.

7.0 CONCLUSIONS

The Phase Two ESA investigated the three APECs identified in the 2020 Phase One ESA.

The analytical results from the sampling and analysis program indicate that the reported concentrations of PAHs in three soil samples, electrical conductivity in one sample, and vanadium in one soil sample, sodium and chloride in one groundwater sample, and chloroform in two groundwater samples did not meet the applicable MECP Table 7 site condition standards. Historical exceedances of PAHs were identified at one other borehole location within the Site, two composite surface soil samples (one of which extended off-site to the north) and an off-site borehole to the north. Elevated concentrations of electrical conductivity in soil and sodium and chloride in groundwater is attributed to application of road salt for safety purposes. Elevated concentrations of vanadium in soil are attributed to known naturally elevated concentrations in eastern Ontario marine clays. Elevated concentrations of chloroform are attributed to used of potable water during bedrock coring. It is the opinion of the Qualified Person that these results (vanadium and electrical conductivity in soil and sodium, chloride and chloroform in groundwater) do not represent exceedances of the site condition standards. The reported concentrations of all other parameters tested in soil and groundwater were below the Table 7 generic site condition standards for commercial property use with coarse soil texture and non-potable groundwater.

PAH soils impacts identified across the Site appear to be the result of former site use as a landfill and demolition debris from the previous presence of buildings on Site, however could also be related to poor quality fill material brought to the Site. The elevated concentrations of sodium and chloride identified in groundwater at the Site are expected to be related to road salt use within the parking area. The elevated concentrations of identified in groundwater site are expected be due to the use of potable water during rock coring for these boreholes.

Impacts identified in current and historic soil samples are not considered to present a contaminant mass contributing to groundwater contamination. This conclusion is supported by no COCs identified in soil samples being present above regulatory guidelines in groundwater samples. It is anticipated that the identified soil impacts will be removed during soil excavation activities related to the development of the parkade structure. Elevated concentrations of contaminants of concern in the groundwater at the Site (chloride, sodium, and chloroform) are inferred to not be related to the identified APECs. Thus, contaminant migration in groundwater is not expected to be an issue of concern for the Site.

Based on the results of the soil and groundwater samples submitted as part of this Phase Two ESA, remediation of PAH impacts in the fill material is recommended prior to redevelopment into a commercial parkade.

The data presented in this report generally follows the O. Reg. 153/04 Phase Two ESA report format.

7.1 Additional Considerations

It is noted that by meeting the site condition standards it does not imply the soil is suitable for off-Site beneficial reuse as clean fill, just that it is suitable for the intended use on-Site. Characterization of the soil to Regulation 406/19 will be required prior to removing any soil from the site in order to determine the potential beneficial uses off-Site. Soil with no beneficial use off-Site would require landfill disposal, if not retained on the Site.

Golder has assumed that the impacted fill will be removed at the time of construction as fill is generally not a suitable founding layer for structures. If any of the fill is to remain on the Site, an evaluation of risk related to the PAH concentrations should be undertaken.

8.0 **REFERENCES**

Canadian Council of Ministers of the Environment (2016). *Guidance Manual for Environmental Site Characterization in Support of Environmental and Human Health Risk Assessment*. Volume 1 Guidance Manual

Environmental Investigation of Subsurface Conditions, Proposed New Hospital Campus, Former Sir John Carling Building Complex, Central Experimental Farm, Ottawa ON, dated September 2017, prepared by Paterson Group Inc. for Cleland Jardine Engineering Ltd.

Government of Ontario. (2011). *Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act*. Laboratory Services Branch Ministry of the Environment. March 9, 2004, amended as of July 1, 2011.

Screening Level Risk Assessment, Former Dow's Lake Landfill and Commissioner's Park, NCC Property Assets #96654 and #784 Ottawa, Ontario, dated October 2005, prepared by INTERA Engineering Ltd. for NCC.

Supplemental Phase II Environmental Site Assessment, Former Dow's Lake Landfill, National Capital Commission Property Assets #784 Ottawa, Ontario, dated November 2004, prepared by INTERA Engineering Ltd. for NCC.

Phase II Environmental Site Assessment, Former Sir John Carling Building, 930 Carling Avenue, Ottawa ON (DFRP# 08625), dated March 2016, prepared by Stantec Consulting Ltd. for PSPC.

Phase II Environmental Site Assessment, New Ottawa Hospital Civic Campus, Ottawa ON, dated September 2017, prepared by Stantec Consulting Ltd. for PSPC.

Phase One Environmental Site Assessment, The Ottawa Hospital – New Civic Campus, dated April 2020, prepared by Golder Associates Ltd for Patterson Inc.

9.0 LIMITATIONS

This report was prepared for the exclusive use of Parsons Inc. and the Ottawa Hospital for the purpose of obtaining planning approvals and to support the future construction of the Parkade. The report, which specifically includes all tables, figures and appendices, is based on data and information, collected during conducting the Phase Two ESA, and is based solely on the conditions of the property at the time of conducting investigations, supplemented by historical information and data obtained by Golder Associates Ltd. as described in this report.

The assessment of environmental conditions at this Site has been made using the results of field screening techniques and chemical analysis of soil and groundwater samples at a limited number of locations. The Site conditions between sampling locations have been inferred based on conditions observed at the sampling locations. Conditions may vary from these sample locations. Additional study, including further investigation, can reduce the inherent uncertainties associated with this type of study. However, it is never possible, even with exhaustive sampling and testing, to dismiss the possibility that part of a Site may be contaminated and remain undetected.

The services performed as described in this report were conducted in a manner consistent with that level of care and skill normally exercised by other members of the engineering and science professions currently practicing under similar conditions, subject to the time limits and financial and physical constraints applicable to the services.

Any use which a third party makes of this report, or any reliance on, or decisions to be made based on it, are the responsibilities of such third parties. Golder Associates Ltd. accepts no responsibility for damages, if any, suffered by any third party (other than as noted above) as a result of decisions made or actions based on this report.

The content of this report is based on information collected during the drilling, soil and groundwater sampling activities, our present understanding of the Site conditions, and our professional judgement in light of such information at the time of this report. This report provides a professional opinion and therefore no warranty is expressed, implied, or made as to the conclusions, advice and recommendations offered in this report. This report does not provide a legal opinion regarding compliance with applicable laws. With respect to regulatory compliance issues, it should be noted that regulatory statutes and the interpretation of regulatory statutes are subject to change.

The findings and conclusions of this report are valid only as of the date of this report. If new information is discovered in future work, including excavations, borings or other studies, Golder Associates Ltd. should be requested to re-evaluate the conclusions of this report, and to provide amendments as required.

The monitoring wells installed as part of this project have been constructed using licensed drilling/well contractors employing licensed well technicians. It is owner's responsibility to have a licensed well technician properly abandon all monitoring wells, if required.

10.0 SIGNATURES

The undersigned Qualified Person confirms that he/she was responsible for conducting and/or supervising this Phase Two ESA and the associated findings and conclusions.

We trust that you will find the contents of this report satisfactory for your current needs. Should you require clarification of the information provided, please do not hesitate to contact the undersigned.

Golder Associates Ltd.

Color

Lobke Rotteveel, MSc, EPt Environmental Scientist

Laura Jones, MASc, PEng, QPESA Senior Environmental Engineer

Hutter

Rochelle Mathew, MASc Environmental Scientist

Keith Holmes, MSc, PGeo, QPESA *Associate, Senior Geoscientist*

LR/RM/LJJ/lb/ha

Golder and the G logo are trademarks of Golder Associates Corporation

https://golderassociates.sharepoint.com/sites/140130/project files/6 deliverables/02 - environmental/02- parkade - sap2/21451149-rpt 13sept2021 toh-parkade.docx

Monitoring Well Construction Details Phase Two Environmental Site Assessment New Civic Development for The Ottawa Hospital - Parkade

Monitoring Well	Date Installed	Installed by	Ground Surface Elevation (masl)	Top of Pipe Elevation (masl)	Well Diameter (mm)	Screen Length (m)	Screen Interval (mbgs)	Borehole Depth (mbgs)	Lithology at Screen
BH21-01	11-Jun-21	Downing	65.054	64.893	52	0.92	0.81 - 1.73	1.91	FILL, WASTE, GRAVEL
BH21-02	18-May-21	Downing	65.671	66.786	32	3.05	1.98 - 5.03	7.29	SHALEY NODULAR LIMESTONE
BH21-03	18-May-21	Downing	64.972	65.949	32	3.05	2.26 - 5.31	5.31	SHALEY NODULAR LIMESTONE
BH21-05	14-May-21	Downing	65.577	66.545	38	3.05	3.89 - 6.94	6.94	SHALEY NODULAR LIMESTONE
BH21-06	12-May-21	Downing	67.002	67.936	38	2.74	2.66 - 5.40	5.40	SHALEY NODULAR LIMESTONE
BH21-10	18-May-21	Downing	66.190	67.126	38	2.69	2.74 - 5.49	5.49	SHALEY LIMESTONE
MW17-2/ MW17-02	28-Jul-17	Strata	66.103	66.064	52	3.05	3.05-6.10	6.10	Bedrock

<u>Notes</u>

masl metres above sea level

mbtop metres below top of pipe

NA not available

- not applicable

Table to be read in conjunction with accompanying report.

Prepared by: LR Checked by: RM Page 1 of 1

Groundwater Monitoring Phase Two Environmental Site Assessment New Civic Development for The Ottawa Hospital - Parkade

	Ground Surface	Top of Pipe				27-May-21				
Monitoring Well	Elevation (masl)	Elevation (masl)	Depth to water (mbtop)	Groundwater Elevation (masl)	Conductivity (mS/cm)	Temperature (°C)	DO (mg/L)	ORP (mV)	рН	Turbidity (NTU)
BH21-01 ^a	65.054	64.893	-	-	-	-	-	-	-	-
BH21-02	65.671	66.786	3.150	63.64	9.71	17.63	0.00	156	6.94	88.8
BH21-03	64.972	65.949	3.63	62.32	1.46	15.07	5.72	164	7.42	197
BH21-05	65.577	66.545	3.705	62.84	1.19	14.07	3.00	184	7.42	802
BH21-06	67.002	67.936	3.62	64.32	1.86	15.09	4.20	81	6.86	425
BH21-10	66.190	67.126	3.44	63.69	1.39	15.42	2.05	179	7.09	232
MW17-2/ MW17-02	66.103	66.064	2.04	64.02	1.42	16.61	0.00	154	7.07	46.2

Notes:

masl	metres above sea level
mbtop	metres below top of pipe
mS/cm	milliSeimans per centimere
°C	degrees Celsius
mg/L	milligram per litre
mV	millivolts
NTU	Nephelometric Turbidity unit
а	Monitoring well location was dry.
-	not applicable
be read in conju	nction with accompanying report.

Table to be read in conjunction with accompanying report.

Groundwater Elevations Phase Two Environmental Site Assessment New Civic Development for The Ottawa Hospital - Parkade

	Ground Surface	Top of Pipe	L-60	un-21	28-M	ay-21	27-Ma	ay-21
Monitoring Well ID	Elevation (masl)	Elevation (masl)	Depth to water (mbtop)	Groundwater Elevation (masl)	Depth to water (mbtop)	Groundwater Elevation (masl)	Depth to water (mbtop)	Groundwater Elevation (masl)
BH21-01 ^a	65.054	64.893	-	-	-	-	-	-
BH21-02	65.671	66.786	-	-	3.20	63.59	3.105	63.68
BH21-03	64.972	65.949		-	3.57	62.38	3.650	62.30
BH21-05	65.577	66.545	3.83	62.71	3.69	62.85	3.700	62.84
BH21-06	67.002	67.936	-	-	-	-	2.12	65.82
BH21-10	66.190	67.126	3.59	63.54	3.60	63.53	3.64	63.49
MW17-2	66.103	66.064	2.05	64.01	2.03	64.03	2.03	64.03

Notes:

- masl metres above sea level mbtop metres below top of pipe
- NA not available
- not applicable -
- Monitoring well location was dry. а
- Table to be read in conjunction with accompanying report.

Prepared by: LR Checked by: RM Page 1 of 1

Table 4 Summary of Soil Samples Submitted for Laboratory Analysis Phase Two Environmental Site Assessment New Civic Development for The Ottawa Hospital - Parkade

								ANALY	SES PE	RFORM	ED		
Borehole	Sample ID	Sampling Date	Sample Depth (mbgs)	Soil Type	Metals and Hydrides ¹	ORPs (B-HWS, Cr ⁶⁺ , Hg) ²	РАН	PHC F1-4	VOC	ВТЕХ	Electrical Conductivity	SAR	Cyanide
BH21-01	BH21-01 SA2	11-Jun-21	0.91 - 1.52	silty sand FILL	Х	Х	Х	Х		Х	Х	Х	Х
BH21-02	BH21-02 SA2	18-May-21	0.76 - 1.17	silty sand FILL	Х	Х	Х	Х	Х	Х	Х	Х	
	BH21-03 SA2	18-May-21	0.61 - 1.37	silty sand FILL	Х	Х	Х	Х	Х	Х	X	Х	
BH21-03	BH21-03 SA22	18-May-21	0.61 - 1.37	silty sand FILL	Х	Х	Х	Х	Х	Х	Х	Х	
	BH21-03 SA3	18-May-21	1.52 - 1.68	silty sand			Х	Х	Х	Х			
BH21-04	BH21-04 SA3	13-May-21	1.52 - 2.13	silty clay FILL	Х	Х	Х	Х		Х	X	Х	
BH21-05	BH21-05 SA1	14-May-21	0.00 - 0.61	silty sand TOPSOIL and silty sand FILL	Х	Х	Х	Х		Х	Х	Х	
BH21-06	BH21-06 SA2	14-May-21	0.76 - 1.37	silty sand to sandy silt FILL	Х	Х	Х	Х		Х	Х	Х	
BH21-07	BH21-07 SA2	17-May-21	0.76 - 1.37	silty sand FILL	Х	Х	Х	Х		Х	Х	Х	
DH21-07	BH21-07 SA3	17-May-21	1.52 - 1.65	silty sand FILL			Х						
BH21-08	BH21-08 SA1	18-May-21	0.00 - 0.61	silty sand TOPSOIL and silty sand FILL	Х	Х	Х	Х		Х	Х	Х	
BH21-09	BH21-09 SA2	18-May-21	0.76 - 1.37	silty sand FILL	Х	Х	Х	Х		Х	Х	Х	
BH21-10	BH21-10 SA1	18-May-21	0.00 - 0.61	silty sand TOPSOIL and silty sand FILL			Х	Х		Х			
BH21-10	BH21-10 SA2	18-May-21	0.76 - 1.37	silty sand FILL	Х	Х					Х	Х	
BH21-11	BH21-11 SA1	13-May-21	0.00 - 0.61	silty sand TOPSOIL and silty sand FILL	Х	Х	Х	Х		Х	Х	Х	
BH21-12	BH21-12 SA1	19-May-21	0.00 - 0.61	silty sand TOPSOIL and silty sand FILL	Х	Х	Х	Х		Х	Х	Х	
BH21-13	BH21-13 SA1	13-May-21	0.00 - 0.61	sandy silty TOPSOIL and silty clay FILL	Х	Х	Х	Х		Х	Х	Х	
DUT 1-12	BH21-13 SA3	13-May-21	1.52 - 2.13	silty sand	Х	Х	Х	Х	Х	Х	X	Х	

Notes

mbgs	Metres below ground surface
1	Ontario Regulation 153 Metals. Hydrided-forming metals refers to Arsenic, Selenium, Antimony.
ORP	Other Regulated Parameters
B-HWS	Hot-water soluble boron
Cr ⁶⁺	Hexavlent chromium
Hg	Mercury
PAH	Polycyclic aromatic hydrocarbons
PHC F1-F4	Petroleum hydrocarbons fractions F1 to F4
VOC	Volatile organic compounds
BTEX	Benzene, toluene, ethylbenzene, xylene mixture
SAR	Sodium Absorption Ratio
Х	Samples shaded in red exceed the applicable standards

X Samples shaded in green met the applicable standards

Table to be read in conjuction with accompanying report

Summary of Groundwater Samples Submitted for Laboratory Analysis Phase Two Environmental Site Assessment New Civic Development for The Ottawa Hospital - Parkade

				ANALYS	SES PERF	ORMED	
Monitoring Well	Sample ID	Sampling Date	Metals and Hydrides ¹	РНС	РАН	voc	Chloride
BH21-02	BH21-02	27-May-21	Х	Х	Х	Х	Х
BH21-03	BH21-03	27-May-21	Х	Х	Х	Х	Х
DH21-03	DUP-3	27-May-21	Х	Х	Х	Х	Х
BH21-05	BH21-05	27-May-21	Х	Х	Х	Х	Х
BH21-06	BH21-06	27-May-21	Х	Х	Х	Х	Х
BH21-10	BH21-10	27-May-21	Х	Х	Х	Х	Х
MW17-2	MW17-2	27-May-21	Х	Х	Х	Х	Х
-	TRIP BLANK	27-May-21		Х			

<u>Notes</u>

1	Ontario Regulation 153 Metals. Hydrided-forming metals refers to Arsenic, Selenium,
	Antimony.
PAH	Polycyclic aromatic hydrocarbons
PHC F1-F4	Petroleum hydrocarbons fractions F1 to F4
VOC	Volatile organic compounds
Х	Samples shaded in red exceed the applicable standards
Х	Samples shaded in green met the applicable standards

Table to be read in conjuction with accompanying report

Table 6a Analytical Results for General Chemistry in Soil Samples Phase Two Environmental Site Assessment New Civic Development for The Ottawa Hospital - Parkade

		Location	BH21-01	BH21-02		BH21-03		BH21-04	BH21-05	BH21-06	BH2	1-07	BH21-08	BH21-09	BH21-10	BH21-10	BH21-11	BH21-12	BH2	21-13
	6.	mple Name		BH21-02	BH21-03	BH21-03	BH21-03	BH21-04	BH21-05	BH21-06	BH21-07	BH21-07	BH21-08	BH21-09	BH21-10	BH21-10	BH21-11	BH21-12	DU24 42 CA4	BH21-13 SA3
	34	imple Name	21-01 SA2	SA2	SA2	SA22 (dup)	SA3	SA3	SA1	SA2	SA2	SA3	SA1	SA2	SA1	SA2	SA1	SA1	BH21-13 3A1	BH21-13 5A3
	S	ample Date	06/11/2021	2021-05-18	2021-05-18	2021-05-18	2021-05-18	2021-05-13	2021-05-14	2021-05-14	2021-05-17	2021-05-17	2021-05-18	2021-05-18	2021-05-18	2021-05-18	2021-05-13	2021-05-19	2021-05-18	2021-05-13
	Sample De	epth (mbgs)	0.91-1.52 m	0.76-1.17 m	0.61-1.37 m	0.61-1.37 m	1.52-1.68 m	1.52-2.13 m	0-0.61 m	0.76-1.37 m	0.76-1.37 m	1.52-1.65 m	0-0.61 m	0.76-1.37 m	0-0.61 m	0.76-1.37 m	0-0.61 m	0-0.61 m	0-0.61 m	1.52-2.13 m
Parameter	MECP Table 7	Unit																		
Farameter	Standards ¹	Onit																		
Conductivity	1400	µS/cm	2860	320	398	373	-	242	289	347	201	-	197	446	-	351	203	185	166	261
Moisture, Percent	-	%	8.7	11.2	19.1	6.9	8.4	25.9	15.2	8.9	13.3	5.8	5.1	8.2	14.1	-	23.7	15.8	22.7	10.1
Sodium Adsorption Ratio	12	-	0.661	0.718	2.34	2.43	-	0.349	0.182	0.163	0.13	-	0.213	0.142	0.103	0.103	0.329	0.923	0.11	0.269
Cyanide, Free	0.051	µg/g	<0.040	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Notes:

1

O.Reg 153 (2011) Table 7 Standards for industrial/commercial/community property use for coarse textured soil in generic site condition for shallow soils in a non-potable ground water condition

mbgs metres below ground surface

μS/cm microSiemens per centimetre

μg/g microgram per gram < Indicates parameter w

Indicates parameter was below laboratory equipment detection limit.

- Chemical not analyzed or criteria not defined.

Bold and shaded Exceeding MECP Table 7 Standards

Table to be read in conjunction with accompanying report.

Table 6b Analytical Results for Metals in Soil Samples Phase Two Environmental Site Assessment New Civic Development for The Ottawa Hospital - Parkade

	Loc	ation	BH21-01	BH21-02	BH2	1-03	BH21-04	BH21-05	BH21-06	BH21-07	BH21-08	BH21-09	BH21-10	BH21-11	BH21-12	BH2	1-13
	Sample I	Name	21-01 SA2	BH21-02 SA2	BH21-03 SA2	BH21-03 SA22 (dup)	BH21-04 SA3	BH21-05 SA1	BH21-06 SA2	BH21-07 SA2	BH21-08 SA1	BH21-09 SA2	BH21-10 SA2	BH21-11 SA1	BH21-12 SA1	BH21-13 SA1	BH21-13 SA3
	Sample	Date	06/11/2021	2021-05-18	2021-05-18	2021-05-18	2021-05-13	2021-05-14	2021-05-14	2021-05-17	2021-05-18	2021-05-18	2021-05-18	2021-05-13	2021-05-19	2021-05-18	2021-05-13
S	ample Depth (m	ıbgs)	0.91-1.52 m	0.76-1.17 m	0.61-1.37 m	0.61-1.37 m	1.52-2.13 m	0-0.61 m	0.76-1.37 m	0.76-1.37 m	0-0.61 m	0.76-1.37 m	0.76-1.37 m	0-0.61 m	0-0.61 m	0-0.61 m	1.52-2.13 m
Parameter	MECP Table 7 Standards ¹	Unit															
Antimony	40	µg/g	1.5	< 0.8	< 0.8	< 0.8	< 0.8	< 0.8	< 0.8	< 0.8	< 0.8	< 0.8	< 0.8	< 0.8	< 0.8	< 0.8	< 0.8
Arsenic		µg/g	7	6	6	5	2	3	2	2	3	5	4	2	2	3	< 1
Barium		µg/g	211	131	339	207	320	175	157	74.0	130	125	133	102	73.5	188	65.6
Beryllium		µg/g	<0.4	< 0.4	< 0.4	0.4	< 0.4	< 0.4	< 0.4	< 0.4	0.4	0.4	0.5	< 0.4	< 0.4	< 0.4	< 0.4
Boron	120	µg/g	11	9	10	8	< 5	< 5	< 5	< 5	< 5	7	6	6	< 5	< 5	5
Boron, Hot Water Soluble	2	µg/g	0.28	0.25	0.22	0.19	0.38	0.23	0.27	< 0.10	0.28	0.30	0.45	0.24	0.18	0.21	< 0.10
Cadmium	1.9	µg/g	<0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Chromium	160	µg/g	16	21	31	32	108	51	37	25	35	26	35	27	18	48	17
Hexavalent Chromium	8	µg/g	<0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Cobalt		µg/g	6.7	6.7	12.8	10.5	21.2	12.0	9.6	6.2	10.1	10.3	9.6	8.2	5.9	11.8	5.7
Copper	230	µg/g	11.9	10.1	12.0	10.5	46.6	25.3	21.4	9.3	22.0	24.0	23.8	14.5	12.6	24.9	11.7
Lead	120	µg/g	83	59	75	42	37	18	24	9	13	56	28	18	11	18	4
Molybdenum	40	µg/g	3.8	1.3	1.4	0.7	0.7	0.9	0.8	0.5	1.0	1.4	1.3	< 0.5	0.8	0.7	< 0.5
Nickel	270	µg/g	11	12	18	16	56	29	22	13	22	20	21	15	11	29	9
Selenium		µg/g	<0.8	< 0.8	< 0.8	< 0.8	< 0.8	< 0.8	< 0.8	< 0.8	< 0.8	< 0.8	< 0.8	< 0.8	< 0.8	< 0.8	< 0.8
Silver		µg/g	<0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Thallium		µg/g	<0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Uranium		µg/g	0.63	0.94	0.70	0.63	1.09	0.79	0.85	0.67	0.97	0.79	0.80	0.67	0.63	0.78	0.59
Vanadium		µg/g	20.2	28.2	47.2	47.7	104	56.5	46.0	30.9	43.7	35.1	37.5	42.2	29.0	53.9	26.6
Zinc		µg/g	136	60	45	41	128	84	68	34	62	84	72	67	40	82	23
Mercury	3.9	µg/g	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10

Notes:

1

<

_

O.Reg 153 (2011) Table 7 Standards for industrial/commercial/community property use for coarse textured soil in generic site condition for shallow soils in a non-potable ground water condition mbgs metres below ground surface

microgram per gram µg/g

Indicates parameter was below laboratory equipment detection limit.

Chemical not analyzed or criteria not defined.

Bold and shaded Exceeding MECP Table 7 Standards

Table to be read in conjunction with accompanying report.

Table 6c Analytical Results for Petroleum Hydrocarbons and BTEX in Soil Samples Phase Two Environmental Site Assessment New Civic Development for The Ottawa Hospital - Parkade

	Lo	ocation	BH21-01	BH21-02		BH21-03		BH21-04	BH21-05	BH21-06	BH21-07	BH21-08	BH21-09	BH21-10	BH21-11	BH21-12	BH2	21-13
	Sample		21-01 SA2	BH21-02 SA2	BH21-03 SA2	BH21-03 SA22 (dup)	BH21-03 SA3	BH21-04 SA3	BH21-05 SA1	BH21-06 SA2	BH21-07 SA2	BH21-08 SA1	BH21-09 SA2	BH21-10 SA1	BH21-11 SA1	BH21-12 SA1	BH21-13 SA1	BH21-13 SA3
	Sampl	le Date	06/11/2021	2021-05-18	2021-05-18	2021-05-18	2021-05-18	2021-05-13	2021-05-14	2021-05-14	2021-05-17	2021-05-18	2021-05-18	2021-05-18	2021-05-13	2021-05-19	2021-05-18	2021-05-13
	Sample Depth ((mbgs)	0.91-1.52 m	0.76-1.17 m	0.61-1.37 m	0.61-1.37 m	1.52-1.68 m	1.52-2.13 m	0-0.61 m	0.76-1.37 m	0.76-1.37 m	0-0.61 m	0.76-1.37 m	0-0.61 m	0-0.61 m	0-0.61 m	0-0.61 m	1.52-2.13 m
Parameter	MECP Table Standards ¹	⁷ Unit																
PHC - F1 (C6-C10)-BTEX	55	µg/g	22	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
PHC - F2 (C10-C16) less Naphthalene	-	µg/g	<10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
PHC - F3 (C16-C34) less PAHs	-	µg/g	<50	< 50	< 50	< 50	< 50	< 50	< 50	< 50	51	< 50	< 50	< 50	< 50	< 50	< 50	< 50
PHC - F4 (C34-C50)	3300	µg/g	73	< 50	< 50	< 50	< 50	< 50	< 50	< 50	86	< 50	< 50	< 50	< 50	< 50	< 50	< 50
Benzene	0.32	µg/g	<0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
Toluene	68	µg/g	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Ethylbenzene	9.5	µg/g	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
o-Xylene	-	µg/g	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
m,p-Xylenes	-	µg/g	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Xylenes, Total	26	µg/g	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05

Notes:

O.Reg 153 (2011) Table 7 Standards for industrial/commercial/community property use for coarse textured soil in generic site condition for shallow soils in a non-potable ground water condition metres below ground surface

microgram per gram

Indicates parameter was below laboratory equipment detection limit.

Chemical not analyzed or criteria not defined.

Exceeding MECP Table 7 Standards

Table to be read in conjunction with accompanying report.

1 mbgs

µg/g

<

-Bold and shaded

Table 6d Analytical Results for Polycyclic Aromatic Hydrocarbons in Soil Samples Phase Two Environmental Site Assessment New Civic Development for The Ottawa Hospital - Parkade

	Lo	ocation	BH21-01	BH21-02		BH21-03		BH21-04	BH21-05	BH21-06	BH2	1-07	BH21-08	BH21-09	BH21-10	BH21-11	BH21-12	BH2	21-13
			21-01 SA2	BH21-02 SA2	BH21-03 SA2	BH21-03 SA22 (dup)	BH21-03 SA3	BH21-04 SA3		BH21-06 SA2	BH21-07 SA2	BH21-07 SA3	BH21-08 SA1	BH21-09 SA2	BH21-10 SA1	BH21-11 SA1	BH21-12 SA1	BH21-13 SA1	BH21-13 SA3
	Sampl	le Date	06/11/2021	2021-05-18	2021-05-18	2021-05-18	2021-05-18	2021-05-13	2021-05-14	2021-05-14	2021-05-17	2021-05-17	2021-05-18	2021-05-18	2021-05-18	2021-05-13	2021-05-19	2021-05-18	2021-05-13
	Sample Depth ((mbgs)	0.91-1.52 m	0.76-1.17 m	0.61-1.37 m	0.61-1.37 m	1.52-1.68 m	1.52-2.13 m	0-0.61 m	0.76-1.37 m	0.76-1.37 m	1.52-1.65 m	0-0.61 m	0.76-1.37 m	0-0.61 m	0-0.61 m	0-0.61 m	0-0.61 m	1.52-2.13 m
Parameter	MECP Table Standards ¹	⁷ Unit																	
4-Methyl-2-pentanone	31	µg/g	-	< 0.50	< 0.50	< 0.50	< 0.50	-	-	-	-	-	-	-	-	-	-	-	< 0.50
Acenaphthene	96	µg/g	0.12	0.48	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthylene	0.15	µg/g	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.08	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Anthracene	0.67	µg/g	0.43	0.84	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.10	0.05	< 0.05	0.09	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo[a]anthracene	0.96	µg/g	0.55	2.61	< 0.05	< 0.05	< 0.05	0.12	0.06	< 0.05	0.28	0.09	< 0.05	0.13	< 0.05	< 0.05	< 0.05	0.06	< 0.05
Benzo[a]pyrene	0.3	µg/g	0.46	1.86	< 0.05	< 0.05	< 0.05	0.10	0.09	< 0.05	0.38	0.09	0.08	0.26	< 0.05	< 0.05	< 0.05	0.07	< 0.05
Benzo[b]fluoranthene	0.96	µg/g	0.62	2.39	< 0.05	< 0.05	< 0.05	0.20	0.15	< 0.05	0.40	0.09	0.10	0.38	0.06	< 0.05	0.08	0.11	< 0.05
Benzo[g,h,i]perylene	9.6	µg/g	0.17	0.68	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.17	< 0.05	< 0.05	0.13	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo[k]fluoranthene	0.96	µg/g	0.52	0.98	< 0.05	< 0.05	< 0.05	0.17	0.13	< 0.05	0.19	< 0.05	< 0.05	0.19	< 0.05	< 0.05	< 0.05	0.10	< 0.05
Chrysene	9.6	µg/g	0.82	2.15	< 0.05	< 0.05	< 0.05	0.14	0.07	< 0.05	0.29	0.09	< 0.05	0.13	< 0.05	< 0.05	< 0.05	0.06	< 0.05
Dibenzo[a,h]anthracen	e 0.1	µg/g	0.29	0.26	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Dimethylnaphthalene	-	µg/g	<0.05	0.14	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Fluoranthene	9.6	µg/g	1.36	6.27	0.05	< 0.05	< 0.05	0.27	0.14	< 0.05	0.51	0.24	0.11	0.37	< 0.05	0.06	0.06	0.13	< 0.05
Fluorene	62	µg/g	0.18	0.47	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Indeno[1,2,3-cd]pyrene	e 0.76	µg/g	<0.05	0.76	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.18	< 0.05	< 0.05	0.12	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Naphthalene	9.6	µg/g	<0.05	0.16	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Phenanthrene	12	µg/g	1.12	4.85	< 0.05	< 0.05	< 0.05	0.12	0.05	< 0.05	0.19	0.12	0.05	0.27	< 0.05	< 0.05	< 0.05	0.06	< 0.05
Pyrene	96	µg/g	1.09	4.80	< 0.05	< 0.05	< 0.05	0.23	0.12	< 0.05	0.44	0.19	0.09	0.30	< 0.05	< 0.05	0.05	0.12	< 0.05
Styrene	34	µg/g	-	< 0.05	< 0.05	< 0.05	< 0.05	-	-	-	-	-	-	-	-	-	-	-	< 0.05

Notes:

1

O.Reg 153 (2011) Table 7 Standards for industrial/commercial/community property use for coarse textured soil in generic site condition for shallow soils in a non-potable ground water condition

mbgs metres below ground surface

µg/g microgram per gram

Indicates parameter was below laboratory equipment detection limit.

- Chemical not analyzed or criteria not defined.

Bold and shaded Exceeding MECP Table 7 Standards

Table to be read in conjunction with accompanying report.

Table 6e Analytical Results for Volatile Organic Compounds in Soil Samples Phase Two Environmental Site Assessment New Civic Development for The Ottawa Hospital - Parkade

	L	ocation	BH21-02		BH21-03		BH21-13
	Sample	e Name	BH21-02 SA2	BH21-03 SA2	BH21-03 SA22 (dup)	BH21-03 SA3	BH21-13 SA3
	Samp	le Date	2021-05-18	2021-05-18	2021-05-18	2021-05-18	2021-05-13
	Sample Depth	(mgbs)	0.76-1.17 m	0.61-1.37 m	0.61-1.37 m	1.52-1.68 m	1.52-2.13 m
	MECP Table 7						
Parameter	Standards ¹	Unit					
1,1,1,2-Tetrachloroethane	0.087	µg/g	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04
1,1,1-Trichloroethane	6.1	µg/g	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
1,1,2,2-Tetrachloroethane	0.05	µg/g	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
1,1,2-Trichloroethane	0.05	µg/g	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04
1,1-Dichloroethane	17	µg/g	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
1,1-Dichloroethylene	0.064	µg/g	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
1,2-DibroMECPthane	0.05	µg/g	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04
1,2-Dichlorobenzene	6.8	µg/g	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
1,2-Dichloroethane	0.05	µg/g	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
1,2-Dichloropropane	0.16	µg/g	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
1,3-Dichlorobenzene	9.6	µg/g	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
1,3-Dichloropropene, Total	0.18	µg/g	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04
1,4-Dichlorobenzene	0.2	µg/g	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Methyl Ethyl Ketone	70	µg/g	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
Acetone	16	µg/g	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
Bromodichloromethane	18	µg/g	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Bromoform	0.61	µg/g	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Bromomethane	0.05	µg/g	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Carbon Tetrachloride	0.21	µg/g	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Chlorobenzene	2.4	µg/g	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Chloroform	0.47	µg/g	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04
cis-1,2-Dichloroethene	55	µg/g	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
Dibromochloromethane	13	µg/g	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Dichlorodifluoromethane	16	µg/g	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Methyl tert-Butyl Ether	11	µg/g	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Methylene Chloride	1.6	µg/g	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
n-Hexane	46	µg/g	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Tetrachloroethylene	4.5	µg/g	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
trans-1,2-Dichloroethene	1.3	µg/g	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Trichloroethene	0.91	µg/g	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Trichlorofluoromethane	4	µg/g	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Vinyl Chloride	0.032	µg/g	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
Styrene	34	µg/g	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Methyl Isobutyl Ketone	31	µg/g	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50

Notes:

1	O.Reg 153 (2011) Table 7 Standards for industrial/commercial/community property use for coarse textured soil in generic site condition for shallow soils in a non-potable ground water condition
mbgs	metres below ground surface
µg/g	microgram per gram
<	Indicates parameter was below laboratory equipment detection limit.
-	Chemical not analyzed or criteria not defined.
Bold and shaded	Exceeding MECP Table 7 Standards

Table 6f Quality Assurance and Control for Soil Samples Phase Two Environmental Site Assessment New Civic Development for The Ottawa Hospital - Parkade

		Sample Name	Parent Sample	Duplicate Sample		
_		Sample Name	BH21-03 SA2	BH21-03 SA22 (dup)		
		Sample Date	2021-05-18	2021-05-18	Calculated RPD ¹	Acceptance Criteria ²
Parameter	Unit	Reporting Limit				/ cooptaneo entena
General Chemistry		···· 9 -···· 9 -····				
Conductivity	uS/cm	5.0	398	373	6.49%	≤10%
Moisture, Percent	%	0.1	19.1	6.9	93.85%	-
Sodium Adsorption Ratio	none	-	-	-	NC	-
Metals	Hone				NO	-
Antimony	µg/g	0.8	< 0.8	< 0.8	NC	≤30%
Arsenic	µg/g	1.0	6	5		≤30% ≤30%
Barium		2.0	339	207	18.18% 48.35%	≤30% ≤30%
Beryllium	hð/ð	0.4	< 0.4	0.4	48.35 %	≤30% ≤30%
Boron		5.0	10	8	NC	≤30% ≤30%
Cadmium	µg/g	0.5	< 0.5	< 0.5	NC	
Chromium	µg/g	5.0	31	32	-	≤30%
Cobalt	µg/g	0.5	12.8	10.5	3.17%	≤30%
	µg/g				19.74%	≤30%
Copper	µg/g	1.0	12	10.5	13.33%	≤30%
Lead	µg/g	1.0	75	42	56.41%	≤30%
Molybdenum	µg/g	0.5	1.4	0.7	NC	≤30%
Nickel	µg/g	1.0	18	16	11.76%	≤30%
Selenium	µg/g	0.8	< 0.8	< 0.8	NC	≤30%
Silver	µg/g	0.5	< 0.5	< 0.5	NC	≤30%
Thallium	µg/g	0.5	< 0.5	< 0.5	NC	≤30%
Uranium	µg/g	0.5	0.7	0.63	NC	≤30%
Vanadium	µg/g	0.4	47.2	47.7	1.05%	≤30%
Zinc	µg/g	5.0	45	41	9.30%	≤30%
Hexavalent Chromium	µg/g	0.2	< 0.2	< 0.2	NC	≤30%
Boron, Hot Water Soluble	µg/g	0.1	0.22	0.19	NC	≤30%
Petroleum Hydrocarbons						
Benzene	µg/g	0.0	< 0.02	< 0.02	NC	≤30%
Toluene	µg/g	0.1	< 0.05	< 0.05	NC	≤30%
Ethylbenzene	µg/g	0.1	< 0.05	< 0.05	NC	≤30%
o-Xylene	µg/g	0.1	< 0.05	< 0.05	NC	≤30%
m,p-Xylenes	µg/g	0.1	< 0.05	< 0.05	NC	≤30%
Xylenes, Total	µg/g	0.1	< 0.05	< 0.05	NC	≤30%
PHC - F1 (C6-C10)	µg/g	5.0	< 5	< 5	NC	≤30%
PHC - F1 (C6-C10)-BTEX	µg/g	5.0	< 5	< 5	NC	≤30%
PHC - F2 (C10-C16)	µg/g	10.0	< 10	< 10	NC	≤30%
PHC - F2 (C10-C16) less Naphthalene	µg/g	10.0	< 10	< 10	NC	≤30%
PHC - F3 (C16-C34)	μg/g	50.0	< 50	< 50	NC	<u>≤</u> 30%
PHC - F3 (C16-C34) less PAHs	µg/g	50.0	< 50	< 50	NC	<u>≤</u> 30%
PHC - F4 (C34-C50)	µg/g	50.0	< 50	< 50	NC	≤30%
Polycyclic Aromatic Hydrocarbons	P9/9	00.0			NO	<u>=30 %</u>
4-Methyl-2-pentanone	µg/g	0.5	< 0.50	< 0.50	NC	≤40%
Acenaphthene	µg/g	0.1	< 0.05	< 0.05	NC	<u>_</u> 40%
Acenaphthylene	µg/g	0.1	< 0.05	< 0.05	NC	<u>≤</u> 40%
Anthracene	µg/g	0.1	< 0.05	< 0.05	NC	≤40% ≤40%
Benzo[a]anthracene	µg/g	0.1	< 0.05	< 0.05	NC	≤40% ≤40%
Benzo[a]pyrene	µg/g µg/g	0.1	< 0.05	< 0.05	NC	≤40% ≤40%
Benzo[b]fluoranthene		0.1	< 0.05	< 0.05	NC	≤40% ≤40%
Benzo[g,h,i]perylene	µg/g	0.1	< 0.05	< 0.05	NC NC	
Benzo[g,n,i]perviene Benzo[k]fluoranthene	µg/g	0.1	< 0.05	< 0.05		≤40%
Chrysene	µg/g	0.1	< 0.05	< 0.05	NC	≤40%
	µg/g %		70	< 0.05	NC	≤40%
Chrysene-d12 Dihanzola hlanthracene	%	1.0	< 0.05	< 0.05	13.33%	≤40%
Dibenzo[a,h]anthracene	µg/g	0.1			NC	≤40%
Dimethylnaphthalene	µg/g	0.1	< 0.05	< 0.05	NC	≤40%
Fluoranthene	µg/g	0.1	0.05	< 0.05	NC	≤40%
Fluorene	µg/g	0.1	< 0.05	< 0.05	NC	≤40%
Indeno[1,2,3-cd]pyrene	µg/g	0.1	< 0.05	< 0.05	NC	≤40%
Naphthalene	µg/g	0.1	< 0.05	< 0.05	NC	≤40%
Phenanthrene	µg/g	0.1	< 0.05	< 0.05	NC	≤40%
Pyrene	µg/g	0.1	< 0.05	< 0.05	NC	≤40%
Styrene	µg/g	0.1	< 0.05	< 0.05	NC	≤40%

Table 6f **Quality Assurance and Control for Soil Samples** Phase Two Environmental Site Assessment New Civic Development for The Ottawa Hospital - Parkade

		Sample Name	Parent Sample	Duplicate Sample		
		Sample Name	BH21-03 SA2	BH21-03 SA22 (dup)		
		Sample Date	2021-05-18	2021-05-18	Calculated RPD ¹	Acceptance Criteria ²
Parameter	Unit	Reporting Limit				
Volatile Organic Compounds						
1,1,1,2-Tetrachloroethane	µg/g	0.0	< 0.04	< 0.04	NC	≤50%
1,1,1-Trichloroethane	µg/g	0.1	< 0.05	< 0.05	NC	≤50%
1,1,2,2-Tetrachloroethane	µg/g	0.1	< 0.05	< 0.05	NC	≤50%
1,1,2-Trichloroethane	µg/g	0.0	< 0.04	< 0.04	NC	≤50%
1,1-Dichloroethane	µg/g	0.0	< 0.02	< 0.02	NC	≤50%
1,1-Dichloroethylene	µg/g	0.1	< 0.05	< 0.05	NC	≤50%
1,2-DibroMECPthane	µg/g	0.0	< 0.04	< 0.04	NC	≤50%
1,2-Dichlorobenzene	µg/g	0.1	< 0.05	< 0.05	NC	≤50%
1,2-Dichloroethane	µg/g	0.0	< 0.03	< 0.03	NC	≤50%
1,2-Dichloropropane	µg/g	0.0	< 0.03	< 0.03	NC	≤50%
1,3-Dichlorobenzene	µg/g	0.1	< 0.05	< 0.05	NC	≤50%
1,3-Dichloropropene, Total	µg/g	0.0	< 0.04	< 0.04	NC	≤50%
1,4-Dichlorobenzene	µg/g	0.1	< 0.05	< 0.05	NC	≤50%
Methyl Ethyl Ketone	µg/g	0.5	< 0.50	< 0.50	NC	≤50%
Acetone	µg/g	0.5	< 0.50	< 0.50	NC	≤50%
Bromodichloromethane	µg/g	0.1	< 0.05	< 0.05	NC	≤50%
Bromoform	µg/g	0.1	< 0.05	< 0.05	NC	≤50%
Bromomethane	µg/g	0.1	< 0.05	< 0.05	NC	≤50%
Carbon Tetrachloride	µg/g	0.1	< 0.05	< 0.05	NC	≤50%
Chlorobenzene	µg/g	0.1	< 0.05	< 0.05	NC	≤50%
Chloroform	µg/g	0.0	< 0.04	< 0.04	NC	≤50%
cis-1,2-Dichloroethene	µg/g	0.0	< 0.02	< 0.02	NC	≤50%
Dibromochloromethane	µg/g	0.1	< 0.05	< 0.05	NC	≤50%
Dichlorodifluoromethane	µg/g	0.1	< 0.05	< 0.05	NC	≤50%
Methyl tert-Butyl Ether	µg/g	0.1	< 0.05	< 0.05	NC	≤50%
Methylene Chloride	µg/g	0.1	< 0.05	< 0.05	NC	≤50%
n-Hexane	µg/g	0.1	< 0.05	< 0.05	NC	≤50%
Tetrachloroethylene	µg/g	0.1	< 0.05	< 0.05	NC	≤50%
trans-1,2-Dichloroethene	µg/g	0.1	< 0.05	< 0.05	NC	≤50%
Trichloroethene	µg/g	0.0	< 0.03	< 0.03	NC	≤50%
Trichlorofluoromethane	µg/g	0.1	< 0.05	< 0.05	NC	≤50%
Vinyl Chloride	µg/g	0.0	< 0.02	< 0.02	NC	≤50%
Styrene	µg/g	0.1	< 0.05	< 0.05	NC	≤50%
Methyl Isobutyl Ketone	µg/g	0.5	< 0.50	< 0.50	NC	≤50%

Notes:

RPD values only calculated when results are >2.5 times the reportable detection limit.

O.Reg 153/04 (2011) Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act.

Relative percent difference.

Indicates parameter was below laboratory equipment detection limit.

Chemical not analyzed or criteria not defined.

Exceeding MECP RPD Acceptance Criteria

Bold and shaded Table to be read in conjunction with accompanying report.

1

2

RPD

<

Analytical Results for Other Regulated Parameters in Groundwater Samples Phase Two Environmental Site Assessment New Civic Development for The Ottawa Hospital - Parkade

	Location		BH21-02	BH21-03		BH21-05	BH21-06	BH21-10	MW17-2
Sample Name		BH21-02	BH21-03	DUP-3	BH21-05	BH21-06	BH21-10	MW17-2	
Sample Date		e Date	2021-05-27	2021-05-27	2021-05-27	2021-05-27	2021-05-27	2021-05-27	05/27/2021
Deremeter	MECP Table 7	Unit							
Parameter	Standards ¹	Unit							
Chloride	1,800,000	µg/L	3,390,000	103,000	173,000	5,710	18,400	5,440	19,000
Sodium	1,800,000	µg/L	2,180,000	217,000	217,000	29,500	85,900	29,000	42,400

Notes:

¹ O.Reg 153 (2011) Table 7 Standards for all types of property use for groundwater in coarse textured soil in generic site condition for shallow soils in a non-potable ground water condition.

< Indicates parameter was below laboratory equipment detection limit.

- Chemical not analyzed or criteria not defined.

μg/L microgram per Litre

Bold and shaded Exceeding MECP Table 7 Standards

Prepared by: LR Checked by: RM Page 1 of 7

Table 7b

Analytical Results for Metals in Groundwater Samples

Phase Two Environmental Site Assessment

New Civic Development for The Ottawa Hospital - Parkade

	L	ocation	BH21-02	BH2	21-03	BH21-05	BH21-06	BH21-10	MW17-2
	Sampl	le Name	BH21-02	BH21-03	DUP-3	BH21-05	BH21-06	BH21-10	MW17-2
	Sam	ole Date	2021-05-27	2021-05-27	2021-05-27	2021-05-27	2021-05-27	2021-05-27	05/27/2021
Parameter	MECP Table 7	Unit							
Farameter	Standards ¹	Unit							
Antimony	16,000	µg/L	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	<1.0
Arsenic	1,500	µg/L	17.9	3.6	1.1	1.6	< 1.0	< 1.0	3.9
Barium	23,000	µg/L	234	154	150	101	187	63.7	51.1
Beryllium	53	µg/L	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	<0.5
Boron	36,000	µg/L	75	58.5	48.2	42.9	113	79.7	85.3
Cadmium	2	µg/L	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	<0.20
Chromium	640	µg/L	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	<2.0
Hexavalent Chromium	110	µg/L	< 2	< 2	< 2	< 2	< 2	< 2	<2
Cobalt	52	µg/L	< 0.50	0.58	< 0.50	0.64	1.6	0.78	1.07
Copper	69	µg/L	1.2	2.2	2.7	2.2	4.4	1.2	2
Lead	20	µg/L	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<0.50
Mercury		µg/L	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	<0.02
Molybdenum	7,300	µg/L	10.5	1.7	1.37	4.92	1.83	5.66	1.9
Nickel	390	µg/L	4.2	< 3.0	< 3.0	3.7	12.6	3.7	3.9
Selenium	50	µg/L	< 1.0	3.9	4.2	2.1	3.5	2.7	3
Silver	1	µg/L	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	<0.20
Thallium	400	µg/L	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	<0.30
Uranium	330	µg/L	2.46	1.92	1.82	3.06	1.87	2.8	2.9
Vanadium	200	µg/L	0.42	< 0.40	0.51	1.3	0.79	< 0.40	<0.40
Zinc	890	µg/L	18.1	< 5.0	< 5.0	10.3	6.3	< 5.0	236

Notes:

¹ O.Reg 153 (2011) Table 7 Standards for all types of property use for groundwater in coarse textured soil in generic site condition for shallow soils in a non-potable ground water condition.

< Indicates parameter was below laboratory equipment detection limit.

- Chemical not analyzed or criteria not defined.

µg/L microgram per Litre

Bold and shaded Exceeding MECP Table 7 Standards

Prepared by: LR Checked by: RM Page 2 of 7

Table 7c Analytical Results for Petroleum Hydrocarbons and BTEX in Groundwater Samples Phase Two Environmental Site Assessment New Civic Development for The Ottawa Hospital - Parkade

	l	ocation	BH21-02	BH2	1-03	BH21-05	BH21-06	BH21-10	MW17-2	Data Quality
	Samp	le Name	BH21-02	BH21-03	DUP-3	BH21-05	BH21-06	BH21-10	MW17-2	TRIP BLANK
	Sam	ple Date	2021-05-27	2021-05-27	2021-05-27	2021-05-27	2021-05-27	2021-05-27	05/27/2021	
	MECP Table 7									
Parameter	Standards ¹	Unit								
Benzene	0.5	µg/L	< 0.40	< 0.20	< 0.20	< 0.20	< 0.40	< 0.20	<0.20	<0.20
Toluene	320	µg/L	< 0.40	< 0.20	< 0.20	< 0.20	0.81	< 0.20	<0.20	<0.20
Ethylbenzene	54	µg/L	< 0.20	< 0.10	< 0.10	< 0.10	< 0.20	< 0.10	<0.10	<0.10
o-Xylene	-	µg/L	< 0.20	< 0.10	< 0.10	< 0.10	< 0.20	< 0.10	<0.10	<0.20
m,p-Xylenes	-	µg/L	< 0.40	< 0.20	< 0.20	< 0.20	< 0.40	< 0.20	<0.20	<0.10
Xylenes, Total	72	µg/L	< 0.40	< 0.20	< 0.20	< 0.20	< 0.40	< 0.20	<0.20	<0.20
PHC - F1 (C6-C10)	420	µg/L	< 25	< 25	< 25	< 25	< 25	< 25	<25	<25
PHC - F1 (C6-C10)-BTEX	420	µg/L	< 25	< 25	< 25	< 25	< 25	< 25	<25	<25
PHC - F2 (C10-C16)	150	µg/L	< 100	< 100	< 100	< 100	< 100	< 100	<100	-
PHC - F2 (C10-C16) less Naphthalene	-	µg/L	< 100	< 100	< 100	< 100	< 100	< 100	<100	-
PHC - F3 (C16-C34)	500	µg/L	< 100	< 100	< 100	< 100	< 100	< 100	<100	-
PHC - F3 (C16-C34) less PAHs	-	µg/L	< 100	< 100	< 100	< 100	< 100	< 100	<100	-
PHC - F4 (C34-C50)	500	µg/L	< 100	< 100	< 100	< 100	< 100	< 100	<100	-

Notes:

¹ O.Reg 153 (2011) Table 7 Standards for all types of property use for groundwater in coarse textured soil in generic site condition for shallow soils in a non-potable ground water condition.

< Indicates parameter was below laboratory equipment detection limit.

- Chemical not analyzed or criteria not defined.

µg/L	microgram per Litre
Bold and shaded	Exceeding MECP Table 7 Standards

Prepared by: LR Checked by: RM Page 3 of 7

Table 7d Analytical Results for Polycyclic Aromatic Hydrocarbons in Groundwater Samples Phase Two Environmental Site Assessment New Civic Development for The Ottawa Hospital - Parkade

	Lo	cation	BH21-02	BH2	1-03	BH21-05	BH21-06	BH21-10	MW17-2
	Sample	Name	BH21-02	BH21-03	DUP-3	BH21-05	BH21-06	BH21-10	MW17-2
	Samp	e Date	2021-05-27	2021-05-27	2021-05-27	2021-05-27	2021-05-27	2021-05-27	05/27/2021
Parameter	MECP Table 7 Standards ¹	Unit							
4-Methyl-2-pentanone	5,200	µg/L	< 2.0	< 1.0	< 1.0	< 1.0	< 2.0	< 1.0	<1.0
Acenaphthene	17	µg/L	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	<0.20
Acenaphthylene	1	µg/L	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	<0.20
Anthracene	1	µg/L	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	<0.10
Benzo[a]anthracene	1.8	µg/L	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	<0.20
Benzo[a]pyrene	0.81	µg/L	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	<0.01
Benzo[b]fluoranthene	0.75	µg/L	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	<0.10
Benzo[g,h,i]perylene	0.2	µg/L	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	<0.20
Benzo[k]fluoranthene	0.4	µg/L	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	<0.10
Chrysene	0.7	µg/L	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	<0.10
Dibenzo[a,h]anthracene	0.4	µg/L	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	<0.20
Fluoranthene	44	µg/L	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	<0.20
Fluorene	290	µg/L	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	<0.20
Indeno[1,2,3-cd]pyrene	0.2	µg/L	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	<0.20
Naphthalene	7	µg/L	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	<0.20
Phenanthrene	380	µg/L	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	<0.10
Pyrene	5.7	µg/L	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	<0.20
Styrene	43	µg/L	< 0.20	< 0.10	< 0.10	< 0.10	< 0.20	< 0.10	<0.10
1- & 2-Methylnaphthalene	1,800	µg/L	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	<0.20

Notes:

¹ O.Reg 153 (2011) Table 7 Standards for all types of property use for groundwater in coarse textured soil in generic site condition for shallow soils in a non-potable ground water condition.

< Indicates parameter was below laboratory equipment detection limit.

- Chemical not analyzed or criteria not defined.

μg/L microgram per Litre
Bold and shaded Exceeding MECP Table 7 Standards

Prepared by: LR Checked by: RM Page 4 of 7

Table 7e Analytical Results for Volatile Organic Compounds in Groundwater Samples Phase Two Environmental Site Assessment New Civic Development for The Ottawa Hospital - Parkade

	Loc	ation	BH21-02	BH2	1-03	BH21-05	BH21-06	BH21-10	MW17-2
	Sample N	lame	BH21-02	BH21-03	DUP-3	BH21-05	BH21-06	BH21-10	MW17-2
	Sample	Date	2021-05-27	2021-05-27	2021-05-27	2021-05-27	2021-05-27	2021-05-27	05/27/2021
Bananatan	MECP Table 7	11							
Parameter	Standards ¹	Unit							
1,1,1,2-Tetrachloroethane	1.1	µg/L	< 0.20	< 0.10	< 0.10	< 0.10	< 0.20	< 0.10	<0.10
1,1,1-Trichloroethane	23	µg/L	< 0.60	< 0.30	< 0.30	< 0.30	< 0.60	< 0.30	< 0.30
1,1,2,2-Tetrachloroethane	0.5	µg/L	< 0.20	< 0.10	< 0.10	< 0.10	< 0.20	< 0.10	<0.10
1,1,2-Trichloroethane	0.5	µg/L	< 0.40	< 0.20	< 0.20	< 0.20	< 0.40	< 0.20	<0.20
1,1-Dichloroethane	11	µg/L	< 0.60	< 0.30	< 0.30	< 0.30	< 0.60	< 0.30	< 0.30
1,1-Dichloroethylene	0.5	µg/L	< 0.60	< 0.30	< 0.30	< 0.30	< 0.60	< 0.30	<0.30
1,2-DibroMECPthane	0.2	µg/L	< 0.20	< 0.10	< 0.10	< 0.10	< 0.20	< 0.10	<0.10
1,2-Dichlorobenzene	150	µg/L	< 0.20	< 0.10	< 0.10	< 0.10	< 0.20	< 0.10	<0.10
1,2-Dichloroethane	0.5	µg/L	< 0.40	< 0.20	< 0.20	< 0.20	< 0.40	< 0.20	<0.20
1,2-Dichloropropane	0.58	µg/L	< 0.40	< 0.20	< 0.20	< 0.20	< 0.40	< 0.20	<0.20
1,3-Dichlorobenzene	7,600	µg/L	< 0.20	< 0.10	< 0.10	< 0.10	< 0.20	< 0.10	<0.10
1,3-Dichloropropene, Total	0.5	µg/L	< 0.60	< 0.30	< 0.30	< 0.30	< 0.60	< 0.30	<0.30
1,4-Dichlorobenzene	0.5	µg/L	< 0.20	< 0.10	< 0.10	< 0.10	< 0.20	< 0.10	<0.10
Methyl Ethyl Ketone	21,000	µg/L	< 2.0	< 1.0	< 1.0	< 1.0	< 2.0	< 1.0	<1.0
Acetone	100,000	µg/L	< 2.0	< 1.0	< 1.0	< 1.0	< 2.0	< 1.0	<1.0
Bromodichloromethane	67,000	µg/L	< 0.40	< 0.20	< 0.20	< 0.20	< 0.40	< 0.20	<0.20
Bromoform	5	µg/L	< 0.20	< 0.10	< 0.10	< 0.10	< 0.20	< 0.10	<0.10
Bromomethane	1	µg/L	< 0.40	< 0.20	< 0.20	< 0.20	< 0.40	< 0.20	<0.20
Carbon Tetrachloride		µg/L	< 0.40	< 0.20	< 0.20	< 0.20	< 0.40	< 0.20	<0.20
Chlorobenzene	140	µg/L	< 0.20	< 0.10	< 0.10	< 0.10	< 0.20	< 0.10	<0.10
Chloroform	2	µg/L	< 0.40	1.06	0.87	2.09	2.09	1.98	<0.20
cis-1,2-Dichloroethene	2	µg/L	< 0.40	< 0.20	< 0.20	< 0.20	< 0.40	< 0.20	<0.20
Dibromochloromethane	65,000	µg/L	< 0.20	< 0.10	< 0.10	< 0.10	< 0.20	< 0.10	<0.10
Dichlorodifluoromethane	3,500	µg/L	< 0.40	< 0.20	< 0.20	< 0.20	< 0.40	< 0.20	<0.20
Methyl tert-Butyl Ether	15	µg/L	< 0.40	< 0.20	< 0.20	< 0.20	< 0.40	< 0.20	<0.20
Methylene Chloride	26	µg/L	< 0.60	< 0.30	< 0.30	< 0.30	< 0.60	< 0.30	<0.30
n-Hexane	5	µg/L	< 0.40	< 0.20	< 0.20	< 0.20	< 0.40	< 0.20	<0.20
Tetrachloroethylene	0.5	µg/L	< 0.40	< 0.20	< 0.20	< 0.20	< 0.40	< 0.20	<0.20
trans-1,2-Dichloroethene	1.6	µg/L	< 0.40	< 0.20	< 0.20	< 0.20	< 0.40	< 0.20	<0.20
Trichloroethene	0.5	µg/L	< 0.40	< 0.20	< 0.20	< 0.20	< 0.40	< 0.20	<0.20
Trichlorofluoromethane	2,000	µg/L	< 0.80	< 0.40	< 0.40	< 0.40	< 0.80	< 0.40	<0.40
Vinyl Chloride	1	µg/L	< 0.34	< 0.17	< 0.17	< 0.17	< 0.34	< 0.17	<0.17
Styrene	43	µg/L	< 0.20	< 0.10	< 0.10	< 0.10	< 0.20	< 0.10	<0.10
Methyl Isobutyl Ketone	5,200	µg/L	< 2.0	< 1.0	< 1.0	< 1.0	< 2.0	< 1.0	<1.0

Notes:

¹ O.Reg 153 (2011) Table 7 Standards for all types of property use for groundwater in coarse textured soil in generic site condition for shallow soils in a non-potable ground water condition.

< Indicates parameter was below laboratory equipment detection limit.

- Chemical not analyzed or criteria not defined. µg/L microgram per Litre Bold and italicised Detection limit above MECP Table 7 S

Bold and italicisedDetection limit above MECP Table 7 StandardsBold and shadedExceeding MECP Table 7 Standards

21451149

Table 7f Quality Assurance and Control for Groundwater Samples Phase Two Environmental Site Assessment New Civic Development for The Ottawa Hospital - Parkade

		Sample Name	Parent Sample	Duplicate Sample		
		Sample Name	BH21-03	DUP-3	Calculated	Acceptance
		Sample Date	2021-05-27	2021-05-27	RPD ¹	Criteria ²
Parameter	Unit	Reporting Limit				
General Chemistry						1
Chloride	μg/L	244	103000	173000	50.72%	≤20%
Metals						
Antimony	µg/L	1	< 1.0	< 1.0	NC	≤20%
Arsenic	µg/L	1 2	3.6 154	1.1 150	NC	≤20%
Barium Beryllium	µg/L	0.5	< 0.5	< 0.5	2.63%	≤20%
Boron	μg/L μg/L	10	58.5	< 0.5 48.2	NC	≤20%
Cadmium	μg/L μg/L	0.2	< 0.20	40.2 < 0.20	19.31%	≤20%
Chromium	μg/L μg/L	2	< 2.0	< 2.0	NC NC	≤20%
Hexavalent Chromium	μg/L μg/L	2	< 2	< 2.0	NC NC	≤20% ≤20%
Cobalt	μg/L μg/L	0.5	0.58	< 0.50	NC	≤20% ≤20%
Copper		0.5	2.2	2.7		
Lead	μg/L μg/L	0.5	< 0.50	< 0.50	NC NC	≤20% ≤20%
Mercury		0.02	< 0.02	< 0.02	NC	≤20% ≤20%
Molybdenum	μg/L μg/L	0.02	1.7	1.37	NC NC	≤20% ≤20%
Nickel	μg/L μg/L	3	< 3.0	< 3.0	NC NC	≤20% ≤20%
Selenium	μg/L μg/L	1	3.9	4.2	NC	≤20% ≤20%
Silver	μg/L	0.2	< 0.20	< 0.20	NC	≤20% ≤20%
Sodium	μg/L μg/L	500	217000	217000	0.00%	<u>≤20%</u>
Thallium	μg/L	0.3	< 0.30	< 0.30	NC	<u>≤20%</u>
Uranium	μg/L μg/L	0.5	1.92	1.82	NC	<u>≤20%</u>
Vanadium	μg/L	0.0	< 0.40	0.51	NC	≤20% ≤20%
Zinc	μg/L	5	< 5.0	< 5.0	NC	<u>≤20%</u>
Petroleum Hydrocarbons	P9/L	0	• 0.0	10.0	NC	52076
Benzene	µg/L	25	< 0.20	< 0.20	NC	≤30%
Toluene	µg/L	25	< 0.20	< 0.20	NC	<u>≤</u> 30%
Ethylbenzene	µg/L	100	< 0.10	< 0.10	NC	<u>≤30%</u>
o-Xylene	μg/L	100	< 0.10	< 0.10	NC	<u>≤30%</u>
m,p-Xylenes	µg/L	100	< 0.20	< 0.20	NC	<u>≤30%</u>
Xylenes, Total	µg/L	0.4	< 0.20	< 0.20	NC	<u>≤</u> 30%
PHC - F1 (C6-C10)	µg/L	0.4	< 25	< 25	NC	<u>≤</u> 30%
PHC - F1 (C6-C10)-BTEX	µg/L	0.2	< 25	< 25	NC	≤30%
PHC - F2 (C10-C16)	µg/L	0.2	< 100	< 100	NC	<u>≤</u> 30%
PHC - F2 (C10-C16) less Naphthalene	µg/L	0.4	< 100	< 100	NC	<u>≤</u> 30%
PHC - F3 (C16-C34)	μg/L	0.4	< 100	< 100	NC	<u>≤</u> 30%
PHC - F3 (C16-C34) less PAHs	µg/L	100	< 100	< 100	NC	≤30%
PHC - F4 (C34-C50)	µg/L	100	< 100	< 100	NC	<u>≤</u> 30%
Polycyclic Aromatic Hydrocarbons	1-3-					
4-Methyl-2-pentanone	µg/L	2	< 1.0	< 1.0	NC	≤30%
Acenaphthene	µg/L	0.2	< 0.20	< 0.20	NC	≤30%
Acenaphthylene	µg/L	0.2	< 0.20	< 0.20	NC	≤30%
Anthracene	µg/L	0.1	< 0.10	< 0.10	NC	≤30%
Benzo[a]anthracene	µg/L	0.2	< 0.20	< 0.20	NC	≤30%
Benzo[a]pyrene	µg/L	0.01	< 0.01	< 0.01	NC	≤30%
Benzo[b]fluoranthene	µg/L	0.1	< 0.10	< 0.10	NC	≤30%
Benzo[g,h,i]perylene	µg/L	0.2	< 0.20	< 0.20	NC	≤30%
Benzo[k]fluoranthene	µg/L	0.1	< 0.10	< 0.10	NC	≤30%
Chrysene	µg/L	0.1	< 0.10	< 0.10	NC	≤30%
Dibenzo[a,h]anthracene	µg/L	0.2	< 0.20	< 0.20	NC	≤30%
Fluoranthene	µg/L	0.2	< 0.20	< 0.20	NC	≤30%
Fluorene	µg/L	0.2	< 0.20	< 0.20	NC	≤30%
Indeno[1,2,3-cd]pyrene	µg/L	0.2	< 0.20	< 0.20	NC	≤30%
Naphthalene	µg/L	0.2	< 0.20	< 0.20	NC	≤30%
Phenanthrene	µg/L	0.1	< 0.10	< 0.10	NC	≤30%
Pyrene	µg/L	0.2	< 0.20	< 0.20	NC	≤30%
Styrene	µg/L	0.2	< 0.10	< 0.10	NC	≤30%
1- & 2-Methylnaphthalene	µg/L	0.2	< 0.20	< 0.20	NC	≤30%

Table 7f

New Civic Development for The Ottawa Hospital - Parkade

		Sample Name	Parent Sample	Duplicate Sample		
		Sample Name	BH21-03	DUP-3	Calculated	Acceptance
		Sample Date	2021-05-27	2021-05-27	RPD ¹	Criteria ²
Parameter	Unit	Reporting Limit				
Volatile Organic Compounds						
1,1,1,2-Tetrachloroethane	µg/L	0.2	< 0.10	< 0.10	NC	≤30%
1,1,1-Trichloroethane	µg/L	0.6	< 0.30	< 0.30	NC	≤30%
1.1.2.2-Tetrachloroethane	µg/L	0.2	< 0.10	< 0.10	NC	≤30%
1.1.2-Trichloroethane	µg/L	0.4	< 0.20	< 0.20	NC	<u>≤</u> 30%
1.1-Dichloroethane	μg/L	0.6	< 0.30	< 0.30	NC	<u>≤</u> 30%
1,1-Dichloroethylene	µg/L	0.6	< 0.30	< 0.30	NC	<u>≤</u> 30%
1.2-DibroMECPthane	μg/L	0.2	< 0.10	< 0.10	NC	<u>≤</u> 30%
1.2-Dichlorobenzene	μg/L	0.2	< 0.10	< 0.10	NC	<u>≤</u> 30%
1.2-Dichloroethane	µg/L	0.2	< 0.20	< 0.20	NC	≤30% ≤30%
1,2-Dichloropropane	µg/L µg/L	0.4	< 0.20	< 0.20	NC	<u>≤</u> 30%
1.3-Dichlorobenzene	μg/L	0.4	< 0.10	< 0.20	NC	<u>≤</u> 30%
1,3-Dichloropropene, Total	µg/L	0.6	< 0.30	< 0.30	NC	<u>≤30%</u>
1.4-Dichlorobenzene	µg/L	0.2	< 0.10	< 0.10	NC	≤30%
Methyl Ethyl Ketone	µg/L	0.2	< 1.0	< 1.0	NC	<u>≤</u> 30%
Acetone	µg/L	2	< 1.0	< 1.0	NC	<u>≤</u> 30%
Bromodichloromethane	µg/L	0.4	< 0.20	< 0.20	NC	<u>≤</u> 30%
Bromoform	µg/L	0.2	< 0.10	< 0.10	NC	≤30%
Bromomethane	µg/L	0.4	< 0.20	< 0.20	NC	≤30%
Carbon Tetrachloride	µg/L	0.4	< 0.20	< 0.20	NC	≤30%
Chlorobenzene	µg/L	0.2	< 0.10	< 0.10	NC	≤30%
Chloroform	µg/L	0.4	1.06	0.87	NC	≤30%
cis-1,2-Dichloroethene	µg/L	0.4	< 0.20	< 0.20	NC	≤30%
Dibromochloromethane	µg/L	0.2	< 0.10	< 0.10	NC	≤30%
Dichlorodifluoromethane	µg/L	0.4	< 0.20	< 0.20	NC	≤30%
Methyl tert-Butyl Ether	µg/L	0.4	< 0.20	< 0.20	NC	≤30%
Methylene Chloride	µg/L	0.6	< 0.30	< 0.30	NC	≤30%
n-Hexane	µg/L	0.4	< 0.20	< 0.20	NC	≤30%
Tetrachloroethylene	μg/L	0.4	< 0.20	< 0.20	NC	≤30%
trans-1,2-Dichloroethene	μg/L	0.4	< 0.20	< 0.20	NC	≤30%
Trichloroethene	μg/L	0.4	< 0.20	< 0.20	NC	≤30%
Trichlorofluoromethane	μg/L	0.8	< 0.40	< 0.40	NC	≤30%
Vinyl Chloride	μg/L	0.34	< 0.17	< 0.17	NC	≤30%
Styrene	µg/L	0.2	< 0.10	< 0.10	NC	≤30%
Methyl Isobutyl Ketone	µg/L	0.2	< 1.0	< 1.0	NC	≤30%

Notes:

¹ RPD values only calculated when results are >2.5 times the reportable detection limit.

² O.Reg 153/04 (2011) Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act.

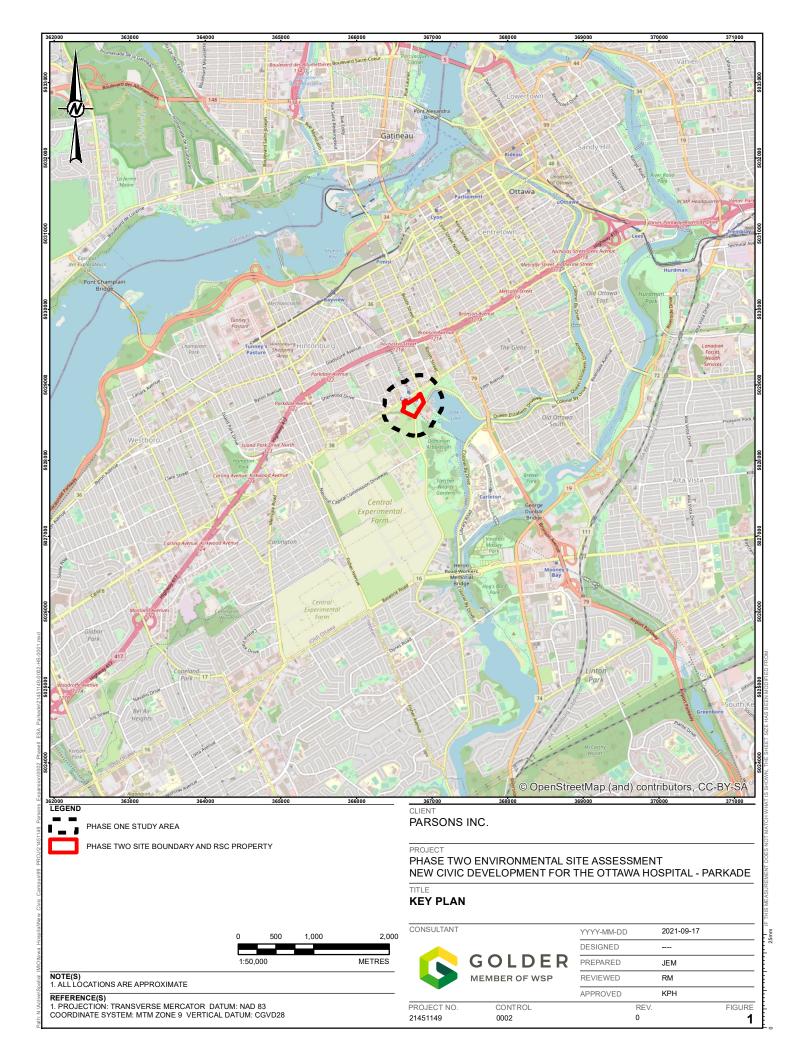
RPD: Relative percent difference.

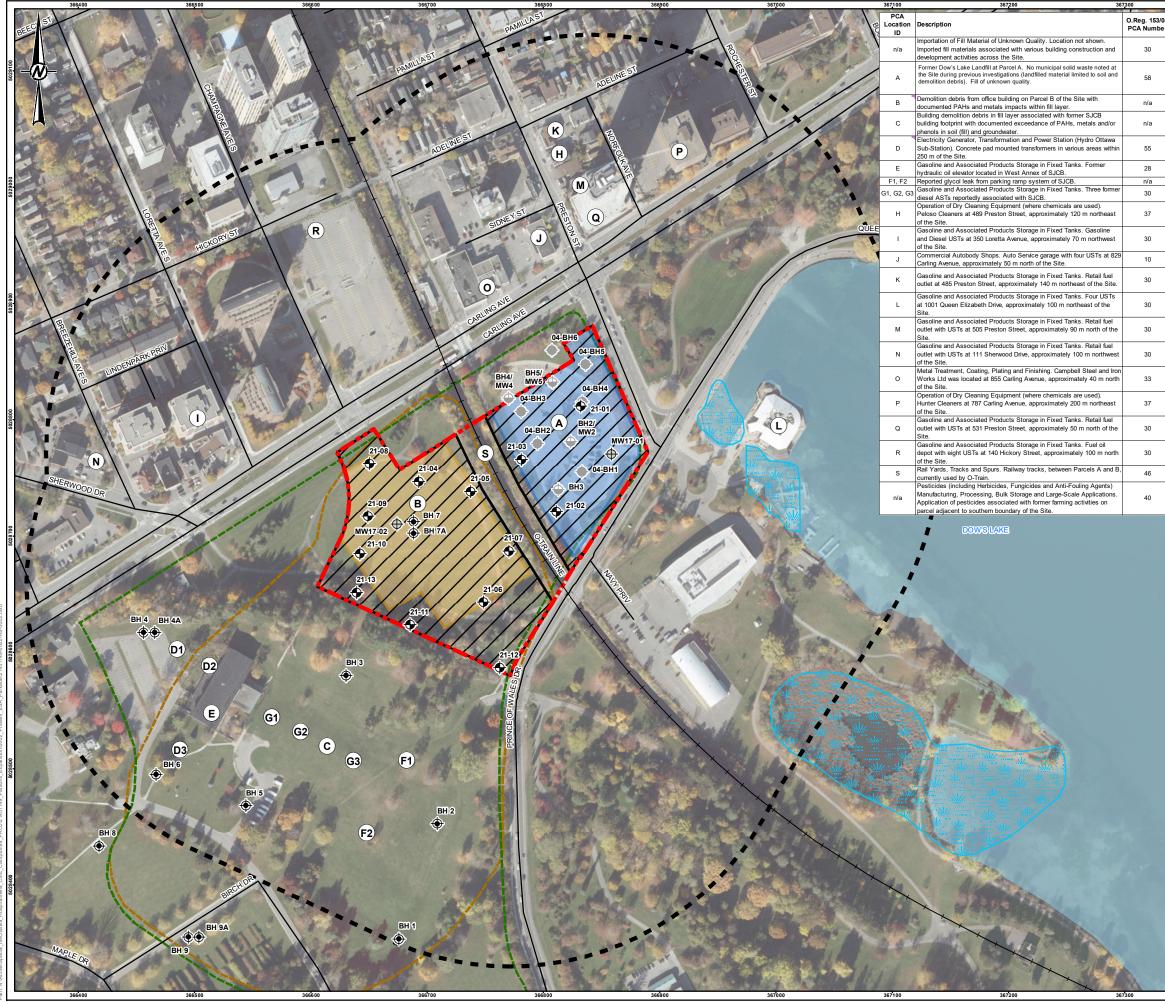
< Indicates parameter was below laboratory equipment detection limit.

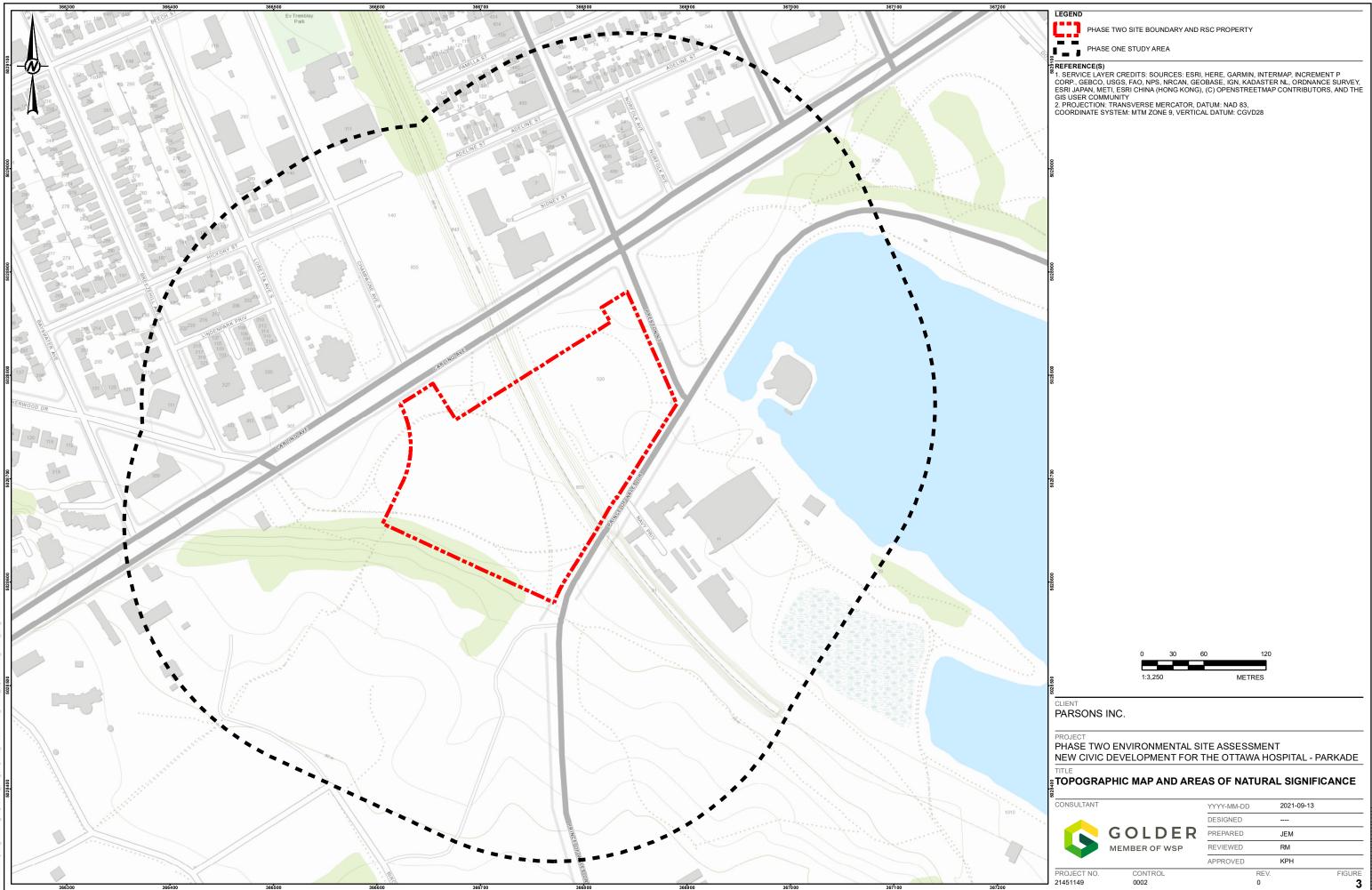
- Chemical not analyzed or calculated.

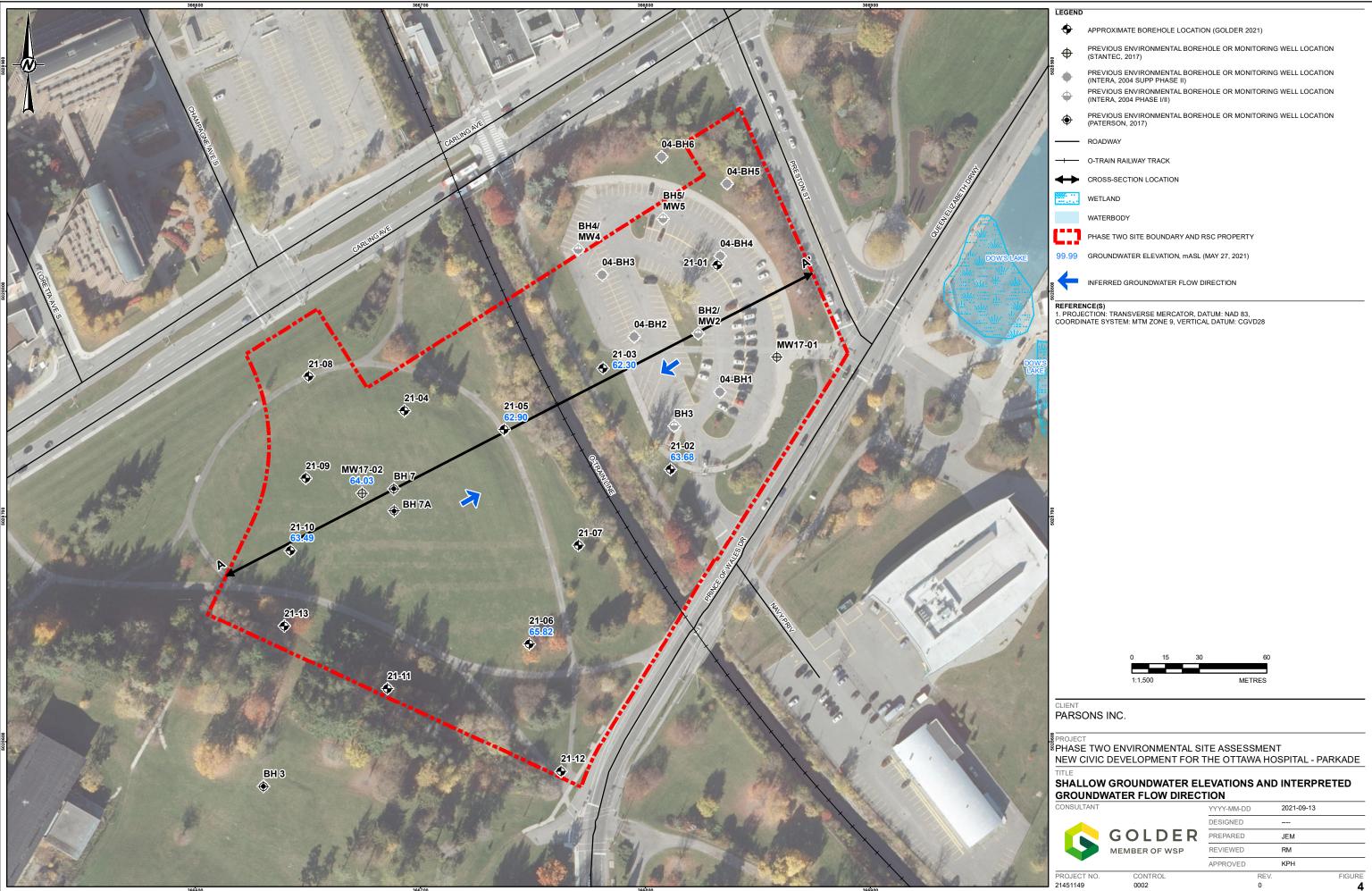
µg/L microgram per Litre Bold and shaded

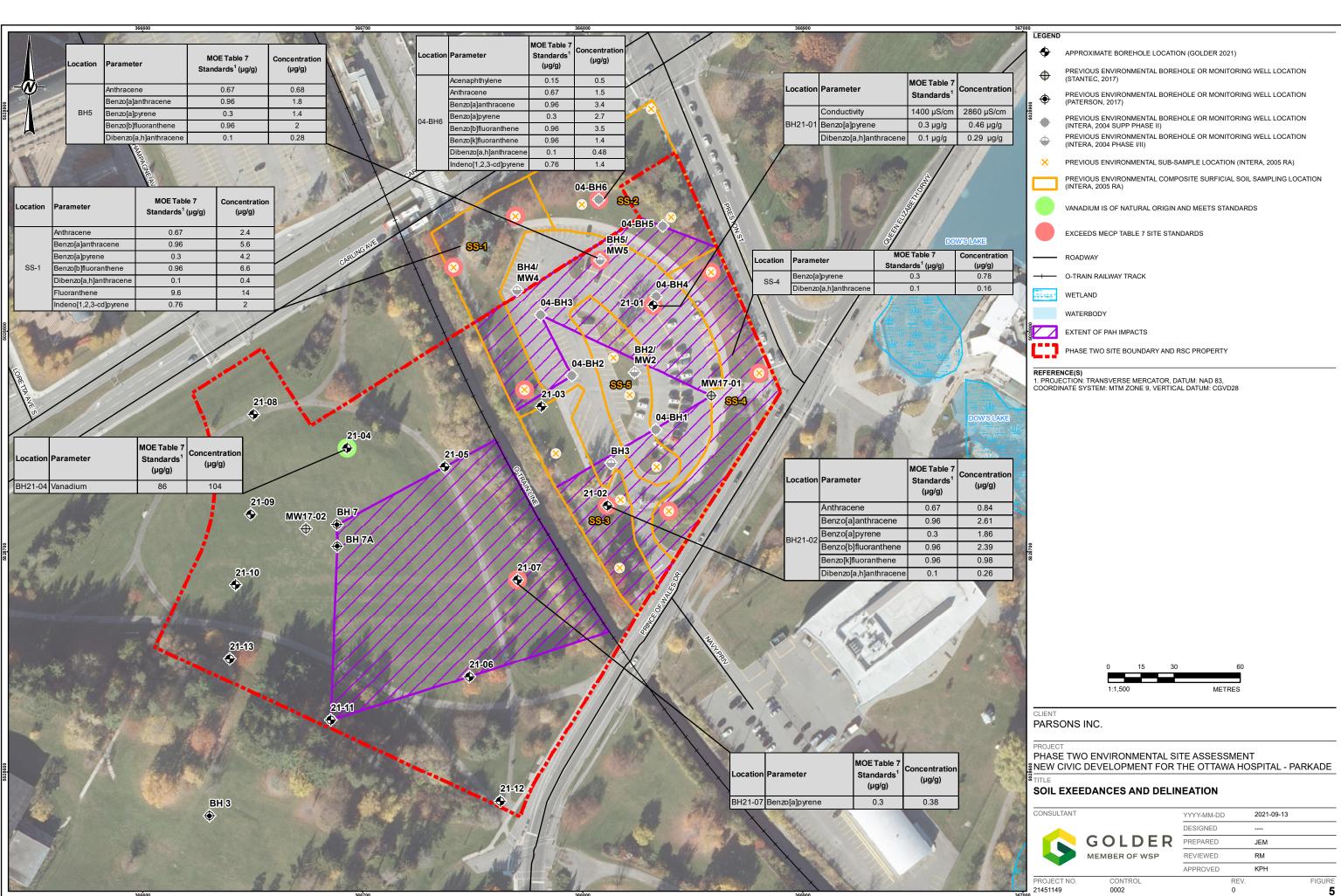
Exceeding MECP RPD Acceptance Criteria


Table to be read in conjunction with accompanying report.

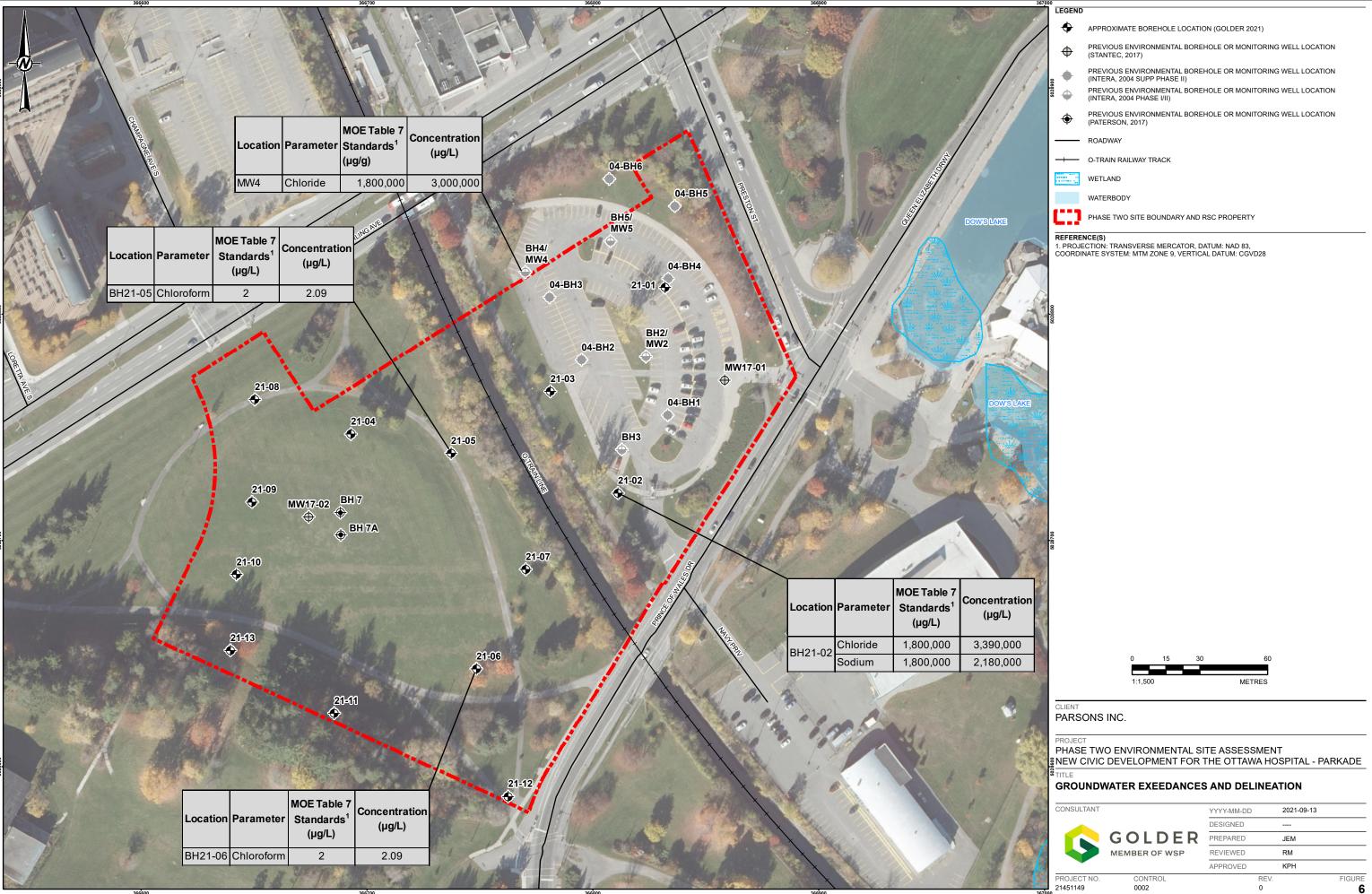

Where multiple reporting limits exist within the sample set, the highest reporting limit is used.


Figures



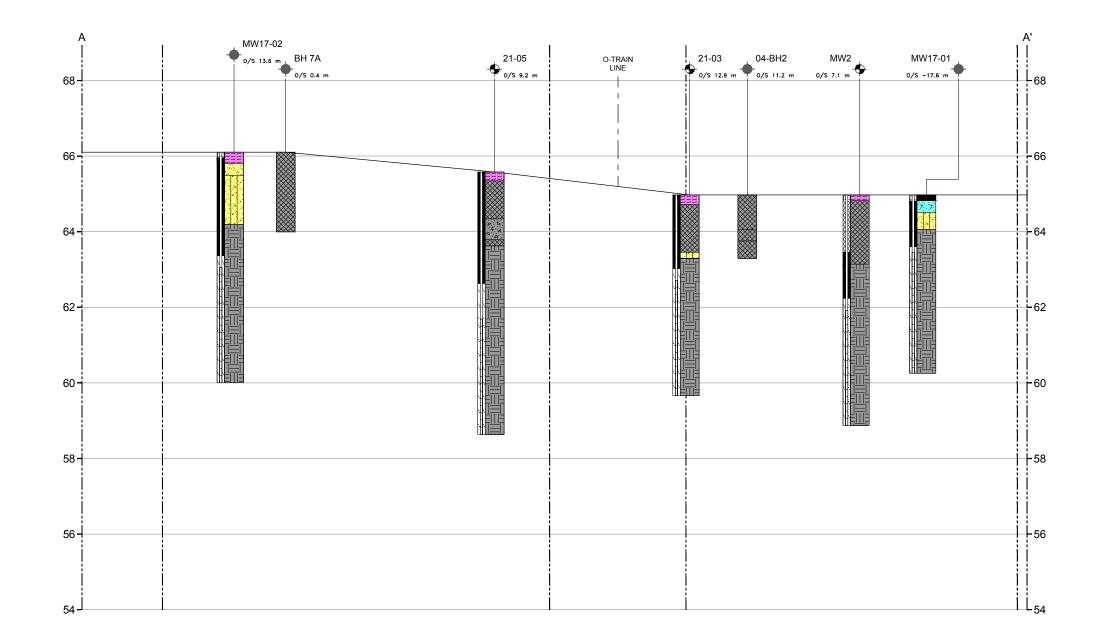


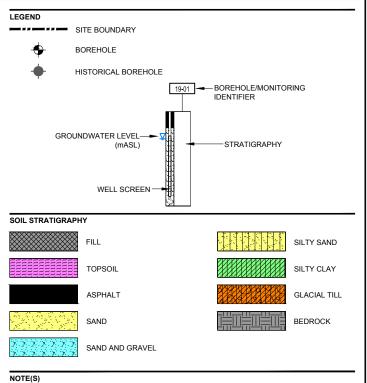
LEGEN	ID							
	APPR	OXIMATE BO	OREHOLE LO	CATION	(GOLDER 20	21)		
5029100 +		IOUS ENVIR ITEC, 2017)	ONMENTAL B	BOREHO	LE OR MONI	TORING	WELL LOCA	ATION
202	(INTE	RA, 2004 SU	ONMENTAL B PP PHASE II)					
$\mathbf{\Phi}$		IOUS ENVIR RA, 2004 PH	ONMENTAL B ASE I/II)	BOREHO	LE OR MONI	TORING	WELL LOCA	ATION
۲		IOUS ENVIR RSON, 2017	ONMENTAL B	BOREHO	DLE OR MONI	TORING	WELL LOCA	ATION
	- ROAD	WAY						
	- 0-TR/	AIN RAILWAY	TRACK					
	EXTE		MATED SOIL C MATED GROU					
sslee (WETL	AND						
	WATE	RBODY						
C ::	PHAS	E TWO SITE	BOUNDARY	AND RS(C PROPERTY	/		
5028900	PHAS	E ONE STUD	DY AREA					
	APEC	1						
	APEC							
	APEC	3				_		
APEC	Descripti	on			O .Reg. 153/04 PCA Number			
2058800	Demolitio		former office b		58 n/a			
3			of unknown qua		30			
5028700		YSTEM: MTN	1 ZONE 9, VE		UM: NAD 83, DATUM: CGV	D28		
9028700		YSTEM: MTN	1 ZONE 9, VEI			D28		
\$228600 5028700		YSTEM: MTN	1 ZONE 9, VEI			D28		
		0 				120		
5028600		0		RTICAL		120		
5928600		0	30	RTICAL	DATUM: CGV	120		
CLIEN-		0 [1:	30	RTICAL	DATUM: CGV	120		
0000000 CLIENT PAR PROJE PHAS			30		DATUM: CGV METI			PARKAI
		INC.	30 .3,250 DNMENTA		DATUM: CGV METI			PARKAI
00000000000000000000000000000000000000		INC.	30 .3,250 DNMENTA		DATUM: CGV METI			
00000000000000000000000000000000000000	SONS SE TWO CIVIC		30 		METI E ASSESS IE OTTAW		SPITAL -	
00000000000000000000000000000000000000	SONS SE TWO CIVIC		30 33,250 DNMENTA PMENT FO		METI E ASSESS IE OTTAV		SPITAL -	
00000000000000000000000000000000000000	SONS SE TWO CIVIC		30 	60 CR F	METI E ASSESS IE OTTAW 'YYY-MM-DD DESIGNED		2021-09-13 	



25mm IF THIS MEASUREMENT DOES NOT MATCH WHAT IS SHOWN, THE SHEET SIZE HAS BE

·


Path: KVActiveSpata_IMOttawa_HospitalNew_Civic_Campus/99_PROJ/21451149_Parsons_Expansion10002_Phasell_ESA_Parkade/21451149-0002-HS-0006.mxd


25,000 IF THIS MEASUREMENT DOES NOT MATCH WHAT IS SHOWN, THE SHEET SIZE HA

.

-

Ł,

1. ELEVATION OF HISTORICAL BOREHOLES ARE APPROXIMATE.

CLIENT PARSONS INC.

PROJECT PHASE TWO ENVIRONMENTAL SITE ASSESSMENT NEW CIVIC DEVELOPMENT FOR THE OTTAWA HOSPITAL -PARKADE TITLE

INTERPRETED CROSS-SECTION A-A'

CONSULTANT

0002

YYYY-MM-DD 2021-06-15 DESIGNED -----PREPARED ZS REVIEWED -----APPROVED -----FIGURE REV. А

APPENDIX A

Sampling and Analysis Plan

MEMORANDUM

DATE 11 May 2021

21451149-M02

TO Robert Ireland, Field Staff Golder

CC Keith Holmes, Kim MacDonald, Lobke Rotteveel, Rochelle Matthew

FROM Laura Jones

EMAIL Laura_Jones@golder.com

SAMPLING ANALYSIS PLAN – NEW CIVIC DEVELOPMENT FOR THE OTTAWA HOSPITAL - PARKADE

OBJECTIVE

The intent of the current investigation is to further characterize the lateral and vertical extent of soil and groundwater impacts identified at the Site (Parcels A and B of the Phase One Environmental Site Assessment (ESA) to support a Phase Two ESA.

SITE BACKGROUND

The new Ottawa Hospital campus was formerly occupied by a number of properties owned by the Crown which previously operated for commercial, industrial, and residential land uses. As part of redevelopment to a parkade structure and associated roadway and utilities modification (commercial land use) a Phase II ESA will be required.

A Phase I ESA was completed in 2019 and identified the following Areas of Potential Environmental Concern (APECs) on Site:

APEC 1 Former Dow's Lake landfill.

APEC 2 Demolition debris from former office building on Parcel B.

APEC 3 Imported fill materials associated with various building construction and site development activities across the site.

Surficial geology maps indicate the Site is underlain by a number of major soil types. The southwestern portion of the Site is indicated to be overlain by marine deposits (silt and clay), while the northern and eastern portions are indicated to be underlain by shallow bedrock and glacial till.

Drift thickness (depth to bedrock) indicated in available mapping varies considerably across the Site. The deepest soil deposits are indicated to be in the southwestern portion of the Parcel B. Bedrock is indicated to be relatively shallow in a central portion of the west side of the Parcel B, becoming deeper again to the northeast. Parcel A is indicated to have relatively shallow bedrock. Relevant borehole logs by others are attached for reference.

Shallow groundwater in the vicinity of the site varies significantly due to the elevation differences across the Site.

GENERAL REQUIREMENTS

- A Record of Site Condition is not anticipated to be required; however, standard operating procedures (SOPs) should be followed.
- Complete a Daily Log for every day of field work. Use standard field forms.
- Initial calibration of field equipment should be performed at the start of each field day, with a daily check of calibration using a standard of known concentration.
- Clean disposable Nitrile[™] gloves will be used at each sampling location to prevent cross-contamination.
- All non-dedicated sampling equipment (e.g., water level meters, split spoons) will be decontaminated between sampling locations. Sampling equipment in contact with soil, groundwater, or sediment will be: cleaned with a brush; washed with a laboratory-grade detergent solution (e.g., phosphate-free LiquiNox or AlcoNox) and thoroughly rinsed with analyte-free water.

BOREHOLE DRILLING. WELL INSTALLATION AND WELL DEVELOPMENT

- ** Confirm that every drilling location has been cleared by the private locator. **
- A detailed description of the drilling scope and well construction details is provided in the driller work order.
- Screen soil samples at 2-foot intervals (1 split spoon per 2 feet) using an RKI eagle calibrated to hexane and isobutylene.
- At each drilling location collect samples at 2 foot intervals for the parameters listed in Table 1 below.
- For well installation, see detailed instructions in driller work order: 2-inch inner diameter (ID) Schedule 40 polyvinyl chloride (PVC) casing and 2-inch ID Schedule 40 PVC well screens (1.5 metres in length, #10 slot size); sand pack surrounding each screen will be #00N; each monitoring well will be completed at ground surface with a flush-mount protective casing set in concrete and sealed with a PVC j-plug.
- Mark the reference point at the top of well pipe with a small notch. Install waterra tubing and footvalve in each new monitoring well.
- Monitoring well construction details are provided in Table 2.

MONITORING WELL DEVELOPMENT

Develop each MW in accordance with our SOP.

GROUNDWATER MONITORING

Before measuring the water levels, open the J-plugs to allow air in the casing to vent and the water level to stabilize.

Table 1 Borehole and soil sampling plan

Borehole ID	APEC	COCs	Well Installed (Y/N)	Depth (mbgs)	Soil Samples	Duplicate Samples
21-01	APEC 1 and APEC 3	PHCs, BTEX, VOCs, PAHs, Metals, and Inorganics	Y shallow and deep	Env sampling to deeper of 5' below fill or 5' below water table or bedrock interface	PHCs, BTEX, VOCs, PAHs, Metals, Cr(VI), Hg, B-HWS, EC, and SAR in fill. Collect samples from first 5' of native.	Duplicate Samples
21-02	APEC 1 and APEC 3	PHCs, BTEX, VOCs, PAHs, Metals, and Inorganics	Y	Env sampling to deeper of 5' below fill or 5' below water table or bedrock interface	PHCs, BTEX, VOCs, PAHs, Metals, Cr(VI), Hg, B-HWS, EC, and SAR in fill. Collect samples from first 5' of native.	
21-03	APEC 1 and APEC 3	PHCs, BTEX, VOCs, PAHs, Metals, and Inorganics	Y	Env sampling to deeper of 5' below fill or 5' below water table or bedrock interface	PHCs, BTEX, VOCs, PAHs, Metals, Cr(VI), Hg, B-HWS, EC, and SAR in fill. Collect samples from first 5' of native.	
21-04	APEC 2 and APEC 3	PHCs, BTEX, PAHs, Metals, and Inorganics	Y for Hydro G	Env sampling to deeper of 5' below fill or 5' below water table or bedrock interface	PHCs, BTEX, PAHs, Metals, Cr(VI), Hg, B-HWS, EC, and SAR in fill. Collect samples from first 5' of native.	Duplicate Samples
21-05	APEC 2 and APEC 3	PHCs, BTEX, PAHs, Metals, and Inorganics	Ν	Env sampling to deeper of 5' below fill or 5' below water table or bedrock interface	PHCs, BTEX, PAHs, Metals, Cr(VI), Hg, B-HWS, EC, and SAR in fill. Collect samples from first 5' of native.	
21-06	APEC 2 and APEC 3	PHCs, BTEX, PAHs, Metals, and Inorganics	Y	Env sampling to deeper of 5' below fill or 5' below water table or bedrock interface	PHCs, BTEX, PAHs, Metals, Cr(VI), Hg, B-HWS, EC, and SAR in fill. Collect samples from first 5' of native.	
21-07	APEC 2 and APEC 3	PHCs, BTEX, PAHs, Metals, and Inorganics	Ν	Env sampling to deeper of 5' below fill or 5' below water table or bedrock interface	PHCs, BTEX, PAHs, Metals, Cr(VI), Hg, B-HWS, EC, and SAR in fill. Collect samples from first 5' of native.	Duplicate Samples

Borehole ID	APEC	COCs	Well Installed (Y/N)	Depth (mbgs)	Soil Samples	Duplicate Samples
21-08	APEC 3	PHCs, BTEX, PAHs, Metals, and Inorganics	Ν	Env sampling to deeper of 5' below fill or 5' below water table or bedrock interface	PHCs, BTEX, PAHs, Metals, Cr(VI), Hg, B-HWS, EC, and SAR in fill. Collect samples from first 5' of native.	
21-09	APEC 3	PHCs, BTEX, PAHs, Metals, and Inorganics	Ν	Env sampling to deeper of 5' below fill or 5' below water table or bedrock interface	PHCs, BTEX, PAHs, Metals, Cr(VI), Hg, B-HWS, EC, and SAR in fill. Collect samples from first 5' of native.	
21-10	APEC 3	PHCs, BTEX, PAHs, Metals, and Inorganics	Y	Env sampling to deeper of 5' below fill or 5' below water table or bedrock interface	PHCs, BTEX, PAHs, Metals, Cr(VI), Hg, B-HWS, EC, and SAR in fill. Collect samples from first 5' of native.	Duplicate Samples
21-11	APEC 3	PHCs, BTEX, PAHs, Metals, and Inorganics	Ν	Env sampling to deeper of 5' below fill or 5' below water table or bedrock interface	PHCs, BTEX, PAHs, Metals, Cr(VI), Hg, B-HWS, EC, and SAR in fill. Collect samples from first 5' of native.	
21-12	APEC 3	PHCs, BTEX, PAHs, Metals, and Inorganics	N	Env sampling to deeper of 5' below fill or 5' below water table or bedrock interface	PHCs, BTEX, PAHs, Metals, Cr(VI), Hg, B-HWS, EC, and SAR in fill. Collect samples from first 5' of native.	
21-13	APEC 3	PHCs, BTEX, PAHs, Metals, and Inorganics	N	Env sampling to deeper of 5' below fill or 5' below water table or bedrock interface	PHCs, BTEX, PAHs, Metals, Cr(VI), Hg, B-HWS, EC, and SAR in fill. Collect samples from first 5' of native.	Duplicate samples

*Locations provided on Figure 1

PHCs – Petroleum Hydrocarbon Fractions F1-F4

PAHs – Polycyclic Aromatic Hydrocarbons

VOCs – Volatile Organic Compounds

SAR – Sodium Absorption Ratio

BTEX – Benzene, toluene, ethylbenzene, xylene B-HWS – Hot water soluble boron EC – Electrical Conductivity

Table 2 Monitoring well construction.

Borehole ID	Depth of screen base (m bgs)	Screen length (m)	Well diameter (cm)	Protective Casing Type
21-01	Confirm Installation details with Laura and Caitlin	3	5	Flush mount
21-02	Confirm Installation details with Laura and Caitlin	3	5	Stick-up
21-03	Confirm Installation details with Laura and Caitlin	3	5	Stick-up
21-04	Confirm Installation details with Laura and Caitlin	3	5	Stick-up
21-06	Confirm Installation details with Laura and Caitlin	3	5	Stick-up
21-10	Confirm Installation details with Laura and Caitlin	3	5	Stick-up

- Collect a round of water level measurements using the water level meter. Use the "Static Water Level Field Form".
- Collect groundwater samples from monitoring wells following SOP10 (Low Flow Sample Collection) using a peristaltic pump for the parameters in Table 3. Allow the water level to stabilize in the monitoring well before starting measurement of field parameters.
- If drawdown in the well exceeds 0.3 metres during purging, then complete purging in accordance with the SOP9 procedure for low-yield monitoring wells.
- The multi-parameter meter should be initially calibrated the equipment supplier and thereafter at the start of each day. Check calibration to known pH, conductivity, ORP and DO concentration at mid-day. If equipment is out of calibration (i.e., reading is off by more than 10%), call Laura.
- If field parameters do not stabilize during low flow purging, do not purge longer than 30 minutes before collecting a groundwater sample.
- Samples are to be collected from all the locations listed in Table 3. Samples for metals, As, Se, Sb, CrVI and Hg filtered in the field with inline filter.
- Samples do not need to be submitted day of sampling provided you keep them on ice during the day and/or refrigerate them overnight (i.e., keep them cold from collection to submission).
- Collect guality assurance samples as indicated in Tables 1 and 3. The duplicate groundwater samples should be labelled in a manner in which the laboratory cannot readily identify the sample as a duplicate.
- Please call Laura if you see or suspect that there is product in any monitoring well.
- Use the "Groundwater Sample Collection" form to collect all data during groundwater sampling.

Table 3 Groundwater sampling plan

Borehole ID	Field Parameter Measurements	Groundwater Analyses to be Requested	QA/QC samples	
BH21-01, BH21-02, BH21-03, BH21-04, BH21-06, BH21-10, MW17-1, MW17-2	pH; EC; temp; DO; ORP	PHCs, BTEX, VOCs, PAHs, Metals, Cr(VI), Hg, Na, CI, As, Se, Sb	Collect one duplicate sample. Trip blank during 1 sampling event.	

CHAIN-OF-CUSTODY

Chain-of-Custody Item	Information		
Analytical Laboratory	AGAT		
Generic Site Condition Standards	Table 7 Commercial, coarse textured soil		
Use Record of Site Condition analytical procedures?	Yes		
Turn-around Time	Regular		
Golder Reporting Contact	Laura_Jones@golder.com, Environmental Lead Gal_Equis@golder.com		
Project-Specific Quote Number (if applicable)	None		
Golder Billing Contact	Laura Jones Ljjones@golder.com		
Is an EQuiS EDD Required?	Yes – Facility ID - 229413340		

MANAGEMENT OF INVESTIGATION DERIVED WASTE

- Keep waste soil and water segregated into separate drums
- Label drums for waste management purposes, include Golder Associates, project number, date and drum contents (soil, purge water)
- Leave drums in an easily accessible location by vehicle)
- Record inventory of waste containers on Daily Log

SPECIAL INSTRUCTIONS

Check in with Laura and Caitlin prior to well installation as indicated.

GOLDER ASSOCIATES LTD.

Laura Jones, MASc, PEng Senior Environmental Engineer Keith Holmes, MSc, PGeo Associate

LR/LJ/

Attachments: Figure 1

https://golderassociates.sharepoint.com/sites/140130/project files/6 deliverables/02 - environmental/02- parkade - sap2/app a - sap/21451149-m02 sap 2 parkade.docx

APPENDIX B

Record of Borehole Logs

Organic or Inorganic	Soil Group	Туре	of Soil	Gradation or Plasticity	$Cu = \frac{D_{60}}{D_{10}}$			$Cc = \frac{(D_{30})^2}{D_{10} x D_{60}}$		Organic Content	USCS Group Symbol	Group Name							
		GRAVELS 0% by mass of arse framess of arse from A(1,5 mm) (stane) (st		Gravels to .º E ≤12%				Poorly Graded		<4		≤1 or 2	≥3		GP	GRAVEL			
(ss	(mm c			'ELS mass action i 4.75 m	fines	Well Graded		≥4		1 to 3	3		GW	GRAVEL					
by ma	SOILS an 0.07			Below A Line	n/a		ı/a			GM	SILTY GRAVEL								
sANIC ≤30%	AINED ger tha	arg co (>F	>12% fines (by mass)	Above A Line			n/a	/a			GC	CLAYEY GRAVEL							
INORG	tE-GR/ ss is lar	of s mm)	Sands with	Poorly Graded		<6		≤1 or 3	≥3	≤30%	SP	SAND							
INORGANIC (Organic Content ≾30% by mass)	DOARS by mas	DS mass action i	≤12% fines (by mass)	Well Graded		≥6		1 to :	3		SW	SAND							
O)	COARSE-GRAINED SOILS (>50% by mass is larger than 0.075 mm)	SANDS (≥50% by mass of coarse fraction is smaller than 4.75 mm)	Sands with	Below A Line			n/a				SM	SILTY SAND							
	-	(≥f co smal	>12% fines (by mass)	Above A Line			n/a				SC	CLAYEY SAND							
Organic	Soil	_		Laboratory		F	Field Indica	tors	Toughness	Organic	USCS Group	Primary							
or Inorganic	Group	Гуре	of Soil	Tests	Dilatancy	Dry Strength	Shine Test	Thread Diameter	(of 3 mm thread)	Content	Symbol	Name							
		L plot		Liquid Limit	Rapid	None	None	>6 mm	N/A (can't roll 3 mm thread)	<5%	ML	SILT							
(ss	75 mm)	, 75 mm)	and L	Line city low)	<50	Slow	None to Low	Dull	3mm to 6 mm	None to low	<5%	ML	CLAYEY SILT						
INORGANIC (Organic Content ≤30% by mass)	FINE-GRAINED SOILS (250% by mass is smaller than 0.075 mm)	SILTS ic or Pla	below A-Line on Plasticity Chart below)		Slow to very slow	Low to medium	Dull to slight	3mm to 6 mm	Low	5% to 30%	OL	ORGANIC SILT							
SANIC t ≤30%	NED S	JED So aller th	JED So aller th	JED So aller th	JED So aller th	JED SO aller th	bel bel Ch		SILTS (Non-Plastic or PI and LL plot	be or Ch	Liquid Limit	Slow to very slow	Low to medium	Slight	3mm to 6 mm	Low to medium	<5%	MH	CLAYEY SILT
INORGANIC Content ≤30%	FINE-GRAINED SOILS mass is smaller than 0.	(Noi		≥50	None	Medium to high	Dull to slight	1 mm to 3 mm	Medium to high	5% to 30%	ОН	ORGANIC SILT							
ganic (FINE oy mas	lot art		Liquid Limit <30	None	Low to medium	Slight to shiny	~ 3 mm	Low to medium	0%	CL	SILTY CLAY							
Ū.	≥50% I	CLAYS and LL p /e A-Line sticity Ch	CLAYS a A-Lin e A-Lin ticity Cl	e A-Lin ticity C below)	Liquid Limit 30 to 50	None	Medium to high	Slight to shiny	1 mm to 3 mm	Medium	to 30%	СІ	SILTY CLAY						
	0	CLAYS (Pl and LL plot above A-Line on Plasticity Chart below)		Liquid Limit ≥50	None	High	Shiny	<1 mm	High	(see Note 2)	СН	CLAY							
~	30% \$)		mineral soil tures						30% to		SILTY PEAT, SANDY PEAT								
HIGHLY ORGANIC SOILS (Organic	Content >30% by mass)	may cont mineral so	antly peat, tain some il, fibrous or ous peat							75% 75% to 100%	PT	PEAT							
Low Plasticity Medium Plasticity				CLAY CH CLAYEY SI ORGANIC S		80	For non-cc the soil h transitiona gravel. For cohess liquid limit of the plass Borderlin separated A borderlin has been transition	bhesive soils, as between il material b ive soils, the and plasticity ticity chart (s e Symbol — by a slash, fine symbol sh identified as between similar ay be used to	the dual sy 5% and etween "c dual symb y index val ee Plastici A borderl or example ould be us s having p lar materia	SW-SC and Cl ymbols must b 12% fines (i.e lean" and "di pol must be us ues plot in the ty Chart at left ine symbol is e, CL/CI, GM/S sed to indicate properties that ls. In addition a range of simi	e used when e. to identify rty" sand or ed when the CL-ML area c). two symbols SM, CL/ML. that the soil t are on the , a borderline								

The Golder Associates Ltd. Soil Classification System is based on the Unified Soil Classification System (USCS)

named SILT. Note 2 – For soils with <5% organic content, include the descriptor "trace organics" for soils with between 5% and 30% organic content include the prefix "organic" before the Primary name.

ら GOLDER

ABBREVIATIONS AND TERMS USED ON RECORDS OF BOREHOLES AND TEST PITS

PARTICI E SIZES OF CONSTITUENTS

Soil Constituent	Particle Size Description	Millimetres	Inches (US Std. Sieve Size)
BOULDERS	Not Applicable	>300	>12
COBBLES	Not Applicable	75 to 300	3 to 12
GRAVEL	Coarse Fine	19 to 75 4.75 to 19	0.75 to 3 (4) to 0.75
SAND	Coarse Medium Fine	2.00 to 4.75 0.425 to 2.00 0.075 to 0.425	(10) to (4) (40) to (10) (200) to (40)
SILT/CLAY	Classified by plasticity	<0.075	< (200)

MODIFIERS FOR SECONDARY AND MINOR CONSTITUENTS

Percentage by Mass	Modifier					
>35	Use 'and' to combine major constituents (<i>i.e.</i> , SAND and GRAVEL)					
> 12 to 35	Primary soil name prefixed with "gravelly, sandy, SILTY, CLAYEY" as applicable					
> 5 to 12	some					
≤ 5	trace					

PENETRATION RESISTANCE

Standard Penetration Resistance (SPT), N:

The number of blows by a 63.5 kg (140 lb) hammer dropped 760 mm (30 in.) required to drive a 50 mm (2 in.) split-spoon sampler for a distance of 300 mm (12 in.). Values reported are as recorded in the field and are uncorrected.

Cone Penetration Test (CPT)

An electronic cone penetrometer with a 60° conical tip and a project end area of 10 cm² pushed through ground at a penetration rate of 2 cm/s. Measurements of tip resistance (q), porewater pressure (u) and sleeve frictions are recorded electronically at 25 mm penetration intervals.

Dynamic Cone Penetration Resistance (DCPT); Nd: The number of blows by a 63.5 kg (140 lb) hammer dropped 760 mm (30 in.) to drive uncased a 50 mm (2 in.) diameter, 60° cone attached to "A" size drill rods for a distance of 300 mm (12 in.).

- PH: Sampler advanced by hydraulic pressure
- PM: Sampler advanced by manual pressure
- WH: Sampler advanced by static weight of hammer
- WR: Sampler advanced by weight of sampler and rod

Compactness ²				
Term	SPT 'N' (blows/0.3m) ¹			
Very Loose	0 to 4			
Loose	4 to 10			
Compact	10 to 30			
Dense	30 to 50			
Very Dense	>50			

NON-COHESIVE (COHESIONLESS) SOILS

- 1. SPT 'N' in accordance with ASTM D1586, uncorrected for the effects of overburden pressure.
- Definition of compactness terms are based on SPT 'N' ranges as provided in Terzaghi, Peck and Mesri (1996). Many factors affect the recorded SPT 'N' 2. value, including hammer efficiency (which may be greater than 60% in automatic trip hammers), overburden pressure, groundwater conditions, and grainsize. As such, the recorded SPT 'N' value(s) should be considered only an approximate guide to the soil compactness. These factors need to be considered when evaluating the results, and the stated compactness terms should not be relied upon for design or construction.

Field Moisture Condition

Term	Description						
Dry	Soil flows freely through fingers.						
Moist	Soils are darker than in the dry condition and may feel cool.						
Wet	As moist, but with free water forming on hands when handled.						
	Dry Moist						

SAMPLES	
AS	Auger sample
BS	Block sample
CS	Chunk sample
DD	Diamond Drilling
DO or DP	Seamless open ended, driven or pushed tube sampler – note size
DS	Denison type sample
GS	Grab Sample
MC	Modified California Samples
MS	Modified Shelby (for frozen soil)
RC	Rock core
SC	Soil core
SS	Split spoon sampler – note size
ST	Slotted tube
ТО	Thin-walled, open - note size (Shelby tube)
TP	Thin-walled, piston – note size (Shelby tube)
WS	Wash sample

SOIL TESTS

-
water content
plastic limit
liquid limit
consolidation (oedometer) test
chemical analysis (refer to text)
consolidated isotropically drained triaxial test1
consolidated isotropically undrained triaxial test with porewater pressure measurement ¹
relative density (specific gravity, Gs)
direct shear test
specific gravity
sieve analysis for particle size
combined sieve and hydrometer (H) analysis
Modified Proctor compaction test
Standard Proctor compaction test
organic content test
concentration of water-soluble sulphates
unconfined compression test
unconsolidated undrained triaxial test
field vane (LV-laboratory vane test)
unit weight

Tests anisotropically consolidated prior to shear are shown as CAD, CAU. 1.

	COHESIVE SOILS	
	Consistency	
Term	Undrained Shear Strength (kPa)	SPT 'N' ^{1,2} (blows/0.3m)
Very Soft	<12	0 to 2
Soft	12 to 25	2 to 4
Firm	25 to 50	4 to 8
Stiff	50 to 100	8 to 15
Very Stiff	100 to 200	15 to 30
Hard	>200	>30

1. SPT 'N' in accordance with ASTM D1586, uncorrected for overburden pressure effects; approximate only.

SPT 'N' values should be considered ONLY an approximate guide to consistency; for sensitive clays (e.g., Champlain Sea clays), the N-value approximation for consistency terms does NOT apply. Rely on direct 2 measurement of undrained shear strength or other manual observations.

	Water Content
Term	Description
w < PL	Material is estimated to be drier than the Plastic Limit.
w ~ PL	Material is estimated to be close to the Plastic Limit.
w > PL	Material is estimated to be wetter than the Plastic Limit.

Unless otherwise stated, the symbols employed in the report are as follows:

I.	GENERAL	(a) w	Index Properties (continued) water content
π	3.1416	w _l or LL	liquid limit
ln x	natural logarithm of x	w _p or PL	plastic limit
log ₁₀	x or log x, logarithm of x to base 10 acceleration due to gravity	l₀ or PI NP	plasticity index = (w _l – w _p) non-plastic
g t	time	Ws	shrinkage limit
·		IL	liquidity index = $(w - w_p) / I_p$
		lc	consistency index = $(w_l - w) / I_p$
		emax	void ratio in loosest state
		emin	void ratio in densest state
II.	STRESS AND STRAIN	ID	density index = $(e_{max} - e) / (e_{max} - e_{min})$ (formerly relative density)
	shear strain	(b)	Hydraulic Properties
$\gamma \Delta$	change in, e.g. in stress: $\Delta \sigma$	(b) h	hydraulic head or potential
2 8	linear strain	q	rate of flow
εv	volumetric strain	V	velocity of flow
η	coefficient of viscosity	i	hydraulic gradient
υ	Poisson's ratio	k	hydraulic conductivity
σ	total stress		(coefficient of permeability)
σ	effective stress ($\sigma' = \sigma - u$)	j	seepage force per unit volume
σ'_{vo}	initial effective overburden stress		
σ1, σ2, σ3	principal stress (major, intermediate, minor)	(c)	Consolidation (one-dimensional)
		C _c	compression index
σoct	mean stress or octahedral stress		(normally consolidated range)
	$= (\sigma_1 + \sigma_2 + \sigma_3)/3$	Cr	recompression index
τ	shear stress		(over-consolidated range)
u	porewater pressure	Cs	swelling index
E	modulus of deformation	Cα	secondary compression index
G K	shear modulus of deformation bulk modulus of compressibility	mv Cv	coefficient of volume change coefficient of consolidation (vertical
IX .			direction)
		Ch	coefficient of consolidation (horizontal direction)
		Tv	time factor (vertical direction)
III.	SOIL PROPERTIES	U	degree of consolidation
(2)	Index Properties	σ′ _P OCR	pre-consolidation stress
(a) ρ(γ)	Index Properties bulk density (bulk unit weight)*	OCK	over-consolidation ratio = σ'_p / σ'_{vo}
ρ(γ) ρ _d (γ _d)	dry density (dry unit weight)	(d)	Shear Strength
ρω(γω)	density (unit weight) of water	τρ, τr	peak and residual shear strength
ρs(γs)	density (unit weight) of solid particles	φ' δ	effective angle of internal friction
γ'	unit weight of submerged soil	δ	angle of interface friction
	$(\gamma' = \gamma - \gamma_w)$	μ	coefficient of friction = tan δ
D _R	relative density (specific gravity) of solid	C'	effective cohesion
-	particles ($D_R = \rho_s / \rho_w$) (formerly G_s)	Cu, Su	undrained shear strength ($\phi = 0$ analysis)
e	void ratio porosity	p n'	mean total stress $(\sigma_1 + \sigma_3)/2$
n S	degree of saturation	p' q	mean effective stress $(\sigma'_1 + \sigma'_3)/2$ $(\sigma_1 - \sigma_3)/2$ or $(\sigma'_1 - \sigma'_3)/2$
0		Ч Qu	compressive strength ($\sigma_1 - \sigma_3$)
		St	sensitivity
* Danai	ty oumbol is a Unit weight symbol is	Notes: 1	
	ty symbol is ρ . Unit weight symbol is γ e $\gamma = \rho g$ (i.e. mass density multiplied by	Notes: 1	$\tau = c' + \sigma' \tan \phi'$ shear strength = (compressive strength)/2
	eration due to gravity)	-	

RECORD OF BOREHOLE: 21-01

BORING DATE: June 11, 2021

SHEET 1 OF 1

DATUM: NAD 1983

LOCATION: N 5028807.8 ;E 366831.0 SAMPLER HAMMER, 64kg; DROP, 760mm

	ПОН	SOIL PROFILE			SA	MPL		HEADSPACE C VAPOUR CONC	OMBUS ENTRA	TIBLE TIONS [PI	PM] ⊕	HYDR/	AULIC Co k, cm/s	ONDUCT	TVITY,	μġ	PIEZOMETER
DEPTH SCALE METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	BLOWS/0.30m	ND = Not Detect 20 41 HEADSPACE O CONCENTRATI ND = Not Detect 20 41	RGANIC ONS [PF	VAPOUF M]	°	w w		DNTENT	PERCE	LAB. TESTING	OR STANDPIPE INSTALLATION
0		GROUND SURFACE		65.05													
	Power Auger Diam. (Hollow Stem)	ASPHALTIC CONCRETE FILL - (SW/GW) gravelly SAND to sandy GRAVEL, angular; grey (PAVEMENT STRUCTURE) FILL - (SW) gravelly SILTY SAND; dark brown to brown; non-cohesive, moist to wet, compact		0.05 64.44 0.61	1	SS	14 [ם ⊕ מא									Flush Mount Casing Backfill Bentonite Seal Silica Sand
1	Power Auger 200 mm Diam. (Hollow	FILL - Wood; brown; non-cohesive,		63.85 1.20 1.30 1.45	2	SS	18				105 [€]	Ð					52 mm Diam. PVC #10 Slot Screen
· 2 · 3 · 4 · 5		FILL/WASTE - (SM) gravelly SILTY \SAND; dark brown to black, contains \u00e4paphalt; non-cohesive, moist, compact \u00e4 provide to wet, compact \u00e4 brown, with black staining; non-cohesive, moist, very dense \u00e4 FILL - (GW) sandy GRAVEL; grey; (non-cohesive, moist, very dense End of Borehole Auger Refusal		63.37 1.68 63.14 1.91	3	55	>50)		•								Cave
- 8																	
9																	
10 DEF	PTH S	CALE						GO									DGGED: RI

RECORD OF BOREHOLE: 21-02

BORING DATE: May 18, 2021

SHEET 1 OF 2

DATUM: NAD 1983

LOCATION: N 5028720.9 ;E 366811.1 SAMPLER HAMMER, 64kg; DROP, 760mm

Ţ	ПОН	SOIL PROFILE			SA	MPL		HEADSPACE COMBUSTIBLE VAPOUR CONCENTRATIONS [PPM] ⊕ ND = Not Detected 20 40 60 80	HYDRAULIC CONDUCTIVITY, k, cm/s	μĢ	PIEZOMETER
METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	BLOWS/0.30m	ND = Not Detected 20 40 60 80 HEADSPACE ORGANIC VAPOUR CONCENTRATIONS [PPM] □ ND = Not Detected 20 40 60 80	10 ⁸ 10 ⁵ 10 ⁴ 10 ³ WATER CONTENT PERCENT Wp	ADDITIONAL LAB. TESTING	OR STANDPIPE INSTALLATION
0		GROUND SURFACE		65.67							
	Power Auger 200 mm Diam. (Holow Stem)	TOPSOIL - (SM) SILTY SAND; dark brown, contains organic matter (rootlets); non-cohesive, moist loose FILL - (SM) gravelly SILTY SAND; dark brown, contains brick, ash, organic matter and silty clay layers; non-cohesive, moist, loose to compact		0.00	1	SS	9 €	B ND	0	м	Bentontie Seal
1	200 mm [Borehole continued on RECORD OF		64.40 1.27	2	ss	>50[D⊕ ND			
2 3 4 5 6		DRILLHOLE 21-02									
7											
8											
9 10											
DEF	PTH S	CALE	<u> </u>					GOLDER		LC	IGGED: RI

			T: 21451149 DN: N 5028720.9 ;E 366811.1		RE	С	DR	RD	C									E: 21-	02	2										HEET 2 OF 2 ATUM: NAD 1983
			TION: -90° AZIMUTH:							[DRI	ILL	RIG	6: C	M	E 7	5	OR: Downing	Drilli	ng									יט	- 1903 UMU 1903
DEPTH SCALE METRES		DRILLING RECORD	DESCRIPTION	SYMBOLIC LOG	ELEV.	RUN No.	COLOUR % RETURN		SHF VN CJ	- Joi - Fa - Sh - Ve - Co	int ult ear in njug	gate		BD- FO- CO- OR- CL-	Ber Fol Cort Cle	ddin iatio ntac hoge ava	g t onal ge	PL - Planar CU- Curved UN- Undulati ST - Stepped IR - Irregular DISCONTINI	ng	PO-F K -S SM-S Ro-F MB-M	Slicke Smoot	nside th	l Bre	ak s	NOTE abbrev of abb symbo	For viation reviat	additi ns refe tions &	er to li &	st	
M DEP		DRILLIN	BEDROCK SURFACE	SYME	(m) 64.40	8	FLUSH	COF	TAL RE %	COF	0LID 388 388	,	Q.D. % 888	P 0.2	DEX ER 5 m	I A	P w.r ORE	DESCRIP	SURFA	CE	Jco	on Jr		K, c	JCTI m/se	10 ^{° 5} 11	(111	Load dex Pa)	RMC -Q' AVG.	
-			Fresh, thinly to medium bedded, grey to dark grey, fine to medium grained, non-porous, medium strong SHALEY NODULAR LIMESTONE		1.27																									Bentontie Seal Silica Sand
- 2 			- Broken core from 1.44 m to 1.55 m			1	100																							UCS = 130 MPa
- 3 - 3 		Dre				2	100	0																						32 mm Diam. PVC
- - - - - - - - - - - -	Rotary Drill	NQ Core				3	100	0																						
						4	100																							Silica Sand
- - - - - - - 8 - - 8 - - - - - - - -			End of Drillhole Note(s): 1. Water level in screen measured at 2.09 m (Elev. 63.59 m) on May 28, 2021		58.38 7.29									-																
9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1																														
MIS-RCK 004 21451149.6PU 6AL-MISS.6DU 7/25/21 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1																														
			SCALE			ı					C	;	0) [D)	ER			_1		1							DGGED: RI ECKED: KM

RECORD OF BOREHOLE: 21-03

BORING DATE: May 18, 2021

SHEET 1 OF 2

DATUM: NAD 1983

LOCATION: N 5028765.9 ;E 366781.2 SAMPLER HAMMER, 64kg; DROP, 760mm

	0	SOIL PROFILE			SA	MPLE	s	HEADSPACE	COMBUS	TIBLE		HYDR	AULIC C	ONDUC	FIVITY,			
DEPTH SCALE METRES	BORING METHOD		Ц				E	HEADSPACE VAPOUR CON ND = Not Detec	CENTRA	TIONS [F	PPM] 🕀		k, cm/s			IO ⁻³	ADDITIONAL LAB. TESTING	PIEZOMETER
il R	G ME	DEODERTICAL	STRATA PLOT	ELEV.	NUMBER	ЫМ	BLOWS/0.30m	HEADSPACE					O ^{ro} 10 L ATER CO			10 ⁻³	TEST	OR STANDPIPE
Ĭ	NIN	DESCRIPTION	₹ATA	DEPTH		ТҮРЕ	SWO	CONCENTRAT	IONS [P	PM]							ADD -AB	INSTALLATION
·	BC		STF	(m)			BL			8 0	30					80		
0		GROUND SURFACE		64.97														
-		TOPSOIL - (SM) SILTY SAND, trace gravel; dark brown, contains organic		0.00 64.72														
	Stem)	matter (rootlets); non-cohesive, moist,	/	0.25	1	SS	5 [ND	•									
	er low S	FILL - (SM) SILTY SAND, trace gravel;	′ 🗱															
	Power Auger Diam. (Hollov	FILL - (SM) SILTY SAND, trace gravel; dark brown to grey brown, contains organic matter and brick fragments; non-cohesive, moist, compact																Bentontie Seal
1	Powe	non-cohesive, moist, compact			2	SS	10) •										
	Power Auger 200 mm Diam. (Hollow							ND										
	20			63.45														
		(SM) gravelly SILTY SAND; grey brown (GLACIAL TILL); non-cohesive, moist,	J.L.	1.52 1.68		SS >	>50 E	ND										
		\compact	/	1.00														
2		Borehole continued on RECORD OF DRILLHOLE 21-03														1		
																1		
																1		
3																1		
J																1		
																1		
																1		
																1		
4																1		
																1		
																1		
																1		
																1		
5																		
																1		
6																		
																1		
																1		
7																1		
																1		
																1		
8																1		
																1		
9																1		
																1		
																1		
																1		
10																		
DEr	отн е	CALE						GO		、 –							17	DGGED: RI
	111.3	UNLL						2 (* ()									L(JOGED. KI

L	oc	ATIC	T: 21451149 NY: N 5028765.9 ;E 366781.2 FION: -90° AZIMUTH:		RE	CC	DR	D	0	D	RILI RILI	LIN L R	g e Ig:	TAC CI	E: ME	Ма 75	ay 18	2 , 2021 : Downi										ieet 2 of 2 NTUM: NAD 1983	3
DEPTH SCALE METRES		DRILLING RECORD	DESCRIPTION	SYMBOLIC LOG	ELEV. DEPTH (m)	RUN No.	FLUSH COLOUR % RETURN	S V C	COV	Shea Vein Conj	ar iugat r D %	e R.Q.I %	C C D.	3D - E O - F OR - (DR	Cont Drtho Clear CT. EX R m	ling tion act ogona vage DIP w. COR AXIS	.r.t. RE S	PL - Plan CU- Curv UN- Und ST - Step IR - Irreg DISCON	ulating ped jular	K - SM- Ro- MB- DATA	Polish Slicke Smoo Rough Mecha	nside th anical	Break HY CON K	NOT abbr of al sym	E: For eviation obrevia bols. JLIC TIVITY sec	oken F additions refer tions & Diame Point L Inde (MP	nal r to list etral Load ex Pa)		
- - - - - -	2		BEDROCK SURFACE Fresh, thinly to medium bedded, grey to dark grey, fine to medium grained, non-porous, medium strong SHALEY NODULAR LIMESTONE - Broken core from 2.05 m to 2.07 m		<u>63.29</u> 1.68	1	100																					Bentontie Seal UCS = 130 MPa Silica Sand ∑ ▽	x 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2
- - - - - - - - - - - - - - - - - - -	Dotory Drill		- Broken core from 3.57 m to 3.58 m			2	100																					32 mm Diam. PVC #10 Slot Screen	
- - - - - - -	5		- Broken core from 4.64 m to 4.66 m		59.66	3	100																						
MIS-RCK 004 21451149.GPJ GAL-MISS.GDT 7/23/21	3		End of Drillhole Note(s): 1. Water level in screen measured at 2.59 m (Elev. 62.38 m) on May 28, 2021 2. Water level in screen measured at 2.67 m (Elev. 62.30 m) on June 23, 2021																										
MIS-RCK 00. 1	EP : 5		CALE		-					(G	C)	L)	Ε	R						. 1				ogged: RI Ecked: KM	

RECORD OF BOREHOLE: 21-04

SHEET 1 OF 1 DATUM: NAD 1983

LOCATION: N 5028747.0 ;E 366692.9 SAMPLER HAMMER, 64kg; DROP, 760mm BORING DATE: May 13, 2021

L Z		员	SOIL PROFILE	1.		SA	MPL		HEADSPA		DIVIBUS ENTRA	TIONS [PPM] ⊕	HYDR	k, cm	sondu 's	CTIVITY		R₽	PIEZOMETER
METRES		BORING METHOD		STRATA PLOT		Ш		BLOWS/0.30m	ND = Not L 20				0		1	10 ⁻⁵	10-4	10 ⁻³	ADDITIONAL LAB. TESTING	OR
ΞΨ		RING	DESCRIPTION	ATA F	ELEV. DEPTH	NUMBER	TYPE	WS/0	HEADSPA CONCENT	CE OF	RGANI DNS [P	C VAPOL PM]	JR				NT PERO		NDDI 18. TI	INSTALLATION
ڌ		ģ		STR/	(m)	ž		BLO	ND = Not D 20	Detecte 40	ed		80	~ ~	р —— 20	40	60	- WI 80		
0	Ľ		GROUND SURFACE		67.61							Ĺ						Ĺ		
0			TOPSOIL - (ML) sandy SILT; dark brown, contains organic matter (rootlets);		0.00															
			non-cohesive, moist, verv loose		67.31 0.30	1	SS	5 [□⊕ ND											
			FILL - (CL/CI) SILTY CLAY, trace to some sand, trace gravel; grey brown,																	
			contains concrete fragments and organic matter; cohesive, w>PL, firm																	
1						2	SS	6 [_ ⊕						C	>				
									ND											
		/ Stem)																		
	uger	200 mm Diam. (Hollow S				3	SS	5 [
2	ower /	iam. (ND											
	ď	u m m			65.32															
		200	FILL - (SM/ SP/GP) SILTY GRAVEL and SAND; dark brown, contains concrete,		2.29															
			brick and wood fragments; non-cohesive, moist to wet, compact to			4	SS	18 [םא					0					м	
3			very loose																	
-																				
						5	SS	1			⊕									
					63.80															
4			End of Borehole Auger Refusal		3.81	6	SS	>50												
4			Auger Neiusai																	
5																				
6																				
7																				
8																				
9																				
10																				
			A 115							_			_		,			_ .		
DE	:PT	IHS	CALE				D		G	0	L	CE	R							DGGED: RI ECKED: KM

RECORD OF BOREHOLE: 21-05

BORING DATE: May 14, 2021

SHEET 1 OF 2

DATUM: NAD 1983

LOCATION: N 5028738.6 ;E 366737.3 SAMPLER HAMMER, 64kg; DROP, 760mm

,	₽	SOIL PROFILE			SA	MPL	ES	VAPOUR CONCENTRATIONS [PPM]	HYDRAULIC CONDUCTIVITY, k, cm/s	ں ہے	PIEZOMETER
SES	METH		LOT		К		30m	HEADSPACE COMBUSTIBLE VAPOUR CONCENTRATIONS [PPM] 6 ND = Not Detected 20 40 60 80	10 ⁻⁶ 10 ⁻⁵ 10 ⁻⁴ 10 ⁻³	IONAL	OR
METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH	NUMBER	ΤΥΡΕ	BLOWS/0.30m	HEADSPACE ORGANIC VAPOUR CONCENTRATIONS [PPM]	WATER CONTENT PERCENT	ADDITIONAL LAB. TESTING	STANDPIPE INSTALLATION
5	BOR		STRA	(m)	R		BLOV	ND = Not Detected	Wp H OW W 20 40 60 80		
+		GROUND SURFACE		65.58	-		-	20 40 60 80	20 40 60 80		
0	Stem)	TOPSOIL - (ML/SM) SILTY SAND to sandy SILT, trace gravel; dark brown,		0.00							
	1 < 1	contains brick fragments and organic	N	0.23	1	ss	12	3⊕			
	Auger (Hollow:	matter (rootlets); non-cohesive, moist, loose	/								Bentonite Seal
	Power Auger mm Diam. (Hollov	FILL - (SM/SP) gravelly SILTY SAND, some low-plastisity fines; dark brown,	. 💥								Bentonite Seal
1	E	contains concrete, carpet and organic matter (rootlets); non-cohesive, moist,			2	ss	>55		0	мн	
	200	compact to loose		64.34							
-	e si	CONCRETE	2 A 2 A	1.24							
	Rotary Drill NQ Core		P 4		1	RC	DD				Bentonite Seal
	¥ ک	FILL - (SM) gravelly SILTY SAND;		63.79 1.79							
2		brown; non-cohesive, moist to wet Borehole continued on RECORD OF		1.95							-
		DRILLHOLE 21-05									
3											
4											
5											
6											
7											
8											
9											
Ĩ											
10											
								GOLDER			
DEF	THS	CALE								L	OGGED: RI

			T: 21451149 DN: N 5028738.6 ;E 366737.3		RE	С	DR	RD) (DI	DF	RILL		ΞC	DAT	E:	Мау	. E: 2 ′ y 14, 2021	1-05	5									HEET 2 OF 2 ATUM: NAD 1983
IN	ICL	INA	TION: -90° AZIMUTH:		-						DF	RILL		GΟ		ITR	ACT	OR: Downi	-	-									
DEPTH SCALE METRES		DRILLING RECORD	DESCRIPTION	SYMBOLIC LOG	ELEV. DEPTH	RUN No.	COLOUR <u> % RETURN</u>	F	VN CJ REC	R- S - V - C OVE	Shea /ein Conju ERY	r ugate	e R.Q.E	С 0 С	8D - B 0 - F 0 - C 0 R - C 0 R - C 1 - C FRAC	Conta Ortho Cleav	ict gonal age	IR - Irreg DISCON	ed ulating ped ular	PO-F K -S SM-S Ro-F MB-N DATA	licken	sided	Break	NO abb of a sym	- Br reviatio bbrevia bols. ULIC TIVITY	r additi ons refe ations a	ional er to li: &	st	
DEP		DRILLI		SΥM	(m)		FLUSH	CO	DTAL RE %	6 C(SOLID DRE 9) %	8848 8848	(PEF 0.25	R m	NP w.r. CORE AXIS	t. TYPE A DES	ND SURF	ACE I	Jcon	Jr Ja	K	, cm/s	sec	Inc (M	dex Pa)	RMC -Q' AVG.	
- 2 - - -	:		BEDROCK SURFACE Fresh, thinly to medium bedded, grey to dark brey, fine to medium grained, non-porous, mediuum strong SHALEY NODULAR LIMESTONE		63.63 1.95																								UCS = 97 MPa Bentonite Seal
- - - - - - - - - - - - - - - - - - -						2	0																	8					Silica Sand
- 4 		NQ Core				3	0-25																						38 mm Diam. PVC
- - - - - - - - - - - - -	i				58.64	4	0-25	0																					#10 Slot Screen
- 7 - 7 7 - 7 - 7 - 7 - 7 - 7 - 8 - 7 - 8 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7		_ I	End of Drillhole Note(s): 1. Water level in screen measured at 2.72 m (Elev. 62.86 m) on May 28, 2021 2. Water level in screen measured at 2.73 m (Elev. 62.85 m) on June 2, 2021		58.64																			8					
- - - - - - - - -																													
- - - - - - - -																													
- 11 - 11 - 11 - 11																													
DE 1 :	EP' : 50		SCALE	1)	(3	С)	L			ER											DGGED: RI ECKED: KM

RECORD OF BOREHOLE: 21-06

SHEET 1 OF 2

BORING DATE: May 12, 2021

DATUM: NAD 1983 PENETRATION TEST HAMMER, 64kg; DROP, 760mm

LOCATION: N 5028643.3 ;E 366748.4 SAMPLER HAMMER, 64kg; DROP, 760mm

ц	ПОН	SOIL PROFILE		ı —	SA	MPLI		HEADSPACE C	COMBUS	TIBLE TIONS [P	РМ] 🕀	HYDRAU	JLIC CO k, cm/s	DNDUC	ΓΙVITΥ,		μĥ	PIEZOMETER
DEPTH SCALE METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH	NUMBER	TYPE	BLOWS/0.30m	ND = Not Detec 20 4 HEADSPACE C CONCENTRAT ND = Not Detec	RGANIC	VAPOU			TER CO	ONTENT	0 ⁻⁴ 1		ADDITIONAL LAB. TESTING	OR STANDPIPE INSTALLATION
	B		STI	(m)			B	20 4) 80)	20				0		
0	Stem)	GROUND SURFACE TOPSOIL - (ML) sandy SILT, trace gravel; dark brown, contains organic matter (rootlets); non-cohesive, moist, loose FILL - (ML/SM) SILTY SAND to sandy SILT, some low-medium plasticity fines, trace gravel; brown to dark brown, with		67.00 0.00 0.15	1	SS	11 [] ⊕ מא										Bentonite Seal
1	Power Auger 200 mm Diam. (Hollow S	Sicily some low-mediatin plasticity intes, trace gravel; brown to dark brown, with black staining, contains wood, organic matter (rootlets); non-cohesive, moist, compact			2	SS	14	⊐ ⊕										Backfill
2	50	Borehole continued on RECORD OF DRILLHOLE 21-06		64.97 2.03	3	SS	15 🧲) ND				0					МН	xx Bentonite Seal
3																		
4																		
5																		
6																		
7																		
8																		
9																		
10																		
DE	PTH S	CALE	1	<u> </u>				GO) E	R					<u> </u>	L) DGGED: RI

LC	C	ATIC	T: 21451149 DN: N 5028643.3 ;E 366748.4 FION: -90° AZIMUTH:		RE	С	DR	D	С		orii Orii	LLII LL I	NG RIG	DA : C	TE: CME	N 75	1ay 1	E: 21-00										HEET 2 OF 2 ATUM: NAD 1983
DEPTH SCALE METRES		DRILLING RECORD	DESCRIPTION	SYMBOLIC LOG	ELEV. DEPTH (m)	RUN No.	FLUSH COLOUR % RETURN			- Joi - Fau - She - Vei - Coi	nt ult ear in njuga XY LID E %		2.D.	BD FO OR CL FR INI P 0.2	- Bed - Folia - Con - Orth - Clea	ding atior tact logo avag DIP CC A	nal	PL - Planar CU- Curved UN- Undulating ST - Stepped IR - Irregular DISCONTINUITY TYPE AND SURF DESCRIPTION	P K S R M Y DA	O- Pol - Slid M- Sm o - Ro IB- Me	kensid	HYE CONE K,	NOT abbre of ab symb	E: For eviatio brevia bols. JLIC TVITY ec	Diarr Point Inc (MI	ional er to li &	ist	
- - -			BEDROCK SURFACE Fresh, thinly to medium bedded, grey to dark grey, fine to medium grained, non-porous, medium strong SHALEY NODULAR LIMESTONE			1	100																					Bentonite Seal UCS = 109 MPa
- 3 - 3 4 - 4 - 4	Botery Drill	NQ Core	- Broken core from 4.03 m to 4.04 m			2	00 100																					38 mm Diam. PVC 34 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
- - - - - - -	;		End of Drillhole		61.60 5.40		÷																					
			Note(s): 1. Water level in screen measured at 1.19 m (Elev. 65.82 m) on May 27, 2021 2. Water level in screen measured at 2.70 m (Elev. 64.31 m) on June 23, 2021																									
	50																											
- - - - - - - - -	,																											
9.601 //23/21 11 11 11 11 11 11 11 11 11 11 11 11 11																												
4 21451149.0FJ GAL-MISS.GDI //23/21 																												
r i	EP : 5(SCALE								G	i (C	L	_ [C	E	R					· · ·					DGGED: RI ECKED: KM

LOCATION: N 5028686.9 ;E 366770.2

SAMPLER HAMMER, 64kg; DROP, 760mm

RECORD OF BOREHOLE: 21-07

SHEET 1 OF 2 DATUM: NAD 1983

BORING DATE: May 17, 2021

PENETRATION TEST HAMMER, 64kg; DROP, 760mm

HEADSPACE COMBUSTIBLE VAPOUR CONCENTRATIONS [PPM] ⊕ ND = Not Detected 20 40 60 80 HYDRAULIC CONDUCTIVITY, k, cm/s SOIL PROFILE SAMPLES DEPTH SCALE METRES BORING METHOD ADDITIONAL LAB. TESTING PIEZOMETER 30m STRATA PLOT 10⁻⁶ 10⁻⁵ 10-4 10⁻³ OR NUMBER STANDPIPE INSTALLATION ELEV. TYPE HEADSPACE ORGANIC VAPOUR CONCENTRATIONS [PPM] ND = Not Detected WATER CONTENT PERCENT BLOWS/0. DESCRIPTION DEPTH -0^W Wp 🛏 - WI (m) 20 40 40 60 80 20 60 80 GROUND SURFACE 66.70 0 TOPSOIL - (SM/ML) SILTY SAND to sandy SILT, trace gravel, trace clay; dark brown, contains organic matter (rootlets); 0.00 66.47 0.23 SS 8 ⊕ 1 C Bentonite Seal non-cohesive, moist, loose FILL - (SM) SILTY SAND, trace gravel, trace to some clay; dark brown to brown, contains ashr, organic matter, brick fragments, concrete fragments, silty clay layers and wood; non-cohesive, moist, Power Auger n Diam. (Hollow 1 SS 19 🗖 🕀 2 loose to compact ND 64 mm Diam. VSP Pipe ⊕ 3 SS >50 8 2 | SS |>50|| ND 4 ⊕ 64.16 Borehole continued on RECORD OF 2.54 DRILLHOLE 21-07 3 4 5 6 7 8 MIS-BHS 001 21451149.GPJ GAL-MIS.GDT 7/23/21 9 10 GOLDER DEPTH SCALE LOGGED: RI 1:50 CHECKED: KM

		CT: 21451149		RE	СС	R	D	0										1-0)7										HEET 2 OF 2	
		on: N 5028686.9 ;E 366770.2 NTION: -90° Azimuth:							DF	RILL	RI	G:	СМ	E 7	5	17, 2 OR:		ing Di	rilling	1								DA	ATUM: NAD 1983	
DEPTH SCALE METRES	DRILLING RECORD	DESCRIPTION	SYMBOLIC LOG	ELEV. DEPTH (m)	RUN No.	S, I	S V C	HR-: N - ' J - (COV	Joint Fault Shear Conju ERY SOLID CORE	r ugate		BE FC OF CL FF I	D- Be D- Fo D- Co R- Or Cli RAC NDE) PER .25 n	eddin bliatic ontac thog eava T. X DII C n	g in t onal	FCUS	PL - Plar CU- Cur IN- Unc T - Ste R - Irre	nar ved Julating pped	P K S R M TY DA	O- Po - Sli M- Sn to - Ro IB- Me	ckens nooth ugh	sided	Break HYI CONI K,	NOT abbr	E: For eviatio brevia pols. JLIC TVITY ec	Diam Diam Point (MF	onal er to lis k Load lex Pa)			
- - - - - - - -		BEDROCK SURFACE Fresh, thinly to medium bedded, grey to dark grey, fine to medium grained, non-porous, medium strong SHALEY NODULAR LIMESTONE - Lost core from 2.54 m to 2.64 m - Broken core from 3.08 m to 3.10 m		64.16 2.54	1	100																							UCS = 95 MPa	
- - - - - - - - - - - -					2	100																								
		- Broken core from 6.21 m to 6.23 m			3	100																							UCS = 106 MPa	
- - - - - - - - - - - - - - - -	Rotary Drill NO Core				4	100																							64 mm Diam. VSP Pipe	
					5	100																								
- - - - - - - - - - - - - - - - - - -				55 70	6	100																								
		End of Borehole		55.79																										30000
DE		SCALE							(3	С)	L	D) E	E F	2				•								DGGED: RI IECKED: KM	

RECORD OF BOREHOLE: 21-08

BORING DATE: May 18, 2021

SHEET 1 OF 1

DATUM: NAD 1983

LOCATION: N 5028762.3 ;E 366650.3 SAMPLER HAMMER, 64kg; DROP, 760mm

ų I	ПОН	SOIL PROFILE		SA	MPLE	s	HEADSPACE (VAPOUR CON ND = Not Detect 20	COMBUST	FIBLE FIONS [F	PM] 🕀	HYDR.	AULIC CO k, cm/s	ONDUCT	IVITY,		Ę,	PIEZOMETER
METRES	BORING METHOD	DESCRIPTION	ELEV. DEPTH (m)	NUMBER	TYPE	BLOWS/0.30m	HEADSPACE (CONCENTRAT ND = Not Detect	ted 0 60 DRGANIC 10NS [PF ted 0 60	VAPOU M]	R D	w w	ATER CO		PERCE	0 ⁻³ I NT WI 80	ADDITIONAL LAB. TESTING	OR STANDPIPE INSTALLATION
0 -	Power Auger 200 mm Diam. (Hollow Stem)	brick fragments; cohesive, moist, dense to very dense	66.02 0.00 0.15 64.80	1	SS SS >						0						
2		End of Borehole Auger Refusal	1.22														
3																	
5																	
6																	
8																	
9 10																	
DEF	PTH S	CALE					GO	· • L C	DE	R							DGGED: AKP ECKED: KM

RECORD OF BOREHOLE: 21-09

BORING DATE: May 18, 2021

SHEET 1 OF 2

DATUM: NAD 1983

LOCATION: N 5028717.0 ;E 366649.1 SAMPLER HAMMER, 64kg; DROP, 760mm

ц	ДQ	SOIL PROFILE			SA	MPLE	s	HEADSPACE C VAPOUR CONO ND = Not Detect 20 4	OMBUS	TIBLE TIONS [F	PPM] 🕀	HYDR	AULIC C k, cm/s		TIVITY,		Ū٦	
METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	BLOWS/0.30m	ND = Not Detect 20 4 HEADSPACE C CONCENTRAT ND = Not Detect 20 4	RGANIC ONS [PI	VAPOU PM]		v w	0 ⁻⁶ 1 I VATER C	I0 ⁻⁵ 1 CONTENT		10 ⁻³ ENT WI 80	ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION
		GROUND SURFACE	5,	66.35			-	20 4	0 0	0 8	U		20	-0 6		00		
0 -	Power Auger 200 mm Diam. (Hollow Stem)	TOPSOIL - (SM) gravelly SILTY SAND; brown, contains organics; non-cohesive, moist, loose FILL - (SM) gravelly SILTY SAND; dark brown to brown, trace organics; non-cohesive, moist, loose to dense		0.00	1	SS		ND				0					м	
	200 mr			64.78				ND										
2		Borehole continued on RECORD OF DRILLHOLE 21-09		1.57	_3_	. 33 -	-50.											
3																		
4																		
5																		
6																		
7																		
8																		
9																		
10																		
DEF	PTH S	CALE						GO	LГ) F	R	I	1	1	1	1		OGGED: AKP

		T: 21451149 DN: N 5028717.0 ;E 366649.1		RE	СС	DR	D									E: 21-0	9											HEET 2 OF 2 ATUM: NAD 1983
		TION: -90° AZIMUTH:							DR	ILL	RIG	G: (CME	75		R: Downing Dri	lling										0,	
DEPTH SCALE METRES	DRILLING RECORD	DESCRIPTION	SYMBOLIC LOG	ELEV. DEPTH (m)	RUN No.	FLUSH COLOUR <u> <u> <u> <u> </u> </u></u></u>	S V C RE TOT/ CORE	N - J LT - F HR- S N - V J - C COVE	loint Fault Shear /ein Conjug ERY SOLID ORE %	gate	.Q.D. %	BD FO CO OR CL FR IN P 0.2	- Bede - Folia - Cont - Orth - Clea	ding ation act ogon vage DIP v COF AXI	v.r.t. RE IS	PL - Planar CU- Curved UN- Undulating ST - Stepped IR - Irregular DISCONTINUIT TYPE AND SURF DESCRIPTIO	PC K SN Ro ME (DAT,	D- Pol - Slic M- Sm D- Rou 3- Me A	kens ooth ugh	ided	HY CON K	NO abb of a	TE: Forevia abbre nbols. ULIC TIVI (sec	For actions viation	Inde Inde (MPa	to list tral .oac x a)	t	
2	Rortary Drill BW Casing	BEDROCK SURFACE Fresh, thinly bedded, medium to dark brownish grey, fine grained, non-porous, medium strong to weak SHALEY NODULAR LIMESTONE - veritcal join from 2.04 to 2.09 m depth - vertical joint from 2.38 to 2.43 m depth End of Drillhole		64.78 1.57 63.23 3.12	1		80	57 38 1	280	18			21	<u></u>		BD,, BD,, BD,, BD,, BD,, BD,,					1			· .	2 4	φ -		
- - - - - - - - - - - - - - - - - - -																												
9 9 10 10																												
r i	EPTH S	SCALE									0					R												DGGED: AKP ECKED: KM

RECORD OF BOREHOLE: 21-10

BORING DATE: May 18, 2021

SHEET 1 OF 2

DATUM: NAD 1983

LOCATION: N 5028684.9 ;E 366642.2 SAMPLER HAMMER, 64kg; DROP, 760mm

ц	Q	SOIL PROFILE			SA	MPLE	s	HEADSPACE COMBUSTIBLE VAPOUR CONCENTRATIONS [PPM] ⊕ ND = Not Detected 20 40 60 80	HYDRAULIC CONDUCTIVITY, k, cm/s		
DEPTH SCALE METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	BLOWS/0.30m	ND = Not Detected 20 40 60 80 HEADSPACE ORGANIC VAPOUR CONCENTRATIONS [PPM] □ ND = Not Detected 20 40 60 80	10 ⁶ 10 ⁵ 10 ⁴ 10 ³ WATER CONTENT PERCENT Wp	PIEZON PIEZON O ULLI STANI STANI V STALI	R DPIPE
• 0 •	w Stern)	GROUND SURFACE TOPSOIL - (SM) gravelly SILTY SAND; brown, contains organics; non-cohesive, moist, loose FILL - (SM) gravelly SILTY SAND; dark brown to brown, contains organics, brick fragments and clay pockets; non-cohesive, moist, loose to compact		66.19 0.00 0.15	1	SS	10 [] ⊕ ND			
1	Power Auger 200 mm Diam. (Hollow				2	SS SS	>50[ND		Bentonite Seal	
2		Borehole continued on RECORD OF DRILLHOLE 21-10		<u>64.01</u> 2.18							
3											
4											
5											
6											
7											
8											
9											
10											
DEI 1 : {		CALE						GOLDER		LOGGED: AKF CHECKED: KM	D

			T: 21451149 N: N 5028684.9 ;E 366642.2		RE	CC	DR	D	0							E: 21-10									Sheet 2 of 2 Datum: Nad 1983	
			ΓΙΟΝ: -90° ΑΖΙΜUTH:							DRI	LL R	IG:	CME	E 75	5	OR: Downing Drilling	ng									
DEPTH SCALE METRES		DRILLING RECORD	DESCRIPTION	SYMBOLIC LOG	ELEV.	RUN No.	COLOUR % RETURN	S V C	N - \	loint Fault Shear /ein Conjug	ate	B F C C C	D- Bec O- Foli O- Cor R- Orti L - Cle	Iding ation ntact	n	PL - Planar CU- Curved	PO- Po K - Sli SM- Sr Ro - Ro MB- Me	ckonsid	al Bre	ak s	BR - NOTE: hbbrevi: of abbre symbol: RAULI JCTIV	For a ations eviations s.		nal to list		
DEP		DRILLIN		SYME	(m)	R	FLUSH	TOT/ CORE	AL S % C	SOLID ORE %	R.Q.I %		INDEX PER 0.25 m ភ្ម≌ឱ		W.r.t. DRE XIS	TYPE AND SURFACE DESCRIPTION		Jcon Jr		K, c		- 1	oint Li Inde: (MPa	oadrin × -C a) AV	ИС Q' /G.	
Ł	-	-	BEDROCK SURFACE Fresh, thinly to medium bedded, medium		64.01 2.18											BD,,		$\left \right $					+	╢	Bentenite Cool	
	3	Kotary Unii NQ Core	grey to brownish grey, fine to medium grained, non-porous, medium strong to weak SHALEY LIMESTONE -broken core from 2.38 to 2.45 m depth - vertical joint from 2.69 to 4.06 m			1										BD., BD., BD., BD., BD., BD.,									Bentonite Seal Silica Sand	and the second
	5		- broken core from 5.1 to 5.22 m depth		60.70 5.49	2										BD., BD.,										<u> </u>
	7		Note(s): 1. Water level in screen measured at 2.66 m (Elev. 63.53 m) on May 28, 2021 2. Water level in screen measured at 2.66 m (Elev. 63.53 m) on June 23, 2021																							
-	9																									-
MIS-RCK 004 21451149.GPJ GAL-MISS.GDT 7/23/21	1																									
MIS-RCK 004)EP : 5		CALE	I	<u> </u>					G	цці G С))		D	E	ER									Logged: AKP CHECKED: KM	

RECORD OF BOREHOLE: 21-11

BORING DATE: May 13, 2021

SHEET 1 OF 1

DATUM: NAD 1983

LOCATION: N 5028623.7 ;E 366685.5 SAMPLER HAMMER, 64kg; DROP, 760mm

COMBUSTIBLE HYDRAULIC CONDUCTIVITY, CENTRATIONS [PPM] ⊕ k, cm/s ਰ 2 PIEZOMETER
ABC ABC 10 ⁶ 10 ⁴ 10 ³ C C C OR D G DORGANIC VAPOUR WATER CONTENT PERCENT BBC BBC STANDPIPE INSTALLATION TIONS [PPM] □ Wp I OW WI Q STANLATION
230 [©]
С

RECORD OF BOREHOLE: 21-12

BORING DATE: May 19, 2021

SHEET 1 OF 2

DATUM: NAD 1983

LOCATION: N 5028586.9 ;E 366762.5 SAMPLER HAMMER, 64kg; DROP, 760mm

ų	ДОН	SOIL PROFILE			SA	MPLE	s	HEADSF VAPOUI ND = No 20		OMBUS CENTRA	TIBLE TIONS [F	PPM] 🕀		k, cm/s	TIVITY,	_	RG	PIEZOMETER
METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	NS/0	HEADSF CONCE ND = No 20	PACE C NTRATI t Detect	RGANIC ONS [PF	VAPOU PM]		w w	ATER C	PERCE		ADDITIONAL LAB. TESTING	OR STANDPIPE INSTALLATION
0 -	Power Auger n Diam. (Hollow Stem)	GROUND SURFACE TOPSOIL - (SM) gravelly SILTY SAND; brown, contains organics; non-cohesive, moist, dense FILL - (SM) gravellly SILTY SAND; dark brown to brown with black mottling; non-cohesive, moist, compact to dense		68.72 0.00 0.15	1	SS 2	26 🗆	ND	Ф									
2	200 m	Borehole continued on RECORD OF DRILLHOLE 21-12		67.32 1.4	2	SS 2	20	Ð										
3																		
4																		
6																		
7																		
8																		
10																		
DEF 1 : 5		CALE						; G	i O) E	R						GGED: AKP CKED:

LC	CA	TIO	T: 21451149 N: N 5028586.9 ;E 366762.5 TION: -90° AZIMUTH:		RE	C	OR	D		DRI DRI	LLI LL	ng e Rig:	DAT CN	E: ME 7	May 75	E: 21 19, 2021										Sheet 2 (Datum: N	
DEPTH SCALE METRES			DESCRIPTION	SYMBOLIC LOG	ELEV. DEPTH (m)	RUN No.	FLUSH <u>COLOUR</u>		JN - Je FLT - F SHR- S VN - V CJ - C ECOVE FAL S E % CC	oint ault hear ein conjug	ate	B F C C C C C C C C C C C C C C C C C C	D-E 0-F 0-0	Beddi Foliati Conta Drthog Cleav CT. EX R m	ng on ct gonal	PL - Plana CU- Curved UN- Undula ST - Steppe IR - Irregula DISCONTII t.	ting d ar NUITY E	PO- Po K - SI SM- Sr Ro - Ro MB- M DATA	ickens nooth ough	ided	HYE CONE K,	NOTI abbre of ab	E: For eviation brevia ools. ILIC IVITY ec	Diam Diam Point I Inde (MF	etral LoadRI ex J	MC Q' VG.	
- 2	Rotary Drill	NQ Core	BEDROCK SURFACE Fresh, thinly bedded, medium to dark brownish grey, fine grained, non-porous, medium strong to weak SHALEY NODULAR LIMESTONE - broken core from 1.61 to 1.70 m depth - broken core from 2.15 to 2.19 m depth End of Drillhole													BD., BD., BD., BD., BD., BD., BD.,											
- - - - - - - - - - - - - - - - - - -																											
- 6 - 6 - 6																											
- - - - - - - - - - - - - - - - - - -																											
9 																											
DE 1 :	PT 50	нs	CALE							 G	 ; (Ш О) 	ER										LOGGED: CHECKED:	AKP

LOCATION: N ;E

RECORD OF BOREHOLE: 21-13

BORING DATE: May 13, 2021

SHEET 1 OF 2

DATUM: NAD 1983

SAMPLER HAMMER, 64kg; DROP, 760mm

щ	ДQ	SOIL PROFILE			SA	MPLE	S	VAPOUR CON	CENTRA	TIBLE TIONS [P	РМ] 🕀		k, cm/s	NDUCT	IVII Y,		و ب	PIEZOMETER
DEPTH SCALE METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH	NUMBER	TYPE	BLOWS/0.30m	HEADSPACE C VAPOUR CON ND = Not Detec 20 4 HEADSPACE C CONCENTRAT ND = Not Detec		VAPOU			TER CC		PERCE	NT	ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION
د	BO		STR	(m)	2		BLC		ted 0 6)	20					· -	
0	-	GROUND SURFACE	====	0.00														
		TOPSOIL - (ML) sandy SILT, trace clay; dark brown, contains organic matter (rootlets); non-cohesive, moist, very loose FILL - (CL/CI) SILTY CLAY, trace sand, trace gravel; grey brown, contains		0.23	1	SS	6 []⊕ M D				0						
1	Auger Hollow Stem)	organic matter; cohesive, w~PL, firm (SM/ML) SILTY SAND to sandy SILT, some gravel to gravelly: grey (GLACIAL		0.76	2	SS	23 🖸	DN				0					м	
2	Power Auger 200 mm Diam. (Hollow S				3	SS	10	2			160 [€]	•0						
3		Borehole continued on RECORD OF DRILLHOLE 21-13		2.97														
4																		
5																		
6																		
7																		
8																		
9																		
10																		
DE	PTH	SCALE						GO			D							OGGED: RI

		T: 21451149 DN: N ;E	RECORD OF DRILLHOLE: 21-13 DRILLING DATE: May 13, 2021	SHEET 2 OF 2 DATUM: NAD 1983
IN	CLINA	TION: -90° AZIMUTH:	DRILL RIG: CME 75 DRILLING CONTRACTOR: Downing Drilling	
DEPTH SCALE METRES	DRILLING RECORD	DESCRIPTION	SO O O W K ELEV. (m) Image: Construction of the second se	th abbreviations refer to list of abbreviations & anical Break symbols. HYDRAULIC Diametral CONDUCTIVITYPoint LoacRMC K, cm/see Index I-Q
	Rotary Drill NG Core NG Core	BEDROCK SURFACE Slightly weathered to fresh, thinly to medium bedded, medium grey to brownish grey, fine to medium grained, non-porous, medium strong to weak SHALEY LIMESTONE - broken core from 2.97 to 3.05 m depth - vertical joint from 2.97 to 3.27 m depth - lost core from 3.88 to 4.30 m depth End of Drillhole	29 1 2 See 1 2 3	
	EPTH S	GCALE	GOLDER	LOGGED: RI CHECKED:

APPENDIX C

Certificates of Analysis

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD 1931 ROBERTSON ROAD OTTAWA, ON K2H5B7 (613) 592-9600 ATTENTION TO: Laura Jones PROJECT: 21451149 AGAT WORK ORDER: 21Z750737 SOIL ANALYSIS REVIEWED BY: Nivine Basily, Inorganics Report Writer TRACE ORGANICS REVIEWED BY: Neli Popnikolova, Senior Chemist DATE REPORTED: Jun 01, 2021 PAGES (INCLUDING COVER): 20 VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

*Notes

Disclaimer:

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may
 incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 30 days after receipt unless a Long Term Storage Agreement is signed and returned. Some specialty analysis may be exempt, please contact your Client Project Manager for details.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of
 merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines
 contained in this document.
- All reportable information as specified by ISO/IEC 17025:2017 is available from AGAT Laboratories upon request.

AGAT Laboratories (V1)

Member of: Association of Professional Engineers and Geoscientists of Alberta	
(APEGA)	
Western Enviro-Agricultural Laboratory Association (WEALA)	
Environmental Services Association of Alberta (ESAA)	

Page 1 of 20

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.

Certificate of Analysis

AGAT WORK ORDER: 21Z750737 PROJECT: 21451149 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aqatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE: Ottawa Hospital

ATTENTION TO: Laura Jones

SAMPLED BY:Robert Ireland

							L	DATE REPORTE	ED: 2021-06-01	
	SAMPLE DESC	CRIPTION:	BH21-02 SA2	BH21-03 SA2	BH21-03 SA22	BH21-04 SA3	BH21-05 SA1	BH21-06 SA2	BH21-07 SA2	BH21-11 SA1
	SAM	PLE TYPE:	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
	DATE S	SAMPLED:	2021-05-18	2021-05-18	2021-05-18	2021-05-13	2021-05-14	2021-05-14	2021-05-17	2021-05-13
Unit	G/S RDL	2501962	2501964	2501965	2501970	2501971	2501972	2501974	2501975	
µg/g	40	0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8
µg/g	18	1	6	6	5	2	3	2	2	2
µg/g	670	2.0	131	339	207	320	175	157	74.0	102
µg/g	8	0.4	<0.4	<0.4	0.4	<0.4	<0.4	<0.4	<0.4	<0.4
µg/g	120	5	9	10	8	<5	<5	<5	<5	6
µg/g	2	0.10	0.25	0.22	0.19	0.38	0.23	0.27	<0.10	0.24
µg/g	1.9	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
µg/g	160	5	21	31	32	108	51	37	25	27
µg/g	80	0.5	6.7	12.8	10.5	21.2	12.0	9.6	6.2	8.2
µg/g	230	1.0	10.1	12.0	10.5	46.6	25.3	21.4	9.3	14.5
µg/g	120	1	59	75	42	37	18	24	9	18
µg/g	40	0.5	1.3	1.4	0.7	0.7	0.9	0.8	0.5	<0.5
µg/g	270	1	12	18	16	56	29	22	13	15
µg/g	5.5	0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8
µg/g	40	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
µg/g	3.3	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
µg/g	33	0.50	0.94	0.70	0.63	1.09	0.79	0.85	0.67	0.67
µg/g	86	0.4	28.2	47.2	47.7	104	56.5	46.0	30.9	42.2
µg/g	340	5	60	45	41	128	84	68	34	67
µg/g	8	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
µg/g	3.9	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
	hala hala hala hala hala hala hala hala	SAME DATES Unit G / S µg/g 40 µg/g 18 µg/g 18 µg/g 18 µg/g 18 µg/g 18 µg/g 18 µg/g 120 µg/g 1.9 µg/g 1.9 µg/g 160 µg/g 2.30 µg/g 2.30 µg/g 5.5 µg/g 4.0 µg/g 3.3 µg/g 3.3 µg/g 3.3 µg/g 86 µg/g 3.40	SAMPLE TYPE: DATE SAMPLED: DATE SAMPLED: DATE SAMPLED: Qirit G/S RDL µg/g 40 0.8 µg/g 18 1 µg/g 87 2.0 µg/g 87 0.4 µg/g 120 5 µg/g 1.9 0.5 µg/g 1.60 5 µg/g 230 1.0 µg/g 270 1 µg/g 270 1 µg/g 5.5 0.8 µg/g 3.3 0.5 µg/g 3.3 0.50 µg/g 3.3 0.50 µg/g 86 0.4 µg/g 340 5 µg/g 340 5 µg/g 86 0.2	SAMPLE TYPE: Soil DATE SAMPLED: 2021-05-18 Unit G / S RDL 2501962 µg/g 40 0.8 <0.8	SAMPLE TYPE: Soil Soil DATE SAMPLED: 2021-05-18 2021-05-18 2021-05-18 Unit G / S RDL 2501962 2501964 µg/g 40 0.8 <0.8	SAMPLE TYPE: Soil Soil Soil DATE SAMPLED: 2021-05-18 2021-05-18 2021-05-18 2021-05-18 Unit G / S RDL 2501962 2501964 2501965 µg/g 40 0.8 <0.8	SAMPLE TYPE: Soil Soil Soil Soil Soil Soil Unit G/S RDL 2021-05-18 40.4 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5	SAMPLE TYPE:SoilSoilSoilSoilSoilSoilSoilSoilSoilSoilSoilSoilSoil2021-05-132011112113339207330500.0360.232011112113321085151103114103114103114103114103114104115114 <td>SAMPLE TYPE: Soil Soil</td> <td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td>	SAMPLE TYPE: Soil Soil	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$

O. Reg. 153(511) - All Metals (Soil)

Certified By:

Certificate of Analysis

AGAT WORK ORDER: 21Z750737 PROJECT: 21451149

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE: Ottawa Hospital

ATTENTION TO: Laura Jones

SAMPLED BY:Robert Ireland

O. Reg. 153(511) - All Metals (Soil)											

DATE RECEIVED: 2021-05-21

DATE RECEIVED: 2021 03 21					DATE NET ONTED. 2021 00 01
	5	SAMPLE DESC	RIPTION:	BH21-13 SA3	
		SAMP	LE TYPE:	Soil	
	DATE SAMPLED:			2021-05-13	
Parameter	Unit	G/S	RDL	2501976	
Antimony	µg/g	40	0.8	<0.8	
Arsenic	µg/g	18	1	<1	
Barium	µg/g	670	2.0	65.6	
Beryllium	µg/g	8	0.4	<0.4	
Boron	µg/g	120	5	5	
Boron (Hot Water Soluble)	µg/g	2	0.10	<0.10	
Cadmium	µg/g	1.9	0.5	<0.5	
Chromium	µg/g	160	5	17	
Cobalt	µg/g	80	0.5	5.7	
Copper	µg/g	230	1.0	11.7	
Lead	µg/g	120	1	4	
Molybdenum	µg/g	40	0.5	<0.5	
Nickel	µg/g	270	1	9	
Selenium	µg/g	5.5	0.8	<0.8	
Silver	µg/g	40	0.5	<0.5	
Thallium	µg/g	3.3	0.5	<0.5	
Jranium	µg/g	33	0.50	0.59	
Vanadium	µg/g	86	0.4	26.6	
Zinc	µg/g	340	5	23	
Chromium, Hexavalent	µg/g	8	0.2	<0.2	
Mercury	µg/g	3.9	0.10	<0.10	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 7: Generic Site Condition Standards for Shallow Soils in a Non-Potable Ground Water Condition - Soil -Industrial/Commercial/Community Property Use - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation. Analysis perfomed at AGAT Toronto (unless marked by *)

DATE REPORTED: 2021-06-01

Certified By:

Certificate of Analysis

AGAT WORK ORDER: 21Z750737 PROJECT: 21451149 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aqatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE:Ottawa Hospital

ATTENTION TO: Laura Jones

SAMPLED BY:Robert Ireland

DATE RECEIVED: 2021-05-21								I	DATE REPORTI	ED: 2021-06-01	
		SAMPLE DESCRIPTION: SAMPLE TYPE: DATE SAMPLED:		Soil	BH21-03 SA2 Soil 2021-05-18	BH21-03 SA22 Soil 2021-05-18	BH21-04 SA3 Soil 2021-05-13	BH21-05 SA1 Soil 2021-05-14	BH21-06 SA2 Soil 2021-05-14	BH21-07 SA2 Soil 2021-05-17	BH21-11 SA1 Soil 2021-05-13
Parameter	Unit	G / S	RDL	2501962	2501964	2501965	2501970	2501971	2501972	2501974	2501975
Electrical Conductivity (2:1)	mS/cm	1.4	0.005	0.320	0.398	0.373	0.242	0.289	0.347	0.201	0.203
Sodium Adsorption Ratio (2:1) (Calc.)	N/A	12	N/A	0.718	2.34	2.43	0.349	0.182	0.163	0.130	0.329
		SAMPLE DES	CRIPTION:	BH21-13 SA3							
		SAMPLE TYPE:									
		DATE SAMPLED:		2021-05-13							
Parameter	Unit	G/S	RDL	2501976							
Electrical Conductivity (2:1)	mS/cm	1.4	0.005	0.261							
Sodium Adsorption Ratio (2:1) (Calc.)	N/A	12	N/A	0.269							

O. Reg. 153(511) - ORPs (Soil)

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 7: Generic Site Condition Standards for Shallow Soils in a Non-Potable Ground Water Condition - Soil - Industrial/Commercial/Community Property Use - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation. 2501962-2501976 EC was determined on the DI water extract obtained from the 2:1 leaching procedure (2 parts DI water:1 part soil). SAR is a calculated parameter.

Analysis perfomed at AGAT Toronto (unless marked by *)

AGAT WORK ORDER: 21Z750737 PROJECT: 21451149 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE: Ottawa Hospital

ATTENTION TO: Laura Jones SAMPLED BY:Robert Ireland

O. Reg. 153(511) - PAHs (Soil)

DATE RECEIVED: 2021-05-21

DATE RECEIVED. 2021-03-21 DATE REPORTED. 2021-00-01											
		SAMPLE DESCRIPTION	: BH21-02 SA2	BH21-03 SA2	BH21-03 SA22	BH21-03 SA3	BH21-04 SA3	BH21-05 SA1	BH21-06 SA2	BH21-07 SA2	
		SAMPLE TYPE	: Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	
		DATE SAMPLED	2021-05-18	2021-05-18	2021-05-18	2021-05-18	2021-05-13	2021-05-14	2021-05-14	2021-05-17	
Parameter	Unit	G/S RDL	2501962	2501964	2501965	2501966	2501970	2501971	2501972	2501974	
Naphthalene	µg/g	9.6 0.05	0.16	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Acenaphthylene	µg/g	0.15 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.08	
Acenaphthene	µg/g	96 0.05	0.48	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	
Fluorene	µg/g	62 0.05	0.47	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	
Phenanthrene	µg/g	12 0.05	4.85	<0.05	<0.05	<0.05	0.12	0.05	<0.05	0.19	
Anthracene	µg/g	0.67 0.05	0.84	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.10	
Fluoranthene	µg/g	9.6 0.05	6.27	0.05	<0.05	<0.05	0.27	0.14	<0.05	0.51	
Pyrene	µg/g	96 0.05	4.80	<0.05	<0.05	<0.05	0.23	0.12	<0.05	0.44	
Benz(a)anthracene	µg/g	0.96 0.05	2.61	<0.05	<0.05	<0.05	0.12	0.06	<0.05	0.28	
Chrysene	µg/g	9.6 0.05	2.15	<0.05	<0.05	<0.05	0.14	0.07	<0.05	0.29	
Benzo(b)fluoranthene	µg/g	0.96 0.05	2.39	<0.05	<0.05	<0.05	0.20	0.15	<0.05	0.40	
Benzo(k)fluoranthene	µg/g	0.96 0.05	0.98	<0.05	<0.05	<0.05	0.17	0.13	<0.05	0.19	
Benzo(a)pyrene	µg/g	0.3 0.05	1.86	<0.05	<0.05	<0.05	0.10	0.09	<0.05	0.38	
Indeno(1,2,3-cd)pyrene	µg/g	0.76 0.05	0.76	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.18	
Dibenz(a,h)anthracene	µg/g	0.1 0.05	0.26	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	
Benzo(g,h,i)perylene	µg/g	9.6 0.05	0.68	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.17	
1 and 2 Methlynaphthalene	µg/g	76 0.05	0.14	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	
Moisture Content	%	0.1	11.2	19.1	6.9	8.4	25.9	15.2	8.9	13.3	
Surrogate	Unit	Acceptable Limits									
Naphthalene-d8	%	50-140	68	65	68	65	64	61	61	76	
Acenaphthene-d10	%	50-140	64	77	79	76	74	69	71	68	
Chrysene-d12	%	50-140	60	70	80	78	71	67	70	61	
Chrysene-d12	%	50-140	60	70	80	78	71	67	70		

Certified By:

NPopukolof

DATE REPORTED: 2021-06-01

AGAT WORK ORDER: 21Z750737 PROJECT: 21451149 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE:Ottawa Hospital

ATTENTION TO: Laura Jones

SAMPLED BY:Robert Ireland

DATE RECEIVED: 2021-05-21							DATE REPORTED: 2021-06-01
		SAMPLE DES	RIPTION:	BH21-11 SA1	BH21-13 SA3	BH21-07 SA3	
		SAM	LE TYPE:	Soil	Soil	Soil	
		DATE S	AMPLED:	2021-05-13	2021-05-13	2021-05-17	
Parameter	Unit	G / S	RDL	2501975	2501976	2501977	
Naphthalene	µg/g	9.6	0.05	<0.05	<0.05	<0.05	
Acenaphthylene	µg/g	0.15	0.05	<0.05	<0.05	<0.05	
Acenaphthene	µg/g	96	0.05	<0.05	<0.05	<0.05	
Fluorene	µg/g	62	0.05	<0.05	<0.05	<0.05	
Phenanthrene	µg/g	12	0.05	<0.05	<0.05	0.12	
Anthracene	µg/g	0.67	0.05	<0.05	<0.05	0.05	
Fluoranthene	µg/g	9.6	0.05	0.06	<0.05	0.24	
Pyrene	µg/g	96	0.05	<0.05	<0.05	0.19	
Benz(a)anthracene	µg/g	0.96	0.05	<0.05	<0.05	0.09	
Chrysene	µg/g	9.6	0.05	<0.05	<0.05	0.09	
Benzo(b)fluoranthene	µg/g	0.96	0.05	<0.05	<0.05	0.09	
Benzo(k)fluoranthene	µg/g	0.96	0.05	<0.05	<0.05	<0.05	
Benzo(a)pyrene	µg/g	0.3	0.05	<0.05	<0.05	0.09	
ndeno(1,2,3-cd)pyrene	µg/g	0.76	0.05	<0.05	<0.05	<0.05	
Dibenz(a,h)anthracene	µg/g	0.1	0.05	<0.05	<0.05	<0.05	
3enzo(g,h,i)perylene	µg/g	9.6	0.05	<0.05	<0.05	<0.05	
and 2 Methlynaphthalene	µg/g	76	0.05	<0.05	<0.05	<0.05	
Moisture Content	%		0.1	23.7	10.1	5.8	
Surrogate	Unit	Acceptab	e Limits				
Naphthalene-d8	%	50-1	40	74	87	89	
Acenaphthene-d10	%	50-1	40	69	71	75	
Chrysene-d12	%	50-1	40	76	68	84	

O. Reg. 153(511) - PAHs (Soil)

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 7: Generic Site Condition Standards for Shallow Soils in a Non-Potable Ground Water Condition - Soil -Industrial/Commercial/Community Property Use - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

2501962-2501977 Results are based on the dry weight of the soil.

Note: The result for Benzo(b)Fluoranthene is the total of the Benzo(b)&j)Fluoranthene isomers because the isomers co-elute on the GC column. 2- and 1-Methyl Naphthalene is a calculated parameter. The calculated value is the sum of 2-Methyl Naphthalene and 1-Methyl Naphthalene.

Analysis perfomed at AGAT Toronto (unless marked by *)

Certified By:

NPopukoloj

AGAT WORK ORDER: 21Z750737 PROJECT: 21451149 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aqatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE: Ottawa Hospital

ATTENTION TO: Laura Jones

SAMPLED BY:Robert Ireland

O. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Soil)

DATE RECEIVED: 2021-05-21

		SAMPLE DESCRIPT	ION: BH21-02 SA2	BH21-03 SA2	BH21-03 SA22	BH21-03 SA3	BH21-13 SA3	
		SAMPLE T	YPE: Soil	Soil	Soil	Soil	Soil	
		DATE SAMP	LED: 2021-05-18	2021-05-18	2021-05-18	2021-05-18	2021-05-13	
Parameter	Unit	G/S RE	DL 2501962	2501964	2501965	2501966	2501976	
F1 (C6 - C10)	µg/g	5	<5	<5	<5	<5	<5	
F1 (C6 to C10) minus BTEX	µg/g	55 5	<5	<5	<5	<5	<5	
F2 (C10 to C16)	µg/g	230 1	0 <10	<10	<10	<10	<10	
F2 (C10 to C16) minus Naphthalene	µg/g	10) <10	<10	<10	<10	<10	
F3 (C16 to C34)	µg/g	1700 5) 57	<50	<50	<50	<50	
F3 (C16 to C34) minus PAHs	µg/g	50) <50	<50	<50	<50	<50	
F4 (C34 to C50)	µg/g	3300 5	0 <50	<50	<50	<50	<50	
Gravimetric Heavy Hydrocarbons	µg/g	3300 50	D NA	NA	NA	NA	NA	
Moisture Content	%	0.	1 11.2	19.1	6.9	8.4	10.1	
Surrogate	Unit	Acceptable Lim	its					
Toluene-d8	% Recovery	50-140	82	81	78	87	85	
Terphenyl	%	60-140	100	108	78	81	86	

Comments:

nents: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 7: Generic Site Condition Standards for Shallow Soils in a Non-Potable Ground Water Condition - Soil -Industrial/Commercial/Community Property Use - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

2501962-2501976 Results are based on sample dry weight.

The C6-C10 fraction is calculated using toluene response factor.

C6–C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX. The calculated parameter is non-accredited. The parameters that are components of the calculation are accredited.

The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and n-C34.

Gravimetric Heavy Hydrocarbons are not included in the Total C16-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons >C50 are present. The chromatogram has returned to baseline by the retention time of nC50.

Total C6 - C50 results are corrected for BTEX and PAH contributions.

C>10 - C16 (F2- Naphthalene) is a calculated parameter. The calculated value is F2 - Naphthalene.

C>16 - C34 (F3-PAH) is a calculated parameter. The calculated value is F3-PAH (PAH: sum of Phenanthrene, Benzo(a)anthracene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Benzo(a)pyrene, Fluoranthene, Dibenzo(a,h)anthracene, Indeno(1,2,3-c,d)pyrene and Pyrene).

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 + nC34 average.

Linearity is within 15%.

Extraction and holding times were met for this sample.

Analysis perfomed at AGAT Toronto (unless marked by *)

Certified By:

NPopukolog

DATE REPORTED: 2021-06-01

AGAT WORK ORDER: 21Z750737 PROJECT: 21451149 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aqatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE: Ottawa Hospital

ATTENTION TO: Laura Jones SAMPLED BY:Robert Ireland

O. Reg. 153(511) - PHCs F1 - F4 (with PAHs) (Soil)

DATE RECEIVED: 2021-05-21

DATE RECEIVED. 2021-03-21							L	DATE REPORTED. 2021-00-01
		SAMPLE DESCRIPTI	ON: BH21-04 SA3	BH21-05 SA1	BH21-06 SA2	BH21-07 SA2	BH21-11 SA1	
		SAMPLE TY	PE: Soil	Soil	Soil	Soil	Soil	
		DATE SAMPL	ED: 2021-05-13	2021-05-14	2021-05-14	2021-05-17	2021-05-13	
Parameter	Unit	G/S RDL	2501970	2501971	2501972	2501974	2501975	
Benzene	µg/g	0.32 0.02	2 <0.02	<0.02	<0.02	<0.02	<0.02	
Toluene	µg/g	68 0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	
Ethylbenzene	µg/g	9.5 0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	
m & p-Xylene	µg/g	0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	
o-Xylene	µg/g	0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	
Xylenes (Total)	µg/g	26 0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	
F1 (C6 - C10)	µg/g	5	<5	<5	<5	<5	<5	
F1 (C6 to C10) minus BTEX	µg/g	55 5	<5	<5	<5	<5	<5	
F2 (C10 to C16)	µg/g	230 10	<10	<10	<10	<10	<10	
F2 (C10 to C16) minus Naphthalene	µg/g	10	<10	<10	<10	<10	<10	
F3 (C16 to C34)	µg/g	1700 50	<50	<50	<50	54	<50	
F3 (C16 to C34) minus PAHs	µg/g	50	<50	<50	<50	51	<50	
F4 (C34 to C50)	µg/g	3300 50	<50	<50	<50	86	<50	
Gravimetric Heavy Hydrocarbons	µg/g	3300 50	NA	NA	NA	NA	NA	
Moisture Content	%	0.1	25.9	15.2	8.9	13.3	23.7	
Surrogate	Unit	Acceptable Limit	S					
Toluene-d8	% Recovery	60-140	82	80	78	88	78	
Terphenyl	%	60-140	112	103	107	73	95	

Certified By:

NPopukolof

DATE REPORTED: 2021-06-01

AGAT WORK ORDER: 21Z750737 PROJECT: 21451149 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE: Ottawa Hospital

ATTENTION TO: Laura Jones

SAMPLED BY:Robert Ireland

O. Reg. 153(511) - PHCs F1 - F4 (with PAHs) (Soil)

RDL - Reported Detection Limit: G / S - Guideline / Standard: Refers to Table 7: Generic Site Condition Standards for Shallow Soils in a Non-Potable Ground Water Condition - Soil -

DATE RECEIVED: 2021-05-21

Comments:

DATE REPORTED: 2021-06-01

Industrial/Commercial/Community Property Use - Coarse Textured Soils Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation. 2501970-2501975 Results are based on sample dry weight. The C6-C10 fraction is calculated using toluene response factor. Xylenes total is a calculated parameter. The calculated value is the sum of m&p-Xylene and o-Xylene. C6–C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX. The calculated parameters are non-accredited. The parameters that are components of the calculation are accredited. The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and n-C34. Gravimetric Heavy Hydrocarbons are not included in the Total C16-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons >C50 are present. The chromatogram has returned to baseline by the retention time of nC50. Total C6 - C50 results are corrected for BTEX and PAH contributions. C>10 - C16 (F2- Naphthalene) is a calculated parameter. The calculated value is F2 - Naphthalene. C>16 - C34 (F3-PAH) is a calculated parameter. The calculated value is F3-PAH (PAH: sum of Phenanthrene, Benzo(a)anthracene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Benzo(a)pyrene, Fluoranthene, Dibenzo(a,h)anthracene, Indeno(1,2,3-c,d)pyrene and Pyrene). This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. nC10, nC16 and nC34 response factors are within 10% of their average. C50 response factor is within 70% of nC10 + nC16 + nC34 average. Linearity is within 15%. Extraction and holding times were met for this sample.

Analysis perfomed at AGAT Toronto (unless marked by *)

Certified By:

NPopukoloj

AGAT WORK ORDER: 21Z750737 PROJECT: 21451149

O. Reg. 153(511) - VOCs (Soil)

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE: Ottawa Hospital

ATTENTION TO: Laura Jones

SAMPLED BY:Robert Ireland

DATE RECEIVED: 2021-05-21									DATE REPORTED: 2021-06-01
		SAMPLE DESCRI	PTION:	BH21-02 SA2	BH21-03 SA2	BH21-03 SA22	BH21-03 SA3	BH21-13 SA3	
		SAMPLE	TYPE:	Soil	Soil	Soil	Soil	Soil	
		DATE SAN		2021-05-18	2021-05-18	2021-05-18	2021-05-18	2021-05-13	
Parameter	Unit		RDL	2501962	2501964	2501965	2501966	2501976	
Dichlorodifluoromethane	µg/g	16	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Vinyl Chloride	ug/g	0.032	0.02	<0.02	<0.02	<0.02	<0.02	<0.02	
Bromomethane	ug/g	0.05	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Trichlorofluoromethane	ug/g	4	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Acetone	ug/g	16	0.50	<0.50	<0.50	<0.50	<0.50	<0.50	
1,1-Dichloroethylene	ug/g	0.064	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Methylene Chloride	ug/g	1.6	0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	
Trans- 1,2-Dichloroethylene	ug/g	1.3	0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	
Methyl tert-butyl Ether	ug/g	11	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
1,1-Dichloroethane	ug/g	17	0.02	<0.02	<0.02	<0.02	<0.02	<0.02	
Methyl Ethyl Ketone	ug/g	70	0.50	<0.50	<0.50	<0.50	<0.50	<0.50	
Cis- 1,2-Dichloroethylene	ug/g	55	0.02	<0.02	<0.02	<0.02	<0.02	<0.02	
Chloroform	ug/g	0.47	0.04	<0.04	< 0.04	<0.04	<0.04	< 0.04	
1,2-Dichloroethane	ug/g	0.05	0.03	<0.03	<0.03	<0.03	<0.03	< 0.03	
1,1,1-Trichloroethane	ug/g	6.1	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Carbon Tetrachloride	ug/g	0.21	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Benzene	ug/g	0.32	0.02	<0.02	<0.02	<0.02	<0.02	<0.02	
1,2-Dichloropropane	ug/g	0.16	0.03	<0.03	<0.03	<0.03	<0.03	< 0.03	
Trichloroethylene	ug/g	0.91	0.03	<0.03	<0.03	<0.03	<0.03	<0.03	
Bromodichloromethane	ug/g	18	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Methyl Isobutyl Ketone	ug/g	31	0.50	<0.50	<0.50	<0.50	<0.50	<0.50	
1,1,2-Trichloroethane	ug/g	0.05	0.04	<0.04	<0.04	<0.04	<0.04	<0.04	
Toluene	ug/g	68	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Dibromochloromethane	ug/g	13	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Ethylene Dibromide	ug/g	0.05	0.04	<0.04	<0.04	<0.04	<0.04	<0.04	
Tetrachloroethylene	ug/g	4.5	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
1,1,1,2-Tetrachloroethane	ug/g	0.087	0.04	<0.04	<0.04	<0.04	<0.04	<0.04	
Chlorobenzene	ug/g	2.4	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Ethylbenzene	ug/g	9.5	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
m & p-Xylene	ug/g		0.05	<0.05	<0.05	<0.05	<0.05	<0.05	

Certified By:

NPopukoloj

AGAT WORK ORDER: 21Z750737 PROJECT: 21451149 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE:Ottawa Hospital

ATTENTION TO: Laura Jones

SAMPLED BY:Robert Ireland

DATE RECEIVED: 2021-05-21

DATE RECEIVED: 2021-05-21								I	DATE REPORTED: 2021-06-01
		SAMPLE DESC	RIPTION:	BH21-02 SA2	BH21-03 SA2	BH21-03 SA22	BH21-03 SA3	BH21-13 SA3	
		SAMF	LE TYPE:	Soil	Soil	Soil	Soil	Soil	
		DATE S	AMPLED:	2021-05-18	2021-05-18	2021-05-18	2021-05-18	2021-05-13	
Parameter	Unit	G/S	RDL	2501962	2501964	2501965	2501966	2501976	
Bromoform	ug/g	0.61	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Styrene	ug/g	34	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
1,1,2,2-Tetrachloroethane	ug/g	0.05	0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	
o-Xylene	ug/g		0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
1,3-Dichlorobenzene	ug/g	9.6	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
1,4-Dichlorobenzene	ug/g	0.2	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
1,2-Dichlorobenzene	ug/g	6.8	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Xylenes (Total)	ug/g	26	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
1,3-Dichloropropene (Cis + Trans)	µg/g	0.18	0.04	<0.04	< 0.04	<0.04	<0.04	< 0.04	
n-Hexane	µg/g	46	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Moisture Content	%		0.1	11.2	19.1	6.9	8.4	10.1	
Surrogate	Unit	Acceptabl	e Limits						
Toluene-d8	% Recovery	50-1-	40	88	87	89	87	86	
4-Bromofluorobenzene	% Recovery	50-1	40	89	92	90	89	89	

O. Reg. 153(511) - VOCs (Soil)

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 7: Generic Site Condition Standards for Shallow Soils in a Non-Potable Ground Water Condition - Soil - Industrial/Commercial/Community Property Use - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

2501962-2501976 The sample was analyzed using the high level technique. The sample was extracted using methanol, a small amount of the methanol extract was diluted in water and the purge & trap GC/MS analysis was performed. Results are based on the dry weight of the soil.

Xylenes total is a calculated parameter. The calculated value is the sum of m&p-Xylene + o-Xylene.

1,3-Dichloropropene total is a calculated parameter. The calculated value is the sum of Cis-1,3-Dichloropropene and Trans-1,3-Dichloropropene.

The calculated parameters are non-accredited. The parameters that are components of the calculation are accredited.

Analysis perfomed at AGAT Toronto (unless marked by *)

Certified By:

NPopukoloj

DATE DEDODTED: 2021-06-01

Exceedance Summary

AGAT WORK ORDER: 21Z750737 PROJECT: 21451149 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLE TITLE	GUIDELINE	ANALYSIS PACKAGE	PARAMETER	UNIT	GUIDEVALUE	RESULT
BH21-02 SA2	ON T7 S ICC CT	O. Reg. 153(511) - PAHs (Soil)	Anthracene	µg/g	0.67	0.84
BH21-02 SA2	ON T7 S ICC CT	O. Reg. 153(511) - PAHs (Soil)	Benz(a)anthracene	µg/g	0.96	2.61
BH21-02 SA2	ON T7 S ICC CT	O. Reg. 153(511) - PAHs (Soil)	Benzo(a)pyrene	µg/g	0.3	1.86
BH21-02 SA2	ON T7 S ICC CT	O. Reg. 153(511) - PAHs (Soil)	Benzo(b)fluoranthene	µg/g	0.96	2.39
BH21-02 SA2	ON T7 S ICC CT	O. Reg. 153(511) - PAHs (Soil)	Benzo(k)fluoranthene	µg/g	0.96	0.98
BH21-02 SA2	ON T7 S ICC CT	O. Reg. 153(511) - PAHs (Soil)	Dibenz(a,h)anthracene	µg/g	0.1	0.26
BH21-02 SA2	ON T7 S ICC CT	O. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Soil)	Benzo(a)anthracene	hð\ð	0.96	2.61
BH21-02 SA2	ON T7 S ICC CT	O. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Soil)	Benzo(a)pyrene	hð\ð	0.3	1.86
BH21-02 SA2	ON T7 S ICC CT	O. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Soil)	Benzo(b)fluoranthene	µg/g	0.96	2.39
BH21-02 SA2	ON T7 S ICC CT	O. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Soil)	Benzo(k)fluoranthene	µg/g	0.96	0.98
BH21-02 SA2	ON T7 S ICC CT	O. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Soil)	Dibenzo(a,h)anthracene	hð\ð	0.1	0.26
BH21-04 SA3	ON T7 S ICC CT	O. Reg. 153(511) - All Metals (Soil)	Vanadium	µg/g	86	104
BH21-07 SA2	ON T7 S ICC CT	O. Reg. 153(511) - PAHs (Soil)	Benzo(a)pyrene	µg/g	0.3	0.38
BH21-07 SA2	ON T7 S ICC CT	O. Reg. 153(511) - PHCs F1 - F4 (with PAHs) (Soil)	Benzo(a)pyrene	µg/g	0.3	0.38
	BH21-02 SA2 BH21-02 SA2	BH21-02 SA2 ON T7 S ICC CT BH21-02 SA2 ON T7 S ICC CT	BH21-02 SA2 ON T7 S ICC CT O. Reg. 153(511) - PAHs (Soil) BH21-02 SA2 ON T7 S ICC CT O. Reg. 153(511) - PAHs (Soil) BH21-02 SA2 ON T7 S ICC CT O. Reg. 153(511) - PAHs (Soil) BH21-02 SA2 ON T7 S ICC CT O. Reg. 153(511) - PAHs (Soil) BH21-02 SA2 ON T7 S ICC CT O. Reg. 153(511) - PAHs (Soil) BH21-02 SA2 ON T7 S ICC CT O. Reg. 153(511) - PAHs (Soil) BH21-02 SA2 ON T7 S ICC CT O. Reg. 153(511) - PAHs (Soil) BH21-02 SA2 ON T7 S ICC CT O. Reg. 153(511) - PAHs (Soil) BH21-02 SA2 ON T7 S ICC CT O. Reg. 153(511) - PAHs (Soil) BH21-02 SA2 ON T7 S ICC CT O. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Soil) BH21-02 SA2 ON T7 S ICC CT O. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Soil) BH21-02 SA2 ON T7 S ICC CT O. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Soil) BH21-02 SA2 ON T7 S ICC CT O. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Soil) BH21-02 SA2 ON T7 S ICC CT O. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Soil) BH21-02 SA2 ON T7 S ICC CT O. Reg. 153(511) - PHCs F1 - F	BH21-02 SA2ON T7 S ICC CTO. Reg. 153(511) - PAHs (Soil)AnthraceneBH21-02 SA2ON T7 S ICC CTO. Reg. 153(511) - PAHs (Soil)Benz(a)anthraceneBH21-02 SA2ON T7 S ICC CTO. Reg. 153(511) - PAHs (Soil)Benzo(a)pyreneBH21-02 SA2ON T7 S ICC CTO. Reg. 153(511) - PAHs (Soil)Benzo(a)pyreneBH21-02 SA2ON T7 S ICC CTO. Reg. 153(511) - PAHs (Soil)Benzo(k)fluorantheneBH21-02 SA2ON T7 S ICC CTO. Reg. 153(511) - PAHs (Soil)Benzo(k)fluorantheneBH21-02 SA2ON T7 S ICC CTO. Reg. 153(511) - PAHs (Soil)Dibenz(a,h)anthraceneBH21-02 SA2ON T7 S ICC CTO. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Soil)Benzo(a)anthraceneBH21-02 SA2ON T7 S ICC CTO. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Soil)Benzo(a)pyreneBH21-02 SA2ON T7 S ICC CTO. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Soil)Benzo(b)fluorantheneBH21-02 SA2ON T7 S ICC CTO. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Soil)Benzo(b)fluorantheneBH21-02 SA2ON T7 S ICC CTO. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Soil)Benzo(k)fluorantheneBH21-02 SA2ON T7 S ICC CTO. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Soil)Benzo(k)fluorantheneBH21-02 SA2ON T7 S ICC CTO. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Soil)Benzo(a), h)anthraceneBH21-02 SA2ON T7 S ICC CTO. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Soil)Benzo(a), h)anthraceneBH	BH21-02 SA2ON T7 S ICC CTO. Reg. 153(511) - PAHs (Soil)Anthraceneµg/gBH21-02 SA2ON T7 S ICC CTO. Reg. 153(511) - PAHs (Soil)Benz(a)anthraceneµg/gBH21-02 SA2ON T7 S ICC CTO. Reg. 153(511) - PAHs (Soil)Benzo(a)pyreneµg/gBH21-02 SA2ON T7 S ICC CTO. Reg. 153(511) - PAHs (Soil)Benzo(a)pyreneµg/gBH21-02 SA2ON T7 S ICC CTO. Reg. 153(511) - PAHs (Soil)Benzo(b)fluorantheneµg/gBH21-02 SA2ON T7 S ICC CTO. Reg. 153(511) - PAHs (Soil)Benzo(k)fluorantheneµg/gBH21-02 SA2ON T7 S ICC CTO. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Soil)Benzo(a)anthraceneµg/gBH21-02 SA2ON T7 S ICC CTO. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Soil)Benzo(a)pyreneµg/gBH21-02 SA2ON T7 S ICC CTO. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Soil)Benzo(b)fluorantheneµg/gBH21-02 SA2ON T7 S ICC CTO. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Soil)Benzo(b)fluorantheneµg/gBH21-02 SA2ON T7 S ICC CTO. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Soil)Benzo(b)fluorantheneµg/gBH21-02 SA2ON T7 S ICC CTO. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Soil)Benzo(h)fluorantheneµg/gBH21-02 SA2ON T7 S ICC CTO. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Soil)Benzo(h)fluorantheneµg/gBH21-02 SA2ON T7 S ICC CTO. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Soil)	BH21-02 SA2 ON T7 S ICC CT O. Reg. 153(511) - PAHs (Soil) Anthracene µg/g 0.67 BH21-02 SA2 ON T7 S ICC CT O. Reg. 153(511) - PAHs (Soil) Benz(a)anthracene µg/g 0.96 BH21-02 SA2 ON T7 S ICC CT O. Reg. 153(511) - PAHs (Soil) Benz(a)anthracene µg/g 0.3 BH21-02 SA2 ON T7 S ICC CT O. Reg. 153(511) - PAHs (Soil) Benzo(a)pyrene µg/g 0.96 BH21-02 SA2 ON T7 S ICC CT O. Reg. 153(511) - PAHs (Soil) Benzo(k)fluoranthene µg/g 0.96 BH21-02 SA2 ON T7 S ICC CT O. Reg. 153(511) - PAHs (Soil) Benzo(k)fluoranthene µg/g 0.96 BH21-02 SA2 ON T7 S ICC CT O. Reg. 153(511) - PAHs (Soil) Dibenz(a,h)anthracene µg/g 0.1 BH21-02 SA2 ON T7 S ICC CT O. Reg. 153(511) - PHCS F1 - F4 (with PAHs and VCC) (Soil) Benzo(a)pyrene µg/g 0.3 BH21-02 SA2 ON T7 S ICC CT O. Reg. 153(511) - PHCS F1 - F4 (with PAHs and VCC) (Soil) Benzo(a)pyrene µg/g 0.3 BH21-02 SA2 ON T7 S ICC CT O. Reg. 153(511) - PHCS F1 - F4 (with PAHs and VCC) (

Quality Assurance

CLIENT NAME: GOLDER ASSOCIATES LTD

PROJECT: 21451149

SAMPLING SITE: Ottawa Hospital

AGAT WORK ORDER: 21Z750737

ATTENTION TO: Laura Jones SAMPLED BY:Robert Ireland

Soil Analysis

RPT Date: Jun 01, 2021			DUPLICAT	E		REFEREN		TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	IKE
PARAMETER	Batch Sample	Dup #1	Dup #2	RPD	Method Blank	Measured Value		eptable mits	Recovery	1 1 1 1	ptable nits	Recovery	Lie	eptable mits
	Id Id					value	Lower	Upper	-	Lower	Upper	-	Lower	Upper
O. Reg. 153(511) - All Metals (Soil)													
Antimony	2512502	<0.8	<0.8	NA	< 0.8	100%	70%	130%	97%	80%	120%	100%	70%	130%
Arsenic	2512502	7	7	0.0%	< 1	103%	70%	130%	108%	80%	120%	105%	70%	130%
Barium	2512502	71.4	71.1	0.4%	< 2.0	99%	70%	130%	99%	80%	120%	99%	70%	130%
Beryllium	2512502	0.8	0.7	NA	< 0.4	98%	70%	130%	108%	80%	120%	99%	70%	130%
Boron	2512502	15	14	NA	< 5	94%	70%	130%	101%	80%	120%	92%	70%	130%
Boron (Hot Water Soluble)	2509593	0.37	0.28	NA	< 0.10	86%	60%	140%	103%	70%	130%	92%	60%	140%
Cadmium	2512502	<0.5	<0.5	NA	< 0.5	114%	70%	130%	99%	80%	120%	104%	70%	130%
Chromium	2512502	31	32	3.2%	< 5	101%	70%	130%	101%	80%	120%	108%	70%	130%
Cobalt	2512502	18.4	18.2	1.1%	< 0.5	102%	70%	130%	109%	80%	120%	100%	70%	130%
Copper	2512502	39.4	39.3	0.3%	< 1.0	100%	70%	130%	101%	80%	120%	101%	70%	130%
Lead	2512502	12	12	0.0%	< 1	98%	70%	130%	98%	80%	120%	85%	70%	130%
Molybdenum	2512502	<0.5	<0.5	NA	< 0.5	102%	70%	130%	101%	80%	120%	101%	70%	130%
Nickel	2512502	37	37	0.0%	< 1	100%	70%	130%	107%	80%	120%	98%	70%	130%
Selenium	2512502	<0.8	<0.8	NA	< 0.8	100%	70%	130%	91%	80%	120%	103%	70%	130%
Silver	2512502	<0.5	<0.5	NA	< 0.5	97%	70%	130%	109%	80%	120%	101%	70%	130%
Thallium	2512502	<0.5	<0.5	NA	< 0.5	101%	70%	130%	110%	80%	120%	102%	70%	130%
Uranium	2512502	0.74	0.73	NA	< 0.50	109%	70%	130%	102%	80%	120%	106%	70%	130%
Vanadium	2512502	40.3	40.9	1.5%	< 0.4	103%	70%	130%	109%	80%	120%	108%	70%	130%
Zinc	2512502	80	79	1.3%	< 5	103%	70%	130%	98%	80%	120%	104%	70%	130%
Chromium, Hexavalent	2501971 2501971	<0.2	<0.2	NA	< 0.2	92%	70%	130%	93%	80%	120%	81%	70%	130%
Mercury	2512502	<0.10	<0.10	NA	< 0.10	105%	70%	130%	92%	80%	120%	99%	70%	130%

Comments: NA signifies Not Applicable.

Duplicate NA: results are under 5X the RDL and will not be calculated.

O. Reg. 153(511) - ORPs (Soil)								
Electrical Conductivity (2:1)	2501962 2501962	0.320	0.329	2.8%	< 0.005	111%	80%	120%
Sodium Adsorption Ratio (2:1) (Calc.)	2501962 2501962	0.718	0.758	5.4%	NA			

Comments: NA signifies Not Applicable.

pH duplicates QA acceptance criteria was met relative as stated in Table 5-15 of Analytical Protocol document.

Duplicate NA: results are under 5X the RDL and will not be calculated.

Page 13 of 20

AGAT QUALITY ASSURANCE REPORT (V1)

Quality Assurance

CLIENT NAME: GOLDER ASSOCIATES LTD

PROJECT: 21451149

SAMPLING SITE: Ottawa Hospital

AGAT WORK ORDER: 21Z750737

ATTENTION TO: Laura Jones SAMPLED BY:Robert Ireland

Trace Organics Analysis

RPT Date: Jun 01, 2021			0	UPLICAT	E		REFEREN	ICE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	IX SPIKE	
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		ptable hits	Recovery		ptable nits	Recovery		ptable nits	
		ld					Value	Lower	Upper	,	Lower	Upper	,	Lower	Uppe	
O. Reg. 153(511) - PHCs F1 - F4 (with PAHs a	and VOC)	(Soil)													
F2 (C10 to C16)	2381640		< 10	< 10	NA	< 10	90%	60%	140%	85%	60%	140%	73%	60%	140%	
F3 (C16 to C34)	2381640		< 10	< 10	NA	< 10	111%	60%	140%	84%	60%	140%	73%	60%	140%	
F4 (C34 to C50)	2381640		< 50	< 50	NA	< 50	101%	60%	140%	100%	60%	140%	118%	60%	140%	
O. Reg. 153(511) - PAHs (Soil)																
Naphthalene	2502030		<0.05	<0.05	NA	< 0.05	85%	50%	140%	89%	50%	140%	66%	50%	140%	
Acenaphthylene	2502030		<0.05	<0.05	NA	< 0.05	103%	50%	140%	75%	50%	140%	75%	50%	140%	
Acenaphthene	2502030		<0.05	<0.05	NA	< 0.05	107%	50%	140%	84%	50%	140%	78%	50%	140%	
Fluorene	2502030		<0.05	<0.05	NA	< 0.05	111%	50%	140%	75%	50%	140%	82%	50%	140%	
Phenanthrene	2502030		<0.05	<0.05	NA	< 0.05	90%	50%	140%	89%	50%	140%	72%	50%	140%	
Anthracene	2502030		<0.05	<0.05	NA	< 0.05	121%	50%	140%	86%	50%	140%	91%	50%	140%	
Fluoranthene	2502030		<0.05	<0.05	NA	< 0.05	126%	50%	140%	85%	50%	140%	96%	50%	140%	
Pyrene	2502030		<0.05	<0.05	NA	< 0.05	120%	50%	140%	84%	50%	140%	93%	50%	140%	
Benz(a)anthracene	2502030		<0.05	<0.05	NA	< 0.05	85%	50%	140%	102%	50%	140%	76%	50%	140%	
Chrysene	2502030		<0.05	<0.05	NA	< 0.05	132%	50%	140%	85%	50%	140%	99%	50%	140%	
Benzo(b)fluoranthene	2502030		<0.05	<0.05	NA	< 0.05	64%	50%	140%	86%	50%	140%	64%	50%	140%	
Benzo(k)fluoranthene	2502030		<0.05	<0.05	NA	< 0.05	93%	50%	140%	89%	50%	140%	83%	50%	140%	
Benzo(a)pyrene	2502030		<0.05	<0.05	NA	< 0.05	84%	50%	140%	85%	50%	140%	81%	50%	140%	
ndeno(1,2,3-cd)pyrene	2502030		<0.05	<0.05	NA	< 0.05	65%	50%	140%	84%	50%	140%	57%	50%	140%	
Dibenz(a,h)anthracene	2502030		<0.05	<0.05	NA	< 0.05	68%	50%	140%	78%	50%	140%	62%	50%	140%	
Benzo(g,h,i)perylene	2502030		<0.05	<0.05	NA	< 0.05	63%	50%	140%	89%	50%	140%	56%	50%	140%	
O. Reg. 153(511) - VOCs (Soil)																
Dichlorodifluoromethane	2502030		<0.05	<0.05	NA	< 0.05	88%	50%	140%	99%	50%	140%	101%	50%	140%	
/inyl Chloride	2502030		<0.02	<0.02	NA	< 0.02	104%	50%	140%	99%	50%	140%	86%	50%	140%	
Bromomethane	2502030		<0.05	<0.05	NA	< 0.05	81%	50%	140%	73%	50%	140%	76%	50%	140%	
Frichlorofluoromethane	2502030		<0.05	<0.05	NA	< 0.05	78%	50%	140%	79%	50%	140%	75%	50%	140%	
Acetone	2502030		<0.50	<0.50	NA	< 0.50	75%	50%	140%	88%	50%	140%	89%	50%	140%	
,1-Dichloroethylene	2502030		<0.05	<0.05	NA	< 0.05	87%	50%	140%	116%	60%	130%	76%	50%	140%	
Methylene Chloride	2502030		<0.05	<0.05	NA	< 0.05	94%	50%	140%	112%	60%	130%	99%	50%	140%	
Trans- 1,2-Dichloroethylene	2502030		<0.05	<0.05	NA	< 0.05	88%	50%	140%	106%	60%	130%	76%	50%	140%	
Methyl tert-butyl Ether	2502030		< 0.05	<0.05	NA	< 0.05	82%	50%	140%	87%	60%	130%	83%	50%	140%	
,1-Dichloroethane	2502030		<0.02	<0.02	NA	< 0.02	92%	50%	140%	112%	60%	130%	86%	50%	140%	
Methyl Ethyl Ketone	2502030		<0.50	<0.50	NA	< 0.50	99%		140%	88%		140%	81%		140%	
Cis- 1,2-Dichloroethylene	2502030		<0.02	<0.02	NA	< 0.02	77%		140%	96%		130%	79%		140%	
Chloroform	2502030		<0.04	<0.04	NA	< 0.04	80%		140%	103%	60%	130%	82%	50%	140%	
,2-Dichloroethane	2502030		<0.03	< 0.03	NA	< 0.03	106%	50%	140%	101%	60%	130%	101%	50%	140%	
I,1,1-Trichloroethane	2502030		<0.05	<0.05	NA	< 0.05	73%	50%	140%	94%	60%	130%	102%	50%	140%	
Carbon Tetrachloride	2502030		<0.05	<0.05	NA	< 0.05	90%		140%	95%		130%	81%		140%	
Benzene	2502030		<0.02	<0.02	NA	< 0.02	113%	50%	140%	95%	60%	130%	110%	50%	140%	

AGAT QUALITY ASSURANCE REPORT (V1)

Page 14 of 20

Quality Assurance

CLIENT NAME: GOLDER ASSOCIATES LTD

PROJECT: 21451149

SAMPLING SITE: Ottawa Hospital

AGAT WORK ORDER: 21Z750737 ATTENTION TO: Laura Jones

SAMPLED BY:Robert Ireland

Trace Organics Analysis (Continued)

						•	•								
RPT Date: Jun 01, 2021	PT Date: Jun 01, 2021		DUPLICATE			REFEREN		NCE MA	TERIAL	METHOD BLANK SPIKE			MATRIX SPIKE		
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured Value		ptable nits	Recovery	1 1 1 1	ptable nits	Recovery	1 1 1 10	eptable mits
		Id					value	Lower	Upper		Lower	Upper		Lower	Upper
1,2-Dichloropropane	2502030		<0.03	<0.03	NA	< 0.03	105%	50%	140%	85%	60%	130%	108%	50%	140%
Trichloroethylene	2502030		<0.03	<0.03	NA	< 0.03	107%	50%	140%	94%	60%	130%	106%	50%	140%
Bromodichloromethane	2502030		<0.05	<0.05	NA	< 0.05	76%	50%	140%	93%	60%	130%	80%	50%	140%
Methyl Isobutyl Ketone	2502030		<0.50	<0.50	NA	< 0.50	94%	50%	140%	97%	50%	140%	87%	50%	140%
1,1,2-Trichloroethane	2502030		<0.04	<0.04	NA	< 0.04	100%	50%	140%	93%	60%	130%	117%	50%	140%
Toluene	2502030		<0.05	<0.05	NA	< 0.05	96%	50%	140%	103%	60%	130%	111%	50%	140%
Dibromochloromethane	2502030		<0.05	<0.05	NA	< 0.05	79%	50%	140%	81%	60%	130%	76%	50%	140%
Ethylene Dibromide	2502030		<0.04	<0.04	NA	< 0.04	95%	50%	140%	85%	60%	130%	109%	50%	140%
Tetrachloroethylene	2502030		<0.05	<0.05	NA	< 0.05	89%	50%	140%	101%	60%	130%	104%	50%	140%
1,1,1,2-Tetrachloroethane	2502030		<0.04	<0.04	NA	< 0.04	100%	50%	140%	109%	60%	130%	84%	50%	140%
Chlorobenzene	2502030		<0.05	<0.05	NA	< 0.05	91%	50%	140%	97%	60%	130%	113%	50%	140%
Ethylbenzene	2502030		<0.05	<0.05	NA	< 0.05	91%	50%	140%	95%	60%	130%	108%	50%	140%
m & p-Xylene	2502030		<0.05	<0.05	NA	< 0.05	93%	50%	140%	109%	60%	130%	114%	50%	140%
Bromoform	2502030		<0.05	<0.05	NA	< 0.05	78%	50%	140%	77%	60%	130%	70%	50%	140%
Styrene	2502030		<0.05	<0.05	NA	< 0.05	114%	50%	140%	94%	60%	130%	105%	50%	140%
1,1,2,2-Tetrachloroethane	2502030		<0.05	<0.05	NA	< 0.05	100%	50%	140%	102%	60%	130%	98%	50%	140%
o-Xylene	2502030		<0.05	<0.05	NA	< 0.05	94%	50%	140%	98%	60%	130%	97%	50%	140%
1,3-Dichlorobenzene	2502030		<0.05	<0.05	NA	< 0.05	104%	50%	140%	109%	60%	130%	116%	50%	140%
1,4-Dichlorobenzene	2502030		<0.05	<0.05	NA	< 0.05	82%	50%	140%	90%	60%	130%	75%	50%	140%
1,2-Dichlorobenzene	2502030		<0.05	<0.05	NA	< 0.05	100%	50%	140%	101%	60%	130%	110%	50%	140%
n-Hexane	2502030		<0.05	<0.05	NA	< 0.05	94%	50%	140%	78%	60%	130%	107%	50%	140%

Comments: When the average of the sample and duplicate results is less than 5x the RDL, the Relative Percent Difference (RPD) will be indicated as Not Applicable (NA).

Certified By:

NPopukot

AGAT QUALITY ASSURANCE REPORT (V1)

Page 15 of 20

Method Summary

CLIENT NAME: GOLDER ASSOCIATES LTD

PROJECT: 21451149

SAMPLING SITE: Ottawa Hospital

AGAT WORK ORDER: 21Z750737

SAMPLED BY:Robert Ire	and
	unu

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Soil Analysis	AGAT 0.0.1		
Antimony	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Arsenic	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Barium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Beryllium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Boron	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Boron (Hot Water Soluble)	MET-93-6104	modified from EPA 6010D and MSA PART 3, CH 21	ICP/OES
Cadmium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Chromium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Cobalt	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Copper	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Lead	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Molybdenum	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Nickel	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Selenium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Silver	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Thallium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Uranium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Vanadium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Zinc	MET 93 -6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Chromium, Hexavalent	INOR-93-6068	modified from EPA 3060 and EPA 7196	SPECTROPHOTOMETER
Mercury	MET-93-6103	modified from EPA 7471B and SM 3112 B	ICP-MS
Electrical Conductivity (2:1)	INOR-93-6036	modified from MSA PART 3, CH 14 and SM 2510 B	EC METER
Sodium Adsorption Ratio (2:1) (Calc.)	INOR-93-6007	modified from EPA 6010D & Analytica Protocol	ICP/OES

Method Summary

CLIENT NAME: GOLDER ASSOCIATES LTD

PROJECT: 21451149

SAMPLING SITE: Ottawa Hospital

AGAT WORK ORDER: 21Z750737

SAMPLING SITE: Ottawa Hospital		SAMPLED BY:Robert Ireland								
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE							
Trace Organics Analysis										
Naphthalene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS							
Acenaphthylene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS							
Acenaphthene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS							
Fluorene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS							
Phenanthrene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS							
Anthracene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS							
Fluoranthene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS							
Pyrene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS							
Benz(a)anthracene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS							
Chrysene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS							
Benzo(b)fluoranthene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS							
Benzo(k)fluoranthene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS							
Benzo(a)pyrene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS							
Indeno(1,2,3-cd)pyrene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS							
Dibenz(a,h)anthracene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS							
Benzo(g,h,i)perylene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS							
1 and 2 Methlynaphthalene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS							
Naphthalene-d8	ORG-91-5106	modified from EPA 3541 and EPA 8270E	GC/MS							
Acenaphthene-d10	ORG-91-5106	modified from EPA 3541 and EPA 8270E	GC/MS							
Chrysene-d12	ORG-91-5106	modified from EPA 3541 and EPA 8270E	GC/MS							
Moisture Content	ORG-91-5009	CCME Tier 1 Method	BALANCE							
F1 (C6 - C10)	VOL-91-5009	modified from CCME Tier 1 Method	(P&T)GC/FID							
F1 (C6 to C10) minus BTEX	VOL-91-5009	modified from CCME Tier 1 Method	P&T GC/FID							
Toluene-d8	VOL-91-5009	modified from EPA SW-846 5030C & 8260D	(P&T)GC/MS							
F2 (C10 to C16)	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID							
F2 (C10 to C16) minus Naphthalene	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID							
F3 (C16 to C34)	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID							
F3 (C16 to C34) minus PAHs	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID							
F4 (C34 to C50)	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID							
Gravimetric Heavy Hydrocarbons	VOL-91-5009	modified from CCME Tier 1 Method	BALANCE							
Terphenyl	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID							
Benzene	VOL-91-5009	modified from CCME Tier 1 Method	(P&T)GC/MS							
Toluene	VOL-91-5009	modified from CCME Tier 1 Method	(P&T)GC/MS							

Method Summary

CLIENT NAME: GOLDER ASSOCIATES LTD

PROJECT: 21451149

AGAT WORK ORDER: 21Z750737

		SAMPLED BY:Robert Ireland								
SAMPLING SITE:Ottawa Hospital	I	SAMPLED BY:Ro								
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE							
Ethylbenzene	VOL-91-5009	modified from CCME Tier 1 Method	(P&T)GC/MS							
m & p-Xylene	VOL-91-5009	modified from CCME Tier 1 Method	(P&T)GC/MS							
o-Xylene	VOL-91-5009	modified from CCME Tier 1 Method	(P&T)GC/MS							
Xylenes (Total)	VOL-91-5009	modified from CCME Tier 1 Method	(P&T)GC/MS							
Dichlorodifluoromethane	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS							
Vinyl Chloride	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS							
Bromomethane	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS							
Trichlorofluoromethane	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS							
Acetone	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS							
1,1-Dichloroethylene	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS							
Methylene Chloride	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS							
Trans- 1,2-Dichloroethylene	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS							
Methyl tert-butyl Ether	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS							
1,1-Dichloroethane	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS							
Methyl Ethyl Ketone	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS							
Cis- 1,2-Dichloroethylene	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS							
Chloroform	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS							
1,2-Dichloroethane	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS							
1,1,1-Trichloroethane	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS							
Carbon Tetrachloride	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS							
Benzene	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS							
1,2-Dichloropropane	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS							
Trichloroethylene	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS							
Bromodichloromethane	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS							
Methyl Isobutyl Ketone	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS							
1,1,2-Trichloroethane	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS							
Toluene	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS							
Dibromochloromethane	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS							
Ethylene Dibromide	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS							
Tetrachloroethylene	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS							

Method Summary

CLIENT NAME: GOLDER ASSOCIATES LTD PROJECT: 21451149

AGAT WORK ORDER: 21Z750737

SAMPLING SITE:Ottawa Hospital		SAMPLED BY:Robert Ireland								
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE							
1,1,1,2-Tetrachloroethane	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS							
Chlorobenzene	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS							
Ethylbenzene	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS							
m & p-Xylene	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS							
Bromoform	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS							
Styrene	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS							
1,1,2,2-Tetrachloroethane	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS							
o-Xylene	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS							
1,3-Dichlorobenzene	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS							
1,4-Dichlorobenzene	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS							
1,2-Dichlorobenzene	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS							
Xylenes (Total)	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS							
1,3-Dichloropropene (Cis + Trans)	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS							
n-Hexane	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS							
Toluene-d8	VOL-91-5002	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS							
4-Bromofluorobenzene	VOL-91-5002	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS							

Chain of C						n BIK Itories		ww.a	igatla	bs.com	100 Fax: webeart	h aga	tlabs	.com	_	A	ooler rrival	Tem	pera	ature		0	0	he	7.	() / 5.\	6	5
Report Inform Company:	nation: Golder Associa	ites				Regulatory Requiren (Please check all applicable boxes)	nent	s:		No Reg	ulatory	Req	uire	mer	ť	c	usto	ly Se			/		/es			No		ΠN
Contact:	Laura Jones					- Regulation 153/04	∏s		llee	Ť	Regula	tion	==0				otes	-					=					_
Address:	1931 Robertson	Road Nene	Table 7 Indicate One		ewei	036			nuori :	556			Tu	rna	rol	Ind	Ti	me	(TA	T) R	equ	ulre	d:					
Address.	(226) 378-2489				Sanit	tary		CCME					Re	gul	ar T	ΆT				5 to 7	Bus	iness	Days	3				
Phone: Reports to be sent to:	(220) 370-2403		Res/Park		Storn	n		Prov. V					Ru	sh '	TAT	(Rus)	n Surc		• Apply				í					
1. Email:	Laura_Jones@	golder.com; C	Soil Texture (Check One) Regid					Object	ives (PWQ	0)				3 B	usin	ess		_	2 Bus	ines	s		1 Bu	siness			
	Rochelle_Mathe	aw@Golder.c	Coarse		ndiçate	e One		Other							Day		000			Days				Day				
2. Email:			- Fine	_				In	dicate C	ine	_	_			٨Þ	Date	o Po	cutire	od (P	uch S	urch	ardas	May	Apply	·)•			
Project Inform	nation:					Is this submission for Record of Site Conditi				the second second	ort Guid							UR	Jau	o ne	quire	cu (rt	00110	arotik	ai Bep	. wiay	արիլչ	,.
Project:	21451149										icate of							-	Pleas	se p	rovid	le pri	or no	ifica	tion f	or rus	sh TAT	
Site Location:	Ottawa Hospita	1				_ 🛛 Yes 🗹 No					es		N	0				*TAT	is e	xclu	sive	of we	eken	ds ar	nd sta	tutor	y holic	Jays
Sampled By:	Robert Ireland											_			_				_									
AGAT Quote #:		ition number is not prov	vided, client will be t	willed full price for	analysis	_ Sample Matrix Legend	4			(Ch	ck Applic	able)								40				(\square	
Company:	8					- O Oil - P Paint S Soil	lics		Metals	Metals VS CC+ CCN	C PH B SAR NH, TKN INO,NO,		1 to 4					esticides	ganics							A State		
Contact: Address: Email:						SD Sediment SW Surface Water	and Inorganics	can	Forming !	Ustom N B-HWS	IN DHE L	S: DVOC	ractions			henols		chlorine Pe	etals/Inor	Jse								
Address:	entification	Date Sampled	Time Sampled	# of Containers	Sample Matrix	SD Sediment	Metals and Inorgar	Metal Scan	Hydride Forming Metals	Client Custom Me ORPs: I B-HWS		Volatiles: 0 voc	CCME Fractions	ABNS	PAHs	Chlorophenols	PCBs	Organochlorine Pesticides	TCLP Metals/Inorganics	Sewer Use			VOCs	Hd				
Address: Email: Sample Ide	entification		ALC: NOT THE REAL PROPERTY OF			SD Sediment SW Surface Water Comments/	and		Hydride Forming I	Ustom N B-HWS	DTota N DHg Nutrients: DTP DNO, DNO, 1	Volatiles: 000	COME Fractions	ABNs	Ø	Chlorophenols	PCBs	Organochlorine P	TCLP Metals/Inor	Sewer Use			✓ VOCs	1				
Address: Email: Sample Ide BH21-02 SA2	entification	Sampled	ALC: NOT THE REAL PROPERTY OF	Containers	Matrix	SD Sediment SW Surface Water Comments/	and	-	_	Client Custom N ORPs: DB-HWS	DI Tota N DHg Nutrients: DTP DN0, DN0, 1	Volatiles: Dvoc	CCME Fractions		_	Chlorophenols	PCBs	Organochlorine P	TCLP Metals/Inor	Sewer Use			-					
Address: Email: Sample Ide BH21-02 SA2 BH21-03 SA2	entification	Sampled 05/18/21	ALC: NOT THE REAL PROPERTY OF	Containers 3	Matrix Soil	SD Sediment SW Surface Water Comments/	and		Ø	Client Custom N ORPs: DB-HWS	DTota N DHg Nutrients: DTP DNo, DNo, 00, 1	Volatiles: □voc	S S COME Fractions		Ø	Chlorophenols	PCBs	Organochlorine P	TCLP Metals/Inor	Sewer Use								
Address: Email: Sample Ide BH21-02 SA2 BH21-03 SA2 BH21-03 SA22	entification	Sampled 05/18/21 05/18/21	ALC: NOT THE REAL PROPERTY OF	Containers 3 3	Matrix Soil Soil	SD Sediment SW Surface Water Comments/ Special Instructions	and	2	2	Client Custom N ORPs: EBHWS	Dicta N DHg Nutrients: DTP DN0, DN0, T	Volatiles: Dvoc	COME Fractions		2	Chlorophenols	PCBs	Organochlorine P	TCLP Metals/Inor	Sewer Use								
Address: Email: Sample Ide BH21-02 SA2 BH21-03 SA2 BH21-03 SA32 BH21-03 SA3	entification	Sampled 05/18/21 05/18/21 05/18/21 05/18/21	ALC: NOT THE REAL PROPERTY OF	Containers 3 3 2	Matrix Soil Soil Soil	SD Sediment SW Surface Water Comments/ Special Instructions	and	2	2	Client Custom M ORPs: BB-HWS	DTota N DHg Nutrients: DTP DNO, DNO, DNO, 100, 100, 1	Volatiles: 0voc	S S S COME Fractions		2	Chlorophenols	PCBs	Organochlorine P4	TCLP Metals/Inor	Sewer Use								
Address: Email: Sample Ide BH21-02 SA2 BH21-03 SA2 BH21-03 SA3 BH21-03 SA3 BH21-04 SA3	entification	Sampled 05/18/21 05/18/21 05/18/21 05/18/21	ALC: NOT THE REAL PROPERTY OF	Containers 3 3 2 3 3	Matrix Soil Soil Soil Soil	SD Sediment SW Surface Water Comments/ Special Instructions Limited sample Extract&hold/Hold metals/ORF	and	2 2 2		Client Custom N ORPs: BB-HWS			S S S S S S COME Fractions		2	Chlorophenols	PCBs	Organochlorine P	TCLP Metals/Inor	Sewer Use								
Address: Email: Sample Ide BH21-02 SA2 BH21-03 SA2 BH21-03 SA3 BH21-04 SA3 BH21-05 SA1	entification	Sampled 05/18/21 05/18/21 05/18/21 05/18/21 05/18/21 05/18/21 05/13/21	ALC: NOT THE REAL PROPERTY OF	Containers 3 3 2 3 3 2 2 2	Matrix Soil Soil Soil Soil Soil	SD Sediment SW Surface Water Comments/ Special Instructions Limited sample Extract&hold/Hold metals/ORF Limited sample	and			Client Custom N ORPs: BHWS			S S S S S S COME Fractions		2 2 2 2 2	Chlorophenols	PCBS	Organochlorine P	TCLP Metals/Inor	Sewer Use								
Address: Email: Sample Ide BH21-02 SA2 BH21-03 SA2 BH21-03 SA3 BH21-03 SA3 BH21-04 SA3 BH21-05 SA1 BH21-06 SA2	entification	Sampled 05/18/21 05/18/21 05/18/21 05/18/21 05/13/21 05/13/21 05/14/21	ALC: NOT THE REAL PROPERTY OF	Containers 3 3 2 3 2 3 2 3 2 2 2 2 2 2	Matrix Soil Soil Soil Soil Soil	SD Sediment SW Surface Water Comments/ Special Instructions Limited sample Extract&hold/Hold metals/ORF Limited sample	and			Client Custom N Client Custom N Client Custom N Client Custom N Client Custom N Client Custom N Client Custom N			S S S S COME Fractions		NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN<l< td=""><td>Chlorophenols</td><td>PCBS</td><td>Organochlorine P</td><td>TCLP Metals/Inor</td><td>Sewer Use</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></l<>	Chlorophenols	PCBS	Organochlorine P	TCLP Metals/Inor	Sewer Use								
Address: Email: BH21-02 SA2 BH21-03 SA2 BH21-03 SA22 BH21-03 SA3 BH21-04 SA3 BH21-04 SA3 BH21-05 SA1 BH21-06 SA2 BH21-07 SA2	entification	Sampled 05/18/21 05/18/21 05/18/21 05/18/21 05/13/21 05/13/21 05/14/21 05/14/21	ALC: NOT THE REAL PROPERTY OF	Containers 3 3 2 3 2 3 2 3 2 3 3 3 3 3 3 3 3 3 3	Matrix Soil Soil Soil Soil Soil Soil	SD Sediment SW Surface Water Comments/ Special Instructions Limited sample Extract&hold/Hold metals/ORF Limited sample Limited sample	and	SSSSSSS		Client Custom N Client Custom N A N N N N N N N N N N N N N N N N N N			S S S S S S COME Fractions			Chlorophenols	PCBs	Organochlorine P	TCLP Metals/Inor	Sewer Use								
Address: Email: Sample Ide BH21-02 SA2	entification	Sampled 05/18/21 05/18/21 05/18/21 05/18/21 05/13/21 05/14/21 05/14/21 05/17/21	ALC: NOT THE REAL PROPERTY OF	Containers 3 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2	Matrix Soil Soil Soil Soil Soil Soil Soil	SD Sediment SW Surface Water Comments/ Special Instructions Limited sample Extract&hold/Hold metals/ORF Limited sample Limited sample	and			Client Custom V Client Custom V Custom V			S S S S S S S S COME Fractions			Chlorophenols	PCBs	Organochlorine P	TCLP Metals/Inor	Sewer Use								
Address: Email: Sample Ide BH21-02 SA2 BH21-03 SA2 BH21-03 SA3 BH21-03 SA3 BH21-04 SA3 BH21-05 SA1 BH21-06 SA2 BH21-07 SA2 BH21-07 SA2	entification	Sampled 05/18/21 05/18/21 05/18/21 05/18/21 05/13/21 05/13/21 05/14/21 05/17/21 05/13/21	ALC: NOT THE REAL PROPERTY OF	Containers 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3	Matrix Soil Soil Soil Soil Soil Soil Soil Soil	SD Sediment SW Surface Water Comments/ Special Instructions Limited sample Extract&hold/Hold metals/ORF Limited sample Limited sample	and			Client Custom M Client Custom M 지지지지지지지지 집 문서WS			S S S S S S S S S S COME Fractions		Image: Constraint of the second sec	Chlorophenols	PCBs	Organochlorine P	TCLP Metals/Inor	Sewer Use								

CLIENT NAME: GOLDER ASSOCIATES LTD 1931 ROBERTSON ROAD OTTAWA, ON K2H5B7 (613) 592-9600 ATTENTION TO: Laura Jones PROJECT: 21451149 AGAT WORK ORDER: 21Z750739 SOIL ANALYSIS REVIEWED BY: Jacky Zhu, Spectroscopy Technician TRACE ORGANICS REVIEWED BY: Neli Popnikolova, Senior Chemist DATE REPORTED: Jun 02, 2021 PAGES (INCLUDING COVER): 13 VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

*Notes

Disclaimer:

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may
 incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 30 days after receipt unless a Long Term Storage Agreement is signed and returned. Some specialty analysis may be exempt, please contact your Client Project Manager for details.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of
 merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines
 contained in this document.
- All reportable information as specified by ISO/IEC 17025:2017 is available from AGAT Laboratories upon request.

AGAT Laboratories (V1)

Member of: Association of Professional Engineers and Geoscientists of Alberta	
(APEGA)	
Western Enviro-Agricultural Laboratory Association (WEALA)	
Environmental Services Association of Alberta (ESAA)	

Page 1 of 13

AGAT WORK ORDER: 21Z750739 PROJECT: 21451149

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE: Ottawa Hospital

ATTENTION TO: Laura Jones

SAMPLED BY:Robert Ireland

				O. Reg.	153(511) - All Metals (Soil)
DATE RECEIVED: 2021-05-21					DATE REPORTED: 2021-06-02
	S	SAMPLE DES	CRIPTION:	BH21-13 SA1	
		SAM	PLE TYPE:	Soil	
		DATES	SAMPLED:	2021-05-18	
Parameter	Unit	G / S	RDL	2501939	
Antimony	µg/g	40	0.8	<0.8	
Arsenic	µg/g	18	1	3	
Barium	µg/g	670	2.0	188	
Beryllium	µg/g	8	0.4	<0.4	
Boron	µg/g	120	5	<5	
Boron (Hot Water Soluble)	µg/g	2	0.10	0.21	
Cadmium	µg/g	1.9	0.5	<0.5	
Chromium	µg/g	160	5	48	
Cobalt	µg/g	80	0.5	11.8	
Copper	µg/g	230	1.0	24.9	
Lead	µg/g	120	1	18	
Molybdenum	µg/g	40	0.5	0.7	
Nickel	µg/g	270	1	29	
Selenium	µg/g	5.5	0.8	<0.8	
Silver	µg/g	40	0.5	<0.5	
Thallium	µg/g	3.3	0.5	<0.5	
Uranium	µg/g	33	0.50	0.78	
Vanadium	µg/g	86	0.4	53.9	
Zinc	µg/g	340	5	82	
Chromium, Hexavalent	µg/g	8	0.2	<0.2	
Mercury	µg/g	3.9	0.10	<0.10	

RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 7: Generic Site Condition Standards for Shallow Soils in a Non-Potable Ground Water Condition - Soil -Comments: Industrial/Commercial/Community Property Use - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation. Analysis perfomed at AGAT Toronto (unless marked by *)

Certified By:

AGAT WORK ORDER: 21Z750739 PROJECT: 21451149 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE:Ottawa Hospital

ATTENTION TO: Laura Jones

SAMPLED BY:Robert Ireland

O. Reg. 153(511) - ORPs (Soil)

DATE RECEIVED: 2021-05-21

	S	AMPLE DESC	CRIPTION:	BH21-13 SA1
		SAMF	PLE TYPE:	Soil
		DATE S	SAMPLED:	2021-05-18
Parameter	Unit	G/S	RDL	2501939
Electrical Conductivity (2:1)	mS/cm	1.4	0.005	0.166
Sodium Adsorption Ratio (2:1) (Calc.)	N/A	12	N/A	0.110

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 7: Generic Site Condition Standards for Shallow Soils in a Non-Potable Ground Water Condition - Soil - Industrial/Commercial/Community Property Use - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

2501939 EC was determined on the DI water extract obtained from the 2:1 leaching procedure (2 parts DI water:1 part soil). SAR is a calculated parameter.

Analysis perfomed at AGAT Toronto (unless marked by *)

DATE REPORTED: 2021-06-02

AGAT WORK ORDER: 21Z750739 PROJECT: 21451149 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE:Ottawa Hospital

ATTENTION TO: Laura Jones

SAMPLED BY:Robert Ireland

O. Reg. 153(511) - PAHs (Soil) DATE RECEIVED: 2021-05-21 DATE REPORTED: 2021-06-02 SAMPLE DESCRIPTION: BH21-13 SA1 SAMPLE TYPE: Soil DATE SAMPLED: 2021-05-18 RDL 2501939 Parameter Unit G/S Naphthalene 9.6 0.05 < 0.05 µg/g Acenaphthylene 0.15 0.05 < 0.05 µg/g Acenaphthene 96 µg/g 0.05 < 0.05 Fluorene 62 0.05 < 0.05 µg/g Phenanthrene 12 0.05 0.06 µg/g Anthracene µg/g 0.67 0.05 < 0.05 Fluoranthene µg/g 9.6 0.05 0.13 Pyrene µg/g 96 0.05 0.12 0.96 0.05 0.06 Benz(a)anthracene µg/g Chrysene 0.05 µg/g 9.6 0.06 Benzo(b)fluoranthene µg/g 0.96 0.05 0.11 Benzo(k)fluoranthene 0.96 0.05 0.10 µg/g Benzo(a)pyrene 0.3 0.05 0.07 µg/g Indeno(1,2,3-cd)pyrene 0.76 0.05 < 0.05 µg/g Dibenz(a,h)anthracene 0.1 0.05 < 0.05 µg/g Benzo(g,h,i)perylene µg/g 9.6 0.05 < 0.05 1 and 2 Methlynaphthalene µg/g 76 0.05 < 0.05 Moisture Content 0.1 22.7 % Surrogate Unit Acceptable Limits Naphthalene-d8 % 50-140 78 Acenaphthene-d10 % 50-140 90 % Chrysene-d12 50-140 92 RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 7: Generic Site Condition Standards for Shallow Soils in a Non-Potable Ground Water Condition - Soil -

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 7: Generic Site Condition Standards for Shallow Soils in a Non-Potable Industrial/Commercial/Community Property Use - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

2501939 Results are based on the dry weight of the soil.

Note: The result for Benzo(b)Fluoranthene is the total of the Benzo(b)&j)Fluoranthene isomers because the isomers co-elute on the GC column. 2- and 1-Methyl Naphthalene is a calculated parameter. The calculated value is the sum of 2-Methyl Naphthalene and 1-Methyl Naphthalene.

Analysis perfomed at AGAT Toronto (unless marked by *)

Certified By:

NPopukolof

AGAT WORK ORDER: 21Z750739 PROJECT: 21451149 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE: Ottawa Hospital

ATTENTION TO: Laura Jones

SAMPLED BY:Robert Ireland

O. Reg. 153(511) - PHCs F1 - F4 (with PAHs) (Soil)

DATE RECEIVED: 2021-05-21

BATE RECEIVED: LOET CO ET					
	S	AMPLE DESCI	RIPTION:	BH21-13 SA1	
		SAMPL	E TYPE:	Soil	
		DATE SA	AMPLED:	2021-05-18	
Parameter	Unit	G/S	RDL	2501939	
Benzene	µg/g	0.32	0.02	<0.02	
Toluene	µg/g	68	0.05	<0.05	
Ethylbenzene	µg/g	9.5	0.05	<0.05	
m & p-Xylene	µg/g		0.05	<0.05	
o-Xylene	µg/g		0.05	<0.05	
Xylenes (Total)	µg/g	26	0.05	<0.05	
F1 (C6 - C10)	µg/g	55	5	<5	
F1 (C6 to C10) minus BTEX	µg/g	55	5	<5	
F2 (C10 to C16)	µg/g	230	10	<10	
F2 (C10 to C16) minus Naphthalene	µg/g		10	<10	
F3 (C16 to C34)	µg/g	1700	50	<50	
F3 (C16 to C34) minus PAHs	µg/g		50	<50	
F4 (C34 to C50)	µg/g	3300	50	<50	
Gravimetric Heavy Hydrocarbons	µg/g	3300	50	NA	
Moisture Content	%		0.1	22.7	
Surrogate	Unit	Acceptable	Limits		
Toluene-d8	% Recovery	60-14	0	82	
Terphenyl	%	60-14	0	100	

Certified By:

NPopukolof

DATE REPORTED: 2021-06-02

AGAT WORK ORDER: 21Z750739 PROJECT: 21451149

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE: Ottawa Hospital

ATTENTION TO: Laura Jones

SAMPLED BY:Robert Ireland

O. Reg. 153(511) - PHCs F1 - F4 (with PAHs) (Soil)

DATE RECEI	VED: 2021-05-21	DATE REPORTED: 2021-06-02
Comments:	RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Nor Industrial/Commercial/Community Property Use - Coarse Textured Soils Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly	
2501939	 Results are based on sample dry weight. The C6-C10 fraction is calculated using toluene response factor. Xylenes total is a calculated parameter. The calculated value is the sum of m&p-Xylene and o-Xylene. C6-C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX. The calculated parameters are non-accredited. The parameters that are components of the calculation are accredited. The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and n-C34. Gravimetric Heavy Hydrocarbons are not included in the Total C16-C50 and are only determined if the chromatogram of the C34 - C50 F The chromatogram has returned to baseline by the retention time of nC50. Total C6 - C50 results are corrected for BTEX and PAH contributions. C>10 - C16 (F2- Naphthalene) is a calculated parameter. The calculated value is F3 - Naphthalene. C>16 - C34 (F3-PAH) is a calculated parameter. The calculated value is F3-PAH (PAH: sum of Phenanthrene, Benzo(a)anthracene, Benzo(a)ant	

Linearity is within 15%. Analysis perfomed at AGAT Toronto (unless marked by *)

Extraction and holding times were met for this sample.

Certified By:

NPopukolof

Quality Assurance

CLIENT NAME: GOLDER ASSOCIATES LTD

PROJECT: 21451149

SAMPLING SITE: Ottawa Hospital

AGAT WORK ORDER: 21Z750739

ATTENTION TO: Laura Jones SAMPLED BY:Robert Ireland

Soil Analysis

				001	. /	ary ore	,								
RPT Date: Jun 02, 2021			C	UPLICAT	E		REFEREN	REFERENCE MATERIAL			BLANK	SPIKE	MAT	RIX SPI	IKE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured Value		eptable mits	Recovery	1 1 1 1	ptable nits	Recovery	1.10	eptable nits
		lu	-				value	Lower	Upper		Lower	Upper		Lower	Upper
O. Reg. 153(511) - All Metals (Soil)														
Antimony	2519108		<0.8	<0.8	NA	< 0.8	130%	70%	130%	108%	80%	120%	101%	70%	130%
Arsenic	2519108		2	2	NA	< 1	113%	70%	130%	109%	80%	120%	110%	70%	130%
Barium	2519108		12.1	12.3	1.6%	< 2.0	109%	70%	130%	105%	80%	120%	104%	70%	130%
Beryllium	2519108		<0.4	<0.4	NA	< 0.4	73%	70%	130%	106%	80%	120%	100%	70%	130%
Boron	2519108		5	5	NA	< 5	98%	70%	130%	98%	80%	120%	90%	70%	130%
Boron (Hot Water Soluble)	2502027		<0.10	<0.10	NA	< 0.10	82%	60%	140%	92%	70%	130%	92%	60%	140%
Cadmium	2519108		<0.5	<0.5	NA	< 0.5	88%	70%	130%	106%	80%	120%	103%	70%	130%
Chromium	2519108		8	8	NA	< 5	96%	70%	130%	109%	80%	120%	112%	70%	130%
Cobalt	2519108		3.1	3.1	0.0%	< 0.5	99%	70%	130%	110%	80%	120%	106%	70%	130%
Copper	2519108		7.7	7.8	1.3%	< 1.0	85%	70%	130%	107%	80%	120%	94%	70%	130%
Lead	2519108		6	6	0.0%	< 1	107%	70%	130%	103%	80%	120%	93%	70%	130%
Molybdenum	2519108		<0.5	<0.5	NA	< 0.5	114%	70%	130%	114%	80%	120%	113%	70%	130%
Nickel	2519108		6	5	18.2%	< 1	97%	70%	130%	109%	80%	120%	100%	70%	130%
Selenium	2519108		<0.8	<0.8	NA	< 0.8	131%	70%	130%	103%	80%	120%	106%	70%	130%
Silver	2519108		<0.5	<0.5	NA	< 0.5	98%	70%	130%	110%	80%	120%	94%	70%	130%
Thallium	2519108		<0.5	<0.5	NA	< 0.5	98%	70%	130%	105%	80%	120%	98%	70%	130%
Uranium	2519108		<0.50	<0.50	NA	< 0.50	103%	70%	130%	103%	80%	120%	102%	70%	130%
Vanadium	2519108		13.9	14.0	0.7%	< 0.4	104%	70%	130%	108%	80%	120%	117%	70%	130%
Zinc	2519108		32	32	0.0%	< 5	101%	70%	130%	112%	80%	120%	113%	70%	130%
Chromium, Hexavalent	2512724		<0.2	<0.2	NA	< 0.2	92%	70%	130%	93%	80%	120%	73%	70%	130%
Mercury	2519108		<0.10	<0.10	NA	< 0.10	107%	70%	130%	104%	80%	120%	100%	70%	130%

Comments: For a multi-element scan for lab control standards and matrix spikes, up to 10% of analytes may exceed the quoted limits by up to 10% absolute and it is considered acceptable.

O. Reg. 153(511) - ORPs (Soil)								
Electrical Conductivity (2:1)	2519880	0.222	0.217	2.3%	< 0.005	93%	80%	120%
Sodium Adsorption Ratio (2:1) (Calc.)	2519880	0.144	0.147	2.1%	N/A			

Comments: NA signifies Not Applicable.

Duplicate NA: results are under 5X the RDL and will not be calculated.

Certified By:

AGAT QUALITY ASSURANCE REPORT (V1)

Page 7 of 13

Quality Assurance

CLIENT NAME: GOLDER ASSOCIATES LTD

PROJECT: 21451149

SAMPLING SITE: Ottawa Hospital

AGAT WORK ORDER: 21Z750739

ATTENTION TO: Laura Jones

SAMPLED BY:Robert Ireland

RPT Date: Jun 02, 2021			C	UPLICAT	E		REFEREN	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample Id	Dup #1	Dup #2	RPD	Method Blank	Measured Value		ptable nits	Recovery		ptable nits	Recovery		ptable nits
							value	Lower	Upper		Lower	Upper		Lower	Uppe
O. Reg. 153(511) - PHCs F1 - F4 (with PAHs) (So															
Benzene	2519888		<0.02	<0.02	NA	< 0.02	116%	60%	140%	106%	60%	140%	90%	60%	140%
Toluene	2519888		<0.05	<0.05	NA	< 0.05	113%	60%	140%	107%	60%	140%	84%	60%	140%
Ethylbenzene	2519888		<0.05	<0.05	NA	< 0.05	116%	60%	140%	97%	60%	140%	98%	60%	140%
m & p-Xylene	2519888		<0.05	<0.05	NA	< 0.05	105%	60%	140%	101%	60%	140%	88%	60%	140%
o-Xylene	2519888		<0.05	<0.05	NA	< 0.05	104%	60%	140%	95%	60%	140%	93%	60%	140%
F1 (C6 - C10)	2519888		<5	<5	NA	< 5	103%	60%	140%	100%	60%	140%	99%	60%	140%
F2 (C10 to C16)	2381640		< 10	< 10	NA	< 10	90%	60%	140%	85%	60%	140%	73%	60%	140%
F3 (C16 to C34)	2381640		< 10	< 10	NA	< 10	111%	60%	140%	84%	60%	140%	73%	60%	140%
F4 (C34 to C50)	2381640		< 50	< 50	NA	< 50	101%	60%	140%	100%	60%	140%	118%	60%	140%
O. Reg. 153(511) - PAHs (Soil)															
Naphthalene	2501391		<0.05	<0.05	NA	< 0.05	84%	50%	140%	89%	50%	140%	74%	50%	140%
Acenaphthylene	2501391		<0.05	<0.05	NA	< 0.05	104%	50%	140%	75%	50%	140%	83%	50%	140%
Acenaphthene	2501391		<0.05	<0.05	NA	< 0.05	109%	50%	140%	85%	50%	140%	87%	50%	140%
Fluorene	2501391		<0.05	<0.05	NA	< 0.05	112%	50%	140%	84%	50%	140%	91%	50%	140%
Phenanthrene	2501391		<0.05	<0.05	NA	< 0.05	95%	50%	140%	76%	50%	140%	79%	50%	140%
Anthracene	2501391		<0.05	<0.05	NA	< 0.05	116%	50%	140%	85%	50%	140%	96%	50%	140%
Fluoranthene	2501391		<0.05	<0.05	NA	< 0.05	124%	50%	140%	89%	50%	140%	101%	50%	140%
Pyrene	2501391		<0.05	<0.05	NA	< 0.05	119%	50%	140%	86%	50%	140%	96%	50%	140%
Benz(a)anthracene	2501391		<0.05	<0.05	NA	< 0.05	92%	50%	140%	85%	50%	140%	77%	50%	140%
Chrysene	2501391		<0.05	<0.05	NA	< 0.05	114%	50%	140%	84%	50%	140%	95%	50%	140%
Benzo(b)fluoranthene	2501391		<0.05	<0.05	NA	< 0.05	69%	50%	140%	75%	50%	140%	59%	50%	140%
Benzo(k)fluoranthene	2501391		<0.05	<0.05	NA	< 0.05	88%	50%	140%	89%	50%	140%	71%	50%	140%
Benzo(a)pyrene	2501391		<0.05	<0.05	NA	< 0.05	86%	50%	140%	86%	50%	140%	73%	50%	140%
Indeno(1,2,3-cd)pyrene	2501391		<0.05	<0.05	NA	0.29	64%	50%	140%	85%	50%	140%	54%	50%	140%
Dibenz(a,h)anthracene	2501391		<0.05	<0.05	NA	< 0.05	70%	50%	140%	84%	50%	140%	58%	50%	140%
Benzo(g,h,i)perylene	2501391		<0.05	<0.05	NA	0.31	59%	50%	140%	78%	50%	140%	51%	50%	140%

Comments: When the average of the sample and duplicate results is less than 5x the RDL, the Relative Percent Difference (RPD) will be indicated as Not Applicable (NA).

Certified By:

NPopukok

Page 8 of 13

AGAT QUALITY ASSURANCE REPORT (V1)

QA Violation

CLIENT NAME: GOLDER ASSOCIATES LTD

PROJECT: 21451149

AGAT WORK ORDER: 21Z750739

ATTENTION TO: Laura Jones

RPT Date: Jun 02, 2021	REFERE	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE		
PARAMETER	Sample Id	Sample Description	Measured		ptable nits	Recoverv		ptable nits	Recoverv	Lin	eptable nits
			Value	Lower	Upper		Lower	Upper	,		Upper
O. Reg. 153(511) - All Metals (Soil)											
Selenium	um BH21-13 SA1		131%	70%	130%	103%	80%	120%	106%	70%	130%

Comments: For a multi-element scan for lab control standards and matrix spikes, up to 10% of analytes may exceed the quoted limits by up to 10% absolute and it is considered acceptable.

AGAT QUALITY ASSURANCE REPORT (V1)

Page 9 of 13

Method Summary

CLIENT NAME: GOLDER ASSOCIATES LTD

PROJECT: 21451149

SAMPLING SITE: Ottawa Hospital

AGAT WORK ORDER: 21Z750739

SAMPLED BY:Robert Ire	and
	unu

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE							
Soil Analysis										
Antimony	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS							
Arsenic	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS							
Barium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS							
Beryllium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS							
Boron	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS							
Boron (Hot Water Soluble)	MET-93-6104	modified from EPA 6010D and MSA PART 3, CH 21	ICP/OES							
Cadmium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS							
Chromium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS							
Cobalt	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS							
Copper	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS							
Lead	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS							
Molybdenum	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS							
Nickel	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS							
Selenium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS							
Silver	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS							
Thallium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS							
Uranium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS							
Vanadium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS							
Zinc	MET 93 -6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS							
Chromium, Hexavalent	INOR-93-6068	modified from EPA 3060 and EPA 7196	SPECTROPHOTOMETER							
Mercury	MET-93-6103	modified from EPA 7471B and SM 3112 B	ICP-MS							
Electrical Conductivity (2:1)	INOR-93-6036	modified from MSA PART 3, CH 14 and SM 2510 B	EC METER							
Sodium Adsorption Ratio (2:1) (Calc.)	INOR-93-6007	modified from EPA 6010D & Analytical Protocol	ICP/OES							

Method Summary

CLIENT NAME: GOLDER ASSOCIATES LTD

PROJECT: 21451149

SAMPLING SITE: Ottawa Hospital

AGAT WORK ORDER: 21Z750739

ATTENTION TO: Laura Jones

SAMPLING SITE:Ottawa Hospital		SAMPLED BY:Ro	bert Ireland
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Trace Organics Analysis			
Naphthalene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Acenaphthylene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Acenaphthene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Fluorene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Phenanthrene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Anthracene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Fluoranthene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Pyrene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Benz(a)anthracene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Chrysene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Benzo(b)fluoranthene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Benzo(k)fluoranthene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Benzo(a)pyrene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Indeno(1,2,3-cd)pyrene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Dibenz(a,h)anthracene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Benzo(g,h,i)perylene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
1 and 2 Methlynaphthalene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Naphthalene-d8	ORG-91-5106	modified from EPA 3541 and EPA 8270E	GC/MS
Acenaphthene-d10	ORG-91-5106	modified from EPA 3541 and EPA 8270E	GC/MS
Chrysene-d12	ORG-91-5106	modified from EPA 3541 and EPA 8270E	GC/MS
Moisture Content	ORG-91-5009	CCME Tier 1 Method	BALANCE
Benzene	VOL-91-5009	modified from CCME Tier 1 Method	(P&T)GC/MS
Toluene	VOL-91-5009	modified from CCME Tier 1 Method	(P&T)GC/MS
Ethylbenzene	VOL-91-5009	modified from CCME Tier 1 Method	(P&T)GC/MS
m & p-Xylene	VOL-91-5009	modified from CCME Tier 1 Method	(P&T)GC/MS
o-Xylene	VOL-91-5009	modified from CCME Tier 1 Method	(P&T)GC/MS
Xylenes (Total)	VOL-91-5009	modified from CCME Tier 1 Method	(P&T)GC/MS
F1 (C6 - C10)	VOL-91-5009	modified from CCME Tier 1 Method	(P&T)GC/FID
F1 (C6 to C10) minus BTEX	VOL-91-5009	modified from CCME Tier 1 Method	P&T GC/FID
Toluene-d8	VOL-91-5009	modified from EPA SW-846 5030C & 8260D	(P&T)GC/MS
F2 (C10 to C16)	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID
F2 (C10 to C16) minus Naphthalene	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID
F3 (C16 to C34)	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID

AGAT METHOD SUMMARY (V1)

Method Summary

CLIENT NAME: GOLDER ASSOCIATES LTD PROJECT: 21451149

AGAT WORK ORDER: 21Z750739

ATTENTION TO: Laura Jones

SAMPLING SITE: Ottawa Hospital SAMPLED BY:Robert Ireland PARAMETER AGAT S.O.P LITERATURE REFERENCE ANALYTICAL TECHNIQUE F3 (C16 to C34) minus PAHs VOL-91-5009 modified from CCME Tier 1 Method GC/FID F4 (C34 to C50) VOL-91-5009 modified from CCME Tier 1 Method GC/FID Gravimetric Heavy Hydrocarbons BALANCE VOL-91-5009 modified from CCME Tier 1 Method Terphenyl VOL-91-5009 modified from CCME Tier 1 Method GC/FID

			1	La	borat	ILG BIK	2			Mississ 05.712.510 bs.com w	auga O 00 Fax:	905,71	4Z 1Y: 2,512:	2	W Co	ork Ore ooler Q	der #: Juanti	d ty:			-5 L-	D	730
Chain of C Report Inform Company: Contact: Address: Phone: Reports to be sent to: 1. Email: 2. Email:	e use Drinking Water Chain of Regulatory Requi (Please check all applicable boxes) Regulation 153/04 Table 7 Indicate One □Ind/Com □Res/Park □Agriculture	Custody F iremen		Use ary	No Regul	atory]Regula]CCME]Prov. W Objecti]Other	Requi tion 558 /ater Qu ves (PW	reme	Ì	Arrival Temperatures: (TCUCC) Custody Seal Intact: Notes: Turnaround Time (TAT) Required: Regular TAT Business Days Rush TAT (Rush Surcharges Apply) Business Days OR Date Required (Rush Surcharges May Apply): (TCUCC)													
Project Inform Project: Site Location: Sampled By:	nation: 21451149 Ottawa Hospi Robert Ireland					Is this submission Record of Site Con	dition?			Report Certifica	Guide		sls			-	Plea	ise pr	ovide p	rlor no	tificatio	on for rus	
AGAT Quote #: Invoice Inform Company: Contact: Address: Email:		talion number is not pro			analysis.	Sample Matrix Legend B Biota GW Ground Water O Oil P Paint S Soil SD Sediment SW Surface Water	and Inorganics	can	Hydride Forming Metals	Metals IS DCI: DCN- DPH TSAR	ts: DTP DNH, DTKN DNO ₂ DNO ₂ DNO	OVOC DBTEX OTHM			henols	PCBS Organochlorine Pesticides	TCLP Metals/Inorganics	se					
Sample Ide	ntification	Date Sampled	Time Sampled	# of Containers	Sample Matrix	Comments/ Special Instructions	Metals	-	_		Nutrien D No,	21000	- Contraction		Chlorophenols	Organo	TCLP M	Sewer Use		VOCs	Hd		
BH21-13 SA1		05/18/21		3	Soil																		
Samples Reliequished By (Prin Rochelle Mathew Samples Reliequished By (Prin	ma	thew optof	m	Date 05/21/20 Data	121 Time 15:00	Samples Reseived By (Print	0	17	a	ABE		NHQ nk Copy		[- :4	5-2	2 Time 2 (2)	51	n3 30			ge <u>1</u>		ert: 50/3/20

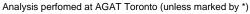
AGAT WORK ORDER: 21Z753437 PROJECT: 21451149

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE:

ATTENTION TO: Laura Jones


SAMPLED BY:

							/	
DATE RECEIVED: 2021-05-28								DATE REPORTED: 2021-06-10
		SAMPLE DESCR	RIPTION:	BH21-08 SA1	BH21-09 SA2	BH21-10 SA2	BH21-12 SA1	
		SAMPL	E TYPE:	Soil	Soil	Soil	Soil	
		DATE SA	MPLED:	2021-05-18	2021-05-18	2021-05-18	2021-05-19	
Parameter	Unit	G / S	RDL	2530200	2530201	2530203	2530204	
Antimony	µg/g	40	0.8	<0.8	<0.8	<0.8	<0.8	
Arsenic	µg/g	18	1	3	5	4	2	
Barium	µg/g	670	2.0	130	125	133	73.5	
Beryllium	µg/g	8	0.4	0.4	0.4	0.5	<0.4	
Boron	µg/g	120	5	<5	7	6	<5	
Boron (Hot Water Soluble)	µg/g	2	0.10	0.28	0.30	0.45	0.18	
Cadmium	µg/g	1.9	0.5	<0.5	<0.5	<0.5	<0.5	
Chromium	µg/g	160	5	35	26	35	18	
Cobalt	µg/g	80	0.5	10.1	10.3	9.6	5.9	
Copper	µg/g	230	1.0	22.0	24.0	23.8	12.6	
Lead	µg/g	120	1	13	56	28	11	
Molybdenum	µg/g	40	0.5	1.0	1.4	1.3	0.8	
Nickel	µg/g	270	1	22	20	21	11	
Selenium	µg/g	5.5	0.8	<0.8	<0.8	<0.8	<0.8	
Silver	µg/g	40	0.5	<0.5	<0.5	<0.5	<0.5	
Thallium	µg/g	3.3	0.5	<0.5	<0.5	<0.5	<0.5	
Uranium	µg/g	33	0.50	0.97	0.79	0.80	0.63	
Vanadium	µg/g	86	0.4	43.7	35.1	37.5	29.0	
Zinc	µg/g	340	5	62	84	72	40	
Chromium, Hexavalent	µg/g	8	0.2	<0.2	<0.2	<0.2	<0.2	
Mercury	µg/g	3.9	0.10	<0.10	<0.10	<0.10	<0.10	

O. Reg. 153(511) - All Metals (Soil)

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 7: Generic Site Condition Standards for Shallow Soils in a Non-Potable Ground Water Condition - Soil -Industrial/Commercial/Community Property Use - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

AGAT WORK ORDER: 21Z753437 PROJECT: 21451149 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE:

ATTENTION TO: Laura Jones

SAMPLED BY:

O. Reg. 153(511) - EC/SAR											
DATE RECEIVED: 2021-05-28								DATE REPORTED: 2021-06-10			
		SAMPLE DES	CRIPTION:	BH21-08 SA1	BH21-09 SA2	BH21-10 SA2	BH21-12 SA1				
		SAM	PLE TYPE:	Soil	Soil	Soil	Soil				
		DATE	SAMPLED:	2021-05-18	2021-05-18	2021-05-18	2021-05-19				
Parameter	Unit	G/S	RDL	2530200	2530201	2530203	2530204				
Electrical Conductivity (2:1)	mS/cm	1.4	0.005	0.197	0.446	0.351	0.185				
Sodium Adsorption Ratio	NA	12	NA	0.213	0.142	0.103	0.923				

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 7: Generic Site Condition Standards for Shallow Soils in a Non-Potable Ground Water Condition - Soil - Industrial/Commercial/Community Property Use - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation. 2530200-2530204 SAR is a calculated parameter.

Analysis perfomed at AGAT Toronto (unless marked by *)

Certified By:

AGAT WORK ORDER: 21Z753437 PROJECT: 21451149

O. Reg. 153(511) - PAHs (Soil)

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aqatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE:

ATTENTION TO: Laura Jones

SAMPLED BY:

DATE RECEIVED: 2021-05-28 **DATE REPORTED: 2021-06-10** SAMPLE DESCRIPTION: BH21-08 SA1 BH21-09 SA2 BH21-10 SA1 BH21-12 SA1 SAMPLE TYPE: Soil Soil Soil Soil DATE SAMPLED: 2021-05-18 2021-05-18 2021-05-18 2021-05-19 G/S 2530200 2530201 2530202 2530204 Parameter Unit RDL Naphthalene 9.6 0.05 < 0.05 < 0.05 < 0.05 < 0.05 µg/g Acenaphthylene 0.15 0.05 < 0.05 < 0.05 < 0.05 < 0.05 µg/g <0.05 < 0.05 Acenaphthene µg/g 96 0.05 < 0.05 < 0.05 62 < 0.05 < 0.05 Fluorene 0.05 < 0.05 < 0.05 µg/g Phenanthrene 12 0.05 0.05 0.27 <0.05 < 0.05 µg/g Anthracene µg/g 0.67 0.05 < 0.05 0.09 < 0.05 < 0.05 Fluoranthene µg/g 9.6 0.05 0.11 0.37 < 0.05 0.06 Pyrene µg/g 96 0.05 0.09 0.30 < 0.05 0.05 0.96 0.05 < 0.05 0.13 < 0.05 < 0.05 Benz(a)anthracene µg/g Chrysene 9.6 0.05 < 0.05 0.13 < 0.05 < 0.05 µg/g Benzo(b)fluoranthene µg/g 0.96 0.05 0.10 0.38 0.06 0.08 Benzo(k)fluoranthene 0.96 < 0.05 0.19 < 0.05 < 0.05 µg/g 0.05 Benzo(a)pyrene 0.05 0.08 0.26 <0.05 < 0.05 µg/g 0.3 0.76 0.05 0.12 < 0.05 < 0.05 Indeno(1,2,3-cd)pyrene µg/g < 0.05 Dibenz(a,h)anthracene 0.1 0.05 < 0.05 < 0.05 <0.05 < 0.05 µg/g Benzo(g,h,i)perylene µg/g 9.6 0.05 < 0.05 0.13 <0.05 < 0.05 1 and 2 Methlynaphthalene µg/g 76 0.05 < 0.05 < 0.05 <0.05 < 0.05 Moisture Content 0.1 8.2 14.1 15.8 % 5.1 Surrogate Unit Acceptable Limits 72 Naphthalene-d8 % 50-140 60 69 76 % 73 Acenaphthene-d10 50-140 63 70 76 Chrysene-d12 % 50-140 64 60 72 60

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 7: Generic Site Condition Standards for Shallow Soils in a Non-Potable Ground Water Condition - Soil -Industrial/Commercial/Community Property Use - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

2530200-2530204 Results are based on the dry weight of the soil.

Note: The result for Benzo(b)Fluoranthene is the total of the Benzo(b)&j)Fluoranthene isomers because the isomers co-elute on the GC column. 2- and 1-Methyl Naphthalene is a calculated parameter. The calculated value is the sum of 2-Methyl Naphthalene and 1-Methyl Naphthalene.

Analysis perfomed at AGAT Toronto (unless marked by *)

Certified By:

NPopukolof

AGAT WORK ORDER: 21Z753437 PROJECT: 21451149 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE:

ATTENTION TO: Laura Jones

SAMPLED BY:

O. Reg. 153(511) - PHCs F1 - F4 (with PAHs) (Soil)

DATE RECEIVED: 2021-05-28

DATE REPORTED: 2021-06-10

		SAMPLE DESCRIPTION:					
	ŝ				BH21-09 SA2	BH21-10 SA1	BH21-12 SA1
		SAMP	LE TYPE:	Soil	Soil	Soil	Soil
		DATE S	AMPLED:	2021-05-18	2021-05-18	2021-05-18	2021-05-19
Parameter	Unit	G/S	RDL	2530200	2530201	2530202	2530204
Benzene	µg/g	0.32	0.02	<0.02	<0.02	<0.02	<0.02
Toluene	µg/g	68	0.05	<0.05	<0.05	<0.05	<0.05
Ethylbenzene	µg/g	9.5	0.05	<0.05	<0.05	<0.05	<0.05
m & p-Xylene	µg/g		0.05		<0.05	<0.05	<0.05
o-Xylene	µg/g		0.05		<0.05	<0.05	<0.05
Xylenes (Total)	µg/g	26			<0.05	<0.05	<0.05
F1 (C6 - C10)	µg/g		5		<5	<5	<5
F1 (C6 to C10) minus BTEX	µg/g	55	5	<5	<5	<5	<5
F2 (C10 to C16)	µg/g	230	10	<10	<10	<10	<10
F2 (C10 to C16) minus Naphthalene	µg/g		10	<10	<10	<10	<10
F3 (C16 to C34)	µg/g	1700	50	<50	<50	<50	<50
F3 (C16 to C34) minus PAHs	µg/g		50	<50	<50	<50	<50
F4 (C34 to C50)	µg/g	3300	50	<50	<50	<50	<50
Gravimetric Heavy Hydrocarbons	µg/g	3300	50	NA	NA	NA	NA
Moisture Content	%		0.1	5.1	8.2	14.1	15.8
Surrogate	Unit	Acceptable	e Limits				
Toluene-d8	% Recovery	60-14	60-140		77	88	90
Terphenyl	%	60-140 110		98	122	102	

Certified By:

NPopukolof

AGAT WORK ORDER: 21Z753437

PROJECT: 21451149

RDL - Reported Detection Limit: G / S - Guideline / Standard: Refers to Table 7: Generic Site Condition Standards for Shallow Soils in a Non-Potable Ground Water Condition - Soil -

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE:

DATE

Comments:

ATTENTION TO: Laura Jones

SAMPLED BY:

O. Reg. 153(511) - PHCs F1 - F4 (with PAHs) (Soil)

RECEIVED:	2021-05-28	

DATE REPORTED: 2021-06-10

5835 COOPERS AVENUE

MISSISSAUGA, ONTARIO

http://www.agatlabs.com

CANADA L4Z 1Y2

TEL (905)712-5100 FAX (905)712-5122

Industrial/Commercial/Community Property Use - Coarse Textured Soils Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation. 2530200-2530204 Results are based on sample dry weight. The C6-C10 fraction is calculated using toluene response factor. Xylenes total is a calculated parameter. The calculated value is the sum of m&p-Xylene and o-Xylene. C6–C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX. The calculated parameters are non-accredited. The parameters that are components of the calculation are accredited. The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and n-C34. Gravimetric Heavy Hydrocarbons are not included in the Total C16-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons >C50 are present. The chromatogram has returned to baseline by the retention time of nC50. Total C6 - C50 results are corrected for BTEX and PAH contributions. C>10 - C16 (F2- Naphthalene) is a calculated parameter. The calculated value is F2 - Naphthalene. C>16 - C34 (F3-PAH) is a calculated parameter. The calculated value is F3-PAH (PAH: sum of Phenanthrene, Benzo(a)anthracene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Benzo(a)pyrene, Fluoranthene, Dibenzo(a,h)anthracene, Indeno(1,2,3-c,d)pyrene and Pyrene). This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. nC10, nC16 and nC34 response factors are within 10% of their average. C50 response factor is within 70% of nC10 + nC16 + nC34 average. Linearity is within 15%. Extraction and holding times were met for this sample.

Analysis perfomed at AGAT Toronto (unless marked by *)

Certified By:

NPopukoloj

Chain of C		_	S. 1/8. 2/7. 4 SB35 Coopers Avenue Mississauga, Ontario L42 1/2 Ories Free Dee Ph: 905.712.5100 Fax: 905.712.5122 www.agatlabs.com webearth.agatlabs.com use Drinking Water Chain of Custody Form (potable water intended for human consumption)										Laboratory Use Only Work Order #: 212753437. Cooler Quantity:															
Report Inform	nation: Golder Associ	ates					Regi (Please c	ulatory Requ	i ireme	nts:] No	Regul	atory	Requ	uirer	nent		Cust Note	-	eal Ir	ntact:		Yes		□Nc)	
Company: Contact:	Laura Jones	ales						ulation 153/04	Ì D	Sew	er Use	•		Regula	tion 5	58				_	und	. ті.	me (T	AT)	Pogu	irodi	_	
Address:	1	on Road, Nepe	an Ontario					le <u>7</u> Indicate One nd/Com		⊡Sa	nitary			CCME				11	Regu				-		-	ness Da		
Phone:	(226) 378-248	9	_ Fax;				□ F	Res/Park griculture		□St	orm			Prov. W					-			h Surch	hargee Ap		/ Dusi	ness Da	ays	
Reports to be sent to:	Laura_Jones@) golder.com; (GAL_EQUIS	@golder.c	om		_	xture (Check One)	Region_					Objecti	ves (F	PWQO)		-	3 E	Busin	ess	-	2 Bu	isiness	-	- 1 B	usiness
1. Email:	Rochelle_Mat	hew@Golder.c	om			=e.1		Coarse		Indi	ate One			Other			_		L	Da				Days		L	J _{Day}	
2, Email:						=	□F	this submissic	n for a	-			Report		icate Or					OF	R Date	e Red	quired ((Rush S	Surcha	rges M	ay App	ly):
Project Inform	nation: 21451149							ord of Site Co		1?			ertifica				5			_	_							
Project: Site Location:	Ottawa Hospi	tal						Yes 🗹	No			E	Z Yes	6		No	Ŭ.,						r ovide p sive of v					
Sampled By:	Robert Ireland	tt				_	1			0.2.5								ЦL		_							_	
AGAT Quote #:	SO Please note: If gut	itation number is not pro	wided, client will be b	illed full price fo	r analysis,	-	Sa	mple Matrix Legend	2				(Check	Applica	able)			Τ		17								42
Invoice Inform Company: Contact: Address: Email:	nation: 		Bill T	o Same: Y	ies Ӣ No 🗆		GW O P S SD	Biota Ground Water Oil Paint Soil Sediment Surface Water		s and inorganics Scan	Hydride Forming Metals	Client Custom Metals	BB-HWS CC CNO/NO	DTP DNH3	les: DVOC DBTEX DTHM	CCME Fractions 1 to 4		PAHS Chloronhanole	colorido	Organochlorine Pesticides	TCLP Metals/Inorganics	r Use						
Sample Ide	entification	Date Sampled	Time Sampled	# of Containers	Sample Matrix			comments/ ial Instructions		Metals and	Hydric	Client	ORPs: 121B Contraction DEC	Nutrie No.	Volatiles:	CCME	ABNS	Chlore	PCBs	Orgar	TCLP	Sewer Use		VOCs	Hd			
BH21-08 SA1		05/18/21		2	Soil	118	nHe	d samp	e	G			V			☑	_	2										
BH21-09 SA2		05/18/21		2	Soil	110	niter) Sample	·	6								2									_	
- BH21-10 SA1		05/18/21		3	Soil											V		☑					\vdash			_	-	
-BH21-10 SA2		05/18/21	-	X	Soil	11	<u>nh</u>	1 Jamp	e			-		-				_	-				\square	-			-	
-BH21-12 SA1		05/19/21		3	Soil					1		-		-				2	-	-	-		\vdash	-	-		-	
										-		-									-		\vdash	-	-			
		-										-		-					-		-		\square					
																										11		
		1	2															1		0							-	
																	- A											
Samples Relinguished By (Pri Rochelle Mathey Samples Relinguished By (Pri	nt Name and Signly V nt Name and Sign):	athen	/	Date 05/28/2 Date	021	5-0	U	Samples Raceived By (Pr JUA) samplet received By (Pr	int Name an - 50 mt reame an	d Signi: V	s (4	1 and	J		100	Date Bl Date	nç	2/	Time	5.	/0	N°	_	age 1	0	f_1	
Decimination 100 77-1011.00	1							NEAL	(7-	6	19	\mathcal{D}	P	Ink Co	opy - (llent	Fell	ow Co	ру - А	GA1	TW	hite Coj	py-AG/	91	(m	lon-	h# 6, 28

CLIENT NAME: GOLDER ASSOCIATES LTD 1931 ROBERTSON ROAD OTTAWA, ON K2H5B7 (613) 592-9600 ATTENTION TO: Laura Jones PROJECT: Ottawa Hospital AGAT WORK ORDER: 21Z753765 TRACE ORGANICS REVIEWED BY: Neli Popnikolova, Senior Chemist WATER ANALYSIS REVIEWED BY: Nivine Basily, Inorganics Report Writer DATE REPORTED: Jun 10, 2021 PAGES (INCLUDING COVER): 20 VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

*Notes

VERSION 1:Revised report with IDs updated as per client request. 2021/06/10

Disclaimer:

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may
 incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 30 days after receipt unless a Long Term Storage Agreement is signed and returned. Some specialty analysis may be exempt, please contact your Client Project Manager for details.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of
 merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines
 contained in this document.
- All reportable information as specified by ISO/IEC 17025:2017 is available from AGAT Laboratories upon request.

AGAT Laboratories (V1)

Member of: Association of Professional Engineers and Geoscientists of Alberta	
(APEGA)	
Western Enviro-Agricultural Laboratory Association (WEALA)	
Environmental Services Association of Alberta (ESAA)	

Page 1 of 20

AGAT WORK ORDER: 21Z753765 PROJECT: Ottawa Hospital

 \cap Reg 153(511) - PAHs (Water)

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE:

ATTENTION TO: Laura Jones

SAMPLED BY:

				O. Reg	. 153(511) -	PAHS (Wat	er)				
DATE RECEIVED: 2021-05-28								I	DATE REPORTI	ED: 2021-06-10	
		-	CRIPTION: PLE TYPE: SAMPLED:	BH21-05 Water 2021-05-27 11:45	BH21-02 Water 2021-05-27 10:00	MW17-2 Water 2021-05-27 13:00	BH21-10 Water 2021-05-27 12:15	DUP-3 Water 2021-05-27 08:55	BH21-03 Water 2021-05-27 08:50	BH21-06 Water 2021-05-27 10:40	
Parameter	Unit	G/S	RDL	2535433	2535653	2535654	2535776	2535777	2535778	2535779	
Naphthalene	µg/L	1400	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
Acenaphthylene	µg/L	1.8	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
Acenaphthene	µg/L	600	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
Fluorene	µg/L	400	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
Phenanthrene	µg/L	580	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	
Anthracene	µg/L	2.4	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	
Fluoranthene	µg/L	130	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
Pyrene	µg/L	68	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
Benzo(a)anthracene	µg/L	4.7	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
Chrysene	µg/L	1	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	
Benzo(b)fluoranthene	µg/L	0.75	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	
Benzo(k)fluoranthene	µg/L	0.4	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	
Benzo(a)pyrene	µg/L	0.81	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	
Indeno(1,2,3-cd)pyrene	µg/L	0.2	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
Dibenz(a,h)anthracene	µg/L	0.52	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
Benzo(g,h,i)perylene	µg/L	0.2	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
2-and 1-methyl Naphthalene	µg/L	1800	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
Sediment				NO	NO	NO	NO	NO	NO	NO	
Surrogate	Unit	Acceptab									
Naphthalene-d8	%	50-1	40	105	101	108	106	112	117	108	
Acridine-d9	%	50-1	40	118	109	112	118	108	119	109	
Terphenyl-d14	%	50-1	40	90	61	106	64	81	111	105	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Non-Potable Ground Water - All Types of Property Uses - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

2535433-2535779 Note: The result for Benzo(b)Fluoranthene is the total of the Benzo(b)&(j)Fluoranthene isomers because the isomers co-elute on the GC column.

2- and 1-Methyl Naphthalene is a calculated parameter. The calculated value is the sum of 2-Methyl Naphthalene and 1-Methyl Naphthalene. The calculated parameter is non-accredited. The parameters that are components of the calculation are accredited.

Sediment parameter is comment only based on visual inspection of the sample prior to extraction and is not an accredited test.

Analysis perfomed at AGAT Toronto (unless marked by *)

Certified By:

NPopukoloj

AGAT WORK ORDER: 21Z753765 PROJECT: Ottawa Hospital 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aqatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE:

ATTENTION TO: Laura Jones

SAMPLED BY:

O. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Water)

DATE RECEIVED: 2021-05-28

BATE RECEIVED. 2021 00 20						DATE REPORTED. 2021 00 10					
	S	AMPLE DESC	CRIPTION:	BH21-05	BH21-02	MW17-2	BH21-10	DUP-3	BH21-03	BH21-06	
		SAMF	PLE TYPE:	Water	Water	Water	Water	Water	Water	Water	
		DATE S	SAMPLED:	2021-05-27 11:45	2021-05-27 10:00	2021-05-27 13:00	2021-05-27 12:15	2021-05-27 08:55	2021-05-27 08:50	2021-05-27 10:40	
Parameter	Unit	G/S	RDL	2535433	2535653	2535654	2535776	2535777	2535778	2535779	
F1 (C6-C10)	µg/L	750	25	<25	<25	<25	<25	<25	<25	<25	
F1 (C6 to C10) minus BTEX	µg/L	750	25	<25	<25	<25	<25	<25	<25	<25	
F2 (C10 to C16)	µg/L	150	100	<100	<100	<100	<100	<100	<100	<100	
F2 (C10 to C16) minus Naphthalene	µg/L		100	<100	<100	<100	<100	<100	<100	<100	
F3 (C16 to C34)	μg/L	500	100	<100	<100	<100	<100	<100	<100	<100	
F3 (C16 to C34) minus PAHs	µg/L		100	<100	<100	<100	<100	<100	<100	<100	
F4 (C34 to C50)	µg/L	500	100	<100	<100	<100	<100	<100	<100	<100	
Gravimetric Heavy Hydrocarbons	µg/L		500	NA	NA	NA	NA	NA	NA	NA	
Sediment				No	No	No	No	No	No	No	
Surrogate	Unit	Acceptab	Acceptable Limits								
Toluene-d8	% Recovery	50-1	40	89.2	96.2	93.8	86.2	92	76	108	
Terphenyl	% Recovery	60-1	40	103	83	93	92	117	111	106	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Non-Potable Ground Water - All Types of Property Uses - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

2535433-2535779 The C6-C10 fraction is calculated using toluene response factor.

C6–C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX. The calculated parameter is non-accredited. The parameters that are components of the calculation are accredited.

The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and n-C34.

Gravimetric Heavy Hydrocarbons are not included in the Total C16-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons >C50 are present. The chromatogram has returned to baseline by the retention time of nC50.

Total C6 - C50 results are corrected for BTEX and PAH contributions.

C>10 - C16 (F2- Naphthalene) is a calculated parameter. The calculated value is F2 - Naphthalene.

C>16 - C34 (F3-PAH) is a calculated parameter. The calculated value is F3-PAH (PAH: sum of Phenanthrene, Benzo(a)anthracene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Benzo(a)pyrene, Fluoranthene, Dibenzo(a,h)anthracene, Indeno(1,2,3-c,d)pyrene and Pyrene).

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 + nC34 average.

Linearity is within 15%.

Extraction and holding times were met for this sample.

Sediment parameter is comment only based on visual inspection of the sample prior to extraction and is not an accredited test.

Analysis perfomed at AGAT Toronto (unless marked by *)

Certified By:

NPopukolog

DATE REPORTED: 2021-06-10

AGAT WORK ORDER: 21Z753765 PROJECT: Ottawa Hospital

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE:

2535742

ATTENTION TO: Laura Jones

SAMPLED BY:

O. Reg. 153(511) - PHCs F1/BTEX (Water)

DATE RECEIVED: 2021-05-28

	SA	AMPLE DESC	CRIPTION:	TRIP BLANK
		SAMF	LE TYPE:	Water
		DATE S	AMPLED:	
Parameter	Unit	G/S	RDL	2535742
Benzene	µg/L	44	0.20	<0.20
Toluene	µg/L	18000	0.20	<0.20
Ethylbenzene	μg/L	2300	0.10	<0.10
m & p-Xylene	µg/L		0.20	<0.20
o-Xylene	µg/L		0.10	<0.10
Xylenes (Total)	µg/L	4200	0.20	<0.20
F1 (C6-C10)	µg/L	750	25	<25
F1 (C6 to C10) minus BTEX	µg/L	750	25	<25
Surrogate	Unit	Acceptabl	e Limits	
Toluene-d8	% Recovery	60-1	40	95.0

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Non-Potable Ground Water - All Types of Property Uses - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

The C6-C10 fraction is calculated using Toluene response factor.

Total C6-C10 results are corrected for BTEX contributions.

Xylenes total is a calculated parameter. The calculated value is the sum of m&p-Xylene and o-Xylene.

C6-C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX.

The calculated parameters are non-accredited. The parameters that are components of the calculation are accredited.

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC6 and nC10 response factors are within 30% of Toluene response factor.

Extraction and holding times were met for this sample.

NA = Not Applicable

Analysis perfomed at AGAT Toronto (unless marked by *)

Certified By:

NPopukolof

DATE REPORTED: 2021-06-10

5835 COOPERS AVENUE

MISSISSAUGA, ONTARIO

http://www.agatlabs.com

CANADA L4Z 1Y2

TEL (905)712-5100 FAX (905)712-5122

AGAT WORK ORDER: 21Z753765 PROJECT: Ottawa Hospital

O. Reg. 153(511) - VOCs (Water)

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aqatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE:

ATTENTION TO: Laura Jones

SAMPLED BY:

				0111091	100(011)	1000 (11410	.,				
DATE RECEIVED: 2021-05-28								[DATE REPORTE	ED: 2021-06-10	
		SAMPLE DES	CRIPTION:	BH21-05		BH21-02		MW17-2	BH21-10	DUP-3	BH21-03
		SAM	PLE TYPE:	Water		Water		Water	Water	Water	Water
		DATES	SAMPLED:	2021-05-27 11:45		2021-05-27 10:00		2021-05-27 13:00	2021-05-27 12:15	2021-05-27 08:55	2021-05-27 08:50
Parameter	Unit	G/S	RDL	2535433	RDL	2535653	RDL	2535654	2535776	2535777	2535778
Dichlorodifluoromethane	µg/L	4400	0.20	<0.20	0.40	<0.40	0.20	<0.20	<0.20	<0.20	<0.20
Vinyl Chloride	µg/L	0.5	0.17	<0.17	0.34	<0.34	0.17	<0.17	<0.17	<0.17	<0.17
Bromomethane	µg/L	5.6	0.20	<0.20	0.40	<0.40	0.20	<0.20	<0.20	<0.20	<0.20
Trichlorofluoromethane	µg/L	2500	0.40	<0.40	0.80	<0.80	0.40	<0.40	<0.40	<0.40	<0.40
Acetone	µg/L	130000	1.0	<1.0	2.0	<2.0	1.0	<1.0	<1.0	<1.0	<1.0
1,1-Dichloroethylene	µg/L	1.6	0.30	<0.30	0.60	<0.60	0.30	<0.30	<0.30	<0.30	<0.30
Methylene Chloride	µg/L	610	0.30	<0.30	0.60	<0.60	0.30	<0.30	<0.30	<0.30	<0.30
trans- 1,2-Dichloroethylene	µg/L	1.6	0.20	<0.20	0.40	<0.40	0.20	<0.20	<0.20	<0.20	<0.20
Methyl tert-butyl ether	µg/L	190	0.20	<0.20	0.40	<0.40	0.20	<0.20	<0.20	<0.20	<0.20
1,1-Dichloroethane	µg/L	320	0.30	<0.30	0.60	<0.60	0.30	<0.30	<0.30	<0.30	<0.30
Methyl Ethyl Ketone	µg/L	470000	1.0	<1.0	2.0	<2.0	1.0	<1.0	<1.0	<1.0	<1.0
cis- 1,2-Dichloroethylene	µg/L	1.6	0.20	<0.20	0.40	<0.40	0.20	<0.20	<0.20	<0.20	<0.20
Chloroform	µg/L	2.4	0.20	2.09	0.40	<0.40	0.20	<0.20	1.98	0.87	1.06
1,2-Dichloroethane	µg/L	1.6	0.20	<0.20	0.40	<0.40	0.20	<0.20	<0.20	<0.20	<0.20
1,1,1-Trichloroethane	µg/L	640	0.30	<0.30	0.60	<0.60	0.30	<0.30	<0.30	<0.30	<0.30
Carbon Tetrachloride	µg/L	0.79	0.20	<0.20	0.40	<0.40	0.20	<0.20	<0.20	<0.20	<0.20
Benzene	µg/L	44	0.20	<0.20	0.40	<0.40	0.20	<0.20	<0.20	<0.20	<0.20
1,2-Dichloropropane	µg/L	16	0.20	<0.20	0.40	<0.40	0.20	<0.20	<0.20	<0.20	<0.20
Trichloroethylene	µg/L	1.6	0.20	<0.20	0.40	<0.40	0.20	<0.20	<0.20	<0.20	<0.20
Bromodichloromethane	µg/L	85000	0.20	<0.20	0.40	<0.40	0.20	<0.20	<0.20	<0.20	<0.20
Methyl Isobutyl Ketone	µg/L	140000	1.0	<1.0	2.0	<2.0	1.0	<1.0	<1.0	<1.0	<1.0
1,1,2-Trichloroethane	µg/L	4.7	0.20	<0.20	0.40	<0.40	0.20	<0.20	<0.20	<0.20	<0.20
Toluene	µg/L	18000	0.20	<0.20	0.40	<0.40	0.20	<0.20	<0.20	<0.20	<0.20
Dibromochloromethane	µg/L	82000	0.10	<0.10	0.20	<0.20	0.10	<0.10	<0.10	<0.10	<0.10
Ethylene Dibromide	µg/L	0.25	0.10	<0.10	0.20	<0.20	0.10	<0.10	<0.10	<0.10	<0.10
Tetrachloroethylene	µg/L	1.6	0.20	<0.20	0.40	<0.40	0.20	<0.20	<0.20	<0.20	<0.20
1,1,1,2-Tetrachloroethane	µg/L	3.3	0.10	<0.10	0.20	<0.20	0.10	<0.10	<0.10	<0.10	<0.10
Chlorobenzene	µg/L	630	0.10	<0.10	0.20	<0.20	0.10	<0.10	<0.10	<0.10	<0.10
Ethylbenzene	µg/L	2300	0.10	<0.10	0.20	<0.20	0.10	<0.10	<0.10	<0.10	<0.10

Certified By:

NPopukoloj

AGAT WORK ORDER: 21Z753765 PROJECT: Ottawa Hospital 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aqatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE:

ATTENTION TO: Laura Jones

SAMPLED BY:

				3	()		,				
DATE RECEIVED: 2021-05-28								[DATE REPORTI	ED: 2021-06-10	
	S	AMPLE DES	CRIPTION:	BH21-05		BH21-02		MW17-2	BH21-10	DUP-3	BH21-03
		SAM	PLE TYPE:	Water		Water		Water	Water	Water	Water
		DATE S		2021-05-27 11:45		2021-05-27 10:00		2021-05-27 13:00	2021-05-27 12:15	2021-05-27 08:55	2021-05-27 08:50
Parameter	Unit	G/S	RDL	2535433	RDL	2535653	RDL	2535654	2535776	2535777	2535778
m & p-Xylene	µg/L		0.20	<0.20	0.40	<0.40	0.20	<0.20	<0.20	<0.20	<0.20
Bromoform	µg/L	380	0.10	<0.10	0.20	<0.20	0.10	<0.10	<0.10	<0.10	<0.10
Styrene	µg/L	1300	0.10	<0.10	0.20	<0.20	0.10	<0.10	<0.10	<0.10	<0.10
1,1,2,2-Tetrachloroethane	µg/L	3.2	0.10	<0.10	0.20	<0.20	0.10	<0.10	<0.10	<0.10	<0.10
o-Xylene	µg/L		0.10	<0.10	0.20	<0.20	0.10	<0.10	<0.10	<0.10	<0.10
1,3-Dichlorobenzene	µg/L	9600	0.10	<0.10	0.20	<0.20	0.10	<0.10	<0.10	<0.10	<0.10
1,4-Dichlorobenzene	µg/L	8	0.10	<0.10	0.20	<0.20	0.10	<0.10	<0.10	<0.10	<0.10
1,2-Dichlorobenzene	µg/L	4600	0.10	<0.10	0.20	<0.20	0.10	<0.10	<0.10	<0.10	<0.10
1,3-Dichloropropene	µg/L	5.2	0.30	<0.30	0.60	<0.60	0.30	<0.30	<0.30	<0.30	<0.30
Xylenes (Total)	µg/L	4200	0.20	<0.20	0.40	<0.40	0.20	<0.20	<0.20	<0.20	<0.20
n-Hexane	µg/L	51	0.20	<0.20	0.40	<0.40	0.20	<0.20	<0.20	<0.20	<0.20
Surrogate	Unit	Acceptab	le Limits								
Toluene-d8	% Recovery	50-	140	100	2	99	1	93	95	100	94
4-Bromofluorobenzene	% Recovery	50-	140	86	2	88	1	82	84	86	84

O. Reg. 153(511) - VOCs (Water)

Certified By:

NPopukolof

AGAT WORK ORDER: 21Z753765 PROJECT: Ottawa Hospital

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE:

ATTENTION TO: Laura Jones

SAMPLED BY:

				O. Reg	. 153(511) - VOCs (Water)
DATE RECEIVED: 2021-05-28					DATE REPORTED: 2021-06-10
		SAMPLE DES SAMI	CRIPTION: PLE TYPE:	BH21-06 Water	
		DATE \$	SAMPLED:	2021-05-27 10:40	
Parameter	Unit	G / S	RDL	2535779	
Dichlorodifluoromethane	µg/L	4400	0.40	<0.40	
Vinyl Chloride	µg/L	0.5	0.34	<0.34	
Bromomethane	µg/L	5.6	0.40	<0.40	
Trichlorofluoromethane	µg/L	2500	0.80	<0.80	
Acetone	µg/L	130000	2.0	<2.0	
1,1-Dichloroethylene	µg/L	1.6	0.60	<0.60	
Methylene Chloride	µg/L	610	0.60	<0.60	
trans- 1,2-Dichloroethylene	µg/L	1.6	0.40	<0.40	
Methyl tert-butyl ether	µg/L	190	0.40	<0.40	
1,1-Dichloroethane	µg/L	320	0.60	<0.60	
Methyl Ethyl Ketone	µg/L	470000	2.0	<2.0	
cis- 1,2-Dichloroethylene	µg/L	1.6	0.40	<0.40	
Chloroform	µg/L	2.4	0.40	2.09	
1,2-Dichloroethane	µg/L	1.6	0.40	<0.40	
1,1,1-Trichloroethane	µg/L	640	0.60	<0.60	
Carbon Tetrachloride	µg/L	0.79	0.40	<0.40	
Benzene	µg/L	44	0.40	<0.40	
1,2-Dichloropropane	µg/L	16	0.40	<0.40	
Trichloroethylene	µg/L	1.6	0.40	<0.40	
Bromodichloromethane	µg/L	85000	0.40	<0.40	
Methyl Isobutyl Ketone	µg/L	140000	2.0	<2.0	
1,1,2-Trichloroethane	µg/L	4.7	0.40	<0.40	
Toluene	µg/L	18000	0.40	0.81	
Dibromochloromethane	µg/L	82000	0.20	<0.20	
Ethylene Dibromide	µg/L	0.25	0.20	<0.20	
Tetrachloroethylene	µg/L	1.6	0.40	<0.40	
1,1,1,2-Tetrachloroethane	µg/L	3.3	0.20	<0.20	
Chlorobenzene	µg/L	630	0.20	<0.20	
Ethylbenzene	µg/L	2300	0.20	<0.20	

Certified By:

NPopukoloj

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

AGAT WORK ORDER: 21Z753765 PROJECT: Ottawa Hospital

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE:

ATTENTION TO: Laura Jones

SAMPLED BY:

				O. Reg. 1	53(511) - VOCs (Water)
DATE RECEIVED: 2021-05-28					DATE REPORTED: 2021-06-10
	Si		CRIPTION: PLE TYPE: SAMPLED:	BH21-06 Water 2021-05-27 10:40	
Parameter	Unit	G/S	RDL	2535779	
m & p-Xylene	µg/L		0.40	<0.40	
Bromoform	µg/L	380	0.20	<0.20	
Styrene	µg/L	1300	0.20	<0.20	
1,1,2,2-Tetrachloroethane	µg/L	3.2	0.20	<0.20	
o-Xylene	µg/L		0.20	<0.20	
1,3-Dichlorobenzene	µg/L	9600	0.20	<0.20	
1,4-Dichlorobenzene	µg/L	8	0.20	<0.20	
1,2-Dichlorobenzene	µg/L	4600	0.20	<0.20	
1,3-Dichloropropene	µg/L	5.2	0.60	<0.60	
Xylenes (Total)	µg/L	4200	0.40	<0.40	
n-Hexane	µg/L	51	0.40	<0.40	
Surrogate	Unit	Acceptat	ole Limits		
Toluene-d8	% Recovery	50-	140	96	
4-Bromofluorobenzene	% Recovery	50-	140	85	
1					

NPopukolof

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

AGAT WORK ORDER: 21Z753765

PROJECT: Ottawa Hospital

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE:

ATTENTION TO: Laura Jones

SAMPLED BY:

O. Reg. 153(511) - VOCs (Water)

DATE RECEIV	ED: 2021-05-28	DATE REPORTED: 2021-06-10
Comments:	RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Sta Types of Property Uses - Coarse Textured Soils Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended us	
2535433	Xylenes total is a calculated parameter. The calculated value is the sum of m&p-Xylene and o-Xylene. 1,3-Dichloropropene total is a calculated parameter. The calculated value is the sum of Cis-1,3-Dichloropropene and Tra The calculated parameter is non-accredited. The parameters that are components of the calculation are accredited.	ins-1,3-Dichloropropene.
2535653	Dilution factor=2 The sample was diluted because it was foamy. The reporting detection limit has been corrected for the dilution factor use Xylenes total is a calculated parameter. The calculated value is the sum of m&p-Xylene and o-Xylene. 1,3-Dichloropropene total is a calculated parameter. The calculated value is the sum of Cis-1,3-Dichloropropene and Tra The calculated parameter is non-accredited. The parameters that are components of the calculation are accredited.	
2535654-253577	3 Xylenes total is a calculated parameter. The calculated value is the sum of m&p-Xylene and o-Xylene. 1,3-Dichloropropene total is a calculated parameter. The calculated value is the sum of Cis-1,3-Dichloropropene and Tra The calculated parameter is non-accredited. The parameters that are components of the calculation are accredited.	ins-1,3-Dichloropropene.
2535779	Dilution factor=2 The sample was diluted because it was foamy. The reporting detection limit has been corrected for the dilution factor use Xylenes total is a calculated parameter. The calculated value is the sum of m&p-Xylene and o-Xylene. 1,3-Dichloropropene total is a calculated parameter. The calculated value is the sum of Cis-1,3-Dichloropropene and Tra The calculated parameter is non-accredited. The parameters that are components of the calculation are accredited.	

Analysis perfomed at AGAT Toronto (unless marked by *)

Certified By:

NPopukolof

5835 COOPERS AVENUE

MISSISSAUGA, ONTARIO

http://www.agatlabs.com

CANADA L4Z 1Y2

TEL (905)712-5100 FAX (905)712-5122

AGAT WORK ORDER: 21Z753765 PROJECT: Ottawa Hospital

O Reg 153(511) - All Metals (Water)

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aqatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE:

ATTENTION TO: Laura Jones

SAMPLED BY:

								-		-D: 0004 00 40	
DATE RECEIVED: 2021-05-28								L	DATE REPORTE	ED: 2021-06-10	
		SAMPLE DES	CRIPTION:	BH21-05	BH21-02	MW17-2	BH21-10	DUP-3	BH21-03	BH21-06	
		SAM	PLE TYPE:	Water							
			SAMPLED:	2021-05-27 11:45	2021-05-27 10:00	2021-05-27 13:00	2021-05-27 12:15	2021-05-27 08:55	2021-05-27 08:50	2021-05-27 10:40	
Parameter	Unit	G/S	RDL	2535433	2535653	2535654	2535776	2535777	2535778	2535779	
Dissolved Antimony	µg/L	20000	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	
Dissolved Arsenic	µg/L	1900	1.0	1.6	17.9	3.9	<1.0	1.1	3.6	<1.0	
Dissolved Barium	µg/L	29000	2.0	101	234	51.1	63.7	150	154	187	
Dissolved Beryllium	µg/L	67	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
Dissolved Boron	µg/L	45000	10.0	42.9	75.0	85.3	79.7	48.2	58.5	113	
Dissolved Cadmium	µg/L	2.7	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
Dissolved Chromium	µg/L	810	2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	
Dissolved Cobalt	µg/L	66	0.50	0.64	<0.50	1.07	0.78	<0.50	0.58	1.60	
Dissolved Copper	µg/L	87	1.0	2.2	1.2	2.0	1.2	2.7	2.2	4.4	
Dissolved Lead	µg/L	25	0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	
Dissolved Molybdenum	µg/L	9200	0.50	4.92	10.5	1.90	5.66	1.37	1.70	1.83	
Dissolved Nickel	µg/L	490	3.0	3.7	4.2	3.9	3.7	<3.0	<3.0	12.6	
Dissolved Selenium	µg/L	63	1.0	2.1	<1.0	3.0	2.7	4.2	3.9	3.5	
Dissolved Silver	µg/L	1.5	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
Dissolved Thallium	µg/L	510	0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	
Dissolved Uranium	µg/L	420	0.50	3.06	2.46	2.90	2.80	1.82	1.92	1.87	
Dissolved Vanadium	µg/L	250	0.40	1.30	0.42	<0.40	<0.40	0.51	<0.40	0.79	
Dissolved Zinc	µg/L	1100	5.0	10.3	18.1	236	<5.0	<5.0	<5.0	6.3	
Mercury	µg/L	0.29	0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	
Chromium VI	µg/L	140	2	<2	<2	<2	<2	<2	<2	<2	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Non-Potable Ground Water - All Types of Property Uses - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

2535433-2535779 Metals analysis completed on a filtered sample.

Analysis perfomed at AGAT Toronto (unless marked by *)

AGAT WORK ORDER: 21Z753765 PROJECT: Ottawa Hospital 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aqatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE:

ATTENTION TO: Laura Jones

SAMPLED BY:

DATE RECEIVED: 2021-05-28								[DATE REPORTE	ED: 2021-06-10	
	SAMPLE DESCRIPTION: SAMPLE TYPE:			BH21-05		BH21-02		MW17-2	BH21-10	DUP-3	BH21-03
				Water	Water			Water	Water	Water	Water
		DATE S	AMPLED:	2021-05-27 11:45		2021-05-27 10:00		2021-05-27 13:00	2021-05-27 12:15	2021-05-27 08:55	2021-05-27 08:50
Parameter	Unit	G/S	RDL	2535433	RDL	2535653	RDL	2535654	2535776	2535777	2535778
Dissolved Sodium	µg/L	2300000	100	29500	500	2180000	100	42400	29000	217000	217000
Chloride	µg/L	2300000	100	5710	244	3390000	100	19000	5440	173000	103000
			CRIPTION: PLE TYPE: AMPLED:	BH21-06 Water 2021-05-27							
Parameter	Unit	G/S	RDL	10:40 2535779							
Dissolved Sodium	µg/L	2300000	100	85900							
Chloride	µg/L	2300000	100	18400							

O. Reg. 153(511) - ORPs (Water)

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Non-Potable Ground Water - All Types of Property Uses - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

2535433-2535779 Dilution required, RDL has been increased accordingly.

Analysis perfomed at AGAT Toronto (unless marked by *)

	acat a construction of the second sec	Laboratories		AGAT WORK ORDER: 21Z753765 PROJECT: Ottawa Hospital						
CLIENT NAMI	E: GOLDER ASSOCIATES	LTD		ATTENTION TO: Laura	Jones	mp./	/www.agatlabs.com			
SAMPLEID SAMPLE TITLE		GUIDELINE	ANALYSIS PACKAGE	PARAMETER	UNIT	GUIDEVALUE	RESULT			
2535653	BH21-02	ON T3 NPGW CT	O. Reg. 153(511) - ORPs (Water)	Chloride	µg/L	2300000	3390000			

Quality Assurance

CLIENT NAME: GOLDER ASSOCIATES LTD

PROJECT: Ottawa Hospital

SAMPLING SITE:

AGAT WORK ORDER: 21Z753765

ATTENTION TO: Laura Jones

SAMPLED BY:

Trace Organics Analysis DUPLICATE REFERENCE MATERIAL METHOD BLANK SPIKE RPT Date: Jun 10, 2021 MATRIX SPIKE Method Acceptable Acceptable Acceptable Sample Maasurad Blank Limits Limits Limits PARAMETER Batch Dup #1 Dup #2 RPD Recovery Recovery Value Id Lower Upper Lower Upper Lower Upper O. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Water) F1 (C6-C10) 93% 60% 140% 2517770 <25 140% 107% 140% 107% 60% <25 NA < 25 60% F2 (C10 to C16) 2538374 75% 140% 390 340 NA < 100 102% 60% 140% 60% 140% 90% 60% F3 (C16 to C34) 60% 2538374 < 100 < 100 NA < 100 99% 60% 140% 72% 140% 88% 60% 140% F4 (C34 to C50) 2538374 < 100 < 100 NA < 100 102% 60% 140% 74% 60% 140% 103% 60% 140% O. Reg. 153(511) - PAHs (Water) 50% Naphthalene 2535778 2535778 <0.20 <0.20 NA < 0.20 88% 50% 140% 101% 140% 106% 50% 140% Acenaphthylene 140% 2535778 2535778 < 0.20 < 0.20 NA < 0.20110% 50% 140% 102% 50% 140% 103% 50% 140% Acenaphthene 2535778 2535778 <0.20 <0.20 NA < 0.20 112% 50% 140% 93% 50% 140% 96% 50% Fluorene 2535778 2535778 < 0.20 < 0.20 NA < 0.20 116% 50% 140% 97% 50% 140% 101% 50% 140% Phenanthrene 2535778 2535778 <0.10 <0.10 NA < 0.10 109% 50% 140% 98% 50% 140% 98% 50% 140% Anthracene 2535778 2535778 <0.10 <0.10 NA < 0.10 98% 50% 140% 86% 140% 87% 50% 140% 50% Fluoranthene 2535778 2535778 <0.20 <0.20 NA < 0.2050% 140% 101% 140% 100% 50% 140% 114% 50% Pyrene 2535778 2535778 <0.20 <0.20 NA < 0.20120% 50% 140% 105% 50% 140% 102% 50% 140% Benzo(a)anthracene 2535778 2535778 <0.20 <0.20 NΑ < 0.20 79% 50% 140% 76% 50% 140% 75% 50% 140% 2535778 2535778 140% 140% Chrysene < 0.10 < 0.10 NA < 0.10 107% 50% 140% 50% 140% 87% 50% < 0.10 140% Benzo(b)fluoranthene 2535778 2535778 < 0.10 <0.10 NA 98% 50% 140% 93% 50% 140% 81% 50% Benzo(k)fluoranthene 2535778 2535778 <0.10 <0.10 NA < 0.10 82% 50% 140% 111% 50% 140% 94% 50% 140% 2535778 2535778 < 0.01 < 0.01 NA < 0.01 107% 50% 140% 90% 50% 140% 88% 50% 140% Benzo(a)pyrene 2535778 2535778 NA < 0.20 85% 50% 140% 78% 77% 50% 140% Indeno(1,2,3-cd)pyrene < 0.20 < 0.20 50% 140% Dibenz(a,h)anthracene 2535778 2535778 <0.20 <0.20 NA < 0.20 77% 50% 140% 82% 50% 140% 85% 50% 140% Benzo(g,h,i)perylene 2535778 2535778 <0.20 <0.20 NA < 0.20 118% 50% 140% 112% 50% 140% 110% 50% 140% O. Reg. 153(511) - VOCs (Water) Dichlorodifluoromethane 2529730 <0.20 <0.20 NA < 0.20 81% 50% 140% 89% 50% 140% 97% 50% 140% Vinyl Chloride 2529730 <0.17 <0.17 NA < 0.17 101% 50% 140% 104% 50% 140% 83% 50% 140% Bromomethane 93% 140% 2529730 <0.20 <0.20 NA < 0.20 50% 140% 119% 50% 140% 105% 50% 140% Trichlorofluoromethane < 0.40 95% 50% 98% 140% 109% 50% 2529730 < 0.40< 0.40NA 140% 50% 2529730 103% 50% 85% 140% 89% 50% 140% Acetone <1.0 NA < 1.0 140% 50% <1.0 1,1-Dichloroethylene < 0.30 2529730 < 0.30 115% 130% 50% 140% NA < 0.30 113% 50% 140% 60% 82% Methylene Chloride 140% 2529730 < 0.30 < 0.30 NA < 0.30 117% 50% 140% 90% 60% 130% 98% 50% trans- 1,2-Dichloroethylene 2529730 <0.20 <0.20 NA < 0.20 82% 50% 140% 115% 60% 130% 84% 50% 140% Methyl tert-butyl ether 2529730 < 0.20 <0.20 NA < 0.20 80% 50% 140% 96% 60% 130% 107% 50% 140% 1,1-Dichloroethane 2529730 93% 50% 140% 116% 130% 107% 50% 140% < 0.30 < 0.30 NA < 0.30 60% Methyl Ethyl Ketone 2529730 <1.0 <1.0 NA < 1.0 88% 50% 140% 93% 50% 140% 88% 50% 140% cis- 1,2-Dichloroethylene 2529730 <0.20 <0.20 NA < 0.20 86% 50% 140% 111% 60% 130% 106% 50% 140% Chloroform 2529730 <0.20 <0.20 NA < 0.20 103% 50% 140% 98% 60% 130% 108% 50% 140% 1,2-Dichloroethane 2529730 <0.20 130% 94% 140% < 0.20 NA < 0.20 115% 50% 140% 112% 60% 50% 2529730 <0.30 130% 109% 50% 140% 1.1.1-Trichloroethane < 0.30 NA < 0.30 101% 50% 140% 113% 60% Carbon Tetrachloride 2529730 < 0.20 50% 140% 104% 60% 130% 98% 50% 140% <0.20 NA < 0.20117%

AGAT QUALITY ASSURANCE REPORT (V1)

Page 13 of 20

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Quality Assurance

CLIENT NAME: GOLDER ASSOCIATES LTD

PROJECT: Ottawa Hospital

SAMPLING SITE:

AGAT WORK ORDER: 21Z753765 ATTENTION TO: Laura Jones SAMPLED BY:

Trace Organics Analysis (Continued)

5						,	`			,					
RPT Date: Jun 10, 2021			C	DUPLICAT	E		REFERE	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	iKE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured Value		eptable mits	Recovery	1 1 1 1	ptable nits	Recovery	1 1 1 10	eptable mits
		lu	-				value	Lower	Upper		Lower	Upper		Lower	Upper
Benzene	2529730		0.51	0.55	NA	< 0.20	106%	50%	140%	101%	60%	130%	87%	50%	140%
1,2-Dichloropropane	2529730		<0.20	<0.20	NA	< 0.20	95%	50%	140%	83%	60%	130%	83%	50%	140%
Trichloroethylene	2529730		<0.20	<0.20	NA	< 0.20	106%	50%	140%	103%	60%	130%	54%	50%	140%
Bromodichloromethane	2529730		<0.20	<0.20	NA	< 0.20	105%	50%	140%	98%	60%	130%	103%	50%	140%
Methyl Isobutyl Ketone	2529730		<1.0	<1.0	NA	< 1.0	97%	50%	140%	109%	50%	140%	111%	50%	140%
1,1,2-Trichloroethane	2529730		<0.20	<0.20	NA	< 0.20	107%	50%	140%	92%	60%	130%	88%	50%	140%
Toluene	2529730		<0.20	<0.20	NA	< 0.20	100%	50%	140%	96%	60%	130%	103%	50%	140%
Dibromochloromethane	2529730		<0.10	<0.10	NA	< 0.10	115%	50%	140%	98%	60%	130%	117%	50%	140%
Ethylene Dibromide	2529730		<0.10	<0.10	NA	< 0.10	96%	50%	140%	94%	60%	130%	81%	50%	140%
Tetrachloroethylene	2529730		<0.20	<0.20	NA	< 0.20	119%	50%	140%	97%	60%	130%	95%	50%	140%
1,1,1,2-Tetrachloroethane	2529730		<0.10	<0.10	NA	< 0.10	115%	50%	140%	94%	60%	130%	79%	50%	140%
Chlorobenzene	2529730		<0.10	<0.10	NA	< 0.10	102%	50%	140%	92%	60%	130%	94%	50%	140%
Ethylbenzene	2529730		<0.10	<0.10	NA	< 0.10	103%	50%	140%	115%	60%	130%	119%	50%	140%
m & p-Xylene	2529730		<0.20	<0.20	NA	< 0.20	102%	50%	140%	111%	60%	130%	99%	50%	140%
Bromoform	2529730		<0.10	<0.10	NA	< 0.10	78%	50%	140%	98%	60%	130%	97%	50%	140%
Styrene	2529730		<0.10	<0.10	NA	< 0.10	97%	50%	140%	86%	60%	130%	85%	50%	140%
1,1,2,2-Tetrachloroethane	2529730		<0.10	<0.10	NA	< 0.10	104%	50%	140%	108%	60%	130%	80%	50%	140%
o-Xylene	2529730		<0.10	<0.10	NA	< 0.10	95%	50%	140%	86%	60%	130%	82%	50%	140%
1,3-Dichlorobenzene	2529730		<0.10	<0.10	NA	< 0.10	110%	50%	140%	95%	60%	130%	95%	50%	140%
1,4-Dichlorobenzene	2529730		<0.10	<0.10	NA	< 0.10	87%	50%	140%	98%	60%	130%	107%	50%	140%
1,2-Dichlorobenzene	2529730		<0.10	<0.10	NA	< 0.10	105%	50%	140%	92%	60%	130%	86%	50%	140%
n-Hexane	2529730		<0.20	<0.20	NA	< 0.20	83%	50%	140%	99%	60%	130%	111%	50%	140%

Comments: When the average of the sample and duplicate results is less than 5x the RDL, the Relative Percent Difference (RPD) will be indicated as Not Applicable (NA).

O. Reg. 153(511) - PHCs F1	I/BTEX (Water)													
Benzene	2517770	0.40	0.35	NA	< 0.20	119%	60%	140%	108%	60%	140%	86%	60%	140%
Toluene	2517770	0.37	0.30	NA	< 0.20	111%	60%	140%	103%	60%	140%	80%	60%	140%
Ethylbenzene	2517770	<0.10	<0.10	NA	< 0.10	100%	60%	140%	99%	60%	140%	80%	60%	140%
m & p-Xylene	2517770	<0.20	<0.20	NA	< 0.20	99%	60%	140%	92%	60%	140%	103%	60%	140%
o-Xylene	2517770	<0.10	<0.10	NA	< 0.10	88%	60%	140%	104%	60%	140%	90%	60%	140%
F4 (00 040)	0547770	05	05		05	000/	000/	4.400/	1070/	000/	4.400/	4070/	000/	4 400/
F1 (C6-C10)	2517770	<25	<25	NA	< 25	93%	60%	140%	107%	60%	140%	107%	60%	140%

Certified By:

NPopukot

AGAT QUALITY ASSURANCE REPORT (V1)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Page 14 of 20

Quality Assurance

. .

. . .

CLIENT NAME: GOLDER ASSOCIATES LTD

PROJECT: Ottawa Hospital

SAMPLING SITE:

AGAT WORK ORDER: 21Z753765

ATTENTION TO: Laura Jones

SAMPLED BY:

RPT Date: Jun 10, 2021			C	UPLICATI	E		REFEREN	NCE MA	TERIAL	METHOD BLANK SPIKE			MATRIX SPIKE		
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured Value		ptable nits	Recovery		ptable nits	Recovery		ptable nits
		iù					value	Lower	Upper		Lower	Upper		Lower	Uppe
O. Reg. 153(511) - All Metals	(Water)														
Dissolved Antimony	2535433 2	2535433	<1.0	<1.0	NA	< 1.0	101%	70%	130%	99%	80%	120%	103%	70%	130%
Dissolved Arsenic	2535433 2	2535433	1.6	1.1	NA	< 1.0	95%	70%	130%	107%	80%	120%	112%	70%	130%
Dissolved Barium	2535433 2	2535433	101	101	0.0%	< 2.0	99%	70%	130%	98%	80%	120%	106%	70%	130%
Dissolved Beryllium	2535433 2	2535433	<0.5	<0.5	NA	< 0.5	102%	70%	130%	104%	80%	120%	111%	70%	130%
Dissolved Boron	2535433 2	2535433	42.9	47.0	NA	< 10.0	97%	70%	130%	101%	80%	120%	101%	70%	130%
Dissolved Cadmium	2535433 2	2535433	<0.20	<0.20	NA	< 0.20	100%	70%	130%	101%	80%	120%	99%	70%	130%
Dissolved Chromium	2535433 2	2535433	<2.0	<2.0	NA	< 2.0	101%	70%	130%	100%	80%	120%	104%	70%	130%
Dissolved Cobalt	2535433 2	2535433	0.64	<0.50	NA	< 0.50	95%	70%	130%	99%	80%	120%	102%	70%	130%
Dissolved Copper	2535433 2	2535433	2.2	2.7	NA	< 1.0	98%	70%	130%	100%	80%	120%	97%	70%	130%
Dissolved Lead	2535433 2	2535433	<0.50	<0.50	NA	< 0.50	95%	70%	130%	97%	80%	120%	101%	70%	130%
Dissolved Molybdenum	2535433 2	2535433	4.92	5.42	9.7%	< 0.50	96%	70%	130%	100%	80%	120%	105%	70%	130%
Dissolved Nickel	2535433 2	2535433	3.7	3.9	NA	< 3.0	95%	70%	130%	103%	80%	120%	96%	70%	130%
Dissolved Selenium	2535433 2	2535433	2.1	3.7	NA	< 1.0	100%	70%	130%	110%	80%	120%	107%	70%	130%
Dissolved Silver	2535433 2	2535433	0.28	<0.20	NA	< 0.20	94%	70%	130%	100%	80%	120%	97%	70%	130%
Dissolved Thallium	2535433 2	2535433	<0.30	<0.30	NA	< 0.30	97%	70%	130%	97%	80%	120%	101%	70%	130%
Dissolved Uranium	2535433 2	2535433	3.06	3.07	0.3%	< 0.50	100%	70%	130%	98%	80%	120%	105%	70%	130%
Dissolved Vanadium	2535433 2	2535433	1.30	0.94	NA	< 0.40	95%	70%	130%	103%	80%	120%	109%	70%	130%
Dissolved Zinc	2535433 2	2535433	10.3	6.5	NA	< 5.0	94%	70%	130%	106%	80%	120%	98%	70%	130%
Mercury	2530159		<0.02	<0.02	NA	< 0.02	99%	70%	130%	102%	80%	120%	100%	70%	130%
Chromium VI	2522698		<2	<2	NA	< 2	103%	70%	130%	106%	80%	120%	105%	70%	130%

Comments: NA signifies Not Applicable.

Duplicate NA: results are under 5X the RDL and will not be calculated.

O. Reg. 153(511) - ORPs (Water)														
Dissolved Sodium	2535433 2535433	29500	29500	0.0%	< 50	100%	70%	130%	98%	80%	120%	96%	70%	130%
Chloride	2529726	511000	513000	0.4%	< 100	94%	70%	130%	103%	80%	120%	NA	70%	130%

Comments: NA signifies Not Applicable.

Matrix spike NA: Spike level < native concentration. Matrix spike acceptance limits do not apply and are not calculated.

Certified By:

Page 15 of 20

AGAT QUALITY ASSURANCE REPORT (V1)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Method Summary

CLIENT NAME: GOLDER ASSOCIATES LTD

PROJECT: Ottawa Hospital

AGAT WORK ORDER: 21Z753765

ATTENTION TO: Laura Jones

		ATTENTION TO:			
SAMPLING SITE:		SAMPLED BY:			
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE		
Trace Organics Analysis					
Naphthalene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS		
Acenaphthylene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS		
Acenaphthene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS		
Fluorene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS		
Phenanthrene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS		
Anthracene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS		
Fluoranthene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS		
Pyrene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS		
Benzo(a)anthracene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS		
Chrysene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS		
Benzo(b)fluoranthene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS		
Benzo(k)fluoranthene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS		
Benzo(a)pyrene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS		
Indeno(1,2,3-cd)pyrene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS		
Dibenz(a,h)anthracene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS		
Benzo(g,h,i)perylene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS		
2-and 1-methyl Naphthalene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS		
Naphthalene-d8	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS		
Acridine-d9	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS		
Terphenyl-d14	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS		
Sediment					
F1 (C6-C10)	VOL-91-5010	modified from MOE PHC-E3421	(P&T)GC/FID		
F1 (C6 to C10) minus BTEX	VOL-91-5010	modified from MOE PHC-E3421	P&T GC/FID		
Toluene-d8	VOL-91-5010	modified from MOE PHC-E3421	(P&T)GC/MS		
F2 (C10 to C16)	VOL-91-5010	modified from MOE PHC-E3421	GC/FID		
F2 (C10 to C16) minus Naphthalene	VOL-91-5010	modified from MOE PHC-E3421	GC/FID		
F3 (C16 to C34)	VOL-91-5010	modified from MOE PHC-E3421	GC/FID		
F3 (C16 to C34) minus PAHs	VOL-91-5010	modified from MOE PHC-E3421	GC/FID		
F4 (C34 to C50)	VOL-91-5010	modified from MOE PHC-E3421	GC/FID		
Gravimetric Heavy Hydrocarbons	VOL-91-5010	modified from MOE PHC-E3421	BALANCE		
Terphenyl	VOL-91-5010	modified from MOE PHC-E3421	GC/FID		
Benzene	VOL-91-5010	modified from EPA SW-846 5030C & 8260D	(P&T)GC/MS		

Method Summary

CLIENT NAME: GOLDER ASSOCIATES LTD

PROJECT: Ottawa Hospital

AGAT WORK ORDER: 21Z753765

ATTENTION TO: Laura Jones

AGAT S.O.P		ANALYTICAL TECHNIQUE
VOL-91-5010	modified from EPA SW-846 5030C & 8260D	(P&T)GC/MS
VOL-91-5010	modified from EPA SW-846 5030C & 8260D	(P&T)GC/MS
VOL-91-5010	modified from EPA SW-846 5030C & 8260D	(P&T)GC/MS
VOL-91-5010	modified from EPA SW-846 5030C & 8260D	(P&T)GC/MS
VOL-91-5010	modified from EPA SW-846 5030C & 8260D	(P&T)GC/MS
VOL-91-5010	modified from MOE E3421	(P&T)GC/FID
VOL-91-5010	modified from MOE E3421	(P&T)GC/FID
VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
	 VOL-91-5010 VOL-91-5010 VOL-91-5010 VOL-91-5010 VOL-91-5010 VOL-91-5001 	VOL-91-5010 modified from EPA SW-846 5030C & 8260D VOL-91-5010 modified from MOE E3421 VOL-91-5001 modified from MOE E3421 VOL-91-5001 modified from EPA 5030B & EPA 8260D VOL-91-50

Method Summary

CLIENT NAME: GOLDER ASSOCIATES LTD

PROJECT: Ottawa Hospital

AGAT WORK ORDER: 21Z753765 ATTENTION TO: Laura Jones

SAMPLING SITE:		SAMPLED BY:	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Toluene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Dibromochloromethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Ethylene Dibromide	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Tetrachloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,1,1,2-Tetrachloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Chlorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Ethylbenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
m & p-Xylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Bromoform	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Styrene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,1,2,2-Tetrachloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
o-Xylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,3-Dichlorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,4-Dichlorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,2-Dichlorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,3-Dichloropropene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Xylenes (Total)	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
n-Hexane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Toluene-d8	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
4-Bromofluorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS

Method Summary

CLIENT NAME: GOLDER ASSOCIATES LTD

PROJECT: Ottawa Hospital

AGAT WORK ORDER: 21Z753765

ATTENTION TO: Laura Jones

· · · · · · · · · · · · · · · · · · ·			
SAMPLING SITE:		SAMPLED BY:	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Water Analysis	·	L	
Dissolved Antimony	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Arsenic	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Barium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Beryllium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Boron	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Cadmium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Chromium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Cobalt	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Copper	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Lead	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Molybdenum	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Nickel	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Selenium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Silver	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Thallium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Uranium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Vanadium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Zinc	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Mercury	MET-93-6100	modified from EPA 245.2 and SM 31 B	¹² CVAAS
Chromium VI	INOR-93-6034	modified from SM 3500-CR B	LACHAT FIA
Dissolved Sodium	MET-93-6105	modified from EPA 6010D	ICP/OES
Chloride	INOR-93-6004	modified from SM 4110 B	ION CHROMATOGRAPH

L·T → 10 GGGGT Laborate Chain of Custody Record If this is a Drinking Water sample, please i	Ories 8.1 8.4 9.6 Ph: 90	the second second	Work Order #: 212753765 Cooler Quantity 140 · ONICE · Arrival Temperatures: 291249.6
Report Information: Company: Golder Associates Hd. Contact: Golder Jones Address: ABL Pobertson Ad ottawar Phone: Gal Equis & Golder com Reports to be sent de: Lavra Jones & Golder com 1. Email: Indethew & Golder com 2. Email: Indethew & Golder com	Regulatory Requirements: (Pease check all applicable boxes) Regulation 153/04 Table Ind/Com Agriculture Soil Texture (check one) Coarse Fine	Sewer Use Sanitary Storm Region Prov. Water Quality Objectives (PWQO) Other Indicute One	Custody Seal Intact: Yes No No Notes: Turnaround Time (TAT) Required: Regular TAT (Note Analysis) Rush TAT (Rush Sarcharges Apply) 3 Business 2 Business Days Days Days Day OR Date Required (Rush Surcharges May Apply):
Project Information: Project: OHAWA HOSPITAL Site Location: Sampled By: GUMOR MATHEM	Is this submission for a Record of Site Condition? Yes INO	Report Guideline on Certificate of Analysis Yes No	Please provide prior notification for rush TAT *TAT is exclusive of weekends and statutory holidays For 'Same Day' analysis, please contact your AGAT CPM
AGAT ID #: 00 PO: 2145149-2000 Prease note: If quotation number is not provided, elient will be billed full price for analysis. Invoice Information: Bill To Same: Yes No Company: Contact: Address: Email:	Sample Matrix Legend B Biota GW Ground Water O Oil P Paint S Soil SD Sediment SW Surface Water	Field Filtered - Metala, Hg, CMI, DOC Is & Inorganics Is - PCCNVX Hg, CHWSB Is - PCCNVX Hg, CHWSB Is - PCCNVX Hg, CHWSB F4G If required C Yes CNO ZE F4G If required C Yes CNO PCBs C Aroctor	Landfill Disposal Characterization TLD: TCD: Limei Lucca Laste Disep-Lipces Excess Solis SPLP Rainwater Leach Excess Solis SPLP Rainwater Leach Princess Solis SPLP Rainwater Leach Princess Solis SPLP Rainwater Leach Princess Solis SPLP Rainwater Leach Pricess Solis SPLP Rain
Sample Identification Sampled Sampled Containers N $BH, 21-0.5$ 2710512 $11-45$ 17 $(27)0512$ $11-45$ 17 $(27)0512$ 10000 17 $(27)0512$ 10000 17 $(27)0512$ 10000 17 $(27)000$ $(27)000$ $(27)000$ $(27)000$ $(27)000$ $(27)000$ $(27)000$ $(27)0000$ $(27)0000$ $(27)00000$ $(27)000000$ $(27)00000000$ $(27)000000000000000000000000000000000000$	ample Comments/ Matrix Special Instructions	A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A	
Samples Relinquished By (Print, Name and Sign): AM Sumples Relinquished By (Print, Name and Sign): Mathew Sumples Relinquished By (Print, Name and Part): Mathew Sumples Relinquished By (Print, Name and Part): Mathew Samples Relinquished By (Print, Name and Part): Mathew Samples Relinquished By (Print, Name and Part): Time Samples Relinquished By (Print, Name and Part): Date	20 Samples Received By (Plint Name and Sign) Samples Received by (Plint Name and Sign) Must Part Samples Received by Plint Name and Sign) Samples Received By (Plint Name and Sign)	let 21/5 a # May 2	128 19430 9 11:30 Page of V 11:30 N°: T 1 1 8 6 8 4

1.2

CLIENT NAME: GOLDER ASSOCIATES LTD 1931 ROBERTSON ROAD OTTAWA, ON K2H5B7 (613) 592-9600 ATTENTION TO: Laura Jones PROJECT: 21451149 AGAT WORK ORDER: 21Z764993 SOIL ANALYSIS REVIEWED BY: Nivine Basily, Inorganics Report Writer TRACE ORGANICS REVIEWED BY: Neli Popnikolova, Senior Chemist DATE REPORTED: Jun 29, 2021 PAGES (INCLUDING COVER): 13 VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

*Notes

Disclaimer:

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may
 incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 30 days after receipt unless a Long Term Storage Agreement is signed and returned. Some specialty analysis may be exempt, please contact your Client Project Manager for details.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of
 merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines
 contained in this document.
- All reportable information as specified by ISO/IEC 17025:2017 is available from AGAT Laboratories upon request.

AGAT Laboratories (V1)

Iember of: Association of Professional Engineers and Geoscientists of Alberta	
(APEGA)	
Western Enviro-Agricultural Laboratory Association (WEALA)	

(APEGA) Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA) AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.

Page 1 of 13

AGAT WORK ORDER: 21Z764993 PROJECT: 21451149

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE:

ATTENTION TO: Laura Jones

SAMPLED BY:

O. Reg. 153(511) - All Metals (Soil)

DATE RECEIVED: 2021-06-22

	9	SAMPLE DESCRIP	TION: 21-01 SA2	
		SAMPLE 1 DATE SAMF	YPE: Soil	
Parameter		-	DL 2644793	
Antimony	µg/g	40 0	.8 1.5	
Arsenic	µg/g	18	1 7	
Barium	µg/g	670 2	.0 211	
Beryllium	µg/g	8 C	.4 <0.4	
Boron	µg/g	120	5 11	
Boron (Hot Water Soluble)	µg/g	2 0.	10 0.28	
Cadmium	µg/g	1.9 0	.5 <0.5	
Chromium	µg/g	160	5 16	
Cobalt	µg/g	80 0	.5 6.7	
Copper	µg/g	230 1	.0 11.9	
_ead	µg/g	120	1 83	
Molybdenum	µg/g	40 0	.5 3.8	
lickel	µg/g	270	1 11	
Selenium	µg/g	5.5 0	.8 <0.8	
Silver	µg/g	40 0	.5 <0.5	
Fhallium	µg/g	3.3 0	.5 <0.5	
Jranium	µg/g	33 0.	50 0.63	
/anadium	µg/g	86 C	.4 20.2	
linc	µg/g	340	5 136	
Chromium, Hexavalent	µg/g	8 C	.2 <0.2	
Mercury	µg/g	3.9 0.	10 0.10	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 7: Generic Site Condition Standards for Shallow Soils in a Non-Potable Ground Water Condition - Soil - Industrial/Commercial/Community Property Use - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation. Analysis performed at AGAT Toronto (unless marked by *)

DATE REPORTED: 2021-06-29

Certified By:

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

AGAT WORK ORDER: 21Z764993 PROJECT: 21451149

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE:

ATTENTION TO: Laura Jones

SAMPLED BY:

O. Reg. 153(511) - ORPs (Soil)

DATE RECEIVED: 2021-06-22

	S	AMPLE DES	CRIPTION:	21-01 SA2
		SAM	PLE TYPE:	Soil
		DATE	SAMPLED:	2021-06-11
Parameter	Unit	G/S	RDL	2644793
Electrical Conductivity (2:1)	mS/cm	1.4	0.005	2.86
Cyanide, Free	µg/g	0.051	0.040	<0.040
Sodium Adsorption Ratio (2:1) (Calc.)	N/A	12	N/A	0.661

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 7: Generic Site Condition Standards for Shallow Soils in a Non-Potable Ground Water Condition - Soil - Industrial/Commercial/Community Property Use - Coarse Textured Soils

2644793 Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation. EC was determined on the DI water extract obtained from the 2:1 leaching procedure (2 parts DI water:1 part soil). SAR is a calculated parameter.

Analysis perfomed at AGAT Toronto (unless marked by *)

DATE REPORTED: 2021-06-29

Certified By:

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

AGAT WORK ORDER: 21Z764993 PROJECT: 21451149

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE:

ATTENTION TO: Laura Jones

SAMPLED BY:

O. Reg. 153(511) - PAHs (Soil) DATE RECEIVED: 2021-06-22 **DATE REPORTED: 2021-06-29** SAMPLE DESCRIPTION: 21-01 SA2 SAMPLE TYPE: Soil DATE SAMPLED: 2021-06-11 RDL 2644793 Parameter Unit G/S Naphthalene 9.6 0.05 < 0.05 µg/g Acenaphthylene 0.15 0.05 < 0.05 µg/g Acenaphthene µg/g 96 0.05 0.12 62 Fluorene 0.05 0.18 µg/g Phenanthrene 12 0.05 1.12 µg/g Anthracene µg/g 0.67 0.05 0.43 Fluoranthene µg/g 9.6 0.05 1.36 Pyrene µg/g 96 0.05 1.09 0.96 0.05 0.55 Benz(a)anthracene µg/g Chrysene 9.6 0.05 0.82 µg/g Benzo(b)fluoranthene µg/g 0.96 0.05 0.62 Benzo(k)fluoranthene 0.96 0.52 µg/g 0.05 Benzo(a)pyrene 0.05 0.46 µg/g 0.3 0.76 0.05 Indeno(1,2,3-cd)pyrene µg/g < 0.05 Dibenz(a,h)anthracene 0.1 0.05 0.29 µg/g Benzo(g,h,i)perylene µg/g 9.6 0.05 0.17 1 and 2 Methlynaphthalene µg/g 76 0.05 < 0.05 Moisture Content % 0.1 8.7 Surrogate Unit Acceptable Limits Naphthalene-d8 % 50-140 98 % Acridine-d9 50-140 85 Terphenyl-d14 % 50-140 76

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 7: Generic Site Condition Standards for Shallow Soils in a Non-Potable Ground Water Condition - Soil - Industrial/Commercial/Community Property Use - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

2644793 Results are based on the dry weight of the soil.

Note: The result for Benzo(b)Fluoranthene is the total of the Benzo(b)&j)Fluoranthene isomers because the isomers co-elute on the GC column. 2- and 1-Methyl Naphthalene is a calculated parameter. The calculated value is the sum of 2-Methyl Naphthalene and 1-Methyl Naphthalene.

Analysis perfomed at AGAT Toronto (unless marked by *)

Certified By:

NPopukolof

5835 COOPERS AVENUE

MISSISSAUGA, ONTARIO

http://www.agatlabs.com

CANADA L4Z 1Y2

TEL (905)712-5100 FAX (905)712-5122

AGAT WORK ORDER: 21Z764993 PROJECT: 21451149

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE:

ATTENTION TO: Laura Jones

SAMPLED BY:

O. Reg. 153(511) - PHCs F1 - F4 (with PAHs) (Soil)

DATE RECEIVED: 2021-06-22

	S	AMPLE DESCRIP	TION: 21-01 SA2	
	SAMPLE TYPE:		TYPE: Soil	
		DATE SAME	PLED: 2021-06-11	
Parameter	Unit	G/S R	DL 2644793	
Benzene	µg/g	0.32 0	.02 <0.02	
Toluene	µg/g	68 0	.05 <0.05	
Ethylbenzene	µg/g	9.5 0	.05 <0.05	
m & p-Xylene	µg/g	0	.05 <0.05	
o-Xylene	µg/g	0	.05 <0.05	
Xylenes (Total)	µg/g	26 0	.05 <0.05	
F1 (C6 - C10)	µg/g		5 21.9	
F1 (C6 to C10) minus BTEX	µg/g	55	5 22	
F2 (C10 to C16)	µg/g	230	10 <10	
F2 (C10 to C16) minus Naphthalene	µg/g		10 <10	
F3 (C16 to C34)	µg/g	1700 5	50 <50	
F3 (C16 to C34) minus PAHs	µg/g	Ę	50 <50	
F4 (C34 to C50)	µg/g	3300	50 73	
Gravimetric Heavy Hydrocarbons	µg/g	3300	50 NA	
Moisture Content	%	(0.1 8.7	
Surrogate	Unit	Acceptable Lir	nits	
Toluene-d8	% Recovery	60-140	72	
Terphenyl	%	60-140	69	

Certified By:

NPopukolof

DATE REPORTED: 2021-06-29

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

AGAT WORK ORDER: 21Z764993 **PROJECT: 21451149**

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE:

ATTENTION TO: Laura Jones

SAMPLED BY:

O. Reg. 153(511) - PHCs F1 - F4 (with PAHs) (Soil)

DATE RECEI	VED: 2021-06-22 DATE REPORTED: 2021-06-29
Comments:	RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 7: Generic Site Condition Standards for Shallow Soils in a Non-Potable Ground Water Condition - Soil - Industrial/Commercial/Community Property Use - Coarse Textured Soils Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.
2644793	Results are based on sample dry weight. The C6-C10 fraction is calculated using toluene response factor. Xylenes total is a calculated parameter. The calculated value is the sum of m&p-Xylene and o-Xylene. C6-C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX. The calculated parameters are non-accredited. The parameters that are components of the calculation are accredited. The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and n-C34. Gravimetric Heavy Hydrocarbons are not included in the Total C16-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons >C50 are present. The chromatogram has returned to baseline by the retention time of nC50. Total C6 - C50 results are corrected for BTEX and PAH contributions. C>10 - C16 (F2- Naphthalene) is a calculated parameter. The calculated value is F2 - Naphthalene. C>16 - C34 (F3-PAH) is a calculated parameter. The calculated value is F3-PAH (PAH: sum of Phenanthrene, Benzo(a)anthracene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Benzo(a)pyrene, Fluoranthene, Dibenzo(a,h)anthracene, Indeno(1,2,3-c,d)pyrene and Pyrene). This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. nC10, nC16 and nC34 response factors are within 10% of their average. C50 response factor is within 70% of nC10 + nC16 + nC34 average. Linearity is within 15%. Extraction and holding times were met for this sample.

Analysis perfomed at AGAT Toronto (unless marked by *)

Certified By:

NPopukolof

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

Exceedance Summary

AGAT WORK ORDER: 21Z764993 PROJECT: 21451149

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD

ATTENTION TO: Laura Jones

SAMPLEID	SAMPLE TITLE	GUIDELINE	ANALYSIS PACKAGE	PARAMETER	UNIT	GUIDEVALUE	RESULT
2644793	21-01 SA2	ON T7 S ICC CT	O. Reg. 153(511) - ORPs (Soil)	Electrical Conductivity (2:1)	mS/cm	1.4	2.86
2644793	21-01 SA2	ON T7 S ICC CT	O. Reg. 153(511) - PAHs (Soil)	Benzo(a)pyrene	µg/g	0.3	0.46
2644793	21-01 SA2	ON T7 S ICC CT	O. Reg. 153(511) - PAHs (Soil)	Dibenz(a,h)anthracene	µg/g	0.1	0.29
2644793	21-01 SA2	ON T7 S ICC CT	O. Reg. 153(511) - PHCs F1 - F4 (with PAHs) (Soil)	Benzo(a)pyrene	µg/g	0.3	0.46
2644793	21-01 SA2	ON T7 S ICC CT	O. Reg. 153(511) - PHCs F1 - F4 (with PAHs) (Soil)	Dibenzo(a,h)anthracene	µg/g	0.1	0.29

Quality Assurance

- -

-- -

CLIENT NAME: GOLDER ASSOCIATES LTD

PROJECT: 21451149

SAMPLING SITE:

AGAT WORK ORDER: 21Z764993 ATTENTION TO: Laura Jones

SAMPLED BY:

				Soi	l Ana	alysis	5								
RPT Date: Jun 29, 2021				UPLICAT	E		REFERENCE MATERIAL		METHOD BLANK SPIKE			MATRIX SPIKE			
PARAMETER	Batch	Sample Id	Dup #1	Dup #2	RPD	Method Blank	Measured Value		ptable nits	Recovery		ptable nits	Recovery	1 :	eptable nits
		iu					value	Lower	Upper		Lower	Upper		Lower	Uppe
O. Reg. 153(511) - All Metals (Soil)														
Antimony	2661594		<0.8	<0.8	NA	< 0.8	120%	70%	130%	99%	80%	120%	77%	70%	130%
Arsenic	2661594		2	2	NA	< 1	116%	70%	130%	103%	80%	120%	97%	70%	130%
Barium	2661594		65.0	59.5	8.8%	< 2.0	107%	70%	130%	95%	80%	120%	81%	70%	130%
Beryllium	2661594		0.5	0.5	NA	< 0.4	110%	70%	130%	95%	80%	120%	97%	70%	130%
Boron	2661594		9	9	NA	< 5	92%	70%	130%	99%	80%	120%	83%	70%	130%
Boron (Hot Water Soluble)	2660343		0.37	0.38	NA	< 0.10	87%	60%	140%	93%	70%	130%	91%	60%	140%
Cadmium	2661594		<0.5	<0.5	NA	< 0.5	112%	70%	130%	101%	80%	120%	94%	70%	130%
Chromium	2661594		20	19	NA	< 5	108%	70%	130%	100%	80%	120%	85%	70%	130%
Cobalt	2661594		6.0	5.5	8.7%	< 0.5	104%	70%	130%	98%	80%	120%	90%	70%	130%
Copper	2661594		11.2	10.4	7.4%	< 1.0	91%	70%	130%	102%	80%	120%	85%	70%	130%
Lead	2661594		10	9	10.5%	< 1	106%	70%	130%	92%	80%	120%	82%	70%	130%
Molybdenum	2661594		<0.5	<0.5	NA	< 0.5	117%	70%	130%	100%	80%	120%	98%	70%	130%
Nickel	2661594		11	10	9.5%	< 1	100%	70%	130%	99%	80%	120%	86%	70%	130%
Selenium	2661594		<0.8	<0.8	NA	< 0.8	125%	70%	130%	99%	80%	120%	93%	70%	130%
Silver	2661594		<0.5	<0.5	NA	< 0.5	112%	70%	130%	100%	80%	120%	91%	70%	130%
Thallium	2661594		<0.5	<0.5	NA	< 0.5	114%	70%	130%	100%	80%	120%	92%	70%	130%
Uranium	2661594		0.73	0.67	NA	< 0.50	111%	70%	130%	99%	80%	120%	96%	70%	130%
Vanadium	2661594		31.6	30.0	5.2%	< 0.4	115%	70%	130%	98%	80%	120%	87%	70%	130%
Zinc	2661594		57	53	7.3%	< 5	102%	70%	130%	108%	80%	120%	103%	70%	130%
Chromium, Hexavalent	2637215		<0.2	<0.2	NA	< 0.2	108%	70%	130%	90%	80%	120%	110%	70%	130%
Mercury	2661594		<0.10	<0.10	NA	< 0.10	100%	70%	130%	98%	80%	120%	88%	70%	130%

Comments: NA signifies Not Applicable.

Duplicate NA: results are under 5X the RDL and will not be calculated.

O. Reg. 153(511) - ORPs (Soil)														
Electrical Conductivity (2:1)	2660241	0.440	0.447	1.6%	< 0.005	108%	80%	120%						
Cyanide, Free	2649005	<0.040	<0.040	NA	< 0.040	96%	70%	130%	112%	80%	120%	94%	70%	130%
Sodium Adsorption Ratio (2:1) (Calc.)	2660343	1.86	1.95	4.6%	NA									

Comments: NA signifies Not Applicable.

Duplicate NA: results are under 5X the RDL and will not be calculated.

AGAT QUALITY ASSURANCE REPORT (V1)

Page 8 of 13

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Quality Assurance

CLIENT NAME: GOLDER ASSOCIATES LTD

PROJECT: 21451149

SAMPLING SITE:

AGAT WORK ORDER: 21Z764993 **ATTENTION TO: Laura Jones**

SAMPLED BY:

Trace Organics Analysis

			max		gam		larys	15									
RPT Date: Jun 29, 2021			DUPLICATE			REFEREN	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MATRIX SPIKE					
PARAMETER	Batch	Sample Id	Dup #1	Dup #2	RPD	Method Blank	Measured		eptable nits	Recovery	Lin	ptable nits	Recovery	Lin	eptable mits		
		Ia					Value	Lower	Upper		Lower Upper		Lower Upper		-	Lower	Upper
O. Reg. 153(511) - PAHs (Soil)																	
Naphthalene	2644793		NA	NA	NA	< 0.05	98%	50%	140%	101%	50%	140%	98%	50%	140%		
Acenaphthylene	2644793		NA	NA	NA	< 0.05	97%	50%	140%	82%	50%	140%	85%	50%	140%		
Acenaphthene	2644793		NA	NA	NA	< 0.05	95%	50%	140%	96%	50%	140%	96%	50%	140%		
Fluorene	2644793		NA	NA	NA	< 0.05	129%	50%	140%	133%	50%	140%	85%	50%	140%		
Phenanthrene	2644793		NA	NA	NA	< 0.05	97%	50%	140%	110%	50%	140%	76%	50%	140%		
Anthracene	2644793		NA	NA	NA	< 0.05	107%	50%	140%	130%	50%	140%	95%	50%	140%		
Fluoranthene	2644793		NA	NA	NA	< 0.05	112%	50%	140%	120%	50%	140%	85%	50%	140%		
Pyrene	2644793		NA	NA	NA	< 0.05	109%	50%	140%	118%	50%	140%	96%	50%	140%		
Benz(a)anthracene	2644793		NA	NA	NA	< 0.05	82%	50%	140%	104%	50%	140%	85%	50%	140%		
Chrysene	2644793		NA	NA	NA	< 0.05	116%	50%	140%	103%	50%	140%	75%	50%	140%		
Benzo(b)fluoranthene	2644793		NA	NA	NA	< 0.05	104%	50%	140%	110%	50%	140%	96%	50%	140%		
Benzo(k)fluoranthene	2644793		NA	NA	NA	< 0.05	74%	50%	140%	117%	50%	140%	85%	50%	140%		
Benzo(a)pyrene	2644793		NA	NA	NA	< 0.05	69%	50%	140%	100%	50%	140%	76%	50%	140%		
Indeno(1,2,3-cd)pyrene	2644793		NA	NA	NA	< 0.05	62%	50%	140%	109%	50%	140%	95%	50%	140%		
Dibenz(a,h)anthracene	2644793		NA	NA	NA	< 0.05	65%	50%	140%	98%	50%	140%	98%	50%	140%		
Benzo(g,h,i)perylene	2644793		NA	NA	NA	< 0.05	50%	50%	140%	124%	50%	140%	85%	50%	140%		
O. Reg. 153(511) - PHCs F1 - F	4 (with PAHs) ((Soil)															
Benzene	2645720		<0.02	<0.02	NA	< 0.02	113%	60%	140%	109%	60%	140%	84%	60%	140%		
Toluene	2645720		<0.05	<0.05	NA	< 0.05	92%	60%	140%	82%	60%	140%	100%	60%	140%		
Ethylbenzene	2645720		<0.05	<0.05	NA	< 0.05	89%	60%	140%	116%	60%	140%	89%	60%	140%		
m & p-Xylene	2645720		<0.05	<0.05	NA	< 0.05	93%	60%	140%	118%	60%	140%	109%	60%	140%		
o-Xylene	2645720		<0.05	<0.05	NA	< 0.05	88%	60%	140%	90%	60%	140%	87%	60%	140%		
F1 (C6 - C10)	2645720		<5	<5	NA	< 5	93%	60%	140%	110%	60%	140%	99%	60%	140%		
F2 (C10 to C16)	2649028		< 10	< 10	NA	< 10	108%	60%	140%	96%	60%	140%	80%	60%	140%		
F3 (C16 to C34)	2649028		< 50	< 50	NA	< 50	110%	60%	140%	76%	60%	140%	76%	60%	140%		
F4 (C34 to C50)	2649028		< 50	< 50	NA	< 50	100%	60%	140%	124%	60%	140%	126%	60%	140%		

Comments: When the average of the sample and duplicate results is less than 5x the RDL, the Relative Percent Difference (RPD) will be indicated as Not Applicable (NA).

Certified By:

NPopukoh

AGAT QUALITY ASSURANCE REPORT (V1)

Page 9 of 13

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Method Summary

CLIENT NAME: GOLDER ASSOCIATES LTD

PROJECT: 21451149

AGAT WORK ORDER: 21Z764993

ATTENTION TO: Laura Jones

SAMPLING SITE:		SAMPLED BY:										
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE									
Soil Analysis												
Antimony	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS									
Arsenic	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS									
Barium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS									
Beryllium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS									
Boron	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS									
Boron (Hot Water Soluble)	MET-93-6104	modified from EPA 6010D and MSA PART 3, CH 21	ICP/OES									
Cadmium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS									
Chromium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS									
Cobalt	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS									
Copper	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS									
Lead	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS									
Molybdenum	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS									
Nickel	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS									
Selenium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS									
Silver	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS									
Thallium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS									
Uranium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS									
Vanadium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS									
Zinc	MET 93 -6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS									
Chromium, Hexavalent	INOR-93-6068	modified from EPA 3060 and EPA 7196	SPECTROPHOTOMETER									
Mercury	MET-93-6103	modified from EPA 7471B and SM 3112 B	ICP-MS									
Electrical Conductivity (2:1)	INOR-93-6036	modified from MSA PART 3, CH 14 and SM 2510 B	EC METER									
Cyanide, Free	INOR-93-6052	modified from ON MOECC E3015, SM 4500-CN- I, G-387	¹ TECHNICON AUTO ANALYZER									
Sodium Adsorption Ratio (2:1) (Calc.)	INOR-93-6007	modified from EPA 6010D & Analytica Protocol	I ICP/OES									

Method Summary

CLIENT NAME: GOLDER ASSOCIATES LTD

PROJECT: 21451149

AGAT WORK ORDER: 21Z764993

ATTENTION TO: Laura Jones

SAMPLING SITE:		SAMPLED BY:									
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE								
Trace Organics Analysis			I								
Naphthalene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS								
Acenaphthylene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS								
Acenaphthene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS								
Fluorene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS								
Phenanthrene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS								
Anthracene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS								
Fluoranthene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS								
Pyrene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS								
Benz(a)anthracene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS								
Chrysene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS								
Benzo(b)fluoranthene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS								
Benzo(k)fluoranthene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS								
Benzo(a)pyrene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS								
Indeno(1,2,3-cd)pyrene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS								
Dibenz(a,h)anthracene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS								
Benzo(g,h,i)perylene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS								
1 and 2 Methlynaphthalene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS								
Naphthalene-d8	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS								
Acridine-d9	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS								
Terphenyl-d14	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS								
Moisture Content	ORG-91-5009	CCME Tier 1 Method	BALANCE								
Benzene	VOL-91-5009	modified from CCME Tier 1 Method	(P&T)GC/MS								
Toluene	VOL-91-5009	modified from CCME Tier 1 Method	(P&T)GC/MS								
Ethylbenzene	VOL-91-5009	modified from CCME Tier 1 Method	(P&T)GC/MS								
m & p-Xylene	VOL-91-5009	modified from CCME Tier 1 Method	(P&T)GC/MS								
o-Xylene	VOL-91-5009	modified from CCME Tier 1 Method	(P&T)GC/MS								
Xylenes (Total)	VOL-91-5009	modified from CCME Tier 1 Method	(P&T)GC/MS								
F1 (C6 - C10)	VOL-91-5009	modified from CCME Tier 1 Method	(P&T)GC/FID								
F1 (C6 to C10) minus BTEX	VOL-91-5009	modified from CCME Tier 1 Method	P&T GC/FID								
Toluene-d8	VOL-91-5009	modified from EPA SW-846 5030C & 8260D	(P&T)GC/MS								
F2 (C10 to C16)	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID								
F2 (C10 to C16) minus Naphthalene	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID								
F3 (C16 to C34)	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID								

AGAT METHOD SUMMARY (V1)

Method Summary

CLIENT NAME: GOLDER ASSOCIATES LTD

PROJECT: 21451149

SAMPLING SITE:

AGAT WORK ORDER: 21Z764993

ATTENTION TO: Laura Jones

SAMI LING SITE.		SAMI LED DI.	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
F3 (C16 to C34) minus PAHs	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID
F4 (C34 to C50)	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID
Gravimetric Heavy Hydrocarbons	VOL-91-5009	modified from CCME Tier 1 Method	BALANCE
Terphenyl	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID

		La	abora	ato	ories	Ph: 9		lississai .2.5100	835 Coop Iga, Ontar Fax: 905 bearth.ag	o L42	1Y2 5 122	v	.abo Vork O Cooler	rder #				-	(10	193
Chain of Custody Re		a Drinking Wat	ter sample, ple	ase us	e Drinking Water Chain of Custod Regulatory Requireme				tory Re		ment		Arrival	·			<u>7</u> □Ye	.3	7	2 G	7.2
Address: <u>1931 RODERT</u> <u>LROHEVECL</u> Phone: Reports to be sent to: 1. Email: <u>LAUVA</u> JON	Lonke Rotteve Son Road Solder con Solder con Los C Golder C Golder co Spital	n Lan			(Please check all applicable boxes)	Sewer Use Sanitary Storm Indicate One MISA	R	eport	Regulation CCME Prov. Wate Dijectives Other Indicate Guidelin te of Ar	558 r Qual (PWQ) ^{One}	ty)) 	Ti R	urnai egula ush T	roun TAT (Ru 3 Bus Days OR Da Ple TAT is	ad Ti T iness ate Re ease p	ime (tharges / equired provide usive o	(TAT) (TAT	to 7 B Busing ays th Surd notifie	quire usiness ess charges cation f and sta	e d: s Days	xt Business y bly): AT
AGAT Quote #: 50	PO:PO:		e for analysis. Yes 🕅 No [Sample Matrix Legend B Biola GW Ground Water O Oil P Paint S Soil SD Sediment SW Surface Water	Field Filtered - Weta's, Hg, C/VI	Aetals and Inorganics	etals [] 153 Metals rexcl. Hydrides) .0 de Merals [] 153 Metals nexcl. Hydrides) .0 de Merals [] 153 Metals (Incl. Hydrices) .3	HWS CICINACION CICONACIÓN	Full Metals Scan	Regulation/Custom Metals Nutrients: DTP DNH DTAN	LIND2 LINC3+HO2 es: DVOC XX BTEX DTHM	PHCs F1 - F4			PCBs: L Total L Arociors Organochlorine Pesticides		Use	Hereus		
Sample Identification	Date Sampled	Time Sampled	Containers	Samp Matri		Y/N	Metal	All Metals	ORPs: Cr ⁶ , 2	Full M	Reguli Nutrle	Volatiles:	PHCs	ABNs	PAHS	PCBS: Organ	TCLP: D M&I	Sewer Use	He		
Samples Relinquished By (Print Name and Sign): R-C 1. 0 110 M(P+1 MeM)	14 atthore	Date 223		5	Samples Roceived By (Print Linne a	nd Sign):			V E		Dots	V			2.5	8					
Samples Relinquished By (Print Name and Sign):		Date	Time		Samples Received By (Print Name a	nd Sign); nd Sign):			0		Date 23 Dute	la /:		ime Sy ime			Vn: T	Page	175	of 1	-
Document ID: DIV/78-1511.015									Pink	Copy -	 Client	Yellov	/ Copy	- AGAI	IIW	/hite C	ору- А	GAI	Pa	ige 13 o	f 136, 2016

APPENDIX D

Historic Analytical Data

Table D1Historical Petroleum Hydrocarbons and BTEX in Soil SamplesPhase Two Environmental Site AssessmentNew Civic Development for The Ottawa Hospital - Parkade

	Lo	cation	MW1	17-01	MW17-02	
	Sample	Name	MW17-01-SS01	DUP-20170728-D	MW17-02-SS01	
	Sampl	e Date	2017-07-28	2017-07-28	2017-07-28	
	Sample	Depth	0-1.52 m	0-1.52 m	0-1.52 m	
	Historic	Report	Stantec, 7 September 2017, Ph II	Stantec, 7 September 2017, Ph II	Stantec, 7 September 2017, Ph II	
Parameter	MECP Table 7 Standards ¹	Unit				
Cyanide (free)	0.051	µg/g	< 0.01	< 0.01	< 0.01	
Conductivity	1400	uS/cm	1100	1100	150	
Fluoride	-	µg/g	< 5	< 5	< 5	
Moisture, Percent	-	%	4.1	3.5	17	
Sodium Adsorption Ratio	12	-	1.1	1.1 1.2		
pH (1:2 CACL2)	-	-	11.3	11.3	7.66	

Notes:

¹ O.Reg 153 (2011) Table 7 Standards for industrial/commercial/community property use for coarse textured soil in generic site condition for shallow soils in a non-potable ground water condition

< Indicates parameter was below laboratory equipment detection limit.

- Chemical not analyzed or criteria not defined.

Bold and italicised Detection limit above MECP Table 7 Standards

Bold and shaded Exceeding MECP Table 7 Standards

Table D2 Historical Petroleum Hydrocarbons and BTEX in Soil Samples Phase Two Environmental Site Assessment New Civic Development for The Ottawa Hospital - Parkade

	Loc	ation	03-BH2/MW2	03-BH5/MW5	MW	17-01	MW17-02
	Sample I	Name	BH2-4-5	BH5-2-3	MW17-01-SS01	DUP-20170728-D (Field Duplicate of MW17-01-SS01)	MW17-02-SS01
	Sample	Date	2003-10-28	2003-10-28	2017-07-28	2017-07-28	2017-07-28
	Sample I	Depth	0.8-2.1 m	0.8-1.5 m	0-1.52 m	0-1.52 m	0-1.52 m
	Historic R	eport	Intera, January 2004, Ph I/II	Intera, January 2004, Ph I/II	Stantec, 7 September 2017, Ph II	Stantec, 7 September 2017, Ph II	Stantec, 7 September 2017, Ph II
Parameter	MECP Table 7 Standards ¹	Unit					
Benzene	0.32	µg/g	-	< 0.002	< 0.006	< 0.006	< 0.006
Toluene	68	µg/g	-	< 0.002	< 0.02	< 0.02	< 0.02
Ethylbenzene	9.5	µg/g	-	< 0.002	< 0.01	< 0.01	< 0.01
o-Xylene	-	µg/g	-	< 0.002	< 0.02	< 0.02	< 0.02
m,p-Xylenes	-	µg/g	-	< 0.002	< 0.02	< 0.02	< 0.02
Xylenes, Total	26	µg/g	-	< 0.002	< 0.02	< 0.02	< 0.02
PHC - F1 (C6-C10)-BTEX	55	µg/g	-	-	< 10	< 10	< 10
PHC - F1 (C6-C10)	55	µg/g	< 20	-	< 10	< 10	< 10
PHC - F2 (C10-C16)	230	µg/g	< 10	-	< 10	< 10	< 10
PHC - F3 (C16-C34)	1700	µg/g	160	-	< 50	< 50	< 50
PHC - F4 (C34-C50)	3300	µg/g	160	-	< 50	< 50	< 50
PHC - F4 Gravimetric	3300	µg/g	-	-	-	-	-

Notes:

¹ O.Reg 153 (2011) Table 7 Standards for industrial/commercial/community property use for coarse textured soil in generic site condition for shallow soils in a non-potable ground water condition

< Indicates parameter was below laboratory equipment detection limit.

- Chemical not analyzed or criteria not defined.

Bold and italicised Detection limit above MECP Table 7 Standards

Bold and shaded Exceeding MECP Table 7 Standards

Table D3 Historical Volatile Organic Compounds in Soil Samples Phase Two Environmental Site Assessment New Civic Development for The Ottawa Hospital - Parkade

	Lo	cation	03-BH5/MW5	MM	/17-01	MW17-02
	Sample	Name	BH5-2-3	MW17-01-SS01	DUP-20170728-D (Field Duplicate of MW17-01-SS01)	MW17-02-SS01
	Sampl	e Date	2003-10-28	2017-07-28	2017-07-28	2017-07-28
	Sample	Depth	0.8-1.5 m	0-1.52 m	0-1.52 m	0-1.52 m
	Historical	Report	Intera, January 2004, Ph I/II	Stantec, 7 September 2017, Ph II	Stantec, 7 September 2017, Ph II	Stantec, 7 September 2017, Ph II
Parameter	MECP Table 7	Unit				
	Standards ¹					
1,1,1,2-Tetrachloroethane	0.087	µg/g	< 0.003	< 0.05	< 0.05	< 0.05
1,1,1-Trichloroethane	6.1	µg/g	< 0.002	< 0.05	< 0.05	< 0.05
1,1,2,2-Tetrachloroethane	0.05	µg/g	< 0.003	< 0.05	< 0.05	< 0.05
1,1,2-Trichloroethane	0.05	µg/g	< 0.002	< 0.05	< 0.05	< 0.05
1,1-Dichloroethane	17	µg/g	< 0.002	< 0.05	< 0.05	< 0.05
1,1-Dichloroethylene	0.064	µg/g	< 0.002	< 0.05	< 0.05	< 0.05
1,2-DibroMECPthane	0.05	µg/g	< 0.002	< 0.05	< 0.05	< 0.05
1,2-Dichlorobenzene	6.8	µg/g	< 0.002	< 0.05	< 0.05	< 0.05
1,2-Dichloroethane	0.05	µg/g	< 0.002	< 0.05	< 0.05	< 0.05
1,2-Dichloropropane	0.16	µg/g	< 0.002	< 0.05	< 0.05	< 0.05
1,3,5-Trimethylbenzene	-	µg/g	< 0.003	-	-	-
1,3-Dichlorobenzene	9.6	µg/g	< 0.002	< 0.05	< 0.05	< 0.05
1,4-Dichlorobenzene	0.2	µg/g	< 0.002	< 0.05	< 0.05	< 0.05
Methyl Ethyl Ketone	70	µg/g	-	< 0.5	< 0.5	< 0.5
Acetone	16	µg/g	-	< 0.5	< 0.5	< 0.5
Bromodichloromethane	18	µg/g	< 0.002	< 0.05	< 0.05	< 0.05
Bromoform	0.61	µg/g	< 0.002	< 0.05	< 0.05	< 0.05
Bromomethane	0.05	µg/g	< 0.003	< 0.05	< 0.05	< 0.05
Carbon Tetrachloride	0.21	µg/g	< 0.002	< 0.05	< 0.05	< 0.05
Chlorobenzene	2.4	µg/g	< 0.002	< 0.05	< 0.05	< 0.05
Chloroethane	-	µg/g	< 0.005	-	-	-
Chloroform	0.47	µg/g	< 0.003	< 0.05	< 0.05	< 0.05
Chloromethane	-	µg/g	< 0.02	-	-	-
cis-1,2-Dichloroethene	55	µg/g	< 0.002	< 0.05	< 0.05	< 0.05
cis-1,3-Dichloropropene	-	µg/g	< 0.002	< 0.03	< 0.03	< 0.03
Dibromochloromethane	13	µg/g	< 0.002	< 0.05	< 0.05	< 0.05
Dichlorodifluoromethane	16	µg/g	-	< 0.05	< 0.05	< 0.05
Hexachloroethane	0.21	µg/g	-	-	-	< 0.002
Methyl tert-Butyl Ether	11	µg/g	-	< 0.05	< 0.05	< 0.05
Methylene Chloride	1.6	µg/g	< 0.02	< 0.05	< 0.05	< 0.05
n-Hexane	46	μg/g	-	< 0.05	< 0.05	< 0.05
Tetrachloroethylene	4.5	µg/g	< 0.002	< 0.05	< 0.05	< 0.05
trans-1,2-Dichloroethene	1.3	μg/g	< 0.003	< 0.05	< 0.05	< 0.05
trans-1,3-Dichloropropene	-	µg/g	< 0.002	< 0.04	< 0.04	< 0.04
Trichloroethene	0.91	μg/g	< 0.003	< 0.01	< 0.01	< 0.01
Trichlorofluoromethane	4	μg/g	< 0.005	< 0.05	< 0.05	< 0.05
Vinyl Chloride	0.032	μg/g	< 0.002	< 0.02	< 0.02	< 0.02
Styrene	34	μg/g	< 0.002	< 0.05	< 0.05	< 0.05
Methyl Isobutyl Ketone	31	μg/g	-	< 0.5	< 0.5	< 0.5

Notes:

¹ O.Reg 153 (2011) Table 7 Standards for industrial/commercial/community property use for coarse textured soil in generic

site condition for shallow soils in a non-potable ground water condition

< Indicates parameter was below laboratory equipment detection limit.

- Chemical not analyzed or criteria not defined.

Bold and italicised Detection limit above MECP Table 7 Standards

Bold and shaded

Exceeding MECP Table 7 Standards

Table D4 Historical PAHs in Soil Samples Phase Two Environmental Site Assessment New Civic Development for The Ottawa Hospital - Parkade

	Lo	cation	03-BH2/MW2	03-BH5/MW5	04-BH1	04-BH2	04-BH3	04-BH4	04-	BH5	04-BH6
	Sample	Name	BH2-4-5/03-BH2-4-5	BH5-2-3/03-BH2-4-5	04-BH1-2	04-BH2-2	04-BH3-3	04-BH4-2-3	04-BH5-1-2	BHD (DUP 5-1-2)	04-BH6-2
	Sampl	e Date	2003-10-28	2003-10-28	2004-08-31	2004-08-31	2004-08-31	2004-08-31	2004-08-31	2004-08-31	2005-05-31
	Sample	Depth	0.8-2.1 m	0.8-1.5 m	0.61-1.07 m	0.61-1.22 m	1.22-1.83 m	0.61-1.52 m	0-1.22 m	0-1.22 m	0.61-1.22 m
Historical Repor		Report	Intera, January 2004, Ph I/II	Intera, January 2004, Ph I/II	Intera, Oct. 2005, RA and Intera, 2004 Supp. Ph II	Intera, Oct. 2005, RA and Intera, 2004 Supp. Ph II	Intera, Oct. 2005, RA and Intera, 2004 Supp. Ph II	Intera, Oct. 2005, RA and Intera, 2004 Supp. Ph II	Intera, Oct. 2005, RA and Intera, 2004 Supp. Ph II	Intera, Oct. 2005, RA and Intera, 2004 Supp. Ph II	Intera, Oct. 2005, RA and Intera, 2004 Supp. Ph II
Parameter	MECP Table 7 Standards ¹	Unit									
1-Methylnaphthalene	76	µg/g	-	-	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	0.36
2-Methylnaphthalene	76	µg/g	0.04	0.04	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	0.26
4-Methyl-2-pentanone	31	µg/g	-	-	-	-	-	-	-	-	
Acenaphthene	96	µg/g	< 0.02	0.32	< 0.02	< 0.02	< 0.02	< 0.02	0.02	0.02	0.46
Acenaphthylene	0.15	µg/g	0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	0.04	0.04	0.5
Anthracene	0.67	µg/g	0.02	0.68	< 0.02	0.04	< 0.02	0.04	0.16	0.14	1.5
Benzo [b,j] fluoranthene	-	µg/g	-	-	-	-	-	-	-	-	
Benzo[a]anthracene	0.96	µg/g	0.06	1.8	< 0.02	0.04	< 0.02	0.06	0.28	0.28	3.4
Benzo[a]pyrene	0.3	µg/g	0.06	1.4	< 0.02	0.04	< 0.02	0.06	0.2	0.22	2.7
Benzo[b]fluoranthene	0.96	μg/g	0.12	2	< 0.02	0.06	< 0.02	0.08	0.3	0.36	3.5
Benzo[g,h,i]perylene	9.6	µg/g	0.08	0.92	< 0.02	0.02	< 0.02	0.08	0.14	0.18	1.7
Benzo[k]fluoranthene	0.96	µg/g	0.04	0.96	< 0.02	0.02	< 0.02	0.04	0.16	0.16	1.4
Biphenyl	52	µg/g	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	0.06
Chrysene	9.6	µg/g	0.1	2	< 0.02	0.06	< 0.02	0.1	0.26	0.28	2.4
Dibenzo[a,h]anthracene	0.1	µg/g	0.02	0.28	< 0.02	< 0.02	< 0.02	0.02	0.04	0.02	0.48
Fluoranthene	9.6	µg/g	0.12	4.1	< 0.02	0.1	< 0.02	0.12	0.44	0.4	6.6
Fluorene	62	µg/g	< 0.02	0.24	< 0.02	< 0.02	< 0.02	< 0.02	0.04	0.02	0.78
Hexachlorobenzene	0.66	µg/g	-	-	-	-	-	-	-	-	
Hexachlorobutadiene	0.031	µg/g	-	-	-	-	-	-	-	-	
Indeno[1,2,3-cd]pyrene	0.76	µg/g	0.06	0.2	< 0.02	0.02	< 0.02	0.02	0.1	0.12	1.4
Naphthalene	9.6	µg/g	0.06	0.08	< 0.02	< 0.02	< 0.02	< 0.02	0.02	< 0.02	1.1
Phenanthrene	12	μg/g	0.08	3	< 0.02	0.14	< 0.02	0.1	0.42	0.38	8
Pyrene	96	μg/g	0.12	3.6	< 0.02	0.06	< 0.02	0.1	0.34	0.36	5
Styrene	34	μg/g	-	< 0.002	-	-	-	-	-	-	
Methylnaphthalenes	-	µg/g	-	-	-	-	-	-	-	-	
Benzo(a)pyrene Total Potency Equivalence (TPE)	-	µg/g	-	-	-	-	-	-	-	-	

Notes: U.Reg 155 (2011) Table / Standards for industrial/commercial/community property use for coarse textured soil in generic site condition for shallow soils in a non-potable ground water condition

< Indicates parameter was below laboratory equipment detection limit.

- Chemical not analyzed or criteria not defined.

Bold and italicised Detection limit above MECP Table 7 Standards Bold and shaded Exceeding MECP Table 7 Standards

Table D4 Historical PAHs in Soil Samples Phase Two Environmental Site Assessment New Civic Development for The Ottawa Hospital - Parkade

	Lo	cation	SS-1	SS-2	SS-3	SS-4	SS-5	MW	17-01	MW17-02
	Sample	Name	SS-1	SS-2	SS-3	SS-4	SS-5	MW17-01-SS01	DUP-20170728-D	MW17-02-SS01
	Sample	e Date	2005-05-31	2005-05-31	2005-05-31	2005-05-31	2005-05-31	2017-07-28	2017-07-28	2017-07-28
	Sample	Depth	0-0.15 m	0-1.52 m	0-1.52 m	0-1.52 m				
Historical Repo		Report	Intera, October 2005, Risk Assess.	Stantec, 7 September 2017, Ph II	Stantec, 7 September 2017, Ph II	Stantec, 7 September 2017, Ph II				
Parameter	MECP Table 7 Standards ¹	Unit								
1-Methylnaphthalene	76	µg/g	< 0.02	0.02	< 0.02	0.06	< 0.02	< 0.005	< 0.005	0.048
2-Methylnaphthalene	76	µg/g	< 0.02	0.02	< 0.02	0.06	< 0.02	< 0.005	< 0.005	0.085
4-Methyl-2-pentanone	31	μg/g						< 0.5	< 0.5	< 0.5
Acenaphthene	96	μg/g	0.4	0.04	0.04	0.2	< 0.02	< 0.005	< 0.005	0.12
Acenaphthylene	0.15	μg/g	< 0.02	0.04	< 0.02	0.12	< 0.02	< 0.005	< 0.005	0.0082
Anthracene	0.67	μg/g	2.4	0.12	0.1	0.48	< 0.02	< 0.005	< 0.005	0.25
Benzo [b,j] fluoranthene	-	μg/g						< 0.005	0.0098	0.32
Benzo[a]anthracene	0.96	μg/g	5.6	0.3	0.3	0.92	< 0.02	< 0.005	0.0068	0.36
Benzo[a]pyrene	0.3	μg/g	4.2	0.24	0.24	0.78	< 0.02	< 0.005	0.0057	0.27
Benzo[b]fluoranthene	0.96	μg/g	6.6	0.34	0.36	0.92	< 0.02	-	-	-
Benzo[g,h,i]perylene	9.6	μg/g	2.2	0.22	0.22	0.68	< 0.02	< 0.005	0.0051	0.13
Benzo[k]fluoranthene	0.96	μg/g	3.6	0.14	0.14	0.3	< 0.02	< 0.005	< 0.005	0.13
Biphenyl	52	μg/g	< 0.02	< 0.02	< 0.02	0.02	< 0.02	-	-	-
Chrysene	9.6	μg/g	4.6	0.22	0.24	0.68	< 0.02	< 0.005	0.01	0.29
Dibenzo[a,h]anthracene	0.1	μg/g	0.4	0.06	0.06	0.16	< 0.02	< 0.005	< 0.005	0.043
Fluoranthene	9.6	μg/g	14	0.6	0.66	2	< 0.02	< 0.005	0.013	0.69
Fluorene	62	μg/g	1	0.04	0.04	0.18	< 0.02	< 0.005	< 0.005	0.15
Hexachlorobenzene	0.66	μg/g						-	-	< 0.002
Hexachlorobutadiene	0.031	μg/g						-	-	< 0.002
Indeno[1,2,3-cd]pyrene	0.76	μg/g	2	0.16	0.2	0.52	< 0.02	< 0.005	< 0.005	0.15
Naphthalene	9.6	µg/g	0.4	0.06	< 0.02	0.1	< 0.02	< 0.005	< 0.005	0.27
Phenanthrene	12	μg/g	11	0.48	0.42	2.4	< 0.02	0.012	0.016	0.88
Pyrene	96	μg/g	11	0.48	0.52	2.4	< 0.02	0.0067	0.014	0.59
Styrene	34	µg/g						< 0.05	< 0.05	< 0.05
Methylnaphthalenes	-	µg/g						< 0.0071	< 0.0071	0.13
Benzo(a)pyrene Total Potency Equivalence (TPE)	-	µg/g						0.006	0.011	0.413

Notes: U.Reg 155 (2011) Table / Standards for industrial/commercial/community property use for coarse textured soil in generic site condition for shallow soils in a non-potable ground water condition

< Indicates parameter was below laboratory equipment de

- Chemical not analyzed or criteria not defined.

Bold and italicised Detection limit above MEC Bold and shaded Exceeding MECP Table 7

Table D5 Historical Metals in Soil Samples Phase Two Environmental Site Assessment New Civic Development for The Ottawa Hospital - Parkade

	Loc	ation	03-BH2/MW2	03-BH3	03-BH4/MW4	SS-1	SS-2	SS-3	SS-4	SS-5	BH7 (Paterson)	MV	V17-01	MW17-02
	Sample	Name	BH2-2	BH3-2	BH4-1	SS-1	SS-2	SS-3	SS-4	SS-5	BH7 SS3	MW17-01- SS01	DUP-20170728- D	MW17-02-SS01
	Sample	Date	2003-10-28	2003-10-28	2003-10-28	2005-05-31	2005-05-31	2005-05-31	2005-05-31	2005-05-31	2017-07-28	2017-07-28	2017-07-28	2017-07-28
	Sample I	Depth	0.8-1.4 m	0.8-1.4 m	0-0.6 m	0-0.15 m	0-0.15 m	0-0.15 m	0-0.15 m	0-0.15 m	1.1-1.8 m	0-1.52 m	0-1.52 m	0-1.52 m
	Historical R	eport	Intera, January 2004, Ph I/II	Intera, January 2004, Ph I/II	Intera, January 2004, Ph I/II	Intera, October 2005, Risk Assess.	Paterson, 8 September 2017	Stantec, 7 September 2017, Ph II	Stantec, 7 September 2017, Ph II	Stantec, 7 September 2017, Ph II				
Parameter	MECP Table 7 Standards ¹	Unit												
Antimony	40	µg/g	1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 0.2	< 0.2	< 0.2
Arsenic	18	µg/g	2	4	7	3	3	2	2	1	< 1	9.1	9.4	1.4
Barium	670	µg/g	70	160	10	50	40	40	40	40	111	33	34	130
Beryllium	8	µg/g	< 0.5	1	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.25	0.24	0.41
Boron	120	µg/g	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	6.7	0.2	0.19	0.21
Cadmium	1.9	µg/g	< 1	< 1	< 1	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.1	< 0.1	< 0.1
Calcium	-	µg/g	36000	66000	190000	7200	3600	4400	7200	3200	-	-	-	-
Chromium	160	µg/g	20	30	10	15	15	15	15	15	17.2	13	15	23
Hexavalent Chromium	8	µg/g	< 6	< 6	< 6	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	-	< 0.2	< 0.2	1
Cobalt	80	µg/g	< 5	10	10	< 5	< 5	< 5	< 5	< 5	5.9	8.6	8	7
Copper	230	µg/g	10	10	10	10	10	5	10	5	15.2	11	12	16
Lead	120	µg/g	40	15	25	30	16	11	16	11	15.1	29	29	20
Magnesium	-	µg/g	8000	11000	97000	4400	2200	2600	3200	2400	-	-	-	-
Mercury	3.9	µg/g	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	-	< 0.05	< 0.05	< 0.05
Molybdenum	40	µg/g	< 1	2	7	< 1	< 1	< 1	< 1	< 1	< 1	8	8	0.51
Nickel	270	µg/g	10	25	20	10	10	10	10	10	12.6	17	16	16
Selenium	5.5	µg/g	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 0.5	< 0.5	< 0.5
Silver	40	µg/g	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.2	< 0.2	< 0.2
Sodium	-	µg/g	< 200	400	< 200	< 200	< 200	< 200	< 200	< 200	-	-	-	-
Sulfur	-	µg/g	-	-	-	-	-	-	-	-	-	2700	2700	590
Thallium	3.3	µg/g	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	0.29	0.28	0.21
Tin	-	µg/g	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	-	< 1	< 1	1.3
Uranium	33	µg/g	-	-	-	-	-	-	-	-	< 1	0.8	0.77	0.63
Vanadium	86	µg/g	20	30	10	20	20	20	20	20	24.4	13	13	32
Zinc	340	µg/g	60	40	< 20	60	40	40	40	40	42	28	33	44
Iron	-	µg/g	14000	24000	9000	10000	9400	9400	10000	10000	-	-	-	-

Notes:

¹ O.Reg 153 (2011) Table 7 Standards for industrial/commercial/community property use for coarse textured soil in generic site condition for shallow soils in a non-potable ground water condition

< Indicates parameter was below laboratory equipment detection limit.

- Chemical not analyzed or criteria not defined.

Bold and italicised Detection limit above MECP Table 7 Standards

Bold and shaded Exceeding MECP Table 7 Standards

Table D6Historical Phenols in Soil SamplesPhase Two Environmental Site AssessmentNew Civic Development for The Ottawa Hospital - Parkade

	L	ocation	MV	V17-01	MW17-02
				DUP-20170728-D	
	Sampl	e Name	MW17-01-SS01	(Field Duplicate of	MW17-02-SS01
				MW17-01-SS01)	
		ole Date	2017-07-28	2017-07-28	2017-07-28
	Sampl	e Depth	0-1.52 m	0-1.52 m	0-1.52 m
			Stantec, 7	Stantec, 7	Stantec, 7
	Historical	l Report		September 2017, Ph	September 2017,
			Ph II	II	Ph II
	MECP Table 7				
Parameter	Standards ¹	Unit			
2,3,4,5-Tetrachlorophenol	-	µg/g	< 0.05	< 0.05	< 0.05
2,3,4,6-Tetrachlorophenol	-	µg/g	< 0.05	< 0.05	< 0.05
2,3,4-Trichlorophenol	-	µg/g	< 0.05	< 0.05	< 0.05
2,3,5,6-Tetrachlorophenol	-	µg/g	< 0.05	< 0.05	< 0.05
2,3,5-Trichlorophenol	-	µg/g	< 0.05	< 0.05	< 0.05
2,3,6-Trichlorophenol	-	µg/g	< 0.05	< 0.05	< 0.05
2,3-Dichlorophenol	-	µg/g	< 0.05	< 0.05	< 0.05
2,4,5-Trichlorophenol	10	µg/g	< 0.05	< 0.05	< 0.05
2,4,6-Trichlorophenol	3.8	µg/g	< 0.05	< 0.05	< 0.05
2,4-Dichlorophenol	3.4	µg/g	< 0.05	< 0.05	< 0.05
2,4-Dimethylphenol	390	µg/g	< 0.1	< 0.1	< 0.1
2,4-Dinitrophenol	59	µg/g	< 0.1	< 0.1	< 0.1
2,5-Dichlorophenol	-	µg/g	< 0.05	< 0.05	< 0.05
2,6-Dichlorophenol	-	µg/g	< 0.05	< 0.05	< 0.05
2-Chlorophenol	3.1	µg/g	< 0.05	< 0.05	< 0.05
2-Methylphenol	-	µg/g	< 0.1	< 0.1	< 0.1
2-Nitrophenol	-	µg/g	< 0.1	< 0.1	< 0.1
3,4,5-Trichlorophenol	-	µg/g	< 0.05	< 0.05	< 0.05
3,4-Dichlorophenol	-	µg/g	< 0.05	< 0.05	< 0.05
3,5-Dichlorophenol	-	µg/g	< 0.05	< 0.05	< 0.05
4,6-Dinitro-2-methylphenol	-	µg/g	< 0.1	< 0.1	< 0.1
4-Chloro-3-methylphenol	-	µg/g	< 0.1	< 0.1	< 0.1
4-Nitrophenol	-	µg/g	< 0.1	< 0.1	< 0.1
Pentachlorophenol	2.9	µg/g	< 0.05	< 0.05	< 0.05
Phenol	9.4	µg/g	< 0.1	< 0.1	< 0.1
3-, 4-Methylphenol (total)	-	µg/g	< 0.1	< 0.1	< 0.1
3-, 4-Chlorophenol (total)	-	µg/g	< 0.05	< 0.05	< 0.05

Notes:

¹ O.Reg 153 (2011) Table 7 Standards for industrial/commercial/community property use for coarse textured soil in generic site condition for shallow soils in a non-potable ground water condition

< Indicates parameter was below laboratory equipment detection limit.

- Chemical not analyzed or criteria not defined.

Bold and italicised Bold and shaded

Exceeding MECP Table 7 Standards

Detection limit above MECP Table 7 Standards

Prepared by: LR Checked by: RM Page 7 of 19

Table D7Historical Pesticides in Soil SamplesPhase Two Environmental Site AssessmentNew Civic Development for The Ottawa Hospital - Parkade

		Location	MW17-02								
	Sample Nam Sample Dat										
	Sam	ple Date	2017-07-28								
	Samp	le Depth	0-1.52 m								
			Stantec,								
	Historica	al Report	7 September 2017,								
		-	Ph II								
	MECP Table 7										
Parameter	Standards ¹	Unit									
4,4-DDD	-	µg/g	< 0.002								
4,4-DDE	-	µg/g	< 0.002								
4,4-DDT	-	µg/g	< 0.002								
Aldrin	0.088	µg/g	< 0.002								
alpha-Chlordane	-	µg/g	< 0.002								
Chlordane	0.05	µg/g	< 0.002								
Dieldrin	0.088	µg/g	< 0.002								
Endosulfan	0.3	µg/g	< 0.002								
Endrin	0.04	µg/g	< 0.002								
gamma-hexachlorocyclohexane	-	µg/g	< 0.002								
Heptachlor	0.19	µg/g	< 0.002								
Heptachlor Epoxide	0.05	µg/g	< 0.002								
Methoxychlor	1.6	µg/g	< 0.005								
o,p'-DDD	-	µg/g	< 0.002								
o,p'-DDE	-	µg/g	< 0.002								
o,p'-DDT	-	µg/g	< 0.002								
DDD, Total	4.6	µg/g	< 0.002								
DDT, Total	1.4	µg/g	< 0.002								
gamma-Chlordane	-	µg/g	< 0.002								
13C9-Endosulfan I	-	µg/g	< 0.002								
13C9-Endosulfan II	-	µg/g	< 0.002								
DDE, Total	-	µg/g	< 0.002								

Notes:

¹ O.Reg 153 (2011) Table 7 Standards for industrial/commercial/community property use for coarse textured soil in generic site condition for shallow soils in a non-potable ground water condition

< Indicates parameter was below laboratory equipment detection limit.

- Chemical not analyzed or criteria not defined.

Bold and italicised	Detection limit above MECP Table 7 Standards
Bold and shaded	Exceeding MECP Table 7 Standards

Table D8

Historical Polychlorinated Biphenyls in Soil Samples Phase Two Environmental Site Assessment New Civic Development for The Ottawa Hospital - Parkade

	Lo	cation	MW1	7-01	MW17-02
	Sample	Name	MW17-01-SS01	DUP-20170728-D	MW17-02-SS01
	Sample	e Date	2017-07-28	2017-07-28	2017-07-28
	Sample	Depth	0-1.52 m	0-1.52 m	0-1.52 m
	Historical F	Report	Stantec, 7 September 2017, Ph II	Stantec, 7 September 2017, Ph II	Stantec, 7 September 2017, Ph II
Parameter	MECP Table 7 Standards ¹	Unit			
Aroclor 1242	-	µg/g	< 0.01	< 0.01	< 0.015
Aroclor 1248	-	µg/g	< 0.01	< 0.01	< 0.015
Aroclor 1254	-	µg/g	< 0.01	< 0.01	< 0.015
Aroclor 1260	-	µg/g	< 0.01	< 0.01	< 0.015
Polychlorinated Biphenyls	1.1	µg/g	< 0.01	< 0.01	< 0.015

Notes:

¹ O.Reg 153 (2011) Table 7 Standards for industrial/commercial/community property use for coarse textured soil in generic site condition for shallow soils in a non-potable ground water condition

< Indicates parameter was below laboratory equipment detection limit.

- Chemical not analyzed or criteria not defined.

Bold and italicised Detection limit above MECP Table 7 Standards

Bold and shaded

Exceeding MECP Table 7 Standards

Table D9

Historical Dioxins and Furans in Soil Samples Phase Two Environmental Site Assessment

New Civic Development for The Ottawa Hospital - Parkade

	Loc	ation	MW1	17-01
	Sample	Name	MW17-01-SS01	DUP-20170728-D
	Sample	Date	2017-07-28	2017-07-28
	Sample I	Depth	0-1.52 m	0-1.52 m
			Stantec, 7	Stantec, 7
	Historical R	eport	September 2017,	September 2017,
			Ph II	Ph II
Parameter	MECP Table 7	Unit		
Parameter	Standards ¹	Unit		
1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin	-	pg/g	8.5	5.56
1,2,3,4,7,8,9-Heptachlorodibenzofuran	-	pg/g	0.253	0.151
1,2,3,4,7,8-Hexachlorodibenzofuran	-	pg/g	0.111	< 0.105
1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin	-	pg/g	< 0.0982	< 0.105
1,2,3,6,7,8-Hexachlorodibenzofuran	-	pg/g	< 0.0944	< 0.101
1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin	-	pg/g	< 0.307	0.234
1,2,3,7,8,9-Hexachlorodibenzofuran	-	pg/g	0.151	< 0.122
1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin	-	pg/g	0.237	< 0.119
1,2,3,7,8-Pentachlorodibenzofuran	-	pg/g	< 0.104	< 0.104
1,2,3,7,8-Pentachlorodibenzo-p-dioxin	-	pg/g	< 0.102	< 0.103
2,3,4,6,7,8-Hexachlorodibenzofuran	-	pg/g	0.133	< 0.11
2,3,4,7,8-Pentachlorodibenzofuran	-	pg/g	< 0.107	< 0.107
2,3,7,8-Tetrachlorodibenzofuran	-	pg/g	< 0.104	< 0.105
2,3,7,8-Tetrachlorodibenzo-p-dioxin	-	pg/g	< 0.105	< 0.103
Octachlorodibenzofuran	-	pg/g	6.6	4.48
Octachlorodibenzo-p-dioxin	-	pg/g	93.4	56.6
1,2,3,4,6,7,8-Heptachlorodibenzofuran	-	pg/g	2.74	2.16
1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin - toxicity equivalence	-	pg/g	16	10.2
1,2,3,7,8-Pentachlorodibenzo-p-dioxin - toxicity equivalence	-	pg/g	< 0.102	< 0.103
1,2,3,7,8-Pentachlorodibenzofuran - toxicity equivalence factor	-	pg/g	0.172	0.386
1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin - toxicity equivalence	-	pg/g	1.11	0.915
1,2,3,4,6,7,8-Heptachlorodibenzofuran - toxicity equivalence	-	pg/g	8.43	6.53
1,2,3,7,8,9-Hexachlorodibenzofuran - toxicity equivalence factor	-	pg/g	2.64	1.71
13C-2,3,7,8-Tetrachlorodibenzo-p-dioxin - toxicity equivalence	-	pg/g	< 0.105	< 0.103
Tetrachlorodibenzofuran	-	pg/g	< 0.209	< 0.169
TEQ Total Dioxin/Furan (WHO,ND=DL)	-	pg/g	0.511	0.438

Notes:

¹ O.Reg 153 (2011) Table 7 Standards for industrial/commercial/community property use for coarse textured soil in generic site condition for shallow soils in a non-potable ground water condition

< Indicates parameter was below laboratory equipment detection limit.

- Chemical not analyzed or criteria not defined.

Bold and italicised Bold and shaded Detection limit above MECP Table 7 Standards Exceeding MECP Table 7 Standards

Table D10 Historical General Chemistry in Groundwater Samples Phase Two Environmental Site Assessment New Civic Development for The Ottawa Hospital - Parkade

	L	ocation	BH2/MW2		BH4/MW4		BH5	MW1	17-01	MW17-02
	Sample Nar		MW2	MW4	MW4 DUP (Field duplicate of MW4)	MW4	MW5	MW17-01	DUP-20170801-D	MW17-02
	Samp	ole Date	2017-08-02	2003-11-06	2003-11-06	2017-08-03	2003-11-06	2017-08-01	2017-08-01	2017-07-31
·		Report	Stantec, 7 September 2017, Ph II	Intera, January 2004, Ph I/II	Intera, January 2004, Ph I/II	Stantec, 7 September 2017, Ph II	Intera, January 2004, Ph I/II	Stantec, 7 September 2017, Ph II	Stantec, 7 September 2017, Ph II	Stantec, 7 September 2017, Ph II
Parameter	MECP Table 7 Standards ¹	Unit								
Alkalinity (Total as CaCO3)	-	µg/L	-	480000	470000	-	600000	-	-	-
Ammonia Nitrogen	-	mg/L	1.6	-	-	2.5	-	0.15	0.14	0.32
Bromide	-	μg/L	-	< 100	< 100	-	600	-	-	-
Chloride	1800000	μg/L	1600000	1200000	1200000	3000000	1800000	1300000	1200000	13000
Cyanide (free)	0.052	mg/L	0.0013	-	-	< 0.001	-	0.0081	0.008	< 0.001
Conductivity	-	uS/cm	-	5100	5100	-	7400	-	-	-
Fluoride	-	μg/L	250	< 50	< 50	150	< 50	620	580	190
Hardness, Calcium Carbonate	-	mg/L	-	1800	1800	1930	1400	116	113	744
Nitrogen, Nitrate-Nitrite	-	mg/L	-	-	-	0.2	-	1.59	1.63	0.16
pH	-	-	-	7.88	6.9	7.11	7.18	8.01	8.07	7.54
Phosphate	-	μg/L	-	< 500	< 500	-	< 500	-	-	-
Sulphate	-	µg/L	740000	1100000	1100000	420000	1700000	450000	390000	330000
Sulfide	-	mg/L	0.0093	-	-	0.012	-	< 0.0019	< 0.0019	< 0.0019
Nitrate as N	-	µg/L	-	4900	5000	190	200	1550	1590	160
Nitrite as N	-	µg/L	-	< 50	< 50	12	< 50	42	44	<10
Sulfide (as H2S)	-	mg/L	0.01	-	-	0.012	-	< 0.002	< 0.002	< 0.002

Notes:

¹ O.Reg 153 (2011) Table 7 Standards for all types of property use for groundwater in coarse textured soil in generic site condition for shallow soils in a non-potable ground water condition.

< Indicates parameter was below laboratory equipment detection limit.

- Chemical not analyzed or criteria not defined.

Bold and italicised Detection limit above MECP Table 7 Standards

Bold and shaded Exceeding MECP Table 7 Standards

Table D11 Historical Petroleum Hydrocarbons in Groundwater Samples Phase Two Environmental Site Assessment New Civic Development for The Ottawa Hospital - Parkade

	Loc	cation	MW2	В	H4	BH5	BH7	MV	/17-01	MW17-02
	Sample	Name	MW2	M	W4	MW5	BH7 GW1	MW17-01	DUP-20170801-D (Field duplicate of MW17-01)	MW17-02
	Sample	e Date	2017-08-02	2003-11-06	2017-08-03	2003-11-06	2017-08-09	2017-08-01	2017-08-01	2017-07-31
Historical Report		Stantec, 7 September 2017, Ph II	Intera, January 2004, Ph I/II	Stantec, 7 September 2017, Ph II	Intera, January 2004, Ph I/II	Paterson, 8 September 2017	Stantec, 7 September 2017, Ph II	Stantec, 7 September 2017, Ph II	Stantec, 7 September 2017, Ph II	
Parameter	MECP Table 7	Unit								
	Standards ¹	01110								
PHC - F1 (C6-C10)	420	µg/L	< 25	-	< 25	-	< 25	< 25	< 25	< 25
PHC - F1 (C6-C10)-BTEX	420	µg/L	< 25	-	< 25	-	-	< 25	< 25	< 25
PHC - F2 (C10-C16)	150	µg/L	< 100	-	< 100	-	< 100	< 100	< 100	< 100
PHC - F2 (C10-C16) less Naphthalene	-	µg/L	-	-	-	-	-	-	-	-
PHC - F3 (C16-C34)	500	μg/L	< 200	-	< 200	-	< 100	< 200	< 200	< 200
PHC - F3 (C16-C34) less PAHs	-	µg/L	-	-	-	-	-	-	-	-
PHC - F4 (C34-C50)	500	μg/L	< 200	-	< 200	-	< 100	< 200	< 200	< 200
Benzene	0.5	µg/L	< 0.1	< 0.5	0.27	-	< 0.5	< 0.2	< 0.2	< 0.1
Toluene	320	µg/L	< 0.2	< 0.5	< 0.2	-	< 0.5	< 0.4	< 0.4	0.64
Ethylbenzene	54	µg/L	< 0.1	< 0.5	< 0.1	-	< 0.5	< 0.2	< 0.2	< 0.1
o-Xylene	-	µg/L	< 0.1	< 0.5	< 0.1	-	-	< 0.2	< 0.2	< 0.1
m,p-Xylenes	-	µg/L	< 0.1	< 1	< 0.1	-	-	< 0.2	< 0.2	0.1
Xylenes, Total	72	µg/L	< 0.1	< 0.5	< 0.1	-	< 0.5	< 0.2	< 0.2	0.1
TPH-Diesel	-	µg/L	-	-	-	< 100	-	-	-	-
TPH-Heavy Oils	-	µg/L	-	-	-	< 500	-	-	-	-
TPH as Gasoline	-	µg/L	-	-	-	< 200	-	-	-	-

Notes:

¹ O.Reg 153 (2011) Table 7 Standards for all types of property use for groundwater in coarse textured soil in generic site condition for shallow soils in a non-potable ground water condition.

< Indicates parameter was below laboratory equipment detection limit.

- Chemical not analyzed or criteria not defined.

Bold and italicised	Detection limit above MECP Table 7 Standards
Bold and shaded	Exceeding MECP Table 7 Standards

Table D12 Historical VOCs in Groundwater Samples Phase Two Environmental Site Assessment New Civic Development for The Ottawa Hospital - Parkade

	Loc	ation	MW2	В	H4/MW4	BH7	MW	17-01	MW17-02
	Sample	Name	MW2	MW4	MW4	BH7 GW1	MW17-01	DUP-20170801-D (Field duplicate of MW17-01)	MW17-02
	Sample	Date	2017-08-02	2003-11-06	2017-08-03	2017-08-09	2017-08-01	2017-08-01	2017-07-31
	Historical Repo		Stantec, 7 September 2017, Ph II	Intera, January 2004, Ph I/II	Stantec, 7 September 2017, Ph II	Paterson, 8 September 2017	Stantec, 7 September 2017, Ph II	Stantec, 7 September 2017, Ph II	Stantec, 7 September 2017, Ph II
Parameter	MECP Table 7 Standards ¹	Unit							
1,1,1,2-Tetrachloroethane	1.1	µg/L	< 0.2	< 0.5	< 0.2	-	< 0.4	< 0.4	< 0.2
1,1,1-Trichloroethane	23	µg/L	< 0.1	< 0.4	< 0.1	-	< 0.2	< 0.2	< 0.1
1,1,2,2-Tetrachloroethane	0.5	µg/L	< 0.2	< 0.6	< 0.2	-	< 0.4	< 0.4	< 0.2
1,1,2-Trichloroethane	0.5	µg/L	< 0.2	< 0.6	< 0.2	-	< 0.4	< 0.4	< 0.2
1,1-Dichloroethane	11	µg/L	< 0.1	< 0.5	< 0.1	-	< 0.2	< 0.2	< 0.1
1,1-Dichloroethylene	0.5	µg/L	< 0.1	< 0.6	< 0.1	-	< 0.2	< 0.2	< 0.1
1.2-DibroMECPthane	0.2	µg/L	< 0.2	<1	< 0.2	-	< 0.4	< 0.4	< 0.2
1.2-Dichlorobenzene	150	µg/L	< 0.2	< 0.4	< 0.2	-	< 0.4	< 0.4	< 0.2
1,2-Dichloroethane	0.5	µg/L	< 0.2	< 0.5	< 0.2	-	< 0.4	< 0.4	< 0.2
1,2-Dichloropropane	0.58	µg/L	< 0.1	< 0.7	< 0.1	-	< 0.2	< 0.2	< 0.1
1,3,5-Trimethylbenzene	-	µg/L	-	< 0.5	-	-	-	-	-
1.3-Dichlorobenzene	7600	ua/L	< 0.2	< 0.4	< 0.2	-	< 0.4	< 0.4	< 0.2
1,3-Dichloropropene, Total	0.5	µg/L	- 0.2	- 0.4	- 0.2	-	- 0.4	- 0.4	- 0.2
1.4-Dichlorobenzene	0.5	µg/L	< 0.2	< 0.4	< 0.2		< 0.4	< 0.4	< 0.2
Methyl Ethyl Ketone	21000	ua/L	< 5	-	< 5		< 10	< 10	< 5
Acetone	100000	µg/L	< 10	-	< 10	-	< 20	< 20	< 10
Bromodichloromethane	67000	µg/L	< 0.1	< 0.4	< 0.1	-	< 0.2	< 0.2	< 0.1
Bromoform	5	µg/L	< 0.2	< 0.8	< 0.2	-	< 0.4	< 0.4	< 0.2
Bromomethane	0.89	µg/L	< 0.5	<1	< 0.5	-	< 1	<1	< 0.5
Carbon Tetrachloride	0.2	µg/L	< 0.1	< 0.5	< 0.1	-	< 0.2	< 0.2	< 0.1
Chlorobenzene	140	µg/L	< 0.1	< 0.4	< 0.1	-	< 0.2	< 0.2	< 0.1
Chloroethane	-	ua/L	-	<1	-	-	-	-	-
Chloroform	2	µg/L	< 0.1	< 0.6	< 0.1		1.5	1.5	0.98
Chloromethane	-	µg/L	-	< 3	-	-	-	-	-
cis-1,2-Dichloroethene	1.6	µg/L	< 0.1	< 0.4	< 0.1	-	< 0.2	< 0.2	< 0.1
cis-1,3-Dichloropropene	-	µg/L	< 0.2	< 0.4	< 0.2	-	< 0.4	< 0.4	< 0.2
Dibromochloromethane	65000	µg/L	< 0.2	< 0.5	< 0.2	-	< 0.4	< 0.4	< 0.2
Dichlorodifluoromethane	3500	µg/L	< 0.5	-	< 0.5	-	<1	<1	< 0.5
Ethylbenzene	54	µg/L	< 0.1	< 0.5	< 0.1	< 0.5	< 0.2	< 0.2	< 0.1
Hexachloroethane	0.17	µg/L	-	-	-	-	-	-	< 0.01
Methyl tert-Butyl Ether	15	µg/L	< 0.2	-	< 0.2	-	< 0.4	< 0.4	< 0.2
Methylene Chloride	26	µg/L	< 0.5	< 4	< 0.5	-	<1	<1	< 0.5
n-Hexane	5	µg/L	< 0.5	-	< 0.5	-	<1	< 1	< 0.5
Tetrachloroethylene	0.5	µg/L	< 0.1	< 0.5	< 0.1	-	< 0.2	< 0.2	< 0.1
trans-1,2-Dichloroethene	1.6	µg/L	< 0.1	< 1	< 0.1	-	< 0.2	< 0.2	< 0.1
trans-1,3-Dichloropropene	-	µg/L	< 0.2	< 0.5	< 0.2	-	< 0.4	< 0.4	< 0.2
Trichloroethene	0.5	µg/L	< 0.1	< 0.4	< 0.1	-	< 0.2	< 0.2	< 0.1
Trichlorofluoromethane	2000	µg/L	< 0.2	< 1	< 0.2	-	< 0.4	< 0.4	< 0.2
Vinyl Chloride	0.5	µg/L	< 0.2	< 0.5	< 0.2	-	< 0.4	< 0.4	< 0.2
Styrene	43	µg/L	< 0.2	< 0.4	< 0.2	-	< 0.4	< 0.4	< 0.2
Methyl Isobutyl Ketone	5200	ua/L	< 5	-	< 5	-	< 10	< 10	< 5

Notes:

¹ O.Reg 153 (2011) Table 7 Standards for all types of property use for groundwater in coarse textured soil in generic site condition for shallow soils in a non-potable ground water condition.

< Indicates parameter was below laboratory equipment detection limit.

- Chemical not analyzed or criteria not defined.

 Bold and italicised
 Detection limit above MECP Table 7 Standards

 Bold and shaded
 Exceeding MECP Table 7 Standards

Table D13 Historical PAHs in Groundwater Samples Phase Two Environmental Site Assessment New Civic Development for The Ottawa Hospital - Parkade

	Lo	cation	BH7 (Paterson)	MW2		MW4		М	W5	MW	17-01	MW17-02
	Sample	Name	BH7 GW1	MW2	MW4	03-MW4	MW4	03-MW5	03-MW5	MW17-01	DUP-20170801-D (Field duplicate of MW17-01)	MW17-02
	Sample	e Date	2017-08-09	2017-08-02	2003-11-06	2005-06-01	2017-08-03	2003-11-06	2005-06-01	2017-08-01	2017-08-01	2017-07-31
Historical Repo		Report	Paterson, 8 September 2017	Stantec, 7 September 2017, Ph II	Intera, January 2004, Ph I/II	Intera, October 2005, Risk Asses.	Stantec, 7 September 2017, Ph II	Intera, January 2004, Ph I/II	Intera, October 2005, Risk Asses.	Stantec, 7 September 2017, Ph II	Stantec, 7 September 2017, Ph II	Stantec, 7 September 2017, Ph II
Parameter	MECP Table 7 Standards1	Unit										
1-Methylnaphthalene	1500	µg/L	< 0.05	< 0.01	-	< 0.05	< 0.01	< 0.05	< 0.05	< 0.01	< 0.01	< 0.01
2-Methylnaphthalene	1500	µg/L	< 0.05	< 0.01	-	< 0.05	< 0.01	< 0.05	< 0.05	< 0.01	< 0.01	< 0.01
4-Methyl-2-pentanone	5200	µg/L	-	< 5	-	-	< 5	-	-	< 10	< 10	< 5
Acenaphthene	17	μg/L	0.14	< 0.01	-	< 0.05	< 0.01	< 0.05	< 0.05	< 0.01	< 0.01	< 0.01
Acenaphthylene	1	µg/L	< 0.05	< 0.01	-	< 0.05	< 0.01	< 0.05	< 0.05	< 0.01	< 0.01	< 0.01
Anthracene	1	µg/L	< 0.01	< 0.01	-	< 0.01	< 0.01	0.06	< 0.01	< 0.01	< 0.01	< 0.01
Benzo [b,j] fluoranthene	-	µg/L	-	< 0.01	-	-	< 0.01	-	-	< 0.01	< 0.01	< 0.01
Benzo[a]anthracene	1.8	µg/L	0.02	< 0.01	-	< 0.01	< 0.01	0.17	< 0.01	< 0.01	< 0.01	< 0.01
Benzo[a]pyrene	0.81	µg/L	< 0.01	< 0.01	-	< 0.01	< 0.01	0.1	< 0.01	< 0.01	< 0.01	< 0.01
Benzo[b]fluoranthene	0.75	µg/L	< 0.05	-	-	< 0.05	-	0.16	< 0.05	-	-	-
Benzo[g,h,i]perylene	0.2	µg/L	< 0.05	< 0.01	-	< 0.05	< 0.01	0.11	< 0.05	< 0.01	< 0.01	< 0.01
Benzo[k]fluoranthene	0.4	µg/L	< 0.05	< 0.01	-	< 0.05	< 0.01	0.11	< 0.05	< 0.01	< 0.01	< 0.01
Biphenyl	1000	µg/L	-	-	-	< 0.05	-	< 0.05	< 0.05	-	-	-
Chrysene	0.7	µg/L	< 0.05	< 0.01	-	< 0.05	< 0.01	0.22	< 0.05	< 0.01	< 0.01	< 0.01
Dibenzo[a,h]anthracene	0.4	µg/L	< 0.05	< 0.01	-	< 0.05	< 0.01	< 0.05	< 0.05	< 0.01	< 0.01	< 0.01
Fluoranthene	44	µg/L	0.08	< 0.01	-	< 0.01	< 0.01	0.36	< 0.01	< 0.01	< 0.01	< 0.01
Fluorene	290	µg/L	< 0.05	< 0.01	-	< 0.05	< 0.01	0.05	< 0.05	< 0.01	< 0.01	< 0.01
Hexachlorobenzene	3.1	µg/L	-	-	-	-	-	-	-	-	-	< 0.005
Hexachlorobutadiene	0.012	µg/L	-	-	-	-	-	-	-	-	-	< 0.009
Indeno[1,2,3-cd]pyrene	0.2	µg/L	< 0.05	< 0.01	-	< 0.05	< 0.01	0.11	< 0.05	< 0.01	< 0.01	< 0.01
Naphthalene	7	µg/L	< 0.05	0.012	-	< 0.05	< 0.01	2.1	1.3	0.013	0.013	0.012
Phenanthrene	380	µg/L	< 0.05	< 0.01	-	< 0.05	< 0.01	0.22	< 0.05	< 0.01	< 0.01	< 0.01
Pyrene	5.7	µg/L	0.05	< 0.01	-	< 0.01	< 0.01	0.35	< 0.01	< 0.01	< 0.01	< 0.01
Styrene	43	µg/L	-	< 0.2	< 0.4	-	< 0.2	-	-	< 0.4	< 0.4	< 0.2
1- & 2-Methylnaphthalene	-	µg/L	-	-	-	-	-	-	-	-	-	-

Notes:

¹ O.Reg 153 (2011) Table 7 Standards for all types of property use for groundwater in coarse textured soil in generic site condition for shallow soils in a non-potable ground water condition.

< Indicates parameter was below laboratory equipment detection limit.

- Chemical not analyzed or criteria not defined.

Bold and italicised Detection limit above MECP Table 7 Standards

Bold and shaded Exceeding MECP Table 7 Standards

Table D14 Historical Metals in Groundwater Samples Phase Two Environmental Site Assessment New Civic Development for The Ottawa Hospital - Parkade

	Lo	cation	M	W2		BH4/MW4		MW5	MW	17-01	MW17-02
	Sample	Name		MW2	MW4	MW4 DUP (Field duplicate of MW4)	MW4	MW5	MW17-01	DUP-20170801-D (Field duplicate of MW17-01)	MW17-02
	Sample	e Date	2005-06-01	2017-08-02	2003-11-06	2003-11-06	2017-08-03	2003-11-06	2017-08-01	2017-08-01	2017-07-31
	Historical Repor			Stantec, 7 September 2017, Ph II	Intera, January 2004, Ph I/II	Intera, January 2004, Ph I/II	Stantec, 7 September 2017, Ph II	Intera, January 2004, Ph I/II	Stantec, 7 September 2017, Ph II	Stantec, 7 September 2017, Ph II	Stantec, 7 September 2017, Ph II
Parameter	MECP Table 7 Standards1										
Aluminum	-	µg/L	<10	< 5	40	20	6.3	30	10.1	10.5	2.85
Antimony	16000	µg/L	4.00	< 0.2	<1	< 1	< 0.2	3	1.44	1.47	0.665
Arsenic	1500	µg/L	<10	5.39	< 10	< 10	7.44	< 10	1.1	1.14	5.34
Barium	23000	µg/L	50	42.5	70	80	72.3	70	547	556	98.4
Beryllium	53	µg/L	<1	< 0.1	< 1	< 1	< 0.1	< 1	< 0.1	< 0.1	< 0.01
Bismuth	-	µg/L	-	< 0.05	-	-	< 0.05	-	< 0.05	< 0.05	< 0.005
Boron	36000	µg/L	55	394	200	200	237	250	< 100	< 100	136
Cadmium	2.1	µg/L	<1	< 0.05	< 1	< 1	< 0.05	< 1	< 0.05	< 0.05	0.007
Calcium	-	µg/L	300000	395000	530000	550000	569000	450000	35400	34400	227000
Chromium	640	µg/L	<50	< 1	< 50	< 50	<1	< 50	<1	< 1	< 0.1
Hexavalent Chromium	110	µg/L	<10	-	-	-	-	-	-	-	-
Cobalt	52	µg/L	10	0.144	10	10	0.406	30	0.557	0.524	0.591
Copper	69	µg/L	15	< 0.5	10	10	0.89	10	6.24	6.4	1.02
Lead	20	µg/L	<1	0.052	< 5	< 5	0.074	< 5	< 0.05	< 0.05	0.014
Lithium	-	µg/L	-	88.1	-	-	86.8	-	6.9	6.8	13.8
Magnesium	-	µg/L	95000	111000	110000	110000	124000	84000	6710	6650	43200
Manganese	-	µg/L	150	86	350	350	85.8	200	2.48	2.5	80.9
Mercury	0.1	µg/L	<0.1	< 0.01	-	-	< 0.01	-	< 0.01	< 0.01	< 0.01
Molybdenum	7300	µg/L	15	5.27	< 5	< 5	1.31	25	126	123	4.05
Nickel	390	µg/L	40	1.74	35	35	2.69	60	1.93	2.13	3.08
Potassium	-	µg/L	19000	19500	11000	11000	17500	23000	8020	8130	10700
Selenium	50	µg/L	5	< 0.4	< 5	< 5	0.53	< 5	1.09	1.09	0.18
Silicon	-	µg/L	-	7800	-	-	7260	-	6600	6330	6610
Silver Sodium	1.2 1800000	µg/L	<1 920000	< 0.05 905000	< 1 620000	< 1 570000	< 0.05 1200000	< 1 1100000	< 0.05 1260000	< 0.05 1260000	0.005 30100
		µg/L		905000			13600		930	904	5410
Strontium Sulfur	-	µg/L ma/L	-	275	-	-	13600	-	930	904	127
Thallium	- 400	mg/L ua/L	- <1	< 0.02	- < 1	- <1	< 0.02	- < 1	0.094	0.091	0.013
Tin	400	µg/L µg/L	<10	< 0.02	< 5	< 5	< 0.02	< 5	< 2	< 2	0.013
Titanium	-	ua/L	<10	< 5	-	-	< 5	-	< 5	< 5	< 0.5
Uranium	330	ua/L	-	3.15		-	5.47		8.92	9.11	5.26
Vanadium	200	ua/L	<10	< 2	- < 10	< 10	< 2	- < 10	< 2	< 2	0.54
Zinc	890	ua/L	20	5.8	80	80	18.8	80	2.3	2.7	5.79
Zirconium		ua/L		< 1		-	< 1		< 1	< 1	0.37
Iron		ua/L	1000	9740	< 200	< 200	5530	< 200	19	17	1210
	-	µy/L	1000	5140	► 200	× 200	3330	~ 200	13	17	1210

Notes:

¹ O.Reg 153 (2011) Table 7 Standards for all types of property use for groundwater in coarse textured soil in generic site condition for shallow soils in a non-potable ground water condition.

< Indicates parameter was below laboratory equipment detection limit.

- Chemical not analyzed or criteria not defined.

Bold and italicised Detection limit above MECP Table 7 Standards

Bold and shaded Exceeding MECP Table 7 Standards

Prepared by: LR Checked by: RM Page 15 of 19

Table D15 Historical Phenols in Groundwater Samples Phase Two Environmental Site Assessment

New Civic Development for The Ottawa Hospital - Parkade

	Loc	ation	MW2	MW4	MW1	7-01	MW17-02		
						DUP-20170801-D		DUP-20170731-C	
	Sample I	Name	MW2	MW4	MW17-01	(Field duplicate	MW17-02	(Field duplicate	
						of MW17-01)		of MW17-02)	
	Sample	Date	2017-08-02	2017-08-03	2017-08-01	2017-08-01	2017-07-31	2017-07-31	
	-		Stantec, 7	Stantec, 7	Stantec, 7	Stantec, 7	Stantec, 7	Stantec, 7	
	Historical R	eport	September 2017,	September 2017,	September 2017,	September 2017,	September 2017,	September 2017,	
		-	Ph II	Ph II	Ph II	Ph II	Ph II	Ph II	
Damana starr	MECP Table 7	11							
Parameter	Standards1	Unit							
2,3,4,5-Tetrachlorophenol	-	µg/L	< 0.1	< 0.1	< 0.3	< 0.1	< 0.1	< 0.1	
2,3,4,6-Tetrachlorophenol	-	μg/L	< 0.1	< 0.1	< 0.3	< 0.1	< 0.1	< 0.1	
2,3,4-Trichlorophenol	-	μg/L	< 0.1	< 0.1	< 0.3	< 0.1	< 0.1	< 0.1	
2,3,5,6-Tetrachlorophenol	-	μg/L	< 0.1	< 0.1	< 0.3	< 0.1	< 0.1	< 0.1	
2,3,5-Trichlorophenol	-	μg/L	< 0.1	< 0.1	< 0.3	< 0.1	< 0.1	< 0.1	
2,3,6-Trichlorophenol	-	μg/L	< 0.1	< 0.1	< 0.3	< 0.1	< 0.1	< 0.1	
2,3-Dichlorophenol	-	μg/L	< 0.1	< 0.1	< 0.3	< 0.1	< 0.1	< 0.1	
2,4,5-Trichlorophenol	1300	μg/L	< 0.1	< 0.1	< 0.3	< 0.1	< 0.1	< 0.1	
2,4,6-Trichlorophenol	180	μg/L	< 0.1	< 0.1	< 0.3	< 0.1	< 0.1	< 0.1	
2,4-Dichlorophenol	3700	μg/L	< 0.1	< 0.1	< 0.3	0.1	< 0.1	< 0.1	
2,4-Dimethylphenol	31000	μg/L	< 1	< 1	< 3	< 1	< 1	< 1	
2,4-Dinitrophenol	9000	μg/L	< 1	< 1	< 3	< 1	< 1	< 1	
2,5-Dichlorophenol	-	μg/L	< 0.1	< 0.1	< 0.3	< 0.1	< 0.1	< 0.1	
2,6-Dichlorophenol	-	μg/L	< 0.1	< 0.1	< 0.3	< 0.1	< 0.1	< 0.1	
2-Chlorophenol	2600	μg/L	< 0.1	< 0.1	< 0.3	< 0.1	< 0.1	< 0.1	
2-Methylphenol	-	μg/L	< 0.5	< 0.5	< 1.5	< 0.5	< 0.5	< 0.5	
2-Nitrophenol	-	μg/L	< 1	< 1	< 3	< 1	< 1	< 1	
3,4,5-Trichlorophenol	-	μg/L	< 0.1	< 0.1	< 0.3	< 0.1	< 0.1	< 0.1	
3,4-Dichlorophenol	-	μg/L	< 0.1	< 0.1	< 0.3	< 0.1	< 0.1	< 0.1	
3,5-Dichlorophenol	-	μg/L	< 0.1	< 0.1	< 0.3	< 0.1	< 0.1	< 0.1	
4,6-Dinitro-2-methylphenol	-	μg/L	< 1	< 1	< 3	< 1	< 1	< 1	
4-Chloro-3-methylphenol	-	μg/L	< 0.1	< 0.1	< 0.3	< 0.1	< 0.1	< 0.1	
4-Nitrophenol	-	µg/L	< 1	< 1	< 3	< 1	< 1	< 1	
Pentachlorophenol	50	μg/L	< 0.1	< 0.1	< 0.3	< 0.1	< 0.1	< 0.1	
Phenol	9600	μg/L	< 0.5	< 0.5	< 1.5	< 0.5	< 0.5	< 0.5	
3-, 4-Methylphenol (total)	-	µg/L	< 0.5	< 0.5	< 1.5	< 0.5	< 0.5	< 0.5	
3-, 4-Chlorophenol (total)	-	μg/L	< 0.1	< 0.1	< 0.3	< 0.1	< 0.1	< 0.1	

Notes:

¹ O.Reg 153 (2011) Table 7 Standards for all types of property use for groundwater in coarse textured soil in generic site condition for shallow soils in a non-potable ground water condition.

< Indicates parameter was below laboratory equipment detection limit.

- Chemical not analyzed or criteria not defined.

Bold and italicisedDetection limit above MECP Table 7 StandardsBold and shadedExceeding MECP Table 7 Standards

Table D16Historical Metals in Groundwater Samples

Phase Two Environmental Site Assessment

New Civic Development for The Ottawa Hospital - Parkade

	L	ocation	MW17-02
	Samp	le Name	MW17-02
	Sam	ple Date	2017-07-31
			Stantec, 7
	Historica	l Report	September 2017, Ph
			II
Parameter	MECP Table 7	Unit	
	Standards1		
4,4-DDD	-	µg/L	< 0.005
4,4-DDE	-	µg/L	< 0.005
4,4-DDT	-	µg/L	< 0.005
Aldrin	3	µg/L	< 0.005
alpha-Chlordane	-	µg/L	< 0.005
Chlordane	0.06	µg/L	< 0.005
Dieldrin	0.56	µg/L	< 0.005
Endosulfan	0.56	µg/L	< 0.005
Endrin	0.36	µg/L	< 0.005
gamma-hexachlorocyclohexane	-	µg/L	< 0.003
Heptachlor	0.038	µg/L	< 0.005
Heptachlor Epoxide	0.038	µg/L	< 0.005
Methoxychlor	0.3	µg/L	< 0.01
o,p'-DDD	-	µg/L	< 0.005
o,p'-DDE	-	µg/L	< 0.005
o,p'-DDT	-	µg/L	< 0.005
Toxaphene	-	µg/L	< 0.2
DDD, Total	1.8	µg/L	< 0.005
DDT, Total	0.05	µg/L	< 0.005
gamma-Chlordane	-	µg/L	< 0.005
DDT+ metabolites	-	µg/L	< 0.005
13C9-Endosulfan I	-	µg/L	< 0.005
13C9-Endosulfan II	-	µg/L	< 0.005
DDE, Total	-	µg/L	< 0.005

Notes:

¹ O.Reg 153 (2011) Table 7 Standards for all types of property use for groundwater in coarse textured soil in generic site condition for shallow soils in a non-potable ground water condition.

< Indicates parameter was below laboratory equipment detection limit.

- Chemical not analyzed or criteria not defined.

Bold and italicised	Detection limit above MECP Table 7 Standards
Bold and shaded	Exceeding MECP Table 7 Standards

Prepared by: LR Checked by: RM Page 17 of 19

Table D17Historical PCBs in Groundwater SamplesPhase Two Environmental Site AssessmentNew Civic Development for The Ottawa Hospital - Parkade

	Loc	ation	MW2	MW4	MW1	17-01	MW17-02
	Sample I	Name	MW2	MW4	MW17-01	DUP-20170801-D	MW17-02
	Sample	Date	2017-08-02	2017-08-03	2017-08-01	2017-08-01	2017-07-31
	Historical R	eport	Stantec, 7 September 2017, Ph II				
Parameter	MECP Table 7 Standards1	Unit					
Aroclor 1242	-	µg/L	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor 1248	-	µg/L	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor 1254	-	µg/L	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aroclor 1260	-	µg/L	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Polychlorinated Biphenyls	0.2	µg/L	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05

Notes:

¹ O.Reg 153 (2011) Table 7 Standards for all types of property use for groundwater in coarse textured soil in generic site condition for shallow soils in a non-potable ground water condition.

< Indicates parameter was below laboratory equipment detection limit.

- Chemical not analyzed or criteria not defined.

Bold and italicised Detection limit above MECP Table 7 Standards

Bold and shaded Exceeding MECP Table 7 Standards

Prepared by: LR Checked by: RM Page 18 of 19

Table D18 Historical Dioxins and Furans in Groundwater Samples Phase Two Environmental Site Assessment New Civic Development for The Ottawa Hospital - Parkade

	Loc	ation	MW2	MW4	MW1	17-01
	Sample I	Name	MW2	MW4	MW17-01	DUP-20170801-D
	Sample	Date	2017-08-02	2017-08-03	2017-08-01	2017-08-01
	Historical R	Stantec, 7 September 2017, Ph II				
Parameter	MECP Table 7 Standards1	Unit				
1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin	-	pg/l	< 1.14	1.38	< 1.19	< 1.16
1,2,3,4,7,8,9-Heptachlorodibenzofuran	-	pg/l	< 1.22	< 1.37	< 1.4	< 1.53
1,2,3,4,7,8-Hexachlorodibenzofuran	-	pg/l	< 0.98	< 0.784	< 1.08	< 1.18
1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin	-	pg/l	< 1.05	< 0.845	< 1.23	< 1.13
1,2,3,6,7,8-Hexachlorodibenzofuran	-	pg/l	< 0.951	0.777	< 1.05	< 1.15
1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin	-	pg/l	< 1.14	< 0.921	< 1.34	< 1.23
1,2,3,7,8,9-Hexachlorodibenzofuran	-	pg/l	< 1.15	< 1.07	< 1.26	< 1.38
1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin	-	pg/l	< 1.06	1.09	< 1.25	< 1.15
1,2,3,7,8-Pentachlorodibenzofuran	-	pg/l	< 1.22	1.24	< 1.16	< 1.14
1,2,3,7,8-Pentachlorodibenzo-p-dioxin	-	pg/l	< 1.22	< 1.01	< 1.31	< 1.12
2,3,4,6,7,8-Hexachlorodibenzofuran	-	pg/l	< 1.03	1.21	< 1.13	< 1.24
2,3,4,7,8-Pentachlorodibenzofuran	-	pg/l	< 1.25	< 1.1	< 1.18	< 1.16
2,3,7,8-Tetrachlorodibenzofuran	-	pg/l	< 1.18	< 1.13	< 1.19	< 1.12
2,3,7,8-Tetrachlorodibenzo-p-dioxin	-	pg/l	< 1.25	< 1.07	< 1.19	< 1.2
Octachlorodibenzofuran	-	pg/l	< 1.1	2.79	1.86	1.17
Octachlorodibenzo-p-dioxin	-	pg/l	< 1.35	2.86	4.22	3.17
1,2,3,4,6,7,8-Heptachlorodibenzofuran	-	pg/l	< 0.912	1.04	< 1.05	< 1.15
1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin - toxicity equivalence factor	-	pg/l	< 1.14	1.38	< 1.19	< 1.16
1,2,3,7,8-Pentachlorodibenzo-p-dioxin - toxicity equivalence factor	-	pg/l	< 1.22	< 1.01	< 1.31	< 1.12
1,2,3,7,8-Pentachlorodibenzofuran - toxicity equivalence factor	-	pg/l	< 1.23	1.24	< 1.17	< 1.15
1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin - toxicity equivalence factor	-	pg/l	< 1.08	1.09	< 1.27	< 1.17
1,2,3,4,6,7,8-Heptachlorodibenzofuran - toxicity equivalence factor	-	pg/l	< 1.04	1.04	< 1.2	< 1.31
1,2,3,7,8,9-Hexachlorodibenzofuran - toxicity equivalence factor	-	pg/l	< 1.02	1.99	< 1.12	< 1.23
13C-2,3,7,8-Tetrachlorodibenzo-p-dioxin - toxicity equivalence factor	-	pg/l	< 1.25	< 1.07	< 1.19	< 1.2
Tetrachlorodibenzofuran	-	pg/l	< 1.18	< 1.13	< 1.19	< 1.12
Dioxins and Furans TEQ (CCME)	-	pg/l	3.77	3.27	3.88	3.7

Notes:

¹ O.Reg 153 (2011) Table 7 Standards for all types of property use for groundwater in coarse textured soil in generic site condition for shallow soils in a non-potable ground water condition.

< Indicates parameter was below laboratory equipment detection limit.

- Chemical not analyzed or criteria not defined.

Bold and italicised

Bold and shaded

Detection limit above MECP Table 7 Standards Exceeding MECP Table 7 Standards

APPENDIX E

Historical Borehole Logs

Borehole Number: BH1

Project Number: 03-217-15

Client: NCC

Site Location: Dow's Lake Landfill

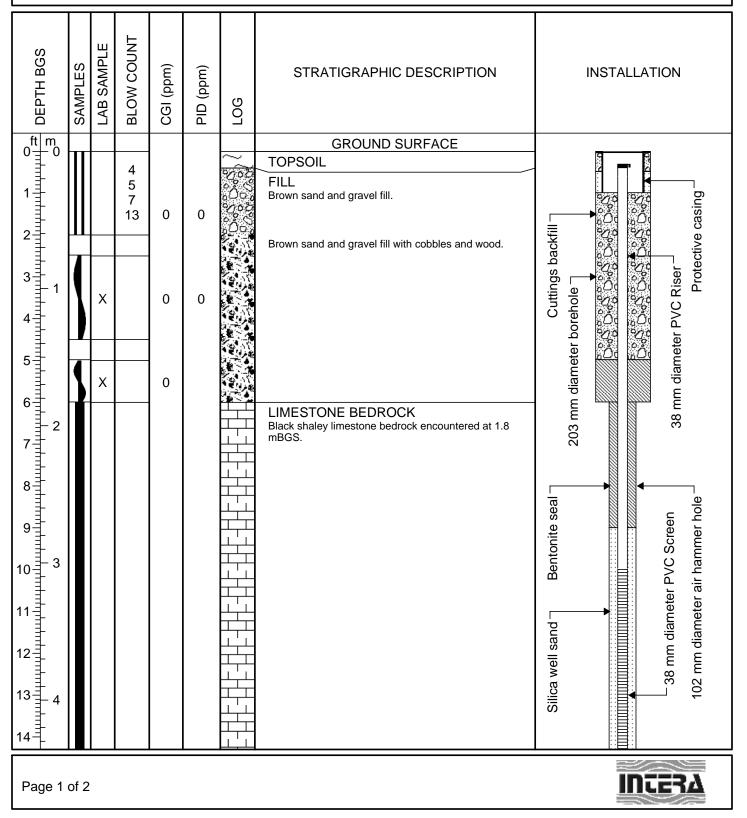
Date Completed: October 21, 2003 Supervisor: ADG Ground Surface Elevation: Not surveyed

Drilling Method: Hollow Stem Auger with Split Spoon

DEPTH BGS	SAMPLES	LAB SAMPLE	BLOW COUNT	CGI (ppm)	PID (ppm)	LOG	STRATIGRAPHIC DESCRIPTION	INSTALLATION
			ш				GROUND SURFACE	
			2 4 5	0	0		TOPSOIL FILL Brown sand fill.	No well installation
т т т т т т т т т т т т т т			2 11 35 50	0	0	0.000000000000000000000000000000000000	Cobbles with minor sand fill.	
5 10 10 10 10 10 10 10 10 10 10 10 10 10			18 35 28 13	0	0	50%0%0%0%0%0 00%0%0%0%0%0%0 0%0%0%0%0%0%		
8 1 9			3 10 50	0	0		SILTY SAND Brown silty sand with gravel. Iron staining, slightly moist.	
						.× .× .	Borehole terminated on refusal (inferred bedrock) at 2.9 mBGS.	
							BOREHOLE TERMINATED	
12								
14-								
Page 1	of 1							INTERA

Borehole Number: BH2 (MW2)

Project Number: 03-217-15


Client: NCC

Site Location: Dow's Lake Landfill

Date Completed: October 28, 2003

Supervisor: ADG

Ground Surface Elevation: 100.25 mASD

Borehole Number: BH2 (MW2)

Project Number: 03-217-15

Site Location: Dow's Lake Landfill

Client: NCC

Date Completed: October 28, 2003

Supervisor: ADG

Ground Surface Elevation: 100.25 mASD

DEPTH BGS	SAMPLES	LAB SAMPLE	BLOW COUNT	CGI (ppm)	PID (ppm)	FOG	STRATIGRAPHIC DESCRIPTION	INSTALLATION		
15 16 16 17 18 19 20 21 23 24 24 25 26 48 27 28 28 28							Borehole terminated in bedrock at 6.1 mBGS. BOREHOLE TERMINATED	pus line site of the second se		
Page 2	Page 2 of 2									

Borehole Number: BH3

Project Number: 03-217-15

Client: NCC

Site Location: Dow's Lake Landfill

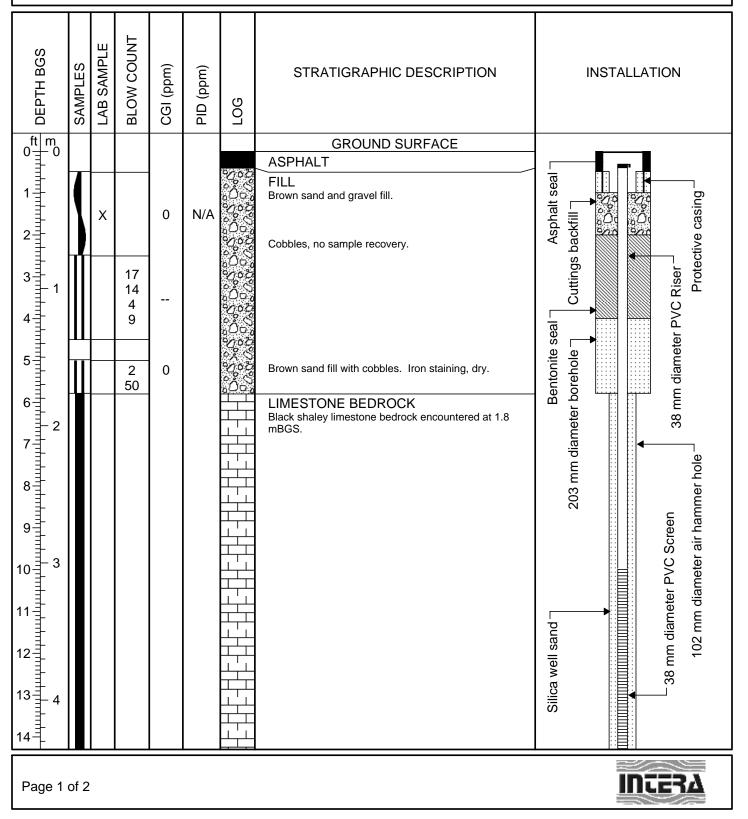
Date Completed: October 28, 2003 Supervisor: ADG Ground Surface Elevation: Not surveyed

Drilling Method: Hollow Stem Auger with Split Spoon

DEPTH BGS	SAMPLES	LAB SAMPLE	BLOW COUNT	CGI (ppm)	PID (ppm)	POG	STRATIGRAPHIC DESCRIPTION	INSTALLATION
ft m 0 1 1 1 2 1 1 3 1 1 4 1 1 6 7 1 9 10 1 12 1 1 13 1 1 14 1 1		x	5 5 39 50	0	0		GROUND SURFACE ASPHALT FILL Brown sand and gravel fill. Brown sand fill with pebbles and cobbles. Iron staining, dry. Borehole terminated on auger refusal (inferred bedrock) at 1.3 mBGS. BOREHOLE TERMINATED	No well installation
Page 1	of 1							INCERA

Borehole Number: BH4 (MW4)

Project Number: 03-217-15


Site Location: Dow's Lake Landfill

Client: NCC

Date Completed: October 28, 2003

Supervisor: ADG

Ground Surface Elevation: 99.31 mASD

Borehole Number: BH4 (MW4)

Project Number: 03-217-15

Site Location: Dow's Lake Landfill

Client: NCC

Date Completed: October 28, 2003

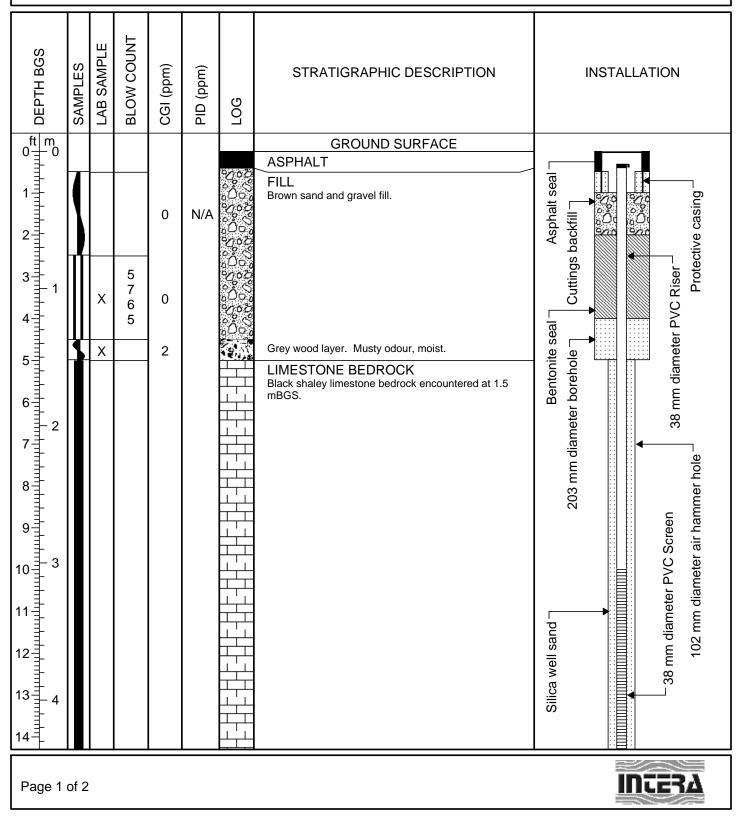
Supervisor: ADG

Ground Surface Elevation: 99.31 mASD

DEPTH BGS	SAMPLES	LAB SAMPLE	BLOW COUNT	CGI (ppm)	PID (ppm)	DOG	STRATIGRAPHIC DESCRIPTION	INSTALLATION		
15 16 17 18 19 20 21 22 23 24 24 25 26 26 28 27 28 28							Borehole terminated in bedrock at 6.1 mBGS. BOREHOLE TERMINATED	Depth of MW4 = 6.1 mBGS		
Page 2	Page 2 of 2									

Borehole Number: BH5 (MW5)

Project Number: 03-217-15


Site Location: Dow's Lake Landfill

Client: NCC

Date Completed: October 28, 2003

Supervisor: ADG

Ground Surface Elevation: 99.45 mASD

Borehole Number: BH5 (MW5)

Project Number: 03-217-15

Site Location: Dow's Lake Landfill

Client: NCC

Date Completed: October 28, 2003

Supervisor: ADG

Ground Surface Elevation: 99.45 mASD

DEPTH BGS	SAMPLES	LAB SAMPLE	BLOW COUNT	CGI (ppm)	PID (ppm)	DOG	STRATIGRAPHIC DESCRIPTION	INSTALLATION		
15 16 17 18 19 10 20 17 20 17 20 18 20 10 21 21 21 23 24 25 26 26 8 27 28 27 28 28 27 28 28 28 28 28 27 28 28 28 28 29 20 20 20 20 20 20 20 20 20 20							Borehole terminated in bedrock at 6.1 mBGS. BOREHOLE TERMINATED	pues law eoiiio Depth of MW5 = 6.1 mBGS		
Page 2	Page 2 of 2									

Borehole Number: BH6

Project Number: 03-217-15

Client: NCC

Site Location: Dow's Lake Landfill

Date Completed: October 28, 2003 Supervisor: ADG Ground Surface Elevation: Not surveyed

Drilling Method: Hollow Stem Auger with Split Spoon

DEPTH BGS	SAMPLES	LAB SAMPLE	BLOW COUNT	CGI (ppm)	PID (ppm)	DOG	STRATIGRAPHIC DESCRIPTION	INSTALLATION
ft m 0 1 1 1 2 1 1 3 1 1 4 1 1 6 7 1 9 10 1 12 1 1 13 1 1 14 1 1		x		0	0		GROUND SURFACE ASPHALT FILL Brown sand and gravel fill. Borehole terminated on auger refusal at 0.6 mBGS. BOREHOLE TERMINATED	No well installation
Page 1	of 1							INCERA

Borehole Number: 04-BH1

Project Number: 04-210-11

Client: NCC

Site Location: Former Dow's Lake Landfill

Coordinates: Not Applicable

Drilling Method: Hollow Stem Auger with Split Spoon

MOE Well ID: Not Applicable

Date Completed: August 31, 2004 Supervisor: MAH Ground Surface Elevation: Not Surveyed

DEPTH BGS	SAMPLES	LAB SAMPLE	BLOW COUNT	CGI (ppm)	PID (ppm)	LOG	STRATIGRAPHIC DESCRIPTION	INSTALLATION
ft m							GROUND SURFACE	No well installation.
			15 8 7 5	12	N/A	S 0.0 0.0 0.0 0 0.0 0.0 0.0 0 0.0 0.0 0.0	FILL Fine to medium grained sand and gravel fill, moist.	
		Х	14 50	10	N/A	0°8% 0°8%	Orangey-brown sand and gravel fill with trace clay, moist.	
$ \begin{array}{c} ft \\ 0 \\ 1 \\ 2 \\ 3 \\ 1 \\ 4 \\ 1 \\ 4 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$							Borehole terminated on auger refusal (inferred bedrock) at 1.07 mBGS. BOREHOLE TERMINATED	
Page 1	of 1			L	<u> </u>	L		INCERA

Borehole Number: 04-BH2

Project Number: 04-210-11

Client: NCC

Site Location: Former Dow's Lake Landfill

Coordinates: Not Applicable

Drilling Method: Hollow Stem Auger with Split Spoon

MOE Well ID: Not Applicable

Date Completed: August 31, 2004 Supervisor: MAH Ground Surface Elevation: Not Surveyed

DEPTH BGS	SAMPLES	LAB SAMPLE	BLOW COUNT	CGI (ppm)	PID (ppm)	LOG	STRATIGRAPHIC DESCRIPTION	INSTALLATION
ft m 0 = 0							GROUND SURFACE	No well installation.
			8 10 12 8	12	N/A	0.00000 0.0000 0.00000	FILL Grey-brown, fine grained sand and gravel fill.	No well installation.
		x	5 7 5 6	10	N/A	0% 0% 0% 0%	Black, fine grained sand and gravel fill, moist.	
3 4 4 5 6			7 7 50	6	N/A		Grey-brown, medium grained sand and gravel fill, moist. Borehole terminated on auger refusal (inferred bedrock) at 1.68 mBGS.	
71112 711111111111111111111111111111111							BOREHOLE TERMINATED	
9 10 10								
11 12								
13 14 14								
15 16								
Page 1	of 1							INCERA

Borehole Number: 04-BH3

Project Number: 04-210-11

Client: NCC

Site Location: Former Dow's Lake Landfill

Coordinates: Not Applicable

Drilling Method: Hollow Stem Auger with Split Spoon

MOE Well ID: Not Applicable

Date Completed: August 31, 2004 Supervisor: MAH Ground Surface Elevation: Not Surveyed

BLOW COUNT LAB SAMPLE DEPTH BGS SAMPLES CGI (ppm) PID (ppm) STRATIGRAPHIC DESCRIPTION INSTALLATION LOG
 ft
 m

 0
 1

 1
 1

 2
 3

 3
 1

 4
 4
 GROUND SURFACE No well installation. ASPHALT 6 8 FILL 16 N/A ĴĢ 8 Dark brown sand and gravel fill. 10 14 9 11 12 N/A Ď Iron staining. 10 18 17 15 N/A 5 16 Х 21 50 Crushed rock fragments. Ď 6 Iron staining. γ_{-} 2 Borehole terminated on auger refusal 7 (inferred bedrock) at 1.98 mBGS. BOREHOLE TERMINATED 8 9 10 3 Intitut 11 12 13 4 14 = 15 16 INTER Page 1 of 1

Borehole Number: 04-BH4

Project Number: 04-210-11

Client: NCC

Site Location: Former Dow's Lake Landfill

Coordinates: Not Applicable

Drilling Method: Hollow Stem Auger with Split Spoon

MOE Well ID: Not Applicable

Date Completed: August 31, 2004 Supervisor: MAH Ground Surface Elevation: Not Surveyed

DEPTH BGS	SAMPLES	LAB SAMPLE	BLOW COUNT	CGI (ppm)	PID (ppm)	LOG	STRATIGRAPHIC DESCRIPTION	INSTALLATION
ft m							GROUND SURFACE	No well installation.
			22 19 15 9	14	N/A	ီးလိုင်္ဂလို စီလိုင်္စလို	FILL Dark grey-brown sand and gravel fill.	
		x	12 8 7 6	10	N/A	\$0°5°5°5°5°5°5°5°5°5°5°5°5°5°5°5°5°5°5°5	Crushed rock fragments.	
		х	8 50	22	N/A		Borehole terminated on auger refusal (inferred bedrock) at 1.52 mBGS.	
$ \begin{array}{c} ft \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 1 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 14 \\ 15 \\ 16 \\ 16 \\ 16 \\ 16 \\ 16 \\ 16 \\ 16$							BOREHOLE TERMINATED	
Page 1	of 1							INCERA

Borehole Number: 04-BH5

Project Number: 04-210-11

Client: NCC

Site Location: Former Dow's Lake Landfill

Coordinates: Not Applicable

Drilling Method: Hollow Stem Auger with Split Spoon

MOE Well ID: Not Applicable

Date Completed: August 31, 2004 Supervisor: MAH Ground Surface Elevation: Not Surveyed

BLOW COUNT LAB SAMPLE DEPTH BGS SAMPLES CGI (ppm) PID (ppm) STRATIGRAPHIC DESCRIPTION INSTALLATION LOG
 ft
 m

 0
 1

 1
 1

 2
 3

 3
 1

 4
 1
 GROUND SURFACE No well installation. TOPSOIL 2 ୵ୄୢୄ୰ 11 FILL 20 N/A Х 20 Grey-brown sand and gravel fill. 12 SAND 6 Fine to medium grained sand. 7 N/A Х 14 FILL 10 Dark grey-brown sandy silt fill with wood, 27 compact, some iron staining. 8 16 8 5 N/A 15 18 6 6 2 ₫ Trace clay. 6 7 40 N/A 50 Ł Borehole terminated on bedrock at 2.38 mBGS. BOREHOLE TERMINATED hilli 11 12 13 4 14 = 15 16 INTER Page 1 of 1

Borehole Number: 04-BH6

Project Number: 04-210-11

Client: NCC

Site Location: Former Dow's Lake Landfill

Coordinates: Not Applicable

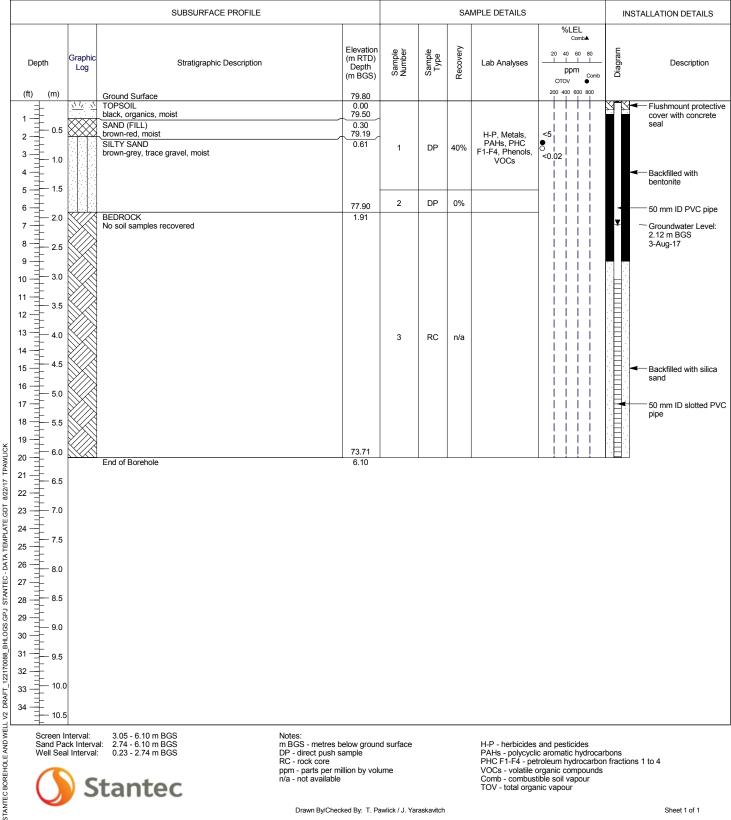
Drilling Method: Hollow Stem Auger with Split Spoon

MOE Well ID: Not Applicable

Date Completed: August 31, 2004 Supervisor: MAH Ground Surface Elevation: Not Surveryed

DEPTH BGS	SAMPLES	LAB SAMPLE	BLOW COUNT	CGI (ppm)	PID (ppm)	LOG	STRATIGRAPHIC DESCRIPTION	INSTALLATION
ft m 0 - 0						~ .	GROUND SURFACE	No well installation.
			3 11 15 12	14	N/A	ନ୍ଦ୍ରର ଜୁତ୍ମ ଜୁତ୍ମ	TOPSOIL FILL Dark brown sand and gravel fill.	
		x	7 6 15 16	30	N/A		Dark grey-brown sandy silt fill with wood, some iron staining.	
4 1 5 1 1 1 1 1 1 1 1 1 1			5 5 3 50	32	N/A		Borehole terminated on auger refusal (inferred bedrock) at 1.83 mBGS.	
ft 0 1 0 1 2 3 4 4 5 6 7 8 9 10 11 12 11 12 11 12 11 12							BOREHOLE TERMINATED	
13 14 14 15 16								
Page 1	of 1							INCERA

Project: Phase II Environmental Site Assessment Client: Public Services and Procurement Canada Location: 870 and 930 Carling Avenue and 520 Preston Street, Ottawa, Ontario 122170088 Number: Field investigator: A. Parrott Contractor: Strata Drilling Group


Drilling method:	Geoprobe (direct push)
Date started/completed:	28-Jul-2017
Ground surface elevation:	79.39 m RTD
Top of casing elevation:	79.31 m RTD
Easting:	444632.4025
Northing:	5027203.643

		SUBSURFACE PROFILE	SAMPLE DETAILS INSTALLATION DET						LATION DETAILS	
Depth	Graphic Log	Stratigraphic Description	Elevation (m RTD) Depth (m BGS)	Sample Number	Sample Type	Recovery	Lab Analyses	%LEL Comb▲ 20 40 60 80 1 1 1 1 ppm OTOV ●	Diagram	Description
(ft) (m) 1	0	Ground Surface ASPHALT/ INTERLOCKING BRICK SAND AND GRAVEL brown, moist SILTY SAND brown, trace gravel, moist	79.39 0.00 79.23 0.15 78.93 0.46 78.47	1	DP	50%	D-F, Metals, PAHs, PCBs, PHC F1-F4, Phenols, VOCs	200 400 600 800 <51 0.02		Flushmount protective cover with concrete seal Backfilled with bentonite
3 - 1.0 4		BEDROCK No soil samples recovered	0.91							50 mm ID PVC pipe Groundwater Level: I.61 m BGS J-Aug-17 Backfilled with silica sand
9 10 3.0 11 3.5 12 13 4.0 14 4.5				2	RC	n/a				50 mm ID slotted PVC bipe
16 5.0 17 18 18 5.5 19 6.0 21 6.5 22 7.0 24 7.5 26 8.0 27 8.5 29 9.0 30 9.5 33 10.0 34 10.5 Screen I Sand Pa Well See 0		End of Borehole	74.66 4.72							
34 10.5 Screen I Sand Pa Well Sea	I nterval: ck Interva II Interval:	1.68 - 4.72 m BGS 1.37 - 4.72 m BGS 0.23 - 1.37 m BGS tantec	Notes: m BGS - metres below groun DP - direct push sample RC - rock core ppm - parts per million by volu n/a - not available				PCBs - polychlo	ic aromatic hydroca prinated biphenyls troleum hydrocarbo organic compounds tible soil vapour		o 4

Project: Phase II Environmental Site Assessment Client: Public Services and Procurement Canada Location: 870 and 930 Carling Avenue and 520 Preston Street, Ottawa, Ontario 122170088 Number: Field investigator: A. Parrott Strata Drilling Group Contractor:

Drilling method:	Geoprobe (direct push)
Date started/completed:	28-Jul-2017
Ground surface elevation:	79.80 m RTD
Top of casing elevation:	79.73 m RTD
Easting:	444449.4352
Northing:	5027137.48

Drawn By/Checked By: T. Pawlick / J. Yaraskavitch

TOV - total organic vapour

 Project:
 Phase II Environmental Site Assessment

 Client:
 Public Services and Procurement Canada

 Location:
 870 and 930 Carling Avenue and 520 Preston Street, Ottawa, Ontario

 Number:
 122170088

 Field investigator
 A. Parrott

 Contractor:
 Strata Drilling Group

Drilling method:	Geoprobe (direct push)
Date started/completed:	27-Jul-2017
Ground surface elevation:	79.52 m RTD
Top of casing elevation:	79.42 m RTD
Easting:	444317.1276
Northing:	5027135.316

Contractor		Strata Drilling Group			Northi	ng:	:	027135.316		
		SUBSURFACE PROFILE				SA	MPLE DETAILS		INST	TALLATION DETAILS
Depth (ft) (m)	Graphic Log	Stratigraphic Description	Elevation (m RTD) Depth (m BGS) 79.52	Sample Number	Sample Type	Recovery	Lab Analyses	%LEL Comb▲ 20 40 60 80 	Diagram	Description
		TOPSOIL black, organics, moist SAND brown-black, trace gravel, moist SILTY SAND grey, trace gravel, moist - black organic soils, trace wood	0.00 79.22 0.30 78.91 0.61	1	DP	50%	H-P, Metals, PAHs, PHC F1-F4, Phenols, VOCs H-P, Metals, PAHs, PHC F1-F4, Phenols, VOCs	<5		cover with concrete seal Backfilled with bentonite 50 mm ID PVC pipe Groundwater Level:
5 - 1.5 6 - 2.0 7 - 2.0 7 - 2.5 9 - 2.5 9 - 3.0		- grey, wet		3	DP	40%		$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		1.33 m BGS 3-Aug-17 Backfilled with silica sand 50 mm ID slotted PVC pipe
		Refusal at inferred bedrock End of Borehole	76.32 3.20	5	DP	_0%_				
3.5 12 13 4.0 14 4.5 16 5.0 17 5.0 18 5.5 19 6.0 21 6.5 23 7.0 24 7.5 26 8.0 27 8.5 28 8.5 29 9.0 30 9.0										

Screen Interva

9.5

10.0

 Screen Interval:
 1.68 - 3.20 m BGS

 Sand Pack Interval:
 1.37 - 3.20 m BGS

 Well Seal Interval:
 0.23 - 1.37 m BGS

Notes: m BGS - metres below ground surface DP - direct push sample ppm - parts per million by volume n/a - not available

H-P - herbicides and pesticides PAHs - polycyclic aromatic hydrocarbons PHC F1-F4 - petroleum hydrocarbon fractions 1 to 4 VOCs - volatile organic compounds Comb - combustible soil vapour TOV - total organic vapour

31 -

32

33 34

 Project:
 Phase II Environmental Site Assessment

 Client:
 Public Services and Procurement Canada

 Location:
 870 and 930 Carling Avenue and 520 Preston Street, Ottawa, Ontario

 Number:
 122170088

 Field investigator
 A. Parrott

 Contractor:
 Strata Drilling Group

Drilling method:	Geoprobe (direct push)
Date started/completed:	27-Jul-2017
Ground surface elevation:	85.13 m RTD
Top of casing elevation:	85.06 m RTD
Easting:	444502.0718
Northing:	5026981.471

Contractor:	Strata Driving Group			Northi	iy.		0020901.471			
	SUBSURFACE PROFILE				SAM	MPLE DETAILS		INSTALLATION DETAILS		
	og Stratigraphic Description	Elevation (m RTD) Depth (m BGS)	Sample Number	Sample Type	Recovery	Lab Analyses	%LEL Comb▲ 20 40 60 80 1 1 1 1 ppm OTOV ● 200 400 600 800	Diagram	Description	
	Ground Surface 2 \delta TOPSOIL black, organics, moist SILTY SAND brown, trace gravel, moist	85.13 0.00 84.82 0.30	1	DP	80%	PCBs, Metals, PAHs, PHC F1-F4, Phenols, VOCs	<pre><5 0.02 </pre>		Flushmount protective cover with concrete seal Backfilled with bentonite 50 mm ID PVC pipe	
5 - 1.5 6 - 2.0 7 - 2.5	- moist-wet - wet	82.38	3	DP	80%	PCBs, Metals, PAHs, PHC F1-F4, Phenols, VOCs	<pre><5 <5 <0.02 <5 <5 </pre>		Groundwater Level: 1.61 m BGS 3-Aug-17 Backfilled with silica sand	
9 3.0	Refusal at inferred bedrock End of Borehole	2.74	4				<0.02		50 mm ID slotted PVC pipe	
11 - 3.5 $12 - 4.0$ $14 - 4.5$ $16 - 5.0$ $17 - 6.5$ $22 - 6.5$ $22 - 6.5$ $22 - 7.0$ $24 - 7.5$ $26 - 8.0$ $27 - 6.5$ $22 - 7.0$ $24 - 7.5$ $26 - 8.0$ $27 - 6.5$ $23 - 7.0$ $24 - 7.5$ $26 - 8.0$ $27 - 6.5$ $23 - 7.0$ $24 - 7.5$ $26 - 8.0$ $27 - 6.5$ $23 - 7.0$ $24 - 7.5$ $26 - 8.0$ $27 - 6.5$ $23 - 7.0$ $24 - 7.5$ $26 - 8.0$ $27 - 6.5$ $23 - 7.0$ $24 - 7.5$ $26 - 8.0$ $27 - 6.5$ $29 - 9.0$ $30 - 6.5$ $29 - 9.0$ $31 - 9.5$ $32 - 10.0$ $34 - 10.5$										

STANTEC BOREHOLE AND WELL V2 DRAFT_122170088_BHLOGS.GPJ STANTEC - DATA TEMPLATE.GDT 8/22/17 TPAWLICK

Notes: m BGS - metres below ground surface DP - direct push sample ppm - parts per million by volume n/a - not available

PCBs - polychlorinated biphenyls PAHs - polycyclic aromatic hydrocarbons PHC F1-F4 - petroleum hydrocarbon fractions 1 to 4 VOCs - volatile organic compounds Comb - combustible soil vapour TOV - total organic vapour

Project: Phase II Environmental Site Assessment Client: Public Services and Procurement Canada 870 and 930 Carling Avenue and 520 Preston Street, Ottawa, Ontario Location: 122170088 Number: Field investigator: A. Parrott Strata Drilling Group Contractor:

Drilling method:	Geoprobe (direct push)
Date started/completed:	26-Jul-2017
Ground surface elevation:	94.49 m RTD
Top of casing elevation:	94.39 m RTD
Easting:	444231.6325
Northing:	5026850.536

			SUBSURFACE PROFILE				SAI	MPLE DETAILS		INS	TALLATION DETAILS
	Depth (ft) (m)	Graphic Log	Stratigraphic Description	Elevation (m RTD) Depth (m BGS) 94.49	Sample Number	Sample Type	Recovery	Lab Analyses	%LEL Comb▲ 20 40 60 80 1 1 1 1 ppm OTOV ● 200 400 600 800	Diagram	Description
	1 0.5 2 0.5 3 1.0	<u>x¹1₂</u> <u>x</u> 1 1 ₁ <u>x</u> 11	SILT brown-grey, moist	93.88 0.61	1	DP	100%	H-P, Metals, PAHs, Phenols, VOCs	<5 0 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1	X-X-	 Flushmount protective cover with concrete seal
	4 1.5 5 1.5 6 2.0 7 2.0			00.05	3	DP	100%	PHC F1-F4	$ \begin{bmatrix} \circ & & & & & \\ & \circ & & \circ & 2 \\ & \circ & & & & \\ & \circ & & & & \\ & \circ & & & &$		 Backfilled with bentonite 50 mm ID PVC pipe
	8 <u>2.5</u> 9 <u>4</u> 10 <u>3.0</u> 11 <u>25</u>		SILTY SAND brown, trace gravel, wet - brown-grey	<u>92.05</u> 2.44	4		100 %	H-P, Metals, PAHs, PHC F1-F4, Phenols, VOCs	<5 0 <0.02 <5 0		- Groundwater Level:
	3.5 12		- grey		6	DP	80%		<pre><0.02 </pre>		3.43 m BGS 3-Aug-17
	16 5.0 17 18 5.5 19				7	DP	80%		<pre><5 </pre>		sand 50 mm ID slotted PVC pipe
TE.GDT 8/22/17 TPAWLICK	20 6.0 21 6.5 22 23 7.0		End of Borehole	<u> </u>							
EC BOREHOLE AND WELL V2_DRAFT_122170088_BHLOGS.GPJ_STANTEC - DATA TEMPLATE.GDT	24 7.5 25 7.5 26 8.0 27 28 8.5										
70088_BHLOGS.GPJ ST	29 9.0 30 9.0 31 9.5										
/ELL V2 DRAFT_12217	32		205 640-205	Neter							
EC BOREHOLE AND W	Screen Ir Sand Par Well Sea	ck Interva I Interval		Notes: m BGS - metres below grour DP - direct push sample ppm - parts per million by vol n/a - not available				H-P - herbicides PAHs - polycycl PHC F1-F4 - pe VOCs - volatile Comb - combus TOV - total orga	ic aromatic hydroca troleum hydrocarbo organic compounds tible soil vapour	rbons n fractions	s 1 to 4

 Project:
 Phase II Environmental Site Assessment

 Client:
 Public Services and Procurement Canada

 Location:
 870 and 930 Carling Avenue and 520 Preston Street, Ottawa, Ontario

 Number:
 122170088

 Field investigator
 A. Parrott

 Contractor:
 Strata Drilling Group

Drilling method:	Geoprobe (direct push)
Date started/completed:	26-Jul-2017
Ground surface elevation:	95.09 m RTD
Top of casing elevation:	95.03 m RTD
Easting:	444175.7424
Northing:	5026815.478

SUBSURFACE PROFILE				SAMPLE DETAILS						INSTALLAT	TION DETAILS
Depth (ft) (m)	Graphic Log	Stratigraphic Description	(m Di (m	evation RTD) Depth BGS) 95.09	Sample Number	Sample Type	Recovery	Lab Analyses	%LEL Comb▲ 20 40 60 80 ppm OTOV ● 200 400 600 800	Diagram	Description
1 0.5 2 0.5 3 1.0		Ground Sunace TOPSOLL black-brown, organics, moist SANDY SILT brown, trace gravel, moist	0 9- 0	0.00 0.00 0.30 0.30	1	DP	75%	H-P, Metals, PAHs, Phenois, VOCs PHC F1-F4		Seal	hmount protective er with concrete kfilled with tonite nm ID PVC pipe
4		SILTY SAND brown, trace gravel, moist to wet	1	1.22	3	DP	50%	H-P, Metals, PAHs, PHC F1-F4, Phenols, VOCs	0 1 1 1 1 1 1 1 1 1 1 1 1 1		kfilled with silica
9 10 3.0 11 3.5 12 13 4.0		- brown-grey		-	4	DP	n/a		<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>	E HUI	nm ID slotted PVC
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		SAND brown, wet Refusal at inferred bedrock End of Borehole	4	0.82 4.27 00.48 4.60	5	_DP_∫	\ <u>n/a</u> /		<5 0 <0.02 <0.02 <0.02		undwater Level: dry i-Aug-17
18 5.5 19 6.0 20 6.5											
22											
20 - 8.0 27											
20											
Screen In Sand Pa Well Sea	ck Interva I Interval:	1.55 - 4.60 m BGS at: 1.25 - 4.60 m BGS 0.23 - 1.25 m BGS tantec	Notes: m BCS - metres below DP - direct push samp ppm - parts per million n/a - not available	ole				PHC F1-F4 - pe	c aromatic hydrocai troleum hydrocarboi organic compounds tible soil vapour	n fractions 1 to 4	
Drawn By/Checked By: T. Pawlick / J. Yaraskavitch Sheet 1								Sheet 1 of 1			

Project: Phase II Environmental Site Assessment Client: Public Services and Procurement Canada 870 and 930 Carling Avenue and 520 Preston Street, Ottawa, Ontario Location: 122170088 Number: Field investigator: A. Parrott Strata Drilling Group Contractor:

Drilling method:	Geoprobe (direct push)
Date started/completed:	26-Jul-2017
Ground surface elevation:	94.64 m RTD
Top of casing elevation:	94.58 m RTD
Easting:	444240.9625
Northing:	5026754.904

		SUBSURFACE PROFILE					SAM	IPLE DETAILS		INST	ALLATION DETAILS
Depth	Graphic Log	Stratigraphic Description	(m D (m	evation RTD) Depth BGS)	Sample Number	Sample Type	Recovery	Lab Analyses	%LEL Comb▲ 20 40 60 80 1 1 1 1 ppm OTOV ● 200 400 600 800	Diagram	Description
(ft) (m) 1		Ground Surface TOPSOIL black, organics, moist SILTY SAND brown, trace gravel, moist to wet	C 9-	4.64 0.00 4.34 0.30	1	DP	40%	H-P, Metals, PAHs, PHC F1-F4, Phenols, VOCs	<pre> 20 40 40 40 <5 0 0 0 1 1 1 1 1 </pre>		Flushmount protective cover with concrete seal Backfilled with bentonite
5 - 1.5 6 - 2.0 7 - 2.0 8 - 2.5 9					2	DP	40%		<pre> <5 </pre> <pre></pre>		— 50 mm ID PVC pipe
10		- brown-grey			3	DP	100%		<pre><5 <.5 <.0.02 <.1 <.5 <.1 <.0.02 <.1 </pre>		Backfilled with silica
16		- wet			5	DP	50%	H-P, Metals, PAHs, PHC F1-F4, Phenols, VOCs	<pre><5 </pre>		sand Groundwater Level: 4.58 m BGS 3-Aug-17 50 mm ID slotted PVC pipe
21					6	DP	25%		<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>		— Slough
25 7.5 26		End of Borehole		7.02							
Screen Tour Screen Well Service Servic	Interval: lick Interval		Notes: m BGS - metres below DP - direct push samp ppm - parts per million n/a - not available	ble				PHC F1-F4 - pe	ic aromatic hydrocar troleum hydrocarbor organic compounds tible soil vapour	bons 1 fractions	1 to 4

STANTEC BOREHC

Project: Phase II Environmental Site Assessment Client: Public Services and Procurement Canada Location: 870 and 930 Carling Avenue and 520 Preston Street, Ottawa, Ontario 122170088 Number: Field investigator: A. Parrott Contractor: Strata Drilling Group

Drilling method:	Geoprobe (direct push)
Date started/completed:	26-Jul-2017
Ground surface elevation:	95.59 m RTD
Top of casing elevation:	95.52 m RTD
Easting:	444299.964
Northing:	5026787.713

	Ground Surface TOPSOIL black, organics, moist SAND brown, trace silt and gravel, moist SILTY SAND brown, trace gravel, moist No soil samples recovered - augered through boulders	n	Elevation (m RTD) Depth (m BGS) 95.59 0.00 94.98 0.61 94.07 1.52 93.15 2.44	agumple Sample 1 2 3	AD AD	Калозау 40% 50%	Lab Analyses H-P, Metals, PAHs, PHC F1-F4, Phenols, VOCs H-P, Metals, PAHs, PHC F1-F4, Phenols, VOCs	%LEL Comba 20 40 60 4 20 40 600 6 200 400 600 6 5 <0.02	80 Comb 900 1 1 1 1 1 1 1 1 1 1 1 1 1	Description Flushmount protective cover with concrete seal Backfilled with bentonite 50 mm ID PVC pipe
	TOPSOIL black, organics, moist SAND brown, trace silt and gravel, moist SILTY SAND brown, trace gravel, moist No soil samples recovered		0.00 94.98 0.61 94.07 1.52 93.15	2			PAHs, PHC F1-F4, Phenols, VOCs H-P, Metals, PAHs, PHC F1-F4, Phenols,			cover with concrete seal Backfilled with bentonite
	black, organics, moist SAND brown, trace silt and gravel, moist SILTY SAND brown, trace gravel, moist No soil samples recovered		94.98 0.61 94.07 1.52 93.15	2			PAHs, PHC F1-F4, Phenols, VOCs H-P, Metals, PAHs, PHC F1-F4, Phenols,	• • 0.02 - 1 - 1		cover with concrete seal Backfilled with bentonite
	brown, trace silt and gravel, moist SILTY SAND brown, trace gravel, moist No soil samples recovered		0.61 94.07 1.52 93.15	2			PAHs, PHC F1-F4, Phenols, VOCs H-P, Metals, PAHs, PHC F1-F4, Phenols,	• • 0.02 - 1 - 1		Seal Backfilled with bentonite
	brown, trace silt and gravel, moist SILTY SAND brown, trace gravel, moist No soil samples recovered		94.07 1.52 93.15	2			PAHs, PHC F1-F4, Phenols, VOCs H-P, Metals, PAHs, PHC F1-F4, Phenols,	• • 0.02 - 1 - 1		bentonite
	SILTY SAND brown, trace gravel, moist No soil samples recovered		1.52 93.15		DP	50%	VOCs H-P, Metals, PAHs, PHC F1-F4, Phenols,	<pre> </pre>		
	brown, trace gravel, moist No soil samples recovered		1.52 93.15		DP	50%	PAHs, PHC F1-F4, Phenols,			
	brown, trace gravel, moist No soil samples recovered		1.52 93.15		DP	50%	PAHs, PHC F1-F4, Phenols,			
	No soil samples recovered				DP	50%	PAHs, PHC F1-F4, Phenols,			
							F1-F4, Phenols, VOCs	<0.02		
				3						
	- augered through boulders			3					1 I H I	
				3						
					DP	20%			! 目	Backfilled with silica
										sand
			1 1						i 🔤	50 mm ID slotted PV
										pipe
								i i i	1 日日	
				4	RC	n/a				
				4	RC	™a				
			90.41							
	SILTY SAND grey, trace gravel, moist		5.18 90.11							 Groundwater Level: 5.21 m BGS
	Refusal at inferred bedrock End of Borehole		5.49						· · · ·	3-Aug-17
	2.23 - 5.28 m BGS	Notes:								
rval:	l: 1.93 - 5.49 m BGS	m BGS - metres DP - direct push		d surface			PAHs - polycycli	c aromatic hyd	Irocarbons	
		RC - rock core ppm - parts per r	million by volu	ime			PHC F1-F4 - per VOCs - volatile of	roleum hydroc	arbon fractio unds	ns 1 to 4
Interva							Comb - combust	ible soil vapou	ır	
Interval terval:	tantec						3-			Sheet 1 of 1
	rva val:	rval: 1.93 - 5.49 m BGS	rval: 1.93 - 5.49 m BGS m BGS m BGS - metres ral: 0.23 - 1.93 m BGS DP - direct push RC - rock core ppm - parts per r n/a - not availabl	rval: 1.93 - 5.49 m BGS m BGS m BGS - metres below ground pP - direct push sample RC - rock core ppm - parts per million by volu n/a - not available	rval: 1.93 - 5.49 m BGS m BGS DP - direct push sample PO - direct push sample RC - rock core ppm - parts per million by volume n/a - not available	rval: 1.93 - 5.49 m BGS m BGS m BGS - metres below ground surface pP - direct push sample RC - rock core ppm - parts per million by volume n/a - not available	rval: 1.93 - 5.49 m BGS m BGS - metres below ground surface ral: 0.23 - 1.93 m BGS DP - direct push sample RC - rock core ppm - parts per million by volume	rval: 1.93 - 5.49 m BGS m BGS - metres below ground surface H-P - herbicides val: 0.23 - 1.93 m BGS DP - direct push sample PAHs - polycycli RC - rock core PHC F1-F4 - pet ppm - parts per million by volume VOCs - volatile comb - combust stantec n/a - not available TOV - total organ	rval: 1.93 - 5.49 m BGS m BGS - metres below ground surface H-P - herbicides and pesticides val: 0.23 - 1.93 m BGS DP - direct push sample PAHs - polycyclic aromatic hyd RC - rock core PHC F1-F4 - petroleum hydroc PHC S1-F4 - petroleum hydroc ppm - parts per million by volume VOCs - volatile organic compo Comb - combustible soil vapou rOV - total organic vapour TOV - total organic vapour	rval: 1.93 - 5.49 m BGS m BGS - metres below ground surface H-P - herbicides and pesticides ral: 0.23 - 1.93 m BGS DP - direct push sample PAHs - polycyclic aromatic hydrocarbons RC - rock core PHC F1-F4 - petroleum hydrocarbon fraction ppm - parts per million by volume VOCs - volatile organic compounds

Project: Phase II Environmental Site Assessment Client: Public Services and Procurement Canada Location: 870 and 930 Carling Avenue and 520 Preston Street, Ottawa, Ontario 122170088 Number: Field investigator: A. Parrott Strata Drilling Group Contractor:

Drilling method:	Geoprobe (direct push)
Date started/completed:	27-Jul-2017
Ground surface elevation:	99.19 m RTD
Top of casing elevation:	99.12 m RTD
Easting:	444493.9007
Northing:	5026676.009

		SUBSURFACE PROFILE				SA	MPLE DETAILS		INSTALLATION DETAILS
Depth	Graphic Log	Stratigraphic Description	Elevation (m RTD) Depth (m BGS)	Sample Number	Sample Type	Recovery	Lab Analyses	%LEL Comb▲ 20 40 60 80 1 1 1 1 ppm CTOV ●	E Description
(ff) (m) 1		Ground Surface TOPSOIL black, organics, moist SAND (FILL) brown, trace gravel, moist	99.19 0.00 98.89 0.30 97.97	1	DP	30%	H-P, Metals, PAHs, PHC F1-F4, Phenols, VOCs	200 400 600 800 <5 <0 <0.02	Flushmount protective cover with concrete seal Backfilled with bentonite 50 mm ID PVC pipe
4 5 6 6 7 8 2.0 7 8 2.5		SILTY SAND brown, trace gravel, moist	1.22	2	DP	70%		<pre> </pre>	✓ — Groundwater Level: 2.24 m BGS 3-Aug-17
9 10 3.0 11 3.5 12 13 13 13 13 13 13 13 13 13 13				4	DP	50%	H-P, Metals, PAHs, PHC F1-F4, Phenols, VOCs	• <0.02 <5 • 0.02 • 0.02	
$ \begin{array}{c} 13 - 4.0 \\ 14 - 4.5 \\ 15 - 4.5 \\ 16 - 5.0 \\ 17 $				5	DP	25%		<pre></pre>	 Backfilled with silica sand 50 mm ID slotted PVC pipe
X0 10 6.0 20 6.5		- grey, wet		7	DP	80%			50 mm ID slotted PVC
22 12 12 12 12 12 12 12 12 12 12 12 12 1		End of Borehole	91.57 7.62	9	DP	100%		<0.02 	
Coordinates and the second sec									
32	nterval: ck Interv		Notes: m BCS - metres below grour	d surface			H-P - herbicides	and pesticides	
Well Sea	al Interval		DP - direct push sample ppm - parts per million by vol n/a - not available				PAHs - polycycli PHC F1-F4 - pe	ic aromatic hydroca troleum hydrocarbo organic compounds tible soil vapour	n fractions 1 to 4

STANTEC BOREHC

Project: Phase II Environmental Site Assessment Client: Public Services and Procurement Canada Location: 870 and 930 Carling Avenue and 520 Preston Street, Ottawa, Ontario 122170088 Number: Field investigator: A. Parrott Strata Drilling Group Contractor:

Drilling method:	Geoprobe (direct push)
Date started/completed:	27-Jul-2017
Ground surface elevation:	96.57 m RTD
Top of casing elevation:	96.48 m RTD
Easting:	444546.5613
Northing:	5026699.988

	SUBSURFACE PROFILE					SAI	INSTA	LLATION DETAILS		
Depth	Graphic Log	Stratigraphic Description	Elevation (m RTD) Depth (m BGS)	Sample Number	Sample Type	Recovery	Lab Analyses	%LEL Comb▲ 20 40 60 80 1 1 1 1 ppm OTOV ●	Diagram	Description
(ft) (m)	<u>x¹ l_z x¹</u>	Ground Surface TOPSOIL black, organics, moist SILTY SAND brown, trace gravel, wet	96.57 0.00 96.26 0.30	1			H-P, Metals, PAHs, PHC F1-F4, Phenols, VOCs	<pre>200 400 600 800 </pre>		Flushmount protective cover with concrete seal
3 - 1.0				2	DP	60%	VOUS	<pre><5 <5 <0.02 </pre>		[∼] Backfilled with bentonite [∼] 50 mm ID PVC pipe
6 — 2.0 7 — 2.0		- moist		3	DP	75%	H-P, Metals, PAHs, PHC F1-F4, Phenols, VOCs	<5 • • 0.02 		
8 - 2.5 9 - 2.5 10 - 3.0				4				<pre><5 <.1000 <.1000 <.1000 <.1000 <.1000 </pre>		[–] Groundwater Level: 2.79 m BGS 3-Aug-17
11				5	DP	75%		<pre> <0.02 <5 </pre>		
14		- grey		6				● <0.02 <5 ●		 Backfilled with silica sand
17			00.47	8	DP	50%		<pre><0.02 <5 0 <0.02 </pre>		- 50 mm ID slotted PVC pipe
20		No sample recovered	<u>90.47</u> 6.10	9	DP	0%			0	- Slough
23 - 7.0 24 7.5 24 7.5		End of Borehole	89.25 7.32							Sidugii
20 8.0										
28 - 8.5 Rd5 29 - 9.0 30 - 9.0										
$\begin{array}{c c} \frac{1}{10} & 31 & -\frac{1}{10} & 9.5 \\ & 32 & -\frac{1}{10} & -\frac{1}{10} & 0.5 \\ & & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & $	D									
34		3.05 - 6.10 m BGS	Notes:							
Sand Pa	ick Interva al Interval	al: 2.74 - 6.40 m BGS : 0.23 - 2.74 m BGS	m BGS - metres below groun DP - direct push sample ppm - parts per million by volu n/a - not available				PHC F1-F4 - pe	ic aromatic hydrocar troleum hydrocarbor organic compounds tible soil vapour	n fractions 1	to 4
STANTEC	J		Drawn By/Checked By: T. Pa	awlick / J. Ya	raskavitch					Sheet 1 of 1

patersongroup

SOIL PROFILE AND TEST DATA

Environmental Investigation of Existing Fault Line Proposed New Hospital Campus - Carling Avenue

Ottawa, Ontario

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

ΔΤΠΜ

DATUM									FILE NO.	PE409	6
REMARKS									HOLE NO.		
BORINGS BY Geoprobe	DATE July 28, 2017									1	
SOIL DESCRIPTION					DEPTH (m)	ELEV. (m)		Photo Ionization Detector Volatile Organic Rdg. (ppm)			
	STRATA	ТҮРЕ	NUMBER	% RECOVERY	N VALUE or RQD			• Lowe	r Explosiv	ve Limit %	Monitoring Well Construction
GROUND SURFACE	01		z	RE	zo	0-		20	40 60	0 80	Σ_
TOPSOIL 0.25 FILL: Brown silty clay, trace sand,		ss	1	71	6		-			· · · · · · · · · · · · · · · · · · ·	
gravel, cobbles and boulders		ss	2	71	8	1-	-			······	<u>ինընդինը։</u> Սնոնդերինը
FILL: Brown silty sand 1.52 FILL: Brown silty clay, some sand, trace gravel, cobbles, organics, 1.96	2	ss	3	54	4						
paint and tiles		ss	4	42	22	2-	-				
FILL: Compact to very loose sand with wood pieces		ss	5	4	0	3-	_				
3.33 End of Borehole	YXXX	-									
Practical refusal to augering at 3.33m depth											
(GWL @ 2.01m - August 9, 2017)								100	200 30	0 400 5	
								100 RKI E	200 30 Eagle Rdg	0 400 5 J. (ppm)	00

▲ Full Gas Resp. \triangle Methane Elim.

patersongroup

SOIL PROFILE AND TEST DATA

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Environmental Investigation of Existing Fault Line Proposed New Hospital Campus - Carling Avenue Ottawa, Ontario

DATUM					·				FILE NO.	PE4096	5
REMARKS									HOLE NO.	BH 7A	
BORINGS BY Geoprobe	1	1		D	ATE	July 28, 2	017				
SOIL DESCRIPTION				IPLE		DEPTH (m)	ELEV. (m)	 Photo Ionization Detector Volatile Organic Rdg. (ppm) 			Monitoring Well Construction
		ТҮРЕ	NUMBER	% RECOVERY	N VALUE or RQD			C Lower Explosive Limit %			lonitori Constr
GROUND SURFACE	STRATA		4	RE	z	- 0-		20	40 60	80	Σ
OVERBURDEN						1-	-				
2.11 End of Borehole		-				2-	_				
Practical refusal to augering at 2.11m depth											
(BH dry upon completion)								100 RKI E	200 300 agle Rdg. (400 50 (ppm)	00

golder.com