

Phase Two Environmental Site Assessment 2584-2600 Bank Street, Ottawa, Ontario

Upper Hunt Club Centre Inc. 2626 Bank Street Ottawa, Ontario K1T 1K9

July 2021

DST File No.: TS-SO-032782

DST, A Division of Englobe

2150 Thurston Drive, Suite 203, Ottawa, Ontario, K1G 5T9 Tel.: 613-748-1415 Fax: 613-748-1356 E-mail: www.dstgroup.com

EXECUTIVE SUMMARY

DST, A Division of Englobe (DST) was retained by Upper Hunt Club Centre Inc. (herein referred to as the "Client"), to conduct a Phase Two Environmental Site Assessment (ESA) for the property located at 2584-2600 Bank Street in Ottawa, Ontario (herein referred to collectively as the "Site"). The purpose of this assessment was to establish the environmental condition of the Site, at the time of report issuance, in support of a City of Ottawa Site Plan Application (SPA).

DST has completed this Phase Two ESA in general accordance with *Ontario Regulation 153/04 Records* of *Site Condition – Part XV.1 of the Act* under the *Ontario Environmental Protection Act, R.S.O. 1990, chapter E.19* (O. Reg. 153/04), as amended. DST understands that this Phase Two ESA has been completed for the purpose to support a site development application, and therefore this report was not prepared to support the filing of a Record of Site Condition.

The Phase Two ESA investigation looked at the properties located at the municipal address of 2584-2600 Bank Street. The Site can be broken down as follows: 2584 (2582) Bank Street (1.036 hectares) and 2600 Bank Street (0.23 hectares).

2600 Bank Street is currently developed with a single storey slab on grade commercial building, with two occupants. The primary occupant is Knight Motors Ottawa, and the secondary occupant is Joud's Auto Centre. The Site building was reportedly constructed in approximately 1992.

The parcel of land at 2584 (2582) Bank Street is devoid of any structures and is utilized for parking area for 2600 Bank. The parking area is covered in gravel.

In April 2018, DST completed a Phase One ESA at the Site. As part of the Phase One ESA investigation, DST completed a Site reconnaissance and a historical records review. Based on the environmental records review, several areas of potential environmental concern (APEC) were identified at the Site, as summarized in the table below.

Areas of Potential Environmental Concern

APEC	Area of Potential Environmental Concern (APEC)	Potential Contaminants of Potential Concern (PCOCs)
APEC 1 Former on-site UST and unidentified access ports and current active automotive repair facility	Potential contamination due to the presence of the former 15,000L UST and potential current unknown UST located on site.	Petroleum hydrocarbons (PHCs) and Volatile Organic Compounds (VOCs)
APEC 2 Several car dealerships, retail fuel outlets and a former dry cleaner	Potential contamination due to the presence of several car dealership with associated vehicle repairs facilities and the presence of a retail fuel outlet (2536 Bank Street)	PHC and VOCs
APEC 3 Wood's Cemetery	Potential contamination due to the long-term presence of Wood's Cemetery.	Nitrites, nitrates, Biological Oxygen Demand (BOD), Volatile Organic Compounds (VOCs), formaldehyde, ammonia, and metals

Based on the presence of the above noted APECs, DST recommended further investigation in the form of a Phase Two ESA.

The field program of the Phase Two ESA consisted of the following activities:

- Obtaining underground utility clearances and locates;
- Conduct a ground penetration survey of the area of the unidentified access ports on the south side of 2600 Bank Street;

- The advancement of six boreholes, three of which were instrumented with groundwater monitoring wells (BHMW18-2 through BHMW18-4), at strategic locations on Site. These locations were determined based on the findings of the Phase One ESA;
- The collection of soil samples from each of the six advanced boreholes, and the collection of groundwater samples from two of the three (BHMW18-2 and BHMW18-3) monitoring wells on Site (BHMW18-4 was observed to be dry);
- Conducting environmental testing on collected samples. Please see below for a summary of analytical testing.

Summary of Soil Samples Submitted for Laboratory Analysis

Sampling Date (dd/mm/yyy)	Sample ID/Location	Sample Depth (mbgs)	Laboratory Analysis
10/11/2018	BHMW18-4 SS8	4.30 – 4.90	Formaldehyde, VOCs, metals, ammonia, nitrites, and nitrates
10/11/2018	BHMW18-1 SS3	1.21 – 1.82	PHCs F1 – F4, VOCs
10/11/2018	BHMW18-1 SS4	1.82 – 2.40	PHCs F2 – F4
10/11/2018	BHMW18-2 SS6	3.04 – 3.65	PHCs F1 – F4, VOCs
10/12/2018	BHMW18-3 SS14	7.90 – 8.50	PHCs F1 – F4, VOCs
03/10/2021	BH21-1 SS2	0.75 – 1.50	PHCs/BTEX F1 – F4
03/10/2021	BH21-1 SS4	2.35 – 2.92	PHCs/BTEX F1 – F4
03/10/2021	BH21-2 SS3	1.60 – 2.16	PHCs/BTEX F1 – F4
03/10/2021	BH21-2 SS4	2.35 – 2.92	PHCs/BTEX F1 – F4

Summary of Groundwater Samples Submitted for Laboratory Analysis

Sampling Date (dd/mm/yyyy)	Sample ID/Location	Laboratory Analysis
15/10/2018	BHMW18-2	PHCs F1 – F4, and VOCs
15/10/2018	BHMW18-3	PHCs F1 – F4, and VOCs

Soil and groundwater analytical results were compared against applicable provincial standards, as set out in the following document:

Ontario Ministry of the Environment, Conservation, and Parks (MECP) "Soil, ground water and sediment standards" for use under Part XV.1 of the Environmental Protection Act, Ministry of Environment, Conservation and Parks (MECP) - Table 3: Generic Site Condition Standards for Industrial/Commercial/Community Property use Non-Potable Groundwater Condition, April 2011 (coarse-grained soils).

Phase Two Environmental Site Assessment 2584-2600 Bank Street, Ottawa, Ontario DST File No.: TS-SO-032782

Page iii

Based on the laboratory analytical results, all laboratory-submitted samples (soil and groundwater) were in compliance with the applicable MECP Table 3 standards (for commercial/industrial property use) for the analyzed parameters.

TABLE OF CONTENTS

Section	1.	INTRODUCTION	1
		1.1 General	1
		1.2 Site Description	
		1.3 Previous Reports	1
		1.4 Site Condition Standards	2
Section	2.	SCOPE OF THE INVESTIGATION	3
Section	3.	INVESTIGATION METHODS	4
		3.1 Ground Penetrating Radar Survey (GPR)	4
		3.2 Borehole Drilling	4
		3.3 Soil Sampling	
		3.4 Field Screening Methods	
		3.5 Monitoring Well Installation	
		3.7 Groundwater Sampling	
		3.8 Analytical Testing	
		3.9 Residue Management	
		3.10 Quality Assurance / Quality Control	
Section	4.	RESULTS AND EVALUATION	8
		4.1 Stratigraphy	
		4.2 Groundwater Levels	
		4.3 Field Observations	
		4.4 Soil Texture	
		4.5 Soil Quality	
Section	5.	CONCLUSIONS AND RECOMMENDATIONS	
Section		CLOSURE	
Section	7.	REFERENCES	11
APPEND	ICE	5	
Appendix	Α	Figures	
Appendix	В	Photographs	
Appendix	С	Ground Penetrating Radar Survey	
Appendix	D	Borehole Logs	
Appendix		Analytical Tables	
Appendix		Laboratory Certificates of Analysis	
Appendix		Development Site Plan	
Appendix		Limitations of Report	

1. INTRODUCTION

1.1 General

DST, A Division of Englobe (DST), was retained by Upper Hunt Club Centre Inc. (herein referred to as the "Client"), to conduct a Phase Two Environmental Site Assessment (ESA) for the property located at 2584-2600 Bank Street in Ottawa, Ontario (herein referred to collectively as the "Site"). The purpose of this assessment was to establish the environmental condition of the Site at the time of report issuance, in support of a City of Ottawa Site Plan Application (SPA). A Site Location Map is included in Appendix A.

DST has completed this Phase Two ESA in general accordance with *Ontario Regulation 153/04 Records* of Site Condition – Part XV.1 of the Act under the Ontario Environmental Protection Act, R.S.O. 1990, chapter E.19 (O. Reg. 153/04), as amended. DST understands that this Phase Two ESA has been completed for the purpose to support a site development application, and therefore this report was not prepared to support the filing of a Record of Site Condition.

1.2 Site Description

The Phase Two ESA investigation included the properties located at the municipal addresses of 2584-2600 Bank Street. The Site is described as follows: 2584 (2582) Bank Street (1.035 hectares) and 2600 Bank Street (0.23 hectares). A Site Plan is included in Appendix A.

2600 Bank Street is developed with a single storey slab on grade commercial building, with two occupants. The primary occupant is Knight Motors Ottawa, and the secondary occupant is Joud's Auto Centre. The Site building was reportedly constructed in approximately 1992.

The parcel of land at 2582-2584 Bank Street is devoid of any structures and is utilized for parking area for 2600 Bank. The parking area is covered in gravel.

The Site properties are located within areas zoned as AM H (30) – Arterial Main Street Zone (2584 and 2600 Bank Street).

The Site is surrounded by the following:

Table 1-1: Surrounding Property Activities

Direction	Surrounding Property Activities
North	- Bank Street and Sieveright Avenue, followed by residential and commercial developments (Mazda dealership)
East	- Alta Vista Animal Hospital and Wood's Cemetery
South	- A forested area (2626 Bank Street).
West	- Commercial buildings (Splash and Dash Car Wash, Petro Canada)

1.3 Previous Reports

DST was retained by the Client in April 2018 to conduct a Phase One ESA at the Site. Based on the findings of the Phase One ESA (DST, 2018), three areas of potential environmental concern (APECs) were identified, summarized in the table below. A map showing the APECS can be seen in Appendix A, Figure 2.

Table 1-2: Areas of Potential Environmental Concern

APEC	Area of Potential Environmental Concern (APEC)	Potential Contaminants of Potential Concern (PCOCs)
APEC 1 Former on-site UST and unidentified access ports and current active automotive repair facility	Potential contamination due to the presence of the former 15,000L UST and potential current unknown UST located on site.	Petroleum hydrocarbons (PHCs) and Volatile Organic Compounds (VOCs)
APEC 2 Several car dealerships, retail fuel outlets and a former dry cleaner	Potential contamination due to the presence of several car dealership with associated vehicle repairs facilities and the presence of a retail fuel outlet (2536 Bank Street)	PHC and VOCs
APEC 3 Wood's Cemetery	Potential contamination due to the long-term presence of Wood's Cemetery.	Nitrites, nitrates, Biological Oxygen Demand (BOD), Volatile Organic Compounds (VOCs), formaldehyde, ammonia, and metals

Based on the identified environmental concerns, a Phase Two ESA was recommended to further evaluate the environmental risks at the Site.

1.4 Site Condition Standards

Based on the Site conditions at the time of the Phase Two ESA, the following Site Condition Standards (SCSs) were considered applicable to the Site:

SOIL:

 MECP "Soil, Groundwater and Sediment Standards for Use under Part XV.1 of the Environmental Protection Act", April 15, 2011. Table 3: Full Depth Generic Site Condition Standards for soil in a Non-Potable Groundwater Condition (Industrial/Commercial/Community Property Use, coarse textured soils).

GROUNDWATER:

 MECP "Soil, Groundwater and Sediment Standards for Use under Part XV.1 of the Environmental Protection Act", April 15, 2011. Table 3: Full Depth Generic Site Condition Standards for groundwater in a Non-Potable Groundwater Condition (All Types of Property Use, coarse textured soils).

The rationale for the selection of the above-referenced SCSs was as follows:

- The Site and surrounding properties are supplied with potable water through the City of Ottawa's municipal drinking water system, which is not derived from groundwater sources;
- The land use for the Site is a commercial/industrial land use;
- A coarse-grained soil texture was selected for comparison of analytical data to applicable provincial standards as this represents the 'worst-case' scenario;
- No shallow bedrock conditions were encountered during the investigation; and,
- The portions of the Site included in this investigation are located further than 30 metres from the nearest surface water body, which is Sawmill Creek, located approximately 90 m south of the Site.

2. SCOPE OF THE INVESTIGATION

The Phase Two ESA scope of work consisted of the following activities:

- Obtaining underground utility clearances and locates;
- Conducting a ground penetrating radar (GPR) survey of the area of the unidentified access ports on the south side of 2600 Bank Street;
- The advancement of six boreholes, three of which were instrumented with groundwater monitoring wells (BHMW18-2 through BHMW18-4), at strategic locations on Site. See the Borehole Location Plan in Appendix A, Figure 3. These locations were determined based on the findings of the Phase One ESA;
- The collection of soil samples from each of the six advanced boreholes on Site;
- The collection of groundwater samples from two of the three monitoring wells (BHMW18-2 and BHMW18-3) on Site (BHMW18-4 was observed to be dry);
- Conducting environmental testing on collected soil and groundwater samples; and,
- A factual report summarizing the results and findings of the Phase Two ESA.

3. INVESTIGATION METHODS

3.1 Ground Penetrating Radar Survey (GPR)

On October 2, 2018, USL-1 was contracted by DST to conduct a GPR survey of the area south of the building at 2600 Bank Street. This area was observed to have two unidentified access ports, typical of an Underground Storage Tank (UST), identified within the Phase One ESA. Using the GPR equipment by setting up grid squares over the investigation area, the area in the vicinity of the access ports was surveyed. No USTs were detected on the southern portion of the Site. Two small diameter pipes were detected running from the access ports going south for 1 m, after which the signal disappeared, indicating that the pipes have been cut and are no longer in use. A copy of the GPR report is included in Appendix C.

3.2 Borehole Drilling

The drilling program was completed in two stages.

The first stage commenced with OGS Inc., on October 3, 2018, with a CME45C track mounted drill rig. Under the supervision of DST, one borehole was advanced on the small northeast portion of 2626 Bank Street. The borehole was instrumented with a groundwater monitoring well (BHMW18-4). Due to mechanical difficulties encountered by OGS, the remaining boreholes/monitoring wells (BHMW18-1, BHMW18-2, and BHMW18-3) were advanced by CCC Geotechnical and Environmental Drilling Ltd. (CCC), on October 11th and 12th using a CME-75 truck mounted drill rig.

The second stage of drilling was completed on March 10, 2021 where two boreholes (BH21-1 and BH21-2) were advanced by CCC Geotechnical and Environmental Drilling Ltd. (CCC), using a CME-75 truck mounted drill rig.

All drilling was completed under the supervision of DST field personnel.

- BH18-1 was advanced to a depth of 9.1 meters below grade surface (mbgs);
- BHMW18-2 was advanced to a depth of 11.6 mbgs;
- BHMW18-3 was advanced to a depth of 10.4 mbgs;
- BHMW18-4 was advanced to a depth of 4.9 mbgs;
- BH21-1 was advanced to a depth of 3.7 mbgs; and,
- BH21-2 was advanced to a depth of 3.7 mbgs.

A Site Plan illustrating the borehole / monitoring well locations is provided as Figure 3 in Appendix A. Photographs are included in Appendix B.

3.3 Soil Sampling

Soil sampling was carried out using a 60 cm split spoon, which allowed for continuous sampling of overburden soils. Soil samples were placed directly into laboratory-supplied sample jars and vials. The sample jars were filled completely with soil to reduce the amount of headspace vapour within the jars. Samples that were to be submitted for laboratory analysis of metals and PHC F2 – F4 were placed in unpreserved 120 mL clear glass jars with Teflon lids, while samples to be submitted for laboratory analysis of volatile compounds (PHC F1 / BTEX and VOCs) were collected using disposable soil plug sample collectors supplied by the laboratory. The soil plugs were placed in laboratory-supplied vials charged with measured volumes of methanol for sample preservation. All other soil parameters (formaldehyde, nitrates, nitrites, and metals) were placed into 250 ml glass jars.

Soil samples were logged in the field for texture, odour, moisture and visual appearance (staining). Borehole logs are provided in Appendix D.

3.4 Field Screening Methods

Where sample recovery was sufficient, a portion of each collected soil sample from the advanced boreholes was placed in a polyethylene bag and was allowed to equilibrate in a warm environment prior to being screened for combustible vapour concentrations (CVCs). CVCs of soil samples were measured using an RKI EagleTM portable vapour meter equipped with a catalytic combustible gas detector (CCGD), with a detection limit of 5 parts per million (ppm). The vapour meter was operated in methane elimination mode and was calibrated by DST field personnel prior to use.

CVC readings can be found in the attached borehole logs in Appendix D.

Based on visual and olfactory observations, CVC measurements, and the position of the collected soil samples with respect to the inferred groundwater table, 9 soil samples were submitted for laboratory analysis. Soil sample locations and analysis are presented in Table 3-1.

Sampling Date Sample Depth Sample ID/Location **Laboratory Analysis** (dd/mm/yyy) (mbgs) Formaldehyde, VOCs, metals, ammonia, 10/11/2018 BHMW18-4 SS8 4.30 - 4.90nitrites, and nitrates 10/11/2018 BHMW18-1 SS3 1.21 - 1.82PHCs F1 - F4, VOCs 10/11/2018 BHMW18-1 SS4 1.82 - 2.40PHCs F2 – F4 3.04 - 3.65PHCs F1 - F4, VOCs 10/11/2018 BHMW18-2 SS6 10/12/2018 BHMW18-3 SS14 7.90 - 8.50PHCs F1 - F4, VOCs 0.75 - 1.5003/10/2021 BH21-1 SS2 PHCs/BTEX F1 – F4 03/10/2021 BH21-1 SS4 2.35 - 2.92PHCs/BTEX F1 – F4 03/10/2021 BH21-2 SS3 1.60 - 2.16PHCs/BTEX F1 – F4 03/10/2021 BH21-2 SS4 2.35 - 2.92PHCs/BTEX F1 – F4

Table 3-1: Summary of Soil Samples Submitted for Laboratory Analysis

3.5 Monitoring Well Installation

Monitoring wells were installed by CCC within the advanced boreholes using the same drilling equipment described in Section 3.1. The wells were constructed of a 50 mm diameter polyvinyl chloride (PVC) pipe and a #10 slotted PVC well screen, placed to intercept the inferred groundwater table. A sand-pack consisting of clean silica sand was placed within the annular space surrounding the screened section of the wells (up to 60 cm above the top of the screen), and bentonite chips or grout was added from the top of the sand up to surface, to minimize the potential for cross-contamination between aquifers. A PVC cap was placed at the top of each well pipe, and a protective flush-mount steel casing was cemented at surface to protect each well, with the exception of BHMW18-4, which was instrumented with a monument style

protective style casing. Well construction details are illustrated in the borehole logs provided in Appendix D.

Following monitoring well installation activities, the wells were equipped with dedicated Waterra[™] tubing (approximately 1.25 cm in diameter) and inertial lift foot valves for well development purposes. The monitoring wells were developed to remove any groundwater impacted by drilling activities and to reduce the amount of sediment within the wells.

3.6 Groundwater Level Measurements

DST field personnel collected groundwater level measurements from the installed monitoring wells prior to groundwater sampling activities. The water levels were measured using a Solinst Canada Ltd. Model 122 oil/water interface meter which is also used to confirm the presence/absence and thickness of free (petroleum) product that may potentially be residing on the surface of the groundwater table. The electronic interface probe was decontaminated (washed with phosphorous-free soap and rinsed with distilled water) prior to the collection of each groundwater level measurement.

3.7 Groundwater Sampling

In order to remove any stagnant groundwater prior to sampling, each monitoring well was purged of approximately three well volumes of groundwater, using dedicated WaterraTM tubing and inertial lift foot valves.

Groundwater samples were collected from monitoring wells BHMW18-2 and BHMW18-3 on October 15, 2018, using the dedicated Waterra[™] tubing and inertial lift foot valves in each of the wells. During groundwater sampling activities, BHMW18-4 was found to be dry. Groundwater samples from BHMW18-2 and BHMW18-3 were collected directly into laboratory-supplied containers, for analysis of PCOCs. Groundwater sample locations and analyses are presented in Table 3-2.

Sampling Date
(dd/mm/yyyy)Sample ID/LocationLaboratory Analysis15/10/2018BHMW18-2PHCs F1 – F4, and VOCs15/10/2018BHMW18-3PHCs F1 – F4, and VOCs

Table 3-2: Summary of Groundwater Samples Submitted for Laboratory Analysis

3.8 Analytical Testing

Soil and groundwater samples were submitted to Maxxam Analytics Inc. (Maxxam) / Bureau Veritas (BV), of Ottawa, ON, for chemical analysis. Maxxam/BV is a Canadian Association for Laboratory Accreditation Inc. (CALA) accredited laboratory. Please note, between 2018 and 2021, Maxxam Analytics Inc. (Maxxam) changed its name to Bureau Veritas (BV).

3.9 Residue Management

All soil cuttings resulting from drilling activities, purge water resulting from well development and purging activities, and fluids resulting from equipment decontamination were appropriately contained and secured on Site. Proper disposal is to be coordinated at a later date by a licensed waste hauler.

3.10 Quality Assurance / Quality Control

DST maintains a standard Quality Assurance / Quality Control (QA/QC) program for environmental assessments. The field sampling and QA/QC program was completed in general accordance with the applicable Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario (MECP, 1996). All project documentation was maintained and controlled by the appointed field supervisor. All borehole advancement and soil and groundwater sampling was completed in accordance with industry standards, and applicable provincial standards/guidelines.

Collected soil and groundwater samples collected during the investigation were placed in ice-packed coolers. Samples were shipped under a Chain of Custody protocol to Maxxam/BV for chemical analysis.

The potential for cross-contamination between samples was minimized by, where applicable, washing sampling tools with phosphorous-free soap and water, followed by rinsing with distilled water, and by wearing new disposable nitrile gloves prior to the handling of each sample.

4. RESULTS AND EVALUATION

4.1 Stratigraphy

Based on the soil data collected during the advancement of the boreholes, the general soil stratigraphy at the Site is characterized by a layer of fill material, mainly consisting of sand and gravel, underlain by layers of silty sand and sand. Borehole logs are provided in Appendix D.

4.2 Groundwater Levels

As noted in Section 3.5, DST field personnel collected groundwater level measurements from the newly installed monitoring wells prior to groundwater sampling activities. The groundwater levels are provided in Table 4-1 below.

Table 4-1: Groundwater Levels

Monitoring Well ID	Groundwater Depth ⁽¹⁾ (October 15, 2018)
BHMW18-2	10.1
BHMW18-3	8.37

Note: (1) Groundwater depths measured in metres below ground surface.

4.3 Field Observations

Visual and olfactory evidence of petroleum impacts (staining and petroleum odours) were not observed during drilling and soil sampling activities.

4.4 Soil Texture

DST did not complete a grain size analysis on soil samples collected during the investigation. As described in Section 2, a coarse-grained soil texture was selected for comparison of the analytical results to the applicable provincial site condition standards as it represents the 'worst-case' scenario.

4.5 Soil Quality

Analytical results of the soil samples submitted for laboratory analysis were compared to the applicable MECP Table 3 SCS for Industrial/Commercial/Community Property Use and coarse textured soils. Based on the laboratory analytical results, all soil samples collected met the applicable MECP Table 3 SCS for all analyzed parameters.

The laboratory certificates of analysis are provided in Appendix F.

4.6 Groundwater Quality

Analytical results of the groundwater samples submitted for laboratory analysis were compared against the applicable MECP Table 3 SCS for All Types of Property Use and coarse textured soils. Based on the laboratory analytical results, all groundwater samples collected from the monitoring wells met the applicable MECP Table 3 SCS for all analyzed parameters.

The laboratory certificates of analysis are provided in Appendix F.

5. CONCLUSIONS AND RECOMMENDATIONS

DST conducted a Phase Two ESA at the property located at 2584-2600 Bank Street, in Ottawa, Ontario to evaluate the environmental quality of soils and groundwater at the Site.

The field program for the Phase Two ESA consisted of a GPR survey of the area of the suspected UST, the advancement of six boreholes, three of which were instrumented with groundwater monitoring wells at strategic locations across the Site.

A GPR survey was completed on October 2, 2018. No USTs were detected on the southern portion of the Site in the vicinity of the access ports.

A total of nine soil samples and two groundwater samples were collected from the advanced boreholes/monitoring wells were submitted for laboratory analysis of COPCs, including PHCs F1–F4, BTEX, VOCs and inorganics.

Based on the laboratory analytical results, all soil and groundwater samples submitted to the laboratory met the applicable MECP Table 3 SCS for commercial/industrial property use and coarse textured soils.

6. CLOSURE

This report was prepared for the exclusive use of Upper Hunt Club Centre Inc. Any use of this report by any third party, or any reliance on or decisions to be made based on it, are the responsibility of such parties. DST accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

We trust the information herein meets your present requirements. Should you have any questions, please do not hesitate to contact the undersigned.

Sincerely,

DST, A Division of Englobe

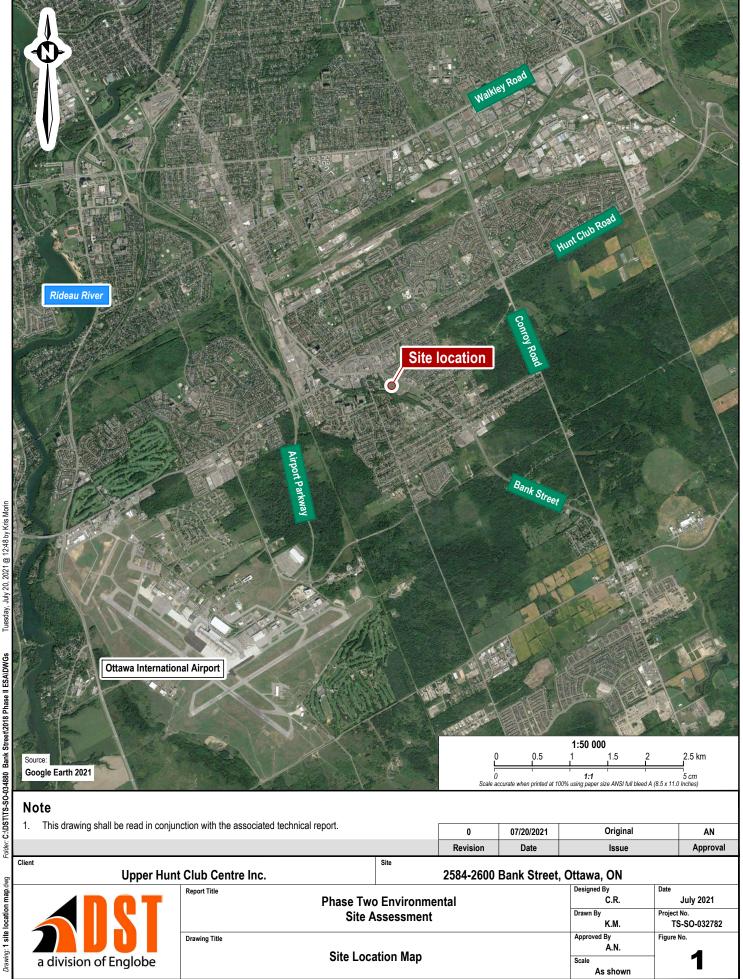
Colette Robitaille

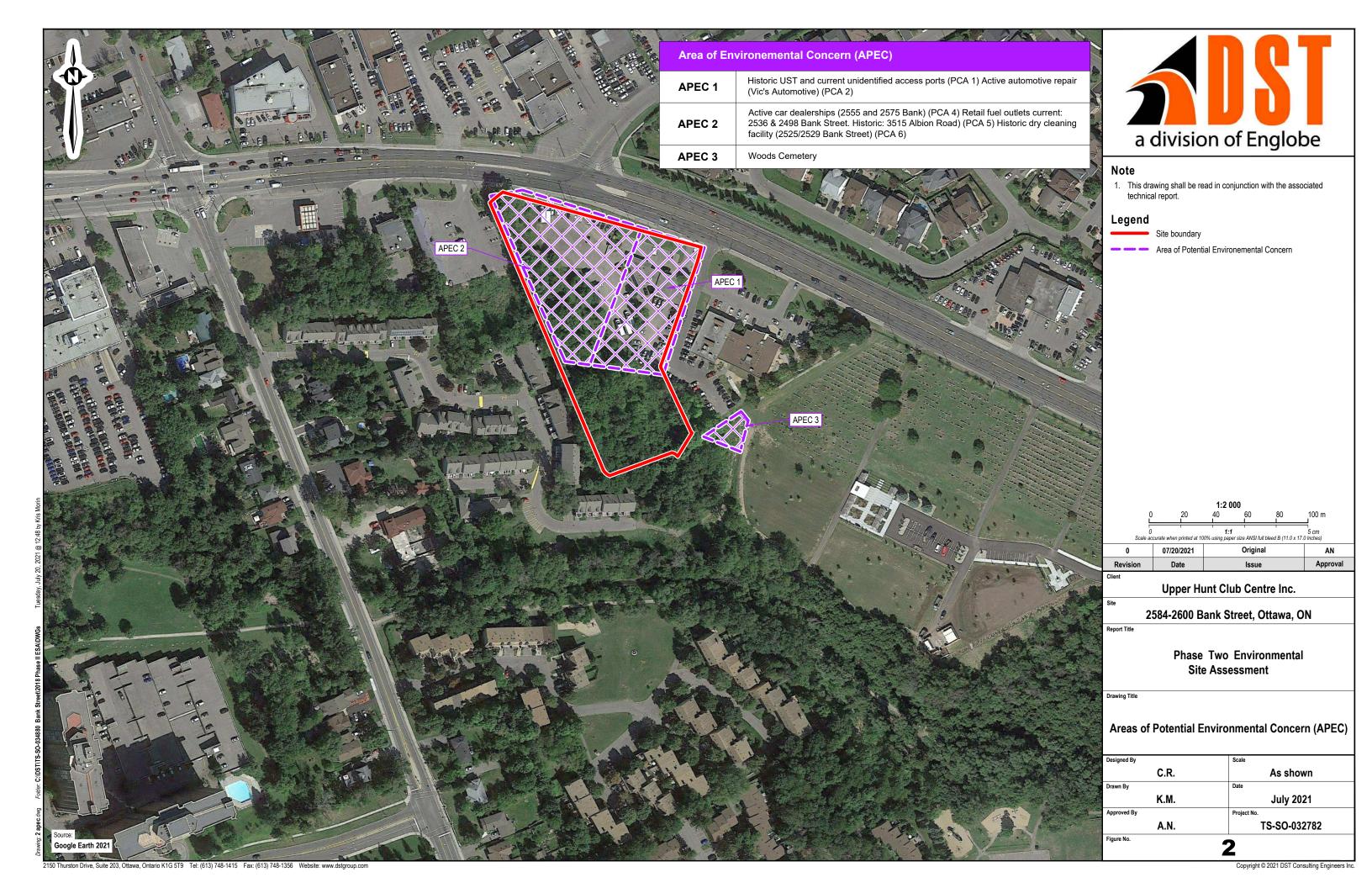
Environmental Technician

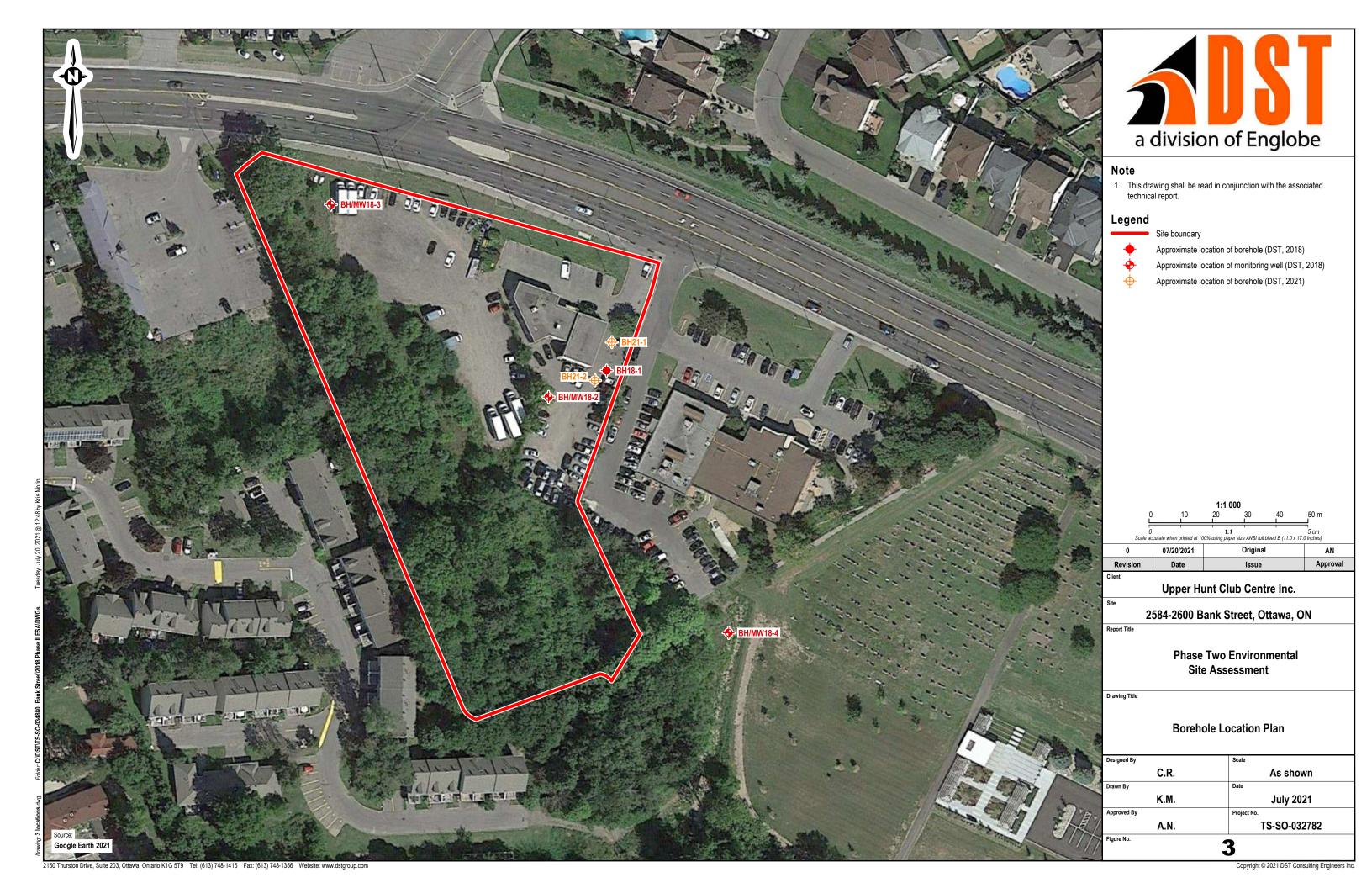
Andrew Naoum, P.Eng.

Director of Operations, Engineering

7. REFERENCES


DST Consulting Engineers Inc. April 2018. Phase One Environmental Site Assessment – 2584-2600 Bank Street, Ottawa, Ontario. File No. TS-SO-034880.


Ontario Ministry of the Environment, Conservation and Parks, December 1996. Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario.


Ontario Ministry of the Environment, Conservation and Parks, 2011. Soil, Ground Water and Sediment Standards for Use Under Part XV.I of the Environmental Protection Act.

Ontario Ministry of the Environment, Conservation and Parks, as amended January 2014. Ontario Resources Act R.R.O. 1990, Regulation 903 – Wells.

APPENDIX A Figures

APPENDIX B Site Photographs

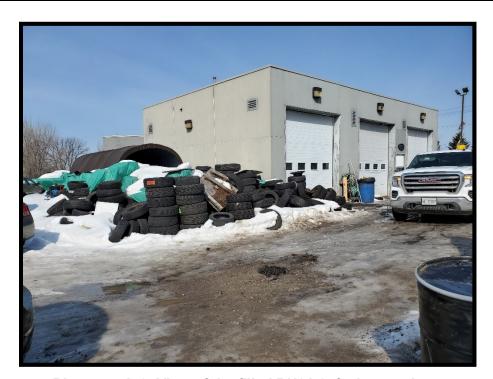
Photograph 1: View of the advancement of borehole BHMW18-4, facing southeast (October 3, 2018)

Photograph 2: View of the advancement of BH18-1, facing southeast (October 11, 2018)

Photograph 3: View of soil sample BHMW18-1 SS4 (October 11, 2018)

Photograph 4: View of the advancement of BHMW18-2, facing southwest (October 11, 2018)

Photograph 5: View of soil sample BHMW18-2 SS6 (October 11, 2018)


Photograph 6: View of the advancement of BHMW18-3, facing northwest (October 12, 2018)

Photograph 7: View of the advancement of BH21-1, facing southeast (March 10, 2021)

Photograph 8: View of the filled BH21-1, facing North (March 10, 2021)

Photograph 9: View of the filled BH21-2, facing northeast (March 10, 2021)

Phase Two Environmental Site Assessment 2584-2600 Bank Street, Ottawa, Ontario DST File No.: TS-SO-032782

APPENDIX C Ground Penetrating Radar Survey

DST Contractor:

Action requested: Geophysical survey.

Work site: 2600 Bank St, Ottawa, ON.

Areas of concern:

• Possible underground storage tank, (UST), on south side of building.

Information provided by contractor:

- Steel port covers installed in asphalt at south side of building.
- Port cover purpose is unknown present occupant.

Method

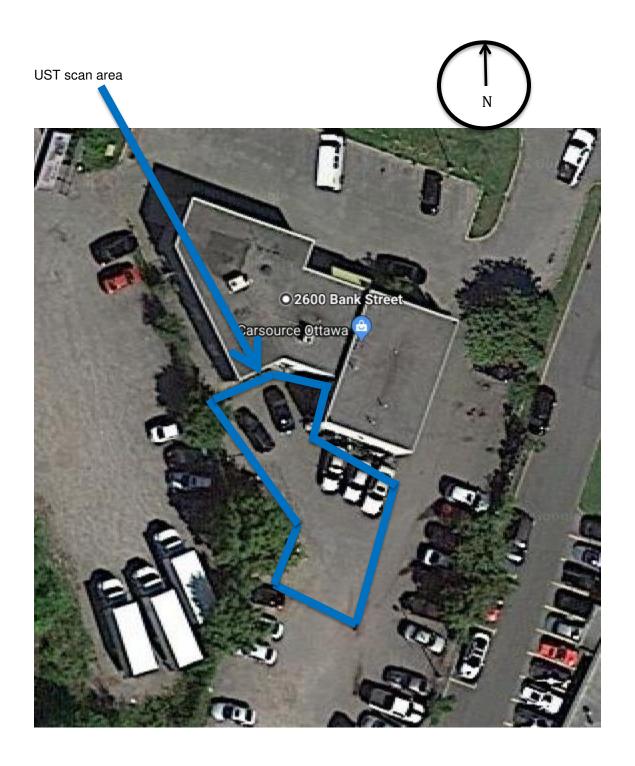
•Ground penetrating radar, (GPR), was used to detect UST.

USL-1 geophysical report

- UST was not detected.
- GPR indicated 2 pipes running south from port covers and ending approximately 3 feet away from the port covers.

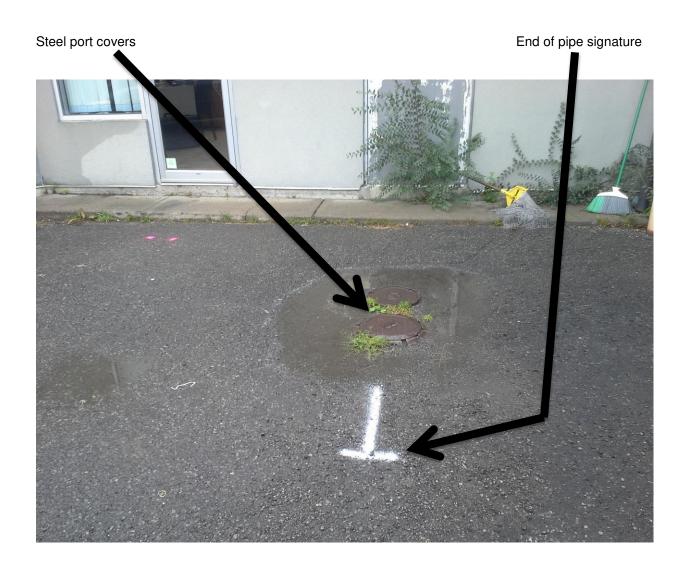
Supporting documentation

- 2 Photos
- This written report is included within 1 page.


Mike Thivierge

Geophysical Surveyor

M Church


Date of report: 02 Oct 2018 Date of survey: 02 Oct 2018

2600 Bank St.

APPENDIX D Borehole Logs

Page 1 of 2 **BH18-1**

DST Project No. TS-SO-032782

Client Upper Hunt Club Centre Inc.

Project Phase Two ESA

Address 2584-2600 Bank Street, Ottawa, ON

Date October 11, 2018

Method CME 75

Diameter 50.8mm

Coordinates **5022391.9** m N, **449941.8** m E

_	(m)	le/	tion	(m)		Material Description		ype	Recov	CCGE Rea) / PID iding	Ana	itted f	or Jahor	atory a	analysis	Remarks
Depth (m)	Elevation (m)	Water level	Well construction	<i>Depth (m)</i> Elevation (m)	Symbol		Sample #	Sample Type	% Samp. Recov	CCGD	PID	PAHs	PHC/BTEX	Metals / Inorganics	VOCs	Others	
0.5				0	Δ	SAND WITH GRAVEL - coarse grained, dry	SS1		25	0 ppm							
1.0							SS2		18	0 ppm							
1.5							SS3		39	0 ppm			✓		✓		
2.0							SS4		33	0 ppm			✓				
3.0							SS5		60	0 ppm							
3.5							SS6		37	0 ppm							
4.0							SS7		35	0 ppm							
4.5					Δ ·		SS8		38	0 ppm							
5.0					Δ .		SS9		35	0 ppm							
5.5 6.0							SS10		35	0 ppm							

Page 2 of 2 **BH18-1**

DST Project No. TS-SO-032782

Client Upper Hunt Club Centre Inc.

Project Phase Two ESA

Address 2584-2600 Bank Street, Ottawa, ON

Date October 11, 2018

Method CME 75

Diameter 50.8mm

Coordinates **5022391.9** m N, **449941.8** m E

(n	(m) u	leve	tion	<i>(س)</i> د		Material Description	22-	Туре	Recov	CCGI Rea	D / PID ading	Ana		or labor	ratory a	ınalysis	Remarks
Depth (m)	Elevation (m)	Water level	Well construction	<i>Depth (m)</i> Elevation (m)	Symbol		Sample #	Sample Type	% Samp. Recov	CCGD	PID	PAHs	PHC/BTEX	Metals / Inorganics	VOCs	Others	
5.5					Δ	SAND WITH GRAVEL - coarse grained, dry	SS11		68	0 ppm							
7.0				7.2	۵	Sand - coarse grained, some gravel, dry	SS12		77	0 ppm							
7.5							SS13		38	0 ppm							
3.0							SS14		49	0 ppm							
3.5 9.0							SS15		55	0 ppm							
9.5						End of Borehole at 9.1 m.											
10.0																	
10.5																	
11.0																	
11.5 12.0																	

Page 1 of 2 **BH/MW18-2**

DST Project No. TS-SO-032782

Client Upper Hunt Club Centre Inc.

Project Phase Two ESA

Address 2584-2600 Bank Street, Ottawa, ON

Date October 11, 2018

Method CME 75

Diameter 50.8mm

Coordinates **5022383.6** m N, **449923.5** m E

	(m)	el	ion	(m)		Material Description		/pe	Recov	CCGI Rea	D / PID ading			or labor	atory a	nalysis	Remarks
Deptn (m)	Elevation (m)	Water level	Well construction	<i>Depth (m)</i> Elevation (m)	Symbol		Sample #	Sample Type	% Samp. Recov	CCGD	PID	PAHs	PHC/BTEX	Metals / Inorganics	VOCs	Others	
				0	Δ.	SAND WITH GRAVEL - followed by stiff gravelly clay											
					Δ ·		SS1		12	0 ppm							
0.5					Δ	CUTYCAND											
				0.6		SILTY SAND - some gravel, brown, dry											
1.0					ŀj.		SS2		11	0 ppm							
				1.2	<u>ا</u> ا	SAND WITH GRAVEL - brown, dry	_					_					_
1.5					۵												
					Δ.		SS3		6	0 ppm							
					Δ.							+					
2.0					Δ.		SS4		34	0 ppm							
					Δ.												
2.5				2.4	Δ.	- coarse grained											-
					Δ.		SS5		53	0 ppm							
3.0					۵. ۵												
					۵												
					Δ ·		SS6		24	0 ppm			✓		✓		
3.5					۵.												
					۵.												
1.0					Δ. Δ.		SS7		45	0 ppm							
					Δ.		_										_
1.5					△.		ççn										
					Δ.		SS8		26	0 ppm							
5.0					۵				\vdash			+					-
					Δ.		SS9		37	0 ppm							
					Δ. Δ.					11."							
5.5					Δ.							+					1
					Δ .		SS10		31	0 ppm							
5.0					۵.												

Page 2 of 2 **BH/MW18-2**

DST Project No. TS-SO-032782

Client Upper Hunt Club Centre Inc.

Project Phase Two ESA

Address 2584-2600 Bank Street, Ottawa, ON

Date October 11, 2018

Method CME 75

Diameter 50.8mm

Coordinates **5022383.6** m N, **449923.5** m E

	(E)	<u>a</u>	on	(E)		Material Description	#	pe	Secov	CCGE Rea) / PID iding	Ana Subm	lysis	or labor	atory a	nalysis	
Depth (m)	Elevation (m)	Water level	Well construction	<i>Depth (m)</i> Elevation (m)	Symbol		Sample #	Sample Type	% Samp. Recov	CCGD	PID	PAHs	PHC/BTEX	Metals / Inorganics	VOCs	Others	
5.5				6.1		SAND - some gravel, dry	SS1		46	0 ppm							
7.0							SS12		38	0 ppm							
7.5							SS13		19	0 ppm							
3.0				8.4		- coarse grained, brown	SS14		43	0 ppm							
0.0							SS15		35	0 ppm							
.5				9.7		- moist	SS16		31	0 ppm							
0.0		<u>_</u>		10.3		- wet	SS17		68	0 ppm							Groundwater level at 10.10 mbgs
.0.5							SS18		54	0 ppm							
1.0							SS19			0 ppm							
12.0						End of Borehole at 11.6 m.											

Page 1 of 2 **BH/MW18-3**

DST Project No. TS-SO-032782

Client Upper Hunt Club Centre Inc.

Project Phase Two ESA

Address 2584-2600 Bank Street, Ottawa, ON

Date October 12, 2018

Method CME 75

Diameter 50.8mm

Coordinates **5022444.1** m N, **449855** m E

_	(m)	le/	ion	(m)		Material Description		ype	Recov	CCGE Rea) / PID iding			or labor	ratory a	analysis	Remarks
Depth (m)	Elevation (m)	Water level	Well construction	<i>Depth (m)</i> Elevation (m)	Symbol		Sample #	Sample Type	% Samp. Recov	CCGD	PID	PAHs	PHC/BTEX	Metals / Inorganics	VOCs	Others	
0.5				0	Δ · Δ · Δ	SAND WITH GRAVEL - trace organics	SS1		14	0 ppm							
1.0				1.1	٥٠	ORGANIC	SS2		10	0 ppm							
1.5				1.2		PEAT - some silt, dark brown	SS3		5	0 ppm							
2.0				2.4	\(\frac{1}{2}\)	SANDY SILT - moist	SS4		7	0 ppm							
2.5 3.0 3.5 4.0 5.0				2.7			SS5		24	0 ppm							
3.5				3.1		SAND - some gravel, medium grained, light brown - interbedded with sandy clay layer	SS6		17	0 ppm							
4.0							SS7		16	320 ppm							
4.5				4.3		- brown, dry	SS8		21	0 ppm							
5.0							SS9		28	80 ppm							
5.5 6.0							SS10		18	0 ppm							

Page 2 of 2 **BH/MW18-3**

DST Project No. TS-SO-032782

Client Upper Hunt Club Centre Inc.

Project Phase Two ESA

Address 2584-2600 Bank Street, Ottawa, ON

Date October 12, 2018

Method CME 75

Diameter 50.8mm

Coordinates **5022444.1** m N, **449855** m E

	(m)	<u> </u>	on	(m)		Material Description		be	ecov	CCGI Rea	O / PID Iding		lysis	or labor	ratory a	analysis	Remarks
Depth (m)	Elevation (m)	Water level	Well construction	<i>Depth (m)</i> Elevation (m)	Symbol		Sample #	Sample Type	% Samp. Recov	CCGD	Old	PAHs	PHC/BTEX	Metals / Inorganics	VOCs	Others	
6.5						SAND - some gravel, medium grained, light brown	SS11		28	0 ppm							
·7.0							SS12		15	0 ppm							
7.5				7.3		- moist	SS13		11	0 ppm							
8.0 8.5		<u>_</u>		8.4		- coarse grained	SS14		13	260 ppm			✓		✓		Groundwater level at 8.37 mbยู
9.0							SS15		18	0 ppm							
9.5							SS16		32	5 ppm							
10.0							SS17			95 ppm							
10.5	;					End of Borehole at 10.4 m.											
11.0																	
11.5																	
12.0																	

Page 1 of 1 **BH/MW18-4**

DST Project No. TS-SO-032782

Client Upper Hunt Club Centre Inc.

Project Phase Two ESA

Address 2584-2600 Bank Street, Ottawa, ON

Date October 3, 2018

Method CME 75

Diameter 50.8mm

Coordinates **5022309.4** m N, **449980.2** m E

_	(m)	le/	tion	(m)		Material Description		ype	Recov	CCGI Rea) / PID iding			or labor	atory a	analysis	Remarks
Depth (m)	Elevation (m)	Water level	Well construction	<i>Depth (m)</i> Elevation (m)	Symbol		Sample #	Sample Type	% Samp. Recov	CCGD	PID	PAHs	PHC/BTEX	Metals / Inorganics	VOCs	Others	
				0	\(\frac{1}{2}\frac{1}{2}\)	TOPSOIL - sand and silt, brown	SS1		8	0 ppm							
0.5				0.6	<u> </u> <u> </u>	SILTY SAND - trace organics, brown											
1.0				1.2	· · ·	SAND - some silt, trace organics, medium grained, brown	SS2		14	0 ppm							
1.5							SS3		8	0 ppm							
2.0							SS4		15	0 ppm							
3.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5							SS5		13	0 ppm							
3.5				3.1		- moist SILTY SAND - trace clay, wet	SS6		8	0 ppm							
1.0				3.7	 	SANDY SILTY CLAY - trace coarse sand, trace clay, wet	SS7		11	0 ppm							
1.5					1 + + + +		SS8		15	0 ppm				✓	✓		
5.0					1.1.	End of Borehole at 4.9 m.		///									
5.5																	
5.0																	

Page 1 of 1 **BH21-1**

DST Project No. TS-SO-032782

Client Upper Hunt Club Centre Inc.

Project Phase Two ESA

Address 2584-2600 Bank Street, Ottawa, ON

Date March 10, 2021

Method CME 75

Diameter 50.8mm

Coordinates **5022402** m N, **449940.9** m E

arks		analysi	atory a	r labor	itted fo	Ana Submi	PID	CCGD Rea	Recov	/pe		Material Description		(m)	ion	e	(m)	_
		Others	VOCs	Metals / Inorganics	PHC/BTEX	PAHs	PID	CCGD	% Samp. Recov	Sample Type	Sample #		Symbol	<i>Depth (m)</i> Elevation (m)	Well	Water level	Elevation (m)	Depth (m)
												SAND WITH GRAVEL - with gravelly clay, very dense	Δ	0				
	_							15 ppm	100		SS1		Δ.					
													Δ .					0.5
												SILTY GRAVELLY SAND - very dense, brown,	\[\delta \cdot \]	0.75	ŀ			
					✓			0 ppm	80		SS2	damp	۵ ا					1.0
					•			о ррпп	80				١٠					
													۰ '۵ ۱۰ ۵					1.5
												- with some gravel, compact, brown, damp	\(\) \(\	1.5				
								0 ppm	45		SS3		۵					
													<u> </u> .					2.0
	-									///			<u> </u>					
													<u> </u>					2.5
					✓			0 ppm	60		SS4	SANDY GRAVEL - compact, brown, damp	, A	2.5				2.3
													, v					
												SAND WITH GRAVEL - compact, brown, damp	Δ	2.92				3.0
													Δ .					
								0 ppm	55		SS5		Δ Δ					3.5
													Δ					د.د
												End of Borehole at 3.7 m.						
																		4.0
																		4.5
																		د.,
																		5.0
																		5.5
																		د.,
																		5.5

Page 1 of 1 **BH21-2**

DST Project No. TS-SO-032782

Client Upper Hunt Club Centre Inc.

Project Phase Two ESA

Address 2584-2600 Bank Street, Ottawa, ON

Date March 10, 2021

Method CME 75

Diameter 50.8mm

Coordinates **5022389.5** m N, **449936.7** m E

	(m)	<u>—</u>	ion	(m)		Material Description		,be	3ecov	CCGI Rea	O / PID ading		lysis	or labor	atory a	analysis	Remarks
Depth (m)	Elevation (m)	Water level	Well construction	<i>Depth (m)</i> Elevation (m)	Symbol		Sample #	Sample Type	% Samp. Recov	QĐOO	PID	PAHs	PHC/BTEX	Metals / Inorganics	VOCs	Others	
				0	Δ.	SAND WITH GRAVEL - very dense, brown, damp											
					Δ.		SS1		80	20 ppm							
0.5					۵												
				0.75	۵ . ا			///									
1.0				0.70	-¦-	SILTY SAND - dark brown, wet											
					l·i·		SS2		87	5 ppm							
				1.3	Δ	SAND WITH GRAVEL - very dense, brown, dry											
5				1.5	Δ	SILTY SAND & GRAVEL - compact, brown, damp											
					Δ.		SS3		41	15 ppm			~				
2.0					۵												
				2.16	۵												
.5					Δ.												
					Δ.		SS4		50	20 ppm			✓				
				2.92	<u> </u>	- dense											
3.0				2.32	Δ.												
					Δ		SS5		50	10 ppm							
3.5					Δ.				50	10 ppiii							
					l ·	End of Borehole at 3.7 m.		///									
1.0																	
1 5																	
1.5																	
5.0																	
5.5																	

APPENDIX E Analytical Tables

TABLE E-1: SOIL ANALYTICAL RESULTS - PETROLEUM HYDROCARBONS (PHCs)

	Standards				(Sample I	Analytical Results D / Depth / Sampling Da	ate d/m/y)			
Parameters	MECP Table 3	BH18-1 SS3 (1.21-1.82 mbgs) 11/10/2018	BH18-1 SS4 (1.82-2.4 mbgs) 11/10/2018	BHMW18-2 SS6 (3.04-3.65 mbgs) 11/10/2016	BHMW18-3 SS14 (7.9-8.5 mbgs) 11/10/2016	BHMW18-4 SS8 (4.3-4.9 mbgs) 10/03/2018	BH21-1 SS2 (0.75-1.50 mbgs) 10/03/2021	BH21-1 SS4 (2.35-2.92 mbgs) 10/03/2021	BH21-2 SS3 (1.60-2.16 mbgs) 10/03/2021	BH21-2 SS4 (2.35-2.92 mbgs) 10/03/2021
Benzene	0.32	<0.20	NA	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020
Ethylbenzene	9.5	<0.020	NA	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020
Toluene	68	<0.020	NA	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020
m-Xylene & p-Xylene	NG	<0.020	NA	<0.020	<0.020	<0.020	<0.040	<0.040	< 0.040	<0.040
o-Xylene	NG	<0.020	NA	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020
Total Xylenes	26	<0.020	NA	<0.020	<0.020	<0.020	<0.040	<0.040	< 0.040	<0.040
F1 (C6-C10)	55	<10	NA	<10	<10	NA	<10	<10	<10	<10
F1 (C6-C10) - BTEX	55	<10	NA	<10	<10	NA	<10	<10	<10	<10
F2 (C10-C16)	230	<10	<10	<10	<10	NA	<10	<10	11	<10
F3 (C16-C34)	1700	68	64	<50	<50	NA	99	<50	220	<50
F4 (C34-C50)	3300	180	190	<50	<50	NA	200	<50	370	<50
F4G-sg (Gravimetric)	3300	900	610	NA	NA	NA	410	NA	1300	NA
Reached Baseline at C50	NG	No	No	Yes	Yes	NA	No	Yes	No	Yes

Notes: All units are expressed in micrograms per gram ($\mu g/g$).

MECP Table 3 Ontario Ministry of the Environment, Conservation and Parks (MECP), "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act", July 2011. Table 3: Full Depth Generic Site Condition Standards in a NonPotable Ground Water Condition (Industrial/Commencial/Community Property Use). Coarse textured soils.

mbgs Metres below ground surface

Less than laboratory reportable detection limit (value indicated)

NG No guideline/standard available

NA Not Applicable

TABLE E2: SOIL ANALYTICAL RESULTS VOLATILE ORGANIC COMPOUNDS (VOCs)

	TABLE EZ: SUIL AN	IALTTICAL RESULTS VOLA	ATILE ORGANIC COMPOUN	ids (vocs)	
	Standards			al Results h / Sampling Date)	
Parameters	MECP Table 3	BH181 SS3 (1.211.82 mbgs) 11/10/2018	BHMW182 SS6 (3.043.65 mbgs) 11/10/2016	BHMW183 SS14 (7.98.5 mbgs) 12/10/2016	BHMW184 SS8 (4.34.9 mbgs) 10/03/2018
Acetone	16	<0.50	<0.50	<0.50	<0.50
Benzene	0.32	<0.020	<0.020	<0.020	<0.020
Bromodichloromethane	18	< 0.050	<0.050	< 0.050	<0.050
Bromoform	0.61	< 0.050	<0.050	< 0.050	<0.050
Bromomethane	0.05	< 0.050	< 0.050	< 0.050	< 0.050
Carbon Tetrachloride	0.21	< 0.050	< 0.050	< 0.050	< 0.050
Chlorobenzene	2.4	< 0.050	< 0.050	< 0.050	< 0.050
Chloroform	0.47	< 0.050	< 0.050	< 0.050	< 0.050
Dibromochloromethane	13	<0.050	<0.050	<0.050	< 0.050
1,2Dichlorobenzene	6.8	<0.050	<0.050	<0.050	<0.050
1.3Dichlorobenzene	9.6	< 0.050	< 0.050	< 0.050	<0.050
1,4Dichlorobenzene	0.2	<0.050	<0.050	<0.050	<0.050
1.1Dichloroethane	17	< 0.050	< 0.050	< 0.050	<0.050
1.2Dichloroethane	0.05	<0.050	<0.050	<0.050	<0.050
1,1Dichloroethylene	0.064	<0.050	<0.050	<0.050	<0.050
Cis1,2Dichloroethylene	55	<0.050	<0.050	<0.050	<0.050
Trans1,2Dichloroethylene	1.3	<0.050	<0.050	<0.050	<0.050
1,2Dichloropropane	0.16	<0.050	<0.050	<0.050	<0.050
Cis1,3Dichloropropylene	NG	<0.030	<0.030	<0.030	<0.030
Trans1.3Dichloropropylene	NG	<0.040	<0.040	<0.040	<0.040
Ethylbenzene	9.5	<0.020	<0.020	<0.020	<0.020
Ethylene Dibromide	0.05	<0.050	<0.050	<0.050	<0.050
Methyl Ethyl Ketone	70	<0.50	<0.50	<0.50	<0.50
Methylene Chloride	1.6	<0.050	<0.050	<0.050	<0.050
Methyl Isobutyl Ketone	31	<0.50	<0.50	<0.50	<0.50
MethyltButyl Ether	11	<0.050	<0.050	<0.050	<0.050
Styrene	34	<0.050	<0.050	<0.050	<0.050
1,1,1,2Tetrachloroethane	0.087	< 0.050	< 0.050	< 0.050	<0.050
1.1.2.2Tetrachloroethane	0.05	< 0.050	< 0.050	< 0.050	<0.050
Toluene	68	<0.020	<0.020	<0.020	<0.020
Tetrachloroethylene	4.5	<0.050	<0.050	<0.050	<0.050
1,1,1Trichloroethane	6.1	<0.050	<0.050	<0.050	<0.050
1,1,2Trichloroethane	0.05	<0.050	<0.050	<0.050	<0.050
Trichloroethylene	0.91	<0.050	<0.050	<0.050	<0.050
Vinyl Chloride	0.032	<0.020	<0.020	<0.020	<0.020
mXylene & pXylene	NG	<0.020	<0.020	<0.020	<0.020
oXylene	NG	<0.020	<0.020	<0.020	<0.020
Total Xylenes	26	<0.020	<0.020	<0.020	<0.020
Dichlorodifluoromethane	16	<0.050	<0.050	<0.050	<0.050
Hexane(n)	46	<0.050	<0.050	<0.050	<0.050
Trichlorofluoromethane	4	<0.050	<0.050	<0.050	<0.050
1,3Dichloropropene (cis + trans)	0.18	<0.050	<0.050	<0.050	<0.050

Notes:

All units are expressed in micrograms per gram ($\mu g/g$).

MECP Table 3

Ontario Ministry of the Environment, Conservation and Parks (MECP), "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act", July 2011. Table 3: Full Depth Generic Site Condition Standards in a NonPotable Ground Water Condition (Industrial/Commercial/Community Property Use). Coarse textured soils.

mbgs Metres below ground surface

Less than laboratory reportable dection limit (value indicated)

TABLE E-3: SOIL ANALYTICAL RESULTS - METALS

	Standards	Analytical Results (Sample ID / Depth / Sampling Date d/m/y)
Parameters	MECP Table 3	BHMW18-4 SS8 (4.3-4.9 mbgs) 10/03/2018
Antimony (Sb)	40	<0.20
Arsenic (As)	18	1.1
Barium (Ba)	670	62.0
Beryllium (Be)	8	0.26
Boron (B)	120	<5.0
Cadmium (Cd)	1.9	<0.10
Chromium (Cr)	160	18.0
Cobalt (Co)	80	6.2
Copper (Cu)	230	13.0
Lead (Pb)	120	3.7
Molybdenum (Mo)	40	<0.50
Nickel (Ni)	270	14.0
Selenium (Se)	5.5	<0.50
Silver (Ag)	40	<0.20
Thallium (TI)	3.3	0.079
Uranium (U)	33	0.55
Vanadium (V)	86	28.0
Zinc (Zn)	340	23.0

Notes:

All units are expressed in micrograms per gram (μg/g).

MECP Table 3 Ontario Ministry of the Environment, Conservation and Parks (MECP), "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act", July 2011. Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition (Industrial/Commercial/Community Property Use). Coarse textured soils.

mbgs Metres below ground surface

Less than laboratory reportable detection limit (value indicated)

TABLE E-4: SOIL ANALYTICAL RESULTS - INORGANICS

	Standards	Analytical Results (Sample ID / Depth / Sampling Date d/m/y)
Parameters	MECP Table 3	BHMW18-4 SS8 (4.3-4.9 mbgs) 10/03/2018
Total Ammonia-N	NG	<20
Moisture	NG	11
Nitrite (N)	NG	<0.5
Nitrate (N)	NG	<2
Nitrate + Nitrite (N)	NG	<3
Formaldehyde	NG	<1.0

Notes: All units are expressed in micrograms per gram ($\mu g/g$).

Ontario Ministry of the Environment, Conservation and Parks (MECP), "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental MECP Table 3 Protection Act", July 2011. Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition (Industrial/Community Property Use). Coarse textured soils.

mbgs Metres below ground surface

Less than laboratory reportable detection limit (value indicated)

TABLE E-5: GROUNDWATER ANALYTICAL RESULTS - PETROLEUM HYDROCARBONS (PHCs)

	Standards		al Results opling Date d/m/y)
Parameters	MECPTable 3	BHMW18-2 15/10/2018	BHMW18-3 15/10/2018
F1 (C6-C10)	750	<25	<25
F1 (C6-C10) - BTEX	750	<25	<25
F2 (C10-C16)	150	<100	<100
F3 (C16-C34)	500	<200	<200
F4 (C34-C50)	500	<200	<200
Reached Basline at C50	NG	Yes	Yes

Notes: All units are expressed in micrograms $\ \ per \ litre \ (\mu g/L).$

MECP Table 3 Ontario Ministry of the Environment, Conservation and Parks (MECP), "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Pro 2011. Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition (All Types of Property Use). Coarse textured soils.

mbgs Metres below ground surface

Less than laboratory reportable detection limit (value indicated)

TABLE F-6: GROUNDWATER ANALYTICAL RESULTS - VOLATILE ORGANIC COMPOUNDS (VOCs)

	Standards		al Results Sampling Date)
Parameters	MECP Table 3	BHMW18-2 15/10/2018	BHMW18-3 15/10/2018
Acetone (2-Propanone)	130,000	<10	<10
Benzene	44	<0.20	<0.20
Bromodichloromethane	85,000	<0.50	< 0.50
Bromoform	380	<1.0	<1.0
Bromomethane	5.6	<0.50	< 0.50
Carbon Tetrachloride	0.79	<0.20	<0.20
Chlorobenzene	630	<0.20	<0.20
Chloroform	2.4	1.3	<0.20
Dibromochloromethane	82,000	<0.50	< 0.50
1,2-Dichlorobenzene	4,600	<0.50	<0.50
1,3-Dichlorobenzene	9,600	<0.50	<0.50
1,4-Dichlorobenzene	8	<0.50	<0.50
Dichlorodifluoromethane (FREON 12)	4,400	<1.0	<1.0
1,1-Dichloroethane	320	<0.20	<0.20
1,2-Dichloroethane	1.6	<0.50	<0.50
1,1-Dichloroethylene	1.6	<0.20	<0.20
cis-1,2-Dichloroethylene	1.6	<0.50	<0.50
trans-1,2-Dichloroethylene	1.6	<0.50	<0.50
1,2-Dichloropropane	16	<0.20	<0.20
cis-1,3-Dichloropropene	NG	<0.30	<0.30
trans-1,3-Dichloropropene	NG	<0.40	<0.40
1,3-Dichloropropene (cis + trans)	5.2	<0.50	<0.50
Ethylbenzene	2,300	<0.20	<0.20
Ethylene Dibromide	0.25	<0.20	<0.20
Hexane	51	<1.0	<1.0
Methylene Chloride (Dichloromethane)	610	<2.0	<2.0
Methyl Isobutyl Ketone	140.000	<5.0	<5.0
Methyl Ethyl Ketone (2-Butanone)	470,000	<10	<10
Methyl t-butyl ether (MTBE)	190	<0.50	<0.50
Styrene	1,300	<0.50	<0.50
1,1,1,2-Tetrachloroethane	3.3	<0.50	<0.50
1,1,2,2-Tetrachloroethane	3.2	<0.50	<0.50
Tetrachloroethylene	1.6	<0.20	<0.20
Toluene	18,000	<0.20	<0.20
1.1.1-Trichloroethane	640	<0.20	<0.20
1.1.2-Trichloroethane	4.7	<0.50	<0.50
Trichloroethylene	1.6	<0.20	<0.20
Vinyl Chloride	0.5	<0.20	<0.20
o+m-Xylene	NG	<0.20	<0.20
o-Xylene	NG NG	<0.20	<0.20
Xylene (Total)	4,200	<0.20	<0.20
Trichlorofluoromethane (FREON 11)	2,500	<0.50	<0.50

Notes:

All units are expressed in micrograms $% \left(1\right) =\left(1\right) +\left(1$

MECP Table 3 Ontario Ministry of the Environment, Conservation and Parks (MECP), "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environment, Conservation Standards in a Non-Potable Ground Water Condition (All Types of Property Use). Coarse textured soils.

mbgs Metres below ground surface

Less than laboratory reportable detection limit (value indicated)

Phase Two Environmental Site Assessment 2584-2600 Bank Street, Ottawa, Ontario DST File No.: TS-SO-032782

APPENDIX F Laboratory Certificates of Analysis

Your Project #: TS-SO-032782 Your C.O.C. #: 117422

Attention: Andrew Naoum

DST Consulting Engineers Inc Ottawa - Standing Offer 2150 Thurston Dr Unit 203 Ottawa, ON CANADA K1G 5T9

Report Date: 2018/10/19

Report #: R5448313 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B8R1437 Received: 2018/10/15, 11:50

Sample Matrix: Water # Samples Received: 2

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
1,3-Dichloropropene Sum	2	N/A	2018/10/19	OTT SOP-00002	EPA 8260C m
Petroleum Hydrocarbons F2-F4 in Water (1)	2	2018/10/16	2018/10/17	OTT SOP-00001	CCME Hydrocarbons
Volatile Organic Compounds and F1 PHCs	2	N/A	2018/10/18	OTT SOP-00002	EPA 8260C m

Remarks:

Maxxam Analytics' laboratories are accredited to ISO/IEC 17025:2005 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Maxxam are based upon recognized Provincial, Federal or US method compendia such as CCME, MDDELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Maxxam's profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Maxxam in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Maxxam Analytics' liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Maxxam has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Maxxam, unless otherwise agreed in writing. Maxxam is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Maxxam, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

 $Reference\ Method\ suffix\ "m"\ indicates\ test\ methods\ incorporate\ validated\ modifications\ from\ specific\ reference\ methods\ to\ improve\ performance.$

- * RPDs calculated using raw data. The rounding of final results may result in the apparent difference.
- (1) All CCME PHC results met required criteria unless otherwise stated in the report. The CWS PHC methods employed by Maxxam conform to all prescribed elements of the reference method and performance based elements have been validated. All modifications have been validated and proven equivalent following "Alberta Environment's Interpretation of the Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil Validation of Performance-Based Alternative Methods September 2003". Documentation is available upon request. Modifications from Reference Method for the Canada-wide Standard for Petroleum Hydrocarbons in Soil-Tier 1 Method: F2/F3/F4 data reported using validated cold solvent extraction instead of Soxhlet extraction.

Your Project #: TS-SO-032782 Your C.O.C. #: 117422

Attention: Andrew Naoum

DST Consulting Engineers Inc Ottawa - Standing Offer 2150 Thurston Dr Unit 203 Ottawa, ON CANADA K1G 5T9

Report Date: 2018/10/19

Report #: R5448313 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B8R1437 Received: 2018/10/15, 11:50

Encryption Key

Alisha Williamson Project Manager 19 Oct 2018 16:14:28

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

Alisha Williamson, Project Manager Email: AWilliamson@maxxam.ca Phone# (613) 274-0573

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

DST Consulting Engineers Inc Client Project #: TS-SO-032782

Sampler Initials: KS

O.REG 153 VOCS BY HS & F1-F4 (WATER)

		I		I	1		I		1	
Maxxam ID		IAD412			IAD412			IAD413		
Sampling Date		2018/10/15			2018/10/15			2018/10/15		
		10:20			10:20			10:45		
COC Number		117422			117422			117422		
	UNITS	BHMW 18-2	BDI	QC Batch	BHMW 18-2	RDL	OC Patch	BHMW 18-3	BDI	QC Batch
	OIVITS	DUINIAN TO-S	NDL	QC Batch	Lab-Dup	NDL	QC Battii	DUININA TO-2	NDL	QC Batti
Calculated Parameters				<u> </u>						
1,3-Dichloropropene (cis+trans)	ug/L	<0.50	0.50	5783453				<0.50	0.50	5783453
Volatile Organics	J 0,	<u> </u>		<u> </u>	<u> </u>				I	
Acetone (2-Propanone)	ug/L	<10	10	5790672	<10	10	5790672	<10	10	5790672
Benzene	ug/L	<0.20	0.20	5790672	<0.20	0.20	5790672	<0.20	0.20	5790672
Bromodichloromethane	ug/L	<0.50	0.50	5790672	<0.50	0.50	5790672	<0.50	0.50	5790672
Bromoform	ug/L	<1.0	1.0	5790672	<1.0	1.0	5790672	<1.0	1.0	5790672
Bromomethane	ug/L	<0.50	0.50	5790672	<0.50	0.50	5790672	<0.50	0.50	5790672
Carbon Tetrachloride	ug/L	<0.20	0.20	5790672	<0.20	0.20	5790672	<0.20	0.20	5790672
Chlorobenzene	ug/L	<0.20	0.20	5790672	<0.20	0.20	5790672	<0.20	0.20	5790672
Chloroform	ug/L	1.3	0.20	5790672	1.3	0.20	5790672	<0.20	0.20	5790672
Dibromochloromethane	ug/L	<0.50	0.50	5790672	<0.50	0.50	5790672	<0.50	0.50	5790672
1,2-Dichlorobenzene	ug/L	<0.50	0.50	5790672	<0.50	0.50	5790672	<0.50	0.50	5790672
1,3-Dichlorobenzene	ug/L	<0.50	0.50	5790672	<0.50	0.50	5790672	<0.50	0.50	5790672
1,4-Dichlorobenzene	ug/L	<0.50	0.50	5790672	<0.50	0.50	5790672	<0.50	0.50	5790672
Dichlorodifluoromethane (FREON 12)	ug/L	<1.0	1.0	5790672	<1.0	1.0	5790672	<1.0	1.0	5790672
1,1-Dichloroethane	ug/L	<0.20	0.20	5790672	<0.20	0.20	5790672	<0.20	0.20	5790672
1,2-Dichloroethane	ug/L	<0.50	0.50	5790672	<0.50	0.50	5790672	<0.50	0.50	5790672
1,1-Dichloroethylene	ug/L	<0.20	0.20	5790672	<0.20	0.20	5790672	<0.20	0.20	5790672
cis-1,2-Dichloroethylene	ug/L	<0.50	0.50	5790672	<0.50	0.50	5790672	<0.50	0.50	5790672
trans-1,2-Dichloroethylene	ug/L	<0.50	0.50	5790672	<0.50	0.50	5790672	<0.50	0.50	5790672
1,2-Dichloropropane	ug/L	<0.20	0.20	5790672	<0.20	0.20	5790672	<0.20	0.20	5790672
cis-1,3-Dichloropropene	ug/L	<0.30	0.30	5790672	<0.30	0.30	5790672	<0.30	0.30	5790672
trans-1,3-Dichloropropene	ug/L	<0.40	0.40	5790672	<0.40	0.40	5790672	<0.40	0.40	5790672
Ethylbenzene	ug/L	<0.20	0.20	5790672	<0.20	0.20	5790672	<0.20	0.20	5790672
Ethylene Dibromide	ug/L	<0.20	0.20	5790672	<0.20	0.20	5790672	<0.20	0.20	5790672
Hexane	ug/L	<1.0	1.0	5790672	<1.0	1.0	5790672	<1.0	1.0	5790672
Methylene Chloride(Dichloromethane)	ug/L	<2.0	2.0	5790672	<2.0	2.0	5790672	<2.0	2.0	5790672
Methyl Ethyl Ketone (2-Butanone)	ug/L	<10	10	5790672	<10	10	5790672	<10	10	5790672
Methyl Isobutyl Ketone	ug/L	<5.0	5.0	5790672	<5.0	5.0	5790672	<5.0	5.0	5790672
Methyl t-butyl ether (MTBE)	ug/L	<0.50	0.50	5790672	<0.50	0.50	5790672	<0.50	0.50	5790672
Styrene	ug/L	<0.50	0.50	5790672	<0.50	0.50	5790672	<0.50	0.50	5790672
1,1,1,2-Tetrachloroethane	ug/L	<0.50	0.50	5790672	<0.50	0.50	5790672	<0.50	0.50	5790672

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

DST Consulting Engineers Inc Client Project #: TS-SO-032782

Sampler Initials: KS

O.REG 153 VOCS BY HS & F1-F4 (WATER)

Maxxam ID		IAD412			IAD412			IAD413		
IVIAXXAIII ID										<u> </u>
Sampling Date		2018/10/15 10:20			2018/10/15 10:20			2018/10/15 10:45		
COC Number		117422			117422			117422		
eoe Humber		117422			BHMW			11/422		
	UNITS	BHMW 18-2	RDL	QC Batch	18-2 Lab-Dup	RDL	QC Batch	BHMW 18-3	RDL	QC Batch
1,1,2,2-Tetrachloroethane	ug/L	<0.50	0.50	5790672	<0.50	0.50	5790672	<0.50	0.50	5790672
Tetrachloroethylene	ug/L	<0.20	0.20	5790672	<0.20	0.20	5790672	<0.20	0.20	5790672
Toluene	ug/L	<0.20	0.20	5790672	<0.20	0.20	5790672	<0.20	0.20	5790672
1,1,1-Trichloroethane	ug/L	<0.20	0.20	5790672	<0.20	0.20	5790672	<0.20	0.20	5790672
1,1,2-Trichloroethane	ug/L	<0.50	0.50	5790672	<0.50	0.50	5790672	<0.50	0.50	5790672
Trichloroethylene	ug/L	<0.20	0.20	5790672	<0.20	0.20	5790672	<0.20	0.20	5790672
Trichlorofluoromethane (FREON 11)	ug/L	<0.50	0.50	5790672	<0.50	0.50	5790672	<0.50	0.50	5790672
Vinyl Chloride	ug/L	<0.20	0.20	5790672	<0.20	0.20	5790672	<0.20	0.20	5790672
p+m-Xylene	ug/L	<0.20	0.20	5790672	<0.20	0.20	5790672	<0.20	0.20	5790672
o-Xylene	ug/L	<0.20	0.20	5790672	<0.20	0.20	5790672	<0.20	0.20	5790672
Total Xylenes	ug/L	<0.20	0.20	5790672	<0.20	0.20	5790672	<0.20	0.20	5790672
F1 (C6-C10)	ug/L	<25	25	5790672	<25	25	5790672	<25	25	5790672
F1 (C6-C10) - BTEX	ug/L	<25	25	5790672	<25	25	5790672	<25	25	5790672
F2-F4 Hydrocarbons										
F2 (C10-C16 Hydrocarbons)	ug/L	<100	100	5785556				<100	100	5785556
F3 (C16-C34 Hydrocarbons)	ug/L	<200	200	5785556				<200	200	5785556
F4 (C34-C50 Hydrocarbons)	ug/L	<200	200	5785556				<200	200	5785556
Reached Baseline at C50	ug/L	Yes		5785556				Yes		5785556
Surrogate Recovery (%)									-	
o-Terphenyl	%	114		5785556				113		5785556
4-Bromofluorobenzene	%	94		5790672	94		5790672	91		5790672
D4-1,2-Dichloroethane	%	102		5790672	104		5790672	96		5790672
D8-Toluene	%	99		5790672	97		5790672	101		5790672
DDI Damantalila Data atian Linda		-								

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Matrix: Water

Matrix: Water

Maxxam Job #: B8R1437 Report Date: 2018/10/19

DST Consulting Engineers Inc Client Project #: TS-SO-032782

Sampler Initials: KS

TEST SUMMARY

Maxxam ID: IAD412 **Collected:** 2018/10/15 Sample ID: BHMW 18-2

Shipped:

Matrix: Water **Received:** 2018/10/15

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
1,3-Dichloropropene Sum	CALC	5783453	N/A	2018/10/19	Automated Statchk
Petroleum Hydrocarbons F2-F4 in Water	GC/FID	5785556	2018/10/16	2018/10/17	Mariana Vascan
Volatile Organic Compounds and F1 PHCs	GC/MSFD	5790672	N/A	2018/10/18	Liliana Gaburici

Maxxam ID: IAD412 Dup **Collected:** 2018/10/15 Sample ID: BHMW 18-2

Shipped: Received: 2018/10/15

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Volatile Organic Compounds and F1 PHCs	GC/MSFD	5790672	N/A	2018/10/18	Liliana Gaburici

Collected: 2018/10/15 Maxxam ID: IAD413 Sample ID: BHMW 18-3

Shipped:

Received: 2018/10/15

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
1,3-Dichloropropene Sum	CALC	5783453	N/A	2018/10/19	Automated Statchk
Petroleum Hydrocarbons F2-F4 in Water	GC/FID	5785556	2018/10/16	2018/10/17	Mariana Vascan
Volatile Organic Compounds and F1 PHCs	GC/MSFD	5790672	N/A	2018/10/18	Liliana Gaburici

DST Consulting Engineers Inc Client Project #: TS-SO-032782

Sampler Initials: KS

GENERAL COMMENTS

Each te	emperature is the	average of up to t	hree cooler temperatures taken at receipt
	Package 1	10.0°C	
Result	s relate only to th	e items tested.	

QUALITY ASSURANCE REPORT

DST Consulting Engineers Inc Client Project #: TS-SO-032782 Sampler Initials: KS

			Matrix	Spike	SPIKED	BLANK	Method	Method Blank		D
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
5785556	o-Terphenyl	2018/10/16	112	30 - 130	114	30 - 130	112	%		
5790672	4-Bromofluorobenzene	2018/10/18	103	70 - 130	106	70 - 130	94	%		
5790672	D4-1,2-Dichloroethane	2018/10/18	99	70 - 130	107	70 - 130	111	%		
5790672	D8-Toluene	2018/10/18	107	70 - 130	102	70 - 130	95	%		
5785556	F2 (C10-C16 Hydrocarbons)	2018/10/17	99	50 - 130	102	80 - 120	<100	ug/L	NC	50
5785556	F3 (C16-C34 Hydrocarbons)	2018/10/17	99	50 - 130	102	80 - 120	<200	ug/L	NC	50
5785556	F4 (C34-C50 Hydrocarbons)	2018/10/17	99	50 - 130	102	80 - 120	<200	ug/L	NC	50
5790672	1,1,1,2-Tetrachloroethane	2018/10/18	97	70 - 130	101	70 - 130	<0.50	ug/L	NC	30
5790672	1,1,1-Trichloroethane	2018/10/18	88	70 - 130	91	70 - 130	<0.20	ug/L	NC	30
5790672	1,1,2,2-Tetrachloroethane	2018/10/18	94	70 - 130	106	70 - 130	<0.50	ug/L	NC	30
5790672	1,1,2-Trichloroethane	2018/10/18	93	70 - 130	100	70 - 130	<0.50	ug/L	NC	30
5790672	1,1-Dichloroethane	2018/10/18	84	70 - 130	90	70 - 130	<0.20	ug/L	NC	30
5790672	1,1-Dichloroethylene	2018/10/18	86	70 - 130	91	70 - 130	<0.20	ug/L	NC	30
5790672	1,2-Dichlorobenzene	2018/10/18	98	70 - 130	101	70 - 130	<0.50	ug/L	NC	30
5790672	1,2-Dichloroethane	2018/10/18	85	70 - 130	96	70 - 130	<0.50	ug/L	NC	30
5790672	1,2-Dichloropropane	2018/10/18	81	70 - 130	90	70 - 130	<0.20	ug/L	NC	30
5790672	1,3-Dichlorobenzene	2018/10/18	101	70 - 130	102	70 - 130	<0.50	ug/L	NC	30
5790672	1,4-Dichlorobenzene	2018/10/18	101	70 - 130	104	70 - 130	<0.50	ug/L	NC	30
5790672	Acetone (2-Propanone)	2018/10/18	77	60 - 140	84	60 - 140	<10	ug/L	NC	30
5790672	Benzene	2018/10/18	91	70 - 130	98	70 - 130	<0.20	ug/L	NC	30
5790672	Bromodichloromethane	2018/10/18	93	70 - 130	101	70 - 130	<0.50	ug/L	NC	30
5790672	Bromoform	2018/10/18	85	70 - 130	96	70 - 130	<1.0	ug/L	NC	30
5790672	Bromomethane	2018/10/18	74	60 - 140	83	60 - 140	<0.50	ug/L	NC	30
5790672	Carbon Tetrachloride	2018/10/18	90	70 - 130	93	70 - 130	<0.20	ug/L	NC	30
5790672	Chlorobenzene	2018/10/18	95	70 - 130	100	70 - 130	<0.20	ug/L	NC	30
5790672	Chloroform	2018/10/18	93	70 - 130	91	70 - 130	<0.20	ug/L	2.1	30
5790672	cis-1,2-Dichloroethylene	2018/10/18	88	70 - 130	96	70 - 130	<0.50	ug/L	NC	30
5790672	cis-1,3-Dichloropropene	2018/10/18	85	70 - 130	94	70 - 130	<0.30	ug/L	NC	30
5790672	Dibromochloromethane	2018/10/18	92	70 - 130	100	70 - 130	<0.50	ug/L	NC	30
5790672	Dichlorodifluoromethane (FREON 12)	2018/10/18	86	60 - 140	91	60 - 140	<1.0	ug/L	NC	30
5790672	Ethylbenzene	2018/10/18	98	70 - 130	99	70 - 130	<0.20	ug/L	NC	30

Page 7 of 9

QUALITY ASSURANCE REPORT(CONT'D)

DST Consulting Engineers Inc Client Project #: TS-SO-032782

Sampler Initials: KS

			Matrix Spike SPIKED BLANK Me		Method E	Blank	RPD			
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
5790672	Ethylene Dibromide	2018/10/18	87	70 - 130	98	70 - 130	<0.20	ug/L	NC	30
5790672	F1 (C6-C10) - BTEX	2018/10/18					<25	ug/L	NC	30
5790672	F1 (C6-C10)	2018/10/18	103	60 - 140	111	60 - 140	<25	ug/L	NC	30
5790672	Hexane	2018/10/18	95	70 - 130	95	70 - 130	<1.0	ug/L	NC	30
5790672	Methyl Ethyl Ketone (2-Butanone)	2018/10/18	77	60 - 140	91	60 - 140	<10	ug/L	NC	30
5790672	Methyl Isobutyl Ketone	2018/10/18	76	70 - 130	88	70 - 130	<5.0	ug/L	NC	30
5790672	Methyl t-butyl ether (MTBE)	2018/10/18	85	70 - 130	91	70 - 130	<0.50	ug/L	NC	30
5790672	Methylene Chloride(Dichloromethane)	2018/10/18	79	70 - 130	88	70 - 130	<2.0	ug/L	NC	30
5790672	o-Xylene	2018/10/18	96	70 - 130	100	70 - 130	<0.20	ug/L	NC	30
5790672	p+m-Xylene	2018/10/18	98	70 - 130	101	70 - 130	<0.20	ug/L	NC	30
5790672	Styrene	2018/10/18	98	70 - 130	105	70 - 130	<0.50	ug/L	NC	30
5790672	Tetrachloroethylene	2018/10/18	97	70 - 130	98	70 - 130	<0.20	ug/L	NC	30
5790672	Toluene	2018/10/18	95	70 - 130	102	70 - 130	<0.20	ug/L	NC	30
5790672	Total Xylenes	2018/10/18					<0.20	ug/L	NC	30
5790672	trans-1,2-Dichloroethylene	2018/10/18	82	70 - 130	88	70 - 130	<0.50	ug/L	NC	30
5790672	trans-1,3-Dichloropropene	2018/10/18	87	70 - 130	100	70 - 130	<0.40	ug/L	NC	30
5790672	Trichloroethylene	2018/10/18	93	70 - 130	96	70 - 130	<0.20	ug/L	NC	30
5790672	Trichlorofluoromethane (FREON 11)	2018/10/18	89	70 - 130	93	70 - 130	<0.50	ug/L	NC	30
5790672	Vinyl Chloride	2018/10/18	81	70 - 130	89	70 - 130	<0.20	ug/L	NC	30

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

DST Consulting Engineers Inc Client Project #: TS-SO-032782

Sampler Initials: KS

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Steve Roberts, Ottawa Lab Manager

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Your Project #: TS-SO-32782 Your C.O.C. #: 117417

Attention: Andrew Naoum

DST Consulting Engineers Inc Ottawa - Standing Offer 2150 Thurston Dr Unit 203 Ottawa, ON CANADA K1G 5T9

Report Date: 2018/10/22

Report #: R5451248 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B8Q2865 Received: 2018/10/04, 13:50

Sample Matrix: Soil # Samples Received: 1

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
1,3-Dichloropropene Sum (1)	1	N/A	2018/10/12		EPA 8260C m
Formaldehyde (HPLC) (1)	1	2018/10/06	2018/10/09	CAM SOP-00310	EPA 8315A m
Strong Acid Leachable Metals by ICPMS (1)	1	2018/10/09	2018/10/11	CAM SOP-00447	EPA 6020B m
Moisture (1)	1	N/A	2018/10/05	CAM SOP-00445	Carter 2nd ed 51.2 m
Ammonia-N (1)	1	2018/10/10	2018/10/11	CAM SOP-00441	Carter, SS&A
Nitrate (NO3) and Nitrite (NO2) in Soil (1)	1	N/A	2018/10/10	CAM SOP-00440	SM 23 4500-NO3I/NO2B
Volatile Organic Compounds in Soil (1)	1	N/A	2018/10/11	CAM SOP-00228	EPA 8260C m

Remarks:

Maxxam Analytics' laboratories are accredited to ISO/IEC 17025:2005 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Maxxam are based upon recognized Provincial, Federal or US method compendia such as CCME, MDDELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Maxxam's profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Maxxam in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Maxxam Analytics' liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Maxxam has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Maxxam, unless otherwise agreed in writing. Maxxam is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Maxxam, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

- * RPDs calculated using raw data. The rounding of final results may result in the apparent difference.
- (1) This test was performed by Maxxam Analytics Mississauga

Your Project #: TS-SO-32782 Your C.O.C. #: 117417

Attention: Andrew Naoum

DST Consulting Engineers Inc Ottawa - Standing Offer 2150 Thurston Dr Unit 203 Ottawa, ON CANADA K1G 5T9

Report Date: 2018/10/22

Report #: R5451248 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B8Q2865 Received: 2018/10/04, 13:50

Encryption Key

Alisha Williamson Project Manager 22 Oct 2018 14:34:58

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

Alisha Williamson, Project Manager Email: AWilliamson@maxxam.ca Phone# (613) 274-0573

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

DST Consulting Engineers Inc Client Project #: TS-SO-32782 Sampler Initials: KS

O.REG 153 ICPMS METALS (SOIL)

Maxxam ID		HYE252		
Sampling Date		2018/10/03		
Sumpling Dute		11:30		
COC Number		117417		
	UNITS	BH MW18-4 SS8	RDL	QC Batch
Metals				
Acid Extractable Antimony (Sb)	ug/g	<0.20	0.20	5773324
Acid Extractable Arsenic (As)	ug/g	1.1	1.0	5773324
Acid Extractable Barium (Ba)	ug/g	62	0.50	5773324
Acid Extractable Beryllium (Be)	ug/g	0.26	0.20	5773324
Acid Extractable Boron (B)	ug/g	<5.0	5.0	5773324
Acid Extractable Cadmium (Cd)	ug/g	<0.10	0.10	5773324
Acid Extractable Chromium (Cr)	ug/g	18	1.0	5773324
Acid Extractable Cobalt (Co)	ug/g	6.2	0.10	5773324
Acid Extractable Copper (Cu)	ug/g	13	0.50	5773324
Acid Extractable Lead (Pb)	ug/g	3.7	1.0	5773324
Acid Extractable Molybdenum (Mo)	ug/g	<0.50	0.50	5773324
Acid Extractable Nickel (Ni)	ug/g	14	0.50	5773324
Acid Extractable Selenium (Se)	ug/g	<0.50	0.50	5773324
Acid Extractable Silver (Ag)	ug/g	<0.20	0.20	5773324
Acid Extractable Thallium (Tl)	ug/g	0.079	0.050	5773324
Acid Extractable Uranium (U)	ug/g	0.55	0.050	5773324
Acid Extractable Vanadium (V)	ug/g	28	5.0	5773324
Acid Extractable Zinc (Zn)	ug/g	23	5.0	5773324
RDL = Reportable Detection Limit	-		•	
QC Batch = Quality Control Batch				

DST Consulting Engineers Inc Client Project #: TS-SO-32782 Sampler Initials: KS

O.REG 153 VOCS BY HS (SOIL)

Maxxam ID		HYE252		
Samulina Data		2018/10/03		
Sampling Date		11:30		
COC Number		117417		
	UNITS	BH MW18-4 SS8	RDL	QC Batch
Calculated Parameters				
1,3-Dichloropropene (cis+trans)	ug/g	<0.050	0.050	5770159
Volatile Organics				
Acetone (2-Propanone)	ug/g	<0.50	0.50	5772883
Benzene	ug/g	<0.020	0.020	5772883
Bromodichloromethane	ug/g	<0.050	0.050	5772883
Bromoform	ug/g	<0.050	0.050	5772883
Bromomethane	ug/g	<0.050	0.050	5772883
Carbon Tetrachloride	ug/g	<0.050	0.050	5772883
Chlorobenzene	ug/g	<0.050	0.050	5772883
Chloroform	ug/g	<0.050	0.050	5772883
Dibromochloromethane	ug/g	<0.050	0.050	5772883
1,2-Dichlorobenzene	ug/g	<0.050	0.050	5772883
1,3-Dichlorobenzene	ug/g	<0.050	0.050	5772883
1,4-Dichlorobenzene	ug/g	<0.050	0.050	5772883
Dichlorodifluoromethane (FREON 12)	ug/g	<0.050	0.050	5772883
1,1-Dichloroethane	ug/g	<0.050	0.050	5772883
1,2-Dichloroethane	ug/g	<0.050	0.050	5772883
1,1-Dichloroethylene	ug/g	<0.050	0.050	5772883
cis-1,2-Dichloroethylene	ug/g	<0.050	0.050	5772883
trans-1,2-Dichloroethylene	ug/g	<0.050	0.050	5772883
1,2-Dichloropropane	ug/g	<0.050	0.050	5772883
cis-1,3-Dichloropropene	ug/g	<0.030	0.030	5772883
trans-1,3-Dichloropropene	ug/g	<0.040	0.040	5772883
Ethylbenzene	ug/g	<0.020	0.020	5772883
Ethylene Dibromide	ug/g	<0.050	0.050	5772883
Hexane	ug/g	<0.050	0.050	5772883
Methylene Chloride(Dichloromethane)	ug/g	<0.050	0.050	5772883
Methyl Ethyl Ketone (2-Butanone)	ug/g	<0.50	0.50	5772883
Methyl Isobutyl Ketone	ug/g	<0.50	0.50	5772883
Methyl t-butyl ether (MTBE)	ug/g	<0.050	0.050	5772883
Styrene	ug/g	<0.050	0.050	5772883
1,1,1,2-Tetrachloroethane	ug/g	<0.050	0.050	5772883
1,1,2,2-Tetrachloroethane	ug/g	<0.050	0.050	5772883
Tetrachloroethylene	ug/g	<0.050	0.050	5772883
RDL = Reportable Detection Limit			1	
QC Batch = Quality Control Batch				

DST Consulting Engineers Inc Client Project #: TS-SO-32782 Sampler Initials: KS

O.REG 153 VOCS BY HS (SOIL)

Maxxam ID		HYE252		
Sampling Date		2018/10/03 11:30		
COC Number		117417		
	UNITS	BH MW18-4 SS8	RDL	QC Batch
Toluene	ug/g	<0.020	0.020	5772883
1,1,1-Trichloroethane	ug/g	<0.050	0.050	5772883
1,1,2-Trichloroethane	ug/g	<0.050	0.050	5772883
Trichloroethylene	ug/g	<0.050	0.050	5772883
Trichlorofluoromethane (FREON 11)	ug/g	<0.050	0.050	5772883
Vinyl Chloride	ug/g	<0.020	0.020	5772883
p+m-Xylene	ug/g	<0.020	0.020	5772883
o-Xylene	ug/g	<0.020	0.020	5772883
Total Xylenes	ug/g	<0.020	0.020	5772883
Surrogate Recovery (%)			•	•
4-Bromofluorobenzene	%	96		5772883
D10-o-Xylene	%	110		5772883
D4-1,2-Dichloroethane	%	98		5772883
D8-Toluene	%	98		5772883
RDL = Reportable Detection Limit QC Batch = Quality Control Batch				

DST Consulting Engineers Inc Client Project #: TS-SO-32782

Sampler Initials: KS

RESULTS OF ANALYSES OF SOIL

Maxxam ID		HYE252			HYE252					
Sampling Date		2018/10/03 11:30			2018/10/03 11:30					
COC Number		117417			117417					
	UNITS	BH MW18-4 SS8	RDL	QC Batch	BH MW18-4 SS8 Lab-Dup	RDL	QC Batch			
Inorganics										
Total Ammonia-N	ug/g	<20	20	5774685	<20	20	5774685			
Moisture	%	11	1.0	5770480						
Nitrite (N)	ug/g	<0.5	0.5	5773099						
Nitrate (N)	ug/g	<2	2	5773099						
Nitrate + Nitrite (N)	ug/g	<3	3	5773099						
Miscellaneous Parameter	Miscellaneous Parameters									
Formaldehyde	ug/g	<1.0	1.0	5771508	<1.0	1.0	5771508			
RDL = Reportable Detection	n Limit		•			•				

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

DST Consulting Engineers Inc Client Project #: TS-SO-32782

Sampler Initials: KS

TEST SUMMARY

Maxxam ID: HYE252

Collected: 2018/10/03

Sample ID: BH MW18-4 SS8 Matrix: Soil

Shipped:

Received: 2018/10/04

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
1,3-Dichloropropene Sum	CALC	5770159	N/A	2018/10/12	Automated Statchk
Formaldehyde (HPLC)	LC/DAD	5771508	2018/10/06	2018/10/09	Chanli Hu
Strong Acid Leachable Metals by ICPMS	ICP/MS	5773324	2018/10/09	2018/10/11	Daniel Teclu
Moisture	BAL	5770480	N/A	2018/10/05	Nilam Borole
Ammonia-N	LACH/NH4	5774685	2018/10/10	2018/10/11	Charles Opoku-Ware
Nitrate (NO3) and Nitrite (NO2) in Soil	LACH	5773099	N/A	2018/10/10	Chandra Nandlal
Volatile Organic Compounds in Soil	GC/MS	5772883	N/A	2018/10/11	Juan Pangilinan

Maxxam ID: HYE252 Dup BH MW18-4 SS8

Collected: 2018/10/03 **Shipped:**

Matrix: Soil

Received: 2018/10/04

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Formaldehyde (HPLC)	LC/DAD	5771508	2018/10/06	2018/10/09	Chanli Hu
Ammonia-N	LACH/NH4	5774685	2018/10/10	2018/10/11	Charles Opoku-Ware

DST Consulting Engineers Inc Client Project #: TS-SO-32782

Sampler Initials: KS

GENERAL COMMENTS

Each te	emperature is the	average of up to	three cooler temperatures taken at receipt
	Package 1	9.3°C	
Result	s relate only to th	e items tested.	

QUALITY ASSURANCE REPORT

DST Consulting Engineers Inc Client Project #: TS-SO-32782 Sampler Initials: KS

			Matrix Spike		SPIKED BLANK		Method Blank		RPD		QC Standard	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
5772883	4-Bromofluorobenzene	2018/10/11	100	60 - 140	100	60 - 140	99	%				
5772883	D10-o-Xylene	2018/10/11	129	60 - 130	103	60 - 130	98	%				
5772883	D4-1,2-Dichloroethane	2018/10/11	92	60 - 140	102	60 - 140	103	%				
5772883	D8-Toluene	2018/10/11	103	60 - 140	103	60 - 140	96	%				
5770480	Moisture	2018/10/05							2.2	20		
5771508	Formaldehyde	2018/10/09	88	40 - 130	95	40 - 130	<1.0	ug/g	NC	50		
5772883	1,1,1,2-Tetrachloroethane	2018/10/11	94	60 - 140	100	60 - 130	<0.050	ug/g	NC	50		
5772883	1,1,1-Trichloroethane	2018/10/11	95	60 - 140	97	60 - 130	<0.050	ug/g	NC	50		
5772883	1,1,2,2-Tetrachloroethane	2018/10/11	87	60 - 140	103	60 - 130	<0.050	ug/g	NC	50		
5772883	1,1,2-Trichloroethane	2018/10/11	90	60 - 140	101	60 - 130	<0.050	ug/g	NC	50		
5772883	1,1-Dichloroethane	2018/10/11	94	60 - 140	98	60 - 130	<0.050	ug/g	NC	50		
5772883	1,1-Dichloroethylene	2018/10/11	96	60 - 140	94	60 - 130	<0.050	ug/g	NC	50		
5772883	1,2-Dichlorobenzene	2018/10/11	95	60 - 140	96	60 - 130	<0.050	ug/g	NC	50		
5772883	1,2-Dichloroethane	2018/10/11	89	60 - 140	100	60 - 130	<0.050	ug/g	NC	50		
5772883	1,2-Dichloropropane	2018/10/11	91	60 - 140	98	60 - 130	<0.050	ug/g	NC	50		
5772883	1,3-Dichlorobenzene	2018/10/11	100	60 - 140	93	60 - 130	<0.050	ug/g	NC	50		
5772883	1,4-Dichlorobenzene	2018/10/11	100	60 - 140	93	60 - 130	<0.050	ug/g	NC	50		
5772883	Acetone (2-Propanone)	2018/10/11	80	60 - 140	98	60 - 140	<0.50	ug/g	NC	50		
5772883	Benzene	2018/10/11	92	60 - 140	94	60 - 130	<0.020	ug/g	NC	50		
5772883	Bromodichloromethane	2018/10/11	91	60 - 140	99	60 - 130	<0.050	ug/g	NC	50		
5772883	Bromoform	2018/10/11	86	60 - 140	101	60 - 130	<0.050	ug/g	NC	50		
5772883	Bromomethane	2018/10/11	94	60 - 140	97	60 - 140	<0.050	ug/g	NC	50		
5772883	Carbon Tetrachloride	2018/10/11	96	60 - 140	95	60 - 130	<0.050	ug/g	NC	50		
5772883	Chlorobenzene	2018/10/11	94	60 - 140	95	60 - 130	<0.050	ug/g	NC	50		
5772883	Chloroform	2018/10/11	92	60 - 140	97	60 - 130	<0.050	ug/g	NC	50		
5772883	cis-1,2-Dichloroethylene	2018/10/11	92	60 - 140	96	60 - 130	<0.050	ug/g	NC	50		
5772883	cis-1,3-Dichloropropene	2018/10/11	92	60 - 140	100	60 - 130	<0.030	ug/g	NC	50		
5772883	Dibromochloromethane	2018/10/11	90	60 - 140	101	60 - 130	<0.050	ug/g	NC	50		
5772883	Dichlorodifluoromethane (FREON 12)	2018/10/11	100	60 - 140	96	60 - 140	<0.050	ug/g	NC	50		
5772883	Ethylbenzene	2018/10/11	110	60 - 140	96	60 - 130	<0.020	ug/g	41	50		
5772883	Ethylene Dibromide	2018/10/11	89	60 - 140	101	60 - 130	<0.050	ug/g	NC	50		

Page 9 of 12

Maxxam Analytics International Corporation o/a Maxxam Analytics 32 Colonnade Rd, Unit #1000, Nepean, ON K2E 7J6 Phone: 613 274-0573 Fax: 613 274-0574 Website: www.maxxam.ca

QUALITY ASSURANCE REPORT(CONT'D)

DST Consulting Engineers Inc Client Project #: TS-SO-32782 Sampler Initials: KS

			Matrix Spike		SPIKED BLANK		Method Blank		RPD		QC Standard	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
5772883	Hexane	2018/10/11	102	60 - 140	99	60 - 130	<0.050	ug/g	21	50		
5772883	Methyl Ethyl Ketone (2-Butanone)	2018/10/11	83	60 - 140	104	60 - 140	<0.50	ug/g	NC	50		
5772883	Methyl Isobutyl Ketone	2018/10/11	85	60 - 140	106	60 - 130	<0.50	ug/g	NC	50		
5772883	Methyl t-butyl ether (MTBE)	2018/10/11	90	60 - 140	98	60 - 130	<0.050	ug/g	NC	50		
5772883	Methylene Chloride(Dichloromethane)	2018/10/11	87	60 - 140	93	60 - 130	<0.050	ug/g	NC	50		
5772883	o-Xylene	2018/10/11	102	60 - 140	97	60 - 130	<0.020	ug/g	35	50		
5772883	p+m-Xylene	2018/10/11	125	60 - 140	95	60 - 130	<0.020	ug/g	39	50		
5772883	Styrene	2018/10/11	99	60 - 140	100	60 - 130	<0.050	ug/g	NC	50		
5772883	Tetrachloroethylene	2018/10/11	99	60 - 140	93	60 - 130	<0.050	ug/g	NC	50		
5772883	Toluene	2018/10/11	99	60 - 140	95	60 - 130	<0.020	ug/g	43	50		
5772883	Total Xylenes	2018/10/11					<0.020	ug/g	38	50		
5772883	trans-1,2-Dichloroethylene	2018/10/11	95	60 - 140	91	60 - 130	<0.050	ug/g	NC	50		
5772883	trans-1,3-Dichloropropene	2018/10/11	96	60 - 140	105	60 - 130	<0.040	ug/g	NC	50		
5772883	Trichloroethylene	2018/10/11	96	60 - 140	94	60 - 130	<0.050	ug/g	NC	50		
5772883	Trichlorofluoromethane (FREON 11)	2018/10/11	96	60 - 140	95	60 - 130	<0.050	ug/g	NC	50		
5772883	Vinyl Chloride	2018/10/11	94	60 - 140	92	60 - 130	<0.020	ug/g	NC	50		
5773099	Nitrate (N)	2018/10/10	101	75 - 125			<2	ug/g	NC	25		
5773099	Nitrate + Nitrite (N)	2018/10/10	102	75 - 125			<3	ug/g	NC	25	90	75 - 125
5773099	Nitrite (N)	2018/10/10	109	75 - 125			<0.5	ug/g	NC	25		
5773324	Acid Extractable Antimony (Sb)	2018/10/11	93	75 - 125	102	80 - 120	<0.20	ug/g	NC	30		
5773324	Acid Extractable Arsenic (As)	2018/10/11	97	75 - 125	104	80 - 120	<1.0	ug/g	NC	30		
5773324	Acid Extractable Barium (Ba)	2018/10/11	NC	75 - 125	106	80 - 120	<0.50	ug/g	4.8	30		
5773324	Acid Extractable Beryllium (Be)	2018/10/11	100	75 - 125	102	80 - 120	<0.20	ug/g	1.4	30		
5773324	Acid Extractable Boron (B)	2018/10/11	99	75 - 125	101	80 - 120	<5.0	ug/g	NC	30		
5773324	Acid Extractable Cadmium (Cd)	2018/10/11	95	75 - 125	97	80 - 120	<0.10	ug/g	NC	30		
5773324	Acid Extractable Chromium (Cr)	2018/10/11	85	75 - 125	102	80 - 120	<1.0	ug/g	5.3	30		
5773324	Acid Extractable Cobalt (Co)	2018/10/11	95	75 - 125	102	80 - 120	<0.10	ug/g	2.4	30		
5773324	Acid Extractable Copper (Cu)	2018/10/11	91	75 - 125	102	80 - 120	<0.50	ug/g	4.6	30		
5773324	Acid Extractable Lead (Pb)	2018/10/11	103	75 - 125	104	80 - 120	<1.0	ug/g	21	30		
5773324	Acid Extractable Molybdenum (Mo)	2018/10/11	97	75 - 125	104	80 - 120	<0.50	ug/g	NC	30		
5773324	Acid Extractable Nickel (Ni)	2018/10/11	95	75 - 125	106	80 - 120	<0.50	ug/g	3.7	30		

Page 10 of 12

QUALITY ASSURANCE REPORT(CONT'D)

DST Consulting Engineers Inc Client Project #: TS-SO-32782

Sampler Initials: KS

			Matrix Spike		SPIKED BLANK		Method Blank		RPD		QC Standard	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
5773324	Acid Extractable Selenium (Se)	2018/10/11	101	75 - 125	105	80 - 120	<0.50	ug/g	2.1	30		
5773324	Acid Extractable Silver (Ag)	2018/10/11	95	75 - 125	102	80 - 120	<0.20	ug/g	NC	30		
5773324	Acid Extractable Thallium (Tl)	2018/10/11	97	75 - 125	104	80 - 120	<0.050	ug/g	9.9	30		
5773324	Acid Extractable Uranium (U)	2018/10/11	96	75 - 125	101	80 - 120	<0.050	ug/g	4.9	30		
5773324	Acid Extractable Vanadium (V)	2018/10/11	NC	75 - 125	101	80 - 120	<5.0	ug/g	3.6	30		
5773324	Acid Extractable Zinc (Zn)	2018/10/11	NC	75 - 125	103	80 - 120	<5.0	ug/g	3.4	30		
5774685	Total Ammonia-N	2018/10/11	105	80 - 120	97	80 - 120	<20	ug/g	NC	35		

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

DST Consulting Engineers Inc Client Project #: TS-SO-32782

Sampler Initials: KS

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Your Project #: TS-SO-032782 Site Location: 2600 BANK ST

Your C.O.C. #: 117423

Attention: Andrew Naoum

DST Consulting Engineers Inc Ottawa - Standing Offer 2150 Thurston Dr Unit 203 Ottawa, ON CANADA K1G 5T9

Report Date: 2018/10/19

Report #: R5448251 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B8Q9845 Received: 2018/10/12, 13:35

Sample Matrix: Soil # Samples Received: 3

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
1,3-Dichloropropene Sum	3	N/A	2018/10/19	OTT SOP-00002	EPA 8260C m
Petroleum Hydrocarbons F2-F4 in Soil (1)	3	2018/10/15	2018/10/15	OTT SOP-00001	CCME CWS
F4G (CCME Hydrocarbons Gravimetric)	1	2018/10/16	2018/10/18	OTT SOP-00001	CCME CWS
Moisture	3	N/A	2018/10/16	CAM SOP-00445	McKeague 2nd ed 1978
Volatile Organic Compounds and F1 PHCs	3	N/A	2018/10/18	OTT SOP-00002	EPA 8260C m

Remarks:

Maxxam Analytics' laboratories are accredited to ISO/IEC 17025:2005 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Maxxam are based upon recognized Provincial, Federal or US method compendia such as CCME, MDDELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Maxxam's profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Maxxam in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Maxxam Analytics' liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Maxxam has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Maxxam, unless otherwise agreed in writing. Maxxam is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Maxxam, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

- * RPDs calculated using raw data. The rounding of final results may result in the apparent difference.
- (1) All CCME PHC results met required criteria unless otherwise stated in the report. The CWS PHC methods employed by Maxxam conform to all prescribed elements of the reference method and performance based elements have been validated. All modifications have been validated and proven equivalent following "Alberta Environment's Interpretation of the Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil Validation of Performance-Based Alternative Methods September 2003". Documentation is available upon request. Modifications from Reference Method for the Canada-wide Standard for Petroleum Hydrocarbons in Soil-Tier 1 Method: F2/F3/F4 data reported using validated cold solvent extraction instead of Soxhlet extraction.

Your Project #: TS-SO-032782 Site Location: 2600 BANK ST

Your C.O.C. #: 117423

Attention: Andrew Naoum

DST Consulting Engineers Inc Ottawa - Standing Offer 2150 Thurston Dr Unit 203 Ottawa, ON CANADA K1G 5T9

Report Date: 2018/10/19

Report #: R5448251 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B8Q9845 Received: 2018/10/12, 13:35

Encryption Key

Alisha Williamson Project Manager 19 Oct 2018 15:28:34

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

Alisha Williamson, Project Manager Email: AWilliamson@maxxam.ca Phone# (613) 274-0573

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

DST Consulting Engineers Inc Client Project #: TS-SO-032782 Site Location: 2600 BANK ST

Sampler Initials: KS

O.REG 153 VOCS BY HS & F1-F4 (SOIL)

						I
Maxxam ID		HZT928	HZT929	HZT930		
Sampling Date		2018/10/11	2018/10/11	2018/10/12		
COC Number		117423	117423	117423		
	UNITS	BH18-1 SS3	BH MW18-2 SS6	BH MW18-3 SS14	RDL	QC Batch
Inorganics					•	
Moisture	%	7.8	6.2	26	0.2	5783202
Calculated Parameters						
1,3-Dichloropropene (cis+trans)	ug/g	<0.050	<0.050	<0.050	0.050	5780799
Volatile Organics						
Acetone (2-Propanone)	ug/g	<0.50	<0.50	<0.50	0.50	5790667
Benzene	ug/g	<0.020	<0.020	<0.020	0.020	5790667
Bromodichloromethane	ug/g	<0.050	<0.050	<0.050	0.050	5790667
Bromoform	ug/g	<0.050	<0.050	<0.050	0.050	5790667
Bromomethane	ug/g	<0.050	<0.050	<0.050	0.050	5790667
Carbon Tetrachloride	ug/g	<0.050	<0.050	<0.050	0.050	5790667
Chlorobenzene	ug/g	<0.050	<0.050	<0.050	0.050	5790667
Chloroform	ug/g	<0.050	<0.050	<0.050	0.050	5790667
Dibromochloromethane	ug/g	<0.050	<0.050	<0.050	0.050	5790667
1,2-Dichlorobenzene	ug/g	<0.050	<0.050	<0.050	0.050	5790667
1,3-Dichlorobenzene	ug/g	<0.050	<0.050	<0.050	0.050	5790667
1,4-Dichlorobenzene	ug/g	<0.050	<0.050	<0.050	0.050	5790667
Dichlorodifluoromethane (FREON 12)	ug/g	<0.050	<0.050	<0.050	0.050	5790667
1,1-Dichloroethane	ug/g	<0.050	<0.050	<0.050	0.050	5790667
1,2-Dichloroethane	ug/g	<0.050	<0.050	<0.050	0.050	5790667
1,1-Dichloroethylene	ug/g	<0.050	<0.050	<0.050	0.050	5790667
cis-1,2-Dichloroethylene	ug/g	<0.050	<0.050	<0.050	0.050	5790667
trans-1,2-Dichloroethylene	ug/g	<0.050	<0.050	<0.050	0.050	5790667
1,2-Dichloropropane	ug/g	<0.050	<0.050	<0.050	0.050	5790667
cis-1,3-Dichloropropene	ug/g	<0.030	<0.030	<0.030	0.030	5790667
trans-1,3-Dichloropropene	ug/g	<0.040	<0.040	<0.040	0.040	5790667
Ethylbenzene	ug/g	<0.020	<0.020	<0.020	0.020	5790667
Ethylene Dibromide	ug/g	<0.050	<0.050	<0.050	0.050	5790667
Hexane	ug/g	<0.050	<0.050	<0.050	0.050	5790667
Methylene Chloride(Dichloromethane)	ug/g	<0.050	<0.050	<0.050	0.050	5790667
Methyl Ethyl Ketone (2-Butanone)	ug/g	<0.50	<0.50	<0.50	0.50	5790667
Methyl Isobutyl Ketone	ug/g	<0.50	<0.50	<0.50	0.50	5790667
Methyl t-butyl ether (MTBE)	ug/g	<0.050	<0.050	<0.050	0.050	5790667
Styrene	ug/g	<0.050	<0.050	<0.050	0.050	5790667
RDL = Reportable Detection Limit QC Batch = Quality Control Batch						

DST Consulting Engineers Inc Client Project #: TS-SO-032782 Site Location: 2600 BANK ST

Sampler Initials: KS

O.REG 153 VOCS BY HS & F1-F4 (SOIL)

Maxxam ID		HZT928	HZT929	HZT930		
Sampling Date		2018/10/11	2018/10/11	2018/10/12		
COC Number		117423	117423	117423		
	UNITS		BH MW18-2 SS6	BH MW18-3 SS14	RDL	QC Batch
1,1,1,2-Tetrachloroethane	ug/g	<0.050	<0.050	<0.050	0.050	5790667
1,1,2,2-Tetrachloroethane	ug/g	<0.050	<0.050	<0.050	0.050	5790667
Tetrachloroethylene	ug/g	<0.050	<0.050	<0.050	0.050	5790667
Toluene	ug/g	<0.020	<0.020	<0.020	0.020	5790667
1,1,1-Trichloroethane	ug/g	<0.050	<0.050	<0.050	0.050	5790667
1,1,2-Trichloroethane	ug/g	<0.050	<0.050	<0.050	0.050	5790667
Trichloroethylene	ug/g	<0.050	<0.050	<0.050	0.050	5790667
Trichlorofluoromethane (FREON 11)	ug/g	<0.050	<0.050	<0.050	0.050	5790667
Vinyl Chloride	ug/g	<0.020	<0.020	<0.020	0.020	5790667
p+m-Xylene	ug/g	<0.020	<0.020	<0.020	0.020	5790667
o-Xylene	ug/g	<0.020	<0.020	<0.020	0.020	5790667
Total Xylenes	ug/g	<0.020	<0.020	<0.020	0.020	5790667
F1 (C6-C10)	ug/g	<10	<10	<10	10	5790667
F1 (C6-C10) - BTEX	ug/g	<10	<10	<10	10	5790667
F2-F4 Hydrocarbons	4	!				Į.
F2 (C10-C16 Hydrocarbons)	ug/g	<10	<10	<10	10	5783196
F3 (C16-C34 Hydrocarbons)	ug/g	68	<50	<50	50	5783196
F4 (C34-C50 Hydrocarbons)	ug/g	180	<50	<50	50	5783196
Reached Baseline at C50	ug/g	No	Yes	Yes		5783196
Surrogate Recovery (%)						<u>I</u>
o-Terphenyl	%	91	94	98		5783196
4-Bromofluorobenzene	%	94	94	95		5790667
D10-o-Xylene	%	117	88	95		5790667
D4-1,2-Dichloroethane	%	104	97	102		5790667
D8-Toluene	%	96	101	99		5790667
RDL = Reportable Detection Limit OC Batch = Quality Control Batch	,	'			•	1

QC Batch = Quality Control Batch

DST Consulting Engineers Inc Client Project #: TS-SO-032782 Site Location: 2600 BANK ST

Sampler Initials: KS

PETROLEUM HYDROCARBONS (CCME)

	l			
Maxxam ID		HZT928		
Sampling Date		2018/10/11		
COC Number		117423		
	UNITS	BH18-1 SS3	RDL	QC Batch
F2-F4 Hydrocarbons				
F2-F4 Hydrocarbons F4G-sg (Grav. Heavy Hydrocarbons)	ug/g	900	100	5785876
•	ug/g	900	100	5785876

DST Consulting Engineers Inc Client Project #: TS-SO-032782 Site Location: 2600 BANK ST

Sampler Initials: KS

TEST SUMMARY

Maxxam ID: HZT928 Sample ID: BH18-1 SS3

Matrix: Soil

Collected: 2018/10/11

Shipped:

Received: 2018/10/12

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
1,3-Dichloropropene Sum	CALC	5780799	N/A	2018/10/19	Automated Statchk
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	5783196	2018/10/15	2018/10/15	Mariana Vascan
F4G (CCME Hydrocarbons Gravimetric)	BAL	5785876	2018/10/16	2018/10/18	Mariana Vascan
Moisture	BAL	5783202	N/A	2018/10/16	Samantha Arachchige
Volatile Organic Compounds and F1 PHCs	GC/MSFD	5790667	N/A	2018/10/18	Liliana Gaburici

Maxxam ID: HZT929

Collected: 2018/10/11

Shipped:

Sample ID: BH MW18-2 SS6

Matrix: Soil **Received:** 2018/10/12

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
1,3-Dichloropropene Sum	CALC	5780799	N/A	2018/10/19	Automated Statchk
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	5783196	2018/10/15	2018/10/15	Mariana Vascan
Moisture	BAL	5783202	N/A	2018/10/16	Samantha Arachchige
Volatile Organic Compounds and F1 PHCs	GC/MSFD	5790667	N/A	2018/10/18	Liliana Gaburici

Maxxam ID: HZT930 Matrix: Soil

Collected: 2018/10/12 Sample ID: BH MW18-3 SS14

Shipped:

Received: 2018/10/12

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
1,3-Dichloropropene Sum	CALC	5780799	N/A	2018/10/19	Automated Statchk
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	5783196	2018/10/15	2018/10/15	Mariana Vascan
Moisture	BAL	5783202	N/A	2018/10/16	Samantha Arachchige
Volatile Organic Compounds and F1 PHCs	GC/MSFD	5790667	N/A	2018/10/18	Liliana Gaburici

DST Consulting Engineers Inc Client Project #: TS-SO-032782 Site Location: 2600 BANK ST

Sampler Initials: KS

GENERAL COMMENTS

Each te	emperature is the	average of up to t	hree cooler temperatures taken at receipt
	Package 1	6.7°C	
Result	s relate only to the	e items tested.	

QUALITY ASSURANCE REPORT

DST Consulting Engineers Inc Client Project #: TS-SO-032782 Site Location: 2600 BANK ST Sampler Initials: KS

			Matrix	Spike	SPIKED	BLANK	Method I	Blank	RPI)
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
5783196	o-Terphenyl	2018/10/15	92	30 - 130	91	30 - 130	102	%		
5790667	4-Bromofluorobenzene	2018/10/18			102	60 - 140	95	%		
5790667	D10-o-Xylene	2018/10/18			83	60 - 130	77	%		
5790667	D4-1,2-Dichloroethane	2018/10/18			119	60 - 140	108	%		
5790667	D8-Toluene	2018/10/18			103	60 - 140	98	%		
5783196	F2 (C10-C16 Hydrocarbons)	2018/10/15	83	50 - 130	80	80 - 120	<10	ug/g	NC	50
5783196	F3 (C16-C34 Hydrocarbons)	2018/10/15	83	50 - 130	80	80 - 120	<50	ug/g	NC	50
5783196	F4 (C34-C50 Hydrocarbons)	2018/10/15	83	50 - 130	80	80 - 120	<50	ug/g	NC	50
5783202	Moisture	2018/10/16							5.7	50
5785876	F4G-sg (Grav. Heavy Hydrocarbons)	2018/10/18			107	65 - 135	<100	ug/g	0	50
5790667	1,1,1,2-Tetrachloroethane	2018/10/18			91	60 - 130	<0.050	ug/g	3.4	50
5790667	1,1,1-Trichloroethane	2018/10/18			88	60 - 130	<0.050	ug/g	5.1	50
5790667	1,1,2,2-Tetrachloroethane	2018/10/18			99	60 - 130	<0.050	ug/g	3.0	50
5790667	1,1,2-Trichloroethane	2018/10/18			92	60 - 130	<0.050	ug/g	2.2	50
5790667	1,1-Dichloroethane	2018/10/18			87	60 - 130	<0.050	ug/g	5.6	50
5790667	1,1-Dichloroethylene	2018/10/18			84	60 - 130	<0.050	ug/g	2.5	50
5790667	1,2-Dichlorobenzene	2018/10/18			90	60 - 130	<0.050	ug/g	5.1	50
5790667	1,2-Dichloroethane	2018/10/18			94	60 - 130	<0.050	ug/g	6.0	50
5790667	1,2-Dichloropropane	2018/10/18			87	60 - 130	<0.050	ug/g	4.9	50
5790667	1,3-Dichlorobenzene	2018/10/18			89	60 - 130	<0.050	ug/g	5.0	50
5790667	1,4-Dichlorobenzene	2018/10/18			90	60 - 130	<0.050	ug/g	4.9	50
5790667	Acetone (2-Propanone)	2018/10/18			91	60 - 140	<0.50	ug/g	7.6	50
5790667	Benzene	2018/10/18			93	60 - 130	<0.020	ug/g	5.3	50
5790667	Bromodichloromethane	2018/10/18			99	60 - 130	<0.050	ug/g	6.2	50
5790667	Bromoform	2018/10/18			88	60 - 130	<0.050	ug/g	3.6	50
5790667	Bromomethane	2018/10/18			77	60 - 140	<0.050	ug/g	6.9	50
5790667	Carbon Tetrachloride	2018/10/18			89	60 - 130	<0.050	ug/g	5.4	50
5790667	Chlorobenzene	2018/10/18			86	60 - 130	<0.050	ug/g	6.2	50
5790667	Chloroform	2018/10/18			96	60 - 130	<0.050	ug/g	5.4	50
5790667	cis-1,2-Dichloroethylene	2018/10/18			91	60 - 130	<0.050	ug/g	5.5	50
5790667	cis-1,3-Dichloropropene	2018/10/18			88	60 - 130	<0.030	ug/g	4.9	50

QUALITY ASSURANCE REPORT(CONT'D)

DST Consulting Engineers Inc Client Project #: TS-SO-032782 Site Location: 2600 BANK ST

Sampler Initials: KS

			Matrix	Matrix Spike		SPIKED BLANK		Method Blank		RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	
5790667	Dibromochloromethane	2018/10/18			90	60 - 130	<0.050	ug/g	2.9	50	
5790667	Dichlorodifluoromethane (FREON 12)	2018/10/18			87	60 - 140	<0.050	ug/g	5.2	50	
5790667	Ethylbenzene	2018/10/18			85	60 - 130	<0.020	ug/g	6.1	50	
5790667	Ethylene Dibromide	2018/10/18			90	60 - 130	<0.050	ug/g	3.2	50	
5790667	F1 (C6-C10) - BTEX	2018/10/18					<10	ug/g			
5790667	F1 (C6-C10)	2018/10/18			102	80 - 120	<10	ug/g	2.8	30	
5790667	Hexane	2018/10/18			94	60 - 130	<0.050	ug/g	5.3	50	
5790667	Methyl Ethyl Ketone (2-Butanone)	2018/10/18			97	60 - 140	<0.50	ug/g	7.2	50	
5790667	Methyl Isobutyl Ketone	2018/10/18			91	60 - 130	<0.50	ug/g	6.7	50	
5790667	Methyl t-butyl ether (MTBE)	2018/10/18			92	60 - 130	<0.050	ug/g	5.9	50	
5790667	Methylene Chloride(Dichloromethane)	2018/10/18			86	60 - 130	<0.050	ug/g	6.7	50	
5790667	o-Xylene	2018/10/18			86	60 - 130	<0.020	ug/g	7.6	50	
5790667	p+m-Xylene	2018/10/18			85	60 - 130	<0.020	ug/g	7.7	50	
5790667	Styrene	2018/10/18			91	60 - 130	<0.050	ug/g	5.9	50	
5790667	Tetrachloroethylene	2018/10/18			83	60 - 130	<0.050	ug/g	6.5	50	
5790667	Toluene	2018/10/18			86	60 - 130	<0.020	ug/g	4.6	50	
5790667	Total Xylenes	2018/10/18					<0.020	ug/g			
5790667	trans-1,2-Dichloroethylene	2018/10/18			83	60 - 130	<0.050	ug/g	5.3	50	
5790667	trans-1,3-Dichloropropene	2018/10/18			94	60 - 130	<0.040	ug/g	6.7	50	
5790667	Trichloroethylene	2018/10/18			89	60 - 130	<0.050	ug/g	3.0	50	
5790667	Trichlorofluoromethane (FREON 11)	2018/10/18			88	60 - 130	<0.050	ug/g	6.0	50	
5790667	Vinyl Chloride	2018/10/18			82	60 - 130	<0.020	ug/g	4.0	50	

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

DST Consulting Engineers Inc Client Project #: TS-SO-032782 Site Location: 2600 BANK ST

Sampler Initials: KS

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Steve Roberts, Ottawa Lab Manager

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Your Project #: TS-SO-032782 Your C.O.C. #: 673829-02-01

Attention: Andrew Naoum

DST Consulting Engineers Inc Ottawa - Standing Offer 2150 Thurston Dr Unit 203 Ottawa, ON CANADA K1G 5T9

Report Date: 2018/10/26

Report #: R5458478 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B8S0132 Received: 2018/10/23, 09:30

Sample Matrix: Soil # Samples Received: 1

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
Petroleum Hydrocarbons F2-F4 in Soil (1)	1	2018/10/24	2018/10/25	OTT SOP-00001	CCME CWS
F4G (CCME Hydrocarbons Gravimetric)	1	2018/10/25	2018/10/26	OTT SOP-00001	CCME CWS
Moisture	1	N/A	2018/10/25	CAM SOP-00445	McKeague 2nd ed 1978

Remarks:

Maxxam Analytics' laboratories are accredited to ISO/IEC 17025:2005 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Maxxam are based upon recognized Provincial, Federal or US method compendia such as CCME, MDDELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Maxxam's profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Maxxam in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Maxxam Analytics' liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Maxxam has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Maxxam, unless otherwise agreed in writing. Maxxam is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Maxxam, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

 $Reference\ Method\ suffix\ "m"\ indicates\ test\ methods\ incorporate\ validated\ modifications\ from\ specific\ reference\ methods\ to\ improve\ performance.$

- * RPDs calculated using raw data. The rounding of final results may result in the apparent difference.
- (1) All CCME PHC results met required criteria unless otherwise stated in the report. The CWS PHC methods employed by Maxxam conform to all prescribed elements of the reference method and performance based elements have been validated. All modifications have been validated and proven equivalent following "Alberta Environment's Interpretation of the Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil Validation of Performance-Based Alternative Methods September 2003". Documentation is available upon request. Modifications from Reference Method for the Canada-wide Standard for Petroleum Hydrocarbons in Soil-Tier 1 Method: F2/F3/F4 data reported using validated cold solvent extraction instead of Soxhlet extraction.

Your Project #: TS-SO-032782 Your C.O.C. #: 673829-02-01

Attention: Andrew Naoum

DST Consulting Engineers Inc Ottawa - Standing Offer 2150 Thurston Dr Unit 203 Ottawa, ON CANADA K1G 5T9

Report Date: 2018/10/26

Report #: R5458478 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B8S0132 Received: 2018/10/23, 09:30

Encryption Key

Alisha Williamson Project Manager 26 Oct 2018 16:41:10

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

Alisha Williamson, Project Manager Email: AWilliamson@maxxam.ca Phone# (613) 274-0573

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

DST Consulting Engineers Inc Client Project #: TS-SO-032782

Sampler Initials: KS

RESULTS OF ANALYSES OF SOIL

Maxxam ID		ICA435	ICA435		
Sampling Date		2018/10/11	2018/10/11		
COC Number		673829-02-01	673829-02-01		
	UNITS	BH18-1 SS4	BH18-1 SS4	RDL	QC Batch
	CIVITS	DI110-1 334	Lab-Dup	NDL	QC Batch
Inorganics	ONTS	B1110-1 334	Lab-Dup	NDL	QC Daten
Inorganics Moisture	%	7.4	Lab-Dup 8.0	0.2	5800508

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

DST Consulting Engineers Inc Client Project #: TS-SO-032782

Sampler Initials: KS

PETROLEUM HYDROCARBONS (CCME)

Maxxam ID		ICA435		
Sampling Date		2018/10/11		
COC Number		673829-02-01		
	UNITS	BH18-1 SS4	RDL	QC Batch
F2-F4 Hydrocarbons				
F4G-sg (Grav. Heavy Hydrocarbons)	ug/g	610	100	5803405
F2 (C10-C16 Hydrocarbons)	ug/g	<10	10	5800488
F3 (C16-C34 Hydrocarbons)	ug/g	64	50	5800488
F4 (C34-C50 Hydrocarbons)	ug/g	190	50	5800488
Reached Baseline at C50	ug/g	No		5800488
Surrogate Recovery (%)				
o-Terphenyl	%	87		5800488
RDL = Reportable Detection Limit				
QC Batch = Quality Control Batch				

Matrix: Soil

Maxxam Job #: B8S0132 Report Date: 2018/10/26 **DST Consulting Engineers Inc** Client Project #: TS-SO-032782

Sampler Initials: KS

TEST SUMMARY

Maxxam ID: ICA435 **Collected:** 2018/10/11 Sample ID: BH18-1 SS4

Shipped:

Received: 2018/10/23

Test Description Batch Extracted **Date Analyzed** Instrumentation **Analyst** Petroleum Hydrocarbons F2-F4 in Soil GC/FID 5800488 2018/10/24 2018/10/25 Mariana Vascan F4G (CCME Hydrocarbons Gravimetric) BAL 5803405 2018/10/25 2018/10/26 Mariana Vascan 5800508 2018/10/25 Moisture BAL N/A Samantha Arachchige

Maxxam ID: ICA435 Dup **Collected:** 2018/10/11 Sample ID: BH18-1 SS4

Shipped:

Matrix: Soil Received: 2018/10/23

Test Description Instrumentation Batch **Extracted Date Analyzed Analyst** 2018/10/25 Moisture BAL 5800508 N/A Samantha Arachchige

DST Consulting Engineers Inc Client Project #: TS-SO-032782

Sampler Initials: KS

GENERAL COMMENTS

Each te	emperature is the	average of up to t	three cooler temperatures taken at receipt
	Package 1	1.0°C	7
			_
Result	s relate only to th	e items tested.	

QUALITY ASSURANCE REPORT

DST Consulting Engineers Inc Client Project #: TS-SO-032782

Sampler Initials: KS

			Matrix Spike		SPIKED BLANK		Method Blank		RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
5800488	o-Terphenyl	2018/10/24	87	30 - 130	95	30 - 130	95	%		
5800488	F2 (C10-C16 Hydrocarbons)	2018/10/24	92	50 - 130	105	80 - 120	<10	ug/g	NC	50
5800488	F3 (C16-C34 Hydrocarbons)	2018/10/24	92	50 - 130	105	80 - 120	<50	ug/g	NC	50
5800488	F4 (C34-C50 Hydrocarbons)	2018/10/24	92	50 - 130	105	80 - 120	<50	ug/g	NC	50
5800508	Moisture	2018/10/25							7.8	50
5803405	F4G-sg (Grav. Heavy Hydrocarbons)	2018/10/26			107	65 - 135	<100	ug/g	0.93	50

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

DST Consulting Engineers Inc Client Project #: TS-SO-032782

Sampler Initials: KS

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Steve Roberts, Ottawa Lab Manager

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Your Project #: TS SO 032182 Site#: SUPP PHASE II ESA

Site Location: 2600 BANK STREET, OTTAWA

Your C.O.C. #: 815217-01-01

Attention: Andrew Naoum

DST Consulting Engineers Inc Ottawa - Standing Offer 2150 Thurston Dr Unit 203 Ottawa, ON CANADA K1G 5T9

Report Date: 2021/03/16

Report #: R6557074 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: C164686 Received: 2021/03/10, 13:10

Sample Matrix: Soil # Samples Received: 4

		Date	Date		
Analyses	luantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Petroleum Hydro. CCME F1 & BTEX in Soil (1, 2)	4	N/A	2021/03/12	CAM SOP-00315	CCME PHC-CWS m
Petroleum Hydrocarbons F2-F4 in Soil (1, 3)	1	2021/03/12	2021/03/15	CAM SOP-00316	CCME CWS m
Petroleum Hydrocarbons F2-F4 in Soil (1, 3)	3	2021/03/13	2021/03/15	CAM SOP-00316	CCME CWS m
F4G (CCME Hydrocarbons Gravimetric) (1)	2	2021/03/15	2021/03/16	CAM SOP-00316	CCME PHC-CWS m
Moisture (1)	4	N/A	2021/03/12	CAM SOP-00445	Carter 2nd ed 51.2 m

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

 $Reference\ Method\ suffix\ "m"\ indicates\ test\ methods\ incorporate\ validated\ modifications\ from\ specific\ reference\ methods\ to\ improve\ performance.$

- * RPDs calculated using raw data. The rounding of final results may result in the apparent difference.
- (1) This test was performed by Bureau Veritas Laboratories Mississauga
- (2) No lab extraction date is given for F1BTEX & VOC samples that are field preserved with methanol. Extraction date is the date sampled unless otherwise stated.
- (3) All CCME PHC results met required criteria unless otherwise stated in the report. The CWS PHC methods employed by Bureau Veritas Laboratories conform to all prescribed elements of the reference method and performance based elements have been validated. All modifications have been validated and proven equivalent following "Alberta Environment's Interpretation of the Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil Validation of Performance-Based Alternative Methods September 2003". Documentation is available upon request. Modifications from Reference Method for the Canada-wide Standard for Petroleum Hydrocarbons in Soil-Tier 1

Your Project #: TS SO 032182 Site#: SUPP PHASE II ESA

Site Location: 2600 BANK STREET, OTTAWA

Your C.O.C. #: 815217-01-01

Attention: Andrew Naoum

DST Consulting Engineers Inc Ottawa - Standing Offer 2150 Thurston Dr Unit 203 Ottawa, ON CANADA K1G 5T9

> Report Date: 2021/03/16 Report #: R6557074

Version: 1 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: C164686

Received: 2021/03/10, 13:10

Method: F2/F3/F4 data reported using validated cold solvent extraction instead of Soxhlet extraction.

Encryption Key

Bureau Veritas

16 Mar 2021 16:04:48

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

Katherine Szozda, Project Manager

Email: Katherine.Szozda@bureauveritas.com

Phone# (613)274-0573 Ext:7063633

This report has been generated and distributed using a secure automated process.

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Site Location: 2600 BANK STREET, OTTAWA

Sampler Initials: CR

O.REG 153 PHCS, BTEX/F1-F4 (SOIL)

BV Labs ID		PAW404		PAW405		PAW406	PAW407			
Sampling Date		2021/03/10		2021/03/10		2021/03/10	2021/03/10			
COC Number		815217-01-01		815217-01-01		815217-01-01	815217-01-01			
	UNITS	BH21-1 SS2	QC Batch	BH21-1 SS4	QC Batch	BH21-2 SS3	BH21-2 SS4	RDL	QC Batch	
Inorganics										
Moisture	%	9.4	7244521	5.7	7244521	12	7.3	1.0	7244521	
BTEX & F1 Hydrocarbons										
Benzene	ug/g	<0.020	7244956	<0.020	7244956	<0.020	<0.020	0.020	7244956	
Toluene	ug/g	<0.020	7244956	<0.020	7244956	<0.020	<0.020	0.020	7244956	
Ethylbenzene	ug/g	<0.020	7244956	<0.020	7244956	<0.020	<0.020	0.020	7244956	
o-Xylene	ug/g	<0.020	7244956	<0.020	7244956	<0.020	<0.020	0.020	7244956	
p+m-Xylene	ug/g	<0.040	7244956	<0.040	7244956	<0.040	<0.040	0.040	7244956	
Total Xylenes	ug/g	<0.040	7244956	<0.040	7244956	<0.040	<0.040	0.040	7244956	
F1 (C6-C10)	ug/g	<10	7244956	<10	7244956	<10	<10	10	7244956	
F1 (C6-C10) - BTEX	ug/g	<10	7244956	<10	7244956	<10	<10	10	7244956	
F2-F4 Hydrocarbons										
F2 (C10-C16 Hydrocarbons)	ug/g	<10	7245861	<10	7245606	11	<10	10	7245861	
F3 (C16-C34 Hydrocarbons)	ug/g	99	7245861	<50	7245606	220	<50	50	7245861	
F4 (C34-C50 Hydrocarbons)	ug/g	200	7245861	<50	7245606	370	<50	50	7245861	
Reached Baseline at C50	ug/g	No	7245861	Yes	7245606	No	Yes		7245861	
Surrogate Recovery (%)										
1,4-Difluorobenzene	%	102	7244956	100	7244956	100	98		7244956	
4-Bromofluorobenzene	%	95	7244956	98	7244956	97	97		7244956	
D10-o-Xylene	%	91	7244956	99	7244956	101	108		7244956	
D4-1,2-Dichloroethane	%	107	7244956	102	7244956	102	102		7244956	
o-Terphenyl	%	92	7245861	94	7245606	98	98		7245861	
RDL = Reportable Detection L QC Batch = Quality Control Ba										

Site Location: 2600 BANK STREET, OTTAWA

Sampler Initials: CR

PETROLEUM HYDROCARBONS (CCME)

BV Labs ID		PAW404	PAW406						
Sampling Date		2021/03/10	2021/03/10						
COC Number		815217-01-01	815217-01-01						
	UNITS	BH21-1 SS2	BH21-2 SS3	RDL	QC Batch				
F2-F4 Hydrocarbons									
F2-F4 Hydrocarbons									
F2-F4 Hydrocarbons F4G-sg (Grav. Heavy Hydrocarbons)	ug/g	410	1300	100	7248762				
	ug/g	410	1300	100	7248762				

Site Location: 2600 BANK STREET, OTTAWA

Sampler Initials: CR

TEST SUMMARY

BV Labs ID: PAW404 Sample ID: BH21-1 SS2

Matrix: Soil

Shipped:

Collected: 2021/03/10

Received: 2021/03/10

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Petroleum Hydro. CCME F1 & BTEX in Soil	HSGC/MSFD	7244956	N/A	2021/03/12	Domnica Andronescu
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	7245861	2021/03/13	2021/03/15	Prabhjot Gulati
F4G (CCME Hydrocarbons Gravimetric)	BAL	7248762	2021/03/15	2021/03/16	Rashmi Dubey
Moisture	BAL	7244521	N/A	2021/03/12	Kruti Jitesh Patel

BV Labs ID: PAW405 Sample ID: BH21-1 SS4 Matrix: Soil

Collected: 2021/03/10

Shipped:

Received: 2021/03/10

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Petroleum Hydro. CCME F1 & BTEX in Soil	HSGC/MSFD	7244956	N/A	2021/03/12	Domnica Andronescu
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	7245606	2021/03/12	2021/03/15	Prabhjot Gulati
Moisture	BAL	7244521	N/A	2021/03/12	Kruti Jitesh Patel

BV Labs ID: PAW406 Sample ID: BH21-2 SS3

Matrix: Soil

Collected: 2021/03/10

Shipped:

Received: 2021/03/10

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Petroleum Hydro. CCME F1 & BTEX in Soil	HSGC/MSFD	7244956	N/A	2021/03/12	Domnica Andronescu
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	7245861	2021/03/13	2021/03/15	Prabhjot Gulati
F4G (CCME Hydrocarbons Gravimetric)	BAL	7248762	2021/03/15	2021/03/16	Rashmi Dubey
Moisture	BAL	7244521	N/A	2021/03/12	Kruti Jitesh Patel

BV Labs ID: PAW407 Sample ID: BH21-2 SS4 Matrix: Soil

Collected: 2021/03/10 Shipped:

Received: 2021/03/10

Test Description	Instrumentation	Instrumentation Batch I		Date Analyzed	Analyst	
Petroleum Hydro. CCME F1 & BTEX in Soil	HSGC/MSFD	7244956	N/A	2021/03/12	Domnica Andronescu	
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	7245861	2021/03/13	2021/03/15	Prabhjot Gulati	
Moisture	BAI	7244521	N/A	2021/03/12	Kruti Jitesh Patel	

Site Location: 2600 BANK STREET, OTTAWA

Sampler Initials: CR

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Sample PAW406 [BH21-2 SS3]: F1/BTEX Analysis: Soil weight exceeds the protocol specification of approximately 5g in the field preserved vial. Additional methanol was added to the vial to ensure extraction efficiency.

Sample PAW407 [BH21-2 SS4]: F1/BTEX Analysis: Soil weight exceeds the protocol specification of approximately 5g in the field preserved vial. Additional methanol was added to the vial to ensure extraction efficiency.

Results relate only to the items tested.

QUALITY ASSURANCE REPORT

DST Consulting Engineers Inc Client Project #: TS SO 032182

Site Location: 2600 BANK STREET, OTTAWA

Sampler Initials: CR

			Matrix Spike		SPIKED BLANK		Method Blank		RP	D
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
7244956	1,4-Difluorobenzene	2021/03/12	96	60 - 140	98	60 - 140	97	%		
7244956	4-Bromofluorobenzene	2021/03/12	99	60 - 140	97	60 - 140	98	%		
7244956	D10-o-Xylene	2021/03/12	98	60 - 140	109	60 - 140	93	%		
7244956	D4-1,2-Dichloroethane	2021/03/12	99	60 - 140	96	60 - 140	104	%		
7245606	o-Terphenyl	2021/03/14	95	60 - 130	94	60 - 130	89	%		
7245861	o-Terphenyl	2021/03/14	97	60 - 130	93	60 - 130	97	%		
7244521	Moisture	2021/03/12							10	20
7244956	Benzene	2021/03/12	86	50 - 140	98	50 - 140	<0.020	ug/g	NC	50
7244956	Ethylbenzene	2021/03/12	97	50 - 140	108	50 - 140	<0.020	ug/g	NC	50
7244956	F1 (C6-C10) - BTEX	2021/03/12					<10	ug/g	NC	30
7244956	F1 (C6-C10)	2021/03/12	79	60 - 140	91	80 - 120	<10	ug/g	NC	30
7244956	o-Xylene	2021/03/12	95	50 - 140	104	50 - 140	<0.020	ug/g	NC	50
7244956	p+m-Xylene	2021/03/12	103	50 - 140	117	50 - 140	<0.040	ug/g	NC	50
7244956	Toluene	2021/03/12	90	50 - 140	103	50 - 140	<0.020	ug/g	NC	50
7244956	Total Xylenes	2021/03/12					<0.040	ug/g	NC	50
7245606	F2 (C10-C16 Hydrocarbons)	2021/03/15	110	50 - 130	101	80 - 120	<10	ug/g	NC	30
7245606	F3 (C16-C34 Hydrocarbons)	2021/03/15	110	50 - 130	103	80 - 120	<50	ug/g	NC	30
7245606	F4 (C34-C50 Hydrocarbons)	2021/03/15	110	50 - 130	108	80 - 120	<50	ug/g	NC	30
7245861	F2 (C10-C16 Hydrocarbons)	2021/03/15	110	50 - 130	106	80 - 120	<10	ug/g	NC	30
7245861	F3 (C16-C34 Hydrocarbons)	2021/03/15	106	50 - 130	102	80 - 120	<50	ug/g	NC	30
7245861	F4 (C34-C50 Hydrocarbons)	2021/03/15	105	50 - 130	99	80 - 120	<50	ug/g	NC	30
7248762	F4G-sg (Grav. Heavy Hydrocarbons)	2021/03/16	69	65 - 135	101	65 - 135	<100	ug/g	1.2	50

 $\label{eq:Duplicate:Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.$

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

Report Date: 2021/03/16

DST Consulting Engineers Inc Client Project #: TS SO 032182

Site Location: 2600 BANK STREET, OTTAWA

Sampler Initials: CR

VALIDATION SIGNATURE PAGE

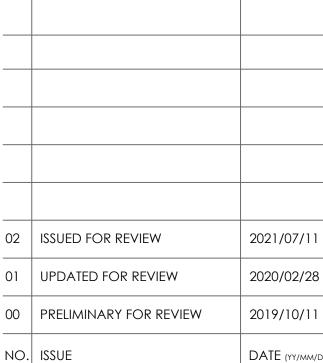
The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Anastassia Hamanov, Scientific Specialist

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

APPENDIX G Development Site Plan

Total: 17 + 31 = 48 spaces


GENERAL NOTES

- CONTRACTOR SHALL VERIFY ALL DIMENSIONS ON SITE AND SHALL REPORT ANY DISCREPANCIES TO THE ARCHITECT PRIOR TO
- COMMENCEMENT OF WORK. CONTRACTOR MUST COMPLY WITH ALL CODES AND BYLAWS AND OTHER REGULATIONS BY AUTHORITIES HAVING JURISDICTION OVER THE
- DO NOT SCALE THIS DRAWING.
- THIS DRAWING MAY NOT BE USED FOR CONSTRUCTION UNLESS SEALED/SIGNED BY THE
- COPYRIGHT OF THIS DRAWINGS IS RESERVED.

SURVEY PLAN DISCLAIMER

ON A SURVEY PLAN PROVIDED TO A+ ARCHITECTURE INC. OF EXISTING LAND FEATURES, INCLUDING BUT NOT LIMITED TO, EXISTING LEGAL BOUNDARIES, LOT LINES, GRADES, TOPOGRAPHY, VEGETATION ETC., SHOWN ON THIS DRAWING FOR COORDINATION PURPOSES ONLY AND ARE BASED ON THE SURVEY PLAN PREPARED BY **ANNIS, O'SULLIVAN, VOLLEBEKK** LTD., ONTARIO LAND SURVEYOR, DATED SEPTEMBER 25, 2019.

THE AFOREMENTIONED SURVEY PLAN WAS INCORPORATED INTO THE ARCHITECTURAL SITE PLAN DRAWING, AS PROVIDED TO A+ ARCHITECTURE INC., WITH NO ALTERATIONS WHATSOEVER. A+ ARCHITECTURE INC. SHALL NOT BE HELD LIABLE AS TO THE ACCURACY OF THE INFORMATION PROVIDED

www.aplus-arch.com

UPPER HUNT CLUB CENTRE INC.

2335 ST. LAURENT BLVD., OTTAWA, ON

PROJECT

UPPER HUNT CLUB CENTRE 2600 BANK STREET, OTTAWA, ON

SITE PLAN

DRAWN BY J.R. | DRAWING NO. REVIEWED BY START DATE 2019/10/08

A1.0 PROJECT NO. 19009 REVISION NO.

EXISTING SHORT STANDARD IRON BAR

Phase Two Environmental Site Assessment 2584-2600 Bank Street, Ottawa, Ontario DST File No.: TS-SO-032782

APPENDIX H Limitations of Report

DST File No.: TS-SO-032782

Limitations of Report

The information, conclusions and recommendations given herein are specifically for this project and the Upper Hunt Club Centre Inc. (the "Client") only, and for the scope of work described herein. It may not be sufficient for other uses. DST does not accept responsibility for use by third parties.

The data, conclusions and recommendations which are presented in this report, and the quality thereof, are based on a scope of work authorized by the Client. Note, however, that no scope of work, no matter how exhaustive, can identify all contaminants or all conditions above and below ground. For example, conditions between test holes may differ from those encountered in the investigation and observed or measured conditions may change with time. This report therefore cannot warranty that all conditions on or off the site are represented by those identified at specific locations.

Any recommendations and conclusions provided that are based on conditions or assumptions reported herein will inherently include any uncertainty associated with those conditions or assumptions. In fact many aspects involving professional judgement such as subsurface models and remediation criteria contain a degree of uncertainty which cannot be eliminated. This uncertainty should be managed by periodic review and refinement as additional information becomes available.

Note also that standards, guidelines and practices related to environmental investigations may change with time. Those which were applied at the time of this investigation may be obsolete or unacceptable at a later date.

Any topographic benchmarks and elevations documented in this report are primarily to establish relative elevation differences between test locations and should not be used for other purposes such as grading, excavation, planning, development, etc.

Any comments given in this report on potential remediation problems and possible methods are intended only for the guidance of the designer. The scope of work may not be sufficient to determine all of the factors that may affect construction or clean-up methods and costs. Contractors bidding on this project or undertaking clean-ups should, therefore, make their own interpretation of the factual information presented and draw their own conclusions as to how the conditions may affect their work.

Any results from an analytical laboratory, title searcher or other subcontractor reported herein have been carried out by others, and DST cannot warranty their accuracy. Similarly, DST cannot warranty the accuracy of information supplied by the Client.