

Soil & Groundwater Sampling Program Property Adjacent to 1740 St. Laurent Boulevard, Ottawa, Ontario

Client:

11421247 Canada Inc.

Type of Document:

Draft

Project Name:

Soil & Groundwater Sampling Program

Project Number:

OTT-00260579-A0

Prepared By:

Leah Wells, B.A.Sc, Environmental Engineer-in-Training

Reviewed By:

Patricia Stelmack, M.Sc., P. Eng., Team Lead/Senior Project Manager

EXP Services Inc. 100-2650 Queensview Drive Ottawa, Ontario K2B 8H6 t: +1.613.688.1899 f: +1.613.225.7337

Date Submitted:

2020-10-09

Legal Notification

This report was prepared by EXP Services Inc. for the account of 11421247 Canada Inc.

Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. EXP Services Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this project.

Table of Contents

Legal N	otification	i
List of F	Figures	iv
List of A	Appendices	V
Executi	ve Summary	vi
1.0 Int	troduction	1
1.1	Site Description	1
1.2	Applicable Site Condition Standards	1
2.0 Ba	ckground Information	3
2.1	Physical Setting	3
2.2	Background	3
3.0 Inv	vestigation Methodology	4
3.1	General	4
3.2	Borehole Drilling	4
3.3	Soil Sampling	4
3.4	Monitoring Well Development and Groundwater Monitoring and Sampling	4
3.5	Quality Assurance and Quality Control Measures	5
4.0 Re	sults	7
4.1	Soil Quality	7
4.2	Groundwater Quality	7
4.3	Groundwater Monitoring	7
4.4	Quality Assurance and Quality Control Results	7
5.0 Co	nclusion	3
6.0 Re	ferences	4
7.0 Ge	eneral Limitations	5
Basis	s of Report	5
Relia	ance on Information Provided	5
Stan	dard of Care	5
Com	plete Report	5

	Use of Report	5
	Report Format	5
	·	
8.0	Signatures	7

List of Figures

Figure 1 – Site Location Plan

Figure 2 – Site Plan

Figure 3 – Groundwater Contour Plan

List of Appendices

Appendix A: Figures

Appendix B: Borehole Logs

Appendix C: Analytical Summary Tables

Appendix D: Laboratory Certificates of Analysis

Executive Summary

EXP Services Inc. (EXP) was retained by 11421247 Canada Inc. to complete a soil and groundwater sampling program adjacent to 1740 St. Laurent Boulevard, Ottawa, Ontario. An operating gas station is present on the property located at 1740 St. Laurent Boulevard. The objective of this investigation is to gain an understanding of current environmental conditions adjacent to the gas station.

This report has been prepared in accordance with general requirements outlined in CSA Standard Z769-00 (2013) and in accordance with generally accepted professional practices. Subject to this standard of care, EXP makes no express or implied warranties regarding its services and no third-party beneficiaries are intended. Limitation of liability, scope of report and third-party reliance are outlined in Section 6 of this report.

The gas station property is located approximately 130 metres (m) south of the intersection of Industrial Avenue and St. Laurent Boulevard. A gas station has been in operation at 1740 St. Laurent Boulevard since the 1980s. 11421247 Canada Inc. owns the property south and west of the gas station (hereafter referred to as the subject site) and is proposing to redevelop the property for residential purposes. The soil and groundwater sampling program was designed to gain an understanding of site conditions adjacent to the gas station.

It is understood that 11421247 Canada Inc. intends to redevelop the property located at 1740 to 1760 St. Laurent Boulevard. Current use is commercial and future use will be mixed commercial and residential. As such, a Record of Site Condition must be filed prior to re-development. EXP identified the gas station as an area of potential environmental concern (APEC). Based on the nature of the APEC, petroleum hydrocarbons (PHC), polycyclic aromatic hydrocarbons (PAH), metals and volatile organic compounds (VOC) were identified as contaminants of concern on the property.

A total of four boreholes were drilled, three of which were completed as monitoring wells.

A summary of the findings from the delineation soil and groundwater sampling program is as follows:

- Three soil samples and one field duplicate were submitted for chemical analysis of BTEX and PHC, metals, and VOC. All of the soil samples were within the MECP Table 3 SCS;
- Three groundwater samples were submitted for chemical analysis of BTEX and PHC, metals, and VOC. All of the samples within the MECP Table 3 standards;
- Bedrock was encountered at depths ranging from 5.9 to 7.6 mbgs; and
- The groundwater flow direction is easterly.

Based on the results of the soil and groundwater sampling program, it does not appear that the subject site south and west of the gas station have been adversely affected by the operation of the gas station.

This executive summary is a brief synopsis of the report and should not be read in lieu of reading the report in its entirety.

1.0 Introduction

EXP Services Inc. (EXP) was retained by 11421247 Canada Inc. to complete a soil and groundwater sampling program adjacent to 1740 St. Laurent Boulevard, Ottawa, Ontario. An operating gas station is present on the property located at 1740 St. Laurent Boulevard. The objective of this investigation is to gain an understanding of current environmental conditions adjacent to the gas station.

This report has been prepared in accordance with general requirements outlined in CSA Standard Z769-00 (2013) and in accordance with generally accepted professional practices. Subject to this standard of care, EXP makes no express or implied warranties regarding its services and no third-party beneficiaries are intended. Limitation of liability, scope of report and third-party reliance are outlined in Section 6 of this report.

Mark Devlin, B.Sc. conducted field assessment work and Leah Wells, E.I.T, was the report author for this project. Both were supervised by Patricia Stelmack, M.Sc., P.Eng.

1.1 Site Description

The gas station property is located approximately 130 metres (m) south of the intersection of Industrial Avenue and St. Laurent Boulevard on the west side of St. Laurent Boulevard, as shown on Figure 1 in Appendix A. A gas station has been in operation at 1740 St. Laurent Boulevard since the 1980s.

11421247 Canada Inc. owns the property south and west of the gas station (hereafter referred to as the subject site) and is proposing to redevelop the property for residential purposes. The soil and groundwater sampling program was designed to gain an understanding of site conditions adjacent to the gas station.

The property south adjacent to 1740 St. Laurent Boulevard includes a driveway that provides access to a St. Hubert's restaurant and the gas station. The land west of the gas station property is part of a vacant lot that is currently used by St. Hubert's to park delivery vehicles.

The site plan is shown on Figure 2 in Appendix A.

1.2 Applicable Site Condition Standards

Analytical results obtained for soil and groundwater samples were compared to Site Condition Standards (SCS) established under subsection 169.4(1) of the Environmental Protection Act, and presented in the document entitled *Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act*, 2011. This document provides tabulated background SCS (Table 1) applicable to environmentally sensitive sites and effects-based generic SCS (Tables 2 to 9) applicable to non-environmentally sensitive sites. The effects-based SCS (Tables 2 to 9) are protective of human health and the environment for different groundwater conditions (potable and non-potable), land use scenarios (residential, parkland, institutional, commercial, industrial, community and agricultural/other), soil texture (coarse or medium/fine) and restoration depth (full or stratified).

Table 1 to 9 SCS are summarized as follows:

- Table 1 applicable to sites where background concentrations must be met (full depth), such as sensitive sites where site-specific criteria have not been derived
- Table 2 applicable to sites with potable groundwater and full depth restoration
- Table 3 applicable to sites with non-potable groundwater and full depth restoration
- Table 4 applicable to sites with potable groundwater and stratified restoration
- Table 5 applicable to sites with non-potable groundwater and stratified restoration

- Table 6 applicable to sites with potable groundwater and shallow soils (bedrock encountered at depths of 2 metres or less across one-third or more of the site)
- Table 7 applicable to sites with non-potable groundwater and shallow soils (bedrock encountered at depths of 2 metres or less across one-third or more of the site)
- Table 8 applicable to sites with potable groundwater and that are within 30 m of a water body
- Table 9 applicable to sites with non-potable groundwater and that are within 30 m of a water body

Application of the generic or background SCS to a specific site is based on a consideration of site conditions related to soil pH, thickness and extent of overburden material, and proximity to an area of environmental sensitivity or of natural significance. For some chemical parameters, consideration is also given to soil textural classification with SCS having been derived for both coarse and medium-fine textured soil conditions.

For assessment purposes, EXP selected the 2011 Table 3 SCS in a non-potable groundwater condition for residential/parkland/institutional property use and medium and fine textured soils. The selection of this category was based on the following factors:

- Bedrock is greater than 2 metres below grade across the subject property;
- There are no surface water bodies within 30 metres of the subject property;
- The property is not located within an area of natural significance, does not include nor is adjacent to an area of natural significance, and does not include land that is within 30 metres of an area of natural significance;
- Potable water for the property is provided by the City of Ottawa through its water distribution system and no potable water wells were identified to be within 250 metres of the property;
- The property is not located in an area designated in a municipal official plan as a well-head protection area;
- Based on the results of an investigation elsewhere on the subject site, soil is considered to be medium and fine textured; and
- The ground floor of the future development is planned for commercial use and the upper floors are planned for residential use.

2.0 Background Information

2.1 Physical Setting

The subject site includes land south and west of 1740 St. Laurent Boulevard in Ottawa, Ontario. The property is located in a mixed commercial/residential area. Potable water is available from the City of Ottawa, and there are no potable water wells nearby.

A site plan is presented as Figure 2 in Appendix A.

The closest body of water is Greens Creek. The creek is approximately 1.7 km northeast of the gas station and flows in a northeasterly direction toward the Ottawa River, which is more than 6 km north of the gas station. The subject site is not a shallow soil property as defined in Section 43.1 of the regulation. It does not include all or part of a water body or is adjacent to a water body or includes land that is within 30 metres of a water body. In addition, the subject site is not located within an area of natural significance and it does not include land that is within 30 metres of an area of natural significance.

Bedrock in the general area of the subject site consists of shale, limestone, dolostone, and siltstone. Native surficial soil consists of fine-textured glaciomarine deposits of silt and clay with minor sand and gravel. Bedrock is approximately 6 meters below ground surface (mbgs) at the property. The local topography slopes to the northeast.

2.2 Background

It is understood that 11421247 Canada Inc. intends to redevelop the property located at 1740 to 1760 St. Laurent Boulevard. Current use is commercial and future use will be mixed commercial and residential. As such, a Record of Site Condition must be filed prior to re-development. EXP identified the gas station as an area of potential environmental concern (APEC).

Previous Phase II sampling programs have been undertaken at the gas station property by other companies.

AMEC Earth & Environmental Ltd. prepared a report entitled *Phase II Environmental Site Assessment (ESA), 1740-1760 St. Laurent Boulevard & 1757 Russell Road, Ottawa, Ontario,* January 2002. Nine boreholes were advanced across the gas station property, and three monitoring wells were installed. Groundwater samples were submitted for analysis of BTEX, TPH (gas/diesel), TPH (heavy oil), VOCs, and metals. Low level PHC concentrations were identified in the groundwater regime in the vicinity of the Petro Canada, however all concentrations were below their respective Table B criteria.

Terrapex Environmental Ltd. prepared a report entitled *Petro Canada, Phase II Environmental Site Assessment (ESA), 1740 St. Laurent Boulevard, Ottawa, Ontario,* June 2009. Ten boreholes were advanced across the site, five of which were completed as monitoring wells. No liquid phase petroleum product was observed during the drilling program. One soil sample from each of the boreholes and a groundwater sample from each of the monitoring wells were submitted for analysis of BTEX and PHC. All of the soil and groundwater samples submitted were less than the Table 3 SCS for commercial land use and fine-grained soil.

The current investigation was being done to gain an understanding of current environmental conditions adjacent to the gas station property. Based on the nature of the APEC, petroleum hydrocarbons (PHC), polycyclic aromatic hydrocarbons (PAH), metals and volatile organic compounds (VOC) were identified as contaminants of concern on the property.

The location of the APEC is shown in Figure 2 in Appendix A.

3.0 Investigation Methodology

3.1 General

The soil and groundwater sampling program investigation consisted of the drilling of boreholes to facilitate the installation of monitoring wells for geological characterization and the collection of soil and groundwater samples for chemical analysis.

3.2 Borehole Drilling

The site investigative activities consisted of the drilling of boreholes to facilitate the collection of soil samples for chemical analysis, to record relevant geotechnical information and the installation of monitoring wells for hydrogeological property characterization and the collection of groundwater samples for chemical analysis.

Prior to the commencement of drilling, the locations of underground public utilities including telephone, natural gas and electrical lines were marked at the subject property by public locating companies. A private utility locating contractor was also retained to clear the individual borehole locations.

From August 20th to 25th, 2020, four boreholes (BH20-09, BH20-10, BH20-11 and BH20-13) were drilled on the subject site adjacent to the gas station. The boreholes were completed by George Downing Estate Drilling Ltd (Downing), a licensed well contractor, using a CME 75 truck-mounted drill rig.

Bedrock was encountered between 5.9 and 7.6 metres below ground surface (mbgs) in all four boreholes. EXP staff continuously monitored the drilling activities to log the stratigraphy observed from the recovered samples, to record the depth of the samples, and to record total depths of borings. Field observations are documented on the borehole logs provided in Appendix B.

The locations of the boreholes and monitoring wells are presented on Figure 2 in Appendix A.

3.3 Soil Sampling

Soil samples for geologic characterization were collected on a continuous basis in the overburden materials using 5 cm diameter, 61 cm long, split spoon samplers advanced into the subsurface using the drill rig. A split spoon sample was collected approximately every 80 cm as drilling progressed. The split spoon samplers were decontaminated between sampling intervals by EXP staff using a potable water/phosphate-free detergent solution followed by rinses with potable water. The soil cores were removed from the samplers upon retrieval by drilling personnel. Geologic details of the recovered cores were logged by EXP field staff. EXP staff continuously monitored the drilling activities to log the stratigraphy observed from the recovered soil cores, to record the depth of soil sample collection, to record total depths of borings, and to record visual or olfactory observations of potential impacts. Field observations are summarized on the borehole logs provided in Appendix B.

Soil samples identified for possible laboratory analysis were collected from the split spoon sampler and placed directly into pre-cleaned, laboratory-supplied glass sample jars/vials. Samples to be analysed for PHC fraction F1 and BTEX were collected using a soil core sampler and placed into vials containing methanol as a preservative. The jars and vials were sealed with Teflon-lined lids to minimize head-space and reduce the potential for induced volatilization during storage/transport prior to analysis. All soil samples were placed in clean coolers containing ice prior to and during transportation to the subcontract laboratory, Bureau Veritas Laboratories (BV Labs) of Ottawa, Ontario.

3.4 Monitoring Well Development and Groundwater Monitoring and Sampling

Groundwater monitoring wells were installed in three of the boreholes (BH20-10, BH20-11 and BH20-13). The monitoring wells were installed in general accordance with the Ontario Water Resources Act - R.R.O. 1990, Regulation 903 (as amended) and were installed by Downing, a licensed well contractor, using a CME 75 truck-mounted drill rig.

The monitoring wells consisted of a 51 mm diameter Schedule 40 PVC screen that was no more than 3.0 m long and a 51 mm diameter Schedule 40 PVC riser pipe. The annular space around the wells was backfilled with sand to an average height of 0.3 m above the top of the screen. A bentonite seal was added from the top of the sand pack to approximately 0.3 m below ground surface. The monitoring wells were completed with flushmount casings. Details of the monitoring well installations are shown on the borehole logs provided in Appendix B.

Groundwater samples from all three monitoring wells were collected via a low flow sampling technique using a YSI 550 multi probe water quality meter. The YSI probe was calibrated using in-house reference standards. Prior to collecting the groundwater samples, water quality field parameters (turbidity, dissolved oxygen, conductivity, temperature, pH, and oxidation reduction potential) were monitored until stable readings were achieved. These parameters are considered to be stable when three consecutive readings meet the following conditions:

- Turbidity: within 10% for values greater than 5 nephelometric turbidity units (NTU), or three values less than 5 NTU;
- Dissolved oxygen: within 10% for values greater than 0.5 mg/L, or three values less than 0.5 mg/L;
- Conductivity: within 3%;
- Temperature: ± 1°C;
- pH: ± 0.1 unit; and,
- Oxidation reduction potential: ±10 millivolts.

When stabilization occurs, equilibrium between groundwater within a monitor and the surrounding formation water is attained. As such, samples collected when stabilization occurs are considered to be representative of formation water.

Three groundwater samples and one field duplicate were collected in laboratory provided sample bottles and submitted to BV Labs for analysis of BTEX, PHC, metals and VOC. The groundwater samples were placed in clean coolers containing ice packs prior to and during transportation to BV Labs. The samples were transported to BV Labs within 24 hours of collection with a chain of custody.

3.5 Quality Assurance and Quality Control Measures

All soil and groundwater samples were placed in coolers containing ice packs prior to and during transportation to the contract laboratory, Bureau Veritas Laboratories (BV Labs). Bureau Veritas Laboratories is accredited to the ISO/IEC 17025:2005 standard - General Requirements for the Competence of Testing and Calibration Laboratories.

A QA/QC program was also implemented to ensure that the analytical results received are accurate and dependable. A QA/QC program is a system of documented checks that validate the reliability of the data. Quality Assurance is a system that ensures that quality control procedures are correctly performed and documented. Quality Control refers to the established procedures observed both in the field and in the laboratory, designed to ensure that the resulting end data meet intended quality objectives. The QA/QC program implemented by EXP incorporated the following components:

- Collecting and analysing field duplicate groundwater samples to ensure analytical precision;
- Using dedicated and/or disposable sampling equipment;
- Following proper decontamination protocols to minimize cross-contamination;
- Maintaining field notes and completing field forms to document field activities; and
- Using only laboratory-supplied sample containers and following prescribed sample protocols, including using proper
 preservation techniques, meeting sample hold times, and documenting sample transmission on chains of custody,
 to ensure the integrity of the samples is maintained.

BV Labs QA/QC program involved the systematic analysis of control standards for the purpose of optimizing the measuring system as well as establishing system precision and accuracy and included calibration standards, method blanks, reference standards, spiked samples, surrogates and duplicates.

4.0 Results

4.1 Soil Quality

Chemical analyses were performed on selected soil samples recovered from BH20-09, BH20-10, BH20-11 and BH20-13.

Three soil samples and one field duplicate were submitted for chemical analysis of BTEX and PHC, metals and VOC. The results are presented in Tables 1 to 3 in Appendix C. All of the soil samples were within the MECP Table 3 SCS.

Copies of the laboratory Certificates of Analysis are provided in Appendix D.

4.2 Groundwater Quality

Chemical analyses were performed on groundwater samples collected from the monitoring wells using low flow sampling techniques.

Three groundwater samples, one field duplicate, and one field blank were collected from the monitoring wells and were submitted for chemical analysis of BTEX and PHC, metals, and VOC. The results are presented in Tables 4 to 6 in Appendix C. All of the groundwater samples were within the MECP Table 3 SCS.

Copies of the laboratory Certificates of Analysis are provided in Appendix D.

4.3 Groundwater Monitoring

On September 10, 2020, monitoring wells BH10, BH11, and BH14 were inspected for general physical condition, groundwater depth, and the presence of non-aqueous phase liquid. EXP used a Heron water level tape to measure the static water level in each monitoring well. The measuring tape was cleaned with phosphate-free soap and tap water, rinsed with distilled water after each measurement.

Groundwater monitoring and elevation data are provided below.

Table 4.1 - Monitoring and Elevation Data

Monitoring Well ID/ Installation ID	Grade Elevation (metres)	Top of Casing Elevation (mbTOC)	Screen Depth (mbgs)	Depth to LNAPL (mbgs)	Depth to Groundwater (mbTOC)	Groundwater Elevation(metres)
BH20-10	69.86	69.73	0.7-3.7	N/A	1.71	68.02
BH20-11	70.68	70.38	1.0-4.0	N/A	1.51	68.87
BH20-13	71.07	70.88	1.5-4.5	N/A	1.76	69.12

Notes: Elevations were measured to a relative datum.

LNAPL – light non-aqueous phase liquid mbgs – metres below ground surface

mbTOC – metres below top of monitor casing

Based on the groundwater elevations for the shallow monitoring wells in the above table, a groundwater contour plan was prepared. The groundwater flow direction was determined to be easterly. The groundwater contour plan is provided as Figure 3 in Appendix A.

4.4 Quality Assurance and Quality Control Results

Quality assurance and quality control measures were taken during the field activities to meet the objectives of the sampling and quality assurance plan to collect unbiased and representative samples to characterize existing conditions in the fill materials and groundwater at the site. QA/QC measures, included:

- Collection and analysis of blind duplicate groundwater samples to ensure sample collection precision;
- Analysis of a groundwater field blank for all parameters that were analysed to assess potential impact during sampling;
- Using dedicated and/or disposable sampling equipment;
- Following proper decontamination protocols to minimize cross-contamination;
- Maintaining field notes and completing field forms to document on-site activities; and
- Using only laboratory supplied sample containers and following prescribed sample protocols, including proper
 preservation, meeting sample hold times, proper chain of custody documentation, to ensure integrity of the
 samples.

Bureau Veritas Laboratories' (BV Labs) QA/QC program consisted of the preparation and analysis of laboratory duplicate samples to assess precision and sample homogeneity, method blanks to assess analytical bias, spiked blanks and QC standards to evaluate analyte recovery, matrix spikes to evaluate matrix interferences and surrogate compound recoveries to evaluate extraction efficiency. The laboratory QA/QC results are presented in the Quality Assurance Report provided in the Certificates of Analysis prepared by BV Labs. The QA/QC results are reported as percent recoveries for matrix spikes, spiked blanks and QC standards, relative percent difference for laboratory duplicates and analyte concentrations for method blanks.

Review of the laboratory QA/QC results reported indicated that they were all within acceptable control limits or below applicable alert criteria for the sampled media and analytical test groups. Based on the assessment of the QA/QC, the analytical results reported by BV labs are of acceptable quality and further data qualifications are not required.

For QA/QC purposes, the analytical sample results are quantitatively evaluated by calculating the relative percent difference (RPD) between the samples and their duplicates. To accurately calculate a statistically valid RPD, the concentration of the analytes found in both the original and duplicate sample must be greater than five times the reporting detection limit (RDL).

The results of the RPD calculations are provided in Appendix C in Tables 7 to 12. All of the RPD for soil and groundwater were either not calculable or within the applicable alert limits.

A field blank was prepared and submitted for laboratory analysis of all parameters tested in groundwater. All parameters in the field blank were non-detectable.

5.0 Conclusion

A total of four boreholes were drilled three of which were completed as monitoring wells.

A summary of the findings from the delineation soil and groundwater sampling program is as follows:

- Three soil samples and one field duplicate were submitted for chemical analysis of BTEX and PHC, metals, and VOC. All of the soil samples were within the MECP Table 3 SCS;
- Three groundwater samples were submitted for chemical analysis of BTEX and PHC, metals, and VOC. All of the groundwater samples within the MECP Table 3 standards;
- Bedrock was encountered at depths ranging from 5.9 to 7.6 mbgs; and
- The groundwater flow direction is easterly.

Based on the results of the soil and groundwater sampling program, it does not appear that the subject site south and west of the gas station have been adversely affected by the operation of the gas station.

6.0 References

This study was conducted in accordance with the applicable Regulations, Guidelines, Policies, Standards, Protocols and Objectives. Specific reference is made to the following documents.

- AMEC Earth & Environmental Ltd. Phase II Environmental Site Assessment (ESA), 1740-1760 St. Laurent Boulevard & 1757 Russell Road, Ottawa, Ontario, January 2002.
- Canadian Standards Association, CSA-Z769-00 (R2013), Phase II Environmental Assessment Standard, 2013.
- EXP Services Inc. Phase One Environmental Site Assessment, 1740-1760 St. Laurent Boulevard, Ottawa, Ontario, October 2020.
- Ontario Ministry of the Environment, Conservation and Parks, Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act, April 15, 2011.
- Ontario Ministry of the Environment, Conservation and Parks, Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act, July 1, 2011.
- Ontario Ministry of the Environment, Conservation and Parks, Management of Excess Soil A Guide for Best Management Practices, January 2014.
- Ontario Regulation 153/04, made under the Environmental Protection Act, as amended.
- Ontario R.R.O. 1990, Regulation 347, made under the Environmental Protection Act, as amended.
- Ontario R.R.O. 1990, Regulation 903, made under the Water Resources Act, as amended.
- Terrapex Environmental Ltd. Petro Canada, Phase II Environmental Site Assessment (ESA), 1740 St. Laurent Boulevard, Ottawa, Ontario, June 2009.

7.0 General Limitations

Basis of Report

This report ("Report") is based on site conditions known or inferred by the investigation undertaken as of the date of the Report. Should changes occur which potentially impact the condition of the site the recommendations of EXP may require revaluation. Where special concerns exist, or 11421247 Canada Inc. ("the Client") has special considerations or requirements, these should be disclosed to EXP to allow for additional or special investigations to be undertaken not otherwise within the scope of investigation conducted for the purpose of the Report.

Reliance on Information Provided

The evaluation and conclusions contained in the Report are based on conditions in evidence at the time of site inspections and information provided to EXP by the Client and others. The Report has been prepared for the specific site, development, building, design or building assessment objectives and purpose as communicated by the Client. EXP has relied in good faith upon such representations, information and instructions and accepts no responsibility for any deficiency, misstatement or inaccuracy contained in the Report as a result of any misstatements, omissions, misrepresentation or fraudulent acts of persons providing information. Unless specifically stated otherwise, the applicability and reliability of the findings, recommendations, suggestions or opinions expressed in the Report are only valid to the extent that there has been no material alteration to or variation from any of the information provided to exp. If new information about the environmental conditions at the Site is found, the information should be provided to EXP so that it can be reviewed and revisions to the conclusions and/or recommendations can be made, if warranted.

Standard of Care

The Report has been prepared in a manner consistent with the degree of care and skill exercised by engineering consultants currently practicing under similar circumstances and locale. No other warranty, expressed or implied, is made. Unless specifically stated otherwise, the Report does not contain environmental consulting advice.

Complete Report

All documents, records, data and files, whether electronic or otherwise, generated as part of this assignment form part of the Report. This material includes, but is not limited to, the terms of reference given to EXP by the Client, communications between EXP and the Client, other reports, proposals or documents prepared by EXP for the Client in connection with the site described in the Report. In order to properly understand the suggestions, recommendations and opinions expressed in the Report, reference must be made to the Report in its entirety. EXP is not responsible for use by any party of portions of the Report.

Use of Report

The information and opinions expressed in the Report, or any document forming part of the Report, are for the sole benefit of the Client. No other party may use or rely upon the Report in whole or in part without the written consent of EXP. Any use of the Report, or any portion of the Report, by a third party are the sole responsibility of such third party. EXP is not responsible for damages suffered by any third party resulting from unauthorised use of the Report.

Report Format

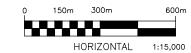
Where EXP has submitted both electronic file and a hard copy of the Report, or any document forming part of the Report, only the signed and sealed hard copy shall be the original documents for record and working purposes. In the event of a dispute or discrepancy, the hard copy shall govern. Electronic files transmitted by EXP utilize specific software and hardware systems. EXP makes no representation about the compatibility of these files with the Client's current or future software and

hardware systems. Regardless of format, the documents described herein are EXP's instruments of professional service and shall not be altered without the written consent of EXP.

8.0 Signatures

We trust this report meets your current needs. If you have any questions pertaining to the investigation undertaken by EXP, please do not hesitate to contact the undersigned.

Leah Wells, B.A.Sc., EIT Environmental Engineer-in-Training Earth and Environment Patricia Stelmack, M.Sc., P.Eng. Team Lead/Senior Project Manager Earth and Environment



EXP Services Inc.

11421247 Canada Inc. Phase II Environmental Site Assessment Adjacent to 1740 St. Laurent Boulevard, Ottawa, Ontario OTT-00260579-A0 October 2, 2020

Appendix A: Figures

exp Services Inc.

100-2650 Queensview Drive
Ottawa, ON K2B 8H6

www.exp.com

Filename: E:\OTT\OTT-00260579-B0\60 Execution\65 Drawings\260579-B0 Fig 1.dwg Last Saved: Oct 2, 2020 9:49 AM Last Plotted: Oct 2, 2020 9:51 AM Plotted by: CuiG

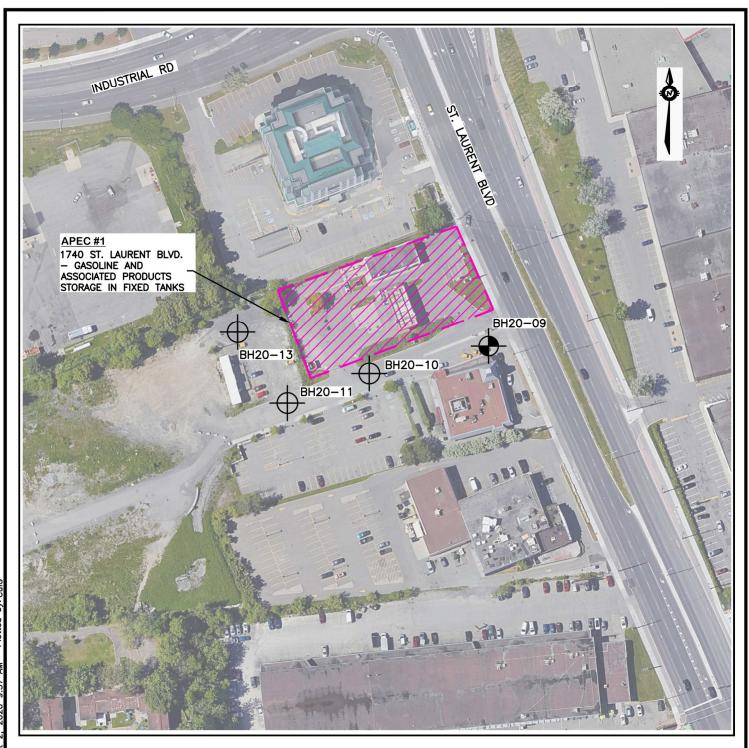
exp.

 DESIGN
 P.S.

 DRAWN
 G.C.

 DATE
 SEPT 2020

 FILE NO 01T-00260579-B0

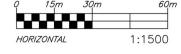

11421247 CANADA INC PROPOSED RESIDENTIAL DEVELOPMENT

SITE LOCATION PLAN
ADJACENT TO 1740 ST LAURENT BLVD, OTTAWA, ON

SCALE 1:15,000

SKETCH NO

FIG 1


LEGEND:

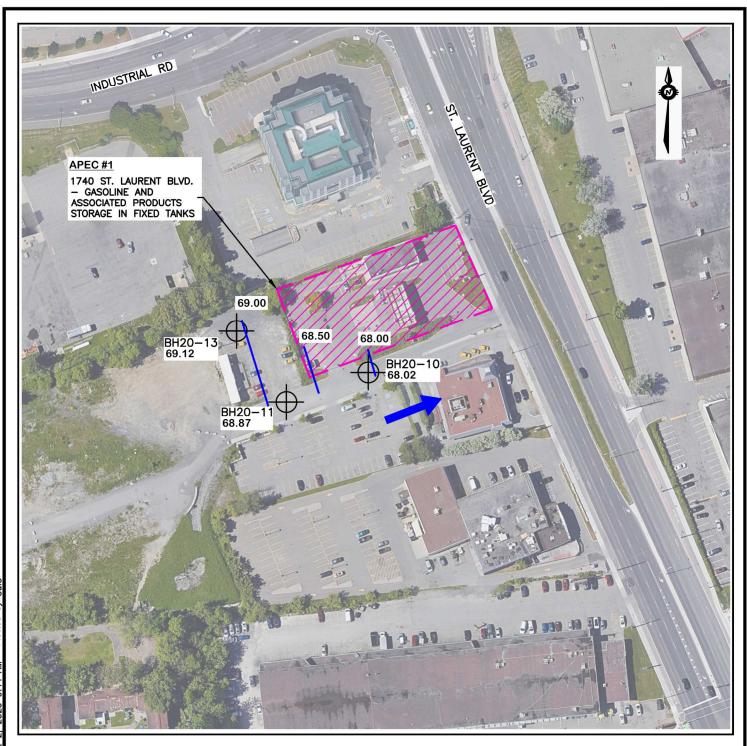
BOREHOLE LOCATION AND NUMBER

MONITORING WELL LOCATION AND NUMBER

exp Services Inc.

100-2650 Queensview Drive
Ottawa, ON K2B 8H6

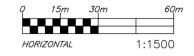
ww.exp.com


	DESIGN	L.W.
	DRAWN	G.C.
	DATE SE	PT. 2020

FILE NO OTT-00260579-B0 11421247 CANADA INC PROPOSED RESIDENTIAL DEVELOPMENT

SITE PLAN
PHASE II ESA
ADJACENT TO 1740 ST LAURENT BLVD, OTTAWA, ON

SCALE 1:1,250 SKETCH NO


FIG 2

LEGEND:

BH20-11 68.99

MONITORING WELL LOCATION, NUMBER AND GROUNDWATER ELEVATION

exp Services Inc. 100-2650 Queensview Drive Ottawa, ON K2B 8H6

ww.exp.com

	DESIGN	L.W.
	DRAWN	G.C.
	DATE SEP	T. 2020

FILE NO OTT-00260579-B0

11421247 CANADA INC PROPOSED RESIDENTIAL DEVELOPMENT GROUNDWATER CONTOUR PLAN PHASE II ESA ADJACENT TO 1740 ST LAURENT BLVD, OTTAWA, ON

SCALE 1:1,250 SKETCH NO

FIG

EXP Services Inc.

11421247 Canada Inc.
Phase II Environmental Site Assessment
Adjacent to 1740 St. Laurent Boulevard, Ottawa, Ontario
OTT-00260579-A0
October 2, 2020

Appendix B: Borehole Logs

Explanation of Terms Used on Borehole Records

SOIL DESCRIPTION

Terminology describing common soil genesis:

Topsoil: mixture of soil and humus capable of supporting good vegetative growth.

Peat: fibrous fragments of visible and invisible decayed organic matter.

Fill: where fill is designated on the borehole log it is defined as indicated by the sample recovered during the boring process. The reader is cautioned that fills are heterogeneous in nature and variable in density or degree of compaction. The borehole description may therefore not be applicable as a general description of site fill materials. All fills should be expected to contain obstruction such as wood, large concrete pieces or subsurface basements, floors, tanks, etc.; none of these may have been encountered in the boreholes. Since boreholes cannot accurately define the contents of the fill, test pits are recommended to provide supplementary information. Despite the use of test pits, the heterogeneous nature of fill will leave some ambiguity as to the exact composition of the fill. Most fills contain pockets, seams, or layers of organically contaminated soil. This organic material can result in the generation of methane gas and/or significant ongoing and future settlements. Fill at this site may have been monitored for the presence of methane gas and, if so, the results are given on the borehole logs. The monitoring process does not indicate the volume of gas that can be potentially generated nor does it pinpoint the source of the gas. These readings are to advise of the presence of gas only, and a detailed study is recommended for sites where any explosive gas/methane is detected. Some fill material may be contaminated by toxic/hazardous waste that renders it unacceptable for deposition in any but designated land fill sites; unless specifically stated the fill on this site has not been tested for contaminants that may be considered toxic or hazardous. This testing and a potential hazard study can be undertaken if requested. In most residential/commercial areas undergoing reconstruction, buried oil tanks are common and are generally not detected in a conventional geotechnical site investigation.

Till: the term till on the borehole logs indicates that the material originates from a geological process associated with glaciation. Because of this geological process the till must be considered heterogeneous in composition and as such may contain pockets and/or seams of material such as sand, gravel, silt or clay. Till often contains cobbles (60 to 200 mm) or boulders (over 200 mm). Contractors may therefore encounter cobbles and boulders during excavation, even if they are not indicated by the borings. It should be appreciated that normal sampling equipment cannot differentiate the size or type of any obstruction. Because of the horizontal and vertical variability of till, the sample description may be applicable to a very limited zone; caution is therefore essential when dealing with sensitive excavations or dewatering programs in till materials.

Terminology describing soil structure:

Desiccated: having visible signs of weathering by oxidization of clay minerals, shrinkage cracks, etc.

Stratified: alternating layers of varying material or color with the layers greater than 6 mm thick.

Laminated: alternating layers of varying material or color with the layers less than 6 mm thick.

Fissured: material breaks along plane of fracture.

Varved: composed of regular alternating layers of silt and clay.

Slickensided: fracture planes appear polished or glossy, sometimes striated.

Blocky: cohesive soil that can be broken down into small angular lumps which resist further

breakdown.

Lensed: inclusion of small pockets of different soil, such as small lenses of sand scattered

through a mass of clay; not thickness.

Seam: a thin, confined layer of soil having different particle size, texture, or color from

materials above and below.

Homogeneous: same color and appearance throughout.

Well Graded: having wide range in grain sized and substantial amounts of all predominantly on grain

size.

Uniformly Graded: predominantly on grain size.

All soil sample descriptions included in this report follow the ASTM D2487-11 Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System). The system divides soils into three major categories: (1) coarse grained, (2) fine-grained, and (3) highly organic. The soil is then subdivided based on either gradation or plasticity characteristics. The system provides a group symbol (e.g. SM) and group name (e.g. silty sand) for identification. The classification excludes particles larger than 76 mm. Please note that, with the exception of those samples where a grain size analysis has been made, all samples are classified visually in accordance with ASTM D2488-09a Standard Practice for Description and Identification of Soils (Visual-Manual Procedure). Visual classification is not sufficiently accurate to provide exact grain sizing or precise differentiation between size classification systems. Others may use different classification systems; one such system is the ISSMFE Soil Classification.

ISSMFE SOIL CLASSIFICATION

CLAY		SILT			SAND			GRAVEL		COBBLES	BOULDERS
	FINE	MEDIUM	COARSE	FINE	MEDIUM	COARSE	FINE	MEDIUM	COARSE		
0.002	0.00	6 0.02	0.06	0.2	0.6	2.0	6.0	20	60	200	
		·							1		

EQUIVALENT GRAIN DIAMETER IN MILLIMETRES

CLAY (PLASTIC) TO	FINE	MEDIUM	CRS.	FINE	COARSE
SILT (NONPLASTIC)		SAND		GF	RAVEL

UNIFIED SOIL CLASSIFICATION

Terminology describing materials outside the USCS, (e.g. particles larger than 76 mm, visible organic matter, construction debris) is based upon the proportion of these materials present and as described below in accordance with Note 16 in ASTM D2488-09a:

Table a: Percent or Proportion of Soil, Pp

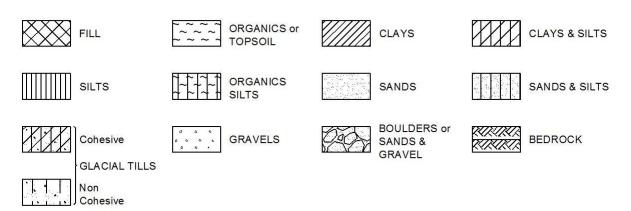
	Criteria
Trace	Particles are present but estimated to be less than 5%
Few	5≤Pp≤10%
Little	15≤Pp≤25%
Some	30≤Pp≤45%
Mostly	50≤Pp≤100%

The standard terminology to describe cohesionless soils includes the compactness as determined by the Standard Penetration Test 'N' value:

Table b: Apparent Density of Cohesionless Soil

remote at a premarite a constitution of the co				
'N' Value (blows/0.3 m)				
N<5				
5≤N<10				
10≤N<30				
30≤N<50				
50≤N				

The standard terminology to describe cohesive soils includes consistency, which is based on undrained shear strength as measured by insitu vane tests, penetrometer tests, unconfined compression tests or similar field and laboratory analysis, Standard Penetration Test 'N' values can also be used to provide an approximate indication of the consistency and shear strength of fine grained, cohesive soils:

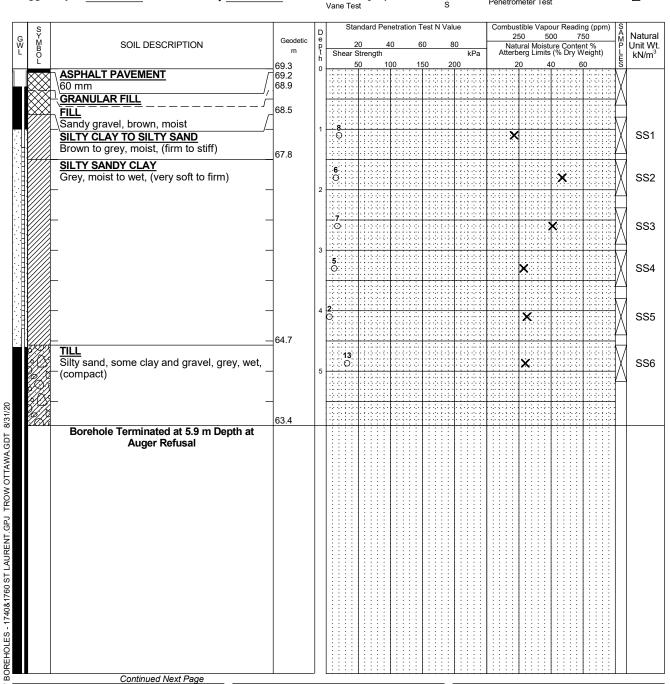

Table c: Consistency of Cohesive Soil

Consistency	Vane Shear Measurement (kPa)	'N' Value
Very Soft	<12.5	<2
Soft	12.5-25	2-4
Firm	25-50	4-8
Stiff	50-100	8-15
Very Stiff	100-200	15-30
Hard	>200	>30

Note: 'N' Value - The Standard Penetration Test records the number of blows of a 140 pound (64kg) hammer falling 30 inches (760mm), required to drive a 2 inch (50.8mm) O.D. split spoon sampler 1 foot (305mm). For split spoon samples where full penetration is not achieved, the number of blows is reported over the sampler penetration in meters (e.g. 50/0.15).

STRATA PLOT

Strata plots symbolize the soil or bedrock description. They are combinations of the following basic symbols:



WATER LEVEL MEASUREMENT

Open Borehole or Test Pit Monitoring Well, Piezometer or Standpipe

	_09 00	<u> </u>		-x
Project No:	OTT-00260579-A0			
Project:	Geotechnical Investigation and PI/II ESA		Figure No/	
Location:	1740&1760 St Laurent Boulevard, Ottawa, ON		Page. <u>1</u> of <u>2</u>	_
Date Drilled:	8/25/20	Split Spoon Sample	Combustible Vapour Reading	
Drill Type:	CME 75 (truck mount)	Auger Sample SPT (N) Value O	Natural Moisture Content Atterberg Limits	× ⊢—⊙
Datum:	Geodetic	Dynamic Cone Test Shelby Tube	Undrained Triaxial at % Strain at Failure	\oplus
Logged by:	ML Checked by: SP	Shear Strength by +	Shear Strength by Penetrometer Test	•

Borehole data requires interpretation by EXP before use by others

3.

BOREHOLE LOGS OF

LOG OF 1

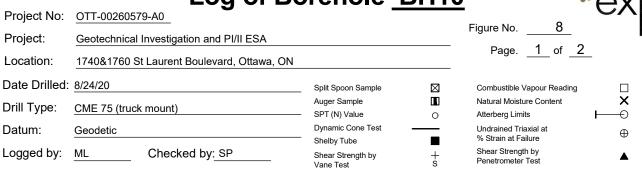
4. See Notes on Sample Descriptions

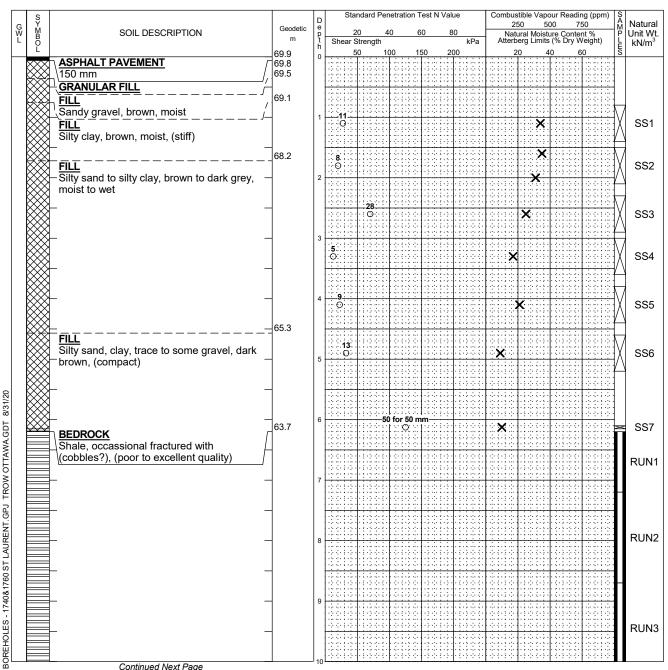
WATER LEVEL RECORDS						
Date	Water Level (m)	Hole Open To (m)				
completion	2.5	5.8				

CORE DRILLING RECORD												
Run No.	Depth (m)	RQD %										
	, ,											

Project No: OTT-00260579-A0

⊃roje	ct:	Geotechnical	Investigation	and I	PI/II	ESA


	اے	S Y		0	D						Combustible Vapour Reading (ppm) 250 500 750					SAM	Natural				
	G W L	SYMBOL	SOIL DESCRIPTION	Geodetic m	Depth	s	hear :	20 Stren	gth	40	6	0	80	kPa	Na Atterl	tural Mo berg Lin	isture nits (%	Conter Dry W	nt % eight)	li I	Unit Wt. kN/m ³
		Ĺ		59.3	n	+		50		00	15	50	200			20 : : :	40	6		ES	
	Ш					:			:::	:						: : :					
	Ш					:				:											
	Ш					1															
	Ш					1				:											
	Ш					H															
	Ш					1										1:::					
	Ш					:			:::	:						: : :					
	Ш					:				:											
	Ш																				
	Ш																				
						1				1						1:::					
	\parallel					:				:						: : :					
						:				:											
	Ш					:				1						1:::					
						:				:						: : :					
	Щ																				
						:				1						: : :					
						:				:											
																1:::					
						:				:											
						:				:											
						:				:											
						:				:						: : :					
3																					
000																					
2						:				1						: : :					
Ž						:															
1																					
S						:				:						: : :					
2						;															
2																					
- -						:				:						1 : : :					
3																					
						:				1											
- 1/40&1/60 ST LAURENT.GPJ TR						:															
- -																					
						1:	:::														
OREHOLES						:				1											
						Ŀ				Ŀ									::::		
		res.											_								


Borehole data requires interpretation by EXP before use by others

4. See Notes on Sample Descriptions

WATER LEVEL RECORDS												
Date	Water Level (m)	Hole Open To (m)										
completion	2.5	5.8										

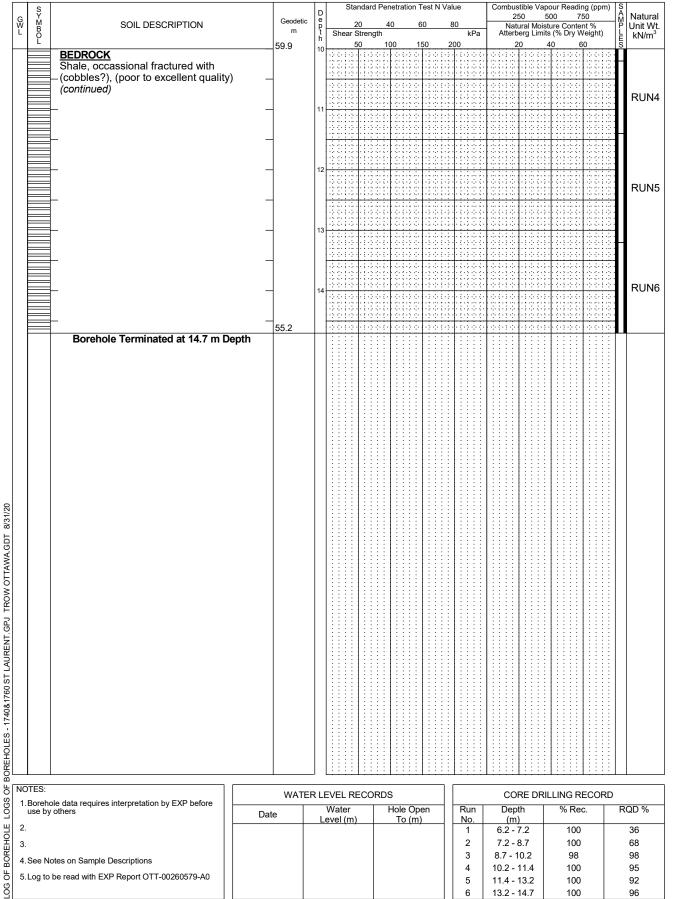
CORE DRILLING RECORD												
Run No.	Depth (m)	% Rec.	RQD %									

Continued Next Page

Borehole data requires interpretation by EXP before use by others

Я

4. See Notes on Sample Descriptions


WATER LEVEL RECORDS											
Date	Water Level (m)	Hole Open To (m)									

	CORE DRILLING RECORD											
Run	Depth	% Rec.	RQD %									
No.	(m)											
1	6.2 - 7.2	100	36									
2	7.2 - 8.7	100	68									
3	8.7 - 10.2	98	98									
4	10.2 - 11.4	100	95									
5	11.4 - 13.2	100	92									
6	13.2 - 14.7	100	96									

Project No: OTT-00260579-A0

Figure No.

Project: Geotechnical Investigation and PI/II ESA of 2 Page.

NO	T	ES:	

Borehole data requires interpretation by EXP before use by others

4. See Notes on Sample Descriptions

WATER LEVEL RECORDS												
Date	Water Level (m)	Hole Open To (m)										

CORE DRILLING RECORD											
Run	Depth	RQD %									
No.	(m)										
1	6.2 - 7.2	100	36								
2	7.2 - 8.7	100	68								
3	8.7 - 10.2	98	98								
4	10.2 - 11.4	100	95								
5	11.4 - 13.2	100	92								
6	13.2 - 14.7	100	96								

Project	t No:	OTT-00260579-A0	g c	יוי	O.	GII				<u> </u>				•		\leftarrow	X
Project	t:	Geotechnical Investigation and	d PI/II ES	SA								Figure N	_	9	_		ı
Locatio	on:	1740&1760 St Laurent Boulev	ard, Otta	wa, ON							Pag	je	<u>1</u> of				
Date Di	rilled:	8/25/20			Split Spoon Sample							Combust					
Drill Ty	pe:	CME 75 (truck mount)				Auger Sa	ample]	Natural Moisture Content					×
Datum:		Geodetic				SPT (N) ValueDynamic Cone Test					-	Atterberg Undraine	d Triaxi			1	— ⊕
Logged	bv:	ML Checked by:	SP		Shelby Tube Shear Strength by +				% Strain Shear St					→			
33	, .	<u></u>				Vane Tes		, Dy		Ś		Penetron	neter Te	est			
G S Y				Geodetic	D e					est N Va		25	50		750	ĺ	Natural
G M B O		SOIL DESCRIPTION		m	p t h	Shear S	-		61		kPa	Natural Moisture Content % Atterberg Limits (% Dry Weight)				P L E S	
	FILL		_	70.7	0	5	50	100	15	60 2	200	2	D 	40	60	::: S	5
	Grav –	elly sand to sandy gravel	-	-		3313											
	FILL			69.9													1
	Silty mois	sand to silty clay, some gravel,	brown, [–]		1	Ö						×					SS1
	FILL			69.2		40.10			. 1 - 2 - 3 - 1	-3-0-1-3			- 1 - 2 - 4 - 1 - 1 - 2 - 4 - 1		:	:: (
		l, trace silt and gravel, moist to	wet		2	Ō				-3 -3 -5 -3		×				<u> </u>	SS2
	(1000			68.4	-	30.10											
		l, some silt and gravel, Brown, v	vet,	1		4 ①				-2-2-2-2	1111111						SS3
	(loos –	e)	_	_	3					· · · · · · · · · · · · · · · · · · ·						#	
						.9 O						×				$ \rangle$	SS4
	_		-	66.9						-: : : : :						-	
	TILL Silty	ILL ilty sand to gravelly sand, some clay		-	4	15				· · · · · · · · · · · · · · · · · · ·		×				$\frac{1}{2}$	SS5
	grave to de	el, dark brown to grey, wet, (con	npact													#/	
	- 10 40	1150)				13											7
	_		-	-	5	· · · · · · · · ·				-3 -3 - 3 - 3 -3 -3 - 3 - 3 -3 -3 - 3 -	10000	X				\/X	SS6
	_		_			-2 (-1.2		41									
								• • • • • • • • • • • • • • • • • • •				×				<u> </u>	SS7
			-	1	6	-2			48	-2							1
	_		-	-		-5 (-1-5			<u></u>	-5-0-2-5	1.1.1.1.1	×	1.3.0.2.1			/X	SS8
	Bo	rehole Terminated at 7.2 m Dep	oth at	63.5							1.7.5.7			1 1 1 1			
		Auger Refusal															
NOTES						Liiii			:::		1::::	1:::::		1:::			
NOTES: 1. Boreho	le data r	equires interpretation by EXP before		WATI	ER LI	EVEL RE Water	ECOF		de Onc	an l	Due			ILLING			RQD %
use by	otners		Da		L	vvater <u>evel (m)</u> 3.0)		ole Ope <u>To (m)</u> No	11	Run No.	Dept (m)		% Rec.			ハベレ 70
3.			Сопр	iGuUI1		5.0			140								
		ample Descriptions															

LOG OF BOREHOLE LOGS OF BOREHOLES - 1740&1760 ST LAURENT.GPJ TROW OTTAWA.GDT 8/31/20

Project No:	OTT-00260579-A0	g 0. D	-	0110	- 1\			<u>. </u>	-: .		11			: >>		
Project:	Geotechnical Investigation and	PI/II ESA						_	igure N	_	11 1 of	- 1		- 1		
Location:	1740&1760 St Laurent Bouleva	ard, Ottawa, ON						_	Рац	је	0					
Date Drilled:	8/25/20		_	Split Spoon	Sampl	e	\boxtimes		Combust	tible Var	oour Readi	ng				
Drill Type:	CME 75 (truck mount)		Auger Sample — SPT (N) Value						Natural Moisture Content Atterberg Limits							
Datum:	Geodetic			Dynamic Co Shelby Tube	ne Tes	st -			Undraine % Strain	- ed Triaxi		·		\oplus		
Logged by:	ML Checked by:	ML Checked by: SP			e igth by		+ s		Shear St Penetror	trength b	ру			•		
G W M B O L	SOIL DESCRIPTION	Geodetic m	D e p t h	Standa 20 Shear Stre 50	4 ength	netration Te 0 60 00 150	8	B0 kPa	25 Nati Atterb	50	sture Conte ts (% Dry V	50) SAMPLES	Natural Unit Wt. kN/m³		
FILL Sand	ly gravel, grey, moist, (compact)				28 ⊙				×				X	SS1		
(compac			1	14 					×				X	SS2		
Grey - very	Y CLAY TO CLAYEY SILT to brown, moist to wet, (very sof stiff)	ft to	2	16 ⊙	-2 (-1)					×			X	SS3		
		_	3	7	-2 (-1)						*	1 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		SS4		
		-		Ö.						,	K		X	SS5		
TIL		67.4	4	1 P:	-2 -2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -						×		X	SS6		
Silty wet,	sand, some clay and gravel, dar (compact to dense)	k grey, _	5	11					×				X	SS7		
			6			43			×				X	SS8		
Bo	rehole Terminated at 6.8 m Dep	- 65.2 th at			37				×				X	SS9		
	Auger Refusal															
NOTES: 1. Borehole data r	requires interpretation by EXP before	WATE		EVEL REC				_			ILLING R					
use by others		Date		Water evel (m)		Hole Oper To (m)	n	Run No.	Dept (m)		% Re	c.	R	QD %		
	sample Descriptions with EXP Report OTT-00260579-A0	completion		3.0		No										

LOG OF BOREHOLE LOGS OF BOREHOLES - 1740&1760 ST LAURENT.GPJ TROW OTTAWA.GDT 8/31/20

EXP Services Inc.

11421247 Canada Inc.
Phase II Environmental Site Assessment
Adjacent to 1740 St. Laurent Boulevard, Ottawa, Ontario
OTT-00260579-A0
October 2, 2020

Appendix C: Analytical Summary Tables

Table 1 - Petroleum Hydrocarbons in Soil
Property Adjacent to 1740 St. Laurent Boulevard, Ottawa, Ontario
OTT-00260579-A0

O11-00260579-A0									
Sample ID Sampling Date Sample Depth (mbgs) Bureau Veritas (BV) ID Date of Analysis BV Certificate of Analysis	MECP Table 3 SCS ¹	BH9-SS3	Dup (Field Duplicate of BH9-SS3)	BH10-SS4	BH11-SS3				
		25-Aug-2020	25-Aug-2020	25-Aug-2020	25-Aug-2020				
		2.3 to 2.9 NMB843 29-Aug-2020	2.3 to 2.9 NMB844 29-Aug-2020	3.0 to 3.6 NMB842 29-Aug-2020	2.3 to 2.9 NMB845 29-Aug-2020				
						C0M0429	C0M0429	C0M0429	C0M0429
						Benzene	0.17	<0.020	<0.020
		Toluene	6	<0.020	<0.020	<0.020	<0.020		
Ethylbenzene	15	<0.020	<0.020	<0.020	< 0.020				
Total Xylenes	25	<0.020	<0.020	<0.020	<0.020				
F1 (C6-C10) - BTEX*	65	<10	<10	<10	<10				
F2 (C10-C16)	150	<10	<10	<10	<10				
F3 (C16-C34)	1300	<50	<50	<50	<50				
F4 (C34-C50)**	5600	<50	<50	<50	<50				

NOTES:

1

Ontario Ministry of Environment, Conservation and Parks (MECP), Soil, Groundwater and Sediment Standards for use under Part

XV.1 of the Environmental Protection Act, April 2011, Table 3 Full Depth Generic Site Condition Standards (SCS) in a Non- Potable

Ground Water Condition for Residential/Parkland/Institutional property use and medium and fine textured soils.

All results are reported in ppm (ug/g) unless otherwise indicated.

2 Trip blank provided by laboratory was for water analysis. Therefore, results are reported in ug/L.

F1 fraction does not include BTEX.

** In instances where the PHC F2 to F4 chromatogram did not reach baseline, the F4 fraction result shown is

the highest value obtained via the gas chromatograph/flame ionization detection method or the gravimetric

<(RDL) Non-detectable results are shown as "< (RDL)" where RDL represents the reporting detection limit.

NV No Value N/A Not Applicable

- Parameter not analyzed m bgs Metres below ground surface

Indicates soil exceedance of MECP Table 3 SCS

Table 2 - Inorganic Parameters in Soil
Property Adjacent to 1740 St. Laurent Boulevard, Ottawa, Ontario
OTT-00260579-A0

Sample ID		BH9-SS3	Dup (Field Duplicate of BH9-SS3)	BH10-SS4	BH11-SS3
Sampling Date		25-Aug-2020	25-Aug-2020	25-Aug-2020	25-Aug-2020
Sample Depth (mbgs)	MECP Table 3 SCS ¹	2.3 to 2.9	2.3 to 2.9	3.0 to 3.6	2.3 to 2.9
Bureau Veritas (BV) ID		NMB844	NMB844	NMB842	NMB845
Date of Analysis		31-Aug-2020	31-Aug-2020	31-Aug-2020	31-Aug-2020
BV Certificate of Analysis		C0M0429	C0M0429	C0M0429	C0M0429
Antimony	7.5	<0.20	<0.20	<0.20	<0.20
Arsenic	18	1.3	<1.0	1.6	1.3
Barium	390	89	150	150	24
Beryllium	5	0.31	0.44	0.43	0.23
Boron (Total)	120	<5.0	<5.0	<5.0	<5.0
Cadmium	1.2	<0.10	<0.10	<0.10	<0.10
Chromium	160	20	29	23	8.8
Cobalt	22	5.6	8.1	8	3.8
Copper	180	15	19	17	12
Lead	120	3.5	5.5	6.9	3.9
Molybdenum	6.9	<0.50	<0.50	0.97	<0.50
Nickel	130	12	18	18	9.2
Selenium	2.4	<0.50	<0.50	<0.50	<0.50
Silver	25	<0.20	<0.20	<0.20	<0.20
Thallium	1	0.12	0.2	0.15	0.078
Uranium	23	0.58	0.62	1	0.35
Vanadium	86	38	47	38	16
Zinc	340	30	43	35	18

1

Ontario Ministry of Environment, Conservation and Parks (MECP), Soil, Groundwater and Sediment Standards for use

under Part XV.1 of the Environmental Protection Act, April 2011, Table 3 Full Depth Generic Site Condition Standards (SCS) in a Non- Potable Ground Water Condition for Residential/Parkland/Institutional property use and medium and fine

textured soils.

All results are reported in ppm (ug/g) unless otherwise indicated.

<(RDL) Non-detectable results are shown as "< (RDL)" where RDL represents the reporting detection limit.

NV No Value N/A Not Applicable

- Parameter not analyzed m bgs Metres below ground surface

Indicates soil exceedance of MECP Table 3 SCS

Table 3 - Volatile Organic Compounds in Soil Property Adjacent to 1740 St. Laurent Boulevard, Ottawa, Ontario OTT-00260579-A0

Sample ID		BH9-SS3	Dup (Field Duplicate of BH9-SS3)	BH10-SS4	BH11-SS3	
Sampling Date	MEOD T. U. 0 000 1	25-Aug-2020	25-Aug-2020	25-Aug-2020	25-Aug-2020	
Sample Depth (mbgs)	MECP Table 3 SCS 1	2.3 to 2.9	2.3 to 2.9	3.0 to 3.6	2.3 to 2.9	
Bureau Veritas (BV) ID		NMB844	NMB844	NMB842	NMB845	
Date of Analysis		28-Aug-2020	28-Aug-2020	28-Aug-2020	28-Aug-2020	
BV Certificate of Analysis		C0M0429	C0M0429	C0M0429	C0M0429	
Acetone	28	< 0.50	<0.50	<0.50	< 0.50	
Benzene	0.17	<0.020	<0.020	<0.020	< 0.020	
Bromodichloromethane	13	< 0.050	<0.050	<0.050	< 0.050	
Bromoform	0.26	<0.050	<0.050	<0.050	< 0.050	
Bromomethane	0.05	< 0.050	<0.050	<0.050	< 0.050	
Carbon Tetrachloride	0.12	<0.050	<0.050	<0.050	< 0.050	
Chlorobenzene	2.7	<0.050	<0.050	<0.050	< 0.050	
Chloroform	0.18	<0.050	<0.050	<0.050	< 0.050	
Dibromochloromethane	9.4	<0.050	<0.050	<0.050	< 0.050	
1,2-Dichlorobenzene	4.3	< 0.050	<0.050	<0.050	< 0.050	
1,3-Dichlorobenzene	6	< 0.050	<0.050	<0.050	< 0.050	
1,4-Dichlorobenzene	0.097	< 0.050	<0.050	<0.050	< 0.050	
Dichlorodifluoromethane	25	< 0.050	<0.050	<0.050	< 0.050	
1,1-Dichloroethane	11	< 0.050	<0.050	<0.050	< 0.050	
1,2-Dichloroethane	0.05	<0.050	<0.050	<0.050	< 0.050	
1,1-Dichloroethylene	0.05	< 0.050	<0.050	<0.050	< 0.050	
Cis-1,2-Dichloroethylene	30	< 0.050	<0.050	<0.050	< 0.050	
Trans-1,2-Dichloroethylene	0.75	< 0.050	<0.050	<0.050	< 0.050	
1,2-Dichloropropane	0.085	< 0.050	<0.050	<0.050	< 0.050	
Cis-1,3-Dichloropropylene	NV	< 0.030	< 0.030	<0.030	< 0.030	
Trans-1,3-Dichloropropylene	NV	<0.040	<0.040	<0.040	< 0.040	
1,3-Dichloropropene (cis + trans)	0.083	< 0.050	<0.050	<0.050	< 0.050	
Ethylbenzene	15	<0.020	<0.020	<0.020	<0.020	
Ethylene Dibromide	0.05	< 0.050	<0.050	<0.050	< 0.050	
Hexane(n)	34	< 0.050	<0.050	<0.050	< 0.050	
Methyl Ethyl Ketone	44	<0.50	<0.50	< 0.50	< 0.50	
Methylene Chloride	0.96	< 0.050	<0.050	<0.050	< 0.050	
Methyl Isobutyl Ketone	4.3	<0.50	<0.50	<0.50	< 0.50	
Methyl-t-Butyl Ether	1.4	<0.050	<0.050	< 0.050	< 0.050	
Styrene	2.2	<0.050	<0.050	<0.050	< 0.050	
1,1,1,2-Tetrachloroethane	0.05	<0.050	<0.050	<0.050	< 0.050	
1,1,2,2-Tetrachloroethane	0.05	<0.050	<0.050	<0.050	< 0.050	
Toluene	6	<0.020	<0.020	<0.020	<0.020	
Tetrachloroethylene	2.3	<0.050	<0.050	<0.050	< 0.050	
1,1,1-Trichloroethane	3.4	<0.050	<0.050	<0.050	< 0.050	
1,1,2-Trichloroethane	0.05	<0.050	<0.050	<0.050	<0.050	
Trichloroethylene	0.52	<0.050	<0.050	<0.050	<0.050	
Trichlorofluoromethane	5.8	<0.050	<0.050	<0.050	< 0.050	
Vinyl Chloride	0.022	<0.020	<0.020	<0.020	<0.020	
Total Xylenes	25	<0.020	<0.020	< 0.020	< 0.020	

Ontario Ministry of Environment, Conservation and Parks (MECP), Soil, Groundwater and Sediment Standards for use under Part XV.1 of the Environmental Protection Act, April 2011,

Table 3 Full Depth Generic Site Condition Standards (SCS) in a Non- Potable Ground Water Condition for Residential/Parkland/Institutional property use and medium and finetextured soils.

All results are reported in ppm (ug/g) unless otherwise indicated.

<(RDL) Non-detectable results are shown as "< (RDL)" where RDL represents the reporting detection limit

NV
 N/A
 Not Applicable
 Parameter not analyzed
 m bgs
 Metres below ground surface

Indicates soil exceedance of MECP Table 3 SCS

Table 4 - Petroleum Hydrocarbons in Groundwater
Property Adjacent to 1740 St. Laurent Boulevard, Ottawa, Ontario
OTT-00260579-A0

Sample ID		BH10	DUP (Field Duplicate of BH10)	BH11	BH14	Field Blank	Trip Blank
Sampling Date	MECP Table 3	10-Sep-2020	10-Sep-2020	10-Sep-2020	10-Sep-2020	10-Sep-2020	10-Sep-2020
Screen Interval (mbgs)	SCS 1	0.7 to 3.7	0.7 to 3.7	1.0 to 4.0	1.5 to 4.5	NA	NA
Bureau Veritas (BV) ID		NPL781	NPL786	NPL782	NPL783	NPL784	NPL785
Date of Analysis		17-Sep-20	17-Sep-20	17-Sep-20	17-Sep-20	17-Sep-20	17-Sep-20
BV Certificate of Analysis		C0N6285	C0N6285	C0N6285	C0N6285	C0N6285	C0N6285
Benzene	430	0.27	0.25	<0.20	<0.20	<0.20	<0.20
Toluene	18000	0.47	0.49	<0.20	<0.20	<0.20	<0.20
Ethylbenzene	2300	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Total Xylenes	4200	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
F1 (C6-C10) - BTEX	750	<25	<25	<25	<25	<25	<25
F2 (C10-C16)	150	<100	<100	<100	<100	<100	-
F3 (C16-C34)	500	<200	<200	<200	<200	<200	-
F4 (C34-C50)	500	<200	<200	<200	<200	<200	-

1

Ontario Ministry of Environment, Conservation and Parks (MECP), Soil, Groundwater and Sediment Standards for use under

Part XV.1 of the Environmental Protection Act, April 2011, Table 3 Full Depth Generic Site Condition Standards (SCS) in a Non-

Potable Ground Water Condition for all types of property use and medium and fine textured soils.

All results are reported in ppb (ug/L) unless otherwise indicated.

<(RDL) Non-detectable results are shown as "< (RDL)" where RDL represents the reporting detection limit.

NV No Value
N/A Not Applicable
- Parameter not analyzed
m bgs Metres below ground surface

Indicates groundwater exceedance of MECP Table 3 SCS

Table 5 - Inorganic Paramters in Groundwater Property Adjacent to 1740 St. Laurent Boulevard, Ottawa, Ontario OTT-00260579-A0

Sample ID		BH10	DUP (Field Duplicate of BH10)	BH11	BH14	Field Blank
Sampling Date	MECP Table 3	10-Sep-2020	10-Sep-2020	10-Sep-2020	10-Sep-2020	10-Sep-2020
Screen Interval (mbgs)	SCS 1	0.7 to 3.7	0.7 to 3.7	1.0 to 4.0	1.5 to 4.5	NA
Bureau Veritas (BV) ID		NPL781	NPL786	NPL782	NPL783	NPL784
Date of Analysis		16-Sep-20	16-Sep-20	16-Sep-20	16-Sep-20	16-Sep-20
BV Certificate of Analysis		C0N6285	C0N6285	C0N6285	C0N6285	C0N6285
Antimony	20000	<0.50	<0.50	<0.50	0.85	<0.50
Arsenic	1900	<1.0	<1.0	<1.0	1.8	<1.0
Barium	29000	190	190	75	100	<2.0
Beryllium	67	<0.40	<0.40	<0.40	<0.40	<0.40
Boron	45000	250	270	72	190	<10
Cadmium	2.7	<0.090	<0.090	<0.090	<0.090	<0.090
Chromium	810	<5.0	<5.0	<5.0	<5.0	<5.0
Cobalt	66	0.51	0.51	1.6	1.3	<0.50
Copper	87	< 0.90	<0.90	1.8	2.9	<0.90
Lead	25	<0.50	<0.50	<0.50	<0.50	<0.50
Molybdenum	9200	17	17	2.4	36	<0.50
Nickel	490	1.3	1.3	2.2	4.3	<1.0
Sodium	NV	560000	560000	220000	410000	<100
Selenium	63	<2.0	<2.0	<2.0	<2.0	<2.0
Silver	1.5	<0.090	<0.090	<0.090	<0.090	<0.090
Thallium	510	<0.050	<0.050	<0.050	0.063	<0.050
Uranium	420	0.76	0.81	1.1	11	<0.10
Vanadium	250	<0.50	<0.50	<0.50	0.86	<0.50
Zinc	1100	<5.0	<5.0	<5.0	<5.0	<5.0

Ontario Ministry of Environment, Conservation and Parks (MECP), Soil, Groundwater and Sediment 1

Standards for use under Part XV.1 of the Environmental Protection Act, April 2011, Table 3 Full Depth

Generic Site Condition Standards (SCS) in a Non- Potable Ground Water Condition for all types of property

All results are reported in ppb (ug/L) unless otherwise indicated.

<(RDL) Non-detectable results are shown as "< (RDL)" where RDL represents the reporting detection limit.

NVNo Value Not Applicable N/A

Parameter not analyzed Metres below ground surface m bgs

Indicates groundwater exceedance of MECP Table 3 SCS

Table 6 - Volatile Organic Compounds in Groundwater 1740-1760 St. Laurent Boulevard, Ottawa, Ontario OTT-00260579-A0

Sample ID		BH10	DUP (Field Duplicate of BH10)	BH11	BH14	Field Blank	Trip Blank
Sampling Date	MECP Table 3	10-Sep-2020	10-Sep-2020	10-Sep-2020	10-Sep-2020	10-Sep-2020	10-Sep-2020
Screen Interval (mbgs)	SCS 1	0.7 to 3.7	0.7 to 3.7	1.0 to 4.0	1.5 to 4.5	NA	NA
Bureau Veritas (BV) ID		NPL781	NPL786	NPL782	NPL783	NPL784	NPL785
Date of Analysis		15-Sep-20	15-Sep-20	15-Sep-20	15-Sep-20	15-Sep-20	15-Sep-20
BV Certificate of Analysis		C0N6285	C0N6285	C0N6285	C0N6285	C0N6285	C0N6285
Acetone	130000	<10	12	<10	<10	<10	<10
Benzene	430	0.27	0.25	<0.20	<0.20	<0.20	<0.20
Bromodichloromethane	85000	< 0.50	< 0.50	<0.50	<0.50	<0.50	<0.50
Bromoform	770	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Bromomethane	56	< 0.50	< 0.50	<0.50	<0.50	<0.50	<0.50
Carbon Tetrachloride	8.4	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Chlorobenzene	630	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Chloroform	22	0.42	0.42	<0.20	<0.20	<0.20	<0.20
Dibromochloromethane	82000	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
1,2-Dichlorobenzene	9600	< 0.50	<0.50	<0.50	<0.50	<0.50	<0.50
1,3-Dichlorobenzene	9600	< 0.50	< 0.50	<0.50	<0.50	<0.50	<0.50
1,4-Dichlorobenzene	67	< 0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Dichlorodifluoromethane	4400	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,1-Dichloroethane	3100	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
1,2-Dichloroethane	12	< 0.50	< 0.50	<0.50	<0.50	<0.50	<0.50
1,1-Dichloroethylene	17	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Cis-1,2-Dichloroethylene	17	<0.50	< 0.50	<0.50	<0.50	<0.50	<0.50
Trans-1,2-Dichloroethylene	17	< 0.50	< 0.50	<0.50	<0.50	<0.50	<0.50
1,2-Dichloropropane	140	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Cis-1,3-Dichloropropylene	NV	< 0.30	< 0.30	<0.30	< 0.30	<0.30	< 0.30
Trans-1,3-Dichloropropylene	NV	< 0.40	<0.40	<0.40	<0.40	<0.40	<0.40
1,3-Dichloropropene (cis + trans)	45	< 0.50	< 0.50	<0.50	<0.50	<0.50	<0.50
Ethylbenzene	2300	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Ethylene Dibromide	0.83	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Hexane(n)	520	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Methyl Ethyl Ketone	1500000	<10	<10	<10	<10	<10	<10
Methylene Chloride	5500	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
Methyl Isobutyl Ketone	580000	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Methyl-t-Butyl Ether	1400	<0.50	<0.50	2.4	<0.50	<0.50	<0.50
Styrene	9100	< 0.50	< 0.50	<0.50	<0.50	<0.50	<0.50
1,1,1,2-Tetrachloroethane	28	< 0.50	<0.50	<0.50	<0.50	<0.50	<0.50
1,1,2,2-Tetrachloroethane	15	<0.50	< 0.50	<0.50	<0.50	<0.50	<0.50
Toluene	18000	0.47	0.49	<0.20	<0.20	<0.20	<0.20
Tetrachloroethylene	17	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
1,1,1-Trichloroethane	6700	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
1,1,2-Trichloroethane	30	< 0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Trichlorofluoromethane	2500	< 0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Trichloroethylene	17	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Vinyl Chloride	1.7	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
m-Xylene & p-Xylene	NV	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
o-Xylene	NV	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Total Xylenes	4200	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20

Ontario Ministry of Environment, Conservation and Parks (MECP), Soil, Groundwater and Sediment Standards for use under Part XV.1 of the Environmental Protection Act, April 2011, Table 3 Full Depth Generic Site Condition Standards (SCS) in a Non-Potable Ground Water Condition for all types of property use and medium and fine textured soils.

All results are reported in ppb (ug/L) unless otherwise indicated.

<(RDL) Non-detectable results are shown as "< (RDL)" where RDL represents the reporting detection limit. No Value

 $\mathsf{N}\mathsf{V}$ N/A Not Applicable Parameter not analyzed m bgs

Metres below ground surface Indicates groundwater exceedance of MECP Table 3 SCS

Table 7 - Relative Percent Differences - Petroleum Hydrocarbons in Soil Adjacent to 1740 St. Laurent Boulevard, Ottawa, Ontario

OTT-00260579-A0 Page 1 of 1

Parameter	Units	RDL	BH9-SS3	Dup	RPD (%)	Alert Limit (%)	
		25-Aug		25-Aug-2020			
Petroleum Hydrocarbons							
F1 PHCs (C6-C10) - BTEX	ug/g	10	<10	<10	nc	60	
F2 PHCs (C10-C16)	ug/g	10	<10	<10	nc	60	
F3 PHCs (C16-C34)	ug/g	50	<50	<50	nc	60	
F4 PHCs (C34-C50)	ug/g	50	<50	<50	nc	60	
Volatiles							
Benzene	ug/g	0.020	<0.020	<0.020	nc	100	
Toluene	ug/g	0.020	<0.020	<0.020	nc	100	
Ethylbenzene	ug/g	0.020	<0.020	<0.020	nc	100	
Total Xylenes	ug/g	0.020	<0.020	<0.020	nc	100	

NOTES:

Analysis by Bureau Veritas Laboratories

All results on dry weight basis; <RDL means not detected at reporting detection limit (RDL)

- means "not analysed"

nc means "not calculable" - one (or both) of the results are <5x RDL

Exceedances of alert limits are shown in $\underline{\text{bold}}$

Table 8 - Relative Percent Differences - Inorganic Parameters in Soil Adjacent to 1740 St. Laurent Boulevard, Ottawa, Ontario

OTT-00260579-A0 Page 1 of 1

Parameter	Units	RDL	BH9-SS3	Dup	RPD (%)	Alert Limit (%)	
			25-Aug-2020	25-Aug-2020			
Inorganic Parameters							
Antimony	ug/g	0.20	<0.20	<0.20	nc	60	
Arsenic	ug/g	1.0	1.3	<1.0	nc	60	
Barium	ug/g	0.50	89	150	51	60	
Beryllium	ug/g	0.20	0.31	0.44	35	60	
Boron	ug/g	5.0	<5.0	<5.0	nc	60	
Cadmium	ug/g	0.10	<0.10	<0.10	nc	60	
Chromium	ug/g	1.0	20	29	37	60	
Cobalt	ug/g	0.10	5.6	8.1	36	60	
Copper	ug/g	0.50	15	19	24	60	
Lead	ug/g	1.0	3.5	5.5	44	60	
Molybdenum	ug/g	0.50	<0.50	<0.50	nc	60	
Nickel	ug/g	0.50	12	18	40	60	
Selenium	ug/g	0.20	<0.50	<0.50	nc	60	
Silver	ug/g	0.50	<0.20	<0.20	nc	60	
Thallium	ug/g	0.050	0.12	0.2	50	60	
Uranium	ug/g	0.050	0.58	0.62	7	60	
Vanadium	ug/g	5.0	38	47	21	60	
Zinc	ug/g	5.0	30	43	36	60	

NOTES:

Analysis by Bureau Veritas Laboratories

All results on dry weight basis; <RDL means not detected at reporting detection limit (RDL)

- means "not analysed"

nc means "not calculable" - one (or both) of the results are <5x RDL

Exceedances of alert limits are shown in $\underline{\text{\bf bold}}$

Table 9 - Relative Percent Differences - Volatile Organic Compounds in Soil Adjacent to 1740 St. Laurent Boulevard, Ottawa, Ontario OTT-00260579-A0

Page 1 of 1

Parameter	Units	RDL	BH9-SS3	Dup	RPD (%)	Alert Limit (%)
	J		25-Aug-2020	25-Aug-2020	111 2 (70)	7.11011 =111111 (7.5)
Volatile Organic Parameters						
Acetone	ug/g dry	0.50	<0.50	<0.50	nc	100
Benzene	ug/g dry	0.020	<0.020	<0.020	nc	100
Bromodichloromethane	ug/g dry	0.050	< 0.050	<0.050	nc	100
Bromoform	ug/g dry	0.050	< 0.050	<0.050	nc	100
Bromomethane	ug/g dry	0.050	< 0.050	< 0.050	nc	100
Carbon Tetrachloride	ug/g dry	0.050	< 0.050	<0.050	nc	100
Chlorobenzene	ug/g dry	0.050	< 0.050	< 0.050	nc	100
Chloroform	ug/g dry	0.050	< 0.050	<0.050	nc	100
Dibromochloromethane	ug/g dry	0.050	< 0.050	<0.050	nc	100
1,2-Dichlorobenzene	ug/g dry	0.050	< 0.050	<0.050	nc	100
1,3-Dichlorobenzene	ug/g dry	0.050	<0.050	<0.050	nc	100
1,4-Dichlorobenzene	ug/g dry	0.050	< 0.050	<0.050	nc	100
Dichlorodifluoromethane	ug/g dry	0.050	< 0.050	<0.050	nc	100
1,1-Dichloroethane	ug/g dry	0.050	< 0.050	<0.050	nc	100
1,2-Dichloroethane	ug/g dry	0.050	<0.050	<0.050	nc	100
1,1-Dichloroethylene	ug/g dry	0.050	<0.050	<0.050	nc	100
Cis-1,2-Dichloroethylene	ug/g dry	0.050	<0.050	<0.050	nc	100
Trans-1,2-Dichloroethylene	ug/g dry	0.050	<0.050	<0.050	nc	100
1,2-Dichloropropane	ug/g dry	0.050	<0.050	<0.050	nc	100
Cis-1,3-Dichloropropylene	ug/g dry	0.030	<0.030	<0.030	nc	100
Trans-1,3-Dichloropropylene	ug/g dry	0.040	<0.040	<0.040	nc	100
1,3-Dichloropropene (cis + trans)	ug/g dry	0.050	<0.050	<0.050	nc	100
Ethylbenzene	ug/g dry	0.020	<0.020	<0.020	nc	100
Ethylene Dibromide	ug/g dry	0.050	<0.050	<0.050	nc	100
Hexane(n)	ug/g dry	0.050	<0.050	<0.050	nc	100
Methyl Ethyl Ketone	ug/g dry	0.50	<0.50	<0.50	nc	100
Methylene Chloride	ug/g dry	0.050	<0.050	<0.050	nc	100
Methyl Isobutyl Ketone	ug/g dry	0.50	<0.50	<0.50	nc	100
Methyl-t-Butyl Ether	ug/g dry	0.050	<0.050	<0.050	nc	100
Styrene	ug/g dry	0.050	<0.050	<0.050	nc	100
1,1,1,2-Tetrachloroethane	ug/g dry	0.050	<0.050	<0.050	nc	100
1,1,2,2-Tetrachloroethane	ug/g dry	0.050	<0.050	<0.050	nc	100
Toluene	ug/g dry	0.020	<0.020	<0.020	nc	100
Tetrachloroethylene	ug/g dry	0.050	<0.050	<0.050	nc	100
1,1,1-Trichloroethane	ug/g dry	0.050	<0.050	<0.050	nc	100
1,1,2-Trichloroethane	ug/g dry	0.050	<0.050	<0.050	nc	100
Trichloroethylene	ug/g dry	0.050	<0.050	<0.050	nc	100
Trichlorofluoromethane	ug/g dry	0.050	<0.050	<0.050	nc	100
Vinyl Chloride	ug/g dry	0.020	<0.020	<0.020	nc	100
Total Xylenes	ug/g dry	0.020	<0.020	<0.020	nc	100

NOTES:

Analysis by Bureau Veritas Laboratories

All results on dry weight basis; <RDL means not detected at reporting detection limit (RDL)

- means "not analysed"

nc means "not calculable" - one (or both) of the results are <5x RDL

Exceedances of alert limits are shown in bold

Table 10 - Relative Percent Differences - Petroleum Hydrocarbons in Groundwater Adjacent to 1740 St. Laurent Boulevard, Ottawa, Ontario

OTT-00260579-A0 Page 1 of 1

Parameter	Units	Units RDL BH10 10-Sep-2020		DUP	RPD (%)	Alert Limit (%)
				10-Sep-2020		
Petroleum Hydrocarbons	-					
F1 PHCs (C6-C10) - BTEX	ug/L	25	<25	<25	nc	60
F2 PHCs (C10-C16)	ug/L	100	<100	<100	nc	60
F3 PHCs (C16-C34)	ug/L	200	<200	<200	nc	60
F4 PHCs (C34-C50)	ug/L	200	<200	<200	nc	60
Volatiles						
Benzene	ug/L	0.20	0.27	0.25	8	60
Toluene	ug/L	0.20	0.47	0.49	4	60
Ethylbenzene	ug/L	0.20	<0.20	<0.20	nc	60
Total Xylenes	ug/L	0.20	<0.20	<0.20	nc	60

NOTES:

Analysis by Bureau Veritas Laboratories

All results on dry weight basis; <RDL means not detected at reporting detection limit (RDL)

- means "not analysed"

nc means "not calculable" - one (or both) of the results are <5x RDL

Exceedances of alert limits are shown in $\underline{\text{\bf bold}}$

Table 11 - Relative Percent Differences - Inorganic Parameters in Soil Adjacent to 1740 St. Laurent Boulevard, Ottawa, Ontario

OTT-00260579-A0 Page 1 of 1

Parameter	Units	RDL	BH10	DUP	RPD (%)	Alert Limit (%)
			10-Sep-2020	10-Sep-2020	, ,	, ,
Inorganic Parameters						
Antimony	ug/L	0.50	<0.50	<0.50	nc	40
Arsenic	ug/L	1.0	<1.0	<1.0	nc	40
Barium	ug/L	2.0	190	190	0	40
Beryllium	ug/L	0.40	<0.40	<0.40	nc	40
Boron	ug/L	10	250	270	8	40
Cadmium	ug/L	0.090	<0.090	<0.090	nc	40
Chromium	ug/L	5.0	<5.0	<5.0	nc	40
Cobalt	ug/L	0.50	0.51	0.51	0	40
Copper	ug/L	0.90	< 0.90	<0.90	nc	40
Lead	ug/L	0.50	<0.50	<0.50	nc	40
Molybdenum	ug/L	0.50	17	17	0	40
Nickel	ug/L	1.0	1.3	1.3	0	40
Sodium	ug/L	100	560000	560000	0	40
Selenium	ug/L	2.0	<2.0	<2.0	nc	40
Silver	ug/L	0.090	<0.090	<0.090	nc	40
Thallium	ug/L	0.050	<0.050	<0.050	nc	40
Uranium	ug/L	0.10	0.76	0.81	6	40
Vanadium	ug/L	0.50	<0.50	<0.50	nc	40
Zinc	ug/L	5.0	<5.0	<5.0	nc	40

NOTES:

Analysis by Bureau Veritas Laboratories

All results on dry weight basis; <RDL means not detected at reporting detection limit (RDL)

- means "not analysed"

nc means "not calculable" - one (or both) of the results are <5x RDL

Exceedances of alert limits are shown in bold

Table 12 - Relative Percent Differences - Volatile Organic Compounds in Groundwater Adjacent to 1740 St. Laurent Boulevard, Ottawa, Ontario OTT-00260579-A0

Page 1 of 1

ь.		DD!	BH10	DUP	DDD (0/)	Alant Limit (0/)
Parameter	Units	RDL	10-Sep-2020	10-Sep-2020	RPD (%)	Alert Limit (%)
Acetone	ug/L	10	<10	12	nc	60
Benzene	ug/L	0.20	0.27	0.25	nc	60
Bromodichloromethane	ug/L	0.50	<0.50	<0.50	nc	60
Bromoform	ug/L	1.0	<1.0	<1.0	nc	60
Bromomethane	ug/L	0.50	<0.50	<0.50	nc	60
Carbon Tetrachloride	ug/L	0.20	<0.20	<0.20	nc	60
Chlorobenzene	ug/L	0.20	<0.20	<0.20	nc	60
Chloroform	ug/L	0.20	0.42	0.42	nc	60
Dibromochloromethane	ug/L	0.50	<0.50	<0.50	nc	60
1,2-Dichlorobenzene	ug/L	0.50	<0.50	<0.50	nc	60
1.3-Dichlorobenzene	ug/L	0.50	<0.50	<0.50	nc	60
1,4-Dichlorobenzene	ug/L	0.50	<0.50	<0.50	nc	60
1,1-Dichloroethane	ug/L	0.20	<1.0	<1.0	nc	60
1,2-Dichloroethane	ug/L	0.50	<0.20	<0.20	nc	60
1,1-Dichloroethylene	ug/L	0.20	<0.50	<0.50	nc	60
Dichlorodifluoromethane	ug/L	1.0	<0.20	<0.20	nc	60
Cis-1,2-Dichloroethylene	ug/L	0.50	<0.50	<0.50	nc	60
Trans-1,2-Dichloroethylene	ug/L	0.50	<0.50	<0.50	nc	60
1,2-Dichloropropane	ug/L	0.20	<0.20	<0.20	nc	60
Cis-1,3-Dichloropropylene	ug/L	0.30	<0.30	<0.30	nc	60
Trans-1,3-Dichloropropylene	ug/L	0.40	<0.40	<0.40	nc	60
1,3-Dichloropropene (cis + trans)	ug/L	0.50	< 0.50	<0.50	nc	60
Ethylbenzene	ug/L	0.20	<0.20	<0.20	nc	60
Ethylene Dibromide	ug/L	0.20	<0.20	<0.20	nc	60
Hexane(n)	ug/L	1.0	<1.0	<1.0	nc	60
Methyl Ethyl Ketone	ug/L	10	<10	<10	nc	60
Methylene Chloride	ug/L	2.0	<2.0	<2.0	nc	60
Methyl Isobutyl Ketone	ug/L	5.0	<5.0	<5.0	nc	60
Methyl-t-Butyl Ether	ug/L	0.50	<0.50	< 0.50	nc	60
Styrene	ug/L	0.50	<0.50	< 0.50	nc	60
1,1,1,2-Tetrachloroethane	ug/L	0.50	< 0.50	< 0.50	nc	60
1,1,2,2-Tetrachloroethane	ug/L	0.50	<0.50	< 0.50	nc	60
Toluene	ug/L	0.20	0.47	0.49	nc	60
Tetrachloroethylene	ug/L	0.20	<0.20	<0.20	nc	60
1,1,1-Trichloroethane	ug/L	0.20	<0.20	<0.20	nc	60
1,1,2-Trichloroethane	ug/L	0.50	<0.50	<0.50	nc	60
Trichloroethylene	ug/L	0.20	<0.50	<0.50	nc	60
Trichlorofluoromethane	ug/L	0.50	<0.20	<0.20	nc	60
Vinyl Chloride	ug/L	0.20	<0.20	<0.20	nc	60
m-Xylene & p-Xylene	ug/L	0.20	<0.20	<0.20	nc	60
o-Xylene	ug/L	0.20	<0.20	<0.20	nc	60
Total Xylenes	ug/L	0.20	<0.20	<0.20	nc	60

NOTES:

Analysis by Bureau Veritas Laboratories

<RDL means not detected at reporting detection limit (RDL)

- means "not analysed"

nc means "not calculable" - one (or both) of the results are <5x RDL

Exceedances of alert limits are shown in bold

EXP Services Inc.

11421247 Canada Inc. Phase II Environmental Site Assessment Adjacent to 1740 St. Laurent Boulevard, Ottawa, Ontario OTT-00260579-A0 October 2, 2020

Appendix D: Laboratory Certificates of Analysis

Your Project #: OTT-00260579-A0 Your C.O.C. #: 788417-01-01

Attention: Patricia Stelmack

exp Services Inc Ottawa Branch 100-2650 Queensview Drive Ottawa, ON CANADA K2B 8H6

Report Date: 2020/09/02

Report #: R6316053 Version: 2 - Revision

CERTIFICATE OF ANALYSIS – REVISED REPORT

BV LABS JOB #: C0M0429 Received: 2020/08/26, 15:33

Sample Matrix: Soil # Samples Received: 5

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
1,3-Dichloropropene Sum (1)	3	N/A	2020/08/30		EPA 8260C m
1,3-Dichloropropene Sum (1)	1	N/A	2020/08/31		EPA 8260C m
1,3-Dichloropropene Sum (1)	1	N/A	2020/09/01		EPA 8260C m
Petroleum Hydrocarbons F2-F4 in Soil (1, 2)	4	2020/08/28	2020/08/29	CAM SOP-00316	CCME CWS m
Petroleum Hydrocarbons F2-F4 in Soil (1, 2)	1	2020/08/31	2020/09/01	CAM SOP-00316	CCME CWS m
Strong Acid Leachable Metals by ICPMS (1)	5	2020/08/31	2020/08/31	CAM SOP-00447	EPA 6020B m
Moisture (1)	4	N/A	2020/08/27	CAM SOP-00445	Carter 2nd ed 51.2 m
Moisture (1)	1	N/A	2020/08/31	CAM SOP-00445	Carter 2nd ed 51.2 m
Volatile Organic Compounds and F1 PHCs (1)	4	N/A	2020/08/28	CAM SOP-00230	EPA 8260C m
Volatile Organic Compounds and F1 PHCs (1)	1	N/A	2020/08/31	CAM SOP-00230	EPA 8260C m

Remarks:

Bureau Veritas Laboratories are accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by BV Labs are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in BV Labs profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and BV Labs in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

BV Labs liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. BV Labs has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by BV Labs, unless otherwise agreed in writing. BV Labs is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by BV Labs, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

- * RPDs calculated using raw data. The rounding of final results may result in the apparent difference.
- (1) This test was performed by Bureau Veritas Laboratories Mississauga
- (2) All CCME PHC results met required criteria unless otherwise stated in the report. The CWS PHC methods employed by Bureau Veritas Laboratories conform to all prescribed

Your Project #: OTT-00260579-A0 Your C.O.C. #: 788417-01-01

Attention: Patricia Stelmack

exp Services Inc Ottawa Branch 100-2650 Queensview Drive Ottawa, ON CANADA K2B 8H6

Report Date: 2020/09/02

Report #: R6316053 Version: 2 - Revision

CERTIFICATE OF ANALYSIS – REVISED REPORT

BV LABS JOB #: C0M0429 Received: 2020/08/26, 15:33

elements of the reference method and performance based elements have been validated. All modifications have been validated and proven equivalent following "Alberta Environment's Interpretation of the Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil Validation of Performance-Based Alternative Methods September 2003". Documentation is available upon request. Modifications from Reference Method for the Canada-wide Standard for Petroleum Hydrocarbons in Soil-Tier 1 Method: F2/F3/F4 data reported using validated cold solvent extraction instead of Soxhlet extraction.

Encryption Key

Project Manager 02 Sep 2020 10:20:40

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

Katherine Szozda, Project Manager Email: Katherine.Szozda@bvlabs.com

Phone# (613) 274-0573

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Client Project #: OTT-00260579-A0

Sampler Initials: PS

O.REG 153 ICPMS METALS (SOIL)

				t			t		
BV Labs ID			NMB842	NMB843	NMB843	NMB844	NMB845		
Sampling Date			2020/08/24	2020/08/25	2020/08/25	2020/08/25	2020/08/25		
			12:00	08:00	08:00	08:00	10:00		
COC Number			788417-01-01	788417-01-01	788417-01-01	788417-01-01	788417-01-01		
	UNITS	Criteria	BH10-SS4	BH9-SS3	BH9-SS3 Lab-Dup	DUP	BH11-SS3	RDL	QC Batch
Metals									
Acid Extractable Antimony (Sb)	ug/g	7.5	<0.20	<0.20	<0.20	<0.20	<0.20	0.20	6918411
Acid Extractable Arsenic (As)	ug/g	18	1.6	1.3	1.3	<1.0	1.3	1.0	6918411
Acid Extractable Barium (Ba)	ug/g	390	150	89	80	150	24	0.50	6918411
Acid Extractable Beryllium (Be)	ug/g	5	0.43	0.31	0.27	0.44	0.23	0.20	6918411
Acid Extractable Boron (B)	ug/g	120	<5.0	<5.0	<5.0	<5.0	<5.0	5.0	6918411
Acid Extractable Cadmium (Cd)	ug/g	1.2	<0.10	<0.10	<0.10	<0.10	<0.10	0.10	6918411
Acid Extractable Chromium (Cr)	ug/g	160	23	20	19	29	8.8	1.0	6918411
Acid Extractable Cobalt (Co)	ug/g	22	8.0	5.6	5.4	8.1	3.8	0.10	6918411
Acid Extractable Copper (Cu)	ug/g	180	17	15	14	19	12	0.50	6918411
Acid Extractable Lead (Pb)	ug/g	120	6.9	3.5	3.4	5.5	3.9	1.0	6918411
Acid Extractable Molybdenum (Mo)	ug/g	6.9	0.97	<0.50	<0.50	<0.50	<0.50	0.50	6918411
Acid Extractable Nickel (Ni)	ug/g	130	18	12	11	18	9.2	0.50	6918411
Acid Extractable Selenium (Se)	ug/g	2.4	<0.50	<0.50	<0.50	<0.50	<0.50	0.50	6918411
Acid Extractable Silver (Ag)	ug/g	25	<0.20	<0.20	<0.20	<0.20	<0.20	0.20	6918411
Acid Extractable Thallium (TI)	ug/g	1	0.15	0.12	0.13	0.20	0.078	0.050	6918411
Acid Extractable Uranium (U)	ug/g	23	1.0	0.58	0.59	0.62	0.35	0.050	6918411
Acid Extractable Vanadium (V)	ug/g	86	38	38	37	47	16	5.0	6918411
Acid Extractable Zinc (Zn)	ug/g	340	35	30	29	43	18	5.0	6918411

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition

Client Project #: OTT-00260579-A0

Sampler Initials: PS

O.REG 153 ICPMS METALS (SOIL)

BV Labs ID			NMB846		
Sampling Date			2020/08/25		
Sampling Date			12:00		
COC Number			788417-01-01		
	UNITS	Criteria	BH13-SS4	RDL	QC Batch
Metals					
Acid Extractable Antimony (Sb)	ug/g	7.5	<0.20	0.20	6918411
Acid Extractable Arsenic (As)	ug/g	18	<1.0	1.0	6918411
Acid Extractable Barium (Ba)	ug/g	390	380	0.50	6918411
Acid Extractable Beryllium (Be)	ug/g	5	0.78	0.20	6918411
Acid Extractable Boron (B)	ug/g	120	6.6	5.0	6918411
Acid Extractable Cadmium (Cd)	ug/g	1.2	<0.10	0.10	6918411
Acid Extractable Chromium (Cr)	ug/g	160	62	1.0	6918411
Acid Extractable Cobalt (Co)	ug/g	22	15	0.10	6918411
Acid Extractable Copper (Cu)	ug/g	180	33	0.50	6918411
Acid Extractable Lead (Pb)	ug/g	120	6.1	1.0	6918411
Acid Extractable Molybdenum (Mo)	ug/g	6.9	0.50	0.50	6918411
Acid Extractable Nickel (Ni)	ug/g	130	34	0.50	6918411
Acid Extractable Selenium (Se)	ug/g	2.4	<0.50	0.50	6918411
Acid Extractable Silver (Ag)	ug/g	25	<0.20	0.20	6918411
Acid Extractable Thallium (Tl)	ug/g	1	0.34	0.050	6918411
Acid Extractable Uranium (U)	ug/g	23	0.61	0.050	6918411
Acid Extractable Vanadium (V)	ug/g	86	84	5.0	6918411
Acid Extractable Zinc (Zn)	ug/g	340	100	5.0	6918411
					_

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water

Condition

Client Project #: OTT-00260579-A0

Sampler Initials: PS

O.REG 153 VOCS BY HS & F1-F4 (SOIL)

		_	_	_	_	_		<u>.</u>
BV Labs ID			NMB842	NMB843		NMB844		
Sampling Date			2020/08/24	2020/08/25		2020/08/25		
Sumpling Dute			12:00	08:00		08:00		
COC Number			788417-01-01	788417-01-01		788417-01-01		
	UNITS	Criteria	BH10-SS4	BH9-SS3	QC Batch	DUP	RDL	QC Batch
Inorganics								
Moisture	%	-	21	25	6913534	24	1.0	6919049
Calculated Parameters	•	•	•	•	•			
1,3-Dichloropropene (cis+trans)	ug/g	0.083	<0.050	<0.050	6912678	<0.050	0.050	6912678
Volatile Organics								
Acetone (2-Propanone)	ug/g	28	<0.50	<0.50	6915170	<0.50	0.50	6915170
Benzene	ug/g	0.17	<0.020	<0.020	6915170	<0.020	0.020	6915170
Bromodichloromethane	ug/g	13	<0.050	<0.050	6915170	<0.050	0.050	6915170
Bromoform	ug/g	0.26	<0.050	<0.050	6915170	<0.050	0.050	6915170
Bromomethane	ug/g	0.05	<0.050	<0.050	6915170	<0.050	0.050	6915170
Carbon Tetrachloride	ug/g	0.12	<0.050	<0.050	6915170	<0.050	0.050	6915170
Chlorobenzene	ug/g	2.7	<0.050	<0.050	6915170	<0.050	0.050	6915170
Chloroform	ug/g	0.17	<0.050	<0.050	6915170	<0.050	0.050	6915170
Dibromochloromethane	ug/g	9.4	<0.050	<0.050	6915170	<0.050	0.050	6915170
1,2-Dichlorobenzene	ug/g	4.3	<0.050	<0.050	6915170	<0.050	0.050	6915170
1,3-Dichlorobenzene	ug/g	6	<0.050	<0.050	6915170	<0.050	0.050	6915170
1,4-Dichlorobenzene	ug/g	0.097	<0.050	<0.050	6915170	<0.050	0.050	6915170
Dichlorodifluoromethane (FREON 12)	ug/g	25	<0.050	<0.050	6915170	<0.050	0.050	6915170
1,1-Dichloroethane	ug/g	11	<0.050	<0.050	6915170	<0.050	0.050	6915170
1,2-Dichloroethane	ug/g	0.05	<0.050	<0.050	6915170	<0.050	0.050	6915170
1,1-Dichloroethylene	ug/g	0.05	<0.050	<0.050	6915170	<0.050	0.050	6915170
cis-1,2-Dichloroethylene	ug/g	30	<0.050	<0.050	6915170	<0.050	0.050	6915170
trans-1,2-Dichloroethylene	ug/g	0.75	<0.050	<0.050	6915170	<0.050	0.050	6915170
1,2-Dichloropropane	ug/g	0.085	<0.050	<0.050	6915170	<0.050	0.050	6915170
cis-1,3-Dichloropropene	ug/g	0.083	<0.030	<0.030	6915170	<0.030	0.030	6915170
trans-1,3-Dichloropropene	ug/g	0.083	<0.040	<0.040	6915170	<0.040	0.040	6915170
Ethylbenzene	ug/g	15	<0.020	<0.020	6915170	<0.020	0.020	6915170
Ethylene Dibromide	ug/g	0.05	<0.050	<0.050	6915170	<0.050	0.050	6915170
Hexane	ug/g	34	<0.050	<0.050	6915170	<0.050	0.050	6915170
Methylene Chloride(Dichloromethane)	ug/g	0.96	<0.050	<0.050	6915170	<0.050	0.050	6915170
Methyl Ethyl Ketone (2-Butanone)	ug/g	44	<0.50	<0.50	6915170	<0.50	0.50	6915170
Methyl Isobutyl Ketone	ug/g	4.3	<0.50	<0.50	6915170	<0.50	0.50	6915170
Methyl t-butyl ether (MTBE)	ug/g	1.4	<0.050	<0.050	6915170	<0.050	0.050	6915170

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition

Client Project #: OTT-00260579-A0

Sampler Initials: PS

O.REG 153 VOCS BY HS & F1-F4 (SOIL)

					_			_
BV Labs ID			NMB842	NMB843		NMB844		
Sampling Date			2020/08/24	2020/08/25		2020/08/25		
Sampling Date			12:00	08:00		08:00		
COC Number			788417-01-01	788417-01-01		788417-01-01		
	UNITS	Criteria	BH10-SS4	BH9-SS3	QC Batch	DUP	RDL	QC Batch
Styrene	ug/g	2.2	<0.050	<0.050	6915170	<0.050	0.050	6915170
1,1,1,2-Tetrachloroethane	ug/g	0.05	<0.050	<0.050	6915170	<0.050	0.050	6915170
1,1,2,2-Tetrachloroethane	ug/g	0.05	<0.050	<0.050	6915170	<0.050	0.050	6915170
Tetrachloroethylene	ug/g	2.3	<0.050	<0.050	6915170	<0.050	0.050	6915170
Toluene	ug/g	6	<0.020	<0.020	6915170	<0.020	0.020	6915170
1,1,1-Trichloroethane	ug/g	3.4	<0.050	<0.050	6915170	<0.050	0.050	6915170
1,1,2-Trichloroethane	ug/g	0.05	<0.050	<0.050	6915170	<0.050	0.050	6915170
Trichloroethylene	ug/g	0.52	<0.050	<0.050	6915170	<0.050	0.050	6915170
Trichlorofluoromethane (FREON 11)	ug/g	5.8	<0.050	<0.050	6915170	<0.050	0.050	6915170
Vinyl Chloride	ug/g	0.022	<0.020	<0.020	6915170	<0.020	0.020	6915170
p+m-Xylene	ug/g	-	<0.020	<0.020	6915170	<0.020	0.020	6915170
o-Xylene	ug/g	-	<0.020	<0.020	6915170	<0.020	0.020	6915170
Total Xylenes	ug/g	25	<0.020	<0.020	6915170	<0.020	0.020	6915170
F1 (C6-C10)	ug/g	65	<10	<10	6915170	<10	10	6915170
F1 (C6-C10) - BTEX	ug/g	65	<10	<10	6915170	<10	10	6915170
F2-F4 Hydrocarbons								
F2 (C10-C16 Hydrocarbons)	ug/g	150	<10	<10	6914834	<10	10	6919212
F3 (C16-C34 Hydrocarbons)	ug/g	1300	<50	<50	6914834	<50	50	6919212
F4 (C34-C50 Hydrocarbons)	ug/g	5600	<50	<50	6914834	<50	50	6919212
Reached Baseline at C50	ug/g	-	Yes	Yes	6914834	Yes		6919212
Surrogate Recovery (%)	•						•	
o-Terphenyl	%	-	98	98	6914834	82		6919212
4-Bromofluorobenzene	%	-	85	81	6915170	83		6915170
D10-o-Xylene	%	-	87	85	6915170	86		6915170
D4-1,2-Dichloroethane	%	-	122	122	6915170	123		6915170
D8-Toluene	%	-	88	88	6915170	86		6915170

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition

Client Project #: OTT-00260579-A0

Sampler Initials: PS

O.REG 153 VOCS BY HS & F1-F4 (SOIL)

BV Labs ID			NMB845	NMB846		
Sampling Date			2020/08/25	2020/08/25		
-			10:00	12:00		
COC Number	_		788417-01-01	788417-01-01		
	UNITS	Criteria	BH11-SS3	BH13-SS4	RDL	QC Batch
Inorganics						
Moisture	%	-	19	29	1.0	6913534
Calculated Parameters						
1,3-Dichloropropene (cis+trans)	ug/g	0.083	<0.050	<0.050	0.050	6912678
Volatile Organics						
Acetone (2-Propanone)	ug/g	28	<0.50	<0.50	0.50	6915170
Benzene	ug/g	0.17	<0.020	<0.020	0.020	6915170
Bromodichloromethane	ug/g	13	<0.050	<0.050	0.050	6915170
Bromoform	ug/g	0.26	<0.050	<0.050	0.050	6915170
Bromomethane	ug/g	0.05	<0.050	<0.050	0.050	6915170
Carbon Tetrachloride	ug/g	0.12	<0.050	<0.050	0.050	6915170
Chlorobenzene	ug/g	2.7	<0.050	<0.050	0.050	6915170
Chloroform	ug/g	0.17	<0.050	<0.050	0.050	6915170
Dibromochloromethane	ug/g	9.4	<0.050	<0.050	0.050	6915170
1,2-Dichlorobenzene	ug/g	4.3	<0.050	<0.050	0.050	6915170
1,3-Dichlorobenzene	ug/g	6	<0.050	<0.050	0.050	6915170
1,4-Dichlorobenzene	ug/g	0.097	<0.050	<0.050	0.050	6915170
Dichlorodifluoromethane (FREON 12)	ug/g	25	<0.050	<0.050	0.050	6915170
1,1-Dichloroethane	ug/g	11	<0.050	<0.050	0.050	6915170
1,2-Dichloroethane	ug/g	0.05	<0.050	<0.050	0.050	6915170
1,1-Dichloroethylene	ug/g	0.05	<0.050	<0.050	0.050	6915170
cis-1,2-Dichloroethylene	ug/g	30	<0.050	<0.050	0.050	6915170
trans-1,2-Dichloroethylene	ug/g	0.75	<0.050	<0.050	0.050	6915170
1,2-Dichloropropane	ug/g	0.085	<0.050	<0.050	0.050	6915170
cis-1,3-Dichloropropene	ug/g	0.083	<0.030	<0.030	0.030	6915170
trans-1,3-Dichloropropene	ug/g	0.083	<0.040	<0.040	0.040	6915170
Ethylbenzene	ug/g	15	<0.020	<0.020	0.020	6915170
Ethylene Dibromide	ug/g	0.05	<0.050	<0.050	0.050	6915170
Hexane	ug/g	34	<0.050	<0.050	0.050	6915170
Methylene Chloride(Dichloromethane)	ug/g	0.96	<0.050	<0.050	0.050	6915170
Methyl Ethyl Ketone (2-Butanone)	ug/g	44	<0.50	<0.50	0.50	6915170
Methyl Isobutyl Ketone	ug/g	4.3	<0.50	<0.50	0.50	6915170
RDL = Reportable Detection Limit					•	

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition

Client Project #: OTT-00260579-A0

Sampler Initials: PS

O.REG 153 VOCS BY HS & F1-F4 (SOIL)

BV Labs ID			NMB845	NMB846		
Sampling Date			2020/08/25	2020/08/25		
			10:00	12:00		
COC Number			788417-01-01	788417-01-01		
	UNITS	Criteria	BH11-SS3	BH13-SS4	RDL	QC Batch
Methyl t-butyl ether (MTBE)	ug/g	1.4	<0.050	<0.050	0.050	6915170
Styrene	ug/g	2.2	<0.050	<0.050	0.050	6915170
1,1,1,2-Tetrachloroethane	ug/g	0.05	<0.050	<0.050	0.050	6915170
1,1,2,2-Tetrachloroethane	ug/g	0.05	<0.050	<0.050	0.050	6915170
Tetrachloroethylene	ug/g	2.3	<0.050	<0.050	0.050	6915170
Toluene	ug/g	6	<0.020	<0.020	0.020	6915170
1,1,1-Trichloroethane	ug/g	3.4	<0.050	<0.050	0.050	6915170
1,1,2-Trichloroethane	ug/g	0.05	<0.050	<0.050	0.050	6915170
Trichloroethylene	ug/g	0.52	<0.050	<0.050	0.050	6915170
Trichlorofluoromethane (FREON 11)	ug/g	5.8	<0.050	<0.050	0.050	6915170
Vinyl Chloride	ug/g	0.022	<0.020	<0.020	0.020	6915170
p+m-Xylene	ug/g	-	<0.020	<0.020	0.020	6915170
o-Xylene	ug/g	-	<0.020	<0.020	0.020	6915170
Total Xylenes	ug/g	25	<0.020	<0.020	0.020	6915170
F1 (C6-C10)	ug/g	65	<10	<10	10	6915170
F1 (C6-C10) - BTEX	ug/g	65	<10	<10	10	6915170
F2-F4 Hydrocarbons						
F2 (C10-C16 Hydrocarbons)	ug/g	150	<10	<10	10	6914834
F3 (C16-C34 Hydrocarbons)	ug/g	1300	<50	<50	50	6914834
F4 (C34-C50 Hydrocarbons)	ug/g	5600	<50	<50	50	6914834
Reached Baseline at C50	ug/g	-	Yes	Yes		6914834
Surrogate Recovery (%)	•					•
o-Terphenyl	%	-	98	96		6914834
4-Bromofluorobenzene	%	-	91	80		6915170
D10-o-Xylene	%	-	91	82		6915170
D4-1,2-Dichloroethane	%	-	117	123		6915170
D8-Toluene	%	-	85	88		6915170
DDI Damantable Detection Limit	•					

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition

exp Services Inc

Client Project #: OTT-00260579-A0

Sampler Initials: PS

TEST SUMMARY

BV Labs ID: NMB842 Sample ID: BH10-SS4

Matrix: Soil

Collected:

2020/08/24

Shipped:

Received: 2020/08/26

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
1,3-Dichloropropene Sum	CALC	6912678	N/A	2020/08/30	Automated Statchk
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	6914834	2020/08/28	2020/08/29	Jeevaraj Jeevaratrnam
Strong Acid Leachable Metals by ICPMS	ICP/MS	6918411	2020/08/31	2020/08/31	Viviana Canzonieri
Moisture	BAL	6913534	N/A	2020/08/27	Prgya Panchal
Volatile Organic Compounds and F1 PHCs	GC/MSFD	6915170	N/A	2020/08/28	Denis Reid

BV Labs ID: NMB843

Sample ID: BH9-SS3

Matrix: Soil

Collected:

2020/08/25

Shipped: Received: 2020/08/26

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
1,3-Dichloropropene Sum	CALC	6912678	N/A	2020/08/30	Automated Statchk
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	6914834	2020/08/28	2020/08/29	Jeevaraj Jeevaratrnam
Strong Acid Leachable Metals by ICPMS	ICP/MS	6918411	2020/08/31	2020/08/31	Viviana Canzonieri
Moisture	BAL	6913534	N/A	2020/08/27	Prgya Panchal
Volatile Organic Compounds and F1 PHCs	GC/MSFD	6915170	N/A	2020/08/28	Denis Reid

BV Labs ID: NMB843 Dup Sample ID: BH9-SS3

Matrix: Soil

Collected: 2020/08/25

Shipped:

Received: 2020/08/26

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Strong Acid Leachable Metals by ICPMS	ICP/MS	6918411	2020/08/31	2020/08/31	Viviana Canzonieri

BV Labs ID: NMB844 Sample ID: DUP

Matrix: Soil

Collected: Shipped:

2020/08/26 Received:

2020/08/25

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
1,3-Dichloropropene Sum	CALC	6912678	N/A	2020/09/01	Automated Statchk
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	6919212	2020/08/31	2020/09/01	Prabhjot Gulati
Strong Acid Leachable Metals by ICPMS	ICP/MS	6918411	2020/08/31	2020/08/31	Viviana Canzonieri
Moisture	BAL	6919049	N/A	2020/08/31	Kruti Jitesh Patel
Volatile Organic Compounds and F1 PHCs	GC/MSFD	6915170	N/A	2020/08/28	Denis Reid

BV Labs ID: NMB845 Sample ID: BH11-SS3

Matrix: Soil Collected: 2020/08/25

Shipped:

2020/08/26 Received:

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
1,3-Dichloropropene Sum	CALC	6912678	N/A	2020/08/31	Automated Statchk
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	6914834	2020/08/28	2020/08/29	Jeevaraj Jeevaratrnam
Strong Acid Leachable Metals by ICPMS	ICP/MS	6918411	2020/08/31	2020/08/31	Viviana Canzonieri
Moisture	BAL	6913534	N/A	2020/08/27	Prgya Panchal
Volatile Organic Compounds and F1 PHCs	GC/MSFD	6915170	N/A	2020/08/31	Denis Reid

exp Services Inc

Client Project #: OTT-00260579-A0

Sampler Initials: PS

TEST SUMMARY

 Collected:
 2020/08/25

 Shipped:
 2020/08/26

 Received:
 2020/08/26

 BV Labs ID: NMB846

Sample ID: BH13-SS4
Matrix: Soil

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
1,3-Dichloropropene Sum	CALC	6912678	N/A	2020/08/30	Automated Statchk
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	6914834	2020/08/28	2020/08/29	Jeevaraj Jeevaratrnam
Strong Acid Leachable Metals by ICPMS	ICP/MS	6918411	2020/08/31	2020/08/31	Viviana Canzonieri
Moisture	BAL	6913534	N/A	2020/08/27	Prgya Panchal
Volatile Organic Compounds and F1 PHCs	GC/MSFD	6915170	N/A	2020/08/28	Denis Reid

exp Services Inc

Client Project #: OTT-00260579-A0

Sampler Initials: PS

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1 7.3°C

Revised Report (2020/09/02): Table 3 criteria changed per client request

Results relate only to the items tested.

QUALITY ASSURANCE REPORT

exp Services Inc

Client Project #: OTT-00260579-A0

Sampler Initials: PS

			Matrix	Spike	SPIKED	BLANK	Method Blank		RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
6914834	o-Terphenyl	2020/08/28	92	60 - 130	92	60 - 130	98	%		
6915170	4-Bromofluorobenzene	2020/08/28	100	60 - 140	99	60 - 140	84	%		
6915170	D10-o-Xylene	2020/08/28	91	60 - 130	99	60 - 130	84	%		
6915170	D4-1,2-Dichloroethane	2020/08/28	110	60 - 140	111	60 - 140	110	%		
6915170	D8-Toluene	2020/08/28	103	60 - 140	108	60 - 140	90	%		
6919212	o-Terphenyl	2020/08/31	82	60 - 130	84	60 - 130	86	%		
6913534	Moisture	2020/08/27							0	20
6914834	F2 (C10-C16 Hydrocarbons)	2020/08/28	92	50 - 130	92	80 - 120	<10	ug/g	NC	30
6914834	F3 (C16-C34 Hydrocarbons)	2020/08/28	100	50 - 130	100	80 - 120	<50	ug/g	NC	30
6914834	F4 (C34-C50 Hydrocarbons)	2020/08/28	97	50 - 130	96	80 - 120	<50	ug/g	NC	30
6915170	1,1,1,2-Tetrachloroethane	2020/08/28	93	60 - 140	109	60 - 130	<0.050	ug/g	NC	50
6915170	1,1,1-Trichloroethane	2020/08/28	95	60 - 140	106	60 - 130	<0.050	ug/g	NC	50
6915170	1,1,2,2-Tetrachloroethane	2020/08/28	93	60 - 140	108	60 - 130	<0.050	ug/g	NC	50
6915170	1,1,2-Trichloroethane	2020/08/28	97	60 - 140	111	60 - 130	<0.050	ug/g	NC	50
6915170	1,1-Dichloroethane	2020/08/28	97	60 - 140	106	60 - 130	<0.050	ug/g	NC	50
6915170	1,1-Dichloroethylene	2020/08/28	99	60 - 140	107	60 - 130	<0.050	ug/g	NC	50
6915170	1,2-Dichlorobenzene	2020/08/28	79	60 - 140	90	60 - 130	<0.050	ug/g	NC	50
6915170	1,2-Dichloroethane	2020/08/28	97	60 - 140	105	60 - 130	<0.050	ug/g	NC	50
6915170	1,2-Dichloropropane	2020/08/28	93	60 - 140	101	60 - 130	<0.050	ug/g	NC	50
6915170	1,3-Dichlorobenzene	2020/08/28	80	60 - 140	92	60 - 130	<0.050	ug/g	NC	50
6915170	1,4-Dichlorobenzene	2020/08/28	87	60 - 140	100	60 - 130	<0.050	ug/g	NC	50
6915170	Acetone (2-Propanone)	2020/08/28	109	60 - 140	112	60 - 140	<0.50	ug/g	NC	50
6915170	Benzene	2020/08/28	96	60 - 140	105	60 - 130	<0.020	ug/g	NC	50
6915170	Bromodichloromethane	2020/08/28	88	60 - 140	97	60 - 130	<0.050	ug/g	NC	50
6915170	Bromoform	2020/08/28	89	60 - 140	104	60 - 130	<0.050	ug/g	NC	50
6915170	Bromomethane	2020/08/28	102	60 - 140	115	60 - 140	<0.050	ug/g	NC	50
6915170	Carbon Tetrachloride	2020/08/28	96	60 - 140	107	60 - 130	<0.050	ug/g	NC	50
6915170	Chlorobenzene	2020/08/28	81	60 - 140	94	60 - 130	<0.050	ug/g	NC	50
6915170	Chloroform	2020/08/28	93	60 - 140	103	60 - 130	<0.050	ug/g	NC	50
6915170	cis-1,2-Dichloroethylene	2020/08/28	89	60 - 140	97	60 - 130	<0.050	ug/g	NC	50
6915170	cis-1,3-Dichloropropene	2020/08/28	86	60 - 140	93	60 - 130	<0.030	ug/g	NC	50
6915170	Dibromochloromethane	2020/08/28	91	60 - 140	106	60 - 130	<0.050	ug/g	NC	50

QUALITY ASSURANCE REPORT(CONT'D)

exp Services Inc

Client Project #: OTT-00260579-A0

Sampler Initials: PS

			Matrix	Spike	SPIKED	SPIKED BLANK Method Blank		RPI	D	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
6915170	Dichlorodifluoromethane (FREON 12)	2020/08/28	80	60 - 140	100	60 - 140	<0.050	ug/g	NC	50
6915170	Ethylbenzene	2020/08/28	73	60 - 140	84	60 - 130	<0.020	ug/g	NC	50
6915170	Ethylene Dibromide	2020/08/28	92	60 - 140	105	60 - 130	<0.050	ug/g	NC	50
6915170	F1 (C6-C10) - BTEX	2020/08/28					<10	ug/g	NC	30
6915170	F1 (C6-C10)	2020/08/28	101	60 - 140	97	80 - 120	<10	ug/g	NC	30
6915170	Hexane	2020/08/28	98	60 - 140	108	60 - 130	<0.050	ug/g	NC	50
6915170	Methyl Ethyl Ketone (2-Butanone)	2020/08/28	89	60 - 140	92	60 - 140	<0.50	ug/g	NC	50
6915170	Methyl Isobutyl Ketone	2020/08/28	77	60 - 140	81	60 - 130	<0.50	ug/g	NC	50
6915170	Methyl t-butyl ether (MTBE)	2020/08/28	81	60 - 140	84	60 - 130	<0.050	ug/g	NC	50
6915170	Methylene Chloride(Dichloromethane)	2020/08/28	106	60 - 140	116	60 - 130	<0.050	ug/g	NC	50
6915170	o-Xylene	2020/08/28	76	60 - 140	88	60 - 130	<0.020	ug/g	NC	50
6915170	p+m-Xylene	2020/08/28	78	60 - 140	89	60 - 130	<0.020	ug/g	NC	50
6915170	Styrene	2020/08/28	58 (1)	60 - 140	67	60 - 130	<0.050	ug/g	NC	50
6915170	Tetrachloroethylene	2020/08/28	81	60 - 140	95	60 - 130	<0.050	ug/g	3.1	50
6915170	Toluene	2020/08/28	81	60 - 140	94	60 - 130	<0.020	ug/g	NC	50
6915170	Total Xylenes	2020/08/28					<0.020	ug/g	NC	50
6915170	trans-1,2-Dichloroethylene	2020/08/28	95	60 - 140	105	60 - 130	<0.050	ug/g	NC	50
6915170	trans-1,3-Dichloropropene	2020/08/28	85	60 - 140	98	60 - 130	<0.040	ug/g	NC	50
6915170	Trichloroethylene	2020/08/28	95	60 - 140	104	60 - 130	< 0.050	ug/g	NC	50
6915170	Trichlorofluoromethane (FREON 11)	2020/08/28	97	60 - 140	109	60 - 130	<0.050	ug/g	NC	50
6915170	Vinyl Chloride	2020/08/28	106	60 - 140	122	60 - 130	<0.020	ug/g	NC	50
6918411	Acid Extractable Antimony (Sb)	2020/08/31	98	75 - 125	103	80 - 120	<0.20	ug/g	NC	30
6918411	Acid Extractable Arsenic (As)	2020/08/31	98	75 - 125	104	80 - 120	<1.0	ug/g	2.1	30
6918411	Acid Extractable Barium (Ba)	2020/08/31	NC	75 - 125	102	80 - 120	<0.50	ug/g	9.8	30
6918411	Acid Extractable Beryllium (Be)	2020/08/31	96	75 - 125	98	80 - 120	<0.20	ug/g	14	30
6918411	Acid Extractable Boron (B)	2020/08/31	95	75 - 125	97	80 - 120	<5.0	ug/g	NC	30
6918411	Acid Extractable Cadmium (Cd)	2020/08/31	100	75 - 125	100	80 - 120	<0.10	ug/g	NC	30
6918411	Acid Extractable Chromium (Cr)	2020/08/31	91	75 - 125	103	80 - 120	<1.0	ug/g	4.7	30
6918411	Acid Extractable Cobalt (Co)	2020/08/31	95	75 - 125	101	80 - 120	<0.10	ug/g	3.6	30
6918411	Acid Extractable Copper (Cu)	2020/08/31	90	75 - 125	101	80 - 120	<0.50	ug/g	5.5	30
6918411	Acid Extractable Lead (Pb)	2020/08/31	93	75 - 125	100	80 - 120	<1.0	ug/g	3.6	30
6918411	Acid Extractable Molybdenum (Mo)	2020/08/31	98	75 - 125	100	80 - 120	<0.50	ug/g	NC	30

QUALITY ASSURANCE REPORT(CONT'D)

exp Services Inc

Client Project #: OTT-00260579-A0

Sampler Initials: PS

							Matrix	Spike	SPIKED	BLANK	Method Blank		RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits				
6918411	Acid Extractable Nickel (Ni)	2020/08/31	92	75 - 125	104	80 - 120	<0.50	ug/g	13	30				
6918411	Acid Extractable Selenium (Se)	2020/08/31	101	75 - 125	106	80 - 120	<0.50	ug/g	NC	30				
6918411	Acid Extractable Silver (Ag)	2020/08/31	97	75 - 125	102	80 - 120	<0.20	ug/g	NC	30				
6918411	Acid Extractable Thallium (TI)	2020/08/31	94	75 - 125	98	80 - 120	<0.050	ug/g	14	30				
6918411	Acid Extractable Uranium (U)	2020/08/31	94	75 - 125	98	80 - 120	<0.050	ug/g	2.4	30				
6918411	Acid Extractable Vanadium (V)	2020/08/31	NC	75 - 125	104	80 - 120	<5.0	ug/g	3.5	30				
6918411	Acid Extractable Zinc (Zn)	2020/08/31	NC	75 - 125	105	80 - 120	<5.0	ug/g	3.2	30				
6919049	Moisture	2020/08/31							0	20				
6919212	F2 (C10-C16 Hydrocarbons)	2020/09/01	81	50 - 130	80	80 - 120	<10	ug/g	NC	30				
6919212	F3 (C16-C34 Hydrocarbons)	2020/09/01	90	50 - 130	89	80 - 120	<50	ug/g	NC	30				
6919212	F4 (C34-C50 Hydrocarbons)	2020/09/01	90	50 - 130	89	80 - 120	<50	ug/g	NC	30				

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

(1) The recovery was below the lower control limit. This may represent a low bias in some results for this specific analyte.

exp Services Inc

Client Project #: OTT-00260579-A0

Sampler Initials: PS

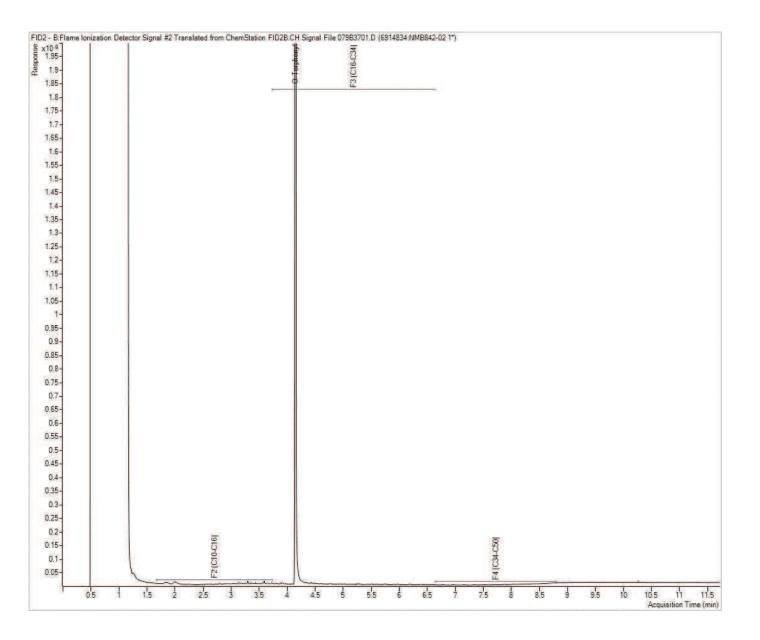
VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Anastassia Hamanov, Scientific Specialist

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

NESS ITA		/OICE TO:		7	REPORT TO:					PROJECT INFORMATION:					Laboratory Use Only:			
Company Nan	and the same of th	icae Inc			KEPC	D0474						ioit.			Bottle Order #:			
ttention:	Accounts Payable	CONTRACTOR OF THE PARTY OF THE		Company I		Stelmack		_			uotation#:	5511	10				500	
ddress:	100-2650 Queens		712 5	Address:						100	roject:	OTT	-00260579-	A0			788417	
	Ottawa ON K2B 8										roject Name:						Project Manager:	
et mail:	(613) 688-1899 accounting.ottawa	Fax (613) @exp.com; Karen.Bur	225-7337 ke@exp.com;	Tet: Email:	patricia.	stelmack@e	exp.com Fax:				ite #: ampled By:						C#788417-01-01	Katherine Szozda
MOER	EGULATED DRINKING	WATER OR WATER IN	ITENDED FOR HI	JMAN CO	NSUMPTION N	AUST BE						STED (PLEASE	BE SPECIFIC)				Turnaround Time (TAT)	
Regul Table 1 Table 2	ation 152 (2011) Res/Park Medium Ind/Comm Coarse Agri/Other For RSG	Other	REPORT OF THE PROPERTY OF T	AIN OF CU	Special Ins		(please circle): ig / Cr VI	153 VOCs by HS & F1-F4 (Soil)	Metals (Soil)							(will be applied Standard TA) Please note:	Please provide advance notice Standard) TAT: sed if Rush TAT is not specified): AT = 5-7 Working days for most tests Standard TAT for certain tests such as sct your Project Manager for details.	. [
Table		PWQO D	Reg 406 Table				Field Filtered (please co	153 VOCs b	153 ICPMS							Job Specifi Date Require	fic Rush TAT (if applies to entire sub	mission) ime Required
Sac	nple Barcode Label	on Certificate of Analysi			-	W200 877	Fie	Reg	Reg				1 1			# of Bottles	all of sections and the section of t	cell lab for #)
		Sample (Location) Identif	ication Date :	Sampled	Time Sampled	Matrix	-	0	0		_	_		_	_	-	Contr	tients
B	410-554		Auc	124	120m	5		V	0									
BI	49-553		Aug	25	Bam	5	1	0	0									
0	UP		Auc	125	Cam	5		V	V							1		
BH	11-553		Ay	125	10am	5		V.										
B	413-553		1.	2	10 .	6		1/	V							26-	Aug-20 15:33	
1	11 300		Hu	900	1 John	/		-	-	\vdash	_	-		-	K	Catherine	e Szozda	
																COM	0420	
															_		5	
											_		-	_	HG	R 1	ENV-410	
														-			0	y se
																	RECEIVED	IN OTTAWA
	RELINQUISHED BY: (Sign	ature/Print)	Date: (YY/MM/DD)	Tim	ie _	RECEIVED	BY: (Signature	Print)		Date: (YY/MN		Time	# jars us			Labor	ratory Use Only	
	51= Se		Ses	2 leser 20/0			-	SESTIMATE THE PROPERTY OF THE			3 not submitted Time Sensitive			Control of the Contro				

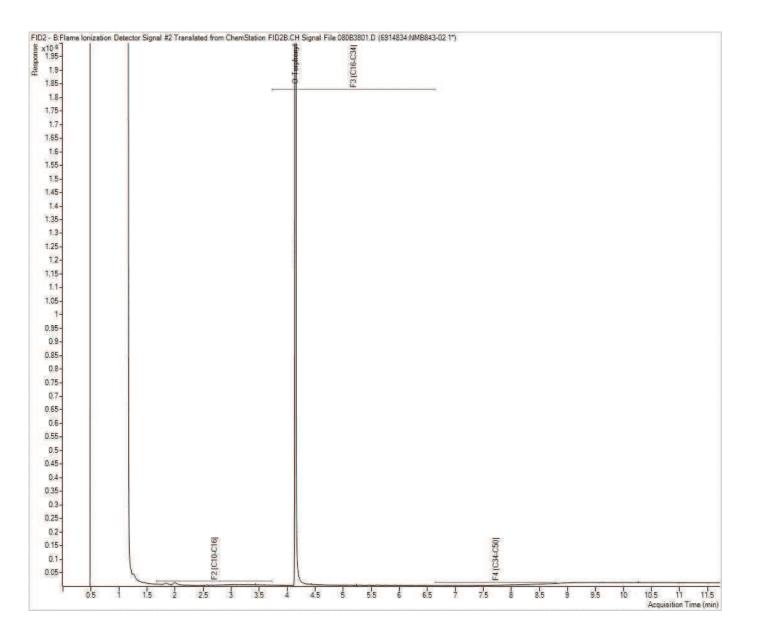

Bureau Veritas Canada (2019) Inc.

BV Labs Job #: C0M0429 Report Date: 2020/09/02 BV Labs Sample: NMB842 exp Services Inc

Client Project #: OTT-00260579-A0

Client ID: BH10-SS4

Petroleum Hydrocarbons F2-F4 in Soil Chromatogram

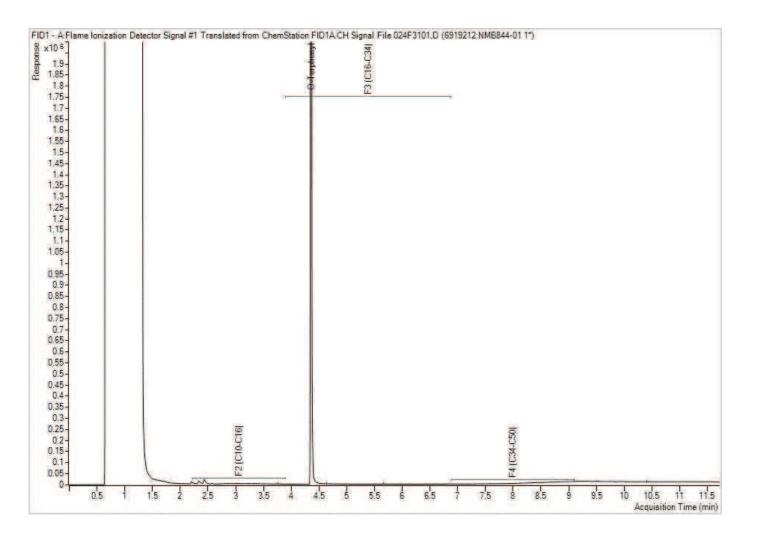


BV Labs Job #: C0M0429 Report Date: 2020/09/02 BV Labs Sample: NMB843 exp Services Inc

Client Project #: OTT-00260579-A0

Client ID: BH9-SS3

Petroleum Hydrocarbons F2-F4 in Soil Chromatogram

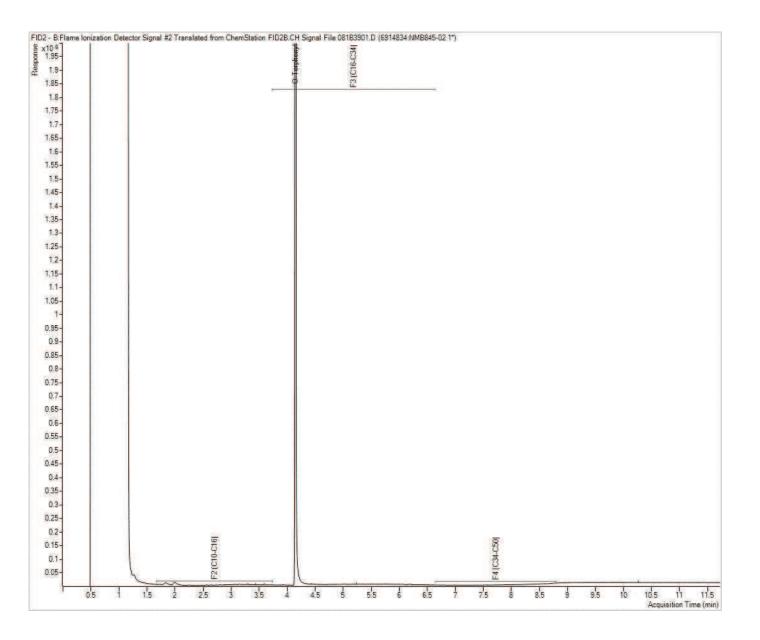

BV Labs Job #: COM0429 Report Date: 2020/09/02 BV Labs Sample: NMB844

exp Services Inc

Client Project #: OTT-00260579-A0

Client ID: DUP

Petroleum Hydrocarbons F2-F4 in Soil Chromatogram

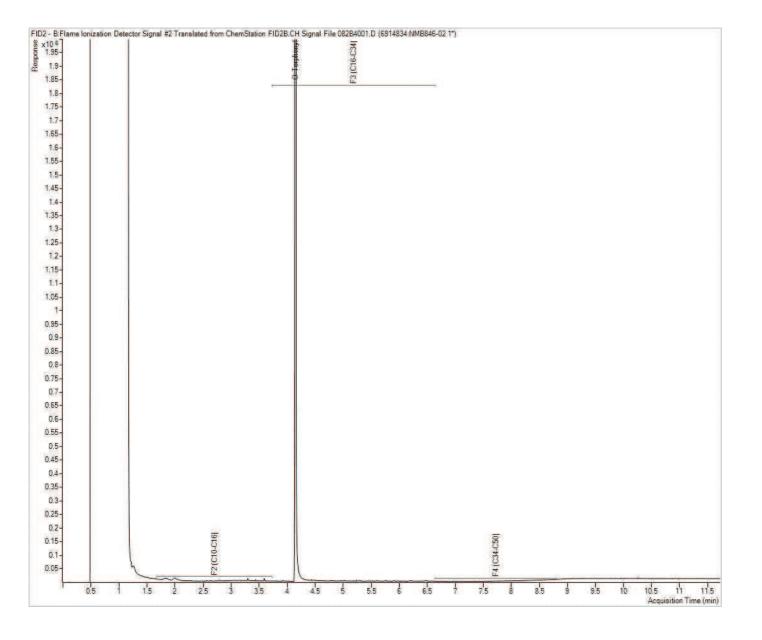


BV Labs Job #: C0M0429 Report Date: 2020/09/02 BV Labs Sample: NMB845 exp Services Inc

Client Project #: OTT-00260579-A0

Client ID: BH11-SS3

Petroleum Hydrocarbons F2-F4 in Soil Chromatogram



BV Labs Job #: C0M0429 Report Date: 2020/09/02 BV Labs Sample: NMB846 exp Services Inc

Client Project #: OTT-00260579-A0

Client ID: BH13-SS4

Petroleum Hydrocarbons F2-F4 in Soil Chromatogram

Your Project #: OTT-00260579-A0 Your C.O.C. #: 791231-01-01

Attention: Patricia Stelmack

exp Services Inc Ottawa Branch 100-2650 Queensview Drive Ottawa, ON CANADA K2B 8H6

Report Date: 2020/09/17

Report #: R6334979 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: C0N6285 Received: 2020/09/11, 17:05

Sample Matrix: Water # Samples Received: 6

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
1,3-Dichloropropene Sum (1)	6	N/A	2020/09/16		EPA 8260C m
Petroleum Hydrocarbons F2-F4 in Water (1, 2)	5	2020/09/16	2020/09/17	CAM SOP-00316	CCME PHC-CWS m
Dissolved Metals by ICPMS (1)	5	N/A	2020/09/16	CAM SOP-00447	EPA 6020B m
Volatile Organic Compounds and F1 PHCs (1)	6	N/A	2020/09/15	CAM SOP-00230	EPA 8260C m

Remarks:

Bureau Veritas Laboratories are accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by BV Labs are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in BV Labs profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and BV Labs in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

BV Labs liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. BV Labs has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by BV Labs, unless otherwise agreed in writing. BV Labs is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by BV Labs, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

 $Reference\ Method\ suffix\ "m"\ indicates\ test\ methods\ incorporate\ validated\ modifications\ from\ specific\ reference\ methods\ to\ improve\ performance.$

- * RPDs calculated using raw data. The rounding of final results may result in the apparent difference.
- (1) This test was performed by Bureau Veritas Laboratories Mississauga
- (2) All CCME PHC results met required criteria unless otherwise stated in the report. The CWS PHC methods employed by Bureau Veritas Laboratories conform to all prescribed elements of the reference method and performance based elements have been validated. All modifications have been validated and proven equivalent following "Alberta Environment's Interpretation of the Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil Validation of Performance-Based Alternative Methods September 2003". Documentation is available upon request. Modifications from Reference Method for the Canada-wide Standard for Petroleum Hydrocarbons in Soil-Tier 1 Method: F2/F3/F4 data reported using validated cold solvent extraction instead of Soxhlet extraction.

Your Project #: OTT-00260579-A0 Your C.O.C. #: 791231-01-01

Attention: Patricia Stelmack

exp Services Inc Ottawa Branch 100-2650 Queensview Drive Ottawa, ON CANADA K2B 8H6

Report Date: 2020/09/17

Report #: R6334979 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: C0N6285 Received: 2020/09/11, 17:05

Encryption Key

Bureau Veritas Laboratories 17 Sep 2020 16:22:16

 $\label{thm:please direct all questions regarding this Certificate of Analysis to your Project Manager. \\$

Katherine Szozda, Project Manager Email: Katherine.Szozda@bvlabs.com Phone# (613)274-0573 Ext:7063633

This report has been generated and distributed using a secure automated process.

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Client Project #: OTT-00260579-A0

Sampler Initials: MAD

VOLATILE ORGANICS BY GC/MS (WATER)

BV Labs ID		NPL785		
Sampling Date		2020/09/10		
COC Number		791231-01-01		
	UNITS	TRIP BLANK	RDL	QC Batcl
Calculated Parameters				
1,3-Dichloropropene (cis+trans)	ug/L	<0.50	0.50	6940697
Volatile Organics				
Acetone (2-Propanone)	ug/L	<10	10	6938656
Benzene	ug/L	<0.20	0.20	6938656
Bromodichloromethane	ug/L	<0.50	0.50	693865
Bromoform	ug/L	<1.0	1.0	6938656
Bromomethane	ug/L	<0.50	0.50	6938656
Carbon Tetrachloride	ug/L	<0.20	0.20	6938656
Chlorobenzene	ug/L	<0.20	0.20	6938656
Chloroform	ug/L	<0.20	0.20	693865
Dibromochloromethane	ug/L	<0.50	0.50	693865
1,2-Dichlorobenzene	ug/L	<0.50	0.50	693865
1,3-Dichlorobenzene	ug/L	<0.50	0.50	693865
1,4-Dichlorobenzene	ug/L	<0.50	0.50	693865
Dichlorodifluoromethane (FREON 12)	ug/L	<1.0	1.0	693865
1,1-Dichloroethane	ug/L	<0.20	0.20	693865
1,2-Dichloroethane	ug/L	<0.50	0.50	693865
1,1-Dichloroethylene	ug/L	<0.20	0.20	693865
cis-1,2-Dichloroethylene	ug/L	<0.50	0.50	693865
trans-1,2-Dichloroethylene	ug/L	<0.50	0.50	693865
1,2-Dichloropropane	ug/L	<0.20	0.20	693865
cis-1,3-Dichloropropene	ug/L	<0.30	0.30	693865
trans-1,3-Dichloropropene	ug/L	<0.40	0.40	693865
Ethylbenzene	ug/L	<0.20	0.20	693865
Ethylene Dibromide	ug/L	<0.20	0.20	693865
Hexane	ug/L	<1.0	1.0	693865
Methylene Chloride(Dichloromethane)	ug/L	<2.0	2.0	693865
Methyl Ethyl Ketone (2-Butanone)	ug/L	<10	10	693865
Methyl Isobutyl Ketone	ug/L	<5.0	5.0	693865
Methyl t-butyl ether (MTBE)	ug/L	<0.50	0.50	693865
Styrene	ug/L	<0.50	0.50	693865
1,1,1,2-Tetrachloroethane	ug/L	<0.50	0.50	693865
1,1,2,2-Tetrachloroethane	ug/L	<0.50	0.50	693865
Tetrachloroethylene	ug/L	<0.20	0.20	693865
Toluene	ug/L	<0.20	0.20	693865
1,1,1-Trichloroethane	ug/L	<0.20	0.20	693865
RDL = Reportable Detection Limit				
QC Batch = Quality Control Batch				

Client Project #: OTT-00260579-A0

Sampler Initials: MAD

VOLATILE ORGANICS BY GC/MS (WATER)

•	1		_	
BV Labs ID		NPL785		
Sampling Date		2020/09/10		
COC Number		791231-01-01		
	UNITS	TRIP BLANK	RDL	QC Batch
1,1,2-Trichloroethane	ug/L	<0.50	0.50	6938656
Trichloroethylene	ug/L	<0.20	0.20	6938656
Trichlorofluoromethane (FREON 11)	ug/L	<0.50	0.50	6938656
Vinyl Chloride	ug/L	<0.20	0.20	6938656
p+m-Xylene	ug/L	<0.20	0.20	6938656
o-Xylene	ug/L	<0.20	0.20	6938656
Total Xylenes	ug/L	<0.20	0.20	6938656
F1 (C6-C10)	ug/L	<25	25	6938656
F1 (C6-C10) - BTEX	ug/L	<25	25	6938656
Surrogate Recovery (%)	·	•		•
4-Bromofluorobenzene	%	101		6938656
D4-1,2-Dichloroethane	%	103		6938656
D8-Toluene	%	99		6938656
RDL = Reportable Detection Limit				
QC Batch = Quality Control Batch				
1				

Client Project #: OTT-00260579-A0

Sampler Initials: MAD

O.REG 153 DISSOLVED ICPMS METALS (WATER)

BV Labs ID		NPL781	NPL782	NPL783	NPL784	NPL786		
Sampling Date		2020/09/10	2020/09/10	2020/09/10	2020/09/10	2020/09/10		
Sampling Date		14:00	16:00	15:00	14:00	14:00		
COC Number		791231-01-01	791231-01-01	791231-01-01	791231-01-01	791231-01-01		
	UNITS	BH10	BH11	BH14	FB	DUP	RDL	QC Batch
Metals								
Dissolved Antimony (Sb)	ug/L	<0.50	<0.50	0.85	<0.50	<0.50	0.50	6942169
Dissolved Arsenic (As)	ug/L	<1.0	<1.0	1.8	<1.0	<1.0	1.0	6942169
Dissolved Barium (Ba)	ug/L	190	75	100	<2.0	190	2.0	6942169
Dissolved Beryllium (Be)	ug/L	<0.40	<0.40	<0.40	<0.40	<0.40	0.40	6942169
Dissolved Boron (B)	ug/L	250	72	190	<10	270	10	6942169
Dissolved Cadmium (Cd)	ug/L	<0.090	<0.090	<0.090	<0.090	<0.090	0.090	6942169
Dissolved Chromium (Cr)	ug/L	<5.0	<5.0	<5.0	<5.0	<5.0	5.0	6942169
Dissolved Cobalt (Co)	ug/L	0.51	1.6	1.3	<0.50	0.51	0.50	6942169
Dissolved Copper (Cu)	ug/L	<0.90	1.8	2.9	<0.90	<0.90	0.90	6942169
Dissolved Lead (Pb)	ug/L	<0.50	<0.50	<0.50	<0.50	<0.50	0.50	6942169
Dissolved Molybdenum (Mo)	ug/L	17	2.4	36	<0.50	17	0.50	6942169
Dissolved Nickel (Ni)	ug/L	1.3	2.2	4.3	<1.0	1.3	1.0	6942169
Dissolved Selenium (Se)	ug/L	<2.0	<2.0	<2.0	<2.0	<2.0	2.0	6942169
Dissolved Silver (Ag)	ug/L	<0.090	<0.090	<0.090	<0.090	<0.090	0.090	6942169
Dissolved Sodium (Na)	ug/L	560000	220000	410000	<100	560000	100	6942169
Dissolved Thallium (TI)	ug/L	<0.050	<0.050	0.063	<0.050	<0.050	0.050	6942169
Dissolved Uranium (U)	ug/L	0.76	1.1	11	<0.10	0.81	0.10	6942169
Dissolved Vanadium (V)	ug/L	<0.50	<0.50	0.86	<0.50	<0.50	0.50	6942169
Dissolved Zinc (Zn)	ug/L	<5.0	<5.0	<5.0	<5.0	<5.0	5.0	6942169
RDL = Reportable Detection Li	mit							

QC Batch = Quality Control Batch

Client Project #: OTT-00260579-A0

Sampler Initials: MAD

O.REG 153 VOCS BY HS & F1-F4 (WATER)

BV Labs ID		NPL781	NPL782	NPL783	NPL784	NPL786		
Sampling Date		2020/09/10	2020/09/10	2020/09/10	2020/09/10	2020/09/10		
		14:00	16:00	15:00	14:00	14:00		
COC Number		791231-01-01	791231-01-01	791231-01-01	791231-01-01	791231-01-01		
	UNITS	BH10	BH11	BH14	FB	DUP	RDL	QC Batch
Calculated Parameters								
1,3-Dichloropropene (cis+trans)	ug/L	<0.50	<0.50	<0.50	<0.50	<0.50	0.50	6940697
Volatile Organics	•							
Acetone (2-Propanone)	ug/L	<10	<10	<10	<10	12	10	6938656
Benzene	ug/L	0.27	<0.20	<0.20	<0.20	0.25	0.20	6938656
Bromodichloromethane	ug/L	<0.50	<0.50	<0.50	<0.50	<0.50	0.50	6938656
Bromoform	ug/L	<1.0	<1.0	<1.0	<1.0	<1.0	1.0	6938656
Bromomethane	ug/L	<0.50	<0.50	<0.50	<0.50	<0.50	0.50	6938656
Carbon Tetrachloride	ug/L	<0.20	<0.20	<0.20	<0.20	<0.20	0.20	6938656
Chlorobenzene	ug/L	<0.20	<0.20	<0.20	<0.20	<0.20	0.20	6938656
Chloroform	ug/L	0.42	<0.20	<0.20	<0.20	0.42	0.20	6938656
Dibromochloromethane	ug/L	<0.50	<0.50	<0.50	<0.50	<0.50	0.50	6938656
1,2-Dichlorobenzene	ug/L	<0.50	<0.50	<0.50	<0.50	<0.50	0.50	6938656
1,3-Dichlorobenzene	ug/L	<0.50	<0.50	<0.50	<0.50	<0.50	0.50	6938656
1,4-Dichlorobenzene	ug/L	<0.50	<0.50	<0.50	<0.50	<0.50	0.50	6938656
Dichlorodifluoromethane (FREON 12)	ug/L	<1.0	<1.0	<1.0	<1.0	<1.0	1.0	6938656
1,1-Dichloroethane	ug/L	<0.20	<0.20	<0.20	<0.20	<0.20	0.20	6938656
1,2-Dichloroethane	ug/L	<0.50	<0.50	<0.50	<0.50	<0.50	0.50	6938656
1,1-Dichloroethylene	ug/L	<0.20	<0.20	<0.20	<0.20	<0.20	0.20	6938656
cis-1,2-Dichloroethylene	ug/L	<0.50	<0.50	<0.50	<0.50	<0.50	0.50	6938656
trans-1,2-Dichloroethylene	ug/L	<0.50	<0.50	<0.50	<0.50	<0.50	0.50	6938656
1,2-Dichloropropane	ug/L	<0.20	<0.20	<0.20	<0.20	<0.20	0.20	6938656
cis-1,3-Dichloropropene	ug/L	<0.30	<0.30	<0.30	<0.30	<0.30	0.30	6938656
trans-1,3-Dichloropropene	ug/L	<0.40	<0.40	<0.40	<0.40	<0.40	0.40	6938656
Ethylbenzene	ug/L	<0.20	<0.20	<0.20	<0.20	<0.20	0.20	6938656
Ethylene Dibromide	ug/L	<0.20	<0.20	<0.20	<0.20	<0.20	0.20	6938656
Hexane	ug/L	<1.0	<1.0	<1.0	<1.0	<1.0	1.0	6938656
Methylene Chloride(Dichloromethane)	ug/L	<2.0	<2.0	<2.0	<2.0	<2.0	2.0	6938656
Methyl Ethyl Ketone (2-Butanone)	ug/L	<10	<10	<10	<10	<10	10	6938656
Methyl Isobutyl Ketone	ug/L	<5.0	<5.0	<5.0	<5.0	<5.0	5.0	6938656
Methyl t-butyl ether (MTBE)	ug/L	<0.50	2.4	<0.50	<0.50	<0.50	0.50	6938656
Styrene	ug/L	<0.50	<0.50	<0.50	<0.50	<0.50	0.50	6938656
1,1,1,2-Tetrachloroethane	ug/L	<0.50	<0.50	<0.50	<0.50	<0.50	0.50	6938656
1,1,2,2-Tetrachloroethane	ug/L	<0.50	<0.50	<0.50	<0.50	<0.50	0.50	6938656
Tetrachloroethylene	ug/L	<0.20	<0.20	<0.20	<0.20	<0.20	0.20	6938656
Toluene	ug/L	0.47	<0.20	<0.20	<0.20	0.49	0.20	6938656
RDL = Reportable Detection Limit		•	•		•	•		

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

exp Services Inc

Client Project #: OTT-00260579-A0

Sampler Initials: MAD

O.REG 153 VOCS BY HS & F1-F4 (WATER)

BV Labs ID		NPL781	NPL782	NPL783	NPL784	NPL786		
Sampling Date		2020/09/10 14:00	2020/09/10 16:00	2020/09/10 15:00	2020/09/10 14:00	2020/09/10 14:00		
COC Number		791231-01-01	791231-01-01	791231-01-01	791231-01-01	791231-01-01		
	UNITS	BH10	BH11	BH14	FB	DUP	RDL	QC Batch
1,1,1-Trichloroethane	ug/L	<0.20	<0.20	<0.20	<0.20	<0.20	0.20	6938656
1,1,2-Trichloroethane	ug/L	<0.50	<0.50	<0.50	<0.50	<0.50	0.50	6938656
Trichloroethylene	ug/L	<0.20	<0.20	<0.20	<0.20	<0.20	0.20	6938656
Trichlorofluoromethane (FREON 11)	ug/L	<0.50	<0.50	<0.50	<0.50	<0.50	0.50	6938656
Vinyl Chloride	ug/L	<0.20	<0.20	<0.20	<0.20	<0.20	0.20	6938656
p+m-Xylene	ug/L	<0.20	<0.20	<0.20	<0.20	<0.20	0.20	6938656
o-Xylene	ug/L	<0.20	<0.20	<0.20	<0.20	<0.20	0.20	6938656
Total Xylenes	ug/L	<0.20	<0.20	<0.20	<0.20	<0.20	0.20	6938656
F1 (C6-C10)	ug/L	<25	<25	<25	<25	<25	25	6938656
F1 (C6-C10) - BTEX	ug/L	<25	<25	<25	<25	<25	25	6938656
F2-F4 Hydrocarbons	•						•	
F2 (C10-C16 Hydrocarbons)	ug/L	<100	<100	<100	<100	<100	100	6947971
F3 (C16-C34 Hydrocarbons)	ug/L	<200	<200	<200	<200	<200	200	6947971
F4 (C34-C50 Hydrocarbons)	ug/L	<200	<200	<200	<200	<200	200	6947971
Reached Baseline at C50	ug/L	Yes	Yes	Yes	Yes	Yes		6947971
Surrogate Recovery (%)	•						•	
o-Terphenyl	%	100	100	101	100	102		6947971
4-Bromofluorobenzene	%	103	104	103	102	103		6938656
D4-1,2-Dichloroethane	%	100	103	103	103	101		6938656
D8-Toluene	%	98	96	97	98	96		6938656
RDL = Reportable Detection Limit								

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

exp Services Inc

Client Project #: OTT-00260579-A0

Sampler Initials: MAD

TEST SUMMARY

BV Labs ID: NPL781 Sample ID: BH10

Collected:

2020/09/10

Matrix: Water

Shipped: **Received:** 2020/09/11

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
1,3-Dichloropropene Sum	CALC	6940697	N/A	2020/09/16	Automated Statchk
Petroleum Hydrocarbons F2-F4 in Water	GC/FID	6947971	2020/09/16	2020/09/17	Margaret Kulczyk-Stanko
Dissolved Metals by ICPMS	ICP/MS	6942169	N/A	2020/09/16	Arefa Dabhad
Volatile Organic Compounds and F1 PHCs	GC/MSFD	6938656	N/A	2020/09/15	Denis Reid

BV Labs ID: NPL782 Sample ID: BH11 Matrix: Water

Collected: 2020/09/10

Shipped:

Received: 2020/09/11

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
1,3-Dichloropropene Sum	CALC	6940697	N/A	2020/09/16	Automated Statchk
Petroleum Hydrocarbons F2-F4 in Water	GC/FID	6947971	2020/09/16	2020/09/17	Margaret Kulczyk-Stanko
Dissolved Metals by ICPMS	ICP/MS	6942169	N/A	2020/09/16	Arefa Dabhad
Volatile Organic Compounds and F1 PHCs	GC/MSFD	6938656	N/A	2020/09/15	Denis Reid

BV Labs ID: NPL783 Sample ID: BH14 Matrix: Water

Collected: 2020/09/10

Shipped:

Received: 2020/09/11

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
1,3-Dichloropropene Sum	CALC	6940697	N/A	2020/09/16	Automated Statchk
Petroleum Hydrocarbons F2-F4 in Water	GC/FID	6947971	2020/09/16	2020/09/17	Margaret Kulczyk-Stanko
Dissolved Metals by ICPMS	ICP/MS	6942169	N/A	2020/09/16	Arefa Dabhad
Volatile Organic Compounds and F1 PHCs	GC/MSFD	6938656	N/A	2020/09/15	Denis Reid

BV Labs ID: NPL784 Sample ID: FB Matrix: Water

Collected: 2020/09/10

Shipped:

Received: 2020/09/11

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
1,3-Dichloropropene Sum	CALC	6940697	N/A	2020/09/16	Automated Statchk
Petroleum Hydrocarbons F2-F4 in Water	GC/FID	6947971	2020/09/16	2020/09/17	Margaret Kulczyk-Stanko
Dissolved Metals by ICPMS	ICP/MS	6942169	N/A	2020/09/16	Arefa Dabhad
Volatile Organic Compounds and F1 PHCs	GC/MSFD	6938656	N/A	2020/09/15	Denis Reid

BV Labs ID: NPL785 Sample ID: TRIP BLANK Matrix: Water

Collected: 2020/09/10

Shipped:

2020/09/11 Received:

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
1,3-Dichloropropene Sum	CALC	6940697	N/A	2020/09/16	Automated Statchk
Volatile Organic Compounds and F1 PHCs	GC/MSFD	6938656	N/A	2020/09/15	Denis Reid

exp Services Inc

Client Project #: OTT-00260579-A0

Sampler Initials: MAD

TEST SUMMARY

Collected: 2020/09/10 **Shipped: Received:** 2020/09/11 BV Labs ID: NPL786

Sample ID: DUP
Matrix: Water

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
1,3-Dichloropropene Sum	CALC	6940697	N/A	2020/09/16	Automated Statchk
Petroleum Hydrocarbons F2-F4 in Water	GC/FID	6947971	2020/09/16	2020/09/17	Margaret Kulczyk-Stanko
Dissolved Metals by ICPMS	ICP/MS	6942169	N/A	2020/09/16	Arefa Dabhad
Volatile Organic Compounds and F1 PHCs	GC/MSFD	6938656	N/A	2020/09/15	Denis Reid

exp Services Inc

Client Project #: OTT-00260579-A0

Sampler Initials: MAD

GENERAL COMMENTS

Each t	emperature is the	average of up to	three cooler temperatures taken at receipt
	Package 1	4.7°C	
		-	
Result	s relate only to th	e items tested.	

QUALITY ASSURANCE REPORT

exp Services Inc

Client Project #: OTT-00260579-A0

Sampler Initials: MAD

			Matrix	Spike	SPIKED	BLANK	Method I	Blank	RP	D
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
6938656	4-Bromofluorobenzene	2020/09/15	101	70 - 130	104	70 - 130	100	%		
6938656	D4-1,2-Dichloroethane	2020/09/15	107	70 - 130	101	70 - 130	102	%		
6938656	D8-Toluene	2020/09/15	100	70 - 130	99	70 - 130	98	%		
6947971	o-Terphenyl	2020/09/17	105	60 - 130	106	60 - 130	103	%		
6938656	1,1,1,2-Tetrachloroethane	2020/09/15	99	70 - 130	102	70 - 130	<0.50	ug/L	NC	30
6938656	1,1,1-Trichloroethane	2020/09/15	92	70 - 130	94	70 - 130	<0.20	ug/L	2.3	30
6938656	1,1,2,2-Tetrachloroethane	2020/09/15	99	70 - 130	103	70 - 130	<0.50	ug/L	NC	30
6938656	1,1,2-Trichloroethane	2020/09/15	100	70 - 130	101	70 - 130	<0.50	ug/L	NC	30
6938656	1,1-Dichloroethane	2020/09/15	91	70 - 130	94	70 - 130	<0.20	ug/L	2.6	30
6938656	1,1-Dichloroethylene	2020/09/15	97	70 - 130	103	70 - 130	<0.20	ug/L	NC	30
6938656	1,2-Dichlorobenzene	2020/09/15	89	70 - 130	93	70 - 130	<0.50	ug/L	NC	30
6938656	1,2-Dichloroethane	2020/09/15	102	70 - 130	101	70 - 130	<0.50	ug/L	NC	30
6938656	1,2-Dichloropropane	2020/09/15	90	70 - 130	90	70 - 130	<0.20	ug/L	NC	30
6938656	1,3-Dichlorobenzene	2020/09/15	90	70 - 130	93	70 - 130	<0.50	ug/L	NC	30
6938656	1,4-Dichlorobenzene	2020/09/15	97	70 - 130	99	70 - 130	<0.50	ug/L	NC	30
6938656	Acetone (2-Propanone)	2020/09/15	NC	60 - 140	99	60 - 140	<10	ug/L	10	30
6938656	Benzene	2020/09/15	95	70 - 130	97	70 - 130	<0.20	ug/L	NC	30
6938656	Bromodichloromethane	2020/09/15	96	70 - 130	97	70 - 130	<0.50	ug/L	1.1	30
6938656	Bromoform	2020/09/15	108	70 - 130	108	70 - 130	<1.0	ug/L	NC	30
6938656	Bromomethane	2020/09/15	97	60 - 140	101	60 - 140	<0.50	ug/L	NC	30
6938656	Carbon Tetrachloride	2020/09/15	93	70 - 130	94	70 - 130	<0.20	ug/L	NC	30
6938656	Chlorobenzene	2020/09/15	90	70 - 130	93	70 - 130	<0.20	ug/L	1.2	30
6938656	Chloroform	2020/09/15	89	70 - 130	91	70 - 130	<0.20	ug/L	4.5	30
6938656	cis-1,2-Dichloroethylene	2020/09/15	93	70 - 130	94	70 - 130	<0.50	ug/L	NC	30
6938656	cis-1,3-Dichloropropene	2020/09/15	102	70 - 130	94	70 - 130	< 0.30	ug/L	NC	30
6938656	Dibromochloromethane	2020/09/15	106	70 - 130	106	70 - 130	<0.50	ug/L	3.3	30
6938656	Dichlorodifluoromethane (FREON 12)	2020/09/15	71	60 - 140	91	60 - 140	<1.0	ug/L	NC	30
6938656	Ethylbenzene	2020/09/15	87	70 - 130	91	70 - 130	<0.20	ug/L	NC	30
6938656	Ethylene Dibromide	2020/09/15	106	70 - 130	103	70 - 130	<0.20	ug/L	NC	30
6938656	F1 (C6-C10) - BTEX	2020/09/15					<25	ug/L	7.6	30
6938656	F1 (C6-C10)	2020/09/15	87	60 - 140	96	60 - 140	<25	ug/L	7.6	30
6938656	Hexane	2020/09/15	92	70 - 130	97	70 - 130	<1.0	ug/L	NC	30

QUALITY ASSURANCE REPORT(CONT'D)

exp Services Inc

Client Project #: OTT-00260579-A0

Sampler Initials: MAD

			Matrix	Spike	SPIKED	BLANK	Method I	Blank	RP	D
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
6938656	Methyl Ethyl Ketone (2-Butanone)	2020/09/15	109	60 - 140	102	60 - 140	<10	ug/L	12	30
6938656	Methyl Isobutyl Ketone	2020/09/15	98	70 - 130	96	70 - 130	<5.0	ug/L	NC	30
6938656	Methyl t-butyl ether (MTBE)	2020/09/15	89	70 - 130	91	70 - 130	<0.50	ug/L	NC	30
6938656	Methylene Chloride(Dichloromethane)	2020/09/15	96	70 - 130	98	70 - 130	<2.0	ug/L	NC	30
6938656	o-Xylene	2020/09/15	88	70 - 130	93	70 - 130	<0.20	ug/L	NC	30
6938656	p+m-Xylene	2020/09/15	91	70 - 130	96	70 - 130	<0.20	ug/L	NC	30
6938656	Styrene	2020/09/15	91	70 - 130	95	70 - 130	<0.50	ug/L	NC	30
6938656	Tetrachloroethylene	2020/09/15	90	70 - 130	93	70 - 130	<0.20	ug/L	NC	30
6938656	Toluene	2020/09/15	87	70 - 130	88	70 - 130	<0.20	ug/L	NC	30
6938656	Total Xylenes	2020/09/15					<0.20	ug/L	NC	30
6938656	trans-1,2-Dichloroethylene	2020/09/15	94	70 - 130	99	70 - 130	<0.50	ug/L	NC	30
6938656	trans-1,3-Dichloropropene	2020/09/15	109	70 - 130	94	70 - 130	<0.40	ug/L	NC	30
6938656	Trichloroethylene	2020/09/15	98	70 - 130	100	70 - 130	<0.20	ug/L	NC	30
6938656	Trichlorofluoromethane (FREON 11)	2020/09/15	94	70 - 130	103	70 - 130	<0.50	ug/L	NC	30
6938656	Vinyl Chloride	2020/09/15	84	70 - 130	98	70 - 130	<0.20	ug/L	NC	30
6942169	Dissolved Antimony (Sb)	2020/09/16	101	80 - 120	99	80 - 120	<0.50	ug/L	NC	20
6942169	Dissolved Arsenic (As)	2020/09/16	97	80 - 120	97	80 - 120	<1.0	ug/L	NC	20
6942169	Dissolved Barium (Ba)	2020/09/16	97	80 - 120	97	80 - 120	<2.0	ug/L	0.32	20
6942169	Dissolved Beryllium (Be)	2020/09/16	92	80 - 120	93	80 - 120	<0.40	ug/L	NC	20
6942169	Dissolved Boron (B)	2020/09/16	99	80 - 120	98	80 - 120	<10	ug/L	2.0	20
6942169	Dissolved Cadmium (Cd)	2020/09/16	98	80 - 120	98	80 - 120	<0.090	ug/L	NC	20
6942169	Dissolved Chromium (Cr)	2020/09/16	91	80 - 120	92	80 - 120	<5.0	ug/L	NC	20
6942169	Dissolved Cobalt (Co)	2020/09/16	94	80 - 120	97	80 - 120	<0.50	ug/L	NC	20
6942169	Dissolved Copper (Cu)	2020/09/16	97	80 - 120	97	80 - 120	< 0.90	ug/L	NC	20
6942169	Dissolved Lead (Pb)	2020/09/16	94	80 - 120	98	80 - 120	<0.50	ug/L	NC	20
6942169	Dissolved Molybdenum (Mo)	2020/09/16	95	80 - 120	95	80 - 120	<0.50	ug/L	NC	20
6942169	Dissolved Nickel (Ni)	2020/09/16	91	80 - 120	95	80 - 120	<1.0	ug/L	NC	20
6942169	Dissolved Selenium (Se)	2020/09/16	97	80 - 120	100	80 - 120	<2.0	ug/L	NC	20
6942169	Dissolved Silver (Ag)	2020/09/16	94	80 - 120	93	80 - 120	<0.090	ug/L	NC	20
6942169	Dissolved Sodium (Na)	2020/09/16	NC	80 - 120	94	80 - 120	<100	ug/L	0.55	20
6942169	Dissolved Thallium (TI)	2020/09/16	97	80 - 120	98	80 - 120	<0.050	ug/L	NC	20
6942169	Dissolved Uranium (U)	2020/09/16	98	80 - 120	100	80 - 120	<0.10	ug/L	4.0	20

QUALITY ASSURANCE REPORT(CONT'D)

exp Services Inc

Client Project #: OTT-00260579-A0

Sampler Initials: MAD

			Matrix	Spike	Method E	Blank	RPD			
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
6942169	Dissolved Vanadium (V)	2020/09/16	92	80 - 120	93	80 - 120	<0.50	ug/L	NC	20
6942169	Dissolved Zinc (Zn)	2020/09/16	94	80 - 120	97	80 - 120	<5.0	ug/L	NC	20
6947971	F2 (C10-C16 Hydrocarbons)	2020/09/17	103	50 - 130	106	60 - 130	<100	ug/L	NC	30
6947971	F3 (C16-C34 Hydrocarbons)	2020/09/17	110	50 - 130	109	60 - 130	<200	ug/L	NC	30
6947971	F4 (C34-C50 Hydrocarbons)	2020/09/17	99	50 - 130	102	60 - 130	<200	ug/L	NC	30

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

exp Services Inc

Client Project #: OTT-00260579-A0

Sampler Initials: MAD

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Anastassia Hamanov, Scientific Specialist

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

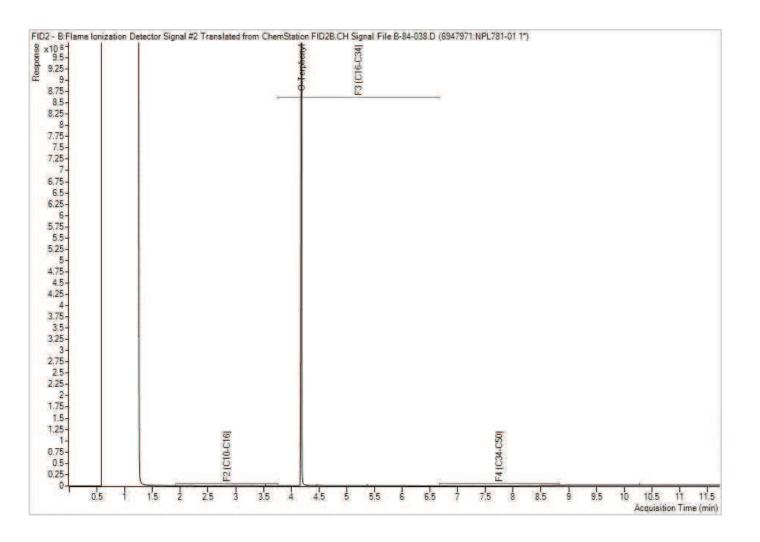
11-Sep-20 17:05

Katherine Szozda

Presence of Visible Particulate/Sediment

Maxxam Analytics CAM FCD-01013/5 Page 1 of 1

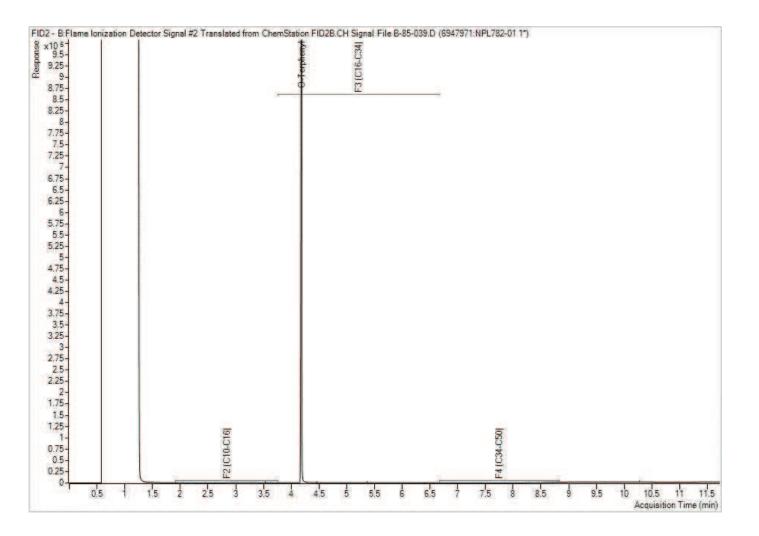
	C0N6285														Bo	ottle	Types													
DSG ENV-618		0		li	norgani	cs		Organi							5					Hydrocarbons Volatiles							tiles		Othe	
	Sample ID	All	CrVI	CN	General	нg	Metals (Diss.)	Organic 1 of 2	Organic 2 of 2	PCB 1 of 2	PCB 2 of 2	Pest/ Herb 1 of 2	Pest/ Herb 2 of 2	ABN	ABN	PAH 1 of 2	PAH 2 of 2	Dioxin /Furan	F1 Vial 1	F1 Vial 2	F1 Vial 3	F1 Vial 4	F2-F4 1 of 2		F4G	VOC Vial 1	VOC Vial 2	VOC Vial 3	VOC Vial 4	
1	BH 10	27																												
2	BHII	TS																												
3	BH14	Tis																												
4	DUP	TS																												
5																														
6																														
7									2																					
8																														
9																														
10																														
	Comments: Excep	Leg P	end: Suspe Trace	nded P Settled	articulated Sedimen	t (just					ss)				Re	ecord	ed By	/: (signat	ture/pri	nt)	A	P.	1	DIP	>(V	AS	S(N)	G4)]


(G)	B 6	ureau Veritas Laboratories 740 Campobello Road, Mis	ssissauga, Ontario Car	nada LSN 2L8	Tel:(905) 817-5			(905) 817-	5777 www.l	ovlabs.com						Kathe	rine Szo	20 17:05 ozda	Page for
Charles And Called		ICE TO:				REPO	RT TO:		-		Service Control		The second second	INFORMATION:	1111	HIII			e Only:
	#17498 exp Service Accounts Payable	es Inc		Company N		Stelmack					Quotation #	t	B9171	8		C	0N628	0	Bottle Order #:
Attention: Address:	100-2650 Queensvi	ew Drive		Altention Address	Patricia	Otennack	7.1				P.O. #: Project:		OTT-0	0260579-A0	D	SG	ENV	7-618	
nuuless.	Ottawa ON K2B 8H	6	1 90 1	Autoba.				3			Project Nan	ne:				30	1	COC#:	791231 Project Manager:
Tet	(613) 688-1899	Fax: (613)) 225-7337	Tet:			Fax				Site #:			TA			THE RESERVE TO SERVE		Katherine Szozda
Email:	accounting.ottawa@	exp.com; Karen.Bu	rke@exp.com;	Email:	patricia	.stelmack@e	xp.com	nehic	beuling					MAD				C#791231-01-01	Katherine Szozda
Regulation X Table 1 X	SUBMITTED ON SUBMITTED ON on 153 (2011) Res/Park Medium/Fi Ind/Comm Coarse Agri/Other For RSC	Oth CCME Reg 558. S MISA Mur	KING WATER CH wer Regulations Sanitary Sewer Bylaw Storm Sewer Bylaw nicipality	UMAN CON AIN OF CU	STODY	MUST BE structions	d Filtered (please circle): Metals / hg / Cr Vi	O.Reg 153 VOCs by HS & F1-F4	O.Reg 153 Dissolved ICPMS Metals (Water)	FI / VOL	LYSIS REQ	(UESTED (PLEASE B	E SPECIFIC)			Regu!ar (S (will be applie Standard TA) Please note: days - contac	t your Project Manager for details.	ice for rush projects is as BOD and Dioxins/Furans are > 5
_ rapid		PWQO D	Reg 406 Table	_			Metals	53 VOC	53 Diss	大				1			Date Require		submission)Time Required:
		n Certificate of Analys					Field	Reg 1	Reg 1	d								nation Number;	(call lab for #)
Sample	e Barcode Label	Sample (Location) Identi	- 1		Time Sampled	Matrix		0	30		_	-		_			# of Bottles	C	omments
1		BH 10	Sel	10	2 reggn	aw	Y	X	X						(4)		6		
2		BHII		1 %	4100	GW	y	1	1								6		
3		BH14			3:000	GW	Y										6		
4		FB			2:00	DI	1	1	V								6		
5		Trip Blun	4	V	- +	DI				X							3		
6		2			2	1.1	V	Y	V								1		
7		Dup		V .	2,00gm	6W	1	^			-	-					6		
				-						\vdash	-								
8																			
9																			
10																		07 10	E
12	RELINQUISHED BY: (Sign	nature/Print)	Date: (YY/MM/DD)			RECEIVED	BY: (Signature/	Print)		Date: (YY/M	M/DD)	Tim	ne	# jars used and not submitted			Laborat	ary Use Only	
1/17	ik tentin		20/09/1	14.5	4m 1000		1	Stord		090/09		17-0		not submitted	Time S	ensitive	Temperatu	re (°C) on Recei Custod	y Seal Yes No
IN ERE OF ITE	MISE AGREED TO IN WRIT	SNID	N THIS CHAIN OF CHE	TODA IS STATE		er los		end		2/09/1		OY: 1					41-	7/3 Inte	ct 🗡
ACKNOWLEDGME	WISE AGREED TO IN WRIT ENT AND ACCEPTANCE OF DISSIBILITY OF THE RELING	OUR TERMS WHICH ARE	AVAILABLE FOR VIEW	ING AT WWW.E	EVLABS.COM/TE	RMS-AND-CONDI	TIONS.						EN IO	SAMPLE	S MUST BE	KEPT CO UNTIL DE	OL (< 10° C) FI	Whi ROM TIME OF SAMPLING LABS	e: BV Labs Yellow: Cli

exp Services Inc

Client Project #: OTT-00260579-A0

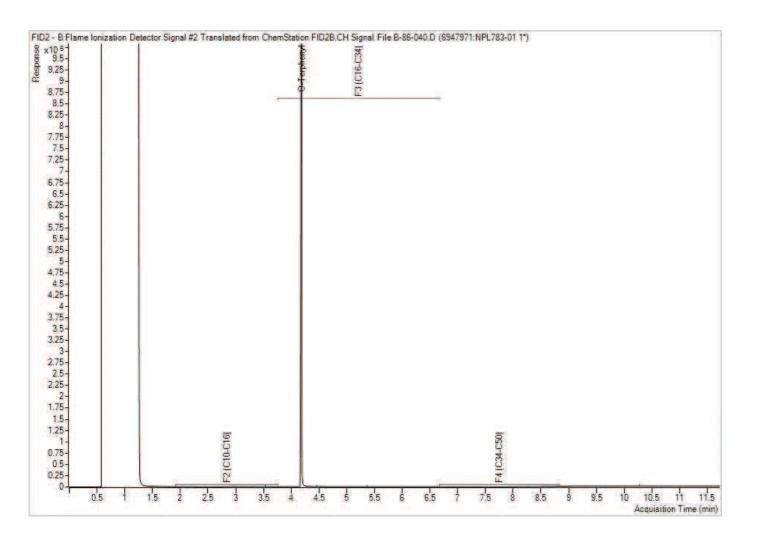
Client ID: BH10


Petroleum Hydrocarbons F2-F4 in Water Chromatogram

exp Services Inc Client Project #: OTT-00260579-A0

Client ID: BH11

Petroleum Hydrocarbons F2-F4 in Water Chromatogram



exp Services Inc

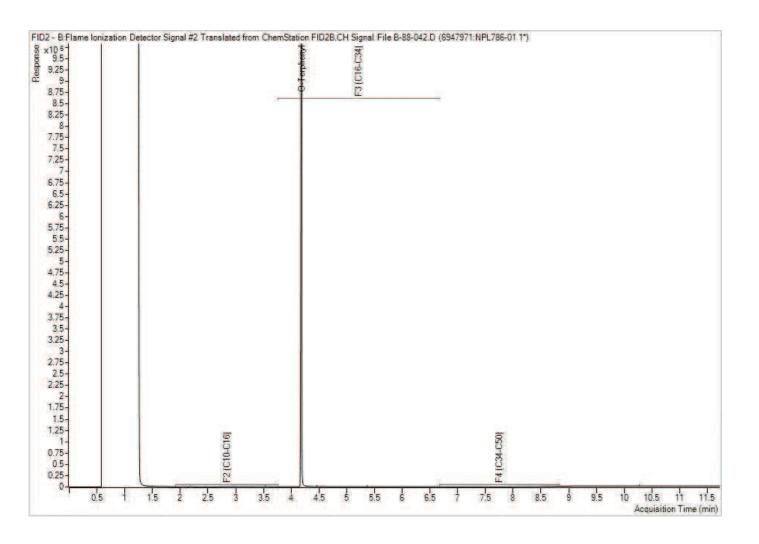
Client Project #: OTT-00260579-A0

Client ID: BH14

Petroleum Hydrocarbons F2-F4 in Water Chromatogram

exp Services Inc Client Project #: OTT-00260579-A0 Client ID: FB

Petroleum Hydrocarbons F2-F4 in Water Chromatogram



exp Services Inc

Client Project #: OTT-00260579-A0

Client ID: DUP

Petroleum Hydrocarbons F2-F4 in Water Chromatogram

