

Site Servicing and Stormwater Management Report 1740-1760 St. Laurent Boulevard Development, Ottawa, ON

Client:

11421247 Canada Inc. 768 Boulevard Saint-Joseph, Gatineau, Quebec, QC J8Y 4B8

Submitted for: Rezoning and Site Plan Application

Project Name: 1740-1760 St. Laurent Boulevard Development

Project Number: OTT-00260579-B0

Prepared By:

EXP 2650 Queensview Drive Ottawa, ON K2B 8H8 t: +1.613.688.1899 f: +1.613.225.7337

Date Submitted: August 24, 2021

EXP Services Inc. 1740-1760 St. Laurent Blvd, Ottawa, ON OTT-00260579-A0 August 24, 2021

Site Servicing and Stormwater Management Report 1740 St. Laurent Boulevard Development, Ottawa, ON

Client:

11421247 Canada Inc. 768 Boulevard Saint-Joseph, Gatineau, Quebec, QC J8Y 4B8

Submitted for: Rezoning and Site Plan Application

Project Name: 1740-1760 St. Laurent Boulevard Development

Project Number: OTT-00260579-B0

Prepared By:

EXP 2650 Queensview Drive Ottawa, ON K2B 8H8 t: +1.613.688.1899 f: +1.613.225.7337

Prepared by:

Approved by:

Bruce Tromas

Bruce Thomas, P.Eng.

Senior Project Manager

Aly Elgayar, M.A.Sc. Engineering Designer

Date Submitted: August 24, 2021

Table of Contents

1	Intro	duction	1
	1.1	Overview	1
2	Existi	ng Conditions	2
3	Existi	ng Infrastructure	3
4	Pre-C	onsultation / Permits / Approvals	3
5	Wate	r Servicing	5
	5.1	Existing Water Servicing	5
	5.2	Water Servicing Proposal	5
	5.3	Water Servicing Design	6
	5.4	Water Servicing Design Criteria	6
	5.5	Estimated Water Demands	7
	5.6	Boundary Conditions	8
	5.7	Fire Flow Requirements	8
	5.8	Review of Hydrant Spacing	9
6	Sewa	ge Servicing	10
6	Sewa 6.1	ge Servicing Existing Sewage Conditions	
6			10
	6.1 6.2	Existing Sewage Conditions	10 10
	6.1 6.2	Existing Sewage Conditions Proposed Sewage Conditions	10 10 11
	6.1 6.2 Storm	Existing Sewage Conditions Proposed Sewage Conditions n Servicing & Stormwater Management	10 10 11 11
	6.1 6.2 Storm 7.1	Existing Sewage Conditions Proposed Sewage Conditions n Servicing & Stormwater Management Minor System Design Criteria	10 10 11 11
	6.1 6.2 Storm 7.1 7.2	Existing Sewage Conditions Proposed Sewage Conditions n Servicing & Stormwater Management Minor System Design Criteria Major System Design Criteria	
	6.1 6.2 Storm 7.1 7.2 7.3	Existing Sewage Conditions Proposed Sewage Conditions n Servicing & Stormwater Management Minor System Design Criteria Major System Design Criteria Runoff Coefficients	10 10 11 11 11 12 13
	6.1 6.2 Storm 7.1 7.2 7.3 7.4	Existing Sewage Conditions Proposed Sewage Conditions n Servicing & Stormwater Management Minor System Design Criteria Major System Design Criteria Runoff Coefficients Pre-Development Conditions	10 10 11 11 11 12 13 14
	 6.1 6.2 Storm 7.1 7.2 7.3 7.4 7.5 	Existing Sewage Conditions Proposed Sewage Conditions n Servicing & Stormwater Management Minor System Design Criteria Major System Design Criteria Runoff Coefficients Pre-Development Conditions Allowable Release Rate	10 10 11 11 12 13 14 14
	6.1 6.2 Storm 7.1 7.2 7.3 7.4 7.5 7.6 7.7	Existing Sewage Conditions Proposed Sewage Conditions n Servicing & Stormwater Management Minor System Design Criteria Major System Design Criteria Runoff Coefficients Pre-Development Conditions Allowable Release Rate Proposed Stormwater System	10 11 11 11 12 13 14 14 15
7	 6.1 6.2 Storm 7.1 7.2 7.3 7.4 7.5 7.6 7.7 Erosid 	Existing Sewage Conditions Proposed Sewage Conditions n Servicing & Stormwater Management Minor System Design Criteria Major System Design Criteria Runoff Coefficients Pre-Development Conditions Allowable Release Rate Proposed Stormwater System Flow Attenuation & Storage	10 10 11 11 12 13 14 14 14 15 16

List of Figures

Figure 2-1 - Site Location2	
Figure 5-1 – Water Servicing for Existing Buildings5	

List of Tables

Table 5-1 - Summary of Water Supply Design Criteria	7
Table 5-2 : Water Demand Summary	8
Table 5-3 –Fire Flows Based on Hydrant Spacing	9
Table 6-1 – Summary of Existing Sewage Flows	
Table 6-2 – Summary of Anticipated Sewage Rates	11
Table 7-1 – Summary of Pre-Development Runoff Coefficients	12
Table 7-2 – Summary of Post-Development Runoff Coefficients	13
Table 7-3 – Summary of Pre-Development Flows	13
Table 7-5 – Summary of Post-Development Release Rates and Storage	

List of Appendices

Appendix A – Water	A
Appendix B – Sanitary	В
Appendix C – Storm	
Appendix D – Additional Documents	
Appendix E – Drawings	
· · · · · · · · · · · · · · · · · · ·	····· -

1 Introduction

1.1 Overview

EXP Services Inc. (EXP) was retained by 11421247 Canada Inc. to prepare a Site Servicing and Stormwater Management Report for the proposed redevelopment of 1740 St. Laurent Boulevard in support of a Rezoning and Site Plan Application.

The 1.9 hectare site is situated along St. Laurent Boulevard between Innes Road and Bourassa Street, as illustrated in **Figure 2-1** below. The site is within the City of Ottawa urban boundary and situated in Alta Vista Ward (Ward 18). The description of the subject property is noted below:

- PIN 04262-0210 comprised of:
 - Block 14, PIN 04261-0229
 - Block 15, PIN 04261-0230
 - Plan 4M-1476, PIN 04261-0231
 - Block 17, PIN 04261-0232
 - Part 1 Plan 5R 997, PIN 04261 0177

The development proposed will consist of four (4) high-rise buildings. Below the towers, three (3) levels of underground parking will be provided. One underground parking structure below Tower 1 and 2, and another underground parking structure below Tower 3 and 4.

The north-east tower (Tower 1) is a 15-storey high-rise comprised of 116 residential units located on the 3rd to 15th floors, with ground floor retail/common area and 2nd floor common area.

The north-west tower (Tower 2) is a 12-storey tower, with 95 residential units located on the 2nd to 12th floors, having ground floor common area.

The south-east tower (Tower 3) is a 15-storey high-rise comprised of 268 residential units located on the 2nd to 15th floors, with ground floor commercial area.

The south-west tower (Tower 4) is a 12-storey tower, with 193 residential units located on the 1st to 12th floors.

This report will discuss the adequacy of the adjacent municipal watermain, sanitary sewers and storm sewers to provide the required water supply, convey the sewage and stormwater flows that will result from the proposed development.

2 Existing Conditions

Within the site, there are four (4) existing buildings. The current zoning of the property is Arterial Mainstreet Zone, (AM10) and includes retail and commercial uses. The following summarizes the current building uses within the property.

- Existing Building 1 (north) Petrol station, car wash, parking areas.
- Existing Building 2 (middle) Restaurant, parking areas.
- Existing Building 3 (south) Restaurant, commercial, parking areas.
- Existing Building 4 (south) Commercial, parking areas.

The topography of the subject site is gently slopped in a north-east direction towards St. Laurent Boulevard. There is an easement bisecting the property from east to west for a local site access road.

Currently, there are six (6) vehicular access points from the site, all from St. Laurent Boulevard. Inbound (into the site) traffic using any of the six (6) access locations would be south bound from St. Laurent Boulevard only. All outbound traffic would be for south bound traffic on St. Laurent Boulevard, due to a raised concrete median present on St. Laurent Boulevard.

Figure 2-1 - Site Location

3 Existing Infrastructure

The site includes four (4) buildings that will be removed during the redevelopment of the site. It is proposed to develop the site in two phases. The northern two (2) towers (tower 1 & 2) will be constructed first, with the southern two (2) towers (tower 3 & 4) to follow.

From review of the sewer and watermain mapping, as-built drawings and Utility Central Registry (UCC) plans, the following summarizes the onsite and adjacent offsite infrastructure:

Within property

- Storm sewers and catch basins, sanitary sewer laterals and manhole, watermain services to the four (4) existing buildings.
- 525 storm sewer bisecting the proposed Tower 3 & 4 location (will require re-routing).
- Sanitary sewer located below the proposed tower 1 location (will require re-routing).
- Private 203-305mm watermain connected to St. Laurent Boulevard in Everest Private.

On St. Laurent Boulevard

- 406mm watermains
- 525mm sanitary sewer
- 1050mm storm sewer

4 Pre-Consultation / Permits / Approvals

A pre-consultation meeting was held with the City prior to design commencement. This online Teams meeting, held May 19, 2020, outlined the submission requirements and provided information to assist with the development proposal.

The proposed site is located within the Rideau Valley Conservation Authority (RVCA) jurisdiction (Ottawa River East), therefore signoff from the RVCA will be required prior to Site Plan approval. The RVCA will be contacted to confirm the stormwater management quality control requirements.

Generally, an Environmental Compliance Approval (ECA) would be obtained from the Ministry of Environment, Conservation and Parks (MECP) for any onsite private Sewage Works. The onsite Sewage Works would generally include the onsite stormwater works such as flow controls, associated stormwater detention, and treatment works. However, an Approval Exemption under Ontario Regulation 525/98 can be applied. Under Section 3 of O'Reg 525/98, Section 53 (1) and (3) do not apply to the alteration, extension, replacement or a change to a stormwater management facility that 1) is designed to service one lot or parcel of land, b) discharges into a storm sewer that is not a combined sewer, c) does not service industrial land or a structure located on industrial land, and finally d) is not located on industrial land. Based on this exemption, if the stormwater management works within the site remain located within one property parcel, then an Approval Exemptions under O'Reg 525/98 would apply and therefore not necessitate an ECA.

In addition, various design guidelines were referred to in preparing the current report including:


- Ottawa Design Guidelines Sewer Design, October 2012 (SGD002), including:
 - Technical Bulletin ISDTB-2012-4 (20 June 2012)
 - Technical Bulletin ISDTB-2014-01 (05 February 2014)
 - Technical Bulletin PIEDTB-2016-01 (September 6, 2016)
 - Technical Bulletin ISDTB-2018-01 (21 March 2018)
 - Technical Bulletin ISDTB-2018-04 (27 June 2018)
- Ottawa Design Guidelines Water Distribution, July 2010 (WDG001), including:
 - Technical Bulletin ISDTB-2014-02 (May 27, 2014)
 - Technical Bulletin ISTB-2018-02 (21 March 2018)
- Stormwater Management Planning and Design Manual, Ontario Ministry of the Environment and Climate Change, March 2003 (SMPDM).
- Design Guidelines for Drinking-Water Systems, Ontario Ministry of the Environment and Climate Change, 2008 (GDWS).
- Fire Underwriters Survey, Water Supply for Public Fire Protection (FUS), 1999.
- Ontario Building Code 2012, Ministry of Municipal Affairs and Housing.

5 Water Servicing

5.1 Existing Water Servicing

The subject site is within the City of Ottawa 1E pressure zone. The site is currently serviced by two connections to the watermain on St. Laurent Boulevard, one (1) service and one (1) private watermain connection. From GeoOttawa, it is shown that a 152mm water service supplies the southern building and a 203mm (increased to 305mm on site) watermain connects through the property to supply buildings on site and to the west of the subject site and ultimately connect back to the watermain in Russel Road. Both noted water services are connected of the existing 406mm watermain in St. Laurent Boulevard. Figure 5-1 below illustrates the existing water services onsite.

Figure 5-1 – Water Servicing for Existing Buildings

5.2 Water Servicing Proposal

The development proposed will consist of four (4) high-rise buildings. Tower 1 is comprised of 116 residential units and \pm 1,047 square metres of office and retail space. Tower 2 is comprised of 95 residential units. Tower 3 is comprised of 268 residential units and \pm 1,844 square metres of office and retail space. Tower 4 is comprised of 193 residential units.

Water supply for the site will be provided by the proposed 300mm diameter watermain that will bisect the site connecting to the existing municipal 406mm diameter watermain on St Laurent Boulevard and the existing municipal 305mm diameter watermain along Everest Private. As each tower will be constructed in phases, it is necessary to provide separate services for each. In addition, each building will require independent and twin watermain, which is the result of the average day water demands exceeding 50 m³/day. The watermain feeds from the underground parking level will connect directly to the proposed 300mm diameter watermain and will have an isolation valve between them, consistent with City of Ottawa Water Design Guidelines.

The buildings will be protected by an automatic sprinkler system. A fire department (or siamese) connection will be located within 45 metres of an adjacent municipally owned fire hydrant. In order to achieve this, it is proposed that

two (2) new hydrants will be installed off the proposed 300mm diameter watermain on site. Refer to the Site Servicing plan (DWG# C100) in **Appendix A** for the water servicing layout.

5.3 Water Servicing Design

The water servicing requirements for the proposed building is designed in accordance with the City Design Guidelines (July 2010). The following steps indicate the basic methodology that was used in our analysis:

- Estimated water demands under average day, maximum day and peak hour conditions. As the total population estimate was greater than 500, standard residential peaking factors were used, rather than based on MECP Table 3-3 which would be necessary when the design population is than 500 persons.
- Estimated the required fire flow (RFF) based on the Fire Underwriters Survey (FUS).
- Obtained hydraulic boundary conditions (HGL) from the City, based on the above water demands and required fire flows.
- Boundary condition data and water demands were used to estimate the pressure at the proposed building, and this was compared to the City's design criteria. Refer to **Appendix A** for the boundary conditions received from the City.

Since the average day demand exceed 50 m³ per day, two 150mm diameter PVC DR18 watermain feeds for each building will be necessary as per Section 4.31 of the WDG001. Please refer to **Email from** City of Ottawa on Water System Boundary Conditions

Table A in Appendix A for detailed calculations of the total water demands.

A review of the estimated watermain pressure at the building connection, based on the boundary conditions provided, was completed based on using two watermains. **Table A-, A-9, A-10** and **A11** in **Appendix A** provides a comparison of anticipated pressures at the buildings' connection based on using a single or double watermain feed. The analysis results determined that double water services are required to meet the City's water requirements during either the maximum day plus fire flow or peak hour condition.

Based on the hydraulic grade line (HGL) provided from the City it is evident that existing static pressure of ±72.8 psi (502.1 kPa) is available in the municipal 406mm diameter watermain on St. Laurent Boulevard. Due to the relatively short distance between the buildings and the watermain connection, minimal pressure loss is anticipated. Based on the existing watermain pressure and the max day + fire flow conditions, the residual pressure at the proposed buildings are 53.0 psi (365.7 kPa) for Tower 1, 44.6 psi (307.3 kPa) for Tower 2, 48.5 psi (334.7 kPa) for Tower 3, and 40.9 psi (281.7 kPa) for Tower 4. The residual water pressures in the proposed watermain are greater than the minimum requirement of 20psi (140kPa) and less than the maximum requirement of 80 psi (552 kPa) as per the City of Ottawa Guidelines. Therefore, the existing water supply system will have adequate capacity to meet the domestic and fire demands for the proposed buildings. Refer to **Appendix A** for detailed calculations.

5.4 Water Servicing Design Criteria

Table 5-1 below summarizes the Design Criteria that was used to establish the water demands and the required fire flows, based on the proposed building uses. The design parameters that apply to this project and used for calculations are identified below.

Table 5-1 - Summary of Water Supply Design Criteria

Design Parameter	Value	Applies
Population Density – Single-family Home	3.4 persons/unit	
Population Density – Semi-detached Home	2.7 persons/unit	
Population Density – Townhome or Terrace Flat	1.8 persons/unit	
Population Density – Bachelor Apartment	1.4 persons/unit	
Population Density – Bachelor + Den Apartment	1.4 persons/unit	
Population Density – One Bedroom Apartment	1.4 persons/unit	✓
Population Density – One Bedroom plus Den Apartment	1.4 persons/unit	
Population Density – Two Bedroom Apartment	2.1 persons/unit	✓
Population Density – Two Bedroom plus Den Apartment	2.1 persons/unit	
Population Density – Three Bedroom Apartment	3.1 persons/unit	✓
Average Day Demands – Residential	350 L/person/day	✓
Average Day Demands – Commercial / Institutional	28,000 L/gross ha/day	√
Average Day Demands – Light Industrial / Heavy Industrial	35,000 or 55,000 L/gross ha/day	
Maximum Day Demands – Residential	2.5 x Average Day Demands	✓
Maximum Day Demands – Commercial / Institutional	1.5 x Average Day Demands	✓
Peak Hour Demands – Residential	5.5 x Average Day Demands	✓
Peak Hour Demands – Commercial / Institutional	2.7 x Average Day Demands	✓
Fire Flow Requirements Calculation	FUS	✓
Depth of Cover Required	2.4m	✓
Maximum Allowable Pressure	551.6 kPa (80 psi)	✓
Minimum Allowable Pressure	275.8 kPa (40 psi)	✓
Minimum Allowable Pressure during fire flow conditions	137.9 kPa (20 psi)	✓

5.5 Estimated Water Demands

The following **Table 5-2** below summarizes the anticipated water demands for the proposed development based on following:

- Tower 1 having 116 residential units and 965 m² of commercial space. Estimated residential population of 181 persons.
- Tower 2 having 95 residential units and 1,288 m² of commercial space. Estimated residential population of 151 persons.
- Tower 3 having 268 residential units. Estimated residential population of 412 persons.
- Tower 4 having 193 residential units. Estimated residential population of 284 persons.

Table 5-2 : Water Demand Summary

Water Demand Conditions	Tower 1 - Water Demands (L/sec)	Tower 2 - Water Demands (L/sec)	Tower 3 - Water Demands (L/sec)	Tower 4 - Water Demands (L/sec)	Total Water Demands (L/sec)
Average Day	0.79	0.69	1.67	1.15	4.3
Max Day	1.91	1.64	4.18	2.87	10.6
Peak Hour	4.17	3.57	9.19	6.32	23.25

5.6 Boundary Conditions

Hydraulic Grade Line (HGL) boundary conditions were obtained from the City for design purposes. A copy of the correspondence received from the City is provided in **Appendix B**.

The following hydraulic grade line (HGL) boundary conditions were provided for the connection on St. Laurent Boulevard:

•	Minimum HGL	= 108.9 m
•	Maximum HGL	= 118.2 m
•	MaxDay + Fire Flow	= 107.4 m

The provided HGL ranges were used to estimate pressures at each proposed building. Under Max Day Plus Fire Flow conditions the HGL of 107.4 m was used, for Max Day and Peak Hour conditions the HGL of 108.9 m was used, and for the Average Day conditions the HGL of 118.2 m was used.

5.7 Fire Flow Requirements

Water for fire protection will be available utilizing the proposed fire hydrants located along on St. Laurent Boulevard. The required fire flows for the proposed buildings were calculated based on typical values as established by the Fire Underwriters Survey 1999 (FUS).

The following equation from the Fire Underwriters document "Water Supply for Public Fire Protection", 1991, was used for calculation of the on-site supply rates required to be supplied by the hydrants:

F = 200 * C * V (A)

where:

- C = Coefficient related to type of Construction
- A = Total Floor Area in square metres

The Required Fire Flows were estimated in accordance with ISTB-2018-02 and based on floor areas provided by the architect. The following summarizes the parameters used for the proposed buildings:

- Type of Construction Non-combustible
- Occupancy
 Limited combustible
- Sprinkler Protection Fully Supervised Automatic Sprinkler

The estimated required fire flows, based on the FUS methods are: 133 L/sec for Tower 1, 167 L/sec for Tower 2, 183 L/sec for Tower 3, and 200 L/sec for Tower 4. Refer to **Tables A-3, A-4, A-5,** and **A-6** in **Appendix A** for detailed calculations.

5.8 Review of Hydrant Spacing

A review of the hydrant spacing was completed to ensure compliance with Appendix I of Technical Bulletin ISTB-2018-02. As per Section 3 of Appendix I all hydrants within 150 metres were reviewed to assess the total possible available flow from these contributing hydrants.

For each hydrant the distance to the proposed building was determined to arrive at the contribution of fire flow from each. All hydrants are expected to be of Class AA as per Section 5.1 of Appendix I. For each hydrant the straight-line distance, distance measured along a fire route or roadway, whether its location is accessible, and its contribution to the required fire flow. It was determined that two (2) existing hydrants, one along St. Laurent Boulevard and one along Everest Private, and two (2) proposed hydrants on the frontage of Towers 1 and 4 along Everest Private are required to provide adequate fire flow for the proposed buildings. Refer to the Site Servicing plan (DWG# C100) in **Appendix A** for the fire hydrants locations. A summary table of the total fire flows available versus the required fire flows (RFFs) is presented in **Table 5-** below.

Building	Required Fire Flow (L/min)	Available Fire Flow Based on Hydrant Spacing as per ISTB-2018-02 (L/min)	
Tower 1	8,000 (or 133 L/sec)	9,500	
Tower 2	10,000 (or 167 L/sec)	17,100	
Tower 3 11,000 (or 183 L/sec)		15,200	
Tower 4	12,000 (or 200 L/sec)	19,000	

Table 5-3 – Fire Flows Based on Hydrant Spacing

Without the addition of two(2) new hydrants the available fire flow available for each tower would be approximately 5,700 L/min, 7,600 L/min, 5,700 L/min, and 9,500 L/min for Towers 1, 2, 3 and 4 respectively, which is below the required fire flow described above. Therefore, the available flows from the hydrants exceed each tower's fire flow requirements as identified in Appendix I of Technical Bulletin ISTB-2018-02 and is based on two (2) new hydrants being installed.

6 Sewage Servicing

6.1 Existing Sewage Conditions

Sewage is currently discharged to the municipal sanitary sewer on St. Laurent Boulevard, which then discharges to the Innes Road collector. The route is as follows:

- East on Everest Private (±153m of 200-300mm pipe) to St. Laurent Boulevard Collector,
- North on St. Laurent Boulevard (±141m of 525mm pipe) to Innes Road Collector,
- East on Innes Road (±2,535m of 900mm, 1650mm pipes) to Stonehenge Crescent
- North on Stonehenge Crescent, north-east through open field, north on Shefford Road and eventually discharging to the Robert O. Pickard Environment Centre.

Sewage flows within the property were estimated in order to compare with developed conditons. **Table 6-1** below summarizes the approximate sewage flows generated from the existing properties, based on a commercial flow allowance of 28,000 m3/ha/day, commercial peaking factor of 1.5, and infiltration allowance of 0.33 L/sec/gross hectare.

Table 6-1 – Summary of Existing Sewage Flows

Sewage Condition	Sanitary Sewage Flow (L/sec)
Peak Commercial Sewage Flow	0.70
Infiltration Flow (at 0.33 L/ha/sec)	0.47
Peak Wet Weather Sewage Flow	1.17

6.2 Proposed Sewage Conditions

It is proposed to provide separate sanitary sewer connections from each tower to sanitary manholes on-site, which will then discharge to the sewer on Everest Private. The sanitary laterals for Towers 2 and 4 will connect to the existing manhole no. 64454 and laterals for Towers 1 and 3 will connect to the proposed manhole SANMH201. Proposed SANMH201 will serve as the monitoring manhole for the site.

The sanitary sewer system was designed based on a population flow with an area-based infiltration allowance. A 200mm diameter PVC SDR35 sanitary sewer is proposed with a minimum 2% slope, having a capacity of 51 L/sec based on Manning's Equation under full flow conditions. The Alta Vista Ridge subdivision (355 and 374 Everest Private) is located to the west of the proposed site and has a total sewage flow of **11.86 L/sec** as per the Servicing and Stormwater Management brief prepared by Stantec dated June 2, 2021. The estimated peak sanitary flow rate from the proposed property is **11.44 L/sec** based on City Design Guidelines. Sewage rates in **Table 6-1** below include a total infiltration allowance of 0.33 L/ha/sec based on the total gross site area. Refer to **Tables B-1**in **Appendix B** for detailed calculations. The proposed towers.

Table 6-2 – Summary of Anticipated Sewage Rates

Sewage Condition	Sanitary Sewage Flow (L/sec)	
Peak Residential / Commercial Flow	10.87	
Infiltration Flow	0.57	
Peak Design Flow	11.39	

The estimated sewage effluent from Towers 1, 2, 3, and 4 are 2.49, 2.15, 5.52, 3.83, respectively. As each building will require its own sanitary sewer connection, a 200mm diameter PVC SDR35 lateral with a minimum slope of 2.0% and estimated capacity of 51 L/sec will be installed. The proposed laterals will have adequate capacity to convey the effluents from each building.

7 Storm Servicing & Stormwater Management

The proposed stormwater system is designed in conformance with the latest version of the City of Ottawa Design Guidelines (October 2012). Section 5 "Storm and Combined Sewer Design" and Section 8 "Stormwater Management". A summary of the design criteria that relates to this design report is the proceeding sections below.

7.1 Minor System Design Criteria

- The storm sewer was sized based on the Rational Method and Manning's Equation under free flow conditions for the 2-year storm using a 10-minute inlet time.
- The allowable discharge from the site is established using the peak flows derived based on a 5-year return period storm, a maximum runoff coefficient of 0.50 and a standard time of concentration of 10 minutes as per Section 8.3.7.3 of the SDG002.
- On-site storage shall be provided up to the 100-year event based on the controlled allowable discharge previously noted.
- Additional requirements from the pre-consultation meeting are noted below:
 - Demonstrate that the approved Stormwater Management design for the Alta Vista Ridge Subdivision will not impact negatively. The Alta Vista Ridge subdivision flows were obtained from the Servicing and Stormwater Management brief prepared by Stantec dated June 2, 2021. Refer to Storm Drainage plan drawing no. SD-1 prepared by Stantec dated 28 May 2021 in **Appendix E**.
- Minimum sewer slopes to be based on minimum velocities for storm sewers of 0.80 m/sec.

7.2 Major System Design Criteria

- As per Technical Bulletin PIEDTB-2016-01 section 8.3.11.1 (p.12 of 14) there shall be no surface ponding on private parking areas during the 2-year storm rainfall event. Depending on the SWM strategy proposed underground or additional underground storage may be required to satisfy this requirement.
- The major system has been designed to accommodate on-site detention with sufficient capacity to attenuate the 100-year design storm. On-site storage is calculated based on the 100-year design storm with on-site detention storage provided on the roof and within the underground parking structures (stormwater cisterns).
- Overland flow routes are provided.

- The vertical distance from the spill elevation on the street and the ground elevation at the buildings is at least 150mm.
- The emergency overflow spill elevation is at least 300mm below the lowest building opening.

7.3 Runoff Coefficients

Runoff coefficients used for were based on actual areas taken from CAD. Runoff coefficients for impervious surfaces (roofs, asphalt, and concrete) were taken as 0.90, whereas those for pervious surfaces (grass/landscaping) were taken as 0.20. Average runoff coefficients were calculated for catchments (or drainage areas) using weighted average method.

The runoff coefficients for pre-development and post-development catchments are provided in **Table C6** and **Table C7** in **Appendix C** and summarized in **Table 7-1** and **Table7-2** below.

Table 7-1 – Summary of Pre-Development Runoff Coefficients

Location	Area (hectares)	Runoff Coefficient, C _{AVG}
Entire Site	1.90	0.50

Location	Area (hectares)	Runoff Coefficient, C _{AVG}
T1	0.160	0.90
T2	0.172	0.57
Т3	0.256	0.90
T4	0.186	0.90
A1	0.079	0.62
A2	0.003	0.90
A3	0.049	0.84
A4	0.045	0.64
A5	0.080	0.54
A6	0.113	0.20
A7	0.010	0.57
A8	0.120	0.20
A9	0.252	0.68
A10	0.020	0.56
A11	0.023	0.85
A12	0.011	0.76
A13	0.013	0.81
A14	0.022	0.90
A15	0.015	0.79
A16	0.057	0.80
A17	0.166	0.20
A18	0.048	0.25

Table 7-2 – Summary of Post-Development Runoff Coefficients

7.4 Pre-Development Conditions

Under current conditions stormwater runoff from the 1.9-hectare site flows via on-site storm outlets to the existing 1050mm storm sewer on St. Laurent Boulevard. The overland flow route for stormwater is east towards St. Laurent Boulevard. **Table 7-3** below summarizes the estimated peak flows under pre-development conditions using the standard 10-minute time of concentration (time to inlet).

Table 7-3 – Summary of Pre-Development Flows
--

Return Period Storm	Total Peak Flows (L/sec)
2-year	202.8
5-year	275.4
100-year	943.1

7.5 Allowable Release Rate

Rather than meeting pre-development released rates, the City of Ottawa imposes a more restrictive stormwater release rate as noted in Section 8.3.7.3 of the SDG002. The allowable discharge release rate from the site was established using the peak flows derived based on a 5-year return period storm, a maximum runoff coefficient of 0.50 and a standard time of concentration of 10 minutes.

The allowable release rate of 275.4 L/sec from the proposed site will be based on a 5-year storm event. **Table A-8** in **Appendix C** provides detailed calculations on the total allowable peak flow.

7.6 Proposed Stormwater System

Stormwater runoff from the proposed site will drain from a combination of controlled and uncontrolled areas. The overall site release rate will meet or be less than the allowable release rate via design control measures and on-site storage. The Post-Development Catchments plan drawing no. C-400 is included in **Appendix E**. A total of 21 subcatchments (or drainage areas) within the development site are shown on this drawing with the average runoff coefficients calculated for each drainage area. The detailed calculations of the post-development average runoff coefficients for each drainage area are provided in **Table C-7** in **Appendix C**. As the entire site property contains underground parking structures, the stormwater works shall consist of the following elements:

- Flow-control roof drains for Towers 1, 2, 3 and 4. Each building to have a separate storm lateral connection, which will discharge to an onsite storm manhole, which will then convey the stormwater to the municipal system on St. Laurent Boulevard.
- Runoff from surface areas will be collected by area drains and discharge to underground storage (stormwater cisterns) located in the underground parking structures. This in turn discharges to one of the storm laterals noted above.

In order to achieve the quantity control requirements and meet the allowable discharge rates roof drains on all four (4) Towers will require flow-controlled weirs. The number of roof drains are indicated on the Architectural Roof plan drawing no. P204 in **Appendix E**. WATTS ACCUTROL weirs were used to determine the total discharge rates from the roof areas based on the number of drains. In addition, the total cumulative prism volumes on the roofs were calculated at a maximum permitted depth of 150mm. Refer to **Tables C-1**, **C-2**, **C-3**, **C-4**, and **C-5** for the detailed roof release rates and available storage for each tower.

 Table 7-4 below provides a summary of the stormwater peak flows under post-development conditions. Refer to the

 Table C-8 in Appendix C for detailed calculations of the post-development peak flows.

Return Period Storm	Max Allowable Peak Flow (L/sec)	¹ Total Uncontrolled Peak Stormwater Flows (L/sec)	² Total Controlled Peak Stormwater Flows (L/sec)
2-year	275.4 L/sec	255.9	97.8
5-year	Based on pre-	347.2	132.7
100-year	development 5-year Storm	702.8	274.9
Note 1-Uncontrolled peak Note 2-Contolled flows.	k flows, or peak flows that would re.	sult if no flow control used.	

Table 7-4 – Summary of Post-Development Flows

Since flow control is being utilized onsite, it is necessary to provide appropriate flow attenuation (storage). Additional information on the estimated 100-year volumes is provided in **Section 7.7** below.

7.7 Flow Attenuation & Storage

The attenuation of stormwater will be achieved by utilizing roof storage and stormwater storage in the underground parking structure (cisterns). Using the allowable release rates, the Modified Rational Method was used to determine the 2-year, 5-year, and 100-year volumes that will occur for corresponding release rates.

Refer to **Table C-10** through **C-29** in **Appendix C** for the detailed calculations for the storage volumes required on the roof and in the underground parking structure to attenuate the controlled release rates. **Table C-8** summarizes the combined controlled and uncontrolled flows leaving the subject site and **Table C-9** summarizes the required and provided storage for the subject site. A summary of release rates, storage volume requirements, and provided storage volumes are identified in **Table 7-5** below.

Area	Rele	ease Rate	(L/s)	Storage	e Require (MRM)	d (m³)	-	e Provided (m³)	Flow Control Method			
	2-yr	5-yr	100-yr	2-yr	5-yr	100-yr	Roof	Cistern				
T1	7.0	9.5	18.0	7.6	9.7	24.7	64.0					
T2	3.6	4.9	10.4	7.2	9.3	23.2	36.0		Flow Controlled Roof Drains with Weir (Set			
Т3	9.5	12.9	24.6	15.3	19.7	45.6	102.5		at 25% Open Position)			
T4	5.1	6.9	13.2	14.2	18.3	38.6	74.5					
Surface - Uncontrolled	12.9	17.6	37.8						None			
Surface - Controlled	59.7	80.9	170.9	28.0	38.0	80.6		80.6	Pump Rate from Cistern			
Totals =	97.8	132.7	274.9	72.3	95.0	212.7	277.0	80.6				

Table 7-5 – Summary of Post-Development Release Rates and	1 Storage
---	-----------

8 Erosion & Sediment Control

During all construction activities, erosion and sedimentation shall be controlled by the following techniques:

- Filter cloth shall be installed between the frame and cover of all adjacent catch basins and catch basin manhole structures.
- Heavy duty silt fencing will be used to control runoff around the construction area. Silt fencing locations are identified on the Erosion and Sediment Control plan drawing no. C-300.
- A mud mat will be installed at the construction entrance to help avoid mud from being transported to off-site roads.
- Visual inspection shall be completed daily on sediment control barriers and any damage repaired immediately. Care will be taken to prevent damage during construction operations.
- In some cases, barriers may be removed temporarily to accommodate the construction operations. The affected barriers will be reinstated at night when construction is completed.
- Sediment control devices will be cleaned of accumulated silt as required. The deposits will be disposed of as per the requirements of the contract.
- During the course of construction, if the engineer believes that additional prevention methods are required to control erosion and sedimentation, the contractor will install additional silt fences or other methods as required to the satisfaction of the engineer.
- Construction and maintenance requirements for erosion and sediment controls are to comply with Ontario Provincial Standard Specification (OPSS) OPSS 805 and City of Ottawa specifications.

9 Conclusions and Recommendations

The Servicing & Stormwater Report outlines the rationale which will be used to service the proposed development. The following summarizes the servicing requirements for the site:

Water

- Two parallel 150mm diameter watermains are proposed to service each of Towers 1, 2, 3, and 4 as the average day demands exceed 50 m³ per day, which is mandatory as per Section 4.31 of the WDG001.
- The Required Fire Flows (RFFs) were estimated at 8,000 L/min (133 L/sec) for Tower 1, 10,000 L/min (167 L/sec) for Tower 2, 11,000 L/min (183 L/sec) for Tower 3, and 12,000 L/min (200 L/sec) for Tower 4. The total minimum available flows for firefighting purposes, based on the contribution from hydrants, was estimated at 9,500 L/min, 17,100 L/min, 15,200 L/min, and 19,000 L/min for each tower, respectively. The available flows are based on the two (2) existing fire hydrants along St. Laurent and the installation of two (2) new fire hydrants along Everest Private.
- Based on hydraulic boundary conditions (HGL) provided by the City of Ottawa, anticipated system pressures of 53.0 psi, 44.6 psi, 48.5 psi and 40.9 psi for Towers 1, 2, 3, and 4, respectively, under max day + fire flow demands. This exceeds the minimum requirement of 20 psi and is less than the maximum requirement of 80psi as per the City's guideline.

<u>Sewage</u>

• Estimated peak sewage flows of **11.44 L/sec** are anticipated. The sanitary sewer system will consist of 200mm diameter sewers with a minimum 2% slope and having a capacity of **51 L/sec**, which will be adequate to convey the anticipated sewage flow.

Stormwater

- For the stormwater system, the allowable capture rate from the entire site was calculated based on a 5-year return period storm, a maximum runoff coefficient of 0.50 and a standard time of concentration of 10 minutes as per Section 8.3.7.3 of the SDG002. The allowable release rate for the entire site was calculated to be 275.4 L/sec. Runoff in excess of this will be detained onsite for up to the 100-year storm.
- In order to meet the allowable release rate, a total retention volume of ± 212.7 m³ is required.
- Runoff on the building roofs will be controlled using flow-controlled roof drains. For each roof-drain will be equipped with WATTS ACCUTROL weirs. Based on the number of roof drains, it was determined that the maximum 100-year discharge rates for Towers 1, 2, 3, and 4 are 18.0 L/sec, 10.4 L/sec, 24.6 L/sec, and 13.2 L/sec, respectively.
- The 100-year storage volume requirements on the roofs for Towers 1, 2, 3, and 4 was estimated as 24.7 m³, 23.2 m³, 45.6 m³, and 38.6 m³, respectively, based on the above release rates, using the Modified Rational Method. The required storage volumes will be provided on the roofs.
- Runoff from the surface areas above the parking structure will be collected and detained in underground stormwater chamber (cisterns) located in the parking structures. Runoff from the catchment areas between the buildings will be directed to one of the cisterns. The maximum discharge from the site will be **274.9 L/sec** during the 100-year storm event, which is well below the allowable release rate.
- The volume necessary to detain the 100-year event from the surface areas (via pumping from the cisterns) will be based on using 50% of the allowable release rate as required by the City of Ottawa. The stormwater tanks (cisterns) will be sized to hold a minimum volume of **80.6 m³**.

10 Legal Notification

This report was prepared by EXP Services Inc. for the account of 11421247 Canada Inc.

Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. EXP Services Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this project.

Appendix A – Water

- Email from City of Ottawa on Water System Boundary Conditions
- Table A-1 Water Demand Chart
- Table A-2 Fire Flow Requirements Based on Fire Underwriters Survey (FUS) Summary
- Table A-3 Fire Flow Requirements Based on Fire Underwriters Survey (FUS) Tower 1
- Table A-4 Fire Flow Requirements Based on Fire Underwriters Survey (FUS) Tower 2
- Table A-5 Fire Flow Requirements Based on Fire Underwriters Survey (FUS) Tower 3
- Table A-6 Fire Flow Requirements Based on Fire Underwriters Survey (FUS) Tower 4
- Table A-7 Available Fire Flows Based on Hydrant Spacing
- Table A-8 Estimated Water Pressures at Buildings Tower 1
- Table A-9 Estimated Water Pressures at Buildings Tower 2
- Table A-10 Estimated Water Pressures at Buildings Tower 3
- Table A-11 Estimated Water Pressures at Buildings Tower 4

Aly Elgayar

From:Sharif, Golam <sharif.sharif@ottawa.ca>Sent:Monday, October 26, 2020 11:10 AMTo:Jason Fitzpatrick; Bruce ThomasCc:Scaramozzino, TraceySubject:RE: 1740 St Laurent Boulevard,Attachments:1740 St Laurent Boulevard October 2020.pdf

CAUTION: This email originated from outside of the organization. Do not click links or open attachments unless you recognize the sender and know the content is safe.

Good Morning Jason,

I have the BC from our water modelling unit. However, the connection was showing at the private watermain at the site, and we don't provide the BC for private watermain. Therefore, I have the BC at the Russel Rd and St Laurent Blvd. Please see following information from the water modelling unit:

The following are boundary conditions, HGL, for hydraulic analysis at 1740 St Laurent (zone 1E) assumed to be connected to the 203mm on St Laurent Boulevard and 305mm on Russell Road (see attached PDF for location).

Connection 1 (203mm on St Laurent):

Minimum HGL = 108.9m Maximum HGL = 118.2m MaxDay + Fire Flow (133 L/s) = 110.4mMaxDay + Fire Flow (167 L/s) = 109.0mMaxDay + Fire Flow (183 L/s) = 108.2mMaxDay + Fire Flow (200 L/s) = 107.4mConnection 2 (305mm on Russell): Minimum HGL = 108.3m Maximum HGL = 118.4m MaxDay + Fire Flow (133 L/s) = 107.0mMaxDay + Fire Flow (167 L/s) = 104.0mMaxDay + Fire Flow (183 L/s) = 102.5mMaxDay + Fire Flow (200 L/s) = 100.6m

These are for current conditions and are based on computer model simulation.

Disclaimer: The boundary condition information is based on current operation of the city water distribution system. The computer model simulation is based on the best information available at the time. The operation of the water distribution system can change on a regular basis, resulting in a variation in boundary conditions.

The physical properties of watermains deteriorate over time, as such must be assumed in the absence of actual field test data. The variation in physical watermain properties can therefore alter the results of the computer model simulation.

If you have any question, please let me know. Thanks.

Sharif

Golam Sharif, P.Eng., M.Eng. Project Manager, Infrastructure Approvals Development Review, South Services Planning, Infrastructure and Economic Development Department | Services de planification, d'infrastructure et de développement économique City of Ottawa | Ville d'Ottawa 110 Laurier Avenue West. Ottawa, ON | 110, avenue. Laurier Ouest. Ottawa (Ontario) K1P 1J1 613.580.2424 ext./poste **20763**, fax/téléc:613-580-2576, <u>sharif.sharif@ottawa.ca</u>

From: Scaramozzino, Tracey <Tracey.Scaramozzino@ottawa.ca>
Sent: October 20, 2020 1:57 PM
To: Jason Fitzpatrick <jason.fitzpatrick@exp.com>; Sharif, Golam <sharif.sharif@ottawa.ca>
Cc: Bruce Thomas <Bruce.Thomas@exp.com>
Subject: Re: 1740 St Laurent Boulevard,

Hi Sharif - please see attached.

From: Jason Fitzpatrick <<u>jason.fitzpatrick@exp.com</u>> Sent: October 20, 2020 1:05 PM To: Scaramozzino, Tracey <<u>Tracey.Scaramozzino@ottawa.ca</u>> Cc: Bruce Thomas <<u>Bruce.Thomas@exp.com</u>> Subject: FW: 1740 St Laurent Boulevard,

CAUTION: This email originated from an External Sender. Please do not click links or open attachments unless you recognize the source.

ATTENTION : Ce courriel provient d'un expéditeur externe. Ne cliquez sur aucun lien et n'ouvrez pas de pièce jointe, excepté si vous connaissez l'expéditeur.

Hi Tracey,

I tried to email Golam Sharif my request below, but the email bounced back.

I believe he is the IAD contact for this project, as noted in the pre-consultation minutes.

Perhaps I didn't get the correct email address. Can you confirm the proper contact person, or let me know his proper email address.

Thanks

Jason Fitzpatrick, P.Eng. EXP | Project Engineer t : +1.613.688.1899 | m : +1.613.302.7441 | e : jason.fitzpatrick@exp.com

<u>exp.com</u> | <u>legal disclaimer</u> keep it green, read from the screen

From: Jason Fitzpatrick
Sent: Tuesday, October 20, 2020 12:54 PM
To: 'golam.sharif@ottawa.ca' <golam.sharif@ottawa.ca>
Cc: Bruce Thomas <<u>bruce.thomas@exp.com</u>>; Alexander O'Beirn <<u>Alexander.OBeirn@exp.com</u>>
Subject: 1740 St Laurent Boulevard,

Hi Golam,

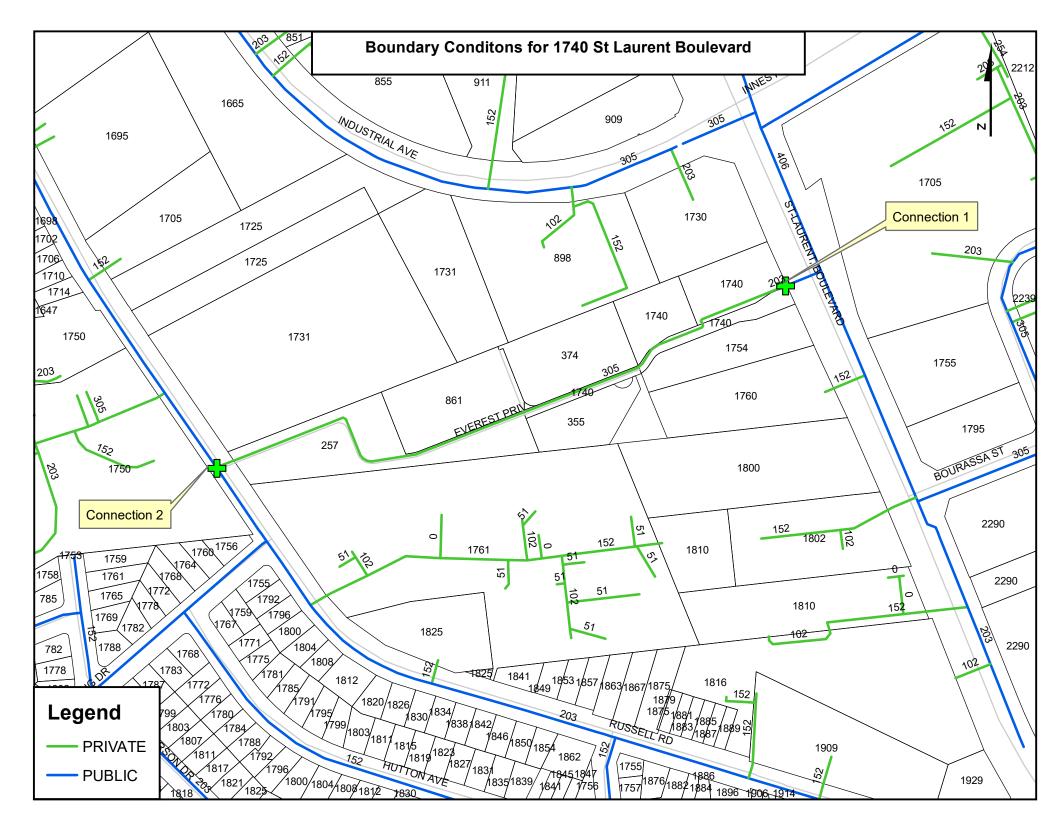
As noted in the pre-consultation meeting minutes, I'm providing the required background information that is necessary in order for the City to provide hydraulic boundary conditions on the water system, that we can use for our design.

Please find attached the following information:

- Estimated Required Fire Flows (RFF) for each building based on FUS Method.
- Water demands for each building and total.
- Concept Site Plan.
- Site Location Plan

Based on calculations, the following summarizes the domestic and fire flow demands:

- Average Day Demands = 4.2 L/sec
- Maximum Day Demands = 10.4 L/sec
- Peak Hour Demands = 22.8 L/sec
- Required Fire Flow (RFF) = 133 L/sec, 183 L/sec, 167 L/sec, 200 L/sec (Towers 1, 2, 3, 4)


If you have any questions, let me know.

Thanks

*exp

Jason Fitzpatrick, P.Eng. EXP | Project Engineer t : +1.613.688.1899 | m : +1.613.302.7441 | e : jason.fitzpatrick@exp.com 2650 Queensview Drive Suite 100 Ottawa, ON K2B 8H6 CANADA

<u>exp.com</u> | <u>legal disclaimer</u> keep it green, read from the screen

TABLE A-1 Summary WATER DEMAND CHART

Location:	1740 St L	aurent										Population	Densit	iec											
Project No:	OTT-0026		<u>.</u>									Single Fam		105		3.4	person/ur	nit					- 💑 🛛		
Designed by:	A. Elgaya		-									Semi-Detal				2.7	person/ur						- * - C	ועב	\cap
Checked By:	C. Collins		-									Duplex				2.3	person/ur							~~	
Date Revised:	June 202		-									Townhome	e (Row)			2.7	person/ur								
			-									Bachelor A	• •	nt		1.4	person/ur							-	
Water Consumption												1 Bedroom	•			1.4	person/ur								
Residential =	350	L/cap/d	lay									2 Bedroom	Apartn	nent		2.1	person/ur	nit							
Commercial =	5.0	L/m ² /d										3 Bedroom	Apartn	nent		3.1	person/ur	nit							
		_,,=	-,									4 Bedroom				4.1	person/ur								
												Avg. Aparti	•			1.8	person/ur								
												0 1				-	, <i>,</i> .	-							
				No. of R	Resider	ntial Un	its					Re			nds in (L/s	ec)		•	Comn				Total I	Demands	(L/sec)
	Sin	gles/Ser	nie/Tow	ne			Apart	monte						king tors:						king tors					
	Sing	gies/Sei	1115/10W	115			мран	nents						g Day)						g Day)					
		[1	_	_	_	_	1				<u>g Duj</u> /					(* *	<u>g Duj</u> /					
		p		ownhome		Bedroom	Bedroom	Bedroom	Bedroom							Peak		A				Peak			
Proposed Buildings	lity le	ċ, ŝ	бХ	ę	<u>.</u> 0	dro	dro	dro	dro	Apt	Total Persons	Avg. Day	Мах	Peak	Max Day	Hour		Avg Demand	Мах	Peak	Max Day		Avg	Max	Max
(Everest Private)	Single Familty	Semi- Detache	Duplex	Ň	Studio	Be	Be	Be	Be	Avg Apt.	(pop)	Demand (L/day)	Day	Hour	Demand (L/day)	Demand (L/day)	Area (m ²)	(L/day)	Day	Hour	Demand (L/day)	Demand (L/day)	Day (L/s)	Day (L/s)	Hour (L/s)
(Lverest i iivate)	ЯĽ	νD		F	S	~	7	3	4	<	(рор)	(L/uay)	2		(L/uay)	(L/uay)	Alea (III)	(L/uay)	2,		(L/uay)	(L/uay)	(L/S)	(L/S)	(L/S)
Tower 1						90	26				180.6	63,210	2.50	5.50	158,025	347,655	965.0	4,825.0	1.50	2.70	7,237.50	13,028	0.79	1.91	4.17
Tower 2						69	26				151.2	52,920	2.50	5.50	132,300	291,060	1,288.0	6,440.0	1.50	2.70	9,660.00	17,388	0.69	1.64	3.57
Tower 3						232	24	12			412.4	144,340	2.50	5.50	360,850	793,870							1.67	4.18	9.19
Tower 4						174	19				283.5	99,225	2.50	5.50	248,063	545,738							1.15	2.87	6.32
						1																			
Block 1				16							43.2	15,120	2.50	5.50	37,800	83,160							0.18	0.44	0.96
Block 2				16							43.2	15,120	2.50	5.50	37,800	83,160							0.18	0.44	0.96
Block 3				24							64.8	22,680	2.50	5.50	56,700	124,740							0.26	0.66	1.44
Block 4,5,6 & 7				82							221.4	77,490	2.50	5.50	193,725	426,195							0.90	2.24	4.93
Block 10 (374										192	345.6	120,960	2.50	5.50	302,400	665,280							1.40	3.50	7.70
Everest Private)										192	340.0	120,900	2.00	5.50	302,400	000,200							1.40	3.00	7.70
BLOCK 12 (355										101	181.8	63,630	2.50	5.50	159,075	349,965							0.74	1.84	4.05
Everest Private)										101	101.0	00,000	2.00	0.00	100,010	575,300							0.74	1.04	7.00
				L		L				L		l				<u> </u>	<u> </u>								
Total =				138		565	95	12		293	1,927.7	674,695			1,686,738	3,710,823	3 2,253.00	11,265.00					7.94	19.72	43.30

TABLE A2 SUMMARY OF REQUIRED FIREFLOWS (RFFs)

Building #	Description	¹ No of Storeys	Fire Flow, F (L/min)	² Type of Constr.	³ Reduction Due to Occupancy	⁴ Reduction Due to Sprinklers	Increase due to	⁶ Required Fire Flow in		
			(_,,	Coeff, C	(%)	(%)	Exposures	(L/min)	(L/sec)	
PROPOSED TOWER 1	high-rise condo	15	13,000	0.8	-15%	-50%	25%	8,000	133	
PROPOSED TOWER 2	high-rise condo	12	13,000	0.8	-15%	-50%	40%	10,000	167	
PROPOSED TOWER 3	high-rise condo	15	19,000	0.8	-15%	-50%	16%	11,000	183	
PROPOSED TOWER 4	high-rise condo	12	17,000	0.8	-15%	-50%	35%	12,000	200	

Notes

1 - If basements are included (<50% below grade) then denoted as +.

2 -Types of constructions: 0.8 for non-combustible, 1.0 for ordinary construction, 1.5 for wood frame construction.

3 - Reductions due to Occupancy are -25% for non-combustible or -15% for limited combustible.

4 - Reductions due to Sprinkler Systems

5 – Increase due to exposures were calculated based on FUS and technical bulletin ISTB-2018-02.

6 – Required Fire Flows are rounded to nearest 1,000 L/min.

TABLE A3 (Tower 1) FIRE FLOW REQUIREMENTS BASED ON FIRE UNDERWRITERS SURVEY(FUS) 1999 FOR **PROPOSED TOWER 1**

A = total floor area in m² (including all storeys, but excluding basements at least 50% below grade)

An estimate of the Fire Flow required for a given fire area may be estimated by:

C = coefficient related to the type of construction

F = 220 * C * SQRT(A)

F = required fire flow in litres per minute where:

Task	Options	Multiplier			Inpu	t	Value Used	Fire Flow Total (L/min)					
	Wood Frame	1.5											
Choose Building	Ordinary Construction	1											
Frame (C)	Non-combustible Construction	0.8		Non-con	0.8								
	Fire Resistive Construction	0.6											
			Area	% Used	Area	Comment							
			Area	% Used	Used	comment							
	Floor 15		704	0%	0								
	Floor 14		829	0%	0	1							
	Floor 11 to 13		836	0%	0								
	Floor 10		836	50%	418	1							
Innut Duilding	Floor 9		836	50%	418								
Input Building	Floor 8		836	50%	418								
Floor Areas (A)	Floor 7		836	50%	418	Two largest adjoining							
	Floor 6		836	50%	418	floors+ 50% of floors							
	Floor 5		836	50%	418	above (up to eight)							
	Floor 4		793	50%	397								
	Floor 3		930	50%	465								
	Floor 2		1031	100%	1,031								
	Floor 1 (Ground)		1148	100%	1,148								
	Basement (At least 50% below	v grade, not included)			5,549	l							
Fire Flow (F)	F = 220 * C * SQRT(A)												
	Rounded to nearest 1,000							13,000					

Reductions/Increases Due to Factors Effecting Burning

Task	Options		Multipl	ier				Input			Value Used	Fire Flow Change (L/min)	Fire Flow Total (L/min)				
Choose	Non-combustible		-25%)													
Combustibility of	Limited Combustible		-15%)													
Building	Combustible		0%				Limited	l Combustibl	le		-15%	-1,950	11,050				
Contents	Free Burning		15%														
Contonito	Rapid Burning		25%														
	Adequate Sprinkler Conforms to NFPA13	-30%			Adequate Sprinkler Conforms to NFPA13								7,735				
l	No Sprinkler		0%														
Choose Reduction Due to	Standard Water Supply for Fire Department Hose Line and for Sprinkler System		-10%	0	Standard	Water Su	ipply for I Sprin	-10%	-1,105	6,630							
Sprinkler System	Not Standard Water Supply or Unavailable		0%														
	Fully Supervised Sprinkler System Not Fully Supervised or		-	-10% Fully Supervised Sprinkler System								-1,105	5,525				
	N/A		0%														
						Exposed Wall Length											
Choose Structure Exposure	Exposures	Separ- ation Dist (m)	Cond	Separation Conditon	Exposed Wall type	Length (m)	No of Storeys	Length- Height Factor	Sub- Conditon	Charge (%)	Total Charge (%)	Total Exposure Charge (L/min)					
Distance	Front (east)	74.5	6	> 45.1	Type B	34	2	68	6	0%							
	Side 1 (south)	24.5	4	20.1 to 30	Type B	48	15	720	4E	10%							
	Back (west)	28.4	4	20.1 to 30	Туре В	14	12	168	4E	10%	25%	2,763	8,288				
	Side 2 (north)	33	5	30.1 to 45	Type B	26	8	30	5A	5%		-1,105 Total Exposure Charge					
Obtain Required			-		. /		-		-	-	ne Nearest	1 000 L/min =	8,000				
Fire Flow								arrioquirou					133				
	or Exposing Walls of Wood Fr	ame Con	truciton	(from Table G	5)					Total I	(cquired i i	CT10W, L/3 -	155				
Type A	Wood-Frame or non-conbustibl		Struction		<u>51</u>												
Туре В	Ordinary or fire-resisitve with u		openings														
Туре С	Ordinary or fire-resisitve with se																
Type D	Ordinary or fire-resisitve with bl	ank wall															
Conditons for Separ	ration																
Separation Dist	Condition																
0m to 3m	1																
3.1m to 10m	2																
10.1m to 20m	3																
20.1m to 30m	4																
30.1m to 45m	5																
> 45.1m	6																

TABLE A4 (Tower 2)FIRE FLOW REQUIREMENTS BASED ON FIRE UNDERWRITERS SURVEY(FUS) 1999 FORPROPOSED TOWER 2

An estimate of the Fire Flow required for a given fire area may be estimated by:

F = 220 * C * SQRT(A)

 where:
 F = required fire flow in litres per minute

 A = total floor area in m² (including all storeys, but excluding basements at least 50% below grade)

 C = coefficient related to the type of construction

Task	Options	Multiplier			Inpu	t	Value Used	Fire Flow Total (L/min)
	Wood Frame	1.5						1
Choose Building	Ordinary Construction	1						
Frame (C)	Non-combustible Construction	0.8		Non-com	0.8			
	Fire Resistive Construction	0.6						
			Area	% Used	Area Used	Comment		
	Floor 12		637	0%	0			
	Floor 11		793	50%	397			
	Floor 10		802	50%	401			
	Floor 9		802	50%	401			
Input Building	Floor 8		802	50%	401	Two largest adjoining		
Floor Areas (A)	Floor 7 Floor 6		802 902	50%	401	floors+ 50% of floors		
	Floor 5		890	50% 50%	451 445			
	Floor 4		890	50%	445	above (up to eight)		
	Floor 3		937	100%	937			
	Floor 2		928	100%	928	1		
	Floor 1 (Ground)		889	0%	0			
	Basement (At least 50% belo	w grade, not included)			5,207			
Fire Flow (F)	F = 220 * C * SQRT(A)	-					-	12,699
Fire Flow (F)	Rounded to nearest 1,000							13,000

Reductions/Increases Due to Factors Effecting Burning

Task	Options		Multipl	ier				Input			Value Used	Fire Flow Change (L/min)	Fire Flow Total (L/min)
	Non-combustible		-25%	ò									
Choose Combustibility of	Limited Combustible		-15%	5									
Building	Combustible		0%				Limited	l Combustib	le		-15%	-1,950	11,050
Contents	Free Burning		15%		1								
Contento	Rapid Burning		25%										
	Adequate Sprinkler Conforms to NFPA13		-30%	þ		Adequa	-30%	-3,315	7,735				
	No Sprinkler		0%										
Choose Reduction Due to	Standard Water Supply for Fire Department Hose Line and for Sprinkler System		-10%		Standard	l Water Si	upply for I Sprin	-10%	-1,105	6,630			
Sprinkler System	Not Standard Water Supply or Unavailable		0%										
	Fully Supervised Sprinkler System		-10%	5		Full	v Sunervis	ed Sprinkler	· System		-10%	-1.105	5.525
	Not Fully Supervised or N/A		0%				, superne		1,100	0,020			
		_					E	xposed Wall	Length				
Choose Structure Exposure	Exposures	Separ- ation Dist (m)	Cond	Separation Conditon	Exposed Wall type	Length (m)	No of Storeys	Length- Height Factor	Sub- Conditon	Charge (%)	Total Charge (%)	Total Exposure Charge (L/min)	
Distance	Front (east)	28	4	20.1 to 30	Туре В	15	15	225	4E	10%			
	Side 1 (south)	19.8	3	10.1 to 20	Type B	23	11	253	3E	15%	40%	4 400	0.045
	Back (west)	12	3	10.1 to 20	Type B	40	3	120	3E	15%	40%	4,420	9,945
	Side 2 (nrth)	50	6	> 45.1	Type B	0	0	30	6	0%			
Obtain Required							Tot	al Required	Fire Flow, Ro	ounded to th	ne Nearest	1,000 L/min =	10,000
Fire Flow										Total F	Reauired Fi	re Flow, L/s =	167
Exposure Charges f	or Exposing Walls of Wood Fr	rame Cons	struciton	(from Table G	5)						•		
Type A Type B Type C Type D	Wood-Frame or non-conbustib Ordinary or fire-resisitve with u Ordinary or fire-resisitve with so Ordinary or fire-resisitve with b	le nprotected emi-protec	openings	5									
Conditons for Separ Separation Dist	ration Condition												

Separation Dist	C C
0m to 3m	1
3.1m to 10m	2
10.1m to 20m	3
20.1m to 30m	4
30.1m to 45m	5
> 45.1m	6

TABLE A5 (Tower 3) FIRE FLOW REQUIREMENTS BASED ON FIRE UNDERWRITERS SURVEY(FUS) 1999 FOR **PROPOSED TOWER 3**

A = total floor area in m² (including all storeys, but excluding basements at least 50% below grade)

An estimate of the Fire Flow required for a given fire area may be estimated by:

C = coefficient related to the type of construction

F = 220 * C * SQRT(A)

F = required fire flow in litres per minute where:

Task	Options	Multiplier			Inpu	t	Value Used	Fire Flow Total (L/min)						
	Wood Frame	1.5												
Choose Building	Ordinary Construction	1												
Frame (C)	Non-combustible Construction	0.8	1	Non-con	nbustible	Construction	0.8							
	Fire Resistive Construction	0.6												
			Area	% Used	Area Used	Comment								
	Floor 15		1453	0%	0									
	Floor 14		1770	0%	0									
	Floor 11 to 13		1785	0%	0									
	Floor 10		1785	50%	893									
Input Building	Floor 9		1785	50%	893									
	Floor 8													
Floor Areas (A)	Floor 7		1785	50%	893	Two largest adjoining								
	Floor 6		1785	50%		floors+ 50% of floors								
	Floor 5		1785	50%	893	above (up to eight)								
	Floor 4		1753	50%	877									
	Floor 3		1874	50%	937									
	Floor 2		2361	100%	2,361									
	Floor 1 (Ground)		1754	100%	1,754									
	Basement (At least 50% belo	ow grade, not included)			11,284									
Fire Flow (F)	F = 220 * C * SQRT(A)							18,695						
Fire Flow (F)	Rounded to nearest 1,000							19,000						

Reductions/Increases Due to Factors Effecting Burning

Task	Options		Multipl	ier				Input			Value Used	Fire Flow Change (L/min)	Fire Flow Total (L/min)
Choose	Non-combustible		-25%)									
Combustibility of	Limited Combustible		-15%	5									
Building	Combustible		0%				Limited	Combustibl	e		-15%	-2,850	16,150
Contents	Free Burning		15%										
	Rapid Burning		25%										
	Adequate Sprinkler Conforms to NFPA13		-30%	5		Adequa	te Sprinkl		-30%	-4,845	11,305		
	No Sprinkler		0%										
Choose Reduction Due to	Standard Water Supply for Fire Department Hose Line and for Sprinkler System		-10%	5	Standard	Water Su	upply for I Sprin	e and for	-10%	-1,615	9,690		
Sprinkler System	Not Standard Water Supply or Unavailable		0%										
	Fully Supervised Sprinkler System		-10%	5		Fully	/ Supervis	ed Sprinkler	System		-10%	-1,615	8,075
	Not Fully Supervised or N/A		0%										
		Separ-					E	xposed Wall	Length				
Choose Structure Exposure	Exposures	ation Dist (m)	Cond	Separation Conditon	Exposed Wall type	Length (m)	No of Storeys	Length- Height Factor	Sub- Conditon	Charge (%)	Total Charge (%)	Total Exposure Charge (L/min)	
Distance	Front (east)	64.8	6	> 45.1	Type B	70	2	140	6	0%			
	Side 1 (south)	31.2	5	30.1 to 45	Type B	34	2	68	5C	5%			
	Back (west)	32.5	5	30.1 to 45	Туре В	23	11	253	5E	5%	16%	2,584	10,659
	Side 2 (north)	24.5	4	20.1 to 30	Type B	48	12	30	4A	6%			
Obtain Required		24.5	-	20.1 to 50	турс Б	40			Fire Flow, Ro		no Noarost	1.000 L /min =	11,000
Fire Flow							100	arrequired	The How, Re			re Flow, L/s =	183
	or Exposing Walls of Wood Fr		trucitor	from Toble C	E)					TULAT		e Flow, L/S -	103
Exposure Charges f Type A	Wood-Frame or non-conbustibl		struction	(from Table G	5)								
Туре В	Ordinary or fire-resisitve with u		openings										
Type C	Ordinary or fire-resisitve with se												
Туре D	Ordinary or fire-resisitve with bl	-	·	5									
Conditons for Separ	ration Condition												
Separation Dist Om to 3m	1												
3.1m to 10m	2												
	4												
	3												
10.1m to 20m	3												
20.1m to 20m 20.1m to 30m 30.1m to 45m	3 4 5												

TABLE A6 (Tower 4) FIRE FLOW REQUIREMENTS BASED ON FIRE UNDERWRITERS SURVEY(FUS) 1999 FOR PROPOSED TOWER 4

An estimate of the Fire Flow required for a given fire area may be estimated by:

F = 220 * C * SQRT(A)

 where:
 F = required fire flow in litres per minute

 A = total floor area in m² (including all storeys, but excluding basements at least 50% below grade)

 C = coefficient related to the type of construction

Task	Options	Multiplier			Inpu	t	Value Used	Fire Flow Total (L/min)
	Wood Frame	1.5						
Choose Building	Ordinary Construction	1						
Frame (C)	Non-combustible Construction	0.8		Non-con	nbustible	Construction	0.8	
	Fire Resistive Construction	0.6						
			Area	% Used	Area	Comment		
	Flares 40		10.10	00/	Used			
	Floor 12 Floor 11		1049	0%	0			
	Floor 10		1495 1510	50% 50%	748 755			
	Floor 9		1510	50%	755			
Innut Duilding	Floor 8		1510	50%	755			
Input Building Floor Areas (A)	Floor 7		1510	50%	755	Two largest adjoining		
Floor Areas (A)	Floor 6		1495	50%	748	floors+ 50% of floors		
	Floor 5		1495	50%	748	above (up to eight)		
	Floor 4		1495	50%	748			
	Floor 3		1558	100%	1,558			
	Floor 2		1558	100%	1,558			
	Floor 1 (Ground)		1465	0%	0			
	Basement (At least 50% belo	ow grade, not included)			9,126			
Fire Flow (F)	F = 220 * C * SQRT(A)							16,813
Fire Flow (F)	Rounded to nearest 1,000							17,000

Reductions/Increases Due to Factors Effecting Burning

Task	Options		Multipl	ier				Input			Value Used	Fire Flow Change (L/min)	Fire Flow Total (L/min)
Chasse	Non-combustible												
	Limited Combustible		-15%)									
	Combustible		0%				Limited	Combustib	e		-15%	-2,550	14,450
	Free Burning		15%										
	Rapid Burning		25%										
	Adequate Sprinkler Conforms to NFPA13)		Adequa	te Sprinkl	er Conforms	to NFPA13		-30%	-4,335	10,115
	No Sprinkler		0%										
Choose	Fire Department Hose Line		-10%)	Standard	Water Si			ient Hose Lin	e and for	-10%	-1,445	8,670
			0%										
Task Options Multiplier Input Value Used Value Used Change (L/min) Choose Combustibility of Building Contents Non-combustible -25% -25% 15% 15% 15% 2,550 Choose Combustibility of Building Contents Cimbustible 0% 15% 15% 2,550 Choose Contents Free Burning Rapid Burning 25%	-1 445	7,225											
			0%	-		- T Ging	y Supervis	1070	1,440	1,220			
							E	xposed Wall	Length				
Exposure	Exposures	ation Dist	Cond			-		Height		-	Charge	Total Exposure Charge (L/min)	
Distance	Front (east)	32.5	5	30.1 to 45	Type B	22	15	330	5E	5%			
			5										
	Back (west)	17.0	3			42	3	126	3E	15%	35%	5,058	12,283
	Side 2 (north)	19.8	3	10.1 to 20		25	12	30	3A	10%			
Obtain Required					71			al Required	Fire Flow, Ro	ounded to th	ne Nearest	1.000 L/min =	12,000
								1	,				200
Туре А Туре В Туре С	Wood-Frame or non-conbustible Ordinary or fire-resisitve with un Ordinary or fire-resisitve with se	e nprotected emi-protec	openings	i	<u>5)</u>						·		

Conditons for Separation Separation Dist Condition

Separation Dist	C
0m to 3m	1
3.1m to 10m	2
10.1m to 20m	3
20.1m to 30m	4
30.1m to 45m	5
> 45.1m	6

TABLE A7 Hydrants Spacing FIRE FLOW REQUIREMENTS BASED ON HYDRANT SPACING

	То	ower 1	Tov	wer 2	Тс	ower 3	Тс	ower 4
Hydrant #	¹ Distance (m)	² Fire Flow Contribution (L/min)	¹ Distance (m)	² Fire Flow Contributio n (L/min)	¹ Distance (m)	² Fire Flow Contribution (L/min)	¹ Distance (m)	² Fire Flow Contribution (L/min)
372029H196	36	5,700	130	3,800	49	5,700	146	3,800
372029HP168	218	0	91	3,800	173	0	57	5,700
Proposed FH-1	106	3,800	89	3,800	61	5,700	86	3,800
Proposed FH-2	160	0	34	5,700	130	3,800	32	5,700
Total (L/min)		9,500		17,100		15,200		19,000
FUS RFF in L/min or (L/sec)		8,000		10,000		11,000		12,000
		(133)		(167)		(183)		(200)
Meets Requreiment (Yes/No)		Yes		Yes		Yes		Yes

Notes:

¹Distance is measured along a road or fire route.

²Fire Flow Contribution for Class AA Hydrant from Table 1 of Appendix I, ISTB-2018-02

TABLE A-8 ESTIMATED WATER PRESSURE CHART (TOWER 1)

Location:	1740 St Laurent	Average day(L/s)=	0.79	Minimum HGL(m)=	108.9
Project No.:	OTT-00260579-B0	Peak Hour(L/s)=	4.17	Maximum HGL(m)=	118.2
Designed by:	A. Elgayar	Max day(L/s)=	1.91	Max day+Fireflow(m)=	110.4
Checked by:	C. Collins	Fireflow(L/s)=	133		
Date Revised:	August 2021				

Description	From	То	Flow (L/sec)	Pipe Dia (mm)	Dia (m)	Q (m³/sec)	Area (m2)	с	Velocity V (m/s)	Slope of HGL (m/m)	Pipe Length (m)	Frictional Head Loss hf (m)	Equivalent Pipe Length of Fittings (m)	Minor Loss of Fittings hb (m)	Total Losses (m) hь+hf	Start Ground Elev(m)	End Ground Elev (m)	Static Head (m)	Pressur kPa	e From (psi)		ure To (psi)	Pressure Drop (psi)
TOWER 1 - SINGLE 150m	IM WATER SERVICE																						
Average Day	Ex. 406mm Main	Lateral	0.8	300	0.300	0.00079	0.070685775	120	0.01118	0.0000	36.7	3.49046E-05	7.8	0.00001	0.00004	±69.33	69.42	-0.09	479.3	(69.5)	478.4	(69.4)	0.1
Average Day	New 300mm Main	Tower 1	0.8	150	0.150	0.00079	0.017671444	100	0.0447	0.0000	7.2	0.000280678	13.5	0.00053	0.00081	69.42	69.90	-0.48	478.4	(69.4)	473.7	(68.7)	0.7
	Ex. 406mm Main	Lateral	4.2	300	0.300	0.00417	0.070685775	120	0.05899	0.0000	36.7	0.000760272	7.8	0.00016	0.00092	±69.33	69.42	-0.09	388.1	(51.0)	387.2	(56.2)	-5.2
Peak Hour	New 300mm Main	Tower 1	4.2	150	0.150	0.00417	0.017671444	100	0.23597	0.0008	7.2	0.006113571	13.5	0.01146	0.01758	69.42	69.90	-0.48	387.2	(52.0)	382.3	(55.4)	-3.4
	Ex. 406mm Main	Lateral	134.9	300	0.300	0.13491	0.070685775	120	1.90859	0.0130	36.7	0.475684014	7.8	0.10110	0.57678	±69.33	69.42	-0.09	402.8	(51.0)	396.2	(57.5)	-6.5
Max Day + Fire Flow	New 300mm Main	Tower 1	134.9	150	0.150	0.13491	0.017671444	100	7.63435	0.5313	7.2	3.825117102	13.5	7.17209	10.99721	69.42	69.90	-0.48	396.2	(52.0)	283.7	(41.1)	10.9
TOWER 1 - DOUBLE 150	mm WATER SERVICE																						L
	Ex. 406mm Main	Lateral	0.4	300	0.300	0.0004	0.070685775	120	0.00566	0.0000	36.7	9.89673E-06	7.8	0.00000	0.00001	±69.33	69.42	-0.09	479.3	(69.5)	478.4	(69.4)	0.1
Average Day	New 300mm Main	Tower 1	0.4	150	0.150	0.0004	0.017671444	100	0.02264	0.0000	7.2	7.95826E-05	13.5	0.00015	0.00023	69.42	69.90	-0.48	478.4	(69.4)	473.7	(68.7)	0.7
Deals Have	Ex. 406mm Main	Lateral	2.1	300	0.300	0.0021	0.070685775	120	0.02971	0.0000	36.7	0.000213416	7.8	0.00005	0.00026	±69.33	69.42	-0.09	388.1	(51.0)	387.2	(56.2)	-5.2
Peak Hour	New 300mm Main	Tower 1	2.1	150	0.150	0.0021	0.017671444	100	0.11884	0.0002	7.2	0.001716142	13.5	0.00322	0.00493	69.42	69.90	-0.48	387.2	(52.0)	382.4	(55.5)	-3.5
Max Day + Fire Flow	Ex. 406mm Main	Lateral	67.5	300	0.300	0.06745	0.070685775	120	0.95422	0.0036	36.7	0.13175023	7.8	0.02800	0.15975	±69.33	69.42	-0.09	402.8	(51.0)	400.3	(58.1)	-7.1
iviax Day + FIFE FIOW	New 300mm Main	Tower 1	67.5	150	0.150	0.06745	0.017671444	100	3.81689	0.1471	7.2	1.059442919	13.5	1.98646	3.04590	69.42	69.90	-0.48	400.3	(52.0)	365.7	(53.0)	-1.0
																_						-	

V=Q/A Slope of HGL= $\left(\frac{3.59}{C}\right)^{1.852} \frac{Q}{D^{4.87}}^{1.852}$

hf = Slope of HGL * Pipe Length

Resistance of Fittings	s and Valves		300n	nm WM		150mm WM				
Fittings	Loss in Equiv. Length in Pipe Diameters	Equiv. Length (metres)	Quantity (each)	Total Equiv. Length (m)	Quantity (each)	Total Equiv. (m)	Length			
Standard 90 ⁰ Elbow	32	9.60	0	0	1	9.6				
11.25 Degree Elbow	8	2.40	0	0	0	0				
45 Degree Elbow	16	4.80	0	0	0	0				
Gate Valve Full -Open	13	3.90	2	7.8	1	3.9				
		Total:	2	7.8	2	13.5				

TABLE A-9 ESTIMATED WATER PRESSURE CHART (TOWER 2)

Location:	1740 St Laurent	Average day(L/s)=	0.69	Minimum HGL(m)=	108.9
Project No.:	OTT-00260579-B0	Peak Hour(L/s)=	3.57	Maximum HGL(m)=	118.2
Designed by:	A. Elgayar	Max day(L/s)=	1.64	Max day+Fireflow(m)=	110.4
Checked by:	C. Collins	Fireflow(L/s)=	167		
Date Revised:	August 2021				

Description	From	То	Flow (L/sec)	Pipe Dia (mm)	Dia (m)	Q (m³/sec)	Area (m2)	с	Velocity V (m/s)	Slope of HGL (m/m)	Pipe Length (m)	Frictional Head Loss h r (m)	Equivalent Pipe Length of Fittings (m)		Total Losses (m) h⊾+hf	Start Ground Elev(m)	End Ground Elev (m)	Static Head (m)	Pressur kPa		Pres: kPa	sure To (psi)	Pressure Drop (psi)
TOWER 2 - SINGLE 150m																							
TOWER 2 - SINGLE 150II																				(00.0)		(66.6)	1
Average Day	Ex. 406mm Main	Lateral	0.7	300	0.300	0.00069	0.070685775			0.0000	142	0.000105111	15.6	0.00001	0.00012	±69.33	73.34	-4.01	479.3	(69.5)	439.9	(63.8)	5.7
	New 300mm Main	Tower 2	0.7	150	0.150	0.00069	0.017671444	100	0.03905	0.0000	7.1	0.000215416	13.5	0.00041	0.00063	73.34	73.63	-0.29	439.9	(63.8)	437.1	(63.4)	0.4
Peak Hour	Ex. 406mm Main	Lateral	3.6	300	0.300	0.00357	0.070685775	120	0.05051	0.0000	142	0.002206178	15.6	0.00024	0.00245	±69.33	73.34	-4.01	388.1	(51.0)	348.7	(50.6)	0.4
Реак нош	New 300mm Main	Tower 2	3.6	150	0.150	0.00357	0.017671444	100	0.20202	0.0006	7.1	0.004521373	13.5	0.00860	0.01312	73.34	73.63	-0.29	348.7	(52.0)	345.7	(50.1)	1.9
	Ex. 406mm Main	Lateral	168.6	300	0.300	0.16864	0.070685775	120	2.38577	0.0196	142	2.782467525	15.6	0.30568	3.08815	±69.33	73.34	-4.01	402.8	(51.0)	333.2	(48.3)	2.7
Max Day + Fire Flow	New 300mm Main	Tower 2	168.6	150	0.150	0.16864	0.017671444	100	9.54308	0.8032	7.1	5.702428586	13.5	10.84265	16.54507	73.34	73.63	-0.29	333.2	(52.0)	168.1	(24.4)	27.6
TOWER 2 - DOUBLE 150	mm WATER SERVICE							I															<u> </u>
	Ex. 406mm Main	Lateral	0.3	300	0.300	0.000345	0.070685775	120	0.00488	0.0000	142	2.91166E-05	15.6	0.00000	0.00003	±69.33	73.34	-4.01	479.3	(69.5)	439.9	(63.8)	5.7
Average Day	New 300mm Main	Tower 2	0.3	150	0.150	0.000345	0.017671444	100	0.01952	0.0000	7.1	5.96719E-05	13.5	0.00011	0.00017	73.34	73.63	-0.29	439.9	(63.8)	437.1	(63.4)	0.4
Deals Haus	Ex. 406mm Main	Lateral	1.8	300	0.300	0.001785	0.070685775	120	0.02525	0.0000	142	0.000611129	15.6	0.00007	0.00068	±69.33	73.34	-4.01	388.1	(51.0)	348.7	(50.6)	0.4
Peak Hour	New 300mm Main	Tower 2	1.8	150	0.150	0.001785	0.017671444	100	0.10101	0.0002	7.1	0.001252457	13.5	0.00238	0.00363	73.34	73.63	-0.29	348.7	(52.0)	345.9	(50.2)	1.8
Man David Fire Flave	Ex. 406mm Main	Lateral	84.3	300	0.300	0.08432	0.070685775	120	1.19288	0.0054	142	0.770766006	15.6	0.08468	0.85544	±69.33	73.34	-4.01	402.8	(51.0)	355.1	(51.5)	-0.5
Max Day + Fire Flow	New 300mm Main	Tower 2	84.3	150	0.150	0.08432	0.017671444	100	4.77154	0.2225	7.1	1.579618834	13.5	3.00350	4.58312	73.34	73.63	-0.29	355.1	(52.0)	307.3	(44.6)	7.4

V=Q/A Slope of HGL= $\left(\frac{3.59}{c}\right)^{1.852} \frac{Q}{D^{4.87}}^{1.852}$

hf = Slope of HGL * Pipe Length

Resistance of Fittings and Valves			300mm WM		150mm WM		
	Loss in Equiv. Length in	Equiv. Length	Quantity	Total Equiv.	Quantity	Total Equiv.	Length
Fittings	Pipe Diameters	(metres)	(each)	Length (m)	(each)	(m)	-
Standard 90 ⁰ Elbow	32	9.60	0	0	1	9.6	
11.25 Degree Elbow	8	2.40	0	0	0	0	
45 Degree Elbow	16	4.80	0	0	0	0	
Gate Valve Full -Open	13	3.90	4	15.6	1	3.9	
		Total:	4	15.6	2	13.5	

TABLE A-10 ESTIMATED WATER PRESSURE CHART (TOWER 3)

Location:	1740 St Laurent	Average day(L/s)=	1.67	Minimum HGL(m)=	108.9
Project No.:	OTT-00260579-B0	Peak Hour(L/s)=	9.19	Maximum HGL(m)=	118.2
Designed by:	A. Elgayar	Max day(L/s)=	4.18	Max day+Fireflow(m)=	110.4
Checked by:	C. Collins	Fireflow(L/s)=	183		
Date Revised:	August 2021				

			-				-			Slope of	Pipe		Equivalent Pipe			Start	End		-	_	_		
Description	From	То	Flow (L/sec)	Pipe Dia (mm)	Dia (m)	Q (m³/sec)	Area (m2)	с	Velocity V (m/s)	HGL (m/m)	Length (m)	Frictional Head Loss hf (m)	Length of Fittings (m)	Fittings h⊾ (m)	Total Losses (m) h⊾+hf	Ground Elev(m)	Ground Elev (m)	Static Head (m)	Pressur kPa	e From (psi)	Pres: kPa	sure To (psi)	Pressure Drop (psi)
TOWER 3 - SINGLE 150m	m WATER SERVICE																						
Average Day	Ex. 406mm Main	Lateral	1.7	300	0.300	0.00167	0.070685775	120	0.02363	0.0000	33.7	0.000128207	3.9	0.00001	0.00014	±69.33	69.45	-0.12	479.3	(69.5)	478.1	(69.3)	0.2
Average Day	New 300mm Main	Tower 3	1.7	150	0.150	0.00167	0.017671444	100	0.0945	0.0002	9.4	0.001465782	13.5	0.00211	0.00357	69.45	69.84	-0.39	478.1	(69.3)	474.2	(68.8)	0.6
Peak Hour	Ex. 406mm Main	Lateral	9.2	300	0.300	0.00919	0.070685775	120	0.13001	0.0001	33.7	0.003016484	3.9	0.00035	0.00337	±69.33	69.45	-0.12	388.1	(51.0)	386.9	(56.1)	-5.1
reak noui	New 300mm Main	Tower 3	9.2	150	0.150	0.00919	0.017671444	100	0.52005	0.0037	9.4	0.034487258	13.5	0.04953	0.08402	69.45	69.84	-0.39	386.9	(52.0)	382.2	(55.4)	-3.4
Max Day + Fire Flow	Ex. 406mm Main	Lateral	187.2	300	0.300	0.18718	0.070685775	120	2.64806	0.0238	33.7	0.801060154	3.9	0.09270	0.89376	±69.33	69.45	-0.12	402.8	(51.0)	392.8	(57.0)	-6.0
IVIAX Day + FILE FIOW	New 300mm Main	Tower 3	187.2	150	0.150	0.18718	0.017671444	100	10.5922	0.9743	9.4	9.158467932	13.5	13.15312	22.31159	69.45	69.84	-0.39	392.8	(52.0)	170.2	(24.7)	27.3
TOWER 3 - DOUBLE 150m	nm WATER SERVICE																						
Average Day	Ex. 406mm Main	Lateral	0.8	300	0.300	0.000835	0.070685775	120	0.01181	0.0000	33.7	3.55144E-05	3.9	0.00000	0.00004	±69.33	69.45	-0.12	479.3	(69.5)	478.1	(69.3)	0.2
Average Day	New 300mm Main	Tower 3	0.8	150	0.150	0.000835	0.017671444	100	0.04725	0.0000	9.4	0.000406033	13.5	0.00058	0.00099	69.45	69.84	-0.39	478.1	(69.3)	474.3	(68.8)	0.6
Peak Hour	Ex. 406mm Main	Lateral	4.6	300	0.300	0.004595	0.070685775	120	0.06501	0.0000	33.7	0.00083559	3.9	0.00010	0.00093	±69.33	69.45	-0.12	388.1	(51.0)	386.9	(56.1)	-5.1
reak i loui	New 300mm Main	Tower 3	4.6	150	0.150	0.004595	0.017671444	100	0.26002	0.0010	9.4	0.009553249	13.5	0.01372	0.02327	69.45	69.84	-0.39	386.9	(52.0)	382.8	(55.5)	-3.5
Max Day + Fire Flow	Ex. 406mm Main	Lateral	93.6	300	0.300	0.09359	0.070685775	120	1.32403	0.0066	33.7	0.221900141	3.9	0.02568	0.24758	±69.33	69.45	-0.12	402.8	(51.0)	399.2	(57.9)	-6.9
iviax Day + File Flow	New 300mm Main	Tower 3	93.6	150	0.150	0.09359	0.017671444	100	5.29612	0.2699	9.4	2.536969681	13.5	3.64352	6.18049	69.45	69.84	-0.39	399.2	(52.0)	334.7	(48.5)	3.5

V=Q/A Slope of HGL= $\left(\frac{3.59}{c}\right)^{1.852} \frac{Q}{D^{4.87}}^{1.852}$

hf = Slope of HGL * Pipe Length

Resistance of Fittings	s and Valves		300r	nm WM		150mm WM	
Fittinas	Loss in Equiv. Length in Pipe Diameters	Equiv. Length (metres)	Quantity (each)	Total Equiv. Length (m)	Quantity (each)	Total Equiv. (m)	Length
Standard 90 ⁰ Elbow	32	9.60	0	0	1	9.6	
11.25 Degree Elbow	8	2.40	0	Ó	0	0	
45 Degree Elbow	16	4.80	0	0	0	0	
Gate Valve Full -Open	13	3.90	1	3.9	1	3.9	
		Total:	1	3.9	2	13.5	

TABLE A-11 ESTIMATED WATER PRESSURE CHART (TOWER 4)

Location:	1740 St Laurent	Average day(L/s)=	1.15	Minimum HGL(m)=	108.9
Project No.:	OTT-00260579-B0	Peak Hour(L/s)=	6.32	Maximum HGL(m)=	118.2
Designed by:	A. Elgayar	Max day(L/s)=	2.87	Max day+Fireflow(m)=	110.4
Checked by:	C. Collins	Fireflow(L/s)=	200		
Date Revised:	August 2021				

Description	From	То	Flow (L/sec)	Pipe Dia (mm)	Dia (m)	Q (m³/sec)	Area (m2)	с	Velocity V (m/s)	Slope of HGL (m/m)	Pipe Length (m)	Frictional Head Loss hf (m)	Equivalent Pipe Length of Fittings (m)	Minor Loss of Fittings h⊾ (m)	Total Losses (m) hь+hf	Start Ground Elev(m)	End Ground Elev (m)	Static Head (m)	Pressur kPa	e From (psi)	Press kPa	ure To (psi)	Pressure Drop (psi)
TOWER 4 - SINGLE 150mr	n WATER SERVICE						•						1										•
Average Dave	Ex. 406mm Main	Lateral	1.2	300	0.300	0.00115	0.070685775	120	0.01627	0.0000	139	0.000264995	11.7	0.00002	0.00029	±69.33	73.25	-3.92	479.3	(69.5)	440.8	(63.9)	5.6
Average Day	New 300mm Main	Tower 4	1.2	150	0.150	0.00115	0.017671444	100	0.06508	0.0001	9.4	0.000734532	13.5	0.00105	0.00179	73.25	73.35	-0.10	440.8	(63.9)	439.8	(63.8)	0.1
Peak Hour	Ex. 406mm Main	Lateral	6.3	300	0.300	0.00632	0.070685775	120	0.08941	0.0000	139	0.006219473	11.7	0.00052	0.00674	±69.33	73.25	-3.92	388.1	(51.0)	349.6	(50.7)	0.3
reak nour	New 300mm Main	Tower 4	6.3	150	0.150	0.00632	0.017671444	100	0.35764	0.0018	9.4	0.017239568	13.5	0.02476	0.04200	73.25	73.35	-0.10	349.6	(52.0)	348.2	(50.5)	1.5
Max Day + Fire Flow	Ex. 406mm Main	Lateral	202.9	300	0.300	0.20287	0.070685775	120	2.87003	0.0276	139	3.835243659	11.7	0.32282	4.15807	±69.33	73.25	-3.92	402.8	(51.0)	323.6	(46.9)	4.1
wax day + rife riow	New 300mm Main	Tower 4	202.9	150	0.150	0.20287	0.017671444	100	11.4801	1.1309	9.4	10.63079542	13.5	15.26763	25.89843	73.25	73.35	-0.10	323.6	(52.0)	68.6	(9.9)	42.1
																							1
TOWER 4 - DOUBLE 150m	IM WATER SERVICE																						
Average Day	Ex. 406mm Main	Lateral	0.6	300	0.300	0.000575	0.070685775	120	0.00813	0.0000	139	7.34058E-05	11.7	0.00001	0.00008	±69.33	73.25	-3.92	479.3	(69.5)	440.8	(63.9)	5.6
Average Day	New 300mm Main	Tower 4	0.6	150	0.150	0.000575	0.017671444	100	0.03254	0.0000	9.4	0.000203471	13.5	0.00029	0.00050	73.25	73.35	-0.10	440.8	(63.9)	439.8	(63.8)	0.1
Peak Hour	Ex. 406mm Main	Lateral	3.2	300	0.300	0.00316	0.070685775	120	0.0447	0.0000	139	0.001722844	11.7	0.00015	0.00187	±69.33	73.25	-3.92	388.1	(51.0)	349.6	(50.7)	0.3
reak nour	New 300mm Main	Tower 4	3.2	150	0.150	0.00316	0.017671444	100	0.17882	0.0005	9.4	0.0047755	13.5	0.00686	0.01163	73.25	73.35	-0.10	349.6	(52.0)	348.5	(50.5)	1.5
Max Day + Fire Flow	Ex. 406mm Main	Lateral	101.4	300	0.300	0.101435	0.070685775	120	1.43501	0.0076	139	1.062393509	11.7	0.08942	1.15182	±69.33	73.25	-3.92	402.8	(51.0)	353.0	(51.2)	-0.2
wax bay + rife flow	New 300mm Main	Tower 4	101.4	150	0.150	0.101435	0.017671444	100	5.74005	0.3133	9.4	2.944816301	13.5	4.22926	7.17407	73.25	73.35	-0.10	353.0	(52.0)	281.7	(40.9)	11.1
																				-			

V=Q/A Slope of HGL= $\left(\frac{3.59}{c}\right)^{1.852} \frac{Q}{D^{4.87}}^{1.852}$

hf = Slope of HGL * Pipe Length

Resistance of Fittings	and Valves		300r	nm WM		150mm WM	
	l ana in Faulta I anath in	Equiv.	Quartitu	Tatal Cardo	Quantity	Tetal Cardo	l th
	Loss in Equiv. Length in	Length	Quantity	Total Equiv.	Quantity	Total Equiv.	Length
Fittings	Pipe Diameters	(metres)	(each)	Length (m)	(each)	(m)	
Standard 90 ⁰ Elbow	32	9.60	0	0	1	9.6	
11.25 Degree Elbow	8	2.40	0	0	0	0	
45 Degree Elbow	16	4.80	0	0	0	0	
Gate Valve Full -Open	13	3.90	3	11.7	1	3.9	
		Total:	3	11.7	2	13.5	

EXP Services Inc. 1740-1760 St. Laurent Blvd, Ottawa, ON OTT-00260579-A0 August 24, 2021

Appendix B – Sanitary

Table B-1 – Sanitary Sewer Design Sheet

B-1 SANITARY SEWER CALCULATION SHEET

	LOCAT	ΓΙΟΝ					R	ESEDENT	IAL AREA	S AND PO	PULAITO	NS				0	COMMER	CIAL		INDUSTRI	AL	IN	ISTITUTIO	NAL	IN	IFILTRATI	ON					SEWER	DATA		
							NUM	/IBER OF U	JNITS			POPU	LATION			ARE	A (ha)		ARE	A (ha)	Peak				AREA	A (ha)									
Street	U/S MH	D/S MH	Desc	Area (ha)) Singles	Semis	Towns	1-Bed Apt.	2-Bed Apt.	3-Bed Apt.	4-Bed Apt.	INDIV	ACCU	Peak Factor	Peak Flow (L/sec)	INDIV	ACCU	Peak Flow (L/sec)	INDIV	ACCU	Factor (per MOE)	AREA (Ha)	ACCU AREA (Ha)	Peak Flow (L/sec)	INDIV	ACCU	INFILT FLOW (L/s)	TOTAL FLOW (L/s)	Nom Dia (mm)	Actual Dia (mm)	Slope (%)	Length (m)	Capacity (L/sec)	Q/Q _{CAP} (%)	Full Veloc (m/s)
Everest Pvt.	Alta Vista Ridge Subdivision	Ex. SANMH-64453																										11.86	200	207.26	1.76	99.5	47.9	25%	1.61
	Ex. SANMH-64453	Ex. SANMH-64454																										11.86	200	207.26	0.46	19.5	24.5	48%	0.82
	Tower 2	Ex. SANMH-64454		0.39				69	26			151.2	151.2	4.00	1.96	0.129	0.129	0.062708							0.390	0.390	0.13	2.15	200	207.26	2.00	1.0	51.0	4%	1.72
	Tower 4	Ex. SANMH-64454		0.48				174	19			283.5	283.5	4.00	3.68										0.480	0.480	0.16	3.83	200	207.26	2.00	14.6	51.0	8%	1.72
	Ex. SANMH-64454	Ex. SANMH-66716						ļ					434.7	4.00	5.64	ļ	0.129									0.480	0.16	17.72				40.5	57.0	31%	1.92
	Ex. SANMH-66716	SANMH-201											434.7	4.00	5.64		0.129	0.062708								0.480	0.16	17.72	200	207.26	2.00	64.8	51.0	35%	1.72
				0.22																															
	Tower 1	SANMH-201 SANMH-201		0.32				90 232	26 24	12		180.6 412.4	180.6 412.4	4.00	2.34 5.35	0.097	0.097	0.047153							0.320	0.320	0.11	2.49 5.52	200 200	207.26 207.26		1.9 14.7	51.0 51.0	5% 11%	1.72 1.72
	Tower 3	SANMH-201		0.55				232	24	12		412.4	412.4	4.00	5.35										0.530	0.530	0.17	5.52	200	207.26	2.00	14.7	51.0	11%	1.72
	SANMH-201	SANMH-200											1027.7	3.23	10.76		0.226	0.109861								1.720	0.57	23.30	200	207.26	2.00	25.9	51.0	46%	1.72
	0,111111201	0.4.1111 / 200											1021.1	0.20	10.70		0.220	0.100001								1.120	0.07	20.00	200	201.20	2.00	20.0	01.0	1070	
						1															1		1	1	1					<u> </u>					
				1.720				565	95	12		1028													1.720										
																											Designed	:			Project:				
	Daily Flow, q (L/p/day) =				280		Commerc	ial Peak Fa	actor =			(when ar	-				w, (L/sec)		P*q*M/8	36.4		Unti Type	<u>e</u>		Persons/L										
	g. Daily Flow (L/gross ha/	(day) =			28,000						1.0	(when ar	ea <20%)				ow, (L/sec)		I*Ac			Singles			3.0		A. Elgaya	ar			1740 St.	Laurent B	oulevard De	evelopmer	nt
or L/gross ha/	/sec = g. Daily Flow (L/s/ha) =				0.324 28,000		Institutior	aal Dook Er	octor -		4.5	(when ar	aa > 20%)			-	Factor, M a (hectare		1 + (14/(-	4+P^0.5)) *	ΥK	Semi-Det Townhon			2.7		Checked				Location				
or L/gross ha/					0.324		mstitutior	nai reak Fa	101 -			(when ar (when ar			P = Popul			3)				Single Ap			2.7 1.4		CHECKEU.				LOCALION	•			
	Flow (L/gross ha/day) =				35,000						1.0	(men ar	20/07		. = i opu		asanasy					2-bed Ap			2.1		C. Collins	6			1740 St.	Laurent B	oulevard, C	ttawa. On	tario
or L/gross ha/					0.40509		Residentia	al Correcti	on Factor,	К =	0.80				Sewer Ca	pacity, Qc	ap (L/sec)	=	1/N S ^{1/2}	R ^{2/3} A _c		3-bed Ap			3.1		co	-							
Light Industrial I	Flow (L/gross ha/day) =				55,000		Manning	N =			0.013				(Manning	's Equatio	n)			-		4-bed Ap	t. Unit		3.8		File Refe	rence:			Page No				
or L/gross ha/	/sec =				0.637		Peak extra	aneous flo	w, I (L/s/ł	na) =	0.33	(Total I/I)															260579 E June 202	31 - SAN E 1.xlsx	Design S	neet,	1 of 1				

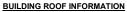
Appendix C – Storm

- Table C-1 Summary of Roof Storage and Outflow
- Table C-2 through 5– Estimation of Roof Storage and Outflow Tower 1, 2, 3 & 4
- Table C-6 Estimation of Pre-Development Peak Flows
- Table C-7 Average Runoff Coefficients for Post-Development
- Table C-8 Summary of Post-Development Peak Flows (Uncontrolled and Controlled)
- Table C-9 Summary of Storage
- Table C-10 through 29 Storage Volumes for 2-year, 5-year and 100-Year Storms (All Areas)
- Table C-30 ICD Orifice Sizing and Type Selection
- Table C-31 Storm Sewer Design Sheet

C-1

SUMMARY OF ROOF STORAGE AND OUTFLOW

	TOWER 1	TOWER 2	TOWER 3	TOWER 4
Reference Table	C-2	C-3	C-4	C-5
Total Roof Area (m²)	1600	899	2562	1864
Total Roof Effictive Area Percentage	80%	80%	80%	80%
Effective Roof Area (m2)	1280	719.2	2049.6	1491.2
Actual Number of Drains Used	19	11	26	14
Flow Controled (Yes /No)	Yes	Yes	Yes	Yes
Weir Position	3-25% open	3-25% open	3-25% open	3-25% open
Max Roof Drian Release Rate (usgpm)	15	15	15	15
Max Roof Drian Release Rate (L/sec)	0.946	0.946	0.946	0.946
Total Roof Release Rate (All drians)	18.0	10.4	24.6	13.2
Total Ponding Area (m3)	64	36.0	102.48	74.56

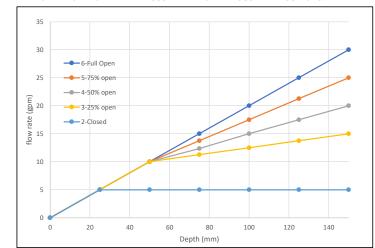

C-2 ESTIMATION OF ROOF STORAGE AND OUTFLOW - TOWER 1

WATTS ADJ ACCUTROL WEIR FLOW RATES (Flow Rates at Various Depths)

			Weir P	osition		
Depth	1-None	2-Closed	3-25% open	4-50% open	5-75% open	6-Full Open
		Max Flo	ow Rate per w	vier @150mm	n in gpm	
0	0	0	0	0	0	0
0.025	0	5	5	5	5	5
0.05	0	5	10	10	10	10
0.075	0	5	11.25	12.35	13.75	15
0.1	0	5	12.5	15	17.5	20
0.125	0	5	13.75	17.5	21.25	25
0.15	0	5	15	20	25	30

WATTS ADJ ACCUTROL WEIR FLOW RATES (Data From Manufacturer's Catalog)

			Flov	v (gpm) per d	lepth			Max Flow
Weir Position	0	25	50	75	100	125	150	Rate per Weir
	0	0.025	0.05	0.075	0.1	0.125	0.15	@150mm
1-None	0	0	0	0	0	0	0	0
2-Closed	0	5	5	5	5	5	5	0.315
3-25% open	0	5	10	11.25	12.5	13.75	15	0.946
4-50% open	0	5	10	12.35	15	17.5	20	1.262
5-75% open	0	5	10	13.75	17.5	21.25	25	1.577
6-Full Open	0	5	10	15	20	25	30	1.893



Buidling Number	TOWER 1	
Total Roof Area (m2)	1600	
Minimium Number of Drains Required	1.8	Minimium of 1 drain every 900 sqaure metres (OBC 7.4.10.4)
15-min Rainfall Factor for Ottawa (mm)	23	(OBC Supp SB-1)
Max Permitted Load from All Drains (Litres)	36,800	
Max Permitted Load from All Drains (L/sec)	40.9	Hydraulic Load expressed in L/sec (OBC Section 7.4.10.3)
Estimated area per drain (m2)	144	
Estimated Distance from roof edge to drains (m)	6	Not more than 15m from Edge of Roof and 30m to Adjacent Dains (OBC Section 7.4.10.3)
Estimated No. of Drains Requried	12	Based on Total Roof Area / Area per Drain
Actual Na of Draina Lload	10	
Actual No. of Drains Used	19	Use if known
Effecive Roof Percentage (%)	80%	Allowance for Mechanical units on roof
Effecive Total Roof Area (m2)	1280	
Area per Drain (m2)	67	Based on Effectiive Roof Area / Actual Number of Drains Used
Max Depth of Ponding at Drains (mm)	150	
Estimated Total Volume for Ponding on Roof (m3)	80.0	Prisim formula, V = 1/3*A*d
Maximium release rate per drain at 150mm (usgpm)	15	Based on 1 Wier Per Drain and Fully Open Position
Max Release Rate from Roof (L/sec)	18.0	Based on Maximum Depth of Ponding of 150mm
Equiv Runoff C for 100-yr Storm	0.23	Based on 100-yr storm Intensity of 178.6 mm/hr, where I =1735.688 / (Tc + 6.014)^0.820, with Tc=10min)

RATING CURVE FOR ROOF

DIS	CHARGE VE	RSUS DEPTI	H	ARE	A VERSUS D	EPTH	Total
Ponding Depth (m)	Discharge Rate Per Drain (gpm)	Discharge Rate Per Drain (m3/sec)	Total Discharge All Drains (m3/sec)	Ponding Depth (m)	Ponding Area (m2)	Ponding Volume Per Drain (m3)	Ponding Volume - All Drains (m3)
0	0	0.00	0.00000	0	0.0	0.0	0.0
0.025	5	0.32	0.00599	0.025	1.9	0.0	0.3
0.05	10	0.63	0.01199	0.05	7.5	0.1	2.4
0.075	11.25	0.71	0.01349	0.075	16.8	0.4	8.0
0.1	12.5	0.79	0.01498	0.1	29.9	1.0	19.0
0.125	13.75	0.87	0.01648	0.125	46.8	1.9	37.0
0.15	15	0.95	0.01798	0.15	67.4	3.4	64.0
Weir Position =	3-25% open						

GRAPH OF FLOW RATE VERSUS DEPTH FOR VARIOUS WEIR POSITIONS

RATING CURVE FOR

MODELLING OUTLET								
Head or Ponding Depth (m)	Outlfow (L/sec)							
0	0.0000							
0.025	5.9936							
0.05	11.9871							
0.075	13.4855							
0.1	14.9839							
0.125	16.4823							
0.15	17.9807							

RATING CURVE FOR MODELLING ROOF STORAGE

Ponding

Area

(m2)

0.0

1.9

7.5

16.8

29.9

46.8 67.4

Head or

Ponding

Depth (m)

0

0.025

0.05

0.075

0.1

0.125

0.15

C-3 ESTIMATION OF ROOF STORAGE AND OUTFLOW - TOWER 2

WATTS ADJ ACCUTROL WEIR FLOW RATES (Flow Rates at Various Depths)

	Weir Position								
Depth	1-None	2-Closed	3-25% open	4-50% open	5-75% open	6-Full Open			
	Max Flow Rate per wier @150mm in gpm								
0	0	0	0	0	0	0			
0.025	0	5	5	5	5	5			
0.05	0	5	10	10	10	10			
0.075	0	5	11.25	12.35	13.75	15			
0.1	0	5	12.5	15	17.5	20			
0.125	0	5	13.75	17.5	21.25	25			
0.15	0	5	15	20	25	30			

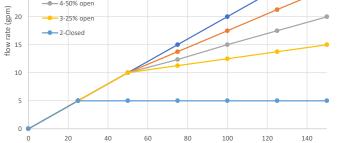
WATTS ADJ ACCUTROL WEIR FLOW RATES (Data From Manufacturer's Catalog)

		Flow (gpm) per depth								
Weir Position	0	25	50	75	100	125	150	Rate per Weir		
	0	0.025	0.05	0.075	0.1	0.125	0.15	@150mm		
1-None	0	0	0	0	0	0	0	0		
2-Closed	0	5	5	5	5	5	5	0.315		
3-25% open	0	5	10	11.25	12.5	13.75	15	0.946		
4-50% open	0	5	10	12.35	15	17.5	20	1.262		
5-75% open	0	5	10	13.75	17.5	21.25	25	1.577		
6-Full Open	0	5	10	15	20	25	30	1.893		

BUILDING ROOF INFORMATION

BUILDING ROOF INFORMATION		
Buidling Number	TOWER 2	
Total Roof Area (m2)	899	
Minimium Number of Drains Required	1.0	Minimium of 1 drain every 900 sqaure metres (OBC 7.4.10.4)
15-min Rainfall Factor for Ottawa (mm)	23	(OBC Supp SB-1)
Max Permitted Load from All Drains (Litres)	20,677	
Max Permitted Load from All Drains (L/sec)	23.0	Hydraulic Load expressed in L/sec (OBC Section 7.4.10.3)
Estimated area per drain (m2)	144	
Estimated Distance from roof edge to drains (m)	6	Not more than 15m from Edge of Roof and 30m to Adjacent Dains (OBC Section 7.4.10.3)
Estimated No. of Drains Requried	7	Based on Total Roof Area / Area per Drain
Actual No. of Drains Used	11	Use if known
Effecive Roof Percentage (%)	80%	Allowance for Mechanical units on roof
Effecive Total Roof Area (m2)	719	
Area per Drain (m2)	65	Based on Effectiive Roof Area / Actual Number of Drains Used
Max Depth of Ponding at Drains (mm)	150	
Estimated Total Volume for Ponding on Roof (m3)	45.0	Prisim formula, V = 1/3*A*d
Maximium release rate per drain at 150mm (usgpm)	15	Based on 1 Wier Per Drain and Fully Open Position
Max Release Rate from Roof (L/sec)	10.4	Based on Maximum Depth of Ponding of 150mm
Equiv Runoff C for 100-yr Storm	0.23	Based on 100-yr storm Intensity of 178.6 mm/hr, where I =1735.688 / (Tc + 6.014)^0.820, with Tc=10min)

RATING CURVE FOR ROOF


DIS	CHARGE VE	RSUS DEPTH	ARE	Total			
Ponding Depth (m)	Discharge Rate Per Drain (gpm)	(m3/sec) (m3/sec)		Ponding Depth (m)	Ponding Area (m2)	Ponding Volume Per Drain (m3)	Ponding Volume - All Drains (m3)
0	0	0.00	0.00000	0	0.0	0.0	0.0
0.025	5	0.32	0.00347	0.025	1.8	0.0	0.2
0.05	10	0.63	0.00694	0.05	7.3	0.1	1.3
0.075	11.25	0.71	0.00781	0.075	16.3	0.4	4.5
0.1	12.5	0.79	0.00867	0.1	29.1	1.0	10.7
0.125	13.75	0.87	0.00954	0.125	45.4	1.9	20.8
0.15	15	0.95	0.01041	0.15	65.4	3.3	36.0
Weir Position =	3-25% open						

RATING CURVE FOR MODELLING OUTLET

Head or Ponding Depth (m)	Outlfow (L/sec)
0	0.0000
0.025	3.4700
0.05	6.9399
0.075	7.8074
0.1	8.6749
0.125	9.5424
0.15	10.4099

2-Closed	

- 2 Closed

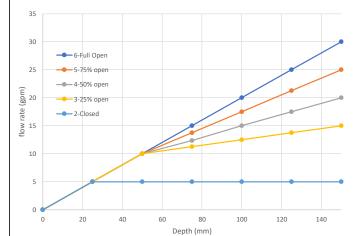
Depth (mm)

35 30 ----- 6-Full Open 25

GRAPH OF FLOW RATE VERSUS DEPTH FOR VARIOUS WEIR POSITIONS

Ponding Depth (m)	Area (m2)
0	0.0
0.025	1.8
0.05	7.3
0.075	16.3
0.1	29.1
0.125	45.4
0.15	65.4

C-4 ESTIMATION OF ROOF STORAGE AND OUTFLOW - TOWER 3


WATTS ADJ ACCUTROL WEIR FLOW RATES (Flow Rates at Various Depths)

			Weir P	osition		
Depth	1-None	2-Closed	3-25% open	4-50% open	5-75% open	6-Full Open
		Max Flo	w Rate per w	vier @150mm	n in gpm	
0	0	0	0	0	0	0
0.025	0	5	5	5	5	5
0.05	0	5	10	10	10	10
0.075	0	5	11.25	12.35	13.75	15
0.1	0	5	12.5	15	17.5	20
0.125	0	5	13.75	17.5	21.25	25
0.15	0	5	15	20	25	30

WATTS ADJ ACCUTROL WEIR FLOW RATES (Data From Manufacturer's Catalog)

		Flow (gpm) per depth								
Weir Position	0	25	50	75	100	125	150	Rate per Weir		
	0	0.025	0.05	0.075	0.1	0.125	0.15	@150mm		
1-None	0	0	0	0	0	0	0	0		
2-Closed	0	5	5	5	5	5	5	0.315		
3-25% open	0	5	10	11.25	12.5	13.75	15	0.946		
4-50% open	0	5	10	12.35	15	17.5	20	1.262		
5-75% open	0	5	10	13.75	17.5	21.25	25	1.577		
6-Full Open	0	5	10	15	20	25	30	1.893		

GRAPH OF FLOW RATE VERSUS DEPTH FOR VARIOUS WEIR POSITIONS

BUILDING ROOF INFORMATION

BUILDING ROOF INFORMATION		
Buidling Number	TOWER 3	
Total Roof Area (m2)	2562	
Minimium Number of Drains Required	2.8	Minimium of 1 drain every 900 sqaure metres (OBC 7.4.10.4)
15-min Rainfall Factor for Ottawa (mm)	23	(OBC Supp SB-1)
Max Permitted Load from All Drains (Litres)	58,926	
Max Permitted Load from All Drains (L/sec)	65.5	Hydraulic Load expressed in L/sec (OBC Section 7.4.10.3)
Estimated area per drain (m2)	144	
Estimated Distance from roof edge to drains (m)	6	Not more than 15m from Edge of Roof and 30m to Adjacent Dains (OBC Section 7.4.10.3)
Estimated No. of Drains Requried	18	Based on Total Roof Area / Area per Drain
Actual No. of Drains Used	26	Use if known
Effecive Roof Percentage (%)	80%	N0 Allowance for Mechanical units on this roof
Effecive Total Roof Area (m2)	2050	
Area per Drain (m2)	79	Based on Effectiive Roof Area / Actual Number of Drains Used
Max Depth of Ponding at Drains (mm)	150	
Estimated Total Volume for Ponding on Roof (m3)	128.1	Prisim formula, V = 1/3*A*d
Maximium release rate per drain at 150mm (usgpm)	15	Based on 1 Wier Per Drain and Fully Open Position
Max Release Rate from Roof (L/sec)	24.6	Based on Maximum Depth of Ponding of 150mm
Equiv Runoff C for 100-yr Storm	0.19	Based on 100-yr storm Intensity of 178.6 mm/hr, where I =1735.688 / (Tc + 6.014)^0.820, with Tc=10min)

RATING CURVE FOR ROOF

DISCHARGE VERSUS DEPTH				ARE	Total		
Ponding Depth (m)	Discharge Rate Per Drain (gpm)	Discharge Rate Per Drain (m3/sec)	Total Discharge All Drains (m3/sec)	Ponding Depth (m)	Ponding Area (m2)	Ponding Volume Per Drain (m3)	Ponding Volume - All Drains (m3)
0	0	0.00	0.00000	0	0.0	0.0	0.0
0.025	5	0.32	0.00820	0.025	2.2	0.0	0.5
0.05	10	0.63	0.01640	0.05	8.8	0.1	3.8
0.075	11.25	0.71	0.01845	0.075	19.7	0.5	12.8
0.1	12.5	0.79	0.02050	0.1	35.0	1.2	30.4
0.125	13.75	0.87	0.02255	0.125	54.7	2.3	59.3
0.15	15	0.95	0.02461	0.15	78.8	3.9	102.5
Weir Position =	3-25% open						

RATING CURVE FOR

MODELLING OUTLET					
Head or Ponding Depth (m)	OutIfow (L/sec)				
0	0.0000				
0.025	8.2017				
0.05	16.4035				
0.075	18.4539				
0.1	20.5043				
0.125	22.5547				
0.15	24.6052				

RATING CURVE FOR
MODELLING ROOF

STORAGE					
Head or Ponding Depth (m)	Ponding Area (m2)				
0	0.0				
0.025	2.2				
0.05	8.8				
0.075	19.7				
0.1	35.0				
0.125	54.7				
0.15	78.8				

C-5 **ESTIMATION OF ROOF STORAGE AND OUTFLOW - TOWER 4**

WATTS ADJ ACCUTROL WEIR FLOW RATES (Flow Rates at Various Depths)

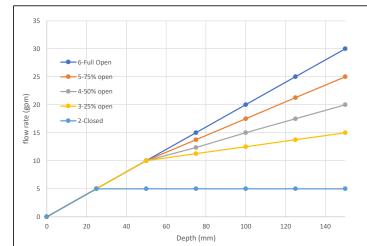
	Weir Position							
Depth	1-None	2-Closed	3-25% open	4-50% open	5-75% open	6-Full Open		
	Max Flow Rate per wier @150mm in gpm							
0	0	0	0	0	0	0		
0.025	0	5	5	5	5	5		
0.05	0	5	10	10	10	10		
0.075	0	5	11.25	12.35	13.75	15		
0.1	0	5	12.5	15	17.5	20		
0.125	0	5	13.75	17.5	21.25	25		
0.15	0	5	15	20	25	30		

WATTS ADJ ACCUTROL WEIR FLOW RATES (Data From Manufacturer's Catalog)

	Flow (gpm) per depth						Max Flow	
Weir Position	0	25	50	75	100	125	150	Rate per Weir
	0	0.025	0.05	0.075	0.1	0.125	0.15	@150mm
1-None	0	0	0	0	0	0	0	0
2-Closed	0	5	5	5	5	5	5	0.315
3-25% open	0	5	10	11.25	12.5	13.75	15	0.946
4-50% open	0	5	10	12.35	15	17.5	20	1.262
5-75% open	0	5	10	13.75	17.5	21.25	25	1.577
6-Full Open	0	5	10	15	20	25	30	1.893

BUILDING ROOF INFORMATION

BOILDING ROOF IN ORMATION		
Buidling Number	TOWER 4	
Total Roof Area (m2)	1864	
Minimium Number of Drains Required	2.1	Minimium of 1 drain every 900 sqaure metres (OBC 7.4.10.4)
15-min Rainfall Factor for Ottawa (mm)	23	(OBC Supp SB-1)
Max Permitted Load from All Drains (Litres)	42,872	
Max Permitted Load from All Drains (L/sec)	47.6	Hydraulic Load expressed in L/sec (OBC Section 7.4.10.3)
Estimated area per drain (m2)	100	
Estimated Distance from roof edge to drains (m)	5	Not more than 15m from Edge of Roof and 30m to Adjacent Dains (OBC Section 7.4.10.3)
Estimated No. of Drains Requried	19	Based on Total Roof Area / Area per Drain
Actual No. of Drains Used	14	Use if known
Effecive Roof Percentage (%)	80%	N0 Allowance for Mechanical units on this roof
Effecive Total Roof Area (m2)	1491	
Area per Drain (m2)	107	Based on Effectiive Roof Area / Actual Number of Drains Used
Max Depth of Ponding at Drains (mm)	150	
Estimated Total Volume for Ponding on Roof (m3)	93.2	Prisim formula, V = 1/3*A*d
Maximium release rate per drain at 150mm (usgpm)	15	Based on 1 Wier Per Drain and Fully Open Position
Max Release Rate from Roof (L/sec)	13.2	Based on Maximum Depth of Ponding of 150mm
Equiv Runoff C for 100-yr Storm	0.14	Based on 100-yr storm Intensity of 178.6 mm/hr, where I =1735.688 / (Tc + 6.014)^0.820, with Tc=10min)


RATING CURVE FOR ROOF

DISCHARGE VERSUS DEPTH				ARE	Total		
Ponding Depth (m)	Discharge Rate Per Drain (gpm)	Discharge Rate Per Drain (m3/sec)	Total Discharge All Drains (m3/sec)	Ponding Depth (m)	Ponding Area (m2)	Ponding Volume Per Drain (m3)	Ponding Volume - All Drains (m3)
0	0	0.00	0.00000	0	0.0	0.0	0.0
0.025	5	0.32	0.00442	0.025	3.0	0.0	0.3
0.05	10	0.63	0.00883	0.05	11.8	0.2	2.8
0.075	11.25	0.71	0.00994	0.075	26.6	0.7	9.3
0.1	12.5	0.79	0.01104	0.1	47.3	1.6	22.1
0.125	13.75	0.87	0.01214	0.125	74.0	3.1	43.1
0.15	15	0.95	0.01325	0.15	106.5	5.3	74.6
Weir Position =	3-25% open						

RATING CURVE FOR						
MODELLING OUTLET						
Head or Ponding Depth (m)	OutIfow (L/sec)					

Head or Ponding Pepth (m)	OutIfow (L/sec)	Head or Ponding Depth (m)
0	0.0000	0
0.025	4.4163	0.025
0.05	8.8326	0.05
0.075	9.9367	0.075
0.1	11.0408	0.1
0.125	12.1449	0.125
0.15	13.2489	0.15

GRAPH OF FLOW RATE VERSUS DEPTH FOR VARIOUS WEIR POSITIONS

RATING CURVE FOR MODELLING ROOF STORAGE

Ponding

Area

(m2)

0.0

3.0

11.8

26.6

47.3

74.0

106.5

					Storm = 2 y	r		Storm = 5 y	r	St	orm = 100	yr
Catchment No.	Area (ha)	Outlet Location	Time of Conc, Tc (min)	l₂ (mm/hr)	Cavg	Q _{2PRE} (L/sec)	l₅ (mm/hr)	Cavg	Q _{SPRE} (L/sec)	l ₁₀₀ (mm/hr)	Cavg	Q _{100PRE} (L/sec)
		- (
Entire Site	1.90	D/S STM System	10.0	76.81	0.50	202.8	104.29	0.50	275.4	178.56	1.00	943.1
Totals	1.90					202.8			275.4			943.1
Notes 1) Intensity, I = 73	32.951/(Tc+6.2	199) ^{0.810} (2-year, City of Ottav	va)						Î	Allowable	Discharge	
2) Intensity, I = 99	98.071/(Tc+6.0		(based on S	5-yr storm)								
3) Intensity, I = 17	/35.688/(Tc+6	.014) ^{0.820} (100-year, City of C)ttawa)									-
4) Cavg for 100-ye	ear is increase	d by 25% to a maximum of 1	0									

Table C-6 ESTIMATION OF PRE-DEVELOPMENT PEAK FLOWS (Based on Tc=10mins & 5-yr Storm)

Area No.	Outlet Location	Asphalt & Conc Areas (m ²)	A * C _{ASPH}	Roof Areas (m ²)	A * C _{ROOF}	Grassed Areas (m ²)	A * C _{GRASS}	Sum AC	Total Area (m ²)	C _{AVG} (see note)	Comment
T1	Tower 1 Roof Drains			1600.0	1440.0			1440.0	1600	0.90	
T2	Tower 2 Roof Drains			899.0	809.1	824	164.8	973.9	1723	0.57	
T3	Tower 3 Roof Drains			2562.0	2305.8			2305.8	2562	0.90	
T4	Tower 4 Roof Drains			1864.0	1677.6			1677.6	1864	0.90	
A1	ROW	473	425.7			318	63.6	489.3	791	0.62	
A2	Trench Drains	30	27.0					27.0	30	0.90	
A3	Area Drain 1	447	402.3			44	8.8	411.1	491	0.84	
A4	Area Drain 2	278	250.2			169	33.8	284.0	447	0.64	
A5	Area Drain 3	390	351.0			413	82.6	433.6	803	0.54	
A6	Area Drain 5					1130	226.0	226.0	1130	0.20	
A7	Area Drain 4	54	48.6			48	9.6	58.2	102	0.57	
A8	CBE 5, 6, 7 & 8					1199	239.8	239.8	1199	0.20	
A9	Ex.CB1,Ex.CB2, CB300, CB301	1715	1543.5			802	160.4	1703.9	2517	0.68	
A10	Area Drain 6	104	93.6			96	19.2	112.8	200	0.56	
A11	Area Drain 7	212	190.8			17	3.4	194.2	229	0.85	
A12	Area Drain 8	90	81.0			23	4.6	85.6	113	0.76	
A13	Area Drain 9	113	101.7			16	3.2	104.9	129	0.81	
A14	Area Drain 11	216	194.4					194.4	216	0.90	
A15	Area Drain 10	124	111.6			23	4.6	116.2	147	0.79	
A16	Area Drain 12	489	440.1			79	15.8	455.9	568	0.80	
A17	CBE 1, 2, 3 & 4					1664	332.8	332.8	1664	0.20	
A18	ROW	34	30.6			441	88.2	118.8	475	0.25	
Totals		4,769	4,292.1	6,925	6,232.5	7,306	1,461.2	11,986	19,000	0.63	

Table C-7 AVERAGE RUNOFF COEFFICIENTS FOR POST-DEVELOPMENT

		Time of		Storm =	2 yr			Storm	= 5 yr			Storm =	: 100 yr			
Area No	Area (ha)	Conc, Tc (min)	C _{AVG}	I ₂ (mm/hr)	Q (L/sec)	Q _{CAP} (L/sec)	C _{AVG}	اہ (mm/hr)	Q (L/sec)	Q _{CAP} (L/sec)	C _{AVG}	l ₁₀₀ (mm/hr)	Q (L/sec)	Q _{CAP} (L/sec)	Outlet	Comments
/ acanto	/ lica (lila)	. ,	CAVG	.2 ((2, 500)	(2) 500)	CAVG	.5 ()	(2,500)	(2, 500)	CAVG	(,,	(2) 500)	(2) 500)	outiet	connents
T1	0.160	10	0.90	76.81	30.7	(7.0)	0.90	104.19	41.7	(9.5)	1.00	178.56	79.4	(18.0)	Tower 1 Roof Drains	
T2	0.172	10	0.57	76.81	20.8	(3.6)	0.57	104.19	28.2	(4.9)	0.71	178.56	60.4	(10.4)	Tower 2 Roof Drains	Controlled
T3	0.256	10	0.90	76.81	49.2	(9.5)	0.90	104.19	66.8	(12.9)	1.00	178.56	127.2	(24.6)	Tower 3 Roof Drains	Controlled
T4	0.186	10	0.90	76.81	35.8	(5.1)	0.90	104.19	48.6	(6.9)	1.00	178.56	92.5	(13.2)	Tower 4 Roof Drains	
A1	0.079	10	0.62	76.81	10.4	10.4	0.62	104.19	14.2	14.2	0.77	178.56	30.4	30.4	ROW	Uncontrolled
A2	0.003	10	0.90	76.81	0.6	(0.3)	0.90	104.19	0.8	(0.4)	1.00	178.56	1.5	(0.7)	Trench Drains	
A3	0.049	10	0.84	76.81	8.8	(5.9)	0.84	104.19	11.9	(7.9)	1.00	178.56	24.4	(16.2)	Area Drain 1	
A4	0.045	10	0.64	76.81	6.1	(4.0)	0.64	104.19	8.2	(5.5)	0.79	178.56	17.6	(11.7)	Area Drain 2	
A5	0.080	10	0.54	76.81	9.3	(6.2)	0.54	104.19	12.6	(8.4)	0.67	178.56	26.9	(17.9)	Area Drain 3	Controlled at ciste
A6	0.113	10	0.20	76.81	4.8	(3.2)	0.20	104.19	6.5	(4.4)	0.25	178.56	14.0	(9.3)	Area Drain 5	
A7	0.010	10	0.57	76.81	1.2	(0.8)	0.57	104.19	1.7	(1.1)	0.71	178.56	3.6	(2.4)	Area Drain 4	
A8	0.120	10	0.20	76.81	5.1	(3.4)	0.20	104.19	6.9	(4.6)	0.25	178.56	14.9	(9.9)	CBE 5, 6, 7 & 8	
A9	0.252	10	0.68	76.81	36.4	(13.1)	0.68	104.19	49.4	(17.7)	0.85	178.56	105.7	(38.0)	Ex.CB1,Ex.CB2, CB300, CB301	ICD & Controlled cistern
A10	0.020	10	0.56	76.81	2.4	(1.6)	0.56	104.19	3.3	(2.2)	0.71	178.56	7.0	(4.7)	Area Drain 6	
A11	0.023	10	0.85	76.81	4.1	(2.8)	0.85	104.19	5.6	(3.8)	1.00	178.56	11.4	(7.6)	Area Drain 7	
A12	0.011	10	0.76	76.81	1.8	(1.2)	0.76	104.19	2.5	(1.7)	0.95	178.56	5.3	(3.5)	Area Drain 8	
A13	0.013	10	0.81	76.81	2.2	(1.5)	0.81	104.19	3.0	(2.0)	1.00	178.56	6.4	(4.3)	Area Drain 9	Controlled at cist
A14	0.022	10	0.90	76.81	4.2	(2.8)	0.90	104.19	5.6	(3.8)	1.00	178.56	10.7	(7.1)	Area Drain 11	controlled at cist
A15	0.015	10	0.79	76.81	2.5	(1.7)	0.79	104.19	3.4	(2.2)	0.99	178.56	7.2	(4.8)	Area Drain 10	
A16	0.057	10	0.80	76.81	9.7	(6.5)	0.80	104.19	13.2	(8.8)	1.00	178.56	28.2	(18.8)	Area Drain 12	
A17	0.166	10	0.20	76.81	7.1	(4.7)	0.20	104.19	9.6	(6.4)	0.25	178.56	20.6	(13.8)	CBE 1, 2, 3 & 4	
A18	0.048	10	0.25	76.81	2.5	2.5	0.25	104.19	3.4	3.4	0.31	178.56	7.4	7.4	ROW	Uncontrolled
Totals	1.9000				255.9	97.8			347.2	132.7			702.8	274.9		
totais tes	1.3000				233.3	57.0			347.2	132.7			702.0	214.3		
				City of Ottawa City of Ottawa												

Table C-8 SUMMARY OF POST-DEVELOPMENT PEAK FLOWS (Uncontrolled and Controlled)

100-yr Storm Intensity, I = 1735.688/(Tc+6.014)&^0.820 (City of Ottawa)

Time of Concentration (min), Tc = **10** For Flows under column Qcap which are shown in brackets **(0.0)** , denotes flows that are controlled

Table C-9 SUMMARY OF STORAGE

	Re	elease Rate (I	/s)	Storage R	equired (m ⁴	³) (MRM)	Stor	age Provideo	(m^3)	
Area No		· · · ·	100-yr		5-yr	100-yr	Roof	Cistern	Ponding	Control Method
	2-yr	5-yr	100-yr	2-yr	5-yr	100-yr	ROOI	Cistern	Ponding	
T1	7.0	9.5	18.0	7.6	9.7	24.7	64.0			
T2	3.6	4.9	10.4	7.2	9.3	23.2	36.0			Flow Controlled Roof
Т3	9.5	12.9	24.6	15.3	19.7	45.6	102.5			Drains with Weir (Set at 25% Open Position
T4	5.1	6.9	13.2	14.2	18.3	38.6	74.5			at 25% Open Position
A1	10.4	14.2	30.4							None
A2	0.3	0.4	0.7	0.1	0.2	0.3		0.3		
A3	5.9	7.9	16.2	1.8	2.4	4.9		4.9		1
A4	4.0	5.5	11.7	1.2	1.6	3.5		3.5		During Data from
A5	6.2	8.4	17.9	1.9	2.5	5.4		5.4		Pump Rate from Cistern
A6	3.2	4.4	9.3	1.0	1.3	2.8		2.8		Cisterii
A7	0.8	1.1	2.4	0.2	0.3	0.7		0.7		
A8	3.4	4.6	9.9	1.0	1.4	3.0		3.0		
A9	13.1	17.7	38.0	14.0	19.0	40.6		40.5	0.1	ICD & Pump Rate from Cistern
A10	1.6	2.2	4.7	0.5	0.7	1.4		1.4		
A11	2.8	3.8	7.6	0.8	1.1	2.3		2.3		
A12	1.2	1.7	3.5	0.4	0.5	1.1		1.1		
A13	1.5	2.0	4.3	0.4	0.6	1.3		1.3		Pump Rate from
A14	2.8	3.8	7.1	0.8	1.1	2.1		2.1		Cistern
A15	1.7	2.2	4.8	0.5	0.7	1.4		1.4		
A16	6.5	8.8	18.8	1.9	2.6	5.6		5.6		
A17	4.7	6.4	13.8	1.4	1.9	4.1		4.1		
A18	2.5	3.4	7.4							None
Totals	97.8	132.7	274.9	72.3	95.0	212.7	277.0	80.5	0.1	

 TABLE C-10

 Storage Volumes for 2-year, 5-Year and 100-Year Storms

	Area No:	T1	Controlle	d											
	C _{AVG} =	0.90	(2-yr)												
	C _{AVG} =	0.90	(5-yr)												
	C _{AVG} =	1.00	(100-yr, Max	(1.0)											
Tir	me Interval =	10.00	(mins)												
Dra	ainage Area =	0.1600	(hectares)												
						1									
		Release Rate =	-	(L/sec)			elease Rate =	-	(L/sec)			elease Rate =		(L/sec)	
		Return Period =	-	(years)		-	turn Period =	-	(years)	0.014		turn Period =		(years)	0.000
		IDF Parameters, A =	732.951	- '	0.810		rameters, A =		-	0.814		ameters, A =		-	0.820
Duration (min)		$(I = A/(T_c+C))$	1	, C =	6.199		$(I = A/(T_c+C)$, C =	6.053		$(I = A/(T_c+C)$	r	, C =	6.014
(11111)	Rainfall Intensity, I (mm/hr)	Peak Flow (L/sec)	Release Rate (L/sec)	Storage Rate (L/sec)	Storage (m ³)	Rainfall Intensity, I (mm/hr)	Peak Flow (L/sec)	Release Rate (L/sec)	Storage Rate (L/sec)	Storage (m ³)	Rainfall Intensity, I (mm/hr)	Peak Flow (L/sec)	Release Rate (L/sec)	Storage Rate (L/sec)	Storage (m ³)
0	167.2	66.9	6.97	60.0	0.00	230.5	92.3	9.453	82.8	0.00	398.6	177.3	18.000	159.3	0.00
10	76.8	30.7	6.97	23.8	14.27	104.2	41.7	9.453	32.3	19.35	178.6	79.4	18.000	61.4	36.85
20	52.0	20.8	6.97	13.9	16.63	70.3	28.1	9.453	18.7	22.40	120.0	53.4	18.000	35.4	42.42
30	40.0	16.0	6.97	9.1	16.31	53.9	21.6	9.453	12.1	21.84	91.9	40.9	18.000	22.9	41.15
40	32.9	13.2	6.97	6.2	14.85	44.2	17.7	9.453	8.2	19.76	75.1	33.4	18.000	15.4	37.02
50	28.0	11.2	6.97	4.3	12.77	37.7	15.1	9.453	5.6	16.86	64.0	28.4	18.000	10.4	31.34
60	24.6	9.8	6.97	2.9	10.31	32.9	13.2	9.453	3.7	13.45	55.9	24.9	18.000	6.9	24.70
70	21.9	8.8	6.97	1.8	7.58	29.4	11.8	9.453	2.3	9.68	49.8	22.1	18.000	4.1	17.41
80	19.8	7.9	6.97	1.0	4.66	26.6	10.6	9.453	1.2	5.67	45.0	20.0	18.000	2.0	9.66
90	18.1	7.3	6.97	0.3	1.59	24.3	9.7	9.453	0.3	1.46	41.1	18.3	18.000	0.3	1.55
100	16.7	6.7	6.97	-0.3	-1.59	22.4	9.0	9.453	-0.5	-2.90	37.9	16.9	18.000	-1.1	-6.84
110	15.6	6.2	6.97	-0.7	-4.86	20.8	8.3	9.453	-1.1	-7.37	35.2	15.7	18.000	-2.3	-15.46
120	14.6	5.8	6.97	-1.1	-8.20	19.5	7.8	9.453	-1.7	-11.95	32.9	14.6	18.000	-3.4	-24.25
130	13.7	5.5	6.97	-1.5	-11.61	18.3	7.3	9.453	-2.1	-16.61	30.9	13.7	18.000	-4.3	-33.20
140	12.9	5.2	6.97	-1.8	-15.07	17.3	6.9	9.453	-2.5	-21.34	29.2	13.0	18.000	-5.0	-42.28
150	12.3	4.9	6.97	-2.1	-18.57	16.4	6.6	9.453	-2.9	-26.13	27.6	12.3	18.000	-5.7	-51.47
160	11.7	4.7	6.97	-2.3	-22.12	15.6	6.2	9.453	-3.2	-30.97	26.2	11.7	18.000	-6.3	-60.76
170	11.1	4.4	6.97	-2.5	-25.70	14.8	5.9	9.453	-3.5	-35.86	25.0	11.1	18.000	-6.9	-70.13
180	10.6	4.3	6.97	-2.7	-29.31	14.2	5.7	9.453	-3.8	-40.79	23.9	10.6	18.000	-7.4	-79.58
190	10.2	4.1	6.97	-2.9	-32.95	13.6	5.4	9.453	-4.0	-45.75	22.9	10.2	18.000	-7.8	-89.09
200	9.8	3.9	6.97	-3.1	-36.62	13.0	5.2	9.453	-4.2	-50.75	22.0	9.8	18.000	-8.2	-98.67
Max =					16.63					22.40					42.42

1) Peak flow is equal to the product of 2.78 x C x I x A

2) Rainfall Intensity, I = A/(Tc+C)^B

3) Release Rate = Min (Release Rate, Peak Flow)

4) Storage Rate = Peak Flow - Release Rate

5) Storage = Duration x Storage Rate

6) Maximium Storage = Max Storage Over Duration

7) Parameters a,b,c are for City of Ottawa

TABLE C-11 Storage Volumes for 2-year, 5-Year and 100-Year Storms

	Area No:	T2	Controlle	d						
	C _{AVG} =	0.57	(2-yr)							
	C _{AVG} =	0.57	(5-yr)							
	C _{AVG} =	0.71	(100-yr, Max	: 1.0)						
Tir	me Interval =	10.00	(mins)							
Dra	ainage Area =	0.1723	(hectares)							
	-									
		Release Rate =	3.6	(L/sec)		R	elease Rate =	4.9	(L/sec)	
		Return Period =	2	(years)		Re	turn Period =	5	(years)	
		IDF Parameters, A =	732.951	, B =	0.810	IDF Par	ameters, A =	998.071	_	0.814
Duration		$(I = A/(T_c+C))$, C =	6.199		$(I = A/(T_c+C))$, C =	6.053
(min)	Rainfall Intensity, I (mm/hr)	Peak Flow (L/sec)	Release Rate (L/sec)	Storage Rate (L/sec)	Storage (m ³)	Rainfall Intensity, I (mm/hr)	Peak Flow (L/sec)	Release Rate (L/sec)	Storage Rate (L/sec)	Storage (m ³)
0	167.2	45.3	3.58	41.7	0.00	230.5	62.4	4.855	57.5	0.00
10	76.8	20.8	3.58	17.2	10.33	104.2	28.2	4.855	23.4	14.01
20	52.0	14.1	3.58	10.5	12.61	70.3	19.0	4.855	14.2	17.00
30	40.0	10.8	3.58	7.3	13.07	53.9	14.6	4.855	9.7	17.54
40	32.9	8.9	3.58	5.3	12.77	44.2	12.0	4.855	7.1	17.06
50	28.0	7.6	3.58	4.0	12.04	37.7	10.2	4.855	5.3	16.02

(((((((((((((((((((((((((((((((((((((((Rainfall Intensity, I (mm/hr)	Peak Flow (L/sec)	Release Rate (L/sec)	Storage Rate (L/sec)	Storage (m ³)	Rainfall Intensity, I (mm/hr)	Peak Flow (L/sec)	Release Rate (L/sec)	Storage Rate (L/sec)	Storage (m ³)	Rainfall Intensity, I (mm/hr)	Peak Flow (L/sec)	Release Rate (L/sec)	Storage Rate (L/sec)	Storage (m ³)
0	167.2	45.3	3.58	41.7	0.00	230.5	62.4	4.855	57.5	0.00	398.6	134.9	10.400	124.5	0.00
10	76.8	20.8	3.58	17.2	10.33	104.2	28.2	4.855	23.4	14.01	178.6	60.4	10.400	50.0	30.02
20	52.0	14.1	3.58	10.5	12.61	70.3	19.0	4.855	14.2	17.00	120.0	40.6	10.400	30.2	36.23
30	40.0	10.8	3.58	7.3	13.07	53.9	14.6	4.855	9.7	17.54	91.9	31.1	10.400	20.7	37.24
40	32.9	8.9	3.58	5.3	12.77	44.2	12.0	4.855	7.1	17.06	75.1	25.4	10.400	15.0	36.08
50	28.0	7.6	3.58	4.0	12.04	37.7	10.2	4.855	5.3	16.02	64.0	21.6	10.400	11.2	33.73
60	24.6	6.6	3.58	3.1	11.05	32.9	8.9	4.855	4.1	14.63	55.9	18.9	10.400	8.5	30.66
70	21.9	5.9	3.58	2.4	9.89	29.4	8.0	4.855	3.1	13.01	49.8	16.9	10.400	6.5	27.09
80	19.8	5.4	3.58	1.8	8.59	26.6	7.2	4.855	2.3	11.22	45.0	15.2	10.400	4.8	23.17
90	18.1	4.9	3.58	1.3	7.20	24.3	6.6	4.855	1.7	9.29	41.1	13.9	10.400	3.5	18.97
100	16.7	4.5	3.58	1.0	5.73	22.4	6.1	4.855	1.2	7.27	37.9	12.8	10.400	2.4	14.57
110	15.6	4.2	3.58	0.6	4.20	20.8	5.6	4.855	0.8	5.17	35.2	11.9	10.400	1.5	9.99
120	14.6	3.9	3.58	0.4	2.62	19.5	5.3	4.855	0.4	2.99	32.9	11.1	10.400	0.7	5.27
130	13.7	3.7	3.58	0.1	1.00	18.3	5.0	4.855	0.1	0.77	30.9	10.5	10.400	0.1	0.44
140	12.9	3.5	3.58	-0.1	-0.66	17.3	4.7	4.855	-0.2	-1.51	29.2	9.9	10.400	-0.5	-4.49
150	12.3	3.3	3.58	-0.3	-2.36	16.4	4.4	4.855	-0.4	-3.82	27.6	9.3	10.400	-1.1	-9.50
160	11.7	3.2	3.58	-0.4	-4.07	15.6	4.2	4.855	-0.6	-6.18	26.2	8.9	10.400	-1.5	-14.59
170	11.1	3.0	3.58	-0.6	-5.82	14.8	4.0	4.855	-0.8	-8.56	25.0	8.5	10.400	-1.9	-19.74
180	10.6	2.9	3.58	-0.7	-7.58	14.2	3.8	4.855	-1.0	-10.97	23.9	8.1	10.400	-2.3	-24.96
190	10.2	2.8	3.58	-0.8	-9.36	13.6	3.7	4.855	-1.2	-13.41	22.9	7.7	10.400	-2.7	-30.22
200	9.8	2.6	3.58	-0.9	-11.16	13.0	3.5	4.855	-1.3	-15.86	22.0	7.4	10.400	-3.0	-35.53
Max =					13.07					17.54					37.24

Release Rate =

 $(I = A/(T_c+C)$

IDF Parameters, A = 1735.688

Return Period =

10.4 (L/sec)

(years)

0.820

6.014

, C =

100

Notes

1) Peak flow is equal to the product of 2.78 x C x I x A

2) Rainfall Intensity, I = A/(Tc+C)^B

3) Release Rate = Min (Release Rate, Peak Flow)

4) Storage Rate = Peak Flow - Release Rate

5) Storage = Duration x Storage Rate

6) Maximium Storage = Max Storage Over Duration

7) Parameters a,b,c are for City of Ottawa

TABLE C-12 Storage Volumes for 2-year, 5-Year and 100-Year Storms

	Area No:	T3	Controlle	d							
	C _{AVG} =	0.90	(2-yr)								
	C _{AVG} =	0.90	(5-yr)								
	C _{AVG} =	1.00	(100-yr, Max	(1.0)							
Ti	me Interval =		(mins)								
Dra	ainage Area =	0.2562	(hectares)								
	0		<u> </u>								
		Release Rate =	9.5	(L/sec)		R	elease Rate =	12.9	(L/sec)		F
		Return Period =	2	(years)		Re	turn Period =	5	(years)		Re
		IDF Parameters, A =	732.951	, B =	0.810	IDF Par	rameters, A =	998.071	_	0.814	IDF Pa
Duration		$(I = A/(T_c+C))$, C =	6.199		$(I = A/(T_c+C))$, C =	6.053	
(min)	Rainfall Intensity, I (mm/hr)	Peak Flow (L/sec)	Release Rate (L/sec)	Storage Rate (L/sec)	Storage (m ³)	Rainfall Intensity, I (mm/hr)	Peak Flow (L/sec)	Release Rate (L/sec)	Storage Rate (L/sec)	Storage (m ³)	Rainfall Intensity, I (mm/hr)
0	167.2	107.2	9.52	97.7	0.00	230.5	147.7	12.919	134.8	0.00	398.6
10	76.8	49.2	9.52	39.7	23.83	104.2	66.8	12.919	53.9	32.32	178.6
20	52.0	33.4	9.52	23.8	28.60	70.3	45.0	12.919	32.1	38.54	120.0
30	40.0	25.7	9.52	16.1	29.06	53.9	34.6	12.919	21.6	38.97	91.9
40	32.9	21.1	9.52	11.5	27.70	44.2	28.3	12.919	15.4	36.97	75.1
50	28.0	18.0	9.52	8.5	25.35	37.7	24.1	12.919	11.2	33.65	64.0
60	24.6	15.7	9.52	6.2	22.39	32.9	21.1	12.919	8.2	29.51	55.9
70	21.9	14.0	9.52	4.5	19.00	29.4	18.8	12.919	5.9	24.82	49.8
80	19.8	12.7	9.52	3.2	15.30	26.6	17.0	12.919	4.1	19.72	45.0
90	18.1	11.6	9.52	2.1	11.38	24.3	15.6	12.919	2.6	14.31	41.1

7.27

3.01

-1.36

-5.83

-10.39

-15.03

-19.73

-24.48

-29.28

-34.13

-39.02

29.06

22.4

20.8

19.5

18.3

17.3

16.4

15.6

14.8

14.2

13.6

13.0

14.4

13.3

12.5

11.7

11.1

10.5

10.0

9.5

9.1

8.7

8.4

12.919

12.919

12.919

12.919

12.919

12.919

12.919

12.919

12.919

12.919

12.919

1.4

0.4

-0.4

-1.2

-1.8

-2.4

-2.9

-3.4

-3.8

-4.2

-4.6

8.66

2.83

-3.17

-9.30

-15.54

-21.88

-28.30

-34.80

-41.36

-47.98

-54.65

38.97

Notes

100

110

120

130

140

150

160

170

180

190

200

Max =

1) Peak flow is equal to the product of 2.78 x C x I x A

10.7

10.0

9.3

8.8

8.3

7.9

7.5

7.1

6.8

6.5

6.3

9.52

9.52

9.52

9.52

9.52

9.52

9.52

9.52

9.52

9.52

9.52

1.2

0.5

-0.2

-0.7

-1.2

-1.7

-2.1

-2.4

-2.7

-3.0

-3.3

Rainfall Intensity, I = A/(Tc+C)^B

16.7

15.6

14.6

13.7

12.9

12.3

11.7

11.1

10.6

10.2

9.8

3) Release Rate = Min (Release Rate, Peak Flow)

4) Storage Rate = Peak Flow - Release Rate

5) Storage = Duration x Storage Rate

6) Maximium Storage = Max Storage Over Duration

7) Parameters a,b,c are for City of Ottawa

Release Rate =

Peak Flow

(L/sec)

283.9

127.2

85.4

65.4

53.5

45.6

39.8

35.5

32.0

29.3

27.0

25.1

23.4

22.0

20.8

19.7

18.7

17.8

17.0

16.3

15.7

IDF Parameters, A = 1735.688 $(I = A/(T_c+C))$

Return Period =

37.9

35.2

32.9

30.9

29.2

27.6

26.2

25.0

23.9

22.9

22.0

24.6

100

Release

24.600

24.600

24.600

24.600

24.600

24.600

24.600

24.600

24.600

24.600

24.600

24.600

24.600

24.600

24.600

24.600

24.600

24.600

24.600

24.600

24.600

(L/sec)

(years)

Rate (L/sec) Rate (L/sec)

Storage

259.3

102.6

60.8

40.8

28.9

21.0

15.2

10.9

7.4

4.7

2.4

0.5

-1.2

-2.6

-3.8

-4.9

-5.9

-6.8

-7.6

-8.3

-8.9

0.820

6.014

Storage

(m³)

0.00

61.55

73.00

73.50

69.41

62.85

54.76

45.62

35.73

25.28

14.38

3.12

-8.43

-20.23

-32.23

-44.41

-56.75

-69.22

-81.82

-94.52

-107.32

, C =

TABLE C-13 Storage Volumes for 2-year, 5-Year and 100-Year Storms

	Area No:	T4	Controlle	d											
	C _{AVG} =	0.90	(2-yr)												
	C _{AVG} =	0.90	(5-yr)												
	C _{AVG} =	1.00	(100-yr, Max	: 1.0)											
Tir	me Interval =	10.00	(mins)												
Dra	inage Area =	0.1864	(hectares)												
		Release Rate =	5.1	(L/sec)		R	elease Rate =	6.9	(L/sec)		R	elease Rate =	13.2	(L/sec)	
		Return Period =	2	(years)		Re	turn Period =	5	(years)		Re	turn Period =	100	(years)	
		IDF Parameters, A =	732.951	, B =	0.810	IDF Par	ameters, A =	998.071		0.814	IDF Par	rameters, A =	1735.688	, ,	0.82
Duration		$(I = A/(T_c+C))$	-	, C =	6.199		$(I = A/(T_c+C))$, C =	6.053		$(I = A/(T_c+C))$, C =	6.01
(min)	Rainfall Intensity, I (mm/hr)	Peak Flow (L/sec)	Release Rate (L/sec)	Storage Rate (L/sec)	Storage (m ³)	Rainfall Intensity, I (mm/hr)	Peak Flow (L/sec)	Release Rate (L/sec)	Storage Rate (L/sec)	Storage (m ³)	Rainfall Intensity, I (mm/hr)	Peak Flow (L/sec)	Release Rate (L/sec)	Storage Rate (L/sec)	Storag (m ³)
0	167.2	78.0	5.11	72.9	0.00	230.5	107.5	6.932	100.6	0.00	398.6	206.6	13.200	193.4	0.00
10	76.8	35.8	5.11	30.7	18.43	104.2	48.6	6.932	41.7	25.00	178.6	92.5	13.200	79.3	47.6
20	52.0	24.3	5.11	19.2	22.99	70.3	32.8	6.932	25.8	31.00	120.0	62.2	13.200	49.0	58.7
30	40.0	18.7	5.11	13.6	24.42	53.9	25.2	6.932	18.2	32.79	91.9	47.6	13.200	34.4	61.9
40	32.9	15.3	5.11	10.2	24.52	44.2	20.6	6.932	13.7	32.82	75.1	38.9	13.200	25.7	61.7
50	28.0	13.1	5.11	8.0	23.90	37.7	17.6	6.932	10.6	31.88	64.0	33.1	13.200	19.9	59.8
60	24.6	11.5	5.11	6.3	22.83	32.9	15.4	6.932	8.4	30.35	55.9	29.0	13.200	15.8	56.7
70	21.9	10.2	5.11	5.1	21.46	29.4	13.7	6.932	6.8	28.42	49.8	25.8	13.200	12.6	52.9
80	19.8	9.2	5.11	4.1	19.86	26.6	12.4	6.932	5.5	26.19	45.0	23.3	13.200	10.1	48.5
90	18.1	8.5	5.11	3.4	18.10	24.3	11.3	6.932	4.4	23.73	41.1	21.3	13.200	8.1	43.7
100	16.7	7.8	5.11	2.7	16.20	22.4	10.5	6.932	3.5	21.11	37.9	19.6	13.200	6.4	38.6
110	15.6	7.3	5.11	2.2	14.20	20.8	9.7	6.932	2.8	18.34	35.2	18.2	13.200	5.0	33.2
120	14.6	6.8	5.11	1.7	12.11	19.5	9.1	6.932	2.1	15.46	32.9	17.0	13.200	3.8	27.6
130	13.7	6.4	5.11	1.3	9.94	18.3	8.5	6.932	1.6	12.48	30.9	16.0	13.200	2.8	21.9
140	12.9	6.0	5.11	0.9	7.71	17.3	8.1	6.932	1.1	9.42	29.2	15.1	13.200	1.9	16.0
150	12.3	5.7	5.11	0.6	5.43	16.4	7.6	6.932	0.7	6.29	27.6	14.3	13.200	1.1	9.97
160	11.7	5.4	5.11	0.3	3.11	15.6	7.3	6.932	0.3	3.09	26.2	13.6	13.200	0.4	3.81
170	11.1	5.2	5.11	0.1	0.74	14.8	6.9	6.932	0.0	-0.15	25.0	13.0	13.200	-0.2	-2.4
180	10.6	5.0	5.11	-0.2	-1.66	14.2	6.6	6.932	-0.3	-3.45	23.9	12.4	13.200	-0.8	-8.7
190 200	10.2 9.8	4.8 4.6	5.11 5.11	-0.4	-4.10 -6.57	13.6 13.0	6.3 6.1	6.932 6.932	-0.6 -0.8	-6.78 -10.16	22.9 22.0	11.9 11.4	13.200 13.200	-1.3 -1.8	-15.2
200 Max =	9.8	4.0	5.11	-0.5	-6.57 24.52	13.0	0.1	0.932	-0.8	-10.16 32.82	22.0	11.4	13.200	-1.0	-21.7 61.9

Notes

1) Peak flow is equal to the product of 2.78 x C x I x A

2) Rainfall Intensity, I = A/(Tc+C)^B

3) Release Rate = Min (Release Rate, Peak Flow)

4) Storage Rate = Peak Flow - Release Rate

5) Storage = Duration x Storage Rate

6) Maximium Storage = Max Storage Over Duration

7) Parameters a,b,c are for City of Ottawa

TABLE C-14 Storage Volum(Storage Volumes for 2-year, 5-Year and 100-Year Storms

Area No:	A2	Controlled at cistern
C _{AVG} =	0.90	(2-yr)
C _{AVG} =	0.90	(5-yr)
C _{AVG} =	1.00	(100-yr, Max 1.0)
Time Interval =	10.00	(mins)
Drainage Area =	0.0030	(hectares)

		Release Rate =	0.3	(L/sec)		R	elease Rate =	0.4	(L/sec)		Re	elease Rate =	0.74	(L/sec)	
		Return Period =	2	(years)		Re	turn Period =	5	(years)		Re	turn Period =	100	(years)	
		IDF Parameters, A =	732.951	- ' '	0.810		ameters, A =			0.814		ameters, A =			0.820
Duration		$(I = A/(T_c+C))$, C =	6.199		$(I = A/(T_c+C)$, C =	6.053		$(I = A/(T_c+C)$, C =	6.014
(min)	Rainfall Intensity, I (mm/hr)	Peak Flow (L/sec)	Release Rate (L/sec)	Storage Rate (L/sec)	Storage (m ³)	Rainfall Intensity, I (mm/hr)	Peak Flow (L/sec)	Release Rate (L/sec)	Storage Rate (L/sec)	Storage (m ³)	Rainfall Intensity, I (mm/hr)	Peak Flow (L/sec)	Release Rate (L/sec)	Storage Rate (L/sec)	Storage (m ³)
0	167.2	1.3	0.29	1.0	0.00	230.5	1.7	0.391	1.3	0.00	398.6	3.3	0.7	2.6	0.00
10	76.8	0.6	0.29	0.3	0.17	104.2	0.8	0.391	0.4	0.23	178.6	1.5	0.7	0.7	0.45
20	52.0	0.4	0.29	0.1	0.12	70.3	0.5	0.391	0.1	0.16	120.0	1.0	0.7	0.3	0.31
30	40.0	0.3	0.29	0.0	0.02	53.9	0.4	0.391	0.0	0.02	91.9	0.8	0.7	0.0	0.04
40	32.9	0.2	0.29	0.0	-0.10	44.2	0.3	0.391	-0.1	-0.14	75.1	0.6	0.7	-0.1	-0.28
50	28.0	0.2	0.29	-0.1	-0.23	37.7	0.3	0.391	-0.1	-0.33	64.0	0.5	0.7	-0.2	-0.63
60	24.6	0.2	0.29	-0.1	-0.37	32.9	0.2	0.391	-0.1	-0.52	55.9	0.5	0.7	-0.3	-1.00
70	21.9	0.2	0.29	-0.1	-0.52	29.4	0.2	0.391	-0.2	-0.72	49.8	0.4	0.7	-0.3	-1.38
80	19.8	0.1	0.29	-0.1	-0.67	26.6	0.2	0.391	-0.2	-0.92	45.0	0.4	0.7	-0.4	-1.77
90	18.1	0.1	0.29	-0.2	-0.82	24.3	0.2	0.391	-0.2	-1.13	41.1	0.3	0.7	-0.4	-2.17
100	16.7	0.1	0.29	-0.2	-0.98	22.4	0.2	0.391	-0.2	-1.34	37.9	0.3	0.7	-0.4	-2.57
110 120	15.6 14.6	0.1	0.29	-0.2	-1.13 -1.29	20.8 19.5	0.2	0.391	-0.2 -0.2	-1.55 -1.76	35.2 32.9	0.3	0.7	-0.5	-2.98 -3.39
120	14.0	0.1	0.29	-0.2	-1.29	19.5	0.1	0.391	-0.2	-1.76	30.9	0.3	0.7	-0.5	-3.80
130	12.9	0.1	0.29	-0.2	-1.45	17.3	0.1	0.391	-0.3	-1.98	29.2	0.3	0.7	-0.5	-3.80
140	12.3	0.1	0.29	-0.2	-1.77	17.3	0.1	0.391	-0.3	-2.20	23.2	0.2	0.7	-0.5	-4.63
160	12.5	0.1	0.29	-0.2	-1.93	15.6	0.1	0.391	-0.3	-2.63	26.2	0.2	0.7	-0.5	-5.05
100	11.7	0.1	0.29	-0.2	-2.09	14.8	0.1	0.391	-0.3	-2.85	25.0	0.2	0.7	-0.5	-5.47
180	10.6	0.1	0.29	-0.2	-2.25	14.0	0.1	0.391	-0.3	-3.07	23.9	0.2	0.7	-0.5	-5.89
190	10.2	0.1	0.29	-0.2	-2.41	13.6	0.1	0.391	-0.3	-3.30	22.9	0.2	0.7	-0.6	-6.31
200	9.8	0.1	0.29	-0.2	-2.58	13.0	0.1	0.391	-0.3	-3.52	22.0	0.2	0.7	-0.6	-6.74
Max =					0.17					0.23					0.45

Notes

1) Peak flow is equal to the product of 2.78 x C x I x A

2) Rainfall Intensity, I = A/(Tc+C)^B

3) Release Rate = Min (Release Rate, Peak Flow)

4) Storage Rate = Peak Flow - Release Rate

5) Storage = Duration x Storage Rate

6) Maximium Storage = Max Storage Over Duration

7) Parameters a,b,c are for City of Ottawa

		_		•											
	Area No:	A3	Controlle	d at cisterr	1 I										
	C _{AVG} =	0.84	(2-yr)												
	C _{AVG} =	0.84	(5-yr)												
	C _{AVG} =	1.00	(100-yr, Max	(1.0)											
Tin	ne Interval =	10.00	(mins)												
Dra	inage Area =	0.0491	(hectares)												
-		Release Rate =	5.9	(L/sec)		R	elease Rate =	7.9	(L/sec)		R	elease Rate =	16.25	(L/sec)	
		Return Period =		(years)			turn Period =	-	(years)			eturn Period =	-	(years)	
		IDF Parameters, A =	732.951	, B =	0.810	IDF Par	rameters, A =	998.071		0.814	IDF Pa	rameters, A =	1735.688		0.820
Duration		$(I = A/(T_c+C))$, C =	6.199	1	$(I = A/(T_c+C))$, C =	6.053		$(I = A/(T_c+C))$, C =	6.014
(min)	Rainfall					Rainfall					Rainfall				
	Intensity, I	Peak Flow (L/sec)	Release	Storage	Storage	Intensity, I	Peak Flow	Release	Storage	Storage	Intensity, I	Peak Flow	Release	Storage	Storage
	(mm/hr)		Rate (L/sec)	Rate (L/sec)	(m ³)	(mm/hr)	(L/sec)	Rate (L/sec)	Rate (L/sec)	(m³)	(mm/hr)	(L/sec)	Rate (L/sec)	Rate (L/sec)	(m³)
0	167.2	19.1	5.85	13.3	0.00	230.5	26.3	7.939	18.4	0.00	398.6	54.4	16.2	38.2	0.00
10	76.8	8.8	5.85	2.9	1.76	104.2	11.9	7.939	4.0	2.38	178.6	24.4	16.2	8.1	4.87
20	52.0	5.9	5.85	0.1	0.11	70.3	8.0	7.939	0.1	0.11	120.0	16.4	16.2	0.1	0.15
30	40.0	4.6	5.85	-1.3	-2.30	53.9	6.2	7.939	-1.8	-3.20	91.9	12.5	16.2	-3.7	-6.68
40	32.9	3.8	5.85	-2.1	-5.03	44.2	5.0	7.939	-2.9	-6.93	75.1	10.3	16.2	-6.0	-14.38
50	28.0	3.2	5.85	-2.6	-7.94	37.7	4.3	7.939	-3.6	-10.91	64.0	8.7	16.2	-7.5	-22.56
60	24.6	2.8	5.85	-3.0	-10.96	32.9	3.8	7.939	-4.2	-15.02	55.9	7.6	16.2	-8.6	-31.03
70	21.9	2.5	5.85	-3.3	-14.06	29.4	3.4	7.939	-4.6	-19.24	49.8	6.8	16.2	-9.5	-39.70
80 90	19.8 18.1	2.3	5.85 5.85	-3.6 -3.8	-17.21 -20.40	26.6 24.3	3.0 2.8	7.939 7.939	-4.9 -5.2	-23.53 -27.88	45.0 41.1	6.1 5.6	16.2 16.2	-10.1 -10.6	-48.52 -57.44
100	16.7	1.9	5.85	-3.9	-23.63	24.5	2.6	7.939	-5.2	-32.27	37.9	5.2	16.2	-10.0	-66.45
100	15.6	1.8	5.85	-4.1	-26.88	20.8	2.4	7.939	-5.6	-36.69	35.2	4.8	16.2	-11.4	-75.53
120	14.6	1.7	5.85	-4.2	-30.15	19.5	2.2	7.939	-5.7	-41.14	32.9	4.5	16.2	-11.8	-84.66
130	13.7	1.6	5.85	-4.3	-33.44	18.3	2.1	7.939	-5.8	-45.61	30.9	4.2	16.2	-12.0	-93.84
140	12.9	1.5	5.85	-4.4	-36.75	17.3	2.0	7.939	-6.0	-50.11	29.2	4.0	16.2	-12.3	-103.06
150	12.3	1.4	5.85	-4.5	-40.06	16.4	1.9	7.939	-6.1	-54.62	27.6	3.8	16.2	-12.5	-112.32
160	11.7	1.3	5.85	-4.5	-43.39	15.6	1.8	7.939	-6.2	-59.14	26.2	3.6	16.2	-12.7	-121.60
170	11.1	1.3	5.85	-4.6	-46.73	14.8	1.7	7.939	-6.2	-63.68	25.0	3.4	16.2	-12.8	-130.91
180	10.6	1.2	5.85	-4.6	-50.08	14.2	1.6	7.939	-6.3	-68.23	23.9	3.3	16.2	-13.0	-140.25
190	10.2	1.2	5.85	-4.7	-53.44	13.6	1.6	7.939	-6.4	-72.80	22.9	3.1	16.2	-13.1	-149.60
200	9.8	1.1	5.85	-4.7	-56.80	13.0	1.5	7.939	-6.4	-77.37	22.0	3.0	16.2	-13.2	-158.98
Max =					1.76					2.38					4.87
Notes															
	ow is equal t	o the product of 2.78	8 x C x I x A												
	Intensity, I =														
		(Release Rate, Peak I	Flow)												
4) Storage	e Rate = Peak	Flow - Release Rate	2												
5) Storage	= Duration	x Storage Rate													
-	-	Max Storage Over I	Duration												
7) Parame	ters a,b,c are	e for City of Ottawa													

TABLE C-15Storage Volumes for 2-year, 5-Year and 100-Year StormsArea: A3

R IDF P ainfall	0.64 0.79 10.00	(2-yr) (5-yr) (100-yr, Max (mins) (hectares) 4.0 2	(L/sec) (years)			elease Rate =	5.5	(1 (222)						
C _{AVG} = C _{AVG} = e Area = IDF P ainfall ensity, I Pea	0.64 0.79 10.00 0.0447 Release Rate = Return Period = arameters, A =	(5-yr) (100-yr, Max (mins) (hectares) 4.0 2	(L/sec) (years)			elease Rate =	5 5	(1 (222)						
C _{AVG} = tterval = e Area = IDF P ainfall ensity, I Pea	0.79 10.00 0.0447 Release Rate = Return Period = arameters, A =	(100-yr, Max (mins) (hectares) 4.0 2	(L/sec) (years)			elease Rate =	5 5	(1 (200)						
e Area = e Area = IDF P sinfall ensity, I Pea	10.00 0.0447 Release Rate = Return Period = arameters, A =	(mins) (hectares) 4.0 2	(L/sec) (years)			elease Rate =	55	(1 (222)						
e Area = IDF P ainfall ensity, I Pea	0.0447 Release Rate = Return Period = arameters, A =	(hectares) 4.0 2	(years)			elease Rate =	5.5	(1. (000)						
R IDF P ainfall ensity, I Pea	Release Rate = Return Period = arameters, A =	4.0 2	(years)			elease Rate =	5.5	(1.(20.0)						
R IDF P ainfall ensity, I Pea	Return Period = arameters, A =	2	(years)			elease Rate =	55	(1 /000)						
IDF P ainfall ensity, I Pea	arameters, A =				D -		0.0	(L/sec)		R	elease Rate =	11.75	(L/sec)	
ainfall ensity, I Pea		732.951	, B =		ке	turn Period =	5	(years)		Re	turn Period =	100	(years)	
ensity, I Pea	$(I = A/(T_c+C))$			0.810		rameters, A =	998.071		0.814	IDF Par	ameters, A =			0.820
ensity, I Pea			, C =	6.199		$(I = A/(T_c+C)$	-	, C =	6.053		$(I = A/(T_c+C)$, C =	6.014
				Charles	Rainfall			<i>c</i> .	Chavaaa	Rainfall			<i>c</i> .	Characa
m/hr)	k Flow (L/sec)	Release	Storage Rate (L/sec)	Storage	Intensity, I	Peak Flow	Release Rate (L/sec)	Storage	Storage	Intensity, I	Peak Flow	Release	Storage	Storage
,,		Nale (L/Sec)	Rate (L/Sec)	(m³)	(mm/hr)	(L/sec)	Rale (L/Sec)	Rate (L/sec)	(m³)	(mm/hr)	(L/sec)	Rale (L/Sec)	Rate (L/sec)	(m³)
.67.2	13.2	4.04	9.2	0.00	230.5	18.2	5.484	12.7	0.00	398.6	39.3	11.7	27.6	0.00
76.8	6.1	4.04	2.0	1.21	104.2	8.2	5.484	2.7	1.65	178.6	17.6	11.7	5.9	3.52
52.0	4.1	4.04	0.1	0.08	70.3	5.5	5.484	0.1	0.07	120.0	11.8	11.7	0.1	0.11
40.0	3.2	4.04	-0.9	-1.59	53.9	4.3	5.484	-1.2	-2.21	91.9	9.1	11.7	-2.7	-4.83
32.9														-10.40
28.0														-16.31
24.6														-22.43
														-28.70
19.8 18.1														-35.08 -41.53
16.7														-41.55
15.6		-				-								-54.61
14.6														-61.21
13.7		4.04	-3.0	-23.10		1.4	5.484	-4.0	-31.51	30.9		11.7	-8.7	-67.85
12.9	1.0	4.04	-3.0	-25.39	17.3	1.4	5.484	-4.1	-34.61	29.2	2.9	11.7	-8.9	-74.52
12.3	1.0	4.04	-3.1	-27.68	16.4	1.3	5.484	-4.2	-37.73	27.6	2.7	11.7	-9.0	-81.21
11.7	0.9	4.04	-3.1	-29.98	15.6	1.2	5.484	-4.3	-40.86	26.2	2.6	11.7	-9.2	-87.92
11.1	0.9	4.04	-3.2	-32.29	14.8	1.2	5.484	-4.3	-43.99	25.0	2.5	11.7	-9.3	-94.65
10.6	0.8	4.04	-3.2	-34.60	14.2	1.1	5.484	-4.4	-47.14	23.9	2.4	11.7	-9.4	-101.40
10.2	0.8	4.04	-3.2	-36.92	13.6	1.1	5.484	-4.4	-50.29	22.9	2.3	11.7	-9.5	-108.17
9.8	0.8	4.04	-3.3		13.0	1.0	5.484	-4.5		22.0	2.2	11.7	-9.6	-114.94
				1.21					1.65					3.52
40 32 28 24 24 19 16 12 12 11 11 10 10	0.0	0.0 3.2 2.9 2.6 3.0 2.2 4.6 1.9 9 1.7 8 1.6 3.1 1.4 5.7 1.3 3.6 1.2 4.6 1.1 3.7 1.1 9 1.0 3.3 1.0 1.7 0.9 1.1 0.9 0.6 0.8 0.2 0.8	0.0 3.2 4.04 2.9 2.6 4.04 3.0 2.2 4.04 3.0 2.2 4.04 3.6 1.9 4.04 4.6 1.9 4.04 4.9 1.7 4.04 4.8 1.6 4.04 3.1 1.4 4.04 3.1 1.4 4.04 3.6 1.2 4.04 4.6 1.1 4.04 4.6 1.1 4.04 3.7 1.1 4.04 2.9 1.0 4.04 3.3 1.0 4.04 4.7 0.9 4.04 1.1 0.9 4.04 0.6 0.8 4.04 0.2 0.8 4.04	0.0 3.2 4.04 -0.9 2.9 2.6 4.04 -1.4 3.0 2.2 4.04 -1.8 4.6 1.9 4.04 -2.1 1.9 1.7 4.04 -2.3 0.8 1.6 4.04 -2.5 3.1 1.4 4.04 -2.6 5.7 1.3 4.04 -2.6 6.7 1.3 4.04 -2.7 6.6 1.1 4.04 -2.7 7.6 1.2 4.04 -2.8 7.7 1.1 4.04 -3.0 2.9 1.0 4.04 -3.0 2.3 1.0 4.04 -3.1 7.7 0.9 4.04 -3.2 7.6 0.8 4.04 -3.2 7.7 0.9 4.04 -3.2 7.7 0.9 4.04 -3.2 <	0.0 3.2 4.04 -0.9 -1.59 2.9 2.6 4.04 -1.4 -3.47 3.0 2.2 4.04 -1.4 -3.47 3.0 2.2 4.04 -1.8 -5.49 4.6 1.9 4.04 -2.1 -7.57 9 1.7 4.04 -2.3 -9.71 0.8 1.6 4.04 -2.5 -11.89 3.1 1.4 4.04 -2.6 -14.10 6.7 1.3 4.04 -2.7 -16.32 6.6 1.2 4.04 -2.8 -18.57 1.6 1.1 4.04 -2.9 -20.83 3.7 1.1 4.04 -3.0 -23.10 2.9 1.0 4.04 -3.1 -27.68 3.7 0.9 4.04 -3.2 -32.29 3.3 1.0 4.04 -3.2	0.0 3.2 4.04 -0.9 -1.59 53.9 2.9 2.6 4.04 -1.4 -3.47 44.2 3.0 2.2 4.04 -1.4 -3.47 44.2 3.0 2.2 4.04 -1.8 -5.49 37.7 4.6 1.9 4.04 -2.1 -7.57 32.9 9 1.7 4.04 -2.3 -9.71 29.4 0.8 1.6 4.04 -2.5 -11.89 26.6 3.1 1.4 4.04 -2.6 -14.10 24.3 0.7 1.3 4.04 -2.7 -16.32 22.4 0.6 1.2 4.04 -2.9 -20.83 19.5 0.7 1.1 4.04 -3.0 -23.10 18.3 0.9 1.00 4.04 -3.1 -29.83 15.6 0.7 0.9 4.04	0.0 3.2 4.04 -0.9 -1.59 53.9 4.3 2.9 2.6 4.04 -1.4 -3.47 44.2 3.5 3.0 2.2 4.04 -1.8 -5.49 37.7 3.0 4.6 1.9 4.04 -2.1 -7.57 32.9 2.6 9 1.7 4.04 -2.3 -9.71 29.4 2.3 0.8 1.6 4.04 -2.5 -11.89 26.6 2.1 3.1 1.4 4.04 -2.6 -14.10 24.3 1.9 6.6 1.2 4.04 -2.7 -16.32 22.4 1.8 6.6 1.2 4.04 -2.9 -20.83 19.5 1.5 6.6 1.1 4.04 -2.9 -20.83 19.5 1.5 6.7 1.1 4.04 -3.0 -23.10 18.3 1.4 7.9 1.0 4.04 -3.0 -23.10 18.3 1.4 7.9 1.0 4.04 -3.1 -29.98 15.6 1.2 7.7 0.9 4.04 -3.1 -29.98 15.6 1.2 7.7 0.8 4.04 -3.2 -32.29 14.8 1.2 7.7 0.8 4.04 -3.2 -34.60 14.2 1.1 7.7 0.8 4.04 -3.2 -36.92 13.6 1.1	0.0 3.2 4.04 -0.9 -1.59 53.9 4.3 5.484 2.9 2.6 4.04 -1.4 -3.47 44.2 3.5 5.484 3.0 2.2 4.04 -1.8 -5.49 37.7 3.0 5.484 4.6 1.9 4.04 -2.1 -7.57 32.9 2.6 5.484 1.9 4.04 -2.1 -7.57 32.9 2.6 5.484 1.9 1.7 4.04 -2.3 -9.71 29.4 2.3 5.484 1.8 1.6 4.04 -2.5 -11.89 26.6 2.1 5.484 3.1 1.4 4.04 -2.6 -14.10 24.3 1.9 5.484 3.7 1.3 4.04 -2.6 -14.10 24.3 1.9 5.484 3.7 1.3 4.04 -2.6 -14.10 24.3 1.9 5.484 3.7 1.3 4.04 -2.6 -14.10 24.3 1.9 5.484 3.7 1.3 4.04 -2.7 -16.32 22.4 1.8 5.484 3.6 1.2 4.04 -2.9 -20.83 19.5 1.5 5.484 3.7 1.1 4.04 -3.0 -25.39 17.3 1.4 5.484 3.9 1.00 4.04 -3.1 -27.68 16.4 1.3 5.484 3.3 1.00 4.04 -3.1 -29.98 15.6 1.2 5.484 <	0.0 3.2 4.04 -0.9 -1.59 53.9 4.3 5.484 -1.2 2.9 2.6 4.04 -1.4 -3.47 44.2 3.5 5.484 -2.0 3.0 2.2 4.04 -1.8 -5.49 37.7 3.0 5.484 -2.5 4.6 1.9 4.04 -2.1 -7.57 32.9 2.6 5.484 -2.9 1.9 4.04 -2.1 -7.57 32.9 2.6 5.484 -2.9 1.9 1.7 4.04 -2.3 -9.71 29.4 2.3 5.484 -3.2 0.8 1.6 4.04 -2.5 -11.89 26.6 2.1 5.484 -3.4 0.8 1.6 4.04 -2.5 -11.89 26.6 2.1 5.484 -3.4 0.8 1.6 4.04 -2.5 -11.89 26.6 2.1 5.484 -3.4 0.8 1.4 4.04 -2.5 -11.89 26.6 2.1 5.484 -3.4 0.8 1.4 4.04 -2.5 -11.89 26.6 2.1 5.484 -3.6 0.7 1.3 4.04 -2.6 -14.10 24.3 1.9 5.484 -3.6 0.7 1.3 4.04 -2.7 -16.32 22.4 1.8 5.484 -3.6 0.7 1.3 4.04 -2.9 -20.83 19.5 1.5 5.484 -3.8 0.7 1.1 4.04	0.0 3.2 4.04 -0.9 -1.59 53.9 4.3 5.484 -1.2 -2.21 2.9 2.6 4.04 -1.4 -3.47 44.2 3.5 5.484 -2.0 -4.79 3.0 2.2 4.04 -1.8 -5.49 37.7 3.0 5.484 -2.5 -7.53 4.6 1.9 4.04 -2.1 -7.57 32.9 2.6 5.484 -2.9 -10.38 1.9 1.7 4.04 -2.3 -9.71 29.4 2.3 5.484 -3.2 -13.29 0.8 1.6 4.04 -2.5 -11.89 26.6 2.1 5.484 -3.4 -16.26 3.1 1.4 4.04 -2.6 -14.10 24.3 1.9 5.484 -3.6 -19.26 0.8 1.6 4.04 -2.6 -14.10 24.3 1.9 5.484 -3.6 -19.26 0.7 1.3 4.04 -2.6 -14.10 24.3 1.9 5.484 -3.6 -19.26 0.7 1.3 4.04 -2.6 -14.10 24.3 1.9 5.484 -3.6 -19.26 0.7 1.3 4.04 -2.7 -16.32 22.4 1.8 5.484 -3.6 -19.26 0.7 1.3 4.04 -2.7 -16.32 22.4 1.8 5.484 -3.6 -22.29 0.6 1.2 4.04 -2.8 -18.57 20.8 1.6	0.0 3.2 4.04 -0.9 -1.59 53.9 4.3 5.484 -1.2 -2.21 91.9 2.9 2.6 4.04 -1.4 -3.47 44.2 3.5 5.484 -2.0 -4.79 75.1 3.0 2.2 4.04 -1.8 -5.49 37.7 3.0 5.484 -2.0 -4.79 75.1 3.0 2.2 4.04 -1.8 -5.49 37.7 3.0 5.484 -2.0 -1.38 64.0 4.6 1.9 4.04 -2.1 -7.57 32.9 2.6 5.484 -3.2 -13.29 49.8 9.9 1.7 4.04 -2.5 -11.89 26.6 2.1 5.484 -3.4 -16.26 45.0 3.1 1.4 4.04 -2.6 -14.10 24.3 1.9 5.484 -3.6 -19.26 41.1 5.7 1.3 4.04 -2.7 -16.32 22.4 1.8 5.484 -3.6	0.0 3.2 4.04 -0.9 -1.59 53.9 4.3 5.484 -1.2 -2.21 91.9 9.1 2.9 2.6 4.04 -1.4 -3.47 44.2 3.5 5.484 -2.0 -4.79 75.1 7.4 3.0 2.2 4.04 -1.8 -5.49 37.7 3.0 5.484 -2.0 -4.79 75.1 7.4 3.0 2.2 4.04 -1.8 -5.49 37.7 3.0 5.484 -2.0 -4.79 75.1 64.0 6.3 4.6 1.9 4.04 -2.1 -7.57 32.9 2.6 5.484 -3.2 -13.29 49.8 4.9 9.8 1.6 4.04 -2.5 -11.89 26.6 2.1 5.484 -3.4 -16.26 45.0 4.4 3.1 1.4 4.04 -2.6 -14.10 24.3 1.9 5.484 -3.6 -19.26 41.1 4.1 4.1 4.1 <td< td=""><td>0.0 3.2 4.04 -0.9 -1.59 53.9 4.3 5.484 -1.2 -2.21 91.9 9.1 11.7 2.9 2.6 4.04 -1.4 -3.47 44.2 3.5 5.484 -2.0 -4.79 75.1 7.4 11.7 3.0 2.22 4.04 -1.8 -5.49 37.7 3.0 5.484 -2.5 -7.53 64.0 6.3 11.7 4.6 1.9 4.04 -2.1 -7.57 32.9 2.6 5.484 -2.9 -10.38 55.9 5.5 11.7 9.8 1.6 4.04 -2.5 -11.89 26.6 2.1 5.484 -3.2 -13.29 49.8 4.9 11.7 8.1 1.6 4.04 -2.6 -14.10 24.3 1.9 5.484 -3.4 -16.26 41.1 4.1 11.7 8.3 1.4 4.04 -2.6 -14.10 24.3 1.9 5.484 -3.7</td><td>10.0 3.2 4.04 -0.9 -1.59 53.9 4.3 5.484 -1.2 -2.21 91.9 9.1 11.7 -2.7 2.9 2.6 4.04 -1.4 -3.47 44.2 3.5 5.484 -2.0 -4.79 75.1 7.4 11.7 -4.3 3.0 2.2 4.04 -1.8 -5.49 37.7 3.0 5.484 -2.9 -10.38 55.9 5.55 11.7 -6.2 9.9 1.7 4.04 -2.1 -7.57 32.9 2.6 5.484 -2.9 -10.38 55.9 5.55 11.7 -6.2 9.8 1.6 4.04 -2.6 -11.89 26.6 2.1 5.484 -3.4 -16.26 44.0 11.7 -7.7 8.1 1.4 4.04 -2.6 -14.10 24.3 1.8 5.484 -3.7 -22.29 37.9 3.7 11.7 -6.80 5.6 1.12 4.04 -2.8 -18.57 20.8 1.6 5.484 -3.6 -19.26 411.1 4.1</td></td<>	0.0 3.2 4.04 -0.9 -1.59 53.9 4.3 5.484 -1.2 -2.21 91.9 9.1 11.7 2.9 2.6 4.04 -1.4 -3.47 44.2 3.5 5.484 -2.0 -4.79 75.1 7.4 11.7 3.0 2.22 4.04 -1.8 -5.49 37.7 3.0 5.484 -2.5 -7.53 64.0 6.3 11.7 4.6 1.9 4.04 -2.1 -7.57 32.9 2.6 5.484 -2.9 -10.38 55.9 5.5 11.7 9.8 1.6 4.04 -2.5 -11.89 26.6 2.1 5.484 -3.2 -13.29 49.8 4.9 11.7 8.1 1.6 4.04 -2.6 -14.10 24.3 1.9 5.484 -3.4 -16.26 41.1 4.1 11.7 8.3 1.4 4.04 -2.6 -14.10 24.3 1.9 5.484 -3.7	10.0 3.2 4.04 -0.9 -1.59 53.9 4.3 5.484 -1.2 -2.21 91.9 9.1 11.7 -2.7 2.9 2.6 4.04 -1.4 -3.47 44.2 3.5 5.484 -2.0 -4.79 75.1 7.4 11.7 -4.3 3.0 2.2 4.04 -1.8 -5.49 37.7 3.0 5.484 -2.9 -10.38 55.9 5.55 11.7 -6.2 9.9 1.7 4.04 -2.1 -7.57 32.9 2.6 5.484 -2.9 -10.38 55.9 5.55 11.7 -6.2 9.8 1.6 4.04 -2.6 -11.89 26.6 2.1 5.484 -3.4 -16.26 44.0 11.7 -7.7 8.1 1.4 4.04 -2.6 -14.10 24.3 1.8 5.484 -3.7 -22.29 37.9 3.7 11.7 -6.80 5.6 1.12 4.04 -2.8 -18.57 20.8 1.6 5.484 -3.6 -19.26 411.1 4.1

TABLE C-16Storage Volumes for 2-year, 5-Year and 100-Year StormsArea: A4

		istorage volu						Aica.							
	Area No:	A5	Controlle	d at cisterr	1 I										
	C _{AVG} =	0.54	(2-yr)												
	C _{AVG} =	0.54	(5-yr)												
	C _{AVG} =		(100-yr, Max	(1.0)											
	me Interval =		(mins)												
Dra	iinage Area =	0.0803	(hectares)												
		Release Rate =	6.2	(L/sec)		R	elease Rate =	8.4	(L/sec)		R	elease Rate =	17.94	(L/sec)	
		Return Period =		(years)			turn Period =		(years)			turn Period =		(years)	
		IDF Parameters, A =	732.951		0.810	IDF Pa	rameters, A =	998.071		0.814	IDF Par	rameters, A =	1735.688		0.820
Duration (min)		$(I = A/(T_c+C)$, C =	6.199		$(I = A/(T_c+C)$	-	, C =	6.053		$(I = A/(T_c+C)$, C =	6.014
()	Rainfall		Release	Storage	Storage	Rainfall	Peak Flow	Release	Storage	Storage	Rainfall	Peak Flow	Release	Storage	Storage
	Intensity, I	Peak Flow (L/sec)		Rate (L/sec)	(m ³)	Intensity, I	(L/sec)		Rate (L/sec)	(m ³)	Intensity, I	(L/sec)		Rate (L/sec)	(m ³)
	(mm/hr)				. ,	(mm/hr)				, ,	(mm/hr)				, ,
0	167.2	20.2	6.17	14.0	0.00	230.5	27.8	8.373	19.4	0.00	398.6	60.1	17.9	42.1	0.00
10	76.8	9.3	6.17	3.1	1.85	104.2	12.6	8.373	4.2	2.51	178.6	26.9	17.9	9.0	5.38
20	52.0	6.3	6.17	0.1	0.12	70.3	8.5	8.373	0.1	0.11	120.0	18.1	17.9	0.1	0.16
30 40	40.0 32.9	4.8 4.0	6.17 6.17	-1.3 -2.2	-2.42 -5.31	53.9 44.2	6.5 5.3	8.373 8.373	-1.9 -3.0	-3.37 -7.31	91.9 75.1	13.8 11.3	17.9 17.9	-4.1 -6.6	-7.37 -15.87
50	28.0	3.4	6.17	-2.2	-5.31	37.7	4.5	8.373	-3.8	-11.50	64.0	9.6	17.9	-8.3	-13.87
60	24.6	3.0	6.17	-3.2	-11.56	32.9	4.0	8.373	-4.4	-15.85	55.9	8.4	17.9	-9.5	-34.25
70	21.9	2.6	6.17	-3.5	-14.83	29.4	3.5	8.373	-4.8	-20.30	49.8	7.5	17.9	-10.4	-43.82
80	19.8	2.4	6.17	-3.8	-18.15	26.6	3.2	8.373	-5.2	-24.82	45.0	6.8	17.9	-11.2	-53.56
90	18.1	2.2	6.17	-4.0	-21.52	24.3	2.9	8.373	-5.4	-29.40	41.1	6.2	17.9	-11.7	-63.41
100	16.7	2.0	6.17	-4.2	-24.92	22.4	2.7	8.373	-5.7	-34.03	37.9	5.7	17.9	-12.2	-73.35
110	15.6	1.9	6.17	-4.3	-28.35	20.8	2.5	8.373	-5.9	-38.70	35.2	5.3	17.9	-12.6	-83.37
120	14.6	1.8	6.17	-4.4	-31.80	19.5	2.3	8.373	-6.0	-43.39	32.9	5.0	17.9	-13.0	-93.46
130	13.7	1.7	6.17	-4.5	-35.27	18.3	2.2 2.1	8.373	-6.2	-48.11	30.9	4.7	17.9	-13.3	-103.59
140 150	12.9 12.3	1.6 1.5	6.17 6.17	-4.6 -4.7	-38.76 -42.26	17.3 16.4	2.1	8.373 8.373	-6.3 -6.4	-52.85 -57.61	29.2 27.6	4.4	17.9 17.9	-13.5 -13.8	-113.77 -123.98
150	12.3	1.4	6.17	-4.7	-42.20	15.6	1.9	8.373	-6.5	-62.38	26.2	4.2	17.9	-13.8	-123.38
100	11.1	1.3	6.17	-4.8	-49.29	13.0	1.5	8.373	-6.6	-67.17	25.0	3.8	17.9	-14.2	-144.51
180	10.6	1.3	6.17	-4.9	-52.82	14.2	1.7	8.373	-6.7	-71.97	23.9	3.6	17.9	-14.3	-154.82
190	10.2	1.2	6.17	-4.9	-56.37	13.6	1.6	8.373	-6.7	-76.78	22.9	3.5	17.9	-14.5	-165.14
200	9.8	1.2	6.17	-5.0	-59.91	13.0	1.6	8.373	-6.8	-81.60	22.0	3.3	17.9	-14.6	-175.49
Max =					1.85					2.51					5.38
Notos															
Notes 1) Peak fl	ow is equal t	o the product of 2.7	8 x C x I x A												
	l Intensity, I =		U.C.A.I.A												
		(Release Rate, Peak	Flow)												
		k Flow - Release Rate													
5) Storage	e = Duration	x Storage Rate													
	-	= Max Storage Over	Duration												
7) Parame	eters a,b,c are	e for City of Ottawa													

TABLE C-17Storage Volumes for 2-year, 5-Year and 100-Year StormsArea: A5

Area No:A6Controlled at cistern $C_{AVG} =$ 0.20(2-yr) $C_{AVG} =$ 0.20(5-yr) $C_{AVG} =$ 0.25(100-yr, Max 1.0)Time Interval =10.00(mins)Drainage Area =0.1130(hectares)	(sec)
$C_{AVG} = \frac{0.20}{(5-\gamma r)}$ $C_{AVG} = \frac{0.25}{(100-\gamma r, Max 1.0)}$ Time Interval = 10.00 (mins)	
$C_{AVG} = \frac{0.25}{(100-yr, Max 1.0)}$ Time Interval = 10.00 (mins)	
Time Interval = 10.00 (mins)	
Drainage Area =(hectares)	
Release Rate = 3.2 (L/sec) Release Rate = 4.4 (L/sec) Release Rate = 9.35 (L/sec)	
Return Period = 2 (years) Return Period = 5 (years) Return Period = 100 (years)	ears)
IDF Parameters, A = <u>732.951</u> , B = <u>0.810</u> IDF Parameters, A = <u>998.071</u> <u>0.814</u> IDF Parameters, A = <u>1735.688</u>	0.820
Duration $(I = A/(T_c+C)$, $C = 6.199$ $(I = A/(T_c+C)$, $C = 6.053$ $(I = A/(T_c+C)$, C = <u>6.014</u>
(min) Rainfall Rainfall Rainfall	
Intensity, I Intensity, I Inten	Storage Storage ite (L/sec) (m ³)
(mm/hr) (mm/hr) (mm/hr) (mm/hr) (mm/hr) (mm/hr)	
	22.0 0.00
10 76.8 4.8 3.22 1.6 0.97 104.2 6.5 4.364 2.2 1.31 178.6 14.0 9.3	4.7 <u>2.80</u>
20 52.0 3.3 3.22 0.1 0.06 70.3 4.4 4.364 0.0 0.06 120.0 9.4 9.3	0.1 0.09
30 40.0 2.5 3.22 -0.7 -1.26 53.9 3.4 4.364 -1.0 -1.76 91.9 7.2 9.3	-2.1 -3.84
40 32.9 2.1 3.22 -1.2 -2.77 44.2 2.8 4.364 -1.6 -3.81 75.1 5.9 9.3 50 28.0 1.8 3.22 -1.5 -4.37 37.7 2.4 4.364 -2.0 -6.00 64.0 5.0 9.3	-3.4 -8.27 -4.3 -12.98
50 28.0 1.8 3.22 -1.5 -4.37 37.7 2.4 4.364 -2.0 -6.00 64.0 5.0 9.3 60 24.6 1.5 3.22 -1.7 -6.03 32.9 2.1 4.364 -2.3 -8.26 55.9 4.4 9.3	-4.3 -12.98
00 24.0 1.5 5.22 -1.7 -0.03 52.9 2.1 4.304 -2.3 -6.20 55.5 4.4 9.3 70 21.9 1.4 3.22 -1.8 -7.73 29.4 1.8 4.364 -2.5 -10.58 49.8 3.9 9.3	-5.4 -22.84
80 19.8 1.2 3.22 -2.0 -9.46 26.6 1.7 4.364 -2.7 -1.29.4 45.0 3.5 9.3	-5.8 -27.91
90 18.1 1.1 3.22 -2.1 -11.22 24.3 1.5 4.364 -2.8 -15.33 41.1 3.2 9.3	-6.1 -33.05
100 16.7 1.1 3.22 -2.2 -12.99 22.4 1.4 4.364 -3.0 -17.74 37.9 3.0 9.3	-6.4 -38.23
110 15.6 1.0 3.22 -2.2 -14.78 20.8 1.3 4.364 -3.1 -20.17 35.2 2.8 9.3	-6.6 -43.46
120 14.6 0.9 3.22 -2.3 -16.58 19.5 1.2 4.364 -3.1 -22.62 32.9 2.6 9.3	-6.8 -48.71
130 13.7 0.9 3.22 -2.4 -18.38 18.3 1.1 4.364 -3.2 -25.08 30.9 2.4 9.3	-6.9 -53.99
140 12.9 0.8 3.22 -2.4 -20.20 17.3 1.1 4.364 -3.3 -27.55 29.2 2.3 9.3	-7.1 -59.30
	-7.2 -64.62 -7.3 -69.97
	-7.3 -69.97
	-7.5 -80.69
	-7.6 -86.08
200 9.8 0.6 3.22 -2.6 -31.23 13.0 0.8 4.364 -3.5 -42.53 22.0 1.7 9.3	-7.6 -91.47
Max = 0.97 1.31	2.80
Notes	
1) Peak flow is equal to the product of 2.78 x C x I x A	
2) Rainfall Intensity, I = A/(Tc+C) ^B 3) Release Rate = Min (Release Rate, Peak Flow)	
4) Storage Rate = Peak Flow - Release Rate	
5) Storage = Duration x Storage Rate	
6) Maximium Storage = Max Storage Over Duration	
7) Parameters a,b,c are for City of Ottawa	

TABLE C-18Storage Volumes for 2-year, 5-Year and 100-Year StormsArea: A6

								Alea.	~						
	Area No:	A7	-	d at cisteri	า										
	C _{AVG} =		(2-yr)												
	C _{AVG} =	0.57	(5-yr)												
	C _{AVG} =	0.71	(100-yr, Max	x 1.0)											
Ti	me Interval =	10.00	(mins)												
Dra	ainage Area =	0.0102	(hectares)												
		Release Rate =	0.8	(L/sec)		R	elease Rate =	= 1.1	(L/sec)		R	elease Rate =	2.41	(L/sec)	
		Return Period =		(years)			turn Period =		(years)			turn Period =		(years)	
		IDF Parameters, A =		, B =	0.810		rameters, A =			0.814		rameters, A =			0.820
Duration		$(I = A/(T_c+C))$, C =	6.199		$(I = A/(T_c+C))$)	, C =	6.053		$(I = A/(T_c+C))$, C =	6.014
(min)	D : ()														
	Rainfall Intensity, I	Peak Flow (L/sec)	Release	Storage	Storage	Rainfall Intensity, I	Peak Flow	Release	Storage	Storage	Rainfall Intensity, I	Peak Flow	Release	Storage	Storage
	(mm/hr)	Peak Flow (L/Sec)	Rate (L/sec)	Rate (L/sec)	(m ³)	(mm/hr)	(L/sec)	Rate (L/sec)	Rate (L/sec)	(m ³)	(mm/hr)	(L/sec)	Rate (L/sec)	Rate (L/sec)	(m ³)
	(1111)/11)					(11111/111)					(((((((((((((((((((((((((((((((((((((((
0	167.2	2.7	0.83	1.9	0.00	230.5	3.7	1.124	2.6	0.00	398.6	8.1	2.4	5.7	0.00
10	76.8	1.2	0.83	0.4	0.25	104.2	1.7	1.124	0.6	0.34	178.6	3.6	2.4	1.2	0.72
20	52.0	0.8	0.83	0.0	0.02	70.3	1.1	1.124	0.0	0.02	120.0	2.4	2.4	0.0	0.02
30	40.0	0.6	0.83	-0.2	-0.33	53.9	0.9	1.124	-0.3	-0.45	91.9	1.9	2.4	-0.5	-0.99
40	32.9	0.5	0.83	-0.3	-0.71	44.2	0.7	1.124	-0.4	-0.98	75.1	1.5	2.4	-0.9	-2.13
50	28.0	0.5	0.83	-0.4	-1.12	37.7	0.6	1.124	-0.5	-1.54	64.0	1.3	2.4	-1.1	-3.34
60 70	24.6 21.9	0.4	0.83	-0.4 -0.5	-1.55 -1.99	32.9 29.4	0.5	1.124 1.124	-0.6 -0.6	-2.13 -2.72	55.9 49.8	1.1 1.0	2.4 2.4	-1.3 -1.4	-4.60 -5.88
80	19.8	0.4	0.83	-0.5	-1.99	29.4	0.5	1.124	-0.6	-2.72	49.8	0.9	2.4	-1.4	-5.88
90	19.8	0.3	0.83	-0.5	-2.44	20.0	0.4	1.124	-0.7	-3.95	43.0	0.9	2.4	-1.5	-7.19
100	16.7	0.3	0.83	-0.6	-3.35	24.5	0.4	1.124	-0.7	-4.57	37.9	0.8	2.4	-1.6	-9.85
100	15.6	0.3	0.83	-0.6	-3.81	20.8	0.3	1.124	-0.8	-5.19	35.2	0.7	2.4	-1.7	-11.19
120	14.6	0.2	0.83	-0.6	-4.27	19.5	0.3	1.124	-0.8	-5.82	32.9	0.7	2.4	-1.7	-12.54
130	13.7	0.2	0.83	-0.6	-4.73	18.3	0.3	1.124	-0.8	-6.46	30.9	0.6	2.4	-1.8	-13.90
140	12.9	0.2	0.83	-0.6	-5.20	17.3	0.3	1.124	-0.8	-7.09	29.2	0.6	2.4	-1.8	-15.27
150	12.3	0.2	0.83	-0.6	-5.67	16.4	0.3	1.124	-0.9	-7.73	27.6	0.6	2.4	-1.8	-16.64
160	11.7	0.2	0.83	-0.6	-6.14	15.6	0.3	1.124	-0.9	-8.37	26.2	0.5	2.4	-1.9	-18.02
170	11.1	0.2	0.83	-0.6	-6.62	14.8	0.2	1.124	-0.9	-9.02	25.0	0.5	2.4	-1.9	-19.40
180	10.6	0.2	0.83	-0.7	-7.09	14.2	0.2	1.124	-0.9	-9.66	23.9	0.5	2.4	-1.9	-20.78
190	10.2	0.2	0.83	-0.7	-7.57	13.6	0.2	1.124	-0.9	-10.31	22.9	0.5	2.4	-1.9	-22.17
200	9.8	0.2	0.83	-0.7	-8.04	13.0	0.2	1.124	-0.9	-10.95	22.0	0.4	2.4	-2.0	-23.56
Max =					0.25					0.34					0.72
2) Rainfal 3) Release 4) Storag 5) Storage 6) Maxim	l Intensity, I = e Rate = Min e Rate = Peal e = Duration ium Storage =	o the product of 2.7 A/(Tc+C) ⁸ (Release Rate, Peak & Flow - Release Rate x Storage Rate = Max Storage Over = for City of Ottawa	Flow)												

TABLE C-19 Storage Volum: Storage Volumes for 2-year, 5-Year and 100-Year Storms Area: A7

								Alea.							
	Area No:	<u>A8</u>	-	d at cisteri	า										
	C _{AVG} =		(2-yr)												
	C _{AVG} =	0.20	(5-yr)												
	C _{AVG} =	0.25	(100-yr, Max	ĸ 1.0)											
	me Interval =	10.00	(mins)												
Dra	inage Area =	0.1199	(hectares)												
		Release Rate =	3.4	(L/sec)		R	elease Rate =	4.6	(L/sec)		R	elease Rate =	9.92	(L/sec)	
		Return Period =	2	(years)		Re	turn Period =	5	(years)		Re	turn Period =	100	(years)	
		IDF Parameters, A =	732.951	, B =		IDF Pa	rameters, A =			0.814	IDF Pa	rameters, A =		_	0.820
Duration		$(I = A/(T_c+C))$, C =	6.199		$(I = A/(T_c+C))$	-	, C =	6.053		$(I = A/(T_c+C))$	-	, C =	6.014
(min)	Rainfall Intensity, I (mm/hr)	Peak Flow (L/sec)	Release Rate (L/sec)	Storage Rate (L/sec)	Storage (m ³)	Rainfall Intensity, I (mm/hr)	Peak Flow (L/sec)	Release Rate (L/sec)	Storage Rate (L/sec)	Storage (m ³)	Rainfall Intensity, I (mm/hr)	Peak Flow (L/sec)	Release Rate (L/sec)	Storage Rate (L/sec)	Storage (m ³)
0	167.2	11.1	3.41	7.7	0.00	230.5	15.4	4.631	10.7	0.00	398.6	33.2	9.9	23.3	0.00
10	76.8	5.1	3.41	1.7	1.02	104.2	6.9	4.631	2.3	1.39	178.6	14.9	9.9	5.0	2.98
20	52.0	3.5	3.41	0.1	0.07	70.3	4.7	4.631	0.1	0.06	120.0	10.0	9.9	0.1	0.09
30	40.0	2.7	3.41	-0.7	-1.34	53.9	3.6	4.631	-1.0	-1.86	91.9	7.7	9.9	-2.3	-4.08
40	32.9	2.2	3.41	-1.2	-2.93	44.2	2.9	4.631	-1.7	-4.04	75.1	6.3	9.9	-3.7	-8.78
50	28.0	1.9	3.41	-1.5	-4.63	37.7	2.5	4.631	-2.1	-6.36	64.0	5.3	9.9	-4.6	-13.77
60	24.6	1.6	3.41	-1.8	-6.39	32.9	2.2	4.631	-2.4	-8.76	55.9	4.7	9.9	-5.3	-18.94
70	21.9	1.5	3.41	-2.0	-8.20	29.4	2.0	4.631	-2.7	-11.22	49.8	4.1	9.9	-5.8	-24.24
80	19.8	1.3	3.41	-2.1	-10.04	26.6	1.8	4.631	-2.9	-13.73	45.0	3.7	9.9	-6.2	-29.62
90	18.1	1.2	3.41	-2.2	-11.90	24.3	1.6	4.631	-3.0	-16.26	41.1	3.4	9.9	-6.5	-35.07
100	16.7	1.1	3.41	-2.3	-13.78	22.4	1.5	4.631	-3.1	-18.82	37.9	3.2	9.9	-6.8	-40.57
110	15.6	1.0	3.41	-2.4	-15.68	20.8	1.4	4.631	-3.2	-21.40	35.2	2.9	9.9	-7.0	-46.11
120	14.6	1.0	3.41	-2.4	-17.59	19.5	1.3	4.631	-3.3	-24.00	32.9	2.7	9.9	-7.2	-51.68
130	13.7	0.9	3.41	-2.5	-19.51	18.3	1.2	4.631	-3.4	-26.61	30.9	2.6	9.9	-7.3	-57.29
140	12.9	0.9	3.41	-2.6	-21.43	17.3	1.2	4.631	-3.5	-29.23	29.2	2.4	9.9	-7.5	-62.92
150	12.3	0.8	3.41	-2.6	-23.37	16.4	1.1	4.631	-3.5	-31.86	27.6	2.3	9.9	-7.6	-68.57
160	11.7	0.8	3.41	-2.6	-25.31	15.6	1.0	4.631	-3.6	-34.50	26.2	2.2	9.9	-7.7	-74.24
170 180	11.1 10.6	0.7	3.41 3.41	-2.7 -2.7	-27.26 -29.21	14.8 14.2	1.0 0.9	4.631 4.631	-3.6 -3.7	-37.15 -39.80	25.0 23.9	2.1	9.9 9.9	-7.8 -7.9	-79.92 -85.62
180	10.8	0.7	3.41	-2.7	-29.21	13.6	0.9	4.631	-3.7	-39.80	23.9	1.9	9.9	-7.9	-91.33
200	9.8	0.7	3.41	-2.7	-33.13	13.0	0.9	4.631	-3.8	-42.40	22.9	1.9	9.9	-8.0	-97.05
Max =		•			1.02					1.39					2.98
Notes 1) Peak f 2) Rainfal 3) Release 4) Storage 5) Storage 6) Maxim	l Intensity, I = e Rate = Min e Rate = Peal e = Duration ium Storage =	o the product of 2.7 : A/(Tc+C) ^B (Release Rate, Peak < Flow - Release Rate × Storage Rate = Max Storage Over e for City of Ottawa	Flow)												

TABLE C-20Storage Volumes for 2-year, 5-Year and 100-Year StormsArea: A8

	Area No:	A9		d at cisterr	ו										
	C _{AVG} =		(2-yr)												
	C _{AVG} =		(5-yr)												
	C _{AVG} =	0.85	(100-yr, Max	< 1.0)											
	me Interval =	10.00	(mins)												
Dra	iinage Area =	0.2517	(hectares)												
		Release Rate =	13.1	(L/sec)		R	elease Rate =	17.7	(L/sec)		R	elease Rate =	38.00	(L/sec)	
		Return Period =		(years)			turn Period =	-	(years)			turn Period =		(years)	
		IDF Parameters, A =	732.951	, B =		IDF Pa	rameters, A =	998.071		0.814	IDF Par	rameters, A =	-		0.820
Duration (min)		$(I = A/(T_c+C)$	1	, C =	6.199		$(I = A/(T_c+C)$	r	, C =	6.053		$(I = A/(T_c+C)$, C =	6.014
(11111)	Rainfall		Release	Storage	Storage	Rainfall	Peak Flow	Release	Storage	Storage	Rainfall	Peak Flow	Release	Storage	Storage
	Intensity, I	Peak Flow (L/sec)		Rate (L/sec)	-	Intensity, I	(L/sec)		Rate (L/sec)	(m ³)	Intensity, I	(L/sec)		Rate (L/sec)	(m ³)
	(mm/hr)			., ,	()	(mm/hr)	., ,	,	., ,	()	(mm/hr)		., ,		()
0	167.2	79.2	13.08	66.1	0.00	230.5	109.2	17.739	91.4	0.00	398.6	236.0	38.0	198.0	0.00
10	76.8	36.4	13.08	23.3	13.98	104.2	49.4	17.739	31.6	18.97	178.6	105.7	38.0	67.7	40.64
20	52.0	24.6	13.08	11.6	13.88	70.3	33.3	17.739	15.5	18.65	120.0	71.0	38.0	33.0	39.63
30	40.0	19.0	13.08	5.9	10.61	53.9	25.5	17.739	7.8	14.05	91.9	54.4	38.0	16.4	29.51
40 50	32.9 28.0	15.6 13.3	13.08 13.08	2.5 0.2	5.98 0.62	44.2 37.7	20.9 17.8	17.739 17.739	3.2 0.1	7.66 0.29	75.1 64.0	44.5 37.9	38.0 38.0	6.5 -0.1	15.59 -0.40
60	28.0	13.3	13.08	-1.4	-5.20	32.9	17.8	17.739	-2.1	-7.68	55.9	37.9	38.0	-0.1	-0.40
70	24.0	10.4	13.08	-2.7	-11.33	29.4	13.0	17.739	-3.8	-16.07	49.8	29.5	38.0	-8.5	-35.78
80	19.8	9.4	13.08	-3.7	-17.68	26.6	12.6	17.739	-5.2	-24.75	45.0	26.6	38.0	-11.4	-54.53
90	18.1	8.6	13.08	-4.5	-24.20	24.3	11.5	17.739	-6.2	-33.66	41.1	24.3	38.0	-13.7	-73.75
100	16.7	7.9	13.08	-5.1	-30.86	22.4	10.6	17.739	-7.1	-42.75	37.9	22.4	38.0	-15.6	-93.34
110	15.6	7.4	13.08	-5.7	-37.63	20.8	9.9	17.739	-7.9	-51.98	35.2	20.8	38.0	-17.2	-113.23
120	14.6	6.9	13.08	-6.2	-44.48	19.5	9.2	17.739	-8.5	-61.33	32.9	19.5	38.0	-18.5	-133.36
130	13.7	6.5	13.08	-6.6	-51.41	18.3	8.7	17.739	-9.1	-70.77	30.9	18.3	38.0	-19.7	-153.70
140	12.9	6.1	13.08	-7.0	-58.41	17.3	8.2	17.739	-9.6	-80.30	29.2	17.3	38.0	-20.7	-174.21
150	12.3	5.8	13.08	-7.3	-65.45	16.4	7.8	17.739	-10.0	-89.90 -99.56	27.6	16.3	38.0	-21.7	-194.86
160 170	11.7 11.1	5.5 5.3	13.08 13.08	-7.6 -7.8	-72.55 -79.69	15.6 14.8	7.4	17.739 17.739	-10.4 -10.7	-99.56	26.2 25.0	15.5 14.8	38.0 38.0	-22.5 -23.2	-215.65 -236.55
170	10.6	5.0	13.08	-7.8	-86.86	14.8	6.7	17.739	-10.7	-109.28	23.0	14.8	38.0	-23.2	-257.55
190	10.0	4.8	13.08	-8.3	-94.07	13.6	6.4	17.739	-11.3	-128.85	22.9	13.6	38.0	-23.3	-278.64
200	9.8	4.6	13.08	-8.4	-101.30	13.0	6.2	17.739	-11.6	-138.69	22.0	13.0	38.0	-25.0	-299.81
Max =					13.98					18.97					40.64
2) Rainfal 3) Release 4) Storag 5) Storage 6) Maxim	l Intensity, I = e Rate = Min (e Rate = Peak e = Duration a ium Storage =	o the product of 2.78 : A/(Tc+C) ^B (Release Rate, Peak F : Flow - Release Rate x Storage Rate = Max Storage Over I e for City of Ottawa	Flow)												

TABLE C-21 Storage Volum: Storage Volumes for 2-year, 5-Year and 100-Year Storms Area: A9

		Storage volu		100.70				Alea.							
	Area No:	A10	Controlle	d at cisterr	1 I										
	C _{AVG} =	0.56	(2-yr)												
	C _{AVG} =	0.56	(5-yr)												
	C _{AVG} =	0.71	(100-yr, Max	(1.0)											
	me Interval =		(mins)												
Dra	inage Area =	0.0200	(hectares)												
<u> </u>		Release Rate =	1.6	(L/sec)		R	elease Rate =	2.2	(L/sec)		R	elease Rate =	4.67	(L/sec)	
		Return Period =	2	(years)		Re	turn Period =	5	(years)		Re	turn Period =	100	(years)	
		IDF Parameters, A =	732.951	, B =		IDF Pa	rameters, A =			0.814	IDF Pa	rameters, A =			0.820
Duration		$(I = A/(T_c+C))$, C =	6.199		$(I = A/(T_c+C)$, C =	6.053		$(I = A/(T_c+C)$, C =	6.014
(min)	Rainfall Intensity, I (mm/hr)	Peak Flow (L/sec)	Release Rate (L/sec)	Storage Rate (L/sec)	Storage (m ³)	Rainfall Intensity, I (mm/hr)	Peak Flow (L/sec)	Release Rate (L/sec)	Storage Rate (L/sec)	Storage (m ³)	Rainfall Intensity, I (mm/hr)	Peak Flow (L/sec)	Release Rate (L/sec)	Storage Rate (L/sec)	Storage (m ³)
0	167.2	5.2	1.61	3.6	0.00	230.5	7.2	2.178	5.0	0.00	398.6	15.6	4.7	11.0	0.00
10	76.8	2.4	1.61	0.8	0.48	104.2	3.3	2.178	1.1	0.65	178.6	7.0	4.7	2.3	1.40
20	52.0	1.6	1.61	0.0	0.03	70.3	2.2	2.178	0.0	0.03	120.0	4.7	4.7	0.0	0.04
30 40	40.0 32.9	1.3 1.0	1.61 1.61	-0.3 -0.6	-0.63 -1.38	53.9 44.2	1.7 1.4	2.178 2.178	-0.5 -0.8	-0.88 -1.90	91.9 75.1	3.6 2.9	4.7 4.7	-1.1 -1.7	-1.92 -4.13
40 50	28.0	0.9	1.61	-0.6	-1.38	44.2 37.7	1.4	2.178	-0.8	-1.90	64.0	2.9	4.7	-1.7	-4.13
60	24.6	0.8	1.61	-0.7	-3.01	37.7	1.2	2.178	-1.0	-4.12	55.9	2.3	4.7	-2.2	-8.91
70	21.9	0.7	1.61	-0.9	-3.86	29.4	0.9	2.178	-1.3	-5.28	49.8	2.0	4.7	-2.7	-11.40
80	19.8	0.6	1.61	-1.0	-4.72	26.6	0.8	2.178	-1.3	-6.46	45.0	1.8	4.7	-2.9	-13.93
90	18.1	0.6	1.61	-1.0	-5.60	24.3	0.8	2.178	-1.4	-7.65	41.1	1.6	4.7	-3.1	-16.50
100	16.7	0.5	1.61	-1.1	-6.48	22.4	0.7	2.178	-1.5	-8.85	37.9	1.5	4.7	-3.2	-19.08
110	15.6	0.5	1.61	-1.1	-7.38	20.8	0.7	2.178	-1.5	-10.07	35.2	1.4	4.7	-3.3	-21.69
120	14.6	0.5	1.61	-1.1	-8.27	19.5	0.6	2.178	-1.6	-11.29	32.9	1.3	4.7	-3.4	-24.31
130	13.7	0.4	1.61	-1.2	-9.18	18.3	0.6	2.178	-1.6	-12.52	30.9	1.2	4.7	-3.5	-26.95
140 150	12.9 12.3	0.4	1.61 1.61	-1.2 -1.2	-10.08 -10.99	17.3 16.4	0.5	2.178 2.178	-1.6 -1.7	-13.75 -14.99	29.2 27.6	1.1 1.1	4.7 4.7	-3.5 -3.6	-29.60 -32.25
150	12.5	0.4	1.61	-1.2	-10.99	15.6	0.5	2.178	-1.7	-14.99	27.0	1.1	4.7	-3.6	-32.25
100	11.1	0.3	1.61	-1.3	-12.82	13.0	0.5	2.178	-1.7	-17.47	25.0	1.0	4.7	-3.7	-37.59
180	10.6	0.3	1.61	-1.3	-13.74	14.2	0.4	2.178	-1.7	-18.72	23.9	0.9	4.7	-3.7	-40.28
190	10.2	0.3	1.61	-1.3	-14.66	13.6	0.4	2.178	-1.8	-19.97	22.9	0.9	4.7	-3.8	-42.96
200	9.8	0.3	1.61	-1.3	-15.59	13.0	0.4	2.178	-1.8	-21.23	22.0	0.9	4.7	-3.8	-45.65
Max =					0.48					0.65					1.40
2) Rainfal 3) Release 4) Storag 5) Storage 6) Maxim	l Intensity, I = e Rate = Min e Rate = Peal e = Duration ium Storage =	o the product of 2.7 = A/(Tc+C) ⁸ (Release Rate, Peak < Flow - Release Rate × Storage Rate = Max Storage Over e for City of Ottawa	Flow)												

TABLE C-22Storage Volum(Storage Volumes for 2-year, 5-Year and 100-Year StormsArea: A10

								Aica.							
	Area No:	A11	-	d at cisterr	ו										
	C _{AVG} =	0.85	(2-yr)												
	C _{AVG} =	0.85	(5-yr)												
	C _{AVG} =	1.00	(100-yr, Max	(1.0)											
	me Interval =	10.00	(mins)												
Dra	inage Area =	0.0229	(hectares)												
		Release Rate =	2.8	(L/sec)		R	elease Rate =	3.8	(L/sec)		R	elease Rate =	7.58	(L/sec)	
		Return Period =	-	(years)		Re	turn Period =		(years)			turn Period =		(years)	
		IDF Parameters, A =	732.951		0.810	IDF Pa	rameters, A =			0.814	IDF Pa	rameters, A =			0.820
Duration (min)		$(I = A/(T_c + C))$	r	, C =	6.199		$(I = A/(T_c+C)$	r	, C =	6.053		$(I = A/(T_c+C)$, C =	6.014
(11111)	Rainfall		Release	Storage	Storage	Rainfall	Peak Flow	Release	Storage	Storage	Rainfall	Peak Flow	Release	Storage	Storage
	Intensity, I	Peak Flow (L/sec)		Rate (L/sec)	(m ³)	Intensity, I	(L/sec)		Rate (L/sec)	(m ³)	Intensity, I	(L/sec)		Rate (L/sec)	(m ³)
	(mm/hr)				()	(mm/hr)	(_, ===,			()	(mm/hr)	(-,,			()
0	167.2	9.0	2.76	6.3	0.00	230.5	12.4	3.750	8.7	0.00	398.6	25.4	7.6	17.8	0.00
10	76.8	4.1	2.76	1.4	0.83	104.2	5.6	3.750	1.9	1.13	178.6	11.4	7.6	3.8	2.27
20	52.0	2.8	2.76	0.0	0.05	70.3	3.8	3.750	0.0	0.05	120.0	7.6	7.6	0.1	0.07
30 40	40.0 32.9	2.2	2.76	-0.6	-1.08 -2.38	53.9 44.2	2.9 2.4	3.750	-0.8 -1.4	-1.51	91.9	5.8	7.6 7.6	-1.7 -2.8	-3.11 -6.71
40 50	28.0	1.8 1.5	2.76	-1.0 -1.3	-2.38	37.7	2.4	3.750 3.750	-1.4	-3.28 -5.15	75.1 64.0	4.8 4.1	7.6	-2.8	-6.71
60	24.6	1.3	2.76	-1.3	-5.18	32.9	1.8	3.750	-1.7	-7.10	55.9	3.6	7.6	-3.5	-10.32
70	21.9	1.2	2.76	-1.6	-6.64	29.4	1.6	3.750	-2.2	-9.09	49.8	3.2	7.6	-4.4	-18.52
80	19.8	1.1	2.76	-1.7	-8.13	26.6	1.4	3.750	-2.3	-11.12	45.0	2.9	7.6	-4.7	-22.63
90	18.1	1.0	2.76	-1.8	-9.64	24.3	1.3	3.750	-2.4	-13.17	41.1	2.6	7.6	-5.0	-26.79
100	16.7	0.9	2.76	-1.9	-11.16	22.4	1.2	3.750	-2.5	-15.24	37.9	2.4	7.6	-5.2	-30.99
110	15.6	0.8	2.76	-1.9	-12.70	20.8	1.1	3.750	-2.6	-17.33	35.2	2.2	7.6	-5.3	-35.23
120	14.6	0.8	2.76	-2.0	-14.24	19.5	1.1	3.750	-2.7	-19.43	32.9	2.1	7.6	-5.5	-39.49
130	13.7	0.7	2.76	-2.0	-15.80	18.3	1.0	3.750	-2.8	-21.55	30.9	2.0	7.6	-5.6	-43.77
140 150	12.9 12.3	0.7	2.76 2.76	-2.1 -2.1	-17.36 -18.93	17.3 16.4	0.9	3.750 3.750	-2.8 -2.9	-23.67 -25.80	29.2 27.6	1.9 1.8	7.6 7.6	-5.7 -5.8	-48.07 -52.38
150	12.5	0.6	2.76	-2.1	-20.50	15.6	0.9	3.750	-2.9	-23.80	27.0	1.8	7.6	-5.8	-52.58
100	11.7	0.6	2.76	-2.2	-22.08	14.8	0.8	3.750	-2.9	-30.08	25.0	1.6	7.6	-6.0	-61.06
180	10.6	0.6	2.76	-2.2	-23.66	14.2	0.8	3.750	-3.0	-32.23	23.9	1.5	7.6	-6.1	-65.41
190	10.2	0.5	2.76	-2.2	-25.24	13.6	0.7	3.750	-3.0	-34.39	22.9	1.5	7.6	-6.1	-69.77
200	9.8	0.5	2.76	-2.2	-26.83	13.0	0.7	3.750	-3.0	-36.55	22.0	1.4	7.6	-6.2	-74.15
Max =					0.83					1.13					2.27
Notes															
1) Peak f	low is equal t	o the product of 2.7	8 x C x I x A												
2) Rainfal	l Intensity, I =	A/(Tc+C) ^B													
-		(Release Rate, Peak													
		K Flow - Release Rate	2												
		x Storage Rate = Max Storage Over	Duration												
-	-	e for City of Ottawa													
. / . a. and		e . e.													

TABLE C-23Storage Volumes for 2-year, 5-Year and 100-Year StormsArea: A11

Ĭ		Storage Volu		1000,0				Alea.	//12						
	Area No:	A12	Controlle	d at cisterr	1 I										
	C _{AVG} =	0.76	(2-yr)												
	C _{AVG} =	0.76	(5-yr)												
	C _{AVG} =	0.95	(100-yr, Max	(1.0)											
Ti	me Interval =	10.00	(mins)												
Dra	iinage Area =	0.0113	(hectares)												
		Release Rate =	1.2	(L/sec)		D	elease Rate =	1.7	(L/sec)		D	elease Rate =	3.54	(L/sec)	
		Return Period =		(years)			turn Period =		(years)			turn Period =	-	(years)	
		IDF Parameters, A =	-		0.810	-	rameters, A =	-	() curs/	0.814		rameters, A =		() curs)	0.820
Duration		$(I = A/(T_c+C))$, C =			$(I = A/(T_c+C))$, C =	6.053		$(I = A/(T_c+C))$, C =	6.014
(min)	Rainfall					Rainfall					Rainfall				
	Intensity, I	Peak Flow (L/sec)	Release	Storage	Storage	Intensity, I	Peak Flow	Release	Storage	Storage	Intensity, I	Peak Flow	Release	Storage	Storage
	(mm/hr)	1 call 1 cm (2, 500)	Rate (L/sec)	Rate (L/sec)	(m³)	(mm/hr)	(L/sec)	Rate (L/sec)	Rate (L/sec)	(m³)	(mm/hr)	(L/sec)	Rate (L/sec)	Rate (L/sec)	(m ³)
_															
0	167.2 76.8	4.0	1.22 1.22	2.8 0.6	0.00	230.5 104.2	5.5 2.5	1.653 1.653	3.8 0.8	0.00	398.6 178.6	11.9 5.3	3.5 3.5	8.3 1.8	0.00
20	52.0	1.8	1.22	0.0	0.02	70.3	1.7	1.653	0.8	0.02	178.0	3.6	3.5	0.0	0.03
30	40.0	1.0	1.22	-0.3	-0.48	53.9	1.3	1.653	-0.4	-0.67	91.9	2.7	3.5	-0.8	-1.45
40	32.9	0.8	1.22	-0.4	-1.05	44.2	1.1	1.653	-0.6	-1.44	75.1	2.2	3.5	-1.3	-3.13
50	28.0	0.7	1.22	-0.6	-1.65	37.7	0.9	1.653	-0.8	-2.27	64.0	1.9	3.5	-1.6	-4.92
60	24.6	0.6	1.22	-0.6	-2.28	32.9	0.8	1.653	-0.9	-3.13	55.9	1.7	3.5	-1.9	-6.76
70	21.9	0.5	1.22	-0.7	-2.93	29.4	0.7	1.653	-1.0	-4.01	49.8	1.5	3.5	-2.1	-8.65
80	19.8	0.5	1.22	-0.7	-3.58	26.6	0.6	1.653	-1.0	-4.90	45.0	1.3	3.5	-2.2	-10.57
90	18.1	0.4	1.22	-0.8	-4.25	24.3	0.6	1.653	-1.1	-5.80	41.1	1.2	3.5	-2.3	-12.52
100	16.7	0.4	1.22	-0.8	-4.92	22.4	0.5	1.653	-1.1	-6.72	37.9	1.1	3.5	-2.4	-14.48
110	15.6	0.4	1.22	-0.8	-5.60	20.8	0.5	1.653	-1.2	-7.64	35.2	1.0	3.5	-2.5	-16.46
120 130	14.6 13.7	0.3	1.22 1.22	-0.9 -0.9	-6.28 -6.96	19.5 18.3	0.5	1.653 1.653	-1.2 -1.2	-8.57 -9.50	32.9 30.9	1.0 0.9	3.5 3.5	-2.6 -2.6	-18.45 -20.45
130	13.7	0.3	1.22	-0.9	-6.96	18.3	0.4	1.653	-1.2	-9.50	29.2	0.9	3.5	-2.6	-20.45
140	12.3	0.3	1.22	-0.9	-8.34	17.3	0.4	1.653	-1.2	-11.37	23.2	0.9	3.5	-2.7	-24.48
160	11.7	0.3	1.22	-0.9	-9.04	15.6	0.4	1.653	-1.3	-12.31	26.2	0.8	3.5	-2.8	-26.50
170	11.1	0.3	1.22	-1.0	-9.73	14.8	0.4	1.653	-1.3	-13.26	25.0	0.7	3.5	-2.8	-28.53
180	10.6	0.3	1.22	-1.0	-10.43	14.2	0.3	1.653	-1.3	-14.21	23.9	0.7	3.5	-2.8	-30.56
190	10.2	0.2	1.22	-1.0	-11.13	13.6	0.3	1.653	-1.3	-15.16	22.9	0.7	3.5	-2.9	-32.60
200	9.8	0.2	1.22	-1.0	-11.83	13.0	0.3	1.653	-1.3	-16.11	22.0	0.7	3.5	-2.9	-34.64
Max =					0.37					0.50					1.06
2) Rainfal 3) Release 4) Storag 5) Storag 6) Maxim	l Intensity, I = e Rate = Min e Rate = Peal e = Duration ium Storage =	o the product of 2.7 : A/(Tc+C) ⁸ (Release Rate, Peak & Flow - Release Rate & Storage Rate = Max Storage Over e for City of Ottawa	Flow)												

TABLE C-24 Storage Volum(Storage Volumes for 2-year, 5-Year and 100-Year Storms Area: A12

		Storage volu		, , , , , , , ,				Area:	A15						
	Area No:	A13	Controlle	d at cisterr	1 I										
	C _{AVG} =	0.81	(2-yr)												
	C _{AVG} =	0.81	(5-yr)												
	C _{AVG} =	1.00	(100-yr, Max	(1.0)											
Tir	me Interval =	10.00	(mins)												
Dra	inage Area =	0.0129	(hectares)												
			_												
		Release Rate =		(L/sec)			elease Rate =		(L/sec)			elease Rate =		(L/sec)	
		Return Period =	-	(years)	0.910		turn Period =		(years)	0.814		turn Period =	100	(years)	0.820
Duration		IDF Parameters, A = (I = A/(T_c +C)	732.951	,B= ,C=		IDF Pa	rameters, A = (I = A/(T _c +C)	998.071	, C =		IDF Pa	rameters, A = (I = A/(T _c +C)	1/35.088	, C =	
(min)		(1-7)(1,00)	1	, c =	0.199		(1 - 7 y (1 _c · c)	1	, c -	0.055		(1 - / (1 _c . c)		, c -	0.014
()	Rainfall		Release	Storage	Storage	Rainfall	Peak Flow	Release	Storage	Storage	Rainfall	Peak Flow	Release	Storage	Storage
	Intensity, I	Peak Flow (L/sec)		Rate (L/sec)	(m ³)	Intensity, I	(L/sec)		Rate (L/sec)	(m ³)	Intensity, I	(L/sec)		Rate (L/sec)	(m ³)
	(mm/hr)				()	(mm/hr)	(_, ,			()	(mm/hr)	(_,)			()
0	167.2	4.9	1.49	3.4	0.00	230.5	6.7	2.026	4.7	0.00	398.6	14.3	4.3	10.0	0.00
10	76.8	2.2	1.49	0.7	0.45	104.2	3.0	2.026	1.0	0.61	178.6	6.4	4.3	2.1	1.28
20	52.0	1.5	1.49	0.0	0.03	70.3	2.0	2.026	0.0	0.03	120.0	4.3	4.3	0.0	0.04
30	40.0	1.2	1.49	-0.3	-0.59	53.9	1.6	2.026	-0.5	-0.82	91.9	3.3	4.3	-1.0	-1.75
40	32.9	1.0	1.49	-0.5	-1.28	44.2	1.3	2.026	-0.7	-1.77	75.1	2.7	4.3	-1.6	-3.78
50	28.0	0.8	1.49	-0.7	-2.03	37.7	1.1	2.026	-0.9	-2.78	64.0	2.3	4.3	-2.0	-5.93
60	24.6	0.7	1.49	-0.8	-2.80	32.9	1.0	2.026	-1.1	-3.83	55.9	2.0	4.3	-2.3	-8.15
70	21.9	0.6	1.49	-0.9	-3.59	29.4	0.9	2.026	-1.2	-4.91	49.8	1.8	4.3	-2.5	-10.43
80 90	19.8 18.1	0.6	1.49 1.49	-0.9 -1.0	-4.39 -5.21	26.6 24.3	0.8	2.026 2.026	-1.3 -1.3	-6.01 -7.11	45.0 41.1	1.6 1.5	4.3 4.3	-2.7 -2.8	-12.75 -15.09
100	16.7	0.5	1.49	-1.0	-6.03	24.3	0.7	2.020	-1.3	-8.23	37.9	1.3	4.3	-2.8	-17.46
100	15.6	0.5	1.49	-1.0	-6.86	20.8	0.6	2.026	-1.4	-9.36	35.2	1.4	4.3	-3.0	-19.84
120	14.6	0.4	1.49	-1.1	-7.69	19.5	0.6	2.026	-1.5	-10.50	32.9	1.2	4.3	-3.1	-22.24
130	13.7	0.4	1.49	-1.1	-8.53	18.3	0.5	2.026	-1.5	-11.64	30.9	1.1	4.3	-3.2	-24.66
140	12.9	0.4	1.49	-1.1	-9.38	17.3	0.5	2.026	-1.5	-12.79	29.2	1.0	4.3	-3.2	-27.08
150	12.3	0.4	1.49	-1.1	-10.22	16.4	0.5	2.026	-1.5	-13.94	27.6	1.0	4.3	-3.3	-29.51
160	11.7	0.3	1.49	-1.2	-11.07	15.6	0.5	2.026	-1.6	-15.09	26.2	0.9	4.3	-3.3	-31.95
170	11.1	0.3	1.49	-1.2	-11.93	14.8	0.4	2.026	-1.6	-16.25	25.0	0.9	4.3	-3.4	-34.40
180	10.6	0.3	1.49	-1.2	-12.78	14.2	0.4	2.026	-1.6	-17.41	23.9	0.9	4.3	-3.4	-36.85
190	10.2	0.3	1.49	-1.2	-13.64	13.6	0.4	2.026	-1.6	-18.58	22.9	0.8	4.3	-3.4	-39.31
200	9.8	0.3	1.49	-1.2	-14.49	13.0	0.4	2.026	-1.6	-19.74	22.0	0.8	4.3	-3.5	-41.77
Max =					0.45					0.61					1.28
Notes															
	ow is equal t	o the product of 2.7	8 x C x I x A												
	l Intensity, I =		0 . C . I . I												
		(Release Rate, Peak)	Flow)												
		Flow - Release Rate													
		x Storage Rate													
6) Maxim	ium Storage =	= Max Storage Over	Duration												
7) Parame	eters a,b,c are	e for City of Ottawa													

TABLE C-25Storage Volumes for 2-year, 5-Year and 100-Year StormsArea: A13

	-	otorage vola						Aica.							
	Area No:	A14	Controlle	d at cisterr	า										
	C _{AVG} =	0.90	(2-yr)												
	C _{AVG} =	0.90	(5-yr)												
	C _{AVG} =	1.00	(100-yr, Max	x 1.0)											
Tir	me Interval =	10.00	(mins)												
Dra	iinage Area =	0.0216	(hectares)												
		Release Rate =	2.8	(L/sec)		R	elease Rate =	3.8	(L/sec)		R	elease Rate =	7.15	(L/sec)	
		Return Period =	2	(years)		Re	turn Period =	5	(years)		Re	turn Period =	100	(years)	
		IDF Parameters, A =	732.951		0.810	IDF Pa	rameters, A =			0.814	IDF Pa	rameters, A =	1735.688		0.820
Duration		$(I = A/(T_c+C))$, C =	6.199		$(I = A/(T_c+C)$	1	, C =	6.053		$(I = A/(T_c+C)$, C =	6.014
(min)	Rainfall				Chanaga	Rainfall	D 1 C 1		<i>c</i> .	Charage	Rainfall	D 1 C 1		<i>c</i> .	Charren
	Intensity, I	Peak Flow (L/sec)	Release	Storage Rate (L/sec)	Storage (m ³)	Intensity, I	Peak Flow (L/sec)	Release	Storage Rate (L/sec)	Storage (m ³)	Intensity, I	Peak Flow (L/sec)	Release	Storage Rate (L/sec)	Storage (m ³)
	(mm/hr)		Rate (L/Sec)	Rate (L/Sec)	(m)	(mm/hr)	(L/SEC)	Nate (L/Sec)	Rate (L/Sec)	(m)	(mm/hr)	(L/SEC)	Nate (L/Sec)	Nate (L/Sec)	(m)
0	167.2	9.0	2.77	6.3	0.00	230.5	12.5	3.754	8.7	0.00	398.6	23.9	7.1	16.8	0.00
10	76.8	4.2	2.77	1.4	0.83	104.2	5.6	3.754	1.9	1.13	178.6	10.7	7.1	3.6	2.14
20	52.0	2.8	2.77	0.0	0.05	70.3	3.8	3.754	0.0	0.05	120.0	7.2	7.1	0.1	0.07
30	40.0	2.2	2.77	-0.6	-1.09	53.9	2.9	3.754	-0.8	-1.51	91.9	5.5	7.1	-1.6	-2.94
40	32.9	1.8	2.77	-1.0	-2.38	44.2	2.4 2.0	3.754	-1.4	-3.28	75.1	4.5	7.1	-2.6	-6.33
50 60	28.0 24.6	1.5 1.3	2.77 2.77	-1.3 -1.4	-3.76 -5.18	37.7 32.9	2.0	3.754 3.754	-1.7 -2.0	-5.16 -7.10	64.0 55.9	3.8 3.4	7.1	-3.3 -3.8	-9.92 -13.65
70	24.6	1.3	2.77	-1.4	-6.65	29.4	1.8	3.754	-2.0	-9.10	49.8	3.0	7.1	-3.8	-13.65
80	19.8	1.1	2.77	-1.7	-8.14	26.6	1.0	3.754	-2.3	-11.13	45.0	2.7	7.1	-4.4	-21.34
90	18.1	1.0	2.77	-1.8	-9.65	24.3	1.3	3.754	-2.4	-13.18	41.1	2.5	7.1	-4.7	-25.27
100	16.7	0.9	2.77	-1.9	-11.17	22.4	1.2	3.754	-2.5	-15.26	37.9	2.3	7.1	-4.9	-29.23
110	15.6	0.8	2.77	-1.9	-12.71	20.8	1.1	3.754	-2.6	-17.35	35.2	2.1	7.1	-5.0	-33.23
120	14.6	0.8	2.77	-2.0	-14.26	19.5	1.1	3.754	-2.7	-19.45	32.9	2.0	7.1	-5.2	-37.24
130	13.7	0.7	2.77	-2.0	-15.81	18.3	1.0	3.754	-2.8	-21.57	30.9	1.9	7.1	-5.3	-41.28
140	12.9	0.7	2.77	-2.1	-17.38	17.3	0.9	3.754	-2.8	-23.69	29.2	1.8	7.1	-5.4	-45.34
150	12.3	0.7	2.77	-2.1	-18.95	16.4	0.9	3.754	-2.9	-25.83	27.6	1.7	7.1	-5.5	-49.41
160	11.7	0.6	2.77	-2.1	-20.52	15.6	0.8	3.754	-2.9	-27.97	26.2	1.6	7.1	-5.6	-53.50
170 180	11.1 10.6	0.6	2.77 2.77	-2.2 -2.2	-22.10 -23.68	14.8 14.2	0.8	3.754 3.754	-3.0 -3.0	-30.11 -32.27	25.0 23.9	1.5 1.4	7.1	-5.6 -5.7	-57.59 -61.70
180	10.8	0.6	2.77	-2.2	-25.27	14.2	0.8	3.754	-3.0	-34.42	23.9	1.4	7.1	-5.7	-65.81
200	9.8	0.5	2.77	-2.2	-26.86	13.0	0.7	3.754	-3.0	-34.42	22.9	1.4	7.1	-5.8	-69.94
Max =	510	0.0	2.77		0.83	1010	0.7	0.751	0.0	1.13	22.0	10	7.12	5.0	2.14
										-					
Notes															
		o the product of 2.7	8 x C x I x A												
'	I Intensity, I =	,, ,													
		(Release Rate, Peak													
		< Flow - Release Rate x Storage Rate	2												
		= Max Storage Over	Duration												
-	-	e for City of Ottawa	2 3. 01011												
L	,-,	/													

TABLE C-26Storage Volum(Storage Volumes for 2-year, 5-Year and 100-Year StormsArea: A14

		Storage volu		100.70				Aled.	//20						
	Area No:	A15	Controlle	d at cisterr	ו										
	C _{AVG} =	0.79	(2-yr)												
	C _{AVG} =	0.79	(5-yr)												
	C _{AVG} =	0.99	(100-yr, Max	(1.0)											
Tir	me Interval =	10.00	(mins)												
Dra	inage Area =	0.0147	(hectares)												
		Release Rate =	1.7	(L/sec)		P	elease Rate =	2.2	(L/sec)		D	elease Rate =	4.81	(L/sec)	
		Return Period =		(years)			turn Period =		(years)			turn Period =		(years)	
		IDF Parameters, A =			0.810	-	rameters, A =	-	_(years)	0.814		rameters, A =		(years)	0.820
Duration		$(I = A/(T_c+C))$, C =			$(I = A/(T_c+C)$	-	, C =			$(I = A/(T_c+C)$, C =	6.014
(min)				,					,					,	
	Rainfall	Deels Flows (L (eee)	Release	Storage	Storage	Rainfall	Peak Flow	Release	Storage	Storage	Rainfall	Peak Flow	Release	Storage	Storage
	Intensity, I (mm/hr)	Peak Flow (L/sec)	Rate (L/sec)	Rate (L/sec)	(m ³)	Intensity, I (mm/hr)	(L/sec)	Rate (L/sec)	Rate (L/sec)	(m³)	Intensity, I (mm/hr)	(L/sec)	Rate (L/sec)	Rate (L/sec)	(m ³)
	(11111/111)					(11111/111)					((())))))))))))))))))))))))))))))))))))				
0	167.2	5.4	1.65	3.7	0.00	230.5	7.4	2.244	5.2	0.00	398.6	16.1	4.8	11.3	0.00
10	76.8	2.5	1.65	0.8	0.50	104.2	3.4	2.244	1.1	0.67	178.6	7.2	4.8	2.4	1.44
20	52.0	1.7	1.65	0.0	0.03	70.3	2.3	2.244	0.0	0.03	120.0	4.8	4.8	0.0	0.04
30	40.0	1.3	1.65	-0.4	-0.65	53.9	1.7	2.244	-0.5	-0.90	91.9	3.7	4.8	-1.1	-1.97
40 50	32.9 28.0	1.1 0.9	1.65 1.65	-0.6 -0.7	-1.42 -2.24	44.2 37.7	1.4 1.2	2.244 2.244	-0.8 -1.0	-1.96 -3.08	75.1	3.0 2.6	4.8 4.8	-1.8	-4.25 -6.67
50 60	28.0	0.9	1.65	-0.7	-2.24	37.7	1.2	2.244	-1.0	-3.08	64.0 55.9	2.6	4.8	-2.2	-6.67
70	24.6	0.8	1.65	-0.9	-3.10	29.4	0.9	2.244	-1.2	-4.25	49.8	2.3	4.8	-2.5	-9.18
80	19.8	0.6	1.65	-1.0	-4.86	26.6	0.9	2.244	-1.4	-6.65	45.0	1.8	4.8	-3.0	-14.35
90	18.1	0.6	1.65	-1.1	-5.77	24.3	0.8	2.244	-1.5	-7.88	41.1	1.7	4.8	-3.1	-16.99
100	16.7	0.5	1.65	-1.1	-6.68	22.4	0.7	2.244	-1.5	-9.12	37.9	1.5	4.8	-3.3	-19.66
110	15.6	0.5	1.65	-1.2	-7.60	20.8	0.7	2.244	-1.6	-10.37	35.2	1.4	4.8	-3.4	-22.34
120	14.6	0.5	1.65	-1.2	-8.52	19.5	0.6	2.244	-1.6	-11.63	32.9	1.3	4.8	-3.5	-25.04
130	13.7	0.4	1.65	-1.2	-9.45	18.3	0.6	2.244	-1.7	-12.89	30.9	1.2	4.8	-3.6	-27.76
140	12.9	0.4	1.65	-1.2	-10.39	17.3	0.6	2.244	-1.7	-14.16	29.2	1.2	4.8	-3.6	-30.49
150	12.3	0.4	1.65	-1.3	-11.32	16.4	0.5	2.244	-1.7	-15.44	27.6	1.1	4.8	-3.7	-33.23
160	11.7	0.4	1.65	-1.3	-12.27	15.6	0.5	2.244	-1.7	-16.72	26.2	1.1	4.8	-3.7	-35.97
170	11.1	0.4	1.65	-1.3	-13.21	14.8	0.5	2.244	-1.8	-18.00	25.0	1.0	4.8	-3.8	-38.73
180	10.6	0.3	1.65	-1.3	-14.16	14.2	0.5	2.244	-1.8	-19.29	23.9	1.0	4.8	-3.8	-41.49
190	10.2	0.3	1.65	-1.3	-15.11	13.6	0.4	2.244	-1.8	-20.58	22.9	0.9	4.8	-3.9	-44.26
200	9.8	0.3	1.65	-1.3	-16.06	13.0	0.4	2.244	-1.8	-21.87	22.0	0.9	4.8	-3.9	-47.03
Max =					0.50					0.67					1.44
Notes															
		o the product of 2.7	8 x C x I x A												
	I Intensity, I =														
		(Release Rate, Peak < Flow - Release Rate													
		x Flow - Release Rate x Storage Rate	-												
		= Max Storage Over	Duration												
-	•	e for City of Ottawa													
, , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,.	.,													

TABLE C-27Storage Volumes for 2-year, 5-Year and 100-Year StormsArea: A15

		otorage volu		1 1-											
	Area No:	A16	Controlle	d at cisterr	1 I										
	C _{AVG} =	0.80	(2-yr)												
	C _{AVG} =	0.80	(5-yr)												
	C _{AVG} =	1.00	(100-yr, Max	(1.0)											
Tir	ne Interval =	10.00	(mins)												
Dra	inage Area =	0.0568	(hectares)												
		Release Rate =	6.5	(L/sec)		P	elease Rate =	8.8	(L/sec)		R	elease Rate =	18.80	(L/sec)	
		Return Period =		(years)			turn Period =		(years)			turn Period =		(years)	
		IDF Parameters, A =	-	, B =	0.810		rameters, A =			0.814		rameters, A =	-		0.820
Duration		$(I = A/(T_c+C))$, C =			$(I = A/(T_c+C))$, C =	6.053		$(I = A/(T_c+C))$, C =	6.014
(min)	Rainfall					Rainfall					Rainfall				
	Intensity, I	Peak Flow (L/sec)	Release	Storage	Storage	Intensity, I	Peak Flow	Release	Storage	Storage	Intensity, I	Peak Flow	Release	Storage	Storage
	(mm/hr)		Rate (L/sec)	Rate (L/sec)	(m³)	(mm/hr)	(L/sec)	Rate (L/sec)	Rate (L/sec)	(m ³)	(mm/hr)	(L/sec)	Rate (L/sec)	Rate (L/sec)	(m ³)
0	167.2	21.2	6.49	14.7	0.00	230.5	29.2	8.804	20.4	0.00	398.6	62.9	18.8	44.1	0.00
10	76.8	9.7	6.49	3.2	1.95	104.2	13.2	8.804	4.4	2.64	178.6	28.2	18.8	9.4	5.64
20	52.0	6.6	6.49	0.1	0.13	70.3	8.9	8.804	0.1	0.12	120.0	18.9	18.8	0.1	0.17
30	40.0	5.1	6.49	-1.4	-2.55	53.9	6.8	8.804	-2.0	-3.54	91.9	14.5	18.8	-4.3	-7.72
40	32.9	4.2	6.49	-2.3	-5.58	44.2	5.6	8.804	-3.2	-7.69	75.1	11.9	18.8	-6.9	-16.63
50	28.0	3.6	6.49	-2.9	-8.81	37.7	4.8	8.804	-4.0	-12.09	64.0	10.1	18.8	-8.7	-26.09
60	24.6	3.1	6.49	-3.4	-12.16	32.9	4.2	8.804	-4.6	-16.66	55.9	8.8	18.8	-10.0	-35.89
70	21.9	2.8	6.49	-3.7	-15.59	29.4	3.7	8.804	-5.1	-21.34	49.8	7.9	18.8	-10.9	-45.93
80 90	19.8 18.1	2.5 2.3	6.49	-4.0 -4.2	-19.09 -22.63	26.6 24.3	3.4 3.1	8.804	-5.4 -5.7	-26.10 -30.92	45.0 41.1	7.1 6.5	18.8 18.8	-11.7 -12.3	-56.12
100	18.1	2.3	6.49 6.49	-4.2	-22.63	24.3	2.8	8.804 8.804	-5.7	-30.92	41.1 37.9	6.0	18.8	-12.3	-66.45 -76.87
100	15.6	2.0	6.49	-4.4	-20.20	22.4	2.6	8.804	-6.2	-40.69	37.3	5.6	18.8	-12.8	-87.37
120	14.6	1.8	6.49	-4.6	-33.44	19.5	2.5	8.804	-6.3	-45.62	32.9	5.2	18.8	-13.6	-97.94
130	13.7	1.7	6.49	-4.8	-37.08	18.3	2.3	8.804	-6.5	-50.58	30.9	4.9	18.8	-13.9	-108.56
140	12.9	1.6	6.49	-4.9	-40.75	17.3	2.2	8.804	-6.6	-55.57	29.2	4.6	18.8	-14.2	-119.23
150	12.3	1.6	6.49	-4.9	-44.43	16.4	2.1	8.804	-6.7	-60.57	27.6	4.4	18.8	-14.4	-129.93
160	11.7	1.5	6.49	-5.0	-48.12	15.6	2.0	8.804	-6.8	-65.59	26.2	4.1	18.8	-14.7	-140.67
170	11.1	1.4	6.49	-5.1	-51.83	14.8	1.9	8.804	-6.9	-70.62	25.0	3.9	18.8	-14.8	-151.44
180	10.6	1.3	6.49	-5.1	-55.54	14.2	1.8	8.804	-7.0	-75.67	23.9	3.8	18.8	-15.0	-162.24
190	10.2	1.3	6.49	-5.2	-59.26	13.6	1.7	8.804	-7.1	-80.73	22.9	3.6	18.8	-15.2	-173.06
200	9.8	1.2	6.49	-5.2	-62.99	13.0	1.7	8.804	-7.1	-85.80	22.0	3.5	18.8	-15.3	-183.91
Max =					1.95					2.64					5.64
Notes		o the product of 2.7	8 y C y I y A												
	Intensity, I =		OXCXIXA												
		(Release Rate, Peak	Flow)												
		Flow - Release Rate													
		x Storage Rate													
6) Maximi	um Storage =	= Max Storage Over	Duration												
7) Parame	eters a,b,c are	e for City of Ottawa													

TABLE C-28 Storage Volum(Storage Volumes for 2-year, 5-Year and 100-Year Storms Area: A16

				100.70				Aled.	A1/											
	Area No:	A17		d at cisterr	1 I															
	C _{AVG} =	0.20	(2-yr)																	
	C _{AVG} =		(5-yr)																	
	C _{AVG} =		(100-yr, Max	(1.0)																
	me Interval =		(mins)																	
Dra	inage Area =	0.1664	(hectares)																	
		Release Rate =	4.7	(L/sec)		R	elease Rate =	6.4	(L/sec)		Release Rate = 13.77 (L/sec)									
		Return Period =	-	(years)			turn Period =		(years)			turn Period =	-	(years)						
		IDF Parameters, A =	732.951	-	0.810	IDF Pa	rameters, A =	998.071		0.814	IDF Pai	rameters, A =	-		0.820					
Duration (min)		$(I = A/(T_c+C)$, C =	6.199		$(I = A/(T_c+C)$, C =	6.053		$(I = A/(T_c+C))$, C =	6.014					
(11111)	Rainfall		Release	Storage	Storage	Rainfall	Peak Flow	Release	Storage	Storage	Rainfall	Peak Flow	Release	Storage	Storage					
	Intensity, I	Peak Flow (L/sec)		Rate (L/sec)	(m ³)	Intensity, I	(L/sec)		Rate (L/sec)	(m ³)	Intensity, I	(L/sec)		Rate (L/sec)	(m ³)					
	(mm/hr)				()	(mm/hr)	(_, ,			()	(mm/hr)	(-//			()					
0	167.2	15.5	4.74	10.7	0.00	230.5	21.3	6.427	14.9	0.00	398.6	46.1	13.8	32.3	0.00					
10	76.8	7.1	4.74	2.4	1.42	104.2	9.6	6.427	3.2	1.93	178.6	20.6	13.8	6.9	4.13					
20	52.0	4.8	4.74	0.1	0.09	70.3	6.5	6.427	0.1	0.09	120.0	13.9	13.8	0.1	0.13					
30	40.0	3.7	4.74	-1.0	-1.86	53.9	5.0	6.427	-1.4	-2.59	91.9	10.6	13.8	-3.1	-5.66					
40 50	32.9 28.0	3.0 2.6	4.74 4.74	-1.7 -2.1	-4.07 -6.43	44.2 37.7	4.1 3.5	6.427	-2.3 -2.9	-5.61 -8.83	75.1 64.0	8.7 7.4	13.8	-5.1 -6.4	-12.18 -19.11					
60	28.0	2.6	4.74	-2.1	-6.43	37.7	3.5	6.427 6.427	-2.9	-8.83 -12.16	55.9	6.5	13.8 13.8	-6.4 -7.3	-19.11 -26.29					
70	24.6	2.0	4.74	-2.5	-8.87	29.4	2.7	6.427	-3.4	-12.10	49.8	5.8	13.8	-7.5	-20.29					
80	19.8	1.8	4.74	-2.9	-13.93	26.6	2.5	6.427	-4.0	-19.05	45.0	5.2	13.8	-8.6	-41.11					
90	18.1	1.7	4.74	-3.1	-16.52	24.3	2.2	6.427	-4.2	-22.57	41.1	4.8	13.8	-9.0	-48.67					
100	16.7	1.5	4.74	-3.2	-19.13	22.4	2.1	6.427	-4.4	-26.12	37.9	4.4	13.8	-9.4	-56.30					
110	15.6	1.4	4.74	-3.3	-21.76	20.8	1.9	6.427	-4.5	-29.70	35.2	4.1	13.8	-9.7	-63.99					
120	14.6	1.3	4.74	-3.4	-24.41	19.5	1.8	6.427	-4.6	-33.30	32.9	3.8	13.8	-10.0	-71.73					
130	13.7	1.3	4.74	-3.5	-27.07	18.3	1.7	6.427	-4.7	-36.92	30.9	3.6	13.8	-10.2	-79.51					
140	12.9	1.2	4.74	-3.5	-29.75	17.3	1.6	6.427	-4.8	-40.56	29.2	3.4	13.8	-10.4	-87.32					
150	12.3	1.1	4.74	-3.6	-32.43	16.4	1.5	6.427	-4.9	-44.21	27.6	3.2	13.8	-10.6	-95.16					
160	11.7	1.1	4.74	-3.7	-35.13	15.6	1.4	6.427	-5.0	-47.88	26.2	3.0	13.8	-10.7	-103.03					
170	11.1 10.6	1.0 1.0	4.74 4.74	-3.7 -3.8	-37.83	14.8	1.4	6.427	-5.1 -5.1	-51.55 -55.24	25.0 23.9	2.9 2.8	13.8 13.8	-10.9 -11.0	-110.92					
180 190	10.6	0.9	4.74	-3.8	-40.54 -43.26	14.2 13.6	1.3 1.3	6.427 6.427	-5.1	-55.24 -58.93	23.9	2.8	13.8	-11.0 -11.1	-118.83 -126.75					
200	9.8	0.9	4.74	-3.8	-45.98	13.0	1.5	6.427	-5.2	-58.95	22.9	2.5	13.8	-11.1	-126.75					
Max =	5.0	0.5	4.74	5.0	1.42	15.0	1.2	0.427	5.2	1.93	22.0	2.5	15.0	11.2	4.13					
Notes 1) Peak fi 2) Rainfal 3) Release 4) Storage 5) Storage 6) Maxim	l Intensity, I = e Rate = Min e Rate = Peal e = Duration ium Storage =	o the product of 2.7 = A/(Tc+C) ⁸ (Release Rate, Peak < Flow - Release Rate × Storage Rate = Max Storage Over e for City of Ottawa	Flow)																	

TABLE C-29Storage Volumes for 2-year, 5-Year and 100-Year StormsArea: A17

Table C-30 - Orifice Sizing

Event			Top of				ORIFICE	SQUARE	CIRC	
	Outlet Location	Orifice Invert (m)	Grate Elevation (m)	Ponding Elevation (m)	Flow (L/s)	Head (m)	AREA(m²)	(1-side mm)	(mmØ)	Hydrovex Model
100 Year	CB302	69.19	72.73	72.78	8.6	3.59	0.002	41	47	75 VHV-1
100 Year	CB303	69.15	72.77	72.82	8.6	3.67	0.002	41	47	75 VHV-1

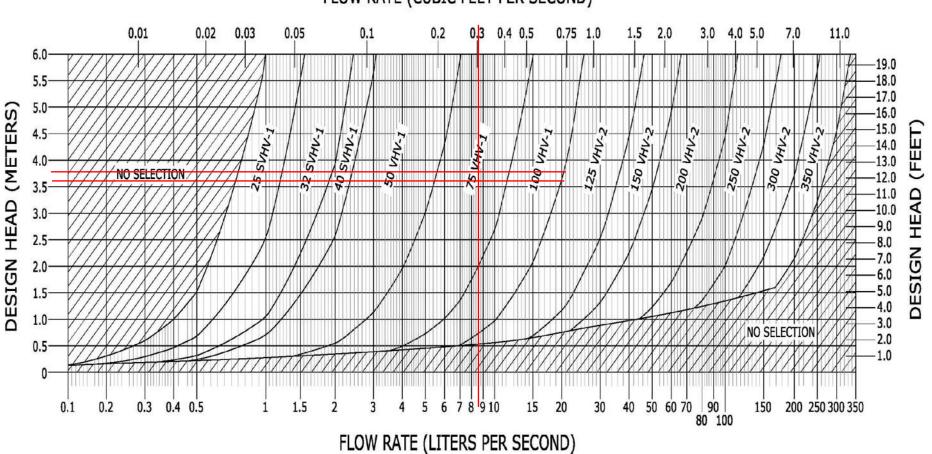
Orifice Control Sizing Q = 0.6 x A x (2gh)1/2

Where:

Q is the release rate in m³/s

A is the orifice area in m²

g is the acceleration due to gravity, 9.81m/s²


h is the head of water above the orifice centre in m

d is the diameter of the orifice in m

Note: Orifices are located on the downstream invert of structures.

JOHN MEUNIER

FIGURE 3

FLOW RATE (CUBIC FEET PER SECOND)

CONTROVEX® VHV/SVHV Vortex Flow Regulator

TABLE C-31: 2-YEAR STORM SEWER CALCULATION SHEET

Return Period Storm = Default Inlet Time= Manning Coefficient =
 2-year
 (2-year, 5-year, 100-year)

 10
 (minutes)

 0.013
 (dimensionless)

			AR	ea info					FLO	W (UNRES	TRICTED)								SE	SEWER DATA						
																				Capacity, Velocity (m/s)		:y (m/s)	Time in	Hydraul	lic Ratios	
From Node	To Node	Street	Area No.	Area (ha)	∑ Area (ha)	Average R	Indiv. 2.78*A*R	Accum. 2.78*A*R	Tc (mins)	l (mm/h)	Indiv. Flow	Return Period	Q (L/s)	ΣQ (L/s)	Dia (mm) Actual	Dia (mm) Nominal	Туре	Slope (%)	Length (m)	Q _{CAP} (L/sec)	Vf	Va	Pipe, Tt (min)	Q/Q _{CAP}	Va/Vf	
Ex.STMMH	STMMH103	Everest Pvt.	EXT-1 (Alta Vista Ridge)	4.030	4.0300	0.60	6.722	6.722	10.00	76.81	516.3	2-year	516.3	516.3	610.0	600	CONC.	2.00	7.60	907.47	3.07	2.17	0.06	0.57	0.71	
STMMH103	STMMH102	Everest Pvt.	Alta Vista Ridge Subdivision	1.800	1.8000	0.65	3.253	3.253	10.00	76.81	249.8	2-year	249.8	766.1	685.0	675	CONC.	2.00	33.60	1236.32	3.32	3.02	0.19	0.62	0.91	
Tower 2	STMMH102	Everest Pvt.	T2	0.170	0.1700	0.57	0.269	0.269	10.00	76.81	20.7	2-year	20.7	20.7	251.5	250	PVC	1.00	3.80	60.40	1.21	0.85	0.07	0.34	0.70	
Tower 4	STMMH102	Everest Pvt.	T4	0.190	0.1900	0.90	0.475	0.475	10.00	76.81	36.5	2-year	36.5	36.5	299.4	300	PVC	1.00	12.60	96.15	1.37	0.97	0.22	0.38	0.71	
CB302	CB Lead	Everest Pvt.	A9	0.062	0.0620	0.65	0.112	0.112	10.00	76.81	8.6	2-year	8.6	8.6	201.2	200	PVC	1.00	10.00	33.31	1.04	0.70	0.24	0.26	0.67	
CB303	CB Lead	Everest Pvt.	A9	0.062	0.0620	0.65	0.112	0.112	10.00	76.81	8.6	2-year	8.6	8.6	201.2	200	PVC	1.00	3.90	33.31	1.04	0.70	0.09	0.26	0.67	
STMMH102	Ex.STMMH-2	Everest Pvt.												840.5	685.0	675	CONC.	1.20	54.60	957.65	2.57	2.57	0.35	0.88	1.00	
CB300	CB Lead	Everest Pvt.	A9	0.062	0.0620	0.65	0.112	0.112	10.00	76.81	8.6	2-year	8.6	8.6	201.2	200	PVC	1.00	2.80	33.31	1.04	0.70	0.07	0.26	0.67	
CB301	CB Lead	Everest Pvt.	A9	0.062	0.0620	0.65	0.112	0.112	10.00	76.81	8.6	2-year	8.6	8.6	201.2	200	PVC	1.00	14.20	33.31	1.04	0.70	0.34	0.26	0.67	
Tower 1	STM Lateral	Everest Pvt.	T1	0.160	0.1600	0.90	0.400	0.400	10.00	76.81	30.7	2-year	30.7	30.7	251.5	250	PVC	1.00	3.50	60.40	1.21	0.86	0.07	0.51	0.71	
Tower 3	STM Lateral	Everest Pvt.	T3	0.260	0.2600	0.90	0.651	0.651	10.00	76.81	50.0	2-year	50.0	50.0	299.4	300	PVC	1.00	13.20	96.15	1.37	0.97	0.23	0.52	0.71	
Ex.STMMH-2	STMMH101	Everest Pvt.												921.2	976.0	975	CONC.	0.20	50.90	1004.97	1.34	1.34	0.63	0.92	1.00	
			A2 A3	0.003	0.0030	0.90	0.008	0.008	10.00	76.81 76.81	0.6 9.0	2-year 2-year	0.6 9.0	0.6 9.0												
			A3 A4	0.030	0.0300	0.64	0.071	0.071	10.00	76.81	5.5	2-year	5.5	5.5												
	077.0.000		A5	0.080	0.0800	0.54	0.120	0.120	10.00	76.81	9.2	2-year	9.2	9.2												
Cistern 2	STMMH101	Everest Pvt.	A6	0.110	0.1100	0.20	0.061	0.061	10.00	76.81	4.7	2-year	4.7	4.7										· · · · ·		
			A7	0.010	0.0100	0.57	0.016	0.016	10.00	76.81	1.2	2-year	1.2	1.2										,i		
			A8	0.120	0.1200	0.20	0.067	0.067	10.00	76.81	5.1	2-year	5.1	5.1										1		
			Cistern 2											35.3	251.5	250	PVC	1.00	3.50	60.40	1.21	1.09	0.05	0.58	0.90	
			A10	0.020	0.0200	0.75	0.042	0.042	10.00	76.81	3.2	2-year	3.2	3.2										L		
			A11	0.020	0.0200	0.85	0.047	0.047	10.00	76.81	3.6	2-year	3.6	3.6										J		
			A12	0.010	0.0100	0.76	0.021	0.021	10.00	76.81	1.6	2-year	1.6	1.6												
Cistern 1	STMMH101	Everest Pvt.	A13	0.010	0.0100	0.81	0.023	0.023	10.00	76.81	1.7	2-year	1.7	1.7 3.8							<u> </u>			·'		
GISLEITI I	3110101	Everest PVI.	A14 A15	0.020	0.0200	0.90	0.050	0.050	10.00	76.81 76.81	3.8 1.7	2-year 2-year	3.8 1.7	3.8							──'				ł	
		ł	A15 A16	0.010	0.0600	0.79	0.022	0.022	10.00	76.81	10.2	2-year 2-year	10.2	1.7					+		<u>├</u> ──'	 				
			A17	0.120	0.1200	0.20	0.067	0.067	10.00	76.81	5.1	2-year	5.1	5.1												
			Cistern 1											31.1	366.4	375	PVC	1.00	13.20	164.84	1.59	1.02	0.22	0.19	0.64	
STMMH101	STMMH100	Everest Pvt.												1004.8	976.0	975	CONC.	0.37	51.80	1366.91	1.83	1.79	0.48	0.74	0.98	
TOTALS =				7.54			13.082														·				L	
										Designed				Project:												
Definitions: Q = 2.78*AIR, wi	here						Ottaw	a Rainfall Inter	nsity Values <u>a</u>	from Sewer <u>b</u>	<u>c</u>	delines, SDG	002		A. Elgaya	r, M.A.Sc.			1740 St.	Laurent Bo	ulevard D	evelopme	nt			
Q = Peak Flow i	in Litres per second	(L/s)						2-year	732.951	6.199	0.810				Checked:				Location							
A = Watershed Area (hectares) I = Rainfall Intensity (mm/h)								5-year 100-year	998.071 1735.688	6.053 6.014	0.814 0.820				B. Thomas, P.Eng.				1740 St. Laurent Boulevard							
R = Runoff Coe	efficients (dimension	iless)						-							Dwg Reference:				File Ref: Sheet No:							
															C100 - Sit	e Servicing	Plan		260579 (2021.xls	231 - STM S K	ewer Des	ign Sheet	s, August	1 of 1		

EXP Services Inc. 1740-1760 St. Laurent Blvd, Ottawa, ON OTT-00260579-A0 August 24, 2021

Appendix D – Additional Documents

Pre-consultation Meeting Summary Notes with the City of Ottawa

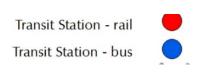
1740 St. Laurent Blvd

Meeting Summary Notes May 19, 2020, Online Teams Meeting

Attendees:

- Carmine Zayoun, Groupe Heafey
- Etienne Boudreault-Savageau, Groupe Heafey
- Christian Rheault, Groupe Heafey
- Raad Akrawi, Groupe Heafey
- Jaime Posen, Fotenn Consultants
- Nick Sutherland, Fotenn Consultants
- Wally Dubyk (Transportation Project Manager, City of Ottawa)
- Sharif Sharif (Project Manager, City of Ottawa)
- Christopher Moise (Urban Designer, Architect, City of Ottawa)
- Tracey Scaramozzino (File Lead, Planner, City of Ottawa)

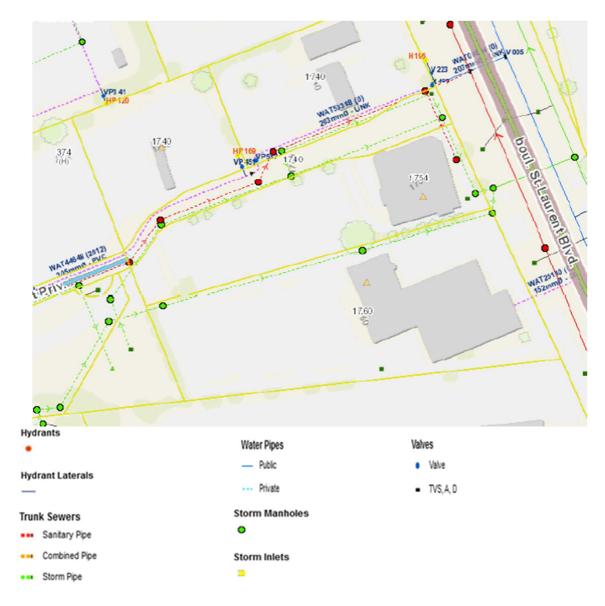
Issue of Discussion:


- Rezoning and Site Plan for 2 15-storey mixed-used buildings with 115 units and 260 units; and 2 12-storey residential buildings with 89 units and 181 units.
- Buildings will be rental; owned and operated by Groupe Heafey
- St. Hubert will remain a tenant in the new building and will include a drive-through; the carpet and sushi stores may also remain
- The gas station will not remain.

Official Plan: designated "Arterial Mainstreet".

1. The high-rise buildings being proposed are permitted subject to a zoning amendment since the location is within 400 metres walking distance of a Rapid Transit Station on Schedule D of this Plan;

- 2. The development MUST provide a community amenity and provide adequate transition to adjacent low-rise.
- 3. As per Policy 4
 - *"...the site should be planned in a coordinated fashion that will facilitate:*
 - a. multi-modal (pedestrian, cycling, transit and vehicular) access between the site and the public street(s),
 - *b. multi-modal* (pedestrian, cycling, transit and vehicular) access between the site and the public street(s),
 - c. attractive, safe and usable pedestrian and cycle connections between the site and adjacent communities,
 - d. an enhanced interconnected pedestrian environment that links individual uses on the site, transit stops and continuous public sidewalks on the adjoining streets, and which is generally distinct from internal vehicle routes,
 - e. measures of sufficient size and quality to relieve the visual impact of surface parking areas,
 - f. the provision of adequate landscaped areas, particularly trees, along the perimeter of the site and street frontages,
 - g. the provision of coordinated signage.
- 4. New gas bars, service stations, automobile sales, and drive-through facilities are permitted on Arterial Mainstreets and will be evaluated on the basis of the Design Objectives and Principles in Section 2.5.1, any applicable Council-approved design guidelines, and the Compatibility policies set out in Section 4.11.


5. Building formats must enclose and define the street edge with active frontages that provide direct pedestrian access to the sidewalk.

Zoning Information – Arterial Mainstreet, Subzone 10, exception 1658 (AM 10 [1658])

Infrastructure/Servicing (Golam Sharif):

Please note the following information regarding the engineering design submission for the above noted site:

- 1. The Servicing Study Guidelines for Development Applications are available at the following address: <u>https://ottawa.ca/en/city-hall/planning-and-</u> <u>development/how-develop-property/development-application-review-process-</u> <u>2/guide-preparing-studies-and-plans</u>
- 2. Servicing and site works shall be in accordance with the following documents:
 - ð Ottawa Sewer Design Guidelines (October 2012) and all the Technical Bulletins including, Technical Bulletin PIEDTB-2016-01 and ISTB-2018-01
 - ð Ottawa Design Guidelines Water Distribution (2010) and Technical Bulletins ISD-2010-2, ISDTB-2014-02 and ISTB-2018-02
 - ð Geotechnical Investigation and Reporting Guidelines for Development Applications in the City of Ottawa (2007)
 - č City of Ottawa Slope Stability Guidelines for Development Applications (revised 2012)
 - ð City of Ottawa Environmental Noise Control Guidelines (January, 2016)
 - ð City of Ottawa Park and Pathway Development Manual (2012)
 - ð City of Ottawa Accessibility Design Standards (2012)
 - ð Ottawa Standard Tender Documents (latest version)
 - ð Ontario Provincial Standards for Roads & Public Works (2013)
- 3. Record drawings and utility plans are also available for purchase from the City (Contact the City's Information Centre by email at <u>InformationCentre@ottawa.ca</u> or by phone at (613) 580-2424 x.44455).
- 4. The Stormwater Management Criteria, for the subject site, is to be based on the following:
 - i. Demonstrate that the approved Stormwater Management design for the Alta Vista Ridge Subdivision will not impact negatively.
- 5. Deep Services (Storm, Sanitary & Water Supply)

i. A plan view of the approximate services may be seen above. Services should ideally be grouped in a common trench to minimize the number of road cuts. The sizing of available future services is:

- a. Everest Private:
 - i. Sanitary 200 mm (private).
 - ii. Storm 450 mm/ 525 mm (private).
 - iii. Water 200 mm/ 300 mm (private).
- ii. Provide all the servicing demand (water, sanitary and storm) are as per the approved subdivision. If the demand changes, demonstrate the capacity is available.
- 6. Water Boundary condition requests must include the location of the service and the expected loads required by the proposed development. Please provide the following information:
 - i. Location of service

- ii. Type of development and the amount of fire flow required (as per FUS, 1999).
- iii. Average daily demand: ____ l/s.
- iv. Maximum daily demand: ____l/s.
- v. Maximum hourly daily demand: _____l/s.
- vi. Hydrant location and spacing to meet City's Water Design guidelines.
- 7. General comments
 - i. Stormwater Management criteria must be followed from the Alta Vista Ridge Subdivision.
 - ii. Site-specific Geotechnical brief is required apart from the Subdivision report.
 - iii. Site-specific Noise study/brief is required apart from the Subdivision report.

Should you have any questions or require additional information, please contact me directly at (613) 580-2424, x 20763 or by email at sharif.sharif@ottawa.ca.

Initial Planning (Tracey Scaramozzino):

- 1. Ensure all OP policies are achieved and clearly demonstrated.
- 2. Ensure there is enough amenity/ green space.
- 3. We want active frontage along St Laurent it appears as though there are functioning front doors
- 4. It should only be visitor and retail parking on surface remaining should be u/g
- 5. Show bike parking try to exceed requirement
- 6. Provide for car sharing and e-cars
- In other parts of the city near transit City is asking for the property owner to provide each unit with a prepaid presto transit pass to encourage transit ridership....
- 8. Cil required to a max 10% value of land
- 9. Speak to councillor and community groups -
- 10. Ensure a coordinated approach with design and development at 355 Everest.
- 11. Ensure compliance with Design Guidelines for the proposed drive-through.
- 12. Consider informal meeting with UDRP panel to obtain guidance.
- 13. Consider using Green/Sustainable Technology and features where possible.
- 14. Ensure there is a plan for where construction workers will park, to ensure no spillover onto local streets
- 15. Ensure safewings.ca are consulted to reduce the buildings' impacts on bird safety.

Initial Design Comments (Christopher Moise):

1. This proposal runs along one of the City's Design Priority Areas and must attend the City's UDRP. We recommend the proposal attend an Informal visit (prior to a full submission and is not a public meeting), with the City's UDRP to further discuss and evaluate various scenarios of development for the whole site;

- 2. We recommend a fulsome analysis of the City's Urban Design Guidelines for Highrise Buildings be provided, paying particular attention to tower floorplate maximums and transitioning to the surrounding context;
- 3. It appears that the two southern high-rise buildings are designed as mid-rise buildings and fall short of what the City would support;
- 4. Please see the Design Brief Terms of Reference provided and consult the City's website for details regarding the UDRP schedule (if applicable).
- 5. This is an exciting project in an area full of potential. We look forward to helping you achieve its goals with the highest level of design resolution. We are happy to assist and answer any questions regarding the above. Good luck.

Landscape Plan/Tree Conservation Report (Mark Richardson):

 A permit is required prior to any tree removal on site. Please contact the Planning Forester, Mark Richardson (<u>mark.richardson@ottawa.ca</u>) for information on obtaining the tree permit.

Transportation (Wally Dubyk):

- 1. This section of St Laurent Blvd had a major road modifications work. I believe that the portion of the ROW protection limits that extended into private property had been conveyed to the City. The proponent's surveyor should confirm the ROW limits.
- 2. St. Laurent Blvd is designated as an Arterial road within the City's Official Plan with a ROW protection of 44.50 metres. The ROW limits are to be shown on all the drawings and the offset distance (22.25 metres) to be dimensioned from the existing centerline of pavement.
- 3. ROW interpretation Land for a road widening will be taken equally from both sides of a road, measured from the centreline in existence at the time of the widening if required by the City. The centreline is a line running down the middle of a road surface, equidistant from both edges of the pavement. In determining the centreline, paved shoulders, bus lay-bys, auxiliary lanes, turning lanes and other special circumstances are not included in the road surface.
- 4. The TIA (Transportation Impact Assessment) Guidelines (2017) were approved by Transportation Committee and City Council on June 14, 2017. The new version of the TIA Guidelines (2017) that are posted on the web are now to be used for the TIA Submission for development applications.
- 5. The following list highlights the significant changes to the 2006 TIA Guidelines
 - (a) A Screening Test (Step 1) quickly determines if a transportation study is required. Consultants should fill in the form in Appendix B.
 - (b) Should the development generate 60 peak hour person trips, the TIA guidelines Step 2 Scoping report would be required.

- (c) Study Scope (Step 2) is site specifically tailored; there are no longer three defined types of TIA reports. Scoping report is required and needs to be signed off by TPM before the consultant moves on to Forecasting volumes.
- (d) Sign off from City Transportation Project Manager is required at key points in the review process prior to TIA Submission (Step 5). See Figure 1 on page 9 for a good flow chart of the process.
- (e) Multi Modal Level of Service (MMLOS) and Complete Street analysis is required to assess the impact of all modes of travel rather than just vehicle traffic.
- (f) There is no longer a requirement for consultant pre-approval. Consultants must now sign and submit the Credentials Form included in the Appendix A with each TIA report.
- (g) The TIA Submission (report, drawings and/or monitoring plan) is required with the development application.

Click on the website: https://ottawa.ca/en/transportation-impact-assessment-guidelines

- The proposed traffic signals will require the delegated authority approval from the Manager of Development Review, Transportation Engineering Services -RMA report is required.
- 7. A construction Traffic Management Plan is to be provided for approval by the Senior Engineer, Traffic Management, Transportation Services Dept.
- 8. Further comments relating to Site Plan Application will be provided.

Waste Collection

1. Please see City's Waste Management Guidelines for multi-unit residential: <u>http://ottawa.ca/calendar/ottawa/citycouncil/pec/2012/11-</u> <u>13/Solid%20Waste%20Collection%20Guidelines%20-%20Doc%201.pdf</u>

Process/Required Applications

- 1. Zoning By-law Amendment and Site Plan Control Public Consultation
- 2. Please name electronic files in the following format:
 - 1. June XX, Street Address, Landscape
 - 2. June XX, Street Address, SWM

Etc Etc

General Information

1. Please ensure the zoning table on the site plan is in the following format. Ensure that <u>all</u> zoning provisions and rates are shown and differentiate those that require a re-zoning or variance.

ZONING INFORMATION	MC16	
PROPOSED 8	STOREY BUILDING (MID-1	RISE APARTMENT)
	REQUIRED	PROPOSED
MINIMUM LOT WIDTH	NO MINIMUM	27.824m
MINIMUM LOT AREA	NO MINIMUM	881.37m²
MINIMUM BUILDING HEIGHT	6.7	27m
MAXIMUM BUILDING HEIGHT	27m	27m
MINIMUM FRONT YARD SETBACK	NO MINIMUM	2m
MINIMUM CORNER SIDE YARD SETBACK	N/A	N/A
MINIMUM REAR YARD SETBACK	3m & 7.5 ABOVE 3RD FLOOR	3m & 7.5 ABOVE 3RD FLOOR
MINIMUM INTERIOR SIDE YARD SETBACK	NO MINIMUM	0.6m & 2.44m
Parking Rate		
Motor Vehicle	NO	14 spaces
Bicycle Parking (0.5/unit)	26 spaces	27 spaces

2. Ensure that all plans and studies are prepared as per City guidelines – as available online...

https://ottawa.ca/en/city-hall/planning-and-development/informationdevelopers/development-application-review-process/developmentapplication-submission/guide-preparing-studies-and-plans

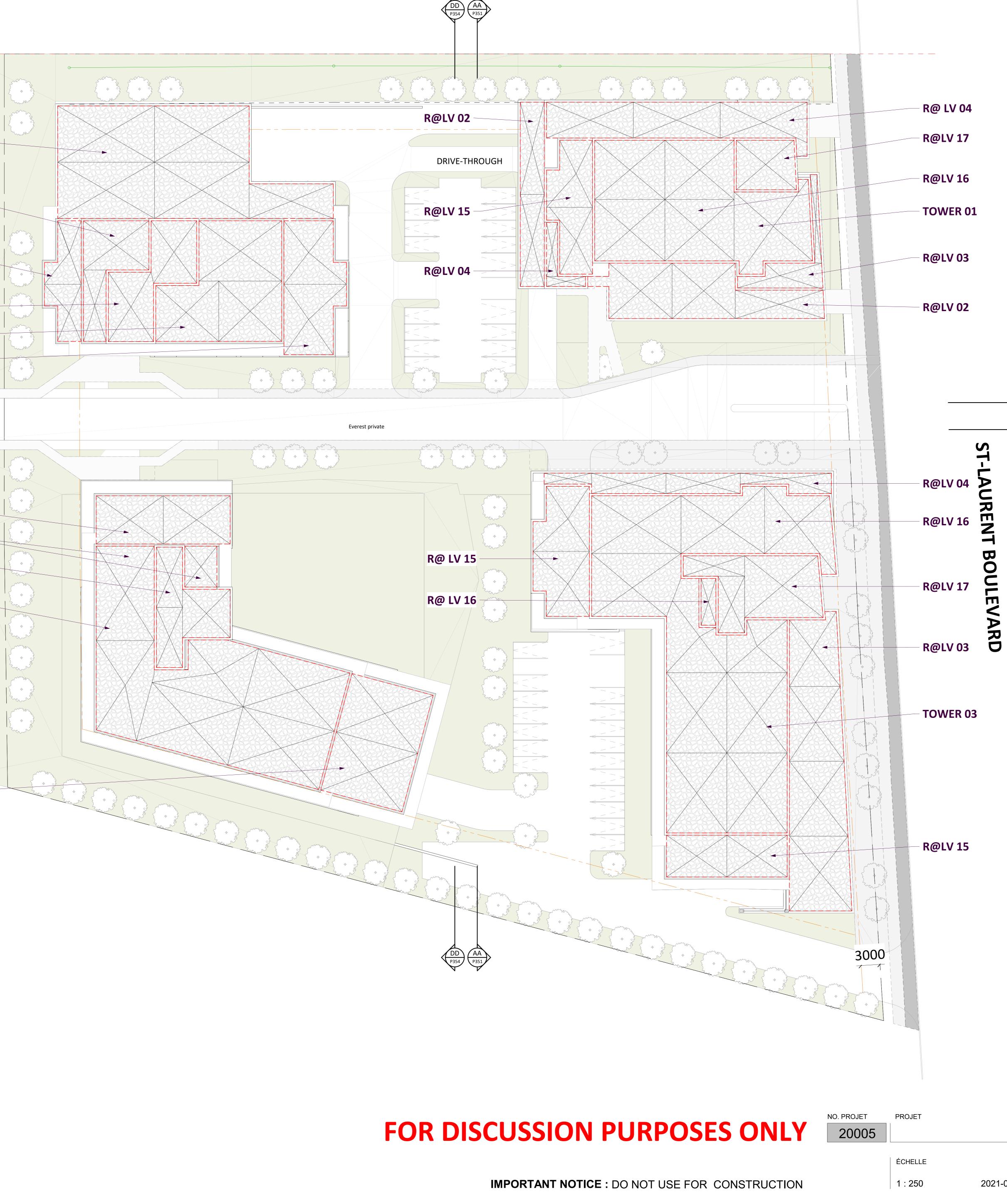
Key Policy Objectives for the City of Ottawa - as of December 2019

The approved preliminary policy directions address six key themes:

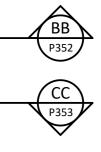
- **Growth management** policies would encourage more growth through intensification than through expansion into new or undeveloped areas, promote growth around transit, encourage sustainable village expansion and consider housing and transportation affordability.
- Energy and climate mitigation policies would ensure climate change and energy conservation considerations are integrated into city planning guidelines, promote local energy generation, set new energy standards for buildings and reduce emissions through transportation and infrastructure.
- Climate resiliency policies would align with the Climate Change Master Plan to reduce the urban heat island effect, further reduce the risk and impact of flooding and encourage more resilient homes, buildings, communities and infrastructure.
- **Transportation and mobility** policies would aim to see more than half of all trips made by sustainable transportation. The City would pursue related policies as part of the coming Transportation Master Plan update.
- **Neighbourhood context** policies would establish a framework of six areas, including the downtown core, inner urban area, outer urban area, suburban area, rural area and Greenbelt, and policies would be tailored to each so that growth can better address neighbourhood context.
- **Economic development** policies would direct major employment to established hubs and corridors, support economic development in rural and village areas and establish a new economic zone centred on the airport.

EXP Services Inc. 1740-1760 St. Laurent Blvd, Ottawa, ON OTT-00260579-A0 August 24, 2021

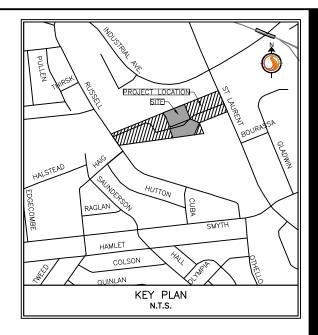
Appendix E – Drawings


Architectural Floor Plan – Level Rooftop DWG No. P205 Alta Vista Ridge Storm Drainage Plan DWG No. SD-1 Notes and Legend Sheet DWG No. C001 Existing Conditions and Removals Plan DWG No. C002 Site Servicing Plan DWG No. C100 Site Grading Plan DWG No. C200 Erosion and Sediment Control Plan DWG No. C300 Post-Development Catchments DWG No. C400

R@LV 01 -	
R@LV 13 -	
TOWER 02 -	
R@LV 14 -	
R@LV 13 -	
R@LV 12 -	
BB P352	
CC P353	
P353	
P353	
P353	
R@LV 12 -	
R@LV 12 -	
R@LV 12 - R@LV 13 -	
R@LV 12 - R@LV 13 - R@LV 14 -	
R@LV 12 - R@LV 13 - R@LV 14 -	
R@LV 12 - R@LV 13 - R@LV 14 -	
R@LV 12 - R@LV 13 - R@LV 14 -	
R@LV 12 - R@LV 13 - R@LV 14 -	
R@LV 12 - R@LV 13 - R@LV 14 -	



ST-LAURENT BOULEVARD DEVELOPMENT

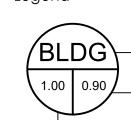

FLOOR PLAN - LEVEL ROOFTOP

											Building	Roof Drain ID	Drainage Area (m2)	Scupper Size
												#1	124	1 x 260mm
												#2	61	1 x 150mm
												#3	130	1 x 318mm
												#4	139	1 x 342mm
												#5	160	1 x 391mm
												#6	147	1 x 352mm
												#7	159	1 x 386mm
												#8	142	1 x 342mm
												#9	155	1 x 376mm
												#10	154	1 x 338mm
											374 Everest Private	#11	145	1 x 357mm
							Building	Poof Drain ID	Drainage Area (m2)	Souppor Sizo		#12	143	1 x 357mm
							Building	#1	151	1 x 386mm		#13	130	1 x 564mm
								#1	193	1 x 477mm		#14	49	-
								#2 #3	195	1 x 289mm		#20	81	1 x 198mm
		SCHEDULE (OF ROOF RELEASE	e rates				#3	117	1 x 386mm		#21	113	1 x 270mm
				100YR RELEASE	DRAWDOWN	AVAILABLE	355 Everest Private		174	1 x 415mm		#22	142	1 x 342mm
BUILDING	DRAIN TYPE	# DRAINS	100YR Head (m)	RATE (L/s)	TIME (hrs)	STORAGE (m3)		#5 #6	174	1 x 376mm		#23	104	1 x 352mm
	WATTS ACCUTROL (25%							#0 #7	162	1 x 395mm		#24	54	-
355 EVEREST PRIVATE	OFERI	9	0.143	8	1.7	54.0		#7	182	1 x 309mm		#25	126	1 x 304mm
374 EVEREST PRIVATE	WATTS ACCUTROL (11 DRAINS 25% OPEN, 11	22	0.147	14	2.2	108.8		#0 #9	129			#26	113	1 x 323mm
	DRAINS CLOSED)							#9	101	1 x 231mm		#27	132	1 x 256mm

SIB

525mmø STM Ø 0.30%

FX3



Stantec Consulting Ltd. 400 - 1331 Clyde Avenue Ottawa ON Tel. 613.722.4420 www.stantec.com

Copyright Reserved

The Contractor shall verify and be responsible for all dimensions. DO NOT scale the drawing - any errors or omissions shall be reported to Stantec without delay. The Copyrights to all designs and drawings are the property of Stantec. Reproduction or use for any purpose other than that authorized by Stantec is forbidden.

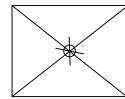
Legend

استعارات فتتنار المتعاري المتعا

 \rightarrow

0

0


AREA ID

- RUNOFF COEFFICIENT ------ STORM DRAINAGE AREA ha.

STORM DRAINAGE BOUNDARY MAXIMUM PONDING LIMITS

DIRECTION OF OVERLAND FLOW

PROPOSED STORM SEWER PROPOSED CATCHBASIN MANHOLE PROPOSED CATCHBASIN PROPOSED DITCH INLET CATCHBASIN PROPOSED DOUBLE CATCH BASIN PROPOSED SUB DRAIN CATCH BASIN AS PER CITY OF OTTAWA STANDARD DETAIL DRAWINGS L10 AND L11. PROPOSED PERFORATED SUBDRAIN --------- EXISTING STORM SEWER ---------- EXISTING CATCHBASIN MANHOLE ---- EXISTING SUBDRAIN CATCHBASIN — · · · · — · · · · — EXISTING SWALE

OOF DRAINAGE AREA

8	ISSUED FOR CITY REVIEW		JP	KS	21.05.28
7	ISSUED FOR REVIEW		JP	KS	21.04.09
6	ISSUED FOR COORDINATION		JP	KS	21.03.04
5	ISSUED FOR COORDINATION	JP	KS	20.11.25	
4	REVISED AS PER CITY COMMENTS	JP	SG	20.05.28	
3	REVISED AS PER CITY COMMENTS	JP	SG	20.04.24	
2	REVISED AS PER CITY COMMENTS	JP	SG	20.01.30	
1	ISSUED TO CITY FOR SPA		JP	SG	19.07.18
Re	evision		Ву	Appd.	YY.MM.DD
File	Name: 160401493-DB	JP	SG	JP	19.05.05
			Chkd	Dean	

Client/Project

768, BOUL. ST-JOSEPH, SUITE 100, GATINEAU (QUEBEC) CANADA, J8Y 4B8

HEAFEY GROUP

355 & 374 EVEREST PRIVATE

Scale ₀ 7.5

7 of 8


Revision

8

DWG# 18109

Sheet

OTTAWA, ON		

STORM DRAINAGE PLAN

C	DTTAWA, ON
Title	

Project No.

Drawing No.

SD-1

160401493

2 REVISED AS PER CITY CC)
1 ISSUED TO CITY FOR SPA	
Revision	
File Name: 160401493-DB	
Permit-Seal	

	×		RO