

Engineers, Planners & Landscape Architects

Engineering

Land/Site Development

Municipal Infrastructure

Environmental/ Water Resources

Traffic/ Transportation

Recreational

Planning

Land/Site Development

Planning Application Management

Municipal Planning

Urban Design

Expert Witness (OLT)

Wireless Industry

Landscape Architecture

> Streetscapes & Public Amenities

Open Space, Parks & Recreation

Community & Residential

Commercial & Institutional

Environmental Restoration

1104 Halton Terrace

Site Servicing and Stormwater Management Report

MAPLE LEAF HOMES

1104 HALTON TERRACE

SITE SERVICING AND STORMWATER MANAGEMENT REPORT

Prepared for:

Maple Leaf Homes

Prepared By:

NOVATECH Suite 200, 240 Michael Cowpland Drive Ottawa, Ontario

K2M 1P6

Issued: October 19, 2021 Revised: November 3, 2023 Revised: September 18, 2024 Revised: April 25, 2025 Revised: July 11, 2025

> Novatech File: 119024 Report Ref: R-2021-114

July 11, 2025

City of Ottawa Planning, Infrastructure and Economic Development Department Planning Services Branch 110 Laurier Ave. West, 4th Floor Ottawa, Ontario K1P 1J1

Attention: Abi Dieme, Project Manager - Infrastructure Approvals

Reference: 1104 Halton Terrace Site Servicing and Stormwater Management Report Novatech File No.: 119024

Novatech has prepared this Site Servicing and Stormwater Management Report on behalf of Maple Leaf Homes for 1104 Halton Terrace.

The report provides an analysis of sewer capacity (sanitary, storm), water distribution, and stormwater management for the proposed development site.

Contact the undersigned with any questions or comments.

Sincerely,

NOVATECH

11/2-

Lucas Wilson, P.Eng. Project Engineer

M:\2019\119024\DATA\REPORTS\SERVICING\20250711\20250711-SERVICING-SWM REPORT.DOCX

TABLE OF CONTENTS

1.0	INTRODUCTION	3
1.1 1.2	Background Additional Reports	
2.0	EXISTING CONDITIONS	5
2.1 2.2	Topography & Drainage Subsurface Conditions	
3.0	WATERMAIN	6
3.1 3.2 3.3 3.4	Existing Conditions Proposed Watermain System Design Criteria Hydraulic Analysis	6 6
4.0	SANITARY SERVICING	9
4.1 4.2 4.3 4.4	Existing Conditions Proposed Sanitary Sewer Outlet Design Criteria Proposed Sanitary Sewer System	9 9
5.0	STORM SEWER SYSTEM AND STORMWATER MANAGEMENT1	2
5.2 5. 5.3 5.4	1.1 Allowable Release Rate 1 Existing and Proposed Storm Infrastructure 1 2.1 Minor System (Storm Sewers) 1 2.2 Major System Design 1	2 3 5 5 6 8
6.0	ROADWAYS2	3
6.1	Proposed Road Infrastructure2	3
7.0	EROSION AND SEDIMENT CONTROL2	4
8.0	CONCLUSIONS AND RECOMMENDATIONS2	5
9.0	CLOSURE2	6

LIST OF TABLES

Table 3-1: Summary of Hydraulic Model Results - Maximum Day + Fire Flow

- Table 3-2: Summary of Hydraulic Model Results Peak Hour Demand
- Table 3-3: Summary of Hydraulic Model Results Maximum Pressure Check
- Table 5-1: Total Available Storage
- Table 5-2 Original Water Quality Volumes 1994 MOEE Manual vs Design
- Table 5-3 Updated Water Quality Volumes Includes 1104 Halton Terrace
- Table 5-4: Bioswale Design (Based on MECP & FHWA Guidelines)
- Table 5-5: Hydrologic Modelling Parameters (subcatchments)
- Table 5-6: Inlet Control Devices and Design Flows
- Table 5-7: Overland Flow Results
- Table 5-8: 100-year HGL Elevations
- Table 5-9: Comparison of Peak Flows
- Table 6-1: Roadway Structure

LIST OF FIGURES

- Figure 1 Site Location
- Figure 2 Site Plan
- Figure 3 Sanitary Collection
- Figure 4 Watermain Distribution
- Figure 5 Storm Drainage

LIST OF APPENDICIES

- Appendix A Correspondence
- Appendix B Watermain Boundary Conditions, FUS Calculations, and Modelling Results
- Appendix C Sanitary Design Sheets
- Appendix D STM Design Sheets, SWM Excerpts & PCSWMM Modelling Info

LIST OF DRAWINGS

119024-GR	Grading Plan
119024-GP	General Plan of Services
119024-STM1	Pre-Development Storm Drainage Area Plan
119024-STM2	Post-Development Storm Drainage Area Plan
119024-ESC	Erosion and Sediment Control Plan

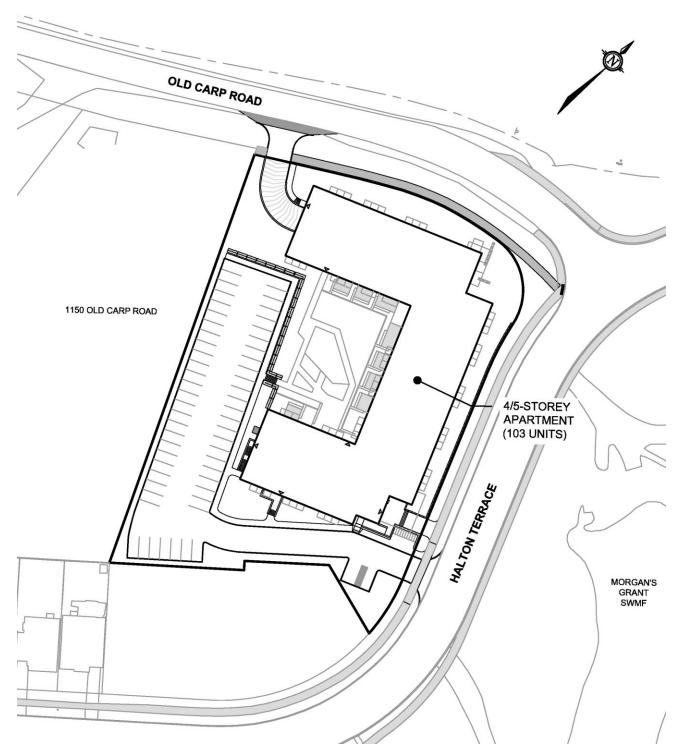
ENCLOSED

- Report (pdf)
- Drawings (pdf)
- PCSWMM Packaged Model Files

1.0 INTRODUCTION

Novatech has been retained by Maple Leaf Homes to prepare a Site Servicing and Stormwater Management Report for 1104 Halton Terrace in North Kanata, Ottawa.

This report outlines the servicing and proposed storm drainage and stormwater management strategy for the site.


1.1 Background

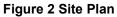

The proposed development is located within the Kanata North Community west of the intersection of Halton Terrace and Old Carp Road. The development is approximately 0.70 ha and is bounded by Halton Terrace to the south and east, Old Carp Road to the north, and existing residential to the west. Refer to **Figure 1** – Site Location and **Figure 2** – Site Plan.

Figure 1 – Site Location

The proposed development will consist of one 4/5-storey apartment building with underground parking consisting of 103 units. The proposed site plan is shown in **Figure 2**.

1.2 Additional Reports

This report provides information on the considerations and approach by which Novatech has designed and evaluated the proposed servicing for the Maple Leaf Homes Lands. This report should be read in conjunction with the following:

- Geotechnical Investigation, Proposed Development, 1104 & 1150 Halton Terrace, completed by Paterson, Report: PG4872-1, dated May 3, 2019.
- Master Servicing Study Update for Morgan's Grant Subdivision, completed by J.L. Richards & Associates Limited, Ref. JLR 17730 dated September 2003.
- Morgan's Grant Stormwater Management Facility Operation, Maintenance and Monitoring Manual, completed by IBI Group, Ref. 3350-RS dated March 2014

2.0 EXISTING CONDITIONS

2.1 Topography & Drainage

The proposed site is currently undeveloped and consists of agricultural lands with scattered mature trees. Access to the site is currently provided off Old Carp Road via a private gravel entrance.

The site generally slopes northerly towards an existing ditch line within the Halton Terrace and Old Carp Road rights-of-way. The existing ditch is routed through a 500mm diameter culvert crossing Old Carp Road.

2.2 Subsurface Conditions

Paterson completed a geotechnical investigation in support of the development, consisting of 1104 Halton Terrace and 1150 Old Carp Road properties.

The principal findings of the geotechnical investigation are as follows:

- The existing soil profile consists of having a layer of topsoil ranging from 0.05m to 0.35m thick. Silty sand to clayey silt was generally encountered underlying the topsoil ranging from 0.6 to 0.9m thick. Glacial till consisting of light brown clayey silt with some sand, gravel, cobbles, and boulders was encountered underlying the silty sand to clayey silt layer ranging from 0.15m to 0.65m thick.
- Practical refusal was encountered at all test hole locations ranging from 0.45m to 2.15m below grade.
- Based on field observations, groundwater level is expected to be within the bedrock. Besides spring melt being encountered at TP 1-19 and TP 5-19, there was no groundwater encountered at all remaining test pits upon completion of excavation.

The report provides engineering guidelines based on Paterson's interpretation of the borehole information and project requirements. Refer to the above-noted report for complete details.

3.0 WATERMAIN

3.1 Existing Conditions

The proposed development is located inside the 2W2C Pressure Zone. An existing 300mm watermain is located along Halton Terrace.

3.2 Proposed Watermain System

The site will be serviced by two 200mm water services, separated by an isolation valve, connecting to the existing 300mm watermain in Halton Terrace. **Figure 3** highlights the proposed works and connection point for the proposed watermains and hydrants. All existing watermain boundary conditions were provided by the City of Ottawa and are included in **Appendix B**.

3.3 Design Criteria

A fire flow demand of 150 L/s has been calculated, as per the Fire Underwriter's Survey (FUS) and calculations are included in **Appendix B**. Watermain analysis was completed based on the following criteria:

Demands:

 Apartment Density 	1.8 persons/unit
Average Daily Demand	280 L/capita/day
Max. Daily Demand	2.5 x Average Daily Demand
Peak Hour Demand	2.2 x Maximum Daily Demand
Fire Flow Demand	Fire Underwriters Survey

System Requirements:

•	Max. Pressure (Unoccupied Areas)	690 kPa (100 psi)
•	Max. Pressure (Occupied Areas)	552 kPa (80 psi)

Min. Pressure

Min. Pressure (Fire)

- 276 kPa (40 psi) excluding fire flows 138 kPa (20 psi) including fire flows
- Max. Age (Quality) 192 hours (onsite)

Friction Factors:

•

- Watermain Size C-Factor
- 200mm 100
- 300mm 120

Hydraulic modelling of the development was completed using EPANET 2.0. EPANET is public domain software capable of modelling municipal water distribution systems by performing simulations of the water movement within a pressurized system. EPANET uses the Hazen-Williams equation to analyze the performance of the proposed watermain and considered the following input parameters: water demand, pipe length, pipe diameter, pipe roughness, and pipe elevation.

3.4 Hydraulic Analysis

A summary of the model results are shown below in **Table 3-1**, **Table 3-2** and **Table 3-3**. Full model results are included in **Appendix B**. Refer to **Figure 3** below for details about the node and pipe network. The analysis also includes demand from the existing and proposed single family homes along Halton Terrace.

Table 3-1: Summary of Hydraulic Model Results - Maximum Day + Fire Flow

Operating Condition	Minimum Pressure
150 L/s	367.19 kPa (EXHYD1)

Table 3-2: Summary of Hydraulic Model Results - Peak Hour Demand

Operating Condition	Maximum Pressure	Minimum Pressure
3.305 L/s through system	460.00 kPa (EXHYD2)	386.02 kPa (EXHYD1)

The hydraulic modelling summarized above highlights the maximum and minimum system pressures during Peak Hour conditions, and the minimum system pressures during the Maximum Day + Fire condition. Since the Maximum Day + Fire Flow pressures are above the minimum 140 kPa, and the Peak Hour Pressures onsite fall within the normal operating pressure range (345 kPa to 552 kPa) the proposed development can be adequately serviced.

Table 3-3: Summary of Hydraulic Model Results – Maximum Pressure Check

Operating Condition	Maximum Pressure	Minimum Pressure	Maximum Age
0.601 L/s through system	468.43 kPa (T1)	434.09 kPa (EXHYD1)	11.14 Hours (B1)

The average day pressures throughout the system are below 552 kPa, therefore pressure reducing valves are not required.

Water retention was analyzed at each node during average day demand. The maximum age throughout the system is within City standards.

A copy of the boundary conditions provided by the City of Ottawa, fire flow calculations, and detailed hydraulic analysis results are included in **Appendix B**.

There are no deviations from the City of Ottawa Design Guidelines – Water Distribution (2010).

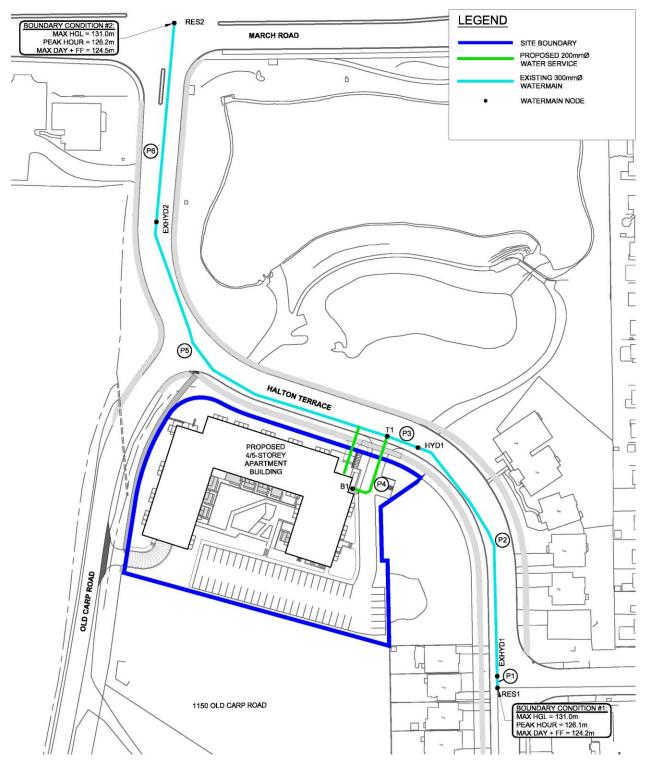


Figure 3 Watermain Distribution

4.0 SANITARY SERVICING

4.1 Existing Conditions

There is an existing 250mm sanitary sewer along Halton Terrace with an existing manhole adjacent to the proposed site. Flows from the site will be routed through the Morgan's Grant Subdivision sanitary sewers, which eventually outlets into the East March Trunk sewer.

4.2 **Proposed Sanitary Sewer Outlet**

A 200mm sanitary sewer and service will be installed connecting into the existing 250mm sanitary sewer network in Halton Terrace. The proposed outlet is consistent with the approved Morgan's Grant Master Servicing Study Update (J.L. Richards). The proposed sanitary layout can be seen on **Figure 4** below.

4.3 Design Criteria

Sanitary sewers, for the proposed development, are designed based on criteria established by the City of Ottawa in the following documents:

- Section 4.0 of the City of Ottawa Sewer Design Guidelines (October 2012).
- Technical Bulletin ISTB-2018-01 from the City of Ottawa regarding new sanitary design parameters. Design parameters from this technical bulletin will supersede values within the Sewer Design Guidelines (2012).

The resulting design parameters are summarized as follows:

Population Flow = 280 L/capita/day Infiltration = 0.33 L/s/ha Apartment = 1.8 persons per unit Maximum Residential Peak Factor = 4.0 Harmon Correction Factor = 0.8 Minimum velocity = 0.6m/s Manning's n = 0.013

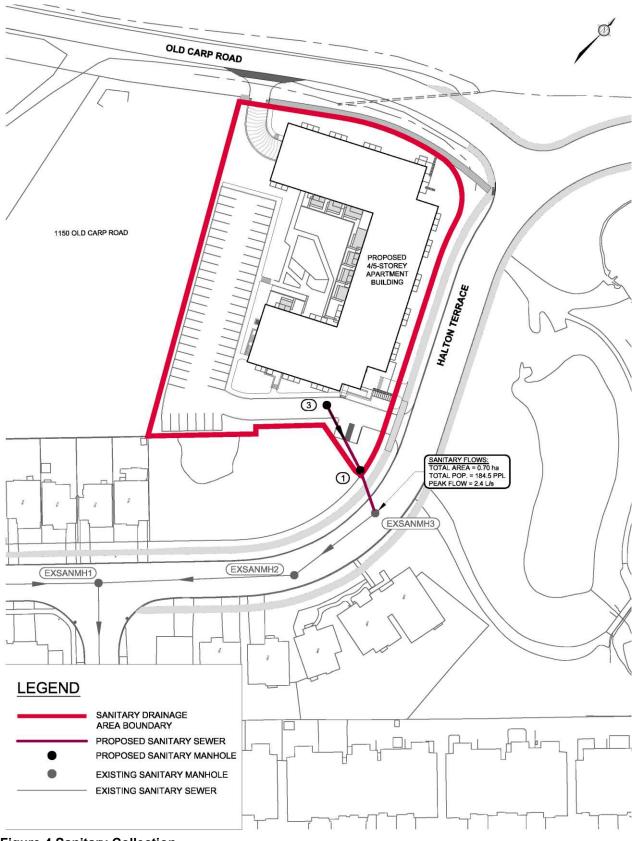


Figure 4 Sanitary Collection

4.4 Proposed Sanitary Sewer System

The calculated peak sanitary design flow for the development is 2.4 L/s. The total flow being directing to the 250mm sanitary sewer in Halton Terrace, consisting of the proposed site, future single-family homes and existing single-family homes is 3.1 L/s. The Morgan's Grant Master Servicing Study Update accounted for a total flow of 5.6 L/s through the existing 250mm sanitary sewers, exceeding the current calculated peak design flow of 3.1 L/s. For detailed calculations refer to the Sanitary Sewer Design Sheet located in **Appendix C**.

All residential units will have a gravity connection to the sanitary sewers.

The building USF is at an elevation of 80.97m and is too low to provide a gravity connection for the underground parking floor drains. A pump will be required to connect the underground parking floor drains to the 200mm diameter sanitary service.

The downstream sanitary sewers within Halton Terrace have adequate capacity to accommodate the proposed development as shown in the sanitary design sheet provided in **Appendix C**.

5.0 STORM SEWER SYSTEM AND STORMWATER MANAGEMENT

5.1 Stormwater Management Criteria

The following stormwater management criteria for the proposed development was prepared in accordance with the City of Ottawa Sewer Design Guidelines (October 2012) and the Master Servicing Study Update for Morgan's Grant Subdivision (J.L. Richards, September 2003).

- Provide a dual drainage system (i.e. minor and major system flows);
- Maximize the use of surface storage available on site;
- Control runoff to the allowable release rates for flows directed to Morgan's Grant SWMF and to the Old Carp Road ditch and specified in **Section 5.1.1** using on-site storage;
- Ensure that no surface ponding will occur on the paved surfaces (i.e. private drive aisles or parking areas) during the 2-year storm event; and,
- Ensure that ponding is confined within the parking areas at a maximum depth of 0.35m for both static ponding and dynamic flow.

5.1.1 Allowable Release Rate

Flows to Morgan's Grant SWMF

The allowable release rate was established based on the Morgan's Grant SWM Facility design report, which specifies a minor system release rate of 339 L/s for the 6.4 ha area directed to the SWM facility (represented as Area 11 in the Master Storm Drainage Plan for Morgan's Grant). This corresponds to an allowable release rate of 53 L/s/ha. The development has a total area of 0.70 ha and corresponds to an allowable release rate of 37.1 L/s for all storms up-to and including the 100-year storm event.

Flows to Old Carp Road 500mm Culvert

The allowable (pre-development) release rate has been calculated using the Rational Method with the following parameters:

- Drainage Area
 - 0.194 ha (Site boundary)
- Runoff Coefficient
 - 0.21 (Runoff coefficient increased by 25%, up to a maximum value of 1.00, for the 100-yr event.
- Rainfall Intensity
 - Based on City of Ottawa IDF data (Ottawa Sewer Design Guidelines) with a timeof-concentration of 10 minutes (derived using Uplands Method).

The allowable (pre-development) release rates are as follows. Refer to **Appendix D** for supporting calculations:

2-year	8.7 L/s
5-year	11.8 L/s
100-year	25.9 L/s

5.2 Existing and Proposed Storm Infrastructure

Existing Conditions

Under existing conditions, storm runoff from the site generally flows north to an existing ditch within the Halton Terrace and Old Carp Road rights-of-way. A portion of the site (0.42 ha) is directed to the storm sewer in Halton Terrace while the remainder of the site (0.28 ha) is routed through a 500mm diameter culvert crossing Old Carp Road, ultimately outletting to Shirley's Brook.

There are existing 375mm and 1500mm diameter storm sewers on Halton Terrace, outletting to the adjacent Morgan's Grant SWMF.

Proposed Conditions

An area of 0.42 ha will be routed to the 1500mm diameter storm sewer located at the main entrance on Halton Terrace. The remaining 0.28 ha, consisting of rooftop, underground parking ramp, and landscaped areas, will be routed to the 500mm diameter culvert crossing Old Carp Road. Refer to **Figure 5** for the storm servicing layout.

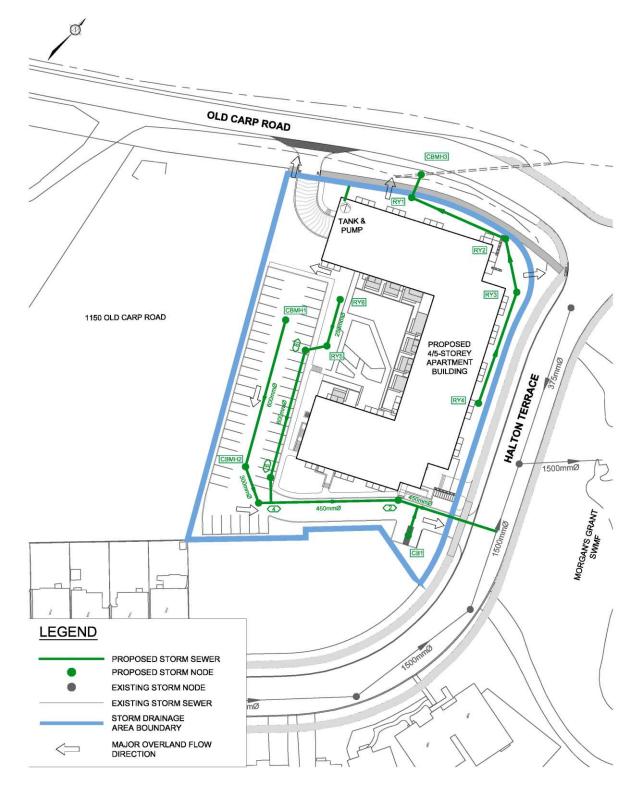


Figure 3 Storm Drainage

5.2.1 Minor System (Storm Sewers)

Storm servicing has been provided using a dual-drainage system. Runoff from frequent events will be conveyed by the proposed storm sewers (minor system), while flows from large storm events that exceed the capacity of the minor system will be stored underground using a series of Stormtech SC-800 storage chambers and 600mm diameter HDPE storage pipes, on the surface in road sags, and/or conveyed overland along defined overland flow routes (major system).

Storm Sewer Design Criteria

The following is the storm sewer design criteria [Ottawa Sewer Design Guidelines (Oct. 2012)]:

- Rational Method (Q) = 2.78CIA, where
 - Q = peak flow (L/s)
 - C = runoff coefficient
 - C = (0.70 * %Imp.) + 0.20
 - I = rainfall intensity for a 2-year return period (mm/hr)
 - o $I_{2yr} = 732.951 / [(Tc(min) + 6.199)]^{0.810}$
 - A = site area (ha)
- Minimum Pipe Size = 250 mm; Minimum / Maximum Full Flow Velocity = 0.8 m/s / 3.0 m/s

The on-site storm sewers are sized to convey peak flows corresponding to a 2-year return period storm event based on the Rational Method. Refer to the storm sewer design sheets provided in **Appendix D**.

Underground Storage

Underground storage will be required to attenuate runoff from the site. Underground storage will be provided using Stormtech SC-800 storage chambers and 600 mm diameter HDPE storage pipes, providing 105.6 m³ of storage. Refer to **Appendix D** for further details. The proposed layout of underground storage pipes are shown on the General Plan of Services (drawing 119024-GP).

Inlet Control Devices

Inlet control devices (ICDs) are to be installed within the selected roadway structures and rearyard catchbasins. The ICDs have been sized to control minor system peak flows to the Halton Terrace storm sewer and Old Carp Road ditch to the allowable release rates and to ensure that no ponding occurs during the 2-year storm event.

Hydraulic Grade Line

The building USF is at an elevation of 80.97m and is too low to provide a gravity connection for the building foundation drain. A storage tank and pump are proposed to direct flows from the foundation drain and underground parking access ramp to the Old Carp Road ditch.

5.2.2 Major System Design

The site has been designed to convey private roadway and parking area runoff from storms that exceed the minor system capacity to Halton Terrace through the private entrance. The landscaped areas adjacent Halton Terrace and Old Carp Road have been designed to convey runoff that exceed the minor system capacity to the existing ditch along Old Carp Road. A third major overland flow route is provided for the shared amenity area, which is directed adjacent the underground parking ramp and outlets to the existing ditch along Old Carp Road. The site has been graded to ensure the 100-year peak overland flows are confined within the parking and landscaped areas.

Areas flowing uncontrolled to Halton Terrace and the existing Old Carp Road ditch are included as part of the minor system release rate.

Surface/Underground Storage

The stage-storage curves for each inlet were calculated based on the proposed Grading Plan (drawing 119024-GR) and the proposed underground storage locations. The total storage shown in the stage-storage curves at each inlet is provided in **Appendix D**. Approximately 105.6 m^3 of underground storage and 85.6 m^3 of surface storage is available on-site.

The total storage provided underground and on the surface is as follows:

Structure ID	Underground Storage (m ³)	Surface Storage (m ³)	Total Storage (m³)
	Provided	Provided	Provided
CB01*	-	5.2	5.2
TOTAL	-	5.2	5.2
CBMH01	-	45.3	45.3
CBMH02*	12.0	30.3	42.3
TOTAL	12.0	75.6	87.6
RY05	-	2.4	2.4
RY06	-	2.4	2.4
MH06*	10.4	-	10.4
TOTAL	10.4	4.8	15.2
RY01*	83.2	-	83.2
TOTAL	83.2	-	83.2
TOTAL OVERALL	105.6	85.6	191.2

Table 5-1: Total Available Storage

*Structure with ICD.

5.3 Stormwater Quality Control

Flows directed to Morgan's Grant SWMF

Subcatchments A-01 to A-04, A-07 and B-01 are directed to the Morgan's Grant Stormwater Management Facility which will provide water quality control. The Morgan's Grant Stormwater Management Facility Operation, Maintenance and Monitoring Manual, prepared by IBI, specified the required and provided water quality volumes. The report specifies an overall tributary drainage area of 85.7 ha with an imperviousness of 32% and does not include the lands associated with our proposed development at 1104 Halton Terrace. The original water quality volumes are provided in the table below for reference.

Level 2 Protection (70% TSS)*						
Drainage Tributary to Facility (ha)	Type of SWM Facility	Imperviousness Ratio	Permaner (m	0	Extended (m	
()			Required	Provided	Required	Provided
85.7	Wet Pond	32 % (90 m³/ha)	4,285	11,000	3,428	13,000

Table 5-2 Original Water Quality Volumes – 1994 MOEE Manual vs Design

Table 5-3 Updated Water Quality Volumes – Includes 1104 Halton Terrace

Level 2 Protection (70% TSS)*						
Drainage Tributary to Facility (ha)	Type of SWM Facility	Imperviousness Ratio	Permaner (m	1 ³)	Extended (m	1 ³)
			Required	Provided	Required	Provided
86.131	Wet Pond	32 % (90 m³/ha)	4,307	11,000	3,445	13,000

As shown above in **Table 5-3**, even with the inclusion of our development, Morgan's Grant SWMF has sufficient volume to provide water quality control.

Flows directed to Old Carp Road Culvert

Most of the land being directed to Old Carp Road consists of rooftop and landscaped areas which do not require water quality control. Subcatchment A-09, with an area of 0.017 ha and an imperviousness of 79.4%, consists of landscaped area and an underground parking access ramp. Due to the underground access ramp, this area will require water quality control prior to being released to the existing Old Carp Road ditch system. The access ramp will be captured by a trench drain and directed to an internal storage tank, designed by others, which will be outfitted with a pump to discharge flow to a bioswale. The bioswale will consist of a grassed surface with landscape planting, 200 mm topsoil (filter media) and 200 mm of clear stone to promote infiltration.

Under appropriate conditions, bioswales permit significant amounts of total suspended solid (TSS) removal and the proposed bioswale has been designed based on the following publications:

- Young et. al., "Evaluation and Management of Highway Runoff Water Quality (FHWA, 1996)
- Stormwater Best Management Practices in an Urban Setting: Selection and Monitoring (FHWA, 1996)
- Stormwater Management Planning and Design Manual (MOE, 2003)

Case studies on the effectiveness of bioswales for water quality control have provided variable results, which precludes the ability to precisely calculate pollutant efficiencies. However, the

above referenced publications indicate that properly designed swales can provide in excess of 80% long-term TSS removal.

Both dry and wet swales demonstrate good pollutant removal, with dry swales providing significantly better performance for metals and nitrate. Dry swales typically remove 65 percent of total phosphorous (TP), 50 percent of total nitrogen (TN), and between 80 and 90 percent of metals. The total suspended solids removal is typically between 80 and 90 percent (FHWA, 1996).

The proposed bioswale has been designed to meet MECP standards for water quality treatment. The recommended MECP & FHWA criteria for water quality are summarized in **Table 5-4**.

Criteria Recommended		Bioswale				
Channel Slope	< 4.0% (MOE)	1.50%				
Bottom Width	> 0.75m (MOE)	0.15 m				
Side Slopes (H:V)	> 2.5:1 (MOE)	15:1				
25mm Event (Wa	25mm Event (Water Quality)					
Peak Flow		2.1 L/s				
Flow Depth	± 0.1 (FHWA)	0.02 m				
Velocity	< 0.5m/s (MOE)	0.20 m/s				
100-year Event (SCS 100-12hr)						
Peak Flow		3.7 L/s				
Flow Depth	< 0.5m (MOE)	0.03 m				
Velocity	< 0.5m/s (MOE)	0.24 m/s				

 Table 5-4: Bioswale Design (Based on MECP & FHWA Guidelines)

5.4 Hydrologic & Hydraulic Modelling

The City of Ottawa Sewer Design Guidelines (October 2012) require hydrologic modelling for all dual drainage systems. The performance of the proposed storm drainage system for 1104 Halton Terrace was evaluated using the PCSWMM hydrologic/hydraulic modelling software.

Design Storms

The PCSWMM model includes the following design storms based on the City of Ottawa IDF data presented in the City of Ottawa Sewer Design Guidelines (October 2012):

- 3-hour Chicago Storm Distribution (10-minute time step)
- 12-hour SCS Storm Distribution (30-minute time step)

The 3-hour Chicago storm distribution includes the 2-year, 5-year, 100-year, and 100-year (+20%) return periods while the 12-hour SCS storm distribution includes only the 100-year return period.

The 3-hour Chicago storm distribution was determined to be the critical design storm for the proposed development.

PCSWMM Model Schematics, Output Data and Modelling Files

PCSWMM model schematics and output data for the 100-year 3-hour Chicago storm distribution are provided in **Appendix D**.

Table 5-5 provides a summary of the hydrologic modelling parameters (subcatchments).

Area ID	Catchment Area (ha)	Runoff Coefficient (%)	Percent Imperviousness (%)	Zero Imperviousness (%)	Equivalent Width (m)	Average Slope (%)			
Controlled Areas		(70)	(70)	(70)	(11)	(70)			
A-01	0.086	0.78	82.4	0	29	1			
A-02	0.093	0.52	45.7	0	37	1			
A-03	0.088	0.76	80.5	0	44	1			
A-04	0.090	0.60	57.1	0	23	4			
A-05	0.014	0.25	7	0	7	1			
A-06	0.031	0.25	7	0	21	1			
A-07	0.053	0.90	100	95	11	1			
A-08	0.028	0.25	7	0	11	1			
A-09	0.017	0.76	79.4	0	9	5			
A-10	0.077	0.90	100	95	15	1			
A-11	0.093	0.90	100	95	19	1			
Uncontrolled Are	Uncontrolled Areas								
B-01	0.005	0.32	16.7	0	3	3			
B-02	0.024	0.25	7	0	7	2			
Site	0.700	0.68	68.7	-	-	-			

Table 5-5: Hydrologic Modelling Parameters (subcatchments)

Subcatchment Areas / Runoff Coefficients

- The proposed site has been divided into subcatchments based on the tributary drainage areas to each inlet of the proposed storm sewer system, as shown on the Storm Drainage Area Plan (Drawing 119024-STM).
- Weighted runoff coefficients were assigned based on the percent impervious values used in the PCSWMM model. As per the City of Ottawa Sewer Design Guidelines (October 2012), the runoff coefficient is based on the following equation:

$$C = (\% Imp. * 0.7) - 0.2$$

Infiltration

Infiltration losses for all catchment areas were modeled using Horton's infiltration equation, which defines the infiltration capacity of the soil over the duration of a precipitation event using a decay function that ranges from an initial maximum infiltration rate to a minimum rate as the storm progresses. The default values for the Sewer Design Guidelines were used for all catchments.

Horton's Equation:	Initial infiltration rate: $f_0 = 76.2 \text{ mm/hr}$
$f(t) = f_c + (f_o - f_c)e^{-k(t)}$	Final infiltration rate: $f_c = 13.2 \text{ mm/hr}$
	Decay Coefficient: k = 4.14/hr

Depression Storage

• The default values for depression storage (1.57 mm impervious / 4.67 mm pervious) have been applied to all catchments.

Subarea Routing

• Subarea routing for all subcatchments has been set to 'direct to outlet'.

Equivalent Width

• The equivalent width parameter for all subcatchments is based on the measured flow length.

Minor System Conduits (Bend / Exit Losses)

- The minor system network was created in Civil3D and imported into PCSWMM.
- The following exit losses have been inputted into the model. They represent the loss coefficient based on the bend angle, as per the Appendix 6-B in the City of Ottawa Sewer Design Guidelines (October 2012).

Bend Angle	Loss Coefficient
0	0.00
15	0.09
30	0.21
45	0.39
60	0.64
75	0.96
90	1.32

Downstream Boundary Condition (Minor System)

- The storm sewer outlets for the proposed development are the existing 500mm culvert crossing Old Carp Road and the 1500mm diameter storm sewer in Halton Terrace.
- The Master Servicing Study Update for Morgan's Grant Subdivision estimated a 100-year HGL elevation of 82.65m at the proposed connection (See **Appendix D** for MSS excerpts).
- A 100-yr boundary condition of 81.23m at the 500mm culvert was used, representing the obvert of the culvert. The culvert analysis included in Appendix D indicates that under existing conditions, the 500mm culvert will be flowing full during the 100-year storm event.

An additional PCSWMM model has been provided for comparison purposes and includes the upstream existing drainage area routed to the Old Carp Road 500mm diameter culvert. The model includes the proposed 500mm diameter culvert extending from CBMH3 to the western edge of the property. The additional analysis was used to determine the upstream water levels and compare with the boundary condition assumption of 81.23m mentioned above. The 100-year boundary condition of 81.23m at CBMH3 produced higher upstream water levels within RY1 to RY4. The difference in upstream water levels during the 100-year storm event was approximately 3cm. The analysis results provided in this report are based on the conservative approach that uses a 100-year boundary condition of 81.23m at the 500mm culvert as this produced the highest water levels upstream of the existing culvert.

5.4.1 PCSWMM Model Results

Inlet Control Devices (ICDs)

ICDs are provided for specified structures within the roadway and catchbasins in the landscaped areas. The ICD sizes and design flows are provided in **Table 5-6**. The ICDs have been sized to maximize surface storage, limit the outlet peak flows to the allowable release rates and ensure no surface ponding during a 2-year storm event.

	ICD Size & Inlet Rate							
Structure ID	ICD Type	T/G	Orifice Invert	100-year Head on Orifice	2-year Orifice Peak Flow*	5-year Orifice Peak Flow*	100-year Orifice Peak Flow*	
		(m)	(m)	(m)	(L/s)	(L/s)	(L/s)	
CB01	106mm	83.32	82.32	1.13	11.1	17.1	21.2	
CBMH02	Tempest LMF	85.55	82.88	2.96	6.8	7.2	7.4	
RY01	Tempest LMF	82.75	81.06	1.63	8.3	9.5	12.2	
MH06	Tempest LMF	85.82	82.70	1.12	3.0	4.3	8.0	

Table 5-6: Inlet Control Devices and Design Flows

*From PCSWMM model, 3-hour Chicago storm distribution.

Both IPEX Tempest LMF and MHF ICDs are proposed for the site.

Overland Flow (Major System)

The major system network was evaluated using the PCSWMM model to ensure that the ponding depths conform to the City of Ottawa Sewer Design Guidelines (Oct. 2012). A summary of ponding depths at each inlet for the 2-year, 5-year, 100-year and 100-year (+20%) events are provided in the table below (See **Appendix C** for a more detailed ponding table). The maximum static and dynamic ponding depths are less than 0.35m during all events up to and including the 100-year + 20%, thereby meeting the major system criteria. In addition, there is no cascading flow over the highpoints during the 100-year storm event.

Table 5-7:	Overland Flow Results
------------	------------------------------

	TIC		Static ding		HGL Elev. (m)			Ponding Depth (m)			
Structure	T/G (m)	Elev. (m)	Spill Depth (m)	2-yr	5-yr	100-yr	100-yr (+20%)	2-yr	5-yr	100- yr	100-yr (+20%)
CB01	83.32	83.45	0.13	82.59	82.89	83.45	83.46	0.00	0.00	0.13	0.14
CBMH01	85.55	85.90	0.35	85.43	85.68	85.84	85.86	0.00	0.13	0.29	0.31
CBMH02	85.55	85.85	0.30	85.43	85.68	85.84	85.86	0.00	0.13	0.29	0.31
RY01	82.78	82.86	0.08	81.77	81.98	82.69	82.92	0.00	0.00	0.00	0.14
RY02	83.07	83.07	0.00	81.77	81.98	82.69	82.92	0.00	0.00	0.00	0.00
RY03	82.90	82.95	0.05	81.77	81.97	82.70	82.92	0.00	0.00	0.00	0.02

	T/G		Static ding		HGL Elev. (m)			Ponding Depth (m)			(m)
Structure	I/G	Elev.	Spill Depth	2-yr	5-yr	100-yr	100-yr (+20%)	2-yr	5-yr	100- yr	100-yr (+20%)
	(m)	(m)	(m)				, ,				. ,
RY04	83.16	83.26	0.10	81.77	81.98	82.70	82.92	0.00	0.00	0.00	0.00
RY05	83.80	83.90	0.10	82.89	83.04	83.83	83.91	0.00	0.00	0.03	0.11
RY06	83.80	83.90	0.10	82.89	83.05	83.83	83.91	0.00	0.00	0.03	0.11

*From PCSWMM model, 3-hour Chicago storm distribution.

An expanded table of the ponding depths at low points in the roadway and landscaped areas (including the stress-test event) is provided in **Appendix D**. Based on these results, the proposed storm drainage system will not experience any adverse flooding even with a 20% increase to the 100-year event.

Hydraulic Grade Line

Table 5-8 provides a summary of the 100-year HGL elevations at each storm manhole.

Table 5-8: 100-year HGL Elevations

Manhole ID	MH Obvert Elevation (m)	T/G Elevation (m)	HGL Elevation (100yr) (m)	Design USF (m)
MH02	81.80	83.79	82.67	80.97
MH04	82.62	85.74	82.68	-
Connection to Ex.	81.66	83.22	82.65	-

*From PCSWMM model, 3-hour Chicago storm distribution.

As shown above in **Table 5-8**, the USF is at an elevation of 80.97m and is too low to provide a gravity connection for the foundation drain to the proposed storm sewer system or to the existing ditch along Old Carp Road. A storage tank and pump (by others) will be required within the underground parking area to discharge flows from the foundation drain and the ramp trench drain to surface within a proposed bioswale adjacent to Old Carp Road.

Comparison of Peak Flows

Table 5-9 provides a comparison of the minor/major system flows from the proposed development to Klondike Road and the 500mm culvert crossing Old Carp Road.

Outlet	Design Event	Allowable Release Rate (L/s)	Controlled Minor System Release Rate (L/s)	Uncontrolled Minor System Release Rate (L/s)	Total Minor System Release Rate (L/s)	Major System Release Rate (L/s)
	2-yr		17.0	0.2	17.2	0
1500m STM Sewer	5-yr	37.1	25.8	0.4	26.2	0
001101	100-yr		35.6	1.5	37.1	0
	2-yr	8.7	8.3	0.4	8.7	0
Old Carp Road Ditch	5-yr	11.8	9.5	1.2	10.7	0
	100-yr	25.9	12.2	5.0	17.2	0

 Table 5-9: Comparison of Peak Flows

⁽¹⁾ PCSWMM model results for the 3-hour Chicago storm distribution.

The 100-year minor system peak flow to Halton Terrace is controlled to the allowable release rate of 37.1 L/s for the proposed site. The peak flows to the Old Carp Road ditch are controlled to the allowable release rates for all storm events. The total 100-year major system peak flow is contained on-site through a combination of underground and surface storage.

6.0 ROADWAYS

6.1 Proposed Road Infrastructure

Paterson has prepared a Geotechnical Investigation report for 1104 Halton Terrace (May 2019) that provides recommendations for roadway structure, servicing and foundations. The site consists of a private roadway and at-grade parking; the recommended roadway structure is as follows:

Table 6-1: Roadway Structure

Roadway Material Description	Pavement Structure Layer Thickness (mm) Private Road
Asphalt Wear Course: Superpave 12.5 (Class B)	40
Asphalt Binder Course: Superpave 19.0 (Class B)	50
Base: Granular A	150
Sub-Base: Granular B – Type II	<u>400</u>
Total	640

7.0 EROSION AND SEDIMENT CONTROL

Erosion and sediment control measures will be implemented during construction in accordance with the "Guidelines on Erosion and Sediment Control for Urban Construction Sites" (Government of Ontario, May 1987). An Erosion and Sediment Control Plan will be prepared as part of the detailed design.

Typical erosion and sediment control measures recommended include, but are not limited to, the use of silt fences around perimeter of site (OPSD 219.110), catch basin inserts under catch basin/maintenance hole lids, heavy duty silt fence barrier (OPSD 219.130), straw bale check dams (OPSD 219.180), rock check dams (219.210 or OPSD 219.211), riprap (OPSS 511), mud mats, silt bags for dewatering operations, topsoil and sod to disturbed areas and natural grassed waterways. Dewatering and sediment control techniques will be developed for the individual situations based on the above guidelines and utilizing typical measures to ensure erosion and sediment control is controlled in an acceptable manner and there is no negative impact to adjacent Lands, water bodies or water treatment/conveyance facilities.

It will be the responsibility of the Contractor to submit a detailed construction schedule and appropriate staging, dewatering and erosion and sediment control plans to the Contract Administrator for review and approval prior to the commencement of work.

General Erosion and Sediment Control Measures

- All erosion and sediment control measures are to be installed to the satisfaction of the engineer, the municipality and the conservation authority prior to undertaking any site alterations (filling, grading, removal of vegetation, etc.) and remain present during all phases of site preparation and construction.
- A qualified inspector, provided by the owner, should conduct daily visits during construction to ensure that the contractor is working in accordance with the design drawings and that mitigation measures are being implemented as specified.
 - A light duty silt fence barrier is to be installed in the locations shown on the Erosion and Sediment Control Plan.
 - Rock check dams and/or straw bales are to be installed in drainage ditches.
 - Catch basin inserts are to be placed under the grates of all existing and proposed catchbasins and structures.
 - After complete build-out, all sewers are to be inspected and cleaned and all sediment and construction fencing is to be removed.
- The contractor shall ensure that proper dust control is provided with the application of water (and if required, calcium chloride) during dry periods.
- The contractor shall immediately report to the engineer or inspector any accidental discharges of sediment material into any ditch or sewer system. Appropriate response measures shall be carried out by the contractor without delay.

The contractor acknowledges that failure to implement erosion and sediment control measures may result in penalties imposed by any applicable regulatory agency.

8.0 CONCLUSIONS AND RECOMMENDATIONS

Sanitary Servicing

- Wastewater will discharge to a 250mm sanitary sewer in Halton Terrace consistent with the approved Morgan's Grant Master Servicing Study.
- The peak design flow from the development is 2.4 L/s, which is less than the flows identified in the Master Servicing Study (5.6 L/s).
- All residential units can be serviced by gravity sewer.
- A pump is required to discharge the underground parking floor drains to the 200mm sanitary sewer.

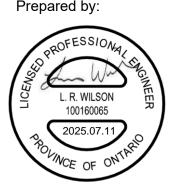
<u>Watermain</u>

- Two 200mm service connections are proposed to service the development with connections to the 300mm watermain in Halton Terrace.
- The proposed water distribution network provides fire protection and domestic supply under all operating conditions.

Stormwater Management

- Drainage is conveyed to the Halton Terrace storm sewer and the Old Carp Road ditch in accordance with flow control limits.
 - Storm sewers (minor system) have been designed to convey the uncontrolled 2year peak flow using the Rational Method.
 - Inflows to the minor system will be controlled using inlet control devices to the allowable release rates identified in Section 5.1.1.
 - The proposed building requires a storage tank and sump pump for collection of drainage from the foundation weeper and ramp trench drain, all of which shall discharge to a bioswale prior to outletting to the existing roadside ditch along Old Carp Road.
 - Roof drains shall discharge to surface within parking areas or landscaped areas as shown on the General Plan of Services (119024-GP).
- Rainfall in excess of the allowable minor system release rate is stored underground and/or on the surface (parking lot, swale depressions).
 - Major overland flow is routed to Halton Terrace and Old Carp Road for emergency purposes when rainfall exceeds the 100-year design storm.
 - Maximum ponding depth does not exceed 0.35m during the 100-year design storm.
 - No surface ponding occurs during the 2-year design storm.
 - Underground storage is provided within underground storage chambers, pipes and structures upstream of the flow control devices.

Erosion and Sediment control


- Erosion and sediment control measures (i.e. filter fabric, silt fences, etc.) will be implemented prior to construction and remain in place until vegetation is established.
- The Erosion and Sediment Control Plan outlines recommended measures to mitigate negative impact to adjacent lands, water bodies and water treatment/conveyance facilities.

9.0 CLOSURE

The preceding report is respectfully submitted for review and approval. Please contact the undersigned should you have questions or require additional information.

NOVATECH

Prepared by:

Lucas Wilson, P.Eng. Project Engineer

FOR REVIEW

Mark Bissett, P.Eng. Senior Project Manager

Appendix A Correspondence

Lucas Wilson

From:	Christine McCuaig <christine@q9planning.com></christine@q9planning.com>
Sent:	Friday, November 20, 2020 8:30 AM
То:	Brian Saumure; Mark Bissett; Jennifer Luong
Subject:	Fwd: Pre-Consultation Follow-Up: 1104 Halton Terrace
Attachments:	AODA Checklist.docx; 1104 Halton Terrace_design_brief_submission requirements.pdf;
	Plans & Study List (2020).pdf

From: "McCreight, Laurel" <Laurel.McCreight@ottawa.ca> Date: November 20, 2020 at 7:55:06 AM EST To: Christine McCuaig <christine@q9planning.com> Subject: Pre-Consultation Follow-Up: 1104 Halton Terrace

Hi Christine,

Please refer to the below regarding the Pre-Application for 1104 Halton Terrace for a Site Plan Control Application and Zoning By-law Amendment for a residential development. I have also attached the required Plans & Study List for application submission.

An email was sent providing instructions on how to pay the fee for the pre-application consultation.

Below are staff's preliminary comments based on the information available at the time of the preconsultation meeting:

Planning / Urban Design

- Grading of the site at the intersection of Old Carp Road and Halton Terrace will be an important consideration. Please ensure that the basement level is not exposed at this corner, and the principal entrance to the building is not significantly higher than the existing sidewalk/right of way.
- Will the Old Carp Road frontage be urbanized? If not please consider how this can be designed to work with the proposal.
- Please ensure the setback to the proposed low-rise residential is adequate and considers light and privacy.
- Please ensure that the TIA scoping includes all units, not just the apartment units, but also the detached dwellings.

- Please ensure adequate room for tree planting on-site.
- A design brief is required. Please see the attached terms of reference.
- Cash-in-lieu of Parkland will be required.
- You are encouraged to contact the Ward Councillor, Councillor <u>Jenna Sudds</u>, regarding the proposal.

Engineering

- The Servicing Study Guidelines for Development Applications are available <u>here</u>.
- Servicing and site works shall be in accordance with the following documents:
 - Ottawa Sewer Design Guidelines (October 2012)
 - Ottawa Design Guidelines Water Distribution (2010)
 - Geotechnical Investigation and Reporting Guidelines for Development Applications in the City of Ottawa (2007)
 - City of Ottawa Slope Stability Guidelines for Development Applications (revised 2012)
 - City of Ottawa Environmental Noise Control Guidelines (January, 2016)
 - City of Ottawa Park and Pathway Development Manual (2012)
 - City of Ottawa Accessibility Design Standards (2012)
 - Ottawa Standard Tender Documents (latest version)
 - Ontario Provincial Standards for Roads & Public Works (2013)
- Record drawings and utility plans are also available for purchase from the City (Contact the City's Information Centre by email at <u>InformationCentre@ottawa.ca</u> or by phone at (613) 580-2424 x.44455).
- The Stormwater Management Criteria for the subject site is to be based on the following:
 - The allowable storm release rate for the subject site is limited to 70 L/s/ha as per the Master Servicing Study Update for Morgan's Grant Subdivision.
 - Onsite storm runoff, in excess of the allowable release rate, must be detained on site.
 - The hydraulic grade line in the storm sewer must remain at least 0.3 m below the underside of adjacent building footings during the 100-year storm event.
 - Quantity control to be provided by the adjacent stormwater management facility and/or as determined by the Mississippi Valley Conservation Authority (MVCA). Please include correspondence from the MVCA in the stormwater management report.
- Additional studies pertaining to discharge to Shirley's Creek sub-watershed will not be required if out letting to existing stormwater management pond to the east. Stormwater charges will not be imposed to connect to the existing stormwater management pond to the east.
- No sanitary sewer capacity constraints were identified on Halton Terrace during the initial review of the concept plan.

- As per Section 4.3.1 of the Water Design Guidelines, two watermain connections will be required to provide a looped connection if the basic day demand is greater than 50 m3/day (approx. 50 homes).
- Water Boundary condition requests must include the location of the service and the expected loads required by the proposed development. Please provide the following information:
 - Location of service
 - Type of development and the amount of fire flow required (as per FUS, 1999).
 - Average daily demand: ____ l/s.
 - Maximum daily demand: ____l/s.
 - Maximum hourly daily demand: ____ l/s.
- An MECP Environmental Compliance Approval in not anticipated to be required for the subject site.
- Phase 1 ESAs and Phase 2 ESAs must conform to clause 4.8.4 of the Official Plan that requires that development applications conform to Ontario Regulation 153/04

Please contact Infrastructure Project Manager <u>Ahmed Elsayed</u> for follow-up questions.

Transportation

•

- Follow Traffic Impact Assessment Guidelines
 - Traffic Impact Assessment will be required.
 - Start this process asap.
 - Applicant advised that their application will not be deemed complete until the submission of the draft step 1-4, including the functional draft RMA package (if applicable) and/or monitoring report (if applicable).
 - Reduced scope with regards to the study area will be considered.
- To allow for a reduction of the ROW from 26 m, the development proponent should demonstrate that the 24 m ROW can accommodate the road requirements, services, trees and pedestrian and cycling facilities. This can be done by showing the recommended cross section based on the Designing Neighbourhood Collector Guidelines (2019).
- Corner triangles as per OP Annex 1 Road Classification and Rights-of-Way at the following locations on the final plan will be required:
 - Collector Road to Collector Road: 5 metre x 5 metres
 - Noise Impact Studies required for the following:
 - o Road
 - Stationary (if there will be any exposed mechanical equipment due to the proximity to neighbouring noise sensitive land uses)
- It is recommended that the access is located only on Halton Terrace to minimize accesses on Old Carp. The realignment of Old Carp is going to add more traffic to this road and the road currently does not have many accesses. The location of the accesses will be further reviewed in the TIA. Sight line analysis for the accesses on Halton Terrace and Carp (if proposed) will be required.
- On site plan:
 - Show all details of the roads abutting the site up to and including the opposite curb; include such items as pavement markings, accesses and/or sidewalks.

- Turning templates will be required for all accesses showing the largest vehicle to access the site; required for internal movements and at all access (entering and exiting and going in both directions). Show on separate drawings.
- Show all curb radii measurements; ensure that all curb radii are reduced as much as possible
- Show lane/aisle widths.
- Sidewalks are to be continuous across access as per City Specification 7.1.
- It is recommended that the accessibility requirements are implemented (checklist is attached.)

Please contact Transportation Project Manager, <u>Neeti Paudel</u> for follow-up questions.

Forestry

- A Tree Conservation Report (TCR) must be supplied for review along with the suite of other plans/reports required by the City; an approved TCR is a requirement of Site Plan approval.
- Any removal of privately-owned trees 10cm or larger in diameter requires a tree permit issued under the Urban Tree Conservation Bylaw; the permit is based on the approved TCR.
- Any removal of City-owned trees will require the permission of Forestry Services who will also review the submitted TCR.
- The TCR must list all trees on site by species, diameter and health condition.
- The TCR must list all trees on adjacent sites if they have a critical root zone that extends onto the development site.
- If trees are to be removed, the TCR must clearly show where they are, and document the reason they cannot be retained.
- The City encourages the retention of healthy trees; if possible, please seek opportunities for retention of trees that will contribute to the design/function of the site.
- Please ensure newly planted trees have an adequate soil volume for their size at maturity. Here are the recommended soil volumes:

Tree Type/Size	Single Tree Soil	Multiple Tree Soil
	Volume (m3)	Volume (m3/tree)
Ornamental	15	9
Columnar	15	9
Small	20	12
Medium	25	15
Large	30	18
Conifer	25	15

• For more information on the process or help with tree retention options, contact Mark Richardson

<u>Other</u>

Please refer to the links to "<u>Guide to preparing studies and plans</u>" and <u>fees</u> for general information. Additional information is available related to <u>building permits</u>, <u>development charges</u>, and the <u>Accessibility Design Standards</u>. Be aware that other fees and permits may be required, outside of the development review process. You may obtain background drawings by contacting <u>informationcentre@ottawa.ca</u>.

These pre-consultation comments are valid for one year. If you submit a development application(s) after this time, you may be required to meet for another pre-consultation meeting and/or the

submission requirements may change. You are as well encouraged to contact us for a follow-up meeting if the plan/concept will be further refined.

Please do not hesitate to contact me if you have any questions.

Regards, Laurel

Laurel McCreight MCIP, RPP

Planner Development Review West Urbaniste Examen des demandes d'aménagement ouest

City of Ottawa | Ville d'Ottawa

C

ı –

ı.

613.580.2424 ext./poste 16587 ottawa.ca/planning / ottawa.ca/urbanisme

This e-mail originates from the City of Ottawa e-mail system. Any distribution, use or copying of this e-mail or the information it contains by other than the intended recipient(s) is unauthorized. Thank you.

Le présent courriel a été expédié par le système de courriels de la Ville d'Ottawa. Toute distribution, utilisation ou reproduction du courriel ou des renseignements qui s'y trouvent par une personne autre que son destinataire prévu est interdite. Je vous remercie de votre collaboration.

Appendix B

Watermain Boundary Conditions, FUS Calculations, & Modelling Results

Boundary Conditions 1104 Halton Terrace

Provided Information

Scenario	Dem	and
Scenario	L/min	L/s
Average Daily Demand	36	0.60
Maximum Daily Demand	90	1.50
Peak Hour	198	3.31
Fire Flow Demand #1	9,000	150.00

Location

Results

Connection 1 – Flamborough Way

Head (m)	Pressure ¹ (psi)
131.0	63.1
126.1	56.2
124.2	53.5
	131.0 126.1

¹ Ground Elevation = 86.6 m

Connection 2 – March Road

Demand Scenario	Head (m)	Pressure ¹ (psi)
Maximum HGL	131.0	74.1
Peak Hour	126.2	67.2
Max Day plus Fire Flow #1	124.5	64.8
¹ Ground Elevation =	78.9	m

Notes

1. As per OWDG Technical Bulleting ISTB-2021-03 Section 4.3.1:

Industrial, commercial, institutional service areas with a basic day demand greater than 50 m^3 /day (0.58 L/s) and residential areas serving 50 or more dwellings shall be connected with a minimum of two watermains, separated by an isolation valve, to avoid the creation of a vulnerable service area.

Disclaimer

The boundary condition information is based on current operation of the city water distribution system. The computer model simulation is based on the best information available at the time. The operation of the water distribution system can change on a regular basis, resulting in a variation in boundary conditions. The physical properties of watermains deteriorate over time, as such must be assumed in the absence of actual field test data. The variation in physical watermain properties can therefore alter the results of the computer model simulation. Fire Flow analysis is a reflection of available flow in the watermain; there may be additional restrictions that occur between the watermain and the hydrant that the model cannot take into account.

FUS - Fire Flow Calculations

Novatech Project #: 119024 Project Name: 1104 Halton Terrace Date: 9/12/2024 Input By: Lucas Wilson Reviewed By: Mark Bissett Drawing Reference: 119024-GP Legend: Input by User No Input Required Reference: Fire Underwriter's Survey Guideline (2020) Formula Method

Building Description: 4/5 Storey Residential Building

Type II - Non-combustible construction

Step			Choose		Value Used	Total Fire Flow (L/min)
		Base Fire F	low			()
	Construction Ma	terial		Mult	iplier	
		Type V - Wood frame		1.5		
1	Coefficient	Type IV - Mass Timber		Varies		
1	related to type of construction	Type III - Ordinary construction		1	0.8	
	C	Type II - Non-combustible construction	Yes	0.8		
		Type I - Fire resistive construction (2 hrs)		0.6		
	Floor Area		-			
		Podium Level Footprint (m ²)	2238			
		Total Floors/Storeys (Podium)	4			
	Α	Tower Footprint (m ²)	1705			
2	^	Total Floors/Storeys (Tower)	1			
		Protected Openings (1 hr)	No			
		A, Total Effective Floor Area (m ²)			7,567	
	F	Base fire flow without reductions				15,000
	•	$F = 220 C (A)^{0.5}$				10,000
		Reductions or Su	urcharges			
	Occupancy haza	rd reduction or surcharge	FUS Table 3	Reduction	Surcharge	
		Non-combustible		-25%		
3		Limited combustible	Yes	-15%		
Ŭ	(1)	Combustible		0%	-15%	12,750
		Free burning		15%		
		Rapid burning		25%		
	Sprinkler Reduc		FUS Table 4	Redu		
		Adequately Designed System (NFPA 13)	Yes	-30%	-30%	
		Standard Water Supply	Yes	-10%	-10%	
4	(2)	Fully Supervised System	No	-10%		-5,100
				ive Sub-Total	-40%	,
		Area of Sprinklered Coverage (m ²)	10658	100%		
				nulative Total	-40%	
	Exposure Surch		FUS Table 5		Surcharge	
		North Side	>30m	-	0%	
5		East Side	>30m	-	0%	
	(3)	South Side	20.1 - 30 m	-	10%	1,275
		West Side	>30m	aulative Tatal	0%	
		Deerite		nulative Total	10%	
		Results			l /min	0.000
6	(1) + (2) + (2)	Total Required Fire Flow, rounded to nea	rest invol/min	or	L/min L/s	9,000
o	(1) + (2) + (3)	(2,000 L/min < Fire Flow < 45,000 L/min)		or		150
				or	USGPM	2,378

		1104 Halton Water De				
				Average Day	Maximum Day	Peak Hour
	Area			Demand	Demand	Demand
	(ha)	Units	Population	(L/s)	(L/s)	(L/s)
Apartment Unit	N/A	103	185	0.601	1.502	3.305
Total	0.00	103	185	0.601	1.502	3.305

Water Demand Parameters

Apartment Unit	1.8	ppl/unit
Residential Demand	280	L/c/day
Residential Max Day	2.5	x Avg Day
Residential Peak Hour	2.2	x Max Day
Residential Fire Flow	150	L/s

1104 Halton Terrace: Watermain Demand

Node	Existing Singles	Apartment Unit	Total Population	Average Day Demand (L/s)	Maximum Day Demand (L/s)	Peak Hour Demand (L/s)	Fire Flow (L/s)
B1		103	185	0.601	1.502	3.305	N/A
EXHYD1	6		20	0.066	0.165	0.364	N/A
EXHYD2			0	0.000	0.000	0.000	N/A
HYD1			0	0.000	0.000	0.000	150
T1			0	0.000	0.000	0.000	N/A
Total	6	103	206	0.667	1.667	3.668	
Water Demand Para	ameters						
Apartment Unit		1.8	ppl/unit	Residential Max D	Day	2.5	x Avg Day
Existing Singles		3.4	ppl/unit	Residential Peak	Hour	2.2	x Max Day
Residential Demand		280	L/c/day	Apartment Fire FI	ow	150	L/s

1104 Halton Terrace: Watermain Analysis

Network Table - Nodes	- (Peak Hour)						
	Elevation	Demand	Head	Pressure	Pressure	Pressure	
Node ID	m	LPS	m	m	kPa	psi	
Junc B1	83.6	3.31	126.12	42.52	417.12	60.50	
Junc EXHYD1	86.75	0.36	126.1	39.35	386.02	55.99	
Junc EXHYD2	80.05	0	126.17	46.12	460.00	66.72	
Junc HYD1	83.73	0	126.12	42.39	450.00	65.27	
Junc T1	83.25	0	126.13	42.88	420.65	61.01	
Resvr RES1	126.1	15.25	126.1	0	0.00	0.00	
Resvr RES2	126.2	-18.92	126.2	0	0.00	0.00	
Network Table - Links -	(Peak Hour)						
	Length	Diameter	Roughness	Flow	Velocity	Headloss	Friction
Link ID	m	mm		LPS	m/s	m/km	Factor
Pipe P1	5	300	120	-15.25	0.22	0.23	0.029
Pipe P2	100	300	120	-15.61	0.22	0.24	0.029
Pipe P3	13	300	120	-15.61	0.22	0.24	0.029
Pipe P4	31	200	100	3.31	0.11	0.14	0.048
Pipe P5	135	300	120	-18.92	0.27	0.34	0.028
Pipe P6	77	300	120	-18.92	0.27	0.34	0.028

1104 Halton Terrace: Watermain Analysis

Network Table - Nodes - (Max Pressure Check)	1					
	Elevation	Demand	Head	Pressure	Pressure	Pressure	Age
Node ID	m	LPS	m	m	kPa	psi	Hours
Junc B1	83.6	0.6	131	47.4	464.99	67.44	11.14
Junc EXHYD1	86.75	0.07	131	44.25	434.09	62.96	0.21
Junc EXHYD2	80.05	0	131	50.95	460.00	66.72	5.92
Junc HYD1	83.73	0	131	47.27	450.00	65.27	5.84
Junc T1	83.25	0	131	47.75	468.43	67.94	10.7
Resvr RES1	131	-0.41	131	0	0.00	0.00	0
Resvr RES2	131	-0.25	131	0	0.00	0.00	0
Network Table - Links - (N	lax Pressure Check)						
	Length	Diameter	Roughness	Flow	Velocity	Headloss	Friction
Link ID	m	mm		LPS	m/s	m/km	Factor
Pipe P1	5	300	120	0.41	0.01	0.00	0.356
Pipe P2	100	300	120	0.35	0.00	0.00	0.046
Pipe P3	13	300	120	0.35	0.00	0.00	0.000
Pipe P4	31	200	100	0.60	0.02	0.01	0.062
Pipe P5	135	300	120	-0.25	0.00	0.00	0.063
Pipe P6	77	300	120	-0.25	0.00	0.00	0.055

1104 Halton Terrace: Watermain Analysis

Network Table - Nodes -	- (Max Day + FF)						
	Elevation	Demand	Head	Pressure	Pressure	Pressure	
Node ID	m	LPS	m	m	kPa	psi	
Junc B1	83.6	1.5	123.7	40.1	393.38	57.06	
Junc EXHYD1	86.75	0.17	124.18	37.43	367.19	53.26	
Junc EXHYD2	80.05	0	124.21	44.16	460.00	66.72	
Junc HYD1	83.73	150	123.66	39.93	450.00	65.27	
Junc T1	83.25	0	123.7	40.45	396.81	57.55	
Resvr RES1	124.2	-82.53	124.2	0	0.00	0.00	
Resvr RES2	124.5	-69.14	124.5	0	0.00	0.00	
Network Table - Links -	(Max Day + FF)						
	Length	Diameter	Roughness	Flow	Velocity	Headloss	Friction
Link ID	m	mm	-	LPS	m/s	m/km	Factor
Pipe P1	5	300	120	82.53	1.17	5.22	0.023
Pipe P2	100	300	120	82.37	1.17	5.20	0.023
Pipe P3	13	300	120	-67.63	0.96	3.61	0.023
Pipe P4	31	200	100	1.50	0.05	0.03	0.054
Pipe P5	135	300	120	-69.14	0.98	3.76	0.023
Pipe P6	77	300	120	-69.14	0.98	3.76	0.023

Appendix C

Sanitary Design Sheets

Novatech Project #: 119024 Project Name: 1104 Halton Terrace Date: 4/24/2025 Input By: Lucas Wilson Reviewed By: Mark Bissett Drawing Reference: 119024-GP

	Location									Demand				Extraneous Flow									
								Residenti	al Flow					ous Flow Method	Total Design Flow			Proposed Sewer Pipe Sizing / Design					
Street	Area ID	From MH	То МН	Singles	Apts	Population	Cumulative Population	Average Pop. Flow	Design Peaking Factor	Peak Design Pop. Flow	Res. Drainage Area	Cumulative Res. Drainage Area	Cumulative Extraneous Drainage Area	Design Extraneous Flow	Total Peak Design Flow	Pipe Length	Pipe Size (mm) and Material	Pipe ID Actual	Roughness	Design Grade	Capacity	Full Flow Velocity	Q(D) / Qfull
				Ciligiou	7.010	(in 1000's)	(in 1000's)	Q(q) (L/s)	M	Q(p) (L/s)	(ha.)	(ha.)	(ha.)	Q(e) (L/s)	Q(D) (L/s)	(m)	inatorial	(m)	n	So (%)	Qfull (L/s)	Vfull (m/s)	
Site	-	MH1	EXMH3		103	0.185	0.185	0.60	3.53	2.12	0.700	0.700	0.700	0.23	2.4	13.9	200 PVC	0.203	0.013	0.35	20.2	0.62	11.6%
Halton Terrace	-	EXMH3	EXMH2	3		0.010	0.196	0.63	3.52	2.23	0.220	0.920	0.920	0.30	2.5	31.2	250 PVC	0.254	0.013	0.38	38.2	0.75	6.6%
Halton Terrace	-	EXMH2	EXMH1	10		0.034	0.230	0.74	3.50	2.60	0.420	1.340	1.340	0.44	3.0	59.9	250 PVC	0.254	0.013	0.27	32.2	0.64	9.5%
Demand Equation / Parameter	'S					Definitions										Capacity Ec	quation						

* ICI Peak = 1.0 Default, 1.5 if ICI in contributing area is >20% (design only)

1. Q(D), Q(A), Q(R) =	Q(p) + Q(fd) + Q(ici)	+ Q(e)		Q(D) = Peak Design Flow (L/s)					
2. Q(p) =	(P x q x M x K / 86,40	00)		Q(A) = Peak Annual Flow (L/s)					
3. q =	280	L/per person/day	(design)	Q(R) = Peak Rare Flow (L/s)					
5. q =	200	L/per person/day	(annual and rare)	Q(p) = Peak Design Population Flow (L/s)					
4. M = Harmon Formula (maximum of 4.0)				Q(q) = Average Population Flow (L/s)					
5. K =	0.8		(design)		Singles	Semis / Towns	Apts		
	0.6		(annual and rare)	P = Residential Population =	3.4	2.7	1.8		
6. Park flow is considered equivalent to a single unit / ha		a		q = Average Capita Flow					
Park Demand =	= 4	single unit equivalent /	park ha (~ 3,600 L/ha/day)	M = Harmon Formula					
7. Q(fd) =	0.45	L/s/unit		K = Harmon Correction Factor					
8. Q(ici) =	ICI Area x ICI Flow x	ICI Peak		Typ. Service Diameter (mm) =	135				
9. Q(e) =	0.33	L/s/ha	(design)	Typ. Service Length (m) =	15	15			
	0.30	L/s/ha	(annual)	I/I Pipe Rate (L/mm dia/m/hr) =	0.007				
	0.55	L/s/ha	(rare)	Q(fd) = Foundation Flow (L/s)					
				Q(ici) = Industrial / Commercial / Institutional Flow (L/s)					
				Q(e) = Extraneous Flow (L/s)					
				Institutional / Commercial / Industrial	Industrial	Commercial / Institu	utional		
				Design =	35000	28000	L/gross ha/day		
				Annual / Rare =	10000	17000	L/gross ha/day		
				ICI Peak *					

Design =

Annual / Rare =

1.0

1.5

1.0

rs, Planners & Landscape Architec

Legend:	Design Input by User
	As-Built Input by User
	Cumulative Cell
	Calculated Design Cell Output
	Calculated Annual Cell Output
	Calculated Rare Cell Output
Reference:	City of Ottawa - Sewer Design Guidelines (2012 and TBs)

MOE - Design Guidelines for Sewage Works (2008)

Q full = (1/n) Ap R^(2/3) So^(1/2)

Definitions

Q full = Capacity (L/s)

n = Manning coefficient of roughness (0.013)

Ap = Pipe flow area (m²)

R = Wetted perimeter (m)

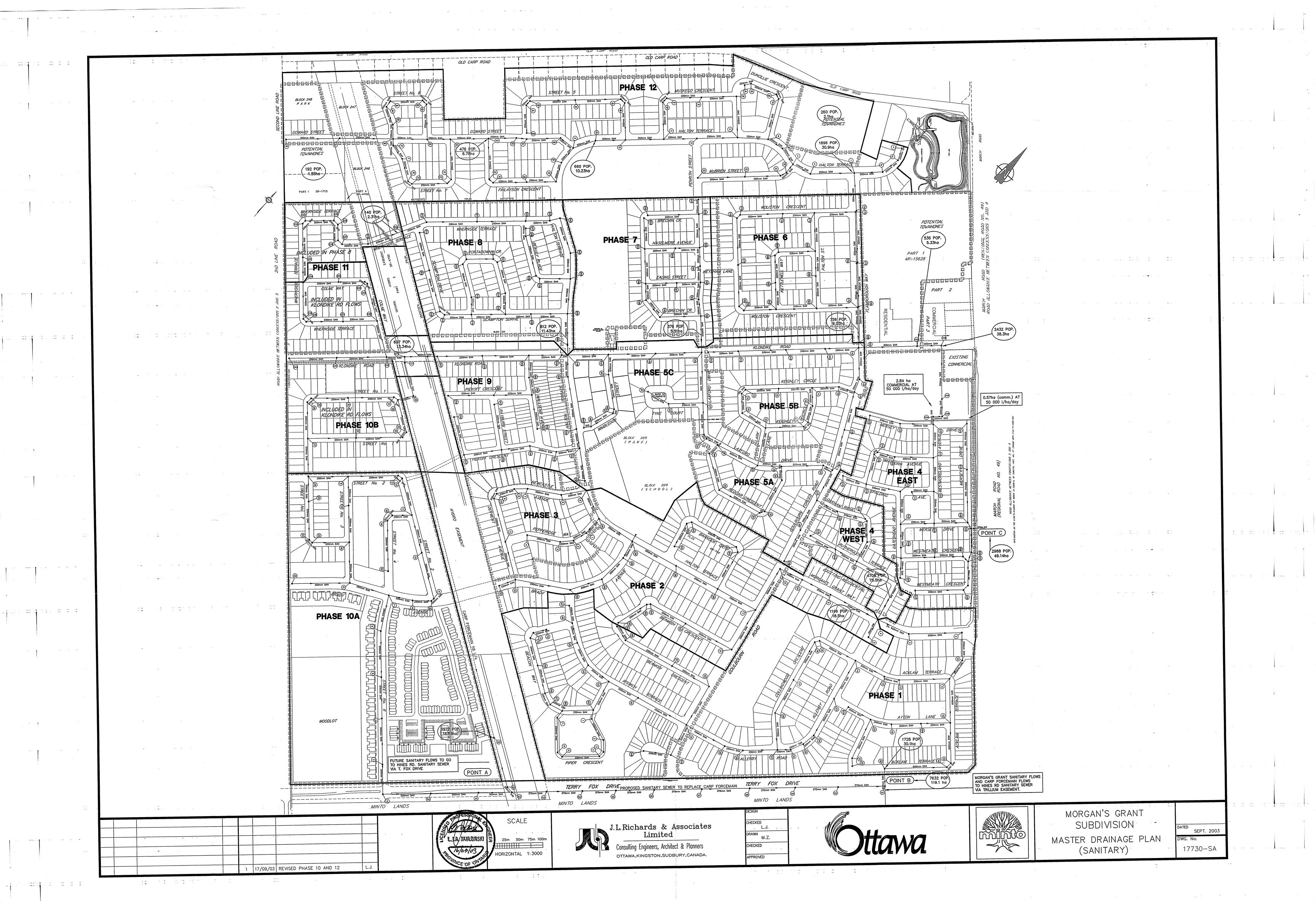
So = Pipe slope/gradient

J.L. Richards & Associates Limited Consulting Engineers, Architects & Planners

DESIGN PARAMETERS

l = 0.280 l/s/ha q (res) = 350 l/cap/day Singles =4.0pers / unitq (com) =50,000l/ha/dayTownhouses =4.0pers / unitq (inst) =50,000l/ha/day

						ESIDENTIA	L				NON-RE	SIDENTI	AL	1												
070757	M.F	┥. #	NO. of		VIDUAL		LATIVE			AREA	CUMM.	Peaking		INFIL.				SEWER				UPSTREA		DOWNS		
STREET			UNITS			POPUL.	AREA	Factor	FLOW		AREA	Factor	RES.	FLOW			Slope	CAPAC. VE				Obvert	Invert	Obvert	Invert	COMMENTS
Chroni No. 1	FROM			people	ha	people	ha		l/s	ha	ha	<u> </u>	FLOW (I/s)	l/s	l/s	mm	<u>%</u>	l/s mi		CAP. (l/s)	Drop	L				
Street No. 1		5	4 25	16	0.15	1500	26.93	3.68	22.36	0.00	2.93	1.50	2.54	7.54				39.23 0.7		6.79		82.850				Phase 12
	5	Ex. 1	25	100	0.81	1600	27.74	3.66	23.72	0.00	2.93	1.50	2.54	7.77	34.03	250	0.40	39.23 0.7	7 90.60	5.21	0.063	82.622	82.368	82.260	82.006	Phase 12
1													·		Į							ļ				······································
					-										·					-						
STREET No. 1 Phase 12		3	2	8	0.21	8	0.21	4.00	0.13	0.00	0.00	1.50	0.00	0.06	0.19	250	0.40	39.23 0.7	7 24 00	39.04		82 140	81.890	82 044	81 794	PHASE 12
ł	3	2	3	12	0.33	20	0.54	4.00	0.32	0.00	0.00	1.50	0.00	0.15	0.48	250	0.40	39.23 0.7	7 24.70	38.76			81.774			PHASE 12
																	1							0.020	01.07.0	
1																			-							
BIDGOOD LANDS	_	2	65	260	2.10	260	2.10	4.00	4.21	0.00	0.00	1.50	0.00	0.59	4.80	250	0.40	39.23 0.7	7 95.00	34.43						Assumed Future Townhomes
				Į																						
	2	Ex. 1	4	16	0.34	296	2.98	4.00	4 00			1.50	0.00	0.00												
<u></u>		<u> </u>	4	10	- 0.34		2.90	4.00	4.80	0.00	0.00	1.50	0.00	0.83	5.63	250	0.40	39.23 0.7	7 37.50	33.60		81.905	81.655	81.755	81.505	PHASE 12
FLAMBOROUGH WAY	Ex, 1	Ex. 172A		0	0.17	1896	30.89	3.60	27.68	0.00	2.93	1.50	2.54	8.65	38.87	300	0.18	42.21 0.5	8 81.10	3.34		81.726	81 426	81.584	81 284	PHASE 6 (as-built info, added)
1	Ex. 172A			Ō	0.77	1896	31.66	3.60	27.68	0.00	2.93	1.50	2.54	8.86	39.09	300		44.07 0.6		4.98		81.584		81.384		PHASE 6 (as-built info. added)
	Ex. 171A	Ex. 170A		Ō	0.68	1896	32.34	3.60	27.68	0.00	2,93	1.50	2.54	9.06	39.28	300	0.20			5.71		81.344	81.044	81.168		PHASE 6 (as-built info. added)
	Ex. 170A	Ex. 142B		0	0.41	1896	32.75	3.60	27.68	0.00	2.93	1.50	2.54	9.17	39.39		0.18		8 77.00	2.85		81.165	80.865			PHASE 6 (as-built info. added)
	Ex. 142B			0	0.00	1896	32.75	3.60	27.68	0.00	2.93	1.50	2.54	9.17	39.39	300		46.28 0.6		6.89		80.954	80.649			PHASE 6 (as-built info. added)
KLONDIKE ROAD	Ex. 142C	142D		0	0.22	1896	32.97	3.60	27.68	0.00	2.93	1.50	2.54	9.23	39.45	300	3.30	183.25 2.5	1 110.00	143.79	0.04	80.878	80.573	77.248	76.943	
																			_							
KLONDIKE ROAD COMMERCIAL SITE	142D 142E	142E 142F	134	536	5.33	2432	38.30	3.52	34.66	0.37	3.30	1.50	2.86	10.72	48.25	300	0.30			7.00		76.178	75.873	76.026	75.722	Flow from Future Townhouse Complex
	142E	142F 120B		0	2.84	2432	41.14	3.52	34.66	2.84	6.14	1.50	5.33	11.52	51.51	300	0.30			3.74		76.026	75.722			
	1208	120B	·[0	0.00	2432 2432	41.14	3.52 3.52	34.66 34.66	0.00	6.14 6.14	1.50	5.33	11.52	51.51	300	0.30			3.74		75.696	75.392	75.588		Commercial Property
, , , , , , , , , , , , , , , , , , ,	120D	Ex. 120	·	0	0.00	2432	41,14	3.52	34.66	0.00	6.14	1.50	5.33	11.52	51.51 51.51	300	0.30	55.25 0.7 62.18 0.8		3.74		75.588	75.283		75.227	Commercial Property
		<u> </u>		<u>`</u>	0.00		41,14	0.02		0.00	0.14	1.00	5.55	11.52	51.51	300	0.30	02.10 0.0	5 15.64	10.67		75.532	15.221	15.475	15.10/	
Mersey Drive	122	121	· · · · · · · · · · · · · · · · · · ·	24	0.38	24	0.38	4.00	0.39	0.00	0.00	1.50	0.00	0.11	0.50	200	3.78	66.52 2.0	5 63.5	66.02		80.400	80.200	78,000	77.800	
	121	120		24	0.28	48	0.66	4.00	0.78	0.00	0.00	1.50	0.00	0.18	0.96	200		54.43 1.6		53.47		77.900				
														1												
Westmoreland Avenue	120	<u></u>		20	0.33	2500	42.13	3.51	35.53	0.00	6.14	1.50	5.33	11.80	52.66	300	0.42	65.32 0.9	0 70.6	12.66		75.467	75.167	75.171	74.871	Phase IV (as-built info. Added)
14/h lah and Automatic		140												<u> </u>												
Whithorn Avenue	116	119 118		8	0.14	8	0.14	4.00	0.13	0.00	0.00	1.50	0.00	0.04	0.17	200	2.00	48.38 1.4		48.22		79.262				
	118	110		24 44	0.22	32 76	0.36	4.00	0.52	0.00	0.00	1.50	0.00	0.10	0.62	200		56.10 1.7		55.48		79.000		78.000	77.800	
			·]	44	0.50	/0	0.86	4.00	1.23	0.00	0.00	1.50	0.00	0.24	1.47	200	2.21	50.86 1.5	7 81.1	49.39		77.700	77.500	75.908	/5./08	
Westmoreland Avenue		110	·	24	0.31	2600	43.30	3.49	36.81	0.00	6.14	1.50	5.33	12.12	54.26	300	0.42	65.49 0.9	0 68.8	11.23	i	75,160	74.860	74.870	74 570	Phase IV (as-built info, Added)
										- 0.00	0.14	1.00	0.00				0.42	00.40 0.2	0 00.0	11,29		70.100	14.000	14.070	14.570	Thase IV (as-bait this. Added)
	111	110		12	0.33	12	0.33	4.00	0.19	0.00	0.00	1.50	0.00	0.09	0.29	200	1.91	47.28 1.4	6 46.0	47.00		76.500	76.300	75.620	75.420	
Westmoreland Avenue	110	109	·	16	0.30	2628	43.93	3.49	37.16	0.00	6.14	1.50	5.33	12.30	54.79	300	0.36	60.31 0.8	3 66.3	5.52		74.840	74.540	74.603	74.303	Phase IV (as-built info. Added)
	115	114		20				1.00			~ ~ ~ ~ ~															
				<u> </u>	0.32	20	0.32	4.00	0.32	0.00	0.00	1.50	0.00	0.09	0.41	200	4.49	72.51 2.2	4 51.2	72.10		81.500	81.300	79.200	79.000	
	116	114		20	0.30	20	0.30	4.00	0.32	0.00	0.00	1.50	0.00	0.08	0.41	200	0.59	26.06 0.8	0 64.5	25.65		70 274	79.174	70.000	79.800	
· · · · · · · · · · · · · · · · · · ·				<u>~</u>					0.02	0.00	0.00	1.50	0.00		0.41	_200_	0.00	20.00 0.0	<u>v 04.0</u>	20.00		15.014	13.1/4	13.000	10.000	
																	1	t		1 1			1	1		()
· · · · · · · · · · · · · · · · · · ·	114	113		32	0.40	72	1.02	4.00	1.17	0.00	0.00	1.50	0.00	0.29	1.45	200	0.62	26.94 0.8	3 72.8	25.49		78.750	78.550	78.300	78.100	
		110																								
	113	112		16	0.32	88	1.34	4.00	1.43	0.00	0.00	1.50	0.00	0.38	1.80	200	0.50	24.24 0.7	5 67.7	22,44		78.200	78.000	77.860	77.660	
		112		16	0.35	16	0.35	4.00	0.06	0.00	0.00	1 50	0.00	0.10	0.00		1-1-00-		<u> </u>			77 000	77.400	77.000	77.000	
				10	0.00	10	0.35	4.00	0.26	0.00	0.00	1.50	0.00	0.10	0.36	200	1.00	34.21 1.0	6 48.0	33.86		77.680	11.480	77.200	//.000	
	112	109	1	16	0.32	120	2.01	4.00	1.94	0.00	0.00	1.50	0.00	0.56	2.51	200	1.71	44.74 1.3	8 70.0	42.23		77.097	76 897	75.900	75 700	
								·							[]		1					1		1.0.000		
Mersey Drive	109	100		24	0.33	2772	46.27	3.47	38.98	0.00	6.14	1.50	5.33	12.96	57.27	300	0.46	68.74 0.9	4 68.7	11.47		74.580	74.280	74.261	73.961	Phase IV (as-built info. Added)
																	1						1			
Mersey Drive	124	123		28	0.44	28	0.44	4.00	0.45	0.00	0.00	1.50	0.00	0.12	0.58	200	0.55	25.38 0.7	8 96.3	24.80		75.600		75.070		Phase IV (as-built info. Added)
	123	103		32	0.42	60	0.86	4.00	0.97	0.00	0.00	1.50	0.00	0.24	1.21	200	0.59	26.27 0.8	1 109.2	25.06		75.065	74.865	74.421	74.221	Phase IV (as-built info. Added)
Easement		·····		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			47.10	2.40	00.70		~ ~ ~ ~			10.00												
<u></u>		<u>1:1</u>		0	0.00	2832	47.13	3.46	39.73	0.00	6.14	1.50	5.33	13.20	58.26	375	0.32	103.88 0.9	1 12.4	45.62		/4.245	73.870	/4.205	/3.830	Phase IV (as-built info. Added)
**************************************	127	126	[56	0.78	56	0.78	4.00	0.91	0.00	0.00	1.50	0.00	0.22	1.13	200	1.00	34.21 1.0	6 100.7	33.09		78.155	77 055	77.148	76.049	
	127 126	126A		16	0.19	72	0.97	4.00	1.17	0.00	0.00	1.50	0.00	0.22	1.44	200	0.58	26.06 0.8	0 13.1	24.62		77.118	76 019	77.042	76 842	
I	126A	103	1	0	0.00	72	0.97	4.00	1.17	0.00	0.00	1.50	0.00	0.27	1.44	200	2.83	57.56 1.7	7 49.8			77.012	76 812	75.600	75 400	
							i	······				<u>-</u>					1	<u> </u>	·					1.0.000		
	107	106 105		12	0.19	12	0.19	4.00	0.19	0.00	0.00	1.50	0.00	0.05	0.25	200	1.00	34.21 1.0	6 41.0	33.97		77.470	77.270	77.060	76.860	
· · · · · · · · · · · · · · · · · · ·	106			36 32	0.36	12 48	0.55	4.00	0.78	0.00	0.00	1.50	0.00	0.15	0.93	200	0.58	26.06 0.8	0 69.9	25.12		77.000	76.800	76.595	76.395	
		104	ļ	32	0.39	80	0.94	4.00	1.30	0.00	0.00	1.50	0.00	0.26	1.56	200	0.58	26.06 0.8	0 59.2	24.50		75.860	75.660	75.516	75.316	
[104	103	I	<u> 4 </u>	0.01	84	0.95	4.00	1.36	0.00	0.00	1.50	0.00	0.27	1.63	200	1.00	34.21 1.0	6 14.9	32.59		75.049	74.849	74.900	74.700	


CITY OF OTTAWA

MINTO DEVELOPMENT INC. MORGAN'S GRANT SUBDIVISION - PHASE 10A & 10B

JLR NO. 17730

SANITARY SEWER DESIGN SHEET Revised September 16, 2003

Designed by: J.B. Checked by: L.J.

Appendix D

STM Design Sheets, SWM Excerpts & PCSWMM Modelling Info

1104 Halton Terrace (119024) PCSWMM Model Results (Ponding)

СВ / СВМН	Invert	Rim	Spill	Ponding		HGL E	lev. (m) ¹		Ponding Depth (m)					Spill Depth (m)				
ID	Elev. (m)	Elev. (m)	Elev. (m)	Depth (m)	2-yr	5-yr	100-yr	100-yr (+20%)	2-yr	5-yr	100-yr	100-yr (+20%)	2-yr	5-yr	100-yr	100-yr (+20%)		
CB01	82.32	83.32	83.45	0.13	82.59	82.89	83.45	83.46	0.00	0.00	0.13	0.14	0.00	0.00	0.00	0.01		
CBMH01	83.69	85.55	85.90	0.35	85.43	85.68	85.84	85.86	0.00	0.13	0.29	0.31	0.00	0.00	0.00	0.00		
CBMH02	82.88	85.55	85.85	0.30	85.43	85.68	85.84	85.86	0.00	0.13	0.29	0.31	0.00	0.00	0.00	0.01		
RY01	81.06	82.78	82.86	0.08	81.77	81.98	82.69	82.92	0.00	0.00	0.00	0.14	0.00	0.00	0.00	0.06		
RY02	81.29	83.07	83.07	0.00	81.77	81.98	82.69	82.92	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
RY03	81.51	82.90	82.95	0.05	81.77	81.97	82.70	82.92	0.00	0.00	0.00	0.02	0.00	0.00	0.00	0.00		
RY04	81.73	83.16	83.26	0.10	81.77	81.98	82.70	82.92	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
RY05	82.80	83.80	83.90	0.10	82.89	83.04	83.83	83.91	0.00	0.00	0.03	0.11	0.00	0.00	0.00	0.01		
RY06	82.87	83.80	83.90	0.10	82.89	83.05	83.83	83.91	0.00	0.00	0.03	0.11	0.00	0.00	0.00	0.01		

¹ 3-hour Chicago Storm.

1104 Halton Terrace (119024) PCSWMM Storage Curves (underground/surface storage)

	CB01-Storag	е
Depth (m)	Area (m ²)	Volume (m ³)
0.00	0.36	0.00
1.00	0.36	0.36
1.13	80.00	5.58
1.14	0.00	5.98
2.00	0.00	5.98

0	CBMH01-Stora	ige
Depth (m)	Area (m ²)	Volume (m ³)
0.00	1.17	0.00
1.86	1.17	2.18
2.21	257.70	47.48
2.21	0.00	47.61
2.86	0.00	47.61

	CBMH02-Stora	age
Depth (m)	Area (m ²)	Volume (m ³)
0.00	1.17	0.00
2.67	1.17	3.12
2.97	200.80	33.42
2.97	0.00	33.52
3.67	0.00	33.52

	RY05-Storag	e
Depth (m)	Area (m ²)	Volume (m ³)
0.00	0.36	0.00
1.00	0.36	0.36
1.10	48	2.76
1.10	0.00	2.78
2.00	0.00	2.78

	RY06-Storag	е
Depth (m)	Area (m2)	Volume (m3)
0.00	0.36	0.00
0.93	0.36	0.33
1.03	48	2.73
1.03	0.00	2.76
1.93	0.00	2.76

1104 Halton Terrace (119024) Summary of Hydraulic Grade Line (HGL) Elevations

MH ID	Obvert Elevation	T/G Elevation	HGL Elevation ¹	Surcharge	Clearance from T/G	HGL in Stress Test ¹
	(m)	(m)	(m)	(m)	(m)	(m)
MH02	81.80	83.79	82.67	0.87	1.12	82.67
MH04	82.62	85.74	82.68	0.06	3.06	82.68
Connection to Ex.	81.66	83.22	82.65	0.99	0.57	82.65

¹ 3-hour Chicago Storm; Fixed outfall (100yr HGL @ connections to existing = 82.65).

STORM SEWER DESIGN SHEET

(Maple Leaf Homes)

FLOW RATES BASED ON RATIONAL METHOD

	LOCATION			ARE	A (ha)					FLC	W			TOTAL FLOW				SE/	NER DA	ATA		
		From	То	Area	С	AC	Indiv	Accum	Time of	Rainfall Intensity	Rainfall Intensity	Rainfall Intensity	Peak Flow	Total Peak	Dia. (m)	Dia.	Туре	Slope	Length	Capacity		low Ratio
Street	Catchment ID	Manhole	Manhole	(ha)		(ha)	2.78 AC	2.78 AC	Concentration	2 Year (mm/hr)	5 Year (mm/hr)	10 Year (mm/hr)	(L/s)	Flow, Q (L/s)	Actual	(mm)		(%)	(m)	(L/s)	(m/s)	ime min) Q/Q fu
				0.227	0.80	0.18		0.505	10.00	76.81			38.8									
	A-01, A-03, A-07	CBMH2	MH04			0.00	0.000	0.000	10.00					38.8	0.305	300	PVC	1.00	10.8	100.8	1.38	0.13 38%
						0.00	0.000	0.000	10.00													
				0.093	0.52	0.05	0.134	0.639	10.13	76.31			48.8									
	A-02	MH04	MH02			0.00	0.000	0.000	10.13					48.8	0.457	450	Conc	1.00	39.0	297.2	1.81	0.36 16%
						0.00	0.000	0.000	10.13													
				0.090	0.60	0.05	0.150	0.789	10.49	74.98			59.2									
	A-04	MH02	EX 1500mm	0.090	0.60	0.05	0.150	0.789	10.49	74.98			59.2	59.2	0.457	450	Conc	0.50	28.8	210.2	1.28	0.37 28%
						0.00	0.000	0.000	10.49						01.101			0.00	_0.0			
	•																					
Q = 2.78 AIC, where											Consul	tant:						1	Novatec	h		
Q = Peak Flow in Litre	es per Second (L/s)										Date):						Ар	ril 24, 20)25		
A = Area in hectares (I	ha)										Desigr	By:						Lu	cas Wils	on		
I = Rainfall Intensity (n	nm/hr), 5 year storm										Clier	nt:				Dwg	Referen	ce:			Checked	By:
C = Runoff Coefficient	t										Maple Lea	Homes				11	9024-STN	1			MAB	

Q = 2.78 AIC, where	Consultant:	
Q = Peak Flow in Litres per Second (L/s)	Date:	
A = Area in hectares (ha)	Design By:	
I = Rainfall Intensity (mm/hr), 5 year storm	Client:	
C = Runoff Coefficient	Maple Leaf Homes	

Legend: *

Indicates 100 Year intensity for storm sewers

Storm sewers designed to the 2 year event (without ponding) for local roads

10.00 Storm sewers designed to the 5 year event (without ponding) for collector roads Storm sewers designed to the 10 year event (without ponding) for arterial roads 10.00

10.00

NOVATECH

Engineers, Planners & Landscape Architects

1104 Halton Terrace (119024) **Pre-Development Peak Flow Calculations (EXT-02) On-Site Area Draining to Old Carp Road**

EXISTING CONDITIONS

Time-of-Concentration (Uplands Method)

Flow Classification (Land Use)	Length (m)	Elev U/S (m)	ation D/S (m)	Slope (%)	Velocity ¹ (m/s)	Time-of- Concentration (min)
EXT-02 Overland Flow (Pasture)	100	86.5	80.7	5.8%	0.45	3.7
TOTAL	100	86.5	80.7	5.8%	0.45	10.0
¹ Pofor to Unlanda Valaaity Cha	rt					*Min 10-minutes

Refer to Uplands Velocity Chart.

Existing Catchment Parameters

		Areas (ha)		Runoff C	oefficient		
Catchment ID	Total	Hard Surfaces (C=0.70)	Soft Surfaces (C=0.20)	C _{avg}	C _{100yr} 1	%Imperv.	
TOTAL	0.194	0.005	0.189	0.21	0.27	1.4%	

¹ Runoff coefficient increases by 25%, up to a maximum value of 1.00, for the 100-year event.

Pre-Development Peak Flows

Catchment ID	Rainfa	ll Intensity (m	nm/hr) ¹	Peak Flows (L/s)			
Catchinent ID	2-year	5-year	100-year	2-year	5-year	100-year	
EXT-02 (existing conditions)	76.81	104.19	178.56	8.7	11.8	25.9	

¹ Tc is based on Uplands Method.

Notes:

Rainfall Intensity from City of Ottawa Sewer Design Guidelines (Oct. 2012)

- 100 year Intensity = 1735.688 / (Tc + 6.014)^{0.820}

- 5 year Intensity = 998.071 / (Tc + 6.053)^{0.814}

- 2 year Intensity = 732.951 / (Tc + 6.199)^{0.810}

 $Q(peak flow) = 2.78 \times C \times I \times A$

- C is the runoff coefficient

- I is the rainfall intensity

- A is the total drainage area

*Min 10-minutes.

1104 Halton Terrace (119204) Pre-Development Peak Flow Calculations (EXT-01 EXT-02) Upstream Area Draining to 500mm Culvert

NOVATECH

EXISTING CONDITIONS

Time-of-Concentration (Uplands Method)

Flow Classification	Longth	Elev	ation	Slana	Vala situ ¹	Time-of-
(Land Use)	Length	U/S	D/S Slope		Velocity ¹	Concentration
(Land Use)	(m)	(m)	(m)	(%)	(m/s)	(min)
EXT-01/EXT-04						
Overland Flow	210	87.0	80.7	3.0%	0.37	9.5
(Pasture)						
TOTAL	210	87.0	80.7	3.0%	0.37	10.0
1						*****

¹ Refer to Uplands Velocity Chart.

Existing Catchment Parameters

		Areas (ha)		Runoff C		
Catchment ID	Total	Hard Surfaces (C=0.90)	Soft Surfaces (C=0.20)	C _{avg}	C _{100yr} 1	%Imperv.
			(C=0.20)			
TOTAL	1.550	0.120	1.430	0.25	0.31	7.7%

¹ Runoff coefficient increases by 25%, up to a maximum value of 1.00, for the 100-year event.

Pre-Development Peak Flows

Catchment ID	Rainfa	II Intensity (m	nm/hr) ¹	Peak Flows (L/s)			
	2-year	5-year	100-year	2-year	5-year	100-year	
Site Boundary (existing conditions)	76.81	104.19	178.56	84.1	114.1	237.0	

¹ Tc is based on Uplands Method.

Notes:

Rainfall Intensity from City of Ottawa Sewer Design Guidelines (Oct. 2012)

- 100 year Intensity = 1735.688 / (Tc + 6.014)^{0.820}

- 5 year Intensity = 998.071 / (Tc + 6.053)^{0.814}

- 2 year Intensity = $732.951 / (Tc + 6.199)^{0.810}$

Q(peak flow) = $2.78 \times C \times I \times A$

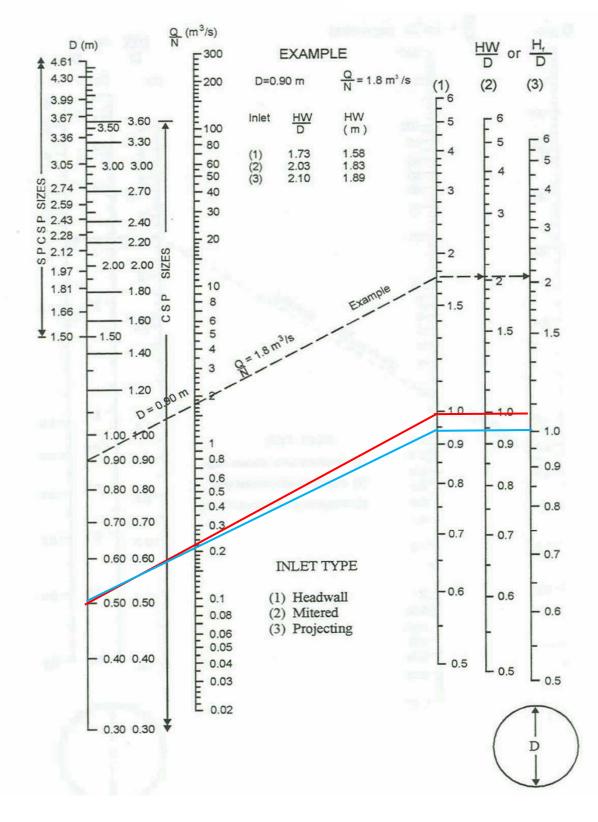
- C is the runoff coefficient

- I is the rainfall intensity

- A is the total drainage area

*Min 10-minutes.

MTO Drainage Management Manual


Design Chart 2.32: Inlet Control: Circular Culverts Source: Herr (1977)

PROJECT NAME: 1104 Halton Terrace PROJECT #: 119024

500mm CSP Culvert Crosses Old Carp Road

Drainage Area to Culvert = 1.55 ha (approx.) Runoff Coefficient = 0.25 (approx.)

100-year Peak Flow = $0.237 \text{ m}^3/\text{s}$ Capacity (HW/D=1) = $0.21 \text{ m}^3/\text{s}$

EPA STORM WATER MANAGEMENT MODEL - VERSION 5.1 (Build 5.1.015)

******	**	****	
Element			
Number	of	rain gages	1
Number	of	subcatchments	13
Number	of	nodes	27
Number	of	links	30
Number	of	pollutants	0
Number	of	land uses	0

Ra	i	ng	a	g	e		s	u	m	m	a	r	у
**	*	**	*	*	*	*	*	*	*	*	*	*	*

Name	Data Source	Data Type	Recording Interval
RG-1	C3h-100yr	INTENSITY	10 min.

Subcatchment Summary

et
02
01
01
tch3

Node Summary

Name	Туре	Elev.			External Inflow
HP01	JUNCTION	83.66		0.0	
HP02	JUNCTION	83.06			
HP-CBMH02	JUNCTION	85.85			
HP-CBMH03	JUNCTION	85.90			
HP-RY05	JUNCTION	83.90			
HP-RY06	JUNCTION	83.90			
HP-RY08	JUNCTION	83.26			
CBMH03	OUTFALL	80.71			
Ex_1500	OUTFALL	80.11			
Ex_Ditch3	OUTFALL	83.22			
HP-CB01	OUTFALL	83.45			
HP-RY01	OUTFALL	82.86	1.00	0.0	
HP-RY02	OUTFALL	82.95	1.00	0.0	
OF1	OUTFALL	83.30			
CB01	STORAGE	82.32			
CBMH01	STORAGE	83.69			
CBMH02	STORAGE	82.88	3.67	0.0	
MH02	STORAGE	81.35	2.44	0.0	
MH04	STORAGE	82.17	3.57	0.0	
MH06	STORAGE	82.70		0.0	
MH08	STORAGE	82.77	3.11	0.0	
RY01	STORAGE	81.06			
RY02	STORAGE	81.29	2.78	0.0	
RY03	STORAGE	81.51	2.39	0.0	
RY04	STORAGE	81.73	2.43	0.0	
RY05	STORAGE	82.80	2.00	0.0	
RY06	STORAGE	82.87	1.93	0.0	

Link Summary ******

	NO
	Engineers, Plan

Name	From Node	To Node	Туре	Length	%Slope	Roughness
CBMH01-CBMH02	CBMH01	CBMH02	CONDUIT	42.5	0.4941	0.0130
MH02-Ex_1500	MH02	Ex_1500	CONDUIT	28.8	0.4861	0.0130
MH04-MH02	MH04	MH02	CONDUIT	39.0	1.0001	0.0130
MH08-MH06	MH08	MH06	CONDUIT	36.8	0.1902	0.0130
MS-CB01	CB01	HP-CB01	CONDUIT	3.0	-4.3374	0.0150
MS-CBMH01(1)	CBMH01	HP-CBMH03	CONDUIT	3.0	-11.7469	0.0150
MS-CBMH01(2)	HP-CBMH03	CBMH02	CONDUIT	3.0	11.7469	0.0150
MS-CBMH02(1)	CBMH02	HP-CBMH02	CONDUIT	3.0	-10.0504	0.0150
MS-CBMH02(2)	HP-CBMH02	CB01	CONDUIT	3.0	156.9311	0.0150
MS-HP01	HP01	RY04	CONDUIT	22.0	2.2733	0.0350
MS-HP02	HP02	RY01	CONDUIT	18.7	1.4975	0.0350
MS-RY01	RY01	HP-RY01	CONDUIT	3.0	-2.6676	0.0350
MS-RY02(1)	RY02	RY01	CONDUIT	27.6	1.0145	0.0350
MS-RY02(2)	RY02	RY03	CONDUIT	21.5	0.7907	0.0350
MS-RY03	RY03	HP-RY02	CONDUIT	3.0	-1.6669	0.0350
MS-RY04(1)	RY04	HP-RY08	CONDUIT	6.6	-1.5153	0.0350
MS-RY04(2)	HP-RY08	RY03	CONDUIT	20.0	1.8003	0.0350
MS-RY05(1)	RY05	HP-RY05	CONDUIT	3.0	-3.3352	0.0350
MS-RY05(2)	HP-RY05	RY06	CONDUIT	3.0	3.3352	0.0350
MS-RY06(1)	RY06	HP-RY06	CONDUIT	3.0	-3.3352	0.0350
MS-RY06(2)	HP-RY06	Ex_Ditch3	CONDUIT	30.3	2.2448	0.0350
RY03-RY02	RY03	RY02	CONDUIT	6.9	3.1854	0.0130
RY05-MH08	RY05	MH08	CONDUIT	6.2	0.4839	0.0130
RY05-RY06	RY06	RY05	CONDUIT	13.5	0.5185	0.0130
RY08-RY03	RY04	RY03	CONDUIT	17.1	1.2859	0.0130
SC740	RY02	RY01	CONDUIT	14.6	1.5112	0.0130
0-CB01	CB01	MH02	ORIFICE			
O-CBMH02	CBMH02	MH04	ORIFICE			
O-MH06	MH06	MH04	ORIFICE			
0-RY01	RY01	CBMH03	ORIFICE			

***** Cross Section Summary

*****	*****						
Conduit	Shape	Depth	Full Area	Rad.	Width	Barrels	Flow
CBMH01-CBMH02	CIRCULAR		0.29				451.09
MH02-Ex_1500	CIRCULAR	0.45	0.16	0.11	0.45	1	198.79
MH04-MH02	CIRCULAR	0.45	0.16				285.13
MH08-MH06	CIRCULAR	0.61	0.29				279.88
MS-CB01	RECT_OPEN	1.00	3.00				29632.76
MS-CBMH01(1)		1.00	3.00				48766.13
MS-CBMH01(2)	RECT_OPEN	1.00	3.00	0.60	3.00		48766.13
MS-CBMH02(1)	RECT_OPEN	1.00	3.00	0.60	3.00	1	45107.44
MS-CBMH02(2)	RECT_OPEN		3.00				178242.59
MS-HP01	TRAPEZOIDAL	1.00	3.15	0.49	6.15	1	8394.58
MS-HP02	TRAPEZOIDAL	1.00	15.15		30.15	1	33432.18
MS-RY01	TRAPEZOIDAL	1.00	3.15	0.49	6.15	1	9093.49
MS-RY02(1)	TRAPEZOIDAL	1.00	3.15	0.49	6.15	1	5607.96
MS-RY02(2)	TRAPEZOIDAL		3.15				4950.86
MS-RY03	TRAPEZOIDAL	1.00	3.15			1	
MS-RY04(1)	TRAPEZOIDAL	1.00	3.15		6.15	1	
MS-RY04(2)	TRAPEZOIDAL	1.00	3.15		6.15		7470.34
MS-RY05(1)	RECT_OPEN	1.00	3.00				11136.28
MS-RY05(2)	RECT_OPEN	1.00	3.00	0.60	3.00	1	11136.28
MS-RY06(1)	RECT_OPEN	1.00	3.00	0.60	3.00	1	11136.28
MS-RY06(2)	RECT_OPEN	1.00	2.50	0.56	2.50	1	7232.76
RY03-RY02	RECT_CLOSED	1.14	2.16	0.36	1.90	1	14858.77
RY05-MH08	CIRCULAR	0.25	0.05		0.25	1	41.37
RY05-RY06	CIRCULAR	0.25	0.05		0.25	1	42.82
RY08-RY03	RECT_CLOSED	1.14	2.16	0.36	1.90	1	9440.71
SC740	RECT_CLOSED	1.14	2.16	0.36	1.90	1	10234.24

****** NOTE: The summary statistics displayed in this report are based on results found at every computational time step, not just on results from each reporting time step.

***** Analysis Options Flow Units LPS Process Models:

Rainfall/Runoff YES RDII NO

Snowmeit	NO	
Groundwater	NO	
Flow Routing	YES	
Ponding Allowed	NO	
Water Quality	NO	
Infiltration Method	HORTON	
Flow Routing Method	DYNWAVE	
Surcharge Method	EXTRAN	
Starting Date	07/21/2021	00:00:00
Ending Date	07/22/2021	00:00:00
Antecedent Dry Days	0.0	
Report Time Step	00:01:00	
Wet Time Step	00:05:00	
Dry Time Step	00:05:00	
Routing Time Step	6.00 sec	
Variable Time Step	YES	
Maximum Trials	8	
Number of Threads	4	
Head Tolerance	0.001500 m	

NO

Runoff Quantity Continuity Total Precipitation Evaporation Loss Infiltration Loss Surface Runoff Final Storage Continuity Error (%)	Volume hectare-m 0.050 0.000 0.010 0.040 0.000 -0.965	Depth mm 71.667 0.000 14.800 56.956 0.602
Flow Routing Continuity Pry Weather Inflow Wet Weather Inflow RDII Inflow External Inflow External Outflow Evaporation Loss Exfiltration Loss Initial Stored Volume Continuitg Error (%)	Volume hectare-m 0.000 0.040 0.000 0.000 0.040 0.000 0.000 0.000 0.002 0.002 0.042	Volume 10^6 ltr

Highest Flow Instability Indexes Link O-CBO1 (125) Link MH02-Ex_1500 (19) Link MH04-MH02 (16) Link SC740 (11) Link SC740 (11)

Routing	Time	Step Summary			
*******	*****	*******			
Minimum	Time	Step	:	0.50	sec
Average	Time	Step	:	5.89	sec
Maximum	Time	Step	:	6.00	sec

Percent in Steady State	:	-0.00
Average Iterations per Step		2.42
Percent Not Converging	:	3.25
	:	
6.000 - 3.650 sec	:	97.63 %
3.650 - 2.221 sec	:	2.14 %
2.221 - 1.351 sec	:	0.16 %
	:	
0.822 - 0.500 sec	:	0.04 %

Subcatchment Runoff Summary

Total	Peak	Runoff	Total	Total	Total	Total	Imperv	Perv	Total	
IOCAL	reak	KUIIOII	Precip	Runon	Evap	Infil	Runoff	Runoff	Runoff	
	Runofi	f Coeff								
Subcatc 10^6 ltr		LPS	mm	mm	mm	mm	mm	mm	mm	
A-01			71.67	0.00	0.00	7.82	58.11	5.13	63.24	
	0.77	0.882	/1.0/	0.00	0.00	1.02	30.11	5.15	03.24	
A-02			71.67	0.00	0.00	28.72	32.12	43.09	43.09	
0.04 3 A-03	31.90	0.601	71.67	0.00	0.00	8.63	56.66	5.80	62.46	
	11.90	0.871								
A-04 0.05 3	37.84	0.729	71.67	0.00	0.00	19.25	40.14	12.07	52.21	
A-05	01.04	0.725	71.67	0.00	0.00	42.90	4.91	24.46	29.37	
	3.28	0.410			0.00	40.00		05 15	20.07	
A-06 0.01	8.41	0.420	71.67	0.00	0.00	42.38	4.92	25.15	30.07	
A-07			71.67	0.00	0.00	0.00	72.18	0.00	72.18	
0.04 2 A-08	26.17	1.007	71.67	0.00	0.00	43.38	4.91	23.86	28.77	
	5.79	0.401	/1.0/	0.00	0.00	45.50	4.51	23.00	20.77	
a-09	0.10	0.000	71.67	0.00	0.00	9.05	55.75	6.43	62.18	
0.01 A-10	8.16	0.868	71.67	0.00	0.00	0.00	72.18	0.00	72.18	
	8.03	1.007								
A-11 0.07 4	15.93	1.007	71.67	0.00	0.00	0.00	72.18	0.00	72.18	
B-01		1.007	71.67	0.00	0.00	37.24	35.46	23.74	35.46	
0.00 B-02	1.54	0.495	71.67	0.00	0.00	43.36	4.91	23.89	28.80	
	5.00	0.402	/1.0/	0.00	0.00	43.30	4.91	23.09	20.00	

Average Maximum Maximum Time of Max Reported Depth Depth HGL Occurrence Max Depth Node Type Meters Meters Meters days hr:min Meters ____ HP01 JUNCTION 0.00 0.00 83.66 0 00:00 0.00 HP02 JUNCTION 0.00 0.04 83.10 0 01:10 0.04 HP-CBMH02 JUNCTION 0.00 0.00 85.85 0 00:00 0.00 HP-CBMH03 JUNCTION 0.00 0.00 85.90 0 00:00 0.00 HP-RY05 JUNCTION 0.00 0.00 00:00 0.00 83.90 0 HP-RY06 JUNCTION 0.00 0.00 83.90 00:00 0.00 0 HP-RY08 JUNCTION 0.00 0.00 83.26 00:00 0.00 CBMH03 OUTFALL 0.52 0.52 81.23 0 00:00 0.52 2.54 00:00 2.54 Ex_1500 OUTFALL 2.54 82.65 0 Ex_Ditch3 OUTFALL 0.00 83.22 0 HP-CB01 OUTFALL 0.00 0.00 83.45 00:00 0.00 0 HP-RY01 OUTFALL 0.00 0.00 82.86 0 00:00 0.00 0.00 00:00 HP-RY02 OUTFALL 0.00 82.95 0 0.00 OUTFALL 0.00 83.30 0.00 OF1 0 STORAGE CB01 0.35 83.45 01:13 1.13 1.13 0 CBMH01 STORAGE 0.43 2.15 85.84 01:52 2.15 0 CBMH02 STORAGE 0.66 2.96 85.84 0 01:51 2.96 STORAGE 1.30 1.31 MH02 1.31 82.66 0 01:21 STORAGE MH04 0.48 0.49 82.66 0 01:21 0.49 STORAGE MH06 0.05 1.12 83.82 0 01:29 1.12

M:\2019\119024\DATA\Calculations\SWM\ModelOutput_100yr.docx

MH08	STORAGE	0.05	1.05	83.82	0	01:29	1.05	
RY01	STORAGE	0.35	1.63	82.69	0	01:40	1.63	
RY02	STORAGE	0.16	1.40	82.69	0	01:40	1.40	
RY03	STORAGE	0.12	1.19	82.70	0	01:40	1.19	
RY04	STORAGE	0.09	0.97	82.70	0	01:40	0.97	
RY05	STORAGE	0.04	1.03	83.83	0	01:29	1.03	
RY06	STORAGE	0.04	0.96	83.83	0	01:30	0.96	

Node Inflow Summary

Maximum Maximum Lateral Total Flow Lateral Total Time of Max Inflow Inflow Balance Inflow LPS Inflow Occurrence Volume Volume Error Node LPS 10^6 ltr Percent Type davs hr:min 10^6 ltr HP01 JUNCTION 0.00 0.00 0 00:00 0 0.000 ltr 8.16 0.0106 0.0106 HP02 JUNCTION 8.16 0 01:10 -0.004 HP-CBMH02 JUNCTION 0.00 0 00:00 0.000 ltr 0 HP-CBMH03 JUNCTION 0.00 0.00 0 00:00 0.000 ltr 0 0 0.00 0.00 0 00:00 0.000 ltr HP-RY05 JUNCTION HP-RY06 JUNCTION 0.00 0.00 00:00 0.000 ltr 0.00 0.00 HP-RY08 JUNCTION 0 00:00 0 0.000 ltr CBMH03 OUTFALL 0 01:40 0.155 0.000 0 OUTFALL Ex_1500 0.00 35.63 0 01:21 0.239 0.000 Ex_Ditch3 OUTFALL 5.00 5.00 0 01:10 0.00693 0.00693 0.000 0.00 0.00 HP-CB01 OUTFALL Ω 00:00 0 0.000 ltr HP-RY01 OUTFALL 0 00:00 0.000 ltr 0 0.00 0.000 ltr HP-RY02 OUTFALL 0.00 0 00:00 0 OUTFALL 01:15 0.00178 0.00178 OF1 1.54 1.54 0.000 0 CB01 STORAGE 37.84 37.84 01:10 0.0471 0.0483 0.535 0.0933 0.078 CBMH01 STORAGE 68.08 68.08 0 01:10 0.0933 CBMH02 STORAGE 40.77 58.44 0 01:09 0.148 STORAGE 0 01:21 -0.045 MH02 0.00 35.63 0.24 MH04 STORAGE 0.00 15.35 01:30 0.189 0.003 MH06 STORAGE 0.00 17.78 0 01:11 0 0.0403 0.243 MH08 STORAGE 0.00 28.96 0 01:11 0.0402 -0.305 STORAGE -10.107 RY01 43.82 54.36 0 02:54 0.0637 0.154 STORAGE 179.32 0 01:13 0.0736 -12.370 RY02 0.00 RY03 STORAGE 54.34 76.46 01:13 0.0765 0.0964 34.679 RY04 STORAGE 3.28 46.50 0 01:09 0.00412 0.018 18.389 RY05 STORAGE 31.90 31.90 0 01:10 0.0402 -0.014 1.178 STORAGE RY06 0.00 3.47 0 01:24 0.00165 0

***** Node Surcharge Summary *****

No nodes were surcharged.

***************** Node Flooding Summary

No nodes were flooded.

***** Storage Volume Summary

Storage Unit	Average Volume 1000 m3	Avg Pcnt Full	Evap Pcnt Loss	Exfil Pcnt Loss	Maximum Volume 1000 m3	Max Pont Full	Time of M Occurren days hr:m	ce Outflow
CB01	0.000	3	0	0	0.006	92	0 01:	13 21.23
CBMH01	0.004	8	0	0	0.033	70	0 01:	52 20.80
CBMH02	0.004	12	0	0	0.031	94	0 01:	51 7.37
MH02	0.001	53	0	0	0.001	54	0 01:	21 35.63
MH04	0.001	13	0	0	0.001	14	0 01:	21 16.42
MH06	0.000	2	0	0	0.001	36	0 01:	29 7.99
MH08	0.000	1	0	0	0.001	34	0 01:	29 17.78
RY01	0.000	13	0	0	0.001	60	0 01:	40 81.95
RY02	0.000	6	0	0	0.001	50	0 01:	40 67.64
RY03	0.000	5	0	0	0.000	50	0 01:	40 141.63
RY04	0.000	4	0	0	0.000	40	0 01:	40 21.83

NOV	ΛΤΞϹΗ
Engineers, Planner	s & Landscape Architects

RY05	0.000	1	0	0	0.001	19	0	01:29	30.37
RY06	0.000	1	0	0	0.000	18	0	01:30	1.26

***** Outfall Loading Summary

Outfall Node	Flow Freq Pont	Avg Flow LPS	Max Flow LPS	Total Volume 10^6 ltr
CBMH03	25.63	7.53	12.21	0.155
Ex_1500	97.01	3.13	35.63	0.239
Ex_Ditch3	10.38	0.98	5.00	0.007
HP-CB01	0.00	0.00	0.00	0.000
HP-RY01	0.00	0.00	0.00	0.000
HP-RY02	0.00	0.00	0.00	0.000
OF1	6.61	0.36	1.54	0.002
System	19.95	12.00	51.11	0.402

***	***	****	*****	****
Lin	k F	low	Summai	cy
***	***	****	*****	*****

Init Type Display brain Occurrence Veloc Fuil P Fuil P CBMH01-CBMH02 CONDUIT 20.80 0 01:05 0.47 0.05 1 MH04-Ex,1500 CONDUIT 20.80 0 01:05 0.47 0.05 1 MH04-HH02 CONDUIT 35.63 0 01:21 0.22 0.18 1 MH04-HH02 CONDUIT 16.42 0 01:26 0.10 0.06 1 MH08-MH06 CONDUIT 10.00 0 00:00 0.00 0.00 0 MS-CBMH01(1) CONDUIT 0.00 0 0:00 0.00 0 0 0.00 0 0.00 0 0.00 0.00 0 0.00 0 0.00	
Link Type Ls days h:nin m/sec Flow De CBMH01-CBMH02 CONDUIT 20.80 0 01:05 0.47 0.05 1 MH02-Ex_1500 CONDUIT 35.63 0 01:26 0.12 0.12 0.18 1 MH04-MH02 CONDUIT 16.42 0 01:26 0.10 0.06 1 MH04-MH02 CONDUIT 17.78 0 01:11 0.49 0.06 1 MS-CBMH01(1) CONDUIT 0.00 0 00:00 0.00 0.00 0 0.00 0 0.00	lax/
CDMH01-CBMH02 CONDUIT 20.80 0 01:05 0.47 0.05 1 MH02-Ex_1500 CONDUIT 35.63 0 01:21 0.22 0.18 1 MH02-Ex_1500 CONDUIT 16.42 0 01:21 0.22 0.18 1 MH04-MH02 CONDUIT 16.42 0 01:26 0.10 0.06 1 MH03-MH06 CONDUIT 0.00 0 0:00 0.00 0.00 0 MS-CEMH01(1) CONDUIT 0.00 0 0:00 0.00 0.00 0 MS-CEMH01(2) CONDUIT 0.00 0 0:00 0.00 0.00 0 MS-CEMH02(2) CONDUIT 0.00 0 0:00 0.00 0.00 0 MS-CEMH02(2) CONDUIT 0.00 0 0:00 0.00 0.00 0 MS-RY01 CONDUIT 0.00 0 0:00 0.00 0.00 0 0.00 0 0.0	ull
CBMH01-CEMH02 CONDUIT 20.80 0 01:05 0.47 0.05 1 MH02-Ex_1500 CONDUIT 35.63 0 01:26 0.12 0.22 0.18 1 MH04-MH02 CONDUIT 16.42 0 01:26 0.10 0.66 1 MH04-MH06 CONDUIT 17.78 0 01:11 0.49 0.06 1 MH08-MH06 CONDUIT 1.778 0 01:11 0.49 0.06 1 MH07-MH02 CONDUIT 0.00 00:00 0.00	pth
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.00
MH0B-MH06 CONDUIT 17.78 0 01:11 0.49 0.66 1 MBG-CBMI CONDUIT 0.00	.00
MS-CED1 CONDUIT 0.00 00.00 0.00 0.00 0 MS-CEMH01(1) CONDUIT 0.00 0 0.00 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0 0.00 0 0 0 0 0.00 <	.00
MS-CEMH01(1) CONDUIT 0.00 0 0 0.00 0.00 0 0.00 0 MS-CEMH01(2) CONDUIT 0.00 0 00:00 0.00 0.00 0 MS-CEMH02(1) CONDUIT 0.00 0 00:00 0.00 0.00 0 MS-CEMH02(2) CONDUIT 0.00 0 00:00 0.00 0.00 0 MS-HP01 CONDUIT 0.00 0 00:00 0.00 0.00 0 MS-RY01 CONDUIT 0.00 0 00:00 0.00 0.00 0 MS-RY02(1) CONDUIT 0.00 0 00:00 0.00 0.00 0 MS-RY02(2) CONDUIT 0.00 0 00:00 0.00 0.00 0 MS-RY03(1) CONDUIT 0.00 0 00:00 0.00 0.00 0 MS-RY04(2) CONDUIT 0.00 0 00:00 0.00 0 0.00 0 MS-RY05(1) CONDUIT 0.00 0 00:00 0.00 0 0.00 0	.00
MS-CEMHOI(2) CONDUIT 0.00 00:00 0.00 0.00 0 MS-CBMH02(1) CONDUIT 0.00 0 00:00 0.000 0 000 0 MS-CBMH02(2) CONDUIT 0.00 0 00:00 0.000 <	.06
MS-CEMH02 (1) CONDUIT 0.00 0 0 0.00 0.00 0.00 0 MS-CEMH02 (2) CONDUIT 0.00 0 00:00 0.00 0.00 0 MS-CEMH02 (2) CONDUIT 0.00 0 00:00 0.00 0.00 0 MS-HP01 CONDUIT 8.09 0 01:10 0.29 0.00 0 MS-RY01 CONDUIT 0.00 0 00:00 0.00 0.00 0 MS-RY02 (1) CONDUIT 0.00 0 00:00 0.00 0.00 0 MS-RY02 (2) CONDUIT 0.00 0 00:00 0.00 0.00 0 MS-RY03 (1) CONDUIT 0.00 0 00:00 0.00 0.00 0 MS-RY04 (1) CONDUIT 0.00 0 00:00 0.00 0 0 MS-RY05 (2) CONDUIT 0.00 0 00:00 0.00 0 0 MS-RY05 (2) CONDUIT 0.00 0 00:00 0.00 0 0 MS-RY06 (1)	.14
MS-CEMHIQ2 (2) CONDUIT 0.00 0 0.00 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0 0 0.00 0	.14
MS-HP01 CONDUIT 0.00 0 00:00 0.00 00	.14
MS-HE02 CONDUIT 8.09 0 01:10 0.29 0.00 0 MS-RY01 CONDUIT 0.00 0 00:00 0.00 0 00 0 MS-RY02(1) CONDUIT 0.00 0 00:00 0.00 0 0 0 0.00 0	.06
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$.00
MS-RY02(1) CONDUIT 0.00 0 00:00 0.00 0 000 0 MS-RY02(2) CONDUIT 0.00 0 0:00 0.00 0.00 0 0 0 0:00 0.00 0	.04
MS-RV02(2) CONDUIT 0.00 0 00:00 0.00 0 0 00	.00
MS-RV01 CONDUIT 0.00 0 00:00 0.00 0 00 0 MS-RV04(1) CONDUIT 0.00 0 00:00 0.00 0 0.00 0 MS-RV04(2) CONDUIT 0.00 0 00:00 0.00 0.00 0 MS-RV05(1) CONDUIT 0.00 0 00:00 0.00 0.00 0 MS-RV5(2) CONDUIT 0.00 0 00:00 0.00 0 0 RN-RV5(2) CONDUIT 0.00 0 00:00 0.00 0.00 0 RV03-MM08 CONDUIT 182.0 0 01:11 0.28 0.70 1	.00
MS=RV04(1) CONDUIT 0.00 0 00:00 0.00 0 00 00 <td>.00</td>	.00
MS-RV04(2) CONDUIT 0.00 0 00:00 0.00 0 0 MS-RV05(1) CONDUIT 0.00 0 00:00 0.00 0 MS-RV05(2) CONDUIT 0.00 0 00:00 0.00 0 0 MS-RV05(2) CONDUIT 0.00 0 00:00 0.00 0.00 0 MS-RV06(1) CONDUIT 0.00 0 00:00 0.00 0.00 0 MS-RV06(2) CONDUIT 0.00 0 00:00 0.00 0.00 0 RV0-RV02 CONDUIT 0.00 0 00:00 0.00 0.00 0 RV05-MM08 CONDUIT 128.96 0 01:11 0.28 0.70 1	.00
MS-RY05(1) CONDUIT 0.00 0.000 0.00 0.00 0 MS-RY05(2) CONDUIT 0.00 0.000 0.00 0.00 0.00 0 MS-RY05(2) CONDUIT 0.00 0.000 0.000 0.00 0 MS-RY05(1) CONDUIT 0.00 0.000 0.000 0.000 0 MS-RY06(2) CONDUIT 0.00 0.011 0.28 0.001 1 RY03-RY02 CONDUIT 18.20 0 01:11 0.82 0.70 1	.00
MS-RV05(2) CONDUIT 0.00 0 00:00 0.00 0	.00
MS-RY06(1) CONDUIT 0.00 0.00:00 0.00 0 MS-RY06(2) CONDUIT 0.00 0 00:00 0.00 0	.01
MS-RV06(2) CONDUIT 0.00 0 00:00 0.00 0 0 RV03-RV02 CONDUIT 108.20 0 01:13 0.28 0.01 1 RV05-MH08 CONDUIT 28.96 0 01:11 0.82 0.70 1	.01
RY03-RY02 CONDUIT 108.20 0 01:13 0.28 0.01 1 RY05-MH08 CONDUIT 28.96 0 01:11 0.82 0.70 1	.01
RY05-MH08 CONDUIT 28.96 0 01:11 0.82 0.70 1	.00
	.00
	.00
RY05-RY06 CONDUIT 3.47 0 01:24 0.07 0.08 1	.00
RY08-RY03 CONDUIT 43.36 0 01:09 0.11 0.00 0	.92
SC740 CONDUIT 71.12 0 01:13 0.03 0.01 1	.00
O-CB01 ORIFICE 21.23 0 01:13 1	.00
O-CBMH02 ORIFICE 7.37 0 01:51 1	.00
O-MH06 ORIFICE 7.99 0 01:30 1	.00
O-RY01 ORIFICE 12.21 0 01:40 1	.00

**** Flow Classification Summary

	Adjusted			Fract	ion of	Time	in Flow	v Class	s	
	/Actual		Up	Down	Sub	Sup	Up	Down	Norm	Inlet
Conduit	Length	Dry	Dry	Dry	Crit	Crit	Crit	Crit	Ltd	Ctrl
CBMH01-CBMH02	1.00	0.01	0.00	0.00	0.28	0.00	0.00	0.72	0.02	0.00
MH02-Ex_1500	1.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00
MH04-MH02	1.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00
MH08-MH06	1.00	0.82	0.04	0.00	0.14	0.00	0.00	0.00	0.87	0.00
MS-CB01	1.00	0.98	0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.00
MS-CBMH01(1)	1.00	0.82	0.18	0.00	0.00	0.00	0.00	0.00	0.00	0.00
MS-CBMH01(2)	1.00	0.82	0.18	0.00	0.00	0.00	0.00	0.00	0.00	0.00
MS-CBMH02(1)	1.00	0.82	0.18	0.00	0.00	0.00	0.00	0.00	0.00	0.00

MS-CBMH02(2)	1.00	0.98	0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.00
MS-HP01	1.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
MS-HP02	1.00	0.01	0.00	0.00	0.00	0.00	0.00	0.99	0.00	0.00
MS-RY01	1.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
MS-RY02(1)	1.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
MS-RY02(2)	1.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
MS-RY03	1.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
MS-RY04(1)	1.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
MS-RY04(2)	1.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
MS-RY05(1)	1.00	0.99	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00
MS-RY05(2)	1.00	0.99	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00
MS-RY06(1)	1.00	0.99	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00
MS-RY06(2)	1.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
RY03-RY02	1.00	0.25	0.33	0.00	0.41	0.02	0.00	0.00	0.25	0.00
RY05-MH08	1.00	0.04	0.00	0.00	0.96	0.00	0.00	0.00	0.87	0.00
RY05-RY06	1.00	0.04	0.00	0.00	0.95	0.00	0.00	0.00	0.88	0.00
RY08-RY03	1.00	0.57	0.23	0.00	0.20	0.00	0.00	0.00	0.32	0.00
SC740	1.00	0.00	0.25	0.00	0.75	0.00	0.00	0.00	0.79	0.00

Conduit Surcharge Summary

Conduit				Hours Above Full Normal Flow	Hours Capacity Limited
CBMH01-CBMH02	4.87	4.87	5.10	0.01	0.01
MH02-Ex_1500	24.00	24.00	24.00	0.01	0.01
MH04-MH02	24.00	24.00	24.00	0.01	0.01
MH08-MH06	0.78	0.78	0.85	0.01	0.01
RY03-RY02	0.57	0.57	1.39	0.01	0.01
RY05-MH08	1.34	1.34	1.41	0.01	0.01
RY05-RY06	1.19	1.19	1.34	0.01	0.01
RY08-RY03	0.01	0.01	0.57	0.01	0.01
SC740	1.39	1.39	2.06	0.01	0.01

Analysis begun on: Thu Apr 24 13:50:26 2025 Analysis ended on: Thu Apr 24 13:50:27 2025 Total elapsed time: 00:00:01

LTERNATIVE RUNOFF			SION 7.6.360					**************** Node Summary	
Simulation start	time.	07	/21/2021 00:	00.00				********	
Simulation end t	ime:	07	/22/2021 00:					Name	Т
Runoff wet weath Report time step								HP01	J
Number of data p	oints:	14	41					HP02 HP-CBMH02	J J
								HP-CBMH03	J
* * * * * * * * * * * * * * * * *								HP-RY05	J
Unit Hydrographs								HP-RY06	J
*****	*****							HP-RY08	J
								J1 Ex 1500	J
								Ex Ditch3	0
					Area Time	of Concentration	Time	HP-CB01	0
o Peak Time af	ter Peak Peak	UH Flow	UH Depth					HP-RY01	0
Subcatchment	Runoff Meth	ıod	Raingag	le	(ha) (min)	(min)	HP-RY02	0
nin)	(m³/s/mm)							OF1 OF2	0
								CB01	0 S'
EXT-01	Nash TUH		RG-1		1.352 10		6.67	CB01 CBMH01	S
EXT-01 3.33	0.0183	0.982					/	CBMH02	S
								CBMH03	S
								MH02	S
*****								MH04	S
ARM Runoff Summa								MH06 MH08	S
	~ ~							RY01	S
								RY02	S
	Total	Total	Total	Total	Peak	Runoff		RY03	S
Subcatchment	Precip	Losses	Runoff	Runoff	Runoff	Coeff		RY04	S
Subcatchment	(mm)	(mm)	(mm)	10^6 ltr	LPS	(fraction)		RY05	S
EXT-01	71.667							RY06	S
DAT OI	/1.00/	57.754	55.205	0.40	211.000	0.404			
*****								**************************************	From
Element Count								C1	J1
*****								C2	CBMH0
Number of rain g								CBMH01-CBMH02	
Number of subcat	chments 13							MH02-Ex_1500	MH02
Number of nodes								MH04-MH02	MH04
Number of links Number of pollut								MH04-MH02 MH08-MH06 MS-CB01	CB01
Number of land u								MS-CBMH01(1)	CBMH0
Humber of fand a								MS-CBMH01(2)	
								MS-CBMH02(1)	
****								MS-CBMH02(2)	HP-CB
Raingage Summary	r							MS-HP01	HP01
*****			D.						HP02 RY01
Name	Data Source		Da Tr	ita Reco 7pe Inte	rval			MS-RIUI MS-RV02(1)	
			ر۔ 					MS-RY02(1) MS-RY02(2)	RY02
RG-1	C3h-100yr		IL	TENSITY 10	min.			MS-RY03	BY03
	*							MS-RY04(1)	RY04
								MS-RY04(2) MS-RY05(1)	HP-RY

Subcatchment Sum								MS-RY05(2) MS-RY06(1)	HP-RY RY06
Name		Width	%Tmperv	%Slope Rain	Garre	Outlet		MS-RY06(2)	HP-RY
								MS-RY06(2) RY03-RY02	RY03
								RY05-MH08	RY05
A-01	0.09			1.0000 RG-1		CBMH02		RY05-RY06	RY06
	0.09	37.20	45.70	1.0000 RG-1		RY05		RY08-RY03	RY04
A-02		44.00	80.50	1.0000 RG-1		CBMH01 CB01		SC740 O-CB01	RY02 CB01
A-02 A-03	0.00		J/.IU	0000 KG-1				U-CBUI	CDUT
A-02	0.09	7 00	7 00	1.0000 RG-1		RY04		O-CBMH02	CBMHO
A-02 A-03 A-04	0.09 0.01 0.03	7.00	7.00 7.00	1.0000 RG-1 1.0000 RG-1		RY04 RY03		0-CB01 0-CBMH02 0-MH06	CBMH0 MH06
A-02 A-03 A-04 A-05 A-06 A-07	0.05	44.00 22.50 7.00 20.67 10.60	100 00	1 0000 RG-1		RY03 CBMH01		O-CBMH02 O-MH06 O-RY01	CBMH0 MH06 RY01
A-02 A-03 A-04 A-05 A-06 A-07 A-08	0.05	10 60	100 00	1 0000 RG-1		RY03 CBMH01 RY01		0-CBMH02 0-MH06 0-RY01	CBMH0 MH06 RY01
A-02 A-03 A-04 A-05 A-06 A-07 A-08 a-09	0.05	10 60	100 00	1 0000 RG-1		RY03 CBMH01 RY01 HP02		O-MHU6 O-RY01	MH06 RY01
A-02 A-03 A-04 A-05 A-06 A-07 A-08 a-09 A-10	0.05	10 60	100 00	1 0000 RG-1		RY03 CBMH01 RY01 HP02 RY01		O-MH06 O-RY01 ***********	MH06 RY01
A-02 A-03 A-04 A-05 A-06 A-07 A-08 a-09 A-10 A-11	0.05 0.03 0.02 0.08 0.09	10.60 11.20 8.50 15.40 18.60	100.00 7.00 79.40 100.00 100.00	1.0000 RG-1 1.0000 RG-1 5.0000 RG-1 1.0000 RG-1 1.0000 RG-1		RY03 CBMH01 RY01 HP02 RY01 RY03		O-MHU6 O-RY01	MH06 RY01 ***** ummary
A-02 A-03 A-04 A-05 A-06 A-07 A-08 a-09 A-10	0.05 0.03 0.02 0.08 0.09 0.01	10.60 11.20 8.50 15.40 18.60 3.33	100.00 7.00 79.40 100.00 100.00 16.70	1 0000 RG-1		RY03 CBMH01 RY01 HP02 RY01		0-MH06 0-RY01 ************************************	MH06 RY01 ***** ummary

		Invert	Max. Depth	Ponded	Ext	ernal	
Name	Type	Elev. 83.66 83.06 85.85 85.90 83.90 83.90 83.26 82.25 80.11 83.22 83.45 82.86 82.95 83.30 80.47 82.32 83.69 82.95 83.30 80.47 82.22 83.45 82.95 83.30 80.47 82.25 83.10 80.47 82.25 83.69 82.25 83.30 80.47 82.25 83.45 82.25 83.30 80.47 82.25 83.45 82.25 83.30 80.47 82.25 83.45 82.25 83.30 80.47 82.25 83.45 82.25 83.30 80.47 82.25 83.45 82.25 83.45 80.47 83.22 83.45 82.25 83.45 82.25 83.30 80.47 82.25 83.45 82.25 83.45 83.45 83.45 83.45 82.25 83.45 82.17 82.70 82.77 81.06 81.29 81.51 81.57 82.80 82.87 83.52 83.52 83.55 82.17 83.55 83.57 85.57 85.57 85.57 85.57 85.57 85.57 85	Depth	Area	Inf	low	
HP01	JUNCTION	83.66	1.00	0.0			
HP02	JUNCTION	83.06	1.00	0.0			
HP-CBMH02 HP-CBMH03	JUNCTION	85.85	1.00	0.0			
HP-CBMH03	JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION	85.90	1.00	0.0			
HP-RY05	JUNCTION	83.90	1.00	0.0			
HP-RY06	JUNCTION	83.90	1.00	0.0			
HP-RY08	JUNCTION	83.26	1.00	0.0			
J1	JUNCTION	82.25	2.00	0.0			
Ex 1500	OUTFALL	80.11	1.55	0.0			
Ex_1500 Ex_Ditch3	OUTFALL	83.22	1.00	0.0			
HP-CB01	OUTFALL	83.45	1.00	0.0			
HP-RY01	OUTFALL	82.86	1.00	0.0			
HP-RY02	OUTFALL	82.95	1.00	0.0			
OF1	OUTFALL	83.30	0.00	0.0			
OF2	OUTFALL	80.47	0.50	0.0			
CB01	STORAGE	82.32	2.00	0.0			
CBMH01	STORAGE	83.69	2.86	0.0			
CBMH02	STORAGE	82 88	3 67	0 0			
CBMH03	STORAGE	80 71	1 96	0 0			
MH02	STORAGE	81 35	2 44	0.0			
MH04	STORAGE	82 17	3 57	0.0			
MH06	STORAGE	82 70	3 12	0.0			
MH08	STORAGE	02.70	2 11	0.0			
RY01	STORAGE	02.77	2.11	0.0			
RY02		01.00	2.72	0.0			
	STORAGE	81.29	2.78	0.0			
RY03	STORAGE	81.51	2.39	0.0			
RY04	STORAGE	81.73	2.43	0.0			
RY05	STORAGE	82.80	2.00	0.0			
RY06	STORAGE	82.87	1.93	0.0			

Link Summary							

Name	From Node	To Node	Type	L	ength	%Slope	Roughness
C1	J1	CBMH03	CONDUIT		38.2	3.9297	0.0240
C2	CBMH03	OF2	CONDUIT		35.8	0.6704	0.0240
CBMH01-CBMH02	CBMH01	CBMH02	CONDUIT		42.5	0.4941	0.0130
MH02-Ex_1500	MH02	Ex_1500	CONDUIT		28.8	0.4861	0.0130
MH04-MH02	MH04	MH02	CONDUIT		39.0	1.0001	0.0130
MH08-MH06	MH08	MH06	CONDUIT		36.8	0.1902	0.0130
MS-CB01	CB01	HP-CB01	CONDUIT		3.0	-4.3374	0.0150
MS-CBMH01(1)	CBMH01	HP-CBMH03	CONDUIT		3.0	-11.7469	0.0150
MS-CBMH01(2)	HP-CBMH03	CBMH02	CONDUIT		3.0	11.7469	0.0150
MS-CBMH02(1)	CBMH02	HP-CBMH02	CONDUIT		3.0	-10.0504	0.0150
MS-CBMH02(2)	HP-CBMH02	CB01	CONDUIT		3.0	156.9311	0.0150
MS-HP01	HP01	RY04	CONDUIT		22.0	2.2733	0.0350
MS-HP02	HP02	RY01	CONDUIT		18.7	1.4975	0.0350
MS-RY01	RY01	HP-RY01	CONDUIT		3.0	-2.6676	0.0350
MS-RY02(1)	RY02	RY01	CONDUIT		27.6	1.0145	0.0350
MS-RY02(2)	RY02	RY03	CONDUIT		21.5	0.7907	0.0350
MS-RY03	RY03	HP-RY02	CONDUIT		3.0	-1.6669	0.0350
MS-RY04(1)	RY04	HP-RY08	CONDUIT		6.6	-1.5153	0.0350
MS-RY04(2)	HP-RY08	BY03	CONDUTT		20 0	1 8003	0 0350
MS=PV05(1)	DV05	UD_DV05	CONDULT		3.0	-3 3352	0.0350
MC_DV05(2)	HD_BYOS	BYOG	CONDUIT		2.0	2 2252	0.0350
MC-DV06(1)	BYOG	UD_DV06	CONDUIT		2.0	-2 2252	0.0350
MG_DV06(2)	UD_DV06	Fr Ditch?	CONDUIT		20.2	-3.3332	0.0350
DV03_DV02	DV03	DY02	CONDUTT		50.5	2.2440	0.0330
RIUJ-KIUZ DVOS_MUO9	DV05	MUDO	CONDUTT		6.9	0 4020	0.0130
RIUJ-MHU8	N103	rifiU0 DV0E	CONDUTT		0.2	0.4839	0.0130
Name 	KIUD	KIUD	CONDUIT		13.3	0.5185	0.0130
KIUS-RYU3	KYU4	KIU3	CONDUIT		17.1	1.2859	0.0130
SC/40	KYU2	KYUL	CONDUIT		14.6	1.5112	0.0130
0-CB01	CB01 CBMH02 MH06	MHU2	ORIFICE				
O-CBMH02	CBMH02	MH04	ORIFICE				
O-MH06	MH06	MH02 MH04 MH04 CBMH03	ORIFICE				
0-RY01	RY01	CBMH03	ORIFICE ORIFICE ORIFICE ORIFICE				

Cross Section Su							
***********	****						

Full Full Hyd. Max. No.of Depth Area Rad. Width Barrels

Shape

Full

Flow

C1	CIRCULAR	0.50	0.20	0.12	0.50	1	405.48
C2	CIRCULAR	0.50	0.20	0.12	0.50	1	167.48
CBMH01-CBMH02	CIRCULAR	0.61	0.29	0.15	0.61	1	451.09
MH02-Ex 1500	CIRCULAR	0.45	0.16	0.11	0.45	1	198.79
MH04-MH02	CIRCULAR	0.45	0.16	0.11	0.45	1	285.13
MH08-MH06	CIRCULAR	0.61	0.29	0.15	0.61	1	279.88
MS-CB01	RECT OPEN	1.00	3.00	0.60	3.00	1	29632.76
MS-CBMH01(1)	RECT OPEN	1.00	3.00	0.60	3.00	1	48766.13
MS-CBMH01(2)	RECT OPEN	1.00	3.00	0.60	3.00	1	48766.13
MS-CBMH02(1)	RECT OPEN	1.00	3.00	0.60	3.00	1	45107.44
MS-CBMH02(2)	RECT OPEN	1.00	3.00	0.60	3.00	1	178242.59
MS-HP01	TRAPEZOIDAL	1.00	3.15	0.49	6.15	1	8394.58
MS-HP02	TRAPEZOIDAL	1.00	15.15	0.50	30.15	1	33432.18
MS-RY01	TRAPEZOIDAL	1.00	3.15	0.49	6.15	1	9093.49
MS-RY02(1)	TRAPEZOIDAL	1.00	3.15	0.49	6.15	1	5607.96
MS-RY02(2)	TRAPEZOIDAL	1.00	3.15	0.49	6.15	1	4950.86
MS-RY03	TRAPEZOIDAL	1.00	3.15	0.49	6.15	1	7188.26
MS-RY04(1)	TRAPEZOIDAL	1.00	3.15	0.49	6.15	1	6853.65
MS-RY04(2)	TRAPEZOIDAL	1.00	3.15	0.49	6.15	1	7470.34
MS-RY05(1)	RECT OPEN	1.00	3.00	0.60	3.00	1	11136.28
MS-RY05(2)	RECT OPEN	1.00	3.00	0.60	3.00	1	11136.28
MS-RY06(1)	RECT OPEN	1.00	3.00	0.60	3.00	1	11136.28
MS-RY06(2)	RECT OPEN	1.00	2.50	0.56	2.50	1	7232.76
RY03-RY02	RECT CLOSED	1.14	2.16	0.36	1.90	1	14858.77
RY05-MH08	CIRCULAR	0.25	0.05	0.06	0.25	1	41.37
RY05-RY06	CIRCULAR	0.25	0.05	0.06	0.25	1	42.82
RY08-RY03	RECT CLOSED	1.14	2.16	0.36	1.90	1	9440.71
SC740	RECT CLOSED	1.14	2.16	0.36	1.90	1	10234.24
	_						

***** NOTE: The summary statistics displayed in this report are based on results found at every computational time step, not just on results from each reporting time step.

Analysis Options	

Flow Units LP:	s
Process Models:	
Rainfall/Runoff YE	s
RDII NO	
Snowmelt NO	
Groundwater NO	
Flow Routing YE:	s
Ponding Allowed NO	
Water Quality NO	
Infiltration Method HO	RTON
Flow Routing Method DY	NWAVE
Surcharge Method EX	TRAN
Starting Date 07.	/21/2021 00:00:00
Ending Date 07.	/22/2021 00:00:00
Antecedent Dry Days 0.	0
Report Time Step 00	:01:00
Wet Time Step 00	:05:00
Dry Time Step 00	:05:00
Routing Time Step 6.	00 sec
Variable Time Step YE	S
Maximum Trials 8	
Number of Threads 4	
Head Tolerance 0.	001500 m

******************	Volume	Depth
Runoff Quantity Continuity	hectare-m	mm

Total Precipitation	0.050	71.667
Evaporation Loss	0.000	0.000
Infiltration Loss	0.010	14.800
Surface Runoff	0.040	56.956
Final Storage	0.000	0.602
Continuity Error (%)	-0.965	
******************	Volume	Volume
Flow Routing Continuity	hectare-m	10^6 ltr

Dry Weather Inflow	0.000	0.000
Wet Weather Inflow	0.040	0.398
Groundwater Inflow	0.000	0.000

Highest Continuity Errors Node RY03 (13.55%) Node RY04 (11.20%) Node RY02 (-8.00%) Node RY01 (-5.30%)

********************** Time-Step Critical Elements Link RY05-MH08 (3.31%) Link RY03-RY02 (1.27%)

***** Highest Flow Instability Indexes Link O-CB01 (126) Link MH02-Ex 1500 (19) Link MH04-MH02 (16) Link SC740 (11) Link RY03-RY02 (9)

********************* Minimum Time Step 0.50 sec : Average Time Step 5.87 sec : Maximum Time Step : 6.00 sec Percent in Steady State : 0.00 Average Iterations per Step : 2.34 Percent Not Converging 1.66 : Time Step Frequencies 97.15 % 2.47 % 0.27 % 6.000 - 3.650 sec 3.650 - 2.221 sec 2.221 - 1.351 sec : : : : 1.351 - 0.822 sec 0.07 % 0.822 - 0.500 sec 0.04 %

Subcatchment Runoff Summary

			Total	Total	Total	Total	Imperv	Perv	Total	
Total	Peak	Runoff		_	_					
Runoff	Runofi	f Coeff	Precip	Runon	Evap	Infil	Runoff	Runoff	Runoff	
Subcate		L COEII	mm	mm	mm	mm	mm	mm	mm	
10^6 ltr		LPS								
A-01			71.67	0.00	0.00	7.82	58.11	5.13	63.24	
0.05 4 A-02	40.77	0.882	71.67	0.00	0.00	28.72	32.12	43.09	43.09	
	31.90	0.601	/1.6/	0.00	0.00	28.72	32.12	43.09	43.09	
A-03	51.50	0.001	71.67	0.00	0.00	8.63	56.66	5.80	62.46	
0.05 4	41.90	0.871								
A-04			71.67	0.00	0.00	19.25	40.14	12.07	52.21	
	37.84	0.729								
A-05 0.00	3.28	0 410	71.67	0.00	0.00	42.90	4.91	24.46	29.37	
0.00 A-06	5.28	0.410	71.67	0.00	0.00	42.38	4.92	25.15	30.07	
0.01	8.41	0.420	/1.0/	0.00	0.00	42.30	4.92	20.15	50.07	
A-07	0.11	0.120	71.67	0.00	0.00	0.00	72.18	0.00	72.18	
	26.17	1.007								

A-08			71.67	0.00	0.00	43.38	4.91	23.86	28.77
0.01	5.79	0.401							
a-09			71.67	0.00	0.00	9.05	55.75	6.43	62.18
0.01	8.16	0.868							
A-10			71.67	0.00	0.00	0.00	72.18	0.00	72.18
0.06	38.03	1.007							
A-11			71.67	0.00	0.00	0.00	72.18	0.00	72.18
0.07	45.93	1.007							
B-01			71.67	0.00	0.00	37.24	35.46	23.74	35.46
0.00	1.54	0.495							
B-02			71.67	0.00	0.00	43.36	4.91	23.89	28.80
0.01	5.00	0.402							

***** Node Depth Summary

lode	Туре	Depth Meters	Depth	HGL Meters	Occu	rrence hr:min	Reported Max Depth Meters
1P01	JUNCTION	0.00	0.00	83.66	0		0.00
1P02	JUNCTION	0.00		83.10	0	01:10	0.04
IP-CBMH02	JUNCTION	0.00		85.85	0	00:00	0.00
IP-CBMH03	JUNCTION	0.00		85.90		00:00	0.00
IP-RY05	JUNCTION	0.00		83.90		00:00	0.00
IP-RY06	JUNCTION	0.00	0.00	83.90		00:00	0.00
IP-RY08	JUNCTION	0.00	0.00	83.26	0	00:00	0.00
J1	JUNCTION	0.02	0.50	82.75	0	01:13	0.50
Ex 1500	OUTFALL	2.54	2.54	82.65	0	00:00	2.54
Ex Ditch3	OUTFALL	0.00		83.22		00:00	0.00
HP-CB01	OUTFALL		0.00	83.45	0	00:00	0.00
HP-RY01	OUTFALL		0.00	82.86	0	00:00	0.00
HP-RY02	OUTFALL		0.00	82.86 82.95	0	00:00	0.00
DF1	OUTFALL	0.00	0.00	83.30	0	00:00	0.00
DF2	OUTFALL	0.03	0.50	80.97	0	01:10	0.50
CB01	STORAGE	0.35				01:13	1.13
CBMH01	STORAGE	0.44	2.15	85.84		01:52	2.15
CBMH02	STORAGE	0.66	2.96	85.84	0	01:50	2.96
CBMH03	STORAGE	0.04	0.74	81.45	0	01:15	0.71
4H02	STORAGE	1.30	1.31	82.66	0	01:21	1.31
4H04	STORAGE	0.48		82.66		01:21	0.49
4H06	STORAGE	0.05	1.12	83.82	0	01:30	1.12
4H08	STORAGE	0.05	1.05	83.82 82.66	0	01:30	1.05
RY01	STORAGE	0.20	1.60	82.66	0	01:38	1.59
RY02	STORAGE	0.15	1.37	82.66	0	01:37	1.36
RY03	STORAGE	0.11	1.15	82.66	0	01:41	1.15
RY04	STORAGE	0.08				01:41	0.93
RY05	STORAGE	0.05	1.02	83.82	0	01:29	1.02
XY06	STORAGE	0.04	0.95	83.82	0	01:30	0.95

Node Inflow Summary

Maximur	n Maximum						
			C 14	Lateral	Total	Flow	
Latera			of Max	Inflow	Inflow	Balance	
Inflo			rrence	Volume	Volume	Error	
pe LP:	5 LPS	days	nr:min	10~6 itr	10~6 Itr	Percent	
NCTION 0.00	0.00	0	00:00	0	0	0.000	ltr
NCTION 8.1	5 8.16	0	01:10	0.0106	0.0106	-0.011	
NCTION 0.00	0.00	0	00:00	0	0	0.000	ltr
NCTION 0.00	0.00	0	00:00	0	0	0.000	ltr
NCTION 0.00	0.00	0	00:00	0	0	0.000	ltr
NCTION 0.00	0.00	0	00:00	0	0	0.000	ltr
NCTION 0.00	0.00	0	00:00	0	0	0.000	ltr
NCTION 211.58	3 211.58	0	01:15	0.45	0.45	-0.028	
TFALL 0.00	35.62	0	01:21	0	0.239	0.000	
TFALL 5.00	5.00	0	01:10	0.00692	0.00692	0.000	
TFALL 0.00	0.00	0	00:00	0	0	0.000	ltr
TFALL 0.00	0.00	0	00:00	0	0	0.000	ltr
TFALL 0.00	0.00	0	00:00	0	0	0.000	ltr
TFALL 1.54	4 1.54	0	01:15	0.00178	0.00178	0.000	
TFALL 0.00	225.12	0	01:15	0	0.606	0.000	
ORAGE 37.84	4 37.84	0	01:10	0.047	0.0483	0.500	
ORAGE 68.08	68.08	0	01:10	0.0933	0.0933	0.067	
ORAGE 40.7	7 59.43	0	01:06	0.0544	0.148	0.056	
	pe LP NCTION 0.00 NCTION 0.01 NCTION 211.51 FFALL 0.01 FFALL 0.01 FFALL 0.01 FFALL 0.01 ORAGE 37.64 ORAGE 66.01	pe LPS LPS NCTION 0.00 0.00 NCTION 8.16 8.16 NCTION 0.00 0.00 NCTION 0.00 5.00 FFALL 5.00 5.00 FFALL 0.00 0.00 FFALL 0.00 0.00 FFALL 0.00 0.00 FFALL 0.00 0.00 FFALL 0.00 2.5.12 GRAGE 37.84 37.84 SPAGE 68.08 88.08	pe LPS LPS days NCTION 0.00 0.00 0 NCTION 8.16 8.16 0 NCTION 0.00 0.00 0 NCTION 0.00 5.00 0 FFALL 5.00 0 0 FFALL 0.00 0.00 0 FFALL 0.00 0.00 0 FFALL 0.00 0.00 0 FFALL 0.00 0.00 0 FFALL 0.00 25.12 0 ORAGE 37.84 37.84 0 ORAGE 37.84	pe LPS LPS days hrmin NCTION 0.00 0.00 0.00:00 NCTTON 8.16 8.16 0.110 NCTTON 0.00 0.00 0.00:00 NCTTAL 0.00 0.00 0.00:00 FFALL 0.00 0.00 0.00:00 FFALL 0.00 0.00 0.00:00 FFALL 0.00 0.00 0.00:00 FFALL 0.00 0.00 0.00:00 <td< td=""><td>pe LFS days hr:min 10°6 ltr NCTION 0.00 0.00 0.000 <</td><td>pe LPS LPS days hr:min 10^6 1tr 10^6 1tr NCTION 0.00 0.00 0 00:00 0 0 0 NCTION 8.16 8.16 0 01:10 0.006 0 0 0 NCTION 0.00 0.00 0 0:00 0 0 0 0 NCTION 0.00 0.00 0 0:00 0</td><td>pe LPS Lps days hr:min 10^6 1tr 10^6 1tr Percent NCTION 0.00 0.00 0 0.000 0 0.000 NCTION 8.16 0.110 0.0106 0.0106 0.0101 NCTION 0.00 0.00 0 0 0.000 0 NCTION 0.00 0.00 0 0.000 0 0.000 NCTION 0.00 0.00 0 0.000 0 0.000 NCTION 0.00 0.00 0 0.000 0 0.000 NCTION 0.00 0.00 0 0 0.000 0 0.000 NCTION 0.00 0.00 0 0.00 0 0.000 NCTION 0.00 0.00 0 0.000 0 0.000 NCTION 0.00 0.00 0 0.000 0 0.000 NCTION 0.00 0.00 0.01</td></td<>	pe LFS days hr:min 10°6 ltr NCTION 0.00 0.00 0.000 <	pe LPS LPS days hr:min 10^6 1tr 10^6 1tr NCTION 0.00 0.00 0 00:00 0 0 0 NCTION 8.16 8.16 0 01:10 0.006 0 0 0 NCTION 0.00 0.00 0 0:00 0 0 0 0 NCTION 0.00 0.00 0 0:00 0	pe LPS Lps days hr:min 10^6 1tr 10^6 1tr Percent NCTION 0.00 0.00 0 0.000 0 0.000 NCTION 8.16 0.110 0.0106 0.0106 0.0101 NCTION 0.00 0.00 0 0 0.000 0 NCTION 0.00 0.00 0 0.000 0 0.000 NCTION 0.00 0.00 0 0.000 0 0.000 NCTION 0.00 0.00 0 0.000 0 0.000 NCTION 0.00 0.00 0 0 0.000 0 0.000 NCTION 0.00 0.00 0 0.00 0 0.000 NCTION 0.00 0.00 0 0.000 0 0.000 NCTION 0.00 0.00 0 0.000 0 0.000 NCTION 0.00 0.00 0.01

M:\2019\119024\DATA\Calculations\SWM\ModelOutput_100yr_Comparison.docx

CBMH03	STORAGE	0.00	300.97	0	01:14	0	0.605	-0.107	
MH02	STORAGE	0.00	35.62	0	01:21	0	0.24	-0.049	
MH04	STORAGE	0.00	15.34	0	01:30	0	0.189	0.003	
MH06	STORAGE	0.00	17.82	0	01:11	0	0.0403	0.259	
MH08	STORAGE	0.00	28.98	0	01:11	0	0.0401	-0.290	
RY01	STORAGE	43.82	54.32	0	01:10	0.0637	0.162	-5.029	
RY02	STORAGE	0.00	103.24	0	02:02	0	0.0858	-7.406	
RY03	STORAGE	54.34	80.98	0	01:09	0.0765	0.0982	15.677	
RY04	STORAGE	3.28	52.02	0	01:09	0.00412	0.0185	12.611	
RY05	STORAGE	31.90	31.90	0	01:10	0.0401	0.0418	-0.023	
RY06	STORAGE	0.00	3.25	0	01:24	0	0.00164	0.853	

***** Node Surcharge Summary

Surcharging occurs when water rises above the top of the highest conduit.

			Max. Height	Min. Depth
		Hours	Above Crown	Below Rim
Node	Type	Surcharged	Meters	Meters
J1	JUNCTION	0.01	0.001	1.499

***** Node Flooding Summary

No nodes were flooded.

****************** Storage Volume Summary

Storage Unit	Average Volume 1000 m3	Avg Pcnt Full	Pcnt	Exfil Pcnt Loss	Maximum Volume 1000 m3	Max Pont Full	Occu	of Max rrence hr:min	Maximum Outflow LPS
CB01	0.000	3	0	0	0.006	93	0	01:13	21.23
CBMH01	0.004	8	0	0	0.033	70	0	01:52	21.40
CBMH02	0.004	12	0	0	0.031	94	0	01:50	7.37
CBMH03	0.000	2	0	0	0.001	38	0	01:15	225.12
MH02	0.001	53	0	0	0.001	54	0	01:21	35.62
MH04	0.001	13	0	0	0.001	14	0	01:21	16.43
MH06	0.000	2	0	0	0.001	36	0	01:30	7.99
MH08	0.000	2	0	0	0.001	34	0	01:30	17.82
RY01	0.000	7	0	0	0.001	59	0	01:38	55.48
RY02	0.000	5	0	0	0.000	49	0	01:37	70.55
RY03	0.000	5	0	0	0.000	48	0	01:41	103.24
RY04	0.000	3	0	0	0.000	38	0	01:41	22.67
RY05	0.000	1	0	0	0.001	18	0	01:29	30.36
RY06	0.000	1	0	0	0.000	18	0	01:30	1.24

***** Outfall Loading Summary

	Flow	Avq	Max	Total
	Freq	Flow	Flow	Volume
Outfall Node	Pont	LPS	LPS	10^6 ltr
Ex 1500	97.05	3.23	35.62	0.239
Ex Ditch3	10.61	1.05	5.00	0.007
HP-CB01	0.00	0.00	0.00	0.000
HP-RY01	0.00	0.00	0.00	0.000
HP-RY02	0.00	0.00	0.00	0.000
OF1	6.85	0.41	1.54	0.002
OF2	25.27	33.56	225.12	0.606
System	19.97	38.24	264.68	0.853

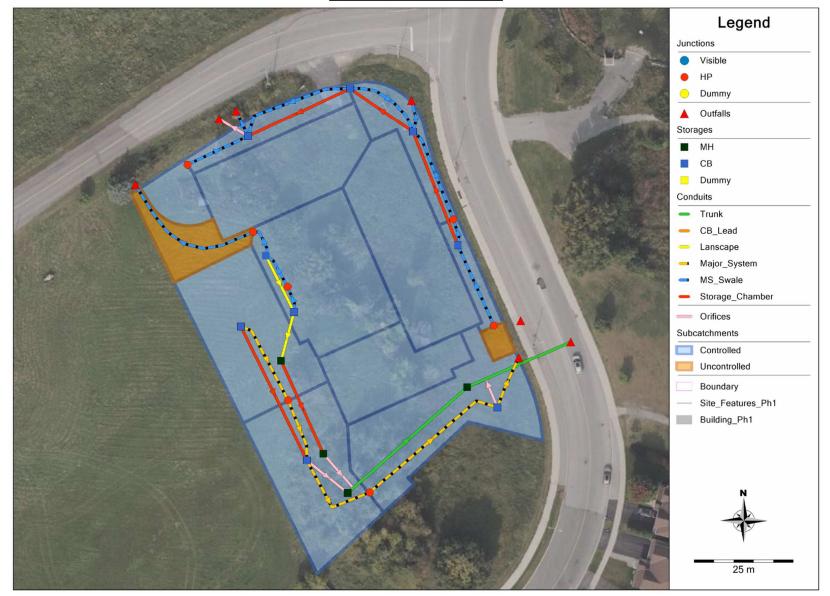
Link Flow Summary *********

	Туре	Maxim	um ?	Fime of	Max	Maximu	im M	iax/	Max/	
Link	Туре	L	PS d	days hr:	min	m/se	ic E	low	Depth	
C1	CONDUIT	290.	94	0 01	:14	1.4	8 C	.72	1.00	
C2	CONDUIT	225.	12	0 01	:15	1.1	.5 1	34	1.00	
CBMHUI-CBMHUZ	CONDUIT	21.	40	0 01	:05	0.4	-/ L	1.05	1.00	
MH02-EX_1500 MU04_MU02	CONDULT	16	12	0 01	.24	0.2	.2 U	0.10	1.00	
MH08-MH06	CONDUIT	17	82	0 01	.20	0.1	9 0	0.00	1 00	
MS-CB01	CONDUIT	0.	00	0 00	:00	0.0	0 0	.00	0.06	
MS-CBMH01(1)	CONDUTT	0.	00	0 00	:00	0.0	0 0	.00	0.14	
MS-CBMH01(2)	CONDUIT	0.	00	0 00	:00	0.0	0 0	.00	0.14	
MS-CBMH02(1)	CONDUIT	0.	00	0 00	:00	0.0	0 0	.00	0.14	
MS-CBMH02(2)	CONDUIT	0.	00	0 00	:00	0.0	0 0	.00	0.06	
MS-HP01	CONDUIT	0.	00	0 00	:00	0.0	0 0	0.00	0.00	
MS-HP02	CONDUIT	8.	09	0 01	:10	0.2	9 0	0.00	0.04	
MS-RY01	CONDUIT	0.	00	0 00	:00	0.0	0 0	0.00	0.00	
MS-RY02(1)	CONDUIT	0.	00	0 00	:00	0.0	0 0	0.00	0.00	
MS-RY02(2)	CONDUIT	0.	00	0 00	:00	0.0	0 0	0.00	0.00	
MS-RY03	CONDUIT	0.	00	0 00	:00	0.0	0 0	.00	0.00	
MS-RY04(1)	CONDUIT	0.	00	0 00	:00	0.0	0 0	.00	0.00	
MS-RY04(2)	CONDUIT	0.	00	0 00	:00	0.0	0 0	.00	0.00	
MS-RIU5(1)	CONDUIT	0.	00	0 00	:00	0.0		.00	0.01	
MS-RIUS(Z)	CONDUIT	0.	00	0 00	:00	0.0		.00	0.01	
MS-RIUG(1) MC-DV06(2)	CONDULT	0.	00	0 00	.00	0.0		.00	0.01	
DV03_DV02	CONDULT	103	24	0 02	.00	0.0	6 0	0.00	1 00	
RY05-MH08	CONDULT	28	98	0 01	• 1 1	0.3	2 0	70	1 00	
RY05-RY06	CONDULT		25	0 01	.24	0.0	7 0	0.08	1 00	
RY08-RY03	CONDUIT	48.	86	0 01	:09	0.1	4 0	0.01	0.91	
SC740	CONDUIT	45.	65	0 01	:09	0.0	6 0	.00	1.00	
0-CB01	ORIFICE	21.	23	0 01	:13				1.00	
O-CBMH02	ORIFICE	7.	37	0 01	:50				1.00	
O-MH06	ORIFICE	7.	99	0 01	:30				1.00	
	OBIFICE	12	62	0 01	:39				1.00	
Link 	ion Summary		03	0 01						
Flow Classificati	**************************************									
Conduit	Adjusted /Actual Length	 Dry	Up Dry	Fract Down Dry	ion of Sub Crit	Time Sup Crit	in Flo Up Crit	ow Clas Down Crit	ss Norm Ltd	Inlet Ctrl
Conduit	Adjusted /Actual Length	 Dry	Up Dry	Fract Down Dry	ion of Sub Crit	Time Sup Crit	in Flo Up Crit	ow Clas Down Crit	ss Norm Ltd	Inlet Ctrl
Conduit	Adjusted /Actual Length	 Dry	Up Dry	Fract Down Dry	ion of Sub Crit	Time Sup Crit	in Flo Up Crit	ow Clas Down Crit	ss Norm Ltd	Inlet
Conduit	Adjusted /Actual Length	 Dry	Up Dry	Fract Down Dry	ion of Sub Crit	Time Sup Crit	in Flo Up Crit	ow Clas Down Crit	ss Norm Ltd	Inlet
Conduit	Adjusted /Actual Length	 Dry	Up Dry	Fract Down Dry	ion of Sub Crit	Time Sup Crit	in Flo Up Crit	ow Clas Down Crit	ss Norm Ltd	Inlet
Conduit	Adjusted /Actual Length	 Dry	Up Dry	Fract Down Dry	ion of Sub Crit	Time Sup Crit	in Flo Up Crit	ow Clas Down Crit	ss Norm Ltd	Inlet
Conduit	Adjusted /Actual Length	 Dry	Up Dry	Fract Down Dry	ion of Sub Crit	Time Sup Crit	in Flo Up Crit	ow Clas Down Crit	ss Norm Ltd	Inlet
Conduit	Adjusted /Actual Length	 Dry	Up Dry	Fract Down Dry	ion of Sub Crit	Time Sup Crit	in Flo Up Crit	ow Clas Down Crit	ss Norm Ltd	Inlet
Conduit	Adjusted /Actual Length	 Dry	Up Dry	Fract Down Dry	ion of Sub Crit	Time Sup Crit	in Flo Up Crit	ow Clas Down Crit	ss Norm Ltd	Inlet
Conduit	Adjusted /Actual Length	 Dry	Up Dry	Fract Down Dry	ion of Sub Crit	Time Sup Crit	in Flo Up Crit	ow Clas Down Crit	ss Norm Ltd	Inlet
Conduit	Adjusted /Actual Length	 Dry	Up Dry	Fract Down Dry	ion of Sub Crit	Time Sup Crit	in Flo Up Crit	ow Clas Down Crit	ss Norm Ltd	Inlet
Conduit	Adjusted /Actual Length	 Dry	Up Dry	Fract Down Dry	ion of Sub Crit	Time Sup Crit	in Flo Up Crit	ow Clas Down Crit	ss Norm Ltd	Inlet
Conduit	ion Summary Adjusted /Actual Length 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Dry 0.77 0.01 0.01 0.00 0.82 0.98 0.81 0.81 0.81 0.98 1.00 0.01	Up Dry 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	Fract Down Dry 5 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 9 0.00 9 0.00 2 0.00 2 0.00 0 0.00 0 0.00 0 0.00 0 0.00	ion of Sub Crit 0.16 0.99 0.28 1.00 1.00 0.14 0.00 0.14 0.00 0.00 0.00	Time Sup Crit 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	in Flc Up Crit 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	0.00 0.00	Norm Ltd 0.00 0.02 0.00 0.00 0.00 0.87 0.00 0.00 0.00 0.00	Inlet Ctrl 0.99 0.84 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Flow Classificat: Conduit C2 CBMH01-CBMH02 CBMH01-CBMH02 MH04-MH06 MH04-MH06 MH04-MH07 MS-CBMH01(1) MS-CBMH01(2) MS-CBMH02(1) MS-CBMH02(1) MS-CBMH02(2) MS-HP01 MS-HP01 MS-RV01	Adjusted /Actual Length 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Dry 0.77 0.01 0.00 0.82 0.98 0.81 0.81 0.81 0.98 1.00 0.01 1.00	Up Dryy 0.00 0.00 0.00 0.00 0.00 0.00 0.11 0.11 0.11 0.00 0.00 0.00 0.00		ion of Sub Crit 0.16 0.99 0.28 1.00 1.00 0.14 0.00 0.00 0.00 0.00 0.00	Time Sup Crit 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	in Flc Up Crit 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	0.01 0.01 0.01 0.00	Norm Ltd 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.0	Inlet Ctrl 0.99 0.84 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Flow Classificat: Conduit C2 CBMH01-CBMH02 CBMH01-CBMH02 MH04-MH06 MH04-MH06 MH04-MH07 MS-CBMH01(1) MS-CBMH01(2) MS-CBMH02(1) MS-CBMH02(1) MS-CBMH02(2) MS-HP01 MS-HP01 MS-RV01	ion Summary Adjusted /Actual Length 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Dry 0.77 0.01 0.00 0.82 0.98 0.81 0.81 0.81 0.81 0.81 1.00 0.01 1.00	Up Dry 0.00 0.00 0.00 0.00 0.00 0.11 0.11 0.1	Fract Down Dry 5 0.000 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 9 0.00 9 0.00 9 0.00 9 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00	ion of Sub Crit 0.16 0.99 0.28 1.00 0.14 0.00 0.00 0.00 0.00 0.00 0.00	Time Sup Crit 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	in Flo Up Crit 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	Down Class Down Crit 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.0	Norm Ltd 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	Inlet Ctrl 0.99 0.84 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Flow Classificat: 	Adjusted /Actual Length 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Dry 0.77 0.01 0.01 0.00 0.82 0.98 0.81 0.81 0.81 0.81 0.98 1.00 0.01 1.00 1.00	Up Dryy 0.00 0.00 0.00 0.00 0.00 0.11 0.11 0.	Fract Down Dry 5 0.000 0 0.00 0 0.000 0 0.000	ion of Sub Crit 0.16 0.28 1.00 1.00 0.14 0.00 0.00 0.00 0.00 0.00	Time Sup Crit 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	in Flc Up Crit 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	Down Class Down Crit 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.0	Norm Ltd 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.0	Inlet Ctrl 0.99 0.84 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Flow Classificat: 	Adjusted /Actual Length 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Dry 0.01 0.01 0.00 0.82 0.98 0.81 0.81 0.98 1.00 0.01 1.00 1.00	Up Dry 0.00 0.00 0.00 0.00 0.00 0.11 0.11 0.1	Fract Down Dry 5 0.000 0 0.00 0 0.000 0 0.000 0 0.000 0 0.00000000	ion of Sub Crit 0.16 0.28 1.00 0.28 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	Time Sup Crit 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	in Flo Up Crit 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	Down Class Down Crit 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.0	Norm Ltd 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.0	Inlet Ctrl 0.99 0.84 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Flow Classificat: 	Adjusted /Actual Length 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Dry 0.77 0.01 0.00 0.82 0.98 0.81 0.81 0.81 0.81 0.01 1.00 1.00 1.0	Up Dry 0.00 0.00 0.00 0.00 0.00 0.11 0.11 0.1	Fract Down Dry 5 0.00 0 0.000 0 0.000 0 0.000 0 0.00000000	ion of Sub Crit 0.16 0.29 1.00 1.00 0.14 0.00 0.00 0.00 0.00 0.00	Time Sup Crit 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	in Flc Up Crit 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	ow Class Down Crit 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.0	Norm Ltd 0.00 0.02 0.00 0.00 0.87 0.00 0.00 0.00 0.00 0.00	Inlet Ctrl 0.99 0.84 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Flow Classificat: 	Adjusted /Actual Length 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Dry 0.77 0.01 0.00 0.82 0.98 1.00 0.81 0.81 0.98 1.00 1.00 1.00 1.00 1.00	Up Dry 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.0		ion of Sub Crit 0.16 0.99 0.28 1.00 0.14 0.00 0.00 0.00 0.00 0.00 0.00	Time Sup Crit 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	in Flo Up Crit 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	0w Clas Down Crit 0.01 0.00 0.72 0.00 0.00 0.00 0.00 0.00 0.00	Norm Ltd 0.00 0.02 0.00 0.00 0.87 0.00 0.00 0.00 0.00 0.00	Inlet Ctrl 0.99 0.84 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Flow Classificat: 	ion Summary Adjusted /Actual Length 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Dry 0.77 0.01 0.00 0.80 0.81 0.81 0.81 0.01 1.00 1.00	Up Dry 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.11 0.11 0.11 0.000 0.000 0.000000	Fract Down Dry 5 0.00 0 0.000 0 0.000 0 0.000 0 0.00000000		Time Sup C.Crit Crit C.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000		Down Class Down Cort Cort Cort 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	Norm Ltd 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.0	Inlet Ctrl 0.99 0.84 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Flow Classificat: 	ion Summary Adjusted /Actual Length 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Dry 0.77 0.01 0.00 0.80 0.81 0.81 0.81 0.01 1.00 1.00	Up Dry 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.000 0.000 0.000000	Fract Down Dry 5 0.00 0 0.000 0 0.000 0 0.000 0 0.00000000		Time Sup C.Crit Crit C.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000		Down Class Down Cort Cort Cort 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	Norm Ltd 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.0	Inlet Ctrl 0.99 0.84 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Flow Classificat: 	ion Summary Adjusted /Actual Length 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Dry 0.77 0.01 0.00 0.80 0.81 0.81 0.81 0.01 1.00 1.00	Up Dry 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.000 0.000 0.000000	Fract Down Dry 5 0.00 0 0.000 0 0.000 0 0.000 0 0.00000000		Time Sup C.Crit Crit C.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000		0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00	Norm Ltd 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.0	Inlet Ctrl 0.99 0.84 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Flow Classificat: 	ion Summary Adjusted /Actual Length 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Dry 0.77 0.01 0.00 0.80 0.81 0.81 0.81 0.01 1.00 1.00	Up Dry 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.000 0.000 0.000000	Fract Down Dry 5 0.00 0 0.000 0 0.000 0 0.000 0 0.00000000		Time Sup C.Crit Crit C.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000		0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00	Norm Ltd 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.0	Inlet Ctrl 0.99 0.84 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Flow Classificat: 	ion Summary Adjusted /Actual Length 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Dry 0.77 0.01 0.00 0.80 0.81 0.81 0.81 0.01 1.00 1.00	Up Dry 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.000 0.000 0.000000	Fract Down Dry 5 0.00 0 0.000 0 0.000 0 0.000 0 0.00000000		Time Sup C.Crit Crit C.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000		0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00	Norm Ltd 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.0	Inlet Ctrl 0.99 0.84 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Flow Classificat: 	ion Summary Adjusted /Actual Length 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Dry 0.77 0.01 0.00 0.80 0.81 0.81 0.81 0.01 1.00 1.00	Up Dry 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.000 0.000 0.000000	Fract Down Dry 5 0.00 0 0.000 0 0.000 0 0.000 0 0.00000000		Time Sup C.Crit Crit C.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000		Down Class Down Cort Cort Cort 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	Norm Ltd 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.0	Inlet Ctrl 0.99 0.84 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Flow Classificat: 	ion Summary Adjusted /Actual Length 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Dry 0.77 0.01 0.00 0.80 0.81 0.81 0.81 0.01 1.00 1.00	Up Dry 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.000 0.000 0.000000	Fract Down Dry 5 0.00 0 0.000 0 0.000 0 0.000 0 0.00000000		Time Sup C.Crit Crit C.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000		Down Class Down Cort Cort Cort 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	Norm Ltd 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.0	Inlet Ctrl 0.99 0.84 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Flow Classificat: Conduit C2 CBMH01-CBMH02 CBMH01-CBMH02 MH04-MH06 MH04-MH06 MH04-MH07 MS-CBMH01(1) MS-CBMH01(2) MS-CBMH02(1) MS-CBMH02(1) MS-CBMH02(2) MS-HP01 MS-HP01 MS-RV01	Adjusted /Actual Length 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Dry 0.77 0.01 0.00 0.80 0.81 0.81 0.81 0.01 1.00 1.00	Up Dry 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.000 0.000 0.000000	Fract Down Dry 5 0.00 0 0.000 0 0.000 0 0.000 0 0.00000000		Time Sup C.Crit Crit C.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000		Down Class Down Cort Cort Cort 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	Norm Ltd 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.0	Inlet Ctrl 0.99 0.84 0.00 0.00 0.00 0.00 0.00 0.00 0.00

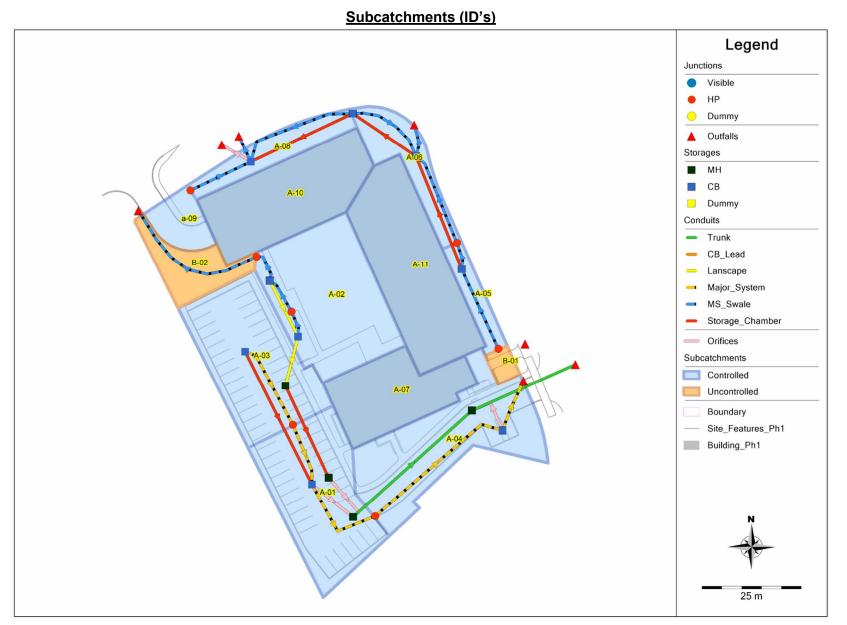
Conduit	Both Ends	Hours Full Upstream	Dnstream	Hours Above Full Normal Flow	Hours Capacity Limited				
C1	0.01	0.01	0.19	0.01	0.01				
C2	0.21	0.21	0.23	0.24	0.21				
CBMH01-CBMH02	4.87	4.87	5.09	0.01	0.01				
MH02-Ex 1500	24.00	24.00	24.00	0.01	0.01				
MH04-MH02	24.00	24.00	24.00	0.01	0.01				
MH08-MH06	0.78	0.78	0.85	0.01	0.01				
RY03-RY02	0.24	0.24	1.21	0.01	0.01				
RY05-MH08	1.34	1.34	1.41	0.01	0.01				
RY05-RY06	1.19	1.19	1.34	0.01	0.01				
RY08-RY03	0.01	0.01	0.24	0.01	0.01				
SC740	1.21	1.21	1.87	0.01	0.01				

Analysis begun on: Fri Jul 11 13:56:27 2025 Analysis ended on: Fri Jul 11 13:56:27 2025 Total elapsed time: < 1 sec

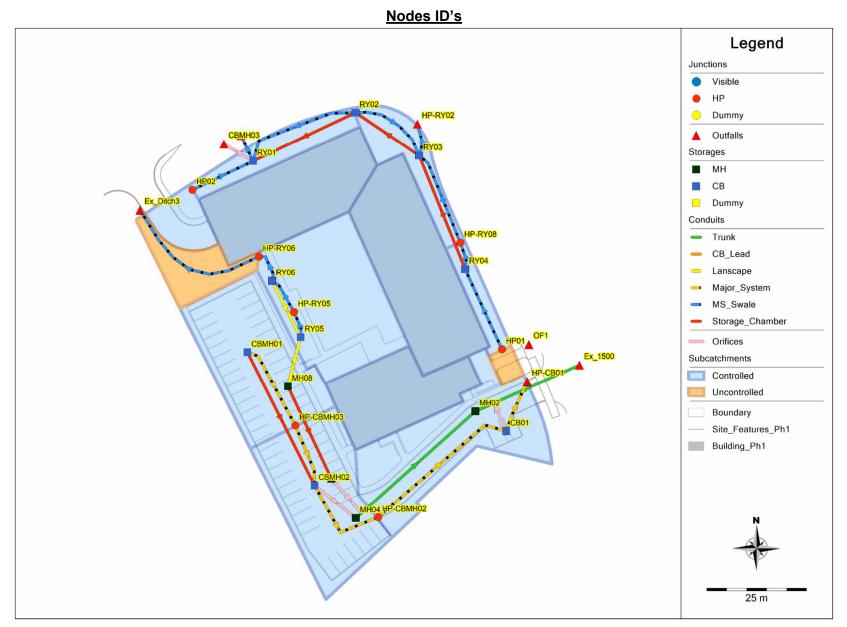
**	19	r κ	*	*	*	*	*	*	*	*	*	*	*	*	*	*	×	*	×	*	*	*	*


Conduit Surcharge Summary

1104 Halton Terrace – Maple Leaf Homes (119024) PCSWMM Model Schematic



Overall Model Schematic


1104 Halton Terrace – Maple Leaf Homes (119024) PCSWMM Model Schematic

1104 Halton Terrace – Maple Leaf Homes (119024) PCSWMM Model Schematic

User Inputs

<u>Results</u>

Chamber Model:	SC-800	System Volume and	Bed Size
Outlet Control Structure:	No	Installed Storage Volume:	14.86 cubic meters.
Project Name:	1104 Halton Terrace Phase 1	Storage Volume Per Chamber:	1.44 cubic meters.
Engineer:	Lucas Wilson	Number Of Chambers Required:	5
Project Location:	Ontario	Number Of End Caps Required:	2
Measurement Type:	Metric	Chamber Rows:	1
Required Storage Volume:	14.01 cubic meters.	Maximum Length:	11.99 m.
Stone Porosity:	40%	Maximum Width:	1.91 m.
Stone Foundation Depth:	153 mm.	Approx. Bed Size Required:	22.84 square me-
Stone Above Chambers:	153 mm.		ters.
Design Constraint Dimensions:	(2.00 m. x 12.00 m.)	Average Cover Over Chambers:	N/A .
	, , , ,	System Compo	<u>nents</u>
		Amount Of Stone Required:	19 cubic meters

Volume Of Excavation (Not Including 27 cubic meters Fill):

Total Non-woven Geotextile Required:93 square meters

Woven Geotextile Required (excluding0 square meters Isolator Row):

Woven Geotextile Required (Isolator 21 square meters Row):

Total Woven Geotextile Required: 21 square meters

Impervious Liner Required:

0 square meters

GRANULAR WELL-GRADED SOL/AGGREGATE MIXTURES, <55% FINES, COMPACT IN 6" (150 mm) MAX LIFTS TO 95% STANDARD PROCTOR DENSITY. SEE THE TABLE OF ACCEPTABLE FILL MATERIALS. EMBEDMENT STONE SHALL BE A CLEAN, CRUSHED AND ANGULAR STONE WITH AN AASHTO M43 DESIGNATION BETWEEN #3 AND #57 CHAMBERS SHALL MEET THE REQUIREMENTS OF ASTM F2418 POLYPROPLENE (PP) CHAMBERS OR ASTM F2922 POLYETHYLENE (PE) CHAMBERS CHAMBERS SHALL BE DESIGNED IN ACCORDANCE WITH ASTM F2787 "STANDARD PRACTICE FOR STRUCTURAL DESIGN OF THERMOPLASTIC CORRUGATED WALL STORMWATER COLLECTION CHAMBERS". ADS GEOSYNTHETICS 601T NON-WOVEN GEOTEXTILE ALL AROUND CLEAN CRUSHED, ANGULAR STONE PAVEMENT LAYER (DESIGNED BY SITE DESIGN ENGINEER) ł 8' 15" (375 mm) MIN³ (2.4 m) MAX nm) MIN 6" (150 1 33" (838 mm) PERIMETER STONE EXCAVATION WALL (CAN BE SLOPED OR VERTICAL) DEPTH OF STONE TO BE DETERMINED BY SITE DESIGN ENGINEER 6" (150 mm) MIN 6" (150 mm) MIN SC-800 END CAP 12" (300 mm) MIN 12" (300 mm) MIN - 51" (1295 mm) ŀ SITE DESIGN ENGINEER IS RESPONSIBLE FOR ENSURING THE REQUIRED BEARING CAPACITY OF SUBGRADE SOILS

*MINIMUM COVER TO BOTTOM OF FLEXIBLE PAVEMENT. FOR UNPAVED INSTALLATIONS WHERE RUTTING FROM VEHICLES MAY OCCUR, INCREASE COVER TO 24" (600 mm).

User Inputs

CHAMBERS SHALL MEET THE REQUIREMENTS OF ASTM F2418 POLYPROPLENE (PP) CHAMBERS OR ASTM F2922 POLYETHYLENE (PE) CHAMBERS

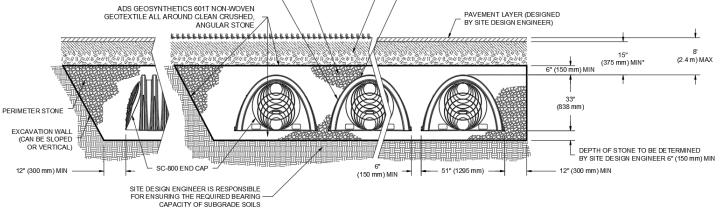
Results

Chamber Model:	SC-800	System Volume and	Bed Size
Outlet Control Structure:	No	Installed Storage Volume:	31.36 cubic meters.
Project Name:	1104 Halton Terrace Phase 1	Storage Volume Per Chamber:	1.44 cubic meters.
Engineer:	Lucas Wilson	Number Of Chambers Required:	11
Project Location:	Ontario	Number Of End Caps Required:	2
Measurement Type:	Metric	Chamber Rows:	1
Required Storage Volume:	31.00 cubic meters.	Maximum Length:	25.01 m.
Stone Porosity:	40%	Maximum Width:	1.91 m.
Stone Foundation Depth:	153 mm.	Approx. Bed Size Required:	47.64 square me-
Stone Above Chambers:	153 mm.		ters.
Design Constraint Dimensions:	(2.00 m. x 26.00 m.)	Average Cover Over Chambers: System Compo	N/A . nents
		Amount Of Stone Required:	39 cubic meters

Volume Of Excavation (Not Including 55 cubic meters Fill):

Total Non-woven Geotextile Required: 189 square meters

Woven Geotextile Required (excluding0 square meters **Isolator Row):**


Woven Geotextile Required (Isolator 45 square meters Row):

Total Woven Geotextile Required: 45 square meters

0 square meters

GRANULAR WELL-GRADED SOL/AGGREGATE MIXTURES, <55% FINES, COMPACT IN 6" (150 mm) MAX LIFTS TO 95% STANDARD PROCTOR DENSITY. SEE THE TABLE OF ACCEPTABLE FILL MATERIALS. EMBEDMENT STONE SHALL BE A CLEAN, CRUSHED AND ANGULAR STONE WITH AN AASHTO M43 DESIGNATION BETWEEN #3 AND #57 CHAMBERS SHALL BE DESIGNED IN ACCORDANCE WITH ASTM F2787 "STANDARD PRACTICE FOR STRUCTURAL DESIGN OF THERMOPLASTIC CORRUGATED WALL STORMWATER COLLECTION CHAMBERS". PAVEMENT LAYER (DESIGNED BY SITE DESIGN ENGINEER)

Impervious Liner Required:

*MINIMUM COVER TO BOTTOM OF FLEXIBLE PAVEMENT. FOR UNPAVED INSTALLATIONS WHERE RUTTING FROM VEHICLES MAY OCCUR, INCREASE COVER TO 24" (600 mm).

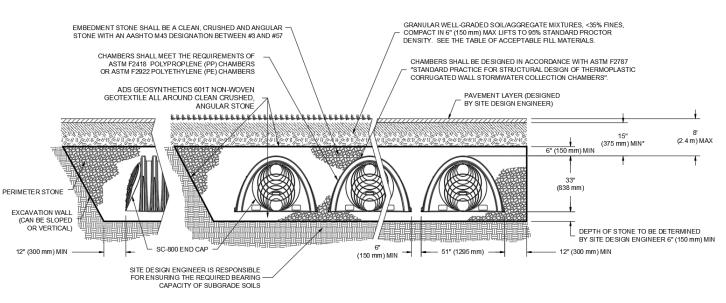
User Inputs

<u>Results</u>

Chamber Model:	SC-800	System Volume and Bed Size			
Outlet Control Structure:	No	Installed Storage Volume:	36.86 cubic meters.		
Project Name:	1104 Halton Terrace Phase 1	Storage Volume Per Chamber:	1.44 cubic meters.		
Engineer:	Lucas Wilson	Number Of Chambers Required:	13		
Project Location:	Ontario	Number Of End Caps Required:	2		
Measurement Type:	Metric	Chamber Rows:	1		
Required Storage Volume:	36.00 cubic meters.	Maximum Length:	29.35 m.		
Stone Porosity:	40%	Maximum Width:	1.91 m.		
Stone Foundation Depth:	153 mm.	Approx. Bed Size Required:	55.90 square me- ters.		
Stone Above Chambers:	153 mm.	Assessed Course Over Chamberry			
Design Constraint Dimensions:	(2.00 m. x 30.01 m.)	Average Cover Over Chambers: System Compor	N/A . nents		
		Amount Of Stone Required:	46 cubic meters		

Volume Of Excavation (Not Including 64 cubic meters Fill):

Total Non-woven Geotextile Required: 220 square meters


Woven Geotextile Required (excluding0 square meters Isolator Row):

Woven Geotextile Required (Isolator 53 square meters Row):

Total Woven Geotextile Required: 53 square meters

Impervious Liner Required:

0 square meters

*MINIMUM COVER TO BOTTOM OF FLEXIBLE PAVEMENT. FOR UNPAVED INSTALLATIONS WHERE RUTTING FROM VEHICLES MAY OCCUR, INCREASE COVER TO 24" (600 mm).

Project:

1104 HALTON TERRACE

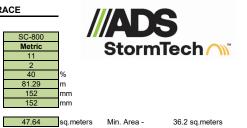
5 40

22.83866401 sq.meters

Chamber Model - Units -
Number of Chambers - Number of End Caps -
Voids in the stone (porosity) -
Base of Stone Elevation -
Amount of Stone Above Chambers -
Amount of Stone Below Chambers -
Area of System-

17.36 sq.meters

Min. Area -



StormTech SC-800 Cumulative Storage Volumes Single End Cap System Chamber Chambers Cap Stone and Stone System Elevation (cubic mete (cubic mete (cubic meters (mm)(cubic meter bic mete ıbic me (meters 1143 0.000 0.000 0.00 0.00 0.23 82.21 0.23 14.86 1118 0.000 0.000 0.00 0.00 0.23 0.23 14.63 82.19 1092 0.000 0.000 0.00 0.00 0.23 0.23 14.39 82.16 1067 0.000 0.00 0.23 0.23 82.14 0.000 0.00 14.16 1041 1016 0.000 0.000 0.000 0.00 0.00 0.23 0.23 13.93 82.11 0.000 0.00 0.23 0.23 82.09 0.00 13.70 0.002 0.000 0.01 0.00 0.23 0.24 82.06 991 13.47 0.000 0.000 965 0.006 0.03 0.00 0.22 0.25 13.23 82.04 0.008 940 0.04 0.00 0.22 0.26 12.98 82.01 0.014 0.000 0.20 914 0.07 0.00 0.28 12.72 81.98 889 0.021 0.000 0.10 0.00 0.19 0.30 12.45 81.96 864 838 0.025 0.029 0.001 0.18 0.17 0.31 0.32 0.13 0.00 12.15 81.93 11.84 81.91 0.14 0.00 813 0.032 0.001 0.16 0.00 0.17 0.33 11.52 81.88 787 762 0.034 0.037 0.001 0.002 0.17 0.00 0.16 0.16 0.34 11.20 81.86 0.18 0.00 0.34 10.86 81.83 737 0.039 0.002 0.19 0.00 0.15 0.35 10.51 81.81 0.002 0.20 0.21 711 0.041 0.00 0.15 0.36 10.16 81.78 686 0.043 0.00 0.14 0.36 81.76 9.81 660 0.044 0.003 0.22 0.01 0.14 0.37 9.44 81.73 0.046 0.047 0.003 0.23 0.14 0.13 0.37 81.71 81.68 635 0.01 9.07 610 0.01 8.70 584 0.049 0.003 0.24 0.01 0.13 0.38 8.32 81.65 0.004 0.004 7.94 7.55 559 0.050 0.25 0.01 0.13 0.39 81.63 533 0.051 0.26 0.01 0.13 0.39 81.60 508 0.052 0.004 0.26 0.01 0.12 0.39 7.16 81.58 483 0.054 0.004 0.27 0.01 0.12 0.40 6.77 81.55 0.27 0.28 0.12 0.12 457 0.055 0.004 0.01 0.40 6.37 81.53 432 0.004 0.01 0.40 81.50 0.056 5.97 406 0.057 0.004 0.28 0.01 0.12 0.41 5.57 81.48 0.005 0.29 381 0.057 0.01 0.11 0.41 5.16 81.45 356 0.058 0.005 0.29 0.01 0.11 0.41 4.75 81.43 330 0.059 0.005 0.29 0.01 0.11 0.41 4.34 81.40 305 0.060 0.005 0.30 0.01 0.11 0 42 3.92 81.37 279 0.060 0.005 0.30 0.01 0.42 81.35 3.51 0.11 254 0.061 0.005 0.31 0.01 0.11 0.42 3.09 81.32 229 0.062 0.005 0.005 0.31 0.01 0.10 0.42 2.67 81.30 81.27 203 0.31 0.01 0.10 2.24 178 0.063 0.004 0.31 0.01 0.10 0.43 1.82 81.25 152 127 0.000 0.000 0.000 0.000 0.00 0.23 0.23 0.23 0.23 0.00 1.39 81.22 0.00 1.16 81.20 102 0.000 0.000 0.00 0.00 0.23 0.23 81.17 0.93 76 51 0.000 0.000 0.00 0.00 0.23 0.23 0.70 81.15 0.000 0.000 0.23 0.00 0.00 0.23 0.46 81.12 25 0.000 0.000 0.00 0.00 0.23 0.23 0.23 81.10

1104 HALTON TERRACE Project:

Chamber Model - Units -	
Number of Chambers -	
Number of End Caps -	
Voids in the stone (porosity) -	
Base of Stone Elevation -	
Amount of Stone Above Chambers -	
Amount of Stone Below Chambers -	

Area of System-

36.2 sq.meters

Min. Area -

StormTe	ch SC-800 Cu	mulative Sto	orage Volur	nes				
Height of	Incremental Single	Incremental	Incremental	Incremental End	Incremental	Incremental Ch, EC	Cumulative	
System	Chamber	Single End Cap	Chambers	Cap	Stone	and Stone	System	Elevation
(mm)	(cubic meters)	(cubic meters)	(cubic meters)	(cubic meters)	(cubic meters)	(cubic meters)	(cubic meters)	(meters)
1143	0.000	0.000	0.00	0.00	0.48	0.48	31.36	82.43
1118	0.000	0.000	0.00	0.00	0.48	0.48	30.87	82.41
1092	0.000	0.000	0.00	0.00	0.48	0.48	30.39	82.38
1067	0.000	0.000	0.00	0.00	0.48	0.48	29.91	82.36
1041	0.000	0.000	0.00	0.00	0.48	0.48	29.42	82.33
1016	0.000	0.000	0.00	0.00	0.48	0.48	28.94	82.31
991	0.002	0.000	0.02	0.00	0.47	0.50	28.45	82.28
965	0.006	0.000	0.06	0.00	0.46	0.52	27.96	82.26
940	0.008	0.000	0.09	0.00	0.45	0.54	27.44	82.23
914	0.014	0.000	0.16	0.00	0.42	0.58	26.90	82.20
889	0.021	0.000	0.23	0.00	0.39	0.62	26.32	82.18
864	0.025	0.001	0.28	0.00	0.37	0.65	25.70	82.15
838	0.029	0.001	0.32	0.00	0.36	0.67	25.04	82.13
813	0.032	0.001	0.35	0.00	0.34	0.69	24.37	82.10
787	0.034	0.001	0.38	0.00	0.33	0.71	23.67	82.08
762	0.037	0.002	0.40	0.00	0.32	0.73	22.96	82.05
737	0.039	0.002	0.43	0.00	0.31	0.74	22.23	82.03
711	0.041	0.002	0.45	0.00	0.30	0.76	21.49	82.00
686	0.043	0.002	0.43	0.00	0.29	0.77	20.74	81.98
660	0.043	0.002	0.49	0.00	0.29	0.78	19.97	81.95
635	0.046	0.003	0.50	0.01	0.28	0.79	19.19	81.93
610	0.040	0.003	0.52	0.01	0.27	0.80	18.40	81.90
584	0.049	0.003	0.54	0.01	0.27	0.81	17.60	81.87
559	0.050	0.004	0.55	0.01	0.26	0.82	16.79	81.85
533	0.051	0.004	0.56	0.01	0.26	0.83	15.97	81.82
508	0.052	0.004	0.58	0.01	0.25	0.83	15.14	81.80
483	0.052	0.004	0.59	0.01	0.25	0.84	14.31	81.77
457	0.055	0.004	0.60	0.01	0.24	0.85	13.46	81.75
432	0.056	0.004	0.61	0.01	0.24	0.86	12.61	81.72
406	0.057	0.004	0.62	0.01	0.23	0.86	11.76	81.70
381	0.057	0.005	0.63	0.01	0.23	0.87	10.90	81.67
356	0.058	0.005	0.64	0.01	0.22	0.87	10.03	81.65
330	0.059	0.005	0.65	0.01	0.22	0.88	9.15	81.62
305	0.060	0.005	0.66	0.01	0.22	0.88	8.27	81.59
279	0.060	0.005	0.66	0.01	0.22	0.89	7.39	81.57
279	0.060	0.005	0.67	0.01	0.21	0.89	6.50	81.54
234	0.062	0.005	0.68	0.01	0.21	0.89	5.61	81.54
	0.062		0.68	0.01				
203 178	0.062	0.005 0.004	0.69	0.01	0.21 0.20	0.90 0.90	4.71 3.81	81.49 81.47
178	0.003	0.004	0.09	0.01	0.20	0.48	2.90	81.47
152	0.000	0.000	0.00	0.00	0.48	0.48	2.90	81.44
102 76	0.000	0.000 0.000	0.00	0.00	0.48	0.48 0.48	1.94	81.39 81.37
	0.000		0.00	0.00	0.48		1.45	
51	0.000	0.000	0.00	0.00	0.48	0.48	0.97	81.34
25	0.000	0.000	0.00	0.00	0.48	0.48	0.48	81.32

Project: **1104 HALTON TERRACE**

Chamber Model -Units -Number of Chambers -Number of End Caps -Voids in the stone (porosity) -Base of Stone Elevation -Amount of Stone Above Chambers -Amount of Stone Below Chambers -

Area of System-

42.48 sq.meters

0.57

0.57

81.54

Min. Area -

StormTech SC-800 Cumulative Storage Volumes Single End Cap System Chamber Chambers Cap Stone and Stone System Elevation (cubic mete (cubic mete (cubic meter (mm)(cubic meter bic me oic mete (meters 1143 0.000 0.000 0.00 0.57 82.65 0.00 0.57 36.86 1118 0.000 0.000 0.00 0.00 0.57 0.57 36.29 82.63 1092 0.000 0.000 0.00 0.00 0.57 0.57 35.72 82.60 0.000 0.57 1067 0.000 0.00 0.00 0.57 35.15 82.58 1041 1016 0.000 0.000 0.00 0.00 0.57 0.57 34.58 34.02 82.55 0.000 0.000 0.57 82.53 0.00 0.00 0.57 0.000 0.03 0.00 0.56 33.45 82.50 991 0.002 0.58 0.000 965 0.006 0.07 0.00 0.54 0.61 32.86 82.48 940 0.008 0.11 0.00 0.53 0.63 32 25 82 45 0.000 914 0.014 0.19 0.00 0.49 0.68 31.62 82.42 889 0.021 0.000 0.27 0.00 0.46 0.73 30.94 82.40 0.001 0.33 0.37 864 0.025 0.00 0.44 0.77 30.21 82.37 0.42 838 0.029 0.79 0.00 29.44 82.35 813 0.032 0.001 0.41 0.00 0.40 0.82 28.65 82.32 787 762 0.034 0.001 0.45 0.00 0.39 0.84 27.83 82.30 0.037 0.002 0.48 0.38 0.86 26.99 82.27 0.00 737 0.039 0.002 0.51 0.00 0.36 0.87 26.14 82.25 711 0.041 0.002 0.53 0.00 0.35 0.89 25.27 82.22 0.002 686 0.043 0.55 0.34 0.90 24.38 82.20 0.00 0.044 0.003 0.58 0.01 0.34 0.92 23.47 82.17 660 0.046 0.047 0.003 0.93 0.94 635 0.60 0.01 0.33 22.56 82.15 0.62 0.01 0.32 21.63 82.12 610 584 0.049 0.003 0.63 0.01 0.31 0.95 20.69 82.09 0.004 0.004 559 0.050 0.65 0.01 0.30 0.96 19.73 82.07 533 0.051 0.67 0.01 0.30 0.97 18.77 82.04 508 0.052 0.004 0.68 0.01 0.29 0.98 17.80 82.02 483 0.054 0.004 0.70 0.01 0.29 0.99 16.82 81.99 457 0.055 0.004 0.71 0.01 0.28 1.00 15.82 81.97 0.004 0.72 0.28 432 0.056 0.01 1.01 14.83 81.94 406 0.057 0.004 0.73 0.01 0.27 1.01 13.82 81.92 0.005 381 0.057 0.75 0.01 0.27 1.02 12.81 81.89 356 0.005 0.76 0.01 0.26 1.03 11.78 0.058 81.87 330 0.059 0.005 0.77 0.01 0.26 1.03 10.76 81.84 305 0.060 0.005 0.78 0.01 0.25 1.04 972 81.81 279 0.060 0.005 0.79 0.25 81.79 0.01 1.05 8.68 254 0.061 0.005 0.79 0.01 0.25 1.05 7.64 81.76 229 0.062 0.005 0.005 0.80 0.01 0.24 0.24 1.06 6.59 81.74 81.71 203 0.062 0.81 0.01 1.06 5.53 178 0.063 0.004 0.82 0.01 0.24 1.06 4.47 81.69 152 127 0.000 0.000 0.57 0.57 0.57 0.57 0.000 0.00 0.00 3.41 81.66 0.000 0.00 81.64 0.00 2.84 102 0.000 0.000 0.00 0.00 0.57 0.57 2.27 81.61 76 0.000 0.000 0.00 0.00 0.57 0.57 1.70 81.59 51 0.000 0.57 0.57 81.56 0.000 0.00 0.00 1.14 25 0.000 0.000 0.57

0.00

0.00

55.9

sq.meters

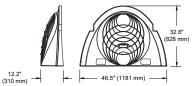
StormTech[®] SC-800 Chamber

Designed to meet the most stringent industry performance standards for superior structural integrity while providing designers with a cost-effective method to save valuable land and protect water resources. The StormTech system is designed primarily to be used under parking lots, thus maximizing land usage for private (commercial) and public applications. StormTech chambers can also be used in conjunction with Green Infrastructure, thus enhancing the performance and extending the service life of these practices.

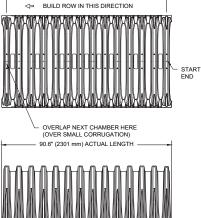
85.4" (2169 mm) INSTALLED LENGTH

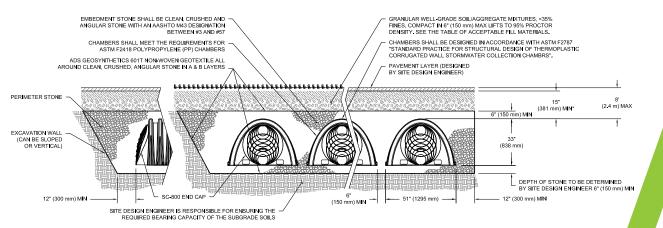
Nominal Chamber Specifications (not to scale)

Size (L x W x H) 85.4" x 51" x 33" 2169 mm x 1295 mm x 838 mm


Chamber Storage 50.6 ft³ (1.43 m³)

Min. Installed Storage* 81.0 ft³ (2.29 m³)


Weight 81.8 lbs (37.1 kg)


Shipping 30 chambers/pallet 60 end caps/pallet 12 pallets/truck

*Assumes 6" (150 mm) stone above, below and between chambers and 40% stone porosity.

51.0" (1295 mm) 33.0" (838 mm)

*MINIMUM COVER TO BOTTOM OF FLEXIBLE PAVEMENT. FOR UNPAVED INSTALLATIONS WHERE RUTTING FROM VEHICLES MAY OCCUR, INCREASE COVER TO 21" (533 mm).

StormTech SC-800 Specifications

Cumulative Storage Volumes Per Chamber

Assumes 40% Stone Porosity. Calculations are Based Upon a 6" (150 mm) Stone Base Under Chambers.

Depth of Water in System	Cumulative Chamber	Total System Cumulative Storage		
Inches (mm)	Storage ft ³ (m ³)	ft ³ (m ³)		
45 (1143)	50.62 (1.433)	81.08 (2.296)		
44 (1118)	50.62 (1.433)	79.96 (2.264)		
43 (1092)	Stone 50.62 (1.433)	78.83 (2.232)		
42 (1067)	Cover 50.62 (1.433)	77.70 (2.200)		
41 (1041)	50.62 (1.433)	76.57 (2.168)		
40 (1016)	♥ 50.62 (1.433)	75.44 (2.136)		
39 (991)	50.62 (1.433)	74.31 (2.104)		
38 (965)	50.55 (1.431)	73.14 (2.071)		
37 (940)	50.35 (1.426)	71.90 (2.036)		
36 (914)	50.07 (1.418)	70.60 (1.999)		
35 (889)	49.56 (1.403)	69.17 (1.959)		
34 (864)	48.82 (1.382)	67.60 (1.914)		
33 (838)	47.93 (1.357)	65.94 (1.867)		
32 (813)	46.91 (1.328)	64.20 (1.818)		
31 (787)	45.79 (1.297)	62.40 (1.767)		
30 (762)	44.58 (1.262)	60.55 (1.715)		
29 (737)	43.28 (1.226)	58.65 (1.661)		
28 (711)	41.91 (1.187)	56.70 (1.606)		
27 (686)	40.47 (1.146)	54.71 (1.549)		
26 (660)	38.96 (1.103)	52.68 (1.492)		
25 (635)	37.40 (1.059)	50.61 (1.433)		
24 (610)	35.78 (1.013)	48.51 (1.374)		
23 (584)	34.10 (0.966)	46.38 (1.313)		
22 (559)	32.38 (0.917)	44.22 (1.252)		
21 (533)	30.61 (0.867)	42.03 (1.190)		
20 (508)	28.80 (0.816)	39.82 (1.128)		
19 (483)	26.95 (0.763)	37.58 (1.064)		
18 (457)	25.06 (0.710)	35.32 (1.000)		
17 (432)	23.13 (0.655)	33.04 (0.936)		
16 (406)	21.17 (0.599)	30.74 (0.870)		
15 (381)	19.17 (0.543)	28.42 (0.805)		
14 (356)	17.14 (0.485)	26.08 (0.739)		
13 (330)	15.09 (0.427)	23.72 (0.672)		
12 (305)	13.00 (0.368)	21.34 (0.604)		
11 (279)	10.89 (0.308)	18.95 (0.537)		
10 (254)	8.76 (0.248)	16.54 (0.468)		
9 (229)	6.60 (0.187)	14.12 (0.400)		
8 (203)	4.42 (0.125)	11.69 (0.331)		
7 (178)	2.22 (0.063)	9.24 (0.262)		
6 (152)	• 0 (0)	6.78 (0.192)		
5 (127)	0 (0)	5.65 (0.160)		
4 (102)	Stone 0 (0)	4.52 (0.128)		
3 (76)	Foundation 0 (0)	3.39 (0.096)		
2 (51)	0 (0)	2.26 (0.064)		
1 (25)		1.13 (0.032)		
Noto: Add 1 12 ft3 (0.022				

Note: Add 1.13 ft _3 (0.032 m $^3) of storage for each additional inch (25 mm) of stone foundation.$

ADS StormTech products, manufactured in accordance with ASTM F2418 or ASTMF2922, comply with all requirements in the Build America, Buy America (BABA) Act.

Working on a project?

Visit us at adspipe.com/stormtech and utilize the Design Tool

ADS "Terms and Conditions of Sale" are available on the ADS website, www.ads-pipe.com The ADS logo and the Green Stripe are registered trademarks of Advanced Drainage Systems, Inc. StormTech* is a registered trademark of StormTech, Inc. © 2024 Advanced Drainage Systems, Inc. # 11185 1/24 CS

Storage Volume Per Chamber ft³ (m³)

Bare Chamber		amber and St ation Depth i	
Storage ft³ (m³)	6 (150)	12 (300)	18 (450)

 SC-800 Chamber
 50.6 (1.43)
 81.0 (2.29)
 87.8 (2.48)
 94.6 (2.6)

 Note:
 Assumes 6" (150 mm) stone above chambers, 6" (150 mm) row spacing and 40% stone porosity.
 150 mm
 row

Amount of Stone Per Chamber

English Tons (yds³)	Stone Foundation Depth					
Eligiish tons (yus-)	6″	12″	18″			
SC-800	3.9 (2.8)	4.8 (3.4)	5.7 (4.1)			
Metric Kilograms (m³)	150 mm	300 mm	450 mm			
SC-800	3580 (2.2)	4380 (2.6)	5170 (3.1)			

Note: Assumes 6" (150 mm) of stone above and between chambers.

Volume Excavation Per Chamber yd³ (m³)

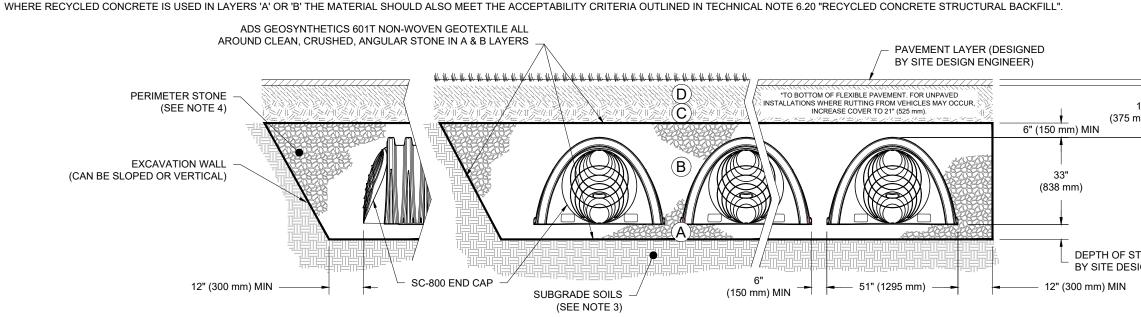
Ston	e Foundation [epth
6" (150 mm)	12" (300 mm)	18" (450 mm)
5.6 (4.3)	6.3 (4.8)	6.9 (5.3)
	6" (150 mm)	Stone Foundation E 6" (150 mm) 12" (300 mm) 5.6 (4.3) 6.3 (4.8)

Note: Assumes 6" (150 mm) of row separation and 15" (375 mm) of cover. The volume of excavation will vary as depth of cover increases.

adspipe.com 800-821-6710

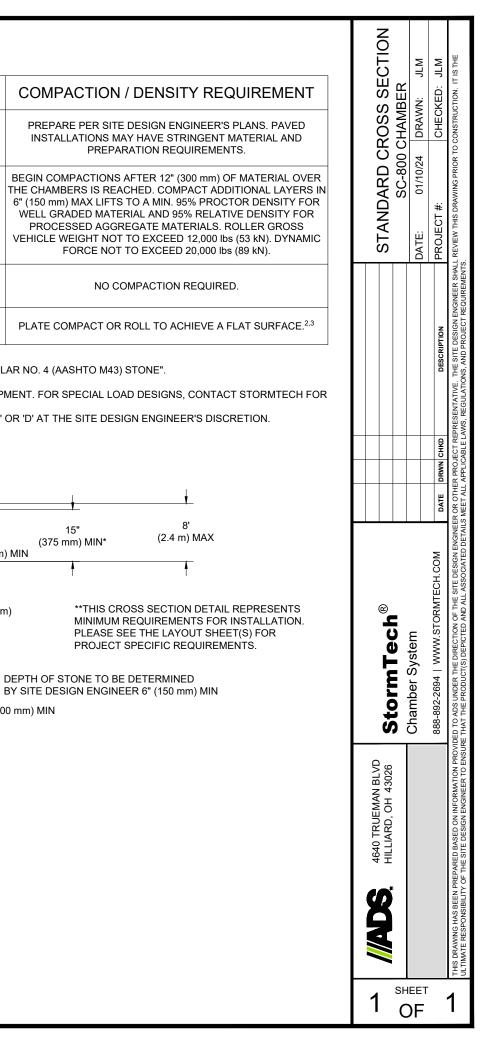
ACCEPTABLE FILL MATERIALS: STORMTECH SC-800 CHAMBER SYSTEMS

		MATERIAL LOCATION	DESCRIPTION	AASHTO MATERIAL CLASSIFICATIONS	COMPA	
	D	FINAL FILL: FILL MATERIAL FOR LAYER 'D' STARTS FROM THE TOP OF THE 'C' LAYER TO THE BOTTOM OF FLEXIBLE PAVEMENT OR UNPAVED FINISHED GRADE ABOVE. NOTE THAT PAVEMENT SUBBASE MAY BE PART OF THE 'D' LAYER.	ANY SOIL/ROCK MATERIALS, NATIVE SOILS, OR PER ENGINEER'S PLANS. CHECK PLANS FOR PAVEMENT SUBGRADE REQUIREMENTS.	N/A	PREPARE INSTALL	
-	С	INITIAL FILL: FILL MATERIAL FOR LAYER 'C' STARTS FROM THE TOP OF THE EMBEDMENT STONE ('B' LAYER) TO 15" (375 mm) ABOVE THE TOP OF THE CHAMBER. NOTE THAT PAVEMENT SUBBASE MAY BE A PART OF THE 'C' LAYER.	GRANULAR WELL-GRADED SOIL/AGGREGATE MIXTURES, <35% FINES OR PROCESSED AGGREGATE. MOST PAVEMENT SUBBASE MATERIALS CAN BE USED IN LIEU OF THIS LAYER.	AASHTO M145 ¹ A-1, A-2-4, A-3 OR AASHTO M43 ¹ 3, 357, 4, 467, 5, 56, 57, 6, 67, 68, 7, 78, 8, 89, 9, 10	BEGIN COMF THE CHAMBE 6" (150 mm) I WELL GRAI PROCESS VEHICLE WE FC	
	В	EMBEDMENT STONE: FILL SURROUNDING THE CHAMBERS FROM THE FOUNDATION STONE ('A' LAYER) TO THE 'C' LAYER ABOVE.	CLEAN, CRUSHED, ANGULAR STONE OR RECYCLED CONCRETE⁵	AASHTO M43 ¹ 3, 357, 4, 467, 5, 56, 57		
	А	FOUNDATION STONE: FILL BELOW CHAMBERS FROM THE SUBGRADE UP TO THE FOOT (BOTTOM) OF THE CHAMBER.	CLEAN, CRUSHED, ANGULAR STONE OR RECYCLED CONCRETE⁵	AASHTO M43 ¹ 3, 357, 4, 467, 5, 56, 57	PLATE CON	


PLEASE NOTE:

1. THE LISTED AASHTO DESIGNATIONS ARE FOR GRADATIONS ONLY. THE STONE MUST ALSO BE CLEAN, CRUSHED, ANGULAR. FOR EXAMPLE, A SPECIFICATION FOR #4 STONE WOULD STATE: "CLEAN, CRUSHED, ANGULAR NO. 4 (AASHTO M43) STONE".

STORMTECH COMPACTION REQUIREMENTS ARE MET FOR 'A' LOCATION MATERIALS WHEN PLACED AND COMPACTED IN 6" (150 mm) (MAX) LIFTS USING TWO FULL COVERAGES WITH A VIBRATORY COMPACTOR.
 WHERE INFILTRATION SURFACES MAY BE COMPROMISED BY COMPACTION, FOR STANDARD DESIGN LOAD CONDITIONS, A FLAT SURFACE MAY BE ACHIEVED BY RAKING OR DRAGGING WITHOUT COMPACTION EQUIPMENT. FOR SPECIAL LOAD DESIGNS, CONTACT STORMTECH FOR


 WHERE INFILTRATION SUFFACES MAY BE COMPROMISED BY COMPACTION, FOR STANDARD DESIGN LOAD CONDITIONS, A FLAT SURFACE MAY BE ACHIEVED BY RAKING OR DRAGGING WITHOUT COMPACTION EQUIPMENT. FOR COMPACTION REQUIREMENTS.
 COMPACTION EQUIPMENTS.
 COMPACTION EQUIPMENTS.

4. ONCE LAYER 'C' IS PLACED, ANY SOIL/MATERIAL CAN BE PLACED IN LAYER 'D' UP TO THE FINISHED GRADE. MOST PAVEMENT SUBBASE SOILS CAN BE USED TO REPLACE THE MATERIAL REQUIREMENTS OF LAYER 'C' OR 'D' AT THE SITE DESIGN ENGINEER'S DISCRETION.

NOTES:

- 1. CHAMBERS SHALL MEET THE REQUIREMENTS OF ASTM F2418, "STANDARD SPECIFICATION FOR POLYPROPYLENE (PP) CORRUGATED WALL STORMWATER COLLECTION CHAMBERS".
- 2. SC-800 CHAMBERS SHALL BE DESIGNED IN ACCORDANCE WITH ASTM F2787 "STANDARD PRACTICE FOR STRUCTURAL DESIGN OF THERMOPLASTIC CORRUGATED WALL STORMWATER COLLECTION CHAMBERS".
- 3. THE SITE DESIGN ENGINEER IS RESPONSIBLE FOR ASSESSING THE BEARING RESISTANCE (ALLOWABLE BEARING CAPACITY) OF THE SUBGRADE SOILS AND THE DEPTH OF FOUNDATION STONE WITH CONSIDERATION FOR THE RANGE OF EXPECTED SOIL MOISTURE CONDITIONS.
- 4. PERIMETER STONE MUST BE EXTENDED HORIZONTALLY TO THE EXCAVATION WALL FOR BOTH VERTICAL AND SLOPED EXCAVATION WALLS.
- 5. REQUIREMENTS FOR HANDLING AND INSTALLATION:
 - TO MAINTAIN THE WIDTH OF CHAMBERS DURING SHIPPING AND HANDLING, CHAMBERS SHALL HAVE INTEGRAL, INTERLOCKING STACKING LUGS.
 - TO ENSURE A SECURE JOINT DURING INSTALLATION AND BACKFILL, THE HEIGHT OF THE CHAMBER JOINT SHALL NOT BE LESS THAN 2".
 - TO ENSURE THE INTEGRITY OF THE ARCH SHAPE DURING INSTALLATION, a) THE ARCH STIFFNESS CONSTANT AS DEFINED IN SECTION 6.2.8 OF ASTM F2418 SHALL BE GREATER THAN OR EQUAL TO 550 LBS/FT/%. AND b) TO RESIST CHAMBER DEFORMATION DURING INSTALLATION AT ELEVATED TEMPERATURES (ABOVE 73° F / 23° C), CHAMBERS SHALL BE PRODUCED FROM REFLECTIVE GOLD OR YELLOW COLORS.

$(D mm) \rightarrow (P + 46.5^{\circ} (1181 mm) \rightarrow (P + 46$					
(OVER SMALL CORRUGATION) $\int (1295 \text{ mm})^{33.0^{\circ}}$ $\int (1295 $	2.2" 0 mm) 46.	(828	G"mm)		ION
HAMBER STORAGE 50.6 CUBIC FEET (1.43.m ²)					
	(1295 mm) -) 51.0" X 33.0 50.6 CUBIC 81.0 CUBIC 81.8 lbs. DVE, BELOW, AND BETW DF END CAP FOR PART NUME ID CAP FOR PART NUME	" X 85.4" (1295 mm X 8 FEET (1.43 m³) FEET (2.29 m³) (37.1 kg) PEEN CHAMBERS	38 mm X 2169 mm)	ЭТН
SC800EPE06BPC 0.9" (23 mm)	(1295 mm) - IOMINAL CHAMBER SPECIFICATIO SIZE (W X H X INSTALLED LENGTH) CHAMBER STORAGE MINIMUM INSTALLED STORAGE* VEIGHT ASSUMES 6" (152 mm) STONE ABO PRE-CORED HOLES AT BOTTOM O PRE-CORED HOLES AT TOP OF EN PART # SC800EPE06TPC SC800EPE06BPC) 51.0" X 33.0 50.6 CUBIC 81.0 CUBIC 81.8 lbs. DVE, BELOW, AND BETW DF END CAP FOR PART NUME	"X 85.4" (1295 mm X 8 FEET (1.43 m ³) FEET (2.29 m ³) (37.1 kg) // EEN CHAMBERS // MUMBERS ENDING WITH " BERS ENDING WITH "T" B 21.4" (544 mm) 	38 mm X 2169 mm) B" <u>C</u>	ЭТН
SC800EPE06BPC 0.9" (23 mm) SC800EPE08TPC 8" (200 mm) 19.2" (488 mm)	(1295 mm) - (1295 mm) - IOMINAL CHAMBER SPECIFICATIO SIZE (W X H X INSTALLED LENGTH) CHAMBER STORAGE MINIMUM INSTALLED STORAGE* VEIGHT ASSUMES 6" (152 mm) STONE ABO PRE-CORED HOLES AT BOTTOM O PRE-CORED HOLES AT BOTTOM O PRE-CORED HOLES AT TOP OF EN PART # SC800EPE06BPC SC800EPE08TPC) 51.0" X 33.0 50.6 CUBIC 81.0 CUBIC 81.8 lbs. DVE, BELOW, AND BETW DF END CAP FOR PART NUME ID CAP FOR PART NUME STUB 6" (150 mm)	"X 85.4" (1295 mm X 8 FEET (1.43 m ³) FEET (2.29 m ³) (37.1 kg) // EEN CHAMBERS // MUMBERS ENDING WITH " BERS ENDING WITH "T" B 21.4" (544 mm) 	38 mm X 2169 mm) B" <u>C</u> 0.9" (23 mm) 	
SC800EPE06BPC 0.9" (23 mm) SC800EPE08TPC 8" (200 mm) 1.0" (25 mm) SC800EPE10TPC 10" (250 mm) 1.0" (25 mm)	(1295 mm) - (1295) 51.0" X 33.0 50.6 CUBIC 81.0 CUBIC 81.8 lbs. DVE, BELOW, AND BETW DF END CAP FOR PART NUME ID CAP FOR PART NUME STUB 6" (150 mm) 8" (200 mm)	"X 85.4" (1295 mm X 8 FEET (1.43 m ³) FEET (2.29 m ³) (37.1 kg) // EEN CHAMBERS // SERS ENDING WITH " // BERS ENDING WITH "T" // B // CALL (544 mm) // // 19.2" (488 mm) //	38 mm X 2169 mm) B" <u>C</u> 0.9" (23 mm) 1.0" (25 mm) 	
SC800EPE06BPC Bar (200 mm) 19.2" (488 mm) SC800EPE08BPC 8" (200 mm) 1.0" (25 mm) SC800EPE10TPC 10" (250 mm) 1.0" (25 mm) SC800EPE10BPC 10" (250 mm) 1.2" (30 mm)	(1295 mm) - (1295) 51.0" X 33.0 50.6 CUBIC 81.0 CUBIC 81.8 lbs. DVE, BELOW, AND BETW DF END CAP FOR PART NUME ID CAP FOR PART NUME STUB 6" (150 mm) 8" (200 mm)	"X 85.4" (1295 mm X 8 FEET (1.43 m ³) FEET (2.29 m ³) (37.1 kg) // EEN CHAMBERS NUMBERS ENDING WITH " BERS ENDING WITH "T" B 21.4" (544 mm) 19.2" (488 mm) 17.0" (432 mm) 	38 mm X 2169 mm) B" <u>C</u> 0.9" (23 mm) 1.0" (25 mm) 	
SC800EPE06BPC 0.9" (23 mm) SC800EPE08TPC 8" (200 mm) 19.2" (488 mm) SC800EPE08BPC 1.0" (25 mm) SC800EPE10TPC 10" (250 mm) 17.0" (432 mm) SC800EPE10BPC 1.2" (30 mm) SC800EPE12TPC 12" (300 mm) 14.4" (366 mm)	(1295 mm) - (1295) 51.0" X 33.0 50.6 CUBIC 81.0 CUBIC 81.8 lbs. DVE, BELOW, AND BETW DF END CAP FOR PART NUME ID CAP FOR PART NUME 6" (150 mm) 8" (200 mm) 10" (250 mm)	"X 85.4" (1295 mm X 8 FEET (1.43 m ³) FEET (2.29 m ³) (37.1 kg) // EEN CHAMBERS NUMBERS ENDING WITH " BERS ENDING WITH "T" B 21.4" (544 mm) 19.2" (488 mm) 17.0" (432 mm) 	38 mm X 2169 mm) B" C 0.9" (23 mm) 1.0" (25 mm) 1.2" (30 mm) 	
SC800EPE06BPC Image: Constraint of the second	(1295 mm) - (1295) 51.0" X 33.0 50.6 CUBIC 81.0 CUBIC 81.8 lbs. DVE, BELOW, AND BETW DF END CAP FOR PART NUME ID CAP FOR PART NUME 6" (150 mm) 8" (200 mm) 10" (250 mm)	"X 85.4" (1295 mm X 8 FEET (1.43 m ³) FEET (2.29 m ³) (37.1 kg) /EEN CHAMBERS ////////////////////////////////////	38 mm X 2169 mm) B" C 0.9" (23 mm) 1.0" (25 mm) 1.2" (30 mm) 	
SC800EPE06BPC B 19.2" (488 mm) SC800EPE08BPC 8" (200 mm) 19.2" (488 mm) SC800EPE08BPC 1.0" (25 mm) SC800EPE10TPC 10" (250 mm) 1.0" (25 mm) SC800EPE10BPC 10" (250 mm) 1.2" (300 mm) SC800EPE12TPC 12" (300 mm) 1.6" (41 mm) SC800EPE12BPC 15" (375 mm) 1.6" (41 mm)	(1295 mm) - (1295) 51.0" X 33.0 50.6 CUBIC 81.0 CUBIC 81.8 lbs. DVE, BELOW, AND BETW DF END CAP FOR PART NUME ID CAP FOR PART NUME 6" (150 mm) 8" (200 mm) 10" (250 mm) 12" (300 mm)	"X 85.4" (1295 mm X 8 FEET (1.43 m ³) FEET (2.29 m ³) (37.1 kg) /EEN CHAMBERS ////////////////////////////////////	38 mm X 2169 mm) B" C 0.9" (23 mm) 1.0" (25 mm) 1.2" (30 mm) 1.6" (41 mm) 	
SC800EPE06BPC Image: Constraint of the second	(1295 mm) - (1295 mm) - (1295 mm) - (122 (W X H X INSTALLED LENGTH) HAMBER STORAGE INIMUM INSTALLED STORAGE* VEIGHT ASSUMES 6" (152 mm) STONE ABC PRE-CORED HOLES AT BOTTOM O PRE-CORED HOLES AT BOTTOM O PRE-CORED HOLES AT TOP OF EN PART # SC800EPE06BPC SC800EPE06BPC SC800EPE08BPC SC800EPE10BPC SC800EPE12PC SC800EPE15PC SC800EPE15BPC) 51.0" X 33.0 50.6 CUBIC 81.0 CUBIC 81.8 lbs. DVE, BELOW, AND BETW DF END CAP FOR PART NUME ID CAP FOR PART NUME 6" (150 mm) 8" (200 mm) 10" (250 mm) 12" (300 mm)	"X 85.4" (1295 mm X 8 FEET (1.43 m ³) FEET (2.29 m ³) (37.1 kg) YEEN CHAMBERS SUMBERS ENDING WITH " BERS ENDING WITH "T" B 21.4" (544 mm) 19.2" (488 mm) 19.2" (488 mm) 11.3" (287 mm) 11.3" (287 mm) 	38 mm X 2169 mm) B" C 0.9" (23 mm) 1.0" (25 mm) 1.2" (30 mm) 1.6" (41 mm) 	
SC800EPE06BPC Image: Constraint of the second	(1295 mm) - (1295) 51.0" X 33.0 50.6 CUBIC 81.0 CUBIC 81.8 lbs. DVE, BELOW, AND BETW DF END CAP FOR PART NUME STUB 6" (150 mm) 8" (200 mm) 10" (250 mm) 12" (300 mm) 15" (375 mm)	"X 85.4" (1295 mm X 8 FEET (1.43 m ³) FEET (2.29 m ³) (37.1 kg) YEEN CHAMBERS SUMBERS ENDING WITH " BERS ENDING WITH "T" B 21.4" (544 mm) 19.2" (488 mm) 19.2" (488 mm) 11.3" (287 mm) 11.3" (287 mm) 	38 mm X 2169 mm) B" C 0.9" (23 mm) 1.0" (25 mm) 1.2" (30 mm) 1.6" (41 mm) 1.7" (43 mm) 	
SC800EPE06BPC Image: Additional and the second	(1295 mm) - (1295) 51.0" X 33.0 50.6 CUBIC 81.0 CUBIC 81.8 lbs. DVE, BELOW, AND BETW DF END CAP FOR PART NUME STUB 6" (150 mm) 10" (250 mm) 12" (300 mm) 15" (375 mm) 18" (450 mm)	"X 85.4" (1295 mm X 8 FEET (1.43 m ³) FEET (2.29 m ³) (37.1 kg) FEEN CHAMBERS NUMBERS ENDING WITH " BERS ENDING WITH "T" B 21.4" (544 mm) 19.2" (488 mm) 17.0" (432 mm) 14.4" (366 mm) 11.3" (287 mm) 8.0" (203 mm)	38 mm X 2169 mm) B" C 0.9" (23 mm) 1.0" (25 mm) 1.2" (30 mm) 1.6" (41 mm) 1.7" (43 mm) 2.0" (51 mm)	
SC800EPE06BPC Image: Constraint of the second	(1295 mm) - (1295) 51.0" X 33.0 50.6 CUBIC 81.0 CUBIC 81.8 lbs. DVE, BELOW, AND BETW DF END CAP FOR PART NUME STUB 6" (150 mm) 10" (250 mm) 12" (300 mm) 15" (375 mm) 18" (450 mm)	"X 85.4" (1295 mm X 8 FEET (1.43 m ³) FEET (2.29 m ³) (37.1 kg) FEEN CHAMBERS NUMBERS ENDING WITH " BERS ENDING WITH "T" B 21.4" (544 mm) 19.2" (488 mm) 17.0" (432 mm) 14.4" (366 mm) 11.3" (287 mm) 8.0" (203 mm) 	38 mm X 2169 mm) B" C 0.9" (23 mm) 1.0" (25 mm) 1.2" (30 mm) 1.6" (41 mm) 1.7" (43 mm) 2.0" (51 mm)	

SC-800 TECHNICAL SPECIFICATION

TECHNICAL SPECIFICATIONS HILLIARD, OH 43026 Chamber System 888-892-2694 PROJECT #: CHECKED: JLM SC-800 CHAMBER States provident of the stream of the stre JLM DRAWN: 01/12/24 DATE: **StormTech**[®] 4640 TRUEMAN BLVD HILLIARD, OH 43026 SOM

<u>1</u>

4" PVC INSPECTION PORT I (SC SERIES CHAMBER NTS

<u>R)</u>	AMBER CORRUGATION CREST.	4" (100 mm) INSERTA TEE TO BE CENTERED ON CORRUGATION CREST	NYLOPLAST 8" LOCKING SOLID COVER AND FRAME CONCRETE COLLAR / ASPHALT OVERLAY NOT REQUIRED FOR GREENSPACE OR NON-TRAFFIC APPLICATIONS 8" NYLOPLAST UNIVERSAL INLINE DRAIN BODY (PART# 2708AG4IPKIT) OR TRAFFIC RATED BOX W/SOLID LOCKING COVER 4" (100 mm) SDR 35 PIPE				5 WOVEN GEOTEXTILE BETWEEN HAMBERS IOUS FABRIC WITHOUT SEAMS		SC-800 END CAP	r
1		4640 TRUEMAN BLVD	Ģ							
	Ŕ	HILLIARD, OH 43026	StormTach®						ISULATOR	SULATOR ROW PLUS
									SC-800 C	SC-800 CHAMBER
IEE DF			Chamber System						DATE: 11/11/03	
				01/12/24	JLM	JLM	UPDATE END CAP CALLOUT	1		
			888-892-2694 WWW.STORMTECH.COM	DATE	DRWN CHKD	CHKD	DESCRIPTION	PTION	PROJECT #:	CHECKED: CJD
1	THIS DRAWING HAS BEEN PRE	EPARED BASED ON INFORMATION PROV	THIS DRAWING HAS BEEN PREPARED BASED ON INFORMATION PROVIDED TO ADS UNDER THE DIRECTION OF THE SITE DESIGN EN III TMATE RESPONSIBILITY OF THE SITE DESIGN ENGINEER TO ENSIBLE THAT THE PRODI ICTIS) DEPICIFED AND ALL ASSOCIATED D	GINEER OR OTHE FTAILS MEET ALL	RROJ	ECT RE	HE SITE DESIGN ENGINEER OR OTHER PROJECT REPRESENTATIVE. THE SITE DESIGN ENGINEER SHALL ALL ASSOCIATED DETAILS MEET ALL APPLICABLE LAWS REGILLATONS, AND PROJECT REGULIBEMENTS	DESIGN ENGINEER SHA PROJECT REQUIREMENT	HE SITE DESIGN ENGINEER OR OTHER PROJECT REPRESENTATIVE. THE SITE DESIGN ENGINEER SHALL REVIEW THIS DRAWING PRIOR TO CONSTRUCTION. IT IS THE AI I ASSOCIATED DETAILS MEET AI I APPLICABLE LAWS REGULATIONS AND PROJECT REPUBLIENDENTS.	CONSTRUCTION. IT IS THE
								NOLOI NEGOINEMENT		

Isolator[®] Row Plus O&M Manual

The Isolator® Row Plus

Introduction

An important component of any Stormwater Pollution Prevention Plan is inspection and maintenance. The StormTech Isolator Row Plus is a technique to inexpensively enhance Total Suspended Solids (TSS), Total Phosphorus (TP), Total Petroluem Hydrocarbons (TPH) and Total Nitrogen (TN) removal with easy access for inspection and maintenance.

The Isolator Row Plus

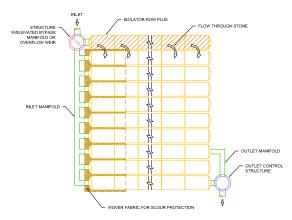
The Isolator Row Plus is a row of StormTech chambers, either SC-160, SC-310, SC-310-3, SC-740, DC-780, SC-800, MC-3500, MC-4500 or MC-7200 models, are lined with filter fabric and connected to a closely located manhole for easy access. The fabric lined chambers provide for sediment settling and filtration as stormwater rises in the Isolator Row Plus and passes through the filter fabric. The open bottom chambers allow stormwater to flow vertically out of the chambers. Sediments are captured in the Isolator Row Plus protecting the adjacent stone and chambers storage areas from sediment accumulation.

ADS Isolator Row and Plus fabric are placed between the stone and the Isolator Row Plus chambers. The woven geotextile provides a media for stormwater filtration, a durable surface for maintenance, prevents scour of the underlying stone and remains intact during high pressure jetting.

The Isolator Row Plus is designed to capture the "first flush" runoff and offers the versatility to be sized on a volume basis or a flow-rate basis. An upstream manhole provides access to the Isolator Row Plus and includes a high/low concept such that stormwater flow rates or volumes that exceed the capacity of the Isolator Row Plus bypass through a manifold to the other chambers. This is achieved with an elevated bypass manifold or a high-flow weir. This creates a differential between the Isolator Row Plus row of chambers and the manifold to the rest of the system, thus allowing for settlement time in the Isolator Row Plus. After Stormwater flows through the Isolator Row Plus and into the rest of the chamber system it is either exfiltrated into the soils below or passed at a controlled rate through an outlet manifold and outlet control structure.

The Isolator Row Plus Flamp[™] is a flared end ramp apparatus attached to the inlet pipe on the inside of the chamber end cap. The FLAMP provides a smooth transition from pipe invert to fabric bottom. It is configured to improve chamber function performance by enhancing outflow of solid debris that would otherwise collect at the chamber's end, or more difficult to remove and require confined space entry into the chamber area. It also serves to improve the fluid and solid flow into the access pipe during maintenance and cleaning and to guide cleaning and inspection equipment back into the inlet pipe when complete.

The Isolator Row Plus may be part of a treatment train system. The treatment train design and pretreatment device selection by the design engineer is often driven by regulatory requirements. Whether pretreatment is used or not, StormTech recommend using the Isolator Row Plus to minimize maintenance requirements and maintenance costs.


Note: See the StormTech Design Manual for detailed information on designing inlets for a StormTech system, including the Isolator Row Plus.

Looking down the Isolator Row Plus from the manhole opening, ADS Plus Fabric is shown between the chamber and stone base.

StormTech Isolator Row Plus with Overflow Structure (not to scale)

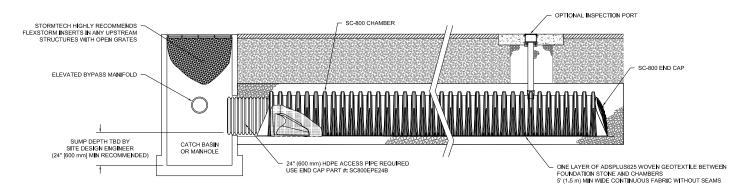
Isolator Row Plus Inspection/Maintenance

Inspection

The frequency of inspection and maintenance varies by location. A routine inspection schedule needs to be established for each individual location based upon site specific variables. The type of land use (i.e. industrial, commercial, residential), anticipated pollutant load, percent imperviousness, climate, etc. all play a critical role in determining the actual frequency of inspection and maintenance practices.

At a minimum, StormTech recommends annual inspections. Initially, the Isolator Row Plus should be inspected every 6 months for the first year of operation. For subsequent years, the inspection should be adjusted based upon previous observation of sediment deposition.

The Isolator Row Plus incorporates a combination of standard manhole(s) and strategically located inspection ports (as needed). The inspection ports allow for easy access to the system from the surface, eliminating the need to perform a confined space entry for inspection purposes.


If upon visual inspection it is found that sediment has accumulated, a stadia rod should be inserted to determine the depth of sediment. When the average depth of sediment exceeds 3" (75 mm) throughout the length of the Isolator Row Plus, clean-out should be performed.

Maintenance

The Isolator Row Plus was designed to reduce the cost of periodic maintenance. By "isolating" sediments to just one row, costs are dramatically reduced by eliminating the need to clean out each row of the entire storage bed. If inspection indicates the potential need for maintenance, access is provided via a manhole(s) located on the end(s) of the row for cleanout. If entry into the manhole is required, please follow local and OSHA rules for a confined space entry.

Maintenance is accomplished with the JetVac process. The JetVac process utilizes a high pressure water nozzle to propel itself down the Isolator Row Plus while scouring and suspending sediments. As the nozzle is retrieved, the captured pollutants are flushed back into the manhole for vacuuming. Most sewer and pipe maintenance companies have vacuum/JetVac combination vehicles. Selection of an appropriate JetVac nozzle will improve maintenance efficiency. Fixed nozzles designed for culverts or large diameter pipe cleaning are preferable. Rear facing jets with an effective spread of at least 45" are best. StormTech recommends a maximum nozzle pressure of 2000 psi be utilized during cleaning. JetVac reels can vary in length. For ease of maintenance, ADS recommends Isolator Row Plus lengths up to 200' (61 m). The JetVac process shall only be performed on StormTech Isolator Row Plus that have ADS Plus Fabric (as specified by StormTech) over their angular base stone.

StormTech Isolator Row Plus (not to scale)

Isolator Row Plus Step By Step Maintenance Procedures

Step 1

Inspect Isolator Row Plus for sediment.

A) Inspection ports (if present)

- i. Remove lid from floor box frame
- ii. Remove cap from inspection riser
- iii. Using a flashlight and stadia rod, measure depth of sediment and record results on maintenance log.
- iv. If sediment is at or above 3 inch depth, proceed to Step 2. If not, proceed to Step 3.

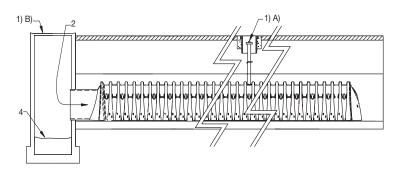
B) All Isolator Row Plus

- i. Remove cover from manhole at upstream end of Isolator Row Plus
- ii. Using a flashlight, inspect down Isolator Row Plus through outlet pipe
 - 1. Mirrors on poles or cameras may be used to avoid a confined space entry
 - 2. Follow OSHA regulations for confined space entry if entering manhole
- iii. If sediment is at or above the lower row of sidewall holes (approximately 3 inches), proceed to Step 2.

If not, proceed to Step 3.

Step 2

Clean out Isolator Row Plus using the JetVac process.


- A) A fixed floor cleaning nozzle with rear facing nozzle spread of 45 inches or more is preferable
- B) Apply multiple passes of JetVac until backflush water is clean
- C) Vacuum manhole sump as required

Step 3

Replace all caps, lids and covers, record observations and actions.

Step 4

Inspect & clean catch basins and manholes upstream of the StormTech system.

Sample Maintenance Log

Date	Stadia Rod Fixed point	Readings Fixed point to top of	Sediment Depth	Observations/Actions	Inspector
	to chamber bottom (1)	sediment (2)	(1)–(2)		
3/15/11	6.3 ft	none		New installation, Fixed point is CI frame at grade	MCG
9/24/11		6.2	0.1 ft	some grit felt	SM
6/20/13		5.8	0.5 ft	.5 ft Mucky feel, debris visible in manhole and in Isolator Row Plus, maintenance due	
7/7/13	6.3 ft		0	System jetted and vacuumed	DJM

ADS "Terms and Conditions of Sale" are available on the ADS website, www.ads-pipe.com The ADS logo and the Green Stripe are registered trademarks of Advanced Drainage Systems, Inc. StormTech® and the Isolator® Row Plus are registered trademarks of StormTech, Inc. © 2024 Advanced Drainage Systems, Inc. #11081 1/24 CS adspipe.com 800-821-6710

StormTech[®] Installation Guide SC-310/SC-740/DC-780/SC-800

StormTech Installation Video

Required Materials and Equipment List

- Acceptable fill materials per Table 1
- ADS Plus and non-woven geotextile fabrics
- StormTech solid end caps and pre-cored end caps
- StormTech chambers
- StormTech manifolds and fittings

Important Notes:

- A. This installation guide provides the minimum requirements for proper installation of chambers. Non-adherence to this guide may result in damage to chambers during installation. Replacement of damaged chambers during or after backfilling is costly and very time consuming. It is recommended that all installers are familiar with this guide, and that the contractor inspects the chambers for distortion, damage and joint integrity as work progresses.
- B. Use of a dozer to push embedment stone between the rows of chambers may cause damage to chambers and is not an acceptable backfill method. Any chambers damaged by using the "dump and push" method are not covered under the StormTech standard warranty.
- C. Care should be taken in the handling of chambers and end caps. Avoid dropping, prying or excessive force on chambers during removal from pallet and initial placement.

Requirements for System Installation

Excavate bed and prepare subgrade per engineer's plans.

Place non-woven geotextile over prepared soils and up excavation walls. Install underdrains if required.

Place clean, crushed, angular stone foundation 6" (150 mm) min. Compact to achieve a flat surface.

Manifold, Scour Fabric and Chamber Assembly

Install manifolds and lay out ADS Plus fabric at inlet rows (min. 12.5 ft (3.8 m)) at each inlet end cap. Place a continuous piece along entire length of Isolator[®] Plus Row(s).

Align the first chamber and end cap of each row with inlet pipes. Contractor may choose to postpone stone placement around end chambers and leave ends of rows open for easy inspection of chambers during the backfill process.

Continue installing chambers by overlapping chamber end corrugations. Chamber joints are labeled "Lower Joint – Overlap Here" and "Build this direction – Upper Joint" Be sure that the chamber placement does not exceed the reach of the construction equipment used to place the stone. Maintain minimum 6" (150 mm) spacing between rows.

Attaching the End Caps

Lift the end of the chamber a few inches off the ground. With the curved face of the end cap facing outward, place the end cap into the chamber's end corrugation.

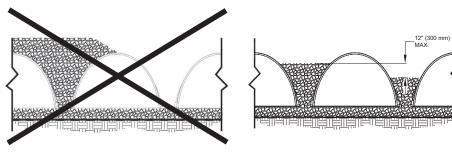
Prefabricated End Caps

24" (600 mm) inlets are the maximum size that can fit into a SC-740/DC-780/SC-800 end cap and must be prefabricated with a 24" (600 mm) pipe stub. SC-310 chambers with a 12" (300 mm) inlet pipe must use a prefabricated end cap with a 12" (300 mm) pipe stub. When used on an Isolator Row Plus, these end caps will contain a welded Flamp (flared end ramp) that will lay on top of the ADS Plus fabric (shown above)

Isolator Row Plus

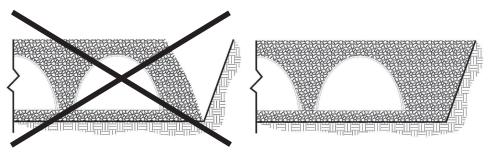
Place a continuous layer of ADS Plus fabric between the foundation stone and the Isolator Row Plus chambers, making sure the fabric lays flat and extends the entire width of the chamber feet.

Initial Anchoring of Chambers – Embedment Stone



Initial embedment shall be spotted along the center line of the chamber evenly anchoring the lower portion of the chamber. This is best accomplished with a stone conveyor or excavator reaching along the row.

No equipment shall be operated on the bed at this stage of the installation. Excavators must be located off the bed. Dump trucks shall not dump stone directly on to the bed. Dozers or loaders are not allowed on the bed at this time.


Backfill of Chambers – Embedment Stone

Uneven Backfill

Even Backfill

Backfill chambers evenly. Stone column height should never differ by more than 12" (300 mm) between adjacent chamber rows or between chamber rows and perimeter.

Perimeter Not Backfilled

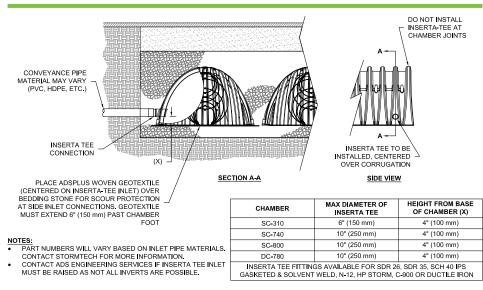
Perimeter Fully Backfilled

Perimeter stone must be brought up evenly with chamber rows. Perimeter must be fully backfilled, with stone extended horizontally to the excavation wall.

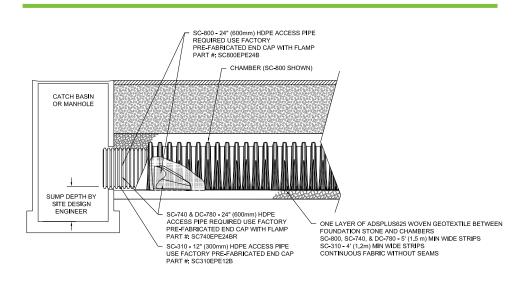
Backfill - Embedment Stone & Cover Stone



Continue evenly backfilling between rows and around perimeter until embedment stone reaches tops of chambers. Perimeter stone must extend horizontally to the excavation wall for both straight or sloped sidewalls. Only after chambers have StormTech recommends that the been backfilled to top of chamber and with a minimum 6" (150 mm) of cover stone on top of chambers can small dozers be used over the chambers for backfilling remaining cover stone.


Small dozers and skid loaders may be used to finish grading stone backfill in accordance with ground pressure limits in Table 2. They must push material parallel to rows only. Never push perpendicular to rows. contractor inspect chambers before placing final backfill. Any chambers damaged by construction shall be removed and replaced.

Final Backfill of Chambers – Fill Material



Install non-woven geotextile over stone. Geotextile must overlap 24" (600 mm) min. where edges meet. Compact each lift of backfill as specified in the site design engineer's drawings. Roller travel parallel with rows.

Inserta Tee Detail

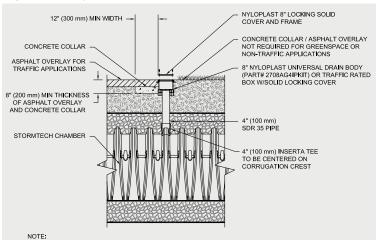
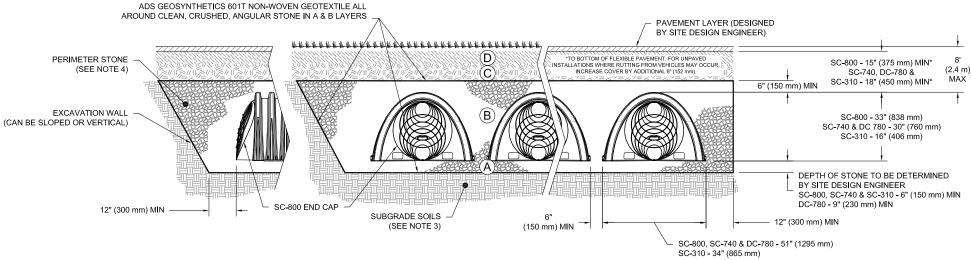

StormTech Isolator Row Plus Detail

Table 1- Acceptable Fill Materials

Material Location	Description	AASHTO M43 Designation ¹	Compaction/Density Requirement
D Final Fill: Fill Material for layer 'D' starts from the top of the 'C' layer to the bottom of flexible pavement or unpaved finished grade above. Note that the pavement subbase may be part of the 'D' layer.	Any soil/rock materials, native soils or per engineer's plans. Check plans for pavement subgrade requirements.	N/A	Prepare per site design engineer's plans. Paved installations may have stringent material and preparation requirements.
€ Initial Fill: Fill Material for layer 'C' starts from the top of the embedment stone ('B' layer) to 18" (450 mm) above the top of the chamber. Note that pavement subbase may be part of the 'C' layer.	Granular well-graded soil/aggregate mixtures, <35% fines or processed aggregate. Most pavement subbase materials can be used in lieu of this layer.	AASHTO M45 A-1, A-2-4, A-3 or AASHTO M43 ¹ 3, 357, 4, 467, 5, 56, 57, 6, 67, 68, 7, 78, 8, 89, 9, 10	Begin compaction after min. 12" (300 mm) of material over the chambers is reached. Compact additional layers in 6" (150 mm) max. lifts to a min. 95% Proctor density for well-graded material and 95% relative density for processed aggregate materials. Roller gross vehicle weight not to exceed 12,000 lbs (53 kN). Dynamic force not to exceed 20,000 lbs (89 kN)
BEmbedment Stone: Embedment Stone surrounding chambers from the foundation stone to the 'C' layer above.	Clean, crushed, angular stone or Recycled Concrete ⁴	AASHTO M43 ¹ 3, 357, 4, 467, 5, 56, 57	No compaction required.
(A) Foundation Stone: Foundation Stone below the chambers from the subgrade up to the foot (bottom) of the chamber.	Clean, crushed, angular stone or Recycled Concrete⁴	AASHTO M43 ¹ 3, 357, 4, 467, 5, 56, 57	Place and compact in 6" (150 mm) lifts using two full coverages with a vibratory compactor. ^{2,3}

Figure 1- Inspection Port Detail



INSPECTION PORTS MAY BE CONNECTED THROUGH ANY CHAMBER CORRUGATION CREST.

Please Note:

- 1. The listed AASHTO designations are for gradations only. The stone must also be clean, crushed, angular. For example, a specification for #4 stone would state: "clean, crushed, angular no. 4 (AASHTO M43) stone".
- 2. StormTech compaction requirements are met for 'A' location materials when placed and compacted in 6" (150 mm) (max) lifts using two full coverages with a vibratory compactor.
- Where infiltration surfaces may be comprised by compaction, for standard installations and standard design load conditions, a flat surface may be achieved by raking or dragging without compaction equipment. For special load designs, contact StormTech for compaction requirements.
- 4. Where recycled concrete aggregate is used in layers 'A' or 'B' the material should also meet the acceptable criteria outlined in ADS Technical Note 6.20 "Recycled Concrete Structural Backfill".

Figure 2 - Fill Material Locations

Notes:

- 1.36" (900 mm) of stabilized cover materials over the chambers is recommended during the construction phase if general construction activities, such as full dump truck travel and dumping, are to occur over the bed.
- 2. During paving operations, dump truck axle loads on 18" (450 mm) of cover may be necessary. Precautions should be taken to avoid rutting of the road base layer, to ensure that compaction requirements have been met, and that a minimum of 18" (450 mm) of cover exists over the chambers. Contact StormTech for additional guidance on allowable axle loads during paving.
- 3. Ground pressure for track dozers is the vehicle operating weight divided by total ground contact area for both tracks. Excavators will exert higher ground pressures based on loaded bucket weight and boom extension.
- 4. Mini-excavators (< 8,000 lbs/3,628 kg) can be used with at least 12" (300 mm) of stone over the chambers and are limited by the maximum ground pressures in Table 2 based on a full bucket at maximum boom extension.
- 5. Storage of materials such as construction materials, equipment, spoils, etc. should not be located over the StormTech system. The use of equipment over the StormTech system not covered in Table 2 (ex. soil mixing equipment, cranes, etc) is limited. Please contact StormTech for more information.
- 6. Allowable track loads based on vehicle travel only. Excavators shall not operate on chamber beds until the total backfill reaches 3 feet (900 mm) over the entire bed.

Table 2 - Maximum Allowable Construction Vehicle Loads⁶

Meterial	Fill Depth	th Maximum Allowable Wheel Maximum Allowable Loads Track Loads ⁶			Maximum Allowable Roller Loads	
Material Location	over Chambers in. (mm)	Max Axle Load for Trucks lbs (kN)	Max Wheel Load for Loaders lbs (kN)	Track Width in. (mm)	Max Ground Pressure psf (kPa)	Max Drum Weight or Dynamic Force lbs (kN)
Final Fill Material	36" (900) Compacted	32,000 (142)	16,000 (71)	12" (305) 18" (457) 24" (610) 30" (762) 36" (914)	3880 (186) 2640 (126) 2040 (97) 1690 (81) 1470 (70)	38,000 (169)
© Initial Fill Material	24" (600) Compacted	32,000 (142)	16,000 (71)	12" (305) 18" (457) 24" (610) 30" (762) 36" (914)	2690 (128) 1880 (90) 1490 (71) 1280 (61) 1150 (55)	20,000 (89)
	24" (600) Loose/ Dumped	32,000 (142)	16,000 (71)	12" (305) 18" (457) 24" (610) 30" (762) 36" (914)	2390 (114) 1700 (81) 1370 (65) 1190 (57) 1080 (51)	20,000 (89) Roller gross vehicle weight not toexceed 12,000 lbs. (53 kN)
	18" (450)	32,000 (142)	16,000 (71)	12" (305) 18" (457) 24" (610) 30" (762) 36" (914)	2110 (101) 1510 (72) 1250 (59) 1100 (52) 1020 (48)	20,000 (89) Roller gross vehicle weight not to exceed 12,000 lbs. (53 kN)
(B) Embedment Stone	12" (300)	16,000 (71)	NOT ALLOWED	12" (305) 18" (457) 24" (610) 30" (762) 36" (914)	1540 (74) 1190 (57) 1010 (48) 910 (43) 840 (40)	20,000 (89) Roller gross vehicle weight not to exceed 12,000 lbs. (53 kN)
	6" (150)	8,000 (35)	NOT ALLOWED	12" (305) 18" (457) 24" (610) 30" (762) 36" (914)	1070 (51) 900 (43) 800 (38) 760 (36) 720 (34)	NOT ALLOWED

Table 3 - Placement Methods and Descriptions

Material Location	Placement Methods/ Restrictions	Wheel Load Restrictions	Track Load Restrictions	Roller Load Restrictions
Location	Restrictions	See Tab	le 2 for Maximum Constru	uction Loads
D Final Fill Material	A variety of placement methods may be used. All construction loads must not exceed the maxi- mum limits in Table 2.	36" (900 mm) minimum cover required for dump trucks to dump over chambers.	Dozers to push paral- lel to rows until 36" (900mm) compacted cover is reached. ⁴	Roller travel parallel to rows only until 36" (900 mm) compacted cover is reached.
© Initial Fill Material	Excavator positioned off bed rec- ommended. Small excavator allowed over chambers. Small dozer allowed.	Asphalt can be dumped into paver when compacted pavement subbase reaches 18" (450 mm) above top of chambers.	Small LGP track dozers & skid loaders allowed to grade cover stone with at least 6" (150 mm) stone under tracks at all times. Equipment must push parallel to rows at all times.	Use dynamic force of roller only after compacted fill depth reaches 12" (300 mm) over chambers. Roller travel parallel to cham- ber rows only.
B Embedment Stone	No equipment allowed on bare chambers. Use excavator or stone conveyor positioned off bed or on foundation stone to evenly fill around all chambers to at least the top of chambers.	No wheel loads allowed. Mate- rial must be placed outside the limits of the chamber bed.	No tracked equipment is allowed on chambers until a min. 6" (150 mm) cover stone is in place.	No rollers allowed.
A Foundation Stone	No StormTech restrictions. Contrac subgrade bearing capacity, dewate			nts by others relative to

ADS "Terms and Conditions of Sale" are available on the ADS website, www.adspipe.com. Advanced Drainage Systems, the ADS logo, and the green stripe are registered trademarks of Advanced Drainage Systems, Inc. StormTech[®] and the Isolator[®] Row Plus are registered trademarks of StormTech, Inc ©2024 Advanced Drainage Systems, Inc. #11010 4/24 CS

StormTech® Standard Limited Warranty

STANDARD LIMITED WARRANTY OF STORMTECH LLC ("STORMTECH"): PRODUCTS

- (A) This Limited Warranty applies solely to the StormTech chambers and end plates manufactured by StormTech and sold to the original purchaser (the "Purchaser"). The chambers and end plates are collectively referred to as the "Products."
- (B) The structural integrity of the Products, when installed strictly in accordance with StormTech's written installation instructions at the time of installation, are warranted to the Purchaser against defective materials and workmanship for one (1) year from the date of purchase. Should a defect appear in the Limited Warranty period, the Purchaser shall provide StormTech with written notice of the alleged defect at StormTech's corporate headquarters within ten (10) days of the discovery of the defect. The notice shall describe the alleged defect in reasonable detail. StormTech agrees to supply replacements for those Products determined by StormTech to be defective and covered by this Limited Warranty. The supply of replacement products is the sole remedy of the Purchaser for breaches of this Limited Warranty. StormTech's liability specifically excludes the cost of removal and/or installation of the Products.
- (C) THIS LIMITED WARRANTY IS EXCLUSIVE. THERE ARE NO OTHER WARRANTIES WITH RESPECT TO THE PRODUCTS, INCLUDING NO IMPLIED WARRANTIES OF MERCHANTABILITY OR OF FITNESS FOR A PARTICULAR PURPOSE.
- (D) This Limited Warranty only applies to the Products when the Products are installed in a single layer. UNDER NO CIRCUMSTANCES, SHALL THE PRODUCTS BE INSTALLED IN A MULTI-LAYER CONFIGURATION.
- (E) No representative of StormTech has the authority to change this Limited Warranty in any manner or to extend this Limited Warranty. This Limited Warranty does not apply to any person other than to the Purchaser.

- (F) Under no circumstances shall StormTech be liable to the Purchaser or to any third party for product liability claims; claims arising from the design, shipment, or installation of the Products, or the cost of other goods or services related to the purchase and installation of the Products. For this Limited Warranty to apply, the Products must be installed in accordance with all site conditions required by state and local codes; all other applicable laws; and StormTech's written installation instructions.
- (G) THE LIMITED WARRANTY DOES NOT EXTEND TO INCIDENTAL, CONSEQUENTIAL, SPECIAL OR INDIRECT DAMAGES. STORMTECH SHALL NOT BE LIABLE FOR PENALTIES OR LIQUIDATED DAMAGES, INCLUDING LOSS OF PRODUCTION AND PROFITS: LABOR AND MATERIALS: OVERHEAD COSTS: OR OTHER LOSS OR EXPENSE INCURRED BY THE PURCHASER OR ANY THIRD PARTY. SPECIFICALLY EXCLUDED FROM LIMITED WARRANTY COVERAGE ARE DAMAGE TO THE PRODUCTS ARISING FROM ORDINARY WEAR AND TEAR: ALTERATION, ACCIDENT, MISUSE, ABUSE OR NEGLECT; THE PRODUCTS BEING SUBJECTED TO VEHICLE TRAFFIC OR OTHER CONDITIONS WHICH ARE NOT PERMITTED BY STORMTECH'S WRITTEN SPECIFICATIONS OR INSTALLATION INSTRUCTIONS: FAILURE TO MAINTAIN THE MINIMUM GROUND COVERS SET FORTH IN THE INSTALLATION INSTRUCTIONS; THE PLACEMENT OF IMPROPER MATERIALS INTO THE PRODUCTS; FAILURE OF THE PRODUCTS DUE TO IMPROPER SITING OR IMPROPER SIZING: OR ANY OTHER EVENT NOT CAUSED BY STORMTECH. A PRODUCT ALSO IS EXCLUDED FROM LIMITED WARRANTY COVERAGE IF SUCH PRODUCT IS USED IN A PROJECT OR SYSTEM IN WHICH ANY GEOTEXTILE PRODUCTS OTHER THAN THOSE PROVIDED BY ADVANCED DRAINAGE SYSTEMS ARE USED. THIS LIMITED WARRANTY REPRESENTS STORMTECH'S SOLE LIABILITY TO THE PURCHASER FOR CLAIMS RELATED TO THE PRODUCTS. WHETHER THE CLAIM IS BASED UPON CONTRACT. TORT, OR OTHER LEGAL THEORY.

ADS "Terms and Conditions of Sale" are available on the ADS website, www.ads-pipe.com The ADS logo and the Green Stripe are registered trademarks of Advanced Drainage Systems, Inc. StormTech* is a registered trademark of StormTech, Inc. © 2023 Advanced Drainage Systems, Inc. 3/23 CS adspipe.com 800-821-6710

ADS 0601T/O NONWOVEN GEOTEXTILE SPECIFICATION

Scope

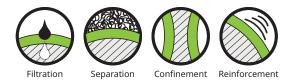
This specification describes ADS 0601T/O nonwoven geotextile.

Filter Fabric Requirements

ADS 0601T/O is an orange nonwoven geotextile composed of polypropylene fibers, which are formed into a stable network such that the fibers retain their relative position. ADS 0601T/O is inert to biological degradation and resists naturally encountered chemicals, alkali and acids. ADS 0601T/O conforms to the physical property values listed below:

Filter Fabric Properties

Property	Test Method	Unit	Typical Value ¹ MD	Typical Value ¹ CD
Grab Tensile Strength	ASTM D4632	lbs (N)	175 (779)	175 (779)
Grab Tensile Elongation	ASTM D4632	%	75	75
Trapezoid Tear Strength	ASTM D4533	lbs (N)	85 (378)	85 (378)
CBR Puncture Strength	ASTM D6241	lbs (N)	480 (2136)	480 (2136)
Permittivity	ASTM D4491	sec ⁻¹	1.5	1.5
Flow Rate	ASTM D4491	gal/min/ft² (l/min/m²)	105 (4278)	105 (4278)
UV Resistance (at 500 hours) ¹	ASTM D4355	% strength retained	80	80


Physical Properties

Property	Test Method	Unit	Typical Value ²
Weight	ASTM D5161	oz/yd² (g/m²)	6.5 (220)
Thickness	ASTM D5199	mils (mm)	65 (1.7)
Roll Dimensions (W x L)	-	ft (m)	15 x 300 (4.5 x 91)
Roll Area	-	yd² (m²)	500 (418)
Estimated Roll Weight	-	lb (kg)	220 (100)

1 Modified, Minimum Test Value

2 ASTM D4439 Standard Terminology for Geosynthetics: typical value, n-for geosynthetics, the mean value calculated from documented manufacturing quality control test results for a defined population obtained from one test method associated with on specific property.

ADS PLUS WOVEN GEOTEXTILE SPECIFICATION

For use with StormTech® Isolator® Row Plus

Scope

This specification describes ADS Plus woven geotextile.

ADS Plus woven geotextile fabrics are woven polypropylene materials offering optimum performance when used in stabilization applications. Produced from first quality raw materials, they provide the perfect balance of strength and separation in styles capable of functioning exceptionally well in a wide range of performance requirements.

Filter Fabric Properties

Property ¹	Test Method	Unit	M.A.R.V. (Minimum Average Roll Value)²
Weight	ASTM D5261	oz/yd² (g/m²)	8.0 (271.25)
Grab Tensile Strength	ASTM D4632	lbs (kN)	325 (1.45)
Grab Elongation	ASTM D4632	%	15
Trapezoidal Tear Strength	ASTM D4533	lbs (kN)	125 (0.89)
CBR Puncture Resistance	ASTM D6241	lbs (kN)	1,124 (5.0)

1. The property values listed above are subject to change without notice.

2. Minimum Average Roll Values (MARV) is calculated as the average minus two standard deviations. Statistically, it yields approximately 97.5% degree of confidence that any samples taken from quality assurance testing will meet or exceed the values described above.

Dimensions

ADS Plus shall be delivered to the jobsite in roll form with each roll individually identified and nominally measuring 12.5' (3.8 m) width x 360' (110 m) length for Plus125 and 6.25' (1.9 m) width x 360' (110 m) length for Plus625.

MASTER SERVICING STUDY UPDATE FOR MORGAN'S GRANT SUBDIVISION

.

- -

CITY OF OTTAWA

September 2003

.

Prepared for:

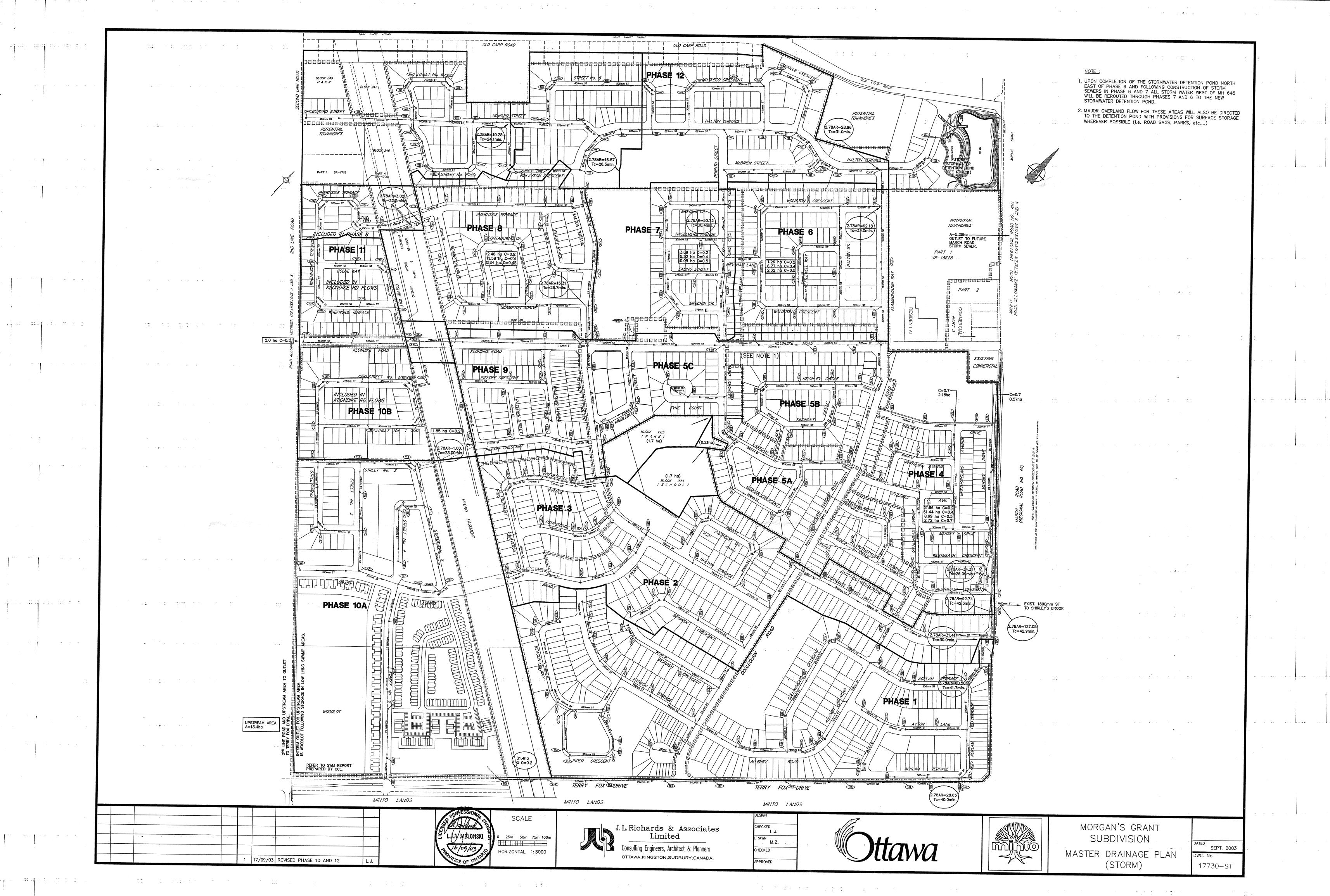
MINTO DEVELOPMENTS INC.

427 Laurier Avenue West, Suite 300 Ottawa, Ontario K1R 7Y2

Prepared by:

J.L. RICHARDS & ASSOCIATES LIMITED

Consulting Engineers, Architects & Planners 864 Lady Ellen Place Ottawa, Ontario K1Z 5M2


JLR 17730

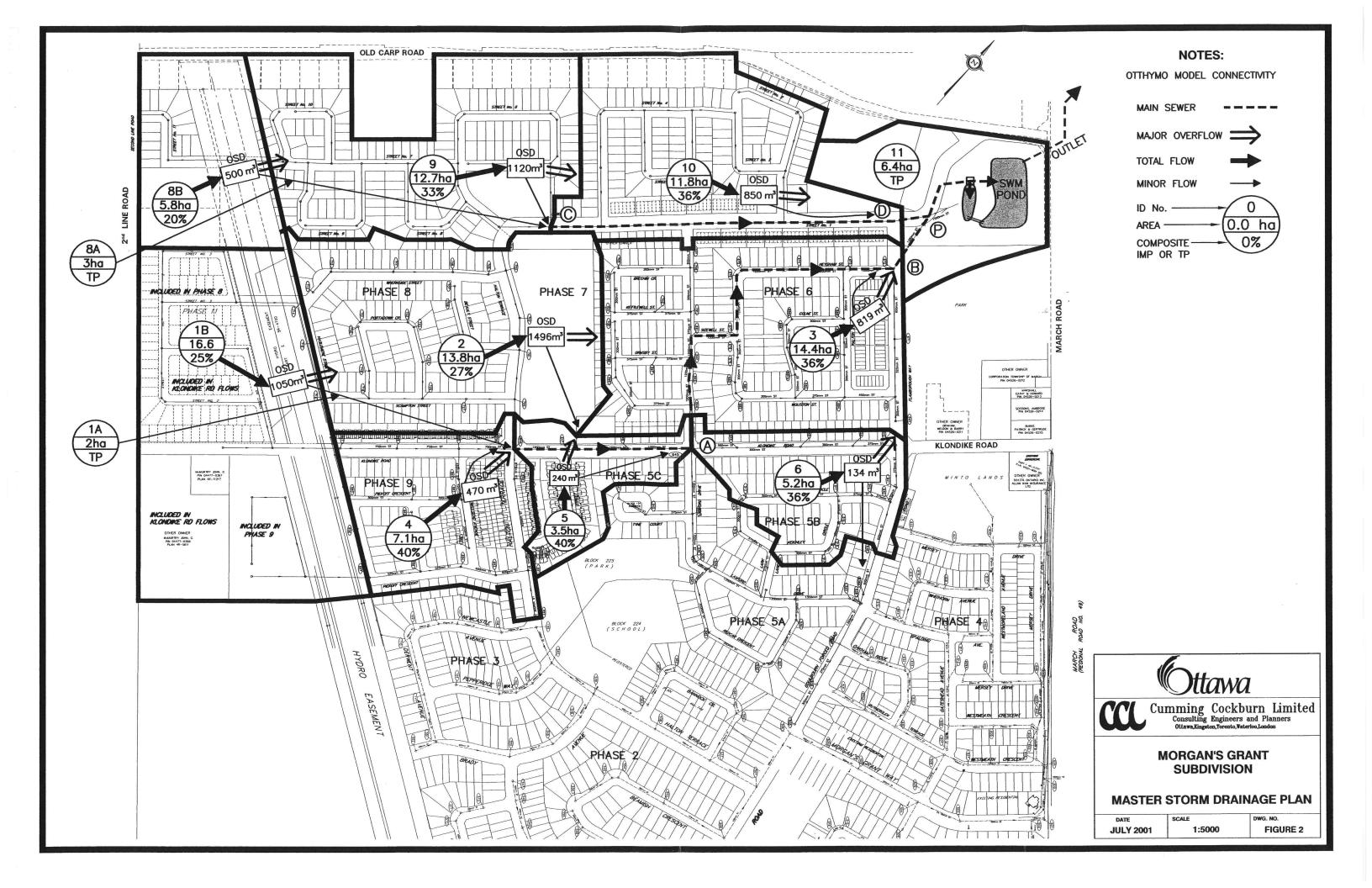

	, ()			
Manhole Junction Number	1:100 Year HGL Elevation (m)	HGL-Centreline Road Elev. (M)		
101	83.927	3.073		
102	83.392	1.908		
103	83.017	1.733		
104	82.322	1.068		
Chamber	82.000	1.200		

Table 5 - Results of HGL Analysis (2003)

2.5 On-Site Storage Requirements

To minimize land requirements for stormwater management facilities, ICDs, combined with on-site storage, have been utilized in all recent Phases of the Subdivision. As such, local storm sewers are to be designed to limit the capture rate to 70 L/s/ha, approximately equivalent to a 1:5 year storm event. Storm runoff in excess of the 1:5 year recurrence is to be detained, tentatively, on site by means of road-sag storage, park storage, hydro easement storage or, ultimately, by the stormwater management facility. To maintain the integrity of the design of the stormwater management facilities (existing and future), specific on-site storage requirements have been calculated and are presented in Table 6.

PEAK FLOW REDUCTION [Qout/Qin] (%)= 99.602 TIME SHIFT OF PEAK FLOW (min)= 3.00 MAXIMUM STORAGE USED (ha.m.)=.4825E-02 01756> * 01622> 01623> 01624> 01625: **DRY** 01626> 001:0063-----016265 vc... 016275 * 016285 -016295 ROUTS RESERVOIR 016305 IN507: (000100) 016315 OUT<08: (000100) 016325 -Requested routing time step = 3.0 min. costication in the second stands (cmms) (ha.m.) .000 .0000E+00 *** WARNING: Inflow hydrograph is dry. 01633> 01634> 01635> 01635> (cme) (ha.m.) .042 .4300E-01
 OPEAK
 TPEAK
 R.V.
 DWF

 (cmme)
 (hrs)
 (mm)
 (cms)

 .339
 12.10
 21.80
 .000

 .000
 .000
 .000
 DRY
 01637> RV R.V. (mm) .000 .000 01639> 01640> OUTFLOW<08: (000100) .00 .000 .000 01641> 01642> *** WARNING: Inflow and ouflow hydrographs are dry. SUM 06:000643 6.40 .339 12.10 21.80 .000 016435 01643> 01645> 01645> 01645> 01645 * 01647 * 1647 * 1647 * 1647 * 1647 * 1647 * 1647 * 1647 * 1647 * 1050 01/755 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 01780 01780 01780 01780 01780 01780 01785 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 01779> QPEAK TPEAK R.V. DWF (cms) (hrs) (mm) (cms) .481 12.30 28.69 .000 .893 12.40 26.35 .000 01655> 01655> 01656> 01657> 01658> +1D2 02:000100 21.50 .893 12.40 26.35 .000 01659> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 01660> -----01661> 01796> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 01662> 001:0065-----01797> 01663) * 01664> * 01665> * SWM FACILITY Minor Flow || 01665> *
 OUTFLON
 STORAGE
 OUTFLON
 STORAGE

 OUTFLON
 STORAGE
 OUTFLON
 STORAGE

 (cmma)
 (ha.m.)
 (Cmma)
 (ha.m.)

 .000
 .0000E+00
 3.000
 .6600E+00

 1.800
 .6100E+00
 5.500
 .1320E+01

 112065
 (cms)
 (ha.m.)
 (CDLDAR
 SLOBARD

 012075
 0.00
 0.000E+00
 1.000
 6600E+00

 012095
 0.00
 0.000E+00
 1.000
 6600E+01

 012095
 0.00
 0.000E+00
 1.000
 6600E+01

 012095
 0.00
 0.000E+00
 1.000
 6500E+01

 012010
 ROUTING RESULTS
 RAREA
 OPEAK
 TFEAK
 R.V.

 012113
 INFLOW <01:</td>
 (000162)
 97.10
 1.483
 12.550
 26.962

 012135
 OUTFLOW<02:</td>
 (00100)
 97.10
 1.959
 13.100
 26.962

 012145
 TIME SHIFT OF PEAK FLOW
 (m.in) =
 33.00
 01215

 01215
 THE SHIFT OF PEAK FLOW
 (m.in) =
 33.00

 01215
 THE SHIFT OF PEAK FLOW
 (m.in) =
 33.00

 012145
 THE SHIFT OF PEAK FLOW
 (m.in) =
 33.00

 012125
 F
 0120001:0074
 0120001:0074
 01215

 01225
 F
 0120001:0074
 0 01673> 01674> 01675> 01675> ROUTE RESERVOIR IN>02:(000214) OUT<04:(000100) 01683> 01683> 01684> 01685> 01685> 01686>
 OUTLEOW STORAGE TABLE
 ========

 OUTFLON
 STORAGE
 OUTFLON
 STORAGE

 (cmm)
 (ha.m.)
 (cmma)
 (ha.m.)

 .000
 .00005+00
 3.500
 .1890E+00

 1.100
 .1165E+00
 7.000
 .2500E+00
 01688> 01689> ROUTING RESULTS AREA (ha) 90.70 90.70 .00 QPEAK (cms) 3.487 3.386 TPEAK (hrs) 12.450 12.550 R.V. (mm) 27.326 27.326 01690> 01691> 01692> INFLOW >02: (000214) OUTFLOW<04: (000100) OVERFLOW<01: (000100) 016935 01694> .000 .000 .000 01695: TOTAL NUMBER OF SIMULATED OVERFLOWS = CUMULATIVE TIME OF OVERFLOWS (hours)= PERCENTAGE OF TIME OVERFLOWING (1)= 0 .00. .00 01696> 01698> 016985 016995 017005 017015 017025
 PEAK
 FLOW
 REDUCTION
 [Qout/Qin] (1) =
 97.085

 TIME
 SHIFT OF PEAK
 FLOW
 (min) =
 6.00

 MAXIMUM
 STORAGE
 USED
 (ha.m.) = .1856E+00
 Filename: c:\PROGRA-1\SWMHYMO\PROJECTS\SCS12.24H Comments: SCS TYPE II - 24 HOURS DURATION, 12 MIN. 01703> Duration of storm = 24.00 hrs Mass curve time step = 12.00 min Selected storm time step = 57.10 min 017045 01839> _____ 01840> 01841> 01842> 01843> 01843> -01708> TIME RAIN hrs mm/hr 12.40 7.137 12.60 5.139 12.80 4.854 13.00 3.426 13.20 2.855 13.40 2.855 13.60 2.855 13.60 2.855 13.80 2.855 13.80 2.855 13.80 1.85 14.20 1.713 14.40 1.713 TIME hrs 18.20 18.40 TIME hrs .20 .40 .60 1.20 1.40 1.60 2.20 2.40 2.40 2.40 3.20 3.20 3.40 3.40 3.80 4.20 TIME RAIN mm/hr 01845> hrs mm/hr 1.142 1.142 1.142 1.142 1.142 1.142 1.142 1.142 6.20 1.142 1.142 1.142 1.142 1.142 1.142 1.142 .857 .856 .857 01847> 01848> 01849> 01850> 6.40 6.60 7.00 7.20 7.40 7.60 7.60 7.80 8.00 8.20 8.40 18.60 18.80 19.00 19.20 01714> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 01851> 01851> 01852> 01853> 01854> 01855> 01855> 19.20 19.40 19.60 19.80 20.00 20.20 20.40 _____ 1.142 1.142 1.142 1.142 1.713 1.713 .856 .857 .857 .856 01720 * AREA 11 (Park Adjacent to SWM Facility || 01721> 01722> 01723> 01723> 01724> 01725> 01858> 01858> 01858> 01859> 01860> 01860> 1.713 1.713 1.713 1.713 1.713 1.713 14.40 14.80 15.00 15.20 15.40 1.713 1.713 1.713 1.713 1.713 1.713 20.40 20.60 20.80 21.00 21.20 21.40 .857 .857 .856 .571 .571 8.60 8.80 9.00 9.20 9.40 9.60 9.80 10.00 10.20 10.40 10.60
 CALLB NASHYD
 Area
 (ha)=
 6.40
 Curve Number
 (CN)=85.00

 01:000100 DT=3.00
 Ia
 (mm)=
 1.500
 # of Linear Res.(N)=
 3.00

 U.H. Tp(Inrs)=
 .200
 X0
 X1
 X1
 X1
 01726> 01727> 01862: 01863> 01864> 01865> 01865> 1.713 15.40 15.80 16.00 16.20 16.40 21.40 21.60 21.80 22.00 22.20 22.40 1.713 1.713 1.713 3.140 3.141 3.140 1.713 1.713 1.142 1.142 1.142 01729> Unit Hyd Qpeak (cms)= 1.222 017315
 PEAK FLOW
 (cms) =
 .339 (i)

 TIME TO PEAK
 (hrs) =
 12.100

 RUNOFF VOLUME
 (mm) =
 21.796

 TOTAL RAINFALL
 (mm) =
 45.500

 RUNOFF COEFFICIENT =
 .479
 01732> 01867> 4.40 01868> 16.60 22.60 4.80 5.00 5.20 5.40 5.60 5.80 6.00 01869> 01870> 01871> 01872> 10.80 11.00 11.20 11.40 11.60 3.140 3.141 3.140 4.282 6.281 14.275 16.80 17.00 17.20 17.40 17.60 1.142 1.142 1.142 1.142 1.142 1.142 22.80 23.00 23.20 23.40 23.60 01734> 01736> 017375 (1) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 017385 01742 01742) * 01743) * 01744) * 01744) * 01745) * 01745) * *# AREA 1A (External Area) || 01880> 01881> 01882> 01883> 01745> -----01889> PEAK FLOW (cms) = .132 (i)

Cumming Cockburn Limited

City of Ottawa SWF-1227

Minto Communities Inc.

MORGAN'S GRANT STORMWATER MANAGEMENT FACILITY OPERATION, MAINTENANCE AND MONITORING MANUAL

3350-RS REVISION MARCH 2014

3. WATER QUALITY AND HYDRAULIC CHARACTERISTICS

3.1 Water Quality Control

The Morgan's Grant SWF is an off-line facility providing Level 2 Protection or 70% long term suspended solids (TSS) removal for the residential area of 105.2 ha. The following table summarizes the water quality storage volumes provided by the facility, which are in excess of the objectives outlined in the Ontario Ministry of Environment and Energy (MOEE) *Stormwater Management Practices Planning and Design Manual* (June 1994).

			Level 2 Protec	tion (70% T	SS)*		
Drainage Tributary to	to	Type of SWM	Imperviousness Ratio	Permanent Storage (m ³)		Extended Detention (m ³)	
Facility (h	ia)	Facility		Required	Provided	Required	Provided
85.7 [†]		Wet Pond	32% (90 m ³ /ha)	4,285	11,000	3,428	13,000
Notes:			on is equivalent to Norn gn Manual (March 2003) v				

The permanent storage was significantly oversized to accommodate a volume 11,000 m³. The facility was oversized to enhance dilution of the first flush, and to construct a more visually pleasing facility.

The performance of the proposed facility including proper function of the extended detention storage was further evaluated in more detail by continuous simulation QUALHYMO (A.C. Rowney 1992(8)). This model has the ability to generate flow and pollutant series in a continuous hydrological mode. The analysis conducted as part of the design is restricted to the generation of a flow series and suspended solids (SS) concentration for future conditions.

The QUALHYMO model was simplified to one drainage basin and the treatment facility. The results of the continuous simulations are summarized in **Table 3.2**.

Year Designation	Removal Efficiency (%)			
(Simulation Code)	Forebay	Wet Cell	Overall	
1986 (W-06)	47	41	70	
1967 (WI-02)	50	42	71	
1971 (AVE(1)-03)	49	41	70	
1968 (AVE(2)-01)	52	45	74	
1983 (01-05)	55	48	77	
1974 (0-04)	55	45	75	

Table 3.2	Removal Efficiency – QUALHYMO Continuous Simulation
-----------	---