

Geotechnical Investigation Proposed Storage Building 3149-3169 Hawthorne Road, Ottawa, Ontario

Client:

Access Property Development 100 Canadian Road Toronto, Ontario M1R 4Z5

Type of Document: REVISED FINAL REPORT (supersedes final report dated November 12,2020)

Project Number: OTT-00262560-A0

Prepared By:

Susan M. Potyondy, P.Eng. Senior Geotechnical Engineer Earth and Environment

Reviewed By:

Ismail M. Taki, M.Eng., P.Eng. Senior Manager, Eastern Region Earth and Environment

Date Submitted:

May 23,2023

100 - 2650 Queensview Drive, Ottawa, Ontario K2B 8H6 T: +1.613.688.1899 • F: +1.613.225.7337 • www.exp.com

Table of Contents:

Execu	utive S	Summary1
1.	Intro	duction3
2.	Site [Description4
3.	Proce	edure5
4.	Subs	urface Soil and Groundwater Conditions6
	4.1	Pavement Structure6
	4.2	Topsoil6
	4.3	Fill
	4.4	Silty Sand (Possible Fill)6
	4.5	Clay7
	4.6	Glacial Till7
	4.7	Weathered Shale Bedrock8
	4.8	Groundwater Level8
5.	Seisn	nic Site Classification and Liquefaction Potential of Soils
	5.1	Site Classification for Seismic Site Response9
	5.2	Liquefaction Potential of Soils9
6.	Grad	e Raise10
7.	Foun	dation Considerations11
	7.1	Footings11
	7.2	Pile Foundation12
	7.3	Additional Comment14
8.	Floor	Slab and Drainage Requirements15
	8.1	Slab-on-Grade15
	8.2	Vertical Modulus Subgrade Reaction15
9.	Excav	vation and De-Watering Requirements16
	9.1	Excess Soil Management16
	9.2	Excavations
	9.3	De-Watering Requirements16

10.	Pipe Bedding Requirements	18
11.	Backfilling Requirements and Suitability of On-Site Soils for Backfilling Purposes	19
12.	Subsurface Concrete and Steel Requirements	20
13.	Pavement Reinstatement and New Construction	21
14.	Tree Planting Restrictions	23
15.	General Comments	24

Appendices:

Appendix A: Laboratory Certificates of Analysis Appendix B: Legal Notification

Figures:

Figure 1 – Site Location Plan Figure 2 – Borehole Location Plan Figures 3 to 8 – Borehole Logs Figures 9 and 10 – Grain Size Distribution Curves

List of Tables:

Table I: Summary of Grain-size Analysis Results – Clay Samples	7
Table II: Summary of Atterberg Limits Results – Clay Samples	7
Table III: Factored Geotechnical Resistance at Ultimate Limit State (ULS) and Estimated Negative Skin Friction of Steel Pipe and H-Piles1	3
Table IV: Results of pH, Chloride, Sulphate and Resistivity Tests on Soil Samples	0
Table V: Recommended Pavement Structure Thicknesses 2	1

Executive Summary

EXP Services Inc. (EXP) is pleased to present the results of the geotechnical investigation completed for the proposed storage building to be located at 3149 Hawthorne Road Ottawa, Ontario (Figure 1). Authorization to proceed with this geotechnical investigation was provided by Access Property Development.

The proposed development will consist of the construction of a new 4483 m² four (4) storey building to be located on the currently vacant parcel of land identified by the address, 3149 Hawthorne Road and situated adjacent to and west of the existing eleven (11) storage buildings that are identified by the address, 3169 Hawthorne Road.

This geotechnical engineering report includes boreholes located at 3149 Hawthorne Road and 3169 Hawthorne Road but provides geotechnical engineering comments and recommendations only for the four (4) storey building to be located at 3149 Hawthorne Road.

The site grading plan for 3149 Hawthorne Road, Drawing No. CS-101 dated March 30,2023 (Revision No. 3) and prepared by Edilesse Consulting Civil Engineers (Architect's Project No. 219-0058) indicates the design elevation of the ground floor of the four (4) storey building will be at Elevation 73.65 m. It is our understanding that the building will not have a basement. The site grade raise will be a maximum 1.5 m. The ground floor may be exposed to heavy design loads that were not available at the time of this geotechnical investigation.

The fieldwork for the geotechnical investigation was completed on October 23 and 26, 2020 and consists of six (6) boreholes (Borehole Nos. BH-1 to BH-6). Borehole Nos. 1 to 3 are located at 3169 Hawthorne Road east of the proposed four (4) storey building site and Borehole Nos. 4 to 6 are located at the proposed four (4) storey building site at 3149 Hawthorne Road. The boreholes were advanced to depths ranging between 6.4 m and 8.2 m below the existing ground surface (Elevations 65.5 m to Elevation 67.8 m). The boreholes were drilled using a CME-75 track-mounted drill rig operated by a drilling specialist subcontracted to EXP. The fieldwork was supervised on a full-time basis by a representative of EXP.

The borehole information indicates the subsurface conditions consist of topsoil, fill, silty sand (possible fill), clay and glacial till underlain by bedrock contacted at a 7.0 m depth (Elevation 66.6 m and Elevation 66.1 m). The groundwater level ranges from 1.1 m to 2.7 m depths below the ground surface (Elevation 72.7 m to Elevation 70.4 m).

For the proposed four (4) storey building and based on the borehole information, the shear wave velocity was calculated to be 618 m/s. The 2012 Ontario Building Code (effective date January 1,2020) indicates in Table 4.1.8.4.A that for a site with a shear wave velocity of 618 m/s, the site classification for seismic site response is **Class C.** The subsurface soils are not susceptible to liquefaction during a seismic event.

The proposed maximum site grade raise for the new four (4) storey building will be 1.5 m and includes a site grade raise of approximately 0.5 m over the majority of the building footprint with the site grade raise increasing to 1.5 m in the approximate south and west-third portion of the building footprint. The proposed maximum site grade raise of 1.5 m using approved conventional soil fill is considered acceptable provided that the footings are founded on the native clay or on an engineered fill pad constructed on the native clay and designed for a bearing pressure at serviceability limit state (SLS) of 120 kPa and factored geotechnical resistance at ultimate limit state (ULS) of 180

kPa. The factored geotechnical resistance at ULS includes a geotechnical resistance factor of 0.5. If the recommended SLS and factored ULS values are not sufficient to support the proposed four (4) storey building, the building would have to be supported by piles driven to bedrock.

The ground floor of the proposed four (4) storey building may be constructed as a slab-on-grade provided it is set on a bed of well compacted 19 mm sized clear stone at least 200 mm thick, placed on a minimum 300 mm thick engineered fill pad constructed on the approved native clay. The clear stone would minimize the capillary rise of moisture from the sub-soil to the floor slab. As an alternative to using the 200 mm thick clear stone layer, a 200 mm thick layer of OPSS Granular A compacted to 98 percent SPMDD may be used instead and overlain by a vapour barrier. Adequate saw cuts should be provided in the floor slabs to control cracking. Perimeter and underfloor drainage systems are not required. The finished floor slab should be set at least 150 mm higher than the finished exterior grade. The finished exterior grade should be sloped away from the building to prevent ponding of surface water close to the exterior walls of the proposed building.

It is anticipated that excavation may be undertaken using conventional equipment. All excavation work should be completed in accordance with the Occupational Health and Safety Act (OHSA), Ontario, Reg. 213/91. Based on the definitions provided in OHSA, the subsurface soils at the site are considered to be Type 3 soil. Excavations may be undertaken as open cut in Type 3 soil, provided the excavation walls are sloped back at 1H:1V from the bottom of the excavation as per OHSA. For excavations that extend below the groundwater level, the side slopes are expected to slough and eventually stabilize at 2H:1V to 3H:1V from the bottom of the excavation. Seepage of the surface and subsurface water into these excavations is anticipated. However, it should be possible to collect water entering the excavations at low points and to remove it by conventional pumping techniques. In areas of high infiltration or in areas where more permeable soil layers may exist, a higher seepage rate should be anticipated and may require high-capacity pumps to keep the excavation dry.

It is anticipated that the majority of the material required for engineered fill, backfilling purposes and as subgrade fill for the project would have to be imported and should preferably conform to the specifications in the attached geotechnical report.

The above and other related considerations are discussed in greater detail in the attached geotechnical report.

1. Introduction

EXP Services Inc. (EXP) is pleased to present the results of the geotechnical investigation completed for the proposed storage building to be located at 3149 Hawthorne Road Ottawa, Ontario (Figure 1). Authorization to proceed with this geotechnical investigation was provided by Access Property Development.

The proposed development will consist of the construction of a new 4483 m² four (4) storey building to be located on the currently vacant parcel of land identified by the address, 3149 Hawthorne Road and situated adjacent to and west of the existing eleven (11) storage buildings that are identified by the address, 3169 Hawthorne Road.

This geotechnical engineering report includes boreholes located at 3149 Hawthorne Road and 3169 Hawthorne Road, but provides geotechnical engineering comments and recommendations only for the four (4) storey building to be located at 3149 Hawthorne Road.

The site grading plan for 3149 Hawthorne Road, Drawing No. CS-101 dated March 30,2023 (Revision No. 3) and prepared by Edilesse Consulting Civil Engineers (Architect's Project No. 219-0058) indicates the design elevation of the ground floor of the four (4) storey building will be at Elevation 73.65 m. It is our understanding that the building will not have a basement. The site grade raise will be a maximum 1.5 m. The ground floor may be exposed to heavy design loads that were not available at the time of this geotechnical investigation.

This geotechnical investigation was undertaken to:

- a) Establish the subsurface soil, bedrock and groundwater conditions at the six (6) boreholes located at 3149 and 3169 Hawthorne Road,
- Provide classification of the site for seismic design in accordance with requirements of the 2012 Ontario Building Code (OBC) (effective date January 1,2020) and assess the liquefication potential of the subsurface soils in a seismic event,
- c) Comment on grade-raise restrictions for the site,
- Provide recommendations on the most suitable type of foundations, founding depth and Serviceability Limit State (SLS) bearing pressures and Ultimate Limit State (ULS) factored geotechnical resistances for the proposed buildings as well as anticipated total and differential settlements,
- e) Discuss slab-on-grade construction,
- f) Discuss excavation conditions and dewatering requirements during construction,
- g) Provide pipe bedding requirements,
- h) Comment on backfilling requirements and suitability of the on-site soils for backfilling purposes,
- i) Discuss subsurface concrete and steel requirements; and
- j) Recommend pavement structure thicknesses for the reinstatement of paved areas and for new parking lot and access road areas.

The comments and recommendations given in this report assume that the above-described design concept will proceed into construction. If changes are made either in the design phase or during construction, this office must be retained to review these modifications. The result of this review may be a modification of our recommendations or it may require additional field or laboratory work to check whether the changes are acceptable from a geotechnical viewpoint.

2. Site Description

The overall site located at 3149-3169 Hawthorne Road is bounded by Hawthorne Road on the west side and industrial developments on the remaining sides of the properties. The site of the proposed four (4) storey building at 3149 Hawthorne Road is currently a vacant parcel of land that is grass covered with occasional shrubs and trees. The site is generally flat.

The site at 3169 Hawthorne Road located adjacent to and east of 3149 Hawthorne Road is currently occupied by eleven (11) existing storage buildings with a parking lot on the east side of the property and an access road from Hawthorne Road located on the south side of the property. The site is also generally flat.

3. Procedure

The fieldwork for the geotechnical investigation was completed on October 23 and 26, 2020 and consists of six (6) boreholes (Borehole Nos. BH-1 to BH-6). Borehole Nos. 1 to 3 are located at 3169 Hawthorne Road east of the proposed four (4) storey building site and Borehole Nos. 4 to 6 are located at the proposed four (4) storey building site at 3149 Hawthorne Road. The boreholes were advanced to depths ranging between 6.4 m and 8.2 m below the existing ground surface (Elevations 65.5 m to Elevation 67.8 m). The boreholes were drilled using a CME-75 track-mounted drill rig operated by a drilling specialist subcontracted to EXP. The fieldwork was supervised on a full-time basis by a representative of EXP.

The borehole locations and geodetic elevations were established in the field by EXP and are shown on Figure 2.

Prior to the fieldwork, the locations of the boreholes were cleared of any public and private underground services. Standard penetration tests (SPTs) were performed in all boreholes at selected depth intervals and soil samples retrieved by split-barrel sampler. Field vane and penetrometer tests were carried out in the cohesive soil to measure the undrained shear strength.

A 19 mm diameter standpipe with slotted section was installed in Borehole Nos. 2, 5, and 6 for long-term monitoring of the groundwater levels. The standpipes were installed in accordance with EXP standard practice and the installation configuration is documented on the respective borehole log. The boreholes were backfilled upon completion of drilling and the installation of the standpipes.

All soil samples were visually examined in the field for textural classification, logged, preserved in plastic bags and identified. On completion of the fieldwork, all the soil samples were transported to the EXP laboratory in Ottawa, Ontario, where they were visually examined by a geotechnical engineer, and borehole logs were prepared. The engineer also assigned the laboratory testing which consisted of performing the following tests on the soil samples:

Natural Moisture Content	49 Tests
Grain Size Analysis	2 Tests
Atterberg Limits	2 Tests
Chemical Analysis (pH, sulphate, chloride and resistivity)	1 Test

4. Subsurface Soil and Groundwater Conditions

A detailed description of the geotechnical conditions encountered in the boreholes is given on the borehole logs, Figures 3 to 8 inclusive. The borehole logs and related information depict subsurface conditions only at the specific locations and times indicated. Subsurface conditions and water levels at other locations may differ from conditions at the locations where sampling was conducted. The passage of time may also result in changes in the conditions interpreted to exist at the locations where sampling was conducted.

Boreholes were drilled to provide representation of subsurface conditions as part of a geotechnical exploration program and are not intended to provide evidence of environmental conditions.

It should be noted that the soil and rock boundaries indicated on the borehole logs are intended to reflect approximate transition zones for the purpose of geotechnical design and should not be interpreted as exact planes of geological change. The "Notes on Sample Descriptions" preceding the borehole logs form an integral part of this report and should be read in conjunction with this report.

A review of the borehole logs indicates the following subsurface conditions with depth and groundwater level measurements.

Borehole Nos. 1 to 3 are located at 3169 Hawthorne Road and Borehole Nos. 4 to 6 are located at the four (4) storey building site at 3149 Hawthorne Road.

4.1 Pavement Structure

The pavement structure in Borehole Nos. 1 to 3 comprises of a 55 mm to 75 mm thick asphaltic concrete underlain by 150 mm to 625 mm thick granular fill. The granular fill has a natural moisture content of 14 percent.

4.2 Topsoil

A 50 mm to 75 mm thick topsoil layer was contacted at ground surface in Borehole Nos. 4 to 6.

4.3 Fill

The pavement structure and topsoil are underlain by fill consisting of sand with gravel to silty sand or silty clay with some sand. The fill contains organic inclusions in Borehole Nos. 4 to 6. The fill extends to depths of 0.9 m to 1.7 m (Elevation 73.0 m to Elevation 71.0 m). The fill material is loose to compact and firm to very stiff as indicated by the SPT N-values which range from 6 to 26. The fill has a natural moisture content ranging from 6 percent to 25 percent.

4.4 Silty Sand (Possible Fill)

A silty sand was contacted beneath the fill in Borehole No. 6 and extends to a 2.3 m depth (Elevation 70.2 m). The silty sand is identified as a possible fill due to its slight reworked appearance. Based on the SPT N-value of 8, the silty sand is in a loose state. The natural moisture content of the silty sand is 18 percent.

4.5 Clay

The fill and silty sand (possible fill) in all boreholes are underlain by clay that extends to depths of 4.6 m to 6.6 m (Elevation 67.9 m to Elevation 66.9 m) in Borehole Nos. 4 to 6. Borehole Nos. 1 to 3 terminated within the clay at 6.4 m and 8.2 m depths (Elevation 67.8 m to 65.6 m). The consistency of the clay is firm to hard, as indicated by undrained shear strength measurements from field vane and penetrometer tests, ranging between 43 kPa to greater than 250 kPa. The clay has a natural moisture content ranging from 23 percent to 70 percent.

Grain size analysis and Atterberg Limits were conducted on two (2) samples of the clay and the grain size distribution curves are shown in Figure Nos. 9 and 10 and summarized in Tables I and II.

	Table I	y Samples				
Borehole No.	Depth (m)		Grain-size	Analysis (%)	Soil Classification (USCS)	
– Sample No.		Gravel	Sand	Silt	Clay	
BH-2 – SS3	1.5 – 2.1	0	22	40	38	CLAY with Sand (CL)
BH-3 – SS9	7.6 – 8.2	0	2	43	55	CLAY (CL)

	т	nples					
Borehole No.	Depth		Atterb	Soil Classification (USCS)			
– Sample No.	(m)	Wc (%)	LL (%)	PL (%)	PI (%)	LI	
BH-2 – SS3	1.5 – 2.1	27	34	18	16	0.6	CL – Clay of low plasticity
BH-3 – SS9	7.6 – 8.2	46	39	19	20	1.4	CL – Clay of low plasticity

w_c: Moisture Content, **LL**: Limit Liquid; **PL**: Plastic Limit; **PI**: Plasticity Index; **LI**: Liquidity Index; ⁽¹⁾: Refer to Casagrande Plasticity Chart (1932)

Based on the results of the grain size analysis and Atterberg limits, the clay may be classified as clay with sand to clay (CL) of low plasticity in accordance with the Unified Soil Classification System (USCS).

4.6 Glacial Till

The clay in Borehole Nos. 4 to 6 is underlain by glacial till which extends to a 7.0 m depth (Elevation 66.6 m and Elevation 66.1 m) in Borehole Nos. 4 and 5. Borehole No. 6 terminated within the glacial till at 6.4 m depth (Elevation 66.1 m). The glacial till consists of silty clay with some sand and gravel. The glacial till may contain cobbles and boulders. The consistency of the glacial till is very stiff as indicated by undrained shear strength measurements from field vane tests of 100 kPa and 110 kPa. The natural moisture content of the glacial till is 12 percent and 65 percent.

4.7 Weathered Shale Bedrock

Weathered shale bedrock was encountered beneath the glacial till in Borehole Nos. 4 and 5 at a 7.0 m depth (Elevation 66.6 m and Elevation 66.1m). It was possible to auger 600 mm and 700 mm into the weathered shale bedrock.

4.8 Groundwater Level

Groundwater level measurements taken in standpipes installed in Borehole Nos. 2, 5, and 6 indicate the groundwater level ranges from 1.1 m to 2.7 m depths below the ground surface (Elevation 72.7 m to Elevation 70.4 m).

Groundwater levels were determined in the boreholes at the times and under the conditions stated in the scope of services. Note that fluctuations in the level of groundwater may occur due to a seasonal variation such as precipitation, snowmelt, rainfall activities, and other factors not evident at the time of measurement and therefore may be at a higher level during wet weather periods.

5. Seismic Site Classification and Liquefaction Potential of Soils

5.1 Site Classification for Seismic Site Response

For the four (4) storey building and based on the borehole information, the shear wave velocity was calculated to be 618 m/s. The 2012 Ontario Building Code (effective date January 1,2020) indicates in Table 4.1.8.4.A that for a site with a shear wave velocity of 618 m/s, the site classification for seismic site response is **Class C.**

5.2 Liquefaction Potential of Soils

For the four (4) storey building, the subsurface soils are not susceptible to liquefaction during a seismic event.

6. Grade Raise

The proposed four (4) storey building site is underlain by a sensitive marine clay deposit that is prone to consolidation settlement if overstressed by loads imposed on it by site grade raise, foundations, and by groundwater level lowering following construction. Overstressing of the clay will result in its consolidation and subsequent settlement of foundations, which may exceed the tolerable limits of the structure resulting in cracking of the structure.

The site grading plan for 3149 Hawthorne Road, Drawing No. CS-101 dated March 30,2023 (Revision No. 3) and prepared by Edilesse Consulting Civil Engineers (Architect's Project No. 219-0058) indicates the design elevation of the ground floor of the four (4) storey building will be at Elevation 73.65 m. It is our understanding that the building will not have a basement. The site grade raise will be a maximum 1.5 m.

The proposed maximum site grade raise for the new four (4) storey building will be 1.5 m and includes a site grade raise of approximately 0.5 m over the majority of the building footprint with the site grade raise increasing to 1.5 m in the south and west-third portion of the building footprint. The proposed maximum site grade raise of 1.5 m using approved conventional soi fill is considered acceptable provided that the footings that will support the building are designed for the recommended founding depth, founding soil and bearing pressure at serviceability limit state (SLS) and the factored geotechnical resistance at ultimate limit state (ULS) values discussed in Section 7 of this report. If the recommended SLS and factored ULS values are not sufficient to support the proposed four (4) storey building, the building would have to be supported by piles driven to bedrock. The ground floor of the building may be designed as a slab-on-grade for the building supported by footings or piles.

An allowance for the permanent groundwater lowering is not required, since the foundations of the proposed four (4) storey building will be above the groundwater level and clay seals will be installed in the service trenches to minimize the permanent lowering of the groundwater level at the site, as recommended in Section 10 of this report.

7. Foundation Considerations

The site grading plan for 3149 Hawthorne Road, Drawing No. CS-101 dated March 30,2023 (Revision No. 3) and prepared by Edilesse Consulting Civil Engineers (Architect's Project No. 219-0058) indicates the design elevation of the ground floor of the four (4) storey building will be at Elevation 73.65 m. It is our understanding that the building will not have a basement. The site grade raise will be a maximum 1.5 m.

The proposed four (4) storey building can be supported by footings in conjunction with a maximum site grade raise of 1.5 m achieved by using approved conventional soil fill. If the bearing pressures for footings recommended below are not sufficient to support the proposed four (4) storey building, the proposed building would have to be supported by pile foundation driven to bedrock in conjunction with the 1.5 m site grade raise achieved by the placement of approved conventional soil fill.

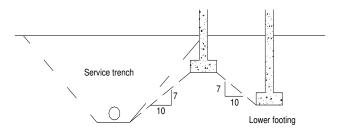
The existing topsoil and fill are not considered suitable to support building foundations and the ground floor slabon-grade and therefore, will require excavation and removal down to the native clay in the footprint of the proposed building.

During construction of the proposed four (4) storey building, the silty sand identified as possible fill in Borehole No. 6 located within the footprint of the proposed building should be evaluated to confirm that it is native soil. If the silty sand is confirmed to be fill, it will require excavation and removal down to the native clay for footing and slabon-grade support and for engineered fill pad construction.

Footing and pile foundations for the proposed four (4) storey building are discussed in the following sections of this report.

7.1 Footings

For a maximum site grade raise of 1.5 m using conventional approved soil fill, the proposed four (4) storey slab-ongrade building may be supported by strip and spread footings founded at a maximum depth of 1.5 m below the finished floor slab elevation on the native clay or on an engineered fill pad constructed on the native clay in accordance with the procedure below. Strip footings having a maximum width of 1.5 m and square footings having a maximum width and length of 3.0 m, may be designed for a bearing pressure at SLS of 120 kPa and factored geotechnical resistance at ULS of 180 kPa. The factored geotechnical resistance at ULS includes a geotechnical resistance factor of 0.5. The SLS and factored ULS values are valid for a maximum site grade raise of 1.5 m using conventional approved soil fill.


The settlement of footings designed for the above SLS bearing pressures are expected to be within the tolerable limits of 25 mm total and 19 mm differential.

Preparation of the engineered fill pad to support the footings of the proposed building should consist of the excavation and removal of the topsoil layer, fill, silty sand (possible fill – refer to note above) down to the clay. The excavation for the engineered fill pad should extend a sufficient distance beyond the perimeter of the proposed building to accommodate a 1.0 m wide bench of engineered fill, which is thereafter sloped at an inclination of 1H:1V down to the clay subgrade. The exposed subgrade should be examined by a geotechnician working under the direction of a geotechnical engineer. Any soft/loose and spongy areas of the subgrade should be excavated and

replaced with Ontario Provincial Standard Specification (OPSS) Granular B Type II compacted to 100 percent SPMDD. Following approval of the subgrade for the engineered fill pad, the excavation may be backfilled with OPSS Granular B Type II placed in 300 mm thick lifts and each lift compacted to 100 percent SPMDD beneath the footings and 98 percent SPMDD beneath the floor slab. The engineered fill should be placed under the full-time supervision of a geotechnician working under the direction of a geotechnical engineer. In-place density tests should be undertaken on each lift of the engineered fill to ensure that it is compacted to the specified degree of compaction prior to placement of the subsequent lift.

Footings founded on soils at different elevations should be located such that the higher footings are set below a line drawn up at 10 horizontal to 7 vertical (10H:7V) from the near edge of the lower footing, as shown below. This concept should also be applied to service excavation, etc. to ensure that undermining is not a problem.

FOOTINGS NEAR SERVICE TRENCHES OR AT DIFFERENT ELEVATIONS

All footing beds should be examined by a geotechnical engineer to ensure that the founding soil is capable of supporting the bearing pressure at SLS and that the footings have been properly prepared.

For footings founded directly on the native clay, the exposed surface of the clay is susceptible to disturbance due to movement of workers and construction equipment. It is therefore recommended that the approved subgrade in the footing beds must be covered with a 50 mm thick concrete mud slab to prevent disturbance to the clay subgrade within the same day of approval.

A minimum of 1.5 m of earth cover should be provided to the exterior foundations of heated structures to protect them from damage due to frost penetration. The frost cover should be increased to 2.1 m for unheated structures if snow will not be removed from their vicinity and to 2.4 m if snow will be removed from the vicinity of the structure. When earth cover is less than the minimum required, an equivalent thermal combination of earth cover and rigid insulation or rigid insulation alone should be provided. EXP can provide additional comments in this regard, if required.

7.2 Pile Foundation

If the recommended SLS and factored ULS values for footings are not sufficient to support the proposed building, the proposed building may be supported by steel H or concrete filled pipe piles designed in end-bearing and driven to practical refusal into the underlying shale bedrock. The bedrock is anticipated to be at or below a 7.0 m depth

(Elevation 66.6 m and Elevation 66.1 m). The piles may achieve practical refusal at a depth below the surface of the bedrock; below a 7.0 m depth.

Since the piles are expected to meet refusal in the bedrock, the factored geotechnical resistance at ultimate limit state (ULS) will govern the design. The factored geotechnical resistance values at ULS for various pile sections are shown in Table III. The factored geotechnical resistance values at ULS are based on steel piles with a yield strength of 350 MPa and concrete compressive strength of 35 MPa and a geotechnical resistance factor of 0.4.

It is noted that the piles will be subjected to down-drag forces (negative skin friction) due to consolidation of the clay as a result of the maximum 1.5 m grade raise at the site. The negative skin friction that the piles would be subjected to is also listed in Table III. The allowable load on a pile may be computed by subtracting the negative skin friction from the factored geotechnical resistance at ULS.

	Table III: Factored Geotechnical Resistance at Ultimate Limit State (ULS) and Estimated Negative Skin Friction of Steel Pipe and H-Piles											
Pile Section	Description	Factored Geotechnical Resistance at ULS (kN)	Estimated Negative Skin Friction (kN)	Estimated Load Carrying Capacity of Pile (kN)								
Steel	245 mm O.D. by 10 mm wall thickness	1275	75	1200								
Pipe	245 mm O.D. by 12 mm wall thickness	1445	75	1370								
	324 mm O.D. by 12 mm wall thickness	2120	100	2020								
Steel H	HP 310 x 79	1260	120	1140								
	HP 310 x 110	1775	120	1655								
	HP 310 x 125	2000	125	1875								

Total and differential settlement of the piles are expected to be less than 10 mm.

To achieve the capacity given previously, the pile-driving hammer must seat the pile in the overburden without overstressing the pile material. For guidance purposes, it is estimated that a hammer with rated energy of 54 kJ to 70 kJ (40,000 to 52,000 ft. lbs.) per blow would be required to drive the piles to practical refusal. Practical refusal is considered to have been achieved at a set of 5 blows for 6 mm or less of pile penetration. However, the driving criteria for a particular hammer-pile system must be established at the beginning of the project using the Pile Driving Analyzer.

The site is underlain by glacial till which may contain cobbles and boulders. It is therefore recommended that the piles should be equipped with a driving shoe to protect them from damage during driving as per Ontario Provincial Standard Drawing (OPSD) 3001.100, Type II, Revision No. 2 dated November 2017.

A number of test piles should be monitored with the Pile Driving Analyzer during the initial driving and re-striking at the beginning of the project. This monitoring will allow for the evaluation of transferred energy into the pile from the hammer, determination of driving criteria and an evaluation of the ultimate bearing capacity of the piles. Depending on the results of the pile driving analysis, the pile capacity may have to be proven by at least one pile

load test for each pile type before production piling begins. If necessary, the pile load test should be performed in accordance with the American Society for Testing and Materials (ASTM) D 1143.

Closed end pipe piles tend to displace a relatively large volume of soil. When driven in a cluster or group, they may tend to jack up the adjacent piles in the group. Consequently, the elevation and the location of the top of each pile in a group should be monitored immediately after driving and after all the piles in the group have been driven. This is to ensure that the piles are not heaving or being displaced. Any piles found to heave more than 3 mm should be re-tapped.

Piles driven at the site may be subject to relaxation (loss of set with time). It is therefore recommended that all the piles should be re-tapped at least 24 hours after initially driving and at 24-hour intervals thereafter until it can be proven that relaxation is no longer a problem.

The installation of the piles at the site should be monitored on a full-time basis by a geotechnician working under the direction and supervision of a qualified geotechnical engineer to verify that the piles are driven in accordance with the project specifications.

The concrete grade beams and pile caps for heated structures should be protected from frost action by providing the beams and caps with 1.5 m of earth cover. For non-heated structures, the pile caps and beams should be provided with 2.4 m of earth cover in areas where the snow will be removed and 2.1 m of earth cover where the snow will not be removed. Alternatively, frost protection may be provided by rigid insulation or a combination of rigid insulation and earth cover.

A 50 mm thick concrete mud slab is recommended to installed under the grade beams and pile caps immediately upon excavation and approval of the subgrade to protect the surface of the clay from disturbance from water, the effects from the weather and foot traffic from construction workers.

Temporary granular roads and mats (at least 900 mm thick) may be required to provide access to the pile driving rig. The actual thickness required for the granular roads and mats will have to be established by the piling contractor, based on the type of piling rig that will be used on site and subsurface condition.

7.3 Additional Comment

The recommended bearing pressure at SLS and factored geotechnical resistances at ULS have been calculated by EXP from the borehole information for the design stage only. The investigation and comments are necessarily ongoing as new information of underground conditions becomes available. For example, more specific information is available with respect to conditions between boreholes when foundation construction is underway. The interpretation between boreholes and the recommendations of this report must therefore be checked through field monitoring provided by an experienced geotechnical engineer to validate the information for use during the construction stage.

8. Floor Slab and Drainage Requirements

8.1 Slab-on-Grade

The site grading plan for 3149 Hawthorne Road, Drawing No. CS-101 dated March 30,2023 (Revision No. 3) and prepared by Edilesse Consulting Civil Engineers (Architect's Project No. 219-0058) indicate the design elevation of the ground floor of the four (4) storey building will be at Elevation 73.65 m. It is our understanding that the building will not have a basement. The site grade raise will be a maximum 1.5 m.

The ground floor of the proposed four (4) storey building may be constructed as a slab-on-grade provided it is set on a bed of well compacted 19 mm sized clear stone at least 200 mm thick, placed on a minimum 300 mm thick engineered fill pad constructed on the approved clay. The clear stone would minimize the capillary rise of moisture from the sub-soil to the floor slab. As an alternative to using the 200 mm thick clear stone layer, a 200 mm thick layer of OPSS Granular A compacted to 98 percent SPMDD may be used instead and overlain by a vapour barrier. Adequate saw cuts should be provided in the floor slabs to control cracking.

Perimeter and underfloor drainage systems are not required for the proposed building.

The finished floor slab should be set at least 150 mm higher than the finished exterior grade.

The finished exterior grade should be sloped away from the buildings to prevent ponding of surface water close to the exterior walls of the proposed buildings.

8.2 Vertical Modulus Subgrade Reaction

For the slab-on-grade constructed on a 200 mm thick clear stone or OPSS Granular A layer over a minimum 300 mm thick engineered fill pad (OPSS Granular B Type II) compacted to 98 percent SPMDD and placed on the native clay, the vertical modulus of subgrade reaction is estimated to be 20 MPa/m.

9. Excavation and De-Watering Requirements

9.1 Excess Soil Management

Ontario Regulation 406/19 specifies protocols that are required for the management and disposal of excess soils. As set forth in the regulation, specific analytical testing protocols need to be implemented and followed based on the volume of soil to be managed. The testing protocols are specific as to whether the soils are stockpiled or in-situ. In either scenario, the testing protocols are far more onerous than have been historically carried out as part of standard industry practices. These decisions should be factored in and accounted for prior to the initiation of the project-defined scope of work. EXP would be pleased to assist with the implementation of a soil management and testing program that would satisfy the requirements of Ontario regulation 406/19.

9.2 Excavations

Excavations for the foundations of the proposed building and underground services are expected to extend to an approximate depth of 3.0 m below the existing ground surface. These excavations will extend through the topsoil, fill, silty sand (possible fill) and into the clay. The excavations are anticipated to be approximately 2.0 m below the groundwater level.

It is anticipated that excavations may be undertaken using conventional equipment. All excavation work should be completed in accordance with the Occupational Health and Safety Act (OHSA), Ontario, Reg. 213/91. Based on the definitions provided in OHSA, the subsurface soils at the site are considered to be Type 3 soil. Excavations may be undertaken as open cut in Type 3 soil, provided the excavation walls are sloped back at 1H:1V from the bottom of the excavation as per OHSA. For excavations that extend below the groundwater level, the side slopes are expected to slough and eventually stabilize at 2H:1V to 3H:1V from the bottom of the excavation.

Base heave type failure is not anticipated in excavations that extend to a 3.0 m depth below existing grade.

The clay stratum at the site is susceptible to disturbance due to the movement of construction equipment, and personnel on its surface. It is therefore recommended that the excavation at the site should be undertaken by equipment that does not travel on the excavated surface, such as a gradually or mechanical shovel. It is anticipated that temporary granular roads may be required to gain access to the site by construction equipment.

Many geologic materials deteriorate rapidly upon exposure to meteorological elements. Unless otherwise specifically indicated in this report, walls and floors of excavations must be protected from moisture, desiccation, and frost action throughout the course of construction.

9.3 De-Watering Requirements

Seepage of the surface and subsurface water into these excavations is anticipated. However, it should be possible to collect water entering the excavations at low points and to remove it by conventional pumping techniques. In areas of high infiltration or in areas where more permeable soil layers may exist, a higher seepage rate should be anticipated and may require high-capacity pumps to keep the excavation dry.

For construction dewatering, an Environmental Activity and Sector Registry (EASR) approval may be obtained for water takings greater than 50 m³ and less than 400 m³ per day. If more than 400 m³ per day of groundwater are generated for dewatering purposes, then a Category 3 Permit to Take Water (PTTW) must be obtained from the Ministry of the Environment, Conservation and Parks (MECP). A Category 3 PTTW would require a complete hydrogeological assessment and would take at least 90 days for the MECP to process once the application is submitted.

Although this investigation has estimated the groundwater levels at the time of the fieldwork, and commented on dewatering and general construction problems, conditions may be present which are difficult to establish from standard boring and excavating techniques and which may affect the type and nature of dewatering procedures used by the contractor in practice. These conditions include local and seasonal fluctuations in the groundwater table, erratic changes in the soil profile, thin layers of soil with large or small permeabilities compared with the soil mass, etc. Only carefully controlled tests using pumped wells and observation wells will yield the quantitative data on groundwater volumes and pressures that are necessary to adequately engineer construction dewatering systems.

10. Pipe Bedding Requirements

It is recommended that the bedding for the underground services including material specifications, thickness of cover material and compaction requirements conform to City of Ottawa requirements and/or Ontario Provincial Standard Specification and Drawings (OPSS and OPSD).

The pipe subgrade material is anticipated to be clay. In this case, it is recommended the pipe bedding consist of 300 mm thick OPSS 1010 Granular B Type II sub-bedding material overlain by 150 mm thick OPSS 1010 Granular A bedding material. The bedding materials should be compacted to at least 98 percent SPMDD.

The bedding thickness may be further increased in areas where the clay subgrade become disturbed. Trench base stabilization techniques, such as removal of loose/soft material, placement of crushed stone sub-bedding (Granular B Type II), completely wrapped in a non-woven geotextile, may also be used if trench base disturbance becomes a problem in wet or soft areas.

If the backfill for the service trenches will consist of granular fill, clay seals should be installed in the service trenches at select intervals as per City of Ottawa Drawing No. S8. The seals should be 1 m wide, extend over the entire trench width and from the bottom of the trench to the underside of the pavement structure. The clay should be compacted to 95 percent SPMDD. The purpose of the clay seals is to prevent the permanent lowering of the groundwater level.

The underground services should be installed in short open trench sections that are excavated and backfilled the same day.

11. Backfilling Requirements and Suitability of On-Site Soils for Backfilling Purposes

The material to be excavated from the site will mainly comprise of topsoil, fill, clay and silty sand (possible fill). The topsoil and fill are not considered suitable for use under structural elements or for backfill purposes. Comments regarding the suitability of the on-site materials for re-use as backfill material from a geotechnical perspective are provided below:

- Topsoil is not suitable for use as backfill material and should be discarded and removed off site. If the topsoil is deemed suitable, it may be used in landscaped areas.
- Portions of the existing fill above the groundwater level may be used as fill in landscaped areas provided any debris, cobbles and boulders (if encountered) are removed prior to placement and subject to additional examination and testing at construction.
- Portions of the excavated silty sand (possible fill) and silty clay above the groundwater level may be used as trench backfill outside the proposed building area and as subgrade fill in parking areas and access roads provided the moisture content is maintained within +/- 3 percent of its optimum value and subject to additional examination and testing at construction. However, the silty sand (possible fill) and silty clay are susceptible to moisture absorption during precipitation events (rain and snow) and therefore, should be protected at all times from the elements if stockpiled on site.

Therefore, it is anticipated that the majority of the material required for backfilling in the interior and exterior of the buildings, in service trenches and for site grading purposes would have to be imported and should preferably conform to the following specifications:

- Engineered fill under footings and beneath the floor slab OPSS Granular B Type II placed in 300 mm thick lifts and each lift compacted to 100 percent SPMDD beneath footings and 98 percent SPMDD beneath the floor slab.
- Backfill of service trenches exterior to the building and backfill against the exterior side of the foundation walls of the buildings – OPSS Granular B Type II material placed in 300 mm thick lifts and each lift compacted to 95 percent SPMDD.
- Trench backfill and subgrade fill in parking areas, access roadways OPSS Select Subgrade Material (SSM) or on-site approved fill, silty sand (possible fill) and clay placed in 300 mm thick lifts and each lift compacted to 95 percent SPMDD.

12. Subsurface Concrete and Steel Requirements

Chemical tests limited to pH, chloride, sulphate and resistivity were performed on two (2) selected soil samples. The certificate of the laboratory test results is attached in Appendix A and the results are summarized in Table IV below.

Tab	le IV: Results o	f pH, Chloride,	Sulphate a	nd Resistivity	/ Tests on Soi	l Samples
Borehole No. (Sample No.)	Soil Type	Depth (m)	рН	Sulphate (%)	Chloride (%)	Resistivity (ohm.cm)
BH-1 (SS3)	BH-1 (SS3) Clay 1.5 – 2.1		7.73	0.0164	0.0118	2350
BH-6 (SS4)	Clay	2.3 – 2.9	8.13	0.0128	0.0039	3030

The results indicate the clay deposit with sulphate and chloride contents of less than 0.1 percent and 0.04 percent respectively. These concentrations of sulphate and chloride in the clay would have a negligible potential of sulphate and chloride attack on subsurface concrete. The concrete should be designed in accordance with Table Nos. 3 and 6 of CSA A.23.1-19. However, the concrete should be dense, well compacted and cured.

Based on a review of the resistivity test results, the clay samples are considered mildly corrosive to bare steel as per the National Association of Corrosion Engineers (NACE). Appropriate measures should be undertaken to protect buried steel elements from corrosion.

13. Pavement Reinstatement and New Construction

Pavement structure thicknesses required to reinstate the areas affected by the proposed storage building construction and for any new pavement areas were computed and are shown on Table V. The thicknesses are based upon an estimate of the subgrade soil properties determined from visual examination and textural classification of the soil samples and pavement functional design life of ten (10) to fifteen (15) years. The proposed functional design life represents the number of years to the first rehabilitation, assuming regular maintenance is carried out. The subgrade is anticipated to consist of fill, silty sand, clay, OPSS Granular B Type II material and select subgrade material (SSM).

Pavement Layer	Compaction Requirements	Pavement Design to be used by Light Duty Vehicles (Cars Only)	Heavy Duty Vehicles (Fire Trucks, Garbage Trucks)		
Asphaltic Concrete (PG 58-34)	92-97 % MRD*	65 mm HL/SP12.5 Cat B3	40 mm HL3/SP12.5 Cat B 50 mm HL8 SP19.0 Cat B		
OPSS 1010 Granular A Base	100% SPMDD**	150 mm	150 mm		
OPSS 1010 Granular BSub-Base, Type II	100% SPMDD**	450 mm	600 mm		

The foregoing design assumes that construction is carried out during dry periods and that the subgrade is stable under the load of construction equipment. If construction is carried out during wet weather, and heaving or rolling of the subgrade is experienced, additional thickness of granular material and/or geotextile may be required.

Additional comments on the construction of the parking areas and access roads are as follows:

- As part of the subgrade preparation for the areas to be paved, the proposed parking and access roadway should be stripped of topsoil, organic stained soil and exposed buried organic soil (topsoil) and other obviously unsuitable material. The subgrade should be properly shaped, crowned, then proofrolled with a heavy vibratory roller in the full-time presence of a representative of this office. Any soft or spongy subgrade areas detected should be sub excavated and properly replaced with suitable OPSS 1010 Granular B Type II compacted to 95 percent SPMDD (ASTM D698). To prevent overstressing the clay subgrade, coarser material may be required in the lower 300 mm of the subgrade fill such as OPSS 1010 Granular B Type II or well graded blast-shattered bedrock.
- The long-term performance of the pavement structure is highly dependent upon the subgrade support conditions. Stringent construction control procedures should be maintained to ensure that uniform subgrade moisture and density conditions are achieved. The need for adequate drainage cannot be over-

emphasized. Subdrains should be installed on both sides of the access road(s). Subdrains must be installed in the proposed parking area at low points and should be continuous between catchbasins to intercept excess surface and subsurface moisture and to prevent subgrade softening. This will ensure no water collects in the granular course, which could result in pavement failure during the spring thaw. The location and extent of sub drainage required within the paved areas should be reviewed by this office in conjunction with the proposed site grading.

- 3. To minimize the problems of differential movement between the pavement and catchbasins/ manhole due to frost action, the backfill around the structures should consist of free-draining granular preferably conforming to OPSS 1010 Granular B Type II material. Weep holes should be provided in the catchbasins/manholes to facilitate drainage of any water that may accumulate in the granular fill.
- 4. The most severe loading conditions on light-duty pavement areas and the subgrade may occur during construction. Consequently, special provisions such as restricted lanes, half-loads during paving, temporary construction roadways, etc., may be required, especially if construction is carried out during unfavorable weather.
- 5. The finished pavement surface should be free of depressions and should be sloped (preferably at a minimum cross fall of 2 percent) to provide effective surface drainage towards catchbasins. Surface water should not be allowed to pond adjacent to the outside edges of paved areas.
- 6. Relatively weaker subgrade may develop over service trenches at subgrade level. These areas may require the use of thicker/coarser sub-base material and the use of a geotextile at the subgrade level. if this is the case, it is recommended that additional 150 mm of granular sub-base Granular B should be provided in these areas in addition to the use of a geotextile at the subgrade level. On-site excavated soils should not be used as backfill of the service trenches.
- 7. The granular materials used for pavement construction should conform to OPSS 1010 for Granular A and Granular B, Type II and should be compacted to 100 percent of the SPMDD (ASTM D698). The asphaltic concrete and its placement should meet OPSS requirements. It should be compacted to 92 to 97 percent of the maximum relative density in accordance with ASTM D2041.

It is recommended that EXP be retained to review the final pavement structure design and drainage plans prior to construction to ensure that they are consistent with the recommendations of this report.

14. Tree Planting Restrictions

The proposed four (4) storey building site at 3149 Hawthorne Road and the adjacent property to the east at 3169 Hawthorne Road are underlain by similar sensitive marine clay. The test results of the marine clay were compared with the document titled, "Tree Planting in Sensitive Marine Clay Soils – 2017 City of Ottawa Guidelines (2017 Guidelines)" and indicate the clay has a low/medium potential for soil volume change. For soils that have a low/medium potential for soil volume change, the 2017 Guidelines indicate that the tree to foundation setback distance and tree planting restrictions should be in accordance with the 2017 Guidelines.

A landscape architect should be consulted to ensure the setbacks and tree planting restrictions are in accordance with the 2017 Guidelines.

15. **General Comments**

The comments given in this report are intended only for the guidance of design engineers. The number of boreholes required to determine the localized underground conditions, between boreholes affecting construction costs, techniques, sequencing, equipment, scheduling, etc., would be much greater than has been carried out for design purposes. Contractors bidding on or undertaking the works should, in this light, decide on their own investigations, as well, as their own interpretations of the factual borehole results, so that they may draw their own conclusions as to how the subsurface conditions may affect them.

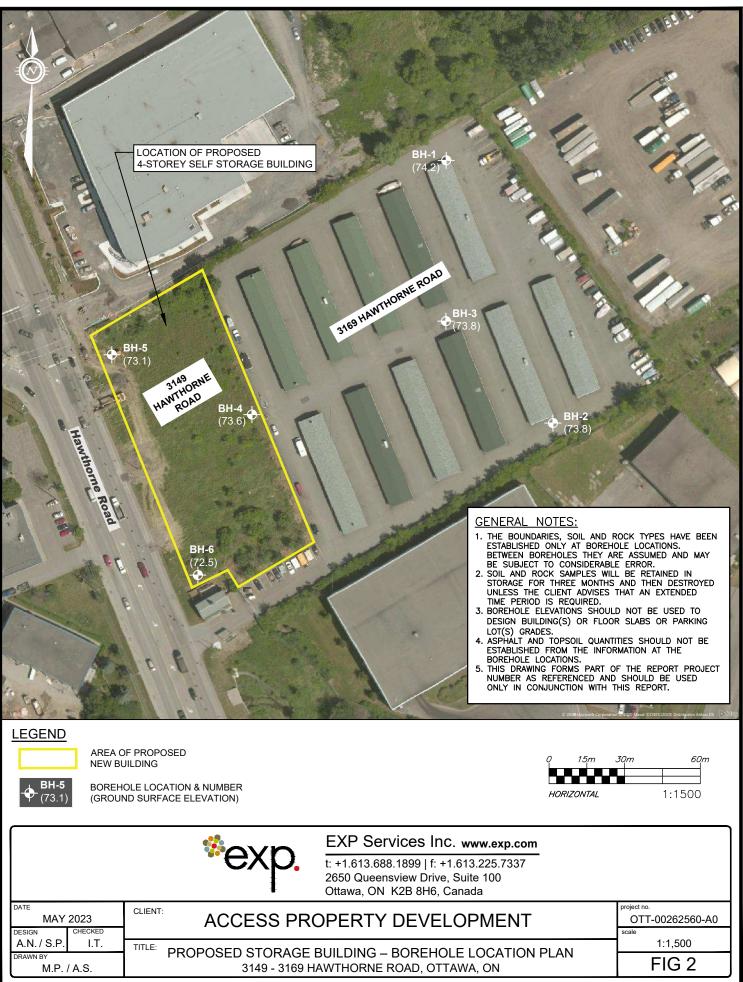
The information contained in this report is not intended to reflect on environmental aspects of the soils and groundwater. Should specific information be required, including for example the presence of pollutants, contaminants or other hazards in the soil, additional testing may be required.

We trust that this information is satisfactory for your purposes. Should you have any questions, please contact this office.

atunt

Ismail M. Taki, M.Eng., P.Eng. Senior Manager, Eastern Region Earth and Environment

EXP Services Inc.


Access Property Development Geotechnical Investigation, Proposed Storage Building 3149-3169 Hawthorne Road, Ottawa, ON OTT-00262560-A0 May 23,2023

Figures

Filename: E:\OTT\OTT-00262560-A0\60 Execution\65 Drawings\262560-A0 3169-Hawthorne_2023.dwg Last Saved: May 19, 2023 3:00 PM Last Plotted: May 19, 2023 3:00 PM Plotted by: SeverA

Notes On Sample Descriptions

1. All sample descriptions included in this report follow the Canadian Foundations Engineering Manual soil classification system. This system follows the standard proposed by the International Society for Soil Mechanics and Foundation Engineering. Laboratory grain size analyses provided by exp Services Inc. also follow the same system. Different classification systems may be used by others; one such system is the Unified Soil Classification. Please note that, with the exception of those samples where a grain size analysis has been made, all samples are classified visually. Visual classification is not sufficiently accurate to provide exact grain sizing or precise differentiation between size classification systems.

CLAY	2.023	SILT			SAND			GRAVEL		COBBLES	BOULDERS
	FINE	MEDIUM	COARSE	FINE	MEDIUM	COARSE	FINE	MEDIUM	COARSE		
0	0.002	0.006	0.02 0.0	06 0	.2	0.6	2.0	6.0	20 60	2	00
						DIAMETER		METDER			
			EQU	JIVALEN	IT GRAIN	DIANETER		WEIRES			
				-			000			_	
	ASTIC) TO IPLASTIC)			FINE		MEDIUM SAND	CRS.	FINE	COARSE	7	

UNIFIED SOIL CLASSIFICATION

- 2. Fill: Where fill is designated on the borehole log it is defined as indicated by the sample recovered during the boring process. The reader is cautioned that fills are heterogeneous in nature and variable in density or degree of compaction. The borehole description may therefore not be applicable as a general description of site fill materials. All fills should be expected to contain obstruction such as wood, large concrete pieces or subsurface basements, floors, tanks, etc., none of these may have been encountered in the boreholes. Since boreholes cannot accurately define the contents of the fill, test pits are recommended to provide supplementary information. Despite the use of test pits, the heterogeneous nature of fill will leave some ambiguity as to the exact composition of the fill. Most fills contain pockets, seams, or layers of organically contaminated soil. This organic material can result in the generation of methane gas and/or significant ongoing and future settlements. Fill at this site may have been monitored for the presence of methane gas and, if so, the results are given on the borehole logs. The monitoring process does not indicate the volume of gas that can be potentially generated nor does it pinpoint the source of the gas. These readings are to advise of the presence of gas only, and a detailed study is recommended for sites where any explosive gas/methane is detected. Some fill material may be contaminated by toxic/hazardous waste that renders it unacceptable for deposition in any but designated land fill sites; unless specifically stated the fill on this site has not been tested for contaminants that may be considered toxic or hazardous. This testing and a potential hazard study can be undertaken if requested. In most residential/commercial areas undergoing reconstruction, buried oil tanks are common and are generally not detected in a conventional geotechnical site investigation.
- 3. Till: The term till on the borehole logs indicates that the material originates from a geological process associated with glaciation. Because of this geological process the till must be considered heterogeneous in composition and as such may contain pockets and/or seams of material such as sand, gravel, silt or clay. Till often contains cobbles (60 to 200 mm) or boulders (over 200 mm). Contractors may therefore encounter cobbles and boulders during excavation, even if they are not indicated by the borings. It should be appreciated that normal sampling equipment cannot differentiate the size or type of any obstruction. Because of the horizontal and vertical variability of till, the sample description may be applicable to a very limited zone; caution is therefore essential when dealing with sensitive excavations or dewatering programs in till materials.

	Loa o	f Bo	orehole <u>BH-1</u>	**	nve
Project No:	OTT-00262560-A0				-72.
Project:	Proposed Storage Building			Figure No. <u>3</u>	I
Location:	3149 - 3169 Hawthorne Road, Ottawa,	Ontario		Page. <u>1</u> of <u>1</u>	
Date Drilled:	'October 23, 2020		Split Spoon Sample	Combustible Vapour Reading	
Drill Type:	CME-75 Track-Mounted Drill-Rig		Auger Sample	Natural Moisture Content Atterberg Limits	× —⊖
Datum:	Geodetic Elevation		Dynamic Cone Test	Undrained Triaxial at % Strain at Failure	\oplus
Logged by:	M. Leroux Checked by: A. Nader	_	Shear Strength by + Vane Test S	Shear Strength by Penetrometer Test	A
G Y W B	SOIL DESCRIPTION	Geodetic Elevation	D e p 20 40 60 80 t Share Strength	Natural Moisture Content %	S A M P Unit Wt.

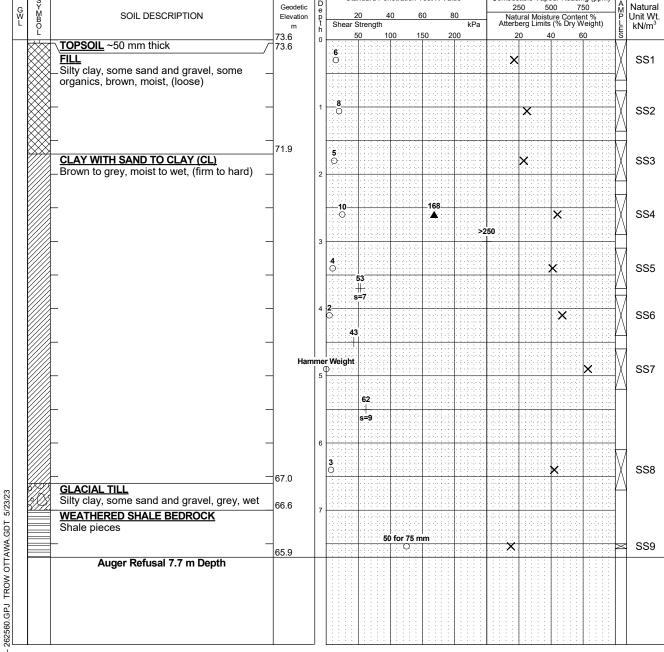
G W L	SY MBO L	SOIL DESCRIPTION	Geodet Elevatio m 74.2	on p t h	2 Shear S	Strength	0 6	60	80 kPa 200	2 Nat Atterb	50 5 ural Mois erg Limit	ture Conte s (% Dry V	50	Natural Unit Wt. kN/m ³
		PAVEMENT STRUCTURE 55 mm asphaltic concrete over 150 m granular fill FILL Sand with gravel to silty sand, grey to	nm74.0	0	10					×				SS1
		_brown, moist, (loose to compact) <u>CLAY WITH SAND TO CLAY (CL)</u> _Grey, moist to wet, (stiff to very stiff)	73.0 	1	7					..	<			SS2
		_	_	2	4		140 + s=11					×		SS3
		-	_	3	3 0		120 s=8				×			SS4
		_	_	4	2	86 + s=6					×			SS5
		-	H		O r Weight		01 =5				>			SS6
		-	_	5		67 						×		SS7
		_	67.8	lamme 6		53 ₩ = 4						*		SS8
WA.GDT 5/23/23		Borehole Terminated at 6.4 m De	pth											
262560.GPJ TROW OTTAWA.GDT														
	OTES:		WAT	TER L	EVEL R	ECORD	6		_	CO	RE DRI	LLING R	ECORD	
BOREHOLE BH	use by . Boreho . Field w . See No	e data requires interpretation by EXP before others ele backfilled upon completion of the drilling. fork supervised by an EXP representative. end by an EXP representative. be read with EXP Report OTT-00262560-A0	Date On Completion		Water <u>evel (m)</u> 4.6		Hole Ope <u>To (m)</u> 6.1	en)	Run No.	Dep (m	th	% Re		QD %

ίI –	OTES:	WAT	ER LEVEL RECO	RDS		CORE DI	RILLING RECO	RD
	. Borehole data requires interpretation by EXP before use by others	Date	Water Level (m)	Hole Open To (m)	Run No.	Depth (m)	% Rec.	RQD %
1 2	Borehole backfilled upon completion of the drilling.	On Completion	4.6	6.1				
3	B. Field work supervised by an EXP representative.							
5 4	See Notes on Sample Descriptions							
5 5	. Log to be read with EXP Report OTT-00262560-A0							

	Log o	of Bo	C	reł	ol	e <u> </u>	<u>3H-</u>	<u>-2</u>				**e	יב	xn
Project No:	OTT-00262560-A0								-igure N		4			$\gamma \gamma$
Project:	Proposed Storage Building							_ '	Pa		1 of	- 1		
Location:	3149 - 3169 Hawthorne Road, Ottawa	a, Ontario						_	Га	Je	<u> </u>			
Date Drilled:	'October 23, 2020			Split Spo	on Samp	le	\boxtimes		Combus	tible Vapo	our Readi	ng	[
Drill Type:	CME-75 Track-Mounted Drill-Rig			Auger Sa SPT (N)	•				Natural I Atterberg	Moisture (Content	L		X Ə
Datum:	Geodetic Elevation			Dynamic	Cone Te	st			Undraine	- ed Triaxia		I		Ð
Logged by:	M. Leroux Checked by: A. Nade	er		Shelby T Shear St Vane Tes	rength by		+ s		Shear St	at Failure trength by neter Tes	/		1	▲
S		Geodetic	D	Sta	ndard Pe	netration T	est N Valu	ie			our Readi 00 7	ng (ppm) 50	SAN	Vatural
G Y W B L O	SOIL DESCRIPTION	Elevation	e p t h		20 4 Strength	40 6	i0 80) kPa			ure Conte s (% Dry V		ΡU	Init Wt. kN/m ³
	EMENT STRUCTURE	73.8	0	5	0 1	00 1	50 20	10 · · · · · · · · · · ·	2	20 4	40 6	60	ร	
	m asphaltic concrete over 625 mm Jlar fill			14				• • • • • • • • •	×				M	SS1
		73.1											Д	
Silty	clay, some sand and gravel, grey to n, moist, (very stiff)	72.7	1	15 0					 	.			X	SS2
		72.3											4	
CLA Grey	<u>Y WITH SAND TO CLAY (CL)</u> , moist to wet, (firm to very stiff)			11 O			180 ▲			× 0			X	SS3
		1	2										4	
		_		6				· · · · · · · · · · · · · · · · · · ·		v			$\overline{\vee}$	SS4
			3	0		115				×			4	554
				3		s=7				×			$\overline{\mathbf{A}}$	SS5
		1		-5-6-1-5	86 + s=6								Δ	
		-	4	2	s=6						×		$\overline{\mathbb{V}}$	SS6
					53								Δ	000
		1			=5									
		Ham	5	r Weight				· · · · · · · · · · · · · · · · · · ·				×	X	SS7
					58 			• • • • • • • • • • • •						
		 Ham	me	r Weight	s=o			• • • • • • •					$\overline{\nabla}$	
		_	6	P	8							×	Å	SS8
		67.4		S				• • • • • • • • • •						

262560.GPJ TROW OTTAWA.GDT 5/23/23								
S.	NOTES:	WAT	ER LEVEL RECO	RDS		CORF DF		מא
HLO	NOTES: 1. Borehole data requires interpretation by EXP before use by others		Water	Hole Open	Run	Depth	% Rec.	RQD %
		Date	Level (m)	To (m)	No.	(m)		
OLE	2.19 mm standpipe was installed upon the completion of the drilling as noted above.	On Completion	4.9	6.1				
OF BOREHOLE	3. Field work supervised by an EXP representative.	18 Days	1.1	N/A				
F B(4. See Notes on Sample Descriptions							
LOG O	5.Log to be read with EXP Report OTT-00262560-A0							

67.4


Borehole Terminated at 6.4 m Depth

	Log of	f Bo	D	rehole	B	H-3		eyn
Project No:	OTT-00262560-A0						_	CVD.
Project:	Proposed Storage Building						Figure No. <u>5</u>	1
Location:	3149 - 3169 Hawthorne Road, Ottawa,	Ontario					Page. <u>1</u> of <u>1</u>	
Date Drilled:	'October 23, 2020			Split Spoon Sample		\boxtimes	Combustible Vapour Reading	
Drill Type:	CME-75 Track-Mounted Drill-Rig			Auger Sample SPT (N) Value			Natural Moisture Content Atterberg Limits	× ⊢⊸⊖
Datum:	Geodetic Elevation			Dynamic Cone Test Shelby Tube		-	Undrained Triaxial at % Strain at Failure	\oplus
Logged by:	M. Leroux Checked by: A. Nader	_		Shear Strength by Vane Test		+ s	Shear Strength by Penetrometer Test	•
G Y M	SOIL DESCRIPTION	Geodetic	Dep	Standard Penetr	ation Test I	N Value 80	Combustible Vapour Reading (ppn 250 500 750 Natural Mojeture Content %	n) S A M R U Init Wt

	SOIL DESCRIPTION	Geodetic Elevation	D e p t h	2	0 4	0 6	i0 i	30	2 Nat	50 5 ural Moist	ture Conte s (% Dry V	50 nt %		Natura Unit W kN/m ⁵
Ĺ		m 73.8	h 0	Shear S		00 1	50 2	kPa 00				/eight) i0	E S	kN/m
	PAVEMENT STRUCTURE 60 mm asphaltic concrete over 200 mm granular fill FILL	73.5			26 0				X					SS
	Silty sand, grey to brown, moist to wet, (compact) <u>CLAY WITH SAND TO CLAY (CL)</u> Grey, moist to wet, (stiff to very stiff)	72.6	1	13 0						x				SS
	Grey, moist to wet, (stiff to very stiff)	_	2	7 ⊙			156				*			SS
	_	-		3 0			s=1	5		×				SS
		_	3	3 •		01	s=7			×				SS
	_	_	4	1	86	=6					×			SS
	_	Ham	1 me	er Weight	s=7 58						*			SS
			6		s=8									
	_	Ham		r Weight	53									SS
	_		7	s	~ ⊭ =7									
		Ham 	1 me	er Weight						(> x		\langle	SS
	Borehole Terminated at 8.2 m Depth													

.0GS	NOTES: 1. Borehole data requires interpretation by EXP before	WAT	ER LEVEL RECO	RDS		CORE DF	RILLING RECOR	RD
ШН	use by others	Date	Water Level (m)	Hole Open To (m)	Run No.	Depth (m)	% Rec.	RQD %
ЧСГЕ	2. Borehole backfilled upon completion of the drilling.	On Completion	4.9	7.6		<i>,</i>		
BOREH	3. Field work supervised by an EXP representative.							
	4. See Notes on Sample Descriptions							
OG OF								
2								

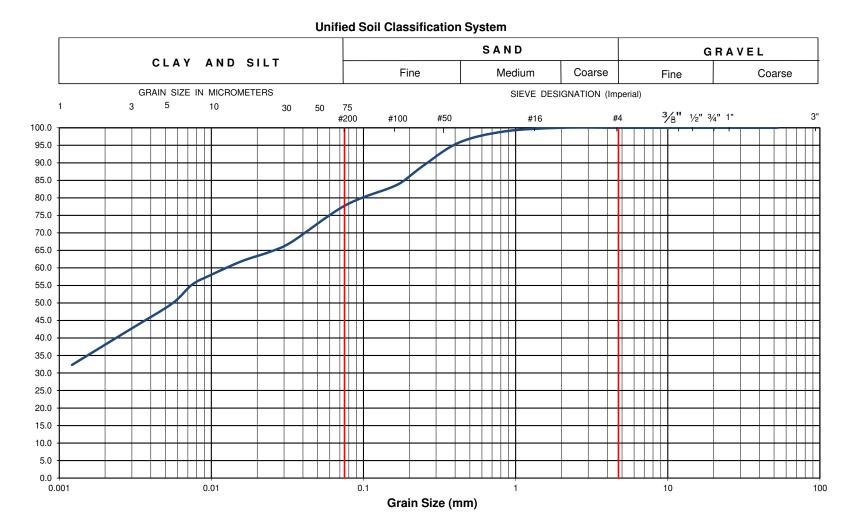
	Log of	f Bo	orehole <u>BH-4</u>	% <u>(</u>	nyc
Project No:	OTT-00262560-A0				JVD.
Project:	Proposed Storage Building			Figure No. <u>6</u>	I
Location:	3149 - 3169 Hawthorne Road, Ottawa, (Ontario		Page. <u>1</u> of <u>1</u>	
Date Drilled:	'October 26, 2020		Split Spoon Sample	Combustible Vapour Reading	
Drill Type:	CME-75 Track-Mounted Drill-Rig		Auger Sample	Natural Moisture Content Atterberg Limits	× —⊖
Datum:	Geodetic Elevation		Dynamic Cone Test Shelby Tube	Undrained Triaxial at % Strain at Failure	\oplus
Logged by:	A. Neguss Checked by: A. Nader	_	Shear Strength by + Vane Test S	Shear Strength by Penetrometer Test	A
G Y W B	SOIL DESCRIPTION	Geodetic Elevation	D C C C C C C C C C C C C C C C C C C C	Combustible Vapour Reading (ppm) 250 500 750 Natural Moisture Content % Atterberg Limits (% Dru Waight)	S M P Unit Wt.

OGS	NOTES: 1. Borehole data requires interpretation by EXP before	WAT	ER LEVEL RECO	RDS	CORE DRILLING RECORD								
핆	use by others	Date	Water Level (m)	Hole Open To (m)	Run No.	Depth (m)	% Rec.	RQD %					
	2. Borehole backfilled upon completion of the drilling.	On Completion	4.6	7.6									
	3. Field work supervised by an EXP representative.												
	4. See Notes on Sample Descriptions												
	5. Log to be read with EXP Report OTT-00262560-A0												

Project No:	OTT-00262560-A0							Figure	No.	7			
Project:	Proposed Storage Building							U		1 of	. 1		
Location:	3149 - 3169 Hawthorne Road, Ottawa	Ontario						Ра	ge		<u> </u>		
Date Drilled:	'October 26, 2020		_	Split Spo	on Sample	е	\boxtimes	Combus	stible Vapo	our Readir	ng		
Drill Type:	CME-75 Track-Mounted Drill-Rig			Auger Sa SPT (N) \	•			Natural Atterber	Moisture (Content	L		×
Datum:	Geodetic Elevation			Dynamic	Cone Tes	st		Undrain	ed Triaxia at Failure				•
Logged by:	A. Neguss Checked by: A. Nade	r		Shelby Tu Shear Str Vane Tes	ength by		+ s	Shear S	trength by meter Tes	,			▲
G Y M W B U O L	SOIL DESCRIPTION	Geodetic Elevation m 73.1	D e p t h	2 Shear S	0 4	0 6	kPa	Na Na Atter	stible Vapo 250 5 tural Moist berg Limits 20 4	00 75 ure Conter 5 (% Dry W	nt %	SAZPLES	Nat Unit kN/
	SOIL ~50 mm thick /	73.1	0	12				×				Ň	S
	Y WITH SAND TO CLAY (CL) - vn to grey, moist to wet, (stiff to very	72.2	1	110					x			X	S
	-	1		8		144			×			\square	S

			- CLAY WITH SAND TO CLAY (CL) -	72.2		1	11 0								\square	
			Brown to grey, moist to wet, (stiff to very stiff)			1	0						×		Й	SS2
							8 O			144			×		M	SS3
						2									\square	
	ġ			-			2		96	<u></u>			×		M	SS4
				[']	70.4	3 -									Д	004
						3	2								\square	
				1		Ŕ) 	58			•••••		×		Ŵ	SS5
					Hamm	ner	Weight	s=8							$\overline{\Lambda}$	
						¢		53						×	Ŵ	SS6
						-	s	 5=7								
						ner ₅⊈	Weight							×	X	SS7
								58							\square	
				1		+		s=23			•••••					
						6										
	Ē		GLACIAL TILL	66.9			7 O								\square	
	H		_Silty clay, some sand and gravel, grey, wet, _ (firm)	-		+	·:O·:··				· · · · · · · · · · · · · · · · · · ·	×			Ŵ	SS8
5/23/23		<u>II</u>		66.1		7										
			WEATHERED SHALE BEDROCK Shale pieces													
WA.0	·H·			65.5		_			50	for 50 m	m :::::				×	SS9
262560.GPJ TROW OTTAWA.GDT			Auger Refusal AT 7.6 m Depth													
ROW																
E L																
560.G																
S	NIC	TEC						_								

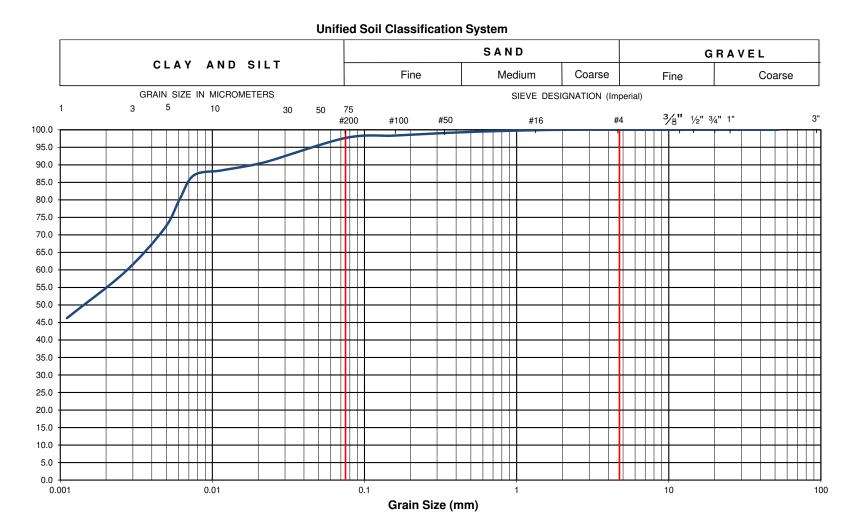
OGS	NOTES: 1. Borehole data requires interpretation by EXP before	WAT	ER LEVEL RECO	RDS	CORE DRILLING RECORD							
BHL		Date	Water Level (m)	Hole Open To (m)	Run No.	Depth (m)	% Rec.	RQD %				
IOLE	2.19 mm standpipe was installed upon the completion of the drilling as noted above.	On Completion	4.6	7.6								
OREHOLE	3. Field work supervised by an EXP representative.	18 Days	2.7	N/A								
OF B	4 See Notes on Sample Descriptions											
LOG 0												


	Log of Bo	orehole <u>BH-6</u>	[%] ≏yn
Project No:	OTT-00262560-A0		Figure No. 8
Project:	Proposed Storage Building		
Location:	3149 - 3169 Hawthorne Road, Ottawa, Ontario		Page. <u>1</u> of <u>1</u>
Date Drilled:	'October 23, 2020	Split Spoon Sample	Combustible Vapour Reading
Drill Type:	CME-75 Track-Mounted Drill-Rig	Auger Sample II SPT (N) Value O	Natural Moisture Content X Atterberg Limits —
Datum:	Geodetic Elevation	Dynamic Cone Test Shelby Tube	Undrained Triaxial at \oplus Strain at Failure
Logged by:	M. Leroux Checked by: A. Nader	Shear Strength by + Vane Test S	Shear Strength by Area Strength Shear Strength Shear Strength Shear Shea
S Y	Geodetic	D Standard Penetration Test N Value	Combustible Vapour Reading (ppm) 250 500 750 M Natural

	ş		Geodeti	D		andard Per	netration	Test N Va	lue	Combustible Vapour Reading (ppm) 250 500 750					Natural
G W L	SY MB O	SOIL DESCRIPTION	Elevatio				0	60 8	30	 Nat	tural Mois	ture Conte s (% Dry V	nt %	SA⊠P-	Unit Wt.
	ÕL		m	h		Strength			kPa	1				LES	kN/m ³
	- 14. - 14.	¬_ <u>TOPSOIL</u> ~75 mm thick /	72.5 72.4	0		50 1	00	150 2	00	2	20	<u>40 6</u>	50	S	
	$\times\!\!\times\!\!\times$	FILL	12.4		6 O						x			VI	SS1
	$\times\!\!\times\!\!\times$	Silty clay, some gravel, some organics,			0						^			Λ	331
DY D		dark brown, moist, (loose)	1												
	\mathbb{X}	, , , , ,			0.000										
22	\mathbb{X}		_	1	7					X	1.2.0.0.2		10000	VI	SS2
	\mathbb{X}				0									М	332
ØØ			71.0		1222		11111	12222	1111111	2222	12221	111111	12222	$\langle \rangle$	
	i Ki	SILTY SAND (POSSIBLE FILL)	70	.9											
		With clay, grey, wet, (loose)			8									VI	SS3
	\mathbb{K}			2	1.1.1.1.1.1.1.1.1		4444				1.2.2.2.2			Λ	333
R R			1	2										\square	
66			70.2								1.5.5.5.5				
		<u>CLAY WITH SAND TO CLAY (CL)</u> Grey, moist to wet, (stiff to very stiff)	_		3									M	~~ /
	$\mathbb{V}//\mathbb{A}$	Grey, moist to wet, (suit to very suit)			0							×		Ň	SS4
RA B	$\mathbb{V}//\mathbb{A}$					1	01				11011		0.000	$/ \rangle$	
R b	<i>\///</i>		1	3			=6								
	\mathcal{V}/\mathcal{A}				2	5	-0							NA	
	$\mathbb{Y}///$				Ō							×		XI	SS5
g g	$\mathbb{V}///$													/	
						s=6									
			_	4	2									M	
					0						11221	X	122122	Ň	SS6
	$\langle / / \rangle$					86									
			67.9			s=6									
- 1:H	V/D	GLACIAL TILL			2	5-0								NΛ	
ΙB		Silty clay, some sand and gravel, grey, wet,		5	0					X			6666	XI	SS7
	1	(very stiff)		ľ			110						19999	/	
.H.							 								
E			-				s=5							∇	
l B					4								×	Υ	SS8
														/	
E			-	6		1	00		<u> </u>					-	
	1		66.1			_									
	KXXX	Borehole Terminated at 6.4 m Depth	00.1			3									
		Borenoie reminated at 0.4 m Beptin													
3/23															
2/2															
F															
10															
MA.															
Ĕ															
2															
<u>Š</u>															
Ë															
GB								1 : : : :	1 : : : :						
262560.GPJ TROW OTTAWA.GDT 5/23/23															
625															
- 2	•				·					• • • • • •	• • • • •				

-												
OGS	NOTES: 1. Borehole data requires interpretation by EXP before	WAT	ER LEVEL RECC	RDS		CORE DRILLING RECORD						
H	use by others	Date	Water Level (m)	Hole Open To (m)	Run No.	Depth (m)	% Rec.	RQD %				
빗	19 mm standpipe was installed upon the completion of the drilling as noted above.	On Completion	4.3	6.1								
푀	C C	18 Days	1.6	N/A								
OF BOREHOLE	3. Field work supervised by an EXP representative.											
빙	4. See Notes on Sample Descriptions											
	5.Log to be read with EXP Report OTT-00262560-A0											
LOG OF												

Grain-Size Distribution Curve Method of Test For Particle Size Analysis of Soil ASTM C-136/ASTM D422



EXP Project No.:	Project Name :		Proposed Storage Buildings								
Client :	Access Property Development	Project Location	1:	3149-3169 Hawt	thorne F						
Date Sampled :	October 23, 2020	Borehole No:		BH-2	Sam	ple No.:	SS	53	Depth (m) :	1.5-2.1	
Sample Description	n :	% Silt and Clay	78	% Sand	22	% Gravel		0	Figure :	0	
Sample Description	n :	CLAY v	CLAY with Sand (CL)						Figure :	9	

Percent Passing

Grain-Size Distribution Curve Method of Test For Particle Size Analysis of Soil ASTM C-136/ASTM D422

EXP Project No.:	Project Name :		Proposed Stora	ige Build						
Client :	Access Property Development	Project Location	ı:	3149-3169 Hawthorne Road, Ottawa						
Date Sampled :	October 23, 2020	Borehole No:	Borehole No:		Sample No.:		SS	69	Depth (m) :	7.6-8.2
Sample Descriptio	n :	% Silt and Clay	98	% Sand	2	% Gravel		0	Figure :	10
Sample Descriptio	n :	C	CLAY (CL)						Figure :	10

Percent Passing

EXP Services Inc.

Access Property Development Geotechnical Investigation, Proposed Storage Building 3149-3169 Hawthorne Road, Ottawa, ON OTT-00262560-A0 May 23,2023

Appendix A: Laboratory Certificates of Analysis

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: EXP SERVICES INC 2650 QUEENSVIEW DRIVE, UNIT 100 OTTAWA, ON K2B8H6 (613) 688-1899 **ATTENTION TO: Ismail M. Taki** PROJECT: OTT-262560 AGAT WORK ORDER: 20Z671399 SOIL ANALYSIS REVIEWED BY: Nivine Basily, Inorganics Report Writer DATE REPORTED: Nov 06, 2020 PAGES (INCLUDING COVER): 6 VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

lotes			
sclaimer:	 	 	

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 30 days following analysis, unless expressly agreed otherwise in writing. Please contact your Client Project Manager if you require additional sample storage time.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines contained in this document.
- All reportable information as specified by ISO/IEC 17025:2017 is available from AGAT Laboratories upon request.

AGAT Laboratories (V1)

Member of: Association of Professional Engineers and Geoscientists of Alberta	
(APEGA)	
Western Enviro-Agricultural Laboratory Association (WEALA)	
Environmental Services Association of Alberta (ESAA)	

Page 1 of 6

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.

Certificate of Analysis

AGAT WORK ORDER: 20Z671399 PROJECT: OTT-262560 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: EXP SERVICES INC

SAMPLING SITE:3169 Hawthorne Rd

ATTENTION TO: Ismail M. Taki

SAMPLED BY:EXP

Inorganic	Chemistry	(Soil)
-----------	-----------	--------

DATE RECEIVED: 2020-10-30	1				
					BH6 SS4 7.
	SA	MPLE DES	CRIPTION:	BH1 SS3 5'-7'	5'-9.5'
		SAM	PLE TYPE:	Soil	Soil
		DATES	SAMPLED:	2020-10-23	2020-10-23
Parameter	Unit	G / S	RDL	1624127	1624129
Chloride (2:1)	μg/g		2	118	39
Sulphate (2:1)	μg/g		2	164	128
pH (2:1)	pH Units		NA	7.73	8.13
Resistivity (2:1) (Calculated)	ohm.cm		1	2350	3030

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

1624127-1624129 Chloride and Sulphate were determined on the extract obtained from the 2:1 leaching procedure (2 parts DI water: 1 part soil).

pH was determined on the 0.01M CaCl2 extract obtained from 2:1 leaching procedure (2 parts extraction fluid:1 part wet soil).

Resistivity is a calculated parameter.

Analysis performed at AGAT Toronto (unless marked by *)

Certificate of Analysis

AGAT WORK ORDER: 20Z671399 PROJECT: OTT-262560 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: EXP SERVICES INC

SAMPLING SITE:3169 Hawthorne Rd

ATTENTION TO: Ismail M. Taki

SAMPLED BY:EXP

Inorganic Chemistry (Soil) %

DATE RECEIVED: 2020-10-30						DATE REPORTED
					BH6 SS4 7.	
		SAMPLE DES	CRIPTION:	BH1 SS3 5'-7'	5'-9.5'	
		SAM	PLE TYPE:	Soil	Soil	
		DATE	SAMPLED:	2020-10-23	2020-10-23	
Parameter	Unit	G / S	RDL	1624127	1624129	
Chloride (2:1)	%		0.0002	0.0118	0.0039	
Sulfate (2:1)	%		0.0002	0.0164	0.0128	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

1624127-1624129 Chloride and Sulphate were determined on the extract obtained from the 2:1 leaching procedure (2 parts DI water: 1 part soil).

Analysis performed at AGAT Toronto (unless marked by *)

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

Quality Assurance

CLIENT NAME: EXP SERVICES INC

PROJECT: OTT-262560

SAMPLING SITE:3169 Hawthorne Rd

AGAT WORK ORDER: 20Z671399

ATTENTION TO: Ismail M. Taki

SAMPLED BY:EXP

Soil Analysis

PARAMETER Batch Sample Id Dup #1 Dup #2 RPD Method Blank Method Measured Value Acceptable Limits Acceptable Limits Acceptable Limits																
PARAMETER Batch Sample Id Dup #1 Dup #2 RPD Blank Measured Value Limits Recovery Limits <t< th=""><th>RPT Date: Nov 06, 2020</th><th></th><th colspan="3">DUPLICATE</th><th></th><th colspan="3">REFERENCE MATERIAL</th><th colspan="3">METHOD BLANK SPIKE</th><th colspan="3">MATRIX SPIKE</th></t<>	RPT Date: Nov 06, 2020		DUPLICATE				REFERENCE MATERIAL			METHOD BLANK SPIKE			MATRIX SPIKE			
Inorganic Chemistry (Soil) Chi Chi Chemistry (Soil) <	PARAMETER	Batch		Dup #1	p #1 Dup #2	RPD					Recovery	Limite		Recovery	Lin	
Chloride (2:1) 1636288 22 22 0.0% < 2			Ia					value	Lower	Upper		Lower	Upper	-	Lower	Upper
Sulphate (2:1) 1636288 38 39 2.6% < 2 106% 70% 130% 104% 80% 120% 108% 70% 130%	Inorganic Chemistry (Soil)															
	Chloride (2:1)	1636288		22	22	0.0%	< 2	100%	70%	130%	103%	80%	120%	105%	70%	130%
pH (2:1) 1624127 1624127 7.73 7.77 0.5% NA 100% 90% 110%	Sulphate (2:1)	1636288		38	39	2.6%	< 2	106%	70%	130%	104%	80%	120%	108%	70%	130%
	pH (2:1)	1624127	1624127	7.73	7.77	0.5%	NA	100%	90%	110%						

Comments: NA signifies Not Applicable.

Duplicate NA: results are under 5X the RDL and will not be calculated.

Inorganic Chemistry (Soil) %

Chloride (2:1)	1636288	0.0022	0.0022	0.0%	< 0.0002	100%	70%	130%	103%	70%	130%	105%	70%	130%
Sulfate (2:1)	1636288	0.0038	0.0039	2.6%	< 0.0002	106%	70%	130%	104%	70%	130%	108%	70%	130%

Comments: NA signifies Not Applicable.

AGAT QUALITY ASSURANCE REPORT (V1)

Page 4 of 6

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

Method Summary

CLIENT NAME: EXP SERVICES INC

PROJECT: OTT-262560

AGAT WORK ORDER: 20Z671399

ATTENTION TO: Ismail M. Taki

SAMPLING SITE:3169 Hawthorne F	Rd	SAMPLED BY:EXP										
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE									
Soil Analysis			1									
Chloride (2:1)	INOR-93-6004	modified from SM 4110 B	ION CHROMATOGRAPH									
Sulphate (2:1)	INOR-93-6004	modified from SM 4110 B	ION CHROMATOGRAPH									
pH (2:1)	INOR 93-6031	MSA part 3 & SM 4500-H+ B	PH METER									
Resistivity (2:1) (Calculated)	INOR-93-6036	McKeague 4.12, SM 2510 B,SSA #5 Part 3	CALCULATION									
Chloride (2:1)	INOR-93-6004	McKeague 4.12 & SM 4110 B	ION CHROMATOGRAPH									
Sulfate (2:1)	INOR-93-6004	McKeague 4.12 & SM 4110 B	ION CHROMATOGRAPH									

Chain of Custody Record		-7-			-	(Vice) - S-8 6 ies	_	-	-	835 Coop ga, Ontari Fax: 905 bearth.aga d by human	o L42 712. atlabs	2 1Y2 5 12 2		Wo	rk Ord bler Qu	er #: uantit		12	6-	713 2	39	14	2	<u>`</u> .
Report Information: Company: ExQ Service: Contact: Address: 2650 Ourcensview Drive Serie Mos OHawa OL K28 SH/C Phone: Reports to be sent to: 1. Email: Contact: Contact: Contact: Contact: OHawa OL K28 SH/C Phone: Contact: Contact: Contact: Contact: Contact: OHawa OL K28 SH/C Phone: Colspan="2">Contact: TSm4:1. Tak: Colspan="2">Contact: TSm4:1. Tak: Colspan="2">Contact: Project Information: Project: OFT- 7625600 Site Location: Site Site Location:			(Plea Soil	Regulatory Requirements: No Regulatory Requirement (Please check all applicable boxes) Sewer Use Regulation 153/04 Sewer Use Table Sanitary Indicate One Sanitary CCME Prov. Water Quality Agriculture Region Coarse Indicate One Fine MISA Is this submission for a Report Guideline on Record of Site Condition? Yes Yes No				nt	t Custody Seal Intact: Yes No Notes: Turnaround Time (TAT) Required: Regular TAT Regular TAT S S Constant of the second s															
Sampled By: AGAT Quote #: Please note: If quotation number is no Invoice Information: Company: Contact: Address: Email:	PO:E	Bill To Same:	Yes 🛴 No		B GW O P S SD SW	W Ground Water Oil Paint Soil D Sediment W Surface Water	Field Fiitered - Metals, Hg, CrVI	Metals and Inorganics	□ All Metals □ 153 Metals (excl. Hydrides) .0	ORPs: D8+WS Dci Dci Dci Dci Dci Dci Dci Dci Dci Diana	Full Metals Scan	Regulation/Custom Metals	Nutrients: DTP DNH, DTKN DNO, DNO, DNO, HNO,		F1 - F4		Total Aroclors	e Pesticides	OCs 🗆 ABNs 🗆 B(a)P 🗍 PCBs	'Use		phyle Public 1	0	Potentially Hazardous or High Concentration (Y/N)
	Date Sampled	Time Sampled	# of Containers	Sam		Comments/ Special Instructions	Y/T	Meta				Regu		Volatiles:	PHCs	ABNS	PCBS	Organ	TCLP:	Sewe	Ha V	1		Potent
Samples Relinquisned By (Print Name and Sign): Sampesh Relinquisned By (Print Name and Sign): Samples ?* anquisned By (Print Name and Sign):	2	Date Date Date Date	1/20 Im 30 Im		ор.+ 00	Samples Received By Print Name and A Samples Received By (Print Name and Si Samples Received By (Print Name and Si Samples Received By (Print Name and Si	n):	- n	>	Zota Ota	21 21	Dat Dat Dat Dat	e 2 2 2	8		e AGAT	a) 2n	Noite Co	I ^o :	Page 1	01	of 23	93	- - - of 6

EXP Services Inc.

Access Property Development Geotechnical Investigation, Proposed Storage Building 3149-3169 Hawthorne Road, Ottawa, ON OTT-00262560-A0 May 23,2023

Appendix B: Legal Notification

Access Property Development Geotechnical Investigation, Proposed Storage Building 3149-3169 Hawthorne Road, Ottawa, ON OTT-00262560-A0 May 23,2023

Legal Notification

This report was prepared by EXP Services Inc. (EXP) for the account of Access Property Development.

Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. EXP accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this project.

Access Property Development Geotechnical Investigation, Proposed Storage Building 3149-3169 Hawthorne Road, Ottawa, ON OTT-00262560-A0 May 23,2023

Report Distribution

Hind Barnieh, Access Property Development; <u>hbarnieh@accesspd.ca</u> Mauro Savoldelli, P.Eng., EC²E – Edilesse Consulting Civil Engineers Ltd.; <u>mauro@ec2e.ca</u> Liam Morgan, Corbett Land Strategies Inc.; <u>liam@corbettlandstrategies.ca</u>

