

Engineers, Planners & Landscape Architects

Engineering

Land/Site Development

Municipal Infrastructure

Environmental/ Water Resources

Traffic/ Transportation

Recreational

Planning

Land/Site Development

Planning Application Management

Municipal Planning

Urban Design

Expert Witness (LPAT)

Wireless Industry

Landscape Architecture

Streetscapes & Public Amenities

Open Space, Parks & Recreation

Community & Residential

Commercial & Institutional

Environmental Restoration

Multi-Tower Development 2 Robinson Avenue

Development Servicing Study and Stormwater Management Report

PROPOSED MULTI-TOWER DEVELOPMENT 2 ROBINSON AVENUE

DEVELOPMENT SERVICING STUDY AND STORMWATER MANAGEMENT REPORT

Prepared by:

NOVATECH Suite 200, 240 Michael Cowpland Drive Kanata, Ontario K2M 1P6

> November 15, 2021 Revised March 30, 2022

Ref: R-2020-059 Novatech File No. 119171

March 30, 2022

2 Robinson Avenue Limited Partnership 88 Albert Street, Ottawa, ON K1P 5E9

Attention: Mr. Kieran Waugh

Dear Sir:

Re: Development Servicing Study and Stormwater Management Report Proposed Multi-Tower Development 2 Robinson Avenue, Ottawa, ON Novatech File No.: 119171

Enclosed is a copy of the revised 'Development Servicing Study and Stormwater Management Report' for the proposed multi-tower residential development located at 2 Robinson Avenue, in the City of Ottawa. This report addresses the approach to site servicing and stormwater management and is submitted in support of a Site Plan Control application.

Please contact the undersigned, should you have any questions or require additional information.

Yours truly,

NOVATECH

Francisis Thank

François Thauvette, P. Eng. Senior Project Manager

FT/sm

cc: Shawn Wessel (City of Ottawa) Rob Verch (RLA)

M:\2019\119171\DATA\REPORTS\DSS&SWM\119171_DSS_&_SWM_REPORT_V2.DOCX

TABLE OF CONTENTS

1.0 1.			DUCTION1 ation and Site Description		
1.			Consultation Information		
1.		Proposed Development			
1.		-	erence Material		
2.0 2.			ERVICING2 itary Servicing		
2.	.2	Wate	er Supply for Domestic Use and Firefighting4		
	2.2	2.1	Water Demands and Watermain Analysis 4		
2.	.3	Stor	m Drainage and Stormwater Management10		
	2.3	3.1	Stormwater Management Criteria and Objectives11		
	2.3	3.2	Pre-Development Conditions and Allowable Release Rate11		
	2.3	3.3	Post-Development Conditions12		
		2.3.3.1	Area DR-1: Uncontrolled Direct Runoff to Combined System12		
		2.3.3.2	Area DR-2: Uncontrolled Direct Runoff to Robinson Storm Sewer13		
		2.3.3.3	Area A-1: Controlled Flow (City Park Block + Off-Site Drainage)13		
		2.3.3.1	Area A-2.1: Controlled Flow (Tower A Roof and Deck Drains)13		
		2.3.3.1	Area A-2.2: Controlled Flow (Roadway & Landscaped Area Drainage)14		
		2.3.3.1	Area A-2.3: Controlled Flow (Tower A Roof and Deck Drains)14		
		2.3.3.1	Area A-3.1: Controlled Flow (Towers B & C Roof and Deck Drains)15		
		2.3.3.1	Area A-3.2: Controlled Flow (Towers B & C Roof and Deck Drains)15		
		2.3.3.1	Area A-4: Controlled Flow (Tower D Roof and Deck Drains)16		
		2.3.3.1	Area A-5: Controlled Flow (Roadway and Landscaped Area Drainage)17		
		2.3.3.1	Area A-6: Controlled Flow (Roadway and Landscaped Area Drainage)17		
	2.3	3.4	Stormwater Flow Summary18		
	2.3	3.5	Stormwater Quality Control19		
3.0			RADING20		
3.			rgency Overland Flow Route20		
4.0			ECHNICAL INVESTIGATIONS		
5.0			ON AND SEDIMENT CONTROL		
6.0		CONCLUSION21			

LIST OF FIGURES

Figure 1: Aerial View of Site

LIST OF APPENDICES

Appendix A: Correspondence

- Appendix B: Development Servicing Study Checklist
- Appendix C: Sanitary Sewage Calculations
- Appendix D: Water Demands, FUS Calculations, Boundary Conditions, Schematic of the Hydraulic Model and Hydraulic Modelling Results
- Appendix E: IDF Curves and SWM Calculations
- Appendix F: Inlet Controle Device (ICD) Information
- Appendix G: Stormwater Quality Control Treatment Unit Information

LIST OF PLANS

General Plan of Services (119171-GP)

Grading Plan (119171-GR)

Erosion & Sediment Control Plan (119171-ESC)

Notes, Details and Tables Plan (119171-NDT)

Stormwater Management Plan (119171-SWM)

Plan and Profile Drawings (119171-PR1, 119171-PR2)

1.0 INTRODUCTION

A new multi-tower mixed-use development is being proposed by 2 Robinson Avenue Limited Partnership and Novatech has been retained to complete the civil engineering design for the project. This report addresses the approach to site servicing and stormwater management and is being submitted in support of a Site Plan Control application.

1.1 Location and Site Description

The subject site is located at 2 Robinson Avenue, in the City of Ottawa. Although mostly undeveloped, the 2.3 ha site was previously occupied by a small building (recently demolished) and associated parking lot. The subject site is located on the north side of Highway 417, near the Nicholas Street/Mann Avenue westbound off-ramp and is bordered by Lees Avenue to the south, Chapel Crescent to the east, residential properties to the north and the Sandy Hill Arena, baseball diamond and associated parking lots to the west. The legal description of the site is designated as Part of Lot F, Concession D (Rideau Front), Geographic Township of Nepean, City of Ottawa.

Figure 1: Aerial View of the Subject Site including Proposed Site Layout

1.2 Pre-Consultation Information

A pre-consultation meeting was held with the City of Ottawa on October 3, 2019, at which time the client was advised of the general submission requirements. Subsequent meetings were held with the City's Planning and Engineering Department to discuss the approach to site servicing and stormwater management (SWM). The Rideau Valley Conservation Authority (RVCA) and Ministry of Transportation of Ontario (MTO) were also consulted regarding the project. Refer to **Appendix A** for a summary of the correspondence related to the proposed development.

1.3 Proposed Development

The proposed development will consist of a total of four (4) residential towers (A, B, C and D) with podiums above respective underground parking levels. The proposed development will include approximately 1,448 residential units as well as commercial space (i.e., coffee shops, gym, small retail, etc.), internal roadways, loading areas, minimal surface parking and outdoor landscaped amenity space throughout the site. The existing topography will have a significant impact on the proposed development, as the grade drops approximately 9m from the northeast corner down to the southwest corner of the site.

1.4 Reference Material

- ¹ The Assessment of Adequacy of Public Services Memorandum Proposed Multi-Tower Development 2 Robinson Avenue (Ref. No. R-2020-120), prepared by Novatech and revised on June 18, 2021.
- ² The Geotechnical Investigation Report (Ref. No. PG4811-1, Revision 1), prepared by Paterson Group Inc. on May 31, 2021.

2.0 SITE SERVICING

The objective of this report is to demonstrate that proper sewage outlets (sanitary and storm) as well as a suitable domestic water supply and appropriate fire protection are available for the proposed development. The servicing criteria, the expected sewage flows, and water demands are to conform to the requirements of the City of Ottawa municipal design guidelines for sewer and water distribution systems. Stormwater runoff from most of the site will continue to be directed to the nearby Rideau River, via the municipal storm sewer system, while a small portion of the site will continue to sheet drain uncontrolled off-site. On-site stormwater management will be implemented as required to meet the requirements of the City of Ottawa and the Rideau Valley Conservation Authority (RVCA).

The City of Ottawa Servicing Study Guidelines for Development Applications requires that a Development Servicing Study Checklist be included to confirm that each applicable item is deemed complete and ready for review by City of Ottawa Infrastructure Approvals. A completed checklist is enclosed in **Appendix B** of the report.

2.1 Sanitary Servicing

The recently demolished building on site was being serviced by the existing 250mm dia. sanitary, located near the SW corner of the property. The private sanitary sewer runs along the north side of Lees Avenue, adjacent to the existing baseball diamond and parking lot, and discharges into the 450mm dia. sanitary trunk sewer in Mann Avenue. There are no other upstream properties contributing flow to this sewer segment. The municipal sanitary sewer in Mann Avenue drains into the sanitary sewer in King Edward, flows north, then discharges into the 1800mm dia. combined sewer in Templeton Street.

Under post-development conditions, the proposed site will be serviced by extending a new onsite sewer from the existing sanitary sewer (outlet). The proposed sanitary sewer system is shown on the enclosed General Plan of Services (119171-GP) and Notes, Details and Tables Plan (119171-NDT). The advantage of re-using the existing sanitary sewer outlet is that is avoids the construction of a new sanitary sewer within the municipal Right-of-Way.

The City of Ottawa design criteria were used to calculate the theoretical sanitary flows for the proposed development. The following design criteria were taken from Section 4 – 'Sanitary Sewer

Systems' and Appendix 4-A - 'Daily Sewage Flow for Various Types of Establishments' of the City of Ottawa Sewer Design Guidelines:

Residential and Commercial Uses

- Residential Units (Studio or 1-Bedroom): 1.4 people per unit
- Residential Units (2-Bedroom): 2.1 people per unit
- Residential Units (3-Bedroom): 3.1 people per unit
- Average Daily Residential Sewage Flow: 280 L/person/day (ISTB-2018-01)
- Residential Peaking Factor: 3.3 (Harmon Equation)
- Average Commercial Sewage Flow: 2.8 L/m²/day
- Commercial Peaking Factor = 1.5
- Infiltration Allowance: 0.33 L/s/ha

Table 1 identifies the theoretical sanitary flows for the proposed development based on the above design criteria.

Table 1: Theoretical Po	ost-Developmen	t Sanitary	y Flow	/S

Type of Use	Unit Count (1, 2, 3-bdrm) / Area	Design Population	Average Flow (L/s)	Peaking Factor	Peak Flow (L/s)*
Tower A incl. Podium					
Residential Units	235 / 122 / 24	660	2.14	3.3	7.12
Commercial Space	1,005 m ²	-	0.03	1.5	0.05
Infiltration Allowance	0.55 ha	-	-	-	0.18
Sub-Total	381 Units	-	2.2	-	7.3
Tower B incl. Podium					
Residential Units	234 / 92 / 43	655	2.12	3.3	7.07
Commercial Space	657 m ²	-	0.02	1.5	0.03
Infiltration Allowance	0.30 ha	-	-	-	0.10
Sub-Total	369 Units	-	2.1	-	7.2
Tower C incl. Podium					
Residential Units	241 / 84 / 44	651	2.11	3.3	7.03
Commercial Space	656 m ²	-	0.02	1.5	0.03
Infiltration Allowance	0.33 ha	-	-	-	0.11
Sub-Total	369 Units	-	2.1	-	7.2
Tower D incl. Podium					
Residential Units	191 / 90 / 48	606	1.96	3.3	6.57
Commercial Space	NA	-	-	-	-
Infiltration Allowance	0.88 ha	-	-	-	0.29
Sub-Total	329 Units	-	2.0	-	6.9
	1,448 Units	2,572	8.4	-	28.6

*Values rounded. Excludes City Park Block flows.

Despite the increase in sewage flow, the theoretical peak flow from the proposed development is less than the full flow capacity of the existing 250mm dia. sewer outlet, which ranges between 39.2 L/s and 62.0 L/s based on a pipe slope of 0.4% to 1.0% (as confirmed in the field). The proposed 200mm dia. sanitary building service laterals at a minimum slope of 1.0% have a minimum full flow conveyance capacity of 34.2 L/s, while the on-site 250mm dia. sanitary sewer at a minimum slope of 2.5% has a full flow conveyance capacity of 98.1 L/s and can accommodate the peak sewage flow. As noted in the correspondence with the City of Ottawa (when the peak sanitary flows were previously estimated to be approximately 26 L/s), the downstream municipal sewers had capacity to accommodate the anticipated flows.

The recently completed CCTV inspection of the existing 250mm dia. sanitary outlet sewer demonstrates that the pipe segments (to be retained) are in good condition and can continue to be used. Refer to **Appendix C** for detailed calculations and for a copy of the CCTV Inspection Report Review Form of the existing sanitary outlet sewer.

2.2 Water Supply for Domestic Use and Firefighting

The subject site is located within the City of Ottawa 1W watermain pressure zone. The recently demolished building on site was being serviced by an existing 150mm dia. watermain, fed off the municipal 600mm dia. feeder main in Chapel Crescent. The on-site watermain and private fire hydrant will be removed as part of the proposed development, however the existing connection to the municipal feedermain will be maintained.

Under post-development conditions, the subject site will require two (2) water supplies as the daily water demands will be greater than 50 m³/day (0.58 L/s). The proposed site will continue to be serviced by the municipal feedermain in Chapel Crescent, however, the private on-site watermain will need to be increased in size. A municipal watermain extension is also being proposed along Chapel Crescent adjacent to the property to provide a second feed and create a looped watermain on-site. Each building (Towers A, B, C and D) will be equipped with two (2) water services, separated by an isolation valve. The looped watermain network will provided the necessary redundancy and will allow for maintenance without service disruption. The proposed municipal watermain extensions and on-site watermain network are shown on the enclosed Plan and Profile drawings (119171-PR1), General Plan of Services (119171-GP) and Notes, Details and Tables Plan (119171-NDT).

2.2.1 Water Demands and Watermain Analysis

The theoretical water demand and fire flow calculations are based on criteria in the City of Ottawa Design Guidelines. The fire flows have been calculated using the Fire Underwriters Survey (FUS) method, based on information provided by the architect. The following design criteria were taken from Section 4 – 'Water Distribution Systems' of the Ottawa Design Guidelines – Water Distribution:

- Residential Units (Studio or 1-Bedroom): 1.4 people per unit
- Residential Units (2-Bedroom): 2.1 people per unit
- Residential Units (3-Bedroom): 3.1 people per unit
- Average Daily Residential Water Demand: 280 L/person/day (ISTB-2021-03)
- Maximum Day Demand Peaking Factor = 2.5 x Avg. Day Demand (City Water Table 4.2)
- Peak Hour Demand Peaking Factor = 2.2 x Max. Day Demand (City Water Table 4.2)
- Average Commercial Water Demand: 2.8 L/m²/day
- Maximum Day Demand Peaking Factor = 1.5 x Avg. Day Demand (City Water Table 4.2)
- Peak Hour Demand Peaking Factor = 1.8 x Max. Day Demand (City Water Table 4.2)

The Fire Underwriters Survey (FUS) was used to estimate fire flow requirements for Towers A, B, C and D, based on information provided by the architect. The fire flow requirements include both sprinkler system and hose allowances in accordance with the OBC and NFPA 13. The sprinkler systems will be designed by the fire protection (sprinkler) contractor as this process involves detailed hydraulic calculations based on building layout, pipe runs, head losses, fire pump requirements, etc. Fire flow requirements calculated using the FUS method tend to generate higher values when compared to flows being calculated using the OBC and NFPA.

Table 2 identifies the theoretical domestic water and FUS demands for the development based on the above design criteria.

Type of Use	Unit Count (1, 2, 3-bdrm) / Area	Design Pop.	Avg. Day Demand (L/s)	Max Day Demand (L/s)	Peak Hour Demand (L/s)	FUS (L/s)
Tower A incl. Podiu	Im					
Residential Units	227 / 139 / 21	660	2.14	5.35	11.76	
Commercial Space	1,005 m ²	-	0.03	0.05	0.09	217
Sub-Total	381 Units	-	2.2	5.4	11.9	
Tower B incl. Podiu	m					
Residential Units	234 / 92 / 43	655	2.12	5.31	11.67	
Commercial Space	657 m²	-	0.02	0.03	0.06	250
Sub-Total	369 Units	-	2.1	5.3	11.7	
Tower C incl. Podiu	Im					
Residential Units	241 / 84 / 44	651	2.11	5.27	11.60	
Commercial Space	656 m ²	-	0.02	0.03	0.06	250
Sub-Total	369 Units	-	2.1	5.3	11.7	
Tower D incl. Podiu	im					
Residential Units	191 / 90 / 48	606	1.96	4.91	10.80	
Commercial Space	NA	-	-	-	-	183
Sub-Total	329 Units	-	2.0	4.9	10.8	
	1,448 Units	2,572	8.4	20.9	46.1	250 (Max)

 Table 2: Theoretical Water Demand for Proposed Development

*Values rounded. Excludes City Park Block demands.

The following design criteria were taken from Section 4.2.2 – 'Watermain Pressure and Demand Objectives' of the City of Ottawa Design Guidelines for Water Distribution:

- Normal operating pressures are to range between 345 kPa (50 psi) and 483 kPa (70 psi) under Max Day demands
- Minimum system pressures are to be 276 kPa (40 psi) under Peak Hour demands
- Minimum system pressures are to be 140 kPa (20 psi) under Max Day + Fire Flow demands

As instructed by the City of Ottawa, the hydraulic analysis will include two (2) watermain scenarios:

- Scenario 1 includes a looped watermain with two (2) feeds off the municipal watermain network (direct connection off 600mm dia. feedermain in Chapel Crescent as well as a connection to local 200mm dia. watermain in Chapel Crescent / Wiggins Private).
- **Scenario 2** includes a single feed off the local 200mm dia. watermain in Chapel/Wiggins Private without the direct connection to the 600mm dia. feedermain in Chapel Crescent).

The anticipated domestic water demands, and fire flow requirements were provided to the City of Ottawa to generate the municipal watermain network boundary conditions. **Table 3** summarizes the City's municipal watermain boundary conditions and <u>preliminary</u> hydraulic analysis results.

Municipal Watermain Boundary Condition	Boundary Condition Head of Water (m)	Normal Operating Pressure Range (psi)	Anticipated WM Pressure (psi)*
Connection 1 (600mm dia. WM	in Chapel Crescent)		
Minimum HGL (Peak Hour Demand)	105.3 m	40 psi (min.)	~ 50 psi
Maximum HGL (Max Day Demand)	115.1 m	50-70 psi	~ 64 psi
HGL Max Day + Fire Flow (183-250 L/s)	108.0 m 107.8 m	20 psi (min.)	~ 54 psi
Connection 2 (200mm dia. WM	in Chapel Crescent)		
Minimum HGL (Peak Hour Demand)	105.5 m	40 psi (min.)	~ 50 psi
Maximum HGL (Max Day Demand)	115.2 m	50-70 psi	~ 64 psi
HGL Max Day + Fire Flow (183 – 250 L/s)	107.9 m 107.4 m	20 psi (min.)	~ 53 psi

Table 3: Hydraulic Analysis Results and Watermain Boundary Conditions (Scenario 1)

*Based on two (2) municipal watermain feeds with an approximate elevation of 69.9m at WM connections 1 and 2.

The municipal watermain boundary conditions were used to further analyze the proposed on-site watermain network. The hydraulic model EPANET was used to analyzing the two theoretical conditions:

- 1) Maximum Day + Fire Flow Demand
- 2) Peak Hour Demand

Refer to **Appendix D** for domestic water demand and FUS calculations, City of Ottawa boundary conditions, the hydraulic modeling schematic and hydraulic modelling results. The schematic representation of the hydraulic network depicts the node and pipe numbers used in the model. **Table 4** and **Table 5** summarize the hydraulic model results for the on-site network under **Scenario 1**, while **Table 6** summarizes the Maximum Day + Fire Flow Demand hydraulic model results for the on-site network under scenario **2**.

Table 4: Maximum Day + Fire Flow Demand Condition (Scenario 1 – Two Watermain Feeds)

Operating Condition	Minimum System Pressure	Maximum System Pressure
Max Day Demands: 5.4 L/s at J21 (Tower A), 5.3 L/s at J25 (Tower B), 5.3 L/s at J31 (Tower C), 4.9 L/s at J12 (Tower D) Fire Flow Demand (Tower A): 95 L/s at J9, 95 L/s at J15 and 95L/s at J19 (all Private Hydrants), which exceeds the FUS Fire Flow required	Minimum system pressure of 337.6 kPa (48.9 psi) is available at Node J15 (Hydrant east of Tower A)	Maximum system pressure 396.1 kPa (57.4 psi) is available at Node J13 (Watermain south of Tower D)
Max Day Demands: 5.4 L/s at J21 (Tower A), 5.3 L/s at J25 (Tower B), 5.3 L/s at J31 (Tower C), 4.9 L/s at J12 (Tower D) Fire Flow Demand (Tower B): 95 L/s at J9, 95 L/s at J15 and 95L/s at J29 (all Private Hydrants), which exceeds the FUS Fire Flow required	Minimum system pressure of 331.2 kPa (48.0 psi) is available at Node J29 (Hydrant north of Towers B and C)	Maximum system pressure 403.5 kPa (58.5 psi) is available at Node J13 (Watermain south of Tower D)
Max Day Demands: 5.4 L/s at J21 (Tower A), 5.3 L/s at J25 (Tower B), 5.3 L/s at J31 (Tower C), 4.9 L/s at J12 (Tower D) Fire Flow Demand (Tower C): 95 L/s at J15 and 95 L/s at J29, 63 L/s at J9 and 63L/s at J19 (all Private Hydrants), which exceeds the FUS Fire Flow required	Minimum system pressure of 322.1 kPa (46.7 psi) is available at Node J29 (Hydrant north of Towers B and C)	Maximum system pressure 391.6 kPa (56.8 psi) is available at Node J13 (Watermain south of Tower D)

C), 4.9 L/s at J12 Fire Flow Demar 95 L/s at J15, 95 95L/s at J29 (all F which exceeds th	wer A), 5.3 L/s at 3 L/s at J31 (Tower (Tower D) nd (Tower D): L/s at J19 and Private Hydrants),	Minimum system pressure of 336.8 kPa (48.8 psi) is available at Node J29 (Hydrant north of Towers B and C)	Maximum system pressure 403.7 kPa (58.5 psi) is available at Node J13 (Watermain south of Tower D)
required			

Table 5: Peak Hour Demand Condition (Scenario 1 – Two Watermain Feeds)

Operating Condition	Minimum System Pressure	Maximum System Pressure
Peak Hour Demands:	Minimum system	Maximum system
11.9 L/s at J21 (Tower A), 11.7 L/s	pressure of 341.0 kPa	pressure 431.4 kPa (62.6
at J25 (Tower B), 11.7 L/s at J31	(49.4 psi) is available at	psi) is available at Node
(Tower C), 10.8L/s at J12 (Tower D)	Node J5 (Mun. Hydrant	J24 (WM at south end of
	along Chapel Crescent)	on-site loop)

Table 6: Maximum Day + Fire Flow Demand Condition (Scenario 2 – Single WM Feed)

Operating Condition	Minimum System Pressure	Maximum System Pressure
Max Day Demands: 5.4 L/s at J21 (Tower A), 5.3 L/s at J25 (Tower B), 5.3 L/s at J31 (Tower C), 4.9 L/s at J12 (Tower D) Fire Flow Demand (Tower A): 95 L/s at J9, 95 L/s at J15 and 95L/s at J19 (all Private Hydrants), which exceeds the FUS Fire Flow required	Minimum system pressure of 204.5 kPa (29.6 psi) is available at Node J15 (Hydrant east of Tower A)	Maximum system pressure 346.2 kPa (50.2 psi) is available at Node J1 (Watermain in Chapel)
Max Day Demands: 5.4 L/s at J21 (Tower A), 5.3 L/s at J25 (Tower B), 5.3 L/s at J31 (Tower C), 4.9 L/s at J12 (Tower D) Fire Flow Demand (Tower B): 95 L/s at J9, 95 L/s at J15 and 95L/s at J29 (all Private Hydrants), which exceeds the FUS Fire Flow required	Minimum system pressure of 191.6 kPa (27.8 psi) is available at Node J29 (Hydrant north of Towers B and C)	Maximum system pressure 339.4 kPa (49.2 psi) is available at Node J1 (Watermain in Chapel)

Max Day Demands: 5.4 L/s at J21 (Tower A), 5.3 L/s at J25 (Tower B), 5.3 L/s at J31 (Tower C), 4.9 L/s at J12 (Tower D) Fire Flow Demand (Tower C): 95 L/s at J15 and 95 L/s at J29, 63 L/s at J9 and 63L/s at J19 (all Private Hydrants), which exceeds the FUS Fire Flow required	Minimum system pressure of 158.8 kPa (23.0 psi) is available at Node J29 (Hydrant north of Towers B and C)	Maximum system pressure 332.2 kPa (48.1 psi) is available at Node J1 (Watermain in Chapel)
Max Day Demands: 5.4 L/s at J21 (Tower A), 5.3 L/s at J25 (Tower B), 5.3 L/s at J31 (Tower C), 4.9 L/s at J12 (Tower D) Fire Flow Demand (Tower D): 95 L/s at J15, 95 L/s at J19 and 95L/s at J29 (all Private Hydrants), which exceeds the FUS Fire Flow required	Minimum system pressure of 208.3 kPa (30.2 psi) is available at Node J29 (Hydrant north of Towers B and C)	Maximum system pressure 353.1 kPa (51.2 psi) is available at Node J1 (Watermain in Chapel)

As discussed with the City of Ottawa, a multi-hydrant approach to firefighting will be required to supply adequate fire flow to the proposed development using new private on-site hydrants. There will be up to four (4) Class AA (blue bonnet) hydrants within 150m of the proposed towers. Based on the City of Ottawa Technical Bulletin ISTB-2018-02, Class AA (blue bonnet) hydrants within 75m have a maximum capacity of 95 L/s while hydrants between 75m and 150m have a maximum capacity of 63 L/s (at a pressure of 20 PSI). The proposed towers will be fully sprinklered and supplied with fire department (siamese) connections. The siamese connections will be located near the main building entrances, within 45m of one of the nearby fire hydrants. Fire flow requirements calculated using the FUS method tend to generate higher values when compared to flows being calculated using the OBC and NFPA.

Table 7 summarizes the total combined fire flow available from the nearby fire hydrants and compares it to the fire flow demands based on FUS calculations.

Building	(FUS) Fire Flow Demand (L/s)	Fire Hydrant(s) within 75m (~ 95 L/s each)	Fire Hydrant(s) within 150m (~ 63 L/s each)	Theoretical Combined Available Fire Flow (L/s)
Tower A	217	4	0	380*
Tower B	250	4	0	380*
Tower C	250	2	2	316
Tower D	183	4	0	380*

Table 7: Theoretical Fire Protection Summary Table

*Theoretical values exceed the (FUS) Fire Flow requirements and were therefore not confirmed by hydraulic analysis.

The combined maximum flow from the nearby hydrants will exceed the Max Day + Fire Flow requirement of the proposed development. This multi-hydrant approach to firefighting is in accordance with the City of Ottawa Technical Bulletin ISTB-2018-02.

Based on the analysis, the model indicates that adequate water and system pressures will exist throughout the watermain network under the specified 'Max Day + Fire Flow' and 'Peak Hour' conditions, including the proposed watermain extensions along Chapel Crescent under both **Scenario 1** and **Scenario 2**. Given the height of the proposed towers, booster pumps will be required to provide adequate water pressure to the upper floors. Included in **Appendix D** is correspondence from the City of Ottawa, detailed watermain network analysis calculations, a sketch showing the existing fire hydrant locations and the dimensions confirming the appropriate site coverage.

2.3 Storm Drainage and Stormwater Management

Under pre-development conditions, stormwater runoff from the subject site is currently being directed towards two (2) separate and distinct outlets. Stormwater runoff from the southern half of the subject site (and contributing off-site areas) is currently tributary to the Robinson Avenue storm sewer which discharges into the Rideau River. Stormwater runoff from the other half of the site (and contributing off-site areas) sheet drains uncontrolled towards the baseball diamond on the adjacent property to the west. Stormwater runoff being captured by this storm sewer system is tributary to the downstream combined sewer in Templeton Street. Combined sewage flows are ultimately conveyed to the Robert O. Pickard Environmental Centre (ROPEC) where the flows are treated prior to being discharged into the Ottawa River. The existing topography of the site, which drops approximately 9m from the northeast corner to southwest corner, is the main reason so much runoff currently sheet drains to the adjacent property.

Under post-development conditions, most of the storm flows from the site and contributing off-site areas (which cannot be diverted) will be directed to the municipal storm sewer in Robinson Avenue, which outlets directly to the Rideau River. However, runoff from a small portion of the site located along the west property line and west entrance cannot be captured and will thus continue to sheet drain uncontrolled off-site. Storm water runoff from this small drainage area will continue to be tributary to the downstream municipal combined sewer system and thus be treated at ROPEC prior to being discharged into the Ottawa River.

A municipal storm sewer extension is being proposed along Robinson Avenue, across Lees to provide a proper storm sewer outlet for the re-developed site. The proposed municipal storm sewer extension and on-site storm sewer system are shown on the enclosed Plan and Profile drawing (119171-PR2), General Plan of Services (119171-GP) and Notes, Details and Tables Plan (119171-NDT). Given the proximity of the site to the Rideau River, on-site stormwater management (SWM), including both stormwater quantity and stormwater quality control measures will be required for controlled flows being directed to the storm sewer in Robinson Avenue.

As discussed with the City of Ottawa, the proposed re-development provides an opportunity to improve the municipal storm and combined sewer systems in the area, by:

- Re-directing a portion of the uncontrolled stormwater runoff currently tributary to the downstream combined sewer system; and
- Reducing the peak storm flows into the storm sewer in Robinson Avenue.

Re-directing uncontrolled storm flows will significantly improve the downstream combined sewer system by reducing the peak wet-weather flows, thus providing additional capacity within the system. Diverting stormwater runoff will also reduce the amount of stormwater being treated at the Robert O. Picard Environmental Centre (ROPEC) Wastewater Treatment Plan.

As discussed with the City of Ottawa, analysis by the municipal modelling group has determined that there is sufficient capacity in the downstream system to permit the site flows that are tributary the Robinson Avenue storm sewer system to be controlled to an allowable of 183 L/s. Refer to **Appendix A** for correspondence from the City of Ottawa related to the allowable release rate.

2.3.1 Stormwater Management Criteria and Objectives

The stormwater management (SWM) criteria have been provided during pre-consultation meetings with the City of Ottawa and the Rideau Valley Conservation Authority (RVCA). The SWM criteria and objectives are as follows:

- Provide a dual drainage system, including both a minor system and an emergency overland flow route for events exceeding the 100-year design storm.
- Minimize uncontrolled post-development overland flow being directed to the downstream combined sewer system when compared to pre-development conditions.
- Control post-development storm flows being directed to the municipal storm sewer in Robinson Avenue, up to an including the 100-year design event, to the maximum allowable release rate calculated using the Rational Method, with a runoff coefficient equivalent to existing conditions, but in no case greater than C=0.5, a time of concentration no less than 10 minutes and a 5-year rainfall intensity from City of Ottawa IDF curves.
- Ensure that no surface ponding will occur on the paved surfaces (i.e., private drive aisles or parking lots) during the 2-year storm event.
- Provide on-site stormwater quality control equivalent to an 'Enhanced' Level of Protection (i.e., minimum 80% TSS removal and 90% of annual runoff treated) prior to releasing flows from the site towards the Rideau River (only applicable to flows being directed to the storm sewer in Robinson Avenue).
- Provide guidelines to ensure that site preparation and construction is in accordance with the current Best Management Practices for Erosion and Sediment Control.

Refer to **Appendix A** for correspondence from the City of Ottawa and the RVCA. The proposed stormwater management design for the site is discussed in the following sections of the report.

2.3.2 Pre-Development Conditions and Allowable Release Rate

Under pre-development conditions, stormwater runoff from the subject site is currently being directed towards two (2) separate and distinct outlets. Storm flows directed to the Robinson Avenue storm sewer are discharged into the Rideau River approximately 700m southeast of the subject site, while storm flows from the baseball diamond and/or to Lees Avenue (west of the subject site) are ultimately tributary to the downstream combined sewer system. Refer to the enclosed Stormwater Management Plan (119171- SWM) for details. There are currently no stormwater quantity or stormwater quality control measures being provided on site.

Pre-Development stormwater flows tributary to downstream combined system

The uncontrolled pre-development flows tributary to the downstream combined sewer system (1.28 ha of the total 2.55 ha subject site and contributing off-site areas) were calculated using the Rational Method to be 89.0 L/s during the 5-year design event and 190.7 L/s during the 100-year design event. Refer to **Appendix E** for detailed calculations.

Pre-Development stormwater flows tributary to Robinson Avenue storm sewer

The uncontrolled pre-development flows tributary to the Robinson Avenue storm sewer (1.27 ha of the total 2.55 ha subject site and contributing off-site areas) were calculated using the Rational Method to be 128.8 L/s during the 5-year design event and 258.5 L/s during the 100-year design event. Refer to **Appendix E** for detailed calculations.

As agreed to by the City of Ottawa, the maximum allowable release rate to be directed to the Robinson Avenue storm sewer is to be calculated using the Rational Method, based on a 10-minute rainfall intensity, using a 5-year return period (City of Ottawa IDF Curves).

Tc	= 10 min	C =0.27
I _{5yr}	= 104.2 mm/hr	A = 2.34 ha
Q_{allow}	= 2.78 CIA = 2.78 (0.27) (104.1 = 183.0 L/s	2) (2.34)

2.3.3 Post-Development Conditions

Under post-development conditions, most of the site flows and contributing off-site flows draining onto the subject site (which cannot be diverted) will be directed to internal SWM storage tanks and/or oversized pipes and structures, where flows will be controlled prior to being discharged into the municipal storm sewer in Robinson Avenue. This approach will mitigate the impacts associated with the increase in imperviousness of the site. Flows being directed to the storm sewer in Robinson Avenue will be attenuated for storms up to and including the 100-year design event. Both on-site stormwater quantity and quality control measures will be provided for site flows being directed to the storm sewer in Robinson Avenue. However, due to the existing topography and proposed grading design, a small area around the perimeter of the site will sheet drain uncontrolled towards the adjacent streets, as there is no practical way to capture this drainage. Stormwater water quality control will not be provided for uncontrolled direct runoff from the site, whether directed to the storm sewer in Robinson Avenue or to the downstream combined sewer system northwest of the subject site.

2.3.3.1 Area DR-1: Uncontrolled Direct Runoff to Combined System

The runoff from this sub-catchment area cannot be captured and will therefore continue to sheet drain off-site. Some stormwater runoff will flow overland towards the roadway catch basins in Lees Avenue, via the west entrance, while a small area near the northwest property corner will continue to sheet drain towards the baseball diamond to the west. The uncontrolled post-development flows from this sub-catchment area were calculated using the Rational Method to be approximately 16.7 L/s during the 5-year design event and 33.1 L/s during the 100-year design event. Refer to **Appendix E** for SWM calculations.

2.3.3.2 Area DR-2: Uncontrolled Direct Runoff to Robinson Storm Sewer

The runoff from this sub-catchment area cannot be captured and will therefore continue to sheet drain overland towards the roadway catch basins in Lees Avenue. The uncontrolled post-development flows from this landscaped area were calculated using the Rational Method to be approximately 14.0 L/s during the 5-year design event and 27.1 L/s during the 100-year design event. Refer to **Appendix E** for SWM calculations.

2.3.3.3 Area A-1: Allowable Flow for City Park Block + Off-Site Drainage

As directed by the City of Ottawa, grading, servicing, and stormwater designs for the future City Park Block are to be developed by others. Runoff from sub-catchment areas A-1 and OS-1 will need to be controlled to a maximum allowable release rate of 18.4 L/s prior to being released into the downstream Robinson Avenue storm sewer system. The allowable release rate for this area has been based on the weighted runoff coefficient with a time of concentration of 10 minutes and a 5-year rainfall intensity. Refer to **Appendix E** for SWM calculations.

2.3.3.1 Area A-2.1: Controlled Flow (Tower A Roof and Deck Drains)

Stormwater runoff from this sub-catchment area will be captured by the main tower roof and lower terrace podium roof/deck drains and will be directed to an internal SWM storage cistern (Tank 1). Stormwater collected within the storage tank will be controlled prior to be being discharged into the on-site storm sewer system, downstream of the water quality treatment unit. The internal SWM storage tank will be equipped with an emergency overflow pipe from the top of the tank to by-pass any potential flows exceeding the 100-year design event.

Table 8 summarizes the post-development design flow from this sub-catchment area as well as the type of ICD, the anticipated water elevations within the tank, the anticipated storage volumes required and storage volume provided for the 2-year, 5-year and the 100-year design events.

		Controlled Site Flows from Area A-2.1						
Design Event	ICD Type	Peak Flow	Tank Water Elev.	Average Flow (50% Qpeak)	Storage Vol. Required	Max Storage Provided		
2-Year	Tempest Vortex ICD LMF-Custom	12.0 L/s	0.75 m (61.15 m)	6.0 L/s	18.4 m³			
5-Year		14.0 L/s	0.80 m (61.20 m)	7.0 L/s	26.7 m³	5 GE m3		
100-Year		16.5 L/s	1.50 m (61.90 m)	8.3 L/s	62.6 m³	> 65 m³		
100-Year (+20%)		18.0 L/s	1.65 m (62.05 m)	9.0 L/s	77.8 m³			

Refer to **Appendix E** for detailed SWM calculations and to **Appendix F** for ICD information.

2.3.3.1 Area A-2.2: Controlled Flow (Roadway and Landscaped Area Drainage)

Stormwater runoff from this sub-catchment area will be captured by the on-site storm sewer system (i.e., catchbasins) and directed to an internal SWM storage cistern (Tank 2). Stormwater collected within the storage tank will be controlled prior to be being discharged into the on-site storm sewer system, upstream of the water quality treatment unit. The internal SWM storage tank will be equipped with an overflow pipe. The site has been designed to ensure that no stormwater will pond on the private paved surfaces (i.e., drive aisles or parking lots) during the 2-year, 5-year or 100-year storm events. Furthermore, the emergency overland flow route spill elevation (63.10m) will provide protection for the adjacent buildings from the maximum ponding elevation during storm events larger than a 100-year design storm. As a result, no surface ponding will be able to reach the building envelope or building openings upstream of the sub-catchment area.

Table 9 summarizes the post-development design flow from this sub-catchment area as well as the type of ICD, the anticipated water elevations within the tank, the anticipated storage volumes required and storage volume provided for the 2-year, 5-year and the 100-year design events.

		Controlled Site Flows from Area A-2.2						
Design Event	ICD Type	Peak Flow	Tank Water Elev.	Average Flow (50% Qpeak)	Storage Vol. Required	Max Storage Provided		
2-Year		7.5 L/s	0.72 m (61.12 m)	3.8 L/s	13.8 m³			
5-Year	Tempest Vortex ICD	9.5 L/s	1.15 m (61.55 m)	4.8 L/s	19.2 m³	> 45 m³		
100-Year	LMF-100	12.0 L/s	1.8 m (62.20 m)	6.0 L/s	43.3 m³	> 40 MP		
100-Year (+20%)		13.0 L/s	2.0 m (62.40 m)	6.5 L/s	53.9 m³			

Table 9: Stormwater Flows, ICD & SWM Tank Storage

Refer to Appendix E for detailed SWM calculations and to Appendix F for ICD information.

2.3.3.1 Area A-2.3: Controlled Flow (Tower A Roof and Deck Drains)

Stormwater runoff from this sub-catchment area will be captured by the main tower roof and lower terrace podium roof/deck drains and directed to an internal SWM storage cistern (Tank 3). Stormwater collected within the storage tank will be controlled prior to be being discharged into the municipal storm sewer in Lees Avenue and ultimately to the Rideau River. The internal SWM storage tank will be equipped with an overflow pipe from the top of the tank to by-pass any potential flows exceeding the 100-year design event.

Table 10 summarizes the post-development design flow from this sub-catchment area as well as the type of ICD, the anticipated water elevations within the tank, the anticipated storage volumes required and storage volume provided for the 2-year, 5-year and the 100-year design events.

_	Controlled Site Flows from Area A-2.3						
Design Event	ICD Type	Peak Flow	Tank Water Elev.	Average Flow (50% Qpeak)	Storage Vol. Required	Max Storage Provided	
2-Year	Tempest Vortex ICD LMF-85	3.5 L/s	0.30 m (60.40 m)	1.8 L/s	24.5 m³		
5-Year		4.5 L/s	0.50 m (60.60 m)	2.3 L/s	33.2 m³	× 70 m3	
100-Year		6.0 L/s	0.85 m (60.95 m)	3.0 L/s	69.3 m³	> 70 m³	
100-Year (+20%)		6.3 L/s	0.95 m (61.05 m)	3.2 L/s	86.4 m³		

Refer to **Appendix E** for detailed SWM calculations and to **Appendix F** for ICD information.

2.3.3.1 Area A-3.1: Controlled Flow (Tower C Roof and Deck Drains)

Stormwater runoff from this sub-catchment area will be captured by the main tower roof and lower terrace podium roof/deck drains and directed to an internal SWM storage cistern (Tank 4). Stormwater collected within the storage tank will be controlled prior to be being discharged into the on-site storm sewer system, upstream of the water quality treatment unit. The internal SWM storage tank will be equipped with an overflow pipe from the top of the tank to by-pass any potential flows exceeding the 100-year design event.

Table 11 summarizes the post-development design flow from this sub-catchment area as well as the type of ICD, the anticipated water elevations within the tank, the anticipated storage volumes required and storage volume provided for the 2-year, 5-year and the 100-year design events.

	Controlled Site Flows from Area A-3.1							
Design Event	ICD Type	Peak Flow	Tank Water Elev.	Average Flow (50% Qpeak)	Storage Vol. Required	Max Storage Provided		
2-Year	Tempest Vortex ICD MHF-'A'	15.0 L/s	0.60 m (60.92 m)	7.5 L/s	21.7 m³			
5-Year		17.5 L/s	0.95 m (61.27m)	8.8 L/s	31.4 m³	> 75 m³		
100-Year		20.0 L/s	1.20 m (61.60m)	10.0 L/s	74.5 m³	> 75 m		
100-Year (+20%)		22.0 L/s	1.50 m (61.90 m)	11.0 L/s	92.3 m³			

Refer to Appendix E for detailed SWM calculations and to Appendix F for ICD information.

2.3.3.1 Area A-3.2: Controlled Flow (Tower B Roof and Deck Drains)

Stormwater runoff from this sub-catchment area will be captured by the main tower roof and lower terrace podium roof/deck drains and directed to an internal SWM storage cistern (Tank 5). Stormwater collected within the storage tank will be controlled prior to be being discharged into the on-site storm sewer system, downstream of the water quality treatment unit. The internal SWM

storage tank will be equipped with an overflow pipe from the top of the tank to by-pass any potential flows exceeding the 100-year design event.

Table 12 summarizes the post-development design flow from this sub-catchment area as well as the type of ICD, the anticipated water elevations within the tank, the anticipated storage volumes required and storage volume provided for the 2-year, 5-year and the 100-year design events.

	Controlled Site Flows from Area A-3.2						
Design Event	ICD Type	Peak Flow	Tank Water Elev.	Average Flow (50% Qpeak)	Storage Vol. Required	Max Storage Provided	
2-Year	Tempest Vortex ICD LMF-Custom	15.0 L/s	0.90 m (61.30 m)	7.5 L/s	20.0 m³		
5-Year		16.5 L/s	1.40 m (61.80 m)	8.3 L/s	30.0 m³	> 75 m³	
100-Year		18.0 L/s	2.00 m (62.40 m)	9.0 L/s	71.7 m³	> / 5 118	
100-Year (+20%)		20.0 L/s	2.20 m (62.60 m)	10.0 L/s	88.4 m³		

Table 12: Stormwater Flows, ICD & SWM Tank Storage

Refer to **Appendix E** for detailed SWM calculations and to **Appendix F** for ICD information.

2.3.3.1 Area A-4: Controlled Flow (Tower D Roof and Deck Drains)

Stormwater runoff from this sub-catchment area will be captured by the main tower roofs and lower terrace deck drains and directed to external SWM storage cisterns (Tanks 6 & 7). Stormwater collected within the inter-connected storage tanks will be controlled prior to be being discharged into the on-site storm sewer system, upstream of the water quality treatment unit. The SWM storage tanks will be equipped with an overflow pipe from the top of the tank. The storm service will be equipped with a backflow prevention device to protect the building from any potential sewer back-ups.

Table 13 summarizes the post-development design flow from this sub-catchment area as well as the type of ICD, the anticipated water elevations within the tanks, the anticipated storage volumes required and storage volume provided for the 2-year, 5-year and the 100-year design events.

	Controlled Site Flows from Area A-4						
Design Event	ICD Type	Peak Flow	Tank Water Elev.	Average Flow (50% Qpeak)	Storage Vol. Required	Max Storage Provided	
2-Year	Tempest Vortex ICD LMF- Custom	7.9 L/s	0.80 m (61.45 m)	4.0 L/s	28.7 m³		
5-Year		9.6 L/s	1.12 m (61.77 m)	4.8 L/s	40.0 m ³	91 m³	
100-Year		14.2 L/s	2.27 m (62.92 m)	7.1 L/s	82.3 m³	91 119	
100-Year (+20%)		15.0 L/s	2.50 m (63.15 m)	7.5 L/s	103.0m ³		

 Table 13: Stormwater Flows, ICD & SWM Tank Storage

Refer to **Appendix E** for detailed SWM calculations and to **Appendix F** for ICD information.

2.3.3.1 Area A-5: Controlled Flow (Roadway and Landscaped Area Drainage)

Stormwater runoff from this sub-catchment area will be captured by the on-site storm sewer system (i.e., catchbasins and CBMHs) and directed to an external underground SWM storage system comprised of over-sized pipes and structures. Stormwater collected within the underground SWM storage system will be controlled prior to be being discharged into the on-site storm sewer system, upstream of the water quality treatment unit. The site has been designed to ensure that no stormwater will pond on the private paved surfaces (i.e., drive aisles or parking lots) during the 2-year, 5-year or 100-year storm events. Furthermore, the emergency overland flow route spill elevation (62.95m) will provide protection for the adjacent buildings from the maximum ponding elevation during storm events larger than a 100-year design storm. As a result, no surface ponding will be able to reach the building envelope or building openings upstream of the sub-catchment area.

Table 14 summarizes the post-development design flow from this sub-catchment area as well as the type of ICD, the maximum water elevations above the low top of grate elevation within the west ditch, the anticipated storage volumes required and storage volume provided for the 2-year, 5-year and the 100-year design events.

	Controlled Site Flows from Area A-5						
Design Event	ICD Type	Peak Flow	Max. Water Elev.	Average Flow (50% Qpeak)	Storage Vol. Required	Max Storage Provided	
2-Year	Tempest Vortex ICD MHF-Custom	13.7 L/s	0.0 m (60.38 m)	6.9 L/s	35.6 m³		
5-Year		17.3 L/s	0.0 m (60.63 m)	8.7 L/s	49.3 m³	106 m ³	
100-Year		35.8 L/s	0.23 m (62.83 m)	17.9 L/s	94.1 m³	100 ms	
100-Year (+20%)		38.0 L/s	0.35 m (62.95 m)	19.0 L/s	118.8 m³		

 Table 14: Stormwater Flows, ICD & SWM Tank Storage

Refer to Appendix E for detailed SWM calculations and to Appendix F for ICD information.

2.3.3.1 Area A-6: Controlled Flow (Roadway and Landscaped Area Drainage)

Stormwater runoff from this sub-catchment area will be captured by the on-site storm sewer system (i.e., catchbasins and CBMHs) and directed to an external underground SWM storage system comprised of over-sized pipes and structures. Stormwater collected within the underground SWM storage system will be controlled prior to be being discharged into the on-site storm sewer system, upstream of the water quality treatment unit. The site has been designed to ensure that no stormwater will pond on the private paved surfaces (i.e., drive aisles or parking lots) during the 2-year, 5-year or 100-year storm events. Furthermore, the emergency overland flow route spill elevation (64.95m) will provide protection for the upstream buildings from the maximum ponding elevation during storm events larger than a 100-year design storm. As a result, no surface ponding will be able to reach the building envelope or building openings upstream of the sub-catchment area.

Table 14 summarizes the post-development design flow from this sub-catchment area as well as the type of ICD, the maximum water elevations above the low top of grate elevation of CBMH 05, the anticipated storage volumes required and storage volume provided for the 2-year, 5-year and the 100-year design events.

	Controlled Site Flows from Area A-6						
Design Event	ICD Type	Peak Flow	Max. Water Elev.	Average Flow (50% Qpeak)	Storage Vol. Required	Max Storage Provided	
2-Year	Tempest Vortex ICD LMF-Custom	9.0 L/s	0.0 m (62.82 m)	4.5 L/s	25.9 m³		
5-Year		9.5 L/s	0.0 m (63.08 m)	4.8 L/s	38.3 m³	99 m³	
100-Year		12.2 L/s	0.0 m (64.52 m)	6.1 L/s	86.5 m³	99 m ²	
100-Year (+20%)		13.0 L/s	0.10 m (64.95 m)	6.5 L/s	107.6m ³		

 Table 14: Stormwater Flows, ICD & SWM Tank Storage

Refer to Appendix E for detailed SWM calculations and to Appendix F for ICD information.

2.3.4 Stormwater Flow Summary

Stormwater Flows tributary to downstream combined sewer

Table 15 compares the post-development flows from Area DR-1 to the uncontrolled predevelopment flows that were sheet draining uncontrolled towards the baseball diamond on the adjacent property to the west, for both the 5-year and the 100-year design events.

Table 15: Stormwater Flow Comparison Table

Design	Pre-De	velopment Con	ditions	Post-Development Conditions		
Design Event	Pre-01 Flow (L/s)	Pre-02 Flow (L/s)	Total Flow (L/s)	DR-1 Flow (L/s)	Reduction in Flow (L/s) and (%) *	
5-Yr	6.1	84.1	90.2	16.7	73.5 L/s or 81%	
100-Yr	12.5	174.2	186.7	33.1	153.6 L/s or 82%	

*Reduced flow compared to pre-development uncontrolled conditions

As indicated in the table above, the post-development flows from area DR-1 have been significantly reduced when compared to pre-development conditions. Re-directing uncontrolled storm flows will improve the downstream combined sewer system by reducing the peak wetweather flows, thus providing additional capacity within the system. Diverting stormwater runoff will also reduce the amount of stormwater being treated at the Robert O. Picard Environmental Centre (ROPEC) Wastewater Treatment Plan.

Stormwater Flows tributary to Robinson Avenue storm sewer

Table 16 compares the post-development flows from Area DR-1 to the uncontrolled predevelopment flows currently tributary to the Robinson Avenue storm sewer for both the 5-year and the 100-year design events.

Design Event	Pre-Dev. Conditions	Post-Development Conditions								
	Total Flow (L/s)	DR-2 (L/s)	A-1 (L/s)	A-2* (L/s)	A-3** (L/s)	A-4 (L/s)	A-5 (L/s)	A-6 (L/s)	Total (L/s)	Reduction (L/s)***
5-Yr	128.8	14.0	< 16	28.0	34.0	9.6	17.3	9.5	128.4	0.4 L/s or < 1%
100-Yr	258.5	27.1	18.4	34.5	38.0	14.2	35.8	12.2	180.2	78.3 L/s or 30%

Table 16: Stormwater Flow Comparison Table

^{*}Includes flows from A-2.1, A-2.2 and A-2.3

**Includes flows from A-3.1 and A-3.2

*** Reduced flow compared to pre-development uncontrolled conditions

As indicated in the table above, the post-development flows from areas DR-2 and A-1 to A-6 are being controlled to pre-development flows during the 5-year design event and are significantly reduced when compared to 100-year pre-development conditions.

The proposed building storm services should be equipped with backflow prevention devices and the internal SWM storage tanks will be equipped with emergency overflow pipes to protect the building. Flows from all controlled post-development sub-catchment areas indicated in **Table 16** above will be directed to the Robinson Avenue storm sewer which ultimately outlets to the Rideau River.

2.3.5 Stormwater Quality Control

The subject site is located within the jurisdiction of the Rideau Valley Conservation Authority (RVCA) and is tributary to the Rideau River. Based on preliminary feedback from the RVCA, surface parking lots and drive aisles typically require an 'Enhanced' Level of Protection (i.e., 80% TSS removal). Landscaped areas and roof tops are considered clean for the purposes of water quality and aquatic habitat protection.

To achieve the required level of quality control protection, a new oil-grit separator unit (CDS Model PMSU 20_20_5) will be installed at the downstream end of the on-site storm sewer system. Stormwater runoff collected by the on-site storm sewer system (1.47 ha tributary area) will be directed through the proposed treatment unit. The contributing area includes the internal roadways, loading areas, surface parking areas as well as some building roofs/landscaped areas.

As stated above, the proposed oil-grit separator has been sized to provide an 'Enhanced' Level of water quality treatment prior to discharging the stormwater into the municipal storm sewer and ultimately into the Rideau River. Echelon Environmental and Contech Stormwater Solutions Inc. have modeled and analyzed the tributary area to provide a CDS unit capable of meeting the TSS removal requirements. The model parameters for the TSS removal were based on historical rainfall data for Ottawa from the Ontario Climate Centre. It was determined that a CDS Model PMSU 20_20_5 will exceed the target removal rate, providing a net annual 82.2% TSS removal.

The CDS unit has a treatment capacity of approximately 31 L/s, a sediment storage capacity of 1.67m³; an oil storage capacity of 376 L and will treat a net annual volume of approximately 97.9% for the tributary area.

The shallow flat grass swale on site will provide additional stormwater quality control by reducing flow velocities and thus promoting infiltration and the removal of suspended solids. The CB and CBMH structures will be equipped with sumps to promote additional settling of sediment. It is expected that the proposed treatment train approach will be used to provide the requisite level of water quality control.

Maintenance and Monitoring of the Storm Sewer and Stormwater Management Systems

It is recommended that the owner implement a maintenance and monitoring program for both the on-site storm sewers and the stormwater management systems: The storm drainage system should be inspected routinely (at least annually); the inlet control devices should be inspected to ensure they are free of debris; and the oil-grit separator should be inspected at regular intervals and maintained when necessary to ensure optimum performance. Refer to **Appendix G** for the CDS unit design parameters, sizing analysis, operation, design, performance, and maintenance summary parameters as well as the annual TSS removal efficiency data.

3.0 SITE GRADING

The existing topography will have a significant impact on the proposed development, as the grade drops approximately 9m from the northeast corner (~70.00m) down to the southwest corner of the site (~61.00m). As a result, the slope of the internal roadways will vary from 1.0% up to 4.8%. To work with the existing topography and internal roadway grades, the ground floor elevation (GFE) of the proposed towers will vary as follows: Tower A (64.00m), Tower B (64.00m), Tower C (67.50m) and Tower D (65.00m-66.00m). The underground parking levels will also vary based on the respective towers and adjacent roadway grades. A structural retaining wall is being proposed along the west property line to ensure that most of the stormwater runoff is captured by the on-site storm sewer system and directed to the storm sewer in Robinson Avenue, rather than continue to sheet drain overland to the baseball diamond to the west. Due to the existing topography, an access off Chapel Crescent will not be possible. The grading and drainage design has been developed to work with the existing grades along the property lines and proposed site entrances of Lees Avenue. Refer to the enclosed Grading Plan (119171-GR) for details.

3.1 Emergency Overland Flow Route

In the case of a major rainfall event exceeding the design storms provided for, the stormwater located within the subject site will overflow towards the lower downstream sub-catchment areas and ultimately flow towards Lees Avenue. The main floor elevations of the Towers (A, B, C & D) have been set to be a minimum of 0.3m above the downstream major system overflow points. The emergency overland flow route is shown on the enclosed Grading Plan (119171-GR).

4.0 GEOTECHNICAL INVESTIGATIONS

A Geotechnical Investigation Report has been prepared by Paterson Group Inc. for the proposed project. Refer to the Geotechnical Report² for subsurface conditions, construction recommendations and geotechnical inspection requirements.

5.0 EROSION AND SEDIMENT CONTROL

To mitigate erosion and to prevent sediment from entering the storm sewer system, temporary erosion and sediment control measures will be implemented on-site during construction in accordance with the Best Management Practices for Erosion and Sediment Control. This includes the following temporary measures:

- Filter bags / catchbasin inserts (sediment sacks) will be placed under the grates of nearby catchbasins and manholes and they will remain in place until vegetation has been established and construction is completed.
- Silt fencing will be placed per OPSS 577 and OPSD 219.110 along the surrounding construction limits.
- Mud mats will be installed at the construction entrances to the site.
- Street sweeping and cleaning will be performed, as required, to suppress dust and to provide safe and clean roadways adjacent to the construction site.
- On-site dewatering is to be directed to a sediment trap and/or gravel splash pad and discharged safely to an approved outlet as directed by the engineer.

The temporary erosion and sediment control measures will be implemented prior to construction and will remain in place during all phases of construction. Regular inspection and maintenance of the erosion control measures will be undertaken.

In addition, the following measure will provide permanent erosion and sediment control on site:

• A CDS type Oil/Grit Separator will be installed to provide water quality control prior to releasing stormwater from sub-catchment areas A-2.2, A-3.1, A-4, A-5, and A-6 inclusively.

6.0 CONCLUSION

This report has been prepared in support of a Site Plan Control application for the proposed multi-tower mixed-use development at 2 Robinson Avenue.

The conclusions are as follows:

- The proposed development will be serviced by the municipal watermain, sanitary and storm sewers in Chapel Crescent, Lees Avenue and Robinson Avenue.
 - Sanitary flows will continue to be directed to the existing sanitary outlet sewer which runs along the north side of Lees Avenue, adjacent to the existing baseball diamond. CCTV inspection of the existing sanitary outlet sewer demonstrated that the pipes are in good condition. Sewage flow calculations indicate that the existing outlet pipes have sufficient capacity to accommodate the anticipated site flows.
 - Storm flows will be significantly reduced from the site and will be directed to the existing municipal storm sewer in Robinson Avenue. The proposed design also redirects a significant portion of the uncontrolled stormwater runoff currently tributary to the downstream municipal combined sewer system, while reducing total flows to the Robinson Avenue storm sewer system.
 - The proposed watermain extension along Chapel Crescent will provide a second feed to the site and allow for the creation of a looped watermain system on-site. The looped watermain network will provide the necessary building service redundancy and will allow for system maintenance without service disruption.

Adequate water and system pressures will exist throughout the watermain network under the specified 'Max Day + Fire Flow' and 'Peak Hour' conditions under both Scenario 1 and Scenario 2.

- The proposed mixed-use and residential towers will be sprinklered and supplied with fire department siamese connections. Each of the proposed siamese connections will be located within 45m of a fire hydrant.
- The proposed stormwater design for the development provides an opportunity to improve both the downstream municipal storm and combined sewer systems by:
 - Providing on-site stormwater management measures, prior to releasing flows from 0 the re-developed site, whether flows are being directed to the municipal storm or combined sewer systems.
 - Providing additional capacity within the combined sewer system by re-directing a \circ portion of the stormwater runoff, currently flowing uncontrolled into the combined sewer system, to the Robinson Avenue storm sewer system.
- The total post-development flow directed to the downstream combined sewer system will be approximately 16.7 L/s during the 5-year design event and 33.1 L/s during the 100year event. Post-development flows directed to the downstream combined sewer system are being reduced by 73.5 L/s (or 81%) during the 5-year event and by as much as 153.6 L/s (or 82%) during the 100-year design event, when compared to the respective current conditions.
- The total post-development flow to the Robinson Ave. storm sewer will be approximately • 128.4 L/s during the 5-year design event and 180.2 L/s during the 100-year event, both of which are less than the allowable release rate of 183.0 L/s. Post-development flows are essentially being maintained during the 5-year event and are reduced by as much as 78.3 L/s (or 30%) during the 100-year design event, when compared to current conditions.
- Erosion and sediment controls are to be provided both during construction and on a • permanent basis. An oil / grit separator unit (CDS Model PMSU 20 20 5) will provide an 'Enhanced' Level of water quality control for the portion of the site discharging towards the municipal storm sewer in Robinson Avenue.
- Regular inspection and maintenance of the storm sewer system, including the inlet control devices and the CDS treatment unit is recommended to ensure that the storm drainage system is clean and operational.

It is recommended that the proposed site servicing and stormwater management design be approved for implementation.

NOVATECH

Prepared by:

Stephen Matthews, B.A. (Env.) Senior Design Technologist

François Thauvette, P. Eng. Senior Project Manager - Land Development

APPENDIX A

Correspondence

Francois Thauvette

From:	McCreight, Andrew <andrew.mccreight@ottawa.ca></andrew.mccreight@ottawa.ca>					
Sent:	Friday, October 11, 2019 3:20 PM					
То:	Mike Marcella; Roderick Lahey					
Cc:	Brian Casagrande; Jeff Nadeau; Jennifer Luong; Francois Thauvette;					
	akumar@rlaarchitecture.ca; Mottalib, Abdul; Fraser, Mark; Wood, Mary Ellen; Giampa,					
	Mike; Moise, Christopher; David Elden ASH					
Subject:	Pre-Con follow-up: 2 Robinson					
Attachments:	2 Robinson - Pre-Application Consultation Meeting Minutes.pdf; Pre-con Applicant's Study and Plan Identification List - 2 Robinson - Site Plan.pdf; Pre-con Applicant's Study and Plan Identification List - 2 Robinson - OPA and Rezoning.pdf; 2 Robin -Pre- consultation follow up engineering.rtf					

Hello,

Please refer to the below [and attached minutes] regarding the Pre-Application Consultation (pre-con) Meeting held on October 4, 2019 for the property municipally known as 2 Robinson Avenue.

The applicant/owner presented a development concept consisting of five buildings. The overall concept requires an application for Zoning By-law Amendment and Official Plan Amendment. As part of the concept, that applicant/owner proposed to initiate a Site Plan application for the first building showing a complying development. Based on the above, the plan and study submission requirements have been separated respectively.

See attached required Plans & Study List for submission. Note that the "Site Plan" and "Zoning / OPA" list are very similar. For Site Plan most of the submission material, except civil requirements, can concentrate on the Building 1 "site", whereas the Zoning / OPA submission requirements must cover the entirety of the site. Ideally provide as much information as possible with the first Site Plan submission, and we can discuss additional information required for inclusion in the rezoning / OPA applications.

Attached are staff's preliminary comments based on the information available at the time of pre-con meeting. The attached pre-con Meeting Minutes summarize the meeting discussion. If any comments were recorded incorrectly, please respond to the group and clarify. Similarly, if anyone has any additional comments please do not hesitate to pass those along to the group.

<u>Planning</u>

- See comments in the attached minutes
- The property is currently subject to three separate zones, with <u>TD2</u> [2078] generally towards the front west corner of the site, <u>TD1</u> [2078] through the middle and eastern portion of Lees Avenue, and <u>I1A</u> along the rear. Urban Exception 2078 is not relevant to the proposal. As noted in the minutes, maintaining the intent of the TD provisions, such as active frontage provisions, density targets, communal amenity area, and phasing compliance must be evident in the submission material. Review of the overall building height, massing, built form, transition etc. will continue through the review process and informal UDRP, but staff will looking to ensure that high-level TOD principles and current zoning intent on the above items apply.
- The site is designated as General Urban Area in the Official Plan.

- Section 3.6.1 (General Urban Area) contains the relevant polices to this designation, and can be found <u>HERE</u>. Also, review policies such as 2.5.1 and 4.11 concerning urban design and compatible to assist with further evolving the proposal. Depending on the time of submission, additional or amended policy direction may be in effect.
- Review the policy context and requirements for proposed building height of 31+ storeys. Given concept submitted at pre-consult, recommend remaining below this threshold.
- The <u>Sandy Hill Secondary Plan</u> applies to this property. The subject site is located within the mixed-use designation, includes bicycle network connectivity (Schedule K), and the maximum heights in Schedule L (subject of OPA).
- Lees TOD Plan Review the plan direction such as connectivity, greenery, land use, heights and density, and built form.
- Review the <u>Transit-Oriented Development Guidelines</u> and include analysis within the Planning Rationale.
- Review the <u>Urban Design Guidelines for High-rise Building</u> and include analysis within the Planning Rationale.
- Review the <u>Bird-Friendly Design Guidelines</u> and status prior to submitting an application.
- NCC Applicant should contact the NCC early in process to explore servicing options through the Sandy Hill Area lands (if necessary), and the connectivity options with the MUP. If contacting through email, please copy Andrew McCreight on this correspondence. Your inquiry can be directed to Andrew Sacret <u>Andrew.Sacret@ncc-ccn.ca</u> for assignment.

<u>Urban Design</u>

- See comments in the attached minutes.
- Recommend informal review with Urban Design Review Panel.

<u>Heritage</u>

• N/A

Engineering

• See comments in Minutes and have consultant contact Abdul Mottalib for further direction.

Feel free to contact Infrastructure Project Manager, Abdul Mottalib, at <u>Abdul.Mottalib@ottawa.ca</u>, ext.27798, for follow-up questions.

Transportation

- See comments in attached minutes.
- Schedule transportation meeting once TIA Step 2 is complete.

Feel free to contact Transportation Project Manager, Mike Giampa, at <u>mike.giampa@ottawa.ca</u>, ext.23657, for follow-up questions.

Parkland

- See comments in minutes.
- The City will be seeking full Parkland dedication in accordance with the Parkland Dedication Bylaw of the City of Ottawa.

Community representative comments

• Action Sandy Hill comments recorded in the meeting minutes.

Waste Management

• Only the residential portion of the buildings are eligible for City Collection. See the Waste Management Guidelines. Once the number of units is determined, Waste Services can suggest the bin requirements for each building.

<u>Other</u>

Site Plan Control / Zoning By-law Amendment / Official Plan Amendment

- <u>Site Plan</u> New Development Complex (Manager Approval, Public Consultation)
 - Building 1 proposal as noted int the minutes. Submission must include concept plans show full extent of development (5 building
 - Important Note: Be mindful of the piecemeal approach (proposed 20-storey, option for more height later) and the impact it may have on further applications for revision.
- Zoning By-law Amendment Application would be major rezoning.
- Official Plan Amendment
- Let me know if you have any questions concerning required submissions.

Next Steps

 The subject property is located in Ward 12, Rideau-Vanier. I encourage discussing the proposal with the Ward Councillor and reaching out to the surrounding neighbours for awareness of the potential proposal. If you reach out to the general public prior to application submission, please consider waiving the Non-Disclosure Agreement confidentiality.

Please refer to the links to "<u>Guide to preparing studies and plans</u>" and <u>fees</u> for general information. Additional information is available related to <u>building permits</u>, <u>development charges</u>, <u>and the</u> <u>Accessibility Design Standards</u>. Be aware that other fees and permits may be required, outside of the development review process. You may obtain background drawings by contacting <u>informationcentre@ottawa.ca</u>.

These pre-con comments are valid for one year. If you submit a development application after this time, you may be required to meet for another pre-consultation meeting and/or the submission requirements may change. You are as well encouraged to contact us for a follow-up meeting if the plan/concept will be further refined.

Please do not hesitate to contact me if you have any questions.

Regards, Andrew

Andrew McCreight MCIP RPP

Planner III /Urbaniste III Development Review Central/Examen des demandes d'aménagement secteur centre PLANNING, INFRASTRUCTURE AND ECONOMIC DEVELOPMENT SERVICES DE PLANIFICATION, D'INFRASTRUCTURE ET DE DÉVELOPPEMENT ÉCONOMIQUE

Formal Pre-Application Consultation Meeting Minutes 2 Robinson Avenue PC2019-0256 Friday, October 3, 2019, 10:00 – 11:30 p.m.

Attendees

<u>City of Ottawa</u> Andrew McCreight, File Lead Mohammed Abdul Mottalib, Engineering Mark Fraser, Engineering Mike Giampa, Transportation Christopher Moise, Urban Design Mary Ellen Wood, Parks Urja Modi, Student Planner

<u>Community Representative</u> David Elden*, Action Sandy Hill CA

Applicant Team

Mike Marcella, Owner/Developer Roderick Lahey, Architect (RLA Architecture) Ashwani Kumar, Urban Designer (RLA Architecture) Brian Casagrande, Planner (FoTenn) Jeff Nadeau, Planner (FoTenn) Francois Thauvette, Civil Engineer (Novatech) Jennifer Luong, Traffic Engineer (Novatech)

*David Elden signed a non-disclosure agreement prior to this meeting.

Proposal Overview (applicant)

The applicant is proposing to construct a high-density, mixed-use development focused mainly on residential, with four towers ranging from 20 to 32 storeys, sitting on 6-storey podiums and fronting Lees Avenue. Building 1 is located to the south-west corner of the site, Building 4 is located to the south-east corner of the site, and Buildings 2 & 3 are positioned between Buildings 1 & 4. The ground floors of the buildings will be used for commercial purposes and a grocery store may potentially be implemented in the podium between Buildings 2 & 3. A 6-storey crescent building, Building 5, is proposed to the rear of the site. Greenspace is proposed to the north-west of Building 5, and due to grade changes the building also serves as a retaining wall. The development totals a gross floor area of approximately 1.2 million square metres. None of the commercial units are confirmed at this stage but will be looking at options such as athletic facility, restaurants, and local servicing uses.

The mix of residential uses is currently unknown, however, Building 1 will be primarily composed of rental units. The applicant team will first file for a fully compliant Site Plan Control application for Building 1 and will then proceed with filing a Zoning By-Law Amendment and Official Plan Amendment for the remainder of the development. Building 1 is intended to be submitted as a 20-storey building, but with the ultimate plan of potentially being 26-storeys as the ZBL/OPA applications catch up.

The "institutional" zoned land along the north edge of the site is intended for use as a new city park and pathway. A pathway previously existed in this location and will be formalized through these applications. The concept plans also highlights ideas for pedestrian and cyclist connectivity. Concept is to have privately owned street, but with right-of-way and sidewalk built to City standards. Applicant will work with the University to explore broader connectivity to campus.

Different concepts were looked at, including having an access at Robinson, but these options were viewed as restricting development, especially for fitting in a grocery store.

Comments from related disciplines

The following subsections provide City staff and community representative comments.

<u>Planning</u> *City staff: Andrew McCreight*

General speaking, City staff appreciate the concept details and intent of the proposed development but expressed concerns of the site access and the strategies for servicing. Nonetheless, City staff advise the applicant team of the following comments:

- It is recommended that the applicant team check to see if the proposed development triggers Section 37. On October 1st, the Section 37 uplift values increased to \$575 per square metres from the 2017 value of \$330 per square metres. Subject to Bill 108.
- The applicant will need to determine the type of ownership and potential lot parcelling (i.e. one ownership, condominium, severing, etcetera) of their proposed development because the type and number will affect site servicing and nuances for zoning. In the planning rationale evaluate the redistribution of densities proposed compared to current zoning and built forms permitted. The TD zoning requirements for densities on the subject site are a minimum 150 units per hectare at the rear and 250 units per hectare at the front.
- Northern section connectivity and connectivity with the surrounding area should be thoroughly considered and designed. City staff recommend that a landscape architect be hired to work with this topic.
- Mature trees that surround the perimeter of the lot in the ROW shall be preserved, and this must be evaluated through a Tree Conservation Report. Mature trees along the rear of lot as well.
- 2% of the lot area must be dedicated to communal amenity space as per current zoning.
- A Zoning By-Law Amendment and Official Plan Amendment Is required for the proposed concept. The applicant team clarifies that they will submit a separate application (Phase 1) for building 1, in which only a Site Plan Control application is required. City staff explained that supporting material and details, including plans showing subsequent phases, will be required when applying for a Site Plan Control application for Phase 1. Moreover, it is advised that reasoning for an Official Plan Amendment and Zoning By-Law Amendment being explained in associated planning rationales. What was the intent of the current TD1 and TD2 zones, and how were the zone lines established?
- The applicant team will be required to explain how they meet the intent of the Sandy Hill Secondary Plan in their planning rationale. The Secondary Plan currently limits heights to 20 storeys for Buildings 1 & 2, and 6 storeys for Buildings 3 & 4 of the proposed development.
- The transit-oriented development (i.e. parking, modal share, active transportation methods, etcetera) and high-rise guidelines will also need to be thoroughly explained in the planning rationale.
- City staff want to see an active street frontage (Lees) and facades that include 50% transparent glazing and minimum 50% building frontage. See TD zoning for applicable provisions. This is expected to be maintained despite the request for Rezoning/OPA.
- Access to and from the subject site will need to be further evaluated. It is recommended that the applicant team finish step 2 of their TIA submission, and then pause the study when revisiting this issue. City staff will arrange a meeting with the applicant team to specifically discuss transportation issues associated to the proposed project, especially the direction given for a

signalized intersection at Lees and Robison. Meeting to be scheduled upon request of application after completion of Step 2.

• City staff encourage the applicant team to attend an informal UDRP meeting to discuss programming, street access, and tower locations. The applicant team is also encouraged to work closely with the National Capital Commission for site connectivity.

<u>Parks</u> City staff: Mary Ellen Wood

City staff have the following comments about parkland and recreational facilities on the subject site:

- Parks and Facility Planning will be requesting the maximum of 10% of the land area of the site being developed to be conveyed as parkland dedication.
- Parkland dedication is to have frontage on a local road (Chapel Crescent).
- Providing connectivity between Chapel Crescent and Mann Avenue is strongly recommended and consistent with the Lees TOD Greenspace Plan.
- Lees TOD Bicycle Network illustrates a future multi-use pathway through the subject lands. Lands constructed with a multi-use pathway will not form part of the parkland dedication.
- Sandy Hill Arena and baseball diamond located north of the subject lands are currently active facilities with regular programming.
- The lands known as 50 and 60 Mann Ave are owned by NCC, the City of Ottawa owns land abutting the subject property known as 40 Mann Ave.
- Parks and Facility Planning may provide further comments on a formal circulation.

Further discussion will be required to determine the type of parkland function that would be appropriate for this site.

Transportation

City staff: Mike Giampa / Andrew McCreight / Jennifer (applicant)

Discussion was primarily focused on the site access comparing what is shown in the concept, and staff comments about an intersection at Robinson. Other items such as modal share, pedestrian and cyclist connectivity were discussed. It was recommended, and agreed, to complete Step 2 of the TIA and then schedule a meeting to have a focused discussion on transportation.

<u>Urban Design</u>

City staff: Christopher Moise

City staff have the following comments regarding the deign of the proposed development:

- A specialized design session may be triggered if the proposed development reaches or exceeds 31-storeys.
- The stepping-off of the towers from the back of the podium creates strange spaces. Wrapping the podiums around the entirety of the towers may be more functional.
- The proposed location of the crescent building may not make sense and requires further justification.

The applicant team is advised to illustrate the lines of transition to the surrounding context, specifically the neighbourhood to the northeast, and relate them to the TOD study in the planning rationale. Moreover, it is recommended that a model showing existing TOD massing and surrounding context be presented at informal UDRP meeting.

Engineering City staff: Abdul Mottalib

City staff explain that the subject site faces many infrastructure and site servicing challenges as there is no connection available to local storm, sewer, and infrastructure.

Preliminarily, City staff have the following comments and requests for engineering purposes:

- Two feeds for water demand is required for each of the proposed buildings.
- The City does not allow any new connections to the proximal feeder main; connecting to this main is not an option.
- A minimum of two feeds will be needed for the proposed development.
- At least two fire hydrants, with a minimum 200mm watermain, will be required.
- At least 300 will be needed for sanitary after full development. A sanitary collector is available on Robinson. The applicant team can possibly use this collector by extending the sewer along Robinson.
- Residual capacity will need to be considered.
- Record of site condition will be required.
- A master servicing study and a serviceability study will be required.
- A stormwater management report/brief will be required.
- A geotechnical study will be required.
- Phase 1 and Phase 2 Environmental Site Assessments will be required.
- Watermain and hydro analysis will be required.
- ECA will be required for extended sewer and transfer review.
- Any future applications for the subject site and proposed development will be subject to an MOE.
- Follow-up email will include full details on engineering requirement, and more detailed comments.

City staff will provide additional notes regarding the engineering details of the subject site and proposed development.

<u>Comments from community representative</u> David Elden, Action Sandy Hill Community Association

The community representative shared the City's comments regarding connectivity with the surrounding area and facilities, traffic on Lees and the impact of the proposed access/exits, and preserving mature trees. The community representative expressed the following additional concerns and comments:

- Access to the Lees O-Train Station or the University of Ottawa Campus O-Train Station
- Shading on Building 5 from the towers of Building 1-4
- Brownfield remediation

- Distortion of the area's demographics from an increasing student rental market; Generally speaking, the community fears that this development will become a University of Ottawa student residence complex.
- Having a grocery store in the proposed development is ideal for the community.
- The community representative wants to see a community design charette for the space between Robinson and Mann that potentially involves community members.
- Review the LEED Neighbourhood concept
- Consider options with District Energy
- Encourage to keep community and ASH actively involved in discussions throughout process

The community representative had the following questions regarding the proposed development:

- Is the site brownfield, will remediation be required?
- Applicant response: Yes
- Zoning by-law or variances required?
- Response: Zoning By-law Amendment proposed
- Are there any community benefits for low-income housing?
- Applicant response: specific programming for development not yet determined.
- Is any of the housing going to be, as defined by City, affordable?
- Applicant response: proposal will likely include some form of affordable housing, but this has yet to be determined.
- Any intent of obtain LEED neighbourhood concept?
- Applicant response: Will look into this.
- Will the proposed development be hooking into University of Ottawa energy direct system?
- Applicant response: likely not option but will consider.
- Where does Action Sandy Hill get a chance to be involved again?
- Staff response: Applicant is strongly encourage to engage the broader community prior to application submission, but from a requirement perspective, this is not required until an application has been submitted.

Next steps

City staff will provide a separate lists of required plans and studies for Site Plan (Building 1), and Rezoning and OPA. A transportation meeting will be arranged to discuss possible issues and options regarding site access and traffic.

It is recommended that the applicant team also seek input from the Ward Councillor, Community Association and surrounding residents.

The applicant anticipates applying by late November and is happy to meet with the community prior to applicant submission.

Site: 2 Robinson Road-Residential development date of pre-consult Friday, October 4, 2019

Storm Sewer:

On Robinson 900 mm, local street, needs to be extended up to Lees Avenue to capture flow from the proposed development.

Sanitary:

On Robinson 250mm, if this sewer is adequate to handle the buildout demand for the proposed development then it can be extended to capture flow from this property otherwise the consultant has to upgrade the existing 250 sanitary sewer and extend it up to Lees Avenue to capture the flow. This will be the best option for this site as this option will be using city ROW and ultimately will be discharging wastewater to the existing 1500mm collector, which has ample capacity.

Option2: Existing 250mm sanitary service lateral may not be adequate to service the development. The service lateral relates to the 450mm sanitary sewer on Mann Street, which also may not have residual capacity to handle the buildout demand. Even though, if the consultant wants to use the existing service lateral and wants to connect into Mann Street sanitary sewer, they will have to investigate the capacity of the existing service lateral and will need to provide ultimate demand to us to do the modeling of the Mann street sewer to check whether it will be able to handle the proposed flow. In addition, they will have to investigate the accessibility i.e. how the service lateral will be connected to the Mann street sewer using other properties. They may need to enter into an agreement with the landowners through which the pipe passes.

Water:

There is no local watermain fronting this property except a 610mm feeder watermian on Chapel Cres. A 150mm water service connected with this feeder main currently servicing the property. Due to the extent of the development two service connections will be required per building for this development.

Existing water service connection can be used as the one connection for the site while 200mm watermain on Mann street will need to be upsized to a 400mm watermain from Mann & Nicolas for 2nd water service connection.

Fire hydrants: Two or more fire hydrants will be required for this site to handle the fire flow.

Fireline meter: This site will require two fireline meters, one at the property entrance and the other one at the exit.

Vibration Monitoring Program for digging adjacent to 610mm feedermain: A Vibration Monitoring Specialist Engineer shall undertake vibration monitoring, develop the vibration monitoring plan, ensure conformance and shall issue certificates of conformance. The Vibration Monitoring Specialist Engineer shall be a Licensed Engineer in the Province of Ontario with a minimum of five years experience in the field of Vibration Monitoring. Vibration monitors are to be placed directly on the watermain. The Maximum Peak Particle Velocities are to be in accordance with Table 1 of the City of Ottawa Specification F-1201.

Capacity issues for sewers

Please find the Servicing Report Template & Study Guidelines" in the attachment and prepare the servicing study accordingly. For capacity issue, please see section 3.2.1 page 3-3 and follow this section. A completed checklist with corresponding references from the servicing study is mandatory for the completeness of the study. Please add a completed checklist in the report.

Required information for Water boundary conditions (not required if you're using existing service)

Boundary conditions are required to confirm that the require fire flows can be achieved as well as availability of the domestic water pressure on the city street in front of the development. Please use Table 3-3 of the MOE Design Guidelines for Drinking-Water System to determine Maximum Day and Maximum Hour peaking factors for 0 to 500 persons and use Table 4.2 of the Ottawa Design Guidelines, Water Distribution for 501 to 3,000 persons.

- 1. Location of Service
- 2. A sketch of the proposed water service to the city watermain
- 3. Street Number & Name
- 4. Type of development and units
- 5. Amount of fire flow required ____l/s (Calculation as per the FUS Method).
- 6. Average daily demand: -I/s
- 7. Maximum daily demand: -l/s
- 8. Maximum hourly daily demand: -l/s

Please note proposed development will require 2 separate service connections from the city watermains if the basic day demand is greater than 50m³/day to avoid the creation of a vulnerable service area. Two water meters will be required for two service connections and the service connections will have to be looped.

Utility conflict with the proposed servicing

It is the consultant's sole responsibility to investigate the existing utilities in the proposed servicing area while preparing the Servicing and Grading Plans to avoid any conflict with the proposed services and will require a note stating this on the servicing plan.

Underground and above ground building footprints

All underground and above ground building footprints and permanent walls need to be shown on the plan to confirm that any permanent structure does not extend either above or below into the existing property lines, sight triangles and/or future road widening protection limits.

SWM Criteria for the Catchment Area of the site being redeveloped: (Quantity control criteria)

- Allowable release rate will be 5-year pre-development rate.
- C Coefficient of runoff will need to be determined **as per existing conditions** but in no case more than 0.5
- TC =20 minutes or can be calculated,
- TC should not be less than 10 minutes, since the IDF curves become unrealistic less than 10min.
- Any storm events greater than 5 year, up to 100 year, and including 100-year storm event must be detained on site.

TECHNICAL BULLETIN PIEDTB-2016-01

Section 5.4.9.2, Page 5.31,

While rear yard grading will create low points and storage at each catch basin, the storage will not be considered in the available storage requirements. It will be assumed that all backyard flows in excess of the 2-year will flow towards the roads. Effective available storage will only be considered on streets and open space/park storage. Furthermore, there must be at least 30 cm of vertical clearance between the rear yard spill elevation and the ground elevation at the adjacent building envelope.

Major system storage in backyards is not to be included/accounted for in design computations, however the effect of flow attenuation can now be accounted for by assuming a constant slope ditch/swale draining to the street with the following geometry: a minimum slope of 1.5% and a minimum depth of 150 mm. The maximum allowable depth of a swale/ditch shall be 600 mm. The maximum side slope of swales/ditches shall be 3 horizontals to 1 vertical.

Section 8.3.11.6, Page 8.20:

Rear Yard storage cannot be accounted for in the water storage calculation. It should be assumed that all water in excess of the 2-year event will flow to the street. The maximum depth of flow depth in rear yards is 300 mm. Furthermore, there must be at least 30 cm of vertical clearance between the rear yard spill elevation and the ground elevation at the adjacent building envelope. See Section 5.4.9 for further information. Major system storage in backyards is not to be included/accounted for in design computations, however the effect of flow attenuation can now be accounted for by assuming a constant slope ditch/swale draining to the street.

Stormwater management criteria (Quality Control Issues)

Please note there will be a section in the SWM report that will discuss about the quality control requirements for this site. It is consultant's responsibility to check with the Rideau Valley Conservation Authority (RVCA) for quality control issues and include this information in the SWM report under Quality Control Section. Please contact RVCA for further information.

Implementation considerations

- Accounting for external overland drainage
- Use of standard ICDs
- Requirement for ICD plans
- Requirement for plans showing 100-year storm events and stress-test to show ponding limits
- Provide a foundation drain backwater valve installed as per Std Dwg S14.
- Provide full port backwater valves installed as per Std Dwg S14.1.

Monitoring MHs

Onsite Monitoring MHs are required for sewers (sanitary and storm) as the site will have commercial component with the residential development.

Sight Triangle and Road widening requirement (By Transportation Project Manager Mr. Wally Dubyk)

Sidewalk Condition/Requirement:

City needs minimum 2.0 m monolithic concrete sidewalk for more information please contact with Wally Dubyk at 613-580-2424 ext. 13783

Studies required for site Plan application

- Serviceability Study
- Hydraulic analysis for the private watermain to make sure the private site will have enough water pressure and required number of fire hydrants
- Vibration Monitoring Program for digging adjacent to 610mm feedermain
- Erosion and sediment Control Plan, it can be combined with grading plan
- Stormwater Management Report
- Geotechnical Study
- Slope Stability Report is required for a site, which has a grade difference of more than 2 meters across the property-please verify and submit a Slope Stability Report
- Transportation screening report, Mike Giampa
- Phase 2 Noise Control Detailed Study
- ESA-Phase 1 Study, needs to be prepared as per current MOECP regulation not as per CSA standards
- ESA-Phase 2, Depend on the Phase I recommendation if required needs to be prepared as per current MOE regulation not as per CSA standard
- RSC is needed for more sensitive land usage
- Wind Analysis (10 storeys or more or a proposed building is more than twice the height of adjacent existing buildings and is greater than five storeys in height)

Plans required;

- a. Site Servicing Plan (Plan and Profile's for all services requiring MOECCP ECA)
- b. Grade Control and Drainage Plan
- c. Erosion and Sediment Control Plan
- d. Plan and profile for MOE application under transfer of Review program

MOECCP SWM Requirements:

- For sanitary and storm sewers extension on the city ROW
- In the event if this property gets separated into multiple parcels, a SWM ECA will be required under Direct submission for having a SWMF for multiple parcels.

Relevant information

- 1. Servicing & site works shall be in accordance with the following documents:
 - ⇒ Ottawa Sewer Design Guidelines (2012)
 - ⇒ Ottawa Design Guidelines Water Distribution (2010)
 - ➡ Geotechnical Investigation and Reporting Guidelines for Development Applications in the City of Ottawa (2007)
 - ⇒ City of Ottawa Slope Stability Guidelines for Development Applications (2004)
 - ⇒ City of Ottawa Environmental Noise Control Guidelines (2006)
 - ⇒ City of Ottawa Park and Pathway Development Manual (2012)
 - ⇒ City of Ottawa Accessibility Design Standards (2012)
 - ⇒ Ottawa Standard Tender Documents (2015)
 - ⇒ Ontario Provincial Standards for Roads & Public Works (2015)
- 2. Record drawings and utility plans can be purchased from the City (Contact the City's Information Centre by email at <u>InformationCentre@ottawa.ca</u> or by phone at (613) 580-2424 x.44455).

Regards,

Mohammad

Mohammad Abdul Mottalib, M. Sc., M. Eng., P. Eng.
Sr. Engineer Infrastructure Applications
Development Review, Central Group
Planning, Infrastructure and Economic Development Department
Services de la planification, de l'infrastructure et du développement économique
City of Ottawa | Ville d'Ottawa
110 Laurier Ave. West / 110, avenue Laurier Ouest, Ottawa K1P 1J1
Tel. 613-580-2424 ext. 27798, Fax. 613-560-6006, E-mail: Abdul.Mottalib@ottawa.ca

APPLICANT'S STUDY AND PLAN IDENTIFICATION LIST

Legend: **S** indicates that the study or plan is required with application submission. **A** indicates that the study or plan may be required to satisfy a condition of approval/draft approval.

For information and guidance on preparing required studies and plans refer here:

S/A	Number of copies	ENG	INEERING	S/A	Number of copies
S	3	1. Site Servicing Plan	2. Site Servicing Study / Master Servicing Study	S	3
S	<mark>3</mark>	3. Grade Control and Drainage Plan (can combine with 10.)	4. Geotechnical Study & Slope stability report	S	<mark>3</mark>
	2	5. Composite Utility Plan	6. Groundwater Impact Study		3
	3	7. Servicing Options Report	8. Wellhead Protection Study		3
S	<mark>5</mark>	9. Transportation Impact Assessment – See Email	10.Erosion and Sediment Control Plan	S	<mark>3</mark>
S	<mark>3</mark>	11.Storm water Management Report	12. Hydro Geological Study		
S	<mark>3</mark>	13.Hydraulic Water main Analysis	14.Noise Study	S	<mark>3</mark>
Α	PDF only	15.Roadway Modification Functional Design (depends on TIA)	16.Vibration Monitoring Program	S	3

S/A	Number of copies	PLANNING	S/A	Number of copies			
	5	17.Draft Plan of Subdivision	18.Plan Showing Layout of Parking Garage	S	2		
	5	19.Draft Plan of Condominium	20.Planning Rationale	S	<mark>3</mark>		
s	5	21.Site Plan a. Building 1 details b. Master Plan Concept/phasing	a. Building 1 details b. Master Plan 22.Minimum Distance Separation (MDS)				
	5	23.Concept Plan Showing Proposed Land Uses and Landscaping	24.Agrology and Soil Capability Study		3		
S	<mark>5</mark>	25.Concept Plan Showing Ultimate Use of Land	26.Cultural Heritage Impact Statement		3		
S	<mark>5</mark>	27.Landscape Plan		3			
S	<mark>2</mark>	29.Survey Plan	S	<mark>3</mark>			
S	<mark>3</mark>	31.Architectural Building Elevation Drawings (dimensioned)	<mark>s</mark>	<mark>2</mark>			
S	<mark>3</mark>	33.Wind Analysis (Building 1 details)	34.Public Realm Network Study		3		
S/A	Number of copies	ENV	S/A	Number of copies			
S	<mark>3</mark>	35.Phase 1 Environmental Site Assessment	36.Impact Assessment of Adjacent Waste Disposal/Former Landfill Site		3		
A	<mark>3</mark>	37.Phase 2 Environmental Site Assessment (depends on the outcome of Phase 1) 38.Assessment of Landform Features			3		
		39.Record of Site Condition (For your info only) – Plan and profile for MOE application		3			
<mark>S</mark>	<mark>3</mark>	41.Tree Conservation Report (perimeter of Building 1 site)	42.Environmental Impact Statement / Impact Assessment of Endangered Species				
	3	43.Mine Hazard Study / Abandoned Pit or Quarry Study	44.Integrated Environmental Review (Draft, as part of Planning Rationale)		3		
S/A	Number of copies	-	AL REQUIREMENTS	S/A	Number of copies		
		45. Applicant's Public Consultation Strategy (may be provided as part of the Planning Rationale)	46. Floor Plans - typical	S	PDF only		

Meeting Date: October 4, 2019

Application Type: Site Plan (Building 1)

File Lead (Assigned Planner): Andrew McCreight

Infrastructure Approvals Project Manager: Abdul Mottalib *Preliminary Assessment: 1 2 3 4 5

Site Address (Municipal Address): 2 Robinson

*One (1) indicates that considerable major revisions are required before a planning application is submitted, while five (5) suggests that proposal appears to meet the City's key land use policies and guidelines. This assessment is purely advisory and does not consider technical aspects of the proposal or in any way guarantee application approval.

It is important to note that the need for additional studies and plans may result during application review. If following the submission of your application, it is determined that material that is not identified in this checklist is required to achieve complete application status, in accordance with the Planning Act and Official Plan requirements, the Planning, Infrastructure and Economic Development Department will notify you of outstanding material required within the required 30 day period. Mandatory pre-application consultation will not shorten the City's standard processing timelines, or guarantee that an application will be approved. It is intended to help educate and inform the applicant about submission requirements as well as municipal processes, policies, and key issues in advance of submitting a formal development application. This list is valid for one year following the meeting date. If the application is not submitted within this timeframe the applicant must again preconsult with the Planning, Infrastructure and Economic Development.

110 Laurier Avenue West, Ottawa ON K1P 1J1	Mail code: 01-14	Visit us: Ottawa.ca/planning
110, av. Laurier Ouest, Ottawa (Ontario) K1P 1J1	Courrier interne : 01-14	Visitez-nous : Ottawa.ca/urbanisme

Steve Matthews

From: Sent: To: Cc: Subject: Attachments: Tousignant, Eric <Eric.Tousignant@ottawa.ca> Thursday, December 9, 2021 3:02 PM Francois Thauvette Wessel, Shawn FW: 2 Robinson Avenue STM_HGL_100yr_upsize_STM111895_add_88Ls.png

Hi Francois

We entered the additional flow in the 100 year model and as you can see in the attached figure, the HGL goes up a bit but is not problematic (the upper segment is your new 450 mm pipe at 1.5%). We can therefore allow the 183 L/s you requested.

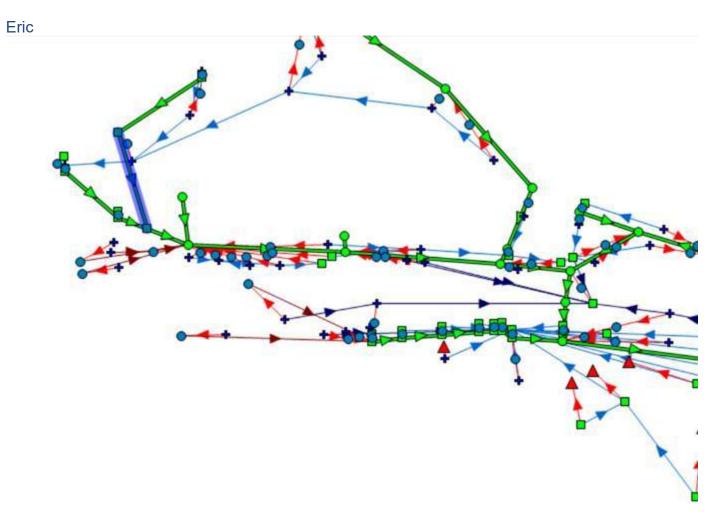
Regards Eric

Eric Tousignant, P.Eng.

Senior Water Resources Engineer Infrastructure Services 613-580-2424 ext 25129

From: Cooke, Ryan <ryan.cooke@ottawa.ca>
Sent: December 09, 2021 2:33 PM
To: Tousignant, Eric <Eric.Tousignant@ottawa.ca>
Cc: Sandanayake, Hiran <Hiran.Sandanayake@ottawa.ca>
Subject: RE: 2 Robinson Avenue

Hi Eric,

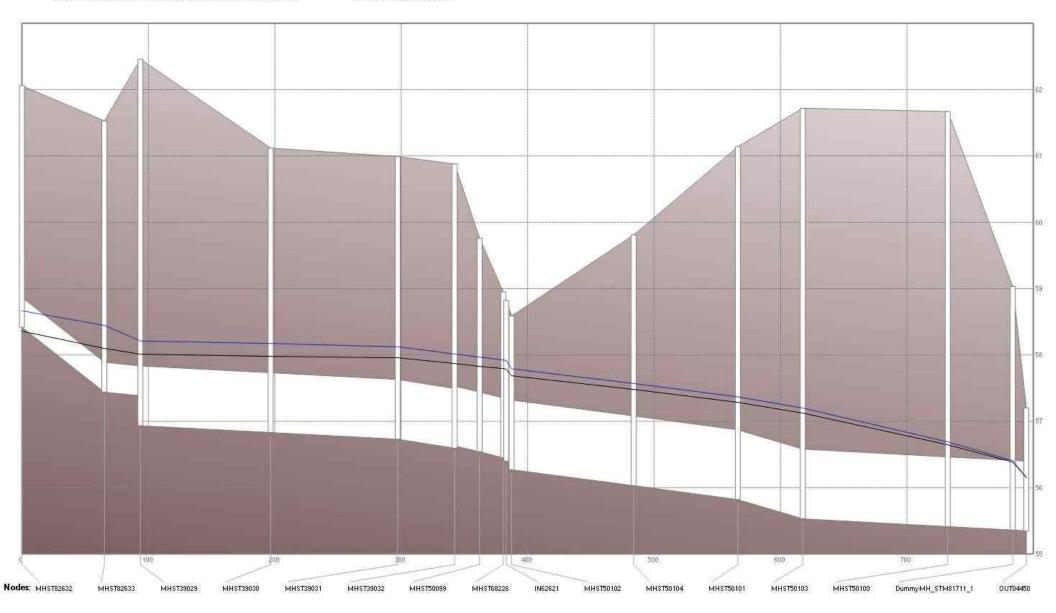

I've attached a profile showing the HGL for this scenario (STM111895 to outlet).

Ryan

From: Tousignant, Eric <<u>Eric.Tousignant@ottawa.ca</u>>
Sent: 2021/12/09 1:56 PM
To: Cooke, Ryan <<u>ryan.cooke@ottawa.ca</u>>
Cc: Sandanayake, Hiran <<u>Hiran.Sandanayake@ottawa.ca</u>>
Subject: RE: 2 Robinson Avenue

Hi Ryan

I tried to copy the model over to my hard drive but for some reason I get tons or errors when I run it. I am looking for a quick assessment of the HGL if we upsize the section in blue below to 450 mm at 1.5% and add 88 L/s to it in the 100 year event (1050 outlet pipe).



This e-mail originates from the City of Ottawa e-mail system. Any distribution, use or copying of this e-mail or the information it contains by other than the intended recipient(s) is unauthorized. Thank you.

ı

Le présent courriel a été expédié par le système de courriels de la Ville d'Ottawa. Toute distribution, utilisation ou reproduction du courriel ou des renseignements qui s'y trouvent par une personne autre que son destinataire prévu est interdite. Je vous remercie de votre collaboration.

- STM_417_RR_100yr_1050_outlet_upsize_STM111895_add_88Ls_actual_surface ------- STM_417_RR_100yr_1050_outlet

Steve Matthews

From:Francois ThauvetteSent:Wednesday, December 8, 2021 10:53 AMTo:Tousignant, EricCc:Steve MatthewsSubject:RE: 2 Robinson Avenue - Storm Sewer HGL RequestAttachments:119171-PR2_rev1.pdf; 119171-GP_rev1.pdf; 119171-NDT_rev1.pdf; 119171-
SWM_rev1.pdf

Hi Eric,

Please see attached PDFs which identify the proposed storm sewers extensions along Lees Avenue and Robinson Avenue. No other storm sewer upgrades are being proposed at this time (unless necessary).

- General Plan of Services (119171-GP, rev. 1)
- Plan and Profile (119171-PR2, rev. 1)
- Civil Notes, Details and Tables (119171-NDT, rev. 1)
- Stormwater Management Plan (119171-SWM, rev. 1) Included with the DSS&SWM Report submitted as part of the SPC application package

Notes:

- Flow from areas DR-1 and OS-4 are ultimately being directed to the downstream combined sewer system (not to the Robinson storm sewer).
- Flow from area DR-2 along the south side of the subject site will sheet drain uncontrolled towards the existing roadways CBs in Lees Avenue.
- Flow from the proposed Park Block (Area A-1) and contributing OS-1 on the east side of the subject site will be controlled by an ICD located in the outlet pipe of CBMH 06 to a max 100-year design flow of 10 L/s prior to being directed into the existing 300mm dia. storm sewer in Lees Avenue.
- Flow from the internal SWM tank 3 (Area A-2.3) on the southwest side of the subject site will be controlled by an ICD to a max 100-year design flow of 5.5 L/s prior to being directed into the existing 375mm dia. storm sewer in Lees Avenue (via proposed STM MH 10).
- Flow from the remainder of the site and contributing off-site areas will be directed towards the internal storm sewer system and will be conveyed to the existing Robinson Avenue storm sewer via the proposed 450mm dia. sewer extension at the main site entrance across from Robinson Avenue. As indicated on plan 119171-PR2, a section of the existing storm sewer in Robinson Avenue is being up-sized to a 750mm dia. sewer.

Refer to plans 119171-GP, 119171-PR2, 119171-SWM and 119171-NDT for details.

Please call should you wish to discuss or require any clarifications.

Regards,

François Thauvette, P. Eng., Senior Project Manager | Land Development & Public Sector Engineering

NOVATECH Engineers, Planners & Landscape Architects

Please note that I am working from home. Email or MS Teams are the best ways to contact me. 240 Michael Cowpland Drive, Suite 200, Ottawa, ON, K2M 1P6 | Tel: 613.254.9643 Ext: 219 | Cell: 613.276.0310 | Fax: 613.254.5867 The information contained in this email message is confidential and is for exclusive use of the addressee. From: Tousignant, Eric <Eric.Tousignant@ottawa.ca>
Sent: Wednesday, December 8, 2021 10:25 AM
To: Francois Thauvette <f.thauvette@novatech-eng.com>
Subject: RE: 2 Robinson Avenue - Storm Sewer HGL Request

Francois

Which storm pipes were you planning to connect to? Are you planning to upgrade the storm pipes since they are only 300 mm dia?

Eric

From: Francois Thauvette <<u>f.thauvette@novatech-eng.com</u>>
Sent: November 29, 2021 11:55 AM
To: Tousignant, Eric <<u>Eric.Tousignant@ottawa.ca</u>>
Cc: Wessel, Shawn <<u>shawn.wessel@ottawa.ca</u>>; Steve Matthews <<u>S.Matthews@novatech-eng.com</u>>
Subject: RE: 2 Robinson Avenue - Storm Sewer HGL Request

CAUTION: This email originated from an External Sender. Please do not click links or open attachments unless you recognize the source.

ATTENTION : Ce courriel provient d'un expéditeur externe. Ne cliquez sur aucun lien et n'ouvrez pas de pièce jointe, excepté si vous connaissez l'expéditeur.

Hi Eric,

I don't know how much wiggle room you have in the system, but if we could increase our allowable release rate from 128.8 L/s up to **182.7 L/s** that would greatly reduce the storage requirements on-site. The 182.7 L/s represents the 5-year pre-development flow from the subject site area (2.3 ha), excluding contributing off-site drainage areas. If there is sufficient capacity in the system and we can increase the allowable release rate to also include contributing off-site drainage area (that cannot be diverted) that would be even more beneficial. Please review and advise is that would be acceptable.

Regards,

François Thauvette, P. Eng., Senior Project Manager | Land Development & Public Sector Engineering
NOVATECH Engineers, Planners & Landscape Architects
Please note that I am working from home. Email or MS Teams are the best ways to contact me.
240 Michael Cowpland Drive, Suite 200, Ottawa, ON, K2M 1P6 | Tel: 613.254.9643 Ext: 219 | Cell: 613.276.0310 | Fax: 613.254.5867
The information contained in this email message is confidential and is for exclusive use of the addressee.

From: Tousignant, Eric <<u>Eric.Tousignant@ottawa.ca</u>>
Sent: Monday, November 29, 2021 8:08 AM
To: Francois Thauvette <<u>f.thauvette@novatech-eng.com</u>>
Cc: Wessel, Shawn <<u>shawn.wessel@ottawa.ca</u>>; Steve Matthews <<u>S.Matthews@novatech-eng.com</u>>
Subject: RE: 2 Robinson Avenue - Storm Sewer HGL Request

Hi François

What is the flow increase you are looking for? There is some wiggle room, so I need to enter the new flow in the model.

Eric

From: Francois Thauvette <<u>f.thauvette@novatech-eng.com</u>>
Sent: November 26, 2021 4:44 PM
To: Tousignant, Eric <<u>Eric.Tousignant@ottawa.ca</u>>
Cc: Wessel, Shawn <<u>shawn.wessel@ottawa.ca</u>>; Steve Matthews <<u>S.Matthews@novatech-eng.com</u>>
Subject: RE: 2 Robinson Avenue - Storm Sewer HGL Request

CAUTION: This email originated from an External Sender. Please do not click links or open attachments unless you recognize the source.

ATTENTION : Ce courriel provient d'un expéditeur externe. Ne cliquez sur aucun lien et n'ouvrez pas de pièce jointe, excepté si vous connaissez l'expéditeur.

Without the benefit of HGL information our <u>current</u> design is based on controlling 100-yr post-development flows to the 5-yr pre-development flows (~128.8 L/s) currently tributary to the Robinson Avenue storm sewer, which includes approx. ½ the subject site and contributing off-site areas. The downside is that this approach <u>only</u> accounts for flow from Pre-Development areas (Pre-03 and Pre-04). Areas Pre-01 and Pre-02, which represent approx. ½ of the total area, are currently excluded from the allowable flow calculations, which results in excessive post-development storage requirements on-site. Under post-development conditions almost the entire site (incl. off-site tributary areas flowing onto the subject site that cannot be diverted) are being directed to the Robinson Avenue storm sewer, while the total flow to the downstream combined sewer system is significantly being reduced when compared to flow from pre-development areas Pre-01 and Pre-02. Reducing wet-weather flows to the downstream combined sewer system is a significant benefit to the City and other downstream properties.

Based on the City's HGL analysis, our hope is that total allowable flow to the Robinson Avenue storm sewer can be <u>increased</u>, so that we could reduce the excessive post-development storage requirements on-site, some of which are a result of the stormwater runoff from the neighbouring properties to the north and a portion of the Chapel Crescent R.O.W. flows that cannot be diverted.

Regards,

François Thauvette, P. Eng., Senior Project Manager | Land Development & Public Sector Engineering NOVATECH Engineers, Planners & Landscape Architects Please note that I am working from home. Email or MS Teams are the best ways to contact me. 240 Michael Cowpland Drive, Suite 200, Ottawa, ON, K2M 1P6 | Tel: 613.254.9643 Ext: 219 | Cell: 613.276.0310 | Fax: 613.254.5867 The information contained in this email message is confidential and is for exclusive use of the addressee.
From: Tousignant, Eric <<u>Eric.Tousignant@ottawa.ca</u>>
Sent: Friday, November 26, 2021 3:40 PM

To: Francois Thauvette <<u>f.thauvette@novatech-eng.com</u>> Cc: Mottalib, Abdul <<u>Abdul.Mottalib@ottawa.ca</u>>; Steve Matthews <<u>S.Matthews@novatech-eng.com</u>> Subject: RE: 2 Robinson Avenue - Storm Sewer HGL Request

HI Francois

If I read this right, you are looking for an allowable release rate of roughly 127 L/s from the site for all events up to the 100 year storm. Correct?

From: Francois Thauvette <<u>f.thauvette@novatech-eng.com</u>>
Sent: November 26, 2021 1:32 PM
To: Tousignant, Eric <<u>Eric.Tousignant@ottawa.ca</u>>
Cc: Mottalib, Abdul <<u>Abdul.Mottalib@ottawa.ca</u>>; Steve Matthews <<u>S.Matthews@novatech-eng.com</u>>
Subject: RE: 2 Robinson Avenue - Storm Sewer HGL Request

CAUTION: This email originated from an External Sender. Please do not click links or open attachments unless you recognize the source.

ATTENTION : Ce courriel provient d'un expéditeur externe. Ne cliquez sur aucun lien et n'ouvrez pas de pièce jointe, excepté si vous connaissez l'expéditeur.

Please see attached. Let us know if you have any questions.

Regards,

François Thauvette, P. Eng., Senior Project Manager | Land Development & Public Sector Engineering

NOVATECH Engineers, Planners & Landscape Architects

Please note that I am working from home. Email or MS Teams are the best ways to contact me. 240 Michael Cowpland Drive, Suite 200, Ottawa, ON, K2M 1P6 | Tel: 613.254.9643 Ext: 219 | Cell: 613.276.0310 | Fax: 613.254.5867 The information contained in this email message is confidential and is for exclusive use of the addressee.

From: Tousignant, Eric <<u>Eric.Tousignant@ottawa.ca</u>>
Sent: Friday, November 26, 2021 11:04 AM
To: Francois Thauvette <<u>f.thauvette@novatech-eng.com</u>>
Cc: Mottalib, Abdul <<u>Abdul.Mottalib@ottawa.ca</u>>; Steve Matthews <<u>S.Matthews@novatech-eng.com</u>>
Subject: RE: 2 Robinson Avenue - Storm Sewer HGL Request

Hi François

We now have an updated model for this storm sewer with the corrected HWY417 flows. For our next step, can you confirm via email the existing and future flows from your development reaching the Robinson storm sewer for the 5 and 100 year events. We will add the difference to the model to assess the impact.

Thanks Eric

From: Francois Thauvette <<u>f.thauvette@novatech-eng.com</u>>
Sent: November 02, 2021 12:41 PM
To: Tousignant, Eric <<u>Eric.Tousignant@ottawa.ca</u>>
Cc: Mottalib, Abdul <<u>Abdul.Mottalib@ottawa.ca</u>>; Steve Matthews <<u>S.Matthews@novatech-eng.com</u>>
Subject: RE: 2 Robinson Avenue - Storm Sewer HGL Request

CAUTION: This email originated from an External Sender. Please do not click links or open attachments unless you recognize the source.

ATTENTION : Ce courriel provient d'un expéditeur externe. Ne cliquez sur aucun lien et n'ouvrez pas de pièce jointe, excepté si vous connaissez l'expéditeur.

François Thauvette, P. Eng., Senior Project Manager | Land Development & Public Sector Engineering

NOVATECH Engineers, Planners & Landscape Architects

Please note that I am working from home. Email or MS Teams are the best ways to contact me. 240 Michael Cowpland Drive, Suite 200, Ottawa, ON, K2M 1P6 | Tel: 613.254.9643 Ext: 219 | Cell: 613.276.0310 | Fax: 613.254.5867 The information contained in this email message is confidential and is for exclusive use of the addressee.

From: Tousignant, Eric <<u>Eric.Tousignant@ottawa.ca</u>>
Sent: Tuesday, November 2, 2021 12:39 PM
To: Francois Thauvette <<u>f.thauvette@novatech-eng.com</u>>
Cc: Mottalib, Abdul <<u>Abdul.Mottalib@ottawa.ca</u>>; Steve Matthews <<u>S.Matthews@novatech-eng.com</u>>
Subject: Re: 2 Robinson Avenue - Storm Sewer HGL Request

Hi Francois

I'm free from 1:30 on.

Eric

From: Francois Thauvette <<u>f.thauvette@novatech-eng.com</u>>
Sent: Tuesday, November 2, 2021 12:13 PM
To: Tousignant, Eric <<u>Eric.Tousignant@ottawa.ca</u>>
Cc: Mottalib, Abdul <<u>Abdul.Mottalib@ottawa.ca</u>>; Steve Matthews <<u>S.Matthews@novatech-eng.com</u>>
Subject: RE: 2 Robinson Avenue - Storm Sewer HGL Request

CAUTION: This email originated from an External Sender. Please do not click links or open attachments unless you recognize the source.

ATTENTION : Ce courriel provient d'un expéditeur externe. Ne cliquez sur aucun lien et n'ouvrez pas de pièce jointe, excepté si vous connaissez l'expéditeur.

Would you have time for a brief (10-15 minute) Teams call today? We are trying to finalize our SWM design, but need input from the City's SWM group ASAP. We reached out to the MTO requesting information on their existing storm sewer infrastructure near the Lees/Mann Avenue off-ramp, but they are not willing to share this information. A brief Teams call would be very much appreciated as we want to make certain that our SWM design will be acceptable to the City. Having to re-design it again could have a significant impact on the project, incl. the architect's and other consultants' designs.

Regards,

François Thauvette, P. Eng., Senior Project Manager | Land Development & Public Sector Engineering

NOVATECH Engineers, Planners & Landscape Architects

Please note that I am working from home. Email or MS Teams are the best ways to contact me. 240 Michael Cowpland Drive, Suite 200, Ottawa, ON, K2M 1P6 | Tel: 613.254.9643 Ext: 219 | Cell: 613.276.0310 | Fax: 613.254.5867 The information contained in this email message is confidential and is for exclusive use of the addressee.

From: Francois Thauvette Sent: Monday, November 1, 2021 2:49 PM To: <u>eric.tousignant@ottawa.ca</u>

Cc: Mottalib, Abdul <<u>Abdul.Mottalib@ottawa.ca</u>>; Steve Matthews <<u>S.Matthews@novatech-eng.com</u>> Subject: 2 Robinson Avenue - Storm Sewer HGL Request

Hi Eric,

We are working on a large re-development project at 2 Robinson Avenue and the City has asked us to extend the Robinson Avenue storm sewer to service the subject site (2 Robinson Avenue). We are sending this e-mail to request the <u>HGL information</u> on the existing 750mm/900mm dia. storm sewer in Robinson Avenue as well as the downstream 1050mm dia. storm sewer out to the Rideau River (see attached marked-up sketch for details). We are trying to determine if we need to match existing pre-development flows (currently tributary to the Robinson Avenue storm sewer) or if the allowable flow from the subject site can be increased (based on the site area). The main reason we are inquiring about potentially increasing flows is that under pre-development conditions only about ½ of the subject site is tributary to the Robinson Avenue storm sewer while the other ½ sheet drains west towards the baseball diamond (see attached pre-development storm drainage area sketch). Storm flows from the baseball diamond are ultimately tributary to the downstream combined sewer system in Templeton Street

As indicated in the pre-consultation meeting minutes, we have been asked to direct site flows to the municipal storm sewer in Robinson Avenue, thus reducing/eliminating storm flows to the municipal combined sewer system. We want to make certain we will not impact any adjacent and/or downstream properties, including the MTO (where the elevation of the highway is running parallel to Robinson Avenue) if flows to the Robinson Avenue sewer are increased. Please review and advise if the existing storm sewer system Robinson Avenue has any additional capacity and if so, how much?

Regards,

François Thauvette, P. Eng., Senior Project Manager | Land Development & Public Sector Engineering
NOVATECH Engineers, Planners & Landscape Architects
Please note that I am working from home. Email or MS Teams are the best ways to contact me.
240 Michael Cowpland Drive, Suite 200, Ottawa, ON, K2M 1P6 | Tel: 613.254.9643 Ext: 219 | Cell: 613.276.0310 | Fax: 613.254.5867
The information contained in this email message is confidential and is for exclusive use of the addressee.

This e-mail originates from the City of Ottawa e-mail system. Any distribution, use or copying of this e-mail or the information it contains by other than the intended recipient(s) is unauthorized. Thank you.

Le présent courriel a été expédié par le système de courriels de la Ville d'Ottawa. Toute distribution, utilisation ou reproduction du courriel ou des renseignements qui s'y trouvent par une personne autre que son destinataire prévu est interdite. Je vous remercie de votre collaboration.

ı

ı.

ī

ī

This e-mail originates from the City of Ottawa e-mail system. Any distribution, use or copying of this e-mail or the information it contains by other than the intended recipient(s) is unauthorized. Thank you.

Le présent courriel a été expédié par le système de courriels de la Ville d'Ottawa. Toute distribution, utilisation ou reproduction du courriel ou des renseignements qui s'y trouvent par une personne autre que son destinataire prévu est interdite. Je vous remercie de votre collaboration.

This e-mail originates from the City of Ottawa e-mail system. Any distribution, use or copying of this e-mail or the information it contains by other than the intended recipient(s) is unauthorized. Thank you.

Le présent courriel a été expédié par le système de courriels de la Ville d'Ottawa. Toute distribution, utilisation ou reproduction du courriel ou des renseignements qui s'y trouvent par une personne autre que son destinataire prévu est interdite. Je vous remercie de votre collaboration.

This e-mail originates from the City of Ottawa e-mail system. Any distribution, use or copying of this e-mail or the information it contains by other than the intended recipient(s) is unauthorized. Thank you.

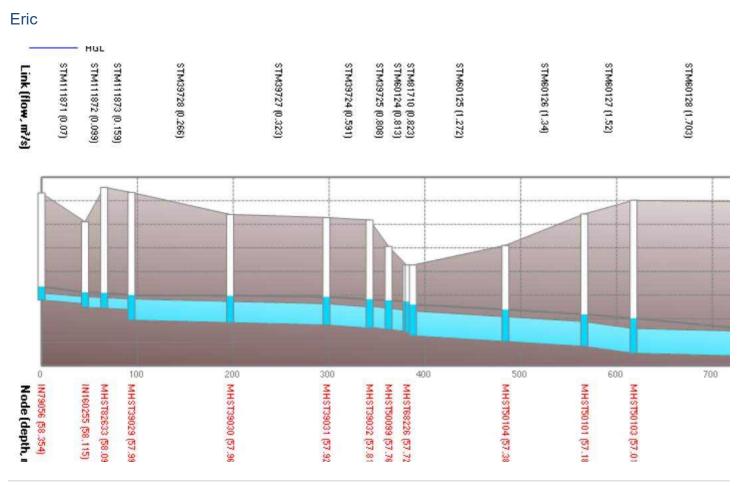
י י

י י

ı

Le présent courriel a été expédié par le système de courriels de la Ville d'Ottawa. Toute distribution, utilisation ou reproduction du courriel ou des renseignements qui s'y trouvent par une personne autre que son destinataire prévu est interdite. Je vous remercie de votre collaboration.

This e-mail originates from the City of Ottawa e-mail system. Any distribution, use or copying of this e-mail or the information it contains by other than the intended recipient(s) is unauthorized. Thank you.


Le présent courriel a été expédié par le système de courriels de la Ville d'Ottawa. Toute distribution, utilisation ou reproduction du courriel ou des renseignements qui s'y trouvent par une personne autre que son destinataire prévu est interdite. Je vous remercie de votre collaboration.

Steve Matthews

From:	Tousignant, Eric <eric.tousignant@ottawa.ca></eric.tousignant@ottawa.ca>
Sent:	Tuesday, December 7, 2021 1:59 PM
То:	Francois Thauvette
Cc:	Mottalib, Abdul; Steve Matthews
Subject:	RE: 2 Robinson Avenue - Storm Sewer HGL Request

Hi Francois

Further to our discussion today, this is the existing 100-year HGL in the system from your site all the way to the River. I will add the flow we discussed to see how it impacts the HGL.

From: Francois Thauvette <f.thauvette@novatech-eng.com>

Sent: November 26, 2021 1:32 PM

To: Tousignant, Eric < Eric. Tousignant@ottawa.ca>

Cc: Mottalib, Abdul <Abdul.Mottalib@ottawa.ca>; Steve Matthews <S.Matthews@novatech-eng.com> **Subject:** RE: 2 Robinson Avenue - Storm Sewer HGL Request

CAUTION: This email originated from an External Sender. Please do not click links or open attachments unless you recognize the source.

ATTENTION : Ce courriel provient d'un expéditeur externe. Ne cliquez sur aucun lien et n'ouvrez pas de pièce jointe, excepté si vous connaissez l'expéditeur.

Hi Eric,

Please see attached. Let us know if you have any questions.

Regards,

François Thauvette, P. Eng., Senior Project Manager | Land Development & Public Sector Engineering

NOVATECH Engineers, Planners & Landscape Architects

Please note that I am working from home. Email or MS Teams are the best ways to contact me. 240 Michael Cowpland Drive, Suite 200, Ottawa, ON, K2M 1P6 | Tel: 613.254.9643 Ext: 219 | Cell: 613.276.0310 | Fax: 613.254.5867 The information contained in this email message is confidential and is for exclusive use of the addressee.

From: Tousignant, Eric <<u>Eric.Tousignant@ottawa.ca</u>>
Sent: Friday, November 26, 2021 11:04 AM
To: Francois Thauvette <<u>f.thauvette@novatech-eng.com</u>>
Cc: Mottalib, Abdul <<u>Abdul.Mottalib@ottawa.ca</u>>; Steve Matthews <<u>S.Matthews@novatech-eng.com</u>>
Subject: RE: 2 Robinson Avenue - Storm Sewer HGL Request

Hi François

We now have an updated model for this storm sewer with the corrected HWY417 flows. For our next step, can you confirm via email the existing and future flows from your development reaching the Robinson storm sewer for the 5 and 100 year events. We will add the difference to the model to assess the impact.

Thanks Eric

From: Francois Thauvette <<u>f.thauvette@novatech-eng.com</u>>
Sent: November 02, 2021 12:41 PM
To: Tousignant, Eric <<u>Eric.Tousignant@ottawa.ca</u>>
Cc: Mottalib, Abdul <<u>Abdul.Mottalib@ottawa.ca</u>>; Steve Matthews <<u>S.Matthews@novatech-eng.com</u>>
Subject: RE: 2 Robinson Avenue - Storm Sewer HGL Request

CAUTION: This email originated from an External Sender. Please do not click links or open attachments unless you recognize the source.

ATTENTION : Ce courriel provient d'un expéditeur externe. Ne cliquez sur aucun lien et n'ouvrez pas de pièce jointe, excepté si vous connaissez l'expéditeur.

François Thauvette, P. Eng., Senior Project Manager | Land Development & Public Sector Engineering

NOVATECH Engineers, Planners & Landscape Architects

Please note that I am working from home. Email or MS Teams are the best ways to contact me. 240 Michael Cowpland Drive, Suite 200, Ottawa, ON, K2M 1P6 | Tel: 613.254.9643 Ext: 219 | Cell: 613.276.0310 | Fax: 613.254.5867 The information contained in this email message is confidential and is for exclusive use of the addressee. From: Tousignant, Eric <<u>Eric.Tousignant@ottawa.ca</u>>
Sent: Tuesday, November 2, 2021 12:39 PM
To: Francois Thauvette <<u>f.thauvette@novatech-eng.com</u>>
Cc: Mottalib, Abdul <<u>Abdul.Mottalib@ottawa.ca</u>>; Steve Matthews <<u>S.Matthews@novatech-eng.com</u>>
Subject: Re: 2 Robinson Avenue - Storm Sewer HGL Request

Hi Francois

I'm free from 1:30 on.

Eric

From: Francois Thauvette <<u>f.thauvette@novatech-eng.com</u>>
Sent: Tuesday, November 2, 2021 12:13 PM
To: Tousignant, Eric <<u>Eric.Tousignant@ottawa.ca</u>>
Cc: Mottalib, Abdul <<u>Abdul.Mottalib@ottawa.ca</u>>; Steve Matthews <<u>S.Matthews@novatech-eng.com</u>>
Subject: RE: 2 Robinson Avenue - Storm Sewer HGL Request

CAUTION: This email originated from an External Sender. Please do not click links or open attachments unless you recognize the source.

ATTENTION : Ce courriel provient d'un expéditeur externe. Ne cliquez sur aucun lien et n'ouvrez pas de pièce jointe, excepté si vous connaissez l'expéditeur.

Would you have time for a brief (10-15 minute) Teams call today? We are trying to finalize our SWM design, but need input from the City's SWM group ASAP. We reached out to the MTO requesting information on their existing storm sewer infrastructure near the Lees/Mann Avenue off-ramp, but they are not willing to share this information. A brief Teams call would be very much appreciated as we want to make certain that our SWM design will be acceptable to the City. Having to re-design it again could have a significant impact on the project, incl. the architect's and other consultants' designs.

Regards,

François Thauvette, P. Eng., Senior Project Manager | Land Development & Public Sector Engineering
NOVATECH Engineers, Planners & Landscape Architects
Please note that I am working from home. Email or MS Teams are the best ways to contact me.
240 Michael Cowpland Drive, Suite 200, Ottawa, ON, K2M 1P6 | Tel: 613.254.9643 Ext: 219 | Cell: 613.276.0310 | Fax: 613.254.5867
The information contained in this email message is confidential and is for exclusive use of the addressee.

From: Francois Thauvette
Sent: Monday, November 1, 2021 2:49 PM
To: eric.tousignant@ottawa.ca
Cc: Mottalib, Abdul <<u>Abdul.Mottalib@ottawa.ca</u>>; Steve Matthews <<u>S.Matthews@novatech-eng.com</u>>
Subject: 2 Robinson Avenue - Storm Sewer HGL Request

Hi Eric,

We are working on a large re-development project at 2 Robinson Avenue and the City has asked us to extend the Robinson Avenue storm sewer to service the subject site (2 Robinson Avenue). We are sending this e-mail to request the

<u>HGL information</u> on the existing 750mm/900mm dia. storm sewer in Robinson Avenue as well as the downstream 1050mm dia. storm sewer out to the Rideau River (see attached marked-up sketch for details). We are trying to determine if we need to match existing pre-development flows (currently tributary to the Robinson Avenue storm sewer) or if the allowable flow from the subject site can be increased (based on the site area). The main reason we are inquiring about potentially increasing flows is that under pre-development conditions only about ½ of the subject site is tributary to the Robinson Avenue storm sewer while the other ½ sheet drains west towards the baseball diamond (see attached pre-development storm drainage area sketch). Storm flows from the baseball diamond are ultimately tributary to the downstream combined sewer system in Templeton Street

As indicated in the pre-consultation meeting minutes, we have been asked to direct site flows to the municipal storm sewer in Robinson Avenue, thus reducing/eliminating storm flows to the municipal combined sewer system. We want to make certain we will not impact any adjacent and/or downstream properties, including the MTO (where the elevation of the highway is running parallel to Robinson Avenue) if flows to the Robinson Avenue sewer are increased. Please review and advise if the existing storm sewer system Robinson Avenue has any additional capacity and if so, how much?

Regards,

.

י י

'

François Thauvette, P. Eng., Senior Project Manager | Land Development & Public Sector Engineering

NOVATECH Engineers, Planners & Landscape Architects

Please note that I am working from home. Email or MS Teams are the best ways to contact me. 240 Michael Cowpland Drive, Suite 200, Ottawa, ON, K2M 1P6 | Tel: 613.254.9643 Ext: 219 | Cell: 613.276.0310 | Fax: 613.254.5867 The information contained in this email message is confidential and is for exclusive use of the addressee.

This e-mail originates from the City of Ottawa e-mail system. Any distribution, use or copying of this e-mail or the information it contains by other than the intended recipient(s) is unauthorized. Thank you.

Le présent courriel a été expédié par le système de courriels de la Ville d'Ottawa. Toute distribution, utilisation ou reproduction du courriel ou des renseignements qui s'y trouvent par une personne autre que son destinataire prévu est interdite. Je vous remercie de votre collaboration.

This e-mail originates from the City of Ottawa e-mail system. Any distribution, use or copying of this e-mail or the information it contains by other than the intended recipient(s) is unauthorized. Thank you.

Le présent courriel a été expédié par le système de courriels de la Ville d'Ottawa. Toute distribution, utilisation ou reproduction du courriel ou des renseignements qui s'y trouvent par une personne autre que son destinataire prévu est interdite. Je vous remercie de votre collaboration.

This e-mail originates from the City of Ottawa e-mail system. Any distribution, use or copying of this e-mail or the information it contains by other than the intended recipient(s) is unauthorized. Thank you.

Le présent courriel a été expédié par le système de courriels de la Ville d'Ottawa. Toute distribution, utilisation ou reproduction du courriel ou des renseignements qui s'y trouvent par une personne autre que son destinataire prévu est interdite. Je vous remercie de votre collaboration.

APPENDIX B

Development Servicing Study Checklist

Servicing study guidelines for development applications

4. Development Servicing Study Checklist

The following section describes the checklist of the required content of servicing studies. It is expected that the proponent will address each one of the following items for the study to be deemed complete and ready for review by City of Ottawa Infrastructure Approvals staff.

The level of required detail in the Servicing Study will increase depending on the type of application. For example, for Official Plan amendments and re-zoning applications, the main issues will be to determine the capacity requirements for the proposed change in land use and confirm this against the existing capacity constraint, and to define the solutions, phasing of works and the financing of works to address the capacity constraint. For subdivisions and site plans, the above will be required with additional detailed information supporting the servicing within the development boundary.

4.1 General Content

- Executive Summary (for larger reports only).
- Date and revision number of the report.
- □ Location map and plan showing municipal address, boundary, and layout of proposed development.
- Plan showing the site and location of all existing services.
- Development statistics, land use, density, adherence to zoning and official plan, and reference to applicable subwatershed and watershed plans that provide context to which individual developments must adhere.
- □ Summary of Pre-consultation Meetings with City and other approval agencies.
- Reference and confirm conformance to higher level studies and reports (Master Servicing Studies, Environmental Assessments, Community Design Plans), or in the case where it is not in conformance, the proponent must provide justification and develop a defendable design criteria.
- Statement of objectives and servicing criteria.
- □ Identification of existing and proposed infrastructure available in the immediate area.
- Identification of Environmentally Significant Areas, watercourses and Municipal Drains potentially impacted by the proposed development (Reference can be made to the Natural Heritage Studies, if available).
- Concept level master grading plan to confirm existing and proposed grades in the development. This is required to confirm the feasibility of proposed stormwater management and drainage, soil removal and fill constraints, and potential impacts to neighbouring properties. This is also required to confirm that the proposed grading will not impede existing major system flow paths.
- □ Identification of potential impacts of proposed piped services on private services (such as wells and septic fields on adjacent lands) and mitigation required to address potential impacts.
- Proposed phasing of the development, if applicable.

- Reference to geotechnical studies and recommendations concerning servicing.
- All preliminary and formal site plan submissions should have the following information:
 Metric scale
 - North arrow (including construction North)
 - Key plan
 - Name and contact information of applicant and property owner
 - Property limits including bearings and dimensions
 - Existing and proposed structures and parking areas
 - · Easements, road widening and rights-of-way
 - Adjacent street names

4.2 Development Servicing Report: Water

- Confirm consistency with Master Servicing Study, if available
- Availability of public infrastructure to service proposed development
- □ Identification of system constraints
- □ Identify boundary conditions
- □ Confirmation of adequate domestic supply and pressure
- □ Confirmation of adequate fire flow protection and confirmation that fire flow is calculated as per the Fire Underwriter's Survey. Output should show available fire flow at locations throughout the development.
- Provide a check of high pressures. If pressure is found to be high, an assessment is required to confirm the application of pressure reducing valves.
- Definition of phasing constraints. Hydraulic modeling is required to confirm servicing for all defined phases of the project including the ultimate design
- Address reliability requirements such as appropriate location of shut-off valves
- □ Check on the necessity of a pressure zone boundary modification.
- Reference to water supply analysis to show that major infrastructure is capable of delivering sufficient water for the proposed land use. This includes data that shows that the expected demands under average day, peak hour and fire flow conditions provide water within the required pressure range

- Description of the proposed water distribution network, including locations of proposed connections to the existing system, provisions for necessary looping, and appurtenances (valves, pressure reducing valves, valve chambers, and fire hydrants) including special metering provisions.
- Description of off-site required feedermains, booster pumping stations, and other water infrastructure that will be ultimately required to service proposed development, including financing, interim facilities, and timing of implementation.
- □ Confirmation that water demands are calculated based on the City of Ottawa Design Guidelines.
- Provision of a model schematic showing the boundary conditions locations, streets, parcels, and building locations for reference.

4.3 Development Servicing Report: Wastewater

- Summary of proposed design criteria (Note: Wet-weather flow criteria should not deviate from the City of Ottawa Sewer Design Guidelines. Monitored flow data from relatively new infrastructure cannot be used to justify capacity requirements for proposed infrastructure).
- □ Confirm consistency with Master Servicing Study and/or justifications for deviations.
- Consideration of local conditions that may contribute to extraneous flows that are higher than the recommended flows in the guidelines. This includes groundwater and soil conditions, and age and condition of sewers.
- Description of existing sanitary sewer available for discharge of wastewater from proposed development.
- Verify available capacity in downstream sanitary sewer and/or identification of upgrades necessary to service the proposed development. (Reference can be made to previously completed Master Servicing Study if applicable)
- □ Calculations related to dry-weather and wet-weather flow rates from the development in standard MOE sanitary sewer design table (Appendix 'C') format.
- Description of proposed sewer network including sewers, pumping stations, and forcemains.
- Discussion of previously identified environmental constraints and impact on servicing (environmental constraints are related to limitations imposed on the development in order to preserve the physical condition of watercourses, vegetation, soil cover, as well as protecting against water quantity and quality).
- Pumping stations: impacts of proposed development on existing pumping stations or requirements for new pumping station to service development.
- Forcemain capacity in terms of operational redundancy, surge pressure and maximum flow velocity.
- □ Identification and implementation of the emergency overflow from sanitary pumping stations in relation to the hydraulic grade line to protect against basement flooding.
- Special considerations such as contamination, corrosive environment etc.

4.4 Development Servicing Report: Stormwater Checklist

- Description of drainage outlets and downstream constraints including legality of outlets (i.e. municipal drain, right-of-way, watercourse, or private property)
- Analysis of available capacity in existing public infrastructure.
- A drawing showing the subject lands, its surroundings, the receiving watercourse, existing drainage patterns, and proposed drainage pattern.
- □ Water quantity control objective (e.g. controlling post-development peak flows to pre-development level for storm events ranging from the 2 or 5 year event (dependent on the receiving sewer design) to 100 year return period); if other objectives are being applied, a rationale must be included with reference to hydrologic analyses of the potentially affected subwatersheds, taking into account long-term cumulative effects.
- □ Water Quality control objective (basic, normal or enhanced level of protection based on the sensitivities of the receiving watercourse) and storage requirements.
- Description of the stormwater management concept with facility locations and descriptions with references and supporting information.
- Set-back from private sewage disposal systems.
- □ Watercourse and hazard lands setbacks.
- □ Record of pre-consultation with the Ontario Ministry of Environment and the Conservation Authority that has jurisdiction on the affected watershed.
- □ Confirm consistency with sub-watershed and Master Servicing Study, if applicable study exists.
- Storage requirements (complete with calculations) and conveyance capacity for minor events (1:5 year return period) and major events (1:100 year return period).
- □ Identification of watercourses within the proposed development and how watercourses will be protected, or, if necessary, altered by the proposed development with applicable approvals.
- □ Calculate pre and post development peak flow rates including a description of existing site conditions and proposed impervious areas and drainage catchments in comparison to existing conditions.
- Any proposed diversion of drainage catchment areas from one outlet to another.
- Proposed minor and major systems including locations and sizes of stormwater trunk sewers, and stormwater management facilities.
- ☐ If quantity control is not proposed, demonstration that downstream system has adequate capacity for the post-development flows up to and including the 100 year return period storm event.
- □ Identification of potential impacts to receiving watercourses
- □ Identification of municipal drains and related approval requirements.
- Descriptions of how the conveyance and storage capacity will be achieved for the development.
- 100 year flood levels and major flow routing to protect proposed development from flooding for establishing minimum building elevations (MBE) and overall grading.

- □ Inclusion of hydraulic analysis including hydraulic grade line elevations.
- Description of approach to erosion and sediment control during construction for the protection of receiving watercourse or drainage corridors.
- □ Identification of floodplains proponent to obtain relevant floodplain information from the appropriate Conservation Authority. The proponent may be required to delineate floodplain elevations to the satisfaction of the Conservation Authority if such information is not available or if information does not match current conditions.
- □ Identification of fill constraints related to floodplain and geotechnical investigation.

4.5 Approval and Permit Requirements: Checklist

The Servicing Study shall provide a list of applicable permits and regulatory approvals necessary for the proposed development as well as the relevant issues affecting each approval. The approval and permitting shall include but not be limited to the following:

- Conservation Authority as the designated approval agency for modification of floodplain, potential impact on fish habitat, proposed works in or adjacent to a watercourse, cut/fill permits and Approval under Lakes and Rivers Improvement Act. The Conservation Authority is not the approval authority for the Lakes and Rivers Improvement Act. Where there are Conservation Authority regulations in place, approval under the Lakes and Rivers Improvement Act is not required, except in cases of dams as defined in the Act.
- Application for Certificate of Approval (CofA) under the Ontario Water Resources Act.
- □ Changes to Municipal Drains.
- Other permits (National Capital Commission, Parks Canada, Public Works and Government Services Canada, Ministry of Transportation etc.)

4.6 Conclusion Checklist

- □ Clearly stated conclusions and recommendations
- □ Comments received from review agencies including the City of Ottawa and information on how the comments were addressed. Final sign-off from the responsible reviewing agency.
- All draft and final reports shall be signed and stamped by a professional Engineer registered in Ontario

APPENDIX C

Sanitary Sewage Calculations

2 Robinson - Tower A and Podium POST-DEVELOPMENT SANITARY FLOWS

Residential Flows	Post-Development	
Number of Studio / 1-Bedroom Units	235	
Persons per Studio / 1-Bedroom Unit	1.4	
Number of 2-Bedroom Units	122	
Persons per 2-Bedroom Unit	2.1	
Number of 3-Bedroom Units	24	
Persons per 3-Bedroom Unit	3.1	
Total Number of Units	381	
Design Population	660	
Average Daily Flow per Resident	280	L/c/day
Peak Factor (Harmon Formula)	3.33	
Peak Residential Flow	7.12	L/s
Commercial Flows		
Ground Floor Area	1005	m ²
Average Commercial Daily Demand	2.8	L/m ² /day
Peaking Factor	1.5	
Peak Commercial Flows	0.05	L/s
Extraneous Flow		
Site Area	0.55	ha
Infiltration Allowance	0.33	L/s/ha
Peak Extraneous Flow	0.18	L/s
Total Peak Sanitary Flow	73	L/s

2 Robinson - Tower B and Podium POST-DEVELOPMENT SANITARY FLOWS

Residential Flows	Post-Development	
Number of Studio / 1-Bedroom Units	234	
Persons per Studio / 1-Bedroom Unit	1.4	
Number of 2-Bedroom Units	92	
Persons per 2-Bedroom Unit	2.1	
Number of 3-Bedroom Units	43	
Persons per 3-Bedroom Unit	3.1	
Total Number of Units	369	
Design Population	655	
Average Daily Flow per Resident	280	L/c/day
Peak Factor (Harmon Formula)	3.33	
Peak Residential Flow	7.07	L/s
Commercial Flows		
Ground Floor Area	657	m²
Average Commercial Daily Demand	2.8	L/m²/day
Peaking Factor	1.5	
Peak Commercial Flows	0.03	L/s
Extraneous Flow		
Site Area	0.3	ha
Infiltration Allowance	0.33	L/s/ha
Peak Extraneous Flow	0.10	L/s
Total Peak Sanitary Flow	7.2	L/s

2 Robinson - Tower C and Podium POST-DEVELOPMENT SANITARY FLOWS

Residential Flows	Post-Development	
Number of Studio / 1-Bedroom Units	241	
Persons per Studio / 1-Bedroom Unit	1.4	
Number of 2-Bedroom Units	84	
Persons per 2-Bedroom Unit	2.1	
Number of 3-Bedroom Units	44	
Persons per 3-Bedroom Unit	3.1	
Total Number of Units	369	
Design Population	651	
Average Daily Flow per Resident	280	L/c/day
Peak Factor (Harmon Formula)	3.33	
Peak Residential Flow	7.03	L/s
Commercial Flows		
Ground Floor Area	656	m ²
Average Commercial Daily Demand	2.8	L/m ² /day
Peaking Factor	1.5	
Peak Commercial Flows	0.03	L/s
Extraneous Flow		
Site Area	0.33	ha
Infiltration Allowance	0.33	L/s/ha
Peak Extraneous Flow	0.11	L/s
Total Peak Sanitary Flow	7.2	L/s

2 Robinson - Tower D and Podium POST-DEVELOPMENT SANITARY FLOWS

Residential Flows	Post-Development	
Number of Studio / 1-Bedroom Units	191	
Persons per Studio / 1-Bedroom Unit	1.4	
Number of 2-Bedroom Units	90	
Persons per 2-Bedroom Unit	2.1	
Number of 3-Bedroom Units	48	
Persons per 3-Bedroom Unit	3.1	
Total Number of Units	329	
Design Population	606	
Average Daily Flow per Resident	280	L/c/day
Peak Factor (Harmon Formula)	3.34	
Peak Residential Flow	6.57	L/s
Commercial Flows		
Ground Floor Area	0	m ²
Average Commercial Daily Demand	2.8	L/m ² /day
Peaking Factor	1.5	
Peak Commercial Flows	0.00	L/s
Extraneous Flow		
Site Area	0.88	ha
Infiltration Allowance	0.33	L/s/ha
Peak Extraneous Flow	0.29	
Total Peak Sanitary Flow	6.9	L/s

CCTV SEWER INSPECTION REVIEW FORM

PROJECT:	2 Robinson Avenue	REP
NOVATECH PROJECT NO:	119171	INSF
CONTRACT NO.:		INSF
CORPORATION:		REP
CONTRACTOR:		REV
DATE ISSUED:	11-Dec-20	REV

PORT NO.:	95791A1
PECTION DATE:	2-Sep-20
PECTION CONDUCTED BY:	CWW
ORT RECEIVED:	Septembe
IEW DONE BY:	Novatech
IEW TO CONTRACTOR:	

SEWER TYPE	VIDEO TYPE	C	OMMENTS R	EVIE		IUNIC	PALITY
Sanitary Sewer	Preliminary Set		Yes		No		N/A
□ Storm Sewer	Repair Set						
Combined Sewer	Final Set						

		START MH	END MH	INSPECTION LENGTH	CHE		вох	PROBLEMS / OBSERVATIONS	COMMENTS	
DVD No. / FILE NAME (.mp4)	STREET NAME	START WIT		(m)	ACCEPTABLE	MONITOR	REPAIR	- PROBLEMS / OBSERVATIONS		
SA1 SA2_SA1_202009021141	2 Robinson - On site	SA1	Building	0.8m				Blocked By Debris, Hole in Pipe, Gravel Infiltration	N/A, As this segment of pipe will be removed as part of this development.	
SA1 SA2_SA1_202009021141	2 Robinson - On site	SA1	SA2	0.0				Pipe not inspected as it will not be used as part of this development.	N/A, As this segment of pipe will be removed as part of this development.	
SA2 SA3_SA3_202009021208	2 Robinson - On site	SA3	SA2	98.2			\checkmark	SA2 has a CBMH Cover, Debris in SA2	CBMH lid should be replaced with appropriate [solid] MH lid.	
SA3 SA4_SA4_202009021344	Lees Ave	SA4	SA3	78.0	1			Pipe in good condition	None	
SA4 SA5_SA4_202009021405	Lees Ave	SA4	SA5	66.6				Pipe in good condition	None	

September 3rd 2020

APPENDIX D

Water Demands, FUS Calculations, City of Ottawa Boundary Conditions and Hydraulic Modelling Results

2 Robinson Avenue - Tower A and Podium POST-DEVELOPMENT WATER DEMANDS

DOMESTIC WATER DEMAND

Residential Water Demands	Post-Development		
Number of Studio / 1-Bedroom Units	235		
Persons per Studio / 1-Bedroom Unit	1.4		
Number of 2-Bedroom Units	122		
Persons per 2-Bedroom Unit	2.1		
Number of 3-Bedroom Units	24		
Persons per 3-Bedroom Unit	3.1		
Total Number of Units	381		
Design Population	660		
Average Daily Flow per resident	280	_/c/day	
Average Day Demand	2.14	L/s	
Maximum Day Demand (2.5 x avg. day)	5.35	L/s	
Peak Hour Demand (2.2 x max. day)	11.76	L/s	
Commercial Water Demands			
Ground Floor Area	1,005 r	m ²	
Average Commercial Daily Demand		_/m²/day	
Average Day Demand	0.03	L/s	
Maximum Day Demand (1.5 x avg. day)	0.05	L/s	
Peak Hour Demand (1.8 x max. day)	0.09	L/s	
TOTALS			
Average Day Demand	2.2	L/s	
Maximum Day Demand	5.4	5.4 L/s	
Peak Hour Demand	11.9	L/s	

2 Robinson Avenue - Tower B and Podium POST-DEVELOPMENT WATER DEMANDS

DOMESTIC WATER DEMAND

Residential Water Demands	Post-Development	
Number of Studio / 1-Bedroom Units	234	
Persons per Studio / 1-Bedroom Unit	1.4	
Number of 2-Bedroom Units	92	
Persons per 2-Bedroom Unit	2.1	
Number of 3-Bedroom Units	43	
Persons per 3-Bedroom Unit	3.1	
Total Number of Units	369	
Design Population	655	
Average Daily Flow per resident	280 L/c/day	4
Average Day Demand	2.12 L/s	
Maximum Day Demand (2.5 x avg. day)	5.31 L/s	
Peak Hour Demand (2.2 x max. day)	11.67 L/s	
Commercial Water Demands		
Ground Floor Area	657 m ²	
Average Commercial Daily Demand	2.8 L/m ² /d	ay
Average Day Demand	0.02 L/s	
Maximum Day Demand (1.5 x avg. day)	0.03 L/s	
Peak Hour Demand (1.8 x max. day)	0.06 L/s	
TOTALS		
Average Day Demand	2.1 L/s	
Maximum Day Demand	5.3 L/s	
Peak Hour Demand	11.7 L/s	

2 Robinson Avenue - Tower C and Podium POST-DEVELOPMENT WATER DEMANDS

DOMESTIC WATER DEMAND

Residential Water Demands	Post-Development
Number of Studio / 1-Bedroom Units	241
Persons per Studio / 1-Bedroom Unit	1.4
Number of 2-Bedroom Units	84
Persons per 2-Bedroom Unit	2.1
Number of 3-Bedroom Units	44
Persons per 3-Bedroom Unit	3.1
Total Number of Units	369
Design Population	651
Average Daily Flow per resident	280 L/c/day
Average Day Demand	2.11 L/s
Maximum Day Demand (2.5 x avg. day)	5.27 L/s
Peak Hour Demand (2.2 x max. day)	11.60 L/s
Commercial Water Demands	
Ground Floor Area	656 m ²
Average Commercial Daily Demand	2.8 L/m ² /day
Average Day Demand	0.02 L/s
Maximum Day Demand (1.5 x avg. day)	0.03 L/s
Peak Hour Demand (1.8 x max. day)	0.06 L/s
TOTALS	
Average Day Demand	2.1 L/s
Maximum Day Demand	5.3 L/s
Peak Hour Demand	11.7 L/s

2 Robinson Avenue - Tower D and Podium POST-DEVELOPMENT WATER DEMANDS

DOMESTIC WATER DEMAND

Residential Water Demands	Post-Development	
Number of Studio / 1-Bedroom Units	191	
Persons per Studio / 1-Bedroom Unit	1.4	
Number of 2-Bedroom Units	90	
Persons per 2-Bedroom Unit	2.1	
Number of 3-Bedroom Units	48	
Persons per 3-Bedroom Unit	3.1	
Total Number of Units	329	
Design Population	606	
Average Daily Flow per resident	280	L/c/day
Average Day Demand	1.96	L/s
Maximum Day Demand (2.5 x avg. day)	4.91	L/s
Peak Hour Demand (2.2 x max. day)	10.80	L/s
Commercial Water Demands		
Ground Floor Area	0	m ²
Average Workshop Daily Demand	2.8	L/m²/day
Average Day Demand	0.00	L/s
Maximum Day Demand (1.5 x avg. day)	0.00	L/s
Peak Hour Demand (1.8 x max. day)	0.00	L/s
TOTALS		
Average Day Demand	2.0	L/s
Maximum Day Demand	4.9	L/s
Peak Hour Demand	10.8	L/s

As per 1999 Fire Underwriter's Survey Guidelines

Novatech Project #: 119171 Project Name: 2 Robinson Date: 11/9/2021 Input By: S.Matthews Reviewed By: F.Thauvette

Engineers, Planners & Landscape Architects

Legend

Input by User No Information or Input Required

Building Description: Tower A incl. Podium

Step			Choose		Value Used	Total Fire Flow (L/min)
		Base Fire Flo	w	•	L L	(=)
	Construction Ma	plier				
	Coefficient	Wood frame		1.5		
1	related to type	Ordinary construction		1		
-	of construction	Non-combustible construction	Yes	0.8	0.8	
	С	Modified Fire resistive construction (2 hrs)		0.6		
	-	Fire resistive construction (> 3 hrs)		0.6		
	Floor Area	-	-			
		Podium Level Footprint (m ²)	2406			
		Total Floors/Storeys (Podium)	6			
	Α	Tower Footprint (m ²)	830			
2	^	Total Floors/Storeys	22			
		Protected Openings (1 hr)				
		Area of structure considered (m ²)			11,283	
	F	Base fire flow without reductions				19,000
	· ·	$F = 220 C (A)^{0.5}$				13,000
		Reductions or Sur	harges			
	Occupancy hazard reduction or surcharge			Reduction/Surcharge		
	(1)	Non-combustible		-25%	-15%	16,150
3		Limited combustible	Yes	-15%		
		Combustible		0%		
		Free burning		15%		
		Rapid burning		25%		
	Sprinkler Reduc	tion		Redu	ction	
		Adequately Designed System (NFPA 13)	Yes	-30%	-30%	
4	(0)	Standard Water Supply	Yes	-10%	-10%	0.400
	(2)	Fully Supervised System		-10%		-6,460
			Cun	nulative Total	-40%	
	Exposure Surch	arge (cumulative %)			Surcharge	
		North Side	20.1 - 30 m		10%	
-		East Side	20.1 - 30 m		10%	
5	(3)	South Side	> 45.1m		0%	3,230
		West Side	> 45.1m		0%	
			Cun	nulative Total	20%	
		Results				
		Total Required Fire Flow, rounded to nea	rest 1000L/mi	n	L/min	13,000
6	(1) + (2) + (3)	or		or	L/s	217
		(2,000 L/min < Fire Flow < 45,000 L/min)		or	USGPM	3,435
7	Required Duration of Fire Flow (hours)					2.5
	Storage Volume		m ³	1950		

As per 1999 Fire Underwriter's Survey Guidelines

Novatech Project #: 119171 Project Name: 2 Robinson Date: 3/1/2022 Input By: S.Matthews Reviewed By: F.Thauvette

Engineers, Planners & Landscape Architects

Legend

Input by User No Information or Input Required

Building Description: Tower B, incl. Podium

Step			Choose		Value Used	Total Fire Flow (L/min)
		Base Fire Flo	w			· · ·
	Construction Ma	iplier				
1	Coefficient related to type of construction	Wood frame Ordinary construction Non-combustible construction Modified Fire resistive construction (2 hrs)	Yes	1.5 1 0.8	0.8	
	С	Fire resistive construction (> 3 hrs)		0.6 0.6		
	Floor Area	Podium Level Footprint (m ²)	2995			
2	A	Total Floors/Storeys (Podium) Tower Footprint (m ²) Total Floors/Storeys Protected Openings (1 hr)	6 830 26	•		
		Area of structure considered (m ²)			13,638	
	F	Base fire flow without reductions F = 220 C (A) ^{0.5}	-			21,000
	<u> </u>	Reductions or Surc	harges		<u>I</u>	
	Occupancy haza	ccupancy hazard reduction or surcharge Reduction/s				
3	(1)	Non-combustible Limited combustible Combustible Free burning Rapid burning	Yes	-25% -15% 0% 15% 25%	-15%	17,850
	Sprinkler Reduc			Redu	ction	
4	(2)	Adequately Designed System (NFPA 13) Standard Water Supply Fully Supervised System	Yes Yes Cun	-30% -10% -10% nulative Total	-30% -10% - 40%	-7,140
	Exposure Surch	arge (cumulative %)			Surcharge	
5	(3)	North Side East Side South Side West Side	20.1 - 30 m > 45.1m 30.1- 45 m 20.1 - 30 m Cum	ulative Total	10% 0% 5% 10% 25%	4,463
	-	Results			1	
		Total Required Fire Flow, rounded to nea	rest 1000L/mi	n	L/min	15,000
6	(1) + (2) + (3)	(2,000 L/min < Fire Flow < 45,000 L/min)		or or	L/s USGPM	250 3,963
7	Storage Volume	Required Duration of Fire Flow (hours)			Hours m ³	3 2700
	I	Required Volume of Fire Flow (m ³)			m	2700

As per 1999 Fire Underwriter's Survey Guidelines

Novatech Project #: 119171 Project Name: 2 Robinson Date: 3/1/2022 Input By: S.Matthews Reviewed By: F.Thauvette

Engineers, Planners & Landscape Architects

Legend

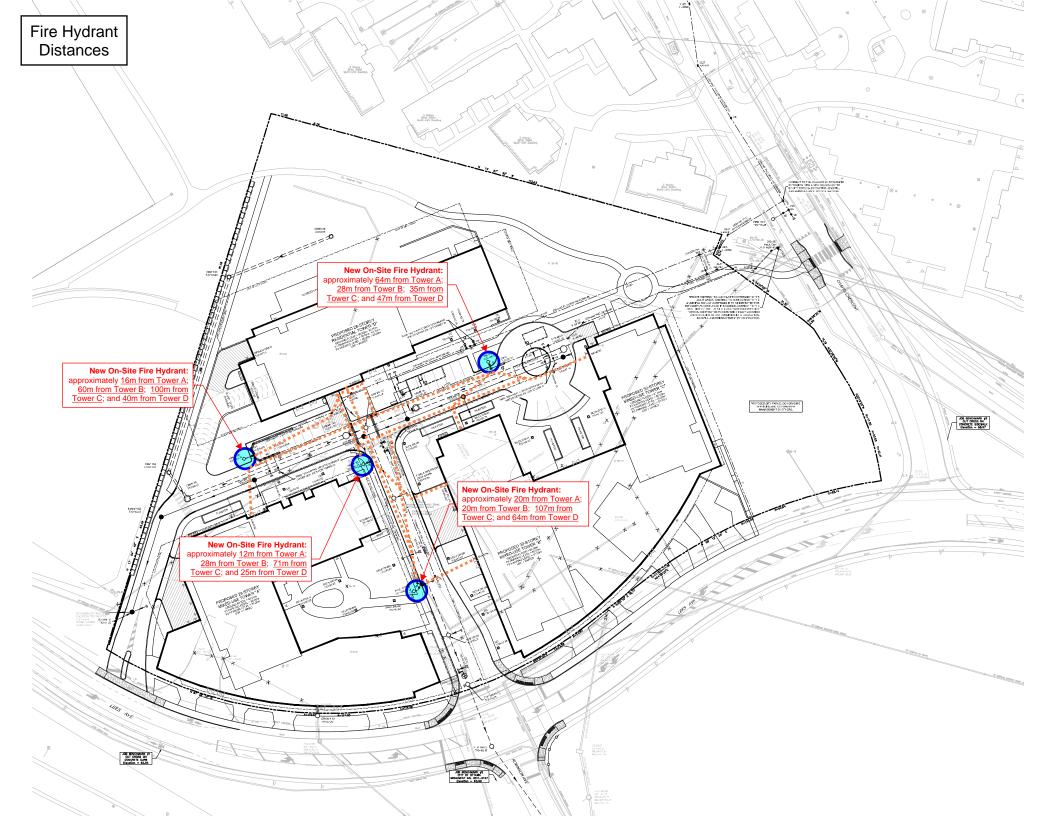
Input by User No Information or Input Required

Building Description: Tower C, incl. Podium

Step			Choose		Value Used	Total Fire Flow (L/min)
		Base Fire Flo	w	l	L L	()
	Construction Ma	iplier				
1	Coefficient related to type of construction	Wood frame Ordinary construction Non-combustible construction Modified Fire resistive construction (2 hrs)	Yes	1.5 1 0.8 0.6	0.8	
	-	Fire resistive construction (> 3 hrs)		0.6		
	Floor Area	â				
2	A	Podium Level Footprint (m ²) Total Floors/Storeys (Podium) Tower Footprint (m ²) Total Floors/Storeys Protected Openings (1 hr)	2995 6 830 26			
		Area of structure considered (m ²)			13,638	
	F	Base fire flow without reductions $F = 220 C (A)^{0.5}$	-			21,000
	<u>+</u>	Reductions or Sur	harges			
	Occupancy haza	rd reduction or surcharge		Reduction	Surcharge	
3	(1)	Non-combustible Limited combustible Combustible Free burning Rapid burning	Yes	-25% -15% 0% 15% 25%	-15%	17,850
	Sprinkler Reduc			Redu	ction	
4	(2)	Adequately Designed System (NFPA 13) Standard Water Supply Fully Supervised System	Yes Yes Cum	-30% -10% -10%	-30% -10% -40%	-7,140
	Exposure Surch	arge (cumulative %)			Surcharge	
5	(3)	North Side East Side South Side West Side	20.1 - 30 m > 45.1m 30.1- 45 m 20.1 - 30 m Cun	ulative Total	10% 0% 5% 10% 25%	4,463
	-	Results				
		Total Required Fire Flow, rounded to nea	rest 1000L/mi	n	L/min	15,000
6	(1) + (2) + (3)	(2,000 L/min < Fire Flow < 45,000 L/min)		or or	L/s USGPM	250 3,963
7	Storage Volume	Required Duration of Fire Flow (hours) Required Volume of Fire Flow (m ³)			Hours m ³	3 2700

As per 1999 Fire Underwriter's Survey Guidelines

Novatech Project #: 119171 Project Name: 2 Robinson Date: 11/9/2021 Input By: S.Matthews Reviewed By: F.Thauvette


Engineers, Planners & Landscape Architects

Legend

Input by User No Information or Input Required

Building Description: Tower D incl. Podium

Step			Choose		Value Used	Total Fire Flow (L/min)
		Base Fire Flo	w			
	Construction Ma	iplier				
1	Coefficient related to type of construction C	Wood frame Ordinary construction Non-combustible construction Modified Fire resistive construction (2 hrs) Fire resistive construction (> 3 hrs)	Yes	1.5 1 0.8 0.6 0.6	0.8	
	Floor Area			0.0		
2	Α	Podium Level Footprint (m ²) Total Floors/Storeys (Podium) Tower Footprint (m ²) Total Floors/Storeys Protected Openings (1 hr) Area of structure considered (m ²)	1595 6 830 22		8,040	
	F	Base fire flow without reductions F = 220 C (A) ^{0.5}	-			16,000
	<u>I</u>	Reductions or Surg	harges			
	Occupancy hazard reduction or surcharge			Reduction		
3	(1)	Non-combustible Limited combustible Combustible Free burning Rapid burning	Yes	-25% -15% 0% 15% 25%	-15%	13,600
	Sprinkler Reduct			Redu	ction	
4	(2)	Adequately Designed System (NFPA 13) Standard Water Supply Fully Supervised System	Yes Yes Cum	-30% -10% -10% nulative Total	-30% -10% -40%	-5,440
	Exposure Surch	arge (cumulative %)			Surcharge	
5	(3)	North Side East Side South Side West Side	20.1 - 30 m 20.1 - 30 m > 45.1m > 45.1m Cum	ulative Total	10% 10% 0% 0% 20%	2,720
		Results				
		Total Required Fire Flow, rounded to nea	rest 1000L/mi	n	L/min	11,000
6	(1) + (2) + (3)	(2,000 L/min < Fire Flow < 45,000 L/min)		or or	L/s USGPM	183 2,906
7	Storage Volume	Required Duration of Fire Flow (hours) Required Volume of Fire Flow (m ³)			Hours m ³	2 1320

Francois Thauvette

From:	Wessel, Shawn <shawn.wessel@ottawa.ca></shawn.wessel@ottawa.ca>
Sent:	Tuesday, March 22, 2022 9:05 AM
То:	Kieran Waugh
Cc:	Francois Thauvette; Steve Matthews; Lee Sheets
Subject:	2 Robinson watermain upgrades - WM length north of Wiggins
Attachments:	Watermain_Site_Loop_Sketch.pdf; 119171_WaterDemands_v2.pdf; 191171-FUS-
	Calcs_v2.pdf; 2 Robinson Avenue March 2022.pdf

Good morning, Kieran.

The City suggested a 305mm watermain may be required along Chapel when the backbone watermain is out of service to meet fire demands within 2 Robinson. It will be up to the designer to confirm the sizing of all watermains.

The previous design (yellow loop) would be the City's preference avoiding parallel watermains throughout the site. Having a looped watermain (Blue) on the same roadway is not diligent and will create future operational issues for the owner/operator.

The current 152mm service will have to be replaced all the way to the 610mm watermain- sizing (or transition from 152mm to 203mm) to depend on fire demands. TVS to be inspected for integrity and replaced if required.

The following are boundary conditions, HGL, for hydraulic analysis at 2 Robinson (zone 1W) assumed to be connected to the 610mm on Chapel Crescent and the 203mm on Chapel Crescent. Scenario 1 considers a looped network while Scenario 2 considers a single feed without the backbone connection. (see attached PDF for location).

Scenario 1: looped network with two connections to the public watermains

Connection 1 (610mm Chapel): Minimum HGL = 105.3 m Maximum HGL = 115.1 m MaxDay + Fire Flow (183 L/s) = 108.0 m MaxDay + Fire Flow (217 L/s) = 107.9 m MaxDay + Fire Flow (250 L/s) = 107.8 m Connection 2 (203mm Chapel): Minimum HGL = 105.5 m Maximum HGL = 115.2 m MaxDay + Fire Flow (183 L/s) = 107.9 m MaxDay + Fire Flow (217 L/s) = 107.6 m Scenario 2: Single feed (backbone watermain out of service)

Connection 2 (203mm Chapel): BSDY + Fire Flow (183 L/s) = 107.3 m BSDY + Fire Flow (217 L/s) = 106.6 m BSDY + Fire Flow (250 L/s) = 105.9 m

These are for current conditions and are based on computer model simulation.

Disclaimer: The boundary condition information is based on current operation of the city water distribution system. The computer model simulation is based on the best information available at the time. The operation of the water distribution system can change on a regular basis, resulting in a variation in boundary conditions. The physical properties of watermains deteriorate over time, as such must be assumed in the absence of actual field test data. The variation in physical watermain properties can therefore alter the results of the computer model simulation.

If you require additional information or clarification, please do not hesitate to contact me anytime.

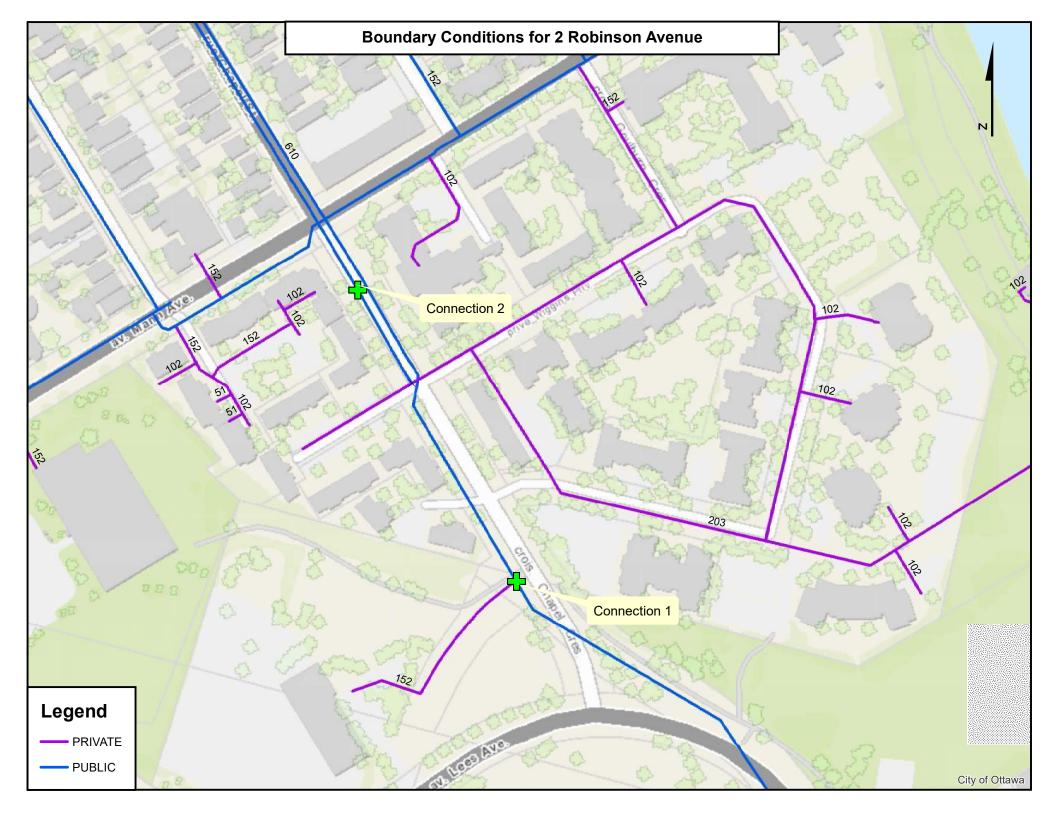
Thank you

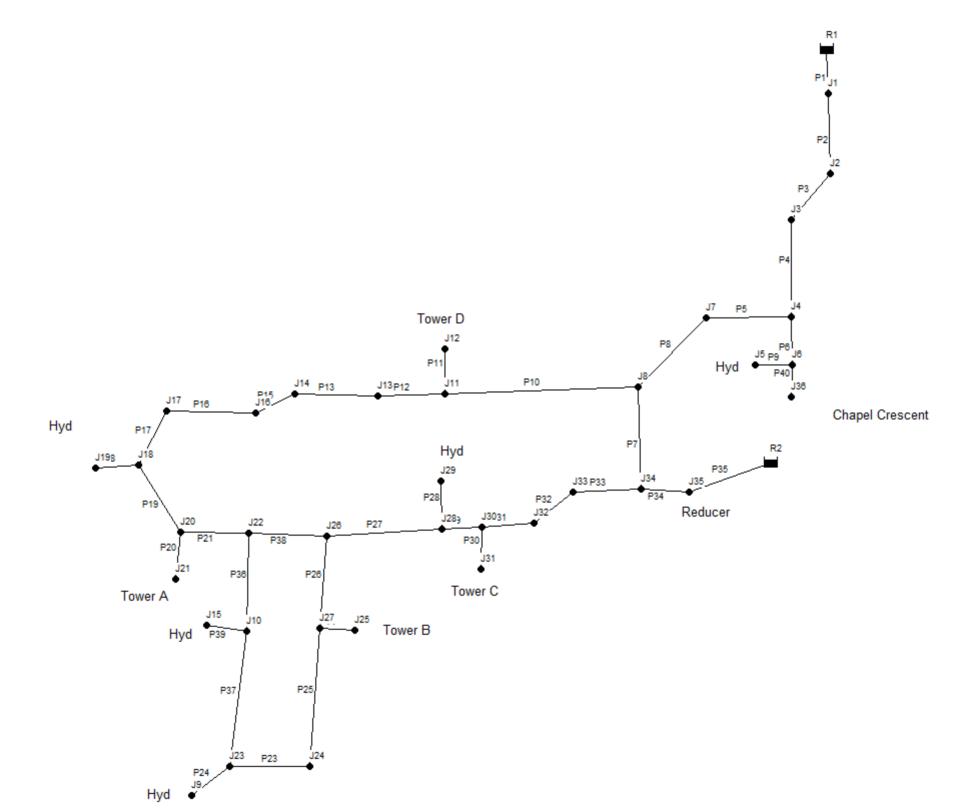
Regards,

Shawn Wessel, A.Sc.T.,rcji Project Manager - Infrastructure Approvals Gestionnaire de projet – Approbation des demandes d'infrastructures

Development Review Central Branch | Direction de l'examen des projets d'aménagement, Centrale Planning, Real Estate and Economic Development Department | Direction générale de la planification des biens immobiliers et du développement économique City of Ottawa | Ville d'Ottawa 110 Laurier Ave. W. | 110, avenue Laurier Ouest, Ottawa ON K1P 1J1 (613) 580 2424 Ext. | Poste 33017 Int. Mail Code | Code de Courrier Interne 01-14 <u>shawn.wessel@ottawa.ca</u>

Please consider the environment before printing this email


ı.


ı

Please also note that, while my work hours may be affected by the current situation and am working from home, I still have access to email, video conferencing and telephone. Feel free to schedule video conferences and/or telephone calls, as necessary.

This e-mail originates from the City of Ottawa e-mail system. Any distribution, use or copying of this e-mail or the information it contains by other than the intended recipient(s) is unauthorized. Thank you.

Le présent courriel a été expédié par le système de courriels de la Ville d'Ottawa. Toute distribution, utilisation ou reproduction du courriel ou des renseignements qui s'y trouvent par une personne autre que son destinataire prévu est interdite. Je vous remercie de votre collaboration.

Max Day + Fire Flow Demand (Tower A) - DOUBLE Watermain Feed	
Network Table - Nodes	

Node ID	Elevation	Demand	Head	Pressure	Pressure	Pressure
	m	L/s	m	m	kPa	psi
Junc J1	67.6	0	107.17	39.57	388.18	56.30
Junc J2	67.6	0	106.94	39.34	385.93	55.97
Junc J3	67.6	0	106.82	39.22	384.75	55.80
Junc J4	67.4	0	106.51	39.11	383.67	55.65
Junc J6	67.5	0	106.51	39.01	382.69	55.50
Junc J7	66.9	0	106.16	39.26	385.14	55.86
Junc J8	66.7	0	105.96	39.26	385.14	55.86
Junc J11	63.8	0	103.22	39.42	386.71	56.09
Junc J12	66	4.9	103.21	37.21	365.03	52.94
Junc J13	61.8	0	102.18	40.38	396.13	57.45
Junc J14	62.4	0	101.88	39.48	387.30	56.17
Junc J16	62.2	0	101.59	39.39	386.42	56.04
Junc J17	61.7	0	100.72	39.02	382.79	55.52
Junc J18	61.6	0	100.59	38.99	382.49	55.48
Junc J19	64.7	95	99.76	35.06	343.94	49.88
Junc J20	61.6	0	100.57	38.97	382.30	55.45
Junc J21	64	5.4	100.56	36.56	358.65	52.02
Junc J22	62.1	0	100.5	38.4	376.70	54.64
Junc J23	61.3	0	100.05	38.75	380.14	55.13
Junc J24	61.2	0	100.09	38.89	381.51	55.33
Junc J25	64	5.3	100.49	36.49	357.97	51.92
Junc J26	62.2	0	100.6	38.4	376.70	54.64
Junc J27	62.2	0	100.49	38.29	375.62	54.48
Junc J28	63.7	0	102.44	38.74	380.04	55.12
Junc J29	67.2	0	102.44	35.24	345.70	50.14
Junc J30	64.5	0	103.26	38.76	380.24	55.15
Junc J31	67.5	5.3	103.25	35.75	350.71	50.87
Junc J32	64.9	0	103.65	38.75	380.14	55.13
Junc J33	65.1	0	103.97	38.87	381.31	55.31
Junc J34	66.7	0	105.98	39.28	385.34	55.89
Junc J35	67.2	0	107.14	39.94	391.81	56.83
Junc J5	70.6	0	106.51	35.91	352.28	51.09
Junc J9	64.6	95	99.21	34.61	339.52	49.24
Junc J10	62.2	0	100.13	37.93	372.09	53.97
Junc J15	65.2	95	99.62	34.42	337.66	48.97
Junc J36	67.5	0	106.51	39.01	382.69	55.50
Resvr R1	107.6	-96.03	107.6	0	0.00	0.00
Resvr R2	107.9	-209.87	107.9	0	0.00	0.00

Link ID	Length	Diameter	Roughness	Flow L/s	Velocity	Unit Headloss
Pipe P1	m 7.4	mm 200	110	2/S 96.03	m/s 3.06	m/km 58.54
Pipe P2	32.3	300	120	96.03	1.36	6.91
Pipe P3	52.5 17.4	300	120	96.03	1.36	6.91
•	44.6	300	120	96.03	1.36	6.91
Pipe P4 Pipe P6	44.6	300	120		0	0
Pipe P8	3 10.2	250	120	0 96.03	1.96	19.74
	68.9	250 250	110		2.86	39.78
Pipe P10 Pipe P11	3.2	150	100	140.17 4.9	0.28	1.15
Pipe P12	27.9	250	110	4.9 135.27	2.76	37.24
Pipe P13	7.9	250	110	135.27	2.76	37.24
Pipe P15	7.8	250	110	135.27	2.76	37.24
Pipe P16	23.5	250	110	135.27	2.76	37.24
Pipe P17	3.4	250	110	135.27	2.76	37.24
Pipe P18	3	150	100	95	5.38	278
Pipe P19	5.1	250	110	40.27	0.82	3.95
Pipe P20	7.3	150	100	5.4	0.31	1.37
Pipe P21	24.6	250	110	34.87	0.71	3.02
Pipe P23	3.7	250	110	-66.82	1.36	10.09
Pipe P26	9.3	250	110	72.12	1.47	11.62
Pipe P27	36.1	250	110	-160.43	3.27	51.07
Pipe P28	2	150	100	0	0	0
Pipe P29	15.9	250	110	-160.43	3.27	51.07
Pipe P30	7.5	150	100	5.3	0.3	1.33
Pipe P31	7.2	250	110	-165.73	3.38	54.24
Pipe P32	6	250	110	-165.73	3.38	54.24
Pipe P33	37.1	250	110	-165.73	3.38	54.24
Pipe P34	13.8	250	110	-209.87	4.28	84
Pipe P35	9	250	110	-209.87	4.28	84
Pipe P5	18	250	110	-96.03	1.96	19.74
Pipe P7	5.7	250	110	-44.15	0.9	4.68
Pipe P9	5	150	100	0	0	0
Pipe P14	3	150	100	-5.3	0.3	1.33
Pipe P24	3	150	100	95	5.38	278
Pipe P25	40.3	250	110	66.82	1.36	10.09
Pipe P36	11.9	250	110	123.18	2.51	31.31
Pipe P37	37.4	250	110	28.18	0.57	2.04
Pipe P38	6.1	250	110	-88.3	1.8	16.9
Pipe P39	1.8	150	100	-95	5.38	277.99
Pipe P40	3	300	120	0	0	0

Max Day + Fire Flow Demand (Tower A) - DOUBLE Watermain Feed Network Table - Links

Max Day + Fire Flow Demand (Tower B) - DOUBLE Watermain Feed	
Network Table - Nodes	

Node ID	Elevation	Demand	Head	Pressure	Pressure	Pressure
	m	L/s	m	m	kPa	psi
Junc J1	67.6	0	106.99	39.39	386.42	56.04
Junc J2	67.6	0	106.77	39.17	384.26	55.73
Junc J3	67.6	0	106.66	39.06	383.18	55.58
Junc J4	67.4	0	106.36	38.96	382.20	55.43
Junc J6	67.5	0	106.36	38.86	381.22	55.29
Junc J7	66.9	0	106.03	39.13	383.87	55.67
Junc J8	66.7	0	105.83	39.13	383.87	55.67
Junc J11	63.8	0	103.73	39.93	391.71	56.81
Junc J12	66	4.9	103.73	37.73	370.13	53.68
Junc J13	61.8	0	102.94	41.14	403.58	58.53
Junc J14	62.4	0	102.72	40.32	395.54	57.37
Junc J16	62.2	0	102.5	40.3	395.34	57.34
Junc J17	61.7	0	101.84	40.14	393.77	57.11
Junc J18	61.6	0	101.74	40.14	393.77	57.11
Junc J19	64.7	0	101.74	37.04	363.36	52.70
Junc J20	61.6	0	101.6	40	392.40	56.91
Junc J21	64	5.4	101.59	37.59	368.76	53.48
Junc J22	62.1	0	100.96	38.86	381.22	55.29
Junc J23	61.3	0	100.47	39.17	384.26	55.73
Junc J24	61.2	0	100.5	39.3	385.53	55.92
Junc J25	64	5.3	100.86	36.86	361.60	52.45
Junc J26	62.2	0	100.96	38.76	380.24	55.15
Junc J27	62.2	0	100.87	38.67	379.35	55.02
Junc J28	63.7	0	101.52	37.82	371.01	53.81
Junc J29	67.2	95	100.97	33.77	331.28	48.05
Junc J30	64.5	0	102.52	38.02	372.98	54.10
Junc J31	67.5	5.3	102.51	35.01	343.45	49.81
Junc J32	64.9	0	102.99	38.09	373.66	54.20
Junc J33	65.1	0	103.39	38.29	375.62	54.48
Junc J34	66.7	0	105.84	39.14	383.96	55.69
Junc J35	67.2	0	107.03	39.83	390.73	56.67
Junc J5	70.6	0	106.36	35.76	350.81	50.88
Junc J9	64.6	95	99.63	35.03	343.64	49.84
Junc J10	62.2	0	100.56	38.36	376.31	54.58
Junc J15	65.2	95	100.06	34.86	341.98	49.60
Junc J36	67.5	0	106.36	38.86	381.22	55.29
Resvr R1	107.4	-93.64	107.4	0	0.00	0.00
Resvr R2	107.8	-212.26	107.8	0	0.00	0.00

Link ID	Length	Diameter	Roughness	Flow	Velocity	Unit Headloss
Dine D1	m 7.4	mm 200	110	L/s 93.64	m/s	m/km 55.87
Pipe P1 Pipe P2	32.3	300	120	93.64 93.64	2.98 1.32	6.6
Pipe P3	52.5 17.4	300	120	93.64 93.64	1.32	6.6
•			120		1.32	6.6
Pipe P4 Pipe P6	44.6 3	300 300	120	93.64 0	0	0.0
Pipe P8	10.2	250	120	93.64	1.91	18.84
Pipe P10	68.9	250 250	110	121.44	2.47	30.5
Pipe P11	3.2	150	100	4.9	0.28	1.15
•	27.9		110	4.9		
Pipe P12 Pipe P13	7.9	250 250	110	116.54	2.37 2.37	28.26 28.26
	7.9	250 250	110			
Pipe P15	23.5		110	116.54	2.37	28.26 28.26
Pipe P16		250		116.54	2.37	
Pipe P17	3.4	250	110	116.54	2.37	28.26
Pipe P18	3	150	100	0	0	0
Pipe P19	5.1	250	110	116.54	2.37	28.26
Pipe P20	7.3	150	100	5.4	0.31	1.37
Pipe P21	24.6	250	110	111.14	2.26	25.88
Pipe P23	3.7	250	110	-62.98	1.28	9.04
Pipe P26	9.3	250	110	68.28	1.39	10.5
Pipe P27	36.1	250	110	-84.16	1.71	15.46
Pipe P28	2	150	100	95	5.38	277.99
Pipe P29	15.9	250	110	-179.16	3.65	62.66
Pipe P30	7.5	150	100	5.3	0.3	1.33
Pipe P31	7.2	250	110	-184.46	3.76	66.14
Pipe P32	6	250	110	-184.46	3.76	66.14
Pipe P33	37.1	250	110	-184.46	3.76	66.14
Pipe P34	13.8	250	110	-212.26	4.32	85.78
Pipe P35	9	250	110	-212.26	4.32	85.78
Pipe P5	18	250	110	-93.64	1.91	18.84
Pipe P7	5.7	250	110	-27.8	0.57	1.99
Pipe P9	5	150	100	0	0	0
Pipe P14	3	150	100	-5.3	0.3	1.33
Pipe P24	3	150	100	95	5.38	277.99
Pipe P25	40.3	250	110	62.98	1.28	9.04
Pipe P36	11.9	250	110	127.02	2.59	33.14
Pipe P37	37.4	250	110	32.02	0.65	2.58
Pipe P38	6.1	250	110	-15.88	0.32	0.7
Pipe P39	1.8	150	100	-95	5.38	277.99
Pipe P40	3	300	120	0	0	0

Max Day + Fire Flow Demand (Tower B) - DOUBLE Watermain Feed Network Table - Links

Max Day + Fire Flow Demand (Tower C) - DOUBLE Watermain Feed Network Table - Nodes

Node ID	Elevation	Demand	Head	Pressure	Pressure	Pressure
	m	L/s	m	m	kPa	psi
Junc J1	67.6	0	106.89	39.29	385.43	55.90
Junc J2	67.6	0	106.63	39.03	382.88	55.53
Junc J3	67.6	0	106.49	38.89	381.51	55.33
Junc J4	67.4	0	106.13	38.73	379.94	55.11
Junc J6	67.5	0	106.13	38.63	378.96	54.96
Junc J7	66.9	0	105.71	38.81	380.73	55.22
Junc J8	66.7	0	105.47	38.77	380.33	55.16
Junc J11	63.8	0	102.75	38.95	382.10	55.42
Junc J12	66	4.9	102.75	36.75	360.52	52.29
Junc J13	61.8	0	101.72	39.92	391.62	56.80
Junc J14	62.4	0	101.43	39.03	382.88	55.53
Junc J16	62.2	0	101.14	38.94	382.00	55.40
Junc J17	61.7	0	100.27	38.57	378.37	54.88
Junc J18	61.6	0	100.14	38.54	378.08	54.84
Junc J19	64.7	63	99.76	35.06	343.94	49.88
Junc J20	61.6	0	100.09	38.49	377.59	54.76
Junc J21	64	5.4	100.08	36.08	353.94	51.34
Junc J22	62.1	0	99.84	37.74	370.23	53.70
Junc J23	61.3	0	99.53	38.23	375.04	54.39
Junc J24	61.2	0	99.56	38.36	376.31	54.58
Junc J25	64	5.3	99.8	35.8	351.20	50.94
Junc J26	62.2	0	99.87	37.67	369.54	53.60
Junc J27	62.2	0	99.8	37.6	368.86	53.50
Junc J28	63.7	0	100.59	36.89	361.89	52.49
Junc J29	67.2	95	100.04	32.84	322.16	46.73
Junc J30	64.5	0	101.72	37.22	365.13	52.96
Junc J31	67.5	5.3	101.71	34.21	335.60	48.67
Junc J32	64.9	0	102.26	37.36	366.50	53.16
Junc J33	65.1	0	102.71	37.61	368.95	53.51
Junc J34	66.7	0	105.49	38.79	380.53	55.19
Junc J35	67.2	0	106.89	39.69	389.36	56.47
Junc J5	70.6	0	106.13	35.53	348.55	50.55
Junc J9	64.6	63	99.15	34.55	338.94	49.16
Junc J10	62.2	0	99.55	37.35	366.40	53.14
Junc J15	65.2	95	99.05	33.85	332.07	48.16
Junc J36	67.5	0	106.13	38.63	378.96	54.96
Resvr R1	107.4	-104.7	107.4	0	0.00	0.00
Resvr R2	107.8	-232.2	107.8	0	0.00	0.00

Link ID	Length	Diameter	Roughness	Flow	Velocity	Unit Headloss
Dino D1	m 7.4	mm 200	110	L/s 104.7	m/s 3.33	m/km 68.7
Pipe P1 Pipe P2	32.3	300	120	104.7	3.33 1.48	8.11
Pipe P3	52.5 17.4	300	120	104.7	1.48	8.11
•			120	104.7	1.48	8.11
Pipe P4 Pipe P6	44.6 3	300 300	120	0	0	0
Pipe P8	10.2	250	120	104.7	2.13	23.17
Pipe P10	68.9	250 250	110	139.65	2.13	39.5
Pipe P11	3.2	150	100	4.9	0.28	1.15
•	27.9		110	4.9		
Pipe P12 Pipe P13	7.9	250 250	110	134.75	2.75 2.75	36.97 36.97
	7.9	250 250	110			
Pipe P15	23.5		110	134.75	2.75	36.97
Pipe P16		250		134.75	2.75	36.97
Pipe P17	3.4	250	110	134.75	2.75	36.97
Pipe P18	3	150	100	63	3.57	129.92
Pipe P19	5.1	250	110	71.75	1.46	11.51
Pipe P20	7.3	150	100	5.4	0.31	1.37
Pipe P21	24.6	250	110	66.35	1.35	9.96
Pipe P23	3.7	250	110	-50.51	1.03	6.01
Pipe P26	9.3	250	110	55.81	1.14	7.23
Pipe P27	36.1	250	110	-96.95	1.98	20.1
Pipe P28	2	150	100	95	5.38	277.99
Pipe P29	15.9	250	110	-191.95	3.91	71.2
Pipe P30	7.5	150	100	5.3	0.3	1.33
Pipe P31	7.2	250	110	-197.25	4.02	74.88
Pipe P32	6	250	110	-197.25	4.02	74.88
Pipe P33	37.1	250	110	-197.25	4.02	74.88
Pipe P34	13.8	250	110	-232.2	4.73	101.3
Pipe P35	9	250	110	-232.2	4.73	101.3
Pipe P5	18	250	110	-104.7	2.13	23.17
Pipe P7	5.7	250	110	-34.95	0.71	3.04
Pipe P9	5	150	100	0	0	0
Pipe P14	3	150	100	-5.3	0.3	1.33
Pipe P24	3	150	100	63	3.57	129.92
Pipe P25	40.3	250	110	50.51	1.03	6.01
Pipe P36	11.9	250	110	107.49	2.19	24.33
Pipe P37	37.4	250	110	12.49	0.25	0.45
Pipe P38	6.1	250	110	-41.14	0.84	4.11
Pipe P39	1.8	150	100	-95	5.38	277.99
Pipe P40	3	300	120	0	0	0

Max Day + Fire Flow Demand (Tower C) - DOUBLE Watermain Feed Network Table - Links

Max Day + Fire Flow Demand (Tower D) - DOUBLE Watermain Feed Network Table - Nodes

Node ID	Elevation	Demand	Head	Pressure	Pressure	Pressure
	m	L/s	m	m	kPa	psi
Junc J1	67.6	0	107.43	39.83	390.73	56.67
Junc J2	67.6	0	107.19	39.59	388.38	56.33
Junc J3	67.6	0	107.07	39.47	387.20	56.16
Junc J4	67.4	0	106.73	39.33	385.83	55.96
Junc J6	67.5	0	106.73	39.23	384.85	55.82
Junc J7	66.9	0	106.35	39.45	387.00	56.13
Junc J8	66.7	0	106.14	39.44	386.91	56.12
Junc J11	63.8	0	103.83	40.03	392.69	56.96
Junc J12	66	4.9	103.82	37.82	371.01	53.81
Junc J13	61.8	0	102.96	41.16	403.78	58.56
Junc J14	62.4	0	102.71	40.31	395.44	57.35
Junc J16	62.2	0	102.47	40.27	395.05	57.30
Junc J17	61.7	0	101.73	40.03	392.69	56.96
Junc J18	61.6	0	101.63	40.03	392.69	56.96
Junc J19	64.7	95	100.79	36.09	354.04	51.35
Junc J20	61.6	0	101.62	40.02	392.60	56.94
Junc J21	64	5.4	101.61	37.61	368.95	53.51
Junc J22	62.1	0	101.58	39.48	387.30	56.17
Junc J23	61.3	0	101.52	40.22	394.56	57.23
Junc J24	61.2	0	101.53	40.33	395.64	57.38
Junc J25	64	5.3	101.59	37.59	368.76	53.48
Junc J26	62.2	0	101.62	39.42	386.71	56.09
Junc J27	62.2	0	101.59	39.39	386.42	56.04
Junc J28	63.7	0	102.1	38.4	376.70	54.64
Junc J29	67.2	95	101.54	34.34	336.88	48.86
Junc J30	64.5	0	103.03	38.53	377.98	54.82
Junc J31	67.5	5.3	103.02	35.52	348.45	50.54
Junc J32	64.9	0	103.48	38.58	378.47	54.89
Junc J33	65.1	0	103.85	38.75	380.14	55.13
Junc J34	66.7	0	106.15	39.45	387.00	56.13
Junc J35	67.2	0	107.27	40.07	393.09	57.01
Junc J5	70.6	0	106.73	36.13	354.44	51.41
Junc J9	64.6	0	101.52	36.92	362.19	52.53
Junc J10	62.2	0	101.46	39.26	385.14	55.86
Junc J15	65.2	95	100.96	35.76	350.81	50.88
Junc J36	67.5	0	106.73	39.23	384.85	55.82
Resvr R1	107.9	-99.8	107.9	0	0.00	0.00
Resvr R2	108	-206.1	108	0	0.00	0.00

Max Day + Fire Flow Demand (Tower D) - DOUBLE Watermain Feed Network Table - Links

Link ID	Length	Diameter	Roughness	Flow L/s	Velocity	Unit Headloss
Pipe P1	m 7.4	mm 200	110	L/S 99.8	m/s 3.18	m/km 62.87
Pipe P2	32.3	300	120	99.8	1.41	7.43
Pipe P3	17.4	300	120	99.8	1.41	7.43
Pipe P4	44.6	300	120	99.8	1.41	7.43
Pipe P6	3	300	120	0	0	0
Pipe P8	10.2	250	110	99.8	2.03	21.2
Pipe P10	68.9	250	110	127.81	2.6	33.53
Pipe P11	3.2	150	100	4.9	0.28	1.15
Pipe P12	27.9	250	110	122.91	2.5	31.18
Pipe P13	7.9	250	110	122.91	2.5	31.18
Pipe P15	7.8	250	110	122.91	2.5	31.18
Pipe P16	23.5	250	110	122.91	2.5	31.18
Pipe P17	3.4	250	110	122.91	2.5	31.19
Pipe P18	3	150	100	95	5.38	277.99
Pipe P19	5.1	250	110	27.91	0.57	211.55
Pipe P20	7.3	150	100	5.4	0.31	1.37
Pipe P21	24.6	250	110	22.51	0.46	1.34
Pipe P23	3.7	250	110	-25.56	0.52	1.7
Pipe P26	9.3	250	110	30.86	0.63	2.41
Pipe P27	36.1	250	110	-77.79	1.58	13.37
Pipe P28	2	150	100	95	5.38	278
Pipe P29	15.9	250	110	-172.79	3.52	58.6
Pipe P30	7.5	150	100	5.3	0.3	1.33
Pipe P31	7.2	250	110	-178.09	3.63	61.97
Pipe P32	6	250	110	-178.09	3.63	61.97
Pipe P33	37.1	250	110	-178.09	3.63	61.97
Pipe P34	13.8	250	110	-206.1	4.2	81.22
Pipe P35	9	250	110	-206.1	4.2	81.22
Pipe P5	18	250	110	-99.8	2.03	21.2
Pipe P7	5.7	250	110	-28.01	0.57	2.02
Pipe P9	5	150	100	0	0	0
Pipe P14	3	150	100	-5.3	0.3	1.33
Pipe P24	3	150	100	0	0	0
Pipe P25	40.3	250	110	25.56	0.52	1.7
Pipe P36	11.9	250	110	69.44	1.41	10.83
Pipe P37	37.4	250	110	-25.56	0.52	1.7
Pipe P38	6.1	250	110	-46.93	0.96	5.24
Pipe P39	1.8	150	100	-95	5.38	277.99
Pipe P40	3	300	120	0	0	0

Hydraulic Modelling Results - 2 Robinson Avenue

Node ID Elevation Demand Head Pressure Pressure Pressure L/s kPa m m m psi 67.6 371.21 53.84 Junc J1 0 105.44 37.84 Junc J2 67.6 0 105.42 37.82 371.01 53.81 Junc J3 67.6 0 105.4 37.8 370.82 53.78 Junc J4 0 372.39 54.01 67.4 105.36 37.96 Junc J6 67.5 0 371.41 53.87 105.36 37.86 Junc J7 66.9 0 105.31 38.41 376.80 54.65 Junc J8 66.7 0 105.29 38.59 378.57 54.91 0 Junc J11 63.8 105.2 41.4 406.13 58.90 Junc J12 39.19 55.76 66 10.8 105.19 384.45 Junc J13 61.8 0 105.2 43.4 425.75 61.75 Junc J14 62.4 0 105.19 42.79 419.77 60.88 Junc J16 62.2 0 105.19 42.99 421.73 61.17 Junc J17 426.54 61.7 0 105.18 43.48 61.86 Junc J18 61.6 0 105.18 43.58 427.52 62.01 Junc J19 0 397.11 57.60 64.7 105.18 40.48 0 Junc J20 61.6 105.18 43.58 427.52 62.01 Junc J21 64 11.9 105.14 41.14 403.58 58.53 Junc J22 62.1 0 105.18 43.08 422.61 61.30 Junc J23 61.3 0 43.88 430.46 62.43 105.18 Junc J24 0 62.58 61.2 105.18 43.98 431.44 Junc J25 64 11.7 105.16 41.16 403.78 58.56 Junc J26 62.2 0 105.18 42.98 421.63 61.15 Junc J27 62.2 421.63 61.15 0 105.18 42.98 Junc J28 63.7 0 105.2 407.12 59.05 41.5 Junc J29 67.2 0 372.78 54.07 105.2 38 Junc J30 0 64.5 105.21 40.71 399.37 57.92 Junc J31 67.5 11.7 105.16 37.66 369.44 53.58 Junc J32 64.9 0 105.22 40.32 395.54 57.37 Junc J33 65.1 0 393.68 57.10 105.23 40.13 Junc J34 0 378.57 54.91 66.7 105.29 38.59 Junc J35 67.2 0 105.29 38.09 373.66 54.20 Junc J5 70.6 0 105.36 34.76 341.00 49.46 Junc J9 57.74 64.6 0 105.18 40.58 398.09 Junc J10 0 62.2 105.18 42.98 421.63 61.15 Junc J15 65.2 0 105.18 39.98 392.20 56.88 Junc J36 67.5 0 105.36 37.86 371.41 53.87 Resvr R1 105.5 -31.75 105.5 0 0.00 0.00 0 Resvr R2 105.3 -14.35 105.3 0.00 0.00

Peak Hour Demand - DOUBLE Watermain Feed Network Table - Nodes

Peak Hour Demand Network Table - Links

Link ID	Length m	Diameter mm	Roughness	Flow L/s	Velocity m/s	Unit Headloss m/km
Pipe P1	7.4	200	110	31.75	1.01	7.54
Pipe P2	32.3	300	120	31.75	0.45	0.89
Pipe P3	17.4	300	120	31.75	0.45	0.89
Pipe P4	44.6	300	120	31.75	0.45	0.89
Pipe P6	3	300	120	0	0	0
Pipe P8	10.2	250	110	31.75	0.65	2.54
Pipe P10	68.9	250	110	21.32	0.43	1.22
Pipe P11	3.2	150	100	10.8	0.61	4.96
Pipe P12	27.9	250	110	10.52	0.21	0.33
Pipe P13	7.9	250	110	10.52	0.21	0.33
Pipe P15	7.8	250	110	10.52	0.21	0.33
Pipe P16	23.5	250	110	10.52	0.21	0.33
Pipe P17	3.4	250	110	10.52	0.21	0.33
Pipe P18	3	150	100	0	0	0
Pipe P19	5.1	250	110	10.52	0.21	0.33
Pipe P20	7.3	150	100	11.9	0.67	5.93
Pipe P21	24.6	250	110	-1.38	0.03	0.01
Pipe P23	3.7	250	110	2.47	0.05	0.02
Pipe P26	9.3	250	110	9.23	0.19	0.26
Pipe P27	36.1	250	110	-13.08	0.27	0.49
Pipe P28	2	150	100	0	0	0
Pipe P29	15.9	250	110	-13.08	0.27	0.49
Pipe P30	7.5	150	100	11.7	0.66	5.75
Pipe P31	7.2	250	110	-24.78	0.5	1.61
Pipe P32	6	250	110	-24.78	0.5	1.6
Pipe P33	37.1	250	110	-24.78	0.5	1.61
Pipe P34	13.8	250	110	-14.35	0.29	0.58
Pipe P35	9	250	110	-14.35	0.29	0.58
Pipe P5	18	250	110	-31.75	0.65	2.54
Pipe P7	5.7	250	110	10.43	0.21	0.32
Pipe P9	5	150	100	0	0	0
Pipe P14	3	150	100	-11.7	0.66	5.75
Pipe P24	3	150	100	0	0	0
Pipe P25	40.3	250	110	-2.47	0.05	0.02
Pipe P36	11.9	250	110	2.47	0.05	0.02
Pipe P37	37.4	250	110	2.47	0.05	0.02
Pipe P38	6.1	250	110	-3.84	0.08	0.05
Pipe P39	1.8	150	100	0	0	0
Pipe P40	3	300	120	0	0	0

Hydraulic Modelling Results - 2 Robinson Avenue

Node ID	Elevation	Demand	Head	Pressure	Pressure	Pressure
Junc J1	m 67.6	L/s	m 115.17	m 47.57	kPa 466.66	psi 67.68
June J2	67.6	0	115.17			67.67
				47.56	466.56	
Junc J3	67.6	0	115.15	47.55	466.47	67.66
Junc J4	67.4	0	115.14	47.74	468.33	67.93
Junc J6	67.5	0	115.14	47.64	467.35	67.78
Junc J7	66.9	0	115.11	48.21	472.94	68.59
Junc J8	66.7	0	115.1	48.4	474.80	68.86
Junc J11	63.8	0	115.08	51.28	503.06	72.96
Junc J12	66	4.9	115.08	49.08	481.47	69.83
Junc J13	61.8	0	115.08	53.28	522.68	75.81
Junc J14	62.4	0	115.08	52.68	516.79	74.95
Junc J16	62.2	0	115.08	52.88	518.75	75.24
Junc J17	61.7	0	115.08	53.38	523.66	75.95
Junc J18	61.6	0	115.08	53.48	524.64	76.09
Junc J19	64.7	0	115.08	50.38	494.23	71.68
Junc J20	61.6	0	115.08	53.48	524.64	76.09
Junc J21	64	5.4	115.07	51.07	501.00	72.66
Junc J22	62.1	0	115.08	52.98	519.73	75.38
Junc J23	61.3	0	115.08	53.78	527.58	76.52
Junc J24	61.2	0	115.08	53.88	528.56	76.66
Junc J25	64	5.3	115.07	51.07	501.00	72.66
Junc J26	62.2	0	115.08	52.88	518.75	75.24
Junc J27	62.2	0	115.08	52.88	518.75	75.24
Junc J28	63.7	0	115.08	51.38	504.04	73.10
Junc J29	67.2	0	115.08	47.88	469.70	68.12
Junc J30	64.5	0	115.08	50.58	496.19	71.97
Junc J31	67.5	5.3	115.07	47.57	466.66	67.68
Junc J32	64.9	0	115.08	50.18	492.27	71.40
Junc J33	65.1	0	115.09	49.99	490.40	71.13
Junc J34	66.7	0	115.1	48.4	474.80	68.86
Junc J35	67.2	0	115.1	47.9	469.90	68.15
Junc J5	70.6	0	115.14	44.54	436.94	63.37
Junc J9	64.6	0	115.08	50.48	495.21	71.82
Junc J10	62.2	0	115.08	52.88	518.75	75.24
Junc J15	65.2	0	115.08	49.88	489.32	70.97
Junc J36	67.5	0	115.14	47.64	467.35	67.78
Resvr R1	115.2	-20.95	115.2	0	0.00	0.00
Resvr R2	115.1	0.05	115.1	0	0.00	0.00
		0.00		•	0.00	0.00

Max HGL check - DOUBLE Watermain Feed Network Table - Nodes

check - DOUBLE Watermain Feed Network Table - Links

Link ID	Length m	Diameter mm	Roughness	Flow L/s	Velocity m/s	Unit Headloss m/km
Pipe P1	7.4	200	110	20.95	0.67	3.49
Pipe P2	32.3	300	120	20.95	0.3	0.40
Pipe P3	17.4	300	120	20.95	0.3	0.41
Pipe P4	44.6	300	120	20.95	0.3	0.41
Pipe P6	3	300	120	0	0	0
Pipe P8	10.2	250	110	20.95	0.43	1.18
Pipe P10	68.9	250	110	9.82	0.2	0.29
Pipe P11	3.2	150	100	4.9	0.28	1.15
Pipe P12	27.9	250	110	4.92	0.1	0.08
Pipe P13	7.9	250	110	4.92	0.1	0.08
Pipe P15	7.8	250	110	4.92	0.1	0.08
Pipe P16	23.5	250	110	4.92	0.1	0.08
Pipe P17	3.4	250	110	4.92	0.1	0.08
Pipe P18	3	150	100	0	0	0
Pipe P19	5.1	250	110	4.92	0.1	0.08
Pipe P20	7.3	150	100	5.4	0.31	1.37
Pipe P21	24.6	250	110	-0.48	0.01	0
Pipe P23	3.7	250	110	1.13	0.02	0.01
Pipe P26	9.3	250	110	4.17	0.09	0.06
Pipe P27	36.1	250	110	-5.78	0.12	0.11
Pipe P28	2	150	100	0	0	0
Pipe P29	15.9	250	110	-5.78	0.12	0.11
Pipe P30	7.5	150	100	5.3	0.3	1.33
Pipe P31	7.2	250	110	-11.08	0.23	0.36
Pipe P32	6	250	110	-11.08	0.23	0.36
Pipe P33	37.1	250	110	-11.08	0.23	0.36
Pipe P34	13.8	250	110	0.05	0	0
Pipe P35	9	250	110	0.05	0	0
Pipe P5	18	250	110	-20.95	0.43	1.18
Pipe P7	5.7	250	110	11.13	0.23	0.37
Pipe P9	5	150	100	0	0	0
Pipe P14	3	150	100	-5.3	0.3	1.33
Pipe P24	3	150	100	0	0	0
Pipe P25	40.3	250	110	-1.13	0.02	0.01
Pipe P36	11.9	250	110	1.13	0.02	0
Pipe P37	37.4	250	110	1.13	0.02	0.01
Pipe P38	6.1	250	110	-1.61	0.03	0.01
Pipe P39	1.8	150	100	0	0	0
Pipe P40	3	300	120	0	0	0

Hydraulic Modelling Results - 2 Robinson Avenue

Max Day + Fire Flow Demand (Tower A) - SINGLE Watermain Feed Network Table - Nodes

Node ID	Elevation	Demand	Head	Pressure	Pressure	Pressure
	m	L/s	m	m	kPa	psi
Junc J1	67.6	0	102.9	35.3	346.29	50.23
Junc J2	67.6	0	100.99	33.39	327.56	47.51
Junc J3	67.6	0	99.96	32.36	317.45	46.04
Junc J4	67.4	0	97.32	29.92	293.52	42.57
Junc J6	67.5	0	97.32	29.82	292.53	42.43
Junc J7	66.9	0	94.29	27.39	268.70	38.97
Junc J8	66.7	0	92.56	25.86	253.69	36.79
Junc J11	63.8	0	89.74	25.94	254.47	36.91
Junc J12	66	4.9	89.73	23.73	232.79	33.76
Junc J13	61.8	0	88.67	26.87	263.59	38.23
Junc J14	62.4	0	88.36	25.96	254.67	36.94
Junc J16	62.2	0	88.06	25.86	253.69	36.79
Junc J17	61.7	0	87.16	25.46	249.76	36.22
Junc J18	61.6	0	87.03	25.43	249.47	36.18
Junc J19	64.7	95	86.19	21.49	210.82	30.58
Junc J20	61.6	0	87.01	25.41	249.27	36.15
Junc J21	64	5.4	87	23	225.63	32.72
Junc J22	62.1	0	86.92	24.82	243.48	35.31
Junc J23	61.3	0	86.47	25.17	246.92	35.81
Junc J24	61.2	0	86.51	25.31	248.29	36.01
Junc J25	64	5.3	86.91	22.91	224.75	32.60
Junc J26	62.2	0	87.02	24.82	243.48	35.31
Junc J27	62.2	0	86.91	24.71	242.41	35.16
Junc J28	63.7	0	88.81	25.11	246.33	35.73
Junc J29	67.2	0	88.81	21.61	211.99	30.75
Junc J30	64.5	0	89.61	25.11	246.33	35.73
Junc J31	67.5	5.3	89.6	22.1	216.80	31.44
Junc J32	64.9	0	89.99	25.09	246.13	35.70
Junc J33	65.1	0	90.3	25.2	247.21	35.86
Junc J34	66.7	0	92.26	25.56	250.74	36.37
Junc J35	67.2	0	92.26	25.06	245.84	35.66
Junc J5	70.6	0	97.32	26.72	262.12	38.02
Junc J9	64.6	95	85.64	21.04	206.40	29.94
Junc J10	62.2	0	86.55	24.35	238.87	34.65
Junc J15	65.2	95	86.05	20.85	204.54	29.67
Junc J36	67.5	0	97.32	29.82	292.53	42.43
Resvr R1	106.6	-305.9	106.6	0	0.00	0.00

Link ID	Length	Diameter	Roughness	Flow	Velocity	Unit Headloss
	m	mm		L/s	m/s	m/km
Pipe P1	7.4	200	110	305.9	9.74	500.43
Pipe P2	32.3	300	120	305.9	4.33	59.1
Pipe P3	17.4	300	120	305.9	4.33	59.11
Pipe P4	44.6	300	120	305.9	4.33	59.1
Pipe P6	3	300	120	0	0	0
Pipe P8	10.2	250	110	305.9	6.23	168.77
Pipe P10	68.9	250	110	142.51	2.9	41.01
Pipe P11	3.2	150	100	4.9	0.28	1.15
Pipe P12	27.9	250	110	137.61	2.8	38.44
Pipe P13	7.9	250	110	137.61	2.8	38.44
Pipe P15	7.8	250	110	137.61	2.8	38.44
Pipe P16	23.5	250	110	137.61	2.8	38.44
Pipe P17	3.4	250	110	137.61	2.8	38.44
Pipe P18	3	150	100	95	5.38	278
Pipe P19	5.1	250	110	42.61	0.87	4.38
Pipe P20	7.3	150	100	5.4	0.31	1.37
Pipe P21	24.6	250	110	37.21	0.76	3.41
Pipe P23	3.7	250	110	-66.64	1.36	10.04
Pipe P26	9.3	250	110	71.94	1.47	11.57
Pipe P27	36.1	250	110	-158.09	3.22	49.7
Pipe P28	2	150	100	0	0	0
Pipe P29	15.9	250	110	-158.09	3.22	49.7
Pipe P30	7.5	150	100	5.3	0.3	1.33
Pipe P31	7.2	250	110	-163.39	3.33	52.83
Pipe P32	6	250	110	-163.39	3.33	52.84
Pipe P33	37.1	250	110	-163.39	3.33	52.83
Pipe P34	13.8	250	110	0	0	0
Pipe P5	18	250	110	-305.9	6.23	168.77
Pipe P7	5.7	250	110	163.39	3.33	52.83
Pipe P9	5	150	100	0	0	0
Pipe P14	3	150	100	-5.3	0.3	1.33
Pipe P24	3	150	100	95	5.38	277.99
Pipe P25	40.3	250	110	66.64	1.36	10.04
Pipe P36	11.9	250	110	123.36	2.51	31.39
Pipe P37	37.4	250	110	28.36	0.58	2.06
Pipe P38	6.1	250	110	-86.15	1.76	16.15
Pipe P39	1.8	150	100	-95	5.38	277.99
Pipe P40	3	300	120	0	0	0

Max Day + Fire Flow Demand (Tower A) - SINGLE Watermain Feed Network Table - Links

Max Day + Fire Flow Demand (Tower B) - SINGLE Watermain Feed Network Table - Nodes

Node ID	Elevation	Demand	Head	Pressure	Pressure	Pressure
	m	L/s	m	m	kPa	psi
Junc J1	67.6	0	102.2	34.6	339.43	49.23
Junc J2	67.6	0	100.29	32.69	320.69	46.51
Junc J3	67.6	0	99.26	31.66	310.58	45.05
Junc J4	67.4	0	96.62	29.22	286.65	41.57
Junc J6	67.5	0	96.62	29.12	285.67	41.43
Junc J7	66.9	0	93.59	26.69	261.83	37.98
Junc J8	66.7	0	91.86	25.16	246.82	35.80
Junc J11	63.8	0	89.67	25.87	253.78	36.81
Junc J12	66	4.9	89.67	23.67	232.20	33.68
Junc J13	61.8	0	88.85	27.05	265.36	38.49
Junc J14	62.4	0	88.61	26.21	257.12	37.29
Junc J16	62.2	0	88.38	26.18	256.83	37.25
Junc J17	61.7	0	87.69	25.99	254.96	36.98
Junc J18	61.6	0	87.59	25.99	254.96	36.98
Junc J19	64.7	0	87.59	22.89	224.55	32.57
Junc J20	61.6	0	87.44	25.84	253.49	36.77
Junc J21	64	5.4	87.43	23.43	229.85	33.34
Junc J22	62.1	0	86.77	24.67	242.01	35.10
Junc J23	61.3	0	86.28	24.98	245.05	35.54
Junc J24	61.2	0	86.31	25.11	246.33	35.73
Junc J25	64	5.3	86.67	22.67	222.39	32.26
Junc J26	62.2	0	86.77	24.57	241.03	34.96
Junc J27	62.2	0	86.68	24.48	240.15	34.83
Junc J28	63.7	0	87.3	23.6	231.52	33.58
Junc J29	67.2	95	86.74	19.54	191.69	27.80
Junc J30	64.5	0	88.26	23.76	233.09	33.81
Junc J31	67.5	5.3	88.25	20.75	203.56	29.52
Junc J32	64.9	0	88.73	23.83	233.77	33.91
Junc J33	65.1	0	89.11	24.01	235.54	34.16
Junc J34	66.7	0	91.5	24.8	243.29	35.29
Junc J35	67.2	0	91.5	24.3	238.38	34.57
Junc J5	70.6	0	96.62	26.02	255.26	37.02
Junc J9	64.6	95	85.44	20.84	204.44	29.65
Junc J10	62.2	0	86.38	24.18	237.21	34.40
Junc J15	65.2	95	85.88	20.68	202.87	29.42
Junc J36	67.5	0	96.62	29.12	285.67	41.43
Resvr R1	105.9	-305.9	105.9	0	0.00	0.00

Link ID	Length m	Diameter mm	Roughness	Flow L/s	Velocity m/s	Unit Headloss m/km
Pipe P1	7.4	200	110	305.9	9.74	500.44
Pipe P2	32.3	300	120	305.9	4.33	59.1
Pipe P3	17.4	300	120	305.9	4.33	59.1
Pipe P4	44.6	300	120	305.9	4.33	59.1
Pipe P6	3	300	120	0	0	0
Pipe P8	10.2	250	110	305.9	6.23	168.77
Pipe P10	68.9	250	110	124.27	2.53	31.83
Pipe P11	3.2	150	100	4.9	0.28	1.15
Pipe P12	27.9	250	110	119.37	2.43	29.54
Pipe P13	7.9	250	110	119.37	2.43	29.54
Pipe P15	7.8	250	110	119.37	2.43	29.54
Pipe P16	23.5	250	110	119.37	2.43	29.54
Pipe P17	3.4	250	110	119.37	2.43	29.54
Pipe P18	3	150	100	0	0	0
Pipe P19	5.1	250	110	119.37	2.43	29.54
Pipe P20	7.3	150	100	5.4	0.31	1.37
Pipe P21	24.6	250	110	113.97	2.32	27.12
Pipe P23	3.7	250	110	-62.93	1.28	9.03
Pipe P26	9.3	250	110	68.23	1.39	10.48
Pipe P27	36.1	250	110	-81.33	1.66	14.51
Pipe P28	2	150	100	95	5.38	278
Pipe P29	15.9	250	110	-176.33	3.59	60.84
Pipe P30	7.5	150	100	5.3	0.3	1.33
Pipe P31	7.2	250	110	-181.63	3.7	64.27
Pipe P32	6	250	110	-181.63	3.7	64.27
Pipe P33	37.1	250	110	-181.63	3.7	64.27
Pipe P34	13.8	250	110	0	0	0
Pipe P5	18	250	110	-305.9	6.23	168.77
Pipe P7	5.7	250	110	181.63	3.7	64.27
Pipe P9	5	150	100	0	0	0
Pipe P14	3	150	100	-5.3	0.3	1.33
Pipe P24	3	150	100	95	5.38	277.99
Pipe P25	40.3	250	110	62.93	1.28	9.03
Pipe P36	11.9	250	110	127.07	2.59	33.17
Pipe P37	37.4	250	110	32.07	0.65	2.59
Pipe P38	6.1	250	110	-13.1	0.27	0.49
Pipe P39	1.8	150	100	-95	5.38	277.99
Pipe P40	3	300	120	0	0	0

Max Day + Fire Flow Demand (Tower B) - SINGLE Watermain Feed Network Table - Links

Node ID	Elevation m	Demand L/s	Head m	Pressure m	Pressure kPa	Pressure psi
Junc J1	67.6	0	101.47	33.87	332.26	48.19
Junc J2	67.6	0	99.19	31.59	309.90	44.95
Junc J3	67.6	0	97.96	30.36	297.83	43.20
Junc J4	67.4	0	94.81	27.41	268.89	39.00
Junc J6	67.5	0	94.81	27.31	267.91	38.86
Junc J7	66.9	0	91.17	24.27	238.09	34.53
Junc J8	66.7	0	89.12	22.42	219.94	31.90
Junc J11	63.8	0	86.28	22.48	220.53	31.98
Junc J12	66	4.9	86.28	20.28	198.95	28.85
Junc J13	61.8	0	85.21	23.41	229.65	33.31
Junc J14	62.4	0	84.9	22.5	220.73	32.01
Junc J16	62.2	0	84.6	22.4	219.74	31.87
Junc J17	61.7	0	83.7	22	215.82	31.30
Junc J18	61.6	0	83.57	21.97	215.53	31.26
Junc J19	64.7	63	83.18	18.48	181.29	26.29
Junc J20	61.6	0	83.5	21.9	214.84	31.16
Junc J21	64	5.4	83.49	19.49	191.20	27.73
Junc J22	62.1	0	83.24	21.14	207.38	30.08
Junc J23	61.3	0	82.93	21.63	212.19	30.78
Junc J24	61.2	0	82.95	21.75	213.37	30.95
Junc J25	64	5.3	83.19	19.19	188.25	27.30
Junc J26	62.2	0	83.26	21.06	206.60	29.96
Junc J27	62.2	0	83.19	20.99	205.91	29.86
Junc J28	63.7	0	83.94	20.24	198.55	28.80
Junc J29	67.2	95	83.39	16.19	158.82	23.04
Junc J30	64.5	0	85.04	20.54	201.50	29.22
Junc J31	67.5	5.3	85.03	17.53	171.97	24.94
Junc J32	64.9	0	85.57	20.67	202.77	29.41
Junc J33	65.1	0	86	20.9	205.03	29.74
Junc J34	66.7	0	88.7	22	215.82	31.30
Junc J35	67.2	0	88.7	21.5	210.92	30.59
Junc J5	70.6	0	94.81	24.21	237.50	34.45
Junc J9	64.6	63	82.54	17.94	175.99	25.53
Junc J10	62.2	0	82.95	20.75	203.56	29.52
Junc J15	65.2	95	82.45	17.25	169.22	24.54
Junc J36	67.5	0	94.81	27.31	267.91	38.86
Resvr R1	105.9	-336.9	105.9	0	0.00	0.00

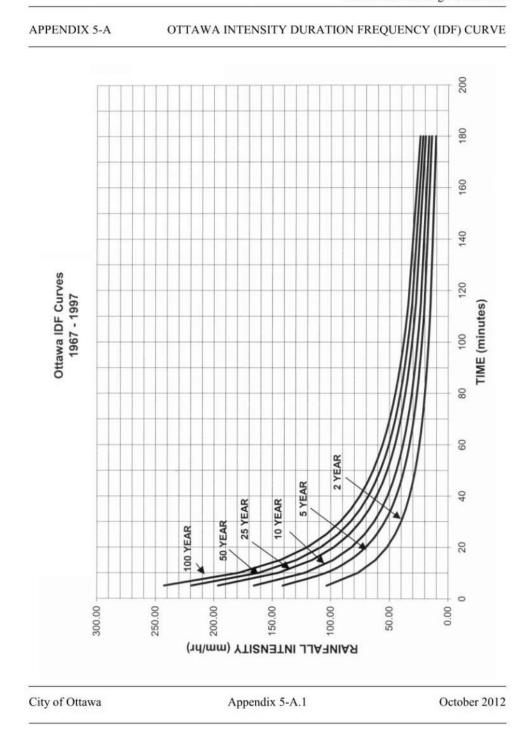
Max Day + Fire Flow Demand (Tower C) - SINGLE Watermain Feed Network Table - Nodes

Link ID	Length	Diameter	Roughness	Flow L/s	Velocity m/s	Unit Headloss m/km
Pipe P1	m 7.4	mm 200	110	336.9	10.72	598.39
Pipe P2	32.3	300	120	336.9	4.77	70.67
Pipe P3	17.4	300	120	336.9	4.77	70.67
Pipe P4	44.6	300	120	336.9	4.77	70.67
Pipe P6	3	300	120	0	0	0
Pipe P8	10.2	250	110	336.9	6.86	201.81
Pipe P10	68.9	250	110	142.7	2.91	41.11
Pipe P11	3.2	150	100	4.9	0.28	1.15
Pipe P12	27.9	250	110	137.8	2.81	38.54
Pipe P13	7.9	250	110	137.8	2.81	38.54
Pipe P15	7.8	250	110	137.8	2.81	38.54
Pipe P16	23.5	250	110	137.8	2.81	38.54
Pipe P17	3.4	250	110	137.8	2.81	38.54
Pipe P18	3	150	100	63	3.57	129.92
Pipe P19	5.1	250	110	74.8	1.52	12.43
Pipe P20	7.3	150	100	5.4	0.31	1.37
Pipe P21	24.6	250	110	69.4	1.41	10.82
Pipe P23	3.7	250	110	-50.34	1.03	5.97
Pipe P26	9.3	250	110	55.64	1.13	7.19
Pipe P27	36.1	250	110	-93.9	1.91	18.94
Pipe P28	2	150	100	95	5.38	277.99
Pipe P29	15.9	250	110	-188.9	3.85	69.12
Pipe P30	7.5	150	100	5.3	0.3	1.33
Pipe P31	7.2	250	110	-194.2	3.96	72.76
Pipe P32	6	250	110	-194.2	3.96	72.75
Pipe P33	37.1	250	110	-194.2	3.96	72.75
Pipe P34	13.8	250	110	0	0	0
Pipe P5	18	250	110	-336.9	6.86	201.81
Pipe P7	5.7	250	110	194.2	3.96	72.75
Pipe P9	5	150	100	0	0	0
Pipe P14	3	150	100	-5.3	0.3	1.33
Pipe P24	3	150	100	63	3.57	129.92
Pipe P25	40.3	250	110	50.34	1.03	5.97
Pipe P36	11.9	250	110	107.66	2.19	24.4
Pipe P37	37.4	250	110	12.66	0.26	0.46
Pipe P38	6.1	250	110	-38.26	0.78	3.59
Pipe P39	1.8	150	100	-95	5.38	277.99
Pipe P40	3	300	120	0	0	0

Max Day + Fire Flow Demand (Tower C) - SINGLE Watermain Feed Network Table - Links

Max Day + Fire Flow Demand (Tower D) - SINGLE Watermain Feed Network Table - Nodes

Node ID	Elevation	Demand	Head	Pressure	Pressure	Pressure
	m	L/s	m	m	kPa	psi
Junc J1	67.6	0	103.6	36	353.16	51.22
Junc J2	67.6	0	101.69	34.09	334.42	48.50
Junc J3	67.6	0	100.66	33.06	324.32	47.04
Junc J4	67.4	0	98.02	30.62	300.38	43.57
Junc J6	67.5	0	98.02	30.52	299.40	43.42
Junc J7	66.9	0	94.99	28.09	275.56	39.97
Junc J8	66.7	0	93.26	26.56	260.55	37.79
Junc J11	63.8	0	90.86	27.06	265.46	38.50
Junc J12	66	4.9	90.85	24.85	243.78	35.36
Junc J13	61.8	0	89.95	28.15	276.15	40.05
Junc J14	62.4	0	89.69	27.29	267.71	38.83
Junc J16	62.2	0	89.44	27.24	267.22	38.76
Junc J17	61.7	0	88.68	26.98	264.67	38.39
Junc J18	61.6	0	88.57	26.97	264.58	38.37
Junc J19	64.7	95	87.73	23.03	225.92	32.77
Junc J20	61.6	0	88.55	26.95	264.38	38.34
Junc J21	64	5.4	88.54	24.54	240.74	34.92
Junc J22	62.1	0	88.51	26.41	259.08	37.58
Junc J23	61.3	0	88.44	27.14	266.24	38.62
Junc J24	61.2	0	88.45	27.25	267.32	38.77
Junc J25	64	5.3	88.51	24.51	240.44	34.87
Junc J26	62.2	0	88.54	26.34	258.40	37.48
Junc J27	62.2	0	88.52	26.32	258.20	37.45
Junc J28	63.7	0	88.99	25.29	248.09	35.98
Junc J29	67.2	95	88.44	21.24	208.36	30.22
Junc J30	64.5	0	89.89	25.39	249.08	36.13
Junc J31	67.5	5.3	89.88	22.38	219.55	31.84
Junc J32	64.9	0	90.33	25.43	249.47	36.18
Junc J33	65.1	0	90.69	25.59	251.04	36.41
Junc J34	66.7	0	92.92	26.22	257.22	37.31
Junc J35	67.2	0	92.92	25.72	252.31	36.59
Junc J5	70.6	0	98.02	27.42	268.99	39.01
Junc J9	64.6	0	88.44	23.84	233.87	33.92
Junc J10	62.2	0	88.38	26.18	256.83	37.25
Junc J15	65.2	95	87.88	22.68	222.49	32.27
Junc J36	67.5	0	98.02	30.52	299.40	43.42
Resvr R1	107.3	-305.9	107.3	0	0.00	0.00


Link ID	Length m	Diameter mm	Roughness	Flow L/s	Velocity m/s	Unit Headloss m/km
Pipe P1	7.4	200	110	305.9	9.74	500.44
Pipe P2	32.3	300	120	305.9	4.33	59.1
Pipe P3	17.4	300	120	305.9	4.33	59.1
Pipe P4	44.6	300	120	305.9	4.33	59.1
Pipe P6	3	300	120	0	4.55 0	0
Pipe P8	10.2	250	110	305.9	6.23	168.77
Pipe P10	68.9	250	110	130.64	2.66	34.91
Pipe P11	3.2	150	100	4.9	0.28	1.15
Pipe P12	27.9	250	110	125.74	2.56	32.53
Pipe P13	7.9	250	110	125.74	2.56	32.53
Pipe P15	7.8	250	110	125.74	2.56	32.53
Pipe P16	23.5	250	110	125.74	2.56	32.53
Pipe P17	3.4	250	110	125.74	2.56	32.53
Pipe P18	3	150	100	95	5.38	278
Pipe P19	5.1	250	110	30.74	0.63	2.39
Pipe P20	7.3	150	100	5.4	0.31	1.37
Pipe P21	24.6	250	110	25.34	0.52	1.67
Pipe P23	3.7	250	110	-25.34	0.52	1.67
Pipe P26	9.3	250	110	30.64	0.62	2.38
Pipe P27	36.1	250	110	-74.96	1.53	12.48
Pipe P28	2	150	100	95	5.38	277.99
Pipe P29	15.9	250	110	-169.96	3.46	56.83
Pipe P30	7.5	150	100	5.3	0.3	1.33
Pipe P31	7.2	250	110	-175.26	3.57	60.16
Pipe P32	6	250	110	-175.26	3.57	60.16
Pipe P33	37.1	250	110	-175.26	3.57	60.16
Pipe P34	13.8	250	110	0	0	0
Pipe P5	18	250	110	-305.9	6.23	168.77
Pipe P7	5.7	250	110	175.26	3.57	60.16
Pipe P9	5	150	100	0	0	0
Pipe P14	3	150	100	-5.3	0.3	1.33
Pipe P24	3	150	100	0	0	0
Pipe P25	40.3	250	110	25.34	0.52	1.67
Pipe P36	11.9	250	110	69.66	1.42	10.89
Pipe P37	37.4	250	110	-25.34	0.52	1.67
Pipe P38	6.1	250	110	-44.32	0.9	4.71
Pipe P39	1.8	150	100	-95	5.38	277.99
Pipe P40	3	300	120	0	0	0

Max Day + Fire Flow Demand (Tower D) - SINGLE Watermain Feed Network Table - Links

APPENDIX E

IDF Curves and SWM Calculations

Ottawa Sewer Design Guidelines

Proposed Multi-Tower Development 2 Robinson Avenue - Mixed-Use / Residential Development

		F	Pre - Developm	ent: Site Flows	5					
Description	Area (ha)	A _{impervious} (ha) C=0.9	A _{pervious} (ha) C=0.2	Weighted C _{w₅}	Weighted C _{W100}	1:2 Year Flow (L/s)	1:5 Year Flow (L/s)	1:100 Year Flow (L/s)	Allowable C _w	Allowable Flow * to Robinson Storm Sewer 5-Year (L/s)
Pre-Development Area Tributary to Combined System	1.28	0.080	1.200	0.24	0.30	65.6	89.0	190.7		
Pre-Development Area Tributary to Robinson Storm Sewer	1.27	0.270	1.000	0.35	0.41	94.9	128.8	258.5		
Site to be Developed	2.064	0.244	1.820	0.28	0.34	124.6	169.1	347.1		
City Park Block	0.230	0.000	0.230	0.20	0.25	9.8	13.3	28.5	0.27	183.0
Off-Site Tributary Area OS-1	0.072	0.003	0.069	0.23	0.28	3.5	4.8	10.1		
Off-Site Tributary Area OS-2	0.066	0.008	0.058	0.28	0.34	4.0	5.4	11.2		
Off-Site Tributary Area OS-3	0.070	0.019	0.051	0.39	0.45	5.8	7.9	15.8	1	
Off-Site Tributary Area OS-4	0.041	0.012	0.029	0.40	0.47	3.5	4.8	9.6	1	
(Not including sewer split areas in table above) Summed Area Check	c 2.543		* ۵	s confirmed by the	City the allow:	able flow is based (on the site to he	developed and	the existing we	ighted Owith a T. = 10mins

(Not including sewer split areas in table above) Summed Area Check: 2.543

ned by the City, the all As con

					Post	t - Developme	nt : Site Flows									
Area	Description	Area (ha)	A imp (ha)	A perv (ha)	C _{w5}	C _{W100}	Unco	ontrolled Flow	(L/s)	Cor	ntrolled Flow	/ (L/s)	Stora	ge Required	** (m ³)	Provided
Area	Description	Area (na)	C=0.9	C=0.2	C _{W5}	Cw100	2 year	5 year	100 year	2 year	5 year	100 year	2 year	5 year	100 year	(m ³)
DR-1	Direct Runoff to Combined System + OS-4	0.144	0.041	0.103	0.40	0.46	12.3	16.7	33.1	-	-	-	-	-	-	-
DR-2	Direct Runoff to Robinson Storm Sewer	0.077	0.047	0.030	0.63	0.71	10.3	14.0	27.1	-	-	-	-	-	-	-
A-1	Future City Park Block + OS-1	0.302	-	-	-	-	-	-	-	Allowabl	e for Park =	18.4	-	-	-	-
A-2	Controlled Tower 'A'	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	A-2.1: Tower 'A' Tank 1	0.217	0.146	0.071	0.67	0.75	-	-	-	12.0	14.0	16.5	18.4	26.7	62.6	> 65
	A-2.2: Tower 'A' Tank 2	0.129	0.110	0.019	0.80	0.89	-	-	-	7.5	9.5	12.0	13.8	19.2	43.3	> 45
	A-2.3: Tower 'A' Tank 3	0.138	0.138	0.000	0.90	1.0	-	-	-	3.5	4.5	6.0	24.5	33.2	69.3	> 70
A-3	Controlled Towers 'B' and 'C'	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	A-3.1: Towers 'C' Tank 4	0.240	0.181	0.059	0.73	0.82	-	-	-	15.0	17.5	20.0	21.7	31.4	74.5	> 75
	A-3.2: Towers 'B' Tank 5	0.197	0.181	0.016	0.84	0.94	-	-	-	15.0	16.5	18.0	20.0	30.0	71.7	>75
A-4	Controlled Tower 'D' Tanks 6 + 7	0.198	0.191	0.007	0.88	0.97	-	-	-	7.9	9.6	14.2	28.7	40.0	82.3	91
A-5	Controlled West Super-Pipe + OS-3	0.526	0.189	0.337	0.45	0.52	-	-	-	13.7	17.3	35.8	35.6	49.3	94.1	106
A-6	Controlled East Super-Pipe + OS-2	0.375	0.132	0.243	0.45	0.51	-	-	-	9.0	9.5	12.2	25.9	38.3	86.5	99
	Summed Area Check	2.543						T _c = 10mins	Totals:	112.3	130.8	180.2	188.6	268.0	584.2	626
									Over Controlled:	70.7	52.3	2.8	** using 1/.	2 peak flows to a	approximate	

Proposed Mixe	d-Use Dev	elopment			
Novatech Proje		•			
Uncontrolled R			INT		
AREA DR-1	Un-Contro	olled Runof	f to Combined	l System	
OTTAWA IDF C	URVE				
Area =	0.144	ha	Qallow =	12.3	L/s
C =	0.40		Vol(max) =	0.0	m3
Time	Intensity	Q	Qnet	Vol	
(min)	(mm/hr)	(L/s)	(L/s)	(m3)	
5	103.57	16.56	4.28	1.28	
10	76.81	12.28	0.00	0.00	
15	61.77	9.87	-2.40	-2.16	
20	52.03	8.32	-3.96	-4.75	
25	45.17	7.22	-5.06	-7.59	
30	40.04	6.40	-5.88	-10.58	
35	36.06	5.76	-6.51	-13.68	
40	32.86	5.25	-7.02	-16.86	
45	30.24	4.83	-7.44	-20.10	
50	28.04	4.48	-7.79	-23.38	
55	26.17	4.18	-8.09	-26.71	
60	24.56	3.93	-8.35	-30.07	
65	23.15	3.70	-8.58	-33.45	
70	21.91	3.50	-8.77	-36.85	
75	20.81	3.33	-8.95	-40.28	
90	18.14	2.90	-9.38	-50.64	
105	16.13	2.58	-9.70	-61.10	
120	14.56	2.33	-9.95	-71.64	
135	13.30	2.13	-10.15	-82.23	
150	12.25	1.96	-10.32	-92.87	

Proposed Mixe										
Novatech Proje										
Uncontrolled Runoff - 1:100 YEAR EVENT										
OTTAWA IDF C										
Area =	0.144	ha	Qallow =	33.1	L/s					
C =	0.46		Vol(max) =	0.0	m3					
Time	Intensity	Q	Qnet	Vol						
(min)	(mm/hr)	(L/s)	(L/s)	(m3)						
5	242.70	45.04	11.90	3.57						
10	178.56	33.13	0.00	0.00						
15	142.89	26.52	-6.62	-5.96						
20	119.95	22.26	-10.88	-13.05						
25	103.85	19.27	-13.86	-20.80						
30	91.87	17.05	-16.09	-28.96						
35	82.58	15.32	-17.81	-37.40						
40	75.15	13.94	-19.19	-46.06						
45	69.05	12.81	-20.32	-54.87						
50	63.95	11.87	-21.27	-63.80						
55	59.62	11.06	-22.07	-72.83						
60	55.89	10.37	-22.76	-81.94						
65	52.65	9.77	-23.36	-91.12						
70	49.79	9.24	-23.90	-100.36						
75	47.26	8.77	-24.37	-109.64						
90	41.11	7.63	-25.51	-137.73						
105	36.50	6.77	-26.36	-166.08						
120	32.89	6.10	-27.03	-194.62						
135	30.00	5.57	-27.57	-223.30						
150	27.61	5.12	-28.01	-252.10						

roposed Mixe	ed-Use Dev	elopment							
lovatech Proj									
Incontrolled I									
AREA DR-1 Un-Controlled Runoff to Combined System									
OTTAWA IDF (
Area =	0.144	ha	Qallow =	16.7	L/s				
C =	0.40		Vol(max) =	0.0	m3				
Time	Intensity	Q	Qnet	Vol					
(min)	(mm/hr)	(L/s)	(L/s)	(m3)					
5	141.18	22.57	5.91	1.77					
10	104.19	16.66	0.00	0.00					
15	83.56	13.36	-3.30	-2.97					
20	70.25	11.23	-5.43	-6.51					
25	60.90	9.73	-6.92	-10.38					
30	53.93	8.62	-8.03	-14.46					
35	48.52	7.76	-8.90	-18.69					
40	44.18	7.06	-9.59	-23.02					
45	40.63	6.49	-10.16	-27.43					
50	37.65	6.02	-10.64	-31.91					
55	35.12	5.61	-11.04	-36.43					
60	32.94	5.27	-11.39	-41.00					
65	31.04	4.96	-11.69	-45.60					
70	29.37	4.70	-11.96	-50.23					
75	27.89	4.46	-12.20	-54.89					
90	24.29	3.88	-12.77	-68.97					
105	21.58	3.45	-13.21	-83.19					
120	19.47	3.11	-13.54	-97.51					
135	17.76	2.84	-13.82	-111.91					
150	16.36	2.62	-14.04	-126.36					

Proposed Mixed									
Novatech Proje	ct No. 119	171							
Uncontrolled R	Uncontrolled Runoff - 1:100 YR + 20% IDF Increase								
AREA DR-1	Un-Contro	olled Runof	ff to Combined	l System					
OTTAWA IDF C	URVE								
Area =	0.144	ha	Qallow =	39.8	L/s				
C =	0.46		Vol(max) =	0.0	m3				
Time	Intensity	Q	Qnet	Vol					
(min)	(mm/hr)	(L/s)	(L/s)	(m3)					
5	291.24	54.04	14.28	4.29					
10	214.27	39.76	0.00	0.00					
15	171.47	31.82	-7.94	-7.15					
20	143.94	26.71	-13.05	-15.66					
25	124.62	23.12	-16.64	-24.96					
30	110.24	20.46	-19.30	-34.75					
35	99.09	18.39	-21.37	-44.88					
40	90.17	16.73	-23.03	-55.27					
45	82.86	15.38	-24.39	-65.84					
50	76.74	14.24	-25.52	-76.56					
55	71.55	13.28	-26.48	-87.40					
60	67.07	12.45	-27.31	-98.33					
65	63.18	11.72	-28.04	-109.35					
70	59.75	11.09	-28.67	-120.43					
75	56.71	10.52	-29.24	-131.57					
90	49.33	9.15	-30.61	-165.28					
105	43.80	8.13	-31.63	-199.29					
120	39.47	7.32	-32.44	-233.54					
135	36.00	6.68	-33.08	-267.96					
150	33.13	6.15	-33.61	-302.52					

Proposed Mixed	d-Use Dev	elopment			
Novatech Proje		•			
Uncontrolled R			INT		
AREA DR-2	Un-Contro	lled Runof	f to Robinson	Sewer	
OTTAWA IDF C	URVE				
Area =	0.077	ha	Qallow =	10.3	L/s
C =	0.63		Vol(max) =	0.0	m3
Time	Intensity	Q	Qnet	Vol	
(min)	(mm/hr)	(L/s)	(L/s)	(m3)	
5	103.57	13.91	3.59	1.08	
10	76.81	10.31	0.00	0.00	
15	61.77	8.29	-2.02	-1.82	
20	52.03	6.99	-3.33	-3.99	
25	45.17	6.06	-4.25	-6.37	
30	40.04	5.38	-4.94	-8.89	
35	36.06	4.84	-5.47	-11.49	
40	32.86	4.41	-5.90	-14.16	
45	30.24	4.06	-6.25	-16.88	
50	28.04	3.77	-6.55	-19.64	
55	26.17	3.51	-6.80	-22.44	
60	24.56	3.30	-7.02	-25.26	
65	23.15	3.11	-7.20	-28.10	
70	21.91	2.94	-7.37	-30.96	
75	20.81	2.79	-7.52	-33.83	
90	18.14	2.44	-7.88	-42.53	
105	16.13	2.17	-8.15	-51.32	
120	14.56	1.96	-8.36	-60.17	
135	13.30	1.79	-8.53	-69.07	
150	12.25	1.65	-8.67	-78.01	
1					

Proposed Mixe		•							
Novatech Proje									
Uncontrolled Runoff - 1:100 YEAR EVENT AREA DR-2 Un-Controlled Runoff to Robinson Sewer									
OTTAWA IDF CURVE									
Area =	0.077	ha	Qallow =	27.1	L/s				
C =	0.71	na	Vol(max) =	0.0	m3				
0-	0.71		VOI(IIIAX) -	0.0	mo				
Time	Intensity	Q	Qnet	Vol					
(min)	(mm/hr)	(L/s)	(L/s)	(m3)					
5	242.70	36.77	9.72	2.92					
10	178.56	27.05	0.00	0.00					
15	142.89	21.65	-5.40	-4.86					
20	119.95	18.17	-8.88	-10.66					
25	103.85	15.73	-11.32	-16.98					
30	91.87	13.92	-13.13	-23.64					
35	82.58	12.51	-14.54	-30.54					
40	75.15	11.39	-15.67	-37.60					
45	69.05	10.46	-16.59	-44.80					
50	63.95	9.69	-17.36	-52.09					
55	59.62	9.03	-18.02	-59.47					
60	55.89	8.47	-18.58	-66.91					
65	52.65	7.98	-19.08	-74.40					
70	49.79	7.54	-19.51	-81.94					
75	47.26	7.16	-19.89	-89.52					
90	41.11	6.23	-20.82	-112.45					
105	36.50	5.53	-21.52	-135.60					
120	32.89	4.98	-22.07	-158.90					
135	30.00	4.54	-22.51	-182.32					
150	27.61	4.18	-22.87	-205.83					

Proposed Mixe	d-Use Dev	elopment							
Novatech Proje									
Uncontrolled R	unoff - 1:5	YEAR EVE	ENT						
AREA DR-2 Un-Controlled Runoff to Robinson Sewer									
OTTAWA IDF C	URVE								
Area =	0.077	ha	Qallow =	14.0	L/s				
C =	0.63		Vol(max) =	0.0	m3				
Time	Intensity	Q	Qnet	Vol					
(min)	(mm/hr)	(L/s)	(L/s)	(m3)					
5	141.18	18.96	4.97	1.49					
10	104.19	13.99	0.00	0.00					
15	83.56	11.22	-2.77	-2.49					
20	70.25	9.43	-4.56	-5.47					
25	60.90	8.18	-5.81	-8.72					
30	53.93	7.24	-6.75	-12.15					
35	48.52	6.51	-7.48	-15.70					
40	44.18	5.93	-8.06	-19.34					
45	40.63	5.46	-8.54	-23.04					
50	37.65	5.06	-8.93	-26.80					
55	35.12	4.72	-9.27	-30.61					
60	32.94	4.42	-9.57	-34.44					
65	31.04	4.17	-9.82	-38.31					
70	29.37	3.94	-10.05	-42.20					
75	27.89	3.74	-10.25	-46.11					
90	24.29	3.26	-10.73	-57.94					
105	21.58	2.90	-11.09	-69.88					
120	19.47	2.61	-11.38	-81.91					
135	17.76	2.39	-11.61	-94.00					
150	16.36	2.20	-11.79	-106.14					
135 150	17.76 16.36	2.39 2.20	-11.61 -11.79	-94.00 -106.14					

Proposed Mixed-Use Development					
Novatech Project No. 119171					
Uncontrolled Runoff - 1:100 YR + 20% IDF Increase					
AREA DR-2 Un-Controlled Runoff to Robinson Sewer					
OTTAWA IDF CURVE					
Area =	0.077	ha	Qallow =	32.5	L/s
C =	0.71		Vol(max) =	0.0	m3
Time	Intensity	Q	Qnet	Vol	
(min)	(mm/hr)	(L/s)	(L/s)	(m3)	
5	291.24	44.13	11.66	3.50	
10	214.27	32.46	0.00	0.00	
15	171.47	25.98	-6.48	-5.84	
20	143.94	21.81	-10.66	-12.79	
25	124.62	18.88	-13.58	-20.38	
30	110.24	16.70	-15.76	-28.37	
35	99.09	15.01	-17.45	-36.65	
40	90.17	13.66	-18.80	-45.12	
45	82.86	12.55	-19.91	-53.76	
50	76.74	11.63	-20.84	-62.51	
55	71.55	10.84	-21.62	-71.36	
60	67.07	10.16	-22.30	-80.29	
65	63.18	9.57	-22.89	-89.28	
70	59.75	9.05	-23.41	-98.33	
75	56.71	8.59	-23.87	-107.43	
90	49.33	7.47	-24.99	-134.94	
105	43.80	6.64	-25.83	-162.72	
120	39.47	5.98	-26.48	-190.68	
135	36.00	5.45	-27.01	-218.78	
150	33.13	5.02	-27.44	-247.00	

Novatech Proje	ct No. 119	171	Release Rate	Equal to	50% of the Qpeak				
REQUIRED STO				-9444.10					
AREA A-2.1 Controlled Tower 'A' Tank 1									
OTTAWA IDF CURVE Qpeak = 12.0 L/s									
Area =	0.217	ha	Qavg =	6.0	L/s				
C =	0.67		Vol(max) =	18.4	m3				
			(Vol calculated	d for Qall	ow-ava)				
Time	Intensity	Q	Qnet	Vol					
(min)	(mm/hr)	(L/s)	(L/s)	(m3)					
5	103.57	41.92	35.92	10.78					
10	76.81	31.09	25.09	15.05					
15	61.77	25.00	19.00	17.10					
20	52.03	21.06	15.06	18.07					
25	45.17	18.28	12.28	18.42					
30	40.04	16.21	10.21	18.37					
35	36.06	14.60	8.60	18.05					
40	32.86	13.30	7.30	17.53					
45	30.24	12.24	6.24	16.85					
50	28.04	11.35	5.35	16.05					
55	26.17	10.59	4.59	15.16					
60	24.56	9.94	3.94	14.18					
75	20.81	8.42	2.42	10.91					
90	18.14	7.34	1.34	7.26					
120	14.56	5.89	-0.11	-0.76					
150	12.25	4.96	-1.04	-9.37					
180	10.63	4.30	-1.70	-18.35					
210	9.42	3.81	-2.19	-27.58					
240	8.47	3.43	-2.57	-37.00					
270	7.72	3.13	-2.87	-46.57					

Proposed Site I Novatech Proje			Storage Calcu Release Rate		lsing Average 50% of the Qpeak					
REQUIRED STO					50% of the opeak					
AREA A-2.1			d Tower 'A' Ta	nk 1						
OTTAWA IDF C	DTTAWA IDF CURVE Qpeak = 16.5 L/s									
Area =	0.217	ha	Qavg =	8.3	L/s					
C =	0.75		Vol(max) =	62.6	m3					
			(Vol calculated	d for Qall	ow-avg)					
Time	Intensity	Q	Qnet	Vol						
(min)	(mm/hr)	(L/s)	(L/s)	(m3)						
5	242.70	110.48	102.23	30.67						
10	178.56	81.28	73.03	43.82						
15	142.89	65.05	56.80	51.12						
20	119.95	54.60	46.35	55.63						
25	103.85	47.27	39.02	58.54						
30	91.87	41.82	33.57	60.43						
35	82.58	37.59	29.34	61.62						
40	75.15	34.21	25.96	62.30						
45	69.05	31.43	23.18	62.60						
50	63.95	29.11	20.86	62.59						
55	59.62	27.14	18.89	62.34						
60	55.89	25.44	17.19	61.90						
75	47.26	21.51	13.26	59.68						
90	41.11	18.71	10.46	56.51						
120	32.89	14.97	6.72	48.42						
150	27.61	12.57	4.32	38.87						
180	23.90	10.88	2.63	28.42						
210	21.14	9.63	1.38	17.33						
240	19.01	8.65	0.40	5.79						
270	17.29	7.87	-0.38	-6.11						

Proposed Site I Novatech Proje	•		Storage Calcu Release Rate		50% of the Qpeak		
REQUIRED STO				⊑quai to	50% of the upeak		
AREA A-4			d Tower 'A' Ta	nk 1			
OTTAWA IDF CURVE Qpeak = 14.0 L/s							
Area =	0.217	ha	Qavg =	7.0	L/s		
C =	0.67		Vol(max) =	26.7	m3		
			(Vol calculate	d for Qall	ow-avg)		
Time	Intensity	Q	Qnet	Vol	0,		
(min)	(mm/hr)	(L/s)	(L/s)	(m3)			
5	141.18	57.14	50.14	15.04			
10	104.19	42.17	35.17	21.10			
15	83.56	33.82	26.82	24.14			
20	70.25	28.44	21.44	25.72			
25	60.90	24.65	17.65	26.47			
30	53.93	21.83	14.83	26.69			
35	48.52	19.64	12.64	26.54			
40	44.18	17.88	10.88	26.12			
45	40.63	16.45	9.45	25.50			
50	37.65	15.24	8.24	24.72			
55	35.12	14.22	7.22	23.82			
60	32.94	13.33	6.33	22.80			
75	27.89	11.29	4.29	19.30			
90	24.29	9.83	2.83	15.29			
120	19.47	7.88	0.88	6.33			
150	16.36	6.62	-0.38	-3.39			
180	14.18	5.74	-1.26	-13.61			
210	12.56	5.08	-1.92	-24.17			
240	11.29	4.57	-2.43	-34.97			
270	10.28	4.16	-2.84	-45.96			

Proposed Site	Developm	ent	Storage Calcu	Iations U	Proposed Site Development Storage Calculations Using Average								
Novatech Proje	ct No. 119	171	Release Rate	Equal to	50% of the Qpeak								
REQUIRED STO	ORAGE - 1	:100 YR +	20% IDF Increa	ase									
AREA A-4		Controlle	d Tower 'A' Ta	nk 1									
OTTAWA IDF C	URVE		Qpeak =	18.0	L/s								
Area =	0.217	ha	Qavg =	9.0	L/s								
C =	0.75		Vol(max) =	77.8	m3								
			(Vol calculate	d for Qall	ow-avg)								
Time	Intensity	Q	Qnet	Vol									
(min)	(mm/hr)	(L/s)	(L/s)	(m3)									
5	291.24	132.58	123.58	37.07									
10	214.27	97.54	88.54	53.12									
15	171.47	78.06	69.06	62.15									
20	143.94	65.53	56.53	67.83									
25	124.62	56.73	47.73	71.59									
30	110.24	50.18	41.18	74.13									
35	99.09	45.11	36.11	75.83									
40	90.17	41.05	32.05	76.92									
45	82.86	37.72	28.72	77.54									
50	76.74	34.94	25.94	77.81									
55	71.55	32.57	23.57	77.78									
60	67.07	30.53	21.53	77.52									
75	56.71	25.81	16.81	75.66									
90	49.33	22.46	13.46	72.67									
120	39.47	17.97	8.97	64.58									
150	33.13	15.08	6.08	54.75									
180	28.68	13.06	4.06	43.82									
210	25.37	11.55	2.55	32.14									
240	22.81	10.38	1.38	19.90									
270	20.75	9.45	0.45	7.25									

Proposed Site	•		Storage Calcu		• •
Novatech Proje				Equal to	50% of the Qpeak
REQUIRED STO	DRAGE - 1				
AREA A-2.2		d Tower 'A' Ta			
OTTAWA IDF C	URVE		Qpeak =	7.5	L/s
Area =	0.129	ha	Qavg =	3.8	L/s
C =	0.80		Vol(max) =	13.8	m3
			(Vol calculate	d for Qall	ow-avg)
Time	Intensity	Q	Qnet	Vol	0,
(min)	(mm/hr)	(L/s)	(L/s)	(m3)	
5	103.57	29.60	25.85	7.75	
10	76.81	21.95	18.20	10.92	
15	61.77	17.65	13.90	12.51	
20	52.03	14.87	11.12	13.34	
25	45.17	12.91	9.16	13.74	
30	40.04	11.44	7.69	13.85	
35	36.06	10.31	6.56	13.77	
40	32.86	9.39	5.64	13.54	
45	30.24	8.64	4.89	13.21	
50	28.04	8.01	4.26	12.79	
55	26.17	7.48	3.73	12.31	
60	24.56	7.02	3.27	11.77	
75	20.81	5.95	2.20	9.89	
90	18.14	5.18	1.43	7.75	
120	14.56	4.16	0.41	2.96	
150	12.25	3.50	-0.25	-2.24	
180	10.63	3.04	-0.71	-7.70	
210	9.42	2.69	-1.06	-13.35	
240	8.47	2.42	-1.33	-19.12	
270	7.72	2.21	-1.54	-25.00	

Proposed Site			Storage Calcu		0 0				
Novatech Proje				Equal to	50% of the Qpeak				
REQUIRED STO	ORAGE - 1								
AREA A-2.2 Controlled Tower 'A' Tank 2									
OTTAWA IDF C			Qpeak =	12.0	L/s				
Area =	0.129	ha	Qavg =	6.0	L/s				
C =	0.89		Vol(max) =	43.3	m3				
			(Vol calculated	d for Qall	ow-avg)				
Time	Intensity	Q	Qnet	Vol					
(min)	(mm/hr)	(L/s)	(L/s)	(m3)					
5	242.70	77.42	71.42	21.43					
10	178.56	56.96	50.96	30.58					
15	142.89	45.58	39.58	35.63					
20	119.95	38.26	32.26	38.72					
25	103.85	33.13	27.13	40.69					
30	91.87	29.31	23.31	41.95					
35	82.58	26.34	20.34	42.72					
40	75.15	23.97	17.97	43.13					
45	69.05	22.03	16.03	43.27					
50	63.95	20.40	14.40	43.21					
55	59.62	19.02	13.02	42.97					
60	55.89	17.83	11.83	42.59					
75	47.26	15.07	9.07	40.84					
90	41.11	13.11	7.11	38.42					
120	32.89	10.49	4.49	32.35					
150	27.61	8.81	2.81	25.27					
180	23.90	7.63	1.63	17.55					
210	21.14	6.75	0.75	9.39					
240	19.01	6.06	0.06	0.91					
270	17.29	5.52	-0.48	-7.82					

Proposed Site I Novatech Proje	•		Storage Calcu Release Rate		50% of the Qpea
REQUIRED ST				Lquai l0	
AREA A-4			d Tower 'A' Ta	nk 2	
DTTAWA IDF C	URVE		Qpeak =	9.5	L/s
Area =	0.129	ha	Qavg =	4.8	L/s
C =	0.80		Vol(max) =	19.2	m3
			(Vol calculate	d for Qalle	ow-avg)
Time	Intensity	Q	Qnet	Vol	-,
(min)	(mm/hr)	(L/s)	(L/s)	(m3)	
5	141.18	40.35	35.60	10.68	
10	104.19	29.78	25.03	15.02	
15	83.56	23.88	19.13	17.22	
20	70.25	20.08	15.33	18.39	
25	60.90	17.40	12.65	18.98	
30	53.93	15.41	10.66	19.19	
35	48.52	13.87	9.12	19.14	
40	44.18	12.63	7.88	18.91	
45	40.63	11.61	6.86	18.52	
50	37.65	10.76	6.01	18.03	
55	35.12	10.04	5.29	17.45	
60	32.94	9.41	4.66	16.79	
75	27.89	7.97	3.22	14.49	
90	24.29	6.94	2.19	11.83	
120	19.47	5.56	0.81	5.86	
150	16.36	4.68	-0.07	-0.67	
180	14.18	4.05	-0.70	-7.53	
210	12.56	3.59	-1.16	-14.64	
240	11.29	3.23	-1.52	-21.92	
270	10.28	2.94	-1.81	-29.33	

Proposed Site	Developm	ent	Storage Calcu	Iations U	sing Average
Novatech Proje	•		•		50% of the Qpeak
REQUIRED STO					
AREA A-4		Controlle	d Tower 'A' Ta	nk 2	
OTTAWA IDF C	URVE		Qpeak =	13.0	L/s
Area =	0.129	ha	Qavg =	6.5	L/s
C =	0.89		Vol(max) =	53.9	m3
			(Vol calculated	d for Qall	ow-avg)
Time	Intensity	Q	Qnet	Vol	
(min)	(mm/hr)	(L/s)	(L/s)	(m3)	
5	291.24	92.91	86.41	25.92	
10	214.27	68.35	61.85	37.11	
15	171.47	54.70	48.20	43.38	
20	143.94	45.92	39.42	47.30	
25	124.62	39.75	33.25	49.88	
30	110.24	35.17	28.67	51.60	
35	99.09	31.61	25.11	52.73	
40	90.17	28.77	22.27	53.44	
45	82.86	26.43	19.93	53.82	
50	76.74	24.48	17.98	53.95	
55	71.55	22.82	16.32	53.87	
60	67.07	21.40	14.90	53.63	
75	56.71	18.09	11.59	52.15	
90	49.33	15.74	9.24	49.88	
120	39.47	12.59	6.09	43.86	
150	33.13	10.57	4.07	36.63	
180	28.68	9.15	2.65	28.62	
210	25.37	8.09	1.59	20.09	
240	22.81	7.28	0.78	11.17	
270	20.75	6.62	0.12	1.95	

REQUIRED STO	RAGE - 1	:2 YEAR E	VENT		
AREA A-2.3			d Tower 'A' Tai	nk 3	
OTTAWA IDF C	URVE		Qpeak =	3.5	L/s
Area =	0.138	ha	Qavg =	1.8	L/s
C =	0.90		Vol(max) =	24.5	m3
			(Vol calculated	for Qall	ow-ava)
Time	Intensity	Q	Qnet	Vol	011 41 97
(min)	(mm/hr)	(L/s)	(L/s)	(m3)	
5	103.57	35.76	34.01	10.20	
10	76.81	26.52	24.77	14.86	
15	61.77	21.33	19.58	17.62	
20	52.03	17.97	16.22	19.46	
25	45.17	15.60	13.85	20.77	
30	40.04	13.83	12.08	21.74	
35	36.06	12.45	10.70	22.47	
40	32.86	11.35	9.60	23.03	
45	30.24	10.44	8.69	23.47	
50	28.04	9.68	7.93	23.80	
55	26.17	9.04	7.29	24.04	
60	24.56	8.48	6.73	24.22	
75	20.81	7.19	5.44	24.46	
90	18.14	6.26	4.51	24.38	
120	14.56	5.03	3.28	23.60	
150	12.25	4.23	2.48	22.32	
180	10.63	3.67	1.92	20.73	
210	9.42	3.25	1.50	18.91	
240	8.47	2.93	1.18	16.94	
270	7.72	2.67	0.92	14.84	

Proposed Site			Storage Calcu		0 0				
Novatech Proje				Equal to	50% of the Qpeak				
REQUIRED STC	ORAGE - 1								
AREA A-2.3 Controlled Tower 'A' Tank 3									
	TTAWA IDF CURVE Qpeak = 6.0 L/s								
Area =	0.138	ha	Qavg =	3.0	L/s				
C =	1.00		Vol(max) =	69.3	m3				
			(Vol calculated	d for Qall	ow-avg)				
Time	Intensity	Q	Qnet	Vol					
(min)	(mm/hr)	(L/s)	(L/s)	(m3)					
5	242.70	93.11	90.11	27.03					
10	178.56	68.50	65.50	39.30					
15	142.89	54.82	51.82	46.64					
20	119.95	46.02	43.02	51.62					
25	103.85	39.84	36.84	55.26					
30	91.87	35.24	32.24	58.04					
35	82.58	31.68	28.68	60.23					
40	75.15	28.83	25.83	61.99					
45	69.05	26.49	23.49	63.42					
50	63.95	24.54	21.54	64.61					
55	59.62	22.87	19.87	65.58					
60	55.89	21.44	18.44	66.40					
75	47.26	18.13	15.13	68.08					
90	41.11	15.77	12.77	68.97					
120	32.89	12.62	9.62	69.26					
150	27.61	10.59	7.59	68.33					
180	23.90	9.17	6.17	66.64					
210	21.14	8.11	5.11	64.41					
240	19.01	7.29	4.29	61.80					
270	17.29	6.63	3.63	58.88					

ovalech Proje	ct No. 119	171	Release Rate	Equal to	50% of the Q
EQUIRED STO	ORAGE - 1	:5 YEAR E	VENT		
REA A-4		Controlle	d Tower 'A' Ta	nk 3	
TTAWA IDF C	URVE		Qpeak =	4.5	L/s
Area =	0.138	ha	Qavg =	2.3	L/s
C =	0.90		Vol(max) =	33.2	m3
			(Vol calculate	d for Qall	ow-avg)
Time	Intensity	Q	Qnet	Vol	
(min)	(mm/hr)	(L/s)	(L/s)	(m3)	
5	141.18	48.75	46.50	13.95	
10	104.19	35.98	33.73	20.24	
15	83.56	28.85	26.60	23.94	
20	70.25	24.26	22.01	26.41	
25	60.90	21.03	18.78	28.16	
30	53.93	18.62	16.37	29.47	
35	48.52	16.75	14.50	30.45	
40	44.18	15.26	13.01	31.21	
45	40.63	14.03	11.78	31.80	
50	37.65	13.00	10.75	32.25	
55	35.12	12.13	9.88	32.59	
60	32.94	11.37	9.12	32.85	
75	27.89	9.63	7.38	33.21	
90	24.29	8.39	6.14	33.14	
120	19.47	6.72	4.47	32.20	
150	16.36	5.65	3.40	30.59	
180	14.18	4.90	2.65	28.58	
210	12.56	4.34	2.09	26.27	
240	11.29	3.90	1.65	23.76	
270	10.28	3.55	1.30	21.08	

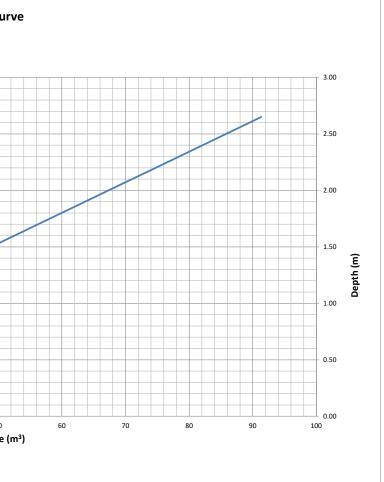
Proposed Site Development Storage Calculations Using Average									
Novatech Proje					50% of the Qpeak				
REQUIRED STO	DRAGE - 1	:100 YR +	20% IDF Increa	ase					
AREA A-4 Controlled Tower 'A' Tank 3									
OTTAWA IDF CURVE Qpeak = 6.3 L/s									
Area =	0.138	ha	Qavg =	3.2	L/s				
C =	1.00		Vol(max) =	86.4	m3				
			(Vol calculate	d for Qall	ow-avg)				
Time	Intensity	Q	Qnet	Vol					
(min)	(mm/hr)	(L/s)	(L/s)	(m3)					
5	291.24	111.73	108.58	32.57					
10	214.27	82.20	79.05	47.43					
15	171.47	65.78	62.63	56.37					
20	143.94	55.22	52.07	62.49					
25	124.62	47.81	44.66	66.99					
30	110.24	42.29	39.14	70.46					
35	99.09	38.02	34.87	73.22					
40	90.17	34.59	31.44	75.47					
45	82.86	31.79	28.64	77.32					
50	76.74	29.44	26.29	78.88					
55	71.55	27.45	24.30	80.19					
60	67.07	25.73	22.58	81.30					
75	56.71	21.75	18.60	83.72					
90	49.33	18.93	15.78	85.19					
120	39.47	15.14	11.99	86.35					
150	33.13	12.71	9.56	86.05					
180	28.68	11.00	7.85	84.82					
210	25.37	9.73	6.58	82.96					
240	22.81	8.75	5.60	80.63					
270	20.75	7.96	4.81	77.95					

EQUIRED STO	ct No. 119			Equal to	50% of the Qpeal
REA A-3.1	KAGE - I		d Tower 'C' Ta	nk 4	
TTAWA IDF C	URVE		Qpeak =	15.0	L/s
Area =	0.240	ha	Qavg =	7.5	L/s
C =	0.73		Vol(max) =	21.7	m3
			(Vol calculated	d for Qall	ow-ava)
Time	Intensity	Q	Qnet	Vol	on a.g)
(min)	(mm/hr)	(L/s)	(L/s)	(m3)	
5	103.57	50.30	42.80	12.84	
10	76.81	37.30	29.80	17.88	
15	61.77	30.00	22.50	20.25	
20	52.03	25.27	17.77	21.32	
25	45.17	21.94	14.44	21.65	
30	40.04	19.45	11.95	21.50	
35	36.06	17.51	10.01	21.03	
40	32.86	15.96	8.46	20.31	
45	30.24	14.69	7.19	19.40	
50	28.04	13.62	6.12	18.36	
55	26.17	12.71	5.21	17.19	
60	24.56	11.93	4.43	15.94	
75	20.81	10.11	2.61	11.74	
90	18.14	8.81	1.31	7.08	
120	14.56	7.07	-0.43	-3.08	
150	12.25	5.95	-1.55	-13.95	
180	10.63	5.16	-2.34	-25.26	
210	9.42	4.57	-2.93	-36.88	
240	8.47	4.12	-3.38	-48.73	
270	7.72	3.75	-3.75	-60.75	

Proposed Site I	Developm	ent	Storage Calcu	lations I	Ising Average		
Novatech Proje			Release Rate Equal to 50% of the Qpeak				
REQUIRED STO				-900.00			
AREA A-3.1		Controlle	d Tower 'C' Ta	nk 4			
OTTAWA IDF C	URVE		Qpeak =	20.0	L/s		
Area =	0.240	ha	Qavg =	10.0	L/s		
C =	0.82		Vol(max) =	74.5	m3		
			(Vol calculated	d for Qall	ow-avg)		
Time	Intensity	Q	Qnet	Vol			
(min)	(mm/hr)	(L/s)	(L/s)	(m3)			
5	242.70	132.08	122.08	36.62			
10	178.56	97.17	87.17	52.30			
15	142.89	77.76	67.76	60.98			
20	119.95	65.28	55.28	66.33			
25	103.85	56.51	46.51	69.77			
30	91.87	49.99	39.99	71.99			
35	82.58	44.94	34.94	73.37			
40	75.15	40.89	30.89	74.14			
45	69.05	37.58	27.58	74.46			
50	63.95	34.80	24.80	74.41			
55	59.62	32.45	22.45	74.07			
60	55.89	30.42	20.42	73.50			
75	47.26	25.72	15.72	70.72			
90	41.11	22.37	12.37	66.81			
120	32.89	17.90	7.90	56.89			
150	27.61	15.03	5.03	45.23			
180	23.90	13.01	3.01	32.48			
210	21.14	11.51	1.51	18.98			
240	19.01	10.34	0.34	4.93			
270	17.29	9.41	-0.59	-9.54			

Proposed Site I Novatech Proje			Storage Calculations Using Average Release Rate Equal to 50% of the Qpeak				
REQUIRED STO				Equal to	50% of the Qpea		
AREA A-4			d Tower 'C' Ta	nk 4			
OTTAWA IDF C	URVE		Qpeak =	17.5	L/s		
Area =	0.240	ha	Qavg =	8.8	L/s		
C =	0.73		Vol(max) =	31.4	m3		
			(Vol calculate	d for Qalle	ow-avg)		
Time	Intensity	Q	Qnet	Vol	0,		
(min)	(mm/hr)	(L/s)	(L/s)	(m3)			
5	141.18	68.57	59.82	17.94			
10	104.19	50.60	41.85	25.11			
15	83.56	40.58	31.83	28.65			
20	70.25	34.12	25.37	30.44			
25	60.90	29.58	20.83	31.24			
30	53.93	26.19	17.44	31.39			
35	48.52	23.56	14.81	31.11			
40	44.18	21.46	12.71	30.50			
45	40.63	19.73	10.98	29.65			
50	37.65	18.29	9.54	28.61			
55	35.12	17.06	8.31	27.42			
60	32.94	16.00	7.25	26.10			
75	27.89	13.54	4.79	21.57			
90	24.29	11.80	3.05	16.45			
120	19.47	9.45	0.70	5.07			
150	16.36	7.95	-0.80	-7.23			
180	14.18	6.89	-1.86	-20.12			
210	12.56	6.10	-2.65	-33.42			
240	11.29	5.49	-3.26	-47.01			
270	10.28	4.99	-3.76	-60.83			

Proposed Site I	ent	Storage Calcu	ulations U	sing Average			
Novatech Proje	ct No. 119	171	Release Rate Equal to 50% of the Qpeak				
REQUIRED STO	ORAGE - 1	:100 YR + 2	20% IDF Increa	ase			
AREA A-4		Controlle	d Tower 'C' Ta	nk 4			
OTTAWA IDF C	URVE		Qpeak =	22.0	L/s		
Area =	0.240	ha	Qavg =	11.0	L/s		
C =	0.82		Vol(max) =	92.3	m3		
			(Vol calculate	d for Qall	ow-avg)		
Time	Intensity	Q	Qnet	Vol			
(min)	(mm/hr)	(L/s)	(L/s)	(m3)			
5	291.24	158.49	147.49	44.25			
10	214.27	116.60	105.60	63.36			
15	171.47	93.31	82.31	74.08			
20	143.94	78.33	67.33	80.80			
25	124.62	67.81	56.81	85.22			
30	110.24	59.99	48.99	88.19			
35	99.09	53.93	42.93	90.14			
40	90.17	49.07	38.07	91.37			
45	82.86	45.09	34.09	92.05			
50	76.74	41.76	30.76	92.29			
55	71.55	38.94	27.94	92.19			
60	67.07	36.50	25.50	91.80			
75	56.71	30.86	19.86	89.36			
90	49.33	26.85	15.85	85.57			
120	39.47	21.48	10.48	75.46			
150	33.13	18.03	7.03	63.27			
180	28.68	15.61	4.61	49.78			
210	25.37	13.81	2.81	35.38			
240	22.81	12.41	1.41	20.32			
270	20.75	11.29	0.29	4.76			

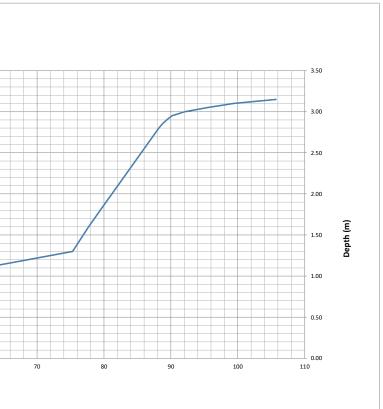

		:2 YEAR E	VENT		50% of the Qpeal
AREA A-3.2			d Tower 'B' Ta	nk 5	
OTTAWA IDF C	URVE		Qpeak =	15.0	L/s
Area =	0.197	ha	Qavg =	7.5	L/s
C =	0.84		Vol(max) =	20.0	m3
			(Vol calculated	for Oall	ow-ava)
Time	Intensity	Q	Qnet	Vol	on arg)
(min)	(mm/hr)	(L/s)	(L/s)	(m3)	
5	103.57	47.82	40.32	12.10	
10	76.81	35.47	27.97	16.78	
15	61.77	28.52	21.02	18.92	
20	52.03	24.03	16.53	19.83	
25	45.17	20.86	13.36	20.03	
30	40.04	18.49	10.99	19.78	
35	36.06	16.65	9.15	19.22	
40	32.86	15.18	7.68	18.42	
45	30.24	13.96	6.46	17.45	
50	28.04	12.95	5.45	16.34	
55	26.17	12.08	4.58	15.13	
60	24.56	11.34	3.84	13.82	
75	20.81	9.61	2.11	9.50	
90	18.14	8.38	0.88	4.74	
120	14.56	6.72	-0.78	-5.59	
150	12.25	5.66	-1.84	-16.58	
180	10.63	4.91	-2.59	-28.01	
210	9.42	4.35	-3.15	-39.72	
240	8.47	3.91	-3.59	-51.65	
270	7.72	3.57	-3.93	-63.74	

Proposed Site	Proposed Site Development				sing Average
Novatech Proje				Equal to	50% of the Qpeak
REQUIRED STC					
AREA A-3.2		Controlle	d Tower 'B' Ta	nk 5	
OTTAWA IDF C			Qpeak =	18.0	L/s
Area =	0.197	ha	Qavg =	9.0	L/s
C =	0.94		Vol(max) =	71.7	m3
			(Vol calculated	d for Qall	ow-avg)
Time	Intensity	Q	Qnet	Vol	
(min)	(mm/hr)	(L/s)	(L/s)	(m3)	
5	242.70	124.82	115.82	34.75	
10	178.56	91.83	82.83	49.70	
15	142.89	73.49	64.49	58.04	
20	119.95	61.69	52.69	63.23	
25	103.85	53.41	44.41	66.61	
30	91.87	47.25	38.25	68.85	
35	82.58	42.47	33.47	70.29	
40	75.15	38.65	29.65	71.15	
45	69.05	35.51	26.51	71.58	
50	63.95	32.89	23.89	71.67	
55	59.62	30.66	21.66	71.49	
60	55.89	28.75	19.75	71.09	
75	47.26	24.30	15.30	68.87	
90	41.11	21.14	12.14	65.57	
120	32.89	16.92	7.92	57.01	
150	27.61	14.20	5.20	46.80	
180	23.90	12.29	3.29	35.57	
210	21.14	10.87	1.87	23.62	
240	19.01	9.77	0.77	11.15	
270	17.29	8.89	-0.11	-1.71	

lovatech Proje	ct No. 119	171	Release Rate	Equal to	50% of the C
EQUIRED STO	RAGE - 1	:5 YEAR E	VENT		
REA A-4		Controlle	d Tower 'B' Ta	nk 5	
TTAWA IDF C	URVE		Qpeak =	16.5	L/s
Area =	0.197	ha	Qavg =	8.3	L/s
C =	0.84		Vol(max) =	30.0	m3
			(Vol calculate	d for Qallo	ow-avg)
Time	Intensity	Q	Qnet	Vol	0,
(min)	(mm/hr)	(L/s)	(L/s)	(m3)	
5	141.18	65.19	56.94	17.08	
10	104.19	48.11	39.86	23.92	
15	83.56	38.58	30.33	27.30	
20	70.25	32.44	24.19	29.03	
25	60.90	28.12	19.87	29.80	
30	53.93	24.90	16.65	29.97	
35	48.52	22.40	14.15	29.72	
40	44.18	20.40	12.15	29.17	
45	40.63	18.76	10.51	28.38	
50	37.65	17.39	9.14	27.41	
55	35.12	16.22	7.97	26.30	
60	32.94	15.21	6.96	25.06	
75	27.89	12.88	4.63	20.82	
90	24.29	11.22	2.97	16.01	
120	19.47	8.99	0.74	5.32	
150	16.36	7.56	-0.69	-6.25	
180	14.18	6.55	-1.70	-18.38	
210	12.56	5.80	-2.45	-30.90	
240 270	11.29 10.28	5.22 4.75	-3.03 -3.50	-43.70 -56.72	

Proposed Site	Develonm	ent	Storage Calcu	lations U	sing Average		
Novatech Proje			Release Rate Equal to 50% of the Qpeak				
REQUIRED STO					our and appear		
AREA A-4			d Tower 'B' Ta				
OTTAWA IDF C	URVE		Qpeak =	20.0	L/s		
Area =	0.197	ha	Qavg =	10.0	L/s		
C =	0.94		Vol(max) =	88.4	m3		
			(Vol calculate	d for Qall	ow-avg)		
Time	Intensity	Q	Qnet	Vol			
(min)	(mm/hr)	(L/s)	(L/s)	(m3)			
5	291.24	149.79	139.79	41.94			
10	214.27	110.20	100.20	60.12			
15	171.47	88.19	78.19	70.37			
20	143.94	74.03	64.03	76.83			
25	124.62	64.09	54.09	81.14			
30	110.24	56.70	46.70	84.06			
35	99.09	50.96	40.96	86.02			
40	90.17	46.38	36.38	87.30			
45	82.86	42.62	32.62	88.06			
50	76.74	39.47	29.47	88.41			
55	71.55	36.80	26.80	88.43			
60	67.07	34.50	24.50	88.19			
75	56.71	29.16	19.16	86.24			
90	49.33	25.37	15.37	83.01			
120	39.47	20.30	10.30	74.17			
150	33.13	17.04	7.04	63.36			
180	28.68	14.75	4.75	51.32			
210	25.37	13.05	3.05	38.42			
240	22.81	11.73	1.73	24.91			
270	20.75	10.67	0.67	10.91			

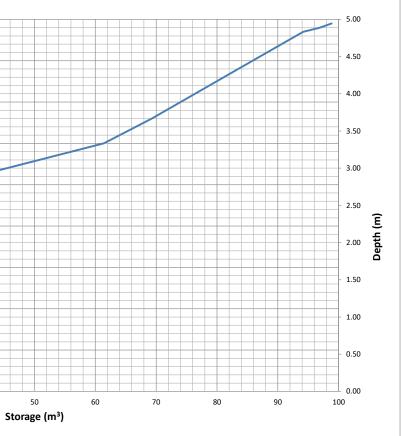
Proposed Site Development Storage Calculations Using Average Novatech Project No. 119171 Release Rate Equal to 50% of the Qpeak	Proposed Site Development Storage Calculations Using Average Novatech Project No. 119171 Release Rate Equal to 50% of the Qpeak	StructureSize (mm)Area (m²)Tank 63m x 6.15m18.45	T/G Inv IN 65.10 63.18	Inv OUT 60.65		
REQUIRED STORAGE - 1:2 YEAR EVENT AREA A-4 Controlled Tower 'D' Tanks 6 & 7	REQUIRED STORAGE - 1:5 YEAR EVENT AREA A-4 Controlled Tower 'D' Tanks 6 & 7	Tank 7 3m x 6.15m 18.45	65.30 -	60.70		
OTTAWA IDF CURVE Qpeak = 7.9 L/s Area = 0.198 ha Qavg = 4.0 L/s	OTTAWA IDF CURVE Qpeak = 9.6 L/s Area = 0.198 ha Qavg = <mark>4.8</mark> L/s	Area A-4: Storage Table	Undergroun Storage	d Surface Storage	Total Storage	
C = 0.88 Vol(max) = 28.7 m3 (Vol calculated for Qallow-avg)	C = 0.88 Vol(max) = 40.0 m3 (Vol calculated for Qallow-avg)	System Tank 6	Tank 7 Combined	Tank 6	Ponding Total	
Time Intensity Q Qnet Vol	Time Intensity Q Qnet Vol	Elevation Depth Volume	Volume Volume	Area Volume	Volume Volume	
(min) (mm/hr) (L/s) (L/s) (m3)	(min) (mm/hr) (L/s) (L/s) (m3)	(m) (m) (m ³)	(m ³) (m ³)	(m ²) (m ³)	(m ³) (m ³)	Head
5 103.57 49.90 45.95 13.78 10 76.81 37.00 33.05 19.83	5 141.18 68.02 63.22 18.96 10 104.19 50.20 45.40 27.24	60.65 0.00 - 60.90 0.25 4.61	3.69 4.61		- 0 - 4.6	- 0.12
15 61.77 29.76 25.81 23.23	15 83.56 40.26 35.46 31.91	61.20 0.55 10.15	9.22 19.37		- 19.4	0.42
20 52.03 25.07 21.12 25.34	20 70.25 33.85 29.05 34.85	61.50 0.85 15.68	14.76 30.44		- 30.4	0.72
25 45.17 21.76 17.81 26.72	25 60.90 29.34 24.54 36.81	61.80 1.15 21.22	20.29 41.51		- 41.5	1.02
30 40.04 19.29 15.34 27.62 35 36.06 17.37 13.42 28.19	30 53.93 25.98 21.18 38.13 35 48.52 23.37 18.57 39.01	62.10 1.45 26.75 62.25 1.60 29.52	25.83 52.58 28.60 58.12	0.00 0.00	- 52.6 0.0 58.1	1.32 1.47
40 32.86 15.83 11.88 28.52	40 44.18 21.29 16.49 39.57	62.40 1.75 32.29	31.36 63.65	0.00 0.00	0.0 63.7	1.62
45 30.24 14.57 10.62 28.67	45 40.63 19.57 14.77 39.89	62.55 1.90 35.05	34.13 69.19	0.00 0.00	0.0 69.2	1.77
50 28.04 13.51 9.56 28.68 55 26.17 12.61 8.66 28.57	50 37.65 18.14 13.34 40.02 55 35.12 16.92 12.12 40.00	62.70 2.05 37.82 62.85 2.20 40.59	36.90 74.72 39.67 80.26	0.00 0.00 0.00 0.00	0.0 74.7 0.0 80.3	1.92 2.07
60 24.56 11.83 7.88 28.37	60 32.94 15.87 11.07 39.86	63.15 2.50 46.12	45.20 91.33	0.00 0.00	0.0 91.3	2.37
75 20.81 10.03 6.08 27.35	75 27.89 13.44 8.64 38.86					
90 18.14 8.74 4.79 25.87 120 14.56 7.02 3.07 22.07	90 24.29 11.70 6.90 37.27 120 19.47 9.38 4.58 32.97	Tempest Vortex LMF ICD - Custom 1:100 Yr				
120 14.56 7.02 3.07 22.07 150 12.25 5.90 1.95 17.57	120 19.47 9.38 4.58 32.97 150 16.36 7.88 3.08 27.75	Flow (L/s) = 14.2	-			Stage Storage Curve
180 10.63 5.12 1.17 12.63	180 14.18 6.83 2.03 21.94	Head (m) = 2.14				Area A-4
210 9.42 4.54 0.59 7.39	210 12.56 6.05 1.25 15.74	Elevation (m) = 62.92				
240 8.47 4.08 0.13 1.91 270 7.72 3.72 -0.23 -3.73	240 11.29 5.44 0.64 9.24 270 10.28 4.95 0.15 2.51	Outlet Pipe Dia.(mm) = 254 Volume (m3) = 82.3				
		1:5 Yr				
		Flow $(L/s) = 9.6$	63.50			
Proposed Site Development Storage Calculations Using Average	Proposed Site Development Storage Calculations Using Average	Head (m) = 0.99 Elevation (m) = 61.77				
Novatech Project No. 119171 Release Rate Equal to 50% of the Qpeak	Novatech Project No. 119171 Release Rate Equal to 50% of the Qpeak	Outlet Pipe Dia.(mm) = 254				
REQUIRED STORAGE - 1:100 YEAR EVENT	REQUIRED STORAGE - 1:100 YR + 20% IDF Increase	Volume (m3) = 40.0				
AREA A-4 Controlled Tower 'D' Tanks 6 & 7 OTTAWA IDF CURVE Qpeak = 14.2 L/s	AREA A-4 Controlled Tower 'D' Tanks 6 & 7 OTTAWA IDF CURVE Qpeak = 15.0 L/s	1:2 Yr Flow (L/s) = 7.9	63.00			
Area = 0.198 ha Qavg = 7.1 L/s	Area = 0.198 ha Qavg = 7.5 L/s	Head (m) = 0.67				
C = 0.97 Vol(max) = 82.3 m3	C = 0.97 Vol(max) = 103.0 m3	Elevation (m) = 61.45				
(Vol calculated for Qallow-avg) Time Intensity Q Qnet Vol	(Vol calculated for Qallow-avg) Time Intensity Q Qnet Vol	Outlet Pipe Dia.(mm) = 254 Volume (m3) = 28.7				
(min) (mm/hr) (L/s) (L/s) (m3)	(min) (mm/hr) (L/s) (L/s) (m3)	Volume (m3) = 20.7				
5 242.70 130.05 122.95 36.89	5 291.24 156.06 148.56 44.57	Orifice Size - 1:100 yr Flow Check	62.50			
10 178.56 95.68 88.58 53.15	10 214.27 114.82 107.32 64.39	Q=0.62xAx(2gh)^0.5				
15 142.89 76.57 69.47 62.52 20 119.95 64.27 57.17 68.61	15 171.47 91.88 84.38 75.94 20 143.94 77.13 69.63 83.56	Q (m ³ /s) = <u>1:100 yr</u> <u>Flow Chec</u> 0.0142 0.014 :				
25 103.85 55.65 48.55 72.82	25 124.62 66.78 59.28 88.91	$g(m/s^2) = 9.81$ 9.8				
30 91.87 49.23 42.13 75.83	30 110.24 59.07 51.57 92.83	h (m) = 2.14 2.14	4 .0 62.00			
35 82.58 44.25 37.15 78.01	35 99.09 53.10 45.60 95.76		4 .00 62.00			
40 75.15 40.27 33.17 79.60 45 69.05 37.00 29.90 80.73	40 90.17 48.32 40.82 97.97 45 82.86 44.40 36.90 99.63	A (m ²) = 0.003532125 0.0035 D (m) = 0.067061474 0.0670	3 <u>9</u>			
50 63.95 34.27 27.17 81.51	50 76.74 41.12 33.62 100.87	D(m) = 0.007001474 0.007001474				
55 59.62 31.95 24.85 82.00	55 71.55 38.34 30.84 101.77					
60 55.89 29.95 22.85 82.26 75 47.26 25.32 18.22 82.00	60 67.07 35.94 28.44 102.39	1:5 yr Flow Check	61.50			
75 47.26 25.32 18.22 82.00 90 41.11 22.03 14.93 80.62	75 56.71 30.39 22.89 102.99 90 49.33 26.43 18.93 102.25	$Q (m^3/s) = 0.0096$				
120 32.89 17.63 10.53 75.79	120 39.47 21.15 13.65 98.29	$g(m/s^2) = 9.81$				
150 27.61 14.80 7.70 69.26	150 33.13 17.75 10.25 92.29	h (m) = 0.99				
180 23.90 12.81 5.71 61.65	180 28.68 15.37 7.87 84.99	A (²) - 0 00252	61.00			
210 21.14 11.33 4.23 53.30 240 19.01 10.18 3.08 44.41	210 25.37 13.60 6.10 76.81 240 22.81 12.22 4.72 67.98	A (m ²) = 0.00353 D (m) = 0.067				
270 17.29 9.27 2.17 35.11	270 20.75 11.12 3.62 58.65	D (mm) = 67				
		1:2 yr Flow Check	-			
		$Q (m^{3}/s) = \frac{1:2 \text{ yr}}{0.0079}$	60.50	0 10	20 30	40 50
		$g(m/s^2) = 9.81$		10	20 50	
		h (m) = 0.67				Storage (m ³)
		A (m ²) = 0.00353				
		A (m) = 0.00353 D (m) = 0.067				
		D (mm) = 67				
		-				



Proposed Site Development Storage Calculations Using Average Novatech Project No. 119171 Release Rate Equal to 50% of the Opeak REQUIRED STORAGE - 1:2 YEAR EVENT AREA A-5 Controlled West Super-Pipe + OS-3 OTTAWA IDF CURVE OTTAWA IDF CURVE Opeak = 13.7 Area = 0.526 ha C = 0.45 Vol(max) = 35.6	Proposed Site Development Storage Calculations Using Average Novatech Project No. 119171 Release Rate Equal to 50% of the Opeak REQUIRED STORAGE - 1:5 YEAR EVENT Release Rate Equal to 50% of the Opeak AREA A-4 Controlled West Super-Pipe + OS-3 OTTAWA IDF CURVE Opeak = 17.3 L/s Area = 0.526 ha Qavg = 8.7 L/s C = 0.45 Vol(max) = 49.3 m3	STM MH 08 CBMH 01 CBMH 02 CBMH 03 CBMH 04	Size (mm) 1829 1829 1219 1219 1219 1219	Area (m ²) 2.63 2.63 1.17 1.17 1.17	T/G 64.35 62.85 62.60 62.90 64.65	Inv IN 59.96 60.49 60.56 60.90 -	Inv OUT 59.81 60.05 60.53 60.84 61.30									Tot	PI = 3 pipe I.D.= U/C ind Area tal Length we Volume
(Vol calculated for Qallow-avg) Time Intensity Q Qnet Vol (min) (mm/hr) (1/s) (1/s) (m3)	(Vol calculated for Qallow-avg) Time Intensity Q Qnet Vol (min) (mm/hr) (I (s) (I (s) (m3)			Area /	A-5: Storag	e Table			Underground Storage		Surface	Storage		Total	Storage		F
(mm) (mm) (corr (5 141.18 93.21 84.56 25.37 10 104.19 68.79 60.14 36.09 15 83.56 55.17 46.52 41.87	Elevation (m)	System Depth (m)	STM MH 08 Volume (m ³)	CBMH 01 Volume (m ³)	CBMH 02 Volume (m ³)	CBMH 03 Volume (m ³)	CBMH 04 Volume (m ³)	Combined Volume (m ³)	CBM Area (m ²)	Volume (m ³)	CBM Area (m ²)	/H 03 Volume (m ³)	Ponding Volume (m ³)	Total Volume (m³)	Head	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	59.81 60.05 60.50 61.10 61.40 61.65 61.95 62.60 62.65	0.00 0.24 0.69 0.99 1.29 1.59 1.84 2.14 2.79 2.84	0.63 1.81 2.60 3.39 4.18 4.83 5.62 7.33 7.46	0.00 1.18 1.97 2.76 3.55 4.20 4.99 6.70 6.83	0.00 0.32 0.67 1.02 1.31 1.66 2.42	- 0.00 0.30 0.65 0.95 1.30 2.05 2.11	- - 0.00 0.00 0.12 0.41 0.76 1.52 1.58	- 14.17 44.07 55.40 75.31 77.70 79.89 82.52 88.21 88.59	- - - - 0.00 0.00 0.00 0.00 4.85	- - - - - - - - - - - - - - - - - - -	- - - - - 0.00 0.00 0.00 0.00 0.00	- - - - 0.00 0.00 0.00 0.00 0.00	- - - 0.0 0.0 0.0 0.0 0.0 0.1	0 14.2 44.1 55.4 75.3 77.7 79.9 82.5 88.2 88.2 88.7	0.09 0.54 0.84 1.14 1.44 1.69 1.99 2.64 2.69	Ē
90 18.14 11.98 5.13 27.70 120 14.56 9.61 2.76 19.90 150 12.25 8.09 1.24 11.15 180 10.63 7.02 0.17 1.79 210 9.42 6.22 -0.63 -7.98 240 8.47 5.60 -1.25 -18.06	90 24.29 16.04 7.39 39.89 120 19.47 12.85 4.20 30.26 150 16.36 10.80 2.15 19.38 180 14.18 9.36 0.71 7.69 210 12.56 8.29 -0.36 -4.54 240 12.29 7.46 -1.19 -17.18	62.70 62.75 62.80 62.85 62.90 62.95	2.89 2.94 2.99 3.04 3.09 3.14	7.59 7.72 7.86 7.99 8.12 8.25	6.96 7.09 7.23 7.36		2.17 2.23 2.29 2.35 2.40	1.63 1.69 1.75 1.81 1.87 1.93	88.97 89.35 89.73 90.11 90.35 90.54	6.32 9.97 31.96 59.55 99.81 126.35	0.40 0.81 2.31 5.34 9.04 14.70	0.00 0.00 0.00 0.00 0.00 18.52	0.00 0.00 0.00 0.00 0.00 0.46	0.4 0.8 2.3 5.3 9.0 15.2	89.4 90.2 92.0 95.4 99.4 105.7	2.74 2.79 2.84 2.89 2.94 2.99	M
270 7.72 5.10 -1.75 -28.38	270 10.28 6.79 -1.86 -30.12		Vortex MHF ICI	D - Custom		L										2.00	
Proposed Site Development Storage Calculations Using Average Novatech Project No. 119171 Release Rate Equal to 50% of the Opeak REQUIRED STORAGE - 1:100 YEAR EVENT AREA A-5 OTTAWA IDF CURVE Opeak = 35.8 Area = 0.526 ha Qavg = 17.9	Proposed Site Development Novatech Project No. 119171 Storage Calculations Using Average Relourse DSTORAGE - 1:100 YR + 20% IDF Increase AREA A-4 Controlled West Super-Pipe + 0S-3 OTTAWA IDF CURVE Opeak = 38.0 L/s Area = 0.526 ha Oavg = 19.0 L/s		Flow (L/s) = Head (m) = Elevation (m) = Pipe Dia.(mm) = Volume (m3) = Flow (L/s) =	2.87 62.83 305 94.1		63.	30						-	orage Cur ea A-5	ve		
C = 0.52 Vol(max) 94.1 m3 C = 0.52 Vol(max) 94.1 m3 (Vol calculated for Oallow-avg) Time Intensity Q Qnet Vol (min) (mm/hr) (L/s) (L/s) (m3) 10 17.56 135.64 117.74 70.64 15 142.89 108.55 90.65 81.58 158 158	Time Intervention Classical Classical <thclasi< th=""> <thclasi< th=""> Classical<</thclasi<></thclasi<>	Outlet 1:2 Yr	Head (m) = Elevation (m) = Pipe Dia.(mm) = Volume (m3) = Flow (L/s) = Head (m) =	0.67 60.63 305 49.3		62.											
20 119.95 91.12 73.22 87.86 25 103.85 78.89 60.99 91.48 30 91.87 69.79 51.89 93.40 35 82.58 62.73 44.83 94.14 40 75.15 57.08 39.18 94.04 45 69.05 52.45 34.55 93.29 50 63.95 48.85 30.68 92.05	20 143.94 109.34 90.34 108.41 25 124.62 94.66 75.66 113.49 30 110.24 83.74 64.74 116.54 35 99.09 75.28 56.28 118.18 40 90.17 68.50 49.50 118.80 45 82.86 62.94 43.94 118.65 50 76.74 58.30 39.30 117.89		Elevation (m) = Pipe Dia.(mm) = Volume (m3) =	60.38 305 35.6 ow Check]	62.	30		Image: 1 min	Image: Constraint of the sector of							
55 59.62 45.29 27.39 90.39 60 55.89 42.46 24.56 88.41 75 47.26 35.90 18.00 80.99	55 71.55 54.35 35.35 116.66 60 67.07 50.95 31.95 115.03 75 56.71 43.08 24.08 108.34	Q (m ³ /s) = g (m/s ²) = h (m) =	0.0358 9.81 2.87	0.0358 9.81		(m) (m)	80										
90 41.11 31.23 13.33 71.98 120 32.89 24.99 7.09 51.03 150 27.61 20.97 3.07 27.67 180 23.90 18.16 0.26 2.78 210 21.14 16.06 -1.84 -23.16 240 19.01 14.44 -3.46 -49.86	90 49.33 37.48 18.48 99.77 120 39.47 29.99 10.99 79.10 150 33.13 25.17 6.17 55.52 180 28.68 21.79 2.79 30.12 210 25.37 19.27 0.27 3.46 240 22.81 17.32 -1.68 -24.12	A (m ²) = D (m) = D (mm) =	0.007698217 0.099003402 99	0.09900 99.0		Elevat	30		Image: Constraint of the sector of								
270 17.29 13.14 -4.76 -77.15	240 22.01 17.32 1.00 224.12 270 20.75 15.77 -3.23 -52.41		Q (m ³ /s) = g (m/s ²) = h (m) =	<u>1:5 yr</u> 0.0173 9.81		60.	80		Image:								
			A (m²) = D (m) = D (mm) =			60.	30										
			2 yr Flow Che Q (m ³ /s) = g (m/s ²) =	<u>1:2 yr</u> 0.0137		59.	80 0	10		20	30		40	50		60	70
			g (m/s ⁻) = h (m) = D (m) = D (mm) =	0.42 0.00770 0.099										St	orage (m³)		

PI =	3.141592654		PI =	3.14159265		
pipe I.D.=	610	(pvc pipe)	pipe I.D.=	1067	(conc pipe)	
U U	/G Pipe Volum	ie	U.	/G Pipe Volu	me	
End Area	0.292	(m²)	End Area	0.894	(m²)	
otal Length	92.9	(m)	Total Length	45.9	(m)	
pe Volume	27.1	(m ³)	Pipe Volume	41.0	(m ³)	
		U/G Pipe Size		610m	nm dia.	
		Pipe Segment	CBMH 01 - CBMH 02	CBMH 02 - C	BMH 03	CBMH
	Centr	e-Centre Length	9.0	5	7.1	
		Inside Structure	1.5	1	.2	
	U/G	Storage Length	7.5	5	5.9	
		U/G Pipe Size	1050mm dia.			

U/G Pipe Size	1050mm dia.
Pipe Segment	STM MH 08 - CBMH 01
Centre-Centre Length	47.7
Inside Structure	1.8
U/G Storage Length	45.9


Maximum Ponding Depth	(cr	n)
1:100 Yr		23
1:5 Yr		0

Proposed Site Development Storage Calculations Using Average Novatech Project No. 119171 Release Rate Equal to 50% of the Qpeak REQUIRED STORAGE - 1:2 YEAR EVENT AREA A-6 Controlled East Super-Pipe + OS-2 OTTAWA IDF CURVE Qreak = 9.0 L/s Area = 0.375 ha Qavg = 4.5	Proposed Site Development Storage Calculations Using Average Novatech Project No. 119171 Release Rate Equal to 50% of the Qpeak REQUIRED STORAGE - 1:5 YEAR EVENT AREA A-6 Controlled East Super-Pipe + OS-2 OTTAWA IDF CURVE Area = 0.375 ha Qay = 4.8 L/s	Structure Size (mm) Area (m²) CBMH 05 1829 2.63 STM MH 09 1829 2.63 Tank 8 3m x 6.15m 18.45	T/G Inv IN Inv OUT 64.85 61.20 60.63 67.10 - 62.50 66.65 - 62.75]	PI = 3.141592654 pipe I.D.= 1067 (conc pipe) U/G Pipe Volume
C = 0.45 $Vol(max) = 25.9$ $M3$ $(Vol calculated for Qallow-avg)$	C = 0.45 $C = 0.45$ $Vol(max) = 38.3$ $Was modeled and the second sec$	Area A-6: Storage T	Table Underground Storage Storage	Surface Storage Total Storage	U/G Pipe Size 1050mm dia.
Time Intensity Q Qnet Vol (min) (mm/hr) (L/s) (L/s) (m3)	Time Intensity Q Qnet Vol (min) (mm/hr) (L/s) (L/s) (m3)	Elevation Depth CBMH 05	STM MH 09 Tank 8 Combined Volume Volume Volume	CBMH 05 Ponding Total Area Volume Volume Volume (m2) (m3) (m3) (m3)	Pipe Segment CBMH 05 - STM MH 09 Centre-Centre Length 44.5
5 103.57 48.20 43.70 13.11 10 76.81 35.74 31.24 18.75 15 61.77 28.74 24.24 21.82	5 141.18 65.70 60.95 18.29 10 104.19 48.49 43.74 26.24 15 83.56 38.89 34.14 30.72	(m) (m) (m ³) 60.63 0.00 - 61.20 0.57 1.50	(m ³) (m ³) (m ³) 0.00 - 1.50	(m²) (m³) (m³) (m³) - - - 0 - - - 1.5	Head Inside Structure 1.8 - U/G Storage Length 42.7 0.42
20 52.03 24.21 19.71 23.66 25 45.17 21.02 16.52 24.78	20 70.25 32.69 27.94 33.53 25 60.90 28.34 23.59 35.38	61.20 0.37 1.30 61.70 1.07 2.81 62.00 1.37 3.60	0.00 0.00 2.81 0.00 0.00 3.60	2.8	0.92 1.22
30 40.04 18.64 14.14 25.44 35 36.06 16.78 12.28 25.79 40 32.86 15.29 10.79 25.91	30 53.93 25.10 20.35 36.62 35 48.52 22.58 17.83 37.44 40 44.18 20.56 15.81 37.95	62.30 1.67 4.39 62.60 1.97 5.18 62.90 2.27 5.96	0.00 0.00 4.39 0.26 0.00 14.98 1.05 2.77 28.87	4.4 15.0 0.00 0.00 0.0 28.9	1.52 1.82 2.12
40 32.50 10.29 10.79 25.81 45 30.24 14.07 9.57 25.85 50 28.04 13.05 8.55 25.65	4540.6318.9114.1638.235037.6517.5212.7738.32	63.20 2.57 6.75 63.50 2.87 7.54	1.03 2.17 20.87 1.84 8.30 45.53 2.63 13.84 61.42	0.00 0.00 0.00 28.9 0.00 0.00 0.0 45.5 0.00 0.00 0.0 61.4	2.12 2.42 2.72
55 26.17 12.18 7.68 25.34 60 24.56 11.43 6.93 24.94 75 20.81 9.69 5.19 23.34	55 35.12 16.35 11.60 38.26 60 32.94 15.33 10.58 38.09 75 27.89 12.98 8.23 37.03	63.80 3.17 8.33 64.10 3.47 9.12 64.40 3.77 9.91	3.42 19.37 69.30 4.20 24.91 76.41 4.99 30.44 83.52	0.00 0.00 0.0 69.3 0.00 0.00 0.0 76.4 0.00 0.00 0.0 83.5	3.02 Maximum Ponding Depth (cm) 3.32 1:100 Yr 0 3.62 1:5 Yr 0
9018.148.443.9421.2912014.566.782.2816.39	90 24.29 11.30 6.55 35.39 120 19.47 9.06 4.31 31.03	64.70 4.07 10.69 64.85 4.22 11.09	4.33 50.44 50.32 5.78 35.98 90.63 6.17 38.74 94.19	0.00 0.00 0.00 0.0 90.6 0.00 0.00 0.0 94.2	3.92 4.07
150 12.25 5.70 1.20 10.81 180 10.63 4.95 0.45 4.81 210 9.42 4.38 -0.12 -1.49	150 16.36 7.61 2.86 25.78 180 14.18 6.60 1.85 19.97 210 12.56 5.84 1.09 13.77	64.904.2711.2264.954.3211.35	6.31 39.67 95.37 6.44 40.59 96.56	6.35 1.59 1.6 97.0 21.95 2.29 2.3 98.9	4.12 4.17
240 8.47 3.94 -0.56 -8.01 270 7.72 3.59 -0.91 -14.69	240 11.29 5.26 0.51 7.29 270 10.28 4.79 0.04 0.59	Tempest Vortex LMF ICD - Custom 1:100 Yr		Stage Storage (Curve
	L	Flow (L/s) = 12.2 Head (m) = 3.74 Elevation (m) = 64.52		Area A-6	
Proposed Site Development Storage Calculations Using Average Release Rate Equal to 50% of the Opeak	Proposed Site Development Storage Calculations Using Average Release Rate Equal to 50% of the Opeak	Outlet Pipe Dia.(mm) = 305 Volume (m3) = 86.5			
REQUIRED STORAGE - 1:100 YEAR EVENT AREA A-6 Controlled East Super-Pipe + OS-2 OTTAWA IDF CURVE Qpeak = 12.2 L/s	REQUIRED STORAGE - 1:100 YR + 20% IDF Increase AREA A-6 Controlled East Super-Pipe + OS-2 OTTAWA IDF CURVE Qpeak = 13.0 L/s	1:5 Yr Flow (L/s) = 9.5 Head (m) = 2.30	65.00		5.00
Area = 0.375 ha Qavg = 6.1 L/s C = 0.51 Vol(max) = 86.5 m3	Area = 0.375 ha Qavg = 6.5 L/s C = 0.51 Vol(max) = 107.6 m3	Elevation (m) = 63.08 Outlet Pipe Dia.(mm) = 305 Volume (m3) = 38.3	64.50		4.50
(Vol calculated for Qallow-avg) Time Intensity Q Qnet Vol (min) (mm/hr) (L/s) (L/s) (m3)	(Vol calculated for Qallow-avg) Time Intensity Q Qnet Vol (min) (mm/hr) (L/s) (L/s) (m3)	Flow (L/s) = 9.0			
5 242.70 130.05 123.95 37.19 10 178.56 95.68 89.58 53.75 15 142.89 76.57 70.47 63.42	5 291.24 156.06 149.56 44.87 10 214.27 114.82 108.32 64.99 15 171.47 91.88 85.38 76.84	Head (m) = 2.04 Elevation (m) = 62.82 Outlet Pipe Dia.(mm) = 305	64.00		4.00
20119.9564.2758.1769.8125103.8555.6549.5574.32	20 143.94 77.13 70.63 84.76 25 124.62 66.78 60.28 90.41	Volume (m3) = 25.9	63.50		- 3.50
30 91.87 49.23 43.13 77.63 35 82.58 44.25 38.15 80.11 40 75.15 40.27 34.17 82.00	30 110.24 59.07 52.57 94.63 35 99.09 53.10 46.60 97.86 40 90.17 48.32 41.82 100.37	Orifice Size - 1:100 yr Flow Check <u>Q=0.62xAx(2gh)^0.5</u> <u>1:100 yr</u> Flow Check			3.00
45 69.05 37.00 30.90 83.43 50 63.95 34.27 28.17 84.51	45 82.86 44.40 37.90 102.33 50 76.74 41.12 34.62 103.87	$Q (m^{3}/s) = 0.0122 0.0122 g (m/s^{2}) = 9.81 9.81$	E 63.00		
55 59.62 31.95 25.85 85.30 60 55.89 29.95 23.85 85.86	55 71.55 38.34 31.84 105.07 60 67.07 35.94 29.44 105.99	h (m) = 3.74 3.74	vat vat		- 2.50 g
75 47.26 25.32 19.22 86.50 90 41.11 22.03 15.93 86.02 120 32.89 17.63 11.53 82.99	75 56.71 30.39 23.89 107.49 90 49.33 26.43 19.93 107.65 120 39.47 21.15 14.65 105.49	A (m ²) = 0.002297884 0.00229 D (m) = 0.054090261 0.05400 D (mm) = 54 54.0			
150 27.61 14.80 8.70 78.26 180 23.90 12.81 6.71 72.45 210 21.14 11.22 65.00	150 33.13 17.75 11.25 101.29 180 28.68 15.37 8.87 95.79 010 25.27 12.60 7.10 90.41	1:5 yr Flow Check	62.00		
210 21.14 11.33 5.23 65.90 240 19.01 10.18 4.08 58.81 270 17.29 9.27 3.17 51.31	210 25.37 13.60 7.10 89.41 240 22.81 12.22 5.72 82.38 270 20.75 11.12 4.62 74.85	<u>1:5 yr</u> Q (m³/s) = 0.0095 g (m/s²) = 9.81			- 1.50
		h (m) = 2.30	61.50		1.00
		A (m ²) = 0.00229 D (m) = 0.054 D (mm) = 54	61.00		- 0.50
		1:2 yr Flow Check			
		$Q (m^{3}/s) = 0.0090$	60.50 0 10	20 30 40 50	60 70 80 90 100
		g (m/s ²) = 9.81 h (m) = 2.04		Storage	(m ³)

A (m²) = 0.00229 D (m) = 0.054 D (mm) = 54

APPENDIX F

Inlet Control Device (ICD) Information

IPEX Tempest™ Inlet Control Devices

Municipal Technical Manual Series

Vol. I, 2nd Edition

© 2012 by IPEX. All rights reserved. No part of this book may be used or reproduced in any manner whatsoever without prior written permission. For information contact: IPEX, Marketing, 2441 Royal Windsor Drive, Mississauga, Ontario, Canada, L5J 4C7.

The information contained here within is based on current information and product design at the time of publication and is subject to change without notification. IPEX does not guarantee or warranty the accuracy, suitability for particular applications, or results to be obtained therefrom.

PRODUCT INFORMATION: TEMPEST LOW, MEDIUM FLOW (LMF) ICD

Purpose

To control the amount of storm water runoff entering a sewer system by allowing a specified flow volume out of a catch basin or manhole at a specified head. This approach conserves pipe capacity so that catch basins downstream do not become uncontrollably surcharged, which can lead to basement floods, flash floods and combined sewer overflows.

Product Description

Our LMF ICD is designed to accommodate catch basins or manholes with sewer outlet pipes 6" in diameter and larger. Any storm sewer larger than 12" may require custom modification. However, IPEX can custom build a TEMPEST device to accommodate virtually any storm sewer size.

Available in 14 preset flow curves, the LMF ICD has the ability to provide flow rates: 2lps – 17lps (31gpm – 270gpm)

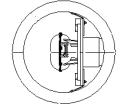
Product Function

The LMF ICD vortex flow action allows the LMF ICD to provide a narrower flow curve using a larger orifice than a conventional orifice plate ICD, making it less likely to clog. When comparing flows at the same head level, the LMF ICD has the ability to restrict more flow than a conventional ICD during a rain event, preserving greater sewer capacity.

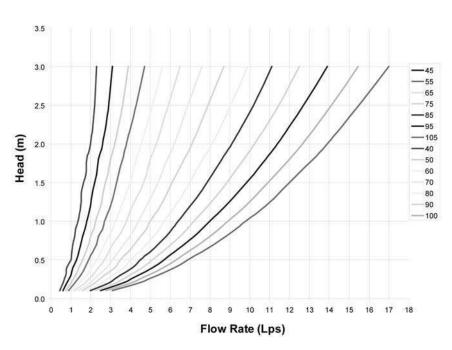
Product Construction

Constructed from durable PVC, the LMF ICD is light weight 8.9 Kg (19.7 lbs).

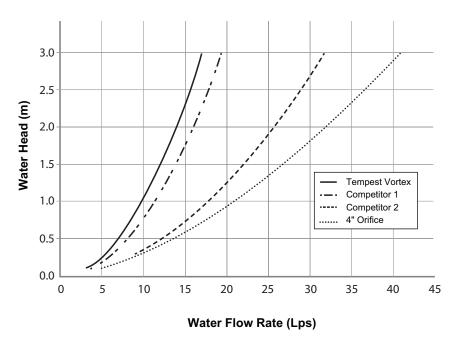
Product Applications


Will accommodate both square and round applications:

Square Application Round Application Universal Mounting Plate


Spigot CB

Wall Plate



IPEX

Chart 1: LMF 14 Preset Flow Curves

Chart 2: LMF Flow vs. ICD Alternatives

IPEX

PRODUCT INSTALLATION

Instructions to assemble a TEMPEST LMF ICD into a Square Catch Basin:

STEPS:

- 1. Materials and tooling verification:
 - Tooling: impact drill, 3/8" concrete bit, torque wrench for 9/16" nut, hand hammer, level, and marker.
 - Material: (4) concrete anchor 3/8 x 3-1/2, (4) washers,
 (4) nuts, universal mounting plate, ICD device.
- Use the mounting wall plate to locate and mark the hole
 (4) pattern on the catch basin wall. You should use a level to ensure that the plate is at the horizontal.
- Use an impact drill with a 3/8" concrete bit to make the four holes at a minimum of 1-1/2" depth up to 2-1/2". Clean the concrete dust from the holes.
- 4. Install the anchors (4) in the holes by using a hammer. Thread the nuts on the top of the anchors to protect the threads when you hit the anchors with the hammer. Remove the nuts from the ends of the anchors.
- Install the universal mounting plate on the anchors and screw the 4 nuts in place with a maximum torque of 40 N.m (30 lbf-ft). There should be no gap between the wall mounting plate and the catch basin wall.
- 6. From the ground above using a reach bar, lower the ICD device by hooking the end of the reach bar to the handle of the ICD device. Align the triangular plate portion into the mounting wall plate. Push down the device to be sure it has centered in to the universal mounting plate and has created a seal.

- Verify that the outlet pipe doesn't protrude into the catch basin. If it does, cut down the pipe flush to the catch basin wall.
- Call your IPEX representative for more information or if you have any questions about our products.

Instructions to assemble a TEMPEST LMF ICD into a Round Catch Basin:

STEPS:

- 1. Materials and tooling verification.
 - Tooling: impact drill, 3/8" concrete bit, torque wrench for 9/16" nut, hand hammer, level and marker.
 - Material: (4) concrete anchor 3/8 x 3-1/2, (4) washers and (4) nuts, spigot CB wall plate, universal mounting plate hub adapter, ICD device.
- 2. Use the spigot catch basin wall plate to locate and mark the hole (4) pattern on the catch basin wall. You should use a level to ensure that the plate is at the horizontal.
- Use an impact drill with a 3/8" concrete bit to make the four holes at a depth between 1-1/2" to 2-1/2". Clean the concrete dust from the holes.
- 4. Install the anchors (4) in the holes by using a hammer. Thread the nuts on the top of the anchors to protect the threads when you hit the anchors with the hammer. Remove the nuts from the ends of the anchors.
- Install the CB spigot wall plate on the anchors and screw the 4 nuts in place with a maximum torque of 40 N.m (30 lbf-ft). There should be no gap between the spigot wall plate and the catch basin wall.
- 6. Apply solvent cement on the hub of the universal mounting plate, hub adapter and the spigot of the CB wall plate, then slide the hub over the spigot. Make sure the universal mounting plate is at the horizontal and its hub is completely inserted onto the spigot. Normally, the corners of the universal mounting plate hub adapter should touch the catch basin wall.
- 7. From ground above using a reach bar, lower the ICD device by hooking the end of the reach bar to the handle of the ICD device. Align the triangular plate portion into the mounting wall plate. Push down the device to be sure it has centered in to the mounting plate and has created a seal.

WARNING

- Verify that the outlet pipe doesn't protrude into the catch basin. If it does, cut back the pipe flush to the catch basin wall.
- The solvent cement which is used in this installation is to be approved for PVC.
- The solvent cement should not be used below 0°C (32°F) or in a high humidity environment. Refer to the IPEX solvent cement guide to confirm the required curing time or visit the IPEX Online Solvent Cement Training Course available at www.ipexinc.com.
- Call your IPEX representative for more information or if you have any questions about our products.

IPEX Tempest™ LMF ICD

6

PRODUCT TECHNICAL SPECIFICATION

General

Inlet control devices (ICD's) are designed to provide flow control at a specified rate for a given water head level and also provide odour and floatable control. All ICD's will be IPEX Tempest or approved equal.

All devices shall be removable from a universal mounting plate. An operator from street level using only a T-bar with a hook will be able to retrieve the device while leaving the universal mounting plate secured to the catch basin wall face. The removal of the TEMPEST devices listed above must not require any unbolting or special manipulation or any special tools.

High Flow (HF) Sump devices will consist of a removable threaded cap which can be accessible from street level with out entry into the catchbasin (CB). The removal of the threaded cap shall not require any special tools other than the operator's hand.

ICD's shall have no moving parts.

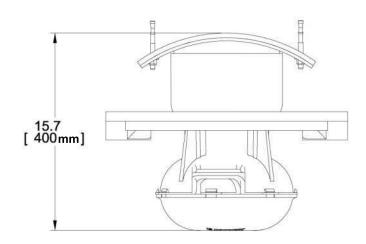
Materials

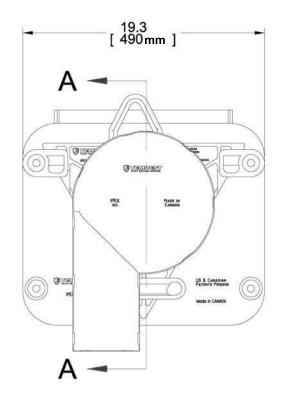
ICD's are to be manufactured from Polyvinyl Chloride (PVC) or Polyurethane material, designed to be durable enough to withstand multiple freeze-thaw cycles and exposure to harsh elements.

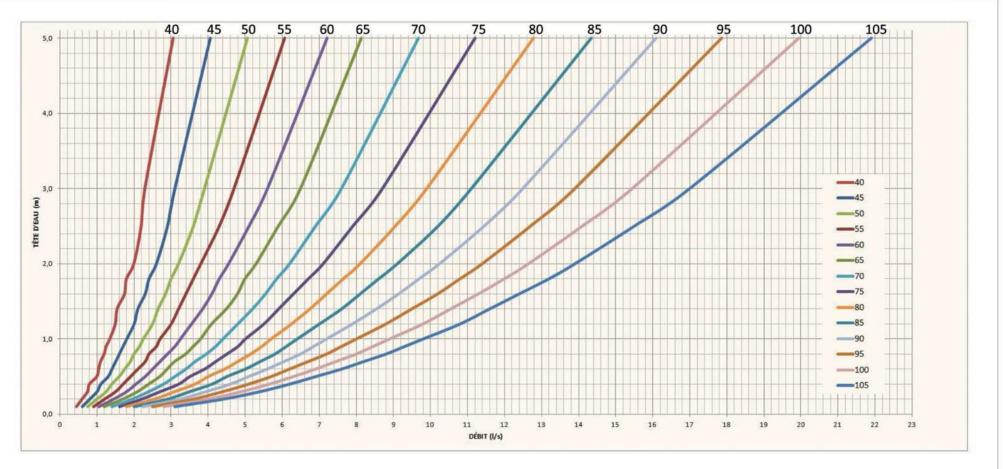
The inner ring seal will be manufactured using a Buna or Nitrile material with hardness between Duro 50 and Duro 70.

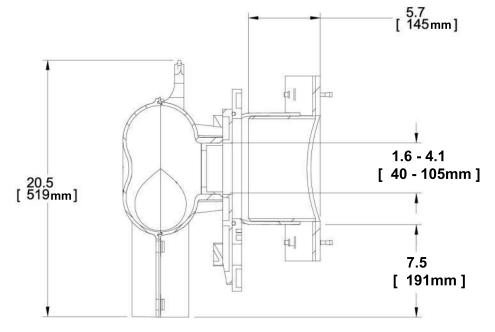
The wall seal is to be comprised of a 3/8" thick Neoprene Closed Cell Sponge gasket which is attached to the back of the wall plate.

All hardware will be made from 304 stainless steel.

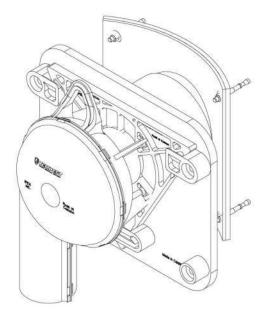

Dimensioning


The Low Medium Flow (LMF), High Flow (HF) and the High Flow (HF) Sump shall allow for a minimum outlet pipe diameter of 200mm with a 600mm deep Catch Basin sump.


Installation


Contractor shall be responsible for securing, supporting and connecting the ICD's to the existing influent pipe and catchbasin/manhole structure as specified and designed by the Engineer.

IPEX Tempest™ LMF ICD



SECTION A-A

PRODUCT INFORMATION: TEMPEST HF & MHF ICD

Product Description

Our HF, HF Sump and MHF ICD's are designed to accommodate catch basins or manholes with sewer outlet pipes 6" in diameter or larger. Any storm sewer larger than 12" may require custom modification. However, IPEX can custom build a TEMPEST device to accommodate virtually any storm sewer size.

Available in 5 preset flow curves, these ICDs have the ability to provide constant flow rates: 91ps (143 gpm) and greater

Product Function

TEMPEST HF (High Flow): designed to manage moderate to higher flows 15 L/s (240 gpm) or greater and prevent the propagation of odour and floatables. With this device, the cross-sectional area of the device is larger than the orifice diameter

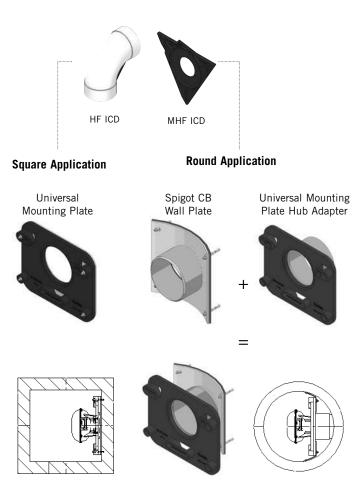
and has been designed to limit head losses. The HF ICD can also be ordered without flow control when only odour and floatable control is required.

TEMPEST HF (High Flow) Sump: The height of a sewer outlet pipe in a catch basin is not always conveniently located. At times it may be located very close to the catch basin floor, not providing enough sump for one of the other TEMPEST ICDs with universal back plate to be installed. In these applications, the HF Sump is offered. The

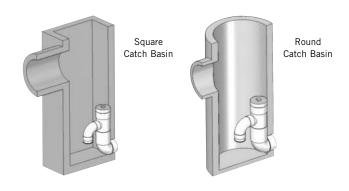
HF Sump offers the same features and benefits as the HF ICD; however, is designed to raise the outlet in a square or round catch basin structure. When installed, the HF sump is fixed in place and not easily removed. Any required service to the device is performed through a clean-out located in the top of the device which can be often accessed from ground level.

TEMPEST MHF (Medium to High Flow):

The MHF plate or plug is designed to control flow rates 9 L/s (143 gpm) or greater. It is not designed to prevent the propagation of odour and floatables.



Product Construction


The HF, HF Sump and MHF ICDs are built to be light weight at a maximum weight of 6.8 Kg (14.6 lbs).

Product Applications

The HF and MHF ICD's are available to accommodate both square and round applications:

The HF Sump is available to accommodate low to no sump applications in both square and round catch basins:

Flow Q (Lps)

IPEX

PRODUCT INSTALLATION

Instructions to assemble a TEMPEST HF or MHF ICD into a Square Catch Basin:

- 1. Materials and tooling verification:
 - Tooling: impact drill, 3/8" concrete bit, torque wrench for 9/16" nut, hand hammer, level, and marker.
 - Material: (4) concrete anchor 3/8 x 3-1/2, (4) washers, (4) nuts, universal mounting plate, ICD device
- Use the mounting wall plate to locate and mark the hole
 (4) pattern on the catch basin wall. You should use a level to ensure that the plate is at the horizontal.
- Use an impact drill with a 3/8" concrete bit to make the four holes at a minimum of 1-1/2" depth up to 2-1/2". Clean the concrete dust from the holes.
- 4. Install the anchors (4) in the holes by using a hammer. Thread the nuts on the top of the anchors to protect the threads when you hit the anchors with the hammer. Remove the nuts from the ends of the anchors.
- 5. Install the universal wall mounting plate on the anchors and screw the 4 nuts in place with a maximum torque of 40 N.m (30 lbf-ft). There should be no gap between the wall mounting plate and the catch basin wall.
- 6. From the ground above using a reach bar, lower the device by hooking the end of the reach bar to the handle of the ICD device. Align the triangular plate portion into the mounting wall plate. Push down the device to be sure it has centered in to the universal wall mounting plate and has created a seal.

- Verify that the outlet pipe doesn't protrude into the catch basin. If it does, cut down the pipe flush to the catch basin wall.
- Call your IPEX representative for more information or if you have any questions about our products.

Instructions to assemble a TEMPEST HF or MHF ICD into a Round Catch Basin:

STEPS:

- 1. Materials and tooling verification.
 - Tooling: impact drill, 3/8" concrete bit, torque wrench for 9/16" nut, hand hammer, level and marker.
 - Material: (4) concrete anchor 3/8 x 3-1/2, (4) washers and (4) nuts, spigot CB wall plate, universal mounting plate hub adapter, ICD device.
- 2. Use the round catch basin spigot adaptor to locate and mark the hole (4) pattern on the catch basin wall. You should use a level to ensure that the plate is at the horizontal.
- 3. Use an impact drill with a 3/8" concrete bit to make the four holes at a depth between 1-1/2" to 2-1/2". Clean the concrete dust from the holes.
- 4. Install the anchors (4) in the holes by using a hammer. Thread the nuts on the top of the anchors to protect the threads when you hit the anchors with the hammer. Remove the nuts from the ends of the anchors.
- Install the spigot CB wall plate on the anchors and screw the 4 nuts in place with a maximum torque of 40 N.m (30 lbf-ft). There should be no gap between the spigot CB wall plate and the catch basin wall.
- 6. Put solvent cement on the hub of the universal mounting plate, hub adapter and the spigot of the CB wall plate, then slide the hub over the spigot. Make sure the universal mounting plate is at the horizontal and its hub is completely inserted onto the spigot. Normally, the corners of the hub adapter should touch the catch basin wall.
- 7. From ground above using a reach bar, lower the device by hooking the end of the reach bar to the handle of the ICD device. Align the triangular plate portion into the mounting wall plate. Push down the device to be sure it has centered in to the wall mounting plate and has created a seal.

WARNING

- Verify that the outlet pipe doesn't protrude into the catch basin. If it does, cut down the pipe flush to the catch basin wall.
- The solvent cement which is used in this installation is to be approved for PVC.
- The solvent cement should not be used below 0°C (32°F) or in a high humidity environment. Refer to the IPEX solvent cement guide to confirm the required curing time or visit the IPEX Online Solvent Cement Training Course available at www.ipexinc.com.
- Call your IPEX representative for more information or if you have any questions about our products.

10 IPEX Tempest[™] LMF ICD

Instructions to assemble a TEMPEST HF Sump into a Square or Round Catch Basin:

STEPS:

- 1. Materials and tooling verification:
 - Tooling: impact drill, 3/8" concrete bit, torque wrench for 9/16" nut, hand hammer, level, mastic tape and metal strapping
 - Material: (2) concrete anchor 3/8 x 3-1/2, (2) washers, (2) nuts, HF Sump pieces (2).
- 2. Apply solvent cement to the spigot end of the top half of the sump. Apply solvent cement to the hub of the bottom half of the sump. Insert the spigot of the top half of the sump into the hub of the bottom half of the sump.
- 3. Install the 8" spigot of the device into the outlet pipe. Use the mastic tape to seal the device spigot into the outlet pipe. You should use a level to be sure that the fitting is standing at the vertical.
- Use an impact drill with a 3/8" concrete bit to make a series of 2 holes along each side of the body throat. The depth of the hole should be between 1-1/2" to 2-1/2". Clean the concrete dust from the 2 holes.
- 5. Install the anchors (2) in the holes by using a hammer. Put the nuts on the top of the anchors to protect the threads when you hit the anchors. Remove the nuts from the ends of the anchors.
- Cut the metal strapping to length and connect each end of the strapping to the anchors. Screw the nuts in place with a maximum torque of 40 N.m (30 lbf-ft). The device should be completely flush with the catch basin wall.

- Verify that the outlet pipe doesn't protrude into the catch basin. If it does, cut down the pipe flush to the catch basin wall.
- The solvent cement which is used in this installation is to be approved for PVC.
- The solvent cement should not be used below 0°C (32°F) or in a high humidity environment. Refer to the IPEX solvent cement guide to confirm the required curing time or visit the IPEX Online Solvent Cement Training Course available at www.ipexinc.com.
- Call your IPEX representative for more information or if you have any questions about our products.

PRODUCT TECHNICAL SPECIFICATION

General

Inlet control devices (ICD's) are designed to provide flow control at a specified rate for a given water head level and also provide odour and floatable control where specified. All ICD's will be IPEX Tempest or approved equal.

All devices shall be removable from a universal mounting plate. An operator from street level using only a T-bar with a hook shall be able to retrieve the device while leaving the universal mounting plate secured to the catch basin wall face. The removal of the TEMPEST devices listed above shall not require any unbolting or special manipulation or any special tools.

High Flow (HF) Sump devices shall consist of a removable threaded cap which can be accessible from street level with out entry into the catchbasin (CB). The removal of the threaded cap shall not require any special tools other than the operator's hand.

ICD's shall have no moving parts.

Materials

ICD's are to be manufactured from Polyvinyl Chloride (PVC) or Polyurethane material, designed to be durable enough to withstand multiple freeze-thaw cycles and exposure to harsh elements.

The inner ring seal will be manufactured using a Buna or Nitrile material with hardness between Duro 50 and Duro 70.

The wall seal is to be comprised of a 3/8" thick Neoprene Closed Cell Sponge gasket which is attached to the back of the wall plate.

All hardware will be made from 304 stainless steel.

Dimensioning

The Low Medium Flow (LMF), High Flow (HF) and the High Flow (HF) Sump shall allow for a minimum outlet pipe diameter of 200mm with a 600mm deep Catch Basin sump.

Installation

Contractor shall be responsible for securing, supporting and connecting the ICD's to the existing influent pipe and catchbasin/manhole structure as specified and designed by the Engineer.

TEMPEST HF & MHF ICD

IPEX Tempest™ LMF ICD

APPENDIX G

Stormwater Quality Control Treatment Unit Information

Steve Matthews

From:	Patrick <patrick@echelonenvironmental.ca></patrick@echelonenvironmental.ca>
Sent:	Monday, November 8, 2021 11:32 AM
То:	Steve Matthews
Cc:	Francois Thauvette
Subject:	RE: CDS Sizing Request - 2 Robinson Mixed-Use Development in Ottawa
Attachments:	CDS TSSR IDF - 2 Robinson Avenue - PMSU 2020_5 .pdf

Good morning Steve,

Thanks again for all your help with Somme Street. For this project we recommend a CDS PMSU 2020_5 which has a budget price of \$25,500. I have provided all the information you have requested below. Let me know if you have any questions for me!

- % of net annual TSS removal = 82.2%
- % of net annual treatment volume for the tributary area = 97.86%
- The treatment capacity in L/s = 31 L/s
- The sediment storage capacity in m³ = 1.668m3
- The oil storage capacity in L = 376 L
- The total unit storage capacity in L = 3150 L

Best regards,

Patrick Graham Project Manager

Please note our new addresses

Echelon Environmental Inc. 55 Albert Street Suite 200 Markham, ON L3P 2T4 Phone: 1-905-948-0000 Cell: 416-460-5819 Fax: 1-905-948-0577 email patrick@echelonenvironmental.ca

Mailing Address:

Echelon Environmental Inc. 5694 Hwy #7 East Suite 354 Markham, ON L3P 0E3 From: Steve Matthews <S.Matthews@novatech-eng.com>
Sent: Friday, November 5, 2021 7:43 PM
To: Patrick <patrick@echelonenvironmental.ca>
Cc: Francois Thauvette <f.thauvette@novatech-eng.com>
Subject: CDS Sizing Request - 2 Robinson Mixed-Use Development in Ottawa

Hi Patrick,

We are currently working on a project that requires a stormwater quality control unit to treat water from the paved drive aisles on-site, some of the proposed buildings and landscaped areas.

The project proposes to develop multi-tower high-rise residential/commercial buildings and is located at 2 Robinson Avenue in the City of Ottawa.

The project details are as follows:

Tributary area = **1.47 ha** Imperviousness = **55% or C_w=0.59** Time of concentration = 10min IDF Curve = City of Ottawa (104.2mm/hr Intensity for 5yr) (178.6mm/hr Intensity for 100yr)

We have a requirement to provide a level of quality control treatment to meet the **MOE 'Enhanced' Level of Protection** guidelines (i.e. **80% TSS removal** and **90% of annual runoff treated**). The proposed unit will be installed on a new 450mm dia. PVC outlet pipe with one 375mm dia. PVC inlet pipe at 180 degrees of separation through the structure and approximately 3.8m cover on both pipes. A standard particle distribution (**Fines**) should be adequate for the design. Anticipated peak flows should be in the order of 76 L/s based on the City's requirement to control the site to a predevelopment level of the 5-yr allowable to the municipal sewer. As a result, there will be a significant amount upstream attenuation due to ICDs within the drive aisle and storm structures and internal SWM tanks for the various buildings. See attached mark-up the proposed site servicing plan for a sketch of the area and proposed water quality treatment unit location (highlighted in yellow).

Can you please size a CDS unit for us and provide the design details as well as an approximate cost estimate.

We will also need the following information on the unit for our SWM Report:

- % of net annual TSS removal
- % of net annual treatment volume for the tributary area
- The treatment capacity in L/s
- The sediment storage capacity in m³
- The oil storage capacity in L
- The total unit storage capacity in L

Thank you for your time and consideration in this matter. If there is any further information you require, please do not hesitate to call.

Regards, Steve

Stephen Matthews, B.A.(Env), Senior Design Technologist

NOVATECH Engineers, Planners & Landscape Architects

240 Michael Cowpland Drive, Suite 200, Ottawa, ON, K2M 1P6 | Tel: 613.254.9643 x 223 | Fax: 613.254.5867 The information contained in this email message is confidential and is for exclusive use of the addressee.

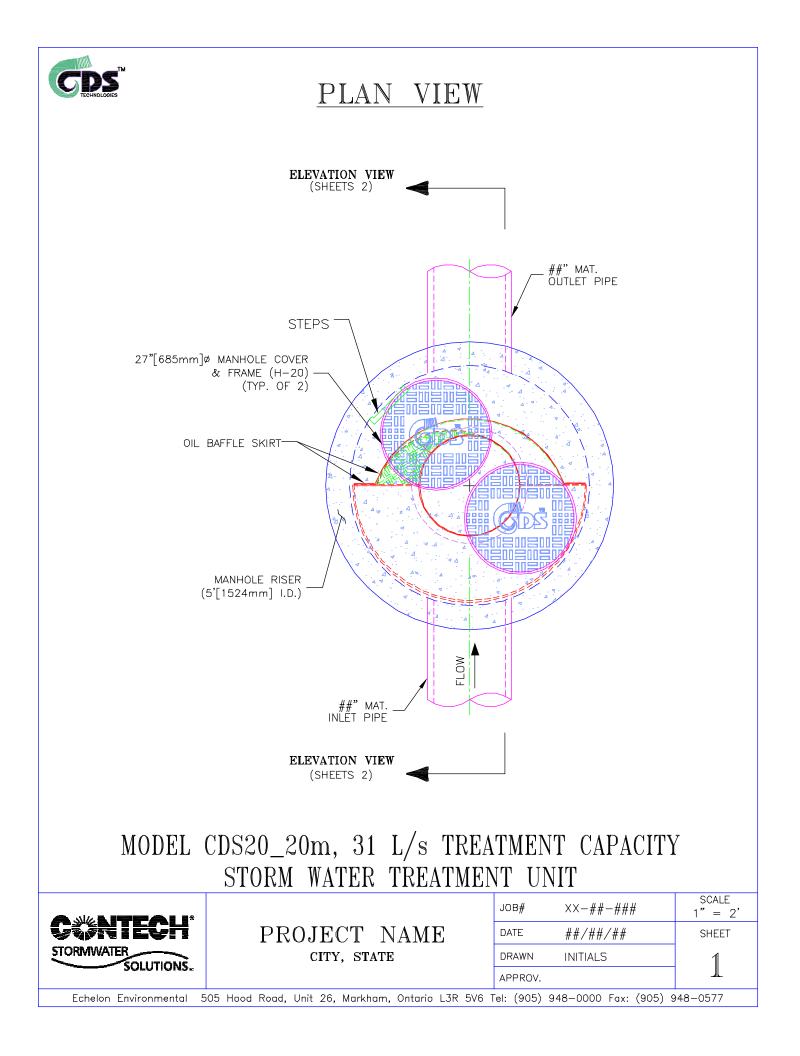
CDS Average Annual Efficiency For TSS Removal & Total Annual Volume Treated

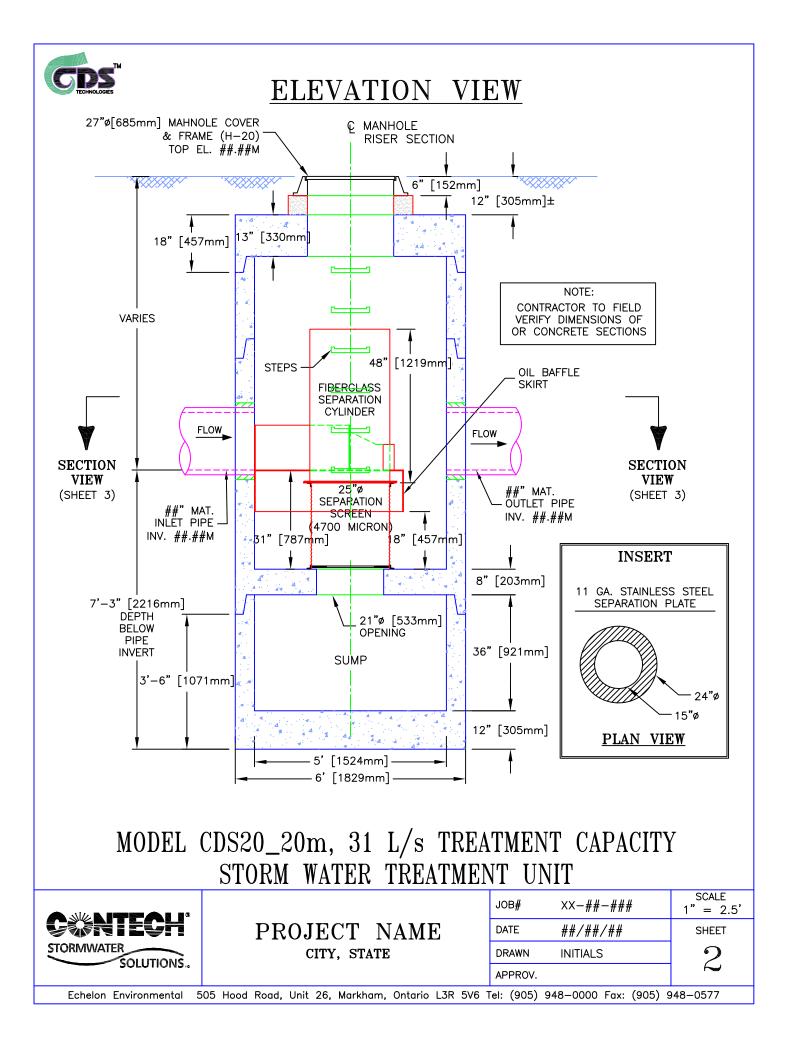
Project:	2 Robinson Avenue]		
Location:	Ottawa, ON			
Date:	11/8/2021			
By:	PG	Site ID:	OG	S 1
PSD:	FINE	Area:	1.470	ha
CDS Model:	PMSU2020_5	C-Value	0.59	
CDS Design Flow:	31 l/s	IDF Data:	Ottawa, ON	

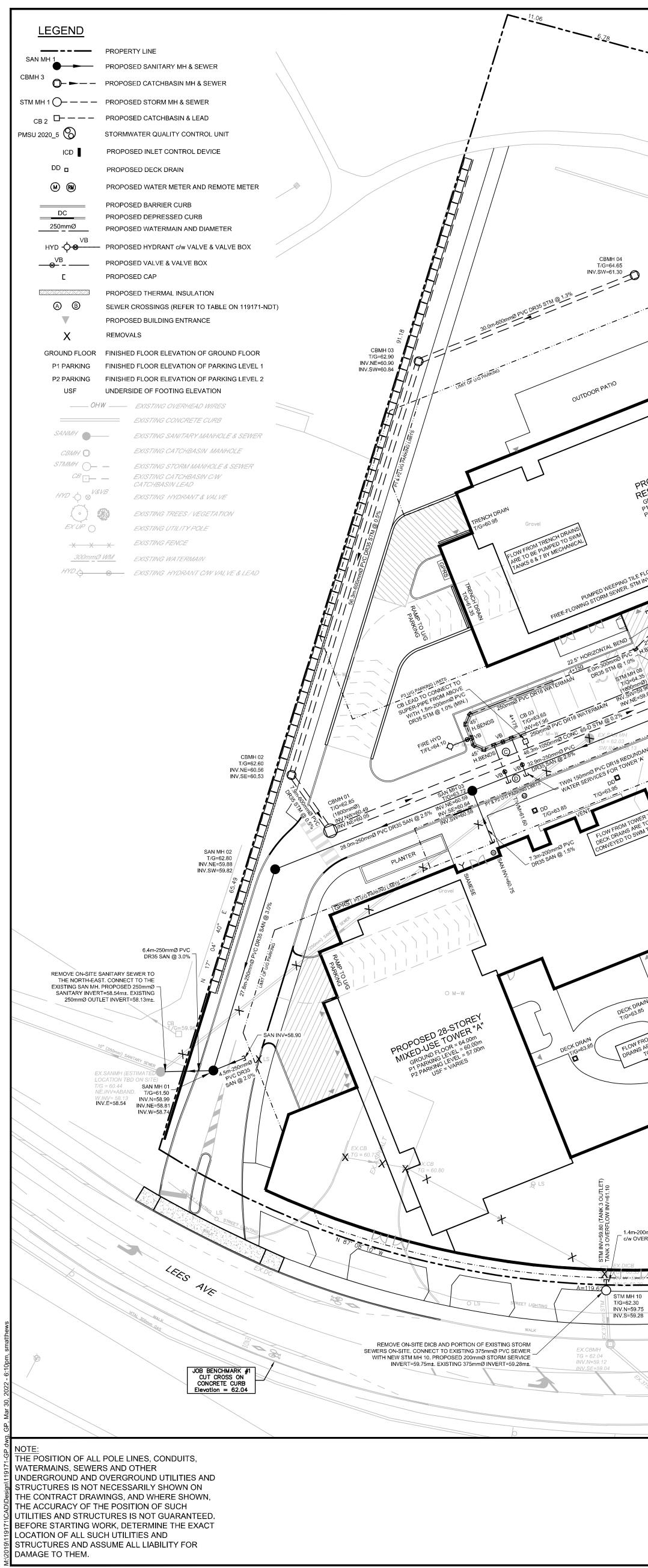
Return	Period	Peak Flow	TSS Percentage Captured	Treated Flow Volume	Total Flow Volume	Annual Exceedance Probability	System Flow	CDS Flow	By-Pass Flow	Volume Percentage Treated
month / yr	Yr	l/s	%	litres	litres	%	l/s	l/s	l/s	%
1-M	0.08	7.28	94.33	11543	11543	100.00	7.28	7.28	0.00	100.00
2-M	0.17	12.12	91.31	19416	19416	99.75	12.12	12.12	0.00	100.00
3-M	0.25	16.14	88.80	26043	26043	98.17	16.14	16.14	0.00	100.00
4-M	0.33	19.78	86.52	32128	32128	95.04	19.78	19.78	0.00	100.00
5-M	0.42	22.59	84.75	36889	36889	90.91	22.59	22.59	0.00	100.00
6-M	0.50	25.40	82.99	41650	41650	86.47	25.40	25.40	0.00	100.00
7-M	0.58	27.50	81.64	45252	45274	82.01	27.50	27.50	0.00	99.96
8-M	0.67	29.59	80.30	48854	48898	77.67	29.59	29.59	0.00	99.91
9-M	0.75	31.69	78.96	52455	52522	73.64	31.69	31.15	0.54	99.87
10-M	0.83	33.33	77.42	54559	55406	69.90	33.33	31.15	2.18	98.60
11-M	0.92	34.97	75.89	56663	58290	66.40	34.97	31.15	3.82	97.33
1-Yr	1	36.61	74.35	58767	61174	63.21	36.61	31.15	5.46	96.06
2-Yr	2	50.02	62.01	69940	85501	39.35	50.02	31.15	18.87	81.80
5-Yr	5	76.85	46.21	85806	138597	18.13	76.85	31.15	45.70	61.91
10-Yr	10	76.99	46.15	85881	138897	9.52	76.99	31.15	45.84	61.83
25-Yr	25	77.69	45.85	86255	140376	3.92	77.69	31.15	46.54	61.45
50-Yr	50	79.43	45.11	87159	144069	1.98	79.43	31.15	48.28	60.50
100-Yr	100	80.46	44.68	87690	146282	1.00	80.46	31.15	49.32	59.95

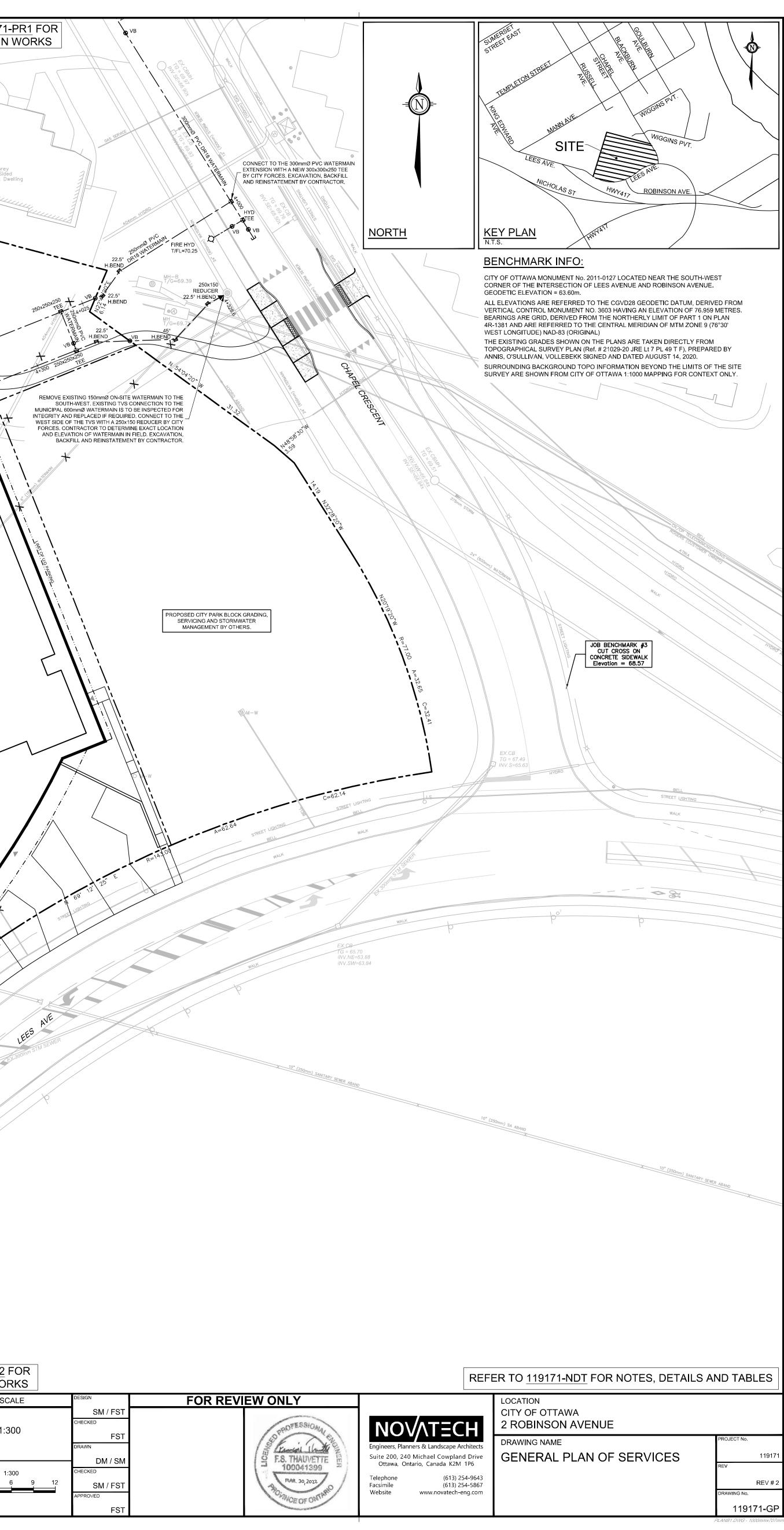
82.2

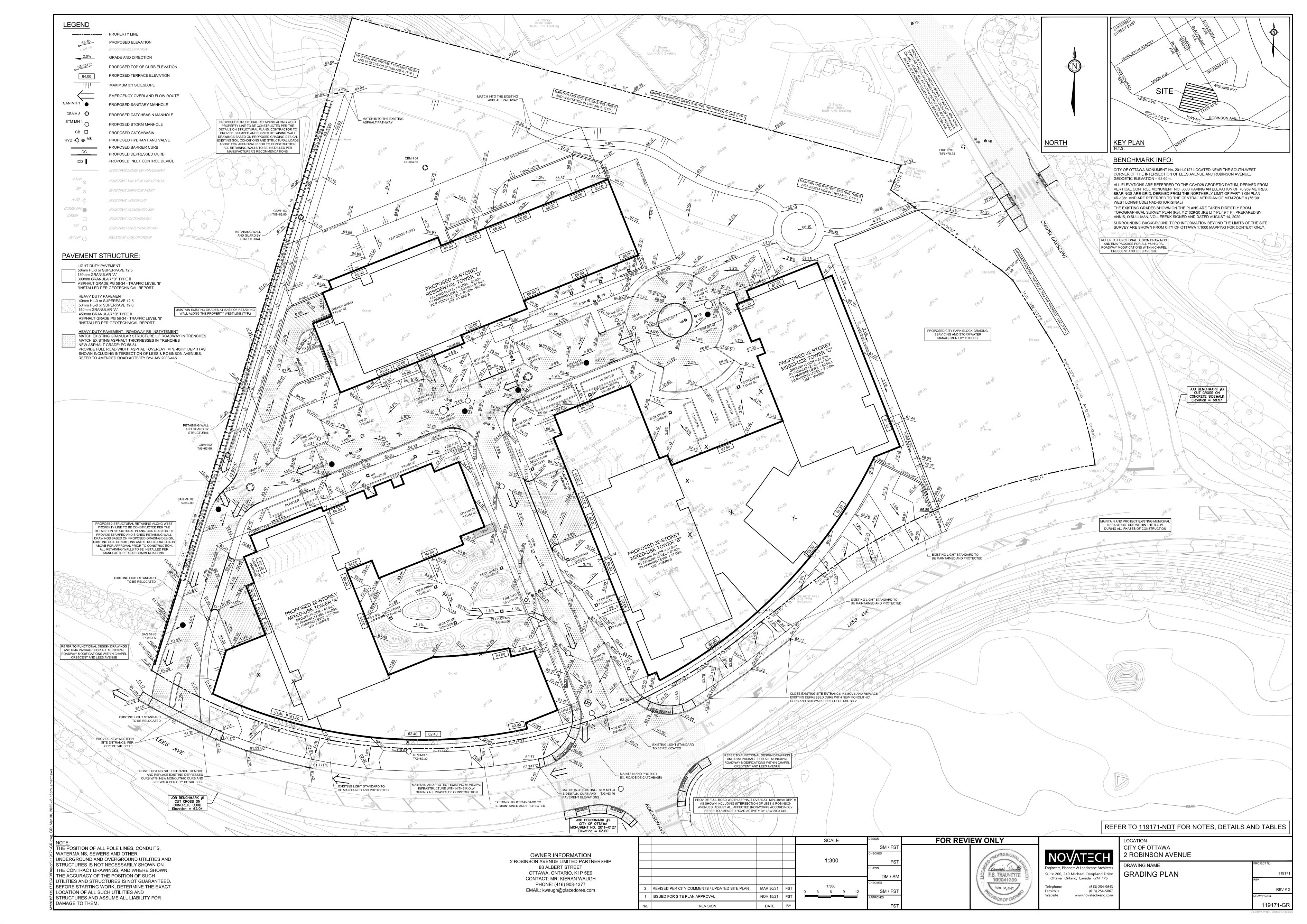
Average Annual TSS Removal Efficiency [%]:

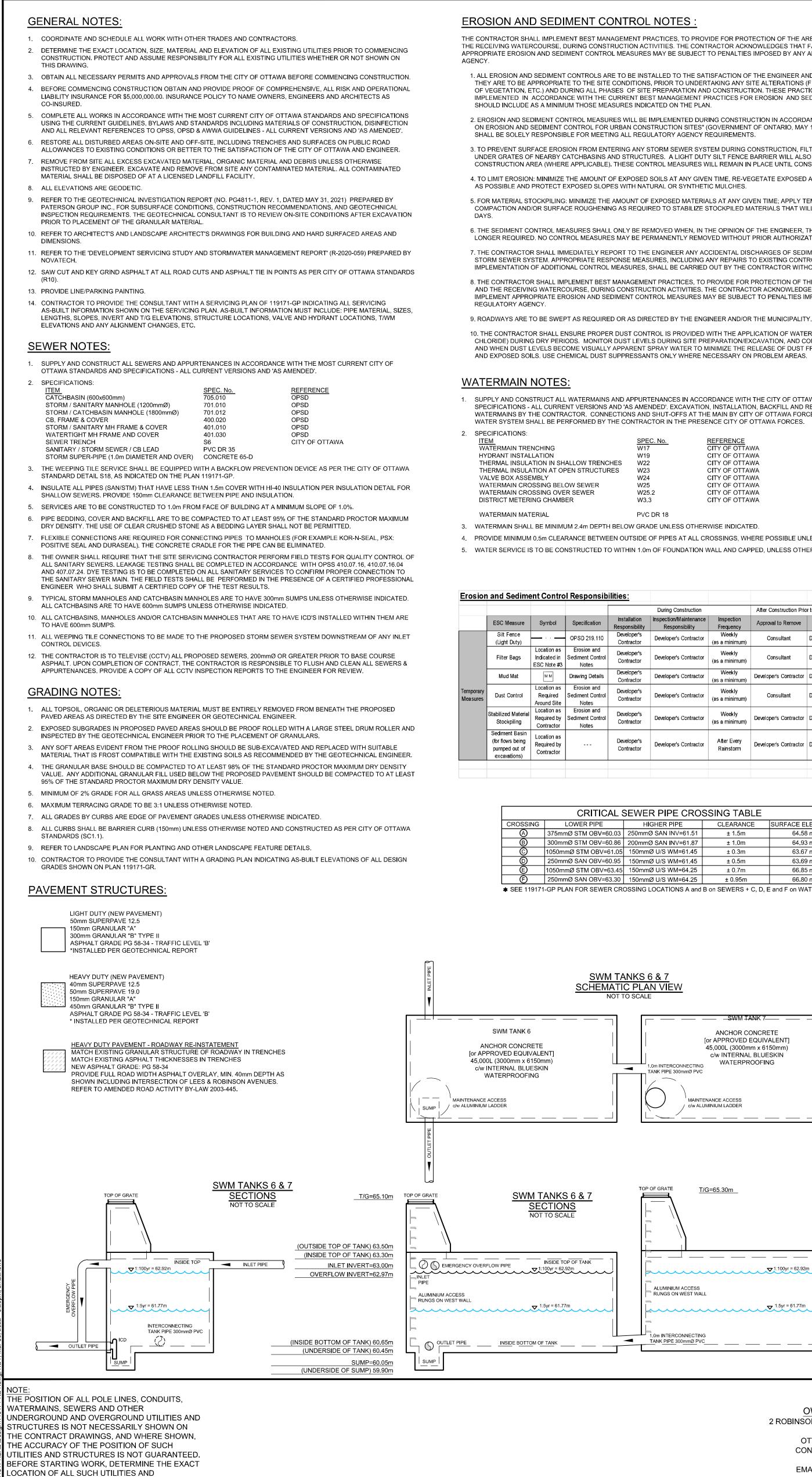

Ave. Ann. T. Volume [%]:


97.86%


CDS Efficiency based on testing conducted at the University of Central Florida
 CDS design flowrate and scaling based on standard manufacturer model & product specifications







S Storey Brick Sided Multi-Unit Dwelling Ex. Asphalt Poth		3 Storey Brick Sided Multi-Unit Dwelling				REFER TO PLAN 11917
				3 Storey		OFF-SITE WATERMAIN
				Brick Sided Multi-Unit Dwelling		
			N 74. 57'			
	Ex. Asphalt Path			W <u>112.63</u>		3 Stor Brick Si
			.2			Multi-Unit
		UMIT OF UG PARKING				
			GF GIRT	L so fating		
					W	
			DECK		18 WATERMAIN	
		TIMM	FLOW FROM TOWER 'D' DUEYED FLOW FROM TO BE CONVEYED DRAINS ARE TO BE CONVEYED DRAINS ARE TO BE CONVEYED DD DD 55 85	1 4+0 ¹⁵ 25	OPVC - I	8 WM
	BOPOSED 28-STOREY TOWER "D" NTIAL 65.00m - 68.00m	SOMMO PVC DR18 REDUVER D	00 TIG 0	ONNECT TO SUPER-PIC ONNECT TO SUPER-PIC WITH 2.5m 200mm@ PVC WITH 2.5m 200mm@ PVC	H. BENG	
	GROUNKING LEVEL VARIES		VB VB VB	000 L TANK 1 OUTLET=02. STM 000 L TANK 1 OUTLET=02. STM 116=66.65 10 VB (18 116=66.65 10 VB (18 116=66.65 10 VB (18)	000mm0) 000mm250 6W=62.50	D PNC PNC PNC
	467,000 100	3.5m-250mm@ PVC 3.5m-250mm@ 1.4% ····································	A+100 FIRE HYD TIFL=66.55 CB 04 TIG=66 TIG=66 TIG=66 TIG=66	515 54.45 54.45 P3 UG PARKING LINUS VB P	VB SIM 25m 200 DR95 SA	N [©] © ^{3.07}
	EFLOW TO 0R35 SAN @		5 STM CONC. 65D STM CO	5AN @ 3.0%	INV.NE=03.15	+ +
	T 22.5° H BEND TIG-64.51 AT H BEND TIG-64.51 AT H BEND TIG-64.51 AT TIG-64.50 AT TIG-64.50 AT TIG-64.50 AT	1800mm(0),63 SAN MH	5.62 TWIN 150	DIMMO PUC DR18 REDUNUER C TAN DIMMO PUC DR18 REDUNER C TAN DIMMO PUC DR18 REDUNER C TAN TER SERVICES FOR TOWER C	5 OUTLET OPER AM 2000000 WK 8 OUTLET O SUPER AM 2000000 DNNECT TO SUPER A AM 2000000 DNNECT TO SUPER AM 2000000 DNNECT ON THE AM 2000000 DNNECT AT CONNECTION SOLUTION OF A AT CONNECTION SOLUTION OF A AT CONNECTION SOLUTION SOLUTION SOLUTION OF A AT CONNECTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION OF A AT CONNECTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION SOLUTION OF A AT CONNECTION SOLUTION SOLUTIAN SO	PROPOSED 32-STOR "C PROPOSED TOWER" 67.50 MIXED UND FLOOR = 67.50 MIXED UND FLOOR = 60.00 MIXED UND FLOOR = 60.00 MIXED OUND FLOOR = 57.00 MIXED OUND FLOOR = 57.00
	22,5°	NV.NEED DVC NV.SE	N=62224 PLANTER PLANTER		DECK DRAIN TIG-67.00	PI PARKING LEVELES PI PARKING LEVELES P2 PARKING LEVELES P3 PARKISF = VARIES P3 PARKISF = VARIES
	108 A 35 - VE - VE	PVC 2.5% FAN MF03 TIGERAL TIGERAL TIGERAL			LS	×
	54NN MH 044 SAN MH 044 TIG=64,551 TIG=64,551 TIG=61,47 TIG=64,551 TIG=61,47 TIG=61,47 TIG=64,551 TIG=61,47 TIG=7,47 TIG=7,4	AVV. NW=61.801 NV.SW=61.801 DECK DRAIN DECK DCK DCK DCK DCK DCK DCK DCK DCK DCK DCK DCK DCK DCK DCK DCK DCK DCK	Z EXS			
	NDANT FIRE HYD OVER PL LOOP	FLOW FK DRAIN VED TO B DECK ONVEYED TO B DECK ONVEYED TO B DECK ONVEYED TO TO BE WM TANKA TO BE WM TANKA TANKA TO BE WM TANKA TAN	ALOCK CK	EXASPHALT	X S DIVER C DECK	п тв-с
	TIFLE I	A BITS A BITS		K1.S	FLOW FROM TO BE CON FLOW FROM TO BE CON FLOW FROM TO BE CON TO SWM TANKA TO SWM TANKA	
	RETO BE 1	TANKA OVERFLU		XLS		
OVNER INFORMATION BURGINGTISTICS BURGINGTISTICS BURGINGTISTICS BURGINGTISTICS BURGINGTISTICS Emperipristics BURGINGTISTICS BU		Concrete Wock/Wetal Sided g.L. (Foundation Noted)				EX CB
ELEMENT AND ALL DESCRIPTION AND ALL DESCRIPTIO	S1.1.G=64.5 T(G=69.46 WV=79.46 WV NW=59.61	1 2 1 (/////////////////////////////////		DECK		
			FLOW FROM TO BE CO	DSED 32-STOREY DSED 32-STOREY DSEC TOWER "B"		\times $/$
	D. STM IN		KORAIN 56360 SIANIESE PROJECT MIXED P1 P2	D-USE CORE = 60.000 ROUND FLOOR = 50.000 PARKING LEVEL = 57.000 PARKING LEVEL = 57.000 PARKING LEVEL = 57.000 PARKING LEVEL = 57.000	*	
CONNECTIONED BILLINGED PARTNERSHIP BILLINGULUKURE LINTED PARTNERSHIP BILLINGULUKURE BILLINGULUKURE BILLINGULUKURE BILLINGULUKURE BILLINGULUKURE BILLINGULUKURE BILLINGULUKUKURE BIL	RAIN D			X		12* (300mm) SANTARY NEW ABAY CAN 13 APRIL
OWNER INFORMATION BALESHT SIGNER OTOTOTER STREEMAN ENGLASSING BALESHT SIGNER SUBJOR OF STE DAAR APPROAL Information Balesht Signer Streed of ste Data Approximation Store Runt Streed of ste Data Approximation Store Runt Store State Store Ste Data Approximation Store Runt Store State Store Store Store Runt Store Store Store Part Approximation Store Runt Store Store	VFROM TOWER 'N' DECK VFROM TOWER CONVEYED	FIRE HYD MAIL: VB VB III BO	DECK DRAIN DECK DRAIN TIG=63.50	×		
OWNER INFORMATION BALESHT SIGNER OTOTOTER STREEMAN ENGLASSING BALESHT SIGNER SUBJOR OF STE DAAR APPROAL Information Balesht Signer Streed of ste Data Approximation Store Runt Streed of ste Data Approximation Store Runt Store State Store Ste Data Approximation Store Runt Store State Store Store Store Runt Store Store Store Part Approximation Store Runt Store Store	IN DECK DE	RAIN I POOD PROFILE		EPING TILE FLOW TO STW	INV=59.45	
OWNER INFORMATION R DOBINON REFINERSING BALENTA USING BEELEN OWNER INFORMATION R DOBINON REFINERSING BALENTA USING BEELEN OWNER INFORMATION R DOBINON REFINERSING BALENTA USING BEELEN			1000 100 1000 1000 1000 1000 1000 1000	PUNIPED WEEKING SILO DR35511 FREEFLOWING PVC DR35511 3.9m-200mm0 PVC DR35511		
OWNER INFORMATION 2 CORINSON AVENUE LIMITED PARTNERSHIP BOKING ON AVENUE LIMITED PARTNERSHI	A LS	C DR35 STM @ 3.0%	TM MH 03 3TM MH 03 106-63.37 106-63.35 100 100 100 100 100 100 100 10			
HUREN DAVE INFORMATION CONTROL MARK INFORMATION 2 NORMER INFORMA	ELOWING STOR			N @ 1.8%	TG	= \$3.82
Demonstrating and a state of the state of th		mm@FVSTM_W=61.43 _ 4.0% - 1				
De 12 composition that we can be an	-200mmØ PVC DR35 STM @ 3.0% DVERFLOW OUTLET PIPE	(TANK 201				X
Construction C		C=114.48 C=114.48 PVC DR35 STM @ 1.7% NV259 25	EX.CB		I PAREN	
Struktion of the second sec	30 9.75		2 Luny W=61.0		300mm STM S	
OWNER INFORMATION 2 ROBINSON AVENUE LIMITED PARTNERSHIP 88 ALBERT STREET OTTAWA, ONTARIO, K1P 5E9 CONTACT: MR. KIERAN WAUGH PHONE: (416) 903-1377 EMAIL: kwaugh@placedoree.com Image: Control of the plan of the pla			STM MH 03	OA5	TG = 60.07	
OWNER INFORMATION Image: Constant of the second			INV.NW=58.50 INV.SE=58.44	ROBI		
OWNER INFORMATION Image: Constant of the second		WALK UNTAL 300mm GAS MON	JOB BENCHMARK #2 CITY OF OTTAWA UMENT NO. 2011-0127 Elevation = 63.60	ISON AVE	1105	
2 ROBINSON AVENUE LIMITED PARTNERSHIP -						S
CONTACT: MR. KIERAN WAUGH PHONE: (416) 903-1377 EMAIL: kwaugh@placedoree.com Image: Control of the second sec		2 ROBINSON AVENUE LIN 88 ALBERT	MITED PARTNERSHIP STREET			1
		CONTACT: MR. KI PHONE: (416)	ERAN WAUGH) 903-1377			

FOR DRKS					REF	ER TO <u>119171-NDT</u> FOR NOTES, DETAILS A
CALE	DESIGN	FOR REVIE	EW ONLY			LOCATION
:300	SM / FST		PROFESSION	ΝΟΛΤΞ	CH	CITY OF OTTAWA 2 ROBINSON AVENUE
	FST DRAWN DM / SM		S. F.S. THAUVETTE	Engineers, Planners & Landscap Suite 200, 240 Michael Cowp	e Architects land Drive	DRAWING NAME GENERAL PLAN OF SERVICES
1:300 6 9 12	CHECKED SM / FST		100041399 MAR. 30, 2022		3) 254-9643 3) 254-5867	
	APPROVED FST		STANCE OF OWN		J	

STRUCTURES AND ASSUME ALL LIABILITY FOR DAMAGE TO THEM.

EROSION AND SEDIMENT CONTROL NOTES:

THE CONTRACTOR SHALL IMPLEMENT BEST MANAGEMENT PRACTICES, TO PROVIDE FOR PROTECTION OF THE AREA DRAINAGE SYSTEM AND THE RECEIVING WATERCOURSE, DURING CONSTRUCTION ACTIVITIES. THE CONTRACTOR ACKNOWLEDGES THAT FAILURE TO IMPLEMENT APPROPRIATE EROSION AND SEDIMENT CONTROL MEASURES MAY BE SUBJECT TO PENALTIES IMPOSED BY ANY APPLICABLE REGULATORY

1. ALL EROSION AND SEDIMENT CONTROLS ARE TO BE INSTALLED TO THE SATISFACTION OF THE ENGINEER AND THE CITY OF OTTAWA. THEY ARE TO BE APPROPRIATE TO THE SITE CONDITIONS, PRIOR TO UNDERTAKING ANY SITE ALTERATIONS (FILLING, GRADING, REMOVAL OF VEGETATION. ETC.) AND DURING ALL PHASES OF SITE PREPARATION AND CONSTRUCTION. THESE PRACTICES ARE TO BE IMPLEMENTED IN ACCORDANCE WITH THE CURRENT BEST MANAGEMENT PRACTICES FOR EROSION AND SEDIMENT CONTROL AND SHOULD INCLUDE AS A MINIMUM THOSE MEASURES INDICATED ON THE PLAN.

2. EROSION AND SEDIMENT CONTROL MEASURES WILL BE IMPLEMENTED DURING CONSTRUCTION IN ACCORDANCE WITH THE "GUIDELINES ON EROSION AND SEDIMENT CONTROL FOR URBAN CONSTRUCTION SITES" (GOVERNMENT OF ONTARIO, MAY 1987). THE CONTRACTOR SHALL BE SOLELY RESPONSIBLE FOR MEETING ALL REGULATORY AGENCY REQUIREMENTS.

3. TO PREVENT SURFACE EROSION FROM ENTERING ANY STORM SEWER SYSTEM DURING CONSTRUCTION, FILTER BAGS WILL BE PLACED UNDER GRATES OF NEARBY CATCHBASINS AND STRUCTURES. A LIGHT DUTY SILT FENCE BARRIER WILL ALSO BE INSTALLED AROUND THE CONSTRUCTION AREA (WHERE APPLICABLE). THESE CONTROL MEASURES WILL REMAIN IN PLACE UNTIL CONSTRUCTION IS COMPLETE. 4. TO LIMIT EROSION: MINIMIZE THE AMOUNT OF EXPOSED SOILS AT ANY GIVEN TIME, RE-VEGETATE EXPOSED AREAS AND SLOPES AS SOON AS POSSIBLE AND PROTECT EXPOSED SLOPES WITH NATURAL OR SYNTHETIC MULCHES.

5. FOR MATERIAL STOCKPILING: MINIMIZE THE AMOUNT OF EXPOSED MATERIALS AT ANY GIVEN TIME; APPLY TEMPORARY SEEDING, TARPS, COMPACTION AND/OR SURFACE ROUGHENING AS REQUIRED TO STABILIZE STOCKPILED MATERIALS THAT WILL NOT BE USED WITHIN 14

6. THE SEDIMENT CONTROL MEASURES SHALL ONLY BE REMOVED WHEN, IN THE OPINION OF THE ENGINEER, THE MEASURES ARE NO LONGER REQUIRED. NO CONTROL MEASURES MAY BE PERMANENTLY REMOVED WITHOUT PRIOR AUTHORIZATION FROM THE ENGINEER. 7. THE CONTRACTOR SHALL IMMEDIATELY REPORT TO THE ENGINEER ANY ACCIDENTAL DISCHARGES OF SEDIMENT MATERIAL INTO ANY STORM SEWER SYSTEM, APPROPRIATE RESPONSE MEASURES, INCLUDING ANY REPAIRS TO EXISTING CONTROL MEASURES OR THE IMPLEMENTATION OF ADDITIONAL CONTROL MEASURES, SHALL BE CARRIED OUT BY THE CONTRACTOR WITHOUT DELAY.

8. THE CONTRACTOR SHALL IMPLEMENT BEST MANAGEMENT PRACTICES, TO PROVIDE FOR PROTECTION OF THE AREA DRAINAGE SYSTEM AND THE RECEIVING WATERCOURSE, DURING CONSTRUCTION ACTIVITIES. THE CONTRACTOR ACKNOWLEDGES THAT FAILURE TO IMPLEMENT APPROPRIATE EROSION AND SEDIMENT CONTROL MEASURES MAY BE SUBJECT TO PENALTIES IMPOSED BY ANY APPLICABLE

10. THE CONTRACTOR SHALL ENSURE PROPER DUST CONTROL IS PROVIDED WITH THE APPLICATION OF WATER (AND IF REQUIRED, CALCIUM CHLORIDE) DURING DRY PERIODS. MONITOR DUST LEVELS DURING SITE PREPARATION/EXCAVATION, AND CONSTRUCTION ACTIVITIES, AND WHEN DUST LEVELS BECOME VISUALLY APPARENT SPRAY WATER TO MINIMIZE THE RELEASE OF DUST FROM GRAVEL, PAVED AREAS AND EXPOSED SOILS. USE CHEMICAL DUST SUPPRESSANTS ONLY WHERE NECESSARY ON PROBLEM AREAS.

1. SUPPLY AND CONSTRUCT ALL WATERMAINS AND APPURTENANCES IN ACCORDANCE WITH THE CITY OF OTTAWA STANDARDS AND SPECIFICATIONS - ALL CURRENT VERSIONS AND 'AS AMENDED'. EXCAVATION, INSTALLATION, BACKFILL AND RESTORATION OF ALL WATERMAINS BY THE CONTRACTOR. CONNECTIONS AND SHUT-OFFS AT THE MAIN BY CITY OF OTTAWA FORCES. CHLORINATION OF THE WATER SYSTEM SHALL BE PERFORMED BY THE CONTRACTOR IN THE PRESENCE CITY OF OTTAWA FORCES.

HES	<u>SPEC. No.</u> W17 W19 W22 W23	REFERENCE CITY OF OTTAWA CITY OF OTTAWA CITY OF OTTAWA CITY OF OTTAWA
	W24	CITY OF OTTAWA
	W25	CITY OF OTTAWA
	W25.2	CITY OF OTTAWA
	W3.3	CITY OF OTTAWA
	PVC DR 18	

3. WATERMAIN SHALL BE MINIMUM 2.4m DEPTH BELOW GRADE UNLESS OTHERWISE INDICATED.

OPSD 219.110

ESC Note #3 Notes

MM Drawing Details

Location as Erosion and

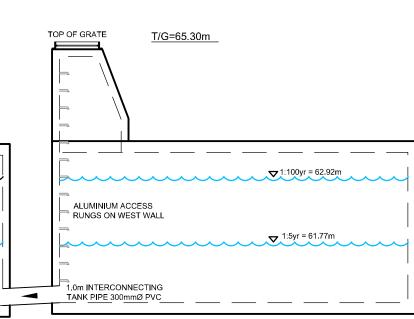
Around Site Notes

Location as

Required Sediment Control

Required by Sediment Control


ECTIONS


 ∇ ^{1:5yr} = 61.77m

4. PROVIDE MINIMUM 0.5m CLEARANCE BETWEEN OUTSIDE OF PIPES AT ALL CROSSINGS, WHERE POSSIBLE UNLESS OTHERWISE INDICATED. 5. WATER SERVICE IS TO BE CONSTRUCTED TO WITHIN 1.0m OF FOUNDATION WALL AND CAPPED, UNLESS OTHERWISE INDICATED

ilities:					
	During Construction		After Construction Prio	r to Final Acceptance	After Final Acceptance
Installation Responsibility	Inspection/Maintenance Responsibility	Inspection Frequency	Approval to Remove	Removal Responsibility	Inspection/Maintenance Responsibility
Developer's Contractor	Developer's Contractor	Weekly (as a minimum)	Consultant	Developer's Contractor	N/A
Developer's Contractor	Developer's Contractor	Weekly (as a minimum)	Consultant	Developer's Contractor	N/A
Developer's Contractor	Developer's Contractor	Weekly (as a minimum)	Developer's Contractor	Developer's Contractor	N/A
Developer's Contractor	Developer's Contractor	Weekly (as a minimum)	Consultant	Developer's Contractor	N/A
Developer's Contractor	Developer's Contractor	Weekly (as a minimum)	Developer's Contractor	Developer's Contractor	N/A
Developer's Contractor	Developer's Contractor	Atter Every Rainstorm	Developer's Contractor	Developer's Contractor	N/A

	CRITICAL SEWER PIPE CROSSING TABLE					
CROSSING	LOWER PIPE	HIGHER PIPE	CLEARANCE	SURFACE ELEVATION		
A	375mmØ STM OBV=60.03	250mmØ SAN INV=61.51	± 1.5m	64.58 m		
B	300mmØ STM OBV=60.86	200mmØ SAN INV=61.87	± 1.0m	64.93 m		
©	1050mmØ STM OBV=61.05	150mmØ U/S WM=61.45	± 0.3m	63.67 m		
0	250mmØ SAN OBV=60.95	150mmØ U/S WM=61.45	± 0.5m	63.69 m		
E	1050mmØ STM OBV=63.45	150mmØ U/S WM=64.25	± 0.7m	66.85 m		
Ē	250mmØ SAN OBV=63.30	150mmØ U/S WM=64.25	± 0.95m	66.80 m		
* SEE 119171	SEE 119171-GP PLAN FOR SEWER CROSSING LOCATIONS A and B on SEWERS + C, D, E and F on WATERMAIN.					

PROPOSED 250mmØ WATERMAIN TABLE - EAST / WEST SITE LOOP

STATION	SURFACE ELEVATION	T/WM ELEVATION	COMMENTS
4+000	69.93±	67.50 *	TEE CONNECTION TO NEW 300mmØ WATERMAIN EXTENSION
4+002.8	70.10	67.45	22.5° VERTICAL BEND
4+005.4	70.12	66.34	22.5° VERTICAL BEND
4+006.7	70.05	66.34 ***	CROSS BELOW EX.600mmØ WM [U/S=67.34m] (±1.0m CLEARANCE)
4+008.0	69.90	66.34	22.5° VERTICAL BEND
4+010.4	69.75	67.35	22.5° VERTICAL BEND
4+018.0	69.30	66,90	22.5° HORIZONTAL BEND
4+020.0	69.29	66.89	CROSS BELOW EX. BELL DUCT (±1.2m CLEARANCE)
4+020.8	69.28	66.88	CROSS BELOW EX. BELL DUCT (±1.5m CLEARANCE)
4+021.8	69.27	66.87	CROSS BELOW EX. COMMS DUCT (±1.5m CLEARANCE)
4+022.1	69.27	66.87	22.5° HORIZONTAL BEND
4+023.1	69,26	66.86	250mmØ VALVE & VALVE BOX @ PROPERTY LINE
4+028.2	69.05	66.65	250 x 250 x 250 TEE
4+050	68.05	65.65	
4+075	67.15	64.75	
4+075	66.25	63.85	 150 x 250 x 250 BUILDING SERVICE TEE
		63.85	
4+097.1	66.19		250mmØ VALVE & VALVE BOX
4+098.3	66.13	63.73	150 x 250 x 250 BUILDING SERVICE TEE
4+119.5	65.15	61.64 ***	
4+121.0	65.10	61.49 ***	CROSS BELOW 200mmØ SAN [Inv=61.99m] (±0.5m CLEARANCE)
4+125	64.93	61.80	
4+132.9	64.80	62.40	22.5° HORIZONTAL BEND
4+136.6	64.70	62.30 ***	
4+140.6	64.56	62.16	22.5° HORIZONTAL BEND
4+150	64.10	61.70	
4+164.1	63.78	61.68 **	45° HORIZONTAL BEND
4+165.5	63.77	61.67 **	45° HORIZONTAL BEND
4+167.5	63.74	61.64 **	150mmØ HYDRANT TEE
4+168.5	63.73	61.63 **	45° HORIZONTAL BEND
4+169.9	63.71	61.61 **	45° HORIZONTAL BEND
4+171.4	63.70	61.60 **	150 x 250 x 250 BUILDING SERVICE TEE
4+172.6	63.69	61.59 **	250mmØ VALVE & VALVE BOX
4+173.9	63.68	61.58 **	150 x 250 x 250 BUILDING SERVICE TEE
4+175.5	63.66	61.57 **	INSULATE IN PROXIMITY TO OPEN STRUCTURE
4+197.2	64.48	62.08	250 x 250 x 250 TEE (5+000)
4+199.8	64.50	62.15 ***	CROSS ABOVE 200mmØ STM [Obv=60.70m] (±1.2m CLEARANCE)
4+203.3	64.65	62.20 **	250 x 250 x 250 TEE (5+102.5)
4+204.8	64.68	62.18 **	250mmØ VALVE & VALVE BOX
4+212.5	64.93	61.40 ***	CROSS BELOW 200mmØ SAN [Inv=61.90m] (±0.5m CLEARANCE)
4+214.0	64.96	61.52 ***	CROSS ABOVE 250mmØ STM [Obv=60.87m] (±0.4m CLEARANCE)
4+225	65.43	62.43	
4+239.5	66.12	63.72	150mmØ HYDRANT TEE
4+242.5	66.17	63.77 **	INSULATE IN PROXIMITY TO OPEN STRUCTURE
4+252.0	66.70	64.30 ***	
4+254.1	66.80	64.40	150 x 250 x 250 BUILDING SERVICE TEE
4+255.4	66.85	64.45	250mmØ VALVE & VALVE BOX
4+256.6	66,90	64.50	150 x 250 x 250 BUILDING SERVICE TEE
4+262.6	67.30	64.90	22.5° HORIZONTAL BEND
4+262.6	67.50	65,10	22.5° HORIZONTAL BEND
4+208.0	67.80	65.40	22.3 HONZONTAL DENU
4+300	68.75	66.35	
4+305.7	69.05	66.65	250 x 250 x 250 TEE
4+308.7	69.15	66.75	22.5° HORIZONTAL BEND
4+313.3	69.35	66.95	250mmØ VALVE & VALVE BOX @ PROPERTY LINE
4+319.5	69.57	67.17	45° HORIZONTAL BEND
4+323.9	69.87	67.19	CROSS BELOW EX. COMMS DUCT (±1.5m CLEARANCE)
	69.90	67.20	CROSS BELOW EX. BELL DUCTS (±1.6m CLEARANCE)
4+325.3	00.00		
4+325.3 4+326.1	69.93	67.23 67.25± *	22.5° HORIZONTAL BEND

* CONNECTIONS TO EXISTING 150mmØ and NEW 300mmØ WATERMAINS. EXACT ELEVATIONS TO BE FIELD DETERMINED. ** PROVIDE THERMAL INSULATION AS PER CITY OF OTTAWA DETAILS W22 IN SHALLOW TRENCHES WHERE COVER IS LESS THAN 2.4m AND/OR W23 ADJACENT TO OPEN STRUCTURES.

*** PIPE CROSSINGS WITH WATERMAINS ARE TO BE IN ACCORDANCE WITH CITY STANDARDS W25 AND W25.2 TO AVOID CONFLICTS, WHERE POSSIBLE.

STATION	SURFACE ELEVATION	T/WM ELEVATION	COMMENTS
5+000	64.48	62.08	250 x 250 x 250 TEE (4+197.2)
5+001.0	64.46	62.10 **	250mmØ VALVE & VALVE BOX
5+002.5	64.45	** 62.10 ***	CROSS ABOVE 300mmØ STM [Obv=60.10m] (±1.75m CLEARANCE)
5+004.5	64.45	** 62.15 ***	CROSS ABOVE 250mmØ SAN [Obv=61.62m] (±0.3m CLEARANCE)
5+005.6	64.45	62.15 **	22.5° HORIZONTAL BEND
5+008.0	64.43	62.03	22.5° HORIZONTAL BEND
5+011.9	65.55	62.15	150mmØ HYDRANT TEE
5+025	64.05	61.65 **	
5+040.4	63.72	61.32 ***	CROSS BELOW 200mmØ STM [Inv=61.91m] (±0.6m CLEARANCE)
5+048.3	63.76	61.26	45° HORIZONTAL BEND
5+049.3	63.75	61.25	150mmØ HYDRANT TEE
5+049.7	63.75	61.25	45° HORIZONTAL BEND
5+050.6	63.60	61.20	250mmØ VALVE & VALVE BOX
5+051.4	63.60	61.20 ***	CROSS ABOVE 375mmØ STM [Obv=59.58m] (±1.35m CLEARANCE)
5+052.9	63.60	61.20	45° HORIZONTAL BEND
5+054.3	63.58	61.18	45° HORIZONTAL BEND
5+062.3	63.53	61.13 **	INSULATE IN PROXIMITY TO OPEN STRUCTURE
5+075	63.88	61.48	
5+078.8	64.08	61.68 ***	CROSS ABOVE 200mmØ STM [Obv=59.83m] (±1.6m CLEARANCE)
5+091.9	64.50	62.10	150 x 250 x 250 BUILDING SERVICE TEE
5+093.2	64.55	62.15	250mmØ VALVE & VALVE BOX
5+094.4	64.60	62.20	150 x 250 x 250 BUILDING SERVICE TEE
5+098.0	64.66	62.32 ***	CROSS ABOVE 250mmØ SAN [Obv=61.82m] (±0.25m CLEARANCE)
5+100.0	64.66	62.25 ***	CROSS ABOVE 300mmØ STM [Obv=60.55m] (±1.45m CLEARANCE)
5+102.5	64.65	62.20	250 x 250 x 250 TEE (4+203.3)

* CONNECTIONS TO EXISTING 150mmØ and NEW 300mmØ WATERMAINS. EXACT ELEVATIONS TO BE FIELD DETERMINED. ** PROVIDE THERMAL INSULATION AS PER CITY OF OTTAWA DETAILS W22 IN SHALLOW TRENCHES WHERE COVER IS LESS THAN 2.4m AND/OR W23 ADJACENT TO OPEN STRUCTURES.

*** PIPE CROSSINGS WITH WATERMAINS ARE TO BE IN ACCORDANCE WITH CITY STANDARDS W25 AND W25.2 TO AVOID CONFLICTS, WHERE POSSIBLE.

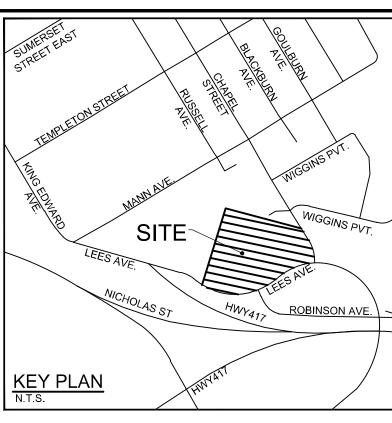
SWM TANK 8 SECTION (OUTSIDE TOP OF TANK) 63.55m (INSIDE TOP OF TANK) 63.35m **▽**1:100yr = 64.52m ▼ 1:5yr = 63.08m (INSIDE BOTTOM OF TANK) 60.70m (UNDERSIDE OF TANK) 60.50m 🖌 🔫 OUTLET PII INSIDE BOTTOM

ES

SWM TANK 8

CHEMATIC PLAN VIEW

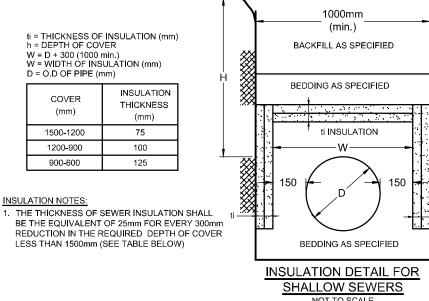
TO SCALE

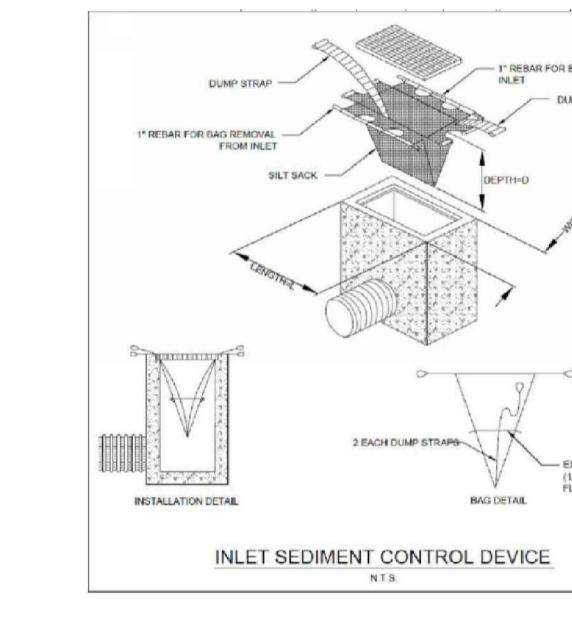

3.74

				SCA
				ΝΟΤ ΤΟ
2	REVISED PER CITY COMMENTS / UPDATED SITE PLAN	MAR 30/21	FST	
1	ISSUED FOR SITE PLAN APPROVAL	NOV 15/21	FST	
No.	REVISION	DATE	BY	

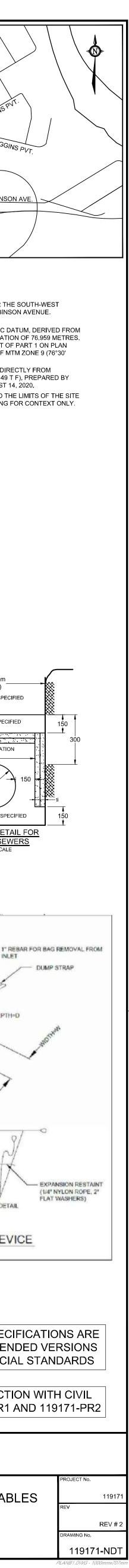
OWNER INFORMATION 2 ROBINSON AVENUE LIMITED PARTNERSHIP 88 ALBERT STREET OTTAWA, ONTARIO, K1P 5E9 CONTACT: MR. KIERAN WAUGH PHONE: (416) 903-1377

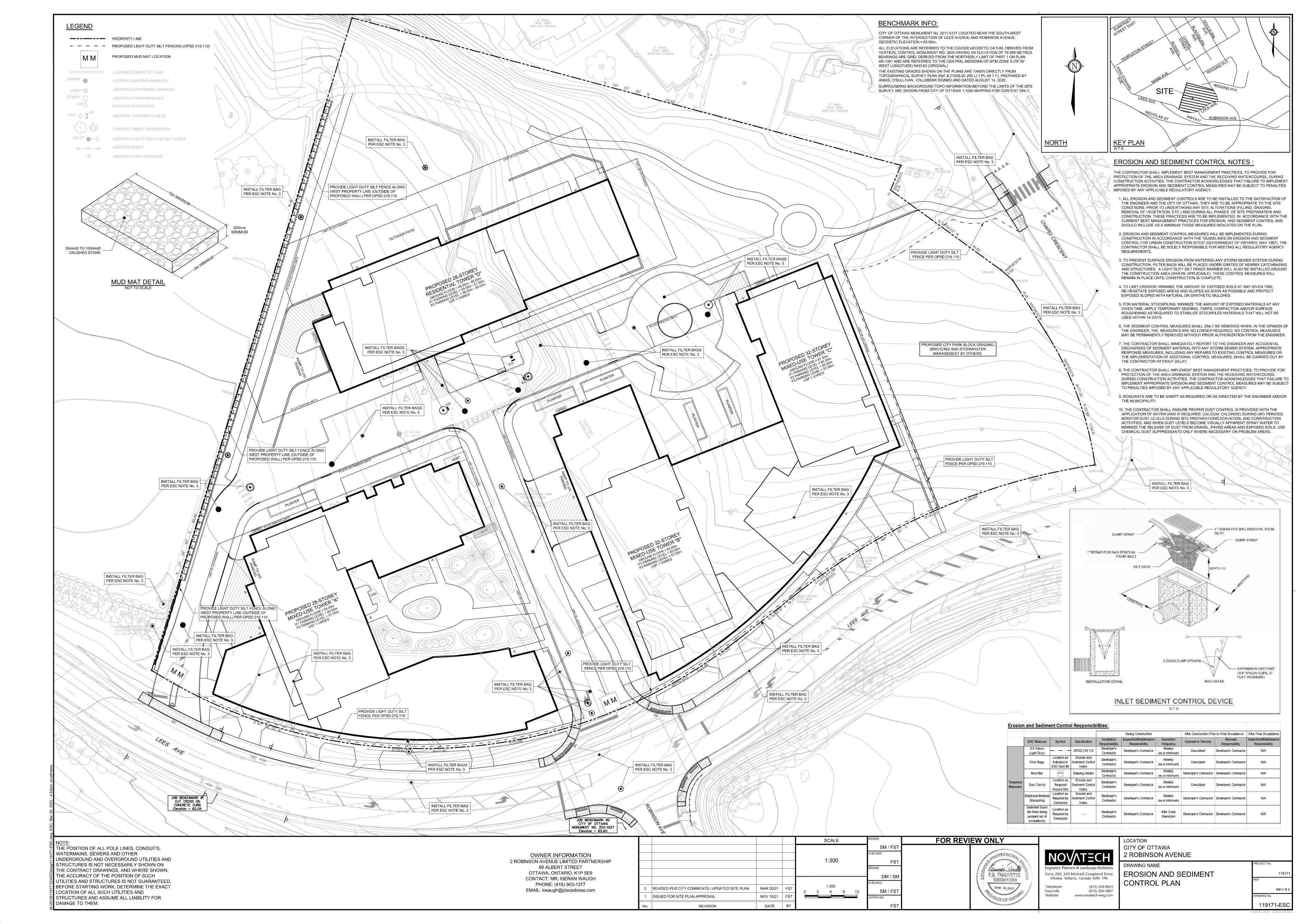
EMAIL: kwaugh@placedoree.com

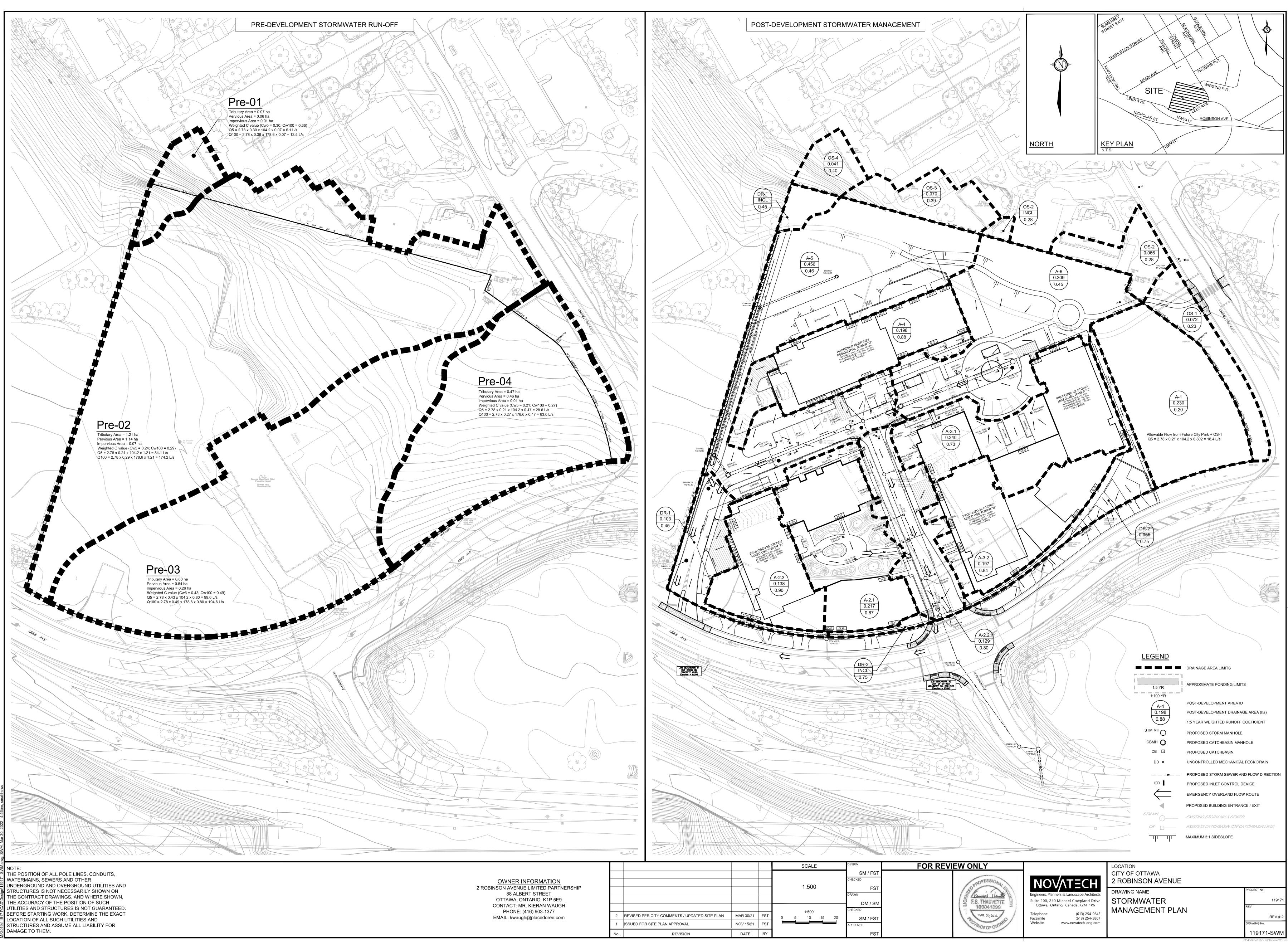

	INLET	CONTROL	DEVICE	DATA TAB	LE: AREA	A-2.1 (TAN	K 1)	
DESIGN EVENT	ICD TYPE (PLUG TYPE)	DIAMETER OF OUTLET PIPE (mm)	PEAK DESIGN FLOW (L/s)	¹ 2 PEAK DESIGN FLOW (L/s)	DESIGN HEAD (m)	WATER ELEVATION (m)	VOLUME (m ³)	AVAILABLE STORAGE
1:2 YR 1:5 YR	IPEX TEMPEST LMF	200mmØ PVC	12.0 14.0	6.0 7.0	0.75 0.80	61.15 61.20	18.4 26.7	> 65 m ³
1:100 YR	CUSTOM		16.5	8.3	1.50	61.90	62.6	- 00 m
	INLET	CONTROL	DEVICE	DATA TAB	LE: AREA	A-2.2 (TAN	K 2)	
DESIGN EVENT	ICD TYPE (PLUG TYPE)	DIAMETER OF OUTLET PIPE (mm)	PEAK DESIGN FLOW (L/s)	¹ 2 PEAK DESIGN FLOW (L/s)	DESIGN HEAD (m)	WATER ELEVATION (m)	VOLUME (m ³)	AVAILABLE STORAGE
1:2 YR	IPEX		7.5	3.8	0.72	61.12	13.8	3
1:5 YR 1:100 YR	TEMPEST LMF MODEL 100	200mmØ PVC	9.5 12.0	4.8 6.0	1.15 1.80	61.55 62.20	19.2 43.3	> 45 m ³
I				I		1		
	INLET	CONTROL	DEVICE	DATA TAB	LE: AREA	A-2.3 (TAN	K 3)	
DESIGN EVENT	ICD TYPE (PLUG TYPE)	DIAMETER OF OUTLET PIPE (mm)	PEAK DESIGN FLOW (L/s)	¹ / ₂ PEAK DESIGN FLOW (L/s)	DESIGN HEAD (m)	WATER ELEVATION (m)	VOLUME (m ³)	AVAILABLE STORAGE
1:2 YR	IPEX	, , ,	3.5	1.8	0.30	60.40	24.5	
1:5 YR 1:100 YR	TEMPEST LMF MODEL 85	200mmØ PVC	4.5 6.0	2.3 3.0	0.50	60.60	33.2	> 70 m ³
1.100 FR	MODEL 00		0.0	5.0	0.85	60.95	69.3	
						A-3.1 (TAN	K 1)	
						,	,	
DESIGN EVENT	ICD TYPE (PLUG TYPE)	OF OUTLET PIPE (mm)	DESIGN FLOW (L/s)	DESIGN FLOW (L/s)	DESIGN HEAD (m)	WATER ELEVATION (m)	VOLUME (m ³)	AVAILABLE STORAGE
1:2 YR 1:5 YR	IPEX TEMPEST MHF	200mm@ D\/C	15.0 17.5	7.5 8,8	0.60	60.92 61.27	21.7 31.4	>75 m ³
1:100 YR	MODEL 'A'	200mmØ PVC	20.0	10.0	1.20	61.60	74.5	275 m
						•		
	INLET	CONTROL	DEVICE	DATA TAB	LE: AREA	A-3.2 (TAN	K 5)	
DESIGN EVENT	ICD TYPE (PLUG TYPE)	DIAMETER OF OUTLET PIPE (mm)	PEAK DESIGN FLOW (L/s)	¹ / ₂ PEAK DESIGN FLOW (L/s)	DESIGN HEAD (m)	WATER ELEVATION (m)	VOLUME (m ³)	AVAILABLE STORAGE
1:2 YR	IPEX		15.0	7.5	0.90	61.30	20.0	
1:5 YR 1:100 YR	TEMPEST LMF CUSTOM	200mmØ PVC	16.5 18.0	8.3 9.0	1.40	61.80	30.0	> 75 m ³
1.100 FR	0001010		10.0	9.0	2.00	62.40	71.7	
						A-4 (TANK 6	8.7)	
DESIGN EVENT	ICD TYPE (PLUG TYPE)	DIAMETER OF OUTLET	PEAK DESIGN	¹ 2 PEAK DESIGN	DESIGN HEAD (m)	WATER	VOLUME (m ³)	AVAILABLE STORAGE
1:2 YR	. , ,	PIPE (mm)	FLOW (L/s) 7.9	FLOW (L/s) 4.0	0.80	61.45	28.7	
1:5 YR	IPEX TEMPEST LMF	250mmØ PVC	9.6	4.8	1.12	61.77	40.0	91 m ³
1:100 YR	CUSTOM		14.2	7.1	2.27	62.92	82.3	
	INLET (CONTROL		ATA TABL	E: AREA	A-5 (STM MI	H 08)	
DESIGN EVENT	ICD TYPE (PLUG TYPE)	DIAMETER OF OUTLET PIPE (mm)	PEAK DESIGN FLOW (L/s)	¹ / ₂ PEAK DESIGN FLOW (L/s)	DESIGN HEAD (m)	WATER ELEVATION (m)	VOLUME (m ³)	AVAILABLE STORAGE
1:2 YR	IPEX		13.7	6.9	0.42	60.38	35.6	
1:5 YR 1:100 YR	TEMPEST MHF CUSTOM	300mmØ PVC	17.3 35.8	8.7 17.9	0.67	60.63	49.3 94.1	106 m ³
1.100 TK	200100		30.0	11.8	2.87	62.83	94.1	
		CONTROL				A-6 (CBMH	05)	
DESIGN EVENT	ICD TYPE (PLUG TYPE)	OF OUTLET PIPE (mm)	DESIGN FLOW (L/s)	¹ / ₂ PEAK DESIGN FLOW (L/s)	DESIGN HEAD (m)	WATER ELEVATION (m)	VOLUME (m ³)	AVAILABLE STORAGE
1:2 YR 1:5 YR		300mm (7 D) (0	9.0 9.5	4.5 4.8	2.04	62.82	25.9	99 m ³
1:5 YR 1:100 YR	TEMPEST LMF CUSTOM	300mmØ PVC	9.5	6.1	2.30 3.74	63.08 64.52	38.3 86.5	99 M.

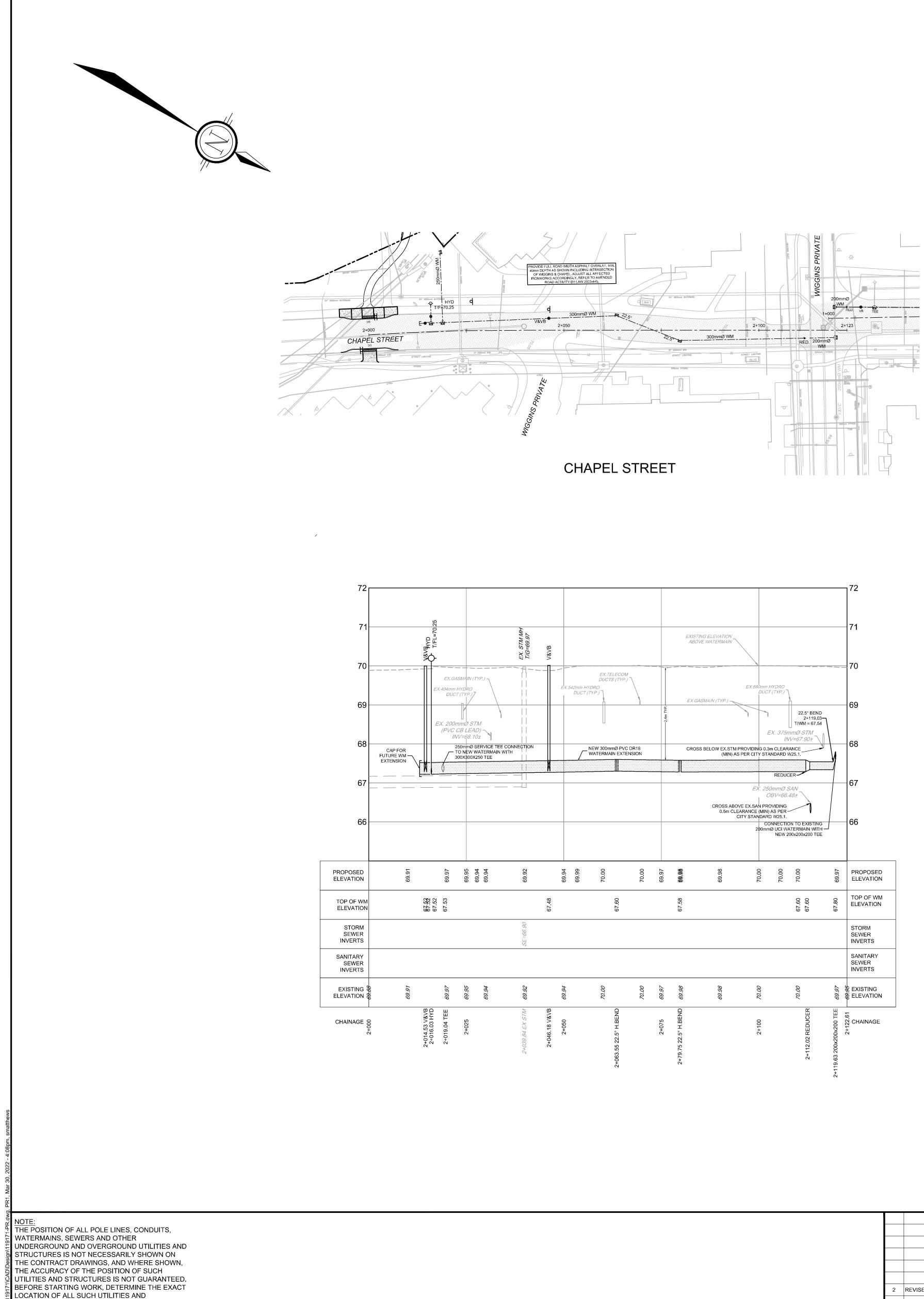


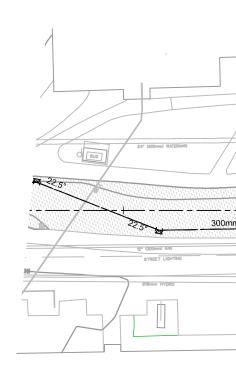
BENCHMARK INFO:

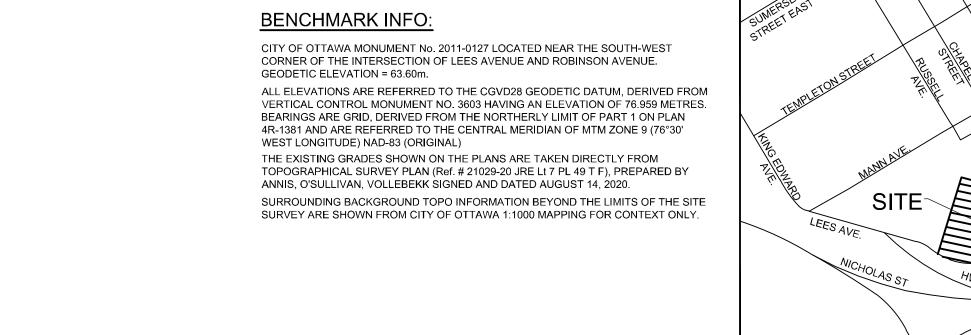

CITY OF OTTAWA MONUMENT No. 2011-0127 LOCATED NEAR THE SOUTH-WEST CORNER OF THE INTERSECTION OF LEES AVENUE AND ROBINSON AVENUE. GEODETIC ELEVATION = 63.60m. ALL ELEVATIONS ARE REFERRED TO THE CGVD28 GEODETIC DATUM, DERIVED FROM VERTICAL CONTROL MONUMENT NO. 3603 HAVING AN ELEVATION OF 76 959 METRES. BEARINGS ARE GRID. DERIVED FROM THE NORTHERLY LIMIT OF PART 1 ON PLAN 4R-1381 AND ARE REFERRED TO THE CENTRAL MERIDIAN OF MTM ZONE 9 (76°30' WEST LONGITUDE) NAD-83 (ORIGINAL) THE EXISTING GRADES SHOWN ON THE PLANS ARE TAKEN DIRECTLY FROM TOPOGRAPHICAL SURVEY PLAN (Ref. # 21029-20 JRE Lt 7 PL 49 T F), PREPARED BY

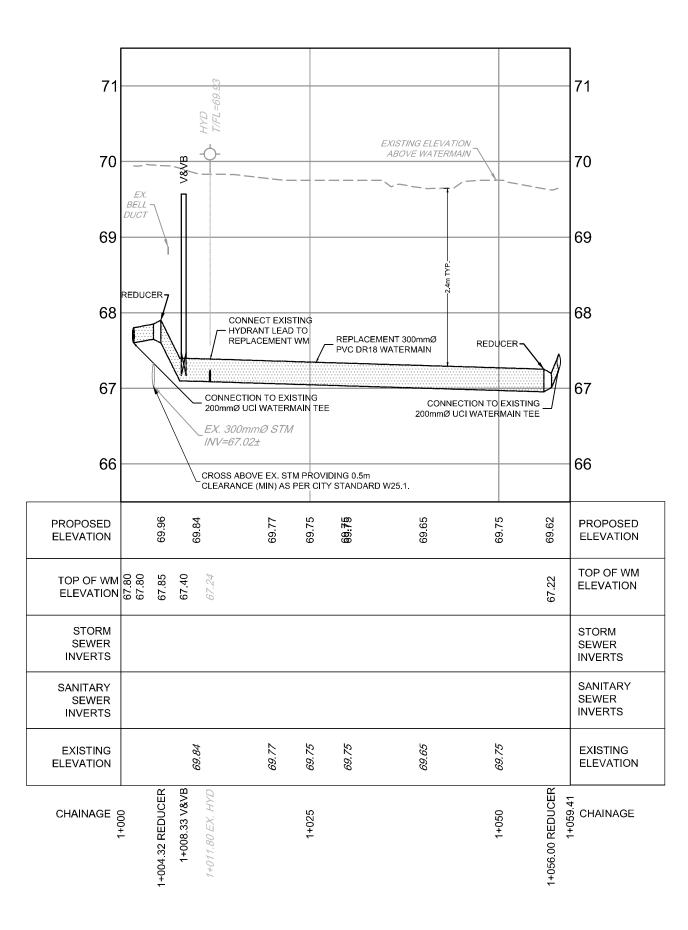

ANNIS, O'SULLIVAN, VOLLEBEKK SIGNED AND DATED AUGUST 14, 2020. SURROUNDING BACKGROUND TOPO INFORMATION BEYOND THE LIMITS OF THE SITE SURVEY ARE SHOWN FROM CITY OF OTTAWA 1:1000 MAPPING FOR CONTEXT ONLY.





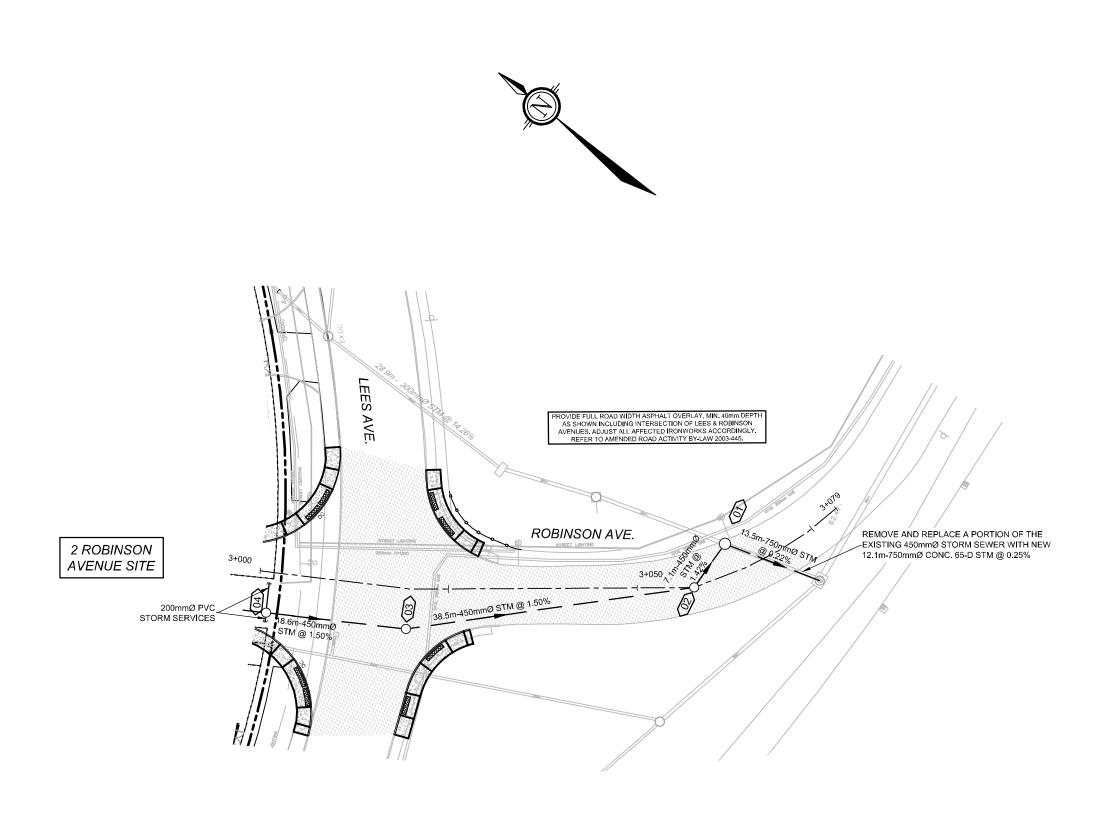



			DRAWN
			DM / SM
500			CHECKED
10	15	20	SM / FST
			APPROVED

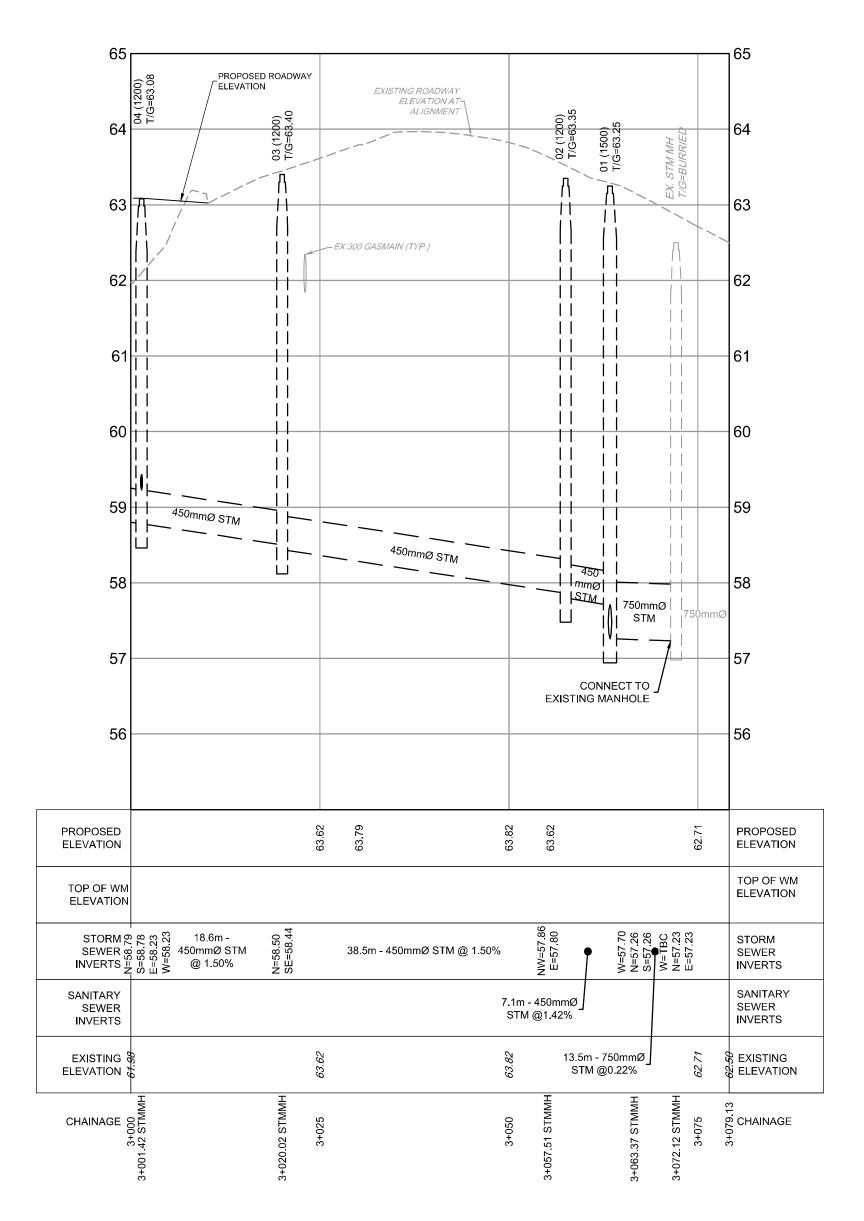

STRUCTURES AND ASSUME ALL LIABILITY FOR DAMAGE TO THEM.

						SCA
				0	5 HC	1:50 10 DRIZC
2	REVISED PER CITY COMMENTS	MAR 30/21	FST	0	0.5	1:5 1.(
1	ISSUED FOR SITE PLAN APPROVAL	NOV 15/21	FST		_	/ERT
No.	REVISION	DATE	BY		·	

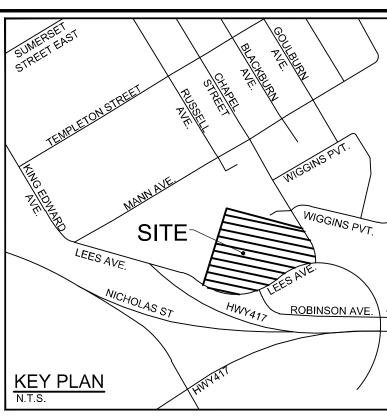
				REFER TO <u>119171-NDT</u> FOR ADDITIONA
1:500 10 15 20		FOR REVIEW ONLY	ΝΟΛΤΞϹΗ	LOCATION OTTAWA, ONTARIO 2 ROBINSON AVE.
RIZONTAL 1:50 1.0 1.5 2.0	FST DRAWN DWM CHECKED	9 F.S. THAUVETTE 100041399 MAR. 30, 2022	Engineers, Planners & Landscape Architects Suite 200, 240 Michael Cowpland Drive Ottawa, Ontario, Canada K2M 1P6 Telephone (613) 254-9643 Facsimile (613) 254-5867	DRAWING NAME PLAN AND PROFILE CHAPEL AVENUE, STATION 1+000 TO 1+060 CHAPEL AVENUE, STATION 2+000 TO 2+123
	FST APPROVED FST	ROINNCE OF ONTARIO	Website www.novatech-eng.com	CHAPEL AVENUE, STATION 2+000 TO 2+123



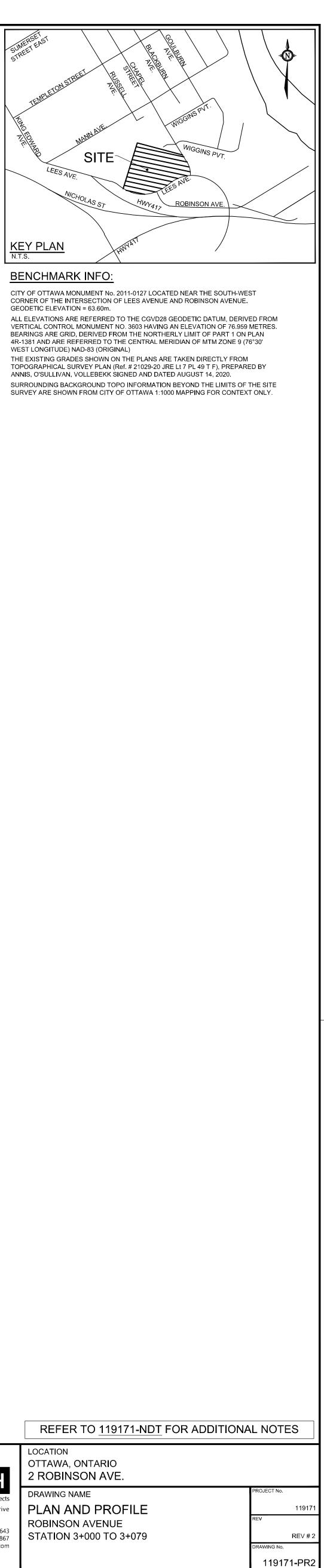
ROBINSON A


KEY PLAN

NOTES
PROJECT №. 119171
REV REV # 2
DRAWING No. 119171-PR1 PLANB1.DWG - 1000mmx707mm


NOTE: THE POSITION OF ALL POLE LINES, CONDUITS, WATERMAINS, SEWERS AND OTHER UNDERGROUND AND OVERGROUND UTILITIES AND STRUCTURES IS NOT NECESSARILY SHOWN ON THE CONTRACT DRAWINGS, AND WHERE SHOWN, THE ACCURACY OF THE POSITION OF SUCH UTILITIES AND STRUCTURES IS NOT GUARANTEED. LOCATION OF ALL SUCH UTILITIES AND STRUCTURES AND ASSUME ALL LIABILITY FOR DAMAGE TO THEM.

ROBINSON AVENUE


			SCALE	DESIGN	FOR REVIEW ONLY		LOCATION
			1:500 0 5 10 15 20		PROFESSIOAL	ΝΟΛΤΞΟΗ	OTTAWA, ONTARIO 2 ROBINSON AVE.
			HORIZONTAL	FST DRAWN DWM	E.S. THAUVETTE	Engineers, Planners & Landscape Architects Suite 200, 240 Michael Cowpland Drive	DRAWING NAME PLAN AND PROFILE
	2 REVISED PER CITY COMMENTS	MAR 30/21 FST	1:50 0 0.5 1.0 1.5 2.0	CHECKED FST	TAR. 30, 2022	Ottawa, Ontario, Canada K2M 1P6 Telephone (613) 254-9643 Facsimile (613) 254-5867	ROBINSON AVENUE STATION 3+000 TO 3+079
=	1 ISSUED FOR SITE PLAN APPROVAL No. REVISION	NOV 15/21 FST DATE BY	VERTICAL	APPROVED FST	OINVCE OF ONTARY	Website www.novatech-eng.com	

BENCHMARK INFO:

CITY OF OTTAWA MONUMENT No. 2011-0127 LOCATED NEAR THE SOUTH-WEST CORNER OF THE INTERSECTION OF LEES AVENUE AND ROBINSON AVENUE. GEODETIC ELEVATION = 63.60m. ALL ELEVATIONS ARE REFERRED TO THE CGVD28 GEODETIC DATUM, DERIVED FROM VERTICAL CONTROL MONUMENT NO. 3603 HAVING AN ELEVATION OF 76.959 METRES.

4R-1381 AND ARE REFERRED TO THE CENTRAL MERIDIAN OF MTM ZONE 9 (76°30' WEST LONGITUDE) NAD-83 (ORIGINAL) THE EXISTING GRADES SHOWN ON THE PLANS ARE TAKEN DIRECTLY FROM TOPOGRAPHICAL SURVEY PLAN (Ref. # 21029-20 JRE Lt 7 PL 49 T F), PREPARED BY ANNIS, O'SULLIVAN, VOLLEBEKK SIGNED AND DATED AUGUST 14, 2020.

