TRANSPORTATION IMPACT ASSESSMENT (TIA)

THUNDER ROAD & BOUNDARY ROAD PROPOSED INDUSTRIAL DEVELOPMENT CITY OF OTTAWA

PREPARED FOR: THUNDER ROAD DEVELOPMENTS (2019) INC.

PREPARED BY:

C.F. CROZIER & ASSOCIATES INC. 211 YONGE STREET, SUITE 600 TORONTO, ON, M5B 1M4

ORIGINAL: APRIL 2021 UPDATED: APRIL 2023

CFCA FILE NO. 1909-5772

The material in this report reflects best judgment in light of the information available at the time of preparation. Any use which a third party makes of this report, or any reliance on or decisions made based on it, are the responsibilities of such third parties. C.F. Crozier & Associates Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

Certification Form for TIA Study PM

TIA Plan Reports

On 14 June 2017, the Council of the City of Ottawa adopted new Transportation Impact Assessment (TIA) Guidelines. In adopting the guidelines, Council established a requirement for those preparing and delivering transportation impact assessments and reports to sign a letter of certification.

Individuals submitting TIA reports will be responsible for all aspects of development-related transportation assessment and reporting, and undertaking such work, in accordance and compliance with the City of Ottawa's Official Plan, the Transportation Master Plan and the Transportation Impact Assessment (2017) Guidelines.

By submitting the attached TIA report (and any associated documents) and signing this document, the individual acknowledges that s/he meets the four criteria listed below.

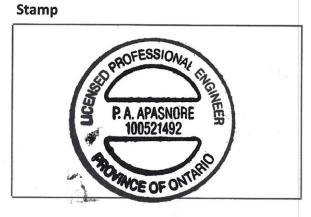
CERTIFICATION

I have reviewed and have a sound understanding of the objectives, needs and requirements of the City of Ottawa's Official Plan, Transportation Master Plan and the Transportation Impact Assessment (2017) Guidelines;

I have a sound knowledge of industry standard practice with respect to the preparation of transportation impact assessment reports, including multi modal level of service review;

I have substantial experience (more than 5 years) in undertaking and delivering transportation impact studies (analysis, reporting and geometric design) with strong background knowledge in transportation planning, engineering or traffic operations; and

I am either a licensed¹ or registered² professional in good standing, whose field of expertise


is either transportation engineering

or transportation planning 🖓

^{1,2} License of registration body that oversees the profession is required to have a code of conduct and ethics guidelines that will ensure appropriate conduct and representation for transportation planning and/or transportation engineering works.

City Of Ottawa Infrastructure Services and Community Sustainability Planning and Growth Management 110 Laurier Avenue West, 4th fl. Ottawa, ON K1P 1J1 Tel. : 613-580-2424 Fax: 613-560-6006

Dated at Toronto	this 27	_{day of} April	 , 20 23
(City)		h.	
Name : Peter Apasnore			
Professional title: Transpo	rtation Engineer		
Signature of individual certifi	er that s/he meets th	ne above criteria	
Office Contact Information	ı (Please Print)		
Address: 211 Yonge Str	eet, Suite 600		
City / Postal Code: M5B 1M	4		
Telephone / Extension: 416	477-3392		
E-Mail Address: papasnore	@cfcrozier.ca		
			I

Revision Date: October, 2020

Executive Summary

<u>Background</u>

C.F. Crozier & Associates Inc. (Crozier) was retained by Thunder Road Developments (2019) Inc. to prepare a Transportation Impact Assessment in support of the Official Plan Amendment (OPA), Zoning By-Law Amendment (ZBA) and Site Plan Approval (SPA) applications for the proposed industrial development located at Thunder Road and Boundary Road in the City of Ottawa.

An original TIA (dated April 2021) was previously submitted assessing the site specific requirements and impacts of the proposed industrial development on the boundary road network and recommended required mitigation measures, as warranted. This Updated TIA Study addresses the City and MTO comments (dated June 29, 2022) regarding the second submission TIA. A comment response letter highlighting how each comment was addressed is provided separately as part of this resubmission to ease the review process.

The proposed development has an anticipated buildout by 2025 and includes three industrial buildings with a total Gross Floor Area (GFA) of 32,496 sq. m. This current proposal is a reduction from the site plan from the previous submission, which had a total of 41,625 sq. m GFA used for the previous submission.

- Industrial Buildings A and B each consist of 14,493 sq. m of GFA. A total of 248 auto parking spaces and two full-moves accesses to Thunder Road are also proposed for these industrial buildings.
- Industrial Building C: consists of 3,510 sq. m of GFA, 43 auto parking spaces and a full-moves access to Boundary Road opposite the South Amazon access.

The 6150 Thunder Road site is outside of this site plan; however, the building was maintained in analysis herein as done in the original study. The site consists of 3,850.8 sq. m of GFA, 33 auto parking spaces and a separate full-moves access to Thunder Road.

The proposed industrial development is projected to generate a total of 104 and 110 two-way vehicle trips during the weekday a.m. and p.m. peak hours, respectively.

Existing Traffic Operations

Under 2020 existing traffic conditions, the study intersections are projected to operate at the Level of Services (LOS) below.

- The stop-controlled Highway 417 Westbound Ramp Terminal at Boundary Road is operating below capacity at a LOS "C" or better during the a.m. and p.m. peak hours.
- The signalized intersections of Boundary Road with Highway 417 Eastbound Ramp Terminal and Thunder Road/Amazon Way are operating at a LOS "D" or better during the a.m. and p.m. peak hours.
- The stop-controlled South Amazon Access at Boundary Road is operating below capacity at a LOS "D" or better during the a.m. and p.m. peak hours.
- The stop-controlled Mitch Owens Road connection to Boundary Road is operating below capacity at a LOS "E" for the eastbound left turn during the a.m. and p.m. peak hours. All other movements at the intersection are at a LOS "A".

Future Background Traffic Operations

Under the 2025, 2030 and 2035 future background conditions:

- The stop-controlled Highway 417 Westbound Ramp Terminal at Boundary Road is forecast to operate at a LOS "F" during the a.m. peak hour of 2035 and LOS "E" or better under remaining study horizons. The intersection is forecast to operate at a LOS" B" or better during the p.m. peak hour.
- The signalized intersections of Boundary Road with Highway 417 Eastbound Ramp Terminal and Thunder Road/Amazon Way are both forecast to operate at a LOS "E" or better during the a.m. and p.m. peak hours. Both intersections are forecast to have at least one turning movement near or at capacity.
- The stop-controlled South Amazon Access at Boundary Road is projected to operate at a LOS "E" and "F" during the a.m. and p.m. peak hours, respectively.
- The stop-controlled Mitch Owens Road connection to Boundary Road is expected to operate at a LOS "F" during the a.m. and p.m. peak hours. However, similar to Novatech's recommendation, adding a northbound left turn lane (2025 horizon) and implementing traffic signals (2035 horizon) is expected to result in a forecasted LOS "D" and average traffic delays less than 18 seconds during the a.m. and p.m. peak hours.

Future Total Traffic Operations

For the 2025, 2030 and 2035 total traffic conditions (includes site generated trips and 6150 Thunder Road future development), the study intersections are projected to operate similarly to their respective future background conditions as follows:

- The stop-controlled Highway 417 Westbound Ramp Terminal at Boundary Road is forecast to operate at a LOS "F" or better during the a.m. peak hour and a LOS "B" or better during the p.m. peak hour.
- The signalized intersections of Boundary Road with Highway 417 Eastbound Ramp Terminal and Thunder Road/Amazon Way are both forecast to operate at a LOS "E" or better during the a.m. and p.m. peak hours, similar to the future background conditions.
- The stop-controlled Mitch Owens Road connection to Boundary Road is expected to operate at a LOS "F" during the a.m. and p.m. peak hours under the ultimate 2035 horizon. Similar to the future background conditions, adding the northbound left turn lane (2025 horizon) and implementing traffic signals (2035 horizon) is expected to result in a forecasted LOS "D" or better during the a.m. and p.m. peak hours.
- The stop-controlled South Amazon Access at Boundary Road is projected to operate at a LOS "F" during the a.m. and p.m. peak hours under the ultimate 2035 horizon. This is a future background issue and is attributable to an increase in through volumes on Boundary Road and associated future delays to traffic from the Amazon access.
- The proposed three stop-controlled site access connections to Thunder Road are projected to operate below capacity at a LOS "B" or better during the a.m. and p.m. peak hours, under all study horizons.

A signal warrant assessment based on the ultimate 2035 traffic volumes indicates that traffic signals are not warranted at the intersections of Boundary Road and South Amazon Access / Site Access and Thunder Road with the proposed three Site Accesses. Additionally, no left or right turn auxiliary lanes are warranted on Thunder Road or Boundary Road at the site access connections.

The proposed site accesses are projected to operate efficiently and safely without any issues related to sight-lines, corner clearance, access conflicts, truck movements and transit operational conflicts.

The vehicle parking supply of for each of the three buildings exceeds the City's Zoning By-Law minimum parking requirements.

Recommendations and Conclusion

Given the analysis herein, the recommendations presented in the **Table E-1** should be considered to support the proposed development.

Category	Improvement	Responsibility	Timeline
Parking	Provide bicycle parking spaces for each buildingParkingper City of Ottawa Zoning By-Law 2008-250 requirements		Full build-out (2025)
Roadway Improvements	Boundary Road and Site Access / South Amazon Access: Repurpose existing runout lane at south approach to provide auxiliary northbound left-turn with 15 metres of storage	Developer	Full build-out (2025)
	Provide cycling provisions such as secure bicycle parking, lockers, and showers	Developer	(2025)
	Provide preferred carpool parking spaces to promote carpooling	Developer	Full build-out (2025)
TDM Measures	Co-ordinate with City to list development on the City's ride-matching portal and/or implement an internal ride-matching service to help employees find carpool partners	Tenant	Eull build-out
IDM Medsures	Implement an Emergency Ride Home program to guarantee employees a ride home in the case of an emergency		Full build-out (2025)
	Provide information on available TDM opportunities through promotion and education	Tenant	Full build-out (2025)
	Establish a TDM program to monitor implementation and effectiveness of TDM measures	Tenant	Full build-out (2025)

Table E-1: Summary of Recommendations for Development Full build-Out

Further, given the future background traffic operations, we recommend that the City and MTO consider the following in future:

- Similar to the Novatech's recommendation, we recommend adding a northbound left turn lane (in 2025 horizon) and implementing traffic signals (in 2035 horizon) at the intersection of Boundary Road and Mitch Owens Road.
- Signals are not warranted at Boundary Road intersections with Highway 417 Westbound Ramp Terminal and the South Amazon Access; however, signals may be considered in future if the City and MTO identify safety issues from extended delays to the minor street.

- Signal optimization to redistribute intersection capacity (effective green time) may be required in the future (i.e., 2030 onwards) to maintain the target LOS "D" at the intersections of Boundary Road with Highway 417 Eastbound Ramp Terminal and Thunder Road/Amazon Way.
- Boundary Road and Highway 417 Eastbound Ramp Terminal: The EBR movement is expected to experience v/c ratios greater than 0.75, largely due to limited capacity for the yield EBR movement created by through traffic on Boundary Road. The MTO and City may consider optimizing the existing signal timing plan in future to create more capacity for the yield controlled EBR movement.
- The southbound traffic queues on Boundary Road at the Thunder Road intersection are forecast to occasionally extend beyond the Highway 417 Ramp in the 2035 horizon during the p.m. peak hours. However, this is a future background condition and not attributable to the proposed development. This issue is a long-term forecast and should be monitored by the City and reviewed as part of the City's ongoing Transportation Master Plan Update.
- It is noted the City is currently completing its Official Plan Update, as well as undertaking a Transportation Master Plan and Infrastructure Master Plan updates. Any potential widening of Boundary Road and major road improvements should be monitored and may be reviewed as part of the ongoing Plan updates.
- In addition to the City's existing road network volume monitoring program to assess capacity constrained zones, given the potential long term impact of the Covid-19 pandemic on homework trips, the forecasted future volumes herein may be overstated, it is important to monitor intersection volumes in future to confirm if any roadway improvements and or traffic signal modifications are needed for optimal performance of the relevant surrounding intersections.

Based on this study findings, it is our conclusion that the traffic generated by the proposed industrial development at Thunder Road and Boundary Road can be accommodated by the boundary road network. The Official Plan Amendment (OPA), Zoning By-Law Amendment (ZBA) and Site Plan Approval (SPA) applications can be supported from a traffic operations perspective as the boundary road system is forecast to adequately accommodate the increase in traffic volumes attributable to the proposed development.

TABLE OF CONTENTS

Exec	utive Sur	nmaryi	i
1.0	Introd	uction1	1
	1.1	Background	
	1.2	Subject Property	
	1.3	Development Proposal	
2.0	Scree	ning2	2
3.0	Scopi	ng2	2
0.0	3.1	Existing Conditions	
	3.1.1.	Roadways	
	3.1.2.	Intersections	
	3.1.3.	Adjacent Driveways	
	3.1.4.	Existing Transit Services	
	3.1.5.	Existing Active Transportation Facilities	
	3.1.6.	Area Traffic Management	
	3.1.7.	Existing Traffic Volumes	
	3.1.8.	Collision History	
	3.2	Future Planned Conditions	
	3.2.1.	Roadway Improvements	
	3.2.2.	Background Developments	
	3.3	Study Area	
	3.4	Time Periods	
	3.4	Horizon Years	
	3.6	Exemptions Review	
	5.0		J
4.0	Forec	asting	9
	4.1	Trip Generation Forecasts	
	4.1.1.	Auto Trip Generation	
	4.1.2.	Non-Auto Trip Generation	
	4.2	Mode Shares	
	4.2.1.	Existing Mode Shares	
	4.2.2.	Future Mode Shares Targets	
	4.3	Trip Distribution and Assignment	
	4.3.1.	Employee Trip Distribution	
	4.3.2.	Heavy Truck Trip Distribution	
	4.3.3.	Trip Assignment	
	4.4	Background Network Travel Demands	
	4.4.1.	Background Transportation Network Plans	
	4.4.2.	Background Growth	
	4.4.3.	Background Developments	
	4.5	Demand Rationalization	
5.0	م العربية ال		0
5.0	5.1	sis	
		• •	
	5.1.1.	Design for Sustainable Modes	
	5.1.2.	Circulation and Access	
	5.2	Parking Analysis	
	5.2.1.	Auto Parking	
	5.2.2.	Bicycle Parking	J

5.3	Boundary Streets	
5.3.1.	Multi-modal Level of Service	
5.3.2.	Road Safety Analysis	
5.4	Access Intersections Analysis and Design	
5.4.1.	Access Location	
5.4.2.	Access Width	
5.4.3.	Traffic Control and Turn Lane Warrant Assessment	
5.5	Transportation Demand Management (TDM) Analysis	30
5.5.1.	Active Transportation	30
5.5.2.	Carpooling	
5.5.3.	Emergency Ride Home	
5.5.4.	Promotion and Education	
5.5.5.	TDM Program Management	
5.5.6.	Summary of Potential TDM Measures	
5.6	Review of Network Concept	
5.7	Intersection Analysis and Design	
5.7.1.	Traffic Modelling	
5.7.2.	Existing Auto Operations	34
5.7.3.	Future Background Volumes Forecasting	35
5.7.4.	Future Background Auto Operations	35
5.7.5.	Target Auto Operations	39
5.7.6.	Site Traffic	
5.7.7.	Basis of Future Total Assessment	40
5.7.8.	Future Total Auto Operations	40
Concl	usions and Recommendations	44

6.0

LIST OF TABLES

Table 3-1: Boundary Road Network – Roadways	
Table 3-2: Boundary Road Network – Intersections	4
Table 3-3: Existing Transit Services	5
Table 3-4: Existing Active Transportation Network	6
Table 3-5: Collision History	7
Table 3-6: Possible Exemptions	9
Table 4-1: Auto Trip Generation	10
Table 4-2: Passenger Car and Truck Trip Generation – Traffic Analysis	11
Table 4-3: Non-Auto Trip Generation	12
Table 4-4: Existing Mode Share	
Table 4-5: Future Mode Share Targets	
Table 5-1: Proposed Passenger Car Parking Supply	19
Table 5-2: City of Ottawa Zoning By-Law Minimum Auto Parking Requirements	20
Table 5-3: City of Ottawa Zoning By-Law Minimum Auto Parking Requirements	20
Table 5-4: City of Ottawa Zoning By-Law Minimum Bicycle Parking Requirements	20
Table 5-5: Roadway Segments MMLOS Evaluation	22
Table 5-6: Signalized Intersection MMLOS Evaluation	
Table 5-7: Sight Distance Requirements	
Table 5-8: Signal Warrant Analysis Results	28
Table 5-9: Left-Turn Lane Warrant Analysis Results	
Table 5-10: Right-Turn Lane Warrant Analysis Results	
Table 5-11: Summary of Potential TDM Measures and Implementation	
Table 5-12: 2030 Future Background – Boundary Road Through Volumes Forecasts	33
Table 5-13: 2020 Existing Traffic Operations	
Table 5-14: 2025 Future Background Traffic Operations	36
Table 5-15: 2030 Future Background Traffic Operations	37
Table 5-16: 2035 Future Background Traffic Operations	38
Table 5-17: 2025 Future Total Traffic Operations	
Table 5-18: 2030 Future Total Traffic Operations	
Table 5-19: 2035 Future Total Traffic Operations	43

LIST OF FIGURES

Figure 1:	Site Location Plan
Figure 2:	Boundary Road Network
Figure 3:	2020 Existing Traffic Volumes
Figure 4.1:	CRRC Background Trip Assignment
Figure 4.2:	5494, 5500 & 5510 Boundary Road Background Trip Assignment
Figure 5:	2025 Future Background Traffic Volumes
Figure 6:	2030 Future Background Traffic Volumes
Figure 7:	2035 Future Background Traffic Volumes
Figure 8:	Site Trip Assignment – Employees
Figure 9:	Site Trip Assignment – Heavy Trucks
Figure 10:	2025 Future Total Traffic Volumes
Figure 11:	2030 Future Total Traffic Volumes
Figure 12:	2035 Future Total Traffic Volumes

LIST OF APPENDICES

Appendix A:	Conceptual Site Plan
Appendix B:	Screening Form
Appendix C:	Traffic Data
Appendix D:	Collision Data
Appendix E:	NCR Survey Data
Appendix F:	Trip Distribution Analysis
Appendix G:	Growth Rate Analysis
Appendix H.1:	CRRRC TIS Excerpts
Appendix H.2:	Novatech TIS Excerpts
Appendix I:	Vehicle Turning Analysis
Appendix J:	Signal Warrant Analysis Worksheets
Appendix K:	Left-Turn Lane Warrant Analysis Worksheets
Appendix L:	Level of Service Definitions
Appendix M:	Detailed Capacity Analysis Worksheets
Appendix N:	TDM Checklist
Appendix O:	Sight Distance Assessment Drawings

1.0 Introduction

1.1 Background

Crozier & Associates Inc. (Crozier) was retained by Thunder Road Developments (2019) Inc. to prepare a Transportation Impact Assessment in support of the Official Plan Amendment (OPA), Zoning By-Law Amendment (ZBA) and Site Plan Approval (SPA) applications for the proposed industrial development located at 6160 Thunder Road and 5348 Boundary Road in the City of Ottawa.

Based on the City of Ottawa's "Transportation Impact Assessment Guidelines (2017)" requirements a Transportation Impact Assessment (TIA) Screening and Scoping Report, a Forecasting Report and a Strategy Report were all submitted and confirmed by the City of Ottawa as part of the first four steps of the TIA submission process.

As required by the City's TIA Guidelines, a TIA report fulfilling the final step of the TIA submission by compiling the TIA Screening and Scoping, Forecasting and Strategy Reports into a single document to support the proposed development application was made in April 2021.

This Updated TIA Study addresses the City comments made on June 29, 2022 regarding the second submission TIA. A comments response letter highlighting how each comment was addressed is provided separately as part of this resubmission to ease the review process.

The subject property is within the Ministry of Transportation of Ontario (MTO) Permit Controlled Area and therefore subject to MTO review and approval, including conformance to the MTO's "Traffic Impact Study Guideline" (September 2014). Thus, the scope of work presented in the original TIA report conforms to both the City and MTO's guidelines.

1.2 Subject Property

The subject property covers an area of approximately 15 hectares and is located in a rural area east of the urban core of Ottawa. The subject property is located south of Highway 417 and near the Amazon Facility east of Boundary Road that was constructed in 2019. Highway 417 functions as the transportation link between Ottawa and Quebec.

The subject property is designated as "Rural Industrial and Logistics" per the City's recently updated Official Plan, and was previously designated "General Rural Area". Further, the subject property is currently zoned as "Rural General Industrial Zone" (RG), with an exemption and holding provision per the City's Zoning By-Law 2008-250.

The subject property is bound by Thunder Road to the north, treed areas to the south and west, and Boundary Road to the east. With the exception of two residences at Boundary Road, the subject property is primarily vacant. **Figure 1** contains the Site Location Plan.

1.3 Development Proposal

Per the Conceptual Site Plan prepared by MCRobie Architects dated April 24, 2023 (see **Appendix A**), the development proposes three industrial buildings with a total Gross Floor Area (GFA) of 32,496 sq. m (349,800 sq. ft), and 24,960 sq. m of outdoor storage space. This current proposal is a reduction from a site plan used in the original TIS submission, which had a total GFA of 58,771 sq. m. The buildings included in the development proposal are summarized as follows:

- Industrial Buildings A and B each consist of 14,493 sq. m GFA for warehousing. A total of 248 auto parking spaces and two full-moves accesses to Thunder Road are also proposed for these industrial buildings.
- Industrial Building C: consists of 3,510 sq. m of GFA, 43 auto parking spaces and a full-moves access to Boundary Road opposite the South Amazon access.

The adjacent 6150 Thunder Road property is outside of this site plan; however, the building was maintained as part of analysis herein as done in the original study. Per the most recent proposal details, an industrial building of 3,850.8 sq. m of GFA and a separate full-moves access to Thunder Road is anticipated for the site.

The proposed development herein is expected to be built-out and occupied by 2025, thus, within a five-year horizon from the original date of TIA study as identified in the previous submissions.

2.0 Screening

The City's TIA Guidelines contain a screening form that must be reviewed and completed to determine if a TIA is required for the proposed development. There are three triggers as part of the screening analysis: trip generation trigger, location trigger and safety trigger.

The **trip generation trigger** is satisfied as the proposed industrial development exceeds the 5,000 sq. m threshold.

The **location trigger** is not satisfied as the subject property is not located in a Design Priority Area (DPA), Transit-Oriented Development (TOD) zone, nor fronting a roadway that is part of the City's Transit Priority, Rapid Transit or Spine Bicycle Networks.

The **safety trigger** is satisfied as the posted speed limit on Boundary Road is 80 km/h and three of the proposed site accesses are within 300 metres of the signalized intersection of Thunder Road and Boundary Road. Additionally, City staff identified concerns per the pre-application notes dated December 23, 2019, regarding the location of the proposed site accesses to Thunder Road particularly near the horizontal curve.

Therefore, a TIA is required to support the proposed development leading into the next step of scoping the work. The completed screening form is included as **Appendix B**.

3.0 Scoping

3.1 Existing Conditions

3.1.1. Roadways

The boundary road network is described in Table 3-1.

		Roadway					
Feature	Highway 417	Thunder Road	Boundary Road	Mitch Owens Road	Amazon Way		
Direction	Two-way (East-West)	Two-way (East-West)	Two-way (North-South)	Two-way (East- West)	Two-way (East-West)		
Jurisdiction	MTO	Ottawa	Ottawa	Ottawa	Private		
Classification	Highway	Collector	Arterial (Regional Road 41)	Arterial (Regional Road 8)	Private Road		
Speed Limit	110 km/h posted ¹ 40 km/h advised for ramps	60 km/h posted	80 km/h posted	80 km/h posted	15 km/h posted		
Span	Highway 17 to Quebec	Ramsayville Road to Boundary Road	Russel Road to Craig Street	Regional Road 49 to Boundary Road	Boundary Road to within the site		
Alignment in Study Area	Straight and Flat	45m radius curve west of Boundary Road, straight westerly Flat	Straight and Flat	Straight and Flat	Straight and Flat		
Existing Developments in Study Area	None	Residential dwellings on south side, gas- station at southwest corner of intersection with Boundary Road	Distribution centre and other commercial uses, gas-station at southwest corner of intersection with Thunder Road	None	Distribution centre (Amazon)		
Number of travel lanes	Four	Two	Тwo	Two	Two		
Divided?	Yes	No	No	No	No		
Intersection Control	Signal control at East Terminal and stop control at West Terminal	Signal control at Boundary Road	Signal control at Thunder Road and Amazon Way	Stop control at Boundary Road	Signal control at Boundary Road		

Table 3-1: Boundary Road Network – Roadways

Note 1: The posted speed limit of 110 km/h is a part of an MTO Pilot Project for 110 km/h speed limits within Ontario.

Figure 2 illustrates the existing boundary road network lane configurations and intersection control.

3.1.2. Intersections

Table 3-2 outlines the existing traffic control, configurations, and pedestrian crossing provisions at the intersections on the boundary road network.

Intersection	Control	Approaches	Major Street	Lane Configurations	Pedestrian Crossing
Boundary Road and Highway 417 Westbound Terminal	Stop (Minor Street)	3	Boundary Road	NBTR SBLT WBLR	None
Boundary Road and Highway 417 Eastbound Terminal	Signal	3	Boundary Road	NBL NBT SBTR EBL EBR – channelized	South and West Approaches
Boundary Road and Thunder Road / Amazon Way	Signal	4	Boundary Road	SBL SBTR NBL NBT NBR WBTL WBR EBTLR	All Approaches
Boundary Road and South Amazon Access	Stop (Minor Street)	3	Boundary Road	NBTR SBL SBT WBLR	East Approach
Boundary Road and Mitch Owens Road	Stop (Minor Road)	3	Boundary Road	EBR EBL NBTL SBR SBT	None

The Amazon Facility Y0W1 has recently been constructed in the study area. A review of the supporting "Transportation Impact Study Addendum #1" prepared by Novatech (dated April 2018, herein referred to as the Novatech study) indicates that roadway improvements were recommended along Boundary Road at the Amazon site accesses, and the Highway 417 south ramp terminal. The intersection improvements were implemented in 2019 including auxiliary turn lanes at the intersections, as well as traffic signal control at the intersections of Boundary Road and Thunder Road / Amazon Access, and Boundary Road and Highway 417 south ramp terminal.

3.1.3. Adjacent Driveways

There are several existing driveways on the boundary road network within 200 metres of the proposed site accesses as described below:

- Four driveways to residential dwellings on the south side of Thunder Road, west of the proposed site access to 6150 Thunder Road;
- One driveway to a residential dwelling on the south side of Thunder Road, between the proposed site accesses to 6150 Thunder Road and the subject property. This driveway will be removed as part of the development proposal;
- One driveway to a gas station on the south side of Thunder Road, at the southwest corner of Thunder Road and Boundary Road;
- One driveway to a gas station on the west side of Boundary Road, at the southwest corner of Thunder Road and Boundary Road;

- One driveway to a restaurant on the west side of Boundary Road, north of the proposed site access to Building C;
- Two driveways to residential dwellings on the west side of Boundary Road, south of the proposed site access to Building C (these dwelling units are within the development boundary and thus would be replaced by the development build-out);
- One driveway to a commercial use on the west side of Boundary Road, south of the proposed site access to Building C;
- One driveway to a residential dwelling on the east side of Boundary Road at the southeast corner of Thunder Road and Amazon Way;
- Two driveways to a commercial use on the east side of Boundary Road, north of the proposed site access to Building C;
- One driveway to the Amazon Facility on the east side of Boundary Road, opposite the proposed site access to Building C;
- Two driveways to commercial properties on the east side of Boundary Road, south of the proposed site access to Building C; and
- One driveway to a residential dwelling on the east side of Boundary Road, south of the proposed site access to Building C.

3.1.4. Existing Transit Services

OC Transpo operates one transit route within the study area. **Table 3-3** outlines the existing transit route, direction, days of operation, peak hour headways, and the location of bus stops in the study area.

Route	Direction	Span	Days of Operation	Peak Hour Headways (min)	Bus Stops in Study Area
Route 222 (OC Transpo)	West (AM Peak) East (PM Peak)	Rockdale Road to Blair Station	Monday to Friday (6:00AM - 9:00AM and 3:00PM – 6:00PM)	60	None (Bus stop 1.25 km north of site on Boundary Road at GreyHawk Golf Club

Table 3-3: Existing Transit Services

As outlined above, one bus route operates within the study area but does not actually service the immediate site frontage nor the nearby distribution centre. As there are no pedestrian facilities on Boundary Road between the site and the existing bus stop at GreyHawk Golf Club, there is a lack of convenient transit accessibility to and from the immediate study area. Additionally, the route only operates westbound (from Rockdale Road to Blair Station) during the weekday a.m. peak period and vice versa during the weekday p.m. peak period.

3.1.5. Existing Active Transportation Facilities

The existing active transportation facilities on the boundary road network are described in Table 3-4.

Roadway	Pedestrian Facilities	Separation from Roadway	Cycling Facilities	Separation from Roadway
Highway 417	None	N/A	None	N/A
Thunder Road	None	N/A	None	N/A
Boundary Road	None	N/A	Paved Shoulders – Highway 417 Eastbound Terminal to South Amazon Access	None
Mitch Owens Road	None	N/A	None	N/A

Table 3-4: Existing Active Transportation Network

As outlined above, the only existing pedestrian or cycling facilities in the study area are paved shoulders on Boundary Road between Highway 417 Eastbound Terminal to the South Amazon Access.

3.1.6. Area Traffic Management

There are no Area Traffic Management measures in the study area nor are there any Area Traffic Management studies in progress.

3.1.7. Existing Traffic Volumes

Commissioned traffic counts were provided by the proponent and collected during the weekday peak periods (6:00 a.m. – 10:00 a.m. and 3:00 p.m. – 7:00 p.m.) on January 7, 2020. The existing traffic volumes are illustrated in **Figure 3** and the traffic count data is included as **Appendix C**.

The recorded volumes on the boundary road network were auto traffic including heavy trucks. No pedestrian volumes were observed during the weekday a.m. and p.m. count periods.

3.1.8. Collision History

Historical collision data was provided by the proponent from January 1, 2014, to December 31, 2018. A collision analysis was conducted to identify any existing collision trends in the area, with the critical threshold per the City's guidelines being more than six collisions within a five-year time frame for any collision type. The collision data is included as **Appendix D**.

 Table 3-5 outlines the collision frequency by type, severity, and weather conditions in the area.

Intersection	Collision Type	Severity	Weather Conditions	
Boundary Road and Highway 417 Westbound Ramp Terminal	Angle – 2 Rear-End – 5 Sideswipe – 1 Single Manned Vehicle (SMV)/Other – 1 Total - 9	Fatal – 1 Property Damage (PD) Only - 8	Rain – 1 Clear - 8	
Boundary Road and Highway 417 Eastbound Ramp Terminal	Rear-End – 3 SMV/Other – 1 Total - 4	Injury – 1 PD Only - 3	Rain – 2 Clear – 2	
Boundary Road and Thunder Road	Turning Movement – 2 Total - 2	PD Only - 2	Snow – 1 Clear – 1	
Boundary Road and Mitch Owens Road	Angle – 7 Rear-End – 3 SMV/Other – 8 Total - 18	Injury – 3 PD Only – 15	Rain – 1 Snow – 2 Fog – 3 Clear - 12	

Table 3-5: Collision History

As outlined above, the only collision patterns in the area that exceeds the City's threshold of six collisions within five years are angle collisions and SMV / other collisions at the intersection of Boundary Road and Mitch Owens Road, with seven and eight collisions (respectively) in the five-year time period.

Therefore, the TIA will include a safety analysis of the intersection of Boundary Road and Mitch Owens Road to identify existing conditions at the intersection and opportunities to address the pattern of angle collisions and SMV / other collisions, particularly under future conditions with the inclusion of development generated traffic.

3.2 Future Planned Conditions

3.2.1. Roadway Improvements

No future roadway capacity improvements nor alternative transportation infrastructure plans have been identified on Thunder Road nor Boundary Road in the study area per the City's Transportation Master Plan (2013). Further, several roadway improvements have recently been implemented on Boundary Road to support the Amazon Facility build-out.

However, the City is currently updating their Transportation Master Plan which may include improvements to Thunder Road or Boundary Road. The City can confirm if any future improvements are planned in the study area.

3.2.2. Background Developments

A review of the City's development applications map indicates a background development located on the properties at 5471-5613 Boundary Road and 5508-5800 Frontier Road. The development application is for Site Plan Control and is for a future waste management facility for the Capital Region Resource Recovery Centre (CRRRC). Thus, this development will be accounted for in the TIA. In the absence of current anticipated development build-out timing, build-out of the development will be accounted for under all future horizon years. Additionally, as requested by the City and MTO, the background development located at 5494, 5500 & 5510 Boundary Road was included in the analysis. Per the TIA dated April 2021 (prepared by Novatech), the background development proposes a freight dock and warehouse facility of approximately 5,593 m² and 120 employees. The TIA was in support of an Official Plan Amendment and Zoning By-Law Amendment applications with an anticipated buildout year of 2021. As such, the development is accounted for within the TIA under all future horizon years.

3.3 Study Area

The study area for the TIA consists of the following study intersections:

- Highway 417 and Westbound Terminal
- Highway 417 and Eastbound Terminal
- Thunder Road and Boundary Road / Amazon Way
- Boundary Road and South Amazon Access / future site access
- Boundary Road and Mitch Owens Road

3.4 Time Periods

The employment nature of the proposed development will result in additional traffic on the boundary road network during the critical weekday commuter peak hours. Per typical TIS practice for employment developments, the TIA will analyze the weekday a.m. and p.m. peak periods.

3.5 Horizon Years

Per the City's guidelines, the year of full build-out and the five-year horizon must be analyzed. However, the MTO requires analysis of the year of full build-out, the five-year horizon and ten-year horizon. It can reasonably be assumed that the development will be built-out by 2025. Therefore, the TIA will analyze the 2025, 2030 and 2035 horizon years.

3.6 Exemptions Review

This section reviews possible exemptions in the scope of work elements of the TIA study per the City's guidelines. **Table 3-6** summarizes the City's possible exemptions and the developments status in meeting the exemption.

Module	Element	Exemption Condition	Development Status			
	Design Review Component					
Development	Circulation and Access	Only required for Site Plans	Not exempt			
Design	New Street Networks	Only required for Plans of Subdivision	Exempt			
	Parking Supply	Only required for Site Plans	Not exempt			
Parking	Spillover Parking	Only required for Site Plans where parking supply is 15% below unconstrained demand	Exempt			
Transportation Demand Management	All elements	Not required for Site Plans expected to have fewer than 60 employees and/or students on location at any given time	Not exempt			
Neighbourhood Traffic Management	Adjacent Neighbourhoods	Only required when the development relies on local or collector streets for access and total volumes exceed ATM capacity thresholds	Exempt			
Network Concept		Only required when proposed development generates more than 200 person-trips during the peak hour in excess of the equivalent volume permitted by established zoning	Not exempt			

Table 3-6: Possible Exemptions

Therefore, the TIA will contain analysis of Circulation and Access, Parking Supply, Transportation Demand Management, and Network Concept (changes to Transportation Master Plan concepts for auto and transit use).

4.0 Forecasting

4.1 Trip Generation Forecasts

Trip generation for the proposed development was forecasted using published data from the Institute of Transportation Engineers (ITE) Trip Generation Manual, 10th Edition. The ITE Trip Generation Manual is a compendium of industry collected trip generation data across North America for a variety of land uses and is used industry wide as a source for trip generation forecasts. Though the 11th Edition of the manual is now available, the 10th Edition rates continue to be used to maintain a consistent approach for trip generation forecasting compared to prior submissions.

4.1.1. Auto Trip Generation

The trip generation rates for Land Use Category (LUC) 150 "Warehousing" were applied to the proposed industrial buildings to forecast auto trips generated by the buildings. The fitted curve equation was applied to the proposed building GFAs from which a trip generation rate (trips generated per 1,000 sq. ft) was reverse calculated to determine non-auto trip generation rates.

The total trip generation for the proposed industrial buildings was categorized into passenger cars and heavy truck traffic. Per the ITE Trip Generation Handbook (3rd Edition), Table I.1, approximately 20% of site traffic generated by LUC 150 "Warehousing" on a weekday is heavy truck traffic. Site traffic generated by similar land use LUC 130 "Industrial Park" consists of between 1-31% of heavy truck traffic during the weekday peak hours with an average of 13%, and site traffic generated by similar land use

LUC 152 "High-Cube Warehouse/Distribution Centre" consists of between 9-29% of heavy truck traffic during the weekday peak hours. Therefore, an estimate of 20% for heavy truck traffic is considered reasonable.

Table 4-1 outlines the total auto trip generation for the proposed development. A comparison in the Table between the trip generation totals under both the current and the previous submission for the development proposal is also provided.

Building	GFA	Land use	-	Genera .M. Pea		-	Genero P.M. Pec	
Ū			In	Out	Total	In	Out	Total
	Previous Subm	nission Trip Gene	eration	(Septen	nber 202	21)		
A & B	400,041 sq. ft	Industrial	56 (77%)	17 (23%)	73 (0.18)	20 (27%)	56 (73%)	76 (0.19)
6150 Thunder Road	41,449 sq. ft	Industrial	23 (77%)	7 (23%)	30 (0.72)	9 (27%)	24 (73%)	33 (0.80)
С	48,007 sq. ft	Industrial	24 (77%)	7 (23%)	31 (0.65)	9 (27%)	25 (73%)	34 (0.71)
1	DEVELOPMENT TOTAL:		103	31	134	38	105	143
	Current Submission Trip Generation							
A & B	312,000 sq. ft	Industrial	49 (77%)	14 (23%)	63 (0.20)	18 (27%)	47 (73%)	65 (0.21)
6150 Thunder Road	41,449 sq. ft	Industrial	23 (77%)	7 (23%)	30 (0.72)	9 (27%)	24 (73%)	33 (0.80)
С	37,800 sq. ft	Industrial	23 (77%)	7 (23%)	30 (0.65)	9 (27%)	23 (73%)	32 (0.71)
1	DEVELOPMENT TOTAL:		95	28	123	36	94	130
		Net Differ	ence					
A & B	-80,041 sq. ft	Industrial	-7	-3	-10	-2	-9	-11
6150 Thunder Road	0 sq. ft	Industrial	0	0	0	0	0	0
С	-10,207 sq. ft	Industrial	-1	0	-1	0	-2	-2
	DEVELOPMENT TOTAL:			-3	-11	-2	-11	-13

The proposed development (excluding the adjacent 6150 Thunder Road future development) is projected to generate 104 and 110 two-way vehicle trips in the a.m. and p.m. peak hours, respectively. Given the estimated 20% split for heavy truck traffic, this constitutes a total of 84 and 88 two-way passenger car trips, and 20 and 22 two-way truck trips, both in the a.m. and p.m. peak hours, respectively.

Given the minor reduction (less than 10%) of the site trip generation compared to the trip generation of the previous submission that was used in the traffic analysis, no update to the traffic analysis has been performed. While trip distribution is applied separately to each of the building components which could result in differing impacts in certain circumstances, the trip generation for each building component is the same or is slightly less than the previous submission, ensuring that forecasted traffic operational impacts under a revised analysis would either be the same or slightly better at the study

intersections.

Table 4-2 continues the outlined auto trip generation methodology using the trip generation from the previous submission to determine the passenger car and truck trips that were used for traffic analysis.

Building	GFA	Land use	-	Genera M. Pea			Genero P.M. Peo	
	3		In	Out	Total	In	Out	Total
		Total Auto Trip	Generat	lion				
A & B	400,041 sq. ft	Industrial	56 (77%)	17 (23%)	73 (0.17)	20 (27%)	56 (73%)	76 (0.17)
6150 Thunder Road	41,449 sq. ft	Industrial	23 (77%)	7 (23%)	30 (0.72)	9 (27%)	24 (73%)	33 (0.80)
С	48,007 sq. ft	Industrial	24 (77%)	7 (23%)	31 (0.91)	9 (27%)	25 (73%)	34 (1.00)
	DEVELOPMENT TOTAL	:	103	31	134	38	105	143
	Passenger Car Trip Generation (80%)							
A & B	400,041 sq. ft	Industrial	45	14	59	16	45	61
6150 Thunder Road	41,449 sq. ft	Industrial	18	6	24	7	19	26
С	48,007 sq. ft	Industrial	19	6	25	7	20	27
	DEVELOPMENT TOTAL	:	82	26	108	30	84	114
	Heavy Truck Trip Generation (20%)							
A & B	400,041 sq. ft	Industrial	11	3	14	4	11	15
6150 Thunder Road	41,449 sq. ft	Industrial	5	1	6	2	5	7
С	48,007 sq. ft	Industrial	5	1	6	2	5	7
	DEVELOPMENT TOTAL	:	21	5	26	8	21	29

Table 4-2: Passenger Car and Truck Trip Generation – Traffic Analysis

Given that the proposed development is solely industrial use, no trip synergy is expected between the buildings and no pass-by trips are expected to be generated by the development. Therefore, no internal trip synergy reductions or pass-by trip reductions were applied.

4.1.2. Non-Auto Trip Generation

The City's TIA Guidelines provide methodology for forecasting non-auto trips using the ITE Trip Generation Rates, as follows:

- Assume a 10% non-auto mode share for trips generated by the proposed development for low-density areas with low transit mode shares; and
- Assume an average vehicle occupancy of 1.15 for the purposes of translating auto trips to person trips.

The methodology outlined above equates to a factor of 1.28 to be applied to the ITE auto trip rates for the current development proposal outlined in **Table 4-1** to forecast person trips. **Table 4-3** outlines the non-auto trip generation for the proposed development.

Building	GFA	Land use	-	Genera M. Pea		-	Genero P.M. Pec	
			In	Out	Total	In	Out	Total
	ו	Total Person Trip	Genero	ation				
A and B	400,041 sq. ft	Industrial	63 (77%)	18 (23%)	81 (0.20)	23 (27%)	60 (73%)	83 (0.21)
6150 Thunder Road	41,449 sq. ft	Industrial	29 (77%)	9 (23%)	38 (0.92)	11 (27%)	31 (73%)	42 (1.01)
С	48,007 sq. ft	Industrial	29 (77%)	9 (23%)	38 (0.79)	12 (27%)	32 (73%)	44 (0.92)
	DEVELOPMENT TOTAL:		121	36	157	46	120	166
	No	on-Auto Trip Ger	neration	(10%)				
A and B	400,041 sq. ft	Industrial	6	2	8	2	6	8
6150 Thunder Road	41,449 sq. ft	Industrial	3	1	4	1	3	4
С	48,007 sq. ft	Industrial	3	1	4	1	3	4
	DEVELOPMENT TOTAL	:	12	4	16	4	12	16

The full build-out of the proposed development (excludes 6150 Thunder Road future development) is expected to generate approximately 119 and 124 total person trips during the weekday a.m. and p.m. peak hour, respectively, and approximately 12 and 12 total non-auto trips during the weekday a.m. and p.m. peak hour, respectively.

4.2 Mode Shares

4.2.1. Existing Mode Shares

The National Capital Region (NCR) Origin-Destination survey was reviewed to identify existing mode shares in the study area for transit, walking, cycling, auto passengers and auto trips for the Traffic Assessment Zone (TAZ) that contains the proposed development.

The subject property is located in the Rural Southeast TAZ. Thus, the latest census data (2011) was analyzed for the Rural Southeast TAZ. Specifically, the mode shares for trips entering and exiting the Rural Southeast TAZ during the weekday a.m. and p.m. peak periods (6:30 a.m. – 9:00 a.m., and 3:30 p.m. – 6:00 p.m.) were analyzed and are outlined in **Table 4-4**.

Appendix E contains the NCR survey data.

Travel Mode	Weekde Peak I	•			Assumed Existing for	
	Inbound	Outbound	Inbound	Outbound	Ū	Study Area
Auto Driver	69%	68%	73%	64%	69%	77%
Auto Passenger	9%	14%	18%	30%	18%	20%
Transit	0%	6%	5%	3%	3%	3%
Cycling	0%	0%	0%	0%	0%	0%
Walking	2%	0%	0%	0%	0%	0%
Other ¹	20%	12%	4%	3%	10%	0%
Total	100%	100%	100%	100%	100%	100%

Note 1: Per the NCR survey methodology, "other" refers to trips made by school bus, paratransit, taxi, motorcycle/scooter, intercity/chartered bus, ferry, rail transit or air.

As outlined above, the average auto mode share is approximately 87% and the average non-auto mode share is approximately 13%. It is noted that the mode share for "other" is significantly higher during the weekday a.m. peak hour compared to the weekday p.m. peak hour. This could be attributed to school bus activity during the morning school hours which overlap with the weekday a.m. commuter peak hours, whereas afternoon school hours do not typically overlap with weekday p.m. commuter peak hours.

It is further noted that the Rural Southeast TAZ consists of suburban areas such as Greely and Metcafe which may act as the origin or destination points for walking and other trips such as school bus and taxi. The subject lands are located in a rural area with no nearby suburban areas that would act as origin or destination points for walking trips and other trips made by school bus, ferry, rail, or air.

Therefore, the existing "other" mode share for the immediate study area would realistically be expected to be none or negligible at best. Thus, the mode share for auto driver and auto passenger would be expected to be higher than the average from the census data. The transit mode share assumption of 3% is also considered conservative as the nearest transit facility in the study area is the Route 222 (OC Transpo) bus stop at the GreyHawk Golf Club located 1.25 kilometres north of the subject property and there are no existing pedestrian facilities on Boundary Road in the area. Additionally, the route only operates westbound (from Rockdale Road to Blair Station) during the weekday a.m. peak period and vice versa during the weekday p.m. peak period, further limiting transit service availability for employees of the proposed future development.

Based on these assumptions, the existing non-auto mode share in the study area is only 3% which is less than the City's standard base assumption of 10% for low-density areas. This means that the person and non-auto trip generation forecasts outlined in **Table 4-2** may be overstated.

4.2.2. Future Mode Shares Targets

Future mode share targets have been established for the proposed development considering the context of the development proposal, the assumed horizon year of 2025 for build-out, planned future roadway capacity and alternative transportation infrastructure improvements in the study area, and

non-auto trip generation opportunities of the proposed development.

 Table 4-5 outlines the future mode share targets for the proposed development.

Travel Mode	Assumed Existing Mode Share for Study Area	Target Mode Share (2025)	Rationale
Auto Driver	77%	70% (-7%)	Potential to increase auto passenger and transit mode shares may result in reductions in single-occupant vehicle (SOV) trips
Auto Passenger	20%	27% (+7%)	Potential for development to promote carpooling (e.g., provide preferred carpool parking spaces) to reduce SOV trips
Transit	3%	3%	Nearest transit stop is 1.25 kilometres north of site with no pedestrian facilities on Boundary Road, and weekday peak hour transit services are limited to westbound only in a.m. peak hour and eastbound only in p.m. peak hour
Cycling	0%	0%	Rural area with no nearby origin/destination points for cycling or walking trips, no planned cycling or walking infrastructure
Walking	0%	0%	improvements in the study area, warehouse distribution nature of development typically not associated with cycling or walking trips
Total	100%	100%	

Table 4-5:	Future	Mode	Share	Targets
------------	--------	------	-------	---------

As outlined above, a heavy reliance on auto travel is still expected in the future given the warehouse distribution nature of the proposed development, the rural context of the study area with no nearby origin or destination points for walking or cycling trips, and the absence of planned alternative transportation infrastructure improvements in the study area.

However, there are potential opportunities for the proposed development to reduce single-occupant vehicle (SOV) trips by promoting carpooling (e.g., provide preferred carpool parking spaces and incentives for employees to travel together), thus reducing the SOV trips generated by the proposed development. Co-ordination with City staff should also occur to list the proposed future development on the City's ride-matching portal to increase and encourage carpooling opportunities for employees.

4.3 Trip Distribution and Assignment

4.3.1. Employee Trip Distribution

The employee trips generated by the proposed development will be distributed to the road network based on origin and destination data from the NCR survey (2011) for the Rural Southeast and Rural East TAZ, given that the subject property is adjacent to the Rural East TAZ. The percentage of trips from origin points outside of the study area entering the study area during the weekday a.m. peak hour were analyzed, and the following trip distribution was derived:

- 35% to and from the south via Boundary Road
- 5% to and from the south/west via Mitch Owens Road

- 20% to and from the north via Boundary Road
- 25% to and from the west via Highway 417
- 15% to and from the east via Highway 417

Appendix E contains the NCR survey data and **Appendix F** contains the trip distribution analysis based on percentage of trips from various origin points.

It is noted that this trip distribution is similar to the trip distribution that was applied to the "Transportation Impact Study Addendum #1" prepared by Novatech for the Amazon Warehouse and Distribution Facility (YOW1) that was recently constructed in the study area. The study was prepared in April 2018 and is herein referred to as the Novatech study.

Employee trip distribution was derived in the Novatech study based on:

- origin and destination data provided by the proponent;
- origin and destination data from the NCR survey (2011) for the Rural Southeast and Rural East TAZ; and
- the population of surrounding communities per Statistics Canada.

The rationale listed above are accepted justification for trip distribution assumptions per the City's TIA Guidelines. Additionally, the 2011 NCR survey data used in the Novatech study still reflects the latest NCR survey data that is currently available.

The assumed trip distribution for employees in the Novatech study is as follows:

- 30% to and from the south via Boundary Road
- 5% to and from the south/west via Mitch Owens Road
- 20% to and from the north via Boundary Road
- 25% to and from the west via Highway 417
- 20% to and from the east via Highway 417

The study was approved by the City in 2018 and the proposed development will operate similarly to this warehouse and distribution facility. Therefore, given the similar land use and the similar trip distributions, the employee trip distribution in the Novatech study will be applied to this TIA for consistency.

4.3.2. Heavy Truck Trip Distribution

The heavy truck trips generated by the proposed development will be distributed to the road network based on expected catchment areas for heavy trucks. The City of Ottawa and surrounding areas, as well as the Gatineau areas of Quebec are considered to be the major truck origin and destination points to the west, and the Montreal and surrounding areas are considered to be the major truck origin and destination point to the east. Therefore, a reasonable truck distribution is as follows:

- 60% to and from the west via Highway 417
- 40% to and from the east via Highway 417

Heavy truck trip distribution was derived in the Novatech study based on logical routing assumptions (given Ottawa to the west and Quebec to the east via Highway 417), as follows:

- 65% to and from the west via Highway 417
- 35% to and from the east via Highway 417

Given the similar land use and the similar assumed trip distributions, the heavy truck trip distribution in the Novatech study will be applied to this TIA for consistency.

4.3.3. Trip Assignment

Employee and truck trips generated by the proposed development is assigned to the road network based on the trip distribution outlined in the preceding subsections. Trips are assumed to travel to and from their origin and destination points based on the most convenient route available and the route with the shortest travel time.

For Buildings A and B, employees are expected to enter and exit the site via the easterly access to Thunder Road (located at the horizontal curve). Heavy trucks are largely expected to enter and exit the site via the westerly access to Thunder Road.

For Building C, most employee traffic are expected to enter the site via the proposed access to Boundary Road. Some employees and heavy trucks are expected to exit the site via the proposed easterly access to Thunder Road to turn left onto Boundary Road at the signalized intersection. Heavy trucks entering the Boundary Road access are expected to exclusively originate from or be destined for the Highway 417 interchange with Boundary Road, with no heavy vehicle movements expected coming from or going toward the south on Boundary Road.

For the 6150 Thunder Road future development, all employees and heavy trucks will enter and exit the site via their site access to Thunder Road.

Figures 8 and 9 outline the employee and heavy truck trip assignment, respectively.

4.4 Background Network Travel Demands

4.4.1. Background Transportation Network Plans

No future roadway capacity improvements nor alternative transportation infrastructure plans have been identified on Thunder Road nor Boundary Road in the study area per the City's Transportation Master Plan (2013). Further, several roadway improvements have recently been implemented on Boundary Road to support the Amazon Facility build-out.

As mentioned in the Screening and Scoping Report, the City is currently updating their Transportation Master Plan which may include improvements to Thunder Road or Boundary Road. The City can confirm if any future improvements are planned in the study area. However, for the purposes of this study, no background roadway improvements are assumed to occur.

The Novatech study that was prepared for the Amazon Facility recommended that the City consider implementing traffic signal control and an auxiliary northbound left-turn lane at the intersection of Boundary Road and Mitch Owens Road. The study found that under 2017 existing conditions, traffic signals and an auxiliary left-turn lane were warranted at the intersection, and that under future total conditions, the forecasted operations at the intersection were poor and indicated the need for traffic signal control. While this improvement has not been implemented as have the Novatech recommended improvements on Boundary Road at Highway 417 Eastbound Ramp Terminal and at Thunder Road / Amazon Way, this TIA will consider this recommendation. Therefore, the TIA will analyze the intersection of Boundary Road and Mitch Owens Road with and without the recommended improvements to compare operations and validate the Novatech recommendations.

4.4.2. Background Growth

Historical growth rates were derived from Annual Average Daily Traffic (AADT) and Summer Average Daily Traffic (SADT) trends on Highway 417 at the Boundary Road Interchange. The latest AADT and SADT data available are for 2016; thus, growth rates from 2012 to 2016 were analyzed. **Appendix G** contains the growth rate analysis.

A compounded growth rate of 0.19% compounded annually was determined from the AADT for Highway 417 between 2012 and 2016, and a compounded growth rate of 0.66% compounded annually was determined from the SADT for Highway 417 between 2012 and 2016. These low growth rates indicate low traffic growth in the study area.

The Novatech study applied a conservative growth rate of 2% compounded annually to existing traffic volumes to forecast future background traffic volumes. This growth rate is exclusive of background development generated traffic in the study area. Additionally, the "Traffic Impact Study – Addendum 2" prepared by Taggart Group of Companies for the future Capital Region Resource Recovery Centre (CRRRC) in the study area also applied a growth rate of 2% compounded annually.

Therefore, given the calculated growth rates in the study area and the growth rate applied in background studies, the 2% growth rate compounded annually will be applied in this TIA for consistency.

4.4.3. Background Developments

As discussed in **Section 3.2.2**, two background developments were considered in this TIA study. The background developments are the Capital Region Resource Recovery Centre (CRRRC)waste facility at 5471-5613 Boundary Road &5508-5800 Frontier Road; and the industrial warehouse development proposed at 5494, 5500, and 5510 Boundary Road.

Per Figure 3.1 from the "Traffic Impact Study – Addendum 2" prepared by Taggart Group of Companies for the CRRRC, the development is expected to add site traffic to the study intersections herein. The weekday peak hour volumes outlined in Figure 3.1 of the CRRC were added to the boundary road network under 2025, 2030 and 2035 future background conditions. **Appendix H.1** contains excerpts from the CRRRC TIS. **Figure 4.1** outlines the CRRC background site traffic.

Per Figure 3 of the 5494, 5500, and 5510 Boundary Road Transportation Impact Assessment (prepared by Novatech), the background development is expected to add traffic to the study intersections herein. The weekday peak hour volumes outlined in Figure 3 of the 5494, 5500, and 5510 Boundary Road TIA were added to the boundary road network under 2025, 2030, and 2035 future background conditions. **Appendix H.2** contains excerpts from the Novatech TIS. **Figure 4.2** outlines the background development site traffic.

4.5 Demand Rationalization

Preliminary capacity analysis was conducted for this forecasting report to determine if there are any locations or movements under future analysis scenarios where the forecasted demand exceeds capacity. Per the City's TIA guidelines, if the forecasted demand for a location or movement is expected to exceed capacity (i.e., volume-to-capacity ratio exceeding 1.00), then future travel demands must be rationalized to account for capacity limitations on the transportation network.

For the purposes of this analysis, the ultimate build-out scenario (2035 future total conditions) was analyzed. The analysis methodology follows the City's TIA guidelines for Synchro 9.2 inputs and modelling parameters and will be detailed in the TIA Strategy Report as part of the next step in the TIA process.

Figures 5, 6 and 7 outline the 2025, 2030 and 2035 future background traffic volumes, respectively, on the road network (with the growth rate outlined in Section 4.4.2 applied to the existing volumes plus the CRRC and Novatech background site traffic outlined in Figures 4.1 and 4.2). Figures 10, 11 and 12 outline the 2025, 2030 and 2035 future total traffic volumes, respectively (with the site trip assignment outlined in Figures 8 and 9 added to the future background traffic volumes).

Preliminary modelling of 2035 future total conditions indicates that the only movement expected to operate with a volume-to-capacity ratio exceeding 1.00 is the eastbound left-turn movement at Boundary Road and Mitch Owens Road during the weekday p.m. peak hour, with a ratio of 1.01. These operations are attributed to the reduced available capacity for the eastbound left-turn movement given the stop-controlled approach and the heavy through volumes on Boundary Road, as evidenced by the high forecasted average delay of 85 seconds.

However, these results are consistent with the findings of the Novatech study and as discussed earlier, the Novatech study recommended that the City implement traffic signal control and an auxiliary northbound left-turn lane at the intersection to improve traffic operations. If traffic signals are implemented, then the intersection is expected to operate with an average delay less than 20 seconds and a maximum volume-to-capacity ratio less than 0.80, thus resulting in no movements on the road network under 2035 future total conditions expected to exceed capacity.

Therefore, the TIA will analyze the intersection of Boundary Road and Mitch Owens Road with and without the recommended improvements to rationalize the future forecasted demand at the intersection.

5.0 Analysis

5.1 Development Design

5.1.1. Design for Sustainable Modes

As detailed in the Forecasting Report (March 2021), there is a heavy reliance on auto travel in the study area given the rural industrial nature of the area and the lack of existing dedicated pedestrian, cycling, and transit facilities. However, there are opportunities for the proposed development to promote non-auto mode of travel as detailed further in **Section 5.5**.

5.1.2. Circulation and Access

For Buildings A and B, employees are expected to enter and exit the site via the easterly access to Thunder Road (located at the horizontal curve). Heavy trucks are expected to enter and exit the site via the two accesses to Thunder Road.

For Building C, most employee traffic is expected to enter the site via the proposed access to Boundary Road. Some employees and heavy trucks are expected to exit the site via the proposed easterly access to Thunder Road to turn left onto Boundary Road at the signalized intersection. Heavy trucks entering the Boundary Road access are expected to exclusively originate from or be destined for the Highway 417 interchange with Boundary Road, with no heavy vehicle movements expected to come from or go toward the south on Boundary Road.

For future trips to the 6150 Thunder Road property, all employees and heavy trucks will enter and exit the site via their sole proposed access to Thunder Road.

Vehicle turning analysis was conducted at the site accesses and within the sites for the most constrained vehicle profiles expected to access the site. The purpose of this analysis is to determine if there are any expected vehicle maneuverability issues within the site.

Analysis was conducted for the following vehicle profiles:

- a passenger car (per TAC GDGCR standards) navigating the passenger car parking areas;
- a WB-20 tractor semi-trailer (per TAC GDGCR standards) navigating the heavy truck areas; and
- a pumper firetruck navigating around the industrial buildings.

Vehicle turning analysis indicates that there are generally no expected maneuverability constraints within the site. Internal site geometrics and details will be finalized at a later stage in the project.

Appendix I contains the vehicle turning diagrams for each vehicle profile.

5.2 Parking Analysis

The proposed parking supply for the development is outlined in Table 5-1.

Building	GFA (sq. m)	Proposed Passenger Car Parking Supply
A	14,493	122 spaces (4 accessible spaces)
В	14,493	126 spaces (4 accessible spaces)
С	3,510	43 spaces (2 accessible spaces)

Table 5-1: Proposed Passenger Car Parking Supply

5.2.1. Auto Parking

The minimum parking requirements for warehouse land uses in Area D "Rural" per the City of Ottawa Zoning By-Law 2008-250 (consolidated) is:

- 0.8 spaces per 100 sq. m for the first 5,000 sq. m of GFA, and
- 0.4 spaces per 100 sq. m for GFA greater than 5,000 sq. m.

 Table 5-2 outlines the minimum auto parking required for each building compared to the proposed supply for each building.

Building	GFA (sq. m)	Zoning Land Use	Minimum Spaces Required	Proposed Supply	Surplus or Deficiency
А	14,493	Warehouse	78 spaces	122 spaces	+44
В	14,493	Warehouse	78 spaces	126 spaces	+48
С	3,510	Warehouse	28 spaces	43 spaces	+15

Table 5-2: City of Ottawa Zoning By-Law Minimum Auto Parking Requirements

As outlined above, the proposed parking supply for each building exceeds the minimum requirements per the City's Zoning By-Law. Further, the modest surplus parking supply compared to requirements is deemed adequate given the lack of other travel modes available near the site.

In addition, the accessible parking space requirement of the City of Ottawa's accessibility design standards was assessed against the proposed supply. **Table 5-3** assesses the proposed accessible parking onsite.

Table 5-3: City of Ottawa Zoning By-Law Minimum Auto Parking Requirements

Building	Total Provided Parking	Minimum Accessible Spaces Required	Proposed Supply	Surplus or Deficiency
А	122 spaces	5	6 spaces	+1
В	126 spaces	5	6 spaces	+1
С	43 spaces	2	2 spaces	+0

Given the surplus parking, the proponent has acknowledged and shall provide the required 5 accessible spaces as part of the parking supply for each of Buildings A and B. Therefore, the overall proposed auto parking supply is sufficient.

5.2.2. Bicycle Parking

The minimum bicycle parking requirements for the proposed warehouse development per the City's Zoning By-Law are calculated as: 1 space per 2,000 sq. m of GFA. **Table 5-4** outlines the minimum bicycle parking required for each building.

Table 5-4: City of Otta	wa Zonina Bv-Law N	Ainimum Bicvcle Pai	kina Requirements
	wa zoning by zaw n		king kequiements

Building	GFA (sq. m)	Zoning Land Use	Minimum Bicycle Parking Spaces Required
А	14,493	Warehouse	8
В	14,493	Warehouse	8
С	3,510	Warehouse	2

Bicycle parking spaces will be provided for each building in conformance with the City's Zoning Bylaw to encourage cycling as a viable mode of transportation to and from the site. The location of bicycle parking has yet to be determined but will be placed conveniently near building entrances. 5.3 Boundary Streets

5.3.1. Multi-modal Level of Service

A multi-modal level of service (MMLOS) assessment was conducted for non-auto modes of transportation in the study area following the City's MMLOS guidelines. **Table 5-5 and 5-6** outlines the MMLOS for pedestrian, cycling, transit and truck modes. Note that the roadway segment evaluation applies to both travel directions. Unsignalized intersections were not evaluated given the MMLOS guidelines do not specify evaluation methods for unsignalized intersections.

Roadway		Boundary Road	Thunder Road	Mitch Owens Road		
Travel Mode	Parameter		-			
	Sidewalk Width		No sidewalk			
Pedestrian	Boulevard Width On-Street Parking Operating Speed AADT	N/A				
	Level of Service	F	F	F		
	Target Level of Service	No Target				
	Operating Speed ³	80km/h	60 km/h	80 km/h		
Cyclist	# of Travel Lanes Type of Bikeway Bike Lane Width Bike Lane Blockages Unsign. Lane Crossings		N/A			
	Level of Service	F	F	F		
	Target Level of Service	No Target				
Transit		Insufficient Data Requirements to Evaluate / No Transit Available on Boundary Roadways				
	Curb Lane Width	~3.5m	~3.5m	~3.5m		
	# of Travel Lanes	Two Travel Lanes (one per direction)				
Truck	Level of Service	С	С	С		
	Target Level of Service	С	No Target	С		
Auto		Discussed in Section 5.8				

Table 5-5: Roadway Segments MMLOS Evaluation

Note 1: It is assumed that employment areas are an appropriate land-use designation to evaluate only the best side of the street given the limited pedestrian volumes expected in the area.

Note 2: LOS target is assumed, as Official Plan has been updated and no longer reflects the official plan designations contained in Exhibit 22 of the MMLOS guidelines. "General Rural Area" was assessed as the most appropriate land use designation to apply to this context, and was used for the LOS targets.

Note 3: For the purposes of analysis, the speed limit of the roadway was applied as the operating speed of the roadway

Intersection Approach		Boundary Road and Thunder Road / Amazon Way			Boundary Road and EB Highway Ramp Terminal			
		North	South	East	West	North	South	Ramp ¹
Travel Mode	Parameter							
	Lanes	3	3	3	2	N/A ²	3	3
	Median	None	None	≤2.4m	None		None	>2.4m
	Left turn conflict	Perm.	Perm.	Pm+pt	Perm.		None	Pm+pt
	Right turn conflict	Perm.	Perm.	Perm.	Perm.		Perm.	Perm.
De de abdeur 1	Corner Radius	10-15m	10-15m	5-10m	10-15m		15-25m	15-25m
Pedestrian ¹	Total Points	70	70	71	85		76	68
	Crossing Delay (s)	43	43	43	43		33	33
		E	E	E	E	N/A	D	D
	Level of Service	E D						
	Target Level of Service	No Target						
	Right Turn Storage	None	25-50m	>50m	None	None	N/A	N/A
	# of Lanes Crossed for Left Turns	N/A	1	1	1	N/A	N/A	N/A
Cyclist ¹	Operating Speed ⁴	Refer to Table 1.						
-,	Level of Service	F	F	F	D		N/A	
		F			N/A ⁵			
	Target Level of Service	No Target						
Transit	Level of Service	Insufficie	ent Data Req	uirements to E	valuate / No T	ransit Availak	ole on Boundar	ry Roadways
	Eff. Corner Radius	10-15m	10-15m	5-10m	10-15m	>15m	>15m	>15m
	Receiving Lanes	1	1	1	1	1	1	1
Truck		E	E	F	E	С	С	С
	Level of Service	F			С			
	Target Level of Service	C			c			
Auto		Discussed in Section 5.7						

Table 5-6: Signalized Intersection MMLOS Evaluation

Note 1: No island refuge, or leading pedestrian phases at all study intersection. Right turns are allowed on red lights at all study intersection approaches. Crosswalk treatment is standard transverse markings at all study intersections.

Note 2: The north approach of Prince of Wales Drive and Colonnade Road does not have a pedestrian crossing.

Note 3: No dual left-turn lanes, dual-right turn lanes, or bike boxes present at any of the study intersections. Turning Speed assumed above 25km/h for analysis.

Note 4: For the purposes of analysis, the speed limit of the roadway was applied as the operating speed of the roadway.

Note 5: No turning movements are available for cyclists at the Boundary Road and EB Highway Ramp Terminal intersection, therefore, no LOS could be reliably determined.

The multi-modal level of service analysis results reflects the existing rural industrial nature of the area and the lack of existing dedicated pedestrian, cycling, and transit facilities on the road network. Additionally, no future multi-modal improvements are currently identified in the study area. The target Level of Service for general rural area indicates that all except the curb radii at the Boundary Road and Thunder Road / Amazon Way intersection is sufficient. However, the curb radii at the noted intersection assessed to be adequate given trucks accessing the Amazon site are directed to use the south Amazon access, and the road improvements were recently performed in part to accommodate this new access. Therefore, the boundary roadways accommodate non-vehicular travel modes adequately given the rural nature of the area.

Auto level of service is discussed separately in Section 5.7.

5.3.2. Road Safety Analysis

As identified in the Screening and Scoping Report, safety analysis was conducted for the intersection of Boundary Road and Mitch Owens Road to address the existing pattern of angle collisions and SMV / other collisions.

The dominant trend in the reported angle collisions is driver right-of-way conflicts with drivers turning left from the stop-controlled approach of Mitch Owens Road onto Boundary Road and colliding with northbound or southbound through traffic during clear weather and road surface conditions. There was no dominant trend in the reported SMV / other collisions, as they were observed to be relatively evenly distributed by direction, weather and road surface condition, time of day and driver action. These types of collisions are not uncommon on high-speed rural roadways.

A desktop review of the existing intersection indicates that the intersection is illuminated, the pavement markings and signage at the intersection appear to be in good condition, and there appears to be proper warning signs of the intersection at each intersection approach (stop ahead sign on Mitch Owens Road, and intersection ahead signs on Boundary Road). There is also a checkerboard sign at the east leg of the intersection facing eastbound traffic approaching from Mitch Owens Road. The intersection also features an overhead flashing beacon (flashing amber on Boundary Road and flashing red on Mitch Owens Road) to further emphasize the three-legged intersection and provide caution to approaching drivers. These measures appear to have been in place since 2012 (per desktop historical imagery), suggesting that these reported collisions are more attributed to driver error and inclement weather conditions (e.g., snow and ice) as opposed to insufficient traffic control at the intersection.

However, as discussed in the Forecasting Report, the Novatech study recommended the implementation of traffic signals and an auxiliary northbound left-turn lane at the intersection of Boundary Road and Mitch Owens Road (warranted as a "background" improvement without the Amazon Facility build-out). If these improvements were to be implemented by the City (as recommended in this TIA), then the traffic signal control would evenly distribute right-of-way at the intersection and address the angle collision trend observed at the intersection. The traffic signal control implementation would "interrupt flow" on Boundary Road and thus force drivers to stop on the red indication, thus potentially addressing the SMV / other collisions occurring from drivers along Boundary Road. The implementation of the proper traffic control signage and pavement markings at the signalized intersection.

5.4 Access Intersections Analysis and Design

5.4.1. Access Location

5.4.1.1 Adjacent Driveways

As detailed in the Screening & Scoping Report (March 2021), there are several existing driveways on the boundary road network within 200 metres of the proposed site accesses as described below:

- Four driveways to residential dwellings on the south side of Thunder Road, west of the proposed site access to the 6150 Thunder Road property;
- One driveway to a residential dwelling on the south side of Thunder Road, between the proposed site accesses to the 6150 Thunder Road property and the subject lands. This driveway will be removed as part of the development proposal;
- One driveway to a gas station on the south side of Thunder Road, at the southwest corner of Thunder Road and Boundary Road;
- One driveway to a gas station on the west side of Boundary Road, at the southwest corner of Thunder Road and Boundary Road;
- One driveway to a restaurant on the west side of Boundary Road, north of the proposed site access to Building C;
- Two driveways to residential dwellings on the west side of Boundary Road, south of the proposed site access to Building C (these dwelling units are within the development boundary and thus would be replaced by the development build-out);
- One driveway to a commercial use on the west side of Boundary Road, south of the proposed site access to Building C;
- One driveway to a residential dwelling on the east side of Boundary Road at the southeast corner of Thunder Road and Amazon Way;
- Two driveways to a commercial use on the east side of Boundary Road, north of the proposed site access to Building C;
- One driveway to the Amazon Facility on the east side of Boundary Road, opposite the proposed site access to Building C;
- Two driveways to commercial properties on the east side of Boundary Road, south of the proposed site access to Building C; and
- One driveway to a residential dwelling on the east side of Boundary Road, south of the proposed site access to Building C.

The existing private driveways not located within the subject property limits are spaced more than 15 metres from the proposed 6150 Thunder Road and Building C site accesses to Thunder Road and Boundary Road and spaced more than 60 metres from the proposed site accesses along Thunder Road serving Buildings A and B (per the City's Private Approach By-law No. 2003-477, Section 25.1.m.ii).

5.4.1.2 Number of Proposed Accesses

Per the City's Private Approach By-law No. 2003-477, Section 25.1.a., the maximum number of private approaches permitted to a property is:

- One two-way access with frontage less than 35 metres;
- Two two-way accesses with frontage between 35 150 metres; and
- An additional two-way access for every 90 metres of frontage exceeding 150 metres.

The property frontage for Building A and Building B along Thunder Road is approximately 300 metres; thus, technically permitting four two-way accesses to Thunder Road. The development proposes two two-way accesses to Thunder Road, thus satisfying the City's By-law.

The property frontage to 6150 Thunder Road along Thunder Road is approximately 135 metres; thus, technically permitting two two-way accesses to Thunder Road. The development proposes one two-way access to Thunder Road, thus satisfying the City's By-law.

The property frontage to Building C along Boundary Road is approximately 85 metres; thus, technically permitting two two-way accesses to Boundary Road. The development proposes one two-way access to Boundary Road, thus satisfying the City's By-law.

5.4.1.3 Sight Distance Analysis

The available sightlines at the proposed accesses were assessed for conformance with the minimum sight distance requirements set out in the TAC GDGCR. The design speed of a collector roadway in a rural environment is typically 10-20 km/h greater than the posted speed limit. The posted speed limit on Thunder Road is 60 km/h.

However, the sharp horizontal curve on Thunder Road approaching Boundary Road currently has a curve advisory speed of 30 km/h which would lower design speeds as a result. Thus, a conservative design speed of 50 km/h was applied to the 6150 Thunder Road access facing east.

There is another horizontal curve on Thunder Road west of the subject property which, while not as tight as the horizontal curve approaching Boundary Road, would reduce operating speeds along Thunder Road approaching the curve and within the straight segment between the two curves. Therefore, a design speed of 70 km/h was applied to the site accesses west of the 6150 Thunder Road Access.

A design speed of 100 km/h was assumed for Boundary Road given the 80 km/h posted speed limit. **Table 5-7** outlines the required sight distance at the site accesses.

Parameter	Thunder Road and Site Access A	Road Acc		Boundary Road and Site Access / South Amazon Access
Design Vehicle	WB-20 Tractor Semi-Trailer	WB-20 Tractor Semi-Trailer	WB-20 Tractor Semi-Trailer	WB-20 Tractor Semi-Trailer
Posted Speed Limit of Roadway	60 km/h	60 km/h	60 km/h	80 km/h
Assumed Design Speed	70 km/h	70 km/h	70 km/h facing west) 50 km/h (facing east)	100 km/h
Base Time Gap	11.5 s ¹	11.5 s ¹	11.5 s ¹	11.5 s ¹
Additional Time Gap	None	None	None	None
Vertical Alignment of Roadway	Relatively flat	Relatively flat	Relatively flat	Relatively flat
Horizontal Alignment of Roadway	Curves east and west of subject property	Curves east and west of subject property	Curves east and west of subject property	Straight
Sight Distance Required	225 m ²	225 m ²	225 m ² (facing west) 160 m ² (facing east)	320 m ²
Sight Distance Available	>250 m (facing west) To Boundary Road / Thunder Road intersection (facing east)	>250 m (facing east and west)	>250 m ((facing east and west)	>350 m (facing north and south)

Table 5-7: Sight Distance Requirements

Note 1: Time gap for left-turning WB-20 trucks from a stop onto a two-lane highway with no median and with a grade less than 3%. Value from Table 9.9.3 in the GDGCR.

Note 2: Sight distance values calculated from Intersection Sight Distance equation 9.9.1 in the GDGCR.

The proposed site access locations satisfy minimum sight distance requirements, as demonstrated in the Sight Distance assessment drawings included in **Appendix O**. Further, the sight distance requirements herein are conservative as speed is expected to be lower than the design speed given the curvature on Thunder Road and the higher driver eye height of the design vehicle may further improve available sightlines.

5.4.2. Access Width

Per the City's Private Approach By-law No. 2003-477, the maximum width of a private approach cannot exceed 9.0 metres, but a higher width may be permitted for transport loading areas.

The proposed accesses to Thunder Road and Boundary Road range in width from 8.0 - 9.4 metres, thus exceeding 9.0 metres. However, these accesses will be utilized by heavy trucks to access the trucking areas for each building, thus justifying the excess width of 0.4 metres.

Access alignment and geometrics can be confirmed at a later stage in the project.

5.4.3. Traffic Control and Turn Lane Warrant Assessment

5.4.3.1 Signal Warrant Analysis

A signal warrant analysis was conducted for the proposed site accesses to Thunder Road and proposed site access to Boundary Road under the ultimate 2035 horizon year. The TAC signal warrant analysis was applied per the City's TIA Guidelines.

Given the rural nature of the study area and the higher speed limits, a "free flow" type was applied to this warrant. **Table 5-8** outlines the results of the signal warrant analysis.

Location	Flow Type	Flow Type Horizon Number of lanes Year on major road		Traffic Signals Warranted?
Thunder Road and Site Access A	Free Flow	2035	Two	No
Thunder Road and Site Access B	Free Flow	2035	2035 Two	
Thunder Road and 6150 Thunder Road Access	Free Flow	2035	Two	No
Boundary Road and South Amazon Access / Site Access	Free Flow	2035	Two	No
Boundary Road and Highway 417 Westbound Ramp	Free Flow	2035	Two	No

Table 5-8: Signal Warrant Analysis Results

The results of the signal warrant analysis indicate that traffic signals are not warranted at the proposed site accesses to Thunder Road and proposed site access to Boundary Road opposite the South Amazon access. These results are attributed to the low forecasted minor-street volumes at the site accesses not triggering the minimum thresholds for traffic signal justification.

Appendix J contains the signal warrant sheets.

5.4.3.2 Left-Turn Lane Warrant Analysis

Auxiliary left-turn lane warrant analysis was conducted for the proposed site accesses to Thunder Road and proposed site access to Boundary Road under 2035 future total conditions. The analysis was conducted using the Ministry of Transportation (MTO)'s "Design Supplement for TAC Geometric Design Guide for Canadian Roads – April 2020."

Consistent with the sight distance analysis, a design speed of 70 km/h and 100 km/h was assumed for Thunder Road and Boundary Road, respectively. **Table 5-9** outlines the results of the left-turn lane warrant analysis.

Location	Movement	Design Speed	Horizon Year	Number of lanes on major road	Left-Turn Lane Storage Requirement?
Thunder Road and Site Access A	Westbound left- turn movement	70 km/h	2035	Two	None
Thunder Road and Site Access B	Westbound left- turn movement	70 km/h	2035	Two	None
Thunder Road and 6150 Thunder Road Access	Westbound left- turn movement	70 km/h	2035	Two	None
Boundary Road and South Amazon Access / Site Access	Northbound left- turn movement	100 km/h	2035	Two	None

Table 5-9: Left-Turn Lane Warrant Analysis Results

The results of the left-turn lane analysis indicate that auxiliary westbound left-turn lanes are not required on Thunder Road at the site accesses given the low forecasted approaching and opposing volumes along Thunder Road.

An auxiliary northbound left-turn lane is also not warranted on Boundary Road at the site access opposite the South Amazon access given the low forecasted northbound left-turn volumes not triggering the minimum thresholds for the left-turn lane warrant. However, there is an existing runout lane and taper at the south approach from the existing southbound left-turn lane on Boundary Road entering the South Amazon access that could be repurposed to provide a northbound left-turn lane into the site access. Left-turn lanes should be provided on opposing approaches at an intersection even if a left-turn lane is only warranted or existing at one approach, as to maintain geometric alignment along the roadway through the intersection. **Appendix K** contains the left-turn lane warrant analysis worksheets.

Therefore, it is recommended that the existing runout lane at the south approach of Boundary Road and South Amazon Access / Site Access be repurposed to provide an auxiliary northbound left-turn lane with a storage length of 15 metres. A 15 metre storage is sufficient given trucks will not be permitted at the accesses.

5.4.3.3 Right-Turn Lane Warrant Analysis

Auxiliary right-turn lane warrant analysis was conducted for the proposed site accesses to Thunder Road and proposed site access to Boundary Road under 2035 future total conditions. Per the Transportation Association of Canada (TAC) Geometric Design Guide for Canadian Roads (GFGCR), June 2017, a right-turn auxiliary lane on an urban or rural road should be implemented at unsignalized intersections when the volume of decelerating or accelerating vehicles compared with the through traffic volume causes undue hazard.

It is a common convention in traffic engineering that an auxiliary right-turn lane should be considered where the right-turn volume exceeds 60 vehicles per hour. Therefore, this threshold was applied to the proposed site accesses to gauge right-turn lane requirements.

 Table 5-10 outlines the results of the right-turn lane warrant analysis.

Location	Movement	Design Speed	Horizon Year	Forecasted Critical Right- Turn Volume ¹	Right-Turn Lane Storage Requirement?
Thunder Road and Site Access A	Eastbound right- turn movement	70 km/h	2035	0 veh/hr	None
Thunder Road and Site Access B	Eastbound right- turn movement	70 km/h	2035	0 veh/hr	None
Thunder Road and 6150 Thunder Road Access	Eastbound right- turn movement	70 km/h	2035	0 veh/hr	None
Boundary Road and South Amazon Access / Site Access	Southbound right-turn movement	100 km/h	2035	17 veh/hr (13 passenger cars, 4 heavy trucks)	None

Note 1: Volumes forecasted for 2035 future total conditions.

The results of the right-turn lane analysis indicate that auxiliary right-turn lanes are not required at the proposed site accesses given the low forecasted right-turning volumes at the site accesses.

5.4.3.4 Access Operations

The traffic operations at the proposed site accesses are detailed in Section 5.7.7 of this report.

5.5 Transportation Demand Management (TDM) Analysis

As detailed in the Forecasting Report (March 2021), there is a heavy reliance on auto travel in the study area given the rural industrial nature of the area and the lack of existing dedicated pedestrian, cycling, and transit facilities. The existing auto modal split is assumed to be 97% and the non-auto modal split is assumed to be 3% (per the Forecasting Report).

A heavy reliance on auto travel is still expected in the future given the warehouse distribution nature of the proposed development, the rural context of the study area with no nearby origin or destination points for walking or cycling trips, and the absence of planned alternative transportation infrastructure improvements in the study area. Given the warehousing and distribution focus of the proposed development, employees would be required to physically work at the site during set hours, thus further restricting TDM opportunities such as flexible working hours and telework.

However, there are potential opportunities for the proposed development to reduce single-occupant vehicle (SOV) trips as described in this section.

5.5.1. Active Transportation

The development could encourage cycling to and from the proposed development via the provision of bicycle parking spaces in conformance with the City's Zoning By-Law requirements. Additionally, further cycling provisions such as secure bicycle parking, lockers and showers could be implemented to encourage employees to bike to and from work.

5.5.2. Carpooling

The development could promote carpooling by providing preferred carpool parking spaces and incentives for employees to travel together. The provision of carpool parking spaces will encourage carpooling as an alternate mode of transportation with benefits such as cost savings, reduced environmental pollution, and reduced commuting stress. Encouraging carpooling would contribute to a reduction in SOV trips and a reduction in peak hour auto trip generation and peak auto parking demand on site.

Co-ordination with City staff should occur to list the proposed future development on the City's ridematching portal to help employees find carpool partners and increase and encourage carpooling opportunities for employees.

An internal ride-matching service to employees could also be implemented to maximize carpooling opportunities for employees, as carpooling with coworkers may be more appealing to employees compared to carpooling with strangers.

5.5.3. Emergency Ride Home

The employer could set up an Emergency Ride Home program that guarantees non-driving commuters that they will be taken home immediately and in a convenient manner in the case of unplanned circumstances which require employees to get home immediately. This program would provide reimbursements to employees for taxi, carshare or rental car usage to facilitate this Emergency Ride Home incentive, which may encourage employees to carpool.

5.5.4. Promotion and Education

There are opportunities for the implementation of other "soft" TDM measures. For example, the employer could provide information on available TDM opportunities such as preferred carpool parking, ride-matching opportunities, and programs such as Emergency Ride Home to educate employees of alternate modes of transportation. This promoted awareness of TDM opportunities can encourage the use of alternate modes of transportation, reduce SOV trip to and from the site, and reduce peak parking demand at the site.

5.5.5. TDM Program Management

A TDM program could be established by the employer (tenant) to monitor the implementation and effectiveness of proposed TDM measures. This could include an internal or external program coordinator to oversee performance monitoring (e.g., in the form of employee feedback surveys or parking utilization surveys to determine if the TDM measures are effective in reducing auto demand), and to co-ordinate with the City on available TDM opportunities.

5.5.6. Summary of Potential TDM Measures

 Table 5-11 outlines the recommended TDM measures to reduce single-occupant vehicle (SOV) trips.

Measure	Implementation
Bicycle Storage and Amenities	Full build-out (2025)
Preferential parking for Carpooling	Full build-out (2025)
Ride-Matching Service (co-ordination with City and/or internal service)	Full build-out (2025)
Emergency Ride Home	Full build-out (2025)
Promotion and Education	Full build-out (2025)
TDM Program Management	Full build-out (2025)

Table 5-11: Summary of Potential TDM Measures and Implementation

Appendix N highlights the TDM measures that may be applied to the proposed development to further capitalize on the existing and future TDM opportunities in the area.

5.6 Review of Network Concept

As detailed in the Forecasting Report and Screening & Scoping Reports, no future roadway capacity improvements nor alternative transportation infrastructure plans have been identified on Thunder Road nor Boundary Road in the study area per the City's Transportation Master Plan (2013) and proposed 2031 network concept. Further, several roadway improvements have recently been implemented on Boundary Road to support the Amazon Facility build-out.

The City is currently updating their Transportation Master Plan which may include improvements to Thunder Road or Boundary Road. The City can confirm if any future improvements are planned in the study area. However, for the purposes of this study, no background roadway improvements are assumed to occur.

However, forecasts of 2025, 2030 and 2035 future background traffic volumes indicate heavy through volumes along Boundary Road that exceed the typical capacity of 900 vehicles per hour per lane during the weekday a.m. and p.m. peak hours.

Table 5-12 outlines the forecasted 2030 future background traffic volumes on Boundary Road by direction and time period, in line with the horizon year for the network concept. Volumes exceeding 900 veh/hr are highlighted.

Segment	Weekday A. <i>I</i> Volume		Weekday P.M. Peak Hour Volume (veh/hr)		
•	Northbound	Southbound	Northbound	Southbound	
Boundary Road north of Highway 417 Westbound Ramp Terminal	139	197	160	160	
Boundary Road between Highway 417 Westbound Ramp Terminal and Highway 417 Eastbound Ramp Terminal	1052	224	361	250	
Boundary Road between Highway 417 Eastbound Ramp Terminal	1069	534	441	1037	
Boundary Road between Thunder Road and South Amazon Access	1043	268	349	991	
Boundary Road between South Amazon Access and Mitch Owens Road	1033	253	283	999	
Boundary Road south of Mitch Owens Road	1094	168	205	977	

Table 5-12: 2030 Future Background – Boundary Road Through Volumes Forecasts

These volumes suggest that Boundary Road is expected to operate beyond capacity during the weekday a.m. and p.m. peak hours from the Highway 417 Eastbound Ramp Terminal southerly in both directions, and that the northbound segment between the ramp terminals is expected to operate beyond capacity during the weekday a.m. peak hour.

Based on this network concept review, it is recommended that the City monitor future traffic growth and demand on Boundary Road (south of the Highway 417 Westbound Ramp Terminal) to identify any future potential network concept changes to accommodate the forecasted volumes from a capacity perspective (e.g., road widening to add additional through lanes).

5.7 Intersection Analysis and Design

The methodology outlined in the Screening & Scoping Reports, and Forecasting Reports was applied to this analysis to forecast future traffic volumes and analyze traffic operations on the road network to determine required improvements to the road network, if required.

5.7.1. Traffic Modelling

The boundary road network was modelled in Synchro 11.0 using January 2020 weekday a.m. and p.m. peak hour traffic data in the study area (outlined in **Figure 3**), existing signal timing plans obtained from the City in January 2021, existing roadway geometric conditions and per the Synchro modelling guidelines outlined in the City's TIA guidelines.

The synchro assessment of auto intersection operations is based on the "Highway Capacity Manual (HCM)" methodology. Intersections are assessed using a Level of Service (LOS) metric with ranges of delay assigned a letter from "A" to "F"; "A" representing low delays and "F" representing heavy delays. As required by the City of Ottawa, the LOS for signalized intersection were based on the intersection volume to capacity ratio as per the City of Ottawa Multi-Modal Levels of Service (MMLOS) Guidelines. The LOS of an unsignalized intersection is based on the worst average approach delay. The LOS definitions for signalized and unsignalized intersections are included in **Appendix L**. The 95th percentile queue lengths were derived from Synchro.

A critical volume-to-capacity threshold of 0.90 was applied to all movements (representing a target LOS "D") on the road network to flag any movements nearing capacity, except for the off-ramp movements at the ramp terminals for which a threshold of 0.75 was applied per the MTO's TIS guidelines.

5.7.2. Existing Auto Operations

The existing auto intersection operations at the study intersections were analyzed using the existing traffic volumes illustrated in **Figure 3**. Detailed capacity analysis worksheets are included in **Appendix M**.

Table 5-13 outlines the 2020 existing traffic operations.

Intersection	Control	Peak Hour	Intersection v/c Ratio	Level of Service	Control Delay	Critical v/c ratio	95 th Percentile Queue Length > Storage Length
Boundary Road and Highway 417	Stop	A.M.	0.80	С	22.2s (WBLR)	0.39 (WBLR)	None
Westbound Ramp Terminal	(Minor)	P.M.	0.36	В	12.3s (WBLR)	0.09 (WBLR)	None
Boundary Road and Highway 417		A.M.	0.62	В	13.5 s	0.80 (NBT)	None
Eastbound Ramp Terminal	Signal	P.M.	0.82	D	14.3 s	0.88 (EBR)	66.1 m > 25 m (EBR)
Boundary Road and Thunder		A.M.	0.79	С	18.9 s	0.83 (NBT)	243.6m (NBT)
Road/Amazon Way	Signal	P.M.	0.67	В	9.7 s	0.72 (SBTR)	None
Boundary Road	Stop	A.M.	0.56	D	27.7s (WBLR)	0.05 (WBLR)	None
and South Amazon Access	(Minor)	P.M.	0.52	С	20.0s (WBLR)	0.07 (WBLR)	None
Boundary Road	Stop	A.M.	0.68	Е	45.1s (EBL)	0.47 (EBL)	None
and Mitch Owens Road	(Minor)	P.M.	0.65	E	38.6s (EBL)	0.55 (EBL)	None

Table 5-13: 2020 Existing Traffic Operations

Notes:

[1] Level of Service – The Level of Service (LOS) of a signalized intersection is based on the intersection volume to capacity ratio as per the City of Ottawa Multi-Modal Levels of Service (MMLOS) Guidelines. The LOS of an unsignalized intersection is based on the worst average approach delay.

[2] Critical V/C Ratio – illustrates the maximum and other lane volume to capacity ratios greater than 0.90.

The road network is currently operating at overall acceptable levels of service with minor control delays.

The Novatech study that was prepared for the Amazon Facility recommended that the City consider implementing traffic signal control and an auxiliary northbound left-turn lane at the intersection of Boundary Road and Mitch Owens Road. The study found that under 2017 existing conditions, traffic signals and an auxiliary left-turn lane were warranted at the intersection, and that under future total

conditions, the forecasted operations at the intersection were poor and indicated the need for traffic signal control. While this improvement has not been implemented as have the Novatech recommended improvements on Boundary Road at Highway 417 Eastbound Ramp Terminal and at Thunder Road / Amazon Way, this improvement has been accounted for under future background and future total conditions in this analysis and is found to significantly improve traffic operations.

No movements on the existing road network are operating over capacity, albeit the eastbound rightturn movement at the Highway 417 Eastbound Ramp Terminal (which currently experiences a peak hour volume of 631 vehicles per hour during the weekday p.m. peak period). The existing traffic operations on the road network are acceptable.

5.7.3. Future Background Volumes Forecasting

As detailed in the Forecasting Report, growth rate of 2% compounded annually has been applied to all movements on the road network (as consistent with background studies in the area) to forecast 2025, 2030 and 2035 future background traffic volumes. This analysis also accounts for background traffic generated by the future Capital Region Resource Recovery Centre (CRRC) waste management facility south of the Amazon Facility and from the proposed industrial development located at 5494, 5500 and 5510 Boundary Road.

Figure 4.1 and 4.2 outlines the CRRC and Novatech industrial background development's generated traffic. Figures 5, 6 and 7 outline the 2025, 2030 and 2035 future background traffic volumes, respectively, on the road network (with the growth rate outlined in Section 4.4.2 applied to the existing volumes plus the CRRC and Novatech industrial background site traffic outlined in Figures 4.1 and 4.2).

5.7.4. Future Background Auto Operations

The future background auto intersection operations at the study intersections were analyzed using the 2025, 2030 and 2035 future background traffic volumes illustrated in **Figures 5**, **6** and **7**, respectively, and optimized signal timings. Detailed capacity analysis worksheets are included in **Appendix M**.

It is noted that the existing cycle length at the intersection of Boundary Road and Highway 417 Eastbound Ramp Terminal is 80 seconds, which is typically reflective of low-medium volume intersections and not typically reflective of high-volume arterial intersections. Additionally, the existing cycle length at the intersection of Boundary Road and Thunder Road / Amazon Way is 100 seconds. For consistency with the existing cycle length at Boundary Road and Thunder Road / Amazon Way (which is ideal for corridor progression between signalized intersections), the Highway 417 Eastbound Ramp Terminal was modelled with a cycle length of 100 seconds under all future background and total scenarios.

The intersection of Boundary Road and Mitch Owens Road was analyzed under 2035 future background and total conditions under two scenarios: with the recommended Novatech improvements, and with the existing side-street stop control.

Tables 5-14, 5-15 and 5-16 outline the 2025, 2030 and 2035 future background traffic operations, respectively.

Intersection	Control	Peak Hour	Intersection V/C Ratio	Level of Service	Control Delay	Critical v/c ratio	95 th Percentile Queue Length > Storage Length
Boundary Road and Highway 417	Stop	A.M.	0.93	С	26.1s (WBLR)	0.50 (WBLR)	None
Westbound Ramp Terminal	(Minor)	P.M.	0.40	В	13.1 s (WBLR)	0.11 (WBLR)	None
Boundary Road and Highway 417		A.M.	0.69	В	14.5 s	0.83 (NBT)	None
Eastbound Ramp Terminal	Signal	P.M.	0.88	D	19.8 s	0.92 (EBR)	84.2m > 25 m (EBR)
Boundary Road and Thunder	Signal	A.M.	0.88	D	20.1 s	0.88 (NBT)	245.8m (NBT)
Road/Amazon Way		P.M.	0.75	С	9.8 s	0.74 (SBTR)	None
Boundary Road	Stop	A.M.	0.64	D	33.8s (WBLR)	0.07 (WBLR)	None
and South Amazon Access	(Minor)	P.M.	0.60	С	26.5s (WBLR)	0.10 (WBLR)	None
Boundary Road	Stop	A.M.	0.78	Е	47.5s (EBL)	0.49 (EBL)	None
and Mitch Owens Road	(Minor)	P.M.	0.72	E	39.8s (EBL)	0.57 (EBL)	None

Table 5-14: 2025 Future Background Traffic Operations

 Level of Service – The Level of Service (LOS) of a signalized intersection is based on the intersection volume to capacity ratio as per the City of Ottawa Multi-Modal Levels of Service (MMLOS) Guidelines. The LOS of an unsignalized intersection is based on the worst average approach delay.

[2] Critical V/C Ratio – illustrates the maximum and other lane volume to capacity ratios greater than 0.90.

Intersection	Control	Peak Hour	Intersection V/C Ratio	Level of Service	Control Delay	Critical v/c ratio	95 th Percentile Queue Length > Storage Length
Boundary Road and Highway 417	Stop	A.M.	1.01	D	35.6s (WBLR)	0.63 (WBLR)	None
Westbound Ramp Terminal	(Minor)	P.M.	0.42	В	13.8 s (WBLR)	0.12 (WBLR)	None
Boundary Road and Highway 417	Signal	A.M.	0.75	С	16.5 s	0.88 (NBT)	29.2m > 25m (EBR)
Eastbound Ramp Terminal		P.M.	0.94	E	25.6 s	0.96 (EBR)	151.0 m > 25 m (EBR)
Boundary Road and Thunder	Signal	A.M.	0.94	E	30.0 s	0.95 (NBT)	286.9m (NBT)
Road/Amazon Way	Signal	P.M.	0.81	D	10.4 s	0.78 (SBTR)	None
Boundary Road	Stop	A.M.	0.69	D	39.2s (WBLR)	0.09 (WBLR)	None
and South Amazon Access	(Minor)	P.M.	0.65	D	35.5s (WBLR)	0.14 (WBLR)	None
Boundary Road	Stop	A.M.	0.85	F	73.8s (EBL)	0.66 (EBL)	28.4m > 25m (EBL)
and Mitch Owens Road	(Minor)	P.M.	0.78	F	63.1s (EBL)	0.74 (EBL)	38.1m > 25m (EBL)

Table 5-15: 2030 Future Background Traffic Operations

 Level of Service – The Level of Service (LOS) of a signalized intersection is based on the intersection volume to capacity ratio as per the City of Ottawa Multi-Modal Levels of Service (MMLOS) Guidelines. The LOS of an unsignalized intersection is based on the worst average approach delay.

[2] Critical V/C Ratio – illustrates the maximum and other lane volume to capacity ratios greater than 0.90.

Intersection	Control	Peak Hour	Intersection V/C Ratio	Level of Service	Control Delay	Critical v/c ratio	95 th Percentile Queue Length > Storage Length
Boundary Road and	Stop	A.M.	1.10	F	47.5s (WBLR)	0.79 (WBLR)	None
Highway 417 Westbound Ramp Terminal	(Minor)	P.M.	0.46	В	14.7 s (WBLR)	0.15 (WBLR)	None
Boundary Road and		A.M.	0.81	D	20.1 s	0.93 (NBT) 0.77 (EBR)	32.0m > 25m (EBR)
Highway 417 Eastbound Ramp Terminal	Signal	P.M.	0.99	E	36.0 s	1.02 (EBR)	195.8m > 25m (EBR)
Boundary Road and		A.M.	1.02	F	48.7 s	1.05 (NBT) 0.97 (SBL)	332.7m (NBT)
Thunder Road/Amazon Way	Signal	P.M.	0.88	D	12.6 s	0.83 (SBTR)	284.0m (SBTR)
Boundary Road and	Stop	A.M.	0.75	E	49.8s (WBLR)	0.12 (WBLR)	None
South Amazon Access	(Minor)	P.M.	0.71	F	208.7s (WBLR)	0.62 (WBLR)	None
	Stop	A.M.	0.92	F	138.6s (EBL)	0.91 (EBL)	43.5m > 25m (EBL)
Boundary Road and	(Minor)	P.M.	0.85	F	122.8s (EBL)	0.98 (EBL)	59.3m > 25m (EBL)
Mitch Owens Road	Signal	A.M.	0.81	D	13.9s	0.80 (NBT)	33.5m > 25m (EBL)
Notes:	Signal	P.M.	0.82	D	18.0 s	0.85 (SBT)	50.8m > 25m (EBL)

Table 5-16: 2035 Future Background Traffic Operations

 Level of Service – The Level of Service (LOS) of a signalized intersection is based on the intersection volume to capacity ratio as per the City of Ottawa Multi-Modal Levels of Service (MMLOS) Guidelines. The LOS of an unsignalized intersection is based on the worst average approach delay.

[2] Critical V/C Ratio – illustrates the maximum and other lane volume to capacity ratios greater than 0.90.

The intersections of Boundary Road and Highway 417 Westbound Ramp Terminal, Boundary Road and Thunder Road / Amazon Way, and Boundary Road and South Amazon Access are expected to operate near or at capacity under 2035 future background conditions. Several movements on the road network are expected to operate near capacity and with 95th percentile queue lengths exceeding available storage lengths. These results are mainly attributed to fifteen years of steady traffic growth in the study area, and heavy forecasted volumes on Boundary Road exceeding typical arterial roadway capacity.

Network concept changes such as identifying improvements to Boundary Road (e.g., road widening) would be expected to significantly improve traffic operations on the road network and increase capacity for individual movements. Additionally, the implementation of the recommended Novatech improvements at the intersection of Boundary Road and Mitch Owens Road is expected to improve the LOS from "F" to "B."

5.7.5. Target Auto Operations

Given the "General Rural Area" classification used for MMLOS targets, an auto LOS target for the study intersections is LOS "D" per Exhibit 22 of the MMLOS guidelines (see **Appendix L** for MMLOS excerpts). As presented in **Tables 5-14** to **5-16**, a couple improvements listed below may be required in future to maintain the required target LOS "D".

- Boundary Road and Highway 417 Westbound Ramp Terminal: As presented in **Table 5-6**, signals are not warranted and delays to the minor westbound are typical of a high left turn volume minor approach. However, signals may be considered in future if safety issues exist.
- Boundary Road intersections with Highway 417 Eastbound Ramp Terminal and Thunder Road/Amazon Way: Signal optimization may be required in the future to maintain the target LOS.
- Boundary Road and Mitch Owens Road: Implementation of a traffic signal control and an auxiliary northbound left-turn lane as recommended by the Novatech study is expected to meet target LOS in future.
- As presented in **Table 5-6**, signals are not warranted at Boundary Road and South Amazon Access under all study horizons. The intersection should however be monitored in future to ensure no safety issues by the delays to the minor street traffic.
- Boundary Road and Highway 417 Eastbound Ramp Terminal: The EBR movement is expected to experience v/c ratios greater than 0.75, largely due to limited capacity for the yield EBR movement created by through traffic on Boundary Road. The MTO and City may consider optimizing the existing signal timing plan in future to create more capacity for the yield controlled EBR movement.
- The southbound traffic queues on Boundary Road at the Thunder Road intersection are forecast to occasionally extend beyond the Highway 417 Ramp in the 2035 horizon during the p.m. peak hours. However, this is a future background condition and not attributable to the proposed development. This issue is a long-term forecast and should be monitored by the City and reviewed as part of the City's ongoing Transportation Master Plan Update.

It is recommended the City and the MTO monitor traffic volumes at the subject intersections in future to confirm if the noted improvements are optimal.

5.7.6. Site Traffic

As presented in **Table 4-2** herein, the full build-out of the proposed development (including the adjacent 6150 Thunder Road future development traffic) is expected to generate approximately 119 and 124 total person trips during the weekday a.m. and p.m. peak hours, respectively, of which approximately 12 and 12 total non-auto trips during the weekday a.m. and p.m. and p.m. peak hours, respectively.

Employee trips generated by the proposed development were distributed to the road network based on origin-destination data from the National Capital Region (NCR) survey (2011) and the population of surrounding communities per Statistics Canada. Heavy truck trips generated by the proposed development were distributed to the road network based on expected catchment areas and logical routing assumptions for heavy trucks.

Figures 8 and 9 outline the employee and heavy truck trip assignment, respectively.

5.7.7. Basis of Future Total Assessment

The site generated traffic volumes illustrated in **Figures 8 and 9** were added to the 2025, 2030 and 2035 future background traffic volumes in . **Figures 5, 6 and 7**, respectively, to determine the 2025, 2030 and 2035 future total traffic volumes. **Figures 10, 11 and 12** outline the 2025, 2030 and 2035 future total traffic volumes, respectively.

5.7.8. Future Total Auto Operations

The future total auto intersection operations at the study intersections were analyzed using the 2025, 2030 and 2035 future total traffic volumes illustrated in **Figures 10, 11 and 12**, respectively, and optimized signal timings. Detailed capacity analysis worksheets are included in **Appendix M**.

Given that a significant portion of site traffic entering and exiting the site accesses is heavy truck traffic, heavy truck percentages were calculated and modelled for all movements on the road network to reflect the increase in heavy truck percentages under future total conditions.

Tables 5-17, 5-18 and 5-19 outline the 2025, 2030 and 2035 future total traffic operations, respectively.

Intersection	Control	Peak Hour	Intersection V/C Ratio	Level of Service	Control Delay	Critical v/c ratio	95 th Percentile Queue Length > Storage Length
Boundary Road and		A.M.	0.97	D	33.3s (WBLR)	0.62 (WBLR)	None
Highway 417 Westbound Ramp Terminal	Stop (Minor)	P.M.	0.43	В	13.9s (WBLR)	0.13 (WBLR)	None
Boundary Road and		A.M.	0.71	С	14.5 s	0.83 (NBT)	32.3m > 25 m (EBR)
Highway 417 Eastbound Ramp Terminal	Signal	P.M.	0.90	D	22.0 s	0.94 (EBR)	122.7 m > 25 m (EBR)
Boundary Road and		A.M.	0.90	D	22.6 s	0.90 (NBT)	261.7m(NBT)
Thunder Road/Amazo n Way	Signal	P.M.	0.82	D	18.1 s	0.88 (SBT)	None
Boundary Road and		A.M.	0.65	E	44.6s (WBLR)	0.09 (WBLR)	None
South Amazon Access / Site Access	Stop (Minor)	P.M.	0.62	D	38.0s (WBLTR)	0.14 (WBLTR)	None
Boundary Road and	Stop	A.M.	0.79	F	53.0s (EBL)	0.54 (EBL)	None
Mitch Owens Road	(Minor)	P.M.	0.74	E	44.2s (EBL)	0.60 (EBL)	27.4m > 25m (EBL)
Site Access A	Stop	A.M.	0.25	А	8.7s (NBLR)	0.02 (NBLR)	None
and Thunder Road	(Minor)	P.M.	0.22	А	9.2s (NBLR)	0.07 (NBLR)	None
Site Access B	Stop	A.M.	0.22	А	9.6s (NBLR)	0.01 (NBLR)	None
and Thunder Road	r (Minor)	P.M.	0.18	А	10.0s (NBLR)	0.04 (NBLR)	None
6150 Thunder Road Access	Stop	A.M.	0.22	А	8.7s (NBLR)	0.01 (NBLR)	None
and Thunder Road	(Minor)	P.M.	0.21	А	9.0s (NBLR)	0.03 (NBLR)	None

[1] Level of Service – The Level of Service (LOS) of a signalized intersection is based on the intersection volume to capacity ratio as per the City of Ottawa Multi-Modal Levels of Service (MMLOS) Guidelines. The LOS of an unsignalized intersection is based on the worst average approach delay.

[2] Critical V/C Ratio – illustrates the maximum and other lane volume to capacity ratios greater than 0.90.

Intersection	Control	Peak Hour	Intersection V/C Ratio	Level of Service	Control Delay	Critical v/c ratio	95 th Percentile Queue Length > Storage Length
Boundary Road and	Stop	A.M.	1.05	E	49.5s (WBLR)	0.76 (WBLR)	None
Highway 417 Westbound Ramp Terminal	(Minor)	P.M.	0.46	В	14.7s (WBLR)	0.15 (WBLR)	None
Boundary Road and		A.M.	0.76	С	17.2 s	0.89 (NBT) 0.77 (EBR)	35.3m > 25 m (EBR)
Highway 417 Eastbound Ramp Terminal	Signal	P.M.	0.94	E	27.9 s	0.97 (EBR)	163.6 m > 25 m (EBR)
Boundary Road and		A.M.	0.97	E	34.0 s	0.97 (NBT)	304.8m(NBT)
Thunder Road/Amazon Way	Signal	P.M.	0.88	D	21.3 s	0.91 (SBT)	291.1m (SBT)
Boundary Road and	Stop	A.M.	0.70	F	52.8s (WBLR)	0.12 (WBLR)	None
South Amazon Access / Site Access	(Minor)	P.M.	0.66	E	65.0s (WBLTR)	0.24 (WBLTR)	None
Boundary Road and	Stop	A.M.	0.87	F	85.3s (EBL)	0.72 (EBL)	32.3m > 25m (EBL)
Mitch Owens Road	(Minor)	P.M.	0.80	F	72.4.s (EBL)	0.78 (EBL)	41.8m > 25m (EBL)
Site Access A and Thunder	Stop	A.M.	0.25	А	8.7s (NBLR)	0.02 (NBLR)	None
Road	(Minor)	P.M.	0.26	А	9.2s (NBLR)	0.06 (NBLR)	None
Site Access B and Thunder	Stop	A.M.	0.23	А	9.6s (NBLR)	0.01 (NBLR)	None
Road	(Minor)	P.M.	0.18	В	10.0s (NBLR)	0.02 (NBLR)	None
6150 Thunder Road Access	Stop	A.M.	0.22	А	8.7s (NBLR)	0.01 (NBLR)	None
and Thunder Road	(Minor)	P.M.	0.21	А	9.0s (NBLR)	0.06 (NBLR)	None

Table 5-18: 2030 Future	Total Traffic	Operations
-------------------------	---------------	------------

 Level of Service – The Level of Service (LOS) of a signalized intersection is based on the intersection volume to capacity ratio as per the City of Ottawa Multi-Modal Levels of Service (MMLOS) Guidelines. The LOS of an unsignalized intersection is based on the worst average approach delay.

[2] Critical V/C Ratio - illustrates the maximum and other lane volume to capacity ratios greater than 0.90.

Intersection	Control	Peak Hour	Intersection V/C Ratio	Level of Service	Control Delay	Critical v/c ratio	95 th Percentile Queue Length > Storage Length
Boundary Road and	Stop	A.M.	1.14	F	88.3s (WBLR)	0.94 (WBLR)	None
Highway 417 Westbound Ramp Terminal	(Minor)	P.M.	0.49	В	15.8s (WBLR)	0.18 (WBLR)	None
Boundary Road and		A.M.	0.82	D	20.7 s	0.94 (NBT) 0.80 (EBR)	42.6m > 25 m (EBR)
Highway 417 Eastbound Ramp Terminal	Signal	P.M.	1.00	E	41.8 s	1.06 (EBR)	208.2 m > 25 m (EBR)
Boundary Road and		A.M.	1.03	F	53.1 s	1.07 (NBT) 1.00 (SBL)	352.5 m (NBT)
Thunder Road/Amazon Way	Signal	P.M.	0.94	E	29.2 s	0.95 (SBT)	337.6m (SBT)
Boundary Road and	Stop	A.M.	0.76	F	71.9s (WBLR)	0.17 (WBLR)	None
South Amazon Access / Site Access	(Minor)	P.M.	0.72	F	387.0s (WBLTR)	0.92 (WBLTR)	None
	Stop	A.M.	0.94	F	164.1s (EBL)	0.99 (EBL)	48.4m > 25m (EBL)
Boundary Road and	(Minor)	P.M.	0.87	F	143.8.s (EBL)	1.04 (EBL)	64.1m > 25m (EBL)
Mitch Owens Road	Signal	A.M.	0.81	D	14.6s	0.81 (NBT)	34.3m > 25m (EBL) 18.5m > 15m (NBL)
	orginal	P.M.	0.82	D	18.9s	0.87 (SBT)	51.1m > 25m (EBL)
Site Access A and Thunder	Stop	A.M.	0.25	А	8.8s (NBLR)	0.04 (NBLR)	None
Road	(Minor)	P.M.	0.27	A	9.3s (NBLR)	0.06 (NBLR)	None
Site Access B and Thunder	Stop	A.M.	0.23	А	9.7s (NBLR)	0.01 (NBLR)	None
Road	(Minor)	P.M.	0.18	В	10.1s (NBLR)	0.04 (NBLR)	None
6150 Thunder Road Access	Stop	A.M.	0.23	А	8.8s (NBLR)	0.01 (NBLR)	None
and Thunder Road	(Minor)	P.M.	0.22	А	9.1s (NBLR)	0.03 (NBLR)	None

 Level of Service – The Level of Service (LOS) of a signalized intersection is based on the intersection volume to capacity ratio as per the City of Ottawa Multi-Modal Levels of Service (MMLOS) Guidelines. The LOS of an unsignalized intersection is based on the worst average approach delay.

[2] Critical V/C Ratio – illustrates the maximum and other lane volume to capacity ratios greater than 0.90.

The intersections of Boundary Road and Highway 417 Westbound Ramp Terminal, Boundary Road and Thunder Road / Amazon Way, and Boundary Road and South Amazon Access / Site Access are expected to operate beyond capacity under 2035 future total conditions. Several movements on the road network are expected to operate near capacity and with 95th percentile queue lengths exceeding available storage lengths. These results are mainly attributed to fifteen years of steady

traffic growth in the study area, and heavy forecasted volumes on Boundary Road exceeding typical arterial roadway capacity and are overall consistent with 2035 future background conditions.

When intersections are operating near or beyond capacity under future background conditions, the addition of even a minor amount of site traffic to the intersection can exponentially increase control delays. Therefore, even with the forecasted 2035 future total operations, the addition of site traffic to the road network is not expected to significantly impact traffic operations.

Network concept changes such as identifying future background improvements to Boundary Road (e.g., road widening) would be expected to significantly improve traffic operations on the road network and increase capacity for individual movements. Additionally, the implementation of the recommended Novatech improvements at the intersection of Boundary Road and Mitch Owens Road is expected to improve the LOS from "F" to "D."

The proposed site accesses to Thunder Road are expected to operate at LOS "B" or better with minor control delays and no critical movements nor 95th percentile queue lengths.

As presented in **Tables 5-17** to **5-19**, improvements may be required in future to ensure the required target LOS "D" is met at some of the study intersections. However, these issues are future background related as noted in **Section 5.7.5**, and it is recommended that the City and the MTO monitor traffic volumes at the subject intersections in future to confirm if the noted improvements under **Section 5.7.5** are optimal.

6.0 Conclusions and Recommendations

This Transportation Impact Assessment (TIA) has assessed the transportation impacts of the proposed industrial development at the Thunder Road and Boundary Road site in the City of Ottawa. The analysis contained within this report has resulted in the following key findings:

- The proposed industrial development is projected to generate a total of 104 and 110 twoway auto trips during the weekday a.m. and p.m. peak hours, respectively.
- Under 2020 existing traffic conditions, the study intersections are projected to operate at the Level of Services (LOS) below.
 - The stop-controlled Highway 417 Westbound Ramp Terminal at Boundary Road is operating below capacity at a LOS "C" or better during the a.m. and p.m. peak hours.
 - The signalized intersections of Boundary Road with Highway 417 Eastbound Ramp Terminal and Thunder Road/Amazon Way are operating at a LOS "D" or better during the a.m. and p.m. peak hours.
 - The stop-controlled South Amazon Access at Boundary Road is operating below capacity at a LOS "D" or better during the a.m. and p.m. peak hours.
 - The stop-controlled Mitch Owens Road connection to Boundary Road is operating below capacity at a LOS "E" for the eastbound left turn during the a.m. and p.m. peak hours. All other movements at the intersection are at a LOS "A".

- Under the 2025, 2030 and 2035 future background conditions:
 - The stop-controlled Highway 417 Westbound Ramp Terminal at Boundary Road is forecast to operate at a LOS "F" during the a.m. peak hour of 2035 and LOS "E" or better under remaining study horizons. The intersection is forecast to operate at a LOS" B" or better during the p.m. peak hour.
 - The signalized intersections of Boundary Road with Highway 417 Eastbound Ramp Terminal and Thunder Road/Amazon Way are both forecast to operate at a LOS "E" or better during the a.m. and p.m. peak hours. Both intersections are forecast to have at least one turning movement near or at capacity.
 - The stop-controlled South Amazon Access at Boundary Road is projected to operate at a LOS "E" and "F" during the a.m. and p.m. peak hours, respectively.
 - The stop-controlled Mitch Owens Road connection to Boundary Road is expected to operate at a LOS "F" during the a.m. and p.m. peak hours. However, similar to Novatech's recommendation, adding a northbound left turn lane (2025 horizon) and implementing traffic signals (2035 horizon) is expected to result in a forecasted LOS "D" and average traffic delays less than 18 seconds during the a.m. and p.m. peak hours.
- For the 2025, 2030 and 2035 total traffic conditions (includes site generated trips and 6150 Thunder Road future development), the study intersections are projected to operate similarly to their respective future background conditions as follows:
 - The stop-controlled Highway 417 Westbound Ramp Terminal at Boundary Road is forecast to operate at a LOS "F" or better during the a.m. peak hour and a LOS "B" or better during the p.m. peak hour.
 - The signalized intersections of Boundary Road with Highway 417 Eastbound Ramp Terminal and Thunder Road/Amazon Way are both forecast to operate at a LOS "E" or better during the a.m. and p.m. peak hours, similar to the future background conditions.
 - The stop-controlled Mitch Owens Road connection to Boundary Road is expected to operate at a LOS "F" during the a.m. and p.m. peak hours under the ultimate 2035 horizon. Similar to the future background conditions, adding the northbound left turn lane (2025 horizon) and implementing traffic signals (2035 horizon) is expected to result in a forecasted LOS "D" or better during the a.m. and p.m. peak hours.
 - The stop-controlled South Amazon Access at Boundary Road is projected to operate at a LOS "F" during the a.m. and p.m. peak hours under the ultimate 2035 horizon. This is a future background issue and is attributable to an increase in through volumes on Boundary Road and associated future delays to traffic from the Amazon access.
 - The proposed three stop-controlled site access connections to Thunder Road are projected to operate below capacity at a LOS "B" or better during the a.m. and p.m. peak hours, under all study horizons.

- A signal warrant assessment based on the ultimate 2035 traffic volumes indicates that traffic signals are not warranted at the intersections of Boundary Road and South Amazon Access / Site Access and Thunder Road with the proposed three Site Accesses. Additionally, no left or right turn auxiliary lanes are warranted on the major roads at the site access connections.
- The proposed site accesses are projected to operate efficiently and safely without any issues related to sight-lines, corner clearance, access conflicts, truck movements and transit operational conflicts. The vehicle parking supply of for each of the three buildings exceeds the City's Zoning By-Law minimum parking requirements.
- It is recommended that the following be considered to support the proposed development:
 - Though not warranted, consideration should be given to repurposing the existing runout lane at the south approach of the intersection of Boundary Road and Site Access / South Amazon Access to provide an auxiliary 15-metre northbound left-turn storage lane. The NBL lane addition along with a potential traffic signalization in the 2035 horizon is expected to improve the intersection performance in the long-term.
 - To support sustainable transportation, the owner may consider TDM measures such as provision of a good internal connection of pedestrian sidewalks and to municipal sidewalks where available, provision of bicycle parking/amenity, carpooling and liaise with the City to implement TDM promotion/ education programs. These TDM measures are expected to encourage employees and visitors to be less dependent on single occupant auto trips.
- Further, based on the future background traffic operations, we recommend that the City and MTO consider the following in future:
 - Similar to the Novatech's recommendation, we recommend adding a northbound left turn lane (in 2025 horizon) and implementing traffic signals (in 2035 horizon) at the intersection of Boundary Road and Mitch Owens Road.
 - Signals are not warranted at Boundary Road intersections with Highway 417 Westbound Ramp Terminal and the South Amazon Access; however, signals may be considered in future if the City and MTO identify safety issues from extended delays to the minor street.
 - Signal optimization to redistribute intersection capacity (effective green time) may be required in the future (i.e., 2030 onwards) to maintain the target LOS "D" at the intersections of Boundary Road with Highway 417 Eastbound Ramp Terminal and Thunder Road/Amazon Way.
 - Boundary Road and Highway 417 Eastbound Ramp Terminal: The EBR movement is expected to experience v/c ratios greater than 0.75, largely due to limited capacity for the yield EBR movement created by through traffic on Boundary Road. The MTO and City may consider optimizing the existing signal timing plan in future to create more capacity for the yield controlled EBR movement.
 - The southbound traffic queues on Boundary Road at the Thunder Road intersection are forecast to occasionally extend beyond the Highway 417 Ramp in the 2035 horizon during the p.m. peak hours. However, this is a future background condition and not

attributable to the proposed development. This issue is a long-term forecast and should be monitored by the City and reviewed as part of the City's ongoing Transportation Master Plan Update.

 In addition to the City's existing road network volume monitoring program to assess capacity constrained zones, given the potential long term impact of the Covid-19 pandemic on home-work trips, the forecasted future volumes herein may be overstated, it is important to monitor intersection volumes in future to confirm if any roadway improvements and or traffic signal modifications are needed for optimal performance of the relevant surrounding intersections.

In conclusion, the traffic generated by the proposed industrial development at Thunder Road and Boundary Road can be accommodated by the boundary road network. The Official Plan Amendment (OPA), Zoning By-Law Amendment (ZBA) and Site Plan Approval (SPA) applications can be supported from a traffic operations perspective as the boundary road system is forecast to adequately accommodate the increase in traffic volumes attributable to the proposed development.

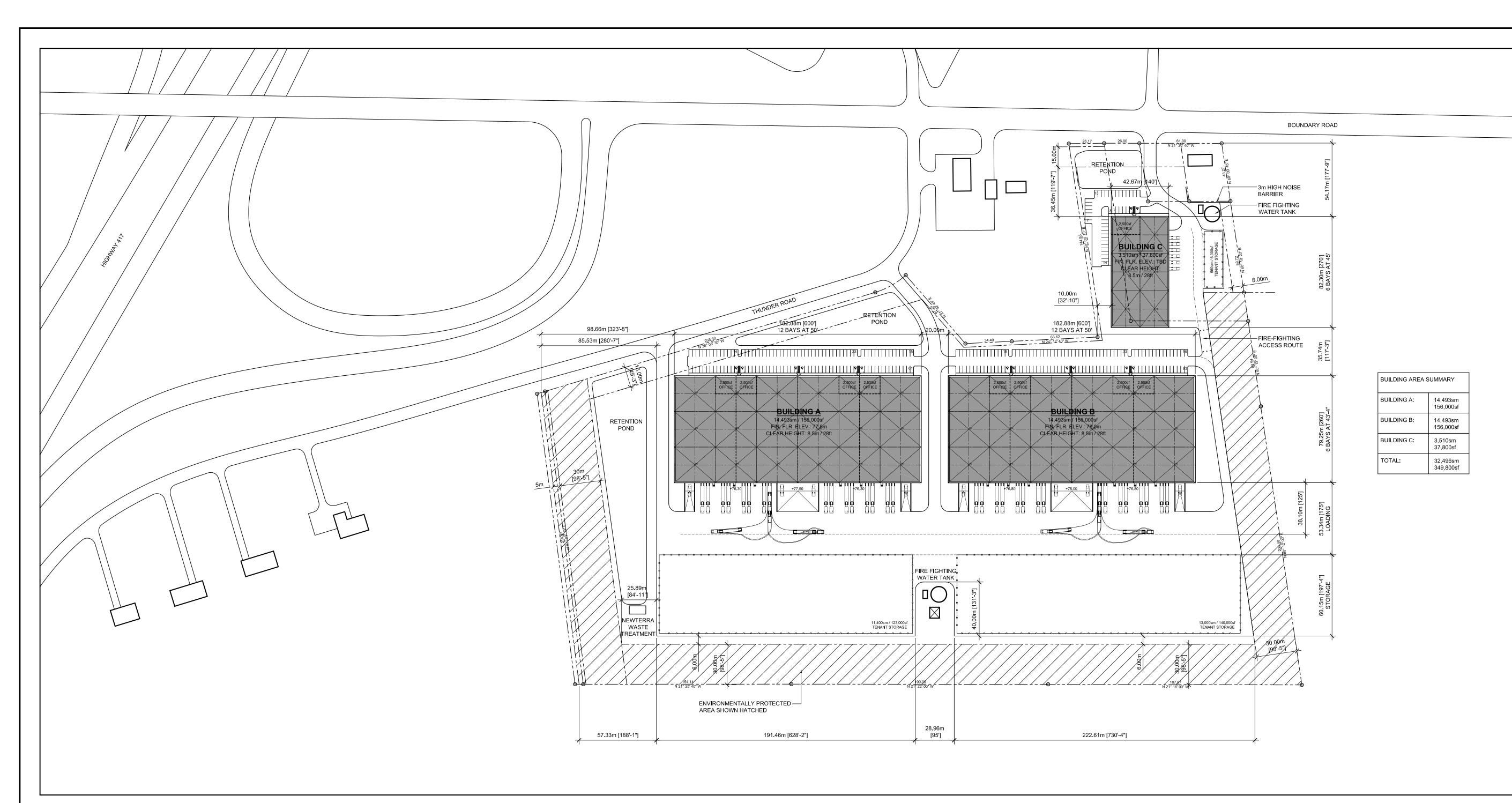
Minor changes to the site plan will not materially affect the conclusions contained within this Study. Should you have any questions or require further information, please contact the undersigned.

Respectfully submitted by,

C.F. CROZIER & ASSOCIATES INC.

Peter Apasnore MASc., P.Eng., PTOE Project Manager, Transportation

C.F. CROZIER & ASSOCIATES INC.

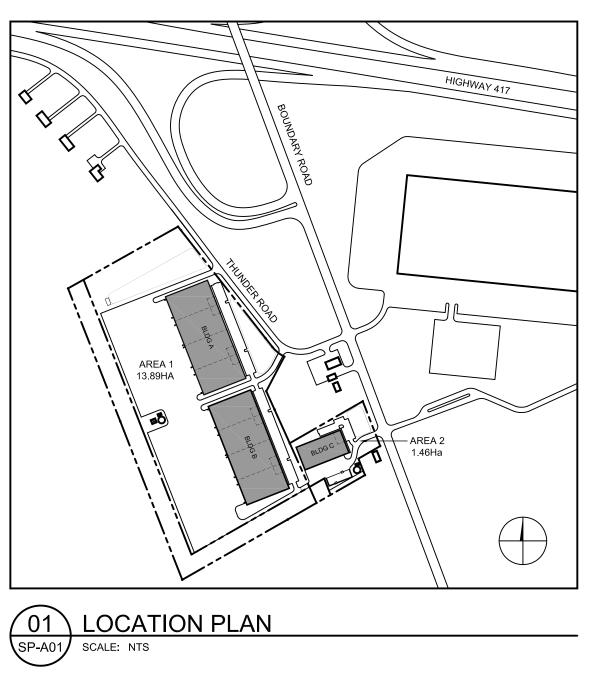

Aidan Hallsworth Engineering Intern, Transportation

/sk/ah

J:\1900\1909-Avenue 31\5772-Thunder Rd\Reports\2023.03.13_3rd Submission\2023.04.26_6150 Thunder Road_TIA Report.docx

APPENDIX A

Conceptual Site Plan



03 SITE PLAN SPA-01 SCALE: 1:1500

ZONING MECHANISM: ZONING BY-LAW 2008-250 CONSOLIDATION		REQUIRED	PROVIDED	ZONING MECHANISM: ZONING BY-LAW 2008-250	CONSOLIDATION	REQUIRED
ZONING: RG[908R]-h RURAL GENE	RAL INDUSTRIAL ZONE	LIGHT INDUSTRIAL LIMITED COMMERCIAL	LIGHT INDUSTRIAL USE WAREHOUSE (N95)	MINIMUM WIDTH OF LANDSCAPING		3m
MINIMUM LOT AREA		0.4HA	AREA 1: 13.89HA AREA 2: 1.46HA TOTAL: 15.35HA 37.93 ACRES	PARKING - TYPICAL SECTION 101 0.8 SPACES PER 100m2	BUILDING A: 14,493sm	78 TYPICAL 1 BARRIER-FREI
MINIMUM LOT WIDTH		30m	425m THUNDER ROAD 82m BOUNDARY ROAD	FOR FIRST 5,000m2 0.4 SPACES PER 100m2 AFTER FIRST 5,000m2	BUILDING B: 14,493sm	78 TYPICAL 1 BARRIER-FREI
MAXIMUM LOT COVERAG	θE	50.0%	AREA 1: 20.8% (2.90HA) AREA 2: 24.0% (0.35HA) TOTAL: 21.17% (3.25HA)	LIGHT INDUSTRIAL USE WAREHOUSE (N95) PARKING - BARRIER-FREE	BUILDING C: 3,510sm	27 TYPICAL 1 BARRIER-FREI
MINIMUM FRONT YARD MINIMUM CORNER SIDE YARD		15m	COMPLIANT WITH ZONING	SECTION 111 PART C BYLAW 2017-301 AND SECTION 3.1 - CITY OF OTTAWA ACCESSIBILITY DESIGN STANDARDS	TOTAL	183 TYPICAL 3 BARRIER-FREE
		12m	COMPLIANT WITH ZONING			
MINIMUM INTERIOR YARD SETBACK	ABUTTING A RG, RH OR RC ZONE	3m	COMPLIANT WITH ZONING			
	ALL OTHER CASES	8m	COMPLIANT WITH ZONING	BICYCLE PARKING SECTION 111	BUILDING A: 14,493sm	8 SPACES
MINIMUM REAR YARD		15m	COMPLIANT WITH ZONING	WAREHOUSE	BUILDING B: 14,493sm	8 SPACES
MAXIMUM FLOOR SPACE	INDEX	2	COMPLIANT WITH ZONING	1 SPACE PER 2000m2 BY-LAW 2015-190		
MAXIMUM BUILDING HEI	GHT	15m	10.5m		BUILDING C: 3510sm	2 SPACES
OUTDOOR STORAGE	NOT PERMITTED WIT REQUIRED FRONT OF		COMPLIANT WITH ZONING			
		CREEN WHEN ABUTTING AND PUBLIC STREETS	COMPLIANT WITH ZONING			

02 SITE DATA AND ZONING INFORMATION SP-A01 SCALE:

COMPLIANT WITH ZONING LOADING SPACE SECTION 113 BUILDING A 2 OVERSIZED (4.3m X 13m) 20 OVERSIZED (1 PER 8,000sf) 117 TYPICAL 3 BARRIER-FREE TYPE B LIGHT INDUSTRIAL USE BUILDING B 2 OVERSIZED (4.3m X 13m) 20 OVERSIZED (1 PER 8,000sf) 121 TYPICAL 3 BARRIER-FREE TYPE B BUILDING C 2 OVERSIZED (4.3m X 13m) 6 OVERSIZED (1 PER 8,000sf) 40 TYPICAL 1 BARRIER-FREE TYPE B BUILDING C 2 OVERSIZED (4.3m X 13m) 6 OVERSIZED (1 PER 8,000sf) 278 TYPICAL 7 BARRIER-FREE TYPE B BUILDING CLASSIFICATION: 3 2.2.67: GROUP F, DIVISION 2. ANY HEIGHT, ANY AREA SPRINKLERED 0. NON-COMBUSTIBLE CONSTRUCTION 8 - LOCATION TO BE DETERMINED 8-LOCATION TO BE DETERMINED BUILDING CLASSIFICATION: 3.2.3.1: 8 - LOCATION TO BE DETERMINED 3.2.3.1: 9 SATIAL SEPARATION FOR 100% AREA OF UNPROTECTED OPENINGS (EBF > 200m2) 4 - LOCATION TO BE DETERMINED 3.2.3.1: 9 SATIAL SEPARATION FOR 50% AREA OF UNPROTECTED OPENINGS (EBF > 200m2) 4 - LOCATION TO BE DETERMINED 3.2.3.1: 9 SATIAL SEPARATION FOR 50% AREA OF UNPROTECTED OPENINGS (EBF > 200m2) 4 - LOCATION TO BE DETERMINED 3.4.2.5: 100 MINIMUM SPATIAL SEPARATION FOR 50% AREA OF UNPROTECTED OPENINGS (EBF > 200m2) 9 SATIAL SEPARATION FOR 50% AREA OF UNPROTECTED OPENINGS (EBF > 200m2) 9 SPATIAL SEPARATION FOR 50% AREA OF UNPROTECTED OPENINGS (EBF > 200m2) 10m MINIMU	PROVIDED	ZONING MECHANISM: ZONING BY-LAW 2008-250 CONSOLIDATION		REQUIRED	PROVIDED
3 BARRIER-FREE TYPE A 3 BARRIER-FREE TYPE A 3 BARRIER-FREE TYPE A 3 BARRIER-FREE TYPE A 3 BARRIER-FREE TYPE B 40 TYPICAL 1 BARRIER-FREE TYPE A 3 BARRIER-FREE TYPE A 1 BARRIER-FREE TYPE B 278 TYPICAL 7 BARRIER-FREE TYPE A 1 BARRIER-FREE TYPE A 7 BARRIER-FREE TYPE A 7 BARRIER-FREE TYPE B 278 TYPICAL 7 BARRIER-FREE TYPE A 7 BARRIER-FREE TYPE A 7 BARRIER-FREE TYPE A 8 - LOCATION TO BE DETERMINED 8 - LOCATION TO BE DETERMINED 4 - LOCATION TO BE DETERMINED 4 - LOCATION TO BE DETERMINED 3.2.3.1: SPATIAL SEPARATION - TABLE 3.2.3.1.E 1 15m MINIMUM SPATIAL SEPARATION FOR 100% AREA OF UNPROTECTED OPENINGS (EBF > 200m2) 1 0m MINIMUM SPATIAL SEPARATION FOR 100% AREA OF UNPROTECTED OPENINGS (EBF > 200m2) 9m SPATIAL SEPARATION FOR 100% AREA OF UNPROTECTED OPENINGS (EBF > 200m2) 9m SPATIAL SEPARATION FOR 100% AREA OF UNPROTECTED OPENINGS (EBF > 200m2) 9m SPATIAL SEPARATION FOR 100% AREA OF UNPROTECTED OPENINGS (EBF > 200m2)			BUILDING A	2 OVERSIZED (4.3m X 13m)	
BUILDING C 2 OVERSIZED (4.3m X 13m) 6 OVERSIZED (1 PER 6,000st) 1 BARRIER-FREE TYPE A 3 BARRIER-FREE TYPE A 6 OVERSIZED (1 PER 6,000st) 1 BARRIER-FREE TYPE A 1 BARRIER-FREE TYPE A 6 OVERSIZED (1 PER 6,000st) 2 78 TYPICAL 1 BARRIER-FREE TYPE A 6 OVERSIZED (1 PER 6,000st) 7 BARRIER-FREE TYPE A 7 BARRIER-FREE TYPE A 8 JUILDING CLASSIFICATION: 8 - LOCATION TO BE DETERMINED 8 JUILDING CLASSIFICATION: 8 - LOCATION TO E FLOOR ASSEMBLIES SHALL HAVE A MIN 2HR FIRE RESISTANCE RATING 8 - LOCATION TO E LOAD BEARING WALLS AND COLUMNS SHALL HAVE A FIRE RESISTANCE RATING 8 - LOCATION TO BE DETERMINED 3 - LOCATION TO 3.2.3.1: SPATIAL SEPARATION - TABLE 3.2.3.1: 9 ATIAL SEPARATION FOR 100% AREA OF UNPROTECTED OPENINGS (EBF > 200m2) 1 10m MINIMUM SPATIAL SEPARATION FOR 50% AREA OF UNPROTECTED OPENINGS (EBF > 200m2) 9 m SPATIAL SEPARATION FOR 100% AREA OF UNPROTECTED OPENINGS (EBF > 200m2) 9 m SPATIAL SEPARATION FOR 100% AREA OF UNPROTECTED OPENINGS (EBF > 200m2) 9 m SPATIAL SEPARATION FOR 100% AREA OF UNPROTECTED OPENINGS (EBF > 200m2) 9 m SPATIAL SEPARATION FOR 100% AREA OF UNPROTECTED OPENINGS (EBF > 200m2) 9 m SPATIAL SEPARATION FOR 100% AREA OF UNPROTECTED OPENINGS (EBF > 200m2) <td>3 BARRIER-FREE TYPE A</td> <td>LIGHT INDUSTRIAL USE</td> <td>BUILDING B</td> <td>2 OVERSIZED (4.3m X 13m)</td> <td></td>	3 BARRIER-FREE TYPE A	LIGHT INDUSTRIAL USE	BUILDING B	2 OVERSIZED (4.3m X 13m)	
3 BARRIER-FREE TYPE B 40 TYPICAL 1 BARRIER-FREE TYPE A 1 BARRIER-FREE TYPE B 278 TYPICAL 7 BARRIER-FREE TYPE A 7 BARRIER-FREE TYPE B 8-LOCATION TO 8-LOCATION TO BE DETERMINED 8-LOCATION TO BE DETERMINED 3.2.3.1: SPATIAL SEPARATION - TABLE 3.2.3.1.E 15m MINIMUM SPATIAL SEPARATION FOR 100% AREA OF UNPROTECTED OPENINGS (EBF > 200m2) 10m MINIMUM SPATIAL SEPARATION FOR 100% AREA OF UNPROTECTED OPENINGS (EBF > 200m2) 9m SPATIAL SEPARATION FOR 100% AREA OF UNPROTECTED OPENINGS (EBF > 200m2) 9m SPATIAL SEPARATION FOR 100% AREA OF UNPROTECTED OPENINGS (EBF > 200m2) 9m SPATIAL SEPARATION FOR 100% AREA OF UNPROTECTED OPENINGS (EBF > 200m2) 9m SPATIAL SEPARATION FOR 100% AREA OF UNPROTECTED OPENINGS (EBF > 200m2) 9m SPATIAL SEPARATION FOR 100% AREA OF UNPROTECTED OPENINGS (EBF > 200m2) 9m SPATIAL SEPARATION FOR 100% AREA OF UNPROTECTED OPENINGS (EBF > 200m2) 9m SPATIAL SEPARATION FOR 100% AREA OF UNPROTECTED OPENINGS (EBF > 200m2)	 121 TYPICAL		BUILDING C	2 OVERSIZED (4.3m X 13m)	
1 BARRIER-FREE TYPE A 1 BARRIER-FREE TYPE A 278 TYPICAL 7 BARRIER-FREE TYPE A 7 BARRIER-FREE TYPE B BUILDING CLASSIFICATION: 3.2.2.67: GROUP F, DIVISION 2. ANY HEIGHT, ANY AREA <u>SPRINKLERED</u> • NON-COMBUSTIBLE CONSTRUCTION • PLOOR ASSEMBLIES SHALL HAVE A MIN 2HR FIRE RESISTANCE RATING • FLOOR ASSEMBLIES SHALL HAVE A MIN 1HR FIRE RESISTANCE RATING • FLOOR ASSEMBLIES SHALL HAVE A MIN 1HR FIRE RESISTANCE RATING • FLOOR ASSEMBLIES SHALL HAVE A MIN 1HR FIRE RESISTANCE RATING • LOAD BEARING WALLS AND COLUMNS SHALL HAVE A FIRE RESISTANCE RATING • LOAD BEARING WALLS AND COLUMNS SHALL HAVE A FIRE RESISTANCE • NON-LOSS THAN SUPPORTED ASSEMBLIES 8 - LOCATION TO SED ETERMINED 4 - LOCATION TO 3.2.3.1: BE DETERMINED 3.2.3.1: • 15m MINIMUM SPATIAL SEPARATION FOR 100% AREA OF UNPROTECTED OPENINGS (EBF > 200m2) • 10m MINIMUM SPATIAL SEPARATION FOR 100% AREA OF UNPROTECTED OPENINGS (EBF > 200M2) • 9m SPATIAL SEPARATION FOR 100% AREA OF UNPROTECTED OPENINGS (EBF > 200M2) • 9m SPATIAL SEPARATION FOR 100% AREA OF UNPROTECTED OPENINGS WHEN FACING A STREET <td></td> <td></td> <td></td> <td></td> <td></td>					
7 BARRIER-FREE TYPE A 7 BARRIER-FREE TYPE B 8 DUILDING CLASSIFICATION: 3.2.2.67: GROUP F, DIVISION 2. ANY HEIGHT, ANY AREA <u>SPRINKLERED</u> • NON-COMBUSTIBLE CONSTRUCTION • FLOOR ASSEMBLIES SHALL HAVE A MIN 2HR FIRE RESISTANCE RATING • MEZZANINES SHALL HAVE A MIN 1HR FIRE RESISTANCE RATING • LOCATION TO BE DETERMINED 8 - LOCATION TO BE DETERMINED 4 - LOCATION TO BE DETERMINED 3.2.3.1: SPATIAL SEPARATION - TABLE 3.2.3.1.E • 15m MINIMUM SPATIAL SEPARATION FOR 100% AREA OF UNPROTECTED OPENINGS (EBF > 200m2) • 10m MINIMUM SPATIAL SEPARATION FOR 50% AREA OF UNPROTECTED OPENINGS (EBF > 200m2) • 9m SPATIAL SEPARATION FOR 100% AREA OF UNPROTECTED OPENINGS (EBF > 200m2) • 9m SPATIAL SEPARATION FOR 100% AREA OF UNPROTECTED OPENINGS (EBF > 200m2) • 9m SPATIAL SEPARATION FOR 100% AREA OF UNPROTECTED OPENINGS WHEN FACING A STREET 3.4.2.5: LOCATION OF EXITS	1 BARRIER-FREE TYPE A				
Image: State of the system	 7 BARRIER-FREE TYPE A	BUILDING CLASSIFICATION	<u>4:</u>		
8 - LOCATION TO BE DETERMINED • MEZZANINES SHALL HAVE A MIN 1HR FIRE RESISTANCE RATING 8 - LOCATION TO BE DETERMINED • LOAD BEARING WALLS AND COLUMNS SHALL HAVE A FIRE RESISTANCE RATING NOT LESS THAN SUPPORTED ASSEMBLIES 4 - LOCATION TO BE DETERMINED 3.2.3.1: SPATIAL SEPARATION - TABLE 3.2.3.1.E • 15m MINIMUM SPATIAL SEPARATION FOR 100% AREA OF UNPROTECTED OPENINGS (EBF > 200m2) • 10m MINIMUM SPATIAL SEPARATION FOR 50% AREA OF UNPROTECTED OPENINGS (EBF > 200M2) • 9m SPATIAL SEPARATION FOR 100% AREA OF UNPROTECTED OPENINGS (EBF > 200M2) • 10m MINIMUM SPATIAL SEPARATION FOR 100% AREA OF UNPROTECTED OPENINGS (EBF > 200M2) • 10m SPATIAL SEPARATION FOR 100% AREA OF UNPROTECTED OPENINGS (EBF > 200M2) • 9m SPATIAL SEPARATION FOR 100% AREA OF UNPROTECTED OPENINGS WHEN FACING A STREET 3.4.2.5: LOCATION OF EXITS		 NON-COMBUST 	TIBLE CONSTRUCTION	1	~
8 - LOCATION TO BE DETERMINED 4 - LOCATION TO BE DETERMINED 3.2.3.1: SPATIAL SEPARATION - TABLE 3.2.3.1.E 15m MINIMUM SPATIAL SEPARATION FOR 100% AREA OF UNPROTECTED OPENINGS (EBF > 200m2) 10m MINIMUM SPATIAL SEPARATION FOR 50% AREA OF UNPROTECTED OPENINGS (EBF > 200M2) 9m SPATIAL SEPARATION FOR 100% AREA OF UNPROTECTED OPENINGS (EBF > 200M2) 9m SPATIAL SEPARATION FOR 100% AREA OF UNPROTECTED OPENINGS WHEN FACING A STREET 3.4.2.5: LOCATION OF EXITS		MEZZANINES SLOAD BEARING	SHALL HAVE A MIN 1HR G WALLS AND COLUMN	R FIRE RESISTANCE RATING NS SHALL HAVE A FIRE RESISTANC	
4 - LOCATION TO • 10m MINIMUM SPATIAL SEPARATION FOR 50% AREA OF UNPROTECTED OPENINGS (ÈBF > 200M2) 9m SPATIAL SEPARATION FOR 100% AREA OF UNPROTECTED OPENINGS WHEN FACING A STREET 3.4.2.5: LOCATION OF EXITS		3.2.3.1: SPATIAL SEPA	RATION - TABLE 3.2.3.1	1.E	
		10m MINIMUM S	SPATIAL SEPARATION	FOR 50% AREA OF UNPROTECTED	D OPENINGS (ÈBF > 200M2)

North

Revisions

No.	By	Description	Date
01	ERM	ISSUED FOR REVIEW	2023-02-06
02	ERM	ISSUED FOR COORDINATION	2023-02-14
03	ERM	ISSUED FOR COORDINATION	2023-03-24

Project

THUNDER ROAD INDUSTRIAL PARK

6160 THUNDER ROAD, OTTAWA

Drawing

LOCATION PLAN, ZONING REVIEW AND SITE PLAN C3

Scale Stamp AS NOTED Drawn ERM Checked JAS

Project No. 21-135 Date

APRIL 2021

Drawing No.

SPA-01

APPENDIX B

Screening Form

City of Ottawa 2017 TIA Guidelines Screening Form

1. Description of Proposed Development				
Municipal Address	6150 Thunder Road, Ottawa, ON K0A 1K0			
Description of Location	Bound by Thunder Road, forested areas and Boundary Road			
Land Use Classification	ZBL - Rural Countryside Zone (RU), OP - General Rural Area			
Development Size (units)				
Development Size (m ²)	Industrial Buildings = 45,476 sq. m			
Number of Accesses and Locations	Three full-moves accesses to Thunder Road, one full-moves access to Boundary Road			
Phase of Development	TBD			
Buildout Year	TBD (2025 assumed)			

If available, please attach a sketch of the development or site plan to this form.

2. Trip Generation Trigger

Considering the Development's Land Use type and Size (as filled out in the previous section), please refer to the Trip Generation Trigger checks below.

Land Use Type	Minimum Development Size
Single-family homes	40 units
Townhomes or apartments	90 units
Office	3,500 m ²
Industrial	5,000 m ² EXCEEDS 5,000 sq. m
Fast-food restaurant or coffee shop	100 m ²
Destination retail	1,000 m ²
Gas station or convenience market	75 m ²

* If the development has a land use type other than what is presented in the table above, estimates of person-trip generation may be made based on average trip generation characteristics represented in the current edition of the Institute of Transportation Engineers (ITE) Trip Generation Manual.

If the proposed development size is greater than the sizes identified above, <u>the Trip Generation</u> <u>Trigger is satisfied.</u>

3. Location Triggers

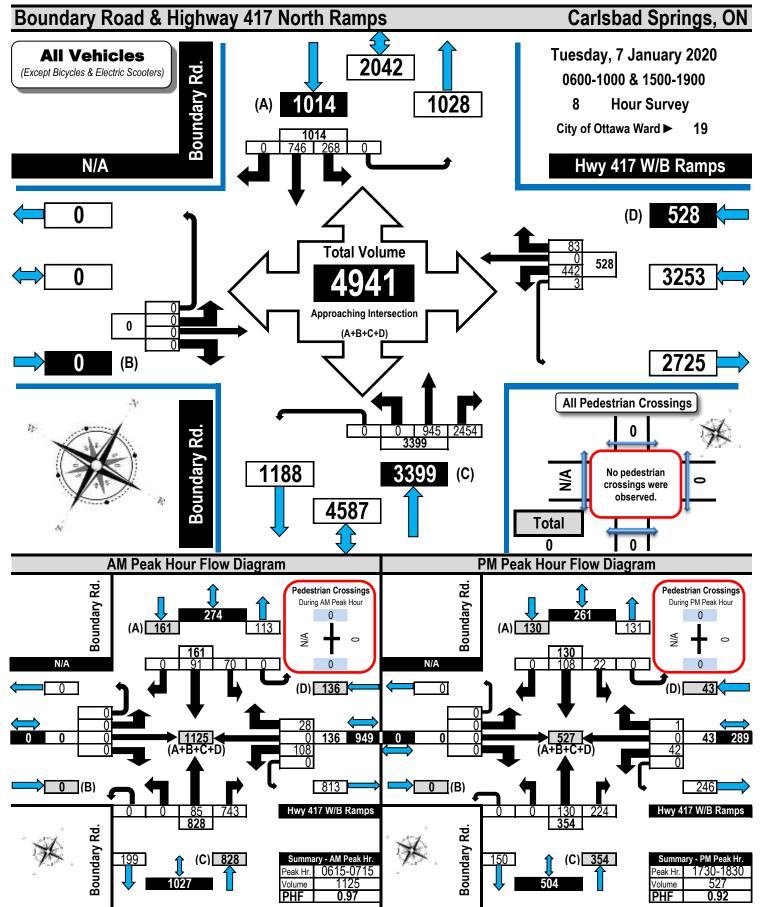
S. EOCATION MIGGETS		
	Yes	No
Does the development propose a new driveway to a boundary street that is designated as part of the City's Transit Priority, Rapid Transit or Spine Bicycle Networks?		Х
Is the development in a Design Priority Area (DPA) or Transit-oriented Development (TOD) zone?*		Х

*DPA and TOD are identified in the City of Ottawa Official Plan (DPA in Section 2.5.1 and Schedules A and B; TOD in Annex 6). See Chapter 4 for a list of City of Ottawa Planning and Engineering documents that support the completion of TIA).

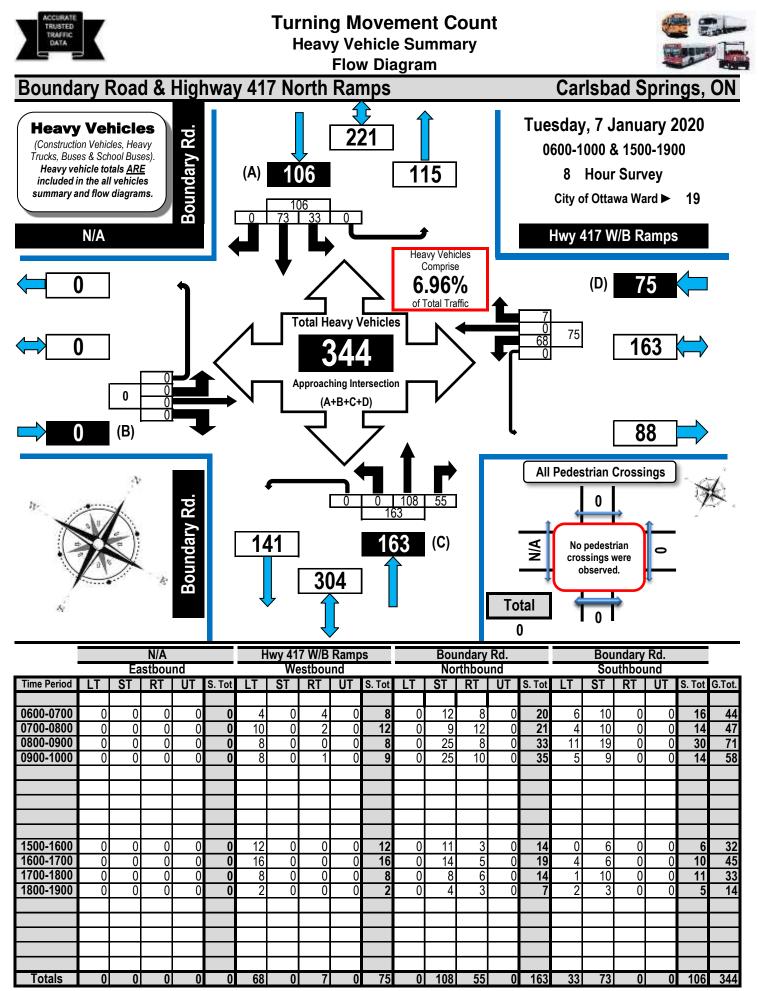
If any of the above questions were answered with 'Yes,' the Location Trigger is satisfied.

4. Safety Triggers		
	Yes	No
Are posted speed limits on a boundary street are 80 km/hr or greater?	Х	
Are there any horizontal/vertical curvatures on a boundary street limits sight lines at a proposed driveway?		Х
Is the proposed driveway within the area of influence of an adjacent traffic signal or roundabout (i.e. within 300 m of intersection in rural conditions, or within 150 m of intersection in urban/ suburban conditions)?	Х	
Is the proposed driveway within auxiliary lanes of an intersection?		Х
Does the proposed driveway make use of an existing median break that serves an existing site?		Х
Is there is a documented history of traffic operations or safety concerns on the boundary streets within 500 m of the development?		Х
Does the development include a drive-thru facility?		Х

If any of the above questions were answered with 'Yes,' the Safety Trigger is satisfied.


5. Summary		
	Yes	No
Does the development satisfy the Trip Generation Trigger?	Х	
Does the development satisfy the Location Trigger?		Х
Does the development satisfy the Safety Trigger?	Х	

If none of the triggers are satisfied, <u>the TIA Study is complete</u>. If one or more of the triggers is satisfied, <u>the TIA Study must continue into the next stage</u> (Screening and Scoping).


APPENDIX C

Traffic Data

Prepared by: thetrafficspecialist@gmail.com

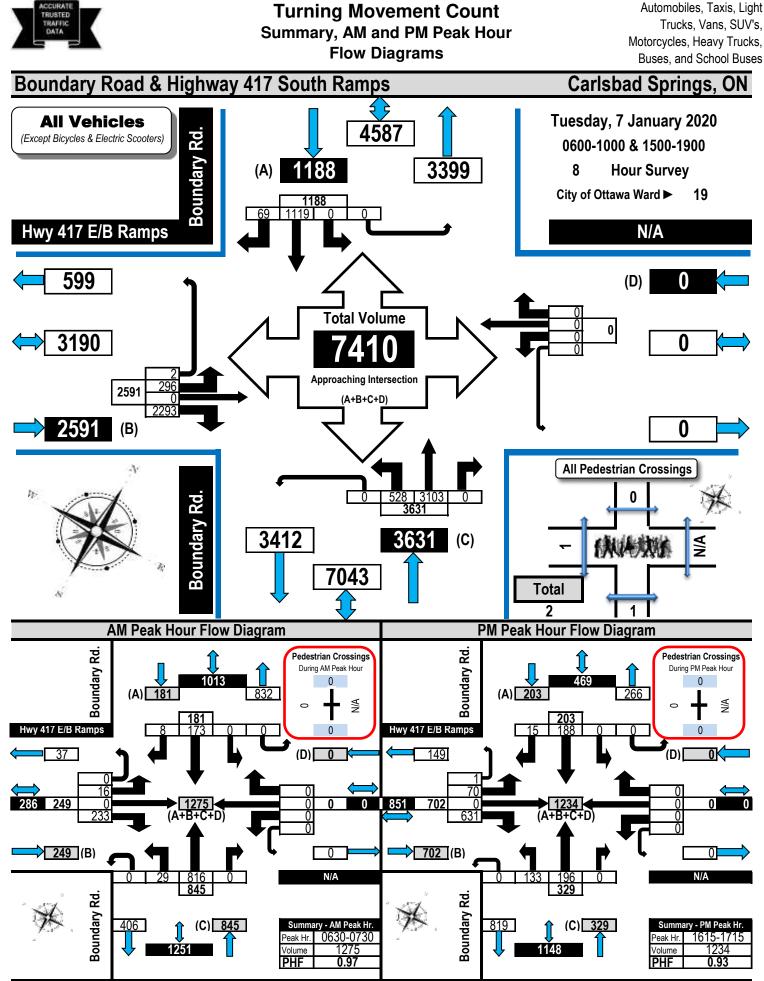
Turning Movement Count Summary Report Including AM, OFF Peak, PM, Evening Peak Hours, and PHF

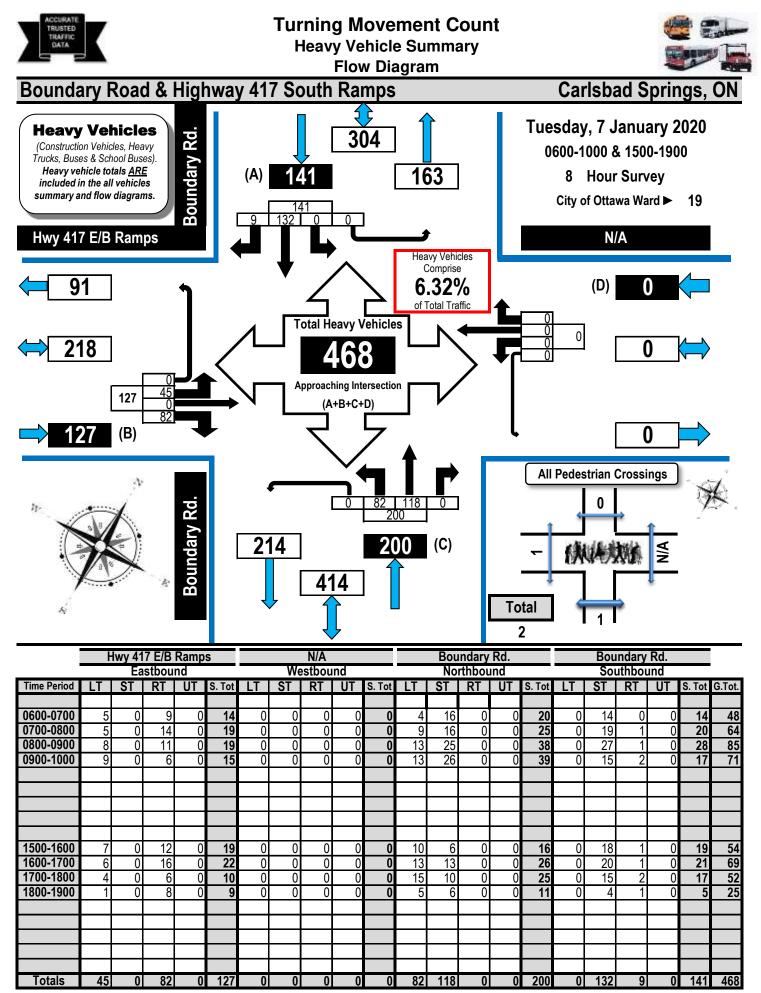
Automobiles, Taxis, Light Trucks, Vans, SUV's, Motorcycles, Heavy Trucks, Buses, and School Buses

Carlsbad Springs, ON

Boundary Road & Highway 417 North Ramps

					<u> </u>																•	-	
Survey Date: Tuesday, 7 January 2020												Start Time: 0600 AADT Factor								ctor:	: 1.1		
Weather AM:	Survey Duration: 8 Hrs.							Survey Hours: 0600-					& 15										
Weather PM:	Cloud	y -1º C	;									Surv	eyor(s):		Carm	ody						
			N/A			Hw	y 417	W/E	8 Ra	mps	1			ndary				Bour	ndar	v R	d.		
			stbou	nd				stbou			I			rthbou					uthbo			•	
Time Period	LT	ST	RT	UT	E/B Tot	LT	ST	RT	UT	W/B Tot	Street Total	LT	ST	RT	UT	N/B Tot	LT	ST	RT	UT	S/B Tot	Street Total	Grand Total
0600-0700	0	0	0	0	0		0		1	120	120	0	87	685	0	772	72	85		_			1049
0700-0800	0	0	0	0	0	-	0	-	0	110	110	0	112	632	0	744	48	81		-			983
0800-0900	0	0	0	0	0		0	-	0	66		0	108	360	0	468		84	<u> </u>				672
0900-1000	0	0	0	0	0	32	0	5	1	38	38	0	89	223	0	312	29	52	0	0	81	393	431
1500-1600	0	0	0	0	0	44	0	10	1	55	55	0	155	122	0	277	18	95	0	0	113	390	445
1600-1700	0	0	0	0	0	57	0	5	0	62	62	0	148	106	0	254	15	131	0	0	146	400	462
1700-1800	0	0	0	0	0	44	0	1	0	45	45	0	156	156	0	312	18	138	0	0	156	468	513
1800-1900	0	0	0	0	0	29	0	3	0	32	32	0	90	170	0	260	14	80	0	0	94	354	386
Totolo	0	0	0	0		440	•	0.0	2	500	520	0	045	2454	0	2200	260	740	0	-	1014	4442	40.44
Totals	0	0	0	0	0	442	0	83	3	528	528	U	945	2454	0	3399	268	746	0	0	1014	4413	4941


Expansion factors are applied exclusively to standard <u>weekday</u> 8-hour turning movement counts conducted during the hours of 0700h - 1000h, 1130h - 1330h and 1500h - 1800h


AM Peak Hour Factor ➡ 0.97													High	est H	ourly	Vehic	le Volu	ume I	Betwe	en 0500h	& 1000h	
AM Peak Hr	LT	ST	RT	UT	TOT	LT	ST	RT	UT	тот	S.TOT	LT	ST	RT	UT	TOT	LT	ST	RT	UT	TOT S.TO	T G.TOT
0615-0715	0	0	0	0	0	108	0	28	0	136	136	0	85	743	0	828	70	91	0	0	161 98	9 1125
OFF Peak H	our Fa	ctor <	•	N/	Α									High	est H	ourly	Vehic	le Volu	ume I	Betwe	en 1000h	& 1500h
OFF Peak Hr	LT	ST	RT	UT	TOT	LT	ST	RT	UT	тот	S.TOT	LT	ST	RT	UT	TOT	LT	ST	RT	UT	TOT S.TO	T G.TOT
N/A	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0
PM Peak Ho	our Fac	tor 🟓	•	0.9	92									High	est H	ourly	Vehic	le Volu	ume I	Betwe	en 1500h	& 1900h
PM Peak Hr	LT	ST	RT	UT	TOT	LT	ST	RT	UT	тот	S.TOT	LT	ST	RT	UT	TOT	LT	ST	RT	UT	TOT S.TO	T G.TOT
1730-1830	0	0	0	0	0	42	0	1	0	43	43	0	130	224	0	354	22	108	0	0	130 48	4 527
EVNG Peak Hour Factor 🌩 N/A														High	est H	ourly	Vehic	le Volu	ume I	Betwe	en 1900h	& 0000h
EVNG Pk Hr	LT	ST	RT	UT	TOT	LT	ST	RT	UT	тот	S.TOT	LT	ST	RT	UT	TOT	LT	ST	RT	UT	TOT S.TO	T G.TOT
EVING PK Hr		01	N1	01	101		•••		• •		••.		÷ •		•			• ·		•••		0.101

Comments:

No pedestrian crossings or bicycles were observed. Street lights are not present at this intersection.

- Notes: 1. Includes all vehicle types except bicycles and electric scooters.
 - 2. When expansion and AADT factors are applied, the results will differ slightly due to rounding.

Printed on: 1/11/2020

Prepared by: thetrafficspecialist@gmail.com

Summary: Heavy Vehicles

Turning Movement Count Summary Report Including AM, OFF Peak, PM, Evening Peak Hours, and PHF

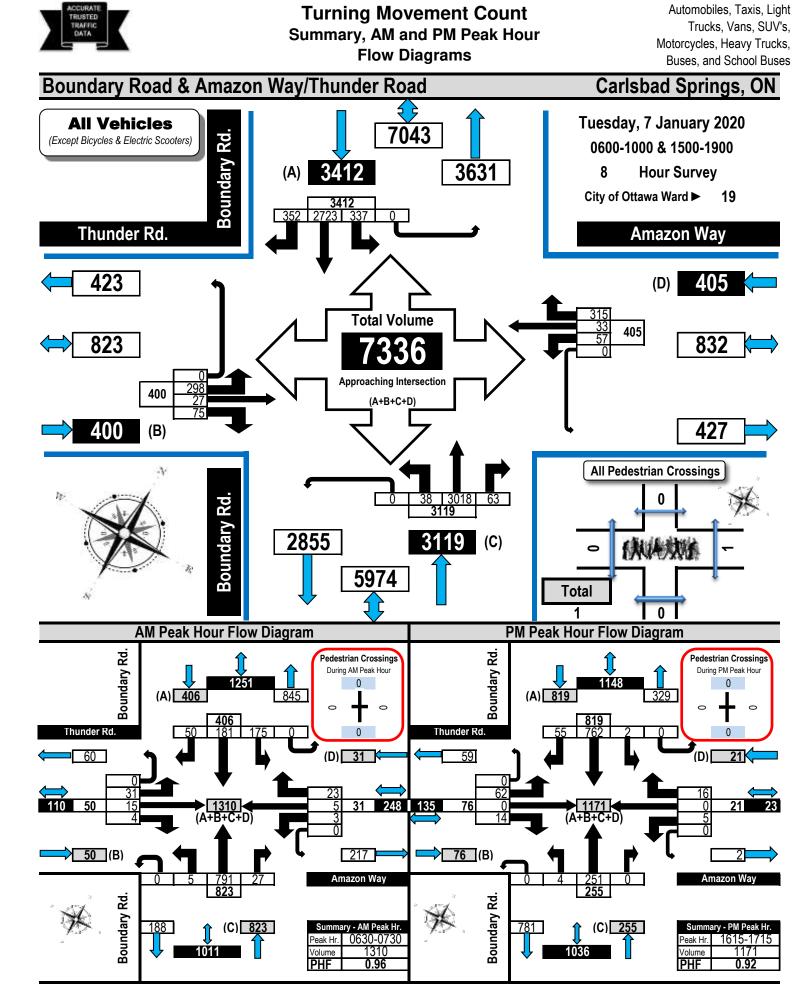
Automobiles, Taxis, Light Trucks, Vans, SUV's, Motorcycles, Heavy Trucks, Buses, and School Buses

Carlsbad Springs, ON

Boundary Road & Highway 417 South Ramps

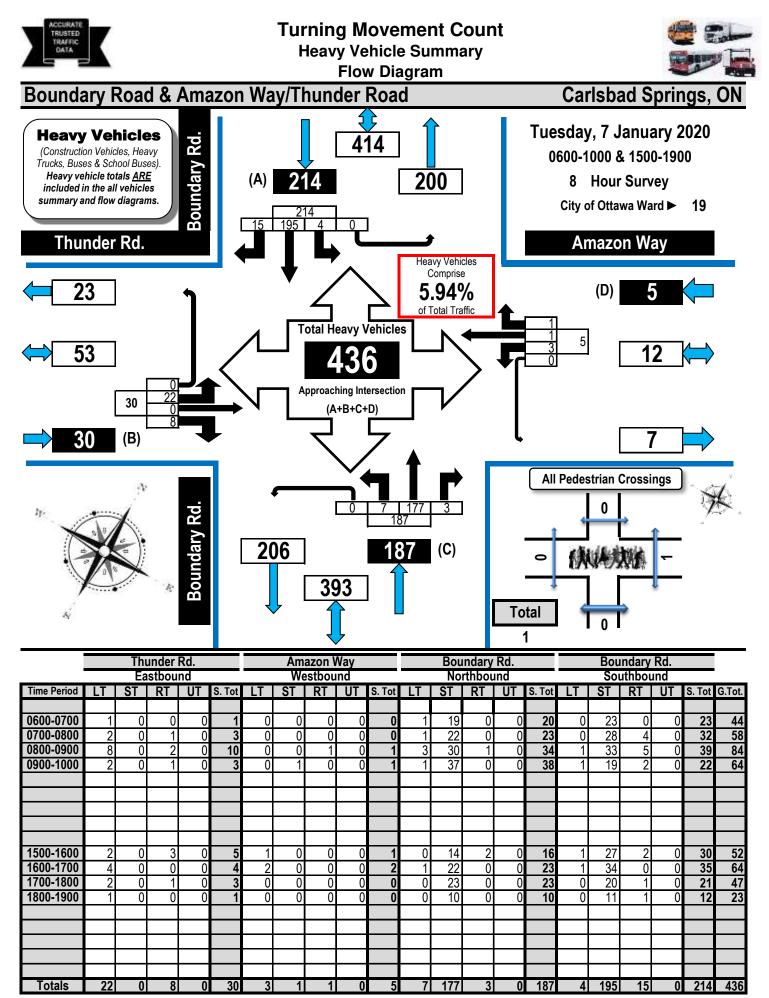
Survey Date: Tuesday, 7 January 2020 Start Time: AADT Factor: 1.1 0600-1000 & 1500-1900 Weather AM: Overcast -4° C Survey Hours: Survey Duration: 8 Hrs. Weather PM: Cloudy -1° C Surveyor(s): Carmody Hwy 417 E/B Ramps N/A Boundarv Rd. Boundary Rd. Northbound Southbound Eastbound Westbound Time E/B W/B Street N/B S/B Street Grand LT ST UT ST RTUT RTUT RT LT LT ST RT UT LT ST Period Tot Tot Total Tot Tot Total Total 0600-0700 0700-0800 0800-0900 0900-1000 1500-1600 1600-1700 1700-1800 1800-1900 2591 528 3103 0 1119 0 1188 4819 Totals 0 2293 2 2591 0 3631

Expansion factors are applied exclusively to standard <u>weekday</u> 8-hour turning movement counts conducted during the hours of 0700h - 1000h, 1130h - 1330h and 1500h - 1800h


AM Peak Hour Factor → 0.97					97									High	est H	ourly	Vehic	le Volu	ume E	Betwe	en 050	00h &	1000h
AM Peak Hr	LT	ST	RT	UT	TOT	LT	ST	RT	UT	тот	S.TOT	LT	ST	RT	UT	TOT	LT	ST	RT	UT	TOT S	6.TOT	G.TOT
0630-0730	16	0	233	0	249	0	0	0	0	0	249	29	816	0	0	845	0	173	8	0	181 1	1026	1275
OFF Peak H	our Fa	ctor	•	N	/A									High	est H	ourly	Vehic	le Volu	ume E	Betwe	en 100)0h &	1500h
OFF Peak Hr	LT	ST	RT	UT	TOT	LT	ST	RT	UT	тот	S.TOT	LT	ST	RT	UT	TOT	LT	ST	RT	UT	TOT S	6.TOT	G.TOT
N/A	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PM Peak Ho	our Fac	tor 🗖		0.	93									High	est H	ourly	Vehic	le Volu	ume E	Betwe	en 150)0h &	1900h
PM Peak Hr	LT	ST	RT	UT	TOT	LT	ST	RT	UT	тот	S.TOT	LT	ST	RT	UT	TOT	LT	ST	RT	UT	TOT S	6.TOT	G.TOT
1615-1715	70	0	631	1	702	0	0	0	0	0	702	133	196	0	0	329	0	188	15	0	203	532	1234
EVNG Peak H	lour Fa	ctor <	•	N	/A									High	est H	ourly	Vehic	le Volu	ume E	Betwe	en 190)0h &	0000h
EVNG Pk Hr	LT	ST	RT	UT	TOT	LT	ST	RT	UT	тот	S.TOT	LT	ST	RT	UT	TOT	LT	ST	RT	UT	TOT S	6.TOT	G.TOT
N/A	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Comments:

No bicycles were observed.


Notes: 1. Includes all vehicle types except bicycles and electric scooters.

2. When expansion and AADT factors are applied, the results will differ slightly due to rounding.

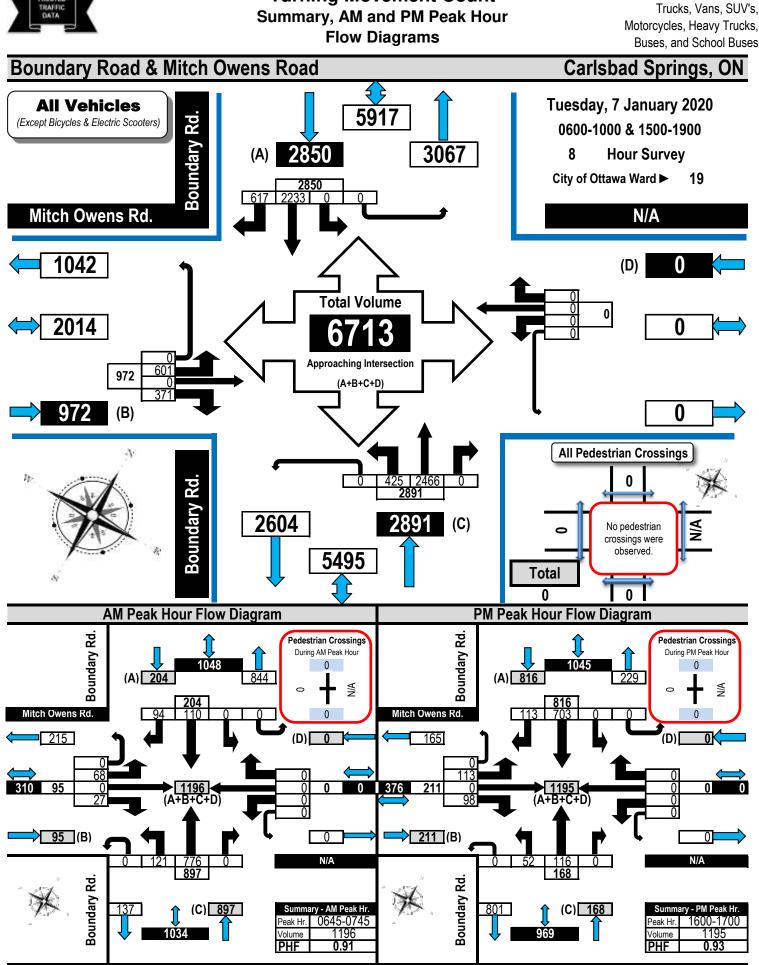
Prepared by: thetrafficspecialist@gmail.com

Flow Diagrams: AM PM Peak

Turning Movement Count Summary Report Including AM, OFF Peak, PM, Evening Peak Hours, and PHF

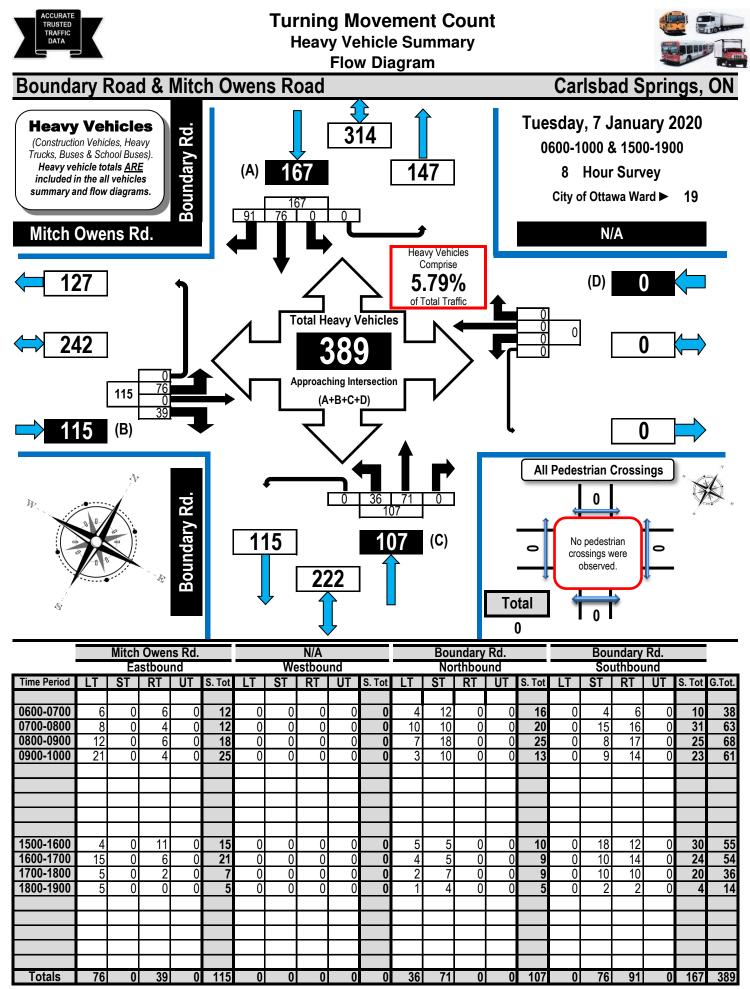
Automobiles, Taxis, Light Trucks, Vans, SUV's, Motorcycles, Heavy Trucks, Buses, and School Buses

Boundary Road & Amazon Way/Thunder Road Carlsbad Springs, ON Survey Date: Tuesday, 7 January 2020 Start Time: AADT Factor: 1.1 0600-1000 & 1500-1900 Weather AM: Overcast - 4° C Survey Hours: Survey Duration: 8 Hrs. Weather PM: Cloudy - 1° C Surveyor(s): Carmodv Thunder Rd. Amazon Wav Boundarv Rd. Boundarv Rd. Northbound Southbound Eastbound Westbound Time E/B W/B Street N/B S/B Street Grand RTUT RTUT LT UT RTIUT LT ST LT ST ST RT LT ST Period Tot Tot Total Tot Tot Total Total 0600-0700 0700-0800 0800-0900 0900-1000 1500-1600 1600-1700 1700-1800 1800-1900 38 3018 Totals 33 315 0 3119 337 2723 352 0 3412


Expansion factors are applied exclusively to standard <u>weekday</u> 8-hour turning movement counts conducted during the hours of 0700h - 1000h, 1130h - 1330h and 1500h - 1800h

AM Peak Ho	our Fac	tor 🗖	•	0.9	96									High	est H	ourly	Vehic	le Volu	ume I	Betwe	en 0500h 8	1000h
AM Peak Hr	LT	ST	RT	UT	TOT	LT	ST	RT	UT	тот	S.TOT	LT	ST	RT	UT	TOT	LT	ST	RT	UT	TOT S.TOT	G.TOT
0630-0730	31	15	4	0	50	3	5	23	0	31	81	5	791	27	0	823	175	181	50	0	406 1229	1310
OFF Peak H	our Fa	ctor ı	•	N/	A									High	est H	ourly	Vehic	le Volu	ume I	Betwe	en 1000h 8	1500h
OFF Peak Hr	LT	ST	RT	UT	TOT	LT	ST	RT	UT	тот	S.TOT	LT	ST	RT	UT	TOT	LT	ST	RT	UT	TOT S.TOT	G.TOT
N/A	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0
PM Peak Ho	our Fac	tor ٵ	•	0.9	92									High	est H	ourly	Vehic	le Volu	ume I	Betwe	en 1500h 8	1900h
PM Peak Hr	LT	ST	RT	UT	TOT	LT	ST	RT	UT	тот	S.TOT	LT	ST	RT	UT	TOT	LT	ST	RT	UT	TOT S.TOT	G.TOT
1615-1715	62	0	14	0	76	5	0	16	0	21	97	4	251	0	0	255	2	762	55	0	819 1074	1171
EVNG Peak H	lour Fa	ctor 🗖	•	N/	A									High	est H	ourly	Vehic	le Volu	ume I	Betwe	en 1900h 8	0000h
EVNG Pk Hr	LT	ST	RT	UT	TOT	LT	ST	RT	UT	тот	S.TOT	LT	ST	RT	UT	TOT	LT	ST	RT	UT	TOT S.TOT	G.TOT
N/A	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0

Comments:


Much of the traffic, including the majority of the heavy vehicles, to and from Thunder Road is associated with the Petro Canada gas station on the southwest corner. The heavy vehicle total includes 29 school buses and 7 private buses. There were no bicycles observed during this traffic count.

- Notes: 1. Includes all vehicle types except bicycles and electric scooters.
 - 2. When expansion and AADT factors are applied, the results will differ slightly due to rounding.

Turning Movement Count

Automobiles, Taxis, Light

Printed on: 1/9/2020

Prepared by: thetrafficspecialist@gmail.com

Summary: Heavy Vehicles

Turning Movement Count Summary Report Including AM, OFF Peak, PM, Evening Peak Hours, and PHF

Automobiles, Taxis, Light Trucks, Vans, SUV's, Motorcycles, Heavy Trucks, Buses, and School Buses

Boundary Road & Mitch Owens Road

Carlsbad Springs, ON

Survey Da Weather AM: Weather PM:	Overc Cloud	ast - 4 y - 1° (tch (° C C	ns	-	020		ey Dura N/A stbou		8	Hrs.	Surv Surv		ours:	/ Ro	0600 0600- Carm 1.	ody	Bour	00-19	900 y R i	nctor: d.		1.1
Time Period	LT	ST	RT	UT	E/B Tot	LT	ST	RT	-	W/B Tot	Street Total	LT	ST	RT	UT	N/B Tot	LT	ST		UT	S/B Tot	Street Total	Grand Total
0600-0700	51	0	28	0		0	0		-	0	79	81	670	0	-	751	0	-	88		145		975
0700-0800	63	0	19	0	-	0	0	0	-		82	118	681	0		799	0	-			210		1091
0800-0900	80	0	30	0		0	0		•	0	110	52	412	0	-	464	0		75		167	631	741
0900-1000	58	0	16	0	74	0	0	0	0	0	74	29	239	0	0	268	0	67	48	0	115	383	457
1500-1600	75	0	74	0	149	0	0	0	0	0	149	45	125	0	0	170	0	488	66	0	554	724	873
1600-1700	113	0	98	0		0	0	0		0	211	45 52	125	0		168	0		113		816		1195
1700-1800	113	0	90 74	0	187	0	0	0	-	0	187	30	128	0	-	158	0				534		879
1800-1900	48	0	32	0	80	0	0	0	0	0	80	18	95	0	0	113	0			0	309		502
	.0		52	5			0	0	5		50	.0						202		Ē		122	002
Totals	601	0	371	0	972	0	0	0	0	0	972	425	2466	0	0	2891	0	2233	617	0	2850	5741	6713

Expansion factors are applied exclusively to standard <u>weekday</u> 8-hour turning movement counts conducted during the hours of 0700h - 1000h, 1130h - 1330h and 1500h - 1800h

AM Peak Ho	our Fac	tor 🗖		0.	91									High	est H	ourly	Vehic	le Vol	ume l	Betwe	en 050	00h &	1000h
AM Peak Hr	LT	ST	RT	UT	TOT	LT	ST	RT	UT	тот	S.TOT	LT	ST	RT	UT	TOT	LT	ST	RT	UT	TOT S	S.TOT	G.TOT
0645-0745	68	0	27	0	95	0	0	0	0	0	95	121	776	0	0	897	0	110	94	0	204 [·]	1101	1196
OFF Peak H	lour Fa	ctor ı	•	N	Α									High	est H	ourly	Vehic	le Vol	ume l	Betwe	en 100	00h &	1500h
OFF Peak Hr	LT	ST	RT	UT	TOT	LT	ST	RT	UT	тот	S.TOT	LT	ST	RT	UT	TOT	LT	ST	RT	UT	TOT S	S.TOT	G.TOT
N/A	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PM Peak Ho	our Fac	tor ٵ	•	0.9	93									High	est H	ourly	Vehic	le Vol	ume l	Betwe	een 150	00h &	1900h
PM Peak Hr	LT	ST	RT	UT	TOT	LT	ST	RT	UT	TOT	S.TOT	LT	ST	RT	UT	TOT	LT	ST	RT	UT	TOT S	S.TOT	G.TOT
1600-1700	113	0	98	0	211	0	0	0	0	0	211	52	116	0	0	168	0	703	113	0	816	984	1195
EVNG Peak H	lour Fac	ctor 🗖	•	N	Ά									High	est H	ourly	Vehic	le Vol	ume l	Betwe	een 190	00h &	0000h
EVNG Pk Hr	LT	ST	RT	UT	TOT	LT	ST	RT	UT	тот	S.TOT	LT	ST	RT	UT	TOT	LT	ST	RT	UT	TOT S	S.TOT	G.TOT
N/A	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Comments:

Large heavy vehicles cannot complete their turns without driving into adjacent lanes. The lack of a northbound left-turn lane results in some northbound drivers using the shoulder to pass vehicles waiting to turn. Some southbound drivers pass southbound heavy vehicles turning right onto Mitch Owens Road as the heavy vehicle turns from the southbound through lane.

- **Notes:** 1. Includes all vehicle types except bicycles and electric scooters.
 - 2. When expansion and AADT factors are applied, the results will differ slightly due to rounding.

APPENDIX D

Collision Data

City Operations - Transportation Services Collision Details Report - Public Version

From: January 1, 2014 To: December 31, 2018

Traffic Control: No	control					Total Collisions: 3					
Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuve	er Vehicle type	First Event	No. Ped		
2016-May-01, Sun,22:14	Rain	SMV other	P.D. only	Wet	North	Turning left	Automobile, station wagon	Ran off road			
2016-Nov-13, Sun,11:05	Clear	Rear end	P.D. only	Dry	North	Going ahead	Automobile, station wagon	Other motor vehicle			
					North	Turning left	Automobile, station wagon	Other motor vehicle			
2018-Mar-22, Thu,14:00	Clear	Rear end	Non-fatal injury	Dry	North	Turning left	Automobile, station wagon	Other motor vehicle			
					North	Turning left	Automobile, station wagon	Other motor vehic l e			

Location: BOUNDARY RD @ HWY 417 BOUNDARY IC96R16

Traffic Control: No	control			Total Collisions: 1						
Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuve	r Vehic l e type	First Event	No. Ped	
2015-Sep-12, Sat,11:19	Rain	Rear end	P.D. only	Wet	North	Going ahead	Pick-up truck	Other motor vehic l e		
					North	Turning right	Pick-up truck	Other motor vehic l e		

Location: BOUNDARY RD @ HWY 417 BOUNDARY IC96R51

Traffic Control: Stop sign

Total Collisions: 7

Date/Day/Time Environment Impact Type Classification Surfaction	
---	--

2014-Jun-21, Sat,23:06	Clear	Rear end	P.D. only	Dry	North	Going ahead	Unknown	Other motor vehicle
					North		Automobile, station wagon	Other motor vehicle
2014-Aug-22, Fri,16:15	Clear	Rear end	P.D. only	Dry	East		Automobile, station wagon	Other motor vehicle
					East	Slowing or stopping	-	Other motor vehicle
2015-May-27, Wed,18:10	Clear	Rear end	P.D. only	Dry	East	v	Automobile, station wagon	Other motor vehicle
					East		Pick-up truck	Other motor vehicle
2017-Oct-04, Wed,00:19	Rain	Angle	Fatal injury	Wet	East		Automobile, station wagon	Other motor vehicle
					South		Automobile, station wagon	Other motor vehicle
					North	Going ahead	Automobile, station wagon	Other motor vehicle
2017-Nov-08, Wed,10:30	Clear	Sideswipe	P.D. only	Dry	East		Automobile, station wagon	Other motor vehicle
					East	Turning right	Truck and trailer	Other motor vehicle
2018-Sep-06, Thu,15:10	Clear	Angle	P.D. only	Dry	East		Automobile, station wagon	Other motor vehicle
					North	Going ahead	Automobile, station wagon	Other motor vehicle
2018-Apr-11, Wed,17:10	Clear	Rear end	P.D. only	Dry	East		Automobile, station wagon	Other motor vehicle
					East	Slowing or stopping	Automobile, station wagon	Other motor vehicle

Location: BOUNDARY RD @ HWY 417 BOUNDARY IC96R61

Traffic Control: Sto	p sign						Total C	ollisions: 2	
0ate/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuve	r Vehicle type	First Event	No. Ped
2015-May-02, Sat,02:58	Clear	SMV other	P.D. only	Dry	South	Going ahead	Pick-up truck	Po l e (sign, parking meter)	
2015-Feb-15, Sun,15:20	Clear	Rear end	P.D. only	Dry	West	Going ahead	Pick-up truck	Other motor vehicle	
					West	Stopped	Automobile, station wagon	Other motor vehic l e	
Location: BOUNI		/ITCH OWENS F	20						
Traffic Control: Sto	_						Total C	ollisions: 18	
Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuve	r Vehic l e type	First Event	No. Ped
2014-Feb-03, Mon,21:45	Clear	SMV other	P.D. only	Dry	North	Going ahead	Pick-up truck	Anima l - wild	
2014-Mar-29, Sat,10:14	Clear	SMV other	P.D. only	Dry	East	Going ahead	Automobile, station wagon	Ran off road	
2014-Nov-08, Sat,02:00	Clear	SMV other	P.D. only	Dry	East	Turning right	Pick-up truck	Ran off road	
2014-Nov-08, Sat,02:00 2014-Sep-27, Sat,08:57	Clear	SMV other	P.D. only P.D. only	Dry Dry	East East	Turning right Going ahead	Pick-up truck Pick-up truck	Ran off road Fence/noice barrier	
	Clear							Fence/noice	

Dry

Angle P.D. only

Turning left

Passenger van Other motor

Automobile,

station wagon

vehicle

vehic**l**e

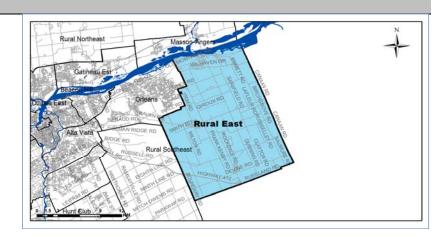
Other motor

East

2015-Oct-30, Fri,17:16	Clear	Rear end	Non-fatal injury	Dry	North	Going ahead	Delivery van	Other motor
					North	Turning left	Automobile, station wagon	vehicle Other motor vehicle
2015-Oct-13, Tue,11:34	Rain	SMV other	P.D. only	Wet	North	Overtaking	Automobile, station wagon	Skidding/sliding
2015-Oct-19, Mon,07:35	Clear	Angle	P.D. only	Dry	East	Turning left	Automobile, station wagon	Other motor vehicle
					North	Turning left	Automobile, station wagon	Other motor vehicle
2016-Jan-17, Sun,17:07	Snow	SMV other	P.D. only	Loose snow	South	Going ahead	Automobile, station wagon	Ditch
2016-Jan-01, Fri,12:28	Snow	Angle	P.D. only	Wet	East	Turning left	Delivery van	Other motor vehicle
					South	Going ahead	Automobile, station wagon	Other motor vehicle
2016-Aug-18, Thu,17:57	Clear	Angle	P.D. only	Dry	East	Turning left	Pick-up truck	Other motor vehicle
					South	Going ahead	Automobile, station wagon	Other motor vehicle
2016-Nov-08, Tue,17:42	Clear	Angle	P.D. only	Dry	East	Turning left	Automobile, station wagon	Other motor vehicle
					North	Going ahead	Automobile, station wagon	Other motor vehicle
2016-Nov-25, Fri,16:38	Fog, mist, smoke dust	, Rear end	Non-fatal injury	Wet	North	Going ahead	Pick-up truck	Other motor vehicle

					North	Turning left	Automobile, station wagon	Other motor vehic l e	
2017-Jun-01, Thu,17:20	Clear	Angle	P.D. only	Dry	East	Turning left	Automobile, station wagon	Other motor vehic l e	
					South	Going ahead	Automobi l e, station wagon	Other motor vehic l e	
2017-Jun-09, Fri,09:25	Clear	SMV other	P.D. only	Dry	South	Going ahead	Automobile, station wagon	Skidding/sliding	
2018-Dec-02, Sun,22:30	Fog, mist, smoke dust	, Rear end	Non-fatal injury	Dry	East	Going ahead	Automobile, station wagon	Other motor vehic l e	
					East	Slowing or stopping	Automobile, station wagon	Other motor vehic l e	
2018-Dec-21, Fri,19:00	Fog, mist, smoke dust	, SMV other	P.D. only	Ice	South	Going ahead	Automobile, station wagon	Skidding/sliding	
Location: BOUNE	DARY RD @ NI p sign	NTH LINE RD					Total C	ollisions: 2	
0ate/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuver	Vehicle type	First Event	No. Ped
2017-Sep-06, Wed,15:07	Clear	Turning movement	P.D. only	Dry	North	Turning left	Automobile, station wagon	Other motor vehicle	
					South	Slowing or stopping	Automobile, station wagon	Other motor vehic l e	
2017-Feb-13, Mon,15:44	Snow	Turning movement	P.D. only	Loose snow	North	Turning left	Automobile, station wagon	Other motor vehic l e	
					North	Going ahead	Automobile,	Other motor	

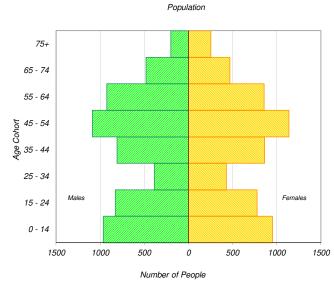
station wagon vehicle


APPENDIX E

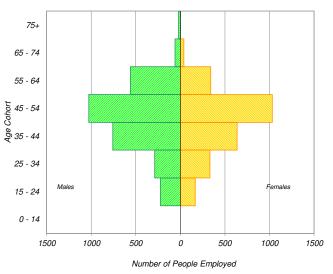
NCR Survey Data

Demographic Characteristics

Population	11,420	Actively Trav	velled	9,090
Employed Population	5,480	Number of \	ehicles/	9,320
Households	4,090	Area (km²)		287.5
Occupation				
Status (age 5+)		Male	Female	Total
Full Time Employed		2,850	2,180	5,040
Part Time Employed		90	360	450
Student		1,280	1,320	2,600
Retiree		1,010	1,020	2,030
Unemployed		130	100	240
Homemaker		0	400	400
Other		50	90	150
Total:		5,410	5,480	10,900
Traveller Characteristics		Male	Female	Total
Transit Pass Holders		500	490	990
Licensed Drivers		4,450	4,410	8,850
Telecommuters		0	80	80
Trips made by residents		13,710	14,700	28,410



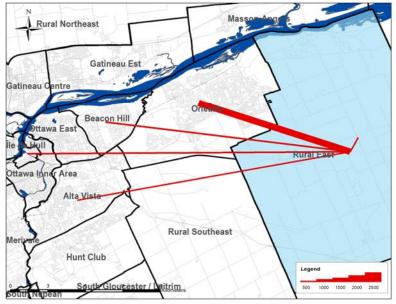
Household Size		
1 person	580	14%
2 persons	1,280	31%
3 persons	780	19%
4 persons	990	24%
5+ persons	460	11%
Total:	4,090	100%


Households by Vehicle Availability			
0 vehicles	60	1%	
1 vehicle	810	20%	
2 vehicles	1,820	44%	
3 vehicles	910	22%	
4+ vehicles	490	12%	
Total:	4,090	100%	

Households by Dwelling Type		
Single-detached	3,270	80%
Semi-detached	270	7%
Townhouse	220	5%
Apartment/Condo	330	8%
Total:	4,090	100%

Selected Indicators	
Daily Trips per Person (age 5+)	2.61
Vehicles per Person	0.82
Number of Persons per Household	2.79
Daily Trips per Household	6.95
Vehicles per Household	2.28
Workers per Household	1.34
Population Density (Pop/km2)	40

Employed Population


* In 2005 data was only collected for household members aged 11^{*} therefore these results cannot be compared to the 2011 data.

Travel Patterns

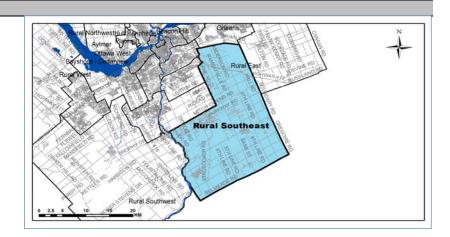
Top Five Destinations of Trips from Rural East

AM Peak Period

Summary of Trips to and from Rural East					
AM Peak Period (6:30 - 8:59)	Destinations of	C	Drigins of		
	Trips From		Trips To		
Districts	District	% Total	District	% Total	
Ottawa Centre	450	8%	0	0%	
Ottawa Inner Area	250	5%	70	3%	
Ottawa East	160	3%	70	3%	
Beacon Hill	350	7%	60	2%	
Alta Vista	430	8%	110	4%	
Hunt Club	140	3%	50	2%	
Merivale	340	6%	10	0%	
Ottawa West	60	1%	40	2%	
Bayshore / Cedarview	50	1%	20	1%	
Orléans	1,970	37%	1,000	38%	
Rural East	820	15%	820	31%	
Rural Southeast	30	1%	170	6%	
South Gloucester / Leitrim	10	0%	0	0%	
South Nepean	60	1%	20	1%	
Rural Southwest	20	0%	0	0%	
Kanata / Stittsvile	30	1%	100	4%	
Rural West	0	0%	0	0%	
Île de Hull	70	1%	10	0%	
Hull Périphérie	30	1%	10	0%	
Plateau	0	0%	0	0%	
Aylmer	0	0%	30	1%	
Rural Northwest	0	0%	0	0%	
Pointe Gatineau	0	0%	30	1%	
Gatineau Est	0	0%	20	1%	
Rural Northeast	40	1%	0	0%	
Buckingham / Masson-Angers	0	0%	0	0%	
Ontario Sub-Total:	5,170	97%	2,540	96%	
Québec Sub-Total:	140	3%	100	4%	
Total:	5,310	100%	2,640	100%	

Trips by Trip Purpose

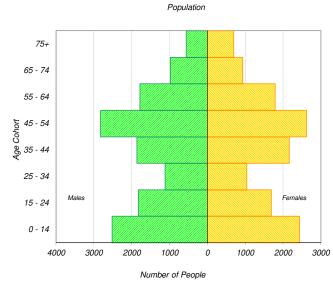
24 Hours	From District	т	o District	Wit	hin District	
Work or related	3,600	27%	1,100	8%	710	19%
School	1,590	12%	790	6%	320	9%
Shopping	1,460	11%	300	2%	90	2%
Leisure	1,290	10%	1,160	9%	410	11%
Medical	480	4%	90	1%	0	0%
Pick-up / drive passenger	1,150	9%	580	4%	350	9%
Return Home	3,120	23%	8,900	67%	1,620	43%
Other	670	5%	460	3%	250	7%
Total:	13,360	100%	13,380	100%	3,750	100%
AM Peak (06:30 - 08:59)	From District	т	o District	Wit	hin District	
Work or related	2,280	51%	660	36%	270	33%
School	1,370	30%	740	41%	310	38%
Shopping	70	2%	0	0%	0	0%
Leisure	70	2%	100	5%	10	1%
Medical	120	3%	40	2%	0	0%
Pick-up / drive passenger	380	8%	50	3%	120	15%
Return Home	30	1%	130	7%	70	9%
Other	180	4%	100	5%	40	5%
Total:	4,500	100%	1,820	100%	820	100%
PM Peak (15:30 - 17:59)	From District	Т	o District	Wit	hin District	
Work or related	60	3%	90	2%	60	9%
School	10	0%	0	0%	0	0%
Shopping	180	8%	20	0%	30	5%
Leisure	250	11%	340	8%	110	17%
Medical	120	5%	30	1%	0	0%
Pick-up / drive passenger	250	11%	150	4%	40	6%
Return Home	1,290	58%	3,510	85%	400	61%
Other	60	3%	10	0%	20	3%
Total:	2,220	100%	4,150	100%	660	100%
Peak Period (%)	Total:	9	6 of 24 Hours	W	ithin Distric	ct (%)
24 Hours	30,490				12%	
AM Peak Period	7,140		23%		11%	
PM Peak Period	7,030		23%		9%	


Trips by Primary Travel Mode

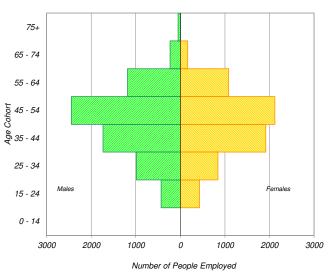
24 Hours	From District		To District	Wit	hin District	
Auto Driver	8,560	64%	8,540	64%	2,210	59%
Auto Passenger	2,530	19%	2,660	20%	650	17%
Transit	1,210	9%	1,220	9%	20	1%
Bicycle	30	0%	30	0%	100	3%
Walk	20	0%	20	0%	440	12%
Other	1,000	7%	920	7%	330	9%
Total:	13,350	100%	13,390	100%	3,750	100%
AM Peak (06:30 - 08:59)	From District		To District	Wit	hin District	:
Auto Driver	2,510	56%	830	46%	400	49%
Auto Passenger	750	17%	240	13%	170	21%
Transit	420	9%	550	30%	10	1%
Bicycle	0	0%	20	1%	10	1%
Walk	0	0%	20	1%	70	9%
Other	810	18%	150	8%	160	20%
Total:	4,490	100%	1,810	100%	820	100%
PM Peak (15:30 - 17:59)	From District		To District	Wit	hin District	
Auto Driver	1,280	58%	2,770	67%	360	55%
Auto Passenger	390	18%	730	18%	150	23%
Transit	420	19%	440	11%	10	2%
Bicycle	10	0%	10	0%	10	2%
Walk	20	1%	0	0%	60	9%
Other	100	5%	210	5%	70	11%
Total:	2,220	100%	4,160	100%	660	100%
Avg Vehicle Occupancy	From District		To District	Wit	hin District	
24 Hours	1.30		1.31		1.29	
AM Peak Period	1.30		1.29		1.43	
PM Peak Period	1.30		1.26		1.42	
Transit Modal Split	From District		To District	Wit	hin District	
24 Hours	10%		10%		1%	
AM Peak Period	11%		34%		2%	
			0.70			

Demographic Characteristics

Population Employed Population Households	26,840 13,620 9,320		Actively Travelled Number of Vehicles Area (km ²)	
Occupation				
Status (age 5+)		Male	Female	Total
Full Time Employed		6,760	5,460	12,230
Part Time Employed		310	1,080	1,390
Student		3,300	2,860	6,160
Retiree		2,000	2,150	4,150
Unemployed		230	190	420
Homemaker		10	610	630
Other		200	290	490
Total:		12,820	12,640	25,460
Turnellan Chamada siadian		N A-L-	Family	Tatal
Traveller Characteristics		Male	Female	Total
Transit Pass Holders		590	700	1,290
Licensed Drivers		10,120	10,110	20,230
Telecommuters		10	80	100
Trips made by residents		32,130	35,050	67,170



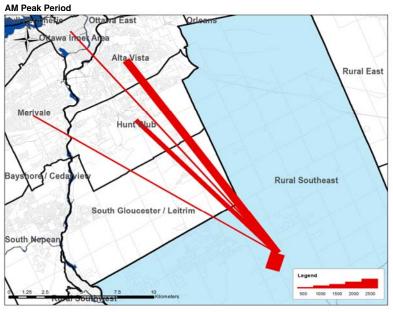
Household Size		
1 person	1,210	13%
2 persons	3,390	36%
3 persons	1,730	19%
4 persons	2,120	23%
5+ persons	880	9%
Total:	9,320	100%


Households by Vehicle Availability				
0 vehicles	200	2%		
1 vehicle	1,760	19%		
2 vehicles	5,180	56%		
3 vehicles	1,470	16%		
4+ vehicles	710	8%		
Total:	9,320	100%		

Households by Dwelling Type		
Single-detached	9,020	97%
Semi-detached	70	1%
Townhouse	140	2%
Apartment/Condo	90	1%
Total:	9,320	100%

Selected Indicators	
Daily Trips per Person (age 5+)	2.64
Vehicles per Person	0.73
Number of Persons per Household	2.88
Daily Trips per Household	7.21
Vehicles per Household	2.11
Workers per Household	1.46
Population Density (Pop/km2)	50

Employed Population



* In 2005 data was only collected for household members aged 11⁺ therefore these results cannot be compared to the 2011 data.

Travel Patterns

Top Five Destinations of Trips from Rural Southeast

Summary of Trips to and	from Rural Sout	heast		
AM Peak Period (6:30 - 8:59)	Destinations of	C		
	Trips From		Trips To	
Districts	District	% Total	District	% Total
Ottawa Centre	690	5%	20	0%
Ottawa Inner Area	830	6%	60	1%
Ottawa East	260	2%	40	1%
Beacon Hill	480	4%	10	0%
Alta Vista	1,550	12%	140	2%
Hunt Club	1,210	9%	190	3%
Merivale	960	7%	10	0%
Ottawa West	190	1%	50	1%
Bayshore / Cedarview	180	1%	40	1%
Orléans	290	2%	70	1%
Rural East	170	1%	30	0%
Rural Southeast	4,440	33%	4,440	73%
South Gloucester / Leitrim	570	4%	210	3%
South Nepean	580	4%	250	4%
Rural Southwest	520	4%	390	6%
Kanata / Stittsvile	260	2%	50	1%
Rural West	0	0%	20	0%
Île de Hull	110	1%	0	0%
Hull Périphérie	0	0%	30	0%
Plateau	0	0%	0	0%
Aylmer	0	0%	0	0%
Rural Northwest	0	0%	0	0%
Pointe Gatineau	0	0%	0	0%
Gatineau Est	0	0%	0	0%
Rural Northeast	0	0%	70	1%
Buckingham / Masson-Angers	0	0%	0	0%
Ontario Sub-Total:	13,180	99%	6,020	98%
Québec Sub-Total:	110	1%	100	2%
Total:	13,290	100%	6,120	100%

Trips by Trip Purpose

24 Hours	From District	1	o District	Wit			
Work or related	7,950	34%	1,470	6%	2,180	13%	
School	2,360	10%	440	2%	2,570	16%	
Shopping	2,600	11%	490	2%	620	4%	
Leisure	2,230	9%	1,950	8%	1,270	8%	
Medical	850	4%	300	1%	130	1%	
Pick-up / drive passenger	2,180	9%	810	3%	1,170	7%	
Return Home	3,780	16%	17,300	74%	7,300	45%	
Other	1,580	7%	670	3%	1,110	7%	
Total:	23,530	100%	23,430	100%	16,350	100%	
AM Peak (06:30 - 08:59)	From District	T	o District	Wi	thin District		
Work or related	4,930	56%	710	42%	1,000	23%	
School	1,870	21%	380	22%	2,280	51%	
Shopping	270	3%	30	2%	30	1%	
Leisure	140	2%	130	8%	130	3%	
Medical	260	3%	20	1%	10	0%	
Pick-up / drive passenger	800	9%	140	8%	380	9%	
Return Home	160	2%	170	10%	230	5%	
Other	440	5%	120	7%	370	8%	
Total:	8,870	100%	1,700	100%	4,430	100%	
PM Peak (15:30 - 17:59)	From District	1	o District	Wi	Within District		
Work or related	220	8%	60	1%	170	5%	
School	50	2%	20	0%	0	0%	
Shopping	450	16%	160	2%	110	3%	
Leisure	530	19%	590	7%	240	7%	
Medical	70	2%	70	1%	0	0%	
Pick-up / drive passenger	390	14%	350	4%	210	6%	
Return Home	830	29%	6,970	84%	2,670	75%	
Other	320	11%	120	1%	150	4%	
Total:	2,860	100%	8,340	100%	3,550	100%	
Peak Period (%)	Total:	9	6 of 24 Hours	w	ithin Distric	ct (%)	
24 Hours	63,310				26%		
AM Peak Period	15,000		24%		30%		
PM Peak Period	14,750		23%		24%		

Trips by Primary Travel Mode

24 Hours	From District					
Auto Driver	16,890	72%	16,830	72%	7,750	47%
Auto Passenger	4,160	18%	4,250	18%	2,670	16%
Transit	970	4%	960	4%	40	0%
Bicycle	50	0%	20	0%	0	0%
Walk	30	0%	40	0%	1,630	10%
Other	1,460	6%	1,320	6%	4,260	26%
Total:	23,560	100%	23,420	100%	16,350	100%
AM Peak (06:30 - 08:59)	From District		To District	Wit	thin District	:
Auto Driver	5,960	67%	1,170	69%	1,550	35%
Auto Passenger	1,270	14%	150	9%	530	12%
Transit	530	6%	0	0%	20	0%
Bicycle	20	0%	0	0%	0	0%
Walk	0	0%	30	2%	400	9%
Other	1,070	12%	350	21%	1,940	44%
Total:	8,850	100%	1,700	100%	4,440	100%
PM Peak (15:30 - 17:59)	From District		To District	Within District		:
Auto Driver	1,830	64%	6,110	73%	1,530	43%
Auto Passenger	860	30%	1,450	17%	640	18%
Transit	90	3%	430	5%	20	1%
Bicycle	0	0%	0	0%	0	0%
Walk	0	0%	0	0%	310	9%
Other	100	3%	340	4%	1,040	29%
Total:	2,880	100%	8,330	100%	3,540	100%
Avg Vehicle Occupancy	From District		To District	Wit	thin District	
24 Hours	1.25	1.25 1.34		1.34		
AM Peak Period	1.21	1.13			1.34	
PM Peak Period	1.47		1.24		1.42	
Transit Modal Salit	From District		To District	14/2	thin District	
Transit Modal Split 24 Hours	4%		4%	VVI	0%	. <u> </u>
AM Peak Period	4% 7%		4% 0%		0% 1%	
PM Peak Period	7% 3%		0% 5%		1%	
rivi reak refioù	5%		3%		170	

APPENDIX F

Trip Distribution Analysis

EMPLOYEE TRIP DISTRIBUTION ANALYSIS

District	Trips entering district (am) %	% Total	Arriving From:	Route	Total %	Rounded %
Ottawa Inner Area	130	1%	Highway 417 (West)			
Ottawa East	110	1%	Highway 417 (West)	Highway 417 (West)	24%	25%
Beacon Hill	60	1%	Highway 417 (West)	Highway 417 (East)	17%	15%
Alta Vista	250	3%	Highway 417 (West)	Boundary Road (North)	18%	20%
Hunt Club	240	3%	Highway 417 (West)	Mitch Owens Road (West)	5%	5%
Ottawa West	90	1%	Highway 417 (West)	Boundary Road (South)	36%	35%
Bayshore / Cedarview	60	1%	Highway 417 (West)			
Orleans	1070	12%	Boundary Road (North)			
Rural East	820	9%	Highway 417 (East)			
Rural Southeast	4570	52%	10% Highway 417 (West), 5% Hi	ghway 417 (East), 5% Boundary Road (North	h), 32% Bound	ary Road (South)
South Gloucester / Leitrim	210	2%	Mitch Owens Road (West)			
South Nepean	270	3%	Mitch Owens Road (West)			
Rural Southwest	390	4%	Boundary Road (South)			
Kanata / Stittsvile	150	2%	Highway 417 (West)			
lle de Hull	10	0%	Highway 417 (West)			
Hull Periphere	10	0%	Highway 417 (West)			
Alymer	30	0%	Highway 417 (West)			
Pointe Gatineau	30	0%	Highway 417 (West)			
Gatineau Est	20	0%	Highway 417 (West)			
Rural Northeast	70	1%	Boundary Road (North)			
Quebec	200	2%	Highway 417 (East)			
	8790	100%				

APPENDIX G

Growth Rate Analysis

Highway 417 and Boundary Road Interchange

MTO Data

Year	AADT	Year-to-Year Increase	Average Increase	
2012	44200	-6.56%	0.19%	
2013	41300	2.66%		
2014	42400	2.36%		
2015	43400	2.30%		
2016	44400			

Year	SADT	Year-to-Year Increase	Average Increase
2012	65,000	-4.62%	
2013	62,000	2.42%	0.66%
2014	63,500	2.52%	0.00%
2015	65,100	2.30%	
2016	66,600		

APPENDIX H.1

CRRRC TIS Excerpts

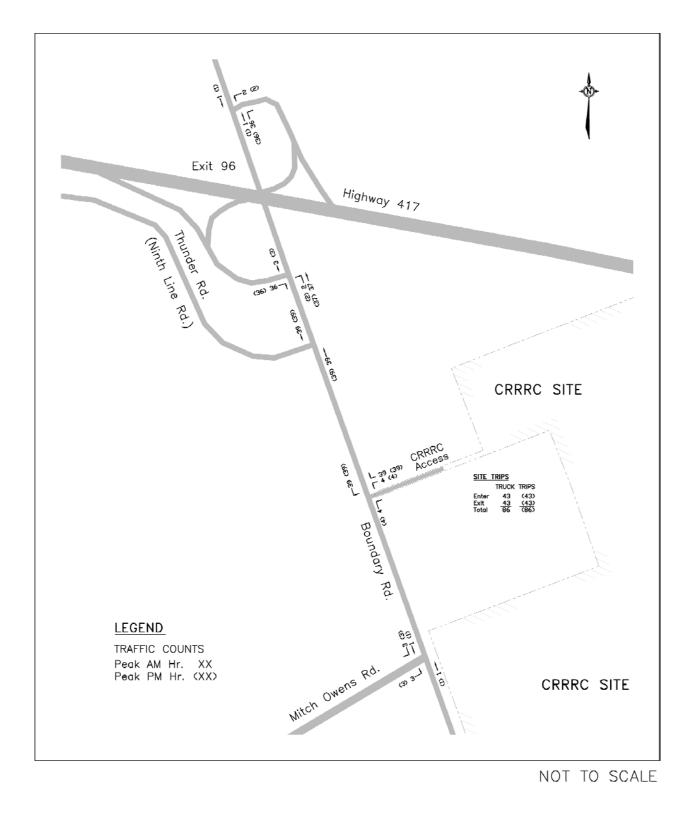


Figure 3.1: Weekday Peak AM and PM Hour Site Generated Trips

4.0 FUTURE TRAFFIC VOLUMES

This Addendum has assumed an annual compounded growth rate of 2 percent as discussed in the TIS. The growth rate was applied to all lane movements shown in the traffic counts presented in Figure 2.1 for the weekday peak AM and PM hour. Figure 4.1 shows the expected 2022 background traffic, which would represent traffic five years beyond build out from growth outside the immediate area.

The East Gateway Properties truck transfer terminal is proposed to be located on the east side of Boundary Road north of the CRRRC Site. The truck transfer terminal will have an access that will form the east access to the intersection of Boundary Road and Thunder Road. It is understood that the terminal facility expects build out by the year 2026. For the expected background traffic at the year 2027, which represents ten years beyond opening of the CRRRC Site, this Addendum has increased the existing traffic (Figure 2.1) at a 2 percent compounded rate to the year 2027, and added the expected traffic from the truck transfer terminal. The volume and distribution of trips from the proposed terminal were determined from the Transportation Impact Study report dated October 2014 for 5341 Boundary Road Transport prepared by Dillon Consulting Limited (Dillon). The Dillon TIS examined both a "Low Building Coverage" and a "High Building Coverage" scenario. As discussed at the meeting of April 22, 2015, this Addendum has utilized the traffic associated with the average of both scenarios and added the expected terminal trips to the 2027 background traffic, which is shown in Figure 4.2.

The expected total traffic volumes at the year 2022, which are shown in Figure 4.3, were determined by the addition of the expected background traffic of Figure 4.1 and the expected Site generated trips of Figure 3.1. For the expected 2027 total traffic shown in Figure 4.4, the 2027 background traffic (Figure 4.2) was added to the Site generated trips (Figure 3.1).

4.1 Traffic Analysis

The following are the results of the intersection analysis at the year 2022 (5 years beyond CRRRC Site opening), and at the year 2027 (10 years beyond opening), including the East Gateway Properties truck transfer terminal trips.

Boundary Road and CRRRC Site Access

A left turn lane warrant analysis was conducted at the Site access using the procedure documented in the MTO publication, *Geometric Design Standards for Ontario Highways*. The analysis utilized the expected 2027 traffic and a design speed of 90 km/h. (80 km./h. posted speed) at the access. The warrant analysis, which is presented in the Appendix as Exhibit 5, determined that a southbound left turn lane with 25 m for passenger car storage was required during the both the peak AM and PM hour. Utilizing a passenger car equivalent for heavy vehicles of 2.0 as documented in the MTO publication, the required length of the southbound left turn lane at the CRRRC truck access would therefore be 50 m. The following is the recommended lane configuration:

APPENDIX H.2

Novatech TIS Excerpts

April 30, 2021

Ministry of Transportation - Eastern Region Corridor Management Planner 1355 John Counter Blvd. Kingston, Ontario K7L 5A3

Attention: Mr. Stephen Kapusta

City of Ottawa Planning and Growth Management Department 110 Laurier Ave. W., 4th Floor, Ottawa, Ontario K1P 1J1

Attention: Mr. Mike Giampa

Dear Sirs:

Reference: 5494, 5500, and 5510 Boundary Road Transportation Impact Assessment Novatech File No. 118168

We are pleased to submit the following Transportation Impact Assessment for Official Plan Amendment and Zoning By-Law Amendment applications for the development of a freight dock and warehouse facility at 5494, 5500, and 5510 Boundary Road. The structure and format of this report is in accordance with the City of Ottawa Transportation Impact Assessment Guidelines (June 2017) and the MTO General Guidelines for the Preparation of Traffic Impact Studies (September 2014).

If you have any questions or comments regarding this report, please feel free to contact Jennifer Luong, or the undersigned.

Yours truly,

NOVATECH

ud,

Joshua Audia, B.Sc. E.I.T. | Transportation/Traffic

M:\2018\118168\DATA\REPORTS\TRAFFIC\TIA REPORT\3-TIA\118168 - TIA.DOCX

1.0 SITE LOCATION

This Transportation Impact Assessment (TIA) has been prepared in support of Official Plan Amendment and Zoning By-Law Amendment applications for a freight dock and warehouse facility at 5494, 5500, and 5510 Boundary Road (see Figure 1). The site is currently occupied with one single-family dwelling, and the remainder of the site is undeveloped and has been used for stockpiling of fill. There are two existing accesses to the site, one for the singlefamily dwelling and one at the south limit. The site is surrounded by the following:

- Woodland, commercial development, Thunder Road, and Highway 417 to the north;
- Boundary Road, planned waste management facility, industrial development, and the Amazon Distribution Centre to the east;
- Woodland and Mitch Owens Road to the south; and,
- Agricultural land to the west.

Figure 1: Site Location and Study Area

2.0 PROPOSED DEVELOPMENT

The subject site is designated as 'Rural Natural Features Area' in Schedule A of the City of Ottawa's Official Plan and zoned RU (Rural Countryside) and RH1[260r] (Rural Heavy Industrial). Exception 260r prohibits all uses, except for a waste processing and transfer facility, and heavy equipment/ vehicle sales. A zoning amendment is required for a warehouse and truck facility.

The proposed development (see **Appendix A**) is planned to be completed by 2021, and includes an approximately 5,593 m² freight dock and warehouse facility with 96 loading docks, 141 parking spaces, 55 tractor parking spaces, and 134 trailer parking spaces. The facility will have about 120 employees.

The development is planned to include two accesses to Boundary Road.

5.0 FORECASTING

5.1 Development-Generated Traffic

5.1.1 Trip Generation

The proposed development consists of an approximately 5,593 m² freight dock and warehouse. The site will accommodate long combination vehicles and provide surface parking for approximately 141 cars, 55 tractors and 134 trailers. The facility will operate with day, evening, and night shifts and employ approximately 120 employees. Two accesses are proposed along Boundary Road, one opposite the future CRRRC site access and one to the south.

Trips generated by the site were determined using first principles. The owner provided hourly volumes for both employee and truck movements to and from the facility. The facility will operate with three shifts, day (8:00am to 5:00pm), evening (4:00pm to 12:00am), and night (1:00am to 8:00am).

Consistent with the traffic studies for the Amazon Distribution Centre and the truck facility at 9460 Mitch Owens Road, no reduction in vehicle trips have been assumed for pedestrian, cyclist, and transit modes, given the lack of facilities for these modes. Additionally, no ridesharing has been assumed. These assumptions represent the 'worst case' scenario, and therefore, the results shown in this TIA are conservative.

The peak hour of site traffic is generally expected to coincide with the weekday PM peak hour of the adjacent road traffic. While the AM peak hour of the adjacent street (6:30am to 7:30am) was found to occur just before the anticipated peak hour site traffic, the site trips have been overlaid onto the peak hour of adjacent street. This assumption is conservative. The following table indicates the number of employee vehicles and delivery trucks accessing the site during each weekday peak hour.

Trip Type		AM Peak		PM Peak			
пр туре	IN	OUT	TOTAL	IN	OUT	TOTAL	
Employee	79	18	97	12	79	91	
Truck	2	4	6	6	2	8	
Total	81	22	103	18	81	99	

Table 3: Site Generated Vehicle Trips

5.1.2 Trip Distribution

The distribution of employee trips generated by the proposed development is anticipated to be consistent with the observed traffic patterns at the Amazon driveway, as well as the AM inbound/PM outbound trips at the ramp terminals and on Boundary Road (as shown in **Figure 2**). The distribution of truck trips is based on information provided by the owner. Site trips have been assigned to the study area, with distribution for the trips generated by the site described as follows:

<u>Employee</u>

- 20% to/from the east via Hwy 417;
- 45% to/from the west via Hwy 417;
- 20% to/from the north via Boundary Road;
- 15% to/from the south via Boundary Road.

Truck

- 75% to/from the west via Hwy 417;
 25% to/from the east via Hwy 417.

5.1.3 Trip Assignment

The proposed development includes one full-movement access near the northerly limit of the subject site and one right-out egress approximately 90m south of the full-movement access. All trips to/from Highway 417 and Boundary Road to the north and all trips arriving from the south via Boundary Road have been assigned to the full-movement access, as this is the only access that can accommodate arrivals, as well as departures to the north. Trips departing to the south via Boundary Road have been split among the full-movement access and the right-out access.

Site trips generated by employees and trucks have been assigned to the proposed accesses as follows:

Full-Movement Access

- 100% of employees arriving from and destined to the north (Hwy 417 and Boundary Road);
- 100% of employees arriving from the south (Boundary Road);
- 20% of employees destined to the south (Boundary Road);
- 100% of truck traffic arriving from and destined to the north (Highway 417).

Right-Out Egress

80% of employees destined to the south (Boundary Road).

The site-generated traffic within the study area is shown in **Figure 3**.

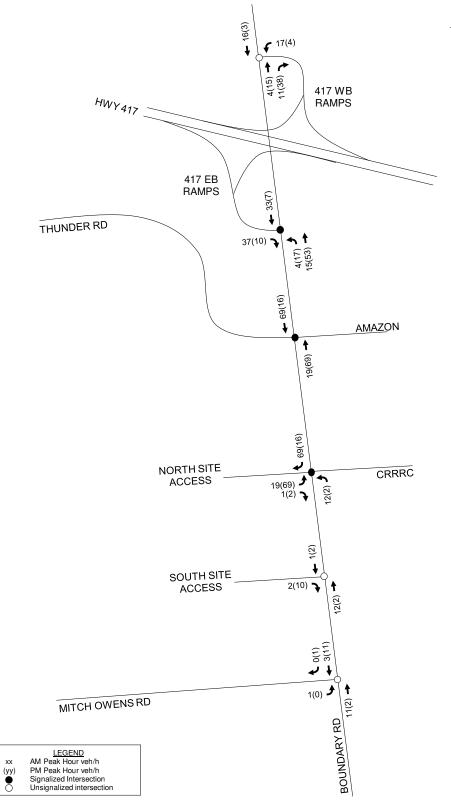
5.2 **Background Traffic**

General Background Traffic Growth Rate 5.2.1

Consistent with the addendum to the Dillon TIS prepared in support of the development at 5371 Boundary Road, an annual 2% background growth rate was applied to the existing traffic volumes.

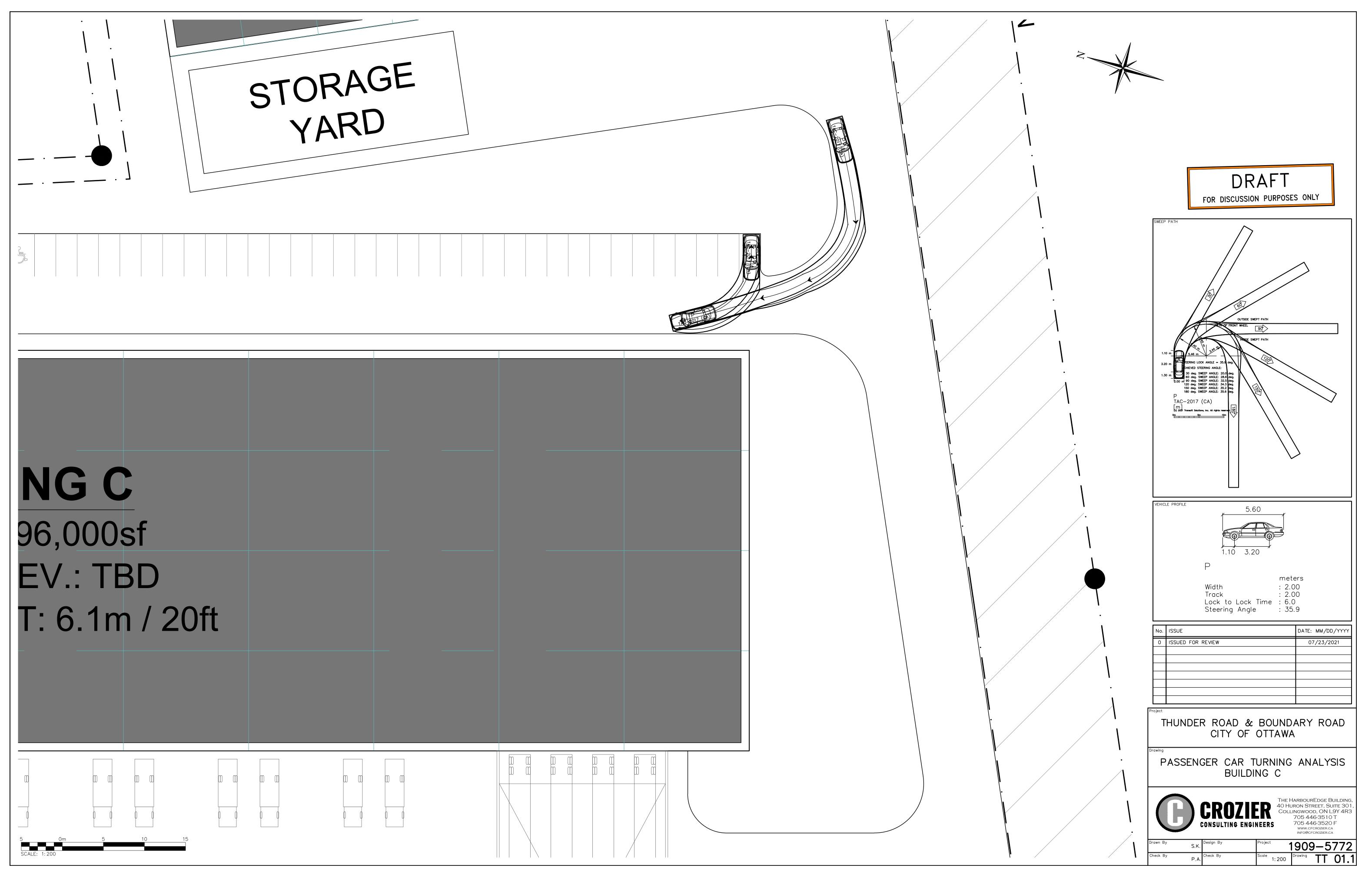
5.2.2 Background Developments

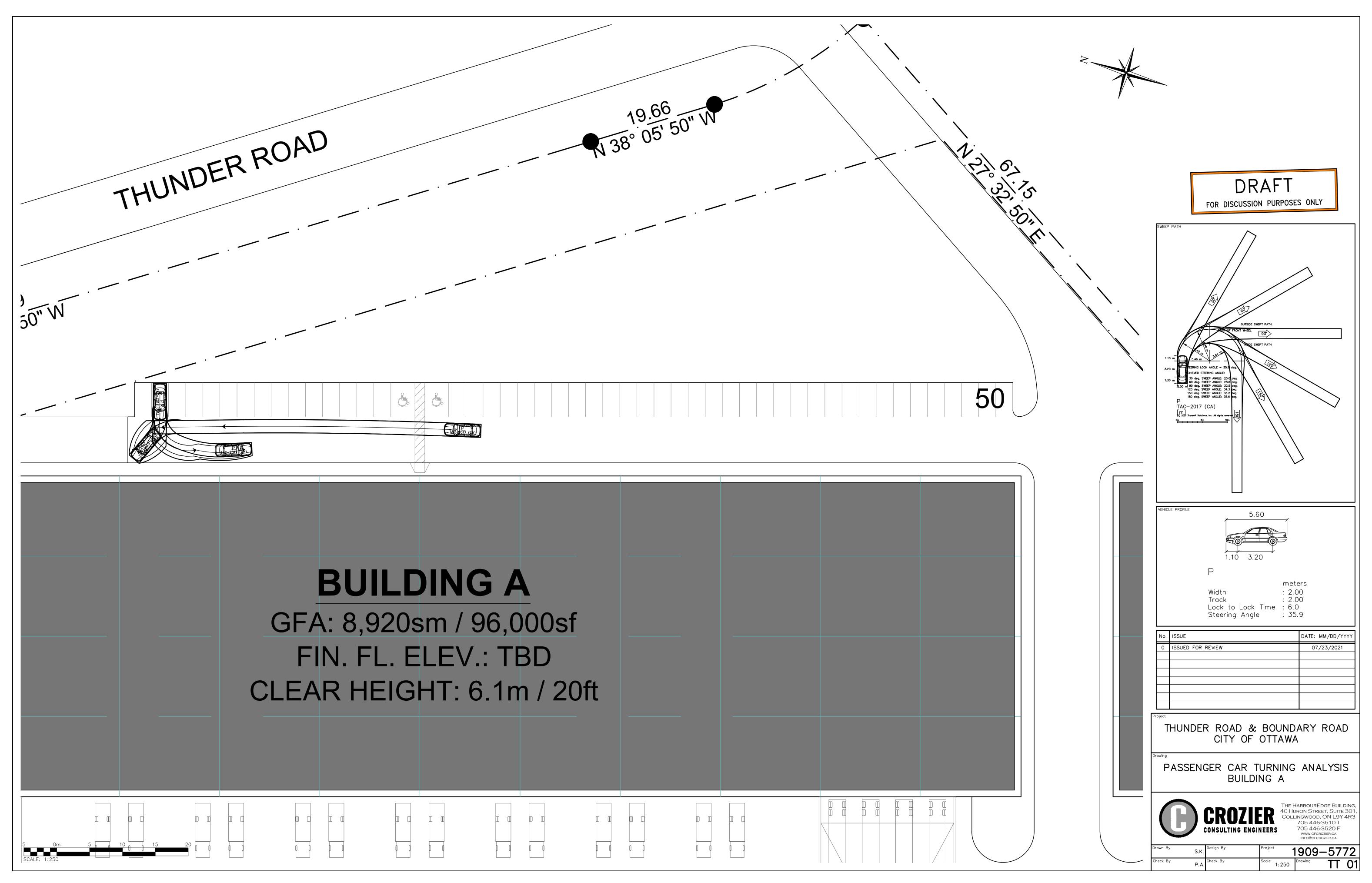
The 5471 Boundary Road development is assumed to be operational by 2021. Trips estimated to be generated by this development have been distributed and assigned to the boundary road network based on the assumptions of that development's traffic study, and the estimated trips have been added to the 2021, 2026, and 2031 background traffic projections. Relevant excerpts from this study are included in Appendix F.

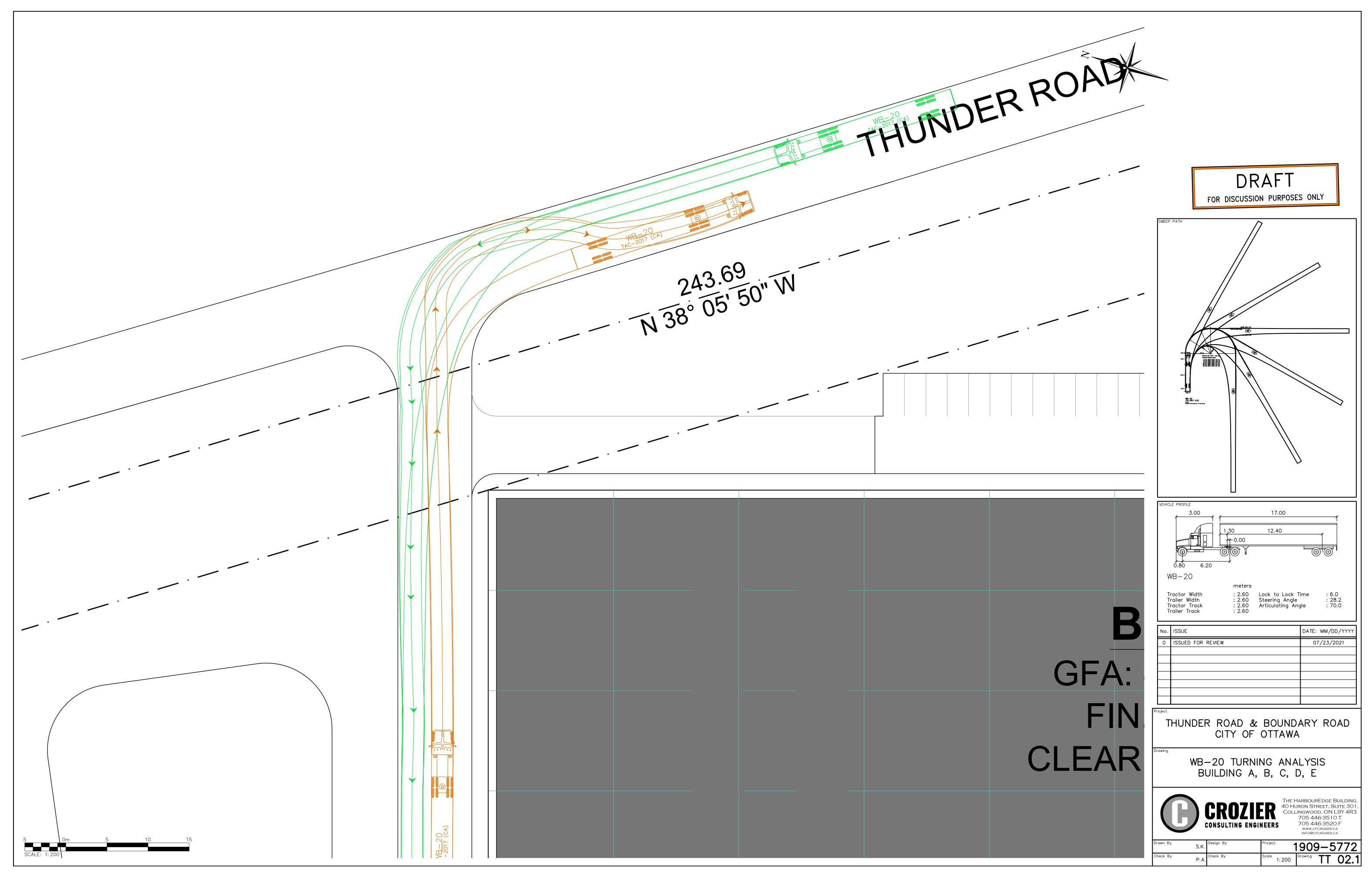

5.2.3 Future Background and Total Traffic Volume Projections

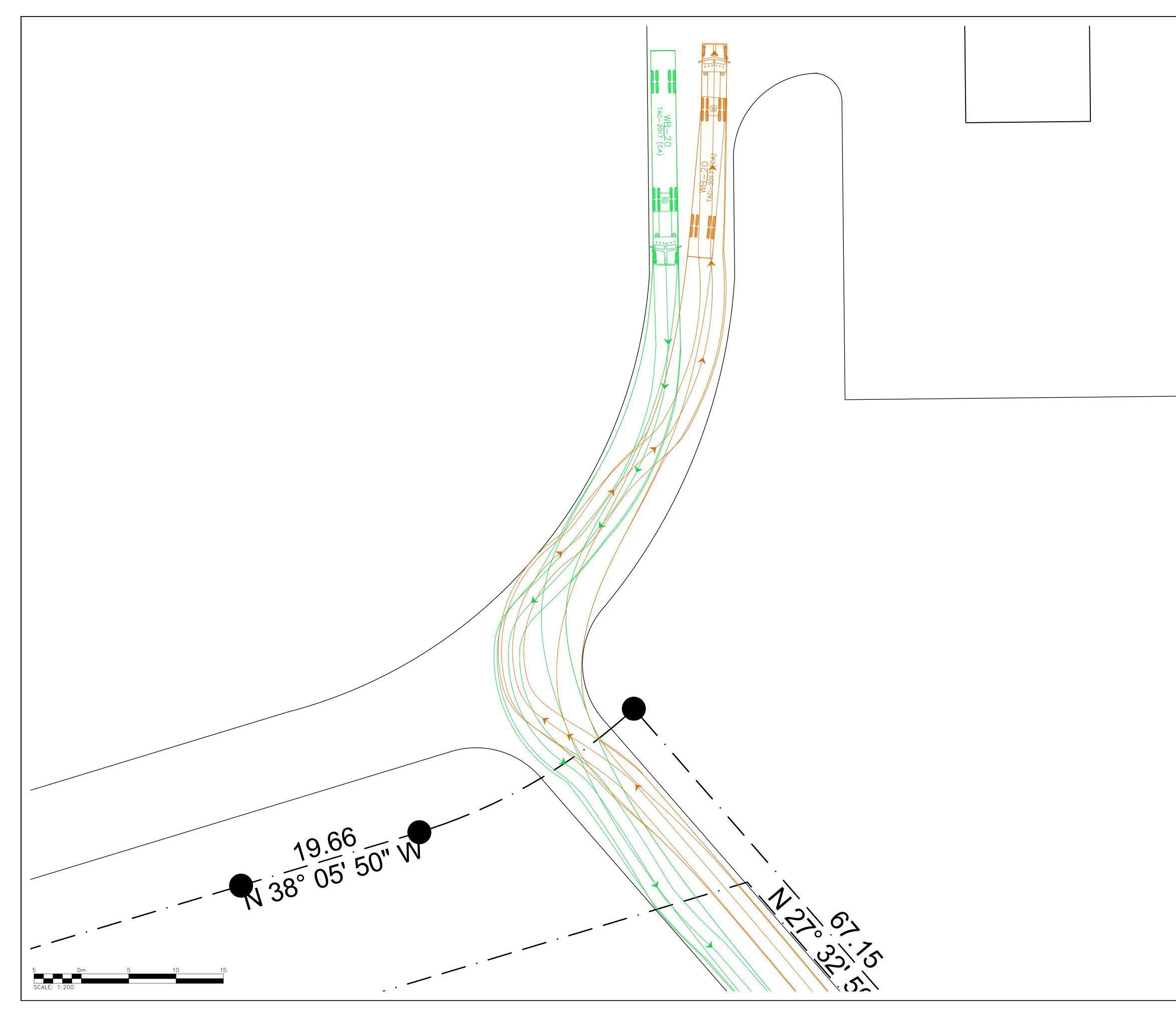
Future background traffic volumes have been projected for the 2021, 2026, and 2031 (see Figures 4, 5, and 6, respectively) and include the annual background growth and background development trips. Total traffic volumes have been projected for the study area intersections for the weekday AM and PM peak hours in 2021, 2026, and 2031 (Figures 7, 8, and 9, respectively), and include future background traffic and site generated trips.

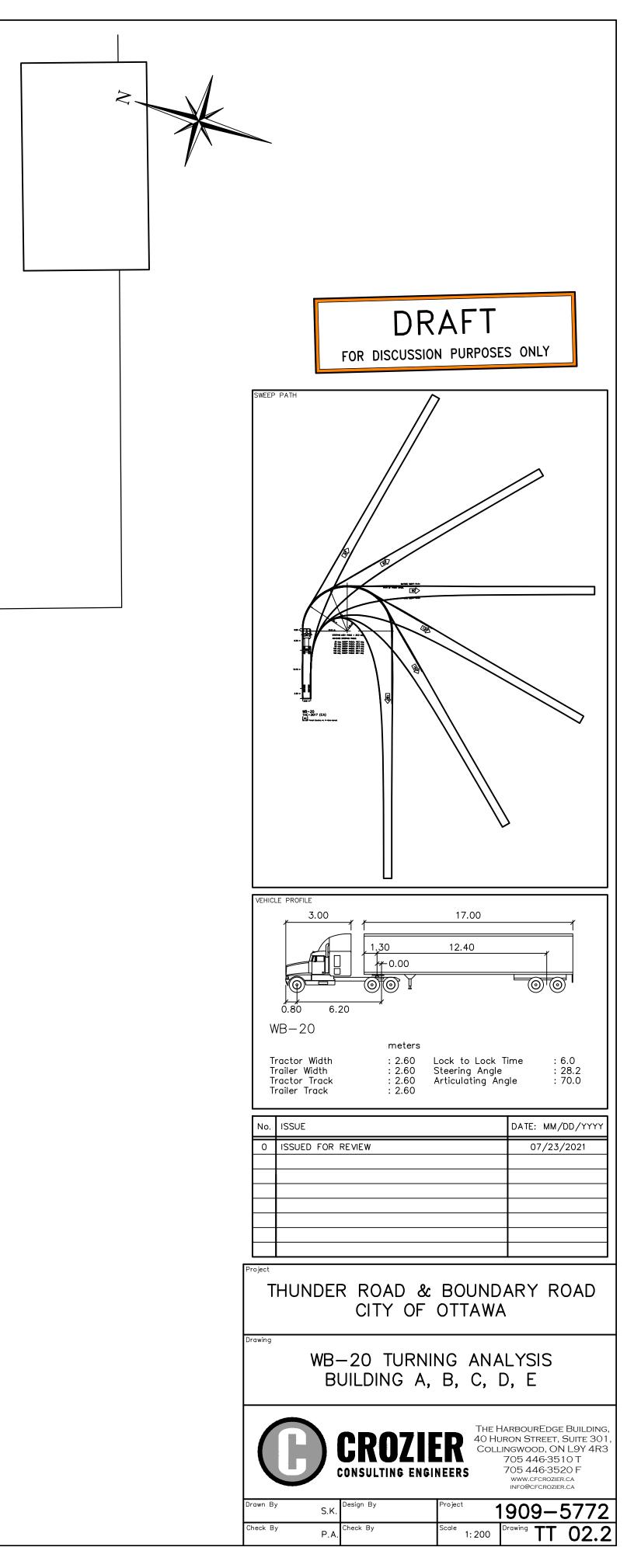
хх

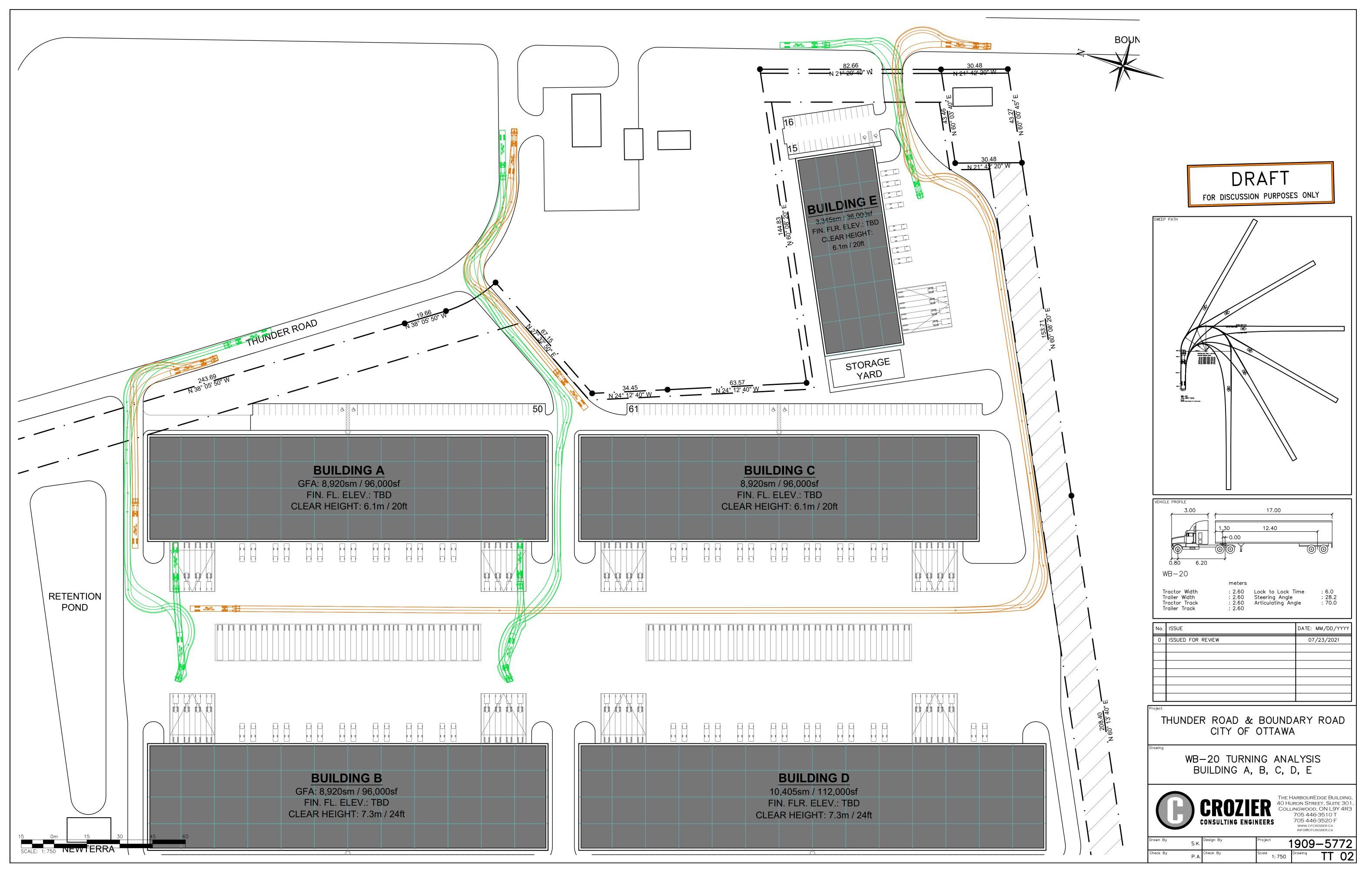

Figure 3: Site Generated Trips


Transportation Impact Assessment

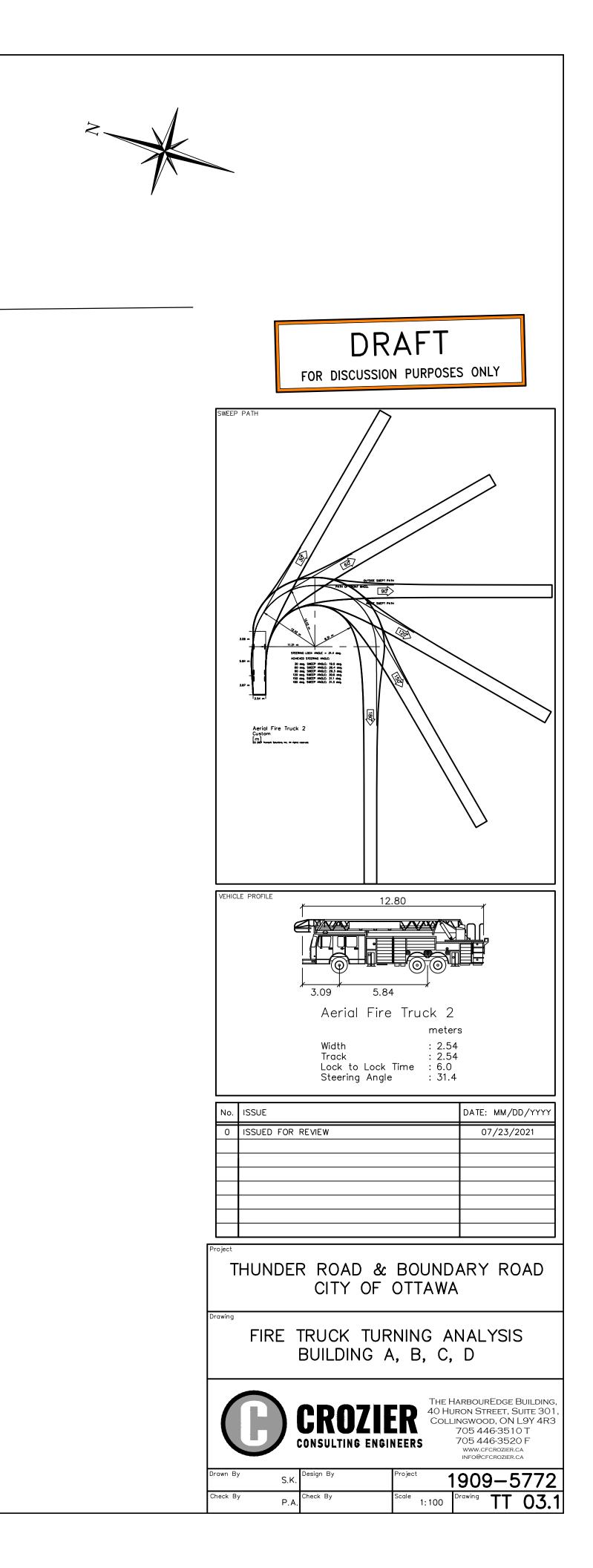


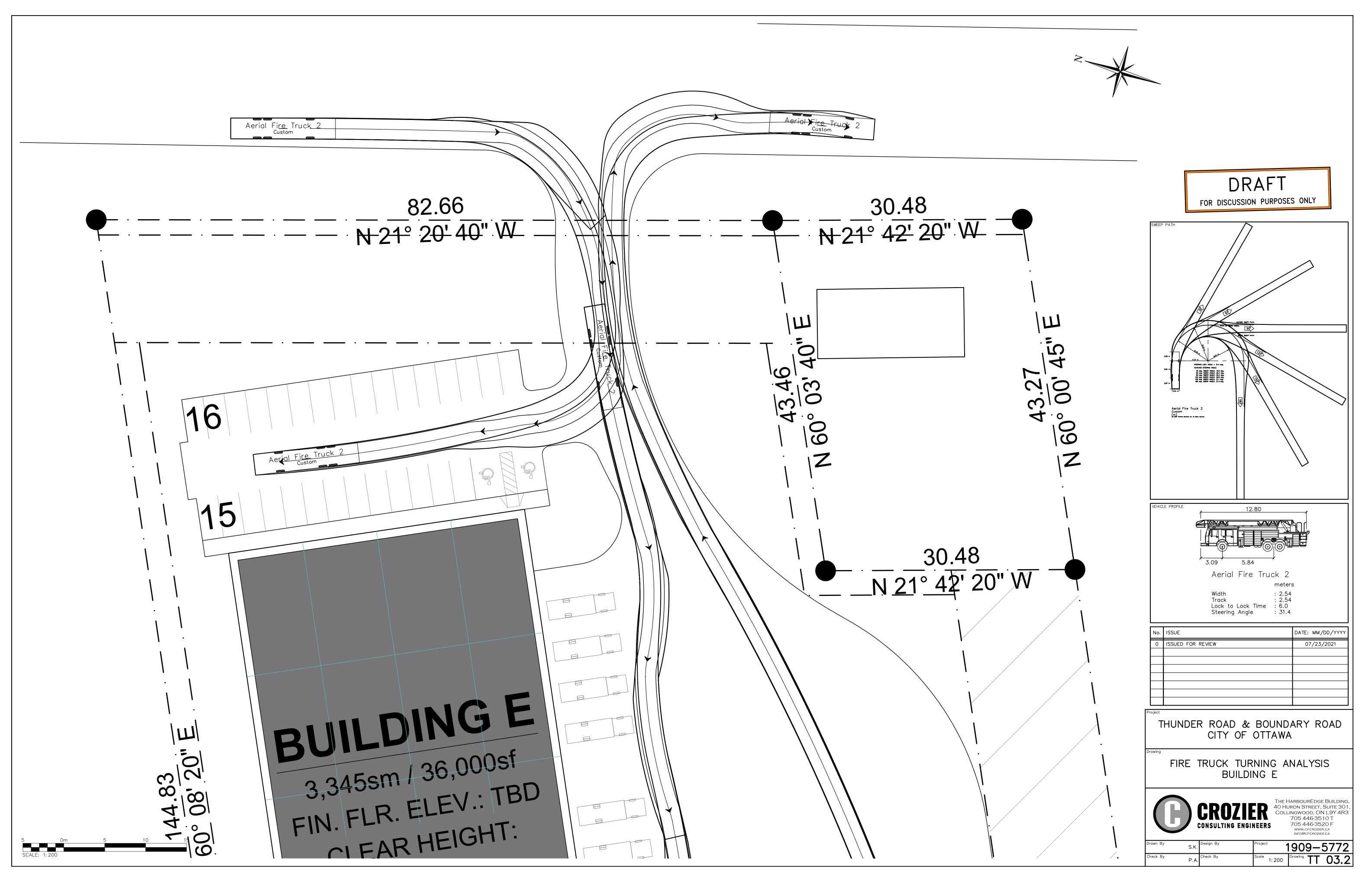

APPENDIX |

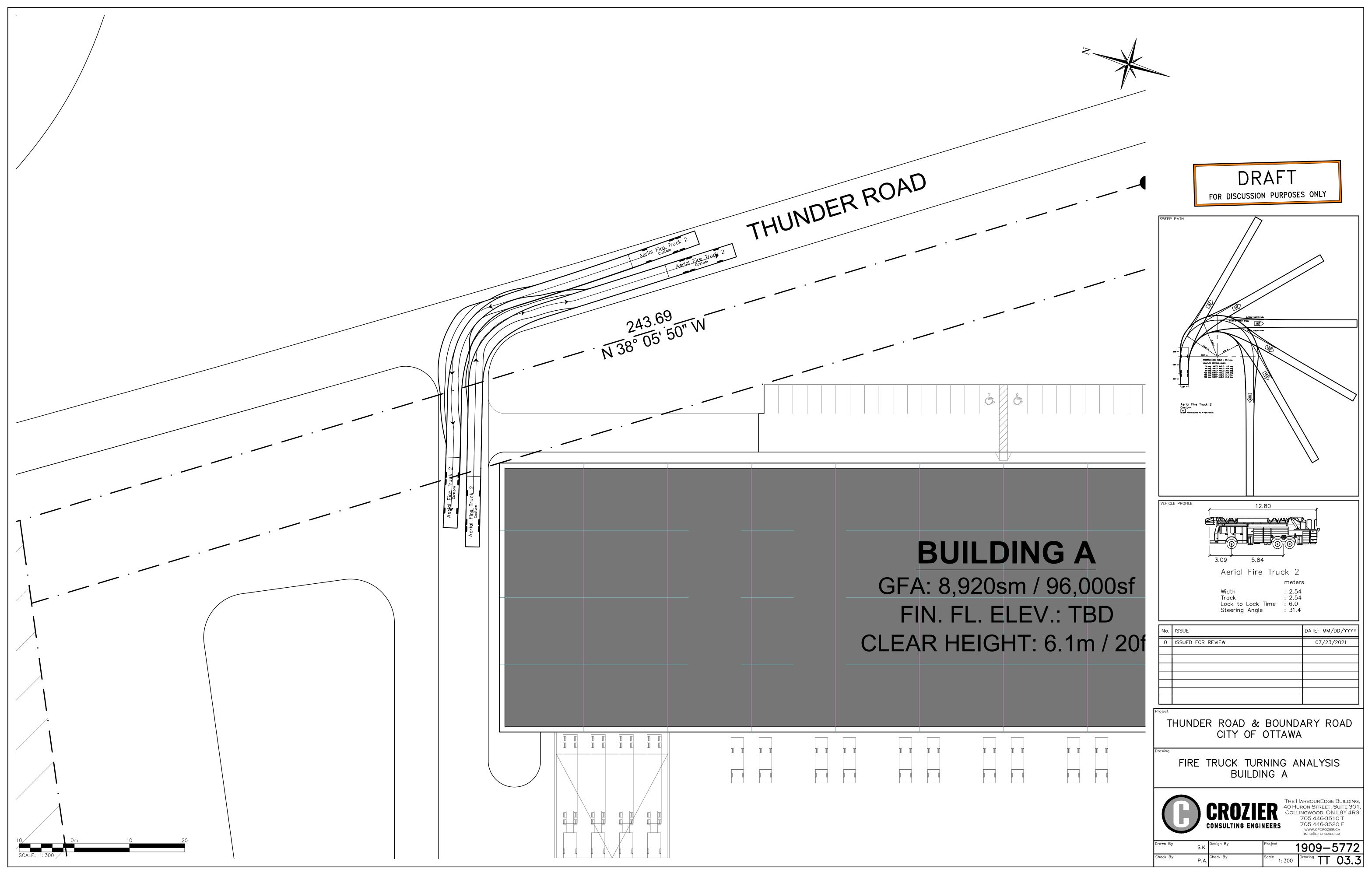

Vehicle Turning Analysis

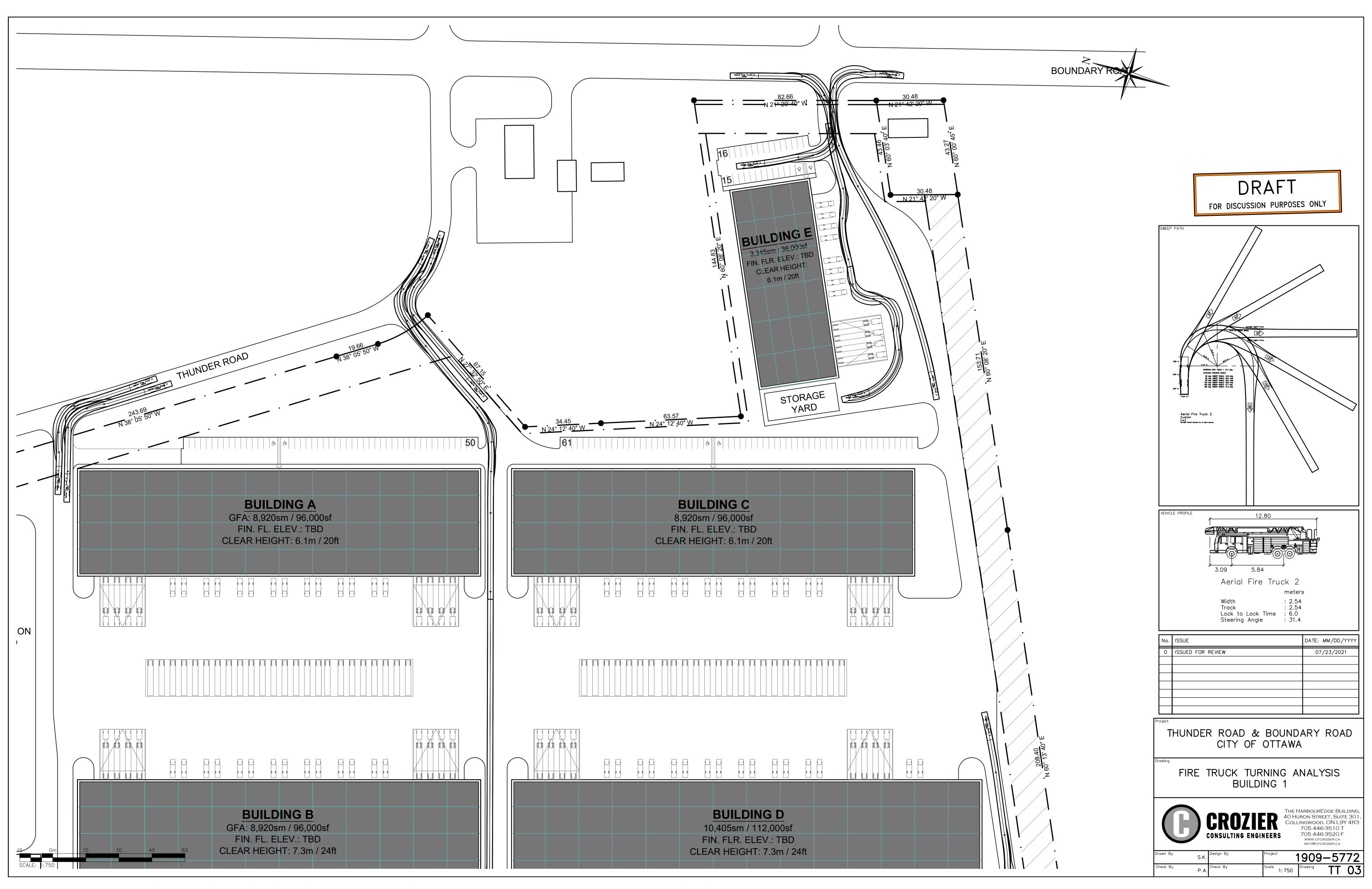


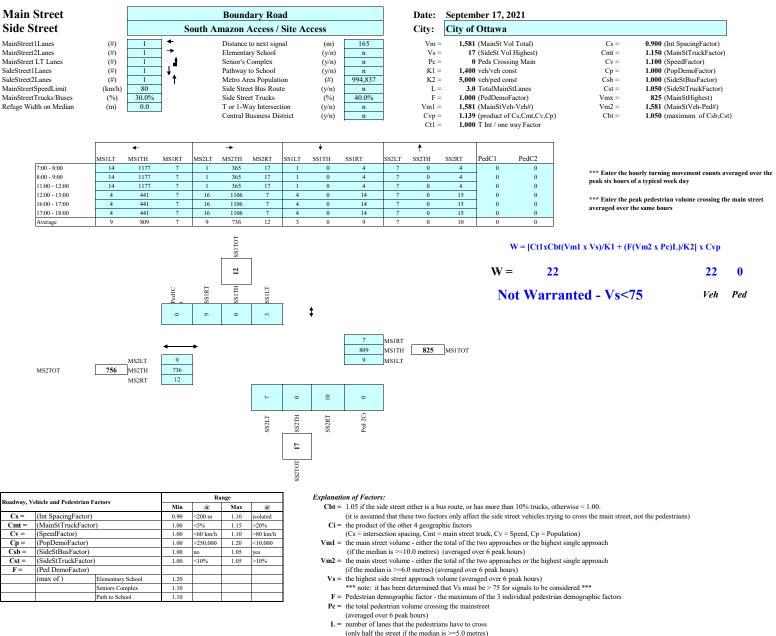









J:\1900\1909-Avenue 31\5772-Thunder Rd\CAD\Traffic\Sheets\5772_TT305_1.dwg, 2021-07-23 12:49:23 PM, DWG To PDF.pc3


J:\1900\1909-Avenue 31\5772-Thunder Rd\CAD\Traffic\Sheets\5772_TT305_1.dwg, 2021-07-23 12:50:03 PM, DWG To PDF.pc3

APPENDIX J

Signal Warrant Analysis Worksheets

Canadian Traffic Signal Warrant Analysis

- (Kv = 1,100 if L<=3, Kv = 1,400 if L>3)
- Kp = Vehicle Pedestrian denominator constant (Kp = 2,000 if L<=3, Kp = 5,000 if L>3)

Cst = (SideStTruckFactor)

F = (Ped DemoFactor)

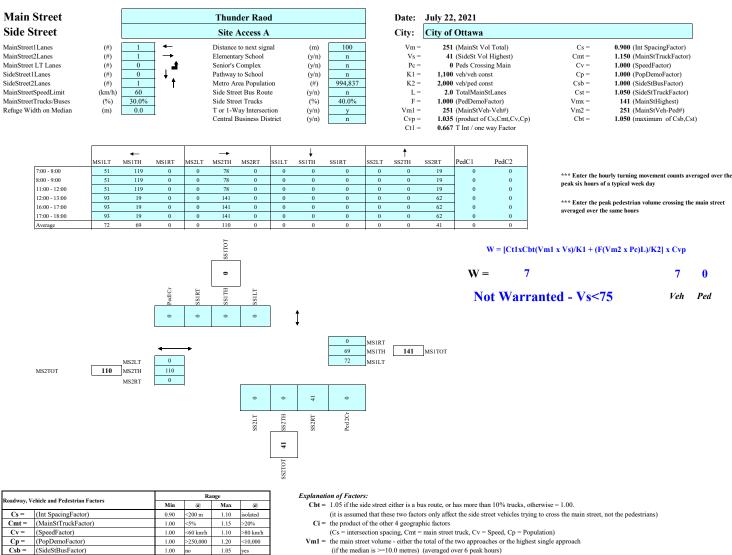
(max of)

1.00 <10%

1.20

1.10

1.10


Elementary School

Seniors Complex

Path to School

1.05 >10%

Canadian Traffic Signal Warrant Analysis

Kp =

Vm2 = the main street volume - either the total of the two approaches or the highest single approach

*** note: it has been determined that Vs must be > 75 for signals to be considered ***

F = Pedestrian demographic factor - the maximum of the 3 individual pedestrian demographic factors

(if the median is >=6.0 metres) (averaged over 6 peak hours) Vs = the highest side street approach volume (averaged over 6 peak hours)

Pc = the total pedestrian volume crossing the mainstreet (averaged over 6 peak hours) L = number of lanes that the pedestrians have to cross (only half the street if the median is >=5.0 metres) Kv = Vehicle - Vehicle denominator constant (Kv = 1,100 if L<=3, Kv = 1,400 if L>3) Vehicle - Pedestrian denominator constant

(Kp = 2,000 if L<=3, Kp = 5,000 if L>3)

2

Csb = (SideStBusFactor)

Cst = (SideStTruckFactor)

F = (Ped DemoFactor)

(max of)

1.00

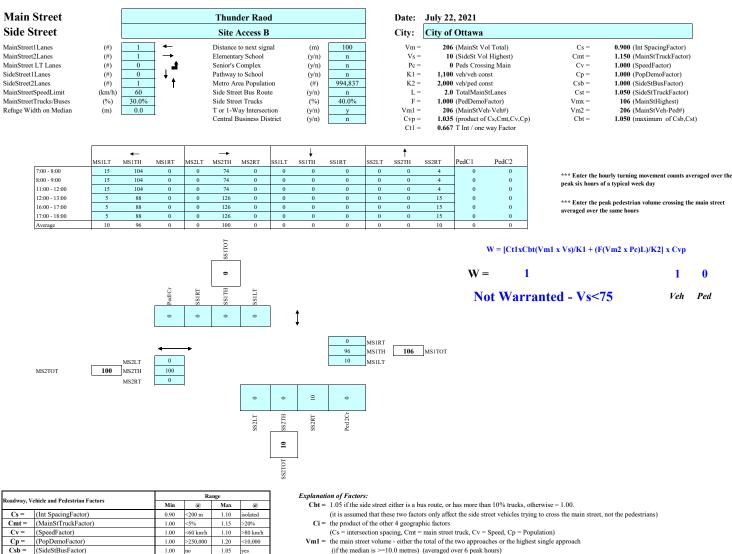
1.00 <10%

1.20

1.10

1.10

Elementary School


Seniors Complex

Path to School

1.05 yes

1.05 >10%

Canadian Traffic Signal Warrant Analysis

- Vm2 = the main street volume either the total of the two approaches or the highest single approach (if the median is >=6.0 metres) (averaged over 6 peak hours)
 - Vs = the highest side street approach volume (averaged over 6 peak hours)
 - *** note: it has been determined that Vs must be > 75 for signals to be considered ***
 - F = Pedestrian demographic factor the maximum of the 3 individual pedestrian demographic factors
 - Pc = the total pedestrian volume crossing the mainstreet (averaged over 6 peak hours)
 - L = number of lanes that the pedestrians have to cross
 - (only half the street if the median is >=5.0 metres)
 - Kv = Vehicle Vehicle denominator constant
 - (Kv = 1,100 if L<=3, Kv = 1,400 if L>3)
 - Vehicle Pedestrian denominator constant Kp = (Kp = 2,000 if L<=3, Kp = 5,000 if L>3)

Cst = (SideStTruckFactor)

F = (Ped DemoFactor)

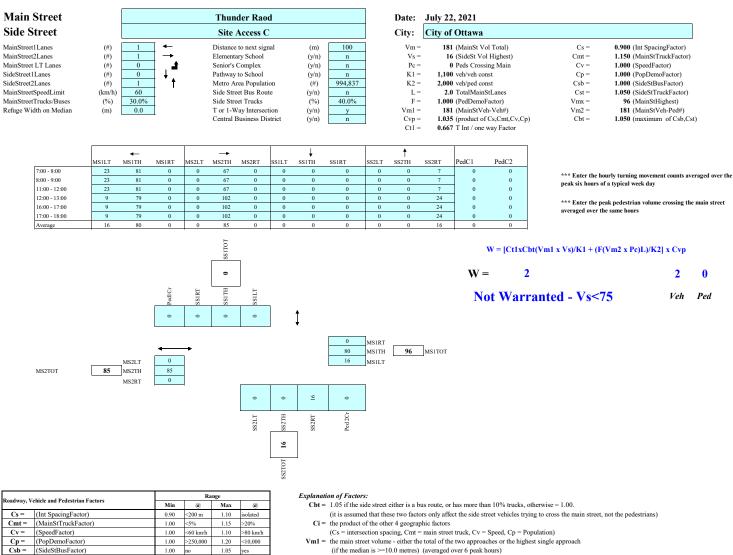
(max of)

1.00 <10%

1.20

1.10

1.10


Elementary School

Seniors Complex

Path to School

1.05 >10%

Canadian Traffic Signal Warrant Analysis

 \mathbf{F} = Pedestrian demographic factor - the maximum of the 3 individual pedestrian demographic factors

4

Vm2 = the main street volume - either the total of the two approaches or the highest single approach

- $\mathbf{Pc} =$ the total pedestrian volume crossing the mainstreet
 - (averaged over 6 peak hours)
- L = number of lanes that the pedestrians have to cross (only half the street if the median is >=5.0 metres)
- $\mathbf{K}\mathbf{v} = \text{Vehicle} \text{Vehicle denominator constant}$
- (Kv = 1,100 if L<=3, Kv = 1,400 if L>3)
- Kp = Vehicle Pedestrian denominator constant(Kp = 2,000 if L<=3, Kp = 5,000 if L>3)

Csb = (SideStBusFactor)

F =

Cst = (SideStTruckFactor)

(max of)

(Ped DemoFactor)

1.00

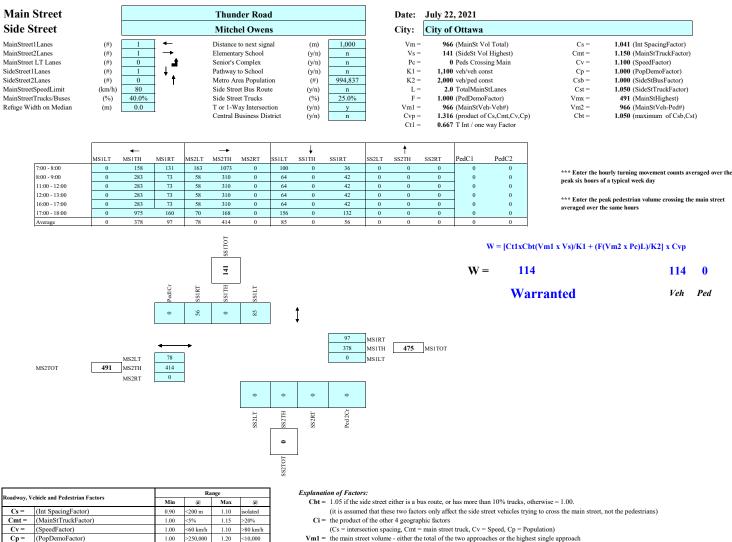
1.00 <10%

1.20

1.10

1.10

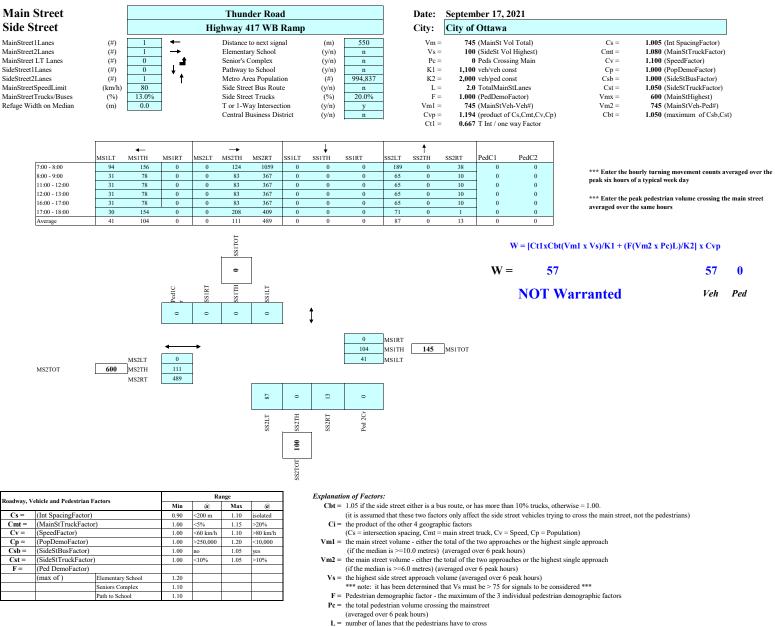
Elementary School


Seniors Complex

Path to School

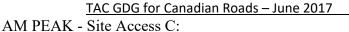
1.05 yes

1.05 >10%

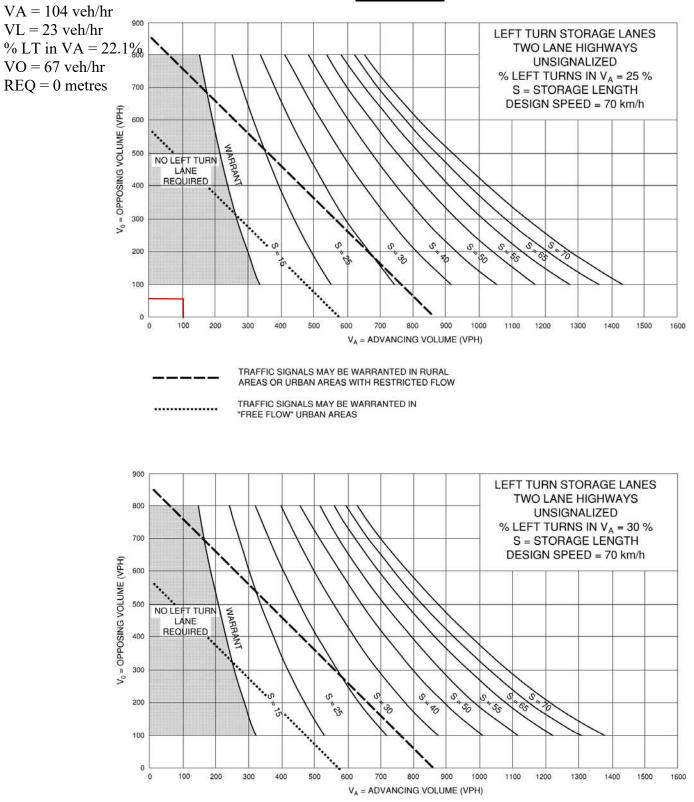

Canadian Traffic Signal Warrant Analysis

- Vm1 = the main street volume either the total of the two approaches or the highest single approach (if the median is >=10.0 metres) (averaged over 6 peak hours)
- Vm2 = the main street volume either the total of the two approaches or the highest single approach (if the median is >=6.0 metres) (averaged over 6 peak hours)
- Vs = the highest side street approach volume (averaged over 6 peak hours) *** note: it has been determined that Vs must be > 75 for signals to be considered ***
- F = Pedestrian demographic factor the maximum of the 3 individual pedestrian demographic factors
- Pc = the total pedestrian volume crossing the mainstreet
- (averaged over 6 peak hours)
- L = number of lanes that the pedestrians have to cross
- (only half the street if the median is >=5.0 metres)
- Kv = Vehicle Vehicle denominator constant
- (Kv = 1,100 if L<=3, Kv = 1,400 if L>3)
- Vehicle Pedestrian denominator constant Kp = (Kp = 2,000 if L<=3, Kp = 5,000 if L>3)

Canadian Traffic Signal Warrant Analysis

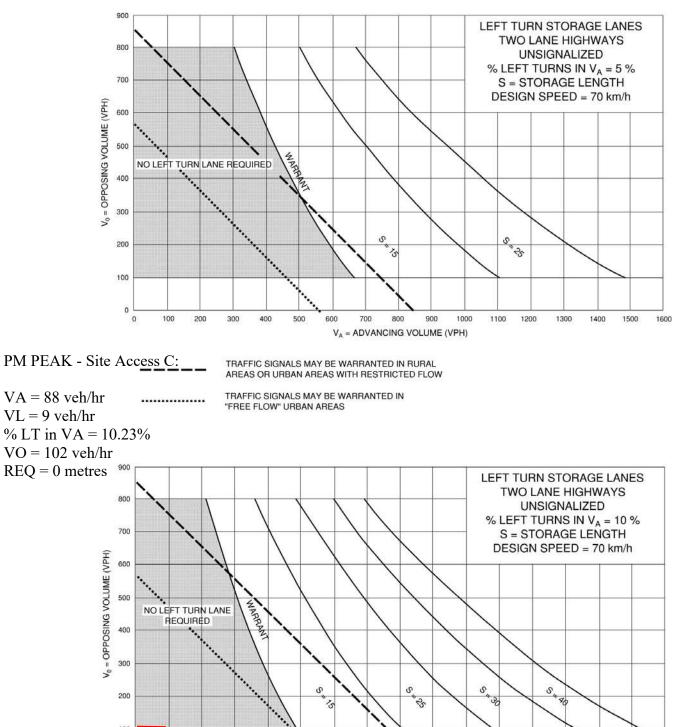
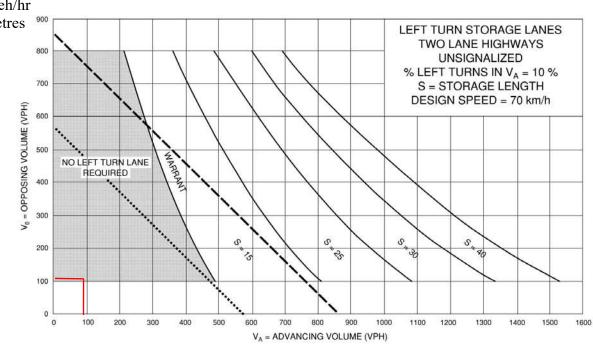

(only half the street if the median is >=5.0 metres)

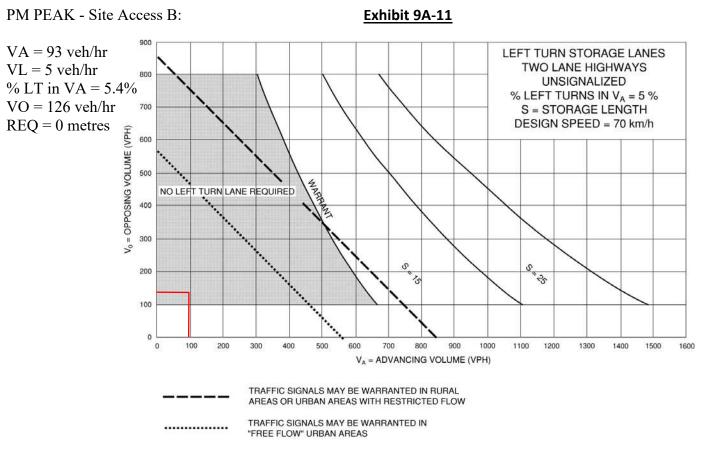
1


- $\mathbf{K}\mathbf{v} =$ Vehicle Vehicle denominator constant
- (Kv = 1,100 if L<=3, Kv = 1,400 if L>3)
- Kp = Vehicle Pedestrian denominator constant (Kp = 2,000 if L<=3, Kp = 5,000 if L>3)

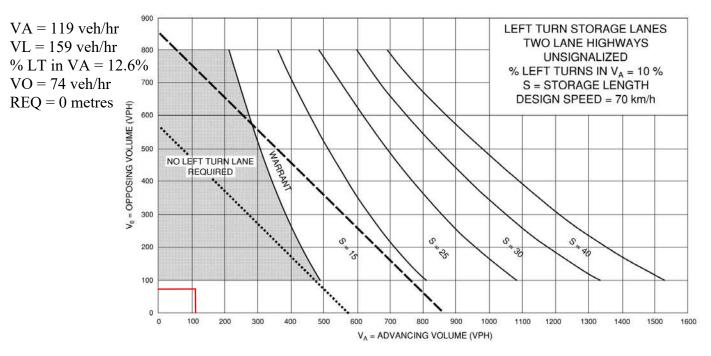
APPENDIX K

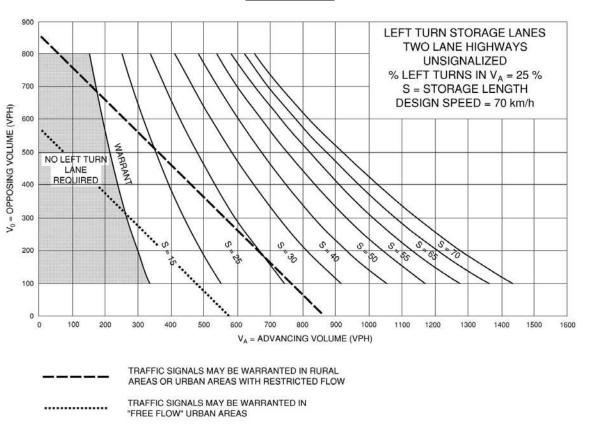
Left-Turn Lane Warrant Analysis Worksheets


Exhibit 9A-11

VA = 88 veh/hrVL = 9 veh/hr


% LT in VA = 10.23%


VO = 102 veh/hr

AM PEAK - Site Access B:

AM PEAK - Site Access A:

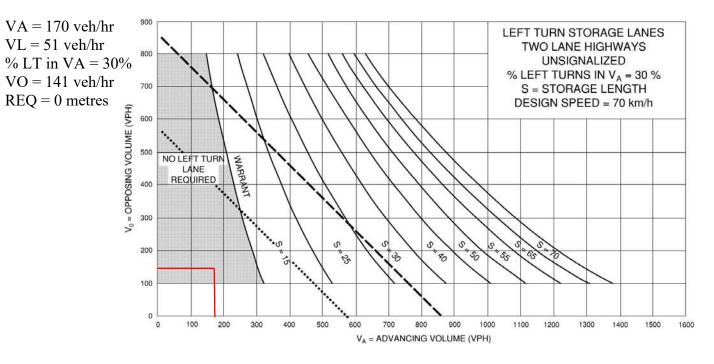
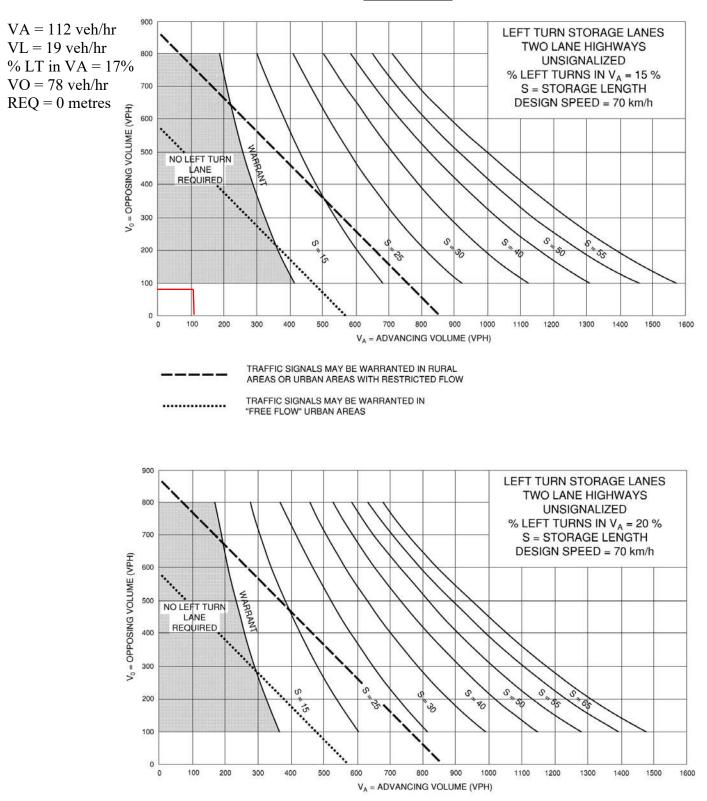



Exhibit 9A-12

APPENDIX L

Level of Service Definitions

DRAFT REPORT

Multi-Modal Level of Service (MMLOS) Guidelines

Supplement to the TIA Guidelines

IBI

Prepared for City of Ottawa by IBI Group September 15, 2015

6 Vehicular Level of Service (LOS)

The following details outlining the evaluation of Vehicular Level of Service are extracted from the 2009 Transportation Impact Assessment Guidelines. As the TIA update is carried out, these parameters may be updated.

6.1 Intersection Capacity Analysis

An evaluation is required of any critical intersection within the study area that will potentially be affected by site generated traffic volumes during any or all of the relevant time periods and scenarios. Summaries are to be provided in tabular format clearly identifying intersection performance under existing and future traffic conditions. Where development is anticipated to proceed in phases or stages, projected performance for all intersections must be documented for the end of each phase.

Detailed output from analysis software is to be provided in an appendix to the report and copies of the electronic files should be provided on CD. Appendix B outlines parameters to be used in operational analysis of signalized intersections.

All volume to capacity (V/C) calculations relating to future conditions should be determined using signal timing optimized for the volume conditions being studied. The V/C ratio for an intersection is defined as the sum of equivalent volumes for all critical movements divided by the sum of capacities for all critical movements assuming that the V/C ratios for critical movements can be equalized. In cases where minimum pedestrian phase times prevent equalizing the level of service for critical movements, then the V/C ratio for the most heavily saturated critical movement should be considered as the V/C ratio for the intersection. Adjustment for the impact of pedestrian activated control is permitted provided detailed supporting analysis including projected pedestrian volumes is provided and discussed in advance with traffic engineering staff.

In the case of planning level or functional design projects, practitioners should undertake a two and a half hour peak period observation of volumes (typically 6:30 - 9:00 AM) to verify that the traffic volumes through the intersections reflect existing demands and to identify unusual operating conditions. For operational studies, peak hour observations are acceptable. Timing of observations and conditions observed should be documented in writing in the report.

LEVEL OF SERVICE	VOLUME TO CAPACITY RATIO
A	0 to 0.60
В	0.61 to 0.70
С	0.71 to 0.80
D	0.81 to 0.90
E	0.91 to 1.00
F	> 1.00

Intersection evaluations should identify:

- Signalized Intersections V/C ratios for the overall intersection, as defined above, and individual movements; and
- Unsignalized Intersections Level of service (LOS) where the LOS is between A and E; V/C where capacity is based on gap analysis if intersection LOS is F.

Existing signal timing information such as phasing, pedestrian minimums and clearance intervals must be used as a base to analyze the existing capacity of signalized intersections. This signal timing data should be obtained from the City of Ottawa Traffic Operations Division. Operational design of the signals analyzed should be in accordance with City of Ottawa signal operation practices.

Level of Service Definitions

Two-Way Stop Controlled Intersections

Level of Service	Control Delay per Vehicle (seconds)	Interpretation
А	≤ 10	EXCELLENT. Large and frequent gaps in traffic on the main roadway. Queuing on
		the minor street is rare.
В	> 10 and ≤ 15	VERY GOOD. Many gaps exist in traffic on the main roadway. Queuing on the minor street is minimal.
С	> 15 and ≤ 25	GOOD. Fewer gaps exist in traffic on the main roadway. Delay on minor approach becomes more noticeable.
D	> 25 and ≤ 35	FAIR. Infrequent and shorter gaps in traffic on the main roadway. Queue lengths develop on the minor street.
E	> 35 and ≤ 50	POOR. Very infrequent gaps in traffic on the main roadway. Queue lengths become noticeable.
F	> 50	UNSATISFACTORY. Very few gaps in traffic on the main roadway. Excessive delay with significant queue lengths on the minor street.

Adapted from Highway Capacity Manual 2000, Transportation Research Board

Level of Service Definitions

Signalized Intersections

Level of Service	Control Delay per Vehicle (seconds)	Interpretation
А	≤ 10	EXCELLENT. Extremely favourable progression with most vehicles arriving during the green phase. Most vehicles do not stop and short cycle lengths may contribute to low delay.
В	> 10 and ≤ 20	VERY GOOD. Very good progression and/or short cycle lengths with slightly more vehicles stopping than LOS "A" causing slightly higher levels of average delay.
С	> 20 and ≤ 35	GOOD. Fair progression and longer cycle lengths lead to a greater number of vehicles stopping than LOS "B".
D	> 35 and ≤ 55	FAIR. Congestion becomes noticeable with higher average delays resulting from a combination of long cycle lengths, high volume-to-capacity ratios and unfavourable progression.
E	> 55 and ≤ 80	POOR. Lengthy delays values are indicative of poor progression, long cycle lengths and high volume-to-capacity ratios. Individual cycle failures are common with individual movement failures also common.
F	> 80	UNSATISFACTORY. Indicative of oversaturated conditions with vehicular demand greater than the capacity of the intersection.

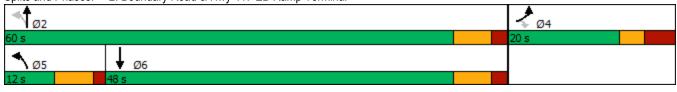
Adapted from Highway Capacity Manual 2000, Transportation Research Board

APPENDIX M

Detailed Capacity Analysis Worksheets

	4	×	t	/	1	Ļ	
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	¥		4			र्स	
Traffic Volume (vph)	108	28	85	743	70	91	
Future Volume (vph)	108	28	85	743	70	91	
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	
Lane Width (m)	4.5	4.5	3.5	3.5	3.5	3.5	
Storage Length (m)	0.0	10.0		0.0	0.0		
Storage Lanes	1	0		0	0		
Taper Length (m)	7.5				7.5		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Frt	0.972		0.879				
Flt Protected	0.962					0.979	
Satd. Flow (prot)	1746	0	1529	0	0	1582	
Flt Permitted	0.962					0.979	
Satd. Flow (perm)	1746	0	1529	0	0	1582	
Link Speed (k/h)	40		80			80	
Link Distance (m)	155.0		545.7			134.1	
Travel Time (s)	14.0		24.6			6.0	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	
Heavy Vehicles (%)	4%	14%	14%	1%	9%	11%	
Adj. Flow (vph)	120	31	94	826	78	101	
Shared Lane Traffic (%)							
Lane Group Flow (vph)	151	0	920	0	0	179	
Enter Blocked Intersection	No	No	No	No	No	No	
Lane Alignment	Left	Right	Left	Right	Left	Left	
Median Width(m)	4.5		0.0			0.0	
Link Offset(m)	0.0		0.0			0.0	
Crosswalk Width(m)	4.8		4.8			4.8	
Two way Left Turn Lane							
Headway Factor	0.95	0.95	1.09	1.09	1.09	1.09	
Turning Speed (k/h)	25	15		15	25		
Sign Control	Stop		Free			Free	
Intersection Summary	-						
	Other						
Control Type: Unsignalized							
Intersection Capacity Utilization	tion 80.4%			IC	U Level	of Service [D
Analysis Period (min) 15							

	✓	•	Ť	1	1	ţ
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	¥		4Î			र्स
Traffic Volume (veh/h)	108	28	85	743	70	91
Future Volume (Veh/h)	108	28	85	743	70	91
Sign Control	Stop		Free			Free
Grade	0%		0%			0%
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90
Hourly flow rate (vph)	120	31	94	826	78	101
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type			None			None
Median storage veh)			None			None
Upstream signal (m)						
pX, platoon unblocked						
vC, conflicting volume	764	507			920	
vC1, stage 1 conf vol	704	507			520	
vC2, stage 2 conf vol						
vCu, unblocked vol	764	507			920	
tC, single (s)	6.4	6.3			4.2	
tC, 2 stage (s)	0.4	0.0			۲.۲	
tF (s)	3.5	3.4			2.3	
p0 queue free %	63	94			89	
cM capacity (veh/h)	329	542			714	
					/ 14	
Direction, Lane #	WB 1	NB 1	SB 1			
Volume Total	151	920	179			
Volume Left	120	0	78			
Volume Right	31	826	0			
cSH	358	1700	714			
Volume to Capacity	0.42	0.54	0.11			
Queue Length 95th (m)	16.3	0.0	2.9			
Control Delay (s)	22.2	0.0	5.3			
Lane LOS	С		А			
Approach Delay (s)	22.2	0.0	5.3			
Approach LOS	С					
Intersection Summary						
Average Delay			3.5			
Intersection Capacity Utiliz	ration		80.4%	IC	Ulevelo	of Service
Analysis Period (min)			15	10		
			15			


	≯	\mathbf{r}	1	1	ţ	~
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
						SDR
Lane Configurations Traffic Volume (vph)	1 16	233	1 29	↑ 816	₽ 173	8
Future Volume (vph)	16	233	29 29	816	173	o 8
· · · /	1800	233 1800	29 1800	1800	1800	8 1800
Ideal Flow (vphpl) Lane Width (m)	3.5	3.3	3.5	3.5	3.5	3.5
()	3.5 0.0	3.3 25.0	3.5 50.0	3.5	ა.ე	3.5 0.0
Storage Length (m)			50.0 1			
Storage Lanes	7 5	1	•			0
Taper Length (m)	7.5	1.00	75.0	1.00	1 00	1.00
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Frt	0.050	0.850	0.050		0.994	
Flt Protected	0.950	400-	0.950	1 - 1 -	4500	^
Satd. Flow (prot)	1291	1395	1291	1745	1593	0
Flt Permitted	0.950		0.543			
Satd. Flow (perm)	1291	1395	738	1745	1593	0
Right Turn on Red		Yes				Yes
Satd. Flow (RTOR)		259			4	
Link Speed (k/h)	40			80	80	
Link Distance (m)	154.2			243.1	545.7	
Travel Time (s)	13.9			10.9	24.6	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90
Heavy Vehicles (%)	31%	6%	31%	2%	11%	13%
Adj. Flow (vph)	18	259	32	907	192	9
Shared Lane Traffic (%)	10	200	02	001	102	
Lane Group Flow (vph)	18	259	32	907	201	0
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left		Left	Left	Left	
		Right	Len			Right
Median Width(m)	3.5			3.5	3.5	
Link Offset(m)	0.0			0.0	0.0	
Crosswalk Width(m)	4.8			4.8	4.8	
Two way Left Turn Lane						
Headway Factor	1.09	1.12	1.09	1.09	1.09	1.09
Turning Speed (k/h)	25	15	25			15
Number of Detectors	1	1	1	2	2	
Detector Template	Left	Right	Left	Thru	Thru	
Leading Detector (m)	2.0	2.0	2.0	10.0	10.0	
Trailing Detector (m)	0.0	0.0	0.0	0.0	0.0	
Detector 1 Position(m)	0.0	0.0	0.0	0.0	0.0	
Detector 1 Size(m)	2.0	2.0	2.0	0.6	0.6	
Detector 1 Type	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	
Detector 1 Channel						
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0	
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0	
	0.0	0.0	0.0	0.0	0.0	
Detector 1 Delay (s)	0.0	0.0	0.0			
Detector 2 Position(m)				9.4	9.4	
Detector 2 Size(m)				0.6	0.6	
Detector 2 Type				Cl+Ex	CI+Ex	
Detector 2 Channel						
Detector 2 Extend (s)				0.0	0.0	
Turn Type	Prot	Perm	pm+pt	NA	NA	

Scenario 1 Exisitng Conditions AM 3:13 am 12-03-2020 Baseline

	٦	*	~	1	ţ	
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Protected Phases	4		5	2	6	
Permitted Phases	T	4	2	-	v	
Detector Phase	4	4	5	2	6	
Switch Phase			v	-	·	
Minimum Initial (s)	7.0	7.0	7.0	35.0	35.0	
Minimum Split (s)	17.8	17.8	13.0	41.6	41.6	
Total Split (s)	20.0	20.0	12.0	60.0	48.0	
Total Split (%)	25.0%	25.0%	15.0%	75.0%	60.0%	
Maximum Green (s)	13.2	13.2	6.0	53.4	41.4	
Yellow Time (s)	3.0	3.0	4.6	4.6	4.6	
All-Red Time (s)	3.8	3.8	1.4	2.0	2.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	6.8	6.8	6.0	6.6	6.6	
Lead/Lag	0.0	0.0	Lead	0.0	Lag	
Lead-Lag Optimize?			Yes		Yes	
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	
Recall Mode	None	None	None	Min	Min	
Walk Time (s)	5.0	5.0	None	0.0	7.0	
Flash Dont Walk (s)	6.0	6.0		0.0	21.0	
Pedestrian Calls (#/hr)	0.0	0.0		0.0	21.0	
Act Effct Green (s)	8.5	8.5	41.5	40.9	36.8	
Actuated g/C Ratio	0.13	0.13	0.66	0.65	0.58	
v/c Ratio	0.10	0.13	0.06	0.80	0.30	
Control Delay	28.3	12.0	4.2	15.0	8.6	
Queue Delay	0.0	0.0	0.0	0.0	0.0	
	28.3	12.0	4.2	15.0	0.0 8.6	
Total Delay LOS	20.3 C	12.0 B	4.Z	15.0 B	0.0 A	
Approach Delay	13.0	D	A	ы 14.6	A 8.6	
Approach LOS	13.0 B			14.0 B	0.0 A	
	1.7	0.0	1.0	60.6	7.2	
Queue Length 50th (m)	8.4	20.5	4.1	141.6	28.7	
Queue Length 95th (m)	130.2	20.5	4.1	219.1	521.7	
Internal Link Dist (m)	130.2	25.0	50.0	219.1	521. <i>1</i>	
Turn Bay Length (m)	076	25.0		1511	1071	
Base Capacity (vph)	276	502	539	1511	1071	
Starvation Cap Reductn	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	
Reduced v/c Ratio	0.07	0.52	0.06	0.60	0.19	
Intersection Summary	Other					
Area Type:	Other					
Cycle Length: 80						
Actuated Cycle Length: 63	.1					
Natural Cycle: 75						
Control Type: Semi Act-Ur	ncoord					
Maximum v/c Ratio: 0.80	40 F					
Intersection Signal Delay:					ntersectior	
Intersection Capacity Utiliz	ation 62.3%			(CU Level o	of Service B
Analysis Period (min) 15						

Scenario 1 Exisitng Conditions AM 3:13 am 12-03-2020 Baseline

Splits and Phases: 2: Boundary Road & Hwy 417 EB Ramp Terminal

Lanes, Volumes, Timings 3: Boundary Road & Thunder Road/Amazon Way

Lane Configurations Image: Configuration of the second secon	*
Traffic Volume (vph) 31 15 4 3 5 23 5 791 27 175 181 5 Future Volume (vph) 31 15 4 3 5 23 5 791 27 175 181 5 Ideal Flow (vphpl) 1800	SBR
Traffic Volume (vph) 31 15 4 3 5 23 5 791 27 175 181 5 Future Volume (vph) 31 15 4 3 5 23 5 791 27 175 181 5 Ideal Flow (vphpl) 1800	
Ideal Flow (vphpl) 1800 <td>50</td>	50
Lane Width (m) 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.3 3.5 3.3 3.3 3.3 3.5 3.3 Storage Length (m) 0.0 0.0 0.0 0.0 35.0 7.5 100.0 0.0 Storage Lanes 0 0 0 1 1 1 1 1 Taper Length (m) 7.5 7.5 45.0 75.0 75.0 100.0 1.00 <	50
Storage Length (m) 0.0 0.0 0.0 0.0 35.0 7.5 100.0 0. Storage Lanes 0 0 0 1	1800
Storage Lanes 0 0 0 1 <th1< th=""> 1 1 <t< td=""><td>3.5</td></t<></th1<>	3.5
Taper Length (m) 7.5 7.5 45.0 75.0 Lane Util. Factor 1.00 1	0.0
Lane Util. Factor1.001.	0
Frt 0.990 0.850 0.850 0.967 Flt Protected 0.970 0.984 0.950 0.950 Satd. Flow (prot) 0 1620 0 1752 1513 1378 1728 1479 1653 1517	
Fit Protected 0.970 0.984 0.950 0.950 Satd. Flow (prot) 0 1620 0 1752 1513 1378 1728 1479 1653 1517	1.00
Satd. Flow (prot) 0 1620 0 0 1752 1513 1378 1728 1479 1653 1517	
Elt Permitted 0.806 0.867 0.600 0.142	0
File of thinks 0.000 0.007 0.000 0.142	
Satd. Flow (perm) 0 1346 0 0 1543 1513 870 1728 1479 247 1517	0
Right Turn on Red Yes Yes Yes Yes Ye	Yes
Satd. Flow (RTOR) 3 100 96 32	
Link Speed (k/h) 60 20 80 80	
Link Distance (m) 642.8 170.6 174.7 243.1	
Travel Time (s) 38.6 30.7 7.9 10.9	
Peak Hour Factor 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.9	0.90
Heavy Vehicles (%) 6% 0% 25% 0% 0% 0% 0% 20% 3% 0% 0% 15% 8%	8%
Adj. Flow (vph) 34 17 4 3 6 26 6 879 30 194 201 5	56
Shared Lane Traffic (%)	
Lane Group Flow (vph) 0 55 0 0 9 26 6 879 30 194 257	0
Enter Blocked Intersection No	No
Lane Alignment Left Left Right Left Left Right Left Right Left Left Right	Right
Median Width(m) 0.0 0.0 3.5 3.5	
Link Offset(m) 0.0 0.0 0.0 0.0	
Crosswalk Width(m) 4.8 4.8 4.8 4.8	
Two way Left Turn Lane	
,	1.09
	15
Number of Detectors 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	
Detector Template Left Thru Left Thru Right Left Thru Right Left Thru	
Leading Detector (m) 2.0 10.0 2.0 10.0 2.0 2.0 10.0 2.0 2.0 10.0	
Trailing Detector (m) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	
Detector 1 Position(m) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	
Detector 1 Size(m) 2.0 0.6 2.0 0.6 2.0 2.0 0.6 2.0 2.0 0.6	
Detector 1 Type CI+Ex CI	
Detector 1 Channel	
Detector 1 Extend (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	
Detector 1 Queue (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	
Detector 1 Delay (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	
Detector 2 Position(m) 9.4 9.4 9.4 9.4	
Detector 2 Size(m) 0.6 0.6 0.6 0.6	
Detector 2 Type CI+Ex CI+Ex CI+Ex CI+Ex	
Detector 2 Channel	
Detector 2 Extend (s) 0.0 0.0 0.0 0.0	
Turn Type Perm NA Perm NA Perm Perm NA Perm pm+pt NA	

Scenario 1 Exisitng Conditions AM 3:13 am 12-03-2020 Baseline

Lanes, Volumes, Timings 3: Boundary Road & Thunder Road/Amazon Way

	۶	-	\rightarrow	4	-	•	1	Ť	1	1	Ļ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Protected Phases		4			8			2		1	6	
Permitted Phases	4			8		8	2		2	6		
Detector Phase	4	4		8	8	8	2	2	2	1	6	
Switch Phase												
Minimum Initial (s)	7.0	7.0		7.0	7.0	7.0	20.0	20.0	20.0	7.0	20.0	
Minimum Split (s)	24.8	24.8		24.8	24.8	24.8	26.2	26.2	26.2	13.0	26.2	
Total Split (s)	25.0	25.0		25.0	25.0	25.0	55.0	55.0	55.0	20.0	75.0	
Total Split (%)	25.0%	25.0%		25.0%	25.0%	25.0%	55.0%	55.0%	55.0%	20.0%	75.0%	
Maximum Green (s)	19.2	19.2		19.2	19.2	19.2	48.8	48.8	48.8	14.0	68.8	
Yellow Time (s)	3.7	3.7		3.7	3.7	3.7	4.6	4.6	4.6	4.6	4.6	
All-Red Time (s)	2.1	2.1		2.1	2.1	2.1	1.6	1.6	1.6	1.4	1.6	
Lost Time Adjust (s)		0.0			0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)		5.8			5.8	5.8	6.2	6.2	6.2	6.0	6.2	
Lead/Lag							Lag	Lag	Lag	Lead		
Lead-Lag Optimize?							Yes	Yes	Yes	Yes		
Vehicle Extension (s)	3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	
Recall Mode	None	None		None	None	None	Min	Min	Min	None	Min	
Walk Time (s)	7.0	7.0		7.0	7.0	7.0	7.0	7.0	7.0		7.0	
Flash Dont Walk (s)	12.0	12.0		12.0	12.0	12.0	10.0	10.0	10.0		10.0	
Pedestrian Calls (#/hr)	0	0		0	0	0	0	0	0		0	
Act Effct Green (s)		9.0			9.0	9.0	50.2	50.2	50.2	67.0	69.7	
Actuated g/C Ratio		0.11			0.11	0.11	0.61	0.61	0.61	0.82	0.85	
v/c Ratio		0.37			0.05	0.10	0.01	0.83	0.03	0.51	0.20	
Control Delay		42.0			36.4	0.8	10.2	25.2	0.1	9.5	2.8	
Queue Delay		0.0			0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay		42.0			36.4	0.8	10.2	25.2	0.1	9.5	2.8	
LOS		D			D	А	В	С	А	А	А	
Approach Delay		42.0			10.0			24.3			5.7	
Approach LOS		D			А			С			А	
Queue Length 50th (m)		8.6			1.4	0.0	0.4	125.1	0.0	7.1	8.6	
Queue Length 95th (m)		20.9			6.1	0.0	2.5	#243.6	0.0	23.4	18.6	
Internal Link Dist (m)		618.8			146.6			150.7			219.1	
Turn Bay Length (m)							35.0		7.5	100.0		
Base Capacity (vph)		322			367	436	532	1057	942	446	1298	
Starvation Cap Reductn		0			0	0	0	0	0	0	0	
Spillback Cap Reductn		0			0	0	0	0	0	0	0	
Storage Cap Reductn		0			0	0	0	0	0	0	0	
Reduced v/c Ratio		0.17			0.02	0.06	0.01	0.83	0.03	0.43	0.20	
Intersection Summary												
	Other											
Cycle Length: 100												
Actuated Cycle Length: 82												
Natural Cycle: 90												
Control Type: Semi Act-Unco	ord											
Maximum v/c Ratio: 0.83												
Intersection Signal Delay: 18.					ntersectio							
Intersection Capacity Utilizati	on 78.7%			10	CU Level	of Service	e D					
Analysis Period (min) 15												

Scenario 1 Exisitng Conditions AM 3:13 am 12-03-2020 Baseline

95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

Splits and Phases: 3: Boundary Road & Thunder Road/Amazon Way

	4	*	1	1	1	Ļ	
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	- M		4		٦	†	
Traffic Volume (vph)	5	3	820	5	1	187	
Future Volume (vph)	5	3	820	5	1	187	
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	
Lane Width (m)	3.6	3.6	3.5	3.5	3.5	3.5	
Storage Length (m)	0.0	0.0		0.0	70.0		
Storage Lanes	1	0		0	1		
Taper Length (m)	7.5				45.0		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Frt	0.955		0.999				
Flt Protected	0.968				0.950		
Satd. Flow (prot)	832	0	1732	0	846	1561	
Flt Permitted	0.968				0.950		
Satd. Flow (perm)	832	0	1732	0	846	1561	
Link Speed (k/h)	20		80			80	
Link Distance (m)	151.5		1150.2			174.7	
Travel Time (s)	27.3		51.8			7.9	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	
Heavy Vehicles (%)	100%	100%	2%	100%	100%	14%	
Adj. Flow (vph)	6	3	911	6	1	208	
Shared Lane Traffic (%)							
Lane Group Flow (vph)	9	0	917	0	1	208	
Enter Blocked Intersection	No	No	No	No	No	No	
Lane Alignment	Left	Right	Left	Right	Left	Left	
Median Width(m)	3.6		3.5			3.5	
Link Offset(m)	0.0		0.0			0.0	
Crosswalk Width(m)	4.8		4.8			4.8	
Two way Left Turn Lane							
Headway Factor	1.07	1.07	1.09	1.09	1.09	1.09	
Turning Speed (k/h)	25	15		15	25		
Sign Control	Stop		Free			Free	
Intersection Summary							
·· //··	Other						
Control Type: Unsignalized							
Intersection Capacity Utilizat	tion 55.9%			IC	CU Level	of Service B	В
Analysis Period (min) 15							

	4	×	1	1	1	ţ		
Movement	WBL	WBR	NBT	NBR	SBL	SBT		
Lane Configurations	Y		4Î		5	†		
Traffic Volume (veh/h)	5	3	820	5	1	187		
Future Volume (Veh/h)	5	3	820	5	1	187		
Sign Control	Stop		Free			Free		
Grade	0%		0%			0%		
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90		
Hourly flow rate (vph)	6	3	911	6	1	208		
Pedestrians								
Lane Width (m)								
Walking Speed (m/s)								
Percent Blockage								
Right turn flare (veh)								
Median type			None			None		
Median storage veh)								
Upstream signal (m)						175		
pX, platoon unblocked								
vC, conflicting volume	1124	914			917			
vC1, stage 1 conf vol								
vC2, stage 2 conf vol								
vCu, unblocked vol	1124	914			917			
tC, single (s)	7.4	7.2			5.1			
tC, 2 stage (s)								
tF (s)	4.4	4.2			3.1			
p0 queue free %	96	99			100			
cM capacity (veh/h)	149	224			458			
Direction, Lane #	WB 1	NB 1	SB 1	SB 2				
Volume Total	9	917	1	208				
Volume Left	6	0	1	0				
Volume Right	3	6	0	0				
cSH	168	1700	458	1700				
Volume to Capacity	0.05	0.54	0.00	0.12				
Queue Length 95th (m)	1.3	0.0	0.1	0.0				
Control Delay (s)	27.7	0.0	12.9	0.0				
Lane LOS	D		В					
Approach Delay (s)	27.7	0.0	0.1					
Approach LOS	D							
Intersection Summary								
Average Delay			0.2					
Intersection Capacity Utiliza	ation		55.9%	IC	U Level o	of Service	e	
Analysis Period (min)			15	.0	2 _ 51 61 0			
			10					

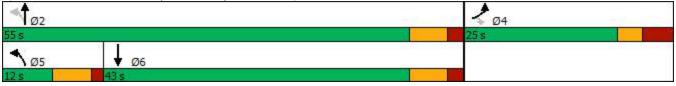
	≯	*	•	t	Ļ	~
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	1	1		र्भ	†	1
Traffic Volume (vph)	68	27	121	776	110	94
Future Volume (vph)	68	27	121	776	110	94
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800
Lane Width (m)	3.3	3.3	3.5	3.5	3.5	3.5
Storage Length (m)	25.0	0.0	0.0			30.0
Storage Lanes	1	1	0			1
Taper Length (m)	47.5		7.5			
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.850				0.850
Flt Protected	0.950			0.993		
Satd. Flow (prot)	1476	1286	0	1734	1561	1293
Flt Permitted	0.950			0.993		
Satd. Flow (perm)	1476	1286	0	1734	1561	1293
Link Speed (k/h)	80			80	80	
Link Distance (m)	180.5			135.8	1150.2	
Travel Time (s)	8.1			6.1	51.8	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90
Heavy Vehicles (%)	12%	15%	8%	1%	14%	17%
Adj. Flow (vph)	76	30	134	862	122	104
Shared Lane Traffic (%)						
Lane Group Flow (vph)	76	30	0	996	122	104
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Left	Left	Right
Median Width(m)	3.3			0.0	0.0	
Link Offset(m)	0.0			0.0	0.0	
Crosswalk Width(m)	4.8			4.8	4.8	
Two way Left Turn Lane						
Headway Factor	1.12	1.12	1.09	1.09	1.09	1.09
Turning Speed (k/h)	25	15	25			15
Sign Control	Stop			Free	Free	
Intersection Summary						
Area Type:	Other					
Control Type: Unsignalized						
Intersection Capacity Utilizat	tion 67.5%				CU Level	of Service
Analysis Period (min) 15				·		

	٨	*	•	1	ţ	~
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	1	1		र्स	1	1
Traffic Volume (veh/h)	68	27	121	776	110	94
Future Volume (Veh/h)	68	27	121	776	110	94
Sign Control	Stop			Free	Free	
Grade	0%			0%	0%	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90
Hourly flow rate (vph)	76	30	134	862	122	104
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type				None	None	
Median storage veh)				NONC	NONC	
Upstream signal (m)						
pX, platoon unblocked						
vC, conflicting volume	1252	122	226			
vC1, stage 1 conf vol	1202	122	220			
vC2, stage 2 conf vol						
vCu, unblocked vol	1252	122	226			
tC, single (s)	6.5	6.4	4.2			
tC, 2 stage (s)	0.0	0.4	7.2			
tF (s)	3.6	3.4	2.3			
p0 queue free %	53	97	2.5			
cM capacity (veh/h)	163	895	1308			
Direction, Lane #	EB 1	EB 2	NB 1	SB 1	SB 2	
Volume Total	76	30	996	122	104	
Volume Left	76	0	134	0	0	
Volume Right	0	30	0	0	104	
cSH	163	895	1308	1700	1700	
Volume to Capacity	0.47	0.03	0.10	0.07	0.06	
Queue Length 95th (m)	17.5	0.8	2.7	0.0	0.0	
Control Delay (s)	45.1	9.2	2.5	0.0	0.0	
Lane LOS	E	А	А			
Approach Delay (s)	34.9		2.5	0.0		
Approach LOS	D					
Intersection Summary						
Average Delay			4.7			
Intersection Capacity Utiliza	ation		67.5%	IC	CU Level c	of Service
Analysis Period (min)			15			
			10			

	4	×	t	/	1	Ļ	
Lane Group	WBL	WBR	• NBT	NBR	SBL	SBT	
Lane Configurations	¥		4			स	
Traffic Volume (vph)	42	1	130	224	22	108	
Future Volume (vph)	42	1	130	224	22	108	
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	
Lane Width (m)	4.5	4.5	3.5	3.5	3.5	3.5	
Storage Length (m)	0.0	10.0		0.0	0.0		
Storage Lanes	1	0		0	0		
Taper Length (m)	7.5				7.5		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Frt	0.997		0.914				
Flt Protected	0.953					0.992	
Satd. Flow (prot)	1586	0	1563	0	0	1630	
Flt Permitted	0.953					0.992	
Satd. Flow (perm)	1586	0	1563	0	0	1630	
Link Speed (k/h)	40		80			80	
Link Distance (m)	155.0		545.7			134.1	
Travel Time (s)	14.0		24.6			6.0	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	
Heavy Vehicles (%)	19%	0%	6%	3%	5%	9%	
Adj. Flow (vph)	47	1	144	249	24	120	
Shared Lane Traffic (%)							
Lane Group Flow (vph)	48	0	393	0	0	144	
Enter Blocked Intersection	No	No	No	No	No	No	
Lane Alignment	Left	Right	Left	Right	Left	Left	
Median Width(m)	4.5		0.0			0.0	
Link Offset(m)	0.0		0.0			0.0	
Crosswalk Width(m)	4.8		4.8			4.8	
Two way Left Turn Lane							
Headway Factor	0.95	0.95	1.09	1.09	1.09	1.09	
Turning Speed (k/h)	25	15		15	25		
Sign Control	Stop		Free			Free	
Intersection Summary							
	Other						
Control Type: Unsignalized							
Intersection Capacity Utilizat	tion 35.9%			IC	U Level of	of Service A	A
Analysis Period (min) 15							

	4	×	t	1	1	ţ
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Y		4Î			र्भ
Traffic Volume (veh/h)	42	1	130	224	22	108
Future Volume (Veh/h)	42	1	130	224	22	108
Sign Control	Stop	-	Free			Free
Grade	0%		0%			0%
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90
Hourly flow rate (vph)	47	1	144	249	24	120
Pedestrians				210	21	120
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type			None			None
Median storage veh)			None			None
Upstream signal (m)						
pX, platoon unblocked						
vC, conflicting volume	436	268			393	
vC1, stage 1 conf vol	400	200			000	
vC2, stage 2 conf vol						
vCu, unblocked vol	436	268			393	
tC, single (s)	6.6	6.2			4.1	
tC, 2 stage (s)	0.0	0.2			7.1	
tF (s)	3.7	3.3			2.2	
p0 queue free %	3.7 91	3.3 100			2.2 98	
cM capacity (veh/h)	535	775			1149	
					1149	
Direction, Lane #	WB 1	NB 1	SB 1			
Volume Total	48	393	144			
Volume Left	47	0	24			
Volume Right	1	249	0			
cSH	539	1700	1149			
Volume to Capacity	0.09	0.23	0.02			
Queue Length 95th (m)	2.3	0.0	0.5			
Control Delay (s)	12.3	0.0	1.5			
Lane LOS	В		А			
Approach Delay (s)	12.3	0.0	1.5			
Approach LOS	В					
Intersection Summary						
Average Delay			1.4			
Intersection Capacity Utilizat	tion		35.9%	IC		of Service
Analysis Period (min)			15	10		
			15			

	≯	\mathbf{r}	1	1	ţ	~
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	<u></u>				<u>ا ا ا ا ا</u>	
Traffic Volume (vph)	70	631	133	T 196	188	15
Future Volume (vph)	70	631	133	190	188	15
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800
Lane Width (m)	3.5	3.3	3.5	3.5	3.5	3.5
Storage Length (m)	0.0	25.0	50.0	0.0	0.0	0.0
Storage Lanes	0.0	25.0	50.0 1			0.0
Taper Length (m)	7.5	I	75.0			U
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Frt	1.00	0.850	1.00	1.00	0.990	1.00
Fit Protected	0.950	0.000	0.950		0.990	
Satd. Flow (prot)	1551	1436	0.950 1537	1664	1592	0
Fit Permitted	0.950	1430	0.527	1004	1092	U
		1436		1664	1500	0
Satd. Flow (perm)	1551		853	1004	1592	
Right Turn on Red		Yes			7	Yes
Satd. Flow (RTOR)	40	674		00	7	
Link Speed (k/h)	40			80	80	
Link Distance (m)	154.2			243.1	545.7	
Travel Time (s)	13.9	0.00	0.00	10.9	24.6	0.00
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90
Heavy Vehicles (%)	9%	3%	10%	7%	11%	7%
Adj. Flow (vph)	78	701	148	218	209	17
Shared Lane Traffic (%)						
Lane Group Flow (vph)	78	701	148	218	226	0
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Left	Left	Right
Median Width(m)	3.5			3.5	3.5	
Link Offset(m)	0.0			0.0	0.0	
Crosswalk Width(m)	4.8			4.8	4.8	
Two way Left Turn Lane						
Headway Factor	1.09	1.12	1.09	1.09	1.09	1.09
Turning Speed (k/h)	25	15	25			15
Number of Detectors	1	1	1	2	2	
Detector Template	Left	Right	Left	Thru	Thru	
Leading Detector (m)	2.0	2.0	2.0	10.0	10.0	
Trailing Detector (m)	0.0	0.0	0.0	0.0	0.0	
Detector 1 Position(m)	0.0	0.0	0.0	0.0	0.0	
Detector 1 Size(m)	2.0	2.0	2.0	0.6	0.6	
Detector 1 Type	Cl+Ex	Cl+Ex	Cl+Ex	CI+Ex	Cl+Ex	
Detector 1 Channel						
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0	
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0	
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0	
Detector 2 Position(m)				9.4	9.4	
Detector 2 Size(m)				0.6	0.6	
Detector 2 Type				CI+Ex	CI+Ex	
Detector 2 Channel						
Detector 2 Extend (s)				0.0	0.0	
Turn Type	Prot	Perm	pm+pt	NA	NA	
	FIUL		hinthr	N/A	NA	


Scenario 1 Exisitng Conditions PM 3:13 am 12-03-2020 Baseline

	٨	\mathbf{r}	1	1	Ŧ	1
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Protected Phases	4	LDIX	5	2	6	ODI
Permitted Phases	4	4	2	2	U	
Detector Phase	4	4	5	2	6	
Switch Phase	4	4	J	2	U	
Minimum Initial (s)	7.0	7.0	7.0	35.0	35.0	
Minimum Split (s)	23.0	23.0	13.0	41.6	41.6	
Total Split (s)	25.0	25.0	12.0	55.0	43.0	
Total Split (%)	31.3%	31.3%	15.0%	68.8%	43.0 53.8%	
Maximum Green (s)	18.2	18.2	6.0	48.4	36.4	
Yellow Time (s)	3.0	3.0	4.6	4.6	4.6	
All-Red Time (s)	3.8	3.8	1.4	2.0	2.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	2.0	
Total Lost Time (s)	0.0 6.8	6.8	6.0	6.6	0.0 6.6	
Lead/Lag	0.0	0.0	Lead	0.0	Lag	
Lead-Lag Optimize?			Yes		Yes	
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	
Recall Mode	None	None	None	S.0 Min	S.0 Min	
Walk Time (s)	7.0	7.0	NONE	0.0	7.0	
Flash Dont Walk (s)	7.0 5.0	5.0		0.0	21.0	
	5.0 0	5.0 0		0.0	21.0 0	
Pedestrian Calls (#/hr) Act Effct Green (s)	12.1	12.1	47.8	47.2	35.2	
Actuated g/C Ratio	0.17	0.17	47.0 0.66	47.Z 0.65	35.2 0.48	
v/c Ratio	0.17	0.17	0.00	0.65	0.40	
	29.0	17.0	0.24 6.8	0.20 6.6	13.3	
Control Delay	29.0	0.0	0.0 0.0	0.0 0.0	0.0	
Queue Delay	29.0	17.0	0.0 6.8	0.0 6.6	13.3	
Total Delay LOS	29.0 C	17.0 B	6.8 A	0.0 A	13.3 B	
		В	A			
Approach Delay	18.2			6.7	13.3	
Approach LOS	B	2.2	6.5	A	B	
Queue Length 50th (m)	9.9	3.3	6.5	10.3	17.2	
Queue Length 95th (m)	21.3	#66.1	17.0	24.7	37.2	
Internal Link Dist (m)	130.2	05.0	FA A	219.1	521.7	
Turn Bay Length (m)	000	25.0	50.0		000	
Base Capacity (vph)	389	865	616	1111	803	
Starvation Cap Reductn	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	
Reduced v/c Ratio	0.20	0.81	0.24	0.20	0.28	
Intersection Summary						
Area Type:	Other					
Cycle Length: 80						
Actuated Cycle Length: 72	2.8					
Natural Cycle: 80						
Control Type: Semi Act-U	ncoord					
Maximum v/c Ratio: 0.88						
Intersection Signal Delay:					ntersectior	
Intersection Capacity Utiliz	zation 81.6%			10	CU Level o	of Service D
Analysis Period (min) 15						

Scenario 1 Exisitng Conditions PM 3:13 am 12-03-2020 Baseline

95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

Splits and Phases: 2: Boundary Road & Hwy 417 EB Ramp Terminal

Lane Configurations EBL EBR WBL WBT WBR NBT NBT NBR SBL SBL SBR		٦	-	\mathbf{F}	4	+	*	•	Ť	۲	1	Ļ	~
Traffic Volume (vph) 62 0 14 5 0 16 4 251 0 2 762 55 Future Volume (vph) 1800 <td< th=""><th>Lane Group</th><th>EBL</th><th>EBT</th><th>EBR</th><th>WBL</th><th>WBT</th><th>WBR</th><th>NBL</th><th>NBT</th><th>NBR</th><th>SBL</th><th>SBT</th><th>SBR</th></td<>	Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Traffic Volume (vph) 62 0 14 5 0 16 4 251 0 2 762 55 Ideal Flow (vphpi) 1800	Lane Configurations		\$			ę	1	ľ	•	1	2	લે	
Ideal Flow (vph) 1800		62		14	5		16	4	251	0	2		55
Lane Width (m) 3.5 3.5 3.5 3.5 3.3 3.5 3.3 3.3 3.5 3.5 Storage Length (m) 0.0 0.0 0.0 3.6 7.5 100.0 0.0 Taper Length (m) 7.5 7.5 45.0 7.5 100.0 1.00 Taper Length (m) 7.5 7.5 45.0 7.5 0.0950 0.990 Fit Protected 0.961 0.950 0.950 0.950 0.950 0.990 Fit Permitted 0.762 0.866 0.287 0.509 533 1740 1102 169 0 Ridw (perm) 0 1261 0 0 1088 1513 400 1633 1740 102 169 0 Ridw (perm) 0 1261 0 0 1088 1740 1633 1740 102 169 0 Ridw (perm) 60 20 80 174.7 243.1 1749 109 109<	Future Volume (vph)		0	14	5	0	16	4	251	0	2	762	55
Storage Length (m) 0.0 0.0 0.0 1 1 1 0 Storage Lanes 0 0 0 1 1 1 1 0 Storage Lanes 0 0 0 1 1 1 1 0 Lane UBI, Factor 1.00<	Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Storage Lanes 0 0 0 1 <	Lane Width (m)	3.5	3.5	3.5	3.5	3.5	3.5	3.3	3.5	3.3	3.3	3.5	3.5
Taper Length (m) 7.5 7.5 45.0 76.0 Lane Uli, Factor 1.00 1.	Storage Length (m)	0.0		0.0	0.0		0.0	35.0		7.5	100.0		0.0
Lane Util, Factor 1.00 <td>Storage Lanes</td> <td>0</td> <td></td> <td>0</td> <td>0</td> <td></td> <td>1</td> <td>1</td> <td></td> <td>1</td> <td>1</td> <td></td> <td>0</td>	Storage Lanes	0		0	0		1	1		1	1		0
Frt 0.975 0.850 0.990 Flt Protected 0.961 0.950 0.950 0.950 0.950 Stadt, Flow (prot) 0 1580 0 0 1282 1633 1740 1102 1699 0 Stadt, Flow (perm) 0 1261 0 0 1088 1513 400 1633 1740 1509 0 0 Stadt, Flow (perm) 0 1261 0 0 1088 1513 400 1633 1740 1509 0 0 Kight Turn on Red Yes Yes </td <td>Taper Length (m)</td> <td>7.5</td> <td></td> <td></td> <td>7.5</td> <td></td> <td></td> <td>45.0</td> <td></td> <td></td> <td>75.0</td> <td></td> <td></td>	Taper Length (m)	7.5			7.5			45.0			75.0		
Fit Protected 0.961 0.950 0.950 0.950 Satd. Flow (prot) 0 1590 0 0 1208 1513 1322 1633 1740 1102 1699 0 Satd. Flow (perm) 0 1261 0 0 1088 1513 400 1633 1740 590 1699 0 Right Turn on Red Yes Yes Yes Yes Yes Yes Yes Xes 100 100 100 100 174.7 243.1 174.7 243.1 174.7 243.1 10.9	Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Satd. Flow (prot) 0 1590 0 0 1208 1513 1322 1633 1740 1102 1699 0 FIt Permitted 0.762 0.856 0.237 0.509	Frt		0.975				0.850					0.990	
Fit Permitted 0.762 0.856 0.287 0.509 Satd. Flow (perm) 0 1261 0 0 1088 1513 400 1633 1740 550 1699 0 Right Turn on Red Yes Yes Yes Yes Yes 8 Link Space (k/h) 60 20 80 80 80 Link Distance (m) 642.8 170.6 174.7 243.1 17 Peak Hour Factor 0.90 1.91	Flt Protected		0.961			0.950		0.950			0.950		
Satd. Flow (perm) 0 1261 0 0 1088 1513 400 1633 1740 590 1699 0 Right Turn on Red Yes Yes<	Satd. Flow (prot)	0	1590	0	0	1208	1513	1322	1633	1740	1102	1699	0
Right Turn on Red Yes Yes Yes Yes Yes Satd. Flow (RTOR) 100 - 100 - 80 Link Speed (k/h) 660 20 80 80 Link Distance (m) 642.8 170.6 174.7 243.1 Travel Time (s) 38.6 30.7 7.9 10.9 Peak Hour Factor 0.90 0.9	Flt Permitted		0.762			0.856		0.287			0.509		
Said. Flow (RTOR) 100 100 100 80 Link Speed (k/h) 60 20 80 80 Link Distance (m) 642.8 170.6 174.7 243.1 Travel Time (s) 38.6 30.7 7.9 10.9 Peak Hour Factor 0.90	Satd. Flow (perm)	0	1261	0	0	1088	1513	400	1633	1740	590	1699	0
Link Speed (kh) 60 20 80 80 Link Distance (m) 642.8 170.6 174.7 243.1 Travel Time (s) 38.6 30.7 7.9 10.9 Peak Hour Pator 0.90 1.90 1.91 1.91 1.91 1.91 1.91 1.91 1.91 1.91 1.91	Right Turn on Red			Yes			Yes			Yes			Yes
Link Distance (m) 642.8 170.6 174.7 243.1 Travel Time (s) 38.6 30.7 7.9 10.9 Peak Hour Factor 0.90 1.2 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 </td <td>Satd. Flow (RTOR)</td> <td></td> <td>100</td> <td></td> <td></td> <td></td> <td>100</td> <td></td> <td></td> <td></td> <td></td> <td>8</td> <td></td>	Satd. Flow (RTOR)		100				100					8	
Travel Time (s) 38.6 30.7 7.9 10.9 Peak Hour Factor 0.90 1.93 1.05 1.2 1.0 2 908 0 Enter Blocked Intersection No	Link Speed (k/h)		60						80				
Peak Hour Factor 0.90	Link Distance (m)		642.8			170.6			174.7			243.1	
Heavy Vehicles (%) 6% 0% 0% 0% 25% 9% 0% 50% 4% 0% Adj. Flow (vph) 69 0 16 6 0 18 4 279 0 2 847 61 Shared Lane Traffic (%) Lane Group Flow (vph) 0 85 0 0 6 18 4 279 0 2 908 0 Eane Group Flow (vph) 0 85 0 0 6 18 4 279 0 2 908 0 Eane Group Flow (vph) 0 85 0 0 6 18 4 279 0 2 908 0 Lane Group Flow (vph) 0 85 0 0 6 18 4 279 0 2 908 0 Lane Group Flow (vph) 0.0 0 0 0 0 0 0 0 0 0 0 0	Travel Time (s)		38.6			30.7			7.9			10.9	
Adj. Flow (vph) 69 0 16 6 0 18 4 279 0 2 847 61 Shared Lane Traffic (%) Lane Group Flow (vph) 0 85 0 0 6 18 4 279 0 2 908 0 Enter Blocked Intersection No No <t< td=""><td>Peak Hour Factor</td><td>0.90</td><td>0.90</td><td>0.90</td><td>0.90</td><td>0.90</td><td>0.90</td><td>0.90</td><td>0.90</td><td>0.90</td><td>0.90</td><td>0.90</td><td>0.90</td></t<>	Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Shared Lane Traffic (%) Lane Group Flow (vph) 0 85 0 0 6 18 4 279 0 2 908 0 Enter Blocked Intersection No No <td>Heavy Vehicles (%)</td> <td>6%</td> <td>0%</td> <td>0%</td> <td>40%</td> <td>0%</td> <td>0%</td> <td>25%</td> <td>9%</td> <td>0%</td> <td>50%</td> <td>4%</td> <td>0%</td>	Heavy Vehicles (%)	6%	0%	0%	40%	0%	0%	25%	9%	0%	50%	4%	0%
Lane Group Flow (vph) 0 85 0 0 6 18 4 279 0 2 908 0 Enter Blocked Intersection No	Adj. Flow (vph)	69	0	16	6	0	18	4	279	0	2	847	61
Enter Blocked Intersection No No <th< td=""><td>Shared Lane Traffic (%)</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	Shared Lane Traffic (%)												
Lane Alignment Left Right Left Right Left Right Left Right Left Right Left Right Median Width(m) 0.0 0.0 3.5 3.5 Link Offset(m) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Crosswalk Width(m) 4.8 4.9 4.9 <td>Lane Group Flow (vph)</td> <td>0</td> <td>85</td> <td>0</td> <td>0</td> <td>6</td> <td>18</td> <td>4</td> <td>279</td> <td>0</td> <td>2</td> <td>908</td> <td>0</td>	Lane Group Flow (vph)	0	85	0	0	6	18	4	279	0	2	908	0
Median Width(m) 0.0 0.0 3.5 3.5 Link Offset(m) 0.0 0.0 0.0 0.0 0.0 Crosswalk Width(m) 4.8 4.8 4.8 4.8 4.8 Two way Left Turn Lane	Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Link Offset(m) 0.0 0.0 0.0 0.0 Crosswalk Width(m) 4.8 4.8 4.8 4.8 4.8 Two way Left Turn Lane Headway Factor 1.09 1.09 1.09 1.09 1.09 1.12 1.09 1.12 1.12 1.12 1.09 1.09 Turning Speed (k/h) 25 15 25 15 25 15 25 15 25 15 25 15 25 15 25 15 25 15 20 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 15 15 25 15 25 15 25 15 25 15 25 15 25 15 25 15 25 15 25 15 25 15 20 20 10.0 20 20 10.0 20 20 20 20	Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Crosswalk Width(m) 4.8 4.8 4.8 4.8 4.8 Two way Left Turn Lane Headway Factor 1.09 1.09 1.09 1.09 1.09 1.09 1.12 1.01 1.12 1.01 1.09 1.09 Turning Speed (k/h) 25 15 25 15 25 15 25 15 Number of Detectors 1 2 1 2 1 1 2 1 1 2 Detector Template Left Thru Right Left Thru Right Left Thru Right Left Thru Leading Detector (m) 2.0 10.0 2.0 10.0 2.0 10.0 2.0 10.0 2.0 10.0 2.0 10.0 2.0 10.0 2.0 10.0 2.0 10.0 2.0 10.0 2.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	Median Width(m)		0.0			0.0			3.5			3.5	
Two way Left Turn Lane Headway Factor 1.09 1.09 1.09 1.09 1.09 1.09 1.12 1.09 1.12 1.12 1.12 1.09 1.09 Turning Speed (k/h) 25 15 25 10 25 10 25 10 25 10 25 10	Link Offset(m)		0.0			0.0			0.0			0.0	
Headway Factor 1.09 1.09 1.09 1.09 1.09 1.09 1.12 1.09 1.12 1.12 1.12 1.09 1.09 Turning Speed (k/h) 25 15 25 16 26 10.0 20 20 10.0 20 20 <td>Crosswalk Width(m)</td> <td></td> <td>4.8</td> <td></td> <td></td> <td>4.8</td> <td></td> <td></td> <td>4.8</td> <td></td> <td></td> <td>4.8</td> <td></td>	Crosswalk Width(m)		4.8			4.8			4.8			4.8	
Turning Speed (k/h) 25 15 25 16 26 100 20 20 20 20 20 20 20 20 <td></td>													
Number of Detectors 1 2 1 2 1 1	Headway Factor		1.09			1.09			1.09			1.09	
Detector Template Left Thru Left Thru Right Left Thru Right Left Thru Leading Detector (m) 2.0 10.0 2.0 10.0 2.0 10.0 2.0 10.0 2.0 10.0 2.0 10.0 2.0 10.0 2.0 10.0 2.0 10.0 2.0 10.0 2.0 10.0 2.0 10.0 2.0 10.0 2.0 10.0 2.0 10.0 2.0 10.0 10.0 10.0 0.0	Turning Speed (k/h)	25		15	25		15	25		15	25		15
Leading Detector (m) 2.0 10.0 2.0 10.0 2.0 2.0 10.0 2.0 2.0 10.0 Trailing Detector (m) 0.0	Number of Detectors		2				-				-		
Trailing Detector (m) 0.0	Detector Template									•			
Detector 1 Position(m) 0.0								2.0					
Detector 1 Size(m) 2.0 0.6 2.0 0.6 2.0 2.0 0.6 2.0 2.0 0.6 Detector 1 Type CI+Ex CI CI <t< td=""><td>č</td><td></td><td></td><td></td><td>0.0</td><td></td><td></td><td>0.0</td><td></td><td></td><td></td><td></td><td></td></t<>	č				0.0			0.0					
Detector 1 Type Cl+Ex													
Detector 1 Channel Detector 1 Extend (s) 0.0 <	· · · · ·							2.0					
Detector 1 Extend (s) 0.0		CI+Ex	CI+Ex		Cl+Ex	CI+Ex	CI+Ex	CI+Ex	Cl+Ex	Cl+Ex	Cl+Ex	CI+Ex	
Detector 1 Queue (s) 0.0	Detector 1 Channel												
Detector 1 Delay (s) 0.0	Detector 1 Extend (s)												
Detector 2 Position(m) 9.4 9.4 9.4 Detector 2 Size(m) 0.6 0.6 0.6 Detector 2 Size(m) 0.6 0.6 0.6 Detector 2 Type CI+Ex CI+Ex CI+Ex Detector 2 Channel 0.0 0.0 0.0	Detector 1 Queue (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Detector 2 Size(m)0.60.60.6Detector 2 TypeCI+ExCI+ExCI+ExDetector 2 Channel0.00.00.0	Detector 1 Delay (s)	0.0			0.0		0.0	0.0		0.0	0.0		
Detector 2 Type Cl+Ex Cl+Ex Cl+Ex Detector 2 Channel Detector 2 Extend (s) 0.0 0.0 0.0	Detector 2 Position(m)		9.4			9.4						9.4	
Detector 2 Channel Detector 2 Extend (s) 0.0 0.0 0.0 0.0	Detector 2 Size(m)		0.6			0.6			0.6			0.6	
Detector 2 Extend (s) 0.0 0.0 0.0 0.0			CI+Ex			CI+Ex			Cl+Ex			CI+Ex	
Turn Type Perm NA Perm NA Perm Perm NA Perm pm+pt NA	Detector 2 Extend (s)												
	Turn Type	Perm	NA		Perm	NA	Perm	Perm	NA	Perm	pm+pt	NA	

Scenario 1 Exisitng Conditions PM 3:13 am 12-03-2020 Baseline

	٦	-	\mathbf{F}	4	+	•	1	1	1	1	ŧ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Protected Phases		4			8			2		1	6	
Permitted Phases	4			8		8	2		2	6		
Detector Phase	4	4		8	8	8	2	2	2	1	6	
Switch Phase												
Minimum Initial (s)	7.0	7.0		7.0	7.0	7.0	20.0	20.0	20.0	7.0	20.0	
Minimum Split (s)	24.8	24.8		24.8	24.8	24.8	26.2	26.2	26.2	13.0	26.2	
Total Split (s)	25.0	25.0		25.0	25.0	25.0	55.0	55.0	55.0	20.0	75.0	
Total Split (%)	25.0%	25.0%		25.0%	25.0%	25.0%	55.0%	55.0%	55.0%	20.0%	75.0%	
Maximum Green (s)	19.2	19.2		19.2	19.2	19.2	48.8	48.8	48.8	14.0	68.8	
Yellow Time (s)	3.7	3.7		3.7	3.7	3.7	4.6	4.6	4.6	4.6	4.6	
All-Red Time (s)	2.1	2.1		2.1	2.1	2.1	1.6	1.6	1.6	1.4	1.6	
Lost Time Adjust (s)		0.0			0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)		5.8			5.8	5.8	6.2	6.2	6.2	6.0	6.2	
Lead/Lag							Lag	Lag	Lag	Lead		
Lead-Lag Optimize?							Yes	Yes	Yes	Yes		
Vehicle Extension (s)	3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	
Recall Mode	None	None		None	None	None	Min	Min	Min	None	Min	
Walk Time (s)	7.0	7.0		7.0	7.0	7.0	7.0	7.0	7.0		7.0	
Flash Dont Walk (s)	12.0	12.0		12.0	12.0	12.0	10.0	10.0	10.0		10.0	
Pedestrian Calls (#/hr)	0	0		0	0	0	0	0	0		0	
Act Effct Green (s)		7.7			7.7	7.7	40.3	40.3		40.7	42.2	
Actuated g/C Ratio		0.13			0.13	0.13	0.70	0.70		0.71	0.74	
v/c Ratio		0.33			0.04	0.06	0.01	0.24		0.00	0.72	
Control Delay		9.6			27.0	0.4	6.2	6.3		3.0	10.6	
Queue Delay		0.0			0.0	0.0	0.0	0.0		0.0	0.3	
Total Delay		9.6			27.0	0.4	6.2	6.3		3.0	10.9	
LOS		А			С	А	А	А		А	В	
Approach Delay		9.6			7.1			6.3			10.8	
Approach LOS		А			А			А			В	
Queue Length 50th (m)		0.0			0.5	0.0	0.1	9.8		0.1	55.9	
Queue Length 95th (m)		10.2			4.3	0.0	1.6	36.0		0.6	114.0	
Internal Link Dist (m)		618.8			146.6			150.7			219.1	
Turn Bay Length (m)							35.0			100.0		
Base Capacity (vph)		507			382	596	342	1397		550	1658	
Starvation Cap Reductn		0			0	0	0	0		0	249	
Spillback Cap Reductn		0			0	0	0	0		0	0	
Storage Cap Reductn		0			0	0	0	0		0	0	
Reduced v/c Ratio		0.17			0.02	0.03	0.01	0.20		0.00	0.64	
Intersection Summary												
Area Type:	Other											
Cycle Length: 100 Actuated Cycle Length: 57 Natural Cycle: 80	.2											
Control Type: Semi Act-Un	ncoord											
Maximum v/c Ratio: 0.72												
Intersection Signal Delay:	9.7			Ir	ntersectio	n LOS: A						
Intersection Capacity Utiliz Analysis Period (min) 15	ation 67.0%			10	CU Level	of Service	θC					

Scenario 1 Exisitng Conditions PM 3:13 am 12-03-2020 Baseline

Splits and Phases: 3: Boundary Road & Thunder Road/Amazon Way

	4	•	1	1	1	ţ	
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	¥		et 🗧		ľ	†	
Traffic Volume (vph)	5	11	244	5	12	769	
Future Volume (vph)	5	11	244	5	12	769	
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	
Lane Width (m)	3.6	3.6	3.5	3.5	3.5	3.5	
Storage Length (m)	0.0	0.0		0.0	70.0		
Storage Lanes	1	0		0	1		
Taper Length (m)	7.5				45.0		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Frt	0.910		0.997				
Flt Protected	0.984				0.950		
Satd. Flow (prot)	806	0	1643	0	846	1745	
Flt Permitted	0.984				0.950		
Satd. Flow (perm)	806	0	1643	0	846	1745	
Link Speed (k/h)	20		80			80	
Link Distance (m)	151.5		1150.2			174.7	
Travel Time (s)	27.3		51.8			7.9	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	
Heavy Vehicles (%)	100%	100%	6%	100%	100%	2%	
Adj. Flow (vph)	6	12	271	6	13	854	
Shared Lane Traffic (%)							
Lane Group Flow (vph)	18	0	277	0	13	854	
Enter Blocked Intersection	No	No	No	No	No	No	
Lane Alignment	Left	Right	Left	Right	Left	Left	
Median Width(m)	3.6		3.5			3.5	
Link Offset(m)	0.0		0.0			0.0	
Crosswalk Width(m)	4.8		4.8			4.8	
Two way Left Turn Lane							
Headway Factor	1.07	1.07	1.09	1.09	1.09	1.09	
Turning Speed (k/h)	25	15		15	25		
Sign Control	Stop		Free			Free	
Intersection Summary							
	Other						
Control Type: Unsignalized							
Intersection Capacity Utilization	tion 52.7%			IC	CU Level	of Service A	А
Analysis Period (min) 15							

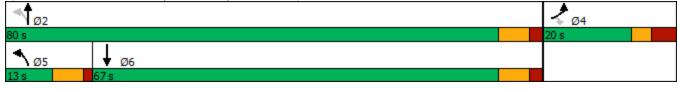
	4	•	Ť	*	1	ţ	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	Y		4Î		٦	†	
Traffic Volume (veh/h)	5	11	244	5	12	769	
Future Volume (Veh/h)	5	11	244	5	12	769	
Sign Control	Stop		Free			Free	
Grade	0%		0%			0%	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	
Hourly flow rate (vph)	6	12	271	6	13	854	
Pedestrians							
Lane Width (m)							
Walking Speed (m/s)							
Percent Blockage							
Right turn flare (veh)							
Median type			None			None	
Median storage veh)							
Upstream signal (m)						175	
pX, platoon unblocked	0.66						
vC, conflicting volume	1154	274			277		
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol	975	274			277		
tC, single (s)	7.4	7.2			5.1		
tC, 2 stage (s)							
tF (s)	4.4	4.2			3.1		
p0 queue free %	95	98			99		
cM capacity (veh/h)	123	579			882		
Direction, Lane #	WB 1	NB 1	SB 1	SB 2			
Volume Total	18	277	13	854			
Volume Left	6	0	13	0			
Volume Right	12	6	0	0			
cSH	258	1700	882	1700			
Volume to Capacity	0.07	0.16	0.01	0.50			
Queue Length 95th (m)	1.8	0.0	0.4	0.0			
Control Delay (s)	20.0	0.0	9.1	0.0			
Lane LOS	С		А				
Approach Delay (s)	20.0	0.0	0.1				
Approach LOS	С						
Intersection Summary							
Average Delay			0.4				
Intersection Capacity Utiliza	ation		52.7%	IC	U Level o	of Service	;
Analysis Period (min)			15	.0			
			10				

	≯	*	•	Ť	ţ	~	
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations	2	1		र्च	•	1	
Traffic Volume (vph)	113	98	52	116	703	113	
Future Volume (vph)	113	98	52	116	703	113	
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	
Lane Width (m)	3.3	3.3	3.5	3.5	3.5	3.5	
Storage Length (m)	25.0	0.0	0.0			30.0	
Storage Lanes	1	1	0			1	
Taper Length (m)	47.5		7.5				
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Frt		0.850				0.850	
Flt Protected	0.950			0.985			
Satd. Flow (prot)	1463	1395	0	1666	1762	1351	
Flt Permitted	0.950			0.985			
Satd. Flow (perm)	1463	1395	0	1666	1762	1351	
Link Speed (k/h)	80			80	80		
Link Distance (m)	180.5			135.8	1150.2		
Travel Time (s)	8.1			6.1	51.8		
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	
Heavy Vehicles (%)	13%	6%	8%	4%	1%	12%	
Adj. Flow (vph)	126	109	58	129	781	126	
Shared Lane Traffic (%)							
Lane Group Flow (vph)	126	109	0	187	781	126	
Enter Blocked Intersection	No	No	No	No	No	No	
Lane Alignment	Left	Right	Left	Left	Left	Right	
Median Width(m)	3.3			0.0	0.0		
Link Offset(m)	0.0			0.0	0.0		
Crosswalk Width(m)	4.8			4.8	4.8		
Two way Left Turn Lane							
Headway Factor	1.12	1.12	1.09	1.09	1.09	1.09	
Turning Speed (k/h)	25	15	25			15	
Sign Control	Stop			Free	Free		
Intersection Summary							
<i></i>	Other						
Control Type: Unsignalized							
Intersection Capacity Utiliza	tion 65.1%			l	CU Level	of Service	С
Analysis Period (min) 15							

	≯	*	•	1	ţ	~
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	<u></u>	1		र्भ	1	1
Traffic Volume (veh/h)	113	98	52	116	703	113
Future Volume (Veh/h)	113	98	52	116	703	113
Sign Control	Stop			Free	Free	
Grade	0%			0%	0%	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90
Hourly flow rate (vph)	126	109	58	129	781	126
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type				None	None	
Median storage veh)						
Upstream signal (m)						
pX, platoon unblocked						
vC, conflicting volume	1026	781	907			
vC1, stage 1 conf vol	1020	101	507			
vC2, stage 2 conf vol						
vCu, unblocked vol	1026	781	907			
tC, single (s)	6.5	6.3	4.2			
tC, 2 stage (s)	0.0	0.0	7.4			
tF (s)	3.6	3.4	2.3			
p0 queue free %	45	72	2.3 92			
cM capacity (veh/h)	228	389	726			
Direction, Lane #	EB 1	EB 2	NB 1	SB 1	SB 2	
Volume Total	126	109	187	781	126	
Volume Left	126	0	58	0	0	
Volume Right	0	109	0	0	126	
cSH	228	389	726	1700	1700	
Volume to Capacity	0.55	0.28	0.08	0.46	0.07	
Queue Length 95th (m)	24.0	9.1	2.1	0.0	0.0	
Control Delay (s)	38.6	17.8	3.8	0.0	0.0	
Lane LOS	E	С	А			
Approach Delay (s)	29.0		3.8	0.0		
Approach LOS	D					
Intersection Summary						
Average Delay			5.7			
Intersection Capacity Utilization	tion		65.1%		CU Level o	of Service
Analysis Period (min)			15	ic.		
			10			

-	4	×	1	1	1	ţ	
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	Y		4Î			र्स	
Traffic Volume (vph)	138	31	99	867	77	117	
Future Volume (vph)	138	31	99	867	77	117	
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	
Lane Width (m)	4.5	4.5	3.5	3.5	3.5	3.5	
Storage Length (m)	0.0	10.0		0.0	0.0		
Storage Lanes	1	0		0	0		
Taper Length (m)	7.5				7.5		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Frt	0.975		0.879				
Flt Protected	0.961					0.981	
Satd. Flow (prot)	1753	0	1529	0	0	1584	
Flt Permitted	0.961					0.981	
Satd. Flow (perm)	1753	0	1529	0	0	1584	
Link Speed (k/h)	40		80			80	
Link Distance (m)	155.0		545.7			134.1	
Travel Time (s)	14.0		24.6			6.0	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Heavy Vehicles (%)	4%	14%	14%	1%	9%	11%	
Adj. Flow (vph)	138	31	99	867	77	117	
Shared Lane Traffic (%)							
Lane Group Flow (vph)	169	0	966	0	0	194	
Enter Blocked Intersection	No	No	No	No	No	No	
Lane Alignment	Left	Right	Left	Right	Left	Left	
Median Width(m)	4.5	-	0.0			0.0	
Link Offset(m)	0.0		0.0			0.0	
Crosswalk Width(m)	4.8		4.8			4.8	
Two way Left Turn Lane							
Headway Factor	0.95	0.95	1.09	1.09	1.09	1.09	
Turning Speed (k/h)	25	15		15	25		
Sign Control	Stop		Free			Free	
Intersection Summary							
	Other						
Control Type: Unsignalized							
Intersection Capacity Utilization	tion 93.1%			IC	U Level of	of Service F	F
Analysis Period (min) 15							

	✓	•	Ť	1	1	Ŧ
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	¥		4Î			स
Traffic Volume (veh/h)	138	31	99	867	77	117
Future Volume (Veh/h)	138	31	99	867	77	117
Sign Control	Stop		Free			Free
Grade	0%		0%			0%
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00
Hourly flow rate (vph)	138	31	99	867	77	117
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type			None			None
Median storage veh)						
Upstream signal (m)						
pX, platoon unblocked						
vC, conflicting volume	804	532			966	
vC1, stage 1 conf vol	001	002			000	
vC2, stage 2 conf vol						
vCu, unblocked vol	804	532			966	
tC, single (s)	6.4	6.3			4.2	
tC, 2 stage (s)	0.1	0.0				
tF (s)	3.5	3.4			2.3	
p0 queue free %	56	94			89	
cM capacity (veh/h)	310	524			686	
			05.4			
Direction, Lane #	WB 1	NB 1	SB 1			
Volume Total	169	966	194			
Volume Left	138	0	77			
Volume Right	31	867	0			
cSH	336	1700	686			
Volume to Capacity	0.50	0.57	0.11			
Queue Length 95th (m)	21.6	0.0	3.0			
Control Delay (s)	26.1	0.0	5.1			
Lane LOS	D		А			
Approach Delay (s)	26.1	0.0	5.1			
Approach LOS	D					
Intersection Summary						
Average Delay			4.1			
Intersection Capacity Utiliz	ation		93.1%	IC	U Level o	of Service
Analysis Period (min)			15	.0		
			10			


	≯	\mathbf{i}	•	t	ţ	4
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Group						SDK
Lane Configurations	10	220	أ	†	1	•
Traffic Volume (vph)	18	330	38	953	227	9
Future Volume (vph)	18	330	38	953	227	9
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800
Lane Width (m)	3.5	3.3	3.5	3.5	3.5	3.5
Storage Length (m)	0.0	25.0	50.0			0.0
Storage Lanes	1	1	1			0
Taper Length (m)	7.5		75.0			
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.850			0.995	
Flt Protected	0.950		0.950			
Satd. Flow (prot)	1291	1395	1291	1745	1594	0
Flt Permitted	0.950		0.531			
Satd. Flow (perm)	1291	1395	722	1745	1594	0
Right Turn on Red	• .	Yes				Yes
Satd. Flow (RTOR)		330			4	
Link Speed (k/h)	40	000		80	80	
Link Distance (m)	154.2			243.1	545.7	
Travel Time (s)	134.2			10.9	24.6	
Peak Hour Factor	1.00	1.00	1.00	1.00	24.0 1.00	1.00
Heavy Vehicles (%)	31%	6%	31%	2%	11%	13%
Adj. Flow (vph)	18	330	38	953	227	9
Shared Lane Traffic (%)						-
Lane Group Flow (vph)	18	330	38	953	236	0
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Left	Left	Right
Median Width(m)	3.5			3.5	3.5	
Link Offset(m)	0.0			0.0	0.0	
Crosswalk Width(m)	4.8			4.8	4.8	
Two way Left Turn Lane						
Headway Factor	1.09	1.12	1.09	1.09	1.09	1.09
Turning Speed (k/h)	25	15	25			15
Number of Detectors	1	1	1	2	2	10
Detector Template	Left	Right	Left	Thru	Thru	
Leading Detector (m)	2.0	2.0	2.0	10.0	10.0	
Trailing Detector (m)	2.0	0.0	0.0	0.0	0.0	
0 ()						
Detector 1 Position(m)	0.0	0.0	0.0	0.0	0.0	
Detector 1 Size(m)	2.0	2.0	2.0	0.6	0.6	
Detector 1 Type	CI+Ex	CI+Ex	Cl+Ex	CI+Ex	Cl+Ex	
Detector 1 Channel						
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0	
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0	
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0	
Detector 2 Position(m)				9.4	9.4	
Detector 2 Size(m)				0.6	0.6	
Detector 2 Type				CI+Ex	Cl+Ex	
Detector 2 Channel						
Detector 2 Extend (s)				0.0	0.0	
Turn Type	Prot	Perm	pm+pt	NA	NA	
	FIUL	L GIIII	pin+pt	INA	INA	

Scenario 1 2025 Future Background AM 3:13 am 12-03-2020 Baseline

	٦	\mathbf{r}	1	1	Ļ	-
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Protected Phases	4		5	2	6	
Permitted Phases		4	2	-	v	
Detector Phase	4	4	5	2	6	
Switch Phase				_		
Minimum Initial (s)	7.0	7.0	7.0	35.0	35.0	
Minimum Split (s)	17.8	17.8	13.0	41.6	41.6	
Total Split (s)	20.0	20.0	13.0	80.0	67.0	
Total Split (%)	20.0%	20.0%	13.0%	80.0%	67.0%	
Maximum Green (s)	13.2	13.2	7.0	73.4	60.4	
Yellow Time (s)	3.0	3.0	4.6	4.6	4.6	
All-Red Time (s)	3.8	3.8	1.4	2.0	2.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	6.8	6.8	6.0	6.6	6.6	
Lead/Lag			Lead		Lag	
Lead-Lag Optimize?			Yes		Yes	
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	
Recall Mode	None	None	None	Min	Min	
Walk Time (s)	5.0	5.0		0.0	7.0	
Flash Dont Walk (s)	6.0	6.0		0.0	21.0	
Pedestrian Calls (#/hr)	0	0		0	0	
Act Effct Green (s)	8.6	8.6	44.6	44.0	39.7	
Actuated g/C Ratio	0.13	0.13	0.67	0.66	0.60	
v/c Ratio	0.11	0.71	0.07	0.83	0.25	
Control Delay	32.6	13.6	3.9	15.8	8.4	
Queue Delay	0.0	0.0	0.0	0.7	0.0	
Total Delay	32.6	13.6	3.9	16.5	8.4	
LOS	С	В	А	В	А	
Approach Delay	14.6			16.0	8.4	
Approach LOS	В			В	А	
Queue Length 50th (m)	1.7	0.0	1.2	67.5	8.7	
Queue Length 95th (m)	9.9	27.3	4.3	149.7	33.2	
Internal Link Dist (m)	130.2			219.1	521.7	
Turn Bay Length (m)		25.0	50.0			
Base Capacity (vph)	268	550	545	1662	1429	
Starvation Cap Reductn	0	0	0	357	0	
Spillback Cap Reductn	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	
Reduced v/c Ratio	0.07	0.60	0.07	0.73	0.17	
Intersection Summary						
Area Type:	Other					
Cycle Length: 100						
Actuated Cycle Length: 66	.7					
Natural Cycle: 75						
Control Type: Semi Act-Ur	ncoord					
Maximum v/c Ratio: 0.83						
Intersection Signal Delay:				li	ntersectior	n LOS: B
Intersection Capacity Utiliz	ation 69.9%			[(CU Level o	of Service C
Analysis Period (min) 15						

Scenario 1 2025 Future Background AM 3:13 am 12-03-2020 Baseline

Splits and Phases: 2: Boundary Road & Hwy 417 EB Ramp Terminal

	٦	-	\mathbf{r}	4	+	*	1	t	1	1	Ŧ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			ا	1	ľ	•	1	ľ	el el	
Traffic Volume (vph)	34	17	4	3	6	25	6	931	30	193	308	55
Future Volume (vph)	34	17	4	3	6	25	6	931	30	193	308	55
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Lane Width (m)	3.5	3.5	3.5	3.5	3.5	3.5	3.3	3.5	3.3	3.3	3.5	3.5
Storage Length (m)	0.0		0.0	0.0		0.0	35.0		7.5	100.0		0.0
Storage Lanes	0		0	0		1	1		1	1		0
Taper Length (m)	7.5			7.5			45.0			75.0		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.990				0.850			0.850		0.977	
Flt Protected		0.970			0.984		0.950			0.950		
Satd. Flow (prot)	0	1620	0	0	1752	1513	1378	1728	1479	1653	1526	0
Flt Permitted		0.806			0.875		0.545			0.122		
Satd. Flow (perm)	0	1346	0	0	1558	1513	790	1728	1479	212	1526	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		3				100			96		21	
Link Speed (k/h)		60			20			80			80	
Link Distance (m)		642.8			170.6			174.7			243.1	
Travel Time (s)		38.6			30.7			7.9			10.9	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles (%)	6%	0%	25%	0%	0%	0%	20%	3%	0%	0%	15%	8%
Adj. Flow (vph)	34	17	4	3	6	25	6	931	30	193	308	55
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	55	0	0	9	25	6	931	30	193	363	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)		0.0	0		0.0	0		3.5	5		3.5	J
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		4.8			4.8			4.8			4.8	
Two way Left Turn Lane												
Headway Factor	1.09	1.09	1.09	1.09	1.09	1.09	1.12	1.09	1.12	1.12	1.09	1.09
Turning Speed (k/h)	25		15	25		15	25		15	25		15
Number of Detectors	1	2		1	2	1	1	2	1	1	2	
Detector Template	Left	Thru		Left	Thru	Right	Left	Thru	Right	Left	Thru	
Leading Detector (m)	2.0	10.0		2.0	10.0	2.0	2.0	10.0	2.0	2.0	10.0	
Trailing Detector (m)	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Detector 1 Position(m)	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Detector 1 Size(m)	2.0	0.6		2.0	0.6	2.0	2.0	0.6	2.0	2.0	0.6	
Detector 1 Type	CI+Ex	CI+Ex		CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	Cl+Ex	CI+Ex	CI+Ex	
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Detector 1 Queue (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Detector 1 Delay (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Detector 2 Position(m)		9.4			9.4			9.4			9.4	
Detector 2 Size(m)		0.6			0.6			0.6			0.6	
Detector 2 Type		CI+Ex			Cl+Ex			Cl+Ex			CI+Ex	
Detector 2 Channel												
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
Turn Type	Perm	NA		Perm	NA	Perm	Perm	NA	Perm	pm+pt	NA	
· 76*										r ·· P·		

Scenario 1 2025 Future Background AM 3:13 am 12-03-2020 Baseline

	٦	+	*	4	+	•	•	1	1	1	ŧ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Protected Phases		4			8			2		1	6	
Permitted Phases	4			8		8	2		2	6		
Detector Phase	4	4		8	8	8	2	2	2	1	6	
Switch Phase												
Minimum Initial (s)	7.0	7.0		7.0	7.0	7.0	20.0	20.0	20.0	7.0	20.0	
Minimum Split (s)	24.8	24.8		24.8	24.8	24.8	26.2	26.2	26.2	13.0	26.2	
Total Split (s)	24.8	24.8		24.8	24.8	24.8	60.5	60.5	60.5	14.7	75.2	
Total Split (%)	24.8%	24.8%		24.8%	24.8%	24.8%	60.5%	60.5%	60.5%	14.7%	75.2%	
Maximum Green (s)	19.0	19.0		19.0	19.0	19.0	54.3	54.3	54.3	8.7	69.0	
Yellow Time (s)	3.7	3.7		3.7	3.7	3.7	4.6	4.6	4.6	4.6	4.6	
All-Red Time (s)	2.1	2.1		2.1	2.1	2.1	1.6	1.6	1.6	1.4	1.6	
Lost Time Adjust (s)		0.0			0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)		5.8			5.8	5.8	6.2	6.2	6.2	6.0	6.2	
Lead/Lag							Lag	Lag	Lag	Lead		
Lead-Lag Optimize?							Yes	Yes	Yes	Yes		
Vehicle Extension (s)	3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	
Recall Mode	None	None		None	None	None	Min	Min	Min	None	Min	
Walk Time (s)	7.0	7.0		7.0	7.0	7.0	7.0	7.0	7.0		7.0	
Flash Dont Walk (s)	12.0	12.0		12.0	12.0	12.0	10.0	10.0	10.0		10.0	
Pedestrian Calls (#/hr)	0	0		0	0	0	0	0	0		0	
Act Effct Green (s)		9.1			9.1	9.1	52.6	52.6	52.6	67.7	69.2	
Actuated g/C Ratio		0.11			0.11	0.11	0.62	0.62	0.62	0.79	0.81	
v/c Ratio		0.38			0.05	0.10	0.01	0.88	0.03	0.61	0.29	
Control Delay		43.7			36.8	0.8	8.0	26.8	0.1	16.6	3.8	
Queue Delay		0.0			0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay		43.7			36.8	0.8	8.0	26.8	0.1	16.6	3.8	
LOS		D			D	А	А	С	А	В	А	
Approach Delay		43.7			10.3			25.9			8.2	
Approach LOS		D			В			С			А	
Queue Length 50th (m)		9.0			1.5	0.0	0.4	132.1	0.0	7.1	14.4	
Queue Length 95th (m)		21.0			6.2	0.0	2.2	#245.8	0.0	#34.0	29.2	
Internal Link Dist (m)		618.8			146.6			150.7			219.1	
Turn Bay Length (m)							35.0		7.5	100.0		
Base Capacity (vph)		307			353	420	511	1118	991	317	1238	
Starvation Cap Reductn		0			0	0	0	0	0	0	0	
Spillback Cap Reductn		0			0	0	0	0	0	0	0	
Storage Cap Reductn		0			0	0	0	0	0	0	0	
Reduced v/c Ratio		0.18			0.03	0.06	0.01	0.83	0.03	0.61	0.29	
Intersection Summary	0.11											
Area Type:	Other											_
Cycle Length: 100	-											
Actuated Cycle Length: 85.	5											
Natural Cycle: 90												
Control Type: Semi Act-Un	coord											
Maximum v/c Ratio: 0.88												
Intersection Signal Delay: 2					ntersectio							
Intersection Capacity Utiliza	ation 87.9%](CU Level	of Service	θE					
Analysis Period (min) 15												

Scenario 1 2025 Future Background AM 3:13 am 12-03-2020 Baseline

95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

Splits and Phases: 3: Boundary Road & Thunder Road/Amazon Way

	4	•	1	1	1	Ļ	
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	Y		eî 👘		۲	†	
Traffic Volume (vph)	6	3	963	6	1	314	
Future Volume (vph)	6	3	963	6	1	314	
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	
Lane Width (m)	3.6	3.6	3.5	3.5	3.5	3.5	
Storage Length (m)	0.0	0.0		0.0	70.0		
Storage Lanes	1	0		0	1		
Taper Length (m)	7.5				45.0		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Frt	0.955		0.999				
Flt Protected	0.968				0.950		
Satd. Flow (prot)	832	0	1750	0	846	1589	
Flt Permitted	0.968				0.950		
Satd. Flow (perm)	832	0	1750	0	846	1589	
Link Speed (k/h)	20		80			80	
Link Distance (m)	151.5		1150.2			174.7	
Travel Time (s)	27.3		51.8			7.9	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Heavy Vehicles (%)	100%	100%	1%	100%	100%	12%	
Adj. Flow (vph)	6	3	963	6	1	314	
Shared Lane Traffic (%)							
Lane Group Flow (vph)	9	0	969	0	1	314	
Enter Blocked Intersection	No	No	No	No	No	No	
Lane Alignment	Left	Right	Left	Right	Left	Left	
Median Width(m)	3.6		3.5			3.5	
Link Offset(m)	0.0		0.0			0.0	
Crosswalk Width(m)	4.8		4.8			4.8	
Two way Left Turn Lane							
Headway Factor	1.07	1.07	1.09	1.09	1.09	1.09	
Turning Speed (k/h)	25	15		15	25		
Sign Control	Stop		Free			Free	
Intersection Summary							
	Other						
Control Type: Unsignalized							
Intersection Capacity Utilization	tion 63.9%			IC	CU Level	of Service E	В
Analysis Period (min) 15							

	4	*	1	1	1	Ŧ	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	Y		4Î		ሻ	†	
Traffic Volume (veh/h)	6	3	963	6	1	314	
Future Volume (Veh/h)	6	3	963	6	1	314	
Sign Control	Stop		Free			Free	
Grade	0%		0%			0%	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Hourly flow rate (vph)	6	3	963	6	1	314	
Pedestrians							
Lane Width (m)							
Walking Speed (m/s)							
Percent Blockage							
Right turn flare (veh)							
Median type			None			None	
Median storage veh)							
Upstream signal (m)						175	
pX, platoon unblocked	0.97						
vC, conflicting volume	1282	966			969		
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol	1276	966			969		
tC, single (s)	7.4	7.2			5.1		
tC, 2 stage (s)							
tF (s)	4.4	4.2			3.1		
p0 queue free %	95	99			100		
cM capacity (veh/h)	114	207			434		
Direction, Lane #	WB 1	NB 1	SB 1	SB 2			
Volume Total	9	969	1	314			
Volume Left	6	0	1	0			
Volume Right	3	6	0	0			
cSH	134	1700	434	1700			
Volume to Capacity	0.07	0.57	0.00	0.18			
Queue Length 95th (m)	1.7	0.0	0.00	0.0			
Control Delay (s)	33.8	0.0	13.3	0.0			
Lane LOS	55.0 D	0.0	B	0.0			
Approach Delay (s)	33.8	0.0	0.0				
Approach LOS	55.8 D	0.0	0.0				
	U						
Intersection Summary							
Average Delay			0.2				
Intersection Capacity Utiliza	ation		63.9%	IC	U Level o	of Service	
Analysis Period (min)			15				

	≯	\mathbf{r}	1	Ť	Ļ	-
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	1	1		નુ	1	1
Traffic Volume (vph)	79	30	134	869	125	107
Future Volume (vph)	79	30	134	869	125	107
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800
Lane Width (m)	3.3	3.3	3.5	3.5	3.5	3.5
Storage Length (m)	25.0	0.0	0.0			30.0
Storage Lanes	1	1	0			1
Taper Length (m)	47.5		7.5			
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.850				0.850
Flt Protected	0.950			0.993		
Satd. Flow (prot)	1476	1286	0	1734	1561	1293
Flt Permitted	0.950			0.993		
Satd. Flow (perm)	1476	1286	0	1734	1561	1293
Link Speed (k/h)	80			80	80	
Link Distance (m)	180.5			135.8	1150.2	
Travel Time (s)	8.1			6.1	51.8	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles (%)	12%	15%	8%	1%	14%	17%
Adj. Flow (vph)	79	30	134	869	125	107
Shared Lane Traffic (%)						
Lane Group Flow (vph)	79	30	0	1003	125	107
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Left	Left	Right
Median Width(m)	3.3			0.0	0.0	
Link Offset(m)	0.0			0.0	0.0	
Crosswalk Width(m)	4.8			4.8	4.8	
Two way Left Turn Lane						
Headway Factor	1.12	1.12	1.09	1.09	1.09	1.09
Turning Speed (k/h)	25	15	25			15
Sign Control	Stop			Free	Free	
Intersection Summary						
	Other					
Control Type: Unsignalized						
Intersection Capacity Utilizat	tion 77 7%			10		of Service
Analysis Period (min) 15	uon / / / / / / / / / / / / / / / / / / /			, in the second se		

	٨	*	•	1	ţ	~
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	1	1		र्स	1	1
Traffic Volume (veh/h)	79	30	134	869	125	107
Future Volume (Veh/h)	79	30	134	869	125	107
Sign Control	Stop			Free	Free	
Grade	0%			0%	0%	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00
Hourly flow rate (vph)	79	30	134	869	125	107
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type				None	None	
Median storage veh)						
Upstream signal (m)						
pX, platoon unblocked						
vC, conflicting volume	1262	125	232			
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	1262	125	232			
tC, single (s)	6.5	6.4	4.2			
tC, 2 stage (s)	0.0	5.1				
tF (s)	3.6	3.4	2.3			
p0 queue free %	51	97	90			
cM capacity (veh/h)	160	892	1301			
Direction, Lane #	EB 1	EB 2	NB 1	SB 1	SB 2	
Volume Total	79	30	1003	125	107	
Volume Left	79	0	134	0	0	
Volume Right	0	30	0	0	107	
cSH	160	892	1301	1700	1700	
Volume to Capacity	0.49	0.03	0.10	0.07	0.06	
Queue Length 95th (m)	18.9	0.8	2.7	0.0	0.0	
Control Delay (s)	47.5	9.2	2.6	0.0	0.0	
Lane LOS	E	А	А			
Approach Delay (s)	36.9		2.6	0.0		
Approach LOS	E					
Intersection Summary						
Average Delay			4.9			
Intersection Capacity Utiliza	ation		77.7%	IC	CU Level o	of Service
Analysis Period (min)			15			
j = = = = (·····)						

-	4	×	t	1	1	ţ	
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	Y		¢Î			र्स	
Traffic Volume (vph)	52	1	160	321	24	123	
Future Volume (vph)	52	1	160	321	24	123	
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	
Lane Width (m)	4.5	4.5	3.5	3.5	3.5	3.5	
Storage Length (m)	0.0	10.0		0.0	0.0		
Storage Lanes	1	0		0	0		
Taper Length (m)	7.5				7.5		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Frt	0.997		0.910				
Flt Protected	0.953					0.992	
Satd. Flow (prot)	1586	0	1558	0	0	1630	
Flt Permitted	0.953					0.992	
Satd. Flow (perm)	1586	0	1558	0	0	1630	
Link Speed (k/h)	40		80			80	
Link Distance (m)	155.0		545.7			134.1	
Travel Time (s)	14.0		24.6			6.0	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Heavy Vehicles (%)	19%	0%	6%	3%	5%	9%	
Adj. Flow (vph)	52	1	160	321	24	123	
Shared Lane Traffic (%)							
Lane Group Flow (vph)	53	0	481	0	0	147	
Enter Blocked Intersection	No	No	No	No	No	No	
Lane Alignment	Left	Right	Left	Right	Left	Left	
Median Width(m)	4.5		0.0			0.0	
Link Offset(m)	0.0		0.0			0.0	
Crosswalk Width(m)	4.8		4.8			4.8	
Two way Left Turn Lane							
Headway Factor	0.95	0.95	1.09	1.09	1.09	1.09	
Turning Speed (k/h)	25	15		15	25		
Sign Control	Stop		Free			Free	
Intersection Summary							
	Other						
Control Type: Unsignalized							
Intersection Capacity Utiliza	tion 39.7%			IC	U Level of	of Service	А
Analysis Period (min) 15							

	4	×	t	/	1	ţ
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Y	WDIX	4	NDR	ODL	<u>الان</u>
Traffic Volume (veh/h)	52	1	160	321	24	123
Future Volume (Veh/h)	52	1	160	321	24	123
Sign Control	Stop	•	Free	021	<u> </u>	Free
Grade	0%		0%			0%
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00
Hourly flow rate (vph)	52	1.00	160	321	24	123
Pedestrians	52		100	521	27	120
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type			None			None
Median storage veh)			NOTE			NUTE
Upstream signal (m)						
pX, platoon unblocked						
	492	320			481	
vC, conflicting volume vC1, stage 1 conf vol	49Z	320			401	
vC2, stage 2 conf vol						
vC2, stage 2 cont vol	492	320			481	
	492 6.6	6.2				
tC, single (s)	0.0	0.2			4.1	
tC, 2 stage (s)	27	2.2			0.0	
tF (s)	3.7	3.3			2.2	
p0 queue free %	90	100			98	
cM capacity (veh/h)	496	725			1066	
Direction, Lane #	WB 1	NB 1	SB 1			
Volume Total	53	481	147			
Volume Left	52	0	24			
Volume Right	1	321	0			
cSH	499	1700	1066			
Volume to Capacity	0.11	0.28	0.02			
Queue Length 95th (m)	2.8	0.0	0.6			
Control Delay (s)	13.1	0.0	1.6			
Lane LOS	В		А			
Approach Delay (s)	13.1	0.0	1.6			
Approach LOS	В					
Intersection Summary						
Average Delay			1.4			
Intersection Capacity Utilizati	ion		39.7%			of Service
Analysis Period (min)			15			
			10			

	٦	\mathbf{r}	•		Ļ	1
Lano Group	EDI		NDI		• CDT	SBR
Lane Group	EBL	EBR	NBL	NBT	SBT	SBK
Lane Configurations	1	742	100	200	1 0	47
Traffic Volume (vph)	77	743	166	306	218	17
Future Volume (vph)	77	743	166	306	218	17
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800
Lane Width (m)	3.5	3.3	3.5	3.5	3.5	3.5
Storage Length (m)	0.0	25.0	50.0			0.0
Storage Lanes	1	1	1			0
Taper Length (m)	7.5		75.0			
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.850			0.990	
Flt Protected	0.950		0.950			
Satd. Flow (prot)	1551	1436	1537	1664	1592	0
Flt Permitted	0.950		0.518			
Satd. Flow (perm)	1551	1436	838	1664	1592	0
Right Turn on Red		Yes				Yes
Satd. Flow (RTOR)		600			4	
Link Speed (k/h)	40	500		80	80	
Link Distance (m)	154.2			243.1	545.7	
Travel Time (s)	134.2			10.9	24.6	
Peak Hour Factor	1.00	1.00	1.00	1.00	24.0	1.00
Heavy Vehicles (%)	9%	3%	10%	7%	11%	7%
Adj. Flow (vph)	77	743	166	306	218	17
Shared Lane Traffic (%)						-
Lane Group Flow (vph)	77	743	166	306	235	0
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Left	Left	Right
Median Width(m)	3.5			3.5	3.5	
Link Offset(m)	0.0			0.0	0.0	
Crosswalk Width(m)	4.8			4.8	4.8	
Two way Left Turn Lane						
Headway Factor	1.09	1.12	1.09	1.09	1.09	1.09
Turning Speed (k/h)	25	15	25			15
Number of Detectors	1	1	1	2	2	10
Detector Template	Left	Right	Left	Thru	Thru	
Leading Detector (m)	2.0	2.0	2.0	10.0	10.0	
Trailing Detector (m)	0.0	0.0	0.0	0.0	0.0	
č ()						
Detector 1 Position(m)	0.0	0.0	0.0	0.0	0.0	
Detector 1 Size(m)	2.0	2.0	2.0	0.6	0.6	
Detector 1 Type	CI+Ex	Cl+Ex	Cl+Ex	CI+Ex	Cl+Ex	
Detector 1 Channel						
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0	
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0	
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0	
Detector 2 Position(m)				9.4	9.4	
Detector 2 Size(m)				0.6	0.6	
Detector 2 Type				CI+Ex	Cl+Ex	
Detector 2 Channel						
Detector 2 Extend (s)				0.0	0.0	
Turn Type	Prot	Perm	pm+pt	NA	NA	
	riul	r enn	μιι τ μι	INA	INA	

Scenario 1 2025 Future Background PM 3:13 am 12-03-2020 Baseline

	٦	\mathbf{r}	1	1	Ļ	∢
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Protected Phases	4		5	2	6	
Permitted Phases		4	2	-	·	
Detector Phase	4	4	5	2	6	
Switch Phase				-	·	
Minimum Initial (s)	7.0	7.0	7.0	35.0	35.0	
Minimum Split (s)	23.0	23.0	13.0	41.6	41.6	
Total Split (s)	44.0	44.0	13.0	56.0	43.0	
Total Split (%)	44.0%	44.0%	13.0%	56.0%	43.0%	
Maximum Green (s)	37.2	37.2	7.0	49.4	36.4	
Yellow Time (s)	3.0	3.0	4.6	4.6	4.6	
All-Red Time (s)	3.8	3.8	1.4	2.0	2.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	6.8	6.8	6.0	6.6	6.6	
Lead/Lag	0.0	0.0	Lead	0.0	Lag	
Lead-Lag Optimize?			Yes		Yes	
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	
Recall Mode	None	None	None	Min	Min	
Walk Time (s)	7.0	7.0	NULLE	0.0	7.0	
Flash Dont Walk (s)	5.0	5.0		0.0	21.0	
Pedestrian Calls (#/hr)	5.0 0	5.0 0		0.0	21.0	
Act Effct Green (s)	20.6	20.6	49.5	48.9	35.7	
. ,	20.6	0.25	49.5 0.59	48.9 0.59	35.7 0.43	
Actuated g/C Ratio v/c Ratio	0.25	0.25	0.59	0.59	0.43	
			0.30 12.2	12.5		
Control Delay	23.7	23.9			20.5	
Queue Delay	0.0	0.0	0.0	0.0	0.0	
Total Delay	23.7	23.9	12.2	12.5	20.5	
LOS Annarach Dalau	C	С	В	B	C	
Approach Delay	23.9			12.4	20.5	
Approach LOS	C	40.0	44.0	B	C	
Queue Length 50th (m)	10.0	19.9	11.6	23.9	25.0	
Queue Length 95th (m)	20.2	84.2	31.4	57.9	56.2	
Internal Link Dist (m)	130.2	0 - 0		219.1	521.7	
Turn Bay Length (m)		25.0	50.0	10.0-	- 10	
Base Capacity (vph)	706	980	558	1007	712	
Starvation Cap Reductn	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	
Reduced v/c Ratio	0.11	0.76	0.30	0.30	0.33	
Intersection Summary						
Area Type:	Other					
Cycle Length: 100						
Actuated Cycle Length: 83	.2					
Natural Cycle: 80						
Control Type: Semi Act-Ur	ncoord					
Maximum v/c Ratio: 0.92						
Intersection Signal Delay:	19.8			Ir	ntersectior	n LOS: B
Intersection Capacity Utiliz				[(CU Level o	of Service E
Analysis Period (min) 15						

Scenario 1 2025 Future Background PM 3:13 am 12-03-2020 Baseline

Splits and Phases: 2: Boundary Road & Hwy 417 EB Ramp Terminal

Lane Group EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL SBT Lane Configurations Image: Configuration state	SBR 61 61
Traffic Volume (vph) 68 0 15 6 0 18 4 385 0 2 896	
Traffic Volume (vph) 68 0 15 6 0 18 4 385 0 2 896	
Euture Volume (vph) 68 0 15 6 0 18 4 385 0 2 896	61
Ideal Flow (vphpl) 1800 1800 1800 1800 1800 1800 1800 180	1800
Lane Width (m) 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.3 3.5 3.3 3.3	3.5
Storage Length (m) 0.0 0.0 0.0 0.0 35.0 7.5 100.0	0.0
Storage Lanes 0 0 0 1 1 1 1	0
Taper Length (m) 7.5 7.5 45.0 75.0	
Lane Util. Factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	1.00
Frt 0.976 0.850 0.990	
Flt Protected 0.961 0.950 0.950 0.950	
Satd. Flow (prot) 0 1591 0 0 1208 1513 1322 1633 1740 1102 1699	0
Flt Permitted 0.761 0.849 0.263 0.462	
Satd. Flow (perm) 0 1260 0 0 1079 1513 366 1633 1740 536 1699	0
Right Turn on Red Yes Yes Yes	Yes
Satd. Flow (RTOR) 100 100 8	
Link Speed (k/h) 60 20 80 80	
Link Distance (m) 642.8 170.6 174.7 243.1	
Travel Time (s) 38.6 30.7 7.9 10.9	
Peak Hour Factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	1.00
Heavy Vehicles (%) 6% 0% 0% 40% 0% 0% 25% 9% 0% 50% 4%	0%
Adj. Flow (vph) 68 0 15 6 0 18 4 385 0 2 896	61
Shared Lane Traffic (%)	
Lane Group Flow (vph) 0 83 0 0 6 18 4 385 0 2 957	0
Enter Blocked Intersection No	No
Lane Alignment Left Left Right Left Left Right Left Right Left Left Left	Right
Median Width(m) 0.0 0.0 3.5 3.5	
Link Offset(m) 0.0 0.0 0.0 0.0	
Crosswalk Width(m) 4.8 4.8 4.8 4.8	
Two way Left Turn Lane	
Headway Factor 1.09 1.09 1.09 1.09 1.09 1.09 1.12 1.09 1.12 1.12 1.09	1.09
Turning Speed (k/h) 25 15 25 15 25 15 25	15
Number of Detectors 1 2 1 2 1 1 2 1 1 2	
Detector Template Left Thru Left Thru Right Left Thru Right Left Thru	
Leading Detector (m) 2.0 10.0 2.0 10.0 2.0 2.0 10.0 2.0 2.0 10.0	
Trailing Detector (m) 0.0	
Detector 1 Position(m) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	
Detector 1 Size(m) 2.0 0.6 2.0 0.6 2.0 2.0 0.6 2.0 2.0 0.6	
Detector 1 Type CI+Ex CI	
Detector 1 Channel	
Detector 1 Extend (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	
Detector 1 Queue (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	
Detector 1 Delay (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	
Detector 2 Position(m) 9.4 9.4 9.4 9.4	
Detector 2 Size(m) 0.6 0.6 0.6 0.6	
Detector 2 Type CI+Ex CI+Ex CI+Ex CI+Ex	
Detector 2 Channel	
Detector 2 Extend (s) 0.0 0.0 0.0 0.0	
Turn Type Perm NA Perm NA Perm NA Perm pm+pt NA	

Scenario 1 2025 Future Background PM 3:13 am 12-03-2020 Baseline

	٦	-	\mathbf{F}	4	+	•	1	1	1	1	Ļ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Protected Phases		4			8			2		1	6	
Permitted Phases	4			8		8	2		2	6		
Detector Phase	4	4		8	8	8	2	2	2	1	6	
Switch Phase												
Minimum Initial (s)	7.0	7.0		7.0	7.0	7.0	20.0	20.0	20.0	7.0	20.0	
Minimum Split (s)	24.8	24.8		24.8	24.8	24.8	26.2	26.2	26.2	13.0	26.2	
Total Split (s)	24.8	24.8		24.8	24.8	24.8	62.2	62.2	62.2	13.0	75.2	
Total Split (%)	24.8%	24.8%		24.8%	24.8%	24.8%	62.2%	62.2%	62.2%	13.0%	75.2%	
Maximum Green (s)	19.0	19.0		19.0	19.0	19.0	56.0	56.0	56.0	7.0	69.0	
Yellow Time (s)	3.7	3.7		3.7	3.7	3.7	4.6	4.6	4.6	4.6	4.6	
All-Red Time (s)	2.1	2.1		2.1	2.1	2.1	1.6	1.6	1.6	1.4	1.6	
Lost Time Adjust (s)		0.0			0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)		5.8			5.8	5.8	6.2	6.2	6.2	6.0	6.2	
Lead/Lag							Lag	Lag	Lag	Lead		
Lead-Lag Optimize?							Yes	Yes	Yes	Yes		
Vehicle Extension (s)	3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	
Recall Mode	None	None		None	None	None	Min	Min	Min	None	Min	
Walk Time (s)	7.0	7.0		7.0	7.0	7.0	7.0	7.0	7.0		7.0	
Flash Dont Walk (s)	12.0	12.0		12.0	12.0	12.0	10.0	10.0	10.0		10.0	
Pedestrian Calls (#/hr)	0	0		0	0	0	0	0	0		0	
Act Effct Green (s)		7.7			7.7	7.7	44.3	44.3		44.6	46.2	
Actuated g/C Ratio		0.13			0.13	0.13	0.73	0.73		0.73	0.76	
v/c Ratio		0.34			0.04	0.06	0.02	0.32		0.00	0.74	
Control Delay		9.9			30.2	0.4	5.5	6.3		3.0	10.7	
Queue Delay		0.0			0.0	0.0	0.0	0.0		0.0	0.5	
Total Delay		9.9			30.2	0.4	5.5	6.3		3.0	11.2	
LOS		А			С	А	А	А		А	В	
Approach Delay		9.9			7.9			6.3			11.2	
Approach LOS		А			А			А			В	
Queue Length 50th (m)		0.0			0.6	0.0	0.1	14.6		0.1	62.7	
Queue Length 95th (m)		10.1			4.6	0.0	1.6	50.4		0.5	124.2	
Internal Link Dist (m)		618.8			146.6			150.7			219.1	
Turn Bay Length (m)							35.0			100.0		
Base Capacity (vph)		481			355	565	325	1453		460	1635	
Starvation Cap Reductn		0			0	0	0	0		0	299	
Spillback Cap Reductn		0			0	0	0	0		0	0	
Storage Cap Reductn		0			0	0	0	0		0	0	
Reduced v/c Ratio		0.17			0.02	0.03	0.01	0.26		0.00	0.72	
Intersection Summary												
//	Other											
Cycle Length: 100												
Actuated Cycle Length: 61												
Natural Cycle: 80												
Control Type: Semi Act-Unc	oord											
Maximum v/c Ratio: 0.74												
Intersection Signal Delay: 9.					ntersectio							
Intersection Capacity Utilizat	tion 75.3%			10	CU Level	of Service	e D					
Analysis Period (min) 15												

Scenario 1 2025 Future Background PM 3:13 am 12-03-2020 Baseline

Splits and Phases: 3: Boundary Road & Thunder Road/Amazon Way

	4	•	1	1	1	Ŧ
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Y		et		ľ	•
Traffic Volume (vph)	6	12	377	6	13	904
Future Volume (vph)	6	12	377	6	13	904
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800
Lane Width (m)	3.6	3.6	3.5	3.5	3.5	3.5
Storage Length (m)	0.0	0.0		0.0	70.0	
Storage Lanes	1	0		0	1	
Taper Length (m)	7.5				45.0	
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Frt	0.910		0.998			
Flt Protected	0.984				0.950	
Satd. Flow (prot)	806	0	1668	0	846	1745
Flt Permitted	0.984				0.950	
Satd. Flow (perm)	806	0	1668	0	846	1745
Link Speed (k/h)	20		80			80
Link Distance (m)	151.5		1150.2			174.7
Travel Time (s)	27.3		51.8			7.9
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles (%)	100%	100%	5%	100%	100%	2%
Adj. Flow (vph)	6	12	377	6	13	904
Shared Lane Traffic (%)						
Lane Group Flow (vph)	18	0	383	0	13	904
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Right	Left	Left
Median Width(m)	3.6	-	3.5	-		3.5
Link Offset(m)	0.0		0.0			0.0
Crosswalk Width(m)	4.8		4.8			4.8
Two way Left Turn Lane						
Headway Factor	1.07	1.07	1.09	1.09	1.09	1.09
Turning Speed (k/h)	25	15		15	25	
Sign Control	Stop		Free			Free
Intersection Summary						
	Other					
Control Type: Unsignalized						
Intersection Capacity Utilization	tion 60.2%			IC	CU Level	of Service E
Analysis Period (min) 15						

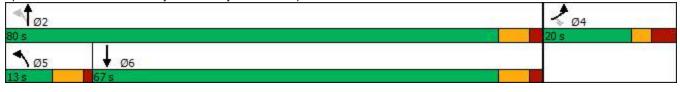
Movement WBL WBR NBT NBR SBL SBT
Lane Configurations
Traffic Volume (veh/h) 6 12 377 6 13 904
Future Volume (Veh/h) 6 12 377 6 13 904
Sign Control Stop Free Free Free
Grade 0% 0% 0%
Peak Hour Factor 1.00 1.00 1.00 1.00 1.00 1.00
Hourly flow rate (vph) 6 12 377 6 13 904
Pedestrians
Lane Width (m)
Walking Speed (m/s)
Percent Blockage
Right turn flare (veh)
Median type None None
Median storage veh)
Upstream signal (m) 175
pX, platoon unblocked 0.63
vC, conflicting volume 1310 380 383
vC1, stage 1 conf vol
vC2, stage 2 conf vol
vCu, unblocked vol 1198 380 383
tC, single (s) 7.4 7.2 5.1
tC, 2 stage (s)
tF (s) 4.4 4.2 3.1
p0 queue free % 93 98 98
cM capacity (veh/h) 82 496 792
Volume Total 18 383 13 904
Volume Left 6 0 13 0
Volume Right 12 6 0 0
cSH 185 1700 792 1700
Volume to Capacity 0.10 0.23 0.02 0.53
Queue Length 95th (m) 2.5 0.0 0.4 0.0
Control Delay (s) 26.5 0.0 9.6 0.0
Lane LOS D A
Approach Delay (s) 26.5 0.0 0.1
Approach LOS D
Intersection Summary
Average Delay 0.5
Intersection Capacity Utilization 60.2% ICU Level of Service
Analysis Period (min) 15

	٦	\mathbf{r}	•	1	Ŧ	1
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	ሻ	1		નુ	1	1
Traffic Volume (vph)	128	108	57	131	788	129
Future Volume (vph)	128	108	57	131	788	129
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800
Lane Width (m)	3.3	3.3	3.5	3.5	3.5	3.5
Storage Length (m)	25.0	0.0	0.0			30.0
Storage Lanes	1	1	0			1
Taper Length (m)	47.5		7.5			
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.850				0.850
Flt Protected	0.950			0.985		
Satd. Flow (prot)	1463	1395	0	1666	1762	1351
Flt Permitted	0.950			0.985		
Satd. Flow (perm)	1463	1395	0	1666	1762	1351
Link Speed (k/h)	80			80	80	
Link Distance (m)	180.5			135.8	1150.2	
Travel Time (s)	8.1			6.1	51.8	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles (%)	13%	6%	8%	4%	1%	12%
Adj. Flow (vph)	128	108	57	131	788	129
Shared Lane Traffic (%)						
Lane Group Flow (vph)	128	108	0	188	788	129
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Left	Left	Right
Median Width(m)	3.3			0.0	0.0	
Link Offset(m)	0.0			0.0	0.0	
Crosswalk Width(m)	4.8			4.8	4.8	
Two way Left Turn Lane						
Headway Factor	1.12	1.12	1.09	1.09	1.09	1.09
Turning Speed (k/h)	25	15	25			15
Sign Control	Stop			Free	Free	
Intersection Summary	•					
	Other					
3 1	Uner					
Control Type: Unsignalized	tion 71 00/			1.		of Service (
Intersection Capacity Utilizat	uon / 1.9%			Į(U Level (or Service (
Analysis Period (min) 15						

	≯	7	•	1	ţ	
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	۲	1		र्स	†	1
Traffic Volume (veh/h)	128	108	57	131	788	129
Future Volume (Veh/h)	128	108	57	131	788	129
Sign Control	Stop			Free	Free	
Grade	0%			0%	0%	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00
Hourly flow rate (vph)	128	108	57	131	788	129
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type				None	None	
Median storage veh)				110110	110110	
Upstream signal (m)						
pX, platoon unblocked						
vC, conflicting volume	1033	788	917			
vC1, stage 1 conf vol	1000	700	517			
vC2, stage 2 conf vol						
vCu, unblocked vol	1033	788	917			
tC, single (s)	6.5	6.3	4.2			
tC, 2 stage (s)	0.0	0.0	7.2			
tF (s)	3.6	3.4	2.3			
p0 queue free %	43	72	92			
cM capacity (veh/h)	226	385	720			
Direction, Lane #	EB 1	EB 2	NB 1	SB 1	SB 2	
Volume Total	128	108	188	788	129	
Volume Left	128	0	57	0	0	
Volume Right	0	108	0	0	129	
cSH	226	385	720	1700	1700	
Volume to Capacity	0.57	0.28	0.08	0.46	0.08	
Queue Length 95th (m)	25.0	9.1	2.1	0.0	0.0	
Control Delay (s)	39.8	18.0	3.8	0.0	0.0	
Lane LOS	E	С	А			
Approach Delay (s)	29.8		3.8	0.0		
Approach LOS	D					
Intersection Summary						
Average Delay			5.8			
Intersection Capacity Utiliza	tion		71.9%	IC	U Level o	of Service
Analysis Period (min)			15	ic.		
			10			

-	4	×	1	1	1	ţ	
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	Y		eî 👘			र्स	
Traffic Volume (vph)	151	34	109	953	85	128	
Future Volume (vph)	151	34	109	953	85	128	
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	
Lane Width (m)	4.5	4.5	3.5	3.5	3.5	3.5	
Storage Length (m)	0.0	10.0		0.0	0.0		
Storage Lanes	1	0		0	0		
Taper Length (m)	7.5				7.5		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Frt	0.975		0.879				
Flt Protected	0.961					0.980	
Satd. Flow (prot)	1753	0	1529	0	0	1583	
Flt Permitted	0.961					0.980	
Satd. Flow (perm)	1753	0	1529	0	0	1583	
Link Speed (k/h)	40		80			80	
Link Distance (m)	155.0		545.7			134.1	
Travel Time (s)	14.0		24.6			6.0	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Heavy Vehicles (%)	4%	14%	14%	1%	9%	11%	
Adj. Flow (vph)	151	34	109	953	85	128	
Shared Lane Traffic (%)							
Lane Group Flow (vph)	185	0	1062	0	0	213	
Enter Blocked Intersection	No	No	No	No	No	No	
Lane Alignment	Left	Right	Left	Right	Left	Left	
Median Width(m)	4.5		0.0			0.0	
Link Offset(m)	0.0		0.0			0.0	
Crosswalk Width(m)	4.8		4.8			4.8	
Two way Left Turn Lane							
Headway Factor	0.95	0.95	1.09	1.09	1.09	1.09	
Turning Speed (k/h)	25	15		15	25		
Sign Control	Stop		Free			Free	
Intersection Summary							
	Other						
Control Type: Unsignalized							
Intersection Capacity Utiliza	tion 101.3%	, D		IC	U Level of	of Service	G
Analysis Period (min) 15							

	4	•	1	1	1	Ļ	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	Y		4Î			स	
Traffic Volume (veh/h)	151	34	109	953	85	128	
Future Volume (Veh/h)	151	34	109	953	85	128	
Sign Control	Stop		Free			Free	
Grade	0%		0%			0%	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Hourly flow rate (vph)	151	34	109	953	85	128	
Pedestrians							
Lane Width (m)							
Walking Speed (m/s)							
Percent Blockage							
Right turn flare (veh)							
Median type			None			None	
Median storage veh)							
Upstream signal (m)							
pX, platoon unblocked							
vC, conflicting volume	884	586			1062		
vC1, stage 1 conf vol	001	000			1002		
vC2, stage 2 conf vol							
vCu, unblocked vol	884	586			1062		
tC, single (s)	6.4	6.3			4.2		
tC, 2 stage (s)	•	0.0					
tF (s)	3.5	3.4			2.3		
p0 queue free %	44	93			87		
cM capacity (veh/h)	271	489			630		
			00.4				
Direction, Lane #	WB 1	NB 1	SB 1				
Volume Total	185	1062	213				
Volume Left	151	0	85				
Volume Right	34	953	0				
cSH	295	1700	630				
Volume to Capacity	0.63	0.62	0.13				
Queue Length 95th (m)	31.3	0.0	3.7				
Control Delay (s)	35.6	0.0	5.6				
Lane LOS	E		А				
Approach Delay (s)	35.6	0.0	5.6				
Approach LOS	E						
Intersection Summary							
Average Delay			5.3				
Intersection Capacity Utiliza	ation		101.3%	IC	U Level o	of Service	
Analysis Period (min)			15				


	≯	\mathbf{i}	•	t	ţ	4
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Group						SBK
Lane Configurations	7	257	1	1047	1	10
Traffic Volume (vph)	20	357	41	1047	247	10
Future Volume (vph)	20	357	41	1047	247	10
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800
Lane Width (m)	3.5	3.3	3.5	3.5	3.5	3.5
Storage Length (m)	0.0	25.0	50.0			0.0
Storage Lanes	1	1	1			0
Taper Length (m)	7.5		75.0			
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.850			0.995	
Flt Protected	0.950		0.950			
Satd. Flow (prot)	1291	1395	1291	1745	1594	0
Flt Permitted	0.950		0.526			
Satd. Flow (perm)	1291	1395	715	1745	1594	0
Right Turn on Red	• .	Yes				Yes
Satd. Flow (RTOR)		357			4	100
Link Speed (k/h)	40	501		80	80	
Link Distance (m)	154.2			243.1	545.7	
Travel Time (s)	134.2			10.9	24.6	
Peak Hour Factor	1.00	1.00	1.00	1.00	24.0 1.00	1.00
Heavy Vehicles (%)	31%	6%	31%	2%	11%	13%
Adj. Flow (vph)	20	357	41	1047	247	10
Shared Lane Traffic (%)		^		(a / =	0.5-	•
Lane Group Flow (vph)	20	357	41	1047	257	0
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Left	Left	Right
Median Width(m)	3.5			3.5	3.5	
Link Offset(m)	0.0			0.0	0.0	
Crosswalk Width(m)	4.8			4.8	4.8	
Two way Left Turn Lane						
Headway Factor	1.09	1.12	1.09	1.09	1.09	1.09
Turning Speed (k/h)	25	15	25			15
Number of Detectors	1	1	1	2	2	
Detector Template	Left	Right	Left	Thru	Thru	
Leading Detector (m)	2.0	2.0	2.0	10.0	10.0	
Trailing Detector (m)	0.0	0.0	0.0	0.0	0.0	
Detector 1 Position(m)	0.0	0.0	0.0	0.0	0.0	
	2.0	2.0	2.0	0.0	0.0	
Detector 1 Size(m)						
Detector 1 Type	CI+Ex	CI+Ex	Cl+Ex	CI+Ex	Cl+Ex	
Detector 1 Channel	0.0	0.0	0.0	0.0	~ ~ ~	
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0	
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0	
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0	
Detector 2 Position(m)				9.4	9.4	
Detector 2 Size(m)				0.6	0.6	
Detector 2 Type				CI+Ex	Cl+Ex	
Detector 2 Channel						
Detector 2 Extend (s)				0.0	0.0	
Turn Type	Prot	Perm	pm+pt	NA	NA	
	1101	1 0111	Phr	11/1	14/7	

Scenario 1 2030 Future Background AM 3:13 am 12-03-2020 Baseline

	٦	\mathbf{F}	1	Ť	Ļ	~
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Protected Phases	4		5	2	6	
Permitted Phases		4	2	-	Ŭ	
Detector Phase	4	4	5	2	6	
Switch Phase	T			-	v	
Minimum Initial (s)	7.0	7.0	7.0	35.0	35.0	
Minimum Split (s)	17.8	17.8	13.0	41.6	41.6	
Total Split (s)	20.0	20.0	13.0	80.0	67.0	
Total Split (%)	20.0%	20.0%	13.0%	80.0%	67.0%	
Maximum Green (s)	13.2	13.2	7.0	73.4	60.4	
Yellow Time (s)	3.0	3.0	4.6	4.6	4.6	
All-Red Time (s)	3.8	3.8	1.4	2.0	2.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	6.8	6.8	6.0	6.6	6.6	
Lead/Lag	0.0	0.0	Lead	0.0	Lag	
Lead-Lag Optimize?			Yes		Yes	
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	
Recall Mode	3.0 None	None	None	3.0 Min	3.0 Min	
	5.0	5.0	NOTIE	0.0	7.0	
Walk Time (s) Flash Dont Walk (s)	5.0 6.0	5.0 6.0		0.0	21.0	
Pedestrian Calls (#/hr)	0	0	50.3	0	0 42.7	
Act Effct Green (s)	8.9	8.9		49.6		
Actuated g/C Ratio	0.12	0.12	0.69	0.68	0.59	
v/c Ratio	0.13	0.74	0.07	0.88	0.27	
Control Delay	36.7	14.7	3.7	19.0	9.3	
Queue Delay	0.0	0.0	0.0	0.0	0.0	
Total Delay	36.7	14.7	3.7	19.0	9.3	
LOS	D	В	А	B	A	
Approach Delay	15.9			18.5	9.3	
Approach LOS	В	~ ~	4.0	В	A	
Queue Length 50th (m)	2.5	0.0	1.3	84.1	18.4	
Queue Length 95th (m)	10.9	29.2	4.5	190.8	36.1	
Internal Link Dist (m)	130.2			219.1	521.7	
Turn Bay Length (m)		25.0	50.0			
Base Capacity (vph)	247	556	553	1607	1341	
Starvation Cap Reductn	0	0	0	26	0	
Spillback Cap Reductn	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	
Reduced v/c Ratio	0.08	0.64	0.07	0.66	0.19	
Intersection Summary						
Area Type:	Other					
Cycle Length: 100						
Actuated Cycle Length: 72	2.7					
Natural Cycle: 75						
Control Type: Semi Act-Ur	ncoord					
Maximum v/c Ratio: 0.88						
Intersection Signal Delay:	16.5			I	ntersectior	LOS: B
Intersection Capacity Utiliz						of Service D
Analysis Period (min) 15						

Scenario 1 2030 Future Background AM 3:13 am 12-03-2020 Baseline

Splits and Phases: 2: Boundary Road & Hwy 417 EB Ramp Terminal

	٦	-	\mathbf{F}	4	+	•	•	Ť	1	1	Ļ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			ا	1	ľ	•	1	2	el el	
Traffic Volume (vph)	38	18	5	4	6	28	6	1022	33	213	329	61
Future Volume (vph)	38	18	5	4	6	28	6	1022	33	213	329	61
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Lane Width (m)	3.5	3.5	3.5	3.5	3.5	3.5	3.3	3.5	3.3	3.3	3.5	3.5
Storage Length (m)	0.0		0.0	0.0		0.0	35.0		7.5	100.0		0.0
Storage Lanes	0		0	0		1	1		1	1		0
Taper Length (m)	7.5			7.5			45.0			75.0		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.989				0.850			0.850		0.977	
Flt Protected		0.970			0.980		0.950			0.950		
Satd. Flow (prot)	0	1614	0	0	1744	1513	1378	1728	1479	1653	1527	0
Flt Permitted		0.805			0.854		0.531			0.075		
Satd. Flow (perm)	0	1340	0	0	1520	1513	770	1728	1479	130	1527	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		4				100			96		22	
Link Speed (k/h)		60			20			80			80	
Link Distance (m)		642.8			170.6			174.7			243.1	
Travel Time (s)		38.6			30.7			7.9			10.9	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles (%)	6%	0%	25%	0%	0%	0%	20%	3%	0%	0%	15%	8%
Adj. Flow (vph)	38	18	5	4	6	28	6	1022	33	213	329	61
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	61	0	0	10	28	6	1022	33	213	390	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)		0.0	0		0.0	0		3.5	5		3.5	5
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		4.8			4.8			4.8			4.8	
Two way Left Turn Lane												
Headway Factor	1.09	1.09	1.09	1.09	1.09	1.09	1.12	1.09	1.12	1.12	1.09	1.09
Turning Speed (k/h)	25		15	25		15	25		15	25		15
Number of Detectors	1	2		1	2	1	1	2	1	1	2	
Detector Template	Left	Thru		Left	Thru	Right	Left	Thru	Right	Left	Thru	
Leading Detector (m)	2.0	10.0		2.0	10.0	2.0	2.0	10.0	2.0	2.0	10.0	
Trailing Detector (m)	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Detector 1 Position(m)	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Detector 1 Size(m)	2.0	0.6		2.0	0.6	2.0	2.0	0.6	2.0	2.0	0.6	
Detector 1 Type	CI+Ex	CI+Ex		Cl+Ex	Cl+Ex	CI+Ex	CI+Ex	Cl+Ex	Cl+Ex	Cl+Ex	CI+Ex	
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Detector 1 Queue (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Detector 1 Delay (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Detector 2 Position(m)	0.0	9.4		0.0	9.4	0.0	0.0	9.4	0.0	0.0	9.4	
Detector 2 Size(m)		0.6			0.6			0.6			0.6	
Detector 2 Type		CI+Ex			Cl+Ex			Cl+Ex			CI+Ex	
Detector 2 Channel		2. <u>_</u> /			<u>. </u>			. <u>_</u> ^				
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
Turn Type	Perm	NA		Perm	NA	Perm	Perm	NA	Perm	pm+pt	NA	
	. 0111				11/1					P Pr		

Scenario 1 2030 Future Background AM 3:13 am 12-03-2020 Baseline

	۶	-	\mathbf{F}	4	+	•	•	Ť	1	1	Ļ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Protected Phases		4			8			2		1	6	
Permitted Phases	4			8		8	2		2	6		
Detector Phase	4	4		8	8	8	2	2	2	1	6	
Switch Phase												
Minimum Initial (s)	7.0	7.0		7.0	7.0	7.0	20.0	20.0	20.0	7.0	20.0	
Minimum Split (s)	24.8	24.8		24.8	24.8	24.8	26.2	26.2	26.2	13.0	26.2	
Total Split (s)	24.8	24.8		24.8	24.8	24.8	60.5	60.5	60.5	14.7	75.2	
Total Split (%)	24.8%	24.8%		24.8%	24.8%	24.8%	60.5%	60.5%	60.5%	14.7%	75.2%	
Maximum Green (s)	19.0	19.0		19.0	19.0	19.0	54.3	54.3	54.3	8.7	69.0	
Yellow Time (s)	3.7	3.7		3.7	3.7	3.7	4.6	4.6	4.6	4.6	4.6	
All-Red Time (s)	2.1	2.1		2.1	2.1	2.1	1.6	1.6	1.6	1.4	1.6	
Lost Time Adjust (s)		0.0			0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)		5.8			5.8	5.8	6.2	6.2	6.2	6.0	6.2	
Lead/Lag							Lag	Lag	Lag	Lead		
Lead-Lag Optimize?							Yes	Yes	Yes	Yes		
Vehicle Extension (s)	3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	
Recall Mode	None	None		None	None	None	Min	Min	Min	None	Min	
Walk Time (s)	7.0	7.0		7.0	7.0	7.0	7.0	7.0	7.0		7.0	
Flash Dont Walk (s)	12.0	12.0		12.0	12.0	12.0	10.0	10.0	10.0		10.0	
Pedestrian Calls (#/hr)	0	0		0	0	0	0	0	0		0	
Act Effct Green (s)		9.4			9.4	9.4	54.7	54.7	54.7	69.7	70.9	
Actuated g/C Ratio		0.11			0.11	0.11	0.62	0.62	0.62	0.79	0.81	
v/c Ratio		0.41			0.06	0.11	0.01	0.95	0.03	0.84	0.32	
Control Delay		44.6			36.7	0.9	8.3	37.1	0.1	48.2	4.0	
Queue Delay		0.0			0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay		44.6			36.7	0.9	8.3	37.1	0.1	48.2	4.0	
LOS		D			D	А	А	D	А	D	А	
Approach Delay		44.6			10.3			35.8			19.6	_
Approach LOS		D			В			D			B	
Queue Length 50th (m)		9.9			1.7	0.0	0.4	165.9	0.0	20.9	16.3	_
Queue Length 95th (m)		22.4			6.5	0.0	2.2	#286.9	0.0	#66.4	33.1	
Internal Link Dist (m)		618.8			146.6		05.0	150.7	7 -	400.0	219.1	
Turn Bay Length (m)		00.4			000	407	35.0	4070	7.5	100.0	1005	
Base Capacity (vph)		294			330	407	478	1073	955	254	1235	
Starvation Cap Reductn		0			0	0	0	0	0	0	0	
Spillback Cap Reductn		0			0	0	0	0	0	0	0	
Storage Cap Reductn		0			0	0	0	0	0	0	0	
Reduced v/c Ratio		0.21			0.03	0.07	0.01	0.95	0.03	0.84	0.32	
Intersection Summary	Other											
Area Type: Cycle Length: 100	Other											
Actuated Cycle Length: 88												
Natural Cycle: 110												
Control Type: Semi Act-Unc	coord											
Maximum v/c Ratio: 0.95												
Intersection Signal Delay: 3	0.0			1,	ntersectio	0.108.0						
Intersection Capacity Utiliza					CU Level		۶ F					
Analysis Period (min) 15				- I								

Scenario 1 2030 Future Background AM 3:13 am 12-03-2020 Baseline

95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

Splits and Phases: 3: Boundary Road & Thunder Road/Amazon Way

	4	•	1	1	1	Ļ	
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	Y		ef 👘		۲	1	
Traffic Volume (vph)	6	4	1058	6	1	336	
Future Volume (vph)	6	4	1058	6	1	336	
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	
Lane Width (m)	3.6	3.6	3.5	3.5	3.5	3.5	
Storage Length (m)	0.0	0.0		0.0	70.0		
Storage Lanes	1	0		0	1		
Taper Length (m)	7.5				45.0		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Frt	0.946		0.999				
Flt Protected	0.971				0.950		
Satd. Flow (prot)	827	0	1751	0	846	1589	
Flt Permitted	0.971				0.950		
Satd. Flow (perm)	827	0	1751	0	846	1589	
Link Speed (k/h)	20		80			80	
Link Distance (m)	151.5		1150.2			174.7	
Travel Time (s)	27.3		51.8			7.9	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Heavy Vehicles (%)	100%	100%	1%	100%	100%	12%	
Adj. Flow (vph)	6	4	1058	6	1	336	
Shared Lane Traffic (%)							
Lane Group Flow (vph)	10	0	1064	0	1	336	
Enter Blocked Intersection	No	No	No	No	No	No	
Lane Alignment	Left	Right	Left	Right	Left	Left	
Median Width(m)	3.6		3.5			3.5	
Link Offset(m)	0.0		0.0			0.0	
Crosswalk Width(m)	4.8		4.8			4.8	
Two way Left Turn Lane							
Headway Factor	1.07	1.07	1.09	1.09	1.09	1.09	
Turning Speed (k/h)	25	15		15	25		
Sign Control	Stop		Free			Free	
Intersection Summary							
	Other						
Control Type: Unsignalized							
Intersection Capacity Utilizat	tion 69.2%			IC	CU Level	of Service C	С
Analysis Period (min) 15							

	4	•	1	1	1	ŧ
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	¥		4Î		٦	1
Traffic Volume (veh/h)	6	4	1058	6	1	336
Future Volume (Veh/h)	6	4	1058	6	1	336
Sign Control	Stop		Free			Free
Grade	0%		0%			0%
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00
Hourly flow rate (vph)	6	4	1058	6	1	336
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type			None			None
Median storage veh)			1 tonio			110110
Upstream signal (m)						175
pX, platoon unblocked	0.96					110
vC, conflicting volume	1399	1061			1064	
vC1, stage 1 conf vol	1000	1001			1001	
vC2, stage 2 conf vol						
vCu, unblocked vol	1395	1061			1064	
tC, single (s)	7.4	7.2			5.1	
tC, 2 stage (s)	7.4	1.2			0.1	
tF (s)	4.4	4.2			3.1	
p0 queue free %	94	98			100	
cM capacity (veh/h)	93	179			393	
					000	
Direction, Lane #	WB 1	NB 1	SB 1	SB 2		
Volume Total	10	1064	1	336		
Volume Left	6	0	1	0		
Volume Right	4	6	0	0		
cSH	115	1700	393	1700		
Volume to Capacity	0.09	0.63	0.00	0.20		
Queue Length 95th (m)	2.2	0.0	0.1	0.0		
Control Delay (s)	39.2	0.0	14.2	0.0		
Lane LOS	Е		В			
Approach Delay (s)	39.2	0.0	0.0			
Approach LOS	E					
Intersection Summary						
Average Delay			0.3			
Intersection Capacity Utiliza	ation		69.2%	IC	ULevel	of Service
Analysis Period (min)			15	10		
			15			

	٦	\mathbf{r}	•	Ť	Ļ	1
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	۲	1		ર્સ	1	1
Traffic Volume (vph)	87	33	147	958	138	118
Future Volume (vph)	87	33	147	958	138	118
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800
Lane Width (m)	3.3	3.3	3.5	3.5	3.5	3.5
Storage Length (m)	25.0	0.0	0.0			30.0
Storage Lanes	1	1	0			1
Taper Length (m)	47.5		7.5			
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.850				0.850
Flt Protected	0.950			0.993		
Satd. Flow (prot)	1476	1286	0	1734	1561	1293
Flt Permitted	0.950			0.993		
Satd. Flow (perm)	1476	1286	0	1734	1561	1293
Link Speed (k/h)	80			80	80	
Link Distance (m)	180.5			135.8	1150.2	
Travel Time (s)	8.1			6.1	51.8	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles (%)	12%	15%	8%	1%	14%	17%
Adj. Flow (vph)	87	33	147	958	138	118
Shared Lane Traffic (%)						
Lane Group Flow (vph)	87	33	0	1105	138	118
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Left	Left	Right
Median Width(m)	3.3	-		0.0	0.0	-
Link Offset(m)	0.0			0.0	0.0	
Crosswalk Width(m)	4.8			4.8	4.8	
Two way Left Turn Lane						
Headway Factor	1.12	1.12	1.09	1.09	1.09	1.09
Turning Speed (k/h)	25	15	25			15
Sign Control	Stop			Free	Free	
Intersection Summary						
	Other					
Area Type: Control Type: Unsignalized	Uner					
, ,	tion 81 60/			14		of Service
Intersection Capacity Utiliza	uUII 04.0%			Į.	CO Level (DI SEIVICE
Analysis Period (min) 15						

	٨	\mathbf{r}	•	1	ţ	
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	۲	1		र्स	†	1
Traffic Volume (veh/h)	87	33	147	958	138	118
Future Volume (Veh/h)	87	33	147	958	138	118
Sign Control	Stop			Free	Free	
Grade	0%			0%	0%	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00
Hourly flow rate (vph)	87	33	147	958	138	118
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type				None	None	
Median storage veh)					1010	
Upstream signal (m)						
pX, platoon unblocked						
vC, conflicting volume	1390	138	256			
vC1, stage 1 conf vol	1000	100	200			
vC2, stage 2 conf vol						
vCu, unblocked vol	1390	138	256			
tC, single (s)	6.5	6.4	4.2			
tC, 2 stage (s)	0.0	0.4	7.2			
tF (s)	3.6	3.4	2.3			
p0 queue free %	34	96	88			
cM capacity (veh/h)	132	877	1275			
,						
Direction, Lane #	EB 1	EB 2	NB 1	SB 1	SB 2	
Volume Total	87	33	1105	138	118	
Volume Left	87	0	147	0	0	
Volume Right	0	33	0	0	118	
cSH	132	877	1275	1700	1700	
Volume to Capacity	0.66	0.04	0.12	0.08	0.07	
Queue Length 95th (m)	28.4	0.9	3.1	0.0	0.0	
Control Delay (s)	73.8	9.3	3.0	0.0	0.0	
Lane LOS	F	А	А			
Approach Delay (s)	56.1		3.0	0.0		
Approach LOS	F					
Intersection Summary						
Average Delay			6.8			
Intersection Capacity Utiliza	ation		84.6%		U Level o	of Service
Analysis Period (min)			15	ic.		
			10			

-	4	×	1	1	1	ţ	
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	Y		¢Î			र्भ	
Traffic Volume (vph)	57	1	174	347	27	136	
Future Volume (vph)	57	1	174	347	27	136	
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	
Lane Width (m)	4.5	4.5	3.5	3.5	3.5	3.5	
Storage Length (m)	0.0	10.0		0.0	0.0		
Storage Lanes	1	0		0	0		
Taper Length (m)	7.5				7.5		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Frt	0.998		0.910				
Flt Protected	0.953					0.992	
Satd. Flow (prot)	1587	0	1557	0	0	1630	
Flt Permitted	0.953					0.992	
Satd. Flow (perm)	1587	0	1557	0	0	1630	
Link Speed (k/h)	40		80			80	
Link Distance (m)	155.0		545.7			134.1	
Travel Time (s)	14.0		24.6			6.0	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Heavy Vehicles (%)	19%	0%	6%	3%	5%	9%	
Adj. Flow (vph)	57	1	174	347	27	136	
Shared Lane Traffic (%)							
Lane Group Flow (vph)	58	0	521	0	0	163	
Enter Blocked Intersection	No	No	No	No	No	No	
Lane Alignment	Left	Right	Left	Right	Left	Left	
Median Width(m)	4.5		0.0			0.0	
Link Offset(m)	0.0		0.0			0.0	
Crosswalk Width(m)	4.8		4.8			4.8	
Two way Left Turn Lane							
Headway Factor	0.95	0.95	1.09	1.09	1.09	1.09	
Turning Speed (k/h)	25	15		15	25		
Sign Control	Stop		Free			Free	
Intersection Summary							
	Other						
Control Type: Unsignalized							
Intersection Capacity Utiliza	tion 42.2%			IC	U Level of	of Service	А
Analysis Period (min) 15							

	<	×	Ť	1	1	.↓	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	ļ
Lane Configurations	¥.		4Î			स्	
Traffic Volume (veh/h)	57	1	174	347	27	136	
Future Volume (Veh/h)	57	1	174	347	27	136	
Sign Control	Stop		Free			Free	
Grade	0%		0%			0%	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Hourly flow rate (vph)	57	1	174	347	27	136	
Pedestrians							
Lane Width (m)							
Walking Speed (m/s)							
Percent Blockage							
Right turn flare (veh)							
Median type			None			None	
Median storage veh)							
Upstream signal (m)							
pX, platoon unblocked							
vC, conflicting volume	538	348			521		
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol	538	348			521		
tC, single (s)	6.6	6.2			4.1		
tC, 2 stage (s)							
tF (s)	3.7	3.3			2.2		
p0 queue free %	88	100			97		
cM capacity (veh/h)	464	700			1030		
Direction, Lane #	WB 1	NB 1	SB 1				
Volume Total	58	521	163				
Volume Left	57	0	27				
Volume Right	1	347	0				
cSH	466	1700	1030				
Volume to Capacity	0.12	0.31	0.03				
Queue Length 95th (m)	3.4	0.0	0.6				
Control Delay (s)	13.8	0.0	1.6				
Lane LOS	B	0.0	A				
Approach Delay (s)	13.8	0.0	1.6				
Approach LOS	B	0.0	1.0				
Intersection Summary							
Average Delay			1.4				
Intersection Capacity Utiliz	ration		42.2%	IC	Ulevelo	of Service	
Analysis Period (min)			15	10			
			15				

	≯	\mathbf{i}	•	t	ţ	4
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Group						SDK
Lane Configurations	1	015		220	1	18
Traffic Volume (vph)	85	815 815	181	329	239	18
Future Volume (vph)	85	815	181	329	239	
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800
Lane Width (m)	3.5	3.3	3.5	3.5	3.5	3.5
Storage Length (m)	0.0	25.0	50.0			0.0
Storage Lanes	1	1	1			0
Taper Length (m)	7.5		75.0			
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.850			0.991	
Flt Protected	0.950		0.950			
Satd. Flow (prot)	1551	1436	1537	1664	1593	0
Flt Permitted	0.950		0.472			
Satd. Flow (perm)	1551	1436	764	1664	1593	0
Right Turn on Red		Yes				Yes
Satd. Flow (RTOR)		568			4	
Link Speed (k/h)	40			80	80	
Link Distance (m)	154.2			243.1	545.7	
Travel Time (s)	13.9			10.9	24.6	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles (%)	9%	3%	1.00	7%	1.00	7%
Adj. Flow (vph)	85	815	181	329	239	18
	00	015	101	529	209	10
Shared Lane Traffic (%)	05	045	404	200	057	0
Lane Group Flow (vph)	85	815	181 No	329	257	0
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Left	Left	Right
Median Width(m)	3.5			3.5	3.5	
Link Offset(m)	0.0			0.0	0.0	
Crosswalk Width(m)	4.8			4.8	4.8	
Two way Left Turn Lane						
Headway Factor	1.09	1.12	1.09	1.09	1.09	1.09
Turning Speed (k/h)	25	15	25			15
Number of Detectors	1	1	1	2	2	
Detector Template	Left	Right	Left	Thru	Thru	
Leading Detector (m)	2.0	2.0	2.0	10.0	10.0	
Trailing Detector (m)	0.0	0.0	0.0	0.0	0.0	
Detector 1 Position(m)	0.0	0.0	0.0	0.0	0.0	
Detector 1 Size(m)	2.0	2.0	2.0	0.0	0.0	
Detector 1 Type	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	
Detector 1 Channel						
	0.0	0.0	0.0	0.0	0.0	
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0	
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0	
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0	
Detector 2 Position(m)				9.4	9.4	
Detector 2 Size(m)				0.6	0.6	
Detector 2 Type				CI+Ex	Cl+Ex	
Detector 2 Channel						
Detector 2 Extend (s)				0.0	0.0	
Turn Type	Prot	Perm	pm+pt	NA	NA	
			P P.			

Scenario 1 2030 Future Background PM 3:13 am 12-03-2020 Baseline

	٦	\mathbf{r}	1	1	Ļ	∢
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Protected Phases	4		5	2	6	
Permitted Phases		4	2	-	v	
Detector Phase	4	4	5	2	6	
Switch Phase				-	•	
Minimum Initial (s)	7.0	7.0	7.0	35.0	35.0	
Minimum Split (s)	23.0	23.0	13.0	41.6	41.6	
Total Split (s)	44.0	44.0	13.0	56.0	43.0	
Total Split (%)	44.0%	44.0%	13.0%	56.0%	43.0%	
Maximum Green (s)	37.2	37.2	7.0	49.4	36.4	
Yellow Time (s)	3.0	3.0	4.6	4.6	4.6	
All-Red Time (s)	3.8	3.8	1.4	2.0	2.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	6.8	6.8	6.0	6.6	6.6	
Lead/Lag			Lead		Lag	
Lead-Lag Optimize?			Yes		Yes	
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	
Recall Mode	None	None	None	Min	Min	
Walk Time (s)	7.0	7.0		0.0	7.0	
Flash Dont Walk (s)	5.0	5.0		0.0	21.0	
Pedestrian Calls (#/hr)	0	0		0	0	
Act Effct Green (s)	30.0	30.0	49.1	48.5	35.4	
Actuated g/C Ratio	0.33	0.33	0.53	0.53	0.38	
v/c Ratio	0.17	0.96	0.39	0.38	0.42	
Control Delay	21.7	32.1	16.2	16.2	25.1	
Queue Delay	0.0	0.0	0.0	0.0	0.0	
Total Delay	21.7	32.1	16.2	16.2	25.1	
LOS	С	С	В	В	С	
Approach Delay	31.1			16.2	25.1	
Approach LOS	С			В	С	
Queue Length 50th (m)	11.1	53.0	20.1	40.6	38.6	
Queue Length 95th (m)	21.8	#151.0	34.1	62.7	61.9	
Internal Link Dist (m)	130.2			219.1	521.7	
Turn Bay Length (m)		25.0	50.0			
Base Capacity (vph)	633	922	467	902	639	
Starvation Cap Reductn	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	
Reduced v/c Ratio	0.13	0.88	0.39	0.36	0.40	
Intersection Summary						
Area Type:	Other					
Cycle Length: 100						
Actuated Cycle Length: 92	.1					
Natural Cycle: 90						
Control Type: Semi Act-Un	icoord					
Maximum v/c Ratio: 0.96						
Intersection Signal Delay: 2	25.6				ntersectior	
Intersection Capacity Utiliz	ation 93.6%			(CU Level o	of Service F
Analysis Period (min) 15						

Scenario 1 2030 Future Background PM 3:13 am 12-03-2020 Baseline

95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

Splits and Phases: 2: Boundary Road & Hwy 417 EB Ramp Terminal

	٦	-	\mathbf{F}	4	+	•	•	t	۲	1	Ļ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			र्भ	1	٦	•	1	٦	eî 👘	
Traffic Volume (vph)	76	0	17	6	Ō	20	5	414	0	2	984	67
Future Volume (vph)	76	0	17	6	0	20	5	414	0	2	984	67
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Lane Width (m)	3.5	3.5	3.5	3.5	3.5	3.5	3.3	3.5	3.3	3.3	3.5	3.5
Storage Length (m)	0.0		0.0	0.0		0.0	35.0		7.5	100.0		0.0
Storage Lanes	0		0	0		1	1		1	1		0
Taper Length (m)	7.5			7.5			45.0			75.0		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.975				0.850					0.990	
Flt Protected		0.961			0.950		0.950			0.950		
Satd. Flow (prot)	0	1590	0	0	1208	1513	1322	1633	1740	1102	1699	0
Flt Permitted		0.761			0.808		0.221			0.453		
Satd. Flow (perm)	0	1259	0	0	1027	1513	308	1633	1740	525	1699	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		100				100					8	
Link Speed (k/h)		60			20			80			80	
Link Distance (m)		642.8			170.6			174.7			243.1	
Travel Time (s)		38.6			30.7			7.9			10.9	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles (%)	6%	0%	0%	40%	0%	0%	25%	9%	0%	50%	4%	0%
Adj. Flow (vph)	76	0	17	6	0	20	5	414	0	2	984	67
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	93	0	0	6	20	5	414	0	2	1051	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)		0.0	Ū		0.0	J		3.5	J		3.5	Ū
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		4.8			4.8			4.8			4.8	
Two way Left Turn Lane												
Headway Factor	1.09	1.09	1.09	1.09	1.09	1.09	1.12	1.09	1.12	1.12	1.09	1.09
Turning Speed (k/h)	25		15	25		15	25		15	25		15
Number of Detectors	1	2		1	2	1	1	2	1	1	2	
Detector Template	Left	Thru		Left	Thru	Right	Left	Thru	Right	Left	Thru	
Leading Detector (m)	2.0	10.0		2.0	10.0	2.0	2.0	10.0	2.0	2.0	10.0	
Trailing Detector (m)	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Detector 1 Position(m)	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Detector 1 Size(m)	2.0	0.6		2.0	0.6	2.0	2.0	0.6	2.0	2.0	0.6	
Detector 1 Type	CI+Ex	Cl+Ex		Cl+Ex	Cl+Ex	CI+Ex	Cl+Ex	Cl+Ex	Cl+Ex	Cl+Ex	CI+Ex	
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Detector 1 Queue (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Detector 1 Delay (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Detector 2 Position(m)		9.4			9.4			9.4			9.4	
Detector 2 Size(m)		0.6			0.6			0.6			0.6	
Detector 2 Type		CI+Ex			CI+Ex			Cl+Ex			CI+Ex	
Detector 2 Channel												
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
Turn Type	Perm	NA		Perm	NA	Perm	Perm	NA	Perm	pm+pt	NA	
					101			1.0.1		P		

Scenario 1 2030 Future Background PM 3:13 am 12-03-2020 Baseline

	≯	-	\rightarrow	4	+	•	1	Ť	1	1	Ļ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Protected Phases		4			8			2		1	6	
Permitted Phases	4			8		8	2		2	6		
Detector Phase	4	4		8	8	8	2	2	2	1	6	
Switch Phase												
Minimum Initial (s)	7.0	7.0		7.0	7.0	7.0	20.0	20.0	20.0	7.0	20.0	
Minimum Split (s)	24.8	24.8		24.8	24.8	24.8	26.2	26.2	26.2	13.0	26.2	
Total Split (s)	24.8	24.8		24.8	24.8	24.8	62.2	62.2	62.2	13.0	75.2	
Total Split (%)	24.8%	24.8%		24.8%	24.8%	24.8%	62.2%	62.2%	62.2%	13.0%	75.2%	
Maximum Green (s)	19.0	19.0		19.0	19.0	19.0	56.0	56.0	56.0	7.0	69.0	
Yellow Time (s)	3.7	3.7		3.7	3.7	3.7	4.6	4.6	4.6	4.6	4.6	
All-Red Time (s)	2.1	2.1		2.1	2.1	2.1	1.6	1.6	1.6	1.4	1.6	
Lost Time Adjust (s)		0.0			0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)		5.8			5.8	5.8	6.2	6.2	6.2	6.0	6.2	
Lead/Lag							Lag	Lag	Lag	Lead		
Lead-Lag Optimize?							Yes	Yes	Yes	Yes		
Vehicle Extension (s)	3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	
Recall Mode	None	None		None	None	None	Min	Min	Min	None	Min	
Walk Time (s)	7.0	7.0		7.0	7.0	7.0	7.0	7.0	7.0		7.0	
Flash Dont Walk (s)	12.0	12.0		12.0	12.0	12.0	10.0	10.0	10.0		10.0	
Pedestrian Calls (#/hr)	0	0		0	0	0	0	0	0		0	
Act Effct Green (s)		8.1			8.1	8.1	52.1	52.1		52.2	54.1	
Actuated g/C Ratio		0.12			0.12	0.12	0.76	0.76		0.76	0.79	
v/c Ratio		0.39			0.05	0.08	0.02	0.33		0.00	0.78	
Control Delay		12.9			34.8	0.6	5.4	6.0		2.5	12.0	
Queue Delay		0.0			0.0	0.0	0.0	0.0		0.0	0.0	
Total Delay		12.9			34.8	0.6	5.4	6.0		2.5	12.1	_
LOS		В			С	А	А	A		А	В	
Approach Delay		12.9			8.5			6.0			12.1	_
Approach LOS		B			A	0.0	0.4	A		0.4	B	
Queue Length 50th (m)		0.0			0.7	0.0	0.1	16.1		0.1	79.0	
Queue Length 95th (m)		12.9			4.8	0.0	1.8	56.4		0.6	171.8	
Internal Link Dist (m)		618.8			146.6		05.0	150.7		400.0	219.1	
Turn Bay Length (m)		444			204	540	35.0	4000		100.0	4570	
Base Capacity (vph)		444			304	519	249	1322		462	1578	
Starvation Cap Reductn		0			0	0	0	0		0	16	
Spillback Cap Reductn		0			0	0	0	0		0	0	
Storage Cap Reductn Reduced v/c Ratio		0 0.21			0	0	0	0 21		0	0	
		0.21			0.02	0.04	0.02	0.31		0.00	0.67	
Intersection Summary Area Type:	Other											
Cycle Length: 100												
Actuated Cycle Length: 68.	7											
Natural Cycle: 90	1											
Control Type: Semi Act-Und	coord											
Maximum v/c Ratio: 0.78												
Intersection Signal Delay: 1	04			h	ntersectio	n I OS B						
Intersection Capacity Utiliza					CU Level		۰D					
Analysis Period (min) 15	AUGH 01.2 /0											

Scenario 1 2030 Future Background PM 3:13 am 12-03-2020 Baseline

Splits and Phases: 3: Boundary Road & Thunder Road/Amazon Way

	4	•	1	1	1	Ļ
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Υ		4		٦	1
Traffic Volume (vph)	6	13	405	6	15	992
Future Volume (vph)	6	13	405	6	15	992
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800
Lane Width (m)	3.6	3.6	3.5	3.5	3.5	3.5
Storage Length (m)	0.0	0.0		0.0	70.0	
Storage Lanes	1	0		0	1	
Taper Length (m)	7.5				45.0	
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Frt	0.908		0.998			
Flt Protected	0.984				0.950	
Satd. Flow (prot)	804	0	1670	0	846	1745
Flt Permitted	0.984				0.950	
Satd. Flow (perm)	804	0	1670	0	846	1745
Link Speed (k/h)	20		80			80
Link Distance (m)	151.5		1150.2			174.7
Travel Time (s)	27.3		51.8			7.9
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles (%)	100%	100%	5%	100%	100%	2%
Adj. Flow (vph)	6	13	405	6	15	992
Shared Lane Traffic (%)						
Lane Group Flow (vph)	19	0	411	0	15	992
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Right	Left	Left
Median Width(m)	3.6		3.5			3.5
Link Offset(m)	0.0		0.0			0.0
Crosswalk Width(m)	4.8		4.8			4.8
Two way Left Turn Lane						
Headway Factor	1.07	1.07	1.09	1.09	1.09	1.09
Turning Speed (k/h)	25	15		15	25	
Sign Control	Stop		Free			Free
Intersection Summary						
	Other					
Control Type: Unsignalized						
Intersection Capacity Utilization	tion 65.1%			IC	CU Level	of Service C
Analysis Period (min) 15						

	<	×	1	1	1	Ŧ	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	¥		4Î		ň	•	
Traffic Volume (veh/h)	6	13	405	6	15	992	
Future Volume (Veh/h)	6	13	405	6	15	992	
Sign Control	Stop		Free			Free	
Grade	0%		0%			0%	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Hourly flow rate (vph)	6	13	405	6	15	992	
Pedestrians							
Lane Width (m)							
Walking Speed (m/s)							
Percent Blockage							
Right turn flare (veh)							
Median type			None			None	
Median storage veh)							
Upstream signal (m)						175	
pX, platoon unblocked	0.55						
vC, conflicting volume	1430	408			411		
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol	1372	408			411		
tC, single (s)	7.4	7.2			5.1		
tC, 2 stage (s)							
tF (s)	4.4	4.2			3.1		
p0 queue free %	89	97			98		
cM capacity (veh/h)	54	476			770		
Direction, Lane #	WB 1	NB 1	SB 1	SB 2			
Volume Total	19	411	15	992			
Volume Left	6	0	15	0			
Volume Right	13	6	0	0			
cSH	137	1700	770	1700			
Volume to Capacity	0.14	0.24	0.02	0.58			
Queue Length 95th (m)	3.7	0.0	0.5	0.0			
Control Delay (s)	35.5	0.0	9.8	0.0			
Lane LOS	E	0.0	A	0.0			
Approach Delay (s)	35.5	0.0	0.1				
Approach LOS	E	0.0	0.1				
Intersection Summary							
Average Delay			0.6				
Intersection Capacity Utiliza	ation		65.1%	IC		of Service	
Analysis Period (min)			15	10	o Level (
			10				

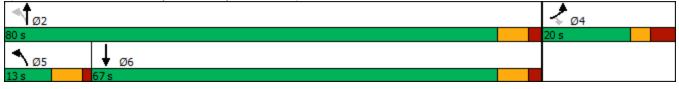
	٦	\mathbf{r}	1	1	Ļ	1
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	۲	1		र्भ	1	1
Traffic Volume (vph)	141	119	63	144	869	142
Future Volume (vph)	141	119	63	144	869	142
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800
Lane Width (m)	3.3	3.3	3.5	3.5	3.5	3.5
Storage Length (m)	25.0	0.0	0.0			30.0
Storage Lanes	1	1	0			1
Taper Length (m)	47.5		7.5			
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.850				0.850
Flt Protected	0.950			0.985		
Satd. Flow (prot)	1463	1395	0	1666	1762	1351
FIt Permitted	0.950			0.985		
Satd. Flow (perm)	1463	1395	0	1666	1762	1351
Link Speed (k/h)	80			80	80	
Link Distance (m)	180.5			135.8	1150.2	
Travel Time (s)	8.1			6.1	51.8	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles (%)	13%	6%	8%	4%	1%	12%
Adj. Flow (vph)	141	119	63	144	869	142
Shared Lane Traffic (%)						
Lane Group Flow (vph)	141	119	0	207	869	142
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Left	Left	Right
Median Width(m)	3.3			0.0	0.0	
Link Offset(m)	0.0			0.0	0.0	
Crosswalk Width(m)	4.8			4.8	4.8	
Two way Left Turn Lane						
Headway Factor	1.12	1.12	1.09	1.09	1.09	1.09
Turning Speed (k/h)	25	15	25			15
Sign Control	Stop			Free	Free	
Intersection Summary						
	Other					
Control Type: Unsignalized						
Intersection Capacity Utilization	tion 78 2%			li		of Service [
Analysis Period (min) 15	uon 70.270			, in the second s		

	٨	*	~	1	ţ	~
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	5	1		र्स	†	1
Traffic Volume (veh/h)	141	119	63	144	869	142
Future Volume (Veh/h)	141	119	63	144	869	142
Sign Control	Stop			Free	Free	
Grade	0%			0%	0%	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00
Hourly flow rate (vph)	141	119	63	144	869	142
Pedestrians		110	00		000	112
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type				None	None	
Median storage veh)				NULLE	NULLE	
Upstream signal (m)						
pX, platoon unblocked						
vC, conflicting volume	1139	869	1011			
vC1, stage 1 conf vol	1139	009	1011			
vC1, stage 1 conf vol						
vC2, stage 2 cont vol	1139	869	1011			
	6.5	6.3	4.2			
tC, single (s)	0.0	0.3	4.Z			
tC, 2 stage (s)	26	2 1	0.0			
tF (s)	3.6	3.4	2.3			
p0 queue free %	26	66	90			
cM capacity (veh/h)	192	346	663			
Direction, Lane #	EB 1	EB 2	NB 1	SB 1	SB 2	
Volume Total	141	119	207	869	142	
Volume Left	141	0	63	0	0	
Volume Right	0	119	0	0	142	
cSH	192	346	663	1700	1700	
Volume to Capacity	0.74	0.34	0.10	0.51	0.08	
Queue Length 95th (m)	38.1	12.0	2.5	0.0	0.0	
Control Delay (s)	63.1	20.8	4.1	0.0	0.0	
Lane LOS	F	С	А			
Approach Delay (s)	43.8		4.1	0.0		
Approach LOS	Е					
Intersection Summary						
Average Delay			8.3			
Intersection Capacity Utiliza	ation		78.2%	IC	CU Level o	of Service
Analysis Period (min)			15	IC.		
			15			

	4	×	1	1	1	Ŧ	
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	Y		eî 👘			4	
Traffic Volume (vph)	164	38	119	1047	94	139	
Future Volume (vph)	164	38	119	1047	94	139	
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	
Lane Width (m)	4.5	4.5	3.5	3.5	3.5	3.5	
Storage Length (m)	0.0	10.0		0.0	0.0		
Storage Lanes	1	0		0	0		
Taper Length (m)	7.5				7.5		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Frt	0.975		0.879				
Flt Protected	0.961					0.980	
Satd. Flow (prot)	1752	0	1529	0	0	1583	
Flt Permitted	0.961					0.980	
Satd. Flow (perm)	1752	0	1529	0	0	1583	
Link Speed (k/h)	40		80			80	
Link Distance (m)	155.0		545.7			134.1	
Travel Time (s)	14.0		24.6			6.0	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Heavy Vehicles (%)	4%	14%	14%	1%	9%	11%	
Adj. Flow (vph)	164	38	119	1047	94	139	
Shared Lane Traffic (%)							
Lane Group Flow (vph)	202	0	1166	0	0	233	
Enter Blocked Intersection	No	No	No	No	No	No	
Lane Alignment	Left	Right	Left	Right	Left	Left	
Median Width(m)	4.5		0.0			0.0	
Link Offset(m)	0.0		0.0			0.0	
Crosswalk Width(m)	4.8		4.8			4.8	
Two way Left Turn Lane							
Headway Factor	0.95	0.95	1.09	1.09	1.09	1.09	
Turning Speed (k/h)	25	15		15	25		
Sign Control	Stop		Free			Free	
Intersection Summary	-						
	Other						
Control Type: Unsignalized							
Intersection Capacity Utiliza	tion 110.1%	,)		IC	U Level of	of Service I	Н
Analysis Period (min) 15							

Movement WBL WBR NBT NBR SBL SBT Lane Configurations Y 1 1 1047 94 139 Future Volume (veh/h) 164 38 119 1047 94 139 Sign Control Stop Free Free Free Grade 0% 0% 0% 0% Peak Hour Factor 1.00 1.00 1.00 1.00 1.00 Hourly flow rate (vph) 164 38 119 1047 94 139 Pedestrians
Lane Configurations Y Image: Configuration of the system
Traffic Volume (veh/h) 164 38 119 1047 94 139 Future Volume (Veh/h) 164 38 119 1047 94 139 Sign Control Stop Free Free Free Free Grade 0% 0% 0% 0% 0% Peak Hour Factor 1.00 1.00 1.00 1.00 1.00 1.00 Hourly flow rate (vph) 164 38 119 1047 94 139 Pedestrians Lane Width (m) 164 38 119 1047 94 139 Pedestrians Lane Width (m) Walking Speed (m/s) Velocities <
Future Volume (Veh/h) 164 38 119 1047 94 139 Sign Control Stop Free Free Free Grade 0% 0% 0% 0% Peak Hour Factor 1.00 1.00 1.00 1.00 1.00 1.00 Houry flow rate (vph) 164 38 119 1047 94 139 Pedestrians Image: Stop of the stop of t
Sign Control Stop Free Free Grade 0% 0% 0% 0% Peak Hour Factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Hourly flow rate (vph) 164 38 119 1047 94 139 Pedestrians
Grade 0% 0% 0% Peak Hour Factor 1.00
Peak Hour Factor 1.00
Hourly flow rate (vph) 164 38 119 1047 94 139 Pedestrians Lane Width (m) Walking Speed (m/s) Percent Blockage Right turn flare (veh) Median type None None None Median type None None Mone Median storage veh) Upstream signal (m) Procent Blockage 1166 vC, conflicting volume 970 642 1166 1166 vC1, stage 1 conf vol vC2, stage 2 conf vol vC4, unblocked vol 970 642 1166 vC2, stage 2 conf vol vC4, unblocked vol 970 642 1166 1166 vC3, stage 1 conf vol vC4, stage 1 conf vol vC4, unblocked vol 970 642 1166 vC4, unblocked vol 970 642 1166 106 106 tC5, stage 2 conf vol vC4, angle (s) 6.4 6.3 4.2 106 tC4, stage (s) tF (s) 3.5 3.4 2.3 2.3 106 tC4, stage (s) tF (s) 3.5 3.4 2.3 2.3 10 2.3
Pedestrians Lane Width (m) Walking Speed (m/s) Percent Blockage Right turn flare (veh) Median storage veh) Upstream signal (m) pX, platoon unblocked vC, conflicting volume 970 642 1166 vC1, stage 1 conf vol vC2, stage 2 conf vol vC4, unblocked vol 970 642 1166 tC, single (s) 6.4 6.3 4.2 tC, 2 stage (s) 1166 tF (s) 3.5 3.4 2.3 p0 queue free % 30 92 84 cM capacity (veh/h) 233 453 575 Direction, Lane # WB 1 NB 1 SB 1 Volume Total 202 1166 233 Volume Left 164 0 94 Volume Right 38 1047 0 cSH 257 1700 575 Volume to Capacity 0.79 0.69 0.16 Queue Length 95th (m) 47.5 0.0 4.6
Lane Width (m) Walking Speed (m/s) Percent Blockage Right turn flare (veh) Median storage veh) Upstream signal (m) pX, platoon unblocked vC, conflicting volume 970 642 1166 vC1, stage 1 conf vol vC2, stage 2 conf vol vC4, unblocked vol 970 642 1166 tC, single (s) 6.4 6.3 4.2 tC, 2 stage (s) tF (s) 3.5 3.4 2.3 p0 queue free % 30 92 84 cM capacity (veh/h) 233 453 575 Direction, Lane # WB 1 NB 1 SB 1 Volume Total 202 1166 233 Volume Left 164 0 94 Volume Right 38 1047 0 cSH 257 1700 575 Volume to Capacity 0.79 0.69 0.16 Queue Length 95th (m) 47.5 0.0 4.6 Control Delay (s) 56.4 0.0 6.4 Lane LOS F A
Walking Speed (m/s) Vercent Blockage Right turn flare (veh) None None Median storage veh) Upstream signal (m) None None VC, conflicting volume 970 642 1166 vC1, stage 1 conf vol vc2, stage 2 conf vol vc2, stage 2 conf vol vc2, stage 2 conf vol vC2, stage (s) 6.4 6.3 4.2 1166 tC, 2 stage (s) tF (s) 3.5 3.4 2.3 p0 queue free % 30 92 84 cM capacity (veh/h) 233 453 575 Direction, Lane # WB 1 NB 1 SB 1 Volume Total 202 1166 233 Volume Left 164 0 94 Volume Right 38 1047 0 cSH 257 1700 575 Volume to Capacity 0.79 0.69 0.16 Queue Length 95th (m) 47.5 0.0 4.6 Control Delay (s) 56.4 0.0 6.4
Percent Blockage Right turn flare (veh) Median type None None Median storage veh) Upstream signal (m) None None Dy, platoon unblocked vC, conflicting volume 970 642 1166 vC1, stage 1 conf vol vC2, stage 2 conf vol VC2, stage 2 conf vol VC2, unblocked vol 970 642 1166 tC, single (s) 6.4 6.3 4.2 106
Right turn flare (veh) None None Median storage veh) Upstream signal (m) None pX, platoon unblocked vC, conflicting volume 970 642 1166 vC1, stage 1 conf vol vC2, stage 2 conf vol vC2, stage 2 conf vol vC1, stage 1 conf vol vC2, stage 2 conf vol vC1, stage 1 conf vol vC2, stage 2 conf vol vC2, stage 2 conf vol vC1, unblocked vol 970 642 1166 1166 tC, Single (s) 6.4 6.3 4.2 1166 tC, 2 stage (s) t t t t t tF (s) 3.5 3.4 2.3 D0 queue free % 30 92 84 cM capacity (veh/h) 233 453 575 Direction, Lane # WB 1 NB 1 SB 1 Volume Total 202 1166 233 Volume Left 164 0 94 Volume Right 38 1047 0 CSH 257 1700 575 Volume to Capacity 0.79 0.69
Median type None None Median storage veh) Upstream signal (m) pX, platoon unblocked vC, conflicting volume 970 642 1166 vC1, stage 1 conf vol vC2, stage 2 conf vol vC2, stage 2 conf vol vCu, unblocked vol 970 642 1166 vC2, stage 2 conf vol vCu, unblocked vol 970 642 1166 1166 tC, single (s) 6.4 6.3 4.2 1166
Median storage veh) Upstream signal (m) pX, platoon unblocked vC, conflicting volume 970 642 1166 vC1, stage 1 conf vol vC2, stage 2 conf vol vCu, unblocked vol 970 642 1166 tC, single (s) 6.4 6.3 4.2 tC, 2 stage (s) t t t tF (s) 3.5 3.4 2.3 p0 queue free % 30 92 84 cM capacity (veh/h) 233 453 575 Direction, Lane # WB 1 NB 1 SB 1 Volume Total 202 1166 233 Volume Right 38 1047 0 cSH 257 1700 575 Volume to Capacity 0.79 0.69 0.16 Queue Length 95th (m) 47.5 0.0 4.6 Control Delay (s) 56.4 0.0 6.4 Lane LOS F A A
Upstream signal (m) pX, platoon unblocked vC, conflicting volume 970 642 1166 vC1, stage 1 conf vol vC2, stage 2 conf vol vCu, unblocked vol 970 642 1166 tC, single (s) 6.4 6.3 4.2 tC, 2 stage (s) t t t tF (s) 3.5 3.4 2.3 p0 queue free % 30 92 84 cM capacity (veh/h) 233 453 575 Direction, Lane # WB 1 NB 1 SB 1 Volume Total 202 1166 233 Volume Left 164 0 94 Volume Right 38 1047 0 cSH 257 1700 575 Volume to Capacity 0.79 0.69 0.16 Queue Length 95th (m) 47.5 0.0 4.6 Control Delay (s) 56.4 0.0 6.4 Lane LOS F A A
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
vC, conflicting volume 970 642 1166 vC1, stage 1 conf vol vC2, stage 2 conf vol vCu, unblocked vol 970 642 1166 vCu, unblocked vol 970 642 1166 tC, single (s) 6.4 6.3 4.2 tC, 2 stage (s) t t t 2.3 90 92 84 cM capacity (veh/h) 233 453 575 575 Direction, Lane # WB 1 NB 1 SB 1 SB 1 Volume Total 202 1166 233 Volume Left 164 0 94 Volume Right 38 1047 0 cSH 257 1700 575 Volume to Capacity 0.79 0.69 0.16 Queue Length 95th (m) 47.5 0.0 4.6 Control Delay (s) 56.4 0.0 6.4 Lane LOS F A A
vC1, stage 1 conf vol vC2, stage 2 conf vol vCu, unblocked vol 970 642 1166 tC, single (s) 6.4 6.3 4.2 tC, 2 stage (s) 5 3.4 2.3 p0 queue free % 30 92 84 cM capacity (veh/h) 233 453 575 Direction, Lane # WB 1 NB 1 SB 1 Volume Total 202 1166 233 Volume Left 164 0 94 Volume Left 164 0 94 Volume Right 38 1047 0 cSH 257 1700 575 Volume to Capacity 0.79 0.69 0.16 Queue Length 95th (m) 47.5 0.0 4.6 Control Delay (s) 56.4 0.0 6.4 Lane LOS F A A
vC2, stage 2 conf volvCu, unblocked vol9706421166tC, single (s)6.46.34.2tC, 2 stage (s) 4.2 106tF (s)3.53.42.3p0 queue free %309284cM capacity (veh/h)233453575Direction, Lane #WB 1NB 1SB 1Volume Total2021166233Volume Left164094Volume Right3810470cSH2571700575Volume to Capacity0.790.690.16Queue Length 95th (m)47.50.04.6Control Delay (s)56.40.06.4Lane LOSFA
vCu, unblocked vol970 642 1166tC, single (s) 6.4 6.3 4.2 tC, 2 stage (s) 1166 1166 tF (s) 3.5 3.4 2.3 p0 queue free % 30 92 84 cM capacity (veh/h) 233 453 575 Direction, Lane #WB 1NB 1SB 1Volume Total 202 1166 233 Volume Left 164 0 94 Volume Right 38 1047 0 cSH 257 1700 575 Volume to Capacity 0.79 0.69 0.16 Queue Length 95th (m) 47.5 0.0 4.6 Control Delay (s) 56.4 0.0 6.4 Lane LOSFA A
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
tF (s) 3.5 3.4 2.3 p0 queue free % 30 92 84 cM capacity (veh/h) 233 453 575 Direction, Lane # WB 1 NB 1 SB 1 Volume Total 202 1166 233 Volume Left 164 0 94 Volume Right 38 1047 0 cSH 257 1700 575 Volume to Capacity 0.79 0.69 0.16 Queue Length 95th (m) 47.5 0.0 4.6 Control Delay (s) 56.4 0.0 6.4 Lane LOS F A
p0 queue free % 30 92 84 cM capacity (veh/h) 233 453 575 Direction, Lane # WB 1 NB 1 SB 1 Volume Total 202 1166 233 Volume Left 164 0 94 Volume Right 38 1047 0 cSH 257 1700 575 Volume to Capacity 0.79 0.69 0.16 Queue Length 95th (m) 47.5 0.0 4.6 Control Delay (s) 56.4 0.0 6.4 Lane LOS F A
CM capacity (veh/h) 233 453 575 Direction, Lane # WB 1 NB 1 SB 1 Volume Total 202 1166 233 Volume Left 164 0 94 Volume Right 38 1047 0 cSH 257 1700 575 Volume to Capacity 0.79 0.69 0.16 Queue Length 95th (m) 47.5 0.0 4.6 Control Delay (s) 56.4 0.0 6.4 Lane LOS F A
Direction, Lane # WB 1 NB 1 SB 1 Volume Total 202 1166 233 Volume Left 164 0 94 Volume Right 38 1047 0 cSH 257 1700 575 Volume to Capacity 0.79 0.69 0.16 Queue Length 95th (m) 47.5 0.0 4.6 Control Delay (s) 56.4 0.0 6.4 Lane LOS F A
Volume Total 202 1166 233 Volume Left 164 0 94 Volume Right 38 1047 0 cSH 257 1700 575 Volume to Capacity 0.79 0.69 0.16 Queue Length 95th (m) 47.5 0.0 4.6 Control Delay (s) 56.4 0.0 6.4 Lane LOS F A
Volume Left 164 0 94 Volume Right 38 1047 0 cSH 257 1700 575 Volume to Capacity 0.79 0.69 0.16 Queue Length 95th (m) 47.5 0.0 4.6 Control Delay (s) 56.4 0.0 6.4 Lane LOS F A
Volume Right 38 1047 0 cSH 257 1700 575 Volume to Capacity 0.79 0.69 0.16 Queue Length 95th (m) 47.5 0.0 4.6 Control Delay (s) 56.4 0.0 6.4 Lane LOS F A
cSH 257 1700 575 Volume to Capacity 0.79 0.69 0.16 Queue Length 95th (m) 47.5 0.0 4.6 Control Delay (s) 56.4 0.0 6.4 Lane LOS F A
Volume to Capacity 0.79 0.69 0.16 Queue Length 95th (m) 47.5 0.0 4.6 Control Delay (s) 56.4 0.0 6.4 Lane LOS F A
Queue Length 95th (m) 47.5 0.0 4.6 Control Delay (s) 56.4 0.0 6.4 Lane LOS F A
Control Delay (s) 56.4 0.0 6.4 Lane LOS F A
Lane LOS F A
Approach Delay (s) 56.4 0.0 6.4
Approach LOS F
Intersection Summary
Average Delay 8.0
Intersection Capacity Utilization 110.1% ICU Level of Service
Analysis Period (min) 15

	٦	\mathbf{i}	•	t	Ļ	4
Lano Group	EDI		NDI		T CDT	SBR
Lane Group	EBL	EBR	NBL	NBT	SBT	SBK
Lane Configurations	1	207	1	1150	1	4.4
Traffic Volume (vph)	22	387	45	1150	269	11
Future Volume (vph)	22	387	45	1150	269	11
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800
Lane Width (m)	3.5	3.3	3.5	3.5	3.5	3.5
Storage Length (m)	0.0	25.0	50.0			0.0
Storage Lanes	1	1	1			0
Taper Length (m)	7.5		75.0			
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.850			0.995	
Flt Protected	0.950		0.950			
Satd. Flow (prot)	1291	1395	1291	1745	1594	0
Flt Permitted	0.950		0.524			
Satd. Flow (perm)	1291	1395	712	1745	1594	0
Right Turn on Red		Yes				Yes
Satd. Flow (RTOR)		387			4	
Link Speed (k/h)	40			80	80	
Link Distance (m)	154.2			243.1	545.7	
Travel Time (s)	13.9			10.9	24.6	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles (%)	31%	6%	31%	2%	1.00	13%
Adj. Flow (vph)	22	387	45	1150	269	13 //
Shared Lane Traffic (%)	22	307	40	1150	203	11
Lane Group Flow (vph)	22	387	45	1150	280	0
,						
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Left	Left	Right
Median Width(m)	3.5			3.5	3.5	
Link Offset(m)	0.0			0.0	0.0	
Crosswalk Width(m)	4.8			4.8	4.8	
Two way Left Turn Lane						
Headway Factor	1.09	1.12	1.09	1.09	1.09	1.09
Turning Speed (k/h)	25	15	25			15
Number of Detectors	1	1	1	2	2	
Detector Template	Left	Right	Left	Thru	Thru	
Leading Detector (m)	2.0	2.0	2.0	10.0	10.0	
Trailing Detector (m)	0.0	0.0	0.0	0.0	0.0	
Detector 1 Position(m)	0.0	0.0	0.0	0.0	0.0	
Detector 1 Size(m)	2.0	2.0	2.0	0.6	0.6	
Detector 1 Type	CI+Ex	CI+Ex	CI+Ex	CI+Ex	Cl+Ex	
Detector 1 Channel						
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0	
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0	
			0.0	0.0	0.0	
Detector 1 Delay (s)	0.0	0.0	0.0			
Detector 2 Position(m)				9.4	9.4	
Detector 2 Size(m)				0.6	0.6	
Detector 2 Type				CI+Ex	Cl+Ex	
Detector 2 Channel						
Detector 2 Extend (s)				0.0	0.0	
Turn Type	Prot	Perm	pm+pt	NA	NA	


Scenario 1 2035 Future Background AM 3:13 am 12-03-2020 Baseline

	٦	\mathbf{r}	1	1	ŧ	∢
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Protected Phases	4		5	2	6	
Permitted Phases	т	4	2	2	Ū	
Detector Phase	4	4	5	2	6	
Switch Phase	-1	7	0			
Minimum Initial (s)	7.0	7.0	7.0	35.0	35.0	
Minimum Split (s)	17.8	17.8	13.0	41.6	41.6	
Total Split (s)	20.0	20.0	13.0	80.0	67.0	
Total Split (%)	20.0%	20.0%	13.0%	80.0%	67.0%	
Maximum Green (s)	13.2	13.2	7.0	73.4	60.4	
Yellow Time (s)	3.0	3.0	4.6	4.6	4.6	
All-Red Time (s)	3.8	3.8	4.0	2.0	2.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	6.8	6.8	6.0	6.6	6.6	
Lead/Lag	0.0	0.0	Lead	0.0		
Lead-Lag Optimize?			Yes		Lag Yes	
•	3.0	2.0	3.0	20	3.0	
Vehicle Extension (s) Recall Mode		3.0		3.0 Mip		
	None 5.0	None 5.0	None	Min 0.0	Min 7.0	
Walk Time (s)	5.0 6.0			0.0	7.0 21.0	
Flash Dont Walk (s)	6.0 0	6.0		0.0		
Pedestrian Calls (#/hr)	9.1	0	E7 0		0	
Act Effct Green (s)		9.1	57.2 0.72	56.6	49.7 0.62	
Actuated g/C Ratio	0.11	0.11		0.71		
v/c Ratio	0.15	0.77	0.08	0.93	0.28	
Control Delay	39.9	15.9	3.5	24.4	8.8	
Queue Delay	0.0	0.0	0.0	0.1	0.0	
Total Delay	39.9	15.9	3.5	24.5	8.8	
LOS	D	В	А	C	A	
Approach Delay	17.2			23.7	8.8	
Approach LOS	В	~ ~		C	A	
Queue Length 50th (m)	3.2	0.0	1.4	108.2	20.4	
Queue Length 95th (m)	11.5	#32.0	4.8	#297.4	39.5	
Internal Link Dist (m)	130.2			219.1	521.7	
Turn Bay Length (m)		25.0	50.0		10=0	
Base Capacity (vph)	224	562	563	1541	1272	
Starvation Cap Reductn	0	0	0	30	0	
Spillback Cap Reductn	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	
Reduced v/c Ratio	0.10	0.69	0.08	0.76	0.22	
Intersection Summary						
Area Type:	Other					
Cycle Length: 100						
Actuated Cycle Length: 79.	.8					
Natural Cycle: 90						
Control Type: Semi Act-Un	coord					
Maximum v/c Ratio: 0.93						
Intersection Signal Delay: 2	20.1			Ir	ntersection	LOS: C
Intersection Capacity Utilization						f Service D
	00.570					

Scenario 1 2035 Future Background AM 3:13 am 12-03-2020 Baseline

95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

Splits and Phases: 2: Boundary Road & Hwy 417 EB Ramp Terminal

Lane Group EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL SB Lane Configurations Image: Apple of the second s	
Traffic Volume (vph) 42 20 5 4 7 31 7 1123 36 236 35	67
Future Volume (vph) 42 20 5 4 7 31 7 1123 36 236 35	67
Ideal Flow (vphpl) 1800 1800 1800 1800 1800 1800 1800 180	1800
Lane Width (m) 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.3 3.5 3.3 3.3	3.5
Storage Length (m) 0.0 0.0 0.0 0.0 0.0 35.0 7.5 100.0	0.0
Storage Lanes 0 0 0 1 1 1 1	0
Taper Length (m) 7.5 7.5 45.0 75.0	
Lane Util. Factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	1.00
Frt 0.990 0.850 0.850 0.97	
Flt Protected 0.970 0.982 0.950 0.950	
Satd. Flow (prot) 0 1618 0 0 1748 1513 1378 1728 1479 1653 152	0
Flt Permitted 0.803 0.868 0.517 0.066	
Satd. Flow (perm) 0 1340 0 0 1545 1513 750 1728 1479 115 152	0
Right Turn on Red Yes Yes Yes	Yes
Satd. Flow (RTOR) 4 100 96 2	
Link Speed (k/h) 60 20 80 8	
Link Distance (m) 642.8 170.6 174.7 243.	
Travel Time (s) 38.6 30.7 7.9 10.	
Peak Hour Factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	1.00
Heavy Vehicles (%) 6% 0% 25% 0% 0% 0% 20% 3% 0% 0% 15%	8%
Adj. Flow (vph) 42 20 5 4 7 31 7 1123 36 236 35	67
Shared Lane Traffic (%)	
Lane Group Flow (vph) 0 67 0 0 11 31 7 1123 36 236 41	0
Enter Blocked Intersection No	No
Lane Alignment Left Left Right Left Left Right Left Right Left Le	Right
Median Width(m) 0.0 0.0 3.5 3.	
Link Offset(m) 0.0 0.0 0.0 0.	
Crosswalk Width(m) 4.8 4.8 4.8 4.	
Two way Left Turn Lane	
Headway Factor 1.09 1.09 1.09 1.09 1.09 1.09 1.12 1.09 1.12 1.12 1.0	
Turning Speed (k/h) 25 15 25 15 25 15 25	15
Number of Detectors 1 2 1 2 1 2 1 1 2 1 1 2 1	
Detector Template Left Thru Left Thru Right Left Thru Right Left Thr	
Leading Detector (m) 2.0 10.0 2.0 10.0 2.0 2.0 10.0 2.0 2.0 10.0 2.0 10.0 2.0 10.0 2.0 10.0 2.0 2.0 2.0 10.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	
Trailing Detector (m) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	
Detector 1 Position(m) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	
Detector 1 Size(m) 2.0 0.6 2.0 0.6 2.0 2.0 0.6 2.0 2.0 0.	
Detector 1 Type CI+Ex CI	
Detector 1 Channel	
Detector 1 Extend (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	
Detector 1 Queue (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	
Detector 1 Delay (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	
Detector 2 Position(m) 9.4 9.4 9.4 9.	
Detector 2 Size(m) 0.6 0.6 0.6 0.	
Detector 2 Type CI+Ex CI+Ex CI+Ex CI+E	
Detector 2 Channel	
Detector 2 Extend (s) 0.0 0.0 0.0 0.	
Turn Type Perm NA Perm NA Perm Perm NA Perm pm+pt N	

Scenario 1 2035 Future Background AM 3:13 am 12-03-2020 Baseline

	۶	-	\mathbf{F}	4	+	•	•	Ť	1	1	Ļ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Protected Phases		4			8			2		1	6	
Permitted Phases	4			8		8	2		2	6		
Detector Phase	4	4		8	8	8	2	2	2	1	6	
Switch Phase												
Minimum Initial (s)	7.0	7.0		7.0	7.0	7.0	20.0	20.0	20.0	7.0	20.0	
Minimum Split (s)	24.8	24.8		24.8	24.8	24.8	26.2	26.2	26.2	13.0	26.2	
Total Split (s)	24.8	24.8		24.8	24.8	24.8	60.5	60.5	60.5	14.7	75.2	
Total Split (%)	24.8%	24.8%		24.8%	24.8%	24.8%	60.5%	60.5%	60.5%	14.7%	75.2%	
Maximum Green (s)	19.0	19.0		19.0	19.0	19.0	54.3	54.3	54.3	8.7	69.0	
Yellow Time (s)	3.7	3.7		3.7	3.7	3.7	4.6	4.6	4.6	4.6	4.6	
All-Red Time (s)	2.1	2.1		2.1	2.1	2.1	1.6	1.6	1.6	1.4	1.6	
Lost Time Adjust (s)		0.0			0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)		5.8			5.8	5.8	6.2	6.2	6.2	6.0	6.2	
Lead/Lag							Lag	Lag	Lag	Lead		
Lead-Lag Optimize?							Yes	Yes	Yes	Yes		
Vehicle Extension (s)	3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	
Recall Mode	None	None		None	None	None	Min	Min	Min	None	Min	
Walk Time (s)	7.0	7.0		7.0	7.0	7.0	7.0	7.0	7.0		7.0	
Flash Dont Walk (s)	12.0	12.0		12.0	12.0	12.0	10.0	10.0	10.0		10.0	
Pedestrian Calls (#/hr)	0	0		0	0	0	0	0	0		0	
Act Effct Green (s)		9.8			9.8	9.8	54.7	54.7	54.7	69.7	71.0	
Actuated g/C Ratio		0.11			0.11	0.11	0.62	0.62	0.62	0.79	0.80	
v/c Ratio		0.44			0.06	0.12	0.02	1.05	0.04	0.97	0.34	
Control Delay		45.3			36.5	1.0	8.6	62.6	0.1	77.2	4.3	
Queue Delay		0.0			0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay		45.3			36.5	1.0	8.6	62.6	0.1	77.2	4.3	
LOS		D			D	А	А	E	А	E	А	
Approach Delay		45.3			10.3			60.4			30.6	
Approach LOS		D			В		<u> </u>	E			С	
Queue Length 50th (m)		11.0			1.9	0.0	0.5	~232.6	0.0	~28.4	18.6	
Queue Length 95th (m)		24.2			7.0	0.0	2.5	#332.7	0.0	#83.1	37.7	
Internal Link Dist (m)		618.8			146.6		07.0	150.7		400.0	219.1	_
Turn Bay Length (m)						40-	35.0	4000	7.5	100.0	1000	
Base Capacity (vph)		293			334	405	464	1068	951	243	1229	
Starvation Cap Reductn		0			0	0	0	0	0	0	0	
Spillback Cap Reductn		0			0	0	0	0	0	0	0	
Storage Cap Reductn		0			0	0	0	0	0	0	0	
Reduced v/c Ratio		0.23			0.03	0.08	0.02	1.05	0.04	0.97	0.34	
Intersection Summary	011											
Area Type:	Other											
Cycle Length: 100												
Actuated Cycle Length: 88.4	4											
Natural Cycle: 150	aard											
Control Type: Semi Act-Uno	coora											
Maximum v/c Ratio: 1.05	0 7			1.	toro e eti -							
Intersection Signal Delay: 4)/			ntersectio							
Intersection Capacity Utiliza	auon 101.75	/0		10	CU Level	of Service	e G					
Analysis Period (min) 15												

Scenario 1 2035 Future Background AM 3:13 am 12-03-2020 Baseline

Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.Queue shown is maximum after two cycles.

Splits and Phases: 3: Boundary Road & Thunder Road/Amazon Way

Ø1	1 mg2	_{Ø4}
14.7 s	60.5 s	24.8 s
Ø6		◆ Ø8
75.2 s		24.8 s

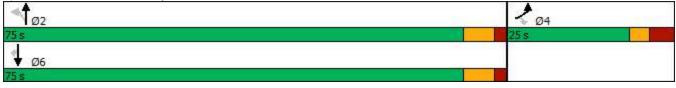
	4	•	1	1	1	Ļ
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Y		et		ľ	•
Traffic Volume (vph)	7	4	1162	7	1	360
Future Volume (vph)	7	4	1162	7	1	360
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800
Lane Width (m)	3.6	3.6	3.5	3.5	3.5	3.5
Storage Length (m)	0.0	0.0		0.0	70.0	
Storage Lanes	1	0		0	1	
Taper Length (m)	7.5				45.0	
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Frt	0.951		0.999			
Flt Protected	0.969				0.950	
Satd. Flow (prot)	829	0	1750	0	846	1589
Flt Permitted	0.969				0.950	
Satd. Flow (perm)	829	0	1750	0	846	1589
Link Speed (k/h)	20		80			80
Link Distance (m)	151.5		1150.2			174.7
Travel Time (s)	27.3		51.8			7.9
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles (%)	100%	100%	1%	100%	100%	12%
Adj. Flow (vph)	7	4	1162	7	1	360
Shared Lane Traffic (%)						
Lane Group Flow (vph)	11	0	1169	0	1	360
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Right	Left	Left
Median Width(m)	3.6		3.5			3.5
Link Offset(m)	0.0		0.0			0.0
Crosswalk Width(m)	4.8		4.8			4.8
Two way Left Turn Lane						
Headway Factor	1.07	1.07	1.09	1.09	1.09	1.09
Turning Speed (k/h)	25	15		15	25	
Sign Control	Stop		Free			Free
Intersection Summary						
	Other					
Control Type: Unsignalized						
Intersection Capacity Utilization	tion 75.0%			IC	CU Level	of Service D
Analysis Period (min) 15						

	4	•	Ť	1	1	ŧ	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	Y		4Î		5	†	
Traffic Volume (veh/h)	7	4	1162	7	1	360	
Future Volume (Veh/h)	7	4	1162	7	1	360	
Sign Control	Stop		Free			Free	
Grade	0%		0%			0%	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Hourly flow rate (vph)	7	4	1162	7	1	360	
Pedestrians							
Lane Width (m)							
Walking Speed (m/s)							
Percent Blockage							
Right turn flare (veh)							
Median type			None			None	
Median storage veh)							
Upstream signal (m)						175	
pX, platoon unblocked	0.95						
vC, conflicting volume	1528	1166			1169		
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol	1529	1166			1169		
tC, single (s)	7.4	7.2			5.1		
tC, 2 stage (s)							
tF (s)	4.4	4.2			3.1		
p0 queue free %	91	97			100		
cM capacity (veh/h)	74	152			352		
		NB 1	SB 1	SB 2			
Direction, Lane #	WB 1						
Volume Total	11	1169	1	360			
Volume Left	7	0	1	0			
Volume Right	4	7	0	0			
cSH	91	1700	352	1700			
Volume to Capacity	0.12	0.69	0.00	0.21			
Queue Length 95th (m)	3.2	0.0	0.1	0.0			
Control Delay (s)	49.8	0.0	15.3	0.0			
Lane LOS	E		С				
Approach Delay (s)	49.8	0.0	0.0				
Approach LOS	E						
Intersection Summary							
Average Delay			0.4				
Intersection Capacity Utiliza	ation		75.0%	IC	U Level o	of Service	
Analysis Period (min)			15				

	≯	\mathbf{r}	1	Ť	Ļ	-
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	ሻ	1		ર્શ	1	1
Traffic Volume (vph)	96	36	163	1056	152	130
Future Volume (vph)	96	36	163	1056	152	130
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800
Lane Width (m)	3.3	3.3	3.5	3.5	3.5	3.5
Storage Length (m)	25.0	0.0	0.0			30.0
Storage Lanes	1	1	0			1
Taper Length (m)	47.5		7.5			
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.850				0.850
Flt Protected	0.950			0.993		
Satd. Flow (prot)	1476	1286	0	1734	1561	1293
Flt Permitted	0.950			0.993		
Satd. Flow (perm)	1476	1286	0	1734	1561	1293
Link Speed (k/h)	80			80	80	
Link Distance (m)	180.5			135.8	1150.2	
Travel Time (s)	8.1			6.1	51.8	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles (%)	12%	15%	8%	1%	14%	17%
Adj. Flow (vph)	96	36	163	1056	152	130
Shared Lane Traffic (%)						
Lane Group Flow (vph)	96	36	0	1219	152	130
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Left	Left	Right
Median Width(m)	3.3	_		0.0	0.0	-
Link Offset(m)	0.0			0.0	0.0	
Crosswalk Width(m)	4.8			4.8	4.8	
Two way Left Turn Lane						
Headway Factor	1.12	1.12	1.09	1.09	1.09	1.09
Turning Speed (k/h)	25	15	25			15
Sign Control	Stop			Free	Free	
Intersection Summary						
Area Type:	Other					
Control Type: Unsignalized						
Intersection Capacity Utilizat	tion 92.2%			10	CU Level	of Service
Analysis Period (min) 15						

	۶	*	~	1	ţ	~
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	۲	1		र्स	1	1
Traffic Volume (veh/h)	96	36	163	1056	152	130
Future Volume (Veh/h)	96	36	163	1056	152	130
Sign Control	Stop			Free	Free	
Grade	0%			0%	0%	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00
Hourly flow rate (vph)	96	36	163	1056	152	130
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type				None	None	
Median storage veh)						
Upstream signal (m)						
pX, platoon unblocked						
vC, conflicting volume	1534	152	282			
vC1, stage 1 conf vol	1004	152	202			
vC2, stage 2 conf vol						
vCu, unblocked vol	1534	152	282			
tC, single (s)	6.5	6.4	4.2			
tC, 2 stage (s)	0.0	0.4	4.Z			
tF (s)	3.6	3.4	2.3			
p0 queue free %	3.0 9	3.4 96	2.3 87			
	9 106	90 861	07 1247			
cM capacity (veh/h)						
Direction, Lane #	EB 1	EB 2	NB 1	SB 1	SB 2	
Volume Total	96	36	1219	152	130	
Volume Left	96	0	163	0	0	
Volume Right	0	36	0	0	130	
cSH	106	861	1247	1700	1700	
Volume to Capacity	0.91	0.04	0.13	0.09	0.08	
Queue Length 95th (m)	43.5	1.0	3.6	0.0	0.0	
Control Delay (s)	138.6	9.4	3.6	0.0	0.0	
Lane LOS	F	А	А			
Approach Delay (s)	103.4		3.6	0.0		
Approach LOS	F					
Intersection Summary						
Average Delay			11.0			
Intersection Capacity Utiliza	ation		92.2%	IC	CU Level c	of Service
Analysis Period (min)	auon		15			
			10			

	≯	\mathbf{r}	1	1	ţ	-
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	<u> </u>	1	<u>م</u>	1	<u>+</u>	1
Traffic Volume (vph)	96	36	163	1056	152	130
Future Volume (vph)	90	36	163	1056	152	130
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800
Lane Width (m)	3.3	3.3	3.5	3.5	3.5	3.5
	25.0	0.0	15.0	3.5	5.5	30.0
Storage Length (m)						
Storage Lanes	1	1	1			1
Taper Length (m)	47.5	4.00	100.0	4.00	4.00	4.00
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.850				0.850
Flt Protected	0.950		0.950			
Satd. Flow (prot)	1476	1286	1566	1762	1561	1293
Flt Permitted	0.950		0.660			
Satd. Flow (perm)	1476	1286	1088	1762	1561	1293
Right Turn on Red		Yes				Yes
Satd. Flow (RTOR)		36				130
Link Speed (k/h)	80			80	80	
Link Distance (m)	180.5			135.8	1150.2	
Travel Time (s)	8.1			6.1	51.8	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles (%)	12%	15%	8%	1%	14%	1.00
Adj. Flow (vph)	96	36	163	1056	14 /0	130
	90	30	105	1050	192	130
Shared Lane Traffic (%)	00	20	400	4050	450	400
Lane Group Flow (vph)	96	36	163	1056	152	130
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Left	Left	Right
Median Width(m)	3.3			3.5	3.5	
Link Offset(m)	0.0			0.0	0.0	
Crosswalk Width(m)	4.8			4.8	4.8	
Two way Left Turn Lane						
Headway Factor	1.12	1.12	1.09	1.09	1.09	1.09
Turning Speed (k/h)	25	15	25			15
Number of Detectors	1	1	1	2	2	1
Detector Template	Left	Right	Left	Thru	Thru	Right
Leading Detector (m)	2.0	2.0	2.0	10.0	10.0	2.0
Trailing Detector (m)	0.0	0.0	0.0	0.0	0.0	0.0
3	0.0		0.0	0.0		0.0
Detector 1 Position(m)		0.0			0.0	
Detector 1 Size(m)	2.0	2.0	2.0	0.6	0.6	2.0
Detector 1 Type	Cl+Ex	Cl+Ex	Cl+Ex	CI+Ex	Cl+Ex	CI+Ex
Detector 1 Channel						
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0	0.0
Detector 2 Position(m)				9.4	9.4	
Detector 2 Size(m)				0.6	0.6	
Detector 2 Type				CI+Ex	Cl+Ex	
Detector 2 Channel						
Detector 2 Extend (s)				0.0	0.0	
Turn Type	Prot	Perm	Perm	NA	NA	Perm
	1101					


Scenario 1 2035 Future Background AM - Signal Test 3:13 am 12-03-2020 Baseline

	٨	\mathbf{i}	•	1	ţ	~
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Protected Phases	4			2	6	
Permitted Phases		4	2	-	Ŭ	6
Detector Phase	4	4	2	2	6	6
Switch Phase	•		-	_		•
Minimum Initial (s)	7.0	7.0	35.0	35.0	35.0	35.0
Minimum Split (s)	24.8	24.8	41.6	41.6	41.6	41.6
Total Split (s)	25.0	25.0	75.0	75.0	75.0	75.0
Total Split (%)	25.0%	25.0%	75.0%	75.0%	75.0%	75.0%
Maximum Green (s)	18.2	18.2	68.4	68.4	68.4	68.4
Yellow Time (s)	3.0	3.0	4.6	4.6	4.6	4.6
All-Red Time (s)	3.8	3.8	2.0	2.0	2.0	2.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	6.8	6.8	6.6	6.6	6.6	6.6
Lead/Lag	0.0	0.0	0.0	0.0	0.0	0.0
Lead-Lag Optimize?						
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0
Recall Mode	None	None	Min	Min	Min	Min
Walk Time (s)	7.0	7.0	7.0	7.0	7.0	7.0
Flash Dont Walk (s)	11.0	11.0	11.0	11.0	11.0	11.0
Pedestrian Calls (#/hr)	0	0	0	0.11	0	0
Act Effct Green (s)	11.1	11.1	58.4	58.4	58.4	58.4
Actuated g/C Ratio	0.14	0.14	0.75	0.75	0.75	0.75
v/c Ratio	0.14	0.14	0.75	0.75	0.75	0.75
Control Delay	42.0	14.3	5.4	15.5	4.7	1.2
Queue Delay	42.0	0.0	0.0	0.0	4.7	0.0
	42.0	14.3	0.0 5.4	15.5	0.0 4.7	0.0 1.2
Total Delay LOS						
	D	В	А	B	A	А
Approach Delay	34.5			14.2	3.1	
Approach LOS	C	0.0	7.0	B	A	0.0
Queue Length 50th (m)	13.7	0.0	7.8	107.6	6.9	0.0
Queue Length 95th (m)	33.5	8.8	18.3	#232.9	15.7	5.2
Internal Link Dist (m)	156.5		4 = 0	111.8	1126.2	00.0
Turn Bay Length (m)	25.0		15.0	1=10	10.10	30.0
Base Capacity (vph)	362	342	936	1516	1343	1131
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.27	0.11	0.17	0.70	0.11	0.11
Intersection Summary	0"					
Area Type:	Other					
Cycle Length: 100						
Actuated Cycle Length: 77	7.9					
Natural Cycle: 90						
Control Type: Semi Act-U	ncoord					
Maximum v/c Ratio: 0.80						
Intersection Signal Delay:					ntersectio	
Intersection Capacity Utiliz	zation 80.8%			[(CU Level	of Service
Analysis Period (min) 15						
,						

Scenario 1 2035 Future Background AM - Signal Test 3:13 am 12-03-2020 Baseline

95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

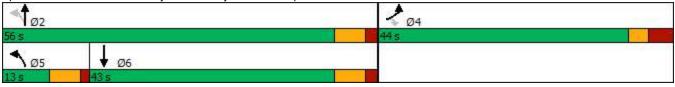
Splits and Phases: 5: Boundary Road & Mitch Owens Road

-	4	×	1	1	1	ţ	
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	Y		eî 👘			4	
Traffic Volume (vph)	63	1	191	375	30	149	
Future Volume (vph)	63	1	191	375	30	149	
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	
Lane Width (m)	4.5	4.5	3.5	3.5	3.5	3.5	
Storage Length (m)	0.0	10.0		0.0	0.0		
Storage Lanes	1	0		0	0		
Taper Length (m)	7.5				7.5		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Frt	0.998		0.911				
Flt Protected	0.953					0.992	
Satd. Flow (prot)	1586	0	1559	0	0	1630	
Flt Permitted	0.953					0.992	
Satd. Flow (perm)	1586	0	1559	0	0	1630	
Link Speed (k/h)	40		80			80	
Link Distance (m)	155.0		545.7			134.1	
Travel Time (s)	14.0		24.6			6.0	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Heavy Vehicles (%)	19%	0%	6%	3%	5%	9%	
Adj. Flow (vph)	63	1	191	375	30	149	
Shared Lane Traffic (%)							
Lane Group Flow (vph)	64	0	566	0	0	179	
Enter Blocked Intersection	No	No	No	No	No	No	
Lane Alignment	Left	Right	Left	Right	Left	Left	
Median Width(m)	4.5		0.0			0.0	
Link Offset(m)	0.0		0.0			0.0	
Crosswalk Width(m)	4.8		4.8			4.8	
Two way Left Turn Lane							
Headway Factor	0.95	0.95	1.09	1.09	1.09	1.09	
Turning Speed (k/h)	25	15		15	25		
Sign Control	Stop		Free			Free	
Intersection Summary							
51	Other						
Control Type: Unsignalized							
Intersection Capacity Utilization	tion 45.8%			IC	U Level of	of Service /	А
Analysis Period (min) 15							

	4	×	t	~	1	ţ
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Y		ef.		002	<u>्र</u>
Traffic Volume (veh/h)	63	1	191	375	30	149
Future Volume (Veh/h)	63	1	191	375	30	149
Sign Control	Stop		Free	010	00	Free
Grade	0%		0%			0%
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00
Hourly flow rate (vph)	63	1.00	191	375	30	149
Pedestrians	00		101	010	00	1 TU
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type			None			None
Median storage veh)						NULLE
Upstream signal (m)						
pX, platoon unblocked						
vC, conflicting volume	588	378			566	
vC1, stage 1 conf vol	500	570			500	
vC2, stage 2 conf vol						
vCu, unblocked vol	588	378			566	
tC, single (s)	500 6.6	6.2			4.1	
	0.0	0.2			4.1	
tC, 2 stage (s) tF (s)	3.7	3.3			2.2	
	85	100			2.2 97	
p0 queue free %	431	673			97 991	
cM capacity (veh/h)	431	0/3			991	
Direction, Lane #	WB 1	NB 1	SB 1			
Volume Total	64	566	179			
Volume Left	63	0	30			
Volume Right	1	375	0			
cSH	434	1700	991			
Volume to Capacity	0.15	0.33	0.03			
Queue Length 95th (m)	4.1	0.0	0.7			
Control Delay (s)	14.7	0.0	1.7			
Lane LOS	В		А			
Approach Delay (s)	14.7	0.0	1.7			
Approach LOS	В					
Intersection Summary						
Average Delay			1.5			
Intersection Capacity Utilizat	tion		45.8%	IC	Ulevelo	of Service
Analysis Period (min)			15	10		
			15			

	≯	\mathbf{i}	•	t	ţ	4
Lano Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Group						SBK
Lane Configurations	1	1	109	254	1	00
Traffic Volume (vph)	94	895	198	354	263	20
Future Volume (vph)	94	895	198	354	263	20
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800
Lane Width (m)	3.5	3.3	3.5	3.5	3.5	3.5
Storage Length (m)	0.0	25.0	50.0			0.0
Storage Lanes	1	1	1			0
Taper Length (m)	7.5		75.0			
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.850			0.990	
Flt Protected	0.950		0.950			
Satd. Flow (prot)	1551	1436	1537	1664	1592	0
Flt Permitted	0.950		0.425			
Satd. Flow (perm)	1551	1436	688	1664	1592	0
Right Turn on Red		Yes				Yes
Satd. Flow (RTOR)		536			4	
Link Speed (k/h)	40	000		80	80	
Link Distance (m)	154.2			243.1	545.7	
Travel Time (s)	134.2			10.9	24.6	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles (%)	9%	3%	1.00	7%	1.00	7%
Adj. Flow (vph)	94	895	198	354	263	20
Shared Lane Traffic (%)	0.4	005	400	054	000	•
Lane Group Flow (vph)	94	895	198	354	283	0
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Left	Left	Right
Median Width(m)	3.5			3.5	3.5	
Link Offset(m)	0.0			0.0	0.0	
Crosswalk Width(m)	4.8			4.8	4.8	
Two way Left Turn Lane						
Headway Factor	1.09	1.12	1.09	1.09	1.09	1.09
Turning Speed (k/h)	25	15	25			15
Number of Detectors	1	1	1	2	2	
Detector Template	Left	Right	Left	Thru	Thru	
Leading Detector (m)	2.0	2.0	2.0	10.0	10.0	
Trailing Detector (m)	0.0	0.0	0.0	0.0	0.0	
Detector 1 Position(m)	0.0	0.0	0.0	0.0	0.0	
	2.0	2.0	2.0	0.0	0.0	
Detector 1 Size(m)						
Detector 1 Type	CI+Ex	CI+Ex	Cl+Ex	CI+Ex	CI+Ex	
Detector 1 Channel	0.0	0.0	0.0	0.0	~ ~ ~	
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0	
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0	
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0	
Detector 2 Position(m)				9.4	9.4	
Detector 2 Size(m)				0.6	0.6	
Detector 2 Type				CI+Ex	Cl+Ex	
Detector 2 Channel						
Detector 2 Extend (s)				0.0	0.0	
Turn Type	Prot	Perm	pm+pt	NA	NA	
	1101		hunhr	11/4		

Scenario 1 2035 Future Background PM 3:13 am 12-03-2020 Baseline


	٦	\mathbf{i}	1	t	Ļ	~
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Protected Phases	4		5	2	6	
Permitted Phases		4	2	-	v	
Detector Phase	4	4	5	2	6	
Switch Phase						
Minimum Initial (s)	7.0	7.0	7.0	35.0	35.0	
Minimum Split (s)	23.0	23.0	13.0	41.6	41.6	
Total Split (s)	44.0	44.0	13.0	56.0	43.0	
Total Split (%)	44.0%	44.0%	13.0%	56.0%	43.0%	
Maximum Green (s)	37.2	37.2	7.0	49.4	36.4	
Yellow Time (s)	3.0	3.0	4.6	4.6	4.6	
All-Red Time (s)	3.8	3.8	1.4	2.0	2.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	6.8	6.8	6.0	6.6	6.6	
Lead/Lag			Lead		Lag	
Lead-Lag Optimize?			Yes		Yes	
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	
Recall Mode	None	None	None	Min	Min	
Walk Time (s)	7.0	7.0		0.0	7.0	
Flash Dont Walk (s)	5.0	5.0		0.0	21.0	
Pedestrian Calls (#/hr)	0	0		0	0	
Act Effct Green (s)	37.2	37.2	48.6	48.0	35.0	
Actuated g/C Ratio	0.38	0.38	0.49	0.49	0.35	
v/c Ratio	0.16	1.02	0.50	0.44	0.50	
Control Delay	21.3	50.4	19.8	18.6	28.3	
Queue Delay	0.0	0.0	0.0	0.0	0.0	
Total Delay	21.3	50.4	19.8	18.6	28.3	
LOS	С	D	В	В	С	
Approach Delay	47.6			19.0	28.3	
Approach LOS	D			В	С	
Queue Length 50th (m)	12.3	~119.4	22.3	44.6	43.4	
Queue Length 95th (m)	23.7	#195.8	37.1	68.2	68.8	
Internal Link Dist (m)	130.2			219.1	521.7	
Turn Bay Length (m)		25.0	50.0			
Base Capacity (vph)	585	875	399	833	590	
Starvation Cap Reductn	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	
Reduced v/c Ratio	0.16	1.02	0.50	0.42	0.48	
Intersection Summary						
Area Type:	Other					
Cycle Length: 100						
Actuated Cycle Length: 98	3.6					
Natural Cycle: 100						
Control Type: Semi Act-U	ncoord					
Maximum v/c Ratio: 1.02						
Intersection Signal Delay:	36.0				ntersectior	
Intersection Capacity Utiliz	zation 98.8%			10	CU Level o	of Service F
Analysis Period (min) 15						

Scenario 1 2035 Future Background PM 3:13 am 12-03-2020 Baseline

Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

Splits and Phases: 2: Boundary Road & Hwy 417 EB Ramp Terminal

Lanes, Volumes, Timings 3: Boundary Road & Thunder Road/Amazon Way

	٦	-	\mathbf{F}	4	+	*	•	t	۲	1	Ļ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			र्भ	1	٦	•	1	۲.	eî 👘	
Traffic Volume (vph)	83	0	19	7	Ō	22	5	446	0	3	1081	74
Future Volume (vph)	83	0	19	7	0	22	5	446	0	3	1081	74
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Lane Width (m)	3.5	3.5	3.5	3.5	3.5	3.5	3.3	3.5	3.3	3.3	3.5	3.5
Storage Length (m)	0.0		0.0	0.0		0.0	35.0		7.5	100.0		0.0
Storage Lanes	0		0	0		1	1		1	1		0
Taper Length (m)	7.5			7.5			45.0			75.0		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.975				0.850					0.990	
Flt Protected		0.961			0.950		0.950			0.950		
Satd. Flow (prot)	0	1590	0	0	1208	1513	1322	1633	1740	1102	1699	0
Flt Permitted		0.761			0.785		0.183			0.446		
Satd. Flow (perm)	0	1259	0	0	998	1513	255	1633	1740	517	1699	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		100				100					8	
Link Speed (k/h)		60			20			80			80	
Link Distance (m)		642.8			170.6			174.7			243.1	
Travel Time (s)		38.6			30.7			7.9			10.9	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles (%)	6%	0%	0%	40%	0%	0%	25%	9%	0%	50%	4%	0%
Adj. Flow (vph)	83	0	19	7	0	22	5	446	0	3	1081	74
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	102	0	0	7	22	5	446	0	3	1155	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)		0.0	J		0.0	J		3.5	J		3.5	Ū
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		4.8			4.8			4.8			4.8	
Two way Left Turn Lane												
Headway Factor	1.09	1.09	1.09	1.09	1.09	1.09	1.12	1.09	1.12	1.12	1.09	1.09
Turning Speed (k/h)	25		15	25		15	25		15	25		15
Number of Detectors	1	2		1	2	1	1	2	1	1	2	
Detector Template	Left	Thru		Left	Thru	Right	Left	Thru	Right	Left	Thru	
Leading Detector (m)	2.0	10.0		2.0	10.0	2.0	2.0	10.0	2.0	2.0	10.0	
Trailing Detector (m)	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Detector 1 Position(m)	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Detector 1 Size(m)	2.0	0.6		2.0	0.6	2.0	2.0	0.6	2.0	2.0	0.6	
Detector 1 Type	Cl+Ex	Cl+Ex		Cl+Ex	Cl+Ex	Cl+Ex	Cl+Ex	Cl+Ex	Cl+Ex	Cl+Ex	CI+Ex	
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Detector 1 Queue (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Detector 1 Delay (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Detector 2 Position(m)		9.4			9.4			9.4			9.4	
Detector 2 Size(m)		0.6			0.6			0.6			0.6	
Detector 2 Type		Cl+Ex			Cl+Ex			Cl+Ex			CI+Ex	
Detector 2 Channel		<u>-</u> /			<u>-</u> /			<u>.</u> . <u>_</u> ~			<u>-</u> /	
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
Turn Type	Perm	NA		Perm	NA	Perm	Perm	NA	Perm	pm+pt	NA	
										P Pr		

Scenario 1 2035 Future Background PM 3:13 am 12-03-2020 Baseline

Lanes, Volumes, Timings 3: Boundary Road & Thunder Road/Amazon Way

	≯	-	\mathbf{F}	4	+	•	1	Ť	1	1	Ļ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Protected Phases		4			8			2		1	6	
Permitted Phases	4			8		8	2		2	6		
Detector Phase	4	4		8	8	8	2	2	2	1	6	
Switch Phase												
Minimum Initial (s)	7.0	7.0		7.0	7.0	7.0	20.0	20.0	20.0	7.0	20.0	
Minimum Split (s)	24.8	24.8		24.8	24.8	24.8	26.2	26.2	26.2	13.0	26.2	
Total Split (s)	24.8	24.8		24.8	24.8	24.8	62.2	62.2	62.2	13.0	75.2	
Total Split (%)	24.8%	24.8%		24.8%	24.8%	24.8%	62.2%	62.2%	62.2%	13.0%	75.2%	
Maximum Green (s)	19.0	19.0		19.0	19.0	19.0	56.0	56.0	56.0	7.0	69.0	
Yellow Time (s)	3.7	3.7		3.7	3.7	3.7	4.6	4.6	4.6	4.6	4.6	
All-Red Time (s)	2.1	2.1		2.1	2.1	2.1	1.6	1.6	1.6	1.4	1.6	
Lost Time Adjust (s)		0.0			0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)		5.8			5.8	5.8	6.2	6.2	6.2	6.0	6.2	
Lead/Lag							Lag	Lag	Lag	Lead		
Lead-Lag Optimize?							Yes	Yes	Yes	Yes		
Vehicle Extension (s)	3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	
Recall Mode	None	None		None	None	None	Min	Min	Min	None	Min	
Walk Time (s)	7.0	7.0		7.0	7.0	7.0	7.0	7.0	7.0		7.0	
Flash Dont Walk (s)	12.0	12.0		12.0	12.0	12.0	10.0	10.0	10.0		10.0	
Pedestrian Calls (#/hr)	0	0		0	0	0	0	0	0		0	
Act Effct Green (s)		8.2			8.2	8.2	66.7	66.7		67.5	69.0	
Actuated g/C Ratio		0.10			0.10	0.10	0.79	0.79		0.80	0.82	
v/c Ratio		0.48			0.07	0.09	0.02	0.35		0.01	0.83	
Control Delay		16.9			38.3	0.8	5.8	5.8		2.7	14.3	
Queue Delay		0.0			0.0	0.0	0.0	0.0		0.0	0.7	
Total Delay		16.9			38.3	0.8	5.8	5.8		2.7	15.0	_
LOS		В			D	А	А	Α		А	В	
Approach Delay		16.9			9.8			5.8			14.9	_
Approach LOS		В			A	0.0	0.4	A		0.4	B	
Queue Length 50th (m)		0.3			1.2	0.0	0.1	17.8		0.1	103.5	_
Queue Length 95th (m)		15.2			5.3	0.0	1.9	64.0		0.8	#284.0	
Internal Link Dist (m)		618.8			146.6		05.0	150.7		400.0	219.1	
Turn Bay Length (m)		007			000	400	35.0	4000		100.0	4000	
Base Capacity (vph)		367			230	426	197	1263		463	1392	
Starvation Cap Reductn		0			0	0	0	0		0	60	
Spillback Cap Reductn		0			0	0	0	0		0	0	
Storage Cap Reductn		0			0	0	0	0		0	0	
Reduced v/c Ratio		0.28			0.03	0.05	0.03	0.35		0.01	0.87	
Intersection Summary Area Type:	Other											
Cycle Length: 100	Other											
Actuated Cycle Length: 84.	3											
Natural Cycle: 90	5											
Control Type: Semi Act-Un	coord											
Maximum v/c Ratio: 0.83												
Intersection Signal Delay: 1	26			1,	ntersectio							
Intersection Capacity Utiliza					CU Level		۶F					
Analysis Period (min) 15	adon 07.070			- I								

Scenario 1 2035 Future Background PM 3:13 am 12-03-2020 Baseline

95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

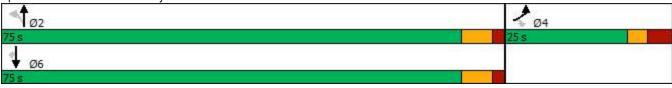
Splits and Phases: 3: Boundary Road & Thunder Road/Amazon Way

	4	•	1	1	1	Ļ
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Υ		4		٦	†
Traffic Volume (vph)	7	15	436	7	16	1090
Future Volume (vph)	7	15	436	7	16	1090
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800
Lane Width (m)	3.6	3.6	3.5	3.5	3.5	3.5
Storage Length (m)	0.0	0.0		0.0	70.0	
Storage Lanes	1	0		0	1	
Taper Length (m)	7.5				45.0	
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Frt	0.908		0.998			
Flt Protected	0.984				0.950	
Satd. Flow (prot)	804	0	1668	0	846	1745
Flt Permitted	0.984				0.950	
Satd. Flow (perm)	804	0	1668	0	846	1745
Link Speed (k/h)	20		80			80
Link Distance (m)	151.5		1150.2			174.7
Travel Time (s)	27.3		51.8			7.9
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles (%)	100%	100%	5%	100%	100%	2%
Adj. Flow (vph)	7	15	436	7	16	1090
Shared Lane Traffic (%)						
Lane Group Flow (vph)	22	0	443	0	16	1090
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Right	Left	Left
Median Width(m)	3.6		3.5			3.5
Link Offset(m)	0.0		0.0			0.0
Crosswalk Width(m)	4.8		4.8			4.8
Two way Left Turn Lane						
Headway Factor	1.07	1.07	1.09	1.09	1.09	1.09
Turning Speed (k/h)	25	15		15	25	
Sign Control	Stop		Free			Free
Intersection Summary						
	Other					
Control Type: Unsignalized						
Intersection Capacity Utilization	tion 70.6%			IC	CU Level	of Service C
Analysis Period (min) 15						

	4	•	Ť	1	1	ţ
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	¥		4Î		۲	•
Traffic Volume (veh/h)	7	15	436	7	16	1090
Future Volume (Veh/h)	7	15	436	7	16	1090
Sign Control	Stop		Free			Free
Grade	0%		0%			0%
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00
Hourly flow rate (vph)	7	15	436	7	16	1090
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type			None			None
Median storage veh)			Nono			Tiono
Upstream signal (m)						175
pX, platoon unblocked	0.23					170
vC, conflicting volume	1562	440			443	
vC1, stage 1 conf vol	1002	110			U	
vC2, stage 2 conf vol						
vCu, unblocked vol	1766	440			443	
tC, single (s)	7.4	7.2			5.1	
tC, 2 stage (s)	т.т	1.2			0.1	
tF (s)	4.4	4.2			3.1	
p0 queue free %	41	97			98	
cM capacity (veh/h)	12	455			746	
,					140	
Direction, Lane #	WB 1	NB 1	SB 1	SB 2		
Volume Total	22	443	16	1090		
Volume Left	7	0	16	0		
Volume Right	15	7	0	0		
cSH	36	1700	746	1700		
Volume to Capacity	0.62	0.26	0.02	0.64		
Queue Length 95th (m)	17.2	0.0	0.5	0.0		
Control Delay (s)	208.7	0.0	9.9	0.0		
Lane LOS	F		А			
Approach Delay (s)	208.7	0.0	0.1			
Approach LOS	F					
Intersection Summary						
Average Delay			3.0			
Intersection Capacity Utiliz	ation		70.6%	IC	Ulevelo	of Service
Analysis Period (min)			10.0 %	10		
			10			

	≯	\mathbf{r}	1	Ť	Ļ	1
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	ሻ	1		र्भ	1	1
Traffic Volume (vph)	155	132	70	159	958	156
Future Volume (vph)	155	132	70	159	958	156
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800
Lane Width (m)	3.3	3.3	3.5	3.5	3.5	3.5
Storage Length (m)	25.0	0.0	0.0			30.0
Storage Lanes	1	1	0			1
Taper Length (m)	47.5		7.5			
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.850				0.850
Flt Protected	0.950			0.985		
Satd. Flow (prot)	1463	1395	0	1666	1762	1351
Flt Permitted	0.950			0.985		
Satd. Flow (perm)	1463	1395	0	1666	1762	1351
Link Speed (k/h)	80			80	80	
Link Distance (m)	180.5			135.8	1150.2	
Travel Time (s)	8.1			6.1	51.8	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles (%)	13%	6%	8%	4%	1%	12%
Adj. Flow (vph)	155	132	70	159	958	156
Shared Lane Traffic (%)						
Lane Group Flow (vph)	155	132	0	229	958	156
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Left	Left	Right
Median Width(m)	3.3			0.0	0.0	
Link Offset(m)	0.0			0.0	0.0	
Crosswalk Width(m)	4.8			4.8	4.8	
Two way Left Turn Lane						
Headway Factor	1.12	1.12	1.09	1.09	1.09	1.09
Turning Speed (k/h)	25	15	25			15
Sign Control	Stop			Free	Free	
Intersection Summary						
Area Type:	Other					
Control Type: Unsignalized						
Intersection Capacity Utilization	tion 85.2%			l	CU Level	of Service
Analysis Period (min) 15						•

	٨	*	<	1	ţ	~
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	٦	1		ર્સ	†	1
Traffic Volume (veh/h)	155	132	70	159	958	156
Future Volume (Veh/h)	155	132	70	159	958	156
Sign Control	Stop			Free	Free	
Grade	0%			0%	0%	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00
Hourly flow rate (vph)	155	132	70	159	958	156
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type				None	None	
Median storage veh)				NONE	NUNC	
Upstream signal (m)						
pX, platoon unblocked						
vC, conflicting volume	1257	958	1114			
vC1, stage 1 conf vol	1231	900	1114			
vC2, stage 2 conf vol						
vCu, unblocked vol	1257	958	1114			
tC, single (s)	6.5	950 6.3	4.2			
	0.0	0.5	4.2			
tC, 2 stage (s)	3.6	3.4	2.3			
tF (s)	3.0	3.4 57	2.3 88			
p0 queue free %						
cM capacity (veh/h)	159	307	605			
Direction, Lane #	EB 1	EB 2	NB 1	SB 1	SB 2	
Volume Total	155	132	229	958	156	
Volume Left	155	0	70	0	0	
Volume Right	0	132	0	0	156	
cSH	159	307	605	1700	1700	
Volume to Capacity	0.98	0.43	0.12	0.56	0.09	
Queue Length 95th (m)	59.3	16.6	3.1	0.0	0.0	
Control Delay (s)	122.8	25.3	4.6	0.0	0.0	
Lane LOS	F	D	А			
Approach Delay (s)	78.0		4.6	0.0		
Approach LOS	F					
Intersection Summary						
Average Delay			14.4			
Intersection Capacity Utiliza	ation		85.2%	IC	U Level c	of Service
Analysis Period (min)			15	IC.		
Analysis Fenou (min)			10			


	≯	\mathbf{r}	1	Ť	Ŧ	-
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	<u> </u>	1	<u>אוטר</u>	<u> </u>	<u>+ 100</u>	7
Traffic Volume (vph)	155	132	70	159	958	156
Future Volume (vph)	155	132	70	159	958	156
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800
Lane Width (m)	3.3	3.3	3.5	3.5	3.5	3.5
Storage Length (m)	25.0	0.0	15.0	5.5	5.5	30.0
	25.0		15.0			
Storage Lanes Taper Length (m)	47.5	1	100.0			1
		1.00		1.00	1.00	1.00
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Frt Elt Droto stad	0.050	0.850	0.050			0.850
Flt Protected	0.950	4005	0.950	1=10	4700	10-1
Satd. Flow (prot)	1463	1395	1566	1712	1762	1351
Flt Permitted	0.950		0.160			
Satd. Flow (perm)	1463	1395	264	1712	1762	1351
Right Turn on Red		Yes				Yes
Satd. Flow (RTOR)		132				88
Link Speed (k/h)	80			80	80	
Link Distance (m)	180.5			135.8	784.0	
Travel Time (s)	8.1			6.1	35.3	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles (%)	13%	6%	8%	4%	1%	12%
Adj. Flow (vph)	155	132	70	159	958	156
Shared Lane Traffic (%)	100	102	10	100	000	100
Lane Group Flow (vph)	155	132	70	159	958	156
Enter Blocked Intersection	No	No	No	No	956 No	No
	Left		Left	Left	Left	
Lane Alignment		Right	Len			Right
Median Width(m)	3.3			3.5	3.5	
Link Offset(m)	0.0			0.0	0.0	
Crosswalk Width(m)	4.8			4.8	4.8	
Two way Left Turn Lane						
Headway Factor	1.12	1.12	1.09	1.09	1.09	1.09
Turning Speed (k/h)	25	15	25			15
Number of Detectors	1	1	1	2	2	1
Detector Template	Left	Right	Left	Thru	Thru	Right
Leading Detector (m)	2.0	2.0	2.0	10.0	10.0	2.0
Trailing Detector (m)	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Position(m)	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Size(m)	2.0	2.0	2.0	0.6	0.0	2.0
Detector 1 Type	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex
Detector 1 Channel	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0	0.0
Detector 2 Position(m)				9.4	9.4	
Detector 2 Size(m)				0.6	0.6	
Detector 2 Type				Cl+Ex	Cl+Ex	
Detector 2 Channel						
Detector 2 Extend (s)				0.0	0.0	
Turn Type	Prot	Perm	Perm	NA	NA	Perm
				101		

Scenario 1 2035 Future Background PM - Signal Test 3:13 am 12-03-2020 Baseline

	٦	\mathbf{r}	1	1	ţ	~
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Protected Phases	4			2	6	
Permitted Phases	•	4	2	-	•	6
Detector Phase	4	4	2	2	6	6
Switch Phase	•		-	-	•	•
Minimum Initial (s)	7.0	7.0	35.0	35.0	35.0	35.0
Minimum Split (s)	24.8	24.8	41.6	41.6	41.6	41.6
Total Split (s)	25.0	25.0	75.0	75.0	75.0	75.0
Total Split (%)	25.0%	25.0%	75.0%	75.0%	75.0%	75.0%
Maximum Green (s)	18.2	18.2	68.4	68.4	68.4	68.4
Yellow Time (s)	3.0	3.0	4.6	4.6	4.6	4.6
All-Red Time (s)	3.8	3.8	2.0	2.0	2.0	2.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	6.8	6.8	6.6	6.6	6.6	6.6
Lead/Lag	0.0	0.0	0.0	0.0	0.0	0.0
Lead-Lag Optimize?						
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0
Recall Mode	None	None	S.0 Min	S.0 Min	S.0 Min	S.0 Min
Walk Time (s)	7.0	7.0	7.0	7.0	7.0	7.0
Flash Dont Walk (s)	11.0	11.0	11.0	11.0	11.0	11.0
· · · · · · · · · · · · · · · · · · ·	11.0 0		11.0 0	0	0	0
Pedestrian Calls (#/hr)		13.0	48.0		48.0	48.0
Act Effct Green (s)	13.0	13.0	48.0 0.64	48.0 0.64		48.0 0.64
Actuated g/C Ratio	0.17	0.17			0.64	
v/c Ratio	0.62	0.38	0.42	0.15	0.85	0.17
Control Delay	43.1	10.0	15.8	5.8	19.6	3.1
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	43.1	10.0	15.8	5.8	19.6	3.1
LOS	D	В	В	A	B	А
Approach Delay	27.9			8.9	17.3	
Approach LOS	С			A	В	
Queue Length 50th (m)	20.1	0.0	4.3	8.0	95.3	3.3
Queue Length 95th (m)	50.8	16.0	16.5	17.1	182.6	10.6
Internal Link Dist (m)	156.5			111.8	760.0	
Turn Bay Length (m)	25.0		15.0			30.0
Base Capacity (vph)	373	454	232	1509	1554	1202
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.42	0.29	0.30	0.11	0.62	0.13
Intersection Summary						
Area Type:	Other					
Cycle Length: 100						
Actuated Cycle Length: 75	5.1					
Natural Cycle: 80						
Control Type: Semi Act-U	ncoord					
Maximum v/c Ratio: 0.85						
Intersection Signal Delay:	18.0			Ir	ntersectio	n LOS: B
Intersection Capacity Utiliz						of Service
Analysis Period (min) 15						

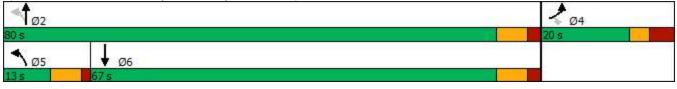
Scenario 1 2035 Future Background PM - Signal Test 3:13 am 12-03-2020 Baseline

Splits and Phases: 5: Boundary Road & Mitch Owens Road

	4	×	t	1	1	ţ	
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	¥		eî 🗧			र्स	
Traffic Volume (vph)	163	31	104	879	77	134	
Future Volume (vph)	163	31	104	879	77	134	
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	
Lane Width (m)	4.5	4.5	3.5	3.5	3.5	3.5	
Storage Length (m)	0.0	10.0		0.0	0.0		
Storage Lanes	1	0		0	0		
Taper Length (m)	7.5				7.5		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Frt	0.978		0.879				
Flt Protected	0.960					0.982	
Satd. Flow (prot)	1696	0	1517	0	0	1604	
Flt Permitted	0.960					0.982	
Satd. Flow (perm)	1696	0	1517	0	0	1604	
Link Speed (k/h)	40		80			80	
Link Distance (m)	155.0		545.7			134.1	
Travel Time (s)	14.0		24.6			6.0	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Heavy Vehicles (%)	9%	13%	13%	2%	9%	9%	
Adj. Flow (vph)	163	31	104	879	77	134	
Shared Lane Traffic (%)							
Lane Group Flow (vph)	194	0	983	0	0	211	
Enter Blocked Intersection	No	No	No	No	No	No	
Lane Alignment	Left	Right	Left	Right	Left	Left	
Median Width(m)	4.5	_	0.0			0.0	
Link Offset(m)	0.0		0.0			0.0	
Crosswalk Width(m)	4.8		4.8			4.8	
Two way Left Turn Lane							
Headway Factor	0.95	0.95	1.09	1.09	1.09	1.09	
Turning Speed (k/h)	25	15		15	25		
Sign Control	Stop		Free			Free	
Intersection Summary							
<i></i>	Other						
Control Type: Unsignalized							
Intersection Capacity Utilizat	tion 96.5%			IC	U Level	of Service	θF
Analysis Period (min) 15							

	4	•	Ť	1	1	ţ	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	Y		4			र्स	_
Traffic Volume (veh/h)	163	31	104	879	77	134	
Future Volume (Veh/h)	163	31	104	879	77	134	
Sign Control	Stop		Free			Free	
Grade	0%		0%			0%	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Hourly flow rate (vph)	163	31	104	879	77	134	
Pedestrians							
Lane Width (m)							
Walking Speed (m/s)							
Percent Blockage							
Right turn flare (veh)							
Median type			None			None	
Median storage veh)			None			Nono	
Upstream signal (m)							
pX, platoon unblocked							
vC, conflicting volume	832	544			983		
vC1, stage 1 conf vol	002	011			500		
vC2, stage 2 conf vol							
vCu, unblocked vol	832	544			983		
tC, single (s)	6.5	6.3			4.2		
tC, 2 stage (s)	0.0	0.0			7.4		
tF (s)	3.6	3.4			2.3		
p0 queue free %	44	94			89		
cM capacity (veh/h)	292	519			675		
					015		
Direction, Lane #	WB 1	NB 1	SB 1				
Volume Total	194	983	211				
Volume Left	163	0	77				
Volume Right	31	879	0				
cSH	314	1700	675				
Volume to Capacity	0.62	0.58	0.11				
Queue Length 95th (m)	30.8	0.0	3.1				
Control Delay (s)	33.3	0.0	4.9				
Lane LOS	D		А				
Approach Delay (s)	33.3	0.0	4.9				
Approach LOS	D						
Intersection Summary							
Average Delay			5.4				
Intersection Capacity Utiliza	ation		96.5%	IC	U Level o	of Service)
Analysis Period (min)	-		15				
			10				

	≯	\mathbf{r}	•	1	ţ	~
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	<u> </u>				1 <u>00</u>	
Traffic Volume (vph)	-18	364	44	T 969	268	9
Future Volume (vph)	18	364	44	969	268	9
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800
Lane Width (m)	3.5	3.3	3.5	3.5	3.5	3.5
Storage Length (m)	0.0	25.0	50.0	0.0	0.0	0.0
	0.0	25.0 1	50.0 1			0.0
Storage Lanes		I	•			U
Taper Length (m)	7.5	1.00	75.0	1.00	1.00	1.00
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Frt Fit Desta stard	0.050	0.850	0.050		0.996	
Fit Protected	0.950	4000	0.950	4700	4500	•
Satd. Flow (prot)	1271	1332	1311	1728	1583	0
Flt Permitted	0.950		0.514	15.00	1	-
Satd. Flow (perm)	1271	1332	709	1728	1583	0
Right Turn on Red		Yes				Yes
Satd. Flow (RTOR)		364			3	
Link Speed (k/h)	40			80	80	
Link Distance (m)	154.2			243.1	545.7	
Travel Time (s)	13.9			10.9	24.6	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles (%)	33%	11%	29%	3%	12%	11%
Adj. Flow (vph)	18	364	44	969	268	9
Shared Lane Traffic (%)						
Lane Group Flow (vph)	18	364	44	969	277	0
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Left	Left	Right
Median Width(m)	3.5	i agric	Lon	3.5	3.5	rugin
Link Offset(m)	0.0			0.0	0.0	
Crosswalk Width(m)	4.8			4.8	4.8	
Two way Left Turn Lane	4.0			4.0	4.0	
	1.00	1 10	1.00	1.00	1.00	1.00
Headway Factor	1.09	1.12	1.09	1.09	1.09	1.09
Turning Speed (k/h)	25	15	25	^	^	15
Number of Detectors	1	1	1	2	2	
Detector Template	Left	Right	Left	Thru	Thru	
Leading Detector (m)	2.0	2.0	2.0	10.0	10.0	
Trailing Detector (m)	0.0	0.0	0.0	0.0	0.0	
Detector 1 Position(m)	0.0	0.0	0.0	0.0	0.0	
Detector 1 Size(m)	2.0	2.0	2.0	0.6	0.6	
Detector 1 Type	CI+Ex	Cl+Ex	Cl+Ex	Cl+Ex	Cl+Ex	
Detector 1 Channel						
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0	
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0	
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0	
Detector 2 Position(m)	0.0	0.0	0.0	9.4	9.4	
Detector 2 Size(m)				0.6	0.6	
Detector 2 Type				CI+Ex	CI+Ex	
Detector 2 Channel						
				0.0	0.0	
Detector 2 Extend (s)	Deet	Derm	n m	0.0		
Turn Type	Prot	Perm	pm+pt	NA	NA	


Scenario 1 2025 Future Total AM 3:13 am 12-03-2020 Baseline

Lane Group EBL EBR NBL NBT SBT SBR Protected Phases 4 5 2 6 Permitted Phases 4 2 6 Switch Phase 4 4 5 2 6 Switch Phase 70 7.0 7.0 35.0 35.0 35.0 Minimum Initial (s) 20.0 20.0 13.0 80.0% 67.0% Maximum Green (s) 3.2 13.2 7.0 73.4 60.4 Vellow Time (s) 3.0 3.0 3.0 3.0 3.0 1.0 Vellow Time (s) 5.0 5.0 0.0 7.0 7.0 Plast Ind Ode None		≯	\mathbf{F}	•	1	Ŧ	∢
Protected Phases 4 5 2 6 Permitted Phases 4 4 5 2 6 Minimum Initial (s) 7.0 7.0 7.0 35.0 35.0 Minimum Split (s) 17.8 17.8 13.0 41.6 41.6 Total Split (s) 20.0 20.0 13.0 80.0 67.0 Total Split (%) 20.0% 13.0% 80.0% 67.0% Maximum Green (s) 13.2 13.2 7.0 73.4 60.4 Yellow Time (s) 3.8 3.8 1.4 2.0 2.0 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 1.0 Lead Lag Lead-Lag Lead Lag Lead-Lag Lead Lag Lead-Lag (Optimize? Yes	Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Permitted Phases 4 2 Detector Phase 4 4 5 2 6 Switch Phase Minimum Initial (s) 7.0 7.0 35.0 35.0 Minimum Initial (s) 17.8 17.8 13.0 41.6 41.6 Total Split (s) 20.0% 20.0% 80.0% 67.0% Maximum Green (s) 13.2 7.0 7.4 60.4 Yellow Time (s) 3.0 3.0 4.6 4.6 4.6 All-Red Time (s) 3.8 3.8 1.4 2.0 2.0 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 1.0 Lead-Lag Optimize? Yes Yes Yes Yes Vehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 3.0 Recall Mode None None None Min Min Vehicle Extension (s) 5.0 5.0 0.0 7.0 7.0 Flash Dort Walk (s) 6.0	······································						
Detector Phase 4 4 5 2 6 Switch Phase 7.0 7.0 7.0 35.0 35.0 Minimum Split (s) 17.8 17.8 13.0 41.6 41.6 Total Split (s) 20.0 20.0% 13.0% 80.0% 67.0 Total Split (s) 20.0% 13.2 7.0 73.4 60.4 Wellow Time (s) 3.2 7.0 73.4 60.4 46 All-Red Time (s) 3.8 3.8 1.4 2.0 2.0 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 1.0			4		_		
Switch Phase Minimum Initial (s) 7.0 7.0 35.0 35.0 Minimum Split (s) 17.8 17.8 13.0 41.6 41.6 Total Split (s) 20.0 20.0% 13.0 80.0% 67.0 Total Split (%) 20.0% 20.0% 13.0% 80.0% 67.0% Maximum Green (s) 13.2 13.2 7.0 73.4 60.4 Yellow Time (s) 3.0 3.0 4.6 4.6 4.6 All-Red Time (s) 3.8 3.8 1.4 2.0 2.0 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 1.0 Total Lost Time (s) 6.8 6.8 6.0 6.6 6.6 Lead-Lag Optimize? Yes Yes Yes Yes Yes Vehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 3.0 Recall Mode None None None Min Min Wait Time (s) 5.0 5.0 0.0 7.0 Pledestrian Calls (#/hr) 0 0		4			2	6	
Minimum Initial (s) 7.0 7.0 7.0 35.0 35.0 Minimum Split (s) 17.8 17.8 13.0 41.6 41.6 Total Split (s) 20.00 20.0% 13.0% 80.0% 67.0 Total Split (%) 20.0% 20.0% 13.0% 80.0% 67.0% Maximum Green (s) 13.2 13.2 7.0 73.4 60.4 Yellow Time (s) 3.8 3.8 1.4 2.0 2.0 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 Lost Time Adjust (s) 6.8 6.8 6.0 6.6 6.6 Lead-Lag Optimize? Yes Yes Yes Ves Vehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 3.0 Vehicle Cates Calls (#/hr) 0 0 0 0 0 0 Vehicle Extension (s) 8.9 8.9 48.8 48.1 41.2 Actuated g/C Ratio 0.13 0.13 0.69 0.68 0.58 v/c Ratio 0.11					_		
Minimum Split (s) 17.8 17.8 13.0 41.6 41.6 Total Split (s) 20.0% 20.0% 13.0% 80.0% 67.0% Maximum Green (s) 13.2 13.2 7.0 73.4 60.4 Yellow Time (s) 3.0 3.0 4.6 4.6 4.6 All-Red Time (s) 3.8 3.8 1.4 2.0 2.0 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 Total Lost Time (s) 6.8 6.8 6.0 6.6 6.6 Lead/Lag Lead Lag Lead/Lag Lead/Lag Lead/Lag Lead/Lag (btimize? Yes Yes Yes Yes Vehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 Recall Mode None None None Min Min Walk Time (s) 5.0 5.0 0.0 7.0 Flash Dont Walk (s) 6.0 6.0 0.0 21.0 Pedestrian Calls (#/hr) 0 0 0 0 0.0		7.0	7.0	7.0	35.0	35.0	
Total Split (s) 20.0 20.0% 13.0 80.0 67.0 Total Split (%) 20.0% 20.0% 13.0% 80.0% 67.0% Maximum Green (s) 13.2 13.2 7.0 73.4 60.4 Yellow Time (s) 3.0 3.0 4.6 4.6 4.6 All-Red Time (s) 3.8 3.8 1.4 2.0 2.0 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 1.0 Total Lost Time (s) 6.8 6.8 6.0 6.6 6.6 Lead-Lag Optimize? Yes Yes Yes Yes Vehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 Recall Mode None None Min Min Walk Time (s) 6.0 6.0 0.0 7.0 Flash Dont Walk (s) 6.0 6.0 0.0 7.0 Flash Dont Walk (s) 6.0 6.0 0.0 0.0 7.0 Chat Effet Green (s)<	. ,						
Total Split (%) 20.0% 20.0% 13.0% 80.0% 67.0% Maximum Green (s) 13.2 13.2 7.0 73.4 60.4 Yellow Time (s) 3.0 3.0 4.6 4.6 4.6 All-Red Time (s) 3.8 3.8 1.4 2.0 2.0 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 Total Lost Time (s) 6.8 6.8 6.0 6.6 6.6 Lead-Lag Optimize? Yes Yes Yes Ves Ves Vehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 3.0 Recall Mode None None None Min Min Walk Time (s) 5.0 5.0 0.0 7.0 Flash Dont Walk (s) 6.0 6.0 0.0 2.1.0 Pedestrian Calls (#/hr) 0 0 0 0 0.4 Att f12 Actuated g/C Ratio 0.13 0.13 0.69 0.68 0.58 0.58 0.62 0.59 0.0 10.1							
Maximum Green (s) 13.2 13.2 7.0 73.4 60.4 Yellow Time (s) 3.0 3.0 4.6 4.6 4.6 All-Red Time (s) 3.8 3.8 1.4 2.0 2.0 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 Total Lost Time (s) 6.8 6.8 6.0 6.6 6.6 Lead/Lag Lead Lag Lead Lag Lead Lag Lead-Lag Optimize? Yes Yes Yes Yes Yes Vehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 3.0 Recall Mode None None None Min Min Min Walk Time (s) 5.0 5.0 0.0 7.0 Flash Dont Walk (s) 6.0 6.0 0.0 7.0 Flash Dont Walk (s) 6.0 6.0 0.0 0 0 0 0 0 0 0 0 0 0 0 0 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
Yellow Time (s) 3.0 3.0 4.6 4.6 4.6 All-Red Time (s) 3.8 3.8 1.4 2.0 2.0 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 Total Lost Time (s) 6.8 6.8 6.0 6.6 6.6 Lead/Lag Lead Lag Lead/Lag Lead Lag Lead/Lag Veis Yes Yes Yes Vehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 Recall Mode None None None Min Min Walk Time (s) 5.0 5.0 0.0 7.0 Flash Dont Walk (s) 6.0 6.0 0.0 21.0 Pedestrian Calls (#/hr) 0 0 0 0 Actated g/C Ratio 0.11 0.75 0.8 0.83 0.30 Control Delay 35.4 15.3 3.8 15.6 9.9 Queue Delay 0.0 0.0 0.0 0.0 0.0 Total Delay 35.4 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>							
All-Red Time (s) 3.8 3.8 1.4 2.0 2.0 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 Total Lost Time (s) 6.8 6.8 6.0 6.6 6.6 Lead/Lag Lead Lag Lead Lag Lead-Lag Optimize? Yes Yes Yes Vehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 Recall Mode None None None Min Min Walk Time (s) 5.0 5.0 0.0 7.0 Flash Dont Walk (s) 6.0 6.0 0.0 21.0 Pedestrian Calls (#/hr) 0 0 0 0 0 ActLated g/C Ratio 0.13 0.13 0.69 0.68 0.58 v/c Ratio 0.11 0.75 0.08 0.83 0.30 Cortol Delay 35.4 15.3 3.8 15.7 9.9 LOS D B A B A Approach LOS B B A A<	()						
Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 Total Lost Time (s) 6.8 6.8 6.0 6.6 6.6 Lead/Lag Lead Lag Lag Lead Lag Lead-Lag Optimize? Yes Yes Yes Ves Vehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 Recall Mode None None None Min Min Walk Time (s) 5.0 5.0 0.0 7.0 Flash Dont Walk (s) 6.0 6.0 0.0 21.0 Pedestrian Calls (#/hr) 0							
Total Lost Time (s) 6.8 6.8 6.0 6.6 6.6 Lead/Lag Lead Lag Lag Lead-Lag Optimize? Yes Yes Vehicle Extension (s) 3.0 3.0 3.0 3.0 Recall Mode None None Min Min Walk Time (s) 5.0 5.0 0.0 7.0 Flash Dont Walk (s) 6.0 6.0 0.0 21.0 Pedestrian Calls (#/hr) 0 0 0 0 Actuated g/C Ratio 0.13 0.13 0.69 0.68 0.58 v/c Ratio 0.11 0.75 0.08 0.83 0.30 Control Delay 35.4 15.3 3.8 15.7 9.9 LOS D B A B A Approach Delay 16.2 15.2 9.9 Approach LOS B B A Queue Length 50th (m) 2.3 0.0 1.4 71.0 20.2	()						
Lead/Lag Lead Lag Lead-Lag Optimize? Yes Yes Vehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 Recall Mode None None None Min Min Walk Time (s) 5.0 5.0 0.0 7.0 Flash Dont Walk (s) 6.0 6.0 0.0 21.0 Pedestrian Calls (#/hr) 0 0 0 0 0 0 Actuated g/C Ratio 0.13 0.13 0.69 0.68 0.58 v/c Ratio 0.11 0.75 0.08 0.83 0.30 Control Delay 35.4 15.3 3.8 15.6 9.9 Queue Delay 0.0 0 0.0 0.0 0.0 0.0							
Lead-Lag Optimize? Yes Yes Vehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 Recall Mode None None None Min Min Walk Time (s) 5.0 5.0 0.0 7.0 Flash Dont Walk (s) 6.0 6.0 0.0 21.0 Pedestrian Calls (#hr) 0 0 0 0 Actuated g/C Ratio 0.13 0.13 0.69 0.68 0.58 v/c Ratio 0.11 0.75 0.08 0.83 0.30 Control Delay 35.4 15.3 3.8 15.6 9.9 Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 Total Delay 35.4 15.3 3.8 15.7 9.9 LOS D B A B A Approach LOS B B A A Queue Length 50th (m) 1.1 #32.3 4.7 157.0 3	()	0.0	0.0		0.0		
Vehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 3.0 Recall Mode None None None None Min Min Walk Time (s) 5.0 5.0 0.0 7.0 Flash Dont Walk (s) 6.0 6.0 0.0 21.0 Pedestrian Calls (#hr) 0 0 0 0 Act taffed Green (s) 8.9 48.8 48.1 41.2 Actuated g/C Ratio 0.13 0.69 0.68 0.58 v/c Ratio 0.11 0.75 0.08 0.83 0.30 Control Delay 35.4 15.3 3.8 15.6 9.9 Queue Delay 0.0 0.0 0.0 0.0 1.0 Total Delay 35.4 15.3 3.8 15.7 9.9 LOS D B A B A Queue Length S0th (m) 2.3 0.0 1.4 71.0 20.2 Queue Length 95th (m) 10	•						
Recall Mode None None None Min Min Walk Time (s) 5.0 5.0 5.0 0.0 7.0 Flash Dont Walk (s) 6.0 6.0 0.0 21.0 Pedestrian Calls (#/hr) 0 0 0 0 Act Effet Green (s) 8.9 8.9 48.8 48.1 41.2 Actuated g/C Ratio 0.13 0.13 0.69 0.68 0.58 v/c Ratio 0.11 0.75 0.08 0.83 0.30 Control Delay 35.4 15.3 3.8 15.6 9.9 Queue Delay 0.0 0.0 0.0 0.0 0.0 Total Delay 35.4 15.3 3.8 15.7 9.9 LOS D B A B A Approach LOS B B A Queue Length 50th (m) 2.3 0.0 1.4 71.0 20.2 Queue Length 95th (m) 10.1 #32.3 4.7		3.0	3.0		3.0		
Walk Time (s) 5.0 5.0 0.0 7.0 Flash Dont Walk (s) 6.0 6.0 0.0 21.0 Pedestrian Calls (#/hr) 0 0 0 0 Act Effct Green (s) 8.9 8.9 48.8 48.1 41.2 Actuated g/C Ratio 0.13 0.13 0.69 0.68 0.58 v/c Ratio 0.11 0.75 0.08 0.83 0.30 Control Delay 35.4 15.3 3.8 15.6 9.9 Queue Delay 0.0 0.0 0.0 0.0 0.0 Total Delay 35.4 15.3 3.8 15.7 9.9 LOS D B A B A Queue Length Delay 16.2 15.2 9.9 Approach LOS B B A Queue Length 50th (m) 2.3 0.0 1.4 71.0 20.2 Queue Length 95th (m) 10.1 #32.3 4.7 157.0 39.2 Internal Link Dist (m)	()						
Flash Dont Walk (s) 6.0 6.0 0.0 21.0 Pedestrian Calls (#/hr) 0 0 0 0 Act Effct Green (s) 8.9 8.9 48.8 48.1 41.2 Actuated g/C Ratio 0.13 0.13 0.69 0.68 0.58 v/c Ratio 0.11 0.75 0.08 0.83 0.30 Control Delay 35.4 15.3 3.8 15.6 9.9 Queue Delay 0.0 0.0 0.0 0.0 0.0 Total Delay 35.4 15.3 3.8 15.7 9.9 LOS D B A B A Approach Delay 16.2 15.2 9.9 Approach LOS B B A Queue Length 50th (m) 2.3 0.0 1.4 71.0 20.2 Queue Length 95th (m) 10.1 #32.3 4.7 157.0 39.2 Internal Link Dist (m) 130.2 219.1 521.7 521.7 Turn Bay Length (m) 25.0 50.0 50.0 50.				None			
Pedestrian Calls (#/hr) 0 0 0 0 Act Effct Green (s) 8.9 8.9 48.8 48.1 41.2 Actuated g/C Ratio 0.13 0.13 0.69 0.68 0.58 v/c Ratio 0.11 0.75 0.08 0.83 0.30 Control Delay 35.4 15.3 3.8 15.6 9.9 Queue Delay 0.0 0.0 0.0 0.0 0.0 Total Delay 35.4 15.3 3.8 15.7 9.9 LOS D B A B A Approach Delay 16.2 15.2 9.9 Approach LOS B B A Queue Length 50th (m) 2.3 0.0 1.4 71.0 20.2 Queue Length 95th (m) 10.1 #32.3 4.7 157.0 39.2 Internal Link Dist (m) 130.2 219.1 521.7 521.7 Turn Bay Length (m) 25.0 50.0 50.0							
Act Effct Green (s) 8.9 8.9 48.8 48.1 41.2 Actuated g/C Ratio 0.13 0.13 0.69 0.68 0.58 v/c Ratio 0.11 0.75 0.08 0.83 0.30 Control Delay 35.4 15.3 3.8 15.6 9.9 Queue Delay 0.0 0.0 0.0 0.0 0.0 Total Delay 35.4 15.3 3.8 15.7 9.9 LOS D B A B A Approach Delay 16.2 15.2 9.9 Approach LOS B B A A Queue Length 50th (m) 2.3 0.0 1.4 71.0 20.2 Queue Length 95th (m) 10.1 #32.3 4.7 157.0 39.2 Internal Link Dist (m) 130.2 219.1 521.7 521.7 Turn Bay Length (m) 25.0 50.0 50.0 50.0 Base Capacity (vph) 247 552 548 1623 1355 Starvation Cap Reductn 0 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>							
Actuated g/C Ratio 0.13 0.13 0.69 0.68 0.58 v/c Ratio 0.11 0.75 0.08 0.83 0.30 Control Delay 35.4 15.3 3.8 15.6 9.9 Queue Delay 0.0 0.0 0.0 0.0 0.0 Total Delay 35.4 15.3 3.8 15.7 9.9 LOS D B A B A Approach Delay 16.2 15.2 9.9 Approach LOS B B A Queue Length 50th (m) 2.3 0.0 1.4 71.0 20.2 Queue Length 95th (m) 10.1 #32.3 4.7 157.0 39.2 Internal Link Dist (m) 130.2 219.1 521.7 521.7 Turn Bay Length (m) 25.0 50.0 50.0 53.5 Base Capacity (vph) 247 552 548 1623 1355 Starvation Cap Reductn 0 0 0 0 0 Reduced v/c Ratio 0.07 0.66 0.08 <td></td> <td></td> <td></td> <td><u> </u></td> <td></td> <td></td> <td></td>				<u> </u>			
v/c Ratio 0.11 0.75 0.08 0.83 0.30 Control Delay 35.4 15.3 3.8 15.6 9.9 Queue Delay 0.0 0.0 0.0 0.0 0.0 Total Delay 35.4 15.3 3.8 15.7 9.9 LOS D B A B A Approach Delay 16.2 15.2 9.9 Approach LOS B B A Queue Length 50th (m) 2.3 0.0 1.4 71.0 20.2 Queue Length 95th (m) 10.1 #32.3 4.7 157.0 39.2 Internal Link Dist (m) 130.2 219.1 521.7 521.7 Turn Bay Length (m) 25.0 50.0 50.0 53.5 Base Capacity (vph) 247 552 548 1623 1355 Starvation Cap Reductn 0 0 0 0 0 Spillback Cap Reductn 0 0 0 0 0 Reduced v/c Ratio 0.07 0.66 0.08 <td< td=""><td>· · · · · · · · · · · · · · · · · · ·</td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	· · · · · · · · · · · · · · · · · · ·						
Control Delay 35.4 15.3 3.8 15.6 9.9 Queue Delay 0.0 0.0 0.0 0.0 0.0 Total Delay 35.4 15.3 3.8 15.7 9.9 LOS D B A B A Approach Delay 16.2 15.2 9.9 Approach LOS B B A Queue Length 50th (m) 2.3 0.0 1.4 71.0 20.2 Queue Length 95th (m) 10.1 #32.3 4.7 157.0 39.2 Internal Link Dist (m) 130.2 219.1 521.7 521.7 Turn Bay Length (m) 25.0 50.0 50.0 50.0 Base Capacity (vph) 247 552 548 1623 1355 Starvation Cap Reductn 0 0 0 0 0 Spillback Cap Reductn 0 0 0 0 0 Reduced v/c Ratio 0.07 0.66 0.08 0.61 0.20 Intersection Summary Intersection Summary Intersection							
Queue Delay 0.0 0.0 0.0 0.0 0.0 Total Delay 35.4 15.3 3.8 15.7 9.9 LOS D B A B A Approach Delay 16.2 15.2 9.9 Approach LOS B B A Queue Length 50th (m) 2.3 0.0 1.4 71.0 20.2 Queue Length 95th (m) 10.1 #32.3 4.7 157.0 39.2 Internal Link Dist (m) 130.2 219.1 521.7 Turn Bay Length (m) 25.0 50.0 Base Capacity (vph) 247 552 548 1623 1355 Starvation Cap Reductn 0 0 0 0 0 0 Spillback Cap Reductn 0 0 0 0 0 0 0 0 0 1.20 Intersection Summary							
Total Delay 35.4 15.3 3.8 15.7 9.9 LOS D B A B A Approach Delay 16.2 15.2 9.9 Approach LOS B B A Queue Length 50th (m) 2.3 0.0 1.4 71.0 20.2 Queue Length 95th (m) 10.1 #32.3 4.7 157.0 39.2 Internal Link Dist (m) 130.2 219.1 521.7 Turn Bay Length (m) 25.0 50.0 50.0 Base Capacity (vph) 247 552 548 1623 1355 Starvation Cap Reductn 0 0 0 0 0 Spillback Cap Reductn 0 0 0 0 0 Reduced v/c Ratio 0.07 0.66 0.08 0.61 0.20 Intersection Summary Intersection Summary Intersection Summary Intersection Capacity Utilization 70.8% Intersection LOS: B Intersection Signal Delay: 14.5 Intersection LOS: B Intersection LOS: B Intersection Capacity Utilization 70.8%	-						
LOS D B A B A Approach Delay 16.2 15.2 9.9 Approach LOS B B A Queue Length 50th (m) 2.3 0.0 1.4 71.0 20.2 Queue Length 95th (m) 10.1 #32.3 4.7 157.0 39.2 Internal Link Dist (m) 130.2 219.1 521.7 Turn Bay Length (m) 25.0 50.0 548 1623 1355 Starvation Cap Reductn 0 0 30 0 0 Spillback Cap Reductn 0 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 0 0 Reduced v/c Ratio 0.07 0.66 0.08 0.61 0.20 0 Intersection Summary Intersection Summary Intersection Summary Intersection Summary Intersection LOS: B Int							
Approach Delay 16.2 15.2 9.9 Approach LOS B B A Queue Length 50th (m) 2.3 0.0 1.4 71.0 20.2 Queue Length 95th (m) 10.1 #32.3 4.7 157.0 39.2 Internal Link Dist (m) 130.2 219.1 521.7 Turn Bay Length (m) 25.0 50.0 50.0 Base Capacity (vph) 247 552 548 1623 1355 Starvation Cap Reductn 0 0 30 0 0 Spillback Cap Reductn 0 0 0 0 0 Reduced v/c Ratio 0.07 0.66 0.08 0.61 0.20 Intersection Summary Vertation Vertation Vertation Vertation Vertation Area Type: Other Other Vertation Verta							
Approach LOS B B A Queue Length 50th (m) 2.3 0.0 1.4 71.0 20.2 Queue Length 95th (m) 10.1 #32.3 4.7 157.0 39.2 Internal Link Dist (m) 130.2 219.1 521.7 Turn Bay Length (m) 25.0 50.0 Base Capacity (vph) 247 552 548 1623 1355 Starvation Cap Reductn 0 0 30 0 0 Spillback Cap Reductn 0 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 0 0 Reduced v/c Ratio 0.07 0.66 0.08 0.61 0.20 0 Intersection Summary Intersection Summary Intersection Summary Intersection Cape I Page Intersection LOS: B Intersection LOS: B Intersection LOS: B Intersection Capacity Utilization 70.8% ICU Level of Service C ICU Level of Service C			D	A			
Queue Length 50th (m) 2.3 0.0 1.4 71.0 20.2 Queue Length 95th (m) 10.1 #32.3 4.7 157.0 39.2 Internal Link Dist (m) 130.2 219.1 521.7 Turn Bay Length (m) 25.0 50.0 Base Capacity (vph) 247 552 548 1623 1355 Starvation Cap Reductn 0 0 30 0 Spillback Cap Reductn 0 0 0 0 Storage Cap Reductn 0 0 0 0 Reduced v/c Ratio 0.07 0.66 0.08 0.61 0.20 Intersection Summary Intersection Summary Intersection Summary Intersection Summary Intersection Capacity Utilization 70.8% Intersection LOS: B							
Queue Length 95th (m) 10.1 #32.3 4.7 157.0 39.2 Internal Link Dist (m) 130.2 219.1 521.7 Turn Bay Length (m) 247 552 548 1623 1355 Starvation Cap Reductn 0 0 30 0 Spillback Cap Reductn 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 0 Reduced v/c Ratio 0.07 0.66 0.08 0.61 0.20 0 Intersection Summary Area Type: Other Other Cycle Length: 100 Actuated Cycle Length: 71.1 Natural Cycle: 75 Control Type: Semi Act-Uncoord Maximum v/c Ratio: 0.83 Intersection LOS: B Intersection Capacity Utilization 70.8% ICU Level of Service C			0.0	1 4			
Internal Link Dist (m) 130.2 219.1 521.7 Turn Bay Length (m) 25.0 50.0 50.0 Base Capacity (vph) 247 552 548 1623 1355 Starvation Cap Reductn 0 0 30 0 Spillback Cap Reductn 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 0 Reduced v/c Ratio 0.07 0.66 0.08 0.61 0.20 Intersection Summary							
Turn Bay Length (m) 25.0 50.0 Base Capacity (vph) 247 552 548 1623 1355 Starvation Cap Reductn 0 0 0 30 0 Spillback Cap Reductn 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 Reduced v/c Ratio 0.07 0.66 0.08 0.61 0.20 Intersection Summary			#32.3	4.7			
Base Capacity (vph) 247 552 548 1623 1355 Starvation Cap Reductn 0 0 0 30 0 Spillback Cap Reductn 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 Reduced v/c Ratio 0.07 0.66 0.08 0.61 0.20 Intersection Summary		130.2	25.0	EO O	219.1	521. <i>1</i>	
Starvation Cap Reductn 0 0 30 0 Spillback Cap Reductn 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 0 0 Reduced v/c Ratio 0.07 0.66 0.08 0.61 0.20 0 Intersection Summary	, , ,	0.47			1000	1055	
Spillback Cap Reductn00000Storage Cap Reductn00000Reduced v/c Ratio0.070.660.080.610.20Intersection SummaryArea Type:OtherCycle Length: 100Actuated Cycle Length: 71.1Natural Cycle: 75Control Type: Semi Act-UncoordMaximum v/c Ratio: 0.83Intersection LOS: BIntersection Signal Delay: 14.5Intersection LOS: BIntersection Capacity Utilization 70.8%ICU Level of Service C							
Storage Cap Reductn00000Reduced v/c Ratio0.070.660.080.610.20Intersection SummaryArea Type:OtherCycle Length: 100000Actuated Cycle Length: 71.1000Natural Cycle: 75000Control Type: Semi Act-Uncoord000Maximum v/c Ratio: 0.8300.610.20Intersection Signal Delay: 14.510Intersection Capacity Utilization 70.8%ICU Level of Service C	•						
Reduced v/c Ratio 0.07 0.66 0.08 0.61 0.20 Intersection Summary Area Type: Other Cycle Length: 100 000 Actuated Cycle Length: 71.1 000 Natural Cycle: 75 0000 Control Type: Semi Act-Uncoord 0.83 Intersection Signal Delay: 14.5 Intersection LOS: B Intersection Capacity Utilization 70.8% ICU Level of Service C	• •			-			
Intersection Summary Area Type: Other Cycle Length: 100 Actuated Cycle Length: 71.1 Natural Cycle: 75 Control Type: Semi Act-Uncoord Maximum v/c Ratio: 0.83 Intersection Signal Delay: 14.5 Intersection LOS: B Intersection Capacity Utilization 70.8% ICU Level of Service C							
Area Type: Other Cycle Length: 100 0 Actuated Cycle Length: 71.1 0 Natural Cycle: 75 0 Control Type: Semi Act-Uncoord 0.83 Intersection Signal Delay: 14.5 Intersection LOS: B Intersection Capacity Utilization 70.8% ICU Level of Service C		0.07	0.66	0.08	0.61	0.20	
Cycle Length: 100 Actuated Cycle Length: 71.1 Natural Cycle: 75 Control Type: Semi Act-Uncoord Maximum v/c Ratio: 0.83 Intersection Signal Delay: 14.5 Intersection Capacity Utilization 70.8% ICU Level of Service C		0"					
Actuated Cycle Length: 71.1 Natural Cycle: 75 Control Type: Semi Act-Uncoord Maximum v/c Ratio: 0.83 Intersection Signal Delay: 14.5 Intersection Capacity Utilization 70.8%		Other					
Natural Cycle: 75 Control Type: Semi Act-Uncoord Maximum v/c Ratio: 0.83 Intersection Signal Delay: 14.5 Intersection Capacity Utilization 70.8% ICU Level of Service C							
Control Type: Semi Act-Uncoord Maximum v/c Ratio: 0.83 Intersection Signal Delay: 14.5 Intersection Capacity Utilization 70.8% ICU Level of Service C		.1					
Maximum v/c Ratio: 0.83 Intersection Signal Delay: 14.5 Intersection Capacity Utilization 70.8% ICU Level of Service C							
Intersection Signal Delay: 14.5Intersection LOS: BIntersection Capacity Utilization 70.8%ICU Level of Service C		coord					
Intersection Capacity Utilization 70.8% ICU Level of Service C							
Analysis Period (min) 15		ation 70.8%			10	CU Level o	of Service C
	Analysis Period (min) 15						

Scenario 1 2025 Future Total AM 3:13 am 12-03-2020 Baseline

95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

Splits and Phases: 2: Boundary Road & Hwy 417 EB Ramp Terminal

Lanes, Volumes, Timings 3: Boundary Road & Thunder Road/Amazon Way

		<u>л</u> т	1	*	ŧ	-
Lane Group EBL EBT EBR WBL WBT	WBR I	NBL NBT	NBR	SBL	SBT	SBR
Lane Configurations 🛟 📢	1	ሻ ተ	1	1	et 🗧	
Traffic Volume (vph) 55 17 9 3 6	25	21 932	30	193	325	112
Future Volume (vph) 55 17 9 3 6	25	21 932	30	193	325	112
Ideal Flow (vphpl) 1800 1800 1800 1800 1800	1800 1	1800 1800	1800	1800	1800	1800
Lane Width (m) 3.5 3.5 3.5 3.5 3.5	3.5	3.3 3.5	3.3	3.3	3.5	3.5
Storage Length (m) 0.0 15.0 0.0	0.0	35.0	7.5	100.0		35.0
Storage Lanes 0 0 0	1	1	1	1		0
Taper Length (m) 7.5 7.5	4	45.0		75.0		
Lane Util. Factor 1.00 1.00 1.00 1.00 1.00	1.00	1.00 1.00	1.00	1.00	1.00	1.00
Frt 0.985	0.850		0.850		0.962	
Flt Protected 0.967 0.984	0.	.950		0.950		
Satd. Flow (prot) 0 1533 0 0 1752	1513 1	1589 1728	1479	1653	1466	0
Flt Permitted 0.791 0.886	0.	.509		0.110		
Satd. Flow (perm) 0 1254 0 0 1577	1513	852 1728	1479	191	1466	0
Right Turn on Red Yes	Yes		Yes			Yes
Satd. Flow (RTOR) 6	100		96		40	
Link Speed (k/h) 60 20		80			80	
Link Distance (m) 198.6 170.6		174.7			243.1	
Travel Time (s) 11.9 30.7		7.9			10.9	
Peak Hour Factor 1.00 1.00 1.00 1.00 1.00	1.00	1.00 1.00	1.00	1.00	1.00	1.00
Heavy Vehicles (%) 14% 0% 10% 0% 0%	0%	4% 3%	0%	0%	16%	19%
Adj. Flow (vph) 55 17 9 3 6	25	21 932	30	193	325	112
Shared Lane Traffic (%)						
Lane Group Flow (vph) 0 81 0 0 9	25	21 932	30	193	437	0
Enter Blocked Intersection No No No No No	No	No No	No	No	No	No
Lane Alignment Left Left Right Left Left	Right	Left Left	Right	Left	Left	Right
Median Width(m) 0.0 0.0		3.5			3.5	
Link Offset(m) 0.0 0.0		0.0			0.0	
Crosswalk Width(m) 4.8 4.8		4.8			4.8	
Two way Left Turn Lane						
Headway Factor 1.09 1.09 1.09 1.09 1.09	1.09	1.12 1.09	1.12	1.12	1.09	1.09
Turning Speed (k/h) 25 15 25	15	25	15	25		15
Number of Detectors 1 2 1 2	1	1 2	1	1	2	
Detector Template Left Thru Left Thru	Right	Left Thru	Right	Left	Thru	
Leading Detector (m) 2.0 10.0 2.0 10.0	2.0	2.0 10.0	2.0	2.0	10.0	
Trailing Detector (m) 0.0 0.0 0.0 0.0	0.0	0.0 0.0	0.0	0.0	0.0	
Detector 1 Position(m) 0.0 0.0 0.0 0.0	0.0	0.0 0.0	0.0	0.0	0.0	
Detector 1 Size(m) 2.0 0.6 2.0 0.6	2.0	2.0 0.6	2.0	2.0	0.6	
Detector 1 Type CI+Ex CI+Ex CI+Ex CI+Ex	CI+Ex CI	l+Ex Cl+Ex	CI+Ex	CI+Ex	CI+Ex	
Detector 1 Channel						
Detector 1 Extend (s) 0.0 0.0 0.0 0.0	0.0	0.0 0.0	0.0	0.0	0.0	
Detector 1 Queue (s) 0.0 0.0 0.0 0.0	0.0	0.0 0.0	0.0	0.0	0.0	
Detector 1 Delay (s) 0.0 0.0 0.0 0.0	0.0	0.0 0.0	0.0	0.0	0.0	
Detector 2 Position(m) 9.4 9.4		9.4			9.4	
Detector 2 Size(m) 0.6 0.6		0.6			0.6	
Detector 2 Type CI+Ex CI+Ex		CI+Ex			CI+Ex	
Detector 2 Channel						
Detector 2 Extend (s) 0.0 0.0		0.0			0.0	
Turn Type Perm NA Perm NA	Perm P	Perm NA	Perm	pm+pt	NA	

Scenario 1 2025 Future Total AM 3:13 am 12-03-2020 Baseline

Lanes, Volumes, Timings 3: Boundary Road & Thunder Road/Amazon Way

	≯	+	\mathbf{F}	4	+	•	•	1	1	1	Ŧ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Protected Phases		4			8			2		1	6	
Permitted Phases	4			8		8	2		2	6		
Detector Phase	4	4		8	8	8	2	2	2	1	6	
Switch Phase												
Minimum Initial (s)	7.0	7.0		7.0	7.0	7.0	20.0	20.0	20.0	7.0	20.0	
Minimum Split (s)	24.8	24.8		24.8	24.8	24.8	26.2	26.2	26.2	13.0	26.2	
Total Split (s)	24.8	24.8		24.8	24.8	24.8	60.5	60.5	60.5	14.7	75.2	
Total Split (%)	24.8%	24.8%		24.8%	24.8%	24.8%	60.5%	60.5%	60.5%	14.7%	75.2%	
Maximum Green (s)	19.0	19.0		19.0	19.0	19.0	54.3	54.3	54.3	8.7	69.0	
Yellow Time (s)	3.7	3.7		3.7	3.7	3.7	4.6	4.6	4.6	4.6	4.6	
All-Red Time (s)	2.1	2.1		2.1	2.1	2.1	1.6	1.6	1.6	1.4	1.6	
Lost Time Adjust (s)		0.0			0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)		5.8			5.8	5.8	6.2	6.2	6.2	6.0	6.2	
Lead/Lag							Lag	Lag	Lag	Lead		
Lead-Lag Optimize?							Yes	Yes	Yes	Yes		
Vehicle Extension (s)	3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	
Recall Mode	None	None		None	None	None	Min	Min	Min	None	Min	
Walk Time (s)	7.0	7.0		7.0	7.0	7.0	7.0	7.0	7.0		7.0	
Flash Dont Walk (s)	12.0	12.0		12.0	12.0	12.0	10.0	10.0	10.0		10.0	
Pedestrian Calls (#/hr)	0	0		0	0	0	0	0	0		0	
Act Effct Green (s)		11.0			11.0	11.0	52.2	52.2	52.2	67.5	69.0	
Actuated g/C Ratio		0.13			0.13	0.13	0.60	0.60	0.60	0.78	0.79	
v/c Ratio		0.50			0.05	0.09	0.04	0.90	0.03	0.65	0.37	
Control Delay		46.1			35.3	0.6	9.3	30.6	0.1	21.5	4.9	
Queue Delay		0.0			0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay		46.1			35.3	0.6	9.3	30.6	0.1	21.5	4.9	
LOS		D			D	А	А	С	А	С	А	
Approach Delay		46.1			9.8			29.2			10.0	
Approach LOS		D			А			С			В	
Queue Length 50th (m)		13.3			1.5	0.0	1.5	142.0	0.0	8.4	20.4	
Queue Length 95th (m)		28.0			6.0	0.0	5.3	#261.7	0.0	#43.4	43.5	
Internal Link Dist (m)		174.6			146.6			150.7			219.1	
Turn Bay Length (m)							35.0		7.5	100.0		
Base Capacity (vph)		285			353	416	545	1107	982	298	1170	
Starvation Cap Reductn		0			0	0	0	0	0	0	0	
Spillback Cap Reductn		0			0	0	0	0	0	0	0	
Storage Cap Reductn		0			0	0	0	0	0	0	0	
Reduced v/c Ratio		0.28			0.03	0.06	0.04	0.84	0.03	0.65	0.37	
Intersection Summary												
Area Type:	Other											
Cycle Length: 100												
Actuated Cycle Length: 87												
Natural Cycle: 90												
Control Type: Semi Act-Une	coord											
Maximum v/c Ratio: 0.90												
Intersection Signal Delay: 2					ntersectio							
Intersection Capacity Utiliza	ation 89.5%			10	CU Level	of Service	εE					
Analysis Period (min) 15												

Scenario 1 2025 Future Total AM 3:13 am 12-03-2020 Baseline

95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

Splits and Phases: 3: Boundary Road & Thunder Road/Amazon Way

Lanes, Volumes, Timings 4: Boundary Road & Site Access/South Amazon Access

	≯	-	$\mathbf{\hat{z}}$	4	+	•	•	t	۲	1	Ļ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			\$		٦	eî		٦	eî 🕺	
Traffic Volume (vph)	1	0	4	6	0	3	14	978	6	1	319	17
Future Volume (vph)	1	0	4	6	0	3	14	978	6	1	319	17
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Lane Width (m)	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.6
Storage Length (m)	0.0		0.0	0.0		0.0	15.0		0.0	70.0		0.0
Storage Lanes	0		0	0		0	1		0	1		0
Taper Length (m)	7.5			7.5			45.0			45.0		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.892			0.955			0.999			0.992	
Flt Protected		0.990			0.968		0.950			0.950		
Satd. Flow (prot)	0	1572	0	0	823	0	1691	1750	0	846	1585	0
Flt Permitted		0.990			0.968		0.950			0.950		
Satd. Flow (perm)	0	1572	0	0	823	0	1691	1750	0	846	1585	0
Link Speed (k/h)		50			20			80			80	
Link Distance (m)		105.7			151.5			1150.2			174.7	
Travel Time (s)		7.6			27.3			51.8			7.9	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles (%)	0%	0%	0%	100%	0%	100%	0%	1%	100%	100%	12%	0%
Adj. Flow (vph)	1	0	4	6	0	3	14	978	6	1	319	17
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	5	0	0	9	0	14	984	0	1	336	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)		0.0			0.0			3.5			3.5	
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		4.8			4.8			4.8			4.8	
Two way Left Turn Lane												
Headway Factor	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.07
Turning Speed (k/h)	25		15	25		15	25		15	25		15
Sign Control		Stop			Stop			Free			Free	
Intersection Summary												
<i>J</i> 1	other											
Control Type: Unsignalized												
Intersection Capacity Utilization	on 64.7%			IC	CU Level of	of Service	e C					
Analysis Period (min) 15												

Movement EBL EBT EBR WBL WBT WBR NBL NBT			•	
	NBR S	SBL	SBT	SBR
Lane Configurations 🚓 🛟 🖡		٦.	4	
Traffic Volume (veh/h) 1 0 4 6 0 3 14 978	6	1	319	17
Future Volume (Veh/h) 1 0 4 6 0 3 14 978	6	1	319	17
Sign Control Stop Stop Free			Free	
Grade 0% 0% 0%			0%	
Peak Hour Factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	1.00 1	.00	1.00	1.00
Hourly flow rate (vph) 1 0 4 6 0 3 14 978	6	1	319	17
Pedestrians				
Lane Width (m)				
Walking Speed (m/s)				
Percent Blockage				
Right turn flare (veh)				
Median type None			None	
Median storage veh)				
Upstream signal (m)			175	
pX, platoon unblocked 0.97 0.97 0.97 0.97 0.97 0.97				
vC, conflicting volume 1338 1342 328 1334 1347 981 336	(984		
vC1, stage 1 conf vol				
vC2, stage 2 conf vol				
vCu, unblocked vol 1334 1337 297 1330 1343 981 306	(984		
tC, single (s) 7.1 6.5 6.2 8.1 6.5 7.2 4.1		5.1		
tC, 2 stage (s)				
tF (s) 3.5 4.0 3.3 4.4 4.0 4.2 2.2		3.1		_
p0 queue free % 99 100 99 92 100 99 99		100		
cM capacity (veh/h) 126 149 728 80 147 202 1234		427		
Direction, Lane # EB 1 WB 1 NB 1 NB 2 SB 1 SB 2				
Volume Right 4 3 0 6 0 17				
cSH 372 100 1234 1700 427 1700				
Volume to Capacity 0.01 0.09 0.01 0.58 0.00 0.20				_
Queue Length 95th (m) 0.3 2.3 0.3 0.0 0.1 0.0				
Control Delay (s) 14.8 44.6 7.9 0.0 13.4 0.0				_
Lane LOS B E A B				
Approach Delay (s) 14.8 44.6 0.1 0.0				
Approach LOS B E				
Intersection Summary				
Average Delay 0.4				
Intersection Capacity Utilization 64.7% ICU Level of Service	С			
Analysis Period (min) 15				

	٦	\mathbf{r}	•	1	Ļ	~
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	ሻ	1		र्भ	1	1
Traffic Volume (vph)	83	30	134	894	133	108
Future Volume (vph)	83	30	134	894	133	108
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800
Lane Width (m)	3.3	3.3	3.5	3.5	3.5	3.5
Storage Length (m)	25.0	0.0	0.0			30.0
Storage Lanes	1	1	0			1
Taper Length (m)	47.5		7.5			
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.850				0.850
Flt Protected	0.950			0.994		
Satd. Flow (prot)	1489	1264	0	1736	1575	1293
Flt Permitted	0.950			0.994		
Satd. Flow (perm)	1489	1264	0	1736	1575	1293
Link Speed (k/h)	80			80	80	
Link Distance (m)	180.5			135.8	1150.2	
Travel Time (s)	8.1			6.1	51.8	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles (%)	11%	17%	8%	1%	13%	17%
Adj. Flow (vph)	83	30	134	894	133	108
Shared Lane Traffic (%)						
Lane Group Flow (vph)	83	30	0	1028	133	108
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Left	Left	Right
Median Width(m)	3.3	-		3.5	3.5	-
Link Offset(m)	0.0			0.0	0.0	
Crosswalk Width(m)	4.8			4.8	4.8	
Two way Left Turn Lane						
Headway Factor	1.12	1.12	1.09	1.09	1.09	1.09
Turning Speed (k/h)	25	15	25			15
Sign Control	Stop			Free	Free	
Intersection Summary						
· · · · · · · · · · · · · · · · · · ·	Other					
Control Type: Unsignalized						
Intersection Capacity Utilizat	tion 79 7%			l	CU Level (of Service
Analysis Period (min) 15	uon <i>i 0.1 /</i> 0			1		

	≯	*	•	1	ţ	~
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	5	1		र्भ	1	1
Traffic Volume (veh/h)	83	30	134	894	133	108
Future Volume (Veh/h)	83	30	134	894	133	108
Sign Control	Stop			Free	Free	
Grade	0%			0%	0%	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00
Hourly flow rate (vph)	83	30	134	894	133	108
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type				None	None	
Median storage veh)					110110	
Upstream signal (m)						
pX, platoon unblocked						
vC, conflicting volume	1295	133	241			
vC1, stage 1 conf vol	1200	100	271			
vC2, stage 2 conf vol						
vCu, unblocked vol	1295	133	241			
tC, single (s)	6.5	6.4	4.2			
tC, 2 stage (s)	0.0	U.T	7.2			
tF (s)	3.6	3.5	2.3			
p0 queue free %	46	97	2.5			
cM capacity (veh/h)	154	878	1291			
Direction, Lane #	EB 1	EB 2	NB 1	SB 1	SB 2	
Volume Total	83	30	1028	133	108	
Volume Left	83	0	134	0	0	
Volume Right	0	30	0	0	108	
cSH	154	878	1291	1700	1700	
Volume to Capacity	0.54	0.03	0.10	0.08	0.06	
Queue Length 95th (m)	21.6	0.8	2.8	0.0	0.0	
Control Delay (s)	53.0	9.2	2.6	0.0	0.0	
Lane LOS	F	А	А			
Approach Delay (s)	41.4		2.6	0.0		
Approach LOS	E					
Intersection Summary						
Average Delay			5.3			
Intersection Capacity Utiliza	tion		79.7%	IC	CU Level o	of Service
Analysis Period (min)			15.170	ic.		
			15			

	-	\mathbf{r}	1	+	1	1
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	f,			स्	Y	
Traffic Volume (vph)	65	0	38	101	0	16
Future Volume (vph)	65	0	38	101	0	16
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800
Lane Width (m)	3.5	3.5	3.5	3.5	3.5	3.5
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Frt					0.865	
Flt Protected				0.987		
Satd. Flow (prot)	1589	0	0	1496	1466	0
FIt Permitted				0.987		
Satd. Flow (perm)	1589	0	0	1496	1466	0
Link Speed (k/h)	60			50	50	
Link Distance (m)	163.7			198.6	103.6	
Travel Time (s)	9.8			14.3	7.5	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles (%)	12%	0%	0%	24%	0%	5%
Adj. Flow (vph)	65	0	38	101	0	16
Shared Lane Traffic (%)						
Lane Group Flow (vph)	65	0	0	139	16	0
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Left	Left	Right
Median Width(m)	0.0			0.0	3.5	
Link Offset(m)	0.0			0.0	0.0	
Crosswalk Width(m)	4.8			4.8	4.8	
Two way Left Turn Lane						
Headway Factor	1.09	1.09	1.09	1.09	1.09	1.09
Turning Speed (k/h)		15	25		25	15
Sign Control	Free			Free	Stop	
Intersection Summary						
J 1	Other					
Control Type: Unsignalized						
Intersection Capacity Utilization	tion 24.5%			IC	CU Level o	of Service /
Analysia Daviad (min) 15						

Analysis Period (min) 15

	-	\mathbf{r}	4	+	1	1
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	4			र्स	Y	
Traffic Volume (veh/h)	65	0	38	101	0	16
Future Volume (Veh/h)	65	0	38	101	0	16
Sign Control	Free			Free	Stop	
Grade	0%			0%	0%	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00
Hourly flow rate (vph)	65	0	38	101	0	16
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type	None			None		
Median storage veh)						
Upstream signal (m)				199		
pX, platoon unblocked						
vC, conflicting volume			65		242	65
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol			65		242	65
tC, single (s)			4.1		6.4	6.2
tC, 2 stage (s)						
tF (s)			2.2		3.5	3.3
p0 queue free %			98		100	98
cM capacity (veh/h)			1550		732	991
Direction, Lane #	EB 1	WB 1	NB 1			
Volume Total	65	139	16			
Volume Left	0	38	0			
Volume Right	0	0	16			
cSH	1700	1550	991			
Volume to Capacity	0.04	0.02	0.02			
Queue Length 95th (m)	0.0	0.6	0.4			
Control Delay (s)	0.0	2.2	8.7			
Lane LOS		А	А			
Approach Delay (s)	0.0	2.2	8.7			
Approach LOS			А			
Intersection Summary						
Average Delay			2.0			
Intersection Capacity Utiliza	ation		24.5%	IC	CU Level o	of Service
Analysis Period (min)			15	10		
			10			

	-	\mathbf{r}	-	-	1	1	
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	ef 🗧			र्स	- M		
Traffic Volume (vph)	62	0	11	90	0	3	
Future Volume (vph)	62	0	11	90	0	3	
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	
Lane Width (m)	3.5	3.5	3.5	3.5	3.5	3.5	
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Frt					0.865		
Flt Protected				0.995			
Satd. Flow (prot)	1679	0	0	1467	770	0	
Flt Permitted				0.995			
Satd. Flow (perm)	1679	0	0	1467	770	0	
Link Speed (k/h)	60			50	50		
Link Distance (m)	185.0			163.7	105.8		
Travel Time (s)	11.1			11.8	7.6		
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Heavy Vehicles (%)	6%	0%	100%	11%	0%	100%	
Adj. Flow (vph)	62	0	11	90	0	3	
Shared Lane Traffic (%)							
Lane Group Flow (vph)	62	0	0	101	3	0	
Enter Blocked Intersection	No	No	No	No	No	No	
Lane Alignment	Left	Right	Left	Left	Left	Right	
Median Width(m)	0.0			0.0	3.5		
Link Offset(m)	0.0			0.0	0.0		
Crosswalk Width(m)	4.8			4.8	4.8		
Two way Left Turn Lane							
Headway Factor	1.09	1.09	1.09	1.09	1.09	1.09	
Turning Speed (k/h)		15	25		25	15	
Sign Control	Free			Free	Stop		
Intersection Summary							
	Other						
Control Type: Unsignalized							
Intersection Capacity Utilizat	ion 22.3%			IC	CU Level	of Service	эA
Analysia Dariad (min) 15							

Analysis Period (min) 15

	→	\mathbf{r}	4	+	1	1
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	¢Î			र्स	Y	
Traffic Volume (veh/h)	62	0	11	90	0	3
Future Volume (Veh/h)	62	0	11	90	0	3
Sign Control	Free			Free	Stop	
Grade	0%			0%	0%	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00
Hourly flow rate (vph)	62	0	11	90	0	3
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type	None			None		
Median storage veh)						
Upstream signal (m)				362		
pX, platoon unblocked						
vC, conflicting volume			62		174	62
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol			62		174	62
tC, single (s)			5.1		6.4	7.2
tC, 2 stage (s)						
tF (s)			3.1		3.5	4.2
p0 queue free %			99		100	100
cM capacity (veh/h)			1092		812	785
Direction, Lane #	EB 1	WB 1	NB 1			
Volume Total	62	101	3			
Volume Left	0	11	0			
Volume Right	0	0	3			
cSH	1700	1092	785			
Volume to Capacity	0.04	0.01	0.00			
Queue Length 95th (m)	0.0	0.2	0.1			
Control Delay (s)	0.0	1.0	9.6			
Lane LOS		А	А			
Approach Delay (s)	0.0	1.0	9.6			
Approach LOS			А			
Intersection Summary						
Average Delay			0.8			
Intersection Capacity Utiliza	ation		22.3%	IC	CU Level o	of Service
Analysis Period (min)			15			
			10			

	-	\mathbf{r}	1	-	1	1	
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	4Î			र्स	Y		
Traffic Volume (vph)	55	0	23	67	0	7	
Future Volume (vph)	55	0	23	67	0	7	
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	
Lane Width (m)	3.5	3.5	3.5	3.5	3.5	3.5	
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Frt					0.865		
Flt Protected				0.987			
Satd. Flow (prot)	1695	0	0	1585	1351	0	
Flt Permitted				0.987			
Satd. Flow (perm)	1695	0	0	1585	1351	0	
Link Speed (k/h)	60			50	50		
Link Distance (m)	95.5			185.0	109.7		
Travel Time (s)	5.7			13.3	7.9		
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Heavy Vehicles (%)	5%	0%	22%	7%	0%	14%	
Adj. Flow (vph)	55	0	23	67	0	7	
Shared Lane Traffic (%)							
Lane Group Flow (vph)	55	0	0	90	7	0	
Enter Blocked Intersection	No	No	No	No	No	No	
Lane Alignment	Left	Right	Left	Left	Left	Right	
Median Width(m)	0.0			0.0	3.5	-	
Link Offset(m)	0.0			0.0	0.0		
Crosswalk Width(m)	4.8			4.8	4.8		
Two way Left Turn Lane							
Headway Factor	1.09	1.09	1.09	1.09	1.09	1.09	
Turning Speed (k/h)		15	25		25	15	
Sign Control	Free			Free	Stop		
Intersection Summary							
Area Type:	Other						
Control Type: Unsignalized							
Intersection Capacity Utilizat	tion 21.7%			IC	CU Level o	of Service /	А
Analysis Daried (min) 15							

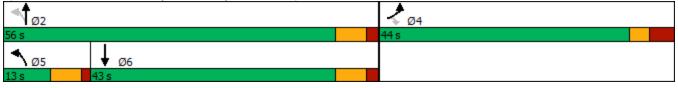
Analysis Period (min) 15

	-	\mathbf{r}	4	-	1	1
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	4			र्स	Y	
Traffic Volume (veh/h)	55	0	23	67	0	7
Future Volume (Veh/h)	55	0	23	67	0	7
Sign Control	Free			Free	Stop	
Grade	0%			0%	0%	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00
Hourly flow rate (vph)	55	0	23	67	0	7
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type	None			None		
Median storage veh)						
Upstream signal (m)						
pX, platoon unblocked						
vC, conflicting volume			55		168	55
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol			55		168	55
tC, single (s)			4.3		6.4	6.3
tC, 2 stage (s)						
tF (s)			2.4		3.5	3.4
p0 queue free %			98		100	99
cM capacity (veh/h)			1431		814	979
Direction, Lane #	EB 1	WB 1	NB 1			
Volume Total	55	90	7			
Volume Left	0	23	0			
Volume Right	0	0	7			
cSH	1700	1431	979			
Volume to Capacity	0.03	0.02	0.01			
Queue Length 95th (m)	0.0	0.4	0.2			
Control Delay (s)	0.0	2.0	8.7			
Lane LOS		А	А			
Approach Delay (s)	0.0	2.0	8.7			
Approach LOS			А			
Intersection Summary						
Average Delay			1.6			
Intersection Capacity Utiliza	ation		21.7%	IC	U Level c	of Service
Analysis Period (min)			15			

	4	×	1	1	1	ţ	
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	Y		el 🕴			با	
Traffic Volume (vph)	60	1	177	355	24	128	
Future Volume (vph)	60	1	177	355	24	128	
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	
Lane Width (m)	4.5	4.5	3.5	3.5	3.5	3.5	
Storage Length (m)	0.0	10.0		0.0	0.0		
Storage Lanes	1	0		0	0		
Taper Length (m)	7.5				7.5		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Frt	0.998		0.910				
Flt Protected	0.953					0.992	
Satd. Flow (prot)	1548	0	1523	0	0	1632	
Flt Permitted	0.953					0.992	
Satd. Flow (perm)	1548	0	1523	0	0	1632	
Link Speed (k/h)	40		80			80	
Link Distance (m)	155.0		545.7			134.1	
Travel Time (s)	14.0		24.6			6.0	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Heavy Vehicles (%)	22%	0%	5%	7%	4%	9%	
Adj. Flow (vph)	60	1	177	355	24	128	
Shared Lane Traffic (%)							
Lane Group Flow (vph)	61	0	532	0	0	152	
Enter Blocked Intersection	No	No	No	No	No	No	
Lane Alignment	Left	Right	Left	Right	Left	Left	
Median Width(m)	4.5		0.0			0.0	
Link Offset(m)	0.0		0.0			0.0	
Crosswalk Width(m)	4.8		4.8			4.8	
Two way Left Turn Lane							
Headway Factor	0.95	0.95	1.09	1.09	1.09	1.09	
Turning Speed (k/h)	25	15		15	25		
Sign Control	Stop		Free			Free	
Intersection Summary							
	Other						
Control Type: Unsignalized							
Intersection Capacity Utilization	tion 43.1%			IC	U Level	of Service /	А
Analysis Period (min) 15							

	∢	•	1	1	5	Ļ
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	¥		4			र्स
Traffic Volume (veh/h)	60	1	177	355	24	128
Future Volume (Veh/h)	60	1	177	355	24	128
Sign Control	Stop		Free			Free
Grade	0%		0%			0%
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00
Hourly flow rate (vph)	60	1	177	355	24	128
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type			None			None
Median storage veh)						
Upstream signal (m)						
pX, platoon unblocked						
vC, conflicting volume	530	354			532	
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	530	354			532	
tC, single (s)	6.6	6.2			4.1	
tC, 2 stage (s)	0.0	0.2				
tF (s)	3.7	3.3			2.2	
p0 queue free %	87	100			98	
cM capacity (veh/h)	465	694			1025	
			0.5.4		1020	
Direction, Lane #	WB 1	NB 1	SB 1			
Volume Total	61	532	152			
Volume Left	60	0	24			
Volume Right	1	355	0			
cSH	467	1700	1025			
Volume to Capacity	0.13	0.31	0.02			
Queue Length 95th (m)	3.6	0.0	0.6			
Control Delay (s)	13.9	0.0	1.5			
Lane LOS	В		А			
Approach Delay (s)	13.9	0.0	1.5			
Approach LOS	В					
Intersection Summary						
Average Delay			1.4			
Intersection Capacity Utilization	tion		43.1%	IC	U Level o	of Service
Analysis Period (min)			15			

	٦	>	•	†	Ţ	~
	רח		וסוא		T CDT	000
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	<u></u>	750	1	1	}	47
Traffic Volume (vph)	77	756	191	357	233	17
Future Volume (vph)	77	756	191	357	233	17
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800
Lane Width (m)	3.5	3.3	3.5	3.5	3.5	3.5
Storage Length (m)	0.0	25.0	50.0			0.0
Storage Lanes	1	1	1			0
Taper Length (m)	7.5		75.0			
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.850			0.991	
Flt Protected	0.950		0.950			
Satd. Flow (prot)	1551	1422	1496	1604	1581	0
Flt Permitted	0.950		0.496			
Satd. Flow (perm)	1551	1422	781	1604	1581	0
Right Turn on Red		Yes				Yes
Satd. Flow (RTOR)		577			4	100
Link Speed (k/h)	40	511		80	4 80	
Link Distance (m)	154.2			243.1	545.7	
Travel Time (s)	13.9			243.1	24.6	
()		1.00	1.00			1.00
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles (%)	9%	4%	13%	11%	12%	6%
Adj. Flow (vph)	77	756	191	357	233	17
Shared Lane Traffic (%)						
Lane Group Flow (vph)	77	756	191	357	250	0
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Left	Left	Right
Median Width(m)	3.5			3.5	3.5	
Link Offset(m)	0.0			0.0	0.0	
Crosswalk Width(m)	4.8			4.8	4.8	
Two way Left Turn Lane					-	
Headway Factor	1.09	1.12	1.09	1.09	1.09	1.09
Turning Speed (k/h)	25	15	25			1.00
Number of Detectors	1	1	1	2	2	10
Detector Template	Left	Right	Left	Thru	Thru	
	2.0	2.0	2.0	10.0	10.0	
Leading Detector (m)						
Trailing Detector (m)	0.0	0.0	0.0	0.0	0.0	
Detector 1 Position(m)	0.0	0.0	0.0	0.0	0.0	
Detector 1 Size(m)	2.0	2.0	2.0	0.6	0.6	
Detector 1 Type	CI+Ex	Cl+Ex	Cl+Ex	Cl+Ex	Cl+Ex	
Detector 1 Channel						
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0	
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0	
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0	
Detector 2 Position(m)				9.4	9.4	
Detector 2 Size(m)				0.6	0.6	
Detector 2 Type				CI+Ex	Cl+Ex	
Detector 2 Channel						
Detector 2 Extend (s)				0.0	0.0	
Turn Type	Prot	Perm	pm+pt	NA	NA	
	FIUL	г с IIII	pin+pi	INA	INA	


Scenario 1 2025 Future Total PM 3:13 am 12-03-2020 Baseline

	٦	\mathbf{r}	1	1	Ŧ	∢
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Protected Phases	4		5	2	6	
Permitted Phases		4	2			
Detector Phase	4	4	5	2	6	
Switch Phase						
Minimum Initial (s)	7.0	7.0	7.0	35.0	35.0	
Minimum Split (s)	23.0	23.0	13.0	41.6	41.6	
Total Split (s)	44.0	44.0	13.0	56.0	43.0	
Total Split (%)	44.0%	44.0%	13.0%	56.0%	43.0%	
Maximum Green (s)	37.2	37.2	7.0	49.4	36.4	
Yellow Time (s)	3.0	3.0	4.6	4.6	4.6	
All-Red Time (s)	3.8	3.8	1.4	2.0	2.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	6.8	6.8	6.0	6.6	6.6	
Lead/Lag	0.0	0.0	Lead	0.0	Lag	
Lead-Lag Optimize?			Yes		Yes	
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	
Recall Mode	None	None	None	Min	Min	
Walk Time (s)	7.0	7.0	NONE	0.0	7.0	
Flash Dont Walk (s)	5.0	5.0		0.0	21.0	
Pedestrian Calls (#/hr)	0	0		0.0	21.0	
Act Effct Green (s)	23.7	23.7	49.6	49.0	35.7	
Actuated g/C Ratio	0.27	0.27	49.0	49.0	0.41	
v/c Ratio	0.27	0.27	0.37	0.37	0.41	
Control Delay	22.6	27.1	14.5	14.8	22.4	
Queue Delay	0.0	0.0	0.0	0.0	0.0	
Total Delay	22.6	27.1	14.5	14.8	22.4	
LOS	22.0 C	27.1 C	14.5 B	14.0 B	22.4 C	
	26.7		D	в 14.7	22.4	
Approach Delay	26.7 C				22.4 C	
Approach LOS		20.7	16.0	B		
Queue Length 50th (m)	10.0	30.7	16.2	34.6	30.4	
Queue Length 95th (m)	20.2	#122.7	36.0	70.2	60.2	
Internal Link Dist (m)	130.2	05.0	FA A	219.1	521.7	
Turn Bay Length (m)	000	25.0	50.0	000	000	
Base Capacity (vph)	682	948	507	936	682	
Starvation Cap Reductn	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	
Reduced v/c Ratio	0.11	0.80	0.38	0.38	0.37	
Intersection Summary						
Area Type:	Other					
Cycle Length: 100						
Actuated Cycle Length: 86	.3					
Natural Cycle: 80						
Control Type: Semi Act-Ur	ncoord					
Maximum v/c Ratio: 0.94						
Intersection Signal Delay:	22.0			I	ntersectior	LOS: C
Intersection Capacity Utiliz	ation 89.7%			[(CU Level o	of Service E
Analysis Period (min) 15						

Scenario 1 2025 Future Total PM 3:13 am 12-03-2020 Baseline

95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

Splits and Phases: 2: Boundary Road & Hwy 417 EB Ramp Terminal

Lanes, Volumes, Timings 3: Boundary Road & Thunder Road/Amazon Way

	٦	-	\mathbf{F}	4	+	*	•	Ť	1	1	Ļ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			ę	1	ľ	•	1	ľ	¢Î	
Traffic Volume (vph)	139	0	31	6	Ō	18	9	389	0	2	903	82
Future Volume (vph)	139	0	31	6	0	18	9	389	0	2	903	82
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Lane Width (m)	3.5	3.5	3.5	3.5	3.5	3.5	3.3	3.5	3.3	3.3	3.5	3.5
Storage Length (m)	0.0		15.0	0.0		0.0	35.0		7.5	100.0		35.0
Storage Lanes	0		0	0		1	1		1	1		0
Taper Length (m)	7.5			7.5			45.0			75.0		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.975				0.850					0.988	
Flt Protected		0.961			0.950		0.950			0.950		
Satd. Flow (prot)	0	1444	0	0	1271	1513	1503	1633	1740	1102	1686	0
Flt Permitted		0.761			0.732		0.206			0.449		
Satd. Flow (perm)	0	1143	0	0	980	1513	326	1633	1740	521	1686	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		100				100					10	
Link Speed (k/h)		60			20			80			80	
Link Distance (m)		198.6			170.6			174.7			243.1	
Travel Time (s)		11.9			30.7			7.9			10.9	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles (%)	19%	0%	0%	33%	0%	0%	10%	9%	0%	50%	4%	8%
Adj. Flow (vph)	139	0	31	6	0	18	9	389	0	2	903	82
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	170	0	0	6	18	9	389	0	2	985	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)		0.0	Ŭ		0.0	Ū		3.5	Ū		3.5	Ū
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		4.8			4.8			4.8			4.8	
Two way Left Turn Lane												
Headway Factor	1.09	1.09	1.09	1.09	1.09	1.09	1.12	1.09	1.12	1.12	1.09	1.09
Turning Speed (k/h)	25		15	25		15	25		15	25		15
Number of Detectors	1	2		1	2	1	1	2	1	1	2	
Detector Template	Left	Thru		Left	Thru	Right	Left	Thru	Right	Left	Thru	
Leading Detector (m)	2.0	10.0		2.0	10.0	2.0	2.0	10.0	2.0	2.0	10.0	
Trailing Detector (m)	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Detector 1 Position(m)	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Detector 1 Size(m)	2.0	0.6		2.0	0.6	2.0	2.0	0.6	2.0	2.0	0.6	
Detector 1 Type	CI+Ex	CI+Ex		Cl+Ex	Cl+Ex	CI+Ex	Cl+Ex	Cl+Ex	Cl+Ex	CI+Ex	CI+Ex	
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Detector 1 Queue (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Detector 1 Delay (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Detector 2 Position(m)		9.4			9.4			9.4			9.4	
Detector 2 Size(m)		0.6			0.6			0.6			0.6	
Detector 2 Type		CI+Ex			CI+Ex			Cl+Ex			CI+Ex	
Detector 2 Channel												
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
Turn Type	Perm	NA		Perm	NA	Perm	Perm	NA	Perm	pm+pt	NA	
										r ·· ٣•		

Scenario 1 2025 Future Total PM 3:13 am 12-03-2020 Baseline

Lanes, Volumes, Timings 3: Boundary Road & Thunder Road/Amazon Way

	٦	-	\mathbf{F}	4	+	•	1	1	1	1	Ļ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Protected Phases		4			8			2		1	6	
Permitted Phases	4			8		8	2		2	6		
Detector Phase	4	4		8	8	8	2	2	2	1	6	
Switch Phase												
Minimum Initial (s)	7.0	7.0		7.0	7.0	7.0	20.0	20.0	20.0	7.0	20.0	
Minimum Split (s)	24.8	24.8		24.8	24.8	24.8	26.2	26.2	26.2	13.0	26.2	
Total Split (s)	25.0	25.0		25.0	25.0	25.0	62.0	62.0	62.0	13.0	75.0	
Total Split (%)	25.0%	25.0%		25.0%	25.0%	25.0%	62.0%	62.0%	62.0%	13.0%	75.0%	
Maximum Green (s)	19.2	19.2		19.2	19.2	19.2	55.8	55.8	55.8	7.0	68.8	
Yellow Time (s)	3.7	3.7		3.7	3.7	3.7	4.6	4.6	4.6	4.6	4.6	
All-Red Time (s)	2.1	2.1		2.1	2.1	2.1	1.6	1.6	1.6	1.4	1.6	
Lost Time Adjust (s)		0.0			0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)		5.8			5.8	5.8	6.2	6.2	6.2	6.0	6.2	
Lead/Lag							Lag	Lag	Lag	Lead	•	
Lead-Lag Optimize?							Yes	Yes	Yes	Yes		
Vehicle Extension (s)	3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	
Recall Mode	None	None		None	None	None	Min	Min	Min	None	Min	
Walk Time (s)	7.0	7.0		7.0	7.0	7.0	7.0	7.0	7.0		7.0	
Flash Dont Walk (s)	12.0	12.0		12.0	12.0	12.0	10.0	10.0	10.0		10.0	
Pedestrian Calls (#/hr)	0	0		0	0	0	0	0	0		0	
Act Effct Green (s)	Ŭ	11.5		Ű	11.5	11.5	46.5	46.5	Ŭ	48.7	48.4	
Actuated g/C Ratio		0.16			0.16	0.16	0.64	0.64		0.67	0.66	
v/c Ratio		0.64			0.04	0.06	0.04	0.37		0.00	0.88	
Control Delay		27.4			32.2	0.3	8.1	8.7		4.5	20.5	
Queue Delay		0.0			0.0	0.0	0.0	0.0		0.0	0.0	
Total Delay		27.4			32.2	0.3	8.1	8.7		4.5	20.6	
LOS		C			C	A	A	A		A.	20.0 C	
Approach Delay		27.4			8.3	Л	Л	8.7		Л	20.5	
Approach LOS		C			0.0 A			0.7 A			20.5 C	
Queue Length 50th (m)		8.6			0.7	0.0	0.4	18.8		0.1	86.5	
Queue Length 95th (m)		35.0			4.6	0.0	3.3	66.0		0.1	#212.3	
Internal Link Dist (m)		174.6			146.6	0.0	0.0	150.7		0.0	219.1	
Turn Bay Length (m)		174.0			140.0		35.0	130.7		100.0	213.1	
Base Capacity (vph)		395			277	500	265	1330		408	1500	
Starvation Cap Reductn		0			0	0	203	0		400	1300	
Spillback Cap Reductin		0			0	0	0	0		0	0	
Storage Cap Reductn		0			0	0	0	0		0	0	
Reduced v/c Ratio		0.43			0.02	0.04	0.03	0.29		0.00	0.66	
Intersection Summary		0.10			0.02	0.01	0.00	0.20		0.00	0.00	
Area Type:	Other											
Cycle Length: 100												
Actuated Cycle Length: 72.	8											
Natural Cycle: 90	-											
Control Type: Semi Act-Uno	coord											
Maximum v/c Ratio: 0.88												
Intersection Signal Delay: 1	8 1			Ir	ntersectio	n LOS B						
Intersection Capacity Utiliza					CU Level		۶F					
Analysis Period (min) 15	2001 02.2 /0			N								

Scenario 1 2025 Future Total PM 3:13 am 12-03-2020 Baseline

95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

Splits and Phases: 3: Boundary Road & Thunder Road/Amazon Way

Lanes, Volumes, Timings 4: Boundary Road & Site Access/South Amazon Access

	≯	-	\mathbf{i}	4	←	*	1	Ť	۲	1	Ļ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			\$		ľ	el el		ľ	el el	
Traffic Volume (vph)	4	0	14	6	0	12	4	382	6	13	920	7
Future Volume (vph)	4	0	14	6	0	12	4	382	6	13	920	7
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Lane Width (m)	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.6
Storage Length (m)	0.0		0.0	0.0		0.0	15.0		0.0	70.0		0.0
Storage Lanes	0		0	0		0	1		0	1		0
Taper Length (m)	7.5			7.5			45.0			45.0		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.895			0.910			0.998			0.999	
Flt Protected		0.989			0.984		0.950			0.950		
Satd. Flow (prot)	0	1576	0	0	797	0	1691	1669	0	846	1744	0
Flt Permitted		0.989			0.984		0.950			0.950		
Satd. Flow (perm)	0	1576	0	0	797	0	1691	1669	0	846	1744	0
Link Speed (k/h)		50			20			80			80	
Link Distance (m)		105.7			151.5			1150.2			174.7	
Travel Time (s)		7.6			27.3			51.8			7.9	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles (%)	0%	0%	0%	100%	0%	100%	0%	5%	100%	100%	2%	0%
Adj. Flow (vph)	4	0	14	6	0	12	4	382	6	13	920	7
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	18	0	0	18	0	4	388	0	13	927	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)		0.0			0.0			3.5			3.5	
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		4.8			4.8			4.8			4.8	
Two way Left Turn Lane												
Headway Factor	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.07
Turning Speed (k/h)	25		15	25		15	25		15	25		15
Sign Control		Stop			Stop			Free			Free	
Intersection Summary												
	other											
Control Type: Unsignalized												
Intersection Capacity Utilization	on 61.6%			IC	CU Level	of Service	B					
Analysis Period (min) 15												

	٦	-	$\mathbf{\hat{z}}$	4	←	*	1	Ť	۲	1	ŧ	∢
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			÷		٦	el 🗧		٦	ef 🔰	
Traffic Volume (veh/h)	4	0	14	6	0	12	4	382	6	13	920	7
Future Volume (Veh/h)	4	0	14	6	0	12	4	382	6	13	920	7
Sign Control		Stop			Stop			Free			Free	
Grade		0%			0%			0%			0%	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Hourly flow rate (vph)	4	0	14	6	0	12	4	382	6	13	920	7
Pedestrians												
Lane Width (m)												
Walking Speed (m/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (m)											175	
pX, platoon unblocked	0.55	0.55	0.55	0.55	0.55		0.55					
vC, conflicting volume	1352	1346	924	1353	1346	385	927			388		
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	1228	1217	446	1231	1218	385	452			388		
tC, single (s)	7.1	6.5	6.2	8.1	6.5	7.2	4.1			5.1		
tC, 2 stage (s)												
tF (s)	3.5	4.0	3.3	4.4	4.0	4.2	2.2			3.1		
p0 queue free %	95	100	96	88	100	98	99			98		
cM capacity (veh/h)	82	97	337	51	97	493	612			788		
Direction, Lane #	EB 1	WB 1	NB 1	NB 2	SB 1	SB 2						
Volume Total	18	18	4	388	13	927						
Volume Left	4	6	4	0	13	0						
Volume Right	14	12	0	6	0	7						
cSH	199	127	612	1700	788	1700						
Volume to Capacity	0.09	0.14	0.01	0.23	0.02	0.55						
Queue Length 95th (m)	2.4	3.8	0.2	0.0	0.4	0.0						
Control Delay (s)	24.9	38.0	10.9	0.0	9.6	0.0						
Lane LOS	С	E	В		А							
Approach Delay (s)	24.9	38.0	0.1		0.1							
Approach LOS	С	E										
Intersection Summary												
Average Delay			1.0									
Intersection Capacity Utiliza	ation		61.6%	IC	CU Level o	of Service			В			
Analysis Period (min)			15									

	≯	*	•	1	ţ	4	
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations	٦	1		र्स	1	1	
Traffic Volume (vph)	129	108	57	140	814	133	
Future Volume (vph)	129	108	57	140	814	133	
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	
Lane Width (m)	3.3	3.3	3.5	3.5	3.5	3.5	
Storage Length (m)	25.0	0.0	0.0			30.0	
Storage Lanes	1	1	0			1	
Taper Length (m)	47.5		7.5				
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Frt		0.850				0.850	
Flt Protected	0.950			0.986			
Satd. Flow (prot)	1463	1395	0	1664	1762	1363	
Flt Permitted	0.950			0.986			
Satd. Flow (perm)	1463	1395	0	1664	1762	1363	
Link Speed (k/h)	80			80	80		
Link Distance (m)	180.5			135.8	1150.2		
Travel Time (s)	8.1			6.1	51.8		
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Heavy Vehicles (%)	13%	6%	9%	4%	1%	11%	
Adj. Flow (vph)	129	108	57	140	814	133	
Shared Lane Traffic (%)							
Lane Group Flow (vph)	129	108	0	197	814	133	
Enter Blocked Intersection	No	No	No	No	No	No	
Lane Alignment	Left	Right	Left	Left	Left	Right	
Median Width(m)	3.3	-		3.5	3.5		
Link Offset(m)	0.0			0.0	0.0		
Crosswalk Width(m)	4.8			4.8	4.8		
Two way Left Turn Lane							
Headway Factor	1.12	1.12	1.09	1.09	1.09	1.09	
Turning Speed (k/h)	25	15	25			15	
Sign Control	Stop			Free	Free		
Intersection Summary							
	Other						
Control Type: Unsignalized							
Intersection Capacity Utilizat	tion 73 9%			l		of Service	۹ D
Analysis Period (min) 15	101175.370			ľ			5 U

	≯	*	•	1	ţ	
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	5	1		र्स	1	1
Traffic Volume (veh/h)	129	108	57	140	814	133
Future Volume (Veh/h)	129	108	57	140	814	133
Sign Control	Stop			Free	Free	
Grade	0%			0%	0%	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00
Hourly flow rate (vph)	129	108	57	140	814	133
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type				None	None	
Median storage veh)				110110		
Upstream signal (m)						
pX, platoon unblocked						
vC, conflicting volume	1068	814	947			
vC1, stage 1 conf vol	1000		5-11			
vC2, stage 2 conf vol						
vCu, unblocked vol	1068	814	947			
tC, single (s)	6.5	6.3	4.2			
tC, 2 stage (s)	0.0	0.0	T. 4			
tF (s)	3.6	3.4	2.3			
p0 queue free %	40	71	92			
cM capacity (veh/h)	215	372	697			
Direction, Lane #	EB 1	EB 2	NB 1	SB 1	SB 2	
Volume Total	129	108	197	814	133	
Volume Left	129	0	57	0	0	
Volume Right	0	108	0	0	133	
cSH	215	372	697	1700	1700	
Volume to Capacity	0.60	0.29	0.08	0.48	0.08	
Queue Length 95th (m)	27.4	9.5	2.1	0.0	0.0	
Control Delay (s)	44.2	18.6	3.7	0.0	0.0	
Lane LOS	Е	С	А			
Approach Delay (s)	32.5		3.7	0.0		
Approach LOS	D					
Intersection Summary						
Average Delay			6.1			
Intersection Capacity Utiliza	ation		73.9%	IC	CU Level o	of Service
Analysis Period (min)			15.378	IC.		
			10			

	-	\mathbf{r}	1	+	1	1
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	¢Î,			સુ	Ý	
Traffic Volume (vph)	118	0	14	78	0	52
Future Volume (vph)	118	0	14	78	0	52
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800
Lane Width (m)	3.5	3.5	3.5	3.5	3.5	3.5
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Frt					0.865	
Flt Protected				0.992		
Satd. Flow (prot)	1483	0	0	1628	1426	0
Flt Permitted				0.992		
Satd. Flow (perm)	1483	0	0	1628	1426	0
Link Speed (k/h)	60			50	50	
Link Distance (m)	163.7			198.6	103.6	
Travel Time (s)	9.8			14.3	7.5	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles (%)	20%	0%	0%	10%	0%	8%
Adj. Flow (vph)	118	0	14	78	0	52
Shared Lane Traffic (%)						
Lane Group Flow (vph)	118	0	0	92	52	0
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Left	Left	Right
Median Width(m)	0.0			0.0	3.5	
Link Offset(m)	0.0			0.0	0.0	
Crosswalk Width(m)	4.8			4.8	4.8	
Two way Left Turn Lane						
Headway Factor	1.09	1.09	1.09	1.09	1.09	1.09
Turning Speed (k/h)		15	25		25	15
Sign Control	Free			Free	Stop	
Intersection Summary						
21	Other					
Control Type: Unsignalized						
Intersection Capacity Utilizat	tion 21.9%			IC	CU Level o	of Service A

	-	\mathbf{r}	4	+	1	1
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	¢Î,			र्भ	Y	
Traffic Volume (veh/h)	118	0	14	78	0	52
Future Volume (Veh/h)	118	0	14	78	0	52
Sign Control	Free			Free	Stop	
Grade	0%			0%	0%	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00
Hourly flow rate (vph)	118	0	14	78	0	52
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type	None			None		
Median storage veh)						
Upstream signal (m)				199		
pX, platoon unblocked						
vC, conflicting volume			118		224	118
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol			118		224	118
tC, single (s)			4.1		6.4	6.3
tC, 2 stage (s)						
tF (s)			2.2		3.5	3.4
p0 queue free %			99		100	94
cM capacity (veh/h)			1483		761	918
Direction, Lane #	EB 1	WB 1	NB 1			
Volume Total	118	92	52			
Volume Left	0	14	0			
Volume Right	0	0	52			
cSH	1700	1483	918			
Volume to Capacity	0.07	0.01	0.06			
Queue Length 95th (m)	0.0	0.2	1.4			
Control Delay (s)	0.0	1.2	9.2			
Lane LOS		А	А			
Approach Delay (s)	0.0	1.2	9.2			
Approach LOS			А			
Intersection Summary						
Average Delay			2.2			
Intersection Capacity Utiliza	tion		21.9%	IC	U Level c	f Service
Analysis Period (min)			15		2 _ 37 67 6	
			10			

	-	\mathbf{r}	1	-	1	1
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	eî 👘			र्भ	۰Y	
Traffic Volume (vph)	107	0	4	74	0	11
Future Volume (vph)	107	0	4	74	0	11
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800
Lane Width (m)	3.5	3.5	3.5	3.5	3.5	3.5
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Frt					0.865	
Flt Protected				0.997		
Satd. Flow (prot)	1648	0	0	1629	770	0
Flt Permitted				0.997		
Satd. Flow (perm)	1648	0	0	1629	770	0
Link Speed (k/h)	60			50	50	
Link Distance (m)	185.0			163.7	105.8	
Travel Time (s)	11.1			11.8	7.6	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles (%)	8%	0%	100%	4%	0%	100%
Adj. Flow (vph)	107	0	4	74	0	11
Shared Lane Traffic (%)						
Lane Group Flow (vph)	107	0	0	78	11	0
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Left	Left	Right
Median Width(m)	0.0	Ŭ		0.0	3.5	, in the second s
Link Offset(m)	0.0			0.0	0.0	
Crosswalk Width(m)	4.8			4.8	4.8	
Two way Left Turn Lane						
Headway Factor	1.09	1.09	1.09	1.09	1.09	1.09
Turning Speed (k/h)		15	25		25	15
Sign Control	Free			Free	Stop	
Intersection Summary						
Area Type:	Other					
Control Type: Unsignalized						
Intersection Capacity Utilizat	tion 17.6%			IC	CU Level	of Service
Analysis Pariod (min) 15						

	-	\mathbf{F}	4	-	1	1
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	1	-21.		4	Y	
Traffic Volume (veh/h)	107	0	4	74	0	11
Future Volume (Veh/h)	107	0	4	74	0	11
Sign Control	Free	Ŭ	•	Free	Stop	
Grade	0%			0%	0%	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00
Hourly flow rate (vph)	107	0	4	74	0	11
Pedestrians	101	Ŭ		, ,	Ū	
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type	None			None		
Median storage veh)	None			None		
Upstream signal (m)				362		
pX, platoon unblocked				502		
vC, conflicting volume			107		189	107
vC1, stage 1 conf vol			107		100	107
vC2, stage 2 conf vol						
vCu, unblocked vol			107		189	107
tC, single (s)			5.1		6.4	7.2
tC, 2 stage (s)			0.1		V .न	·
tF (s)			3.1		3.5	4.2
p0 queue free %			100		100	99
cM capacity (veh/h)			1045		802	736
					002	,
Direction, Lane #	EB 1	WB 1	NB 1			
Volume Total	107	78	11			
Volume Left	0	4	0			
Volume Right	0	0	11			
cSH	1700	1045	736			
Volume to Capacity	0.06	0.00	0.01			
Queue Length 95th (m)	0.0	0.1	0.4			
Control Delay (s)	0.0	0.5	10.0			
Lane LOS		А	А			
Approach Delay (s)	0.0	0.5	10.0			
Approach LOS			А			
Intersection Summary						
Average Delay			0.7			
Intersection Capacity Utiliza	ation		17.6%	IC	U Level o	of Service
Analysis Period (min)			15			
			10			

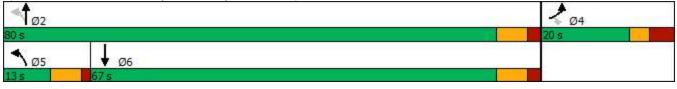
-	\mathbf{r}	1	+	1	1
EBT	EBR	WBL	WBT	NBL	NBR
4Î			સુ	Y	
83	0	9	65	0	24
83	0	9	65	0	24
1800	1800	1800	1800	1800	1800
3.5	3.5	3.5	3.5	3.5	3.5
1.00	1.00	1.00	1.00	1.00	1.00
				0.865	
			0.994		
1695	0	0	1694	1272	0
			0.994		
1695	0	0	1694	1272	0
60			50	50	
95.5			185.0	109.7	
				7.9	
					1.00
	0%	22%		0%	21%
83	0	9	65	0	24
					0
					No
	Right	Left			Right
4.8			4.8	4.8	
1.09			1.09		1.09
	15	25			15
Free			Free	Stop	
Other					
ion 20.8%			IC	CU Level o	of Service A
	1 83 83 83 1800 3.5 1.00 1695 1695 60 95.5 5.7 1.00 5% 83 83 No Left 0.0 4.8 1.09 Free	1 83 0 83 0 1800 1800 3.5 3.5 1.00 1.00 1695 0 1695 0 1695 0 95.5 5.7 1.00 1.00 5% 0% 83 0 83 0 83 0 No No Left Right 0.0 0.0 4.8 1.09 1.09 15 Free Dther	1 83 0 9 83 0 9 1800 1800 1800 3.5 3.5 3.5 1.00 1.00 1.00 1695 0 0 1695 0 0 1695 0 0 1695 0 0 1695 0 0 1695 0 0 1695 0 0 1695 0 0 60 9 9 5.7 1.00 1.00 1.00 5% 0% 22% 83 0 9 83 0 0 No No No Left Right Left 0.0 1.09 1.09 1.09 15 25 Free Dther	1 1 83 0 9 65 83 0 9 65 1800 1800 1800 1800 3.5 3.5 3.5 3.5 1.00 1.00 1.00 1.00 0.994 1695 0 0 1694 0.994 1695 0 0 1694 0.994 1695 0 0 1694 60 50 995.5 185.0 5.7 13.3 1.00 1.00 1.00 1.00 1.00 5.0 5.7 13.3 1.00 1.00 1.00 1.00 5.7 13.3 0 9 65 9 83 0 9 65 9 65 83 0 0 74 No No No No No No No No 1.09 1.09 1.09 1.09	Image: height state in the state i

	-	\mathbf{r}	4	+	1	1	
Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	4			र्भ	Y		
Traffic Volume (veh/h)	83	0	9	65	0	24	
Future Volume (Veh/h)	83	0	9	65	0	24	
Sign Control	Free			Free	Stop		
Grade	0%			0%	0%		
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Hourly flow rate (vph)	83	0	9	65	0	24	
Pedestrians							
Lane Width (m)							
Walking Speed (m/s)							
Percent Blockage							
Right turn flare (veh)							
Median type	None			None			
Median storage veh)							
Upstream signal (m)							
pX, platoon unblocked							
vC, conflicting volume			83		166	83	
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol			83		166	83	
tC, single (s)			4.3		6.4	6.4	
tC, 2 stage (s)							
tF (s)			2.4		3.5	3.5	
p0 queue free %			99		100	97	
cM capacity (veh/h)			1397		824	926	
Direction, Lane #	EB 1	WB 1	NB 1				
Volume Total	83	74	24				
Volume Left	0	9	0				
Volume Right	0	0	24				
cSH	1700	1397	926				
Volume to Capacity	0.05	0.01	0.03				
Queue Length 95th (m)	0.0	0.2	0.6				
Control Delay (s)	0.0	1.0	9.0				
Lane LOS		A	A				
Approach Delay (s)	0.0	1.0	9.0				
Approach LOS			A				
Intersection Summary							
Average Delay			1.6				
Intersection Capacity Utiliza	ation		20.8%	IC	U Level c	f Service	
Analysis Period (min)			15				

	4	•	t	1	1	ţ	
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	Y		¢Î			د اً	
Traffic Volume (vph)	176	34	114	965	85	145	
Future Volume (vph)	176	34	114	965	85	145	
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	
Lane Width (m)	4.5	4.5	3.5	3.5	3.5	3.5	
Storage Length (m)	0.0	10.0		0.0	0.0		
Storage Lanes	1	0		0	0		
Taper Length (m)	7.5				7.5		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Frt	0.978		0.879				
Flt Protected	0.960					0.982	
Satd. Flow (prot)	1703	0	1528	0	0	1604	
Flt Permitted	0.960					0.982	
Satd. Flow (perm)	1703	0	1528	0	0	1604	
Link Speed (k/h)	40		80			80	
Link Distance (m)	155.0		545.7			134.1	
Travel Time (s)	14.0		24.6			6.0	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Heavy Vehicles (%)	8%	15%	14%	1%	9%	9%	
Adj. Flow (vph)	176	34	114	965	85	145	
Shared Lane Traffic (%)							
Lane Group Flow (vph)	210	0	1079	0	0	230	
Enter Blocked Intersection	No	No	No	No	No	No	
Lane Alignment	Left	Right	Left	Right	Left	Left	
Median Width(m)	4.5		0.0			0.0	
Link Offset(m)	0.0		0.0			0.0	
Crosswalk Width(m)	4.8		4.8			4.8	
Two way Left Turn Lane							
Headway Factor	0.95	0.95	1.09	1.09	1.09	1.09	
Turning Speed (k/h)	25	15		15	25		
Sign Control	Stop		Free			Free	
Intersection Summary							
	Other						
Control Type: Unsignalized							
Intersection Capacity Utilization	tion 104.7%)		IC	U Level of	of Service C	G
Analysis Period (min) 15							

	4	×	t	~	1	ţ
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Y		¢,			स
Traffic Volume (veh/h)	176	34	114	965	85	145
Future Volume (Veh/h)	176	34	114	965	85	145
Sign Control	Stop	•	Free			Free
Grade	0%		0%			0%
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00
Hourly flow rate (vph)	176	34	114	965	85	145
Pedestrians	170	04	114	500	00	140
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type			None			None
Median storage veh)			NULLE			
Upstream signal (m)						
pX, platoon unblocked						
vC, conflicting volume	912	596			1079	
vC1, stage 1 conf vol	912	590			1079	
vC2, stage 2 conf vol						
vCu, unblocked vol	912	596			1079	
	6.5	596 6.4			4.2	
tC, single (s)	0.0	0.4			4.2	
tC, 2 stage (s) tF (s)	3.6	3.4			2.3	
	3.0	93			2.5	
p0 queue free %	256	480			621	
cM capacity (veh/h)					021	
Direction, Lane #	WB 1	NB 1	SB 1			
Volume Total	210	1079	230			
Volume Left	176	0	85			
Volume Right	34	965	0			
cSH	277	1700	621			
Volume to Capacity	0.76	0.63	0.14			
Queue Length 95th (m)	45.0	0.0	3.8			
Control Delay (s)	49.5	0.0	5.4			
Lane LOS	E		А			
Approach Delay (s)	49.5	0.0	5.4			
Approach LOS	E					
Intersection Summary						
Average Delay			7.7			
Intersection Capacity Utiliza	ation		104.7%	IC	Ulevelo	of Service
Analysis Period (min)			15	10	2 201010	
			15			

Lane Group EBL EBR NBL NBT SBT SBR Lane Configurations 7 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Lane Configurations i
Traffic Volume (vph) 20 391 47 1063 288 10 Future Volume (vph) 20 391 47 1063 288 10 Ideal Flow (vphpl) 1800 1800 1800 1800 1800 1800 1800 Lane Width (m) 3.5 3.3 3.5 3.5 3.5 3.5 Storage Length (m) 0.0 25.0 50.0 0.0 0.0 Storage Lanes 1 1 1 0 0 1.00 <t< td=""></t<>
Future Volume (vph) 20 391 47 1063 288 10 Ideal Flow (vphpl) 1800 1800 1800 1800 1800 1800 1800 Lane Width (m) 3.5 3.3 3.5 3.5 3.5 3.5 3.5 Storage Length (m) 0.0 25.0 50.0 0.0 0.0 Storage Lanes 1 1 1 0 0 Taper Length (m) 7.5 75.0 0.995 0.995 Lane Util. Factor 1.00 1.00 1.00 1.00 1.00 Frt 0.850 0.995 0.995 0.995 0.995 Filt Protected 0.950 0.509 0.509 0.509 0.509 0.509 0.509 0.830 0.830 0.800 0.950 0.800 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950
Ideal Flow (vphpl) 1800 1600 101
Lane Width (m) 3.5 3.3 3.5 3.5 3.5 Storage Length (m) 0.0 25.0 50.0 0.0 Storage Lanes 1 1 1 0 Taper Length (m) 7.5 75.0 75.0 Lane Util. Factor 1.00 1.00 1.00 1.00 1.00 Frt 0.850 0.995 0.995 0.995 Flt Protected 0.950 0.509 0.509 0.509 Satd. Flow (prot) 1301 1345 713 1745 1582 0 Right Turn on Red Yes Yes Yes Yes Satd. Flow (RTOR) 391 3 Link Speed (k/h) 40 80 80 Link Distance (m) 154.2 243.1 545.7 Travel Time (s) 13.9 10.9 24.6 10.9 24.6
Storage Length (m) 0.0 25.0 50.0 0.0 Storage Lanes 1 1 1 0 Taper Length (m) 7.5 75.0 0 Lane Util. Factor 1.00 1.00 1.00 1.00 1.00 Frt 0.850 0.995 0.995 0.995 0.995 Fit Protected 0.950 0.509 0.509 0.509 0.509 Satd. Flow (prot) 1301 1345 713 1745 1582 0 Right Turn on Red Yes Yes Yes Yes Yes Satd. Flow (RTOR) 391 3 3 1 1 1 545.7 Travel Time (s) 13.9 10.9 24.6 0 0 0
Storage Lanes 1 1 1 0 Taper Length (m) 7.5 75.0 75.0 Lane Util. Factor 1.00 1.00 1.00 1.00 1.00 Frt 0.850 0.995 0.995 0.995 Flt Protected 0.950 0.950 0.509 0.509 Satd. Flow (prot) 1301 1345 1331 1745 1582 0 Flt Permitted 0.950 0.509
Taper Length (m) 7.5 75.0 Lane Util. Factor 1.00 1.00 1.00 1.00 1.00 Frt 0.850 0.995 0.995 0.950 Filt Protected 0.950 0.950 0.950 0.950 Satd. Flow (prot) 1301 1345 1331 1745 1582 0 Filt Permitted 0.950 0.509 0.509 0.509 0.509 0.509 0.850 0 1582 0 0 Right Turn on Red Yes Yes Yes Yes Yes Yes 1582 0 Satd. Flow (RTOR) 391 3 3 3 1.00 3 1.00 1.00 1.00 1.00 1.01 1.01 1.01 1.01 1.01 1.01 1.02 0 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1
Lane Util. Factor 1.00 1.00 1.00 1.00 1.00 1.00 Frt 0.850 0.995 0.995 0.995 0.995 Filt Protected 0.950 0.950 0.950 0.950 Satd. Flow (prot) 1301 1345 1331 1745 1582 0 Filt Permitted 0.950 0.509 0.509 0.509 0.509 0.509 0.850 0.9
Frt 0.850 0.995 Fit Protected 0.950 0.950 Satd. Flow (prot) 1301 1345 1331 1745 1582 0 Fit Permitted 0.950 0.509 0.509 0
Fit Protected 0.950 0.950 Satd. Flow (prot) 1301 1345 1331 1745 1582 0 Fit Permitted 0.950 0.509 0.509 0
Satd. Flow (prot) 1301 1345 1331 1745 1582 0 Flt Permitted 0.950 0.509 0.509 0
Fit Permitted 0.950 0.509 Satd. Flow (perm) 1301 1345 713 1745 1582 0 Right Turn on Red Yes Yes Yes Yes Satd. Flow (RTOR) 391 3 Link Speed (k/h) 40 80 80 Link Distance (m) 154.2 243.1 545.7 Travel Time (s) 13.9 10.9 24.6 10.9 10.9
Satd. Flow (perm) 1301 1345 713 1745 1582 0 Right Turn on Red Yes
Right Turn on Red Yes Yes Satd. Flow (RTOR) 391 3 Link Speed (k/h) 40 80 80 Link Distance (m) 154.2 243.1 545.7 Travel Time (s) 13.9 10.9 24.6
Satd. Flow (RTOR) 391 3 Link Speed (k/h) 40 80 80 Link Distance (m) 154.2 243.1 545.7 Travel Time (s) 13.9 10.9 24.6
Satd. Flow (RTOR) 391 3 Link Speed (k/h) 40 80 80 Link Distance (m) 154.2 243.1 545.7 Travel Time (s) 13.9 10.9 24.6
Link Speed (k/h) 40 80 80 Link Distance (m) 154.2 243.1 545.7 Travel Time (s) 13.9 10.9 24.6
Link Distance (m)154.2243.1545.7Travel Time (s)13.910.924.6
Travel Time (s) 13.9 10.9 24.6
Heavy Vehicles (%) 30% 10% 27% 2% 12% 10%
Adj. Flow (vph) 20 391 47 1063 288 10
Shared Lane Traffic (%)
Enter Blocked Intersection No No No No No No
Lane Alignment Left Right Left Left Right
Median Width(m) 3.5 3.5 3.5
Link Offset(m) 0.0 0.0 0.0
Crosswalk Width(m) 4.8 4.8 4.8
Two way Left Turn Lane
Headway Factor 1.09 1.12 1.09 1.09 1.09 1.09
Turning Speed (k/h) 25 15 25 15
Number of Detectors 1 1 1 2 2
Detector Template Left Right Left Thru Thru
Leading Detector (m) 2.0 2.0 2.0 10.0 10.0
Trailing Detector (m) 0.0 0.0 0.0 0.0 0.0
Detector 1 Position(m) 0.0 0.0 0.0 0.0 0.0 0.0
Detector 1 Size(m) 2.0 2.0 2.0 0.6 0.6
Detector 1 Type CI+Ex CI+Ex CI+Ex CI+Ex CI+Ex
Detector 1 Channel
Detector 1 Extend (s) 0.0 0.0 0.0 0.0 0.0 0.0
Detector 1 Queue (s) 0.0 0.0 0.0 0.0 0.0
Detector 1 Delay (s) 0.0 0.0 0.0 0.0 0.0
Detector 2 Position(m) 9.4 9.4
Detector 2 Size(m) 0.6 0.6
Detector 2 Type CI+Ex CI+Ex
Detector 2 Channel
Detector 2 Extend (s) 0.0 0.0
Turn Type Prot Perm pm+pt NA NA


Scenario 1 2030 Future Total AM 3:13 am 12-03-2020 Baseline

	٦	\mathbf{r}	1	Ť	Ļ	-
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Protected Phases	4		5	2	6	
Permitted Phases		4	2	_	Ŭ	
Detector Phase	4	4	5	2	6	
Switch Phase	•			_	·	
Minimum Initial (s)	7.0	7.0	7.0	35.0	35.0	
Minimum Split (s)	17.8	17.8	13.0	41.6	41.6	
Total Split (s)	20.0	20.0	13.0	80.0	67.0	
Total Split (%)	20.0%	20.0%	13.0%	80.0%	67.0%	
Maximum Green (s)	13.2	13.2	7.0	73.4	60.4	
Yellow Time (s)	3.0	3.0	4.6	4.6	4.6	
All-Red Time (s)	3.8	3.8	1.4	2.0	2.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	6.8	6.8	6.0	6.6	6.6	
Lead/Lag			Lead		Lag	
Lead-Lag Optimize?			Yes		Yes	
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	
Recall Mode	None	None	None	Min	Min	
Walk Time (s)	5.0	5.0		0.0	7.0	
Flash Dont Walk (s)	6.0	6.0		0.0	21.0	
Pedestrian Calls (#/hr)	0	0		0	0	
Act Effct Green (s)	9.2	9.2	51.5	50.8	44.0	
Actuated g/C Ratio	0.12	0.12	0.69	0.68	0.59	
v/c Ratio	0.12	0.77	0.08	0.89	0.32	
Control Delay	37.4	15.7	3.8	20.1	9.7	
Queue Delay	0.0	0.0	0.0	0.0	0.0	
Total Delay	37.4	15.7	3.8	20.1	9.7	
LOS	D	В	А	С	А	
Approach Delay	16.8			19.4	9.7	
Approach LOS	В			В	А	
Queue Length 50th (m)	2.5	0.0	1.5	87.0	22.1	
Queue Length 95th (m)	10.9	#35.3	5.0	200.8	42.6	
Internal Link Dist (m)	130.2			219.1	521.7	
Turn Bay Length (m)		25.0	50.0			
Base Capacity (vph)	245	571	556	1583	1313	
Starvation Cap Reductn	0	0	0	25	0	
Spillback Cap Reductn	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	
Reduced v/c Ratio	0.08	0.68	0.08	0.68	0.23	
Intersection Summary						
Area Type:	Other					
Cycle Length: 100						
Actuated Cycle Length: 74	1.2					
Natural Cycle: 90						
Control Type: Semi Act-U	ncoord					
Maximum v/c Ratio: 0.89						
Intersection Signal Delay:					ntersectior	
Intersection Capacity Utiliz	zation 76.1%			10	CU Level o	of Service D
Analysis Period (min) 15						

Scenario 1 2030 Future Total AM 3:13 am 12-03-2020 Baseline

95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

Splits and Phases: 2: Boundary Road & Hwy 417 EB Ramp Terminal

Lanes, Volumes, Timings 3: Boundary Road & Thunder Road/Amazon Way

Lane Configurations EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL SBR SBR SBR Lane Configurations		٦	-	\mathbf{F}	4	+	•	•	Ť	1	1	Ļ	~
Traffic Volume (vph) 59 18 10 4 6 28 21 1023 33 213 346 118 Future Volume (vph) 1800	Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Traffic Volume (vph) 59 18 10 4 6 28 21 1023 33 213 346 118 Idue Volume (vph) 1800 180 180	Lane Configurations		4			र्च	1	۳	•	1	٦	eî	
Ideal Flow (vphpl) 1800 <td>Traffic Volume (vph)</td> <td>59</td> <td></td> <td>10</td> <td>4</td> <td></td> <td>28</td> <td>21</td> <td>1023</td> <td>33</td> <td>213</td> <td></td> <td>118</td>	Traffic Volume (vph)	59		10	4		28	21	1023	33	213		118
Lane Width (m) 3.5 3.5 3.5 3.5 3.3 3.5 3.3 3.3 3.5 3.5 Storage Length (m) 0.0 15.0 0.0 0.0 1 1 1 1 0 Taper Length (m) 7.5 7.5 45.0 7.5 100 1.00 1	Future Volume (vph)	59	18	10	4	6	28	21	1023	33	213	346	118
Storage Length (m) 0.0 15.0 0.0 0 35.0 7.5 100.0 35.0 Storage Lanes 0 0 0 1 1 1 1 0 Lane UII, Factor 1.00 <td< td=""><td>Ideal Flow (vphpl)</td><td>1800</td><td>1800</td><td>1800</td><td>1800</td><td>1800</td><td>1800</td><td>1800</td><td>1800</td><td>1800</td><td>1800</td><td>1800</td><td>1800</td></td<>	Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Storage Lanes 0 0 0 1 1 1 1 1 0 Tape Length (m) 7.5 7.5 45.0 75.0 100 1.00	Lane Width (m)	3.5	3.5	3.5	3.5	3.5	3.5	3.3	3.5	3.3	3.3	3.5	3.5
Taper Length (m) 7.5 7.5 45.0 76.0 Lane UIJ. Factor 1.00 1.	Storage Length (m)	0.0		15.0	0.0		0.0	35.0		7.5	100.0		35.0
Lane Util. Factor 1.00 <td>Storage Lanes</td> <td>0</td> <td></td> <td>0</td> <td>0</td> <td></td> <td>1</td> <td>1</td> <td></td> <td>1</td> <td>1</td> <td></td> <td>0</td>	Storage Lanes	0		0	0		1	1		1	1		0
Fri 0.984 0.850 0.850 0.962 Flt Protected 0.967 0.980 0.950 0.950 0.950 Flt Protected 0.967 0.980 0.950 0.950 0.950 Stad. Flow (prot) 0 1542 0 0 1548 1513 850 1728 1479 155 1513 830 1728 1479 151 166 0 0 154 0 0 154 100 106 1479 151 160 1479 151 160 1479 151 160 1479 151 160 1479 151 160 1479 151 160	Taper Length (m)	7.5						45.0			75.0		
Fit Protected 0.967 0.980 0.950 0.950 Satd. Flow (prot) 0 1542 0 0 1744 1513 1589 1728 1479 163.3 1467 0 Satd. Flow (perm) 0 1261 0 0 1559 1513 830 1728 1479 115 1467 0 Right Turn on Red Yes Yes <td< td=""><td>Lane Util. Factor</td><td>1.00</td><td></td><td>1.00</td><td>1.00</td><td>1.00</td><td></td><td>1.00</td><td>1.00</td><td></td><td>1.00</td><td>1.00</td><td>1.00</td></td<>	Lane Util. Factor	1.00		1.00	1.00	1.00		1.00	1.00		1.00	1.00	1.00
Satd. Flow (prot) 0 1542 0 0 1744 1513 1589 1728 1479 1653 1467 0 Fit Permitted 0.791 0.876 0.496 0.066 </td <td>Frt</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.850</td> <td></td> <td></td> <td>0.850</td> <td></td> <td>0.962</td> <td></td>	Frt						0.850			0.850		0.962	
Fit Permitted 0.791 0.876 0.496 0.066 Satd. Flow (perm) 0 1261 0 0 159 1513 830 1728 1479 115 1467 0 Right Tum on Red Yes Yes Yes Yes Yes Yes Link Space (kh) 60 20 80 80 100 1.00	Flt Protected					0.980		0.950			0.950		
Satd. Flow (perm) 0 1261 0 0 1559 1513 830 1728 1479 115 1467 0 Right Turn on Red Yes Yes<	Satd. Flow (prot)	0		0	0		1513		1728	1479		1467	0
Right Tum on Red Yes Yes Yes Yes Yes Yes Yes Sald. Flow (RTOR) 6 100 96 40 Link Distance (m) 198.6 170.6 174.7 243.1 Travel Time (s) 11.9 30.7 7.9 10.9 Peak Hour Factor 1.00 </td <td>Flt Permitted</td> <td></td>	Flt Permitted												
Sand. Flow (RTOR) 6 100 96 40 Link Speed (kh) 60 20 80 80 Link Distance (m) 198.6 170.6 174.7 243.1 Travel Time (s) 11.9 30.7 7.9 10.9 Peak Hour Factor 100 100 1.02 3.3 213 346 118 Shared Lane Traffic (%) Lane Alignment Left Left Right Left Rig	Satd. Flow (perm)	0	1261	0	0	1559	1513	830	1728	1479	115	1467	0
Link Speed (k/h) 60 20 80 80 Link Distance (m) 198.6 170.6 174.7 243.1 Travel Time (s) 11.9 30.7 7.9 10.9 Peak Hour Factor 1.00	Right Turn on Red			Yes			Yes						Yes
Link Distance (m) 198.6 170.6 174.7 243.1 Travel Time (s) 11.9 30.7 7.9 10.9 Peak Hour Factor 1.00 1.12 1.12 1.00	Satd. Flow (RTOR)		6				100			96		40	
Travel Time (s) 11.9 30.7 7.9 10.9 Peak Hour Factor 1.00	Link Speed (k/h)		60										
Peak Hour Factor 1.00	Link Distance (m)		198.6			170.6			174.7			243.1	
Heavy Vehicles (%) 13% 0% 9% 0% 0% 0% 4% 3% 0% 0% 16% 19% Adj. Flow (vph) 59 18 10 4 6 28 21 1023 33 213 346 118 Shared Lane Traffic (%)	Travel Time (s)		11.9			30.7			7.9			10.9	
Adj. Flow (vph) 59 18 10 4 6 28 21 1023 33 213 346 118 Shared Lane Traffic (%) Lane Group Flow (vph) 0 87 0 0 10 28 21 1023 33 213 464 0 Enter Blocked Intersection No	Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Shared Lane Traffic (%) Lane Group Flow (vph) 0 87 0 0 10 28 21 1023 33 213 464 0 Enter Blocked Intersection No	Heavy Vehicles (%)	13%	0%	9%	0%	0%	0%	4%	3%	0%	0%	16%	19%
Lane Group Flow (vph) 0 87 0 0 10 28 21 1023 33 213 464 0 Enter Blocked Intersection No N	Adj. Flow (vph)	59	18	10	4	6	28	21	1023	33	213	346	118
Enter Blocked Intersection Lane Alignment No No </td <td>Shared Lane Traffic (%)</td> <td></td>	Shared Lane Traffic (%)												
Lane Alignment Left Right Left Right Left Right Left Right Left Right Median Width(m) 0.0 0.0 3.5 3.5 Link Offset(m) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Crosswalk Width(m) 4.8 4.8 4.8 4.8 4.8 4.8 Two way Left Turn Lane 1.09 1.09 1.09 1.09 1.09 1.12 1.12 1.12 1.09 1.09 1.09 Turning Speed (k/h) 25 15 25 15 25 15 25 15 Number of Detectors 1 2 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1	Lane Group Flow (vph)	0	87	0	0	10	28	21	1023	33	213	464	0
Median Width(m) 0.0 0.0 3.5 3.5 Link Offset(m) 0.0 0.0 0.0 0.0 0.0 Crosswalk Width(m) 4.8 4.8 4.8 4.8 4.8 Two way Left Turn Lane	Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Link Offset(m) 0.0 0.0 0.0 0.0 0.0 Crosswalk Width(m) 4.8 4.8 4.8 4.8 4.8 4.8 Two way Left Turn Lane Headway Factor 1.09 1.09 1.09 1.09 1.09 1.09 1.09 1.12 1.09 1.12 1.12 1.09 1.09 Turning Speed (k/h) 25 15 25 16 20 2.0	Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Crosswalk Width(m) 4.8 4.8 4.8 4.8 4.8 Two way Left Turn Lane Headway Factor 1.09 1.09 1.09 1.09 1.09 1.09 1.09 1.09 1.09 1.09 1.12 1.09 1.12 1.12 1.09 1.09 1.09 Turning Speed (k/h) 25 15 25 16 25 10.0 20 20 <td< td=""><td>Median Width(m)</td><td></td><td>0.0</td><td></td><td></td><td>0.0</td><td></td><td></td><td>3.5</td><td></td><td></td><td>3.5</td><td></td></td<>	Median Width(m)		0.0			0.0			3.5			3.5	
Two way Left Turn Lane Headway Factor 1.09 1.09 1.09 1.09 1.09 1.09 1.12 1.09 1.12 1.12 1.12 1.09 1.09 Turning Speed (k/h) 25 15 25 10 10 10 10 10 10 10	Link Offset(m)												
Headway Factor 1.09 1.09 1.09 1.09 1.09 1.12 1.12 1.12 1.12 1.09 1.09 Turning Speed (k/h) 25 15 25 16 16 16 16 16 16 16 16 16 16 1	Crosswalk Width(m)		4.8			4.8			4.8			4.8	
Turning Speed (k/h) 25 15 25 16 25 16 25 16 26 16 20 100 20 100 20 100 20 100 20 100 20 20 100 <th2< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th2<>													
Number of Detectors 1 2 1 2 1 10 10 10 10 <td></td> <td></td> <td>1.09</td> <td></td> <td></td> <td>1.09</td> <td></td> <td></td> <td>1.09</td> <td></td> <td></td> <td>1.09</td> <td></td>			1.09			1.09			1.09			1.09	
Detector Template Left Thru Left Thru Right Left Thru Right Left Thru Leading Detector (m) 2.0 10.0 2.0 10.0 2.0 10.0 2.0 10.0 2.0 10.0 2.0 10.0 2.0 10.0 2.0 10.0 2.0 10.0 2.0 10.0 2.0 10.0 2.0 10.0 2.0 10.0 2.0 10.0 2.0 10.0 <td></td> <td></td> <td></td> <td>15</td> <td>25</td> <td></td> <td>15</td> <td>25</td> <td></td> <td>15</td> <td>25</td> <td></td> <td>15</td>				15	25		15	25		15	25		15
Leading Detector (m) 2.0 10.0 2.0 10.0 2.0 2.0 10.0 2.0 2.0 10.0 Trailing Detector (m) 0.0	Number of Detectors		2			2	1		2	1	-	2	
Trailing Detector (m) 0.0	Detector Template	Left	Thru		Left	Thru	Right	Left	Thru	Right	Left	Thru	
Detector 1 Position(m) 0.0	Leading Detector (m)	2.0			2.0		2.0	2.0	10.0	2.0	2.0		
Detector 1 Size(m) 2.0 0.6 2.0 0.6 2.0 2.0 0.6 2.0 2.0 0.6 0.6 0.0					0.0			0.0			0.0		
Detector 1 Type Cl+Ex	Detector 1 Position(m)	0.0			0.0	0.0		0.0				0.0	
Detector 1 Channel Detector 1 Extend (s) 0.0 <	Detector 1 Size(m)	2.0			2.0	0.6		2.0	0.6	2.0	2.0		
Detector 1 Extend (s) 0.0		CI+Ex	CI+Ex		Cl+Ex	CI+Ex	CI+Ex	Cl+Ex	Cl+Ex	Cl+Ex	Cl+Ex	CI+Ex	
Detector 1 Queue (s) 0.0													
Detector 1 Delay (s) 0.0	Detector 1 Extend (s)	0.0			0.0	0.0	0.0	0.0		0.0	0.0	0.0	
Detector 2 Position(m) 9.4 9.4 9.4 9.4 Detector 2 Size(m) 0.6 0.6 0.6 0.6 Detector 2 Size(m) 0.6 0.6 0.6 0.6 Detector 2 Type CI+Ex CI+Ex CI+Ex CI+Ex Detector 2 Channel 0.6 0.6 0.6 0.6	Detector 1 Queue (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Detector 2 Size(m) 0.6 0.6 0.6 Detector 2 Type CI+Ex CI+Ex CI+Ex Detector 2 Channel CI+Ex CI+Ex CI+Ex	Detector 1 Delay (s)	0.0	0.0		0.0	0.0	0.0	0.0		0.0	0.0	0.0	
Detector 2 Type CI+Ex CI+Ex CI+Ex CI+Ex CI+Ex	Detector 2 Position(m)		9.4			9.4			9.4			9.4	
Detector 2 Channel	Detector 2 Size(m)		0.6			0.6			0.6			0.6	
			CI+Ex			CI+Ex			Cl+Ex			CI+Ex	
	Detector 2 Channel												
	Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
Turn Type Perm NA Perm NA Perm Perm NA Perm pm+pt NA	Turn Type	Perm	NA		Perm	NA	Perm	Perm	NA	Perm	pm+pt	NA	

Scenario 1 2030 Future Total AM 3:13 am 12-03-2020 Baseline

Lanes, Volumes, Timings 3: Boundary Road & Thunder Road/Amazon Way

	٦	+	\mathbf{F}	4	+	•	•	1	1	1	ŧ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Protected Phases		4			8			2		1	6	
Permitted Phases	4			8		8	2		2	6		
Detector Phase	4	4		8	8	8	2	2	2	1	6	
Switch Phase												
Minimum Initial (s)	7.0	7.0		7.0	7.0	7.0	20.0	20.0	20.0	7.0	20.0	
Minimum Split (s)	24.8	24.8		24.8	24.8	24.8	26.2	26.2	26.2	13.0	26.2	
Total Split (s)	24.8	24.8		24.8	24.8	24.8	60.5	60.5	60.5	14.7	75.2	
Total Split (%)	24.8%	24.8%		24.8%	24.8%	24.8%	60.5%	60.5%	60.5%	14.7%	75.2%	
Maximum Green (s)	19.0	19.0		19.0	19.0	19.0	54.3	54.3	54.3	8.7	69.0	
Yellow Time (s)	3.7	3.7		3.7	3.7	3.7	4.6	4.6	4.6	4.6	4.6	
All-Red Time (s)	2.1	2.1		2.1	2.1	2.1	1.6	1.6	1.6	1.4	1.6	
Lost Time Adjust (s)		0.0			0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)		5.8			5.8	5.8	6.2	6.2	6.2	6.0	6.2	
Lead/Lag							Lag	Lag	Lag	Lead		
Lead-Lag Optimize?							Yes	Yes	Yes	Yes		
Vehicle Extension (s)	3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	
Recall Mode	None	None		None	None	None	Min	Min	Min	None	Min	
Walk Time (s)	7.0	7.0		7.0	7.0	7.0	7.0	7.0	7.0		7.0	
Flash Dont Walk (s)	12.0	12.0		12.0	12.0	12.0	10.0	10.0	10.0		10.0	
Pedestrian Calls (#/hr)	0	0		0	0	0	0	0	0		0	
Act Effct Green (s)		11.4			11.4	11.4	54.8	54.8	54.8	69.8	71.1	
Actuated g/C Ratio		0.13			0.13	0.13	0.61	0.61	0.61	0.78	0.79	
v/c Ratio		0.53			0.05	0.10	0.04	0.97	0.04	0.89	0.40	
Control Delay		47.3			35.2	0.7	9.6	42.8	0.1	60.8	5.3	
Queue Delay		0.0			0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay		47.3			35.2	0.7	9.6	42.8	0.1	60.8	5.3	
LOS		D			D	А	А	D	А	E	А	
Approach Delay		47.3			9.8			40.8			22.8	
Approach LOS		D			А			D			С	
Queue Length 50th (m)		14.4			1.7	0.0	1.5	~180.4	0.0	24.4	23.0	
Queue Length 95th (m)		29.7			6.5	0.0	5.4	#304.8	0.0	#75.0	49.1	
Internal Link Dist (m)		174.6			146.6			150.7			219.1	
Turn Bay Length (m)							35.0		7.5	100.0		
Base Capacity (vph)		273			331	400	504	1051	937	238	1166	
Starvation Cap Reductn		0			0	0	0	0	0	0	0	
Spillback Cap Reductn		0			0	0	0	0	0	0	0	
Storage Cap Reductn		0			0	0	0	0	0	0	0	
Reduced v/c Ratio		0.32			0.03	0.07	0.04	0.97	0.04	0.89	0.40	
Intersection Summary												
Area Type:	Other											
Cycle Length: 100 Actuated Cycle Length: 90 Natural Cycle: 110												
Control Type: Semi Act-Un	ncoord											
Maximum v/c Ratio: 0.97	04.0											
Intersection Signal Delay:					ntersectio		_					
Intersection Capacity Utiliz Analysis Period (min) 15	ation 96.0%](CU Level	of Service	e F					

Scenario 1 2030 Future Total AM 3:13 am 12-03-2020 Baseline

Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.Queue shown is maximum after two cycles.

Splits and Phases: 3: Boundary Road & Thunder Road/Amazon Way

V _{Ø1}	1 m2	
14.7 s	60.5 s	24.8 s
₽ Ø6		₩ Ø8
75.2 s		24.8 s

Lanes, Volumes, Timings 4: Boundary Road & Site Access/South Amazon Access

	۶	-	$\mathbf{\hat{z}}$	4	←	×	1	t	۲	1	Ļ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			\$		ľ	el el		ľ	el el	
Traffic Volume (vph)	1	0	4	6	0	4	14	1073	6	1	341	17
Future Volume (vph)	1	0	4	6	0	4	14	1073	6	1	341	17
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Lane Width (m)	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.6
Storage Length (m)	0.0		0.0	0.0		0.0	15.0		0.0	70.0		0.0
Storage Lanes	0		0	0		0	1		0	1		0
Taper Length (m)	7.5			7.5			45.0			45.0		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.892			0.946			0.999			0.993	
Flt Protected		0.990			0.971		0.950			0.950		
Satd. Flow (prot)	0	1572	0	0	818	0	1691	1751	0	846	1586	0
Flt Permitted		0.990			0.971		0.950			0.950		
Satd. Flow (perm)	0	1572	0	0	818	0	1691	1751	0	846	1586	0
Link Speed (k/h)		50			20			80			80	
Link Distance (m)		105.7			151.5			1150.2			174.7	
Travel Time (s)		7.6			27.3			51.8			7.9	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles (%)	0%	0%	0%	100%	0%	100%	0%	1%	100%	100%	12%	0%
Adj. Flow (vph)	1	0	4	6	0	4	14	1073	6	1	341	17
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	5	0	0	10	0	14	1079	0	1	358	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)		0.0			0.0			3.5			3.5	
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		4.8			4.8			4.8			4.8	
Two way Left Turn Lane												
Headway Factor	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.07
Turning Speed (k/h)	25		15	25		15	25		15	25		15
Sign Control		Stop			Stop			Free			Free	
Intersection Summary												
Area Type: C	Other											
Control Type: Unsignalized												
Intersection Capacity Utilizati	on 70.0%			IC	CU Level	of Service	C C					
Analysis Period (min) 15												

	٦	+	*	4	Ļ	•	٩	1	1	1	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4		ሻ	4		ሻ	4	
Traffic Volume (veh/h)	1	0	4	6	0	4	14	1073	6	1	341	17
Future Volume (Veh/h)	1	0	4	6	0	4	14	1073	6	1	341	17
Sign Control		Stop			Stop			Free			Free	
Grade		0%			0%			0%			0%	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Hourly flow rate (vph)	1	0	4	6	0	4	14	1073	6	1	341	17
Pedestrians												
Lane Width (m)												
Walking Speed (m/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (m)											175	
pX, platoon unblocked	0.96	0.96	0.96	0.96	0.96		0.96					
vC, conflicting volume	1456	1458	350	1451	1464	1076	358			1079		
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	1455	1457	305	1449	1463	1076	314			1079		
tC, single (s)	7.1	6.5	6.2	8.1	6.5	7.2	4.1			5.1		
tC, 2 stage (s)												
tF (s)	3.5	4.0	3.3	4.4	4.0	4.2	2.2			3.1		
p0 queue free %	99	100	99	91	100	98	99			100		
cM capacity (veh/h)	101	124	712	63	123	175	1211			387		
Direction, Lane #	EB 1	WB 1	NB 1	NB 2	SB 1	SB 2						
Volume Total	5	10	14	1079	1	358						
Volume Left	1	6	14	0	1	0						
Volume Right	4	4	0	6	0	17						
cSH	323	85	1211	1700	387	1700						
Volume to Capacity	0.02	0.12	0.01	0.63	0.00	0.21						
Queue Length 95th (m)	0.4	3.1	0.3	0.0	0.1	0.0						
Control Delay (s)	16.3	52.8	8.0	0.0	14.3	0.0						
Lane LOS	С	F	A		В							
Approach Delay (s)	16.3	52.8	0.1		0.0							
Approach LOS	С	F										
Intersection Summary												
Average Delay			0.5									
Intersection Capacity Utiliza	tion		70.0%	IC	U Level o	of Service			С			
Analysis Period (min)			15									

	≯	*	•	1	ţ	~	
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations	۲	1		र्भ	†	1	
Traffic Volume (vph)	91	33	147	983	146	119	
Future Volume (vph)	91	33	147	983	146	119	
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	
Lane Width (m)	3.3	3.3	3.5	3.5	3.5	3.5	
Storage Length (m)	25.0	0.0	0.0			30.0	
Storage Lanes	1	1	0			1	
Taper Length (m)	47.5		7.5				
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Frt		0.850				0.850	
Flt Protected	0.950			0.994			
Satd. Flow (prot)	1489	1286	0	1736	1575	1293	
Flt Permitted	0.950			0.994			
Satd. Flow (perm)	1489	1286	0	1736	1575	1293	
Link Speed (k/h)	80			80	80		
Link Distance (m)	180.5			135.8	1150.2		
Travel Time (s)	8.1			6.1	51.8		
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Heavy Vehicles (%)	11%	15%	8%	1%	13%	17%	
Adj. Flow (vph)	91	33	147	983	146	119	
Shared Lane Traffic (%)							
Lane Group Flow (vph)	91	33	0	1130	146	119	
Enter Blocked Intersection	No	No	No	No	No	No	
Lane Alignment	Left	Right	Left	Left	Left	Right	
Median Width(m)	3.3			3.5	3.5		
Link Offset(m)	0.0			0.0	0.0		
Crosswalk Width(m)	4.8			4.8	4.8		
Two way Left Turn Lane							
Headway Factor	1.12	1.12	1.09	1.09	1.09	1.09	
Turning Speed (k/h)	25	15	25			15	
Sign Control	Stop			Free	Free		
Intersection Summary							
Area Type: 0	Other						
Control Type: Unsignalized							
Intersection Capacity Utilizati	ion 86.6%			1	CULevel	of Service	϶E
	1011 00.070						

	۶	*	~	1	ţ	~
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	5	1		र्स	1	1
Traffic Volume (veh/h)	91	33	147	983	146	119
Future Volume (Veh/h)	91	33	147	983	146	119
Sign Control	Stop			Free	Free	
Grade	0%			0%	0%	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00
Hourly flow rate (vph)	91	33	147	983	146	119
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type				None	None	
Median storage veh)					110110	
Upstream signal (m)						
pX, platoon unblocked						
vC, conflicting volume	1423	146	265			
vC1, stage 1 conf vol	1725	140	200			
vC2, stage 2 conf vol						
vCu, unblocked vol	1423	146	265			
tC, single (s)	6.5	6.4	4.2			
tC, 2 stage (s)	0.5	.	7.2			
tF (s)	3.6	3.4	2.3			
p0 queue free %	28	96	2.3			
cM capacity (veh/h)	126	868	1265			
,						
Direction, Lane #	EB 1	EB 2	NB 1	SB 1	SB 2	
Volume Total	91	33	1130	146	119	
Volume Left	91	0	147	0	0	
Volume Right	0	33	0	0	119	
cSH	126	868	1265	1700	1700	
Volume to Capacity	0.72	0.04	0.12	0.09	0.07	
Queue Length 95th (m)	32.3	0.9	3.1	0.0	0.0	
Control Delay (s)	85.3	9.3	3.0	0.0	0.0	
Lane LOS	F	А	А			
Approach Delay (s)	65.1		3.0	0.0		
Approach LOS	F					
Intersection Summary						
Average Delay			7.6			
Intersection Capacity Utilizat	tion		86.6%	IC	CU Level o	of Service
Analysis Period (min)			15	IC.		
Analysis Feliou (IIIII)			10			

	-	\mathbf{r}	1	-	1	1	
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	ef 👘			નુ	Y		
Traffic Volume (vph)	71	0	38	107	0	16	
Future Volume (vph)	71	0	38	107	0	16	
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	
Lane Width (m)	3.5	3.5	3.5	3.5	3.5	3.5	
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Frt					0.865		
Flt Protected				0.987			
Satd. Flow (prot)	1604	0	0	1502	1466	0	
Flt Permitted				0.987			
Satd. Flow (perm)	1604	0	0	1502	1466	0	
Link Speed (k/h)	60			50	50		
Link Distance (m)	163.7			198.6	103.6		
Travel Time (s)	9.8			14.3	7.5		
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Heavy Vehicles (%)	11%	0%	0%	23%	0%	5%	
Adj. Flow (vph)	71	0	38	107	0	16	
Shared Lane Traffic (%)							
Lane Group Flow (vph)	71	0	0	145	16	0	
Enter Blocked Intersection	No	No	No	No	No	No	
Lane Alignment	Left	Right	Left	Left	Left	Right	
Median Width(m)	0.0			0.0	3.5		
Link Offset(m)	0.0			0.0	0.0		
Crosswalk Width(m)	4.8			4.8	4.8		
Two way Left Turn Lane							
Headway Factor	1.09	1.09	1.09	1.09	1.09	1.09	
Turning Speed (k/h)		15	25		25	15	
Sign Control	Free			Free	Stop		
Intersection Summary							
21	Other						
Control Type: Unsignalized							
Intersection Capacity Utilizat	tion 24.8%			IC	CU Level o	of Service A	А
Analysis Dariad (min) 15							

	-	\mathbf{r}	•	-	1	1
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	4			र्स	Y	
Traffic Volume (veh/h)	71	0	38	107	0	16
Future Volume (Veh/h)	71	0	38	107	0	16
Sign Control	Free			Free	Stop	
Grade	0%			0%	0%	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00
Hourly flow rate (vph)	71	0	38	107	0	16
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type	None			None		
Median storage veh)						
Upstream signal (m)				199		
pX, platoon unblocked				100		
vC, conflicting volume			71		254	71
vC1, stage 1 conf vol			, ,		201	
vC2, stage 2 conf vol						
vCu, unblocked vol			71		254	71
tC, single (s)			4.1		6.4	6.2
tC, 2 stage (s)			1.1		0.1	0.2
tF (s)			2.2		3.5	3.3
p0 queue free %			98		100	98
cM capacity (veh/h)			1542		721	983
,					121	500
Direction, Lane #	EB 1	WB 1	NB 1			
Volume Total	71	145	16			
Volume Left	0	38	0			
Volume Right	0	0	16			
cSH	1700	1542	983			
Volume to Capacity	0.04	0.02	0.02			
Queue Length 95th (m)	0.0	0.6	0.4			
Control Delay (s)	0.0	2.1	8.7			
Lane LOS		А	А			
Approach Delay (s)	0.0	2.1	8.7			
Approach LOS			А			
Intersection Summary						
Average Delay			1.9			
Intersection Capacity Utiliz	ation		24.8%	IC	U Level o	of Service
Analysis Period (min)			15			

	-	\mathbf{r}	1	-	1	1	
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	eî.			र्स	Y		
Traffic Volume (vph)	68	0	11	96	0	3	
Future Volume (vph)	68	0	11	96	0	3	
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	
Lane Width (m)	3.5	3.5	3.5	3.5	3.5	3.5	
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Frt					0.865		
Flt Protected				0.995			
Satd. Flow (prot)	1679	0	0	1474	770	0	
Flt Permitted				0.995			
Satd. Flow (perm)	1679	0	0	1474	770	0	
Link Speed (k/h)	60			50	50		
Link Distance (m)	185.0			163.7	105.8		
Travel Time (s)	11.1			11.8	7.6		
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Heavy Vehicles (%)	6%	0%	100%	11%	0%	100%	
Adj. Flow (vph)	68	0	11	96	0	3	
Shared Lane Traffic (%)							
Lane Group Flow (vph)	68	0	0	107	3	0	
Enter Blocked Intersection	No	No	No	No	No	No	
Lane Alignment	Left	Right	Left	Left	Left	Right	
Median Width(m)	0.0			0.0	3.5		
Link Offset(m)	0.0			0.0	0.0		
Crosswalk Width(m)	4.8			4.8	4.8		
Two way Left Turn Lane							
Headway Factor	1.09	1.09	1.09	1.09	1.09	1.09	
Turning Speed (k/h)		15	25		25	15	
Sign Control	Free			Free	Stop		
Intersection Summary							
	Other						
Control Type: Unsignalized							
Intersection Capacity Utilizat	ion 22.6%			IC	CU Level of	of Service	Αe
Analysis Daried (min) 15							

	-	\mathbf{r}	•	-	1	1
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	¢.			ب ا	Y	
Traffic Volume (veh/h)	68	0	11	96	0	3
Future Volume (Veh/h)	68	0	11	96	0	3
Sign Control	Free			Free	Stop	
Grade	0%			0%	0%	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00
Hourly flow rate (vph)	68	0	11	96	0	3
Pedestrians		•			Ť	Ť
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type	None			None		
Median storage veh)				110110		
Upstream signal (m)				362		
pX, platoon unblocked				002		
vC, conflicting volume			68		186	68
vC1, stage 1 conf vol			00		100	00
vC2, stage 2 conf vol						
vCu, unblocked vol			68		186	68
tC, single (s)			5.1		6.4	7.2
tC, 2 stage (s)			0.1		0.1	
tF (s)			3.1		3.5	4.2
p0 queue free %			99		100	100
cM capacity (veh/h)			1086		800	778
Direction, Lane #	EB 1	WB 1	NB 1		000	110
Volume Total	68	107	3			
Volume Left	0	11	0			
Volume Right	0	0	3			
cSH	1700	1086	778			
Volume to Capacity	0.04	0.01	0.00			
Queue Length 95th (m)	0.0	0.2	0.1			
Control Delay (s)	0.0	0.9	9.6			
Lane LOS		A	A			
Approach Delay (s)	0.0	0.9	9.6			
Approach LOS			А			
Intersection Summary						
Average Delay			0.7			
Intersection Capacity Utilizati	ion		22.6%	IC	U Level c	f Service
Analysis Period (min)			15			

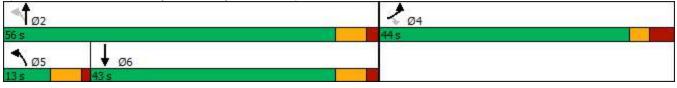
	-	\mathbf{r}	1	-	1	1	
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	eî 🗧			ų	Y		
Traffic Volume (vph)	61	0	23	73	0	7	
Future Volume (vph)	61	0	23	73	0	7	
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	
Lane Width (m)	3.5	3.5	3.5	3.5	3.5	3.5	
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Frt					0.865		
Flt Protected				0.988			
Satd. Flow (prot)	1695	0	0	1579	1351	0	
FIt Permitted				0.988			
Satd. Flow (perm)	1695	0	0	1579	1351	0	
Link Speed (k/h)	60			50	50		
Link Distance (m)	95.5			185.0	109.7		
Travel Time (s)	5.7			13.3	7.9		
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Heavy Vehicles (%)	5%	0%	22%	8%	0%	14%	
Adj. Flow (vph)	61	0	23	73	0	7	
Shared Lane Traffic (%)							
Lane Group Flow (vph)	61	0	0	96	7	0	
Enter Blocked Intersection	No	No	No	No	No	No	
Lane Alignment	Left	Right	Left	Left	Left	Right	
Median Width(m)	0.0			0.0	3.5		
Link Offset(m)	0.0			0.0	0.0		
Crosswalk Width(m)	4.8			4.8	4.8		
Two way Left Turn Lane							
Headway Factor	1.09	1.09	1.09	1.09	1.09	1.09	
Turning Speed (k/h)		15	25		25	15	
Sign Control	Free			Free	Stop		
Intersection Summary							
21	Other						
Control Type: Unsignalized							
Intersection Capacity Utilizati	ion 22.1%			IC	CU Level o	of Service A	А
Analysis Pariod (min) 15							

	-	\mathbf{r}	1	-	1	1	
Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	4			र्स	Y		
Traffic Volume (veh/h)	61	0	23	73	0	7	
Future Volume (Veh/h)	61	0	23	73	0	7	
Sign Control	Free			Free	Stop		
Grade	0%			0%	0%		
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Hourly flow rate (vph)	61	0	23	73	0	7	
Pedestrians							
Lane Width (m)							
Walking Speed (m/s)							
Percent Blockage							
Right turn flare (veh)							
Median type	None			None			
Median storage veh)							
Upstream signal (m)							
pX, platoon unblocked							
vC, conflicting volume			61		180	61	
vC1, stage 1 conf vol			0.				
vC2, stage 2 conf vol							
vCu, unblocked vol			61		180	61	
tC, single (s)			4.3		6.4	6.3	
tC, 2 stage (s)					••••	0.0	
tF (s)			2.4		3.5	3.4	
p0 queue free %			98		100	99	
cM capacity (veh/h)			1424		801	971	
Direction, Lane #	EB 1	WB 1	NB 1				
Volume Total	61	96	7				
Volume Left	0	23	0				
Volume Right	0	0	071				
cSH Volume to Conceitu	1700	1424	971				
Volume to Capacity	0.04	0.02	0.01				
Queue Length 95th (m)	0.0	0.4	0.2				
Control Delay (s)	0.0	1.9	8.7				
Lane LOS	0.0	A	A				
Approach Delay (s)	0.0	1.9	8.7				
Approach LOS			А				
Intersection Summary							
Average Delay			1.5				
Intersection Capacity Utilizat	ion		22.1%	IC	U Level o	f Service	
Analysis Period (min)			15				

	4	×	t	1	1	Ŧ	
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	- M		4Î			ન	
Traffic Volume (vph)	65	1	191	381	27	141	
Future Volume (vph)	65	1	191	381	27	141	
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	
Lane Width (m)	4.5	4.5	3.5	3.5	3.5	3.5	
Storage Length (m)	0.0	10.0		0.0	0.0		
Storage Lanes	1	0		0	0		
Taper Length (m)	7.5				7.5		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Frt	0.998		0.910				
Flt Protected	0.953					0.992	
Satd. Flow (prot)	1548	0	1519	0	0	1632	
Flt Permitted	0.953					0.992	
Satd. Flow (perm)	1548	0	1519	0	0	1632	
Link Speed (k/h)	40		80			80	
Link Distance (m)	155.0		545.7			134.1	
Travel Time (s)	14.0		24.6			6.0	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Heavy Vehicles (%)	22%	0%	6%	7%	4%	9%	
Adj. Flow (vph)	65	1	191	381	27	141	
Shared Lane Traffic (%)							
Lane Group Flow (vph)	66	0	572	0	0	168	
Enter Blocked Intersection	No	No	No	No	No	No	
Lane Alignment	Left	Right	Left	Right	Left	Left	
Median Width(m)	4.5		0.0			0.0	
Link Offset(m)	0.0		0.0			0.0	
Crosswalk Width(m)	4.8		4.8			4.8	
Two way Left Turn Lane							
Headway Factor	0.95	0.95	1.09	1.09	1.09	1.09	
Turning Speed (k/h)	25	15		15	25		
Sign Control	Stop		Free			Free	
Intersection Summary							
	Other						
Control Type: Unsignalized							
Intersection Capacity Utilization	tion 45.8%			IC	U Level o	of Service /	А
Analysis Period (min) 15							

	4	•	Ť	1	5	Ļ		
Movement	WBL	WBR	NBT	NBR	SBL	SBT		
Lane Configurations	Y		4Î			र्भ		
Traffic Volume (veh/h)	65	1	191	381	27	141		
Future Volume (Veh/h)	65	1	191	381	27	141		
Sign Control	Stop		Free			Free		
Grade	0%		0%			0%		
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00		
Hourly flow rate (vph)	65	1	191	381	27	141		
Pedestrians								
Lane Width (m)								
Walking Speed (m/s)								
Percent Blockage								
Right turn flare (veh)								
Median type			None			None		
Median storage veh)								
Upstream signal (m)								
pX, platoon unblocked								
vC, conflicting volume	576	382			572			
vC1, stage 1 conf vol								
vC2, stage 2 conf vol								
vCu, unblocked vol	576	382			572			
tC, single (s)	6.6	6.2			4.1			
tC, 2 stage (s)								
tF (s)	3.7	3.3			2.2			
p0 queue free %	85	100			97			
cM capacity (veh/h)	435	670			991			
Direction, Lane #	WB 1	NB 1	SB 1					
Volume Total	66	572	168					
Volume Left	65	0	27					
Volume Right	1	381	0					
cSH	437	1700	991					
Volume to Capacity	0.15	0.34	0.03					
Queue Length 95th (m)	4.2	0.0	0.7					
Control Delay (s)	14.7	0.0	1.6					
Lane LOS	В		А					
Approach Delay (s)	14.7	0.0	1.6					
Approach LOS	В							
Intersection Summary								
Average Delay			1.5					
Intersection Capacity Utiliz	ation		45.8%	IC	U Level o	of Service		
Analysis Period (min)			15					

	٦	\mathbf{i}	•	†	Ļ	4
Lano Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Group						SDK
Lane Configurations		*		200	1	18
Traffic Volume (vph)	85 85	828	206	380	254	18
Future Volume (vph)	85	828	206	380	254	
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800
Lane Width (m)	3.5	3.3	3.5	3.5	3.5	3.5
Storage Length (m)	0.0	25.0	50.0			0.0
Storage Lanes	1	1	1			0
Taper Length (m)	7.5		75.0			
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.850			0.991	
Flt Protected	0.950		0.950			
Satd. Flow (prot)	1551	1422	1496	1618	1581	0
Flt Permitted	0.950		0.448			
Satd. Flow (perm)	1551	1422	706	1618	1581	0
Right Turn on Red		Yes				Yes
Satd. Flow (RTOR)		548			4	100
Link Speed (k/h)	40	040		80	4 80	
Link Distance (m)	154.2			243.1	545.7	
· · · ·				243.1		
Travel Time (s)	13.9	1.00	1.00		24.6	1.00
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles (%)	9%	4%	13%	10%	12%	6%
Adj. Flow (vph)	85	828	206	380	254	18
Shared Lane Traffic (%)						
Lane Group Flow (vph)	85	828	206	380	272	0
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Left	Left	Right
Median Width(m)	3.5			3.5	3.5	
Link Offset(m)	0.0			0.0	0.0	
Crosswalk Width(m)	4.8			4.8	4.8	
Two way Left Turn Lane						
Headway Factor	1.09	1.12	1.09	1.09	1.09	1.09
Turning Speed (k/h)	25	15	25			1.00
Number of Detectors	1	1	1	2	2	10
	Left	Right	Left	Thru	Thru	
Detector Template	2.0	2.0	2.0	10.0	10.0	
Leading Detector (m)						
Trailing Detector (m)	0.0	0.0	0.0	0.0	0.0	
Detector 1 Position(m)	0.0	0.0	0.0	0.0	0.0	
Detector 1 Size(m)	2.0	2.0	2.0	0.6	0.6	
Detector 1 Type	CI+Ex	Cl+Ex	Cl+Ex	CI+Ex	Cl+Ex	
Detector 1 Channel						
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0	
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0	
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0	
Detector 2 Position(m)				9.4	9.4	
Detector 2 Size(m)				0.6	0.6	
Detector 2 Type				CI+Ex	CI+Ex	
Detector 2 Channel						
Detector 2 Extend (s)				0.0	0.0	
	Prot	Perm	nm⊥nt	NA	NA	
Turn Type	Prot	rem	pm+pt	NA	NA	


Scenario 1 2030 Future Total PM 3:13 am 12-03-2020 Baseline

		٦	\mathbf{r}	1	Ť	Ŧ	∢
Protected Phases 4 5 2 6 Permitted Phases 4 4 5 2 6 Switch Phase 4 4 5 2 6 Minimum Initial (s) 7.0 7.0 35.0 35.0 Minimum Split (s) 23.0 23.0 13.0 41.6 41.6 Total Split (s) 44.0 44.0 13.0 56.0 43.0 Total Split (s) 44.0 44.0 13.0 56.0 43.0 Maximum Green (s) 37.2 37.2 7.0 49.4 36.4 Yellow Time (s) 3.8 3.8 1.4 2.0 2.0 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 Lead-Lag Detector None Min Min Min Min Walk Time (s) 7.0 7.0 0.0 7.0 Foo F	Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Permitted Phases 4 2 Detector Phase 4 4 5 2 6 Switch Phase Minimum Initial (s) 7.0 7.0 35.0 35.0 Minimum Initial (s) 7.0 7.0 7.0 35.0 43.0 Total Split (s) 44.0 44.0 13.0% 56.0% 43.0% Maximum Green (s) 3.0 3.0 4.6 4.6 4.6 All-Red Time (s) 3.8 3.8 1.4 2.0 2.0 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 1.00 Lead/Lag Lead Lag Lead Lag Lead/Lag Vers Yes Yes Yes Vehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 Recall Mode None None Nim Min Walk Time (s) 7.0 7.0 0.0 7.0 Patoson (s) 3.0 3.0 3.0 3.0 3	•						
Detector Phase 4 4 5 2 6 Switch Phase Minimum Initial (s) 7.0 7.0 7.0 35.0 35.0 Minimum Split (s) 23.0 23.0 13.0 41.6 41.6 Total Split (s) 44.0 44.0 13.0 56.0 43.0 Total Split (s) 44.0 44.0 13.0 56.0 43.0 Minimum Split (s) 37.2 37.2 7.0 49.4 36.4 Yellow Time (s) 3.8 3.8 1.4 2.0 2.0 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 Total Lost Time (s) 6.8 6.8 6.6 6.6 6.6 Lead/Lag Lead Lag Lead/Lag Lead Lag Lead/Lag Lead Lag Lead/Lag Lead/Lag Lead/Lag Lead/Lag Lead/Lag Lad/Lag Lead/Lag Lad/Lag Lad/Lag Lad/Lag Lad/Lag Lad/Lag Lad/Lag Lad/Lag			4		-	v	
Switch Phase Minimum Initial (s) 7.0 7.0 7.0 35.0 35.0 Minimum Split (s) 23.0 23.0 13.0 41.6 41.6 Total Split (s) 44.0 44.0% 13.0 56.0% 43.0 Total Split (%) 44.0% 44.0% 13.0 56.0% 43.0 Total Split (%) 44.0% 44.0% 13.0 56.0% 43.0% Miximum Green (s) 37.2 37.2 7.0 49.4 36.4 Yellow Time (s) 3.8 3.8 1.4 2.0 2.0 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 Lead-Lag Optimize? Yes Yes Yes Yehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 Recall Mode None None None Min Min Min Walk (min (s) 7.0 7.0 7.0 0.0 7.0 7.0 Flash Dont Walk (s) 5.0 5.0 0.0 21.0 Pedestrian Calls (#/hr) 0 0 0		4			2	6	
Minimum Initial (s) 7.0 7.0 7.0 35.0 35.0 Minimum Split (s) 23.0 23.0 13.0 41.6 41.6 Total Split (%) 44.0 44.0 13.0 56.0 43.0 Maximum Green (s) 37.2 37.2 7.0 49.4 36.4 Yellow Time (s) 3.8 3.8 1.4 2.0 2.0 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 Lost Time Adjust (s) 6.8 6.8 6.0 6.6 6.6 Lead-Lag Optimize? Yes Yes Yes Yes Vehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 Recall Mode None None None Min Min Walk Time (s) 7.0 7.0 0.0 7.0 Pedestrina Calls (#/hr) 0 0 0 0 Actuated g/C Ratio 0.35 0.35 0.51 0.37 v/c Ratio							
Minimum Split (s) 23.0 23.0 13.0 41.6 41.6 Total Split (s) 44.0 44.0 13.0 56.0 43.0 Total Split (s) 44.0% 44.0% 13.0% 56.0% 43.0% Maximum Green (s) 37.2 7.0 49.4 36.4 Yellow Time (s) 3.8 3.8 1.4 2.0 2.0 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 1.0 Total Lost Time (s) 6.8 6.8 6.0 6.6 6.6 Lead/Lag Lead Lag Lead Lag Lead/Lag Lead Lag Lead/Lag Versite Yes Yes Yes Yes Yes Vehicle Extension (s) 3.0		7.0	7.0	7.0	35.0	35.0	
Total Split (s) 44.0 44.0 13.0 56.0 43.0 Total Split (%) 44.0% 44.0% 13.0% 56.0% 43.0% Maximum Green (s) 37.2 37.2 7.0 49.4 36.4 Yellow Time (s) 3.0 3.0 4.6 4.6 All-Red Time (s) 3.8 3.8 1.4 2.0 2.0 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 1.0 1.0 Total Split (s) 0.0 0.0 0.0 0.0 0.0 1.0 1.0 Lead-Lag Optimize? Yes Yes Yes Yes Vehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 3.0 Recall Mode None None None Min Min Min Wait Time (s) 7.0 7.0 0.0 7.0 Pedstrian Calls (#/hr) 0 0 0 0 0 21.0 Pedstrian Calls (#/hr) 0 0 0 0 </td <td>()</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	()						
Total Split (%) 44.0% 44.0% 13.0% 56.0% 43.0% Maximum Green (s) 37.2 37.2 7.0 49.4 36.4 Yellow Time (s) 3.0 3.0 4.6 4.6 4.6 All-Red Time (s) 3.8 3.8 1.4 2.0 2.0 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 Total Lost Time (s) 6.8 6.8 6.0 6.6 6.6 Lead-Lag Optimize? Yes Yes Yes Veloice Extension (s) 3.0 3.0 3.0 3.0 Vehicle Extension (s) 7.0 7.0 0.0 7.0 7.0 7.0 7.0 Pedestrian Calls (#/hr) 0 0 0 0 0 0 0.0 7.0 Actated g/C Ratio 0.35 0.35 0.51 0.37 0.7 0.0 <							
Maximum Green (s) 37.2 37.2 7.0 49.4 36.4 Yellow Time (s) 3.0 3.0 4.6 4.6 4.6 All-Red Time (s) 3.8 3.8 1.4 2.0 2.0 Lost Time Ajust (s) 0.0 0.0 0.0 0.0 0.0 Total Lost Time (s) 6.8 6.8 6.0 6.6 6.6 Lead-Lag Optimize? Yes Yes Yes Yes Vehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 Recall Mode None None None Min Min Valk Time (s) 7.0 7.0 0.0 7.0 Flash Dont Walk (s) 5.0 5.0 0.0 21.0 Pedestrian Calls (#/hr) 0 0 0 0 0 Vic Ratio 0.16 0.97 0.49 0.46 0.46 Control Delay 21.3 35.2 19.2 18.6 26.9 Queue Delay							
Yellow Time (s) 3.0 3.0 4.6 4.6 4.6 All-Red Time (s) 3.8 3.8 1.4 2.0 2.0 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 Total Lost Time (s) 6.8 6.8 6.0 6.6 6.6 Lead/Lag Lead Lag Lead Lag Lead-Lag Optimize? Yes Yes Yes Vehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 Recall Mode None None None Min Min Walk Time (s) 7.0 7.0 0.0 7.0 7.0 Flash Dont Walk (s) 5.0 5.0 0.0 21.0 Pedestrian Calls (#/hr) 0 0 0 0 Pedestrian Calls (#/hr) 0 0 0 0 0 0 0 Actuated g/C Ratio 0.35 0.51 0.51 0.37 v/c Ratio 0.6 6.6 6.9 Queue Delay 21.3 35.2 19.2 18.6 26.9 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>							
All-Red Time (s) 3.8 3.8 1.4 2.0 2.0 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 0.0 Total Lost Time (s) 6.8 6.8 6.0 6.6 6.6 Lead/Lag Lead Lag Lead Lag Lead-Lag Optimize? Yes Yes Ves Vehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 Recall Mode None None None Min Min Walk Time (s) 7.0 7.0 0.0 7.0 7.0 Pedestrian Calls (#/hr) 0 0 0 0 0 0.0 ActLated g/C Ratio 0.35 0.35 0.51 0.37 0.7 0.0	· · · · · · · · · · · · · · · · · · ·						
Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 Total Lost Time (s) 6.8 6.8 6.0 6.6 6.6 Lead/Lag Lead Lag Lag Lag Lead-Lag Optimize? Yes Yes Yes Vehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 Recall Mode None None None Min Min Walk Time (s) 7.0 7.0 0.0 7.0 Pedestrian Calls (#hr) 0 0 0 0 0 Pedestrian Calls (#hr) 0 0.0 0.0 0.0 0.0 Actuated g/C Ratio 0.35 0.35 0.51 0.51 0.37 V/c Ratio 0.16 0.97 0.49 0.46 0.46 Control Delay 21.3 35.2 19.2 18.6 26.9 LOS C B B C Approach LOS C B B <th< td=""><td></td><td>3.8</td><td></td><td>1.4</td><td>2.0</td><td></td><td></td></th<>		3.8		1.4	2.0		
Total Lost Time (s) 6.8 6.8 6.0 6.6 6.6 Lead/Lag Lead Lag Lead Lag Lead-Lag Optimize? Yes Yes Yes Vehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 Recall Mode None None None Min Min Walk Time (s) 7.0 7.0 0.0 7.0 Flash Dont Walk (s) 5.0 5.0 0.0 21.0 Pedestrian Calls (#/hr) 0 0 0 0 Actuated g/C Ratio 0.35 0.51 0.51 0.37 v/c Ratio 0.16 0.97 0.49 0.46 0.46 Control Delay 21.3 35.2 19.2 18.6 26.9 Queue Delay 0.0 0.0 0.0 0.0 0 LoS C D B B C Queue Delay 33.9 18.8 26.9 Approach LOS	()			0.0			
Lead/Lag Lead Lag Lead-Lag Optimize? Yes Yes Vehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 Recall Mode None None None Min Min Walk Time (s) 7.0 7.0 0.0 7.0 Flash Dont Walk (s) 5.0 5.0 0.0 21.0 Pedestrian Calls (#/hr) 0 0 0 0 Act Effet Green (s) 33.6 33.6 48.9 48.3 35.2 Actuated g/C Ratio 0.35 0.35 0.51 0.37 v/c Ratio 0.46 0.46 Control Delay 21.3 35.2 19.2 18.6 26.9 26.9 LOS C D B B C Approach LOS C B C Queue Length 95th (m) 11.1 65.2 23.4 49.3 41.4 Queue Length 95th (m) 21.8 219.1 521.7 Turn Bay Length (m) 25.0		6.8	6.8	6.0	6.6		
Lead-Lag Optimize? Yes Yes Vehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 Recall Mode None None None Min Min Walk Time (s) 7.0 7.0 0.0 7.0 Flash Dont Walk (s) 5.0 5.0 0.0 21.0 Pedestrian Calls (#hr) 0 0 0 0 Act Left Green (s) 33.6 33.6 48.9 48.3 35.2 Actuated g/C Ratio 0.35 0.51 0.51 0.37 v/c Ratio 0.16 0.97 0.49 0.46 0.46 Control Delay 21.3 35.2 19.2 18.6 26.9 Queue Delay 0.0	· · · · · · · · · · · · · · · · · · ·						
Vehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 3.0 Recall Mode None None None Min Min Min Walk Time (s) 7.0 7.0 0.0 7.0 Padestrian Calls (#/hr) 0 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
Recall Mode None None None Min Min Walk Time (s) 7.0 7.0 0.0 7.0 Flash Dont Walk (s) 5.0 5.0 0.0 21.0 Pedestrian Calls (#/hr) 0 0 0 0 Act Effet Green (s) 33.6 33.6 48.9 48.3 35.2 Actuated g/C Ratio 0.35 0.35 0.51 0.37 w/c Ratio 0.16 0.97 0.49 0.46 0.46 Control Delay 21.3 35.2 19.2 18.6 26.9 Queue Delay 0.0 0.1 0.16 0.50 0.50 <		3.0	3.0		3.0		
Walk Time (s) 7.0 7.0 0.0 7.0 Flash Dont Walk (s) 5.0 5.0 0.0 21.0 Pedestrian Calls (#/hr) 0 0 0 0 Act Effct Green (s) 33.6 33.6 48.9 48.3 35.2 Actuated g/C Ratio 0.35 0.35 0.51 0.37							
Flash Dont Walk (s) 5.0 5.0 0.0 21.0 Pedestrian Calls (#/hr) 0 0 0 0 Act Effct Green (s) 33.6 33.6 48.9 48.3 35.2 Actuated g/C Ratio 0.35 0.35 0.51 0.51 0.37 V/c Ratio 0.16 0.97 0.49 0.46 0.46 Control Delay 21.3 35.2 19.2 18.6 26.9 Queue Delay 0.0 0.0 0.0 0.0 0.0 Total Delay 21.3 35.2 19.2 18.6 26.9 LOS C D B B C Approach Delay 33.9 18.8 26.9 Approach LOS C B C Queue Length 50th (m) 11.1 65.2 23.4 49.3 41.4 Queue Length 95th (m) 21.8 #163.6 38.8 75.3 66.0 Internal Link Dist (m) 130.2 219.1 521.7 50.0 50.0 50.0 Base Capacity (vph) 608 890							
Pedestrian Calls (#/hr) 0 0 0 0 Act Effct Green (s) 33.6 33.6 33.6 48.9 48.3 35.2 Actuated g/C Ratio 0.35 0.35 0.51 0.51 0.37 v/c Ratio 0.16 0.97 0.49 0.46 0.46 Control Delay 21.3 35.2 19.2 18.6 26.9 Queue Delay 0.0 0.0 0.0 0.0 0.0 Total Delay 21.3 35.2 19.2 18.6 26.9 LOS C D B B C Approach Delay 33.9 18.8 26.9 20.0 Queue Length S0th (m) 11.1 65.2 23.4 49.3 41.4 Queue Length 95th (m) 21.8 #163.6 38.8 75.3 66.0 Internal Link Dist (m) 130.2 219.1 521.7 50.0 Base Capacity (vph) 608 890 420 843 609 <	()						
Act Effct Green (s) 33.6 33.6 48.9 48.3 35.2 Actuated g/C Ratio 0.35 0.35 0.51 0.51 0.37 v/c Ratio 0.16 0.97 0.49 0.46 0.46 Control Delay 21.3 35.2 19.2 18.6 26.9 Queue Delay 0.0 0.0 0.0 0.0 0.0 Total Delay 21.3 35.2 19.2 18.6 26.9 LOS C D B B C Approach Delay 33.9 18.8 26.9 Approach LOS C B C Queue Length 50th (m) 11.1 65.2 23.4 49.3 41.4 Queue Length 95th (m) 21.8 #163.6 38.8 75.3 66.0 Internal Link Dist (m) 130.2 219.1 521.7 50.0 Base Capacity (vph) 608 890 420 843 609 Starvation Cap Reductn 0 0 0 0 0 0 0 Spillback Cap Reductn 0<	()						
Actuated g/C Ratio 0.35 0.35 0.51 0.51 0.37 v/c Ratio 0.16 0.97 0.49 0.46 0.46 Control Delay 21.3 35.2 19.2 18.6 26.9 Queue Delay 0.0 0.0 0.0 0.0 0.0 Total Delay 21.3 35.2 19.2 18.6 26.9 LOS C D B B C Approach Delay 33.9 18.8 26.9 Approach LOS C B C Queue Length 50th (m) 11.1 65.2 23.4 49.3 41.4 Queue Length 95th (m) 21.8 #163.6 38.8 75.3 66.0 Internal Link Dist (m) 130.2 219.1 521.7 50.0 Base Capacity (vph) 608 890 420 843 609 Starvation Cap Reductn 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 Reduced v/c Ratio 0.14 0.93				48.9			
v/c Ratio 0.16 0.97 0.49 0.46 0.46 Control Delay 21.3 35.2 19.2 18.6 26.9 Queue Delay 0.0 0.0 0.0 0.0 0.0 Total Delay 21.3 35.2 19.2 18.6 26.9 LOS C D B B C Approach Delay 33.9 18.8 26.9 Approach LOS C B C Queue Length 50th (m) 11.1 65.2 23.4 49.3 41.4 Queue Length 95th (m) 21.8 #163.6 38.8 75.3 66.0 Internal Link Dist (m) 130.2 219.1 521.7 521.7 Turm Bay Length (m) 25.0 50.0 Base Capacity (vph) 608 890 420 843 609 Starvation Cap Reductn 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 Re							
Control Delay 21.3 35.2 19.2 18.6 26.9 Queue Delay 0.0 0.0 0.0 0.0 0.0 Total Delay 21.3 35.2 19.2 18.6 26.9 LOS C D B B C Approach Delay 33.9 18.8 26.9 Approach LOS C B C Queue Length 50th (m) 11.1 65.2 23.4 49.3 41.4 Queue Length 50th (m) 21.8 #163.6 38.8 75.3 66.0 Internal Link Dist (m) 130.2 219.1 521.7 50.0 Base Capacity (vph) 608 890 420 843 609 Starvation Cap Reductn 0 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 0 0 Reduced v/c Ratio 0.14 0.93 0.49 0.45 0.45 0.45 Intersection Summary					0.46		
Queue Delay 0.0 0.0 0.0 0.0 0.0 Total Delay 21.3 35.2 19.2 18.6 26.9 LOS C D B B C Approach Delay 33.9 18.8 26.9 Approach LOS C B C Queue Length 50th (m) 11.1 65.2 23.4 49.3 41.4 Queue Length 95th (m) 21.8 #163.6 38.8 75.3 66.0 Internal Link Dist (m) 130.2 219.1 521.7 521.7 Turn Bay Length (m) 25.0 50.0 50.0 50.0 Base Capacity (vph) 608 890 420 843 609 Starvation Cap Reductn 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 Reduced v/c Ratio 0.14 0.93 0.49 0.45 0.45 Intersection Summary <thtbold>linearcold linearcold linearcold linearcold line</thtbold>			35.2	19.2	18.6		
Total Delay 21.3 35.2 19.2 18.6 26.9 LOS C D B B C Approach Delay 33.9 18.8 26.9 Approach LOS C B C Queue Length 50th (m) 11.1 65.2 23.4 49.3 41.4 Queue Length 95th (m) 21.8 #163.6 38.8 75.3 66.0 Internal Link Dist (m) 130.2 219.1 521.7 Turn Bay Length (m) 25.0 50.0 50.0 Base Capacity (vph) 608 890 420 843 609 Starvation Cap Reductn 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 Reduced v/c Ratio 0.14 0.93 0.49 0.45 0.45 Intersection Summary Intersection Summary Intersection Summary Intersection Summary Intersection Capacity Utilization 94.5% Intersection LOS: C Intersection Signal Delay: 27.9 Intersection LOS: C Intersection LOS: C Intersection LOS: C </td <td></td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td></td>		0.0	0.0	0.0	0.0	0.0	
LOS C D B B C Approach Delay 33.9 18.8 26.9 Approach LOS C B C Queue Length 50th (m) 11.1 65.2 23.4 49.3 41.4 Queue Length 95th (m) 21.8 #163.6 38.8 75.3 66.0 Internal Link Dist (m) 130.2 219.1 521.7 521.7 Turn Bay Length (m) 25.0 50.0 Base Capacity (vph) 608 890 420 843 609 Starvation Cap Reductn 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 Reduced v/c Ratio 0.14 0.93 0.49 0.45 0.45 Intersection Summary					18.6		
Approach Delay 33.9 18.8 26.9 Approach LOS C B C Queue Length 50th (m) 11.1 65.2 23.4 49.3 41.4 Queue Length 95th (m) 21.8 #163.6 38.8 75.3 66.0 Internal Link Dist (m) 130.2 219.1 521.7 Turn Bay Length (m) 25.0 50.0 50.0 Base Capacity (vph) 608 890 420 843 609 Starvation Cap Reductn 0 0 0 0 0 Spillback Cap Reductn 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 Reduced v/c Ratio 0.14 0.93 0.49 0.45 0.45 Intersection Summary V							
Approach LOS C B C Queue Length 50th (m) 11.1 65.2 23.4 49.3 41.4 Queue Length 95th (m) 21.8 #163.6 38.8 75.3 66.0 Internal Link Dist (m) 130.2 219.1 521.7 Turn Bay Length (m) 25.0 50.0 Base Capacity (vph) 608 890 420 843 609 Starvation Cap Reductn 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 Reduced v/c Ratio 0.14 0.93 0.49 0.45 0.45 Intersection Summary Intersection Summary Intersection Summary Intersection Summary Intersection Summary Area Type: Other Other Cycle Length: 95.3 Intersection Cover Summary Area Type: Other Intersection Summary Intersection Cover Summary Intersection LOS: C Intersection LOS:	Approach Delay	33.9			18.8		
Queue Length 50th (m) 11.1 65.2 23.4 49.3 41.4 Queue Length 95th (m) 21.8 #163.6 38.8 75.3 66.0 Internal Link Dist (m) 130.2 219.1 521.7 Turn Bay Length (m) 25.0 50.0 Base Capacity (vph) 608 890 420 843 609 Starvation Cap Reductn 0 0 0 0 0 Spillback Cap Reductn 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 Reduced v/c Ratio 0.14 0.93 0.49 0.45 0.45 Intersection Summary Verture Section Summary Area Type: Other Other </td <td></td> <td>С</td> <td></td> <td></td> <td>В</td> <td>С</td> <td></td>		С			В	С	
Queue Length 95th (m) 21.8 #163.6 38.8 75.3 66.0 Internal Link Dist (m) 130.2 219.1 521.7 Turn Bay Length (m) 25.0 50.0 Base Capacity (vph) 608 890 420 843 609 Starvation Cap Reductn 0 0 0 0 0 Spillback Cap Reductn 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 Reduced v/c Ratio 0.14 0.93 0.49 0.45 0.45 Intersection Summary			65.2	23.4	49.3	41.4	
Internal Link Dist (m) 130.2 219.1 521.7 Turn Bay Length (m) 25.0 50.0 50.0 Base Capacity (vph) 608 890 420 843 609 Starvation Cap Reductn 0 0 0 0 0 Spillback Cap Reductn 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 Reduced v/c Ratio 0.14 0.93 0.49 0.45 0.45 Intersection Summary		21.8	#163.6	38.8	75.3	66.0	
Turn Bay Length (m) 25.0 50.0 Base Capacity (vph) 608 890 420 843 609 Starvation Cap Reductn 0 0 0 0 0 Spillback Cap Reductn 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 Reduced v/c Ratio 0.14 0.93 0.49 0.45 0.45 Intersection Summary		130.2			219.1	521.7	
Base Capacity (vph) 608 890 420 843 609 Starvation Cap Reductn 0 0 0 0 0 Spillback Cap Reductn 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 Reduced v/c Ratio 0.14 0.93 0.49 0.45 0.45 Intersection Summary	Turn Bay Length (m)		25.0	50.0			
Starvation Cap Reductn 0		608	890	420	843	609	
Storage Cap Reductn00000Reduced v/c Ratio0.140.930.490.450.45Intersection SummaryArea Type:OtherCycle Length: 100Actuated Cycle Length: 95.3Natural Cycle: 90Control Type: Semi Act-UncoordMaximum v/c Ratio: 0.97Intersection Signal Delay: 27.9Intersection Capacity Utilization 94.5%		0	0	0		0	
Storage Cap Reductn00000Reduced v/c Ratio0.140.930.490.450.45Intersection SummaryArea Type:OtherCycle Length: 100Actuated Cycle Length: 95.3Natural Cycle: 90Control Type: Semi Act-UncoordMaximum v/c Ratio: 0.97Intersection Signal Delay: 27.9Intersection LOS: CIntersection Capacity Utilization 94.5%ICU Level of Service F	Spillback Cap Reductn	0	0	0	0	0	
Intersection Summary Area Type: Other Cycle Length: 100 Actuated Cycle Length: 95.3 Natural Cycle: 90 Control Type: Semi Act-Uncoord Maximum v/c Ratio: 0.97 Intersection LOS: C Intersection Capacity Utilization 94.5% ICU Level of Service F		0	0	0	0	0	
Area Type: Other Cycle Length: 100 0 Actuated Cycle Length: 95.3 0 Natural Cycle: 90 0 Control Type: Semi Act-Uncoord 0 Maximum v/c Ratio: 0.97 0 Intersection Signal Delay: 27.9 Intersection LOS: C Intersection Capacity Utilization 94.5% ICU Level of Service F		0.14	0.93	0.49	0.45	0.45	
Cycle Length: 100 Actuated Cycle Length: 95.3 Natural Cycle: 90 Control Type: Semi Act-Uncoord Maximum v/c Ratio: 0.97 Intersection Signal Delay: 27.9 Intersection LOS: C Intersection Capacity Utilization 94.5%	Intersection Summary						
Cycle Length: 100 Actuated Cycle Length: 95.3 Natural Cycle: 90 Control Type: Semi Act-Uncoord Maximum v/c Ratio: 0.97 Intersection Signal Delay: 27.9 Intersection LOS: C Intersection Capacity Utilization 94.5% ICU Level of Service F	Area Type:	Other					
Actuated Cycle Length: 95.3 Natural Cycle: 90 Control Type: Semi Act-Uncoord Maximum v/c Ratio: 0.97 Intersection Signal Delay: 27.9 Intersection Capacity Utilization 94.5% ICU Level of Service F							
Natural Cycle: 90 Control Type: Semi Act-Uncoord Maximum v/c Ratio: 0.97 Intersection Signal Delay: 27.9 Intersection Capacity Utilization 94.5% ICU Level of Service F		.3					
Control Type: Semi Act-Uncoord Maximum v/c Ratio: 0.97 Intersection Signal Delay: 27.9 Intersection Capacity Utilization 94.5% ICU Level of Service F							
Maximum v/c Ratio: 0.97Intersection Signal Delay: 27.9Intersection Capacity Utilization 94.5%ICU Level of Service F		coord					
Intersection Signal Delay: 27.9Intersection LOS: CIntersection Capacity Utilization 94.5%ICU Level of Service F							
Intersection Capacity Utilization 94.5% ICU Level of Service F		27.9			Ir	ntersection	LOS: C
Analysis Period (min) 15	Analysis Period (min) 15						

Scenario 1 2030 Future Total PM 3:13 am 12-03-2020 Baseline

95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

Splits and Phases: 2: Boundary Road & Hwy 417 EB Ramp Terminal

Lanes, Volumes, Timings 3: Boundary Road & Thunder Road/Amazon Way

	≯	-	\mathbf{F}	4	+	•	1	t	1	1	Ŧ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			र्भ	1	٦	•	1	1	eî	
Traffic Volume (vph)	147	0	33	6	Ō	20	10	418	0	2	991	88
Future Volume (vph)	147	0	33	6	0	20	10	418	0	2	991	88
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Lane Width (m)	3.5	3.5	3.5	3.5	3.5	3.5	3.3	3.5	3.3	3.3	3.5	3.5
Storage Length (m)	0.0		15.0	0.0		0.0	35.0		7.5	100.0		35.0
Storage Lanes	0		0	0		1	1		1	1		0
Taper Length (m)	7.5			7.5			45.0			75.0		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.975				0.850					0.988	
Flt Protected		0.961			0.950		0.950			0.950		
Satd. Flow (prot)	0	1444	0	0	1271	1513	1517	1633	1740	1102	1686	0
Flt Permitted		0.761			0.745		0.164			0.439		
Satd. Flow (perm)	0	1143	0	0	997	1513	262	1633	1740	509	1686	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		100				100					10	
Link Speed (k/h)		60			20			80			80	
Link Distance (m)		198.6			170.6			174.7			243.1	
Travel Time (s)		11.9			30.7			7.9			10.9	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles (%)	19%	0%	0%	33%	0%	0%	9%	9%	0%	50%	4%	8%
Adj. Flow (vph)	147	0	33	6	0	20	10	418	0	2	991	88
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	180	0	0	6	20	10	418	0	2	1079	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)		0.0	Ŭ		0.0	•		3.5	Ū		3.5	Ū
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		4.8			4.8			4.8			4.8	
Two way Left Turn Lane												
Headway Factor	1.09	1.09	1.09	1.09	1.09	1.09	1.12	1.09	1.12	1.12	1.09	1.09
Turning Speed (k/h)	25		15	25		15	25		15	25		15
Number of Detectors	1	2		1	2	1	1	2	1	1	2	
Detector Template	Left	Thru		Left	Thru	Right	Left	Thru	Right	Left	Thru	
Leading Detector (m)	2.0	10.0		2.0	10.0	2.0	2.0	10.0	2.0	2.0	10.0	
Trailing Detector (m)	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Detector 1 Position(m)	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Detector 1 Size(m)	2.0	0.6		2.0	0.6	2.0	2.0	0.6	2.0	2.0	0.6	
Detector 1 Type	Cl+Ex	CI+Ex		Cl+Ex	Cl+Ex	CI+Ex	Cl+Ex	Cl+Ex	Cl+Ex	Cl+Ex	CI+Ex	
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Detector 1 Queue (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Detector 1 Delay (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Detector 2 Position(m)		9.4			9.4			9.4			9.4	
Detector 2 Size(m)		0.6			0.6			0.6			0.6	
Detector 2 Type		CI+Ex			CI+Ex			Cl+Ex			CI+Ex	
Detector 2 Channel												
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
Turn Type	Perm	NA		Perm	NA	Perm	Perm	NA	Perm	pm+pt	NA	
71										r r'		

Scenario 1 2030 Future Total PM 3:13 am 12-03-2020 Baseline

Lanes, Volumes, Timings 3: Boundary Road & Thunder Road/Amazon Way

	٦	-	\mathbf{F}	4	+	•	1	1	1	1	Ļ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Protected Phases		4			8			2		1	6	
Permitted Phases	4			8		8	2		2	6		
Detector Phase	4	4		8	8	8	2	2	2	1	6	
Switch Phase												
Minimum Initial (s)	7.0	7.0		7.0	7.0	7.0	20.0	20.0	20.0	7.0	20.0	
Minimum Split (s)	24.8	24.8		24.8	24.8	24.8	26.2	26.2	26.2	13.0	26.2	
Total Split (s)	25.0	25.0		25.0	25.0	25.0	62.0	62.0	62.0	13.0	75.0	
Total Split (%)	25.0%	25.0%		25.0%	25.0%	25.0%	62.0%	62.0%	62.0%	13.0%	75.0%	
Maximum Green (s)	19.2	19.2		19.2	19.2	19.2	55.8	55.8	55.8	7.0	68.8	
Yellow Time (s)	3.7	3.7		3.7	3.7	3.7	4.6	4.6	4.6	4.6	4.6	
All-Red Time (s)	2.1	2.1		2.1	2.1	2.1	1.6	1.6	1.6	1.4	1.6	
Lost Time Adjust (s)		0.0			0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)		5.8			5.8	5.8	6.2	6.2	6.2	6.0	6.2	
Lead/Lag							Lag	Lag	Lag	Lead		
Lead-Lag Optimize?							Yes	Yes	Yes	Yes		
Vehicle Extension (s)	3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	
Recall Mode	None	None		None	None	None	Min	Min	Min	None	Min	
Walk Time (s)	7.0	7.0		7.0	7.0	7.0	7.0	7.0	7.0		7.0	
Flash Dont Walk (s)	12.0	12.0		12.0	12.0	12.0	10.0	10.0	10.0		10.0	
Pedestrian Calls (#/hr)	0	0		0	0	0	0	0	0		0	
Act Effct Green (s)	Ţ	12.3		•	12.3	12.3	55.6	55.6	•	57.9	57.7	
Actuated g/C Ratio		0.15			0.15	0.15	0.67	0.67		0.70	0.70	
v/c Ratio		0.71			0.04	0.06	0.06	0.38		0.00	0.91	
Control Delay		33.4			34.2	0.4	8.5	8.6		4.5	24.4	
Queue Delay		0.0			0.0	0.0	0.0	0.0		0.0	0.3	
Total Delay		33.4			34.2	0.4	8.5	8.6		4.5	24.7	
LOS		C			C	A	A	A		A	C	
Approach Delay		33.4			8.2			8.6			24.7	
Approach LOS		C			A			A			C	
Queue Length 50th (m)		13.6			1.0	0.0	0.4	23.0		0.1	121.2	
Queue Length 95th (m)		38.2			4.6	0.0	3.7	72.0		0.8	#291.1	
Internal Link Dist (m)		174.6			146.6	0.0	0.1	150.7		0.0	219.1	
Turn Bay Length (m)		11 1.0			110.0		35.0	100.1		100.0	210.1	
Base Capacity (vph)		353			242	443	197	1232		409	1406	
Starvation Cap Reductn		0			0	0	0	0		0	47	
Spillback Cap Reductn		0			0	0	0	0		0	0	
Storage Cap Reductn		0			0	0	0	0		0	0	
Reduced v/c Ratio		0.51			0.02	0.05	0.05	0.34		0.00	0.79	
Intersection Summary												
Area Type:	Other											
Cycle Length: 100												
Actuated Cycle Length: 82.	5											
Natural Cycle: 90												
Control Type: Semi Act-Un	coord											
Maximum v/c Ratio: 0.91												
Intersection Signal Delay: 2	21.3			Ir	ntersectio	n LOS: C						
Intersection Capacity Utiliza					CU Level							
Analysis Period (min) 15												

Scenario 1 2030 Future Total PM 3:13 am 12-03-2020 Baseline

95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

Splits and Phases: 3: Boundary Road & Thunder Road/Amazon Way

Lanes, Volumes, Timings 4: Boundary Road & Site Access/South Amazon Access

	≯	-	\mathbf{i}	4	←	*	1	Ť	۲	1	Ŧ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			\$		٦	ef 👘		٦	eî 👘	
Traffic Volume (vph)	4	0	14	6	0	13	4	410	6	15	1008	7
Future Volume (vph)	4	0	14	6	0	13	4	410	6	15	1008	7
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Lane Width (m)	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.6
Storage Length (m)	0.0		0.0	0.0		0.0	15.0		0.0	70.0		0.0
Storage Lanes	0		0	0		0	1		0	1		0
Taper Length (m)	7.5			7.5			45.0			45.0		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.895			0.908			0.998			0.999	
Flt Protected		0.989			0.984		0.950			0.950		
Satd. Flow (prot)	0	1576	0	0	795	0	1691	1670	0	846	1744	0
Flt Permitted		0.989			0.984		0.950			0.950		
Satd. Flow (perm)	0	1576	0	0	795	0	1691	1670	0	846	1744	0
Link Speed (k/h)		50			20			80			80	
Link Distance (m)		105.7			151.5			1150.2			174.7	
Travel Time (s)		7.6			27.3			51.8			7.9	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles (%)	0%	0%	0%	100%	0%	100%	0%	5%	100%	100%	2%	0%
Adj. Flow (vph)	4	0	14	6	0	13	4	410	6	15	1008	7
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	18	0	0	19	0	4	416	0	15	1015	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)		0.0			0.0			3.5			3.5	
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		4.8			4.8			4.8			4.8	
Two way Left Turn Lane												
Headway Factor	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.07
Turning Speed (k/h)	25		15	25		15	25		15	25		15
Sign Control		Stop			Stop			Free			Free	
Intersection Summary												
Area Type: 0	Other											
Control Type: Unsignalized												
Intersection Capacity Utilizat	ion 66.4%			IC	CU Level o	of Service	с					
Analysis Period (min) 15												

-	۶	+	*	4	Ļ	•	٩	1	1	×	ţ	.∢
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4		ሻ	4		ሻ	4	
Traffic Volume (veh/h)	4	0	14	6	0	13	4	410	6	15	1008	7
Future Volume (Veh/h)	4	0	14	6	0	13	4	410	6	15	1008	7
Sign Control		Stop			Stop			Free			Free	
Grade		0%			0%			0%			0%	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Hourly flow rate (vph)	4	0	14	6	0	13	4	410	6	15	1008	7
Pedestrians												
Lane Width (m)												
Walking Speed (m/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (m)											175	
pX, platoon unblocked	0.44	0.44	0.44	0.44	0.44		0.44					
vC, conflicting volume	1472	1466	1012	1473	1466	413	1015			416		
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	1437	1421	387	1438	1423	413	394			416		
tC, single (s)	7.1	6.5	6.2	8.1	6.5	7.2	4.1			5.1		
tC, 2 stage (s)												
tF (s)	3.5	4.0	3.3	4.4	4.0	4.2	2.2			3.1		
p0 queue free %	91	100	95	79	100	97	99			98		
cM capacity (veh/h)	47	59	292	28	59	473	516			766		
Direction, Lane #	EB 1	WB 1	NB 1	NB 2	SB 1	SB 2						
Volume Total	18	19	4	416	15	1015						
Volume Left	4	6	4	0	15	0						
Volume Right	14	13	0	6	0	7						
cSH	135	78	516	1700	766	1700						
Volume to Capacity	0.13	0.24	0.01	0.24	0.02	0.60						
Queue Length 95th (m)	3.6	6.9	0.2	0.0	0.5	0.0						
Control Delay (s)	35.7	65.0	12.0	0.0	9.8	0.0						
Lane LOS	E	50.0 F	12.0 B	0.0	A	0.0						
Approach Delay (s)	35.7	65.0	0.1		0.1							
Approach LOS	55.7 E	00.0 F	0.1		0.1							
Intersection Summary												
Average Delay			1.4									
Intersection Capacity Utiliza	tion		66.4%	IC		of Service			С			
Analysis Period (min)			15	i.c.					U			
			15									

	≯	*	•	t	ţ	~
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	۲	1		र्भ	1	1
Traffic Volume (vph)	142	119	63	153	895	146
Future Volume (vph)	142	119	63	153	895	146
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800
Lane Width (m)	3.3	3.3	3.5	3.5	3.5	3.5
Storage Length (m)	25.0	0.0	0.0			30.0
Storage Lanes	1	1	0			1
Taper Length (m)	47.5		7.5			
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.850				0.850
Flt Protected	0.950			0.986		
Satd. Flow (prot)	1463	1395	0	1669	1762	1351
Flt Permitted	0.950			0.986		
Satd. Flow (perm)	1463	1395	0	1669	1762	1351
Link Speed (k/h)	80			80	80	
Link Distance (m)	180.5			135.8	1150.2	
Travel Time (s)	8.1			6.1	51.8	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles (%)	13%	6%	8%	4%	1%	12%
Adj. Flow (vph)	142	119	63	153	895	146
Shared Lane Traffic (%)						
Lane Group Flow (vph)	142	119	0	216	895	146
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Left	Left	Right
Median Width(m)	3.3			3.5	3.5	
Link Offset(m)	0.0			0.0	0.0	
Crosswalk Width(m)	4.8			4.8	4.8	
Two way Left Turn Lane						
Headway Factor	1.12	1.12	1.09	1.09	1.09	1.09
Turning Speed (k/h)	25	15	25			15
Sign Control	Stop			Free	Free	
Intersection Summary						
Area Type: (Other					
Control Type: Unsignalized						
Intersection Capacity Utilizat	ion 80.2%				CU Level	of Service
Analysis Period (min) 15				-		

	۶	*	•	1	ţ	~
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	ሻ	1		र्स	1	1
Traffic Volume (veh/h)	142	119	63	153	895	146
Future Volume (Veh/h)	142	119	63	153	895	146
Sign Control	Stop			Free	Free	
Grade	0%			0%	0%	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00
Hourly flow rate (vph)	142	119	63	153	895	146
Pedestrians			00	100	000	110
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type				None	None	
Median storage veh)				NUNE	NULLE	
Upstream signal (m)						
pX, platoon unblocked						
vC, conflicting volume	1174	895	1041			
vC1, stage 1 conf vol	11/4	095	1041			
vC2, stage 2 conf vol						
vCu, unblocked vol	1174	895	1041			
	6.5	6.3	4.2			
tC, single (s) tC, 2 stage (s)	0.0	0.5	4.2			
	3.6	2 /	2.3			
tF (s)	3.0 22	3.4 64	2.3 90			
p0 queue free %						
cM capacity (veh/h)	182	334	645			
Direction, Lane #	EB 1	EB 2	NB 1	SB 1	SB 2	
Volume Total	142	119	216	895	146	
Volume Left	142	0	63	0	0	
Volume Right	0	119	0	0	146	
cSH	182	334	645	1700	1700	
Volume to Capacity	0.78	0.36	0.10	0.53	0.09	
Queue Length 95th (m)	41.8	12.6	2.6	0.0	0.0	
Control Delay (s)	72.4	21.6	4.1	0.0	0.0	
Lane LOS	F	С	А			
Approach Delay (s)	49.2		4.1	0.0		
Approach LOS	E					
Intersection Summary						
Average Delay			9.1			
Intersection Capacity Utiliza	ation		80.2%	IC	CU Level o	of Service
Analysis Period (min)			15			
			10			

-	\mathbf{r}	1	+	1	1
EBT	EBR	WBL	WBT	NBL	NBR
4Î			स	¥	
128	0	14	85	0	52
128	0	14	85	0	52
1800	1800	1800	1800	1800	1800
3.5	3.5	3.5	3.5	3.5	3.5
1.00	1.00	1.00	1.00	1.00	1.00
				0.865	
			0.993		
1496	0	0	1641	1426	0
			0.993		
1496	0	0	1641	1426	0
60			50	50	
			198.6	103.6	
				7.5	
					1.00
	0%			0%	8%
128	0	14	85	0	52
					0
					No
	Right	Left			Right
4.8			4.8	4.8	
1.09			1.09		1.09
	15	25			15
Free			Free	Stop	
Other					
tion 26.0%			IC	CU Level o	of Service A
	128 128 128 1800 3.5 1.00 1496 60 163.7 9.8 1.00 19% 128 128 128 128 128 128 128 128 129 128 129 Free Other	128 0 128 0 1800 1800 3.5 3.5 1.00 1.00 1496 0 1496 0 163.7 9.8 9.8 0.00 128 0 128 0 128 0 128 0 128 0 128 0 128 0 128 0 128 0 128 0 128 0 128 0 128 0 128 0 128 0 128 0 128 0 128 0 128 1.00 1.09 1.09 15 Free Other 0	128 0 14 128 0 14 1800 1800 1800 3.5 3.5 3.5 1.00 1.00 1.00 1496 0 0 1496 0 0 1496 0 0 1496 0 0 1496 0 0 1496 0 0 1496 0 0 163.7 9.8 1.00 1.00 1.00 1.00 19% 0% 0% 128 0 14 128 0 0 No No No No No No Left Right Left 0.0 0.0 1.09 15 25 Free Other 0 0	128 0 14 85 128 0 14 85 128 0 14 85 1800 1800 1800 1800 3.5 3.5 3.5 3.5 1.00 1.00 1.00 1.00 0.993 1496 0 0 1641 0.993 1496 0 0 1641 60 50 163.7 198.6 9.8 14.3 1.00 1.00 1.00 1.00 1.00 19% 0% 0% 9% 128 0 14 85 128 0 14 85 128 0 14 85 128 0 0 99 No No No 128 0 0 99 No No No 128 0 0 99 No No No No 1.09 1.09	128 0 14 85 0 128 0 14 85 0 1800 1800 1800 1800 1800 3.5 3.5 3.5 3.5 3.5 1.00 1.00 1.00 1.00 1.00 0.993 0 1641 1426 0.993 0 1641 1426 0.993 0 1641 1426 0.993 1496 0 0 1641 1426 60 50 50 103.6 9.8 14.3 7.5 1.00 1.00 1.00 1.00 1.00 1.00 19% 0% 0% 9% 0% 128 0 14 85 0 128 0 0 99 52 No No No 128 0 0 99 52 No No No 128 0 0

	-	\mathbf{r}	4	+	1	1
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	4			र्भ	Y	
Traffic Volume (veh/h)	128	0	14	85	0	52
Future Volume (Veh/h)	128	0	14	85	0	52
Sign Control	Free			Free	Stop	
Grade	0%			0%	0%	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00
Hourly flow rate (vph)	128	0	14	85	0	52
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type	None			None		
Median storage veh)						
Upstream signal (m)				199		
pX, platoon unblocked						
vC, conflicting volume			128		241	128
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol			128		241	128
tC, single (s)			4.1		6.4	6.3
tC, 2 stage (s)						
tF (s)			2.2		3.5	3.4
p0 queue free %			99		100	94
cM capacity (veh/h)			1470		745	906
Direction, Lane #	EB 1	WB 1	NB 1			
Volume Total	128	99	52			
Volume Left	0	14	0			
Volume Right	0	0	52			
cSH	1700	1470	906			
Volume to Capacity	0.08	0.01	0.06			
Queue Length 95th (m)	0.0	0.2	1.5			
Control Delay (s)	0.0	1.1	9.2			
Lane LOS		А	А			
Approach Delay (s)	0.0	1.1	9.2			
Approach LOS			А			
Intersection Summary						
Average Delay			2.1			
Intersection Capacity Utiliza	ation		26.0%	IC	U Level o	of Service
Analysis Period (min)			15			
			15			

	-	\mathbf{r}	-	-	1	1
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	eî.			4	Y	
Traffic Volume (vph)	117	0	4	81	0	11
Future Volume (vph)	117	0	4	81	0	11
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800
Lane Width (m)	3.5	3.5	3.5	3.5	3.5	3.5
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Frt					0.865	
Flt Protected				0.998		
Satd. Flow (prot)	1633	0	0	1637	770	0
Flt Permitted				0.998		
Satd. Flow (perm)	1633	0	0	1637	770	0
Link Speed (k/h)	60			50	50	
Link Distance (m)	185.0			163.7	105.8	
Travel Time (s)	11.1			11.8	7.6	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles (%)	9%	0%	100%	4%	0%	100%
Adj. Flow (vph)	117	0	4	81	0	11
Shared Lane Traffic (%)						
Lane Group Flow (vph)	117	0	0	85	11	0
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Left	Left	Right
Median Width(m)	0.0			0.0	3.5	-
Link Offset(m)	0.0			0.0	0.0	
Crosswalk Width(m)	4.8			4.8	4.8	
Two way Left Turn Lane						
Headway Factor	1.09	1.09	1.09	1.09	1.09	1.09
Turning Speed (k/h)		15	25		25	15
Sign Control	Free			Free	Stop	
Intersection Summary						
51	Other					
Control Type: Unsignalized						
Intersection Capacity Utilizati	ion 17.9%			IC	CU Level of	of Service
Analysia Dariad (min) 15						

	-	\mathbf{r}	4	-	1	1
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	¢,			र्भ	Y	
Traffic Volume (veh/h)	117	0	4	81	0	11
Future Volume (Veh/h)	117	0	4	81	0	11
Sign Control	Free			Free	Stop	
Grade	0%			0%	0%	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00
Hourly flow rate (vph)	117	0	4	81	0	11
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type	None			None		
Median storage veh)						
Upstream signal (m)				362		
pX, platoon unblocked						
vC, conflicting volume			117		206	117
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol			117		206	117
tC, single (s)			5.1		6.4	7.2
tC, 2 stage (s)						
tF (s)			3.1		3.5	4.2
p0 queue free %			100		100	98
cM capacity (veh/h)			1034		784	726
Direction, Lane #	EB 1	WB 1	NB 1			
Volume Total	117	85	11			
Volume Left	0	4	0			
Volume Right	0	0	11			
cSH	1700	1034	726			
Volume to Capacity	0.07	0.00	0.02			
Queue Length 95th (m)	0.0	0.1	0.4			
Control Delay (s)	0.0	0.4	10.0			
Lane LOS		А	В			
Approach Delay (s)	0.0	0.4	10.0			
Approach LOS			В			
Intersection Summary						
Average Delay			0.7			
Intersection Capacity Utiliza	tion		17.9%	IC	U Level o	of Service
Analysis Period (min)			15			
			10			

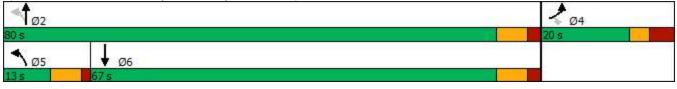
	-	\mathbf{r}	1	+	1	1
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	el e			ا	¥	
Traffic Volume (vph)	93	0	9	72	0	24
Future Volume (vph)	93	0	9	72	0	24
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800
Lane Width (m)	3.5	3.5	3.5	3.5	3.5	3.5
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Frt					0.865	
Flt Protected				0.994		
Satd. Flow (prot)	1695	0	0	1712	1272	0
Flt Permitted				0.994		
Satd. Flow (perm)	1695	0	0	1712	1272	0
Link Speed (k/h)	60			50	50	
Link Distance (m)	95.5			185.0	109.7	
Travel Time (s)	5.7			13.3	7.9	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles (%)	5%	0%	22%	1%	0%	21%
Adj. Flow (vph)	93	0	9	72	0	24
Shared Lane Traffic (%)						
Lane Group Flow (vph)	93	0	0	81	24	0
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Left	Left	Right
Median Width(m)	0.0			0.0	3.5	
Link Offset(m)	0.0			0.0	0.0	
Crosswalk Width(m)	4.8			4.8	4.8	
Two way Left Turn Lane						
Headway Factor	1.09	1.09	1.09	1.09	1.09	1.09
Turning Speed (k/h)		15	25		25	15
Sign Control	Free			Free	Stop	
Intersection Summary						
51	Other					
Control Type: Unsignalized						
Intersection Capacity Utilizat	ion 21.2%			IC	CU Level o	of Service A

	-	\mathbf{r}	4	←	1	1
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	4Î			र्स	Y	
Traffic Volume (veh/h)	93	0	9	72	0	24
Future Volume (Veh/h)	93	0	9	72	0	24
Sign Control	Free			Free	Stop	
Grade	0%			0%	0%	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00
Hourly flow rate (vph)	93	0	9	72	0	24
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type	None			None		
Median storage veh)						
Upstream signal (m)						
pX, platoon unblocked						
vC, conflicting volume			93		183	93
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol			93		183	93
tC, single (s)			4.3		6.4	6.4
tC, 2 stage (s)						
tF (s)			2.4		3.5	3.5
p0 queue free %			99		100	97
cM capacity (veh/h)			1385		806	914
Direction, Lane #	EB 1	WB 1	NB 1			
Volume Total	93	81	24			
Volume Left	0	9	0			
Volume Right	0	0	24			
cSH	1700	1385	914			
Volume to Capacity	0.05	0.01	0.03			
Queue Length 95th (m)	0.0	0.2	0.6			
Control Delay (s)	0.0	0.9	9.0			
Lane LOS		А	А			
Approach Delay (s)	0.0	0.9	9.0			
Approach LOS			А			
Intersection Summary						
Average Delay			1.5			
Intersection Capacity Utiliza	ation		21.2%	IC	U Level c	of Service
Analysis Period (min)			15			
			10			

	4	•	t	1	1	ţ	
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	¥		ef 👘			र्स	
Traffic Volume (vph)	189	38	124	1059	94	156	
Future Volume (vph)	189	38	124	1059	94	156	
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	
Lane Width (m)	4.5	4.5	3.5	3.5	3.5	3.5	
Storage Length (m)	0.0	10.0		0.0	0.0		
Storage Lanes	1	0		0	0		
Taper Length (m)	7.5				7.5		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Frt	0.977		0.879				
Flt Protected	0.960					0.982	
Satd. Flow (prot)	1706	0	1530	0	0	1595	
Flt Permitted	0.960					0.982	
Satd. Flow (perm)	1706	0	1530	0	0	1595	
Link Speed (k/h)	40		80			80	
Link Distance (m)	155.0		545.7			134.1	
Travel Time (s)	14.0		24.6			6.0	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Heavy Vehicles (%)	8%	13%	13%	1%	9%	10%	
Adj. Flow (vph)	189	38	124	1059	94	156	
Shared Lane Traffic (%)							
Lane Group Flow (vph)	227	0	1183	0	0	250	
Enter Blocked Intersection	No	No	No	No	No	No	
Lane Alignment	Left	Right	Left	Right	Left	Left	
Median Width(m)	4.5		0.0			0.0	
Link Offset(m)	0.0		0.0			0.0	
Crosswalk Width(m)	4.8		4.8			4.8	
Two way Left Turn Lane							
Headway Factor	0.95	0.95	1.09	1.09	1.09	1.09	
Turning Speed (k/h)	25	15		15	25		
Sign Control	Stop		Free			Free	
Intersection Summary							
51	Other						
Control Type: Unsignalized							
Intersection Capacity Utilizat	tion 113.6%)		IC	U Level of	of Service	Η
Analysis Period (min) 15							

	4	×	t	~	1	ţ	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	¥		¢Î			स्	
Traffic Volume (veh/h)	189	38	124	1059	94	156	
Future Volume (Veh/h)	189	38	124	1059	94	156	
Sign Control	Stop		Free		•.	Free	
Grade	0%		0%			0%	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Hourly flow rate (vph)	189	38	124	1059	94	156	
Pedestrians	105	00	127	1000	57	100	
Lane Width (m)							
Walking Speed (m/s)							
Percent Blockage							
Right turn flare (veh)							
			Nono			None	
Median type			None			None	
Median storage veh)							
Upstream signal (m)							
pX, platoon unblocked	000	054			4400		
vC, conflicting volume	998	654			1183		
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol	998	654			1183		
tC, single (s)	6.5	6.3			4.2		
tC, 2 stage (s)							
tF (s)	3.6	3.4			2.3		
p0 queue free %	14	92			83		
cM capacity (veh/h)	220	448			566		
Direction, Lane #	WB 1	NB 1	SB 1				
Volume Total	227	1183	250				
Volume Left	189	0	94				
Volume Right	38	1059	0				
cSH	240	1700	566				
Volume to Capacity	0.94	0.70	0.17				
Queue Length 95th (m)	67.4	0.0	4.7				
Control Delay (s)	88.3	0.0	6.2				
Lane LOS	F		А				
Approach Delay (s)	88.3	0.0	6.2				
Approach LOS	F						
Intersection Summary							
Average Delay			13.0				
Intersection Capacity Utiliza	ation		113.6%	IC	Ulevelo	of Service	
Analysis Period (min)			15.078	10			
			15				

	٦	\mathbf{r}	•	1	Ţ	1
			יסוא			000
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	<u></u>	104	<u></u>	1400	1	
Traffic Volume (vph)	22	421	51	1166	310	11
Future Volume (vph)	22	421	51	1166	310	11
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800
Lane Width (m)	3.5	3.3	3.5	3.5	3.5	3.5
Storage Length (m)	0.0	25.0	50.0			0.0
Storage Lanes	1	1	1			0
Taper Length (m)	7.5		75.0			
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.850			0.995	
Flt Protected	0.950		0.950			
Satd. Flow (prot)	1281	1357	1311	1745	1583	0
Flt Permitted	0.950		0.503			-
Satd. Flow (perm)	1281	1357	694	1745	1583	0
Right Turn on Red	1201	Yes	007		1000	Yes
Satd. Flow (RTOR)		421			3	103
Link Speed (k/h)	40	421		80	80	
Link Distance (m)	40 154.2			243.1	00 545.7	
()						
Travel Time (s)	13.9	4.00	4.00	10.9	24.6	4.00
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles (%)	32%	9%	29%	2%	12%	9%
Adj. Flow (vph)	22	421	51	1166	310	11
Shared Lane Traffic (%)						
Lane Group Flow (vph)	22	421	51	1166	321	0
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Left	Left	Right
Median Width(m)	3.5			3.5	3.5	-
Link Offset(m)	0.0			0.0	0.0	
Crosswalk Width(m)	4.8			4.8	4.8	
Two way Left Turn Lane						
Headway Factor	1.09	1.12	1.09	1.09	1.09	1.09
Turning Speed (k/h)	25	15	25	1.00	1.00	1.05
Number of Detectors	25	10	25	2	2	15
	Left	Right	Left			
Detector Template				Thru 10.0	Thru 10.0	
Leading Detector (m)	2.0	2.0	2.0	10.0	10.0	
Trailing Detector (m)	0.0	0.0	0.0	0.0	0.0	
Detector 1 Position(m)	0.0	0.0	0.0	0.0	0.0	
Detector 1 Size(m)	2.0	2.0	2.0	0.6	0.6	
Detector 1 Type	CI+Ex	Cl+Ex	Cl+Ex	CI+Ex	Cl+Ex	
Detector 1 Channel						
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0	
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0	
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0	
Detector 2 Position(m)				9.4	9.4	
Detector 2 Size(m)				0.6	0.6	
Detector 2 Type				CI+Ex	CI+Ex	
Detector 2 Channel				. . .	U . L A	
Detector 2 Extend (s)				0.0	0.0	
	Prot	Dorm	nm⊥nt	NA	NA	
Turn Type	Prot	Perm	pm+pt	NA	NA	


Scenario 1 2035 Future Total AM 3:13 am 12-03-2020 Baseline

	٨	*	•	Ť	ţ	4	
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR	
Protected Phases	4		5	2	6		
Permitted Phases		4	2				
Detector Phase	4	4	5	2	6		
Switch Phase							
Minimum Initial (s)	7.0	7.0	7.0	35.0	35.0		
Minimum Split (s)	17.8	17.8	13.0	41.6	41.6		
Total Split (s)	20.0	20.0	13.0	80.0	67.0		
Total Split (%)	20.0%	20.0%	13.0%	80.0%	67.0%		
Maximum Green (s)	13.2	13.2	7.0	73.4	60.4		
Yellow Time (s)	3.0	3.0	4.6	4.6	4.6		
All-Red Time (s)	3.8	3.8	1.4	2.0	2.0		
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0		
Total Lost Time (s)	6.8	6.8	6.0	6.6	6.6		
Lead/Lag	0.0	0.0	Lead	0.0	Lag		
Lead-Lag Optimize?			Yes		Yes		
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0		
Recall Mode	None	None	None	Min	Min		
Walk Time (s)	5.0	5.0	Tiono	0.0	7.0		
Flash Dont Walk (s)	6.0	6.0		0.0	21.0		
Pedestrian Calls (#/hr)	0.0	0.0		0.0	0		
Act Effct Green (s)	9.3	9.3	59.1	58.5	51.7		
Actuated g/C Ratio	0.11	0.11	0.72	0.71	0.63		
v/c Ratio	0.15	0.80	0.09	0.94	0.32		
Control Delay	40.3	16.9	3.6	25.4	9.2		
Queue Delay	0.0	0.0	0.0	0.2	0.0		
Total Delay	40.3	16.9	3.6	25.6	9.2		
LOS	-0.5 D	10.5 B	0.0 A	20.0 C	3.2 A		
Approach Delay	18.0	U	Л	24.7	9.2		
Approach LOS	B			C	3.2 A		
Queue Length 50th (m)	3.4	0.0	1.6	112.8	24.3		
Queue Length 95th (m)	11.5	#42.6	5.3	#304.2	46.4		
Internal Link Dist (m)	130.2	π η Ζ.0	0.0	#304.2 219.1	40.4 521.7		
Turn Bay Length (m)	130.2	25.0	50.0	213.1	521.7		
Base Capacity (vph)	216	579	556	1522	1205		
Starvation Cap Reductn	210	0	000	47	1205		
Spillback Cap Reductn	0	0	0	47	0		
Storage Cap Reductn	0	0	0	0	0		
Reduced v/c Ratio	0.10	0.73	0.09	0.79	0.27		
ntersection Summary	0.10	0.13	0.03	0.19	0.21		
,	Other						
Area Type: Cycle Length: 100	Utiler						
, ,	1.0						
Actuated Cycle Length: 8	1.9						
Natural Cycle: 90	naaard						
Control Type: Semi Act-U	ncoord						
Maximum v/c Ratio: 0.94	20.7			I.,	toroceti		
ntersection Signal Delay:					ntersectior		
Intersection Capacity Utiliz	2811011 81.8%			10	JU Level (of Service D	
Analysis Period (min) 15							

Scenario 1 2035 Future Total AM 3:13 am 12-03-2020 Baseline

95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

Splits and Phases: 2: Boundary Road & Hwy 417 EB Ramp Terminal

Lanes, Volumes, Timings 3: Boundary Road & Thunder Road/Amazon Way

	≯	-	\mathbf{F}	4	+	*	•	1	1	1	Ļ	∢
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			र्भ	1	٦	•	1	ľ	eî 👘	
Traffic Volume (vph)	63	20	10	4	7	31	22	1124	36	236	369	124
Future Volume (vph)	63	20	10	4	7	31	22	1124	36	236	369	124
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Lane Width (m)	3.5	3.5	3.5	3.5	3.5	3.5	3.3	3.5	3.3	3.3	3.5	3.5
Storage Length (m)	0.0		15.0	0.0		0.0	35.0		7.5	100.0		35.0
Storage Lanes	0		0	0		1	1		1	1		0
Taper Length (m)	7.5			7.5			45.0			75.0		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.985				0.850			0.850		0.962	
Flt Protected		0.967			0.982		0.950			0.950		
Satd. Flow (prot)	0	1544	0	0	1748	1513	1589	1728	1479	1653	1479	0
Flt Permitted		0.790			0.891		0.483			0.066		
Satd. Flow (perm)	0	1262	0	0	1586	1513	808	1728	1479	115	1479	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		5				100			96		39	
Link Speed (k/h)		60			20			80			80	
Link Distance (m)		198.6			170.6			174.7			243.1	
Travel Time (s)		11.9			30.7			7.9			10.9	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles (%)	13%	0%	9%	0%	0%	0%	4%	3%	0%	0%	15%	18%
Adj. Flow (vph)	63	20	10	4	7	31	22	1124	36	236	369	124
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	93	0	0	11	31	22	1124	36	236	493	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)		0.0	Ŭ		0.0	Ū		3.5	Ū		3.5	Ū
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		4.8			4.8			4.8			4.8	
Two way Left Turn Lane												
Headway Factor	1.09	1.09	1.09	1.09	1.09	1.09	1.12	1.09	1.12	1.12	1.09	1.09
Turning Speed (k/h)	25		15	25		15	25		15	25		15
Number of Detectors	1	2		1	2	1	1	2	1	1	2	
Detector Template	Left	Thru		Left	Thru	Right	Left	Thru	Right	Left	Thru	
Leading Detector (m)	2.0	10.0		2.0	10.0	2.0	2.0	10.0	2.0	2.0	10.0	
Trailing Detector (m)	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Detector 1 Position(m)	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Detector 1 Size(m)	2.0	0.6		2.0	0.6	2.0	2.0	0.6	2.0	2.0	0.6	
Detector 1 Type	CI+Ex	CI+Ex		Cl+Ex	Cl+Ex	CI+Ex	Cl+Ex	Cl+Ex	Cl+Ex	Cl+Ex	CI+Ex	
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Detector 1 Queue (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Detector 1 Delay (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Detector 2 Position(m)		9.4			9.4			9.4			9.4	
Detector 2 Size(m)		0.6			0.6			0.6			0.6	
Detector 2 Type		CI+Ex			CI+Ex			Cl+Ex			CI+Ex	
Detector 2 Channel		- /·										
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
Turn Type	Perm	NA		Perm	NA	Perm	Perm	NA	Perm	pm+pt	NA	
										P P.		

Scenario 1 2035 Future Total AM 3:13 am 12-03-2020 Baseline

Lanes, Volumes, Timings 3: Boundary Road & Thunder Road/Amazon Way

	٦	+	•	4	+	•	•	1	1	1	Ŧ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Protected Phases		4			8			2		1	6	
Permitted Phases	4			8		8	2		2	6		
Detector Phase	4	4		8	8	8	2	2	2	1	6	
Switch Phase												
Minimum Initial (s)	7.0	7.0		7.0	7.0	7.0	20.0	20.0	20.0	7.0	20.0	
Minimum Split (s)	24.8	24.8		24.8	24.8	24.8	26.2	26.2	26.2	13.0	26.2	
Total Split (s)	24.8	24.8		24.8	24.8	24.8	60.5	60.5	60.5	14.7	75.2	
Total Split (%)	24.8%	24.8%		24.8%	24.8%	24.8%	60.5%	60.5%	60.5%	14.7%	75.2%	
Maximum Green (s)	19.0	19.0		19.0	19.0	19.0	54.3	54.3	54.3	8.7	69.0	
Yellow Time (s)	3.7	3.7		3.7	3.7	3.7	4.6	4.6	4.6	4.6	4.6	
All-Red Time (s)	2.1	2.1		2.1	2.1	2.1	1.6	1.6	1.6	1.4	1.6	
Lost Time Adjust (s)		0.0			0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)		5.8			5.8	5.8	6.2	6.2	6.2	6.0	6.2	
Lead/Lag							Lag	Lag	Lag	Lead		
Lead-Lag Optimize?							Yes	Yes	Yes	Yes		
Vehicle Extension (s)	3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	
Recall Mode	None	None		None	None	None	Min	Min	Min	None	Min	
Walk Time (s)	7.0	7.0		7.0	7.0	7.0	7.0	7.0	7.0		7.0	
Flash Dont Walk (s)	12.0	12.0		12.0	12.0	12.0	10.0	10.0	10.0		10.0	
Pedestrian Calls (#/hr)	0	0		0	0	0	0	0	0		0	
Act Effct Green (s)		11.8			11.8	11.8	54.8	54.8	54.8	69.9	71.1	
Actuated g/C Ratio		0.13			0.13	0.13	0.61	0.61	0.61	0.77	0.79	
v/c Ratio		0.55			0.05	0.11	0.04	1.07	0.04	1.00	0.42	
Control Delay		48.3			35.0	0.8	9.8	71.9	0.1	83.9	5.7	
Queue Delay		0.0			0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay		48.3			35.0	0.8	9.8	71.9	0.1	83.9	5.7	
LOS		D			С	А	А	E	А	F	А	
Approach Delay		48.3			9.7			68.6			31.0	
Approach LOS		D			А			E			С	
Queue Length 50th (m)		15.8			1.9	0.0	1.6	~243.7	0.0	~32.3	26.0	
Queue Length 95th (m)		31.7			6.8	0.0	5.8	#352.5	0.0	#87.7	55.4	
Internal Link Dist (m)		174.6			146.6			150.7			219.1	
Turn Bay Length (m)							35.0		7.5	100.0		
Base Capacity (vph)		271			336	399	489	1046	933	237	1170	
Starvation Cap Reductn		0			0	0	0	0	0	0	0	
Spillback Cap Reductn		0			0	0	0	0	0	0	0	
Storage Cap Reductn		0			0	0	0	0	0	0	0	
Reduced v/c Ratio		0.34			0.03	0.08	0.04	1.07	0.04	1.00	0.42	
Intersection Summary												
Area Type:	Other											
Cycle Length: 100												
Actuated Cycle Length: 90.	.5											
Natural Cycle: 140												
Control Type: Semi Act-Un	coord											
Maximum v/c Ratio: 1.07												
Intersection Signal Delay: 5					ntersectio							
Intersection Capacity Utilization	ation 103.39	%		[(CU Level	of Service	e G					
Analysis Period (min) 15												

Scenario 1 2035 Future Total AM 3:13 am 12-03-2020 Baseline

Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.Queue shown is maximum after two cycles.

Splits and Phases: 3: Boundary Road & Thunder Road/Amazon Way

V _{Ø1}	1 m2	
14.7 s	60.5 s	24.8 s
₽ Ø6		₩ Ø8
75.2 s		24.8 s

Lanes, Volumes, Timings 4: Boundary Road & Site Access/South Amazon Access

	≯	-	\mathbf{i}	4	+	*	1	1	۲	1	Ļ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			\$		ľ	el el		ľ	el el	
Traffic Volume (vph)	1	0	4	7	0	4	14	1177	7	1	365	17
Future Volume (vph)	1	0	4	7	0	4	14	1177	7	1	365	17
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Lane Width (m)	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.6
Storage Length (m)	0.0		0.0	0.0		0.0	15.0		0.0	70.0		0.0
Storage Lanes	0		0	0		0	1		0	1		0
Taper Length (m)	7.5			7.5			45.0			45.0		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.892			0.951			0.999			0.993	
Flt Protected		0.990			0.969		0.950			0.950		
Satd. Flow (prot)	0	1572	0	0	820	0	1691	1750	0	846	1586	0
Flt Permitted		0.990			0.969		0.950			0.950		
Satd. Flow (perm)	0	1572	0	0	820	0	1691	1750	0	846	1586	0
Link Speed (k/h)		50			20			80			80	
Link Distance (m)		105.7			151.5			1150.2			174.7	
Travel Time (s)		7.6			27.3			51.8			7.9	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles (%)	0%	0%	0%	100%	0%	100%	0%	1%	100%	100%	12%	0%
Adj. Flow (vph)	1	0	4	7	0	4	14	1177	7	1	365	17
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	5	0	0	11	0	14	1184	0	1	382	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)		0.0			0.0			3.5			3.5	
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		4.8			4.8			4.8			4.8	
Two way Left Turn Lane												
Headway Factor	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.07
Turning Speed (k/h)	25		15	25		15	25		15	25		15
Sign Control		Stop			Stop			Free			Free	
Intersection Summary												
<i>J</i> 1	other											
Control Type: Unsignalized												
Intersection Capacity Utilization	on 75.8%			IC	CU Level	of Service	D					
Analysis Period (min) 15												

-	٦	+	*	4	Ļ	•	٩	1	1	1	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4		ሻ	4		ሻ	4	
Traffic Volume (veh/h)	1	0	4	7	0	4	14	1177	7	1	365	17
Future Volume (Veh/h)	1	0	4	7	0	4	14	1177	7	1	365	17
Sign Control		Stop			Stop			Free			Free	
Grade		0%			0%			0%			0%	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Hourly flow rate (vph)	1	0	4	7	0	4	14	1177	7	1	365	17
Pedestrians												
Lane Width (m)												
Walking Speed (m/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (m)											175	
pX, platoon unblocked	0.95	0.95	0.95	0.95	0.95		0.95					
vC, conflicting volume	1584	1588	374	1580	1592	1180	382			1184		
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	1589	1592	309	1584	1598	1180	318			1184		
tC, single (s)	7.1	6.5	6.2	8.1	6.5	7.2	4.1			5.1		
tC, 2 stage (s)												
tF (s)	3.5	4.0	3.3	4.4	4.0	4.2	2.2			3.1		
p0 queue free %	99	100	99	86	100	97	99			100		
cM capacity (veh/h)	80	101	696	49	100	149	1186			346		
Direction, Lane #	EB 1	WB 1	NB 1	NB 2	SB 1	SB 2						
Volume Total	5	11	14	1184	1	382						
Volume Left	1	7	14	0	1	0						
Volume Right	4	4	0	7	0	17						
cSH	274	65	1186	1700	346	1700						
Volume to Capacity	0.02	0.17	0.01	0.70	0.00	0.22						
Queue Length 95th (m)	0.4	4.5	0.3	0.0	0.1	0.0						
Control Delay (s)	18.4	71.9	8.1	0.0	15.4	0.0						
Lane LOS	C	F	A	0.0	C	0.0						
Approach Delay (s)	18.4	71.9	0.1		0.0							
Approach LOS	C	F	0.1		0.0							
Intersection Summary												
Average Delay			0.6									
Intersection Capacity Utiliza	tion		75.8%	IC	CU Level o	of Service			D			
Analysis Period (min)			10.070		.5 201010				5			
			10									

	≯	*	•	1	ţ	~		
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR		
Lane Configurations	۲	1		र्भ	1	1		
Traffic Volume (vph)	100	36	163	1081	160	131		
Future Volume (vph)	100	36	163	1081	160	131		
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800		
Lane Width (m)	3.3	3.3	3.5	3.5	3.5	3.5		
Storage Length (m)	25.0	0.0	0.0			30.0		
Storage Lanes	1	1	0			1		
Taper Length (m)	47.5		7.5					
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00		
Frt		0.850				0.850		
Flt Protected	0.950			0.993				
Satd. Flow (prot)	1489	1297	0	1734	1575	1293		
Flt Permitted	0.950			0.993				
Satd. Flow (perm)	1489	1297	0	1734	1575	1293		
Link Speed (k/h)	80			80	80			
Link Distance (m)	180.5			135.8	1150.2			
Travel Time (s)	8.1			6.1	51.8			
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00		
Heavy Vehicles (%)	11%	14%	8%	1%	13%	17%		
Adj. Flow (vph)	100	36	163	1081	160	131		
Shared Lane Traffic (%)								
Lane Group Flow (vph)	100	36	0	1244	160	131		
Enter Blocked Intersection	No	No	No	No	No	No		
Lane Alignment	Left	Right	Left	Left	Left	Right		
Median Width(m)	3.3			3.5	3.5			
Link Offset(m)	0.0			0.0	0.0			
Crosswalk Width(m)	4.8			4.8	4.8			
Two way Left Turn Lane								
Headway Factor	1.12	1.12	1.09	1.09	1.09	1.09		
Turning Speed (k/h)	25	15	25			15		
Sign Control	Stop			Free	Free			
Intersection Summary								
	Other							
Control Type: Unsignalized								
Intersection Capacity Utilizat	tion 94.3%				CU Level of	of Service I	F	
Analysis Period (min) 15								

	۶	*	•	1	ţ	
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	۲	1		र्स	†	1
Traffic Volume (veh/h)	100	36	163	1081	160	131
Future Volume (Veh/h)	100	36	163	1081	160	131
Sign Control	Stop			Free	Free	
Grade	0%			0%	0%	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00
Hourly flow rate (vph)	100	36	163	1081	160	131
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type				None	None	
Median storage veh)				NONC	NONC	
Upstream signal (m)						
pX, platoon unblocked						
vC, conflicting volume	1567	160	291			
vC1, stage 1 conf vol	1507	100	231			
vC2, stage 2 conf vol						
vCu, unblocked vol	1567	160	291			
tC, single (s)	6.5	6.3	4.2			
tC, 2 stage (s)	0.0	0.0	7.2			
tF (s)	3.6	3.4	2.3			
p0 queue free %	3.0 1	96	2.3			
cM capacity (veh/h)	101	855	1237			
Direction, Lane #	EB 1	EB 2	NB 1	SB 1	SB 2	
Volume Total	100	36	1244	160	131	
Volume Left	100	0	163	0	0	
Volume Right	0	36	0	0	131	
cSH	101	855	1237	1700	1700	
Volume to Capacity	0.99	0.04	0.13	0.09	0.08	
Queue Length 95th (m)	48.4	1.1	3.6	0.0	0.0	
Control Delay (s)	164.1	9.4	3.7	0.0	0.0	
Lane LOS	F	А	А			
Approach Delay (s)	123.1		3.7	0.0		
Approach LOS	F					
Intersection Summary						
Average Delay			12.8			
Intersection Capacity Utiliza	ation		94.3%	IC	CU Level c	f Service
Analysis Period (min)			^{34.3} / ₀	IC.		
			10			

	-	\mathbf{r}	1	-	1	1
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	4			र्भ	Y	
Traffic Volume (vph)	77	0	38	115	0	16
Future Volume (vph)	77	0	38	115	0	16
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800
Lane Width (m)	3.5	3.5	3.5	3.5	3.5	3.5
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Frt					0.865	
Flt Protected				0.988		
Satd. Flow (prot)	1589	0	0	1509	1466	0
Flt Permitted				0.988		
Satd. Flow (perm)	1589	0	0	1509	1466	0
Link Speed (k/h)	60			50	50	
Link Distance (m)	163.7			198.6	103.6	
Travel Time (s)	9.8			14.3	7.5	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles (%)	12%	0%	0%	22%	0%	5%
Adj. Flow (vph)	77	0	38	115	0	16
Shared Lane Traffic (%)						
Lane Group Flow (vph)	77	0	0	153	16	0
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Left	Left	Right
Median Width(m)	0.0			0.0	3.5	
Link Offset(m)	0.0			0.0	0.0	
Crosswalk Width(m)	4.8			4.8	4.8	
Two way Left Turn Lane						
Headway Factor	1.09	1.09	1.09	1.09	1.09	1.09
Turning Speed (k/h)		15	25		25	15
Sign Control	Free			Free	Stop	
Intersection Summary						
21	Other					
Control Type: Unsignalized						
Intersection Capacity Utilizati	ion 25.3%			IC	CU Level o	of Service
Analysis Pariod (min) 15						

	-	\mathbf{r}	4	+	1	1
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	4			र्स	¥	
Traffic Volume (veh/h)	77	0	38	115	0	16
Future Volume (Veh/h)	77	0	38	115	0	16
Sign Control	Free			Free	Stop	
Grade	0%			0%	0%	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00
Hourly flow rate (vph)	77	0	38	115	0	16
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type	None			None		
Median storage veh)						
Upstream signal (m)				199		
pX, platoon unblocked						
vC, conflicting volume			77		268	77
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol			77		268	77
tC, single (s)			4.1		6.4	6.2
tC, 2 stage (s)						
tF (s)			2.2		3.5	3.3
p0 queue free %			98		100	98
cM capacity (veh/h)			1535		708	976
Direction, Lane #	EB 1	WB 1	NB 1			
Volume Total	77	153	16			
Volume Left	0	38	0			
Volume Right	0	0	16			
cSH	1700	1535	976			
Volume to Capacity	0.05	0.02	0.02			
Queue Length 95th (m)	0.0	0.6	0.4			
Control Delay (s)	0.0	2.0	8.8			
Lane LOS		A	A			
Approach Delay (s)	0.0	2.0	8.8			
Approach LOS			A			
Intersection Summary						
Average Delay			1.8			
Intersection Capacity Utiliza	tion		25.3%	IC	U Level c	f Service
Analysis Period (min)			15			

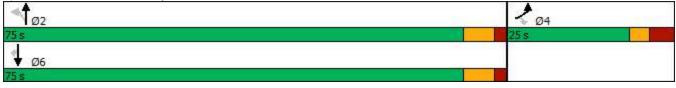
	-	\mathbf{r}	1	-	1	1	
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	eî 👘			र्स	- M		
Traffic Volume (vph)	74	0	11	104	0	3	
Future Volume (vph)	74	0	11	104	0	3	
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	
Lane Width (m)	3.5	3.5	3.5	3.5	3.5	3.5	
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Frt					0.865		
Flt Protected				0.995			
Satd. Flow (prot)	1664	0	0	1482	770	0	
Flt Permitted				0.995			
Satd. Flow (perm)	1664	0	0	1482	770	0	
Link Speed (k/h)	60			50	50		
Link Distance (m)	185.0			163.7	105.8		
Travel Time (s)	11.1			11.8	7.6		
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Heavy Vehicles (%)	7%	0%	100%	11%	0%	100%	
Adj. Flow (vph)	74	0	11	104	0	3	
Shared Lane Traffic (%)							
Lane Group Flow (vph)	74	0	0	115	3	0	
Enter Blocked Intersection	No	No	No	No	No	No	
Lane Alignment	Left	Right	Left	Left	Left	Right	
Median Width(m)	0.0			0.0	3.5		
Link Offset(m)	0.0			0.0	0.0		
Crosswalk Width(m)	4.8			4.8	4.8		
Two way Left Turn Lane							
Headway Factor	1.09	1.09	1.09	1.09	1.09	1.09	
Turning Speed (k/h)		15	25		25	15	
Sign Control	Free			Free	Stop		
Intersection Summary							
21	Other						
Control Type: Unsignalized							
Intersection Capacity Utilizat	ion 23.1%			IC	CU Level o	of Service	λε
Analysis Pariod (min) 15							

	-	\mathbf{r}	1	-	1	1
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	4			र्स	- Y	
Traffic Volume (veh/h)	74	0	11	104	0	3
Future Volume (Veh/h)	74	0	11	104	0	3
Sign Control	Free			Free	Stop	
Grade	0%			0%	0%	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00
Hourly flow rate (vph)	74	0	11	104	0	3
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type	None			None		
Median storage veh)						
Upstream signal (m)				362		
pX, platoon unblocked						
vC, conflicting volume			74		200	74
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol			74		200	74
tC, single (s)			5.1		6.4	7.2
tC, 2 stage (s)						
tF (s)			3.1		3.5	4.2
p0 queue free %			99		100	100
cM capacity (veh/h)			1079		785	772
Direction, Lane #	EB 1	WB 1	NB 1			
Volume Total	74	115	3			
Volume Left	0	11	0			
Volume Right	0	0	3			
cSH	1700	1079	772			
Volume to Capacity	0.04	0.01	0.00			
Queue Length 95th (m)	0.0	0.2	0.1			
Control Delay (s)	0.0	0.9	9.7			
Lane LOS		A	А			
Approach Delay (s)	0.0	0.9	9.7			
Approach LOS			A			
Intersection Summary						
Average Delay			0.7			
Intersection Capacity Utiliza	tion		23.1%	IC	U Level o	of Service
Analysis Period (min)			15			
			15			

	-	\mathbf{i}	1	+	1	1
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	ef 👘			र्भ	Y	
Traffic Volume (vph)	67	0	23	81	0	7
Future Volume (vph)	67	0	23	81	0	7
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800
Lane Width (m)	3.5	3.5	3.5	3.5	3.5	3.5
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Frt					0.865	
Flt Protected				0.989		
Satd. Flow (prot)	1679	0	0	1596	1351	0
Flt Permitted				0.989		
Satd. Flow (perm)	1679	0	0	1596	1351	0
Link Speed (k/h)	60			50	50	
Link Distance (m)	95.5			185.0	109.7	
Travel Time (s)	5.7			13.3	7.9	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles (%)	6%	0%	22%	7%	0%	14%
Adj. Flow (vph)	67	0	23	81	0	7
Shared Lane Traffic (%)						
Lane Group Flow (vph)	67	0	0	104	7	0
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Left	Left	Right
Median Width(m)	0.0			0.0	3.5	
Link Offset(m)	0.0			0.0	0.0	
Crosswalk Width(m)	4.8			4.8	4.8	
Two way Left Turn Lane						
Headway Factor	1.09	1.09	1.09	1.09	1.09	1.09
Turning Speed (k/h)		15	25		25	15
Sign Control	Free			Free	Stop	
Intersection Summary						
Area Type:	Other					
Control Type: Unsignalized						
Intersection Capacity Utilizat	tion 22.5%			IC	CU Level o	of Service /
Analysis Daried (min) 15						

	-	\mathbf{r}	4	←	1	1
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	¢Î,			र्स	Y	
Traffic Volume (veh/h)	67	0	23	81	0	7
Future Volume (Veh/h)	67	0	23	81	0	7
Sign Control	Free			Free	Stop	
Grade	0%			0%	0%	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00
Hourly flow rate (vph)	67	0	23	81	0	7
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type	None			None		
Median storage veh)						
Upstream signal (m)						
pX, platoon unblocked						
vC, conflicting volume			67		194	67
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol			67		194	67
tC, single (s)			4.3		6.4	6.3
tC, 2 stage (s)						
tF (s)			2.4		3.5	3.4
p0 queue free %			98		100	99
cM capacity (veh/h)			1416		786	964
Direction, Lane #	EB 1	WB 1	NB 1			
Volume Total	67	104	7			
Volume Left	0	23	0			
Volume Right	0	0	7			
cSH	1700	1416	964			
Volume to Capacity	0.04	0.02	0.01			
Queue Length 95th (m)	0.0	0.4	0.2			
Control Delay (s)	0.0	1.8	8.8			
Lane LOS		А	А			
Approach Delay (s)	0.0	1.8	8.8			
Approach LOS			А			
Intersection Summary						
Average Delay			1.4			
Intersection Capacity Utilization	ation		22.5%	IC	U Level o	of Service
Analysis Period (min)			15			
			10			

ERL	EBR	NBL	NBT	SBT	SBR
					1
					131
					131
					1800
					3.5
			0.0	0.0	30.0
					1
	1				1
	1 00		1 00	1 00	1.00
1.00		1.00	1.00	1.00	0.850
0 950	0.000	0 950			0.000
	1207		1762	1575	1293
	1231		1702	13/3	1295
	1007		1760	1575	1293
1409		1001	1/02	15/5	
					Yes
	36				131
					1.00
					17%
100	36	163	1081	160	131
					131
					No
Left	Right	Left	Left	Left	Right
3.3			3.5	3.5	
0.0			0.0	0.0	
4.8			4.8	4.8	
1.12	1.12	1.09	1.09	1.09	1.09
25					15
	1		2	2	1
	-				Right
					2.0
					0.0
					0.0
					2.0
					Z.U CI+Ex
CI+EX	UI+EX	CI+EX	UI+EX	UI+EX	CI+EX
0.0	0.0	0.0	0.0	0.0	0.0
					0.0
					0.0
0.0	0.0	0.0			0.0
			CI+Ex	Cl+Ex	
			0.0	0.0	
Prot	Perm	Perm	NA	NA	Perm
	0.0 4.8 1.12 25 1 Left 2.0 0.0 0.0 2.0 Cl+Ex 0.0 0.0 0.0	i i 100 36 1800 36 1800 1800 3.3 3.3 25.0 0.0 1 1 47.5 1.00 1.00 0.950 1489 1297 0.950 1489 1297 Yes 36 80 180.5 8.1 1.00 1.00 11% 14% 100 36 No No Left Right 3.3 0.0 4.8 1.12 1.12 25 15 1 1 Left Right 2.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0<	100 36 163 100 36 163 1800 1800 1800 3.3 3.3 3.5 25.0 0.0 15.0 1 1 1 47.5 100.0 1.00 1.00 0.950 0.950 0.950 0.950 0.950 0.656 1489 1297 1081 Yes 36 36 80 180.5 8.1 1.00 1.00 1.00 11% 14% 80 163 100 36 163 100 36 163 100 36 163 100 36 163 100 36 163 100 36 163 100 36 163 11 1 1 1.2 1.12 1.09	100 36 163 1081 100 36 163 1081 1800 1800 1800 1800 3.3 3.3 3.5 3.5 25.0 0.0 15.0 1 1 1 1 1 47.5 100.0 1.00 1.00 1.00 1.00 1.00 1.00 0.950 0.950 0.950 0.489 1297 1081 1762 0.950 0.656 1489 1297 1489 1297 1081 1762 Yes 36 80 180.5 1489 1297 1081 1762 Yes 36 80 180.5 100 1.00 1.00 1.00 11% 14% 8% 1% 100 36 163 1081 No No No No 100 36 163 <t< td=""><td>100 36 163 1081 160 100 36 163 1081 160 1800 1800 1800 1800 1800 3.3 3.3 3.5 3.5 3.5 25.0 0.0 15.0 1 1 47.5 100.0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.950 0.950 0.656 1762 1575 0.950 0.656 1762 1575 Yes 36 80 80 80 80 80 80 80 80 180.5 135.8 575.1 8.1 6.1 25.9 1.00 1.00 1.00 1.00 1.00 1.00 11% 14% 8% 1% 13% 100 100 36 163 1081 160 No No No No No</td></t<>	100 36 163 1081 160 100 36 163 1081 160 1800 1800 1800 1800 1800 3.3 3.3 3.5 3.5 3.5 25.0 0.0 15.0 1 1 47.5 100.0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.950 0.950 0.656 1762 1575 0.950 0.656 1762 1575 Yes 36 80 80 80 80 80 80 80 80 180.5 135.8 575.1 8.1 6.1 25.9 1.00 1.00 1.00 1.00 1.00 1.00 11% 14% 8% 1% 13% 100 100 36 163 1081 160 No No No No No


Scenario 1 2035 Future Total AM - Signal test 3:13 am 12-03-2020 Baseline

	٨	7	1	Ť	ţ	~
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Protected Phases	4			2	6	
Permitted Phases	•	4	2	-	Ŭ	6
Detector Phase	4	4	2	2	6	6
Switch Phase	•		_	-		Ŭ
Minimum Initial (s)	7.0	7.0	35.0	35.0	35.0	35.0
Minimum Split (s)	24.8	24.8	41.6	41.6	41.6	41.6
Total Split (s)	25.0	25.0	75.0	75.0	75.0	75.0
Total Split (%)	25.0%	25.0%	75.0%	75.0%	75.0%	75.0%
Maximum Green (s)	18.2	18.2	68.4	68.4	68.4	68.4
Yellow Time (s)	3.0	3.0	4.6	4.6	4.6	4.6
All-Red Time (s)	3.8	3.8	2.0	2.0	2.0	2.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	6.8	6.8	6.6	6.6	6.6	6.6
Lead/Lag	0.0	0.0	0.0	0.0	0.0	0.0
Lead-Lag Optimize?						
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0
Recall Mode	None	None	S.0 Min	S.0 Min	S.0 Min	S.0 Min
Walk Time (s)	7.0	7.0	7.0	7.0	7.0	7.0
Flash Dont Walk (s)	11.0	11.0	11.0	11.0	11.0	11.0
Pedestrian Calls (#/hr)	0	0	0.11	0	0	11.0 0
,	11.4	11.4	60.2	60.2	60.2	60.2
Act Effct Green (s)	0.14	0.14	0.75	00.2 0.75	0.75	0.75
Actuated g/C Ratio						
v/c Ratio	0.47	0.17	0.20	0.81	0.13	0.13
Control Delay	43.0	14.0	5.4	16.4	4.7	1.2
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	43.0	14.0	5.4	16.4	4.7	1.2
LOS	D	В	А	B	A	А
Approach Delay	35.3			15.0	3.2	
Approach LOS	D			B	A	
Queue Length 50th (m)	15.4	0.0	8.1	117.8	7.5	0.0
Queue Length 95th (m)	34.3	8.8	18.5	#275.9	16.5	5.2
Internal Link Dist (m)	156.5			111.8	551.1	
Turn Bay Length (m)	25.0		15.0			30.0
Base Capacity (vph)	355	337	917	1495	1336	1117
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.28	0.11	0.18	0.72	0.12	0.12
Intersection Summary						
Area Type:	Other					
Cycle Length: 100						
Actuated Cycle Length: 79	.8					
Natural Cycle: 90						
Control Type: Semi Act-Ur	ncoord					
Maximum v/c Ratio: 0.81						
Intersection Signal Delay:	14.6			Ir	ntersectio	n LOS: B
Intersection Capacity Utiliz						of Service
Analysis Period (min) 15						

Scenario 1 2035 Future Total AM - Signal test 3:13 am 12-03-2020 Baseline

95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

Splits and Phases: 5: Boundary Road & Mitch Owens Road

	4	×	t	1	1	ţ	
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	Y		eî 👘			4	
Traffic Volume (vph)	71	1	208	409	30	154	
Future Volume (vph)	71	1	208	409	30	154	
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	
Lane Width (m)	4.5	4.5	3.5	3.5	3.5	3.5	
Storage Length (m)	0.0	10.0		0.0	0.0		
Storage Lanes	1	0		0	0		
Taper Length (m)	7.5				7.5		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Frt	0.998		0.911				
Flt Protected	0.953					0.992	
Satd. Flow (prot)	1547	0	1520	0	0	1625	
Flt Permitted	0.953					0.992	
Satd. Flow (perm)	1547	0	1520	0	0	1625	
Link Speed (k/h)	40		80			80	
Link Distance (m)	155.0		545.7			134.1	
Travel Time (s)	14.0		24.6			6.0	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Heavy Vehicles (%)	22%	0%	6%	7%	7%	9%	
Adj. Flow (vph)	71	1	208	409	30	154	
Shared Lane Traffic (%)							
Lane Group Flow (vph)	72	0	617	0	0	184	
Enter Blocked Intersection	No	No	No	No	No	No	
Lane Alignment	Left	Right	Left	Right	Left	Left	
Median Width(m)	4.5		0.0			0.0	
Link Offset(m)	0.0		0.0			0.0	
Crosswalk Width(m)	4.8		4.8			4.8	
Two way Left Turn Lane							
Headway Factor	0.95	0.95	1.09	1.09	1.09	1.09	
Turning Speed (k/h)	25	15		15	25		
Sign Control	Stop		Free			Free	
Intersection Summary							
	Other						
Control Type: Unsignalized							
Intersection Capacity Utiliza	tion 48.9%			IC	U Level	of Service	А
Analysis Period (min) 15							

∢	*	Ť	1	1	Ļ
WBL	WBR	NBT	NBR	SBL	SBT
					स्
71	1	208	409	30	154
71	1	208	409	30	154
Stop		Free			Free
		0%			0%
	1.00		1.00	1.00	1.00
				30	154
		None			None
626	412			617	
				•	
626	412			617	
0.0	0.2				
37	33			23	
-					
	0.0				
	0.0	1.7			
С					
		1.7			
on		48.9%	IC	U Level o	of Service
		15			
	 № 71 71 71 90% 1.00 71 626 626 626 6.6 3.7 82 404 WB 1 72 71 1 406 0.18 5.1 15.8 C 15.8 C 15.8 C 15.8 C 	71 1 71 1 71 1 Stop 0% 1.00 1.00 71 1 71 1 71 1 626 412 626 412 626 412 6.6 6.2 3.7 3.3 82 100 404 644 WB 1 NB 1 72 617 71 0 1 409 406 1700 0.18 0.36 5.1 0.0 C 15.8 0.0 C	None 626 412 626 412 626 412 626 412 626 412 626 412 626 412 626 412 626 412 626 412 626 412 626 412 626 6.2 3.7 3.3 82 100 404 644 WB 1 NB 1 SB 1 72 617 184 71 0 30 1 409 0 406 1700 939 0.18 0.36 0.03 5.1 0.0 0.8 15.8 0.0 1.7 C A 15.8 0.0 1.7 C A 15.8 0.0 1.7 C A 15.8	Image: None Image: None 626 412 626 412 626 412 626 412 626 412 626 412 626 412 626 412 626 412 626 412 626 412 626 412 626 412 626 412 626 412 636 6.2 3.7 3.3 82 100 404 644 WB 1 NB 1 SB 1 72 617 184 71 0 30 1 409 0 406 1700 939 0.18 0.36 0.03 5.1 0.0 1.7 C A 15.8 0.0 1.7 C 0 1.7 0	71 1 208 409 30 71 1 208 409 30 Stop Free 0% 0% 1.00 1.00 1.00 1.00 1.00 71 1 208 409 30 71 1 208 409 30 71 1 208 409 30 71 1 208 409 30 626 412 617 617 626 412 617 617 626 412 617 617 6.6 6.2 4.2 3.7 3.3 2.3 82 100 97 404 644 939 WB 1 NB 1 SB 1 72 617 184 71 0 30 1 409 0 406 1700 939 0.18 0.36 0.03 5.1 0.0 <td< td=""></td<>


	٦	\mathbf{r}	•	1	Ţ	1
	EDI		NDI		T CDT	CDD
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	1	7	أ	105	170	00
Traffic Volume (vph)	94	908	223	405	278	20
Future Volume (vph)	94	908	223	405	278	20
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800
Lane Width (m)	3.5	3.3	3.5	3.5	3.5	3.5
Storage Length (m)	0.0	25.0	50.0			0.0
Storage Lanes	1	1	1			0
Taper Length (m)	7.5		75.0			
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.850			0.991	
Flt Protected	0.950		0.950			
Satd. Flow (prot)	1551	1422	1496	1618	1582	0
Flt Permitted	0.950		0.409			
Satd. Flow (perm)	1551	1422	644	1618	1582	0
Right Turn on Red		Yes				Yes
Satd. Flow (RTOR)		517			4	
Link Speed (k/h)	40	011		80	80	
Link Distance (m)	154.2			243.1	545.7	
Travel Time (s)	134.2			10.9	24.6	
Peak Hour Factor	1.00	1.00	1.00	1.00	24.0 1.00	1.00
Heavy Vehicles (%)	9%	4%	13%	10%	12%	5%
Adj. Flow (vph)	94	908	223	405	278	20
Shared Lane Traffic (%)						-
Lane Group Flow (vph)	94	908	223	405	298	0
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Left	Left	Right
Median Width(m)	3.5			3.5	3.5	
Link Offset(m)	0.0			0.0	0.0	
Crosswalk Width(m)	4.8			4.8	4.8	
Two way Left Turn Lane						
Headway Factor	1.09	1.12	1.09	1.09	1.09	1.09
Turning Speed (k/h)	25	15	25			1.00
Number of Detectors	1	1	1	2	2	10
Detector Template	Left	Right	Left	Thru	Thru	
	2.0	2.0	2.0	10.0	10.0	
Leading Detector (m)						
Trailing Detector (m)	0.0	0.0	0.0	0.0	0.0	
Detector 1 Position(m)	0.0	0.0	0.0	0.0	0.0	
Detector 1 Size(m)	2.0	2.0	2.0	0.6	0.6	
Detector 1 Type	CI+Ex	Cl+Ex	Cl+Ex	Cl+Ex	Cl+Ex	
Detector 1 Channel						
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0	
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0	
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0	
Detector 2 Position(m)				9.4	9.4	
Detector 2 Size(m)				0.6	0.6	
Detector 2 Type				CI+Ex	CI+Ex	
Detector 2 Channel						
Detector 2 Extend (s)				0.0	0.0	
Turn Type	Prot	Perm	nm≠nt	NA	NA	
	PTOL	rem	pm+pt	NA	ΝA	

	≯	\mathbf{r}	1	1	Ŧ	∢
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Protected Phases	4		5	2	6	
Permitted Phases		4	2	_	-	
Detector Phase	4	4	5	2	6	
Switch Phase				_	•	
Minimum Initial (s)	7.0	7.0	7.0	35.0	35.0	
Minimum Split (s)	23.0	23.0	13.0	41.6	41.6	
Total Split (s)	44.0	44.0	13.0	56.0	43.0	
Total Split (%)	44.0%	44.0%	13.0%	56.0%	43.0%	
Maximum Green (s)	37.2	37.2	7.0	49.4	36.4	
Yellow Time (s)	3.0	3.0	4.6	4.6	4.6	
All-Red Time (s)	3.8	3.8	1.4	2.0	2.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	6.8	6.8	6.0	6.6	6.6	
Lead/Lag			Lead		Lag	
Lead-Lag Optimize?			Yes		Yes	
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	
Recall Mode	None	None	None	Min	Min	
Walk Time (s)	7.0	7.0		0.0	7.0	
Flash Dont Walk (s)	5.0	5.0		0.0	21.0	
Pedestrian Calls (#/hr)	0.0	0.0		0.0	0	
Act Effct Green (s)	37.2	37.2	48.6	48.0	35.0	
Actuated g/C Ratio	0.38	0.38	0.49	0.49	0.35	
v/c Ratio	0.16	1.06	0.59	0.51	0.53	
Control Delay	21.3	62.3	23.1	20.2	29.1	
Queue Delay	0.0	0.0	0.0	0.0	0.0	
Total Delay	21.3	62.3	23.1	20.2	29.1	
LOS	C	02.0 E	C	C	C	
Approach Delay	58.5	_	Ū	21.2	29.1	
Approach LOS	E			C	C	
Queue Length 50th (m)	12.3	~131.3	25.7	53.5	46.3	
Queue Length 95th (m)	23.7	#208.2	42.1	81.6	73.2	
Internal Link Dist (m)	130.2			219.1	521.7	
Turn Bay Length (m)		25.0	50.0			
Base Capacity (vph)	585	858	377	810	586	
Starvation Cap Reductn	0	000	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	
Reduced v/c Ratio	0.16	1.06	0.59	0.50	0.51	
Intersection Summary						
Area Type:	Other					
Cycle Length: 100						
Actuated Cycle Length: 98.	6					
Natural Cycle: 110						
Control Type: Semi Act-Un	coord					
Maximum v/c Ratio: 1.06						
Intersection Signal Delay: 4	1.8			I	ntersection	LOS: D
Intersection Capacity Utiliza						of Service F
Analysis Period (min) 15						

Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

Splits and Phases: 2: Boundary Road & Hwy 417 EB Ramp Terminal

Lanes, Volumes, Timings 3: Boundary Road & Thunder Road/Amazon Way

	٦	-	\mathbf{F}	4	+	•	•	Ť	۲	1	Ļ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			र्भ	1	۳	•	1	٦	eî	
Traffic Volume (vph)	154	0	35	7	0	22	10	450	0	3	1088	95
Future Volume (vph)	154	0	35	7	0	22	10	450	0	3	1088	95
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Lane Width (m)	3.5	3.5	3.5	3.5	3.5	3.5	3.3	3.5	3.3	3.3	3.5	3.5
Storage Length (m)	0.0		15.0	0.0		0.0	35.0		7.5	100.0		0.0
Storage Lanes	0		0	0		1	1		1	1		0
Taper Length (m)	7.5			7.5			45.0			75.0		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.975				0.850					0.988	
Flt Protected		0.961			0.950		0.950			0.950		
Satd. Flow (prot)	0	1454	0	0	1183	1513	1517	1633	1740	990	1687	0
Flt Permitted		0.761			0.764		0.124			0.430		
Satd. Flow (perm)	0	1152	0	0	951	1513	198	1633	1740	448	1687	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		100				100					10	
Link Speed (k/h)		60			20			80			80	
Link Distance (m)		198.6			170.6			174.7			243.1	
Travel Time (s)		11.9			30.7			7.9			10.9	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles (%)	18%	0%	0%	43%	0%	0%	9%	9%	0%	67%	4%	7%
Adj. Flow (vph)	154	0	35	7	0	22	10	450	0	3	1088	95
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	189	0	0	7	22	10	450	0	3	1183	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)		0.0	Ŭ		0.0	•		3.5	Ū		3.5	Ū
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		4.8			4.8			4.8			4.8	
Two way Left Turn Lane												
Headway Factor	1.09	1.09	1.09	1.09	1.09	1.09	1.12	1.09	1.12	1.12	1.09	1.09
Turning Speed (k/h)	25		15	25		15	25		15	25		15
Number of Detectors	1	2		1	2	1	1	2	1	1	2	
Detector Template	Left	Thru		Left	Thru	Right	Left	Thru	Right	Left	Thru	
Leading Detector (m)	2.0	10.0		2.0	10.0	2.0	2.0	10.0	2.0	2.0	10.0	
Trailing Detector (m)	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Detector 1 Position(m)	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Detector 1 Size(m)	2.0	0.6		2.0	0.6	2.0	2.0	0.6	2.0	2.0	0.6	
Detector 1 Type	CI+Ex	CI+Ex		Cl+Ex	Cl+Ex	CI+Ex	Cl+Ex	Cl+Ex	Cl+Ex	CI+Ex	CI+Ex	
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Detector 1 Queue (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Detector 1 Delay (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Detector 2 Position(m)		9.4			9.4			9.4			9.4	
Detector 2 Size(m)		0.6			0.6			0.6			0.6	
Detector 2 Type		CI+Ex			CI+Ex			Cl+Ex			CI+Ex	
Detector 2 Channel												
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
Turn Type	Perm	NA		Perm	NA	Perm	Perm	NA	Perm	pm+pt	NA	
										1 5		

Lanes, Volumes, Timings 3: Boundary Road & Thunder Road/Amazon Way

	≯	-	\mathbf{F}	4	+	•	1	1	1	1	ţ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Protected Phases		4			8			2		1	6	
Permitted Phases	4			8		8	2		2	6		
Detector Phase	4	4		8	8	8	2	2	2	1	6	
Switch Phase												
Minimum Initial (s)	7.0	7.0		7.0	7.0	7.0	20.0	20.0	20.0	7.0	20.0	
Minimum Split (s)	24.8	24.8		24.8	24.8	24.8	26.2	26.2	26.2	13.0	26.2	
Total Split (s)	25.0	25.0		25.0	25.0	25.0	62.0	62.0	62.0	13.0	75.0	
Total Split (%)	25.0%	25.0%		25.0%	25.0%	25.0%	62.0%	62.0%	62.0%	13.0%	75.0%	
Maximum Green (s)	19.2	19.2		19.2	19.2	19.2	55.8	55.8	55.8	7.0	68.8	
Yellow Time (s)	3.7	3.7		3.7	3.7	3.7	4.6	4.6	4.6	4.6	4.6	
All-Red Time (s)	2.1	2.1		2.1	2.1	2.1	1.6	1.6	1.6	1.4	1.6	
Lost Time Adjust (s)		0.0			0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)		5.8			5.8	5.8	6.2	6.2	6.2	6.0	6.2	
Lead/Lag							Lag	Lag	Lag	Lead		
Lead-Lag Optimize?							Yes	Yes	Yes	Yes		
Vehicle Extension (s)	3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	
Recall Mode	None	None		None	None	None	Min	Min	Min	None	Min	
Walk Time (s)	7.0	7.0		7.0	7.0	7.0	7.0	7.0	7.0		7.0	
Flash Dont Walk (s)	12.0	12.0		12.0	12.0	12.0	10.0	10.0	10.0		10.0	
Pedestrian Calls (#/hr)	0	0		0	0	0	0	0	0		0	
Act Effct Green (s)		13.0			13.0	13.0	67.2	67.2		69.8	69.6	
Actuated g/C Ratio		0.14			0.14	0.14	0.71	0.71		0.74	0.73	
v/c Ratio		0.77			0.05	0.07	0.07	0.39		0.01	0.95	
Control Delay		40.0			34.6	0.5	9.3	8.5		4.7	30.4	
Queue Delay		0.0			0.0	0.0	0.0	0.0		0.0	5.7	
Total Delay		40.0			34.6	0.5	9.3	8.5		4.7	36.1	
LOS		D			С	А	А	А		А	D	
Approach Delay		40.0			8.7			8.5			36.0	
Approach LOS		D			А			А			D	
Queue Length 50th (m)		16.1			1.2	0.0	0.5	26.4		0.2	166.5	
Queue Length 95th (m)		41.3			5.2	0.0	3.9	79.1		1.0	#337.6	
Internal Link Dist (m)		174.6			146.6			150.7			219.1	
Turn Bay Length (m)							35.0			100.0		
Base Capacity (vph)		313			192	387	140	1158		370	1243	
Starvation Cap Reductn		0			0	0	0	0		0	49	
Spillback Cap Reductn		0			0	0	0	0		0	0	
Storage Cap Reductn		0			0	0	0	0		0	0	
Reduced v/c Ratio		0.60			0.04	0.06	0.07	0.39		0.01	0.99	
Intersection Summary												
Area Type:	Other											
Cycle Length: 100 Actuated Cycle Length: 94. Natural Cycle: 100 Control Type: Semi Act-Uno												
Maximum v/c Ratio: 0.95												
Intersection Signal Delay: 2	0.2			lr.	ntersectio	1.08.0						
Intersection Capacity Utiliza Analysis Period (min) 15					CU Level							

95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

Splits and Phases: 3: Boundary Road & Thunder Road/Amazon Way

Lanes, Volumes, Timings 4: Boundary Road & Site Access/South Amazon Access

	≯	-	\mathbf{F}	4	←	*	1	t	۲	1	Ŧ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		÷			\$		٦	eî 👘		۲.	ef 👘	
Traffic Volume (vph)	4	0	14	7	0	15	4	441	7	16	1106	7
Future Volume (vph)	4	0	14	7	0	15	4	441	7	16	1106	7
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Lane Width (m)	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.6
Storage Length (m)	0.0		0.0	0.0		0.0	15.0		0.0	70.0		0.0
Storage Lanes	0		0	0		0	1		0	1		0
Taper Length (m)	7.5			7.5			45.0			45.0		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.895			0.908			0.998			0.999	
Flt Protected		0.989			0.984		0.950			0.950		
Satd. Flow (prot)	0	1576	0	0	795	0	1691	1668	0	846	1744	0
Flt Permitted		0.989			0.984		0.950			0.950		
Satd. Flow (perm)	0	1576	0	0	795	0	1691	1668	0	846	1744	0
Link Speed (k/h)		50			20			80			80	
Link Distance (m)		105.7			151.5			1150.2			174.7	
Travel Time (s)		7.6			27.3			51.8			7.9	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles (%)	0%	0%	0%	100%	0%	100%	0%	5%	100%	100%	2%	0%
Adj. Flow (vph)	4	0	14	7	0	15	4	441	7	16	1106	7
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	18	0	0	22	0	4	448	0	16	1113	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)		0.0			0.0			3.5			3.5	
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		4.8			4.8			4.8			4.8	
Two way Left Turn Lane												
Headway Factor	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.07
Turning Speed (k/h)	25		15	25		15	25		15	25		15
Sign Control		Stop			Stop			Free			Free	
Intersection Summary												
)ther											
Control Type: Unsignalized												
Intersection Capacity Utilization	on 71.9%			IC	CU Level o	of Service	C					
Analysis Period (min) 15												

	٨	-	\mathbf{r}	4	Ļ	•	٩	1	1	1	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4		ሻ	4		ሻ	4î	
Traffic Volume (veh/h)	4	0	14	7	0	15	4	441	7	16	1106	7
Future Volume (Veh/h)	4	0	14	7	0	15	4	441	7	16	1106	7
Sign Control		Stop			Stop			Free			Free	
Grade		0%			0%			0%			0%	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Hourly flow rate (vph)	4	0	14	7	0	15	4	441	7	16	1106	7
Pedestrians												
Lane Width (m)												
Walking Speed (m/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (m)											175	
pX, platoon unblocked	0.28	0.28	0.28	0.28	0.28		0.28					
vC, conflicting volume	1606	1598	1110	1604	1598	444	1113			448		
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	1879	1850	98	1875	1850	444	110			448		
tC, single (s)	7.1	6.5	6.2	8.1	6.5	7.2	4.1			5.1		
tC, 2 stage (s)												
tF (s)	3.5	4.0	3.3	4.4	4.0	4.2	2.2			3.1		
p0 queue free %	72	100	95	11	100	97	99			98		
cM capacity (veh/h)	14	20	268	8	20	452	416			742		
Direction, Lane #	EB 1	WB 1	NB 1	NB 2	SB 1	SB 2						
Volume Total	18	22	4	448	16	1113						
Volume Left	4	7	4	0	16	0						
Volume Right	14	15	0	7	0	7						
cSH	55	24	416	1700	742	1700						
Volume to Capacity	0.33	0.92	0.01	0.26	0.02	0.65						
Queue Length 95th (m)	9.4	22.0	0.01	0.0	0.5	0.0						
Control Delay (s)	100.0	387.0	13.7	0.0	10.0	0.0						
Lane LOS	F	507.0 F	В	0.0	но.о	0.0						
Approach Delay (s)	100.0	387.0	0.1		0.1							
Approach LOS	100.0 F	507.0 F	0.1		0.1							
Intersection Summary												
Average Delay			6.5									
Intersection Capacity Utiliza	ation		71.9%	IC		of Service			С			
Analysis Period (min)			15	IC.					U			
			10									

	≯	*	•	1	ţ	4	
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations	۲	1		र्भ	1	1	
Traffic Volume (vph)	156	132	70	168	984	160	
Future Volume (vph)	156	132	70	168	984	160	
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	
Lane Width (m)	3.3	3.3	3.5	3.5	3.5	3.5	
Storage Length (m)	25.0	0.0	0.0			30.0	
Storage Lanes	1	1	0			1	
Taper Length (m)	47.5		7.5				
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Frt		0.850				0.850	
Flt Protected	0.950			0.986			
Satd. Flow (prot)	1463	1395	0	1664	1762	1351	
Flt Permitted	0.950			0.986			
Satd. Flow (perm)	1463	1395	0	1664	1762	1351	
Link Speed (k/h)	80			80	80		
Link Distance (m)	180.5			135.8	1150.2		
Travel Time (s)	8.1			6.1	51.8		
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Heavy Vehicles (%)	13%	6%	9%	4%	1%	12%	
Adj. Flow (vph)	156	132	70	168	984	160	
Shared Lane Traffic (%)							
Lane Group Flow (vph)	156	132	0	238	984	160	
Enter Blocked Intersection	No	No	No	No	No	No	
Lane Alignment	Left	Right	Left	Left	Left	Right	
Median Width(m)	3.3			3.5	3.5		
Link Offset(m)	0.0			0.0	0.0		
Crosswalk Width(m)	4.8			4.8	4.8		
Two way Left Turn Lane							
Headway Factor	1.12	1.12	1.09	1.09	1.09	1.09	
Turning Speed (k/h)	25	15	25			15	
Sign Control	Stop			Free	Free		
Intersection Summary							
Area Type: (Other						
Control Type: Unsignalized							
Intersection Capacity Utilizat	ion 87.2%				CU Level	of Service	϶E
Analysis Period (min) 15							

	۶	*	~	1	ţ	~
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	۲	1		र्स	1	1
Traffic Volume (veh/h)	156	132	70	168	984	160
Future Volume (Veh/h)	156	132	70	168	984	160
Sign Control	Stop			Free	Free	
Grade	0%			0%	0%	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00
Hourly flow rate (vph)	156	132	70	168	984	160
Pedestrians					•••	
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type				None	None	
Median storage veh)				NONC		
Upstream signal (m)						
pX, platoon unblocked						
vC, conflicting volume	1292	984	1144			
vC1, stage 1 conf vol	1232	304	1144			
vC2, stage 2 conf vol						
vCu, unblocked vol	1292	984	1144			
tC, single (s)	6.5	904 6.3	4.2			
tC, 2 stage (s)	0.0	0.3	4.2			
tF (s)	3.6	3.4	2.3			
p0 queue free %	3.0 0	55	2.3 88			
	150	55 296	586			
cM capacity (veh/h)	100	290	000			
Direction, Lane #	EB 1	EB 2	NB 1	SB 1	SB 2	
Volume Total	156	132	238	984	160	
Volume Left	156	0	70	0	0	
Volume Right	0	132	0	0	160	
cSH	150	296	586	1700	1700	
Volume to Capacity	1.04	0.45	0.12	0.58	0.09	
Queue Length 95th (m)	64.1	17.4	3.2	0.0	0.0	
Control Delay (s)	143.8	26.6	4.6	0.0	0.0	
Lane LOS	F	D	А			
Approach Delay (s)	90.1		4.6	0.0		
Approach LOS	F					
Intersection Summary						
Average Delay			16.2			
Intersection Capacity Utiliza	ation		87.2%	IC	CU Level o	of Service
Analysis Period (min)			15			
			10			

-	\mathbf{r}	1	+	1	1
EBT	EBR	WBL	WBT	NBL	NBR
4Î			स्	Y	
137	0	14	92	0	52
137	0	14	92	0	52
1800	1800	1800	1800	1800	1800
3.5	3.5	3.5	3.5	3.5	3.5
1.00	1.00	1.00	1.00	1.00	1.00
				0.865	
			0.993		
1508	0	0		1426	0
			0.993		
1508	0	0	1639		0
					1.00
					8%
137	0	14	92	0	52
					0
					No
	Right	Left			Right
4.8			4.8	4.8	
1.09			1.09		1.09
	15	25			15
Free			Free	Stop	
Other					
tion 26.9%			IC	CU Level of	of Service A
	137 137 137 1300 3.5 1.00 1508 1508 100 163.7 9.8 1.00 18% 137 137 No Left 0.0 4.8 1.09 Free Other	137 0 137 0 1800 1800 3.5 3.5 1.00 1.00 1508 0 1508 0 163.7 9.8 9.8 0% 137 0 18% 0% 137 0 137 0 137 0 137 0 137 0 137 0 137 0 137 1.00 137 0 137 1.00 137 0 137 1.00 137 1.00 137 1.00 137 1.09 1.09 1.09 15 Free Other 0	137 0 14 137 0 14 137 0 14 1800 1800 1800 3.5 3.5 3.5 1.00 1.00 1.00 1508 0 0 1508 0 0 1508 0 0 163.7 9.8 0 1.00 1.00 1.00 18% 0% 0% 137 0 14 137 0 0 No No No Left Right Left 0.0 0.0 1.09 1.09 1.09 1.09 15 25 Free	137 0 14 92 137 0 14 92 137 0 14 92 1800 1800 1800 1800 3.5 3.5 3.5 3.5 1.00 1.00 1.00 1.00 0.993 1508 0 0 1639 0.993 1508 0 0 1639 60 60 60 1639 0.993 1508 0 0 1639 0.993 1508 0 0 1639 0.993 1508 0 0 1639 60 163.7 198.6 9.8 11.9 1.00 1.00 1.00 1.00 18% 0% 0% 9% 137 0 0 106 No No No No 137 0 0 106 No No 0.0	137 0 14 92 0 137 0 14 92 0 1800 1800 1800 1800 1800 3.5 3.5 3.5 3.5 3.5 1.00 1.00 1.00 1.00 1.00 0.993 0 1639 1426 0.993 0 1639 1426 0.993 0 1639 1426 0.993 1508 0 0 1639 1426 60 60 50 163.7 198.6 103.6 9.8 11.9 7.5 1.00 1.00 1.00 1.00 18% 0% 0% 9% 0% 137 0 14 92 0 137 0 0 106 52 No No No No 137 0 0 106 52 No No No 137 0

Analysis Period (min) 15

	-	\mathbf{r}	4	+	1	1
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	¢Î			र्भ	Y	
Traffic Volume (veh/h)	137	0	14	92	0	52
Future Volume (Veh/h)	137	0	14	92	0	52
Sign Control	Free			Free	Stop	
Grade	0%			0%	0%	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00
Hourly flow rate (vph)	137	0	14	92	0	52
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type	None			None		
Median storage veh)						
Upstream signal (m)				199		
pX, platoon unblocked						
vC, conflicting volume			137		257	137
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol			137		257	137
tC, single (s)			4.1		6.4	6.3
tC, 2 stage (s)						
tF (s)			2.2		3.5	3.4
p0 queue free %			99		100	94
cM capacity (veh/h)			1459		729	896
Direction, Lane #	EB 1	WB 1	NB 1			
Volume Total	137	106	52			
Volume Left	0	14	0			
Volume Right	0	0	52			
cSH	1700	1459	896			
Volume to Capacity	0.08	0.01	0.06			
Queue Length 95th (m)	0.0	0.2	1.5			
Control Delay (s)	0.0	1.1	9.3			
Lane LOS	0.0	A	A			
Approach Delay (s)	0.0	1.1	9.3			
Approach LOS	0.0	1.1	0.0 A			
Intersection Summary						
Average Delay			2.0			
Intersection Capacity Utilizat	tion		26.9%		U Level c	of Sonvice
	uUII			IC.		I Service
Analysis Period (min)			15			

	-	\mathbf{i}	1	+	•	1	
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	eî 👘			स्	- M		
Traffic Volume (vph)	126	0	4	88	0	11	
Future Volume (vph)	126	0	4	88	0	11	
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	
Lane Width (m)	3.5	3.5	3.5	3.5	3.5	3.5	
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Frt					0.865		
Flt Protected				0.998			
Satd. Flow (prot)	1648	0	0	1657	770	0	
Flt Permitted				0.998			
Satd. Flow (perm)	1648	0	0	1657	770	0	
Link Speed (k/h)	60			60	50		
Link Distance (m)	185.0			163.7	105.8		
Travel Time (s)	11.1			9.8	7.6		
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Heavy Vehicles (%)	8%	0%	100%	3%	0%	100%	
Adj. Flow (vph)	126	0	4	88	0	11	
Shared Lane Traffic (%)							
Lane Group Flow (vph)	126	0	0	92	11	0	
Enter Blocked Intersection	No	No	No	No	No	No	
Lane Alignment	Left	Right	Left	Left	Left	Right	
Median Width(m)	0.0			0.0	3.5		
Link Offset(m)	0.0			0.0	0.0		
Crosswalk Width(m)	4.8			4.8	4.8		
Two way Left Turn Lane							
Headway Factor	1.09	1.09	1.09	1.09	1.09	1.09	
Turning Speed (k/h)		15	25		25	15	
Sign Control	Free			Free	Stop		
Intersection Summary							
21	Other						
Control Type: Unsignalized							
Intersection Capacity Utilizat	tion 18.3%			IC	CU Level	of Service	A
Analysia Dariad (min) 15							

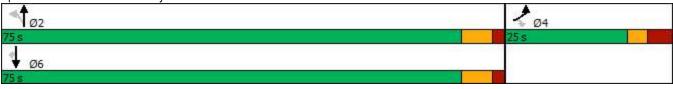
Analysis Period (min) 15

	-	\mathbf{r}	4	+	1	1
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	4Î			र्भ	Y	
Traffic Volume (veh/h)	126	0	4	88	0	11
Future Volume (Veh/h)	126	0	4	88	0	11
Sign Control	Free			Free	Stop	
Grade	0%			0%	0%	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00
Hourly flow rate (vph)	126	0	4	88	0	11
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type	None			None		
Median storage veh)						
Upstream signal (m)				362		
pX, platoon unblocked						
vC, conflicting volume			126		222	126
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol			126		222	126
tC, single (s)			5.1		6.4	7.2
tC, 2 stage (s)						
tF (s)			3.1		3.5	4.2
p0 queue free %			100		100	98
cM capacity (veh/h)			1025		768	716
Direction, Lane #	EB 1	WB 1	NB 1			
Volume Total	126	92	11			
Volume Left	0	4	0			
Volume Right	0	0	11			
cSH	1700	1025	716			
Volume to Capacity	0.07	0.00	0.02			
Queue Length 95th (m)	0.0	0.1	0.4			
Control Delay (s)	0.0	0.4	10.1			
Lane LOS		А	В			
Approach Delay (s)	0.0	0.4	10.1			
Approach LOS			В			
Intersection Summary						
Average Delay			0.6			
Intersection Capacity Utiliza	tion		18.3%	IC	U Level o	of Service
Analysis Period (min)			15			
,,						

	-	\mathbf{r}	1	+	1	1
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	¢Î,			स्	Y	
Traffic Volume (vph)	102	0	9	79	0	24
Future Volume (vph)	102	0	9	79	0	24
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800
Lane Width (m)	3.5	3.5	3.5	3.5	3.5	3.5
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Frt					0.865	
Flt Protected				0.995		
Satd. Flow (prot)	1695	0	0	1717	1272	0
Flt Permitted				0.995		
Satd. Flow (perm)	1695	0	0	1717	1272	0
Link Speed (k/h)	60			60	50	
Link Distance (m)	95.5			185.0	109.7	
Travel Time (s)	5.7			11.1	7.9	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles (%)	5%	0%	22%	1%	0%	21%
Adj. Flow (vph)	102	0	9	79	0	24
Shared Lane Traffic (%)						
Lane Group Flow (vph)	102	0	0	88	24	0
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Left	Left	Right
Median Width(m)	0.0			0.0	3.5	
Link Offset(m)	0.0			0.0	0.0	
Crosswalk Width(m)	4.8			4.8	4.8	
Two way Left Turn Lane						
Headway Factor	1.09	1.09	1.09	1.09	1.09	1.09
Turning Speed (k/h)		15	25		25	15
Sign Control	Free			Free	Stop	
Intersection Summary						
21	Other					
Control Type: Unsignalized						
Intersection Capacity Utilizat	ion 21.6%			IC	CU Level o	of Service A

Analysis Period (min) 15

	-	\mathbf{r}	4	+	1	1
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	¢.			र्भ	Y	
Traffic Volume (veh/h)	102	0	9	79	0	24
Future Volume (Veh/h)	102	0	9	79	0	24
Sign Control	Free			Free	Stop	
Grade	0%			0%	0%	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00
Hourly flow rate (vph)	102	0	9	79	0	24
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type	None			None		
Median storage veh)						
Upstream signal (m)						
pX, platoon unblocked						
vC, conflicting volume			102		199	102
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol			102		199	102
tC, single (s)			4.3		6.4	6.4
tC, 2 stage (s)						
tF (s)			2.4		3.5	3.5
p0 queue free %			99		100	97
cM capacity (veh/h)			1374		789	904
Direction, Lane #	EB 1	WB 1	NB 1			
Volume Total	102	88	24			
Volume Left	0	9	0			
Volume Right	0	0	24			
cSH	1700	1374	904			
Volume to Capacity	0.06	0.01	0.03			
Queue Length 95th (m)	0.0	0.2	0.7			
Control Delay (s)	0.0	0.8	9.1			
Lane LOS		A	A			
Approach Delay (s)	0.0	0.8	9.1			
Approach LOS			A			
Intersection Summary						
Average Delay			1.4			
Intersection Capacity Utiliza	ition		21.6%	IC	U Level o	of Service
Analysis Period (min)			15		5 _51010	
			10			


	≯	>	•	t	ţ	4
Lano Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Group						<u>58</u> R
Lane Configurations	-	122		169	†	۲ 160
Traffic Volume (vph)	156	132	70	168 168	984 984	160
Future Volume (vph)	156	132 1800	70 1800	168		160
Ideal Flow (vphpl)	1800				1800	
Lane Width (m)	3.3	3.3	3.5	3.5	3.5	3.5
Storage Length (m)	25.0	0.0	15.0			30.0
Storage Lanes	1	1	100.0			1
Taper Length (m)	47.5	4.00	100.0	4.00	4.00	4.00
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.850				0.850
Flt Protected	0.950		0.950			
Satd. Flow (prot)	1463	1395	1551	1712	1762	1351
Flt Permitted	0.950		0.149			
Satd. Flow (perm)	1463	1395	243	1712	1762	1351
Right Turn on Red		Yes				Yes
Satd. Flow (RTOR)		132				88
Link Speed (k/h)	80			80	80	
Link Distance (m)	180.5			135.8	575.1	
Travel Time (s)	8.1			6.1	25.9	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles (%)	13%	6%	9%	4%	1%	12%
Adj. Flow (vph)	156	132	70	168	984	160
Shared Lane Traffic (%)	150	152	10	100	304	100
	156	132	70	168	984	160
Lane Group Flow (vph)		No	No			No
Enter Blocked Intersection	No			No	No	
Lane Alignment	Left	Right	Left	Left	Left	Right
Median Width(m)	3.3			3.5	3.5	
Link Offset(m)	0.0			0.0	0.0	
Crosswalk Width(m)	4.8			4.8	4.8	
Two way Left Turn Lane						
Headway Factor	1.12	1.12	1.09	1.09	1.09	1.09
Turning Speed (k/h)	25	15	25			15
Number of Detectors	1	1	1	2	2	1
Detector Template	Left	Right	Left	Thru	Thru	Right
Leading Detector (m)	2.0	2.0	2.0	10.0	10.0	2.0
Trailing Detector (m)	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Position(m)	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Size(m)	2.0	2.0	2.0	0.6	0.6	2.0
Detector 1 Type	CI+Ex	Cl+Ex	Cl+Ex	CI+Ex	Cl+Ex	CI+Ex
Detector 1 Channel						
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0	0.0
()	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0	0.0	0.0 9.4	0.0 9.4	0.0
Detector 2 Position(m)						
Detector 2 Size(m)				0.6	0.6	
Detector 2 Type				CI+Ex	Cl+Ex	
Detector 2 Channel						
Detector 2 Extend (s)				0.0	0.0	
Turn Type	Prot	Perm	Perm	NA	NA	Perm

Scenario 1 2035 Future Total PM - Signal Test 3:13 am 12-03-2020 Baseline

	٨	\mathbf{i}	1	Ť	Ļ	~		
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR		
Protected Phases	4	LOIK		2	6	UDI		
Permitted Phases		4	2	2	0	6		
Detector Phase	4	4	2	2	6	6		
Switch Phase		- 7	2	Ľ	0	U		
Minimum Initial (s)	7.0	7.0	35.0	35.0	35.0	35.0		
Minimum Split (s)	24.8	24.8	41.6	41.6	41.6	41.6		
Total Split (s)	25.0	25.0	75.0	75.0	75.0	75.0		
Total Split (%)	25.0%	25.0%	75.0%	75.0%	75.0%	75.0%		
Maximum Green (s)	18.2	18.2	68.4	68.4	68.4	68.4		
Yellow Time (s)	3.0	3.0	4.6	4.6	4.6	4.6		
All-Red Time (s)	3.8	3.8	2.0	2.0	2.0	2.0		
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0		
Total Lost Time (s)	6.8	6.8	6.6	6.6	6.6	6.6		
Lead/Lag	0.0	0.0	0.0	0.0	0.0	0.0		
Lead-Lag Optimize?								
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0		
Recall Mode	None	None	Min	Min	Min	Min		
Walk Time (s)	7.0	7.0	7.0	7.0	7.0	7.0		
Flash Dont Walk (s)	11.0	11.0	11.0	11.0	11.0	11.0		
Pedestrian Calls (#/hr)	0	0	0	0	0	0		
Act Effct Green (s)	13.3	13.3	49.9	49.9	49.9	49.9		
Actuated g/C Ratio	0.17	0.17	0.65	0.65	0.65	0.65		
v/c Ratio	0.62	0.17	0.05	0.05	0.05	0.03		
Control Delay	44.5	10.1	17.9	5.9	20.8	3.2		
Queue Delay	0.0	0.0	0.0	0.0	20.0	0.0		
Total Delay	44.5	10.1	17.9	5.9	20.8	3.2		
LOS	44.5 D	B	17.9 B	5.9 A	20.8 C	3.Z A		
Approach Delay	28.7	D	D	9.4	18.3	A		
Approach LOS	20.7 C			9.4 A	10.3 B			
Queue Length 50th (m)	21.5	0.0	4.6	8.7	103.8	3.6		
Queue Length 95th (m)	51.1	16.0	4.0	0.7 17.9	105.0	3.0 11.0		
Internal Link Dist (m)	156.5	10.0	10.2	111.8	551.1	11.0		
Turn Bay Length (m)	25.0		15.0	111.0	551.1	30.0		
Base Capacity (vph)	25.0 363	445	210	1480	1523	30.0 1179		
Starvation Cap Reductn	0	0	0	0	0	0		
Spillback Cap Reductn	0	0	0	0	0	0		
Storage Cap Reductn	0	0	0	0 11	0			
Reduced v/c Ratio	0.43	0.30	0.33	0.11	0.65	0.14		
Intersection Summary	Other							
Area Type: Other Cycle Length: 100								
, ,	2							
Natural Cycle: 80	Actuated Cycle Length: 77.3							
Control Type: Semi Act-Ur	accord							
Maximum v/c Ratio: 0.87								
Intersection Signal Delay:	18.0			١.	ntersectio			
Intersection Capacity Utiliz	all011 ð 1.7 %			10	JO Level	of Service		
Analysis Period (min) 15								

Scenario 1 2035 Future Total PM - Signal Test 3:13 am 12-03-2020 Baseline

Splits and Phases: 5: Boundary Road & Mitch Owens Road

APPENDIX N

TDM Checklist

TDM-Supportive Development Design and Infrastructure Checklist:

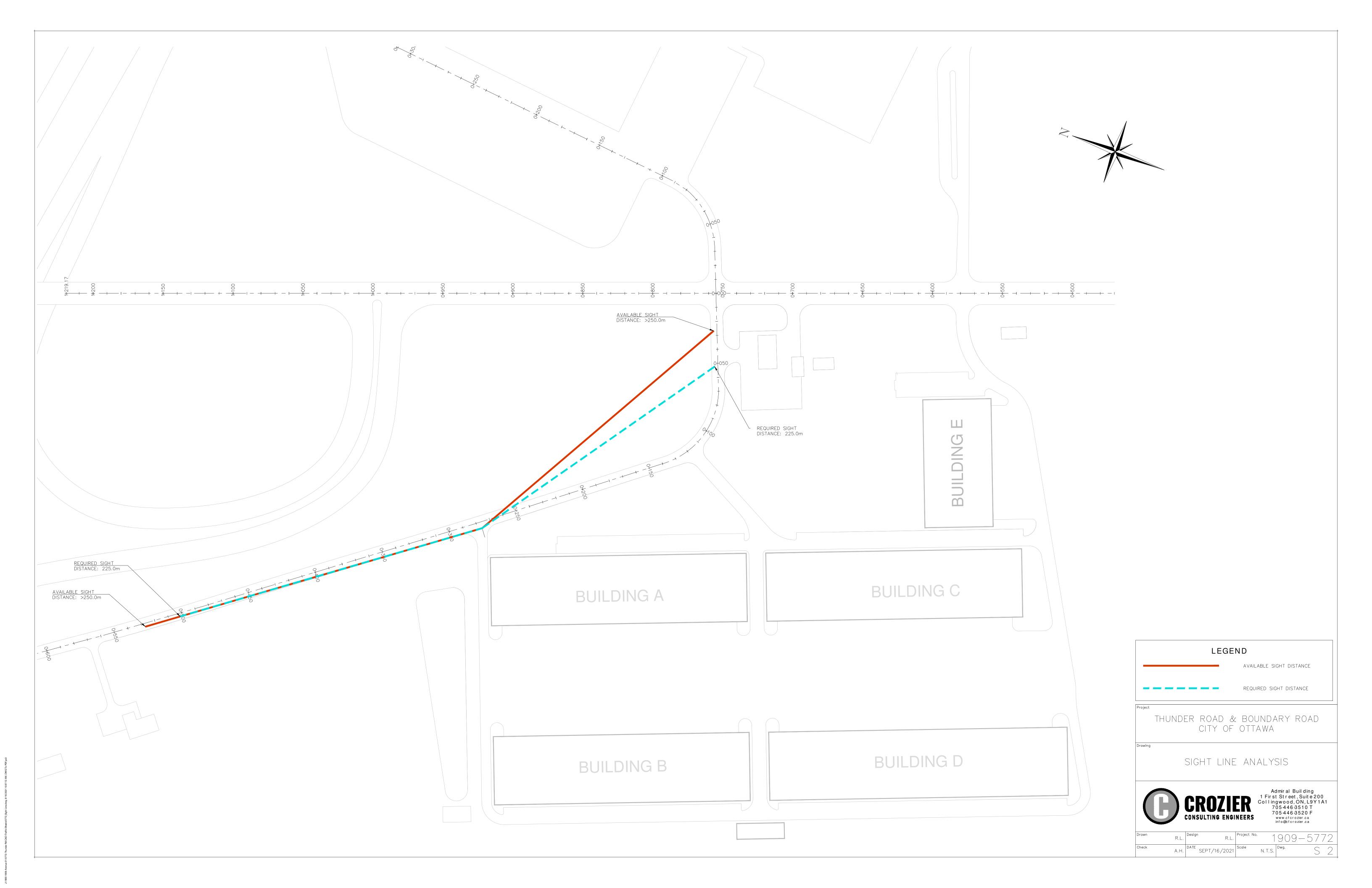
Non-Residential Developments (office, institutional, retail or industrial)

Legend						
REQUIRED	The Official Plan or Zoning By-law provides related guidance that must be followed					
BASIC	The measure is generally feasible and effective, and in most cases would benefit the development and its users					
BETTER	The measure could maximize support for users of sustainable modes, and optimize development performance					

	TDM-s	supportive design & infrastructure measures: Non-residential developments	Check if completed & add descriptions, explanations or plan/drawing references
	1.	WALKING & CYCLING: ROUTES	
	1.1	Building location & access points	
BASIC	1.1.1	Locate building close to the street, and do not locate parking areas between the street and building entrances	
BASIC	1.1.2	Locate building entrances in order to minimize walking distances to sidewalks and transit stops/stations	□ To be incorporated
BASIC	1.1.3	Locate building doors and windows to ensure visibility of pedestrians from the building, for their security and comfort	To be incorporated
	1.2	Facilities for walking & cycling	
REQUIRED	1.2.1	Provide convenient, direct access to stations or major stops along rapid transit routes within 600 metres; minimize walking distances from buildings to rapid transit; provide pedestrian-friendly, weather-protected (where possible) environment between rapid transit accesses and building entrances; ensure quality linkages from sidewalks through building entrances to integrated stops/stations (see Official Plan policy 4.3.3)	To be provided as applicable for site location.
REQUIRED	1.2.2	Provide safe, direct and attractive pedestrian access from public sidewalks to building entrances through such measures as: reducing distances between public sidewalks and major building entrances; providing walkways from public streets to major building entrances; within a site, providing walkways along the front of adjoining buildings, between adjacent buildings, and connecting areas where people may congregate, such as courtyards and transit stops; and providing weather protection through canopies, colonnades, and other design elements wherever possible (see Official <i>Plan policy 4.3.12</i>)	No public sidewalks. However, will be provided as applicable for site location.

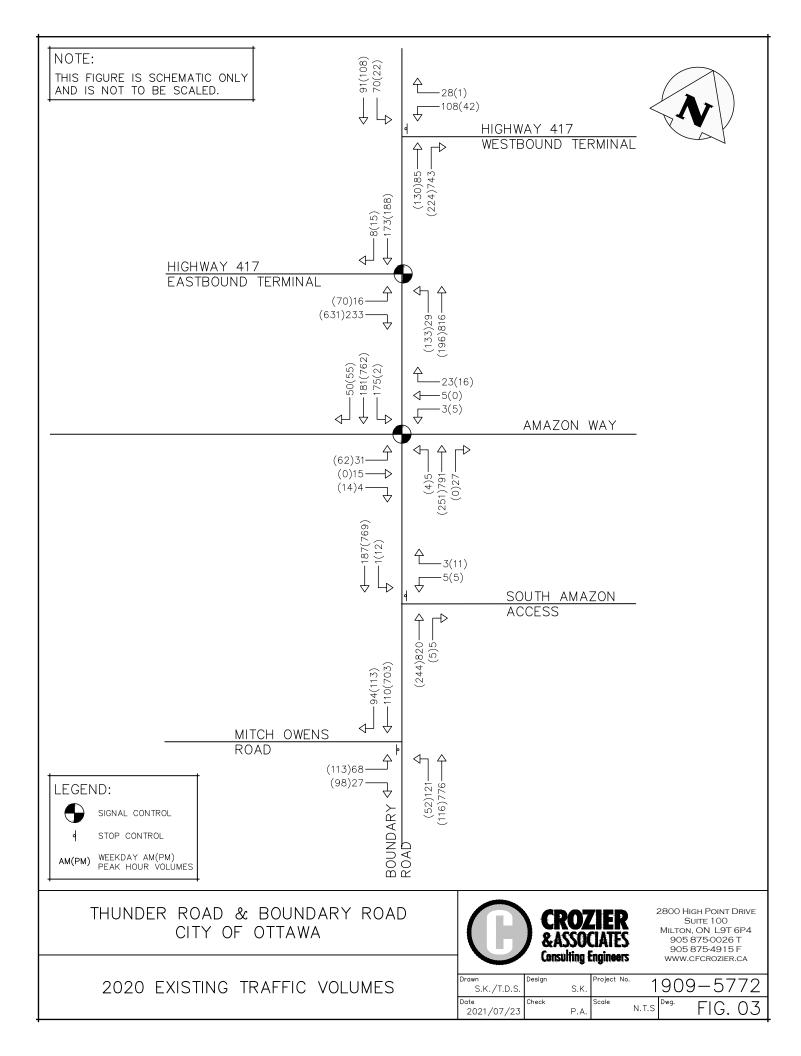
	TDM-s	supportive design & infrastructure measures: Non-residential developments	Check if completed & add descriptions, explanations or plan/drawing references
REQUIRED	1.2.3	Provide sidewalks of smooth, well-drained walking surfaces of contrasting materials or treatments to differentiate pedestrian areas from vehicle areas, and provide marked pedestrian crosswalks at intersection sidewalks (see Official Plan policy 4.3.10)	Yes. To be provided as applicable for site location.
REQUIRED	1.2.4	Make sidewalks and open space areas easily accessible through features such as gradual grade transition, depressed curbs at street corners and convenient access to extra-wide parking spaces and ramps (see Official Plan policy 4.3.10)	Yes. To be provided as applicable for site location.
REQUIRED	1.2.5	Include adequately spaced inter-block/street cycling and pedestrian connections to facilitate travel by active transportation. Provide links to the existing or planned network of public sidewalks, multi-use pathways and on- road cycle routes. Where public sidewalks and multi-use pathways intersect with roads, consider providing traffic control devices to give priority to cyclists and pedestrians (see Official Plan policy 4.3.11)	Not Applicable
BASIC	1.2.6	Provide safe, direct and attractive walking routes from building entrances to nearby transit stops	
BASIC	1.2.7	Ensure that walking routes to transit stops are secure, visible, lighted, shaded and wind-protected wherever possible	
BASIC	1.2.8	Design roads used for access or circulation by cyclists using a target operating speed of no more than 30 km/h, or provide a separated cycling facility	
	1.3	Amenities for walking & cycling	
BASIC	1.3.1	Provide lighting, landscaping and benches along walking and cycling routes between building entrances and streets, sidewalks and trails	
BASIC	1.3.2	Provide wayfinding signage for site access (where required, e.g. when multiple buildings or entrances exist) and egress (where warranted, such as when directions to reach transit stops/stations, trails or other common destinations are not obvious)	

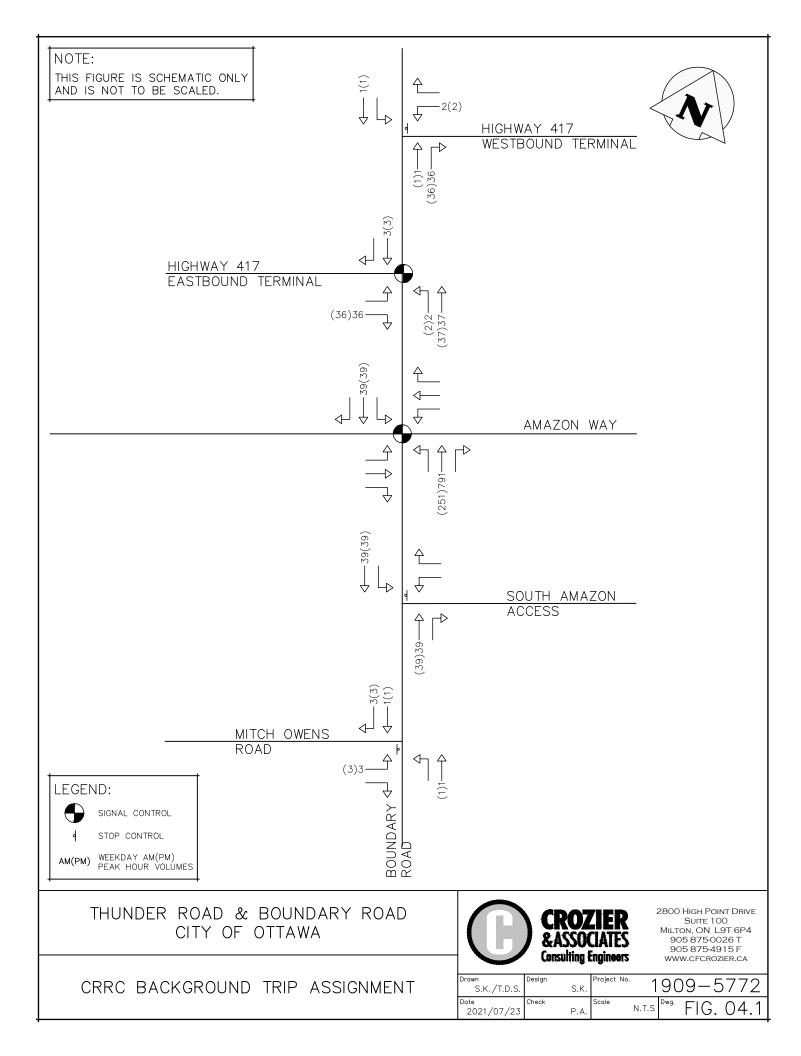
	TDM-s	supportive design & infrastructure measures: Non-residential developments	Check if completed & add descriptions, explanations or plan/drawing references
	2.	WALKING & CYCLING: END-OF-TRIP FACILI	TIES
	2.1	Bicycle parking	
REQUIRED	2.1.1	Provide bicycle parking in highly visible and lighted areas, sheltered from the weather wherever possible (see Official Plan policy 4.3.6)	To be Included.
REQUIRED	2.1.2	Provide the number of bicycle parking spaces specified for various land uses in different parts of Ottawa; provide convenient access to main entrances or well- used areas (see Zoning By-law Section 111)	To be Included.
REQUIRED	2.1.3	Ensure that bicycle parking spaces and access aisles meet minimum dimensions; that no more than 50% of spaces are vertical spaces; and that parking racks are securely anchored <i>(see Zoning By-law Section 111)</i>	To be Incorporated.
BASIC	2.1.4	Provide bicycle parking spaces equivalent to the expected number of commuter cyclists (assuming the cycling mode share target is met), plus the expected peak number of customer/visitor cyclists	To be Incorporated.
BETTER	2.1.5	Provide bicycle parking spaces equivalent to the expected number of commuter and customer/visitor cyclists, plus an additional buffer (e.g. 25 percent extra) to encourage other cyclists and ensure adequate capacity in peak cycling season	
	2.2	Secure bicycle parking	
REQUIRED	2.2.1	Where more than 50 bicycle parking spaces are provided for a single office building, locate at least 25% of spaces within a building/structure, a secure area (e.g. supervised parking lot or enclosure) or bicycle lockers (see Zoning By-law Section 111)	Not applicable
BETTER	2.2.2	Provide secure bicycle parking spaces equivalent to the expected number of commuter cyclists (assuming the cycling mode share target is met)	
	2.3	Shower & change facilities	
BASIC	2.3.1	Provide shower and change facilities for the use of active commuters	
BETTER	2.3.2	In addition to shower and change facilities, provide dedicated lockers, grooming stations, drying racks and laundry facilities for the use of active commuters	
	2.4	Bicycle repair station	
BETTER	2.4.1	Provide a permanent bike repair station, with commonly used tools and an air pump, adjacent to the main bicycle parking area (or secure bicycle parking area, if provided)	

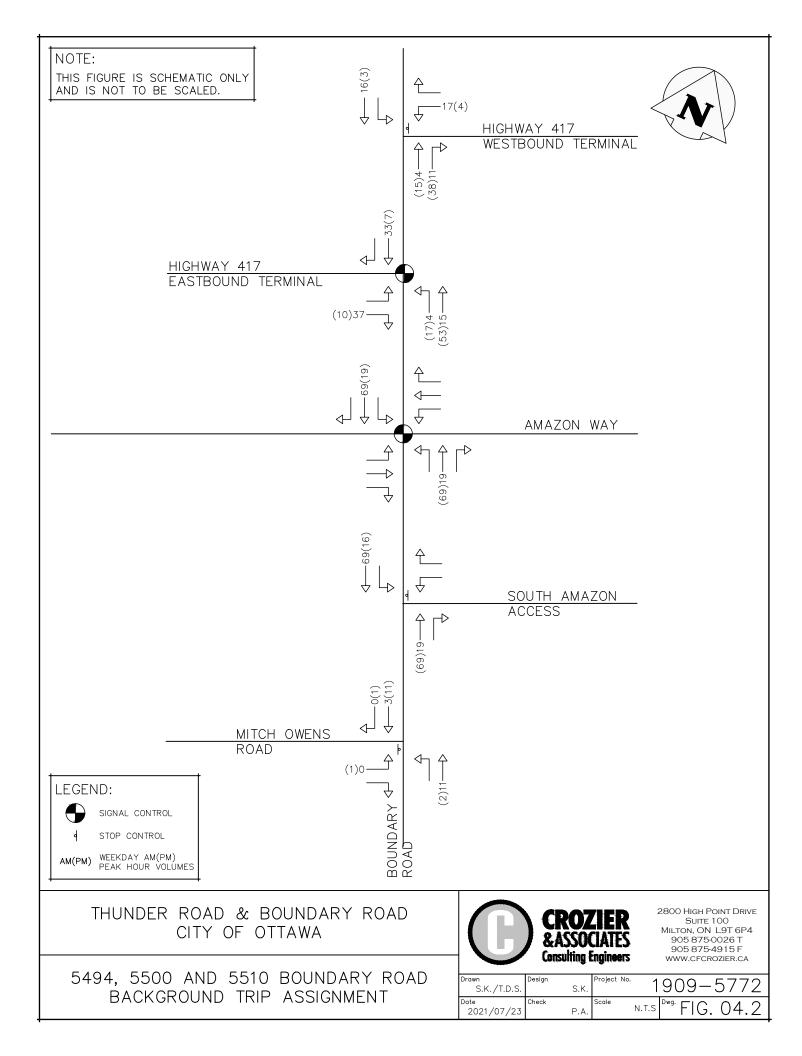

	TDM-s	supportive design & infrastructure measures: Non-residential developments	Check if completed & add descriptions, explanations or plan/drawing references
	3.	TRANSIT	
	3.1	Customer amenities	
BASIC	3.1.1	Provide shelters, lighting and benches at any on-site transit stops	
BASIC	3.1.2	Where the site abuts an off-site transit stop and insufficient space exists for a transit shelter in the public right-of-way, protect land for a shelter and/or install a shelter	
BETTER	3.1.3	Provide a secure and comfortable interior waiting area by integrating any on-site transit stops into the building	
	4.	RIDESHARING	
	4.1	Pick-up & drop-off facilities	
BASIC	4.1.1	Provide a designated area for carpool drivers (plus taxis and ride-hailing services) to drop off or pick up passengers without using fire lanes or other no-stopping zones	
	4.2	Carpool parking	
BASIC	4.2.1	Provide signed parking spaces for carpools in a priority location close to a major building entrance, sufficient in number to accommodate the mode share target for carpools	
BETTER	4.2.2	At large developments, provide spaces for carpools in a separate, access-controlled parking area to simplify enforcement	
	5.	CARSHARING & BIKESHARING	
	5.1	Carshare parking spaces	
BETTER	5.1.1	Provide carshare parking spaces in permitted non- residential zones, occupying either required or provided parking spaces (see Zoning By-law Section 94)	
	5.2	Bikeshare station location	
BETTER	5.2.1	Provide a designated bikeshare station area near a major building entrance, preferably lighted and sheltered with a direct walkway connection	

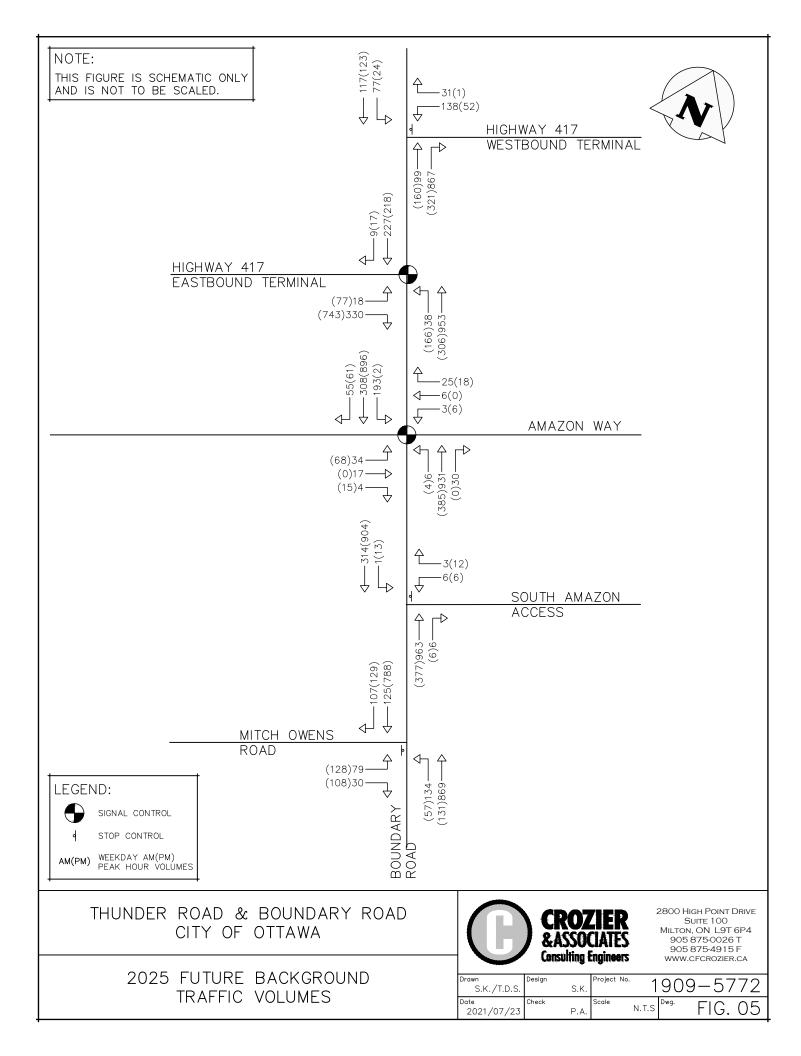
	TDM-s	supportive design & infrastructure measures: Non-residential developments	Check if completed & add descriptions, explanations or plan/drawing references
	6.	PARKING	
	6.1	Number of parking spaces	
REQUIRED	6.1.1	Do not provide more parking than permitted by zoning, nor less than required by zoning, unless a variance is being applied for	The slight parking supply surplus due to ZBL updated will be coordinated.
BASIC	6.1.2	Provide parking for long-term and short-term users that is consistent with mode share targets, considering the potential for visitors to use off-site public parking	
BASIC	6.1.3	Where a site features more than one use, provide shared parking and reduce the cumulative number of parking spaces accordingly <i>(see Zoning By-law</i> <i>Section 104)</i>	
BETTER	6.1.4	Reduce the minimum number of parking spaces required by zoning by one space for each 13 square metres of gross floor area provided as shower rooms, change rooms, locker rooms and other facilities for cyclists in conjunction with bicycle parking <i>(see Zoning By-law Section 111)</i>	
	6.2	Separate long-term & short-term parking areas	
BETTER	6.2.1	Separate short-term and long-term parking areas using signage or physical barriers, to permit access controls and simplify enforcement (i.e. to discourage employees from parking in visitor spaces, and vice versa)	
	7.	OTHER	
	7.1	On-site amenities to minimize off-site trips	
BETTER	7.1.1	Provide on-site amenities to minimize mid-day or mid-commute errands	

APPENDIX O


Sight Distance Assessment Drawings






FIGURES

