

Servicing and Stormwater Management Report – 1125 -1149 Cyrville Road

Stantec Project No. 160401672

March 2, 2023

Prepared for:

Westrich Pacific Corp.

Prepared by:

Stantec Consulting Ltd.

Revision	Description	Author		Quality Check		Independent Review	
0	Rezoning and SPA 1 st Submission	DW, NN	2021-11-18	DT	2021-11-19	P. Moroz	2021-11-24
1	Rezoning and SPA 2 nd Submission	NN, PM	2022-05-17	DT	2022-05-25	P. Moroz	2022-05-26
2	Rezoning and SPA 3 rd Submission	PM	2022-11-30	DT	2022-12-01	P. Moroz	2022-12-02
3	Rezoning and SPA 4 th Submission	РМ	2023-02-28	DT	2023-03-01	P. Moroz	2023-03-01

This document entitled Servicing and Stormwater Management Report – 1125 - 1149 Cyrville Road was prepared by Stantec Consulting Ltd. ("Stantec") for the account of Westrich Management Ltd. (the "Client"). Any reliance on this document by any third party is strictly prohibited. The material in it reflects Stantec's professional judgment in light of the scope, schedule and other limitations stated in the document and in the contract between Stantec and the Client. The opinions in the document are based on conditions and information existing at the time the document was published and do not take into account any subsequent changes. In preparing the document, Stantec did not verify information supplied to it by others. Any use which a third party makes of this document is the responsibility of such third party. Such third party agrees that Stantec shall not be responsible for costs or damages of any kind, if any, suffered by it or any other third party as a result of decisions made or actions taken based on this document.

M Prepared by

Peter Mott, EIT

Reviewed by

Dustin Thiffault, P.Eng.

Approved by Peter Moroz, P.Eng., MBA

Table of Contents

1.0	INTRODUCTION	1.1
1.1	OBJECTIVE	1.2
2.0	REFERENCES	2.1
3.0	POTABLE WATER SERVICING	3.1
4.0	WASTEWATER SERVICING	4.1
5.0	STORMWATER MANAGEMENT	5.1
5.1		5.1
5.2	EXISTING CONDITIONS AND SWM CRITERIA	5.1
5.3	5.2.1 Water Quantity Centrel	5.2
	5.3.2 Results	5.5
	5.3.3 Water Quality Control	5.6
6.0	GRADING AND DRAINAGE	6.1
7.0	UTILITIES	7.1
8.0	EROSION CONTROL DURING CONSTRUCTION	8.1
9.0	GEOTECHNICAL INVESTIGATION AND PHASE I ESA	9.1
9.1	GEOTECHNICAL INVESTIGATION	9.1
9.2	2021 PHASE I ENVIRONMENTAL SITE ASSESSMENT (ESA)	9.2
	9.2.1 2020 Remedial Action Plan	9.3
9.3	2021 PHASE II ENVIRONMENTAL SITE ASSESSMENT (ESA)	9.3
10.0	APPROVALS/PERMITS	10.1
11.0	CONCLUSIONS	11.1
11.1	POTABLE WATER SERVICING	11.1
11.2	WASTEWATER SERVICING	11.1
11.3	STORMWATER MANAGEMENT AND SERVICING	11.1
11.4	SITE GRADING AND DRAINAGE	11.1
11.5	UTILITIES	11.2
11.6	APPROVALS/PERMITS	11.2

LIST OF TABLES

Table 3-1: Residential Population and Water Demands	3.1
Table 3-2: Boundary Conditions	3.2
Table 4-1: Estimated Wastewater Peak Flow	4.1
Table 5-1: Roof Control Area	5.4
Table 5-2: Schedule of Inlet Control Device	5.4

Table 5-3 Peak Uncontrolled 5- and 100- Year run-off	5.4
Table 5-4: Proposed Cistern-A 5 and 100-Year Release Rate	
Table 5-5: Proposed Cistern-B 5 and 100-Year Release Rate	5.5
Table 5-6: Estimated Post-Development Discharge (5-Year)	5.5
Table 5-7: Estimated Post-Development Discharge (100-Year)	5.6
Table 9-1: Recommended Rigid Pavement Structure - Parking Garage	9.2
Table 9-2: Recommended Flexible Pavement Structure – Access Lane	9.2

LIST OF FIGURES

Figure 1: Key Plan	1125 - 1149 Cyrville Road	I Site highlighted in Blue)1.1
			/

LIST OF APPENDICES

APPE	NDIX A	POTABLE WATER SERVICING	A.1
A.1	Water De	mand Calculations	A.1
A.2	Fire Flow	Requirements per FUS Guidelines	A.2
A.3	Boundary	Conditions	A.3
APPE	NDIX B	PROPOSED SITE PLAN	B.1
APPE		SANITARY SERVICING	C.1
C.1	Sanitary S	Sewer Design Sheet	C.1
APPE	NDIX D	STORMWATER SERVICING AND MANAGEMENT	D.1
D.1	Preconsu	Itation Notes with City of Ottawa	D.1
D.2	Modified I	Rational Method Calculations	D.2
D.3	Storm Sev	wer Design Sheet	D.3
D.4	Correspon	ndence with Rideau Valley Conservation Authority (RVCA)	D.4
D.5	Stormcep	tor Sizing Sheet and Standard Detail	D.5

Introduction March 2, 2023

1.0 INTRODUCTION

Stantec Consulting Ltd. has been commissioned by Westrich Pacific Corp. to prepare the following site servicing and stormwater management (SWM) report in support of a site plan control and zoning amendment application for a proposed multi-family residential development located at 1125 - 1149 Cyrville Road. The site is situated on Cyrville Road, between Ogilvie and Cummings Avenue intersections in the City of Ottawa. (See key plan in **Figure 1**). This report addresses the 3rd submission comments made by City of Ottawa reviewers and addresses subsequent changes to the Site plan.

The proposed development area (0.74 ha) consists of two residential high-rise buildings A and B to be developed in two phases i.e. Phase I and Phase II, respectively. Building A is a 6-storey building to contain 209 units in total consisting of 77 one-bedroom units, 127 two-bedroom units, 5 three-bedroom units, and 2532 m² of common area. Building B is a 20-storey building to contain 157 total units, including 77 one-bedroom units, 78 two-bedroom units, 2 townhouse units, and 1910 m² of common area. Parking is to be provided via underground parking, totaling 365 parking stalls, including 36 visitor parking stalls. The site plan has been provided in **Appendix B**.

Figure 1: Key Plan (1125 - 1149 Cyrville Road Site highlighted in Blue)

Introduction March 2, 2023

1.1 OBJECTIVE

This Site Servicing and Stormwater Management Report has been prepared to present a servicing scheme that is free of conflicts and presents the most suitable servicing approach that complies with the relevant City design guidelines. Details of the existing infrastructure were obtained from available as-built drawings and consultation with J+S Architect Inc., Westrich Pacific Corp, City of Ottawa staff, and the adjoining property owners. Infrastructure requirements for water supply, sanitary sewer, and storm sewer services are presented in this report.

Criteria and constraints provided by the City of Ottawa have been used as a basis for the servicing design of the proposed development. Specific elements and potential development constraints to be addressed are as follows:

• Potable Water Servicing

- Estimate water demands to characterize the feed for the proposed development which will be serviced by an existing 250mm diameter cast iron watermain fronting the site along Cyrville Road.
- Watermain servicing for the development is to be able to provide average day and maximum day and peak hour demands (i.e., non-emergency conditions) at pressures within the normal operating range of 50 to 80 psi (345 to 552 kPa) under maximum day condition and not less than 40psi under peak hour demand conditions.
- Under fire flow (emergency) conditions with maximum day demands, the water distribution system is to maintain a minimum pressure greater than 20 psi (140 kPa).
- Prepare a grading plan in accordance with the proposed site plan and existing grades.

• Stormwater Management and Servicing

- Define major and minor conveyance systems in conjunction with the proposed grading plan.
- Post development peak 100-year flows controlled to the predevelopment peak 5-year release rate with a runoff coefficient of C=0.5 and a time of concentration of 20 minutes as estimated based on the existing storm sewer infrastructure servicing the existing site.
- Excess stormwater to be detained on-site to meet the 5-year pre-development target release rate.
- Connect to the proposed 600mm diameter concrete storm sewer within the Cyrville Road right-ofway.
- o Meet RVCA stormwater quality control requirements for the site.
- Define and size the proposed storm sewer system.

Wastewater Servicing

• Estimate wastewater flows generated by the development and size sanitary sewers which will outlet to the existing 375mm diameter PVC sanitary sewer located on Cyrville Road.

Introduction March 2, 2023

 \circ Define and size the proposed sanitary sewer system / building services.

The accompanying **Drawing SSP-1** illustrates the proposed internal servicing scheme for the site.

References March 2, 2023

2.0 **REFERENCES**

Documents referenced in preparation of this Servicing and Stormwater Management Report include:

- 1125 1149 Cyrville Road pre-consultation comments, City of Ottawa, March 2021.
- *City of Ottawa Design Guidelines Water Distribution*, City of Ottawa, July 2010 (including all subsequent technical bulletins).
- *City of Ottawa Sewer Design Guidelines (SDG)*, City of Ottawa, October 2012 (including all subsequent technical bulletins).
- Geotechnical Investigation, Proposed Commercial Development 1125 to 1149 Cyrville Road Ottawa Ontario, Paterson Group Inc., November 2021.
- Phase I Environmental Site Assessment Update, Proposed Residential Development 1125 to 1149 Cyrville Road Ottawa Ontario, Paterson Group Inc., November 2021.
- Phase II Environmental Site Assessment, Proposed Residential Development 1125 to 1149 Cyrville Road Ottawa Ontario, Paterson Group Inc., November 2021.
- Phase I-II Environmental Site Assessment, Proposed Commercial Development 1125 to 1149 Cyrville Road Ottawa Ontario, Paterson Group Inc., March 2020.
- Environmental Remedial Action Plan, Proposed Site Redevelopment 1125 to 1149 Cyrville Road Ottawa Ontario, Paterson Group Inc., February 2020.

Potable Water Servicing March 2, 2023

3.0 POTABLE WATER SERVICING

The proposed site is located within Pressure Zone 1E of the City of Ottawa's water distribution system. The proposed development will be serviced by the existing 250mm diameter watermain on Cyrville Road. To create a suitable water service connection for the property, two new service connections to the existing 250mm dia. watermain on Cyrville road separated by a new valve within the Cyrville Road watermain, and a fire hydrant within the private access right-of-way have been proposed as shown on **Drawing SSP-1**. Servicing for Building B is proposed to be provided through internal plumbing of Building A within accessible and maintainable space via underground parking areas, and is proposed to cross over the existing storm sewer easement roughly bisecting the site to the underground parking areas of Building B.

The proposed development area consists of two residential high-rise buildings (Building A & B) Building A is to contain 209 units in total consisting of 77 one-bedroom units, 127 two-bedroom units, 5 three-bedroom units, and 2,532m² of common areas. Building B is to contain 157 total units, including 77 one-bedroom units, 78 two-bedroom units, 2 townhouse units, and 1910m² of common areas.

Water demands were calculated using the City of Ottawa Water Distribution Guidelines (2010) and revised with technical bulletin ISTB-2021-03 to determine the typical operating pressures to be expected at the building (see detailed calculations in **Appendix A.1**). A demand rate of 280 L/cap/day was applied for the residential population of the proposed site. The average daily (AVDY) residential demand was estimated with population densities as per City of Ottawa Guidelines; 1.4 persons per one-bedroom apartments, 2.1 persons per two-bedroom apartments, and 3.1 persons per two-bedroom apartments with den and three-bedroom apartments.

An estimated demand of 28,000 L/ha/day was applied to the 2,532m² and 1,910m² of common areas respectively for Buildings A and B. Maximum Day (MXDY) demands were determined by multiplying the AVDY demands by a factor of 2.5 for residential areas and by a factor of 1.5 for common areas. Peak hourly (PKHR) demands were determined by multiplying the MXDY demands by a factor of 2.2 for residential areas and by a factor of 1.8 for common areas. Residential water demands are detailed in **Table 3-1**.

Building	Total Units	Population	AVDY (L/s)	MXDY (L/s)	PKHR (L/s)
Α	209	390	1.35	3.28	7.17
В	157	277	0.96	2.34	5.11
TOTAL SITE	365	667	2.31	5.62	12.28

The proposed development has an average day demand of 2.31L/s (199.6 m³/day). Since this value exceeds 50 m³/day, two service laterals will need to be provided for the development per the City's Water Distribution Guidelines. Two new 150mm diameter water services will be connected to the existing 250 mm diameter watermain on Cyrville Road separated by a new isolation valve on the main.

Potable Water Servicing March 2, 2023

The fire flow requirement was calculated in accordance with Fire Underwriters Survey (FUS) and determined to be approximately 11,000 L/min (183.3 L/s) for Building A, and approximately 4,000 L/min (66.7 L/s) for Building B based on an updated site plan. Fire flow demand for both buildings were estimated using a non-combustible construction type with two-hour fire separations provided between each floor. Additionally, it is anticipated that both buildings will be sprinklered, with final sprinkler design to conform to the NFPA 13 standard.

As a result, the gross floor area of the ground floor (floor with the largest footprint) + 25% of the gross floor area of the two immediately adjoining floors (the second floor and third floor) were used in the FUS calculation for both buildings, as per the *Fire Underwriters Survey's Water Supply for Public Fire Protection* (2020). Detailed fire flow calculations per the FUS methodology are provided in **Appendix A.2**.

Table 3-2 shows the hydraulic boundary conditions provided by the City of Ottawa on July 20, 2021 based on domestic and fire flow demands estimated with a 350L/cap/day residential demand rate prior to the release of Technical Bulletin ISTB-2021-03. These boundary conditions are used as conservative values when analyzing the level of service for water demands presented in the table above **Table 3-2**. The boundary conditions are also included in **Appendix A.2**.

	Connection @ 1125 Cyrville Road
Min. HGL (m)	109.5
Max. HGL (m)	118.4
Max. Day + Fire Flow (200 L/s) (m)	105.0
Max. Day + Fire Flow (133.3 L/s) (m)	109.5

Table 3-2: Boundary Conditions

The desired normal operating objective pressure range as per the City of Ottawa 2010 Water Distribution Design Guidelines is 345 kPa (50 psi) to 552 kPa (80 psi) and no less than 276 kPa (40 psi) at ground elevation. Furthermore, the maximum pressure at any point in the water distribution should not exceed 100 psi as per the Ontario Building/Plumbing Code; pressure reducing measures are required to service areas where pressures greater than 552 kPa (80 psi) are anticipated.

Both Building A and B's proposed finished floor elevation of 70.32m will serve as the ground elevation for the calculation of residual pressures at ground level. At the peak hour flow conditions (i.e., minimum HGL), the resulting boundary condition HGL of 109.5 m corresponds to a peak hour pressure of 384.3 kPa (55.7 psi). As both buildings have an average storey height of 3.16 m, an additional 31 kPa (4.5 psi) of head loss is incurred for every additional storey over ground level. This results in a peak hour pressure of 229.3 kPa (33.2 psi) at the top floor of the 6-storey Building A, and 43.3 kPa (6.3 psi) at the 12th floor of - Building B, both of which are insufficient pressures to entirely service both buildings. Therefore, a booster pump inside both buildings will be required to maintain an acceptable level of service on the higher floors. This booster pump is to be sized and designed by the buildings' mechanical engineer.

A maximum pressure check can be conducted using the building's finished floor elevation (70.32 m) and the maximum boundary condition HGL of 118.4 m. This results in a pressure of 471.6 kPa (68.4 psi). Since this value is below 80 psi, pressure reducing valves will not be required.

Potable Water Servicing March 2, 2023

Boundary conditions provided by the City confirm that a fire flow rate of 12,000 L/min (200 L/s) by Building A would have a residual pressure of 340.2 kPa (49.3 psi) on Cyrville Road. Meanwhile, a fire flow rate by Building B of 8,000 L/min (133.3 L/s) fire flow would result in a residual pressure of 384.3 kPa (55.7 psi) at the watermain.

Building A is within 75 – 150m of the existing fire hydrants on St. Michael Street and Cyrville street as well as the proposed fire hydrant while building is B is within 75 -150m of the existing fire hydrant on St. Michael Street and the proposed hydrant on the northwest corner of Building A. The aggregate flow capacity of all available fire hydrants are 15,200 L/min and 9,500L/min for building A and B respectively according to ISTB-2018-02, thereby meeting the required fire flow for the site.

The proposed hydrant has been located to ensure a maximum 45m distance to proposed building fire department connections per Ontario Building Code requirements.

In conclusion, based on the boundary conditions available, the 250 mm diameter watermain on Cyrville Road provides adequate fire flow capacity as per the requirements of the Fire Underwriters Survey while respecting City of Ottawa design guidelines. Two 150 mm diameter service laterals connected to the 250 mm diameter watermain on Cyrville Road will be capable of providing the anticipated water demands to the lower storeys. A booster pump to be designed by the buildings' mechanical engineer, will be required to maintain acceptable pressures for the upper storeys of both buildings.

Wastewater Servicing March 2, 2023

4.0 WASTEWATER SERVICING

As illustrated on **Drawing SSP-1 and SA-1**, sanitary servicing for the proposed development will be provided through a proposed 200 mm diameter connection along the private access road, connecting to the existing 375 mm diameter PVC sanitary sewer flowing westward on Cyrville Road. Servicing for Building B will be interconnected through internal building plumbing of Building A.

Using the City of Ottawa's recommended population densities, the proposed 6-storey residential Building A is to contain 209 units in total consisting of 77 one-bedroom units, 127 two-bedroom units, 5 threebedroom units, and 2532 m² of common areas with a total estimated population of 390 people. The proposed 20-storey residential high-rise Building B is to contain 157 units in total consisting of 77 onebedroom units, 78 two-bedroom units, 2 townhouse units, and 1910 m² of common areas with a total estimated population of 277 people. The anticipated wastewater peak flow generated from the proposed development is summarized in **Table 4-1** while the sanitary sewer design sheet is included in **Appendix C.1**.

	Res	idential/Com						
Building		# of Units	Population	Peak Factor	Peak Flow (L/s)	Infiltration Flow (L/s)	Total Peal	k Flow (L/s)
А	Residential	209 units	390	3.79	4.91	0.22	5.13	9 GE
В	Residential	157 units	277		3.50	0.03	3.52	0.00

Table 4-1: Estimated Wastewater Peak Flow

1. Average residential sanitary flow = 280 L/p/day per City of Ottawa Sewer Design Guidelines.

2. Peak factor for residential units calculated using Harmon's formula. Used a Harmon correction factor of 0.8.

3. Apartment population estimated based on 1.4 persons/unit for one-bedroom apartments, 2.1 persons/unit for onebedroom with den & two-bedroom apartments, 3.1 persons/unit for two-bedroom with den & three-bedroom apartments

4. Estimated commercial/amenity area/lobby peak flows = 28,000 L/ha/day.

5. Infiltration flow = 0.33 L/s/ha.

6. Values in table above are subject to rounding

The City has expressed no concerns over the 375 mm diameter sanitary sewer on Cyrville Road providing sufficient capacity to service the proposed development.

The drains within covered portions of both buildings' underground parking garages will need to be pumped and ultimately outlet to the proposed sanitary sewer system. The design of these drains, internal plumbing, and associated pumping system is to be completed by the buildings' mechanical engineer.

A backflow preventer will be required for the proposed building in accordance with the City of Ottawa Sewer Design Guidelines. This requirement will be coordinated with the building's mechanical engineer.

Stormwater Management March 2, 2023

5.0 STORMWATER MANAGEMENT

5.1 **OBJECTIVES**

The goal of this servicing and stormwater management (SWM) plan is to determine the measures necessary to control the quantity and quality of stormwater released from the proposed development to meet the criteria established during the consultation process with City of Ottawa and Rideau Valley Conservation Authority (RVCA), and to provide sufficient details required for approval and construction.

5.2 EXISTING CONDITIONS AND SWM CRITERIA

The proposed re-development area (0.74 ha) is currently a vacant lot mixed with pavement and vegetation areas. The existing pavement structures on the site will be removed to allow for the proposed development. An additional area of 0.04ha (L100A) representing a 5-meter conveyance to the City along the access road area and setback requirements will be accommodated as part of this stormwater management plan.

The Stormwater Management (SWM) criteria for the subject site is based on pre-application consultation comments in **Appendix D.1** as provided by the City of Ottawa in March 2021 as follows:

- i. Post-development peak flows up to 100-year event are to be controlled to the pre-development peak 5-year release rate. Excess stormwater is to be detained on-site.
- ii. The 5-yr storm event runoff to be developed using the IDF information derived from the Meteorological Services of Canada rainfall data, taken from the MacDonald Cartier Airport, collected 1966 to 1997.
- iii. Maximum Pre-development runoff coefficient of C=0.50.
- iv. Pre-development time of concentration of tc=20, and post development tc=10.
- v. Permissible surface ponding (including dynamic flow depth) of 350mm for paved areas during the 100-year storm event. No major system spillage to adjacent properties is to occur for events up to and including the 100-year storm event.
- vi. Emergency major overland flows are to be directed to the adjacent municipal ROW.
- vii. 100-year major system spill elevations must be 300mm lower than adjacent building openings.
- viii. Permanent storm sewer infrastructure (apart from a single building service connection location for Building B) will not be permitted within the existing storm sewer easement on-site.

Other criteria considered in the SWM design are described in Section 5 of the Ottawa Sewer Design Guidelines (October 2012) including all subsequent technical bulletins.

Pre-development (i.e., current) site conditions have been classified into impervious (hard) and pervious (soft) areas, with impervious areas accounting for 81% (0.60 ha) while pervious areas cover up to 19%

Stormwater Management March 2, 2023

(0.14 ha) of the site. Based on these figures, the overall pre-development runoff coefficient (C) for the site was calculated as C=0.77. As a result, a C value of 0.50 will be used to estimate the allowable release rate from the site as outlined in the pre-consultation meeting with City of Ottawa staff.

The allowable peak stormwater flow rate for the site was calculated as follows using the Modified Rational Method:

$$Q = 2.78 (C)(I)(A)$$

Where:

Q = peak flow rate, L/s C = site runoff coefficient I = rainfall intensity,mm/hr (per City of Ottawa IDF curves) A = drainage area, ha

5 – year Intensity
$$\left(\frac{mm}{hr}\right) = \frac{998.071}{(20+6.053)^{0.814}} = 70.25 \text{ mm/hr}$$

Q = 2.78(0.50)(70.25mm/hr)(0.74ha) = 72.6 L/s

Therefore, the post-development peak flows up to the 100-year storm event must be controlled to **72.6 L/s**. The pre-development time of concentration was assumed to be 20 minutes, as directed by the City during pre-consultation.

5.3 STORMWATER MANAGEMENT DESIGN

The proposed site will be serviced by a proposed 600mm diameter storm sewer running east to west on Cyrville Road, as shown on **Drawing SD-1**. An area of 0.74 ha is considered in the stormwater management design and does not include the 5-meter wide City block.

Stormwater cisterns located in the underground parking area will attenuate peak flows from the roofs of both buildings, outdoor amenity areas and landscaped areas within the site to ensure that the overall site release rate meets the allowable release rate. The proposed stormwater cisterns will be fed by the internal plumbing of the buildings. As shown on **Drawing SD-1**, peak flows from the proposed Cistern B will outlet to a 300 mm diameter storm service lateral crossing the easement and drained to a storm service stub within the proposed site private access via Building A. The internal plumbing in Building A should accommodate an independent connection of Building B to the storm service stub at Building A.

Catch basins and landscape drains for the areas tributary to the stormwater cistern will connect to the cistern via internal plumbing (designed by the building's mechanical engineer). The stormwater cisterns will be pumped at a controlled rate and ultimately outlet to the proposed 600 mm diameter concrete storm sewer on Cyrville Road (see **Drawing SD-1**). The stormwater cisterns' controlled release rate will be set via pump to be designed by a mechanical engineer based on calculations provided in **Appendix D**.

The stormwater cistern location(s) will be coordinated with the building's architect and structural engineer. Peak flows have been identified to the building's mechanical engineer to size the internal plumbing system appropriately.

Stormwater Management March 2, 2023

Surface storage is also proposed on the private access way to retain storm run-off exceeding a 2-year storm event. The proposed site plan, drainage areas and proposed storm sewer infrastructure are shown on **Drawing SD-1 and SSP-1**.

5.3.1 Water Quantity Control

The Modified Rational Method (MRM) was used to assess the flow rate and volume of runoff generated under post-development conditions. The site was subdivided into sub-catchments tributary to separate quantity control measures and subject to different inlet controls. **Drawing SD-1** delineates the appropriate sub-catchment areas. The MRM spreadsheet is included in **Appendix D.2**.

The following assumptions were made in the creation of the storm drainage plan and accompanying MRM spreadsheet:

- 1) Rooftop storage is available on four of five roof catchment areas.
- On-site stormwater runoff (including green areas) will be collected using a combination of area drains, catch-basins, and internal building plumbing for detention in two stormwater cisterns (Cistern A and Cistern B) located in Building A and B, respectively.
- 3) Some pedestrian access and landscaping areas on the south and west perimeters of the site will sheet drain uncontrolled to Cyrville Road (UNC-1).
- 4) The storm runoff within the access road area of the site will be captured into the site storm sewer system and directed to a proposed oil/grit separator unit.

Post-development peak flows up to the 100-year storm event within the development area will be controlled to a total permitted release rate of 72.6 L/s, therefore, on-site storage will be required.

5.3.1.1 Rooftop Storage

Rooftop storage is proposed on the site on all rooftop areas excluding areas intended for amenity use such as ROOF 1B. This rooftop area will drain uncontrolled to the cistern via the internal plumbing of the building (see **Drawing SD-1**).

Rooftop storage will be achieved by installing restricted flow roof drains. The following calculations assume the roof will be equipped with standard Watts Model R1100 Accuflow Roof Drains or approved equivalent, see **Appendix D.2** for Modified Rational Method design sheet.

Watts Drainage "Accutrol" roof drain weir data has been used to calculate a practical roof release rate and detention storage volume for the rooftops. It should be noted that the "Accutrol" weir has been used as an example only, and that other products may be specified for use, provided that the total roof drain release rate is restricted to match the maximum rate of release indicated in **Table 5-1**, and that sufficient roof storage is provided to meet (or exceed) the resulting volume of detained stormwater.

Stormwater Management March 2, 2023

Roof ID	Accutrol Weir Setting	No. of Drains	5-yr release rate (L/s)	100-yr release rate (L/s)	100-yr ponding depth (m)	100-yr storage required (cu.m)	Storage provided (cu.m)
Roof 1A	75% open	3	3.6	4.6	0.15	32.5	34.8
Roof 1C	75% open	5	6.2	7.9	0.15	68.9	69.3
Roof 2A	Closed	7	4.4	4.4	0.15	27.4	30.3
Roof 2B	Closed	1	0.63	0.63	0.15	1.4	2.5

Table 5-1: Roof Control Area

5.3.1.2 Access Road Areas

The private access road consists of a flexible pavement providing access and exit to the underground parking. SWM in the proposed access road areas will be achieved using a proposed catchbasin manhole and catchbasin inlet equipped with an inlet control device (ICD) to restrict minor system peak flows (2-year) to the 100-year storm. **Table 5-2** below shows the characteristics of the proposed ICD (see **Appendix D.2** for detailed calculations).

Table 5-2:	Schedule	of Inlet	Control	Device
------------	----------	----------	---------	--------

Catch basin ID	Tributary Area ID	ICD Type	5 - Year Head (m)	100 - Year Head (m)	5 -Year Flow (L/s)	100 - Year Flow (L/s)
CB L100A	L100	75 mm Orifice	1.77	1.92	10.2	16.5

The 5-year and 100-year storage/ flow values are conservative and represent the maximum permissible release rates/storage volumes.

5.3.1.3 Uncontrolled Areas

Uncontrolled areas UNC-1 and UNC-2 cannot be graded to enter the site storm sewer system and as such, they will sheet drain to Cyrville Road to the south and grassed area to the north. All uncontrolled flows have been included within the target release rate for the site.

Table 5-3 Peak Uncontrolled 5- a	and 100- Year run-off
----------------------------------	-----------------------

Area IDs	Area (ha)	Runoff 'C' (5- Year) (L/s)		5 Year incontrolled Runoff 'C' peak flow (100 -Year) (L/s)	
UNC-1	0.04	0.44	4.6	0.55	9.9
UNC-2	0.01	0.50	1.8	0.63	3.9

Stormwater Management March 2, 2023

5.3.1.4 Stormwater Cistern(s)

The allowable release rates from the proposed building's underground cisterns were determined by subtracting all uncontrolled 100-year peak flows as well as that from the access road tributary contribution from the overall site allowable release rate, which results in available peak flow rate of approximately 42.3 L/s.

The stormwater cisterns will be designed to provide a total storage volume of 85 m³ with a maximum controlled release rate of 42 L/s (32 L/s for Cistern 'A' and 10 L/s for Cistern 'B'). The stormwater cisterns are each to discharge at their controlled release rates using a pump. **Table 5-5** and **Table 5-5** summarizes the respective flow rates and volumes of stormwater Cisterns A and B during the 5-year and 100-year storm events.

Table 5-4: Proposed Cistern-A 5 and 100-Year Release Rate

Storm Return Period	Area IDs	Area (ha)	Q _{release} (L/s)	V _{required} (m ³)	V _{available} (m ³)
5-year	ROOF 1A, ROOF 1B,	0.45	32	11.9	
100-year	TANK1B			43.4	45.0

Table 5-5: Proposed Cistern-B 5 and 100-Year Release Rate

Storm Return Period	Area IDs	Area (ha)	Q _{release} (L/s)	V _{required} (m ³)	V _{available} (m ³)
5-year	ROOF 2A, ROOF 2B,	0.20	10	12.9	
100-year	TANK 2A, TANK 2B, TANK 2C	0.20	10	35.5	40.0

5.3.2 Results

Table 5-6 and **Table 5-7** demonstrate that the proposed stormwater management plan provides adequate attenuation storage to meet the post-development allowable release rate for the site.

Table 5-6: Estimated Post-Development Discharge (5-Year)

Area Type	Q _{release} (L/s)	Allowable Release Rate (L/s)
Controlled areas	52.2	
Uncontrolled areas	6.4	72.6
Total	58.6	

Stormwater Management March 2, 2023

Area Type	Q _{release} (L/s)	Allowable Release Rate (L/s)
Controlled areas	58.5	
Uncontrolled areas	13.8	72.6
Total	72.3	

Table 5-7: Estimated Post-Development Discharge (100-Year)

5.3.3 Water Quality Control

The RVCA confirmed that enhanced water quality protection (80% TSS removal) is required for the site as distance from the downstream outlet to a watercourse is less than 500m. The water quality objective noted is for 'enhanced' (80% TSS removal, refer to correspondence with RVCA in **Appendix D.3**.)

To achieve this end, on-site runoff will be captured into the site storm sewer system and directed to a proposed oil/grit separator unit. The Stormceptor sizing software has been used to size the required unit to provide 80% long-term TSS removal based on proposed drainage areas (i.e., 0.74 ha) as shown in the Stormceptor sizing design sheet included in **Appendix D.5**.

An Imbrium Stormceptor EF04 designed to provide 81% TSS removal has been proposed to collect and treat storm runoff from the site before outleting to the proposed 600mm diameter storm sewer on Cyrville Road as shown in **Drawing SSP-1**. The EF04 unit has been used as an example only and other approved equivalent products may be specified for use so long as an equivalent treatment rate and unit oil/sediment storage capacity may be achieved.

Grading and Drainage March 2, 2023

6.0 GRADING AND DRAINAGE

The proposed re-development site measures approximately 0.74 ha in area. A detailed grading plan (see **Drawing GP-1**) has been prepared to satisfy the stormwater management requirements described in **Section 5.0** and to allow for positive drainage away from the face of the building.

The site grading along the access road is designed to effectively drain stormwater runoff in the area into proposed catch basins. Grading for the access ramp to the underground parking levels have been coordinated with the architect. The subject site where feasible maintains overland flow routes towards Cyrville Road to the south. Major overland flow routes to northern properties are for emergency purposes only where grading to Cyrville Road may not be maintained (areas L100, TANK 2A, TANK 1B, and TANK 2B); these routes are not expected to receive discharge for storm events up to and including the 100-year storm event as identified in the stormwater management section above.

Utilities March 2, 2023

7.0 UTILITIES

Hydro Ottawa, Bell, Rogers, and Enbridge all have existing utility plant in the area, which will be used to service Building A of the site. As directed by the City of Ottawa, no private utilities are to cross the central storm sewer easement between Building A and B. As such, electrical, gas, and other utilities will be supplied to Building B from the adjacent property to the north, through Ogilvie Road. The detailed design of the required utility services will be further investigated as part of the composite utility planning process, which will follow design circulation for the servicing plans.

Municipal water and sewer services are supplied to both buildings by underground service trenches along the private access road, connecting to Cyrville Road. Electricity and the phone line are to service Building A from underground service trenches south of the buildings

Erosion Control During Construction March 2, 2023

8.0 **EROSION CONTROL DURING CONSTRUCTION**

In order to protect downstream water quality and prevent sediment build up in catch basins and storm sewers, erosion and sediment control measures must be implemented during construction. The following recommendations will be included in the contract documents and communicated to the Contractor.

1. Implement best management practices to provide appropriate protection of the existing and proposed drainage system and the receiving water course(s).

- 2. Limit the extent of the exposed soils at any given time.
- 3. Re-vegetate exposed areas as soon as possible.
- 4. Minimize the area to be cleared and grubbed.
- 5. Protect exposed slopes with geotextiles, geogrid, or synthetic mulches.
- 6. Provide sediment traps and basins during dewatering works.
- 7. Install sediment traps (such as SiltSack® by Terrafix) between catch basins and frames.
- 8. Schedule the construction works at times which avoid flooding due to seasonal rains.

The Contractor will also be required to complete inspections and guarantee the proper performance of their erosion and sediment control measures at least after every rainfall. The inspections are to include:

- Verification that water is not flowing under silt barriers.
- Cleaning and changing the sediment traps placed on catch basins.

Refer to **Drawing EC/DS-1** for the proposed location of silt fences, straw bales, and other erosion control measures.

Geotechnical Investigation and Phase I ESA March 2, 2023

9.0 GEOTECHNICAL INVESTIGATION AND PHASE I ESA

9.1 GEOTECHNICAL INVESTIGATION

A geotechnical report for the site was prepared by Paterson Group Inc. on November 16, 2021. This report was commissioned for a proposed residential development by Westrich Pacific Corp, based on field investigations completed in August 16 and 17, 2011.

The investigation consisted of twelve boreholes advanced to a maximum depth of 5.7m below existing grade. As stated in the geotechnical report, the subsurface profile encountered at the boreholes consists of pavement structure, topsoil, or crushed stone fill at ground surface underlain by brown silty clay with gravel and/or silty sand with gravel. A weathered shale bedrock was encountered below the above-noted layers at all borehole locations. Shale bedrock was cored at BH 1, BH 2 and BH 12 to a maximum depth of 5.7 m below existing ground surface. The bedrock in the immediate area of the subject site consists of potentially expansive shale from the Billings Formation at a 2 to 5 m depth.

Three groundwater monitoring wells were installed at BH1, BH2, and BH12 as part of the geotechnical investigation. Groundwater levels at the borehole locations were measured on August 22, 2011 and were found to be dry upon completion of the field program. It should be noted that groundwater levels are subject to seasonal fluctuations and can thus vary at the time of construction.

Bedrock removal will be required for the proposed building excavations and can be accomplished by hoe ramming where only small quantity of the bedrock needs to be removed, while line drilling and controlled blasting would be ideal for larger quantities. Sound bedrock may be removed by line drilling and controlled blasting and/or hoe ramming. Prior to considering blasting operations, the blasting effects on the existing services, buildings and other structures should be addressed. A pre-blast or pre-construction survey of the existing structures located in proximity of the blasting operations should be completed prior to commencing site activities. The extent of the survey should be determined by the blasting consultant and should be sufficient to respond to any inquiries/claims related to the blasting operations. As a general guideline, peak particle velocities (measured at the structures) should not exceed 25 mm/s during the blasting program to reduce the risks of damage to the existing structures. The blasting operations should be planned and conducted under the supervision of a licensed professional engineer who is also an experienced blasting consultant. Excavation side slopes in sound bedrock can be carried out using almost vertical side walls. A minimum 1m horizontal ledge, should be left between the bottom of the overburden excavation and the top of the bedrock surface to provide an area to allow for potential sloughing.

The report recommends a rigid pavement structure for the parking garage and a flexible pavement structure for the design of the access lanes.

Geotechnical Investigation and Phase I ESA March 2, 2023

Material	Thickness				
Reinforced Concrete Slab	125 mm				
Bedding, OPSS Granular A Crushed Stone	200 mm				
Subgrade: In situ soil, or OPSS Granular B Type I or II material placed over in situ soil					

Table 9-2: Recommended Flexible Pavement Structure – Access Lane

Material	Thickness
Wear Course, HL-3 or Superpave 12.5 Asphaltic Concrete	40 mm
Binder Course, HL-8 or SP 19 Asphaltic Concrete	50 mm
Granular Base Course, OPSS Granular A Crushed Stone	150 mm
Granular Subbase Course, OPSS Granular B Type II	450 mm
Subgrade: Either in situ soils, engineered fill or OPSS Granular B 1	ype I or II material
placed over in situ soil	

Minimum Performance Graded (PG) 58-34 asphalt cement should be used for this project. If soft spots develop in the subgrade during compaction or due to construction traffic, the affected areas should be excavated and replaced with OPSS Granular B Type I or II material. The pavement granular base and subbase should be placed in maximum 300 mm thick lifts and compacted to a minimum of 100% of the material's SPMDD using suitable vibratory equipment.

The subject site is considered satisfactory for a proposed residential development in this geotechnical investigation, where it was expected that the proposed residential buildings would be founded by conventional shallow footings placed on the shale bedrock surface.

9.2 2021 PHASE I ENVIRONMENTAL SITE ASSESSMENT (ESA)

An update to the Phase I ESA (originally done in 2013) was completed by Paterson Group on November 10, 2021 to meet the requirements of MECP O.Reg. 153/04, as amended. References are provided to findings from the 2013 Phase I ESA, as well as the latest 2020 Phase I-II ESA.

A site visit conducted on October 29, 2021, confirming that the site exists as vacant land with a temporary MOD space/trailer on the central west portion of the site as well as a small sea container situated on the northern end of the lot. Three (3) hydro poles are also present on the central portion of the site. Most of the land is covered in gravel with some low brush and three (3) asphaltic concrete paved laneways situated where the former buildings were once present, fronting Cyrville Road. Site drainage consists primarily of infiltration. The site topography is relatively flat and slightly below the grade of Cyrville Road, while the regional topography slopes down in a southwesterly direction.

No signs of staining or discolouration were observed at the time of the site visit. No obvious signs of fill material were noted on the subject land at the time of the site assessment. No evidence of any above

Geotechnical Investigation and Phase I ESA March 2, 2023

ground or underground storage tanks was noted at the time of the site visit. No areas of ponded water exist. No evidence of current or former railway or spur lines was observed on the Phase I ESA Property at the time of the site visit. No areas of unidentified substances were observed on-site at this time. No PCAs were identified during the site visit.

Paterson Group's recommendation was that a Phase II ESA is required for the property.

9.2.1 2020 Remedial Action Plan

Paterson Group Inc. proposed a remedial action plan for the subject site on February 12, 2020, addressing previously identified locations, namely the south-central portion of the site with metal impacted fill material, and the northwestern portion of the site with PHC impacted soil, surrounding the former underground storage tank nest. The proposed remedial program involves a full depth approach, which will excavate all hydrocarbon and/or heavy metal impacted soil and bedrock from within the boundaries of the subject site. Any free product that may be encountered in the groundwater within the excavation would be pumped by an MECP licensed pumping contractor for off-site transfer and disposal.

In the northwest portion of the site, where PHC impacted soils were identified in a previous study, a portable treatment system would be installed to treat on-site accumulated groundwater by means of granular activated carbon. The groundwater treatment system will consist of one unit and will remain in place until the on-site groundwater concentrations are in compliance with both the MECP Table 7 standards and City of Ottawa sewer discharge standards.

Upon completion, there would be a confirmatory sampling program to ensure that the site meets MECP Table 7 standards. Finally, backfills would occur at the excavations, using clean excavated material if deemed geotechnically suitable, or with OPSS Granular B Type II crushed stone as engineered fill up to the underside of the pavement structure.

9.3 2021 PHASE II ENVIRONMENTAL SITE ASSESSMENT (ESA)

A Phase II ESA was prepared by Paterson Group on November 12, 2021 to address potentially contaminating activities (PCAs) that were identified during the previous Phase I ESAs and Phase I ESA Update and considered to result in areas of potential environmental concern (APECs) on the subject Property.

Concentrations of BTEX, PHCs and 1-4 dichlorobenzene exceeding the MECP Table 7 Standards were identified in the immediate area of the former UST nest. All other groundwater samples complied with the selected MECP Standards. Benzene tested from the BH3-20 sample was marginally in excess of the standard, while the duplicate sample concentration indicated compliance with the standard due to sediment. Paterson recommends the groundwater at BH3-20 should be retested for confirmatory purposes.

Based on the findings of the Phase II ESA, Paterson recommended that a soil and groundwater remediation program be carried out at the Phase II Property. The remediation should be completed in conjunction with

Geotechnical Investigation and Phase I ESA March 2, 2023

the construction excavation. It is anticipated that the impacted groundwater will be removed in conjunction with the excavation and removal of the impacted soil and upper levels of the underlying bedrock.

Prior to remedial activities, it is recommended that a representative sample of impacted soil be submitted for a leachate analysis in accordance with O.Reg. 347/558, as required for disposal at an approved landfill site. It is recommended that Paterson personnel be on-site at the time of the remedial activities to direct excavation and segregation of impacted soil, and to collect additional delineation and confirmatory soil samples as required in accordance with O.Reg. 153/04 to support the filing of a Record of Site Condition. Excess soil requiring off-site disposal during construction must be managed in accordance with Ontario Regulation 406/19: On-site and Excess Soil Management.

Paterson also recommends that the groundwater monitoring wells be maintained for future sampling purposes. The monitoring wells are registered with the MECP under Ontario Regulation 903 (Ontario Water Resources Act). However, the wells would require decommission according to this regulation, if they are determined to not be of use in the future, or will be destroyed during future construction activities.

Approvals/Permits March 2, 2023

10.0 APPROVALS/PERMITS

A Ministry of the Environment, Conservation and Parks (MECP) Environmental Compliance Approval (ECA) will be required for the installation of a new 600 mm diameter storm sewer run within the Cyrville Road ROW. Additionally, municipal consent will be required for upsizing of the Cyrville Road storm sewer to provide an adequate outlet for the proposed site and ensure that no infrastructure and utility conflicts exist.

If the ground or surface water volumes being pumped during the construction phase are between 50,000 and 400,000 L/day, it is required to register on the Environmental Activity and Sector Registry (EASR). A minimum of two to four weeks should be allotted for completion of the EASR registration and the preparation of the Water Taking and Discharge Plan by a Qualified Person as stipulated under O.Reg. 63/16. A Permit to Take Water (PTTW) through the MECP would be required for dewatering in excess of 400,000 L/day, which is unlikely for this site. However, if a PTTW is required, at least 4 to 5 months should be allowed for completion of the application and issuance of the permit by the MECP. If blasting is used to remove the bedrock as part of the excavation for the building foundation, prior approval is required from the owners/operators of any water storage reservoir, pumping station, and water works transformer station within 200 m of the site.

Conclusions March 2, 2023

11.0 CONCLUSIONS

11.1 POTABLE WATER SERVICING

The proposed 6 and 20-storey residential high-rise buildings will be serviced by the existing 250mm diameter watermain on Cyrville Road. Water demand calculation was based on a demand rate of 280 L/cap/day for residential units and 28,000 L/ha/day for common areas. The fire flow requirement for both buildings were calculated in accordance with Fire Underwriters Survey guidelines (FUS). It is anticipated that the building will be sprinklered, with final sprinkler design to conform to the NFPA 13 standard. A booster pump, to be designed by the buildings' mechanical engineer, will be required to maintain minimum required pressures for the upper storeys.

11.2 WASTEWATER SERVICING

The site will be serviced by an existing 375 mm diameter PVC sanitary sewer flowing westward on Cyrville Road. A 200 mm diameter service pipe will firstly direct sanitary flows from Building B to the 6-storey Building A. The development's combined sanitary flows will be routed through a single 200 mm service lateral southward along the private access road and connect to the existing Cyrville Road sanitary sewer.

The proposed sanitary service lateral is sufficiently sized to provide gravity drainage for the site. The floor drains in the underground parking will be connected to the building plumbing system and discharged to the sanitary service lateral through a sump pump. A backflow preventer will be required for the proposed building in accordance with the Ottawa Sewer Design Guide and will be coordinated with the buildings' mechanical engineer.

11.3 STORMWATER MANAGEMENT AND SERVICING

The subject site will be serviced by a proposed 600mm diameter concrete storm sewer running east to west on Cyrville Road. Stormwater cisterns will be required to attenuate peak flows from the site, to meet the site target release rate. The proposed stormwater cisterns will be serviced by the building internal plumbing system. The stormwater cistern's controlled release rate will be achieved by a pump to be designed by a mechanical engineer.

A proposed oil/grit separator unit will treat storm runoff from the site to achieve 80% TSS removal. An Imbrium stormceptor EF06 or approved equivalent is recommended for this purpose.

11.4 SITE GRADING AND DRAINAGE

Grading for the site is designed as per City of Ottawa requirements and provides for outlet of emergency overland flow under extreme flood conditions. Erosion and sediment control measures will be implemented during construction to reduce the impact on existing facilities.

Conclusions March 2, 2023

11.5 UTILITIES

Hydro Ottawa, Bell, Rogers, and Enbridge all have existing utility plants in the area, which will be used to service the site. The exact size, location, and routing of utilities will be finalized after design circulation. Existing overhead wires and utility plants may need to be moved/reconfigured to allow sufficient clearance to the proposed building. The relocation of existing utilities will be coordinated with the individual utility providers upon design circulation.

11.6 APPROVALS/PERMITS

A Ministry of the Environment, Conservation and Parks (MECP) Environmental Compliance Approval (ECA) will be required for the installation of a new storm sewer run within the Cyrville Road ROW. Municipal consent will be required for upsizing of the Cyrville Road storm sewer to provide an adequate outlet for the proposed site and ensure that no infrastructure and utility conflicts exist.

A Permit to Take Water (PTTW) may be required if the dewatering during the construction of the underground parking level is expected to exceed 400,000 L/day. No other approval requirements from other regulatory agencies are anticipated. For dewatering activities between 50,000 and 400,000 L/day, registration on the Environmental Activity and Sector Registry (EASR) will be required. If blasting is used to remove the bedrock as part of the excavation for the building foundation, prior approval is required from the owners/operators of any water storage reservoir, pumping station, and water works transformer station within 200 m of the site.

March 2, 2023

APPENDICES

Appendix A Potable Water Servicing March 2, 2023

Appendix A POTABLE WATER SERVICING

A.1 WATER DEMAND CALCULATIONS

1125-1149 Cyrville Road, Ottawa, ON - Domestic Water Demand Estimates

Site Plan provided by J + S Architect Inc. (2023-01-18) Project No. 160401672

Densities as per City Guidelines:Apartment Units1 Bedroom1.4ppu2 Bedroom2.1ppu3 Bedroom3.1ppu

Stantec

Building ID	Amenity & Common	No. of	Population	Population Daily Rate of Demand ^{1 2}		ay Demand	Max Day [³ ₄ Demand	Peak Hour [³ ₄ Demand
	Area (m²)	Units		(L/Cap/day of L/fia/day)	(L/min)	(L/s)	(L/min)	(L/s)	(L/min)	(L/s)
Building A										
Apartment Units										
1 Bedroom		77	108	280	21.0	0.35	52.4	0.87	115.3	1.92
2 Bedroom		127	267	280	51.9	0.86	129.6	2.16	285.2	4.75
3 Bedroom		5	16	280	3.0	0.05	7.5	0.13	16.6	0.28
Total common areas	2532			28000	4.9	0.082	7.4	0.123	13.3	0.222
Total Site :		209	390		80.8	1.35	197.0	3.28	430.4	7.17

1 Average day water demand for residential areas: 280 L/cap/d per ISTB-2021-03

2 Average day water demand for Amenity/common areas: 28,000 L/ha/d (Based on commercial water demand rates)

3 The City of Ottawa water demand criteria used to estimate peak demand rates for residential areas are as follows:

maximum day demand rate = 2.5 x average day demand rate for residential

peak hour demand rate = 2.2 x maximum day demand rate for residential

4 Water demand criteria used to estimate peak demand rates for amenity/common areas are as follows:

maximum daily demand rate = 1.5 x average day demand rate

peak hour demand rate = 1.8 x maximum day demand rate

1125-1149 Cyrville Road, Ottawa, ON - Domestic Water Demand Estimates

Site Plan provided by J + S Architect Inc. (2023-01-18) Project No. 160401672

Densities as per City Guidelines:						
Apartment Units						
1 Bedroom	1.4	рри				
2 Bedroom	2.1	рри				
Townhouse	2.7	рри				

Stantec

Building ID	Amenity & common areas	No. of Units	Population	Daily Rate of Demand ^{1 2} (L/cap/day or L/ha/day)	Avg D	ay Demand	Max Day D	³₄)emand	^{3 4} Peak Hour Demand		
	(m²)	••••••		((L/min)	(L/s)	(L/min)	(L/min) (L/s)		(L/s)	
Building B											
Apartment Units											
1 Bedroom		77	108	280	21.0	0.35	52.4	0.87	115.3	1.92	
2 Bedroom		78	164	280	31.9	0.53	79.7	1.33	175.4	2.92	
Townhouse Unit		2	5	280	1.1	0.02	2.6	0.04	5.8	0.10	
Total common areas	1910			28000	3.71	0.062	5.6	0.093	10.0	0.17	
Total Site :		157	157 277		57.6 0.96		140.3	2.34	306.5	5.11	

1 Average day water demand for residential areas: 280 L/cap/d per ISTB-2021-03

2 Average day water demand for Amenity/common areas: 28,000 L/ha/d (Based on commercial water demand rates)

3 The City of Ottawa water demand criteria used to estimate peak demand rates for residential areas are as follows:

maximum day demand rate = 2.5 x average day demand rate for residential

peak hour demand rate = 2.2 x maximum day demand rate for residential

4 Water demand criteria used to estimate peak demand rates for amenity/common areas are as follows:

maximum daily demand rate = 1.5 x average day demand rate

peak hour demand rate = 1.8 x maximum day demand rate

Appendix A Potable Water Servicing March 2, 2023

A.2 FIRE FLOW REQUIREMENTS PER FUS GUIDELINES

FUS Fire Flow Calculation Sheet

Stantec Project #: 160401672 Project Name: 1125-1149 Cyrville Road, Ottawa, ON Date: 2022-05-09

Fire Flow Calculation #: 1

Description: Multi family residential

Building A:6-storey residential high-rise with indoor amenity in its 6th floor. Information taken from Conceptual Design by J + S Notes: Architect Inc. dated April 18, 2022. 2-hour fire separation provided between each floor and 1-hour fire separation provided for exterior vertical communications.

Step	Task				Note	S		Value Used	Req'd Fire Flow (L/min)
1	Determine Type of Construction			Non	-Combustible	Construction	l.	0.8	-
2	Determine Ground Floor Area of One Unit (m2)	Used the 's m2) + 25% and fourth t	gross floor are of the gross c floor). Methoo	ea' of Building onstruction o dology as pe Pu	g A ground fle area of the tw er Page 17 of blic Fire Prote	oor (i.e. floor v vo immediate the Fire Unde ction, 1999.	with the largest footprint, 2638.1 Bly adjoining floors (the third floor rwriters Survey's Water Supply for	3957.2	-
	Determine Number of Adjoining Units			1	-				
3	Determine Height in Storeys		Does no	1	-				
4	Determine Required Fire Flow			-	11000				
5	Determine Occupancy Charge			-15%	9350				
				-30%					
,	Determine Serielder Deduction			-10%	2740				
0	Determine spinkler keduction			0%	-3740				
				100%					
		Direction	Exposure Distance (m)	Exposed Length (m)	Exposed Height (Stories)	Length-Height Factor (m x stories)	Construction of Adjacent Wall	-	-
		North	10.1 to 20	30	20	> 120	Wood Frame or Non-Combustible	15%	
7	Determine Increase for Exposures (Max. 75%)	East	10.1 to 20	40	1	31-60	Wood Frame or Non-Combustible	13%	5410
		South	3.1 to 10	87	2	> 120	Wood Frame or Non-Combustible	20%	3610
		West	10.1 to 20	27	1	0-30	Wood Frame or Non-Combustible	12%	
				Total Require	ed Fire Flow in	L/min, Round	ded to Nearest 1000L/min		11000
0	Datarmina Final Required Fire Flow				Total Re	quired Fire Flo	ow in L/s		183.3
°					Required D	uration of Fire	Flow (hrs)		2.00
					Required V	olume of Fire	Flow (m ³)		1320

FUS Fire Flow Calculation Sheet

Stantec Project #: 160401672 Project Name: 1125-1149 Cyrville Road, Ottawa, ON Date: 2022-05-09

Fire Flow Calculation #: 1

Description: Residential High-rise

Building B: 20-storey residential high-rise. Information taken from Conceptual Deisgn Residential Development by J + S Architect Notes: Inc. dated April 18, 2022. 2-hour fire separation provided between each floor and 1-hour fire separation provided for exterior vertical communications.

Step	Task				Note	S		Value Used	Req'd Fire Flow (L/min)		
1	Determine Type of Construction			Non-	-Combustible	Construction		0.8	-		
2	Determine Ground Floor Area of One Unit (m2)	Used the 'gi 25% of the third floc	ross floor arec gross constru or). Methodolo	a' of Building uction area ogy as per P Pul	B's largest flo of the two im age 17 of the blic Fire Prote	or (floor with t mediately ad Fire Underwri ction, 1999.	he largest footprint, 631.8 m2) + joining floors (the first floor and ters Survey's Water Supply for	950.7	_		
	Determine Number of Adjoining Units			1	-						
3	Determine Height in Storeys		Does no	1	-						
4	Determine Required Fire Flow		(-	5000						
5	Determine Occupancy Charge			-15%	4250						
				-30%							
,	Determine Coniclus Deduction			-10%	1700						
0	Determine sprinkler keduction			0%	-1700						
				100%							
		Direction	Exposure Distance (m)	Exposed Length (m)	Exposed Height (Stories)	Length-Height Factor (m x stories)	Construction of Adjacent Wall	-	-		
		North	30.1 to 45	45	25	> 120	Wood Frame or Non-Combustible	5%			
7	Determine Increase for Exposures (Max. 75%)	East	20.1 to 30	40	36	> 120	Wood Frame or Non-Combustible	10%	1070		
		South	10.1 to 20	87	6	> 120	Wood Frame or Non-Combustible	15%	10/0		
		West	10.1 to 20	27	3	61-90	Wood Frame or Non-Combustible	14%			
			1	lotal Require	ed Fire Flow in	L/min, Round	ed to Nearest 1000L/min		4000		
0	Datarmina Final Paguirad Fira Flaw				Total Red	quired Fire Flo	w in L/s		66.7		
0					Required D	uration of Fire	Flow (hrs)		1.75		
					Required V	olume of Fire	Flow (m ³)		420		

Appendix A Potable Water Servicing March 2, 2023

A.3 BOUNDARY CONDITIONS

Nwanise, Nwanise

From:	Moroz, Peter
Sent:	Tuesday, July 20, 2021 2:42 PM
То:	Curry, William; Nwanise, Nwanise; Thiffault, Dustin
Subject:	RE: BC Request

Will, Thank you very much!

Peter

Peter Moroz P.Eng., MBA Managing Principal, Community Development

Stantec 400 - 1331 Clyde Avenue Ottawa ON K2C 3G4 Cell: (613) 294-2851

peter.moroz@stantec.com

From: Curry, William <William.Curry@ottawa.ca>
Sent: Tuesday, July 20, 2021 2:27 PM
To: Nwanise, Nwanise <Nwanise.Nwanise@stantec.com>; Thiffault, Dustin <Dustin.Thiffault@stantec.com>
Cc: Moroz, Peter <peter.moroz@stantec.com>
Subject: BC Request

The following are boundary conditions, HGL, for hydraulic analysis at 1125 Cyrville Rd (zone 1E) assumed to be a dual connection to the 254 mm on Cyrville Road (see attached PDF for location).

Minimum HGL: 109.5 m Maximum HGL: 118.4 m Max Day + Fire Flow (200 L/s): 105.0 m Max Day + Fire Flow (133.3 L/s): 109.5 m

These are for current conditions and are based on computer model simulation. Disclaimer: The boundary condition information is based on current operation of the city water distribution system. The computer model simulation is based on the best information available at the time. The operation of the water distribution system can change on a regular basis, resulting in a variation in boundary conditions. The physical properties of watermains deteriorate over time, as such must be assumed in the absence of actual field test data. The variation in physical watermain properties can therefore alter the results of the computer model simulation.

Will Curry, C.E.T.

Project Manager

Planning, Infrastructure and Economic Development /

Planification, d'infrastructure et de développement économique

City of Ottawa | Ville d'Ottawa

613.580.2424 ext./poste 16214

110 Laurier Ave., 4th Fl East;

Ottawa ON K1P 1J1

ı.

ı

William.Curry@Ottawa.ca

This e-mail originates from the City of Ottawa e-mail system. Any distribution, use or copying of this e-mail or the information it contains by other than the intended recipient(s) is unauthorized. Thank you.

Le présent courriel a été expédié par le système de courriels de la Ville d'Ottawa. Toute distribution, utilisation ou reproduction du courriel ou des renseignements qui s'y trouvent par une personne autre que son destinataire prévu est interdite. Je vous remercie de votre collaboration.

Appendix B Proposed Site Plan March 2, 2023

Appendix B PROPOSED SITE PLAN

PART OF LOT 27, CONCESSION 2 (Ottawa Front), Geographic Township of Gloucester, City of Ottawa

welling units	
sed Zoning: TD2	
Required	Provided
inimum	Total lot area:7445 m ²
(active frontage street): 3m	Front(active frontage street): 3m
East+West):	Side under 6 storeys:
^r 6 storeys: 0m	East: 3.6m
6 storeys: 12m	West: 5.0m
	Side over 6 storeys:
r 6 storeys: 0m	East: 12m
6 storeys: 12m	West: 7.0m(12m to city's property)
	Rear:
	4.45m(phase1)
	11.2m(phase 2 under 6 storeys)
	12m(phase 2 over 6 storeys)
num:6.7m(2 storeys)	Phase1: 19m(6 storeys)
num: 60m	Phase 2: 60.25m(20 storeys)
	Private amenity space
	-Private balconies:
	1774m²(phase 2)
$2.136 m^2/6m^2/dwolling$	1390 m²(phase1)
z, 130 m (om /dweiling	Common amenity space
nunal [.] 1 068 m²	-Indoor amenity:190 m ²
	-Outdoor rooftop amenity:
	76m ² (phase 1) 380m ² (phase 2)
	-Outdoor ground amenity:450m ²
	total common amenity space: 1,096m ²
	365(including 36 visitor parking)
).5/dwelling unit)	183 (15 at ground, 168 at parking level 1
250 units/net ha)	365
$1^{2}(2\% \text{ of lot area at grade})$	284 m ²
	(202 m ² in phase 1/ 82 m ² in phase 2)

Residential Statistics - GFA per City Definition

BUILDING A

_evel	Number of Floors	GFA	
_1	1	20,650 sq ft	1,918 sq ft
_2 - L5	4	96,440 sq ft	8,959 sq ft
_6	1	22,077 sq ft	2,051 sq ft
TOTAL	6	139,167 sq ft	12929 sq m

BUILDING B.

Level	Number of Floors	GFA	
L1	1	3,608 sq ft	335 sq m
L2	1	6,151 sq ft	571 sq m
L3-L20	18	103,284 sq ft	9595 sq m
TOTAL	20	113,043 sq ft	10502 sq m
TOTAL.		252,210 sq ft	23430 sq m

Residential Statistics - Unit Counts

BUILDING A															
evel	Studio	1 Bed	2Bed	3 Bed	Total	Number of Floors									
_1	1	15	16	0	32	1									
_2 - L5	1	13	22	1	37	4									
.6	1	10	23	1	35	1									
Fotal	6	77	127	5	215										

BUILDING E	3				
_evel	1 Bed	2 Bed	3 Bed	Total	Number of Floors
_1	1	2	2	5	1
_2	4	3	0	7	1
_3 -L20	4	4	0	8	18
Fotal	77	77	2	156	

371

TOTAL

T 604 210 9698 INFO@JSARCHITECT.CA 206-4603 KINGSWAY, BURNABY, BC V5H 4M4 WWW.JSARCHITECT.CA

Copyright reserved: This plan and design are and at all times remain the exclusive property of J+S Architect Inc and may not be used or reproduced without their consent.

REVISION AS PER CITY COMMETNS	18/01/2023
REVISION AS PER CITY COMMETNS	18/10/2022
REVISION AS PER CITY COMMETNS	08/06/2022
REVISION AS PER CITY COMMETNS	30/05/2022
NO. REVISION REVISIONS:	DATE(D/M/Y)
ISSUED FOR:	DATE(D/M/Y)
ISSUED FOR: ISSUED FOR REZONING APPLICATION	DATE(D/M/Y) 18/04/2022
ISSUED FOR: ISSUED FOR REZONING APPLICATION	DATE(D/M/Y) 18/04/2022
ISSUED FOR: ISSUED FOR REZONING APPLICATION	DATE(D/M/Y) 18/04/2022
ISSUED FOR: ISSUED FOR REZONING APPLICATION	DATE(D/M/Y) 18/04/2022
ISSUED FOR: ISSUED FOR REZONING APPLICATION	DATE(D/M/Y) 18/04/2022

1125-1149 Cyrville Road, Ottawa, ON

CONSULTANT:

SITE PLAN

DRAWING N0.:	
A1.0	

Appendix C Sanitary Servicing March 2, 2023

Appendix C SANITARY SERVICING

C.1 SANITARY SEWER DESIGN SHEET

	SITE: 1 '	125-1149	9 Cyrville Ro	oad	SANITARY SEWER DESIGN SHEET									DESIGN PARAMETERS MAX PEAK FACTOR (RES.)= 4.0 AVG. DAILY FLOW / PERSON 280 L/p/day MINIMUM VELOCITY												0.60) m//			
() Stantec			2023	-03-01	-			(0		lawa)						CTOR (RES.)	=	4.0		COMMERCIA			28 000	L/p/day					3.00) m/s
	REVISION:		2020	4											PEAKING FA	CTOR (INDUS	TRIAL):	2.4		INDUSTRIAL	(HEAVY)		55,000	L/ha/day		MANNING'S r			0.013	3
	DESIGNED	BY:	F	M	FILE NUMBER	र:		160401672							PEAKING FA	CTOR (ICI >20	%):	1.5		INDUSTRIAL	(LIGHT)		35,000	L/ha/day		BEDDING CL	ASS		E	З
	CHECKED I	BY:	C	т											PERSONS / 1	BEDROOM		1.4		INSTITUTION	IAL		28,000	L/ha/day		MINIMUM CO	VER		2.50	θm
															PERSONS / 2	BEDROOM		2.1												
															PERSONS / 3	BEDROOM		3.1		INFILTRATIC	N		0.33	L/s/ha		HARMON CO	RRECTION FAC	TOR	0.8	
															PERSONS / T	OWNHOME		2.7		_										
LOCATION					RESIDEN	ITIAL AREA AND P	OPULATION					COMM AMENIT	ERCIAL/ Y/LOBBY	INDUST	NDUSTRIAL (L) INDUSTRIAL (H)		RIAL (H)	INSTITU	INSTITUTIONAL GREEN / UNUSED		C+I+I	I+I INFILTRATION			TOTAL					
AREA ID FROM NUMBER M.H.	TO M.H.	AREA	1 BEDROOM	2 BEDROOM	3 BEDROOM	TOWNHOME	POP.	CUMUL AREA	ATIVE POP.	PEAK FACT.	PEAK FLOW	AREA	ACCU. AREA	AREA	ACCU. AREA	AREA	ACCU. AREA	AREA	ACCU. AREA	AREA	ACCU. AREA	PEAK FLOW	TOTAL AREA	ACCU. AREA	INFILT. FLOW	FLOW	LENGTH	DIA	MATERIAL	(
		(ha)						(ha)			(L/s)	(ha)	(ha)	(ha)	(ha)	(ha)	(ha)	(ha)	(ha)	(ha)	(ha)	(L/s)	(ha)	(ha)	(L/s)	(L/s)	(m)	(mm)		
R100B BLDG B	BLDG A	0.080	77	78	0	2	277	0.080	277	3.79	3.41	0.191	0.191	0.000	0.00	0.000	0.00	0.000	0.00	0.000	0.00	0.09	0.080	0.080	0.03	3.52	8.4	200	PVC	E
G100A		0.390					0	0.390	0	3.79	0.00	0.000	0.000	0.000	0.00	0.000	0.00	0.000	0.00	0.000	0.00	0.00	0.390	0.390	0.13	3.65				
R100A BLDG A	MONITOR	0.270	77	127	5	0	390	0.270	390	3.79	4.79	0.253	0.253	0.000	0.00	0.000	0.00	0.000	0.00	0.000	0.00	0.12	0.270	0.270	0.09	8.65	4.3	200	PVC	S
MONITOR	CAN 1	0.000					0	0.000	0	2.00	0.00	0.000	0.000	0.000	0.00	0.000	0.00	0.000	0.00	0.000	0.00	0.00	0.000	0.000	0.00	0.05	12.0	200	DVC	
MONTOR	SAN I	0.000					667	0.740	U	3.00	0.00	0.000	0.000	0.000	0.00	0.000	0.00	0.000	0.00	0.000	0.00	0.00	0.000	0.000	0.00	0.00	12.9	200	FVG	-

 PIPE

 CLASS
 SLOPE
 CAP. (FULL)
 VEL. (FULL)
 VEL. (ACT.)

 (%)
 (l/s)
 (%)
 (m/s)
 (m/s)

 SDR 35
 1.00
 125.8
 2.80% 1.79
 0.62

 SDR 35
 1.00
 125.8
 6.88% 1.79
 0.62

Appendix D Stormwater Servicing and Management March 2, 2023

Appendix D STORMWATER SERVICING AND MANAGEMENT

D.1 PRECONSULTATION NOTES WITH CITY OF OTTAWA

From:	Curry, William
To:	Moroz, Peter
Cc:	Boughton, Michael; Peter Hume; Murshid, Shoma; dsanche@westrichpacific.com; Jack Stirling
Subject:	Re: 1125 Cyrville Road - parting thoughts from meeting
Date:	Monday, March 15, 2021 1:44:27 PM
Attachments:	1125 Cyrville Map.pdf

Peter,

We don't permit connections to any Trunks within an easement at all. This 1900 mm Ø storm sewer has HGL issues. In a 100-year event the water is 30cm above the Storm MH cover (MHST21507) on Cummings Ave at elevation 68.24. Cover elevation is 68.21. City Water Resources staff have confirmed this. The entire pipe has maximum of about 800mm cover.

With the application of 1178 Cyrville Road I asked that they remove the 1 CB within their parcel. It spans the property line of both developments. With the development of 1125 Cyrville the CB closer to the 1113 Cyrville parcel should also be removed as it has a cover of 68.13. The City has a known history of this area and excessive ponding issues.

The constraints are:

- 1. No direct connections to any Trunks within an easement at all.
- 2. When Trunk sewers in easements are deep we typically permit 1 set of services across an Easement as there is little to no impact to the Deep trunk sewer. We could permit it here, but they would have to be pumped and maybe below the storm trunk.
- 3. We **do not** permit anything private to cross the easement such as Hydro, gas or utilities unless in a City Block.
- 4. it is Unkown exactly what 1178 Cummings, and 1098 Ogilvie are re-designing. They have not resubmitted. They could service this parcel of 1125 Cyrville if required by gravity, also with a JUMA. Note it was recommended that their entire site be raised as much as possible, near a metre in height. This may benefit 1125 Cyrville also.
- 5. Retaining walls if crossing an easement must be of the block type that can be easily removed by the City if need be. No fixed structures.
- 6. Discussion was there may be a shared Private Road between the 2 developments, Ogilvie to Cyrville and again a JUMA. Ideal for servicing.
- 7. Practicality may suggest providing additional cover over the pipe for protection from vehicles...etc.

CCTV was ordered and is on the List to be done. None currently available.

I hope that helps if you need to discuss further, please contact me.

From: Moroz, Peter <peter.moroz@stantec.com>

Sent: Monday, March 15, 2021 12:44 PM

To: Curry, William < William.Curry@ottawa.ca>

Cc: Boughton, Michael <Michael.Boughton@ottawa.ca>; Peter Hume <peter.hume@hpurban.ca>;

Murshid, Shoma <Shoma.Murshid@ottawa.ca>; dsanche@westrichpacific.com

<dsanche@westrichpacific.com>; Jack Stirling <jack@thestirlinggroup.ca>

Subject: FW: 1125 Cyrville Road - parting thoughts from meeting

CAUTION: This email originated from an External Sender. Please do not click links or open attachments unless you recognize the source.

ATTENTION : Ce courriel provient d'un expéditeur externe. Ne cliquez sur aucun lien et n'ouvrez pas de pièce jointe, excepté si vous connaissez l'expéditeur.

William, I am in process of reviewing the servicing requirements for 1125 Cyrville Road, and would like to clarify the servicing constraints pertaining to the northern part of the site, north of the City trunk storm trunk sewer (see highlighted comment below). Can you confirm which services has the City determined to be coming through 1098 Ogilvie/1178 Cummings? Alternatively, can you also confirm if water and sanitary forcemain can cross the easement with storm connection directly into the storm trunk, in the event that the easement through the 1098 Ogilvie/1178 Cummings is not available.

thx

Peter

Peter Moroz P.Eng., MBA Managing Principal, Community Development

Stantec 400 - 1331 Clyde Avenue Ottawa ON K2C 3G4

Phone: (613) 724-4082 Cell: (613) 294-2851

peter.moroz@stantec.com

From: Murshid, Shoma < Shoma.Murshid@ottawa.ca>

Sent: Tuesday, February 16, 2021 11:42 AM

To: Peter Hume <peter.hume@hpurban.ca>

Cc: David Sanche <dsanche@westrichpacific.com>; Curry, William <William.Curry@ottawa.ca>;

Boughton, Michael < Michael.Boughton@ottawa.ca>; Wang, Randolph

<Randolph.Wang@ottawa.ca>; Giles, Peter <peter.giles1@ottawa.ca>; Wood, Mary Ellen

<MaryEllen.Wood@ottawa.ca>; Giampa, Mike <Mike.Giampa@ottawa.ca>

Subject: 1125 Cyrville Road - parting thoughts from meeting

Hi Peter,

Even though I am not in a position to provide a formal or typical 'pre-consultation follow-up' to the February 4, 2021 meeting, I wanted to share a few items that will help in a re-design process.

You may proceed and re-convene with us on a formal pre-consultation for what is required at the time of a site plan control submission with what is permitted exactly in the zoning for the lands today without the need for a zoning amendment and/or an official plan amendment. If you wish to depart from the zoning provisions today by increasing or decreasing the density and/or heights, it will automatically trigger the need for a Zoning Amendment and we can only consider a rezoning that at the very least complies with the TD2 zone. If you wish provisions more in keeping with a TD3 zone, then this will also have to be accompanied by an Official Plan Amendment (OPA). Any site-specific OPAs must be in and deemed complete by PIED in advance of the new OP becoming Minister-approved, otherwise a 2-year moratorium on sitespecific OPAs will take effect. However, if you wish to proceed with the current zone and there are minor changes required to the current zone provisions that do not change the density or height provisions and it meets the 4 tests for required for minor variance (as can be determined by a Committee of Adjustment planner), this could also be considered. Again, we are ready to review any re-design and have another pre-consult meeting with you.

Further items to consider within your re-design:

- Please be aware of affordable housing programs, such as <u>CMHC's Rental</u> <u>Construction Financing</u> program, and see if your re-design can be considered for eligibility
- Bird-safe safety design guidelines are now in effect. <u>https://ottawa.ca/en/city-hall/public-engagement/projects/bird-friendly-design-guidelines</u> <u>https://ottawa.ca/en/city-hall/public-engagement/projects/bird-friendly-design-guidelines#bird-friendly-design-guidelines</u>
- Due to the City's TOD Plan in effect for the area (Cyrville TOD) and an exception present in the current zone for MC[1957]F(1.1)H(15), there is a requirement to take an additional 5 metres of road dedication along the west side of your property from your site. This, will have to be designed, developed and constructed at the applicant's cost, via a site plan control process's review, as a MUP.
- Due to the City trunk sewer and easement running approximately halfway through your property, it makes the northern half unserviceable straight from a City source. There may be a chance to seek a service right through a private property at the moment, due to an active site plan application at 1098 Ogilvie/1178 Cummings, where the applicant appears to be proposing a private service line adjacent to the back of your site. You may wish to pursue this option with the landowner of aforementioned lands. For further information,

please click on <u>https://devapps.ottawa.ca/en/applications/ 8569VJ/details</u> or contact Michael Boughton, Planner for this site at <u>Michael.Boughton@ottawa.ca</u> and/or Will Curry, Project Manager at <u>William.Curry@ottawa.ca</u> .

- This is an active priority streetscape along Cyrville (as per the Cyrville TOD Plan). This includes the requirement for achieving large canopy trees at the frontage of Cyrville Road, and large canopy trees along the MUP is encouraged.
- A pre-consultation with UDRP is encouraged.
- Please have a meeting to discuss your development options with Councillor Tierney.
- Ensure there are principal entrances and widnows along not only Cyrville Road, but also towards the MUP that is to be developed to the west.
- Transit-supportive uses and jobs, plus densities are encouraged at this location.
- ROW protection on Cyrville is 26m. Please ensure that this ROW protection currently exists via your surveyor. If not, the appropriate amount will have to be dedicated along Cyrville Road via the site plan control process.
- Parks will be requesting conveyance of parkland (see attached for further comments). With respect to density calculation, typically it is calculated using the entire parcel. The land conveyed as parkland is not subtracted from the parcel.

Urban Design Reflections to consider:

Here are urban design comments on behalf of PRUD:

- 1. The applicants face some servicing and land allocation challenges. It is anticipated that they will change their design and a second pre-consultation may be required when the new design is developed.
- 2. A Design Brief is required for a site plan and a scoped Design Brief is required for rezoning. The Terms of Reference of the Design Brief is attached for convenience. A wind study is not required for a mid-rise proposal. However, a wind study may be required if a high-rise is proposed in the new design.
- 3. The site is within a Design Priority Area and a visit to the review by the City's Urban Design Review Panel (UDRP) for formal review is required. The applicant may also benefit from an informal review by the UDRP. However, at this time, informal UDRP review is not recommended. The decision on the merits of UDRP informal review can be made at the second staff pre-consultation.
- 4. It is crucially important to understand the planned context of the area and develop design responses accordingly. I am sharing the slides I presented to the applicants at the meeting for information. See attached.
- 5. The proposed mid-rise concept is quite interesting and has the potential to achieve many planning and urban design objectives for the area, however,
 - a. It appears the design does not take into consideration the approximately 5m wide trip of lands taken by the City along the west side of the property, neither does it take into consideration the street and pathway systems

envisioned in the TOP plan for the street block the site is situated.

- b. The close proximity (3m) of the residential units to the interior lot lines and rear lot lines with primary windows and balconies facing the very narrow side yards and rear yard is quite concerning. Please keep in mind the planned context for the area and the neighbouring properties. Both the current zoning of MC and the future zoning of TD, as directed by the TOD study, are very permissive with respect to building setbacks. Neighbouring properties can potentially see mixed use buildings rising up right at the interior lot lines.
- 6. A few suggestions for the development of revised options.
 - a. Provide sufficient building setbacks from the west property line (in addition to the 5m that has already been taken by the City) to allow for the construction of a potential street connection and/or a multi-use pathway.
 - b. Provide sufficient building setbacks from the south and east property lines to allow for the construction of multi-use pathways.
 - c. Please note the proposed development at 1178 Cumming has already provided space along interior and rear property lines to allow the above-mentioned street connections and pathways.
 - d. Orient and design buildings in response to these future street connection and pathways by following the principle of "eyes on the street". Depending on the programing there may be merits to include some ground-oriented units.
 - e. Provide adequate landscaping along all public streets and pathways in accordance with the TOP plan and other relevant City policies and guidelines.
 - f. Provide commercial and other active uses along Cyrville Road.
 - g. Locate main pedestrian entrances on Cyrville Road as the applicants have already done in the concept shown at pre-consultation.

Further transportation and noise review notes to consider are:

- Submit a screening form.
- If a TIA is warranted proceed to scoping.
- The application will not be deemed complete until the submission of the draft step 2-4, including the functional draft RMA package (if applicable) and/or monitoring report (if applicable).
- Although a full review of the TIA Strategy report (Step 4) is not required prior to an application, it is strongly recommended. Synchro files are required at Step 4.
- A Road Noise Impact Study is required.
- Clear throat requirements as per TAC guidelines for a collector road.

Some Engineering Design Criteria to consider under a site plan control process:

Design Criteria - Civil Engineer to contact Will Curry directly

Storm Pre to post, C of .5, Pre tc 20; post tc 10

Onsite, 5-year pipe minimum and store up to 100-year on site.

Permissible ponding of 350mm for 100-year. No spilling to adjacent properties.

At 100-year ponding elevation you must spill to City ROW

100-year Spill elevation must be 300mm lower than any building opening

Nothing is permitted with the storm easement other than asphalt, curbs, pavers, grass and low shrubs.

<u>Water Boundary condition</u> requests must include the location of the service and the expected loads required by the proposed development. Please provide the following information:

Location of service connections (MAP) Type of development and the amount of fire flow required (as per FUS). Average daily demand: ____ l/s. Maximum daily demand: ____ l/s. Maximum hourly daily demand: ____ l/s.

Closing thoughts:

We look forward to a concept re-design. Should you be ready to pre-consult with us on a revised concept, please do not hesitate to reach out to me first and discuss. If you have any questions or concerns in the interim, please do not hesitate to contact me.

Best wishes,

Shoma Murshid, MCIP, RPP File Lead, Planner II Responsable de dossier, urbaniste II City of Ottawa/ Ville d'Ottawa Development Review (Suburban Services, East)/ Examen des projets d'aménagement (Services suburbains Est) Planning, Infrastructure, and Economic Development Department/ Service de la planification, de l'infrastructure et du développement économique 110 Laurier Avenue West, 4th Floor, Ottawa ON K1P 1J1/ 110, avenue Laurier Ouest, 4^e étage, Ottawa (Ontario) K1P 1J1 Mail Code/ Code de courrier : 01-14 Tel/ Tél: (613) 580-2424 ext. 15430 Fax/ Téléc. : (613) 580-4751 e-mail/ courriel : shoma.murshid@ottawa.ca www.ottawa.ca

This e-mail originates from the City of Ottawa e-mail system. Any distribution, use or copying of this e-mail or the information it contains by other than the intended recipient(s) is unauthorized. Thank you.

Le présent courriel a été expédié par le système de courriels de la Ville d'Ottawa. Toute distribution, utilisation ou reproduction du courriel ou des renseignements qui s'y trouvent par une personne autre que son destinataire prévu est interdite. Je vous remercie de votre

collaboration.

This e-mail originates from the City of Ottawa e-mail system. Any distribution, use or copying of this e-mail or the information it contains by other than the intended recipient(s) is unauthorized. Thank you.

Le présent courriel a été expédié par le système de courriels de la Ville d'Ottawa. Toute distribution, utilisation ou reproduction du courriel ou des renseignements qui s'y trouvent par une personne autre que son destinataire prévu est interdite. Je vous remercie de votre collaboration.

Appendix D Stormwater Servicing and Management March 2, 2023

D.2 MODIFIED RATIONAL METHOD CALCULATIONS

File No: 160401672 Project: 1125-1149 Cyrville Road, Ottawa, ON Date: 01-Mar-23

SWM Approach: Post-development to Pre-development flows

Post-Development Site Conditions:

Overall Runoff Coefficient for Site and Sub-Catchment Areas

		Runoff	Coefficient Tab	e				
Sub-catchi	ment		Area		Runoff			Overall
Area Catchment Type	ID / Description		(na) "A"		Coefficient "C"	"Δ	x C"	Coefficient
			~		Ũ	~	~ •	obemelen
Roof	Roof 2B	Hard	0.005		0.9	0.005		
		Soft	0.000		0.2	0.000		
	Su	ubtotal		0.01			0.005	0.900
Uncontrolled - Tributary	L100A	Hard	0.039		0.9	0.035		
		Soft	0.000		0.2	0.000		
	Su	ubtotal		0.04			0.035	0.900
Roof	Roof 1A	Hard	0.087		0.9	0.078		
		Soft	0.000		0.2	0.000		
	St	ubtotal		0.09			0.078	0.900
Roof	Roof 1B	Hard	0.014		0.9	0.013		
		Soft	0.000		0.2	0.000		
	Su	ubtotal		0.01			0.013	0.900
Roof	Roof 1C	Hard	0.173		0.9	0.156		
		Soft	0.000		0.2	0.000		
	Su	ubtotal		0.17			0.156	0.900
Incontrolled - Tributary	1 100	Hard	0 111		0.9	0 100		
Checkliched Thibatary	2100	Soft	0.000		0.2	0.000		
	Su	ubtotal		0.11			0.100	0.900
	Tank 1B	Hard	0.030		0.0	0.027		
Controlled - Thoulary		Soft	0.040		0.2	0.008		
	Su	ubtotal		0.07			0.035	0.500
Poof	Poof 2A	Hard	0.076		0.0	0.068		
Rool	RUUI ZA	Soft	0.000		0.9	0.008		
	Su	ubtotal		0.08	•		0.068	0.900
Linearthallad Tributany	Tank 04	Lland	0.040		0.0	0.000		
Uncontrolled - Tributary	Tank 2A	Hard	0.040		0.9	0.036		
	Su	ubtotal	0.000	0.04	0.2	0.000	0.036	0.900
	Tank 2B	Hard	0.008		0.0	0.008		
Oncontrolled - Tributary	Talik 2D	Soft	0.008		0.9	0.008		
	Su	ubtotal		0.01			0.008	0.900
Controlled Tributory	Tank 20	Lland	0.022		0.0	0.020		
Controlled - Tributary	Tank 20	Hard Soft	0.032		0.9	0.029		
	Su	ubtotal		0.07	•		0.037	0.520
Uppentrelled New Television		Lland	0.040		0.0	0.044		
Uncontrolled - Non-Tributary	UNC-1	Hard	0.012		0.9	0.011		
	Su	ubtotal	0.021	0.04	0.2	0.000	0.016	0.440
Incontrolled Non Tributory		Hard	0.005		0.0	0.005		
Uncontrolled - Non-Imputary	UNC-2	Soft	0.005		0.9	0.005		
	Su	ubtotal	0.001	0.01	0.2	0.001	0.006	0.500
Total				0.74			0.592	
Overall Runoff Coefficient= C:								0.80
Total Roof Areas			0.36	ha				
Total Tributary Surface Areas (Co	ntrolled and Uncontro	lled)	0.34	ha				
i otal Tributary Area to Outlet			0.69	na				
Total Uncontrolled Areas (Non-Tri	ibutary)		0.05	ha				
Total Site			0.74	ha				

Stormwater Management Calculations

100-year Water Level

121.6

0.12

0.6

1.4

2.5

0.0

Project #160401672, 1125-1149 Cyrville Road, Ottawa, ON Modified Rational Method Calculatons for Storage

	5 yr Intensi	ity	l = a/(t + b) ^o	a =	998.071	<u>t (mi</u> n)	l (mm/hr)
	City of Otta	awa		b =	6.053	5	141.18
	-			с =	0.814	10	104.19
						15	83.56
						20	70.25
						25	60.90
						30	53.93
						35	48.52
						40	44.18
						45	40.63
						50	37.65
						55	35.12
						60	32.94
Subdra	5 YE	Redevelop	velopment T	Farget Relea	se from Po	ortion of S	ite
Suburg	Area (ha):	0.74			51		
	C:	0.50	(as directed b	by the City of C)ttawa)		
	Typical Tim	e of Concer	ntration				
	4.		Otomat				
	tC (min)	I (5 yr) (mm/br)	Qtarget				
	(1111)	(1111/111)					
	20	10.25	// 6				
	20 5 YEAR M	70.25	ational Meth	nod for Entir	e Site		
Subdra	5 YEAR M ainage Area: Area (ha): C:	70.25 Modified R Roof 2B 0.01 0.90	ational Meth	n od for Entin mwater cistern M	r e Site n B) laximum Sto	rage Depth:	Roof 150
Subdra	5 YEAR M ainage Area: Area (ha): C: tc (min)	70.25 Modified R Roof 2B 0.01 0.90 I (5 yr) (mm (br))	(Flows to stor	nod for Entir mwater cistern M Qrelease	re Site n B) laximum Sto	rage Depth:	Roof 150 Depth
Subdra	5 YEAR M ainage Area: Area (ha): C: tc (min)	70.25 Modified R Roof 2B 0.01 0.90 I (5 yr) (mm/hr) 104 10	(Flows to stor Qactual (L/s)	nod for Entir rmwater cistern M Qrelease (L/s)	re Site n B) aximum Sto Qstored (L/s)	rage Depth: Vstored (m^3)	Roof 150 Depth (mm)
Subdra	5 YEAR M ainage Area: Area (ha): C: tc (min) 10	70.25 fodified R 0.01 0.90 I (5 yr) (mm/hr) 104.19 70.25	Ational Meth (Flows to stor Qactual (L/s) 1.38	rmwater cisteri M Qrelease (L/s)	re Site n B) aximum Sto Qstored (L/s) 0.75	rage Depth: Vstored (m^3) 0.45 0.20	Roof 150 Depth (mm) 82.8 77 5
Subdra	20 5 YEAR M ainage Area: Area (ha): C: C: tc (min) 10 20 20	70.25 Aodified R 0.01 0.90 I (5 yr) (mm/hr) 104.19 70.25 53.02	Ational Meth (Flows to stor Qactual (L/s) 1.38 0.93 0.71	nod for Entir mwater cister M Qrelease (L/s) 0.63 0.63 0.63	re Site n B) aximum Sto Qstored (L/s) 0.75 0.30 0.09	rage Depth: Vstored (m^3) 0.45 0.36 0.15	Roof 150 Depth (mm) 82.8 77.5 56 1
Subdra	20 5 YEAR M ainage Area: Area (ha): C: tc (min) 10 20 30 40	70.25 Aodified R 0.01 0.90 I (5 yr) (mm/hr) 104.19 70.25 53.93 44.19	Qactual (Flows to stor Qactual (L/s) 1.38 0.93 0.71 0.58	mod for Entir mwater cister M Qrelease (L/s) 0.63 0.63 0.63 0.63	re Site n B) aximum Sto Qstored (L/s) 0.75 0.30 0.08 0.02	rage Depth: Vstored (m^3) 0.45 0.36 0.15 0.07	Roof 150 Depth (mm) 82.8 77.5 56.1 42.0
Subdra	20 5 YEAR M ainage Area: Area (ha): C: tc (min) 10 20 30 40 50	70.25 Aodified R 0.01 0.90 I (5 yr) (mm/hr) 104.19 70.25 53.93 44.18 27.65	72.6 ational Meth (Flows to stor Qactual (L/s) 1.38 0.93 0.71 0.58 0.50	nod for Entir mwater cistern M Qrelease (L/s) 0.63 0.63 0.63 0.55 0.48	re Site n B) laximum Sto Qstored (L/s) 0.75 0.30 0.08 0.03 0.03	rage Depth: Vstored (m^3) 0.45 0.36 0.15 0.07 0.05	Roof 150 Depth (mm) 82.8 77.5 56.1 43.9 28.0
Subdra	20 5 YEAR M ainage Area: Area (ha): C: tc (min) 10 20 30 40 50 60	70.25 Modified R 0.01 0.90 I (5 yr) (mm/hr) 104.19 70.25 53.93 44.18 37.65 22.04	Qactual (Flows to stor Qactual (L/s) 1.38 0.93 0.71 0.58 0.50 0.44	nod for Entir mwater cistern M Qrelease (L/s) 0.63 0.63 0.63 0.63 0.55 0.48 0.42	e Site n B) aximum Sto Qstored (L/s) 0.75 0.30 0.08 0.03 0.02 0.01	rage Depth: Vstored (m^3) 0.45 0.36 0.15 0.07 0.05 0.04	Roof 150 Depth (mm) 82.8 77.5 56.1 43.9 38.0 22.6
Subdra	20 5 YEAR M ainage Area: Area (ha): C: tc (min) 10 20 30 40 50 60 70	70.25 fodified R 0.01 0.90 I (5 yr) (mm/hr) 104.19 70.25 53.93 44.18 37.65 32.94 20.27	72.6 ational Meth (Flows to stor Qactual (L/s) 1.38 0.93 0.71 0.58 0.50 0.44 0.22	nod for Entir mwater cistern M Qrelease (L/s) 0.63 0.63 0.63 0.63 0.55 0.48 0.42 0.22	re Site n B) aximum Sto Qstored (L/s) 0.75 0.30 0.08 0.03 0.02 0.01 0.01	rage Depth: Vstored (m^3) 0.45 0.36 0.15 0.07 0.05 0.04 0.02	Roof 150 Depth (mm) 82.8 77.5 56.1 43.9 38.0 33.6 20.0
Subdra	20 5 YEAR M ainage Area: Area (ha): C: tc (min) 10 20 30 40 50 60 70 20	70.25 Aodified R 0.01 0.90 I (5 yr) (mm/hr) 104.19 70.25 53.93 44.18 37.65 32.94 29.37 20.55	72.6 ational Meth (Flows to stor Qactual (L/s) 1.38 0.93 0.71 0.58 0.50 0.44 0.39 0.25	nod for Entir mwater cistern M Qrelease (L/s) 0.63 0.63 0.63 0.63 0.55 0.48 0.42 0.38 0.55	e Site n B) aximum Sto Qstored (L/s) 0.75 0.30 0.08 0.03 0.02 0.01 0.01 0.01	rage Depth: Vstored (m^3) 0.45 0.36 0.15 0.07 0.05 0.04 0.03 0.03	Roof 150 Depth (mm) 82.8 77.5 56.1 43.9 38.0 33.6 30.2 07.5
Subdra	20 5 YEAR M ainage Area: Area (ha): C: tc (min) 10 20 30 40 50 60 70 80	70.25 Aodified R 0.01 0.90 I (5 yr) (mm/hr) 104.19 70.25 53.93 44.18 37.65 32.94 29.37 26.56 20.56	72.6 ational Meth (Flows to stor Qactual (L/s) 1.38 0.93 0.71 0.58 0.50 0.44 0.39 0.35 0.25	nod for Entir mwater cister M Qrelease (L/s) 0.63 0.63 0.63 0.63 0.55 0.48 0.42 0.38 0.35	re Site n B) aximum Sto Qstored (L/s) 0.75 0.30 0.08 0.03 0.02 0.01 0.01 0.01 0.00	rage Depth: Vstored (m^3) 0.45 0.36 0.15 0.07 0.05 0.04 0.03 0.02	Roof 150 Depth (mm) 82.8 77.5 56.1 43.9 38.0 33.6 30.2 27.5
Subdra	20 5 YEAR M ainage Area: Area (ha): C: tc (min) 10 20 30 40 50 60 70 80 90	70.25 Modified R 0.01 0.90 I (5 yr) (mm/hr) 104.19 70.25 53.93 44.18 37.65 32.94 29.37 26.56 24.29 20.51 20.	72.6 ational Meth (Flows to stor Qactual (L/s) 1.38 0.93 0.71 0.58 0.50 0.44 0.39 0.35 0.32 0.32	nod for Entir mwater cister M Qrelease (L/s) 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63	re Site n B) aximum Sto Qstored (L/s) 0.75 0.30 0.08 0.03 0.02 0.01 0.01 0.01 0.00 0.00	rage Depth: Vstored (m^3) 0.45 0.36 0.15 0.07 0.05 0.04 0.03 0.02 0.01 0.01	Roof 150 Depth (mm) 82.8 77.5 56.1 43.9 38.0 33.6 30.2 27.5 25.3
Subdra	20 5 YEAR M ainage Area: Area (ha): C: tc (min) 10 20 30 40 50 60 70 80 90 100	70.25 Modified R 0.01 0.90 I (5 yr) (mm/hr) 104.19 70.25 53.93 44.18 37.65 32.94 29.37 26.56 24.29 22.41	72.6 ational Meth (Flows to stor Qactual (L/s) 1.38 0.93 0.71 0.58 0.50 0.44 0.39 0.35 0.32 0.30	nod for Entir mwater cister M Qrelease (L/s) 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63	re Site n B) aximum Sto Qstored (L/s) 0.75 0.30 0.08 0.03 0.02 0.01 0.01 0.01 0.00 0.00 0.00	rage Depth: Vstored (m^3) 0.45 0.36 0.15 0.07 0.05 0.04 0.03 0.02 0.01 0.01	Roof 150 Depth (mm) 82.8 77.5 56.1 43.9 38.0 33.6 30.2 27.5 25.3 23.3
Subdra	20 5 YEAR M ainage Area: Area (ha): C: tc (min) 10 20 30 40 50 60 70 80 90 100 110	70.25 Modified R 0.01 0.90 I (5 yr) (mm/hr) 104.19 70.25 53.93 44.18 37.65 32.94 29.37 26.56 24.29 22.41 20.82	72.6 ational Meth (Flows to stor Qactual (L/s) 1.38 0.93 0.71 0.58 0.50 0.44 0.39 0.35 0.32 0.30 0.28	nod for Entir mwater cister M Qrelease (L/s) 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63	re Site n B) aximum Sto Qstored (L/s) 0.75 0.30 0.08 0.03 0.02 0.01 0.01 0.01 0.00 0.00 0.00 0.00	rage Depth: Vstored (m^3) 0.45 0.36 0.15 0.07 0.05 0.04 0.03 0.02 0.01 0.01 0.01	Roof 150 Depth (mm) 82.8 77.5 56.1 43.9 38.0 33.6 30.2 27.5 25.3 23.3 23.3 21.7
Subdra	20 5 YEAR M ainage Area: Area (ha): C: tc (min) 10 20 30 40 50 60 70 80 90 100 110 120	70.25 Aodified R 0.01 0.90 I (5 yr) (mm/hr) 104.19 70.25 53.93 44.18 37.65 32.94 29.37 26.56 24.29 22.41 20.82 19.47	72.6 ational Meth (Flows to stor Qactual (L/s) 1.38 0.93 0.71 0.58 0.50 0.44 0.39 0.35 0.32 0.30 0.28 0.26	nod for Entir mwater cistern M Qrelease (L/s) 0.63 0.63 0.63 0.63 0.63 0.63 0.55 0.48 0.42 0.38 0.35 0.32 0.29 0.27 0.26	re Site n B) aximum Sto (L/s) 0.75 0.30 0.08 0.03 0.02 0.01 0.01 0.01 0.01 0.00 0.00 0.00	rage Depth: Vstored (m^3) 0.45 0.36 0.15 0.07 0.05 0.04 0.03 0.02 0.01 0.01 0.01 0.01	Roof 150 Depth (mm) 82.8 77.5 56.1 43.9 38.0 33.6 30.2 27.5 25.3 23.3 21.7 20.3
Subdra	20 5 YEAR M ainage Area: Area (ha): C: tc (min) 10 20 30 40 50 60 70 80 90 100 110 120 Storage on	70.25 Aodified R 0.01 0.90 I (5 yr) (mm/hr) 104.19 70.25 53.93 44.18 37.65 32.94 29.37 26.56 24.29 22.41 20.82 19.47 Westend R	Value ational Meth (Flows to stor Qactual (L/s) 1.38 0.93 0.71 0.58 0.50 0.44 0.39 0.35 0.32 0.30 0.28 0.26	nod for Entir mwater cister M Qrelease (L/s) 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63	re Site n B) aximum Sto (L/s) 0.75 0.30 0.08 0.03 0.02 0.01 0.01 0.01 0.01 0.00 0.00 0.00	rage Depth: Vstored (m^3) 0.45 0.36 0.15 0.07 0.05 0.04 0.03 0.02 0.01 0.01 0.01 0.01	Roof 150 Depth (mm) 82.8 77.5 56.1 43.9 38.0 33.6 30.2 27.5 25.3 23.3 21.7 20.3
Subdra	20 5 YEAR M ainage Area: Area (ha): C: tc (min) 10 20 30 40 50 60 70 80 90 100 110 120 Storage on	70.25 Modified R 0.01 0.90 I (5 yr) (mm/hr) 104.19 70.25 53.93 44.18 37.65 32.94 29.37 26.56 24.29 22.41 20.82 19.47 Westend Re Depth	Qactual (Flows to stor Qactual (L/s) 1.38 0.93 0.71 0.58 0.50 0.44 0.39 0.35 0.32 0.30 0.28 0.26 oof of Phase 1 Head	nod for Entir mwater cistern M Qrelease (L/s) 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63	re Site n B) aximum Sto Qstored (L/s) 0.75 0.30 0.08 0.03 0.02 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	rage Depth: Vstored (m^3) 0.45 0.36 0.15 0.07 0.05 0.04 0.03 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01	Roof 150 Depth (mm) 82.8 77.5 56.1 43.9 38.0 33.6 30.2 27.5 25.3 23.3 21.7 20.3 Discharge
Subdra	20 5 YEAR M ainage Area: Area (ha): C: tc (min) 10 20 30 40 50 60 70 80 90 100 110 120 Storage on	70.25 Modified R 0.01 0.90 I (5 yr) (mm/hr) 104.19 70.25 53.93 44.18 37.65 32.94 29.37 26.56 24.29 22.41 20.82 19.47 Westend R Depth (mm)	Value ational Meth (Flows to stor Qactual (L/s) 1.38 0.93 0.71 0.58 0.50 0.44 0.39 0.35 0.32 0.30 0.28 0.26 oof of Phase 1 Head (m)	nod for Entir mwater cistern M Qrelease (L/s) 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63	re Site n B) aximum Sto Qstored (L/s) 0.75 0.30 0.08 0.03 0.02 0.01 0.00 0.00 0.00 0.00 0.00 0.00	rage Depth: Vstored (m^3) 0.45 0.36 0.15 0.07 0.05 0.04 0.03 0.02 0.01 0.01 0.01 0.01 0.01 Vavail (cu. m)	Roof 150 Depth (mm) 82.8 77.5 56.1 43.9 38.0 33.6 30.2 27.5 25.3 23.3 21.7 20.3 Discharge Check

Project #160401672, 1125-1149 Cyrville Road, Ottawa, ON Modified Rational Method Calculatons for Storage

Subdra	ainage Area: Area (ha): C:	L100A 0.04 0.90				Uncontroll	ed - Tributary			Subdrainage Area: Area (ha): C:	L100A 0.04 1.00		
	tc (min)	l (5 yr) (mm/hr)	Qactual (L/s)	Qrelease (L/s)	Qstored (L/s)	Vstored (m^3)				tc (min)	l (100 yr) (mm/hr)	Qactual (L/s)	Qreleas (L/s)
	10	104.19	10.2	10.2	0.0	0.0				10	178.56	19.4	16.5
	20	70.25	6.9	6.9	0.0	0.0				20	119.95	13.1	13.1
	30	53.93	5.3	5.3	0.0	0.0				30	91.87 75.15	10.0	10.0 8.2
	40 50	37 65	4.3	4.3	0.0	0.0				40 50	63.95	7.0	0.2 7 0
	60	32.94	3.2	3.2	0.0	0.0				60	55.89	6.1	6.1
	70	29.37	2.9	2.9	0.0	0.0				70	49.79	5.4	5.4
	80	26.56	2.6	2.6	0.0	0.0				80	44.99	4.9	4.9
	90	24.29	2.4	2.4	0.0	0.0				90	41.11	4.5	4.5
	100	22.41	2.2	2.2	0.0	0.0				100	37.90	4.1	4.1
	120	20.82 19.47	2.0	2.0	0.0	0.0				110	32.89	3.6	3.0
vrago:	Surface Ste		ar Evont	Noto: No.	ponding in 2	voor ovont			Store		rago in 100 year	Event	0.0
srage:	Surface Sto	rage in 5-ye	ar Event	Note: No	ponding in Z	year event			51012	age: Surface Sic	rage in 100 year	Event	
Orif	fice Equation	Q = CdA(2g)	h)^0.5	Where C =	0.61		0.50			Orifice Equation	$Q = CdA(2gh)^{0}$.5	Where C
Urif	ert Elevation	75.00 68.15	mm	iviax ava	aliadie volum	ie in CB	0.50	1113		Unifice Diameter	75.00 68.15	mm	Max
Т	/G Elevation	69.77	m							T/G Elevation	69.77	m	
Max Po	onding Depth	0.15	m							Max Ponding Depth	0.30	m	
Dowr	nstream W/L	67.95	m							Downstream W/L	67.95	m	
]	Stage	Head	Discharge	Vreq	Vavail	Volume]			Stage	Head	Dischar
_			(m)	(L/s)	(cu. m)	(cu. m)	Check				70.07	(m)	(L/s)
5-year	water Level	69.92	1.77	15.9	0.0	1.9	ÜK		10	JU-year water Level	70.07	1.92	16.5
Subdra	ainage Area: Area (ba):	Roof 1A		(Flows t M	to stormwater ci Iaximum Sto	istern A) grade Depth:	Roof	mm	5	Subdrainage Area: Area (ba):	Roof 1A		(Fl
Subdra	ainage Area: Area (ha): C:	Roof 1A 0.09 0.90	Qactual	(Flows t M	to stormwater ci laximum Sto Ostored	istern A) orage Depth: Vstored	Roof 150 Depth	mm	\$	Subdrainage Area: Area (ha): C: tc	Roof 1A 0.09 1.00	Qactual	(Fi
Subdra	ainage Area: Area (ha): C: tc (min)	Roof 1A 0.09 0.90 I (5 yr) (mm/hr)	Qactual (L/s)	(Flows t M Qrelease (L/s)	to stormwater ci laximum Sto Qstored (L/s)	istern A) orage Depth: Vstored (m^3)	Roof 150 Depth (mm)	mm	\$	Subdrainage Area: Area (ha): C: tc (min)	Roof 1A 0.09 1.00 I (100 yr) (mm/hr)	Qactual (L/s)	(Fid Qreleas (L/s)
Subdra	Area (ha): C: tc (min) 10	Roof 1A 0.09 0.90 I (5 yr) (mm/hr) 104.19	Qactual (L/s) 22.7	(Flows t M Qrelease (L/s) 3.4	to stormwater ci laximum Sto Qstored (L/s) 19.3	istern A) prage Depth: Vstored (m^3) 11.6	Roof 150 Depth (mm) 103.2			Subdrainage Area: Area (ha): C: tc (min) 10	Roof 1A 0.09 1.00 I (100 yr) (mm/hr) 178.56	Qactual (L/s) 43.2	(Fid Qreleas (L/s) 4.2
Subdra	ainage Area: Area (ha): C: tc (min) 10 20 30	Roof 1A 0.09 0.90 I (5 yr) (mm/hr) 104.19 70.25 53.93	Qactual (L/s) 22.7 15.3 11.7	(Flows t M Qrelease (L/s) 3.4 3.6 3.6 3.6	to stormwater ci laximum Sto Qstored (L/s) 19.3 11.7 8 1	istern A) prage Depth: Vstored (m^3) 11.6 14.1 14.6	Roof 150 Depth (mm) 103.2 109.5 110 9	mm 0.00 0.00	S	Subdrainage Area: Area (ha): C: tc (min) 10 20 30	Roof 1A 0.09 1.00 I (100 yr) (mm/hr) 178.56 119.95 91.87	Qactual (L/s) 43.2 29.0 22.2	(Field (F
Subdra	Area (ha): Area (ha): C: tc (min) 10 20 30 40	Roof 1A 0.09 0.90 I (5 yr) (mm/hr) 104.19 70.25 53.93 44.18	Qactual (L/s) 22.7 15.3 11.7 9.6	(Flows t M Qrelease (L/s) 3.4 3.6 3.6 3.6 3.6	to stormwater ci laximum Sto Qstored (L/s) 19.3 11.7 8.1 6.0	istern A) prage Depth: Vstored (m^3) 11.6 14.1 14.6 14.4	Roof 150 Depth (mm) 103.2 109.5 110.9 110.5	0.00 0.00 0.00 0.00 0.00		Subdrainage Area: Area (ha): C: tc (min) 10 20 30 40	Roof 1A 0.09 1.00 I (100 yr) (mm/hr) 178.56 119.95 91.87 75.15	Qactual (L/s) 43.2 29.0 22.2 18.2	(Field (F
Subdra	Area (ha): C: tc (min) 10 20 30 40 50	Roof 1A 0.09 0.90 I (5 yr) (mm/hr) 104.19 70.25 53.93 44.18 37.65	Qactual (L/s) 22.7 15.3 11.7 9.6 8.2	(Flows t M Qrelease (L/s) 3.4 3.6 3.6 3.6 3.6 3.6 3.6	to stormwater ci laximum Sto Qstored (L/s) 19.3 11.7 8.1 6.0 4.6	istern A) prage Depth: Vstored (m^3) 11.6 14.1 14.6 14.4 13.9	Roof 150 Depth (mm) 103.2 109.5 110.9 110.5 109.1	mm 0.00 0.00 0.00 0.00 0.00 0.00	5	Subdrainage Area: Area (ha): C: tc (min) 10 20 30 40 50	Roof 1A 0.09 1.00 I (100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95	Qactual (L/s) 43.2 29.0 22.2 18.2 15.5	(Field Qreleas (L/s) 4.2 4.5 4.6 4.6 4.6 4.6
Subdra	Area (ha): Area (ha): C: tc (min) 10 20 30 40 50 60	Roof 1A 0.09 0.90 I (5 yr) (mm/hr) 104.19 70.25 53.93 44.18 37.65 32.94	Qactual (L/s) 22.7 15.3 11.7 9.6 8.2 7.2	(Flows t M Qrelease (L/s) 3.4 3.6 3.6 3.6 3.6 3.6 3.5	to stormwater ci laximum Sto (L/s) 19.3 11.7 8.1 6.0 4.6 3.7	istern A) orage Depth: Vstored (m^3) 11.6 14.1 14.6 14.4 13.9 13.2	Roof 150 Depth (mm) 103.2 109.5 110.5 109.1 107.2	mm 0.00 0.00 0.00 0.00 0.00 0.00 0.00	S	Subdrainage Area: Area (ha): C: tc (min) 10 20 30 40 50 60	Roof 1A 0.09 1.00 I (100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89	Qactual (L/s) 43.2 29.0 22.2 18.2 15.5 13.5	(Field Qreleas (L/s) 4.2 4.5 4.6 4.6 4.6 4.6 4.6
Subdra	Area (ha): Area (ha): C: tc (min) 10 20 30 40 50 60 70	Roof 1A 0.09 0.90 I (5 yr) (mm/hr) 104.19 70.25 53.93 44.18 37.65 32.94 29.37	Qactual (L/s) 22.7 15.3 11.7 9.6 8.2 7.2 6.4	(Flows t M Qrelease (L/s) 3.4 3.6 3.6 3.6 3.6 3.6 3.5 3.5 3.5	to stormwater ci laximum Sto Qstored (L/s) 19.3 11.7 8.1 6.0 4.6 3.7 2.9	istern A) prage Depth: Vstored (m^3) 11.6 14.1 14.6 14.4 13.9 13.2 12.3	Roof 150 Depth (mm) 103.2 109.5 110.9 110.5 109.1 107.2 105.1	mm 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0		Subdrainage Area: Area (ha): C: tc (min) 10 20 30 40 50 60 70	Roof 1A 0.09 1.00 I (100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 49.79	Qactual (L/s) 43.2 29.0 22.2 18.2 15.5 13.5 13.5 12.0	(Field Qreleas (L/s) 4.2 4.5 4.6 4.6 4.6 4.6 4.6 4.6
Subdra	Area (ha): Area (ha): C: tc (min) 10 20 30 40 50 60 70 80 20	Roof 1A 0.09 0.90 I (5 yr) (mm/hr) 104.19 70.25 53.93 44.18 37.65 32.94 29.37 26.56 24.90	Qactual (L/s) 22.7 15.3 11.7 9.6 8.2 7.2 6.4 5.8 5.2	(Flows t M Qrelease (L/s) 3.4 3.6 3.6 3.6 3.6 3.6 3.5 3.5 3.5 3.4 2.2	to stormwater ci laximum Sto (L/s) 19.3 11.7 8.1 6.0 4.6 3.7 2.9 2.4 2.4	istern A) prage Depth: Vstored (m^3) 11.6 14.1 14.6 14.4 13.9 13.2 12.3 11.5 10.0	Roof 150 Depth (mm) 103.2 109.5 110.5 109.1 107.2 105.1 102.9 102.2	mm 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	S	Subdrainage Area: Area (ha): C: tc (min) 10 20 30 40 50 60 70 80 20	Roof 1A 0.09 1.00 I (100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 49.79 44.99	Qactual (L/s) 43.2 29.0 22.2 18.2 15.5 13.5 12.0 10.9 0.0	(Fi Qreleas (L/s) 4.2 4.5 4.6 4.6 4.6 4.6 4.6 4.6 4.5 4.5
Subdra	Area (ha): Area (ha): C: tc (min) 10 20 30 40 50 60 70 80 90 100	Roof 1A 0.09 0.90 I (5 yr) (mm/hr) 104.19 70.25 53.93 44.18 37.65 32.94 29.37 26.56 24.29 22.41	Qactual (L/s) 22.7 15.3 11.7 9.6 8.2 7.2 6.4 5.8 5.3 4.9	(Flows t M Qrelease (L/s) 3.4 3.6 3.6 3.6 3.6 3.6 3.5 3.5 3.5 3.5 3.4 3.3 3.2	to stormwater ci laximum Sto (L/s) 19.3 11.7 8.1 6.0 4.6 3.7 2.9 2.4 2.0 1.6	istern A) prage Depth: Vstored (m^3) 11.6 14.1 14.6 14.4 13.9 13.2 12.3 11.5 10.6 9.8	Roof 150 Depth (mm) 103.2 109.5 110.5 109.1 107.2 105.1 102.9 100.6 97.7	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0		Subdrainage Area: Area (ha): C: tc (min) 10 20 30 40 50 60 70 80 90 100	Roof 1A 0.09 1.00 I (100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 49.79 44.99 41.11 37.90	Qactual (L/s) 43.2 29.0 22.2 18.2 15.5 13.5 12.0 10.9 9.9 9.9 0.2	(Fi Qreleas (L/s) 4.2 4.5 4.6 4.6 4.6 4.6 4.6 4.6 4.5 4.5 4.5
Subdra	Area (ha): Area (ha): C: tc (min) 10 20 30 40 50 60 70 80 90 100 110	Roof 1A 0.09 0.90 I (5 yr) (mm/hr) 104.19 70.25 53.93 44.18 37.65 32.94 29.37 26.56 24.29 22.41 20.82	Qactual (L/s) 22.7 15.3 11.7 9.6 8.2 7.2 6.4 5.8 5.3 4.9 4.5	(Flows t M Qrelease (L/s) 3.4 3.6 3.6 3.6 3.6 3.6 3.5 3.5 3.5 3.5 3.4 3.3 3.2 3.2	to stormwater ci laximum Sto (L/s) 19.3 11.7 8.1 6.0 4.6 3.7 2.9 2.4 2.0 1.6 1.4	istern A) prage Depth: Vstored (m^3) 11.6 14.1 14.6 14.4 13.9 13.2 12.3 11.5 10.6 9.8 9.0	Roof 150 Depth (mm) 103.2 109.5 110.9 110.5 109.1 107.2 105.1 102.9 100.6 97.7 94.7	mm 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0		Subdrainage Area: Area (ha): C: tc (min) 10 20 30 40 50 60 70 80 90 100 110	Roof 1A 0.09 1.00 I (100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 49.79 44.99 41.11 37.90 35.20	Qactual (L/s) 43.2 29.0 22.2 18.2 15.5 13.5 12.0 10.9 9.9 9.2 8.5	(F) Qreleas (L/s) 4.2 4.5 4.6 4.6 4.6 4.6 4.6 4.5 4.5 4.5 4.4 4.4
Subdra	Area (ha): Area (ha): C: tc (min) 10 20 30 40 50 60 70 80 90 100 110 120	Roof 1A 0.09 0.90 I (5 yr) (mm/hr) 104.19 70.25 53.93 44.18 37.65 32.94 29.37 26.56 24.29 22.41 20.82 19.47	Qactual (L/s) 22.7 15.3 11.7 9.6 8.2 7.2 6.4 5.8 5.3 4.9 4.5 4.5 4.2	(Flows t M Qrelease (L/s) 3.4 3.6 3.6 3.6 3.6 3.6 3.5 3.5 3.5 3.5 3.5 3.4 3.2 3.2 3.2 3.1	to stormwater ci laximum Sto (L/s) 19.3 11.7 8.1 6.0 4.6 3.7 2.9 2.4 2.0 1.6 1.4 1.2	istern A) prage Depth: Vstored (m^3) 11.6 14.1 14.6 14.4 13.9 13.2 12.3 11.5 10.6 9.8 9.0 8.3	Roof 150 Depth (mm) 103.2 109.5 110.5 109.1 107.2 105.1 102.9 100.6 97.7 94.7 91.8	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0		Subdrainage Area: Area (ha): C: tc (min) 10 20 30 40 50 60 70 80 90 100 110 120	Roof 1A 0.09 1.00 I (100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 49.79 44.99 41.11 37.90 35.20 32.89	Qactual (L/s) 43.2 29.0 22.2 18.2 15.5 13.5 12.0 10.9 9.9 9.2 8.5 8.0	(Fi Qreleas (L/s) 4.2 4.5 4.6 4.6 4.6 4.6 4.6 4.6 4.5 4.5 4.5 4.4 4.4 4.3
Subdra	Area (ha): Area (ha): C: tc (min) 10 20 30 40 50 60 70 80 90 100 100 110 120 Storage on V	Roof 1A 0.09 0.90 I (5 yr) (mm/hr) 104.19 70.25 53.93 44.18 37.65 32.94 29.37 26.56 24.29 22.41 20.82 19.47 Westend Ro	Qactual (L/s) 22.7 15.3 11.7 9.6 8.2 7.2 6.4 5.8 5.3 4.9 4.5 4.2 200f of Phase	(Flows t M Qrelease (L/s) 3.4 3.6 3.6 3.6 3.6 3.6 3.5 3.5 3.5 3.4 3.3 3.2 3.2 3.2 3.1 1 Building.	to stormwater ci laximum Sto Qstored (L/s) 19.3 11.7 8.1 6.0 4.6 3.7 2.9 2.4 2.0 1.6 1.4 1.2	istern A) prage Depth: Vstored (m^3) 11.6 14.1 14.6 14.4 13.9 13.2 12.3 11.5 10.6 9.8 9.0 8.3	Roof 150 Depth (mm) 103.2 109.5 110.5 109.1 107.2 105.1 102.9 100.6 97.7 94.7 91.8	mm 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	Stora	Subdrainage Area: Area (ha): C: tc (min) 10 20 30 40 50 60 70 80 90 100 110 120 age: Storage on	Roof 1A 0.09 1.00 I (100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 49.79 44.99 41.11 37.90 35.20 32.89 Westend Roof of	Qactual (L/s) 43.2 29.0 22.2 18.2 15.5 13.5 12.0 10.9 9.9 9.2 8.5 8.0	(Fi Qreleas (L/s) 4.2 4.5 4.6 4.6 4.6 4.6 4.6 4.5 4.5 4.5 4.5 4.4 4.3 ding.
Subdra orage:	Area (ha): Area (ha): C: tc (min) 10 20 30 40 50 60 70 80 90 100 100 110 120 Storage on ¹	Roof 1A 0.09 0.90 I (5 yr) (mm/hr) 104.19 70.25 53.93 44.18 37.65 32.94 29.37 26.56 24.29 22.41 20.82 19.47 Westend Ro Depth	Qactual (L/s) 22.7 15.3 11.7 9.6 8.2 7.2 6.4 5.8 5.3 4.9 4.5 4.2 pof of Phase Head	(Flows t M Qrelease (L/s) 3.4 3.6 3.6 3.6 3.6 3.5 3.5 3.5 3.4 3.3 3.2 3.2 3.2 3.1 1 Building.	to stormwater ci faximum Sto Qstored (L/s) 19.3 11.7 8.1 6.0 4.6 3.7 2.9 2.4 2.0 1.6 1.4 1.2 Vreq	istern A) prage Depth: Vstored (m^3) 11.6 14.1 14.6 14.4 13.9 13.2 12.3 11.5 10.6 9.8 9.0 8.3 Vavail	Roof 150 Depth (mm) 103.2 109.5 110.5 109.1 107.2 105.1 102.9 100.6 97.7 94.7 91.8 Discharge	mm 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	Stora	Subdrainage Area: Area (ha): C: tc (min) 10 20 30 40 50 60 70 80 90 100 110 120 age: Storage on	Roof 1A 0.09 1.00 I (100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 49.79 44.99 41.11 37.90 35.20 32.89 Westend Roof of Depth	Qactual (L/s) 43.2 29.0 22.2 18.2 15.5 13.5 12.0 10.9 9.9 9.2 8.5 8.0 Phase 1 Built Head	(Fi Qreleas (L/s) 4.2 4.5 4.6 4.6 4.6 4.6 4.6 4.5 4.5 4.5 4.5 4.4 4.4 4.3 ding.
Subdra	Area (ha): Area (ha): C: tc (min) 10 20 30 40 50 60 70 80 90 100 110 120 Storage on V	Roof 1A 0.09 0.90 I (5 yr) (mm/hr) 104.19 70.25 53.93 44.18 37.65 32.94 29.37 26.56 24.29 22.41 20.82 19.47 Westend Ro Depth (mm)	Qactual (L/s) 22.7 15.3 11.7 9.6 8.2 7.2 6.4 5.8 5.3 4.9 4.5 4.5 4.2 pof of Phase Head (m)	(Flows t M Qrelease (L/s) 3.4 3.6 3.6 3.6 3.6 3.6 3.5 3.5 3.5 3.4 3.2 3.2 3.2 3.1 1 Building. Discharge (L/s)	to stormwater ci faximum Sto Qstored (L/s) 19.3 11.7 8.1 6.0 4.6 3.7 2.9 2.4 2.0 1.6 1.4 1.2 Vreq (cu. m)	istern A) prage Depth: Vstored (m^3) 11.6 14.1 14.6 14.4 13.9 13.2 12.3 11.5 10.6 9.8 9.0 8.3 Vavail (cu. m)	Roof 150 Depth (mm) 103.2 109.5 110.5 109.1 107.2 105.1 102.9 100.6 97.7 94.7 91.8 Discharge Check	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	Stora	Subdrainage Area: Area (ha): C: tc (min) 10 20 30 40 50 60 70 80 90 100 110 120 age: Storage on	Roof 1A 0.09 1.00 I (100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 49.79 44.99 41.11 37.90 35.20 32.89 Westend Roof of Depth (mm)	Qactual (L/s) 43.2 29.0 22.2 18.2 15.5 13.5 12.0 10.9 9.9 9.2 8.5 8.0 f Phase 1 Built Head (m)	(Fid Qreleas (L/s) 4.2 4.5 4.6 4.6 4.6 4.6 4.6 4.6 4.5 4.5 4.4 4.4 4.3 ding. Discharg (L/s)
Subdra orage: 5-year	Area (ha): Area (ha): C: tc (min) 10 20 30 40 50 60 70 80 90 100 110 120 Storage on ¹ Water Level	Roof 1A 0.09 0.90 I (5 yr) (mm/hr) 104.19 70.25 53.93 44.18 37.65 32.94 29.37 26.56 24.29 22.41 20.82 19.47 Westend Ro Depth (mm) 110.9	Qactual (L/s) 22.7 15.3 11.7 9.6 8.2 7.2 6.4 5.8 5.3 4.9 4.5 4.2 pof of Phase Head (m) 0.11	(Flows t M Qrelease (L/s) 3.4 3.6 3.6 3.6 3.6 3.5 3.5 3.5 3.5 3.5 3.5 3.2 3.2 3.2 3.2 3.1 1 Building. Discharge (L/s) 3.6	to stormwater ci faximum Sto Qstored (L/s) 19.3 11.7 8.1 6.0 4.6 3.7 2.9 2.4 2.0 1.6 1.4 1.2 Vreq (cu. m) 14.6	vrage Depth: vrage Depth: Vstored (m^3) 11.6 14.1 14.6 14.4 13.9 13.2 12.3 11.5 10.6 9.8 9.0 8.3 Vavail (cu. m) 34.8	Roof 150 Depth (mm) 103.2 109.5 110.9 110.5 109.1 107.2 105.1 102.9 100.6 97.7 94.7 91.8 Discharge Check 0.0	mm 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	s Stora 10	Subdrainage Area: Area (ha): C: tc (min) 10 20 30 40 50 60 70 80 90 100 110 120 age: Storage on	Roof 1A 0.09 1.00 I (100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 49.79 44.99 41.11 37.90 35.20 32.89 Westend Roof of Depth (mm) 146.1	Qactual (L/s) 43.2 29.0 22.2 18.2 15.5 13.5 12.0 10.9 9.9 9.2 8.5 8.0 f Phase 1 Built Head (m) 0.15	(F Qreleas (L/s) 4.2 4.5 4.6 4.6 4.6 4.6 4.6 4.5 4.5 4.5 4.4 4.4 4.3 ding. Dischar (L/s) 4.6
Subdra orage: 5-year Subdra	ainage Area: Area (ha): C: tc (min) 10 20 30 40 50 60 70 80 90 100 110 120 Storage on V Water Level	Roof 1A 0.09 0.90 I (5 yr) (mm/hr) 104.19 70.25 53.93 44.18 37.65 32.94 29.37 26.56 24.29 22.41 20.82 19.47 Westend Ro Depth (mm) 110.9 Roof 1B 0.01 0.90	Qactual (L/s) 22.7 15.3 11.7 9.6 8.2 7.2 6.4 5.8 5.3 4.9 4.5 4.2 bof of Phase Head (m) 0.11	(Flows t M Qrelease (L/s) 3.4 3.6 3.6 3.6 3.6 3.5 3.5 3.4 3.2 3.2 3.1 1 Building. Discharge (L/s) 3.6 (Flows t M	to stormwater ci faximum Sto Qstored (L/s) 19.3 11.7 8.1 6.0 4.6 3.7 2.9 2.4 2.0 1.6 1.4 1.2 Vreq (cu. m) 14.6	Vstored (m^3) 11.6 14.1 14.6 14.4 13.9 13.2 12.3 11.5 10.6 9.8 9.0 8.3	Roof 150 Depth (mm) 103.2 109.5 110.9 110.5 109.1 107.2 105.1 102.9 100.6 97.7 94.7 91.8 Discharge Check 0.0 Roof No Storage	mm 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	Stora 10	Subdrainage Area: Area (ha): C: (min) 10 20 30 40 50 60 70 80 90 100 110 120 age: Storage on 00-year Water Level Subdrainage Area: Area (ha): C:	Roof 1A 0.09 1.00 I (100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 49.79 44.99 41.11 37.90 35.20 32.89 Westend Roof of Depth (mm) 146.1 Roof 1B 0.01 1.00	Qactual (L/s) 43.2 29.0 22.2 18.2 15.5 13.5 12.0 10.9 9.9 9.2 8.5 8.0 f Phase 1 Buil Head (m) 0.15	(File Qreleas (L/s) 4.2 4.5 4.6 4.6 4.6 4.6 4.6 4.5 4.5 4.4 4.4 4.3 ding. Discharg (L/s) 4.6
Subdra orage: 5-year Subdra	Area (ha): Area (ha): C: tc (min) 10 20 30 40 50 60 70 80 90 100 110 120 Storage on ¹ Water Level water Level Area (ha): C: tc	Roof 1A 0.09 0.90 I (5 yr) (mm/hr) 104.19 70.25 53.93 44.18 37.65 32.94 29.37 26.56 24.29 22.41 20.82 19.47 Westend Ro Depth (mm) 110.9 Roof 1B 0.01 0.90 I (5 yr)	Qactual (L/s) 22.7 15.3 11.7 9.6 8.2 7.2 6.4 5.8 5.3 4.9 4.5 4.2 pof of Phase Head (m) 0.11	(Flows t M Qrelease (L/s) 3.4 3.6 3.6 3.6 3.6 3.5 3.5 3.4 3.2 3.1 1 Building. Discharge (L/s) 3.6 (Flows t M Qrelease	to stormwater ci faximum Sto Qstored (L/s) 19.3 11.7 8.1 6.0 4.6 3.7 2.9 2.4 2.0 1.6 1.4 1.2 Vreq (cu. m) 14.6 to stormwater c faximum Sto	istern A) prage Depth: Vstored (m^3) 11.6 14.1 14.6 14.4 13.9 13.2 12.3 11.5 10.6 9.8 9.0 8.3 Vavail (cu. m) 34.8	Roof 150 Depth (mm) 103.2 109.5 110.9 110.5 109.1 107.2 105.1 102.9 100.6 97.7 94.7 91.8 Discharge Check 0.0 Roof No Storage	mm 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	Stora 10	Subdrainage Area: Area (ha): C: tc (min) 10 20 30 40 50 60 70 80 90 100 110 120 age: Storage on 00-year Water Level Subdrainage Area: Area (ha): C: tc	Roof 1A 0.09 1.00 I (100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 49.79 44.99 41.11 37.90 35.20 32.89 Westend Roof of Depth (mm) 146.1 Roof 1B 0.01 1.00 I (100 yr)	Qactual (L/s) 43.2 29.0 22.2 18.2 15.5 13.5 12.0 10.9 9.9 9.2 8.5 8.0 f Phase 1 Buil Head (m) 0.15	(File Qreleas (L/s) 4.2 4.5 4.6 4.6 4.6 4.6 4.6 4.5 4.5 4.5 4.4 4.4 4.3 ding. Discharg (L/s) 4.6 (File Qreleas
Subdra orage: 5-year Subdra	ainage Area: Area (ha): C: tc (min) 10 20 30 40 50 60 70 80 90 100 110 120 Storage on V Water Level water Level ainage Area: Area (ha): C:	Roof 1A 0.09 0.90 I (5 yr) (mm/hr) 104.19 70.25 53.93 44.18 37.65 32.94 29.37 26.56 24.29 22.41 20.82 19.47 Westend Ro Depth (mm) 110.9 Roof 1B 0.01 0.90 I (5 yr) (mm/hr)	Qactual (L/s) 22.7 15.3 11.7 9.6 8.2 7.2 6.4 5.8 5.3 4.9 4.5 4.2 pof of Phase Head (m) 0.11	(Flows t M Qrelease (L/s) 3.4 3.6 3.6 3.6 3.6 3.5 3.5 3.5 3.4 3.2 3.2 3.2 3.1 1 Building. Discharge (L/s) 3.6 (Flows t M M Qrelease (L/s)	to stormwater ci faximum Sto Qstored (L/s) 19.3 11.7 8.1 6.0 4.6 3.7 2.9 2.4 2.0 1.6 1.4 1.2 Vreq (cu. m) 14.6 to stormwater c faximum Sto	istern A) prage Depth: Vstored (m^3) 11.6 14.1 14.6 14.4 13.9 13.2 12.3 11.5 10.6 9.8 9.0 8.3 Vavail (cu. m) 34.8 istern A) prage Depth: Vstored (m^3)	Roof 150 Depth (mm) 103.2 109.5 110.9 110.5 109.1 107.2 105.1 102.9 100.6 97.7 94.7 91.8 Discharge Check 0.0 Roof No Storage	mm 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	Stora 10	Subdrainage Area: Area (ha): C: (min) 10 20 30 40 50 60 70 80 90 100 110 120 age: Storage on 00-year Water Level Subdrainage Area: Area (ha): C: tc (min)	Roof 1A 0.09 1.00 I (100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 49.79 44.99 41.11 37.90 35.20 32.89 Westend Roof of Depth (mm) 146.1 Roof 1B 0.01 1.00 I (100 yr) (mm/hr)	Qactual (L/s) 43.2 29.0 22.2 18.2 15.5 13.5 12.0 10.9 9.2 8.5 8.0 f Phase 1 Built Head (m) 0.15	(File Qreleas (L/s) 4.2 4.5 4.6 4.6 4.6 4.6 4.6 4.6 4.5 4.5 4.5 4.4 4.4 4.3 ding. Discharg (L/s) 4.6
Subdra prage: 5-year Subdra	ainage Area: Area (ha): C: C: C: C: C: C: C: C: C: C	Roof 1A 0.09 0.90 I (5 yr) (mm/hr) 104.19 70.25 53.93 44.18 37.65 32.94 29.37 26.56 24.29 22.41 20.82 19.47 Westend Ro Depth (mm) 110.9 Roof 1B 0.01 0.90 I (5 yr) (mm/hr) 104.19	Qactual (L/s) 22.7 15.3 11.7 9.6 8.2 7.2 6.4 5.8 5.3 4.9 4.5 4.2 bof of Phase Head (m) 0.11 Qactual (L/s) 3.7	(Flows t M Qrelease (L/s) 3.4 3.6 3.6 3.6 3.6 3.5 3.5 3.4 3.2 3.2 3.1 1 Building. Discharge (L/s) 3.6 Qrelease (L/s) 3.7 3.7	to stormwater ci faximum Sto Qstored (L/s) 19.3 11.7 8.1 6.0 4.6 3.7 2.9 2.4 2.0 1.6 1.4 1.2 Vreq (cu. m) 14.6 to stormwater c faximum Sto Qstored (L/s)	istern A) prage Depth: Vstored (m^3) 11.6 14.1 14.6 14.4 13.9 13.2 12.3 11.5 10.6 9.8 9.0 8.3 Vavail (cu. m) 34.8 istern A) prage Depth: Vstored (m^3)	Roof 150 Depth (mm) 103.2 109.5 110.9 110.5 109.1 107.2 105.1 102.9 100.6 97.7 94.7 91.8 Discharge Check 0.0 Roof No Storage	mm 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	Stora 10	Subdrainage Area: Area (ha): C: tc (min) 10 20 30 40 50 60 70 80 90 100 110 120 age: Storage on 00-year Water Level Subdrainage Area: Area (ha): C: tc (min) 10 20 30 40 50 60 70 80 90 100 110 120 100 110 120 100 110 120 100 110 120 100 110 120 100 110 120 100 10	Roof 1A 0.09 1.00 I (100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 49.79 44.99 41.11 37.90 35.20 32.89 Westend Roof of Depth (mm) 146.1 Roof 1B 0.01 1.00 I (100 yr) (mm/hr) 178.56 410.05	Qactual (L/s) 43.2 29.0 22.2 18.2 15.5 13.5 12.0 10.9 9.9 9.2 8.5 8.0 f Phase 1 Built Head (m) 0.15 7.1 10.2	(Fi Qreleas (L/s) 4.2 4.5 4.6 4.6 4.6 4.6 4.6 4.6 4.5 4.5 4.4 4.4 4.3 ding. Discharç (L/s) 4.6 (Fic Qreleas (L/s) 7.1
Subdra rage: 5-year Subdra	ainage Area: Area (ha): C: C: C: C: C: C: C: C: C: C	Roof 1A 0.09 0.90 I (5 yr) (mm/hr) 104.19 70.25 53.93 44.18 37.65 32.94 29.37 26.56 24.29 22.41 20.82 19.47 Westend Ro Depth (mm) 110.9 Roof 1B 0.01 0.90 I (5 yr) (mm/hr) 104.19 70.25 53.03	Qactual (L/s) 22.7 15.3 11.7 9.6 8.2 7.2 6.4 5.8 5.3 4.9 4.5 4.2 bof of Phase Head (m) 0.11 Qactual (L/s) 3.7 2.5 1.0	(Flows t M Qrelease (L/s) 3.4 3.6 3.6 3.6 3.6 3.5 3.5 3.5 3.4 3.2 3.2 3.2 3.1 1 Building. Discharge (L/s) 3.6 (Flows t M Qrelease (L/s) 3.7 2.5 1.0	to stormwater ci faximum Sto Qstored (L/s) 19.3 11.7 8.1 6.0 4.6 3.7 2.9 2.4 2.0 1.6 1.4 1.2 Vreq (cu. m) 14.6 to stormwater c faximum Sto Qstored (L/s)	istern A) prage Depth: Vstored (m^3) 11.6 14.1 14.6 14.4 13.9 13.2 12.3 11.5 10.6 9.8 9.0 8.3 Vavail (cu. m) 34.8 istern A) prage Depth: Vstored (m^3)	Roof 150 Depth (mm) 103.2 109.5 110.9 110.5 109.1 107.2 105.1 102.9 100.6 97.7 94.7 91.8 Discharge Check 0.0 Roof No Storage	mm 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	Stora 10	Subdrainage Area: Area (ha): C: tc (min) 10 20 30 40 50 60 70 80 90 100 110 120 age: Storage on 00-year Water Level Subdrainage Area: Area (ha): C: tc (min) 10 20 30 40 50 60 70 80 90 100 110 120 100 110 120 20 20 20 20 20 20 20 20 20	Roof 1A 0.09 1.00 I (100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 49.79 44.99 41.11 37.90 35.20 32.89 Westend Roof of Depth (mm) 146.1 Roof 1B 0.01 1.00 I (100 yr) (mm/hr) 178.56 119.95 91.87 19.95 91.87 1.00 I (100 yr) (mm/hr)	Qactual (L/s) 43.2 29.0 22.2 18.2 15.5 13.5 12.0 10.9 9.9 9.2 8.5 8.0 f Phase 1 Builter Head (m) 0.15 7.1 4.8 2.7	(Fi Qreleas (L/s) 4.2 4.5 4.6 4.6 4.6 4.6 4.6 4.5 4.5 4.5 4.4 4.4 4.3 ding. Discharg (L/s) 4.6 (Fic Qreleas (L/s) 7.1 4.8 2.7
Subdra orage: 5-year Subdra	ainage Area: Area (ha): C: tc (min) 10 20 30 40 50 60 70 80 90 100 110 120 Storage on V Water Level ainage Area: Area (ha): C: tc (min) 10 20 30 40	Roof 1A 0.09 0.90 I (5 yr) (mm/hr) 104.19 70.25 53.93 44.18 37.65 32.94 29.37 26.56 24.29 22.41 20.82 19.47 Westend Ro Depth (mm) 110.9 Roof 1B 0.01 0.90 I (5 yr) (mm/hr) 104.19 70.25 53.93 44.18	Qactual (L/s) 22.7 15.3 11.7 9.6 8.2 7.2 6.4 5.8 5.3 4.9 4.5 4.2 pof of Phase Head (m) 0.11 Qactual (L/s) 3.7 2.5 1.9 1.6	(Flows t M Qrelease (L/s) 3.4 3.6 3.6 3.6 3.5 3.5 3.5 3.4 3.2 3.2 3.1 1 Building. Discharge (L/s) 3.6 (Flows t M Qrelease (L/s) 3.7 2.5 1.9 1 6	to stormwater ci faximum Sto Qstored (L/s) 19.3 11.7 8.1 6.0 4.6 3.7 2.9 2.4 2.0 1.6 1.4 1.2 Vreq (cu. m) 14.6 to stormwater c faximum Sto Qstored (L/s)	istern A) prage Depth: Vstored (m^3) 11.6 14.1 14.6 14.4 13.9 13.2 12.3 11.5 10.6 9.8 9.0 8.3 Vavail (cu. m) 34.8 istern A) prage Depth: Vstored (m^3)	Roof 150 Depth (mm) 103.2 109.5 110.9 110.5 109.1 107.2 105.1 102.9 100.6 97.7 94.7 91.8 Discharge Check 0.0 Roof No Storage	mm 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	Stora 10	Subdrainage Area: Area (ha): C: tc (min) 10 20 30 40 50 60 70 80 90 100 110 120 age: Storage on 00-year Water Level Subdrainage Area: Area (ha): C: tc (min) 10 20 30 40 50 60 70 80 90 100 110 120 100 110 120 100 110 120 30 40 50 60 70 80 90 100 110 120 100 110 120 100 110 120 30 40 100 110 120 100 10	Roof 1A 0.09 1.00 I (100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 49.79 44.99 41.11 37.90 35.20 32.89 Westend Roof of Depth (mm) 146.1 Roof 1B 0.01 1.00 I (100 yr) (mm/hr) 178.56 119.95 91.87 75.15	Qactual (L/s) 43.2 29.0 22.2 18.2 15.5 13.5 12.0 10.9 9.9 9.2 8.5 8.0 f Phase 1 Built Head (m) 0.15 7.1 4.8 3.7 3.0	(Fi Qreleas (L/s) 4.2 4.5 4.6 4.6 4.6 4.6 4.6 4.5 4.5 4.4 4.4 4.3 ding. Dischar((L/s) 4.6 (Fic Qreleas (L/s) 7.1 4.8 3.7 3.0

	• / \	0.04				Oncontro	nou insularj	,
	Area (ha):	0.04						
	6:	1.00						
	tc	l (100 yr)	Qactual	Qrelease	Qstored	Vstored]	
	(min)	(mm/hr)	(L/s)	(L/s)	(L/s)	(m^3)		
	10	178.56	19.4	16.5	2.9	1.7		
	20	119.95	13.1	13.1	0.0	0.0		
	30	91.87	10.0	10.0	0.0	0.0		
	40 50	75.15	0.2 7.0	0.2 7.0	0.0	0.0		
	50 60	55.80	7.0 6.1	7.0 6.1	0.0	0.0		
	70	49 79	54	5.4	0.0	0.0		
	80	44 99	49	4 9	0.0	0.0		
	90	41.11	4.5	4.5	0.0	0.0		
	100	37.90	4.1	4.1	0.0	0.0		
	110	35.20	3.8	3.8	0.0	0.0		
	120	32.89	3.6	3.6	0.0	0.0		
age:	Surface Sto	rage in 100 year l	Event					
Orif	ice Equation	Q = CdA(2gh)^0.	5	Where C =	0.61			
Orifi	ce Diameter	75.00	mm	Max av	ailable volum	e in CB	0.50	m3
Inv	ert Elevation	68.15	m					
T.	/G Elevation	69.77	m					
Max Po	nding Depth	0.30	m					
Dowr	stream W/L	67.95	m					
	1	Stage	Head	Discharge	Vrea	Vavail	Volume	٦
		2.490	(m)	(L/s)	(cu. m)	(cu. m)	Check	
0-year	Water Level	70.07	1.92	16.5	1.7	1.9	OK	
Subdra	inage Area:	Roof 1A		(Flows	to stormwater ci	istern A)	Roo	f
	Area (ha):	0.09		М	aximum Stor	age Depth:	150	Jmm
	U:	1.00						
	tc	l (100 yr)	Qactual	Qrelease	Qstored	Vstored	Depth	7
	tc (min)	l (100 yr) (mm/hr)	Qactual (L/s)	Qrelease (L/s)	Qstored (L/s)	Vstored (m^3)	Depth (mm)	
	tc (min) 10	l (100 yr) (mm/hr) 178.56	Qactual (L/s) 43.2	Qrelease (L/s) 4.2	Qstored (L/s) 39.0	Vstored (m^3) 23.4	Depth (mm) 130.6	0.00
	tc (min) 10 20	l (100 yr) (mm/hr) 178.56 119.95	Qactual (L/s) 43.2 29.0	Qrelease (L/s) 4.2 4.5	Qstored (L/s) 39.0 24.5	Vstored (m^3) 23.4 29.4	Depth (mm) 130.6 140.9	0.00
	tc (min) 10 20 30	l (100 yr) (mm/hr) 178.56 119.95 91.87 75.45	Qactual (L/s) 43.2 29.0 22.2	Qrelease (L/s) 4.2 4.5 4.6	Qstored (L/s) 39.0 24.5 17.6 42.0	Vstored (m^3) 23.4 29.4 31.7	Depth (mm) 130.6 140.9 144.8	0.00
	tc (min) 10 20 30 40	l (100 yr) (mm/hr) 178.56 119.95 91.87 75.15 62.05	Qactual (L/s) 43.2 29.0 22.2 18.2 45.5	Qrelease (L/s) 4.2 4.5 4.6 4.6 4.6	Qstored (L/s) 39.0 24.5 17.6 13.6 10.8	Vstored (m^3) 23.4 29.4 31.7 32.5 22.5	Depth (mm) 130.6 140.9 144.8 146.1	0.00 0.00 0.00 0.00
	tc (min) 10 20 30 40 50 60	l (100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.80	Qactual (L/s) 43.2 29.0 22.2 18.2 15.5 13.5	Qrelease (L/s) 4.2 4.5 4.6 4.6 4.6 4.6	Qstored (L/s) 39.0 24.5 17.6 13.6 10.8 8 0	Vstored (m^3) 23.4 29.4 31.7 32.5 32.5 32.5	Depth (mm) 130.6 140.9 144.8 146.1 146.1 146.1	0.00 0.00 0.00 0.00 0.00
	tc (min) 10 20 30 40 50 60 70	l (100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 49.79	Qactual (L/s) 43.2 29.0 22.2 18.2 15.5 13.5 12.0	Qrelease (L/s) 4.2 4.5 4.6 4.6 4.6 4.6 4.6 4.6	Qstored (L/s) 39.0 24.5 17.6 13.6 10.8 8.9 7.5	Vstored (m^3) 23.4 29.4 31.7 32.5 32.5 32.5 32.1 31.4	Depth (mm) 130.6 140.9 144.8 146.1 146.1 145.4 145.4	0.00 0.00 0.00 0.00 0.00 0.00
	tc (min) 10 20 30 40 50 60 70 80	l (100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 49.79 44.99	Qactual (L/s) 43.2 29.0 22.2 18.2 15.5 13.5 12.0 10.9	Qrelease (L/s) 4.2 4.5 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.5	Qstored (L/s) 39.0 24.5 17.6 13.6 10.8 8.9 7.5 6.4	Vstored (m^3) 23.4 29.4 31.7 32.5 32.5 32.1 31.4 30.5	Depth (mm) 130.6 140.9 144.8 146.1 146.1 145.4 145.4 144.2 142.7	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
	tc (min) 10 20 30 40 50 60 70 80 90	l (100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 49.79 44.99 41.11	Qactual (L/s) 43.2 29.0 22.2 18.2 15.5 13.5 12.0 10.9 9 9	Qrelease (L/s) 4.2 4.5 4.6 4.6 4.6 4.6 4.6 4.6 4.5 4.5	Qstored (L/s) 39.0 24.5 17.6 13.6 10.8 8.9 7.5 6.4 5.5	Vstored (m^3) 23.4 29.4 31.7 32.5 32.5 32.5 32.1 31.4 30.5 29 5	Depth (mm) 130.6 140.9 144.8 146.1 145.4 145.4 144.2 142.7 141.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
	tc (min) 10 20 30 40 50 60 70 80 90 100	l (100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 49.79 44.99 41.11 37.90	Qactual (L/s) 43.2 29.0 22.2 18.2 15.5 13.5 12.0 10.9 9.9 9.2	Qrelease (L/s) 4.2 4.5 4.6 4.6 4.6 4.6 4.6 4.6 4.5 4.5 4.5 4.4	Qstored (L/s) 39.0 24.5 17.6 13.6 10.8 8.9 7.5 6.4 5.5 4 7	Vstored (m^3) 23.4 29.4 31.7 32.5 32.5 32.5 32.1 31.4 30.5 29.5 28.5	Depth (mm) 130.6 140.9 144.8 146.1 145.1 145.4 144.2 142.7 141.0 139.2	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
	tc (min) 10 20 30 40 50 60 70 80 90 100 110	l (100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 49.79 44.99 41.11 37.90 35.20	Qactual (L/s) 43.2 29.0 22.2 18.2 15.5 13.5 12.0 10.9 9.9 9.2 8.5	Qrelease (L/s) 4.2 4.5 4.6 4.6 4.6 4.6 4.6 4.6 4.5 4.5 4.5 4.4 4.4	Qstored (L/s) 39.0 24.5 17.6 13.6 10.8 8.9 7.5 6.4 5.5 4.7 4.1	Vstored (m^3) 23.4 29.4 31.7 32.5 32.5 32.5 32.1 31.4 30.5 29.5 28.5 28.5 27.3	Depth (mm) 130.6 140.9 144.8 146.1 146.1 145.4 144.2 142.7 141.0 139.2 137.3	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
	tc (min) 10 20 30 40 50 60 70 80 90 100 110 120	l (100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 49.79 44.99 41.11 37.90 35.20 32.89	Qactual (L/s) 43.2 29.0 22.2 18.2 15.5 13.5 12.0 10.9 9.9 9.2 8.5 8.0	Qrelease (L/s) 4.2 4.5 4.6 4.6 4.6 4.6 4.6 4.6 4.5 4.5 4.5 4.4 4.4 4.3	Qstored (L/s) 39.0 24.5 17.6 13.6 10.8 8.9 7.5 6.4 5.5 4.7 4.1 3.6	Vstored (m^3) 23.4 29.4 31.7 32.5 32.5 32.5 32.1 31.4 30.5 29.5 28.5 27.3 26.2	Depth (mm) 130.6 140.9 144.8 146.1 145.4 145.4 144.2 142.7 141.0 139.2 137.3 135.3	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
age:	tc (min) 10 20 30 40 50 60 70 80 90 100 110 120 Storage on	l (100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 49.79 44.99 41.11 37.90 35.20 32.89 Westend Roof of	Qactual (L/s) 43.2 29.0 22.2 18.2 15.5 13.5 12.0 10.9 9.9 9.2 8.5 8.0 Phase 1 Build	Qrelease (L/s) 4.2 4.5 4.6 4.6 4.6 4.6 4.6 4.5 4.5 4.5 4.5 4.4 4.4 4.3	Qstored (L/s) 39.0 24.5 17.6 13.6 10.8 8.9 7.5 6.4 5.5 4.7 4.1 3.6	Vstored (m^3) 23.4 29.4 31.7 32.5 32.5 32.5 32.1 31.4 30.5 29.5 28.5 27.3 26.2	Depth (mm) 130.6 140.9 144.8 146.1 145.4 145.4 144.2 142.7 141.0 139.2 137.3 135.3	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
age:	tc (min) 10 20 30 40 50 60 70 80 90 100 110 120 Storage on	l (100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 49.79 44.99 41.11 37.90 35.20 32.89 Westend Roof of	Qactual (L/s) 43.2 29.0 22.2 18.2 15.5 13.5 12.0 10.9 9.9 9.2 8.5 8.0 Phase 1 Build	Qrelease (L/s) 4.2 4.5 4.6 4.6 4.6 4.6 4.6 4.5 4.5 4.5 4.4 4.4 4.3 ding.	Qstored (L/s) 39.0 24.5 17.6 13.6 10.8 8.9 7.5 6.4 5.5 4.7 4.1 3.6	Vstored (m^3) 23.4 29.4 31.7 32.5 32.5 32.5 32.1 31.4 30.5 29.5 28.5 27.3 26.2	Depth (mm) 130.6 140.9 144.8 146.1 145.4 144.2 142.7 141.0 139.2 137.3 135.3	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
age:	tc (min) 10 20 30 40 50 60 70 80 90 100 110 120 Storage on	l (100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 49.79 44.99 41.11 37.90 35.20 35.20 32.89 Westend Roof of Depth (mm)	Qactual (L/s) 43.2 29.0 22.2 18.2 15.5 13.5 12.0 10.9 9.9 9.2 8.5 8.0 Phase 1 Build Head (m)	Qrelease (L/s) 4.2 4.5 4.6 4.6 4.6 4.6 4.6 4.5 4.5 4.5 4.4 4.4 4.3 ding.	Qstored (L/s) 39.0 24.5 17.6 13.6 10.8 8.9 7.5 6.4 5.5 4.7 4.1 3.6	Vstored (m^3) 23.4 29.4 31.7 32.5 32.5 32.1 31.4 30.5 29.5 28.5 27.3 26.2 Vavail (cu.m)	Depth (mm) 130.6 140.9 144.8 146.1 145.4 145.4 144.2 142.7 141.0 139.2 137.3 135.3 Discharge Check	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
аge: Ю-year	tc (min) 10 20 30 40 50 60 70 80 90 100 110 120 Storage on	l (100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 49.79 44.99 41.11 37.90 35.20 32.89 Westend Roof of Depth (mm) 146.1	Qactual (L/s) 43.2 29.0 22.2 18.2 15.5 13.5 12.0 10.9 9.9 9.2 8.5 8.0 Phase 1 Build Head (m) 0.15	Qrelease (L/s) 4.2 4.5 4.6 4.6 4.6 4.6 4.6 4.5 4.5 4.5 4.4 4.4 4.3 ding. Discharge (L/s) 4.6	Qstored (L/s) 39.0 24.5 17.6 13.6 10.8 8.9 7.5 6.4 5.5 4.7 4.1 3.6 Vreq (cu. m) 32.5	Vstored (m^3) 23.4 29.4 31.7 32.5 32.5 32.5 32.1 31.4 30.5 29.5 28.5 27.3 26.2 Vavail (cu. m) 34.8	Depth (mm) 130.6 140.9 144.8 146.1 145.4 144.2 142.7 141.0 139.2 137.3 135.3 Discharge Check 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
age: 00-year	tc (min) 10 20 30 40 50 60 70 80 90 100 110 120 Storage on	l (100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 49.79 44.99 41.11 37.90 35.20 35.20 32.89 Westend Roof of Depth (mm) 146.1	Qactual (L/s) 43.2 29.0 22.2 18.2 15.5 13.5 12.0 10.9 9.9 9.2 8.5 8.0 Phase 1 Build Head (m) 0.15	Qrelease (L/s) 4.2 4.5 4.6 4.6 4.6 4.6 4.6 4.5 4.5 4.5 4.4 4.4 4.3 ding. Discharge (L/s) 4.6	Qstored (L/s) 39.0 24.5 17.6 13.6 10.8 8.9 7.5 6.4 5.5 4.7 4.1 3.6 Vreq (cu. m) 32.5	Vstored (m^3) 23.4 29.4 31.7 32.5 32.5 32.1 31.4 30.5 29.5 28.5 27.3 26.2 Vavail (cu. m) 34.8	Depth (mm) 130.6 140.9 144.8 146.1 145.4 144.2 142.7 141.0 139.2 137.3 135.3 Discharge Check 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
age: 00-year	tc (min) 10 20 30 40 50 60 70 80 90 100 110 120 Storage on Water Level	l (100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 49.79 44.99 41.11 37.90 35.20 32.89 Westend Roof of Depth (mm) 146.1	Qactual (L/s) 43.2 29.0 22.2 18.2 15.5 13.5 12.0 10.9 9.9 9.2 8.5 8.0 Phase 1 Build Head (m) 0.15	Qrelease (L/s) 4.2 4.5 4.6 4.6 4.6 4.6 4.6 4.5 4.5 4.5 4.5 4.4 4.4 4.3 ding. Discharge (L/s) 4.6	Qstored (L/s) 39.0 24.5 17.6 13.6 10.8 8.9 7.5 6.4 5.5 4.7 4.1 3.6 Vreq (cu. m) 32.5	Vstored (m^3) 23.4 29.4 31.7 32.5 32.5 32.1 31.4 30.5 29.5 28.5 27.3 26.2 Vavail (cu. m) 34.8	Depth (mm) 130.6 140.9 144.8 146.1 145.4 145.4 144.2 142.7 141.0 139.2 137.3 135.3 Discharge Check 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
age: 00-year Subdra	tc (min) 10 20 30 40 50 60 70 80 90 100 110 120 Storage on Water Level	l (100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 49.79 44.99 41.11 37.90 35.20 35.20 32.89 Westend Roof of Depth (mm) 146.1	Qactual (L/s) 43.2 29.0 22.2 18.2 15.5 13.5 12.0 10.9 9.9 9.2 8.5 8.0 Phase 1 Build Head (m) 0.15	Qrelease (L/s) 4.2 4.5 4.6 4.6 4.6 4.6 4.6 4.5 4.5 4.5 4.5 4.4 4.4 4.3 ding. Discharge (L/s) 4.6	Qstored (L/s) 39.0 24.5 17.6 13.6 10.8 8.9 7.5 6.4 5.5 4.7 4.1 3.6 Vreq (cu. m) 32.5	Vstored (m^3) 23.4 29.4 31.7 32.5 32.5 32.1 31.4 30.5 29.5 28.5 27.3 26.2 Vavail (cu. m) 34.8	Depth (mm) 130.6 140.9 144.8 146.1 145.4 144.2 142.7 141.0 139.2 137.3 135.3 Discharge Check 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
age: 00-year Subdra	tc (min) 10 20 30 40 50 60 70 80 90 100 110 120 Storage on Water Level inage Area: Area (ha): C:	l (100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 49.79 44.99 41.11 37.90 35.20 32.89 Westend Roof of Depth (mm) 146.1 Roof 1B 0.01 1.00	Qactual (L/s) 43.2 29.0 22.2 18.2 15.5 13.5 12.0 10.9 9.9 9.2 8.5 8.0 Phase 1 Build Head (m) 0.15	Qrelease (L/s) 4.2 4.5 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.5 4.5 4.5 4.6 000000000000000000000000000000000000	Qstored (L/s) 39.0 24.5 17.6 13.6 10.8 8.9 7.5 6.4 5.5 4.7 4.1 3.6 Vreq (cu. m) 32.5 to stormwater ciaximum Stor	Vstored (m^3) 23.4 29.4 31.7 32.5 32.5 32.1 31.4 30.5 29.5 28.5 27.3 26.2 Vavail (cu. m) 34.8	Depth (mm) 130.6 140.9 144.8 146.1 145.4 144.2 142.7 141.0 139.2 137.3 135.3 Discharge Check 0.0 Roo No Storage	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
age: 00-year Subdra	tc (min) 10 20 30 40 50 60 70 80 90 100 110 120 Storage on Water Level inage Area: Area (ha): C:	l (100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 49.79 44.99 41.11 37.90 35.20 32.89 Westend Roof of Depth (mm) 146.1 Roof 1B 0.01 1.00	Qactual (L/s) 43.2 29.0 22.2 18.2 15.5 13.5 12.0 10.9 9.9 9.2 8.5 8.0 Phase 1 Build Head (m) 0.15	Qrelease (L/s) 4.2 4.5 4.6 4.6 4.6 4.6 4.6 4.5 4.5 4.5 4.4 4.4 4.3 ding. Discharge (L/s) 4.6	Qstored (L/s) 39.0 24.5 17.6 13.6 10.8 8.9 7.5 6.4 5.5 4.7 4.1 3.6 Vreq (cu. m) 32.5 to stormwater cl aximum Stor	Vstored (m^3) 23.4 29.4 31.7 32.5 32.5 32.1 31.4 30.5 29.5 28.5 27.3 26.2 Vavail (cu. m) 34.8	Depth (mm) 130.6 140.9 144.8 146.1 145.4 144.2 142.7 141.0 139.2 137.3 135.3 Discharge Check 0.0 Roo No Storage	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
age: 00-year Subdra	tc (min) 10 20 30 40 50 60 70 80 90 100 110 120 Storage on Water Level inage Area: Area (ha): C: tc (min)	l (100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 49.79 44.99 41.11 37.90 35.20 32.89 Westend Roof of Depth (mm) 146.1 Roof 1B 0.01 1.00 l (100 yr) (mm/hr)	Qactual (L/s) 43.2 29.0 22.2 18.2 15.5 13.5 12.0 10.9 9.9 9.2 8.5 8.0 Phase 1 Build Head (m) 0.15	Qrelease (L/s) 4.2 4.5 4.6 4.6 4.6 4.6 4.5 4.5 4.5 4.4 4.4 4.3 ding. Discharge (L/s) 4.6 (Flows M	Qstored (L/s) 39.0 24.5 17.6 13.6 10.8 8.9 7.5 6.4 5.5 4.7 4.1 3.6 Vreq (cu. m) 32.5 to stormwater ci aximum Stor Qstored (L/s)	Vstored (m^3) 23.4 29.4 31.7 32.5 32.5 32.5 32.1 31.4 30.5 29.5 28.5 27.3 26.2 Vavail (cu. m) 34.8 stern A) age Depth:	Depth (mm) 130.6 140.9 144.8 146.1 145.4 144.2 142.7 141.0 139.2 137.3 135.3 Discharge Check 0.0 Roo No Storage	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
age:)0-year Subdra	tc (min) 10 20 30 40 50 60 70 80 90 100 110 120 Storage on Water Level inage Area: Area (ha): C: tc (min) 10	l (100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 49.79 44.99 41.11 37.90 35.20 32.89 Westend Roof of Depth (mm) 146.1 Roof 1B 0.01 1.00 I (100 yr) (mm/hr) 178.56	Qactual (L/s) 43.2 29.0 22.2 18.2 15.5 13.5 12.0 10.9 9.9 9.2 8.5 8.0 Phase 1 Build Head (m) 0.15	Qrelease (L/s) 4.2 4.5 4.6 4.6 4.6 4.6 4.5 4.5 4.5 4.4 4.4 4.3 ding. Discharge (L/s) 4.6 (Flows M M Qrelease (L/s) 7 1	Qstored (L/s) 39.0 24.5 17.6 13.6 10.8 8.9 7.5 6.4 5.5 4.7 4.1 3.6 Vreq (cu. m) 32.5 to stormwater classimum Stor Qstored (L/s)	Vstored (m^3) 23.4 29.4 31.7 32.5 32.5 32.1 31.4 30.5 29.5 28.5 27.3 26.2 Vavail (cu. m) 34.8 istem A) age Depth: istem A)	Depth (mm) 130.6 140.9 144.8 146.1 145.4 144.2 142.7 141.0 139.2 137.3 135.3 Discharge Check 0.0 Roo No Storage Depth (mm)	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
age: 00-year Subdra	tc (min) 10 20 30 40 50 60 70 80 90 100 110 120 Storage on Water Level inage Area: Area (ha): C: tc (min) 10 20	l (100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 49.79 44.99 41.11 37.90 35.20 32.89 Westend Roof of Depth (mm) 146.1 Roof 1B 0.01 1.00 l (100 yr) (mm/hr) 178.56 119.95	Qactual (L/s) 43.2 29.0 22.2 18.2 15.5 13.5 12.0 10.9 9.9 9.2 8.5 8.0 Phase 1 Build Head (m) 0.15 Qactual (L/s) 7.1 4.8	Qrelease (L/s) 4.2 4.5 4.6 4.6 4.6 4.6 4.6 4.5 4.5 4.4 4.3 ding. Discharge (L/s) 4.6 (Flows M Qrelease (L/s) 7.1 4.8	Qstored (L/s) 39.0 24.5 17.6 13.6 10.8 8.9 7.5 6.4 5.5 4.7 4.1 3.6 Vreq (cu. m) 32.5 to stormwater claximum Stor Qstored (L/s)	Vstored (m^3) 23.4 29.4 31.7 32.5 32.5 32.1 31.4 30.5 29.5 28.5 27.3 26.2 Vavail (cu. m) 34.8 istern A) age Depth: Vstored (m^3)	Depth (mm) 130.6 140.9 144.8 146.1 145.4 144.2 142.7 141.0 139.2 137.3 135.3 Discharge Check 0.0 Roo No Storage Depth (mm)	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
age: 00-year Subdra	tc (min) 10 20 30 40 50 60 70 80 90 100 110 120 Storage on Water Level inage Area: Area (ha): C: tc (min) 10 20 30	l (100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 49.79 44.99 41.11 37.90 35.20 32.89 Westend Roof of Depth (mm) 146.1 Roof 1B 0.01 1.00 I (100 yr) (mm/hr) 178.56 119.95 91.87	Qactual (L/s) 43.2 29.0 22.2 18.2 15.5 13.5 12.0 10.9 9.9 9.2 8.5 8.0 Phase 1 Buik Head (m) 0.15	Qrelease (L/s) 4.2 4.5 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.5 4.5 4.6 4.6 0ing. Discharge (L/s) 4.6 (Flows M Qrelease (L/s) 7.1 4.8 3.7	Qstored (L/s) 39.0 24.5 17.6 13.6 10.8 8.9 7.5 6.4 5.5 4.7 4.1 3.6 Vreq (cu. m) 32.5 to stormwater claximum Stor Qstored (L/s)	Vstored (m^3) 23.4 29.4 31.7 32.5 32.5 32.1 31.4 30.5 29.5 28.5 27.3 26.2 Vavail (cu. m) 34.8 istern A) age Depth: Vstored (m^3)	Depth (mm) 130.6 140.9 144.8 146.1 145.4 144.2 142.7 141.0 139.2 137.3 135.3 Discharge Check 0.0 Roo No Storage Depth (mm)	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
age:)0-year Subdra	tc (min) 10 20 30 40 50 60 70 80 90 100 110 120 Storage on Water Level inage Area: Area (ha): C: tc (min) 10 20 30 40	l (100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 49.79 44.99 41.11 37.90 35.20 32.89 Westend Roof of Depth (mm) 146.1 Roof 1B 0.01 1.00 I (100 yr) (mm/hr) 178.56 119.95 91.87 75.15	Qactual (L/s) 43.2 29.0 22.2 18.2 15.5 13.5 12.0 10.9 9.9 9.2 8.5 8.0 Phase 1 Build Head (m) 0.15	Qrelease (L/s) 4.2 4.5 4.6 4.6 4.6 4.6 4.5 4.5 4.5 4.4 4.4 4.3 ding. Discharge (L/s) 4.6 (Flows M M Qrelease (L/s) 7.1 4.8 3.7 3.0	Qstored (L/s) 39.0 24.5 17.6 13.6 10.8 8.9 7.5 6.4 5.5 4.7 4.1 3.6 Vreq (cu. m) 32.5 to stormwater classimum Stor Qstored (L/s)	Vstored (m^3) 23.4 29.4 31.7 32.5 32.5 32.1 31.4 30.5 29.5 28.5 27.3 26.2 Vavail (cu. m) 34.8 istern A) age Depth: vstored (m^3)	Depth (mm) 130.6 140.9 144.8 146.1 145.4 144.2 142.7 141.0 139.2 137.3 135.3 Discharge Check 0.0 Roo No Storage Depth (mm)	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
age: I0-year Subdra	tc (min) 10 20 30 40 50 60 70 80 90 100 110 120 Storage on Water Level inage Area: Area (ha): C: tc (min) 10 20 30 40 50	l (100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 49.79 44.99 41.11 37.90 35.20 32.89 Westend Roof of Depth (mm) 146.1 Roof 1B 0.01 1.00 I (100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95	Qactual (L/s) 43.2 29.0 22.2 18.2 15.5 13.5 12.0 10.9 9.9 9.2 8.5 8.0 Phase 1 Build Head (m) 0.15 7.1 4.8 3.7 3.0 2.6	Qrelease (L/s) 4.2 4.5 4.6 4.6 4.6 4.6 4.5 4.5 4.5 4.4 4.4 4.3 ding. Discharge (L/s) 4.6 Qrelease (L/s) 7.1 4.8 3.7 3.0 2.6	Qstored (L/s) 39.0 24.5 17.6 13.6 10.8 8.9 7.5 6.4 5.5 4.7 4.1 3.6 Vreq (cu. m) 32.5 to stormwater claximum Stor Qstored (L/s)	Vstored (m^3) 23.4 29.4 31.7 32.5 32.5 32.1 31.4 30.5 29.5 28.5 27.3 26.2 Vavail (cu. m) 34.8 istern A) age Depth: vstored (m^3)	Depth (mm) 130.6 140.9 144.8 146.1 145.4 144.2 142.7 141.0 139.2 137.3 135.3 Discharge Check 0.0 Roo No Storage Depth (mm)	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0

Date: 3/1/2023 Stantec Consulting Ltd.

mrm_2023-02-28_pm.xlsm, Modified RM W:\active\160401672\design\analysis\SWM\

Stormwater Management Calculations

Project #160401672, 1125-1149 Cyrville Road, Ottawa, ON Modified Rational Method Calculatons for Storage

	60 70 80 90 100 110 120	32.94 29.37 26.56 24.29 22.41 20.82 19.47	1.2 1.1 1.0 0.9 0.8 0.7 0.7	1.2 1.1 1.0 0.9 0.8 0.7 0.7				
Subdra	inage Area: Area (ha): C:	Roof 1C 0.17 0.90		(Flows t N	io stormwater ci laximum Stor	^{stern A)} rage Depth:	Roof 150	mm
	tc (min) 10 20 30 40 50 60 70 80 90 100 110 120	l (5 yr) (mm/hr) 104.19 70.25 53.93 44.18 37.65 32.94 29.37 26.56 24.29 22.41 20.82 19.47	Qactual (L/s) 45.2 30.5 23.4 19.2 16.3 14.3 12.7 11.5 10.5 9.7 9.0 8.4	Qrelease (L/s) 5.7 6.0 6.2 6.2 6.1 6.1 6.1 6.0 5.9 5.8 5.7 5.6 5.5	Qstored (L/s) 39.5 24.4 17.2 13.0 10.2 8.2 6.7 5.6 4.7 4.0 3.4 2.9	Vstored (m^3) 23.7 29.3 31.0 31.2 30.6 29.6 28.3 26.9 25.5 24.0 25.5 24.0 22.4 20.9	Depth (mm) 104.0 111.2 113.4 113.6 112.8 111.6 110.0 108.2 106.3 104.3 102.4 100.4	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
E voor	Watar Level	Depth (mm)	Head (m)	Discharge (L/s)	Vreq (cu. m)	Vavail (cu. m)	Discharge Check	
Subdra	inage Area: Area (ha):	L100 (0.111	Flows to storm	0.2 water cistern A)	31.2	Uncontrolle	ed - Tributary	
	tc (min) 10 20 30 40 50 60 70 80 90 100 110 110 120	l (5 yr) (mm/hr) 104.19 70.25 53.93 44.18 37.65 32.94 29.37 26.56 24.29 22.41 20.82 19.47	Qactual (L/s) 28.8 19.4 14.9 12.2 10.4 9.1 8.1 7.4 6.7 6.2 5.8 5.4	Qrelease (L/s) 28.8 19.4 14.9 12.2 10.4 9.1 8.1 7.4 6.7 6.2 5.8 5.4	Qstored (L/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Vstored (m^3) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.		
Subdra	inage Area: Area (ha): C:	Tank 1B (0.07 0.50	Flows to storm	water cistern A)		Controlle	ed - Tributary	
	tc (min) 10 20 30 40 50 60 70 80 90 100 110 110 120	l (5 yr) (mm/hr) 104.19 70.25 53.93 44.18 37.65 32.94 29.37 26.56 24.29 22.41 20.82 19.47	Qactual (L/s) 51.8 38.4 31.9 27.9 25.1 23.1 21.5 20.2 19.1 18.1 17.3 16.6	Qrelease (L/s) 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0	Qstored (L/s) 19.8 6.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	Vstored (m^3) 11.9 7.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		
	1) All flows fr cistern. 2) Outflow fro	om ROOF 1A om the 45 cu.r	, ROOF 1B, R m cistern to be	200F 1C, L100, e set by pump (r	TANK 1B to b	e directed to a ow rate of 32	a stormwater L/s).	
5-year S	Storage Req.	Stage N/A	Head (m) N/A	Discharge (L/s) 32.0 Excess st	Vreq (cu. m) 11.9 orage (m3):	Vavail (cu. m) 45.0 33.14	Volume Check OK	
Subdra	inage Area: Area (ha): C:	Roof 2A (0.08 0.90	Flows to storm	water cistern B) N	aximum Stor	rage Depth:	Roof 150	mm
	tc (min)	l (5 yr) (mm/hr)	Qactual (L/s)	Qrelease (L/s)	Qstored (L/s)	Vstored (m^3)	Depth (mm)	0.00
	20 30 40 50 60 70 80 90 100 110 120	70.25 53.93 44.18 37.65 32.94 29.37 26.56 24.29 22.41 20.82 19.47	13.3 10.2 8.4 7.1 6.2 5.6 5.0 4.6 4.2 3.9 3.7	4.4 4.4 4.4 4.4 4.4 4.4 4.4 4.4 4.4 4.1 3.8 3.6	8.9 5.8 4.0 2.7 1.8 1.2 0.6 0.2 0.2 0.1 0.1	10.7 10.5 9.5 8.2 6.6 4.8 3.0 1.1 1.0 0.9 0.8	105.0 104.3 101.5 96.1 88.5 80.1 67.3 49.8 46.3 43.2 40.6	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
torage: 5-year	Storage on View Storage on Vie	Westend Ro Depth (mm) 104.97	of of Phase Head (m) 0.10	1 Building. Discharge (L/s) 4.4	Vreq (cu. m) 10.7	Vavail (cu. m) 30.3	Discharge Check -19.6	
Subdra	inage Area: Area (ha): C:	Tank 2A (0.04 0.90	Flows to storm	water cistern B)		Uncontrolle	ed - Tributary	
	tc (min)	l (5 yr) (mm/hr)	Qactual (L/s)	Qrelease (L/s)	Qstored (L/s)	Vstored (m^3)		
	10 20 30 40 50 60 70 80 90 100 110 120	104.19 70.25 53.93 44.18 37.65 32.94 29.37 26.56 24.29 22.41 20.82 19.47	10.4 7.0 5.4 4.4 3.8 3.3 2.9 2.7 2.4 2.2 2.1 1.0	10.4 7.0 5.4 4.4 3.8 3.3 2.9 2.7 2.4 2.2 2.1				

Project #160401672, 1125-1149 Cyrville Road, Ottawa, ON Modified Rational Method Calculatons for Storage

	60 70	55.89 49.79	2.2 2.0	2.2 2.0				
	80 90	44.99 41.11	1.8 1.6	1.8 1.6				
	100 110	37.90 35.20	1.5 1.4	1.5 1.4				
	120	32.89	1.3	1.3				
Subdra	ainage Area:	Roof 1C		(Flows	to stormwater ci	stern A)	Roof	
	Area (ha): C:	0.17 1.00		М	aximum Stora	age Depth:	150 r	nm
	tc (min)	l (100 yr) (mm/hr)	Qactual (L/s)	Qrelease (L/s)	Qstored (L/s)	Vstored (m^3)	Depth (mm)	
	10	178.56	86.0 57.8	7.0	79.0 50.3	47.4	131.2	0.00
	30	91.87	44.3	7.7	36.5	65.8	146.9	0.00
	40 50	63.95	30.8	7.9	23.0	68.9	148.9 149.6	0.00
	60 70	55.89 49.79	26.9 24.0	7.9 7.8	19.1 16.2	68.7 67.9	149.4 148.8	0.00 0.00
	80 90	44.99 41 11	21.7 19.8	7.8 7.7	13.9 12 1	66.7 65.3	147.8 146 5	0.00
	100	37.90	18.3	7.7	10.6	63.7	145.1	0.00
	110 120	35.20 32.89	17.0 15.9	7.6 7.5	9.4 8.3	61.9 60.1	143.6 142.1	0.00 0.00
Storage:	Storage on E	astend Roof of	Phase 1 Buildi	ing.				
	Г	Depth	Head	Discharge	Vreq	Vavail	Discharge	
100-year	Water Level	(mm) 149.59	(m) 0.15	(L/s) 7.9	(cu. m) 68.9	(cu. m) 69.3	Check 0.0	
Subdra	ainago Aroa:	1 100	(Flows to storm	water cistorn (A)		Uncontroll	ed - Tributary	
Subura	Area (ha):	0.11	(Flows to storm	iwater cistern A)		Uncontroll	eu - mbulary	
		l (100 vr)	Qactual	Qrelease	Ostored	Vstored		
	(min)	(mm/hr)	(L/s)	(L/s)	(L/s)	(m^3)		
1	10 20	178.56 119.95	54.9 36.9	54.9 36.9	0.0 0.0	0.0 0.0		
1	30 40	91.87 75 15	28.3 23 1	28.3 23 1	0.0 0.0	0.0 0.0		
1	50	63.95	19.7	19.7	0.0	0.0		
1	60 70	ວວ.୪9 49.79	17.2 15.3	17.2	0.0 0.0	0.0 0.0		
1	80 90	44.99 41.11	13.8 12.6	13.8 12 6	0.0 0.0	0.0 0.0		
1	100	37.90	11.7	11.7	0.0	0.0		
	120	32.89	10.8	10.8	0.0	0.0		
Subdra	ainago Aroa:	Tank 1B	(Elouve to storm	water eletern A)		Controll	ed Tributary	
Subara	Area (ha):	0.07	(Flows to storm	iwater cistern A)		Controll	ed - Tributary	
	tc	l (100 vr)	Qactual	Qrelease	Ostored	Vstored		
	(min)	(mm/hr)	(L/s)	(L/s)	(L/s)	(m^3)		
	20	119.95	68.2	32.0	36.2	43.4		
	30 40	91.87 75.15	55.3 47.6	32.0 32.0	23.3 15.6	42.0 37.6		
	50 60	63.95 55.89	42.4 38.6	32.0 32.0	10.4 6.6	31.3 23.9		
	70	49.79	35.7	32.0	3.7	15.6		
	90	44.99 41.11	33.4 31.5	32.0 32.0	0.0	0.0		
	100 110	37.90 35.20	29.8 28.4	32.0 32.0	0.0 0.0	0.0 0.0		
	120	32.89	27.2	32.0	0.0	0.0		
	1) All flows fro cistern.	m ROOF 1A, RC	OF 1B, ROOF 1	C, L100, TANK	1B to be direc	ted to a stor	mwater	
	2) Outflow from	n the 45 cu.m ci	stern to be set by	/ pump (maximu	um outflow rate	e of 32 L/s).		
	Γ	Stage	Head (m)	Discharge (L/s)	Vreq (cu. m)	Vavail (cu. m)	Volume Check	
100-year S	Storage Req.	N/A	N/Á	32.0 Excess st	43.4 orage (m3):	45.0 1.60	OK	
Subdra	ainage Area:	Roof 2A	(Flows to storm)	water cistern B)			Roof	
	Area (ha): C:	0.08 1.00		М	aximum Stora	age Depth:	150 r	nm
	tc	l (100 yr)	Qactual	Qrelease	Qstored	Vstored	Depth	
	(min) 10	(mm/hr) 178.56	(L/s) 37.6	(L/s) 4.4	(L/s) 33.2	(m^3) 19.9	(mm) 129.7	0.00
1	20	119.95 91 87	25.3 10 1	4.4 4 A	20.8 14 9	25.0 26 9	139.6 1/3 2	0.00
1	40	75.15	15.8	4.4	11.4	27.4	144.3	0.00
1	50 60	63.95 55.89	13.5 11.8	4.4 4.4	9.1 7.4	27.2 26.5	143.8 142.5	0.00 0.00
1	70 80	49.79 44 99	10.5 9.5	4.4 4 4	6.1 5 1	25.5 24 3	140.6 138.2	0.00
1	90	41.11	8.7	4.4	4.2	22.9	135.5	0.00
	100 110	37.90 35.20	8.0 7.4	4.4 4.4	3.6 3.0	21.4 19.8	132.6 129.4	0.00 0.00
C.	120	32.89	6.9	4.4	2.5	18.1	126.1	0.00
Storage:	Storage on W	vestend Roof c	n Phase 1 Build	aing.				
10-		Uepth (mm)	Head (m)	iscnarge (L/s)	vreq (cu. m)	vavail (cu. m)	Check	
100-year	vvater Level	144.29	0.14	4.4	27.4	30.3	-2.9	
Subdra	ainage Area:	Tank 2A	(Flows to storm	water cistern B)		Uncontroll	ed - Tributary	
	Area (ha): C:	0.04 1.00						
	tc (min)	l (100 yr) (mm/br)	Qactual	Qrelease (I /s)	Qstored	Vstored (m^3)		
	10	178.56	19.8 13.3	19.8 13 3	(=3)	J <i>j</i>		
	30	91.87	10.2	10.2				
1	40 50	75.15 63.95	8.3 7.1	8.3 7.1				
	60 70	55.89 40 70	6.2 5.5	6.2 5.5				
1	80	44.99	5.0	5.0				
1	90 100	41.11 37.90	4.6 4.2	4.6 4.2				
	110 120	35.20 32.89	3.9 3.6	3.9 3.6				

Date: 3/1/2023 Stantec Consulting Ltd.

mrm_2023-02-28_pm.xlsm, Modified RM W:\active\160401672\design\analysis\SWM\

Stormwater Management Calculations

Project #160401672, 1125-1149 Cyrville Road, Ottawa, ON Modified Rational Method Calculatons for Storage

Subdrainage Ar Area (h	ea: Tank 2B ha): 0.01	(Flows to storm)	water cistern B)		Uncontrolle	d - Tributary
te	C: 0.90	Oactual	Orelease	Ostored	Vstored	
(min) (mm/hr)	(L/s)	(L/s)	(L/s)	(m^3)	
10	104.19	2.2	2.2	(· -)	-/	
20	70.25	1.5	1.5			
30 40	53.93 44 18	1.1	1.1 0.9			
	37.65	0.8	0.8			
60	32.94	0.7	0.7			
70 80	29.37 26.56	0.6 0.6	0.6 0.6			
90 90	20.00	0.5	0.5			
100	22.41	0.5	0.5			
110	20.82	0.4	0.4			
120	19.47	0.4	0.4			
Subdrainage Ar Area (r	ea: Tank 2C na): 0.07 C: 0.52	(Flows to storm)	water cistern B)		Controlle	ed - Tributary
tc (min	l (5 yr)	Qactual	Qrelease	Qstored	Vstored	
10	104.19	28.3	10.0	18.3	11.0	
20	70.25	20.7	10.0	10.7	12.9	
30	53.93	17.1	10.0	7.1	12.8	
40 50	44.18 37.65	14.8	10.0	4.8 3.3	99	
60	32.94	12.2	10.0	2.2	7.9	
70	29.37	11.4	10.0	1.4	5.7	
80	26.56	10.7	10.0	0.7	3.3	
90 100	24.29 22.41	9.4	10.0	0.1	0.0	
110	20.82	8.7	10.0	0.0	0.0	
120	19.47	8.2	10.0	0.0	0.0	
1) All flo 2) Outflo	ws from ROOF 2 w from the 40 m	A, TANK 2A, TA 3 cistern to be s	NK 2B, and Ta et by pump (ma	nk 2C to be d aximum outflo	lirected to storn w rate of 20 L/s	nwater cistern s).
	Stage	Head (m)	Discharge	Vreq	Vavail	Volume Check
5-year Storage R	eq. N/A	N/A	10.0	12.9	40.0	OK
			Excess s	torage (m ³):	27.11	
Subdrainage Ar	ea: UNC-1			Ur	controlled - N	lon-Tributarv
Area (h	a): 0.04 C: 0.44			-		,, ,
tc (min	l (5 yr)) (mm/hr)	Qactual (L/s)	Qrelease (L/s)	Qstored (L/s)	Vstored (m^3)	
10	104.19	4.6	4.6			
20	70.25	3.1	3.1			
30 40	53.93 44.18	2.4 2.0	2.4 2.0			
50	37.65	1.7	1.7			
60	32.94	1.5	1.5			
70 80	29.37	1.3	1.3			
90	24.29	1.1	1.1			
100	22.41	1.0	1.0			
110	20.82 19.47	0.9	0.9			
Subdrainage Ar Area (h	ea: UNC-2 na): 0.01			Ur	ncontrolled - N	lon-Tributary
	C: 0.50					
tc (min	l (5 yr)) (mm/hr)	Qactual (L/s)	Qrelease (L/s)	Qstored (L/s)	Vstored (m^3)	
10	104.19	1.8 1 2	1.8 1 2			
20 30	53.93	0.9	0.9			
40	44.18	0.8	0.8			
50	37.65	0.7	0.7			
60 70	3∠.94 29.37	0.0 0.5	0.0 0.5			
80	26.56	0.5	0.5			
90	24.29	0.4	0.4			
100 110	22.41 20.82	0.4 0.4	0.4 0.4			
120	19.47	0.3	0.3			
MARY TO OUT	LET				Cistern + Ro	of Storage:
	Tributary Area	(Controlled)	0.69	ha L/c	Vrequired	/available*
M Tri Maxin	butary Area (L num 5yr Flow	Incontrolled)	52.2 0.05 6.4	∟/s ha L/s	ŏ1.2	219.4 [11]
	т	Total Area otal 5vr Flow	0.74	ha L/s		
	•		20.0			
		T *	70.0			

Project #160401672, 1125-1149 Cyrville Road, Ottawa, ON Modified Rational Method Calculatons for Storage

Subdrainage Area Area (ha) C	Tank 2B 0.01 1.00	(Flows to storm	water cistern B)		Uncontrolle	ed - Tributary
tc (min)	l (100 yr) (mm/hr)	Qactual (L/s)	Qrelease (L/s)	Qstored (L/s)	Vstored (m^3)	
10 20	178.56 119.95	4.2 2.8	4.2 2.8			
30	91.87	2.2	2.2			
40	75.15	1.8	1.8			
50	63.95	1.5	1.5			
60 70	55.89 10.70	1.3	1.3			
80 80	44 <u>99</u>	1.2 1.1	1.1			
90	41.11	1.0	1.0			
100	37.90	0.9	0.9			
110	35.20	0.8	0.8			
120	32.89	0.8	0.8			
Subdrainage Area Area (ha) C	: Tank 2C : 0.07 : 0.65	(Flows to storm	water cistern B)		Controlle	ed - Tributary
tc (min)	l (100 yr)	Qactual	Qrelease	Qstored	Vstored	
10	178.56	<u> </u>	10.0	41.9	25.1	
20	119.95	36.5	10.0	26.5	31.8	
30	91.87	29.2	10.0	19.2	34.5	
40	75.15	24.8	10.0	14.8	35.4	
50	03.95 55 ro	∠1.ŏ 10.7	10.0	11.8 0.7	30.5 35 0	
70	49.79	18.1	10.0	8.1	34.1	
80	44.99	16.9	10.0	6.9	32.9	
90	41.11	15.8	10.0	5.8	31.3	
100	37.90	14.9	10.0	4.9	29.4	
110 120	35.20 32.80	14.2 13 5	10.0 10.0	4.2 3.5	27.5 25 1	
1) ΔΙΙ flowe		יס.ט NK 2A דאמור פים	and Tank 20	to be director	to stormwate	er cistern R
2) Outflow f	from the 40 m3 ciste	ern to be set by p	ump (maximum	n outflow rate	of 20 L/s).	
	Stage	Head (m)	Discharge (L/s)	Vreq (cu. m)	Vavail (cu. m)	Volume Check
100-year Storage Req.	N/A	N/A	10.0	35.5	40.0	OK
			Excess stor	age (m³):	4.51	
Subdrainage Area	: UNC-1			Un	controlled - N	Non-Tributary
Area (ha) C	: 0.04 : 0.55					
tc	l (100 yr)	Qactual	Qrelease	Qstored	Vstored	
(min)	(mm/hr)	(L/s)	(L/s)	(L/s)	(m^3)	
10	178.50	9.9	9.9			
30	91.87	5.1	5.1			
40	75.15	4.2	4.2			
50	63.95	3.5	3.5			
60 70	55.89	3.1	3.1			
80	49.79	2.0	2.0			
90	41.11	2.3	2.3			
100	37.90	2.1	2.1			
110	35.20	2.0	2.0			
120	32.89	1.8	1.8			
Subdrainage Area	: UNC-2			Un	controlled - N	Non-Tributary
Area (na) C	: 0.01 : 0.63					
tc	l (100 yr)	Qactual	Qrelease	Qstored	Vstored	
(min)	(mm/hr)	(L/s)	(L/s)	(L/s)	(m^3)	
10	178.56	3.9	3.9			
∠∪ 30	91 87	∠.0 2 0	∠.0 2 0			
40	75.15	1.6	1.6			
50	63.95	1.4	1.4			
60	55.89	1.2	1.2			
70	49.79	1.1	1.1			
80 00	44.99 ∡1 11	1.U N Q	1.U 0 0			
90 100	41.11 37 <u>9</u> 0	0.9	0.9			
110	35.20	0.8	0.8			
120	32.89	0.7	0.7			
SUMMARY TO OUTLE	т				Cistern + R Vrequired	oof Storage: Vavailable*
Ν	Tributary Area //aximum 100vr F	a (Controlled) low to Sewer	0.69 58.5	ha L/s	207.7	221.9 m ³
	Tributary Area (I	Uncontrolled)	0.05	ha		-
-	Total 100yr Flow	Uncontrolled	13.8	L/s		
	T - 4	Total Area	0.74	ha L/s		
	IOT	ai iuuyi FIOW	12.3	L/S		
		iarget	12.0	L/3		

Date: 3/1/2023 Stantec Consulting Ltd.

mrm_2023-02-28_pm.xlsm, Modified RM W:\active\160401672\design\analysis\SWM\

Project #160401672, 1125-1149 Cyrville Road, Ottawa, ON Roof Drain Design Sheet, Area Roof 1A Standard Watts Model R1100 Accuflow Roof Drain

		Rating Curve						
Elevation	Discharge Rate	Outlet Discharge	Storage	Elevation	Area	Volume	e (cu. m)	Water Depth
(m)	(cu.m/s)	(cu.m/s)	(cu. m)	(m)	(sq. m)	Increment	Accumulated	(m)
0.000	0.0000	0.0000	0	0.000	0	0	0	0.000
0.025	0.0003	0.0009	0	0.025	19	0	0	0.025
0.050	0.0006	0.0019	1	0.050	77	1	1	0.050
0.075	0.0009	0.0026	4	0.075	174	3	4	0.075
0.100	0.0011	0.0033	10	0.100	309	6	10	0.100
0.125	0.0013	0.0040	20	0.125	483	10	20	0.125
0.150	0.0016	0.0047	35	0.150	696	15	35	0.150

Rooftop Storage Summary

Total Building Area (sq.m)		869.95	
Assume Available Roof Area (sq.m)	80%	695.96	
Roof Imperviousness		0.99	
Roof Drain Requirement (sq.m/Notch)		232	
Number of Roof Notches*		3	
Max. Allowable Depth of Roof Ponding (m)		0.15	* As per Ontario Building Code section OBC 7.4.10.4.(2)(c).
Max. Allowable Storage (cu.m)		35	
Estimated 100 Year Drawdown Time (h)		2.4	

* Note: Number of drains can be reduced if multiple-notch drain used.

Calculation Results	5yr	100yr	Available
Qresult (cu.m/s)	0.004	0.005	-
Depth (m)	0.111	0.146	0.150
Volume (cu.m)	14.6	32.5	34.8
Draintime (hrs)	1.3	2.4	

Drawdown Estimate						
Total	Total					
Volume	Time	Vol	Detention			
(cu.m)	(sec)	(cu.m)	Time (hr)			
0.0	0.0	0.0	0			
1.1	595.8	1.1	0.16551			
4.2	1176.2	3.1	0.49222			
10.1	1799.6	6.0	0.99211			
20.0	2443.4	9.8	1.67083			
34.6	3098.3	14.7	2.53145			

From Watts Drain Catalogue

Head (m) L/	S				
	Open	75%	50%	25%	Closed
0.025	0.315	0.315	0.315	0.315	0.315
0.050	0.631	0.631	0.631	0.631	0.631
0.075	0.946	0.867	0.789	0.710	0.631
0.100	1.262	1.104	0.946	0.789	0.631
0.125	1.577	1.341	1.104	0.867	0.631
0.150	1.893	1.577	1.262	0.946	0.631

Date: 3/1/2023 Stantec Consulting Ltd. mrm_2023-02-28_pm.xlsm, Roof 1A W:\active\160401672\design\analysis\SWM\

Project #160401672, 1125-1149 Cyrville Road, Ottawa, ON Roof Drain Design Sheet, Area Roof 1C Standard Watts Model R1100 Accuflow Roof Drain

ſ	Rating Curve				Volume Estimation				
	Elevation	Discharge Rate	Outlet Discharge	Storage	Elevation	Area	Volume	e (cu. m)	Water Depth
	(m)	(cu.m/s)	(cu.m/s)	(cu. m)	(m)	(sq. m)	Increment	Accumulated	(m)
ſ	0.000	0.0000	0.0000	0	0.000	0	0	0	0.000
	0.025	0.0003	0.0016	0	0.025	39	0	0	0.025
	0.050	0.0006	0.0032	3	0.050	154	2	3	0.050
	0.075	0.0009	0.0043	9	0.075	347	6	9	0.075
	0.100	0.0011	0.0055	21	0.100	616	12	21	0.100
	0.125	0.0013	0.0067	40	0.125	963	20	40	0.125
	0.150	0.0016	0.0079	69	0.150	1387	29	69	0.150

Rooftop Storage Summary

Total Building Area (sq.m)		1733.41	
Assume Available Roof Area (sq.m)	80%	1386.728	
Roof Imperviousness		0.99	
Roof Drain Requirement (sq.m/Notch)		232	
Number of Roof Notches*		5	
Max. Allowable Depth of Roof Ponding (m)		0.15	* As per Ontario Building Code section OBC 7.4.10.4.(2)(c).
Max. Allowable Storage (cu.m)		69	
Estimated 100 Year Drawdown Time (h)		3.0	

* Note: Number of drains can be reduced if multiple-notch drain used.

Calculation Results		5yr	100yr	Available
	Qresult (cu.m/s)	0.006	0.008	-
	Depth (m)	0.114	0.150	0.150
	Volume (cu.m)	31.2	68.9	69.3
	Draintime (hrs)	1.6	3.0	

Drawdown Estimate						
Total	Total					
Volume	Time	Vol	Detention			
(cu.m)	(sec)	(cu.m)	Time (hr)			
0.0	0.0	0.0	0			
2.2	712.3	2.2	0.19787			
8.3	1406.1	6.1	0.58846			
20.2	2151.5	11.9	1.18609			
39.8	2921.1	19.6	1.99751			
69.0	3704.1	29.2	3.02641			

From Watts Drain Catalogue

Head (m) L	./s				
	Open	75%	50%	25%	Closed
0.025	0.315	0.315	0.315	0.315	0.315
0.050	0.631	0.631	0.631	0.631	0.631
0.075	0.946	0.867	0.789	0.710	0.631
0.100	1.262	1.104	0.946	0.789	0.631
0.125	1.577	1.341	1.104	0.867	0.631
0.150	1.893	1.577	1.262	0.946	0.631

Date: 3/1/2023 Stantec Consulting Ltd. mrm_2023-02-28_pm.xlsm, Roof 1C W:\active\160401672\design\analysis\SWM\

Project #160401672, 1125-1149 Cyrville Road, Ottawa, ON Roof Drain Design Sheet, Area Roof 2A Standard Watts Model R1100 Accuflow Roof Drain

Rating Curve				Volume Estimation				
Elevation	n Discharge Rate	Outlet Discharge	Storage	Elevation	Area	Volume	e (cu. m)	Water Depth
(m)	(cu.m/s)	(cu.m/s)	(cu. m)	(m)	(sq. m)	Increment	Accumulated	(m)
0.000	0.0000	0.0000	0	0.000	0	0	0	0.000
0.025	0.0003	0.0022	0	0.025	17	0	0	0.025
0.050	0.0006	0.0044	1	0.050	67	1	1	0.050
0.075	0.0006	0.0044	4	0.075	152	3	4	0.075
0.100	0.0006	0.0044	9	0.100	269	5	9	0.100
0.125	0.0006	0.0044	18	0.125	421	9	18	0.125
0.150	0.0006	0.0044	30	0.150	606	13	30	0.150

Rooftop Storage Summary

Total Building Area (sq.m)		757.67	
Assume Available Roof Area (sq.m)	80%	606.136	
Roof Imperviousness		0.99	
Roof Drain Requirement (sq.m/Notch)		232	
Number of Roof Notches*		7	
Max. Allowable Depth of Roof Ponding (m)		0.15	* As per
Max. Allowable Storage (cu.m)		30	
Estimated 100 Year Drawdown Time (h)		1.7	

* As per Ontario Building Code section OBC 7.4.10.4.(2)(c).

Drawdown Estimate							
Total	Total						
Volume	Time	Vol	Detention				
(cu.m) (sec		(cu.m)	Time (hr)				
0.0	0.0	0.0	0				
1.0	222.4	1.0	0.06178				
3.6	603.6	2.7	0.22945				
8.8	1175.5	5.2	0.55599				
17.4	1938.0	8.6	1.09432				
30.2	2891.1	12.8	1.89742				

From Watts Drain Catalogue Head (m) L/s

Head (m)	L/s				
	Open	75%	50%	25%	Closed
0.025	0.3155	0.3155	0.3155	0.3155	0.3155
0.050	0.6309	0.6309	0.6309	0.6309	0.6309
0.075	0.9464	0.8675	0.7886	0.7098	0.6309
0.100	1.2618	1.1041	0.9464	0.7886	0.6309
0.125	1.5773	1.3407	1.1041	0.8675	0.6309
0.150	1.8927	1.5773	1.2618	0.9464	0.6309

* Note: Number of drains can be reduced if multiple-notch drain used.

Calculation Results

	5yr	100yr	Available
Qresult (cu.m/s)	0.004	0.004	-
Depth (m)	0.105	0.144	0.150
Volume (cu.m)	10.7	27.4	30.3
Draintime (hrs)	0.7	1.7	

Date: 3/1/2023 Stantec Consulting Ltd. mrm_2023-02-28_pm.xlsm, Roof 2A W:\active\160401672\design\analysis\SWM\

Project #160401672, 1125-1149 Cyrville Road, Ottawa, ON Roof Drain Design Sheet, Area Roof 2A Standard Watts Model R1100 Accuflow Roof Drain

	Rating C	urve						
Elevation	Discharge Rate	Outlet Discharge	Storage	Elevation	Area	Volume	e (cu. m)	Water Depth
(m)	(cu.m/s)	(cu.m/s)	(cu. m)	(m)	(sq. m)	Increment	Accumulated	(m)
0.000	0.0000	0.0000	0	0.000	0	0	0	0.000
0.025	0.0003	0.0003	0	0.025	1	0	0	0.025
0.050	0.0006	0.0006	0	0.050	6	0	0	0.050
0.075	0.0006	0.0006	0	0.075	13	0	0	0.075
0.100	0.0006	0.0006	1	0.100	22	0	1	0.100
0.125	0.0006	0.0006	1	0.125	35	1	1	0.125
0.150	0.0006	0.0006	3	0.150	50	1	3	0.150

Rooftop Storage Summary

Total Building Area (sq.m)		52.81	
Assume Available Roof Area (sq.m)	95%	50.17	
Roof Imperviousness		0.99	
Roof Drain Requirement (sq.m/Notch)		232	
Number of Roof Notches*		1	
Max. Allowable Depth of Roof Ponding (m)		0.15	* As pe
Max. Allowable Storage (cu.m)		3	
Estimated 100 Year Drawdown Time (h)		0.6	

per Ontario Building Code section OBC 7.4.10.4.(2)(c).

	Drawdown E	stimate	
Total	Total		
Volume	Time	Vol	Detention
(cu.m)	(sec)	(cu.m)	Time (hr)
0.0	0.0	0.0	0
0.1	128.9	0.1	0.03579
0.3	349.7	0.2	0.13294
0.7	681.1	0.4	0.32213
1.4	1122.9	0.7	0.63404
2.5	1675.1	1.1	1.09934

From Watts Drain Catalogue

Head (m) I	_/s				
	Open	75%	50%	25%	Closed
0.025	0.315	0.315	0.315	0.315	0.315
0.050	0.631	0.631	0.631	0.631	0.631
0.075	0.946	0.867	0.789	0.710	0.631
0.100	1.262	1.104	0.946	0.789	0.631
0.125	1.577	1.341	1.104	0.867	0.631
0.150	1.893	1.577	1.262	0.946	0.631

* Note: Number of drains can be reduced if multiple-notch drain used.

Calculation Results

	5yr	100yr	Available
Qresult (cu.m/s)	0.001	0.001	-
Depth (m)	0.083	0.122	0.150
Volume (cu.m)	0.4	1.4	2.5
Draintime (hrs)	0.2	0.6	

Date: 3/1/2023 Stantec Consulting Ltd.

mrm_2023-02-28_pm.xlsm, Roof 2B W:\active\160401672\design\analysis\SWM\

Appendix D Stormwater Servicing and Management March 2, 2023

D.3 STORM SEWER DESIGN SHEET

Stantec	1125 - 1149 DATE: REVISION: DESIGNED BY:	CYRVILLE ROAE	D, OTTAWA 2023- 1 PM,	A, ON 03-01 NN	FILE NUM	IBER:	STORN DESIGI (City of 16040167	I SEWE N SHEE f Ottawa) ⁷²	R T		<u>DESIGN</u> I = a / (t+ a = b =	PARAME b) ^c 1:2 yr 732.951 6.199	<u>1:5 yr</u> 998.071 6.053	(As per 0 1:10 yr 1174.184 6.014	City of Ott 1:100 yr 1735.688 6.014	awa Guido 3 MANNIN MINIMUI	elines, 201 G'S n = M COVER:	2) 0.013 2.00	m	BEDDING C	CLASS =	В																	
	CHECKED BY:		D	Т							c =	0.810	0.814	0.816	0.820	TIME OF	ENTRY	20	min									_											
LOCAT	ION													D	RAINAGE A	REA																I	PIPE SELEC	ION					
AREA ID	FROM	то	AREA	AREA	AREA	AREA	AREA	С	С	С	С	AxC	ACCUM	AxC	ACCUM.	AxC	ACCUM.	AxC	ACCUM.	T of C	I _{2-YEAR}	I _{5-YEAR}	I _{10-YEAR}	I _{100-YEAR}	Q _{CONTROL}	ACCUM.	Q _{ACT}	LENGTH	PIPE WIDTH	PIPE	PIPE	MATERIAL	CLASS	SLOPE	Q_{CAP}	% FULL	VEL.	VEL.	TIME OF
NUMBER	M.H.	M.H.	(2-YEAR)	(5-YEAR)	(10-YEAR)	(100-YEAR)	(ROOF)	(2-YEAR)	(5-YEAR)	(10-YEAR)	(100-YEAR) (2-YEAR)	AxC (2YR)	(5-YEAR)	AxC (5YR	(10-YEAF) AxC (10YF) (100-YEAR)	AxC (100YR)							Q _{CONTROL}	(CIA/360)	(OR DIAMETER	HEIGHT	SHAPE				(FULL)		(FULL)	(ACT)	FLOW
			(ha)	(ha)	(ha)	(ha)	(ha)	(-)	(-)	(-)	(-)	(ha)	(ha)	(ha)	(ha)	(ha)	(ha)	(ha)	(ha)	(min)	(mm/h)	(mm/h)	(mm/h)	(mm/h)	(L/s)	(L/s)	(L/s)	(m)	(mm)	(mm)	(-)	(-)	(-)	%	(L/s)	(-)	(m/s)	(m/s)	(min)
TANK 2A	CBMH 102	BLDG B	0.00	0.04	0.00	0.00	0.00	0.00	0.90	0.00	0.00	0.000	0.000	0.036	0.036	0.000	0.000	0.000	0.000	20.00	52.03	70.25	82.21	119.95	0.0	0.0	7.0	6.3	200	200	CIRCULAR	PVC	-	1.00	33.3	21.09%	1.05	0.69	0.15
			0.00	0.47	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.000	0.000	0.450	0.452	0.000	0.000	0.000	0.000	20.15	50.00	70.05	00.04	110.05	0.0	0.0	20.0	0.7	200	200		D)/C		1.00	06.0	24.429/	4.07	1.01	0.14
ROOF 2A, ROOF 2B, TANK 2B, TANK 2		BLDG A	0.00	0.17	0.00	0.00	0.00	0.00	0.90	0.00	0.00	0.000	0.000	0.155	0.155	0.000	0.000	0.000	0.000	20.00 20.14	52.03	70.25	02.21	119.95	0.0	0.0	29.9	0.7	300	300	CIRCULAR	PVC	-	1.00	90.2	31.13%	1.37	1.01	0.14
TANK 1B	CB101	BLDG A	0.00	0.07	0.00	0.00	0.00	0.00	0.50	0.00	0.00	0.000	0.000	0.035	0.035	0.000	0.000	0.000	0.000	20.00	52.03	70.25	82.21	119.95	0.0	0.0	6.8	2.3	200	200	CIRCULAR	PVC	-	1.00	33.3	20.51%	1.05	0.68	0.06
																				20.06									200	200									
ROOF 1A, ROOF 1B, ROOF 1C, L100	BLDG A	MONITOR MH	0.00	0.38	0.00	0.00	0.00	0.00	0.90	0.00	0.00	0.000	0.000	0.342	0.342	0.000	0.000	0.000	0.000	20.00	52.03	70.25	82.21	119.95	0.0	0.0	66.7	5.2	375	375	CIRCULAR	PVC	-	2.50	260.6	25.61%	2.47	1.73	0.05
																				20.05																			
L100A	L100A	MONITOR MH	0.00	0.04	0.00	0.00	0.00	0.00	0.90	0.00	0.00	0.000	0.000	0.036	0.036	0.000	0.000	0.000	0.000	20.00	52.03	70.25	82.21	119.95	0.0	0.0	7.0	10.2	200	200	CIRCULAR	PVC	-	2.00	47.1	14.91%	1.48	0.88	0.19
	MONITOR MH	STM 1000	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.000	0.000	0.000	0.378	0.000	0.000	0.000	0.000	20.19	51.72	69.83	81.72	119.22	0.0	0.0	73.3	18.4	450	450	CIRCULAR	PVC	_	0.70	248.9	29.46%	1.52	1.11	0.28
	STM 1000	STM 1000-A	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.000	0.000	0.000	0.414	0.000	0.000	0.000	0.000	20.47	51.29	69.24	81.02	118.20	0.0	0.0	79.6	18.4	600	600	CIRCULAR	CONCRETE	-	0.32	362.4	21.97%	1.24	0.83	0.37

Appendix D Stormwater Servicing and Management March 2, 2023

D.4 CORRESPONDENCE WITH RIDEAU VALLEY CONSERVATION AUTHORITY (RVCA)

Nwanise, Nwanise

From:	Jamie Batchelor <jamie.batchelor@rvca.ca></jamie.batchelor@rvca.ca>
Sent:	Thursday, October 21, 2021 9:57 AM
То:	Wu, Dennis
Cc:	Moroz, Peter; Thiffault, Dustin; Sharp, Mike; Nwanise, Nwanise
Subject:	RE: 160401672 _ 1125-1149 Cyrville Rd_ Stormwater Quality Control Criteria

Good Morning Dennis,

The downstream outlet to a watercourse is less than 500m. Therefore, t=on-site water quality control would be required. The water quality objective is 'enhanced' (80% TSS removal). We would also strongly encourage you to incorporate Lid measures into the stormwater management plan and to consider the new criteria for the upcoming linear ECA process.

Jamie Batchelor, MCIP, RPP Planner, ext. 1191 Jamie.batchelor@rvca.ca

3889 Rideau Valley Drive PO Box 599, Manotick ON K4M 1A5 T 613-692-3571 | 1-800-267-3504 F 613-692-0831 | www.rvca.ca

This message may contain information that is privileged or confidential and is intended to be for the use of the individual(s) or enti may contain confidential or personal information which may be subject to the provisions of the Municipal *Freedom of Informatior* you are not the intended recipient of this e-mail, any use, review, revision, retransmission, distribution, dissemination, copying, prir taking of any action in reliance upon this e-mail, is strictly prohibited. If you have received this e-mail in error, please contact the s and any copy of the e-mail and any printout thereof, immediately. Your cooperation is appreciated.

From: Wu, Dennis <Dennis.Wu@stantec.com> Sent: Tuesday, October 19, 2021 3:44 PM To: Jamie Batchelor <jamie.batchelor@rvca.ca>

Cc: Moroz, Peter <peter.moroz@stantec.com>; Thiffault, Dustin <Dustin.Thiffault@stantec.com>; Sharp, Mike <Mike.Sharp@stantec.com>; Nwanise, Nwanise <Nwanise.Nwanise@stantec.com> **Subject:** 160401672 _ 1125-1149 Cyrville Rd_ Stormwater Quality Control Criteria

Good day Jamie,

I am writing to request stormwater quality control criteria for a proposed development at 1125-1149 Cyrville Road, the property area is bound by Cyrville Road to the south, between the intersections with Michael Street and Cummings Avenue. Stantec is preparing an Adequacy of Services report in support of an application for site control and zoning amendment.

The proposed development area (0.84 ha) contains two residential high-rise buildings, one at 6-storeys and the other at 12-storeys. The 6-storey building contains 208 units in total and an estimated population at 400. It consists of 60 one-bedroom units, 143 two-bedroom units, 5 three-bedroom units, and 2,392m² of communal amenity areas. The 12-storey building would house 146 total units with population of 275, including 55 one-bedroom units, 85 two-bedroom units, 6 three-bedroom units, and 2,028m² of communal amenity areas. There will be an access lane for internal circulation and access to parking, which is found in two underground parking levels (P1 and P2) in each building, totaling 354 parking stalls overall.

A location map, Site Servicing Plan, and Stormwater Drainage plan are attached for your use and reference.

Please do not hesitate to contact me if you require more information.

Thank you in advance.

Best regards,

Dennis Wu,EIT Civil Designer, Community Development

Mobile: (613) 413-1218 dennis.wu@stantec.com

Stantec 400 - 1331 Clyde Avenue Ottawa ON K2C 3G4

The content of this email is the confidential property of Stantec and should not be copied, modified, retransmitted, or used for any purpose except with Stantec's written authorization. If you are not the intended recipient, please delete all copies and notify us immediately.

Appendix D Stormwater Servicing and Management March 2, 2023

D.5 STORMCEPTOR SIZING SHEET AND STANDARD DETAIL

Welcome, Nwanise Nwanise | My Projects | Logout | Find a Rep

ORTERRA

Stormceptor Net Annual Sediment Load Reduction Sizing Tool Project Summary Site Details Sizing Result < Back **Save Sizing Report** Cancel Project Name: 1125 - 1149 Cyrville Road Site Name: 1125-1149 Cyrville road Location: Ottawa / ON Site has been updated successfully. **Download Stormceptor Specifications & Drawings Download Stormceptor EFO Sizing Report Design Summary** Net Annual Sediment (TSS) Load **Reduction Sizing Summary** TSS Removal **Stormceptor Model** Provided (%) EFO4 81 EFO6 90 EFO8 95 EFO10 97 EFO12 99 **Recommended Stormceptor EFO Model:**

- Recommended Stormceptor EFO Model: EFO4
- Estimated Net Annual Sediment (TSS) Load Reduction (%): 81
 - Water Quality Runoff Volume Capture (%): > 90

Rainfall	Percent	Cumulative	Flow Rate	Flow Rate	Surface	Removal	Incremental	Cumulative
Intensity	Rainfall	Rainfall	(L/s)	(L/min)	Loading	Efficiency	Removal	Removal
(mm/hr)	Volume	Volume				(%)	(%)	

					Rate			
					(L/min/m ²)			
0.5	8.6%	8.6%	0.81	48.8	40.7	100	8.6	8.6
1	20.3%	29.0%	1.63	97.6	81.3	98	20.0	28.6
2	16.2%	45.2%	3.25	195.2	162.6	88	14.3	43.0
3	12.0%	57.2%	4.88	292.7	243.9	81	9.7	52.7
4	8.4%	65.6%	6.51	390.3	325.3	78	6.5	59.2
5	5.9%	71.6%	8.13	487.9	406.6	74	4.4	63.6
6	4.6%	76.2%	9.76	585.5	487.9	70	3.3	66.9
7	3.1%	79.3%	11.38	683.0	569.2	66	2.0	68.9
8	2.7%	82.0%	13.01	780.6	650.5	64	1.8	70.7
9	3.3%	85.3%	14.64	878.2	731.8	64	2.1	72.8
10	2.3%	87.6%	16.26	975.8	813.2	63	1.4	74.2
11	1.6%	89.2%	17.89	1073.4	894.5	62	1.0	75.2
12	1.3%	90.5%	19.52	1170.9	975.8	62	0.8	76.0
13	1.7%	92.2%	21.14	1268.5	1057.1	60	1.0	77.1
14	1.2%	93.5%	22.77	1366.1	1138.4	59	0.7	77.8
15	1.2%	94.6%	24.39	1463.7	1219.7	56	0.7	78.4
16	0.7%	95.3%	26.02	1561.2	1301.0	55	0.4	78.8
17	0.7%	96.1%	27.65	1658.8	1382.4	53	0.4	79.2
18	0.4%	96.5%	29.27	1756.4	1463.7	50	0.2	79.4
19	0.4%	96.9%	30.90	1854.0	1545.0	48	0.2	79.6
20	0.2%	97.1%	32.53	1951.6	1626.3	45	0.1	79.7
21	0.5%	97.5%	34.15	2049.1	1707.6	43	0.2	79.9
22	0.2%	97.8%	35.78	2146.7	1788.9	41	0.1	80.0
23	1.0%	98.8%	37.40	2244.3	1870.2	39	0.4	80.4
24	0.3%	99.1%	39.03	2341.9	1951.6	38	0.1	80.5
25	0.0%	99.1%	40.66	2439.5	2032.9	36	0.0	80.5
30	0.9%	100.0%	48.79	2927.3	2439.5	30	0.3	80.8
35	0.0%	100.0%	56.92	3415.2	2846.0	26	0.0	80.8
40	0.0%	100.0%	65.05	3903.1	3252.6	23	0.0	80.8
45	0.0%	100.0%	73.18	4391.0	3659.2	20	0.0	80.8

Download Stormceptor Specifications & Drawings

Specifications & Drawings | www.imbriumsystems.com

Imbrium® Systems Inc. | Imbrium® Systems LLC All Rights Reserved.

NO PRODUCT SUBSTITUTIONS SHALL BE ACCEPTED UNLESS SUBMITTED 10 DAYS PRIOR TO PROJECT BID DATE, OR AS DIRECTED BY THE ENGINEER OF RECORD.

STANDARD DETAIL NOT FOR CONSTRUCTION

OUTLET

						The design and information shown on this drawing is provided as a service to the project owner, engineer	and contractor by Imbrium Systems ("Imbrium"). Neither this drawing, nor any part thereof, may be used exercitions or models of boundary of the	the prior white consert of mounter in any manual winder the prior white consert of imbrum. Failure to comply is done at the user's own risk and imbrum expression	discialms any liability or responsibility for such use. If discretancies between the supplied information upon	which the drawing is based and actual field conditions are encountered as site work progresses, these discrementing are the recorded to their in montal factor.	the resolution of the design. Imbrum accepts to for re-evaluation of the design. Imbrum accepts to lability for designs based on missing, incomplete or	inaccurate information supplied by others.
				<u> </u>	-6		####	####	####	JSK	JSK	BY
PL	A A A	(STANDAF					<i>####</i>	£ ####	£ ####	UPDATES	INITIAL RELEASE	REVISION DESCRIPTION
							####	####	####	6/8/18	5/26/17	DATE
< _	4	Å Å					####	####	####	-	0	MARK
PL SE CONTACT Y ED ON THE BE IGURATION OR C IGURATION RE STRUCTURE (I	AN VIEW	And	TOP)	OUTLET	ATIVE. SOME BASED FAINED	Ċ				18		SCALE = NTS
SITE S	PECIFI	C DATA	REQ	JIREME	NTS	1			-	1N 3A9	TOLOWING PATH	
STORMCEPT STRUCTURE HYDROCARE WATER QUA PEAK FLOW RETURN PEF	OR MODI ID BON STOF LITY FLO RATE (L/s RIOD OF F	EL RAGE REC W RATE (I s) PEAK FLO	EF Q'D (L) L/s) W (yrs)	04	* * * *				unilani	407 FAIRVIEW DRIVE, WHITBY, CN L 800-565-4801 CA 416-880-8800 INTL +1	NE GRUCHANZEPTON BANTEM IS PROJECTED BY ONE ON MORE OF THE F Australia Prant No. 200,164 - 107,103 - 720,006 - 774001 Austral IA Canadian Prant No. 200,164 - 107,103 - 102,000 Austral IA	 A. MARLEN, S. M. MARLEN, J. M. M. M. M. MARLEN, S. M. MARLEN, S. M. M.
DRAINAGE A	REA (HA)		VESS (%)	<u> </u>	*	DATE	E:		,	H۲		- 1
	I.E.	MAT'L		/ L SLOPE %	6 HGL	10/ DESI	13/2 IGNEI	2017 D:	, []	RAW	N:	
NLET #1	*	*	*	*	*	JSI CHE	K CKFr);		JSK)VED-	
NLET #2	*	*	*	*	*	BS	F		Ĵ	SP		
			*	*	*	PRO. EF	JECT 04	No.:	S	EQUE	NCE	No.:
PER ENGIN	EER OF F	ECORD				SHEI	ET:	1	1	OF	1	