

120 Iber Road, Suite 103 Stittsville, ON K2S 1E9 613-836-0856 dsel ca

DESIGN BRIEF

FOR

585 BOBOLINK RIDGE TAMARACK HOMES

CITY OF OTTAWA

PROJECT NO.: 21-1261

JANUARY 2022 1ST SUBMISSION © DSEL

DESIGN BRIEF FOR 585 BOBOLINK RIDGE TAMARACK HOMES

TABLE OF CONTENTS

1.0	INTRODUCTION & BACKGROUND	1
1.1	Development Concept	2
1.2	Existing Conditions	3
1.3	Required Permits / Approvals	3
1.4	Pre-Consultation	4
2.0	GUIDELINES, PREVIOUS STUDIES, AND REPORTS	5
2.1	Existing Studies, Guidelines, and Reports	5
3.0	WATER SUPPLY SERVICING	7
3.1	Existing Water Supply Services	7
3.2	Water Supply Servicing Design	7
	3.2.1 Watermain Modelling	8
3.3	Water Supply Conclusion	9
4.0	WASTEWATER SERVICING	10
4.1	Existing Wastewater Services	10
4.2	Wastewater Design	10
4.3	Wastewater Servicing Conclusions	11
5.0	STORMWATER MANAGEMENT	12
5.1	Existing Stormwater Drainage	12
5.2	Stormwater Management Criteria	12
5.3	Stormwater Management Strategy	12
	5.3.1 Minor System	
	5.3.2 Quality Control	
5.4	Stormwater Management Calculations	14
5.5	Grading & Drainage	17
5.6	Stormwater Servicing Conclusions	17
6.0	UTILITIES	18

7.0	EROSION AND SEDIMENT CONTROL	9
8.0	CONCLUSIONS AND RECOMMENDATIONS2	21
	IN-TEXT FIGURES	
Figure	e 1.1: Site Location 1	
	<u>TABLES</u>	
	1.1: Development Statistic Projections	
	1.2: Anticipated Permit/Approval Requirements	3
	: 3.1: Water Supply Design Criteria	7

Table 3.2: Summary of Water Demands 8
Table 3.3: Boundary Conditions 8
Table 3.4: Summary of Available Service Pressures 9
Table 3.5: Summary of Available Fire Flows 9
Table 4.1: Wastewater Design Criteria 10
Table 4.2: Wastewater Peak Flow 11
Table 5.1: Storm Sewer Design Criteria 13
Table 5.2: Storage Requirements Bobolink Ridge Outlet (south) 15
Table 5.3: Storage Requirements for Block 324 Outlet (north) 16

APPENDICES

Appendix A Legal Drawings, site plan, pre-consult notes, City checklist

Appendix B Hydraulic Network Analysis

Appendix C Sanitary Servicing Documents

Appendix D Stormwater Servicing Documents

DESIGN BRIEF FOR 585 BOBOLINK RIDGE TAMARACK HOMES

JANUARY 2022 CITY OF OTTAWA PROJECT NO.: 21-1261

1.0 INTRODUCTION & BACKGROUND

David Schaeffer Engineering Limited (DSEL) has prepared this Design Brief in support of development of 585 Bobolink Ridge on behalf of Tamarack Homes.

The study area is located within 585 Bobolink Ridge in the City of Ottawa urban boundary, in the Ward 6 – Stittsville Glen Gower as illustrated in *Figure 1.1*, the study area is bounded by Putney Crescent to the west, Bobolink Ridge to the south, Robert Grant Avenue to the east and a public pathway to the North. The site is a 1.19-hectare parcel located within CRT developments Inc. Phase 1 Westwood subdivision.

Figure 1.1: Site Location

The study area and surrounding lands are governed by the broader Fernbank Community Design Plan (*FCDP*) (*City of Ottawa, 2009*), the Master Servicing Study (*MSS*) and Environmental Management Plan (*EMP*). A Design Brief for the phase 1 of CRT lands was prepared by IBI Group in 2017 that established a municipal servicing strategy for the Phase 1 CRT lands in keeping with the planning level solutions identified in the *MSS* and

EMP. The Phase 1 CRT Lands Design Brief identifies existing infrastructure and environmental constraints, describes the neighborhood-level trunk services that will service all properties within its study area, including the 585 Bobolink Ridge parcel, establishes targets for future site-specific stormwater management plans.

This Design Brief is provided to demonstrate conformance with the design criteria of the City of Ottawa, the CRT Lands Phase 1 Design Brief, background studies including the *MSS*, and general industry practice. It provides detailed water, sanitary sewer, stormwater management and grading design information to support the development of the study area. This report should be read in conjunction with the Engineering Drawings (DSEL, Jan 13, 2022).

This Design Brief and detailed engineering submission have been prepared by **David Schaeffer Engineering Ltd.**, with a watermain analysis prepared by **GeoAdvice Engineering Inc.**, and geotechnical analysis prepared by **Paterson Group Inc.**

1.1 Development Concept

The site plan for the proposed development concept at 585 Bobolink Ridge, (Block 243 on Plan 43-1619) has been included in *Appendix A*. The proposed development consists of 8 blocks for a total of 76 back-to-back townhomes. *Table 1.1* presented below provides a projected population count for the site. The private roads being proposed within the site consist of 11.6m wide Condo ROWs with 6.0m wide pavement widths, as shown in the Engineering drawing set. The proposed development concept is in general conformance with the FCDP.

Table 1.1: Development Statistic Projections

Land Use	Total	Projected	Residential	Projected
	Area (ha)	Residential Units	Population per Unit *	Population *
Block 243 (585 Bobolink Ridge)	1.19	76 B2Bs	2.7	206

^{*} NOTE: Population projections may differ from population estimates used in background Transportation Studies, Planning Rationale, and other studies. Population projection and residential population per unit values are based on Ministry of Environment, Conservation and Parks guidelines for servicing demand calculations. Local Roads are included in Total Area estimates above.

1.2 Existing Conditions

The lot is currently vacant, generally covered with grass and has a gravel access lane. The existing elevations for the site generally range between 107.5 and 109.2m. There is a slight east-west ridge located roughly at the center of the site creating fall to both the north and south.

The soil profile for this site is detailed in the *Geotechnical Investigation – Proposed Residential Development 585 Bobolink Ridge, Report: PG5858-1 (Dated July 5th, 2021, Paterson Group).* The report indicates that the subsurface profile generally consists of brown silty sand with gravel, cobbles, boulders and trace organics with glacial till encountered in some areas. As practical refusal was encountered at depths ranging from 1.7 to 3.8m, the Paterson report inferred it to be bedrock. No permissible grade raise restrictions are recommended per the Paterson report.

1.3 Required Permits / Approvals

Development of the study area is expected to be subject to the following permits and approvals presented in *Table 1.2*.

Table 1.2: Anticipated Permit/Approval Requirements

Agency	Permit/Approval Required	Trigger	Remarks
MECP/City of Ottawa	Environmental Compliance Approval	Construction of new sanitary sewers, storm sewers, and stormwater management works.	The City of Ottawa is expected to review all stormwater collection system, stormwater management, and wastewater collection system on behalf of the MECP by transfer of review authority.
MECP	Permit to Take Water (PTTW)	Construction of proposed land uses (e.g. basements for residential homes) and services.	Pumping of groundwater or surface water may be required during construction, given site conditions, proposed land uses, and on-site/off-site municipal infrastructure.
City of Ottawa	MOE Form 1 – Record of Watermains Authorized as a Future Alteration.	Construction of watermains.	The City of Ottawa is expected to review the watermains on behalf of the MECP through the Form 1 – Record of Watermains Authorized as a Future Alteration.
City of Ottawa	Commence Work Notification (CWN)	Construction of new sanitary and storm sewer throughout the subdivision.	The City of Ottawa will issue a commence work notification for construction of the sanitary and storm sewers once an ECA is issued by the MECP.

1.4 Pre-Consultation

Pre-application consultation was conducted on April 13th, between the City of Ottawa and the developers as part of the Site Plan Control Application process. Various stakeholders provided written comments that were recorded and formalized in meeting minutes.

Per the City of Ottawa Transfer of Review Agreement No. TOR-OTT-E-2019-01, it is assumed that MECP pre-consultation is not required, as the City of Ottawa is expected to agree that the proposed works fall under Schedule A of the agreement. As such, the City of Ottawa is expected to review the proposed infrastructure on behalf of MECP as part of issuing Environmental Compliance Approval for the appropriate works.

2.0 GUIDELINES, PREVIOUS STUDIES, AND REPORTS

2.1 Existing Studies, Guidelines, and Reports

The following key studies were utilized in the preparation of this report:

> Ottawa Sewer Design Guidelines,

City of Ottawa, *SDG002*, October 2012 (Sewer Design Guidelines)

Technical Bulletin ISDTB-2014-01, Revisions to Ottawa Design Guidelines -Sewer

City of Ottawa, February 5, 2014. (ISDTB-2014-01)

Technical Bulletin PIEDTB-2016-01, Revisions to Ottawa Design Guidelines Sewer.

City of Ottawa, September 6, 2016. (PIEDTB-2016-01)

Technical Bulletin ISTB-2018-01, Revisions to Ottawa Design Guidelines – Sewer.

City of Ottawa, March 21, 2018. (ISTB-2018-01)

> Technical Bulletin ISTB-2019-02, Revisions to Ottawa Design Guidelines –

Sewer,

City of Ottawa, July 8, 2019. (ISTB-2019-02)

> Ottawa Design Guidelines – Water Distribution,

City of Ottawa, July 2010. (Water Supply Guidelines)

> Technical Bulletin ISD-2010-2

City of Ottawa, December 15, 2010. (ISDTB-2010-2)

> Technical Bulletin ISDTB-2014-02

City of Ottawa, May 27, 2014. (ISDTB-2014-02)

> Technical Bulletin ISTB-2018-02

City of Ottawa, March 21, 2018 (ISDTB-2018-02)

Fire Underwriters Survey, 1999. (FUS)

Design Guidelines for Sewage Works,

Ministry of the Environment, 2008. (MECP Design Guidelines)

> Stormwater Planning and Design Manual,

Ministry of the Environment, March 2003. (SWMP Design Manual)

Ontario Building Code Compendium,

Ministry of Municipal Affairs and Housing Building Development Branch, 2012 and as updated from time to time. *(OBC)*

Ontario Building Code Compendium,

Ministry of Municipal Affairs and Housing Building Development Branch, 2012 and as updated from time to time. *(OBC)*

> Fernbank Community Design Plan MSS

Novatech Consulting Engineers 2009

Fernbank Community Sanitary Trunk Sewer Report

Novatech Consulting Engineers 2012

CRT Lands Phase 1, Fernbank Community Servicing Brief IBI Group, July 2017

CRT Lands Phase 1, Fernbank Community Servicing Brief Blk 324 IBI Group, July 2021

WATER SUPPLY SERVICING 3.0

3.1 **Existing Water Supply Services**

There is an existing 200mm dia. watermain service connecting to an active 300mm dia. watermain on Bobolink Ridge at the eastern boundary of the site. A 200mm dia. watermain is also present on Putney Crescent located to the west of the site.

3.2 Water Supply Servicing Design

The site will be serviced via a local 150mm dia. and 200mm dia. watermains on private streets with individual services to units. Two connections will be made to the existing system within the vicinity of site, 1 connection will be made on the existing 200mm dia. stub connected to the 300mm dia. watermain on Bobolink Ridge, and a second connection will be on the existing 200mm dia. watermain on Putney Crescent.

Table 3.1: Water Supply Design Criteria

Design Parameter	Value
Residential – Townhome/ Semi	2.7 p/unit
Residential Average Daily Demand	280 L/d/p
Residential – Maximum Daily Demand	4.9 x Average Daily Demand
Residential – Maximum Hourly Demand	7.4 x Maximum Daily Demand
Residential – Minimum Hourly Demand	0.1 x Average Daily Demand
Minimum Watermain Size	150 mm diameter
Minimum Depth of Cover	2.4 m from top of watermain to finished grade
During normal operating conditions desired operating pressure is within	350 kPa and 48 0kPa
During normal operating conditions pressure must not drop below	275 kPa
During normal operating conditions pressure must not exceed	552 kPa
During fire flow operating pressure must not drop below	140 kPa
Notes:	

- Extracted from Section 4: Ottawa Design Guidelines, Water Distribution (July 2010), Table 4.1 Per Unit Populations and Table 4.2 Consumption Rates for Subdivisions of 501 to 3,000 Persons.
- No Outdoor Water Demand considered for residential uses.

Residential Average Daily Demand assumed to be 280 L/d/P in accordance with 2018 changes to Sanitary Design Guidelines, see Section 4.0.

All local watermains within the site were designed in accordance with the Water Supply Guidelines, as summarized in **Table 3.1** above.

A summary of the anticipated water demands for the study area are summarized in *Table* 3.2. Boundary conditions have been provided by the City of Ottawa based on these demands, and can be found in **Appendix B**, as part of the Hydraulic Capacity and Modeling Analysis - Bobolink Ridge (GeoAdvice Report) (GeoAdvice, January 11th, 2022). Small altercations were undertaken by the Developer since the water demands were calculated. The small change consists of removing 2 units therefore calculations presented below and within the GeoAdvice report reference 78 units however the plan

has been updated to consist of 76 units. The results remain valid and relevant for their intended purposes.

Table 3.4: Summary of Water Demands

		Pop	ulation			Max	Peak	Min
Dwelling Type	Number of Units	Persons per unit	Population per dwelling type	Allocated Demand	Avg Day (L/s)	Day 4.9 x Avg Day (L/s)	Hour 7.4 x Max Day (L/s)	Hour 0.1 x Avg Day (L/s)
Back-to-Back Townhomes	78	2.7	2.7	280 L/c/d	0.75	3.68	5.56	0.08

Note, a small buffer (10%) was applied to the population estimates to account for any minor changes that may occur prior to the full buildout of the development.

Fire flow calculations for the back-to-back townhouses are detailed in the GeoAdvice Report found in *Appendix B*. The fire flows are calculated in accordance with the Fire Underwriters Survey's Water Supply for Public Fire Protection Guideline (1999) as amended by ISTB-2014-02 & ISTB-2018-02. A range of fire flows (167 L/s to 283 L/s) was included in the boundary conditions request. Hydraulic grade lines (HGL) for intermediate flows between 167 L/s and 283 L/s have been interpolated using the boundary conditions provided by the City.

The boundary conditions provided by the City of Ottawa for use in the hydraulic analysis related to the subject site are summarized in *Table 3.3*.

Table 3.5: Boundary Conditions

Condition	Connection 1 HGL (m) (Bobolink Ridge)	Connection 2 HGL (m) (Putney Crescent)
Average Day Demand	161.2	161.2
Peak Hour (min. pressure)	156.4	156.4
Max Day + Fire (167 L/s)	153.7	146.5
Max Day + Fire (267 L/s)**	148.9	131.5
Max Day + Fire (283 L/s)	148.1	129.1

^{**}interpolated value

3.2.1 Watermain Modelling

A hydraulic analysis was completed for the study area within the *GeoAdvice Report*. The analysis, including the watermain network configuration and sizing, is provided in *Appendix B*.

Modelling was carried out for minimum hour, peak hour and maximum day plus fire flow. Modelling results shown in *Table 3.4* indicate that the development can be adequately serviced for minimum hour and peak hour criteria.

Table 3.6: Summary of Available Service Pressures

Average Day Demand Maximum Pressure	Peak Hour Demand Minimum Pressure
(kPa)	(kPa)
75 psi (520 kPa)	67 psi (464kPa)

The results presented in the table above indicate that the pressures are within the OSDG best practices for new water distribution systems to operate between 350 kPa and 480 kPa.

Per *Table 3.1*, the minimum allowable pressure under fire flow conditions is 140 kPa (20 psi) at the location of the fire. A summary of available fire is shown below in *Table 3.5*. Further details can be found in *Appendix B*.

Table 3.7: Summary of Available Fire Flows

Required Fire Flow (L/s)	Minimum Available Fire Flow (L/s)
267	292

3.3 Water Supply Conclusion

The proposed watermain network conforms to all relevant City and MECP *Water Supply Guidelines*. The hydraulic analysis of the proposed watermain network, completed within the *GeoAdvice Report*, concludes that all required domestic and fire flows can be met throughout the study area upon full buildout of the development. Anticipated fire flow requirements can be met throughout the development lands according to City Guidelines and ISTB-2018-02.

4.0 WASTEWATER SERVICING

4.1 Existing Wastewater Services

The subject lands are tributary to the existing 750mm dia. Stittsville Trunk Sewer located on Abbott Street and ultimately the Hazeldean Pumping Station (HPS). There is an existing capped 200 mm dia. sanitary sewer at the southern end of the subject site within the property limits. The capped sewer connects to a 250mm dia. sewer on Bobolink Ridge. The Bobolink sanitary sewer is part of a larger system that eventually connects to the Stittsville Trunk Sewer.

4.2 Wastewater Design

The study area will be serviced by a network of 200mm dia. gravity sewers. The sanitary sewer network was designed in accordance with the wastewater design parameters from ISTB-2018-01 and the *Sewer Design Guidelines*, summarized in *Table 4.1* below.

Table 4.1: Wastewater Design Criteria

Design Parameter	Value	
Residential - Single Family	3.4 p/unit	
Residential - Townhome/ Semi	2.7 p/unit	
Residential Townhouse/Back-to-Back	2.1 p/unit	
Residential Apartment (High Density)	1.8 p/unit	
Average Daily Demand	280 L/d/per	
Peaking Factor	Harmon's Peaking Factor, where K=0.8	
Commercial / Institutional Flows	28,000 L/gross ha/day	
Commercial / Institutional Peak Factor	1.5 if contribution >20%, otherwise 1.0	
Light Industrial Flows	35,000 L/gross ha/day	
Industrial Peaking Factor	Per Figure in Appendix 4-B, City of Ottawa	
	Guidelines	
Infiltration and Inflow Allowance	0.33 L/s/gross ha for all areas	
Park Peaking Factor	1.0	
Sanitary sewers are to be sized employing the	$Q = \frac{1}{1} A R^{\frac{2}{3}} S^{\frac{1}{2}}$	
Manning's Equation	$Q = -AR^{7/3}S^{7/2}$	
Minimum Sewer Size	200 mm diameter	
Minimum Manning's 'n'	0.013	
Minimum Depth of Cover	2.5 m from crown of sewer to grade	
Minimum Full Flowing Velocity	0.6 m/s	
Maximum Full Flowing Velocity	3.0 m/s	
Extracted from Sections 4 and 6 of the City of Ottav	va Sewer Design Guidelines, October 2012,	
Technical Bulletins, and recent residential subdivisions in the City of Ottawa.		

A flow allocation of 2.10 L/s was allocated for 585 Bobolink Ridge land parcel as part of the CRT Lands Phase 1 Design Brief (IBI Group, 2017). The design sheets provided in the 2017 IBI report are presented in *Appendix C*. As noted above, all of the CRT lands, including this site, are tributary to the Hazeldean Pumping Station (HPS). In 2014, the City completed upgrades to increase the capacity of the HPS and accommodate the Fernbank Community. As part of the CRT Phase 1 design brief, sanitary HGLs were

calculated and updated from the numbers presented in the 2009 FCDP MSS. The results presented in in the CRT Phase 1 design brief concluded that sanitary HGL levels within the sanitary system were lower than those previously predicted in the MSS, even with the additional flow. Different loss coefficient used between analysis was cited as the reason for this.

Table 4.2: Wastewater Peak Flow

		Population						
Area (Ha.)	Number of Units	Persons per unit	Population	Allocated Demand	Avg Day (L/s)	I/I (L/s)	Peak Factor	Peak Flow (L/s)
Back-to-Back Townhomes	76	2.7	206	280 L/c/d	0.67	0.39	3.51	2.35

A wastewater peak flow for the proposed development of 2.35 L/s was calculated based on the parameters presented in *Table 4.1*. The peak flow is 0.25 L/s greater than the allocated flow from the CRT Lands Phase 1 design brief. Based on the sanitary design sheet for the entire CRT development presented in *Appendix C* there is sufficient residual capacity in the receiving sewer system to accommodate the small increase in peak flow.

4.3 Wastewater Servicing Conclusions

The sewers have generally been designed in conformance with all relevant City of Ottawa and MECP Guidelines and Policies, excluding the proposed deviation reducing drops at maintenance holes. Per ISTB-2018-01, the City's current design parameters represent a flow reduction from the outdated standards used within the *MSS*.

5.0 STORMWATER MANAGEMENT

5.1 Existing Stormwater Drainage

The site currently sheet drains to adjacent streets with no specific outlet or catch basins on-site. The undeveloped parcel is relatively flat with an east-west ridge in the center, therefore stormwater currently ponds on site or sheet flows to adjacent properties. There is an existing 825mm dia. storm sewer stubbed and capped at the southern portion of the parcel.

5.2 Stormwater Management Criteria

Stormwater management requirements for the study area have been adopted from the *MSS*, *EMP*, CRT Land Phase 1 design brief, the Fernbank Pond 5 Stormwater Management Facility Report and Design Brief (IBI Group, May 2016) and West Park Pond 6 Stormwater Management Report and Design Brief Report, IBI Group.

The following criteria was considered as part of the stormwater management strategy within the study area and conveyance to the proposed stormwater management Pond 5, among other requirements:

Storm sewers on local roads are designed to provide a minimum 5-year level of service per the City's latest Technical Bulletin PIEDTB-2016-01.

Under full flow conditions, the allowable velocity in storm sewers is to be no less than 0.80 m/s and no greater than 6.0 m/s.

For the 100-year storm and for local and collector roads, the maximum depth of water (static and/or dynamic) on streets, rear yards, public space and parking areas shall not exceed 0.35 m at the gutter. For arterial roads, no barrier curb overtopping is permitted.

The major system is designed with sufficient capacity to allow the excess runoff of a 100-year storm to be conveyed within the public ROW or adjacent to the right-of-way provided that the water level must not touch any part of the building envelope, and must maintain 15 cm vertical clearance between spill elevation on the street and the ground elevation at the nearest building envelope.

5.3 Stormwater Management Strategy

Stormwater runoff will be directed to a series of catch basins located at street sags that will collect the runoff and discharge to the minor system. Underground storage tanks will be utilized to store excess runoff generated by larger storm events in order to respect the allocated release rate for the site set out by the Pond's 5 and 6 design and CRT Phase 1 lands design brief. The underground storage tank flow restriction controls (Inlet Control Devices) will be located upstream of connections to the local storm sewer system, to maintain hydraulic separation from storm service connections to the proposed homes.

5.3.1 Minor System

The study area is to be serviced by a storm sewer system designed in accordance with the amendment to the storm sewer and stormwater management elements of *PIETB-2016-01*. As described in *Section 5.2*, the minor storm system is proposed to be designed for a minimum of the 5-year event as the site is comprised of local streets.

The proposed gravity storm sewer network ranges from 250 mm to 450 mm and generally follows the local road network and dedicated servicing easements, as shown in *Drawings* 4-10. The proposed sewers collect stormwater runoff from the 585 Bobolink Ridge development and directs stormwater to two separate outlets. There is an existing 675mm dia. storm sewer located at the southern edge of the property within the property limit boundaries. This storm sewer is the dedicated outlet for the southern portion of the site, roughly 0.65ha. The capped stub is connected to a storm sewer system on Bobolink Ridge that is tributary to Pond 5. The minor system release rate for this outlet is 133 L/s as per the design sheets, drainage plans and modelling files extracted from the CRT Phase 1 Design Brief are presented in *Appendix D*.

The northern portion of the site, roughly 0.56 ha. will outlet to a 450mm dia. sewer at the northeast end of the land parcel. The 450mm dia. outlet was designed as part of the Block 324 design from the neighboring property. The storm system is tributary to Pond 6. The minor system release rate for this outlet is 112.87 L/s as per the design sheets and modelling files extracted from the CRT Phase 1 BLK 324 Design Brief presented in *Appendix D.*

Table 5.1 summarizes the standards that have been employed in the detailed design of the storm sewer network, meeting the criteria described in **Section 5.2**. The storm sewer design uses inlet control devices (ICDs) to ensure that storm flows entering the minor system are limited to the flows described above.

Table 5.1: Storm Sewer Design Criteria

Design Parameter	Value
Minor System Design Return Period	2-Year (Local Streets), 5-Year (Collector Streets), 10-Year
	(Arterial Streets) – PIEDTB-2016-01
Major System Design Return Period	100-Year
Intensity Duration Frequency Curve	. A
(IDF)	$i = \frac{11}{(t_c + B)^C}$
2-year storm event:	$(t_c + B)^{\circ}$
A = 723.951, B = 6.199, C = 0.810	
5-year storm event:	
A = 998.071, B = 6.053, C = 0.814	
Minimum Time of Concentration	10 minutes
Rational Method	Q = CiA
Runoff coefficient for paved and roof	0.90
areas	
Runoff coefficient for landscaped areas	0.20

Storm sewers are to be sized employing the Manning's Equation	$Q = \frac{1}{n} A R^{\frac{2}{3}} S^{\frac{1}{2}}$				
Minimum Sewer Size	250 mm diameter				
Minimum Manning's 'n'	0.013				
Service Lateral Size	100 mm dia PVC SDR 28 with a minimum slope of 1.0%.				
Minimum Depth of Cover	1.7m from crown of sewer to grade (based on recent residential subdivisions in City of Ottawa)				
Minimum Full Flowing Velocity	0.8 m/s				
Maximum Full Flowing Velocity	6.0 m/s				
Clearance from 100-Year Hydraulic	0.30 m				
Grade Line to Building Opening					
Max. Allowable Flow Depth on	35 cm above gutter (PIEDTB-2016-01)				
Municipal Roads					
Extracted from City of Ottawa Sewer Design Guidelines, October 2012, as amended by PIEDTB-2016-01, and based on recently approved residential subdivision designs in City of Ottawa.					

Rational method design sheets and runoff coefficient calculations are presented in *Appendix D.*

5.3.2 Quality Control

The storm outlets are tributary to two separate ponds, Pond 5 and Pond 6. Both of these facilities provide end of pipe quality control, are constructed and are operational. As such, no quality control is provided on-site.

5.3.3 Quantity Control

Minor system allowable release rates were established for both outlets based the existing reports as described in **section 5.3.1**. Excess runoff during larger storm events will be stored in underground tanks where the flow will be directed to the minor system at a controlled rate.

Stormtech® Chambers are being proposed to accomplish the required storage volumes. Street drainage will be directed towards catch basins that outlet to the storage chambers. The chambers will be connected upstream of maintenance holes that will be equipped with ICDs which will restrict the flow to the allowable release rates established in section 5.3.1. The storm sewers on the local roads are designed to convey any flow generated from the foundation drains. As the storm sewer system is not upstream of any inlet control devices, foundation drains will remain hydraulically disconnected from the site stormwater quantity controls, and basements will be protected should the tank outlets become obstructed or plugged.

5.4 Stormwater Management Calculations

The modified rational method (MRM) was used to size the storage tanks and ensure that allowable release rates are respected. Any uncontrolled flow was subtracted from the total controlled flow rate to ensure the sum of the controlled and uncontrolled peak runoffs respect the allowable release rates. As foundation drains are connected to the storm

sewers downstream of any flow controls, foundation drainage was also subtracted from the total allowable release rates.

Table 5.2: Storage Requirements Bobolink Ridge Outlet (south)

Control Area	Area	5-year Release Rate	5-year Required Storage	100-Year Release Rate	100-Year Required Storage	100-Year Available Storage
	(Ha.)	(L/s)	(m³)	(L/s)	(m³)	(m³)
Foundation Drainage	N/A	20.7	0.0	20.7	0.0	0.0
Unattenuated Areas	0.08	16.4	0.0	35.2	0.0	0.0
Attenuated Areas	0.62	61.6	57.3	75.3	176.4	186.6
Total	0.70	98.7	57.3	131.2	176.4	186.6

As indicated in *Table 5.2* the allowable release rate of 133 L/s prescribed under the CRT Phase 1 Design Brief has been respected. In order to achieve the allowable release a total storage volume of 176.4m³ will be required. Two Stormtech® chambers are being proposed in to achieve this which have a storage 186.6 m³ storage capacity as shown in *Drawings 4 and 5*.

As indicated in *Table 5.3* (below) the allowable release rate of 112.87 L/s prescribed under the CRT Phase 1 BLK 324 Design Brief has been respected. In order to achieve the allowable release a total storage volume of 93.5m³ will be required. A Stormtech ® chamber with a 94.6m³ capacity being proposed in to achieve this storage volume as shown in *Drawings 4 and 5*.

The Modified Rational Method was originally intended to be used for above grade storage where the change in head applied through the orifice equation had little variation. As the release rates fluctuate from maximum peak flow for underground storage due to the varying head, the variation in head has been accounted for in the storage volume calculations. Rather than using maximum head to calculate the release rates, the midpoint of the storage tanks was used as the design head in the orifice equation to size the

tanks. Maximum release rates were verified (maximum head) to ensure the maximum allowable was respected. Complete stormwater management calculations are presented in *Appendix D*.

Table 5.3: Storage Requirements for Block 324 Outlet (north)

Control Area	Area	5-year Release Rate	5-year Required Storage	100-Year Release Rate	100-Year Required Storage	100-Year Available Storage
	(Ha.)	(L/s)	(m³)	(L/s)	(m³)	(m³)
Foundation Drainage	N/A	13.5	0.0	13.5	0.0	0.0
Unattenuated Areas		3.6	0.0	7.7	0.0	0.0
Attenuated Areas		65.8	26.9	90.9	93.5	94.6
Total		82.9	26.9	112.1	93.5	94.6

Both the CRT Phase 1 BLK 324 Design report and the CRT Phase 1, Fernbank Community Servicing Brief confirm that both receiving outlets are free-flowing under the 1:100year storms. Underground storage tanks and inlet control devices are proposed to control the flow to the allowable release rate. As the controlled release rate is less than the 5-year flow used to size the minor system, the local sewer network is expected to be free flowing under the 1:100 year storm event.

5.5 Grading & Drainage

The following additional grading criteria and guidelines have been applied to detailed design, per City of Ottawa Sewer Design Guidelines:

- Driveway slopes will have a maximum slope of 6%;
- Slope in grassed areas will be between 2% and 5%;
- Grades in excess of 7% will require terracing to a maximum of a 3:1 slope;
- Swales are to be 0.15m deep with 3:1 side slopes unless otherwise indicated on the drawings; and,

Detailed grading design is presented in *Drawing 12*.

5.6 Stormwater Servicing Conclusions

A network of local gravity sewers is proposed within the study area to capture stormwater and convey the flows to the proposed trunk storm sewer network. The storm sewers have been sized by the rational method and inlet control devices and orifices are used to maintain the allowable release to the existing minor system. Quality control will be achieved via existing stormwater management facilities.

6.0 UTILITIES

Utility services were consulted for the development of the cross-sections within the development.

Hydro Ottawa is reported to have infrastructure located on Robert Grant Road that will be utilized to service the units. Hydro Ottawa has indicated that a 3-phase transformer will be required for the site. The transformer will be located within an easement east of TH units 21 & 30.

Enbridge Gas is reported to have services up to near the subject site. Connections will be made to existing infrastructure to service the units.

Bell and Rogers are reported to have services up to near the subject site. Connections will be made to existing infrastructure to service the units.

DSEL has begun coordination with the utility services to confirm the servicing plans and begin detailed utility design for the study area.

7.0 EROSION AND SEDIMENT CONTROL

Soil erosion occurs naturally and is a function of soil type, climate and topography. The extent of erosion losses is exaggerated where vegetation has been removed during construction and the top layer of soil becomes agitated, and where increased stormwater runoff is directed to natural areas.

Prior to earthworks or underground construction, erosion and sediment controls will be implemented and will be maintained throughout construction.

The erosion and sediment controls will include (but are not limited to):

Minimize the area to be cleared and grubbed.

Plan construction at proper time to avoid flooding.

Provide sediment traps and basins during dewatering.

Silt fence to be installed around the perimeter of the site and to be cleaned and maintained throughout construction. Silt fence to remain in place until the working areas have been stabilized and re-vegetated. See *Drawings 17 & 18*.

A mud mat to be installed at the construction access in order to prevent mud tracking onto adjacent roads.

Catch basins to have inserts installed under the grate during construction to protect from silt entering the storm sewer system.

Extent of exposed soils to be limited at any given time, and exposed areas will be revegetated as soon as possible.

Exposed slopes to be protected with plastic or synthetic mulches.

Stockpiles of cleared materials as well as equipment fueling and maintenance areas to be located away from swales, watercourses, and other conveyance routes.

Seepage barriers such as silt fencing, straw bale check dams and other sediment and erosion control measures to be installed in any temporary drainage stormwater conveyance channels and around disturbed areas during construction and stockpiles of fine material.

Filter inserts to remain on open surface structures such as manholes and catch basins until these structures are commissioned and put into use, streets are asphalted and curbed, and the surrounding landscape is stabilized.

The contractor will, at every rainfall, complete inspections and guarantee proper performance. The inspection is to include:

- Verification that water is not flowing under silt barriers.
- Clean and change inserts at catch basins.

A qualified Inspector will give recommendations related to the mitigation measures that are being implemented and maintained. Bulkhead barriers, filter clothes on open surface structures, silt fencing, and other ES&C measures may require removal of sediment and repairs. The City of Ottawa's Protocol for Wildlife Protection is to be followed during construction.

After build-out of the development, applicable sewers will be inspected and cleaned. All sediment and construction fencing should be removed following construction, providing there is no exposed soil or other potential sources of sedimentation.

8.0 CONCLUSIONS AND RECOMMENDATIONS

This Design Brief has been prepared on behalf of Tamarack Homes.

This Design Brief is to be read in conjunction with the first submission of the 585 Bobolink Drive detailed engineering drawing package, dated January 13th, 2022.

The key features of the detailed design of the proposed development are as follows:

- > Two connections will be made to the existing watermains located on Putney Drive and Bobolink Ridge. The proposed watermain network conforms to all relevant City and MECP Water Supply Guidelines. The hydraulic analysis of the proposed watermain network, completed within the GeoAdvice Report, concludes that all required domestic and fire flows can be met throughout the study area upon full buildout of the development. Anticipated fire flow requirements can be met throughout the development lands according to City Guidelines and ISTB-2018-02.
- Wastewater service will be provided through gravity sewers that have generally been designed in conformance with all relevant City of Ottawa and MECP Guidelines and Policies. A series of gravity sewers will collect wastewater to an existing service stub located on Bobolink Drive.
- Stormwater management will be achieved using a series of local storm sewers to collect foundation drains and retention tanks that collect surface water. Two designated outlets on Bobolink Ridge and to adjacent Block 324 will be utilized as downstream receivers and established release rates for the system will be respected.
- ➤ The infrastructure identified in this Design Brief is expected to require approval from the City of Ottawa, Ontario Ministry of the Environment, Conservation and Parks prior to construction.

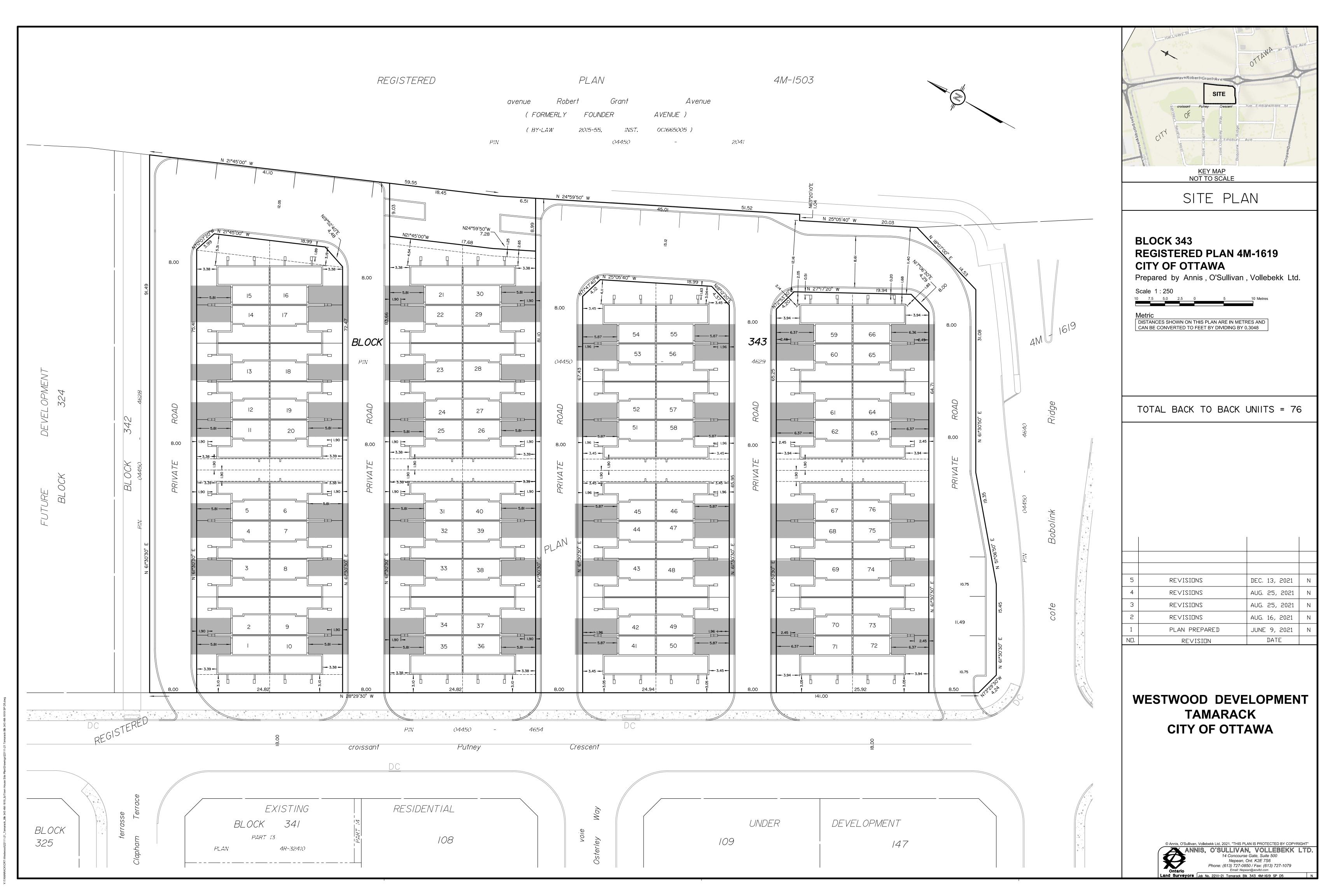
Prepared by,

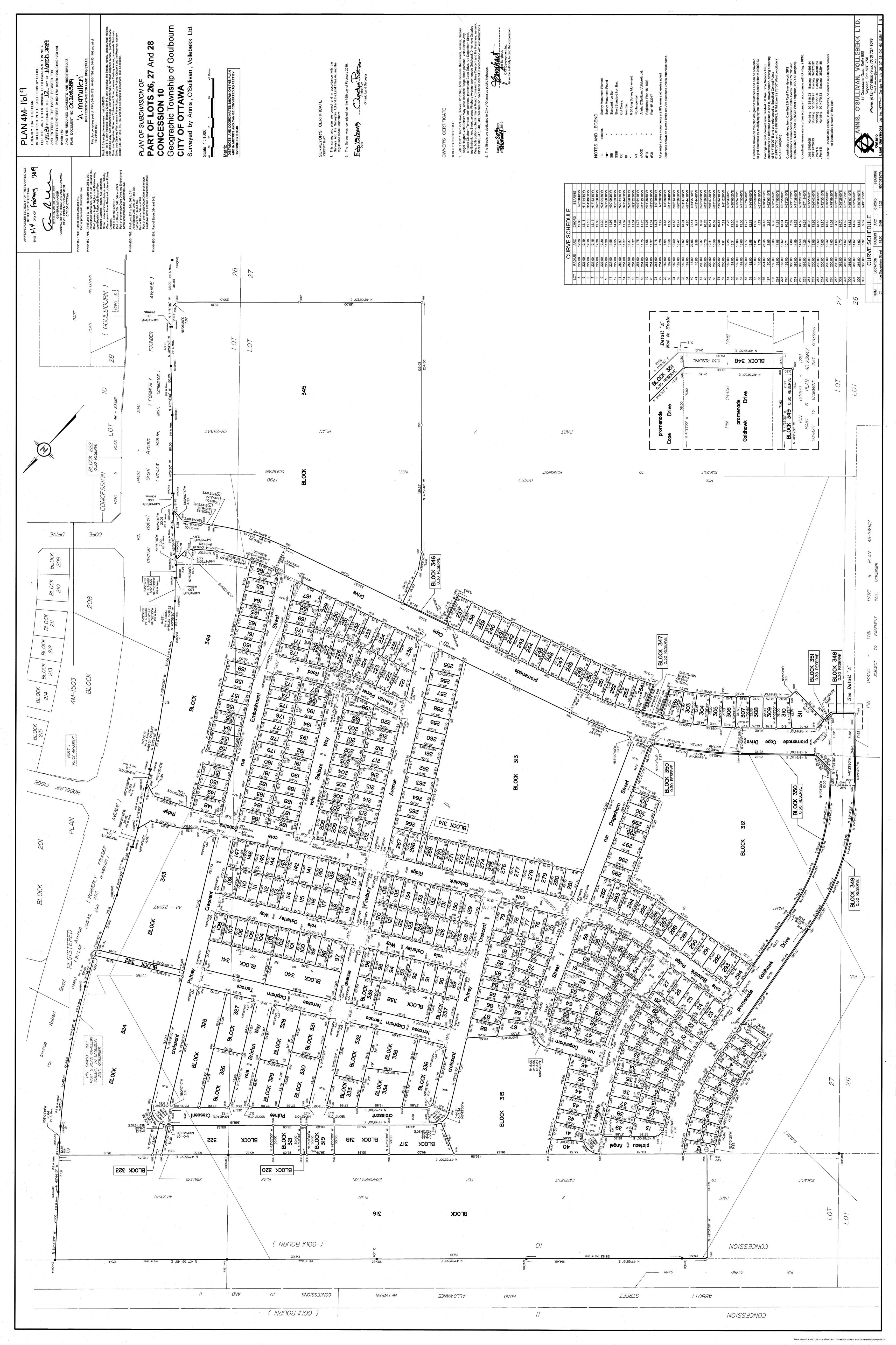
David Schaeffer Engineering Ltd.

David Schaeffer Engineering Ltd.

Per: Alexandre Tourigny, P.Eng.

OVINCE OF ONTRING


M. J. TOURIGNY 100227731


Per: Matt Wingate, P.Eng

© DSEL

APPENDIX A

Legal Plan and Site Plan

Pre-Application Consultation Meeting (Via Teams) Site Plan Control Application: 585 Bobolink Ridge

April 13, 2021, 2:30:pm

Attendees

Kathy Rygus - Development Review Planner, City of Ottawa Eric Surprenant - Project Manager (Infrastructure), City of Ottawa Randolph Wang - Urban Design Planner, City of Ottawa Peter Hume – HP Urban Michelle Taggart - Taggart

Applicant's overview of proposal

- The site is a 1.19-hectare parcel (Block 243 on Plan 4M-1619) located at 585 Bobolink Ridge in CRT Developments Inc. Phase 1 Westwood subdivision. The property is bounded by Putney Crescent on the west, Bobolink Ridge on the south, Robert Grant Avenue on the east and a public pathway block on the north. The site is currently vacant.
- The zoning of the site is R4Z, permitting back-to-back townhouses, stacked units and low rise apartments.
- The proposed site plan is for 8 blocks of back-to-back townhouses on private streets, with 72 units total. Each unit would have a garage and driveway; no visitor parking is required or provided. One access is proposed from Putney Crescent.

Process

- 1. The application type for the proposed development is Site Plan Control, Complex, Manager Approval. The application is subject to public notification through the Devapps website and an onsite sign. The fee is \$59,338.80 with additional engineering fees and a \$1,040 Conservation Authority fee. Information on process, timeline and fees for the different applications can be found here.
- 2. Fees are not required to be paid at the time of application submission. An email with instructions for payment of fees will be sent by the assigned planner once a file number has been assigned.
- 3. Information on process, timeline and fees can be found here.
- 4. The application should be submitted digitally with PDFs of all documents (attached in the e-mail or link to dropbox provided). Please send application to planningcirculations@ottawa.ca. Please cc the Senior Planner in Development Review West, Wendy Tse: Wendy.tse@ottawa.ca
- 5. A list of required plans and studies is provided.

Planning & Urban Design

Please accept these comments on behalf of PRUD for the proposed Site Plan Control.

- 1. A Design Brief is required as part of the submission. The Terms of Reference of the Design Brief is attached for convenience.
- 2. Robert Grant is an Arterial Mainstreet and the site is within a Design Priority Area. However, it is exempted from UDRP review due to the proposed building heights.
- 3. With respect to the site plan presented at the preconsultation meeting:
 - a. The intent to limit vehicular access is understood;
 - However, the resulting site plan shows roads throughout the entire site with "double street" conditions along Robert Grant, Bobolink, Putney, and the multi-use pathway.
- 4. Please study alternative site plan options.
 - a. Such options should aim to reduce the amount of roadway, increase landscaping and provide building frontages on public street.
 - b. As an alternative to the long "double streets", please consider short "window street".
 - c. When studying the options please take into consideration the CRT proposal to the north to ensure some coordination.
 - d. For reference, the attached PDF shows a possible option that mimics some design elements of the CRT proposal. Such an option is not without its own challenges, for example, private driveways on Putney.
 - e. The design should also include a pedestrian entrance on Robert Grant to allow for easy pedestrian movement between the future BRT station and the site.
 - f. The design should provide continuous tree canopies along all public streets as well as the multi-use pathway to the north. Coordination of tree planting along the multi-use pathway is required between this site and the CRT site.
 - g. Visitor parking should be located internal to the site.

Please contact Randolph Wang for questions: Randolph.wang@ottawa.ca

Infrastructure

- 1. The easterly lot line is abutting Robert Grant Avenue. Tie-in of grading is important and noise walls or retaining walls are to be avoided.
- 2. The site is zoned to accommodate the type of development proposed, so we do not anticipate servicing constraints.
- 3. The servicing connections (water and sewers) are on Bobolink Ridge. The servicing proposal must abide by the sanitary and storm drainage plan for the subdivision. Even if multiple access points from Putney are proposed in the Urban Design suggestions, the sewer connections should still be provided from a single connection point.

PC2021-0126

- 4. As it relates to stormwater management; there are no anticipated issues however there will be a need to demonstrate that imperviousness ratios are in accordance with Master Servicing study requirements etc. and stormwater management on site is provided as required...
- 5. A request for boundary conditions will need to be submitted.
- 6. As a residential site plan block, there will be requirements to demonstrate Fire Flow, via FUS methodology with all required measures implemented for fire area compartmentalization. At minimum there will be a need for water-loss leak detection chamber at property line and potential for fire-flow bypass metre at lot line is anticipated with sub-metering at units.
- 7. The Servicing Study Guidelines for Development Applications are available at the following address: http://ottawa.ca/en/development-application-review-process-0/servicing-study-guidelines-development-applications
- 8. Servicing and site works shall be in accordance with the following documents:
- Ottawa Sewer Design Guidelines (October 2012)
- Ottawa Design Guidelines Water Distribution (2010)
- Geotechnical Investigation and Reporting Guidelines for Development Applications in the City of Ottawa (2007)
- City of Ottawa Slope Stability Guidelines for Development Applications (revised 2012)
- City of Ottawa Environmental Noise Control Guidelines (January, 2016)
- City of Ottawa Accessibility Design Standards (2012)
- Ottawa Standard Tender Documents (latest version)
- Ontario Provincial Standards for Roads & Public Works (2013)
- 9. Record drawings and utility plans are also available for purchase from the City (Contact the City's Information Centre by email at lnformationCentre@ottawa.ca or by phone at 613- 580-2424 x.44455.

Should you have any questions or require additional information, please contact Eric Surprenant by e-mail: Eric.surprenant@ottawa.ca

Transportation/Noise

- 1. No TIA is required (less than 90 units)
- 2. A noise impact assessment is required

Feel free to contact Mike Giampa for follow-up questions: Mike.giampa@ottawa.ca

Tree Conservation

- 1. A Tree Conservation Report (TCR) is required if trees are present on site. If there are no private or city owned trees on/near the site, a TCR is not required and an email stating no trees are present will be sufficient.
- 2. Any removal of privately-owned trees 10 cm or larger in diameter requires a tree permit issued under the Urban Tree Conservation Bylaw.
- 3. The TCR must list all trees on-site by species, diameter and health condition. Note that TCR must address all trees with a critical root zone that extends into the developable area.
- 4. If trees are to be removed, the TCR must clearly show where they are and document the reason they cannot be retained.
- 5. All retained trees must also be shown and all retained trees within the area impacted by the development process must be protected as per the City guidelines listed on Ottawa.ca.
- 6. The City encourages the retention of healthy trees wherever possible.
- 7. The removal of City-owned trees will require the permission of Forestry Services who will also review the submitted TCR.

Please contact Mark Richardson <u>Mark.richardson@ottawa.ca</u> for questions.

Please refer to the links to "Guide to preparing studies and plans" and fees for further information. Additional information is available related to building permits, development charges, and the Accessibility Design Standards. Be aware that other fees and permits may be required, outside of the development review process. You may obtain background drawings by contacting informationcentre@ottawa.ca

These preconsultation comments are valid for one year. If you submit a development application after this time, you may be required to meet for another preconsultation meeting and/or the submission requirements may change. You are as well encouraged to contact us for a follow-up meeting if the plan/concept will be further refined.

Feel free to contact me at Kathy.rygus@ottawa.ca if you have any questions.

Kathy Rygus

Kathy Rygues

Planner, Development Review West

APPENDIX B

Hydraulic Network Analysis

Hydraulic Capacity and Modeling Analysis Bobolink Ridge

Final Report

Prepared for:

David Schaeffer Engineering Ltd. 120 Iber Road, Unit 103 Stittsville, ON K2S 1E9

Prepared by:

GeoAdvice Engineering Inc. Unit 203, 2502 St. John's Street Port Moody, BC V3H 2B4

Submission Date: January 11, 2022

Contact: Mr. Werner de Schaetzen, Ph.D., P.Eng.

Project: 2021-110-DSE

Copyright © 2022 GeoAdvice Engineering Inc.

Project ID: 2021-110-DSE

Practice to Permit Number: 1000623

Document History and Version Control

Revision No.	Date	Document Description	Revised By	Reviewed By
R0	December 22, 2021	Draft	Ben Loewen	Werner de Schaetzen
R1	January 11, 2022	Final	Ben Loewen	Werner de Schaetzen

Confidentiality and Copyright

This document was prepared by GeoAdvice Engineering Inc. for David Schaeffer Engineering Ltd. The material in this document reflects the best judgment of GeoAdvice in light of the information available to it at the time of preparation. Any use which a third party makes of this report, or any reliance on or decisions made based on it, are the responsibilities of such third parties. GeoAdvice accepts no responsibility for damages, if any, suffered by any third party as a result of decision made or actions based on this document. Information in this document is to be considered the intellectual property of GeoAdvice Engineering Inc. in accordance with Canadian copyright law.

Statement of Qualifications and Limitations

This document represents GeoAdvice Engineering Inc. best professional judgment based on the information available at the time of its completion and as appropriate for the project scope of work. Services performed in developing the content of this document have been conducted in a manner consistent with that level and skill ordinarily exercised by a member of the engineering profession currently practicing under similar conditions. No warranty, express or implied is made.

Project ID: 2021-110-DSE

Contents

1		Introduction	4
2		Modeling Considerations	6
	2.1	Water Main Configuration	6
	2.2	Elevations	6
	2.3	Consumer Demands	6
	2.4	Fire Flow Demand	7
	2.5	Boundary Conditions	7
3		Hydraulic Capacity Design Criteria	9
	3.1	Pipe Characteristics	9
	3.2	Pressure Requirements	9
4		Hydraulic Capacity Analysis	10
	4.1	Development Pressure Analysis	10
	4.2	Development Fire Flow Analysis	10
5		Other Servicing Considerations	12
	5.1	Water Supply Security	12
	5.2	Valves	12
	5.3	Hydrants	13
	5.4	Water Quality	13
6		Conclusions	14
•	•	dix A Domestic Water Demand Calculations and Allocation	
•	•	dix B FUS Fire Flow Calculations and Allocation	
•	•	dix C Boundary Conditions	
		dix D Pipe and Junction Model Inputs	
Αp	per	dix E ADD and PHD Model Results	
Δn	ner	idix F MDD+FF Model Results	

Project ID: 2021-110-DSE

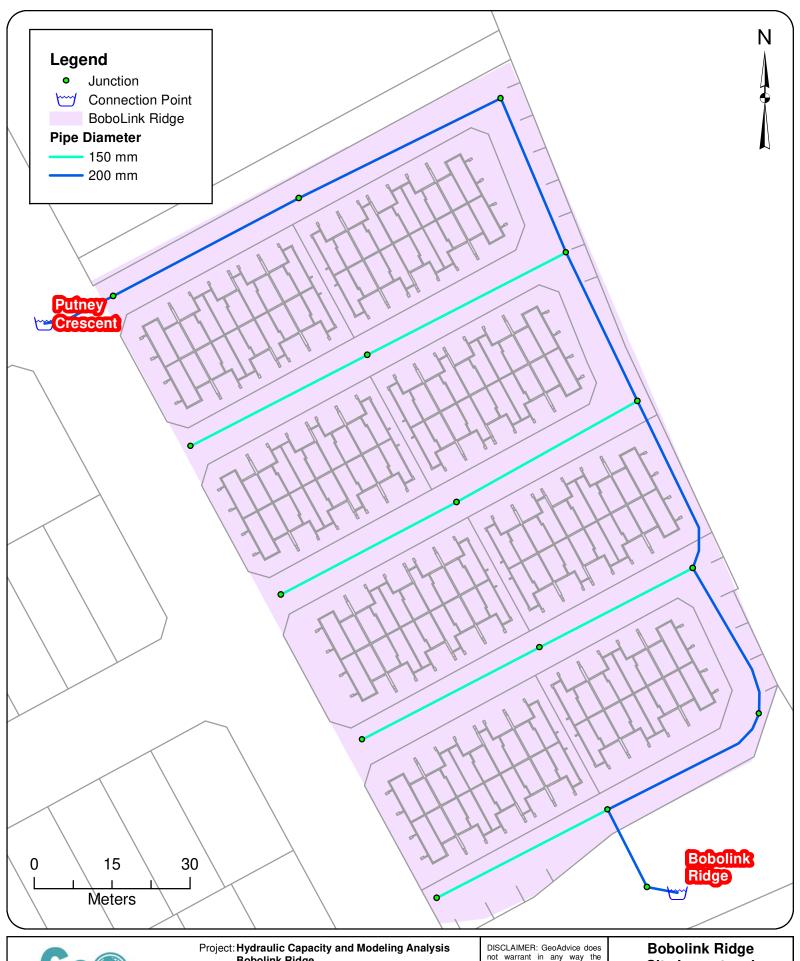
1 Introduction

GeoAdvice Engineering Inc. ("GeoAdvice") was retained by David Schaeffer Engineering Ltd. ("DSEL") to size the proposed water main network for Bobolink Ridge development ("Development") in the City of Ottawa, ON ("City").

The development will have two (2) connections to the City water distribution system:

• Connection 1: Bobolink Ridge

• Connection 2: Putney Crescent


The development site is shown in **Figure 1.1** on the following page, with the final recommended pipe diameters.

This report describes the assumptions and results of the hydraulic modeling and capacity analysis using InfoWater (Innovyze), a GIS water distribution system modeling and management software application.

The results presented in this report are based on the analysis of steady state simulations. The predicted available fire flows, as calculated by the hydraulic model, represent the flow available in the water main while maintaining a residual pressure of 20 psi at the hydrant. No extended period simulations were completed in this analysis to assess the water quality or to assess the hydraulic impact on storage and pumping.

Project ID: 2021-110-DSE

Bobolink Ridge 2021-110-DSE

Client: David Schaeffer Engineering Ltd.

Date: December 2021

Created by: BL Reviewed by: WdS DISCLAIMER: GeoAdvice does not warrant in any way the accuracy and completeness of the information shown on this map. Field verification of the accuracy and completeness of the information shown on this map is the sole responsibility of

Site Layout and **Connection Point**

Figure 1.1

2 Modeling Considerations

2.1 Water Main Configuration

The water main network was modeled based on drawings prepared by DSEL and provided to GeoAdvice on November 16th, 2021.

2.2 Elevations

Elevations of the modeled junctions were assigned according to a preliminary site grading plan prepared by DSEL and provided to GeoAdvice on December 21st, 2021.

2.3 Consumer Demands

The proposed residential demands for the development were based on a demand rate of 280 L/cap/d as per the City of Ottawa technical bulletin ISTB 2018-01. Demand factors used for this analysis were taken according to the Ministry of Environment (MOE) Design Guidelines *Table 3-3 Peaking Factors for Drinking-Water Systems Serving Fewer than 500 People.* Population densities were assigned according to *Table 4.1 Per Unit Populations* from the City of Ottawa Design Guidelines. A 10% buffer was applied to population estimates to account for any minor changes that may occur during the detailed design of the subdivision. A summary of these tables highlighting relevant data for this development is shown in **Table 2.1**.

Table 2.1: City of Ottawa Demand Factors

Demand Type	Amount	Units
Average Day Demand		
Residential	280	L/c/d
Maximum Daily Demand		
Residential	4.9 x avg. day	L/c/d
Peak Hour Demand		
Residential	7.4 x avg. day	L/c/d
Minimum Hour Demand		
Residential	0.1 x avg. day	L/c/d

Table 2.2 summarizes the water demand calculations for development.

Project ID: 2021-110-DSE

Table 2.2: Development Population and Demand Calculations – Bobolink Ridge

Dwelling Type	Number of Units	Persons Per Unit*	Population **	Average Day Demand (L/s)	Maximum Day Demand (L/s)	Peak Hour Demand (L/s)	Minimum Hour Demand (L/s)
Back-to-Back Townhouse	78	2.7	280	0.75	3.68	5.56	0.08

^{*}City of Ottawa Design Guidelines.

Demands were uniformly distributed to the model nodes. Detailed calculations of demands are shown in **Appendix A**.

2.4 Fire Flow Demand

Fire flow calculations were completed in accordance with the Fire Underwriters Survey's (FUS) Water Supply for Public Fire Protection Guideline (1999) and City of Ottawa Technical Bulletin ISTB-2018-02. The FUS calculations for the back-to-back townhouse blocks yielded the following required fire flows:

- 10-unit back-to-back townhouse: 16,000 L/min (267 L/s), no firewall accounted for
- 8-unit back-to-back townhouse: 12,000 L/min (200 L/s), no firewall accounted for

Using the more conservative flow, the water network was assessed using a fire flow of 267 L/s.

Fire flow simulations were completed at each model node representing a proposed hydrant location. Hydrant locations were provided by DSEL provided to GeoAdvice on December 17th, 2021.

Detailed FUS fire flow calculations as well as the illustrated spatial allocation of the required fire flows are shown in **Appendix B**.

2.5 Boundary Conditions

The boundary conditions were provided by the City of Ottawa in the form of Hydraulic Grade Line (HGL) at the following locations:

• Connection 1: Bobolink Ridge

• Connection 2: Putney Crescent

The above connection points are illustrated in **Figure 1.1**.

Project ID: 2021-110-DSE

^{**10%} buffer was applied to population estimates to account for any minor changes that may occur during the detailed design of the subdivision.

Boundary conditions were provided for Peak Hour (PHD), Maximum Day plus Fire (MDD+FF) and Average Day (ADD) demand conditions. The City boundary conditions were provided to GeoAdvice on December 14, 2021 and can be found in **Appendix C**.

Table 2.3 summarizes the City of Ottawa boundary conditions used to size the water network.

Table 2.3: Boundary Conditions

Condition	Connection 1 HGL (m)	Connection 2 HGL (m)
Average Day Demand	161.2	161.2
Peak Hour (min. pressure)	156.4	156.4
Max Day + Fire Flow (167 L/s)	153.7	146.5
Max Day + Fire Flow (267 L/s)*	148.9	131.5
Max Day + Fire Flow (283 L/s)	148.1	129.1

^{*} Interpolated values

Project ID: 2021-110-DSE

3 Hydraulic Capacity Design Criteria

3.1 Pipe Characteristics

Pipe characteristics of internal diameter (ID) and Hazen-Williams C factors were assigned in the model according to the City of Ottawa Design Guidelines for PVC water main material. Pipe characteristics used for the development are outlined in **Table 3.1** below.

Table 3.1: Model Pipe Characteristics

Nominal Diameter (mm)	ID PVC (mm)	Hazen Williams C-Factor (/)
150	155	100
200	204	110
250	250	110
300	297	120
400	400	120

3.2 Pressure Requirements

As outlined in the City of Ottawa Design Guidelines, the generally accepted best practice is to design new water distribution systems to operate between 350 kPa (50 psi) and 480 kPa (70 psi). The maximum pressure at any point in the distribution system in occupied areas outside of the public right-of-way shall not exceed 552 kPa (80 psi). Pressure requirements are outlined in **Table 3.2.**

Table 3.2: Pressure Requirements

Demand Condition		Pressure	Maximum Pressure	
	(kPa)	(psi)	(kPa)	(psi)
Normal Operating Pressure (maximum daily flow)	350	50	480	70
Peak Hour Demand (minimum allowable pressure)	276	40	-	-
Maximum Fixture Pressure (Ontario Building Code)	-	-	552	80
Maximum Distribution Pressure (minimum hour check)	-	-	552	80
Maximum Day Plus Fire	140	20	-	-

Project ID: 2021-110-DSE

Hydraulic Capacity Analysis

The proposed water mains within the development were sized to the minimum diameter which would satisfy the greater of maximum day plus fire and peak hour demand. Modeling was carried out for average day, peak hour and maximum day plus fire flow using InfoWater.

Detailed pipe and junction model input data can be found in **Appendix D**.

4.1 Development Pressure Analysis

The modeling results indicate that the development can be adequately serviced by the proposed water main layout shown in Figure 1.1. Modeled service pressures for the development are summarized in **Table 4.1** below.

Table 4.1: Summary of Available Service Pressures

Average Day Demand	Peak Hour Demand
Maximum Pressure	Minimum Pressure
75 psi (520 kPa)	67 psi (464 kPa)

As outlined in the City of Ottawa Design Guidelines, the generally accepted best practice is to design new water distribution systems to operate between 350 kPa (50 psi) and 480 kPa (70 psi). The maximum pressure at any point in the distribution system in occupied areas outside of the public right-of-way shall not exceed 552 kPa (80 psi).

Detailed pipe and junction result tables and maps can be found in **Appendix E**.

4.2 Development Fire Flow Analysis

Summaries of the minimum available fire flow in the development is shown in **Table 4.2**.

Table 4.2: Summary of Minimum Available Fire Flows

Required Fire Flow	Minimum Available Flow*	Junction ID
267 L/s	292 L/s	J-13

As shown in **Table 4.2**, the fire flow requirements can be met at all hydrant junctions within the development.

Summaries of the residual pressures in the development are shown in **Table 4.3**. The minimum allowable pressure under fire flow conditions is 140 kPa (20 psi) at the location of the fire.

Project ID: 2021-110-DSE

Table 4.3: Summary of the Residual Pressures (MDD + FF)

Maximum Residual Pressure	Average Residual Pressure	Minimum Residual Pressure
27 psi (189 kPa)	25 psi (172 kPa)	23 psi (159 kPa)

As shown in **Table 4.3**, there is sufficient residual pressure at all the hydrant junctions within the development.

Detailed fire flow results and figures illustrating the fire flow results can be found in **Appendix F**.

Project ID: 2021-110-DSE

5 Other Servicing Considerations

5.1 Water Supply Security

The City of Ottawa Design Guidelines allow single feed systems for developments up to a total average day demand of 50 m³/day and require two (2) feeds if the development exceeds 50 m³/day for supply security, according to Technical Bulletin ISDTB-2018-02.

The Bobolink Ridge development services a total average day demand of 65 m³/day; as such, two (2) feeds are required. Two (2) feeds to the development from Bobolink Ridge and Putney Crescent were modeled as part of the analysis.

5.2 Valves

No comment has been made in this report with respect to exact placement of isolation valves within the distribution network for the development other than to summarize the City of Ottawa Design Guidelines for number, location, and spacing of isolation valves:

- Tee intersection two (2) valves
- Cross intersection three (3) valves
- Valves shall be located 2 m away from the intersection
- 300 m spacing for 150 mm to 400 mm diameter valves
- Gate valves for 100 mm to 300 mm diameter mains
- Butterfly valves for 400 mm and larger diameter mains

Drain valves are not strictly required under the City of Ottawa Design Guidelines for water mains under 600 mm in diameter. The Guidelines indicate that "small diameter water mains shall be drained through hydrant via pumping if needed."

Air valves are not strictly required under the City of Ottawa Design Guidelines for water mains up to and including 400 mm in diameter. The Guidelines indicate that air removal "can be accomplished by the strategic positioning of hydrant at the high points to remove the air or by installing or utilizing available 50 mm chlorination nozzles in 300 mm and 400 mm chambers."

The detailed engineering drawings for the development are expected to identify valves in accordance with the requirements noted above.

Project ID: 2021-110-DSE

5.3 Hydrants

No additional comment has been made in this report with respect to exact placement of hydrants within the distribution network for the development other than to summarize the City of Ottawa Design Guidelines for maximum hydrant spacing:

- 125 m for single family unit residential areas on lots where frontage at the street line is
 15 m or longer
- 110 m for single family unit residential areas on lots where frontage at the street line is less than 15 m and for residential areas zoned for row housing, doubles or duplexes
- 90 m for institutional, commercial, industrial, apartments and high-density areas

Additionally, based on the FUS document *Water Supply for Public Fire Protection (1999)*, the hydrant coverage areas for the following fire flows are:

• 267 L/s: 9,500 m² (radial coverage of 55 m)

The detailed engineering drawings for the development are expected to identify hydrant locations in accordance with the requirements noted above.

5.4 Water Quality

The turnover rate of the water within the development network, calculated from the connections to the development is about 5 hours (ADD is 65 m³/day).

The above rate is based on the volume of the development network and the development average day demand.

Project ID: 2021-110-DSE

6 Conclusions

The hydraulic capacity and modeling analysis of the Bobolink Ridge development yielded the following conclusions:

- The proposed water main network can deliver all domestic flows, with service pressures expected to range between 67 psi (464 kPa) and 75 psi (520 kPa).
- The proposed water main network is able to deliver fire flows at all junctions.

Project ID: 2021-110-DSE

R

Submission

Prepared by:

Ben Loewen, P.Eng., PMP Hydraulic Modeler / Project Engineer

Approved by:

Werner de Schaetzen, Ph.D., P.Eng.

Senior Modeling Review / Project Manager

Project ID: 2021-110-DSE

Appendix A Domestic Water Demand Calculations and Allocation

Project ID: 2021-110-DSE

Consumer Water Demands

Residential Demands

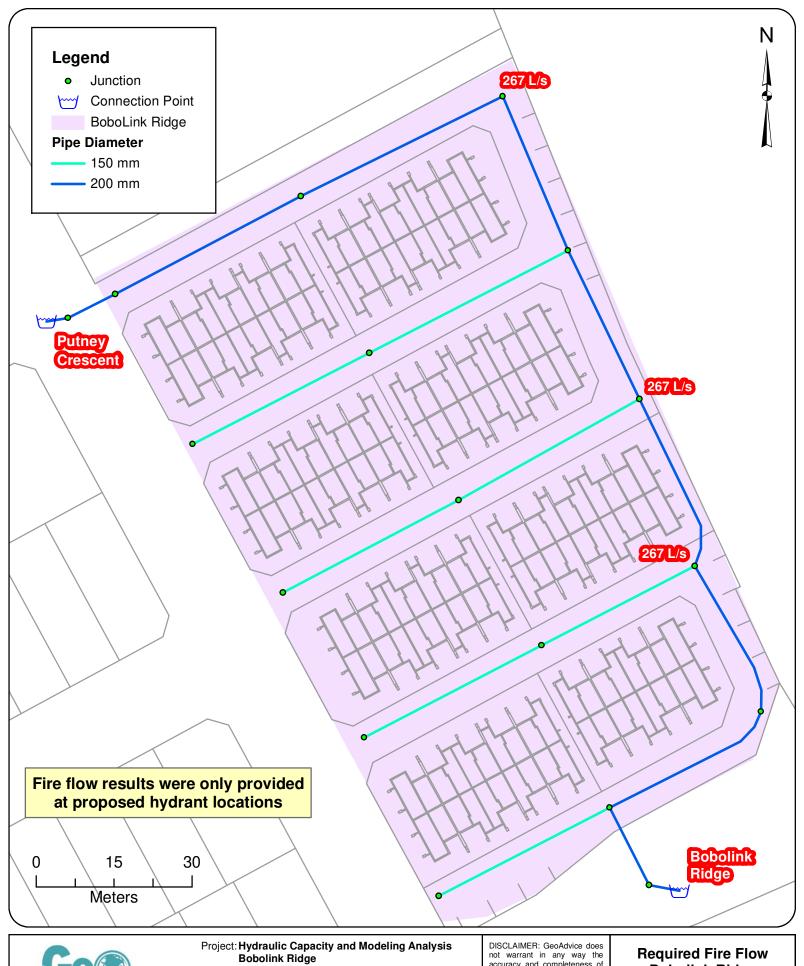
	Number of Units	Population*		Average Day Demand		Max Day	Peak Hour	Min Hour	
Dwelling Type		Persons per Unit	Population Per Dwelling Type	(L/c/d)	(L/d)	(L/s)	4.9 x Avg. Day (L/s)	7.4 x Avg. Day (L/s)	0.1 x Avg. Day (L/s)
Back-to-Back Townhome**	78	2.7	232	280	64,960	0.75	3.68	5.56	0.08
Subtotal	78		232		64,960	0.75	3.68	5.56	0.08

	Max Day	Peak Hour	Min Hour
Total	3.68	5.56	0.08

^{*10%} increase applied to account for possible future refinements in concept plan, as per DSEL
**Peaking factors based on development population <500 capita from the MOE Design Guidelines

Domestic Demand Calculations and Allocation

Bobolink Domestic Demands


Demand Polygon	Junction ID	Dwelling Type	Number of Units	Population	Average Day Demand		Max Day 4.9 x Avg. Day (L/s)	Peak Hour 7.4 x Avg. Day (L/s)	Min Hour 0.1 x Avg. Day (L/s)	
					L/c/d	L/d	L/s			
	J-01						0.05	0.25	0.37	0.01
	J-02						0.05	0.25	0.37	0.01
	J-03						0.05	0.25	0.37	0.01
	J-04				280	64,960	0.05	0.25	0.37	0.01
	J-05	Back-to-Back Townhouse	78	232			0.05	0.25	0.37	0.01
	J-06						0.05	0.25	0.37	0.01
	J-07						0.05	0.25	0.37	0.01
1	J-08						0.05	0.25	0.37	0.01
	J-09						0.05	0.25	0.37	0.01
	J-10						0.05	0.25	0.37	0.01
	J-11						0.05	0.25	0.37	0.01
	J-12						0.05	0.25	0.37	0.01
	J-13						0.05	0.25	0.37	0.01
	J-14						0.05	0.25	0.37	0.01
	J-15						0.05	0.25	0.37	0.01

Appendix B FUS Fire Flow Calculations and Allocation

Project ID: 2021-110-DSE

2021-110-DSE

Client: David Schaeffer Engineering Ltd.

Date: December 2021

Created by: BL Reviewed by: WdS not warrant in any way the accuracy and completeness of the information shown on this map. Field verification of the accuracy and completeness of the information shown on this map is the sole responsibility of

Bobolink Ridge

Figure B.1

FUS Required Fire Flow Calculation

Client: David Schaeffer Engineering Ltd.

Project: 2021-110-DSE

Development: 585 Bobolink Ridge 10-unit back-to-back townhouse

Zoning: Multi Family Residential Note: For other back-to-back townhouse blocks, a similar fire flow as

Date: November 19, 2021 calculated below will be used.

A. Type of Construction:	Wood Frame Construct	ion			
B. Ground Floor Area:	N/A	_	to-back townhouse c		
		by less than 3 m	; therefore, they mu	st be considered	as one
C. Number of Storeys:	3	fire area. The co	mbined area of 10 u	nits is considered	l in this
	_	calculation.			
D. Required Fire Flow*:	$F = 220C\sqrt{A}$				
C: Coefficient related to the type	e of construction	C = 1.5			
A: Effective area The total floor area in m ² in the buildir	ng being considered	A = 1359	m ² (Combine	ed area of 10 uni	ts)
		F = 12,164	L/min	D = 12,000	L/min*
E. Occupancy		•	•	ŕ	•
Occupancy content hazard	Limited Combustible	15 % of D	-1,800 L/min	E = 10,200	L/min
F. Sprinkler Protection					
Automatic sprinkler protection	None	% of E	0 L/min	F = 10,200	L/min
G. Exposures					
Side Separation Distance	Length-Height Factor - Adjacent Structure	Construction Type - Adja	cent Structure	Exposure	!
East 3.1 to 10 m	31-60 m-storeys	Wood Frame or No	n-Combustible	18%	
South 10.1 to 20 r	n 61-90 m-storeys	Wood Frame or No	n-Combustible	14%	
West 20.1 to 30 r	n 31-60 m-storeys	Wood Frame or No	n-Combustible	8%	
North 10.1 to 20 r	n 91-120 m-storeys	Wood Frame or No	n-Combustible	15%	=
				Total 55%	=
		% of E	+ 5,610 L/min	G = 15,810	L/min
H. Wood Shake Charge	No	0	L/min	H = 15,810	L/min
For wood shingle or shake roofs			.		
		Total Fire Flow Required		k	
		onuited Duration of Fire Flavo	267 L/s		
		equired Duration of Fire Flow	2		
	I .	Required Volume of Fire Flow	3,360 m ³		

Calculations Based on "Water Supply for Public Fire

Protection", Fire Underwriters Survey, 1999.

The Total Required Fire Flow for the 585 Bobolink Ridge development should be reviewed when drawings and site plans have been finalized. The Total Required Fire Flow may be reduced or increased depending on area, construction, occupancy, exposures, and level of sprinkler protection. If any of these items change, the Total Required Fire Flow should be reviewed to determine the impact.

Consideration should be given for fire prevention during construction phases as the required fire flows during construction of buildings is substantially higher than after the buildings are occupied. This is due to exposed framing and inactive sprinkler systems. Fires starting in unprotected portion of buildings quickly become too strong for sprinkler systems in protected portion of buildings. As such, special precautions should be taken any time construction is occurring.

^{*}Rounded to the nearest 1,000 L/min

^{*} The amount and rate of water application required in firefighting to confine and control the fires possible in a building or group of buildings which comprise essentially the same fire area by virtue of immediate exposure.

^{**} Rounded to the nearest 1,000 L/min

FUS Required Fire Flow Calculation

Client: David Schaeffer Engineering Ltd.

Project: 2021-110-DSE

Development: 585 Bobolink Ridge 8-unit back-to-back townhouse

Zoning: Multi Family Residential Note: For other back-to-back townhouse blocks, a similar fire flow as

Date: November 19, 2021 calculated below will be used.

A. Type of Construction:	Wood Frame Construct	ion				
B. Ground Floor Area:		m² Note: The back-t	o-back townhou	ise dwelling	s are sep	arated
		by less than 3 m	; therefore, they	must be co	nsidered	as one
C. Number of Storeys:	3	fire area. The co	mbined area of 8	3 units is co	nsidered	in this
		calculation.				
D. Required Fire Flow*:	$F = 220C\sqrt{A}$					
C: Coefficient related to the type of	of construction	C = 1.5				
A: Effective area The total floor area in m ² in the building	heing considered	A = 1092	m² (Com	bined area	of 8 units	s)
The total floor area in in the banding	being considered	F = 10,904	L/min	D =	11,000	I /min³
E. Occupancy		1 - 10,504	L /111111	D -	11,000	L/
Occupancy content hazard	Limited Combustible	15% of D	1,650L/mi	n E =	9,350	L/min
F. Sprinkler Protection						
Automatic sprinkler protection	None	% of E	0L/mi	n F =	9,350	L/min
G. Exposures						
Side Separation Distance	Length-Height Factor - Adjacent Structure	Construction Type - Adja	cent Structure		Exposure	<u> </u>
East Beyond 45 m	0-30 m-storeys	Wood Frame or No	n-Combustible		0%	
South Beyond 45 m	0-30 m-storeys	Wood Frame or No	n-Combustible		0%	
West 3.1 to 10 m	31-60 m-storeys	Wood Frame or No			18%	
North 10.1 to 20 m	61-90 m-storeys	Wood Frame or No	n-Combustible	-	14%	=
				Total	32%	-
		% of E	+ 2,992 L/mi	n G=	12,342	L/min
H. Wood Shake Charge	No	0	L/min	H =	12,342	L/min
For wood shingle or shake roofs					-	-
		Total Fire Flow Required		in**		
	D	equired Duration of Fire Flow	200 L/s 2.5 Hrs			
		Required Volume of Fire Flow	1,800 m ³			

Calculations Based on "Water Supply for Public Fire

Protection", Fire Underwriters Survey, 1999.

The Total Required Fire Flow for the 585 Bobolink Ridge development should be reviewed when drawings and site plans have been finalized. The Total Required Fire Flow may be reduced or increased depending on area, construction, occupancy, exposures, and level of sprinkler protection. If any of these items change, the Total Required Fire Flow should be reviewed to determine the impact.

Consideration should be given for fire prevention during construction phases as the required fire flows during construction of buildings is substantially higher than after the buildings are occupied. This is due to exposed framing and inactive sprinkler systems. Fires starting in unprotected portion of buildings quickly become too strong for sprinkler systems in protected portion of buildings. As such, special precautions should be taken any time construction is occurring.

^{*}Rounded to the nearest 1,000 L/min

^{*} The amount and rate of water application required in firefighting to confine and control the fires possible in a building or group of buildings which comprise essentially the same fire area by virtue of immediate exposure.

^{**} Rounded to the nearest 1,000 L/min

Appendix C Boundary Conditions

Project ID: 2021-110-DSE

Boundary Conditions 585 Bobolink Ridge

Provided Information

Scenario	Demand			
Scenario	L/min	L/s		
Average Daily Demand	45	0.75		
Maximum Daily Demand	221	3.68		
Peak Hour	334	5.56		
Fire Flow Demand #1	10,000	166.67		
Fire Flow Demand #2	17,000	283.33		

Location

Results

Connection 1 – Bobolink Ridge

Demand Scenario	Head (m)	Pressure ¹ (psi)
Maximum HGL	161.2	74.9
Peak Hour	156.4	68.1
Max Day plus Fire 1	153.7	64.1
Max Day plus Fire 2	148.1	56.2

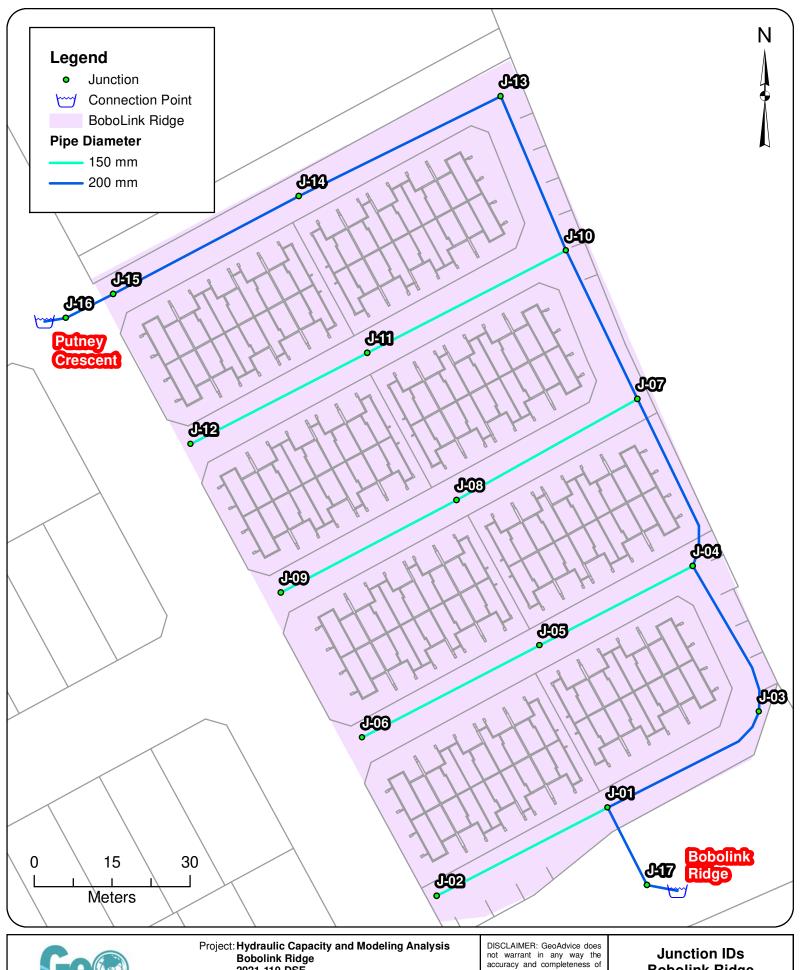
Ground Elevation = 108.6 m

Connection 2 – Putney Cres.

Demand Scenario	Head (m)	Pressure ¹ (psi)
Maximum HGL	161.2	75.7
Peak Hour	156.4	68.9
Max Day plus Fire 1	146.5	54.8
Max Day plus Fire 2	129.1	30.0

Ground Elevation = 108.0 m

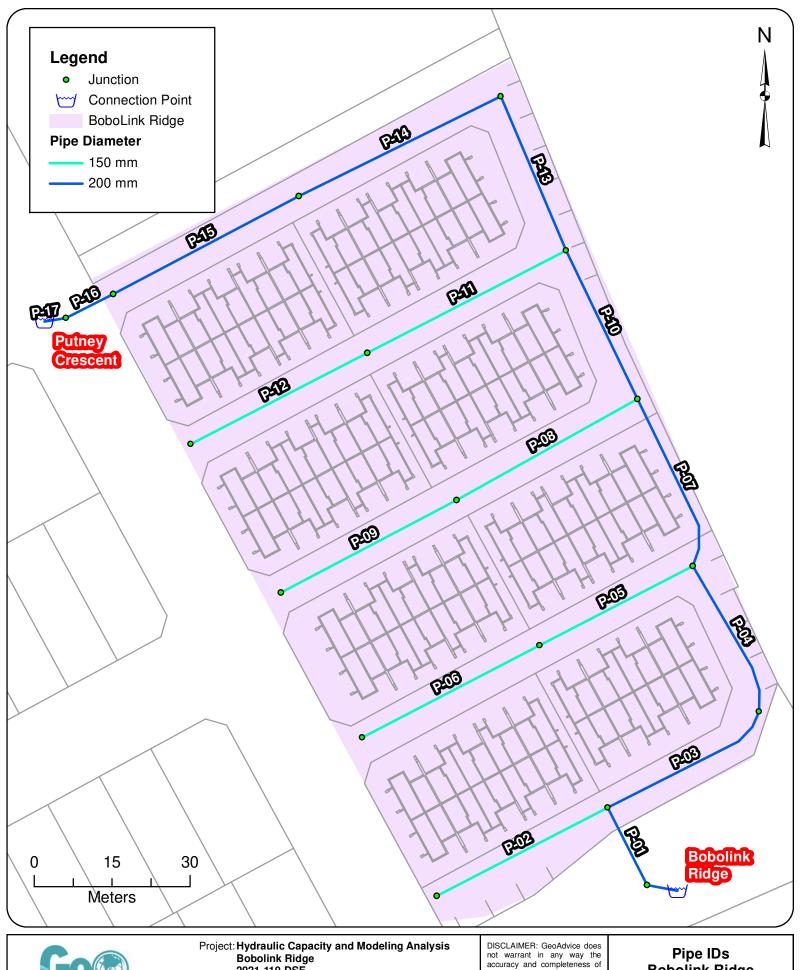
Disclaimer


The boundary condition information is based on current operation of the city water distribution system. The computer model simulation is based on the best information available at the time. The operation of the water distribution system can change on a regular basis, resulting in a variation in boundary conditions. The physical properties of watermains deteriorate over time, as such must be assumed in the absence of actual field test data. The variation in physical watermain properties can therefore alter the results of the computer model simulation. Fire Flow analysis is a reflection of available flow in the watermain; there may be additional restrictions that occur between the watermain and the hydrant that the model cannot take into account.

Appendix D Pipe and Junction Model Inputs

Project ID: 2021-110-DSE

2021-110-DSE


Client: David Schaeffer Engineering Ltd.

Date: December 2021

Created by: BL Reviewed by: WdS not warrant in any way the accuracy and completeness of the information shown on this map. Field verification of the accuracy and completeness of the information shown on this map is the sole responsibility of

Bobolink Ridge

Figure D.1

2021-110-DSE

Client: David Schaeffer Engineering Ltd.

Date: December 2021

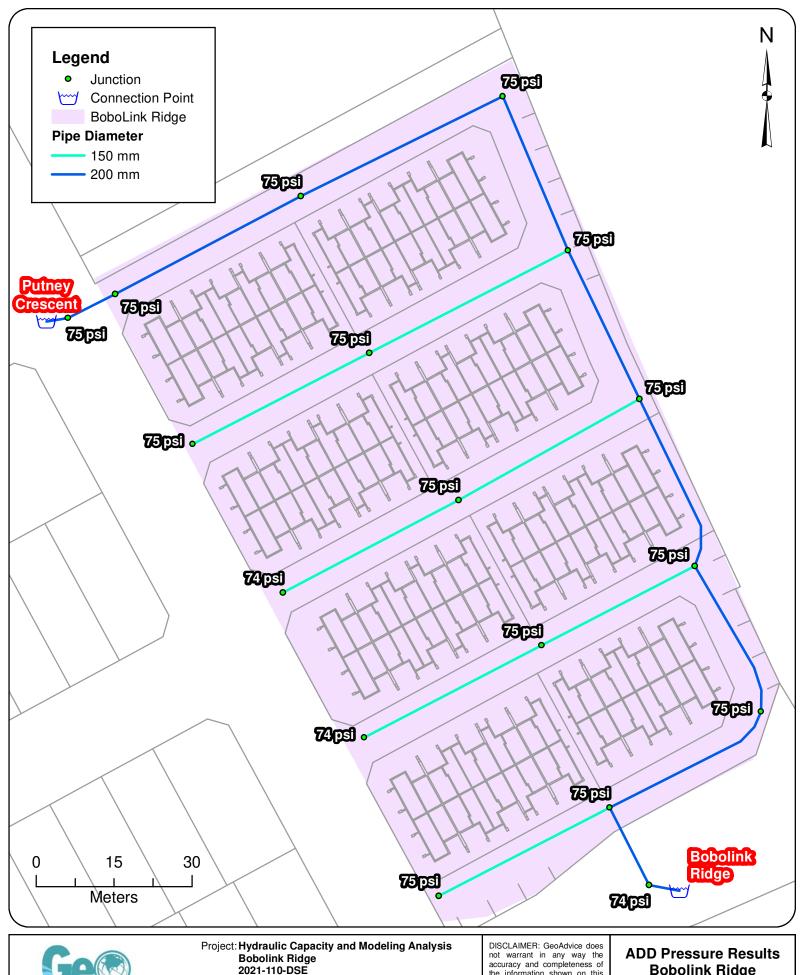
Created by: BL Reviewed by: WdS not warrant in any way the accuracy and completeness of the information shown on this map. Field verification of the accuracy and completeness of the information shown on this map is the sole responsibility of

Bobolink Ridge

Figure D.2

Model Inputs

ID	From Node	To Node	Length (m)	Diameter (mm)	Roughness ()
P-01	J-17	J-01	16.73	204	110
P-02	J-01	J-02	37.04	155	100
P-03	J-01	J-03	35.31	204	110
P-04	J-03	J-04	31.33	204	110
P-05	J-04	J-05	33.26	155	100
P-06	J-05	J-06	38.53	155	100
P-07	J-04	J-07	35.09	204	110
P-08	J-07	J-08	39.87	155	100
P-09	J-08	J-09	38.28	155	100
P-10	J-07	J-10	31.70	204	110
P-11	J-10	J-11	43.03	155	100
P-12	J-11	J-12	38.32	155	100
P-13	J-10	J-13	32.31	204	110
P-14	J-13	J-14	43.36	204	110
P-15	J-14	J-15	40.42	204	110
P-16	J-15	J-16	10.22	204	110
P-17	J-16	RES-02	4.18	204	110
P-18	RES-01	J-17	5.98	204	110


ID	Elevation (m)
J-01	108.52
J-02	108.79
J-03	108.56
J-04	108.57
J-05	108.59
J-06	108.81
J-07	108.44
J-08	108.75
J-09	109.01
J-10	108.28
J-11	108.48
J-12	108.79
J-13	108.15
J-14	108.41
J-15	108.47
J-16	108.40
J-17	108.87

Appendix E ADD and PHD Model Results

Project ID: 2021-110-DSE

Client: David Schaeffer Engineering Ltd.

Date: December 2021

Created by: BL Reviewed by: WdS not warrant in any way the accuracy and completeness of the information shown on this map. Field verification of the accuracy and completeness of the information shown on this map is the sole responsibility of

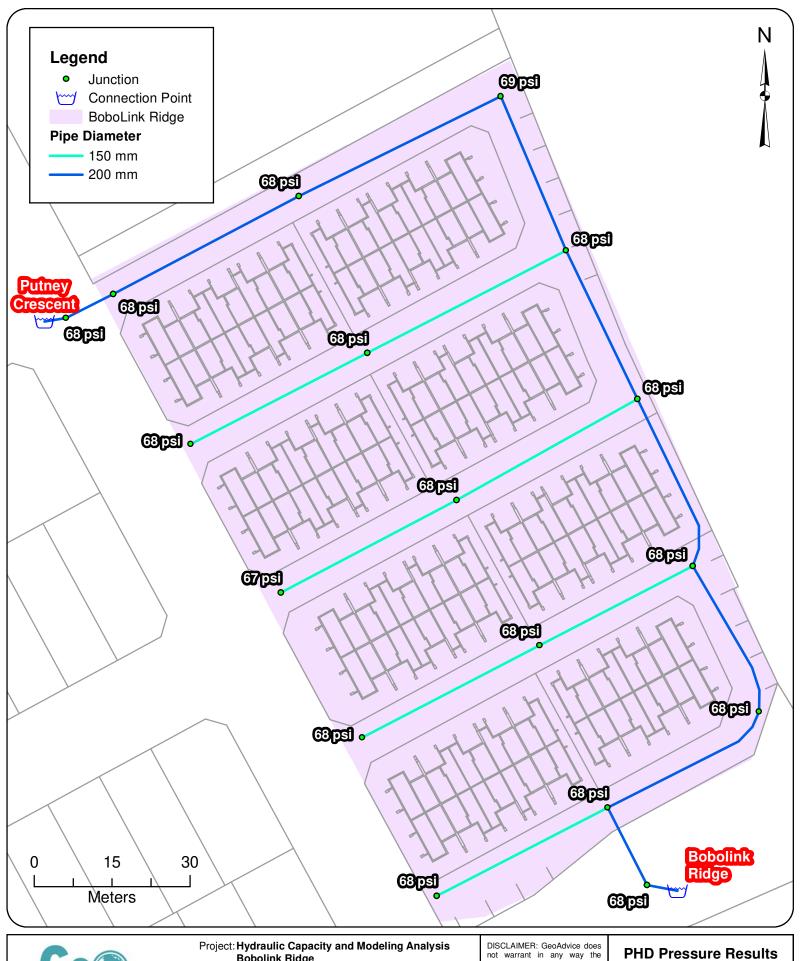

Bobolink Ridge

Figure E.1

Average Day Demand Modeling Results - Bobolink Ridge

ID	From Node	To Node	Length (m)	Diameter (mm)	Roughness	Flow (L/s)	Velocity (m/s)	Headloss (m)	HL/1000 (m/k-m)
P-01	J-17	J-01	16.73	204	110	0.41	0.01	0.00	0.00
P-02	J-01	J-02	37.04	155	100	0.05	0.00	0.00	0.00
P-03	J-01	J-03	35.31	204	110	0.30	0.01	0.00	0.00
P-04	J-03	J-04	31.33	204	110	0.25	0.01	0.00	0.00
P-05	J-04	J-05	33.26	155	100	0.10	0.01	0.00	0.00
P-06	J-05	J-06	38.53	155	100	0.05	0.00	0.00	0.00
P-07	J-04	J-07	35.09	204	110	0.10	0.00	0.00	0.00
P-08	J-07	J-08	39.87	155	100	0.10	0.01	0.00	0.00
P-09	J-08	J-09	38.28	155	100	0.05	0.00	0.00	0.00
P-10	J-07	J-10	31.70	204	110	-0.05	0.00	0.00	0.00
P-11	J-10	J-11	43.03	155	100	0.10	0.01	0.00	0.00
P-12	J-11	J-12	38.32	155	100	0.05	0.00	0.00	0.00
P-13	J-10	J-13	32.31	204	110	-0.20	0.01	0.00	0.00
P-14	J-13	J-14	43.36	204	110	-0.25	0.01	0.00	0.00
P-15	J-14	J-15	40.42	204	110	-0.30	0.01	0.00	0.00
P-16	J-15	J-16	10.22	204	110	-0.35	0.01	0.00	0.00
P-17	J-16	RES-02	4.18	204	110	-0.35	0.01	0.00	0.00
P-18	RES-01	J-17	5.98	204	110	0.41	0.01	0.00	0.00

ID	Demand (L/s)	Elevation (m)	Head (m)	Pressure (psi)
J-01	0.05	108.52	161	75
J-02	0.05	108.79	161	75
J-03	0.05	108.56	161	75
J-04	0.05	108.57	161	75
J-05	0.05	108.59	161	75
J-06	0.05	108.81	161	74
J-07	0.05	108.44	161	75
J-08	0.05	108.75	161	75
J-09	0.05	109.01	161	74
J-10	0.05	108.28	161	75
J-11	0.05	108.48	161	75
J-12	0.05	108.79	161	75
J-13	0.05	108.15	161	75
J-14	0.05	108.41	161	75
J-15	0.05	108.47	161	75
J-16	0.00	108.40	161	75
J-17	0.00	108.87	161	74

Bobolink Ridge 2021-110-DSE

Client: David Schaeffer Engineering Ltd.

Date: December 2021

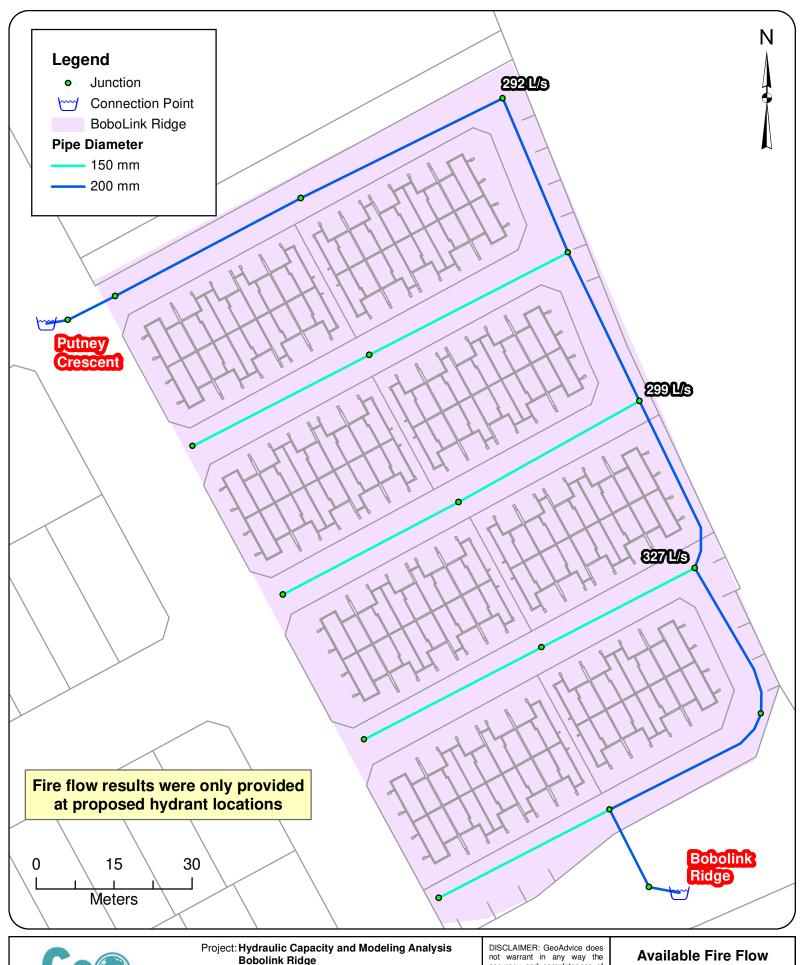
Created by: BL Reviewed by: WdS not warrant in any way the accuracy and completeness of the information shown on this map. Field verification of the accuracy and completeness of the information shown on this map is the sole responsibility of

Bobolink Ridge

Figure E.2

Peak Hour Demand Modeling Results - Bobolink Ridge

ID	From Node	To Node	Length (m)	Diameter (mm)	Roughness	Flow (L/s)	Velocity (m/s)	Headloss (m)	HL/1000 (m/k-m)
P-01	J-17	J-01	16.73	204	110	3.00	0.09	0.00	0.09
P-02	J-01	J-02	37.04	155	100	0.37	0.02	0.00	0.01
P-03	J-01	J-03	35.31	204	110	2.26	0.07	0.00	0.05
P-04	J-03	J-04	31.33	204	110	1.89	0.06	0.00	0.04
P-05	J-04	J-05	33.26	155	100	0.74	0.04	0.00	0.03
P-06	J-05	J-06	38.53	155	100	0.37	0.02	0.00	0.01
P-07	J-04	J-07	35.09	204	110	0.77	0.02	0.00	0.01
P-08	J-07	J-08	39.87	155	100	0.74	0.04	0.00	0.03
P-09	J-08	J-09	38.28	155	100	0.37	0.02	0.00	0.01
P-10	J-07	J-10	31.70	204	110	-0.34	0.01	0.00	0.00
P-11	J-10	J-11	43.03	155	100	0.74	0.04	0.00	0.03
P-12	J-11	J-12	38.32	155	100	0.37	0.02	0.00	0.01
P-13	J-10	J-13	32.31	204	110	-1.45	0.04	0.00	0.02
P-14	J-13	J-14	43.36	204	110	-1.82	0.06	0.00	0.03
P-15	J-14	J-15	40.42	204	110	-2.19	0.07	0.00	0.05
P-16	J-15	J-16	10.22	204	110	-2.56	0.08	0.00	0.07
P-17	J-16	RES-02	4.18	204	110	-2.56	0.08	0.00	0.06
P-18	RES-01	J-17	5.98	204	110	3.00	0.09	0.00	0.09

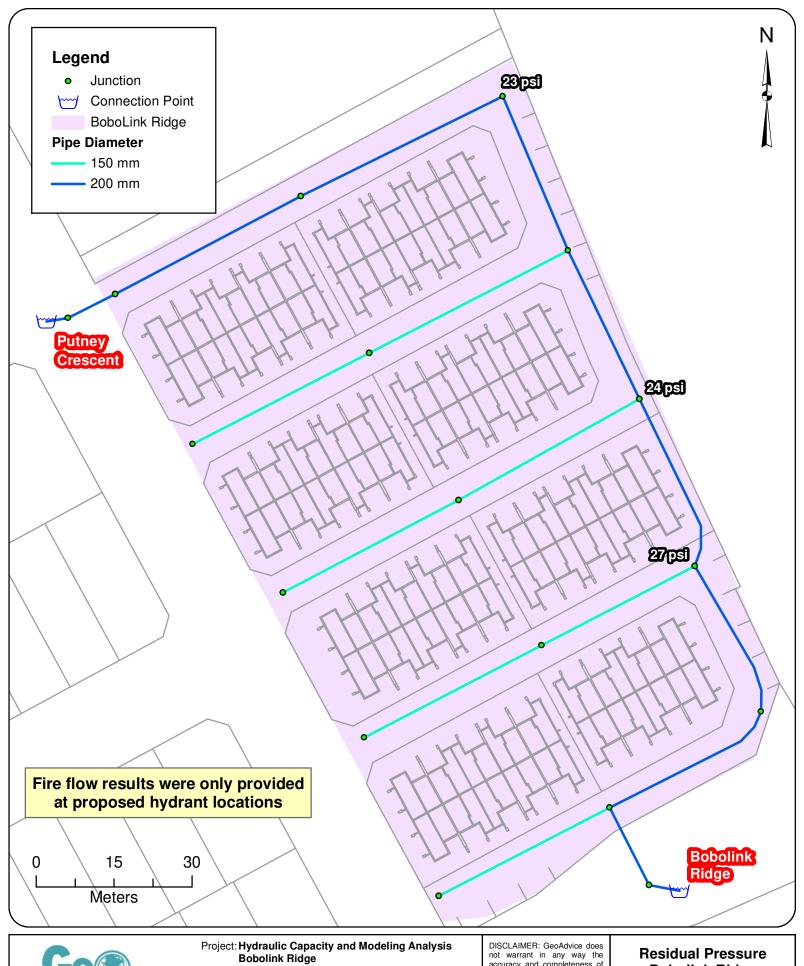

ID	Demand (L/s)	Elevation (m)	Head (m)	Pressure (psi)
J-01	0.37	108.52	156	68
J-02	0.37	108.79	156	68
J-03	0.37	108.56	156	68
J-04	0.37	108.57	156	68
J-05	0.37	108.59	156	68
J-06	0.37	108.81	156	68
J-07	0.37	108.44	156	68
J-08	0.37	108.75	156	68
J-09	0.37	109.01	156	67
J-10	0.37	108.28	156	68
J-11	0.37	108.48	156	68
J-12	0.37	108.79	156	68
J-13	0.37	108.15	156	69
J-14	0.37	108.41	156	68
J-15	0.37	108.47	156	68
J-16	0.00	108.40	156	68
J-17	0.00	108.87	156	68

Appendix F MDD+FF Model Results

Project ID: 2021-110-DSE

Bobolink Ridge 2021-110-DSE

Client: David Schaeffer Engineering Ltd.


Date: December 2021 Created by: BL

Reviewed by: WdS

not warrant in any way the accuracy and completeness of the information shown on this map. Field verification of the accuracy and completeness of the information shown on this map is the sole responsibility of

Bobolink Ridge

Figure F.1

2021-110-DSE

Client: David Schaeffer Engineering Ltd.

Date: December 2021

Created by: BL Reviewed by: WdS not warrant in any way the accuracy and completeness of the information shown on this map. Field verification of the accuracy and completeness of the information shown on this map is the sole responsibility of

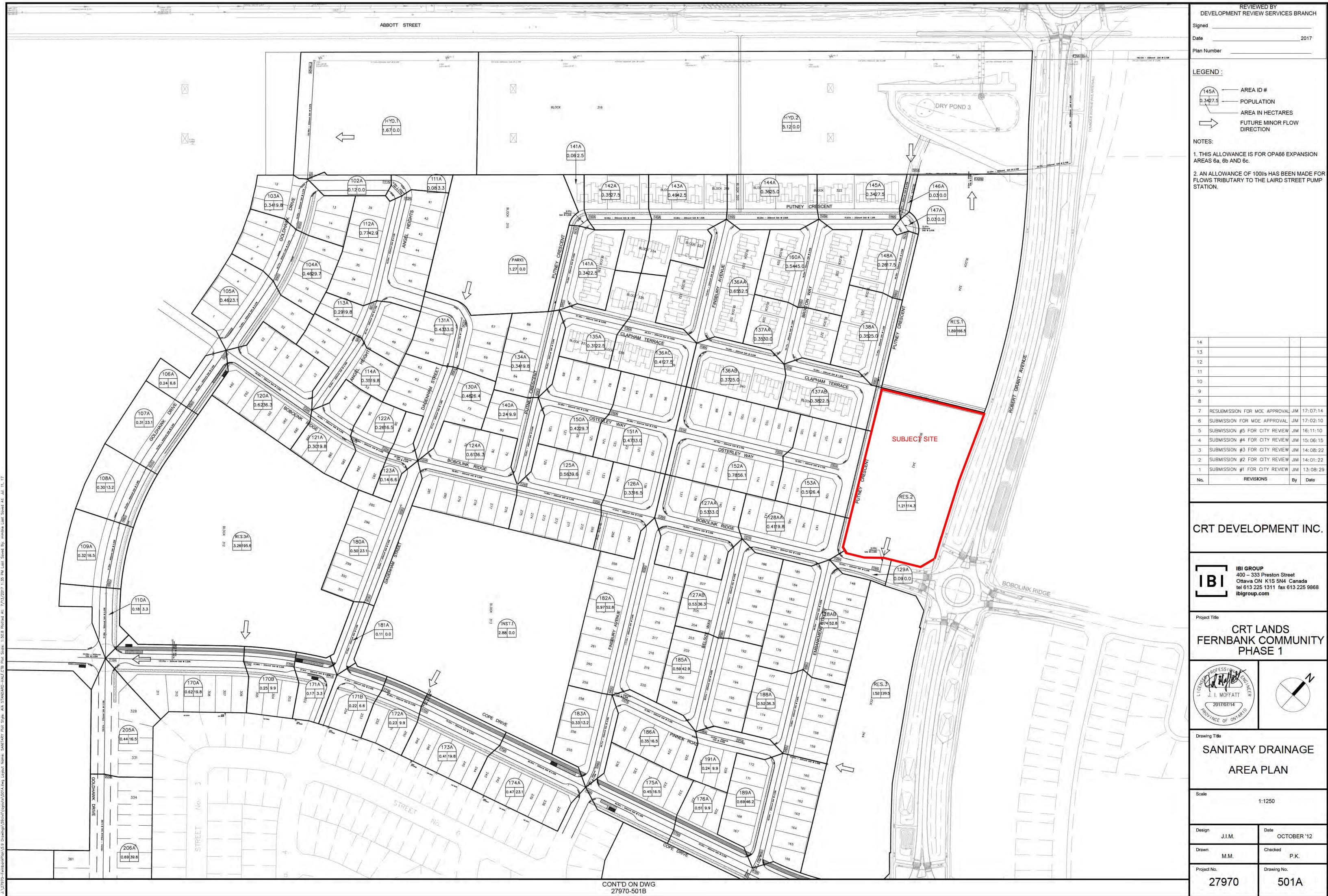
Bobolink Ridge

Figure F.2

Fire Flow Modeling Results - Bobolink Ridge

ID	Static Demand (L/s)	Static Pressure (psi)	Static Head (m)	Fire-Flow Demand (L/s)	Residual Pressure (psi)	Available Flow at Hydrant (L/s)	Available Flow Pressure (psi)
J-04	0.25	49	143	267	27	327	20
J-07	0.25	47	141	267	24	299	20
J-13	0.25	41	137	267	23	292	20

APPENDIX C


Sanitary Servicing Documents

SANITARY SEWER CALCULATION SHEET

Manning's n=0.013 LOCATION RESIDENTIAL AREA AND POPULATION COMM INFILTRATION INSTIT PARK C+I+I AREA POP. FACT. FLOW AREA AREA AREA FLOW AREA FLOW FLOW (FULL) Q act/Q cap (FULL) (ACT.) Singles Townhouse (ha) (ha) (ha) (ha) (l/s) (l/s) (m/s) (m/s) PRIVATE ROAD 3 0.23 0.84 0.35 9A 10A 49 0.23 49 3.65 0.58 0.00 0.00 0.00 0.23 0.23 0.08 0.66 71.0 200 0.65 26.44 0.02 18 0.00 To PRIVATE ROAD 2, Pipe 10A - 11A PRIVATE ROAD 1 3A 4A 0.26 20 54 54 3.65 0.64 0.00 0.00 0.00 0.00 0.26 0.26 0.09 0.72 77.0 200 0.65 26.44 0.03 0.84 0.36 0.26 To SERVICING 2, Pipe 4A - 5A 54 0.00 0.00 0.00 0.26 0.26 16A 1A 0.16 10 27 0.16 27 3.69 0.32 0.00 0.00 0.00 0.00 0.16 0.16 0.05 0.38 73.0 200 0.65 26.44 0.01 0.84 0.29 1A 0.16 27 3.69 0.32 0.00 0.00 0.00 0.00 0.00 0.16 0.05 200 19.40 0.62 0.24 2A 0.38 7.0 0.35 0.02 2A 0.16 27 3.69 0.32 0.00 0.00 0.00 0.00 0.00 0.16 0.05 0.38 29.5 200 19.40 0.02 0.62 0.24 To SERVICING 2, Pipe 4A - 5A 0.00 SERVICING 2 Contribution From PRIVATE ROAD 1, Pipe 2A - 4A 0.16 27 0.00 0.00 0.00 0.16 0.16 Contribution From PRIVATE ROAD 1, Pipe 3A - 4A 0.26 54 0.00 0.00 0.00 0.26 0.42 5A 0.42 81 3.61 0.95 0.00 0.00 0.00 0.00 0.00 0.42 0.14 1.09 3.5 200 0.35 19.40 0.06 0.62 0.33 5A 6A 0.42 81 3.61 0.95 0.00 0.00 0.00 0.00 0.00 0.42 0.14 1.09 31.5 200 0.35 19.40 0.06 0.62 0.33 0.00 0.42 0.14 8A 0.42 81 3.61 0.95 0.00 0.00 1.09 0.00 4.0 200 0.35 19.40 0.06 0.62 0.33 To PRIVATE ROAD 2, Pipe 8A - 10A 81 PRIVATE ROAD 2 14 3.72 0.17 0.00 13A 14A 0.09 14 0.09 0.00 0.00 0.00 0.09 0.09 0.03 0.20 31.0 200 0.65 26.44 0.01 0.84 0.24 To SERVICING 1, Pipe 14A - EX, 129A 14 0.00 0.09 0.00 0.00 0.09 8A 0.25 52 0.25 52 3.65 0.61 0.00 0.00 0.00 0.00 0.25 0.25 0.08 0.70 73.0 200 0.65 26.44 0.03 0.84 0.36 19 Contribution From SERVICING 2, Pipe 6A - 8A 0.00 0.00 0.00 0.42 81 0.42 0.67 10A 133 3.57 1.54 0.00 0.00 0.00 0.67 0.22 1.76 33.0 200 19.40 0.09 0.62 0.67 0.00 0.00 0.35 Contribution From PRIVATE ROAD 3, Pipe 9A - 10. 0.23 49 0.00 0.00 0.00 0.23 0.90 182 3.53 2.08 182 3.53 2.08 11A 28.5 10A 0.00 0.00 0.00 0.00 0.90 0.30 200 0.35 0.62 11A 12A 0.90 0.00 0.00 0.00 0.00 0.00 0.90 0.30 2.38 10.0 200 0.35 19.40 0.12 0.62 0.42 193 3.52 2.20 12A 14A 0.06 4 11 0.96 0.00 0.00 0.00 0.00 0.06 0.96 0.32 2.52 29.5 200 0.35 19.40 0.13 0.62 0.42 To SERVICING 1, Pipe 14A - EX, 129A 0.96 193 0.00 0.00 0.00 0.96 SERVICING 1 Contribution From PRIVATE ROAD 2, Pipe 12A - 14A 0.96 193 0.00 0.00 0.00 0.96 0.96

Contribution From PRIVATE ROAD 2	, Pipe 13A -	14A			W	Min	1 2 X	0.09	14				0.00	0.	0.00	0.	.00	(0.09	1.05									
	14A	EX. 129A		181	1011	100	7	1.05	207	3.51	2.36	(0.00	0	0.00	0.	.00 0	.00	0.00	1.05	0.35	2.70	15.5	200	0.35	19.40	0.14	0.62	0.43
				E		POINT	/	I																					
				0	S. L. N	ERRICH	\ H	1																					
				7	1001	86523																							
					100	00020		//																					
			1			,7		9																					
					6027	101-13																							
				12			\$ \tag{\tau}																						
				10	Var.	ani																							
					TVCE	OF ON																							
						1																							
						x 21-17	ا طر																						
				DESIGN	I PANBANA									Des	signed:				F	PROJEC1	Γ:		_						
Park Flow =	9300	L/ha/da	0.10764		l/s/Ha											G	GG						ŀ	BOBALIN	K DRIVE	- PHASE	1		
Average Daily Flow =	280	l/p/day									per MOE Gr	•																	
Comm/Inst Flow =	28000	L/ha/da	0.3241		l/s/Ha				ous Flow =		0.330 I			Che	ecked:				L	OCATIO	N:								
Industrial Flow =	35000	L/ha/da	0.40509		l/s/Ha				n Velocity =		0.600 ı					SI	LM								City of	Ottawa			
Max Res. Peak Factor =	4.00							Manning		(Conc)		(Pvc)	0.013																
Commercial/Inst./Park Peak Factor =	1.00								use coeff=		2.7				/g. Refer				F	File Ref:		12-1261		Date:			Sheet	t No.	1
Institutional =	0.32	l/s/Ha						Single h	ouse coeff=	=	3.4			San	nitary Dra	inage Plan, [Dwgs. No.	14							13 Jan 202	2	ĺ	0	1 1

IBI

IBI Group 400-333 Preston Street Ottawa, Ontario K1S 5N4

PROJECT: CRT DEVELOPMENT
LOCATION: CITY OF OTTAWA
CLIENT: CRT DEVELOPMENT INC.

				T				RESIDENTIAL	1				I			ICI AREAS				I INEII:	TRATION ALLO	MANCE	TOTAL	1		DPOE	OSED SEWER	DESIGN		
	LOCAT	ION			LINIT	TYPES		AREA		LATION	PEAK	PEAK			AREA				PEAK		A (Ha)	FLOW	FLOW	CAPACITY	LENGTH	DIA	SLOPE	VELOCITY	۸۷۸	NILABLE
		FROM	то	1	I	TIFES		ANEA	FOFO	LATION	FACTOR	FLOW	INICTITI	UTIONAL	COMME		INDII	ISTRIAL	FLOW	ANL	А (па)	FLOW	FLOW	CAPACITY	LENGTH	DIA	SLOPE	(full)		PACITY
STREET	AREA II	D KOW	MH	SF	SD	TH	APT	(Ha)	IND	CUM	FACTOR	(L/s)	IND	CUM	IND	CUM	IND	CUM	(L/s)	IND	CUM	(L/s)	(L/s)	(L/s)	(m)	(mm)	(%)	(m/s)	L/s	(%)
				+	+							(=/ =/							(-, -,									(, 5)	-70	(//
PUTNEY CRESCENT	141A	141A	142A		-	1		0.06	2.5	2.5	4.00	0.04		0.00	+	0.00		0.00	0.00	0.06	0.06	0.02	0.06	24.19	9.07	200	0.50	0.746	24.14	99.76
PUTNEY CRESCENT	142A		143A	1	1	11		0.35	27.5	30.0	4.00	0.49	1	0.00	1	0.00		0.00	0.00	0.35	0.41	0.11	0.60	47.16	55.56	200	1.90	1.454	46.56	98.73
PUTNEY CRESCENT	143A		144A	1	1	17		0.49	42.5	72.5	4.00	1.17	1	0.00	1	0.00		0.00	0.00	0.49	0.90	0.25	1.43	41.91	64.86	200	1.50	1.292	40.48	96.60
TOTAL CRESCERT	143/	143/4	2447					0.43	72.3	72.3	4.00	2.27		0.00		0.00		0.00	0.00	0.43	0.50	0.23	1.43	41.51	04.00	200	1.50	1.232	40.40	50.00
FINSBURY AVENUE	136AA	136A	144A	1	1	21		0.65	52.5	52.5	4.00	0.85	1	0.00	1	0.00		0.00	0.00	0.65	0.65	0.18	1.03	53.56	110.44	200	2.45	1.652	52.52	98.07
PUTNEY CRESCENT	144A	144A	145A			10		0.36	25.0	150.0	4.00	2.43		0.00		0.00		0.00	0.00	0.36	1.91	0.53	2.97	32.46	80.25	200	0.90	1.001	29.50	90.86
CLAPHAM TERRACE	136AB	136A	137A			10		0.37	25.0	25.0	4.00	0.41		0.00		0.00		0.00	0.00	0.37	0.37	0.10	0.51	24.19	78.00	200	0.50	0.746	23.69	97.90
BRIXTON WAY	137AA	137A	160A			12		0.35	30.0	55.0	4.00	0.89		0.00		0.00		0.00	0.00	0.35	0.72	0.20	1.09	41.91	50.77	200	1.50	1.292	40.81	97.39
BRIXTON WAY	160A	160A	145A			18		0.54	45.0	100.0	4.00	1.62		0.00		0.00		0.00	0.00	0.54	1.26	0.35	1.97	52.45	78.53	200	2.35	1.617	50.48	96.24
PUTNEY CRESCENT	145A	145A	146A			11		0.34	27.5	277.5	4.00	4.50		0.00		0.00		0.00	0.00	0.34	3.51	0.98	5.48	39.76	70.87	200	1.35	1.226	34.28	86.22
CLAPHAM WAY	137AB	137A	138A			9		0.38	22.5	22.5	4.00	0.36		0.00		0.00		0.00	0.00	0.38	0.38	0.11	0.47	37.48	78.00	200	1.20	1.156	37.01	98.74
PUTNEY CRESCENT	138A	138A	148A			10		0.35	25.0	47.5	4.00	0.77		0.00		0.00		0.00	0.00	0.35	0.73	0.20	0.97	40.49	77.95	200	1.40	1.248	39.51	97.59
PUTNEY CRESCENT	148A	148A	147A			7		0.26	17.5	65.0	4.00	1.05		0.00		0.00		0.00	0.00	0.26	0.99	0.28	1.33	55.70	59.50	200	2.65	1.718	54.37	97.61
PUTNEY CRESCENT	147A	147A	146A			0		0.03	0.0	65.0	4.00	1.05		0.00		0.00		0.00	0.00	0.03	1.02	0.29	1.34	55.70	12.47	200	2.65	1.718	54.36	97.60
BLOCK 323	146A		161A			0		0.03	0.0	342.5	4.00	5.55		0.00		0.00		0.00	0.00	0.03	4.56	1.28	6.83	28.63	38.97	200	0.70	0.883	21.80	76.15
BLOCK 316	HYD. 2	161A	Ex.209			0		5.12	0.0	342.5	4.00	5.55		0.00		0.00		0.00	0.00	5.12	9.68	2.71	8.26	28.63	53.67	200	0.70	0.883	20.37	71.15
BLOCK 324	RES.1	BULKHEAD	Ex.209					1.89	170.1	170.1	4.00	2.76		0.00		0.00		0.00	0.00	1.89	1.89	0.53	3.29	43.87	8.00	250	0.50	0.866	40.58	92.51
				_			1	<u> </u>																_						
				Refer to EC	CA No. 9079-9	LNNZC dated	d July 9, 2014	for descripti	on of existin	ng sewers.				1	 															
Davies Dave state				Notes:	1			l .			Daniera e di		J.I.M.	1		No.				<u> </u>	Revision	<u> </u>			<u> </u>			Date		
Design Parameters:						(-)		0.013			Designed:		J.I.IVI.			NO.				Codemai								2013-08-29		
Pasidontial		ICI Areas			gs coefficient			0.013) L/day							-	2.					ssion No. 1 to C	-1						2013-08-29		
Residential SF 3.3 p/p/u		ICI AI edS	Dook Fasts	_	d (per capita): ion allowance			S L/s/Ha			Checked:		D V									•						2014-01-22		
5. 5.5 p/p/-	INST	50.000 L/Ha/dav	Peak Factor 1.5		ion allowance tial Peaking Fa		0.28	L/S/Ha			спескеа:		P.K.		-	3. 4.	Submission No. 3 to City of Ottawa Submission No. 4 to City of Ottawa						-		2014-08-22					
TH/SD 2.5 p/p/u APT 1.8 p/p/u	COM	50,000 L/Ha/day 50,000 L/Ha/day	1.5 1.5	4. Kesiden	tiai Peaking Fa Harmon For		4 // 4±DAO E\\								-	4. 5.					ssion No. 4 to C	.,				-		2015-06-15		
1111	IND	35,000 L/Ha/day	MOE Chart		where P = p						Dwg. Refere	nco:	27070 F01	1, 501A, 501B	-	6.					mission for MO	•						2016-11-10		
	טאו	55,000 L/Ha/day	IVIOE CHARL		where P = p	opulation in	tilousands				Dwg. Ketere	ince:	2/9/0-501	I, 301A, 501B	-	7					omission for MO							2017-02-10		
																/.	ile Referenc			resui	JIIIISSIUII IUI IVI	Date:								
High 90 p/p/Ha																,	27970.5.7.1					Date: 2017-07-14						Sheet No: 1 of 4		
																	2/9/0.5./.1	L				2017-07-14						1 01 4		

J:\27970-FernbankPlan\5.7 Calculations\5.7.1 Sewers & Grading\CSSCRTSanSub#7(2017-07-14)

IBI Group 400-333 Preston Street Ottawa, Ontario K1S 5N4

PROJECT: CRT DEVELOPMENT
LOCATION: CITY OF OTTAWA
CLIENT: CRT DEVELOPMENT INC.

	LOCATION							RESIDENTIA	L							ICI AREAS				INFILT	RATION ALLO	WANCE	TOTAL			PROF	POSED SEWER I	DESIGN		
	LOCATION				UNIT	TYPES		AREA	POPU	LATION	PEAK	PEAK			AREA	,			PEAK	ARE	A (Ha)	FLOW	FLOW	CAPACITY	LENGTH	DIA	SLOPE	VELOCITY	AVA	ILABLE
STREET	AREA ID	FROM MH	TO MH	SF	SD	тн	APT	(Ha)	IND	сим	FACTOR	FLOW (L/s)	INSTIT	CUM	COMM IND	ERCIAL CUM	INDUS	CUM	FLOW (L/s)	IND	сим	(L/s)	(L/s)	(L/s)	(m)	(mm)	(%)	(full) (m/s)	L/s	PACITY (%)
CLAPHAM TERRACE	136AC	136A	135A			11		0.41	27.5	27.5	4.00	0.45		0.00		0.00		0.00	0.00	0.41	0.41	0.11	0.56	27.59	65.31	200	0.65	0.851	27.03	97.97
CLAPHAM TERRACE	135A	135A	134A			9		0.31	22.5	50.0	4.00	0.81		0.00		0.00		0.00	0.00	0.31	0.72	0.20	1.01	27.59	57.36	200	0.65	0.851	26.57	96.33
PUTNEY CRESCENT	141A	141A	134A			9		0.34	22.5	22.5	4.00	0.36		0.00		0.00		0.00	0.00	0.34	0.34	0.10	0.46	32.46	75.02	200	0.90	1.001	32.00	98.58
PUTNEY CRESCENT	134A	134A	140A	6				0.34	19.8	92.3	4.00	1.50		0.00		0.00		0.00	0.00	0.34	1.40	0.39	1.89	32.46	78.00	200	0.90	1.001	30.57	94.18
OSTERLEY WAY	153A	153A	152A	8				0.51	26.4	26.4	4.00	0.43		0.00		0.00		0.00	0.00	0.51	0.51	0.14	0.57	29.63	49.25	200	0.75	0.914	29.06	98.07
OSTERLEY WAY	152A	152A	151A	17				0.78	56.1	82.5	4.00	1.34		0.00		0.00		0.00	0.00	0.78	1.29	0.36	1.70	29.63	95.75	200	0.75	0.914	27.93	94.27
OSTERLEY WAY	151A	151A	150A	10				0.47	33.0	115.5	4.00	1.87		0.00		0.00		0.00	0.00	0.47	1.76	0.49	2.36	29.63	59.68	200	0.75	0.914	27.27	92.02
OSTERLEY WAY	150A	150A	140A	9				0.42	29.7	145.2	4.00	2.35		0.00		0.00		0.00	0.00	0.42	2.18	0.61	2.96	29.63	62.98	200	0.75	0.914	26.67	90.00
PUTNEY CRESCENT	140A	140A	124A	3				0.24	9.9	247.4	4.00	4.01		0.00		0.00		0.00	0.00	0.24	3.82	1.07	5.08	32.46	78.00	200	0.90	1.001	27.38	84.36
BLOCK 343	RES.2	BLKHD	129A					1.21	108.9	108.9	4.00	1.76		0.00		0.00		0.00	0.00	1.21	1.21	0.34	2.10	20.24	19.00	200	0.35	0.624	18.14	89.61
BOBOLINK RIDGE	128AA	128A	127A	6	_	_		0.41	19.8	128.7	4.00	2.09		0.00		0.00		0.00	0.00	0.41	1.71	0.48	2.56	31.02	78.00	250	0.25	0.612	28.46	91.73
BOBOLINK RIDGE	127AA	127A	127A 126A	10		+		0.53	33.0	161.7	4.00	2.62		0.00		0.00		0.00	0.00	0.41	2.24	0.63	3.25	31.02	78.00	250	0.25	0.612	27.77	89.53
BOBOLINK RIDGE	126A	126A	125A	5				0.33	16.5	178.2	4.00	2.89		0.00		0.00		0.00	0.00	0.33	2.57	0.72	3.61	31.02	47.81	250	0.25	0.612	27.41	88.37
BOBOLINK RIDGE	125A	125A	124A	12				0.56	39.6	217.8	4.00	3.53		0.00		0.00		0.00	0.00	0.56	3.13	0.88	4.41	31.02	74.85	250	0.25	0.612	26.61	85.80
BOBOLINK RIDGE	124A	124A	123A	11				0.61	36.3	501.5	3.97	8.07		0.00		0.00		0.00	0.00	0.61	7.56	2.12	10.19	31.02	88.85	250	0.25	0.612	20.83	67.15
DAGENHAM STREET	PARK1, 131A	131A	130A	7		+		1.70	23.1	23.1	4.00	0.37		0.00		0.00		0.00	0.00	1.70	1.70	0.48	0.85	34.22	43.00	200	1.00	1.055	33.37	97.51
DAGENHAM STREET	130A	130A	123A	8				0.46	26.4	49.5	4.00	0.80		0.00		0.00		0.00	0.00	0.46	2.16	0.60	1.41	34.22	87.11	200	1.00	1.055	32.81	95.89
BOBOLINK RIDGE	123A	123A	122A	2		1		0.14	6.6	557.6	3.95	8.92		0.00		0.00		0.00	0.00	0.14	9.86	2.76	11.68	31.02	25.98	250	0.25	0.612	19.34	62.34
BOBOLINK RIDGE	122A	122A	121A	5				0.26	16.5	574.1	3.94	9.17		0.00		0.00		0.00	0.00	0.26	10.12	2.83	12.00	31.02	36.36	250	0.25	0.612	19.02	61.31
BOBOLINK RIDGE	121A	121A	120A	6				0.30	19.8	593.9	3.93	9.47		0.00		0.00		0.00	0.00	0.30	10.42	2.92	12.38	31.02	40.43	250	0.25	0.612	18.64	60.08
ANGEL HEIGHTS	111A	111A	112A	1				0.08	3.3	3.3	4.00	0.05		0.00		0.00		0.00	0.00	0.08	0.08	0.02	0.08	28.63	12.92	200	0.70	0.883	28.55	99.73
ANGEL HEIGHTS	112A	112A	113A	13				0.77	42.9	46.2	4.00	0.75		0.00		0.00		0.00	0.00	0.77	0.85	0.24	0.99	28.63	95.21	200	0.70	0.883	27.64	96.55
ANGEL HEIGHTS ANGEL HEIGHTS	113A 114A	113A 114A	114A 120A	6		+		0.29 0.35	19.8 19.8	66.0 85.8	4.00 4.00	1.07 1.39		0.00		0.00		0.00	0.00	0.29 0.35	1.14 1.49	0.32 0.42	1.39 1.81	28.63 28.63	38.92 70.46	200	0.70 0.70	0.883	27.24 26.82	95.15 93.69
BOBOLINK RIDGE	120A	120A	105A	11				0.62	36.3	716.0	3.89	11.28		0.00		0.00		0.00	0.00	0.62	12.53	3.51	14.79	36.70	90.60	250	0.35	0.724	21.91	59.71
esign Parameters:		•		Notes:	as soofficis=+	/n) -		0.013			Designed:	-	J.I.M.	•		No.				Cult:	Revision) City of Ottown			•			Date 2013-08-29		
Residential		ICI Areas			gs coefficient d (per capita):		350	0.013) L/day								2.					sion No. 2 to C					 		2013-08-29		
SF 3.3 p/p/u			Peak Factor	_	ion allowance			B L/s/Ha			Checked:		P.K.			3.					sion No. 3 to C							2014-08-22		
TH/SD 2.5 p/p/u	INST 50,0	00 L/Ha/day	1.5		tial Peaking Fa			•								4.				Submis	sion No. 4 to C	City of Ottawa						2015-06-15		
APT 1.8 p/p/u	COM 50,0	00 L/Ha/day	1.5		Harmon For	rmula = 1+(1	4/(4+P^0.5))									5.										2016-11-10				
Low 60 p/p/Ha	IND 35,0	00 L/Ha/day	MOE Chart		where P = p	opulation in	thousands				Dwg. Refere	ence:	27970 - 50	1, 501A, 501B		6.	The state of the s							4		2017-02-10				
Med 75 p/p/Ha																7. Resubmission for MOE Approval								2017-07-14						
High 90 p/p/Ha																	ile Reference 27970.5.7.1	2:				Date: 2017-07-14						Sheet No: 2 of 4		

IBI Group 400-333 Preston Street Ottawa, Ontario K1S 5N4

PROJECT: CRT DEVELOPMENT
LOCATION: CITY OF OTTAWA
CLIENT: CRT DEVELOPMENT INC.

							RESIDENTIA	ı							ICI AREAS				INFILT	RATION ALLO	WANCE	TOTAL			PROP	OSED SEWER	DESIGN		
	LOCATION		r		UNIT	TYPES	AREA		LATION	PEAK	PEAK				A (Ha)	1		PEAK		A (Ha)	FLOW	FLOW	CAPACITY	LENGTH	DIA	SLOPE	VELOCITY		LABLE
STREET	AREA ID	FROM MH	TO MH	SF	SD	TH APT	(Ha)	IND	сим	FACTOR	FLOW (L/s)	INSTIT	CUM	IND	IERCIAL CUM	INDUST	CUM	FLOW (L/s)	IND	сим	(L/s)	(L/s)	(L/s)	(m)	(mm)	(%)	(full) (m/s)	L/s	ACITY (%)
																											` ' '		
EMBANKMENT STREET	128AB	128A	188A	16			0.74	52.8	52.8	4.00	0.86		0.00		0.00		0.00	0.00	0.74	0.74	0.21	1.06	27.59	98.00	200	0.65	0.851	26.52	96.15
EMBANKMENT STREET	188A	188A	189A	11			0.52	36.3	89.1	4.00	1.44		0.00		0.00		0.00	0.00	0.52	1.26	0.35	1.80	27.59	74.80	200	0.65	0.851	25.79	93.49
BLOCK 344	RES.3	192A	189A				1.52	136.8	136.8	4.00	2.22		0.00		0.00		0.00	0.00	1.52	1.52	0.43	2.64	20.24	40.00	200	0.35	0.624	17.60	86.95
EMBANKMENT STREET	189A	189A	190A	14			0.69	46.2	272.1	4.00	4.41		0.00		0.00		0.00	0.00	0.69	3.47	0.97	5.38	20.24	92.53	200	0.35	0.624	14.86	73.42
EMBANKMENT STREET	105A	190A	176A	0			0.00	0.0	272.1	4.00	4.41		0.00		0.00		0.00	0.00	0.00	3.47	0.97	5.38	20.24	10.78	200	0.35	0.624	14.86	73.42
BLOCK 345	INST.2	BULKHEAD	176A	0			0.00	0.0	0.0	4.00	0.00	6.53	6.53		0.00		0.00	5.67	6.53	6.53	1.83	7.50	20.24	21.00	200	0.35	0.624	12.75	62.97
COPE DRIVE COPE DRIVE	176A 175A	176A 175A	175A 174A	5			0.63 0.46	9.9 16.5	282.0 298.5	4.00 4.00	4.57 4.84		6.53 6.53		0.00		0.00	5.67 5.67	0.63 0.46	10.63 11.09	2.98 3.11	13.21 13.61	20.24	76.03 84.94	200	0.35 0.35	0.624 0.624	7.03 6.63	34.72 32.76
DELCIZE MAY	12740	1274	1054	11			0.53	26.2	26.2	4.00	0.50		0.00		0.00		0.00	0.00	0.53	0.53	0.15	0.74	27.50	88.50	200	0.65	0.051	36.05	07.22
BELSIZE WAY BELSIZE WAY	127AB 185A	127A 185A	185A 186A	11 13			0.53 0.59	36.3 42.9	36.3 79.2	4.00 4.00	0.59 1.28		0.00		0.00		0.00	0.00	0.53 0.59	0.53 1.12	0.15 0.31	1.60	27.59 27.59	83.61	200 200	0.65 0.65	0.851 0.851	26.85 25.99	97.33 94.21
PINNER ROAD	191A	191A	186A	3			0.24	9.9	9.9	4.00	0.16		0.00		0.00		0.00	0.00	0.24	0.24	0.07	0.23	27.59	43.00	200	0.65	0.851	27.36	99.17
PINNER ROAD PINNER ROAD	186A	186A 187A	187A 183A	5 0			0.35	16.5 0.0	105.6 105.6	4.00 4.00	1.71 1.71		0.00		0.00		0.00	0.00	0.35 0.00	1.71 1.71	0.48 0.48	2.19 2.19	20.24	70.39 9.00	200 200	0.35 0.35	0.624 0.624	18.05 18.05	89.18 89.18
FINSBURY AVENUE	182A	182A	183A	16			0.97	52.8	52.8	4.00	0.86		0.00		0.00		0.00	0.00	0.97	0.97	0.27	1.13	32.46	117.13	200	0.90	1.001	31.33	96.53
FINSBORT AVENUE	102A	102A	165A	10			0.57	32.6	32.6	4.00	0.80		0.00		0.00		0.00	0.00	0.57	0.57	0.27	1.13	32.40	117.13	200	0.90	1.001	31.33	30.33
FINSBURY AVENUE FINSBURY AVENUE	183A	183A 184A	184A 174A	0			0.33	13.2 0.0	171.6 171.6	4.00	2.78		0.00		0.00		0.00	0.00	0.33	3.01 3.01	0.84 0.84	3.62 3.62	20.24	65.71 17.89	200	0.35 0.35	0.624 0.624	16.62 16.62	82.10 82.10
COPE DRIVE COPE DRIVE	174A 173A	174A 173A	173A 172A	7 6			0.47 0.41	23.1 19.8	493.2 513.0	3.98 3.97	7.95 8.25		6.53 6.53		0.00		0.00	5.67 5.67	0.47 0.41	14.57 14.98	4.08 4.19	17.69 18.11	31.02 31.02	82.90 76.02	250 250	0.25 0.25	0.612 0.612	13.33 12.91	42.96 41.62
BLOCK 313	INST.1	BULKHEAD	172A	0			0.00	0.0	0.0	4.00	0.00	2.88	2.88		0.00		0.00	2.50	2.88	2.88	0.81	3.31	20.24	16.00	200	0.35	0.624	16.94	83.67
BLOCK 313	INS1.1	BULKHEAD	172A				0.00	0.0	0.0	4.00	0.00	2.00	2.00		0.00		0.00	2.50	2.00	2.00	0.81	5.51	20.24	16.00	200	0.55	0.624	16.94	65.07
COPE DRIVE COPE DRIVE	172A 171B	172A 171B	171B 171A	3 2			0.23	9.9 6.6	522.9 529.5	3.96 3.96	8.40 8.50		9.41 9.41		0.00		0.00	8.17 8.17	0.23 0.22	18.09 18.31	5.07 5.13	21.63 21.79	31.02 31.02	36.96 41.21	250 250	0.25 0.25	0.612 0.612	9.39 9.23	30.27 29.75
DAGENHAM STREET DAGENHAM STREET	180A 181A	180A 181A	181A 171A	7			0.50 0.11	23.1 0.0	23.1 23.1	4.00 4.00	0.37 0.37		0.00		0.00		0.00	0.00	0.50 0.11	0.50 0.61	0.14 0.17	0.51 0.55	20.24	90.00 67.50	200 200	0.35 0.35	0.624 0.624	19.73 19.70	97.46 97.31
COPE DRIVE	171A	171A	170B	1			0.17	3.3	555.9	3.95	8.90		9.41		0.00		0.00	8.17	0.17	19.09	5.35	22.41	45.12	37.91	300	0.20	0.618	22.71	50.33
COPE DRIVE	170B	171A 170B	170A	3			0.25	9.9	565.8	3.95	9.04		9.41		0.00		0.00	8.17	0.25	19.34	5.42	22.63	45.12	43.98	300	0.20	0.618	22.49	49.84
BLOCK 312	RES.3A	BULKHEAD	sewer	0			3.26	195.6	195.6	4.00	3.17		0.00		0.00		0.00	0.00	3.26	3.26	0.91	4.08	20.24	16.22	200	0.35	0.624	16.16	79.83
CODE DOUG	4704	4704	4404				0.62	40.0	704.2	2.07	42.24		0.44				2.22	0.47	0.62	22.22	6.50	26.04	45.40	420.00	200	0.20	0.540	40.24	40.25
COPE DRIVE	170A	170A	110A	6			0.62	19.8	781.2	3.87	12.24		9.41		0.00		0.00	8.17	0.62	23.22	6.50	26.91	45.12	120.00	300	0.20	0.618	18.21	40.36
GOLDHAWK DRIVE	306A	SOUTH	303A	31			1.83	102.3	102.3	4.00	1.66		0.00		0.00		0.00	0.00	1.83	1.83	0.51	2.17							
STREET NO. 26	304A	WEST	303A	14			0.69	46.2	46.2	4.00	0.75		0.00	-	0.00		0.00	0.00	0.69	0.69	0.19	0.94							\vdash
GOLDHAWK DRIVE	303A	303A	302A	10			0.62	33.0	181.5	4.00	2.94		0.00		0.00		0.00	0.00	0.62	3.14	0.88	3.82	20.24	94.58	200	0.35	0.624	16.42	81.13
Future Street	RES.5, 5A, Park3	EAST	302A				23.97	1421.4	1421.4	3.70	21.28		0.00		0.00		0.00	0.00	23.97	23.97	6.71	28.00							
GOLDHAWK DRIVE	302A	302A	301A	10			0.56	33.0	1635.9	3.65	24.20		0.00	-	0.00						70.68	300	0.25	0.691	18.49	36.66			
GOLDHAWK DRIVE	301A	301A	207A	6			0.37	19.8	1655.7	3.65	24.47		0.00		0.00		0.00	0.00	0.37	28.04	7.85	32.32	50.44	70.00	300	0.25	0.691	18.12	35.93
STREET NO. 2	RES.4	EAST	207A	<u> </u>			13.88	832.8	832.8	3.85	12.99	<u> </u>	0.00		0.00		0.00	0.00	13.88	13.88	3.89	16.87							
GOLDHAWK DRIVE	207A	207A	206A	17			0.86	56.1	2544.6	3.50	36.10		0.00		0.00		0.00	0.00	0.86	42.78	11.98	48.08	70.84	107.19	375	0.15	0.621	22.76	32.13
GOLDHAWK DRIVE	206A	206A	205A	12			0.69	39.6	2584.2	3.50	36.60		0.00		0.00		0.00	0.00	0.69	43.47	12.17	48.78	70.84	106.61	375	0.15	0.621	22.07	31.15
GOLDHAWK DRIVE	205A	205A	110A	5			0.44	16.5	2600.7	3.49	36.81		0.00	-	0.00	+	0.00	0.00	0.44	43.91	12.29	49.11	70.84	100.61	375	0.15	0.621	21.73	30.68
Design Parameters:			-	Notes:		(-)	0.013	-	•	Designed:	•	J.I.M.	•	•	No.					Revision	:		-				Date		
Residential		ICI Areas			gs coefficient ((per capita):		0.013 50 L/day			L					2.					sion No. 1 to C sion No. 2 to C							2013-08-29 2014-01-22		
SF 3.3 p/p/u	INST 50,00	00 L/Ha/day	Peak Factor 1.5	-1	on allowance:		28 L/s/Ha			Checked:		P.K.			Submission No. 3 to City of Ottawa Submission No. 4 to City of Ottawa									2014-08-22 2015-06-15					
TH/SD 2.5 p/p/u APT 1.8 p/p/u	COM 50,00	00 L/Ha/day	1.5	Nesidefil	Harmon For	mula = 1+(14/(4+P^0.5))								5. Submission No. 5 to City of Ottawa								2016-11-10						
Low 60 p/p/Ha Med 75 p/p/Ha	IND 35,00	00 L/Ha/day	MOE Chart		where P = p	opulation in thousands				Dwg. Refer	ence:	27970 - 501	l, 501A, 501B		6. Submission for MOE Approval 7. Resubmission for MOE Approval							2017-02-10 2017-07-14							
High 90 p/p/Ha															F	ile Reference:			nesub		Date:						Sheet No:		
				<u> </u>						1						27970.5.7.1					2017-07-14						3 of 4		

IBI Group 400-333 Preston Street Ottawa, Ontario K1S 5N4

PROJECT: CRT DEVELOPMENT
LOCATION: CITY OF OTTAWA
CLIENT: CRT DEVELOPMENT INC.

						RESIDENT	AL							ICI AREAS				INFILT	RATION ALLO	NANCE	TOTAL			PR∩P	OSED SEWER	DESIGN		
	LOCATIO	N		-	UNIT TYPES	AREA		ILATION	PEAK	PEAK			AREA				PEAK	AREA		FLOW	FLOW	CAPACITY	LENGTH	DIA	SLOPE	VELOCITY	ΔVΔ	LABLE
1		FROM	то		OMIT TITES	ANLA	1010	I	FACTOR	FLOW	INISTITI	JTIONAL	COMM	· · · · · · · · · · · · · · · · · · ·	INDUSTRIAL		FLOW	ANLA	(IIa)	11000	11000	CAFACITI	LLINGIII	DIA	3LOF L	(full)		ACITY
STREET	AREA ID	MH	MH	SF	SD TH	APT (Ha)	IND	CUM	PACION	(L/s)	IND	CUM	IND	CUM	IND CUI		(L/s)	IND	CUM	(L/s)	(L/s)	(L/s)	(m)	(mm)	(%)	(m/s)	L/s	(%)
										(-)-/							(4,4)									(, -,	-,-	()
			1																		0.00							
	LSPS	Allo	wance			0.00	0.0	0.0													108.00							
	STITTSVILLE 6	PS	110A			0.00	0.0	0.0				0.00		0.00	0.0		0.00				84.00							
Future Street	INST.3	BLKHD	110A			0.00	0.0	0.0			2.47	2.47		0.00	0.0		2.14											
	PARK4	BLKHD	110A			0.83	0.0	0.0				0.00		0.00	0.0		0.00					<u> </u>						
	PARK5	BLKHD	110A			1.04	0.0	0.0				0.00		0.00	0.0		0.00					1						
	RES.9 RES.7	BLKHD BLKHD	110A			34.81 4.24	2610.8	2610.8 318.0				0.00		0.00	0.0		0.00					 	-					
	RES.13	BLKHD	110A 110A			2.22	318.0 133.2	133.2				0.00		0.00	0.0		0.00					+						
	RES.12	BLKHD	110A			43.89	2633.4	2633.4				0.00		0.00	0.0		0.00					+						
	INST.4	BLKHD	110A			0.00	0.0	0.0			2.44	2.44		0.00	0.0		2.12					1						
	COMM.	BLKHD	110A			0.00	0.0	0.0				0.00	0.63	0.63	0.0		0.55											
	HYD.4	BLKHD	110A			3.06	0.0	0.0				0.00		0.00	0.0	0	0.00											
_	RES.8	BLKHD	110A			2.30	172.5	172.5				0.00		0.00	0.0		0.00											
	HYD.5	BLKHD	110A			5.20	0.0	0.0				0.00		0.00	0.0		0.00											
Future Street	RES.11	BLKHD	110A			6.91	414.6	414.6				0.00		0.00	0.0		0.00											
	PARK6	BLKHD	110A	-		1.19	0.0	0.0	-			0.00		0.00	0.0		0.00				1	1			-			
	RES.10	BLKHD	110A	1		1.92	115.2	115.2	-		1	0.00		0.00	0.0		0.00				}	1	-		1			1
	HYD.3	BLKHD	110A			6.31	0.0	0.0				0.00		0.00	0.0	0	0.00					+				+		
TOTAL	1	BLKHD	110A			113.92		6397.7	3.14	81.49		4.91		0.63	0.0	0	4.81	119.46	119.46	33.45	311.74	320.28	24.02	600	0.25	1.097	8.54	2.67
10174	_	DENTID	1104			113.52		0337.7	3.14	01.43		4.51		0.03	0.0		4.01	113.40	113.40	33.43	311.74	320.20	24.02	000	0.23	1.037	0.54	2.07
GOLDHAWK DRIVE		110A	109A			0.00	0.0	9779.6	2.96	117.43		14.32		0.63	0.0	0	12.98	0.00	186.59	52.25	374.66	378.96	61.28	600	0.35	1.298	4.30	1.14
GOLDHAWK DRIVE	110A	1101A	1092A	1		0.18	3.3	3.3	4.00	0.05								0.18	0.18	0.05	0.10	28.63	61.28	200	0.70	0.883	28.52	99.64
GOLDHAWK DRIVE		109A	108A			0.00	0.0	9782.9	2.96	117.47		14.32		0.63	0.0	0	12.98	0.00	186.77	52.30	374.74	378.96	57.50	600	0.35	1.298	4.22	1.11
GOLDHAWK DRIVE	109A	1091A	1082A	5		0.32	16.5	16.5	4.00	0.27								0.32	0.32	0.09	0.36	28.63	57.50	200	0.70	0.883	28.27	98.75
GOLDHAWK DRIVE		108A	107A			0.00	0.0	9799.4	2.96	117.64		14.32		0.63	0.0		12.98	0.00	187.09	52.39	375.00	378.96	53.32	600	0.35	1.298	3.96	1.05
GOLDHAWK DRIVE	108A	1081A	1072A	4		0.30	13.2	13.2	4.00	0.21							0.00	0.30	0.30	0.08	0.30	28.63	53.32	200	0.70	0.883	28.33	98.96
GOLDHAWK DRIVE	4074	107A	106A			0.00	0.0	9812.6	2.96	117.77		14.32		0.63	0.0		12.98	0.00	187.39	52.47	375.22	378.96	62.94	600	0.35	1.298	3.74	0.99
GOLDHAWK DRIVE GOLDHAWK DRIVE	107A	1071A 106A	1062A 105A	7		0.31	23.1 0.0	23.1 9835.7	4.00 2.96	0.37 118.01		0.00 14.32		0.00	0.0		0.00 12.98	0.31	0.31 187.70	0.09 52.56	0.46 375.54	28.63 378.96	62.94 60.09	200 600	0.70 0.35	0.883 1.298	28.17 3.42	98.39 0.90
GOLDHAWK DRIVE	106A	106A 1061A	105A 1052A	2		0.00	6.6	6.6	4.00	0.11		0.00		0.00	0.0		0.00	0.00	0.24	0.07	0.17	28.63	60.09	200	0.33	0.883	28.45	99.39
GOLDHAWK DRIVE	100A	1001A	1032A			0.24	0.0	0.0	4.00	0.11		0.00		0.00	0.0	•	0.00	0.24	0.24	0.07	0.17	28.03	00.03	200	0.70	0.883	20.43	33.33
															<u> </u>													
		105A	104A			0.00	0.0	10558.3	2.93	125.37		14.32		0.63	0.0	0	12.98	0.00	200.47	56.13	386.48	389.64	72.85	600	0.37	1.335	3.16	0.81
GOLDHAWK DRIVE	105A	1051A	1042A	7		0.45	23.1	23.1	4.00	0.37								0.45	0.45	0.13	0.50	27.59	72.85	200	0.65	0.851	27.09	98.19
GOLDHAWK DRIVE		104A	103A			0.00	0.0	10581.4		125.60		14.32		0.63	0.0		12.98	0.00	200.92	56.26	386.84	389.64	48.77	600	0.37	1.335	2.80	0.72
GOLDHAWK DRIVE	104A	1041A	1032A	9		0.47	29.7	29.7	4.00	0.48							0.00	0.47	0.47	0.13	0.61	27.59	48.77	200	0.65	0.851	26.97	97.78
GOLDHAWK DRIVE		103A	102A			0.00	0.0	10611.1		125.90		14.32		0.63	0.0		12.98	0.00	201.39	56.39	387.27	389.64	45.00	600	0.37	1.335	2.37	0.61
GOLDHAWK DRIVE	103A, HYD1		1021A	6		2.01	19.8	19.8	4.00	0.32		44.05		0.52			0.00	2.01	2.01	0.56	0.88	27.59	45.00	200	0.65	0.851	26.70	96.80
GOLDHAWK DRIVE	102A	102A	FT-24 (EX)	1	 	0.12	0.0	10630.9 10650.7	2.93	126.10		14.32		0.63	0.0		12.98 12.98	0.12	203.52	56.99 57.55	388.07 388.83	389.64	102.59	600	0.37	1.335 1.371	1.57	0.40
HYDRO EASEMENT		FT-24 (EX)	FT-23 (EX)	-	 	0.00	0.0	10650.7	2.93	126.30		14.32		0.03	0.0	U	12.98	0.00	205.53	57.55	388.83	400.03	107.50	600	0.39	1.3/1	11.20	2.80
esign Parameters:			1	Notes:	<u> </u>	I I			Designed:	l	J.I.M.	I		No.					Revision	l					1	Date		
oo.b.i i didilicters.					s coefficient (n) =	0.013			Designed.		V.1.141.			1				Suhmiss	ion No. 1 to C	ity of Ottawa						2013-08-29		
Residential		ICI Areas			(per capita):	350 L/day			I					2.					ion No. 2 to C							2014-01-22		
SF 3.3 p/p/u	_		Peak Factor	-1	on allowance:	0.28 L/s/Ha			Checked:		P.K.			3.					ion No. 3 to C	•						2014-08-22		
TH/SD 2.5 p/p/u	INST	50,000 L/Ha/day	1.5		ial Peaking Factor:	2.20 2/3/1.0								4. Submission No. 4 to City of Ottawa								2015-06-15						
APT 1.8 p/p/u		50,000 L/Ha/day	1.5		Harmon Formula = 1+(14	4/(4+P^0.5))			1					5. Submission No. 5 to City of Ottawa						1		2016-11-10						
Low 60 p/p/Ha		35,000 L/Ha/day	MOE Chart		where P = population in				Dwg. Refere	ence:	27970 - 501	, 501A, 501B		6. Submission for MOE Approval								2017-02-10						
Med 75 p/p/Ha		•											7. Resubmission for MOE Approval								2017-07-14							
High 90 p/p/Ha									I					Fi	ile Reference:					Date:						Sheet No:		
																				2017-07-14								

APPENDIX D

Stormwater Servicing Documents

STORM SEWER CALCULATION SHEET (RATIONAL METHOD)

Local Roads Return Frequency = 2 years Collector Roads Return Frequency = 5 years

Manning 0.013			Frequency																											DE / / C	
LOCATION								ARE	A (Ha)											ow			SEWER DATA DIA. (mm) DIA. (mm) TYPE SLOPE LENGTH CAPACITY VELOCITY TIME OF RATIO								
	ADEA	2 Y	EAR		ADEA	5 Y		1	ADEA	10 \	/EAR	T	ADEA	100`	YEAR	1		Intensity				Peak Flow	DIA. (mm)	DIA. (mm)	TYPE	SLOPE	LENGTH	CAPACITY	VELOCITY	TIME OF	RATIO
Location From Node To Node	AREA (Ha)	R	Indiv.	Accum. 2.78 AC	AREA (Ha)	R	Indiv. 2.78 AC	Accum.	AREA (Ha)	R	Indiv.	Accum. 2.78 AC	AREA (Ha)	R	Indiv.	Accum. 2.78 AC	Conc. (min)	2 Year (mm/h)	5 Year (mm/h)	10 Year (mm/h)	100 Year (mm/h)	O (1/s)	(actual)	(nominal)		(%)	(m)	(1/s)	(m/s)	LOW (min	O/O full
Location From Hode To Hode	()		2.707.0	2.707.0	()		2.707.0	2.707.0	(/		2.70710	2.707.0	(1.14)		2.70710	2.707.0	()	()	(()	(,	Q (215)	(uctuur)	(nonnan)		(70)	(111)	(23)	(1125)	2011 (11111	Q/Q Iun
PRIVATE ROAD 3																															
FOUNDATION FLOW (0.45 L/s/L	nit)																10.00	70.01		100 11		8	050	252	D) (0	0.50		10.0100	0.0500		0.400
203 204 To PRIVATE ROAD 2, Pipe 2	04 205																10.00 11.38	76.81	104.19	122.14	1/8.56	8	250	250	PVC	0.50	71.0	42.0499	0.8566	1.3814	0.190
TO PRIVATE HOAD 2, Pipe 2	04 - 203																11.30					0									
					0.01	0.85	0.02	0.02																					igsquare		
					0.09	0.85 0.85	0.21	0.24																					\vdash	$\overline{}$	
					0.15	0.85	0.35	0.90																							
210 204					0.18	0.85		1.32										76.81	104.19	122.14	178.56	138	450	450	CONC	0.40	3.0	180.3170	1.1338	0.0441	0.765
To PRIVATE ROAD 2, Pipe 2	04 - 205							1.32									10.04													,	
PRIVATE ROAD 2																													$\vdash \vdash \vdash$		
FOUNDATION FLOW (0.45 L/s/u	nit)				0.00	0.00	0.00	0.00														2							\vdash		
(0.10 2.07	1,				0.01	0.85	0.02	0.02																						-	
					0.01	0.85	0.02	0.05																							
007 555					0.03	0.76	0.06	0.11									10.00	70.01	104.15	100 11	170 51	6.1	000	000	D) (0	0.05	04.5	F7.0000	0.0000	0.010=	0.410
207 208 To SERVICING 1, Pipe 208 -	EY MH 12	9	-	1	0.04	0.85	0.09	0.21	 		-	-			<u> </u>	1	10.00 10.65	76.81	104.19	122.14	1/8.56	24 2	300	300	PVC	0.35	31.5	57.2089	0.8093	0.6487	0.413
10 OLITAIOING 1, FIDE 200 -		Ĭ						0.21								1	10.00												\vdash	\rightarrow	
FOUNDATION FLOW (0.45 L/s/u	nit)																					9									
201 202																	10.00	76.81		122.14		9	250	250	PVC	0.45	73.0			1.4971	
202 204		- 000 0	10.4					0.00									11.50 11.38	71.50	96.90	113.55	165.94	9	250	250	PVC	0.45	33.0	39.8920	0.8127	0.6768	0.214
Contribution From PRIVATE I Contribution From PRIVATE I								0.00 1.32									10.04					8							\vdash	\longrightarrow	
204 205	IOAD 3, I	06 210 - 2	1				0.00	1.32										69.36	93.96	110.09	160.86	141	450	450	CONC	0.35	31.5	168.6711	1.0605	0.4950	0.835
205 206							0.00	1.32									12.67	67.88		107.71		138	450	450	CONC		10.0	156.1591	0.9819		0.885
FOUNDATION FLOW (0.45 L/s/u	, ,						0.00	1.32														2									
206 208 To SERVICING 1, Pipe 208 -		0					0.00	1.32									12.84 13.30	67.39	91.26	106.91	156.19	139 18	450	450	CONC	0.35	29.5	168.6711	1.0605	0.4636	0.825
TO SERVICING 1, Fipe 2001	LA. WILL 12	.5						1.52									13.30					10									
SERVICING 1																															
Contribution From PRIVATE I								1.32									13.30					18									
Contribution From PRIVATE I 208 EX. MH		ipe 207 - 2	108				0.00	0.21									10.65	00.00	00.40	104.01	150.11	2	675	675	CONC	0.10	11.0	001 1000	0.0107	0.0050	0.540
208 EX. MH	29						0.00	1.53									13.30	66.09	89.48	104.81	153.11	157	675	675	CONC	0.12	11.0	291.1883	0.8137	0.2253	0.540
PRIVATE ROAD 1																															
FOUNDATION FLOW (0.45 L/s/t	nit)						0.00	0.00														5									
103 104	105						0.00	0.00										76.81	104.19	122.14	178.56	5	250	250	PVC	0.45	79.0	39.8920	0.8127	1.6202	0.113
To SERVICING 3, Pipe 104 -	105							0.00									11.62					5							\vdash	$\overline{}$	
FOUNDATION FLOW (0.45 L/s/u	nit)						0.00	0.00														9									
101 102							0.00	0.00					2000				10.00	76.81		122.14		9	250	250	PVC	0.50	77.0	42.0499	0.8566		0.214
102 104							0.00	0.00				OFE	301U	4			11.50	71.49	96.89	113.55	165.93	9	250	250	PVC	0.45	37.5	39.8920	0.8127	0.7691	0.226
To SERVICING 3, Pipe 104 -	105							0.00			//	Or.		₹			12.27					9							\vdash		
SERVICING 3									1		1/2	PROFE		4	1	1													\vdash		
Contribution From PRIVATE I	ROAD 1, P	ipe 102 - 1	04					0.00			18	101	1000		51		12.27					9									
Contribution From PRIVATE I	ROAD 1, P	ipe 103 - 1	04					0.00		_		61	MERRI	CK	GR		11.62					5							\Box		
104 105	MH 200 (D			1			0.00	0.00	1		3	3. L.	IAITUU	2	20	1	12.27	69.07	93.57	109.63	160.19	14	300	300	PVC	1.95	2.5	135.0353	1.9104	0.0218	0.100
To SERVICING 3, Pipe 105 -	ıvı⊓ ∠02 (E T	.0.)	1	1		1	1	0.00	+ +		1	100	18652	<u> </u>	- 11	1	12.29			1	1	14			1				\vdash		
SERVICING 3											1	V	and the same of th		//														\vdash	 	
					0.05	0.85	0.12	0.12				OVINC	2-01-	17/10																	
					0.12	0.85	0.28	0.40			13			N. Ch.	1														\Box		
107 105	}	-	1	1	0.13 0.15	0.85 0.85	0.31 0.35	0.71 1.06	1			UVANA	205	MILM		1	10.00	76 01	104.10	122.14	170 56	111	450	450	CONC	0.25	3.0	142.5531	0.8063	0.0559	0.777
107 105				1	0.15	0.85	0.35	1.06	 			,,AC	E OF		 	1	10.00	10.01	104.19	122.14	178.30	111	400	400	CONC	0.25	ა.0	142.0031	0.0963	<u> </u>	0.777
Contribution From SERVICIN	G 3, Pipe 1	04 - 105						0.00	 				. 2	1261		1	12.29					14							\vdash		
105 MH 202							0.00	1.06				101	5 th 21	,,,,,			12.29	69.01	93.48	109.53	160.03	113	450	450	PVC	0.25	10.5	142.5531	0.8963	0.1952	0.792
D C 11)													DD 0 c						
Definitions: Q = 2.78 AIR, where								Notes:														Designed:	GC	GG	PROJECT	:		BOBALINK	DHIVE - BL	OCK 343	

Q = Peak Flow in Litres per second (L/s)

A = Areas in hectares (ha)

I = Rainfall Intensity (mm/h)

R = Runoff Coefficient

Ottawa Rainfall-Intensity Curve
 Min. Velocity = 0.80 m/s

Checked: SLM LOCATION: City of Ottawa Dwg. Reference: Dwg 15 File Ref: 21-1261 Date: Sheet No. 13 Jan 2022 SHEET 1 OF 1

Stormwater - Proposed Development City of Ottawa Sewer Design Guidelines, 2012

Drainage Area

Area ID DCB 1 Area 0.05 ha

C 0.85 Rational Method runoff coefficient

t_c 10.0 min

Cascading Flow 52.2 L/s <-- From CB 3

 5-year
 100-year

 i
 104.2
 178.6 mm/hr

 Q
 12.3
 21.1 L/s

 Q w/ Cascading
 64.5
 73.3 L/s

Grate Capacity

Ponding Depth	0.15 m	
Single CB Capacity	120 L/s	OK
Twin CB Capacity	169 L/s	OK

Depth	OPSD	400.01
Ĥ	SINGLE *	TWIN *
(m)	(L/s)	(L/s)
0	0	0
0.01	1	1
0.02	2	3
0.03	4	5
0.04	7	9
0.05	11	16
0.06	16	27
0.07	20	36
0.08	36	54
0.09	48	71
0.1	61	91
0.11	73	109
0.12	86	127
0.13	99	140
0.14	109	155
0.15	120	169
0.16	129	183
0.17	136	196
0.18	145	211
0.19	150	228
0.2	156	243
0.21	161	259
0.22	167	275
0.23	172	291
0.24	176	307
0.25	181	322
0.26	186	337
0.27	189	354
0.28	194	371
0.29	199	387
0.3	202	403

CB Lead Capacity

 Upstream Flow
 0 L/s

 Diameter
 300 mm

 Slope
 1.00 %

 A_{hydraulic}
 0.071 m²

 R
 0.075 m

CB Lead Capacity 96.7 L/s OK

Cascading Flow

Cascading Flow NO CASCADING FLOW Flow Directed

Stormwater - Proposed Development City of Ottawa Sewer Design Guidelines, 2012

Drainage Area

Area ID DCB 2 Area 0.25 ha

C 0.85 Rational Method runoff coefficient

t_c 10.0 min

Cascading Flow 0.0 L/s

 5-year
 100-year

 i
 104.2
 178.6 mm/hr

 Q
 61.5
 105.4 L/s

 Q w/ Cascading
 61.5
 105.4 L/s

Grate Capacity

Ponding Depth0.11 mSingle CB Capacity73 L/sCHECKTwin CB Capacity109 L/sOK

Depth	OPSD	400.01
Н	SINGLE *	TWIN *
(m)	(L/s)	(L/s)
0	0	0
0.01	1	1
0.02	2	3
0.03	4	5
0.04	7	9
0.05	11	16
0.06	16	27
0.07	20	36
0.08	36	54
0.09	48	71
0.1	61	91
0.11	73	109
0.12	86	127
0.13	99	140
0.14	109	155
0.15	120	169
0.16	129	183
0.17	136	196
0.18	145	211
0.19	150	228
0.2	156	243
0.21	161	259
0.22	167	275
0.23	172	291
0.24	176	307
0.25	181	322
0.26	186	337
0.27	189	354
0.28	194	371
0.29	199	387
0.3	202	403

CB Lead Capacity

 Upstream Flow
 0 L/s

 Diameter
 375 mm

 Slope
 0.50 %

 A_{hydraulic}
 0.110 m²

 R
 0.094 m

CB Lead Capacity 124.0 L/s OK

Cascading Flow

Stormwater - Proposed Development City of Ottawa Sewer Design Guidelines, 2012

DSEL

Drainage Area

Area ID CB 3 Area 0.15 ha

C 0.85 Rational Method runoff coefficient

t_c 10.0 min

Cascading Flow 0.0 L/s

 j
 5-year
 100-year

 1
 104.2
 178.6 mm/hr

 Q
 36.9
 63.2 L/s

 Q w/ Cascading
 36.9
 63.2 L/s

Grate Capacity

Ponding Depth0.05 mSingle CB Capacity11 L/sCHECKTwin CB Capacity16 L/sCHECK

Depth	OPSD	400.01
Ĥ	SINGLE *	TWIN *
(m)	(L/s)	(L/s)
0	0	0
0.01	1	1
0.02	2	3
0.03	4	5
0.04	7	9
0.05	11	16
0.06	16	27
0.07	20	36
0.08	36	54
0.09	48	71
0.1	61	91
0.11	73	109
0.12	86	127
0.13	99	140
0.14	109	155
0.15	120	169
0.16	129	183
0.17	136	196
0.18	145	211
0.19	150	228
0.2	156	243
0.21	161	259
0.22	167	275
0.23	172	291
0.24	176	307
0.25	181	322
0.26	186	337
0.27	189	354
0.28	194	371
0.29	199	387
0.3	202	403
0.0		100

CB Lead Capacity

 Upstream Flow
 0 L/s

 Diameter
 200 mm

 Slope
 1.00 %

 A_{hydraulic}
 0.031 m²

 R
 0.050 m

CB Lead Capacity 32.8 L/s CHECK

Cascading Flow

Cascading Flow 52.2 L/s Flow Directed DCB 1

Stormwater - Proposed Development City of Ottawa Sewer Design Guidelines, 2012

Drainage Area

Area ID DCB 5 Area 0.13 ha

C 0.85 Rational Method runoff coefficient

t_c 10.0 min

Cascading Flow 26.9 L/s <- From CB 8

 j
 5-year
 100-year

 1
 104.2
 178.6 mm/hr

 Q
 32.0
 54.8 L/s

 Q w/ Cascading
 58.9
 81.8 L/s

Grate Capacity

Ponding Depth	0.15 m	
Single CB Capacity	120 L/s	OK
Twin CB Capacity	169 L/s	OK

Depth	OPSD 400.01			
Н	SINGLE * TWIN *			
(m)	(L/s)	(L/s)		
O O	0	0		
0.01	1	1		
0.02	2	3		
0.03	4	5		
0.04	7	9		
0.05	11	16		
0.06	16	27		
0.07	20	36		
0.08	c 36	54		
0.09	48	71		
0.1	61	91		
0.11	73	109		
0.12	86	127		
0.13	99	140		
0.14	109	155		
0.15	120	169		
0.16	129	183		
0.17	136	196		
0.18	145	211		
0.19	150	228		
0.19	156	243		
0.21	161	259		
B	167	235 275		
0.22	172	275 291		
0.23	172 176	291 307		
0.24	1/6	307 322		
0.25	-			
0.26 0.27	186	337		
0.27 0.28	189	354		
0.28	194	371		
0.29	199	387		
0.3	202	403		

CB Lead Capacity

 Upstream Flow
 0 L/s

 Diameter
 375 mm

 Slope
 1.00 %

 A_{hydraulic}
 0.110 m²

 R
 0.094 m

CB Lead Capacity 175.3 L/s OK

Cascading Flow

Tamarack Homes Block 343

Grate Capacity / CB Lead Capacity

Stormwater - Proposed Development City of Ottawa Sewer Design Guidelines, 2012

Drainage Area

Area ID DCB 6 Area 0.19 ha

С 0.85 Rational Method runoff coefficient

10.0 min t_{c}

Cascading Flow 0.0 L/s

5-year 100-year i 104.2 178.6 mm/hr Q 80.1 L/s 46.7 Q w/ Cascading 46.7 80.1 L/s

Grate Capacity

Ponding Depth	0.25 m	
Single CB Capacity	181 L/s	OK
Twin CB Capacity	322 L/s	OK

H (m) SINGLE * (L/s) TWIN * (L/s) 0 0 0 0.01 1 1 0.02 2 3 0.03 4 5 0.04 7 9 0.05 11 16 0.06 16 27 0.07 20 36 0.08 36 54 0.09 48 71 0.1 61 91 0.11 73 109 0.12 86 127 0.13 99 140 0.14 109 155 0.15 120 169	Depth	OPSD 400.01			
0 0 0 0.01 1 1 0.02 2 3 0.03 4 5 0.04 7 9 0.05 11 16 0.06 16 27 0.07 20 36 0.08 36 54 0.09 48 71 0.1 61 91 0.11 73 109 0.12 86 127 0.13 99 140 0.14 109 155 0.15 120 169	-	SINGLE * TWIN *			
0 0 0 0.01 1 1 0.02 2 3 0.03 4 5 0.04 7 9 0.05 11 16 0.06 16 27 0.07 20 36 0.08 36 54 0.09 48 71 0.1 61 91 0.11 73 109 0.12 86 127 0.13 99 140 0.14 109 155 0.15 120 169	(m)	(L/s)	(L/s)		
0.01 1 1 0.02 2 3 0.03 4 5 0.04 7 9 0.05 11 16 0.06 16 27 0.07 20 36 0.08 36 54 0.09 48 71 0.1 61 91 0.11 73 109 0.12 86 127 0.13 99 140 0.14 109 155 0.15 120 169					
0.02 2 3 0.03 4 5 0.04 7 9 0.05 11 16 0.06 16 27 0.07 20 36 0.08 36 54 0.09 48 71 0.1 61 91 0.11 73 109 0.12 86 127 0.13 99 140 0.14 109 155 0.15 120 169	0.01		1		
0.03 4 5 0.04 7 9 0.05 11 16 0.06 16 27 0.07 20 36 0.08 36 54 0.09 48 71 0.1 61 91 0.11 73 109 0.12 86 127 0.13 99 140 0.14 109 155 0.15 120 169	0.02		3		
0.04 7 9 0.05 11 16 0.06 16 27 0.07 20 36 0.08 36 54 0.09 48 71 0.1 61 91 0.11 73 109 0.12 86 127 0.13 99 140 0.14 109 155 0.15 120 169					
0.05 11 16 0.06 16 27 0.07 20 36 0.08 36 54 0.09 48 71 0.1 61 91 0.11 73 109 0.12 86 127 0.13 99 140 0.14 109 155 0.15 120 169		7			
0.06 16 27 0.07 20 36 0.08 36 54 0.09 48 71 0.1 61 91 0.11 73 109 0.12 86 127 0.13 99 140 0.14 109 155 0.15 120 169	0.05		16		
0.08 36 54 0.09 48 71 0.1 61 91 0.11 73 109 0.12 86 127 0.13 99 140 0.14 109 155 0.15 120 169	0.06	16	27		
0.08 36 54 0.09 48 71 0.1 61 91 0.11 73 109 0.12 86 127 0.13 99 140 0.14 109 155 0.15 120 169	0.07	20	36		
0.09 48 71 0.1 61 91 0.11 73 109 0.12 86 127 0.13 99 140 0.14 109 155 0.15 120 169					
0.1 61 91 0.11 73 109 0.12 86 127 0.13 99 140 0.14 109 155 0.15 120 169		·····			
0.11 73 109 0.12 86 127 0.13 99 140 0.14 109 155 0.15 120 169					
0.12 86 127 0.13 99 140 0.14 109 155 0.15 120 169					
0.13 99 140 0.14 109 155 0.15 120 169	·····				
0.14 109 155 0.15 120 169					
0.15 120 169	0.14				
	[
I 0.16 129 183	0.16	129	183		
0.17 136 196					
0.18 145 211		,			
0.19 150 228	·····		228		
0.2 156 243			·		
0.21 161 259					
0.22 167 275		,			
0.23 172 291					
0.24 176 307					
0.25 181 322	k	```````````			
0.26 186 337	0.26	;			
0.27 189 354	0.27		354		
0.28 194 371					
0.29 199 387		``````````````````````````````````````	<u> </u>		
0.3 202 403		,	,		

CB Lead Capacity

Upstream Flow 0 L/s 300 mm Diameter Slope 1.00 % $0.071 \, \text{m}^2$ $\mathbf{A}_{\text{hydraulic}}$ 0.075 m

CB Lead Capacity 96.7 L/s OK

Cascading Flow

Cascading Flow NO CASCADING FLOW **Cascading Flow Directed To**

Stormwater - Proposed Development City of Ottawa Sewer Design Guidelines, 2012

Drainage Area

Area ID DCB 7 Area 0.15 ha

C 0.85 Rational Method runoff coefficient

t_c 10.0 min

Cascading Flow 0.0 L/s

 j
 5-year
 100-year

 1
 104.2
 178.6 mm/hr

 Q
 36.9
 63.2 L/s

 Q w/ Cascading
 36.9
 63.2 L/s

Grate Capacity

Ponding Depth0.09 mSingle CB Capacity48 L/sCHECKTwin CB Capacity71 L/sOK

Depth	OPSD 400.01			
Ĥ	SINGLE * TWIN *			
(m)	(L/s)	(L/s)		
0	0	0		
0.01	1	1		
0.02	2	3		
0.03	4	5		
0.04	7	9		
0.05	11	16		
0.06	16	27		
0.07	20	36		
0.08	36	54		
0.09	48	71		
0.1	61	91		
0.11	73	109		
0.12	86	127		
0.13	99	140		
0.14	109	155		
0.15	120	169		
0.16	129	183		
0.17	136	196		
0.18	145	211		
0.19	150	228		
0.2	156	243		
0.21	161	259		
0.22	167	275		
0.23	172	291		
0.24	176	307		
0.25	181	322		
0.26	186	337		
0.27	189	354		
0.28	194	371		
0.29	199	387		
0.3	202	403		

CB Lead Capacity

 Upstream Flow
 11 L/s
 <- From CB 8</th>

 Diameter
 300 mm

 Slope
 1.00 %

 A_{hydraulic}
 0.071 m²

 R
 0.075 m

 CB Lead Capacity
 96.7 L/s
 OK

Cascading Flow

Stormwater - Proposed Development City of Ottawa Sewer Design Guidelines, 2012

Drainage Area

Area ID CB 8 Area 0.09 ha

C 0.85 Rational Method runoff coefficient

t_c 10.0 min

Cascading Flow 0.0 L/s <- From CB 7

 5-year
 100-year

 i
 104.2
 178.6 mm/hr

 Q
 22.1
 37.9 L/s

 Q w/ Cascading
 22.1
 37.9 L/s

Grate Capacity

Ponding Depth0.05 mSingle CB Capacity11 L/sCHECKTwin CB Capacity16 L/sCHECK

Depth	OPSD 400.01			
Н	SINGLE *	TWIN *		
(m)	(L/s)	(L/s)		
0	0	0		
0.01	1	1		
0.02	2	3		
0.03	4	5		
0.04	7	9		
0.05	11	16		
0.06	16	27		
0.07	20	36		
0.08	36	54		
0.09	48	71		
0.1	61	91		
0.11	73	109		
0.12	86	127		
0.13	99	140		
0.14	109	155		
0.15	120	169		
0.16	129	183		
0.17	136	196		
0.18	145	211		
0.19	150	228		
0.2	156	243		
0.21	161	259		
0.22	167	275		
0.23	172	291		
0.24	176	307		
0.25	181	322		
0.26	186	337		
0.27	189	354		
0.28	194	371		
0.29	199	387		
0.3	202	403		

CB Lead Capacity

 Upstream Flow
 0 L/s

 Diameter
 200 mm

 Slope
 1.00 %

 A_{hydraulic}
 0.031 m²

 R
 0.050 m

CB Lead Capacity 32.8 L/s CHECK

Cascading Flow

Cascading Flow 26.9 Cascading Flow Directed To DCB 5

Stormwater - Proposed Development City of Ottawa Sewer Design Guidelines, 2012

Drainage Area

Area ID CB 10 0.04 ha Area

С 0.85 Rational Method runoff coefficient

10.0 min t_{c} 0.0 L/s

Cascading Flow

5-year 100-year i 104.2 178.6 mm/hr Q 16.9 L/s 9.8 Q w/ Cascading 9.8 16.9 L/s

Grate Capacity

Ponding Depth	0.07 m	
Single CB Capacity	20 L/s	OK
Twin CB Capacity	36 L/s	OK

Depth	OPSD 400.01			
Н	SINGLE * TWIN *			
(m)	(L/s)	(L/s)		
O O	0	0		
0.01	1	1		
0.02	2	3		
0.03	4	5		
0.04	7	9		
0.05	11	16		
0.06	16	27		
0.07	20	36		
0.08	c 36	54		
0.09	48	71		
0.1	61	91		
0.11	73	109		
0.12	86	127		
0.13	99	140		
0.14	109	155		
0.15	120	169		
0.16	129	183		
0.17	136	196		
0.18	145	211		
0.19	150	228		
0.19	156	243		
0.21	161	259		
B	167	235 275		
0.22	172	275 291		
0.23	172 176	291 307		
0.24	1/6	307 322		
0.25	-			
0.26 0.27	186	337		
0.27 0.28	189	354		
0.28	194	371		
0.29	199	387		
0.3	202	403		

CB Lead Capacity

Upstream Flow 0 L/s 200 mm Diameter Slope 1.00 % 0.031 m² $\mathbf{A}_{\text{hydraulic}}$ 0.050 m

CB Lead Capacity 32.8 L/s OK

Cascading Flow

Cascading Flow NO CASCADING FLOW **Cascading Flow Directed To**

Stormwater - Proposed Development City of Ottawa Sewer Design Guidelines, 2012

Drainage Area

Area ID CB 11 Area 0.01 ha

С 0.85 Rational Method runoff coefficient

10.0 min t_{c}

Cascading Flow 0.0 L/s

5-year 100-year i 104.2 178.6 mm/hr Q 4.2 L/s 2.5 Q w/ Cascading 2.5 4.2 L/s

Grate Capacity

Ponding Depth	0.07 m	
Single CB Capacity	20 L/s	OK
Twin CB Capacity	36 L/s	OK

Depth	OPSD 400.01			
Ĥ	SINGLE *	TWIN *		
(m)	(L/s)	(L/s)		
0	0	0		
0.01	1	1		
0.02	2	3		
0.03	4	5		
0.04	7	9		
0.05	11	16		
0.06	16	27		
0.07	20	36		
0.08	-5 36	54		
0.09	48	71		
0.1	61	91		
0.11	73	109		
0.12	86	127		
0.13	99	140		
0.14	109	155		
0.15	120	169		
0.16	129	183		
0.17	136	196		
0.18	145	211		
0.19	150	228		
0.2	156	243		
0.21	161	259		
0.22	167	275		
0.23	172	291		
0.24	176	307		
0.25	181	322		
0.26	186	337		
0.27	189	354		
0.28	194	371		
0.29	199	387		
0.3	202	403		

CB Lead Capacity

Upstream Flow 16.9 L/s <-- From CB 10 200 mm **Diameter** Slope 1.00 % 0.031 m² $\mathbf{A}_{\text{hydraulic}}$ 0.050 m **CB Lead Capacity** 32.8 L/s OK

Cascading Flow

Cascading Flow NO CASCADING FLOW **Cascading Flow Directed To**

Stormwater - Proposed Development City of Ottawa Sewer Design Guidelines, 2012

Drainage Area

Area ID CB 13 Area 0.01 ha

C 0.85 Rational Method runoff coefficient

 $\begin{array}{cc} & & \text{10.0 min} \\ \text{Cascading Flow} & & \text{0.0 L/s} \\ \end{array}$

 j
 5-year
 100-year

 1
 104.2
 178.6 mm/hr

 Q
 2.5
 4.2 L/s

 Q w/ Cascading
 2.5
 4.2 L/s

Grate Capacity

Ponding Depth	0.04 m	
Single CB Capacity	7 L/s	OK
Twin CB Capacity	9 L/s	Ok

Depth	OPSD 400.01			
НĖ	SINGLE * TWIN *			
(m)	(L/s)	(L/s)		
0	0	0		
0.01	1	1		
0.02	2	3		
0.03	4	5		
0.04	7	9		
0.05	11	16		
0.06	16	27		
0.07	20	36		
0.08	36	54		
0.09	48	71		
0.1	61	91		
0.11	73	109		
0.12	86	127		
0.13	99	140		
0.14	109	155		
0.15	120	169		
0.16	129	183		
0.17	136	196		
0.18	145	211		
0.19	150	228		
0.2	156	243		
0.21	161	259		
0.22	167	275		
0.23	172	291		
0.24	176	307		
0.25	181	322		
0.26	186	337		
0.27	189	354		
0.28	194	371		
0.29	199	387		
0.3	202	403		

^{*} From MTO Drainage Management Manual (1997) Design Chart 4.19

CB Lead Capacity

 Upstream Flow
 6.6 L/s
 <-- 5-Yr Flow from CB 12</td>

 Diameter
 200 mm

 Slope
 1.00 %

 A_{hydraulic}
 0.031 m²

 R
 0.050 m

CB Lead Capacity 32.8 L/s OK

Cascading Flow

Cascading Flow NO CASCADING FLOW Flow Directed

Block 343 Res 2A

Stormwater - Proposed Development City of Ottawa Sewer Design Guidelines, 2012

Target Flow Rate

Q 133.00 L/s <-- Per CRT Phase 1 Design Brief prepared by IBI dated July 2017

Estimate Flow from Foundation Drainage

Groundwater flow rate 0.45 L/s/home (per Ottawa Sewer Design Guidelines 5.4.7)

Unit Count 46

20.7 L/s

Estimated Post Development Peak Flow from Unattenuated Areas

Area EX 149-128 0.05

C 0.68

Area CB 12 0.03 <-- Assume drainage to CB 12 uncontrolled, CB is not at a low point

0.76

Total Area 0.08 ha

0.71 Rational Method runoff coefficient

	5-year				100-year					
t _c	i (mm/hr)	Q _{actual} (L/s)	Q _{release} (L/s)	Q _{stored} (L/s)	V _{stored} (m ³)	i (mm/hr)	Q _{actual} * (L/s)	Q _{release} (L/s)	Q _{stored} (L/s)	V _{stored} (m ³)
(min)	(111111/1111 <i>)</i>	(L/S)	(L/S)	(L/S)	(111)	(1111111/1111)	(L/S)	(L/S)	(L/S)	(111)
10.0	104.2	16.4	16.4	0.0	0.0	178.6	35.2	35.2	0.0	0.0

Note:

C value for the 100-year storm is increased by 25%, to a maximum of 1.0 per Ottawa Sewer Design Guidelines (5.4.5.2.1)

Estimated Post Development Peak Flow from Attenuated Areas

Area ID 210-204 **Available Sub-surface Storage**

Total Subsurface Storage (m³)

169.8 <-- Provided storage excludes storage volume below system invert

Stage Attenuated Areas Storage Summary

		Sı	ırface Stora	ge	Surfa	ce and Sub	surface Sto	rage
	Stage	Ponding	h _o	delta d	٧*	V _{acc} **	Q _{release} †	V _{drawdown}
	(m)	(m ²)	(m)	(m)	(m ³)	(m ³)	(L/s)	(hr)
Orifice INV	105.42		0.00			0.0	0.0	0.00
Storage Chamber INV	106.15		0.73	0.73		0.0	38.3	0.00
Storage Chamber SL	106.72		1.30	0.57	84.9	84.9	51.0	0.46
StorageChamber OBV	107.29		1.88	0.57	84.9	169.8	61.1	0.77

^{*} V=Incremental storage volume

Orifice Location

Total Area

MH 210 0.56 ha

<-- Sum of Drainage to DCB 6, DCB 5, DCB 7, CB 8, CB 9

0.85 Rational Method runoff coefficient Note: Rational Method Coefficient "C" increased by 25% for 100-year calculations

	5-year					100-year				
t _c	i	Q _{actual} ‡	Q _{release}	Q _{stored}	V_{stored}	i	Q _{actual} ‡	Q _{release}	Q _{stored}	V_{stored}
(min)	(mm/hr)	(L/s)	(L/s)	(L/s)	(m ³)	(mm/hr)	(L/s)	(L/s)	(L/s)	(m ³)
10	104.2	137.8	46.8	90.9	54.6	178.6	277.8	51.0	226.8	136.1
15	83.6	110.5	46.8	63.6	57.3	142.9	222.3	51.0	171.3	154.2
20	70.3	92.9	46.8	46.1	55.3	120.0	186.6	51.0	135.6	162.7
25	60.9	80.5	46.8	33.7	50.5	103.8	161.5	51.0	110.6	165.9
30	53.9	71.3	46.8	24.5	44.0	91.9	142.9	51.0	91.9	165.5
35	48.5	64.2	46.8	17.3	36.4	82.6	128.5	51.0	77.5	162.7
40	44.2	58.4	46.8	11.6	27.8	75.1	116.9	51.0	65.9	158.2
45	40.6	53.7	46.8	6.9	18.6	69.1	107.4	51.0	56.4	152.4
50	37.7	49.8	46.8	3.0	8.9	64.0	99.5	51.0	48.5	145.5
55	35.1	46.4	46.4	0.0	0.0	59.6	92.7	51.0	41.8	137.9
60	32.9	43.6	43.6	0.0	0.0	55.9	86.9	51.0	36.0	129.5
65	31.0	41.0	41.0	0.0	0.0	52.6	81.9	51.0	30.9	120.6
70	29.4	38.8	38.8	0.0	0.0	49.8	77.5	51.0	26.5	111.2
75	27.9	36.9	36.9	0.0	0.0	47.3	73.5	51.0	22.5	101.4
80	26.6	35.1	35.1	0.0	0.0	45.0	70.0	51.0	19.0	91.3
85	25.4	33.5	33.5	0.0	0.0	43.0	66.8	51.0	15.8	80.8
90	24.3	32.1	32.1	0.0	0.0	41.1	64.0	51.0	13.0	70.1
95	23.3	30.8	30.8	0.0	0.0	39.4	61.3	51.0	10.4	59.1
100	22.4	29.6	29.6	0.0	0.0	37.9	59.0	51.0	8.0	47.9
105	21.6	28.5	28.5	0.0	0.0	36.5	56.8	51.0	5.8	36.6
110	20.8	27.5	27.5	0.0	0.0	35.2	54.8	51.0	3.8	25.0

5-year Qattenuated 5-year Max. Storage Required Est. 5-year Storage Elevation

46.8 L/s 57.3 m³ 106.5 m

100-year Qattenuated 100-year Max. Storage Required Est. 100-year Storage Elevation

61.1 L/s 165.9 m³ 107.3 m

Notes:

- Required storage volumes calculated using Q Release at the midpoint of the Storage tank
- Flow from the storage tank assumes maximum Q Release at the tank obvert

^{**}V_{acc}=Total surface and sub-surface

 $[\]dagger$ Q_{release} = Release rate calculated from orifice equation

Area ID 207-208 **Available Sub-surface Storage**

Total Subsurface Storage (m³)

16.8 <-- Provided storage excludes storage volume below system invert

Stage Attenuated Areas Storage Summary

		Sı	Surface Storage Surface and Subsurface S				surface Sto	rage
	Stage	Ponding	h _o	delta d	٧*	V _{acc} **	Q _{release} †	$V_{drawdown}$
	(m)	(m²)	(m)	(m)	(m ³)	(m ³)	(L/s)	(hr)
Orifice INV	106.05		0.00			0.0	0.0	0.00
Storage Chamber INV	106.70		0.65	0.65		0.0	9.6	0.00
Storage Chamber SL	107.08		1.03	0.38	8.4	8.4	12.1	0.19
Storage Chamber OBV	107.46		1.41	0.38	8.4	16.8	14.2	0.33
								·

^{*} V=Incremental storage volume

Orifice Location Total Area MH 207

Dia

75

<-- Sum of Drainage to CB 10, CB 11, CB 13

С

0.06 ha

0.85 Rational Method runoff coefficient Note: Rational Method Coefficient "C" increased by 25% for 100-year calculations

	5-year					100-year				
t _c	i	Q _{actual} ‡	Q _{release}	Q _{stored}	V_{stored}	i	Q _{actual} ‡	Q _{release}	Q _{stored}	V_{stored}
(min)	(mm/hr)	(L/s)	(L/s)	(L/s)	(m ³)	(mm/hr)	(L/s)	(L/s)	(L/s)	(m³)
10	104.2	14.8	14.8	0.0	0.0	178.6	29.8	12.1	17.7	10.6
15	83.6	11.8	11.8	0.0	0.0	142.9	23.8	12.1	11.7	10.5
20	70.3	10.0	10.0	0.0	0.0	120.0	20.0	12.1	7.9	9.5
25	60.9	8.6	8.6	0.0	0.0	103.8	17.3	12.1	5.2	7.8
30	53.9	7.6	7.6	0.0	0.0	91.9	15.3	12.1	3.2	5.8
35	48.5	6.9	6.9	0.0	0.0	82.6	13.8	12.1	1.7	3.5
40	44.2	6.3	6.3	0.0	0.0	75.1	12.5	12.1	0.4	1.0
45	40.6	5.8	5.8	0.0	0.0	69.1	11.5	11.5	0.0	0.0
50	37.7	5.3	5.3	0.0	0.0	64.0	10.7	10.7	0.0	0.0
55	35.1	5.0	5.0	0.0	0.0	59.6	9.9	9.9	0.0	0.0
60	32.9	4.7	4.7	0.0	0.0	55.9	9.3	9.3	0.0	0.0
65	31.0	4.4	4.4	0.0	0.0	52.6	8.8	8.8	0.0	0.0
70	29.4	4.2	4.2	0.0	0.0	49.8	8.3	8.3	0.0	0.0
75	27.9	4.0	4.0	0.0	0.0	47.3	7.9	7.9	0.0	0.0
80	26.6	3.8	3.8	0.0	0.0	45.0	7.5	7.5	0.0	0.0
85	25.4	3.6	3.6	0.0	0.0	43.0	7.2	7.2	0.0	0.0
90	24.3	3.4	3.4	0.0	0.0	41.1	6.9	6.9	0.0	0.0
95	23.3	3.3	3.3	0.0	0.0	39.4	6.6	6.6	0.0	0.0
100	22.4	3.2	3.2	0.0	0.0	37.9	6.3	6.3	0.0	0.0
105	21.6	3.1	3.1	0.0	0.0	36.5	6.1	6.1	0.0	0.0
110	20.8	2.9	2.9	0.0	0.0	35.2	5.9	5.9	0.0	0.0

5-year Qattenuated 5-year Max. Storage Required Est. 5-year Storage Elevation

14.8 L/s 0.0 m³ 106.1 m

100-year Q_{attenuated} 100-year Max. Storage Required Est. 100-year Storage Elevation

14.2 L/s 10.6 m³ 107.2 m

Notes:

- Required storage volumes calculated using Q Release at the midpoint of the Storage tank
- Flow from the storage tank assumes maximum Q Release at the tank obvert

Summary of Release Rates and Storage Volumes

Control Area	5-year Release Rate (L/s)	5-year Required Storage (m³)	100-Year Release Rate (L/s)	100-Year Required Storage (m³)	100-Year Available Storage (m³)
Foundation Drainage	20.7	0.0	20.7	0.0	0.0
Unattenuated Areas	16.4	0.0	35.2	0.0	0.0
Attenutated Areas	61.6	57.3	75.3	176.4	186.6
Total	98.7	57.3	131.2	176.4	186.6

 $[\]ensuremath{^{**}}\ensuremath{V_{\text{acc}}}\xspace = Total \ surface \ and \ sub-surface$

 $[\]dagger$ Q_{release} = Release rate calculated from orifice equation

Block 343 Res 2B

Stormwater - Proposed Development City of Ottawa Sewer Design Guidelines, 2012

Target Flow Rate

Q 112.87 L/s CRT Phase 1 Blk 324 Design Brief prepared by IBI dated July 2021

Estimated Flow from Foundation Drainage

Groundwater flow rate 0.45 L/s/home (per Ottawa Sewer Design Guidelines 5.4.7)

Unit Count 30 **Q** 13.5 L/s

Estimated Post Development Peak Flow from Unattenuated Areas

Area EXT 0.01 C 0.2 Area EX138-148 0.02 C 0.52

Total Area 0.03 ha

C 0.41 Rational Method runoff coefficient

_		5-year					100-year				
	t _c (min)	i (mm/hr)	Q _{actual} (L/s)	Q _{release} (L/s)	Q _{stored}	V _{stored} (m ³)	i (mm/hr)	Q _{actual} * (L/s)	Q _{release} (L/s)	Q _{stored} (L/s)	V _{stored} (m ³)
L	()	((=/5)	(=/5)	(=/0)	()	(,	(=/5)	(=/0)	(=/0)	(/
ĺ	10.0	104.2	3.6	3.6	0.0	0.0	178.6	7.7	7.7	0.0	0.0

Note:

C value for the 100-year storm is increased by 25%, to a maximum of 1.0 per Ottawa Sewer Design Guidelines (5.4.5.2.1)

Estimated Post Development Peak Flow from Attenuated Areas

107-105 Area ID **Available Sub-surface Storage**

> Total Subsurface Storage (m³) 94.6 <-- Provided storage excludes storage volume below system invert

Stage Attenuated Areas Storage Summary

_		Sı	urface Stora	ge	Surfa	ice and Sub	surface Sto	rage
	Stage	Ponding	h _o	delta d	٧*	V _{acc} **	Q _{release} †	V _{drawdown}
	(m)	(m ²)	(m)	(m)	(m ³)	(m ³)	(L/s)	(hr)
Orifice INV	104.72		0.00			0.0	0.0	0.00
Storage Chamber INV			0.83	0.83		0.0	54.0	0.00
Storage Chamber SL	106.31		1.59	0.76	47.3	47.3	74.7	0.18
Storage Chamber OBV	107.08		2.36	0.76	47.3	94.6	90.9	0.29

^{*} V=Incremental storage volume

Orifice Location MH 107

Total Area 0.45 ha

167 <-- Sum of Drainage to DCB 1, DCB 2, CB 3, CB 4

С

0.85 Rational Method runoff coefficient Note: Rational Method Coefficient "C" increased by 25% for 100-year calculations

ľ	5-year					100-year				
t _c	i	Q _{actual} ‡	Q _{release}	Q _{stored}	V_{stored}	i	Q _{actual} ‡	Q _{release}	Q _{stored}	V_{stored}
(min)	(mm/hr)	(L/s)	(L/s)	(L/s)	(m ³)	(mm/hr)	(L/s)	(L/s)	(L/s)	(m ³)
10	104.2	110.7	65.8	44.9	26.9	178.6	223.2	74.7	148.5	89.1
15	83.6	88.8	65.8	23.0	20.7	142.9	178.6	74.7	103.9	93.5
20	70.3	74.6	65.8	8.8	10.6	120.0	149.9	74.7	75.2	90.2
25	60.9	64.7	64.7	0.0	0.0	103.8	129.8	74.7	55.1	82.6
30	53.9	57.3	57.3	0.0	0.0	91.9	114.8	74.7	40.1	72.2
35	48.5	51.5	51.5	0.0	0.0	82.6	103.2	74.7	28.5	59.8
40	44.2	46.9	46.9	0.0	0.0	75.1	93.9	74.7	19.2	46.1
45	40.6	43.2	43.2	0.0	0.0	69.1	86.3	74.7	11.6	31.3
50	37.7	40.0	40.0	0.0	0.0	64.0	79.9	74.7	5.2	15.6
55	35.1	37.3	37.3	0.0	0.0	59.6	74.5	74.5	0.0	0.0
60	32.9	35.0	35.0	0.0	0.0	55.9	69.9	69.9	0.0	0.0
65	31.0	33.0	33.0	0.0	0.0	52.6	65.8	65.8	0.0	0.0
70	29.4	31.2	31.2	0.0	0.0	49.8	62.2	62.2	0.0	0.0
75	27.9	29.6	29.6	0.0	0.0	47.3	59.1	59.1	0.0	0.0
80	26.6	28.2	28.2	0.0	0.0	45.0	56.2	56.2	0.0	0.0
85	25.4	27.0	27.0	0.0	0.0	43.0	53.7	53.7	0.0	0.0
90	24.3	25.8	25.8	0.0	0.0	41.1	51.4	51.4	0.0	0.0
95	23.3	24.8	24.8	0.0	0.0	39.4	49.3	49.3	0.0	0.0
100	22.4	23.8	23.8	0.0	0.0	37.9	47.4	47.4	0.0	0.0
105	21.6	22.9	22.9	0.0	0.0	36.5	45.6	45.6	0.0	0.0
110	20.8	22.1	22.1	0.0	0.0	35.2	44.0	44.0	0.0	0.0

5-year Qattenuated

65.8 L/s 26.9 m³

106.0 m

100-year Qattenuated

90.9 L/s

5-year Max. Storage Required Est. 5-year Storage Elevation 100-year Max. Storage Required Est. 100-year Storage Elevation

93.5 m³ 107.1 m

- Required storage volumes calculated using Q Release at the midpoint of the Storage tank
- Flow from the storage tank assumes maximum Q Release at the tank obvert

Summary of Release Rates and Storage Volumes

Control Area	5-year Release Rate (L/s)	5-year Required Storage (m³)	100-Year Release Rate (L/s)	100-Year Required Storage (m³)	100-Year Available Storage (m³)
Foundation Drainage	13.5	0.0	13.5	0.0	0.0
Unattenuated Areas	3.6	0.0	7.7	0.0	0.0
Attenutated Areas	65.8	26.9	90.9	93.5	94.6
Total	82.9	26.9	112.0	93.5	94.6

 $[\]ensuremath{^{**}}\ensuremath{V_{acc}}\xspace$ =Total surface and sub-surface

 $[\]dagger$ Q_{release} = Release rate calculated from orifice equation

PROJEC	CT INFORMATION
ENGINEERED PRODUCT MANAGER	
ADS SALES REP	
PROJECT NO.	

SiteASSIST FOR STORMTECH INSTRUCTIONS, DOWNLOAD THE INSTALLATION APP

BOBOLINK RIDGE - MH 207 OTTAWA, ONTARIO

SC-740 STORMTECH CHAMBER SPECIFICATIONS

- CHAMBERS SHALL BE STORMTECH SC-740.
- 2. CHAMBERS SHALL BE ARCH-SHAPED AND SHALL BE MANUFACTURED FROM VIRGIN, IMPACT-MODIFIED POLYPROPYLENE COPOLYMERS.
- CHAMBERS SHALL BE CERTIFIED TO CSA B184, "POLYMERIC SUB-SURFACE STORMWATER MANAGEMENT STRUCTURES", AND MEET THE REQUIREMENTS OF ASTM F2418-16a, "STANDARD SPECIFICATION FOR POLYPROPYLENE (PP) CORRUGATED WALL STORMWATER COLLECTION CHAMBERS".
- 4. CHAMBER ROWS SHALL PROVIDE CONTINUOUS, UNOBSTRUCTED INTERNAL SPACE WITH NO INTERNAL SUPPORTS THAT WOULD IMPEDE FLOW OR LIMIT ACCESS FOR INSPECTION.
- 5. THE STRUCTURAL DESIGN OF THE CHAMBERS, THE STRUCTURAL BACKFILL, AND THE INSTALLATION REQUIREMENTS SHALL ENSURE THAT THE LOAD FACTORS SPECIFIED IN THE AASHTO LRFD BRIDGE DESIGN SPECIFICATIONS, SECTION 12.12, ARE MET FOR: 1) LONG-DURATION DEAD LOADS AND 2) SHORT-DURATION LIVE LOADS, BASED ON THE CSA S6 CL-625 TRUCK AND THE AASHTO DESIGN TRUCK WITH CONSIDERATION FOR IMPACT AND MULTIPLE VEHICLE PRESENCES.
- 6. CHAMBERS SHALL BE DESIGNED, TESTED AND ALLOWABLE LOAD CONFIGURATIONS DETERMINED IN ACCORDANCE WITH ASTM F2787, "STANDARD PRACTICE FOR STRUCTURAL DESIGN OF THERMOPLASTIC CORRUGATED WALL STORMWATER COLLECTION CHAMBERS". LOAD CONFIGURATIONS SHALL INCLUDE: 1) INSTANTANEOUS (<1 MIN) AASHTO DESIGN TRUCK LIVE LOAD ON MINIMUM COVER 2) MAXIMUM PERMANENT (75-YR) COVER LOAD AND 3) ALLOWABLE COVER WITH PARKED (1-WEEK) AASHTO DESIGN TRUCK.
- 7. REQUIREMENTS FOR HANDLING AND INSTALLATION:
 - TO MAINTAIN THE WIDTH OF CHAMBERS DURING SHIPPING AND HANDLING, CHAMBERS SHALL HAVE INTEGRAL, INTERLOCKING STACKING LUGS.
 - TO ENSURE A SECURE JOINT DURING INSTALLATION AND BACKFILL, THE HEIGHT OF THE CHAMBER JOINT SHALL NOT BE LESS THAN 50 mm (2")
 - TO ENSURE THE INTEGRITY OF THE ARCH SHAPE DURING INSTALLATION, a) THE ARCH STIFFNESS CONSTANT AS DEFINED IN SECTION 6.2.8 OF ASTM F2418 SHALL BE GREATER THAN OR EQUAL TO 550 LBS/IN/IN. AND b) TO RESIST CHAMBER DEFORMATION DURING INSTALLATION AT ELEVATED TEMPERATURES (ABOVE 23° C / 73° F), CHAMBERS SHALL BE PRODUCED FROM REFLECTIVE GOLD OR YELLOW COLORS.
- 8. ONLY CHAMBERS THAT ARE APPROVED BY THE SITE DESIGN ENGINEER WILL BE ALLOWED. UPON REQUEST BY THE SITE DESIGN ENGINEER OR OWNER, THE CHAMBER MANUFACTURER SHALL SUBMIT A STRUCTURAL EVALUATION FOR APPROVAL BEFORE DELIVERING CHAMBERS TO THE PROJECT SITE AS FOLLOWS:
 - THE STRUCTURAL EVALUATION SHALL BE SEALED BY A REGISTERED PROFESSIONAL ENGINEER.
 - THE STRUCTURAL EVALUATION SHALL DEMONSTRATE THAT THE SAFETY FACTORS ARE GREATER THAN OR EQUAL TO 1.95 FOR
 DEAD LOAD AND 1.75 FOR LIVE LOAD, THE MINIMUM REQUIRED BY ASTM F2787 AND BY SECTIONS 3 AND 12.12 OF THE AASHTO
 LRFD BRIDGE DESIGN SPECIFICATIONS FOR THERMOPLASTIC PIPE.
 - THE TEST DERIVED CREEP MODULUS AS SPECIFIED IN ASTM F2418 SHALL BE USED FOR PERMANENT DEAD LOAD DESIGN EXCEPT THAT IT SHALL BE THE 75-YEAR MODULUS USED FOR DESIGN.
- 9. CHAMBERS AND END CAPS SHALL BE PRODUCED AT AN ISO 9001 CERTIFIED MANUFACTURING FACILITY.

IMPORTANT - NOTES FOR THE BIDDING AND INSTALLATION OF THE SC-740 SYSTEM

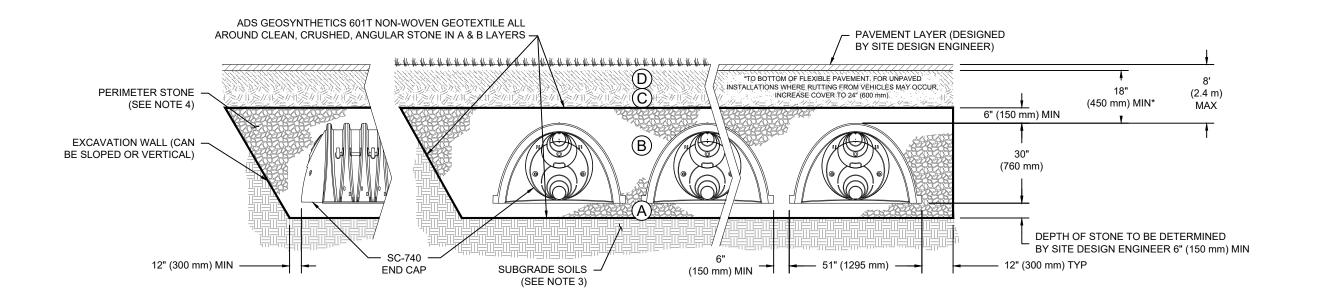
- 1. STORMTECH SC-740 CHAMBERS SHALL NOT BE INSTALLED UNTIL THE MANUFACTURER'S REPRESENTATIVE HAS COMPLETED A PRE-CONSTRUCTION MEETING WITH THE INSTALLERS.
- 2. STORMTECH SC-740 CHAMBERS SHALL BE INSTALLED IN ACCORDANCE WITH THE "STORMTECH SC-310/SC-740/DC-780 CONSTRUCTION GUIDE".
- 3. CHAMBERS ARE NOT TO BE BACKFILLED WITH A DOZER OR AN EXCAVATOR SITUATED OVER THE CHAMBERS. STORMTECH RECOMMENDS 3 BACKFILL METHODS:
 - STONESHOOTER LOCATED OFF THE CHAMBER BED.
 - BACKFILL AS ROWS ARE BUILT USING AN EXCAVATOR ON THE FOUNDATION STONE OR SUBGRADE.
 - BACKFILL FROM OUTSIDE THE EXCAVATION USING A LONG BOOM HOE OR EXCAVATOR.
- 4. THE FOUNDATION STONE SHALL BE LEVELED AND COMPACTED PRIOR TO PLACING CHAMBERS.
- 5. JOINTS BETWEEN CHAMBERS SHALL BE PROPERLY SEATED PRIOR TO PLACING STONE.
- 6. MAINTAIN MINIMUM 150 mm (6") SPACING BETWEEN THE CHAMBER ROWS.
- EMBEDMENT STONE SURROUNDING CHAMBERS MUST BE A CLEAN, CRUSHED, ANGULAR STONE 20-50 mm (3/4-2").
- 8. THE CONTRACTOR MUST REPORT ANY DISCREPANCIES WITH CHAMBER FOUNDATION MATERIALS BEARING CAPACITIES TO THE SITE DESIGN ENGINEER.
- ADS RECOMMENDS THE USE OF "FLEXSTORM CATCH IT" INSERTS DURING CONSTRUCTION FOR ALL INLETS TO PROTECT THE SUBSURFACE STORMWATER MANAGEMENT SYSTEM FROM CONSTRUCTION SITE RUNOFF.

NOTES FOR CONSTRUCTION EQUIPMENT

- 1. STORMTECH SC-740 CHAMBERS SHALL BE INSTALLED IN ACCORDANCE WITH THE "STORMTECH SC-310/SC-740/DC-780 CONSTRUCTION GUIDE".
- 2. THE USE OF CONSTRUCTION EQUIPMENT OVER SC-740 CHAMBERS IS LIMITED:
 - NO EQUIPMENT IS ALLOWED ON BARE CHAMBERS.
 - NO RUBBER TIRED LOADERS, DUMP TRUCKS, OR EXCAVATORS ARE ALLOWED UNTIL PROPER FILL DEPTHS ARE REACHED IN ACCORDANCE WITH THE "STORMTECH SC-310/SC-740/DC-780 CONSTRUCTION GUIDE".
 - WEIGHT LIMITS FOR CONSTRUCTION EQUIPMENT CAN BE FOUND IN THE "STORMTECH SC-310/SC-740/DC-780 CONSTRUCTION GUIDE".
- 3. FULL 900 mm (36") OF STABILIZED COVER MATERIALS OVER THE CHAMBERS IS REQUIRED FOR DUMP TRUCK TRAVEL OR DUMPING.

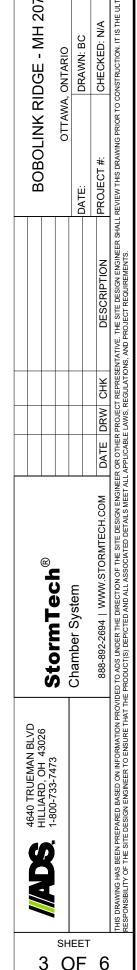
USE OF A DOZER TO PUSH EMBEDMENT STONE BETWEEN THE ROWS OF CHAMBERS MAY CAUSE DAMAGE TO THE CHAMBERS AND IS NOT AN ACCEPTABLE BACKFILL METHOD. ANY CHAMBERS DAMAGED BY THE "DUMP AND PUSH" METHOD ARE NOT COVERED UNDER THE STORMTECH STANDARD WARRANTY.

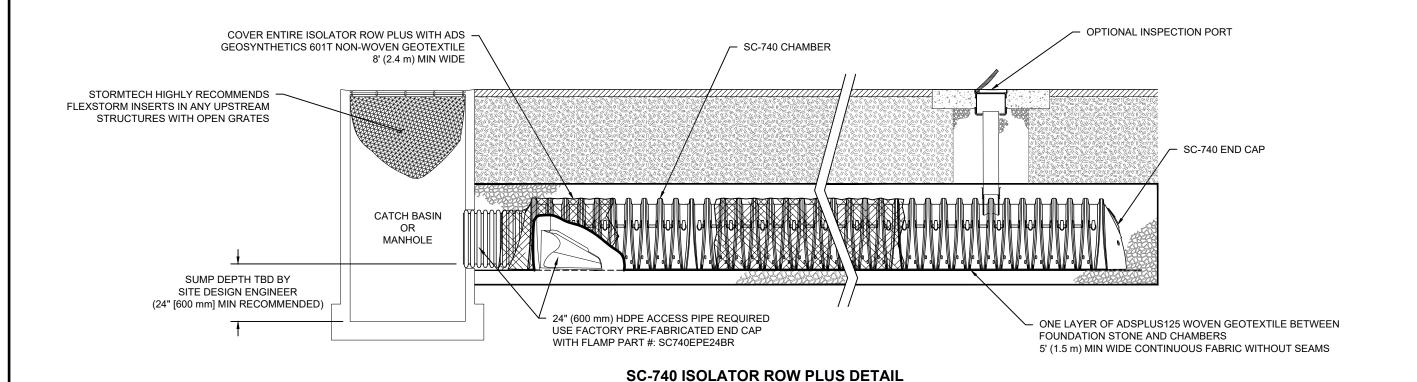
CONTACT STORMTECH AT 1-888-892-2694 WITH ANY QUESTIONS ON INSTALLATION REQUIREMENTS OR WEIGHT LIMITS FOR CONSTRUCTION EQUIPMENT.


	PROPOSED LAYOUT	CONCEPTUAL ELEVAT	TIONS			*INVE	RT ABOVE BASE OF CHAMBE	٦	
7	STORMTECH SC-740 CHAMBERS	MAXIMUM ALLOWABLE GRADE (TOP OF PAVEMENT/U	INPAVED): 3.3	PART TYPE	ITEM OI	DESCRIPTION	INVERT* MAX FLOW	<u> </u>	
2 152	STORMTECH SC-740 END CAPS STONE ABOVE (mm)	MINIMUM ALLOWABLE GRADE (ÙNPAVED WITH TRAFI MINIMUM ALLOWABLE GRADE (UNPAVED NO TRAFFIC	C): 1.3	72 PREFABRICATED END CAP	A	600 mm BOTTOM PREFABRICATED END CAP, PART#: SC740EPE24BR / TYP OF ALL 600 mm ISOLATOR ROW PLUS CONNECTIONS	3 mm	1 207	<
152 40	STONE BELOW (mm) STONE VOID	MINIMUM ALLOWABLE GRADE (TOP OF RIGID CONCR MINIMUM ALLOWABLE GRADE (BASE OF FLEXIBLE PA	ETE PAVEMENT): 1.3 VEMENT): 1.3	72 NYLOPLAST (INLET W/ ISO	В	750 mm DIAMETER (610 mm SUMP MIN)		∃	BC D: N/A
	INSTALLED SYSTEM VOLUME (m³)	TOP OF STONE: TOP OF SC-740 CHAMBER:	1.0	67 PLUS ROW)				_ ı }	ONTARIO DRAWN: BC CHECKED: N
18.7		BOTTOM OF SC-740 CHAMBER:	0.1	55					SH SA
31.0	SYSTEM AREA (m*)	BOTTOM OF SC-740 CHAMBER: BOTTOM OF STONE:	0.1 0.0	<u>52</u> 00				RIDGE	A D
36.4	SYSTEM PERIMETER (m)							¥	OTTAWA,
								BOBOLINK	#
								BC	TE:
									DATE: PROJECT
									APT
									SCF
	▼			3.281 m ———————————————————————————————————					불
	-		1;	5.672 m —		-			DRW
	_								DATE
				/ / / / / / /	/ /		•		≥
		///////////////////////////////////////					B		H.COM
		X////X//					A P D 1.295		TECI
					/ /			⊗	ORM
	V / / / /							C	~ '
	<u> </u>						<u> </u>		
									> -I
								Storm	er (
								5	Chamber 888-892-26
								S	S S
								۵,۵	
								BLVD 3026	
								4640 TRUEMAN E HILLIARD, OH 43 1-800-733-7473	5
								RUE! RD, C 33-7.	<u> </u>
								10 TF LIAF 17-00	i ii
								+ 46 1-8 1-8	щ
	ISOLATOR ROW PLUS							G	
	(SEE DETAIL)		750					8	l O l
		<u>NO</u>	TES MANIFOLD SIZE TO BE DETE	RMINED BY SITE DESIGN ENGINE	EER. SEE T	FECH NOTE #6.32 FOR MANIFOLD SIZING GUIDANCE.			S
	NO WOVEN GEOTEXTILE	COM	MPONENTS IN THE FIELD.			TE AND DESIGN CONSTRAINTS, IT MAY BE NECESSARY TO CUT AND COUPLE ADDITIONAL PI	PE TO STANDARD MANIFOLD		
KXX	XX	•	THIS CHAMBER SYSTEM WA	S DESIGNED WITHOUT SITE-SPE	CIFIC INFO	SSARY ADJUST GRADING TO ENSURE THE CHAMBER COVER REQUIREMENTS ARE MET. DRMATION ON SOIL CONDITIONS OR BEARING CAPACITY. THE SITE DESIGN ENGINEER IS RE	SPONSIBLE FOR		
	BED LIMITS	DE I THE DDC	ERMINING E SUITABILITY OF THE SOIL AN OVIDED.	D PROVIDING THE BEARING CAP	ACITY OF	THE INSITU SOILS. THE BASE STONE DEPTH MAY BE INCREASED OR DECREASED ONCE THIS	INFORMATION IS		SHEET
		FINC	NOT FOR CONSTRUC					_ ^ _	OF 6

ACCEPTABLE FILL MATERIALS: STORMTECH SC-740 CHAMBER SYSTEMS

	MATERIAL LOCATION	DESCRIPTION	AASHTO MATERIAL CLASSIFICATIONS	COMPACTION / DENSITY REQUIREMENT
D	FINAL FILL: FILL MATERIAL FOR LAYER 'D' STARTS FROM THE TOP OF THE 'C' LAYER TO THE BOTTOM OF FLEXIBLE PAVEMENT OR UNPAVED FINISHED GRADE ABOVE. NOTE THAT PAVEMENT SUBBASE MAY BE PART OF THE 'D' LAYER.	ANY SOIL/ROCK MATERIALS, NATIVE SOILS, OR PER ENGINEER'S PLANS. CHECK PLANS FOR PAVEMENT SUBGRADE REQUIREMENTS.	N/A	PREPARE PER SITE DESIGN ENGINEER'S PLANS. PAVED INSTALLATIONS MAY HAVE STRINGENT MATERIAL AND PREPARATION REQUIREMENTS.
С	INITIAL FILL: FILL MATERIAL FOR LAYER 'C' STARTS FROM THE TOP OF THE EMBEDMENT STONE ('B' LAYER) TO 18" (450 mm) ABOVE THE TOP OF THE CHAMBER. NOTE THAT PAVEMENT SUBBASE MAY BE A PART OF THE 'C' LAYER.	GRANULAR WELL-GRADED SOIL/AGGREGATE MIXTURES, <35% FINES OR PROCESSED AGGREGATE. MOST PAVEMENT SUBBASE MATERIALS CAN BE USED IN LIEU OF THIS LAYER.	AASHTO M145 ¹ A-1, A-2-4, A-3 OR AASHTO M43 ¹ 3, 357, 4, 467, 5, 56, 57, 6, 67, 68, 7, 78, 8, 89, 9, 10	BEGIN COMPACTIONS AFTER 12" (300 mm) OF MATERIAL OVER THE CHAMBERS IS REACHED. COMPACT ADDITIONAL LAYERS IN 6" (150 mm) MAX LIFTS TO A MIN. 95% PROCTOR DENSITY FOR WELL GRADED MATERIAL AND 95% RELATIVE DENSITY FOR PROCESSED AGGREGATE MATERIALS. ROLLER GROSS VEHICLE WEIGHT NOT TO EXCEED 12,000 lbs (53 kN). DYNAMIC FORCE NOT TO EXCEED 20,000 lbs (89 kN).
В	EMBEDMENT STONE: FILL SURROUNDING THE CHAMBERS FROM THE FOUNDATION STONE ('A' LAYER) TO THE 'C' LAYER ABOVE.	CLEAN, CRUSHED, ANGULAR STONE	AASHTO M43¹ 3, 357, 4, 467, 5, 56, 57	NO COMPACTION REQUIRED.
А	FOUNDATION STONE: FILL BELOW CHAMBERS FROM THE SUBGRADE UP TO THE FOOT (BOTTOM) OF THE CHAMBER.	CLEAN, CRUSHED, ANGULAR STONE	AASHTO M43 ¹ 3, 357, 4, 467, 5, 56, 57	PLATE COMPACT OR ROLL TO ACHIEVE A FLAT SURFACE. ^{2,3}


DI EASE NOTE


- 1. THE LISTED AASHTO DESIGNATIONS ARE FOR GRADATIONS ONLY. THE STONE MUST ALSO BE CLEAN, CRUSHED, ANGULAR. FOR EXAMPLE, A SPECIFICATION FOR #4 STONE WOULD STATE: "CLEAN, CRUSHED, ANGULAR NO. 4 (AASHTO M43) STONE".
- 2. STORMTECH COMPACTION REQUIREMENTS ARE MET FOR 'A' LOCATION MATERIALS WHEN PLACED AND COMPACTED IN 6" (150 mm) (MAX) LIFTS USING TWO FULL COVERAGES WITH A VIBRATORY COMPACTOR.
- 3. WHERE INFILTRATION SURFACES MAY BE COMPROMISED BY COMPACTION, FOR STANDARD DESIGN LOAD CONDITIONS, A FLAT SURFACE MAY BE ACHIEVED BY RAKING OR DRAGGING WITHOUT COMPACTION EQUIPMENT. FOR SPECIAL LOAD DESIGNS, CONTACT STORMTECH FOR COMPACTION REQUIREMENTS.
- 4. ONCE LAYER 'C' IS PLACED, ANY SOIL/MATERIAL CAN BE PLACED IN LAYER 'D' UP TO THE FINISHED GRADE. MOST PAVEMENT SUBBASE SOILS CAN BE USED TO REPLACE THE MATERIAL REQUIREMENTS OF LAYER 'C' OR 'D' AT THE SITE DESIGN ENGINEER'S DISCRETION.

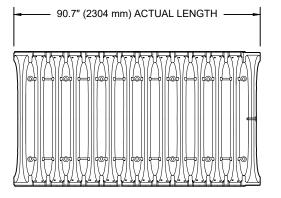
NOTES:

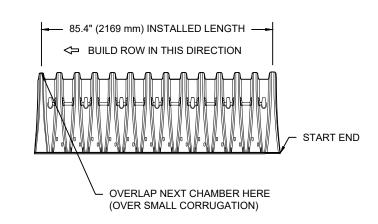
- 1. CHAMBERS SHALL MEET THE REQUIREMENTS OF ASTM F2418-16a, "STANDARD SPECIFICATION FOR POLYPROPYLENE (PP) CORRUGATED WALL STORMWATER COLLECTION CHAMBERS"
- 2. SC-740 CHAMBERS SHALL BE DESIGNED IN ACCORDANCE WITH ASTM F2787 "STANDARD PRACTICE FOR STRUCTURAL DESIGN OF THERMOPLASTIC CORRUGATED WALL STORMWATER COLLECTION CHAMBERS".
- 3. THE SITE DESIGN ENGINEER IS RESPONSIBLE FOR ASSESSING THE BEARING RESISTANCE (ALLOWABLE BEARING CAPACITY) OF THE SUBGRADE SOILS AND THE DEPTH OF FOUNDATION STONE WITH CONSIDERATION FOR THE RANGE OF EXPECTED SOIL MOISTURE CONDITIONS.
- 4. PERIMETER STONE MUST BE EXTENDED HORIZONTALLY TO THE EXCAVATION WALL FOR BOTH VERTICAL AND SLOPED EXCAVATION WALLS.
- 5. REQUIREMENTS FOR HANDLING AND INSTALLATION:
 - TO MAINTAIN THE WIDTH OF CHAMBERS DURING SHIPPING AND HANDLING, CHAMBERS SHALL HAVE INTEGRAL, INTERLOCKING STACKING LUGS.
 - TO ENSURE A SECURE JOINT DURING INSTALLATION AND BACKFILL, THE HEIGHT OF THE CHAMBER JOINT SHALL NOT BE LESS THAN 2".
 - TO ENSURE THE INTEGRITY OF THE ARCH SHAPE DURING INSTALLATION, a) THE ARCH STIFFNESS CONSTANT AS DEFINED IN SECTION 6.2.8 OF ASTM F2418 SHALL BE GREATER THAN OR EQUAL TO 550 LBS/IN/IN. AND b) TO RESIST CHAMBER DEFORMATION DURING INSTALLATION AT ELEVATED TEMPERATURES (ABOVE 73° F / 23° C), CHAMBERS SHALL BE PRODUCED FROM REFLECTIVE GOLD OR YELLOW COLORS.

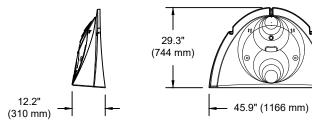
INSPECTION & MAINTENANCE

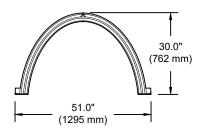
INSPECT ISOLATOR ROW PLUS FOR SEDIMENT

- A. INSPECTION PORTS (IF PRESENT)
- REMOVE/OPEN LID ON NYLOPLAST INLINE DRAIN
- REMOVE AND CLEAN FLEXSTORM FILTER IF INSTALLED
- USING A FLASHLIGHT AND STADIA ROD, MEASURE DEPTH OF SEDIMENT AND RECORD ON MAINTENANCE LOG LOWER A CAMERA INTO ISOLATOR ROW PLUS FOR VISUAL INSPECTION OF SEDIMENT LEVELS (OPTIONAL)
- IF SEDIMENT IS AT, OR ABOVE, 3" (80 mm) PROCEED TO STEP 2. IF NOT, PROCEED TO STEP 3.
- B. ALL ISOLATOR PLUS ROWS
- REMOVE COVER FROM STRUCTURE AT UPSTREAM END OF ISOLATOR ROW PLUS
- USING A FLASHLIGHT, INSPECT DOWN THE ISOLATOR ROW PLUS THROUGH OUTLET PIPE
 - i) MIRRORS ON POLES OR CAMERAS MAY BE USED TO AVOID A CONFINED SPACE ENTRY
 - ii) FOLLOW OSHA REGULATIONS FOR CONFINED SPACE ENTRY IF ENTERING MANHOLE
- IF SEDIMENT IS AT, OR ABOVE, 3" (80 mm) PROCEED TO STEP 2. IF NOT, PROCEED TO STEP 3.
- CLEAN OUT ISOLATOR ROW PLUS USING THE JETVAC PROCESS
 - A. A FIXED CULVERT CLEANING NOZZLE WITH REAR FACING SPREAD OF 45" (1.1 m) OR MORE IS PREFERRED
 - APPLY MULTIPLE PASSES OF JETVAC UNTIL BACKFLUSH WATER IS CLEAN
 - C. VACUUM STRUCTURE SUMP AS REQUIRED
- REPLACE ALL COVERS, GRATES, FILTERS, AND LIDS; RECORD OBSERVATIONS AND ACTIONS.
- INSPECT AND CLEAN BASINS AND MANHOLES UPSTREAM OF THE STORMTECH SYSTEM. STEP 4)

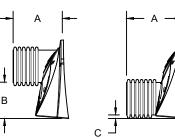

NOTES


- INSPECT EVERY 6 MONTHS DURING THE FIRST YEAR OF OPERATION. ADJUST THE INSPECTION INTERVAL BASED ON PREVIOUS OBSERVATIONS OF SEDIMENT ACCUMULATION AND HIGH WATER ELEVATIONS.
- 2. CONDUCT JETTING AND VACTORING ANNUALLY OR WHEN INSPECTION SHOWS THAT MAINTENANCE IS NECESSARY.




SC-740 TECHNICAL SPECIFICATION

NTS



NOMINAL CHAMBER SPECIFICATIONS

SIZE (W X H X INSTALLED LENGTH) CHAMBER STORAGE MINIMUM INSTALLED STORAGE* WEIGHT 51.0" X 30.0" X 85.4" 45.9 CUBIC FEET 74.9 CUBIC FEET 75.0 lbs. (1295 mm X 762 mm X 2169 mm) (1.30 m³)

(2.12 m³) (33.6 kg)

PRE-FAB STUB AT BOTTOM OF END CAP WITH FLAMP END WITH "BR" PRE-FAB STUBS AT BOTTOM OF END CAP FOR PART NUMBERS ENDING WITH "B" PRE-FAB STUBS AT TOP OF END CAP FOR PART NUMBERS ENDING WITH "T" PRE-CORED END CAPS END WITH "PC"

*ASSUMES 6" (152 mm) STONE ABOVE, BELOW, AND BETWEEN CHAMBERS

PART#	STUB	Α	В	С
SC740EPE06T / SC740EPE06TPC	6" (150 mm)	10.9" (277 mm)	18.5" (470 mm)	
SC740EPE06B / SC740EPE06BPC	0 (130 111111)	10.9 (277 11111)		0.5" (13 mm)
SC740EPE08T /SC740EPE08TPC	8" (200 mm)	12.2" (310 mm)	16.5" (419 mm)	
SC740EPE08B / SC740EPE08BPC	6 (200 111111)	12.2 (31011111)		0.6" (15 mm)
SC740EPE10T / SC740EPE10TPC	10" (250 mm)	13.4" (340 mm)	14.5" (368 mm)	
SC740EPE10B / SC740EPE10BPC	10 (230 111111)	13.4 (340 11111)		0.7" (18 mm)
SC740EPE12T / SC740EPE12TPC	12" (300 mm)	14.7" (373 mm)	12.5" (318 mm)	
SC740EPE12B / SC740EPE12BPC	12 (300 111111)	14.7 (373 11111)		1.2" (30 mm)
SC740EPE15T / SC740EPE15TPC	15" (375 mm)	18.4" (467 mm)	9.0" (229 mm)	
SC740EPE15B / SC740EPE15BPC	15 (575111111)	10.4 (407 11111)		1.3" (33 mm)
SC740EPE18T / SC740EPE18TPC	18" (450 mm)	19.7" (500 mm)	5.0" (127 mm)	
SC740EPE18B / SC740EPE18BPC	10 (+30 111111)	13.7 (300 11111)		1.6" (41 mm)
SC740EPE24B*	24" (600 mm)	18.5" (470 mm)		0.1" (3 mm)
SC740EPE24BR*	24" (600 mm)	18.5" (470 mm)		0.1" (3 mm)

ALL STUBS, EXCEPT FOR THE SC740EPE24B/SC740EPE24BR ARE PLACED AT BOTTOM OF END CAP SUCH THAT THE OUTSIDE DIAMETER OF THE STUB IS FLUSH WITH THE BOTTOM OF THE END CAP. FOR ADDITIONAL INFORMATION CONTACT STORMTECH AT 1-888-892-2694.

* FOR THE SC740EPE24B/SC740EPE24BR THE 24" (600 mm) STUB LIES BELOW THE BOTTOM OF THE END CAP APPROXIMATELY 1.75" (44 mm). BACKFILL MATERIAL SHOULD BE REMOVED FROM BELOW THE N-12 STUB SO THAT THE FITTING SITS LEVEL.

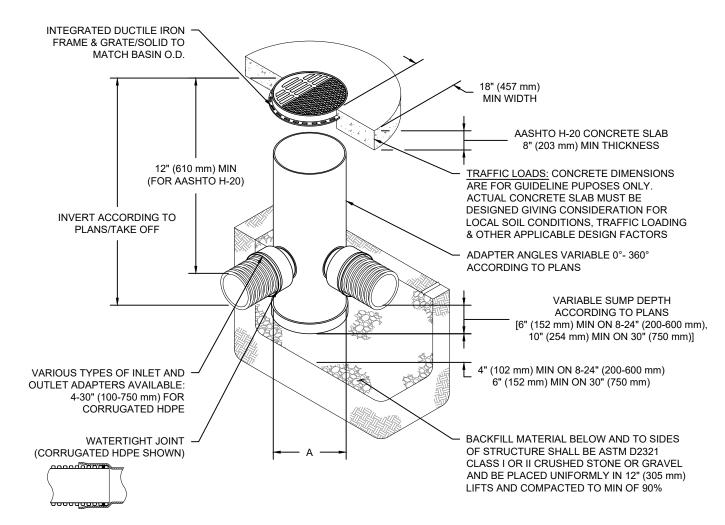
NOTE: ALL DIMENSIONS ARE NOMINAL

	ROB))	DATE:	<u>.</u>	PROJECT #	LL REVIEW THIS DR
					DESCRIPTION	ENGINEER OR OTHER PROJECT REPRESENTATIVE. THE SITE DESIGN ENGINEER SHALL REVIEW THIS DR. MEET ALL APPLICABLE LAWS, REGULATIONS, AND PROJECT REQUIREMENTS.
						T REPRES
					DATE DRW CHK	R PROJECT
					DATE	R OR OTHE
					MC	ENGINEE MEET ALL

BOBOLINK RIDGE - MH 207

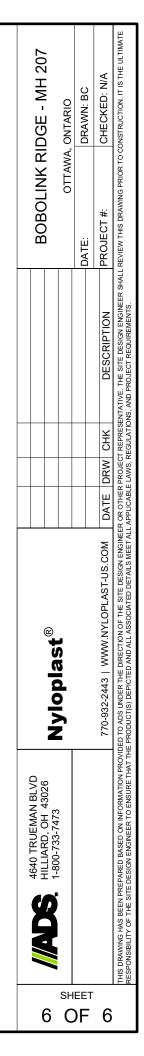
OTTAWA, ONTARIO
DRAWN: BC
CHECKED: N/

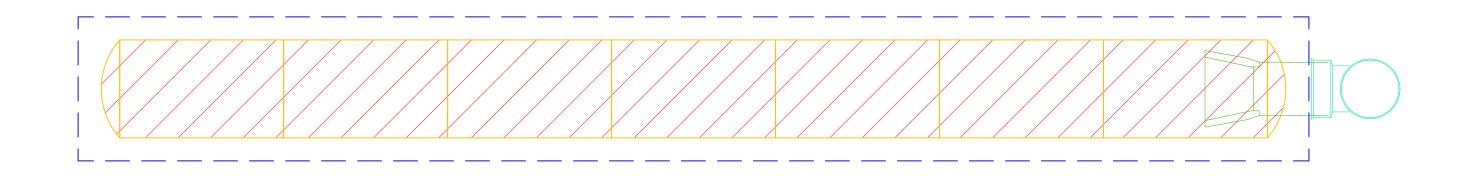
StormTech® Chamber System


4640 TRUEMAN BLVD HILLIARD, OH 43026 1-800-733-7473

SHEET

5 OF 6


NYLOPLAST DRAIN BASIN



NOTES

- 1. 8-30" (200-750 mm) GRATES/SOLID COVERS SHALL BE DUCTILE IRON PER ASTM A536 GRADE 70-50-05
- 12-30" (300-750 mm) FRAMES SHALL BE DUCTILE IRON PER ASTM A536 GRADE 70-50-05 DRAIN BASIN TO BE CUSTOM MANUFACTURED ACCORDING TO PLAN DETAILS
- DRAINAGE CONNECTION STUB JOINT TIGHTNESS SHALL CONFORM TO ASTM D3212 FOR CORRUGATED HDPE (ADS & HANCOR DUAL WALL) & SDR 35 PVC
- FOR COMPLETE DESIGN AND PRODUCT INFORMATION: WWW.NYLOPLAST-US.COM
- 6. TO ORDER CALL: 800-821-6710

Α	PART#	GRATE/S	SOLID COVER (OPTIONS
8" (200 mm)	2808AG	PEDESTRIAN LIGHT DUTY	STANDARD LIGHT DUTY	SOLID LIGHT DUTY
10" (250 mm)	2810AG	PEDESTRIAN LIGHT DUTY	STANDARD LIGHT DUTY	SOLID LIGHT DUTY
12"	2812AG	PEDESTRIAN	STANDARD AASHTO	SOLID
(300 mm)		AASHTO H-10	H-20	AASHTO H-20
15"	2815AG	PEDESTRIAN	STANDARD AASHTO	SOLID
(375 mm)		AASHTO H-10	H-20	AASHTO H-20
18"	2818AG	PEDESTRIAN	STANDARD AASHTO	SOLID
(450 mm)		AASHTO H-10	H-20	AASHTO H-20
24"	2824AG	PEDESTRIAN	STANDARD AASHTO	SOLID
(600 mm)		AASHTO H-10	H-20	AASHTO H-20
30"	2830AG	PEDESTRIAN	STANDARD AASHTO	SOLID
(750 mm)		AASHTO H-20	H-20	AASHTO H-20

PROJEC	CT INFORMATION
ENGINEERED PRODUCT MANAGER	
ADS SALES REP	
PROJECT NO.	

SiteASSIST FOR STORMTECH INSTRUCTIONS, DOWNLOAD THE INSTALLATION APP

BOBOLINK RIDGE - MH 210 (A) OTTAWA, ONTARIO

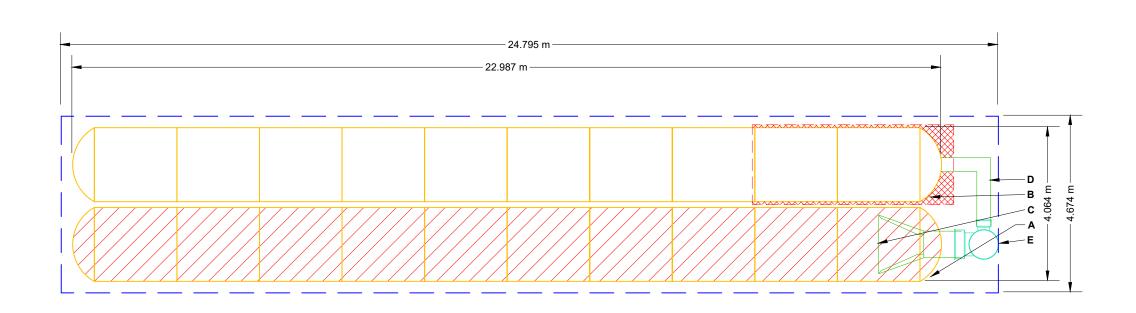
MC-3500 STORMTECH CHAMBER SPECIFICATIONS

- CHAMBERS SHALL BE STORMTECH MC-3500.
- 2. CHAMBERS SHALL BE ARCH-SHAPED AND SHALL BE MANUFACTURED FROM VIRGIN, IMPACT-MODIFIED POLYPROPYLENE COPOLYMERS.
- 3. CHAMBERS SHALL BE CERTIFIED TO CSA B184, "POLYMERIC SUB-SURFACE STORMWATER MANAGEMENT STRUCTURES", AND MEET THE REQUIREMENTS OF ASTM F2418-16a, "STANDARD SPECIFICATION FOR POLYPROPYLENE (PP) CORRUGATED WALL STORMWATER COLLECTION CHAMBERS" CHAMBER CLASSIFICATION 45x76 DESIGNATION SS.
- 4. CHAMBER ROWS SHALL PROVIDE CONTINUOUS, UNOBSTRUCTED INTERNAL SPACE WITH NO INTERNAL SUPPORTS THAT WOULD IMPEDE FLOW OR LIMIT ACCESS FOR INSPECTION.
- 5. THE STRUCTURAL DESIGN OF THE CHAMBERS, THE STRUCTURAL BACKFILL, AND THE INSTALLATION REQUIREMENTS SHALL ENSURE THAT THE LOAD FACTORS SPECIFIED IN THE AASHTO LRFD BRIDGE DESIGN SPECIFICATIONS, SECTION 12.12, ARE MET FOR: 1) LONG-DURATION DEAD LOADS AND 2) SHORT-DURATION LIVE LOADS, BASED ON THE CSA S6 CL-625 TRUCK AND THE AASHTO DESIGN TRUCK WITH CONSIDERATION FOR IMPACT AND MULTIPLE VEHICLE PRESENCES.
- 6. CHAMBERS SHALL BE DESIGNED, TESTED AND ALLOWABLE LOAD CONFIGURATIONS DETERMINED IN ACCORDANCE WITH ASTM F2787, "STANDARD PRACTICE FOR STRUCTURAL DESIGN OF THERMOPLASTIC CORRUGATED WALL STORMWATER COLLECTION CHAMBERS". LOAD CONFIGURATIONS SHALL INCLUDE: 1) INSTANTANEOUS (<1 MIN) AASHTO DESIGN TRUCK LIVE LOAD ON MINIMUM COVER 2) MAXIMUM PERMANENT (75-YR) COVER LOAD AND 3) ALLOWABLE COVER WITH PARKED (1-WEEK) AASHTO DESIGN TRUCK.
- 7. REQUIREMENTS FOR HANDLING AND INSTALLATION:
 - TO MAINTAIN THE WIDTH OF CHAMBERS DURING SHIPPING AND HANDLING, CHAMBERS SHALL HAVE INTEGRAL, INTERLOCKING STACKING LUGS.
 - TO ENSURE A SECURE JOINT DURING INSTALLATION AND BACKFILL, THE HEIGHT OF THE CHAMBER JOINT SHALL NOT BE LESS THAN 75 mm (3")
 - TO ENSURE THE INTEGRITY OF THE ARCH SHAPE DURING INSTALLATION, a) THE ARCH STIFFNESS CONSTANT AS DEFINED IN SECTION 6.2.8 OF ASTM F2418 SHALL BE GREATER THAN OR EQUAL TO 500 LBS/IN/IN. AND b) TO RESIST CHAMBER DEFORMATION DURING INSTALLATION AT ELEVATED TEMPERATURES (ABOVE 23° C / 73° F), CHAMBERS SHALL BE PRODUCED FROM REFLECTIVE GOLD OR YELLOW COLORS.
- 8. ONLY CHAMBERS THAT ARE APPROVED BY THE SITE DESIGN ENGINEER WILL BE ALLOWED. UPON REQUEST BY THE SITE DESIGN ENGINEER OR OWNER, THE CHAMBER MANUFACTURER SHALL SUBMIT A STRUCTURAL EVALUATION FOR APPROVAL BEFORE DELIVERING CHAMBERS TO THE PROJECT SITE AS FOLLOWS:
 - THE STRUCTURAL EVALUATION SHALL BE SEALED BY A REGISTERED PROFESSIONAL ENGINEER.
 - THE STRUCTURAL EVALUATION SHALL DEMONSTRATE THAT THE SAFETY FACTORS ARE GREATER THAN OR EQUAL TO 1.95 FOR DEAD LOAD AND 1.75 FOR LIVE LOAD, THE MINIMUM REQUIRED BY ASTM F2787 AND BY SECTIONS 3 AND 12.12 OF THE AASHTO LRFD BRIDGE DESIGN SPECIFICATIONS FOR THERMOPLASTIC PIPE.
 - THE TEST DERIVED CREEP MODULUS AS SPECIFIED IN ASTM F2418 SHALL BE USED FOR PERMANENT DEAD LOAD DESIGN EXCEPT THAT IT SHALL BE THE 75-YEAR MODULUS USED FOR DESIGN.
- 9. CHAMBERS AND END CAPS SHALL BE PRODUCED AT AN ISO 9001 CERTIFIED MANUFACTURING FACILITY.

IMPORTANT - NOTES FOR THE BIDDING AND INSTALLATION OF MC-3500 CHAMBER SYSTEM

- 1. STORMTECH MC-3500 CHAMBERS SHALL NOT BE INSTALLED UNTIL THE MANUFACTURER'S REPRESENTATIVE HAS COMPLETED A PRE-CONSTRUCTION MEETING WITH THE INSTALLERS.
- 2. STORMTECH MC-3500 CHAMBERS SHALL BE INSTALLED IN ACCORDANCE WITH THE "STORMTECH MC-3500/MC-4500 CONSTRUCTION GUIDE".
- 3. CHAMBERS ARE NOT TO BE BACKFILLED WITH A DOZER OR AN EXCAVATOR SITUATED OVER THE CHAMBERS. STORMTECH RECOMMENDS 3 BACKFILL METHODS:
 - STONESHOOTER LOCATED OFF THE CHAMBER BED.
 - BACKFILL AS ROWS ARE BUILT USING AN EXCAVATOR ON THE FOUNDATION STONE OR SUBGRADE.
 - BACKFILL FROM OUTSIDE THE EXCAVATION USING A LONG BOOM HOE OR EXCAVATOR.
- 4. THE FOUNDATION STONE SHALL BE LEVELED AND COMPACTED PRIOR TO PLACING CHAMBERS.
- 5. JOINTS BETWEEN CHAMBERS SHALL BE PROPERLY SEATED PRIOR TO PLACING STONE.
- 6. MAINTAIN MINIMUM 150 mm (6") SPACING BETWEEN THE CHAMBER ROWS.
- 7. INLET AND OUTLET MANIFOLDS MUST BE INSERTED A MINIMUM OF 300 mm (12") INTO CHAMBER END CAPS.
- 8. EMBEDMENT STONE SURROUNDING CHAMBERS MUST BE A CLEAN, CRUSHED, ANGULAR STONE WELL GRADED BETWEEN ¾" AND 2" (20-50 mm).
- 9. STONE MUST BE PLACED ON THE TOP CENTER OF THE CHAMBER TO ANCHOR THE CHAMBERS IN PLACE AND PRESERVE ROW SPACING.
- 10. THE CONTRACTOR MUST REPORT ANY DISCREPANCIES WITH CHAMBER FOUNDATION MATERIALS BEARING CAPACITIES TO THE SITE DESIGN ENGINEER
- 11. ADS RECOMMENDS THE USE OF "FLEXSTORM CATCH IT" INSERTS DURING CONSTRUCTION FOR ALL INLETS TO PROTECT THE SUBSURFACE STORMWATER MANAGEMENT SYSTEM FROM CONSTRUCTION SITE RUNOFF.

NOTES FOR CONSTRUCTION EQUIPMENT


- 1. STORMTECH MC-3500 CHAMBERS SHALL BE INSTALLED IN ACCORDANCE WITH THE "STORMTECH MC-3500/MC-4500 CONSTRUCTION GUIDE".
- . THE USE OF EQUIPMENT OVER MC-3500 CHAMBERS IS LIMITED:
 - NO EQUIPMENT IS ALLOWED ON BARE CHAMBERS.
 - NO RUBBER TIRED LOADER, DUMP TRUCK, OR EXCAVATORS ARE ALLOWED UNTIL PROPER FILL DEPTHS ARE REACHED IN ACCORDANCE WITH THE "STORMTECH MC-3500/MC-4500 CONSTRUCTION GUIDE".
 - WEIGHT LIMITS FOR CONSTRUCTION EQUIPMENT CAN BE FOUND IN THE "STORMTECH MC-3500/MC-4500 CONSTRUCTION GUIDE".
- 3. FULL 900 mm (36") OF STABILIZED COVER MATERIALS OVER THE CHAMBERS IS REQUIRED FOR DUMP TRUCK TRAVEL OR DUMPING.

USE OF A DOZER TO PUSH EMBEDMENT STONE BETWEEN THE ROWS OF CHAMBERS MAY CAUSE DAMAGE TO CHAMBERS AND IS NOT AN ACCEPTABLE BACKFILL METHOD. ANY CHAMBERS DAMAGED BY USING THE "DUMP AND PUSH" METHOD ARE NOT COVERED UNDER THE STORMTECH STANDARD WARRANTY.

CONTACT STORMTECH AT 1-888-892-2694 WITH ANY QUESTIONS ON INSTALLATION REQUIREMENTS OR WEIGHT LIMITS FOR CONSTRUCTION EQUIPMENT.

	PROPOSED LAYOUT	CONCEPTUAL ELEVATIONS				*INVERT A	BOVE BAS	SE OF CHAMBER
20		MAXIMUM ALLOWABLE GRADE (TOP OF PAVEMENT/UNPAVED):	3.810	PART TYPE	ITEM ON		INVERT*	MAX FLOW
4	STORMTECH MC-3500 END CAPS	MINIMUM ALLOWABLE GRADE (UNPAVED WITH TRAFFIC):	1.981			600 mm BOTTOM CORED END CAP, PART#: MC3500IEPP24BC / TYP OF ALL 600 mm BOTTOM	+	
	STONE ABOVE (mm) STONE BELOW (mm)	MINIMUM ALLOWABLE GRADE (UNPAVED NO TRAFFIC): MINIMUM ALLOWABLE GRADE (TOP OF RIGID CONCRETE PAVEMENT):		PREFABRICATED END CAP		CONNECTIONS AND ISOLATOR PLUS ROWS	52 mm	
40	STONE VOID 3	MINIMUM ALLOWABLE GRADE (BASE OF FLEXIBLE PAVEMENT):	1.829	PREFABRICATED END CAP		300 mm TOP CORED END CAP, PART#: MC3500IEPP12T / TYP OF ALL 300 mm TOP CONNECTIONS INSTALL FLAMP ON 600 mm ACCESS PIPE / PART#: MC350024RAMP (TYP 2 PLACES)	671 mm	
		TOP OF STONE: TOP OF MC-3500 CHAMBER:	1.676 1.372	MANIFOLD		300 mm x 300 mm TOP MANIFOLD, ADS N-12	670 mm	
116.1	(COVER STONE INCLUDED)	300 mm x 300 mm TOP MANIFOLD INVERT:	0.898	NYLOPLAST (INLET W/ ISO	F	750 mm DIAMETER (610 mm SUMP MIN)		70 L/s IN
115.9	(BASE STONE INCLUDED) SYSTEM AREA (m)	600 mm ISOLATOR ROW PLUS INVERT: BOTTOM OF MC-3500 CHAMBER:	0.281 0.229	PLUS ROW)				

0.000

ISOLATOR ROW PLUS (SEE DETAIL)

58.9 SYSTEM PERIMETER (m)

BOTTOM OF STONE:

PLACE MINIMUM 5.334 m OF ADSPLUS175 WOVEN GEOTEXTILE OVER BEDDING STONE AND UNDERNEATH CHAMBER FEET FOR SCOUR PROTECTION AT ALL CHAMBER INLET ROWS

BED LIMITS

NOTES

MANIFOLD SIZE TO BE DETERMINED BY SITE DESIGN ENGINEER. SEE TECH NOTE #6.32 FOR MANIFOLD SIZING GUIDANCE.
DUE TO THE ADAPTATION OF THIS CHAMBER SYSTEM TO SPECIFIC SITE AND DESIGN CONSTRAINTS, IT MAY BE NECESSARY TO CUT AND COUPLE ADDITIONAL PIPE TO STANDARD MANIFOLD COMPONENTS IN THE FIELD.
THE SITE DESIGN ENGINEER MUST REVIEW ELEVATIONS AND IF NECESSARY ADJUST GRADING TO ENSURE THE CHAMBER COVER REQUIREMENTS ARE MET.
THIS CHAMBER SYSTEM WAS DESIGNED WITHOUT SITE-SPECIFIC INFORMATION ON SOIL CONDITIONS OR BEARING CAPACITY. THE SITE DESIGN ENGINEER IS RESPONSIBLE FOR DETERMINING
THE SUITABILITY OF THE SOIL AND PROVIDING THE BEARING CAPACITY OF THE INSITU SOILS. THE BASE STONE DEPTH MAY BE INCREASED OR DECREASED ONCE THIS INFORMATION IS PROVIDED.

NOT FOR CONSTRUCTION: THIS LAYOUT IS FOR DIMENSIONAL PURPOSES ONLY TO PROVE CONCEPT & THE REQUIRED STORAGE VOLUME CAN BE ACHIEVED ON SITE.

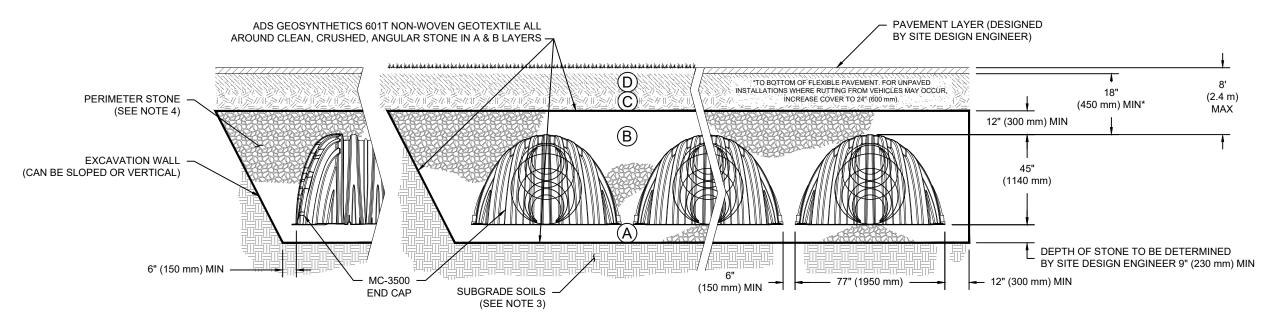
DRW **StormTech**® Chamber System 4640 TRUEMAN BLVD HILLIARD, OH 43026 1-800-733-7473 100 Ш SCALE

SHEET

2 OF 6

 $\overline{\mathfrak{C}}$

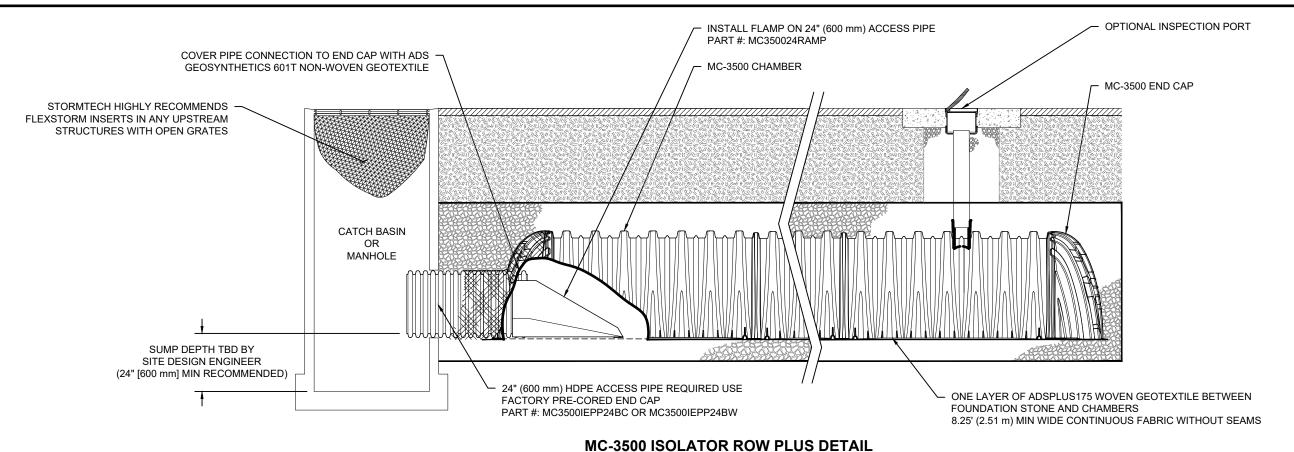
BOBOLINK RIDGE - MH 210


OTTAWA, ONTARIO
DRAWN: BC
CHECKED: N/

ACCEPTABLE FILL MATERIALS: STORMTECH MC-3500 CHAMBER SYSTEMS

	MATERIAL LOCATION	DESCRIPTION	AASHTO MATERIAL CLASSIFICATIONS	COMPACTION / DENSITY REQUIREMENT
D	FINAL FILL: FILL MATERIAL FOR LAYER 'D' STARTS FROM THE TOP OF THE 'C' LAYER TO THE BOTTOM OF FLEXIBLE PAVEMENT OR UNPAVED FINISHED GRADE ABOVE. NOTE THAT PAVEMENT SUBBASE MAY BE PART OF THE 'D' LAYER	ANY SOIL/ROCK MATERIALS, NATIVE SOILS, OR PER ENGINEER'S PLANS. CHECK PLANS FOR PAVEMENT SUBGRADE REQUIREMENTS.	N/A	PREPARE PER SITE DESIGN ENGINEER'S PLANS. PAVED INSTALLATIONS MAY HAVE STRINGENT MATERIAL AND PREPARATION REQUIREMENTS.
С	INITIAL FILL: FILL MATERIAL FOR LAYER 'C' STARTS FROM THE TOP OF THE EMBEDMENT STONE ('B' LAYER) TO 24" (600 mm) ABOVE THE TOP OF THE CHAMBER. NOTE THAT PAVEMENT SUBBASE MAY BE A PART OF THE 'C' LAYER.	GRANULAR WELL-GRADED SOIL/AGGREGATE MIXTURES, <35% FINES OR PROCESSED AGGREGATE. MOST PAVEMENT SUBBASE MATERIALS CAN BE USED IN LIEU OF THIS LAYER.	AASHTO M145 ¹ A-1, A-2-4, A-3 OR AASHTO M43 ¹ 3, 357, 4, 467, 5, 56, 57, 6, 67, 68, 7, 78, 8, 89, 9, 10	BEGIN COMPACTIONS AFTER 24" (600 mm) OF MATERIAL OVER THE CHAMBERS IS REACHED. COMPACT ADDITIONAL LAYERS IN 12" (300 mm) MAX LIFTS TO A MIN. 95% PROCTOR DENSITY FOR WELL GRADED MATERIAL AND 95% RELATIVE DENSITY FOR PROCESSED AGGREGATE MATERIALS.
В	EMBEDMENT STONE: FILL SURROUNDING THE CHAMBERS FROM THE FOUNDATION STONE ('A' LAYER) TO THE 'C' LAYER ABOVE.	CLEAN, CRUSHED, ANGULAR STONE	AASHTO M43 ¹ 3, 4	NO COMPACTION REQUIRED.
А	FOUNDATION STONE: FILL BELOW CHAMBERS FROM THE SUBGRADE UP TO THE FOOT (BOTTOM) OF THE CHAMBER.	CLEAN, CRUSHED, ANGULAR STONE	AASHTO M43 ¹ 3, 4	PLATE COMPACT OR ROLL TO ACHIEVE A FLAT SURFACE. ^{2,3}

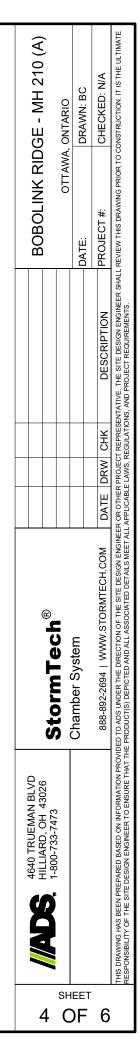
PLEASE NOTE:


- 1. THE LISTED AASHTO DESIGNATIONS ARE FOR GRADATIONS ONLY. THE STONE MUST ALSO BE CLEAN, CRUSHED, ANGULAR. FOR EXAMPLE, A SPECIFICATION FOR #4 STONE WOULD STATE: "CLEAN, CRUSHED, ANGULAR NO. 4 (AASHTO M43) STONE".
- 2. STORMTECH COMPACTION REQUIREMENTS ARE MET FOR 'A' LOCATION MATERIALS WHEN PLACED AND COMPACTED IN 9" (230 mm) (MAX) LIFTS USING TWO FULL COVERAGES WITH A VIBRATORY COMPACTOR.
- 3. WHERE INFILTRATION SURFACES MAY BE COMPROMISED BY COMPACTION, FOR STANDARD DESIGN LOAD CONDITIONS, A FLAT SURFACE MAY BE ACHIEVED BY RAKING OR DRAGGING WITHOUT COMPACTION EQUIPMENT. FOR SPECIAL LOAD DESIGNS, CONTACT STORMTECH FOR COMPACTION REQUIREMENTS.
- 4. ONCE LAYER 'C' IS PLACED, ANY SOIL/MATERIAL CAN BE PLACED IN LAYER 'D' UP TO THE FINISHED GRADE. MOST PAVEMENT SUBBASE SOILS CAN BE USED TO REPLACE THE MATERIAL REQUIREMENTS OF LAYER 'C' OR 'D' AT THE SITE DESIGN ENGINEER'S DISCRETION.

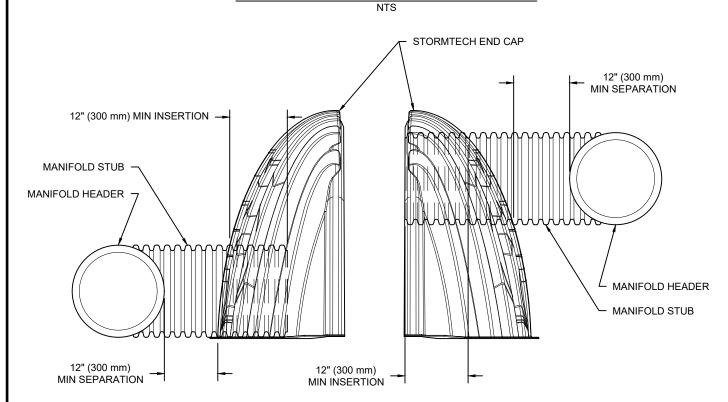
NOTES:

- 1. CHAMBERS SHALL MEET THE REQUIREMENTS OF ASTM F2418-16a, "STANDARD SPECIFICATION FOR POLYPROPYLENE (PP) CORRUGATED WALL STORMWATER COLLECTION CHAMBERS" CHAMBER CLASSIFICATION 45x76 DESIGNATION SS.
- 2. MC-3500 CHAMBERS SHALL BE DESIGNED IN ACCORDANCE WITH ASTM F2787 "STANDARD PRACTICE FOR STRUCTURAL DESIGN OF THERMOPLASTIC CORRUGATED WALL STORMWATER COLLECTION CHAMBERS".
- 3. THE SITE DESIGN ENGINEER IS RESPONSIBLE FOR ASSESSING THE BEARING RESISTANCE (ALLOWABLE BEARING CAPACITY) OF THE SUBGRADE SOILS AND THE DEPTH OF FOUNDATION STONE WITH CONSIDERATION FOR THE RANGE OF EXPECTED SOIL MOISTURE CONDITIONS.
- 4. PERIMETER STONE MUST BE EXTENDED HORIZONTALLY TO THE EXCAVATION WALL FOR BOTH VERTICAL AND SLOPED EXCAVATION WALLS.
- 5. REQUIREMENTS FOR HANDLING AND INSTALLATION:
 - TO MAINTAIN THE WIDTH OF CHAMBERS DURING SHIPPING AND HANDLING, CHAMBERS SHALL HAVE INTEGRAL, INTERLOCKING STACKING LUGS.
 - TO ENSURE A SECURE JOINT DURING INSTALLATION AND BACKFILL, THE HEIGHT OF THE CHAMBER JOINT SHALL NOT BE LESS THAN 3".
 - TO ENSURE THE INTEGRITY OF THE ARCH SHAPE DURING INSTALLATION, a) THE ARCH STIFFNESS CONSTANT AS DEFINED IN SECTION 6.2.8 OF ASTM F2418 SHALL BE GREATER THAN OR EQUAL TO 500 LBS/IN/IN. AND b) TO RESIST CHAMBER DEFORMATION DURING INSTALLATION AT ELEVATED TEMPERATURES (ABOVE 73° F / 23° C), CHAMBERS SHALL BE PRODUCED FROM REFLECTIVE GOLD OR YELLOW COLORS.

	4640 IRUEMAN BLVD	LVD					BOBOLINK RID	BOBOLINK RIDGE - MH 210 (A)
_	1-800-733-7473		Storm Tock®					(· ·)) · · · · · · · · · · · · · · · ·
SH							OTTAWA	OTTAWA, ONTARIO
)F		Chamber System	⁻ System				DATE:	DBAWN BC
:T							- I	DOWN. DO
		888-892-26	888-892-2694 WWW STORMTECH COM	MATE NOW	ZIZ	NOITGIGOSEG	PROJECT #:	CHECKED: N/A
3		220000	034 WWW.STOTMILESTED	אאם שואם	25	DESCRIPTION		
	THIS DRAWING HAS BEEN PREPARED BASED ON INFORMATION PROVIDED TO ADS UNDER THE DIRECTION OF THE SITE DESIGN ENGINEER OR OTHER PROJECT REPRESENTATIVE. THE SITE DESIGN ENGINEMER SHALL REVIEW THIS DRAWING PRIOR TO CONSTRUCTION. IT IS THE ULTIMATE RESPONSIBILITY OF THE SITE DESIGN ENGINEER TO ENSURE THAT THE PRODUCT(S) DEPICTED AND ALL ASSOCIATED DETAILS MEET ALL APPLICABLE LAWS, REGULATIONS, AND PROJECT REQUIREMENTS.	ATION PROVIDED TO ADS UNDER URE THAT THE PRODUCT(S) DEPI	THE DIRECTION OF THE SITE DESIGN ENGINEE ICTED AND ALL ASSOCIATED DETAILS MEET ALI	ER OR OTHER PROJECT .L APPLICABLE LAWS, RE	REPRESENTATIV EGULATIONS, ANI	'E. THE SITE DESIGN ENGINEER SHAI D PROJECT REQUIREMENTS.	L REVIEW THIS DRAWING PRIOR TO C	ONSTRUCTION. IT IS THE ULTIMATE

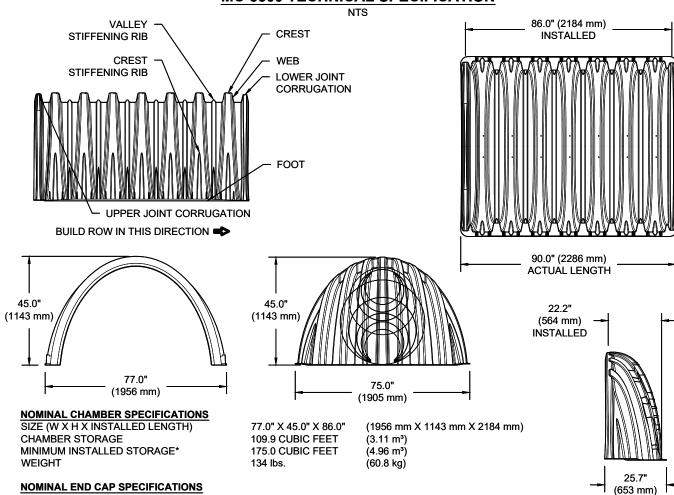

INSPECTION & MAINTENANCE

- INSPECT ISOLATOR ROW PLUS FOR SEDIMENT
 - A. INSPECTION PORTS (IF PRESENT)
 - A.1. REMOVE/OPEN LID ON NYLOPLAST INLINE DRAIN
 - REMOVE AND CLEAN FLEXSTORM FILTER IF INSTALLED
 - USING A FLASHLIGHT AND STADIA ROD, MEASURE DEPTH OF SEDIMENT AND RECORD ON MAINTENANCE LOG LOWER A CAMERA INTO ISOLATOR ROW PLUS FOR VISUAL INSPECTION OF SEDIMENT LEVELS (OPTIONAL)


 - IF SEDIMENT IS AT, OR ABOVE, 3" (80 mm) PROCEED TO STEP 2, IF NOT, PROCEED TO STEP 3.
 - B. ALL ISOLATOR PLUS ROWS
 - REMOVE COVER FROM STRUCTURE AT UPSTREAM END OF ISOLATOR ROW PLUS
 - USING A FLASHLIGHT, INSPECT DOWN THE ISOLATOR ROW PLUS THROUGH OUTLET PIPE
 - i) MIRRORS ON POLES OR CAMERAS MAY BE USED TO AVOID A CONFINED SPACE ENTRY
 - ii) FOLLOW OSHA REGULATIONS FOR CONFINED SPACE ENTRY IF ENTERING MANHOLE
 - IF SEDIMENT IS AT, OR ABOVE, 3" (80 mm) PROCEED TO STEP 2. IF NOT, PROCEED TO STEP 3.
- CLEAN OUT ISOLATOR ROW PLUS USING THE JETVAC PROCESS
 - A. A FIXED CULVERT CLEANING NOZZLE WITH REAR FACING SPREAD OF 45" (1.1 m) OR MORE IS PREFERRED
 - APPLY MULTIPLE PASSES OF JETVAC UNTIL BACKFLUSH WATER IS CLEAN
 - C. VACUUM STRUCTURE SUMP AS REQUIRED
- REPLACE ALL COVERS, GRATES, FILTERS, AND LIDS; RECORD OBSERVATIONS AND ACTIONS.
- INSPECT AND CLEAN BASINS AND MANHOLES UPSTREAM OF THE STORMTECH SYSTEM. STEP 4)

NOTES

- INSPECT EVERY 6 MONTHS DURING THE FIRST YEAR OF OPERATION. ADJUST THE INSPECTION INTERVAL BASED ON PREVIOUS OBSERVATIONS OF SEDIMENT ACCUMULATION AND HIGH WATER ELEVATIONS.
- 2. CONDUCT JETTING AND VACTORING ANNUALLY OR WHEN INSPECTION SHOWS THAT MAINTENANCE IS NECESSARY.



MC-SERIES END CAP INSERTION DETAIL

NOTE: MANIFOLD STUB MUST BE LAID HORIZONTAL FOR A PROPER FIT IN END CAP OPENING.

MC-3500 TECHNICAL SPECIFICATION

(1905 mm X 1143 mm X 564 mm)

(0.42 m³)

(1.28 m³) (22.2 kg)

*ASSUMES 12" (305 mm) STONE ABOVE, 9" (229 mm) STONE FOUNDATION, 6" SPACING BETWEEN CHAMBERS, 6" (152 mm) STONE PERIMETER IN FRONT OF END CAPS AND 40% STONE POROSITY

49 lbs.

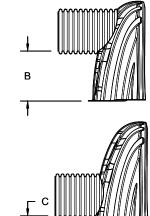
75.0" X 45.0" X 22.2"

14.9 CUBIC FEET

45.1 CUBIC FEET

STUBS AT BOTTOM OF END CAP FOR PART NUMBERS ENDING WITH "B" STUBS AT TOP OF END CAP FOR PART NUMBERS ENDING WITH "T" END CAPS WITH A WELDED CROWN PLATE END WITH "C" END CAPS WITH A PREFABRICATED WELDED STUB END WITH "W"

PART#	STUB	В	C
MC3500IEPP06T	6" (150 mm)	33.21" (844 mm)	
MC3500IEPP06B	0 (150 11111)		0.66" (17 mm)
MC3500IEPP08T	0" (200 mm)	31.16" (791 mm)	
MC3500IEPP08B	8" (200 mm)		0.81" (21 mm)
MC3500IEPP10T	10" (250 mm)	29.04" (738 mm)	
MC3500IEPP10B	10 (250 11111)		0.93" (24 mm)
MC3500IEPP12T	12" (300 mm)	26.36" (670 mm)	
MC3500IEPP12B	12 (300 11111)		1.35" (34 mm)
MC3500IEPP15T	15" (375 mm)	23.39" (594 mm)	
MC3500IEPP15B			1.50" (38 mm)
MC3500IEPP18TC		20.03" (509 mm)	
MC3500IEPP18TW	18" (450 mm)	20.03 (309 11111)	
MC3500IEPP18BC	16 (450 11111)		1 77" (45 mm)
MC3500IEPP18BW			1.77" (45 mm)
MC3500IEPP24TC		14.48" (368 mm)	
MC3500IEPP24TW	24" (600 mm)	14.40 (300 11111)	
MC3500IEPP24BC	24 (000 111111)		2.06" (F2 mm)
MC3500IEPP24BW			2.06" (52 mm)
MC3500IEPP30BC	30" (750 mm)		2.75" (70 mm)

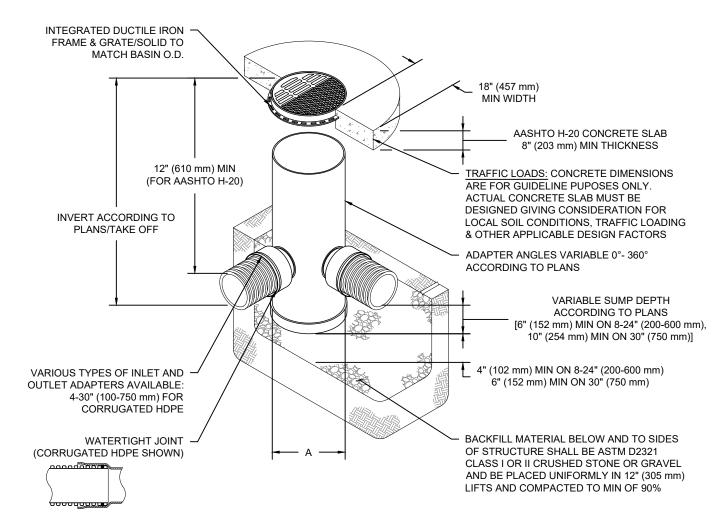

NOTE: ALL DIMENSIONS ARE NOMINAL

SIZE (W X H X INSTALLED LENGTH)

MINIMUM INSTALLED STORAGE*

END CAP STORAGE

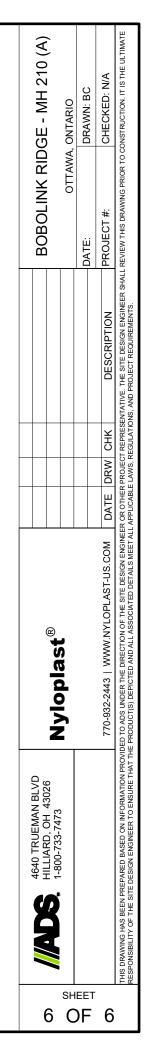
WEIGHT

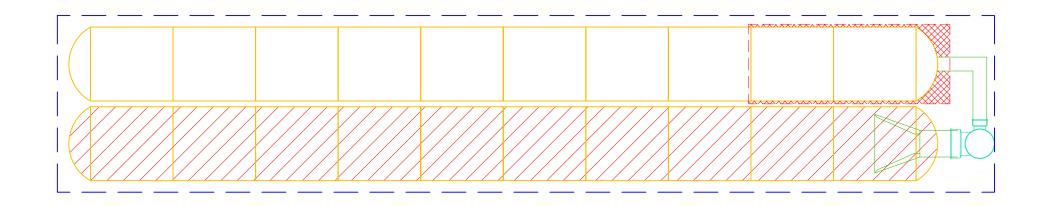

CUSTOM PRECORED INVERTS ARE AVAILABLE UPON REQUEST. INVENTORIED MANIFOLDS INCLUDE 12-24" (300-600 mm) SIZE ON SIZE AND 15-48" (375-1200 mm) ECCENTRIC MANIFOLDS. CUSTOM INVERT LOCATIONS ON THE MC-3500 END CAP CUT IN THE FIELD ARE NOT RECOMMENDED FOR PIPE SIZES GREATER THAN 10" (250 mm). THE INVERT LOCATION IN COLUMN 'B' ARE THE HIGHEST POSSIBLE FOR THE PIPE SIZE.

4640 IRUEMAN BLVD					BOBOLINK RID	BOBOLINK RIDGE - MH 210 (A)
1-800-733-7473	Storm Tech®) ; ; ; ; ;))	- ^ ^)
					OTTAWA	OTTAWA, ONTARIO
	Chamber System				DATE:	DDAWN: BC
					DATE:	DOWN. DO
	MOO HOBENBOLD WANNA NOSC-008-888	L	710	NOITUIGOGLA	PRO IFCT #:	CHECKED: N/A
	000-002-2004 VVVVV.0101NINI E011.00IVI	DAIE	ארט אאר	DESCRIPTION		
DRAWING HAS BEEN PREPARED BASED ON INFORMATION PROV. DNSIBILITY OF THE SITE DESIGN ENGINEER TO ENSURE THAT T	RAWING HAS BEEN PREPARED BASED ON INFORMATION PROVIDED TO ADS UNDER THE DIRECTION OF THE SITE DESIGN ENGINEER OR OTHER PROJECT REPRESENTATIVE. THE SITE DESIGN ENGINEMENTS. NISBILITY OF THE SITE DESIGN ENGINEER TO ENSURE THAT THE PRODUCT(S) DEPICTED AND ALL ASSOCIATED DETAILS MEET ALL APPLICABLE LAWS, REGULATIONS, AND PROJECT REQUIREMENTS.	ER OR OTHER P .L APPLICABLE I	ROJECT REPRESE AWS, REGULATIOI	NTATIVE. THE SITE DESIGN ENGINEER SHAL NS, AND PROJECT REQUIREMENTS.	.L REVIEW THIS DRAWING PRIOR TO (ONSTRUCTION. IT IS THE ULTIMATE

SHEET

5 OF 6


NYLOPLAST DRAIN BASIN



NOTES

- 1. 8-30" (200-750 mm) GRATES/SOLID COVERS SHALL BE DUCTILE IRON PER ASTM A536 GRADE 70-50-05
- 12-30" (300-750 mm) FRAMES SHALL BE DUCTILE IRON PER ASTM A536 GRADE 70-50-05 DRAIN BASIN TO BE CUSTOM MANUFACTURED ACCORDING TO PLAN DETAILS
- DRAINAGE CONNECTION STUB JOINT TIGHTNESS SHALL CONFORM TO ASTM D3212 FOR CORRUGATED HDPE (ADS & HANCOR DUAL WALL) & SDR 35 PVC
- FOR COMPLETE DESIGN AND PRODUCT INFORMATION: WWW.NYLOPLAST-US.COM
- 6. TO ORDER CALL: 800-821-6710

Α	PART#	GRATE/S	SOLID COVER (OPTIONS
8" (200 mm)	2808AG	PEDESTRIAN LIGHT DUTY	STANDARD LIGHT DUTY	SOLID LIGHT DUTY
10" (250 mm)	2810AG	PEDESTRIAN LIGHT DUTY	STANDARD LIGHT DUTY	SOLID LIGHT DUTY
12"	2812AG	PEDESTRIAN	STANDARD AASHTO	SOLID
(300 mm)		AASHTO H-10	H-20	AASHTO H-20
15"	2815AG	PEDESTRIAN	STANDARD AASHTO	SOLID
(375 mm)		AASHTO H-10	H-20	AASHTO H-20
18"	2818AG	PEDESTRIAN	STANDARD AASHTO	SOLID
(450 mm)		AASHTO H-10	H-20	AASHTO H-20
24"	2824AG	PEDESTRIAN	STANDARD AASHTO	SOLID
(600 mm)		AASHTO H-10	H-20	AASHTO H-20
30"	2830AG	PEDESTRIAN	STANDARD AASHTO	SOLID
(750 mm)		AASHTO H-20	H-20	AASHTO H-20

PROJEC	CT INFORMATION
ENGINEERED PRODUCT MANAGER	
ADS SALES REP	
PROJECT NO.	

SiteASSIST FOR STORMTECH INSTRUCTIONS, DOWNLOAD THE INSTALLATION APP

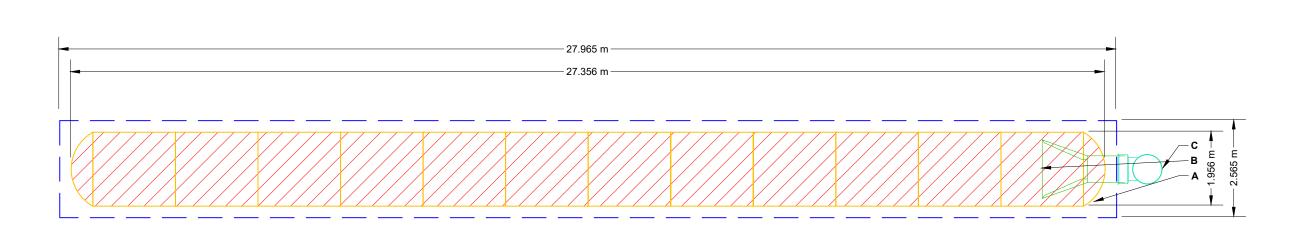
BOBOLINK RIDGE - MH 210 (B) OTTAWA, ONTARIO

MC-3500 STORMTECH CHAMBER SPECIFICATIONS

- CHAMBERS SHALL BE STORMTECH MC-3500.
- 2. CHAMBERS SHALL BE ARCH-SHAPED AND SHALL BE MANUFACTURED FROM VIRGIN, IMPACT-MODIFIED POLYPROPYLENE
- 3. CHAMBERS SHALL BE CERTIFIED TO CSA B184, "POLYMERIC SUB-SURFACE STORMWATER MANAGEMENT STRUCTURES", AND MEET THE REQUIREMENTS OF ASTM F2418-16a, "STANDARD SPECIFICATION FOR POLYPROPYLENE (PP) CORRUGATED WALL STORMWATER COLLECTION CHAMBERS" CHAMBER CLASSIFICATION 45x76 DESIGNATION SS.
- 4. CHAMBER ROWS SHALL PROVIDE CONTINUOUS, UNOBSTRUCTED INTERNAL SPACE WITH NO INTERNAL SUPPORTS THAT WOULD IMPEDE FLOW OR LIMIT ACCESS FOR INSPECTION.
- 5. THE STRUCTURAL DESIGN OF THE CHAMBERS, THE STRUCTURAL BACKFILL, AND THE INSTALLATION REQUIREMENTS SHALL ENSURE THAT THE LOAD FACTORS SPECIFIED IN THE AASHTO LRFD BRIDGE DESIGN SPECIFICATIONS, SECTION 12.12, ARE MET FOR: 1) LONG-DURATION DEAD LOADS AND 2) SHORT-DURATION LIVE LOADS, BASED ON THE CSA S6 CL-625 TRUCK AND THE AASHTO DESIGN TRUCK WITH CONSIDERATION FOR IMPACT AND MULTIPLE VEHICLE PRESENCES.
- 6. CHAMBERS SHALL BE DESIGNED, TESTED AND ALLOWABLE LOAD CONFIGURATIONS DETERMINED IN ACCORDANCE WITH ASTM F2787, "STANDARD PRACTICE FOR STRUCTURAL DESIGN OF THERMOPLASTIC CORRUGATED WALL STORMWATER COLLECTION CHAMBERS". LOAD CONFIGURATIONS SHALL INCLUDE: 1) INSTANTANEOUS (<1 MIN) AASHTO DESIGN TRUCK LIVE LOAD ON MINIMUM COVER 2) MAXIMUM PERMANENT (75-YR) COVER LOAD AND 3) ALLOWABLE COVER WITH PARKED (1-WEEK) AASHTO DESIGN TRUCK.
- 7. REQUIREMENTS FOR HANDLING AND INSTALLATION:
 - TO MAINTAIN THE WIDTH OF CHAMBERS DURING SHIPPING AND HANDLING, CHAMBERS SHALL HAVE INTEGRAL, INTERLOCKING STACKING LUGS.
 - TO ENSURE A SECURE JOINT DURING INSTALLATION AND BACKFILL, THE HEIGHT OF THE CHAMBER JOINT SHALL NOT BE LESS THAN 75 mm (3")
 - TO ENSURE THE INTEGRITY OF THE ARCH SHAPE DURING INSTALLATION, a) THE ARCH STIFFNESS CONSTANT AS DEFINED IN SECTION 6.2.8 OF ASTM F2418 SHALL BE GREATER THAN OR EQUAL TO 500 LBS/IN/IN. AND b) TO RESIST CHAMBER DEFORMATION DURING INSTALLATION AT ELEVATED TEMPERATURES (ABOVE 23° C / 73° F), CHAMBERS SHALL BE PRODUCED FROM REFLECTIVE GOLD OR YELLOW COLORS.
- 8. ONLY CHAMBERS THAT ARE APPROVED BY THE SITE DESIGN ENGINEER WILL BE ALLOWED. UPON REQUEST BY THE SITE DESIGN ENGINEER OR OWNER, THE CHAMBER MANUFACTURER SHALL SUBMIT A STRUCTURAL EVALUATION FOR APPROVAL BEFORE DELIVERING CHAMBERS TO THE PROJECT SITE AS FOLLOWS:
 - THE STRUCTURAL EVALUATION SHALL BE SEALED BY A REGISTERED PROFESSIONAL ENGINEER.
 - THE STRUCTURAL EVALUATION SHALL DEMONSTRATE THAT THE SAFETY FACTORS ARE GREATER THAN OR EQUAL TO 1.95 FOR DEAD LOAD AND 1.75 FOR LIVE LOAD, THE MINIMUM REQUIRED BY ASTM F2787 AND BY SECTIONS 3 AND 12.12 OF THE AASHTO LRFD BRIDGE DESIGN SPECIFICATIONS FOR THERMOPLASTIC PIPE.
 - THE TEST DERIVED CREEP MODULUS AS SPECIFIED IN ASTM F2418 SHALL BE USED FOR PERMANENT DEAD LOAD DESIGN EXCEPT THAT IT SHALL BE THE 75-YEAR MODULUS USED FOR DESIGN.
- 9. CHAMBERS AND END CAPS SHALL BE PRODUCED AT AN ISO 9001 CERTIFIED MANUFACTURING FACILITY.

IMPORTANT - NOTES FOR THE BIDDING AND INSTALLATION OF MC-3500 CHAMBER SYSTEM

- 1. STORMTECH MC-3500 CHAMBERS SHALL NOT BE INSTALLED UNTIL THE MANUFACTURER'S REPRESENTATIVE HAS COMPLETED A PRE-CONSTRUCTION MEETING WITH THE INSTALLERS.
- 2. STORMTECH MC-3500 CHAMBERS SHALL BE INSTALLED IN ACCORDANCE WITH THE "STORMTECH MC-3500/MC-4500 CONSTRUCTION GUIDE".
- 3. CHAMBERS ARE NOT TO BE BACKFILLED WITH A DOZER OR AN EXCAVATOR SITUATED OVER THE CHAMBERS. STORMTECH RECOMMENDS 3 BACKFILL METHODS:
 - STONESHOOTER LOCATED OFF THE CHAMBER BED.
 - BACKFILL AS ROWS ARE BUILT USING AN EXCAVATOR ON THE FOUNDATION STONE OR SUBGRADE.
 - BACKFILL FROM OUTSIDE THE EXCAVATION USING A LONG BOOM HOE OR EXCAVATOR.
- 4. THE FOUNDATION STONE SHALL BE LEVELED AND COMPACTED PRIOR TO PLACING CHAMBERS.
- 5. JOINTS BETWEEN CHAMBERS SHALL BE PROPERLY SEATED PRIOR TO PLACING STONE.
- 6. MAINTAIN MINIMUM 150 mm (6") SPACING BETWEEN THE CHAMBER ROWS.
- 7. INLET AND OUTLET MANIFOLDS MUST BE INSERTED A MINIMUM OF 300 mm (12") INTO CHAMBER END CAPS.
- 8. EMBEDMENT STONE SURROUNDING CHAMBERS MUST BE A CLEAN, CRUSHED, ANGULAR STONE WELL GRADED BETWEEN 3/4" AND 2" (20-50 mm).
- 9. STONE MUST BE PLACED ON THE TOP CENTER OF THE CHAMBER TO ANCHOR THE CHAMBERS IN PLACE AND PRESERVE ROW SPACING.
- 10. THE CONTRACTOR MUST REPORT ANY DISCREPANCIES WITH CHAMBER FOUNDATION MATERIALS BEARING CAPACITIES TO THE SITE DESIGN ENGINEER
- 11. ADS RECOMMENDS THE USE OF "FLEXSTORM CATCH IT" INSERTS DURING CONSTRUCTION FOR ALL INLETS TO PROTECT THE SUBSURFACE STORMWATER MANAGEMENT SYSTEM FROM CONSTRUCTION SITE RUNOFF.


NOTES FOR CONSTRUCTION EQUIPMENT

- 1. STORMTECH MC-3500 CHAMBERS SHALL BE INSTALLED IN ACCORDANCE WITH THE "STORMTECH MC-3500/MC-4500 CONSTRUCTION GUIDE".
- . THE USE OF EQUIPMENT OVER MC-3500 CHAMBERS IS LIMITED:
 - NO EQUIPMENT IS ALLOWED ON BARE CHAMBERS.
 - NO RUBBER TIRED LOADER, DUMP TRUCK, OR EXCAVATORS ARE ALLOWED UNTIL PROPER FILL DEPTHS ARE REACHED IN ACCORDANCE WITH THE "STORMTECH MC-3500/MC-4500 CONSTRUCTION GUIDE".
 - WEIGHT LIMITS FOR CONSTRUCTION EQUIPMENT CAN BE FOUND IN THE "STORMTECH MC-3500/MC-4500 CONSTRUCTION GUIDE".
- 3. FULL 900 mm (36") OF STABILIZED COVER MATERIALS OVER THE CHAMBERS IS REQUIRED FOR DUMP TRUCK TRAVEL OR DUMPING.

USE OF A DOZER TO PUSH EMBEDMENT STONE BETWEEN THE ROWS OF CHAMBERS MAY CAUSE DAMAGE TO CHAMBERS AND IS NOT AN ACCEPTABLE BACKFILL METHOD. ANY CHAMBERS DAMAGED BY USING THE "DUMP AND PUSH" METHOD ARE NOT COVERED UNDER THE STORMTECH STANDARD WARRANTY.

CONTACT STORMTECH AT 1-888-892-2694 WITH ANY QUESTIONS ON INSTALLATION REQUIREMENTS OR WEIGHT LIMITS FOR CONSTRUCTION EQUIPMENT.

	PROPOSED LAYOUT	CONCEPTUAL ELEVATIONS					ABOVE BAS	E OF CHAMBER
12	STORMTECH MC-3500 CHAMBERS	MAXIMUM ALLOWABLE GRADE (TOP OF PAVEMENT/UNPAVED):	3.810	PART TYPE	ITEM ON	DESCRIPTION	INVERT*	MAX FLOW
305	STORMTECH MC-3500 END CAPS STONE ABOVE (mm)	MINIMUM ALLOWABLE GRADE (UNPAVED WITH TRAFFIC): MINIMUM ALLOWABLE GRADE (UNPAVED NO TRAFFIC):	1.981 1.829	PREFABRICATED END CAP		600 mm BOTTOM CORED END CAP, PART#: MC3500IEPP24BC / TYP OF ALL 600 mm BOTTOM	52 mm	
229	STONE BELOW (mm) STONE VOID	MINIMUM ALLOWABLE GRADE (TOP OF RIGID CONCRÉTE PAVEMENT): MINIMUM ALLOWABLE GRADE (BASE OF FLEXIBLE PAVEMENT):	1.829	FLAMP	В	CONNECTIONS AND ISOLATOR PLUS ROWS INSTALL FLAMP ON 600 mm ACCESS PIPE / PART#: MC350024RAMP (TYP 2 PLACES)		
40	INSTALLED SYSTEM VOLUME (m ²)	TOP OF STONE:	1.676	NYLOPLAST (INLET W/ ISO PLUS ROW)	С	750 mm DIAMETER (610 mm SUMP MIN)		
71.0	(PERIMETER STONE INCLUDED) (COVER STONE INCLUDED)	TOP OF MC-3500 CHAMBER: 600 mm ISOLATOR ROW PLUS INVERT:	0.281	. 200				
71.7	(BASE STONE INCLUDED) SYSTEM AREA (m)	BOTTOM OF MC-3500 CHAMBER: BOTTOM OF STONE:	0.229 0.000					
61.1	SYSTEM PERIMÈTÉR (m)			•				

ISOLATOR ROW PLUS (SEE DETAIL) NO WOVEN GEOTEXTILE

BED LIMITS

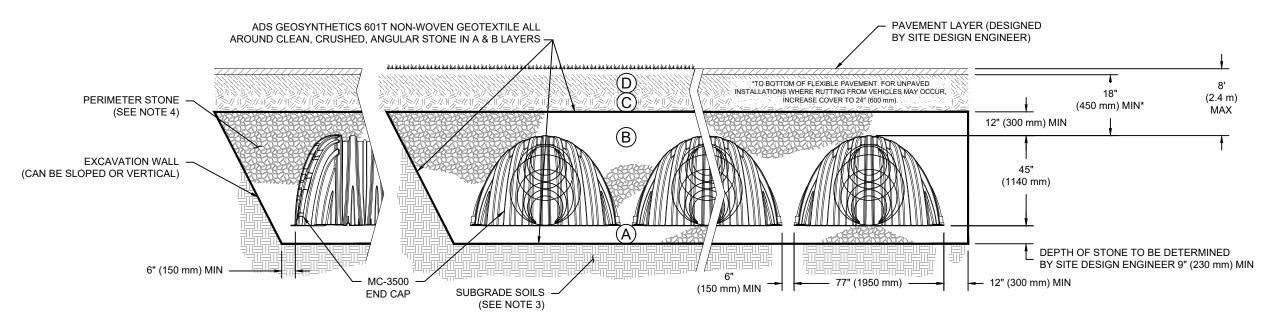
NOTES

MANIFOLD SIZE TO BE DETERMINED BY SITE DESIGN ENGINEER. SEE TECH NOTE #6.32 FOR MANIFOLD SIZING GUIDANCE.
DUE TO THE ADAPTATION OF THIS CHAMBER SYSTEM TO SPECIFIC SITE AND DESIGN CONSTRAINTS, IT MAY BE NECESSARY TO CUT AND COUPLE ADDITIONAL PIPE TO STANDARD MANIFOLD COMPONENTS IN THE FIELD.
THE SITE DESIGN ENGINEER MUST REVIEW ELEVATIONS AND IF NECESSARY ADJUST GRADING TO ENSURE THE CHAMBER COVER REQUIREMENTS ARE MET.
THIS CHAMBER SYSTEM WAS DESIGNED WITHOUT SITE-SPECIFIC INFORMATION ON SOIL CONDITIONS OR BEARING CAPACITY. THE SITE DESIGN ENGINEER IS RESPONSIBLE FOR DETERMINING
THE SUITABILITY OF THE SOIL AND PROVIDING THE BEARING CAPACITY OF THE INSITU SOILS. THE BASE STONE DEPTH MAY BE INCREASED OR DECREASED ONCE THIS INFORMATION IS PROVIDED.

NOT FOR CONSTRUCTION: THIS LAYOUT IS FOR DIMENSIONAL PURPOSES ONLY TO PROVE CONCEPT & THE REQUIRED STORAGE VOLUME CAN BE ACHIEVED ON SITE.

BOBOLINK RIDGE - MH 210 OTTAWA, ONTARIO
DRAWN: BC
CHECKED: N/ DRW **StormTech**® Chamber System 4640 TRUEMAN BLVD HILLIARD, OH 43026 1-800-733-7473 100 Ш SCALE SHEET

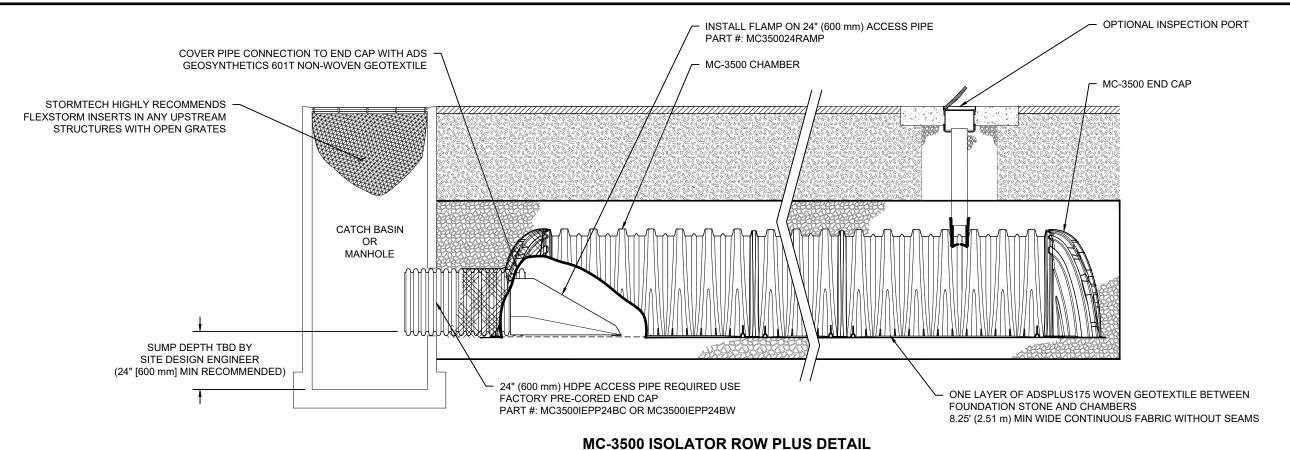
2 OF 6


 $\widehat{\mathbf{B}}$

ACCEPTABLE FILL MATERIALS: STORMTECH MC-3500 CHAMBER SYSTEMS

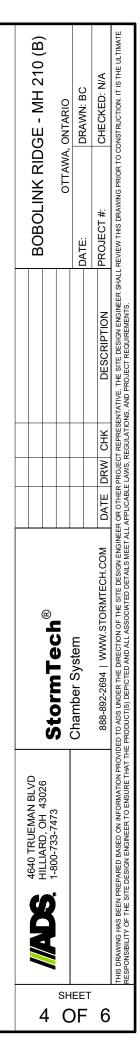
	MATERIAL LOCATION	DESCRIPTION	AASHTO MATERIAL CLASSIFICATIONS	COMPACTION / DENSITY REQUIREMENT
D	FINAL FILL: FILL MATERIAL FOR LAYER 'D' STARTS FROM THE TOP OF THE 'C' LAYER TO THE BOTTOM OF FLEXIBLE PAVEMENT OR UNPAVED FINISHED GRADE ABOVE. NOTE THAT PAVEMENT SUBBASE MAY BE PART OF THE 'D' LAYER	ANY SOIL/ROCK MATERIALS, NATIVE SOILS, OR PER ENGINEER'S PLANS. CHECK PLANS FOR PAVEMENT SUBGRADE REQUIREMENTS.	N/A	PREPARE PER SITE DESIGN ENGINEER'S PLANS. PAVED INSTALLATIONS MAY HAVE STRINGENT MATERIAL AND PREPARATION REQUIREMENTS.
С	INITIAL FILL: FILL MATERIAL FOR LAYER 'C' STARTS FROM THE TOP OF THE EMBEDMENT STONE ('B' LAYER) TO 24" (600 mm) ABOVE THE TOP OF THE CHAMBER. NOTE THAT PAVEMENT SUBBASE MAY BE A PART OF THE 'C' LAYER.	GRANULAR WELL-GRADED SOIL/AGGREGATE MIXTURES, <35% FINES OR PROCESSED AGGREGATE. MOST PAVEMENT SUBBASE MATERIALS CAN BE USED IN LIEU OF THIS LAYER.	AASHTO M145 ¹ A-1, A-2-4, A-3 OR AASHTO M43 ¹ 3, 357, 4, 467, 5, 56, 57, 6, 67, 68, 7, 78, 8, 89, 9, 10	BEGIN COMPACTIONS AFTER 24" (600 mm) OF MATERIAL OVER THE CHAMBERS IS REACHED. COMPACT ADDITIONAL LAYERS IN 12" (300 mm) MAX LIFTS TO A MIN. 95% PROCTOR DENSITY FOR WELL GRADED MATERIAL AND 95% RELATIVE DENSITY FOR PROCESSED AGGREGATE MATERIALS.
В	EMBEDMENT STONE: FILL SURROUNDING THE CHAMBERS FROM THE FOUNDATION STONE ('A' LAYER) TO THE 'C' LAYER ABOVE.	CLEAN, CRUSHED, ANGULAR STONE	AASHTO M43¹ 3, 4	NO COMPACTION REQUIRED.
А	FOUNDATION STONE: FILL BELOW CHAMBERS FROM THE SUBGRADE UP TO THE FOOT (BOTTOM) OF THE CHAMBER.	CLEAN, CRUSHED, ANGULAR STONE	AASHTO M43¹ 3, 4	PLATE COMPACT OR ROLL TO ACHIEVE A FLAT SURFACE. ^{2,3}

PLEASE NOTE:

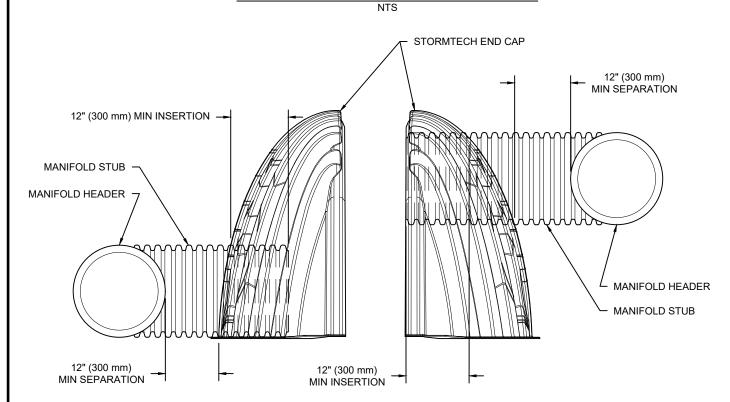

- 1. THE LISTED AASHTO DESIGNATIONS ARE FOR GRADATIONS ONLY. THE STONE MUST ALSO BE CLEAN, CRUSHED, ANGULAR. FOR EXAMPLE, A SPECIFICATION FOR #4 STONE WOULD STATE: "CLEAN, CRUSHED, ANGULAR NO. 4 (AASHTO M43) STONE".
- 2. STORMTECH COMPACTION REQUIREMENTS ARE MET FOR 'A' LOCATION MATERIALS WHEN PLACED AND COMPACTED IN 9" (230 mm) (MAX) LIFTS USING TWO FULL COVERAGES WITH A VIBRATORY COMPACTOR.
- 3. WHERE INFILTRATION SURFACES MAY BE COMPROMISED BY COMPACTION, FOR STANDARD DESIGN LOAD CONDITIONS, A FLAT SURFACE MAY BE ACHIEVED BY RAKING OR DRAGGING WITHOUT COMPACTION EQUIPMENT. FOR SPECIAL LOAD DESIGNS, CONTACT STORMTECH FOR COMPACTION REQUIREMENTS.
- 4. ONCE LAYER 'C' IS PLACED, ANY SOIL/MATERIAL CAN BE PLACED IN LAYER 'D' UP TO THE FINISHED GRADE. MOST PAVEMENT SUBBASE SOILS CAN BE USED TO REPLACE THE MATERIAL REQUIREMENTS OF LAYER 'C' OR 'D' AT THE SITE DESIGN ENGINEER'S DISCRETION.

NOTES:

- 1. CHAMBERS SHALL MEET THE REQUIREMENTS OF ASTM F2418-16a, "STANDARD SPECIFICATION FOR POLYPROPYLENE (PP) CORRUGATED WALL STORMWATER COLLECTION CHAMBERS" CHAMBER CLASSIFICATION 45x76 DESIGNATION SS.
- 2. MC-3500 CHAMBERS SHALL BE DESIGNED IN ACCORDANCE WITH ASTM F2787 "STANDARD PRACTICE FOR STRUCTURAL DESIGN OF THERMOPLASTIC CORRUGATED WALL STORMWATER COLLECTION CHAMBERS".
- 3. THE SITE DESIGN ENGINEER IS RESPONSIBLE FOR ASSESSING THE BEARING RESISTANCE (ALLOWABLE BEARING CAPACITY) OF THE SUBGRADE SOILS AND THE DEPTH OF FOUNDATION STONE WITH CONSIDERATION FOR THE RANGE OF EXPECTED SOIL MOISTURE CONDITIONS.
- 4. PERIMETER STONE MUST BE EXTENDED HORIZONTALLY TO THE EXCAVATION WALL FOR BOTH VERTICAL AND SLOPED EXCAVATION WALLS.
- 5. REQUIREMENTS FOR HANDLING AND INSTALLATION:
 - TO MAINTAIN THE WIDTH OF CHAMBERS DURING SHIPPING AND HANDLING, CHAMBERS SHALL HAVE INTEGRAL, INTERLOCKING STACKING LUGS.
 - TO ENSURE A SECURE JOINT DURING INSTALLATION AND BACKFILL, THE HEIGHT OF THE CHAMBER JOINT SHALL NOT BE LESS THAN 3".
 - TO ENSURE THE INTEGRITY OF THE ARCH SHAPE DURING INSTALLATION, a) THE ARCH STIFFNESS CONSTANT AS DEFINED IN SECTION 6.2.8 OF ASTM F2418 SHALL BE GREATER THAN OR EQUAL TO 500 LBS/IN/IN. AND b) TO RESIST CHAMBER DEFORMATION DURING INSTALLATION AT ELEVATED TEMPERATURES (ABOVE 73° F / 23° C), CHAMBERS SHALL BE PRODUCED FROM REFLECTIVE GOLD OR YELLOW COLORS.

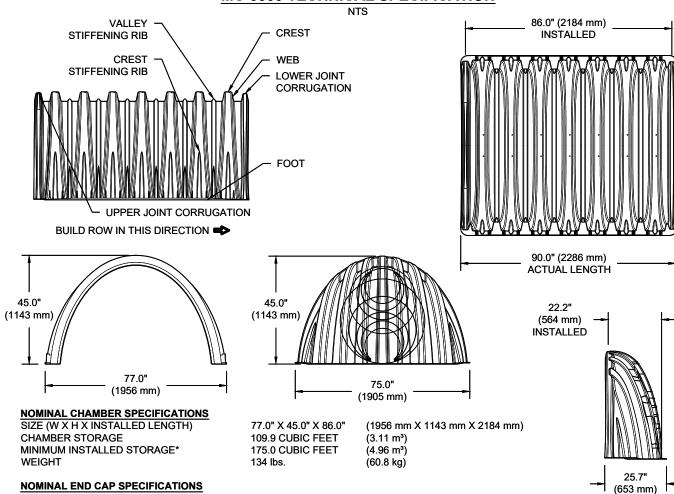

INSPECTION & MAINTENANCE

- INSPECT ISOLATOR ROW PLUS FOR SEDIMENT
 - A. INSPECTION PORTS (IF PRESENT)
 - A.1. REMOVE/OPEN LID ON NYLOPLAST INLINE DRAIN
 - REMOVE AND CLEAN FLEXSTORM FILTER IF INSTALLED
 - USING A FLASHLIGHT AND STADIA ROD, MEASURE DEPTH OF SEDIMENT AND RECORD ON MAINTENANCE LOG LOWER A CAMERA INTO ISOLATOR ROW PLUS FOR VISUAL INSPECTION OF SEDIMENT LEVELS (OPTIONAL)


 - IF SEDIMENT IS AT, OR ABOVE, 3" (80 mm) PROCEED TO STEP 2, IF NOT, PROCEED TO STEP 3.
 - B. ALL ISOLATOR PLUS ROWS
 - REMOVE COVER FROM STRUCTURE AT UPSTREAM END OF ISOLATOR ROW PLUS
 - USING A FLASHLIGHT, INSPECT DOWN THE ISOLATOR ROW PLUS THROUGH OUTLET PIPE
 - i) MIRRORS ON POLES OR CAMERAS MAY BE USED TO AVOID A CONFINED SPACE ENTRY
 - ii) FOLLOW OSHA REGULATIONS FOR CONFINED SPACE ENTRY IF ENTERING MANHOLE
 - IF SEDIMENT IS AT, OR ABOVE, 3" (80 mm) PROCEED TO STEP 2. IF NOT, PROCEED TO STEP 3.
- CLEAN OUT ISOLATOR ROW PLUS USING THE JETVAC PROCESS
 - A. A FIXED CULVERT CLEANING NOZZLE WITH REAR FACING SPREAD OF 45" (1.1 m) OR MORE IS PREFERRED
 - APPLY MULTIPLE PASSES OF JETVAC UNTIL BACKFLUSH WATER IS CLEAN
 - C. VACUUM STRUCTURE SUMP AS REQUIRED
- REPLACE ALL COVERS, GRATES, FILTERS, AND LIDS; RECORD OBSERVATIONS AND ACTIONS.
- INSPECT AND CLEAN BASINS AND MANHOLES UPSTREAM OF THE STORMTECH SYSTEM. STEP 4)

NOTES

- INSPECT EVERY 6 MONTHS DURING THE FIRST YEAR OF OPERATION. ADJUST THE INSPECTION INTERVAL BASED ON PREVIOUS OBSERVATIONS OF SEDIMENT ACCUMULATION AND HIGH WATER ELEVATIONS.
- 2. CONDUCT JETTING AND VACTORING ANNUALLY OR WHEN INSPECTION SHOWS THAT MAINTENANCE IS NECESSARY.



MC-SERIES END CAP INSERTION DETAIL

NOTE: MANIFOLD STUB MUST BE LAID HORIZONTAL FOR A PROPER FIT IN END CAP OPENING.

MC-3500 TECHNICAL SPECIFICATION

(1905 mm X 1143 mm X 564 mm)

(0.42 m³)

(1.28 m³) (22.2 kg)

*ASSUMES 12" (305 mm) STONE ABOVE, 9" (229 mm) STONE FOUNDATION, 6" SPACING BETWEEN CHAMBERS, 6" (152 mm) STONE PERIMETER IN FRONT OF END CAPS AND 40% STONE POROSITY

49 lbs.

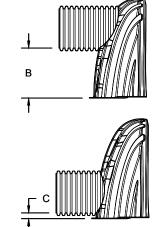
75.0" X 45.0" X 22.2"

14.9 CUBIC FEET

45.1 CUBIC FEET

STUBS AT BOTTOM OF END CAP FOR PART NUMBERS ENDING WITH "B" STUBS AT TOP OF END CAP FOR PART NUMBERS ENDING WITH "T" END CAPS WITH A WELDED CROWN PLATE END WITH "C" FND CAPS WITH A PREFABRICATED WELDED STUB END WITH "W"

PART#	STUB	В	С
MC3500IEPP06T	6" (150 mm)	33.21" (844 mm)	
MC3500IEPP06B	6" (150 mm)		0.66" (17 mm)
MC3500IEPP08T	8" (200 mm)	31.16" (791 mm)	
MC3500IEPP08B			0.81" (21 mm)
MC3500IEPP10T	10" (250 mm)	29.04" (738 mm)	
MC3500IEPP10B	10 (230 11111)		0.93" (24 mm)
MC3500IEPP12T	12" (300 mm)	26.36" (670 mm)	
MC3500IEPP12B	12 (300 11111)		1.35" (34 mm)
MC3500IEPP15T	- 15" (375 mm)	23.39" (594 mm)	
MC3500IEPP15B			1.50" (38 mm)
MC3500IEPP18TC		20.03" (509 mm)	
MC3500IEPP18TW	18" (450 mm)	20.03 (309 11111)	
MC3500IEPP18BC	10 (430 11111)		1.77" (45 mm)
MC3500IEPP18BW			1.77 (43 11111)
MC3500IEPP24TC		14.48" (368 mm)	
MC3500IEPP24TW	24" (600 mm)	17.70 (300 11111)	
MC3500IEPP24BC	24 (000 11111)		2.06" (52 mm)
MC3500IEPP24BW			2.00 (32 11111)
MC3500IEPP30BC	30" (750 mm)		2.75" (70 mm)

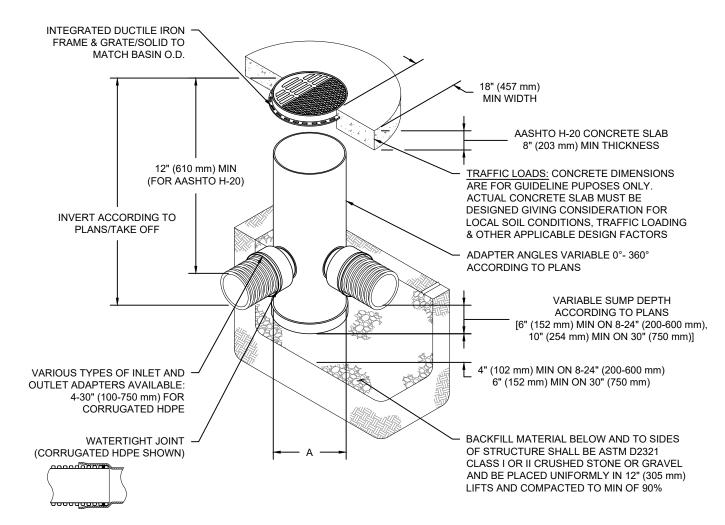

NOTE: ALL DIMENSIONS ARE NOMINAL

SIZE (W X H X INSTALLED LENGTH)

MINIMUM INSTALLED STORAGE*

END CAP STORAGE

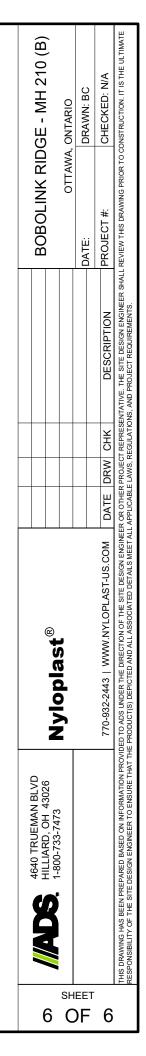
WEIGHT

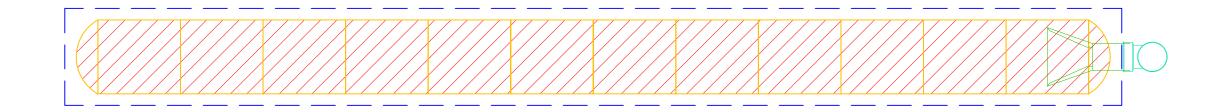

CUSTOM PRECORED INVERTS ARE AVAILABLE UPON REQUEST. INVENTORIED MANIFOLDS INCLUDE 12-24" (300-600 mm) SIZE ON SIZE AND 15-48" (375-1200 mm) ECCENTRIC MANIFOLDS. CUSTOM INVERT LOCATIONS ON THE MC-3500 END CAP CUT IN THE FIELD ARE NOT RECOMMENDED FOR PIPE SIZES GREATER THAN 10" (250 mm). THE INVERT LOCATION IN COLUMN 'B' ARE THE HIGHEST POSSIBLE FOR THE PIPE SIZE.

	BOBOLINK RIDGE - MH 210 (B)	(1))	OTTAWA, ONTARIO	DBAWN BC	Signal.		CHECKED: N/A	CONSTRUCTION. IT IS THE ULTIMATE
	BOBOLINK RIL) ; ;))	OTTAWA	DATE:		: HOL	PROJECT #:	LL REVIEW THIS DRAWING PRIOR TO
							DESCRIPTION	IVE. THE SITE DESIGN ENGINEER SHA ND PROJECT REQUIREMENTS.
							DATE DRW CHK	R OR OTHER PROJECT REPRESENTAT APPLICABLE LAWS, REGULATIONS, AI
		Storm Tock®		Chamber System			888-892-2694 WWW.STORMTECH.COM	HE SITE DESIGN ENCRMATION PROVIDED TO ADS UNDER THE DIRECTION OF THE SITE DESIGN ENGINEER OR OTHER PROJECT REPRESENTATIVE. THE SITE DESIGN ENGINEER SHALL REVIEW THIS DRAWING PRIOR TO CONSTRUCTION. IT IS THE ULTIMATE OF THE SITE DESIGN ENGINEER TO ENSURE THAT THE PRODUCT(S) DEPICTED AND ALL ASSOCIATED DETALL APPLICABLE LAWS, REGULATIONS, AND PROJECT REQUIREMENTS.
!	4640 TRUEMAN BLVD	1-800-733-7473						RAWING HAS BEEN PREPARED BASED ON INFORMATION PROVID INSIBILITY OF THE SITE DESIGN ENGINEER TO ENSURE THAT THE

SHEET

5 OF 6


NYLOPLAST DRAIN BASIN



NOTES

- 1. 8-30" (200-750 mm) GRATES/SOLID COVERS SHALL BE DUCTILE IRON PER ASTM A536 GRADE 70-50-05
- 12-30" (300-750 mm) FRAMES SHALL BE DUCTILE IRON PER ASTM A536 GRADE 70-50-05 DRAIN BASIN TO BE CUSTOM MANUFACTURED ACCORDING TO PLAN DETAILS
- DRAINAGE CONNECTION STUB JOINT TIGHTNESS SHALL CONFORM TO ASTM D3212 FOR CORRUGATED HDPE (ADS & HANCOR DUAL WALL) & SDR 35 PVC
- FOR COMPLETE DESIGN AND PRODUCT INFORMATION: WWW.NYLOPLAST-US.COM
- 6. TO ORDER CALL: 800-821-6710

Α	PART#	GRATE/S	GRATE/SOLID COVER OPTIONS					
8" (200 mm)	2808AG	PEDESTRIAN LIGHT DUTY	STANDARD LIGHT DUTY	SOLID LIGHT DUTY				
10" (250 mm)	2810AG	PEDESTRIAN LIGHT DUTY	STANDARD LIGHT DUTY	SOLID LIGHT DUTY				
12"	2812AG	PEDESTRIAN	STANDARD AASHTO	SOLID				
(300 mm)		AASHTO H-10	H-20	AASHTO H-20				
15"	2815AG	PEDESTRIAN	STANDARD AASHTO	SOLID				
(375 mm)		AASHTO H-10	H-20	AASHTO H-20				
18"	2818AG	PEDESTRIAN	STANDARD AASHTO	SOLID				
(450 mm)		AASHTO H-10	H-20	AASHTO H-20				
24"	2824AG	PEDESTRIAN	STANDARD AASHTO	SOLID				
(600 mm)		AASHTO H-10	H-20	AASHTO H-20				
30"	2830AG	PEDESTRIAN	STANDARD AASHTO	SOLID				
(750 mm)		AASHTO H-20	H-20	AASHTO H-20				

PROJEC	CT INFORMATION
ENGINEERED PRODUCT MANAGER	
ADS SALES REP	
PROJECT NO.	

SiteASSIST FOR STORMTECH INSTRUCTIONS, DOWNLOAD THE INSTALLATION APP

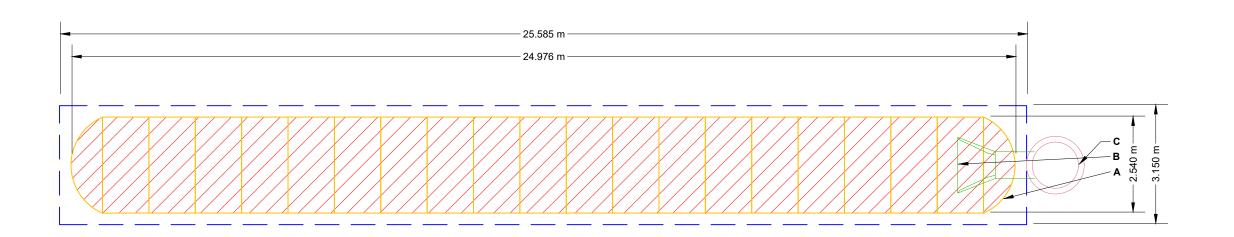
BOBOLINK RIDGE - MH 107 OTTAWA, ONTARIO

MC-4500 STORMTECH CHAMBER SPECIFICATIONS

- 1. CHAMBERS SHALL BE STORMTECH MC-4500.
- 2. CHAMBERS SHALL BE ARCH-SHAPED AND SHALL BE MANUFACTURED FROM VIRGIN, IMPACT-MODIFIED POLYPROPYLENE COPOLYMERS.
- 3. CHAMBERS SHALL BE CERTIFIED TO CSA B184, "POLYMERIC SUB-SURFACE STORMWATER MANAGEMENT STRUCTURES", AND MEET THE REQUIREMENTS OF ASTM F2418-16a, "STANDARD SPECIFICATION FOR POLYPROPYLENE (PP) CORRUGATED WALL STORMWATER COLLECTION CHAMBERS" CHAMBER CLASSIFICATION 60x101.
- 4. CHAMBER ROWS SHALL PROVIDE CONTINUOUS, UNOBSTRUCTED INTERNAL SPACE WITH NO INTERNAL SUPPORTS THAT WOULD IMPEDE FLOW OR LIMIT ACCESS FOR INSPECTION.
- 5. THE STRUCTURAL DESIGN OF THE CHAMBERS, THE STRUCTURAL BACKFILL, AND THE INSTALLATION REQUIREMENTS SHALL ENSURE THAT THE LOAD FACTORS SPECIFIED IN THE AASHTO LRFD BRIDGE DESIGN SPECIFICATIONS, SECTION 12.12, ARE MET FOR: 1) LONG-DURATION DEAD LOADS AND 2) SHORT-DURATION LIVE LOADS, BASED ON THE CSA S6 CL-625 TRUCK AND THE AASHTO DESIGN TRUCK WITH CONSIDERATION FOR IMPACT AND MULTIPLE VEHICLE PRESENCES.
- 6. CHAMBERS SHALL BE DESIGNED, TESTED AND ALLOWABLE LOAD CONFIGURATIONS DETERMINED IN ACCORDANCE WITH ASTM F2787, "STANDARD PRACTICE FOR STRUCTURAL DESIGN OF THERMOPLASTIC CORRUGATED WALL STORMWATER COLLECTION CHAMBERS". LOAD CONFIGURATIONS SHALL INCLUDE: 1) INSTANTANEOUS (<1 MIN) AASHTO DESIGN TRUCK LIVE LOAD ON MINIMUM COVER 2) MAXIMUM PERMANENT (75-YR) COVER LOAD AND 3) ALLOWABLE COVER WITH PARKED (1-WEEK) AASHTO DESIGN TRUCK.
- 7. REQUIREMENTS FOR HANDLING AND INSTALLATION:
 - TO MAINTAIN THE WIDTH OF CHAMBERS DURING SHIPPING AND HANDLING, CHAMBERS SHALL HAVE INTEGRAL, INTERLOCKING STACKING LUGS.
 - TO ENSURE A SECURE JOINT DURING INSTALLATION AND BACKFILL, THE HEIGHT OF THE CHAMBER JOINT SHALL NOT BE LESS THAN 75 mm (3")
 - TO ENSURE THE INTEGRITY OF THE ARCH SHAPE DURING INSTALLATION, a) THE ARCH STIFFNESS CONSTANT AS DEFINED IN SECTION 6.2.8 OF ASTM F2418 SHALL BE GREATER THAN OR EQUAL TO 500 LBS/IN/IN. AND b) TO RESIST CHAMBER DEFORMATION DURING INSTALLATION AT ELEVATED TEMPERATURES (ABOVE 23° C / 73° F), CHAMBERS SHALL BE PRODUCED FROM REFLECTIVE GOLD OR YELLOW COLORS.
- 8. ONLY CHAMBERS THAT ARE APPROVED BY THE SITE DESIGN ENGINEER WILL BE ALLOWED. UPON REQUEST BY THE SITE DESIGN ENGINEER OR OWNER, THE CHAMBER MANUFACTURER SHALL SUBMIT A STRUCTURAL EVALUATION FOR APPROVAL BEFORE DELIVERING CHAMBERS TO THE PROJECT SITE AS FOLLOWS:
 - THE STRUCTURAL EVALUATION SHALL BE SEALED BY A REGISTERED PROFESSIONAL ENGINEER.
 - THE STRUCTURAL EVALUATION SHALL DEMONSTRATE THAT THE SAFETY FACTORS ARE GREATER THAN OR EQUAL TO 1.95 FOR DEAD LOAD AND 1.75 FOR LIVE LOAD, THE MINIMUM REQUIRED BY ASTM F2787 AND BY SECTIONS 3 AND 12.12 OF THE AASHTO LRFD BRIDGE DESIGN SPECIFICATIONS FOR THERMOPLASTIC PIPE.
 - THE TEST DERIVED CREEP MODULUS AS SPECIFIED IN ASTM F2418 SHALL BE USED FOR PERMANENT DEAD LOAD DESIGN EXCEPT THAT IT SHALL BE THE 75-YEAR MODULUS USED FOR DESIGN.
- CHAMBERS AND END CAPS SHALL BE PRODUCED AT AN ISO 9001 CERTIFIED MANUFACTURING FACILITY.

IMPORTANT - NOTES FOR THE BIDDING AND INSTALLATION OF MC-4500 CHAMBER SYSTEM

- 1. STORMTECH MC-4500 CHAMBERS SHALL NOT BE INSTALLED UNTIL THE MANUFACTURER'S REPRESENTATIVE HAS COMPLETED A PRE-CONSTRUCTION MEETING WITH THE INSTALLERS.
- 2. STORMTECH MC-4500 CHAMBERS SHALL BE INSTALLED IN ACCORDANCE WITH THE "STORMTECH MC-3500/MC-4500 CONSTRUCTION GUIDE".
- CHAMBERS ARE NOT TO BE BACKFILLED WITH A DOZER OR EXCAVATOR SITUATED OVER THE CHAMBERS. STORMTECH RECOMMENDS 3 BACKFILL METHODS:
 - STONESHOOTER LOCATED OFF THE CHAMBER BED.
 - BACKFILL AS ROWS ARE BUILT USING AN EXCAVATOR ON THE FOUNDATION STONE OR SUBGRADE.
 - BACKFILL FROM OUTSIDE THE EXCAVATION USING A LONG BOOM HOE OR EXCAVATOR.
- 4. THE FOUNDATION STONE SHALL BE LEVELED AND COMPACTED PRIOR TO PLACING CHAMBERS.
- 5. JOINTS BETWEEN CHAMBERS SHALL BE PROPERLY SEATED PRIOR TO PLACING STONE.
- 6. MAINTAIN MINIMUM 230 mm (9") SPACING BETWEEN THE CHAMBER ROWS.
- 7. INLET AND OUTLET MANIFOLDS MUST BE INSERTED A MINIMUM OF 300 mm (12") INTO CHAMBER END CAPS.
- 8. EMBEDMENT STONE SURROUNDING CHAMBERS MUST BE A CLEAN, CRUSHED, ANGULAR STONE WELL GRADED BETWEEN ¾" AND 2" (20-50 mm).
- 9. STONE SHALL BE BROUGHT UP EVENLY AROUND CHAMBERS SO AS NOT TO DISTORT THE CHAMBER SHAPE. STONE DEPTHS SHOULD NEVER DIFFER BY MORE THAN 300 mm (12") BETWEEN ADJACENT CHAMBER ROWS.
- 10. STONE MUST BE PLACED ON THE TOP CENTER OF THE CHAMBER TO ANCHOR THE CHAMBERS IN PLACE AND PRESERVE ROW SPACING.
- 11. THE CONTRACTOR MUST REPORT ANY DISCREPANCIES WITH CHAMBER FOUNDATION MATERIAL BEARING CAPACITIES TO THE SITE DESIGN ENGINEER.
- ADS RECOMMENDS THE USE OF "FLEXSTORM CATCH IT" INSERTS DURING CONSTRUCTION FOR ALL INLETS TO PROTECT THE SUBSURFACE STORMWATER MANAGEMENT SYSTEM FROM CONSTRUCTION SITE RUNOFF.


NOTES FOR CONSTRUCTION EQUIPMENT

- STORMTECH MC-4500 CHAMBERS SHALL BE INSTALLED IN ACCORDANCE WITH THE "STORMTECH MC-3500/MC-4500 CONSTRUCTION GUIDE".
- 2. THE USE OF EQUIPMENT OVER MC-4500 CHAMBERS IS LIMITED:
 - NO EQUIPMENT IS ALLOWED ON BARE CHAMBERS.
 - NO RUBBER TIRED LOADER, DUMP TRUCK, OR EXCAVATORS ARE ALLOWED UNTIL PROPER FILL DEPTHS ARE REACHED IN ACCORDANCE WITH THE "STORMTECH MC-3500/MC-4500 CONSTRUCTION GUIDE".
 - WEIGHT LIMITS FOR CONSTRUCTION EQUIPMENT CAN BE FOUND IN THE "STORMTECH MC-3500/MC-4500 CONSTRUCTION GUIDE".
- 3. FULL 900 mm (36") OF STABILIZED COVER MATERIALS OVER THE CHAMBERS IS REQUIRED FOR DUMP TRUCK TRAVEL OR DUMPING.

USE OF A DOZER TO PUSH EMBEDMENT STONE BETWEEN THE ROWS OF CHAMBERS MAY CAUSE DAMAGE TO CHAMBERS AND IS NOT AN ACCEPTABLE BACKFILL METHOD. ANY CHAMBERS DAMAGED BY USING THE "DUMP AND PUSH" METHOD ARE NOT COVERED UNDER THE STORMTECH STANDARD WARRANTY.

CONTACT STORMTECH AT 1-888-892-2694 WITH ANY QUESTIONS ON INSTALLATION REQUIREMENTS OR WEIGHT LIMITS FOR CONSTRUCTION EQUIPMENT.

	PROPOSED LAYOUT	CONCEPTUAL ELEVATIONS					OVE BAS	E OF CHAMBER
19	STORMTECH MC-4500 CHAMBERS	MAXIMUM ALLOWABLE GRADE (TOP OF PAVEMENT/UNPAVED):	3.886	PART TYPE	ITEM OI		INVERT*	MAX FLOW
305	STONE ABOVE (mm)	MINIMUM ALLOWABLE GRADE (UNPAVED WITH TRAFFIC): MINIMUM ALLOWABLE GRADE (UNPAVED NO TRAFFIC):		PREFABRICATED END CAP		600 mm BOTTOM PARTIAL CUT END CAP, PART#: MC4500IEPP24B / TYP OF ALL 600 mm BOTTOM CONNECTIONS AND ISOLATOR PLUS ROWS	57 mm	
40	STONE VOID	MINIMUM ALLOWABLE GRADE (TOP OF RIGID CONCRETE PAVEMENT): MINIMUM ALLOWABLE GRADE (BASE OF FLEXIBLE PAVEMENT):	2.362	FLAMP CONCRETE STRUCTURE	В	INSTALL FLAMP ON 600 mm ACCESS PIPE / PART#: MC450024RAMP (TYP 2 PLACES) (DESIGN BY ENGINEER / PROVIDED BY OTHERS)		
102.0	(PERIMETER STONE INCLUDED)	TOP OF STONE: TOP OF MC-4500 CHAMBER:	2.057 1.753	CONCINETE OTHOGTORE		(DESIGNAL ENGINEERY) THOUBED BY STILLING)		
102.0	(BASE STONE INCLUDED)	600 mm ISOLATOR ROW PLUS INVERT: BOTTOM OF MC-4500 CHAMBER:	0.286 0.229 0.000					
80.6 57.5		BOTTOM OF STONE:	0.000					

ISOLATOR ROW PLUS (SEE DETAIL) NO WOVEN GEOTEXTILE

BED LIMITS

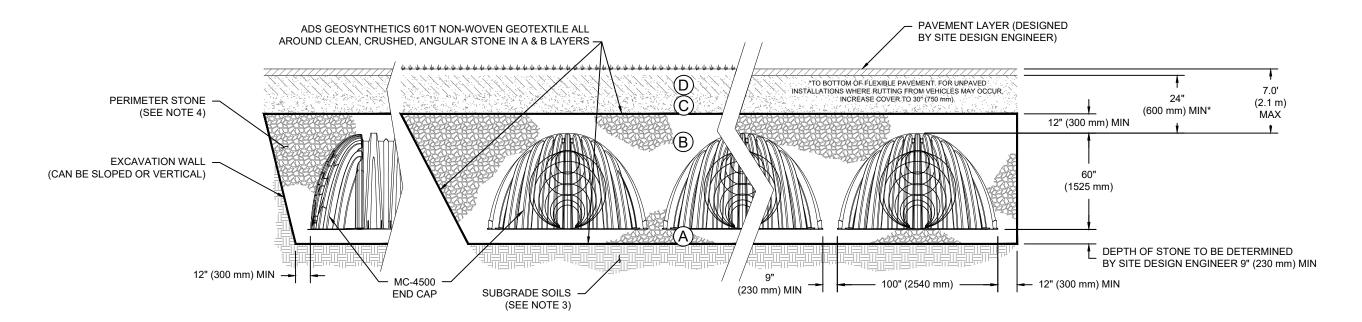
NOTES

MANIFOLD SIZE TO BE DETERMINED BY SITE DESIGN ENGINEER. SEE TECH NOTE #6.32 FOR MANIFOLD SIZING GUIDANCE.
DUE TO THE ADAPTATION OF THIS CHAMBER SYSTEM TO SPECIFIC SITE AND DESIGN CONSTRAINTS, IT MAY BE NECESSARY TO CUT AND COUPLE ADDITIONAL PIPE TO STANDARD MANIFOLD COMPONENTS IN THE FIELD.
THE SITE DESIGN ENGINEER MUST REVIEW ELEVATIONS AND IF NECESSARY ADJUST GRADING TO ENSURE THE CHAMBER COVER REQUIREMENTS ARE MET.
THIS CHAMBER SYSTEM WAS DESIGNED WITHOUT SITE-SPECIFIC INFORMATION ON SOIL CONDITIONS OR BEARING CAPACITY. THE SITE DESIGN ENGINEER IS RESPONSIBLE FOR DETERMINING. THIS CHAMBER SYSTEM WAS DESIGNED WITHOUT SITE-OF LOTHOUT SITE OF LOTHOUT SITE OF LOTHOUT SITE-OF LOTHOUT SITE OF LOTHOUT SITE

BOBOLINK RIDGE - MH OTTAWA, ONTARIO
DRAWN: BC
CHECKED: N/ PROJECT DRW **StormTech**® Chamber System 4640 TRUEMAN BLVD HILLIARD, OH 43026 1-800-733-7473 100 Ш SCALE

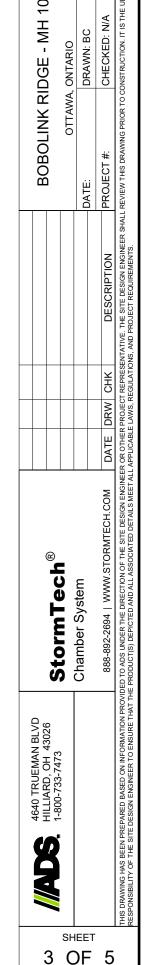
SHEET

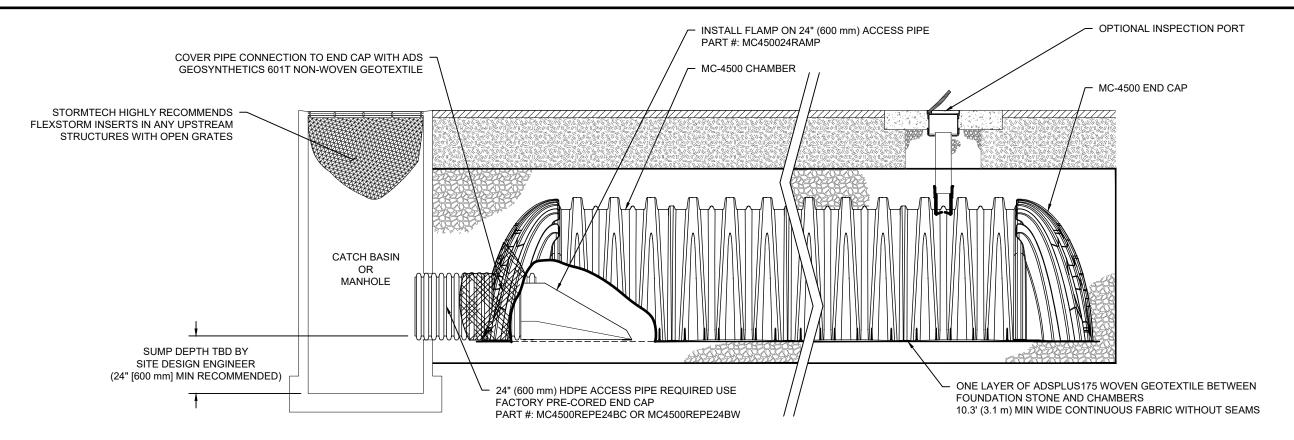
2 OF 5


107

ACCEPTABLE FILL MATERIALS: STORMTECH MC-4500 CHAMBER SYSTEMS

	MATERIAL LOCATION	DESCRIPTION	AASHTO MATERIAL CLASSIFICATIONS	COMPACTION / DENSITY REQUIREMENT
D	FINAL FILL: FILL MATERIAL FOR LAYER 'D' STARTS FROM THE TOP OF THE 'C' LAYER TO THE BOTTOM OF FLEXIBLE PAVEMENT OR UNPAVED FINISHED GRADE ABOVE. NOTE THAT PAVEMENT SUBBASE MAY BE PART OF THE 'D' LAYER	ANY SOIL/ROCK MATERIALS, NATIVE SOILS, OR PER ENGINEER'S PLANS. CHECK PLANS FOR PAVEMENT SUBGRADE REQUIREMENTS.	N/A	PREPARE PER SITE DESIGN ENGINEER'S PLANS. PAVED INSTALLATIONS MAY HAVE STRINGENT MATERIAL AND PREPARATION REQUIREMENTS.
С	INITIAL FILL: FILL MATERIAL FOR LAYER 'C' STARTS FROM THE TOP OF THE EMBEDMENT STONE ('B' LAYER) TO 24" (600 mm) ABOVE THE TOP OF THE CHAMBER. NOTE THAT PAVEMENT SUBBASE MAY BE A PART OF THE 'C' LAYER.	GRANULAR WELL-GRADED SOIL/AGGREGATE MIXTURES, <35% FINES OR PROCESSED AGGREGATE. MOST PAVEMENT SUBBASE MATERIALS CAN BE USED IN LIEU OF THIS LAYER.	AASHTO M145 ¹ A-1, A-2-4, A-3 OR AASHTO M43 ¹ 3, 357, 4, 467, 5, 56, 57, 6, 67, 68, 7, 78, 8, 89, 9, 10	BEGIN COMPACTIONS AFTER 24" (600 mm) OF MATERIAL OVER THE CHAMBERS IS REACHED. COMPACT ADDITIONAL LAYERS IN 12" (300 mm) MAX LIFTS TO A MIN. 95% PROCTOR DENSITY FOR WELL GRADED MATERIAL AND 95% RELATIVE DENSITY FOR PROCESSED AGGREGATE MATERIALS.
В	EMBEDMENT STONE: FILL SURROUNDING THE CHAMBERS FROM THE FOUNDATION STONE ('A' LAYER) TO THE 'C' LAYER ABOVE.	CLEAN, CRUSHED, ANGULAR STONE	AASHTO M43 ¹ 3, 4	NO COMPACTION REQUIRED.
А	FOUNDATION STONE: FILL BELOW CHAMBERS FROM THE SUBGRADE UP TO THE FOOT (BOTTOM) OF THE CHAMBER.	CLEAN, CRUSHED, ANGULAR STONE	AASHTO M43 ¹ 3, 4	PLATE COMPACT OR ROLL TO ACHIEVE A FLAT SURFACE. ^{2,3}

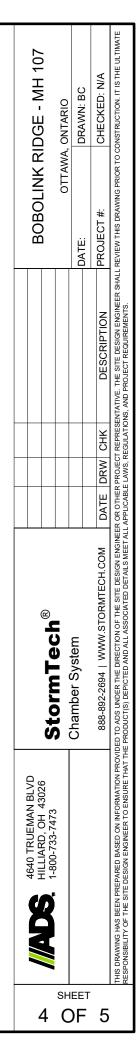

PLEASE NOTE


- 1. THE LISTED AASHTO DESIGNATIONS ARE FOR GRADATIONS ONLY. THE STONE MUST ALSO BE CLEAN, CRUSHED, ANGULAR. FOR EXAMPLE, A SPECIFICATION FOR #4 STONE WOULD STATE: "CLEAN, CRUSHED, ANGULAR NO. 4 (AASHTO M43) STONE".
- 2. STORMTECH COMPACTION REQUIREMENTS ARE MET FOR 'A' LOCATION MATERIALS WHEN PLACED AND COMPACTED IN 9" (230 mm) (MAX) LIFTS USING TWO FULL COVERAGES WITH A VIBRATORY COMPACTOR.
- 3. WHERE INFILTRATION SURFACES MAY BE COMPROMISED BY COMPACTION, FOR STANDARD DESIGN LOAD CONDITIONS, A FLAT SURFACE MAY BE ACHIEVED BY RAKING OR DRAGGING WITHOUT COMPACTION EQUIPMENT. FOR SPECIAL LOAD DESIGNS, CONTACT STORMTECH FOR COMPACTION REQUIREMENTS.
- 4. ONCE LAYER 'C' IS PLACED, ANY SOIL/MATERIAL CAN BE PLACED IN LAYER 'D' UP TO THE FINISHED GRADE. MOST PAVEMENT SUBBASE SOILS CAN BE USED TO REPLACE THE MATERIAL REQUIREMENTS OF LAYER 'C' OR 'D' AT THE SITE DESIGN ENGINEER'S DISCRETION.

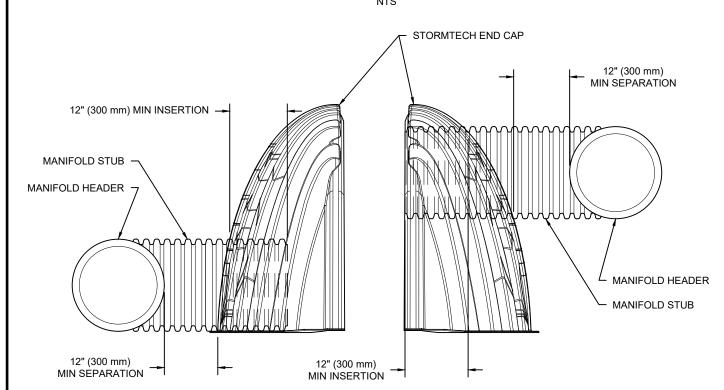
NOTES:

- 1. CHAMBERS SHALL MEET THE REQUIREMENTS OF ASTM F2418-16a, "STANDARD SPECIFICATION FOR POLYPROPYLENE (PP) CORRUGATED WALL STORMWATER COLLECTION CHAMBERS" CHAMBER CLASSIFICATION 60x101
- 2. MC-4500 CHAMBERS SHALL BE DESIGNED IN ACCORDANCE WITH ASTM F2787 "STANDARD PRACTICE FOR STRUCTURAL DESIGN OF THERMOPLASTIC CORRUGATED WALL STORMWATER COLLECTION CHAMBERS".
- 3. THE SITE DESIGN ENGINEER IS RESPONSIBLE FOR ASSESSING THE BEARING RESISTANCE (ALLOWABLE BEARING CAPACITY) OF THE SUBGRADE SOILS AND THE DEPTH OF FOUNDATION STONE WITH CONSIDERATION FOR THE RANGE OF EXPECTED SOIL MOISTURE CONDITIONS.
- 4. PERIMETER STONE MUST BE EXTENDED HORIZONTALLY TO THE EXCAVATION WALL FOR BOTH VERTICAL AND SLOPED EXCAVATION WALLS.
- 5. REQUIREMENTS FOR HANDLING AND INSTALLATION:
 - TO MAINTAIN THE WIDTH OF CHAMBERS DURING SHIPPING AND HANDLING, CHAMBERS SHALL HAVE INTEGRAL, INTERLOCKING STACKING LUGS.
 - TO ENSURE A SECURE JOINT DURING INSTALLATION AND BACKFILL, THE HEIGHT OF THE CHAMBER JOINT SHALL NOT BE LESS THAN 3".
 - TO ENSURE THE INTEGRITY OF THE ARCH SHAPE DURING INSTALLATION, a) THE ARCH STIFFNESS CONSTANT AS DEFINED IN SECTION 6.2.8 OF ASTM F2418 SHALL BE GREATER THAN OR EQUAL TO 500 LBS/IN/IN. AND b) TO RESIST CHAMBER DEFORMATION DURING INSTALLATION AT ELEVATED TEMPERATURES (ABOVE 73° F / 23° C), CHAMBERS SHALL BE PRODUCED FROM REFLECTIVE GOLD OR YELLOW COLORS.

MC-4500 ISOLATOR ROW PLUS DETAIL

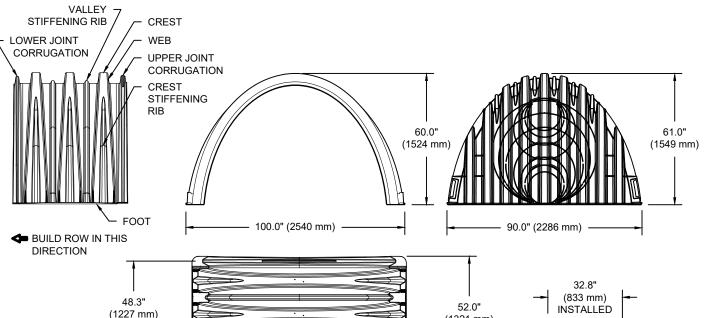

INSPECTION & MAINTENANCE

- INSPECT ISOLATOR ROW PLUS FOR SEDIMENT
 - A. INSPECTION PORTS (IF PRESENT)
 - A.1. REMOVE/OPEN LID ON NYLOPLAST INLINE DRAIN
 - REMOVE AND CLEAN FLEXSTORM FILTER IF INSTALLED
 - USING A FLASHLIGHT AND STADIA ROD, MEASURE DEPTH OF SEDIMENT AND RECORD ON MAINTENANCE LOG LOWER A CAMERA INTO ISOLATOR ROW PLUS FOR VISUAL INSPECTION OF SEDIMENT LEVELS (OPTIONAL)


 - IF SEDIMENT IS AT, OR ABOVE, 3" (80 mm) PROCEED TO STEP 2, IF NOT, PROCEED TO STEP 3.
 - B. ALL ISOLATOR PLUS ROWS
 - REMOVE COVER FROM STRUCTURE AT UPSTREAM END OF ISOLATOR ROW PLUS
 - USING A FLASHLIGHT, INSPECT DOWN THE ISOLATOR ROW PLUS THROUGH OUTLET PIPE
 - i) MIRRORS ON POLES OR CAMERAS MAY BE USED TO AVOID A CONFINED SPACE ENTRY
 - ii) FOLLOW OSHA REGULATIONS FOR CONFINED SPACE ENTRY IF ENTERING MANHOLE
 - IF SEDIMENT IS AT, OR ABOVE, 3" (80 mm) PROCEED TO STEP 2. IF NOT, PROCEED TO STEP 3.
- STEP 2) CLEAN OUT ISOLATOR ROW PLUS USING THE JETVAC PROCESS
 - A. A FIXED CULVERT CLEANING NOZZLE WITH REAR FACING SPREAD OF 45" (1.1 m) OR MORE IS PREFERRED
 - APPLY MULTIPLE PASSES OF JETVAC UNTIL BACKFLUSH WATER IS CLEAN
 - C. VACUUM STRUCTURE SUMP AS REQUIRED
- REPLACE ALL COVERS, GRATES, FILTERS, AND LIDS; RECORD OBSERVATIONS AND ACTIONS.
- INSPECT AND CLEAN BASINS AND MANHOLES UPSTREAM OF THE STORMTECH SYSTEM. STEP 4)

NOTES

- INSPECT EVERY 6 MONTHS DURING THE FIRST YEAR OF OPERATION. ADJUST THE INSPECTION INTERVAL BASED ON PREVIOUS OBSERVATIONS OF SEDIMENT ACCUMULATION AND HIGH WATER ELEVATIONS.
- 2. CONDUCT JETTING AND VACTORING ANNUALLY OR WHEN INSPECTION SHOWS THAT MAINTENANCE IS NECESSARY.


MC-SERIES END CAP INSERTION DETAIL

NOTE: MANIFOLD STUB MUST BE LAID HORIZONTAL FOR A PROPER FIT IN END CAP OPENING.

MC-4500 TECHNICAL SPECIFICATION

NTS

NOMINAL CHAMBER SPECIFICATIONS

INSTALLED

SIZE (W X H X INSTALLED LENGTH) CHAMBER STORAGE MINIMUM INSTALLED STORAGE* WEIGHT (NOMINAL)

NOMINAL END CAP SPECIFICATIONS

SIZE (W X H X INSTALLED LENGTH) END CAP STORAGE MINIMUM INSTALLED STORAGE* WEIGHT (NOMINAL) 100.0" X 60.0" X 48.3" 106.5 CUBIC FEET 162.6 CUBIC FEET 125.0 lbs.

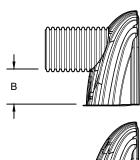
90.0" X 61.0" X 32.8" 39.5 CUBIC FEET 115.3 CUBIC FEET 90 lbs. (2286 mm X 1549 mm X 833 mm) (1.12 m³) (3.26 m³) (40.8 kg)

(3.01 m³)

(4.60 m³)

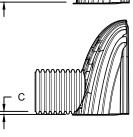
(56.7 kg)

(2540 mm X 1524 mm X 1227 mm)


(1321 mm)

*ASSUMES 12" (305 mm) STONE ABOVE, 9" (229 mm) STONE FOUNDATION AND BETWEEN CHAMBERS, 12" (305 mm) STONE PERIMETER IN FRONT OF END CAPS AND 40% STONE POROSITY.

PARTIAL CUT HOLES AT BOTTOM OF END CAP FOR PART NUMBERS ENDING WITH "B"
PARTIAL CUT HOLES AT TOP OF END CAP FOR PART NUMBERS ENDING WITH "T"
END CAPS WITH A PREFABRICATED WELDED STUB END WITH "W"


PART #	STUB	В	С
MC4500IEPP06T	6" (150 mm)	42.54" (1081 mm)	
MC4500IEPP06B	0 (150 11111)		0.86" (22 mm)
MC4500IEPP08T	8" (200 mm)	40.50" (1029 mm)	
MC4500IEPP08B	0 (200 111111)		1.01" (26 mm)
MC4500IEPP10T	10" (250 mm)	38.37" (975 mm)	
MC4500IEPP10B	10 (230 11111)		1.33" (34 mm)
MC4500IEPP12T	12" (300 mm)	35.69" (907 mm)	
MC4500IEPP12B	12 (300 11111)		1.55" (39 mm)
MC4500IEPP15T	15" (375 mm)	32.72" (831 mm)	
MC4500IEPP15B	15 (5/511111)		1.70" (43 mm)
MC4500IEPP18T		29.36" (746 mm)	
MC4500IEPP18TW	18" (450 mm)	29.30 (740 11111)	
MC4500IEPP18B	10 (430 11111)		1.97" (50 mm)
MC4500IEPP18BW			1.97 (30 11111)
MC4500IEPP24T		23.05" (585 mm)	
MC4500IEPP24TW	24" (600 mm)	25.05 (505 11111)	
MC4500IEPP24B	24 (000 11111)		2.26" (57 mm)
MC4500IEPP24BW			2.20 (37 11111)
MC4500IEPP30BW	30" (750 mm)		2.95" (75 mm)
MC4500IEPP36BW	36" (900 mm)		3.25" (83 mm)
MC4500IEPP42BW	42" (1050 mm)		3.55" (90 mm)

NOTE: ALL DIMENSIONS ARE NOMINAL

38 0'

(965 mm)

CUSTOM PARTIAL CUT INVERTS ARE AVAILABLE UPON REQUEST. INVENTORIED MANIFOLDS INCLUDE 12-24" (300-600 mm) SIZE ON SIZE AND 15-48" (375-1200 mm) ECCENTRIC MANIFOLDS. CUSTOM INVERT LOCATIONS ON THE MC-4500 END CAP CUT IN THE FIELD ARE NOT RECOMMENDED FOR PIPE SIZES GREATER THAN 10" (250 mm). THE INVERT LOCATION IN COLUMN 'B' ARE THE HIGHEST POSSIBLE FOR THE PIPE SIZE.

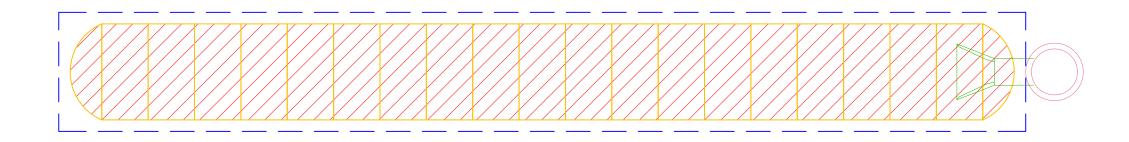
BOBOLINK RIDGE - MH 107

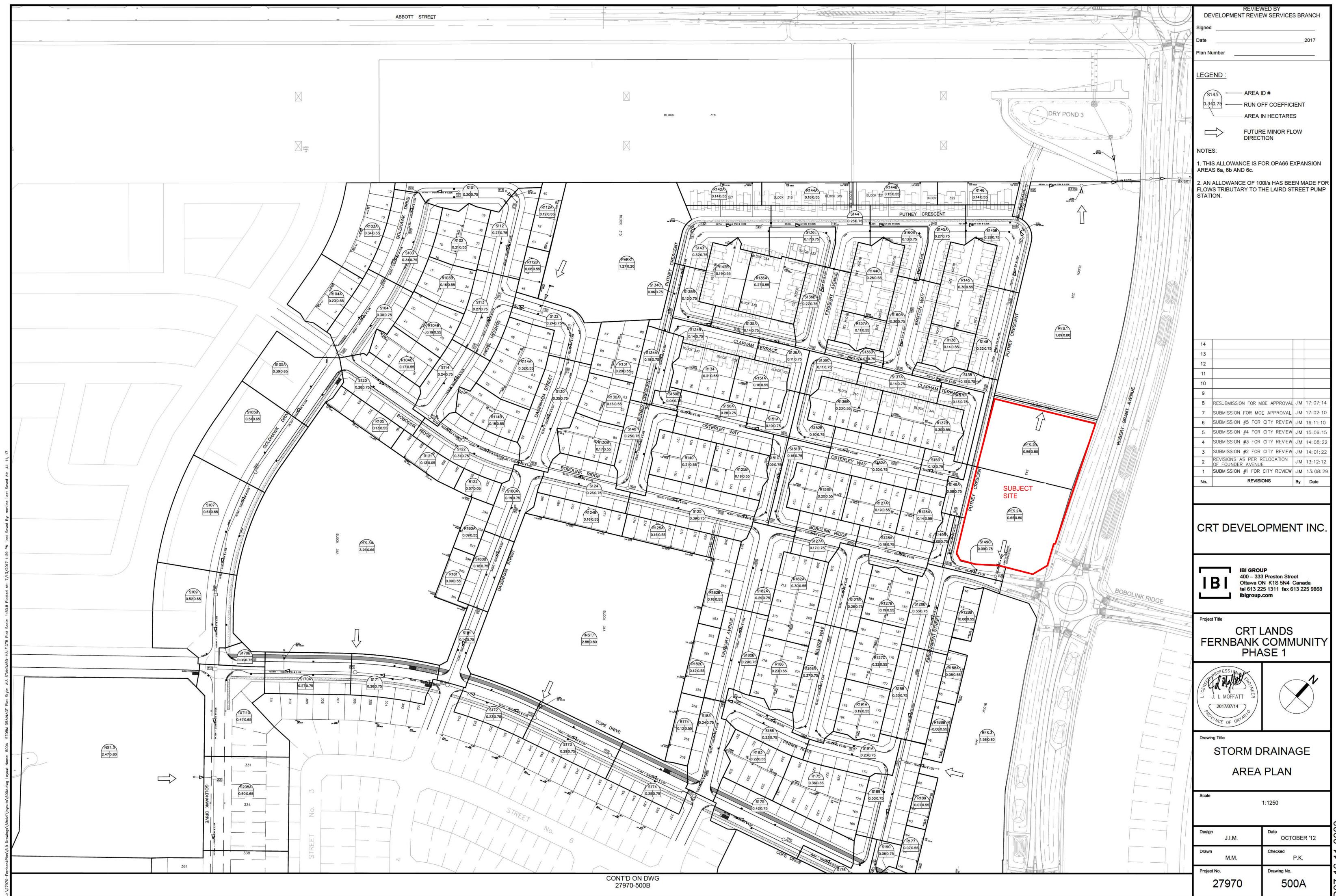
OTTAWA, ONTARIO

DATE:

DRAWN: BC

CHECKED: N/A


ATE DRW CHK DESCRIPTION


StormTechChamber System

4640 TRUEMAN BLVD HILLIARD, OH 43026 1-800-733-7473

SHEET

5 OF 5

IBI Group 400-333 Preston Street Ottawa, Ontario K1S 5N4

STORM SEWER DESIGN SHEET

PROJECT: CRT DEVELOPMENT
LOCATION: CITY OF OTTAWA
CLIENT: CRT DEVELOPMENT INC.

	LOCATION					ARI	EA (Ha)										RATIONAL DE	SIGN FLOW										SEWER DATA	4			
CTREET	ADEAID	FROM	TO	C=	C=	C= C= C=	C=	C=	C= C=	C=	IND	CUM	INLET	TIME	TOTAL	i (5)	i (10)	i (100)	5yr PEAK	10yr PEAK	100yr PEAK	FIXED	DESIGN	CAPACITY	LENGTH		PIPE SIZE (n	nm)	SLOPE	VELOCITY	AVAIL (CAP (5yr)
STREET	AREA ID	MH	МН	0.20	0.55	0.65 0.66 0.75	0.80	0.90			2.78AC	2.78AC	(min)	IN PIPE	(min)	(mm/hr)	(mm/hr)	(mm/hr)	FLOW (L/s)	FLOW (L/s)	FLOW (L/s)	FLOW (L/s)	FLOW (L/s)	(L/s)	(m)	DIA	W	Н	(%)	(m/s)	(L/s)	(%)
PUTNEY CRESCENT		141	142			0.00	1					0.00	10.00	0.12	10.12	104.19	122.14	178.56	0.00				0.00	62.04	8.84	250			1.00	1.224	62.04	100.00%
PUTNEY CRESCENT	R142A, B	142	143		0.33						0.50	0.50	10.12	0.48	10.60	103.56	121.40	177.47	52.25				52.25	139.06	54.71	300			1.90	1.906	86.80	62.42%
PUTNEY CRESCENT	S143	143	144			0.32	:				0.67	1.17	10.60	0.68	11.28	101.13	118.54	173.26	118.50				118.50	266.03	65.86	450	1		0.80	1.620	147.53	55.45%
FINSBURY AVENUE	S136B, E, R136A	136	144		0.27	0.44			+ + + -		1.33	1.33	10.00	0.87	10.87	104.19	122.14	178.56	138.60				138.60	154.65	110.07	300			2.35	2.119	16.05	10.38%
	, , , , , , , , , , , , , , , , , , , ,																															
PUTNEY CRESCENT	S144, R144A, B, C	144	145		0.57	0.25					1.39	3.89	11.28	0.74	12.02	97.90	114.73	167.68	381.31				381.31	401.29	80.25	525			0.80	1.796	19.98	4.98%
CLAPHAM TERRACE	S136C, D, R136B	136	137		0.23	0.18						0.73	10.00	0.94	10.94	104.19	122.14	178.56	75.75				75.75	100.88	77.99	300			1.00	1.383	25.14	24.92%
BRIXTON WAY	R137A	137	160		0.11						0.17		10.94	0.42	11.36	99.48	116.59	170.40	89.05				89.05	224.02	50.00	375			1.50	1.965	134.97	60.25%
BRIXTON WAY	S160A, B	160	145			0.43					0.90	1.79	11.36	0.54	11.90	97.50	114.26	166.98	174.69				174.69	280.40	78.98	375			2.35	2.459	105.71	37.70%
PUTNEY CRESCENT	S145A, B, R145	145	146		0.30	0.55	!		+ +		1.61	7.29	12.02	0.70	12.72	94.61	110.85	161.98	689.86				689.86	821.24	75.47	750			0.50	1.801	131.38	16.00%
CLAPHAM TERRACE	S137A, B, R137B	137	138		0.30	0.27					1.02	1.02	10.00	1.19	11.19	104.19	122.14	178.56	106.45				106.45	129.34	81.01	375			0.50	1.134	22.89	17.70%
PUTNEY CRESCENT	S138, R138	138	148		0.14	0.15						1.55	11.19	0.67	11.86	98.30	115.20	168.37	152.21				152.21	220.25	78.01	375			1.45	1.932	68.04	30.89%
PUTNEY CRESCENT	S148	148	147			0.22					0.46		11.86	0.38	12.24	95.28	111.65	163.15	191.25				191.25	297.76	59.30	375			2.65	2.612	106.51	35.77%
PUTNEY CRESCENT		147	146			0.00	1				0.00	2.01	12.24	0.10	12.34	93.68	109.76	160.37	188.02				188.02	332.54	12.13	450			1.25	2.026	144.52	43.46%
BLOCK 324		146	161								0.00		12.72	0.40	13.12	91.73	107.47	157.01	853.01				853.01	944.29	34.88	900			0.25	1.438	91.28	9.67%
BLOCK 324	R146	161	Ex. 180	-	0.14				+	-	0.21	9.51	13.12	0.56	13.68	90.15	105.61	154.28	857.65				857.65	944.29	48.00	900	1		0.25	1.438	86.65	9.18%
BLOCK 324	RES.1, RES. 2B	BULKHEAD	Ex. 180				2.45)			5.45	5.45	13.00	0.07	13.07	90.63	106.17	155.11	493.82				493.82	731.45	5.00	900			0.15	1.114	237.62	32.49%
										Î.																						
											Refer to	ECA No. 9	079-9LNNZC	dated July 9,	2014 for des	cription of ex	sting sewers.															
Definitions:				Notes:									Designed:		J.I.M.			No.					Revision							Date		
Q = 2.78CiA, where:				1. Man	nings coe	efficient (n) =	0.01	L3										1.					No. 1 to City							2013-08-29		
Q = Peak Flow in Litres p																		2.					No. 2 to City							2014-01-22		
A = Area in Hectares (Ha)	•												Checked:		P.K.			3.					No. 3 to City							2014-08-22		
	illimeters per hour (mm/hr)																	4.					No. 4 to City							2015-06-15		
[i = 998.071 / (TC+6.05		5 YEAR													27070 500	F004 F00B		5.					No. 5 to City					-		2016-11-10		
[i = 1174.184 / (TC+6.0 [i = 1735.688 / (TC+6.0		10 YEAR 100 YEAR											Dwg. Refer	ence:	2/970 - 500	, 500A, 500B		6. 7					on for MOE Ap					-		2017-02-10 2017-07-14		
[i - 1/33.000 / (IC+0.0	14, 0.020]	TOO LEAK		1														/.				veannilliga	IUII IUI IVIUE F	hhi nai						2017-07-14		
																			File Referenc	٠.				Date:						Sheet No:		

J:\27970-FernbankPlan\5.7 Calculations\5.7.1 Sewers & Grading\CCSCRTStmSub#7(2017-07-14)

PROJECT: CRT DEVELOPMENT

GROUP

400-333 Preston Street Ottawa, Ontario

LOCATION: CITY OF OTTAWA K1S 5N4 CLIENT: CRT DEVELOPMENT INC LOCATION RATIONAL DESIGN FLOW SEWER DATA 5yr PEAK 10yr PEAK 100yr PEAK FIXED C= 0.65 C= 0.75 FROM TO IND CUM INI FT TOTAL i (10) i (100) DESIGN CAPACITY LENGTH PIPE SIZE (mm) SLOPE VELOCITY AVAIL CAP (5vr) STREET 0.55 2.78AC 2.78AC FLOW (L/s) FLOW (L/s) FLOW (L/s) FLOW (L/s) IN PIPE (mm/hr) FLOW (L/s) (L/s) DIA (m/s) (L/s) (%) (min) CLAPHAM TERRACE S136A 136 135 0.17 0.35 0.35 10.00 1.03 11.03 104.19 122.14 178.56 36.93 36.93 50.02 61.00 250 0.65 0.987 13.09 26.16% CLAPHAM TERRACE S135A. B 135 134 0.26 0.54 0.90 11.03 1.08 12.11 99.05 116.08 169.66 88.80 88.80 108.21 61.66 375 0.35 0.949 19.41 17.94% PUTNEY CRESCENT 141 134 0.00 0.00 0.00 10.00 122.14 0.00 0.35 108.21 100.00% 1.31 11.31 104.19 178.56 0.00 108.21 74.74 375 0.949 PUTNEY CRESCENT S134A, B, C, R134 134 140 0.21 0.39 1.13 2.03 12.11 1.10 94.22 110.39 161.31 191.34 191.34 265.43 78.10 525 0.35 1.188 74.09 27.91% 13.21 OSTERLEY WAY 152 0.12 0.25 0.25 11.04 104.19 26.07 0.25 0.906 41.36 27.81% OSTERLEY WAY S152A, B 152 151 0.40 0.83 1.08 11.04 1.82 12.85 99.02 116.05 169.61 107.36 107.36 148.72 98.72 450 OSTERLEY WAY S151A, R151A 151 150 0.18 0.48 1.57 12.85 0.96 13.81 91.21 106.85 156.10 143.00 143.00 170.86 59.71 450 0.33 1.041 27.86 16.30% OSTERLEY WAY S150A, B 150 140 0.32 0.67 2.24 13.81 0.91 87.62 149.90 195.83 195.83 257.73 63.00 525 0.33 1.153 61.90 24.02% 14.72 102.63 PUTNEY CRESCENT S140, R140 140 124 0.21 0.25 0.84 5.11 14.72 0.91 15.63 84.48 98.93 144.48 431.53 431.53 636.13 76.57 750 0.30 1.395 204.60 32.16% PUTNEY CRESCENT S149A, B, S129C 149 128 0.22 0.46 0.46 10.00 0.61 10.61 104.19 122.14 178.56 47.79 47.79 62.04 45.00 250 1.00 1.224 14.25 22.96% 129 131.01 0.822 BLOCK 343 13.27 90.63 106.17 303.78 13.50 675 BOBOLINK RIDGE 13.91 1.57 217.56 473.55 81.00 0.10 0.858 255.99 54.06% 127 BOBOLINK RIDGE 473.55 78.00 0.10 0.858 216.11 45.64% FINSBURY AVENUE S151B. C. R151B 151 126 0.20 0.25 0.83 0.83 10.00 0.79 10.79 104.19 122.14 178.56 86.17 117.21 76.50 300 1.35 1.606 31.04 26.48% 17.00 307.77 BOBOLINK RIDGE 126 125 0.00 0.00 3.97 0.81 17.81 77.61 90.86 132.63 307.77 597.22 44.30 900 0.10 0.909 289.46 48.47% S125, R125A, B 0.35 BOBOLINK RIDGE 125 124 0.39 1.35 5.31 17.81 1.39 19.20 75.45 88.32 128.91 400.95 400.95 739.33 80.07 975 0.10 0.959 338.38 45.77% BOBOLINK RIDGE S124, R124A, B 0.32 0.26 1.03 11.45 19.20 1.23 84.32 825.24 825.24 1,760.81 88.10 1350 0.10 1.192 935.57 53.13% 124 123 20.44 72.05 123.05 DAGENHAM STREET 130 0.20 0.31 0.31 10.00 0.84 104.19 59.68 41.39 0.818 27.82 46.61% 131 10.84 122.14 178.56 31.86 0.35 DAGENHAM STREET S130, R130A, B 123 0.36 1.26 1.56 10.84 1.75 12.59 99.94 179.46 84.37 525 0.16 0.803 23.46 13.07% 117.13 171.20 156.00 BOBOLINK RIDGE 123 122 0.00 0.00 13.01 20.44 0.30 20.74 69.31 81.11 118.33 902.05 902.05 1,760.81 21.46 1350 0.10 1.192 858.77 48.77% BOBOLINK RIDGE S122, R122 121 0.17 0.31 0.91 13.92 20.74 0.39 21.13 68.68 80.36 117.24 956.05 956.05 3,040.59 39.49 1500 0.17 1.667 2084.54 68.56% 0.17 1.667 2082.37 68.49% BOBOLINK RIDGE R121 121 120 0.13 0.20 14.12 21.13 0.37 21.50 67.86 79.41 115.84 958.22 958.22 3.040.59 36.84 1500 ANGEL HEIGHTS 0.00 0.00 10.00 0.27 0.46 0.830 42.08 100.00% 111 112 0.00 10.27 104.19 122.14 178.56 0.00 0.00 42.08 13.58 250 S112. R112A. B 0.27 89.29 139.51 85.60 450 ANGEL HEIGHTS 112 113 0.20 0.87 | 0.87 | 10.27 | 1.68 | 11.95 | 102.77 | 120.47 176.10 89.29 0.22 0.850 50.22 36.00% DAGENHAM STREET 132 1.27 12.00 0.29 66.87 66.87 100.88 23.70 1.00 1.383 34.02 33.72% 12.29 94.70 110.96 162.13 DAGENHAM STREET 132 113 0.50 1.21 12.29 0.55 12.83 93.49 160.05 112.80 112.80 210.32 42.00 450 0.50 1.281 97.52 46.37% ANGEL HEIGHTS S113 114 0.30 0.63 1.49 12.83 0.85 13.68 91.29 106.94 156.24 136.40 136 /0 248.09 43.13 600 0.15 0.850 111.69 45.02% ANGEL HEIGHTS S114, R114 114 120 0.50 0.24 1.26 2.76 13.68 1.43 15.11 88.09 103.18 150.72 243.05 243.05 367.27 69.17 750 0.10 0.805 124.22 33.82% BOBOLINK RIDGE S120 120 105 0.28 0.58 17.46 21.50 0.96 22.45 67.13 78.54 114.57 1,172.18 1,172.18 3,040.59 95.64 1500 0.17 1.667 1868.41 61.45% ANGEL HEIGHTS S101 101 102 0.20 0.42 0.42 10.00 0.52 10.52 104.19 122.14 178.56 43.45 43.45 129.34 35.48 375 0.50 1.134 85.89 66.41% 103 0.32 0.74 10.52 0.83 11.35 101.52 173.93 74.93 126.19 38.36 0.18 0.769 51.26 40.62% GOLDHAWK DRIVE S103, R103A, B 0.50 0.34 1.47 2.21 11.35 1.01 12.36 97.55 114.32 167.07 215.73 215.73 303.78 675 0.12 0.822 88.05 28.98% 103 GOLDHAWK DRIVE 1.53 3.74 12.36 1.35 13.71 93.19 348.45 473.55 69.59 825 0.10 0.858 125.10 26.42% 104 1.83 23.03 22.45 1.31 0.10 1.600 4216.82 73.72% GOLDHAWK DRIVE S105A, S105B, R105 105 107 0.13 <u>0.90</u> 23.77 65.29 76.38 111.40 1,503.33 1,503.33 5,720.16 126.10 2100 GOLDHAWK DRIVE S107 107 109 0.61 1.10 24.13 23.77 1.17 24.94 62.94 73.62 107.36 1,518.58 1,518.58 5,720.16 112.64 2100 0.10 1.600 4201.58 73.45% GOLDHAWK DRIVE 109 110 0.52 0.94 25.07 24.94 0.67 25.62 60.99 104.01 1.528.92 1.528.92 5.720.16 64.64 2100 0.10 1.600 4191.24 73.27% HM No. Date 1. Mannings coefficient (n) = 0.013

Definitions:	

Q = 2.78CiA, where:

Q = Peak Flow in Litres per Second (L/s)

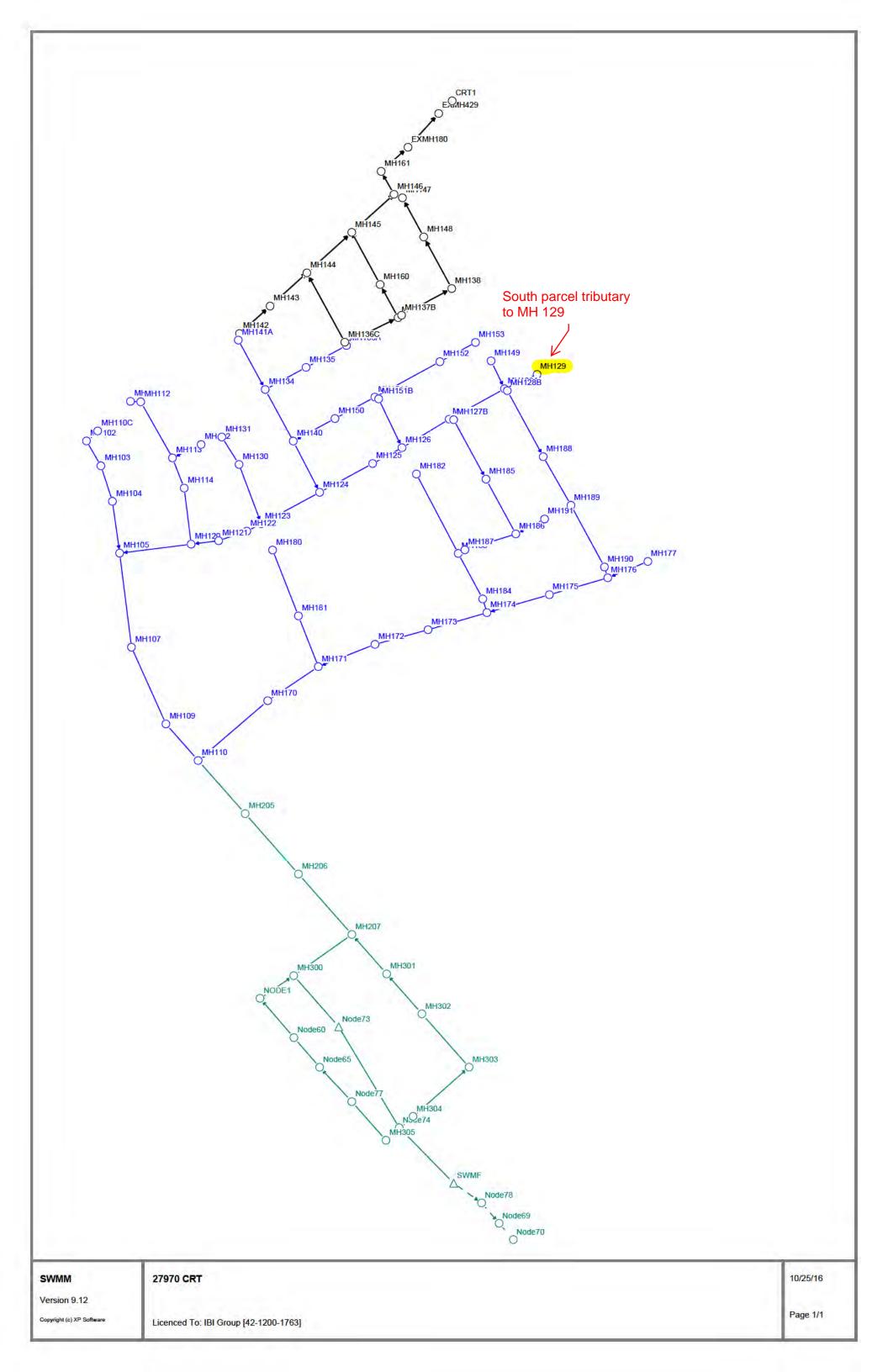
A = Area in Hectares (Ha)

= Rainfall intensity in millimeters per hour (mm/hr)

[i = 998.071 / (TC+6.053)^0.814]

5 YEAR [i = 1174.184 / (TC+6.014)^0.816] 10 YEAR [i = 1735.688 / (TC+6.014)^0.820] 100 YEAR

Submission No. 1 to City of Ottawa 2013-08-29 Submission No. 2 to City of Ottawa 2014-01-22 hecked: Submission No. 3 to City of Ottawa 2014-08-22 4. Submission No. 4 to City of Ottawa 2015-06-15 Submission No. 5 to City of Ottawa 2016-11-10 Dwg. Reference: 27970 - 500, 500A, 500B Submission for MOE Approval 2017-02-10 2017-07-14 Resubmission for MOE Approval File Reference: Sheet No: 27970.5.7.1 2017-07-14 2 of 3


7/13/2017 11:14 AM J:\27970-FernbankPlan\5.7 Calculations\5.7.1 Sewers & Grading\CCSCRTStmSub#7(2017-07-14)

IBI Group
400-333 P
Ottawa, O
K1S 5N4

400-333 Preston Street Ottawa, Ontario K1S 5N4

PROJECT: CRT DEVELOPMENT
LOCATION: CITY OF OTTAWA
CLIENT: CRT DEVELOPMENT INC.

<u> </u>	LOCATION	FROM	то	C= C= C=	C=	AREA (Ha)	C=	C= C= C=	IND	сим	INLET	TIME	TOTAL	i (5)	i (10)	i (100)	Sur DEAK	10yr PEAK 100yr PEAK	FIXED	DESIGN	CAPACITY	LENGTH	ı	PIPE SIZE (m	SEWER DATA	SLOPE	VELOCITY	AVAII (CAP (5yr)
STREET	AREA ID	MH	MH	0.20 0.55 0.65	0.66		0.90		2.78AC		(min)	IN PIPE	(min)	(mm/hr)	(mm/hr)	(mm/hr)	FLOW (L/s)			FLOW (L/s)	(L/s)	(m)	DIA	W W	H H	(%)	(m/s)	(L/s)	(%)
EMBANKMENT STREET EMBANKMENT STREET	S128B, R128B S188, R188A, B	128 188	188 189	0.09		0.31			0.78 0.92	0.78 1.70	10.00 11.76	1.76 0.97	11.76 12.72	104.19 95.75	122.14 112.20	178.56 163.96	81.68 162.77			81.68 162.77	108.21 210.32	100.00 74.32	375 450			0.35 0.50	0.949 1.281	26.53 47.54	24.52% 22.61%
EIVIDAINKIVIEIVI SIREET	3100, K100A, B	100	103	0.15		0.30			0.92	1.70	11.76	0.57	12.72	93.73	112.20	103.50	102.77			102.77	210.32	74.32	430			0.50	1.201	47.34	22.01/6
BLOCK 344	RES.3	BULKHEAD	189			1.58			3.51	3.51	13.95	0.66	14.61	87.11	102.03	149.03	306.10			306.10	402.33	35.00	750			0.12	0.882	96.23	23.92%
EMBANKMENT STREET	S189, R189	189	190	0.09		0.28			0.72	5.94	14.61	1.69	16.30	84.83	99.35	145.10	503.52			503.52	739.33	97.00	975			0.10	0.959	235.81	31.89%
EMBANKMENT STREET	\$190	190	176	5.55		0.05			0.10		16.30	0.20	16.50	79.59	93.19	136.05	480.69			480.69	739.33	11.54	975			0.10	0.959	258.64	34.98%
COPE DRIVE	S177, R177	177	176	0.08		0.14			0.41	0.41	10.00	1.17	11.17	104.19	122.14	178.56	43.16			43.16	59.68	57.46	300		+	0.35	0.818	16.52	27.69%
BLOCK 345 (SCHOOL)	INST.2	BULKHEAD	176			6.57			14.61	14.61	12.00	0.15	12.15	94.70	110.96	162.13	1,383.66			1,383.66	1,575.26	12.00	1200			0.15	1.349	191.60	12.16%
2005 000/5	0476	4=0				1011				24.25	46.50			70.04	00.54	405.05	4 607 70			4 607 70	2 222 22		4500		+	0.40	4.070		27.660
COPE DRIVE COPE DRIVE	\$176 \$175, R175	176 175	175 174	0.36		0.14			0.29 1.43	21.36 22.78	16.50 17.55	1.05 1.12	17.55 18.67	79.01 76.14	92.51 89.13	135.05 130.09	1,687.52 1,734.64			1,687.52 1,734.64	2,332.02 2,332.02	80.65 86.28	1500 1500			0.10 0.10	1.278 1.278	644.51 597.38	27.64% 25.62%
551.5515	22.27																												
FINSBURY AVENUE	S182A,B, R182A,B,C	182	183	0.58		0.58			2.10	2.10	10.00	1.57	11.57	104.19	122.14	178.56	218.40			218.40	283.76	119.30	525			0.40	1.270	65.35	23.03%
PINNER ROAD	S191, R191A	191	186	0.19		0.60			1.54	1.54	10.00	0.55	10.55	104.19	122.14	178.56	160.61			160.61	378.96	43.00	600			0.35	1.298	218.35	57.62%
	·																												
BELSIZE WAY	S127B, R127B, C	127	185	0.41		0.26	-		1.17 0.00	1.17	10.00	1.31	11.31 12.60	104.19	122.14	178.56 167.42	121.80 114.27		-	121.80 114.27	188.11	90.00	450 450		1	0.40 0.35	1.146	66.31	35.25% 35.06%
BELSIZE WAY		185	186	 			+	 	0.00	1.17	11.31	1.29	12.00	97.75	114.56	107.42	114.27	+ +		114.27	175.96	82.92	450			0.35	1.072	61.69	33.06%
PINNER ROAD	S186, R186	186	187	0.23		0.23			0.83		12.60	1.38	13.97	92.21	108.04	157.85	326.60			326.60	473.55	70.83	825			0.10	0.858	146.95	31.03%
PINNER ROAD		187	183			0.00			0.00	3.54	13.97	0.19	14.17	87.03	101.93	148.88	308.22			308.22	473.55	10.00	825		+	0.10	0.858	165.33	34.91%
FINSBURY AVENUE	S183, R183	183	184	0.22	 	0.24		 	0.84	6.47	14.17	1.14	15.30	86.34	101.13	147.71	559.05	+ +	 	559.05	900.87	68.70	1050		+	0.10	1.008	341.82	37.94%
FINSBURY AVENUE		184	174			0.00			0.00	6.47	15.30	0.32	15.62	82.59	96.71	141.22	534.72			534.72	900.87	19.07	1050			0.10	1.008	366.15	40.64%
2005 00045			4=0			2.25				20.00	40.67		10.01		25.22	405.04	2 405 44			2 400 44	2 702 42		4000			0.40		4505.50	40.000/
COPE DRIVE COPE DRIVE	S174, R174 S173	174 173	173 172	0.12		0.25			0.70 0.60	29.96 30.57	18.67 19.61	0.94 0.84	19.61 20.46	73.30 71.11	85.80 83.22	125.21 121.43	2,196.41 2,173.69			2,196.41 2,173.69	3,792.13 3,792.13	81.44 73.01	1800 1800			0.10 0.10	1.444 1.444	1595.72 1618.44	42.08% 42.68%
COPE DIVIVE	3173	1/3	1/2			0.25			0.00	30.37	15.01	0.04	20.40	71.11	03.22	121.43	2,173.03			2,173.03	3,732.13	73.01	1800			0.10	1.777	1010.44	42.00%
BLOCK 313 (SCHOOL)	INST.1	BULKHEAD	172			2.88			6.41	6.41	12.00	0.25	12.25	94.70	110.96	162.13	606.54			606.54	755.43	17.02	900			0.16	1.150	148.90	19.71%
COPE DRIVE	\$172	172	171			0.23			0.49	37.45	20.46	0.93	21.39	69.27	81.05	118.25	2,594.13			2.594.13	3.792.13	80.84	1800		+	0.10	1.444	1198.00	31.59%
COPE DRIVE	31/2	1/2	1/1			0.23		 	0.40	37.43	20.40	0.55	21.55	05.27	81.03	110.25	2,334.13			2,334.13	3,732.13	00.04	1800			0.10	1.444	1156.00	31.35%
DAGENHAM STREET	S180A,B, R180A	180	181	0.09		0.37				0.91	10.00	1.42	11.42	104.19	122.14	178.56	94.72			94.72	245.74	94.00	525			0.30	1.100	151.02	61.46%
DAGENHAM STREET	S181, R181	181	171	0.09		0.14			0.43	1.34	11.42	1.23	12.66	97.23	113.94	166.51	130.14			130.14	286.47	72.50	600		+	0.20	0.982	156.32	54.57%
COPE DRIVE	\$171	171	170			0.26		 	0.54	39.33	21.39	0.94	22.33	67.34	78.79	114.94	2,648.73			2,648.73	3,792.13	81.06	1800		1	0.10	1.444	1143.40	30.15%
BLOCK 312	RES.3A	CBMH549	sewer		3.26	 			5.98	5.98	12.00	0.22	12.22	94.70	110.96	162.13	566.42			566.42	844.60	16.74	900			0.20	1.286	278.18	32.94%
COPE DRIVE	\$170A,B	170	110			0.33		 	0.69	46.00	22.33	1.33	23.66	65.53	76.66	111.82	3,014.45			3,014.45	4,694.42	121.89	1950		1	0.10	1.523	1679.97	35.79%
GOLDHAWK DRIVE	S110B	110	205	0.47		 			0.05	71.92	25.62	0.83	26.45	59.93	70.09	102.19	4,310.29			4,310.29	11,180.46	94.32	2700			0.10	1.892	6870.17	61.45%
GOLDHAWK DRIVE	31106	110	203	0.47					0.00	/1.52	23.02	0.65	20.43	33.33	70.03	102.19	4,310.23			4,310.23	11,180.46	34.32	2700			0.10	1.032	0870.17	01.45%
GOLDHAWK DRIVE	INST.3	BULKHEAD	205			2.47			5.49	5.49	12.00	0.17	12.17	94.70	110.96	162.13	520.19			520.19	620.09	17.00	675			0.50	1.679	99.90	16.11%
COLDITAMIN DDIVE	20FA 20FB	205	200	1.46		+			2.64	90.05	26.45	0.04	27.20	F0.C0	C0 C3	100.04	4 607 52			4 607 53	11 100 46	107.00	2700			0.10	1 002	6492.02	F7 000/
GOLDHAWK DRIVE GOLDHAWK DRIVE	205A, 205B \$206	205 206	206 207	1.46 0.84		+ +			2.64 1.52	80.05 81.57	26.45 27.39	0.94 0.90	27.39 28.29	58.68 57.33	68.62 67.04	100.04 97.72	4,697.53 4,676.48			4,697.53 4,676.48	11,180.46 11,726.17		2700 2700		+	0.10 0.11	1.892 1.984	6482.93 7049.69	57.98% 60.12%
		7-							0.00											,									
STREET NO. 2	RES. 4, 6 & 7		207	22.96		1.89	-		45.69	45.69	10.00	0.83	10.83	104.19	122.14	178.56	4,760.80			4,760.80	5,720.16	80.00	2100		1	0.10	1.600	959.36	16.77%
STREET NO. 2	\$305	305	CULVERT	0.03	 	+ + -		 	0.05	0.05							l	<u> </u>	1	 	13,335.43	22.00	1500		+	3.27	7.311	13335.43	100.00%
STREET NO. 26	\$304	304	CULVERT	0.03					0.05	0.05											12,579.97	22.00	1500			2.91	6.896	12579.97	100.00%
FUTURE STREET	\$304B	304	303	0.69	<u> </u>					1.25											5,720.16		2100			0.10	1.600	5720.16	
GOLDHAWK DRIVE GOLDHAWK DRIVE	\$303, \$306 \$302,Park3,Res 5	303 302	302 301	1.36 3.19 1.06		+ +		 		7.01 25.95	These ni	oes are sized !	by stormwat	er modeling	(See Design F	Brief-Fernhan	k Pond 5 Stor	rmwater Management Facilit	v Report)		5,720.16 5,720.16	94.58 70.65	2100 2100		1	0.10 0.10	1.600 1.600	5720.16 5720.16	
GOLDHAWK DRIVE	\$301	301	207	0.49						26.83	ос рі		,		,	2 22011			,		5,720.16		2100			0.10	1.600	5720.16	
CTDFFT 110 07										456.00											2 222 22	00.70	4-00			0.10	4.270	2222.00	400.000/
STREET NO. 25 POND		207 300	300 HEADWALL	9.21 52.74	1	1	1	 		154.09 254.51											2,332.02 3,006.86	93.73 75.63	1500 1650		1	0.10 0.10	1.278 1.362	2332.02 3006.86	
. 5/45		300		32.74					200.42												5,555.55	. 3.03	2030			5.10	2.502	5550.00	200.00/0
Definitions:				Notes:							Designed:		J.I.M.			No.				Revision							Date		
Q = 2.78CiA, where: Q = Peak Flow in Litres pe	or Second (L/s)			1. Mannings coefficient (n) =	0.013	3									1. 2.				No. 1 to City No. 2 to City					1		2013-08-29 2014-01-22		
A = Area in Hectares (Ha)											Checked:		P.K.			3.				No. 3 to City					1		2014-01-22		
i = Rainfall intensity in mi	illimeters per hour (mm/h															4.			Submission	No. 4 to City	of Ottawa						2015-06-15		
[i = 998.071 / (TC+6.053		5 YEAR											27070	F004 F		5.				No. 5 to City			-			-	2016-11-10		
[i = 1174.184 / (TC+6.03 [i = 1735.688 / (TC+6.03		10 YEAR 100 YEAR									Dwg. Refere	nce:	27970 - 500,	500A, 500B		6. 7.				on for MOE A ion for MOE	• •				1		2017-02-10 2017-07-14		
[. 1.55.000 / (1010.0.	, 5.526,	200 IEAN															File Referenc	e:			Date:						Sheet No:		
																	27970.5.7.1				2017-07-14						3 of 3		

HGL SUMMARY PHASE 1 AND PHASE 1A

					IGE CON								
PHASE	МН	USF or Propos	ed Ground	100 year 3 ho	our Chicago	100 year 3 hour	Chicago + 20%	July	1979	Augus	t 1988	August	t 1996
THAGE			Elevation (m)	. ,	Freeboard (m)	HGL (m)	Freeboard (m)	HGL (m)	Freeboard (m)	HGL (m)	Freeboard (m)	HGL (m)	Freeboard (m)
Trunk to	MH207	Proposed Ground	107.17	104.53	2.64	104.58	2.59	104.55	2.62	104.54	2.63	104.23	2.94
Pond 5	MH206	Proposed Ground	107.15	104.57	2.58	104.63	2.52	104.60	2.55	104.58	2.57	104.25	2.90
1 ond 3	MH205	Proposed Ground	107.28	104.62	2.66	104.68	2.60	104.64	2.64	104.62	2.66	104.28	3.00
1	MH110	Proposed Ground	107.52	104.69	2.83	104.75	2.77	104.71	2.81	104.69	2.83	104.33	3.19
1	MH109	Proposed Ground	107.45	104.71	2.74	104.77	2.68	104.72	2.73	104.71	2.74	104.33	3.12
1	MH107	Proposed Ground	107.41	104.73	2.68	104.80	2.61	104.75	2.66	104.73	2.68	Free flow	N/A
1	MH105	USF	105.65	104.76	0.89	104.83	0.82	104.79	0.86	104.77	0.88	Free flow	N/A
1	MH104	USF	105.85	104.80	1.05	104.87	0.98	104.83	1.02	104.81	1.04	Free flow	N/A
1	MH103	USF	105.75	104.81	0.94	104.89	0.86	104.85	0.90	104.83	0.92	Free flow	N/A
1	MH102	USF	105.95	104.82	1.13	104.89	1.06	104.85	1.10	104.84	1.11	Free flow	N/A
1		Proposed Ground	107.93	Free flow	N/A	Free flow	N/A	Free flow	N/A	Free flow	N/A	Free flow	N/A
1		USF	105.50	104.86	0.64	104.94	0.56	104.87	0.63	104.86	0.64	104.43	1.07
1	4	USF	105.35	104.96	0.39	105.04	0.31	104.96	0.39	104.96	0.39	104.48	0.87
1	MH172	USF	105.50	105.03	0.47	105.12	0.38	105.03	0.47	105.05	0.45	Free flow	N/A
1	MH173	USF	105.65	105.07	0.58	105.17	0.48	105.08	0.47	105.10	0.55	Free flow	N/A
1	MH174	USF	105.80	105.13	0.67	105.17	0.48	105.08	0.66	105.18	0.62	Free flow	N/A
1	MH175	USF	105.80	105.18	0.82	105.24	0.30	105.14	0.81	105.18	0.78		N/A
1	MH176	USF				105.26	0.72			105.27		Free flow	N/A
1	4		106.10	105.23	0.87		1.21	105.24	0.86		0.83	Free flow	N/A
1		Proposed Ground	106.55	105.28	1.27	105.34		105.30	1.25	105.34	1.21	Free flow	
1	MH181	USF	105.65	105.19	0.46	105.28	0.37	105.06	0.59	105.06	0.59	Free flow	N/A
1	MH180	USF	105.85	105.42	0.43	105.52	0.33	105.18	0.67	105.19	0.66	Free flow	N/A
1	MH184	USF	105.68	105.19	0.49	105.30	0.38	105.20	0.48	105.24	0.44	Free flow	N/A
1	MH183	USF	105.95	105.32	0.63	105.42	0.53	105.34	0.61	105.38	0.57	Free flow	N/A
1	MH182	USF	106.19	105.83	0.36	105.96	0.23	105.86	0.33	105.92	0.27	Free flow	N/A
1	MH187	USF	105.75	105.37	0.38	105.47	0.28	105.39	0.36	105.44	0.31	Free flow	N/A
1	MH186	USF	106.05	105.53	0.52	105.68	0.37	105.57	0.48	105.63	0.42	Free flow	N/A
1	MH191	USF	106.02	105.61	0.41	105.78	0.24	105.67	0.35	105.73	0.29	Free flow	N/A
1	MH185	USF	106.45	105.66	0.79	105.82	0.63	105.72	0.73	105.77	0.68	Free flow	N/A
1		USF	106.70	105.80	0.90	105.99	0.71	105.87	0.83	105.92	0.78	Free flow	N/A
1	MH190	USF	106.35	105.26	1.09	105.36	0.99	105.26	1.09	105.30	1.05	Free flow	N/A
1	MH189	USF	106.05	105.31	0.74	105.41	0.64	105.31	0.74	105.34	0.71	Free flow	N/A
1	MH188	USF	106.55	105.44	1.11	105.58	0.97	105.46	1.09	105.49	1.06	Free flow	N/A
1	MH128	USF	106.65	Free flow	N/A	<mark>105.78</mark>	0.87	Free flow	N/A	Free flow	N/A	Free flow	N/A
1	MH120	USF	105.70	104.8	0.83	104.95	0.75	104.90	0.80	104.87	0.83	Free flow	N/A
1	MH121	USF	105.70	104.88	0.82	104.96	0.74	104.92	0.78	104.88	0.82	Free flow	N/A
1	MH122	USF	105.90	Free flow	N/A	104.98	0.92	104.94	0.96	Free flow	N/A	Free flow	N/A
1	MH123	USF	106.00	Free flow	N/A	105.01	0.99	104.97	1.03	Free flow	N/A	Free flow	N/A
1	MH124	USF	106.10	Free flow	N/A	105.07	1.03	Free flow	N/A	Free flow	N/A	Free flow	N/A
1	MH125	USF	106.20	Free flow	N/A	105.13	1.07	Free flow	N/A	Free flow	N/A	Free flow	N/A
1	MH126		106.35	Free flow	N/A	105.17	1.18	Free flow	N/A	Free flow	N/A	Free flow	N/A
<u>1</u>		Proposed Ground	109.23	Free flow	N/A	Free flow	N/A	Free flow	N/A	Free flow	N/A	Free flow	N/A
1	MH114		106.00	104.97	1.03	105.08	0.92	105.03	0.97	104.98	1.02	Free flow	N/A
1	MH113		106.05	105.09	0.96	105.21	0.84	105.17	0.88	105.12	0.93	Free flow	N/A
1	MH112		106.10	105.16	0.94	105.28	0.82	105.25	0.85	105.19	0.91	Free flow	N/A
1		Proposed Ground	108.19	Free flow	N/A	105.28	2.91	105.25	2.94	105.20	2.99	Free flow	N/A
1	MH132		106.15	Free flow	N/A	105.34	0.81	105.30	0.85	Free flow	N/A	Free flow	N/A
1	MH130		106.15	105.02	1.23	105.12	1.13	105.09	1.16	105.02	1.23	Free flow	N/A
1		USF	106.25	Free flow	N/A	105.12	1.01	105.09	1.03	Free flow	N/A	Free flow	N/A
1	MH140		106.13	Free flow	N/A	Free flow	1.01 N/A	Free flow	N/A	Free flow	N/A	Free flow	N/A
1	MH134		106.25		N/A N/A	Free flow		Free flow	N/A N/A	Free flow	N/A N/A	Free flow	N/A
ı	IVITI 134	USF	100.40	Free flow	IN/A	riee ilow	IN/A	riee iiow	IN/A	riee ilow	IN/A	riee ilow	IN/A

HGL SUMMARY PHASE 1 AND PHASE 1A

PHASE	HASE MH USF or Proposed Ground		sed Ground	100 year 3 ho	our Chicago	100 year 3 hour	Chicago + 20%	July	1979	Augus	t 1988	August	1996
PHASE	IVIT		Elevation (m)	HGL (m)	Freeboard (m)	HGL (m)	Freeboard (m)	HGL (m)	Freeboard (m)	HGL (m)	Freeboard (m)	HGL (m)	Freeboard (m)
1	MH141	Proposed Ground	108.40	Free flow	N/A	Free flow	N/A	Free flow	N/A	Free flow	N/A	Free flow	N/A
1	MH135	USF	106.76	Free flow	N/A	Free flow	N/A	Free flow	N/A	Free flow	N/A	Free flow	N/A
1	MH150	USF	106.65	Free flow	N/A	Free flow	N/A	Free flow	N/A	Free flow	N/A	Free flow	N/A
1	MH152	USF	107.40	Free flow	N/A	Free flow	N/A	Free flow	N/A	Free flow	N/A	Free flow	N/A
1	MH153	USF	107.25	Free flow	N/A	Free flow	N/A	Free flow	N/A	Free flow	N/A	Free flow	N/A
1	MH151	USF	107.00	Free flow	N/A	Free flow	N/A	Free flow	N/A	Free flow	N/A	Free flow	N/A
1	MH149	USF	106.71	Free flow	N/A	Free flow	N/A	Free flow	N/A	Free flow	N/A	Free flow	N/A
1A	CRT1	Proposed Ground	103.30	100.89	N/A	100.89	N/A	100.89	N/A	100.89	N/A	100.89	N/A
1A	MH162	Proposed Ground	N/A	Free flow	N/A	Free flow	N/A	Free flow	N/A	Free flow	N/A	Free flow	N/A
1A	MH161	Proposed Ground	104.20	Free flow	N/A	Free flow	N/A	Free flow	N/A	Free flow	N/A	Free flow	N/A
1A	MH146	USF	103.61	Free flow	N/A	Free flow	N/A	Free flow	N/A	Free flow	N/A	Free flow	N/A
1A	MH147	USF	104.06	Free flow	N/A	Free flow	N/A	Free flow	N/A	Free flow	N/A	Free flow	N/A
1A	MH148	USF	104.56	Free flow	N/A	Free flow	N/A	Free flow	N/A	Free flow	N/A	Free flow	N/A
1A	MH138	USF	106.01	Free flow	N/A	Free flow	N/A	Free flow	N/A	Free flow	N/A	Free flow	N/A
1A	MH145	USF	103.61	102.75	0.86	102.76	0.85	Free flow	N/A	Free flow	N/A	Free flow	N/A
1A	MH160	USF	105.53	Free flow	N/A	Free flow	N/A	Free flow	N/A	Free flow	N/A	Free flow	N/A
1A	MH137	USF	106.26	Free flow	N/A	Free flow	N/A	Free flow	N/A	Free flow	N/A	Free flow	N/A
1A	MH136	USF	106.71	Free flow	N/A	Free flow	N/A	Free flow	N/A	Free flow	N/A	Free flow	N/A
1A	MH144	USF	104.81	Free flow	N/A	Free flow	N/A	Free flow	N/A	Free flow	N/A	Free flow	N/A
1A	MH143	USF	105.11	Free flow	N/A	Free flow	N/A	Free flow	N/A	Free flow	N/A	Free flow	N/A
1A	MH142	USF	106.11	Free flow	N/A	Free flow	N/A	Free flow	N/A	Free flow	N/A	Free flow	N/A

HGL SUMMARY PHASE 1 (TRIB. TO POND 5)

	T	USF or Propos	sed Ground	100 year 24	hour SCS	100 year 24 ho	our SCS + 20%		
PHASE	МН	,	Elevation (m)	HGL (m)	Freeboard (m)	HGL (m)	Freeboard (m)		
T	MH207	Proposed Ground	107.17	104.49	2.68	104.67	2.50		
Trunk to Pond 5	MH206	Proposed Ground	107.15	104.53	2.62	104.73	2.42		
Polid 5	MH205	Proposed Ground	107.28	104.57	2.71	104.78	2.50		
1	MH110	Proposed Ground	107.52	104.64	2.88	104.86	2.66		
1	MH109	Proposed Ground	107.45	104.65	2.80	104.88	2.57		
1	MH107	Proposed Ground	107.41	104.68	2.73	104.90	2.51		
1	MH105	USF	105.65	104.71	0.94	104.94	0.71		
1	MH104	USF	105.85	104.75	1.10	104.98	0.87		
1	MH103	USF	105.75	104.76	0.99	105.00	0.75		
1	MH102	USF	105.95	Free flow	N/A	105.00	0.95		
1	MH110C	Proposed Ground	107.93	Free flow	N/A	105.01	2.92		
1	MH170	USF	105.50	104.79	0.71	105.05	0.45		
1	MH171	USF	105.35	104.87	0.48	105.16	0.19		
1	MH172	USF	105.50	104.93	0.57	105.23	0.27		
1	MH173	USF	105.65	104.97	0.68	105.28	0.37		
1	MH174	USF	105.80	105.02	0.78	105.35	0.45		
1	MH175	USF	106.00	105.06	0.94	105.39	0.61		
1	MH176		106.10	105.10	1.00	105.44	0.66		
1	MH177	Proposed Ground	106.55	Free flow	N/A	105.45	1.10		
1	MH181	USF	105.65	105.00	0.65	105.40	0.25		
1	MH180	USF	105.85	105.23	0.62	105.63	0.22		
1	MH184	USF	105.68	105.06	0.62	105.41	0.27		
1	MH183	USF	105.95	105.14	0.81	105.54	0.41		
1	MH182	USF	106.19	105.62	0.57	106.05	0.14		
1	MH187	USF	105.75	105.16	0.59	105.59	0.16		
1	MH186	USF	106.05	105.27	0.78	105.76	0.29		
1	MH191	USF	106.02	105.33	0.69	105.84	0.18		
1	MH185	USF	106.45	105.42	1.03	105.91	0.54		
1	MH127	USF	106.70	Free flow	N/A	106.05	0.65		
1	MH190	USF	106.35	105.13	1.22	105.47	0.88		
1	MH189	USF	106.05	105.17	0.88	105.52	0.53		
1	MH188	USF	106.55	Free flow	N/A	105.67	0.88		
1	MH128	USF	106.65	Free flow	N/A	105.90	0.75		
1	MH120	USF	105.70	104.81	0.89	105.05	0.65		
1	MH121	USF	105.70	Free flow	N/A	105.07	0.63		
1	MH122	USF	105.90	Free flow	N/A	105.09	0.81		
1	MH123	USF	106.00	Free flow	N/A	105.12	0.88		
1	MH124	USF	106.10	Free flow	N/A	105.16	0.94		
1	MH125	USF	106.20	Free flow	N/A	105.21	0.99		
1	MH126		106.35	Free flow	N/A	105.25	1.10		
<u>1</u>		Proposed Ground	109.23	Free flow	N/A	Free flow	N/A		
<u>1</u>	MH114		106.00	104.93	1.07	105.18	0.82		
1	MH113		106.05	105.05	1.00	105.32	0.73		
1	MH112		106.10	105.12	0.98	105.39	0.71		
1	MH111	Proposed Ground	108.19	Free flow	N/A	105.40	2.79		
1	+	USF	106.15	Free flow	N/A	105.46	0.69		
1	MH130	USF	106.25	104.98	1.27	105.22	1.03		
1	MH131	USF	106.15	Free flow	N/A	105.26	0.89		
1	MH140	USF	106.25	Free flow	N/A	105.33	0.92		
1		USF	106.40	Free flow	N/A	Free flow	N/A		
1	MH141	Proposed Ground	108.40	Free flow	N/A	Free flow	N/A		
1	MH135	USF	106.76	Free flow	N/A	Free flow	N/A		
1		USF	106.65	Free flow	N/A	Free flow	N/A		
1	MH152	USF	107.40	Free flow	N/A	Free flow	N/A		
1	MH153	USF	107.25	Free flow	N/A	Free flow	N/A		
1	MH151	USF	107.00	Free flow	N/A	Free flow	N/A		
1	MH149	USF	106.71	Free flow	N/A	Free flow	N/A		

HGL SUMMARY PHASE 1 (TRIB. TO POND 5)

25% SEDIMENT ACCUMULATION

DUAGE		USF or Prop	osed Ground	100 year 3 hour Chicago						
PHASE	MH		Elevation (m)	HGL (m)	Freeboard (m)					
Turnels to	MH207	Proposed Ground	107.17	105.00	2.17					
Trunk to Pond 5	MH206	Proposed Ground	107.15	105.10	2.05					
Fullu 3	MH205	Proposed Ground	107.28	105.20	2.08					
1	MH110	Proposed Ground	107.52	105.35	2.17					
1	MH109	Proposed Ground	107.45	105.38	2.07					
1	MH107	Proposed Ground	107.41	105.43	1.98					
1	MH105	USF	105.65	105.48	0.17					
1	MH104	USF	105.85	105.54	0.31					
1	MH103	USF	105.75	105.61	0.14					
1	MH102	USF	105.95	105.67	0.28					
1	MH110C	Proposed Ground	107.93	105.82	2.11					
1	MH170	USF	105.50	105.56	-0.06					
1	MH171	USF	105.35	105.67	-0.32					
1	MH172	USF	105.50	105.75	-0.25					
1	MH173	USF	105.65	105.80	-0.15					
1	MH174	USF	105.80	105.87	-0.07					
1	MH175	USF	106.00	105.91	0.09					
1	MH176	USF	106.10	105.96	0.14					
1	MH177	Proposed Ground	106.55	106.04	0.51					
1	MH181	USF	105.65	105.90	-0.25					
1	MH180	USF	105.85	106.14	-0.29					
1	MH184	USF	105.68	105.92	-0.24					
1	MH183	USF	105.95	106.05	-0.10					
1	MH182	USF	106.19	106.55	-0.36					
1	MH187	USF	105.75	106.10	-0.35					
1	MH186	USF	106.05	106.26	-0.21					
1	MH191	USF	106.02	106.35	-0.33					
1	MH185	USF	106.45	106.44	0.01					
1	MH127	USF	106.70	106.68	0.02					
1	MH190	USF	106.35	105.98	0.37					
1	MH189	USF	106.05	106.04	0.01					
1	MH188	USF	106.55	106.35	0.20					
1	MH120	USF	105.70	105.67	0.03					
1	MH121	USF	105.70	105.71	-0.01					
1	MH122	USF	105.90	105.74	0.16					
1	MH123	USF	106.00	105.79	0.21					
1	MH124	USF	106.10	105.92	0.18					
1	MH125	USF	106.20	106.14	0.06					
1	MH126	USF	106.35	106.31	0.04					
1	MH128	USF	106.65	106.91	-0.26					
1	MH129	Proposed Ground	109.23	106.91	2.32					
1	MH114	USF	106.00	105.79	0.21					
1	MH113	USF	106.05	105.90	0.15					
1	MH112	USF	106.10	106.06	0.04					
1	MH111	Proposed Ground	108.19	106.08	2.1					
1	MH132	USF	106.15	106.06	0.09					
1	MH130	USF	106.25	105.89	0.36					
1	MH131	USF	106.15	106.09	0.06					
1	MH140	USF	106.25	106.00	0.25					

IBI GROUP REPORT DESIGN BRIEF CRT PH 1 BLK 324 FERNBANK COMMUNITY Prepared for Claridge Homes

The above results indicate that there is no major system flow from the site during the 100 year 3 hour Chicago analysis. Supporting information, the Velocity x Depth Calculation sheets are included within **Appendix D** for reference. Therefore, the proposed design will not have a negative impact on the existing downstream system.

All the total depths of flow and ponding during the 100 year storm event increased by 20%, the major system remains at or below 0.20m and therefore below the building openings at all locations, see the Velocity x Depth Calculation sheets provided in **Appendix D**.

4.8 Hydraulic Grade Line Analysis

As part of the Phase 1 design the storm HGL was established at various points, at MH 209 the HGL was established at 100.97, the invert of the storm sewer at MH 109 which connect to MH 209 is 100.89, since the sewers are sized to accommodate the 5 yr design event, and ICD's limit flow into the sewers to the 5yr even the HGL within the site is deemed to follow the obvert of the sewer.

JULY 2021 13