

Engineers, Planners & Landscape Architects

Engineering

Land/Site Development

Municipal Infrastructure

Environmental/ Water Resources

Traffic/ Transportation

Recreational

Planning

Land/Site Development

Planning Application Management

Municipal Planning

Urban Design

Expert Witness (OLT)

Wireless Industry

Landscape Architecture

Streetscapes & Public Amenities

Open Space, Parks & Recreation

Community & Residential

Commercial & Institutional

Environmental Restoration

Block 1 Development

270 Lamarche Avenue

Servicing and Stormwater Management Report

SERVICING AND STORMWATER MANAGEMENT REPORT

BLOCK 1 DEVELOPMENT 270 LAMARCHE AVENUE CITY OF OTTAWA

Prepared by:

NOVATECH Suite 200, 240 Michael Cowpland Drive Kanata, Ontario K2M 1P6

December 22, 2021 Revised: November 15, 2024

> Novatech File: 121214 Ref No. R-2021-194

November 15, 2024

City of Ottawa Planning and Growth Management Department 110 Laurier Avenue West, 4th Floor Ottawa, Ontario K1P 1J1

Attention: Katie Turk

Dear Ms Turk:

Reference: Block 1, 270 Lamarche Avenue, City of Ottawa Servicing and Stormwater Management Report Our File No.: 121214

Please find enclosed the revised 'Servicing and Stormwater Management Report' for the above noted project. This report is being submitted in support of Site Plan Control Application for the proposed development.

Should you have any questions or require additional information, please contact the undersigned.

Yours truly,

NOVATECH

Cara Ruddle, P.Eng. Senior Project Manager | Land Development Engineering

cc: Pascale Lépine

M:\2021\121214\DATA\REPORTS\SERVCING & SWM\BLOCK 1\121214 - SERVICING & SWM.DOCX

TABLE OF CONTENTS

1.0		1
2.0	EXISTING CONDITIONS	I
3.0	PROPOSED DEVELOPMENT	1
4.0	SITE CONSTRAINTS	2
5.0	WATER SERVICING	2
6.0	SANITARY SERVICING	3
7.0	STORM SERVICING	4
8.0	STORM DRAINAGE AND STORMWATER MANAGEMENT	5
8.1	Existing Off-Site Storm Infrastructure – Orleans Village Development	5
8.2	Stormwater Management Criteria	5
8.	.2.1 Stormwater Quality Control	5
8.	.2.2 Stormwater Quantity Control – Allowable Release Rate	5
8.3	Stormwater Management Modeling	3
8.	.3.1 Post-Development Conditions	7
8.	.3.2 Model Results	3
8.4	Major Overland Flow Route10)
9.0	EROSION AND SEDIMENT CONTROL 10)
10.0	CONCLUSIONS AND RECOMMENDATIONS	1
11.0	CLOSURE	2

LIST OF FIGURES

Figure 1	Key Plan
-	Legal 4M-1629
Figure 2	Existing Conditions Plan
Figure 3	Proposed Site Plan

LIST OF APPENDICIES

- Appendix A Water Servicing Information
- Appendix B Sanitary Servicing Information
- Appendix C Storm Servicing Information
- Appendix D Stormwater Management Calculations
- Appendix E Drawings

LIST OF ENGINEERING DRAWINGS (SEPARATE FROM REPORT)

Notes and Details – Block 1	(121214-NDB1)
General Servicing Plan – Block 1	(121214-GPB1)
Grading Plan – Block 1	(121214-GRB1)
Erosion Sediment Control Plan – Block 1	(121214-ESCB1)

1.0 INTRODUCTION

Novatech has been retained by Lépine Corporation to prepare a Servicing and Stormwater Management Report for the proposed residential development located at 270 Lamarche Avenue within the City of Ottawa. The proposed site is denoted as Block 1 on the plan of subdivision 4M-1629 and is part of a larger development which includes the 3 development blocks and a proposed public right-of-way. The proposed roadway (Street 1) has been designed with design information outlined within a separate Novatech report titled "240-270 Lamarche Avenue & 3484 Innes Road Servicing and Stormwater Management Report".

The purpose of this report is to support the site plan application for the Block 1 development. **Figure 1** Key Plan shows the site location. A copy of the legal plan is also included for reference.

2.0 EXISTING CONDITIONS

The total Block 1 site area is approximately 1.8 hectares. The property was previously part of the Innes Road Golfland Driving range and is currently vacant. The site is bound by the future Street 1 to the north, Lamarche Avenue to the east, residential buildings to the south, and residential buildings fronting Page Road to the west. The site is generally flat and slopes towards the southwest corner of the site. Due to the recent construction of Lamarche Avenue the current site grades are +/- 1.0m below the new roadway. **Figure 2** shows the existing site conditions.

The subject site was denoted as block 150 within the Orleans Village Development. The subdivision was designed by David Schaeffer Engineering Ltd. (DSEL) and design information is provided in the following reports:

- 'Design Brief for Cavian (Orleans Village) Limited, 3490 Innes Road' prepared By DSEL dated November 2018 – Ver 3 (Reference as DSEL Report).
- 'Assessment of Adequacy of Public Services for Lepine Corporation, 3490 Innes Road' Prepared by DSEL dated May 2019 – Rev 1 (Referenced as DSEL Assessment)

3.0 PROPOSED DEVELOPMENT

The proposed development Block 1 will include +/- 1.6 ha of residential area, and +/- 0.2ha of parkland. It is proposed to develop the residential site with three (3) apartment buildings connected by an underground parking structure. Pavilion A will be six (6) storeys in height with a footprint of $2022m^2$ and 105 units. Pavilion B will be seven (7) storeys in height with a footprint of $1966m^2$ and 81 units. Pavilion C will be seven (7) storeys in height with a footprint of $1851m^2$ and 97 residential units and $252m^2$ of commercial space. **Figure 3** shows the proposed development.

Access to the site will be provided from two (2) entrances from the future Street 1 which connects to the existing Lamarche Avenue. It should be noted that this report should be read in conjunction with the following engineering drawings:

General Plan of Services (dwg 121214-GPB1) Grading Plan (dwg 121214-GRB1) Erosion and Sediment Control Plan (dwg 121214-ESCB1) Notes and Details Plan (dwg 121214-NDB1)

SHT8X11.DWG - 216mmx279mm

INNES ALLOWANCE BETWEEN CONCESSIONS ROAD Centreline of Road PIN 04404-0459 PART 7 EXPROPRIATION PLAN 0C339349 1004404-046; Gravel AN 0C339349 ×91.36 4D WA OLG No. 2305 Page Road 4 STOREY BUILDING ×89.65 * * * 89.50 89.54 PART ! PLAN 4R-26301 PIN 04404 0582 ×89.35 89.37 × ₹89.01 88.98× 0 ×88.80 R=13.25 A=27.67 C=22.91 NI6°53'20"W OTTAWA-CARLETON STANDARD CONDOMINIUM PLAN 991 A=6.09 C=5.85 PIN 15991-0001 TO 0079 N66°16'00"E ₹88.65 BLOCK 4 88.66 × PIN 04404-0076 F-88.25 PART 4 PLAN 4R-8052 PIN 04404-0077 PART 3 PLAN 4R-8052 ×88.60 PIN 04404-0078 PART 2 PLAN 4R-8052 ×88.45 PIN 04404-0079 PART I PLAN 4R-8052 ----PIN 04404-0080 PART I PLAN 5R-8322 × 88.31 4 N X88.27 ×88.44 0 ×88.41 ×88.41 PIN 04404-008; N 66° 48' 20" E EXISTING 5 PART 2 PLAN 5R-8190 ×88.24 _____ Pizion 2 2 % L07 No Star 5 0 PIN 04404-0082 LOT 192 REGISTERED LOT 191 BLOCK 56 LOT 190 LOT 189 TRT DIN

SUBJECT TO THE CONDITIONS, IF ANY, SET FORTH IN OUR LETTER DATED IS DRAFT PLAN IS APPROVED BY THE CITY OF OTTAWA UNDER SECTION 51 OF THE PLANNING ACT. THIS _____ DAY OF ______, 20_ . 20 JOHN SEVIGNY, MANAGER, DEVELOPMENT REVIEW-EAST PLANNING, DEVELOPMENT AND BUILDING SERVICES DEPARTMENT, CITY OF OTTAWA PLAN 5R-958 PART / Mic NU/O NOT TO SCALE STREET 0G DRAFT PLAN OF SUBDIVISION OF BLOCKS 149, 150, 174 AND 176 **REGISTERED PLAN 4M-1629** AND PART OF LOT 5 ANA CONCESSION 3 (OTTAWA FRONT) Geographic Township of Gloucester **CITY OF OTTAWA** Prepared by Annis, O'Sullivan, Vollebekk Ltd. DISTANCES SHOWN ON THIS PLAN ARE IN METRES AND CAN BE CONVERTED TO FEET BY DIVIDING BY 0.3048 SURVEYOR'S CERTIFICATE I CERTIFY THAT : The boundaries of the lands to be subdivided and their relationship to adjoining lands have been accurately and correctly shown. A.J. Brocham ANDREW J. BROXHAM August 2,20224 ONTARIO LAND SURVEYOR Notes & Legend + 65.00 Denotes Location of Existing Elevations ----- " Property Line Topographical detail per AOV Survey dated July 30th, 2018. Position of avenue de Lamarche Avenue per GeoOttawa imagery. SCHEDULE OF LAND USE Land Use Blocks Area (sq. m.) Apartment Residential 15739 Block 1 Development Blocks Block 2 9180 Use to be Determined through Future Applications Block 3 18622 1966 Park Block 4 Street No. 1, Blocks 5, 6, 7, 8 New Street 6358 OWNER'S CERTIFICATE This is to certify that I am the owner / agent of the lands to be subdivided and that this plan was prepared in accordance with my instructions. 5 AUGUST 2,024 Date 1-Chine Francis Lepine, President Canadian Rental Development Services Inc. Bearings are grid bearings and are referred to the Central Meridian of MTM Zone 9 (76°30' West Longitude) NAD-83 (original). ADDITIONAL INFORMATION REQUIRED UNDER SECTION 51-17 OF THE PLANNING ACT (a) see plan BLOCK 205 (b) see plan (c) see plan (d) (purpose for which lots are to be used) (e) see plan (f) see plan (g) see plan COURS CREVIER WALK (h) City of Ottawa (i) see soils report REGISTERED (j) see plan (k) (municipal services available or to be available) PLAN 4M-1648 (I) see plan ANNIS, O'SULLIVAN, VOLLEBEKK LTD. 14 Concourse Gate, Suite 500 Æ Nepean, Ont. K2E 7S6 Ontario Land Surveyors Phone: (613) 727-0850 / Fax: (613) 727-1079 Email: Nepean@aovltd.com JOB NO. E-8534-IB CRDS PILT 5 C 3 OF GI DPS DI4

SCALE	1 : 1250		10	20	30	40	50	
DATE	NOV 2024	JOB	121	214		FIGURE	2	

4.0 SITE CONSTRAINTS

A geotechnical investigation was completed by Paterson Group Inc. and a report prepared entitled 'Geotechnical Investigation, Proposed Multi-Storey Residential Buildings' dated May 21, 2019. The report included the following recommendations:

- If buildings are founded directly over a clay deposit, a permissible grade raise restriction will be required. A preliminary permissible grade raise restriction of 2 m is recommended for the south portion of the site.
- It should be noted that bedrock was encountered between 5.6 to 7 m below existing grade within the subject property.
- To reduce long-term lowering of the groundwater level at this site clay seals should be provided along the sewer trenches.
- During construction, groundwater volumes pumped could be between 50,000 to 400,000 L/day and it would be required to register on the Environmental Activity and Sector Registry (EASR). However, the project is expected to be phased, so each building constructed one at a time. As the phasing of the underground foundation works is planned in stages the groundwater volumes to be pumped are expected to be maintained under the 50,000L/day threshold.

5.0 WATER SERVICING

The subject property is within the City of Ottawa 2E pressure zone. As previously indicated, Block 1 is part of a larger development (240-270 Lamarche Avenue & 3784 Innes Road Plan of Subdivision) which includes the construction of the proposed Street 1 public right-of-way. As part of the subdivision works a 200mm watermain will connect to the existing Lamarche Avenue watermain in two (2) locations creating a looped system for redundancy purposes.

Block 1 will be serviced by two (2) 150mm diameter watermains that will connect to the proposed 200mm diameter watermain in Street 1. As per the City of Ottawa Technical Bulletin ISDTB-2014-02, the water services will be separated by an isolation valve in the right-of-way as the average day domestic demands are greater than 50 cubic meters of water per day. The proposed buildings are to be sprinklered and equipped with a Siamese connection located near the front entrance of each building and are to be within 45m of a fire hydrant. Refer to the General Plan of Services drawing (121214-GPB1) for servicing details.

Water demand calculations have been calculated using criteria from Section 4 of the City of Ottawa Water Distribution Guidelines and the Ontario Building Code. The required fire demand was calculated using the 2020 Fire Underwriters Survey (FUS) Guidelines. The water demand and fire flow calculations are provided in **Appendix A** for reference. A summary of the water demand and fire flows are provided in **Table 5.1**.

Building	Population	Commercial Area (m²)	Ave. Daily Demand (L/s)	Max. Daily Demand (L/s)	Peak Hour Demand (L/s)	Fire Flow (L/s)
Pavilion A	179	N/A	0.58	1.45	3.18	117
Pavilion B	155	N/A	0.50	1.25	2.75	100
Pavilion C	154	264	0.52	1.28	2.81	100
Park Land	N/A	N/A	0.01	0.01	0.02	
Total Domestic Demands	496	252	1.61	4.00	8.78	

Table 5.1: Domestic Water Demand Summary

In the "240-270 Lamarche Avenue & 3484 Innes Road Servicing and Stormwater Management Report", Block 1 was assumed to be a residential development with an equivalent population of 513 people. The allotted domestic demands and fire flows for the Block 1 are summarized in **Table 5.2**.

Table 5.2 Allowable Block 1 Water Demand (Novatech Detailed Design Report for Subdivision)

Area	Ave. Daily	Max. Daily	Peak Hour	Fire Flow
	Demand (L/s)	Demand (L/s)	Demand (L/s)	(L/s)
Block 1	1.66	4.15	9.14	117

Therefore, based on the information in the preceding tables the proposed development water demands are less than the demands allotted from the '240-270 Lamarche Avenue & 3484 Innes Road Servicing and Stormwater Management Report'. Therefore, it can be concluded that the existing watermain system can provide adequate flow and pressures for the fire flows and domestic demands.

6.0 SANITARY SERVICING

As part of the subdivision works, a 250mm diameter sanitary sewer will be constructed in the future Street 1 public right-of-way which will connect to the existing Lamarche Avenue sanitary sewer system. Block 1 will be serviced with a 200mm private sewer with a connection to the proposed sanitary sewer in Street 1. Refer to the General Plan of Services drawing (121214-GPB1) for servicing details.

Sanitary flows for the proposed development were calculated using criteria from Section 4 of the City of Ottawa Sewer Design Guidelines and the Ontario Building Code as follows:

- Residential Average Flow = 280 L/capita/day
- 1 Bed apartment = 1.4 Person/unit
- 2 Bed apartment = 2.1 Person/unit
- 3 Bed apartment = 3.1 Person/unit
- Single unit = 3.4 Person/unit
- Commercial flow = 75 L/9.3m³/day
- Parkland = 1 unit/ hectare
- Residential Peaking Factor = Harmon Equation (max peaking factor = 4.0)
- Commercial Peaking Factor = 1.0
- Peak Extraneous Flows (Infiltration) = 0.33L/s/ha

The peak sanitary flow including infiltration for the Block 1 development was calculated to be 5.95 L/s with 5.89 L/s for Pavilion A, B and C, and 0.06L/s for the proposed parkland. Detailed sanitary flow calculations are provided in **Appendix B** for reference.

Part of Block 1 development was allocated 12.53 L/s in the "240-270 Lamarche Avenue & 3484 Innes Road Servicing and Stormwater Management Report". Since the allotted flow of 12.53 L/s is greater than the proposed theoretical peak flow of 5.95 L/s, it is anticipated that the downstream sanitary sewer infrastructure has capacity to service the proposed Block 1 development.

7.0 STORM SERVICING

There is an existing 850mm and 1350mm diameter storm sewer fronting the development in Lamarche Avenue. A 750mm diameter storm sewer and catchbasin manhole were constructed just inside the Block 1 site as part of the overall Orleans Subdivision construction to service these lands. This infrastructure will serve as the outlet for the Block 1 development.

A private storm sewer will be constructed to service the Block 1 development ranging in size from 250mm to 600mm in diameter. Refer to the General Plan of Services (121214-GPB1) for more details.

The proposed storm sewers have been sized to convey the uncontrolled 2-year storm event using the Rational Method. The design criteria used in sizing the storm sewers is summarized below in **Table 7.1**.

Parameter	Design Criteria
Local Roads	2 Year Return Period
Storm Sewer Design	Rational Method
IDF Rainfall Data	Ottawa Sewer Design Guidelines
Initial Time of Concentration (Tc)	10 min
Minimum Velocity	0.8 m/s
Maximum Velocity	3.0 m/s
Minimum Diameter	250 mm

Table 7.1: Storm Sewer Design Parameters

Refer to Appendix C for detailed storm drainage area plans and storm sewer design sheets.

8.0 STORM DRAINAGE AND STORMWATER MANAGEMENT

The stormwater management strategy for the site is based on the established criteria from the DSEL Assessment of Adequacy of Public Services. This design criteria was also used for the overall site design as discussed in the "240-270 Lamarche Avenue & 3484 Innes Road Servicing and Stormwater Management Report".

8.1 Existing Off-Site Storm Infrastructure – Orleans Village Development

The storm infrastructure servicing the Orleans Village Subdivision includes a stormwater management facility and storm sewers with sizes ranging from 300mm to 1800mm in diameter. The Orleans Village Subdivision storm sewer system was designed to receive drainage from the proposed development. As previously indicated the overall Lepine development area was identified as Blocks 149 and 150 on the registered plan of subdivision. The downstream SWM Facility was designed to provide stormwater quality and quantity control for the overall Orleans Village Subdivision area prior to discharging to Mud Creek. The facility was sized to accommodate all future developments within the tributary drainage area, including the subject development lands.

8.2 Stormwater Management Criteria

8.2.1 Stormwater Quality Control

The existing SWM Facility is currently sized to provide a normal level of stormwater quality control. In the future it is proposed to upgrade the SWM facility to provide and enhanced level of stormwater quality control for 80% long-term removal of total suspended solids (TSS).

As previously indicated the Block 1 development was identified as Block 150 in the Orleans Village Development and was estimated to be 79% impervious. The proposed Block 1 development has an overall imperviousness of 74% and will therefore have no negative effects on the downstream stormwater infrastructure (sewers and pond).

8.2.2 Stormwater Quantity Control – Allowable Release Rate

The DSEL Adequacy of Public Services Report provides stormwater allowable release rates for Blocks 149, Block 150 and the external drainage areas for the residential properties fronting onto Innes Road. The allowable release rates per block are provided in **Table 8.1**.

Block	Area (ha)	Allowable Release Rate (L/s)
Block 149	2.86	501
Block 150	2.17	406
External Area	0.11	*9.4
Total	5.14	916.4

Table 8.1 Allowable Release Rates Per Block (DSEL Report)

*Note: Calculated using rational method for a 2-year storm event.

The overall Lepine development will be required to control the release rate of stormwater from the site to 916.4 L/s. Each area in the overall Lepine development has been allocated a portion of this total release rate. The allocated release rates are summarized below in **Table 8.2** and were calculated based on the following criteria:

- No 2-year surface ponding in the right-of-way.
- No stormwater management controls in the park blocks.
- Each development Block was allocated a portion of the remaining release rate.

Table 8.2 All	owable Release	Rates Per I	Block (Novatech	Detailed Design	Report for
Subdivision))				

Development Area	Area (ha)	Allowable Release Rate (L/s)
ROW	0.611	147.0
Park	0.503	95.0
Sub Total	1.114	242.0
Block 1	1.535	258.0
Block 2	0.922	155.0
Block 3	1.563	261.0
Sub Total	4.020	674.0
Total	5.134	916.0

Based on the information provided in **Table 8.2** the Block 1 development will be allocated 258.0 L/s to the Lamarche Avenue sewer and ultimately the downstream SWM facility. Refer to the "240-270 Lamarche Avenue & 3484 Innes Road Servicing and Stormwater Management Report" for detailed calculations on the allowable release rate allocation.

8.3 Stormwater Management Modeling

The performance of the proposed stormwater management system was evaluated using a dualdrainage model created in PCSWMM. The PCSWMM model simulates the storage and routing of flows through the proposed storm drainage network. The results of the analysis were used to:

- Calculate the storm sewer hydraulic grade line and ponding elevations for the 2-year, 5-year, and 100-year storm events.
- Determine the allowable release rates from each drainage area and size the required inlet control devices (ICD's).
- Calculate the modelled runoff from the controlled portions and uncontrolled portions of the site under post-development conditions.

Refer to **Figure 5-** Post-Development Storm Drainage Area Plan for reference.

8.3.1 Post-Development Conditions

Design Storms

The design storms used in the hydrologic analysis model include the 6-hour Chicago distribution and the 12-hour and 24-hour SCS Type II distribution for the 2-year, 5-year and 100-year storm events. IDF data was taken from the *City of Ottawa Sewer Design Guidelines* (OSDG) (October 2012). The 6-hour Chicago storm distribution was found to generate the highest peak flows and the model results from this distribution are documented in the following tables.

The proposed drainage system was also stress tested using a 6-hour Chicago storm that has 20% higher intensity and total volume compared to the 100-year event.

Model Parameters

For modeling purposes, the site has been divided into subcatchments based on the drainage areas tributary to each inlet of the proposed storm sewer system. The sub-catchment areas are shown on **Figure SWMB1** (Stormwater Management Plant – Block 1). The post-development model parameters are summarized in **Table 8.3**. The model schematic, system parameters and output files are provided in **Appendix D**.

Area ID	Catchment Area	Runoff Coefficient	Percent Impervious	No Depression	Flow Length	Equivalent Width	Average Slope
	(ha)	(C)	(%)	(%)	(m)	(m)	(%)
A-01	0.021	0.59	55.7%	0%	16	13	2.0%
A-02	0.111	0.61	58.6%	0%	35	32	2.5%
A-03	0.142	0.63	61.4%	0%	50	29	2.0%
A-04	0.014	0.54	48.6%	0%	31	5	2.0%
B-01	0.532	0.80	85.7%	0%	49	109	2.0%
B-02	0.242	0.83	90.0%	0%	34	72	2.0%
C-01	0.174	0.34	20.0%	0%	105	17	2.0%
C-02	0.058	0.42	31.4%	0%	65	9	2.0%
C-03	0.147	0.32	17.1%	0%	59	25	2.0%
C-04	0.055	0.44	34.3%	0%	59	9	2.0%
D-01	0.047	0.33	18.6%	0%	6	76	4.0%
TOTAL	1.543						

Table 8.3: Post-Development Model Parameters

Boundary Conditions

JFSA Engineering created a SWM model for the Orleans Village Subdivision (dated June 2019) which is provided in Appendix E of the "Master Servicing Study for East Urban Community Phase 3 Area Community Design Plan" prepared by DSEL (December 2020). Based on the results of this model, the boundary condition HGL elevations have been applied at storm outfalls to Lamarche Avenue for Block 1.

76.34

Table 8.4 summarizes the boundary condition HGL elevations for the Lamarche Avenue STM System (MH15). The JFSA HGL result tables are included in Appendix D.

Return Period	Storm HGL Elevation (m)		
	MH15		
100-year	84.564		
100-year + 20%	85.315		

Table 8.4: STM Boundary Conditions - Lamarche Avenue (JFSA, 2019)

8.3.2 Model Results

O-TANK2

Runoff from Block 1 drainage area will outlet to the existing 1350 mm diameter storm sewer in Lamarche Avenue via the private sewer system on site. The post-development flow from Block 1 area will be attenuated using ICDs prior to being discharged into the Lamarche Avenue storm sewer. A summary of the ICD locations and peak flows is provided in Table 8.5.

able 8.5: Inlet Control Device Sizes and Design Flows										
		ICD ICD invert		100	100-year 6-hr Chicago					
ICD	Location	Size	ICD Invent	HGL	SL Head	Release Rate				
		(mm)	(m)	(m)	(m)	(L/s)				
O-CBMH205	CBMH205	127	86.74	88.44	1.64	44.14				
O-MH212	MH212	102	86.08	88.77	2.64	35.33				
O-TANK1	TANK1	178	86.00	87.64	1.55	84.41				

178

TANK2

The above ICDs will require upstream storage to control the site runoff. This storage will be provided by the underground pipe network and surface ponding. Area B-01 will have a storage tank to contain the controlled runoff. The provided storage and the 100-year required storage is summarized in Table 8.6.

86.00

87.36

1.27

Table 8.6: Storage Summary

	Av	ailable Storage		Required 100-year Storage ¹			
Upstream ICD Location	Underground Storage	Surface Storage	Total Storage	Underground Storage	Surface Storage	Total Storage	
	(m ³)	(m³)	(m ³)	(m ³)	(m³)	(m³)	
CBMH205	17	72	88	16	2	19	
MH212	27	75	102	25	0	25	
TANK1	235	0	235	138	0	138	
TANK2	78	0	78	36	0	36	

¹ 100-year 6-hour Chicago Storm

Hydraulic Grade Line

The PCSWMM model was used to determine the HGL elevations in the storm sewer system during the 100-year storm event. The 100-year HGL elevations at the proposed storm manholes are provided in **Table 8.7**.

Manhole ID	MH Invert Elevation (m)	T/G Elevation (m)	HGL - 100yr6hr (m)	HGL - 100yr6hr+20% (m)	FFE (m)	Clearance (100yr) (m)
MH201	83.91	88.81	84.60	85.39	89.60	5.00
MH202	85.02	88.50	85.31	85.49	89.60	4.29
MH203	85.28	88.82	85.51	85.67	89.60	4.09
MH204	85.63	89.10	85.83	85.93	89.60	3.77
MH209	86.39	89.16	88.85	88.94	89.60	0.75
MH211	86.14	89.20	88.79	88.88	89.60	0.81
MH212	86.08	89.15	88.77	88.87	89.60	0.83

Table 8.7: 100-year and Stress Test HGL Elevations

Major System (Ponding)

The major system has been designed for the 100-year event. During large storm events, storm runoff that exceeds the inlet capacity of the ICDs will pond on the surface. The major overland system is shown on the Grading Plan (drawing 121214-GRB1). A summary of the ponding depths for the 100-year storm event is provided in **Table 8.8**. Additional ponding depths for other Storm events are provided in **Appendix D**.

	TIC	Max. Stati	c Ponding	100-year Ponding							
Structure	I/G	Elev.	Depth	Elev.	Depth	Cascading	Cascade				
	(m)	(m)	(m)	(m)	(m)	Flow?	Depth (m)				
	Catchbasins at Low Points										
CB01	89.00	89.25	0.25	88.89	0.00	N	0.00				
CB02	89.35	89.40	0.05	88.90	0.00	N	0.00				
CB03	88.70	88.86	0.16	88.58	0.00	N	0.00				
		Catch	basin Manh	oles at Low	Points						
CBMH205	88.36	88.58	0.22	88.44	0.08	N	0.00				
CBMH206	88.48	88.80	0.32	88.52	0.04	N	0.00				
CBMH207	88.58	88.86	0.28	88.58	0.00	N	0.00				
CBMH208	88.70	89.00	0.30	88.87	0.17	N	0.00				
CBMH210	89.10	89.00	-	88.83	0.00	N	-				

Table 8.8: Ponding at Catchbasins (100-year Event)

<u>Peak Flows</u>

The allowable release rates for the Block 1 development are presented in **Table 8.9**. The modelled peak flows are slightly less than the allowable release rates due to attenuation of peak flows in the model from major system storage, pipe storage, and travel times within the storm sewer system.

Storm Distribution	6hr Chicago				
Return Period->	25mm	2yr	5yr	100yr	
Allowable Release Rate		258	258	258	258
_	Controlled	87	120	152	233
Post- Development	Uncontrolled	1	3	9	21
Development	Total	88	123	161	254
Difference		-170	-135	-97	-4

Table 8.9: Peak Flows

As shown in **Table 8.9**, the proposed storm drainage system will provide sufficient storage and attenuation of post-development runoff to limit peak flows to allowable release rate of 258 L/s with for all storms up to and including the 100-year design event.

8.4 Major Overland Flow Route

A major overland flow route will be provided for storms greater than the 100-year storm event. Stormwater will be directed to the Street 1 and Lamarche Avenue rights-of-way. The major overland system is shown on the Grading Plan (drawing 121214-GRB1).

9.0 EROSION AND SEDIMENT CONTROL

Temporary erosion and sediment control measures will be implemented on-site during construction in accordance with the Best Management Practices for Erosion and Sediment Control. This includes the following temporary measures:

- Filter socks (catchbasin inserts) will be placed in existing and proposed catchbasins and catchbasin manholes, and will remain in place until vegetation has been established and construction is completed;
- Silt fencing will be placed along the surrounding construction limits;
- Mud mats will be installed at the site entrances;
- Strawbale or rock check dams will be installed in swales and ditches;
- The contractor will be required to perform regular street sweeping and cleaning as required, to suppress dust and to provide safe and clean roadways adjacent to the construction site;

Erosion and sediment control measures should be inspected daily and after every rain event to determine maintenance, repair or replacement requirements. Sediments or granulars that enter site sewers shall be removed immediately by the contractor. These measures will be implemented prior to the commencement of construction and maintained in good order until vegetation has been established. Refer to the Erosion and Sediment Control Plan (drawing 121214-ESCB1) for additional information.

10.0 CONCLUSIONS AND RECOMMENDATIONS

<u>Watermain</u>

The analysis of the existing and proposed watermain network confirms the following:

- The two (2) proposed 150mm dia. watermain services which connect to the proposed 200mm watermain system within Street 1, and ultimately the existing 300mm dia. watermain in Lamarche Avenue can service the proposed development.
- It is anticipated that there are adequate pressures in the existing watermain infrastructure to meet the required domestic demands for the development.
- It is anticipated that there is adequate flow to service the proposed fire protections system.

Sanitary Servicing

The analysis of the existing and proposed sanitary system confirms the following:

- The proposed 250mm diameter sanitary sewer in Street 1 will provide service connections for the parkland and Block 1.
- It is anticipated there is adequate capacity within the existing sanitary infrastructure to service the proposed development based on the information provided in the existing Orleans Village Development design.

Stormwater Management

The following provides a summary of the storm sewer and stormwater management system:

- The proposed storm sewer system is to connect to the existing 750mm diameter storm sewer on site.
- Storm sewers (minor system) have been designed to convey the uncontrolled 2-year peak flow using the Rational Method.
- Underground storage is be provided within the storm sewer system and underground storage tanks.
- Inlet control devices and underground storage has been designed to ensure no static ponding is achieved in the 2-year event.
- Storm flows will be attenuated through the implementation of inlet control devices.
- Parking lots have been graded to ensure that static ponding depths do not exceed 0.30m.
- As per existing conditions a major overland flow route is provided to Lamarche Avenue.
- Quality control of stormwater will be provided in the downstream SWM facility.

Erosion and Sediment control

• Erosion and sediment control measures (i.e. filter fabric, catchbasin inserts, silt fences, etc.) will be implemented prior to construction and are to remain in place until vegetation is established.

11.0 CLOSURE

The preceding report is respectfully submitted for review and approval. Please contact the undersigned should you have questions or require additional information.

NOVATECH

Prepared by:

Melanie Schroeder, P.Eng. Project Engineer Water Resources

Prepared by:

Michael Adeoti, E.I.T, M.Eng. Engineer in Training Land Development Engineering

Reviewed by:

Cara Ruddle, P.Eng. Senior Project Manager Land Development Engineering

APPENDIX A Water Servicing Information

Proposed Development Conditions - BLOCK 1

	Pavilion A	Pavilion B	Pavilion C	Park	Totals
1 Bed Apartment (Units)	61	46	53	n/a	160
2 Bed Apartment (Units)	43	43	38	n/a	124
3 Bed Apartment (Units)	1	0	0	n/a	1
Total number of units	105	89	91	n/a	285
Total Population	179	155	154	n/a	488
Total Daily Volume (Liters)	50064	43316	43120	n/a	136500
Avg Day Demand (L/s)	0.579	0.501	0.499	n/a	1.58
Max Day Demand (L/s)	1.449	1.253	1.248	n/a	3.95
Peak Hour Demand (L/s)	3.187	2.757	2.745	n/a	8.69

	Pavilion A	Pavilion B	Pavilion C	Park	Totals
Commercial area (m ²)	n/a	n/a	264	n/a	264
Area (ha)	n/a	n/a	n/a	0.1724	0.1724
Total Daily Volume (Liters)	n/a	n/a	2129.0	639.0	2768.0
Avg Day Demand (L/s)	n/a	n/a	0.025	0.007	0.05
Max Day Demand (L/s)	n/a	n/a	0.037	0.011	0.05
Peak Hour Demand (L/s)	n/a	n/a	0.067	0.020	0.09

Combined Total

	Pavilion A	Pavilion B	Pavilion C	Park	Totals
Avg Day Demand (L/s)	0.579	0.501	0.524	0.007	1.61
Max Day Demand (L/s)	1.449	1.253	1.285	0.011	4.00
Peak Hour Demand (L/s)	3.187	2.757	2.811	0.020	8.78

Design Parameters

Establishment	Daily Demand Volume		Source		
1 Bed Apartment	1.4	Person/unit			
2 Bed Apartment	2.1	Person/unit			
3 Bed Apartment	3.1 Person/unit		City of Ottown Sower Design Cuidelines		
Residential Average Flow	280	L/c/day	City of Ottawa Sewer Design Guidennes		
Picnic and Fair Grounds Flush	20	L/Person/day			
Toilets only	20	Assume 75 Per/acre			
Office:	75	l/9.3m² /day	Daily Demands from OBC Table 8.2.1.3		

*Note: Commercial Daily Demand from OBC Table 8.2.1.3 was used to calculate the Daily demand volume instead of the City of Ottawa Water Distribution Guidelines Table 4.2 as it provided a higher volume

Residential Peaking Factors City of Ottawa Water Distrubution Guidelines:

Conditions	Peaking Fa	Units	
Maximum Day	2.5	x avg day	L/c/day
Peak Hour	2.2	x max day	L/c/day

Commercial Peaking Factors City of Ottawa Water Distribution Guidelines

Conditions	Peaking Fa	Units	
Maximum Day	1.5	x avg day	L/c/day
Peak Hour	1.8	x max day	L/c/day

FUS - Fire Flow Calculations

As per 2020 Fire Underwriter's Survey Guidelines

Novatech Project #: 121214 Project Name: 3484 Innes Road Date: 24/9/2024 Input By: Micheal Adeoti Reviewed By: Cara Ruddle

Engineers, Planners & Landscape Architects

Input by User

Legend

No Information or Input Required

Building Description: Block 1 - 6 Storey Pavilion A

Type I - Fire resistive construction (2 hrs)

Step			Choose		Value Used	Total Fire Flow				
						(L/min)				
	Base Fire Flow									
	Construction Ma	iterial		Multi	plier					
	Coefficient	Type V - Wood frame		1.5						
1	related to type	Type IV - Mass Timber		Varies						
-	of construction	Type III - Ordinary construction		1	0.6					
	С	Type II - Non-combustible construction		0.8						
	_	Type I - Fire resistive construction (2 hrs)	Yes	0.6						
	Floor Area									
		Building Footprint (m ²)	2202							
	Δ	Number of Floors/Storeys	6							
2		Protected Openings (1 hr)	Yes							
		Area of structure considered (m ²)			3,303					
	F	Base fire flow without reductions	_			8,000				
		$F = 220 C (A)^{0.5}$								
	-	Reductions or Surc	harges							
	Occupancy haza	rd reduction or surcharge	FUS Table 3	Reduction/	Surcharge					
		Non-combustible		-25%						
3		Limited combustible	Yes	-15%						
-	(1)	Combustible		0%	-15%	6,800				
		Free burning		15%						
		Rapid burning		25%						
	Sprinkler Reduc	tion	FUS Table 4	Redu	ction					
		Adequately Designed System (NFPA 13)	Yes	-30%	-30%					
		Standard Water Supply	Yes	-10%	-10%					
4	(2)	Fully Supervised System	Yes	-10%	-10%	-2.550				
	(-/		Cumulati	ve Sub-Total	-50%	_,				
		Area of Sprinklered Coverage (m ²)	9909	75%						
			Cum	ulative Total	-38%					
	Exposure Surch	arge	FUS Table 5		Surcharge					
		North Side	10.1 - 20 m		15%					
		East Side	3.1 - 10 m		20%					
5	(3)	South Side	>30m		0%	2.380				
	(-)	West Side	>30m		0%	_,				
			Cum	ulative Total	35%					
		Results								
		Total Required Fire Flow, rounded to near	rest 1000L/mir	ı	L/min	7,000				
6	(1) + (2) + (3)	(2.000 L/min < Fire Flow < 45.000 L/min)		or	L/s	117				
		(2,000 E/1101 - 1 100 1 10W - 40,000 E/1101)		or	USGPM	1,849				

FUS - Fire Flow Calculations

As per 2020 Fire Underwriter's Survey Guidelines

Novatech Project #: 121214 Project Name: 3484 Innes Road Date: 24/9/2024 Input By: Micheal Adeoti Reviewed By: Cara Ruddle

Engineers, Planners & Landscape Architects

Input by User

Legend

No Information or Input Required

Building Description: Block 1 - 7 Storey Pavilion B

Type I - Fire resistive construction (2 hrs)

Construction Material Multiplier Coefficient related to type of construction Type V - Wood frame Type IV - Mass Timber 1.5 Varies Type IV - Mass Timber 0.6	(L/min)
Base Fire Flow Construction Material Multiplier Coefficient related to type of construction Type V - Wood frame Type IV - Mass Timber Type III - Ordinary construction 1.5 Varies 10.6	
Construction Material Multiplier 1 Coefficient related to type of construction Type V - Wood frame 1.5 Type IV - Mass Timber Varies Type III - Ordinary construction 1	
Coefficient related to type of construction Type V - Wood frame 1.5 Type IV - Mass Timber Varies Type III - Ordinary construction 1	
Image: scalar black to type of construction Type IV - Mass Timber Varies 1 related to type of construction Type III - Ordinary construction 1 0.6	
of construction Type III - Ordinary construction 1 0.6	
C 1ype II - Non-combustible construction 0.8	
Type I - Fire resistive construction (2 hrs) Yes 0.6	
Floor Area	
Building Footprint (m ²) 1966	
A Number of Floors/Storeys /	
2 Protected Openings (1 hr) Yes	
Area of structure considered (m ²) 2,949	
F Base fire flow without reductions	7.000
$F = 220 C (A)^{0.5}$	•,
Reductions or Surcharges	
Occupancy hazard reduction or surcharge FUS Table 3 Reduction/Surcharge	
Non-combustible -25%	
3 Limited combustible Yes -15%	
(1) Combustible 0% -15%	5,950
Free burning 15%	
Rapid burning 25%	
Sprinkler Reduction FUS Table 4 Reduction	
Adequately Designed System (NFPA 13) Yes -30% -30%	l
Standard Water Supply Yes -10% -10%	
4 Fully Supervised System Yes -10% -10%	-2 231
Cumulative Sub-Total -50%	2,201
Area of Sprinklered Coverage (m²)10321.575%	
Cumulative Total -38%	
Exposure Surcharge FUS Table 5 Surcharge	
North Side 10.1 - 20 m 15%	
East Side >30m 0%	
5 (3) South Side 10.1 - 20 m 15%	1 785
West Side >30m 0%	1,100
Cumulative Total 30%	
Results	
Total Required Fire Flow, rounded to nearest 1000L/min	6,000
6 (1) + (2) + (3) (2 000 L/min < Fire Flow < 45 000 L/min) or L/s	100
or USGPM	1,585

FUS - Fire Flow Calculations

As per 2020 Fire Underwriter's Survey Guidelines

Novatech Project #: 121214 Project Name: 3484 Innes Road Date: 24/9/2024 Input By: Micheal Adeoti Reviewed By: Cara Ruddle

Engineers, Planners & Landscape Architects

Input by User

Legend

No Information or Input Required

Building Description: Block 1 - 7 Storey Pavilion C

Type I - Fire resistive construction (2 hrs)

Step			Choose		Value Used	Total Fire Flow (L/min)
		Base Fire Flov	N			(2/1111)
	Construction Ma	iterial		Multi	plier	
	Coofficient	Type V - Wood frame		1.5	-	
1	related to type	Type IV - Mass Timber		Varies		
•	of construction	Type III - Ordinary construction		1	0.6	
	C	Type II - Non-combustible construction		0.8		
	•	Type I - Fire resistive construction (2 hrs)	Yes	0.6		
	Floor Area					
		Building Footprint (m ²)	1851			
	•	Number of Floors/Storeys	7			
2	A	Protected Openings (1 hr)	Yes			
		Area of structure considered (m ²)			2,777	
	F	Base fire flow without reductions				7 000
	•	$F = 220 C (A)^{0.5}$				7,000
		Reductions or Surcl	narges			
	Occupancy haza	rd reduction or surcharge	FUS Table 3	Reduction/	Surcharge	
		Non-combustible		-25%		
3		Limited combustible	Yes	-15%		
-	(1)	Combustible		0%	-15%	5,950
		Free burning		15%		
		Rapid burning		25%		
	Sprinkler Reduc	tion	FUS Table 4	Redu	ction	
		Adequately Designed System (NFPA 13)	Yes	-30%	-30%	
		Standard Water Supply	Yes	-10%	-10%	
4	(2)	Fully Supervised System	Yes	-10%	-10%	-2 231
	(-)		Cumulati	ve Sub-Total	-50%	_,_0
		Area of Sprinklered Coverage (m ²)	9717.75	75%		
			Cum	ulative Total	-38%	
	Exposure Surch	arge	FUS Table 5		Surcharge	
		North Side	>30m		0%	
		East Side	3.1 - 10 m		20%	
5	(3)	South Side	10.1 - 20 m		15%	2 083
	(0)	West Side	>30m		0%	2,000
			Cum	ulative Total	35%	
		Results				
		Total Required Fire Flow, rounded to near	rest 1000L/min	1	L/min	6,000
6	(1) + (2) + (3)	(2.000 L/min < Eire Flow < 45.000 L/min)		or	L/s	100
		(2,000 L/IIIII > FILE FIOW > 43,000 L/IIIII)		or	USGPM	1,585

APPENDIX B Sanitary Servicing Information

SHT11X17.DWG - 279mmX432mm

Novatech Project #: 121214 Project Name: 3484 Innes Road Zone 1 Date Prepared: 12/16/2021 Date Revised: 10/31/2024 Input By: Anthony Mestwarp Reviewed By: Cara Ruddle Drawing Reference: 121214- SAN-BLOCK 1

PROJECT SPECIFIC INFO USER DESIGN INPUT CUMULATIVE CELL CALCULATED DESIGN CELL OUTPUT Legend:

	אר											DEMAND												DESIGN CA	PACITY			
LUUANU							_					DEWARD					1				U			DESIGN CA	AGITT	_		
		70				RE	ESIDENTIAL I	FLOW						COMMERCIAL FLOW				EXTRANEOUS FI	∟ow				PROPOSE	D SEWER PIP	'E SIZING / DE	SIGN		
AREA	FROM MH	мн	1 Bed Apartment	2 Bed Apartment	3 Bed Apartmer	^{1t} PARK AREA (ha)	POPULATIO N (in 1000's)	CUMULATIVE POPULATION (in 1000's)	PEAK FACTOR M	AVG POPULATION FLOW (L/s)	PEAKED DESIGN POP FLOW (L/s)	COMMERICAL AREA (m²)	CUMULATIVE COMMERICAL AREA (m ²)	DESIGN COMMERICAL FLOW (L/s)	COMMERICAL PEAK FACTOR	PEAKED COMMERCIAL FLOW	Total Area (ha.)	Accum. Area (ha.)	DESIGN EXTRAN. FLOW (L/s)	TOTAL DESIGN FLOW (L/s)	PIPE LENGTH (m)	PIPE SIZE (mm) AND MATERIAL	PIPE ID ACTUAL (m)	ROUGH. (n)	DESIGN GRADE (%)	CAPACITY (L/s)	FULL FLOW VELOCITY (m/s)	Qpeak Design / Qcap
					•	<u></u>			<u> </u>	·			CROISSANT FRAN	COISE (SANMH 202)	•			•				•	•	•			·	
PAV A	PAV A	302	61	43	1		0.179	0.179	3.53	0.58	2.05		0.000	0.00	1.00	0.00	0.56	0.56	0.19	2.23	10.0	200 PVC	0.203	0.013	2.00	48.4	1.49	4.6%
302-301	302	301					0.000	0.179	3.53	0.58	2.05		0.000	0.00	1.00	0.00	0.11	0.67	0.22	2.27	31.9	200 PVC	0.203	0.013	0.50	24.2	0.75	9.4%
PAV B	PAV B	301	46	43	0		0.155	0.155	3.55	0.50	1.78		0.000	0.00	1.00	0.00	0.44	0.44	0.14	1.92	11.1	200 PVC	0.203	0.013	2.00	48.4	1.49	4.0%
	DAVO	202	52	20		+	0.454	0.454	2.55	0.50	4.77	201.000	004.000	0.00	1.00	0.00	0.00	0.00	0.40	1.01	F 0	200 81/0	0.000	0.042				1.00/
303-301	303	303	53	30	U	+	0.154	0.154	3.55	0.50	1.77	264.000	264.000	0.02	1.00	0.02	0.36	0.36	0.12	1.91	37.8	200 PVC 200 PVC	0.203	0.013	0.50	46.4 24.2	0.75	4.0%
	301	STUB					0.000	0.488	3.38	1.58	5.35		264.000	0.02	1.00	0.02	0.00	1.58	0.52	5.89	13.0	200 PVC	0.203	0.013	0.50	24.2	0.75	24.3%
									<u> </u>				CROISSANT FRAN	COISE (SANMH 205)														
PARK	STUB	205			I	0.172	0.001	0.001	3.78	0.00	0.01		0.000	0.00	1.00	0.00	0.17	0.17	0.06	0.06	10.0	250 PVC	0.254	0.013	1.00	62.0	1.22	0.1%
TOTAL			160	124	1	0.172	0.488	0.488				264.000	264.000				1.47								'			
Design Parameters: 1. Residential Flows -SINGLE UNIT -1 Bed Apartment -2 Bed Apartment -3 Bed Apartment 2. Commercial Flow Office	3.4 1.4 2.1 3.1	Person/ Unit Person/ Unit Person/ Unit Person/ Unit																			Q full= (1/n) A R^(2	(3)So^(1/2) Q full = Capaci	ity (L/s)		2)			
3. q Avg capita flow 4. M = Harmon Formula (maximum 5. K =	280 of 4.0) 0.8	L/per/day																				A = Flow area R = Wetter per So = Pipe Slop	(m ²) imenter (m) pe/gradient	jiniess (0.013	') '			
6. Commercial Peak Factor -area > 20% of development -area < 20% of development 7. Park flow is considered equivale	1.5 1.0 ent to a single u	nit / ha																										ľ
Park Demand =	= 1	Single Unit E	Equivalent / Park h	3																								ļ
 Extraneous Flows = 	0.33	L/sec/ha																										

APPENDIX C Storm Servicing Information

SHT11X17.DWG - 279mmX432mm

STORM SEWER DESIGN SHEET

Novatech Project #: 121214 Project Name: 240-270 Lamarche Avenue & 3484 Innes Road Date Prepared: 12/21/2021 Date Revised: 11/15/2024 Input By: Jesse Appiah-Kubi Reviewed By: Drawing Reference: 121214-GPB1 AND 121214-SWMB1

Legend:

PROJECT SPECIFIC INFO USER DESIGN INPUT CUMILATIVE CELL CALCULATED DESIGN CELL OUTPUT USER AS-BUILT INPUT

			DEMAND CAPACITY																					
	LUCATION					AREA									FLOW					PROPOS	ED SEWER F	PIPE SIZING / D	ESIGN	
Core of Mill	То	A	Underser		Tatal Arra	Weighted	Indivi	Accum	Time of	R	Rain Intensit (mm/hr)	ty	Peak	TOTAL UNRESTRICTED	TOTAL RESTRICTED			PIPE PROPERTIES			CADACITY	FULL FLOW		QPEAK DESIGN
	МН	Area ID	нагозсаре	Landscaping	Total Area	Runoff Coefficient	2.78 AR	2.78 AR	Concentration	2yr	5yr	100yr	Flow	PEAK FLOW (QDesign)	PEAK FLOW (Q100yr)	LENGTH	SIZE / MATERIAL	ID ACTUAL	ROUGHNESS	DESIGN GRADE	CAPACITY	VELOCITY		/ QFULL
Croissant Francoise	(STMMH 101)		0.90	0.20	(ha)				(min.)				(L/s)	(L/s)	(L/s)	(m)	(mm / type)	(m)		(%)	(L/s)	(m/s)	(min.)	(%)
Lamarche Avenue (E	XSTMMH)	I 1	0.01	0.01	0.02	0.58	0.03	0.03	10.00	76.81			2.53			ſ								
CB 2	CB 1	A-01			0.00		0.00	0.00	10.00				0.00	2.5	0.0	19.4	250 PVC	0.254	0.013	1.00	62.0	1.22	0.26	4.1%
CB 1	CBMH 208	A 02	0.06	0.05	0.11	0.61	0.19	0.22	10.26	75.81			16.72	16.7	0.0	45.1	300 PVC	0.305	0.013	1.00	100.9	1 38	0.54	16.6%
	CDIVIT 200	A=02			0.00		0.00	0.00	10.26				0.00	10.7	0.0	43.1	3001 VC	0.303	0.013	1.00	100.5	1.00	0.34	10.078
CBMH 208	STMMH 209	A-03	0.09	0.05	0.14	0.63	0.25	0.47	10.81 10.81	73.84			34.76 0.00	34.8	0.0	8.9	300 PVC	0.305	0.013	0.50	71.3	0.98	0.15	48.7%
					0.00		0.00	0.00	10.81 10.96	73.31			0.00 34.51											
STMMH 209	CBMH 210				0.00		0.00	0.00	10.96 10.96				0.00	34.5	0.0	13.8	300 PVC	0.305	0.013	0.50	71.3	0.98	0.24	48.4%
CBMH 210	STMMH 211	A-04	0.01	0.01	0.01	0.54	0.02	0.49	11.19 11.19	72.50			35.66	35.7	0.0	28.3	300 PVC	0.305	0.013	0.50	71.3	0.98	0.48	50.0%
					0.00		0.00	0.00	11.19 11.68	70.91			0.00											
STMMH 211	STMMH 212				0.00		0.00	0.00	11.68	10.01			0.00	34.9	0.0	6.7	300 PVC	0.305	0.013	0.50	71.3	0.98	0.11	48.9%
STMMH 212	STMMH201				0.00		0.00	0.00	a maximum of 25		the outlet pir		0.00		35.3	54.4	300 PVC	0.305	0.013	0.50	71.3	0.98	0.93	49.5%
01101011212	01101011201				0.00		A-01 - A-	-04 is controlled to	o a maximum or 55.		the outlet pi				33.5	54.4	3001 VC	0.505	0.013	0.50	71.5	0.30	0.35	43.376
			0.45	0.08	0.53	0.80																		
I ANK 1	STMMH 204	B-01			0.00		B-0	01 is controlled to	a maximum of 84.4	1L/s by ICD in th	e outlet pipe	e of TANK 1		0.0	84.4	11.2	375 PVC	0.381	0.013	2.00	258.7	2.27	0.08	32.6%
STMMH 204	STMMH 203				0.00									0.0	84.4	59.4	450 PVC	0.457	0.013	0.50	210.3	1.28	0.77	40.1%
					0.00																			
STMMH 203	STMMH 202				0.00							г. Т		0.0	84.4	40.7	450 PVC	0.457	0.013	0.50	210.3	1.28	0.53	40.1%
			0.04	0.14	0.17	0.34	0.17	0.17	10.00	76.81			12.74		-									
CB3	CBMH 207	C-01	0.04	0.14	0.00	0.04	0.00	0.00	10.00	70.01			0.00	12.7	0.0	6.4	300 PVC	0.305	0.013	0.50	71.3	0.98	0.11	17.9%
		0.02	0.02	0.04	0.06	0.42	0.00	0.23	10.11	76.39			17.81	47.9	0.0	100.7	200 BVC	0.205	0.012	0.50	71.0	0.08	1.07	25.0%
CBIMH 207	CBIVIN 200	0-02			0.00		0.00	0.00	10.11				0.00	17.0	0.0	109.7	300 PVC	0.305	0.013	0.50	71.5	0.90	1.07	25.0%
CBMH 206	CBMH 205	C-03	0.02	0.12	0.15	0.32	0.13	0.36	11.98 11.98	69.96			25.42 0.00	25.4	0.0	47.4	300 PVC	0.305	0.013	0.50	71.3	0.98	0.81	35.6%
			0.02	0.04	0.00	0.44	0.00	0.00	11.98				0.00											
CBMH 205	STMMH 202	C-04			0.00		C-01 - C	C-04 is controlled	to a maximum of 44	1.14L/s by ICD in	the outlet pi	ipe of CBMH 20	5	0.0	44.1	2.1	300 PVC	0.305	0.013	0.50	71.3	0.98	0.04	61.9%
					0.00										-									
STMMH 202	STMMH 201	B-01 + C-01-C- 04			0.00									0.0	128.6	22.7	525 CONC	0.5334	0.013	0.50	317.2	1.42	0.27	40.5%
			0.22	0.02	0.00	0.84																		
TANK 2	STMMH 201	B-02	0.22	0.02	0.24	0.84	B-0	2 is controlled to	a maximum of 76.3	4 L/s by ICD in th	ne outlet pipe	e of TANK 2		0.0	76.3	4.1	250 PVC	0.254	0.013	2.00	87.7	1.73	0.04	87.0%
					0.00										-									
STMMH 201	EX. STMMH	A-01-A04 + B-01 + B-02 +			0.00									0.0	240.2	14.1	750 CONC	0.762	0.013	0.50	821.2	1.80	0.13	29.3%
		C-01-C04			0.00												+ +							
<u>DEMAND EQUATION</u> Q = 2.78 AIR		Where :	Q = Peak flow in litr A = Area in hectares R = Weighted runof L = Rainfall intensity	es per second (L/s) s (ha) f coefficient (increase in millimeters per bou	d by 25% for 100 r (mm/br))-year)												<u>CAPACITY EQUATION</u> Q full= (1/n) A R^(2/3)So^	(1/2)	Where :	Q full = Cap n = Manning A = Flow are B = Wetter J	acity (L/s) coefficient of a (m ²)	roughness (0.013)	

Rainfall Intensity (I) is based on City of Ottawa IDF data presented in the City of Ottawa Sewer Design Guidelines (Oct. 2012)

So = Pipe Slope/gradient

APPENDIX D Stormwater Management Calculations

SHT11X17.DWG - 279mmX432mm

Block 1 Development (121214) 240-270 Lamarche Avenue 3484 Innes Road Post-Development Model Parameters

Area ID	Catchment	Runoff	Percent	No	Flow Path	Equivalent	Average
	Area (ba)	Coefficient		Depression	Length	vviath (m)	
	(114)		(/0)	(70)	(m)	(m)	(70)
A-01	0.021	0.59	55.7%	0%	16	13	2.0%
A-02	0.111	0.61	58.6%	0%	35	32	2.5%
A-03	0.142	0.63	61.4%	0%	50	29	2.0%
A-04	0.014	0.54	48.6%	0%	31	5	2.0%
B-01	0.532	0.80	85.7%	0%	49	109	2.0%
B-02	0.242	0.83	90.0%	0%	34	72	2.0%
C-01	0.174	0.34	20.0%	0%	105	17	2.0%
C-02	0.058	0.42	31.4%	0%	65	9	2.0%
C-03	0.147	0.32	17.1%	0%	59	25	2.0%
C-04	0.055	0.44	34.3%	0%	59	9	2.0%
D-01	0.047	0.33	18.6%	0%	6	76	4.0%
TOTAL:	1.543						

Block 1 Development (121214) 240-270 Lamarche Avenue 3484 Innes Road ICD Rating Curves

Block 1 Development (121214) 240-270 Lamarche Avenue 3484 Innes Road HGL Elevations

	Pipe / MH Information		Information		HGL Info	ormation ¹	Finished Floor	Clearance	e from FFE	Surchar Above Pi	ge Depth pe Obvert	Clearance to T/G	
Manhole ID	D/S Pipe Size (mm)	D/S Pipe Invert Elev. (m)	D/S Pipe Obvert Elev. (m)	MH T/G Elev. (m)	100-year (m)	100-year (+20%) (m)	Elevation (m)	100-year (m)	100-year (+20%) (m)	100-year (m)	100-year (+20%) (m)	100-year (m)	100-year (+20%) (m)
MH201	675	83.91	84.59	88.81	84.60	85.39	89.60	5.00	4.21	0.02	0.81	4.21	3.42
MH202	525	85.02	85.55	88.50	85.31	85.49	89.60	4.29	4.11	0.00	0.00	3.19	3.01
MH203	450	85.28	85.73	88.82	85.51	85.67	89.60	4.09	3.93	0.00	0.00	3.31	3.15
MH204	450	85.63	86.08	89.10	85.83	85.93	89.60	3.77	3.67	0.00	0.00	3.27	3.17
MH209	300	86.39	86.69	89.16	88.85	88.94	89.60	0.75	0.66	2.16	2.25	0.31	0.22
MH211	300	86.14	86.44	89.20	88.79	88.88	89.60	0.81	0.72	2.35	2.44	0.41	0.32
MH212	300	86.08	86.38	89.15	88.77	88.87	89.60	0.83	0.73	2.39	2.49	0.38	0.28

⁽¹⁾ HGL information is for a 6-hour Chicago Storm Distribution

Block 1 Development 240-270 Lamarche Avenue 3484 Innes Road (121214) ROW Ponding Depths

Structure T/G	Max. Stati (Spill	c Ponding Depth)	2-yr Event (6hr)			5-yr Event (6hr)				100-yr Event (6hr)				100-yr Event (+20%) (6hr)					
Structure		Elev.	Depth	Elev.	Depth	Cascading	Cascade	Elev.	Depth	Cascading	Cascade	Elev.	Depth	Cascading	Cascade	Elev.	Depth	Cascading	Cascade
	(m)	(m)	(m)	(m)	(m)	Flow?	Depth (m)	(m)	(m)	Flow?	Depth (m)	(m)	(m)	Flow?	Depth (m)	(m)	(m)	Flow?	Depth (m)
Catchbasins																			
CB01	89.00	89.25	0.25	87.08	0.00	N	0.00	87.46	0.00	N	0.00	88.89	0.00	N	0.00	89.07	0.07	N	0.00
CB02	89.35	89.40	0.05	87.39	0.00	N	0.00	87.46	0.00	N	0.00	88.90	0.00	N	0.00	89.07	0.00	N	0.00
CB03	88.70	88.86	0.16	87.73	0.00	N	0.00	87.74	0.00	N	0.00	88.58	0.00	N	0.00	88.84	0.14	N	0.00
Catchbasins Manho	les																		
CBMH205	88.36	88.58	0.22	87.11	0.00	N	0.00	87.26	0.00	N	0.00	88.44	0.08	N	0.00	88.59	0.23	Y	0.01
CBMH206	88.48	88.80	0.32	87.13	0.00	N	0.00	87.28	0.00	N	0.00	88.52	0.04	N	0.00	88.74	0.26	N	0.00
CBMH207	88.58	88.86	0.28	87.67	0.00	N	0.00	87.70	0.00	N	0.00	88.58	0.00	N	0.00	88.84	0.26	N	0.00
CBMH208	88.70	89.00	0.30	87.01	0.00	N	0.00	87.45	0.00	N	0.00	88.87	0.17	N	0.00	88.97	0.27	N	0.00
CBMH210	89.10	89.00	-	87.00	0.00	N	-	87.43	0.00	N	-	88.83	0.00	N	-	88.93	0.00	N	-

Block 1 Development (121214) 240-270 Lamarche Avenue 3484 Innes Road Ponding Storage Curves

Storage Curves for Surface Ponding

CB ID	STM Area ID				Storage Curve	
CB01	A-02	Elevation	Depth	Area	Incremental Volume	Cummulative Volume
Note	es	(m)	(m)	(m ²)	(m ³)	(m ³)
Inve	ert	87.00	0.000	0.36	0.0	0.0
CB T	CB T/G		2.000	0.36	0.7	0.7
5cm po	nding	89.05	2.050	24.15	0.6	1.3
10cm pc	onding	89.10	2.100	78.09	2.6	3.9
15cm pc	onding	89.15	2.150	156.33	5.9	9.7
20cm pc	20cm ponding		2.200	236.81	9.8	19.6
Max Static Ponding ⁽¹⁾		89.25	2.250	316.09	13.8	33.4
Top of Storage Node ⁽²⁾		89.35	2.350	316.09	31.6	65.0

⁽¹⁾ Based on spill point between CBs

 $^{\rm (2)}$ Top of storage node is 0.35m above T/G - modelled major system with 0.35m depth

CB ID	STM Area ID				Storage Curve	
CB02	A-01	Elevation	Depth	Area	Incremental Volume	Cummulative Volume
Note	Notes		(m)	(m ²)	(m ³)	(m ³)
Inve	87.35	0.000	0.36	0.0	0.0	
CB T	/G	89.35	2.000	0.36	0.7	0.7
Max Static Ponding ⁽¹⁾		89.40	2.050	11.89	0.3	1.0
Top of Storage Node ⁽²⁾		89.70	2.350	11.89	3.6	4.6

⁽¹⁾ Based on spill point between CBs

 $^{(2)}$ Top of storage node is 0.35m above T/G - modelled major system with 0.35m depth

CB ID	STM Area ID				Storage Curve	
CBMH208	A-03	Elevation	Depth	Area	Incremental Volume	Cummulative Volume
Note	es	(m)	(m)	(m²)	(m ³)	(m ³)
Inve	ert	86.49	0.000	1.77	0.0	0.0
CBMH	T/G	88.70	2.210	1.77	3.9	3.9
5cm ponding		88.75	2.260	14.83	0.4	4.3
10cm pc	onding	88.80	2.310	49.81	1.6	5.9
15cm pc	onding	88.85	2.360	104.05	3.8	9.8
20cm pc	onding	88.90	2.410	181.48	7.1	16.9
25cm ponding		88.95	2.460	286.26	11.7	28.6
Max Static Ponding ⁽¹⁾		89.00	2.510	410.27	17.4	46.0
Top of Storage Node ⁽²⁾		89.05	2.560	410.27	20.5	66.5

⁽¹⁾ Based on spill point between CBs

⁽²⁾ Top of storage node is 0.35m above T/G - modelled major system with 0.35m depth

Block 1 Development (121214) 240-270 Lamarche Avenue 3484 Innes Road Ponding Storage Curves

CB ID	STM Area ID				Storage Curve	
CBMH210	A-04	Elevation	Depth	Area	Incremental Volume	Cummulative Volume
Note	es	(m)	(m)	(m ²)	(m ³)	(m ³)
Inve	ert	86.31	0.000	1.13	0.0	0.0
CBMH T/G		89.10	2.790	1.13	3.2	3.2
Top of Storage Node ⁽²⁾		89.45	3.140	0.00	0.2	3.4

⁽¹⁾ Based on spill point between CBs

⁽²⁾ Top of storage node is 0.35m above T/G - modelled major system with 0.35m depth

Storage Curves for Tank Storage

CB ID	STM Area ID				Storage Curve	
TANK1	B-01	Elevation	Depth	Area	Incremental Volume	Cummulative Volume
Note	es	(m)	(m)	(m ²)	(m ³)	(m ³)
Bottom o	86.00	0.000	84.05	0.0	0.0	
Underside	of Tank	88.80	2.800	84.05	235.3	235.3
Top of Tank		89.15	3.150	0.00	14.7	250.0
Ground Elevation		89.29	3.290	0.00	0.0	250.0

CB ID	STM Area ID		Storage Curve							
TANK2	B-02	Elevation Depth Area Incremental Volu				Cummulative Volume				
Notes		(m)	(m)	(m ²)	(m ³)	(m ³)				
Bottom o	of Tank	86.00	0.000	26.57	0.0	0.0				
Underside of Tank		88.95	2.950	26.57	78.4	78.4				
Top of Tank / C	Ground Floor	89.30	3.300	0.00	4.6	83.0				

Block 1 Development (121214) 240-270 Lamarche Avenue 3484 Innes Road Design Storm Time Series Data 6-hour Chicago Design Storms

C25mi	m-6.stm	C2-	6.stm	C5-6	6.stm
Duration	Intensity	Duration	Intensity	Duration	Intensity
min	mm/hr	min	mm/hr	min	mm/hr
0:00	0	0:00	0	0:00	0
0:10	0.93	0:10	1.37	0:10	1.78
0:20	1.01	0:20	1.49	0:20	1.94
0:30	1.11	0:30	1.63	0:30	2.13
0:40	1.23	0:40	1.82	0:40	2.37
0:50	1.39	0:50	2.05	0:50	2.68
1:00	1.61	1:00	2.37	1:00	3.1
1:10	1.91	1:10	2.81	1:10	3.68
1:20	2.37	1:20	3.5	1:20	4.58
1:30	3.18	1:30	4.69	1:30	6.15
1:40	4.95	1:40	7.3	1:40	9.61
1:50	12.35	1:50	18.21	1:50	24.17
2:00	52.1	2:00	76.81	2:00	104.19
2:10	16.33	2:10	24.08	2:10	32.04
2:20	8.38	2:20	12.36	2:20	16.34
2:30	5.64	2:30	8.32	2:30	10.96
2:40	4.27	2:40	6.3	2:40	8.29
2:50	3.45	2:50	5.09	2:50	6.69
3:00	2.91	3:00	4.29	3:00	5.63
3:10	2.52	3:10	3.72	3:10	4.87
3:20	2.23	3:20	3.29	3:20	4.3
3:30	2	3:30	2.95	3:30	3.86
3:40	1.82	3:40	2.68	3:40	3.51
3:50	1.67	3:50	2.46	3:50	3.22
4:00	1.55	4:00	2.28	4:00	2.98
4:10	1.44	4:10	2.12	4:10	2.77
4:20	1.35	4:20	1.99	4:20	2.6
4:30	1.27	4:30	1.87	4:30	2.44
4:40	1.2	4:40	1.77	4:40	2.31
4:50	1.14	4:50	1.68	4:50	2.19
5:00	1.09	5:00	1.6	5:00	2.08
5:10	1.03	5:10	1.52	5:10	1.99
5:20	0.99	5:20	1.46	5:20	1.9
5:30	0.95	5:30	1.4	5:30	1.82
5:40	0.91	5:40	1.34	5:40	1.75
5:50	0.87	5:50	1.29	5:50	1.68
6:00	0.84	6:00	1.24	6:00	1.62

Block 1 Development (121214) 240-270 Lamarche Avenue 3484 Innes Road Design Storm Time Series Data 6-hour Chicago Design Storms

C100)-6.stm	C100-6+20%.stm				
Duration	Intensity	Duration	Intensity			
min	mm/hr	min	mm/hr			
0:00	0	0:00	0			
0:10	2.9	0:10	3.48			
0:20	3.16	0:20	3.79			
0:30	3.48	0:30	4.18			
0:40	3.88	0:40	4.66			
0:50	4.39	0:50	5.27			
1:00	5.07	1:00	6.08			
1:10	6.05	1:10	7.26			
1:20	7.54	1:20	9.05			
1:30	10.16	1:30	12.19			
1:40	15.97	1:40	19.16			
1:50	40.65	1:50	48.78			
2:00	178.56	2:00	214.27			
2:10	54.05	2:10	64.86			
2:20	27.32	2:20	32.78			
2:30	18.24	2:30	21.89			
2:40	13.74	2:40	16.49			
2:50	11.06	2:50	13.27			
3:00	9.29	3:00	11.15			
3:10	8.02	3:10	9.62			
3:20	7.08	3:20	8.5			
3:30	6.35	3:30	7.62			
3:40	5.76	3:40	6.91			
3:50	5.28	3:50	6.34			
4:00	4.88	4:00	5.86			
4:10	4.54	4:10	5.45			
4:20	4.25	4:20	5.1			
4:30	3.99	4:30	4.79			
4:40	3.77	4:40	4.52			
4:50	3.57	4:50	4.28			
5:00	3.4	5:00	4.08			
5:10	3.24	5:10	3.89			
5:20	3.1	5:20	3.72			
5:30	2.97	5:30	3.56			
5:40	2.85	5:40	3.42			
5:50	2.74	5:50	3.29			
6:00	2.64	6:00	3.17			

Overall Model Schematic

Block 1 Development – 240-270 Lamarche Avenue & 3484 Innes Road (121214) PCSWMM Model Schematics

EPA STORM WATER 1	MANAGEMENT MODEL	- VERSION	5.2 (Bui	ld 5.2.3)				
Allowable = 258 1 100-yr @ MH 15 = 100-yr + 20% @ M	L/s 84.564 HH 15 = 85.315							
-								
Element Count								
**************************************	1							
Number of subcat	chments 11							
Number of nodes								
Number of pollut	ants 0							
Number of land u	uses 0							
**************************************	*							

Name	Data Source			Data Type	Recording Interval	1		
Raingagel	03-06-100			INTENSITY	 10 min	-		
Raingagei	03-00-100			INIGNOITI	10 1111.			
* * * * * * * * * * * * * * * * *	****							
Subcatchment Sum	mary							
Name	Area	Width	%Imperv	%Slope	Rain Gage		Outlet	
A-01	0.02	13 47	55 70	2 0000			св02	
A-02	0.02	32.00	58.60	2.5000	Raingagel		CB02 CB01	
A-03 A-04	0.14	28.64	61.40	2.0000	Raingagel		CBMH208	
B-01	0.53	109.03	85.70	2.0000	Raingagel		TANK1	
B-02	0.24	71.72	90.00	2.0000	Raingagel		TANK2	
C-02	0.17	10.52	20.00	2.0000	Raingagel		CBMH207	
C-03	0.15	24 71	17.10	2 0000	Paingagol		CBMU206	
C-03 C-04	0.15 0.06	24.71 9.25	17.10 34.30	2.0000 2.0000	Raingagel Raingagel		CBMH206 CBMH205	
C-03 C-04 D-01	0.15 0.06 0.05	24.71 9.25 75.93	17.10 34.30 18.60	2.0000 2.0000 4.0000	Raingagel Raingagel Raingagel		CBMH206 CBMH205 DR	
C-03 C-04 D-01	0.15 0.06 0.05	24.71 9.25 75.93	17.10 34.30 18.60	2.0000 2.0000 4.0000	Raingagel Raingagel Raingagel		CBMH206 CBMH205 DR	
C-03 C-04 D-01	0.15 0.06 0.05	24.71 9.25 75.93	17.10 34.30 18.60	2.0000 2.0000 4.0000	Raingagel Raingagel Raingagel		CBMH206 CBMH205 DR	
C-03 C-04 D-01	0.15 0.06 0.05	24.71 9.25 75.93	17.10 34.30 18.60	2.0000 2.0000 4.0000	Raingagel Raingagel Raingagel Ponded J	External	CBMH206 CBMH205 DR	
C-03 C-04 D-01 ********** Node Summary **********	0.15 0.06 0.05 Type	24.71 9.25 75.93	17.10 34.30 18.60 nvert Elev.	2.0000 2.0000 4.0000 Max. Depth	Raingagel Raingagel Raingagel Ponded I Area :	External	CBMH206 CBMH205 DR	
C-03 C-04 D-01 ********** Noame HP-CB03	0.15 0.06 0.05 Type JUNCTION	24.71 9.25 75.93	17.10 34.30 18.60 nvert Elev. 	2.0000 2.0000 4.0000 Max. Depth 0.30	Raingagel Raingagel Raingagel Ponded I Area 2 0.0	External	CBMH206 CBMH205 DR	
C-03 C-04 D-01 ********** Name HP-CB03 HP-CBMH205 HP-CBMH205	0.15 0.06 0.05 Type JUNCTION JUNCTION	24.71 9.25 75.93	17.10 34.30 18.60 nvert Elev. 	2.0000 2.0000 4.0000 Depth 0.30 0.30	Raingagel Raingagel Raingagel Area 0.0 0.0	External	CBMH206 CBMH205 DR	
C-03 C-04 D-01 ********** Name 	0.15 0.06 0.05 JUNCTION JUNCTION JUNCTION JUNCTION	24.71 9.25 75.93	17.10 34.30 18.60 nvert Elev. 	2.0000 2.0000 4.0000 0.30 0.30 0.30 0.30	Raingagel Raingagel Raingagel Area 0.0 0.0 0.0 0.0	External Inflow	CBMH206 CBMH205 DR	
C-03 C-04 D-01 ********** Name 	0.15 0.06 0.05 JUNCTION JUNCTION JUNCTION JUNCTION OUTFALL	24.71 9.25 75.93	17.10 34.30 18.60 nvert Elev. 	2.0000 2.0000 4.0000 0.30 0.30 0.30 0.30 0.30	Raingagel Raingagel Raingagel Area 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	External	CBMH206 CBMH205 DR	
C-03 C-04 D-01 ********** Name HP-CB03 HP-CBMH205 HP-CBMH206 HP-CBMH206 HP-CBMH207 DR EX-MH15 Smill-CB02	0.15 0.06 0.05 JUNCTION JUNCTION JUNCTION JUNCTION OUTFALL OUTFALL OUTFALL	24.71 9.25 75.93	17.10 34.30 18.60 nvert Elev. 	2.0000 2.0000 4.0000 0.30 0.30 0.30 0.30 0.30 0.	Raingagel Raingagel Raingagel Area 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	External Inflow	CBMH206 CBMH205 DR	
C-03 C-04 D-01 ********** Name HP-CB03 HP-CBMH205 HP-CBMH206 HP-CBMH206 HP-CBMH207 DR EX-MH15 Spill-CB02 Spill-CBM205	0.15 0.06 0.05 JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION OUTFALL OUTFALL OUTFALL OUTFALL	24.71 9.25 75.93	17.10 34.30 18.60 89.38 88.60 88.75 88.70 88.75 88.70 88.66 83.87 89.40 88.58	2.0000 2.0000 4.0000 0.30 0.30 0.30 0.30 0.30 0.	Raingagel Raingagel Raingagel Area 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	External Inflow	CBMH206 CBMH205 DR	
C-03 C-04 D-01 ********** Name HP-CB03 HP-CBMH205 HP-CBMH206 HP-CBMH206 HP-CBMH207 DR EX-MH15 Spill-CB02 Spill-CBM208 Spill-CBM208	0.15 0.06 0.05 JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION OUTFALL OUTFALL OUTFALL OUTFALL OUTFALL	24.71 9.25 75.93	17.10 34.30 18.60 18.60 89.38 88.60 88.75 88.70 88.66 83.87 89.40 88.58 89.40	2.0000 2.0000 4.0000 0.30 0.30 0.30 0.30 0.30 0.	Raingagel Raingagel Raingagel Area 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	External Inflow	CBMH206 CBMH205 DR	
C-03 C-04 D-01 ********** Name NP-CB03 HP-CBMH205 HP-CBMH205 HP-CBMH207 DR EX-MH15 Spill-CB02 Spill-CBM205 Spill-CBM205 Spill-CBM205 Spill-CBM205 Spill-CBM205 Spill-CBM205 Spill-CBM205	0.15 0.06 0.05 JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION OUTFALL OUTFALL OUTFALL OUTFALL OUTFALL OUTFALL STORAGE	24.71 9.25 75.93	17.10 34.30 18.60 nvert Elev. 	2.0000 2.0000 4.0000 0.30 0.30 0.30 0.30 0.30 0.	Raingagel Raingagel Raingagel Area 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	External Inflow	CBMH206 CBMH205 DR	
C-03 C-04 D-01 ********** Name 	0.15 0.06 0.05 JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION OUTFALL OUTFALL OUTFALL OUTFALL OUTFALL OUTFALL STORAGE STORAGE	24.71 9.25 75.93	17.10 34.30 18.60 nvert Elev. 	2.0000 2.0000 4.0000 0.30 0.30 0.30 0.30 0.30 0.	Raingagel Raingagel Raingagel Area 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	External Inflow	CBMH206 CBMH205 DR	
C-03 C-04 D-01	0.15 0.06 0.05 JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION OUTFALL OUTFALL OUTFALL OUTFALL OUTFALL STORAGE STORAGE STORAGE STORAGE	24.71 9.25 75.93	17.10 34.30 18.60 nvert Elev. 	2.0000 2.0000 4.0000 0.30 0.30 0.30 0.30 0.30 0.	Raingagel Raingagel Raingagel Area 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	External Inflow	CBMH206 CBMH205 DR	
C-03 C-04 D-01	0.15 0.06 0.05 JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION OUTFALL OUTFALL OUTFALL OUTFALL OUTFALL OUTFALL STORAGE STORAGE STORAGE STORAGE	24.71 9.25 75.93	17.10 34.30 18.60 nvert Elev. 	2.0000 2.0000 4.0000 0.30 0.30 0.30 0.30 0.30 0.	Raingagel Raingagel Raingagel Area 2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	External Inflow	CBMH206 CBMH205 DR	
C-03 C-04 D-01	0.15 0.06 0.05 JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION OUTFALL OUTFALL OUTFALL OUTFALL OUTFALL OUTFALL OUTFALL STORAGE STORAGE STORAGE STORAGE STORAGE STORAGE	24.71 9.25 75.93	17.10 34.30 18.60 nvert Elev. 	2.0000 2.0000 4.0000 4.0000 0.30 0.30 0.30 0.30	Raingagel Raingagel Raingagel Area 2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	External Inflow	CBMH206 CBMH205 DR	
C-03 C-04 D-01 ********** Name 	0.15 0.06 0.05 JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION OUTFALL OUTFALL OUTFALL OUTFALL OUTFALL OUTFALL OUTFALL OUTFALL STORAGE STORAGE STORAGE STORAGE STORAGE STORAGE STORAGE	24.71 9.25 75.93	17.10 34.30 18.60 nvert Elev. 	2.0000 2.0000 4.0000 Depth 0.30 0.30 0.30 0.30 0.00 0.68 0.00 0.00 0.00 0.00 0.00 0.0	Raingagel Raingagel Raingagel Area	External Inflow	CBMH206 CBMH205 DR	
C-03 C-04 D-01 ********** Name 	0.15 0.06 0.05 JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION OUTFALL OUTFALL OUTFALL OUTFALL OUTFALL OUTFALL OUTFALL OUTFALL STORAGE STORAGE STORAGE STORAGE STORAGE STORAGE STORAGE STORAGE STORAGE STORAGE	24.71 9.25 75.93	17.10 34.30 18.60 nvert Elev. 	2.0000 2.0000 4.0000 Depth 0.30 0.30 0.30 0.30 0.00 0.68 0.00 0.00 0.00 0.00 0.00 0.0	Raingagel Raingagel Raingagel Area	External Inflow	CBMH206 CBMH205 DR	
C-03 C-04 D-01 ********** Name 	0.15 0.06 0.05 JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION OUTFALL OUTFALL OUTFALL OUTFALL OUTFALL OUTFALL OUTFALL OUTFALL OUTFALL OUTFALL STORAGE STORAGE STORAGE STORAGE STORAGE STORAGE STORAGE STORAGE STORAGE STORAGE STORAGE	24.71 9.25 75.93	17.10 34.30 18.60 18.60 80.75 88.60 88.60 88.75 88.70 88.66 83.87 89.40 88.58 89.00 89.00 89.00 89.00 87.05 87.05 87.05 87.66 86.74 87.03 87.59 86.49 86.31 83.91 85.02	2.0000 2.0000 4.0000 4.0000 0.30 0.30 0.30 0.30	Raingagel Raingagel Raingagel Area 2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	External Inflow	CBMH206 CBMH205 DR	
C-03 C-04 D-01 ********** Name 	0.15 0.06 0.05 JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION OUTFALL OUTFALL OUTFALL OUTFALL OUTFALL OUTFALL OUTFALL OUTFALL OUTFALL STORAGE STORAGE STORAGE STORAGE STORAGE STORAGE STORAGE STORAGE STORAGE STORAGE STORAGE STORAGE	24.71 9.25 75.93	17.10 34.30 18.60 nvert Elev. 	2.0000 2.0000 4.0000 4.0000 0.30 0.30 0.30 0.30	Raingagel Raingagel Raingagel Area 2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	External Inflow	CBMH206 CBMH205 DR	
C-03 C-04 D-01 ********** Name HP-CB03 HP-CBMH205 HP-CBMH205 HP-CBMH206 HP-CBMH207 DR EX-MH15 Spill-CBM206 Spill-CBM1205 Spill-CBM1205 Spill-CBM1205 Spill-CBM1205 CB01 CB02 CB03 CBM4205 CBM4205 CBM4207 CBM4208 CBM4207 CBM4208 CBM4201 MH202 MH203 MH204 MH209	0.15 0.06 0.05 JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION OUTFALL OUTFALL OUTFALL OUTFALL OUTFALL OUTFALL OUTFALL STORAGE STORAGE STORAGE STORAGE STORAGE STORAGE STORAGE STORAGE STORAGE STORAGE STORAGE STORAGE STORAGE STORAGE STORAGE STORAGE STORAGE STORAGE STORAGE	24.71 9.25 75.93	17.10 34.30 18.60 18.60 8.60 8.70 88.60 88.70 88.66 83.87 89.40 88.58 89.00 89.00 87.00 87.00 87.35 87.66 86.74 87.03 87.59 86.49 86.31 83.91 85.02 85.28 85.28 85.28 85.28	2.0000 2.0000 4.0000 4.0000 0.30 0.30 0.30 0.30	Raingagel Raingagel Raingagel Area 2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	External inflow	CBMH206 CBMH205 DR	
C-03 C-04 D-01 ********** Name HP-CB03 HP-CBMH205 HP-CBMH205 HP-CBMH206 HP-CBMH207 DR EX-MH15 Spill-CBM206 Spill-CBM208 Spill-CBM208 CB03 CBM4205 CBM4205 CBM4207 CBM4205 CBM4207 CBM4208 CBM4207 CBM4208 CBM4207 CBM4208 CBM4207 MH202 MH202 MH203 MH204 MH202 MH204 MH209 MH211 MH202	0.15 0.06 0.05 JUNCTION JUNCTION JUNCTION JUNCTION OUTFALL OUTFALL OUTFALL OUTFALL OUTFALL OUTFALL OUTFALL OUTFALL STORAGE	24.71 9.25 75.93	17.10 34.30 18.60 18.60 89.38 88.60 88.75 88.70 88.66 83.87 89.40 88.58 89.40 89.40 89.58 89.00 89.00 87.00 87.00 87.35 87.66 86.74 87.35 87.66 86.74 87.35 87.59 86.49 86.31 83.91 85.02 85.28 85.28 85.28 85.28 85.28 85.28	2.0000 2.0000 4.0000 4.0000 0.30 0.30 0.30 0.30	Raingagel Raingagel Raingagel Area 1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	External Inflow	CBMH206 CBMH205 DR	
C-03 C-04 D-01 *********** Name HP-CB03 HP-CBM205 HP-CBM205 HP-CBM206 HP-CBM207 DR EX-MH15 Spill-CBM207 DR EX-MH15 Spill-CBM208 Spill-CBM208 Spill-CBM208 CBM1205 CBM206 CBM206 CBM207 CBM206 CBM207 CBM208 CBM201 MH202 MH201 MH202 MH203 MH204 MH209 MH211 MH212 Dummy	0.15 0.06 0.05 JUNCTION JUNCTION JUNCTION JUNCTION OUTFALL OUTFALL OUTFALL OUTFALL OUTFALL OUTFALL STORAGE	24.71 9.25 75.93	17.10 34.30 18.60 18.60 89.38 88.60 88.75 88.70 88.66 83.87 89.40 89.40 89.40 89.40 89.40 89.58 89.40 89.58 89.40 87.35 87.59 86.34 89.00 87.03 87.59 86.49 86.31 85.02 85.28 85.63 85.63 85.63 85.63 85.63	2.0000 2.0000 4.0000 0.30 0.30 0.30 0.30 0.00 0.0	Raingagel Raingagel Raingagel Area 2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	External Inflow	CBMH206 CBMH205 DR	

Link Summary * * * * * * * * * * * Name From Node To Node Type Length %Slope Roughness CB01-CBMH208 СВ01 CBMH208 CONDUIT 45.1 0.9978 0.0130 CB02-CB01 CB02 CB01 CONDUIT 19.4 0.9794 0.0130 CBMH207 CB03-CBMH207 CONDUIT 0.6250 CB03 6.4 0.0130 CBMH206-CBMH205 CBMH206 CBMH205 CONDUIT 47.4 0.5063 0.0130 CBMH207-CBMH206 CBMH207 CBMH206 CONDUIT 109.7 0.5014 0.0130 CBMH208-MH209 CBMH208 MH209 CONDUIT 0.4494 0.0130 8.9 CBMH210-MH211 CBMH210 CONDUIT MH211 28.3 0.4947 0.0130 MH201-EX15 MH201 EX-MH15 CONDUIT 11.8 0.3390 0.0130 MH202-MH201 MH201 CONDUIT MH202 22.7 0.5286 0.0130 MH203-MH202 MH203 MH202 CONDUIT 40.7 0.4914 0.0130 MH204-MH203 MH204 MH203 CONDUIT 59.4 0.5051 0.0130 CBMH210 MH209-CBMH210 MH209 CONDUIT 13.8 0.5073 0.0130 MH211-MH212 MH211 MH212 0.4478 CONDUIT 6.7 0.0130 MH212_Dummy MH212-MH201 MH201 CONDUIT 54.4 0.4963 0.0130 SWALE-CB03 HP-CB03 CB03 CONDUIT 135.3 0.5026 0.0350 HP-CBMH205 SWALE-CBMH205 CBMH205 CONDUIT 33.7 0.7122 0.0350 SWALE-CBMH206 HP-CBMH206 CBMH206 CONDUIT 0.0350 55.5 0.4865 SWALE-CBMH207 HP-CBMH207 CBMH207 CONDUIT 41.1 0.2920 0.0350 O-CBMH205 CBMH205 MH202 ORIFICE 0-MH212 MH212 MH212_Dummy ORIFICE O-TANK1 TANK1 MH204 ORIFICE O-TANK2 TANK2 MH201 ORIFICE OVF-TANK1 TANK1 MH204 ORIFICE OVF-TANK2 TANK2 MH201 ORIFICE OVF-CB01 CB01 CBMH208 WEIR Spill-CB02 OVF-CB02a CB02 WEIR CB01 OVF-CB02b СВ02 WEIR OVF-CB03 СВОЗ CBMH207 WEIR Spill-CBMH205 OVF-CBMH205 CBMH205 WEIR OVF-CBMH206 CBMH206 HP-CBMH205 WEIR OVF-CBMH207 HP-CBMH207 HP-CBMH206 WEIR OVE-CBMH208 CBMH208 Spill-CBMH208 WEIR OVF-CBMH210a CBMH210 Spill-CBMH210 WEIR

CBMH208

WEIR

OVF-CBMH210b

CBMH210

* * * * * * * * * * * *

Conduit	Shape	Full Depth	Full Area	Hyd. Rad.	Max. Width	No. of Barrels	Full Flow
СВ01-СВМН208	CIRCULAR	0.30	0.07	0.07	0.30	1	96.60
СВ02-СВ01	CIRCULAR	0.25	0.05	0.06	0.25	1	58.86
CB03-CBMH207	CIRCULAR	0.30	0.07	0.07	0.30	1	76.45
CBMH206-CBMH205	CIRCULAR	0.30	0.07	0.07	0.30	1	68.81
CBMH207-CBMH206	CIRCULAR	0.30	0.07	0.07	0.30	1	68.48
CBMH208-MH209	CIRCULAR	0.30	0.07	0.07	0.30	1	64.83
CBMH210-MH211	CIRCULAR	0.30	0.07	0.07	0.30	1	68.02
MH201-EX15	CIRCULAR	0.68	0.36	0.17	0.68	1	489.44
MH202-MH201	CIRCULAR	0.53	0.22	0.13	0.53	1	312.71
MH203-MH202	CIRCULAR	0.45	0.16	0.11	0.45	1	199.87
MH204-MH203	CIRCULAR	0.45	0.16	0.11	0.45	1	202.63
MH209-CBMH210	CIRCULAR	0.30	0.07	0.07	0.30	1	68.88
MH211-MH212	CIRCULAR	0.30	0.07	0.07	0.30	1	64.71
MH212-MH201	CIRCULAR	0.30	0.07	0.07	0.30	1	68.13
SWALE-CB03	TRAPEZOIDAL	0.30	0.27	0.14	1.80	1	149.08
SWALE-CBMH205	TRAPEZOIDAL	0.30	0.27	0.14	1.80	1	177.46
SWALE-CBMH206	TRAPEZOIDAL	0.30	0.27	0.14	1.80	1	146.67
SWALE-CBMH207	TRAPEZOIDAL	0.30	0.27	0.14	1.80	1	113.62

Analysis Options Analysis Options Herein Construction Process Models: Rainfall/Runoff ... YES RDII ... NO Snowmelt ... NO Groundwater ... NO Flow Routing ... YES Ponding Allowed ... NO Water Quality ... NO Infiltration Method ... HORTON Flow Routing Method ... DYNWAVE Surcharge Method ... EXTRAN

 Starting Date
 11/13/2024 00:00:00

 Ending Date
 11/14/2024 00:00:00

 Antecedent Dry Days
 0.0

 Report Time Step
 00:01:00

 Wet Time Step
 00:05:00

 Dry Time Step
 00:05:00

 Routing Time Step
 2.00 sec

 Variable Time Step
 YES

 Maximum Trials
 8

 Number of Threads
 8

 Head Tolerance
 0.001500 m

* * * * * * * * * * * * * * * * * * * *	Volume	Depth
Runoff Quantity Continuity	hectare-m	mm
* * * * * * * * * * * * * * * * * * * *		
Initial LID Storage	0.001	0.967
Total Precipitation	0.127	82.323
Evaporation Loss	0.000	0.000
Infiltration Loss	0.032	21.052
Surface Runoff	0.095	61.881
Final Storage	0.001	0.967
Continuity Error (%)	-0.732	
* * * * * * * * * * * * * * * * * * * *	Volume	Volume
Flow Routing Continuity	hectare-m	10^6 ltr
* * * * * * * * * * * * * * * * * * * *		
Dry Weather Inflow	0.000	0.000
Wet Weather Inflow	0.096	0.955
Groundwater Inflow	0.000	0.000
RDII Inflow	0.000	0.000
External Inflow	0.000	0.000
External Outflow	0.096	0.956
Flooding Loss	0.000	0.000
Evaporation Loss	0.000	0.000
Exfiltration Loss	0.000	0.000
Initial Stored Volume	0.000	0.005
Final Stored Volume	0.000	0.005
Continuity Error (%)	-0.048	

Highest Flow Instability Indexes Link O-MH212 (3)

Most Frequent Nonconverging Nodes

Dook Bunoff	Total	Total	Total	Total	Imperv	Perv	Total	Total	
reak Runorr	Precip	Runon	Evap	Infil	Runoff	Runoff	Runoff	Runoff	
Runoff Coeff Subcatchment LPS	mm	mm	mm	mm	mm	mm	mm	10^6 ltr	
A-01 9.52 0.730	82.32	0.00	0.00	23.15	45.88	14.24	60.13	0.01	
A-02 47.79 0.742	82.32	0.00	0.00	21.87	48.33	12.79	61.12	0.07	
A-03	82.32	0.00	0.00	20.61	50.73	11.57	62.30	0.09	
A-04 5.60 0.677	82.32	0.00	0.00	27.29	40.07	15.63	55.70	0.01	
B-01 256 42 0 917	82.32	0.00	0.00	7.48	70.90	4.60	75.49	0.40	
B-02	82.32	0.00	0.00	5.19	74.36	3.35	77.70	0.19	
C-01	82.32	0.00	0.00	46.30	16.50	19.80	36.30	0.06	
C-02	82.32	0.00	0.00	38.00	25.91	18.84	44.74	0.03	
C-03	82.32	0.00	0.00	46.21	14.09	22.44	36.53	0.05	
C-04	82.32	0.00	0.00	36.14	28.30	18.34	46.64	0.03	
D-01	82.32	0.00	0.00	42.27	15.31	27.16	42.48	0.02	

Node Depth Summary *********

Node	Туре	Average Depth Meters	Maximum Depth Meters	Maximum HGL Meters	Time of Max Occurrence days hr:min	Reported Max Depth Meters
нр-своз	JUNCTION	0.00	0.00	89.38	0 00:00	0.00

HP-CBMH205	JUNCTION	0.00	0.00	88.60	0	00:00	0.00
HP-CBMH206	JUNCTION	0.00	0.00	88.75	0	00:00	0.00
HP-CBMH207	JUNCTION	0.00	0.00	88.70	0	00:00	0.00
DR	OUTFALL	0.00	0.00	88.66	0	00:00	0.00
EX-MH15	OUTFALL	0.69	0.69	84.56	0	00:00	0.69
Spill-CB02	OUTFALL	0.00	0.00	89.40	0	00:00	0.00
Spill-CBMH205	OUTFALL	0.00	0.00	88.58	0	00:00	0.00
Spill-CBMH208	OUTFALL	0.00	0.00	89.00	0	00:00	0.00
Spill-CBMH210	OUTFALL	0.00	0.00	89.00	0	00:00	0.00
CB01	STORAGE	0.08	1.89	88.89	0	02:13	1.89
CB02	STORAGE	0.06	1.55	88.90	0	02:12	1.54
CB03	STORAGE	0.03	0.92	88.58	0	02:22	0.92
CBMH205	STORAGE	0.08	1.70	88.44	0	02:23	1.70
CBMH206	STORAGE	0.06	1.49	88.52	0	02:23	1.49
CBMH207	STORAGE	0.03	0.99	88.58	0	02:22	0.99
CBMH208	STORAGE	0.12	2.38	88.87	0	02:21	2.38
CBMH210	STORAGE	0.14	2.52	88.83	0	02:21	2.52
MH201	STORAGE	0.66	0.69	84.60	0	02:14	0.69
MH202	STORAGE	0.03	0.29	85.31	0	02:21	0.29
MH203	STORAGE	0.03	0.23	85.51	0	02:15	0.23
MH204	STORAGE	0.03	0.20	85.83	0	02:16	0.20
MH209	STORAGE	0.13	2.46	88.85	0	02:21	2.46
MH211	STORAGE	0.15	2.65	88.79	0	02:22	2.65
MH212	STORAGE	0.16	2.69	88.77	0	02:22	2.69
MH212_Dummy	STORAGE	0.02	0.17	86.25	0	02:22	0.17
TANK1	STORAGE	0.09	1.64	87.64	0	02:16	1.64
TANK2	STORAGE	0.04	1.36	87.36	0	02:12	1.36

Node Inflow Summary

		Maximum Lateral Inflow	Maximum Total Inflow	Time of Max Occurrence	Lateral Inflow Volume	Total Inflow Volume	Flow Balance Error
Node	Туре	LPS	LPS	days hr:min	10^6 ltr	10^6 ltr	Percent
HP-CB03 HP-CBMH205	JUNCTION JUNCTION	0.00 0.00	0.00 0.00	0 00:00 0 00:00	0 0	0 0	0.000 ltr 0.000 ltr

HP-CBMH206	JUNCTION	0.00	0.00	0	00:00	0	0	0.000 ltr
HP-CBMH207	JUNCTION	0.00	0.00	0	00:00	0	0	0.000 ltr
DR	OUTFALL	20.72	20.72	0	02:10	0.02	0.02	0.000
EX-MH15	OUTFALL	0.00	233.21	0	02:14	0	0.936	0.000
Spill-CB02	OUTFALL	0.00	0.00	0	00:00	0	0	0.000 ltr
Spill-CBMH205	OUTFALL	0.00	0.00	0	00:00	0	0	0.000 ltr
Spill-CBMH208	OUTFALL	0.00	0.00	0	00:00	0	0	0.000 ltr
Spill-CBMH210	OUTFALL	0.00	0.00	0	00:00	0	0	0.000 ltr
CB01	STORAGE	47.79	52.65	0	02:09	0.0679	0.0806	-0.005
CB02	STORAGE	9.52	16.55	0	02:06	0.0126	0.0128	0.499
СВ03	STORAGE	31.34	31.34	0	02:10	0.0632	0.0632	0.064
CBMH205	STORAGE	16.02	46.20	0	02:20	0.0257	0.169	0.003
CBMH206	STORAGE	31.42	63.41	0	02:07	0.0537	0.143	-0.302
CBMH207	STORAGE	15.73	44.02	0	02:09	0.026	0.0891	-0.010
CBMH208	STORAGE	58.82	92.51	0	02:10	0.0885	0.169	-0.029
CBMH210	STORAGE	5.60	65.90	0	02:10	0.0078	0.177	-0.024
MH201	STORAGE	0.00	233.20	0	02:14	0	0.937	-0.000
MH202	STORAGE	0.00	128.11	0	02:21	0	0.57	-0.020
MH203	STORAGE	0.00	84.41	0	02:17	0	0.402	0.035
MH204	STORAGE	0.00	84.41	0	02:16	0	0.402	-0.001
MH209	STORAGE	0.00	70.66	0	02:10	0	0.169	-0.002
MH211	STORAGE	0.00	51.22	0	02:10	0	0.177	-0.034
MH212	STORAGE	0.00	38.95	0	02:11	0	0.177	0.002
MH212 Dummy	STORAGE	0.00	35.33	0	02:22	0	0.177	-0.002
TANK1	STORAGE	256.42	256.42	0	02:10	0.402	0.402	-0.000
TANK2	STORAGE	118.42	118.42	0	02:10	0.188	0.188	0.001

**** Node Surcharge Summary

No nodes were surcharged.

Node Flooding Summary

No nodes were flooded.

******* Storage Volume Summary

Storage Unit	Average Volume 1000 m³	Avg Pcnt Full	Evap Pcnt Loss	Exfil Pcnt Loss	Maximum Volume 1000 m³	Max Pcnt Full	Time Occu days	of Max rrence hr:min	Maximum Outflow LPS
св01	0.000	0.0	0.0	0.0	0.001	1.0	0	02:13	39.63
CB02	0.000	0.5	0.0	0.0	0.001	12.1	0	02:12	8.69
CB03	0.000	2.2	0.0	0.0	0.000	69.0	0	02:22	28.95
CBMH205	0.000	4.3	0.0	0.0	0.002	88.7	0	02:23	44.14
CBMH206	0.000	3.6	0.0	0.0	0.002	85.2	0	02:23	38.80
CBMH207	0.000	2.7	0.0	0.0	0.001	76.9	0	02:22	37.85
CBMH208	0.000	0.5	0.0	0.0	0.013	19.0	0	02:21	70.66
CBMH210	0.000	4.8	0.0	0.0	0.003	90.2	0	02:21	51.22
MH201	0.001	13.4	0.0	0.0	0.001	14.1	0	02:14	233.21
MH202	0.000	0.9	0.0	0.0	0.000	8.5	0	02:21	128.09
MH203	0.000	0.8	0.0	0.0	0.000	6.5	0	02:15	84.43
MH204	0.000	0.8	0.0	0.0	0.000	5.9	0	02:16	84.41
MH209	0.000	4.7	0.0	0.0	0.003	88.7	0	02:21	60.51
MH211	0.000	4.9	0.0	0.0	0.003	86.5	0	02:22	38.95
MH212	0.000	5.2	0.0	0.0	0.003	87.8	0	02:22	35.33
MH212_Dummy	0.000	0.0	0.0	0.0	0.000	0.0	0	00:00	35.33
TANK1	0.008	3.1	0.0	0.0	0.138	55.3	0	02:16	84.41
TANK2	0 001	1 2	0 0	0 0	0 036	43 5	0	02.12	76 34

Outfall Loading Summary

	Flow	Avg	Max	Total
	Freq	Flow	Flow	Volume
Outfall Node	Pcnt	LPS	LPS	10^6 ltr
DR	27.51	1.12	20.72	0.020
EX-MH15	53.93	26.52	233.21	0.936

Spill-CB02	0.00	0.00	0.00	0.000
Spill-CBMH205	0.00	0.00	0.00	0.000
Spill-CBMH208	0.00	0.00	0.00	0.000
Spill-CBMH210	0.00	0.00	0.00	0.000
System	13.57	27.64	241.98	0.956

Link Flow Summary

*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*

Link	Туре	Maximum Flow LPS	Time Occu days	of Max arrence hr:min	Maximum Veloc m/sec	Max/ Full Flow	Max/ Full Depth
CB01-CBMH208	CONDUIT	39.63	0	02:12	0.80	0.41	1.00
CB02-CB01	CONDUIT	8.69	0	02:07	0.80	0.15	1.00
CB03-CBMH207	CONDUIT	28.95	0	02:09	0.91	0.38	1.00
CBMH206-CBMH205	CONDUIT	38.80	0	02:21	0.59	0.56	1.00
CBMH207-CBMH206	CONDUIT	37.85	0	02:07	0.83	0.55	1.00
CBMH208-MH209	CONDUIT	70.66	0	02:10	1.00	1.09	1.00
CBMH210-MH211	CONDUIT	51.22	0	02:10	0.72	0.75	1.00
MH201-EX15	CONDUIT	233.21	0	02:14	0.65	0.48	1.00
MH202-MH201	CONDUIT	128.09	0	02:21	1.17	0.41	0.50
MH203-MH202	CONDUIT	84.43	0	02:17	1.03	0.42	0.52
MH204-MH203	CONDUIT	84.41	0	02:17	1.22	0.42	0.45
MH209-CBMH210	CONDUIT	60.51	0	02:10	0.86	0.88	1.00
MH211-MH212	CONDUIT	38.95	0	02:11	0.55	0.60	1.00
MH212-MH201	CONDUIT	35.33	0	02:22	0.95	0.52	0.52
SWALE-CB03	CONDUIT	0.00	0	00:00	0.00	0.00	0.00
SWALE-CBMH205	CONDUIT	0.00	0	00:00	0.00	0.00	0.14
SWALE-CBMH206	CONDUIT	0.00	0	00:00	0.00	0.00	0.07
SWALE-CBMH207	CONDUIT	0.00	0	00:00	0.00	0.00	0.00
O-CBMH205	ORIFICE	44.14	0	02:23			1.00
0-MH212	ORIFICE	35.33	0	02:22			1.00
O-TANK1	ORIFICE	84.41	0	02:16			1.00
O-TANK2	ORIFICE	76.34	0	02:12			1.00
OVF-TANK1	ORIFICE	0.00	0	00:00			
OVF-TANK2	ORIFICE	0.00	0	00:00			

OVF-CB01	WEIR	0.00	0	00:00	0.00
OVF-CB02a	WEIR	0.00	0	00:00	0.00
OVF-CB02b	WEIR	0.00	0	00:00	0.00
OVF-CB03	WEIR	0.00	0	00:00	0.00
OVF-CBMH205	WEIR	0.00	0	00:00	0.00
OVF-CBMH206	WEIR	0.00	0	00:00	0.00
OVF-CBMH207	WEIR	0.00	0	00:00	0.00
OVF-CBMH208	WEIR	0.00	0	00:00	0.00
OVF-CBMH210a	WEIR	0.00	0	00:00	0.00
OVF-CBMH210b	WEIR	0.00	0	00:00	0.00

Flow Classification Summary

	Adjusted			Fract	ion of	Time	in Flo	w Clas	s	
	/Actual		Up	Down	Sub	Sup	Up	Down	Norm	Inlet
Conduit	Length	Dry	Dry	Dry	Crit	Crit	Crit	Crit	Ltd	Ctrl
CB01-CBMH208	1.00	0.00	0.00	0.00	0.05	0.01	0.00	0.94	0.01	0.00
CB02-CB01	1.00	0.00	0.00	0.00	0.04	0.00	0.00	0.96	0.00	0.00
CB03-CBMH207	1.00	0.00	0.00	0.00	0.03	0.00	0.00	0.97	0.00	0.00
CBMH206-CBMH205	1.00	0.00	0.00	0.00	0.06	0.00	0.00	0.94	0.01	0.00
CBMH207-CBMH206	1.00	0.00	0.00	0.00	0.07	0.00	0.00	0.93	0.02	0.00
CBMH208-MH209	1.00	0.00	0.00	0.00	0.06	0.00	0.00	0.94	0.00	0.00
CBMH210-MH211	1.00	0.00	0.00	0.00	0.07	0.00	0.00	0.93	0.01	0.00
4H201-EX15	1.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00
4H202-MH201	1.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00
4H203-MH202	1.00	0.00	0.00	0.00	0.03	0.00	0.00	0.97	0.00	0.00
4H204-MH203	1.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00
4H209-CBMH210	1.00	0.00	0.00	0.00	0.06	0.00	0.00	0.94	0.00	0.00
4H211-MH212	1.00	0.00	0.00	0.00	0.16	0.00	0.00	0.84	0.00	0.00
4H212-MH201	1.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00
SWALE-CB03	1.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
SWALE-CBMH205	1.00	0.99	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00
SWALE-CBMH206	1.00	0.99	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00
SWALE-CBMH207	1.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Conduit	Both Ends	Hours Full Upstream	 Dnstream	Hours Above Full Normal Flow	Hours Capacity Limited
CB01-CBMH208	0.93	0.93	1.13	0.01	0.01
CB02-CB01	0.81	0.81	0.88	0.01	0.01
CB03-CBMH207	0.55	0.55	0.57	0.01	0.01
CBMH206-CBMH205	0.87	0.87	1.05	0.01	0.01
CBMH207-CBMH206	0.59	0.59	0.87	0.01	0.01
CBMH208-MH209	1.16	1.16	1.17	0.05	0.16
CBMH210-MH211	1.26	1.26	1.39	0.01	0.01
MH201-EX15	0.45	0.45	24.00	0.01	0.01
MH209-CBMH210	1.21	1.21	1.25	0.01	0.01
MH211-MH212	1.42	1.42	1.46	0.01	0.01

Analysis begun on: Fri Nov 15 11:30:18 2024 Analysis ended on: Fri Nov 15 11:30:21 2024 Total elapsed time: 00:00:03

Excerpts from Appendix E of the Master Servicing Study for East Urban Community Phase 3 Area Community Design Plan (DSEL, December 2020)

MASTER SERVICING STUDY EAST URBAN COMMUNITY PHASE 3 AREA COMMUNITY DESIGN PLAN

RICHCRAFT HOMES

DEC 2020 DSEL 14-733

Appendix E

- EUC Phase 3 CDP Conceptual Storm Servicing Rational Method Design Sheets (DSEL, October 2019)...
 E1-E3
- East Urban Community / Preliminary Hydraulic Gradeline Analysis and Pond Design & Modelling Files (JFSA, June 2 2019)...
 E4-E122
- Excerpts from the Gloucester and Cumberland East Urban Community Expansion Area and Bilberry Creek Industrial Park Master Servicing Update (Stantec, July 2006) (NW Quadrant)...
 E123-E129
- Excerpts from the Servicing Report for Trails Edge and Orleans Business Park (DSEL, July 2017) (NW Quadrant)...
 E130-E135
- Excerpts from the Design Brief for Caivan (Orleans Village) Limited 3490 Innes Road (DSEL, May 2018)...
 E136-E143
- Excerpts from the Trinity Development Innes/Belcourt Stormwater Management System (IBI Group, January 2009)... E144-E146
- Excerpts from the Gloucester and Cumberland East Urban Community Expansion Area and Bilberry Creek Industrial Park Master Servicing Update (Stantec, July 2006) (NE Quadrant)...
 E147-E151
- Excerpts from the Servicing and Stormwater Management Report Orleans II Draft Plan of Subdivision (Stantec, April 12, 2018)...
 E152-E157
- Excerpts from the Servicing Options Report for Blacksheep Developments, 2159 Mer Bleue Road (DSEL, December 2017)...
 E158-E159
- Excerpts from the Gloucester and Cumberland East Urban Community Expansion Area and Bilberry Creek Industrial Park Master Servicing Update (Stantec, July 2006) (SW Quadrant)...
 E160-E165
- Excerpts from the Servicing Report for Trails Edge and Orleans Business Park (DSEL, July 2017) (SW Quadrant)...
 E166-E170
- Excerpts from the Design Brief Minto Trailsedge Phase II (IBI Group, May 2015)... E171-E174
- Excerpts from the Trails Edge East Functional Servicing Report (Stantec, August 11, 2017)...
 E175-E177
- Excerpts from the Trails Edge East Phase 1 Servicing and Stormwater Management Report (Stantec, August 2018)...
 E178-E183
- Rational Method Total Flow Estimate to Downstream Storm Stub (DSEL, October 2018)... E184

Excerpts from Appendix E of the Master Servicing Study for East Urban Community Phase 3 Area Community Design Plan (DSEL, December 2020)

Table B-1A: Pipe Data and Hydraulic Simi	ulation Results for the 100-Year.	. 3-Hour Chicago Storm (Ultim	ate Conditions)
		, e neur emerge eterm (erum	

U/S	D/S	U/S	D/S	Pipe Dia.	Pipe	Pipe	n	U/S MH	D/S MH	Design	Design	Peak	Peak /	Surcharge	Time	Max.	Max.	Lot	USF	Freeboard	Int	erpolated H	GL
MH	MH	Invert	Invert	/ Height	Length	Slope		Cover	Cover	Vel.	Flow	Pipe	Design	U/S	to	U/S	D/S	Number			Length	Dist. From	HGL
								Elev.	Elev.			Flow	Flow	(1)	Peak	HGL	HGL				HGL	D/S MH	
		(m)	(m)	(mm)	(m)	(%)		(m)	(m)	(m/s)	(m ³ /s)	(m ³ /s)		(m)	(h)	(m)	(m)		(m)	(m)	(m)	(m)	(m)
																		253	85.79	1.703	81.3	65.3	84.087
																		252	85.98	1.828	81.3	79.1	84.152
																		258	85.68	1.879	81.3	3.9	83 . 801
																		257	85.79	1.941	81.3	14.2	83.849
																		256	85.74	1.838	81.3	25.6	83.902
Dr	DO			000		1.0												255	85.78	1.821	81.3	37.8	83.959
B2	B0	84.597	84.452	300	14.5	1.0	0.013	87.803	87.913	1.37	0.10	0.00	0.0	-0.252	1.17	84.645	84.714	50	86.01	1.365			
BO BO	B00	83.691	82.380	200	138.0	1.0	0.013	87.803	87.712	2.29	0.82	0.30	0.4	-0.311	1.17	84.055	83.668	40	85.69	1.635			
B7		84.388	84.082	300	47.0	0.7	0.013	87.913	87.917	1.10	0.08	0.01	0.2	0.026	1.25	84.714	84.714	54 55	86.04	1.320			
	BO	84.022	83,956	300	12.0	0.6	0.013	87.917	87.801	1.01	0.07	0.02	0.2	0.392	1.20	84.714	84.714	55 07	85.97	1.256			
BQ	B57	03.920	03.332	375	71.5	0.0	0.013	07.001	01.013	1.01	0.07	0.07	1.0	0.400	1.20	04./14	04.03Z	21	00.00	1.110			
B10	B11	03.477 92.047	02.047	375	60.0	1.3	0.013	07.073 99.107	07.013 99.150	0.09	0.20	0.19	1.0	0.000	0.94	94.552	03.505 94.512	21	00.09 96.04	1,100			
B10	B49	03.947	03.005	300	106.5	0.4	0.013	00.197	99.057	0.90	0.11	0.12	0.5	0.209	1.04	94.011	04.012	211	96.04	1.429			
B10 B11	B34	83 665	83.053	375	80.5	0.7	0.013	88 150	87.886	1.14	0.00	0.04	1.1	0.172	0.03	84.512	84.007	74	85.02	1.009			
B12	B13	87 219	85 699	375	76.0	2.0	0.013	91 003	89 864	2.25	0.15	0.17	0.5	_0.197	0.93	87 397	85 877	74 N/Δ	03.32 N/Δ	N/A			
B13	B15	85 249	83 720	825	139.0	11	0.013	89 864	88 345	2.20	1.51	1 10	0.5	-0.788	0.00	85 786	84 564	N/A	N/A	N/A			
B15	B21	83 195	82 979	1350	58.5	0.4	0.013	88 345	88 484	2.02	3.25	2 14	0.7	0.019	0.96	84 564	84 488	N/A	N/A	N/A			
B16	B40	84.536	84.061	375	108.0	0.4	0.013	88.626	88.320	1.05	0.12	0.12	1.0	0.086	1.02	84,997	84.651	B370S	86.26	1.263			
		0 11000	0 1100 1		10010		01010	001020	001020	1100	0112	0112		01000	1102	011001	011001	B370S	86.26	1.548	108.2	19.1	84.712
																		B370N	86.63	1.876	108.2	32.3	84.754
																		B369S	86.63	1.836	108.2	44.6	84.794
																		B369N	86.41	1.527	108.2	72.4	84,883
																		B368S	86.53	1.604	108.2	85.9	84.926
																		B368N	86.63	1.660	108.2	99.7	84.970
																		B374S	86.87	1.878	108.2	106.7	84.992
																		B373N	86.67	1.699	108.2	100.1	84.971
																		B373S	86.55	1.649	108.2	78.1	84.901
																		B372N	86.55	1.691	108.2	65.2	84.859
																		B372S	86.62	1.830	108.2	43.6	84.790
																		B371N	86.62	1.869	108.2	31.4	84.751
																		B371S	86.77	2.062	108.2	17.8	84.708
B17	B16	84.801	84.611	300	9.5	2.0	0.013	88.702	88.626	1.93	0.14	-0.02	-0.2	-0.117	1.09	84.984	84.997	B374N	86.75	1.766			
B17	B18	84.894	84.371	300	48.0	1.1	0.013	88.702	88.502	1.43	0.10	0.02	0.2	-0.210	1.09	84.984	84.772	B376E	86.59	1.606			
B18	B21	84.296	83.934	375	67.0	0.5	0.013	88.502	88.484	1 <u>.</u> 17	0.13	0.11	0.8	0.101	1.11	84.772	84.488	B377W	86.51	1.738			
B19	B21	84.917	83.859	450	141.0	0.8	0.013	88.600	88.484	1.55	0.25	0.09	0.4	-0.257	1.03	85.110	84.488	B356E	86.51	1.400			
B19	B26	84.843	84.810	300	9.5	0.4	0.013	88.600	88.678	0.81	0.06	0.05	0.9	-0.033	0.84	85.110	85.091	351	86.73	1.620			
B21	B24	82.959	82.707	1350	58.5	0.4	0.013	88.484	88.145	2.45	3.50	2.30	0.7	0.179	0.95	84.488	84.388	B145N	86.60	2.112			
B22	B24	84.693	83.587	450	146.5	0.8	0.013	88.456	88.145	1.55	0.25	0.10	0.4	-0.240	0.99	84.903	84.388	B136E	86.15	1.247			
	B2200	84.552	84.434	300	29.0	0.4	0.013	88.456	87.660	0.88	0.06	0.09	1.4	0.051	0.95	84.903	84.666	B158	86.60	1.697			
B24	B25	82.687	82.479	1350	41.5	0.5	0.013	88.145	88.096	2.64	3.77	2.43	0.6	0.351	0.94	84.388	84.297	B146S	86.09	1.702			
B25	B30	82.449	82.380	1350	14.0	0.5	0.013	88.096	88.193	2.61	3.74	2.40	0.6	0.498	1.14	84.297	84.261	N/A	N/A	N/A			
B26	B22	84.780	84.572	300	52.0	0.4	0.013	88.678	88.456	0.87	0.06	0.06	1.0	0.011	1.01	85.091	84.903	124	86.63	1.539			
B27	B28	83.872	83.767	675	10.5	1.0	0.013	88.285	88.194	2.35	0.84	0.30	0.4	0.028	1.15	84.575	84.552	121	86.38	1.805			

Excerpts from Appendix E of the Master Servicing Study for East Urban Community Phase 3 Area Community Design Plan (DSEL, December 2020)

Table B-1F. Pine Data	and Hydraulic Simulation Res	sults for the 100-Year 3-Hour	Chicago Storm + 20%	(Illitimate Conditions)

MM Inter In	U/S	D/S	U/S	D/S	Pipe Dia.	Pipe	Pipe	n	U/S MH	D/S MH	Design	Design	Peak	Peak /	Surcharge	Time	Max.	Max.	Lot	USF	Freeboard	Int	erpolated H	GL
Image Image <th< td=""><td>MH</td><td>MH</td><td>Invert</td><td>Invert</td><td>/ Height</td><td>Length</td><td>Slope</td><td></td><td>Cover</td><td>Cover</td><td>Vel.</td><td>Flow</td><td>Pipe</td><td>Design</td><td>U/S</td><td>to</td><td>U/S</td><td>D/S</td><td>Number</td><td></td><td></td><td>Length</td><td>Dist. From</td><td>HGL</td></th<>	MH	MH	Invert	Invert	/ Height	Length	Slope		Cover	Cover	Vel.	Flow	Pipe	Design	U/S	to	U/S	D/S	Number			Length	Dist. From	HGL
Im (m)									Elev.	Elev.		0	Flow	Flow	(1)	Peak	HGL	HGL				HGL	D/S MH	
1 1			(m)	(m)	(mm)	(m)	(%)		(m)	(m)	(m/s)	(m³/s)	(m³/s)		(m)	(h)	(m)	(m)		(m)	(m)	(m)	(m)	(m)
1 1 1 0																			253	85.79	1.081	81.3	65.3	84.709
B B																			252	85.98	1.211	81.3	79.1	84.769
B5 B6 P4.57 B.57 B.																			258	85.68	1.242	81.3	3.9	84.438
B5 B6 84.697 44.62 300 14.5 10 0.013 87.803 87.913 2.24 4.10 84.70 84.81 81.3 2.56 8.77 81.3 2.56 8.77 81.3 2.56 8.77 81.3 2.56 8.77 81.3 2.56 8.77 81.3 2.56 8.77 81.3 2.56 8.77 81.3 2.56 8.77 81.30 6.77 81.30 6.77 81.30 6.57 81.30 6.50 71.01 0.00 0.00 2.20 0.20 0.20 0.20 0.20 1.12 84.494 84.50 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>257</td><td>85.79</td><td>1.306</td><td>81.3</td><td>14.2</td><td>84.484</td></th<>																			257	85.79	1.306	81.3	14.2	84.484
B6 B6 84.397 84.452 900 14.5 10 0.013 87.903 87.913 1.37 0.10 0.02 42.2 0.106 112 84.020 84.68 66.01 1.308 5 5 5 85.6 85.69 13.80 10 0.013 87.803 87.913 1.37 1.0 0.60 0.013 87.913 87.917 1.0 0.60 0.015 84.46 84.16 40 65.69 1.306 66.01 1.306 87.91 87.91 1.01 0.07 0.021 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 4.02 0.02 4.02 0.02 4.02 0.02 4.02 0.02 4.02 0.02 4.02 0.02 4.02 0.02 4.02 0.02 4.02 0.02 4.02 0.02 4.02 0.02 4.02 0.02 4.02 0.02 <td></td> <td>256</td> <td>85.74</td> <td>1.206</td> <td>81.3</td> <td>25.6</td> <td>84.534</td>																			256	85.74	1.206	81.3	25.6	84.534
b9 69 64.39 64.49 60.49	DC	DC	04.507	04.450	200		4.0	0.040	07.000	07.040	4.07	0.40	0.00		0.405	4.40	04700	04.040	255	85.78	1.193	81.3	37.8	84.587
Bob B	- D0 Р5	DO DEG	84.597	84.452	675	14.5	1.0	0.013	87.803	87.913	1.37	0.10	-0.02	-0.2	-0.195	1.12	84.702	84.948	50	86.01	1.308			
B7 B8 B4.02 S3.03 B4.01 L03 B4.302 C3.03 C.020 C.030 B4.302 C3.03 C.030 B4.305 B4.30 B4.305 B4.305 B4.305 B4.30 B4.305 B4.30 B4.305 B4.30 B4.30 B4.30 B4.305 B4.305 B4.30 B4.305	DO DO	D00	83.691	82.380	200	138.0	1.0	0.013	87.803	87.712	2.29	0.82	0.33	0.4	0.018	1.12	84.384	84.118	40	85.69	1.306			
B0 B40 B4.00 B4.0	D0 D7		84.388	84.082	200	47.0	0.7	0.013	87.913	87.917	1.10	0.08	-0.02	-0.3	0.260	1.05	84.948	84.969	54	86.04	1.092			
B9 B3 B3.07 B3.47			84.022	83.956	200	12.0	0.6	0.013	87.917	87.801	1.01	0.07	-0.02	-0.3	0.647	1.05	84.969	84.974	55	85.97	1.001			
B57 B3.47 B2.647 A73 A73 B747 B747 <th< td=""><td></td><td>D9 D57</td><td>83.926</td><td>83.552</td><td>300</td><td>68.0</td><td>0.6</td><td>0.013</td><td>87.801</td><td>87.873</td><td>1.01</td><td>0.07</td><td>0.07</td><td>0.9</td><td>0.748</td><td>1.49</td><td>84.974</td><td>84.875</td><td>27</td><td>85.83</td><td>0.856</td><td></td><td></td><td></td></th<>		D9 D57	83.926	83.552	300	68.0	0.6	0.013	87.801	87.873	1.01	0.07	0.07	0.9	0.748	1.49	84.974	84.875	27	85.83	0.856			
B10 B14 B3.08 B3.	Б9 В10	D07	83.477	82.547	275	/1.5	1.3	0.013	87.873	87.813	1.81	0.20	0.19	1.0	1.023	1.33	84.875	83.911	21	85.69	0.815			
B10 B43 B4.147 B3.062 0.00 <	B10		83.947	83.685	200	69.0	0.4	0.013	88.197	88.159	0.98	0.11	0.13	1.2	0.777	0.83	85.099	85.019	81	86.04	0.941			
B12 B13 B15 B5.249 B3.195 B5.249 N/A N/A <td></td> <td>D49 D24</td> <td>84.417</td> <td>83.682</td> <td>275</td> <td>106.5</td> <td>0.7</td> <td>0.013</td> <td>88.197</td> <td>88.057</td> <td>1.14</td> <td>0.08</td> <td>0.06</td> <td>0.7</td> <td>0.382</td> <td>0.99</td> <td>85.099</td> <td>84.866</td> <td>311</td> <td>86.27</td> <td>1.171</td> <td></td> <td></td> <td></td>		D49 D24	84.417	83.682	275	106.5	0.7	0.013	88.197	88.057	1.14	0.08	0.06	0.7	0.382	0.99	85.099	84.866	311	86.27	1.171			
B13 B13 <td>D11 P12</td> <td>D34</td> <td>83.000</td> <td>83.053</td> <td>275</td> <td>80.5</td> <td>0.8</td> <td>0.013</td> <td>01.002</td> <td>87.880</td> <td>1.38</td> <td>0.15</td> <td>0.17</td> <td></td> <td>0.979</td> <td>0.93</td> <td>85.019</td> <td>84.557</td> <td>74</td> <td>85.92</td> <td>0.901</td> <td></td> <td></td> <td></td>	D11 P12	D34	83.000	83.053	275	80.5	0.8	0.013	01.002	87.880	1.38	0.15	0.17		0.979	0.93	85.019	84.557	74	85.92	0.901			
B16 B21 B3.248 B3.248 B3.249 B3.249 B3.248 B3.249 B3.248 B3.249 B3.248 B3.249 B3.248 B3.249 B3.248	B12	B15	87.219	83.699	825	120.0	2.0	0.013	91.003	89.804	2.20	0.25	0.12	0.5	-0.189	0.93	87.405	05 245	IN/A		N/A			
B16 B40 84.53 84.061 375 108.0 0.013 86.28 83.20 1.05 1.2 0.12 0.10 0.839 0.99 85.750 85.204 100.4 100.4 100.2 100.2 100.0 <td>B15</td> <td>B21</td> <td>80.249</td> <td>83.720</td> <td>1350</td> <td>139.0 E0 E</td> <td>1.1</td> <td>0.013</td> <td>89.804</td> <td>88.345</td> <td>2.82</td> <td>1.01</td> <td>1.11</td> <td>0.7</td> <td>0.011</td> <td>0.99</td> <td>80.085</td> <td>85.315</td> <td>IN/A</td> <td></td> <td>N/A</td> <td></td> <td></td> <td></td>	B15	B21	80.249	83.720	1350	139.0 E0 E	1.1	0.013	89.804	88.345	2.82	1.01	1.11	0.7	0.011	0.99	80.085	85.315	IN/A		N/A			
B10 B40 B44.338 B4.061 D30 D.013 B8.626 B3.20 1.03 0.12 1.01 0.839 D.39 B5.740 B3.700 B6.26 0.741 108.2 32.3 B5.750 B3700 B6.26 0.741 108.2 32.3 B5.750 B3700 86.63 1.122 108.2 32.3 B5.750 B3700 86.63 1.082 32.3 B5.750 B3700 86.63 1.082 32.3 B5.750 B3700 86.63 1.082 44.46 85.780 86.63 1.082 108.2 44.46 85.780 86.63 1.081 108.2 98.55 85.780 86.63 1.081 108.2 99.7 85.85 83680 86.63 0.051 108.2 99.7 85.85 83783 86.67 0.464 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 85.740 85.740 85.740 85.740 85.740 85.740	B16	B40	03.195	02.979	375	00.0 109.0	0.4	0.013	00.343	00.404	2.27	3.25	2.32	0.7	0.770	0.00	05.315	00.204			N/A			
B17 B16 84.801 84.611 300 9.5 2.0 0.013 86.702 85.703 85.703 85.703 85.703 86.75 1.022 72.4 85.703 B17 B16 84.801 84.611 300 9.5 2.0 0.013 86.702 86.70 1.022 72.4 85.703 B17 B16 84.801 84.611 300 9.5 2.0 0.013 86.702 86.70 1.022 99.7 85.7 B17 B16 84.801 84.611 300 9.5 2.0 0.013 86.702 86.52 1.013 86.75 1.012 108.2 91.7 85.7 B17 B16 84.801 84.611 300 9.5 2.0 0.013 86.702 86.52 1.041 0.02 1.012 108.2 1.02 108.2 84.61 108.2 1.012 108.2 84.61 837.8 86.67 0.946 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 108.2 10	DIO	D=0	64.550	04.001	575	108.0	0.4	0.013	00.020	00.320	1.05	0.12	0.12	1.0	0.039	0.99	85.750	85.405	B3703	86.26	0.510	108.2	10.1	85 466
B17 B16 84.01 84.01 30.0 9.5 2.0 0.013 88.72 88.62 1.03 0.023 0.023 0.024 85.79 B17 B16 84.01 84.01 30.0 9.5 2.0 0.013 88.72 86.9 0.03 0.023 0.025 86.74 0.025 0																			B370N	86.63	1 122	108.2	32.3	85 508
B17 B16 84.01 84.01 300 9.5 2.0 0.013 87.02 88.02 1.03 0.043 87.40 85.41 0.076 108.2 99.7 85. B17 B16 84.01 84.01 300 9.5 2.0 0.013 87.02 86.20 1.03 66.67 0.936 108.2 99.7 85. B17 B16 84.01 84.01 300 9.5 2.0 0.013 87.02 86.20 1.03 0.13 87.74 86.5 0.937 108.2 10																			B360S	86.63	1.083	108.2	14.6	85 547
B17 B16 84.801 30.0 9.5 2.0 0.01 86.72 1.03 85.74 85.70 B374N 86.67 1.04.7 108.2 99.7 85.7 B17 B18 84.801 84.611 300 9.5 2.0 0.013 88.702 88.70 1.03 0.7 108.2 108.2 108.2 108.7 85.7 B17 B18 84.801 84.611 300 9.5 2.0 0.013 88.702 86.26 1.93 0.14 -0.03 0.2 0.639 1.03 85.70 B374N 86.65 0.907 108.2 78.1 85.7 B17 B18 84.801 84.611 300 9.5 2.0 0.013 88.702 86.26 1.93 0.14 -0.03 0.3 85.740 85.703 B374N 86.65 1.030 1.15 108.2 17.8 85.70 B18 B21 84.949 84.311 300 48.01 8.11 0.013 88.702 1.43 0.10 0.03 0.3 0.54 1.18 85																			B369N	86.41	0 774	108.2	72.4	85.636
B17 B16 84.801 84.611 300 9.5 2.0 0.013 88.702 86.862 1.93 0.14 -0.03 0.02 0.639 66.63 0.907 10.82 99.7 85. B372N 86.67 0.946 108.2 91.7 85. 85.5 0.896 108.2																			B368S	86.53	0.851	108.2	85.9	85 679
B17 B16 84.801 84.611 300 9.5 2.0 0.013 88.672 1.43 0.44 0.03 0.24 0.63.9 1.022 106.2 100.2 85. B17 B16 84.801 84.611 300 9.5 2.0 0.013 88.620 1.04 0.03 65.2 <td></td> <td>B368N</td> <td>86.63</td> <td>0.001</td> <td>108.2</td> <td>99.7</td> <td>85 723</td>																			B368N	86.63	0.001	108.2	99.7	85 723
B17 B16 84.801 84.611 300 9.5 2.0 0.013 88.702 88.625 1.02 0.02 78.1 85.7 B17 B16 84.801 84.611 300 9.5 2.0 0.013 88.702 88.625 1.02 100.1 85.7 86.62 1.076 108.2 78.1 85.7 B17 B16 84.801 84.611 300 9.5 2.0 0.013 88.702 88.62 1.93 0.14 -0.03 -0.2 0.639 1.03 85.70 85.70 85.70 1.010 85.70 1.010 85.70 1.010 1.02 1.18 85.70 85.70 85.70 85.70 1.010 1.02 1.18 85.70 85.70 85.70 85.70 1.010 1.02 1.18 85.70 85.70 85.70 85.70 1.010 1.02 1.018 85.70 85.70 85.70 85.70 85.70 85.70 85.70 85.70 85.70 85.70 85.70 85.70 85.70 85.70 85.70 85.70 85.70 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>B374S</td><td>86.87</td><td>1 125</td><td>108.2</td><td>106.7</td><td>85 745</td></td<>																			B374S	86.87	1 125	108.2	106.7	85 745
B17 B16 84.801 84.611 300 9.5 2.0 0.013 88.702 86.56 1.93 0.04 9.5 86.55 0.937 108.2 78.1 85.4 B17 B16 84.801 84.611 300 9.5 2.0 0.013 88.702 86.55 1.93 0.4 0.03 0.3 0.639 10.3 85.75 B372S 86.62 1.0176 108.2 31.4 85.75 B17 B16 84.801 84.611 300 9.5 2.0 0.013 88.702 86.52 1.43 0.10 0.33 0.546 1.18 85.740 85.750 B371N 86.65 1.001 108.2 11.8 85.740 85.740 85.750 B374N 86.55 1.010 108.2 11.8 85.740 85.740 85.750 B371N 86.65 1.030 108.2 11.8 85.740 85.750 B374N 86.55 1.010 10.2 11.8 10.2 11.9 10.2 11.8 10.2 10.2 85.740 85.740 85.740 85.740																			B373N	86.67	0.946	108.2	100.1	85 724
B17 B16 84.801 84.611 300 9.5 2.0 0.013 88.702 88.626 1.93 0.14 -0.03 -0.2 0.639 1.03 85.720 86.62 1.076 108.2 43.4 85.7 B17 B18 84.801 84.611 300 9.5 2.0 0.013 88.702 88.626 1.93 0.14 -0.03 -0.2 0.639 1.03 85.750 B372N 86.62 1.010 108.2 43.4 85.74 B17 B18 84.894 84.371 300 48.0 1.1 0.013 88.702 88.502 1.43 0.10 0.33 0.546 1.18 85.740 85.703 B374N 86.75 1.010 1.1.8 85.740 85.703 B374N 86.57 1.010 1.0.82 1.0.82 1.0.82 1.0.82 1.0.82 1.0.81 85.703 B374N 86.57 1.010 1.0.82 1.0.82 1.0.82 1.0.82 1.0.82 1.0.82 1.0.82 1.0.82 1.0.82 1.0.82 1.0.82 1.0.82 1.0.82 1.0.82 <td></td> <td>B373S</td> <td>86.55</td> <td>0.896</td> <td>108.2</td> <td>78.1</td> <td>85 654</td>																			B373S	86.55	0.896	108.2	78.1	85 654
B17 B16 84.801 84.611 300 9.5 2.0 0.013 88.702 88.626 1.93 0.14 -0.03 -0.2 0.639 1.03 85.703 B371N 86.62 1.010 108.2 43.6 85. B17 B16 84.801 84.611 300 9.5 2.0 0.013 88.702 88.626 1.93 0.14 -0.03 -0.2 0.639 1.03 85.70 B374N 86.75 1.010 108.2 17.8 85.70 B17 B18 84.894 84.371 300 48.0 1.1 0.013 88.702 88.502 1.43 0.10 0.03 0.3 0.546 1.18 85.703 B376E 86.59 0.850 1.78 85.76 B18 B21 84.926 83.934 375 67.0 0.55 0.013 88.502 84.84 1.17 0.13 0.14 1.1 1.032 1.09 85.703 B376E 86.51 0.807 1.55 1.55 0.25 0.12 0.5 0.088 1.22 85.455																			B372N	86.55	0.937	108.2	65.2	85.613
B17 B16 84.801 84.611 300 9.5 2.0 0.013 88.702 88.626 1.93 0.14 -0.03 -0.2 0.639 1.03 85.703 B371N 86.67 1.308 108.2 17.8 85. B17 B18 84.891 84.311 300 9.5 2.0 0.013 88.702 88.626 1.93 0.14 -0.03 -0.2 0.639 1.03 85.750 B371N 86.75 1.010 108.2 17.8 85.750 B17 B18 84.894 84.371 300 48.0 1.1 0.013 88.702 88.502 1.43 0.10 0.03 0.3 0.546 1.18 85.703 B376L 86.59 0.850 1.17.8 85.763 B376L 86.51 0.807 1.56 1.5 1.5 1.5 1.5 0.2 1.1 0.13 85.702 88.502 1.43 0.10 0.33 0.546 1.18 85.703 B376L 86.51 0.807 1.5 5.7 85.7 86.51 0.807 1.5 1.5																			B372S	86.62	1.076	108.2	43.6	85 544
Bit Bit 84.801 84.611 300 9.5 2.0 0.013 88.702 88.626 1.93 0.14 -0.03 -0.2 0.639 1.03 85.70 B371N 86.75 1.308 108.2 17.8 85.7 B17 B16 84.801 84.611 300 9.5 2.0 0.013 88.702 88.626 1.93 0.14 -0.03 -0.2 0.639 1.03 85.740 85.703 B371N 86.75 1.010 108.2 17.8 85.76 B17 B18 84.894 84.371 300 48.0 1.1 0.013 88.702 88.620 1.43 0.10 0.03 0.3 0.546 1.18 85.703 B376E 86.59 0.850 0.850 0.850 0.850 0.850 0.850 88.840 1.17 0.13 0.14 1.1 1.032 1.09 85.703 85.204 B371N 86.51 0.807 0.55 0.8659 0.807 0.850 1.055 0.55 0.12 0.5 0.028 1.22 85.455 85.204 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>B371N</td><td>86.62</td><td>1 115</td><td>108.2</td><td>31.4</td><td>85 505</td></t<>																			B371N	86.62	1 115	108.2	31.4	85 505
B17 B16 84.801 84.611 300 9.5 2.0 0.013 88.702 88.626 1.93 0.14 -0.03 -0.2 0.639 1.03 85.740 85.750 B374N 86.75 1.010 B17 B18 84.894 84.371 300 48.0 1.1 0.013 88.702 88.626 1.43 0.10 0.03 0.3 0.546 1.18 85.740 85.753 B374N 86.75 1.010 B18 B21 84.296 83.934 375 67.0 0.5 0.013 88.502 84.84 1.17 0.13 0.14 1.1 1.032 1.09 85.703 B376E 86.59 0.850 B18 B21 84.296 83.934 375 67.0 0.5 0.013 88.502 88.484 1.55 0.25 0.12 0.5 0.088 1.22 85.455 85.204 B356E 86.51 0.807 B19 B26 84.843 84.810 300 9.5 0.4 0.013 88.678 0.81 0.06 0.66																			B371S	86.77	1.308	108.2	17.8	85.462
B17 B18 84.894 84.371 300 48.0 1.1 0.013 88.702 88.502 1.43 0.10 0.03 0.33 0.546 1.18 85.740 85.703 B376E 86.59 0.850 B18 B21 84.296 83.934 375 67.0 0.5 0.013 88.502 84.84 1.17 0.13 0.14 1.1 1.032 1.09 85.703 85.204 B376E 86.51 0.807 B19 B21 84.917 83.859 450 141.0 0.8 0.013 88.600 88.484 1.55 0.25 0.12 0.5 0.088 1.22 85.455 85.204 B356E 86.51 0.807 B19 B26 84.843 84.810 300 9.5 0.4 0.013 88.600 88.678 0.81 0.06 0.66 1.0 0.312 1.62 85.455 85.450 351 86.671 1.275 B21 B24 82.959 82.707 1350 58.5 0.4 0.013 88.484 88.145 2.45 </td <td>B17</td> <td>B16</td> <td>84.801</td> <td>84.611</td> <td>300</td> <td>9.5</td> <td>2.0</td> <td>0.013</td> <td>88,702</td> <td>88.626</td> <td>1.93</td> <td>0.14</td> <td>-0.03</td> <td>-0.2</td> <td>0.639</td> <td>1.03</td> <td>85,740</td> <td>85.750</td> <td>B374N</td> <td>86.75</td> <td>1.010</td> <td></td> <td></td> <td>001.01</td>	B17	B16	84.801	84.611	300	9.5	2.0	0.013	88,702	88.626	1.93	0.14	-0.03	-0.2	0.639	1.03	85,740	85.750	B374N	86.75	1.010			001.01
B18 B21 84.296 83.934 375 67.0 0.5 0.013 88.502 88.484 1.17 0.13 0.14 1.1 1.032 1.09 85.703 85.204 B377W 86.51 0.807 B19 B21 84.917 83.859 450 141.0 0.8 0.013 88.600 88.484 1.55 0.25 0.12 0.5 0.088 1.22 85.455 85.204 B356E 86.51 1.055 B19 B26 84.843 84.810 300 9.5 0.4 0.013 88.600 88.678 0.81 0.06 0.06 1.0 0.312 1.62 85.455 85.450 351 86.673 1.275 B21 B24 82.959 82.707 1350 58.5 0.4 0.013 88.484 88.145 2.45 3.50 2.58 0.7 0.895 1.10 85.204 B145N 86.60 1.396 B21 B24 82.959 82.707 1350 58.5 0.4 0.013 88.484 88.145 2.45 3.50 <td>B17</td> <td>B18</td> <td>84.894</td> <td>84.371</td> <td>300</td> <td>48.0</td> <td>1.1</td> <td>0.013</td> <td>88.702</td> <td>88.502</td> <td>1.43</td> <td>0.10</td> <td>0.03</td> <td>0.3</td> <td>0.546</td> <td>1.18</td> <td>85.740</td> <td>85.703</td> <td>B376E</td> <td>86.59</td> <td>0.850</td> <td></td> <td></td> <td></td>	B17	B18	84.894	84.371	300	48.0	1.1	0.013	88.702	88.502	1.43	0.10	0.03	0.3	0.546	1.18	85.740	85.703	B376E	86.59	0.850			
B19 B21 84.917 83.859 450 141.0 0.8 0.013 88.600 88.484 1.55 0.25 0.12 0.5 0.0088 1.22 85.455 85.204 B356E 86.51 1.055 B19 B26 84.843 84.810 300 9.5 0.4 0.013 88.600 88.484 1.55 0.25 0.12 0.5 0.0088 1.22 85.455 85.204 B356E 86.51 1.055 B19 B26 84.843 84.810 300 9.5 0.4 0.013 88.600 88.478 0.81 0.06 1.0 0.312 1.62 85.455 85.450 351 86.73 1.275 B21 B24 82.959 82.707 1350 58.5 0.4 0.013 88.484 88.145 2.45 3.50 2.58 0.7 0.895 1.10 85.204 85.066 B145N 86.60 1.396 B22 B24 84.693 83.587 450 146.5 0.8 0.013 88.456 88.145 1.55 0.25<	B18	B21	84,296	83,934	375	67.0	0.5	0.013	88,502	88,484	1.17	0.13	0.14	1.1	1.032	1.09	85,703	85,204	B377W	86.51	0.807			
B19 B26 84.843 84.810 300 9.5 0.4 0.013 88.600 88.678 0.81 0.06 0.06 1.0 0.312 1.62 85.455 85.450 351 86.73 1.275 B21 B24 82.959 82.707 1350 58.5 0.4 0.013 88.484 88.145 2.45 3.50 2.58 0.7 0.895 1.10 85.204 85.066 B145N 86.60 1.396 B22 B24 84.693 83.587 450 146.5 0.013 88.456 88.145 2.45 3.50 2.58 0.7 0.895 1.10 85.204 85.166 B145N 86.60 1.396 B22 B24 84.693 83.587 450 1.013 88.456 88.145 1.55 0.25 0.212 0.211 1.10 85.366 B136E B6.15 0.0786 B27 B2300 84.444 80.145 1.55 0.25 0.25 0.212 0.212 55.26 55.365 55.365 0.53.65 B136E B6.15	B19	B21	84,917	83,859	450	141.0	0.8	0.013	88.600	88.484	1.55	0.25	0.12	0.5	0.088	1.22	85,455	85.204	B356E	86.51	1.055			
B21 B24 82.959 82.707 1350 58.5 0.4 0.013 88.484 88.145 2.45 3.50 2.58 0.7 0.895 1.10 85.204 85.066 B145N 86.60 1.396 B22 B24 84.693 83.587 450 146.5 0.8 0.013 88.456 88.145 1.55 0.25 0.12 0.5 0.221 1.10 85.364 85.066 B145N 86.60 1.396 B23 B24 84.693 83.587 450 146.5 0.44 0.013 88.456 88.145 1.55 0.25 0.12 0.5 0.221 1.12 85.364 85.066 B145N 86.60 1.396 B730 0.44 0.013 88.456 88.145 0.25 0.25 0.12 0.5 0.512 0.52 85.364 85.066 B136E 86.15 0.786 B730 0.44 0.013 84.55 97.05 0.90 0.51 0.51 0.52 85.364 85.366 B136E 86.15 0.786 1.02 <	B19	B26	84.843	84.810	300	9.5	0.4	0.013	88.600	88.678	0.81	0.06	0.06	1.0	0.312	1.62	85.455	85.450	351	86.73	1.275			
B22 B24 84.693 83.587 450 146.5 0.8 0.013 88.456 88.145 1.55 0.25 0.12 0.5 0.221 1.12 85.364 85.066 B136E 86.15 0.786	B21	B24	82.959	82.707	1350	58.5	0.4	0.013	88.484	88.145	2.45	3.50	2.58	0.7	0.895	1.10	85.204	85.066	B145N	86.60	1.396			
	B22	B24	84.693	83.587	450	146.5	0.8	0.013	88.456	88.145	1.55	0.25	0.12	0.5	0.221	1.12	85.364	85.066	B136E	86.15	0.786			
1954 102200 64.552 64.454 500 29.0 0.4 0.013 88.456 87.660 0.88 0.06 0.09 1.5 0.512 0.95 85.364 85.325 B158 86.60 1.236	B 222	B2200	84.552	84.434	300	29.0	0.4	0.013	88.456	87.660	0.88	0.06	0.09	1.5	0.512	0.95	85.364	85.325	B158	86.60	1.236			
B24 B25 82.687 82.479 1350 41.5 0.5 0.013 88.145 88.096 2.64 3.77 2.79 0.7 1.029 1.10 85.066 84.943 B146S 86.09 1.024	B24	B25	82.687	82.479	1350	41.5	0.5	0.013	88.145	88.096	2.64	3.77	2.79	0.7	1.029	1.10	85.066	84.943	B146S	86.09	1.024			
B25 B30 82.449 82.380 1350 14.0 0.5 0.013 88.096 88.193 2.61 3.74 2.79 0.7 1.144 1.10 84.943 84.895 N/A N/A N/A	B25	B30	82.449	82.380	1350	14.0	0.5	0.013	88.096	88.193	2.61	3.74	2.79	0.7	1.144	1.10	84.943	84.895	N/A	N/A	N/A			
B26 B22 84.780 84.572 300 52.0 0.4 0.013 88.678 88.456 0.87 0.06 0.06 1.0 0.370 1.62 85.450 85.364 124 86.63 1.180	B26	B22	84.780	84.572	300	52.0	0.4	0.013	88.678	88.456	0.87	0.06	0.06	1.0	0.370	1.62	85.450	85.364	124	86.63	1.180			
B27 B28 83.872 83.767 675 10.5 1.0 0.013 88.285 88.194 2.35 0.84 0.34 0.4 0.731 1.10 85.278 85.245 121 86.38 1.102	B27	B28	83.872	83.767	675	10.5	1.0	0.013	88.285	88.194	2.35	0.84	0.34	0.4	0.731	1.10	85.278	85.245	121	86.38	1.102			

APPENDIX E Drawings

GENERAL NOTES:

- DIMENSIONS AND LAYOUT INFORMATION SHALL BE CONFIRMED PRIOR TO COMMENCEMENT OF CONSTRUCTION
- 2. THE ORIGINAL TOPOGRAPHY AND GROUND ELEVATIONS, SERVICING AND SURVEY INFORMATION SHOWN ARE SUPPLIED FOR INFORMATION PURPOSES ONLY. IT SHALL BE THE RESPONSIBILITY OF THE CONTRACTOR TO VERIFY THE ACCURACY OF ALL INFORMATION OBTAINED FROM THIS PLAN.
- 3. CO-ORDINATE AND SCHEDULE ALL WORK WITH OTHER TRADES AND CONTRACTORS.
- DETERMINE THE EXACT LOCATION, SIZE, MATERIAL AND ELEVATION OF ALL EXISTING UTILITIES PRIOR TO COMMENCING CONSTRUCTION. PROTECT AND ASSUME RESPONSIBILITY FOR ALL EXISTING UTILITIES WHETHER OR NOT SHOWN ON THESE DRAWINGS.
- 5. OBTAIN ALL NECESSARY PERMITS AND APPROVALS FROM THE CITY OF OTTAWA BEFORE COMMENCING CONSTRUCTION.
- 6. BEFORE COMMENCING CONSTRUCTION OBTAIN AND PROVIDE PROOF OF COMPREHENSIVE, ALL RISK AND OPERATIONAL LIABILITY INSURANCE FOR \$5,000,000.00. INSURANCE POLICY TO NAME OWNERS, ENGINEERS AND ARCHITECTS AS CO-INSURED.
- CONNECT TO EXISTING SYSTEMS AS DETAILED, INCLUDING ALL RESTORATION WORK NECESSARY TO REINSTATE SURFACES TO EXISTING CONDITIONS OR BETTER.
- RESTORE ALL TRENCHES AND SURFACE FEATURES TO EXISTING CONDITIONS OR BETTER AND TO THE SATISFACTION OF MUNICIPAL AUTHORITIES.
- 9. ASPHALT RESTORATION SHALL BE IN ACCORDANCE WITH CITY OF OTTAWA DETAIL R-10. THICKNESS OF GRANULAR MATERIAL AND ASPHALT LAYERS TO MATCH EXISTING. BOULEVARDS SHALL BE REINSTATED WITH 100mm OF TOPSOIL, SEED AND MULCH.
- 10. REMOVE FROM SITE ALL EXCESS EXCAVATED MATERIAL, ORGANIC MATERIAL AND DEBRIS UNLESS OTHERWISE INSTRUCTED BY ENGINEER. EXCAVATE AND REMOVE FROM SITE ANY CONTAMINATED MATERIAL. ALL CONTAMINATED MATERIAL SHALL BE DISPOSED OF AT A LICENSED LANDFILL FACILITY.
- 11. ALL ELEVATIONS ARE GEODETIC AND UTILIZE METRIC UNITS
- 12. ALL FENCING TO BE LOCATED 0.15m INSIDE PROPERTY LINE. REFER TO LANDSCAPING PLAN FOR DETAILS.
- 13. PERFORATED PIPE SUB-DRAINS TO BE PROVIDED AT SUBGRADE LEVEL EXTENDING FROM THE ROADSIDE CATCHBASIN FOR A DISTANCE OF 3.0m, PARALLEL TO THE CURB IN TWO DIRECTIONS.
- 14. REFER TO GEOTECHNICAL REPORT (No. PG4488-1, DATED MAY 21, 2019), PREPARED BY PATERSON GROUP) FOR SUBSURFACE SOIL AND GROUNDWATER CONDITIONS, CONSTRUCTION RECOMMENDATIONS, AND GEOTECHNICAL INSPECTION REQUIREMENTS. THE GEOTECHNICAL CONSULTANT IS TO REVIEW ON-SITE CONDITIONS AFTER EXCAVATION PRIOR TO PLACEMENT OF THE GRANULAR MATERIAL.
- 15. REFER TO THE STORMWATER MANAGEMENT REPORT No. R-2021-194, DATED DECEMBER 22, 2021 PREPARED BY NOVATECH.
- 16. SAW CUT AND KEY GRIND ASPHALT AT ALL ROAD CUTS AND ASPHALT TIE IN POINTS AS PER CITY OF OTTAWA STANDARDS (R10).
- 17. CONTRACTOR TO PROVIDE THE CONSULTANT WITH A GENERAL PLAN OF SERVICES INDICATING ALL SERVICING AS-BUILT INFORMATION SHOWN ON THIS PLAN. AS-BUILT INFORMATION MUST INCLUDE: PIPE MATERIAL, SIZES, LENGTHS, SLOPES, INVERT AND T/G ELEVATIONS, STRUCTURE LOCATIONS, VALVE AND HYDRANT LOCATIONS. T/WM ELEVATIONS AND ANY ALIGNMENT CHANGES, ETC.

SEWER NOTES:

1. SPECIFICATIONS

ITEM_	SPEC. No.	REFERENCE
SANITARY/STORM/CATCHBASIN MANHOLE (1200Ø)	701.010	OPSD
CATCHBASIN (600x600)	705.010	OPSD
CATCHBASIN FRAME AND COVER	400.020	OPSD
STORM/SANITARY MH FRAME	S25	CITY OF OTTAWA
SANITARY COVER	S24	CITY OF OTTAWA
STORM COVER (CLOSED)	S24.1	CITY OF OTTAWA
STORM COVER (OPEN)	S28.1	CITY OF OTTAWA
SEWER TRENCH	S6 &S7	CITY OF OTTAWA
CLAY SEAL	S8	CITY OF OTTAWA
STORM SEWER < 450mmØ	PVC DR 35(UNLESS SPECIFIE	D OTHERWISE)
STORM SEWER >= 450mmØ	CONC 65D (UNLESS SPECIFIE	ED OTHERWISE)
SANITARY SEWER	PVC DR 35	CITY OF OTTAWA

- 2. INSULATE ALL PIPES (SAN/STM) THAT HAVE LESS THAN 2.0m COVER WITH 50mmX1200mm HI-40 INSULATION. PROVIDE 150mm CLEARANCE BETWEEN PIPE AND INSULATION.
- 3. SERVICES ARE TO BE CONSTRUCTED TO PROPERTY LINE AT MINIMUM SLOPE OF 1.0% (2.0% IS PREFERRED).
- 4. PIPE BEDDING, COVER AND BACKFILL ARE TO BE COMPACTED TO AT LEAST 95% OF THE STANDARD PROCTOR MAXIMUM DRY DENSITY. THE USE OF CLEAR CRUSHED STONE AS A BEDDING LAYER SHALL NOT BE PERMITTED.
- 5. SEWER SERVICE CONNECTIONS PER CITY OF OTTAWA DETAILS S11 AND S11.1.
- 6. FLEXIBLE CONNECTIONS ARE REQUIRED FOR CONNECTING PIPES TO MANHOLES (FOR EXAMPLE KOR-N-SEAL, PSX: POSITIVE SEAL AND DURASEAL). THE CONCRETE CRADLE FOR THE PIPE CAN BE ELIMINATED.
- 7. THE OWNER SHALL REQUIRE THAT THE SERVICING CONTRACTOR PERFORM FIELD TESTS FOR QUALITY CONTROL OF ALL SANITARY SEWERS. LEAKAGE TESTING SHALL BE COMPLETED IN ACCORDANCE WITH OPSS 410.07.16 AND 407.07.24. DYE TESTING IS TO BE COMPLETED ON ALL SANITARY SERVICES TO CONFIRM PROPER CONNECTION TO THE SANITARY SEWER MAIN. THE FIELD TESTS SHALL BE PERFORMED IN THE PRESENCE OF A CERTIFIED PROFESSIONAL ENGINEER WHO SHALL SUBMIT A CERTIFIED COPY OF TEST RESULTS.
- 8. STORM MANHOLES AND CBMHS SHALL HAVE 300mm SUMPS UNLESS OTHERWISE INDICATED.
- 9. CONTRACTOR TO TELEVISE (CCTV) ALL PROPOSED SEWERS, 200mmØ OR GREATER PRIOR TO BASE COURSE ASPHALT. UPON COMPLETION OF CONTRACT, THE CONTRACTOR IS RESPONSIBLE TO FLUSH AND CLEAN ALL SEWERS & APPURTENANCES.

WATERMAIN NOTES:

1.	GENERAL:		
	ITEM	DETAIL, No.	REFERENCE
	WATERMAIN TRENCHING	W17	CITY OF OTTAWA
	THERMAL INSULATION IN SHALLOW TRENCHES	W22	CITY OF OTTAWA
	WATERMAIN CROSSING BELOW SEWER / OVER SEWER	W25 / W25.2	CITY OF OTTAWA
	WATERMAIN	PVC DR18	CITY OF OTTAWA
	VALVE CHAMBER	W11	CITY OF OTTAWA
	VALVE BOX	W24	CITY OF OTTAWA

- 2. THE WATERMAIN SHALL BE PVC DR 18 IN ACCORDANCE WITH MATERIAL SPECIFICATION MW-18.1, UNLESS OTHERWISE INDICATED.
- 3. SUPPLY AND CONSTRUCT ALL WATERMAINS AND APPURTENANCES IN ACCORDANCE WITH THE CITY OF OTTAWA STANDARDS AND SPECIFICATIONS. EXCAVATION, INSTALLATION, BACKFILL AND RESTORATION OF ALL WATERMAINS BY THE CONTRACTOR. CONNECTIONS AND SHUT-OFFS AT THE MAIN AND CHLORINATION OF THE WATER SYSTEM SHALL BE PERFORMED BY CITY OFFICIALS.
- 4. WATERMAIN SHALL BE MINIMUM 2.4m DEPTH BELOW GRADE UNLESS OTHERWISE INDICATED.
- 5. PROVIDE MINIMUM 0.25m CLEARANCE BETWEEN OUTSIDE OF PIPES AT ALL CROSSINGS
- 6. WATER SERVICE SHALL BE CONSTRUCTED TO WITHIN 1.0mOF FOUNDATION WALL AND CAPPED, UNLESS OTHERWISE INDICATED.

THE POSITION OF ALL POLE LINES, CONDUITS,

WATERMAINS, SEWERS AND OTHER UNDERGROUND AND OVERGROUND UTILITIES AND

STRUCTURES IS NOT NECESSARILY SHOWN ON

THE CONTRACT DRAWINGS, AND WHERE SHOWN.

THE ACCURACY OF THE POSITION OF SUCH

UTILITIES AND STRUCTURES IS NOT GUARANTEED.

BEFORE STARTING WORK, DETERMINE THE EXACT LOCATION OF ALL SUCH UTILITIES AND

STRUCTURES AND ASSUME ALL LIABILITY FOR DAMAGE TO THEM.

- AS REQUIRED.

GRADING NOTES:

- 2.
- 3.

4

- VALUE.
- 7
- 8.
- 10

2	LESS THAN 2.4m OF C POLYSTYRENE INSUL 1109.030.
2.	EQUIVALENT OF 25mm REDUCTION IN THE RE COVER WITH 50mm MI
	T = THICKNESS OF INS W = WIDTH OF INSULA W = D + 300 (1000 min. D = O.D OF PIPE (mm)
	COVER SEWER / WATER

2000 1700 1400-1100 / 1800-1500

STAT 1+00 1+00 1+00 1+00

STAT
2+00
2+00
2+00

EROSION AND SEDIMENT CONTROL NOTES :

1. ALL EROSION AND SEDIMENT CONTROLS SHALL BE INSTALLED TO THE SATISFACTION OF THE ENGINEER, CITY OF OTTAWA AND THE CONSERVATION AUTHORITY. THEY SHALL BE APPROPRIATE TO THE SITE CONDITIONS, PRIOR TO UNDERTAKING ANY SITE ALTERATIONS (FILLING, GRADING, REMOVAL OF VEGETATION, ETC.) AND DURING ALL PHASES OF SITE PREPARATION AND CONSTRUCTION. THESE PRACTICES SHALL BE IMPLEMENTED IN ACCORDANCE WITH THE CURRENT BEST MANAGEMENT PRACTICES FOR EROSION AND SEDIMENT CONTROL AND SHOULD INCLUDE AS A MINIMUM THOSE MEASURES INDICATED ON THE PLAN.

2. TO PREVENT SURFACE EROSION FROM ENTERING THE DITCH OR STORM SYSTEM DURING CONSTRUCTION, FILTER SOCKS WILL BE PLACED UNDER GRATES OF ALL PROPOSED AND EXISTING CATCHBASINS AND STRUCTURES. A LIGHT DUTY SILT FENCE BARRIER WILL ALSO BE INSTALLED IN SELECTED LOCATIONS, AND STRAW BALE BARRIERS WILL BE INSTALLED WITHIN THE OUTLET DITCHES. THESE CONTROL MEASURES WILL REMAIN IN PLACE UNTIL VEGETATION HAS BEEN ESTABLISHED AND CONSTRUCTION COMPLETE.

3. THE SEDIMENT CONTROL MEASURES SHALL ONLY BE REMOVED WHEN, IN THE OPINION OF THE ENGINEER, THE MEASURES ARE NO LONGER REQUIRED. NO CONTROL MEASURES MAY BE PERMANENTLY REMOVED WITHOUT PRIOR AUTHORIZATION FROM THE ENGINEER.

4. THE CONTRACTOR SHALL IMMEDIATELY REPORT TO THE ENGINEER ANY ACCIDENTAL DISCHARGES OF SEDIMENT MATERIAL INTO ANY DITCH OR STORM SEWER SYSTEM, APPROPRIATE RESPONSE MEASURES, INCLUDING ANY REPAIRS TO EXISTING CONTROL MEASURES OR THE IMPLEMENTATION OF ADDITIONAL CONTROL MEASURES. SHALL BE CARRIED OUT BY THE CONTRACTOR WITHOUT DELAY.

5. THE CONTRACTOR ACKNOWLEDGES THAT FAILURE TO IMPLEMENT EROSION AND SEDIMENT CONTROL MEASURES MAY BE SUBJECT TO PENALTIES IMPOSED BY ANY APPLICABLE REGULATORY AGENCY.

6. THE CONTRACTOR SHALL PROVIDE DUST CONTROL WITH THE APPLICATION OF WATER AND/OR CALCIUM CHLORIDE

ALL TOPSOIL, ORGANIC OR DELETERIOUS MATERIAL MUST BE ENTIRELY REMOVED FROM BENEATH THE PROPOSED PAVED AREAS AS DIRECTED BY THE SITE ENGINEER OR GEOTECHNICAL ENGINEER.

EXPOSED SUBGRADES IN PROPOSED PAVED AREAS SHOULD BE PROOF ROLLED WITH A LARGE STEEL DRUM ROLLER AND INSPECTED BY THE GEOTECHNICAL ENGINEER PRIOR TO THE PLACEMENT OF GRANULARS.

ANY SOFT AREAS EVIDENT FROM THE PROOF ROLLING SHOULD BE SUB-EXCAVATED AND REPLACED WITH SUITABLE MATERIAL THAT IS FROST COMPATIBLE WITH THE EXISTING SOILS AS RECOMMENDED BY THE GEOTECHNICAL ENGINEER.

THE GRANULAR BASE SHOULD BE COMPACTED TO AT LEAST 100% OF THE STANDARD PROCTOR MAXIMUM DRY DENSITY VALUE IN 300mm THICK LIFTS. ANY ADDITIONAL GRANULAR FILL USED BELOW THE PROPOSED PAVEMENT SHOULD BE COMPACTED TO AT LEAST 100% OF THE STANDARD PROCTOR MAXIMUM DRY DENSITY

MINIMUM OF 2% GRADE FOR ALL GRASS AREAS UNLESS OTHERWISE NOTED.

MAXIMUM TERRACING GRADE TO BE 3:1 UNLESS OTHERWISE NOTED.

ALL GRADES BY CURBS ARE EDGE OF PAVEMENT GRADES UNLESS OTHERWISE INDICATED.

ALL CURBS SHALL BE BARRIER CURB (150mm) UNLESS OTHERWISE NOTED AND CONSTRUCTED AS PER CITY OF OTTAWA STANDARDS (SC1.1).

REFER TO LANDSCAPE PLAN FOR PLANTING AND OTHER LANDSCAPE FEATURE DETAILS.

CONTRACTOR TO PROVIDE THE CONSULTANT WITH A GRADING PLAN INDICATING AS-BUILT ELEVATIONS OF ALL DESIGN GRADES SHOWN ON THIS PLAN.

SEWER & WATERMAIN INSULATION NOTES:

1. INSULATE ALL SEWER PIPES THAT HAVE LESS AN 2.0m COVER AND ALL WATERMAIN WITH SS THAN 2.4m OF COVER WITH EXPANDED LYSTYRENE INSULATION AS PER OPSD 9.030. THICKNESS OF INSULATION SHALL BE THE UIVALENT OF 25mm FOR EVERY 300mm DUCTION IN THE REQUIRED DEPTH OF VER WITH 50mm MINIMUM (SEE TABLE) THICKNESS OF INSULATION (mm) = WIDTH OF INSULATION (mm) = D + 300 (1000 min.)

COVER EWER / WATER (mm)	INSULATION THICKNESS (mm)
)-1700 / 2400-2100	50
0-1400 / 2100-1800	75
0-1100 / 1800-1500	100

150mmØ WATERMAIN TABLE					
TION	ELEVATION	TOP OF WATERMAIN	DESCRIPTION		
0.00	89.43	87.00	REMOVE EX CAP AND CONNECT TO EXISTING WATERMAIN		
01.9	89.50	87.10	150 X 150mm TEE		
03.4	89.57	87.17	45° HORIZONTAL BEND		
09.0	89.69	87.30	CAP AT 1.0m FROM FOUNDATION WALL		

	150mmØ WATERMAIN TABLE				
ON	ELEVATION	TOP OF WATERMAIN	DESCRIPTION		
0.0	89.38	86.98	REMOVE EX. CAP AND CONNECT TO EXISTING WATERMAIN, 45° HORIZONTAL BEND		
2.8	89.41	87.01	45° HORIZONTAL BEND		
7.2	89.50	87.10	150 X 150mm TEE		

TEMPEST LMF/MHF ICDs					
LOCATION	MODEL NO. / ORFICE DIAMETER	100-YEAR FLOW (L/S)	100-YEAR HEAD (m)		
CBMH205	127mmPLATE	44.14	1.70		
MH212	102mmPLATE	35.33	2.69		
TANK 1	178mm PLATE	84.41	1.64		
TANK 2	178mm PLATE	76.34	1.36		

				SCALE	DESIGN	FOR REVIEW ONLY
					MJH/ARM CHECKED	OFESS/04
1.7	REVISED PER CITY COMMENTS	NOV 15/24	CJR	AS SHOWN		A Contract Charles
1.6	REVISED BLOCK NAMING	JUL 18/24	CJR			T CEV
1.5	ISSUED FOR MUNICIPAL CONSENT FOR SHORING	MAY 27/24	RJK			
1.B	ISSUED FOR PRELIMINARY PRICING	MAY 27/24	RJK		C.IR	NOV 15/24
1.A	ISSUED FOR SITE PLAN APPLICATION	DEC 22/21	MJH		APPROVED	VINCE OF ONTA
No.	REVISION	DATE	BY		JLS	

STORMWATER TANK 2 NTS

PLAN #18960

