

1509-1531 Merivale Road, Ottawa, Ontario

Phase Two Environmental Site Assessment Update

Client:

10198447 CANADA INC. 69 rue Jean-Proulx Gatineau, QC, J8Z 1W2

Attention: Mr. Sam Chowieri

Type of Document: Final

Project Name: Phase Two Environmental Site Assessment Update

Project Number: OTT-00224605-D0

EXP Services Inc. 1595 Clark Boulevard Brampton, ON, L6T 4V1 t: 905.793.9800 f: 905.793.0641

Date Submitted: April 13, 2020

> 1595 Clark Boulevard | Brampton, ON, L6T 4V1 | Brampton t: 905.793.9800 | f: 905.793.0641 | <u>exp.com</u>

Table of Contents

1	Execu	xecutive Summary		
2	Introd	luction		
	2.1	Site Description	7	
	2.2	Legal Description and Property Ownership	7	
	2.3	Current and Proposed future Uses	8	
	2.4	Applicable Site Condition Standards	8	
3	Backg	Background Information 10		
	3.1	Physical Setting	10	
	3.2	Previous Environmental Investigations	10	
4	Scope	of Investigation16		
	4.1	Overview of Site Investigation	16	
	4.1.1	Scope of Work	16	
	4.2	Media Investigated	16	
	4.3	Phase One Conceptual Site Model	16	
	4.4	Deviations from Sampling and Analysis Plan	16	
	4.5	Impediments	17	
5.	Invest	igation Method		
	5.1	General	18	
	5.2	Underground Utilities	18	
	5.3	Borehole Drilling	18	
	5.4	Soil: Sampling	19	
	5.5	Soil: Field Screening Measurements	19	
	5.6	Groundwater: Monitoring Well Installation	20	
	5.7	Groundwater: Monitoring Well Development	20	
	5.8	Groundwater: Purging and Field Measurements of Water Quality Parameters	21	
	5.9	Groundwater: Sampling	21	

	5.10	Single Well Response Tests	22
	5.11	Sediment Sampling	22
	5.12	Analytical Testing	22
	5.13	Residue Management Procedures	22
	5.14	Elevation Survey	22
	5.15	Quality Assurance and Quality Control Measures	22
6.	Revie	w and Evaluation	
	6.1	Geology	24
	6.1.1	Surface Material	24
	6.1.2	Fill Material	24
	6.1.3	Native Material	24
	6.1.4	Bedrock	24
	6.2	Groundwater: Elevations and Flow Direction	24
	6.2.1	Groundwater: Hydraulic Conductivity	25
	6.2.2	Groundwater: Horizontal Hydraulic Gradients	25
	6.3	Soil Texture	25
	6.4	Soil: Field Screening	25
	6.5	Soil Quality	26
	6.5.1	Petroleum Hydrocarbons	26
	6.5.2	BTEX (Benzene, Toluene, Ethylbenzene, and Xylenes)	26
	6.5.3	Metals and Select Inorganics	26
	6.5.4	Volatile Organic Compounds	26
	6.5.5	Soil pH	26
	6.5.6	Chemical Transformation and Soil Contaminant Source	27
	6.5.7	Evidence of Non-Aqueous Phase Liquid	27
	6.6	Groundwater Quality	27
	6.6.1	Petroleum Hydrocarbons	27
	6.6.2	BTEX (Benzene, Toluene, Ethylbenzene, Xylenes)	27

	6.6.3	Metals and Select Inorganics	27		
	6.6.4	Volatile Organic Compounds	28		
	6.6.5	Chemical Transformation and Groundwater Contaminant Source	28		
	6.6.6	Evidence of Non-Aqueous Phase Liquid (NAPL)	28		
	6.7	Sediment Quality	28		
	6.8	Quality Assurance and Quality Control Measures	28		
	6.8	Sub-Slab and Soil Vapour Sampling Program	29		
	6.8.1	Objectives and Scope of Work	29		
	6.8.2	Assessment Criteria	30		
	6.8.3	Results	30		
	6.9	Phase Two Conceptual Site Model	30		
7.	Concl	usions			
8.	Gener	al Limitations			
9	Closu	re			
10	10 References				

List of Appendices

Figures

Tables

- Appendix A Sample and Analysis Plan
- Appendix B Survey Plan
- Appendix C Borehole Logs
- Appendix D Analytical Tables
- Appendix E Certificate of Analysis
- Appendix F Phase II Conceptual Site Model
- Appendix G Conceptual Exposure Model

1 Executive Summary

EXP Services Inc. (EXP) was retained by 10198447 Canada Inc. to conduct a Phase Two Environmental Site Assessment (ESA) Update on the property located at 1509 – 1531 Merivale Road in Ottawa, Ontario (hereinafter referred to as the 'Site'). The objective of the investigation was to support the filing of a Record of Site Condition (RSC) in accordance with Ontario Regulation 153/04 (O. Reg.153/04), as amended. It is EXP's understanding that 10198447 Canada Inc. requires the RSC to support the development of a mixed commercial/residential building on the Site.

The subject Site is the Lancaster Mall located on the east side of Merivale Road, just north of Capilano Drive in Ottawa. The Site has an area of approximately 0.91 hectares. The current land use is commercial. At the time of the investigation, the Site was occupied by a single storey multi-tenant commercial mall with an area of 2,578 m², which was reportedly constructed in the mid 1950s. There is asphalt covered parking to the east and west of the Site building. The surrounding areas are residential to the east across Kerry Crescent, commercial and residential to the north and south and commercial to the west across Merivale Road.

The results and findings of the Phase Two ESA conducted at the Site are summarized as follows:

- 1. The general stratigraphy at the Site, as observed in the boreholes, consisted of asphalt, followed by sand and gravel fill underlain by sandy silt over sand and gravel glacial till and limestone bedrock.
- In January 2019, the depth to groundwater at the Site ranged between approximately 1.17 m and 3.36 m below ground surface. The groundwater elevations ranged between approximately 93.97 m above mean seal level (AMSL) and 92.31 m AMSL. Based on the collected groundwater data groundwater flow in the overburden is inferred to be to the north/northeast.
- 3. Soil samples were collected and submitted for chemical analysis of petroleum hydrocarbons (PHC), benzene, toluene, ethylbenzene, xylenes (BTEX), volatile organic compounds (VOC), and metals and inorganics. The soil analytical results indicated the PHC, BTEX, VOC, and metals and inorganics concentrations were either measured at concentrations less than their applicable Ontario Ministry of Environment, Conservation and Parks (MECP) Table 3 site condition standards (SCS), or did not exceed their laboratory reported detection limits (RDLs) which were all below the applicable MECP Table 3 SCS.
- 4. Groundwater samples were collected and submitted for chemical analysis of PHCs, BTEX, VOCs, and metals and inorganics. The groundwater analytical results identified the following exceedances of the applicable MECP Table 3 SCS:
 - a. Three (3) groundwater samples collected on September 14th and 15th, 2017 demonstrated measured concentrations of PCH F2 in exceedance of applicable Table 3 SCS (MW206, MW303 and MW311). One (1) groundwater sample also demonstrated a measured concentration of PHC F3 in exceedance of the applicable Table 3 SCS (MW303). These samples were located in the southern portion of the Site, in the area of the former UST excavation and along the southern Site boundary, downgradient from off-Site gasoline service stations.
 - b. One (1) groundwater sample demonstrated measured concentrations of chloroform in exceedance of applicable Table 3 SCS (MW305). One (1) groundwater sample demonstrated measured concentrations of cis-1,2-dichloroethylene in exceedance of the applicable Table 3 SCS (MW312). Three (3) groundwater samples demonstrated measured concentrations of tetrachloroethylene in exceedance of the applicable Table 3 SCS (MW305, MW306 and MW312). Two (2) groundwater samples demonstrated measured concentrations of the Table 3 SCS (MW306 and MW312). One (1)

10198447 CANADA INC. Phase Two Environmental Site Assessment Update 1509 -1531 Merivale Road, Ottawa, Ontario Project Number: OTT-00224605-D0 April 13, 2020

groundwater sample demonstrated a measured concentration of vinyl chloride in exceedance of the Table 3 SCS (MW312). Exceedances of the VOC related parameters were located in the central and northeastern portion of the Site and are likely attributed to a former and current on-Site dry cleaner. The PHC related parameters are generally located in the southern portion of the Site and are likely attributed to a known former on-Site underground storage tank (UST).

- 5. Soil vapour samples and sub-slab vapour samples were collected at the Site to determine the potential for risk of indoor air being impacted due to the dissolved VOC impacted groundwater. Four (4) sub-slab vapour probes were installed within the Site building, and five (5) soil vapour probes were installed along the northern and eastern property boundary. The results demonstrated that two (2) of five (5) sub-slab soil vapour samples had tetrachloroethylene (PCE) concentrations that exceeded the applicable modified generic risk assessment (MGRA) Tier 2 Sub-Slab Vapour Criteria (SSVC) for commercial land use. One (1) of five (5) soil vapour samples had vinyl chloride concentrations which exceeded the applicable MGRA Tier 2 Soil Vapour Criteria (SVC) for residential land use.
- 6. Based on the results of this Phase Two ESA Update, a Risk Assessment (RA) is recommended to further investigate the potential risk of known groundwater and sub-slab/soil vapour exceedances at the Site.

2 Introduction

EXP Services Inc. (EXP) was retained by 10198447 Canada Inc. to conduct a Phase Two Environmental Site Assessment (ESA) Update on the property located at 1509 – 1531 Merivale Road in Ottawa, Ontario (hereinafter referred to as the 'Site'). The objective of the investigation was to support the filing of a Record of Site Condition (RSC) in accordance with Ontario Regulation 153/04 (O. Reg.153/04), as amended. It is EXP's understanding that 10198447 Canada Inc. requires the RSC to support the development of a mixed commercial/residential building on the Site.

This Phase Two ESA Update was conducted in accordance with the Phase Two ESA standard defined by Ontario Regulation 153/04, as amended (O.Reg.153/04); and in accordance with generally accepted professional practices. Subject to this standard of care, EXP makes no express or implied warranties regarding its services and no third-party beneficiaries are intended. Limitation of liability, scope of report and third-party reliance are outlined in Section 7 of this report.

The objective of the Phase Two ESA was to further assess the areas of potential environmental concern (APECs) identified in the Phase One ESA completed by EXP, dated March 31, 2020.

2.1 Site Description

The Phase Two Property is the Lancaster Mall located on the east side of Merivale Road, just north of Capilano Drive in Ottawa as shown on Figure 1. The current land use is commercial. The site has an area of approximately 0.91 hectares. At the time of the investigation, the site was occupied by a one storey multi-tenant commercial mall with an area of 2,578 m². There is asphalt covered parking to the east and west of the building. The building was reportedly constructed in the mid-1950s. The surrounding areas are residential to the east across Kerry Crescent, commercial and residential to the north and south and commercial to the west across Merivale Road.

A Site Plan is shown on Figure 3. The Phase Two Property is bound by Kerry Street to the east, an oil change facility to the south, Merivale Road to the west and an automobile service garage and a residence to the north. Refer to Figure 3 for the Surrounding Land Use Plan.

The approximate Universal Transverse Mercator (UTM) coordinates for the Site centroid was NAD83 18- 5022883 m N, 442316 m E. The UTM coordinates are based on measurements obtained from Google Earth. The accuracy of the centroid is estimated to range from 10 to 15 m.

2.2 Legal Description and Property Ownership

Details of the Site are as follows:

Municipal Address	1509-1531 Merivale Road, Ottawa, Ontario
Current Land Use	Commercial
Proposed Land Use	Residential
Legal Description	PT BLK A, PL 313132, as in CR609052; LTS 34, 35 & 36, PL 313132, Except the ELY 1 FT as in CR615684; T/W CR615684; S/T CR486816 Nepean
Property Identification Number (PIN) and Assessment Roll Number (ARN)	ARN: 0614-120-540-11900-0000 PIN: 04685-0003 (LT)
Universal Transverse Mercator (UTM) coordinates (appox.)	Zone 18T

	Easting 442313, Northing 5022870
Accuracy Estimate of UTM	10-15 m
Measurement Method	Georeferenced aerial photograph
Site Area	0.89 hectares (2.20 acres)
Property Owners, Owner Contact and Address	10198447 CANADA INC.
	Contact: Mr. Sam Choweiri
	Address: 69 rue Jean-Proulx
	Gatineau, QC, J8Z 1W2

2.3 Current and Proposed future Uses

At the time of the Phase Two ESA Update investigation, the Site was zoned for commercial use and was occupied by a multiunit commercial plaza. The proposed future use of the Property will be residential and commercial.

2.4 Applicable Site Condition Standards

Analytical results obtained for Site soil and groundwater samples were assessed against Site Condition Standards (SCS) as established under subsection 169.4(1) of the Environmental Protection Act, and presented in the document MECP "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act", ("SGWS" Standards), (MECP, 2011a). Tabulated background SCS (Table 1) applicable to environmentally sensitive Sites and effects based generic SCS (Tables 2 to 9) applicable to non-environmentally sensitive Sites are provided in MECP (2011a). The effects based SCS (Tables 2 to 9) are protective of human health and the environment for different groundwater conditions (potable and non-potable), land use scenarios (residential, parkland, institutional, commercial, industrial, community and agricultural/other), soil texture (coarse or medium/fine) and restoration depth (full or stratified).

Tables 1 to 9 of MECP (2011a) are summarized as follows:

- Table 1 applicable to sites where background concentrations must be met (full depth), such as sensitive sites where site-specific criteria have not been derived;
- Table 2 applicable to sites with potable groundwater and full depth restoration;
- Table 3 applicable to sites with non-potable groundwater and full depth restoration;
- Table 4 applicable to sites with potable groundwater and stratified restoration;
- Table 5 applicable to sites with non-potable groundwater and stratified restoration;
- Table 6 applicable to sites with potable groundwater and shallow soils;
- Table 7 applicable to sites with non-potable groundwater and shallow soils;
- Table 8 applicable to sites with potable groundwater and that are within 30 m of a water body; and,
- Table 9 applicable to sites with non-potable groundwater and that are within 30 m of a water body.

Application of the generic or background SCS to a specific site is based on a consideration of site conditions related to soil pH (i.e. surface and subsurface soil), thickness and extent of overburden material, (i.e. shallow soil conditions), and proximity to an area of environmental sensitivity or of natural significance. For some chemical constituents, consideration is also given to soil textural classification with SCS having been derived for both coarse and medium-fine textured soil conditions.

For assessment purposes, EXP selected the MECP (2011) Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition for Residential/Parkland/Institutional Property Use and coarse textured soil. The selection of this category was based on the following factors:

- The Site has an overburden thickness greater than 2 m.
- The Site is not located within 30 m of a surface water body or an area of natural significance.
- The soil at the Site has a pH value between 5 and 9 for surficial soils; and, between 5 and 11 for subsurface soils.
- The property is not located within an area of natural significance; does not include, nor is it adjacent to an area of natural significance, nor is it part of such an area; and, it does not include land that is within 30 m of an area of natural significance, nor is it part of such an area.
- The Site is serviced by the City of Ottawa's water distribution system; and, to the best of EXP's knowledge, all properties within 250 m of the Site are serviced by the municipal water supply (i.e. there are no potable water supply wells located within the Phase One Study Area).
- The predominant soil type on the Site is considered to be coarse textured (as per the soil description identified in the borehole logs in Appendix C).
- The Site proposed land use is commercial and residential.
- There is no intention to carry out a stratified restoration at the Site.

3 Background Information

3.1 Physical Setting

The following physiographic, geological and soil maps were reviewed:

- "Toporama"; Natural Resources Canada. Map 30M11. Scale 1:15,000. 2008.
- Quaternary Geology of Ontario geology_ll.shp [computer file], Ontario: Ontario Geological Survey, 2000.
- Bedrock Geology of Ontario geology_ll.shp [computer file], Ontario: Ontario Geological Survey, 2000.

Based on the review of the above maps, the following information was obtained:

- The Site is approximately 83 m above sea level.
- The Site and surrounding areas slope to the northwest towards the Ottawa River.
- The surficial geology of the Site is comprised of till, stone-poor, sandy silt to silty sand textured till on Paleozoic terrain.
- The bedrock in the general area of the Site is part of a group belonging to the Rockliffe Formation on the northern portion of the Site, and the Gull River Formation on the Central and Southern Portion of the Site. A fault transects the Site just north of the Site building.
- According to the MNRF Land Use Natural Heritage map, no woodlands, conservation reserves, provincial parks or natural heritage systems were observed on the Site or within the Phase One study area.

3.2 Previous Environmental Investigations

The following reports were available for review at the time of this Phase Two ESA Update:

- "Site Remediation Program and Limited Phase Investigation, 1509 1531 Merivale Road, Nepean, Ontario", dated December 4, 1998 and prepared for Lancaster Shopping Centre Ltd. by John D. Paterson and Associates Limited. The review of the report identified the following pertinent environmental findings;
 - At the time of the investigation, a UST had just been excavated from the ground and taken off of the Site. Hydrocarbon impacted soil was observed in the excavation.
 - Prior to removing the 2,270 litres steel furnace oil UST, 1,250 litres of fuel was pumped from the tanks. There were signs of corrosion and several small holes in the tank. Approximately 440 tonnes of petroleum impacted soil were removed from the site. Free phase hydrocarbons were observed at the bedrock surface at a depth of 2 to 2.2 m. Water and oil was pumped from the excavation prior to backfilling. Three recovery wells were installed within the excavation.
 - Six (6) boreholes were drilled, three (3) along the north property line and three along the south property line to address the presence of existing and former gas stations. Approximately 0.5 m of crushed stone fill was observed above brown sandy silt with some gravel till. Bedrock was observed at depths ranging from 2.30 m to 2.74 m. Groundwater was not observed in the boreholes. No monitoring wells were installed.

- Four soil samples from the remedial excavation were submitted for laboratory analysis of total petroleum hydrocarbons (TPH) and benzene, toluene, ethylbenzene, xylenes (BTEX). The soil results show low to nondetectable concentrations of BTEX. Moderate TPH concentrations were observed in two (20 samples from the remedial excavation. These results indicate that a minor amount of petroleum impact is likely present beneath the building. However, TPH is no longer a test that is used. Petroleum hydrocarbons (PHC) is the current test and therefore the TPH results cannot be directly compared to the current Ontario Ministry of Environment, Conservation and Parks (MECP) site condition standards.
- Paterson recommended monitoring the recovery wells and pumping them out as needed.
- "Follow Up to the Site Remediation Program, 1509 1531 Merivale Road, Nepean, Ontario", dated February 16, 1999 and prepared for Lancaster Shopping Centre Ltd. by John D. Paterson and Associates Limited, was provided for review. The review of the report identified the following pertinent environmental findings;
 - A total of 4,135 litres of water were pumped from the three recovery wells on February 5, 1999. Groundwater
 samples were then collected from recovery well RW3 for laboratory analysis of TPH and BTEX. The results showed
 low to non-detectable concentrations of BTEX and moderate concentration of TPH (1 mg/L). These TPH results
 cannot be directly compared to the current PHC site condition standards (SCS), however it indicates some
 petroleum impact was still present.
 - Paterson concluded that there was no groundwater impact and no further concerns were associated with the groundwater in the area of the remedial excavation. They also concluded that there was a small area of petroleum impacted soil beneath the footing of the east wall of the building that was not anticipated to pose an adverse impact to the subject site or its inhabitants.
- "Phase I Environmental Site Assessment Update and Subsurface Investigation, 1509 1531 Merivale Road, Ottawa, Ontario", dated July 20, 2004 and prepared for Lancaster Shopping Centre Ltd. by Paterson Group, was provided for review. The review of the report identified the following pertinent environmental findings;
 - At the time of the Phase I ESA, the Site was occupied by a single-story commercial strip mall building. The mall was reportedly constructed in the early 1950s. At the north and south ends of the mall, the units are two stories high.
 - No above ground storage tanks or USTs were observed on the Site. A dry cleaner was present at 1523A of the
 plaza. The dry-cleaning unit was less than 5 years old at the time and waste materials were stored in a steel drum
 that was picked up by a licensed waste contractor. A borehole was drilled in the overburden immediately east of
 the dry cleaners and a groundwater monitoring well was installed.
 - A groundwater sample was then collected and submitted for analysis of VOCs. Low to non-detectable concentrations of VOC were measured in the sample. Based on a comparison to the MECP Table 3 site condition standards (SCS), only chloroform would have exceeded the SCS, and the chloroform would likely have been from the chlorinated water used during coring of the bedrock. Dry-cleaning chemicals and their breakdown or daughter products (trichloroethylene, dichloroethylene, vinyl chloride) were either not detected or were less than the current SCS, which indicates that the shallow groundwater at that location was not impacted at that time. However, the presence of chloroform may also indicate that the well was not purged sufficiently and that the natural formation water had not completely entered the well during sampling.
 - Paterson concluded that the dry-cleaning operation had not impacted the subject site.

- "Phase I Environmental Site Assessment, 1509 Merivale Road, Ottawa, Ontario", dated August 5, 2011 and prepared for Emilio Binavince by Pinchin Environmental Ltd., was provided for review. The review of the report identified the following pertinent environmental findings;
 - At the time of the Phase I ESA, the Site was occupied by a single-story commercial strip mall building which had a total floor area of approximately 2,487 m². The mall was reportedly constructed in the 1950s. At the north and south ends of the mall, the units are two stories high.
 - A dry-cleaners, Crown Cleaners was present in the central part of the building. The dry cleaner used a closed loop system. Any sludge was collected into the bottom of the machine and removed annually by a licensed contractor. Former dry cleaners had been present in the building since at least 1964. Former and current gas stations/automotive servicing stations were identified adjacent to both the north (1507 Merivale Road) and south (1533 Merivale Road) property lines of the Site. A review of fire insurance plans showed that the gas stations had USTs.
 - It was concluded that the dry-cleaners could have impacted the Site. It was also concluded that the former and current gas stations to the north and south of the Site could have impacted the Site. In addition, subsurface impacts at the Site could exceed the MECP SCS. A Phase II ESA was recommended.
- "Phase II Environmental Site Assessment, 1509 Merivale Road, Ottawa, Ontario", dated September 16, 2011 and prepared for 1686971 Ontario Limited by Pinchin Environmental Ltd., was provided for review. The review of the report identified the following pertinent environmental findings;
 - Eight (8) boreholes were drilled to a depth of 3.05 m by Pinchin in 2011. Five wells (MW-1, MW-2, MW-3, MW-6, and MW-8) were installed in the boreholes. MW-1 was drilled west of the dry cleaners and MW-6 was drilled east of the dry cleaners. Boreholes and monitoring wells were drilled at both the north and south property lines to further define the conditions at those locations.
 - A soil sample collected from MW-2 in the southwest corner of the site from a depth of 2.3 m to 2.7 m had a PHC F1 concentration of 547 ug/g which exceeded the MECP Table 3 SCS of 65 ug/g for fine-grained soil. No other VOC or PHC exceedances were measured in the soil samples.
 - Water samples from only three (3) of the five (5) wells were submitted for analysis of VOC and PHC because MW-1 and MW-2 were dry. The three previously installed recovery wells were damaged so no groundwater samples could be collected from them. The groundwater results showed that the concentration of tetrachloroethylene (PCE) from MW6 was 1,010 ug/L, which significantly exceeded the MECP Table 3 SCS of 1.6 ug/L. This monitoring well is located just east of the dry cleaners. Similarly, the daughter product concentrations (TCE and cis-1,2-dichloroethylene) exceeded the MECP Table 3 SCS in the sample from this well. The other two wells that were sampled (MW-3 located at the south property line and MW-8, located at the north property line) had non-detectable concentrations of PHC and VOC.
 - There was no discussion about depth to groundwater or groundwater flow directions. Pinchin noted that further investigation was required to confirm the extent of soil impact in the south part of the site and to define and delineate the VOC impact to groundwater in the east part of the site.
- "Environmental Summary, Lancaster Shopping Centre 1509 1531 Merivale Road, Ottawa", dated July 31, 2012 and prepared for 1686971 Ontario Limited by Paterson Group was provided for review. The review of the report identified the following pertinent environmental findings;

- Eight (8) boreholes were drilled to a depth of 3.05 m by Pinchin in 2011. Five wells (MW-1, MW-2, MW-3, MW-6, and MW-8) were installed in the boreholes. MW-1 was drilled west of the dry cleaners and MW-6 was drilled east of the dry cleaners. Boreholes and monitoring wells were drilled at both the north and south property lines to further define the conditions at those locations.
- The groundwater sample that was collected from MW-1, which is located west of the dry cleaners had nondetectable concentrations of VOC. The two groundwater samples collected from MW-6, located east of the dry cleaners, in 2011 and 2012 both exceeded the MECP Table 3 SCS for fine grained soils. The sample from 2012 had concentrations of PCE 1,120 ug/L, continued to exceed the MECP Table 3 SCS of 1.6 ug/L. Similarly, the daughter product concentrations exceeded the MECP Table 3 SCS in the sample from this well.
- Annual groundwater monitoring was recommended. It was stated that the impacts encountered are considered weathered contaminants from historical releases and do not pose any significant risks of continued migration due to residual and dissolved nature of the impacts. Delineation of the impacts was not recommended even though the PCE concentration was 700 times the MECP Table 3 SCS.
- "Environmental Drilling and Groundwater Monitoring, 1509 1531 Merivale Road, Ottawa, Ontario", dated August 6, 2015 and prepared for 1686971 Ontario Limited by EXP Services Inc. was reviewed. The review of the report identified the following pertinent environmental findings;
 - Sand and gravel fill was encountered in each borehole to a maximum depth of 1.37 m. Limestone bedrock was encountered at depths ranging from 1.0 to 3.1 m. The shale bedrock was air hammered approximately 2.2 m in the shallow exterior boreholes. MW15-3 was drilled to a depth of 9.14 m. Minor evidence of petroleum impact was observed in borehole MW14-4 located in the former furnace oil remediation excavation near the bedrock surface.
 - The depth to groundwater in the monitoring wells ranged from 0.83 m to 2.39 m below the ground surface. Based on the groundwater elevations, the bedrock groundwater below the Site was calculated to flow to the northeast.
 - Based on the bedrock groundwater elevations, the horizontal hydraulic gradient is estimated at 0.017. Using the calculated hydraulic conductivity for the limestone bedrock of 1.6 x 10-3 cm/s, the average groundwater velocity would be approximately 9.5 m/year in an easterly direction.
 - The groundwater in eight (8) of eleven (11) newly installed monitoring wells has been impacted by VOC. This VOC impact has been vertically delineated on the subject site. However, the VOC impacted groundwater plume likely extends off of the site to the north and east.
 - To determine the presence and concentrations of the relevant BTEX, VOC and/or PHC parameters beneath the floor slab of the dry cleaner, soil gas samples were collected on April 13, 2015. The results showed concentrations of PHC and VOC were significantly less than the MGRA Tier 2 soil gas quality criteria. These results indicate that vapour intrusion of PHC and VOC into the on-site building is not a concern at the Site.
 - It was recommended that a second round of groundwater samples be collected from the property line wells and selected wells to confirm the VOC impacts to groundwater. Additional monitoring wells will be required to delineate the VOC impact off of the Site.
 - It was also recommended that test pits/trenches be excavated in the possible VOC source area to confirm or refute a possible soil source for the VOC impacted groundwater.

- Since the groundwater at the Site had been impacted by PHCs and VOCs, it was recommended that all stakeholders, including the MECP, be involved before deciding on a remedial option.
- "Phase One Environmental Site Assessment Update, 1509 1531 Merivale Road, Ottawa, Ontario", dated March 24, 2020 and prepared for 10198447 Canada Inc. by EXP Services Inc. was reviewed. The review of the report identified the following pertinent environmental findings;
 - Based on the Phase I ESA findings, including Site observations, information provided by Site representative, the review of environmental databases, available historical information, and pending the information requested from the Ministry of the Environment, Conservation, and Parks (MECP), the following potentially contaminating activities (PCAs) were identified:
 - **PCA 1:** An active on-Site dry cleaner that has been in operation since at least 1964. This activity is associated with PCA #237 Operation of Dry Cleaning Equipment (where chemicals are used).
 - **PCA 2:** A former furnace oil UST was located east of the on-Site building. This UST is associated with PCA #28 Gasoline and Associated Products Stored in Fixed Tanks.
 - **PCA 3:** Imported fill material used in the eastern portion of the Site during UST excavation. This fill is associated with PCA #30 Fill Material of Unknown Quality.
 - PCA 4: A former gasoline station was observed at 1507 Merivale Road, immediately north of the Site, which had one (1) UST on the 1965 FIP. This property is associated with PCA #28 Gasoline and Associated Products Stored in Fixed Tanks.
 - PCA 5: A automotive service station was identified at 1507 Merivale Road, immediately north of the Site. This property is associated with PCA #27 Garages and Maintenance and Repair of Railcars, Marine Vehicles and Aviation Vehicles.
 - PCA 6: A former gasoline station was observed at 1533 Merivale Road, immediately south of the Site, which had one (1) UST on the 1965 FIP. This property is associated with PCA #28 Gasoline and Associated Products Stored in Fixed Tanks.
 - PCA 7: A former Pennzoil oil change and lubrication service station and current breaks and car repair facility was identified at 1533 Merivale Road, immediately south of the Site. This property is associated with PCA #27 Garages and Maintenance and Repair of Railcars, Marine Vehicles and Aviation Vehicles.
 - PCA 8: A former gasoline station was observed at 1537 Merivale Road, 45 m south of the Site, which had one (1) UST on the 1965 FIP. This property is associated with PCA #28 Gasoline and Associated Products Stored in Fixed Tanks.
 - **PCA 9:** A gasoline spill was identified at 1537 Merivale Road, 45 m south of the Site, according to the EcoLog Report. This property is associated with PCA "Other" Spills.
 - PCA 10: A gasoline station was identified at 1543 Merivale Road, 185 m south of the Site, which has operated as a retail fuel outlet since the 1970s according to the city directory search. This property is associated with PCA #28 Gasoline and Associated Products Stored in Fixed Tanks.
 - PCA 11: A former business was identified at 1541 Merivale Road, 130 m south of the Site, which operated as a dry cleaner from 1990 to 2000 according to the city directory search. This property is associated with PCA #37 Operation of Dry Cleaning Equipment (where chemicals are used).

- PCA 12: A former business was identified at 1545 Merivale Road, 225 m south of the Site, which operated as a retail fuel outlet from 1970 to 1984 according to the city directory search. This property is associated with PCA #28 Gasoline and Associated Products Stored in Fixed Tanks.
- **PCA 13:** A gasoline spill was identified at 1545 Merivale Road, 225 m south of the Site, according to the EcoLog Report. This property is associated with PCA "Other" Spills.
- PCA 14: A gasoline station was identified at 1548 Merivale Road, 215 m south of the Site, which has operated as a retail fuel outlet since the 1970s according to the city directory search. This property is associated with PCA #28 Gasoline and Associated Products Stored in Fixed Tanks.
- PCA 15: A former business was identified at 1516 Merivale Road, 50 m west of the Site, which operated as a dry cleaner from 1965 to 1975 according to the city directory search. This property is associated with PCA #37 Operation of Dry Cleaning Equipment (where chemicals are used).
- PCA 16: A former gasoline station was observed at 1504 Merivale Road, 85 m north of the Site, which had one (1) UST on the 1965 FIP. This property is associated with PCA #28 Gasoline and Associated Products Stored in Fixed Tanks.
- PCA 17: A former gasoline station was identified at 1493 Merivale Road, 105 m northeast of the Site, which operated as a retail fuel outlet from 1965 to 1970 according to the city directory search. This property is associated with PCA #28 Gasoline and Associated Products Stored in Fixed Tanks.

Based on the findings of this Phase One ESA Update, EXP recommended a Phase Two ESA be conducted to further investigate the identified PCAs.

4 Scope of Investigation

4.1 Overview of Site Investigation

The objective of the Phase Two ESA Update was to further assess the APECs identified in EXP's (2020) Phase One ESA Update to obtain soil and groundwater data to further characterize the Site to support the filing of a RSC on the MECP's Environmental Brownfield Site Registry.

4.1.1 Scope of Work

The scope of work for the Phase Two ESA Update was as follows:

- Request local utility locating companies (e.g. cable, telephone, gas, hydro, water, sewer and storm water) to mark any
 underground utilities present at the Site;
- Retain a private utility locating company to mark any underground utilities present in the vicinity of the proposed borehole locations and to clear the individual borehole locations;
- Oversee a licensed drilling company to advance a total of twelve (12) additional boreholes across the Site;
- Instrument all twelve (12) exterior boreholes as groundwater monitoring wells;
- Collect representative soil samples from the boreholes for laboratory analysis of PHCs, BTEX, Metals, and/or VOCs;
- Develop the twelve (12) newly installed groundwater monitoring wells;
- Collect groundwater samples from both the newly installed monitoring wells and some existing monitoring wells for laboratory analysis of PHCs, BTEX, VOCs and/or metals;
- Complete an elevation survey of all newly installed monitoring wells to determine the groundwater flow direction in the groundwater unit(s) identified beneath the Site;
- Collect an updated round of groundwater level measurements across the Site; and,
- Analyze the data and prepare a report of the findings, in accordance with O.Reg.153/04.

4.2 Media Investigated

The Phase Two ESA Update included the investigation of the Site soil and/or groundwater and included consideration of soil and groundwater sampling conducted during EXP's 2016 Phase Two ESA. As there were no surface water bodies on the Site, sediment sampling was not required.

4.3 Phase One Conceptual Site Model

The Phase One Conceptual Site Model (CSM) is incorporated into the Phase Two CSM, presented in Appendix F.

4.4 Deviations from Sampling and Analysis Plan

The field investigative and sampling program was carried out following the requirements of the Site Sampling and Analysis Plan (SAAP) presented in Appendix A. No significant deviations from the SAAP were reported, that could affect the sampling and data quality objectives for the Site.

10198447 CANADA INC. Phase Two Environmental Site Assessment Update 1509 -1531 Merivale Road, Ottawa, Ontario Project Number: OTT-00224605-D0 April 13, 2020

4.5 Impediments

The Site was accessible at the time of the investigation, and no physical impediments were encountered during the field investigation.

10198447 CANADA INC. Phase Two Environmental Site Assessment Update 1509 -1531 Merivale Road, Ottawa, Ontario Project Number: OTT-00224605-D0 April 13, 2020

5. Investigation Method

5.1 General

The Site investigative activities consisted of the following:

- Borehole drilling to facilitate the collection of soil samples for geologic characterization and/or chemical analysis; and,
- Monitoring well installation for hydrogeologic characterization and the collection of groundwater samples for chemical analysis.

Boreholes were advanced in the topsoil and overburden soils by a licensed drilling company under the full-time supervision of EXP staff. The drilling equipment used to advance the boreholes is described below. No petroleum-based greases or solvents were used during drilling activities.

Monitoring wells were installed in the boreholes by a MECP licensed well contractor in accordance with Ontario Regulation 903/90, as amended (O.Reg. 903) using manufactured well components (i.e. riser pipes and screens) and materials (i.e. sand pack and grout) from documented sources.

The approximate locations of the boreholes and monitoring wells are shown on Figure 6.

5.2 Underground Utilities

Prior to the commencement of drilling activities, the locations of underground utilities including but not limited to cable, telephone, natural gas, electrical lines, water, sewer and storm water conduits were marked out by public locating companies. In addition, a private utility locating service was retained to clear individual borehole locations.

5.3 Borehole Drilling

The fieldwork conducted for the soil investigative portion of the Phase Two ESA Update was carried out between September 2017 and January 2019.

A total of twelve (12) boreholes were advanced at the Site by Strata Soil (a licensed well contractor) under the fulltime supervision of EXP in September 2017 for the purpose of this Phase Two ESA Update, extending to a maximum depth of approximately ~4.6 m below grade. A total of twenty (20) boreholes were advanced across the Site during EXP's 2015 and 2016 Phase Two ESA, which are also relied upon for the purpose of this environmental investigation. The borehole locations will be selected to determine the presence or absence of impacts in the soils and the upper overburden groundwater and to address the APECs outlined in EXPs March 2020 Phase One ESA Update. A summary of the boreholes advanced is provided in Table 2.

EXP continuously monitored the drilling activities to record the physical characteristics of the soil, depth of soil sample collection and total depth of boreholes. Field observations are summarized on the borehole logs provided in Appendix C. Representative soil samples were recovered from the boreholes continuously using acetate liners.

All soil cuttings were stored in drums on the Site.

10198447 CANADA INC. Phase Two Environmental Site Assessment Update 1509 -1531 Merivale Road, Ottawa, Ontario Project Number: OTT-00224605-D0 April 13, 2020

5.4 Soil: Sampling

The soil sampling conducted in support of this Phase Two ESA Update was undertaken in accordance with the SAAP presented in Appendix A, to ensure that soil quality in the APECs identified in the Phase One ESA was characterized in accordance with O.Reg.153/04.

Soil samples for geologic characterization and chemical analysis were collected on a discrete basis in the overburden materials using acetate liners advanced into the subsurface using a track-mounted direct push drill rig. The soil cores were extruded from the samplers upon retrieval by drilling personnel. Geologic details of the recovered cores were logged by EXP field staff and samples were collected from selected cores for chemical analysis. Field observations are summarized on the borehole logs prepared from the field logs and provided in Appendix C.

Measures were taken in the field and during transport to preserve sample integrity prior to chemical analysis. Recommended volumes of soil samples selected for chemical analysis were collected from the recovered cores into pre-cleaned, laboratory-supplied glass sample jars/vials identified for the specified analytical test group. Samples intended for PHC fractions F1 and VOCs were collected using a laboratory-supplied soil core sampler, placed into the vials containing methanol for preservation purposes and sealed using Teflon lined lids.

Soil samples selected for laboratory analysis were placed in clean coolers containing ice prior to and during transportation to the subcontract laboratory, Bureau Veritas Laboratories Inc. (BV Labs) of Mississauga, Ontario (previously Maxxam Analytics). The samples were transported/submitted within the acceptable holding time to BV Labs following Chain of Custody protocols for chemical analysis.

Decontamination and other protocols were followed during sample collection and handling to minimize the potential for sample cross-contamination. New disposable nitrile gloves were used for the handling and sampling of each retrieved soil core. The sampling equipment (i.e. split spoons) was decontaminated between borehole locations by the drilling contractor using a potable water/phosphate-free detergent solution followed by rinses with potable water and de-ionized water. Wash and rinse waters were collected in sealed, labeled containers. Drill cuttings were placed in labeled, sealed drums upon completion of sampling.

Soil samples submitted for specific chemical analysis were selected on the basis of visual inspection of the recovered cores, TOV readings, sample location and/or depth interval. The rationale for soil sample submission is presented in Table 3.

Soil samples were also collected and submitted for grain size analysis.

Appropriate quality assurance/quality control (QA/QC) samples were collected during soil sampling, including field duplicate samples, as presented in Section 4.14 and Table 3.

5.5 Soil: Field Screening Measurements

Where required for the characterization of volatile parameters, a portion of each soil core was placed in a sealed plastic bag and allowed to reach ambient temperature prior to field screening, using an RKI Eagle II (RKI) device equipped with a Photoionization Detection (PID) instrument, calibrated with isobutylene and hexane gases. The measurements were made by inserting the instrument's probe into the plastic bag while manipulating the sample to ensure volatilization of the soil gases. These readings provide a real-time indication of the relative concentration of combustible vapours encountered in the subsurface during drilling and are used to aid in the assessment of the vertical and horizontal extent of volatile parameter contamination and the selection of soil samples for analysis.

The field screening measurements, in parts per million (ppm) isobutylene and hexane equivalents, are presented on the borehole logs in Appendix C. It should be noted that field measurements are for screening purposes only and the presence/absence of contamination is determined by laboratory analysis.

Each sample was additionally examined for visual, textural and olfactory classification at the time of sampling.

5.6 Groundwater: Monitoring Well Installation

Twelve (12) boreholes were instrumented with monitoring wells at the Site (BH/MW301 to BH/MW312) during this Phase Two ESA Update. Including the original 2016 Phase Two ESA, a total of twenty-four boreholes have been instrumented with monitoring wells at the Site by EXP. The monitoring wells were installed in general accordance with the Ontario Water Resources Act - R.R.O. 1990, Regulation 903 - amended to O. Reg. 128/03, and were installed by licensed well contractor (Strata).

All monitoring wells consisted of a 32 mm diameter PVC screen with a slot size of approximately 0.25 mm (10 slot), and an appropriate length of PVC riser pipe. All pipe connections were factory machined threaded flush couplings. The annular space around the wells was backfilled with sand to an average height of 0.3 m above the top of the screen. A bentonite seal was added from the top of the sand pack to approximately 0.3 m bgs. The monitoring wells were completed with a concrete collar, and flush mount protective well casings at ground surface.

EXP continuously monitored the well installation activities. Well installation details are summarized in Table 4 and on the borehole logs provided in Appendix C.

When the monitoring wells are no longer required, they must be decommissioned in accordance with the procedure outlined in the Ontario Water Resources Act - R.R.O. 1990, Regulation 903 - amended to O. Reg. 128/03.

Measures taken to minimize the potential for cross contamination or the introduction of contaminants during well construction included:

- The use of well pipe components (e.g. riser pipe and well screens) with factory machined threaded flush coupling joints;
- Construction of wells without the use of glues or adhesives;
- Removing the protective plastic wraps from well components at the time of borehole insertion to prevent contact with the ground and other surfaces;
- Cleaning of augers between sampling locations; and,
- The use of hollow stem augers to prevent loose and potentially contaminated material in overlying layers from sloughing into the boreholes and coming into contact with groundwater.

A summary of the monitoring well completion details are presented in Table 3.

5.7 Groundwater: Monitoring Well Development

Following the installation of monitoring wells, the newly installed monitoring wells were developed to remove fine sediment particles from the sand pack and enhance hydraulic communication with the surrounding formation waters. The new monitoring wells were developed using dedicated low-density polyethylene (LDPE) tubing, equipped with an inertial foot-valve

to disturb the water column and recover groundwater containing dislodged sediment particles. The wells were developed until approximately 3 to 5 well volumes of water were removed and/or until purged dry.

5.8 Groundwater: Purging and Field Measurements of Water Quality Parameters

At least 24 hours following the monitoring well development activities, the depth to groundwater at each monitoring well was measured utilizing an electronic water level meter. The water level measurements were recorded on log sheets or in a bound field book. The water level meter was decontaminated between monitoring well locations.

Prior to collecting groundwater samples, field measurements of water quality parameters were recorded from the monitoring wells utilizing low-flow purging and sampling methodologies. Groundwater was purged from each location using a peristaltic pump and dedicated LDPE tubing. Field measurements of dissolved oxygen concentration, electrical conductivity, oxidation-reduction potential, pH, temperature, turbidity and water levels were recorded at three (3) minute intervals during the purging activities using a pre-calibrated multi probe water quality meter, a turbidity meter and a water level meter. Groundwater was considered to be chemically stable when the pH measurements of three (3) successive readings agreed to within \pm 1 pH units, the specific conductance within \pm 10%, and the temperature within \pm 10%. The multi-meter electrodes were calibrated prior to receipt of the meter by the supplier using in-house reference standards.

All development and purged water was collected and stored on Site in labeled, sealed containers, until properly managed or disposed off-Site.

Equipment used during groundwater monitoring were thoroughly cleaned and decontaminated between wells. Well purging details were recorded on log sheets or in a bound field book.

5.9 Groundwater: Sampling

The groundwater sampling conducted during the completion of this Phase Two ESA Update was undertaken in accordance with the SAAP presented in Appendix A, to ensure that the APECs identified in the Phase One ESA were properly characterized, in accordance with O.Reg.153/04.

Upon completion of purging activities, groundwater samples were collected from monitoring wells. Recommended groundwater sample volumes were collected into pre-cleaned laboratory-supplied vials or bottles provided with analytical test group specific preservatives, as required. The samples were placed in an insulated cooler pre-chilled with ice immediately upon collection. Samples for VOCs and/or PHC F1 analysis were collected in triplicate vials prepared with concentrated sodium bisulphate as a preservative. Each VOC/PHC vial was inverted and inspected for gas bubbles prior to being placed in the cooler to ensure that no head-space was present in the samples. Samples for Inductively Coupled Plasma Mass Spectrometry (ICPMS) metals were collected using disposable 0.45 micron field filters, supplied by Spectra, or laboratory filtered.

All groundwater samples were placed in clean coolers containing ice prior to and during transportation to the subcontract laboratory, BV Labs. The samples were transported/submitted following appropriate holding time requirements following Chain of Custody protocols for chemical analysis.

Decontamination and other protocols were followed during sample collection and handling to minimize the potential for sample cross-contamination. New disposable nitrile gloves were used at each monitoring well location.

Groundwater samples submitted for specific chemical analysis were selected on the basis of sample location and/or depth interval. The rationale for groundwater sample submission is presented in Table 5.

Appropriate QA/QC samples were collected during groundwater sampling, including field duplicate samples and trip blanks, where required, as presented in Table 5.

5.10 Single Well Response Tests

Single well response tests were conducted on one overburden monitoring well (MW11-1), two shallow bedrock monitoring wells (MW15-1 and MW205) and two deeper bedrock monitoring wells (MW207 and MW208) as a part of the original 2016 Phase Two ESA and is relied upon in this Phase Two ESA Update.

5.11 Sediment Sampling

As no water body was present at the Site, sediment sampling was not part of the Phase Two ESA Update.

5.12 Analytical Testing

The contractual laboratory selected to perform the chemical analyses was BV Labs Inc., of Mississauga, ON (formerly Maxxam Analytics). BV Labs is an accredited laboratory under the Standards Council of Canada/Canadian Association of Environmental Analytical Laboratories (Accredited Laboratory No. 97 and No. A3200, respectively) in accordance with ISO/IEC 17025:2005 – "General Requirements for the Competence of Testing and Calibration Laboratories".

5.13 Residue Management Procedures

The residue materials produced during the borehole drilling, soil sampling programs and monitoring well sampling programs comprised of soil cuttings from drilling activities, decontamination fluids from equipment cleaning, and waters from well development and purging. All soil cuttings were stored in drums on the north central portion of the Site until the material was properly disposed of at an off-Site MECP licensed landfill facility. All development and purged water was collected and stored on-Site in labeled, sealed containers, until disposed of off-Site at a MECP licensed landfill facility.

5.14 Elevation Survey

An elevation survey was conducted to obtain vertical control of all the on-site monitoring wells. The top of casing and ground surface elevation of each newly installed monitoring well location was surveyed relative to a geodetic datum using a high precision GPS unit.

The elevation survey was completed using a high precision global positioning system unit. The survey equipment was calibrated by Spectra personnel prior to use. A summary of the groundwater levels and elevation survey is presented on Table 5.

5.15 Quality Assurance and Quality Control Measures

Quality Control/Quality Assurance measures, as set out in the Sampling and Analysis Plan, were implemented during sample collection, storage and transport to provide accurate data representative of conditions in the surficial fill and upper overburden soils and the water table aquifer. The QA/QC measures included decontamination procedures to minimize the potential for sample cross contamination, the execution of standard operating procedures to collect representative and unbiased samples, the collection of quality control samples to evaluate sample precision and accuracy, and the implementation of measures to preserve sample integrity.

Decontamination protocols were followed during sample collection and handling to minimize the potential for crosscontamination. During the collection of soil samples, split-spoon and duel tube samplers were scraped and decontaminated

10198447 CANADA INC. Phase Two Environmental Site Assessment Update 1509 -1531 Merivale Road, Ottawa, Ontario Project Number: OTT-00224605-D0 April 13, 2020

between sampling intervals by washing with a potable water/phosphate-free detergent solution followed by a rinse with potable water. New disposable nitrile gloves were used for the handling and collection of samples from each soil core and for sample collection from each borehole.

Soil samples selected for chemical analyses were collected from the retrieved soil cores and placed directly into pre-cleaned, laboratory-supplied glass jars or vials. Sample volumes were consistent with analytical test group requirements as specified by the receiving laboratory.

Groundwater samples were collected into pre-clean laboratory-supplied vials or bottles provided with analytical test group specific preservatives, as required. Recommended analytical test group specific sample volumes were collected as specified by the contractual laboratory. Sample vials for analysis of PHC F1 (BTEX) and VOCs were inspected for the presence of gas bubbles and the presence of head space, where volatiles may partition into.

Measures were followed to preserve sample integrity between collection and receipt by the contractual laboratory. All samples, both soil and groundwater, immediately upon collection were placed in insulated coolers pre-chilled with ice for storage and transport to the contractual laboratory. Samples were received by the contractual laboratory within specific analytical test group holding time requirements.

Documentation procedures were followed to confirm sample identification and tracked sample movement. Each sample was assigned a unique identification ID number, which was recorded along with the date, time of sampling and requested analyses on labels affixed to the sampling containers, and in a bound field notebook. Chain of Custody protocols were followed to track sample handling and movement until receipt by the contractual laboratory. Field QA/QC samples were collected during the soil and groundwater sampling. Duplicate samples were collected to evaluate sampling precision to evaluate the potential for sample cross-contamination during handling and transport.

During the additional soil and groundwater sampling conducting during this Phase Two ESA Update, one (1) duplicate soil sample, BH/MW321-S2, was collected from BH/MW310, and submitted for analysis of PHCs/BTEX, VOCs, and metals and inorganics for QA/QC purposes. One (1) duplicate groundwater sample (BH/MW313) was collected from monitoring well BH/MW311 and submitted for analysis of PHCs/BTEX, VOCs, and metals for QA/QC purposes; one (1) trip blank sample was analyzed for PHCs/BTEX, VOCs, and metals and inorganics.

6. Review and Evaluation

6.1 Geology

The soil investigation conducted at the Site during this Phase Two ESA Update consisted of the advancement of twelve (12) boreholes into the surficial fill material and the underlying native soil to a maximum depth of 4.6 m bgs. Including boreholes advanced during the original 2016 Phase Two ESA, shaly limestone bedrock has been observed to a maximum depth of 10.8 m bgs. The borehole logs describing geologic details of the soil cores recovered during the Site drilling activities conducted during the 2016 Phase Two ESA as well as this Phase Two ESA Update are presented in Appendix C. Boundaries of soil indicated on the log sheets are intended to reflect transition zones for the purpose of environmental assessment and should not be interpreted as exact planes of geological change.

The general stratigraphy at the Site, as observed in the boreholes, consisted of asphalt, followed by sand and gravel fill underlain by sandy silt over sand and gravel glacial till and limestone bedrock. A brief description of the soil stratigraphy at the Site, in order of depth, is summarized in the following sections. The borehole and APECs are shown on Figure 7. Six (6) geologic cross sections (Figures 10A, 11A, 12A, 13A, 14A and 15A) show the stratigraphy across the Site.

6.1.1 Surface Material

The surface material at majority of the boreholes consisted of asphalt, with a thickness of approximately 50 mm.

6.1.2 Fill Material

A layer of fill material was encountered in all boreholes. The thickness of the fill ranged from 1.7 m in BH205 to 2.2 m in BH/MW302 and 303, both located in the area of the former heating oil UST excavation. The fill material generally consisted of brown to grey sand and gravel.

6.1.3 Native Material

The native soil encountered at the Site generally consisted of sandy silt, overlying silty sand and gravel glacial till. The silt till extended to the bedrock surface.

6.1.4 Bedrock

Bedrock was at depths ranging from 2.1 to 2.4 m over 90% of the site. The depth to rock in the northeast corner of the site was 1.1 m. The bedrock consisted of shaly limestone.

Refer to Figure 8 for a representation of the known depths to bedrock across the Site.

6.2 Groundwater: Elevations and Flow Direction

In January 2019, groundwater levels were measured in all available monitoring wells using an electronic water level meter. The depth to overburden groundwater in the shallow monitoring wells ranged between approximately 0.82 m and 2.26 m bgs, with a geometric mean of 1.38 m bgs. The groundwater elevations ranged between approximately 93.44 m above mean seal level (AMSL) and 92.87 m AMSL, with a geometric mean of 93.74 m AMSL. The groundwater elevations in the deeper interval monitoring wells MW15-3, MW207 and MW208 were lower than in the shallow bedrock monitoring wells with geometric mean elevation of 92.87 AMSL.

Based on the collected groundwater data groundwater flow in the overburden is inferred to be to the northeast as shown on Figure 9A. The deeper bedrock groundwater flow direction is the north-northeast (Figure 9B). The groundwater contour plans were constructed using the groundwater elevations collected in January 2019.

6.2.1 Groundwater: Hydraulic Conductivity

Hydraulic conductivity of groundwater at the Site was measured during EXP's 2016 Phase Two ESA by conducting single well response tests on one (1) overburden monitoring well (MW11-1), two shallow bedrock monitoring wells (MW15-1 and MW205), and two deeper bedrock monitoring wells (MW207 and MW208), the approximate horizontal hydraulic conductivity of the overburden material was calculated to be 8.6 x 10-6 m/s. The approximate horizontal hydraulic conductivity of the shallow shale bedrock was calculated to be 2.4 x 10-5 m/s. The approximate horizontal hydraulic conductivity of the deeper shaly limestone bedrock was calculated to be 8.7 x 10-6 m/s.

6.2.2 Groundwater: Horizontal Hydraulic Gradients

The horizontal hydraulic gradient, between each monitoring well pair, is calculated using the following equation:

 $i = \Delta h / \Delta s$

Where,

i = horizontal hydraulic gradient;

 Δh (m) = groundwater elevation difference; and,

Δs (m) = separation distance.

The horizontal hydraulic gradient in the overburden groundwater, based on groundwater measurements collected during EXP's 2016 Phase Two ESA on April 21 and 22, 2016, the average horizontal gradient of 0.008 m/m. The average vertical gradient between the three well pairs was 0.13 downward.

6.3 Soil Texture

The native materials encountered, as discussed in Section 5.1, are comprised of silty sand. Based on the textural descriptions of these materials as inferred from borehole observations, the applicable Site Condition Standards selected to evaluate analytical data was for a coarse textured soil classification.

Grain size analysis performed as part of this Phase Two ESA indicated a coarse soil condition.

6.4 Soil: Field Screening

TOV readings from each sample interval were measured for soil sample selected for BTEX/PHC analysis from all advanced boreholes. Vapour concentrations readings collected during subsurface drilling were measured using the RKI Eagle 2 in ppm calibrated with isobutylene and hexane or equivalent. The vapour readings, in ppm, are provided on the borehole logs in Appendix C.

Soil samples submitted for chemical analysis were selected on the basis of visual inspection of the recovered cores, TOV readings, sample location and/or depth interval. Both hexane and isobutylene readings indicate that there are insignificant volatile particles in the soil vapours.

6.5 Soil Quality

In accordance with the scope of work, chemical analyses were performed on selected soil samples recovered from the boreholes. The selection of representative "worst case" soil samples was based on field screening, visual and/or olfactory evidence of impacts, and the presence of potential water bearing zones. Copies of the laboratory Certificates of Analysis for the analyzed soil samples are provided in Appendix E. A summary of the analytical results for the soil samples, including the locations and depths of each sample, a comparison of concentrations against applicable SCS, and the identification of the potential contaminants of concern, are provided in Appendix D.

6.5.1 Petroleum Hydrocarbons

Eight (8) soil samples, including one (1) QA/QC field duplicate (BH/MW321-S2), were analyzed for PHCs. All parameters in all samples were either measured below the applicable Table 3 SCS or were below the laboratory RDLs. The laboratory reporting detection limits (RDLs) of all parameters were below the Table 3 SCS.

6.5.2 BTEX (Benzene, Toluene, Ethylbenzene, and Xylenes)

Twelve (12) soil samples, including one (1) QA/QC field duplicate (BH/MW321-S2), were analyzed for BTEX. All parameters in all samples were either measured below the applicable Table 3 SCS or were below the laboratory RDLs. The laboratory RDLs of all parameters were below the Table 3 SCS.

6.5.3 Metals and Select Inorganics

Two (2) soil samples were analyzed for metals. All parameters in all samples were either measured below the applicable Table 3 SCS or were below the laboratory RDLs. The laboratory RDLs of all parameters were below the Table 3 SCS.

As shown in Table D.3, five (5) samples were analyzed for salt parameters (EC and SAR). All five (5) of these samples demonstrated concentrations of EC and/or SAR in exceedance of the Table 3 SCS. However, due to recent amendments to O.Reg. 153 which exclude salt related impacts as areas of concern for properties where salt in soil and groundwater can be attributed to the salting of pavement for de-icing purposes, salt parameters are not identified as contaminants of concern at this Site and are not considered further.

6.5.4 Volatile Organic Compounds

Nine (9) soil samples, including one (1) QA/QC field duplicate (BH/MW321-S2), were analyzed for VOCs. The results of the analysis together with the applicable Table 3 SCS are presented in Table D.2 in Appendix D.

All parameters in all samples were either measured below the applicable Table 3 SCS or were below the laboratory RDLs. The laboratory RDLs of all parameters were below the Table 3 SCS.

6.5.5 Soil pH

The Table 3 SCS criteria are applicable if soil pH is in the range of 5 to 9 for surface soil (less than 1.5 m below soil surface) and 5 to 11 for subsurface soil (greater than 1.5 m below soil surface). As measured in soil samples collected during EXP's 2016 Phase Two ESA, the reported pH values were 8.85 for surface soils and 7.8 for subsurface soils, which are within the acceptable range to use the Table 3 SCS.

Refer to Table E.3 for a summary of the soil samples analyzed for pH.

6.5.6 Chemical Transformation and Soil Contaminant Source

No chemical constituents were detected in the soil samples.

6.5.7 Evidence of Non-Aqueous Phase Liquid

Inspection of the soil cores retrieved from the boreholes did not indicate the presence of non-aqueous phase liquid (NAPL), staining, or sheen at the time of the Phase Two ESA.

6.6 Groundwater Quality

In accordance with the scope of work, chemical analyses were performed on groundwater samples recovered from the monitoring wells. The selection of groundwater samples was based on location and/or screen depth. Copies of the laboratory Certificates of Analysis for the analyzed groundwater samples are provided in Appendix E. A summary of the analytical results for the groundwater samples, including the locations of each sample, well screen interval depth, a comparison of parameter concentrations against applicable SCS, and the identification of the PCOCs, are provided in Appendix D.

6.6.1 Petroleum Hydrocarbons

Seventeen (17) groundwater samples including one (1) QA/QC field duplicate (BH/MW313) were analyzed for PHCs during this Phase Two ESA Update investigation. The results of the analysis together with the applicable Table 3 SCS are presented in Table D.4 of Appendix D.

Three (3) groundwater samples collected on September 14th and 15th, 2017 demonstrated measured concentrations of PCH F2 in exceedance of applicable Table 3 SCS (MW206, MW303 and MW311). One (1) groundwater sample also demonstrated a measured concentration of PHC F3 in exceedance of the applicable Table 3 SCS (MW303).

All remaining parameters in all samples were either measured below the applicable Table 3 SCS or were below the laboratory RDLs. The laboratory RDLs of all parameters were below the Table 3 SCS.

6.6.2 BTEX (Benzene, Toluene, Ethylbenzene, Xylenes)

Twenty-two (22) groundwater samples including one (1) QA/QC field duplicate (BH/MW313) were analyzed for BTEX. The results of the analysis together with the applicable Table 3 SCS are presented in Table D.4 in Appendix D.

All BTEX parameters in all samples were either measured below the applicable Table 3 SCS or were below the laboratory RDLs. The laboratory RDLs of all parameters were below the Table 3 SCS.

6.6.3 Metals and Select Inorganics

Fourteen (14) groundwater samples were analyzed for either sodium and/or chloride, including three (3) QA/QC field duplicate samples (MW313, MW222 and MW222). Five (5) of these samples demonstrated concentrations of sodium and/or chloride in exceedance of the Table 3 SCS. However, due to recent amendments to O.Reg. 153 which exclude salt related impacts as areas of concern for properties where salt in soil and groundwater can be attributed to the salting of pavement in winter months for de-icing purposes, salt parameters are not identified as contaminants of concern at this Site and are not considered further.

Four (4) groundwater samples were analyzed for lead. No samples were measured in excess of the laboratory RDL. The laboratory RDLs were below the Table 3 SCS.

10198447 CANADA INC. Phase Two Environmental Site Assessment Update 1509 -1531 Merivale Road, Ottawa, Ontario Project Number: OTT-00224605-D0 April 13, 2020

6.6.4 Volatile Organic Compounds

Eleven (11) groundwater samples were analyzed for VOCs. The results of the analysis together with the applicable Table 3 SCS are presented in Table D.5 in Appendix D.

One (1) groundwater sample demonstrated measured concentrations of chloroform in exceedance of applicable Table 3 SCS (MW305). One (1) groundwater sample demonstrated measured concentrations of cis-1,2-dichloroethylene in exceedance of the applicable Table 3 SCS (MW312). Three (3) groundwater samples demonstrated measured concentrations of tetrachloroethylene in exceedance of the applicable Table 3 SCS (MW305, MW306 and MW312). Two (2) groundwater samples demonstrated measured concentrations of trichloroethylene in exceedance of the Table 3 SCS (MW306 and MW312). One (1) groundwater sample demonstrated a measured concentration of vinyl chloride in exceedance of the Table 3 SCS (MW312).

All remaining parameters in all samples were either measured below the applicable Table 3 SCS or were below the laboratory RDLs. The laboratory RDLs of all parameters were below the Table 3 SCS.

6.6.5 Chemical Transformation and Groundwater Contaminant Source

The organic chemical constituents detected in the groundwater samples comprised PHCs F2 and F3, chloroform, cis-1,2-DCE, PCE, TCE and vinyl chloride. The VOC related impacts were detected across the central and northern portion of the Site, while the PHC related impacts appear to be more localized in the area of the former UST excavation and along the southern property line. The presence of PHC related parameters is likely attributed to the presence of the former on-Site UST; and, the presence of the VOC related parameters is likely attributed to the presence of an on-Site dry cleaning operation.

6.6.6 Evidence of Non-Aqueous Phase Liquid (NAPL)

Inspection of the purged groundwater retrieved from the monitoring wells did not indicate the presence of NAPL, staining, sheen, or odour.

6.7 Sediment Quality

As no surface water body was located on-Site, the Phase Two ESA Update did not include sediment sampling.

6.8 Quality Assurance and Quality Control Measures

Quality assurance and quality control measures were taken during the field activities to meet the objectives of the sampling and quality assurance plan to collect unbiased and representative samples to characterize existing conditions in the overburden and bedrock materials, and water table units at the Site.

Review of field activity documentation indicated that recommended sample volumes were collected from soil and groundwater for each analytical test group into appropriate containers and preserved with proper chemical reagents in accordance with the protocols set out in the "Protocol for Analytical Methods used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act" (MECP, 2004). Samples were preserved at the required temperatures in pre-chilled insulated coolers and met applicable holding time requirements, when relinquished to the receiving laboratory.

Field QA/QC samples were collected during soil and groundwater sampling. A total of one (1) soil and Two (2) groundwater duplicate sample was collected to evaluate sampling precision. One (1) trip blank sample was analyzed for VOCs/BTEX and metals and inorganics. Refer to Tables D.1 – D.6 for a summary of the QA/QC samples collected and submitted for chemical analysis.

10198447 CANADA INC. Phase Two Environmental Site Assessment Update 1509 -1531 Merivale Road, Ottawa, Ontario Project Number: OTT-00224605-D0 April 13, 2020

The field duplicate sample results were quantitatively evaluated by calculating the relative percent difference (RPD). Assessment of the duplicate soil and groundwater sample showed that the results generally met analytical test group specific acceptance criteria. The overall assessment indicates that the soil and groundwater samples were collected with an acceptable level of precision, and the data is acceptable quality for meeting the objectives of the Phase Two ESA.

The contractual laboratory selected to perform the chemical analyses was Bureau Veritas Laboratories Inc., of Mississauga, ON. BV Labs is an accredited laboratory under the Standards Council of Canada/Canadian Association of Laboratory Accreditation (Accredited Laboratory No. 97 and No. A3200, respectively) in accordance with ISO/IEC 17025:2005 – "General Requirements for the Competence of Testing and Calibration Laboratories". Certificates of Analysis were received from BV Labs reporting the results of all the chemical analyses performed on the submitted soil and groundwater samples. Copies of the Certificates of Analysis are provided in Appendix E. Review of the Certificates of Analysis, prepared by BV Labs, indicates that they were in compliance with the requirements set out under subsection 47(3) of O. Reg. 153/04.

The analytical program conducted by BV Labs included analytical test group specific QA/QC measures to evaluate the accuracy and precision of the analytical results and the efficiency of analyte recovery during solute extraction procedures. The laboratory QA/QC program consisted of the preparation and analysis of laboratory duplicate samples to assess precision and sample homogeneity, method blanks to assess analytical bias, spiked blanks and QC standards to evaluate analyte recovery, matrix spikes to evaluate matrix interferences and surrogate compound recoveries (VOCs only) to evaluate extraction efficiency. The laboratory QA/QC results are presented in the Quality Assurance Report provided in the Certificate of Analysis prepared by BV Labs. The QA/QC results are reported as percent recoveries for matrix spikes, spike blanks and QC standards, relative percent difference for laboratory duplicates and analyte concentrations for method blanks. The QA/QC results were assessed against test group control limits in the case of spiked blanks, matrix spikes and surrogate recoveries and alert criteria in the case of method blanks and laboratory duplicates. Review of the laboratory QA/QC results reported by BV Labs indicated that they were within acceptable control limits or below applicable alert criteria for the sampled media and analytical test groups. Based on the assessment of the QA/QC, the analytical results reported are of acceptable quality and data qualifications are not required.

6.8 Sub-Slab and Soil Vapour Sampling Program

Given the results of the soil and groundwater sampling conducted as part of this Phase Two ESA Update, a soil vapour and subslab vapour sampling program was completed for the Site to assess the potential for contaminants in groundwater to migrate to indoor air. The results of this program are detailed under a separate cover, *Sub-Slab and Soil Vapour Sampling Program*, *1509* – *1531 Merivale Road* (EXP, 2019). The results of this sampling program are summarized below.

6.8.1 Objectives and Scope of Work

The scope of work for this sampling included:

- Obtain and review utility locates (Section 3.1).
- Retain a drilling company to install five (5) outdoor soil vapour probes, at depths ranging from approximately 1.22 to 1.52 m below grade (the maximum depth allowable based on groundwater levels at the Site). Install five (5) subslab vapour pins inside the Site building using hand-held, electric drilling equipment.
- Collect seven (7) soil vapour samples (including two samples for quality assurance/quality control purposes) in the spring (April-June) of 2016, as well as five (5) soil vapour samples in the winter (January) of 2019. Samples will be collected using 1.4 L Summa canisters over a period of approximately 10 minutes per sample.

- Collect a total of twelve (12) sub-slab vapour samples, over two (2) separate sampling events (each consisting of five sub-slab vapour locations, plus one duplicate sample), using Summa canisters over a period of up to one (1) hour, including one (1) duplicate sample for quality assurance/quality control (QA/QC) purposes.
- Submit soil and sub-slab vapour samples to an accredited laboratory, according to approved methodology, for analysis of chlorinated VOCs (PCE, trichloroethylene, cis/trans-1,2-dichloroethylene, 1,1-dichloroethylene and VC), BTEX (benzene, toluene, ethylbenzene and xylenes), and PHC F1 and PHC F2 parameters.
- To assess the potential for both on-Site soil vapour exceedances, as well as off-Site soil vapour exceedances at the neighboring down-gradient residential properties, analytical results of the soil vapour probe will be compared to the MECP MGRA Tier 2 Approved Model Soil Vapour Criteria (SVC) for residential land use.

The soil vapour probe locations (SV1 to SV5) are shown on Figure 6.

6.8.2 Assessment Criteria

For assessment purposes, soil vapour analytical results were compared against the SVC for residential land use and medium/fine textured soil, obtained from the MGRA Tier 2 Approved Model. Depth of soil vapour probes influences the criteria outlined in the MGRA Tier 2 Approved Model, however the model can only be adjusted to a minimum soil vapour probe depth of 2.58 m bgs. Due to the constraints on soil probe depth at this Site as a result of shallow groundwater levels, probes were required to be installed at shallower depths (1.52 m below ground surface at SV1, SV4 and SV5, 1.22 m below ground surface at SV2 and SV3) than appropriate for a Tier 2 Risk Assessment. Therefore, soil vapour results were conservatively compared against both the SVC at a probe depth of 2.58 m bgs, as well as the SSVC, derived from the HBIAC for residential land use, obtained from the MGRA Tier 2 Approved Model, by applying an attenuation factor of 0.02 for a residential building. It is noted that using sub-slab vapour criteria, derived with the MECP empirical attenuation factors, is a conservative approach relative to calculating a depth-specific SVC.

For assessment purposes, sub-slab vapour analytical results were compared against the calculated SSVC, derived from the HBIAC for industrial/commercial land use, obtained from the MGRA Tier 2 Approved Model, by applying a default attenuation factor of 0.004 for a commercial building.

6.8.3 Results

6.8.4.1 Sub-Slab Vapour Quality

Sub-slab vapour analytical results are summarized in Table D.7 (Appendix D) and the Certificates of Analysis are enclosed in Appendix C.

The concentrations of PHC F1 and F2, and cVOCs in the analyzed sub-slab vapour samples were either not detected or were detected below their applicable industrial/commercial SSVC at SV1, SV3, and SV4. However, concentrations of PCE were identified in exceedance of the applicable SSVC at SSV2 and SSV5 during both the April/May 2016 and January 2019 sampling events. See Figure 6 for the locations of SSV2 and SSV5.

It is noted that vapour intrusion is highly site-specific, as advection or diffusion of vapours is affected by changing source conditions, building conditions, diurnal and seasonal fluctuations, atmospheric conditions and proximity of contaminants.

6.9 Phase Two Conceptual Site Model

This section presents a Phase Two Conceptual Site Model (CSM) providing a narrative, graphical and tabulated description integrating information related to the Site geologic and hydrogeologic conditions, areas of potential environmental concern/potential contaminating activities, the presence and distribution of potential contaminants of concern, contaminant

10198447 CANADA INC. Phase Two Environmental Site Assessment Update 1509 -1531 Merivale Road, Ottawa, Ontario Project Number: OTT-00224605-D0 April 13, 2020

fate and transport, and potential exposure pathways. The Phase Two CSM was completed in accordance with O. Reg. 153/04 as defined by the MECP and is presented in Appendix F.

10198447 CANADA INC. Phase Two Environmental Site Assessment Update 1509 -1531 Merivale Road, Ottawa, Ontario Project Number: OTT-00224605-D0 April 13, 2020

7. Conclusions

The results and findings of the Phase Two ESA conducted at the Site are summarized as follows:

- 1. The general stratigraphy at the Site, as observed in the boreholes, consisted of asphalt, followed by sand and gravel fill underlain by sandy silt over sand and gravel glacial till and shaly limestone bedrock.
- In January 2019, the depth to groundwater at the Site ranged between approximately 1.17 m and 3.36 m below ground surface. The groundwater elevations ranged between approximately 93.97 m above mean seal level (AMSL) and 92.31 m AMSL. Based on the collected groundwater data groundwater flow in the overburden is inferred to be to the north/northeast.
- 3. Soil samples were collected and submitted for chemical analysis of petroleum hydrocarbons (PHC), benzene, toluene, ethylbenzene, xylenes (BTEX), volatile organic compounds (VOC), and metals and inorganics. The soil analytical results indicated the PHC, BTEX, VOC, and metals and inorganics concentrations were either measured at concentrations less than their applicable Ontario Ministry of Environment, Conservation and Parks (MECP) Table 3 site condition standards (SCS), or did not exceed their laboratory reported detection limits (RDLs) which were all below the applicable MECP Table 3 SCS.
- 4. Groundwater samples were collected and submitted for chemical analysis of PHCs, BTEX, VOCs, and metals and inorganics. The groundwater analytical results identified the following exceedances of the applicable MECP Table 3 SCS:
 - a. Three (3) groundwater samples collected on September 14th and 15th, 2017 demonstrated measured concentrations of PCH F2 in exceedance of applicable Table 3 SCS (MW206, MW303 and MW311). One (1) groundwater sample also demonstrated a measured concentration of PHC F3 in exceedance of the applicable Table 3 SCS (MW303). These samples were located in the southern portion of the Site, in the area of the former UST excavation and along the southern Site boundary, downgradient from off-Site gasoline service stations.
 - b. One (1) groundwater sample demonstrated measured concentrations of chloroform in exceedance of applicable Table 3 SCS (MW305). One (1) groundwater sample demonstrated measured concentrations of cis-1,2-dichloroethylene in exceedance of the applicable Table 3 SCS (MW312). Three (3) groundwater samples demonstrated measured concentrations of tetrachloroethylene in exceedance of the applicable Table 3 SCS (MW305, MW306 and MW312). Two (2) groundwater samples demonstrated measured concentrations of the Table 3 SCS (MW306 and MW312). Two (2) groundwater samples demonstrated measured concentrations of trichloroethylene in exceedance of the Table 3 SCS (MW306 and MW312). One (1) groundwater sample demonstrated a measured concentration of vinyl chloride in exceedance of the Table 3 SCS (MW312). Exceedances of the VOC related parameters were located in the central and northeastern portion of the Site and are likely attributed to a former and current on-Site dry cleaner. The PHC related parameters are generally located in the southern portion of the Site and are likely attributed to a known former on-Site underground storage tank (UST).
- 5. Soil vapour samples and sub-slab vapour samples were collected at the Site to determine the potential for risk of indoor air being impacted due to the dissolved VOC impacted groundwater. Sub-slab vapour probes were installed within the Site building, and soil vapour probes were installed along the northern and eastern property boundary. The results demonstrated that two (2) of five (5) sub-slab soil vapour samples had tetrachloroethylene (PCE) concentrations that exceeded the applicable modified generic risk assessment (MGRA) Tier 2 Sub-Slab Vapour Criteria (SSVC) for commercial

10198447 CANADA INC. Phase Two Environmental Site Assessment Update 1509 -1531 Merivale Road, Ottawa, Ontario Project Number: OTT-00224605-D0 April 13, 2020

land use. One (1) of five (5) soil vapour samples had vinyl chloride concentrations which exceeded the applicable MGRA Tier 2 Soil Vapour Criteria (SVC) for residential land use.

Based on the results of this Phase Two ESA Update, a Risk Assessment (RA) is recommended to further investigate the potential risk of known groundwater and sub-slab/soil vapour exceedances at the Site.

10198447 CANADA INC. Phase Two Environmental Site Assessment Update 1509 -1531 Merivale Road, Ottawa, Ontario Project Number: OTT-00224605-D0 April 13, 2020

8. General Limitations

The information presented in this report is based on a limited investigation designed to provide information to support an assessment of the current environmental conditions within the subject property. The conclusions and recommendations presented in this report reflect Site conditions existing at the time of the investigation.

More specific information with respect to the conditions between samples, or the lateral and vertical extent of materials may become apparent during excavation operations. The interpretation of the borehole information must, therefore, be validated during any such excavation operations. Consequently, during the future development of the property, conditions not observed during this investigation may become apparent. Should this occur, EXP Services Inc. should be contacted to assess the situation, and the need for additional testing and reporting. EXP has qualified personnel to provide assistance in regards to any future geotechnical and environmental issues related to this property.

The environmental investigation was carried out to address the intent of applicable provincial Regulations, Guidelines, Policies, Standards, Protocols and Objectives administered by the Ministry of the Environment and Climate Change. It should also be noted that current environmental Regulations, Guidelines, Policies, Standards, Protocols and Objectives are subject to change, and such changes, when put into effect, could alter the conclusions and recommendations noted throughout this report. Achieving the study objectives stated in this report has required us to arrive at conclusions based upon the best information presently known to us. No investigative method can completely eliminate the possibility of obtaining partially imprecise or incomplete information; it can only reduce the possibility to an acceptable level. Professional judgment was exercised in gathering and analyzing information obtained and in the formulation of the conclusions. Like all professional persons rendering advice, we do not act as absolute insurers of the conclusions we reach, but we commit ourselves to care and competence in reaching those conclusions.

Our undertaking at EXP, therefore, is to perform our work within limits prescribed by our clients, with the usual thoroughness and competence of the engineering profession. It is intended that the outcome of this investigation assist in reducing the client's risk associated with environmental impairment. Our work should not be considered 'risk mitigation'. No other warranty or representation, either expressed or implied, is included or intended in this report.

This report was prepared for the exclusive use of 10198447 Canada Inc. may not be reproduced in whole or in part, without the prior written consent of EXP, or used or relied upon in whole or in part by other parties for any purposes whatsoever. Any use which a third party makes of this report, or any part thereof, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. EXP Services Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

9 Closure

We trust this report is satisfactory for your purposes. Should you have any questions, please do not hesitate to contact this office.

Yours truly,

EXP Services Inc.

Diana Pedersen, B.Sc. Environmental Scientist Environmental Services

Õ 0 7 MARICO, MECALLA 0 Ma CTIONS MEMBER ED. Mark McCalla, P.Geo., QPES

Mark McCalla, P.Geo., QPE Senior Project Manager Environmental Services

10198447 CANADA INC. Phase Two Environmental Site Assessment Update 1509 -1531 Merivale Road, Ottawa, Ontario Project Number: OTT-00224605-D0 April 13, 2020

10 References

This study was conducted in general accordance with the applicable Regulations, Guidelines, Policies, Standards, Protocols and Objectives administered by the Ministry of the Environment. Specific reference is made to the following:

- Environmental Protection Act, R.S.O. 1990, Chapter E.19, as amended, September 2004.
- Ministry of the Environment [MECP] (1996) Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario. Ontario Ministry of the Environment, December 1996.
- MECP (2011a) Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act. Ontario Ministry of the Environment, March 2004, amended as of July 1, 2011.
- MECP (2011) Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act. Ontario Ministry of the Environment, April 15, 20101.
- Occupational Health and Safety Act Ministry of Labour (MOL).
- Ontario Regulation 153/04, made under the Environmental Protection Act, May 2004, amended.
- Ontario Water Resources Act R.R.O. 1990, Regulation 903, amended.
- Ontario Geological Survey (2010a) Physiography of Southern Ontario (Scale 1:22,000).
- Topographic Map available at the Natural Resources Canada (NRC) website http://atlas.nrcan.gc.ca/site/english/maps/topo/map
- Ontario Geological Survey (2010b) Surficial geology of Southern Ontario (Scale 1:22,000).
- Ontario Geological Survey (2011) Bedrock geology of Ontario (Scale 1:22,000).

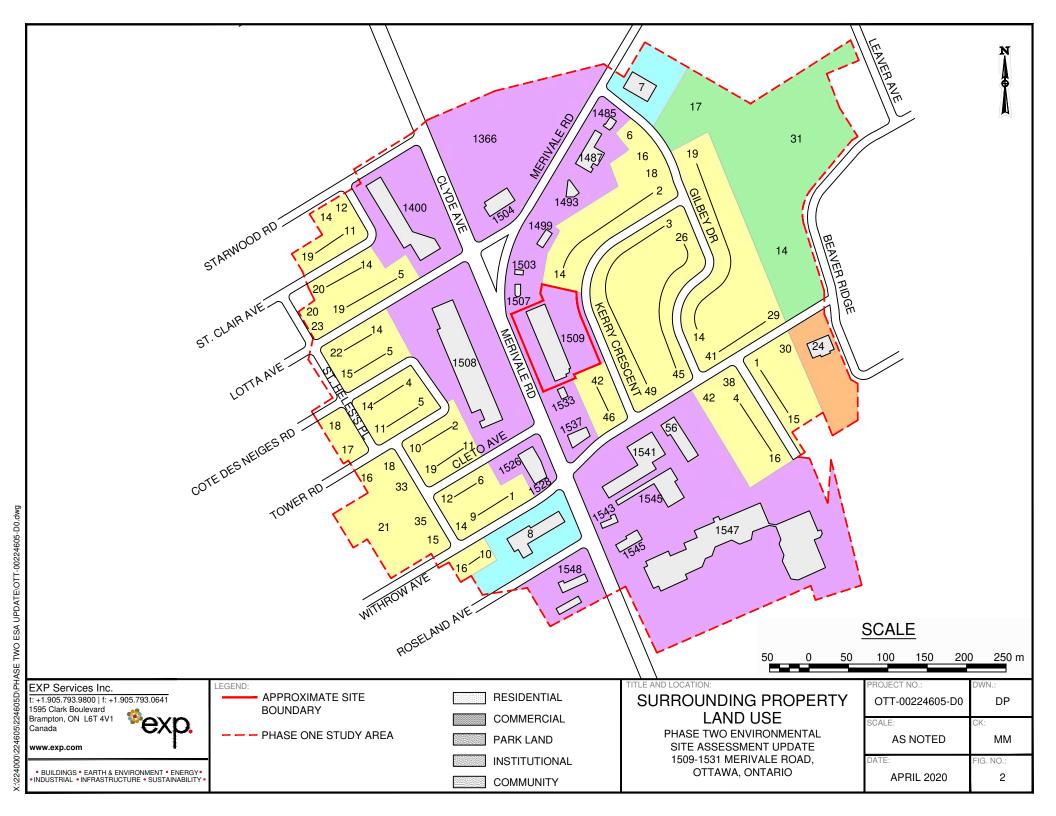
Previous Environmental Investigation Reports include:

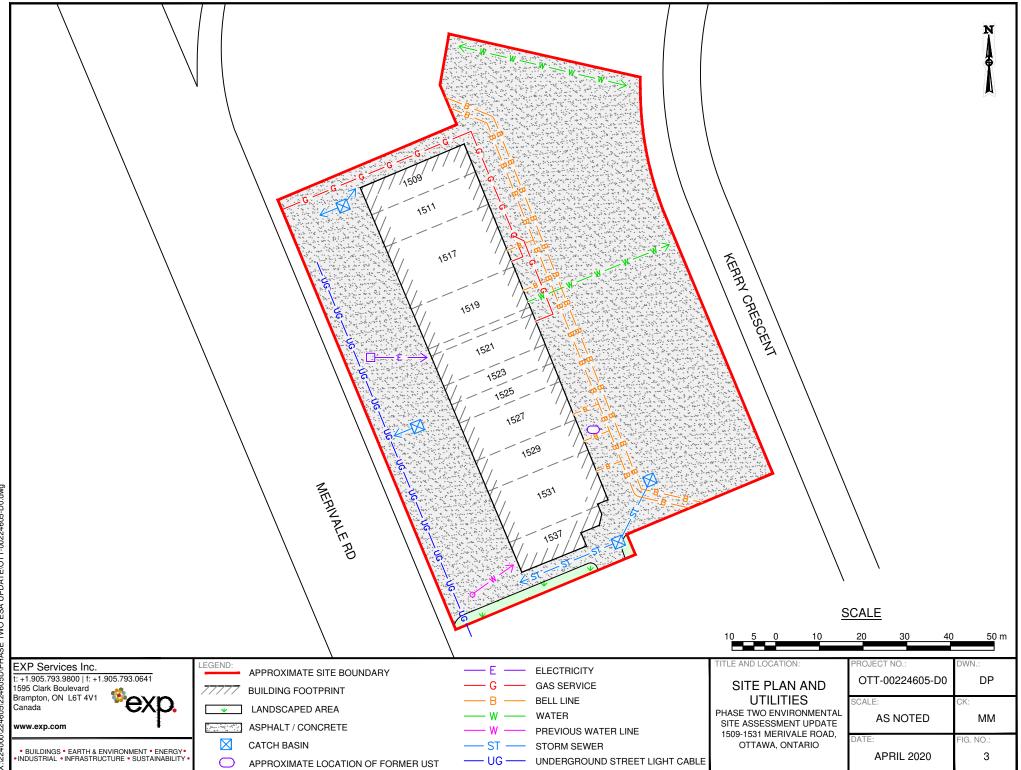
- EXP Services Inc., August 6, 2015. Environmental Drilling and Groundwater Monitoring, 1509 1531 Merivale Road, Ottawa, Ontario.
- EXP Services Inc., July 27, 2016. Phase One Environmental Site Assessment, 1509 1531 Merivale Road, Ottawa, Ontario.
- EXP Services Inc., August 10, 2016. Phase Two Environmental Site Assessment, 1509 1531 Merivale Road, Ottawa, Ontario.
- EXP Services Inc., May 31, 2019. Sub-Slab Soil Vapour Sampling Program, 1509 1531 Merivale Road, Ottawa, Ontario.
- EXP Services Inc., March 24, 2020. Phase One Environmental Site Assessment Update, 1509-1531 Merivale Road, Ottawa, Ontario.
- John D. Paterson and Associates Limited, December 4, 1998. Site Remediation Program and Limited Investigation, 1509 1531 Merivale Road, Nepean, Ontario.
- John D. Paterson and Associates Limited, February 16, 1999. Follow Up to the Site Remediation, 1509 1531 Merivale Road, Nepean, Ontario.
- Paterson Group, July 20, 2004. Phase I Environmental Site Assessment 1509 1531 Merivale Road, Ottawa, Ontario.
- Paterson Group, July 31, 2012. Environmental Summary, 1509 1531 Merivale Road, Ottawa, Ontario.

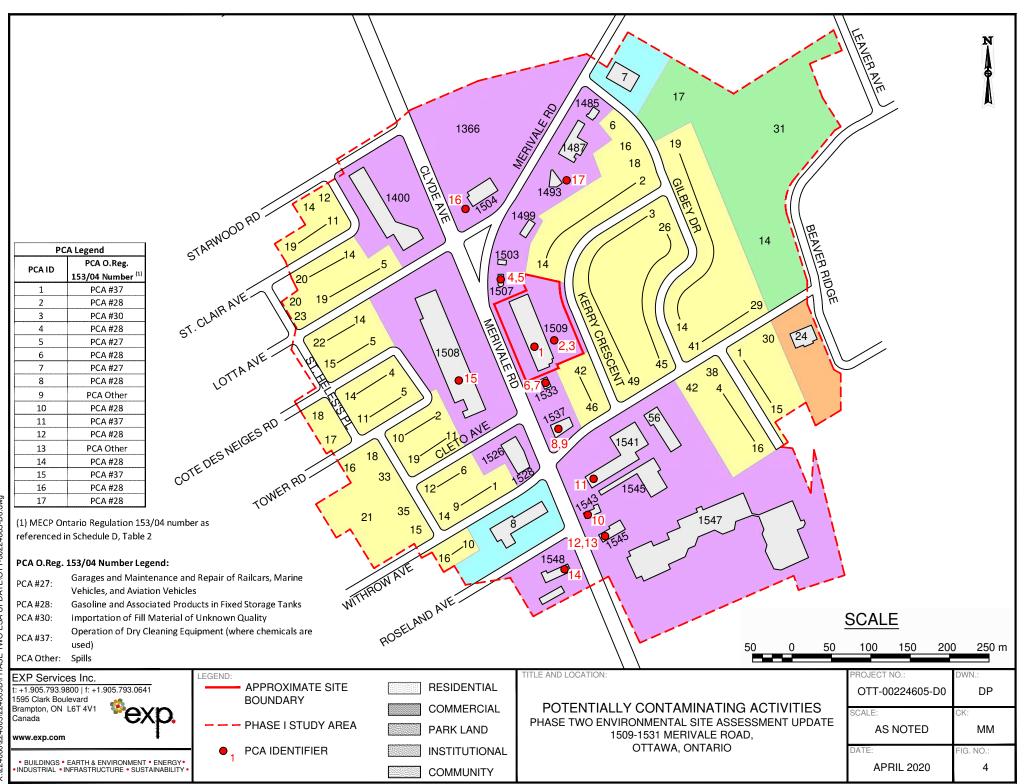
EXP Services Inc. 37

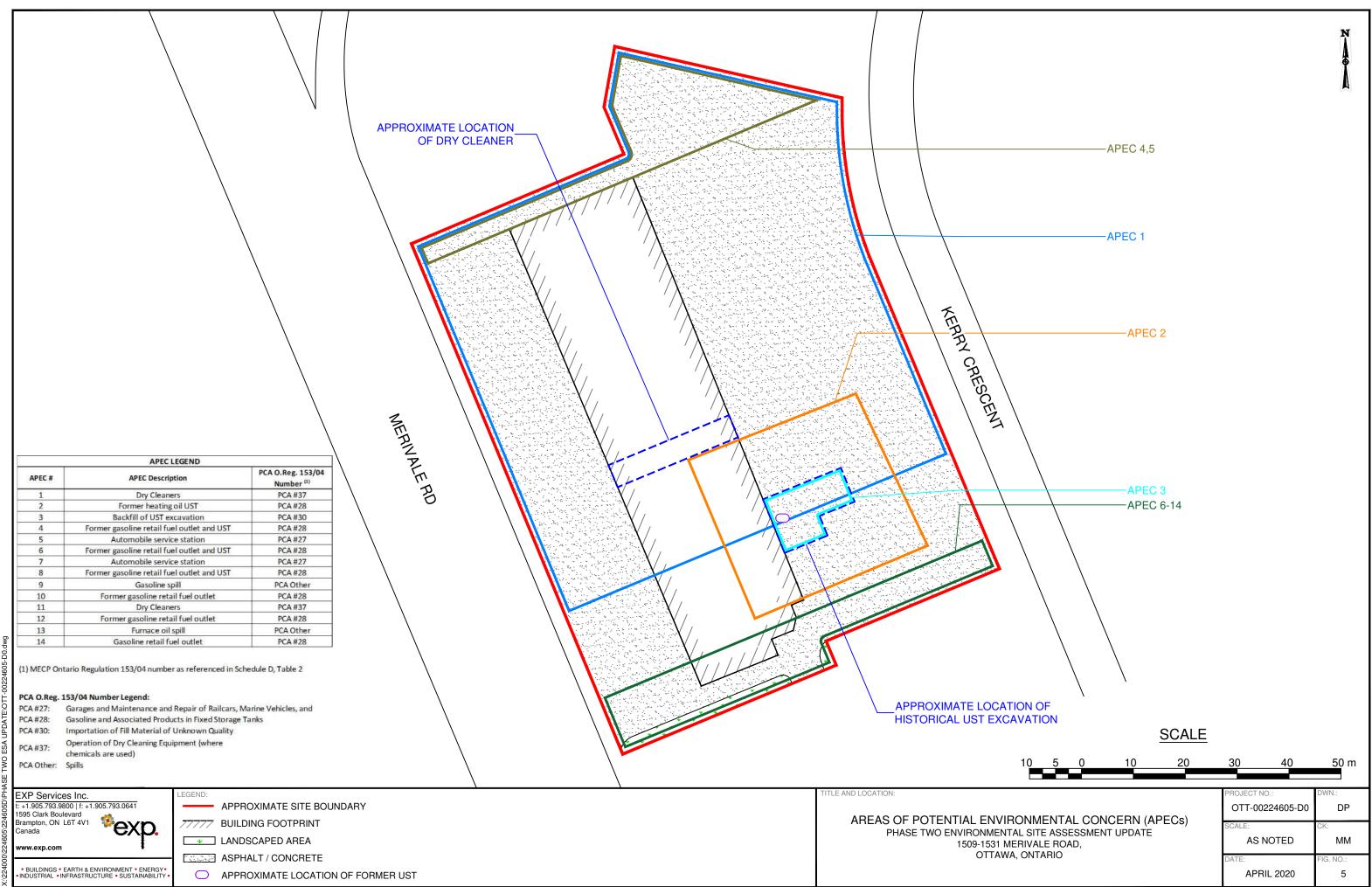
10198447 CANADA INC. Phase Two Environmental Site Assessment Update 1509 -1531 Merivale Road, Ottawa, Ontario Project Number: OTT-00224605-D0 April 13, 2020

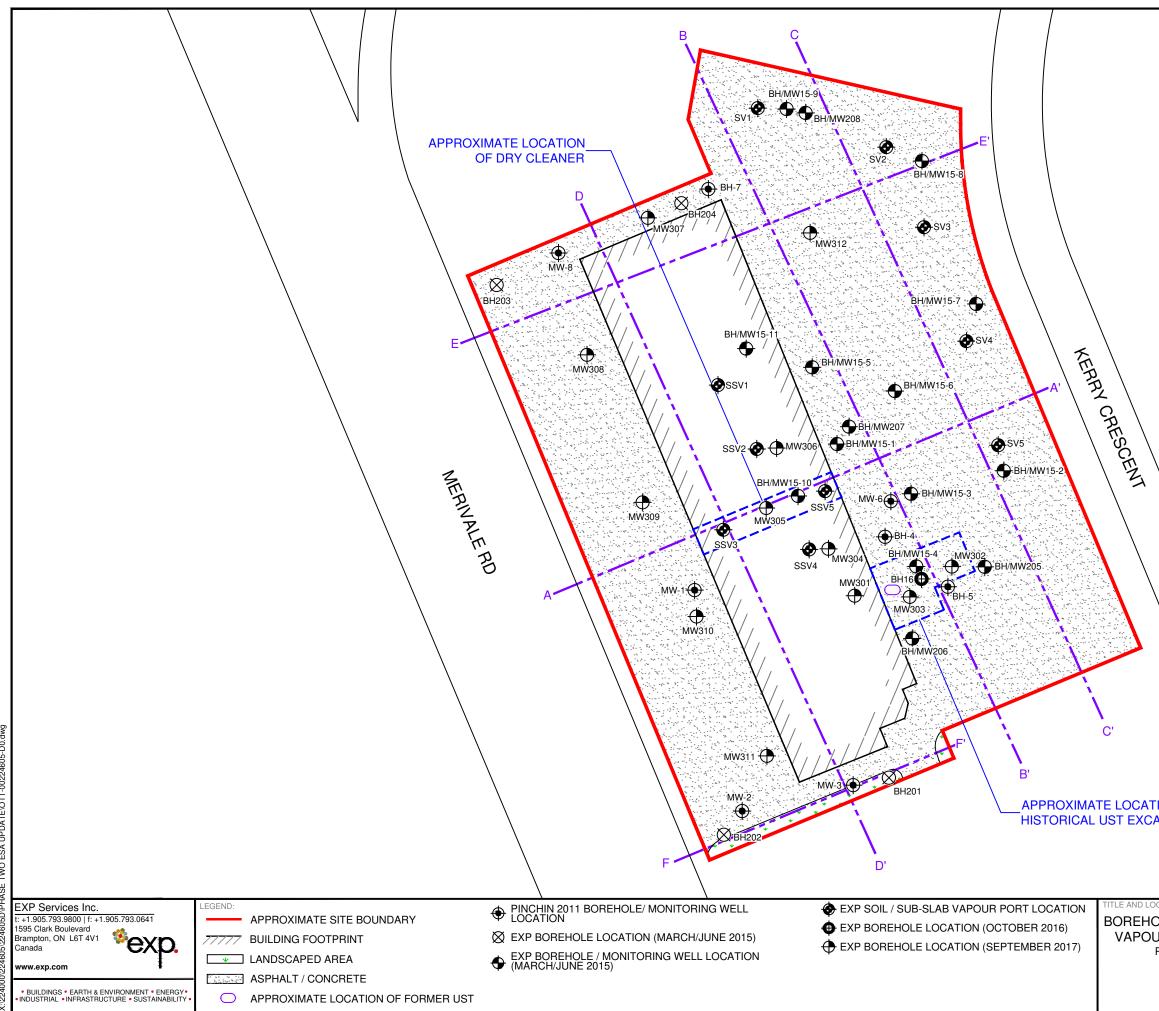
- Pinchin Environmental Ltd., August 5, 2011. Phase I Environmental Site Assessment 1509 Merivale Road, Ottawa, Ontario.
- Pinchin Environmental Ltd., September 16, 2011. Phase II Environmental Site Assessment 1509 Merivale Road, Ottawa, Ontario.

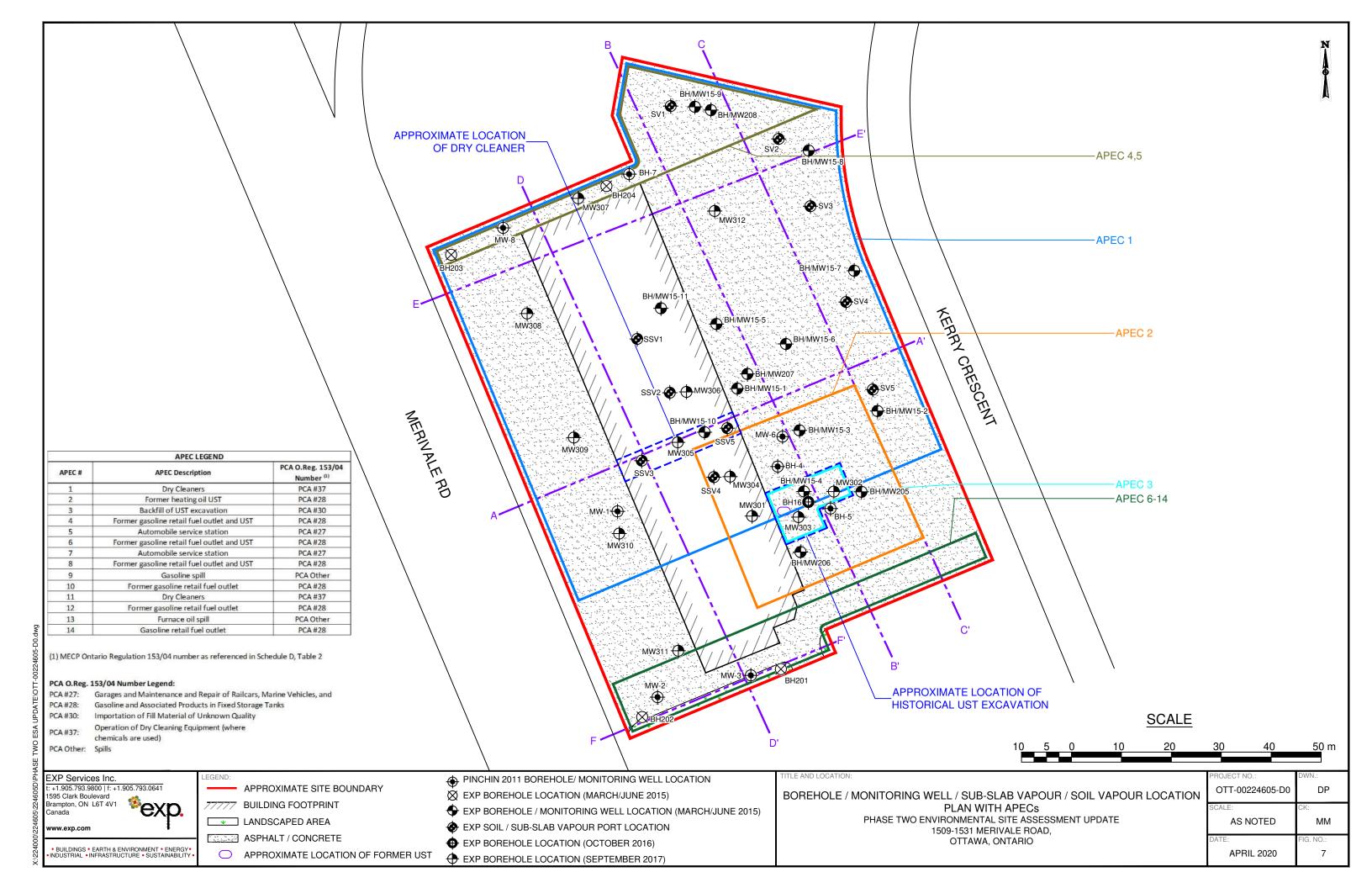

EXP Services Inc.

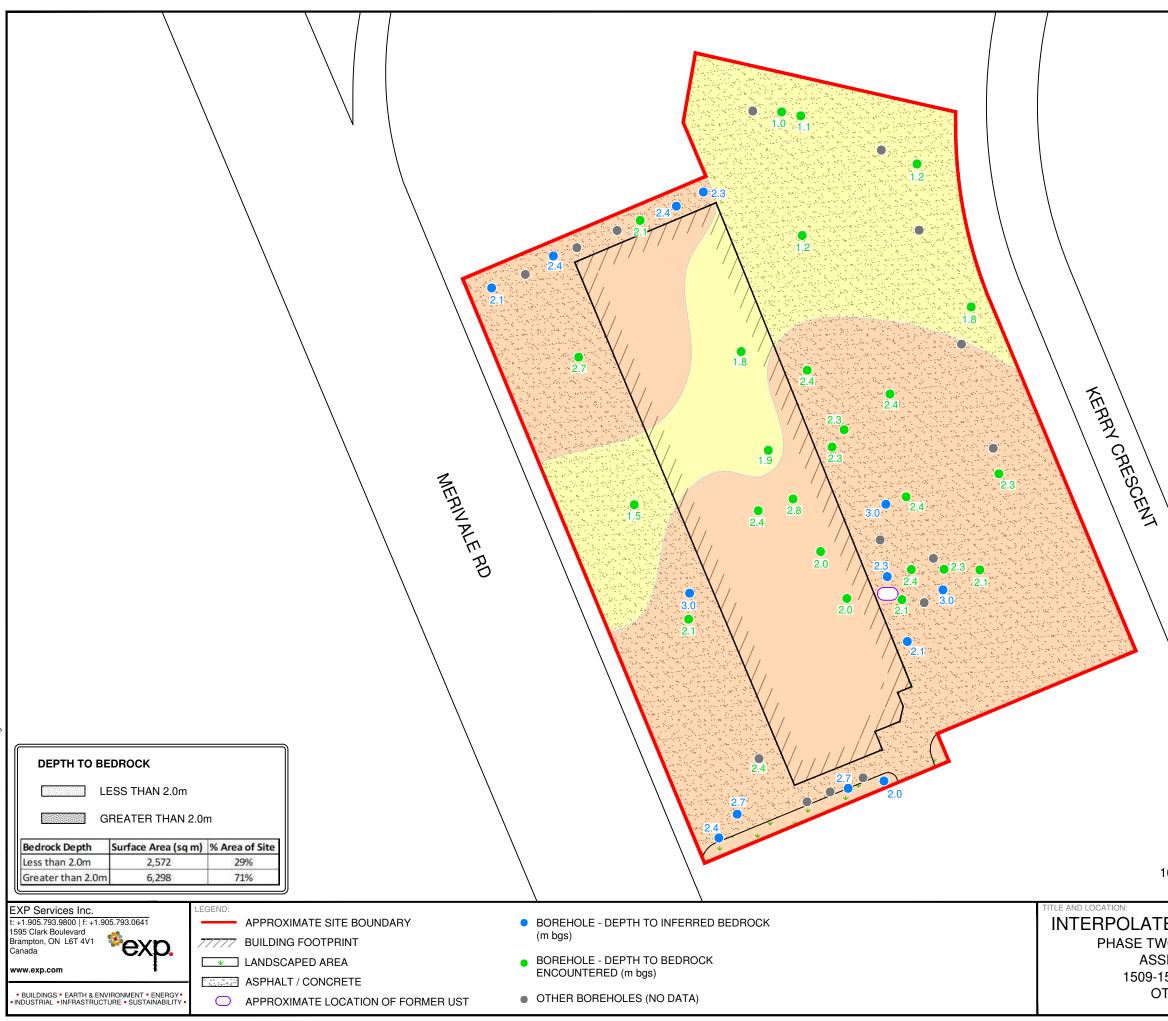

10198447 CANADA INC. Phase Two Environmental Site Assessment Update 1509 -1531 Merivale Road, Ottawa, Ontario Project Number: OTT-00224605-D0 December 20, 2021


Figures

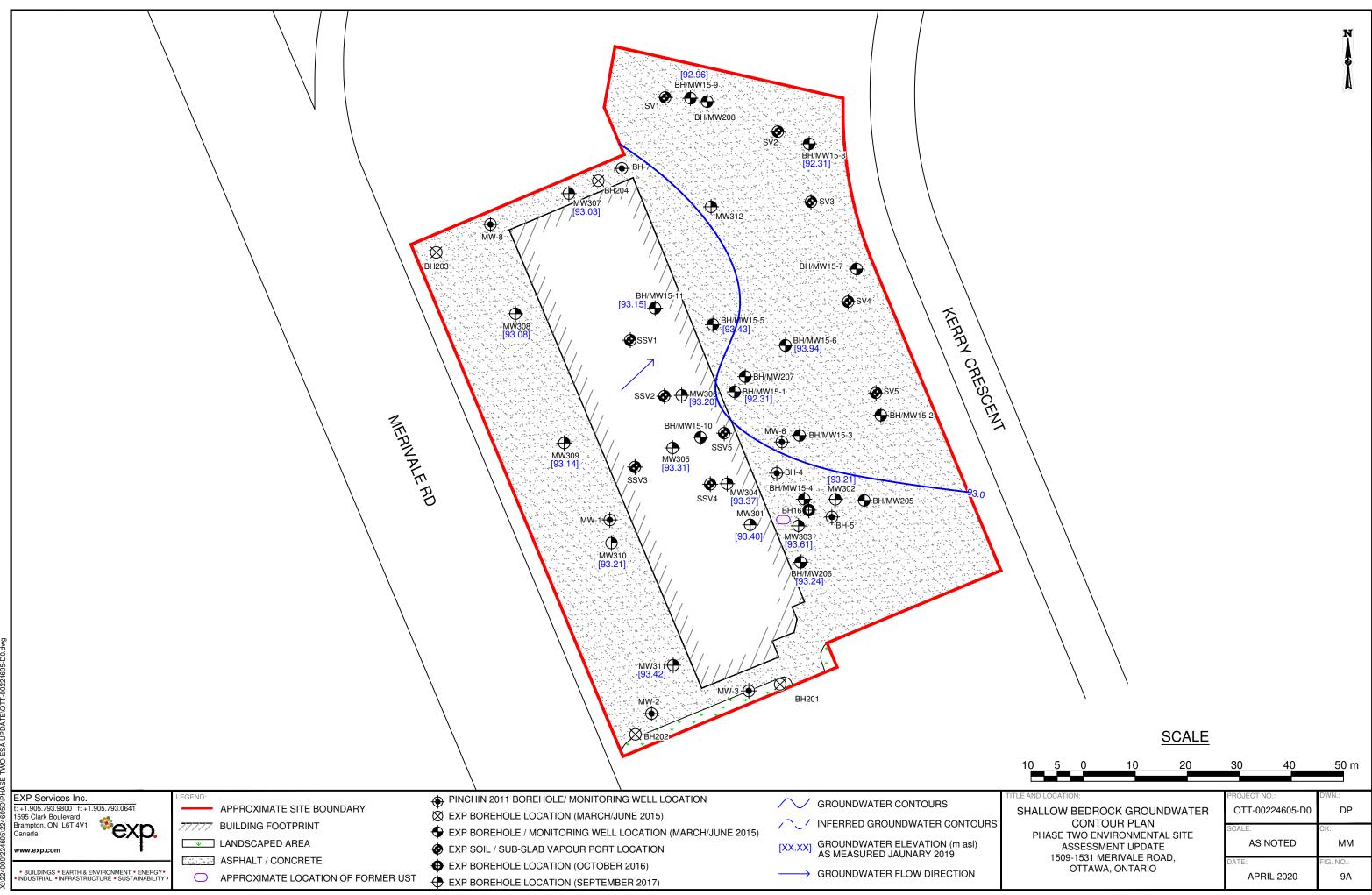


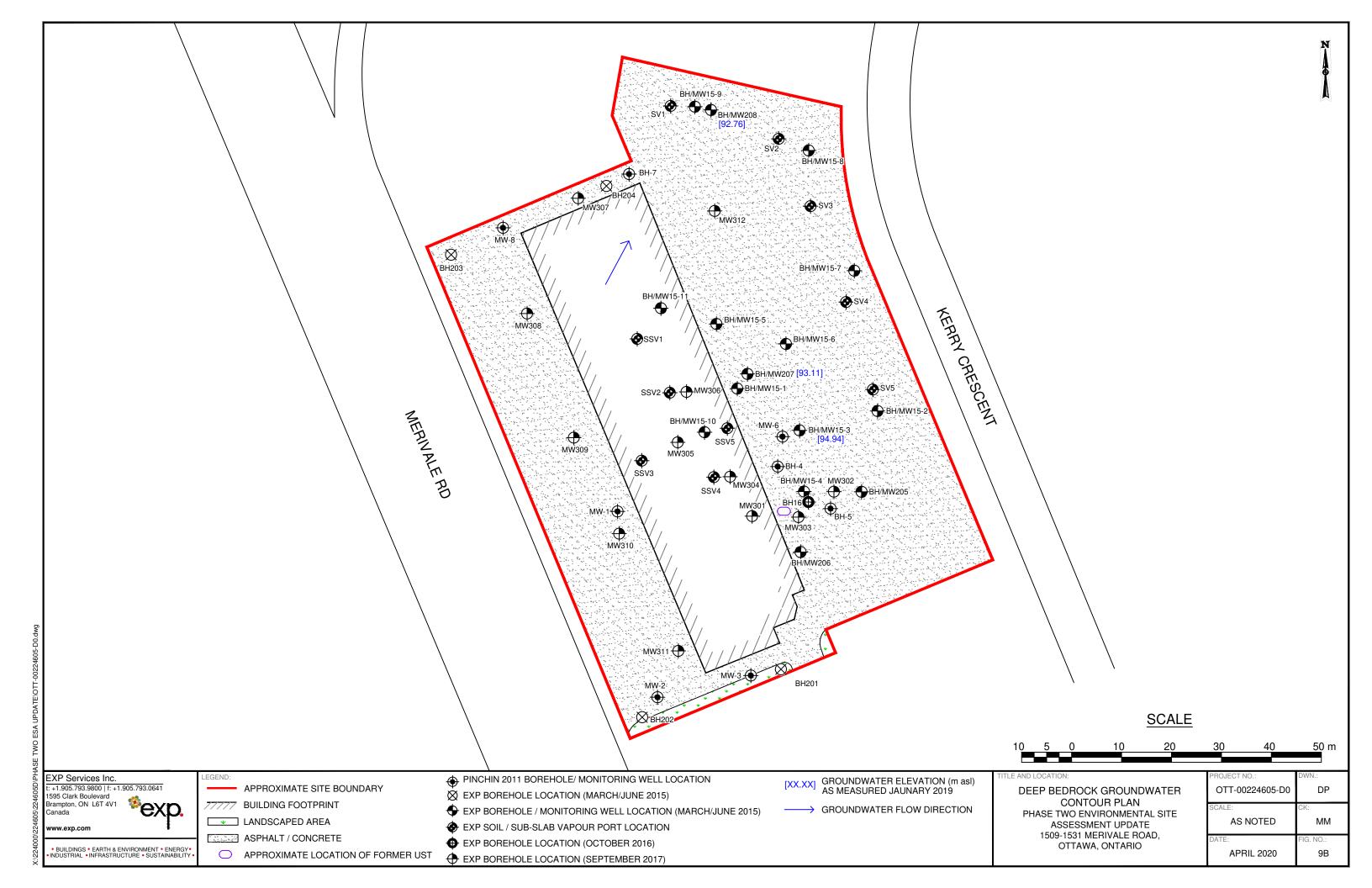


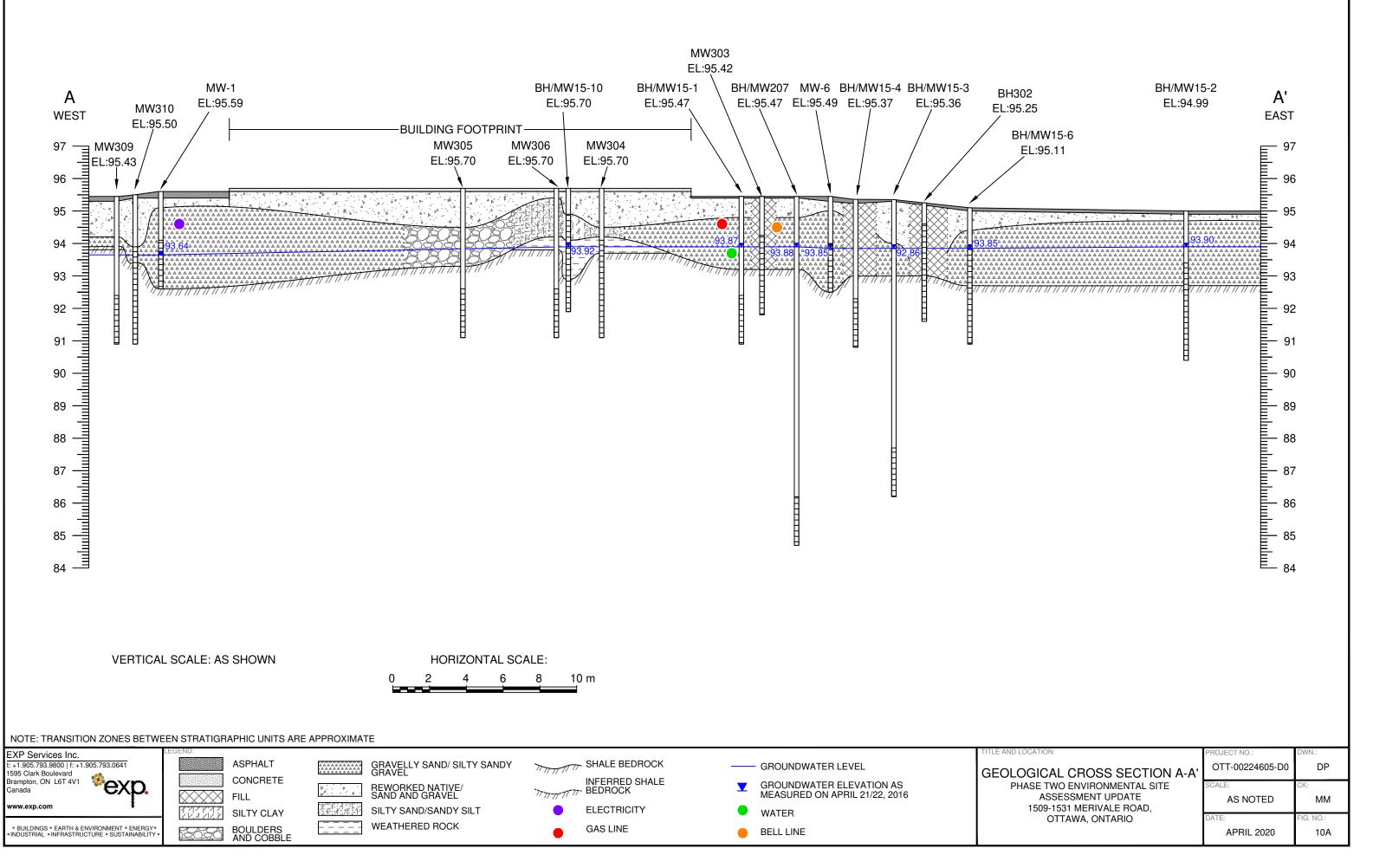


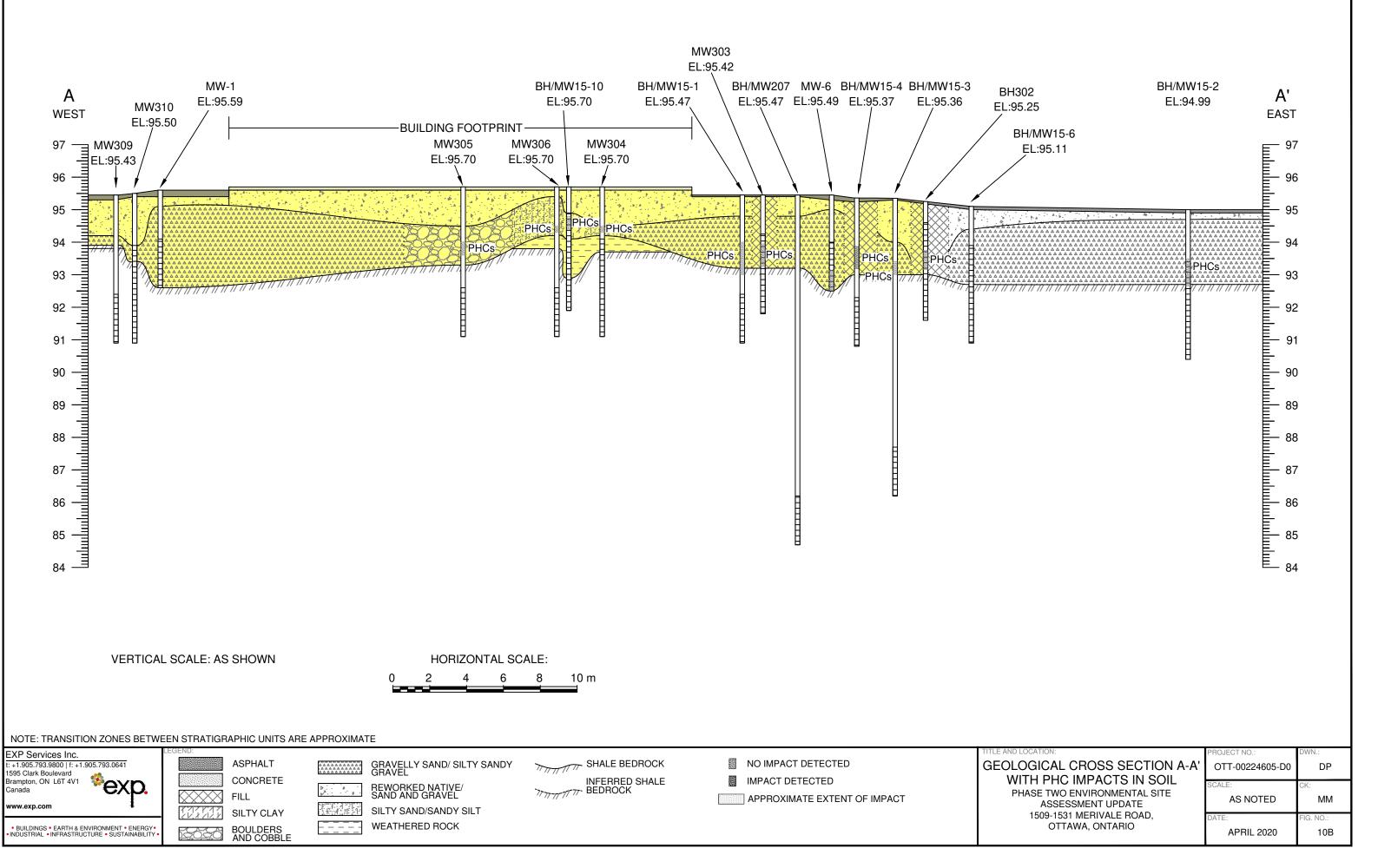


\backslash					
	\setminus				
	1				
VATION		SCALE			
		JOALL			
10 5 0	10		30	40	50 m
10 <u>5</u> 0	10	20	30 PBOJECTI	40	50 m
LE / MONITORIN	G WELL	20 _/ SUB-SLAB	PROJECT I OTT-00		DWN.: DP
10 5 0 EATION: DLE / MONITORIN R / SOIL VAPOUI PHASE TWO ENVIROI ASSESSMENT 1509-1531 MERIV	G WELL R LOCA NMENTAL UPDATE	20 - / SUB-SLAB TION PLAN . SITE	PROJECT I OTT-00 SCALE:	NO.:	DWN.:

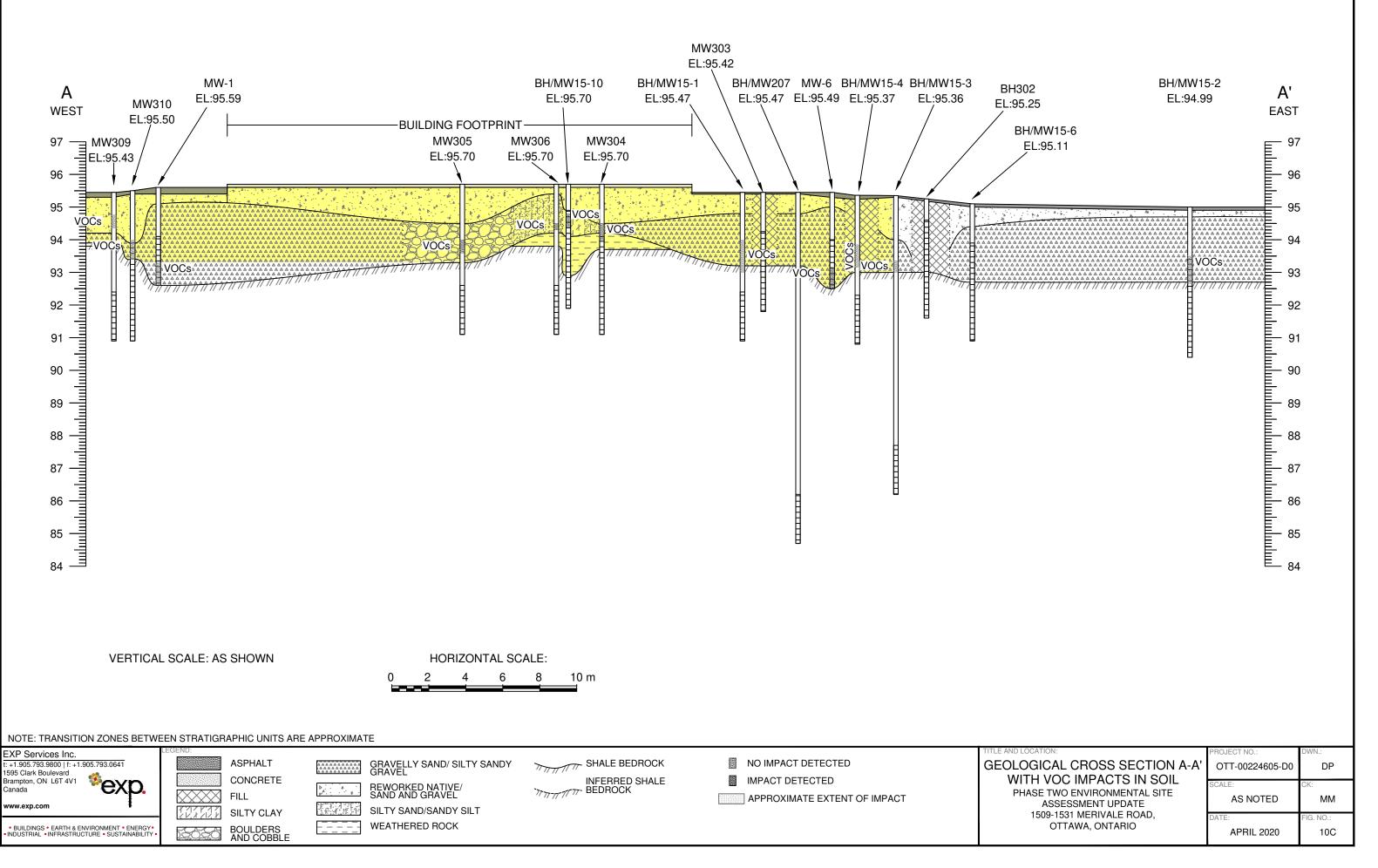

N

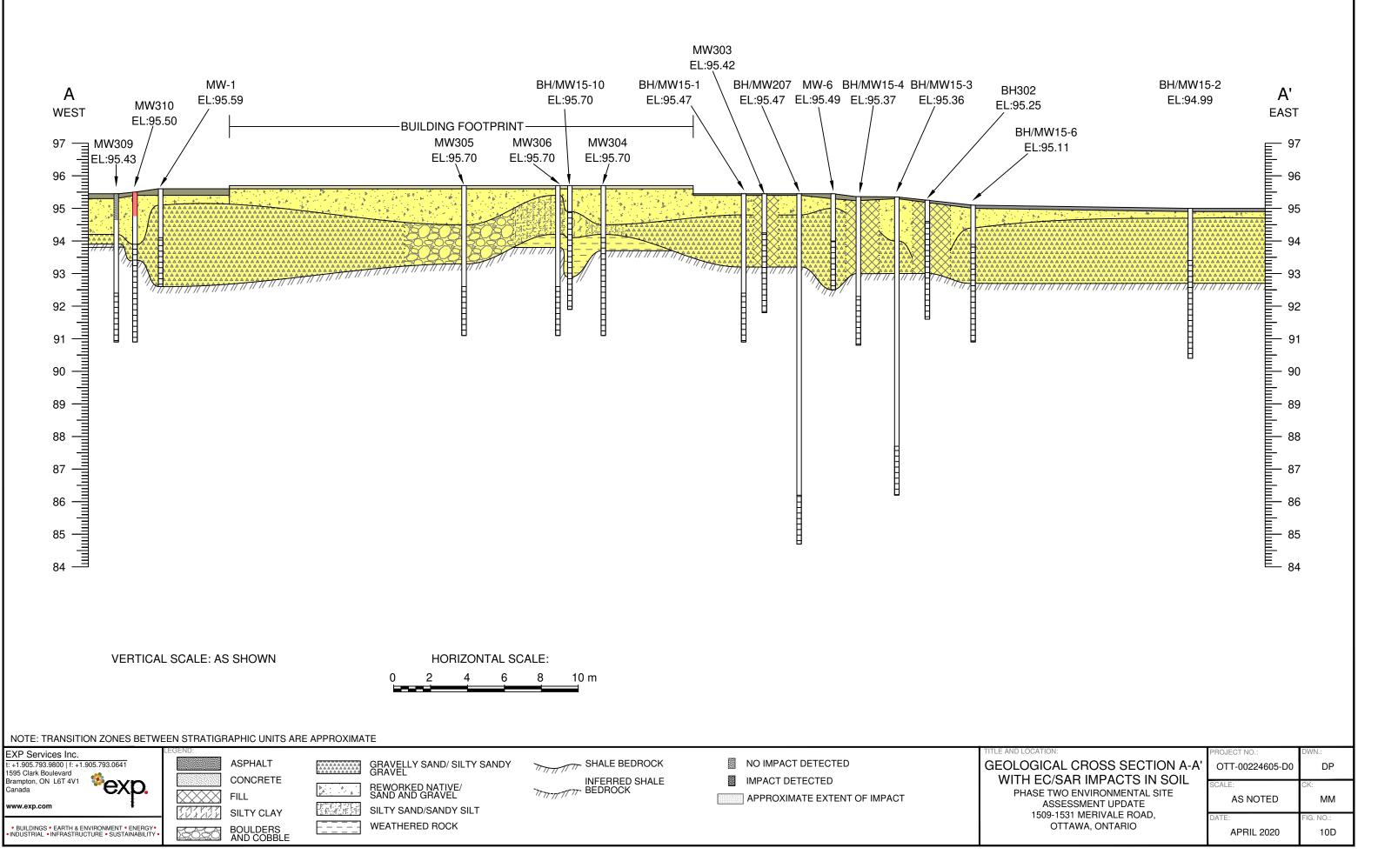


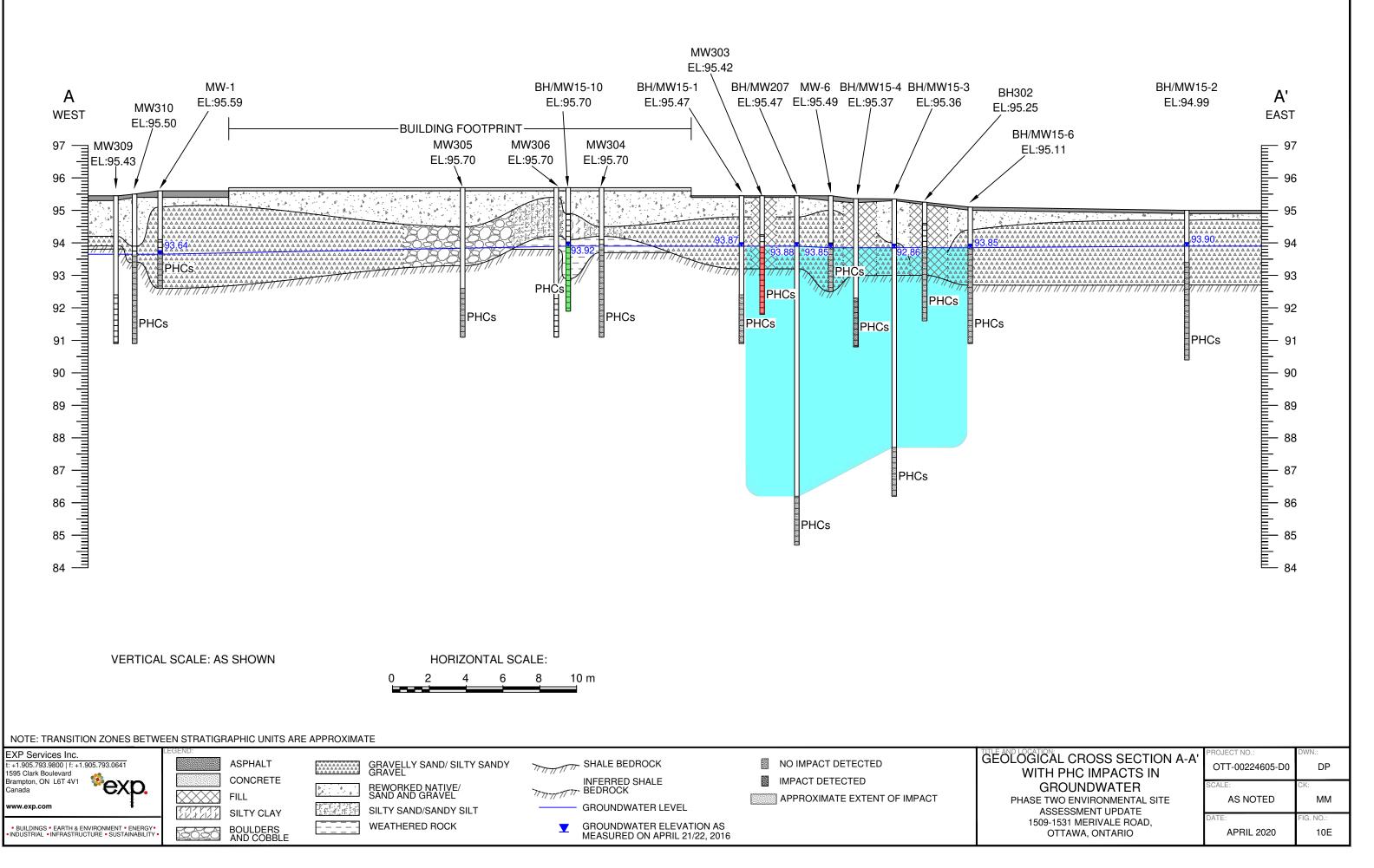


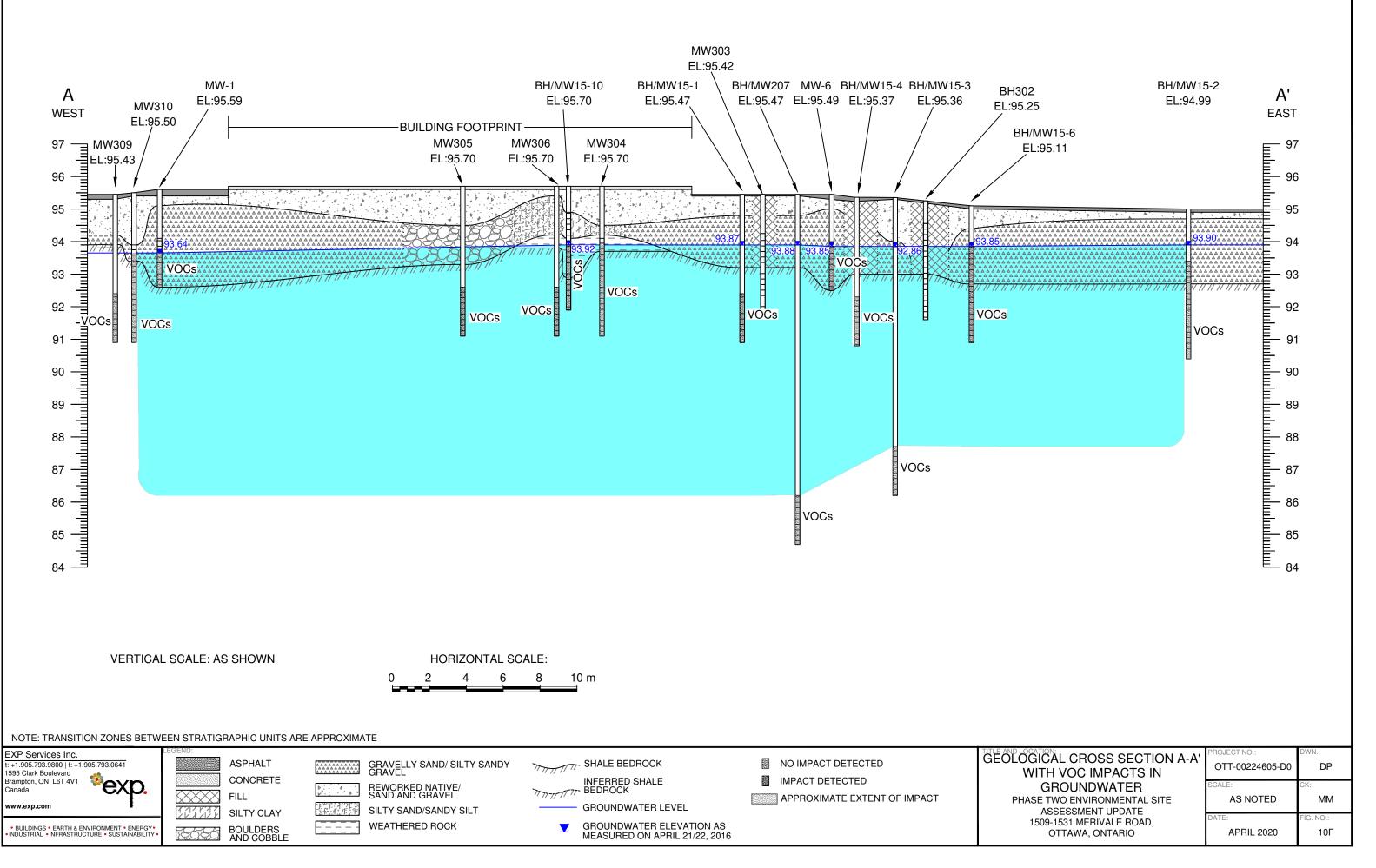

					A
\					
10 5 0	10	SCALE	30	40	50 m
10 5 0	10	20			50 m
TED DEPTH				224605-D0	DWN.: DP
WO ENVIRONME	DATE	SIΓE		NOTED	CK: MM
-1531 MERIVALE OTTAWA, ONTAF			DATE: APF	RIL 2020	FIG. NO.: 8
			-	<u> </u>	

N

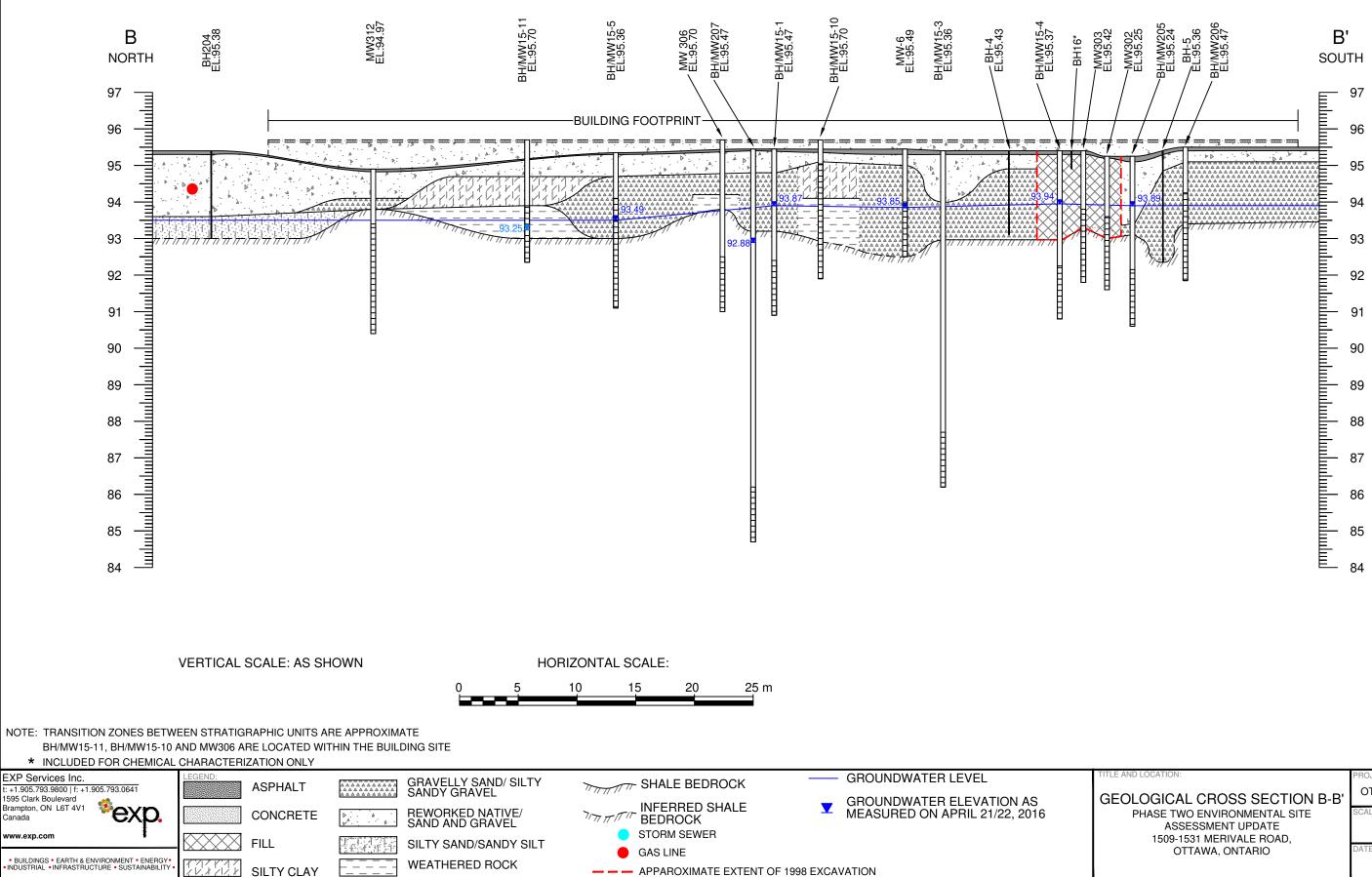


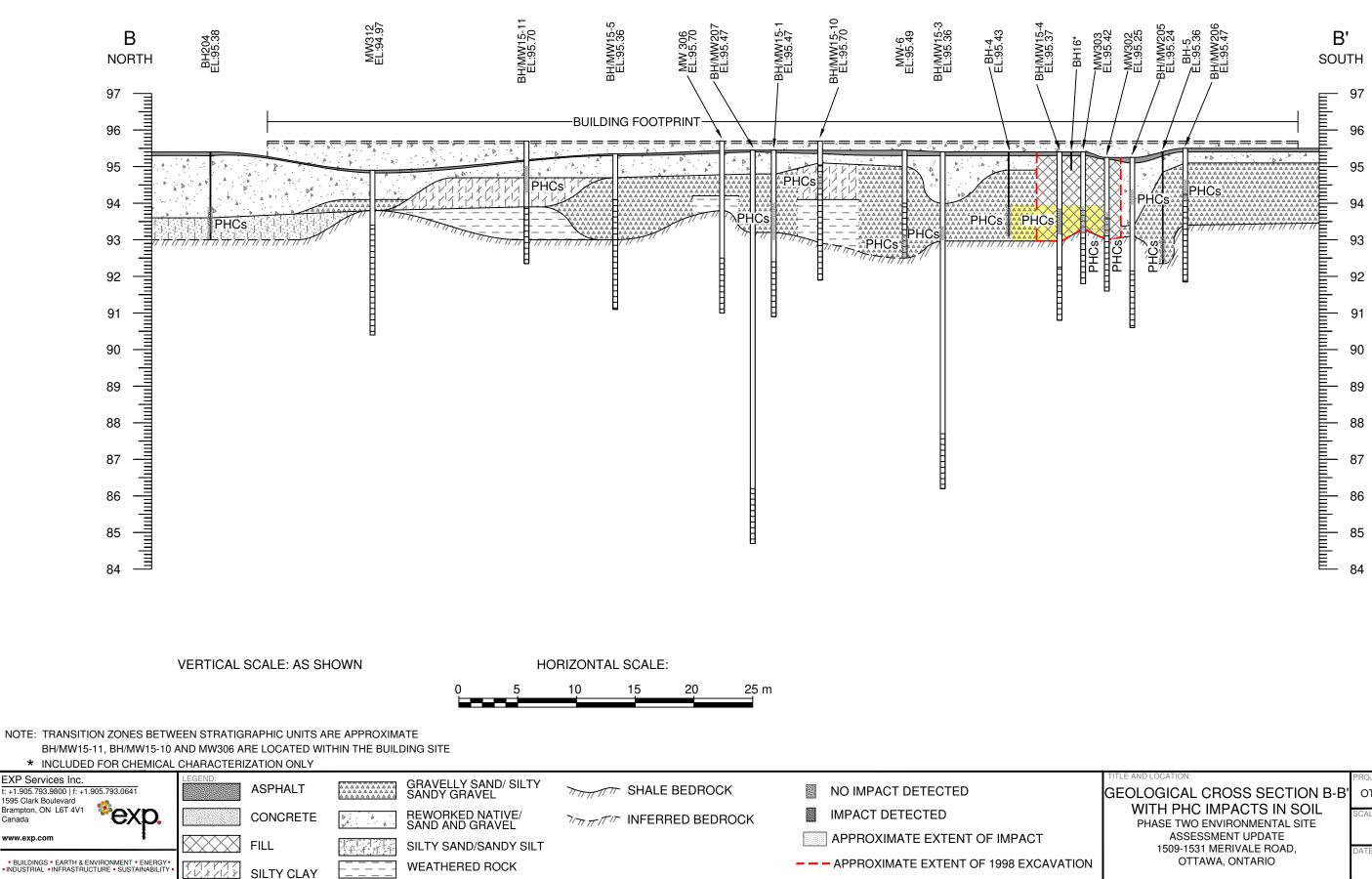


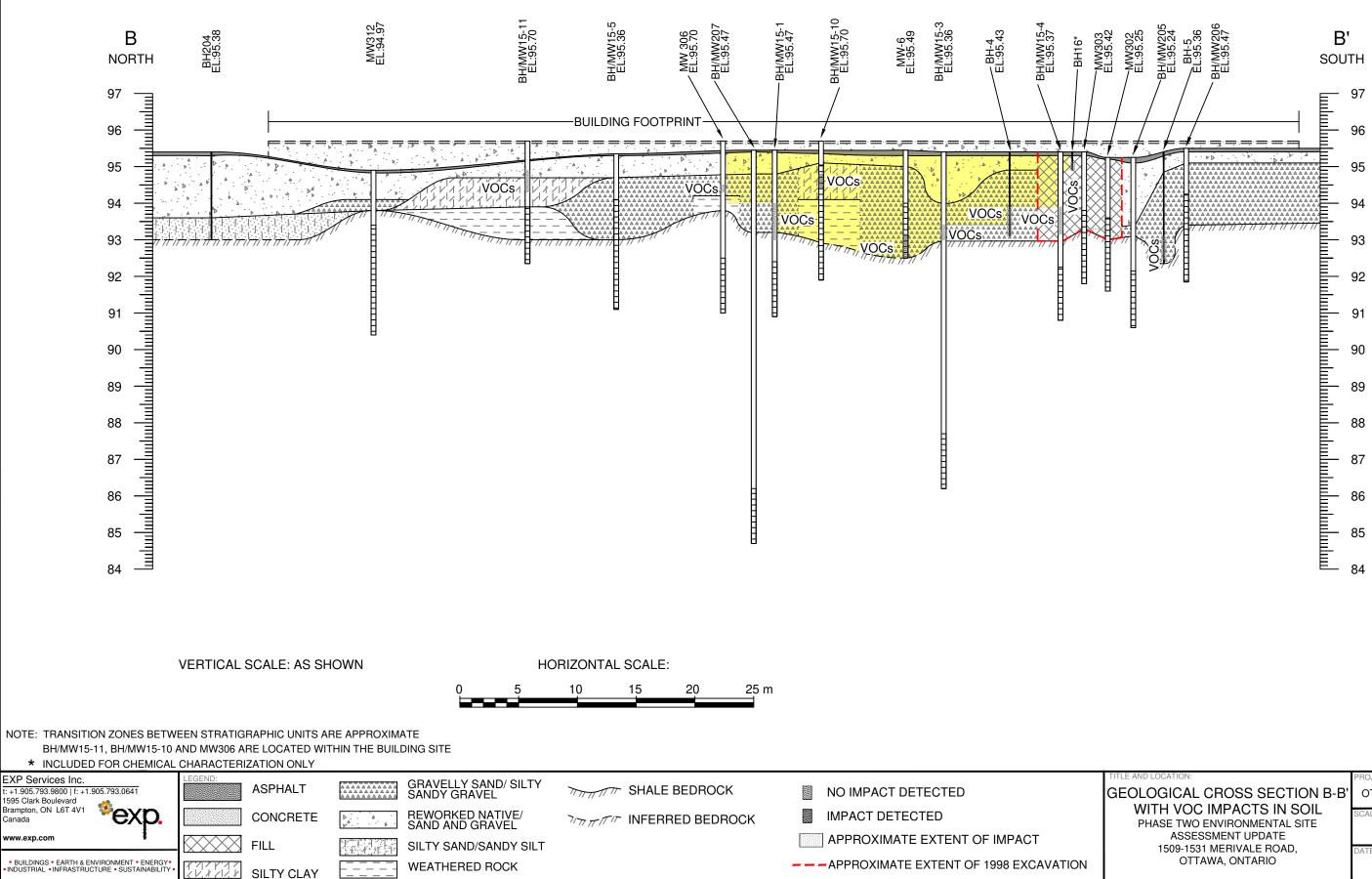


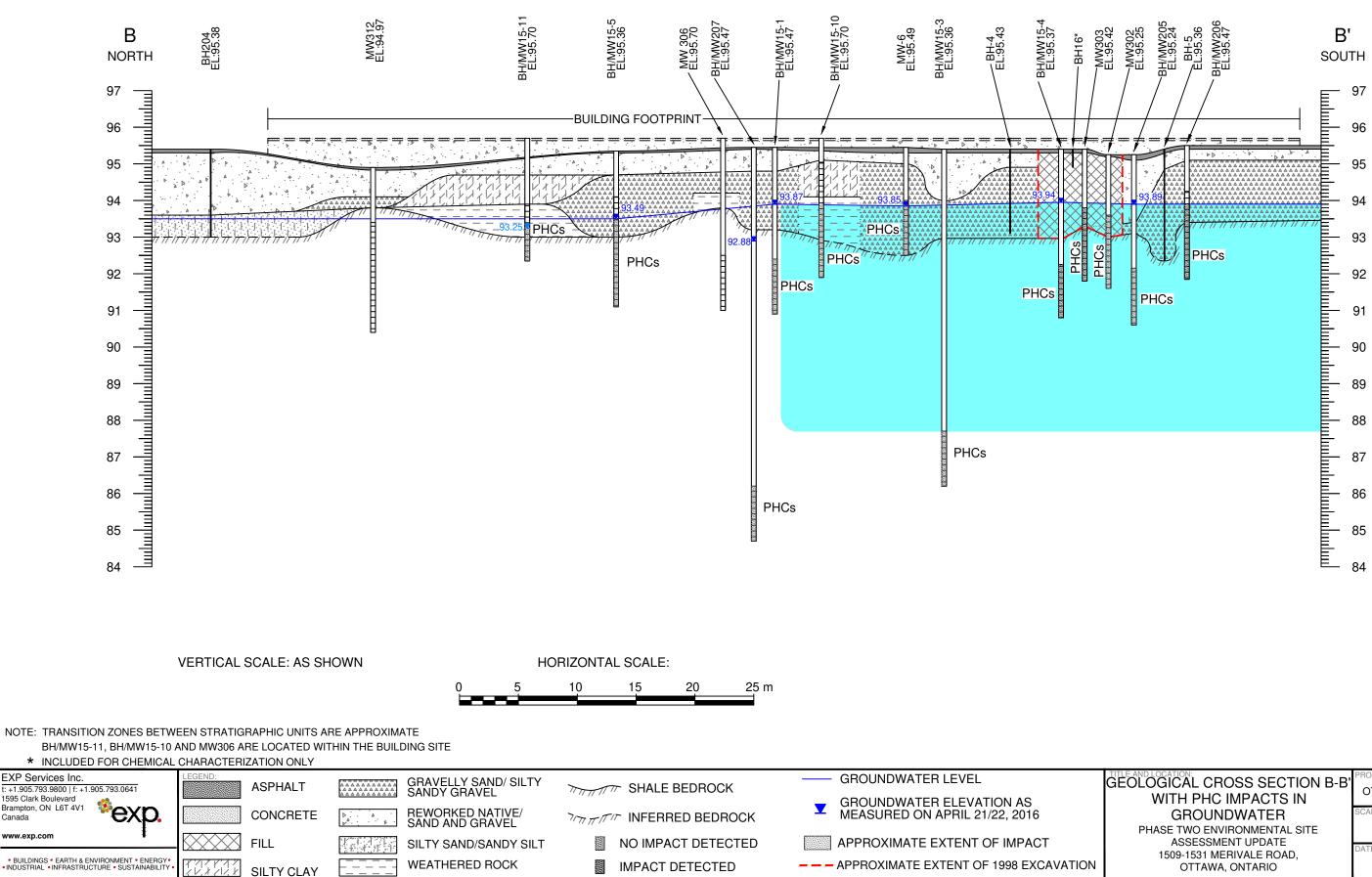


224000\224605\224605D\PHASE TWO ESA UPDATE\OTT-00224605-D0.dv



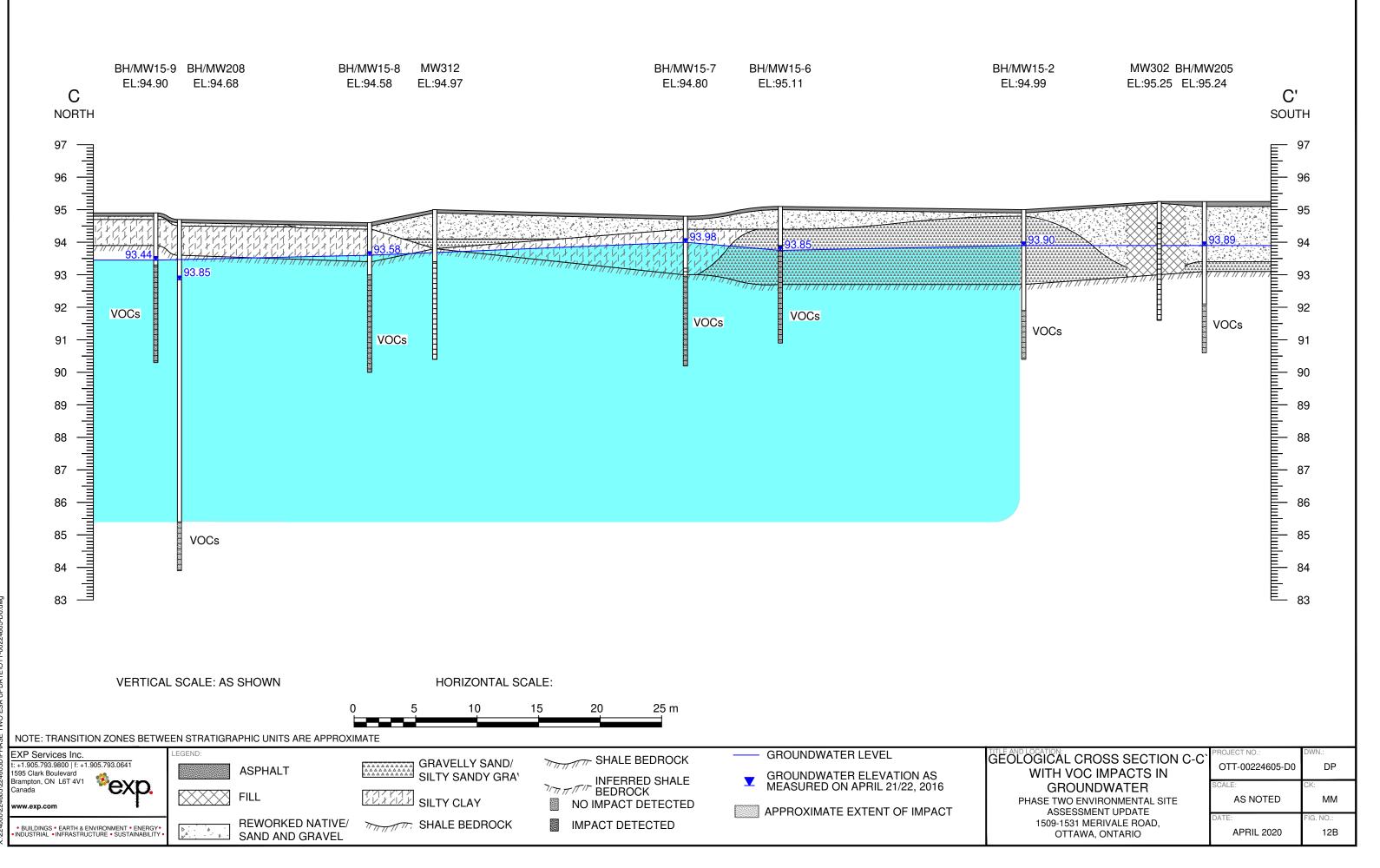



24000\224605\224605D\PHASE TWO ESA UPDATE\OTT-00224605-D(

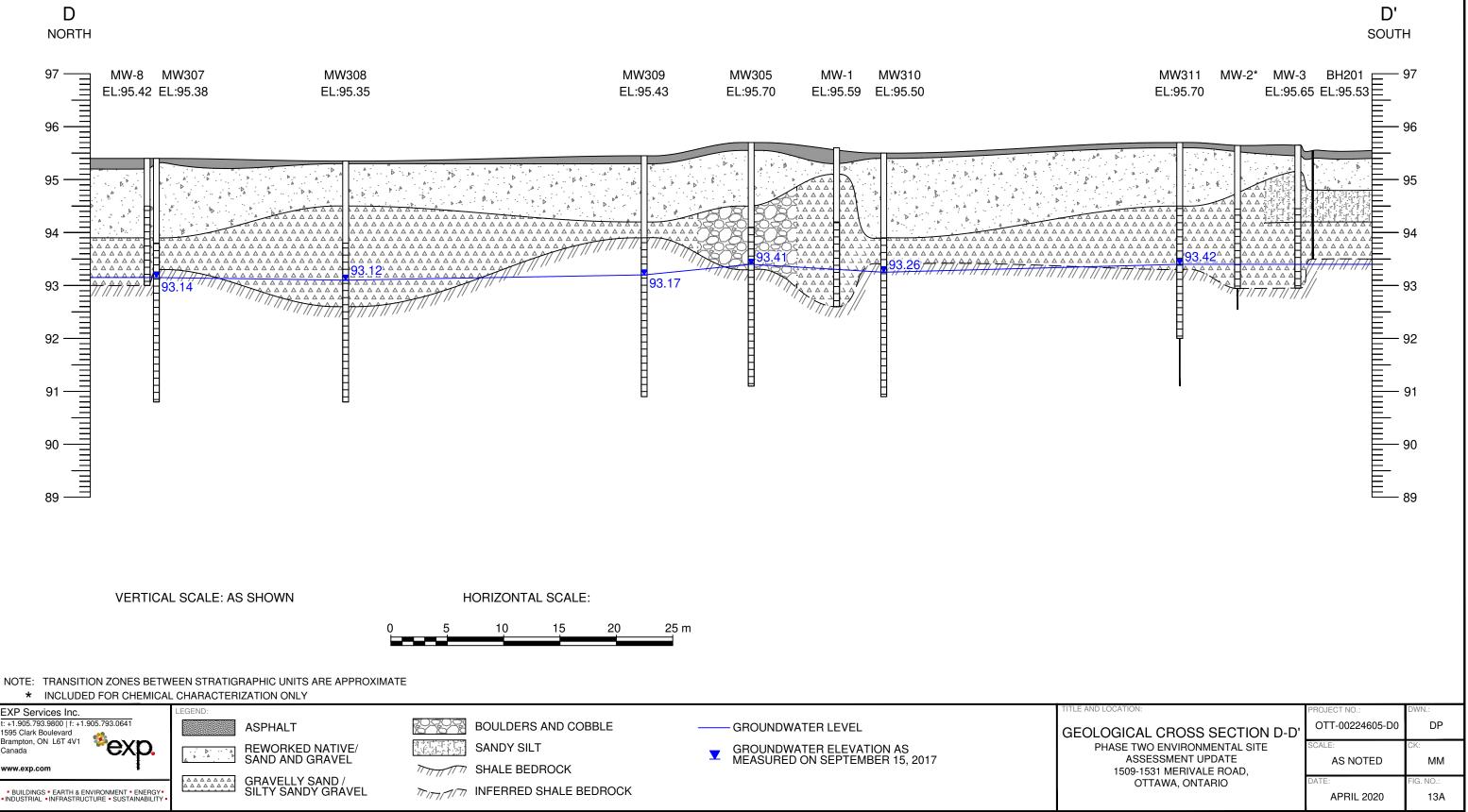

AND LOCATION:	PROJECT NO.:	DWN.:
OLOGICAL CROSS SECTION B-B'	OTT-00224605-D0	DP
PHASE TWO ENVIRONMENTAL SITE ASSESSMENT UPDATE 1509-1531 MERIVALE ROAD.	SCALE: AS NOTED	ск: ММ
OTTAWA, ONTARIO	DATE:	FIG. NO.:
	APRIL 2020	11A

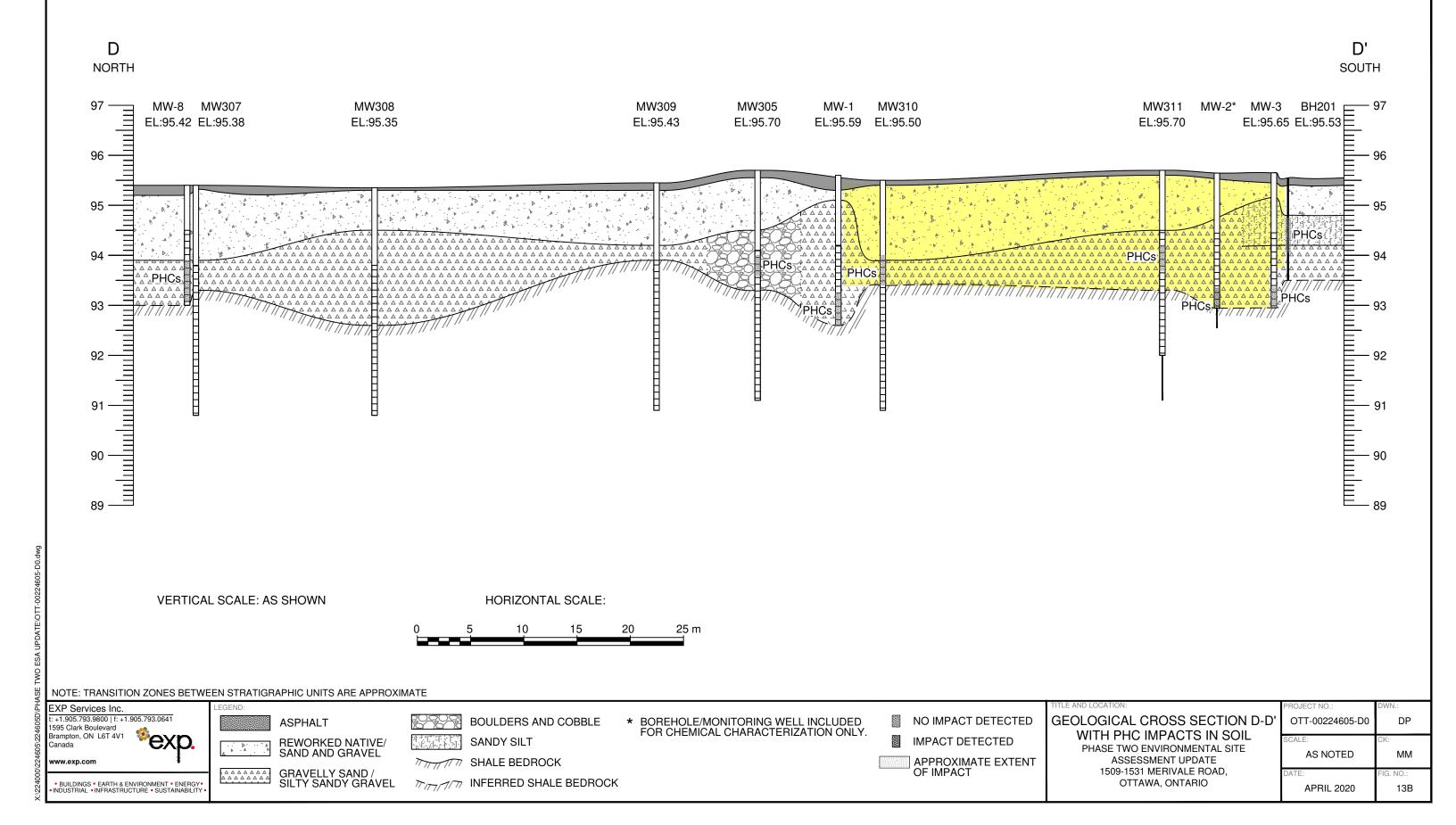
ITLE AND LOCATION:	PROJECT NO.:	DWN.:
EOLOGICAL CROSS SECTION B-B'	OTT-00224605-D0	DP
WITH PHC IMPACTS IN SOIL	SCALE:	CK:
PHASE TWO ENVIRONMENTAL SITE ASSESSMENT UPDATE	AS NOTED	MM
1509-1531 MERIVALE ROAD,	DATE:	FIG. NO.:
OTTAWA, ONTARIO	APRIL 2020	11B

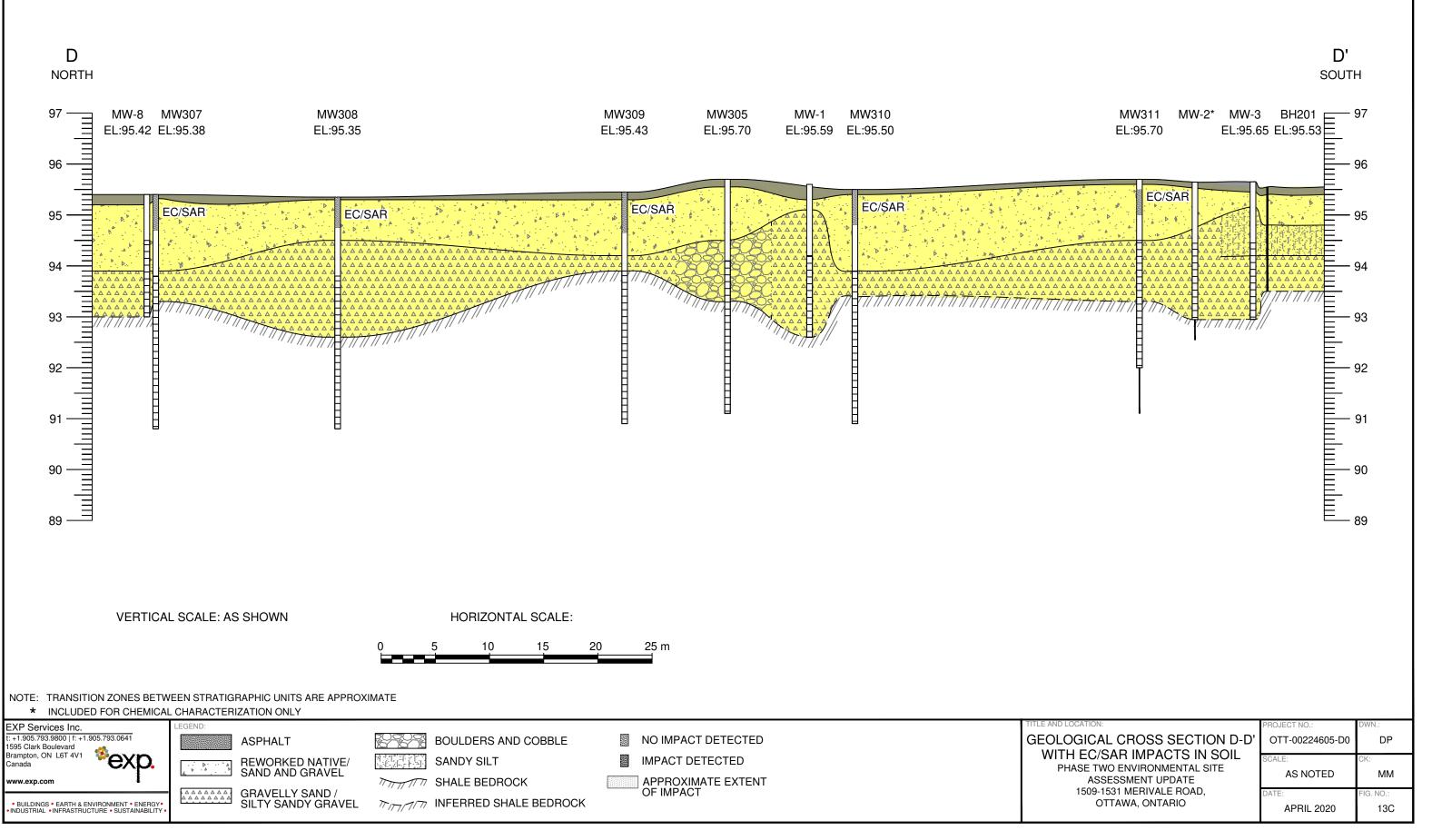
ITLE AND LOCATION:	PROJECT NO.:	DWN.:
EOLOGICAL CROSS SECTION B-B'	OTT-00224605-D0	DP
WITH VOC IMPACTS IN SOIL	SCALE: CK:	
PHASE TWO ENVIRONMENTAL SITE ASSESSMENT UPDATE	AS NOTED	MM
1509-1531 MERIVALE ROAD,	DATE:	FIG. NO.:
OTTAWA, ONTARIO	APRIL 2020	11C

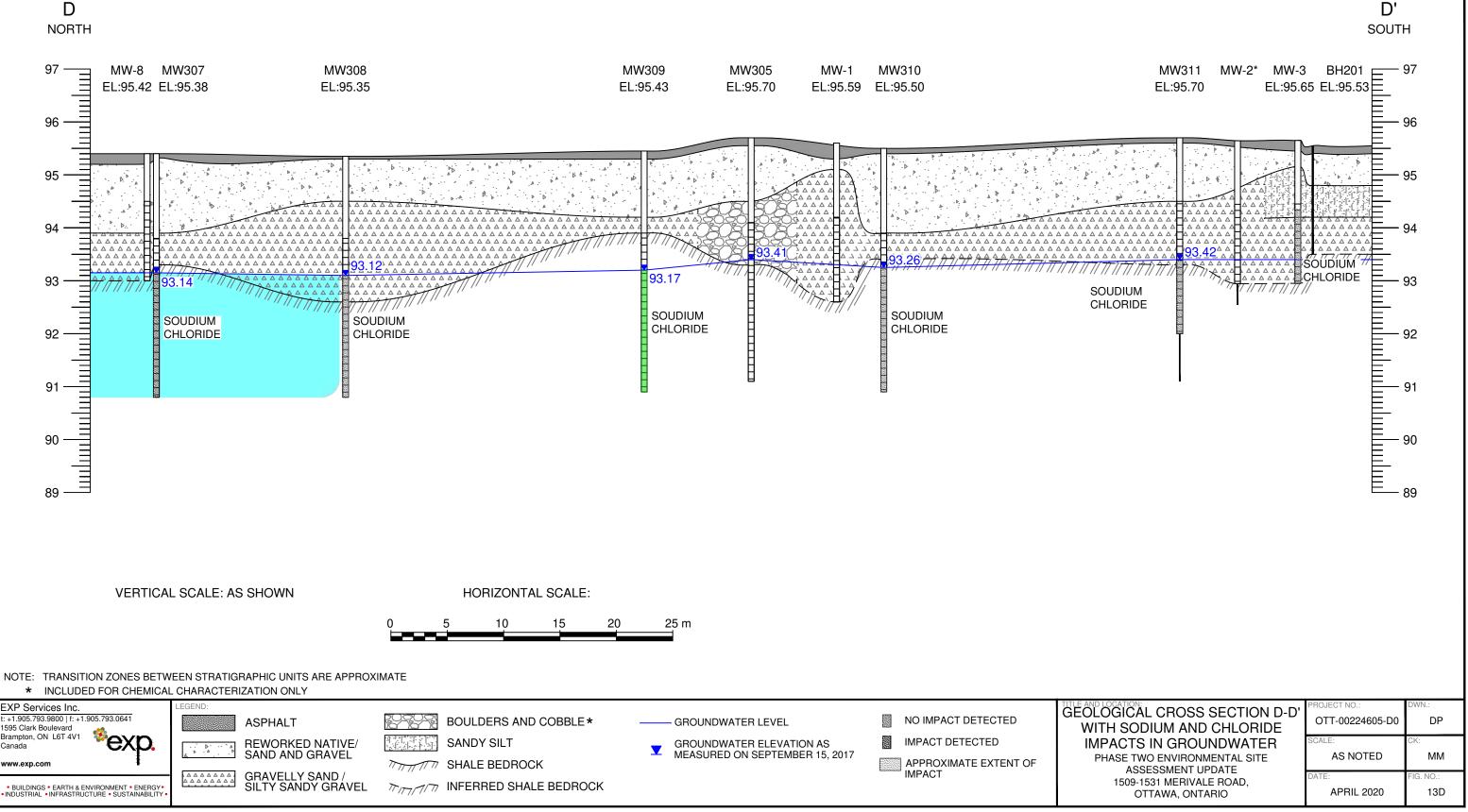


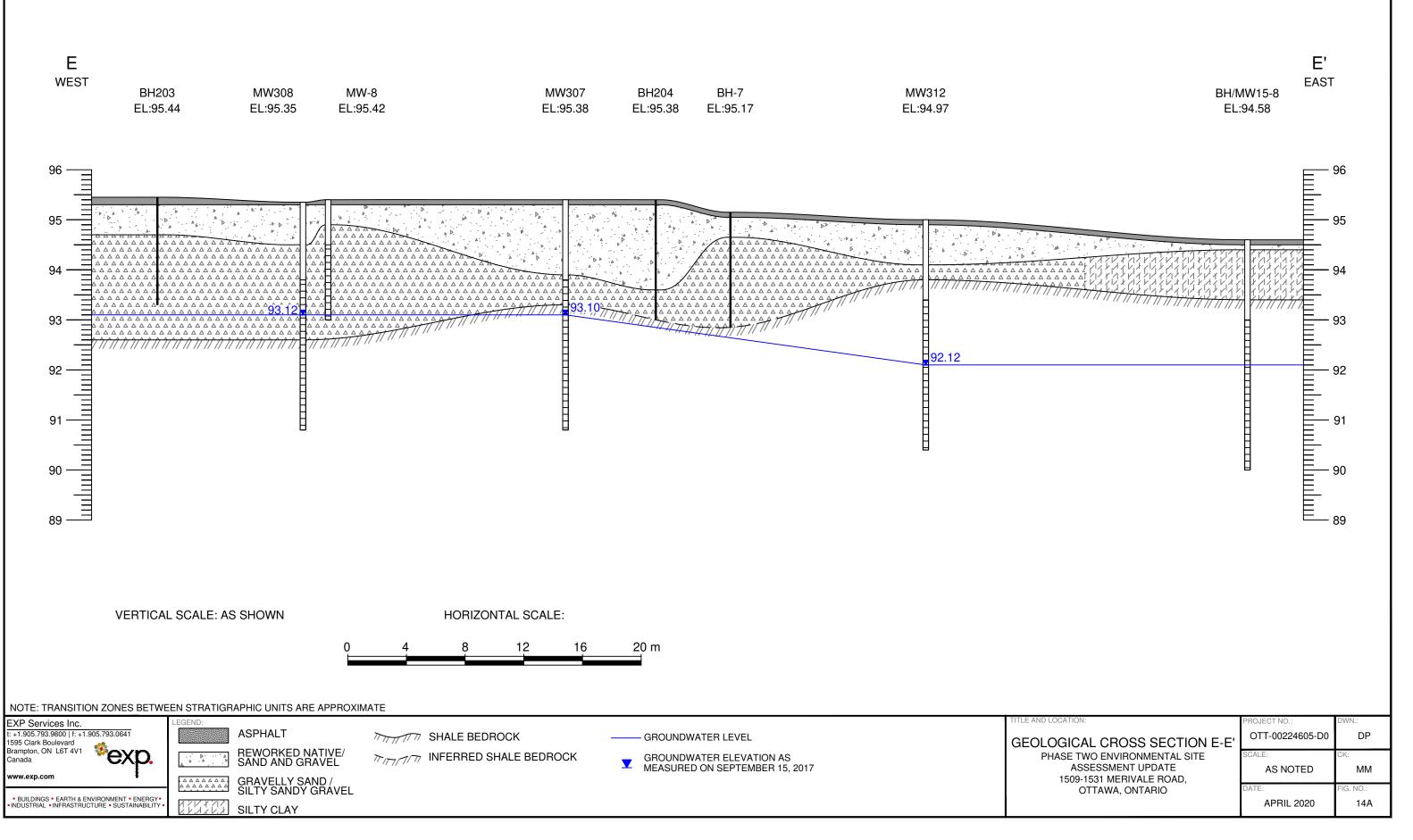
EOLOGICAL CROSS SECTION B-B'	PROJECT NO.:	DWN.:
WITH PHC IMPACTS IN	OTT-00224605-D0	DP
GROUNDWATER PHASE TWO ENVIRONMENTAL SITE ASSESSMENT UPDATE	SCALE: AS NOTED	ск: ММ
1509-1531 MERIVALE ROAD,	DATE:	FIG. NO.:
OTTAWA, ONTARIO	APRIL 2020	11D

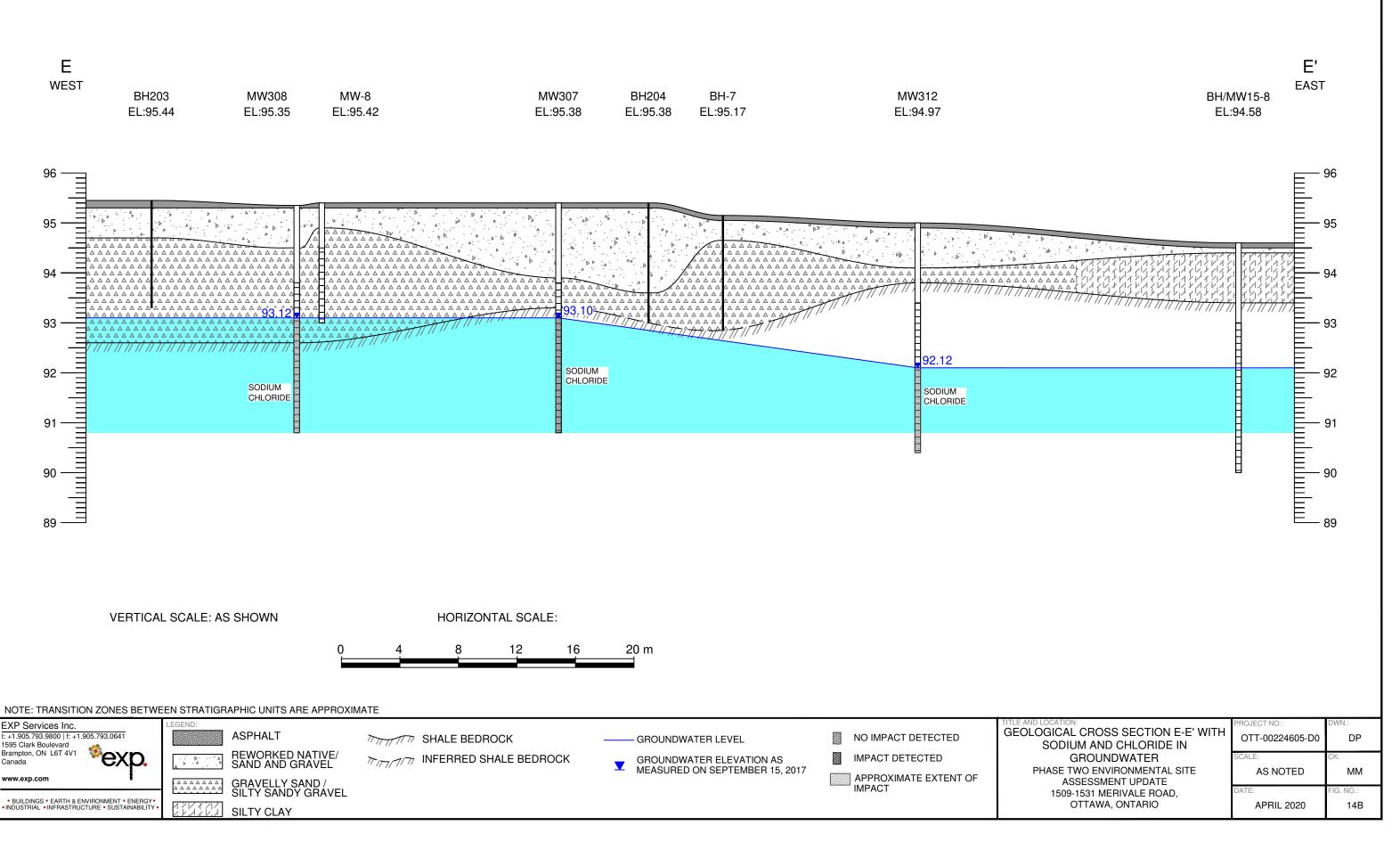



GEOLOGICAL CROSS SECTION	PROJECT NO.:	DWN.:
B-B' WITH VOC IMPACTS IN	OTT-00224605-D0	DP
GROUNDWATER PHASE TWO ENVIRONMENTAL SITE ASSESSMENT UPDATE	SCALE: CK: AS NOTED MN	
1509-1531 MERIVALE ROAD,	DATE:	FIG. NO.:
OTTAWA, ONTARIO	APRIL 2020	11E

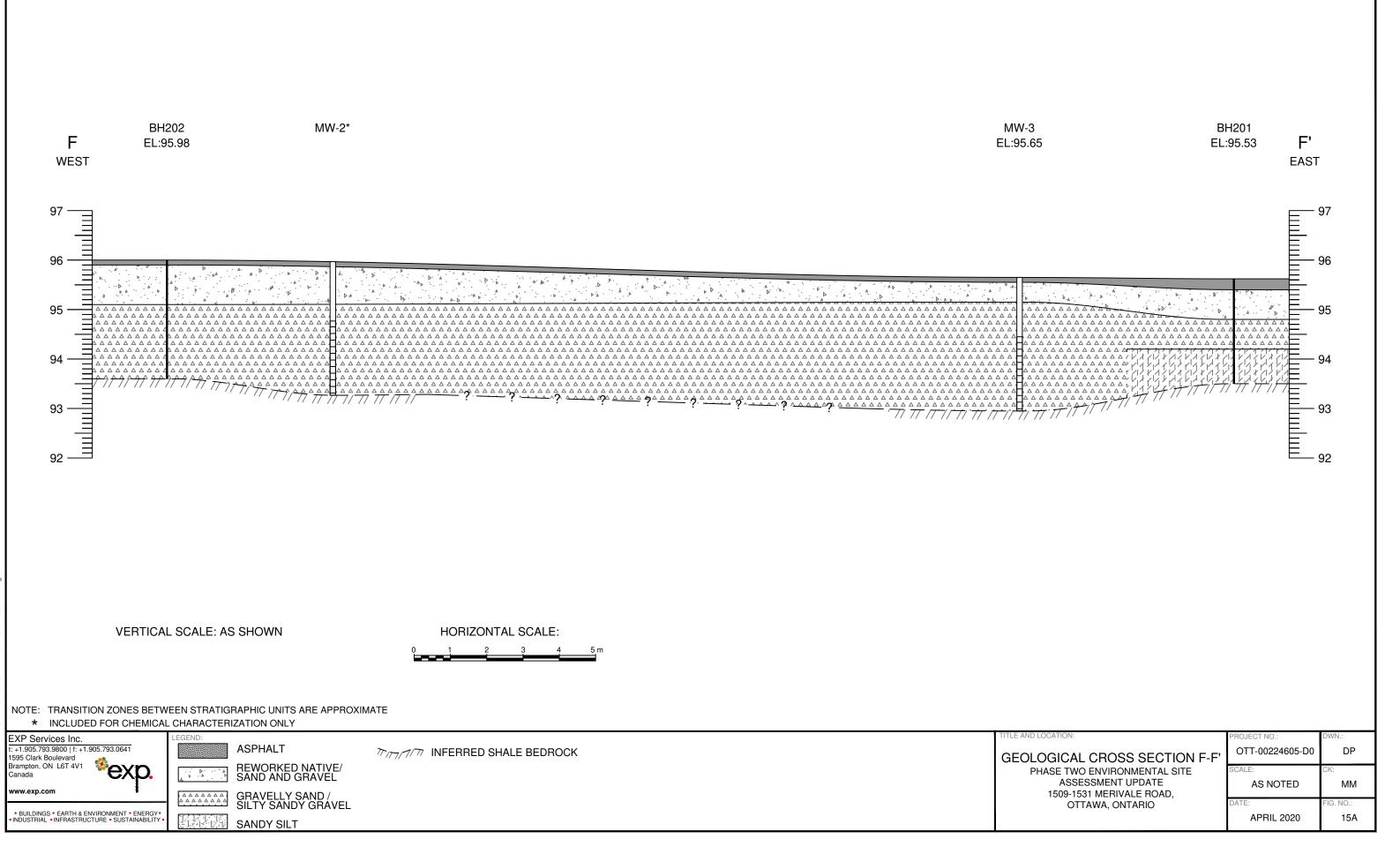


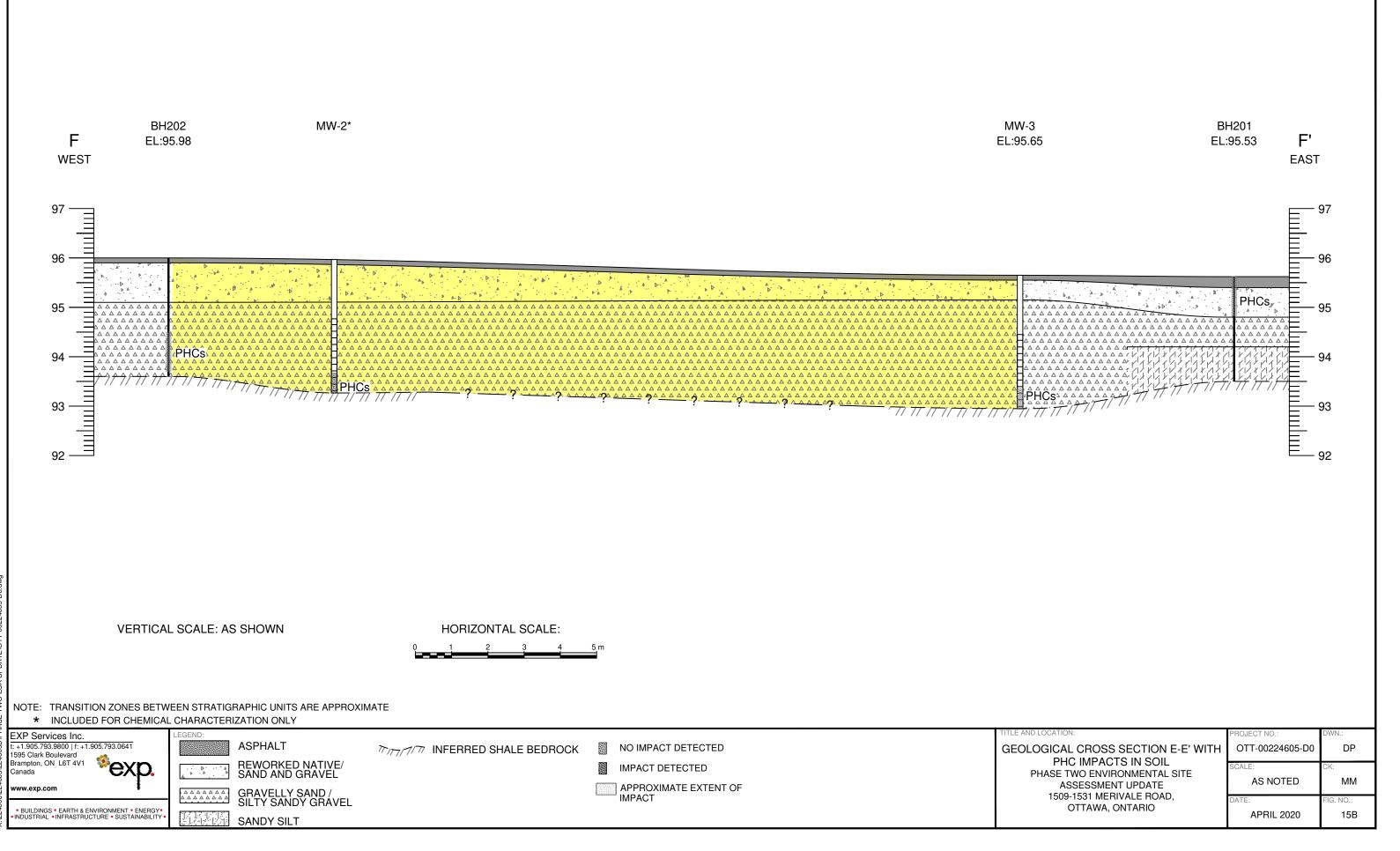

224000/224606/22460ED/DHA SE TWO ES A LIDDATE/OTT 20224606 D0

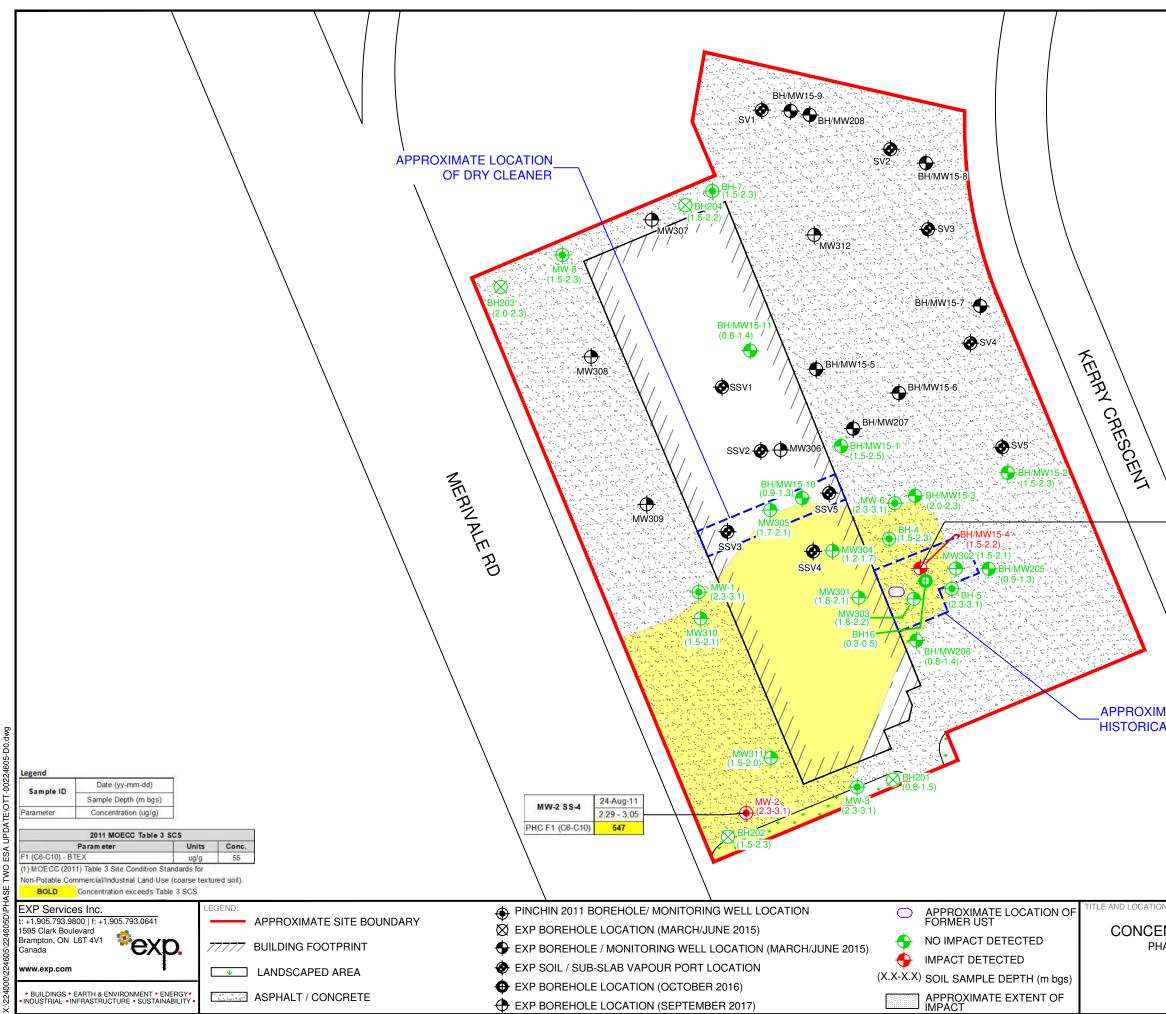




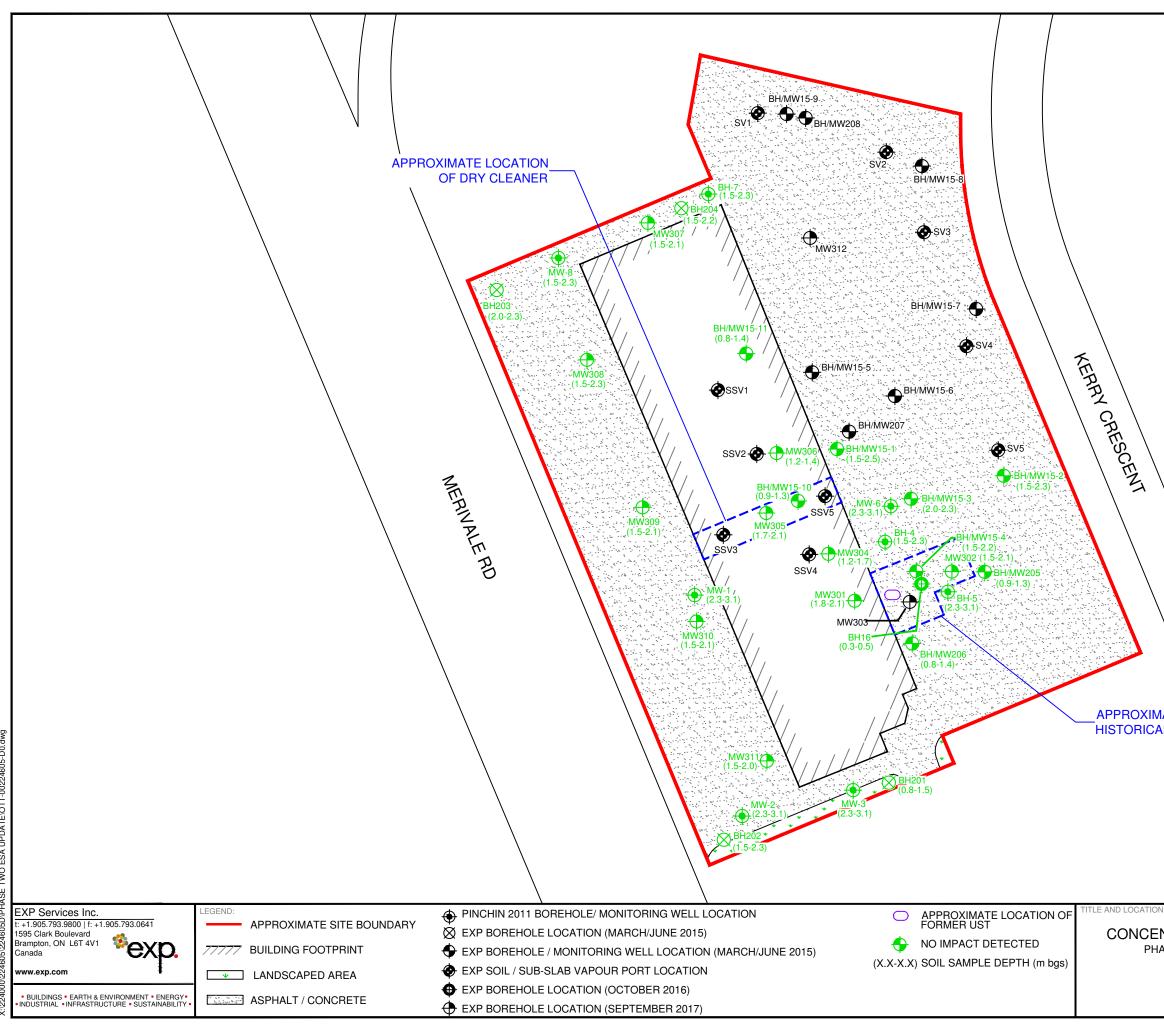
:\224000\224605\224605D\PHASE TWO ESA UPDATE\OTT-00224605-D0.dwg

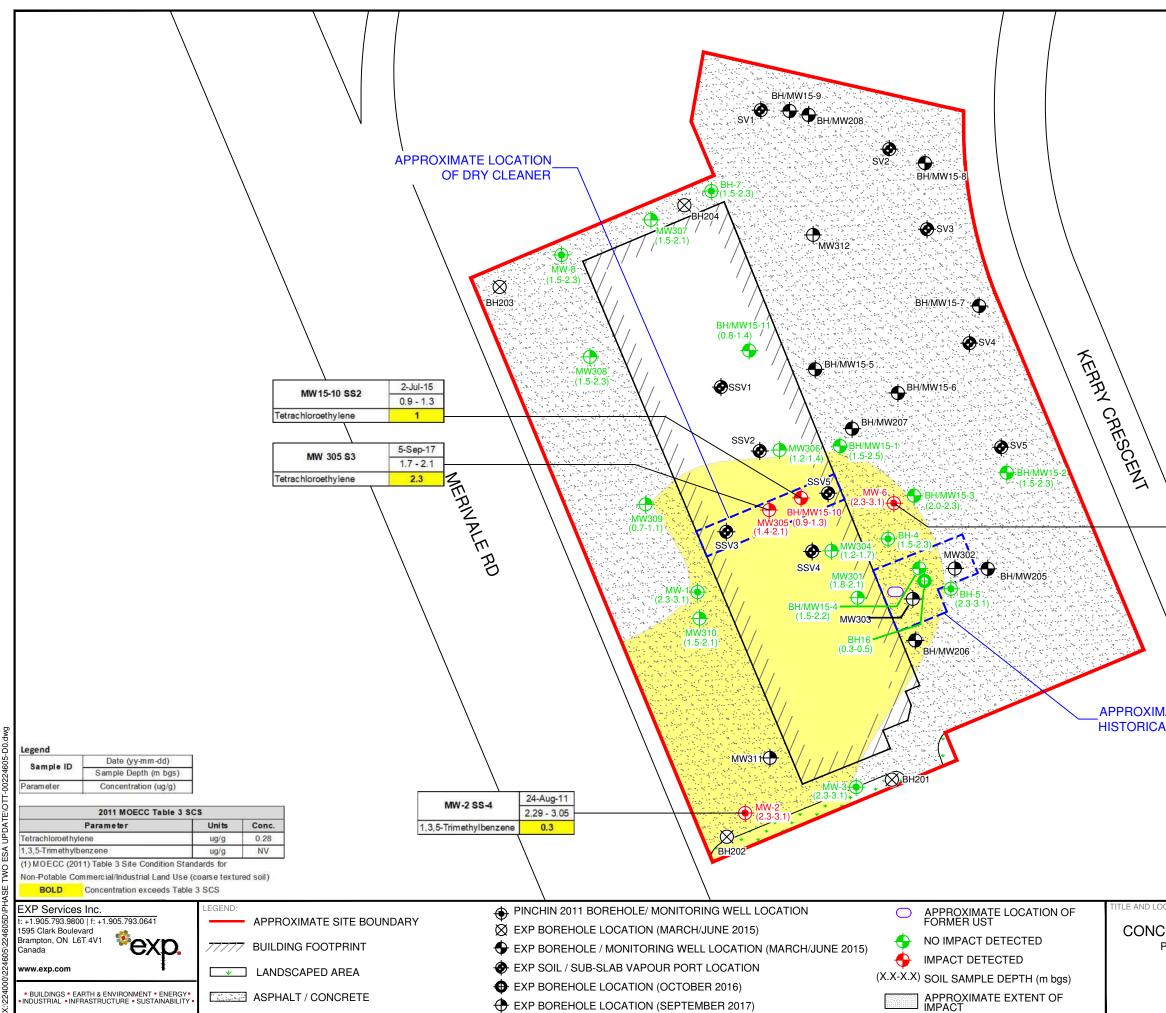


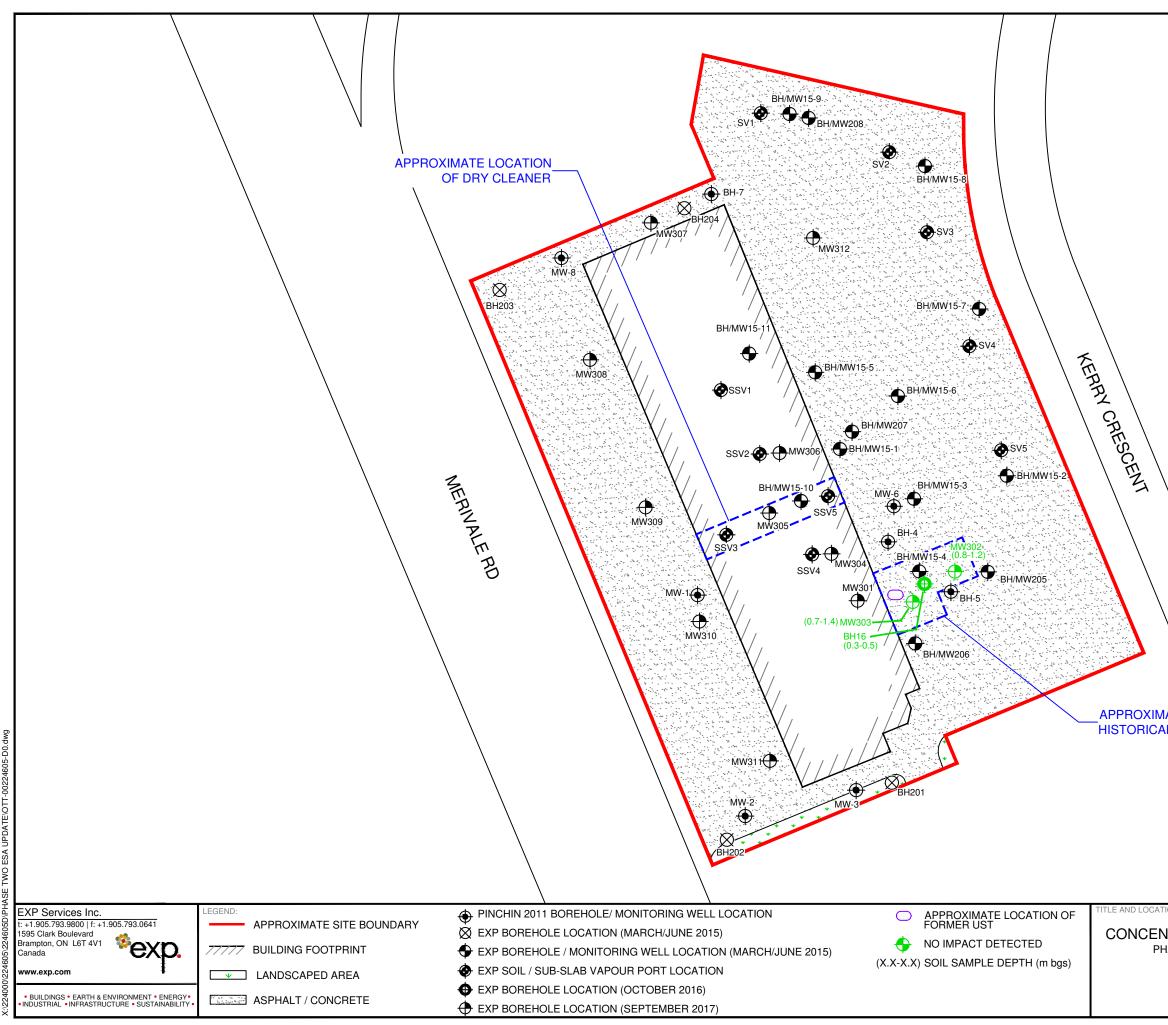

D



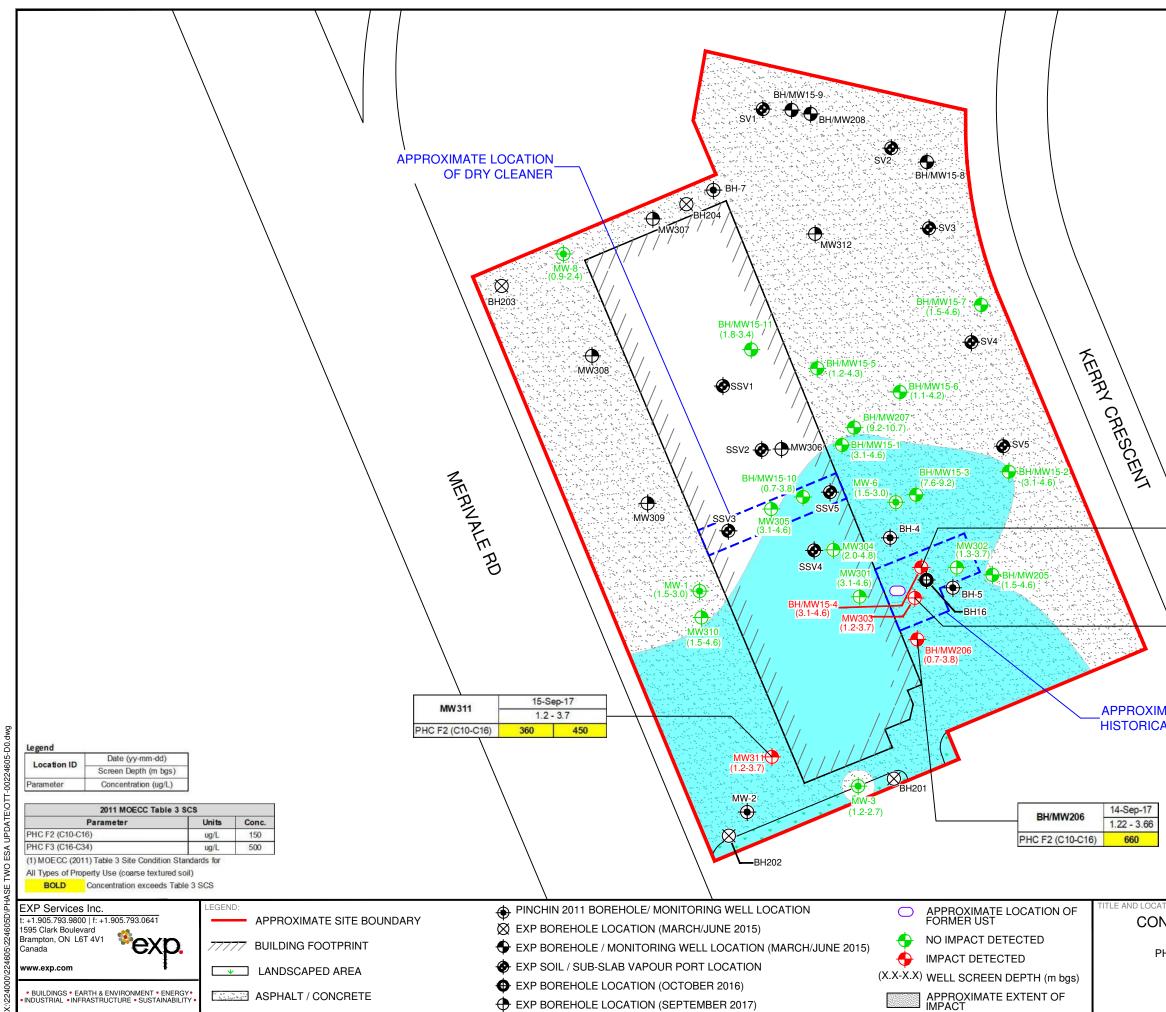
24605D\PHASE TWO ESA UPDATE\OTT-002.



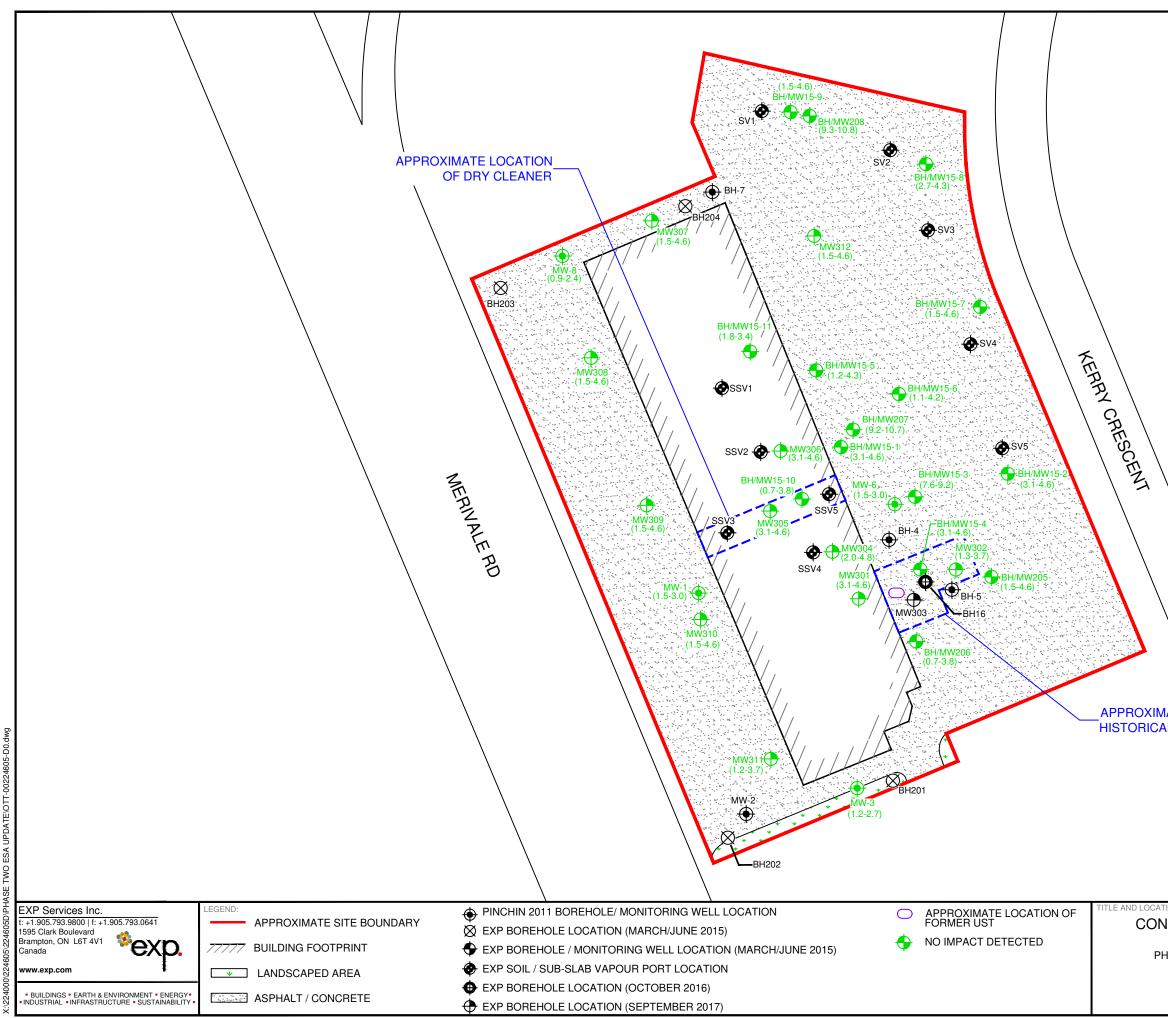

MW15-4 SS3 31-Mar-15 1.5 - 2.21 PHC F1 (C6-C10) 95		
MATE LOCATION OF AL UST EXCAVATION		
\\\ <u>SCALE</u>		
10 5 0 10 20	30 40	50 m
ENTRATIONS OF PHCs IN SOIL HASE TWO ENVIRONMENTAL SITE ASSESSMENT UPDATE 1509-1531 MERIVALE ROAD, OTTAWA, ONTARIO	PROJECT NO.: OTT-00224605-D0 SCALE: AS NOTED DATE:	CK: MM FIG. NO.:
	APRIL 2020	16


					A
\backslash					
	c .				
,		00415			
10 5 0	10	SCALE 20	30	40	50 m
			PROJECT N OTT-00 SCALE:	NO.: 0224605-D0	DWN.: DP CK:
ASE TWO ENVIRONM ASSESSMENT UP 1509-1531 MERIVALE OTTAWA, ONTA	DATE E ROAD,	IE		NOTED	FIG. NO.:
OTTAWA, UNTA	UIU			RIL 2020	17

N

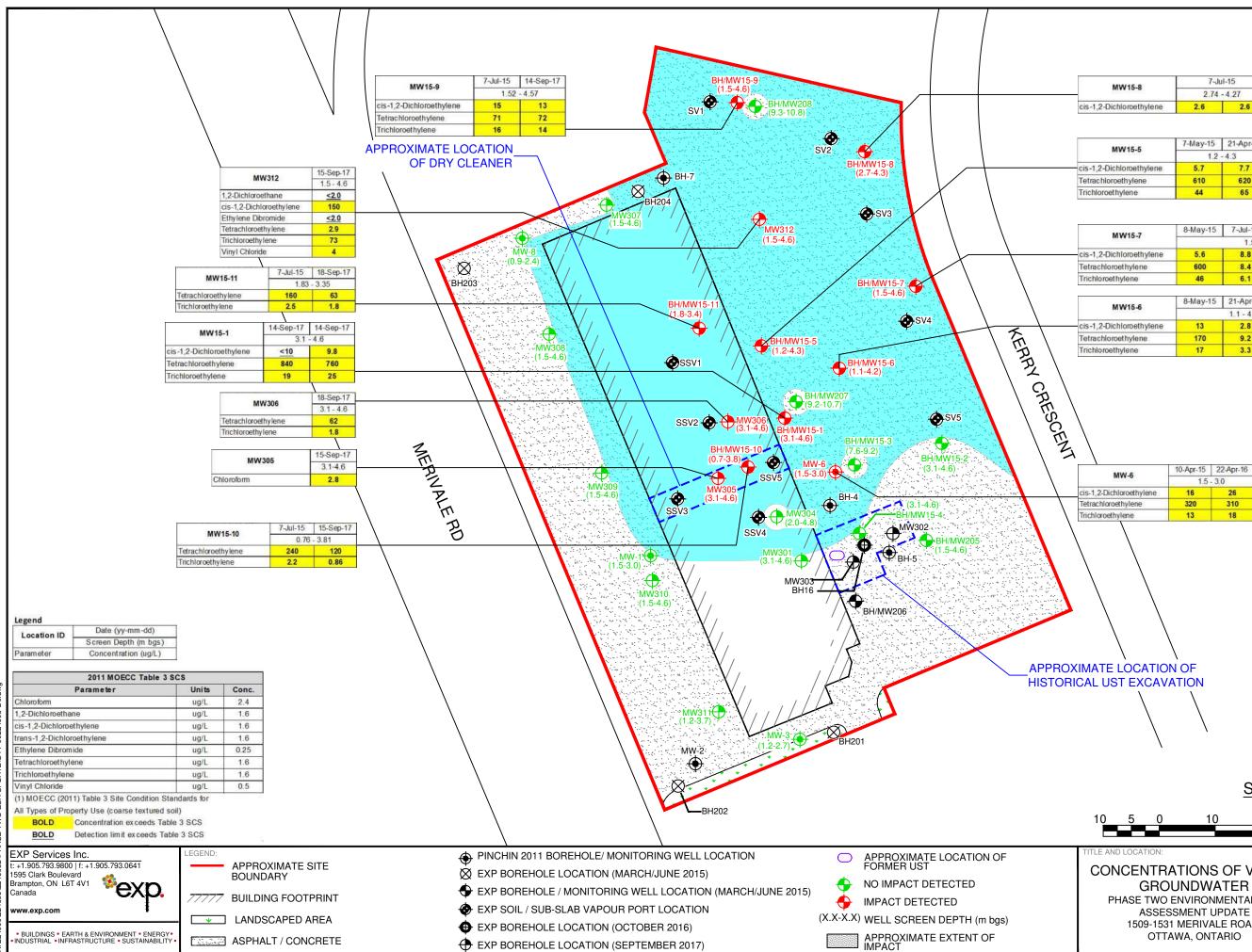

MATE LOCATION AL UST EXCAVAT					
		<u>SCALE</u>			
10 5 0	10	20	30	40	50 m
CENTRATIONS	OF VOCs	IN SOIL	PROJECT N OTT-00	0224605-D0	DWN.: DP
PHASE TWO ENVIR ASSESSMEN 1509-1531 MERI	ONMENTAL S T UPDATE	SITE	SCALE: AS	NOTED	ск: ММ
OTTAWA, C			DATE: APF	RIL 2020	FIG. NO.: 18

MW-6 SS-4	24-Aug-11
WW -0 33-4	2.29 - 3.05
Tetrachloroethylene	5.2



					A
	c .				
AL UST EXCAVATION					
	\setminus				
۲. ۲					
		<u>SCALE</u>			
10 5 0	10	20	30	40	50 m
				NO.: 0224605-D0	DWN.: DP
HASE TWO ENVIRON ASSESSMENT U 1509-1531 MERIVAL	PDATE E ROAD,			NOTED	ск: ММ
OTTAWA, ONT	\RIO		date: APF	RIL 2020	FIG. NO.: 19
					_

N

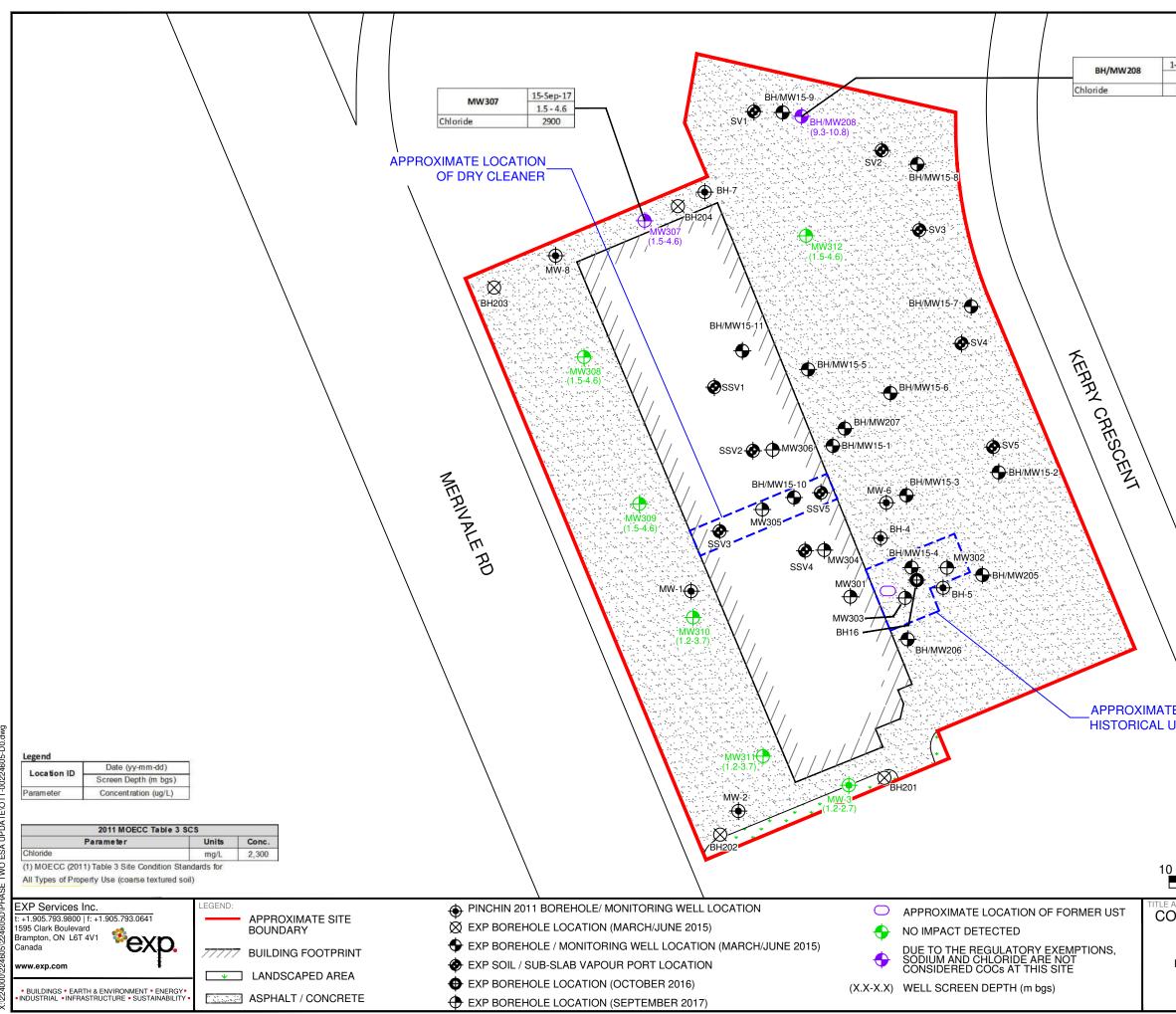


١					
	MW15-4	10-Ap			
	PHC F2 (C10-C16)	3.1 - 260	4.6 270		
\setminus		14-Sep-17			
	MW 303	1.2 - 3.7			
	PHC F2 (C10-C16) PHC F3 (C16-C34)	1100 550			
	PHC F3 (C16-C34)	000			
	\backslash				
\setminus	\setminus				
MATE LOCATI AL UST EXCA					
	VATION \				
\backslash					
\setminus	\setminus				
,	Λ				
		SCALE			
			-		
10 5 (0 10	20	30	40	50 m
				7.10	DWAL
NCENTRAT	IONS OF PHO	Ce IN	PROJEC	00224605-D0	DWN.: DP
		53 IN	SCALE:	00224003 D0	CK:
HASE TWO EN	/IRONMENTAL SI	TE		S NOTED	MM
	ENT UPDATE ERIVALE ROAD,		DATE:		FIG. NO.:
	A, ONTARIO			PRIL 2020	20

					A
\backslash					
ATE LOCATION C)F ON				
	,				
		<u>SCALE</u>			
10 5 0	10	20	30	40	50 m
		EX IN	PROJECT N OTT-00	io.: 224605-D0	DWN.: DP
GROUNDWA HASE TWO ENVIRON ASSESSMENT U	IMENTAL S JPDATE			NOTED	CK: MM
1509-1531 MERIVA OTTAWA, ONT			DATE: APF	IL 2020	FIG. NO.: 21

N

MW15-8	7-Ju	1-15
WIVY 10-0	2.74 - 4.27	
s-1,2-Dichloroethylene	2.6	2.6

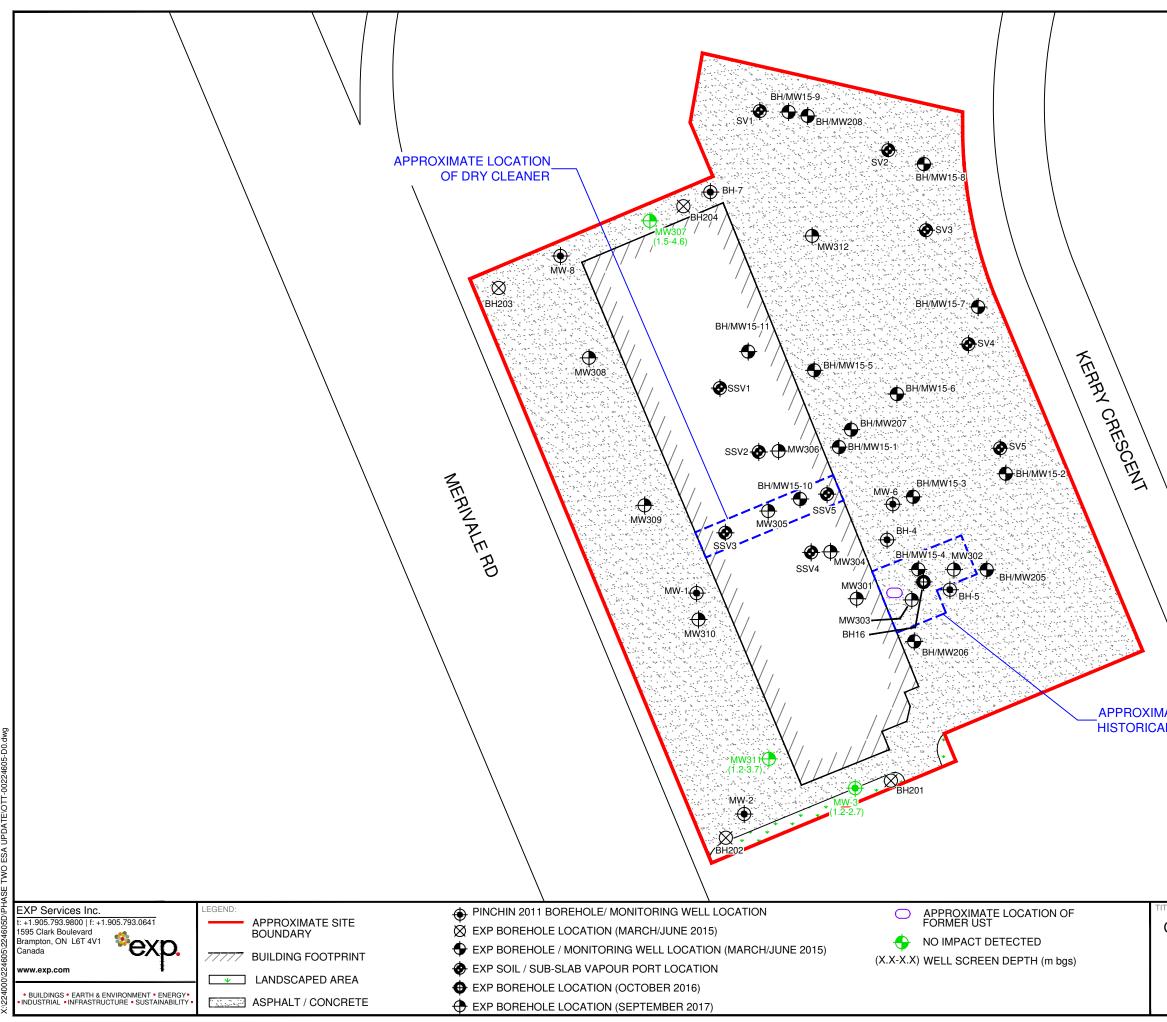

MW15-5	7-May-15	21-Apr-16	
WIW 15-5	1.2 - 4.3		
-1,2-Dichloroethylene	5.7	7.7	
trachloroethylene	610	620	
chloroethylene	44	65	

MW15-7	8-May-15	7-Jul-15	27-May-16	14-Sep-17
WW 10-1		1.52 -	4.57	
s-1,2-Dichloroethylene	5.6	8.8	5.2	4
etrachloroethylene	600	8.4	4.2	2
ichloroethylene	46	6.1	2.8	1.8
Mar e	8-May-15	21-Apr-16	15-Sep-17	1
MW15-6		1.1 - 4.2		

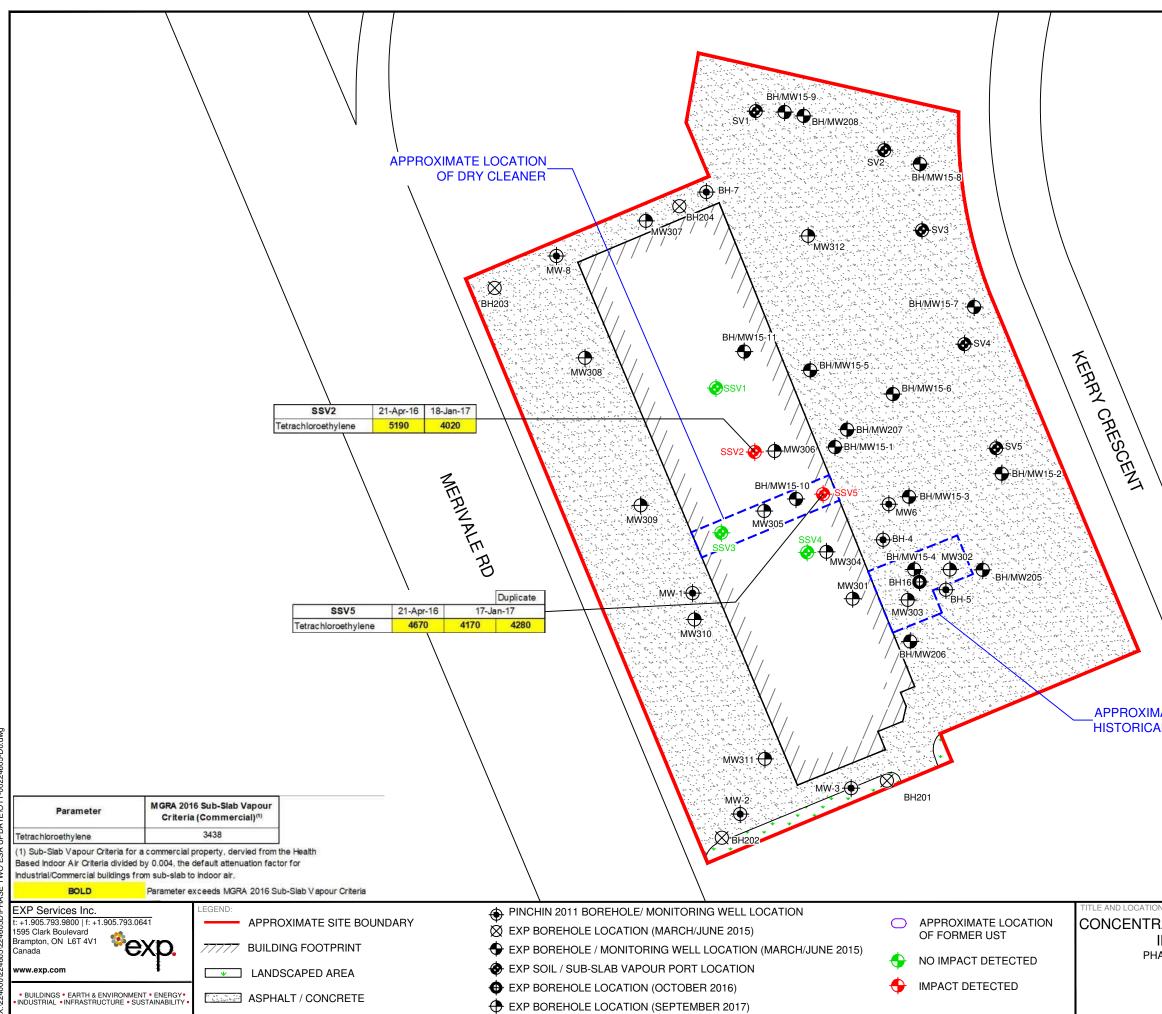
MIN IS-S		1.1 - 4.2	
s-1,2-Dichloroethylene	13	2.8	<0.10
trachloroethylene	170	9.2	0.46
chloroethylene	17	3.3	<0.10

S	C	Ą	L	E

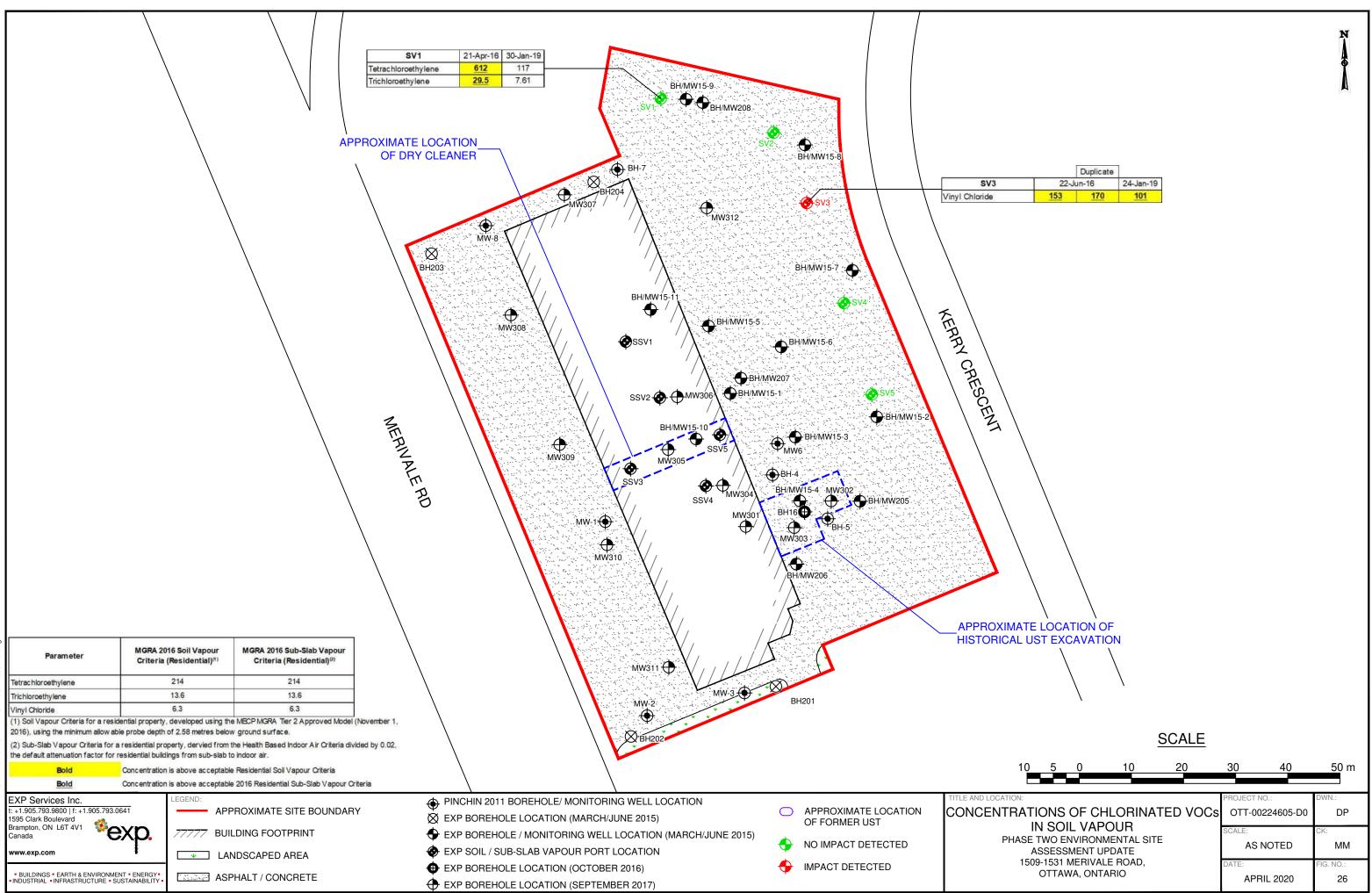
	30 40	50 m
CONCENTRATIONS OF VOCs IN	PROJECT NO.: OTT-00224605-D0	DWN.: DP
GROUNDWATER PHASE TWO ENVIRONMENTAL SITE ASSESSMENT UPDATE	SCALE: AS NOTED	ск: ММ
1509-1531 MERIVALE ROAD, OTTAWA, ONTARIO	DATE: MAY 2019	FIG. NO.: 22


	Duplicate		Duplicate
1-Jun-18	1-Jun-18	6-Jun-18	6-Jun-18
	9.3 -	10.8	
4900	4500	4300	4500

\backslash			
	\	\	
E LOC		, I OF	
JST EX			
١	\		
	\backslash		
		\	
	\		


<u>SCALE</u>

10 5 0 10 20	30 40	50 m
ITLE AND LOCATION: CONCENTRATIONS OF SODIUM AND CHLORIDE IN	PROJECT NO.: OTT-00224605-D0	DWN.: DP
GROUNDWATER PHASE TWO ENVIRONMENTAL SITE	SCALE: AS NOTED	ck: MM
ASSESSMENT UPDATE 1509-1531 MERIVALE ROAD, OTTAWA, ONTARIO	DATE: APRIL 2020	FIG. NO.: 23


					Å		
SCALE 10 5 0 10 20 30 40 50 m TILE AND LOCATION: PROJECT NO:: OWN.: CONCENTRATIONS OF LEAD IN GROUNDWATER PHASE TWO ENVIRONMENTAL SITE ASSESSMENT UPDATE 1509-1531 MERIVALE ROAD,							
SCALE 10 5 0 10 20 30 40 50 m TILE AND LOCATION: PROJECT NO:: OWN.: CONCENTRATIONS OF LEAD IN GROUNDWATER PHASE TWO ENVIRONMENTAL SITE ASSESSMENT UPDATE 1509-1531 MERIVALE ROAD,							
SCALE 10 5 0 10 20 30 40 50 m TILE AND LOCATION: PROJECT NO:: OWN.: CONCENTRATIONS OF LEAD IN GROUNDWATER PHASE TWO ENVIRONMENTAL SITE ASSESSMENT UPDATE 1509-1531 MERIVALE ROAD,							
SCALE 10 5 0 10 20 30 40 50 m TILE AND LOCATION: PROJECT NO:: OWN.: CONCENTRATIONS OF LEAD IN GROUNDWATER PHASE TWO ENVIRONMENTAL SITE ASSESSMENT UPDATE 1509-1531 MERIVALE ROAD,							
SCALE 10 5 0 10 20 30 40 50 m TILE AND LOCATION: PROJECT NO:: OWN.: CONCENTRATIONS OF LEAD IN GROUNDWATER PHASE TWO ENVIRONMENTAL SITE ASSESSMENT UPDATE 1509-1531 MERIVALE ROAD,							
SCALE 10 5 0 10 20 30 40 50 m TILE AND LOCATION: PROJECT NO:: OWN.: CONCENTRATIONS OF LEAD IN GROUNDWATER PHASE TWO ENVIRONMENTAL SITE ASSESSMENT UPDATE 1509-1531 MERIVALE ROAD,							
SCALE 10 5 0 10 20 30 40 50 m TILE AND LOCATION: PROJECT NO:: OWN.: CONCENTRATIONS OF LEAD IN GROUNDWATER PHASE TWO ENVIRONMENTAL SITE ASSESSMENT UPDATE 1509-1531 MERIVALE ROAD,							
SCALE 10 5 0 10 20 30 40 50 m TILE AND LOCATION: PROJECT NO:: OWN.: CONCENTRATIONS OF LEAD IN GROUNDWATER PHASE TWO ENVIRONMENTAL SITE ASSESSMENT UPDATE 1509-1531 MERIVALE ROAD,	\backslash						
SCALE 10 5 0 10 20 30 40 50 m TILE AND LOCATION: PROJECT NO:: OWN.: CONCENTRATIONS OF LEAD IN GROUNDWATER PHASE TWO ENVIRONMENTAL SITE ASSESSMENT UPDATE 1509-1531 MERIVALE ROAD,							
SCALE 10 5 0 10 20 30 40 50 m TILE AND LOCATION: PROJECT NO:: OWN.: CONCENTRATIONS OF LEAD IN GROUNDWATER PHASE TWO ENVIRONMENTAL SITE ASSESSMENT UPDATE 1509-1531 MERIVALE ROAD,							
SCALE 10 5 0 10 20 30 40 50 m TILE AND LOCATION: PROJECT NO:: OWN.: CONCENTRATIONS OF LEAD IN GROUNDWATER PHASE TWO ENVIRONMENTAL SITE ASSESSMENT UPDATE 1509-1531 MERIVALE ROAD,							
SCALE 10 5 0 10 20 30 40 50 m TILE AND LOCATION: PROJECT NO:: OWN.: CONCENTRATIONS OF LEAD IN GROUNDWATER PHASE TWO ENVIRONMENTAL SITE ASSESSMENT UPDATE 1509-1531 MERIVALE ROAD,							
10 5 0 10 20 30 40 50 m TLE AND LOCATION: PROJECT NO.: OTT-00224605-D0 DWN.: OTT-00224605-D0 DP SCALE: CK: ASSESSMENT UPDATE 1509-1531 MERIVALE ROAD, DATE: FIG. NO.:	IATE LOCATION OF						
10 5 0 10 20 30 40 50 m TLE AND LOCATION: PROJECT NO.: OTT-00224605-D0 DWN.: OTT-00224605-D0 DP SCALE: CK: ASSESSMENT UPDATE 1509-1531 MERIVALE ROAD, DATE: FIG. NO.:							
10 5 0 10 20 30 40 50 m TLE AND LOCATION: PROJECT NO.: OTT-00224605-D0 DWN.: OTT-00224605-D0 DP SCALE: CK: ASSESSMENT UPDATE 1509-1531 MERIVALE ROAD, DATE: FIG. NO.:	\setminus						
TLE AND LOCATION: CONCENTRATIONS OF LEAD IN GROUNDWATER PHASE TWO ENVIRONMENTAL SITE ASSESSMENT UPDATE 1509-1531 MERIVALE ROAD, PROJECT NO.: OTT-00224605-D0 SCALE: AS NOTED DATE: FIG. NO.:	10 5 0 10		20	40	50 m		
CONCENTRATIONS OF LEAD IN GROUNDWATER OTT-00224605-D0 DP PHASE TWO ENVIRONMENTAL SITE ASSESSMENT UPDATE 1509-1531 MERIVALE ROAD, SCALE: CK: AS NOTED DATE: FIG. NO.:		20					
PHASE TWO ENVIRONMENTAL SITE ASSESSMENT UPDATE AS NOTED MM 1509-1531 MERIVALE ROAD, DATE: FIG. NO.:	CONCENTRATIONS O		OTT-002	24605-D0	DP		
	PHASE TWO ENVIRONMEN ASSESSMENT UPDA	NTAL SITE ATE	AS N	OTED	MM		

N

\setminus				
ATE LOCATION OF				
	SCALE			
10 5 0 10	20	30	40	50 m
RATIONS OF CHLORII IN SUB-SLAB VAPOU			4605-D0	DWN.: DP
ASE TWO ENVIRONMENTAL ASSESSMENT UPDATE 1509-1531 MERIVALE ROAD	SITE	SCALE: AS NC	DTED	TIG. NO.:
OTTAWA, ONTARIO	• •	APRIL		25

N

	Duplicate	
22-	24-Jan-19	
153	170	101

EXP Services Inc.

Phase Two Environmental Site Assessment Update 1509 -1531 Merivale Road, Ottawa, Ontario Project Number: OTT-00224605-D0 April 13, 2020 December 20, 2021

Tables

1509-1531 Merivale Road, Ottawa, Or Area of Potential Environmental Concern (APEC) ⁽¹⁾	Location of APEC on Phase One Property	Potentially Contaminating Activity (PCA) ⁽²⁾	Location of PCA (on- Site or off- Site)	Contaminants of Potential Concern ⁽³⁾	Media Potentially Impacted (Groundwater soil and/or sediment)
1: Dry cleaners	North and central portions of the Site	#37: Potential Operation of Dry Cleaning Equipment (where chemicals are used)	on-Site	VOCs	Soil + Groundwater
2: Former heating oil UST	Central/ east portion of the Site	#28: Gasoline and Associated Products Storage in Fixed Tanks	on-Site	PHCs, BTEX	Soil + Groundwater
3. Former backfill of UST excavation	Southeastern portion of the Site (area of UST excavation)	#30: Importation of Fill Material of Unknown Quality	on-Site	Metals	Soil
4. Former gasoline retail outlet and UST	North portion of the Site	#28: Gasoline and Associated Products Storage in Fixed Tanks	1507 Merivale Road	PHCs, BTEX	Soil + Groundwater
5: Automobile service station	North portion of the Site	#27: Garages and Maintenance and Repair of Railcars, Marine Vehicles and Aviation Vehicles	1507 Merivale Road	PHCs, BTEX, VOCs and metals	Groundwater
6: Former gasoline retail outlet and UST	South portion of the Site	#28: Gasoline and Associated Products Storage in Fixed Tanks	1533 Merivale Road	PHCs, BTEX, VOCs and metals	Groundwater
7: Oil changing facility	South portion of the Site	#27: Garages and Maintenance and Repair of Railcars, Marine Vehicles and Aviation Vehicles	1533 Merivale Road	PHCs, BTEX, VOCs and metals	Groundwater
8: Gasoline station	South portion of the Site	#28: Gasoline and Associated Products Storage in Fixed Tanks	1537 Merivale Road	PHCs, BTEX	Groundwater
9: Gasoline spill	South portion of the Site	#Other: Spills (70 L gasoline spill)	1537 Merivale Road	PHCs, BTEX	Groundwater
10: Gasoline station	South portion of the Site	#28: Gasoline and Associated Products Storage in Fixed Tanks	1543 Merivale Road	PHCs, BTEX	Groundwater
11: Former dry cleaners	South portion of the Site	#37: Potential Operation of Dry Cleaning Equipment (where chemicals are used)	1541 Merivale Road	VOCs	Groundwater
12: Gasoline station	South portion of the Site	#28: Gasoline and Associated Products Storage in Fixed Tanks	1545 Merivale Road	PHCs, BTEX	Groundwater
13: Gasoline spill	South portion of the Site	#Other: Spills (250 L furnace oil spill)	1545 Merivale Road	PHCs, BTEX	Groundwater
14: Gasoline station	South portion of the Site	#28: Gasoline and Associated Products Storage in Fixed Tanks	1548 Merivale Road	PHCs, BTEX	Groundwater
EXP Services Inc.					DTT-00224605-D

Volatile Organic Compounds (VOCs); Petroleum Hydrocarbons (PHCs); BTEX (benzene, toluene, ethylbenzene, xylenes)

1. Area of Potential Enviornmental Concern means the area on, in or under a phase one study area where one

or more contaminants are potentially present, as determined through the PI ESA, including through, (a) identification of post or present uses on, in or under the phase one property, and

(b) identification of potentially contaminating activities.

 Potentially contaminating activity means a use or activity set out in Column A of Table 2 of Schedule D that is occuring or has occurred in a phase one study area

3. When completing this column, identify all contaminants of potential concern using the Method Groups as identified in the "Protocol for in the Assessment of Properties under Part XV.1 of the Environmental Protection Act, the second sec

March 9, 2004, amended as of July 1, 2011, a	is specified below:		
ABNs	PCBs	Metals	Electrical Conductivity
CPs	PAHs	As, Sb, Se	Cr (VI)
1,4- Dioxane	THMs	Na	Hg
Dioxins/Furans, PCDDs/PCDFs	VOCs	B-HWS	Methyl Mercury
Ocs	BTEX	CI-	high pH
PHCs	Ca, Mg	CN-	low pH

4. When submitting a record of site condition for filing, a copy of this table must be attached en français. Pour obtenir de l'aide en francais, veuillez communiquer avec le ministère de l'Environnement au 1-800-461-6290

TABLE 2 - Borehole Log Information

OTT-00224605-D0 - Phase Two Environmental Site Assessment Update 1509-1531 Merivale Road, Ottawa, Ontario

Location ID	Ground Elevation	Depth of BH	Bottom Elevation	Date Drilled	Drilling Contractor
BH/MW301	95.70	4.58	91.12	6-Sep-17	Strata Drilling
BH/MW302	95.25	3.66	91.59	6-Sep-17	Strata Drilling
BH/MW303	95.42	3.66	91.76	6-Sep-17	Strata Drilling
BH/MW304	95.70	4.58	91.12	6-Sep-17	Strata Drilling
BH/MW305	95.70	4.58	91.12	6-Sep-17	Strata Drilling
BH/MW306	95.70	4.58	91.12	7-Sep-17	Strata Drilling
BH/MW307	95.38	4.57	90.81	7-Sep-17	Strata Drilling
BH/MW308	95.35	4.57	90.78	6-Sep-17	Strata Drilling
BH/MW309	95.43	4.57	90.86	6-Sep-17	Strata Drilling
BH/MW310	95.50	4.57	90.93	7-Sep-17	Strata Drilling
BH/MW311	95.70	3.66	92.04	7-Sep-17	Strata Drilling
BH/MW312	94.97	4.57	90.40	7-Sep-17	Strata Drilling

TABLE 3 - Summary of Soil Samples Submitted for Chemical Analysis

OTT-00224605-D0 - Phase Two Environmental Site Assessment Update 1509-1531 Merivale Road, Ottawa, Ontario

Soil Sample ID	Sample Depth Interval (m)	Rationale	Analysis
BH/MW301 S5	1.8 - 2.1	Site Characterization	PHCs, VOCs
BH/MW302 S2	0.8 - 1.2	Surface soil sample for metals	Metals and Inorganics
BH/MW302 S3	1.5 - 2.1	Site Characterization	PHCs, BTEX
BH/MW303 S2	0.7 - 1.4	Surface soil sample for metals	Metals and Inorganics
BH/MW303 S3	1.5 - 2.18	Site Characterization	PHCs, BTEX
BH/MW304 S3	1.2 - 1.7	Site Characterization	PHCs, VOCs
BH/MW305 S3	1.7 - 2.1	Site Characterization	PHCs, VOCs
BH/MW306 S3	1.2 - 1.4	Site Characterization	PHCs, VOCs
BH/MW307 S1	0.0 - 0.7	Salt parameter surface soil analysis	EC/SAR
BH/MW307 S3	1.5 - 2.1	Site Characterization	PHCs, VOCs
BH/MW308 S1	0.0 - 0.6	Salt parameter surface soil analysis	EC/SAR
BH/MW308 S3	1.5 - 2.3	Site Characterization	PHCs, VOCs
BH/MW309 S1	0.0 - 0.8	Salt parameter surface soil analysis	EC/SAR
BH/MW309 S2	0.7 - 1.1	Site Characterization	PHCs, VOCs
BH/MW310 S1	0.0 - 0.7	Salt parameter surface soil analysis	EC/SAR
BH/MW310 S3	1.5 - 2.1	Site Characterization	PHCs, VOCs
BH/MW311 S2	0.2 - 0.7	Salt parameter surface soil analysis	EC/SAR
BH/MW311 S3	1.5 - 2.0	Site Characterization	PHCs, BTEX
BH/MW312 S1	0.0 - 0.1	Salt parameter surface soil analysis	EC/SAR
QA/QC Samples:			
BH/MW321 S2	1.5 - 2.1	Field Duplicate	PHCs, VOCs

TABLE 4 - Monitoring Well Installation Details

OTT-00224605-D0 - Phase Two Environmental Site Assessment Update 1509-1531 Merivale Road, Ottawa, Ontario

Location ID	Ground Elevation (m)	Top of Pipe Elevation (m)	Measured Depth of Top of Screen (m bgs)	Measured Depth of MW (m bgs)	Screen Length (m)	Elevation of Top of Screen (Measured)	Elevation of Bottom of Screen (Measured)	Geologic Units Intercepted by Well Screen	Well Condition
BH/MW301	95.70	95.58	3.10	4.60	1.5	92.60	91.10	Bedrock	Intact
BH/MW302	95.25	95.13	1.20	3.70	2.5	94.05	91.55	Fill/Bedrock	Intact
BH/MW303	95.42	95.37	1.20	3.70	2.5	94.22	91.72	Fill/Bedrock	Intact
BH/MW304	95.70	95.65	2.70	4.70	2.0	93.00	91.00	Bedrock	Intact
BH/MW305	95.70	95.65	3.10	4.60	1.5	92.60	91.10	Bedrock	Intact
BH/MW306	95.70	95.59	3.10	4.60	1.5	92.60	91.10	Bedrock	Intact
BH/MW307	95.38	95.27	1.50	4.60	3.1	93.88	90.78	Overburden/ Bedrock	Intact
BH/MW308	95.35	95.20	1.50	4.60	3.1	93.85	90.75	Overbuden/ Bedrock	Intact
BH/MW309	95.43	95.33	1.50	4.60	3.1	93.93	90.83	Bedrock	Intact
BH/MW310	95.50	95.39	1.50	4.60	3.1	94.00	90.90	Overbuden/ Bedrock	Intact
BH/MW311	95.70	95.59	1.20	3.70	2.5	94.50	92.00	Overbuden/ Bedrock	Intact
BH/MW312	94.97	94.84	1.50	4.60	3.1	93.47	90.37	Bedrock	Intact

BHAW151 14-Sep-17 Site characterization PHCs - BTEX, VOCs BHAW155 25-Jan 18 Confirmatory sample VOCs BHAW156 15-Sep-17 Site characterization VOCs BHAW156 15-Sep-17 Site characterization VOCs BHAW156 14-Sep-17 Site characterization VOCs BHAW157 14-Sep-17 Site characterization VOCs BHAW1540 15-Sep-17 Site characterization VOCs BHAW1541 18-Sep-17 Site characterization VOCs BHAW1540 14-Sep-17 Site characterization PHCs + BTEX, VOCs BHAW200 14-Sep-17 Site characterization PHCs + BTEX, VOCs BHAW201 15-Sep-17 Site characterization PHCs + BTEX, VOCs BHAW2020 14-Sep-17 Site characterization PHCs + BTEX, VOCs BHAW2030 14-Sep-17 Site characterization PHCs + BTEX, VOCs BHAW302 14-Sep-17 Site characterization PHCs + BTEX, VOCs BHAW3030 15-Sep-17 Site characterization	W Sample ID	Sampling Date	Rationale	Analysis
H1M1155			Site characterization	
28-Jan-18 Confirmatory sample VOCs BH/W15-6 15-Sep-17 Site characterization VOCs BH/W15-7 14-Sep-17 Site characterization VOCs BH/W15-8 14-Sep-17 Site characterization VOCs BH/W15-9 14-Sep-17 Site characterization VOCs BH/W15-10 15-Sep-17 Site characterization PHCs + BTEX, VOCs BH/W15-11 18-Sep-17 Site characterization PHCs + BTEX, VOCs BH/W15-12 14-Sep-17 Site characterization PHCs + BTEX, VOCs BH/W205 14-Sep-17 Site characterization PHCs + BTEX, VOCs BH/W206 14-Sep-17 Site characterization PHCs + BTEX, VOCs BH/W207 14-Sep-17 Site characterization PHCs + BTEX, VOCs BH/W308 14-Sep-17 Site characterization PHCs + BTEX, VOCs BH/W309 15-Sep-17 Site characterization PHCs + BTEX, VOCs BH/W300 15-Sep-17 Site characterization VOCs, Chioride BH/W303 15-Sep-17 Site characterization		14-Sep-17	Site characterization	VOCs
HAM Y15-7 14-Sep-17 Site characterization VOCs BHAM V15-8 14-Sep-17 Site characterization VOCs BHAM V15-9 14-Sep-17 Site characterization VOCs BHAM V15-10 15-Sep-17 Site characterization PHCs + BTEX, VOCs BHAM V15-11 18-Sep-17 Site characterization PHCs + BTEX, VOCs BHAM V15-11 18-Sep-17 Site characterization PHCs + BTEX, VOCs BHAM V206 14-Sep-17 Site characterization PHCs + BTEX, VOCs BHAM V207 14-Sep-17 Site characterization PHCs + BTEX, VOCs BHAM V208 14-Sep-17 Site characterization PHCs + BTEX, VOCs BHAM V301 15-Sep-17 Site characterization PHCs + BTEX, VOCs BHAM V302 14-Sep-17 Site characterization PHCs + BTEX, VOCs BHAM V303 15-Sep-17 Site characterization PHCs + BTEX, VOCs BHAM V305 15-Sep-17 Site characterization VOCs, Chorde BHAM V305 15-Sep-17 Site characterization VOCs, Chorde BHAM V	Image: matrix and sector and sec	Confirmatory sample	VOCs	
Image: state in the second state in the sec	BH/MW15-6	15-Sep-17	Site characterization	VOCs
International system International system International system BHMW15-10 14-Sep-17 Site characterization PHCs + BTEX, VOCs BHMW15-10 18-Sep-17 Site characterization PHCs + BTEX, VOCs BHMW206 14-Sep-17 Site characterization PHCs + BTEX, VOCs BHMW207 14-Sep-17 Site characterization PHCs + BTEX, VOCs BHMW208 14-Sep-17 Site characterization PHCs + BTEX, VOCs BHMW208 14-Sep-17 Site characterization PHCs + BTEX, VOCs BHMW208 6-Jun-18 Confirmatory sample Othoride BH/MW301 15-Sep-17 Site characterization PHCs + BTEX, VOCs BH/MW303 14-Sep-17 Site characterization PHCs + BTEX, VOCs BH/MW304 15-Sep-17 Site characterization PHCs + BTEX, VOCs BH/MW305 15-Sep-17 Site characterization VOCs, Chioride BH/MW306 15-Sep-17 Site characterization VOCs BH/MW307 15-Sep-17 Site characterization VOCs BH/MW308 19-Sep-17<	BH/MW15-7	14-Sep-17	Site characterization	VOCs
Image: constraint of the second sec	BH/MW15-8	14-Sep-17	Site characterization	VOCs
Image: state in the second state is a secon	BH/MW15-9	14-Sep-17	Site characterization	VOCs
Image: state in the set of the s	BH/MW15-10	15-Sep-17	Site characterization	PHCs + BTEX, VOCs
Image: state in the second state is a secon	BH/MW15-11	18-Sep-17	Site characterization	VOCs
Image: state	BH/MW206	14-Sep-17	Site characterization	PHCs + BTEX, VOCs
BH/MW208 International Continuation State International Continuation State International	BH/MW207	14-Sep-17	Site characterization	PHCs + BTEX, VOCs
6-Jun-18Contirmatory sampleChlorideBH/MW301115-Sep-17Site characterizationPHCs + BTEX, VOCsBH/MW3021.4-Sep-17Site characterizationPHCs + BTEXBH/MW3031.4-Sep-17Site characterizationPHCs + BTEXBH/MW3041.15-Sep-17Site characterizationPHCs + BTEX, VOCsBH/MW3051.15-Sep-17Site characterizationPHCs + BTEX, VOCsBH/MW3061.15-Sep-17Site characterizationPHCs + BTEX, VOCsBH/MW3061.15-Sep-17Site characterizationVOCs, ChlorideBH/MW3071.15-Sep-17Site characterizationVOCs, ChlorideBH/MW3081.15-Sep-17Site characterizationVOCs, ChlorideBH/MW3071.15-Sep-17Site characterizationSodium, leadBH/MW3081.15-Sep-17Site characterizationVOCsBH/MW3091.15-Sep-17Site characterizationSodium, leadBH/MW3091.15-Sep-17Site characterizationVOCsBH/MW3001.15-Sep-17Site characterizationSodium, leadBH/MW3011.15-Sep-17Site characterizationPHCs + BTEX, VOCsBH/MW3011.15-Sep-17Site characterizationPHCs + BTEX, VOCsBH/MW3011.15-Sep-17Site characterizationPHCs + BTEX, VOCsBH/MW3021.15-Sep-17Site characterizationPHCs + BTEX, VOCsBH/MW3011.15-Sep-17Site characterizationPHCs + BTEX, VOCsBH/MW3021.15-Sep-17Site characterizationPHCs + BTEX, VOCs </td <td>DUANYOOO</td> <td>1-Jun-18</td> <td>Site characterization</td> <td>Chloride</td>	DUANYOOO	1-Jun-18	Site characterization	Chloride
Image: BH/MW302 Image: Im	BH/MW208	6-Jun-18	Confirmatory sample	Chloride
Image: BH/MW303 14-Sep-17 Site characterization PHCs + BTEX BH/MW304 15-Sep-17 Site characterization PHCs + BTEX, VOCs BH/MW305 15-Sep-17 Site characterization PHCs + BTEX, VOCs BH/MW305 15-Sep-17 Site characterization PHCs + BTEX, VOCs BH/MW305 15-Sep-17 Site characterization VOCs BH/MW306 18-Sep-17 Site characterization VOCs BH/MW307 15-Sep-17 Site characterization VOCs, Chloride BH/MW308 18-Sep-17 Site characterization VOCs, Chloride BH/MW309 15-Sep-17 Site characterization VOCs BH/MW308 15-Sep-17 Site characterization VOCs BH/MW309 15-Sep-17 Site characterization VOCs BH/MW300 15-Sep-17 Site characterization VOCs BH/MW301 15-Sep-17 Site characterization PHCs + BTEX, VOCs BH/MW302 15-Sep-17 Site characterization PHCs + BTEX, VOCs BH/MW303 15-Sep-17 Site char	BH/MW301	15-Sep-17	Site characterization	PHCs + BTEX, VOCs
BH/MW304 15-Sep-17 Site characterization PHCs + BTEX, VOCs BH/MW305 15-Sep-17 Site characterization PHCs + BTEX, VOCs BH/MW306 15-Sep-17 Site characterization PHCs + BTEX, VOCs BH/MW306 18-Sep-17 Site characterization VOCs BH/MW306 18-Sep-17 Site characterization VOCs, Chloride BH/MW307 15-Sep-17 Site characterization VOCs, Chloride BH/MW308 15-Sep-17 Site characterization Sodium, lead BH/MW309 15-Sep-17 Site characterization VOCs BH/MW308 15-Sep-17 Site characterization Sodium, lead BH/MW309 15-Sep-17 Site characterization VOCs BH/MW309 15-Sep-17 Site characterization VOCs BH/MW309 15-Sep-17 Site characterization PHCs + BTEX, VOCs BH/MW301 15-Sep-17 Site characterization PHCs + BTEX, VOCs BH/MW310 15-Sep-17 Site characterization PHCs + BTEX, VOCs BH/MW311 15-Sep-17	BH/MW302	14-Sep-17	Site characterization	PHCs + BTEX
BH/MW305 15-Sep-17 Site characterization PHCs + BTEX, VOCs BH/MW306 18-Sep-17 Site characterization VOCs BH/MW306 18-Sep-17 Site characterization VOCs BH/MW306 18-Sep-17 Site characterization VOCs, Chloride BH/MW307 15-Sep-17 Site characterization VOCs, Chloride BH/MW308 15-Sep-17 Site characterization Sodium, lead BH/MW308 15-Sep-17 Site characterization VOCs BH/MW308 15-Sep-17 Site characterization Sodium, lead BH/MW308 15-Sep-17 Site characterization VOCs BH/MW309 15-Sep-17 Site characterization VOCs BH/MW300 15-Sep-17 Site characterization Sodium BH/MW310 15-Sep-17 Site characterization PHCs + BTEX, VOCs BH/MW310 15-Sep-17 Site characterization PHCs + BTEX, VOCs BH/MW311 15-Sep-17 Site characterization PHCs + BTEX, VOCs BH/MW312 15-Sep-17 Site characterizat	BH/MW303	14-Sep-17	Site characterization	PHCs + BTEX
BH/MW306 18-Sep-17 Site characterization VOCs BH/MW306 18-Sep-17 Site characterization VOCs, Chloride BH/MW307 15-Sep-17 Site characterization VOCs, Chloride BH/MW307 29-Nov-17 Site characterization Sodium, lead BH/MW308 15-Sep-17 Site characterization VOCs BH/MW308 15-Sep-17 Site characterization VOCs BH/MW308 15-Sep-17 Site characterization Sodium, lead BH/MW309 15-Sep-17 Site characterization VOCs BH/MW309 15-Sep-17 Site characterization Sodium BH/MW309 15-Sep-17 Site characterization PHCs + BTEX, VOCs BH/MW310 15-Sep-17 Site characterization PHCs + BTEX, VOCs BH/MW311 15-Sep-17 Site characterization PHCs + BTEX, VOCs BH/MW312 15-Sep-17 Site characterization BTEX	BH/MW304	15-Sep-17	Site characterization	PHCs + BTEX, VOCs
Image: Note of the image: No	BH/MW305	15-Sep-17	Site characterization	PHCs + BTEX, VOCs
BH/MW307 Image: constraint of the state of	BH/MW306	18-Sep-17	Site characterization	VOCs
29-Nov-17 Site characterization Sodium, lead BH/MW308 15-Sep-17 Site characterization VOCs 29-Nov-17 Site characterization Sodium, lead BH/MW308 15-Sep-17 Site characterization Sodium, lead BH/MW309 15-Sep-17 Site characterization VOCs BH/MW309 15-Sep-17 Site characterization VOCs BH/MW309 15-Sep-17 Site characterization Sodium BH/MW310 15-Sep-17 Site characterization PHCs + BTEX, VOCs BH/MW310 15-Sep-17 Site characterization PHCs + BTEX, VOCs BH/MW311 15-Sep-17 Site characterization PHCs + BTEX, VOCs BH/MW312 15-Sep-17 Site characterization BTEX		15-Sep-17	Site characterization	VOCs, Chloride
BH/NW308 Image: Constraint of the state of	BH/MW307	29-Nov-17	Site characterization	Sodium, lead
29-Nov-17 Site characterization Sodium, lead BH/MW309 15-Sep-17 Site characterization VOCs BH/MW310 15-Sep-17 Site characterization Sodium BH/MW310 15-Sep-17 Site characterization PHCs + BTEX, VOCs BH/MW310 15-Sep-17 Site characterization PHCs + BTEX, VOCs BH/MW311 15-Sep-17 Site characterization PHCs + BTEX, VOCs BH/MW311 15-Sep-17 Site characterization PHCs + BTEX, VOCs BH/MW312 15-Sep-17 Site characterization 1,3,5-Trimethybenzene, sodium BH/MW312 15-Sep-17 Site characterization BTEX	BH/MW/309	15-Sep-17	Site characterization	VOCs
BH/MW309	308 Wiwne	29-Nov-17	Site characterization	Sodium, lead
29-Nov-17 Site characterization Sodium BH/MW310 15-Sep-17 Site characterization PHCs + BTEX, VOCs BH/MW311 15-Sep-17 Site characterization PHCs + BTEX, VOCs BH/MW311 15-Sep-17 Site characterization PHCs + BTEX, VOCs BH/MW312 15-Sep-17 Site characterization 1,3,5-Trimethylbenzene, sodium BH/MW312 15-Sep-17 Site characterization BTEX	BH/MW/200	15-Sep-17	Site characterization	VOCs
BH/MW311 15-Sep-17 Site characterization PHCs + BTEX, VOCs BH/MW312 15-Sep-17 Site characterization 1,3,5-Trimethylbenzene, sodium BH/MW312 15-Sep-17 Site characterization BTEX	PU/MM303	29-Nov-17	Site characterization	Sodium
BH/MW311 29-Nov-17 Site characterization 1,3,5-Trimethylbenzene, sodium BH/MW312 15-Sep-17 Site characterization BTEX	BH/MW310	15-Sep-17	Site characterization	PHCs + BTEX, VOCs
29-Nov-17 Site characterization 1,3,5-Trimethylbenzene, sodium BH/MW312 15-Sep-17 Site characterization BTEX	BH/MW211	15-Sep-17	Site characterization	PHCs + BTEX, VOCs
IA/QC Samples:	2. called 1	29-Nov-17	Site characterization	1,3,5-Trimethylbenzene, sodium, le
	BH/MW312	15-Sep-17	Site characterization	BTEX
MW18-1 26-Jan-18 QA/QC Purposes VOCs				
				VOCs PHCs + BTEX, VOCs, chloride
MW213 15-Sep-17 QA/QC Purposes PHUS + B1EX, VOLS, chloride MW222 15-Sep-17 QA/QC Purposes Chloride				

EXP Services Inc.

Phase Two Environmental Site Assessment Update 1509 -1531 Merivale Road, Ottawa, Ontario Project Number: OTT-00224605-D0 April 13, 2020 December 20, 2021

Appendix A – Sample and Analysis Plan

Phase Two ESA Sampling and Analysis Plan

1. Introduction

This Appendix presents the Sampling and Analysis Plan (SAAP) that was developed in support of the Phase Two Environmental Assessment (ESA) Update work for the property located at 1509 – 1531 Merivale Road in Ottawa, Ontario (hereinafter referred to as the 'Site'). The Phase Two ESA Update will be conducted to provide further characterization of the Site subsurface conditions and address the Areas of Potential Environmental Concerns (APECs) outlined in EXP March 2020 Phase One ESA Update to the subsequent filing of a Record of Site Condition (RSC) on the Ontario Ministry of the Environment, Conservation and Parks (MECP) Brownfields Environmental Site Registry, which might be required. The SAAP presents the procedures and measures that will be undertaken during field investigative activities to characterize the Site conditions and meet the data quality objectives of the Phase Two ESA Update.

The SAAP presents the sampling program proposed for the Site, the recommended procedures and protocols for sampling and related field activities, the data quality objectives, and the quality assurance/ quality control measures that will be undertaken to provide for the collection of accurate, reproducible and representative data.

2. Field Sampling Program

The field sampling program was developed to provide for the collection of samples of the surficial and subsurface soil materials for chemical analysis of petroleum hydrocarbons (PHCs), benzene, toluene, ethylbenzene and xylenes (collectively known as 'BTEX'), volatile organic compounds (VOCs), metals and select inorganic parameters in soil and groundwater. The soil sampling media is to consist of the surface soils and upper overburden materials. The soil sampling will be location-specific to assess for the potential presence of PHCs, BTEX, VOCs, and metals / select inorganics based on the identification of areas of potential environmental concern (APECs). Vapour readings will also be collected in the field to determine samples to be submitted for BTEX and PHC F1-F2 analysis. The soil sample intervals will extend from the surface up to a maximum depth of approximately 4.6 meters (m) below grade surface (bgs).

The groundwater sampling will be location-specific to assess for the potential presence of PHCs, BTEX, VOCs, and metals / select inorganics based on the identification of APECs. The monitoring well network will comprise of eight (8) additional monitoring wells.

Vertical control of the boreholes and monitoring wells will be obtained through the completion of an elevation survey with reference to a local structure with a known geodetic elevation. Groundwater flow and direction in the water table aquifer will also be determined through groundwater level measurements and the elevations established from the Site elevation survey.

3. Field Methods

To meet the requirements of the field sampling program, the following field investigative methods will be undertaken:

- Borehole Drilling;
- Soil Sampling;

- Monitoring Well Installation;
- Monitoring Well Development;
- Groundwater Level Measurements;
- Elevation Survey;
- Soil vapour sampling; and,
- Groundwater Sampling.

The field investigative methods will be performed following the procedures and protocols set out in EXP's standard operating procedures and are outlined below:

3.1 Borehole Drilling

Boreholes will be advanced at the Site to facilitate the collection of soil samples for chemical analysis and geologic characterization; and, for the installation of groundwater monitoring wells. A total of twelve (12) boreholes were advanced at the Site by EXP during this Phase Two ESA Update investigation, up to a maximum depth of approximately ~4.6 m below grade, to provide for the collection of samples of the surficial and overburden materials beneath the Site. The borehole locations will be selected to determine the presence or absence of impacts in the soils and the upper overburden groundwater and to address the APECs outlined in EXPs March 2020 Phase One ESA Update.

Prior to borehole drilling, utility clearances will be obtained from public and private locators, as required. If any uncertainty regarding the location of a buried utility at a borehole location is encountered, hand augering or digging will be performed beforehand to confirm the location of the utility.

Where there is overlying asphalt or concrete, the overlying material will be mechanically cored to provide access to the underlying soil materials. The borehole drilling program will be conducted by a licensed driller under the oversight of EXP field staff. Auger flights will be cleaned prior to the commencement of drilling at each borehole location.

3.2 Soil Sampling

Soil samples will be collected for chemical analysis and geologic property characterization. The soil samples will be collected using 5 cm diameter, 61 cm long, split spoons and hollow stem augers or a 5 cm diameter, 1.5 m long, duel tube sampling system with interior dedicated vinyl sampling tubes. Upon retrieval from the boreholes, the split spoons or vinyl sampling tubes will be placed on a flat surface and disassembled by drilling personnel to provide access of the recovered cores. Geologic and sampling details of the recovered cores will be logged and the samples will be assessed for the potential presence of non-aqueous phase liquids. Soil stratigraphy encountered in the boreholes will be texturally, visually and olfactory classified in the field and in the laboratory. Soil samples will be logged for colour, grain size, moisture content, density, structures, texture, staining, and field vapour readings. A Photo-ionization Detector (PID) or GastechtorTM will be utilized to screen the soil samples for Total Organic Vapour (TOV). Representative worst-case soil samples from each borehole will be collected and submitted to a certified laboratory for analysis based on TOV readings, sample depth, visual and/or olfactory field observations.

Recommended volumes of soil samples selected for chemical analysis will be collected into pre-cleaned laboratory-supplied glass sample jars/vials identified for the specified analytical test group. Samples intended for PHC/BTEX and VOCs will be collected using a laboratory-supplied soil core sampler, placed into the vials containing methanol for preservation purposes and sealed using Teflon lined septa lids. The samples will be placed into clean insulated coolers chilled with ice for storage and transport. The samples will be assigned unique identification numbers, and the date, time, location, and requested analyses for each sample will be documented in a bound field note book. The samples will be submitted to the contractual laboratory within analytical test group holding times under Chain of Custody protocols. New disposable chemical resistant gloves will be used for each soil core to prevent sample cross-contamination.

3.3 Monitoring Well Installation

A total of eight (8) boreholes were instrumented as groundwater monitoring wells installed with 1.5 m long screens intercepting the native overburden material, where the shallow water table aquifer is expected, extending to depths of approximately 4.6 m below grade. The monitoring wells will be constructed using 51 mm diameter, Schedule 40, PVC riser pipe and number 10 slot size (0.25 mm) well screens. The base of the well screen will be sealed with threaded flush PVC end caps. All well pipe connections will be factory machined threaded flush couplings. The annular space around the well screen will be backfilled with silica sand, to an average height of 0.6 m above the top of the screen. Granular bentonite will be placed in the borehole annulus from the top of the sand pack to approximately 0.3 m below grade. The monitoring well will be completed with flush-mounted protective steel casings cemented into place.

3.4 Monitoring Well Development

The newly installed monitoring wells will be developed to remove fine sediment particles potentially lodged in the sand pack and well screen to enhance hydraulic communication with the surrounding formation waters. The monitoring wells will be developed using a dedicated low-density polyethylene (LDPE) tubing, equipped with an inertial foot valve to disturb the water column. The wells will be developed until approximately 3 to 5 well volumes of water will be removed and/or until purged dry. Well development details will be documented on a well development log sheet or in a bound hard cover notebook. All development waters will be collected and stored in labeled, sealed containers.

3.5 Groundwater Level Measurements

Groundwater level measurement will be recorded for the newly installed monitoring well to determine the depth of the water table aquifer beneath the Site. The water level will be measured with respect to the top of the PVC riser pipe by means of an electronic water level meter. The water levels will be recorded on water level log sheets or in a bound field notebook. The water level meter probe will be decontaminated between monitoring well locations.

3.6 Elevation Survey

An elevation survey will be conducted to obtain vertical control of the newly installed monitoring well location and boreholes. The top of the PVC riser pipe of the monitoring well and ground surface elevation of the monitoring well and borehole locations will be surveyed against an geodetic benchmark, or if unavailable, against a suitable arbitrary benchmark. Elevations measured against a geodetic/arbitrary benchmark will be recorded as meters above mean sea level (m AMSL). The elevation survey will be accurate to within ± 0.3 cm.

3.7 Field Measurements of Water Quality Parameters

Prior to collecting the groundwater sample, field measurements of water quality parameters will be recorded from the monitoring wells utilizing low-flow purging and sampling methodologies. Groundwater will be purged from the monitoring wells using a peristaltic pump and dedicated LDPE tubing. Field measurements of dissolved oxygen concentration, electrical conductivity, oxidation-reduction potential, pH, temperature, turbidity and water levels will be recorded in three (3) minute intervals during the purging activities using a pre-calibrated multi probe water quality meter, a turbidity meter and a water level meter. Generally well purging will continued until the purged water has chemically stabilized as indicated by field parameter measurements and the well head drawdown is maintained within 10 cm for 3 consecutive readings. In the event that the parameters do not stabilize or the well head drawdown is too significant, the groundwater is to recover to approximately 75% of static levels before sampling.

The multi-meter electrodes will be calibrated prior to receipt of the meter by the supplier using in-house pH and conductivity reference standards. All collected purged water will be stored on-Site in labeled, sealed containers. Equipment used during groundwater monitoring will be thoroughly cleaned and decontaminated between wells.

3.8 Groundwater Sampling

Upon completion the field measurements of water quality parameters, groundwater samples will be collected for chemical analysis using the peristaltic pump and dedicated LDPE tubing. Recommended groundwater sample volumes will be collected into pre-clean laboratory-supplied vials or bottles provided with analytical test group specific preservatives, as required. The samples will be placed in an insulated cooler chilled with ice for storage and transport. Samples for BTEX analysis will be collected in triplicate vials prepared with concentrated hydrochloric acid or an acceptable substitute as a preservative. Each vial will be inverted and inspected for gas bubbles prior to being placed in the cooler to ensure that no head-space is present.

The groundwater sample will be assigned a unique identification number, and the date, time, project number, company name, location and requested analyses will be documented in a bound hard cover notebook. The sample will be submitted to the contractual laboratory within analytical test group holding times under chain of custody protocols. New disposable chemical resistant gloves will be used for each sampling location to prevent sample cross-contamination.

3.9 Soil Vapour Sampling

During EXP's previous Site investigation (2016 Phase Two ESA), soil gas monitors were installed at five (5) locations along the northeast property line and sub-slab soil vapour ports were installed at four (4) locations within the on-Site building. The top of the screen of the soil gas monitors were installed at a minimum depth of 1.0 m from ground surface and the bottom of the screens were installed at least 0.3 m above the water table. The sub-slab soil vapour ports were installed just below the concrete slab (<100 mm) within the building.

To determine the presence and concentrations of the relevant VOC and PHC parameters beneath the floor slab of the building and along the northeast property line, an additional round of soil gas samples are to be collected over approximately a 10 minute period using 2-litre capacity evacuated Summa[™] canisters prepared and certified by Bureau Veritas Laboratories, based on USEPA method TO-15. The canisters were equipped with laboratory calibrated mass flow controllers adjusted for a 24 hour sampling period. Each canister and flow controller was assigned a unique sample identification number.

Canister pressures were measured prior to and upon completion of the sampling period using laboratory supplied pressure gauges to ensure that sufficient sample volumes had been collected for chemical analysis. Canister pressures were also measured by the laboratory prior to analysis as a quality assurance measure to check for potential leakage during handling and transport. Furthermore, canister pressures were routinely monitored throughout the sampling period using the pressure gauges attached to the flow controllers.

Sub-slab soil vapour samples were collected from the dry cleaner unit (1525A Merivale Road), the vacant unit in the north part of the building (1517 Merivale Road), The Noodle House (1519 Merivale road), and Odds and Sods (1527 Merivale Road).

The canisters were submitted under Chain of Custody protocol to Bureau Veritas Laboratories (formerly Maxxam Analytics) for analysis of PHC F1, PHC F2, PCE, TCE, 1,1-DCE, cis-1,2-DCE, trans-1,2-DCE, vinyl chloride, as listed in Ontario Regulation 153/04 (as amended). Bureau Veritas is accredited under the Canadian Association for Laboratory Accreditation (CALA). The air quality samples were analyzed by Bureau Veritas using USEPA method EPA TO-15 following method specific QA/QC protocols.

4. Field Quality Assurance/Quality Control Program

The objective of the field quality assurance/quality control (QA/QC) program is to obtain soil and groundwater samples and other field measurements that provide data of acceptable quality that meets the objectives of the Phase Two ESA. The objectives of the QA/QC program are achieved through the implementation of procedures for the collection of unbiased (i.e. non-contaminated) samples, sample documentation and the collection of appropriate QC samples to provide a measure of sample reproducibility and accuracy. The field QA/QC measures comprise:

- Decontamination Protocols;
- Equipment Calibration;
- Sample Preservation;
- Sample Documentation; and,
- Field Quality Control Samples.

Details on the field QA/QC measures are provided below.

4.1 Decontamination Protocols

Decontamination protocols was followed during field sampling where non-dedicated sampling equipment is used to prevent sample cross contamination. For the borehole drilling and soil sampling, soil sampling devices are cleaned/decontaminated between sampling intervals and auger flights between borehole locations in according with SOP requirements. For the monitoring well installation, well components are not to come into contact with the ground surface prior to insertion into boreholes. Electronic water level meters are decontaminated between monitoring well locations during well development, and purging activities. For hydraulic conductivity tests, the electronic water level meters are decontaminated between sampling locations. All decontamination fluids are collected and stored in sealed, labeled containers.

4.2 Equipment Calibration

All equipment requiring calibration was calibrated in the field according to manufacturer's requirements using analytical grade reagents, or by the supplier prior to conducting field activities, and subsequently checked in the field. The calibration of all pre-calibrated instruments is checked in the field using analytical grade reagents and re-calibrated as required. For multiple day sampling events, equipment calibration is checked prior to the beginning of sampling activities. All calibration data will be documented in a bound hard cover notebook.

4.3 Sample Preservation

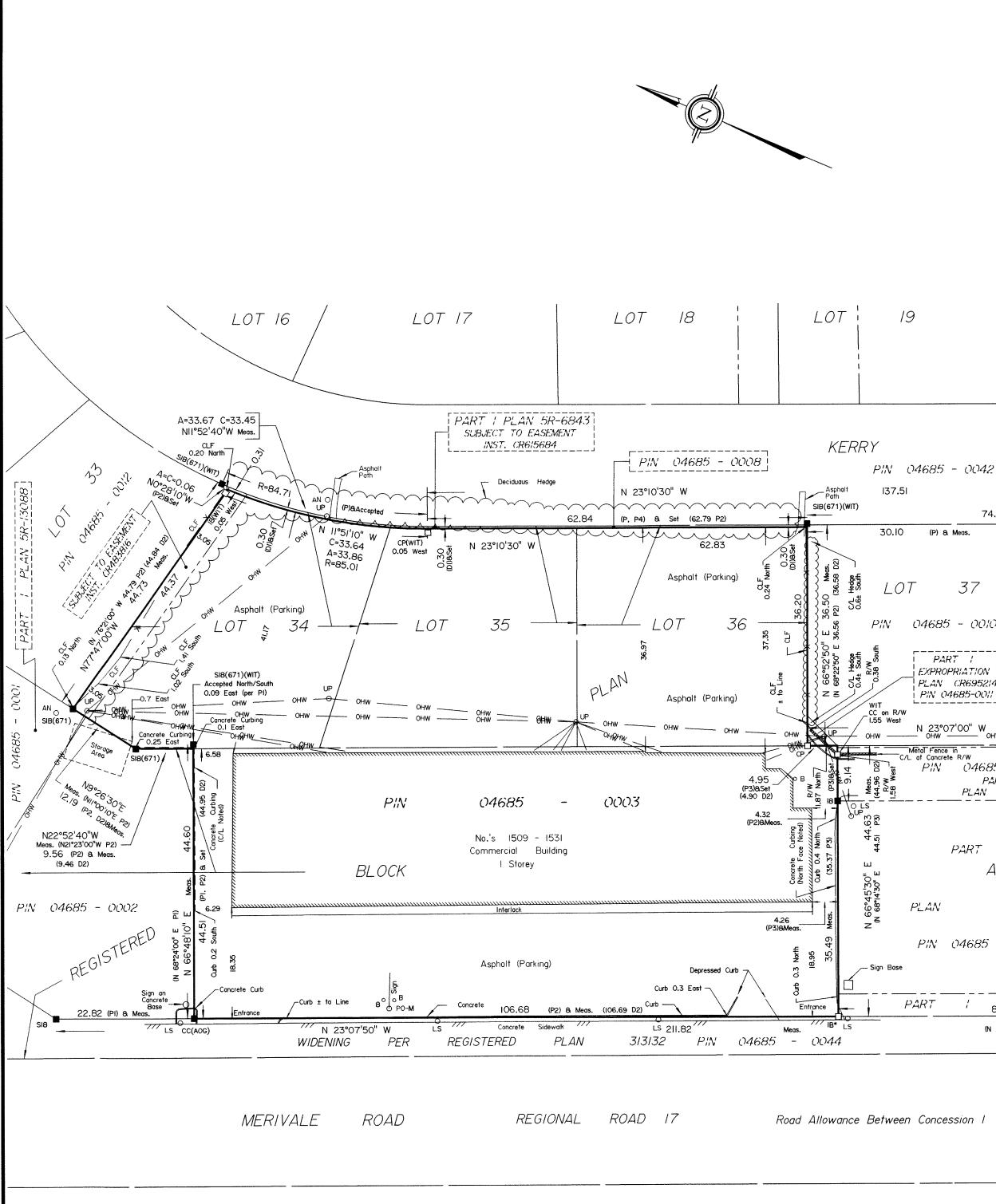
All samples will be preserved using appropriate analytical test group specific reagents, as required, and upon collection placed in pre-chilled insulated coolers packed with ice for storage and transport.

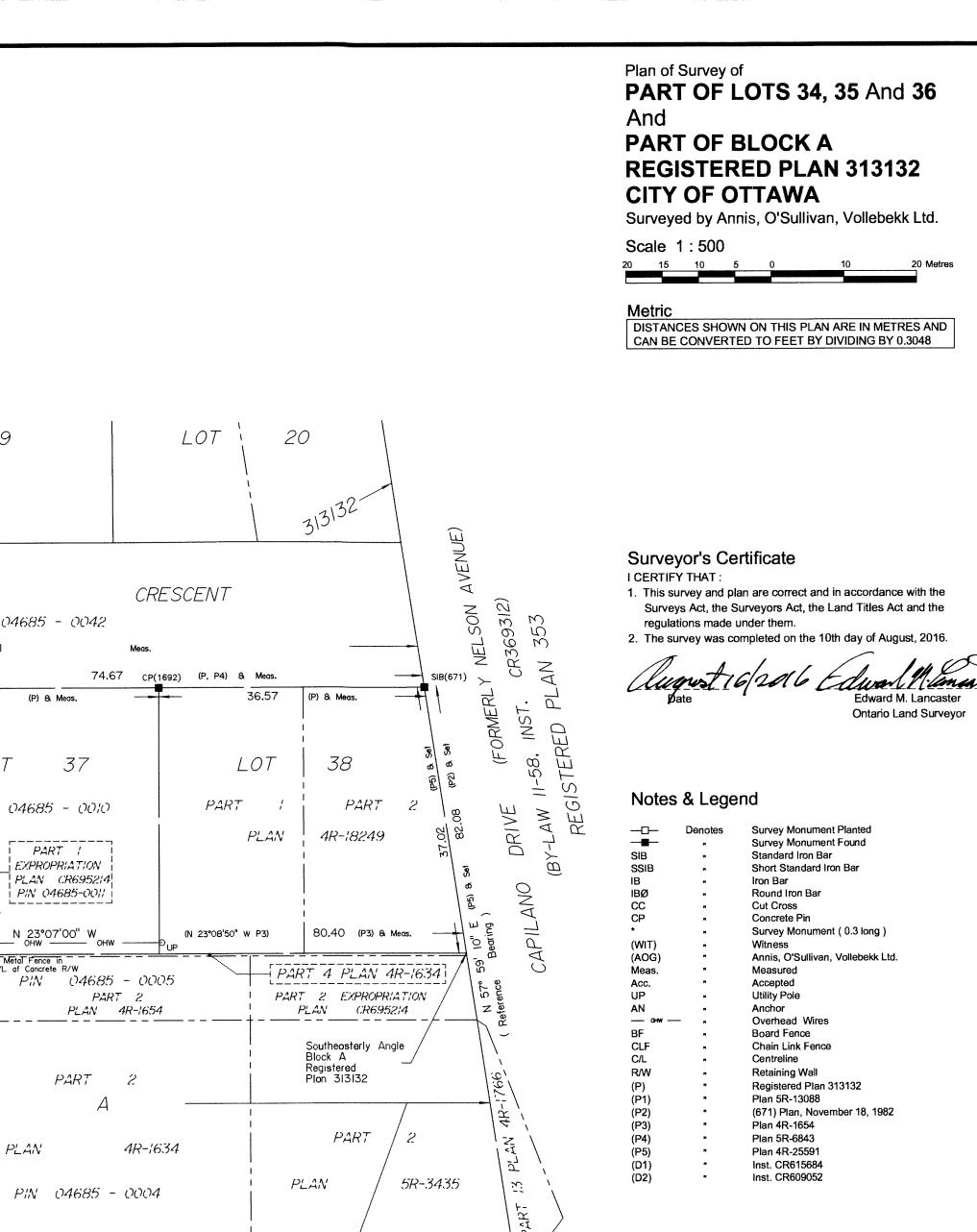
4.4 Sample Documentation

All samples were assigned a unique identification number, which is to be recorded along with the date, time, project number, company name, location and requested analysis in a bound field notebook. All samples will be handled and transported following COC protocols.

4.5 Field Quality Control

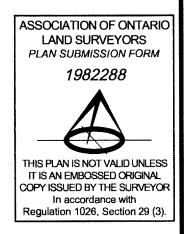
Field quality control samples were collected to evaluate the accuracy and reproducibility of the field sampling procedures. For groundwater sampling, one (1) field duplicate was collected for every ten (10) samples submitted for chemical analysis. For multiple day sampling events, at least one (1) field duplicate soil and groundwater sample were submitted for chemical analysis. The field duplicate samples were assessed by calculating the relative percent difference and comparing to the analytical test group specific acceptance criteria.




EXP Services Inc.

Phase Two Environmental Site Assessment Update 1509 -1531 Merivale Road, Ottawa, Ontario Project Number: OTT-00224605-D0 April 13, 2020 December 20, 2021

Appendix B – Survey Plan



Bearings are grid, derived from part of the northerly limit of Capilano Drive, shown to be N 57°59'10" E on Plan 4R-25591.

Site Area = 8897.0 Square Metres

Pasitian af SSIB(JDB) per (P5)

ANNIS, O'SULLIVAN, VOLLEBEKK LTD. 14 Concourse Gate, Suite 500 Nepean, Ont. K2E 7S6 Phone: (613) 727-0850 / Fax: (613) 727-1079 Émail: Nepean@eovttd.com

Road Allowance Between Concession I and A (Rideau Front) (Nepean)

Meas. (82.39 P2)

211.92

82.32

(N 24° 00' 00" W

<u>_PART_</u>

PART

<u>PLAN _ 4R-2559</u>

PLAN 5R-3435

(P) & Meas.

37

PART I

EXP Services Inc.

Phase Two Environmental Site Assessment Update 1509 -1531 Merivale Road, Ottawa, Ontario Project Number: OTT-00224605-D0 April 13, 2020 December 20, 2021

Appendix C – Borehole Logs

Explanation of Terms Used on Borehole Records

SOIL DESCRIPTION

Terminology describing common soil genesis:

Topsoil: mixture of soil and humus capable of supporting good vegetative growth.

Peat: fibrous fragments of visible and invisible decayed organic matter.

- Fill: where fill is designated on the borehole log it is defined as indicated by the sample recovered during the boring process. The reader is cautioned that fills are heterogeneous in nature and variable in density or degree of compaction. The borehole description may therefore not be applicable as a general description of site fill materials. All fills should be expected to contain obstruction such as wood, large concrete pieces or subsurface basements, floors, tanks, etc.; none of these may have been encountered in the boreholes. Since boreholes cannot accurately define the contents of the fill, test pits are recommended to provide supplementary information. Despite the use of test pits, the heterogeneous nature of fill will leave some ambiguity as to the exact composition of the fill. Most fills contain pockets, seams, or layers of organically contaminated soil. This organic material can result in the generation of methane gas and/or significant ongoing and future settlements. Fill at this site may have been monitored for the presence of methane gas and, if so, the results are given on the borehole logs. The monitoring process does not indicate the volume of gas that can be potentially generated nor does it pinpoint the source of the gas. These readings are to advise of the presence of gas only, and a detailed study is recommended for sites where any explosive gas/methane is detected. Some fill material may be contaminated by toxic/hazardous waste that renders it unacceptable for deposition in any but designated land fill sites; unless specifically stated the fill on this site has not been tested for contaminants that may be considered toxic or hazardous. This testing and a potential hazard study can be undertaken if requested. In most residential/commercial areas undergoing reconstruction, buried oil tanks are common and are generally not detected in a conventional geotechnical site investigation.
- *Till:* the term till on the borehole logs indicates that the material originates from a geological process associated with glaciation. Because of this geological process the till must be considered heterogeneous in composition and as such may contain pockets and/or seams of material such as sand, gravel, silt or clay. Till often contains cobbles (60 to 200 mm) or boulders (over 200 mm). Contractors may therefore encounter cobbles and boulders during excavation, even if they are not indicated by the borings. It should be appreciated that normal sampling equipment cannot differentiate the size or type of any obstruction. Because of the horizontal and vertical variability of till, the sample description may be applicable to a very limited zone; caution is therefore essential when dealing with sensitive excavations or dewatering programs in till materials.

Terminology describing soil structure:

- *Desiccated:* having visible signs of weathering by oxidization of clay minerals, shrinkage cracks, etc.
- *Stratified:* alternating layers of varying material or color with the layers greater than 6 mm thick.
- *Laminated:* alternating layers of varying material or color with the layers less than 6 mm thick.
- *Fissured:* material breaks along plane of fracture.
- *Varved:* composed of regular alternating layers of silt and clay.
- *Slickensided:* fracture planes appear polished or glossy, sometimes striated.
- *Blocky:* cohesive soil that can be broken down into small angular lumps which resist further breakdown.

- inclusion of small pockets of different soil, such as small lenses of sand scattered Lensed: through a mass of clay; not thickness.
- Seam: a thin, confined layer of soil having different particle size, texture, or color from materials above and below.

Homogeneous: same color and appearance throughout.

Well Graded: having wide range in grain sized and substantial amounts of all predominantly on grain size.

Uniformly Graded: predominantly on grain size.

All soil sample descriptions included in this report follow the ASTM D2487-11 Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System). The system divides soils into three major categories: (1) coarse grained, (2) fine-grained, and (3) highly organic. The soil is then subdivided based on either gradation or plasticity characteristics. The system provides a group symbol (e.g. SM) and group name (e.g. silty sand) for identification. The classification excludes particles larger than 76 mm. Please note that, with the exception of those samples where a grain size analysis has been made, all samples are classified visually in accordance with ASTM D2488-09a Standard Practice for Description and Identification of Soils (Visual-Manual Procedure). Visual classification is not sufficiently accurate to provide exact grain sizing or precise differentiation between size classification systems. Others may use different classification systems; one such system is the ISSMFE Soil Classification.

ISSMFE SOIL CLASSIFICATION											
CLAY		SILT			SAND			GRAVEL		COBBLES	BOULDERS
	FINE	MEDIUM	COARSE	FINE	MEDIUM	COARSE	FINE	MEDIUM	COARSE		

0.002	0.006	0.02	0.06	0.2	0.6	2.0	6.0	20	60	200
1					1				1	1

CLAY (PLASTIC) TO	FINE	MEDIUM	CRS.	FINE	COARSE				
SILT (NONPLASTIC)		SAND	GRAVEL						
Ĩ	UNIFIED SOIL CLASSIFICATION								

Terminology describing materials outside the USCS, (e.g. particles larger than 76 mm, visible organic matter, construction debris) is based upon the proportion of these materials present and as described below in accordance with Note 16 in ASTM D2488-09a:

Table a: F	Percent or Proportion of Soil, Pp
	Criteria
Trace	Particles are present but estimated to be less than 5%
Few	5≤Pp≤10%
Little	15≤Pp≤25%
Some	30≤Pp≤45%
Mostly	50≤Pp≤100%

The standard terminology to describe cohesionless soils includes the compactness as determined by the Standard Penetration Test 'N' value:

I able b: Apparent Density of	Cohesionless Soil
	'N' Value (blows/0.3 m)
Very Loose	N<5
Loose	5≤N<10
Compact	10≤N<30
Dense	30≤N<50
Very Dense	50≤N

The standard terminology to describe cohesive soils includes consistency, which is based on undrained shear strength as measured by insitu vane tests, penetrometer tests, unconfined compression tests or similar field and laboratory analysis, Standard Penetration Test 'N' values can also be used to provide an approximate indication of the consistency and shear strength of fine grained, cohesive soils:

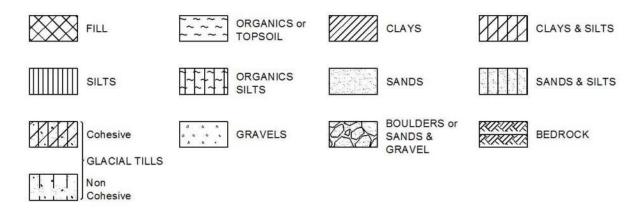

Consistency	Vane Shear Measurement (kPa)	'N' Value
Very Soft	<12.5	<2
Soft	12.5-25	2-4
Firm	25-50	4-8
Stiff	50-100	8-15
Very Stiff	100-200	15-30
Hard	>200	>30

Table c: Consistency of Cohesive Soil

Note: 'N' Value - The Standard Penetration Test records the number of blows of a 140 pound (64kg) hammer falling 30 inches (760mm), required to drive a 2 inch (50.8mm) O.D. split spoon sampler 1 foot (305mm). For split spoon samples where full penetration is not achieved, the number of blows is reported over the sampler penetration in meters (e.g. 50/0.15).

STRATA PLOT

Strata plots symbolize the soil or bedrock description. They are combinations of the following basic symbols:

WATER LEVEL MEASUREMENT

Open Borehole or Test Pit

Monitoring Well, Piezometer or Standpipe

V

Project No: Project:	OTT-00224605-C0 Environmental Drilling and Groundwa	ter Monito	rin]				F			<u>3</u>	- 1	-	
ocation:	1509 - 1531 Merivale Road, Ottawa													
Date Drilled:			-	Split Spi Auger S	oon Samp	ek	× E		Combust Natural N	,		ting		D X
Drill Type:	Geoprobe		-	SPT (N)	Value		C	-	Atterberg		Content	ŀ		-ô
)atum:	Geodetic		•	Dynamic Shelby 1	: Cone Te lube	IST			Undraine % Strain					⊕
ogged by:	MAD Checked by: MGM		Shear Strength by Vane Test				+ s	Shear Strength by Penetrometer Test						
s X		Geodetic	Þ	Sta	andard Pe	netration	Test N Va	itue	Combusi 25			ling (ppm) 750	S	Natura
S Y B O	SOIL DESCRIPTION	m	D 6 0 - F	Shear	Strength			80 kPa			ture Cont s (% Dry	ent % Weight)	SAMP-1440	Unit W
	<u>IALT</u> ~ 50 mm	95.47	0	UT.IS	50 1	00	150 2	200	20	<u>, c</u>	40	60	Š	
- Distu	<u>DAND GRAVEL</u> rbed native soil, grey and brown,	 194.8						ů Ú					X	St
TILL	t, no odour				191					1 11				
Grav	elly sand, some silt, brown, moist to	1	ľ	111	I.I.I.I			9					1X	S2
		-											$\left(\right)$	
<i>i</i>	ofund of 0.2 m Daath on Dadeada	93 49	2					ů C		-			XL	S 3
4//20	lefusal at 2.3 m Depth on Bedrock	93.2			1 2			1121			127	24	P	
Dark	grey cuttings, brown water in air ng medium, no odour	1				140	14.13	1. Fey	112		6 222	-		
		-	3	= 10				2222		1.1.1			-	
								1723						
										1 11				
		1	4					DCF C						
		90.9								113				
	prehole Terminated at 4.6 m Depth									13	4			
									0.0		E.E.			
							Т.							
											네봅			
				ц.,								<u> </u>		
				n -							Tre			
				1										
										Ē		1.0		
										E				
									H I	5	101			

10/7/16								
BOREHOLES.GPJ TROW OTTAWA.GDT								
SOF	NOTES. 1. Borehole data requires interpretation by exp. before use by others	WAT	ER LEVEL RECO	PRDS		CORE DR	AILLING RECOR	 RD
DLE LOGS	use by others 2. A flushmount monitoring well with a 51 mm slotted standpipe was installed in the borehole upon completion	Elapsed Time 10 days	Water Level (m) 1.3	Hole Open To (m)	Aun No.	Depth (m)	% Rec.	RQD %
BOREHOLE	3. Field work supervised by an exp representative	April 21, 2016	1.6					
OF B(4.See Notes on Sample Descriptions							
	5. This Figure is to read with exp. Services Inc. report OTT-00224605-C0							

Project:	OTT-00224605-C0 Environmental Drilling and Grou	ndwater Mon	itori	na					Figure	No.	4	_		
.ocation:	1509 - 1531 Merivale Road, Otta			19					Pa	age	<u>1</u> of	1		
		2000	-	50										
Date Drilled:				Split Sp Auger S	ioon Sam; Sample	pl	2 N	-			pour Read Content	ing		
•••	Geoprobe			SPT (N)) Value		C	-		arg Limits		ŀ		ê
)atum:	Geodetic			Dynami Shelby	COne Ti Tube	est		-		ned Triax in at Failt				⊕
.ogged by:	MAD Checked by: M	IGM		Shear S Vane Te	Strength b est	y.	-+ s	-		Strength ometer T				
S Y M		Geode	iner- I	St	andard P	enetration	n Test N Va	alue		ustible Va 250	ipour Read	ing (ppm) 750	S	Natur
	SOIL DESCRIPTION	m		Shear	20 Strength			80 kPa		aturat Moi rberg Lim	sture Conte its (% Dry \	ant % Maight)	T PI	Unit V kN/m
	IALT ~ 50 mm	94 99	- 1	0	50	100	150	200	0	20	40	60	s \/	
Distu	DAND GRAVEL rbed native soil, grey and brown,	11				-			<u> </u>	1.1.1			-IXI	S1
Imoist TILL	, no odour				BETT			112	1				H	
Grave	elly sand, some silt, brown, moist,	, no		1	3113		1511	1453	ф		18		IXI	S2
		- 93	3.56											
							1221	112	ф́	-	ka tan	3220	M	53
1600	efusal at 2.3 m Depth on Bedroc	k 92.7		2	111			182	211	477		125	4	
Dark	<u>E BEDROCK</u> grey cuttings, brown water in air	-												
flushi	ng medium, no odour								1.5					
						14		1 = 101		151523			11	
		-		11111					218		2112			
		_				-			100					
										11				
	prehole Terminated at 4.6 m Dep	<u>- 90.4</u>											+	
									1Ē.					
					Tee -				1 H					
											÷			
									E.					
								111			100			
									E					
						- n		121	日日			111		
								2.12						
						1 df 1		111	ŏII	П				
OTES Borehole data req use by others	uires Interpretation by exp. before		rea L	EVEL A	ECORD	S			cc	REDR	LLING A	ECORD		
		Elapsed Time	1	Water .evel (m)		Hole Op To (m	Den 1)	Run No.	Dep (m		% Red	C.	RQ	0%
-	itoring well with a 51 mm slotted													
-	itoring well with a 51 mm slotted	10 days April 21, 2016		0.8		*								

	OTT-00224605-C0 Environmental Drilling and Ground	water Monito	ning	a					Figure	No.	5	_		
-	1509 - 1531 Merivale Road, Ottaw			2					Pa	age.	1_ of	_1_		
ate Drilled: :				_										
			_	Split Spo Auger S		ple					ipour Read e Content	ling		
	Geoprobe		-	SPT (N)	Value	_		0		ing Limits		I		-Õ
•	Geodetic		_	Dynamic Shelby T		est				ned Tria: in at Fall				⊕
ogged by:	MAD Checked by: MGI	<u>N.</u>		Shear S Vane Te		у		+ s		Strength ometer T				
S Y B D L	SOIL DESCRIPTION	Geodetic	Depth		andard P 20_	enetration	60	Value 80		250	apour Read	750) S≪⊉r_1щv	Natu
		m 95.36	î h	Shear	Strength 50		150	kPa 200	Atte	rberg Un 20	isture Cont hits (% Dry 40	Weight) 60	LIUU	Unit V kN/n
	ALT ~ 60 mm AND GRAVEL	95.3	ľ						0				Ň	
Distur	bed native soil, with some gravel, nd brown, moist, no odour	-				-			₽	4.62	1 0 0 0 0		٠Ň	S1
gieya	ne zromi, molat, no odbur	_	1					i iter	5	2005	34 (227)		H	
		94.0			1		12	i bini	۴ –				X	S2
Grave cobble	lly sand, some silt, some shale s present, brown, moist, no odour	-							5 ()				X	S3
Re	fusal at 2.4 m Depth on Bedrock	93.0	5	ų	3			1 2311	ф Ф				X	S4
	E BEDROCK Irey cuttings, brown water in air			11283									-H	
flushin	ig medium, no odour	92.59	3	= 67								112		
				972) 1	12		1		sens		7781			
		-		TXF					1111				-	
		_	4	- 33					1000		12161			
									0.5752		212			
		1		15-17				12512	1	161				
-		_	5			_			1					
						1.00		1.1.1		1.57				
		7					1				1111		11	
		_	6		THE	- 10								
										1				
		-	7			-	-				-		-	
		_									-			
													11	
		-	B								1 1111		$\left \right $	
				1 EI I		123								
		86.2	9		130					-				
Bor	ehole Terminated at 9.2 m Depth		Ī										Π	
				l h	100x									
)TES: Borehole data requ	ires Interpretation by exp. before	WATEF	RLE	VEL RE	CORD	IS			co	RE DR	ILLING R	ECORD)	
use by others A flushmount monit	oring well with a 19 mm slotted	Elapsed Time		Nater ivel (m)		Hole Op To (m		Run No	Dep (m	th	% Re	c	RC	D %
standpipe was insta completion.		10 days il 21, 2016		2.1 2.5		-				stere:				
Field work supervis	ed by an exp representative.													

Location:	Environmental Drilling and Grou	undwater Mo	onitor	ing				F 	igure l Pa		<u>6</u> 1_of	-		I
LUCATION.	1509 - 1531 Merivale Road, Ott	lawa							1.03	90		<u> </u>		
Date Drille	ed: <u>3/31/15</u>			•	Spoon Sa	nple				-	our Readi	ng		
Drill Type:	Geoprobe			-	r Sample N) Value) O		Natural I Atterberg		Content	F		X -Ð
Datum:	Geodetic			•	mic Cone ly Tube	Test			Undraine % Strain					⊕
ogged by	: MAD Checked by: N	/IGM			r Strength	by	+ s		Shear St Penetror					
SYMBO	SOIL DESCRIPTION		odelic	D e p	_20	40	60 1	90	2	50 !	our Readii 500 7. ture Conte	50	SAZB-TEN	Natura Unit Wt
		95.3		h h 0	ar Strengt 50		150 2	kPa 00			ture Conte is (% Dry V 40 €	/eight) i0	LES	kN/m ³
	<u>SPHALT</u> ~ 60 mm AND AND GRAVELImported sand ar avel from a commercial pit, with silt ay, brown to dark brown then grey, r	and -	3						5				\mathbb{N}	S1
) odour	-		1					5 D	3225] 1897			M	S2
- -		-	93.63										$\left(\right)$	
	Refusal at 2.4 m Depth on Bedro	ck 93.0	,	2				()				Å	S3
	ALE BEDROCK ark grey cuttings, brown water in air shing medium, no odour						1.7.5	12.33						
		-		3							110			
								111-11	14	1111	1211			
E -		-		4			1.11				121		$\left \right $	
		- 90.8	3		1		11448			133				
									-					
OTES:	a requires interpretation by exp. before		ATER		RECOR									

ខា	use by others					00112 01	incenta neool	
٩	2.A flushmount monitoring well with a 51 mm statted	Elapsed Time	Water Level (m)	Hole Open To (m)	Run No.	Depth (m)	% Rec.	RQD %
빙	standpipe was installed in the borehole upon	10 days	1.2	•				
핇	completion.	April 21, 2016	1.4					
뜅	3. Field work supervised by an exp representative							
е Ч	4.See Notes on Sample Descriptions							
g	 This Figure is to read with exp. Services Inc. report OTT-00224605-C0 							

Project No:	<u>OTT-00224605-C0</u>	of Bor	en	ole		W1		_				ЭХ	
Project:	Environmental Drilling and Grour	ndwater Monito	ring					Figure f					
Location:	1509 - 1531 Merivale Road, Otta	wa						Pa	ge	<u>1</u> of	1		
Date Drilled:	4/30/15		Solit S	ipoon Samp	lo			Combus	tihle Var	our Readi	00	D	
Drill Type:	Geoprobe		Auger	Sample				Natural	Mo sture	Content		×	
Datum:	Geodetic			N) Value nic Cone Te	st	0		Atterber Undrain	g Limits ed Triaxi	al at	ŀ	—-Э Ф	
Logged by:	MAD Checked by: M	GM		y Tube Strength by					i at Failu trength b	-		•	
	••••••••••••••••••••••••••••••••		Vane			+ s		Penetro	meter Te	st			
G Y G M		Geodetic		Standard Pe				2	50	our Readi 500 7	50) S A M Natu	
G M B L O L	SOIL DESCRIPTION		t She	ar Strength			80 kPa 200		iture Conte ts (% Dry V 40 (A Natur M Unit V E KN/n			
	HALT ~ 60 mm D AND GRAVEL	95.36				150 2			20	40 (<u>50</u>	3	
-Dist	urbed native soil, grey and brown.	94.7						7.6	1010				
(Infe	st, no odour med from MW15-1)			1.782		1243			<u>t:</u>	· · · · · · ·	=		
Grav	velly sand, some silt, brown, moist		T.			1 -1							
turni (Infe	ng moist/wet, no odour rred from MW15-1)	-				1.1.1		11-11					
		93.24	2			1.1.1	001203			1112253			
	LE BEDROCK	93.0	15	1.04		영류			102				
Dark	grey cuttings, brown water in air	1	it in the				1						
	ning medium, no odour	-	3										
		_	12		-12		14.4	-					
							23		1161				
- SHA Dark flush		91 1	4						1.757				
E	orehole Terminated at 4.3 m Dept	h											
Note	: stratigraphy inferred from MW15-	.1											
								HC I					
			10										
											10		
				1.1	1								
					100								
				151									
					11			10			1		
										11			
				Ι.,	Imi				ļ	17U	111		
OTES: Borehole data re	equires interpretation by exp. before	WATER	ALEVEL	RECORD	5			CO	RE DAI	LLING RI	ECORD	-	
use by others		Elapsed Time	Wate Level (r -	Hole Op To (m		Run No.	Dep (m)	th	% Re		ROD %	
standpipe was ir completion.	nitoring well with a 51 mm slotted	8 days	2.1 1.9	'''									
3. Field work super	rvised by an exp representative.	April 21, 2016	1.9										
	ample Descriptions												
5. This Figure is to OTT-00224605-	read with exp. Services Inc. report												

Project:	Environmental Drilling and Groundwat	er Monito	rinç	ļ					-	No		-	
ocation:	1509 - 1531 Merivale Road, Ottawa								Pa	ge	<u>1</u> of		
ate Drilled:	4/30/15	Split Spoon Sample 🛛							Combustible Vapour Reading				
rill Type:	Geoprobe	Auger Sample						Natural Moisture Content					
	Geodetic	Ovnamic Cone Test					Undrain	rg Limits Ied Triaxia		-i	G—− ⊕		
ogged by:	MAD Checked by: MGM		Shelby Tube				Shear S	n at Failur Strength b	y Y				
				Vane Te:			+ s		Penetro	meter Te	st		
SY M B O		Geodetic	Dep			netration 1						'50	S A M Natu
	SOIL DESCRIPTION	m 95.11	h	Shear \$	Strength			30 <u></u> kPa 00	Natural Molsture Content % Atterberg Limits (% Dry Weight) 20 40 60				A Natu P Unit \ E kN/r
	LALT ~ 60 mm	95.0	0	I.E	Ĩ		<u> </u>		10	20		1	3
- Distu	rbed native soil, grey and brown, -	94,4		ALC: UNITED IN						1.11			
(Infer	no odour red from MW15-1)			π	titixis	j.t.		ta					
TILL Grave - turnin (Infer - - - - - - - - - - - - - - - - - - -	elly sand, some silt, brown, moist		[`[1							
, 🕅 — turnin	ig moist/wet, no odour - red from MW15-1)	93.43							291				
- -	-	-	2	133	30 0			52.5	-		11561		
	E BEDROCK -	92.7			招告								
Dark	grey cuttings, brown water in air ng medium, no odour]		513				20.1	84		±1/5		
	ng mealam, no oaour -	-	3										
		-				144			244				
					14		2-23		214			anii	
	- orehole Terminated at 4.2 m Depth	90.9	4	it H		10.		短日	1231		1.1.1		
Note:	stratigraphy inferred from MW15-1												
							11		0.1		1		
							100				111.1		
						- Int							
				с ,		ц.С							
												=	
				цр						um		11=	
DTES: Borehole data rec	uires Interpretation by exp. before	WATER	ILE	VEL RE	CORD!	5			со	RE DRII	LLING RI	ECORD	
use by others A flushmount mor	titoring well with a 51 mm slotted			Vater vel (m)		Hole Ope To (m)	en	Run No.	Dep (m		% Red	C.	RQD %
standpipe was ins completion.	statled in the borehole upon 8 da April 21	· I		1.7 1.3		-							
							- EI						
Field work superv See Notes on Sar	ised by an exp representative.												

Project No:	<u>OTT-00224605-C0</u>	of Be	or	eho	ble	M	W 1		_		0		ex	ſ
Project:	Environmental Drilling and Ground	dwater Mo	nitori	ng					Figure I	_	9	-		I
Location:	1509 - 1531 Merivale Road, Ottav	va							Pa	ge	<u>1</u> of	1		
Date Drilled	: 6/26/15			Split Sp	oon Sam	DIƏ	Þ	ব	Combus	stible Var	our Readi	na	D	
Drill Type:	Geoprobe			Auger S	Sample		0	0	Natural	Moisture	Content		×	
Datum:	Geodetic			SPT (N Oynami) Value ic Cone Te	est		-		rg Limits Ied Triaxi	al at	ŀ	G @	
Logged by:	•	iM		Shelby Shear S	Tube Strength by	¥			Shear S	n at Failu Strength t	у		•	
	· *			Vane T	est	-	S		Penetro	meter Te	ist		-	
SY 280L	SOIL DESCRIPTION	Geo	detic					10e 80	2	250	pour Readi 500 7 sture Conte	50	SA Nat PUnit Lus	
		94.8		t Shear	Strength 50	100	150	kPa 200		berg Limi 20	sture Conte ts (Dry V 40 (Veight) 50	L KN	/m³"
FILL	<u>HALT</u> ~ 40 mm	94.7		211	1									
	d and gravel, grey and brown, moist	f			1.4.1.1		-							
	wn, silty clay, some sand and gravel,			1										
- Marine mois	st, no odour		3.47				1111		41			ante		
		93.0											11	
- SHA Dark	LE BEDROCK k grey cuttings, brown water in air	-		2										
	ning medium, no odour						3.01	3 11	<u>p</u> tit=					
				÷.,			1 (1)	at t			11.2			
		-		3	1.15	-12					212		11	
		-					- 1							
					13				명탄		111			
SHA Darl flust				4		113								
	orehole Terminated at 4.57 m Depti	90.2	\dashv										_	
NOTES:				<u> </u>		i			I	1			<u> </u>	_
	equires Interpretation by exp. before	Elapsed	TER	UEVEL F		S Hole Op	en	Run	CO Dep		LLING AI		RQD %	6
standpipe was it completion.		Time 11 days pril 21, 2016		Level (m 1.3 0.8		<u>To (m</u>		No.	(m					
,	rvised by an exp representative													
	read with exp. Services Inc. report													

•	ect: <u>Environmental Drilling and Groundwater</u> ation: <u>1509 - 1531 Merivale Road, Ottawa</u>							_	Pa	ige	<u>1</u> of	_1_		
Date	e Drilled: 6/26/15		s	plit Spo	on Samp	0	×]	Combu	stible Va	pour Read	ling	3	3
Drill	Type: Geoprobe	,		uger Si PT (N)			(III O	-		Moisture rg Limits	e Content			X Đ
Datu	Im: Geodetic		D	ynamic	: Cone Te	st		-	Undrain	ied Triax	tial at			⊕
.ogg	ged by: DC Checked by: MGM	-	s	helby T hear Si ane Te	trength by	1	+ s		Shear S	Strength meter T	бу		4	A
	SOIL DESCRIPTION	Geodetic	Dept		andard Pe			ilue 80		250	sour Read	750	Â N	Vaturi Init W
- 2		94.58	h n	A01 03					Natural Moish kPa Atterberg Limits 20 4		ilts (% Dry 40	Weight) 60		kN/m
	SAND AND GRAVEL Disturbed native soil, brown, moist, no	94.5 94.4												
	Odour													
		93.4 93.28		i bli				1 H H H H						
	Dark grey cuttings, brown water in air ftushing medium, no odour			L.F.										
			2 -					1.1.5						
				Į.										
			3									•		
			-											
			4						-				-	
	Borehole Terminated at 4.57 m Depth	90.0	_		1223			1175					4	
						E.						Ţ		
									1					
					l)r-						ie.			
			ľ											
							1. 11.							
				U.	1=					m				
OTES Borel use b	S: hole data requires interpretation by exp. before by others	WATER		EL RE		S Hole Op	-	Due			ILLING F			1.6/
stand	shmount monitoring well with a 51 mm slotted	!_	Lev	ater <u>el (m)</u> 1.3		To (m)		Aun No.	Dep (m		70 He	л . .	RQÊ	1 70
	I work supervised by an exp representative.	2016		0.1										
See 1	Notes on Sample Descriptions													

Project No: Project:	OTT-00224605-C0 Environmental Drilling and Groundwater I				le	<u>N</u>	11	<u>/15-</u>	Figure	No			0	хр		
Location:	1509 - 1531 Merivale Road, Ottawa									.go						
Date Drilled	6/26/15			Split Spo	on Sam	pie		\boxtimes	Combu	stible Vap	our Read	ing		D		
Drill Type:	Drill Type: Geoprobe				ample Value				Natural Molsture Content Atterberg Limits					×		
Datum:			I	Dynamic	Cone T	est	_	_	Undrain	- Ied Triaxia		I-		 		
Logged by:				Shelby Tube Shear Strength by + Vane Test S					% Strain at Failure Shear Strength by Penetrometer Test					۵ ۲		
c Ş		Geodetic m 94.9	0 0	Standard Penetration Test N Value				Combustible Vapour Reading (pp 250 500 750				SAMPLES	Natural			
G M W B L C	SOIL DESCRIPTION		9 1 1 1		20 Strength	40	60	60 kP 200	Natural Moisture Content %					Unit Wt.		
SAN Distr odou TILL Brow mois SHA Dart	D AND GRAVEL urbed native soil, brown, moist, no ur vn, silty clay, some sand and gravel, it, no odour LE BEDROCK igrey cuttings, brown water in air ing medium, no odour	4.8 4.8 3.9 93.21	2													
	orehole Terminated at 4.57 m Depth	0.0														

		_								
5 NOTES: 1. Borehole data requires interpretation by exp. before	WAT	ER LEVEL RECO	RDS	CORE DRILLING RECORD						
Solution of the outer requires interpretation by exp. before use by others as by others as andpipe was installed in the borehole upon completion. S. Field work supervised by an exp representative. S. This Figure Is to read with exp. Services Inc. report OTT-00224605-C0	Elapsed Time 11 days April 21, 2016	Water Level (m) 1.7 1.5	Hole Open To (m)	Run No.	Depth (m)	% Rec.	RQD %			

EHOLES GPJ TROW OTTAWA.GDT 10/7/16

roject:	OTT-00224605-C0 Environmental Drilling and Groun	duntos bios ¹⁴	od-	~					Figure	No.	12	-		
ocation:			φπηί	4					Pa	ige	1_ of	1		
	1509 - 1531 Merivale Road, Otta	wa												
ate Drilled:	7/2/15		_	Split Spo		ple					our Readi	ng		
rill Type:	Manual Crew			Auger Sa SPT (N)						Moisture	Conteni	ŀ		X Đ
atum:	Geodetic		_	Dynamic Shelby T		est	_	-		ned Triaxi n at Failu			(⊕
ogged by:	DC Checked by: MC	BM		Shear St	rength b	y	+	-	Shear S	Strength to meter Te	у			
				Vane Te:		_	-							
S M B	SOIL DESCRIPTION	Geodetic	: 0			metration		live 80		250	pour Readir	50 -		Natu: Unit V
L L		m 95.7	р 1 1	Shear S	Strength			kPa 200			iture Conte ts (% Dry W 40 6	rit feight) ið	L-JMG	kN/n
CON SAN	CRETE SLAB ~ 100 mm D AND GRAVEL	95.6	0											
- Distu	urbed native soil, brown, moist, no	95.1							1482]]	1			\mathbb{N}	SS
OdoL TILL Brow mois WEA Dark			.	11111			125	11	T v4913				Д	
Brow mois	vn, silty clay, some sand and gravel it, no odour	,]							P				X	SS
	THERED ROCK WITH TILL SEAM	94.1					-	2!	1490				Ø	SS
Dark	grey cuttings, no odour	≗ _	,	111111							dino		F	
		93.4	9	1114		1.12				1			H	
		- 92.9		10.00									Ħ	
		- 92.9	3					1444	7. EFE				Η	
Dark	grey cuttings, no odour						33.53			d p m				
		- 91.9		T.30							-		H	

	OTT-00224605-C0	• • • • • • • • •	Manthe	-							Figure	No.		13			
roject: ocation:	Environmental Drilling and Gro 1509 - 1531 Merivale Road, Ol		vioniloi	ning	_					_	Pa	age.	1	of	1		
		udWd			_					_							
ate Drilleo					vlit Spo Jger Sa	on Samp Imple	le					rstible V I Moistur			ng		×
rill Type:	Manual Crew			S	PT (N) 1	Value			0			ing Limit		10111	1		-ô
atum:	Geodetic			. 1	marmic Telby Tr	Cone Te ube	st	_				ned Tria In at Fai					⊕
gged by:	DC Checked by:	MGM	0		lear Sti Ine Tes	rength by st	ŗ		+ s			Strength ometer 1					
ş				D	Sta	ndard Pe	netration	Test N	Valu	e		ustible V				ş	
S Y B O	SOIL DESCRIPTION	3	eodetic m	le_		trength	40	60	80) kPa		250 atural Mo rberg Lir	500 Disture	75 Contei	50 nt % (eight)	SAMPLES	Natur Unit W kN/m
1 - 1	NCRETE SLAB - 100 mm		5.7 5.6	0		-	00	150	20		063-	20	40	6		Ë	KIN/III
SAI	ND AND GRAVEL turbed native soil, brown, moist, n			1	832	211				20	V1000				.11	∇	001
odo		"									1					Δ	SS1
		94	4.6	1 -					\rightarrow		1823	-				-	SS2
Bro	wn, silty clay, some sand and gravest, no odour	vel, _				TXX	Circi		22		151			1			
1011	ATHERED ROCK WITH TILL SEA	93 MS	3.9		18	Contraction of the	-									H	
Dar	k grey cuttings, no odour	<u> </u>		2	13	1.000								41	1.1	1	
		- 07	93.31 3.0			44 21				H-1	143						
	ALE BEDROCK k grey cuttings, no odour				5	1381						4.5			TT I	H	
	- groy oounigo, no odour			3		111					14						
	Borehole Terminated at 3.7 m De	- 92	2.0			10.0	11.2							_		-	
		9															

Project No:	OTT-00224605-C0				e <u> </u>				No	14			
Project:	Environmental Drilling and Groundwal	ter Monito	ring						_		-		I
ocation:	1509 - 1531 Merivale Road, Ottawa							Ра	ige	<u>1</u> of	<u> </u>		
Date Drilled:	April 14th, 2016		Split	Spoon Sa	пріе	Þ	3	Combu	stible Vaț	our Readi	ng		
Drill Type:	Geoprobe (GM100GT)		-	er Sample (N) Value					Moisture rg Limits	Content	Ŀ		× -
Datum:	Geodetic		Dyna	amic Cone	Test		_	Undrair	ned Triaxi n at Failu				⊕
ogged by:	MAD Checked by: MGM		Shea	by Tube ar Strength	by	-	.	Shear S	Strength b	У			
			Van	e Test					meter Te				
S Y B O	SOIL DESCRIPTION	Geodetic	De	Standard 20	Penetration	60	alue 80	1 :	250	bour Readi	50	- M	Natura Unit W
		m 95.53	p 1 Sh	ear Streng			kPa 200		berg Limi 20	ture Conte is (% Dry V 40 6	nt % Veight) 30	542P-185	kN/m
CAND	ALT ~ 50 mm AND GRAVEL	95.4	0					30	1001			M	
-Crush	ed limestone above fine sand, grey g brown, moist, no odour	94.8						<u>P</u>				łŇ	S1
SAND	Y SILT WITH ORGANICS	1	1	13:03	11 8 61	8 321		20				Ш	
moist,	nic layer, roots present, dark brown, no odour	94.2	20					P			111	X	S2
- <u>TILL</u> Sand	and gravel, shale gravel throughout,	1	68	13 130	1. 2113	101	1-1-04	20	100	1444	12.13	M	S3
grey,	wet turning moist, no odour Refusal at 2.0 m Depth, Borehole	93.5	2-	10 449					14.502.5	215.9%	19242	И	
OTES:											15 8		
	uires interpretation by exp. before				DS Hole O	000	Run						
use by others		osed	Wat				I DOLL	Dep	201 1	% Red	S.	HU	רא סג
use by others		ne	_Level				_No	(m		% H8(3.	H(,	JU %

Project:	OTT-00224605-C0 Environmental Drilling and Groundwat	er Monito	ring						Figure	_		-		
ocation:	1509 - 1531 Merivale Road, Ottawa								Pa	ige	1_ of	<u> </u>		
ate Drilled:	April 14th, 2016			alit Caa	on Samp	la.			Combu					_
rill Type:	Geoprobe (GM100GT)		-	uger Sa	•	48					cour Read	ing		
atum:	Geodetic			PT (N) Mamic	Value Cone Te	st	_	0		rg Limits ved Triaxi	alot	ŀ		Ð
ogged by:	*		- s	helby T	ube				% Strai	n at Failu Strength t	re			Ð
oggeu by.	MAD Checked by: MGM			ihear St 'ane Te:	rength by st	,		+ s		meter Te				A
S			p	Sta	indard Pe	netration	Test N	Value			pour Read	ing (ppm) 750	S	Natur
S Y B C	SOIL DESCRIPTION	Geodetic	P t h		20 Strength	40	60	60 kP			sture Conti ts (% Dry)	ant % Weight)	ິ ທ≪∑r_⊣ພທ	Unit W
-	HALT ~ 75 mm	95.98	0	- - 0	50 1	00	150	200		20		60	ŝ	
	D AND GRAVEL hed limestone, grey, moist, no odour -			133					5			27	X	S1
		95.1					1						Д	
- <u>TILL</u> Grev	, sand and gravel, moist turning wet,	F	1 -	F F					35			1.00	M	S2
no or		1		111		-	1						Д	
				E.	-	1			20				М	
	-	93.6	2									1-1-1	M	S3
										81				

Projects	OTT-00224605-C0									Figure	No.	16	_		
Project:	Environmental Drilling and Groundwa	ater Mor	nitori	ng						Pa	age	<u>1</u> of	1		'
Location:	1509 - 1531 Merivale Road, Ottawa				_										
	April 14th, 2016		_		t Spoo er Sa	on Samp mole	ole				istible Vap I Moisture	our Readi	ng		
Drill Type:	Geoprobe (GM100GT)			SPT	' (N) V	/alue		0		Atterbe	ing Limits		ŀ		-Ô
Datum:	Geodetic				lby Tu	Cone Te ıbe	551		•	* Strai	ned Triaxi in at Failu	re			⊕
ogged by:	MAD Checked by: MGM				ar Str e Tes	ength by t	¥	+ s			Strength b ometer Te				•
Ş				<u>p</u>	Star	ndard Pe	netration	Test N Va	lue			our Readi	ng (ppm) 50	SA	blobu
	SOIL DESCRIPTION	Geod		e p 1 Sh	2 lear S	0 Irength	40	60	80kPa			ture Conte ts (Dry V	50_ nt Veighti	2420-1HQ	Natur Unit W kN/m
ASP	HALT ~ 75 mm	95.44 95.3		0	5	0 1	100	150 2	00	- 6.74	20	40 6	30	Ś	
-Crus	D AND GRAVEL hed limestone above fine sand, grey									35				X	S1
TILL	ng brown, moist, no odour							1.5-1-1	-12-1					H	
Sand no od	l and gravel, grey and brown, moist, dour	7								20				X	S2
		-						812		15				$\left(\right)$	
<u></u>	Refusal at 2.1 m Depth, Borehole Terminated	- 93.3		2			1.42							Ň	S3
OTES: Borehole data rec use by others	uires interpretation by exp. before	WA1 psed me	1	.EVEL Wate	ər	CORDS	S Hole Op To (m)	en	Run No.	CO	th	.L ^I NG RE		RC)D %

51	F						
	A.	Con	Matan	-	Cample	Description	
a I		200	LADIG2	QH.	SGHUR	Description	a .

ici report	U.	

Proje	ect:	Environmental Drilling and Groundwate	er Monita	ring	1				I			17	-		
	ation:	1509 - 1531 Merivale Road, Ottawa								Pa	age	<u>1</u> of	1		
Date	Drilled:	April 14th, 2016			e-ilie-		- #?			C					
	Туре:	Geoprobe (GM100GT)		_	Auger S	oon Sarr iample	r b a					pour Read e Content	ung		×
Datu		Geodetic			SPT (N Dvnami	Value c Cone T	est	_	0		ng Limits ned Triax		ł		Ð
	ed by:			-	Shelby	Tube				% Stra	in at Failu	Jf8			⊕
.ugy	jeu by.	MAD Checked by: MGM	_		Shear S Vane Te	itrength t ast	у		+ s		Strength ometer T				•
, ş	į	····		o	St	andard P	enetratio	in Teit N	Value		ustible Va 250	pour Read	ling (ppm) 750	SA	Natura
		SOIL DESCRIPTION	Geodet	De ph		20 Strength	40	60	80 kPa			sture Conte lits (% Dry \	ent % Weight)		Unit W
	ASPI	<u>HALT</u> ~ 50 mm	95 38 95 3	8		50	100	150	200	net:	20	40	60	Š	
		DAND GRAVEL rbed native soil, grey/brown, moist, no -								30				X	S1
	odou													Д	
		-	1	1						-30 				W	S2
Ň		-								그로				Д	
97			93.6		ande				11 1 12 13	25				M	S 3
		n, sandy silt, with gravel, moist turning [—] no odour	93.0	2					-				111		33
		Refusal at 2.4 m Depth, Borehole	193.0	$^{+}$	TE	1		1 14					-	\exists	
use b Boreh comp	hole data red by others hole was bad letion. work superv	uires Interpretation by exp. before Etilied with hole plug upon rised by an exp representative. mple Descriptions	WATEF	-	VEL R Water wel (m)		DS Hole C To (r		Flun No.	CC Det	oth	ILLING R % Re		_	2D %

Project:	Environmental Drilling and Groundw	ater Monite	orina					1	Figure	No	18	<u> </u>		
Location:	1509 - 1531 Merivale Road, Ottawa								Pa	ige	<u>1</u> of	1		
	April 13th, 2016		-		~ ~	-1-					-			_
Drill Type:	Geoprobe (GM100GT)			olit Spo Jger Sa	on Sam ample	pie		-		stible Vaj Moisture	our Read	ling		
Datum:	Geodetic			PT (N) '	Value Cone Tr	ort	0			rg Limits		ŀ		Ð
			- sr	nelby T	ube				% Strai	n at Fallu	re			⊕
.ogged by:	MAD Checked by: MGM			iear St ine Te:	rength b st	У	+ s			Strength b meter Te				A
S			De	Sta	ndard P	enetration	Test N Va	lue			our Read		I ST	
A M Y B O L	SOIL DESCRIPTION	Geodetic			20 Strength	40	60	80 kPa	Na Atter	250 tural Mois berg Limi	ture Conte ts (Dry	750 ent 1. Weight)	SAZALIES	Natu: Unit V kN/n
ASP	<u>IALT</u> ~ 50 mm	95.24		5	50	100 1	150	200				60	IS N	- NOVI
	D AND GRAVEL rbed native soil, grey and brown,			-14					20				M	S1
mois	i, no odour red from MW15-1)												Ш	
	oo aonanini ariy	1	4	THE					20				M	S2
• (-		-					12.6						Д	52
D		93.4	3				1	E.	20				M	S3
with a	elly sand, with silt, trace clay, brown fark grey, moist	- 93 1 [2										Ĥ	
⊨ ==¦, F	efusal at 2.1 m Depth on Bedrock	Ц											-	
Dark	grey cuttings, grey water in air ng medium, no odour		3		-3113			101			Diff	21 221		
	ng mealan, no obai						1.11					-		
		-			44							-		
		-	4			-				111				
		- 0000						11	100					
	prehole Terminated at 4.6 m Depth	- 90.6	$+ \square$										╊	
use by others A flushmount mor		WATEF		ter		S Hole Ope To (m)		Run No.	CO Dep (m)	th	LING R		RQI	D %
completion	ised by an exp representative.	21, 2016	1.	.4				i						

	<u>OTT-00224605-C0</u>			ΠΟΙΕ	9 <u> </u>	<u>H2</u>		No.	<u>19</u>	e	X
Project:	Environmental Drilling and Groundwate	er Monito	лing					_	1 of 1		
Location:	1509 - 1531 Merivale Road, Ottawa						-			-	
	April 13th, 2016		- ·	Spoon Samp er Sample	ple				Contracting		
Drill Type:	Geoprobe (GM100GT)		- SPT	(N) Value		uu O		al Molsture erg Limits	Content	┣	-ô
Datum:	Geodetic			amic Cone Tr by Tube	est			ined Trlaxi iin at Failui			\oplus
.ogged by:	MAD Checked by: MGM	_		ar Strength b Test		+ \$	Penel	Strength b rometer Te			•
S Y B O	SOIL DESCRIPTION	Geodelic	D e p			Test N Valu 50 80		250 !	pour Reading (pp 500 750 iture Content % Is (% Dry Weight	- 1 <u>0</u>	Natura Unit W
_ L [95.47	n Sh	ear Strength 50	100 t	50 20			ts (% Dry Weighi 4060		kN/m
SAND	<u>IALT</u> ~ 25 mm D AND GRAVEL	- 95 4 95 1					0 ED			N	
-\Crusl	ned limestone, grey, moist, no odour	1					<u> </u>	+		/	S1
Sand	and gravel, trace silt, brown with orange mottling, moist turning wet,	4	1	_			0				
no od	lour			-			Ŧ			X	S2
	-	1					0				
<u> </u>	- Refusal at 2.1 m Depth, Borehole Terminated	93.4	2				- 0			Ň	53
use by others Borehole was bac completion. Field work supervi See Notes on San	uires Interpretation by exp. before Kfilled with hole plug upon ised by an exp representative nple Descriptions ead with exp. Services Inc. report	ed	LEVEL Wate Level (S Hole Ope To (m)		CC Run De No. (n	oth	LLING RECOR		2D %

Project No:	OTT-00224605-C0	of B	ore	h	olo	e <u>F</u>	<u>3H</u>	<u>/M</u>				00		ех	K
Project:	Environmental Drilling and G	roundwate	r Monito	nin	ġ		_		'			20	_		I
Location:	1509 - 1531 Merivale Road, (Ottawa								Ра	ge	1 of	2		
Date Drilled	l: April 13th, 2016			_	Split Sp	oon Samp	le	Þ	3	Combus	stible Var	pour Read	ing		
Drill Type:	Geoprobe (GM100GT)			_	Auger S SPT (N)			a	0	Natural	Moisture	Content		×	
Datum:	Geodetic				Dynamic	: Cone Te	st	ç	-		ed Triaxi		ł	⊖ ⊕	
Logged by:	MAD Checked by	: MGM			Shelby 1 Shear S Vane Te	trength by	1	1.00		Shear S	al Fallu Irength t meter Te	у			
SYMBOLL	SOIL DESCRIPTION		Geodetic m 95.47	Dep	Shear	Strength	40	60	80 kPa 200	2 Nat Atteri	50	pour Readi 500 7 sture Conte ts (% Dry V 40 6	'50	S A Natu P Unit E kN/r	Wi
	PHALT		95.4	0				1.50	200					3	_
- Dist	turbed native soil, grey and brow st, no odour erred from MW15-1)	vn, –	94.6												
TILI Gra tum	velly sand with some silt, brown	i, moist													
(Infe	erred from MW15-1)	_		2	_										
Dar	ALE BEDROCK k grey cuttings with light and da	rk grev	93.2							123					
Wall	er in air flushing medium, no oda	our _		3							12 12 				
		-			Tut!										
				4						1 Million					
				5									stat.		
		_								T.					
		_		5						2.41					
		-											_		
		_		Ŧ											
		_													
		~		8			1.11								
		-		9											
		_													
					234	1.3		- 1			Est				
OTES Borehole data re	Continued Next Page equires interpretation by exp. before		WATER	10*	VEL B	CORDS					RE Dan		COBD		-
Use by others A flushmount mo standpipe was in	onitoring well with a 38 mm stotled nstatled in the borehole upon	Elapse Time	ed	1	Water Water wel (m)		lole Op To (m)		Run No.	Depi (m)	h	% Rec		ROD %	
Field work supe	rvised by an exp representative ample Descriptions	April 21, 2	2016		2.6										
	read with exp. Services Inc. report C0														

Log of Borehole <u>BH/MW207</u>

Project No: OTT-00224605-C0

Project: Environmental Drilling and Groundwater Monitoring

Figure	No	
I IYUI'D	INV.	

*exp.

20

				Standard Penetration Test N Value								Page. 2 of 2 Combustible Vapour Reading (ppm) 250 500 750 Natural Moisture Content % Atterberg Limits % Dry Weight) 20 40 60					<u>si —</u>
G	SYMBOL		Geodelia	, p	Sta	Indard P	'enetrati	ion Test M	Value		Combu	istible V 250	apour F 500	leading 750	(ppm)	S	Natu
GW L	B	SOIL DESCRIPTION	m	e B P I D	Shear	20 Strength	40	60	80	kPa	Na Atter	tural Mo bero Lin	nits (%	Content Dry We	% iaht)	it) E	
	ĭ		85.47	h 10		50	100	150_	200			20	40	60	·9· ··)	Ē	Unit V kN/r
1111111		SHALE BEDROCK Dark grey cuttings with light and dark gre – water in air flushing medium, no odour				121			44.1		日田		1.13				
	_	-water in air flushing medium, no odour	′ _									-					
	<u> </u>	(continuea)	84 7		1-11		-		11.	13	4.44			1011	111		
		Borehole Terminated at 10.8 m Depth															
																ΕL	
									н.					11			
									. 11				11				
											101						
																H	
																I I	
												h 1					
									11								
									с.,		1111		11				
				lĺ									1 T			11	
1																	
l																	
l														. 11			
Į								0.11				10					
l															1.0		
ļ									1		181						
l														111			
l						10					. 11					11	
l														нh	1.1		
l											C III			21	11		
l														Ξ.	131		
l									911						±11		
ł									41				1.	81	111		
l																	
l															11 F		
l																	
l									2	01					8 I.		
ł						1.0	1.1				1.10			8			
1															1.1		
												18					
					10.1		1										
												12					
L				L L	14												
ו ג	ES: prehole	data requires interpretation by exp before	WATE	RLE	VEL RE		s	-			CO	REDR	ILLING	G REC	ORD	_	-
		data requires interpretation by exp before hers	lapsed	V	Vater		Hole C	Open	R	un	Dep (m)			Rec	-	RQ	D %
1 18	flushmo	ount monitoring well with a 38 mm slotted	<u>Time</u>	Le	vel (m)		<u> </u>	m)	N	0	(m)	()	-	-	-		
×	mpletio	in. Apri	il 21, 2016		2.6												
						1			1.1								
FI	eld worl	k supervised by an exp representative.															
Se	e Note	k supervised by an exp representative. s on Sample Descriptions re Is to read with exp. Services Inc. report 24605-C0															

Project: Location:	Environmental Drilling and Gr 1509 - 1531 Merivale Road, C			<u> </u>		_		_	Pa	_2_			
Drill Type: Datum:	April 13th, 2016 Geoprobe (GM100GT) Geodetic			Split Spo Auger S SPT (N) Dynamic Shelby T	ample Value : Cone Tr				Natural Atterbe Undrain % Strain	Moisture rg Limits ned Triaxi n at Failu	re	ing J-	□ × ⊕
.ogged by:	MAD Checked by:			Shear Si Vane Te	st	-	+ 5		Penetro	Strength I ometer Te	est		•
G M W B L D	SOIL DESCRIPTION	Geod	E.	Shear	20_ Strength	40	1 Test N Vi 60	_60 kPa	Na Atter	250 Itural Moi: berg Limi	sture Conte its (% Dry V	750 ent % Weight)	S A Natur P Unit V L KN/m S
SAN	HALT D AND GRAVEL Irbed native soil, grey and brow	94.68	0		50	100	150	200		20	40	60	
6/2 Imois	t, no odour rred from MW15-1)	93.6	1										
Brow	m, silty clay, some sand and gra t, no odour <i>rred from MW15-9)</i>	avel,									-		
SHA	LE BEDROCK grey cuttings with light and dar r in air flushing medium, no odo	k grey	2										
	a. naaning medium, no ooc							10					
		-	3										
									122				
			4	101X									
		_	5										
		-							131				
-		_	6					- 101 T					
		-			18.20								
		_	7										
			8	ales I									
		_											
		_	9										
		-											
OTES:	Continued Next Page	<u> </u>	10	11.111	40.30				44	12112			
Borehole data re- use by others	quires Interpretation by exp. before hitoring well with a 38 mm slotted stalled in the borehole upon	Elapsed	<u> </u>	EVEL RE Water evel (m)		S Hole Op To (m		Run No	CO Dep (m	th	LLING RI % Rec		RQD %
completion.	stalled in the borehole upon vised by an exp representative.	April 21, 2016		1.8									

Project No: OTT-00224605-C0 BH/MW208

Figure No. 21

'exp.

Project:	Environmental	Drilling and	Groundwater	Monitorin
----------	---------------	---------------------	-------------	-----------

_	rojec	t: Environmental Drilling and Groundwa		110							_			2 0			2
0	SY		Geodetic	þ	SI	tandar	d Per	netration	Test	Valu	0	Combu	stible Vi SO	apour Re 500	Reading (ppm) S 750 A Content % P Dry Weight) L 60 S		S Natural
G W L	SY MBOL	SOIL DESCRIPTION	m	P	Shear	20 Stren	4 ath	0	60	8) kPa	- Na Atter	tural Mo berg Lin	loisture Content % mits (% Dry Weight)		11)	A Natural P Unit Wt kN/m ³
H		SHALE BEDROCK	84.68	h 10	1	50		00	150	20			20	40	60		Š
1,000 CTTT		Dark grey cuttings with light and dark grey						1.55	1 20	15	1000	2.2.2.		121			
		Dark grey cuttings with light and dark grey – water in air flushing medium, no odour (continued)	-		100000	C 519	1.1.		1 220	121		10000	1224	11 211 14 2014			
F		Borehole Terminated at 10.8 m Depth	83.9	┿						197	1121	1000					
					1111												
				ĺ													
					1124												
										11						12	
										1							
					目前												
									11			1911					
																	1
					113												
					UH							18.					
													198				
							11										
												12.13					
													131				
																1	
							8										
2													-				
						84											1
						ΞŪ										8	
			1														
															11		
NO 1.8 2.A 5.T C	TES					1					00 19						1
1.8	A fluctment monitoring well with a 39 mm stored		WATE	A LE	VEL A	ECO						CO	RE DA	ILLING	RECO	RD	
2.A			me		Water evel (m)		Н	iole Op To (m	en l][Flun No.	Dep (m)	h		lec.	F	IQD %
S	tandpir omplet	be was installed in the borehole upon								11		(04)					
3.F		April 2 April 2	1,2016		1.8												
4.S		es on Sample Descriptions															
5.T		ure is to read with exp. Services Inc. report 224605-C0															
	11-00	224605-C0				- 1				1.1						1	

Log of Borehole	BH1	6-1
-----------------	-----	------------

	* ex	D.
27		20

□ ×

Ð

⊕

Page.	_1_	of	_1_
-------	-----	----	-----

Figure No.

Location:	1509 - 1531 Merivale Road, Ottawa			Page or
Date Drilled:	10/11/16	Split Spoon Sample	Ø	Combustible Vapour Reading
Drill Type:	Manual Crew	Auger Sample		Natural Molsture Content
~ 1		SPT (N) Value	0	Atterberg Limits
Datum:	Geodetic	Dynamic Cone Test	—	Undrained Triaxial at
		Shelby Tube		% Strain at Failure
Logged by:	MAD Checked by: MGM	Shear Strength by Vane Test	+ s	Shear Strength by Penetrometer Test

Environmental Drilling and Groundwater Monitoring

	G W L	SYMBOL	SOIL DESCRIPTION		Geodetic	P	Standard Penetration Test N Value 20 40 60 80					25	50 5	00 1	ing (ppm) 750	1AI	Natural	
	Ë,	^B	SOIC DESCHIP HON		m	t Shear Strength		60	BU kP	a	Nati Atterb	ural Moist erg Limits	ura Conte s (% Dry)	ant % Meighl)	P	Unit Wt. kN/m ⁹		
			ASPHALT ~ 60 mm		95.37	0	50	0	100 1	50 2	200		2			60	ŝ	
			SAND AND GRAVEL Crushed limestone, grey, moist, no or SAND AND GRAVEL	dour /	95.3 95.1 94.9							ů					X	
			gravel from a commercial pit, with silt clay, brown to dark brown then grey, i no odour End of Borehole	and moist,														
OTTAWA.GDT 10/12/16																		
DREHOLE LOGS OF BOREHOLES.GPJ TROW OTTAWA.GDT 10/12/16																		
ы В Г																		
gg	1. Borehole data requires interpretation by exp. before use by others		Eler	WATER								_		LING RI				
LE LE	2.		-	Elapse Time		Le	Vater vel (m)	_	lole Ope To (m)	en	Aun No.		Depth (m)		% Rec	». 	RQ	D %
HEHC			rk supervised by an exp representative.															ľ

LOG OF BOREHOLE

5. This Figure Is to read with exp. Services Inc. report OTT-00224605-C0

Project No: OTT-00224605-C0

Project:

	Log of Borehole SV1		exp
Project No:	OTT-00224605-C0		UNP
Project:	Environmental Drilling and Groundwater Monitoring	Figure No.	22

Project:	Environmental Drilling and Groundwater Monitori	ng		Figure No. 22	
Location:	1509 - 1531 Merivale Road, Ottawa			Page. <u>1</u> of <u>1</u>	-
Date Drilled:	: <u>April 14th, 2016</u>	Split Spoon Sample	Ø	Combustible Vapour Reading	
Drill Type:	Geoprobe (GM100GT)	Auger Sample SPT (N) Value	0	Natural Moisture Content Atterberg Limits	× m
Datum:	Geodetic	Dynamic Cone Test Shelby Tube		Undrained Triaxial at % Strain at Failure	• •
Logged by:	MAD Checked by: MGM	Shear Strength by Vane Test	+ s	Shear Strength by Penetrometer Test	

1	G ¥			D Standard Penetration Test N Value					/alue	Combustble Vapour Reading (ppm) A 250 500 750 M Natural Moisture Content % Pa Atterberg Limits (% Dry Weight) L 20 40 60 S						
	G ₩ L	SYMBOL	SOIL DESCRIPTION	Geodet	Depih		20	<u>4</u> 0	60	80	Na	tural Mois	ture Cont	ure Content % (% Dry Weight)		Naturai Unit Wt. kN/m ³
	-	2		94 94		Shear	Strength 50	100	150	kPa 200	20 40			Weight) 60	Ľ	kN/m ^a
			ASPHALT SAND AND GRAVEL Disturbed native soil, brown, moist, no	94.8	0	77 B										
													10322			
			Brown, silty clay, some sand and gravel, moist, no odour (Inferred from MW15-9)	93.493.54	1		Ĩ.				194					
			Borehole Terminated at 1.5 m Depth		T										Н	
OG OF BOREHOLE LOGS OF BOREHOLES.GPJ TROW OTTAWA.GDT 107/16																
Бľ					1	1111										
2 C	1.B	TES: orehold	e data requires interpretation by exp. before	WATER	a Le	VEL R	ECORD	s			CO	RE DRIL	LING R	ECORD		
E LOG	u	se by c	thers Elap Ess steel soil vapour probe with 6 mm diameter Tin as installed in the borehole upon completion	sed ne		Water ave! (m)		Hole (Open m)	Run No.	Dep (m)	th	% Re		RC	D %
HO			ink supervised by an exp representative													
BOH			es on Sample Descriptions													
L L			ure is to read with exp. Services Inc. report 224605-C0													
g	0	TT-00:	224605-C0											-		

	Log of E	Borehole <u>S</u>	V2		ovn
Project No:	OTT-00224605-C0				CNP
Project:	Environmental Drilling and Groundwater Monito	pring	Fi	gure No. <u>23</u>	1
Location:	1509 - 1531 Merivale Road, Ottawa			Page. <u>1</u> of <u>1</u>	,
Date Drilled:	April 14th, 2016	Split Spoon Sample		Combustible Vapour Reading	
Drill Type:	Geoprobe (GM100GT)			Natural Moisture Content	×
Datum:	Geodetic	SPT (N) Value Oynamic Cone Test Shelby Tube	(Atterberg Limits Jndrained Trlaxial at % Strain at Fallure	I—⊖ ⊕
Logged by:	MAD Checked by: MGM	Shear Strength by Vane Test		Shear Strength by Penetrometer Test	A
G X	Gendelia	D Standard Penetration Test N V	Value	Combustible Vapour Reading (ppr	m) S A Natural

	Ŵ	BOL	SOIL DESCRIPTION		m	p 1 h	Shear S	20 Strengt	4(th) 6	0	80 kPa	Nat Atter	ural Mois berg Limit	ture Conte s (Dry V	nt Veight)	No re	Unit Wt. kN/m ³
	1 1		ASPHALT		94.62 94.5	0	6	50	10	0 1	50 2	200		20	40 (50	ŝ	
		111	SAND AND GRAVEL	/I	34.4		1010	120		2132	21.2.2	11111	21112	1044	5-1-1-2-	122.41		
			Disturbed native soil, brown, moist, no	⊳ H			1000	1.1.1		11.51		1.1.1.1.1		- 1- 1-1			-	
	Ľ.	H	odour				(16) (10)	1221		5125	1011	1221	1110	1000	13125	13:1:		
	Ţ		GLACIAL TILL Brown, silty clay, some sand and grav		93.4 ^{93.52}	j.	0000	- 1 - 5 - 5		01000	1.1.1.1.1	1.1.1.1.1	0.041.0	1210101	1.11			
		2.2.2	moist, no odour		13.4	┢	11.14			10111	1.1.1.1		1.1.1.1	1111		1.1.1.1.1		
			(Inferred from MW15-8)											186				
			Borehole Terminated at 1.2 m De;	pth			1193						1315					
							1.65				1111							
				1														
										1		PELL						
														생활				
																- 111		
															8.83			
												1115			1121	EEC.		
										1111			1312		1.131			
				1				112				1155	1331			110		
							18.81			1111		1111			1111	1111		
							18.81			1113		1111						
										18.1								
												1111	5331 E					
							福田			- 13.13		11116	845	1.001			11	
							- 55			48 B			물목		118	1.132		
										318					1.12			
				1								199			188	1113		
												3111			116	1113		
							Län					2211	18 I.4.		1000			
9							- 3.	13				2311			1111	1111		
S.GPJ TROW OTTAWA.GDT 107/16						1						1111			1934		$\left \cdot \right $	
Ē								1.08	Ē.					15.51				
9								583	8					hebf		1111		
M								2.16							1523	1159		
È								£.88		1111						1121		
₹								122								1 1 6 1		
B							문왕											
2	- 1													1991	3357	1199		
S.G												111			1111	1.11		
뷩							1101	153		141		ELES	1.1.1		1.10 -			
픮				1			BERG	153	1			E E				1ER		
BOREHOLE						I	5.231.24	312.2		10.15	_	12 12 44	000.0.0	10.01	1.0.0	9111		
LOGS OF	NO 1 P	TES: orehole	data requires interpretation by exp. before		WATER	21 F	EVEL RE	COR	IDS				00	ייפח אב	LING R	FCOPT	1	
S	U:	se by ot	hers	Elapsed			Water			ole Ope		Run	Depi		% Rec			<u>۵D %</u>
ЦЦ	2.A	stainles	s steel soil vapour probe with 6 mm diameter sinstalled in the borehole upon completion.	Time	-		evel (m)	_		To (m)		No.	(m)		701100	-	- 10	
ΥI																		
Ë	3.Fi	eld wor	k supervised by an exp representative.															
	4.S	ee Note	s on Sample Descriptions															
ö	5. Ţ	his Figu	re is to read with exp. Services Inc. report 24605-C0															
ğ	0	11-002	24605-C0															

	Log of Borehole SV3	3	*exp
Project No:	OTT-00224605-C0	-	
Project:	Environmental Drilling and Groundwater Monitoring	Figure No.	
Location:	1509 - 1531 Merivale Road, Ottawa	- Page.	<u>1</u> of <u>1</u>

Split Spoon Sample

Dynamic Cone Test

Shear Strength by Vane Test

Auger Sample

SPT (N) Value

Shelby Tube

16
ľ

Geodetic

Checked by: MGM

Drill Type: Geoprobe (GM100GT)

Datum:

Logged by: MAD

	G V L		Geodetic	Dep Plh			netration T ID 6		lue 80 kPa	2	50 5	our Readi 00 7 ure Conte s (% Dry V	50	ດຈະວາມແມ	Natural Unit Wt. kN/m ³
		ASPHALT SAND AND GRAVEL Disturbed native soil, brown, moist, no odour GLACIAL TILL Brown, silty clay, some sand and gravel, moist, no odour	94.79 94.7 94.4	1		50 11	00 1	50 2						00	
OF BOREHOLES.GPJ TROW OTTAWA.GDT 10/7/16		ES:													
F BOREHOLE LOGS (2 A st tubi 3 Fiel See	brehole data requires interpretation by exp. before Ela	WATE psed me	_	EVEL At Water evel (m)	ECORDS	5 Hole Ope To (m)		Run No.	CO Dep (m)	th	LING RI		R	20 %

	.90.			<u> </u>
			_	
Combu	stible \	/apour i	Readi	ng

Combustible Vapour Reading	
Natural Moisture Content	

Atterberg Limits
Undrained Triaxial at % Strain at Failure

		F
lal at		

□ ×

Ð

⊕

Undrai % Stra Shear Strength by Penetrometer Test

 \boxtimes

0

+ 5

	Log of	Borehole	<u>SV4</u>
--	--------	----------	------------

		exp.
_	25	~
-1	-1	·· ·

Project:	Environmental Drilling and Groundwater Monitorin	Figure No. 25		
Location:	1509 - 1531 Merivale Road, Ottawa		Page. <u>1</u> of <u>1</u>	
Date Drilled:	April 14th, 2016	Spiil Spoon Sample 🛛 🕅	Combustible Vapour Reading	
Drill Type:	Geoprobe (GM100GT)	Auger Sample II SPT (N) Value O	Natural Molsture Content Atterberg Limits	× ⊕—
Datum:	Geodetic	Dynamic Cone Test	Undrained Triaxial at % Strain at Failure	•
Logged by:	MAD Checked by: MGM	Shear Strength by + Vane Test S	Shear Strength by Penetrometer Test	

Project No: OTT-00224605-C0

-	G ₩ L	SY MBOL	SOIL DESCRIPTION	Geodeti	m t Shear Strength				50 E	kPa	Combustible Vapour Reading (ppm) 250 500 750 Natural Moisture Content % Atterberg Limits (% Dry Weight) 20 40 60				SAN LES	Natural Unit Wt. kN/m ³
		N	ASPHALT SAND AND GRAVEL Disturbed native soil, brown, moist, no odour GLACIAL TILL	94.98 94.9 94.5	o			100 1	50 2	00		20	40	<u> </u>	5	
			Brown, silty clay, some sand and gravel, moist turning wet, no odour (Inferred from MW15-7) Borehole Terminated at 1.5 m Depth	<u>93.5</u>	1											
3DT 10/7/16																
J THOW OTTAWA.GDT 10/7/16																
LOG OF BOREHOLE LOGS OF BOREHOLES GPJ T																
		TES:														
SDOL	US	se by c	,	lapsed	WATER LEVEL RECORDS ed Water Hole Open				Run	Dept	h	LLING R % Re			20%	
OLE 1	2.A tu	stainle bing w	ess steel soil vapour probe with 6 mm diameter as installed in the borehole upon completion.	<u>Time</u>	<u> </u>	evel (m)	_	To (m)	-	No.	(m)					
HEHO			rk supervised by an exp representative.													
			es on Sample Descriptions													
٩ ارو	0	TT-00	ure is to read with exp. Services Inc. report 224605-C0													

	Log of	B	O	orehole	S	V 5					vn
Project No: OT	T-00224605-C0										inp.
Project: Env	vironmental Drilling and Groundwater M	lonitor	inç	9			Figure No				
Location: 150	09 - 1531 Merivale Road, Ottawa						Page	e. <u>1</u> of	<u> </u>		
Date Drilled: April	il 14th, 2016			Split Spoon Sample	1	×	Combustib	le Vapour Read	ding		
Drill Type: Geo		Auger Sample SPT (N) Value		10 0	Natural Mo Atterberg L	isture Content	Ĺ		×		
Datum: <u>Geo</u>		Dynamic Cone Test		_	Undrained Triaxial at % Strain at Failure						
Logged by: MAD Checked by: MGM				Shelby Tube Shear Strength by Vane Test		+ \$	Shear Stre Penetrome	ngth by			
G M W B L O	SOIL DESCRIPTION	m	Depth	Slandard Penetrat 20 40 Shear Strength	60	80 kPa	250 Natura	ble Vapour Reac 500 at Moisture Cont g Limits (% Dry	750	SAZP LIES	Natural Unit Wt. kN/m ³
Disturbed odour GRAVELL Correct from the second sec	ID GRAVEL 95. ID GRAVEL 94. I native soil, brown, moist, no 94. LY SAND WITH SOME SILT oist turning wet, no odour oist turning wet, no odour 93. ole Terminated at 1.5 m Depth 93.	.9 .7 93.98	0		150	200		40	60	S	

NOTES NOTES Statistics steel soil vapour probe with 6 mm diameter tubing was installed in the borehole upon completion. 3. Field work supervised by an exp representative. 4. See Notes on Sample Descriptions 5. This Figure is to read with exp. Services Inc. report 0017-00224605-C0 WATER LEVEL RECORDS CORE DRILLING RECORD Elapsed Time Hole Open To (m) Run No Depth (m) Water % Rec. ROD % 2 A stainless steel soil vapour probe with 6 mm diameter tubing was installed in the borehole upon completion. Level (m)

	Log of	Bo	re	eho	ble	Μ	W	30	1			*		vr		
Project No:	OTT-00224605-C0				-				Figure	No	27			~r		
Project:	Environmental Drilling and Groundwat	er Monito	rin	g					-	age.						
Location:	1509 - 1531 Merivale Road, Ottawa		F							aye	<u> </u>	<u> </u>				
Date Drilled:	9/6/17		Split Spoon Sample					\bowtie	Comb	ustible Vap	our Read	ing				
Drill Type:	Geoprobe		_	Auger Sa SPT (N)	•					al Moisture (erq Limits	Content	F		×		
Datum:	Geodetic		Dynamic Cone Test Undrained Triaxial at													
Logged by:	JO Checked by: MGM				Shear Strength by Shea		Shear	Strain at Failure ear Strength by netrometer Test				A				
s Y			D		indard Pene	etration ⁻	Test N \	/alue	Com	oustible Vap 250 5		ing (ppm) 750	S			
G Y W B L O	SOIL DESCRIPTION	Geodetic m	e p t h	20 40 Shear Strength			60	80 kF	a Att	latural Moist erberg Limit	loisture Content % imits (% Dry Weight)			Unit Wt.		
E FILL		95.7	0		50 100) 1	50	200		20 4	40	60	S			
Silt t	o fine sand, light brown, some gravel rock fragments, moist, no odour								о П					S1		
			1						o T					S2		
	-															
									Ŭ				X			
BED	ROCK	93.7	2	-2-6-6-2		<u>0000</u>		<u> </u>	<u>6</u>	<u>+ + + + + + + + + + + + + + + + + + + </u>			X	-		
Grey	, shaley limestone, no odour	93.4	1													
													•			
		_	3													
								· · · · · · · · · · · · · · · · · · ·								
		-	4													
		91.1				······································										
	Borehole Terminated at 4.58 m					· · · · ·										
						· · · · ·										

1/12/18			
BOREHOLE LOGS OF BOREHOLES.GPJ TROW OTTAWA.GDT 1/12/18			
E L	NC	TES:	
OGS O	1.E		le data requires interpretation by exp. before others
HOLE L	S		nount monitoring well with a 51 mm slotted pe was installed in the borehole upon tion.
BORE	3.F	ield w	ork supervised by an exp representative.

5	3. Field work supervised by an exp representative.4. See Notes on Sample Descriptions
ום	4. See Notes on Sample Descriptions

 a
 A. See Notes on Sample Descriptions

 b
 5. This Figure is to read with exp. Services Inc. report

 OTT-00224605-C0

	WAT	ER LEVEL RECO	RDS	CORE DRILLING RECORD									
	Elapsed Time	Water Level (m)	Hole Open To (m)		Run No.	Depth (m)	% Rec.	RQD %					
Septer	nber 14, 201												

Project No:	<u>OTT-00224605-C0</u>	Bo	re	ehc	ole	M	W :		P Figure N	lo.	28	*	e	xp		
Project:	Environmental Drilling and Groundwat	er Monito	rin	g					-		 1of	_				
Location:	1509 - 1531 Merivale Road, Ottawa								τa	je	<u> </u>					
Date Drilled	9/6/17		-	Split Spoo	on Sample	e	\boxtimes]	Combus	tible Vapo	our Readi	ng				
Drill Type:	Geoprobe		-	Auger Sa SPT (N) \			C		Natural M Atterberg		Content	F		× -⊕		
Datum:	Geodetic		-	Dynamic	Cone Tes	t		-	Undraine % Strain	ed Triaxia				⊕		
Logged by:	JO Checked by: MGM			Shelby Tu Shear Str Vane Tes	ength by		+ s		Shear St Penetror	rength by	/			A		
G Y M B O L	SOIL DESCRIPTION	Geodetic m 95.25	D e p t h	20 Shear S	trength	06	60	alue <u>80</u> kPa 200	2: Nati Atterb	50 5 ural Moist erg Limits	ure Conte s (% Dry V	50	SAMPLES	Natural Unit Wt. kN/m ³		
50 n − FILL	, 	95.2	0						0					S1		
	/ and brown, sand and gravel to sand some gravel, moist, no odour		1						0 []					S2		
		93.24	2						35					S3		
	ROCK /, shaley limestone, no odour	93.0											: - - - -			
		91.6	3													
	Borehole Terminated at 3.66 m															

1/12/18	
TROW OTTAWA.GDT	
F BOREHOLES.GPJ	
LOGS OF	
EHOLE	

5						1	 		
ĕ									
SS OF	NOTES: 1.Borehole data requires interpretation by exp. before		WAT	RILLING RECOF	ECORD				
LOGS	use by others		Elapsed	Water	Hole Open	Ru	Depth	% Rec.	RQD %
	2. A flushmount monitoring well with a 51 mm slotted standpipe was installed in the borehole upon		Time	Level (m)	To (m)	No	(m)		
HOLE	 2.A flushmount monitoring well with a 51 mm slotted standpipe was installed in the borehole upon completion. 3. Field work supervised by an exp representative. 4. See Notes on Sample Descriptions 	Se	eptember 14, 201	7 2.0					
ORE	3. Field work supervised by an exp representative.								
PF B	4. See Notes on Sample Descriptions								
LOG	5. This Figure is to read with exp. Services Inc. report OTT-00224605-C0								

	Log of	Bo	re	ehc	ble	Μ	W 3	60 3	8			14		yn
Project No:	OTT-00224605-C0								Figure N		29		1	$\gamma \rho$
Project:	Environmental Drilling and Groundwate	er Monitor	inę	9				_ '	-	ge. <u>1</u>		1		
Location:	1509 - 1531 Merivale Road, Ottawa							_	Γaί	ye i	_ 01 _	<u> </u>		
Date Drilled:	9/6/17			Split Spo	on Sampl	e	\boxtimes		Combus	tible Vapour	Readir	ng		
Drill Type:	Geoprobe			Auger Sa SPT (N)					Natural M Atterberg	Voisture Coi a Limits	ntent	F		× ⊕
Datum:	Geodetic			Dynamic	Cone Tes	st			Undraine	ed Triaxial at at Failure	t			•
Logged by:	JO Checked by: MGM			Shelby To Shear Str	rength by		+ s		Shear St	trength by meter Test				A
		1	1	Vane Tes		netration "	Test N Valu	ie.		stible Vapour	Readir	na (nom)	IST	
G Y W B L O	SOIL DESCRIPTION	Geodetic	D e p t h	2	20 4		60 80)	2	50 500 ural Moisture berg Limits (%	75	50	P	Natural Unit Wt.
		m 95.42	h 0	Shear S	-	00 1	50 20	kPa 0		20 40	6 Dry W		LES	kN/m ³
50 m		95.4							0				\mathbb{N}	S1
Grey	, and brown, sand and gravel to sand	1											Д	
with	some gravel, moist, no odour	-	1						0				М	S2
	-												Д	32
		93.62							0 				X	S3
	ROCK	93.3	2										H	
Grey	<i>y</i> , shaley limestone, no odour _	-			· · · · · · · · · ·			• • • • • • •						
	-		3											
	Borehole Terminated at 3.66 m	91.8											:	
	Derendle reminated at 5.00 m													

1/12/18	
OTTAWA.GDT	
TROW OTT	
OREHOLES.GPJ	
ЩШ	Γ
LOGS OF B	
REHOLE	

m											
	NOTES: 1. Borehole data requires interpretation by exp. before		WAT	ER LEVEL RECO	RDS	CORE DRILLING RECORD					
OGS	use by others		Elapsed	Water	Hole Open	Run	Depth	% Rec.	RQD %		
_	2.A flushmount monitoring well with a 51 mm slotted		Time	Level (m)	To (m)	No.	(m)				
HOLE	 A flushmount monitoring well with a 51 mm slotted standpipe was installed in the borehole upon completion. Field work supervised by an exp representative. 	s	eptember 14, 201	7 1.8							
ß	3. Field work supervised by an exp representative.										
E E	4. See Notes on Sample Descriptions										
	5. This Figure is to read with exp. Services Inc. report OTT-00224605-C0										

Project:	Environmental Drilling and Groundwa	ater	Monitor	ring	9					F -	igure	_	30	-		1
ocation:	1509 - 1531 Merivale Road, Ottawa									_	Pa	ge	<u>1</u> of	1		
ate Drilled:	9/6/17				Split Spo	on Samp	le		\boxtimes		Combu	stible Vap	oour Readi	ng		
rill Type:	Geoprobe				Auger Sa SPT (N)							Moisture rg Limits	Content	L		× ⊸
atum:	Geodetic			_	Dynamic	Cone Te	st		_		Undrain	ed Triaxi		I		0
ogged by:	JO Checked by: MGM		_		Shelby To Shear Str Vane Tes	rength by	,		+ s		Shear S	n at Failu Strength b ometer Te	у			
S Y B O	SOIL DESCRIPTION		Geodetic m	D e p t	2	ndard Pe		Test N 60	Value 80		2	250	pour Readi 500 7 sture Conte ts (% Dry V	50	SA MP L	Natura Unit W kN/m ³
Ē FILL Silt v	with fine sand and clay, some gravel	6	95.7	h 0		-	00	150	200) 		20		50		S1
with	rock fragments, moist, no odour			1						0						S2
SILT	k brown, sandy silt with some gravel, no odour)4.5)4.2							0						S3
BED	ROCK , shaley limestone, no odour		93.45	2												
		_														
				3												
				4											•	
	Borehole Terminated at 4.58 m	<u> </u>	91.1													

	NOTES: 1.Borehole data requires interpretation by exp. before] [WAT	ER LEVEL RECO	RDS		CORE DF	RILLING RECOF	RD
LOGS	use by others 2. A flushmount monitoring well with a 51 mm slotted		Elapsed Time	Water Level (m)	Hole Open To (m)	Run No.	Depth (m)	% Rec.	RQD %
HOLE	3. Field work supervised by an exp representative.	s	eptember 14, 201		,				
ORE	3. Field work supervised by an exp representative.								
ш.	4. See Notes on Sample Descriptions								
	5. This Figure is to read with exp. Services Inc. report OTT-00224605-C0								

Project No: OTT-00224605-C0 Project: Environmental Drilling and Groundwa	ater Monito	orin	g						F	igure			31			1
ocation: 1509 - 1531 Merivale Road, Ottawa										P	age		1_ of	_1_		
pate Drilled: 9/6/17			Split S	Spog	on Samp	le		\boxtimes		Comb	ustibl	e Vapo	our Read	ina		
rill Type: Geoprobe		-	Auger	Sar	mple					Natura	I Moi	isture C	Content			×
vatum: Geodetic		-	SPT (N Dynan		/alue Cone Te	st		0		Atterbe Undrai	•		lat	ŀ		
		-	Shelby	y Tu	ube					% Stra Shear	in at	Failure	9			\oplus
ogged by: JO Checked by: MGM			Shear Vane		ength by t	1		+ s		Penetr						
SOIL DESCRIPTION		D	5	Star	ndard Pe	netratior	Test	N Valu	ie	Comb	ustib 250			ing (ppm) 750	S	Natura
SOIL DESCRIPTION	Geodetic m	D e p t h	Shea	20 ar Si	0 4 Strength	40	60	8) kPa	- N Atte	atura	I Moisti Limits	ure Conte s (% Dry \			Unit W
	95.7	0		50	0 1	00	150	20	0		20	4	0	60	S	
Silt with fine sand and clay, some gravel, rusty mottling, moist, no odour								· · · · · · ·	· · · · · · · · · · · · · · ·	0						
				 				· · · · · · ·							X	S1
	94.5	1						• • • • • •	· · · · · · · · · · · · · · · · · · ·						-	
Boulders and Cobbles — Rock fragments with brown, silty fine										0 T1					\mathbb{N}	S2
sanddry, no odour								• • • • • •							\mathbb{A}	
	- 02.4	2								P					X	S3
- BEDROCK	93.3 ^{93.47}	1	-2-2-1					• • • • •	· · · · · · · · · · · ·						-	
Grey, shaley limestone, no odour								· · · · · · ·								
	_	3		· · · ·				· · · · · ·								
	_								· · · · · · · · · · · · · · · · · · ·						-	
								· · · · · ·								
		4							· · · · · · · · · · · · · · · · · · ·							
- Deschole Terreinsted at 4.50 m	-91.1										:; 				-	
Borehole Terminated at 4.58 m																
				-												

~	
TROW OTTAWA.GDT	
DLES.GPJ	
LOGS OF BOREH	NC 1.E
EHOLE I	2. <i>1</i>

5								-	
щ									
S OF		ata requires interpretation by exp. before	WAT	ER LEVEL RECO	RDS		CORE DI	RILLING RECOF	۶D
OGS	use by othe	ers	Elapsed	Water	Hole Open	Run	Depth	% Rec.	RQD %
	2.A flushmou	nt monitoring well with a 51 mm slotted	Time	Level (m)	To (m)	No.	(m)		
BOREHOLE	standpipe v completion	was installed in the borehole upon	September 14, 201	7 2.3					
SORE	3. Field work	supervised by an exp representative.							
OFE	4.See Notes	on Sample Descriptions							
LOG	5. This Figure OTT-00224	e is to read with exp. Services Inc. report 1605-C0							

Project No: OTT-00224605-	Log of E	Bor	~e	eho	ble)	Μ	W 3						*(Э	xp
Project: Environmental E	Drilling and Groundwater N	Monitor	ing	g					l	Figu	ire N		32	_		1
Location: 1509 - 1531 Me	rivale Road, Ottawa										Pag	ge	1_ of	_1_		
Date Drilled: 9/6/17				Split Spc	on Sam	ola				Со	mbusi	tible Vap	our Readi	ina		Π
Drill Type: Geoprobe				Auger Sa	ample					Na	tural N	/loisture (×
Datum: Geodetic				SPT (N) Dynamic		est				Un	draine	g Limits ed Triaxia		F		
Logged by: JO (Checked by: MGM	-		Shelby T Shear St Vane Te	trength I	ру		+ s		Sh	ear St	at Failure rength by neter Tes	ý			▲
G Y H SOIL DESC	CRIPTION	Geodetic m 5.7	D e p t h	Shear	andard F 20 Strength 50	40	6		ue 0 kPa 00		25	50 5 ural Moist erg Limits	ture Conte s (% Dry V	50	SA∑P_LES	Natural Unit Wt. kN/m ³
FILL Grey crushed stone, w moist, no odour		5.4	0							0						S1
Brown, silt with fine sa gravel, dry to moist, no			1													S2
BEDROCK Grey, shaley limestone		4.2														S3
¥		93.18	2												•	
	_		3												•	
	_														•	
	_ 91		4												•	
Borehole Termi																

BOREHOLES.GPJ TROW OTTAWA.GDT 1/12/18											
Ы	NO	TES:] [WATE	R LEVEL REC			CORE	DRILLING RECO	
LOGS	1.B0	se by c	e data requires interpretation by exp. before thers		Elapsed	Water	 Hole Open	Run	Depth	% Rec.	RQD %
OF BOREHOLE L	2.A st	flushn andpip omplet	nount monitoring well with a 51 mm slotted be was installed in the borehole upon ion.	Septe	Time mber 14, 2017	<u>Level (m)</u> 2.5	<u>To (m)</u>	No.	<u>(m)</u>		
BORE	3.Fi	eld wo	ork supervised by an exp representative.		,						
OF B			tes on Sample Descriptions								
LOG	5. Tł O	nis Fig TT-00	ure is to read with exp. Services Inc. report 224605-C0								

Project:	Environmental Drilling and Groundwate	er Monito	rin	g					F	igure		33			1
ocation:	1509 - 1531 Merivale Road, Ottawa			-					•	Pa	ge	<u>1</u> of	_1_		
ate Drilled:				Split Spoo	on Samo	le		\boxtimes		Combus	stible Vap	our Read	lina		
rill Type:	Geoprobe		-	Auger Sa	mple					Natural	Moisture				×
atum:	Geodetic		-	SPT (N) \ Dynamic		st		0		Undrain	g Limits ed Triaxia		F		
ogged by:	JO Checked by: MGM		-	Shelby Tu Shear Str		,		■ + s		Shear S	n at Failur Strength b	у			•
	,			Vane Tes	t			-			meter Te				_
S Y B C L	SOIL DESCRIPTION	Geodetic	De			netration 40	Test N 60	Value 80		2	250 5	500	ling (ppm) 750	SA MP	Natura Unit Wi
B O L	SOL DESCRIPTION	m 95.38	p t h	Shear S	trength		150	200	kPa		tural Mois berg Limit 20		Weight) 60	LES	kN/m ³
₩ S0 m	HALT Im	95.3	0)					
Grev	, and brown, sand and gravel to sand	-												ĪŇ	S1
	some gravel, moist, no odour	_	1							20				Ħ	
		93.9													S2
SAN Grey	D AND GRAVEL and brown, some silt, moist, no odour									5				Ī	S3
		93.3 93.11	2											-1	00
Grey	, shaley limestone, no odour	- 35.11													
														•	
	-		3											•	
	-	_			· · · · · · · · ·										
	-	_	4		• • • • • •										
														•	
	Borehole Terminated at 4.57m	90.8												-	

J TROW OTTAWA.GD1	
LOGS OF BOREHOLES.GPJ	
LOGS OF E	1
EHOLE	4

BOREHOLES.GPJ TROM								
비	NOTES: 1.Borehole data requires interpretation by exp. before	WATE	R LEVEL RECO	RDS		CORE DF	RILLING RECO	RD
LOGS	use by others	Elapsed Time	Water Level (m)	Hole Open To (m)	Run No.	Depth (m)	% Rec.	RQD %
OF BOREHOLE	 A flushmount monitoring well with a 51 mm slotted standpipe was installed in the borehole upon completion. 	September 14, 2017						
BR	3. Field work supervised by an exp representative.							
E B	4. See Notes on Sample Descriptions							
	5. This Figure is to read with exp. Services Inc. report OTT-00224605-C0							

	Log of	Bo	re	eho	ole	M	W 3	<u>808</u>	<u>}</u>			* e		xn
Project No:	OTT-00224605-C0								- Figure N	lo	34			ΛP
Project:	Environmental Drilling and Groundwate	r Monitor	rin	g				_ '	0		<u> </u>	- 1		
Location:	1509 - 1531 Merivale Road, Ottawa								Pa	je				
Date Drilled:	9/6/17			Split Sp	oon Sample	е	\boxtimes		Combus	tible Vap	our Readi	ng		
Drill Type:	Geoprobe			Auger S SPT (N)	•				Natural M Atterberg	Moisture	Content			× ⊕
Datum:	Geodetic			. ,	c Cone Tes	st	0		Undraine	ed Triaxia		ſ		
Logged by:	JO Checked by: MGM			Shelby Shear S Vane Te	strength by		+ s		Shear St	at Failur rength by neter Tes	у			▲
c S Y		Geodetic	D e		andard Per	etration 1	est N Val	ue			our Readi	ng (ppm) 50	S A M P	Natural
G Y W B L O	SOIL DESCRIPTION	m	p t h		20 4 Strength			60 kPa	Nati Atterb	ural Moist erg Limit	ture Conte s (% Dry V	nt % Veight)	PLES	Unit Wt. kN/m ³
ASP 50 m	HALT	95.35 95.3	0		50 10	00 1	50 21	00	0 0	0 4	<u>40 (</u>	50	S I I	S1
with	r and brown, sand and gravel to sand some gravel, moist, no odour	94.5	1						0					
	D AND GRAVEL and brown, some silt, moist, no odour												Ň	S2
	-		2						60				M	S3
		93.12							5				\mathbb{H}	S3
	ROCK	92.7											А	55
Grey	v, shaley limestone, no odour –	-	3											
	-	-			• • • • • • • • •									
	_	-	4											
		00.0												
	Borehole Terminated at 4.57m	90.8	+											

1/12/18	
TROW OTTAWA.GDT	
LOGS OF BOREHOLES.GPJ	
Щ	
DF BOREHO	
LOG OF	

NOTES: 1. Borehole data requires interpretation by exp. before	WAT	ER LEVEL RECO	ORDS		CORE DF	RILLING RECOF	۶D
use by others 2. A flushmount monitoring well with a 51 mm slotted	Elapsed Time	Water Level (m)	Hole Open To (m)	Run No.	Depth (m)	% Rec.	RQD %
standpipe was installed in the borehole upon completion.	September 14, 201	7 2.2					
3. Field work supervised by an exp representative.							
4.See Notes on Sample Descriptions							
5. This Figure is to read with exp. Services Inc. report OTT-00224605-C0							

Project No:	<u>OTT-00224605-C0</u>								– Figure N	No	35	_ `		
Project:	Environmental Drilling and Groundwate	r Monitoi	rin	g				_	Pa	ge	<u>1</u> of	_1_		
Location:	1509 - 1531 Merivale Road, Ottawa							_						
Date Drilled:	9/6/17		-	Split Spo Auger Sa	on Sample	e			Combus Natural I		our Readi Content	ing		□ ×
Drill Type:	Geoprobe		-	SPT (N)	Value		0		Atterberg	g Limits		F		-O
Datum:	Geodetic		-	Dynamic Shelby T	Cone Tes ube	st			Undraine % Strain	ed Triaxia at Failur				\oplus
Logged by:	JO Checked by: MGM			Shear St Vane Te	rength by st		+ s			trength by neter Tes				A
G Y W B U D L	SOIL DESCRIPTION	Geodetic m	D e p t h	Shear S	Strength	06	80 8	0 kPa	2 Nat Atterb	50 5 ural Moist erg Limit	ture Conte s (% Dry V	'50 ent % Veight)	SA∑P_IIIS	Natural Unit Wt. kN/m ³
▲		95.43 95.4	0		50 10	00 1	50 20	0	0	20 4	40 (60 		61
	/ and brown, sand and gravel to sand some gravel, moist, no odour													S1
	D AND GRAVEL y and brown, some silt, moist, no odour	94.2 93.9	1						0					S2
BED	ROCK , shaley limestone, no odour	-	2											
	-	93.17	7											
	-	-	3											
	-	-												
	-	-	4											
	_	90.9												
	Borehole Terminated at 4.57m													

F 1/12/18										
BOREHOLES.GPJ TROW OTTAWA.GDT										
	NOTES: 1.Boreho	ole data requires interpretation by exp. before others		WAT	ER LEVEL RECO	RDS		CORE D	RILLING RECO	RD
의	-	otners mount monitoring well with a 51 mm slotted ipe was installed in the borehole upon	E	Elapsed Time	Water Level (m)	Hole Open To (m)	Run No.	Depth (m)	% Rec.	RQD %
BOREHOLE	standp comple	ipe was installed in the borehole upon tion.	Septerr	nber 14, 201	7 2.3					
30RI	3. Field w	ork supervised by an exp representative.								
Ь		otes on Sample Descriptions								
ГОG	5. This Fi OTT-00	gure is to read with exp. Services Inc. report 0224605-C0								

roject:	Environmental Drilling and Groundwat	er Monit	orin	a					F	igure	No	36	-		
ocation:	1509 - 1531 Merivale Road, Ottawa			9					-	Pa	ge	1_ of	_1_		
ate Drilled:									_	O	- 41-1 - 1 /				
	Geoprobe		_	Split Spo Auger Sa		le					Moisture	our Readi Content	ng		⊔ X
	Geodetic		_	SPT (N) Dynamic		st	_	0			rg Limits ied Triaxia	alat	ŀ		-O
	JO Checked by: MGM		_	Shelby T							n at Failur Strength b				⊕ •
ogged by.				Shear St Vane Tes		,		+ s			meter Te				•
S Y M B O		Geodetic	De		ndard Pe	netratior				2	250 5		50	S A P	Natura
M B O	SOIL DESCRIPTION	m	, p t h	Shear S	Strength	40	60	80	kPa			ture Conte s (% Dry V		PLES	Unit W kN/m
- → → → → → → → → → →		95.5 95.5	0		50 1	00	150	200			20	40 6	50	S N	7
FILL		_												ľ	S1
with s	and brown, sand and gravel to sand some gravel, moist, no odour		1												7
									[, P					S2
<u> </u>	DAND GRAVEL	93.9								15)
	and brown, some silt, moist, no odour	93.4	2					(-)-)- (-)-(-)-							S3
Grey,	ROCK shaley limestone, no odour	93.2	25												
	-	_	3												
		-													
			4												
K//	Borehole Terminated at 4.57m	90.9	-											_	
									· · · · ·						
					1.1.1.1	1 : : :	1 1 1 1	:: I	::::	11111		11111	10000		

	NOTES: 1.Borehole data requires interpretation by exp. before		WAT	ER LEVEL RECO	RDS		CORE DF	RILLING RECOF	RD
LOGS	use by others 2.A flushmount monitoring well with a 51 mm slotted		Elapsed Time	Water Level (m)	Hole Open To (m)	Run No.	Depth (m)	% Rec.	RQD %
HOLE	 A hushmount monitoring well with a 51 mm slotted standpipe was installed in the borehole upon completion. Field work supervised by an exp representative. 	s	eptember 14, 201	7 2.3					
B R	3. Field work supervised by an exp representative.		, .	-					
Ш	4. See Notes on Sample Descriptions								
	5. This Figure is to read with exp. Services Inc. report OTT-00224605-C0								

roject No: roject:	OTT-00224605-C0 Environmental Drilling and Groundwate	er Monito	ring	9						F				37			
ocation:	1509 - 1531 Merivale Road, Ottawa									_	I	Pag	le	<u>1</u> of	_1_		
ate Drilled:	9/7/17			Split Spo	on Samr	hle			X	_	Com	ihust	ihle Van	our Read	lina		
	Geoprobe		-	Auger Sa	mple			l			Natu	iral N	loisture	Content			×
	Geodetic		-	SPT (N) Dynamic		est			0		Und	raine	Limits d Triaxia			1	
ogged by:	JO Checked by: MGM		-	Shelby Tu Shear Str Vane Tes	ength b	у			+ s		Shea	ar Str	at Failur rength b neter Te	у			A
SY MBO	SOIL DESCRIPTION	Geodetic m	D e p t h	2 Shear S	Strength	40	6	0	80	kPa		25 Natu tterbe	i0 8 Iral Mois erg Limit	ture Cont s (% Dry	750 ent % Weight)	1) SAMPLES	Natura Unit W kN/m
		95.7 95.7	0	5	0	100	15	50	200)		2	0	40	60	s	7
Grey	and brown, sand and gravel to sand some gravel, moist, no odour	_	1														S1
	DAND GRAVEL and brown, some silt, moist, no odour -	_94.5									10 					X	S2
	ROCK	93.3 ^{93.41}	2													/ 	S3
Grey,	shaley limestone, no odour	-	3														
	-	92.0															
DTES:																	
	quires interpretation by exp. before		RL	EVEL RE Water	ECORE		e Ope	en		Run		COF Dept		LLING F % Re			RQD %
standpipe was in completion. Field work super See Notes on Sa	nitoring well with a 51 mm slotted stalled in the borehole upon vised by an exp representative. mple Descriptions read with exp. Services Inc. report	ne	<u> </u>	<u>evel (m)</u> 2.3			<u>o (m)</u>			No.		<u>(m)</u>					

5	1.Borehole data requires interpretation by exp. before	WAT	ER LEVEL RECC	RDS		CORE DF	RILLING RECOF	RD
3	use by others	Elapsed	Water	Hole Open	Run	Depth	% Rec.	RQD %
	 A flushmount monitoring well with a 51 mm slotted standpipe was installed in the borehole upon completion. 	Time September 14, 201	Level (m) 7 2.3	<u> </u>	No.	<u>(m)</u>		
	3. Field work supervised by an exp representative.	September 14, 201	1 2.3					
5	4. See Notes on Sample Descriptions							
3	5. This Figure is to read with exp. Services Inc. report OTT-00224605-C0							

Project No: Project:	OTT-00224605-C0 Environmental Drilling and Groundwate	er Monito	rin	a					F	igure	_	38	_		
ocation:	1509 - 1531 Merivale Road, Ottawa			5					_	Pa	ge	<u>1</u> of	_1_		
ate Drilled:				Split Spo	on Samr	ble			_	Combu	stible Va	pour Read	lina		
rill Type:	Geoprobe		-	Auger Sa	ample					Natural	Moisture	Content			×
atum:	Geodetic		-	SPT (N) Dynamic		est	_	0		Undrain	∙g Limits ed Triax		ł		
ogged by:	JO Checked by: MGM		-	Shelby T Shear St		,		■ + s		Shear S	n at Failu Strength	by			•
	/			Vane Tes		,		Ś		Penetro	meter Te	est			-
S Y M B	SOIL DESCRIPTION	Geodetic	De		indard Pe	enetration	n Test 60	N Valu			250		750	S A P	Natura
M B O L	SOIL DESCRIPTION	m 94.97	p t h	Shear S	Strength	100	150	20	kPa		turai Moi berg Lim 20	sture Conte its (% Dry \ 40	ent % Weight) 60	P L ES	Unit W kN/m
X \ASP 50 m	HALT	94.9	0							10				Ī	S1
Fill		94.2							· · · · · · · · · · · ·					-14	51
\with	some gravel, moist, no odour /		1							10 				X	S2
Grey	and brown, some silt, moist, no odour/	93.8													
Grey	- , shaley limestone, no odour														
	-	-	2	-2-6-1-2					· · · · · · · · ·						
	-														
		92.1 ²	1						· · · · · · · · · · · · · · · · · · ·					· · · ·	
	-		3												
	-	-													
	-		4						· · · · · · · · · · · · · · · · · · ·						
														· · · ·	
	Borehole Terminated at 4.57m	90.4	+						· · · · · · ·					-	

	NOTES: 1.Borehole data requires interpretation by exp. before		WAT	ER LEVEL RECO	RDS		CORE DF	RILLING RECOF	RD
LOGS	use by others 2. A flushmount monitoring well with a 51 mm slotted		Elapsed Time	Water Level (m)	Hole Open To (m)	Run No.	Depth (m)	% Rec.	RQD %
BOREHOLE	standpipe was installed in the borehole upon completion.	s	eptember 14, 201	7 2.9					
ORE	3. Field work supervised by an exp representative.								
OFB	4. See Notes on Sample Descriptions								
	5. This Figure is to read with exp. Services Inc. report OTT-00224605-C0								

EXP Services Inc.

Phase Two Environmental Site Assessment Update 1509 -1531 Merivale Road, Ottawa, Ontario Project Number: OTT-00224605-D0 April 13, 2020 December 20, 2021

Appendix D – Analytical Tables

SOIL ANALYTICAL RESULTS:

Table D.1 - Petroleum Hydrocarbons (PHCs) in Soil

1								
Location		MW-1	MW-2	MW-3	BH-4	BH-5	MW-6	BH-7
Sample ID	MECP (2011) Table 3: Full Depth Generic SCS in a Non-Potable	MW-1 SS-4	MW-2 SS-4	MW-3 SS-4	BH-4 SS-3	BH-5 SS4	MW-6 SS-4	BH-7 SS-3
Lab ID	Groundwater Condition	-	-	-	-	-	-	-
Sampling Date	Residential/Parkland/Institutional	24-Aug-11						
Soil Sample Depth (m)	Land Use (coarse textured soil)	2.29 - 3.05	2.29 - 3.05	2.29 - 3.05	1.52 - 2.29	2.29 - 3.05	2.29 - 3.05	1.52 - 2.29
Consultant		Pinchin						
Laboratory		Paracel						
Date of Analysis		-	-	-	-	-	-	-
Certificate of Analysis Number		-	-	-	-	-	-	-
Benzene	0.21	<0.002	0.07	<0.002	<0.002	<0.002	<0.002	<0.002
Toluene	2.3	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Ethylbenzene	2	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Xylenes (total)	3.1	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
PHC F1 (C6-C10)	55	<10	547	<10	<10	<10	<10	<10
PHC F1 (C6-C10) - BTEX	55	<10	547	<10	<10	<10	<10	<10
PHC F2 (C10-C16)	98	<10	36	<10	<10	<10	<10	<10
PHC F3 (C16-C34)	300	<10	<10	<10	<10	<10	<10	<10
PHC F4 (C34-C50)	2800	<10	<10	<10	<10	<10	<10	<10
Reached baseline at C50?	NV	-	-	-	-	-	-	-
PHC F4 (C34-C50)-gravimetric	2800	-	-	-	-	-	-	-

All soil concentrations reported in µg/g.

'<' = Parameter below detection limit, as indicated

'NV'= No value

'-' = Not Analyzed

SOIL ANALYTICAL RESULTS:

Table D.1 - Petroleum Hydrocarbons (PHCs) in Soil

Location		MW-8	MW15-1	MW15-2	MW15-3	MW	/15-4	MW15-10
Sample ID	MECP (2011) Table 3: Full Depth Generic SCS in a Non-Potable	MW-8 SS-3	MW15-1 SS3	MW15-2 SS3	MW15-3 SS4	MW15-4 SS3	MW15-4 SS4 (Dup of MW15- 4 SS3)	MW15-10 SS2
Lab ID	Groundwater Condition	-	AAR842	AAR843	AAR844	AAR845	AAR846	AOE543
Sampling Date	Residential/Parkland/Institutional	24-Aug-11	31-Mar-15	31-Mar-15	31-Mar-15	31-N	lar-15	2-Jul-15
Soil Sample Depth (m)	Land Use (coarse textured soil)	1.52 - 2.29	1.5 - 2.47	1.5 - 2.34	2.0 - 2.34	1.5	- 2.21	0.9 - 1.3
Consultant		Pinchin	EXP	EXP	EXP	E	XP	EXP
Laboratory		Paracel	Maxxam	Maxxam	Maxxam	Max	xxam	Maxxam
Date of Analysis		-	1/2-Apr-15	1/2-Apr-15	1/2-Apr-15	1/2-4	Apr-15	7/8-Jul-15
Certificate of Analysis Number		-	B556333	B556333	B556333	B55	6333	B5C9283
Benzene	0.21	<0.002	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020
Toluene	2.3	<0.002	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020
Ethylbenzene	2	<0.002	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020
Xylenes (total)	3.1	<0.002	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020
PHC F1 (C6-C10)	55	<10	<10	<10	<10	95	37	<10
PHC F1 (C6-C10) - BTEX	55	<10	<10	<10	<10	95	37	<10
PHC F2 (C10-C16)	98	<10	<10	<10	<10	28	23	<10
PHC F3 (C16-C34)	300	<10	<10	<10	<10	38	49	<50
PHC F4 (C34-C50)	2800	<10	<10	<10	<10	24	<10	<50
Reached baseline at C50?	NV	-	YES	YES	YES	YES	YES	YES
PHC F4 (C34-C50)-gravimetric	2800	-	-	-	-	-	-	-

All soil concentrations reported in μ g/g.

'<' = Parameter below detection limit, as indicated

'NV'= No value

'-' = Not Analyzed

SOIL ANALYTICAL RESULTS:

Table D.1 - Petroleum Hydrocarbons (PHCs) in Soil

Location		MW15-11	BH201	BH202	BH203	BH204	BH/M	W205
Sample ID	MECP (2011) Table 3: Full Depth Generic SCS in a Non-Potable	MW15-11 SS2	BH201 S2	BH202 S3	BH203 S3	BH204 S3	BH/MW205 - S2	BH/MW205 S4 (Dup of MW205 S2)
Lab ID	Groundwater Condition	ANX095	CES586	CES587	CES588	CES589	CES576	CES577
Sampling Date	Residential/Parkland/Institutional	30-Jun-15	14-Apr-16	14-Apr-16	14-Apr-16	14-Apr-16	13-A	pr-16
Soil Sample Depth (m)	Land Use (coarse textured soil)	0.8 - 1.4	1.5 - 2.47	1.5 - 2.34	2.0 - 2.34	1.5 - 2.21	0.9	- 1.3
Consultant		EXP	EXP	EXP	EXP	EXP	E	XP
Laboratory		Maxxam	Maxxam	Maxxam	Maxxam	Maxxam	Max	xam
Date of Analysis		2/4-Jul-15	18-Apr-16	18-Apr-16	18-Apr-16	18-Apr-16	18-A	pr-16
Certificate of Analysis Number		B5C7806	B674851	B674851	B674851	B674851	B67	4851
Benzene	0.21	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020
Toluene	2.3	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020
Ethylbenzene	2	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020
Xylenes (total)	3.1	<0.020	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040
PHC F1 (C6-C10)	55	<10	<10	<10	<10	<10	<10	<10
PHC F1 (C6-C10) - BTEX	55	<10	<10	<10	<10	<10	<10	<10
PHC F2 (C10-C16)	98	<10	<10	<10	<10	<10	<10	<10
PHC F3 (C16-C34)	300	<50	<50	<50	<50	<50	<50	<50
PHC F4 (C34-C50)	2800	<50	<50	<50	<50	<50	<50	<50
Reached baseline at C50?	NV	YES	YES	YES	YES	YES	YES	YES
PHC F4 (C34-C50)-gravimetric	2800	-	-	-	-	-	-	-

All soil concentrations reported in μ g/g.

'<' = Parameter below detection limit, as indicated

'NV'= No value

'-' = Not Analyzed

SOIL ANALYTICAL RESULTS: Table D.1 - Petroleum Hydrocarbons (PHCs) in Soil

Location	MECP (2011) Table 3: Full Depth Generic SCS in a Non-Potable Groundwater Condition Residential/Parkland/Institutional Land Use (coarse textured soil)	BH/MW206	BH16-1	MW301	MW302	MW303	MW304	MW305
Sample ID		BH206 S2	BH16-1	MW 301 S5	BH/MW302- S3	BH/MW303- S3	MW 304 S3	MW 305 S3
Lab ID		CES575	DFM974	FCK181	FCC220	FCC222	FCK182	FCK183
Sampling Date		13-Apr-16	11-Oct-16	6-Sep-17	6-Sep-17	6-Sep-17	6-Sep-17	5-Sep-17
Soil Sample Depth (m)		0.8 - 1.4	0.3-0.5	1.8 - 2.1	1.5 - 2.1	1.5 - 2.18	1.2 - 1.7	1.7 - 2.1
Consultant		EXP	EXP	EXP	EXP	EXP	EXP	EXP
Laboratory		Maxxam	Maxxam	Maxxam	Maxxam	Maxxam	Maxxam	Maxxam
Date of Analysis		18-Apr-16	14/15-Oct-16	14/15-Sep-17	12-Sep-17	12-Sep-17	14/15-Sep-17	14/15-Sep-17
Certificate of Analysis Number		B674851	B6L8887	B7J8008	B7J6395	B7J6395	B7J8008	B7J8008
Benzene	0.21	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020
Toluene	2.3	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020
Ethylbenzene	2	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020
Xylenes (total)	3.1	<0.040	<0.020	<0.020	<0.040	<0.040	<0.020	<0.020
PHC F1 (C6-C10)	55	<10	<10	<10	<10	<10	<10	<10
PHC F1 (C6-C10) - BTEX	55	<10	<10	<10	<10	<10	<10	<10
PHC F2 (C10-C16)	98	<10	<10	<10	16	10	<10	<10
PHC F3 (C16-C34)	300	<50	<50	<50	220	<50	<50	<50
PHC F4 (C34-C50)	2800	<50	<50	<50	120	<50	<50	<50
Reached baseline at C50?	NV	YES	YES	YES	NO	YES	YES	YES
PHC F4 (C34-C50)-gravimetric	2800	-	-	-	320	-	-	-

All soil concentrations reported in μ g/g.

'<' = Parameter below detection limit, as indicated</pre>

'NV'= No value

'-' = Not Analyzed

SOIL ANALYTICAL RESULTS: Table D.1 - Petroleum Hydrocarbons (PHCs) in Soil

Location	MECP (2011) Table 3: Full Depth Generic SCS in a Non-Potable Groundwater Condition Residential/Parkland/Institutional Land Use (coarse textured soil)	MW306	MW307	MW308	MW309	MW310		MW311
Sample ID		MW 306 S3	MW307-S3	MW308-S3	MW309-S2	MW310-S3	MW321-S2 (Dup of MW310 S3)	BH/MW311- S3
Lab ID		FCK184	FCC224	FCC226	FCC228	FCC230	FCC231	FCC233
Sampling Date		7-Sep-17	7-Sep-17	6-Sep-17	6-Sep-17	7-Sep-17		7-Sep-17
Soil Sample Depth (m)		1.2 - 1.4	1.5 - 2.1	1.5 - 2.3	0.7 - 1.1	1.5 - 2.1		1.5 - 2.0
Consultant		EXP	EXP	EXP	EXP	EXP		EXP
Laboratory		Maxxam	Maxxam	Maxxam	Maxxam	Maxxam		Maxxam
Date of Analysis		14/15-Sep-17	13-Sep-17	13-Sep-17	13-Sep-17	13-Sep-17		12-Sep-17
Certificate of Analysis Number		B7J8008	B7J6395	B7J6395	B7J6395	B7J6395		B7J6395
Benzene	0.21	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020
Toluene	2.3	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020
Ethylbenzene	2	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020
Xylenes (total)	3.1	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.040
PHC F1 (C6-C10)	55	-	-	-	-	<10	<10	<10
PHC F1 (C6-C10) - BTEX	55	-	-	-	-	<10	<10	<10
PHC F2 (C10-C16)	98	-	-	-	-	<10	<10	<10
PHC F3 (C16-C34)	300	-	-	-	-	50	140	<50
PHC F4 (C34-C50)	2800	-	-	-	-	59	180	<50
Reached baseline at C50?	NV	-	-	-	-	NO	NO	YES
PHC F4 (C34-C50)-gravimetric	2800	-	-	-	-	220	430	-

All soil concentrations reported in μ g/g.

'<' = Parameter below detection limit, as indicated

'NV'= No value

'-' = Not Analyzed

(n – – – – – – – – – – – – – – – – – – –	10000 (2011) Table 0.1 all Depti			1	1		1	1	. i
Location ID		Generic SCS in a Non-Potable Groundwater Condition	MW-1	MW-2	MW-3	BH-4	BH-5	MW-6	BH-7	MW-8
Sample ID	MECP (2011) Table 3: Full Depth Generic SCS in a Non-Potable		MW-1 SS-4	MW-2 SS-4	MW-3 SS-4	BH-4 SS-3	BH-5 SS-4	MW-6 SS-4	BH-7 SS-3	MW-8 SS-3
Lab ID	Groundwater Condition		-	-	-	-	-	-	-	_
Sampling Date	Residential/Parkland/Institutional Land		24-Aug-11							
Soil Sample Depth (m)	Use		2.29 - 3.05	2.29 - 3.05	2.29 - 3.05	1.52 - 2.29	2.29 - 3.05	2.29 - 3.05	1.52 - 2.29	1.52 - 2.29
Consultant	(coarse textured soil)		Pinchin							
Laboratory			Paracel							
Date of Analysis			-	-	-	-	-	-	-	-
Certificate of Analysis Number			-	-	-	-	-	-	-	-
Acetone	16	#N/A	-	-	-	-	-	-	-	-
Benzene	0.21	#N/A	< 0.002	0.07	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002
Bromodichloromethane	13	#N/A	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002
Bromoform	0.27	#N/A	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	<0.002	< 0.002	< 0.002
Bromomethane	0.05	#N/A	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	<0.002	< 0.002	< 0.002
Carbon Tetrachloride	0.05	#N/A	<0.002	<0.002	<0.002	< 0.002	<0.002	<0.002	<0.002	<0.002
Chlorobenzene	2.4	#N/A	<0.002	<0.002	<0.002	< 0.002	<0.002	<0.002	<0.002	<0.002
Chloroethane	NV		< 0.005	<0.005	< 0.005	<0.005	<0.005	<0.005	<0.005	< 0.005
Chloroform	0.05	#N/A	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	<0.003	< 0.003	< 0.003
Chloromethane	NV		<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Dibromochloromethane	9.4	#N/A	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
1,2-Dichlorobenzene	3.4	#N/A	<0.002	<0.002	< 0.002	<0.002	<0.002	<0.002	<0.002	<0.002
1,3-Dichlorobenzene	4.8	#N/A	<0.002	<0.002	< 0.002	<0.002	<0.002	<0.002	<0.002	<0.002
1,4-Dichlorobenzene	0.083	#N/A	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Dichlorodifluoromethane	16	#N/A	-	-	-	-	-	-	-	-
1,1-Dichloroethane	3.5	#N/A	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
1,2-Dichloroethane	0.05	#N/A	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
1,1-Dichloroethylene	0.05	#N/A	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002
cis-1,2-Dichloroethylene	3.4	#N/A	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	<0.002	< 0.002	< 0.002
trans-1,2-Dichloroethylene	0.084 NV	#N/A	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003
1,2-Dichloroethylene, total		451/4	<0.003 <0.002	< 0.003	<0.003 <0.002	<0.003 <0.002	< 0.003	<0.003 <0.002	<0.003 <0.002	<0.003 <0.002
1,2-Dichloropropane	0.05	#N/A #N/A		< 0.002			< 0.002			
cis-1,3-Dichloropropene trans-1,3-Dichloropropene	0.05 0.05	#N/A	<0.002 <0.002							
1,3-Dichloropropene, total	NV	#19/A	<0.002	<0.002	<0.002	< 0.002	<0.002	<0.002	<0.002	<0.002
Ethylbenzene	2	#N/A	<0.002	<0.002	<0.002	< 0.002	<0.002	<0.002	<0.002	<0.002
Ethylene Dibromide (1,2-Dibromoethane)	0.05	#N/A	<0.002	<0.002	<0.002	<0.002	< 0.002	<0.002	< 0.002	<0.002
Hexane (n)	2.8	#N/A	<0.002	<0.002	<0.00L	<0.00L	<0.00L	<0.00L	<0.00L	<0.00L
Methylene chloride (Dichloromethane)	0.1	#N/A	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003
Methyl ethyl ketone (2-Butanone)	16	#N/A	-	-	-	-	-	-	-	-
Methyl Isobutyl Ketone	1.7	#N/A	-	-	-	-	-	-	-	-
Methyl t-butyl ether (MTBE)	0.75	#N/A	-	-	-	-	-	-	-	-
Styrene	0.7	#N/A	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002
1,1,1,2-Tetrachloroethane	0.058	#N/A	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003
1,1,2,2-Tetrachloroethane	0.05	#N/A	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003
Tetrachloroethylene	0.28	#N/A	< 0.002	< 0.002	<0.002	< 0.002	< 0.002	5.2	< 0.002	< 0.002
Toluene	2.3	#N/A	< 0.002	<0.002	< 0.002	< 0.002	< 0.002	<0.002	< 0.002	<0.002
1,1,1-Trichloroethane	0.38	#N/A	< 0.002	<0.002	< 0.002	< 0.002	< 0.002	<0.002	< 0.002	<0.002
1,1,2-Trichloroethane	0.05	#N/A	< 0.002	<0.002	< 0.002	<0.002	< 0.002	<0.002	< 0.002	<0.002
Trichloroethylene	0.061	#N/A	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003
Trichlorofluoromethane	4	#N/A	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
1,3,5-Trimethylbenzene	NV		< 0.003	0.3	< 0.003	< 0.003	< 0.003	<0.003	< 0.003	< 0.003
Vinyl Chloride	0.02	#N/A	< 0.002	<0.002	<0.002	< 0.002	<0.002	<0.002	< 0.002	<0.002
m-Xylene + p-Xylene	NV	#N/A	<0.002	<0.002	<0.002	< 0.002	<0.002	<0.002	<0.002	<0.002
o-Xylene	NV	#N/A	<0.002	<0.002	<0.002	< 0.002	<0.002	<0.002	<0.002	<0.002
Xylenes (total)	3.1	#N/A	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002

All soil concentrations reported in $\mu g/g$. '<' = Parameter below detection limit, as indicated

'NV'= No value

Bold Concentration exceeds MECP (2011) SCS. '-' = Not Analyzed

		NOLOO (2011) Table 0.1 dii Depti	i			1				
Location ID		Generic SCS in a Non-Potable Groundwater Condition	MW15-1	MW15-2	MW15-3	MW	15-4	MW15-10	MW15-11	BH201
Sample ID	MECP (2011) Table 3: Full Depth Generic SCS in a Non-Potable		BH1-S3	BH2-S3	BH3-S4	BH4-S3	BH4-S4 (Dup of BH4 S3)	BH15-10 SS2	BH15-11 SS2	BH201 S2
Lab ID	Groundwater Condition		AAR842	AAR843	AAR844	AAR845	AAR846	AOE543	ANX095	CES586
Sampling Date	Residential/Parkland/Institutional Land Use		31-Mar-15	31-Mar-15	31-Mar-15	31-N	lar-15	2-Jul-15	30-Jun-15	14-Apr-16
Soil Sample Depth (m)	(coarse textured soil)		1.5 - 2.47	1.5 - 2.34	2.0 - 2.34	1.5 -	2.21	0.9 - 1.3	0.8 - 1.4	1.5 - 2.47
Consultant			EXP	EXP	EXP		XP	EXP	EXP	EXP
Laboratory			Maxxam	Maxxam	Maxxam		xam	Maxxam	Maxxam	Maxxam
Date of Analysis			1-Apr-15	1-Apr-15	1-Apr-15		or-15	7-Jul-15	3-Jul-15	18-Apr-16
Certificate of Analysis Number	10		B556333	B556333	B556333		6333	B5C9283	B5C7806	B674851
Acetone	16	#N/A	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	-
Benzene	0.21	#N/A #N/A	<0.020	< 0.020	< 0.020	< 0.020	< 0.020	<0.020	< 0.020	<0.020
Bromodichloromethane Bromoform	13 0.27	#N/A #N/A	<0.050 <0.050	<0.050 <0.050	<0.050 <0.050	<0.050 <0.050	<0.050 <0.050	<0.050 <0.050	<0.050 <0.050	-
Bromomethane	0.27	#N/A #N/A	<0.050	<0.050	<0.050	< 0.050	<0.050	<0.050	<0.050	-
Carbon Tetrachloride	0.05	#N/A #N/A	<0.050	<0.050	<0.050	< 0.050	<0.050	<0.050	<0.050	-
Chlorobenzene	2.4	#N/A	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	
Chloroethane	NV		-	-	-		-	-	-	-
Chloroform	0.05	#N/A	< 0.050	< 0.050	< 0.050	<0.050	< 0.050	<0.050	< 0.050	-
Chloromethane	NV		-	-	-	-	-	-	-	-
Dibromochloromethane	9.4	#N/A	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	-
1,2-Dichlorobenzene	3.4	#N/A	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	-
1,3-Dichlorobenzene	4.8	#N/A	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	-
1,4-Dichlorobenzene	0.083	#N/A	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	-
Dichlorodifluoromethane	16	#N/A	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	-
1,1-Dichloroethane	3.5	#N/A	<0.050	<0.050	< 0.050	< 0.050	< 0.050	<0.050	<0.050	-
1,2-Dichloroethane	0.05	#N/A	<0.050	<0.050	< 0.050	<0.050	< 0.050	<0.050	<0.050	-
1,1-Dichloroethylene	0.05	#N/A	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	-
cis-1,2-Dichloroethylene	3.4	#N/A	< 0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	-
trans-1,2-Dichloroethylene	0.084	#N/A	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	-
1,2-Dichloroethylene, total	NV 0.05		-	-	-	-	-	-	-	-
1,2-Dichloropropane	0.05	#N/A #N/A	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	-
cis-1,3-Dichloropropene trans-1,3-Dichloropropene	0.05 0.05	#N/A #N/A	<0.050 <0.050	<0.050 <0.050	<0.050 <0.050	<0.050 <0.050	<0.050 <0.050	<0.050 <0.050	<0.050 <0.050	-
1,3-Dichloropropene, total	NV	#IVA	<0.030	<0.030	<0.050	< 0.050	<0.050	<0.050	<0.030	-
Ethylbenzene	2	#N/A	<0.020	<0.020	<0.020	<0.071	<0.020	<0.020	<0.020	<0.020
Ethylene Dibromide (1,2-Dibromoethane)	0.05	#N/A	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020
Hexane (n)	2.8	#N/A	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	-
Methylene chloride (Dichloromethane)	0.1	#N/A	< 0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	-
Methyl ethyl ketone (2-Butanone)	16	#N/A	< 0.50	<0.50	<0.50	< 0.50	< 0.50	< 0.50	<0.50	-
Methyl Isobutyl Ketone	1.7	#N/A	< 0.50	<0.50	< 0.50	< 0.50	<0.50	< 0.50	< 0.50	-
Methyl t-butyl ether (MTBE)	0.75	#N/A	<0.050	< 0.050	< 0.050	< 0.050	< 0.050	<0.050	< 0.050	-
Styrene	0.7	#N/A	<0.050	< 0.050	< 0.050	<0.050	< 0.050	<0.050	< 0.050	-
1,1,1,2-Tetrachloroethane	0.058	#N/A	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	-
1,1,2,2-Tetrachloroethane	0.05	#N/A	<0.050	<0.050	<0.050	<0.050	< 0.050	< 0.050	<0.050	-
Tetrachloroethylene	0.28	#N/A	0.19	<0.050	<0.050	<0.050	<0.050	1.0	0.055	-
Toluene	2.3	#N/A	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020
1,1,1-Trichloroethane	0.38	#N/A	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	-
1,1,2-Trichloroethane	0.05	#N/A	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	-
Trichloroethylene	0.061	#N/A	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	-
Trichlorofluoromethane	4 NV	#N/A	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	-
1,3,5-Trimethylbenzene		#N/A	- <0.020	-	<0.020	- <0.020	- <0.020	- <0.020	-	-
Vinyl Chloride m-Xylene + p-Xylene	0.02 NV	#N/A #N/A	<0.020	<0.020 <0.020	<0.020	<0.020	<0.020	<0.020	<0.020 <0.020	- <0.040
o-Xylene	NV	#N/A #N/A	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.040
Xylenes (total)	3.1	#N/A	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020

All soil concentrations reported in $\mu g/g$. '<' = Parameter below detection limit, as indicated

'NV'= No value

Bold Concentration exceeds MECP (2011) SCS. '-' = Not Analyzed

Location ID		Generic SCS in a Non-Potable Groundwater Condition	BH202	BH203	BH204	BH/M	W205	BH/MW206	BH16-1	MW301
Sample ID	MECP (2011) Table 3: Full Depth Generic SCS in a Non-Potable	□: Jt' = /□ J t'tt'	BH202 S3	BH203 S3	BH204 S3	BH/MW205 - S2	BH/MW205 S4 (Dup of MW205 S2)	BH206 S2	BH16-1	MW 301 S5
Lab ID	Groundwater Condition		CES587	CES588	CES589	CES576	CES577	CES575	DFM974	FCK181
Sampling Date	Residential/Parkland/Institutional Land		14-Apr-16	14-Apr-16	14-Apr-16	13-A	pr-16	13-Apr-16	11-Oct-16	6-Sep-17
Soil Sample Depth (m)	Use (coarse textured soil)		1.5 - 2.34	2.0 - 2.34	1.5 - 2.21	0.9	- 1.3	0.8 - 1.4	0.3 - 0.5	1.8 - 2.1
Consultant	(coarse textured soli)		EXP	EXP	EXP	E	XP	EXP	EXP	EXP
Laboratory			Maxxam	Maxxam	Maxxam	Max	xam	Maxxam	Maxxam	Maxxam
Date of Analysis			18-Apr-16	18-Apr-16	18-Apr-16	18-A	pr-16	18-Apr-16	15-Oct-16	14/15-Sep-17
Certificate of Analysis Number			B674851	B674851	B674851	B67	4851	B674851	B6L8887	B7J8008
Acetone	16	#N/A	-	-	-	-	-	-	< 0.50	<0.50
Benzene	0.21	#N/A	< 0.020	<0.020	<0.020	<0.020	<0.020	<0.020	< 0.020	< 0.020
Bromodichloromethane	13	#N/A	-	-	-	-	-	-	< 0.050	< 0.050
Bromoform	0.27	#N/A	-	-	-	-	-	-	< 0.050	< 0.050
Bromomethane	0.05	#N/A	-	-	-	-	-	-	< 0.050	< 0.050
Carbon Tetrachloride	0.05	#N/A	-	-	-	-	-	-	< 0.050	< 0.050
Chlorobenzene	2.4	#N/A	-	-	-	-	-	-	< 0.050	< 0.050
Chloroethane	NV		-	-	-	-	-	-	-	-
Chloroform	0.05	#N/A	-	-	-	-	-	-	< 0.050	< 0.050
Chloromethane	NV		-	-	-	-	-	-	-	-
Dibromochloromethane	9.4	#N/A	-	-	-	-	-	-	< 0.050	< 0.050
1,2-Dichlorobenzene	3.4	#N/A	-	-	-	-	-	-	< 0.050	< 0.050
1,3-Dichlorobenzene	4.8	#N/A	-	-	-	-	-	-	< 0.050	< 0.050
1,4-Dichlorobenzene	0.083	#N/A	-	-	-	-	-	-	< 0.050	< 0.050
Dichlorodifluoromethane	16	#N/A	-	-	-	-	-	-	< 0.050	< 0.050
1,1-Dichloroethane	3.5	#N/A	-	-	-	-	-	-	< 0.050	< 0.050
1,2-Dichloroethane	0.05	#N/A	-	-	-	-	-	-	< 0.050	< 0.050
1,1-Dichloroethylene	0.05	#N/A	-	-	-	-	-	-	< 0.050	< 0.050
cis-1,2-Dichloroethylene	3.4	#N/A	-	-	-	-	-	-	< 0.050	< 0.050
trans-1,2-Dichloroethylene	0.084	#N/A	-	-	-	-	-	-	< 0.050	< 0.050
1,2-Dichloroethylene, total	NV		-	-	-	-	-	-	-	-
1,2-Dichloropropane	0.05	#N/A	-	-	-	-	-	-	< 0.050	< 0.050
cis-1,3-Dichloropropene	0.05	#N/A	-	-	-	-	-	-	< 0.030	< 0.030
trans-1,3-Dichloropropene	0.05	#N/A	-	-	-	-	-	-	< 0.040	< 0.040
1,3-Dichloropropene, total	NV		-	-	-	-	-	-	-	< 0.050
Ethylbenzene	2	#N/A	<0.020	<0.020	< 0.020	<0.020	<0.020	<0.020	<0.020	<0.020
Ethylene Dibromide (1,2-Dibromoethane)	0.05	#N/A	-	-	-	-	-	-	< 0.050	< 0.050
Hexane (n)	2.8	#N/A	-	-	-	-	-	-	< 0.050	< 0.050
Methylene chloride (Dichloromethane)	0.1	#N/A	-	-	-	-	-	-	<0.050	<0.050
Methyl ethyl ketone (2-Butanone)	16	#N/A	-	-	-	-	-	-	<0.50	<0.50
Methyl Isobutyl Ketone	1.7	#N/A	-	-	-	-	-	-	< 0.50	<0.50
Methyl t-butyl ether (MTBE)	0.75	#N/A	-	-	-	-	-	-	< 0.050	<0.050
Styrene	0.7	#N/A	-	-	-	-	-	-	<0.050	<0.050
1,1,1,2-Tetrachloroethane	0.058	#N/A	-	-	-	-	-	-	<0.050	<0.050
1,1,2,2-Tetrachloroethane	0.05	#N/A	-	-	-	-	-	-	< 0.050	< 0.050
Tetrachloroethylene	0.28	#N/A	-	-	-	-	-	-	<0.050	0.069
Toluene	2.3	#N/A	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020
1,1,1-Trichloroethane	0.38	#N/A	-	-	-	-	-	-	<0.050	<0.050
1,1,2-Trichloroethane	0.05	#N/A	-	-	-	-	- 1	-	<0.050	<0.050
Trichloroethylene	0.061	#N/A	-	-	-	-	-	-	<0.050	<0.050
Trichlorofluoromethane	4	#N/A	-	-	-	-	-	-	<0.050	<0.050
1,3,5-Trimethylbenzene	NV		-	-	-	-	-	-	-	-
Vinyl Chloride	0.02	#N/A	-	-	-	-	-	-	<0.020	<0.020
m-Xylene + p-Xylene	NV	#N/A	< 0.040	<0.040	<0.040	< 0.040	<0.040	<0.040	<0.020	<0.020
o-Xylene	NV	#N/A	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020
Xylenes (total)	3.1	#N/A	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.020	<0.020

All soil concentrations reported in $\mu g/g$. '<' = Parameter below detection limit, as indicated

'NV'= No value

Bold Concentration exceeds MECP (2011) SCS. '-' = Not Analyzed

Location ID		Generic SCS in a Non-Potable Groundwater Condition	MW302	MW303	MW304	MW305	MW306	MW307	MW308
Sample ID	MECP (2011) Table 3: Full Depth Generic SCS in a Non-Potable		BH/MW302- S3	BH/MW303- S3	MW 304 S3	MW 305 S3	MW 306 S3	MW307-S3	MW308-S3
Lab ID	Groundwater Condition		FCC220	FCC222	FCK182	FCK183	FCK184	FCC224	FCC226
Sampling Date	Residential/Parkland/Institutional Land		6-Sep-17	6-Sep-17	6-Sep-17	5-Sep-17	7-Sep-17	7-Sep-17	6-Sep-17
Soil Sample Depth (m)	Use (coarse textured soil)		1.5 - 2.1	1.5 - 2.18	1.2 - 1.7	1.7 - 2.1	1.2 - 1.4	1.5 - 2.1	1.5 - 2.3
Consultant	(coarse textured son)		EXP	EXP	EXP	EXP	EXP	EXP	EXP
Laboratory			Maxxam	Maxxam	Maxxam	Maxxam	Maxxam	Maxxam	Maxxam
Date of Analysis			12-Sep-17	12-Sep-17	14/15-Sep-17	14/15-Sep-17	14/15-Sep-17	13-Sep-17	13-Sep-17
Certificate of Analysis Number			B7J6395	B7J6395	B7J8008	B7J8008	B7J8008	B7J6395	B7J6395
Acetone	16	#N/A	-	-	<0.50	<0.50	<0.50	<0.50	<0.50
Benzene	0.21	#N/A	< 0.020	< 0.020	<0.020	< 0.020	<0.020	<0.020	<0.020
Bromodichloromethane	13	#N/A	-	-	<0.050	< 0.050	< 0.050	< 0.050	<0.050
Bromoform	0.27	#N/A	-	-	<0.050	< 0.050	<0.050	< 0.050	<0.050
Bromomethane	0.05	#N/A	-	-	<0.050	<0.050	<0.050	<0.050	<0.050
Carbon Tetrachloride	0.05	#N/A	-	-	<0.050	<0.050	<0.050	<0.050	<0.050
Chlorobenzene	2.4	#N/A	-	-	<0.050	<0.050	<0.050	<0.050	<0.050
Chloroethane	NV		-	-	-	-	-	-	-
Chloroform	0.05	#N/A	-	-	<0.050	<0.050	<0.050	<0.050	<0.050
Chloromethane	NV		-	-	-	-	-	-	-
Dibromochloromethane	9.4	#N/A	-	-	<0.050	<0.050	<0.050	<0.050	<0.050
1,2-Dichlorobenzene	3.4	#N/A	-	-	<0.050	<0.050	<0.050	<0.050	<0.050
1,3-Dichlorobenzene	4.8	#N/A	-	-	<0.050	< 0.050	<0.050	< 0.050	<0.050
1,4-Dichlorobenzene	0.083	#N/A	-	-	<0.050	<0.050	<0.050	<0.050	<0.050
Dichlorodifluoromethane	16	#N/A	-	-	<0.050	< 0.050	<0.050	< 0.050	<0.050
1,1-Dichloroethane	3.5	#N/A	-	-	<0.050	<0.050	<0.050	<0.050	<0.050
1,2-Dichloroethane	0.05	#N/A	-	-	<0.050	<0.050	<0.050	<0.050	<0.050
1,1-Dichloroethylene	0.05	#N/A	-	-	<0.050	< 0.050	<0.050	< 0.050	<0.050
cis-1,2-Dichloroethylene	3.4	#N/A	-	-	<0.050	<0.050	<0.050	<0.050	<0.050
trans-1,2-Dichloroethylene	0.084	#N/A	-	-	<0.050	< 0.050	<0.050	< 0.050	<0.050
1,2-Dichloroethylene, total	NV		-	-	-	-	-	-	-
1,2-Dichloropropane	0.05	#N/A	-	-	<0.050	<0.050	< 0.050	<0.050	<0.050
cis-1,3-Dichloropropene	0.05	#N/A	-	-	<0.030	< 0.030	<0.030	< 0.030	<0.030
trans-1,3-Dichloropropene	0.05	#N/A	-	-	<0.040	<0.040	<0.040	<0.040	<0.040
1,3-Dichloropropene, total	NV		-	-	<0.050	<0.050	<0.050	<0.050	<0.050
Ethylbenzene	2	#N/A	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020
Ethylene Dibromide (1,2-Dibromoethane)	0.05	#N/A	-	-	<0.050	<0.050	<0.050	<0.050	<0.050
Hexane (n)	2.8	#N/A	-	-	<0.050	< 0.050	<0.050	< 0.050	<0.050
Methylene chloride (Dichloromethane)	0.1	#N/A	-	-	<0.050	<0.050	<0.050	<0.050	<0.050
Methyl ethyl ketone (2-Butanone)	16	#N/A	-	-	<0.50	<0.50	<0.50	<0.50	<0.50
Methyl Isobutyl Ketone	1.7	#N/A	-	-	<0.50	<0.50	<0.50	<0.50	<0.50
Methyl t-butyl ether (MTBE)	0.75	#N/A	-	-	<0.050	<0.050	< 0.050	<0.050	<0.050
Styrene	0.7	#N/A	-	-	<0.050	<0.050	<0.050	<0.050	<0.050
1,1,1,2-Tetrachloroethane	0.058	#N/A	-	-	<0.050	<0.050	< 0.050	<0.050	<0.050
1,1,2,2-Tetrachloroethane	0.05	#N/A	-	-	<0.050	<0.050	<0.050	<0.050	<0.050
Tetrachloroethylene	0.28	#N/A	-	-	0.19	2.3	0.23	0.23	<0.050
Toluene	2.3	#N/A	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020
1,1,1-Trichloroethane	0.38	#N/A	-	-	<0.050	<0.050	<0.050	<0.050	<0.050
1,1,2-Trichloroethane	0.05	#N/A	-	-	<0.050	<0.050	<0.050	<0.050	<0.050
Trichloroethylene	0.061	#N/A	-	-	<0.050	<0.050	<0.050	<0.050	<0.050
Trichlorofluoromethane	4	#N/A	-	-	<0.050	<0.050	<0.050	<0.050	<0.050
1,3,5-Trimethylbenzene	NV		-	-	-	-	-	-	-
Vinyl Chloride	0.02	#N/A	-	-	<0.020	<0.020	<0.020	<0.020	<0.020
m-Xylene + p-Xylene	NV	#N/A	<0.040	<0.040	<0.020	<0.020	<0.020	<0.020	<0.020
o-Xylene	NV	#N/A	< 0.020	<0.020	<0.020	<0.020	< 0.020	<0.020	<0.020
Xylenes (total)	3.1	#N/A	<0.040	<0.040	<0.020	<0.020	<0.020	<0.020	<0.020

All soil concentrations reported in $\mu g/g$. '<' = Parameter below detection limit, as indicated

'NV'= No value

Location ID		Generic SCS in a Non-Potable Groundwater Condition	MW309	MW	'310	MW311
Sample ID	MECP (2011) Table 3: Full Depth Generic SCS in a Non-Potable		MW309-S2	MW310-S3	MW321-S2 (Dup of MW310-S3)	BH/MW311- S3
Lab ID	Groundwater Condition		FCC228	FCC230	FCC231	FCC233
Sampling Date	Residential/Parkland/Institutional Land		6-Sep-17	7-Sep-17	7-Sep-17	7-Sep-17
Soil Sample Depth (m)	Use		0.7 - 1.1	1.5	- 2.1	1.5 - 2.0
Consultant	(coarse textured soil)		EXP	E	XP	EXP
Laboratory			Maxxam	Max	vam	Maxxam
Date of Analysis			13-Sep-17		ep-17	12-Sep-17
Certificate of Analysis Number			B7J6395		6395	B7J6395
Acetone	16	#N/A	< 0.50	< 0.50	< 0.50	-
Benzene	0.21	#N/A	<0.020	<0.020	<0.020	<0.020
Bromodichloromethane	13	#N/A	<0.020	<0.020	<0.020	<0.0E0
Bromoform	0.27	#N/A	<0.050	<0.050	<0.050	-
	-	#N/A				-
Bromomethane	0.05		< 0.050	< 0.050	< 0.050	-
Carbon Tetrachloride	0.05	#N/A	< 0.050	< 0.050	< 0.050	-
Chlorobenzene	2.4	#N/A	<0.050	<0.050	<0.050	-
Chloroethane	NV		-	-	-	-
Chloroform	0.05	#N/A	< 0.050	<0.050	< 0.050	-
Chloromethane	NV		-	-	-	-
Dibromochloromethane	9.4	#N/A	< 0.050	< 0.050	< 0.050	-
1,2-Dichlorobenzene	3.4	#N/A	< 0.050	< 0.050	< 0.050	-
1,3-Dichlorobenzene	4.8	#N/A	< 0.050	< 0.050	< 0.050	-
1,4-Dichlorobenzene	0.083	#N/A	< 0.050	< 0.050	< 0.050	-
Dichlorodifluoromethane	16	#N/A	< 0.050	< 0.050	< 0.050	-
1,1-Dichloroethane	3.5	#N/A	< 0.050	< 0.050	< 0.050	-
1.2-Dichloroethane	0.05	#N/A	< 0.050	< 0.050	< 0.050	-
1,1-Dichloroethylene	0.05	#N/A	<0.050	<0.050	<0.050	
cis-1,2-Dichloroethylene	3.4	#N/A	<0.050	<0.050	<0.050	
trans-1,2-Dichloroethylene	0.084	#N/A	<0.050	<0.050	<0.050	
1,2-Dichloroethylene, total	NV	#1\VA	<0.050	<0.050	<0.050	-
		451/6	-	-	-	-
1,2-Dichloropropane	0.05	#N/A	< 0.050	< 0.050	< 0.050	-
cis-1,3-Dichloropropene	0.05	#N/A	< 0.030	< 0.030	< 0.030	-
trans-1,3-Dichloropropene	0.05	#N/A	<0.040	<0.040	<0.040	-
1,3-Dichloropropene, total	NV		< 0.050	<0.050	<0.050	-
Ethylbenzene	2	#N/A	<0.020	<0.020	<0.020	<0.020
Ethylene Dibromide (1,2-Dibromoethane)	0.05	#N/A	< 0.050	<0.050	<0.050	-
Hexane (n)	2.8	#N/A	< 0.050	< 0.050	< 0.050	-
Methylene chloride (Dichloromethane)	0.1	#N/A	< 0.050	< 0.050	< 0.050	-
Methyl ethyl ketone (2-Butanone)	16	#N/A	<0.50	<0.50	<0.50	-
Methyl Isobutyl Ketone	1.7	#N/A	<0.50	<0.50	<0.50	-
Methyl t-butyl ether (MTBE)	0.75	#N/A	< 0.050	< 0.050	< 0.050	-
Styrene	0.7	#N/A	< 0.050	< 0.050	< 0.050	-
1,1,1,2-Tetrachloroethane	0.058	#N/A	< 0.050	< 0.050	< 0.050	-
1,1,2,2-Tetrachloroethane	0.05	#N/A	< 0.050	< 0.050	< 0.050	-
Tetrachloroethylene	0.28	#N/A	<0.050	<0.050	<0.050	-
Toluene	2.3	#N/A	<0.020	<0.020	<0.020	<0.020
1.1.1-Trichloroethane	0.38	#N/A	<0.050	<0.050	<0.050	
1,1,2-Trichloroethane	0.05	#N/A	<0.050	<0.050	<0.050	-
Trichloroethylene	0.061	#N/A	<0.050	<0.050	<0.050	
Trichlorofluoromethane	4	#N/A #N/A	<0.050	<0.050	<0.050	-
	4 NV	#19/A	<0.050	<0.050	<0.050	-
1,3,5-Trimethylbenzene		451/A	-		-	-
Vinyl Chloride	0.02	#N/A	< 0.020	< 0.020	< 0.020	-
m-Xylene + p-Xylene	NV	#N/A	<0.020	<0.020	<0.020	<0.040
o-Xylene	NV	#N/A	<0.020	<0.020	<0.020	<0.020
Xylenes (total)	3.1	#N/A	<0.020	<0.020	<0.020	<0.040

'NV'= No value

i r								
Location		MW15-1	MW15-2	MW15-3	MW	15-4	BH201	BH202
Sample ID	MECP(2011) Table 3: Full Depth Generic SCS in a Non-Potable	MW15-1 SS3 (BH1 S3)	MW15-2 SS3 (BH2 S3)	MW15-3 SS4 (BH3 S4)	MW15-4 SS3 (BH4 S3)	MW15-4 SS4 (Dup of MW15- 4 SS3)	BH201-S2	BH202-S3
Lab ID	Groundwater Condition	AAR842	AAR843	AAR844	AAR845	AAR846	CES586	CES587
Sampling Date	Residential/Parkland/Institutional Use	31-Mar-15	31-Mar-15	31-Mar-15	31-M	ar-15	14-Apr-16	14-Apr-16
Soil Sample Depth (m)	(coarse textured soil)	1.5 - 2.47	1.5 - 2.34	2.0 - 2.34	1.5 -	2.21	1.5 - 2.47	1.5 - 2.34
Consultant	(coarse textured soli)	EXP	EXP	EXP	E	XP	EXP	EXP
Laboratory		Maxxam	Maxxam	Maxxam	Max	xam	Maxxam	Maxxam
Date of Analysis		20-Apr-15	1/2-Apr-15	1/2-Apr-15	20-Apr-15	1/2-Apr-15	19-Apr-16	19-Apr-16
Certificate of Analysis Number		B556333	B556333	B556333	B556333	B556333	B674851	B674851
Antimony	7.5	-	-	-	-	-	-	-
Arsenic	18	-	-	-	-	-	-	-
Barium	390	-	-	-	-	-	-	-
Beryllium	4	-	-	-	-	-	-	-
Boron	120	-	-	-	-	-	-	-
Cadmium	1.2	-	-	-	-	-	-	-
Chromium	160	-	-	-	-	-	-	-
Cobalt	22	-	-	-	-	-	-	-
Copper	140	-	-	-	-	-	-	-
Lead	120	-	-	-	-	-	6	3
Molybdenum	6.9	-	-	-	-	-	-	-
Nickel	100	-	-	-	-	-	-	-
Selenium	2.4	-	-	-	-	-	-	-
Silver	20	-	-	-	-	-	-	-
Thallium	1	-	-	-	-	-	-	-
Uranium	23	-	-	-	-	-	-	-
Vanadium	86	-	-	-	-	-	-	-
Zinc	340	-	-	-	-	-	-	-
Sodium Adsorption Ratio	5	-	-	-	-	-	-	-
Conductivity (mS/cm)	0.7	-	-	-	-	-	-	-
pH (pH units)	5-9 (surface soil); 5-11 (subsurface soil)		-	-	7.52	-	-	-
Moisture (%)	NV	9.9	11	7.5	15	17	33	5.1

All soil concentrations reported in µg/g.

'<' = Parameter below detection limit, as indicated

'NV'= No value

'-' = Not Analyzed

Due to amendments to O.Reg 153/04, deicing related

parameters are not retained as COCs.

Location		BH203	BH204	BH/M	W205	BH/MW206	BH16-1
Sample ID	MECP(2011) Table 3: Full Depth Generic SCS in a Non-Potable	BH203-S3	BH204-S3	BH/MW205 S2	BH/MW205 S4 (Dup of MW205 S2)	BH/MW206 S2	BH16-1
Lab ID	Groundwater Condition	CES588	CES589	CES576	CES577	CES575	DFM974
Sampling Date	Residential/Parkland/Institutional Use	14-Apr-16	14-Apr-16	13-A	pr-16	13-Apr-16	11-Oct-16
Soil Sample Depth (m)	(coarse textured soil)	2.0 - 2.34	1.5 - 2.21	0.9	- 1.3	0.8 - 1.4	0.3 - 0.5
Consultant	(coarse textured soll)	EXP	EXP	E	ΧP	EXP	EXP
Laboratory		Maxxam	Maxxam	Max	xam	Maxxam	Maxxam
Date of Analysis		19-Apr-16	19-Apr-16	19-Apr-16	18-Apr-16	18-Apr-16	13/14-Oct-16
Certificate of Analysis Number		B674851	B674851	B67	4851	B674851	B6L8887
Antimony	7.5	-	-	-	-	-	<0.20
Arsenic	18	-	-	-	-	-	2.2
Barium	390	-	-	-	-	-	110
Beryllium	4	-	-	-	-	-	0.29
Boron	120	-	-	-	-	-	8.6
Cadmium	1.2	-	-	-	-	-	<0.10
Chromium	160	-	-	-	-	-	14
Cobalt	22	-	-	-	-	-	5.7
Copper	140	-	-	-	-	-	10
Lead	120	6	2	-	-	-	5.2
Molybdenum	6.9	-	-	-	-	-	0.68
Nickel	100	-	-	-	-	-	11
Selenium	2.4	-	-	-	-	-	<0.50
Silver	20	-	-	-	-	-	<0.20
Thallium	1	-	-	-	-	-	0.11
Uranium	23	-	-	-	-	-	0.43
Vanadium	86	-	-	-	-	-	17
Zinc	340	-	-	-	-	-	13
Sodium Adsorption Ratio	5	-	-	-	-	-	-
Conductivity (mS/cm)	0.7	-	-	-	-	-	-
pH (pH units)	5-9 (surface soil); 5-11 (subsurface soil)	-	7.70	7.11	-	-	-
Moisture (%)	NV	13	16	18	18	13	4.2

All soil concentrations reported in µg/g.

'<' = Parameter below detection limit, as indicated

'NV'= No value

'-' = Not Analyzed

Due to amendments to O.Reg 153/04, deicing related

parameters are not retained as COCs.

Location		BH/M	W302	BH/M	IW303	BH/M	W307	BH/M	W308
Sample ID	MECP(2011) Table 3: Full Depth	MW302-S2	BH/MW302-S3	MW303-S2	BH/MW303-S3	MW307-S1	MW307-S3	MW308-S1	MW308-S3
Lab ID	Generic SCS in a Non-Potable	FCC219	FCC220	FCC221	FCC222	FCC223	FCC224	FCC225	FCC226
Sampling Date	Groundwater Condition	6-Sep-17	6-Sep-17	6-Sep-17	6-Sep-17	7-Sep-17	7-Sep-17	6-Sep-17	6-Sep-17
Soil Sample Depth (m)	Residential/Parkland/Institutional Use	0.8 - 1.2	1.5 - 2.1	0.7 - 1.4	1.5 - 2.18	0.0 - 0.7	1.5 - 2.1	0.0 - 0.6	1.5 - 2.3
Consultant	(coarse textured soil)	EXP	EXP	EXP	EXP	EXP	EXP	EXP	EXP
Laboratory		Maxxam	Maxxam	Maxxam	Maxxam	Maxxam	Maxxam	Maxxam	Maxxam
Date of Analysis		12/13-Sep-17	12/13-Sep-17	12/13-Sep-17	12/13-Sep-17	12/13-Sep-17	13-Sep-17	12/13-Sep-17	13-Sep-17
Certificate of Analysis Number		B7J6395	B7J6395	B7J6395	B7J6395	B7J6395	B7J6395	B7J6395	B7J6395
Antimony	7.5	<0.20	-	<0.20	-	-	-	-	-
Arsenic	18	1.4	-	1.7	-	-	-	-	-
Barium	390	140	-	110	-	-	-	-	-
Beryllium	4	0.45	-	0.39	-	-	-	-	-
Boron	120	7.1	-	7.9	-	-	-	-	-
Cadmium	1.2	0.21	-	0.11	-	-	-	-	-
Chromium	160	19	-	18	-	-	-	-	-
Cobalt	22	6.4	-	6.1	-	-	-	-	-
Copper	140	15	-	14	-	-	-	-	-
Lead	120	12	-	11	-	-	-	-	-
Molybdenum	6.9	<0.50	-	0.53	-	-	-	-	-
Nickel	100	13	-	13	-	-	-	-	-
Selenium	2.4	<0.50	-	<0.50	-	-	-	-	-
Silver	20	<0.20	-	<0.20	-	-	-	-	-
Thallium	1	0.15	-	0.14	-	-	-	-	-
Uranium	23	0.58	-	0.53	-	-	-	-	-
Vanadium	86	26	-	24	-	-	-	-	-
Zinc	340	36	-	28	-	-	-	-	-
Sodium Adsorption Ratio	5	-	-	-	-	2.8	-	15	-
Conductivity (mS/cm)	0.7	-	-	-	-	1.6	-	0.45	-
	5-9 (surface soil); 5-11 (subsurface soil)	-	-	-	-	-	-	-	-
Moisture (%)	NV	-	13	-	12	-	7.4	-	17

All soil concentrations reported in µg/g.

'<' = Parameter below detection limit, as indicated

'NV'= No value

'-' = Not Analyzed

Due to amendments to O.Reg 153/04, deicing related

parameters are not retained as COCs.

				r		1		1	
Location		BH/M	W309		BH/MW310		BH/M	W311	BH/MW312
Sample ID	MECP(2011) Table 3: Full Depth	MW309-S1	MW309-S2	MW310-S1	MW310-S3	MW321-S2 (Dup of MW310 S3)	MW311-S2	BH/MW311-S3	MW312-S1
Lab ID	Generic SCS in a Non-Potable	FCC227	FCC228	FCC229	FCC230	FCC231	FCC232	FCC233	FCC234
Sampling Date	Groundwater Condition	6-Sep-17	6-Sep-17	7-Sep-17		ep-17	7-Sep-17	7-Sep-17	7-Sep-17
Soil Sample Depth (m)	Residential/Parkland/Institutional Use	0.0 - 0.8	0.7 - 1.1	0.0 - 0.7	1.5	- 2.1	0.2 - 0.7	1.5 - 2.0	0.0 - 0.1
Consultant	(coarse textured soil)	EXP	EXP	EXP	E	XP	EXP	EXP	EXP
Laboratory		Maxxam	Maxxam	Maxxam	Max	xxam	Maxxam	Maxxam	Maxxam
Date of Analysis		12/13-Sep-17	13-Sep-17	12/13-Sep-17	13-S	ep-17	12/13-Sep-17	12/13-Sep-17	12/13-Sep-17
Certificate of Analysis Number		B7J6395	B7J6395	B7J6395	B7J6395		B7J6395	B7J6395	B7J6395
Antimony	7.5	-	-	-	-	-	-	-	-
Arsenic	18	-	-	-	-	-	-	-	-
Barium	390	-	-	-	-	-	-	-	-
Beryllium	4	-	-	-	-	-	-	-	-
Boron	120	-	-	-	-	-	-	-	-
Cadmium	1.2	-	-	-	-	-	-	-	-
Chromium	160	-	-	-	-	-	-	-	-
Cobalt	22	-	-	-	-	-	-	-	-
Copper	140	-	-	-	-	-	-	-	-
Lead	120	-	-	-	-	-	-	-	-
Molybdenum	6.9	-	-	-	-	-	-	-	-
Nickel	100	-	-	-	-	-	-	-	-
Selenium	2.4	-	-	-	-	-	-	-	-
Silver	20	-	-	-	-	-	-	-	-
Thallium	1	-	-	-	-	-	-	-	-
Uranium	23	-	-	-	-	-	-	-	-
Vanadium	86	-	-	-	-	-	-	-	-
Zinc	340	-	-	-	-	-	-	-	-
Sodium Adsorption Ratio	5	15	-	24			18	-	1
Conductivity (mS/cm)	0.7	2.7	-	1.6	-	-	0.99	-	0.26
pH (pH units)	5-9 (surface soil); 5-11 (subsurface soil)	-	-	-	-	-	-	-	-
Moisture (%)	NV	-	10	-	11	8.7	-	7.9	-

All soil concentrations reported in µg/g.

'<' = Parameter below detection limit, as indicated

'NV'= No value

'-' = Not Analyzed

Due to amendments to O.Reg 153/04, deicing related

parameters are not retained as COCs.

Location			MW-1	MW-3	MV	N-6
Sample ID	MECP (2011) Table 3: Full Depth	MECP (2011) Table 7: Full Depth Generic SCS for Shallow Soils in	MW11-1	MW11-3	MW	'11-6
Lab ID	Generic SCS in a Non-Potable	a Non-Potable Groundwater	ACD937	ACD865	ABZ026	CFY449
Sampling Date	Groundwater Condition	Condition	10-Apr-15	10-Apr-15	10-Apr-15	22-Apr-16
Screen Depth Interval (m)	Residential/Parkland/Institutional	Residential/Parkland/Institutional	1.5-3.0	1.2 - 2.7	1.5	- 3.0
Consultant	Land Use (coarse textured soil)	Land Use (coarse textured soil)	EXP	EXP	EXP	EXP
Laboratory			Maxxam	Maxxam	Maxxam	Maxxam
Date of Analysis			15/17-Apr-15	15/17-Apr-15	14/15-Apr-15	26-Apr-16
Certificate of Analysis Number			B563666	B563666	B563666	B681325
Benzene	44	0.5	<0.10	<0.20	<10	<0.20
Toluene	18000	320	<0.20	<0.20	<20	<0.20
Ethylbenzene	2300	54	<0.10	<0.20	<10	<0.20
m-Xylene + p-Xylene	NV	NV	<0.10	<0.20	<10	<0.20
o-Xylene	NV	NV	<0.10	<0.20	<10	<0.20
Xylenes (total)	4200	72	<0.10	<0.20	<10	<0.20
PHC F1 (C6-C10)	750	420	<25	<25	<25	-
PHC F1 (C6-C10) - BTEX	750	420	<25	<25	<25	-
PHC F2 (C10-C16)	150	150	<100	<100	<100	-
PHC F3 (C16-C34)	500	500	<100	<100	<100	-
PHC F4 (C34-C50)	500	500	<100	<100	<100	-
Reached baseline at C50?	NV	NV	YES	YES	YES	-
PHC F4 (C34-C50)-gravimetric	500	500	-	-	-	-

 (1) Result reported was due to chlorinated compounds eluting inside the F1 range. All groundwater concentrations reported in µg/L.

 '<' = Parameter below detection limit, as indicated</td>

'NV'= No value

'-' = Not Analyzed Bold Concentration exceeds MECP (2011) Table 3 & 7 SCS.

Location			MW	15-1	MW15-2	MW	15-3	MW	/15-4		MW15-5	
Sample ID	MECP (2011) Table 3: Full Depth	MECP (2011) Table 7: Full Depth Generic SCS for Shallow Soils in	MW	15-1	MW15-2	MW	15-3	MW15-4	MW15-5 (Dup of MW15-4)		MW15-5	
Lab ID	Generic SCS in a Non-Potable	a Non-Potable Groundwater	ABZ022	FDA818	ACD768	ABZ023	CFW570	ABZ024	ABZ025	AGE827	CFW567	FDA819
Sampling Date	Groundwater Condition Residential/Parkland/Institutional	Condition	10-Apr-15	14-Sep-17	10-Apr-15	10-Apr-15	21-Apr-16	10-A	pr-15	8-May-15	21-Apr-16	15-Sep-17
Screen Depth Interval (m)	Land Use (coarse textured soil)	Residential/Parkland/Institutional	3.1	-4.6	3.1-4.6	7.6	-9.2	3.1	-4.6		1.2-4.3	
Consultant	Land Use (coarse textured soli)	Land Use (coarse textured soil)	EXP	EXP	EXP	EXP	EXP	E	XP	EXP	EXP	EXP
Laboratory			Maxxam	Maxxam	Maxxam	Maxxam	Maxxam	Max	xam	Maxxam	Maxxam	Maxxam
Date of Analysis			15/17-Apr-15	14/15-Sep-17	15/17-Apr-15	14/15-Apr-15	26/27-Apr-16		Apr-15	13/14-May-15	26/27-Apr-16	19/20-Sep-17
Certificate of Analysis Number			B563666	B7K1578	B563666	B563666	B680859	B56	3666	B586655	B680859	B7K1578
Benzene	44	0.5	<10	<0.40	<0.10	<0.10	<0.20	0.16	0.15	<1.0	<0.40	<0.10
Toluene	18000	320	<20	<0.40	<0.20	<0.20	<0.20	<0.20	<0.20	<2.0	<0.40	<0.20
Ethylbenzene	2300	54	<10	<0.40	<0.10	<0.10	<0.20	<0.10	<0.10	<1.0	<0.40	<0.10
m-Xylene + p-Xylene	NV	NV	<10	<0.40	<0.10	<0.10	<0.20	<0.10	<0.10	<1.0	<0.40	<0.10
o-Xylene	NV	NV	<10	<0.40	<0.10	<0.10	<0.20	<0.10	<0.10	<1.0	<0.40	<0.10
Xylenes (total)	4200	72	<10	<0.40	<0.10	<0.10	<0.20	<0.10	<0.10	<1.0	<0.40	<0.10
PHC F1 (C6-C10)	750	420	150	170 ⁽¹⁾	<25	<25	-	<25	<25	79	160	-
PHC F1 (C6-C10) - BTEX	750	420	150	170	<25	<25	-	<25	<25	79	160	-
PHC F2 (C10-C16)	150	150	<100	<100	<100	<100	-	260	270	<100	<100	-
PHC F3 (C16-C34)	500	500	<100	<200	<100	<100	-	<100	<100	<100	<200	-
PHC F4 (C34-C50)	500	500	<100	<200	<100	<100	-	<100	<100	<100	<200	-
Reached baseline at C50?	NV	NV	YES	YES	YES	YES	-	YES	YES	YES	YES	-
PHC F4 (C34-C50)-gravimetric	500	500	-	-	-	-	-	-	-	-	-	-

 (1) Result reported was due to chlorinated compounds eluting inside the F1 range. All groundwater concentrations reported in µg/L.

 '<' = Parameter below detection limit, as indicated</td>

'NV'= No value

'-' = Not Analyzed

Location				MW15-6			MW1	5-7			MW15-8	
Sample ID	MECP (2011) Table 3: Full Depth	MECP (2011) Table 7: Full Depth Generic SCS for Shallow Soils in		MW15-6			MW1	5-7		MW15-8	MW15-12 (Dup of MW15-8)	MW15-8
Lab ID	Generic SCS in a Non-Potable	a Non-Potable Groundwater	AGE828	CFW568	FDH367	AGE829	AOU519	CKY707	FDA820	AOU520	AOU524	FDH368
Sampling Date	Groundwater Condition	Condition	8-May-15	21-Apr-16	15-Sep-17	8-May-15	7-Jul-15	27-May-16	14-Sep-17	7-J	ul-15	15-Sep-17
Screen Depth Interval (m)	Residential/Parkland/Institutional Land Use (coarse textured soil)	Residential/Parkland/Institutional		1.1-4.2			1.52-4.5	57			2.74-4.27	
Consultant	Land Use (coarse textured soll)	Land Use (coarse textured soil)	EXP	EXP	EXP	EXP	EXP	EXP	EXP	E	XP	EXP
Laboratory			Maxxam	Maxxam	Maxxam	Maxxam	Maxxam	Maxxam	Maxxam	Ma	xxam	Maxxam
Date of Analysis			13-May-15	26/27-Apr-16	20/21-Sep-17	13-May-15	9/13-Jul-15	31-May-16	19/20-Sep-17	9/13	Jul-15	20/21-Sep-17
Certificate of Analysis Number			B586655	B680859	B7K2764	B586655	B5D2173	B6A8093	B7K1578	B5D	02173	B7K2764
Benzene	44	0.5	<1.0	<0.20	<0.10	<1.0	0.14	<0.20	< 0.50	<0.10	<0.10	<0.10
Toluene	18000	320	<2.0	<0.20	<0.20	<2.0	<0.20	<0.20	<1.0	<0.20	<0.20	<0.20
Ethylbenzene	2300	54	<1.0	<0.20	<0.10	<1.0	<0.10	<0.20	< 0.50	<0.10	<0.10	<0.10
m-Xylene + p-Xylene	NV	NV	<1.0	<0.20	<0.10	<1.0	<0.10	<0.20	< 0.50	<0.10	<0.10	<0.10
o-Xylene	NV	NV	<1.0	<0.20	<0.10	<1.0	<0.10	<0.20	<0.50	<0.10	<0.10	<0.10
Xylenes (total)	4200	72	<1.0	<0.20	<0.10	<1.0	<0.10	<0.20	< 0.50	<0.10	<0.10	<0.10
PHC F1 (C6-C10)	750	420	<25	-	-	100	-	-	-	-	-	-
PHC F1 (C6-C10) - BTEX	750	420	<25	-	-	100	-	-	-	-	-	-
PHC F2 (C10-C16)	150	150	<100	-	-	<100	-	-	-	-	-	-
PHC F3 (C16-C34)	500	500	<100	-	-	<100	-	-	-	-	-	-
PHC F4 (C34-C50)	500	500	<100	-	-	<100	-	-	-	-	-	
Reached baseline at C50?	NV	NV	YES	-	-	YES	-	-	-	-	-	- 1
PHC F4 (C34-C50)-gravimetric	500	500	-	-	-	-	-	-	-	-	-	<u>i -</u>

 (1) Result reported was due to chlorinated compounds eluting inside the F1 range. All groundwater concentrations reported in µg/L.

 '<' = Parameter below detection limit, as indicated</td>

'NV'= No value

'-' = Not Analyzed

Location			MW	15-9	MW	15-10	MW1	15-11	BH/MW205	BH/MW206		BH/MW207	
Sample ID	MECP (2011) Table 3: Full Depth	MECP (2011) Table 7: Full Depth Generic SCS for Shallow Soils in	MW	15-9	MW	15-10	MW1	15-11	BH/MW205	MW206	BH/MW207	BH/MW209 (Dup of BH/MW207)	BH/MW207
Lab ID	Generic SCS in a Non-Potable	a Non-Potable Groundwater	AOU521	FDA821	AOU522	FDH366	AOU523	FDO219	CFY451	FDA816	CFW569	CFW571	FDA817
Sampling Date	Groundwater Condition Residential/Parkland/Institutional	Condition	7-Jul-15	14-Sep-17	7-Jul-15	15-Sep-17	7-Jul-15	18-Sep-17	22-Apr-16	14-Sep-17	21-A	pr-16	14-Sep-17
Screen Depth Interval (m)	Land Use (coarse textured soil)	Residential/Parkland/Institutional	-	-4.57	0.7	7-3.8	1.83	-3.35	1.52-4.57	1.22 - 3.66		9.3 - 10.8	
Consultant	Land Use (coarse textured soil)	Land Use (coarse textured soil)	EXP	EXP	EXP	EXP	EXP	EXP	EXP	EXP	E	XP	EXP
Laboratory			Maxxam	Maxxam	Maxxam	Maxxam	Maxxam	Maxxam	Maxxam	Maxxam	Max	xam	Maxxam
Date of Analysis			9/13-Jul-15	19/20-Sep-17	11-Jul-15	19/21/22-Sep-17	9/13-Jul-15		27/28-Apr-16	14/15-Sep-17		Apr-16	19/20-Sep-17
Certificate of Analysis Number			B5D2173	B7K1578	B5D2173	B7K2764	B5D2173	B7K3897	B681325	B7K1578	B68	0859	B7K1578
Benzene	44	0.5	0.1	<0.25	<0.10	<0.20	<0.10	<0.25	<0.20	0.29	<0.20	<0.20	<0.20
Toluene	18000	320	<0.20	<0.50	<0.20	<0.20	<0.20	<0.50	<0.20	<0.20	<0.20	<0.20	<0.20
Ethylbenzene	2300	54	<0.10	<0.25	<0.10	<0.20	<0.10	<0.25	<0.20	<0.20	<0.20	<0.20	<0.20
m-Xylene + p-Xylene	NV	NV	<0.10	<0.25	<0.10	<0.20	<0.10	<0.25	<0.20	<0.20	<0.20	<0.20	<0.20
o-Xylene	NV	NV	<0.10	<0.25	<0.10	<0.20	<0.10	<0.25	<0.20	<0.20	<0.20	<0.20	<0.20
Xylenes (total)	4200	72	<0.10	<0.25	<0.10	<0.20	<0.10	<0.25	<0.20	<0.20	<0.20	<0.20	<0.20
PHC F1 (C6-C10)	750	420	-	-	<25	28 (1)	<25	-	<25	<25	-	-	<25
PHC F1 (C6-C10) - BTEX	750	420	-	-	<25	28	<25	-	<25	<25	-	-	<25
PHC F2 (C10-C16)	150	150	-	-	<100	<100	<100	-	<100	660	-	-	<100
PHC F3 (C16-C34)	500	500	-	-	<200	<200	<200	-	<200	<200	-	-	<200
PHC F4 (C34-C50)	500	500	-	-	<200	<200	<200	-	<200	<200	-	-	<200
Reached baseline at C50?	NV	NV	-	-	YES	YES	YES	-	YES	YES	-	-	YES
PHC F4 (C34-C50)-gravimetric	500	500	-	-	-	-	-	-	-	-	-	-	-

 (1) Result reported was due to chlorinated compounds eluting inside the F1 range. All groundwater concentrations reported in µg/L.

 '<' = Parameter below detection limit, as indicated</td>

'NV'= No value

'-' = Not Analyzed

Location			BH/MW208	MW301	MW 302	MW 303	MW304	MW305	MW306	MW307	MW 308
Sample ID	MECP (2011) Table 3: Full Depth	MECP (2011) Table 7: Full Depth Generic SCS for Shallow Soils in	BH/MW208	MW301	MW 302	MW 303	MW304	MW305	MW306	MW307	MW 308
Lab ID	Generic SCS in a Non-Potable	a Non-Potable Groundwater	CFW566	FDH380	FDA814	FDA815	FDH381	FDH382	FDO218	FDH369	FDH370
Sampling Date	Groundwater Condition Residential/Parkland/Institutional	Condition	21-Apr-16	15-Sep-17	14-Sep-17	14-Sep-17	15-Sep-17	15-Sep-17	18-Sep-17	15-Sep-17	15-Sep-17
Screen Depth Interval (m)	Land Use (coarse textured soil)	Residential/Parkland/Institutional	9.3 - 10.8	3.1 - 4.6	1.2 - 3.7	1.2 - 3.7	2.7 - 4.7	3.1-4.6	3.1 - 4.6	1.5 - 4.6	1.5 - 4.6
Consultant	Land Ose (coarse textured son)	Land Use (coarse textured soil)	EXP	EXP	EXP	EXP	EXP	EXP	EXP	EXP	EXP
Laboratory			Maxxam	Maxxam	Maxxam	Maxxam	Maxxam	Maxxam	Maxxam	Maxxam	Maxxam
Date of Analysis			26/27-Apr-16	19/21/22-Sep-17	19/21-Sep-17	19/21-Sep-17	19/21/22-Sep-17	19/21/22-Sep-17	22-Sep-17	20/21-Sep-17	20/21-Sep-17
Certificate of Analysis Number			B680859	B7K2764	B7K1578	B7K1578	B7K2764	B7K2764	B7K3897	B7K2764	B7K2764
Benzene	44	0.5	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.25	<0.10	<0.10
Toluene	18000	320	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	< 0.50	<0.20	<0.20
Ethylbenzene	2300	54	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.25	<0.10	<0.10
m-Xylene + p-Xylene	NV	NV	<0.20	<0.20	<0.40	<0.40	<0.20	<0.20	<0.25	<0.10	<0.10
o-Xylene	NV	NV	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.25	<0.10	<0.10
Xylenes (total)	4200	72	<0.20	<0.20	<0.40	<0.40	<0.20	<0.20	<0.25	<0.10	<0.10
PHC F1 (C6-C10)	750	420	-	<25	<25	<25	<25	26	-	-	-
PHC F1 (C6-C10) - BTEX	750	420	-	<25	<25	<25	<25	26	-	-	-
PHC F2 (C10-C16)	150	150	-	<100	<100	1100	<100	<100	-	-	-
PHC F3 (C16-C34)	500	500	-	<200	<200	550	<200	<200	-	-	-
PHC F4 (C34-C50)	500	500	-	<200	<200	<200	<200	<200	-	-	-
Reached baseline at C50?	NV	NV	-	YES	YES	YES	YES	YES	-	-	-
PHC F4 (C34-C50)-gravimetric	500	500	-	-	-	-	-	-	-	-	-

Result reported was due to chlorinated compounds eluting inside the F1 range. All groundwater concentrations reported in μg/L.
 '<' = Parameter below detection limit, as indicated

'NV'= No value

'-' = Not Analyzed

Location			MW309	MW310	MW	/311	MW312	-	-	-	-	-
Sample ID	MECP (2011) Table 3: Full Depth	MECP (2011) Table 7: Full Depth Generic SCS for Shallow Soils in	MW309	MW310	MW311	MW313 (Dup of MW311)	MW312	Trip Blank	Trip Blank	Trip Blank	Trip Blank	Trip Blank
Lab ID	Generic SCS in a Non-Potable	a Non-Potable Groundwater	FDH371	FDH372	FDH374	FDH375	FDH373	ABZ027	AGE830	A0U525	CFY452	FDH383
Sampling Date	Groundwater Condition Residential/Parkland/Institutional	Condition	15-Sep-17	15-Sep-17	15-S	ep-17	15-Sep-17	10-Apr-15	8-May-15	22-Jun-15	22-Apr-16	15-Sep-17
Screen Depth Interval (m)	Land Use (coarse textured soil)	Residential/Parkland/Institutional	1.5 - 4.6	1.5 - 4.6	1.2	- 3.7	1.5 - 4.6	-	-	-	-	-
Consultant	Land Use (coarse textured soli)	Land Use (coarse textured soil)	EXP	EXP	E	XP	EXP	EXP	EXP	EXP	EXP	EXP
Laboratory			Maxxam	Maxxam	Max	xam	Maxxam	Maxxam	Maxxam	Maxxam	Maxxam	Maxxam
Date of Analysis			20/21-Sep-17	19/21/22-Sep-17		Sep-17	20/21-Sep-17	14/15-Apr-15	13-May-15	9/13-Jul-15	26-Apr-16	19/21/22-Sep-17
Certificate of Analysis Number			B7K2764	B7K2764		2764	B7K2764	B563666	B586655	B5D2173	B681325	B7K2764
Benzene	44	0.5	<0.10	<0.20	<0.20	<0.20	1	<0.10	<0.10	<0.10	<0.20	<0.20
Toluene	18000	320	<0.20	<0.20	<0.20	<0.20	<2.0	<0.20	<0.20	<0.20	<0.20	<0.20
Ethylbenzene	2300	54	<0.10	<0.20	1.7	1.7	<1.0	<0.10	<0.10	<0.10	<0.20	<0.20
m-Xylene + p-Xylene	NV	NV	<0.10	<0.20	5	5	<1.0	<0.10	<0.10	<0.10	<0.20	<0.20
o-Xylene	NV	NV	<0.10	<0.20	0.76	0.64	<1.0	<0.10	<0.10	<0.10	<0.20	<0.40
Xylenes (total)	4200	72	<0.10	<0.20	5.7	5.6	<1.0	<0.10	<0.10	<0.10	<0.20	<0.40
PHC F1 (C6-C10)	750	420	-	<25	79	84	-	-	-	-	-	<25
PHC F1 (C6-C10) - BTEX	750	420	-	<25	72	76	-	-	-	-	-	<25
PHC F2 (C10-C16)	150	150	-	<100	360	450	-	-	-	-	-	<100
PHC F3 (C16-C34)	500	500	-	<200	<200	<200	-	-	-	-	-	<200
PHC F4 (C34-C50)	500	500	-	<200	<200	<200	-	-	-	-	-	<200
Reached baseline at C50?	NV	NV	-	YES	YES	YES	-	-	-	-	-	YES
PHC F4 (C34-C50)-gravimetric	500	500	-	-	-	-	-	-	-	-	-	-

(1) Result reported was due to chlorinated compounds eluting inside the F1 range. All groundwater concentrations reported in µg/L.
 '<' = Parameter below detection limit, as indicated

'NV'= No value

'-' = Not Analyzed

Location			MW-1	MW-3	MV	V-6
Sample ID	MECP (2011) Table 3: Full Depth	MECP (2011) Table 7: Full Depth	MW11-1	MW11-3	MW	11-6
Lab ID	Generic SCS in a Non-Potable	Generic SCS for Shallow Soils in a	ACD937	CFY450	ABZ026	CFY449
Sampling Date	Groundwater Condition	Non-Potable Groundwater Condition	10-Apr-15	22-Apr-16	10-Apr-15	22-Apr-16
Screen Depth Interval (m)	All Types of Land Use	All Types of Land Use	1.5-3.0	1.2 - 2.7	1.5 ·	
Consultant	(coarse textured soil)	(coarse textured soil)	EXP	EXP	EXP	EXP
Laboratory			Maxxam	Maxxam	Maxxam	Maxxam
Date of Analysis			14/15-Apr-15	26-Apr-16	14/15-Apr-15	26-Apr-16
Certificate of Analysis Number			B563666	B681325	B563666	26-Apr-16 B681325
Acetone	130000	100000	<10	<10	<1000	<10
Benzene	44	0.5	<0.10	<0.20	<10	<0.20
Bromodichloromethane	85000	67000	<0.10	<0.20	<10	<0.20
Bromoform	380	5	<0.20	<1.0	<20	<1.0
Bromomethane	5.6	0.89	<0.20	<0.50	<50	<0.50
Carbon Tetrachloride	0.79	0.2	<0.10	<0.20	<10	<0.20
Chlorobenzene	630	140	<0.10	<0.20	<10	<0.20
Chloroethane	NV NV	140 NV	<0.10	<0.20	<10	<0.20
Chloroform	2.4	2	0.2	<0.20	<10	0.59
Chloromethane	2.4 NV	2 NV	0.2	<0.20	<10	0.59
Dibromochloromethane	82000	65000	<0.20	<0.50	<20	<0.50
1.2-Dichlorobenzene	4600	150	<0.20	<0.50	<20	<0.50
1.3-Dichlorobenzene	9600	7600	<0.20	<0.50	<20	<0.50
1.4-Dichlorobenzene	8	0.5	<0.20	<0.50	<20	<0.50
Dichlorodifluoromethane	4400	3500	<0.20	<1.0	<50	<1.0
1.1-Dichloroethane	320	11	<0.10	<0.20	<10	<0.20
1.2-Dichloroethane	1.6	0.5	<0.20	<0.20	<20	<0.20
1,1-Dichloroethylene	1.6	0.5	<0.20	<0.20	<10	<0.20
cis-1,2-Dichloroethylene	1.6	1.6	<0.10	<0.20	16	26
trans-1,2-Dichloroethylene	1.6	1.6	<0.10	<0.50	<10	0.61
1,2-Dichloropropane	1.0	0.58	<0.10	<0.50	<10	<0.20
cis-1,3-Dichloropropene	5.2	0.5	<0.20	<0.20	<20	<0.20
trans-1,3-Dichloropropene	5.2	0.5	<0.20	<0.40	<20	<0.30
1,3-Dichloropropene(cis+trans)	5.2	0.5	<0.20	<0.40	<20	<0.40
Ethylbenzene	2300	54	<0.28	<0.20	<10	<0.20
Ethylene Dibromide (1,2-Dibromoethane)	0.25	0.2	<0.20	<0.20	<20	<0.20
Hexane (n)	51	5	<0.20	<0.20	<50	<1.0
Methylene chloride (Dichloromethane)	610	26	<0.50	<1.0	<50	<1.0
Methyl ethyl ketone (2-Butanone)	470000	21000	<5.0	<10	<500	<10
	470000 NV	21000 NV	<5.0	<10	<500	<10
Methyl Butyl Ketone (2-Hexanone)	140000	5200	-5.0	<5.0	-500	<5.0
Methyl Isobutyl Ketone Methyl t-butyl ether (MTBE)	140000	15	<5.0 <0.20	<5.0 <0.50	<500 <20	<5.0 <0.50
	1300	43		<0.50		
Styrene 1,1,1,2-Tetrachloroethane	3.3	43	<0.20 <0.10	<0.50 <0.50	<20 <10	<0.50 <0.50
	3.3	0.5	<0.10	<0.50 <0.50	<10 <20	<0.50
1,1,2,2-Tetrachloroethane Tetrachloroethylene	3.2	0.5	<0.20	<0.50	<20	<0.50
Toluene	18000	320	<0.20	<0.20	<20	<0.20
1,2,4-Trichlorobenzene	18000	320	<0.20	<0.20	<20	<0.20
1,2,4- I inchlorobenzene 1.1.1-Trichloroethane	640	23	<0.10	<0.20	<10	<0.20
1,1,1-Trichloroethane	4.7	0.5	<0.10	<0.20	<10	<0.20
Trichloroethylene	4.7	0.5	<0.20	<0.50	13	<0.50
Trichlorofluoromethane	2500	2000	<0.10	<0.20	<20	< 0.50
1,2,4-Trimethylbenzene	2500 NV	2000 NV	<0.20	<0.50	<20	<0.50
1,2,4- I rimetnylbenzene 1,3,5- Trimethylbenzene	NV NV	NV NV	-	-	-	-
Vinyl Chloride	0.5	0.5	<0.20	<0.20	<20	<0.20
	0.5 NV	0.5 NV	<0.20	<0.20	<20	<0.20
m-Xylene + p-Xylene o-Xylene	NV NV	NV NV		<0.20	<10 <10	<0.20
	NV 4200	NV 72	<0.10 <0.10	<0.20 <0.20	<10 <10	<0.20 <0.20
Xylenes (total)	4200	12	<0.10	<0.20	<10	<u.2u< td=""></u.2u<>

(1) Data collected prior to 2011 is included in these tables for demonstration purposes only, and is not considered for delineation purposes.

(1) Data collected prior to 2011 is included in these tables for demonstration in All groundwater concentrations reported in µg/L. '<' = Parameter below detection limit, as indicated NV- No value '' = Not Analyzed Concentration exceeds MECP (2011) Table 3 SCS. Non-detect but detection limit exceeds the MECP (2011) Table 3 SCS.

		MW	15-1	MW15-2	MW	15-3	MW	15-4
Sample ID	MECP (2011) Table 3: Full Depth	MW	15-1	MW15-2	MW	15-3	MW15-4	MW15-5 (Dup of MW15-4)
Lab ID	Generic SCS in a Non-Potable	ABZ022	FDA818	ACD768	ABZ023	CFW570	ABZ024	ABZ025
Sampling Date	Groundwater Condition All Types of Land Use	10-Apr-15	14-Sep-17	10-Apr-15	10-Apr-15	21-Apr-16		pr-15
Screen Depth Interval (m)	(coarse textured soil)		4.6	3.1-4.6		9.2		-4.6
Consultant	(coarse textured son)	EXP	EXP	EXP	EXP	EXP	E	XP
Laboratory	-	Maxxam	Maxxam	Maxxam	Maxxam	Maxxam		oxam
Date of Analysis		14/15-Apr-15	19/20-Sep-17	14/15-Apr-15	14/15-Apr-15	26/27-Apr-16		Apr-15
Certificate of Analysis Number		B563666	B7K1578	B563666	B563666	B680859		3666
Acetone	130000	<1000	<20	<10	<10	<10	<10	<10
Benzene	44	<10	<0.40	<0.10	<0.10	<0.20	0.16	0.15
Bromodichloromethane	85000	<10	<1.0	<0.10	<0.10	< 0.50	<0.10	<0.10
Bromoform	380	<20	<2.0	<0.20	<0.20	<1.0	<0.20	<0.20
Bromomethane	5.6	<50	<1.0	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
Carbon Tetrachloride	0.79	<10	<0.40	<0.10	<0.10	<0.20	<0.10	<0.10
Chlorobenzene	630	<10	<0.40	<0.10	<0.10	<0.20	<0.10	<0.10
Chloroethane	NV	-	-	-	-	-	-	-
Chloroform	2.4	<10	<0.40	<0.10	<0.10	<0.20	<0.10	<0.10
Chloromethane	NV	-	-	-	-	-	-	-
Dibromochloromethane	82000	<20	<1.0	<0.20	<0.20	< 0.50	<0.20	<0.20
1,2-Dichlorobenzene	4600	<20	<1.0	<0.20	<0.20	< 0.50	<0.20	<0.20
1,3-Dichlorobenzene	9600	<20	<1.0	<0.20	<0.20	< 0.50	<0.20	<0.20
1,4-Dichlorobenzene	8	<20	<1.0	<0.20	<0.20	< 0.50	<0.20	<0.20
Dichlorodifluoromethane	4400	<50	<2.0	< 0.50	<0.50	<1.0	< 0.50	< 0.50
1.1-Dichloroethane	320	<10	<0.40	< 0.10	<0.10	<0.20	<0.10	< 0.10
1.2-Dichloroethane	1.6	<20	<1.0	<0.20	<0.20	< 0.50	<0.20	< 0.20
1,1-Dichloroethylene	1.6	<10	<0.40	< 0.10	<0.10	<0.20	<0.10	< 0.10
cis-1,2-Dichloroethylene	1.6	<10	9.8	< 0.10	<0.10	< 0.50	<0.10	< 0.10
trans-1,2-Dichloroethylene	1.6	<10	<1.0	<0.10	<0.10	<0.50	<0.10	<0.10
1,2-Dichloropropane	16	<10	<0.40	< 0.10	<0.10	<0.20	<0.10	< 0.10
cis-1,3-Dichloropropene	5.2	<20	<0.60	<0.20	<0.20	< 0.30	<0.20	<0.20
trans-1,3-Dichloropropene	5.2	<20	<0.80	<0.20	<0.20	< 0.40	<0.20	< 0.20
1,3-Dichloropropene(cis+trans)	5.2	<28	<1.0	<0.28	<0.28	< 0.50	<0.28	<0.28
Ethylbenzene	2300	<10	<0.40	< 0.10	<0.10	<0.20	<0.10	< 0.10
Ethylene Dibromide (1,2-Dibromoethane)	0.25	<20	<0.40	<0.20	<0.20	<0.20	<0.20	< 0.20
Hexane (n)	51	<50	<2.0	< 0.50	<0.50	<1.0	< 0.50	< 0.50
Methylene chloride (Dichloromethane)	610	<50	<4.0	<0.50	<0.50	<2.0	<0.50	<0.50
Methyl ethyl ketone (2-Butanone)	470000	<500	<20	<5.0	<5.0	<10	<5.0	<5.0
Methyl Butyl Ketone (2-Hexanone)	NV							
Methyl Isobutyl Ketone	140000	<500	<10	<5.0	<5.0	<5.0	<5.0	<5.0
Methyl t-butyl ether (MTBE)	190	<20	<1.0	<0.20	<0.20	< 0.50	<0.20	<0.20
Styrene	1300	<20	<1.0	<0.20	<0.20	<0.50	<0.20	<0.20
1,1,1,2-Tetrachloroethane	3.3	<10	<1.0	<0.10	<0.10	<0.50	<0.10	<0.10
1,1,2,2-Tetrachloroethane	3.2	<20	<1.0	<0.20	<0.20	<0.50	<0.20	<0.20
Tetrachloroethylene	1.6	840	760	<0.10	<0.10	<0.20	<0.10	<0.10
Toluene	18000	<20	<0.40	<0.20	<0.20	<0.20	<0.20	<0.20
1.2.4-Trichlorobenzene	180	-	<0.40	-	-		-	-
1,1,1-Trichloroethane	640	<10	<0.40	<0.10	<0.10	<0.20	<0.10	<0.10
1,1,2-Trichloroethane	4.7	<20	<1.0	<0.20	<0.20	<0.50	<0.20	<0.20
Trichloroethylene	1.6	19	25	<0.10	<0.10	<0.20	<0.10	<0.10
Trichlorofluoromethane	2500	<20	<1.0	<0.20	<0.20	<0.50	<0.20	<0.20
1,2,4-Trimethylbenzene	NV		-	-		-	-	
1,3,5-Trimethylbenzene	NV	-	-	-		-	-	- 1
Vinvl Chloride	0.5	<20	< 0.40	<0.20	<0.20	<0.20	<0.20	<0.20
m-Xylene + p-Xylene	NV	<10	<0.40	<0.10	<0.10	<0.20	<0.10	<0.10
o-Xvlene	NV	<10	<0.40	<0.10	<0.10	<0.20	<0.10	<0.10
Xylenes (total)	4200	<10	<0.40	<0.10	<0.10	<0.20	<0.10	<0.10

(1) Data collected prior to 2011 is included in these tables for demo

(1) Data collected prior to 2011 is included in these tables for dem: All groundwater concentrations reported in jugL. '<' = Parameter below detection limit, as indicated '\VV= No value '-' = Not Analyzed Concentration exceeds MECP (2011) Table 3 SCS. Non-detect but detection limit exceeds the MECP (2011) Table

Location				MW15-5				MW15-6			MW	15-7	
Sample ID	MECP (2011) Table 3: Full Depth		MW	15-5		MW18-1 (Dup of MW15-5)		MW15-6			MW	15-7	
Lab ID	Generic SCS in a Non-Potable	AGE827	CFW567	FDA819	FZG283	FZG284	AGE828	CFW568	EDH367	AGE829	AOU519	CKY707	FDA820
Sampling Date	Groundwater Condition All Types of Land Use	7-May-15	21-Apr-16	14-Sep-17	26-Jan-18	26-Jan-18	8-May-15	21-Apr-16	15-Sep-17	8-May-15	7-Jul-15	27-May-16	14-Sep-17
Screen Depth Interval (m)	(coarse textured soil)	7 11107 10	21740110	1.2-4.3	20 0411 10	20 0411 10	o may ro	1.1-4.2	10 000 17	o may ro	1.52-		11000 11
Consultant	(coarse textured soll)	EXP	EXP	EXP	EXP	EXP	EXP	EXP	EXP	EXP	EXP	EXP	EXP
Laboratory		Maxxam	Maxxam	Maxxam	Maxxam	Maxxam	Maxxam	Maxxam	Maxxam	Maxxam	Maxxam	Maxxam	Maxxam
Date of Analysis		13-May-15	26/27-Apr-16	19/20-Sep-17	29-Jan-18	29-Jan-18	13-May-15	26/27-Apr-16	20/21-Sep-17	13-May-15	9/13-Jul-15	31-May-16	19/20-Sep-17
Certificate of Analysis Number		B586655	B680859	B7K1578	R4958809	R4958809	B586655	B680859	B7K2764	B586655	B5D2173	B6A8093	B7K1578
Acetone	130000	<100	<20	<500	<250	<250	<100	<10	<10	<100	<10	<10	<50
Benzene	44	<1.0	<0.40	<5.0	<0.20	<0.20	<1.0	<0.20	<0.10	<1.0	0.14	<0.20	< 0.50
Bromodichloromethane	85000	<1.0	<1.0	<5.0	<13	<13	<1.0	< 0.50	<0.10	<1.0	<0.10	< 0.50	< 0.50
Bromoform	380	<2.0	<2.0	<10	<1.0	<1.0	<2.0	<1.0	<0.20	<2.0	<0.20	<1.0	<1.0
Bromomethane	5.6	<5.0	<1.0	<25	<0.50	<0.50	<5.0	<0.50	<0.50	<5.0	<0.50	< 0.50	<2.5
Carbon Tetrachloride	0.79	<1.0	<0.40	<5.0	<0.20	<0.20	<1.0	<0.20	<0.10	<1.0	<0.10	<0.20	< 0.50
Chlorobenzene	630	<1.0	<0.40	<5.0	<5.0	<5.0	<1.0	<0.20	<0.10	<1.0	<0.10	<0.20	< 0.50
Chloroethane	NV	-	-	-	-	-	-	-	-	-	-	-	-
Chloroform	2.4	<1.0	<0.40	<5.0	0.41	0.39	<1.0	<0.20	<0.10	<1.0	<0.10	<0.20	<0.50
Chloromethane	NV	-	-	-	-	-	-	-	-	-	-	-	-
Dibromochloromethane	82000	<2.0	<1.0	<10	<13	<13	<2.0	<0.50	<0.20	<2.0	<0.20	<0.50	<1.0
1,2-Dichlorobenzene	4600	<2.0	<1.0	<10	<0.50	<0.50	<2.0	<0.50	<0.20	<2.0	<0.20	<0.50	<1.0
1,3-Dichlorobenzene	9600	<2.0	<1.0	<10	<13	<13	<2.0	< 0.50	<0.20	<2.0	<0.20	<0.50	<1.0
1,4-Dichlorobenzene	8	<2.0	<1.0	<10	<0.50	<0.50	<2.0	< 0.50	<0.20	<2.0	<0.20	<0.50	<1.0
Dichlorodifluoromethane	4400	<5.0	<2.0	<25	<25	<25	<5.0	<1.0	<0.50	<5.0	<0.50	<1.0	<2.5
1,1-Dichloroethane	320	<1.0	<0.40	<5.0	<5.0	<5.0	<1.0	<0.20	<0.10	<1.0	<0.10	<0.20	<0.50
1,2-Dichloroethane	1.6	<2.0	<1.0	<10	<0.50	<0.50	<2.0	<0.50	<0.20	<2.0	<0.20	<0.50	<1.0
1,1-Dichloroethylene	1.6	<1.0	<0.40	<5.0	<0.20	<0.20	<1.0	<0.20	<0.10	<1.0	<0.10	<0.20	<0.50
cis-1,2-Dichloroethylene	1.6	5.7	7.7	7.6	5.9	6	13	2.8	<0.10	5.6	8.8	5.2	4
trans-1,2-Dichloroethylene	1.6	<1.0	<1.0	<5.0	<0.50	<0.50	<1.0	<0.50	<0.10	<1.0	<0.10	<0.50	<0.50
1,2-Dichloropropane	16	<1.0	<0.40	<5.0	<0.20	<0.20	<1.0	<0.20	<0.10	<1.0	<0.10	0.25	<0.50
cis-1,3-Dichloropropene	5.2	<2.0	<0.60	<10	< 0.30	<0.30	<2.0	< 0.30	<0.20	<2.0	<0.20	<0.30	<1.0
trans-1,3-Dichloropropene	5.2	<2.0	<0.80	<10	<0.40	<0.40	<2.0	<0.40	<0.20	<2.0	<0.20	<0.40	<1.0
1,3-Dichloropropene(cis+trans)	5.2 2300	<2.8	<1.0	<14 <5.0	< 0.5	<0.5	<2.8	< 0.50	<0.28	<2.8	<0.28	< 0.50	<1.4
Ethylbenzene		<1.0	< 0.40		< 0.20	<0.20	<1.0	<0.20	<0.10	<1.0	< 0.10	<0.20	< 0.50
Ethylene Dibromide (1,2-Dibromoethane)	0.25 51	<2.0 <5.0	<0.20 <2.0	<10 <25	<0.20 <1.0	<0.20 <1.0	<2.0 <5.0	<0.20 <1.0	<0.20 <0.50	<2.0 <5.0	<0.20 <0.50	<0.20 <1.0	<1.0 <2.5
Hexane (n)	610	<5.0	<2.0	<25	<1.0	<1.0	<5.0	<1.0	<0.50	<5.0 <5.0	<0.50	<1.0	<2.5
Methylene chloride (Dichloromethane) Methyl ethyl ketone (2-Butanone)	470000	<5.0	<20	<25	<2.0	<250	<5.0	<2.0	< 5.0	<5.0	<0.50	<2.0	<2.5
	470000 NV	<30	<20	<200	<250	<200	<30	<10	< 3.0	<30	<3.0	<10	<25
Methyl Butyl Ketone (2-Hexanone) Methyl Isobutyl Ketone	140000	<50	<10	<250	<130	<130	<50	<5.0	<5.0	<50	<5.0	<5.0	<25
Methyl t-butyl ether (MTBE)	190	<50	<1.0	<250	<130	<130	<50	<0.50	<0.20	<50	<0.20	<0.50	<1.0
Styrene	1300	<2.0	<1.0	<10	<0.50	<0.50	<2.0	<0.50	<0.20	<2.0	<0.20	<0.50	<1.0
1,1,1,2-Tetrachloroethane	3.3	<1.0	<1.0	<10	<0.50	<0.50	<1.0	<0.50	<0.20	<1.0	<0.20	<0.50	<1.0
1,1,2-Tetrachloroethane	3.2	<2.0	<1.0	<10	<0.50	<0.50	<2.0	<0.50	<0.20	<2.0	<0.20	<0.50	<1.0
Tetrachloroethylene	1.6	610	620	810	710	740	170	9.2	0.46	600	8.4	4.2	2
Toluene	18000	<2.0	<0.40	<10	<5.0	<5.0	<2.0	<0.20	<0.20	<2.0	<0.20	<0.20	<1.0
1.2.4-Trichlorobenzene	180		-	-	-							10.20	-
1.1.1-Trichloroethane	640	<1.0	<0.40	<5.0	<5.0	<5.0	<1.0	<0.20	<0.10	<1.0	<0.10	<0.20	< 0.50
1,1,2-Trichloroethane	4.7	<2.0	<1.0	<10	<0.50	<0.50	<2.0	<0.50	<0.20	<2.0	<0.20	<0.50	<1.0
Trichloroethylene	1.6	44	65	110	90	91	17	3.3	<0.10	46	6.1	2.8	1.8
Trichlorofluoromethane	2500	<2.0	<1.0	<10	<13	<13	<2.0	< 0.50	<0.20	<2.0	<0.20	< 0.50	<1.0
1,2,4-Trimethylbenzene	NV	-	-	-	-	-	-	-	-		-	-	-
1,3,5-Trimethylbenzene	NV	-	-	-	-	-	-	-	-	-	-	-	-
Vinyl Chloride	0.5	<2.0	<0.40	<10	<0.20	<0.20	<2.0	<0.20	<0.20	<2.0	<0.20	<0.20	<1.0
m-Xylene + p-Xylene	NV	<1.0	<0.40	<5.0	<5.0	<5.0	<1.0	<0.20	<0.10	<1.0	<0.10	<0.20	< 0.50
o-Xylene	NV	<1.0	<0.40	<5.0	<5.0	<5.0	<1.0	<0.20	<0.10	<1.0	<0.10	<0.20	< 0.50
Xylenes (total)	4200	<1.0	< 0.40	<5.0	<5.0	<5.0	<1.0	<0.20	< 0.10	<1.0	< 0.10	< 0.20	< 0.50

 (1) Data collected prior to 2011 is included in these tables for demc

 All groundwater concentrations reported in µg/L.

 '<=</td>
 Parameter below detection limit, as indicated

 'NV=
 No value

 Sold
 Concentration exceeds MECP (2011) Table 3 SCS.

 Bold
 Non-detect but detection limit exceeds the MECP (2011) Table

Location			MW15-8		MW	15-9	MW	15-10
Sample ID	MECP (2011) Table 3: Full Depth	MW15-8	MW15-12 (Dup of MW15-	MW15-8	MW	15-9	MW	15-10
Lab ID	Generic SCS in a Non-Potable	AOU520	8) AOU524	FDH368	AOU521	FDA821	AOU522	FDH366
Sampling Date	Groundwater Condition		ul-15	15-Sep-17	7-Jul-15	14-Sep-17	7-Jul-15	15-Sep-17
Screen Depth Interval (m)	All Types of Land Use (coarse textured soil)		2.74-4.27	13-06p-17		-4.57		-3.81
Consultant	(coarse textured soll)	F	XP	EXP	EXP	EXP	EXP	EXP
Laboratory	1		xxam	Maxxam	Maxxam	Maxxam	Maxxam	Maxxam
Date of Analysis	1		-Jul-15	20/21-Sep-17	9/13-Jul-15	19/20-Sep-17	9/13-Jul-15	19/20-Sep-17
Certificate of Analysis Number	1		02173	B7K2764	B5D2173	B7K1578	B5D2173	B7K2764
Acetone	130000	<10	<10	<10	<10	<25	<10	<10
Benzene	44	<0.10	<0.10	<0.10	0.10	<0.25	<0.10	<0.20
Bromodichloromethane	85000	<0.10	<0.10	<0.10	<0.10	<0.25	<0.10	< 0.50
Bromoform	380	<0.20	<0.20	<0.20	<0.20	<0.50	<0.20	<1.0
Bromomethane	5.6	<0.50	<0.50	<0.50	<0.50	<1.3	<0.50	<0.50
Carbon Tetrachloride	0.79	<0.10	<0.10	<0.10	<0.10	<0.25	<0.10	<0.20
Chlorobenzene	630	<0.10	<0.10	<0.10	<0.10	<0.25	<0.10	<0.20
Chloroethane	NV	-	-	-	-	-	-	-
Chloroform	2.4	<0.10	<0.10	<0.10	0.35	<0.25	0.6	1.9
Chloromethane	NV	-	-	-	-		-	-
Dibromochloromethane	82000	<0.20	<0.20	<0.20	<0.20	< 0.50	<0.20	< 0.50
1,2-Dichlorobenzene	4600 9600	<0.20	<0.20	<0.20	<0.20	< 0.50	<0.20	< 0.50
1,3-Dichlorobenzene	9600	<0.20	<0.20	<0.20	<0.20	< 0.50	<0.20	< 0.50
1,4-Dichlorobenzene		<0.20	< 0.20	<0.20	<0.20	< 0.50	< 0.20	<0.50
Dichlorodifluoromethane 1.1-Dichloroethane	4400	<0.50	< 0.50	<0.50	< 0.50	<1.3	< 0.50	<1.0
1,1-Dichloroethane	320 1.6	<0.10 <0.20	<0.10 <0.20	<0.10 <0.20	<0.10 <0.20	<0.25 <0.50	<0.10 <0.20	<0.20 <0.50
	1.6	<0.20	<0.20	<0.20	<0.20	<0.50	<0.20	<0.20
1,1-Dichloroethylene cis-1,2-Dichloroethylene	1.6	2.6	2.6	<0.10	<0.10	<0.25	<0.10	<0.20
trans-1,2-Dichloroethylene	1.6	<0.10	<0.10	<0.10	0.25	<0.25	<0.10	<0.50
1,2-Dichloropropane	1.6	<0.10	<0.10	<0.10	<0.10	<0.25	<0.10	<0.20
cis-1,3-Dichloropropene	5.2	<0.10	<0.10	<0.20	<0.20	<0.20	<0.20	<0.20
trans-1,3-Dichloropropene	5.2	<0.20	<0.20	<0.20	<0.20	<0.50	<0.20	<0.40
1,3-Dichloropropene(cis+trans)	5.2	<0.28	<0.28	<0.28	<0.28	<0.71	<0.28	<0.50
Ethylbenzene	2300	<0.10	<0.10	<0.10	<0.10	<0.25	<0.10	<0.20
Ethylene Dibromide (1,2-Dibromoethane)	0.25	<0.20	<0.20	<0.20	<0.20	<0.50	<0.20	<0.20
Hexane (n)	51	<0.50	<0.50	<0.50	<0.50	<1.3	<0.50	<1.0
Methylene chloride (Dichloromethane)	610	< 0.50	< 0.50	< 0.50	< 0.50	<1.3	< 0.50	<2.0
Methyl ethyl ketone (2-Butanone)	470000	<5.0	<5.0	<5.0	<5.0	<13	<5.0	<10
Methyl Butyl Ketone (2-Hexanone)	NV	-	-		-		-	-
Methyl Isobutyl Ketone	140000	<5.0	<5.0	<5.0	<5.0	<13	<5.0	<5.0
Methyl t-butyl ether (MTBE)	190	<0.20	<0.20	<0.20	<0.20	< 0.50	<0.20	<0.50
Styrene	1300	<0.20	<0.20	<0.20	<0.20	<0.50	<0.20	<0.50
1,1,1,2-Tetrachloroethane	3.3	<0.10	<0.10	<0.20	< 0.10	<0.50	<0.10	<0.50
1,1,2,2-Tetrachloroethane	3.2	<0.20	<0.20	<0.20	<0.20	< 0.50	<0.20	<0.50
Tetrachloroethylene	1.6	0.93	0.81	<0.10	71	72	240	120
Toluene	18000	<0.20	<0.20	<0.20	<0.20	<0.50	<0.20	<0.20
1,2,4-Trichlorobenzene	180		-	-	-	-		-
1,1,1-Trichloroethane	640	<0.10	<0.10	<0.10	<0.10	<0.25	<0.10	<0.20
1,1,2-Trichloroethane	4.7	<0.20	<0.20	<0.20	<0.20	<0.50	<0.20	<0.50
Trichloroethylene	1.6	0.99	0.92	<0.10	16	14	2.2	0.86
Trichlorofluoromethane	2500	<0.20	<0.20	<0.20	<0.20	< 0.50	<0.20	<0.50
1,2,4-Trimethylbenzene	NV	-	-	-	-	-	-	-
1,3,5-Trimethylbenzene	NV	-	-	-	-	-	-	-
Vinyl Chloride	0.5	<0.20	<0.20	<0.20	<0.20	<0.50	<0.20	<0.20
m-Xylene + p-Xylene	NV	<0.10	<0.10	<0.10	<0.10	<0.25	<0.10	<0.20
o-Xylene	NV	<0.10	<0.10	<0.10	<0.10	<0.25	<0.10	<0.20
Xylenes (total)	4200	<0.10	<0.10	<0.10	<0.10	<0.25	<0.10	<0.20

 (1) Data collected prior to 2011 is included in these tables for demovement of a groundwater concentrations reported in µg/L.

 '<' = Parameter below detection limit, as indicated</td>

 '\V/= No value

 ':

 Not Analyzed

 Concentration exceeds MECP (2011) Table 3 SCS.

 Bold

 Nor-detect but detection limit, exceeds the MECP (2011) Table

Chicomethane NV . <	Location		MW	15-11	BH/MW205	MW206		BH/MW207		BH/MW208
Lab ID Other Constraints Control on Surgedup Date ADUSE3 FD0219 CPV451 FD0456 CPV457 FD0457 CPV457 FD0457 CPV457 FD0457 CPV4561 FD0458 CPV57 FD0457 CPV4561 FD0458 CPV57 FD0457 CPV57 FD0457 CPV576 FD0457 CPV576 FD0457 CPV576 FD0457 CPV576 FD0458 CPV577 CPV577 CPV577 CPV577	Sample ID		MW	15-11	BH/MW205	MW206	BH/MW207	(Dup of	BH/MW207	BH/MW208
Sampling Date All Types of Land Use (contres textured only) Tubes of Language (contres textured only)	Lab ID		AOU523	FDO219	CFY451	FDA816	CFW569		FDA817	CFW566
Screen Depth Interval (m) TAS 3.3 1.58 4.35 1.58 4.35 1.22 3.66 3.3 1.03 - 9.3 1.03 Laboratory Laboratory Maxoam	Sampling Date		7-Jul-15	18-Sep-17	22-Apr-16	14-Sep-17	21-A	pr-16	14-Sep-17	21-Apr-16
Constant EXP EX									1 · • • • •	
Maxam Maxam <th< td=""><td></td><td>(coarse textured soil)</td><td>FXP</td><td>FXP</td><td></td><td></td><td>E</td><td>XP</td><td>EXP</td><td></td></th<>		(coarse textured soil)	FXP	FXP			E	XP	EXP	
Date of Anaysie 913-Jul 15 28 Action 1 13/27-April										
Carrificate of Analysis Number 150000 <10 <25 87(387) B830859 97(1578) 6830859 Bernone 44 <0.10										
Actence 130000 -10 -25 -10				B7K3897						
Brondothkomentane Biomodothkomentane 60.50 -0.50 <	Acetone	130000	<10	<25	<10	<10	<10	<10	<10	<10
Brondothkomentane Biomodothkomentane 60.50 -0.50 <	Benzene	44	< 0.10	<0.25	<0.20	0.29	<0.20	<0.20	<0.20	<0.20
Bronnerhane 5.6 -0.50 -1.3 -0.50	Bromodichloromethane					< 0.50	< 0.50	< 0.50		
Bronnerhane 5.6 -0.50 -1.3 -0.50	Bromoform	380	<0.20	< 0.50	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Chorobarane 630 -0.10 -0.22 -0.20	Bromomethane	5.6	< 0.50	<1.3	< 0.50	< 0.50	<0.50	< 0.50	< 0.50	< 0.50
Chorobarane 630 -0.10 -0.22 -0.20										
Choordsmane NV . <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>										
Choorentrim 2.4 0.47 0.56 -0.20 -0.20 -0.20 -0.20 -0.20 -0.20 Dbromochbromehrane 82000 -0.20 -0.50			-	-	-	-	-	-	-	-
Chicomethane NV . <	Chloroform		0.47	0.56	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
12-Dichlorobenzene 4600 ch20 ch20 ch50 ch50 <td></td> <td></td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td>			-	-	-	-	-	-	-	-
13-Dickloobenzene 9600 < < < < < < < < < < < < < < <	Dibromochloromethane	82000	< 0.20	<0.50	<0.50	< 0.50	<0.50	< 0.50	< 0.50	< 0.50
13-Dichloropheneme 9600 <0.20 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50	1.2-Dichlorobenzene	4600	< 0.20	<0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
Dechargedituzionenthane 4400 -0.50 -1.3 -1.0 -	1.3-Dichlorobenzene	9600						< 0.50		
Dehloradiluzionenthane 4400 <0.50 <1.3 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1	1.4-Dichlorobenzene	8	< 0.20	<0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
12-Dichlorosettame 1.6 -0.20 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50 13-Dichlorosettykene 1.6 -0.10 -0.25 -0.20 -0.20 -0.20 -0.50 -0	Dichlorodifluoromethane	4400								
12-Dichlorosethane 1.6 -0.20 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50 11-Dichlorosethylene 1.6 -0.10 -0.25 -0.20 -0.20 -0.20 -0.20 -0.20 -0.20 -0.50 is 1.2 Dichlorosethylene 1.6 -0.40 -0.25 -0.50	1.1-Dichloroethane	320	< 0.10	<0.25	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
bit 12 16 0.49 1.5 40.50 40.5	1.2-Dichloroethane	1.6						< 0.50		< 0.50
bit 12 16 0.49 1.5 40.50 40.5	1.1-Dichloroethylene	1.6	< 0.10	<0.25	<0.20	<0.20	<0.20	<0.20	< 0.20	<0.20
Irans-12-DichloredTypine 1.6 -0.10 -0.25 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50 1_2-Dichloropropane 16 -0.10 -0.25 -0.20 <t< td=""><td></td><td>1.6</td><td>0.49</td><td>1.5</td><td>< 0.50</td><td>< 0.50</td><td>< 0.50</td><td>< 0.50</td><td>< 0.50</td><td>< 0.50</td></t<>		1.6	0.49	1.5	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
12-Dichloropropane 16 -0.10 -0.25 -0.20										
bit 1.3 Dichibrogroppene 5.2 -0.20 -0.50 -0.30										
trans-13-Dichiorgongene 5.2 -0.20 -0.50 -0.40<		5.2	< 0.20	<0.50	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30
13-Dichioropropene(cis+rans) 5.2 -0.28 -0.71 -0.50 -										
Ethydeno Dibromide (1.2-Dibromethane) 2300 -0.10 -0.25 -0.20		5.2			< 0.50		< 0.50	< 0.50		
Ethylen Dibromiet (1.2-Dibromenthane) 0.25 -0.20 -0.50 -0.20			< 0.10	<0.25			<0.20	<0.20		
Homan (n) 51 <0.50 <1.3 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0		0.25	< 0.20	<0.50	<0.20	<0.20	<0.20	<0.20	< 0.20	<0.20
Methylenic riblicide (Dichlaromethane) 610 <0.50 <1.3 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0		51	< 0.50	<1.3	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Netry Budy Katone (2 Havanone) NV - <t< td=""><td></td><td>610</td><td>< 0.50</td><td><1.3</td><td><2.0</td><td><2.0</td><td><2.0</td><td><2.0</td><td><2.0</td><td><2.0</td></t<>		610	< 0.50	<1.3	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
Methy Budy/ Katore (2-Hoxanore) NV - <	Methyl ethyl ketone (2-Butanone)	470000	<5.0	<13	<10	<10	<10	<10	<10	<10
Methy Isobury Ketone 140000 < < < < < < < < <		NV	-	-		_	-	-		-
Methy/letary/letar (MTBE) 190 -0.20 -0.5		140000	<5.0	<13	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Styren 1300 -0.20 -0.50 -0.20 <th< td=""><td></td><td>190</td><td></td><td><0.50</td><td>< 0.50</td><td></td><td>< 0.50</td><td>< 0.50</td><td></td><td>< 0.50</td></th<>		190		<0.50	< 0.50		< 0.50	< 0.50		< 0.50
1,1,2-Tetrachloroethane 3.3 -0.10 -0.50<	Styrene	1300								
1,1,2,2-Tetrachloroethane 3.2 -0.20 -0.5	1,1,1,2-Tetrachloroethane	3.3								
Tatracharonethylene 1.6 160 63 -0.20	1,1,2,2-Tetrachloroethane	3.2								
12.4-Trichlorobenzane 180 -	Tetrachloroethylene	1.6	160	63	<0.20	<0.20	0.37	0.38	0.5	<0.20
1,1-Trichlorosthane 640 -0.10 -0.25 -0.20 <td></td> <td>18000</td> <td><0.20</td> <td>< 0.50</td> <td><0.20</td> <td><0.20</td> <td><0.20</td> <td><0.20</td> <td><0.20</td> <td><0.20</td>		18000	<0.20	< 0.50	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
1,12 Trichlorogethane 4.7 <0.20 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <td>1,2,4-Trichlorobenzene</td> <td>180</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td>	1,2,4-Trichlorobenzene	180	-	-	-	-	-	-	-	-
Trichkonoethylene 1.6 2.5 1.8 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20	1,1,1-Trichloroethane	640	<0.10	<0.25	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Trichlorentylene 1.6 2.5 1.8 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20	1,1,2-Trichloroethane	4.7	<0.20	<0.50	<0.50	<0.50	<0.50	<0.50	< 0.50	< 0.50
1,2.4-Trimethyberzene NV -	Trichloroethylene	1.6	2.5	1.8	<0.20		<0.20	<0.20	<0.20	<0.20
1,2.4-Trimethyberzene NV -	Trichlorofluoromethane	2500	<0.20	< 0.50	<0.50	<0.50	<0.50	<0.50	< 0.50	< 0.50
13.5-Trimethybenzene NV -	1,2,4-Trimethylbenzene	NV	-	-	-	-	-	-	-	-
Viny/Chindre 0.5 <0.20 <0.50 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20		NV	-	-	-	-	-	-	-	-
m-Xylene + p-Xylene NV <0.10 <0.25 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20	Vinyl Chloride		<0.20	<0.50	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
o-Xylene NV <0.10 <0.25 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20										
	o-Xylene									
	Xylenes (total)	4200	<0.10	<0.25	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20

 (1) Data collected prior to 2011 is included in these tables for demc

 All groundwater concentrations reported in µg/L.

 '<' = Parameter below detection limit, as indicated</td>

 'NV= No value

 '' = Not Analyzed

 Bold

 Non-detect but detection limit, exceeds the MECP (2011) Table

Location		MW301	MW 302	MW 303	MW304	MW305	MW306	MW307	MW 308	MW309
Sample ID	MECP (2011) Table 3: Full Depth	MW301	MW 302	MW 303	MW304	MW305	MW306	MW307	MW 308	MW309
Lab ID	Generic SCS in a Non-Potable	FDH380	FDA814	FDA815	FDH381	FDH382	FDO218	FDH369	FDH370	FDH371
Sampling Date	Groundwater Condition	15-Sep-17	14-Sep-17	14-Sep-17	15-Sep-17	15-Sep-17	18-Sep-17	15-Sep-17	15-Sep-17	15-Sep-17
Screen Depth Interval (m)	All Types of Land Use (coarse textured soil)	3.1 - 4.6	1.2 - 3.7	1.2 - 3.7	2.7 - 4.7	3.1-4.6	3.1 - 4.6	1.5 - 4.6	1.5 - 4.6	1.5 - 4.6
Consultant	(coarse textured soll)	EXP	EXP	EXP	EXP	EXP	EXP	EXP	EXP	EXP
Laboratory		Maxxam	Maxxam	Maxxam	Maxxam	Maxxam	Maxxam	Maxxam	Maxxam	Maxxam
Date of Analysis		20/21-Sep-17	19/21-Sep-17	19/21-Sep-17	20/21-Sep-17		22-Sep-17	20/21-Sep-17	20/21-Sep-17	20/21-Sep-17
Certificate of Analysis Number		B7K2764	B7K1578	B7K1578	B7K2764	B7K2764	B7K3897	B7K2764	B7K2764	B7K2764
Acetone	130000	<10		-	<10	<10	<25	<10	<10	<10
Benzene	44	<0.20	<0.20	<0.20	<0.20	<0.20	<0.25	< 0.10	<0.10	<0.10
Bromodichloromethane	85000	< 0.50			< 0.50	< 0.50	<0.25	< 0.10	< 0.10	< 0.10
Bromoform	380	<1.0		-	<1.0	<1.0	<0.50	<0.20	<0.20	<0.20
Bromomethane	5.6	<0.50		-	< 0.50	<0.50	<1.3	< 0.50	< 0.50	< 0.50
Carbon Tetrachloride	0.79	<0.20		-	<0.20	<0.20	<0.25	< 0.10	<0.10	< 0.10
Chlorobenzene	630	<0.20		-	<0.20	<0.20	<0.25	<0.10	<0.10	<0.10
Chloroethane	NV	-		-	-	-		-	-	
Chloroform	2.4	0.84		-	2.0	2.8	0.56	< 0.10	<0.10	<0.10
Chloromethane	NV	-	-	-	-		-	-	-	-
Dibromochloromethane	82000	< 0.50	-	-	< 0.50	<0.50	<0.50	<0.20	<0.20	<0.20
1.2-Dichlorobenzene	4600	< 0.50	-	-	< 0.50	< 0.50	<0.50	<0.20	< 0.20	< 0.20
1,3-Dichlorobenzene	9600	< 0.50	-	-	< 0.50	<0.50	<0.50	<0.20	<0.20	<0.20
1.4-Dichlorobenzene	8	< 0.50	-	-	< 0.50	<0.50	<0.50	<0.20	< 0.20	< 0.20
Dichlorodifluoromethane	4400	<1.0		-	<1.0	<1.0	<1.3	< 0.50	< 0.50	<0.50
1.1-Dichloroethane	320	<0.20		-	<0.20	<0.20	<0.25	< 0.10	< 0.10	<0.10
1.2-Dichloroethane	1.6	< 0.50		-	< 0.50	< 0.50	<0.50	<0.20	<0.20	0.29
1,1-Dichloroethylene	1.6	<0.20		-	<0.20	<0.20	<0.25	< 0.10	< 0.10	< 0.10
cis-1,2-Dichloroethylene	1.6	< 0.50		-	< 0.50	< 0.50	1.3	<0.10	<0.10	<0.10
trans-1,2-Dichloroethylene	1.6	<0.50		-	< 0.50	<0.50	<0.25	<0.10	<0.10	<0.10
1,2-Dichloropropane	16	<0.20	-	-	<0.20	<0.20	<0.25	<0.10	< 0.10	<0.10
cis-1,3-Dichloropropene	5.2	< 0.30		-	< 0.30	< 0.30	< 0.50	<0.20	<0.20	<0.20
trans-1,3-Dichloropropene	5.2	< 0.40	-	-	< 0.40	< 0.40	<0.50	<0.20	< 0.20	< 0.20
1,3-Dichloropropene(cis+trans)	5.2	<0.50		-	< 0.50	<0.50	<0.71	<0.28	<0.28	<0.28
Ethylbenzene	2300	<0.20	<0.20	<0.20	<0.20	<0.20	<0.25	< 0.10	< 0.10	<0.10
Ethylene Dibromide (1,2-Dibromoethane)	0.25	<0.20	-	-	<0.20	<0.20	<0.50	<0.20	<0.20	<0.20
Hexane (n)	51	<1.0		-	<1.0	<1.0	<1.3	< 0.50	< 0.50	< 0.50
Methylene chloride (Dichloromethane)	610	<2.0		-	<2.0	<2.0	<1.3	< 0.50	< 0.50	< 0.50
Methyl ethyl ketone (2-Butanone)	470000	<10		-	<10	<10	<13	<5.0	<5.0	<5.0
Methyl Butyl Ketone (2-Hexanone)	NV									
Methyl Isobutyl Ketone	140000	<5.0			<5.0	<5.0	<13	<5.0	<5.0	<5.0
Methyl t-butyl ether (MTBE)	190	< 0.50			< 0.50	<0.50	<0.50	<0.20	<0.20	<0.20
Styrene	1300	< 0.50			<0.50	<0.50	<0.50	<0.20	<0.20	<0.20
1,1,1,2-Tetrachloroethane	3.3	<0.50		-	< 0.50	<0.50	<0.50	<0.20	<0.20	<0.20
1,1,2,2-Tetrachloroethane	3.2	< 0.50			<0.50	<0.50	<0.50	<0.20	<0.20	<0.20
Tetrachloroethylene	1.6	<0.20		-	0.96	110	62	0.31	0.3	<0.10
Toluene	18000	<0.20	<0.20	<0.20	<0.20	<0.20	< 0.50	<0.20	<0.20	<0.20
1.2.4-Trichlorobenzene	180									
1,1,1-Trichloroethane	640	<0.20			<0.20	<0.20	<0.25	< 0.10	<0.10	<0.10
1.1.2-Trichloroethane	4.7	<0.50	-	-	<0.50	<0.50	<0.50	<0.20	<0.20	<0.10
Trichloroethylene	1.6	<0.20	-	-	<0.20	1.6	1.8	<0.10	<0.10	<0.10
Trichlorofluoromethane	2500	<0.50	-	-	<0.50	<0.50	< 0.50	<0.20	<0.20	<0.20
1,2,4-Trimethylbenzene	NV	-	-	-	-	-	-		-	
1,3,5-Trimethylbenzene	NV	-	-	-		-		-	-	.
Vinyl Chloride	0.5	<0.20	-	-	<0.20	<0.20	< 0.50	<0.20	<0.20	<0.20
m-Xylene + p-Xylene	NV	<0.20	<0.40	<0.40	<0.20	<0.20	<0.25	<0.10	<0.10	<0.10
o-Xylene	NV	<0.20	<0.20	<0.20	<0.20	<0.20	<0.25	<0.10	<0.10	<0.10
Xylenes (total)	4200	<0.20	<0.40	<0.40	<0.20	<0.20	<0.25	<0.10	<0.10	<0.10
Allocated formall	4200	NU.20	NU.TU	NU.TU	NU.20	NU.20	NU.20	NU.10	\$0.10	\$0.10

 (1) Data collected prior to 2011 is included in these tables for demc

 All groundwater concentrations reported in µg/L.

 '<=</td>
 Parameter below detection limit, as indicated

 'NV=
 No value

 Sold
 Concentration exceeds MECP (2011) Table 3 SCS.

 Bold
 Non-detect but detection limit exceeds the MECP (2011) Table

Location		MW310		MW311		MW312	-	-	-	-
Sample ID	MECP (2011) Table 3: Full Depth	MW310	MW311	MW313 (Dup of MW311)	MW311	MW312	Trip Blank	Trip Blank	Trip Blank	Trip Blank
Lab ID	Generic SCS in a Non-Potable	FDH372	FDH374	FDH375	FQP336	FDH373	ABZ027	AGE830	CFY452	FDH383
Sampling Date	Groundwater Condition	15-Sep-17		ep-17	29-Nov-17	15-Sep-17	10-Apr-15	8-May-15	22-Apr-16	15-Sep-17
Screen Depth Interval (m)	All Types of Land Use	1.5 - 4.6	10 0	1.2 - 3.7	23-1101-17	1.5 - 4.6	10-Api-13	0-1viay-15	22-Api-10	13-060-17
Consultant	(coarse textured soil)	EXP	E	XP	EXP	EXP	EXP	EXP	EXP	EXP
Laboratory		Maxxam		xam	Maxxam	Maxxam	Maxxam	Maxxam	Maxxam	Maxxam
Date of Analysis		20/21-Sep-17		Sep-17	1-Dec-17	20/21-Sep-17	14/15-Apr-15	13-May-15	26-Apr-16	20/21-Sep-17
Certificate of Analysis Number		B7K2764		2764	B7Q9138	B7K2764	B563666	B586655	B681325	B7K2764
Acetone	130000	<10	<10	<10	5/00/00	<100	<10	<10	<10	<10
Benzene	44	<0.20	<0.20	<0.20		1	<0.10	<0.10	<0.20	<0.10
Bromodichloromethane	85000	<0.50	<0.50	<0.50		<0.50	<0.10	<0.10	<0.50	<0.10
Bromoform	380	<1.0	<1.0	<1.0		<1.0	<0.20	<0.20	<1.0	<0.10
Bromomethane	5.6	<0.50	<0.50	<0.50		<0.50	<0.50	<0.50	<0.50	<0.50
Carbon Tetrachloride	0.79	<0.20	<0.20	<0.20		<0.20	<0.10	<0.10	<0.20	<0.10
Chlorobenzene	630	<0.20	<0.20	<0.20		<0.20	<0.10	<0.10	<0.20	<0.10
Chloroethane	NV	<0.20	<0.20	<0.20		<0.20	<0.10	<0.10	<0.20	<0.10
Chloroform	2.4	<0.20	<0.20	<0.20		<1.0	<0.10	<0.10	<0.20	<0.10
Chloromethane	NV		<0.20					<0.10	<0.20	
Dibromochloromethane	82000	<0.50	<0.50	< 0.50		<2.0	<0.20	<0.20	<0.50	<0.20
1.2-Dichlorobenzene	4600	<0.50	<0.50	<0.50		<2.0	<0.20	<0.20	<0.50	<0.20
1.3-Dichlorobenzene	9600	<0.50	<0.50	<0.50		<2.0	<0.20	<0.20	<0.50	<0.20
1.4-Dichlorobenzene	8	<0.50	<0.50	<0.50		<2.0	<0.20	<0.20	<0.50	<0.20
Dichlorodifluoromethane	4400	<1.0	<1.0	<1.0		<5.0	<0.50	<0.50	<1.0	<0.50
1.1-Dichloroethane	320	<0.20	<0.20	<0.20		<1.0	<0.10	<0.10	<0.20	<0.10
1,2-Dichloroethane	1.6	<0.50	<0.50	<0.50		<2.0	<0.20	<0.20	<0.50	<0.20
1,1-Dichloroethylene	1.6	<0.20	<0.20	<0.20		<1.0	<0.10	<0.10	<0.20	<0.10
cis-1,2-Dichloroethylene	1.6	<0.50	<0.50	<0.50		150	<0.10	<0.10	<0.50	<0.10
trans-1,2-Dichloroethylene	1.6	<0.50	<0.50	<0.50		<1.0	<0.10	<0.10	<0.50	<0.10
1,2-Dichloropropane	16	<0.20	<0.20	<0.20		<1.0	<0.10	<0.10	<0.20	<0.10
cis-1,3-Dichloropropene	5.2	<0.20	<0.30	<0.30		<2.0	<0.20	<0.20	<0.30	<0.20
trans-1,3-Dichloropropene	5.2	<0.40	<0.40	<0.40		<2.0	<0.20	<0.20	<0.40	<0.20
1,3-Dichloropropene(cis+trans)	5.2	<0.50	<0.50	<0.50		<2.8	<0.28	<0.28	<0.50	<0.28
Ethylbenzene	2300	<0.20	1.7	1.7	-	<1.0	<0.28	<0.20	<0.20	<0.28
Ethylene Dibromide (1,2-Dibromoethane)	0.25	<0.20	<0.20	<0.20		<2.0	<0.20	<0.20	<0.20	<0.10
Hexane (n)	51	<1.0	<1.0	<1.0		<5.0	<0.50	<0.50	<1.0	<0.50
Methylene chloride (Dichloromethane)	610	<2.0	<2.0	<2.0		<5.0	<0.50	<0.50	<2.0	<0.50
Methyl ethyl ketone (2-Butanone)	470000	<10	<10	<10		<50	<5.0	<5.0	<10	<5.0
Methyl Butyl Ketone (2-Butanone)	NV	210	<10	<10		230	< 5.0	20.0	210	<0.0
Methyl Isobutyl Ketone	140000	<5.0	<5.0	<5.0	-	<50	<5.0	<5.0	<5.0	<5.0
Methyl t-butyl ether (MTBE)	190	<0.50	<0.50	<0.50	-	<2.0	<0.20	<0.20	<0.50	<0.20
Styrene	1300	<0.50	<0.50	<0.50		<2.0	<0.20	<0.20	<0.50	<0.20
1,1,1,2-Tetrachloroethane	3.3	<0.50	<0.50	<0.50	-	<2.0	<0.20	<0.10	< 0.50	<0.20
1,1,2-Tetrachloroethane	3.2	<0.50	<0.50	<0.50		<2.0	<0.20	<0.20	< 0.50	<0.20
Tetrachloroethylene	1.6	0.38	0.47	0.49	-	2.9	<0.20	<0.10	<0.20	<0.20
Toluene	18000	<0.20	<0.20	<0.20		<2.0	<0.20	<0.20	<0.20	<0.10
1.2.4-Trichlorobenzene	180	<0.20	<0.20	<0.20	-	<2.0	<0.20	<0.20	<0.20	<0.20
1.1.1-Trichloroethane	640	<0.20	<0.20	<0.20		<1.0	<0.10	<0.10	<0.20	<0.10
1.1.2-Trichloroethane	4.7	<0.20	<0.20	<0.20	-	<2.0	<0.20	<0.20	< 0.20	<0.20
Trichloroethylene	4.7	<0.50	<0.50	<0.20	-	73	<0.20	<0.20	<0.50	<0.20
Trichlorofluoromethane	2500	<0.20	<0.20	<0.20	-	<2.0	<0.20	<0.10	<0.20	<0.10
1,2,4-Trimethylbenzene	2500 NV	<0.00	<0.50	<0.00	-	<2.0	<0.20	<0.20	<0.00	<0.20
1,3,5-Trimethylbenzene	NV	-	-	-	<0.40	-	-	-	-	-
Vinyl Chloride	0.5	<0.20	<0.20	<0.20	<0.40	4	<0.20	<0.20	<0.20	<0.20
m-Xylene + p-Xylene	0.5 NV	<0.20	<0.20	<0.20	-	<1.0	<0.20	<0.20	<0.20	<0.20
o-Xylene	NV NV	<0.20	5 0.76	0.64	-	<1.0	<0.10	<0.10	<0.20	<0.10
o-Xylene Xylenes (total)	4200	<0.20	0.76	0.64		<1.0	<0.10	<0.10	<0.20	<0.10
Aylonoa (totdi)	4200	<0.20	ų. <i>i</i>	0.0	-	<1.U	<0.10	<0.10	<0.20	<0.10

 (1) Data collected prior to 2011 is included in these tables for demc

 All groundwater concentrations reported in µg/L.

 '<=</td>
 Parameter below detection limit, as indicated

 'NV=
 No value

 Sold
 Concentration exceeds MECP (2011) Table 3 SCS.

 Bold
 Non-detect but detection limit exceeds the MECP (2011) Table

GROUNDWATER ANALYTICAL RESULTS: Table D.6 - Metals & Inorganics in Groundwater

Location			MW-3	MW	307	MW	308
Sample ID	MECP (2011) Table 3: Full Depth Generic SCS in a Non-Potable	MECP (2011) Table 7: Full Depth	MW-3	MW	307	MW	308
Lab ID	Groundwater Condition	Generic SCS for Shallow Soils in a Non-Potable Groundwater Condition	CFY450	FDH369	FQP333	FDH370	FQP334
Sampling Date			22-Apr-16	15-Sep-17	29-Nov-17	15-Sep-17	29-Nov-17
Screen Depth Interval (m)	All Types of Land Use	All Types of Land Use	1.2 - 2.7	1.5	- 4.6	1.5	4.6
Consultant	(coarse textured soil)	(coarse textured soil)	EXP	EXP	EXP	EXP	EXP
Laboratory			Maxxam	Maxxam	Maxxam	Maxxam	Maxxam
Date of Analysis			28-Apr-16	21-Sep-17	1-Dec-17	21-Sep-17	1-Dec-17
Certificate of Analysis Number			B681325	B7K2764	B7Q9138	B7K2764	B7Q9138
Chloride (Dissolved) (mg/L)	2,300	1,800		2900		2300	
Sodium (mg/L)	2,300	1,800	-	-	1,600	•	1,600
Lead	25	20	< 0.50	-	<0.50	-	<0.50

All groundwater concentrations reported in μg/L unless otherwise noted '<' = Parameter below detection limit, as indicated 'NV' = No value '-' = Not Analyzed Due to amendments to O.Reg 153/04, deicing related parameters are not retained as COCs. Concentration exceeds MECP (2011) Table 3 SCS.

GROUNDWATER ANALYTICAL RESULTS: Table D.6 - Metals & Inorganics in Groundwater

Location			MW	309	MW310		MW311		MW312		MW	208		-
Sample ID	MECP (2011) Table 3: Full Depth Generic SCS in a Non-Potable	MECP (2011) Table 7: Full Depth Generic SCS for Shallow Soils in a	MW	309	MW310	MW	/311	MW313 (Dup of MW311)	MW312	MW208	MW222 (Dup of MW2018)	MW208	MW222 (Dup of MW2018)	TRIP BLANK
Lab ID	Groundwater Condition	Non-Potable Groundwater Condition	FDH371	FQP335	FDH372	FDH374	FQP336	FDH375	FDH373	GVQ763	GVQ764	GWN965	GWN965	FDH383
Sampling Date	All Types of Land Use	All Types of Land Use	15-Sep-17	29-Nov-17	15-Sep-17	15-Sep-17	29-Nov-17	15-Sep-17	15-Sep-17	1-Jun-18	1-Jun-18	6-Jun-18	6-Jun-18	15-Sep-17
Screen Depth Interval (m)	(coarse textured soil)	(coarse textured soil)	1.5	4.6	1.5 - 4.6	1.2 -	- 3.7	1.2 - 3.7	1.5 - 4.6		9.3 -	10.8		-
Consultant	(coarse textured soll)	(coarse textured soli)	EXP	EXP	EXP	EXP	EXP	EXP	EXP	EXP	EXP	EXP	EXP	EXP
Laboratory			Maxxam	Maxxam	Maxxam	Maxxam	Maxxam	Maxxam	Maxxam	Maxxam	Maxxam	Maxxam	Maxxam	Maxxam
Date of Analysis			21-Sep-17	1-Dec-17	21-Sep-17	21-Sep-17	1-Dec-17	21-Sep-17	21-Sep-17	4-Jun-18	4-Jun-18	7-Jun-18	7-Jun-18	21-Sep-17
Certificate of Analysis Number			B7K2764	B7Q9138	B7K2764	B7K2764	B7Q9138	B7K2764	B7K2764	B8D1518	B8D1518	B8D5633	B8D5633	B7K2764
Chloride (Dissolved) (mg/L)	2,300	1,800	1900	· · · · · · · · · · · · · · · · · · ·	1400	1300		1300	460	4900	4500	4300	4500	<1.0
Sodium (ma/L)	2,300	1,800		1,200	-	-	770			-		-		
Lead	25	20	-	-	-	-	<0.50	-	-	-	-	-	-	-

All groundwater concentrations reported in $\mu g/L$ unless otherwise noted '<' = Parameter below detection limit, as indicated NV=N vale 's lot Analyzed

 Bold
 Not Analyzed

 Due to amendments to O.Reg 153/04, deicing related parameters are not retained as COCs.

 Concentration exceeds MECP (2011) Table 3 SCS.

*exp.

SUB-SLAB VAPOUR ANALYTICAL RESULTS: Table D.7 - Sub-Slab Vapour Results

Sample Location	MECP (2016) Health Based	Indoor Áir Criteria Criteria (Commercial land		SSV1		SSV2		SSV3		SSV4		SSV5	
Sampling Date			26-May-16	17-Jan-19	21-Apr-16	18-Jan-19	20-Apr-16	18-Jan-19	21-Apr-16	18-Jan-19	21-Apr-16	17-Jan-19	17-Jan-19
Laboratory ID	(Commercial land use) ⁽¹⁾	use) ⁽²⁾	CKZ467	IWN654	CFY707	IWN655	CFY705	IWN656	CFY708	IWN657	CFY706	IWN658	IWN659
Canister Number			1355	SX0856	1004	SX0978	2081	SX1403	2542	SX0612	1366	SX2178	SX0827
PHC F1 - BTEX	8,540	2,135,000	213	24	4,700	3,420	846	485	2,140	1,660	3,540	4,870	4,500
PHC F2	1610	402,500	81.8	22.1	<20	86.0	<20	24.7	<20	48	53	97	89
1,1-Dichloroethylene	50.1	12,514	<0.396	<0.396	<1.59	<0.793	<1.59	<0.396	<1.59	<0.793	<1.59	<1.98	<1.98
cis-1,2-Dichloroethylene	107.0	26,750	<0.396	<0.396	<1.59	<0.793	<1.59	<0.396	<1.59	<0.793	<1.59	<1.98	<1.98
trans-1,2-Dichloroethylene	42.9	10,725	<0.793	<0.793	<3.17	<1.59	<3.17	<0.793	<3.17	<1.59	<3.17	<3.96	<3.96
Tetrachloroethylene	13.8	3,438	201	23	5,190	4,020	1,150	583	2,800	1,680	4,670	4,170	4,280
Trichloroethylene	0.40	100	0.539	<0.537	<2.15	1.59	<2.15	<0.537	<2.15	<1.07	<2.15	2.84	3.30
Vinyl chloride	0.41	102	<0.256	<0.256	<1.02	<0.511	<1.02	<0.256	<1.02	<0.511	<1.02	<1.28	<1.28

(1) Ministry of the Environment, Conservation and Parks (MECP) "Modified Generic Risk Assessment Tier 2 Approved Model" (November 1, 2016) Health Based Indoor Air Criteria for Industrial/Commercial land use (Non-Potable Groundwater Condition)

(2) Sub-Slab Vapour Criteria dervied from the Health Based Indoor Air Criteria divided by 0.004, the default attenuation factor for Industrial/Commercial buildings from sub-slab to indoor air.

Bold Concentration is above acceptable 2016 Industrial/Commercial Sub-Slab Vapour Criteria

Analyses performed by Maxxam

All soil vapour concentrations reported in $\mu g/m^3$

SOIL VAPOUR ANALYTICAL RESULTS Table D.8 - Soil Vapour Results

Sample Location				No	rth			East					Northeast		
Sample ID	MGRA 2016 Soil Vapour Criteria (Residential land	MECP (2016) Health Based	MGRA 2016 Sub-Slab Vapour Criteria	S	V1	SV4	Dup2 (Dup of SV4)	SV4	SI	/5	SI	V2	SV3	Dup3 (Dup of SV3)	SV3
Sampling Date	use) ⁽¹⁾	Indoor Air Criteria ⁽²⁾	(Residential land use) ⁽³⁾	21-Apr-16	30-Jan-19	26-May-16	26-May-16	30-Jan-19	26-May-16	30-Jan-19	21-Apr-16	30-Jan-19	22-Jun-16	22-Jun-16	24-Jan-19
Laboratory ID	,		· · · ·	CFY703	IW N660	CKZ469	CKZ471	IW N663	CKZ470	IW N664	CFY704	IWN661	COW 896	COW 897	IW N662
Canister Number				2409	SX0721	2064	2390	SX0915	2078	SX0886	1903	SX2110	1248	1388	SX1496
PHC F1 - BTEX	125,000	2490	124,500	1,060	186	419	406	120	6,670	208	1,930	62.9	12,500	13,000	2,260
PHC F2	23,500	471	23,550	628	10.6	895	944	31.1	5,960	25.7	530	<5.0	5,390	5,370	269
1,1-Dichloroethylene	730	14.6	730	< 0.396	<0.396	0.52	0.48	<0.396	<0.396	<0.396	< 0.396	< 0.396	<0.396	<0.396	<0.793
cis-1,2-Dichloroethylene	1,560	31.3	1,565	<0.396	<0.396	6.46	6.79	<0.396	<0.396	<0.396	0.498	< 0.396	15.8	17.8	<0.793
trans-1,2-Dichloroethylene	626	12.5	625	<0.793	<0.793	<0.793	<0.793	2.59	<0.793	<0.793	<0.793	<0.793	<1.98	<1.98	10.1
Tetrachloroethylene	214	4.28	214	<u>612</u>	117	5.69	4.25	5.83	<0.678	0.794	24.6	23.4	27.6	19.9	2.04
Trichloroethylene	13.6	0.271	13.6	29.5	7.6	2.13	2.1	<0.537	<0.537	<0.537	5.54	4.74	4.88	4.92	<1.07
Vinyl chloride	6.3	0.126	6.3	<0.256	<0.256	2.07	2.2	<0.256	<0.256	<0.256	<0.256	<0.256	<u>153</u>	<u>170</u>	<u>101</u>

(1) Soil Vapour Criteria developed using the Ministry of the Environment, Conservation and Parks (MECP) "Modified Generic Risk Assessment Tier 2 Approved Model" (November 1, 2016), using the minimum allowable probe depth of 2.58 m bgs.

MECP "Modified Generic Risk Assessment Tier 2 Approved Model" (November 1, 2016) Health Based Indoor Air Criteria for Residential land use (Non-Potable Groundwater Condition)
 Sub-Siab Vapour Criteria dervied from the Health Based Indoor Air Criteria divided by 0.02, the default attenuation factor for Residential buildings from sub-slab to indoor air.

Bold Concentration is above acceptable Residential Soil Vapour Criteria

Bold Concentration is above acceptable 2016 Residential Sub-Slab Vapour Criteria

Analyses performed by Maxxam

All soil vapour concentrations reported in µg/m3

*exp.

EXP Services Inc.

Phase Two Environmental Site Assessment Update 1509 -1531 Merivale Road, Ottawa, Ontario Project Number: OTT-00224605-D0 April 13, 2020 December 20, 2021

Appendix E – Certificate of Analysis

Your Project #: OTT-00224605-C

Attention:Mark Devlin

exp Services Inc 100-2650 Queensview Drive Ottawa, ON K2B 8H6

Your C.O.C. #: 627767-01-01, 627767-02-01, 627767-03-01

Report Date: 2017/09/14 Report #: R4701432 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B7J6395

Received: 2017/09/08, 11:10

Sample Matrix: Soil # Samples Received: 17

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
1,3-Dichloropropene Sum (1)	4	N/A	2017/09/13		EPA 8260C m
1,3-Dichloropropene Sum (1)	2	N/A	2017/09/14		EPA 8260C m
Conductivity (1)	6	2017/09/13	2017/09/13	CAM SOP-00414	OMOE E3530 v1 m
Petroleum Hydro. CCME F1 & BTEX in Soil (1, 2)	3	N/A	2017/09/12	CAM SOP-00315	CCME PHC-CWS m
Petroleum Hydrocarbons F2-F4 in Soil (1, 3)	5	2017/09/12	2017/09/12	CAM SOP-00316	CCME CWS m
F4G (CCME Hydrocarbons Gravimetric) (1)	3	2017/09/14	2017/09/14	CAM SOP-00316	CCME PHC-CWS m
Strong Acid Leachable Metals by ICPMS (1)	2	2017/09/13	2017/09/13	CAM SOP-00447	EPA 6020B m
Moisture (1)	8	N/A	2017/09/12	CAM SOP-00445	Carter 2nd ed 51.2 m
Sodium Adsorption Ratio (SAR) (1)	6	N/A	2017/09/13	CAM SOP-00102	EPA 6010C
SAR - ICP Metals (1)	6	2017/09/13	2017/09/13	CAM SOP-00408	EPA 6010D m
Volatile Organic Compounds and F1 PHCs (1)	2	N/A	2017/09/13	CAM SOP-00230	EPA 8260C m
Volatile Organic Compounds in Soil (1)	4	N/A	2017/09/13	CAM SOP-00228	EPA 8260C m

Remarks:

Maxxam Analytics' laboratories are accredited to ISO/IEC 17025:2005 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Maxxam are based upon recognized Provincial, Federal or US method compendia such as CCME, MDDELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Maxxam's profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Maxxam in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported: unless indicated otherwise, associated sample data are not blank corrected.

Maxxam Analytics' liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Maxxam has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Maxxam, unless otherwise agreed in writing.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested.

Your Project #: OTT-00224605-C

Attention:Mark Devlin

exp Services Inc 100-2650 Queensview Drive Ottawa, ON K2B 8H6

Your C.O.C. #: 627767-01-01, 627767-02-01, 627767-03-01

Report Date: 2017/09/14 Report #: R4701432 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B7J6395

Received: 2017/09/08, 11:10

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) This test was performed by Maxxam Analytics Mississauga

(2) No lab extraction date is given for F1BTEX & VOC samples that are field preserved with methanol. Extraction date is the date sampled unless otherwise stated. (3) All CCME PHC results met required criteria unless otherwise stated in the report. The CWS PHC methods employed by Maxxam conform to all prescribed elements of the reference method and performance based elements have been validated. All modifications have been validated and proven equivalent following "Alberta Environment's Interpretation of the Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil Validation of Performance-Based Alternative Methods September 2003". Documentation is available upon request. Modifications from Reference Method for the Canada-wide Standard for Petroleum Hydrocarbons in Soil-Tier 1 Method: F2/F3/F4 data reported using validated cold solvent extraction instead of Soxhlet extraction.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Alison Cameron, Project Manager Email: ACameron@maxxam.ca Phone# (613) 274-0573

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

exp Services Inc Client Project #: OTT-00224605-C Sampler Initials: MAD

O.REG 153 ICPMS METALS (SOIL)

Maxxam ID			FCC219	FCC221							
Sampling Date			2017/09/06 16:00	2017/09/06 13:00							
COC Number			627767-01-01	627767-01-01							
	UNITS	Criteria	MW302-S2	MW303-S2	RDL	QC Batch					
Metals											
Acid Extractable Antimony (Sb)	ug/g	7.5	<0.20	<0.20	0.20	5161508					
Acid Extractable Arsenic (As)	ug/g	18	1.4	1.7	1.0	5161508					
Acid Extractable Barium (Ba)	ug/g	390	140	110	0.50	5161508					
Acid Extractable Beryllium (Be)	ug/g	4	0.45	0.39	0.20	5161508					
Acid Extractable Boron (B)	ug/g	120	7.1	7.9	5.0	5161508					
Acid Extractable Cadmium (Cd)	ug/g	1.2	0.21	0.11	0.10	5161508					
Acid Extractable Chromium (Cr)	ug/g	160	19	18	1.0	5161508					
Acid Extractable Cobalt (Co)	ug/g	22	6.4	6.1	0.10	5161508					
Acid Extractable Copper (Cu)	ug/g	140	15	14	0.50	5161508					
Acid Extractable Lead (Pb)	ug/g	120	12	11	1.0	5161508					
Acid Extractable Molybdenum (Mo)	ug/g	6.9	<0.50	0.53	0.50	5161508					
Acid Extractable Nickel (Ni)	ug/g	100	13	13	0.50	5161508					
Acid Extractable Selenium (Se)	ug/g	2.4	<0.50	<0.50	0.50	5161508					
Acid Extractable Silver (Ag)	ug/g	20	<0.20	<0.20	0.20	5161508					
Acid Extractable Thallium (Tl)	ug/g	1	0.15	0.14	0.050	5161508					
Acid Extractable Uranium (U)	ug/g	23	0.58	0.53	0.050	5161508					
Acid Extractable Vanadium (V)	ug/g	86	26	24	5.0	5161508					
Acid Extractable Zinc (Zn)	ug/g	340	36	28	5.0	5161508					
RDL = Reportable Detection Limit											
QC Batch = Quality Control Batch											
Criteria: Ontario Reg. 153/04 (Amended April 15, 2011) Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition Soil - Residential/Parkland/Institutional Property Use - Coarse Texture											

Maxxam Analytics International Corporation o/a Maxxam Analytics 32 Colonnade Rd, Unit #1000, Nepean, ON K2E 7J6 Phone: 613 274-0573 Fax: 613 274-0574 Website: www.maxxam.ca

exp Services Inc Client Project #: OTT-00224605-C Sampler Initials: MAD

O.REG 153 PETROLEUM HYDROCARBONS (SOIL)

Maxxam ID			FCC220	FCC222	FCC233		
Sampling Date			2017/09/06	2017/09/06	2017/09/07		
Sampling Date			16:00	13:00	09:30		
COC Number			627767-01-01	627767-01-01	627767-02-01		
	UNITS	Criteria	MW302-S3	MW303-S3	MW311-S3	RDL	QC Batch
Inorganics							
Moisture	%	-	13	12	7.9	1.0	5159394
BTEX & F1 Hydrocarbons	•			•	•		
Benzene	ug/g	0.21	<0.020	<0.020	<0.020	0.020	5159049
Toluene	ug/g	2.3	<0.020	<0.020	<0.020	0.020	5159049
Ethylbenzene	ug/g	2	<0.020	<0.020	<0.020	0.020	5159049
o-Xylene	ug/g	-	<0.020	<0.020	<0.020	0.020	5159049
p+m-Xylene	ug/g	-	<0.040	<0.040	<0.040	0.040	5159049
Total Xylenes	ug/g	3.1	<0.040	<0.040	<0.040	0.040	5159049
F1 (C6-C10)	ug/g	55	<10	<10	<10	10	5159049
F1 (C6-C10) - BTEX	ug/g	55	<10	<10	<10	10	5159049
F2-F4 Hydrocarbons							
F2 (C10-C16 Hydrocarbons)	ug/g	98	16	10	<10	10	5160090
F3 (C16-C34 Hydrocarbons)	ug/g	300	220	<50	<50	50	5160090
F4 (C34-C50 Hydrocarbons)	ug/g	2800	120	<50	<50	50	5160090
Reached Baseline at C50	ug/g	-	No	Yes	Yes		5160090
Surrogate Recovery (%)							
1,4-Difluorobenzene	%	-	101	101	100		5159049
4-Bromofluorobenzene	%	-	99	100	99		5159049
D10-Ethylbenzene	%	-	88	95	84		5159049
D4-1,2-Dichloroethane	%	-	97	97	97		5159049
o-Terphenyl	%	-	94	90	93		5160090
RDL = Reportable Detection I	imit						
QC Batch = Quality Control B	atch						
Criteria: Ontario Reg. 153/04 Table 3: Full Depth Generic S				Potable Ground	l Water		
Condition							

exp Services Inc Client Project #: OTT-00224605-C Sampler Initials: MAD

O.REG 153 VOCS BY HS & F1-F4 (SOIL)

Maxxam ID			FCC230	FCC231		
Sampling Date			2017/09/07	2017/09/07		
			07:30	08:00		
COC Number			627767-02-01	627767-02-01		
	UNITS	Criteria	MW310-S3	MW321-S2	RDL	QC Batch
Inorganics						
Moisture	%	-	11	8.7	1.0	5159394
Calculated Parameters						
1,3-Dichloropropene (cis+trans)	ug/g	0.05	<0.050	<0.050	0.050	5157803
Volatile Organics	•		•	•		
Acetone (2-Propanone)	ug/g	16	<0.50	<0.50	0.50	5159358
Benzene	ug/g	0.21	<0.020	<0.020	0.020	5159358
Bromodichloromethane	ug/g	13	<0.050	<0.050	0.050	5159358
Bromoform	ug/g	0.27	<0.050	<0.050	0.050	5159358
Bromomethane	ug/g	0.05	<0.050	<0.050	0.050	5159358
Carbon Tetrachloride	ug/g	0.05	<0.050	<0.050	0.050	5159358
Chlorobenzene	ug/g	2.4	<0.050	<0.050	0.050	5159358
Chloroform	ug/g	0.05	<0.050	<0.050	0.050	5159358
Dibromochloromethane	ug/g	9.4	<0.050	<0.050	0.050	5159358
1,2-Dichlorobenzene	ug/g	3.4	<0.050	<0.050	0.050	5159358
1,3-Dichlorobenzene	ug/g	4.8	<0.050	<0.050	0.050	5159358
1,4-Dichlorobenzene	ug/g	0.083	<0.050	<0.050	0.050	5159358
Dichlorodifluoromethane (FREON 12)	ug/g	16	<0.050	<0.050	0.050	5159358
1,1-Dichloroethane	ug/g	3.5	<0.050	<0.050	0.050	5159358
1,2-Dichloroethane	ug/g	0.05	<0.050	<0.050	0.050	5159358
1,1-Dichloroethylene	ug/g	0.05	<0.050	<0.050	0.050	5159358
cis-1,2-Dichloroethylene	ug/g	3.4	<0.050	<0.050	0.050	5159358
trans-1,2-Dichloroethylene	ug/g	0.084	<0.050	<0.050	0.050	5159358
1,2-Dichloropropane	ug/g	0.05	<0.050	<0.050	0.050	5159358
cis-1,3-Dichloropropene	ug/g	0.05	<0.030	<0.030	0.030	5159358
trans-1,3-Dichloropropene	ug/g	0.05	<0.040	<0.040	0.040	5159358
Ethylbenzene	ug/g	2	<0.020	<0.020	0.020	5159358
Ethylene Dibromide	ug/g	0.05	<0.050	<0.050	0.050	5159358
Hexane	ug/g	2.8	<0.050	<0.050	0.050	5159358
Methylene Chloride(Dichloromethane)	ug/g	0.1	<0.050	<0.050	0.050	5159358
Methyl Ethyl Ketone (2-Butanone)	ug/g	16	<0.50	<0.50	0.50	5159358
Methyl Isobutyl Ketone	ug/g	1.7	<0.50	<0.50	0.50	5159358
RDL = Reportable Detection Limit			•	•	•	•
QC Batch = Quality Control Batch						
Criteria: Ontario Reg. 153/04 (Amended						
Table 3: Full Depth Generic Site Condition	on Stand	ards in a	Non-Potable Gro	ound Water		

Condition

exp Services Inc Client Project #: OTT-00224605-C Sampler Initials: MAD

O.REG 153 VOCS BY HS & F1-F4 (SOIL)

Maxxam ID			FCC230	FCC231						
Sampling Date			2017/09/07 07:30	2017/09/07 08:00						
COC Number			627767-02-01	627767-02-01						
	UNITS	Criteria	MW310-S3	MW321-S2	RDL	QC Batch				
Methyl t-butyl ether (MTBE)	ug/g	0.75	<0.050	<0.050	0.050	5159358				
Styrene	ug/g	0.7	<0.050	<0.050	0.050	5159358				
1,1,1,2-Tetrachloroethane	ug/g	0.058	<0.050	<0.050	0.050	5159358				
1,1,2,2-Tetrachloroethane	ug/g	0.05	<0.050	<0.050	0.050	5159358				
Tetrachloroethylene	ug/g	0.28	<0.050	<0.050	0.050	5159358				
Toluene	ug/g	2.3	<0.020	<0.020	0.020	5159358				
1,1,1-Trichloroethane	ug/g	0.38	<0.050	<0.050	0.050	5159358				
1,1,2-Trichloroethane	ug/g	0.05	<0.050	<0.050	0.050	5159358				
Trichloroethylene	ug/g	0.061	<0.050	<0.050	0.050	5159358				
Trichlorofluoromethane (FREON 11)	ug/g	4	<0.050	<0.050	0.050	5159358				
Vinyl Chloride	ug/g	0.02	<0.020	<0.020	0.020	5159358				
p+m-Xylene	ug/g	-	<0.020	<0.020	0.020	5159358				
o-Xylene	ug/g	-	<0.020	<0.020	0.020	5159358				
Total Xylenes	ug/g	3.1	<0.020	<0.020	0.020	5159358				
F1 (C6-C10)	ug/g	55	<10	<10	10	5159358				
F1 (C6-C10) - BTEX	ug/g	55	<10	<10	10	5159358				
F2-F4 Hydrocarbons										
F2 (C10-C16 Hydrocarbons)	ug/g	98	<10	<10	10	5160090				
F3 (C16-C34 Hydrocarbons)	ug/g	300	50	140	50	5160090				
F4 (C34-C50 Hydrocarbons)	ug/g	2800	59	180	50	5160090				
Reached Baseline at C50	ug/g	-	No	No		5160090				
Surrogate Recovery (%)										
o-Terphenyl	%	-	90	91		5160090				
4-Bromofluorobenzene	%	-	95	87		5159358				
D10-o-Xylene	%	-	90	87		5159358				
D4-1,2-Dichloroethane	%	-	96	98		5159358				
D8-Toluene	%	-	95	97		5159358				
RDL = Reportable Detection Limit										
QC Batch = Quality Control Batch Criteria: Ontario Reg. 153/04 (Amended April 15, 2011) Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition										
Soil - Residential/Parkland/Institutional F	Property	v Use - Co	arse Texture							

Maxxam Job #: B7J6395 Report Date: 2017/09/14 exp Services Inc Client Project #: OTT-00224605-C Sampler Initials: MAD

O.REG 153 VOCS BY HS (SOIL)

Maxxam ID			FCC224	FCC224	FCC226	FCC228	FCC236		
Sampling Date			2017/09/07 11:00	2017/09/07 11:00	2017/09/06 09:00	2017/09/06 10:30	2017/09/06		
COC Number			627767-01-01	627767-01-01	627767-01-01	627767-02-01	627767-03-01		
	UNITS	Criteria	MW307-S3	MW307-S3 Lab-Dup	MW308-S3	MW309-S2	TRIP BLANK	RDL	QC Batch
Inorganics									
Moisture	%	-	7.4	7.1	17	10		1.0	5159440
Calculated Parameters									
1,3-Dichloropropene (cis+trans)	ug/g	0.05	<0.050		<0.050	<0.050	<0.050	0.050	5157803
Volatile Organics				•	•		•		
Acetone (2-Propanone)	ug/g	16	<0.50		<0.50	<0.50	<0.50	0.50	5159448
Benzene	ug/g	0.21	<0.020		<0.020	<0.020	<0.020	0.020	5159448
Bromodichloromethane	ug/g	13	<0.050		<0.050	<0.050	<0.050	0.050	5159448
Bromoform	ug/g	0.27	<0.050		<0.050	<0.050	<0.050	0.050	5159448
Bromomethane	ug/g	0.05	<0.050		<0.050	<0.050	<0.050	0.050	5159448
Carbon Tetrachloride	ug/g	0.05	<0.050		<0.050	<0.050	<0.050	0.050	5159448
Chlorobenzene	ug/g	2.4	<0.050		<0.050	<0.050	<0.050	0.050	5159448
Chloroform	ug/g	0.05	<0.050		<0.050	<0.050	<0.050	0.050	5159448
Dibromochloromethane	ug/g	9.4	<0.050		<0.050	<0.050	<0.050	0.050	5159448
1,2-Dichlorobenzene	ug/g	3.4	<0.050		<0.050	<0.050	<0.050	0.050	5159448
1,3-Dichlorobenzene	ug/g	4.8	<0.050		<0.050	<0.050	<0.050	0.050	5159448
1,4-Dichlorobenzene	ug/g	0.083	<0.050		<0.050	<0.050	<0.050	0.050	5159448
Dichlorodifluoromethane (FREON 12)	ug/g	16	<0.050		<0.050	<0.050	<0.050	0.050	5159448
1,1-Dichloroethane	ug/g	3.5	<0.050		<0.050	<0.050	<0.050	0.050	5159448
1,2-Dichloroethane	ug/g	0.05	<0.050		<0.050	<0.050	<0.050	0.050	5159448
1,1-Dichloroethylene	ug/g	0.05	<0.050		<0.050	<0.050	<0.050	0.050	5159448
cis-1,2-Dichloroethylene	ug/g	3.4	<0.050		<0.050	<0.050	<0.050	0.050	5159448
trans-1,2-Dichloroethylene	ug/g	0.084	<0.050		<0.050	<0.050	<0.050	0.050	5159448
1,2-Dichloropropane	ug/g	0.05	<0.050		<0.050	<0.050	<0.050	0.050	5159448
cis-1,3-Dichloropropene	ug/g	0.05	<0.030		<0.030	<0.030	<0.030	0.030	5159448
trans-1,3-Dichloropropene	ug/g	0.05	<0.040		<0.040	<0.040	<0.040	0.040	5159448
Ethylbenzene	ug/g	2	<0.020		<0.020	<0.020	<0.020	0.020	5159448
Ethylene Dibromide	ug/g	0.05	<0.050		<0.050	<0.050	<0.050	0.050	5159448
Hexane	ug/g	2.8	<0.050		<0.050	<0.050	<0.050	0.050	5159448
Methylene Chloride(Dichloromethane)	ug/g	0.1	<0.050		<0.050	<0.050	<0.050	0.050	5159448
Methyl Ethyl Ketone (2-Butanone)	ug/g	16	<0.50		<0.50	<0.50	<0.50	0.50	5159448

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition

Maxxam Job #: B7J6395 Report Date: 2017/09/14 exp Services Inc Client Project #: OTT-00224605-C Sampler Initials: MAD

O.REG 153 VOCS BY HS (SOIL)

Maxxam ID			FCC224	FCC224	FCC226	FCC228	FCC236		
Sampling Date			2017/09/07 11:00	2017/09/07 11:00	2017/09/06 09:00	2017/09/06 10:30	2017/09/06		
COC Number			627767-01-01	627767-01-01	627767-01-01	627767-02-01	627767-03-01		
	UNITS	Criteria	MW307-S3	MW307-S3 Lab-Dup	MW308-S3	MW309-S2	TRIP BLANK	RDL	QC Batch
Methyl Isobutyl Ketone	ug/g	1.7	<0.50		<0.50	<0.50	<0.50	0.50	5159448
Methyl t-butyl ether (MTBE)	ug/g	0.75	<0.050		<0.050	<0.050	<0.050	0.050	5159448
Styrene	ug/g	0.7	<0.050		<0.050	<0.050	<0.050	0.050	5159448
1,1,1,2-Tetrachloroethane	ug/g	0.058	<0.050		<0.050	<0.050	<0.050	0.050	5159448
1,1,2,2-Tetrachloroethane	ug/g	0.05	<0.050		<0.050	<0.050	<0.050	0.050	5159448
Tetrachloroethylene	ug/g	0.28	0.23		<0.050	<0.050	<0.050	0.050	5159448
Toluene	ug/g	2.3	<0.020		<0.020	<0.020	<0.020	0.020	5159448
1,1,1-Trichloroethane	ug/g	0.38	<0.050		<0.050	<0.050	<0.050	0.050	5159448
1,1,2-Trichloroethane	ug/g	0.05	<0.050		<0.050	<0.050	<0.050	0.050	5159448
Trichloroethylene	ug/g	0.061	<0.050		<0.050	<0.050	<0.050	0.050	5159448
Trichlorofluoromethane (FREON 11)	ug/g	4	<0.050		<0.050	<0.050	<0.050	0.050	5159448
Vinyl Chloride	ug/g	0.02	<0.020		<0.020	<0.020	<0.020	0.020	5159448
p+m-Xylene	ug/g	-	<0.020		<0.020	<0.020	<0.020	0.020	5159448
o-Xylene	ug/g	-	<0.020		<0.020	<0.020	<0.020	0.020	5159448
Total Xylenes	ug/g	3.1	<0.020		<0.020	<0.020	<0.020	0.020	5159448
Surrogate Recovery (%)			•	•	•	•	•		
4-Bromofluorobenzene	%	-	95		95	92	91		5159448
D10-o-Xylene	%	-	85		91	90	90		5159448
D4-1,2-Dichloroethane	%	-	97		98	99	98		5159448
D8-Toluene	%	-	96		97	99	100		5159448
RDL = Reportable Detection Limit QC Batch = Quality Control Batch									

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water

Condition

exp Services Inc Client Project #: OTT-00224605-C Sampler Initials: MAD

RESULTS OF ANALYSES OF SOIL

Maxxam ID			FCC223	FCC225	FCC227	FCC229	FCC232		
Sampling Date			2017/09/07	2017/09/06	2017/09/06	2017/09/07	2017/09/07		
			11:00	09:00	10:30	07:30	09:30		
COC Number			627767-01-01	627767-01-01	627767-02-01	627767-02-01	627767-02-01		
	UNITS	Criteria	MW307-S1	MW308-S1	MW309-S1	MW310-S1	MW311-S2	RDL	QC Batch
Calculated Parameters									
Sodium Adsorption Ratio	N/A	5.0	2.8	15	15	24	18		5157863
Inorganics			•	•	•	•	•		
Conductivity	mS/cm	0.7	1.6	0.45	2.7	1.6	0.99	0.002	5161512
Metals				•	•				
Soluble Calcium (Ca)	mg/L	-	155	3.6	86.0	13.5	8.9	0.5	5161509
Soluble Magnesium (Mg)	mg/L	-	32.3	<0.5	5.5	1.4	1.3	0.5	5161509
Soluble Sodium (Na)	mg/L	-	146	104	542	346	222	5	5161509
		•	•	•	•	•	•	•	•

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water

Condition

Maxxam ID			FCC234							
Courseline Data			2017/09/07							
Sampling Date			12:00							
COC Number			627767-03-01							
	UNITS	Criteria	MW312-S1	RDL	QC Batch					
Calculated Parameters										
Sodium Adsorption Ratio	N/A	5.0	1.0		5157863					
Inorganics				•						
Conductivity	mS/cm	0.7	0.26	0.002	5161512					
Metals										
Soluble Calcium (Ca)	mg/L	-	29.1	0.5	5161509					
Soluble Magnesium (Mg)	mg/L	-	3.6	0.5	5161509					
Soluble Sodium (Na)	mg/L	-	22	5	5161509					
RDL = Reportable Detection L	imit									
QC Batch = Quality Control Ba	atch									
Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)										
Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground										
Water										
Condition Soil - Residential/Parkland/Institutional Property Use - Coarse Texture										
Soli - Residential/ Farkianu/ III	sitution	arriopen	Ly USE - CUalse	i exture						

exp Services Inc Client Project #: OTT-00224605-C Sampler Initials: MAD

PETROLEUM HYDROCARBONS (CCME)

Maxxam ID			FCC220	FCC230	FCC231				
Sampling Date			2017/09/06 16:00	2017/09/07 07:30	2017/09/07 08:00				
COC Number			627767-01-01	627767-02-01	627767-02-01				
	UNITS	Criteria	MW302-S3	MW310-S3	MW321-S2	RDL	QC Batch		
F2-F4 Hydrocarbons									
F4G-sg (Grav. Heavy Hydrocarbons)	ug/g	2800	320	220	430	100	5163737		
RDL = Reportable Detection Limit						•			
QC Batch = Quality Control Batch									
Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)									
Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water									
Condition									
Soil - Residential/Parkland/Institution	al Prope	erty Use -	Coarse Texture	2					

exp Services Inc Client Project #: OTT-00224605-C Sampler Initials: MAD

TEST SUMMARY

Maxxam ID: FCC219 Sample ID: MW302-S2 Matrix: Soil					Collected: 2017/09/06 Shipped: Received: 2017/09/08
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Strong Acid Leachable Metals by ICPMS	ICP/MS	5161508	2017/09/13	2017/09/13	Viviana Canzonieri
Maxxam ID: FCC220 Sample ID: MW302-S3 Matrix: Soil					Collected: 2017/09/06 Shipped: Received: 2017/09/08
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Petroleum Hydro. CCME F1 & BTEX in Soil	HSGC/MSFD	5159049	N/A	2017/09/12	Georgeta Rusu
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	5160090	2017/09/12	2017/09/12	Zhiyue (Frank) Zhu
F4G (CCME Hydrocarbons Gravimetric)	BAL	5163737	2017/09/14	2017/09/14	Debra Deslandes
Moisture	BAL	5159394	N/A	2017/09/12	Gargi Gireesh
Maxxam ID: FCC221 Sample ID: MW303-S2 Matrix: Soil					Collected: 2017/09/06 Shipped: Received: 2017/09/08
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Strong Acid Leachable Metals by ICPMS	ICP/MS	5161508	2017/09/13	2017/09/13	Viviana Canzonieri
Maxxam ID: FCC222 Sample ID: MW303-S3 Matrix: Soil					Collected: 2017/09/06 Shipped: Received: 2017/09/08
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Petroleum Hydro. CCME F1 & BTEX in Soil	HSGC/MSFD	5159049	N/A	2017/09/12	Georgeta Rusu
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	5160090	2017/09/12	2017/09/12	Zhiyue (Frank) Zhu
Moisture	BAL	5159394	N/A	2017/09/12	Gargi Gireesh
Maxxam ID: FCC223 Sample ID: MW307-S1 Matrix: Soil					Collected: 2017/09/07 Shipped: Received: 2017/09/08
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Conductivity	AT	5161512	2017/09/13	2017/09/13	Neil Dassanayake
Sodium Adsorption Ratio (SAR)	CALC/MET	5157863	N/A	2017/09/13	Automated Statchk
SAR - ICP Metals	ICP	5161509	2017/09/13	2017/09/13	Jolly John
Maxxam ID: FCC224 Sample ID: MW307-S3 Matrix: Soil					Collected: 2017/09/07 Shipped: Received: 2017/09/08
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
1,3-Dichloropropene Sum	CALC	5157803	N/A	2017/09/13	Automated Statchk
Moisture	BAL	5159440	N/A	2017/09/12	Min Yang

exp Services Inc Client Project #: OTT-00224605-C Sampler Initials: MAD

TEST SUMMARY

Maxxam ID: FCC224 Dup Sample ID: MW307-S3 Matrix: Soil					Collected: 2017/09/07 Shipped: Received: 2017/09/08
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Moisture	BAL	5159440	N/A	2017/09/12	Min Yang
Maxxam ID: FCC225 Sample ID: MW308-S1 Matrix: Soil					Collected: 2017/09/06 Shipped: Received: 2017/09/08
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Conductivity	AT	5161512	2017/09/13	2017/09/13	Neil Dassanayake
Sodium Adsorption Ratio (SAR)	CALC/MET	5157863	N/A	2017/09/13	Automated Statchk
SAR - ICP Metals	ICP	5161509	2017/09/13	2017/09/13	Jolly John
Maxxam ID: FCC226 Sample ID: MW308-S3 Matrix: Soil					Collected: 2017/09/06 Shipped: Received: 2017/09/08
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
1,3-Dichloropropene Sum	CALC	5157803	N/A	2017/09/13	Automated Statchk
Moisture	BAL	5159440	N/A	2017/09/12	Min Yang
Volatile Organic Compounds in Soil	GC/MS	5159448	N/A	2017/09/13	Anna Gabrielyan
Maxxam ID: FCC227 Sample ID: MW309-S1 Matrix: Soil					Collected: 2017/09/06 Shipped: Received: 2017/09/08
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Conductivity	AT	5161512	2017/09/13	2017/09/13	Neil Dassanayake
Sodium Adsorption Ratio (SAR)	CALC/MET	5157863	N/A	2017/09/13	Automated Statchk
SAR - ICP Metals	ICP	5161509	2017/09/13	2017/09/13	Jolly John
Maxxam ID: FCC228 Sample ID: MW309-S2 Matrix: Soil					Collected: 2017/09/06 Shipped: Received: 2017/09/08
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
1,3-Dichloropropene Sum	CALC	5157803	N/A	2017/09/14	Automated Statchk
Moisture	BAL	5159440	N/A	2017/09/12	Min Yang
Volatile Organic Compounds in Soil	GC/MS	5159448	N/A	2017/09/13	Anna Gabrielyan
Maxxam ID: FCC229 Sample ID: MW310-S1 Matrix: Soil					Collected: 2017/09/07 Shipped: Received: 2017/09/08
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Conductivity	AT	5161512	2017/09/13	2017/09/13	Neil Dassanayake
Sodium Adsorption Ratio (SAR)	CALC/MET	5157863	N/A	2017/09/13	Automated Statchk
SAR - ICP Metals	ICP	5161509	2017/09/13	2017/09/13	Jolly John

exp Services Inc Client Project #: OTT-00224605-C Sampler Initials: MAD

Collected: 2017/09/07

Received: 2017/09/08

Collected: 2017/09/07

Shipped:

Jolly John

Shipped:

TEST SUMMARY

Maxxam ID:	FCC230	Collected:	2017/09/07
Sample ID: Matrix:	MW310-S3 Soil	Shipped: Received:	2017/09/08

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
1,3-Dichloropropene Sum	CALC	5157803	N/A	2017/09/13	Automated Statchk
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	5160090	2017/09/12	2017/09/12	Zhiyue (Frank) Zhu
F4G (CCME Hydrocarbons Gravimetric)	BAL	5163737	2017/09/14	2017/09/14	Debra Deslandes
Moisture	BAL	5159394	N/A	2017/09/12	Gargi Gireesh
Volatile Organic Compounds and F1 PHCs	GC/MSFD	5159358	N/A	2017/09/13	Manpreet Sarao

Maxxam ID:	FCC231
Sample ID:	MW321-S2
Matrix:	Soil

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
1,3-Dichloropropene Sum	CALC	5157803	N/A	2017/09/13	Automated Statchk
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	5160090	2017/09/12	2017/09/12	Zhiyue (Frank) Zhu
F4G (CCME Hydrocarbons Gravimetric)	BAL	5163737	2017/09/14	2017/09/14	Debra Deslandes
Moisture	BAL	5159394	N/A	2017/09/12	Gargi Gireesh
Volatile Organic Compounds and F1 PHCs	GC/MSFD	5159358	N/A	2017/09/13	Manpreet Sarao

Maxxam ID:	FCC232
Sample ID:	MW311-S2
Matrix:	Soil

SAR - ICP Metals

Matrix:	Soil					Received: 2017/09/08
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Conductivity		AT	5161512	2017/09/13	2017/09/13	Neil Dassanayake
Sodium Adsorption Ratio	(SAR)	CALC/MET	5157863	N/A	2017/09/13	Automated Statchk

2017/09/13

2017/09/13

Maxxam ID: Sample ID:	Collected: Shipped:	2017/09/07
Matrix:		2017/09/08

5161509

ICP

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Petroleum Hydro. CCME F1 & BTEX in Soil	HSGC/MSFD	5159049	N/A	2017/09/12	Georgeta Rusu
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	5160090	2017/09/12	2017/09/12	Zhiyue (Frank) Zhu
Moisture	BAL	5159394	N/A	2017/09/12	Gargi Gireesh

Maxxam ID: Sample ID: Matrix:	FCC234 MW312-S1 Soil					Collected: Shipped: Received:	2017/09/07 2017/09/08
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Conductivity		AT	5161512	2017/09/13	2017/09/13	Neil Dassar	nayake
Sodium Adsorption Ratio	(SAR)	CALC/MET	5157863	N/A	2017/09/13	Automated	d Statchk
SAR - ICP Metals		ICP	5161509	2017/09/13	2017/09/13	Jolly John	

Volatile Organic Compounds in Soil

Report Date: 2017/09/14

exp Services Inc Client Project #: OTT-00224605-C Sampler Initials: MAD

2017/09/13

Anna Gabrielyan

TEST SUMMARY

Maxxam ID: Sample ID: Matrix:	FCC236 TRIP BLANK Soil					Collected: 2017/09/06 Shipped: Received: 2017/09/08
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst
1,3-Dichloropropene Sum	l	CALC	5157803	N/A	2017/09/14	Automated Statchk

5159448

N/A

GC/MS

exp Services Inc Client Project #: OTT-00224605-C Sampler Initials: MAD

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt
Package 1 9.0°C
Sample FCC220 [MW302-S3] : F1/BTEX Analysis: Greater than 10g of soil was submitted in the field preserved vial. This significantly exceeds the protocol specification of approximately 5g. Additional methanol was added to the vial to ensure extraction efficiency.
Sample FCC231 [MW321-S2] : VOCF1 Analysis: Greater than 10g of soil was submitted in the field preserved vial. This significantly exceeds the protocol specification of approximately 5g. Additional methanol was added to the vial to ensure extraction efficiency.
Sample FCC233 [MW311-S3] : F1/BTEX Analysis: Greater than 10g of soil was submitted in the field preserved vial. This significantly exceeds the protocol specification of approximately 5g. Additional methanol was added to the vial to ensure extraction efficiency.
Results relate only to the items tested.

QUALITY ASSURANCE REPORT

exp Services Inc Client Project #: OTT-00224605-C Sampler Initials: MAD

			Matrix	Spike	SPIKED	BLANK	Method	Blank	RP	D
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
5159049	1,4-Difluorobenzene	2017/09/11	101	60 - 140	99	60 - 140	101	%		
5159049	4-Bromofluorobenzene	2017/09/11	101	60 - 140	101	60 - 140	98	%		
5159049	D10-Ethylbenzene	2017/09/11	93	60 - 140	84	60 - 140	87	%		
5159049	D4-1,2-Dichloroethane	2017/09/11	97	60 - 140	97	60 - 140	97	%		
5159358	4-Bromofluorobenzene	2017/09/13	103	60 - 140	104	60 - 140	93	%		
5159358	D10-o-Xylene	2017/09/13	107	60 - 130	92	60 - 130	89	%		
5159358	D4-1,2-Dichloroethane	2017/09/13	95	60 - 140	93	60 - 140	100	%		
5159358	D8-Toluene	2017/09/13	102	60 - 140	103	60 - 140	95	%		
5159448	4-Bromofluorobenzene	2017/09/12	96	60 - 140	98	60 - 140	97	%		
5159448	D10-o-Xylene	2017/09/12	100	60 - 130	91	60 - 130	98	%		
5159448	D4-1,2-Dichloroethane	2017/09/12	101	60 - 140	97	60 - 140	98	%		
5159448	D8-Toluene	2017/09/12	102	60 - 140	102	60 - 140	96	%		
5160090	o-Terphenyl	2017/09/12	92	60 - 130	89	60 - 130	89	%		
5159049	Benzene	2017/09/11	94	60 - 140	92	60 - 140	<0.020	ug/g	NC	50
5159049	Ethylbenzene	2017/09/11	96	60 - 140	94	60 - 140	<0.020	ug/g	NC	50
5159049	F1 (C6-C10) - BTEX	2017/09/11					<10	ug/g	NC	30
5159049	F1 (C6-C10)	2017/09/11	99	60 - 140	94	80 - 120	<10	ug/g	NC	30
5159049	o-Xylene	2017/09/11	98	60 - 140	97	60 - 140	<0.020	ug/g	NC	50
5159049	p+m-Xylene	2017/09/11	96	60 - 140	93	60 - 140	<0.040	ug/g	NC	50
5159049	Toluene	2017/09/11	97	60 - 140	95	60 - 140	<0.020	ug/g	NC	50
5159049	Total Xylenes	2017/09/11					<0.040	ug/g	NC	50
5159358	1,1,1,2-Tetrachloroethane	2017/09/13	100	60 - 140	98	60 - 130	<0.050	ug/g	NC	50
5159358	1,1,1-Trichloroethane	2017/09/13	91	60 - 140	88	60 - 130	<0.050	ug/g	NC	50
5159358	1,1,2,2-Tetrachloroethane	2017/09/13	107	60 - 140	108	60 - 130	<0.050	ug/g	NC	50
5159358	1,1,2-Trichloroethane	2017/09/13	89	60 - 140	87	60 - 130	<0.050	ug/g	NC	50
5159358	1,1-Dichloroethane	2017/09/13	95	60 - 140	91	60 - 130	<0.050	ug/g	NC	50
5159358	1,1-Dichloroethylene	2017/09/13	100	60 - 140	95	60 - 130	<0.050	ug/g	NC	50
5159358	1,2-Dichlorobenzene	2017/09/13	92	60 - 140	88	60 - 130	<0.050	ug/g	NC	50
5159358	1,2-Dichloroethane	2017/09/13	102	60 - 140	100	60 - 130	<0.050	ug/g	NC	50
5159358	1,2-Dichloropropane	2017/09/13	88	60 - 140	86	60 - 130	<0.050	ug/g	NC	50
5159358	1,3-Dichlorobenzene	2017/09/13	96	60 - 140	92	60 - 130	<0.050	ug/g	NC	50

QUALITY ASSURANCE REPORT(CONT'D)

exp Services Inc Client Project #: OTT-00224605-C Sampler Initials: MAD

			Matrix	Spike	SPIKED	BLANK	Method	Blank	RP	D
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
5159358	1,4-Dichlorobenzene	2017/09/13	102	60 - 140	93	60 - 130	<0.050	ug/g	NC	50
5159358	Acetone (2-Propanone)	2017/09/13	79	60 - 140	84	60 - 140	<0.50	ug/g	NC	50
5159358	Benzene	2017/09/13	97	60 - 140	93	60 - 130	<0.020	ug/g	NC	50
5159358	Bromodichloromethane	2017/09/13	90	60 - 140	88	60 - 130	<0.050	ug/g	NC	50
5159358	Bromoform	2017/09/13	98	60 - 140	99	60 - 130	<0.050	ug/g	NC	50
5159358	Bromomethane	2017/09/13	96	60 - 140	94	60 - 140	<0.050	ug/g	NC	50
5159358	Carbon Tetrachloride	2017/09/13	93	60 - 140	89	60 - 130	<0.050	ug/g	NC	50
5159358	Chlorobenzene	2017/09/13	94	60 - 140	91	60 - 130	<0.050	ug/g	NC	50
5159358	Chloroform	2017/09/13	91	60 - 140	88	60 - 130	<0.050	ug/g	NC	50
5159358	cis-1,2-Dichloroethylene	2017/09/13	95	60 - 140	92	60 - 130	<0.050	ug/g	NC	50
5159358	cis-1,3-Dichloropropene	2017/09/13	83	60 - 140	83	60 - 130	<0.030	ug/g	NC	50
5159358	Dibromochloromethane	2017/09/13	97	60 - 140	96	60 - 130	<0.050	ug/g	NC	50
5159358	Dichlorodifluoromethane (FREON 12)	2017/09/13	87	60 - 140	89	60 - 140	<0.050	ug/g	NC	50
5159358	Ethylbenzene	2017/09/13	94	60 - 140	91	60 - 130	<0.020	ug/g	NC	50
5159358	Ethylene Dibromide	2017/09/13	99	60 - 140	99	60 - 130	<0.050	ug/g	NC	50
5159358	F1 (C6-C10) - BTEX	2017/09/13					<10	ug/g	NC	30
5159358	F1 (C6-C10)	2017/09/13	101	60 - 140	91	80 - 120	<10	ug/g	NC	30
5159358	Hexane	2017/09/13	99	60 - 140	95	60 - 130	<0.050	ug/g	NC	50
5159358	Methyl Ethyl Ketone (2-Butanone)	2017/09/13	82	60 - 140	86	60 - 140	<0.50	ug/g	NC	50
5159358	Methyl Isobutyl Ketone	2017/09/13	85	60 - 140	87	60 - 130	<0.50	ug/g	NC	50
5159358	Methyl t-butyl ether (MTBE)	2017/09/13	92	60 - 140	90	60 - 130	<0.050	ug/g	NC	50
5159358	Methylene Chloride(Dichloromethane)	2017/09/13	100	60 - 140	97	60 - 130	<0.050	ug/g	NC	50
5159358	o-Xylene	2017/09/13	94	60 - 140	92	60 - 130	<0.020	ug/g	NC	50
5159358	p+m-Xylene	2017/09/13	97	60 - 140	94	60 - 130	<0.020	ug/g	NC	50
5159358	Styrene	2017/09/13	96	60 - 140	94	60 - 130	<0.050	ug/g	NC	50
5159358	Tetrachloroethylene	2017/09/13	95	60 - 140	90	60 - 130	<0.050	ug/g	NC	50
5159358	Toluene	2017/09/13	93	60 - 140	89	60 - 130	<0.020	ug/g	NC	50
5159358	Total Xylenes	2017/09/13					<0.020	ug/g	NC	50
5159358	trans-1,2-Dichloroethylene	2017/09/13	98	60 - 140	92	60 - 130	<0.050	ug/g	NC	50
5159358	trans-1,3-Dichloropropene	2017/09/13	85	60 - 140	86	60 - 130	<0.040	ug/g	NC	50
5159358	Trichloroethylene	2017/09/13	95	60 - 140	91	60 - 130	<0.050	ug/g	NC	50

Page 17 of 29

QUALITY ASSURANCE REPORT(CONT'D)

exp Services Inc Client Project #: OTT-00224605-C Sampler Initials: MAD

			Matrix	Spike	SPIKED	BLANK	Method E	Blank	RPI	D
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
5159358	Trichlorofluoromethane (FREON 11)	2017/09/13	97	60 - 140	93	60 - 130	<0.050	ug/g	NC	50
5159358	Vinyl Chloride	2017/09/13	78	60 - 140	93	60 - 130	<0.020	ug/g	NC	50
5159394	Moisture	2017/09/12							4.6	20
5159440	Moisture	2017/09/12							4.1	20
5159448	1,1,1,2-Tetrachloroethane	2017/09/13	108	60 - 140	110	60 - 130	<0.050	ug/g	NC	50
5159448	1,1,1-Trichloroethane	2017/09/13	97	60 - 140	99	60 - 130	<0.050	ug/g	NC	50
5159448	1,1,2,2-Tetrachloroethane	2017/09/13	101	60 - 140	101	60 - 130	<0.050	ug/g	NC	50
5159448	1,1,2-Trichloroethane	2017/09/13	103	60 - 140	100	60 - 130	<0.050	ug/g	NC	50
5159448	1,1-Dichloroethane	2017/09/13	106	60 - 140	107	60 - 130	<0.050	ug/g	NC	50
5159448	1,1-Dichloroethylene	2017/09/13	106	60 - 140	110	60 - 130	<0.050	ug/g	NC	50
5159448	1,2-Dichlorobenzene	2017/09/13	95	60 - 140	97	60 - 130	<0.050	ug/g	NC	50
5159448	1,2-Dichloroethane	2017/09/13	95	60 - 140	94	60 - 130	<0.050	ug/g	NC	50
5159448	1,2-Dichloropropane	2017/09/13	97	60 - 140	99	60 - 130	<0.050	ug/g	NC	50
5159448	1,3-Dichlorobenzene	2017/09/13	97	60 - 140	102	60 - 130	<0.050	ug/g	NC	50
5159448	1,4-Dichlorobenzene	2017/09/13	94	60 - 140	100	60 - 130	<0.050	ug/g	NC	50
5159448	Acetone (2-Propanone)	2017/09/13	108	60 - 140	92	60 - 140	<0.50	ug/g	NC	50
5159448	Benzene	2017/09/13	105	60 - 140	107	60 - 130	<0.020	ug/g	NC	50
5159448	Bromodichloromethane	2017/09/13	97	60 - 140	99	60 - 130	<0.050	ug/g	NC	50
5159448	Bromoform	2017/09/13	110	60 - 140	112	60 - 130	<0.050	ug/g	NC	50
5159448	Bromomethane	2017/09/13	106	60 - 140	106	60 - 140	<0.050	ug/g	NC	50
5159448	Carbon Tetrachloride	2017/09/13	101	60 - 140	103	60 - 130	<0.050	ug/g	NC	50
5159448	Chlorobenzene	2017/09/13	95	60 - 140	98	60 - 130	<0.050	ug/g	NC	50
5159448	Chloroform	2017/09/13	98	60 - 140	99	60 - 130	<0.050	ug/g	NC	50
5159448	cis-1,2-Dichloroethylene	2017/09/13	97	60 - 140	100	60 - 130	<0.050	ug/g	NC	50
5159448	cis-1,3-Dichloropropene	2017/09/13	89	60 - 140	92	60 - 130	<0.030	ug/g	NC	50
5159448	Dibromochloromethane	2017/09/13	106	60 - 140	107	60 - 130	<0.050	ug/g	NC	50
5159448	Dichlorodifluoromethane (FREON 12)	2017/09/13	105	60 - 140	108	60 - 140	<0.050	ug/g	NC	50
5159448	Ethylbenzene	2017/09/13	89	60 - 140	96	60 - 130	<0.020	ug/g	NC	50
5159448	Ethylene Dibromide	2017/09/13	103	60 - 140	102	60 - 130	<0.050	ug/g	NC	50
5159448	Hexane	2017/09/13	108	60 - 140	112	60 - 130	<0.050	ug/g	NC	50
5159448	Methyl Ethyl Ketone (2-Butanone)	2017/09/13	104	60 - 140	96	60 - 140	<0.50	ug/g	NC	50

Page 18 of 29

QUALITY ASSURANCE REPORT(CONT'D)

exp Services Inc Client Project #: OTT-00224605-C Sampler Initials: MAD

			Matrix	Spike	SPIKED	BLANK	Method	Blank	RP	D
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
5159448	Methyl Isobutyl Ketone	2017/09/13	94	60 - 140	96	60 - 130	<0.50	ug/g	NC	50
5159448	Methyl t-butyl ether (MTBE)	2017/09/13	92	60 - 140	93	60 - 130	<0.050	ug/g	NC	50
5159448	Methylene Chloride(Dichloromethane)	2017/09/13	97	60 - 140	97	60 - 130	<0.050	ug/g	NC	50
5159448	o-Xylene	2017/09/13	87	60 - 140	93	60 - 130	<0.020	ug/g	NC	50
5159448	p+m-Xylene	2017/09/13	89	60 - 140	97	60 - 130	<0.020	ug/g	NC	50
5159448	Styrene	2017/09/13	86	60 - 140	94	60 - 130	<0.050	ug/g	NC	50
5159448	Tetrachloroethylene	2017/09/13	95	60 - 140	99	60 - 130	<0.050	ug/g	NC	50
5159448	Toluene	2017/09/13	91	60 - 140	94	60 - 130	<0.020	ug/g	NC	50
5159448	Total Xylenes	2017/09/13					<0.020	ug/g	NC	50
5159448	trans-1,2-Dichloroethylene	2017/09/13	100	60 - 140	105	60 - 130	<0.050	ug/g	NC	50
5159448	trans-1,3-Dichloropropene	2017/09/13	98	60 - 140	98	60 - 130	<0.040	ug/g	NC	50
5159448	Trichloroethylene	2017/09/13	95	60 - 140	99	60 - 130	<0.050	ug/g	NC	50
5159448	Trichlorofluoromethane (FREON 11)	2017/09/13	100	60 - 140	102	60 - 130	<0.050	ug/g	NC	50
5159448	Vinyl Chloride	2017/09/13	103	60 - 140	107	60 - 130	<0.020	ug/g	NC	50
5160090	F2 (C10-C16 Hydrocarbons)	2017/09/12	102	50 - 130	96	80 - 120	<10	ug/g	NC	30
5160090	F3 (C16-C34 Hydrocarbons)	2017/09/12	98	50 - 130	93	80 - 120	<50	ug/g	NC	30
5160090	F4 (C34-C50 Hydrocarbons)	2017/09/12	100	50 - 130	95	80 - 120	<50	ug/g	NC	30
5161508	Acid Extractable Antimony (Sb)	2017/09/13	99	75 - 125	102	80 - 120	<0.20	ug/g	NC	30
5161508	Acid Extractable Arsenic (As)	2017/09/13	102	75 - 125	101	80 - 120	<1.0	ug/g	22	30
5161508	Acid Extractable Barium (Ba)	2017/09/13	86	75 - 125	102	80 - 120	<0.50	ug/g	12	30
5161508	Acid Extractable Beryllium (Be)	2017/09/13	100	75 - 125	100	80 - 120	<0.20	ug/g	15	30
5161508	Acid Extractable Boron (B)	2017/09/13	98	75 - 125	99	80 - 120	<5.0	ug/g		
5161508	Acid Extractable Cadmium (Cd)	2017/09/13	100	75 - 125	99	80 - 120	<0.10	ug/g	24	30
5161508	Acid Extractable Chromium (Cr)	2017/09/13	87	75 - 125	97	80 - 120	<1.0	ug/g	31 (1)	30
5161508	Acid Extractable Cobalt (Co)	2017/09/13	95	75 - 125	97	80 - 120	<0.10	ug/g	10	30
5161508	Acid Extractable Copper (Cu)	2017/09/13	95	75 - 125	97	80 - 120	<0.50	ug/g	12	30
5161508	Acid Extractable Lead (Pb)	2017/09/13	93	75 - 125	100	80 - 120	<1.0	ug/g	15	30
5161508	Acid Extractable Molybdenum (Mo)	2017/09/13	99	75 - 125	98	80 - 120	<0.50	ug/g	NC	30
5161508	Acid Extractable Nickel (Ni)	2017/09/13	90	75 - 125	100	80 - 120	<0.50	ug/g	18	30
5161508	Acid Extractable Selenium (Se)	2017/09/13	101	75 - 125	104	80 - 120	<0.50	ug/g	NC	30
5161508	Acid Extractable Silver (Ag)	2017/09/13	96	75 - 125	96	80 - 120	<0.20	ug/g	NC	30

QUALITY ASSURANCE REPORT(CONT'D)

exp Services Inc Client Project #: OTT-00224605-C Sampler Initials: MAD

			Matrix	Spike	SPIKED	BLANK	Method I	Blank	RP	D
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
5161508	Acid Extractable Thallium (Tl)	2017/09/13	96	75 - 125	99	80 - 120	<0.050	ug/g	NC	30
5161508	Acid Extractable Uranium (U)	2017/09/13	94	75 - 125	97	80 - 120	<0.050	ug/g	16	30
5161508	Acid Extractable Vanadium (V)	2017/09/13	83	75 - 125	96	80 - 120	<5.0	ug/g	19	30
5161508	Acid Extractable Zinc (Zn)	2017/09/13	NC	75 - 125	91	80 - 120	<5.0	ug/g	18	30
5161509	Soluble Calcium (Ca)	2017/09/13			101	80 - 120	<0.5	mg/L	0.89	30
5161509	Soluble Magnesium (Mg)	2017/09/13			97	80 - 120	<0.5	mg/L	0.61	30
5161509	Soluble Sodium (Na)	2017/09/13			98	80 - 120	<5	mg/L	0.77	30
5161512	Conductivity	2017/09/13			100	90 - 110	<0.002	mS/cm	1.1	10
5163737	F4G-sg (Grav. Heavy Hydrocarbons)	2017/09/14	98	65 - 135	99	65 - 135	<100	ug/g	NC	50

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

(1) Recovery or RPD for this parameter is outside control limits. The overall quality control for this analysis meets acceptability criteria.

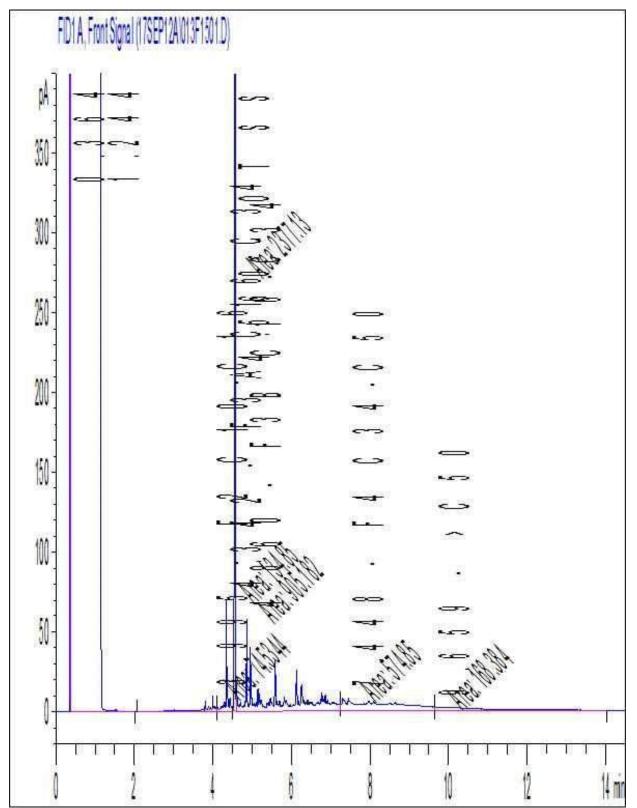
exp Services Inc Client Project #: OTT-00224605-C Sampler Initials: MAD

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

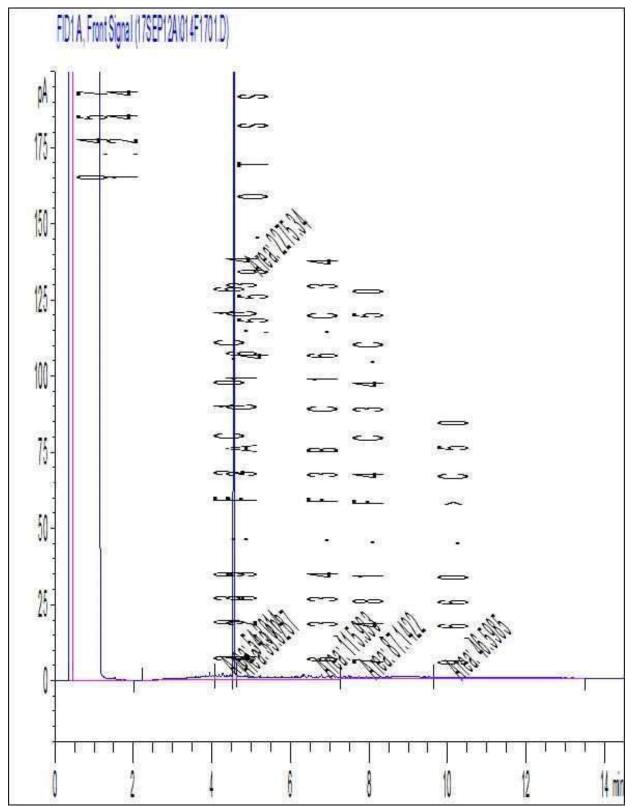
Brad Newman, Scientific Service Specialist

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

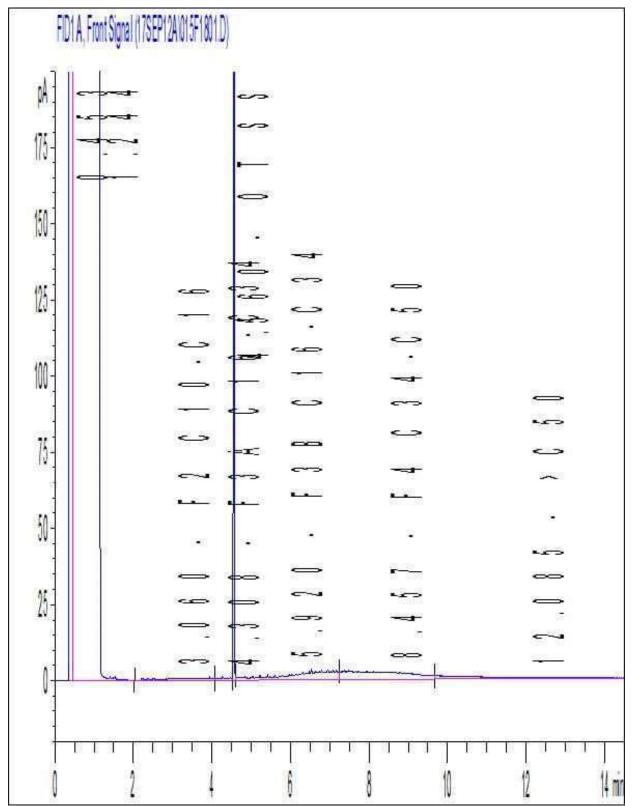

pany Name:	#17497 exp Se	6740 Campobello Ros NVOICE TO; Invices Inc		Compar		REPOR			1	_			PROJEC B460	CT INFORM	MATION:		on Cameron	11	e Only	
tion:	Accounts Payab	le		Attentio		evin / Mar	ik Mala	Ile		_	Quotation	n#:	19460	100			37J6395		-	Bottle Order #:
HSS:	100-2650 Queer			Address		Par		Iter		_	P.O. #: Project	0	OTT-	-0022460	05-C	PS4	ENV-808			627767
	Ottawa ON K2B (613) 688-1899		613) 225-7337	~				1.			Project N	lame:	-			F34	EIN V-000			Project Manager:
_		va@exp.com; Karen			mark.d	evlin@exp.con	n June	E.M.G	A THESE F	×0.004	Site #: Sampled	Ber		ų	AD				1	Alison Cameron
DE REG	ULATED DRINKIN	G WATER OR WATE ON THE MAXXAM D		OR HUMAN C	ONSUMPTION	MUSTIBE		-				EQUESTED	PLEASE				C4	#627767-01-01 Turnaround Time (1	TAT) Require	ed:
Regulatio	an 153 (2011)	ON THE MAXXAM D	Other Regulations		Special In		(e):	X						1		'	Regular (Stand	ease provide advance n	otice for rush	r projects
and the second se	Res/Park Mediu		Sanitary Sewer	24	Special In	structions	vi e	A	1.0		X							ish TAT is not specified);		[
2	Ind/Comm Coars	Reg 558.	Storm Sewer By				lease	81	U	5	P	-					and the state of the state of the	Working days for most tes		L
· 3	Agri/Other For R		Municipality				d) pe		-	20	N	19					days - contact your l	urd TAT for certain feate sun Project Manager for details	ch as BOD ans s.	d Dioxins/Furans are >
-		Other					d Filtered (please d Metais / Hg / Cr VI	PHC	0	64	7	P					Job Specific Rust	h TAT (if applies to entire	e submission	1)
	Include Criteri	a on Certificate of An	alusis (Y/N)?		-		eld Filter Metals	đ	2	34	E	1	÷.,			1 .	Date Required: Rush Confirmation /	Kombus-	Time Requ	uined:
* Sample	Barcode Label	Sample (Location) I		Date Sampled	/ Time Sampled	Matrix	Ē			3-			1.1	-		e	# of Bottes		(cail lab h	lar #)
		MW30	2-52	Sept 6	4:00 -	5				X							1-		Comments	1
		MU1207	1-53	Sept6	4:00m	5		X									7			
		140000		5017				~		. /	-		-				3			
		MW303	5-22	2017	1:00pm	5	*			X										
		MW303	3-53	2017	1:00m	5		X								EC	3			
		MW30-		Sept 7 2017	11:000	5					X					EIVED	1			
		MW30		Sept7	11:000	5			X		-					DIN	3		1	
_		MW30		2017 Sept7 2017				•	~		V	~				1011	2			
		14.00		2017 Sept 6	.11:00am	5			_	_	X	X				TA	1			
		MW30	4-51	2017	9:00 cm	5					\times					AN	1 .			
		MW300	8-53	Sept 6 Doin	9:00	5			X			,					3			
		MW 308	-53 5	iegt 6	9:00	5					×	×·					1		GN	Sa
*RI	LINQUISHED BY: (SH	nature/Print)	Date: (YY/MM	-		RECEIVED BY	: (Signature/P	rint)	D	ate: (YY/M	W/DD)	Tim	0	# jars u			Laboratory Us	e Only		
may	Tayle D	20 Min	17/09/0	11:		and the second se	mpr	m	- 3	97/0	9/08	11-2	10	not sub	bmitted	Time Sensitiv	a Temperature (°C)	an Recei Custo	dy Seal	Yes - No
OTHERW	SE AGREED TO IN WRI	TING. WORK SUBMITTED	ON THIS CHAIN OF	CUSTODY IS SUB	IEPT TO BE AVVANT	we PARA	hyter	SING	4 Rº1	7/09	08	35:2	5	× =	· .		10,9,	8 Int	fact	5
		OF OUR TERMS WHICH AR	on standard states and	COLUMN THE PARTY OF THE PARTY OF	UMPARIAGE I CICIN	- C							IENT IS		SAMPLE	S MUST BE KE	PT COOL (< 10° C) FROM	ITIME OF SAMPLING	White, Max	xxa Yellow Clis
		HOLD TIME AND PACKAG														UN	IL DELIVERY TO MAXXA		1	

8

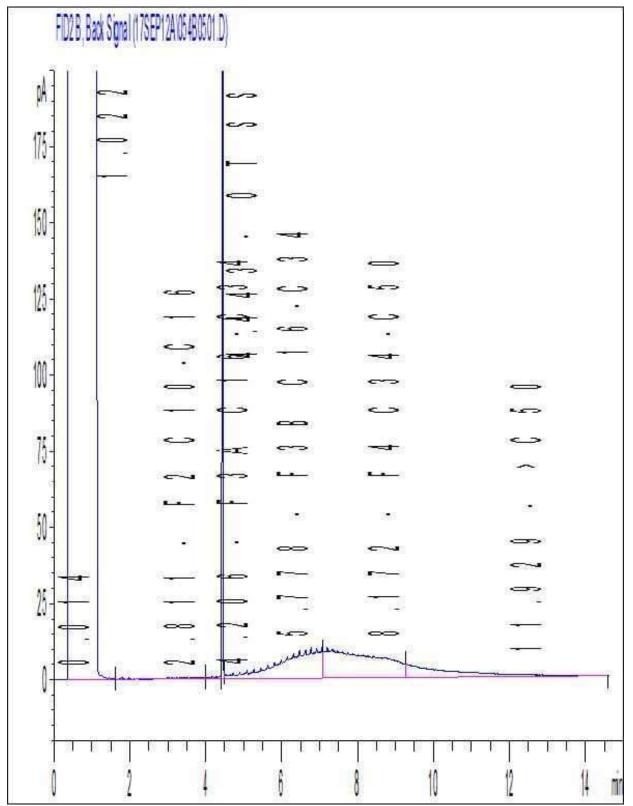
12	<xam< th=""><th>Maxam Analytics International Corp 6740 Campobello Road, Mississauga</th><th></th><th></th><th>00 Tall-free:800-</th><th>563-6266 Fax</th><th>x:(905) 817-</th><th>5777 www</th><th>maxxam ci</th><th>a</th><th></th><th></th><th></th><th></th><th></th><th>CHAIN</th><th>OF CUST</th><th>TODY RECORD</th><th></th></xam<>	Maxam Analytics International Corp 6740 Campobello Road, Mississauga			00 Tall-free:800-	563-6266 Fax	x:(905) 817-	5777 www	maxxam ci	a						CHAIN	OF CUST	TODY RECORD	
	1	NVOICE TO:			REPOR	17 10:				T	_	PROJEC	T INFORM	ATION:				 Laboratory Use 	Page 2of
pany Name	#17497 exp Se	rvices Inc	Compa	ny Name:			20102			Quotation	i di	B460	66					Maxxam Job #:	Bottle Order #:
ntion:	Accounts Payab	le	Attentio	March Di	evin / Mar	k Mi	Calls	0		P.O. #:									
ess:	100-2650 Queer	nsview Drive	Address							Broject	- 0	OTT-	0022460	5-C					627767
	Ottawa ON K2B	8H6	-	-			<u></u> ;*			Project N	ame:					S		COC #:	Project Manager:
	(613) 688-1899					Fax:				Site #		1					111111		**
a:	accounting.ottav	va@exp.com; Karen.Burke@e>	p.com; Email:	mark.de	wlin@exp.con	n	-			Sampled	By:		M	AD				C#627767-02-01	Alison Cameron
MOE REC	GULATED DRINKIN SUBMITTED	IG WATER OR WATER INTENDI ON THE MAXXAM DRINKING W	ED FOR HUMAN (ATER CHAIN OF	CONSUMPTION M CUSTODY	IUST BE	122			AN	ALYSIS RE	EQUESTED	(PLEASE E	BE SPECIF	1C)	~			Tumaround Time (TAT) R Please provide advance notice fo	
Regulat	tion 153 (2011)	Other Regula	tions	Special Ins	tructions	dirate):	X			~								tandard) TAT:	
or other designs in the local division of th	Res/Park Mediu		1100010	opecial ins	a della cia		FA			X	-							d If Rush TAT is not specified):	×
	Ind/Comm					ed (please / Hg / Cr'	1	· .	5	P	2				1.0			" = 5-7 Working days for most tests Standard TAT for certain tests such as B	00
	Agri/Other For R	SC MISA Municipality		12		Id) F	Q	2	52	N	~						fays - contact	your Project Manager for details.	OD and DioxinsPurant are > 5
able		PWQO				ered IIs / H	1	C	40	1	2					Ē	Job Specific	Rush TAT (If applies to entire subm	nission)
		Other		6		d Filtere Metals	Hd	2	24	1 NI	~						Jale Required		ne Requinid:
	Include Criteri	ia on Certificate of Analysis (Y/N)	?	1		M	0		2	14	\sim			1	E	1	Rush Confirm	ation Nutober	all lab for #)
Sampl	le Barcode Label	Sample (Location) Identification	Date Sampled	Time Sampled	Matrix			- W				1		16			# of Botties	* Comm	ents
		MW309-5	Sept 6 2017	10:30m	5					X				4			1		2
		MW309-50	Seath	10:30cm	5			X									3		
		MW309-52	Sept 6 2017	10:30m	5	14				X	X						1		
		MW310 - 51	Sept7	7:30an	5			1		X					-		i		
			Sept7	7:30im	5		X	V		1					20		3		
		MW310-53	2017	1. aum			~	~		-							-	1 240	
		MW310-53	Sept 7 2017	7:30m	5					X	X						1		
		11. 2221-52	Sept 7	\$:00am	5		V	X				8					2		•
<u> </u>		MMDYLJX	2017	w.com	2		~	0	-	-			-				OTTA	WA.	
		MW311-52	Sept7 2017	9:30cm	5					X				R	ECEIN	IED W	BTTR 1		
		MW311-53	Sept 7 2017	9:30mm	5		X					-					3	4	
		MW311-53	Sept 7	9:30an	5					X	X		•	4.1	18		1 -	· ON	Sue
	RELINQUISHED BY: (S			ime	RECEIVED BY	: (Signature/	Print)	1	Date: (YY/)	MM/DD)	Tir	ne	# jars u	sed and bmitted			Laborate	ory Use Only	85.05
1	mite and	in 17/	59/05 11	-10m lan	11 Ja	n	1 32		2017	09/8	- 11	p	not sul	with the d	Time Ser	nsitive	Temperatur	re (°C) on Recei Custody Se Present	al Yes No
N	Lasts. Devi	10		lan	siel PA	RAMIER	ET SUN	144 2	01710	9/08	22:5			*			101	918 Intact	2
ESS OTHER	WISE AGREED TO IN WI	RITING, WORK SUBMITTED ON THIS CHA OF OUR TERMS WHICH ARE AVAILABLE	IN OF CUSTODY IS SU FOR VIEWING AT WW	BJECT TO MAXXAM'	S STANDARD TER	MS AND CON	DITIONS S	IGNING OF	THIS CHAI	IN OF CUST	TODY DOCU	MENT IS		1	1	History		And the second se	ite: Maxxa Yellow: Clie
		INQUISHER TO ENSURE THE ACCURAC							ANALYTIC	AL TAT DEI	LAYS.			SAMP	ES MUST 3	UNTIL DE	OL (< 10° C LIVERY TO N) FROM TIME OF SAMPLING	
MPLE CONT	AINER, PRESERVATION	HOLD TIME AND PACKAGE INFORMATI	ON CAN BE VIEWED A	T HTTP://MAXXAM.CA	WP-CONTENT/UP	PROADS/ONT	ARIO-COC.	PDF.	_						and the second second	1.20			
							-							1. j		1			


1 2	xxam	Maxxam Analytics Igternati 6740 Campobello Road, M				5700 Toli-free 80	0-563-6266 Fax	(905) 817-	5777 www.	maxxam.ca	3						CHAI	N OF CUS	TODY RECORD	Page 2 of 2
_		WOICE TO:				REPO	RT TO:	-		•			PROJE	CT INFOR	MATION:	1		1	Laboratory Use	
ompany M	ame: #17497 exp Se	rvices Inc		Compa	ny Name:						Quotation	H-	B460	66 -					Maxxam Job #:	Bottle Order #:
ttention	Accounts Payab			Attentio	\$ Annal: 17	Devlin / 14	ak Ma	Lallo	1		P.O. #:		-							
ddress:	100-2650 Queer			Address	s:						Project .		OTT-	002246	05-C					627767
	Ottawa ON K2B		005 7007						· ·		Project Na	me:			_		_	-	COC #:	Project Manager:
et:	(613) 688-1899	Fax: (613) va@exp.com; Karen.Bu	225-7337		r mark d	levlin@exp.co	Fax	N 11	F. H. I		Site #:		-	_	12.4	AD		1001		Alison Cameron
mail:							minne	AM	Lally		Sempled E			DE CÔECI	-	MD		-	C#627767-03-01	Constant of the second s
MOE	SUBMITTED	G WATER OR WATER IN ON THE MAXXAM DRIN	KING WAT	ER CHAIN OF	CUSTODY	MUSTBE						2000100	Trebhoc	DE OFECI	1	1	1	CONTRACT/	Turnaround Time (TAT) R Please provide advance notice fr	
Re	gulation 153 (2011)	the state of the property in the	er Regulation		No. of Concession, Name	structions	cle):									I .			Standard) TAT:	-
Table 1			Sanitary Sewe		- aprecial in	istructiona	10 5	X	- av	1.0	. I							103 ALC: 200	ed if Rush TAT is not specified): T = 5-7 Working days for most tests	X
Table 2	Ind/Comm Coars	P bead	Storm Sewer B				d (please Hg / Cr '	P	2	-	<u> </u>					101		1110 Arr - 125 -	7 = 5-7 viciologi days for most lests. Standard TAT for certain lests such as B	0D and Dioxins/Furans are > 5
Table 3	Agri/Other For R		icipality				d) p	5	2	X								days - contac	st your Project Manager for details.	
Table		PWQO					d Filtered Metals /	1	L°	2									ic Rush TAT (if applies to entire subm	
		Other			1 A		eid Filtered (pl Metals / Hg	III	2	-				1.00				Date Require Rush Confire	pation Number:	• Required:
1	a reconstruction of the second s	a on Certificate of Analys			1 1	1	Field			2			12	2.2			-	# of Botlies	(c Cômm	all lab for #}
	ample Barcode Label	Sample (Location) Identi	fication	Date Sampled	Time Sampled	Matrix	-			. X.					-	- 1	-		Comm	ents
E.		-NAL 117.	3													1			×	
-		710014	-	Sept7	10000	1		1	-	-			-		-		-	-		
8 I.		MW312	-51	2017	12:00	5		X												
_				Sept7	in'	1		1	1							-	-			
		MW312	-52	2017	12.00	S		X	X	¥			_					1.1		
		×	1.	Sept 6	4	5				1								1		
		Trip Blar	IK	2017		0				X							_	1		
8			1.0													-			14.	
-								-	-	-				-			-	-		
6				2					Sec. 1				- e.							
-					-				-								-			
1																				
					-	-	-	-	-			-		1 Acres in		TON	AWA			
Q													R	ECEIV	ED		AWA			
													,						2	
°								_				-							1	
0	1																1.0	· · · ·	· ON	Re
				L										1					NAS 10	3
	RELINQUISHED BY: (S	ignature/Print)	Date: (YY/		ime		BY: (Signature/	Print)		Date: (YY/I			me	# jars not s	used and ubmitted		Sensitive	1.	Itory Use Only Use Only Custody Second	al Yes No -
	marge Stern	~	1110	4/05 11	the second second	m'	ant	~ 0		4710		11	10	-		1 Unite	Ligi	and the second second	Present	sai tes No
UNLESS	HERWISE AGREED TO IN W	RITING, WORK SUBMITTED ON	THIS CHAIN (OF CUSTODY IS SI			RANSANDCON			DI 7 D'		22	IMENT IS		-		11	+ 10	I I S Intaci	
CKNOWLE	OGMENT AND ACCEPTANCE	OF OUR TERMS WHICH ARE A	VAILABLE FO	R VIEWING AT WW	W.MAXXAM CAITER	IMS.		un nunta, a	namena or	This chik	in or board	up i bout	AWE'NI IS		PAN		-		C) FROM TIME OF SAMPLING ,	ite: Maxxa Yellow: Client
IT IS THE	ESPONSIBILITY OF THE REL	INQUISHER TO ENSURE THE	ACCURACY OF	THE CHAIN OF C	USTODY RECORD.	AN INCOMPLETE	CHAIN OF CUST	ODY MAY F	RESULT IN	ANALYTIC	AL TAT DEL	AYS.			135	in all a mula	UNTIL	DELIVERY TO	MAXXAM	
SAMPLE	ONTAINER, PRESERVATION	HOLD TIME AND PACKAGE IN	FORMATION	CAN BE VIEWED A	T HTTP://MAXXAM.G	CA/WP-CONTENT	UPLOADS/ONT	ARIO-COC.	PDF.						det	a brail of	1.2		A AND THE AND A STATE OF	
									2						3					

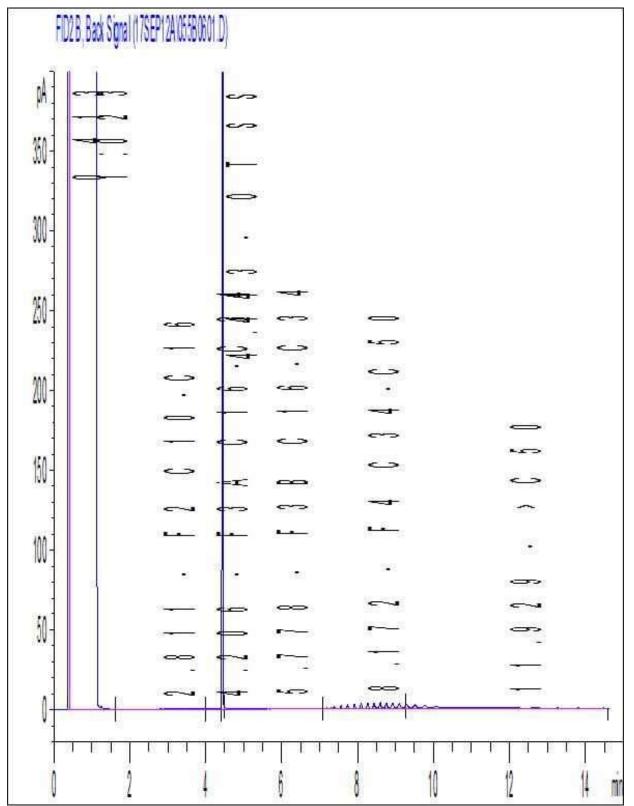
exp Services Inc Client Project #: OTT-00224605-C Client ID: MW302-S3


Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.

exp Services Inc Client Project #: OTT-00224605-C Client ID: MW303-S3


Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.

exp Services Inc Client Project #: OTT-00224605-C Client ID: MW310-S3


Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.

exp Services Inc Client Project #: OTT-00224605-C Client ID: MW321-S2

Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.

exp Services Inc Client Project #: OTT-00224605-C Client ID: MW311-S3

Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.

Your Project #: OTT-00224605-C Site Location: 1509 MERIVALE Your C.O.C. #: 627303-03-01, 98341

Attention:Jeffery O'Banion

exp Services Inc 100-2650 Queensview Drive Ottawa, ON K2B 8H6

> Report Date: 2017/09/15 Report #: R4706582 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B7J8008 Received: 2017/09/12, 09:40

Sample Matrix: Soil # Samples Received: 4

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
1,3-Dichloropropene Sum (1)	4	N/A	2017/09/15		EPA 8260C m
Petroleum Hydrocarbons F2-F4 in Soil (2)	3	2017/09/14	2017/09/15	OTT SOP-00001	CCME CWS
Moisture	3	N/A	2017/09/15	CAM SOP-00445	McKeague 2nd ed 1978
Moisture (1)	1	N/A	2017/09/14	CAM SOP-00445	Carter 2nd ed 51.2 m
Volatile Organic Compounds and F1 PHCs (1)	3	N/A	2017/09/14	CAM SOP-00230	EPA 8260C m
Volatile Organic Compounds in Soil (1)	1	N/A	2017/09/15	CAM SOP-00228	EPA 8260C m

Remarks:

Maxxam Analytics' laboratories are accredited to ISO/IEC 17025:2005 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Maxxam are based upon recognized Provincial, Federal or US method compendia such as CCME, MDDELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Maxxam's profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Maxxam in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported: unless indicated otherwise, associated sample data are not blank corrected.

Maxxam Analytics' liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Maxxam has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Maxxam, unless otherwise agreed in writing.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) This test was performed by Maxxam Analytics Mississauga

(2) All CCME PHC results met required criteria unless otherwise stated in the report. The CWS PHC methods employed by Maxxam conform to all prescribed elements of the reference method and performance based elements have been validated. All modifications have been validated and proven equivalent following "Alberta Environment's Interpretation of the Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil Validation of Performance-Based Alternative Methods September 2003". Documentation is available upon request. Modifications from Reference Method for the Canada-wide Standard for Petroleum Hydrocarbons in Soil-Tier 1 Method: F2/F3/F4 data reported using validated cold solvent extraction instead of Soxhlet extraction.

Your Project #: OTT-00224605-C Site Location: 1509 MERIVALE Your C.O.C. #: 627303-03-01, 98341

Attention:Jeffery O'Banion

exp Services Inc 100-2650 Queensview Drive Ottawa, ON K2B 8H6

> Report Date: 2017/09/15 Report #: R4706582 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B7J8008 Received: 2017/09/12, 09:40

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Alison Cameron, Project Manager Email: ACameron@maxxam.ca Phone# (613) 274-0573

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

exp Services Inc Client Project #: OTT-00224605-C Site Location: 1509 MERIVALE Sampler Initials: JB

O.REG 153 VOCS BY HS & F1-F4 (SOIL)

Maxxam ID		FCK181	FCK181	FCK182	FCK183		
Sampling Date		2017/09/06	2017/09/06	2017/09/06	2017/09/05		
· · ·		13:00	13:00	07:15	17:30		
COC Number		627303-03-01	627303-03-01	627303-03-01	627303-03-01		
	UNITS	MW 301 S5	MW 301 S5 Lab-Dup	MW 304 S3	MW 305 S3	RDL	QC Batch
Inorganics							
Moisture	%	8.1		7.7	8.2	0.2	5164123
Calculated Parameters				•	•		
1,3-Dichloropropene (cis+trans)	ug/g	<0.050		<0.050	<0.050	0.050	5160559
Volatile Organics				•	•		
Acetone (2-Propanone)	ug/g	<0.50	<0.50	<0.50	<0.50	0.50	5161988
Benzene	ug/g	<0.020	<0.020	<0.020	<0.020	0.020	5161988
Bromodichloromethane	ug/g	<0.050	<0.050	<0.050	<0.050	0.050	5161988
Bromoform	ug/g	<0.050	<0.050	<0.050	<0.050	0.050	5161988
Bromomethane	ug/g	<0.050	<0.050	<0.050	<0.050	0.050	5161988
Carbon Tetrachloride	ug/g	<0.050	<0.050	<0.050	<0.050	0.050	5161988
Chlorobenzene	ug/g	<0.050	<0.050	<0.050	<0.050	0.050	5161988
Chloroform	ug/g	<0.050	<0.050	<0.050	<0.050	0.050	5161988
Dibromochloromethane	ug/g	<0.050	<0.050	<0.050	<0.050	0.050	5161988
1,2-Dichlorobenzene	ug/g	<0.050	<0.050	<0.050	<0.050	0.050	5161988
1,3-Dichlorobenzene	ug/g	<0.050	<0.050	<0.050	<0.050	0.050	5161988
1,4-Dichlorobenzene	ug/g	<0.050	<0.050	<0.050	<0.050	0.050	5161988
Dichlorodifluoromethane (FREON 12)	ug/g	<0.050	<0.050	<0.050	<0.050	0.050	5161988
1,1-Dichloroethane	ug/g	<0.050	<0.050	<0.050	<0.050	0.050	5161988
1,2-Dichloroethane	ug/g	<0.050	<0.050	<0.050	<0.050	0.050	5161988
1,1-Dichloroethylene	ug/g	<0.050	<0.050	<0.050	<0.050	0.050	5161988
cis-1,2-Dichloroethylene	ug/g	<0.050	<0.050	<0.050	<0.050	0.050	5161988
trans-1,2-Dichloroethylene	ug/g	<0.050	<0.050	<0.050	<0.050	0.050	5161988
1,2-Dichloropropane	ug/g	<0.050	<0.050	<0.050	<0.050	0.050	5161988
cis-1,3-Dichloropropene	ug/g	<0.030	<0.030	<0.030	<0.030	0.030	5161988
trans-1,3-Dichloropropene	ug/g	<0.040	<0.040	<0.040	<0.040	0.040	5161988
Ethylbenzene	ug/g	<0.020	<0.020	<0.020	<0.020	0.020	5161988
Ethylene Dibromide	ug/g	<0.050	<0.050	<0.050	<0.050	0.050	5161988
Hexane	ug/g	<0.050	<0.050	<0.050	<0.050	0.050	5161988
Methylene Chloride(Dichloromethane)	ug/g	<0.050	<0.050	<0.050	<0.050	0.050	5161988
Methyl Ethyl Ketone (2-Butanone)	ug/g	<0.50	<0.50	<0.50	<0.50	0.50	5161988
Methyl Isobutyl Ketone	ug/g	<0.50	<0.50	<0.50	<0.50	0.50	5161988
Methyl t-butyl ether (MTBE)	ug/g	<0.050	<0.050	<0.050	<0.050	0.050	5161988
RDL = Reportable Detection Limit							
QC Batch = Quality Control Batch							

Lab-Dup = Laboratory Initiated Duplicate

exp Services Inc Client Project #: OTT-00224605-C Site Location: 1509 MERIVALE Sampler Initials: JB

O.REG 153 VOCS BY HS & F1-F4 (SOIL)

Maxxam ID		FCK181	FCK181	FCK182	FCK183		
Sampling Date		2017/09/06	2017/09/06	2017/09/06	2017/09/05		
		13:00	13:00	07:15	17:30		
COC Number		627303-03-01	627303-03-01	627303-03-01	627303-03-01		
	UNITS	MW 301 S5	MW 301 S5 Lab-Dup	MW 304 S3	MW 305 S3	RDL	QC Batch
Styrene	ug/g	<0.050	<0.050	<0.050	<0.050	0.050	5161988
1,1,1,2-Tetrachloroethane	ug/g	<0.050	<0.050	<0.050	<0.050	0.050	5161988
1,1,2,2-Tetrachloroethane	ug/g	<0.050	<0.050	<0.050	<0.050	0.050	5161988
Tetrachloroethylene	ug/g	0.069	0.074	0.19	2.3	0.050	5161988
Toluene	ug/g	<0.020	<0.020	<0.020	<0.020	0.020	5161988
1,1,1-Trichloroethane	ug/g	<0.050	<0.050	<0.050	<0.050	0.050	5161988
1,1,2-Trichloroethane	ug/g	<0.050	<0.050	<0.050	<0.050	0.050	5161988
Trichloroethylene	ug/g	<0.050	<0.050	<0.050	<0.050	0.050	5161988
Trichlorofluoromethane (FREON 11)	ug/g	<0.050	<0.050	<0.050	<0.050	0.050	5161988
Vinyl Chloride	ug/g	<0.020	<0.020	<0.020	<0.020	0.020	5161988
p+m-Xylene	ug/g	<0.020	<0.020	<0.020	<0.020	0.020	5161988
o-Xylene	ug/g	<0.020	<0.020	<0.020	<0.020	0.020	5161988
Total Xylenes	ug/g	<0.020	<0.020	<0.020	<0.020	0.020	5161988
F1 (C6-C10)	ug/g	<10	<10	<10	<10	10	5161988
F1 (C6-C10) - BTEX	ug/g	<10	<10	<10	<10	10	5161988
F2-F4 Hydrocarbons	-	•		•			
F2 (C10-C16 Hydrocarbons)	ug/g	<10		<10	<10	10	5164140
F3 (C16-C34 Hydrocarbons)	ug/g	<50		<50	<50	50	5164140
F4 (C34-C50 Hydrocarbons)	ug/g	<50		<50	<50	50	5164140
Reached Baseline at C50	ug/g	Yes		Yes	Yes		5164140
Surrogate Recovery (%)							
o-Terphenyl	%	83		83	84		5164140
4-Bromofluorobenzene	%	94	100	98	98		5161988
D10-o-Xylene	%	99	104	93	103		5161988
D4-1,2-Dichloroethane	%	81	94	93	103		5161988
D8-Toluene	%	89	94	101	94		5161988

Lab-Dup = Laboratory Initiated Duplicate

exp Services Inc Client Project #: OTT-00224605-C Site Location: 1509 MERIVALE Sampler Initials: JB

O.REG 153 VOCS BY HS (SOIL)

Maxxam ID		FCK184	FCK184		
Sampling Date		2017/09/07	2017/09/07		
		12:30	12:30		
COC Number		627303-03-01	627303-03-01		
	UNITS	MW 306 S3	MW 306 S3 Lab-Dup	RDL	QC Batch
Calculated Parameters					
1,3-Dichloropropene (cis+trans)	ug/g	<0.050		0.050	5160558
Volatile Organics	•				
Acetone (2-Propanone)	ug/g	<0.50	<0.50	0.50	5163851
Benzene	ug/g	<0.020	<0.020	0.020	5163851
Bromodichloromethane	ug/g	<0.050	<0.050	0.050	5163851
Bromoform	ug/g	<0.050	<0.050	0.050	5163851
Bromomethane	ug/g	<0.050	<0.050	0.050	5163851
Carbon Tetrachloride	ug/g	<0.050	<0.050	0.050	5163851
Chlorobenzene	ug/g	<0.050	<0.050	0.050	5163851
Chloroform	ug/g	<0.050	<0.050	0.050	5163851
Dibromochloromethane	ug/g	<0.050	<0.050	0.050	5163851
1,2-Dichlorobenzene	ug/g	<0.050	<0.050	0.050	5163851
1,3-Dichlorobenzene	ug/g	<0.050	<0.050	0.050	5163851
1,4-Dichlorobenzene	ug/g	<0.050	<0.050	0.050	5163851
Dichlorodifluoromethane (FREON 12)	ug/g	<0.050	<0.050	0.050	5163851
1,1-Dichloroethane	ug/g	<0.050	<0.050	0.050	5163851
1,2-Dichloroethane	ug/g	<0.050	<0.050	0.050	5163851
1,1-Dichloroethylene	ug/g	<0.050	<0.050	0.050	5163851
cis-1,2-Dichloroethylene	ug/g	<0.050	<0.050	0.050	5163851
trans-1,2-Dichloroethylene	ug/g	<0.050	<0.050	0.050	5163851
1,2-Dichloropropane	ug/g	<0.050	<0.050	0.050	5163851
cis-1,3-Dichloropropene	ug/g	<0.030	<0.030	0.030	5163851
trans-1,3-Dichloropropene	ug/g	<0.040	<0.040	0.040	5163851
Ethylbenzene	ug/g	<0.020	<0.020	0.020	5163851
Ethylene Dibromide	ug/g	<0.050	<0.050	0.050	5163851
Hexane	ug/g	<0.050	<0.050	0.050	5163851
Methylene Chloride(Dichloromethane)	ug/g	<0.050	<0.050	0.050	5163851
Methyl Ethyl Ketone (2-Butanone)	ug/g	<0.50	<0.50	0.50	5163851
Methyl Isobutyl Ketone	ug/g	<0.50	<0.50	0.50	5163851
Methyl t-butyl ether (MTBE)	ug/g	<0.050	<0.050	0.050	5163851
Styrene	ug/g	<0.050	<0.050	0.050	5163851
1,1,1,2-Tetrachloroethane	ug/g	<0.050	<0.050	0.050	5163851
RDL = Reportable Detection Limit QC Batch = Quality Control Batch Lab-Dup = Laboratory Initiated Duplicate					

exp Services Inc Client Project #: OTT-00224605-C Site Location: 1509 MERIVALE Sampler Initials: JB

O.REG 153 VOCS BY HS (SOIL)

Maxxam ID		FCK184	FCK184		
Sampling Date		2017/09/07	2017/09/07		
		12:30	12:30		
COC Number		627303-03-01	627303-03-01		
	UNITS	MW 306 S3	MW 306 S3 Lab-Dup	RDL	QC Batch
1,1,2,2-Tetrachloroethane	ug/g	<0.050	<0.050	0.050	5163851
Tetrachloroethylene	ug/g	0.23	0.24	0.050	5163851
Toluene	ug/g	<0.020	<0.020	0.020	5163851
1,1,1-Trichloroethane	ug/g	<0.050	<0.050	0.050	5163851
1,1,2-Trichloroethane	ug/g	<0.050	<0.050	0.050	5163851
Trichloroethylene	ug/g	<0.050	<0.050	0.050	5163851
Trichlorofluoromethane (FREON 11)	ug/g	<0.050	<0.050	0.050	5163851
Vinyl Chloride	ug/g	<0.020	<0.020	0.020	5163851
p+m-Xylene	ug/g	<0.020	<0.020	0.020	5163851
o-Xylene	ug/g	<0.020	<0.020	0.020	5163851
Total Xylenes	ug/g	<0.020	<0.020	0.020	5163851
Surrogate Recovery (%)					
4-Bromofluorobenzene	%	97	97		5163851
D10-o-Xylene	%	85	85		5163851
D4-1,2-Dichloroethane	%	105	99		5163851
D8-Toluene	%	91	92		5163851
RDL = Reportable Detection Limit					
QC Batch = Quality Control Batch					
Lab-Dup = Laboratory Initiated Duplicat	e				

exp Services Inc Client Project #: OTT-00224605-C Site Location: 1509 MERIVALE Sampler Initials: JB

RESULTS OF ANALYSES OF SOIL

Maxxam ID		FCK184		
Sampling Date		2017/09/07		
COC Number		98341		
	UNITS	MW 306 S3	RDL	QC Batch
Inorganics				
Moisture	%	9.1	1.0	5165338

exp Services Inc Client Project #: OTT-00224605-C Site Location: 1509 MERIVALE Sampler Initials: JB

TEST SUMMARY

Maxxam ID: FCK181 Sample ID: MW 301 S5 Matrix: Soil					Collected: 2017/09/06 Shipped: Received: 2017/09/12
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
1,3-Dichloropropene Sum	CALC	5160559	N/A	2017/09/15	Automated Statchk
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	5164140	2017/09/14	2017/09/15	Arezoo Habibagahi
Moisture	BAL	5164123	N/A	2017/09/15	Liliana Gaburici
Volatile Organic Compounds and F1 PHCs	GC/MSFD	5161988	N/A	2017/09/14	Manpreet Sarao
Maxxam ID: FCK181 Dup Sample ID: MW 301 S5 Matrix: Soil					Collected: 2017/09/06 Shipped: Received: 2017/09/12
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Volatile Organic Compounds and F1 PHCs	GC/MSFD	5161988	N/A	2017/09/14	Manpreet Sarao
Maxxam ID: FCK182 Sample ID: MW 304 S3 Matrix: Soil					Collected: 2017/09/06 Shipped: Received: 2017/09/12
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
1,3-Dichloropropene Sum	CALC	5160559	N/A	2017/09/15	Automated Statchk
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	5164140	2017/09/14	2017/09/15	Arezoo Habibagahi
Moisture	BAL	5164123	N/A	2017/09/15	Liliana Gaburici
Volatile Organic Compounds and F1 PHCs	GC/MSFD	5161988	N/A	2017/09/14	Manpreet Sarao
Maxxam ID: FCK183 Sample ID: MW 305 S3 Matrix: Soil					Collected: 2017/09/05 Shipped: Received: 2017/09/12
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
1,3-Dichloropropene Sum	CALC	5160559	N/A	2017/09/15	Automated Statchk
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	5164140	2017/09/14	2017/09/15	Arezoo Habibagahi
Moisture	BAL	5164123	N/A	2017/09/15	Liliana Gaburici
Volatile Organic Compounds and F1 PHCs	GC/MSFD	5161988	N/A	2017/09/14	Manpreet Sarao
Maxxam ID: FCK184 Sample ID: MW 306 S3 Matrix: Soil					Collected: 2017/09/07 Shipped: Received: 2017/09/12
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
1,3-Dichloropropene Sum	CALC	5160558	N/A	2017/09/15	Automated Statchk
1,5-Dicition opropene Sum					
Moisture	BAL	5165338	N/A	2017/09/14	Min Yang

exp Services Inc Client Project #: OTT-00224605-C Site Location: 1509 MERIVALE Sampler Initials: JB

TEST SUMMARY

	Maxxam ID: Sample ID: Matrix:	FCK184 Dup MW 306 S3 Soil					Collected: Shipped: Received:	2017/09/07 2017/09/12
т	est Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
V	olatile Organic Compou	nds in Soil	GC/MS	5163851	N/A	2017/09/15	Blair Gann	on

exp Services Inc Client Project #: OTT-00224605-C Site Location: 1509 MERIVALE Sampler Initials: JB

GENERAL COMMENTS

Each te	mperature is the a	average of up to	three cooler temperatures taken at receipt
	Package 1	8.0°C	
protoc		approximately 5	nalysis: Greater than 10g of soil was submitted in the field preserved vial. This significantly exceeds the g. Additional methanol was added to the vial to ensure extraction efficiency.

QUALITY ASSURANCE REPORT

exp Services Inc Client Project #: OTT-00224605-C

Site Location: 1509 MERIVALE Sampler Initials: JB

			Matrix	Spike	SPIKED	BLANK	Method B	Blank	RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
5161988	4-Bromofluorobenzene	2017/09/14	109	60 - 140	110	60 - 140	99	%		
5161988	D10-o-Xylene	2017/09/14	112	60 - 130	100	60 - 130	94	%		
5161988	D4-1,2-Dichloroethane	2017/09/14	91	60 - 140	91	60 - 140	90	%		
5161988	D8-Toluene	2017/09/14	110	60 - 140	100	60 - 140	94	%		
5163851	4-Bromofluorobenzene	2017/09/15	108	60 - 140	111	60 - 140	100	%		
5163851	D10-o-Xylene	2017/09/15	96	60 - 130	106	60 - 130	87	%		
5163851	D4-1,2-Dichloroethane	2017/09/15	92	60 - 140	101	60 - 140	111	%		
5163851	D8-Toluene	2017/09/15	110	60 - 140	107	60 - 140	89	%		
5164140	o-Terphenyl	2017/09/15	84	30 - 130	89	30 - 130	89	%		
5161988	1,1,1,2-Tetrachloroethane	2017/09/14	95	60 - 140	93	60 - 130	<0.050	ug/g	NC	50
5161988	1,1,1-Trichloroethane	2017/09/14	84	60 - 140	88	60 - 130	<0.050	ug/g	NC	50
5161988	1,1,2,2-Tetrachloroethane	2017/09/14	105	60 - 140	102	60 - 130	<0.050	ug/g	NC	50
5161988	1,1,2-Trichloroethane	2017/09/14	87	60 - 140	80	60 - 130	<0.050	ug/g	NC	50
5161988	1,1-Dichloroethane	2017/09/14	85	60 - 140	83	60 - 130	<0.050	ug/g	NC	50
5161988	1,1-Dichloroethylene	2017/09/14	87	60 - 140	87	60 - 130	<0.050	ug/g	NC	50
5161988	1,2-Dichlorobenzene	2017/09/14	88	60 - 140	86	60 - 130	<0.050	ug/g	NC	50
5161988	1,2-Dichloroethane	2017/09/14	96	60 - 140	92	60 - 130	<0.050	ug/g	NC	50
5161988	1,2-Dichloropropane	2017/09/14	81	60 - 140	79	60 - 130	<0.050	ug/g	NC	50
5161988	1,3-Dichlorobenzene	2017/09/14	90	60 - 140	91	60 - 130	<0.050	ug/g	NC	50
5161988	1,4-Dichlorobenzene	2017/09/14	96	60 - 140	93	60 - 130	<0.050	ug/g	NC	50
5161988	Acetone (2-Propanone)	2017/09/14	79	60 - 140	84	60 - 140	<0.50	ug/g	NC	50
5161988	Benzene	2017/09/14	90	60 - 140	88	60 - 130	<0.020	ug/g	NC	50
5161988	Bromodichloromethane	2017/09/14	85	60 - 140	82	60 - 130	<0.050	ug/g	NC	50
5161988	Bromoform	2017/09/14	101	60 - 140	98	60 - 130	<0.050	ug/g	NC	50
5161988	Bromomethane	2017/09/14	93	60 - 140	93	60 - 140	<0.050	ug/g	NC	50
5161988	Carbon Tetrachloride	2017/09/14	85	60 - 140	86	60 - 130	<0.050	ug/g	NC	50
5161988	Chlorobenzene	2017/09/14	90	60 - 140	88	60 - 130	<0.050	ug/g	NC	50
5161988	Chloroform	2017/09/14	84	60 - 140	93	60 - 130	<0.050	ug/g	NC	50
5161988	cis-1,2-Dichloroethylene	2017/09/14	91	60 - 140	108	60 - 130	<0.050	ug/g	NC	50
5161988	cis-1,3-Dichloropropene	2017/09/14	101	60 - 140	79	60 - 130	<0.030	ug/g	NC	50
5161988	Dibromochloromethane	2017/09/14	95	60 - 140	92	60 - 130	<0.050	ug/g	NC	50

QUALITY ASSURANCE REPORT(CONT'D)

exp Services Inc Client Project #: OTT-00224605-C

Site Location: 1509 MERIVALE Sampler Initials: JB

			Matrix	Spike	SPIKED	BLANK	Method E	Blank	RPI	D
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
5161988	Dichlorodifluoromethane (FREON 12)	2017/09/14	75	60 - 140	76	60 - 140	<0.050	ug/g	NC	50
5161988	Ethylbenzene	2017/09/14	89	60 - 140	88	60 - 130	<0.020	ug/g	NC	50
5161988	Ethylene Dibromide	2017/09/14	99	60 - 140	94	60 - 130	<0.050	ug/g	NC	50
5161988	F1 (C6-C10) - BTEX	2017/09/14					<10	ug/g	NC	30
5161988	F1 (C6-C10)	2017/09/14	100	60 - 140	91	80 - 120	<10	ug/g	NC	30
5161988	Hexane	2017/09/14	95	60 - 140	86	60 - 130	<0.050	ug/g	NC	50
5161988	Methyl Ethyl Ketone (2-Butanone)	2017/09/14	82	60 - 140	103	60 - 140	<0.50	ug/g	NC	50
5161988	Methyl Isobutyl Ketone	2017/09/14	104	60 - 140	80	60 - 130	<0.50	ug/g	NC	50
5161988	Methyl t-butyl ether (MTBE)	2017/09/14	98	60 - 140	85	60 - 130	<0.050	ug/g	NC	50
5161988	Methylene Chloride(Dichloromethane)	2017/09/14	104	60 - 140	93	60 - 130	<0.050	ug/g	NC	50
5161988	o-Xylene	2017/09/14	90	60 - 140	93	60 - 130	<0.020	ug/g	NC	50
5161988	p+m-Xylene	2017/09/14	92	60 - 140	91	60 - 130	<0.020	ug/g	NC	50
5161988	Styrene	2017/09/14	94	60 - 140	96	60 - 130	<0.050	ug/g	NC	50
5161988	Tetrachloroethylene	2017/09/14	90	60 - 140	89	60 - 130	<0.050	ug/g	6.7	50
5161988	Toluene	2017/09/14	93	60 - 140	85	60 - 130	<0.020	ug/g	NC	50
5161988	Total Xylenes	2017/09/14					<0.020	ug/g	NC	50
5161988	trans-1,2-Dichloroethylene	2017/09/14	101	60 - 140	90	60 - 130	<0.050	ug/g	NC	50
5161988	trans-1,3-Dichloropropene	2017/09/14	110	60 - 140	80	60 - 130	<0.040	ug/g	NC	50
5161988	Trichloroethylene	2017/09/14	92	60 - 140	90	60 - 130	<0.050	ug/g	NC	50
5161988	Trichlorofluoromethane (FREON 11)	2017/09/14	98	60 - 140	92	60 - 130	<0.050	ug/g	NC	50
5161988	Vinyl Chloride	2017/09/14	80	60 - 140	81	60 - 130	<0.020	ug/g	NC	50
5163851	1,1,1,2-Tetrachloroethane	2017/09/15	88	60 - 140	110	60 - 130	<0.050	ug/g	NC	50
5163851	1,1,1-Trichloroethane	2017/09/15	74	60 - 140	99	60 - 130	<0.050	ug/g	NC	50
5163851	1,1,2,2-Tetrachloroethane	2017/09/15	90	60 - 140	112	60 - 130	<0.050	ug/g	NC	50
5163851	1,1,2-Trichloroethane	2017/09/15	85	60 - 140	106	60 - 130	<0.050	ug/g	NC	50
5163851	1,1-Dichloroethane	2017/09/15	80	60 - 140	107	60 - 130	<0.050	ug/g	NC	50
5163851	1,1-Dichloroethylene	2017/09/15	82	60 - 140	110	60 - 130	<0.050	ug/g	NC	50
5163851	1,2-Dichlorobenzene	2017/09/15	86	60 - 140	101	60 - 130	<0.050	ug/g	NC	50
5163851	1,2-Dichloroethane	2017/09/15	93	60 - 140	122	60 - 130	<0.050	ug/g	NC	50
5163851	1,2-Dichloropropane	2017/09/15	75	60 - 140	100	60 - 130	<0.050	ug/g	NC	50
5163851	1,3-Dichlorobenzene	2017/09/15	87	60 - 140	101	60 - 130	<0.050	ug/g	NC	50

QUALITY ASSURANCE REPORT(CONT'D)

exp Services Inc Client Project #: OTT-00224605-C

Site Location: 1509 MERIVALE Sampler Initials: JB

			Matrix	Spike	SPIKED	BLANK	Method E	Blank	RPI	D
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
5163851	1,4-Dichlorobenzene	2017/09/15	88	60 - 140	102	60 - 130	<0.050	ug/g	NC	50
5163851	Acetone (2-Propanone)	2017/09/15	82	60 - 140	104	60 - 140	<0.50	ug/g	NC	50
5163851	Benzene	2017/09/15	79	60 - 140	106	60 - 130	<0.020	ug/g	NC	50
5163851	Bromodichloromethane	2017/09/15	79	60 - 140	102	60 - 130	<0.050	ug/g	NC	50
5163851	Bromoform	2017/09/15	90	60 - 140	113	60 - 130	<0.050	ug/g	NC	50
5163851	Bromomethane	2017/09/15	80	60 - 140	107	60 - 140	<0.050	ug/g	NC	50
5163851	Carbon Tetrachloride	2017/09/15	73	60 - 140	98	60 - 130	<0.050	ug/g	NC	50
5163851	Chlorobenzene	2017/09/15	82	60 - 140	105	60 - 130	<0.050	ug/g	NC	50
5163851	Chloroform	2017/09/15	77	60 - 140	101	60 - 130	<0.050	ug/g	NC	50
5163851	cis-1,2-Dichloroethylene	2017/09/15	77	60 - 140	103	60 - 130	<0.050	ug/g	NC	50
5163851	cis-1,3-Dichloropropene	2017/09/15	76	60 - 140	100	60 - 130	<0.030	ug/g	NC	50
5163851	Dibromochloromethane	2017/09/15	87	60 - 140	109	60 - 130	<0.050	ug/g	NC	50
5163851	Dichlorodifluoromethane (FREON 12)	2017/09/15	81	60 - 140	116	60 - 140	<0.050	ug/g	NC	50
5163851	Ethylbenzene	2017/09/15	79	60 - 140	103	60 - 130	<0.020	ug/g	NC	50
5163851	Ethylene Dibromide	2017/09/15	87	60 - 140	112	60 - 130	<0.050	ug/g	NC	50
5163851	Hexane	2017/09/15	76	60 - 140	118	60 - 130	<0.050	ug/g	NC	50
5163851	Methyl Ethyl Ketone (2-Butanone)	2017/09/15	84	60 - 140	112	60 - 140	<0.50	ug/g	NC	50
5163851	Methyl Isobutyl Ketone	2017/09/15	85	60 - 140	120	60 - 130	<0.50	ug/g	NC	50
5163851	Methyl t-butyl ether (MTBE)	2017/09/15	82	60 - 140	99	60 - 130	<0.050	ug/g	NC	50
5163851	Methylene Chloride(Dichloromethane)	2017/09/15	73	60 - 140	95	60 - 130	<0.050	ug/g	NC	50
5163851	o-Xylene	2017/09/15	82	60 - 140	108	60 - 130	<0.020	ug/g	NC	50
5163851	p+m-Xylene	2017/09/15	83	60 - 140	110	60 - 130	<0.020	ug/g	NC	50
5163851	Styrene	2017/09/15	84	60 - 140	113	60 - 130	<0.050	ug/g	NC	50
5163851	Tetrachloroethylene	2017/09/15	76	60 - 140	97	60 - 130	<0.050	ug/g	3.7	50
5163851	Toluene	2017/09/15	82	60 - 140	107	60 - 130	<0.020	ug/g	NC	50
5163851	Total Xylenes	2017/09/15					<0.020	ug/g	NC	50
5163851	trans-1,2-Dichloroethylene	2017/09/15	78	60 - 140	104	60 - 130	<0.050	ug/g	NC	50
5163851	trans-1,3-Dichloropropene	2017/09/15	87	60 - 140	110	60 - 130	<0.040	ug/g	NC	50
5163851	Trichloroethylene	2017/09/15	75	60 - 140	99	60 - 130	<0.050	ug/g	NC	50
5163851	Trichlorofluoromethane (FREON 11)	2017/09/15	77	60 - 140	105	60 - 130	<0.050	ug/g	NC	50
5163851	Vinyl Chloride	2017/09/15	79	60 - 140	108	60 - 130	<0.020	ug/g	NC	50

QUALITY ASSURANCE REPORT(CONT'D)

exp Services Inc Client Project #: OTT-00224605-C Site Location: 1509 MERIVALE

Sampler Initials: JB

			Matrix	Spike	SPIKED	BLANK	Method	Blank	RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
5164123	Moisture	2017/09/15							1.6	50
5164140	F2 (C10-C16 Hydrocarbons)	2017/09/15	90	50 - 130	94	80 - 120	<10	ug/g	NC	50
5164140	F3 (C16-C34 Hydrocarbons)	2017/09/15	90	50 - 130	94	80 - 120	<50	ug/g	NC	50
5164140	F4 (C34-C50 Hydrocarbons)	2017/09/15	90	50 - 130	94	80 - 120	<50	ug/g	NC	50
5165338	Moisture	2017/09/14							4.4	20
Duplicate: Pa	ired analysis of a separate portion of the same sample.	Jsed to evaluate t	he variance in t	he measurem	ent.					
Matrix Spike:	A sample to which a known amount of the analyte of in	terest has been a	dded. Used to e	valuate samp	e matrix interfe	erence.				
Spiked Blank:	A blank matrix sample to which a known amount of the	analyte, usually fi	rom a second sc	ource, has bee	n added. Used 1	to evaluate me	thod accuracy.			
Method Blank	k: A blank matrix containing all reagents used in the ana	lytical procedure.	Used to identify	y laboratory c	ontamination.					

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

exp Services Inc Client Project #: OTT-00224605-C Site Location: 1509 MERIVALE Sampler Initials: JB

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

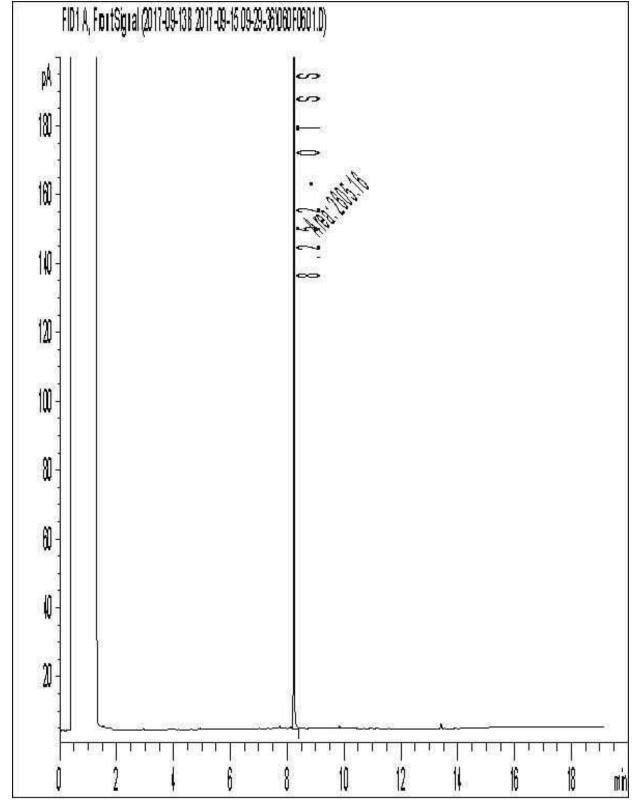
avisting Carriere

Cristina Carriere, Scientific Service Specialist

Steve Roberts, Ottawa Lab Manager

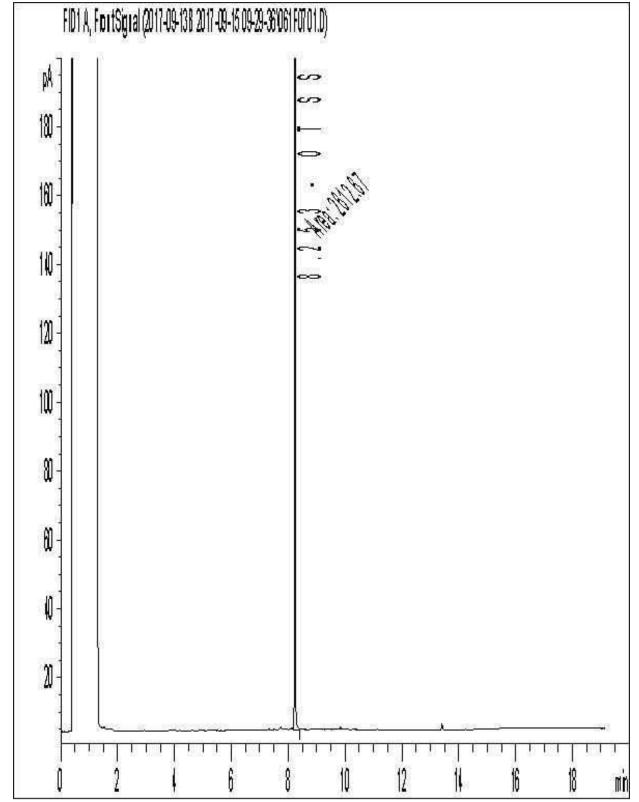
Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

	IN	VOICE TO:					REPORT TO:					PF	OJECT	INFORMA	TION:			Laboratory L	Page Ise Only:
pany Name	#17497 exp Ser	vices Inc	in the second	Compa	ny Name:			n site of			Quotation # B46066						Maxxam Job #:	Bottle Orde	
ntion:	Accounts Payabl			Attentio		fery O'Banior	1		24.51		P.0 #								
ress	100-2650 Queen		2. 7 24	Addres	s:	-01 (15D) 51		1.1.1.1.1		CLO WA	Project:	(DTT-00	0224605	-C			and the second second	627303
	Ottawa ON K2B					10000	21.22				Project Na	me: _	1500	9 Mi	crive	16		COC #:	Project Man
a:	(613) 688-1899 x	Fax: (61 a@exp.com; Karen.B	3) 225-7337		la	fery.O'Banior		ax:			Site #	-					I DINH		Alison Came
Carlos of State	AND THE OWNERS IN THE OWNER OF THE	And the second se	THE OWNER WATCHING TO A		NOT A CALCULATION OF THE PARTY OF	CONTRACTOR OF CONTRACTOR		-		0.010	Sampled B	UESTED (PLE	ACE DE	encorrio			-	C#627303-03-01	
NUE REI	SUBMITTED (G WATER OR WATER	NKING WAT	ER CHAIN OF	CUSTODY	ION MUST BI					LT SID RE		ASE DE	I OFECIFIC			THE R. P. LEWIS	Turnaround Time (T Please provide advance no	
Regula	tion 153 (2011)	0	ther Regulation	15	Spe	ial Instructions	circle):	boris									CONTRACTOR OF A DESCRIPTION OF A DESCRIP	tandard) TAT:	
ble1 [Res/Park Medium		Sanitary Sewe	r Bylaw				VI IOCAL	(iio								111000000000000000000000000000000000000	f if Rush TAT is not specified): = 5-7 Working days for most test	
	Ind/Comm Coarse	hand being the second second	Storm Sewer B	Bylaw			leas	Hydro	4S (S		-			10.0	-		Please note: S	tandard TAT for certain tests suc	
ible 3 [ible	Agri/Other For RS	termed and the second s	unicipality				(d) pe	H mnejo	1 AG								days - contact	your Project Manager for details.	
		Other					ter	Petro	153 VOCs by HS (S	+							Job Specific Date Required	Rush TAT (If applies to entire	submission) Time Required:
0.417	Include Criteri	on Certificate of Analy	ale (VAN2		-		II Die		153	BTE								ation Number.	and the second
Same	le Barcode Label	Sample (Location) Ide		Date Sampled	Time Sam	led Matrix	Ē	Reg Soil)	Reg	3							# of Bottles		(call lab for #) comments
		Compile (constitution) have	ninger of the	Date Sampled	Time dam			0.6	0	, ,		-	-	-	-				one notice
		MW 301 :	55	09.06.201	7 1-000	n SOIL		V	V								3		
-		NW304	53	09.06201	7 7:151	SOIL		~	11	1							3		
		MW 305	53	09.05.201	7 5:30	SOIL	100		1.	15							2		
		MW 306	53	09.67,20	17 12:3	SOIL			V	'							а		
	100					SOIL													
						SOIL				10								1241	
		1.5					10030		1	-			12-S	ep-17	09:40	,			
												Alison	1 Car	meron			pp	CEIVED IN OTT	AWA
							mers!										1155	ORIVED III OII	
_					-	-	1000		-	-		B	738	008					Charles and
							100						0	TT 00	1				
				-						-		VIV			-				
														11-				ON	Juc
	RELINQUISHED BY: (SI	gnature/Print)	Date: (YY/	11111111111111	'ime		VED BY: (Signal	ure/Print)	-	Date: (YY/N	MM/DD)	Time		# jars us			Laborat	ory Use Only	-
	WHY IN	sin	17/0	9/12 9	14000 L	an	Timp	~	30	2411-	9/12	9.4	0	not subr	mitted	Time Sensitive	Temperatu	re (*C) on Recei	dy Seal Yes
	.,		/				0 1			- d			-	12.00	1. 134		61	818 1	fact

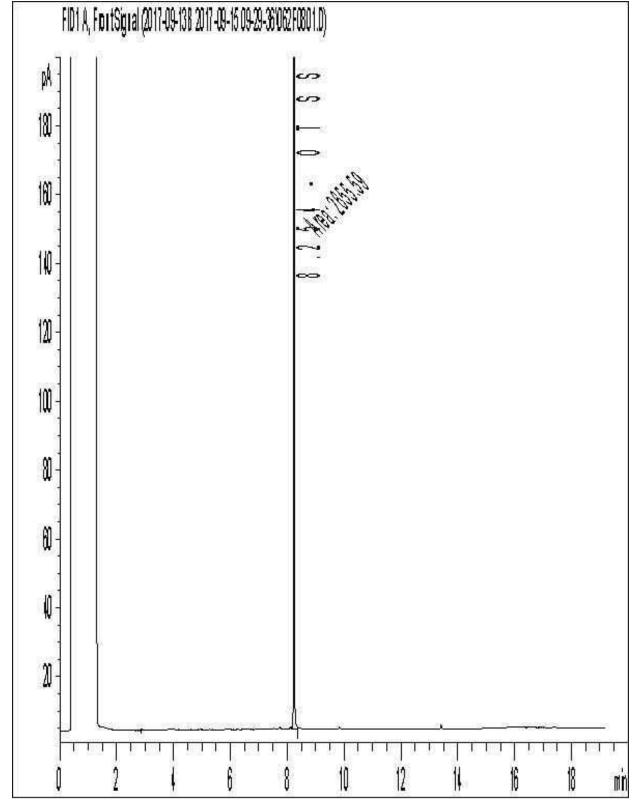

Maxxam Analytics International Corporation o/a Maxxam Analytics

Invoice Information	Rep	ort Information (i	f differs t	from Invo	ce)			Projec	t Informat	ion (where	applicable)			Turnarour	nd Time (TAT) Required
Company Name:	Company Name:	e,	ρ.	Sec	. ic	5	Quotation	n #:	P.L.M.	E ala	1.18	R.C.	Reg	ular TAT (5-7	days) Most analyses
Contact Name:	Contact Name:	10	A		an!o		P.O. #/ AF	E#:			IT STAT		PLEASE	PROVIDE ADV	ANCE NOTICE FOR RUSH PROJECT
Address:	Address:		1	~ ~	AATT-C	-)	Project #:				1.19	1121		Rush TAT (Su	urcharges will be applied)
The state of the s						1530	Site Locat	tion:	Const.	110.0		3143	10	ау	2 Days 3-4 Days
Phone: Fax:		897.764			14		Site #:	_			15 de ge		2 2 Kr		
mail:	Email: Jeffe	mo b	an d	20	exp.	com	Sampled	Ву:		1.53.1			Date Requir	ed:	
MOE REGULATED DRINKING WATER OF		NSUMPTION MU	IST BE SU	BMITTED	ON THE	MAXXAM D	and the second of	or a charactering	an and a second second	ODY		il a c	Rush Confin	mation #:	
Regulation 153 Table 1 Res/Park Med/ Fine	Other Regulations CCME Sanitary Sewer Byla		-	11	-	TT	Analysi	s Requeste	ed	-		-			RATORY USE ONLY
iable 2 Ind/Comm Coarse	MISA Storm Sewer Bylaw	CONTRACTOR OF CONTRACTOR	5						11					DDY SEAL	COOLER TEMPERATURE
Table 3 Agri/ Other	PWQO Region		He / CHU	à			1.0			4			Present	Intact	
FOR RSC (PLEASE CIRCLE) Y / N	Other (Specify) REG 558 (MIN. 3 DAY TAT REQUIR	D)	ED etaik /			NICS	WS - B)				1		N.	1	10,10,9
clude Criteria on Certificate of Analysis: Y / N			TIMITI			NORGA	tais, H					NYZE	11111		
SAMPLES MUST BE KEPT COOL (< 10 $^{\circ}$ C) FROM TIME OF S	AMPLING UNTIL DELIVERY TO MAX	AM	NERS SU			ALS & I	VIETALS					ANG	-1-1-1-		
SAMPLE IDENTIFICATION	DATE SAMPLED TIME SAMPL	D	I OF CONTAIL	PHC F1	2 - F4	53 MET	2.2					DO NOT		DIA PRESENT:	(Y)I N
SAMPLEIDENTIFICATION	(YYYY/MM/DD) (HH:MM)	MATRIX	# OF C	BTEX/	PHCs I VOCs	REG 153	REG 1 (Hg, C					HOLD-	1		COMMENTS
1 MW306 S3	2017.09.07	Soil			1								Thi	i sa	mele que)
2			2%										wit	h	iob #
3											11.1		ť	375	8008
4 12-Sep-1	7 09:40			1.1			a date of					- 15		-	
5 Alison Camero		1.57			_		1010					-	1997		Null A Shirts
5 11 1 15 11 1 1 1 1 1 1 1 		REC	EIAE	DIN	OIT	MAA 10						12.80	0.0200	Els.	1. B
7 B7J8008	0										ובעבו	1		24.6	The state of the s
8 KIV OTT	101	12.2.1	100					144000	100					1170	Service Th
9	19.2.2.4 19.2.5	1					1				-			0	NOS
0									1						
	TE: (YYYY/MM/DD) TIME: (HF	1				ture/Print)			E: (YYYY/M			HH:MM)	-	-	AXXAM JOB #

available for viewing at www.maxxam.ca/terms. Sample container, preservation, hold time and packages information can be viewed at http://maxxam.ca/wp-content/uploads/Ontario-COC.pdf. e of our terms which are and the second sec


COC-1004 (03/17)

exp Services Inc Client Project #: OTT-00224605-C Project name: 1509 MERIVALE Client ID: MW 301 S5


Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.

exp Services Inc Client Project #: OTT-00224605-C Project name: 1509 MERIVALE Client ID: MW 304 S3

Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.

exp Services Inc Client Project #: OTT-00224605-C Project name: 1509 MERIVALE Client ID: MW 305 S3

Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.

Your Project #: OTT-00224605 Your C.O.C. #: 628860-03-01

Attention:Jeffery O'Banion

exp Services Inc 100-2650 Queensview Drive Ottawa, ON K2B 8H6

> Report Date: 2017/09/21 Report #: R4725881 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B7K1578

Received: 2017/09/14, 15:55

Sample Matrix: Water # Samples Received: 8

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
1,3-Dichloropropene Sum (1)	5	N/A	2017/09/20		EPA 8260C m
1,3-Dichloropropene Sum (1)	1	N/A	2017/09/21		EPA 8260C m
Petroleum Hydro. CCME F1 & BTEX in Water	2	N/A	2017/09/21	OTT SOP-00002	CCME CWS
Petroleum Hydrocarbons F2-F4 in Water (2)	5	2017/09/18	2017/09/19	OTT SOP-00001	CCME Hydrocarbons
Volatile Organic Compounds and F1 PHCs (1)	3	N/A	2017/09/20	CAM SOP-00230	EPA 8260C m
Volatile Organic Compounds in Water (1)	3	N/A	2017/09/19	CAM SOP-00226	EPA 8260C m

Remarks:

Maxxam Analytics' laboratories are accredited to ISO/IEC 17025:2005 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Maxxam are based upon recognized Provincial, Federal or US method compendia such as CCME, MDDELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Maxxam's profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Maxxam in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported: unless indicated otherwise, associated sample data are not blank corrected.

Maxxam Analytics' liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Maxxam has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Maxxam, unless otherwise agreed in writing.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) This test was performed by Maxxam Analytics Mississauga

(2) All CCME PHC results met required criteria unless otherwise stated in the report. The CWS PHC methods employed by Maxxam conform to all prescribed elements of the reference method and performance based elements have been validated. All modifications have been validated and proven equivalent following "Alberta Environment's Interpretation of the Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil Validation of Performance-Based Alternative Methods September 2003". Documentation is available upon request. Modifications from Reference Method for the Canada-wide Standard for Petroleum Hydrocarbons in Soil-Tier 1 Method: F2/F3/F4 data reported using validated cold solvent extraction instead of Soxhlet extraction.

Your Project #: OTT-00224605 Your C.O.C. #: 628860-03-01

Attention:Jeffery O'Banion

exp Services Inc 100-2650 Queensview Drive Ottawa, ON K2B 8H6

> Report Date: 2017/09/21 Report #: R4725881 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B7K1578 Received: 2017/09/14, 15:55

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Alison Cameron, Project Manager Email: ACameron@maxxam.ca Phone# (613) 274-0573

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

exp Services Inc Client Project #: OTT-00224605 Sampler Initials: JO

	_		•		,
Maxxam ID		FDA814	FDA815		
Sampling Date		2017/09/14	2017/09/14		
Sampling Date		10:15	11:00		
COC Number		628860-03-01	628860-03-01		
	UNITS	MW 302	MW 303	RDL	QC Batch
BTEX & F1 Hydrocarbons					
Benzene	ug/L	<0.20	<0.20	0.20	5170534
Toluene	ug/L	<0.20	<0.20	0.20	5170534
Ethylbenzene	ug/L	<0.20	<0.20	0.20	5170534
o-Xylene	ug/L	<0.20	<0.20	0.20	5170534
p+m-Xylene	ug/L	<0.40	<0.40	0.40	5170534
Total Xylenes	ug/L	<0.40	<0.40	0.40	5170534
F1 (C6-C10)	ug/L	<25	<25	25	5170534
F1 (C6-C10) - BTEX	ug/L	<25	<25	25	5170534
F2-F4 Hydrocarbons					
F2 (C10-C16 Hydrocarbons)	ug/L	<100	1100	100	5168981
F3 (C16-C34 Hydrocarbons)	ug/L	<200	550	200	5168981
F4 (C34-C50 Hydrocarbons)	ug/L	<200	<200	200	5168981
Reached Baseline at C50	ug/L	Yes	Yes		5168981
Surrogate Recovery (%)		•	•		
1,4-Difluorobenzene	%	103	96		5170534
4-Bromofluorobenzene	%	93	110		5170534
D10-Ethylbenzene	%	92	110		5170534
D4-1,2-Dichloroethane	%	106	97		5170534
o-Terphenyl	%	98	103		5168981
RDL = Reportable Detection I	Limit				
QC Batch = Quality Control B	atch				

O.REG 153 PETROLEUM HYDROCARBONS (WATER)

exp Services Inc Client Project #: OTT-00224605 Sampler Initials: JO

O.REG 153 VOCS BY HS & F1-F4 (WATER)

Maxxam ID		FDA819		FDA820		FDA821		
Sampling Date		2017/09/14 13:00		2017/09/14 14:15		2017/09/14 15:45		
COC Number		628860-03-01		628860-03-01		628860-03-01		
	UNITS	MW15-5	RDL	MW15-7	RDL	MW15-9	RDL	QC Batch
Calculated Parameters								
1,3-Dichloropropene (cis+trans)	ug/L	<14	14	<1.4	1.4	<0.71	0.71	5166518
RDL = Reportable Detection Limit								
QC Batch = Quality Control Batch								

exp Services Inc Client Project #: OTT-00224605 Sampler Initials: JO

O.REG 153 VOCS BY HS & F1-F4 (WATER)

Maxxam ID		FDA816	FDA817		FDA818		
Sampling Date		2017/09/14 11:25	2017/09/14 11:45		2017/09/14 12:00		
COC Number		628860-03-01	628860-03-01		628860-03-01		
	UNITS	MW 206	MW 207	RDL	MW 15-1	RDL	QC Batch
Calculated Parameters							
1,3-Dichloropropene (cis+trans)	ug/L	<0.50	<0.50	0.50	<1.0	1.0	5166518
Volatile Organics							
Acetone (2-Propanone)	ug/L	<10	<10	10	<20	20	5168203
Benzene	ug/L	0.29	<0.20	0.20	<0.40	0.40	5168203
Bromodichloromethane	ug/L	<0.50	<0.50	0.50	<1.0	1.0	5168203
Bromoform	ug/L	<1.0	<1.0	1.0	<2.0	2.0	5168203
Bromomethane	ug/L	<0.50	<0.50	0.50	<1.0	1.0	5168203
Carbon Tetrachloride	ug/L	<0.20	<0.20	0.20	<0.40	0.40	5168203
Chlorobenzene	ug/L	<0.20	<0.20	0.20	<0.40	0.40	5168203
Chloroform	ug/L	<0.20	<0.20	0.20	<0.40	0.40	5168203
Dibromochloromethane	ug/L	<0.50	<0.50	0.50	<1.0	1.0	5168203
1,2-Dichlorobenzene	ug/L	<0.50	<0.50	0.50	<1.0	1.0	5168203
1,3-Dichlorobenzene	ug/L	<0.50	<0.50	0.50	<1.0	1.0	5168203
1,4-Dichlorobenzene	ug/L	<0.50	<0.50	0.50	<1.0	1.0	5168203
Dichlorodifluoromethane (FREON 12)	ug/L	<1.0	<1.0	1.0	<2.0	2.0	5168203
1,1-Dichloroethane	ug/L	<0.20	<0.20	0.20	<0.40	0.40	5168203
1,2-Dichloroethane	ug/L	<0.50	<0.50	0.50	<1.0	1.0	5168203
1,1-Dichloroethylene	ug/L	<0.20	<0.20	0.20	<0.40	0.40	5168203
cis-1,2-Dichloroethylene	ug/L	<0.50	<0.50	0.50	9.8	1.0	5168203
trans-1,2-Dichloroethylene	ug/L	<0.50	<0.50	0.50	<1.0	1.0	5168203
1,2-Dichloropropane	ug/L	<0.20	<0.20	0.20	<0.40	0.40	5168203
cis-1,3-Dichloropropene	ug/L	<0.30	<0.30	0.30	<0.60	0.60	5168203
trans-1,3-Dichloropropene	ug/L	<0.40	<0.40	0.40	<0.80	0.80	5168203
Ethylbenzene	ug/L	<0.20	<0.20	0.20	<0.40	0.40	5168203
Ethylene Dibromide	ug/L	<0.20	<0.20	0.20	<0.40	0.40	5168203
Hexane	ug/L	<1.0	<1.0	1.0	<2.0	2.0	5168203
Methylene Chloride(Dichloromethane)	ug/L	<2.0	<2.0	2.0	<4.0	4.0	5168203
Methyl Ethyl Ketone (2-Butanone)	ug/L	<10	<10	10	<20	20	5168203
Methyl Isobutyl Ketone	ug/L	<5.0	<5.0	5.0	<10	10	5168203
Methyl t-butyl ether (MTBE)	ug/L	<0.50	<0.50	0.50	<1.0	1.0	5168203
Styrene	ug/L	<0.50	<0.50	0.50	<1.0	1.0	5168203
1,1,1,2-Tetrachloroethane	ug/L	<0.50	<0.50	0.50	<1.0	1.0	5168203
1,1,2,2-Tetrachloroethane	ug/L	<0.50	<0.50	0.50	<1.0	1.0	5168203
Tetrachloroethylene	ug/L	<0.20	0.50	0.20	760	0.40	5168203
Toluene	ug/L	<0.20	<0.20	0.20	<0.40	0.40	5168203
RDL = Reportable Detection Limit QC Batch = Quality Control Batch							

exp Services Inc Client Project #: OTT-00224605 Sampler Initials: JO

O.REG 153 VOCS BY HS & F1-F4 (WATER)

0/14 2017/09/ 11:45 5 11:45 03-01 628860-03 06 MW 20 0 <0.20 0 <0.50 0 <0.50 0 <0.20 0 <0.20	3-01 77 RDL 0.20	2017/09/14 12:00 628860-03-01 MW 15-1 <0.40	RDL	
06 MW 20 0 <0.20	07 RDL	MW 15-1	RDL	
0 <0.20 0 <0.50	0.20		RDL	
0 <0.50		<0.40		QC Batch
	0.50		0.40	5168203
) <0.20		<1.0	1.0	5168203
	0.20	25	0.40	5168203
0 <0.50	0.50	<1.0	1.0	5168203
0 <0.20	0.20	<0.40	0.40	5168203
0 <0.20	0.20	<0.40	0.40	5168203
0 <0.20	0.20	<0.40	0.40	5168203
0 <0.20	0.20	<0.40	0.40	5168203
<25	25	170 (1)	50	5168203
<25	25	170	50	5168203
<100	100	<100	100	5168981
) <200	200	<200	200	5168981
	200	<200	200	5168981
) <200		Yes		5168981
) <200 Yes				
				5168981
		89		
Yes		89 88		5168203
Yes 93				5168203 5168203
	93			20 22

QC Batch = Quality Control Batch

(1) Result reported was due to chlorinated compounds eluting inside the F1 range.

exp Services Inc Client Project #: OTT-00224605 Sampler Initials: JO

O.REG 153 VOCS (WATER)

UNITS ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	2017/09/14 13:00 628860-03-01 MW15-5 (<500 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <10	RDL 500 5.0 5.0 10 25 5.0 5.0 5.0 5.0 5.0	2017/09/14 14:15 628860-03-01 MW15-7 < 0<0.50 < 0.50 < 0.50 < 0.50 < 0.50	RDL 50 0.50 0.50 1.0 2.5 0.50 0.50	2017/09/14 15:45 628860-03-01 MW15-9 < <225 < <0.25 < <0.25	25 0.25 0.25 0.50	QC Batch 5168193 5168193 5168193 5168193
ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	MW15-5 <500 <5.0 <5.0 <10 <25 <5.0 <5.0 <5.0 <5.0	500 5.0 5.0 10 25 5.0 5.0	MW15-7 <50 <0.50 <0.50 <1.0 <2.5 <0.50	50 0.50 0.50 1.0 2.5 0.50	MW15-9 <25 <0.25 <0.25 <0.50 <1.3	25 0.25 0.25 0.50	5168193 5168193 5168193
ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	<500 <5.0 <10 <25 <5.0 <5.0 <5.0 <5.0	500 5.0 5.0 10 25 5.0 5.0	<50 <0.50 <0.50 <1.0 <2.5 <0.50	50 0.50 0.50 1.0 2.5 0.50	<25 <0.25 <0.25 <0.50 <1.3	25 0.25 0.25 0.50	5168193 5168193 5168193
ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	<5.0 <5.0 <10 <25 <5.0 <5.0 <5.0	5.0 5.0 10 25 5.0 5.0	<0.50 <0.50 <1.0 <2.5 <0.50	0.50 0.50 1.0 2.5 0.50	<0.25 <0.25 <0.50 <1.3	0.25 0.25 0.50	5168193 5168193
ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	<5.0 <5.0 <10 <25 <5.0 <5.0 <5.0	5.0 5.0 10 25 5.0 5.0	<0.50 <0.50 <1.0 <2.5 <0.50	0.50 0.50 1.0 2.5 0.50	<0.25 <0.25 <0.50 <1.3	0.25 0.25 0.50	5168193 5168193
ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	<5.0 <10 <25 <5.0 <5.0 <5.0	5.0 10 25 5.0 5.0	<0.50 <1.0 <2.5 <0.50	0.50 1.0 2.5 0.50	<0.25 <0.50 <1.3	0.25 0.50	5168193
ug/L ug/L ug/L ug/L ug/L ug/L	<10 <25 <5.0 <5.0 <5.0	10 25 5.0 5.0	<1.0 <2.5 <0.50	1.0 2.5 0.50	<0.50 <1.3	0.50	
ug/L ug/L ug/L ug/L ug/L ug/L	<25 <5.0 <5.0 <5.0	25 5.0 5.0	<2.5 <0.50	2.5 0.50	<1.3		5168193
ug/L ug/L ug/L ug/L ug/L	<5.0 <5.0 <5.0	5.0 5.0	<0.50	0.50		1 0	2100100
ug/L ug/L ug/L ug/L	<5.0 <5.0	5.0			<0.25	1.3	5168193
ug/L ug/L ug/L	<5.0		<0.50	0.50		0.25	5168193
ug/L ug/L		5.0		5.55	<0.25	0.25	5168193
ug/L ug/L	<10		<0.50	0.50	<0.25	0.25	5168193
		10	<1.0	1.0	<0.50	0.50	5168193
	<10	10	<1.0	1.0	<0.50	0.50	5168193
∽6/ L	<10	10	<1.0	1.0	<0.50	0.50	5168193
ug/L	<10	10	<1.0	1.0	<0.50	0.50	5168193
ug/L	<25	25	<2.5	2.5	<1.3	1.3	5168193
ug/L	<5.0	5.0	<0.50	0.50	<0.25	0.25	5168193
ug/L	<10	10	<1.0	1.0	<0.50	0.50	5168193
ug/L	<5.0	5.0	<0.50	0.50	<0.25	0.25	5168193
ug/L	7.6	5.0	4.0	0.50	13	0.25	5168193
ug/L	<5.0	5.0	<0.50	0.50	<0.25	0.25	5168193
ug/L	<5.0	5.0	<0.50	0.50	<0.25	0.25	5168193
ug/L	<10	10	<1.0	1.0	<0.50	0.50	5168193
ug/L	<10	10	<1.0	1.0	<0.50	0.50	5168193
ug/L	<5.0	5.0	<0.50	0.50	<0.25	0.25	5168193
ug/L	<10	10	<1.0	1.0	<0.50	0.50	5168193
ug/L	<25	25	<2.5	2.5	<1.3	1.3	5168193
ug/L	<25	25	<2.5	2.5	<1.3	1.3	5168193
ug/L	<250	250	<25	25	<13	13	5168193
ug/L	<250	250	<25	25	<13	13	5168193
ug/L	<10	10	<1.0	1.0	<0.50	0.50	5168193
ug/L	<10	10	<1.0	1.0	<0.50	0.50	5168193
ug/L	<10	10	<1.0	1.0	<0.50	0.50	5168193
ug/L	<10	10	<1.0	1.0	<0.50	0.50	5168193
ug/L	810	5.0	2.0	0.50	72	0.25	5168193
ug/L	<10	10	<1.0	1.0	<0.50	0.50	5168193
ug/L	<5.0	5.0	<0.50	0.50	<0.25	0.25	5168193
ug/L	<10	10	<1.0	1.0	<0.50	0.50	5168193
-							
	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	ug/L <10	ug/L <10 10 ug/L <10	ug/L <10 10 <1.0 ug/L <10	ug/L <10 10 <1.0 1.0 ug/L <10 10 <1.0 1.0 ug/L <10 10 <1.0 1.0 ug/L <25 25 <2.5 2.5 ug/L <5.0 5.0 <0.50 0.50 ug/L <10 10 <1.0 1.0 ug/L <10 10 <1.0 1.0 ug/L <25.0 5.0 <2.5 2.5 ug/L <250 250 <225 25 ug/L <20 250 <225 25	ug/L<1010<1.01.0<0.50 ug/L <10	ug/L<1010<1.01.0<0.500.50 ug/L <10

exp Services Inc Client Project #: OTT-00224605 Sampler Initials: JO

O.REG 153 VOCS (WATER)

Maxxam ID		FDA819		FDA820		FDA821		
Sampling Date		2017/09/14 13:00		2017/09/14 14:15		2017/09/14 15:45		
COC Number		628860-03-01		628860-03-01		628860-03-01		
	UNITS	MW15-5	RDL	MW15-7	RDL	MW15-9	RDL	QC Batch
Trichloroethylene	ug/L	110	5.0	1.8	0.50	14	0.25	5168193
Trichlorofluoromethane (FREON 11)	ug/L	<10	10	<1.0	1.0	<0.50	0.50	5168193
Vinyl Chloride	ug/L	<10	10	<1.0	1.0	<0.50	0.50	5168193
p+m-Xylene	ug/L	<5.0	5.0	<0.50	0.50	<0.25	0.25	5168193
o-Xylene	ug/L	<5.0	5.0	<0.50	0.50	<0.25	0.25	5168193
Total Xylenes	ug/L	<5.0	5.0	<0.50	0.50	<0.25	0.25	5168193
Surrogate Recovery (%)								
4-Bromofluorobenzene	%	102		102		101		5168193
D4-1,2-Dichloroethane	%	109		110		111		5168193
D8-Toluene	%	96		96		95		5168193
RDL = Reportable Detection Limit QC Batch = Quality Control Batch								

exp Services Inc Client Project #: OTT-00224605 Sampler Initials: JO

TEST SUMMARY

Maxxam ID: FDA814 Sample ID: MW 302 Matrix: Water					Collected: 2017/09/14 Shipped: Received: 2017/09/14
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Petroleum Hydro. CCME F1 & BTEX in Water	HSGC/MSFD	5170534	N/A	2017/09/21	Lyndsey Hart
Petroleum Hydrocarbons F2-F4 in Water	GC/FID	5168981	2017/09/18	2017/09/19	Arezoo Habibagahi
Maxxam ID: FDA815 Sample ID: MW 303 Matrix: Water					Collected: 2017/09/14 Shipped: Received: 2017/09/14
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Petroleum Hydro. CCME F1 & BTEX in Water	HSGC/MSFD	5170534	N/A	2017/09/21	Lyndsey Hart
Petroleum Hydrocarbons F2-F4 in Water	GC/FID	5168981	2017/09/18	2017/09/19	Arezoo Habibagahi
Maxxam ID: FDA816 Sample ID: MW 206 Matrix: Water					Collected: 2017/09/14 Shipped: Received: 2017/09/14
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
1,3-Dichloropropene Sum	CALC	5166518	N/A	2017/09/20	Automated Statchk
Petroleum Hydrocarbons F2-F4 in Water	GC/FID	5168981	2017/09/18	2017/09/19	Arezoo Habibagahi
Volatile Organic Compounds and F1 PHCs	GC/MSFD	5168203	N/A	2017/09/20	Yang (Philip) Yu
Matrix: Water		Dotob	Everyonted	Data Analyzad	Received: 2017/09/14
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
1,3-Dichloropropene Sum	CALC	5166518	N/A	2017/09/20	Automated Statchk
Petroleum Hydrocarbons F2-F4 in Water	GC/FID	5168981	2017/09/18	2017/09/19	Arezoo Habibagahi
Volatile Organic Compounds and F1 PHCs	GC/MSFD	5168203	N/A	2017/09/20	Yang (Philip) Yu
Maxxam ID: FDA818 Sample ID: MW 15-1 Matrix: Water					Collected: 2017/09/14 Shipped: Received: 2017/09/14
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
1,3-Dichloropropene Sum	CALC	5166518	N/A	2017/09/21	Automated Statchk
Petroleum Hydrocarbons F2-F4 in Water	GC/FID	5168981	2017/09/18	2017/09/19	Arezoo Habibagahi
Volatile Organic Compounds and F1 PHCs	GC/MSFD	5168203	N/A	2017/09/20	Yang (Philip) Yu
Maxxam ID: FDA819 Sample ID: MW15-5 Matrix: Water					Collected: 2017/09/14 Shipped: Received: 2017/09/14
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
1,3-Dichloropropene Sum	CALC	5166518	N/A	2017/09/20	Automated Statchk
Volatile Organic Compounds in Water	P&T/MS	5168193	N/A	2017/09/19	Dina Wang
U	•		•		U

exp Services Inc Client Project #: OTT-00224605 Sampler Initials: JO

TEST SUMMARY

Maxxam ID: FDA820 Sample ID: MW15-7 Matrix: Water					Collected: 2017/09/14 Shipped: Received: 2017/09/14
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
1,3-Dichloropropene Sum	CALC	5166518	N/A	2017/09/20	Automated Statchk
Volatile Organic Compounds in Water	P&T/MS	5168193	N/A	2017/09/19	Dina Wang
Maxxam ID: FDA821 Sample ID: MW15-9 Matrix: Water					Collected: 2017/09/14 Shipped: Received: 2017/09/14
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
1,3-Dichloropropene Sum	CALC	5166518	N/A	2017/09/20	Automated Statchk
Volatile Organic Compounds in Water	P&T/MS	5168193	N/A	2017/09/19	Dina Wang

exp Services Inc Client Project #: OTT-00224605 Sampler Initials: JO

GENERAL COMMENTS

Each te	mperature is the	average of up to th	ree cooler temperatures taken at receipt
	Package 1	12.0°C]
voc w	ater Analysis: Due	to high concentrat	tions of target analytes, some samples required dilution. The detection limits were adjusted accordingly.
Sample accordi	•	-1] : VOCF1 Analys	is: Due to high concentrations of target analytes, sample required dilution. Detection limits were adjusted
Sample	e FDA820 [MW15-	-7] :VOC Water An	alysis: Due to foaming, sample required dilution. The detection limits were adjusted accordingly.
Results	relate only to the	e items tested.	

QUALITY ASSURANCE REPORT

exp Services Inc Client Project #: OTT-00224605 Sampler Initials: JO

			Matrix	Spike	SPIKED	BLANK	Method E	Blank	RP	D
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
5168193	4-Bromofluorobenzene	2017/09/19	104	70 - 130	102	70 - 130	99	%		
5168193	D4-1,2-Dichloroethane	2017/09/19	106	70 - 130	101	70 - 130	102	%		
5168193	D8-Toluene	2017/09/19	100	70 - 130	100	70 - 130	99	%		
5168203	4-Bromofluorobenzene	2017/09/19	97	70 - 130	96	70 - 130	89	%		
5168203	D4-1,2-Dichloroethane	2017/09/19	102	70 - 130	100	70 - 130	107	%		
5168203	D8-Toluene	2017/09/19	108	70 - 130	109	70 - 130	93	%		
5168981	o-Terphenyl	2017/09/18	99	30 - 130	109	30 - 130	92	%		
5170534	1,4-Difluorobenzene	2017/09/20	100	70 - 130	105	70 - 130	100	%		
5170534	4-Bromofluorobenzene	2017/09/20	105	70 - 130	109	70 - 130	101	%		
5170534	D10-Ethylbenzene	2017/09/20	116	70 - 130	104	70 - 130	97	%		
5170534	D4-1,2-Dichloroethane	2017/09/20	102	70 - 130	101	70 - 130	101	%		
5168193	1,1,1,2-Tetrachloroethane	2017/09/19	95	70 - 130	109	70 - 130	<0.20	ug/L	NC	30
5168193	1,1,1-Trichloroethane	2017/09/19	84	70 - 130	99	70 - 130	<0.10	ug/L	NC	30
5168193	1,1,2,2-Tetrachloroethane	2017/09/19	98	70 - 130	104	70 - 130	<0.20	ug/L	NC	30
5168193	1,1,2-Trichloroethane	2017/09/19	91	70 - 130	100	70 - 130	<0.20	ug/L	NC	30
5168193	1,1-Dichloroethane	2017/09/19	90	70 - 130	105	70 - 130	<0.10	ug/L	NC	30
5168193	1,1-Dichloroethylene	2017/09/19	96	70 - 130	113	70 - 130	<0.10	ug/L	NC	30
5168193	1,2-Dichlorobenzene	2017/09/19	85	70 - 130	98	70 - 130	<0.20	ug/L	NC	30
5168193	1,2-Dichloroethane	2017/09/19	91	70 - 130	101	70 - 130	<0.20	ug/L	NC	30
5168193	1,2-Dichloropropane	2017/09/19	84	70 - 130	96	70 - 130	<0.10	ug/L	NC	30
5168193	1,3-Dichlorobenzene	2017/09/19	85	70 - 130	101	70 - 130	<0.20	ug/L	NC	30
5168193	1,4-Dichlorobenzene	2017/09/19	85	70 - 130	101	70 - 130	<0.20	ug/L	NC	30
5168193	Acetone (2-Propanone)	2017/09/19	95	60 - 140	99	60 - 140	<10	ug/L	NC	30
5168193	Benzene	2017/09/19	88	70 - 130	101	70 - 130	<0.10	ug/L	NC	30
5168193	Bromodichloromethane	2017/09/19	88	70 - 130	100	70 - 130	<0.10	ug/L	NC	30
5168193	Bromoform	2017/09/19	102	70 - 130	112	70 - 130	<0.20	ug/L	NC	30
5168193	Bromomethane	2017/09/19	98	60 - 140	117	60 - 140	<0.50	ug/L	NC	30
5168193	Carbon Tetrachloride	2017/09/19	88	70 - 130	102	70 - 130	<0.10	ug/L	NC	30
5168193	Chlorobenzene	2017/09/19	87	70 - 130	100	70 - 130	<0.10	ug/L	NC	30
5168193	Chloroform	2017/09/19	86	70 - 130	99	70 - 130	<0.10	ug/L	NC	30
5168193	cis-1,2-Dichloroethylene	2017/09/19	86	70 - 130	100	70 - 130	<0.10	ug/L	NC	30

QUALITY ASSURANCE REPORT(CONT'D)

exp Services Inc Client Project #: OTT-00224605 Sampler Initials: JO

			Matrix	Spike	SPIKED	BLANK	Method I	Blank	RP	D
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
5168193	cis-1,3-Dichloropropene	2017/09/19	85	70 - 130	98	70 - 130	<0.20	ug/L	NC	30
5168193	Dibromochloromethane	2017/09/19	96	70 - 130	107	70 - 130	<0.20	ug/L	NC	30
5168193	Dichlorodifluoromethane (FREON 12)	2017/09/19	100	60 - 140	124	60 - 140	<0.50	ug/L	NC	30
5168193	Ethylbenzene	2017/09/19	84	70 - 130	99	70 - 130	<0.10	ug/L	NC	30
5168193	Ethylene Dibromide	2017/09/19	96	70 - 130	105	70 - 130	<0.20	ug/L	NC	30
5168193	Hexane	2017/09/19	99	70 - 130	124	70 - 130	<0.50	ug/L	NC	30
5168193	Methyl Ethyl Ketone (2-Butanone)	2017/09/19	93	60 - 140	94	60 - 140	<5.0	ug/L	NC	30
5168193	Methyl Isobutyl Ketone	2017/09/19	97	70 - 130	95	70 - 130	<5.0	ug/L	NC	30
5168193	Methyl t-butyl ether (MTBE)	2017/09/19	90	70 - 130	94	70 - 130	<0.20	ug/L	NC	30
5168193	Methylene Chloride(Dichloromethane)	2017/09/19	82	70 - 130	95	70 - 130	<0.50	ug/L	NC	30
5168193	o-Xylene	2017/09/19	87	70 - 130	99	70 - 130	<0.10	ug/L	NC	30
5168193	p+m-Xylene	2017/09/19	88	70 - 130	103	70 - 130	<0.10	ug/L	NC	30
5168193	Styrene	2017/09/19	88	70 - 130	102	70 - 130	<0.20	ug/L	NC	30
5168193	Tetrachloroethylene	2017/09/19	83	70 - 130	98	70 - 130	<0.10	ug/L	NC	30
5168193	Toluene	2017/09/19	84	70 - 130	98	70 - 130	<0.20	ug/L	NC	30
5168193	Total Xylenes	2017/09/19					<0.10	ug/L	NC	30
5168193	trans-1,2-Dichloroethylene	2017/09/19	91	70 - 130	106	70 - 130	<0.10	ug/L	NC	30
5168193	trans-1,3-Dichloropropene	2017/09/19	91	70 - 130	103	70 - 130	<0.20	ug/L	NC	30
5168193	Trichloroethylene	2017/09/19	86	70 - 130	100	70 - 130	<0.10	ug/L	NC	30
5168193	Trichlorofluoromethane (FREON 11)	2017/09/19	96	70 - 130	114	70 - 130	<0.20	ug/L	NC	30
5168193	Vinyl Chloride	2017/09/19	97	70 - 130	115	70 - 130	<0.20	ug/L	NC	30
5168203	1,1,1,2-Tetrachloroethane	2017/09/20	109	70 - 130	107	70 - 130	<0.50	ug/L	NC	30
5168203	1,1,1-Trichloroethane	2017/09/20	95	70 - 130	95	70 - 130	<0.20	ug/L	NC	30
5168203	1,1,2,2-Tetrachloroethane	2017/09/20	113	70 - 130	110	70 - 130	<0.50	ug/L	NC	30
5168203	1,1,2-Trichloroethane	2017/09/20	103	70 - 130	100	70 - 130	<0.50	ug/L	NC	30
5168203	1,1-Dichloroethane	2017/09/20	109	70 - 130	107	70 - 130	<0.20	ug/L	NC	30
5168203	1,1-Dichloroethylene	2017/09/20	110	70 - 130	108	70 - 130	<0.20	ug/L	NC	30
5168203	1,2-Dichlorobenzene	2017/09/20	96	70 - 130	94	70 - 130	<0.50	ug/L	NC	30
5168203	1,2-Dichloroethane	2017/09/20	114	70 - 130	110	70 - 130	<0.50	ug/L	NC	30
5168203	1,2-Dichloropropane	2017/09/20	101	70 - 130	99	70 - 130	<0.20	ug/L	NC	30
5168203	1,3-Dichlorobenzene	2017/09/20	95	70 - 130	93	70 - 130	<0.50	ug/L	NC	30

QUALITY ASSURANCE REPORT(CONT'D)

exp Services Inc Client Project #: OTT-00224605 Sampler Initials: JO

			Matrix	Spike	SPIKED	BLANK	Method	Blank	RP	D
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
5168203	1,4-Dichlorobenzene	2017/09/20	94	70 - 130	92	70 - 130	<0.50	ug/L	NC	30
5168203	Acetone (2-Propanone)	2017/09/20	116	60 - 140	107	60 - 140	<10	ug/L	NC	30
5168203	Benzene	2017/09/20	107	70 - 130	104	70 - 130	<0.20	ug/L	NC	30
5168203	Bromodichloromethane	2017/09/20	99	70 - 130	97	70 - 130	<0.50	ug/L	NC	30
5168203	Bromoform	2017/09/20	111	70 - 130	107	70 - 130	<1.0	ug/L	NC	30
5168203	Bromomethane	2017/09/20	115	60 - 140	109	60 - 140	<0.50	ug/L	NC	30
5168203	Carbon Tetrachloride	2017/09/20	95	70 - 130	95	70 - 130	<0.20	ug/L	NC	30
5168203	Chlorobenzene	2017/09/20	98	70 - 130	95	70 - 130	<0.20	ug/L	NC	30
5168203	Chloroform	2017/09/20	99	70 - 130	98	70 - 130	<0.20	ug/L	NC	30
5168203	cis-1,2-Dichloroethylene	2017/09/20	100	70 - 130	97	70 - 130	<0.50	ug/L	NC	30
5168203	cis-1,3-Dichloropropene	2017/09/20	86	70 - 130	81	70 - 130	<0.30	ug/L	NC	30
5168203	Dibromochloromethane	2017/09/20	109	70 - 130	106	70 - 130	<0.50	ug/L	NC	30
5168203	Dichlorodifluoromethane (FREON 12)	2017/09/20	127	60 - 140	127	60 - 140	<1.0	ug/L	NC	30
5168203	Ethylbenzene	2017/09/20	92	70 - 130	91	70 - 130	<0.20	ug/L	NC	30
5168203	Ethylene Dibromide	2017/09/20	113	70 - 130	108	70 - 130	<0.20	ug/L	NC	30
5168203	F1 (C6-C10) - BTEX	2017/09/20					<25	ug/L	NC	30
5168203	F1 (C6-C10)	2017/09/20	103	60 - 140	101	60 - 140	<25	ug/L	NC	30
5168203	Hexane	2017/09/20	114	70 - 130	113	70 - 130	<1.0	ug/L	NC	30
5168203	Methyl Ethyl Ketone (2-Butanone)	2017/09/20	122	60 - 140	113	60 - 140	<10	ug/L	NC	30
5168203	Methyl Isobutyl Ketone	2017/09/20	108	70 - 130	102	70 - 130	<5.0	ug/L	NC	30
5168203	Methyl t-butyl ether (MTBE)	2017/09/20	96	70 - 130	94	70 - 130	<0.50	ug/L	NC	30
5168203	Methylene Chloride(Dichloromethane)	2017/09/20	115	70 - 130	112	70 - 130	<2.0	ug/L	NC	30
5168203	o-Xylene	2017/09/20	94	70 - 130	92	70 - 130	<0.20	ug/L	NC	30
5168203	p+m-Xylene	2017/09/20	95	70 - 130	92	70 - 130	<0.20	ug/L	NC	30
5168203	Styrene	2017/09/20	97	70 - 130	95	70 - 130	<0.50	ug/L	NC	30
5168203	Tetrachloroethylene	2017/09/20	96	70 - 130	95	70 - 130	<0.20	ug/L	NC	30
5168203	Toluene	2017/09/20	103	70 - 130	101	70 - 130	<0.20	ug/L	NC	30
5168203	Total Xylenes	2017/09/20					<0.20	ug/L	NC	30
5168203	trans-1,2-Dichloroethylene	2017/09/20	103	70 - 130	100	70 - 130	<0.50	ug/L	NC	30
5168203	trans-1,3-Dichloropropene	2017/09/20	96	70 - 130	89	70 - 130	<0.40	ug/L	NC	30
5168203	Trichloroethylene	2017/09/20	94	70 - 130	92	70 - 130	<0.20	ug/L	NC	30

QUALITY ASSURANCE REPORT(CONT'D)

exp Services Inc Client Project #: OTT-00224605 Sampler Initials: JO

			Matrix	Spike	SPIKED I	BLANK	Method E	Blank	RPI	D
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
5168203	Trichlorofluoromethane (FREON 11)	2017/09/20	105	70 - 130	105	70 - 130	<0.50	ug/L	NC	30
5168203	Vinyl Chloride	2017/09/20	119	70 - 130	116	70 - 130	<0.20	ug/L	NC	30
5168981	F2 (C10-C16 Hydrocarbons)	2017/09/18	100	50 - 130	113	80 - 120	<100	ug/L	NC	50
5168981	F3 (C16-C34 Hydrocarbons)	2017/09/18	100	50 - 130	113	80 - 120	<200	ug/L	NC	50
5168981	F4 (C34-C50 Hydrocarbons)	2017/09/18	100	50 - 130	113	80 - 120	<200	ug/L	NC	50
5170534	Benzene	2017/09/20	101	70 - 130	88	70 - 130	<0.20	ug/L	NC	40
5170534	Ethylbenzene	2017/09/20	104	70 - 130	97	70 - 130	<0.20	ug/L	11	40
5170534	F1 (C6-C10) - BTEX	2017/09/20					<25	ug/L	NC	40
5170534	F1 (C6-C10)	2017/09/20	104	70 - 130	99	70 - 130	<25	ug/L	NC	40
5170534	o-Xylene	2017/09/20	101	70 - 130	95	70 - 130	<0.20	ug/L	NC	40
5170534	p+m-Xylene	2017/09/20	97	70 - 130	94	70 - 130	<0.40	ug/L	13	40
5170534	Toluene	2017/09/20	99	70 - 130	92	70 - 130	<0.20	ug/L	NC	40
5170534	Total Xylenes	2017/09/20					<0.40	ug/L	13	40
Duplicate: Pa	ired analysis of a separate portion of the same sample.	Jsed to evaluate t	he variance in t	he measurem	ent.					

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

exp Services Inc Client Project #: OTT-00224605 Sampler Initials: JO

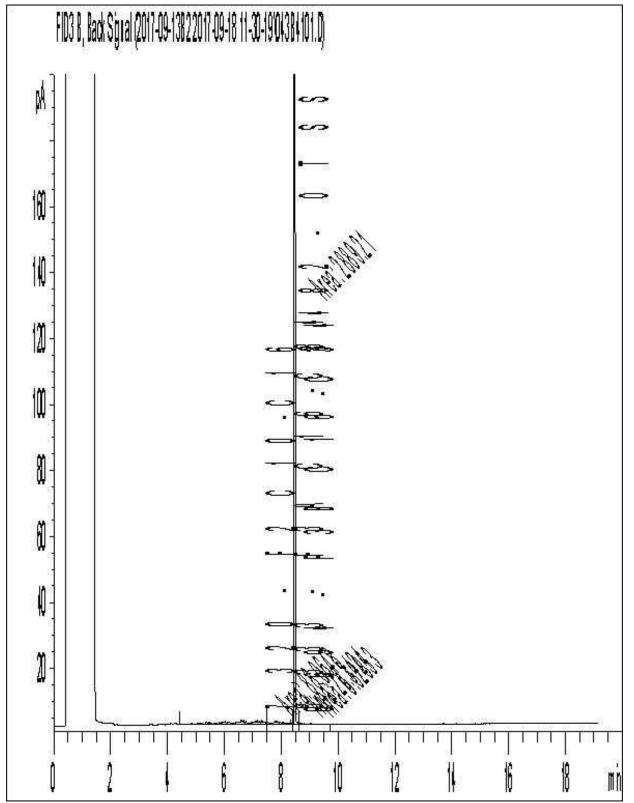
VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Cuistin Camiere

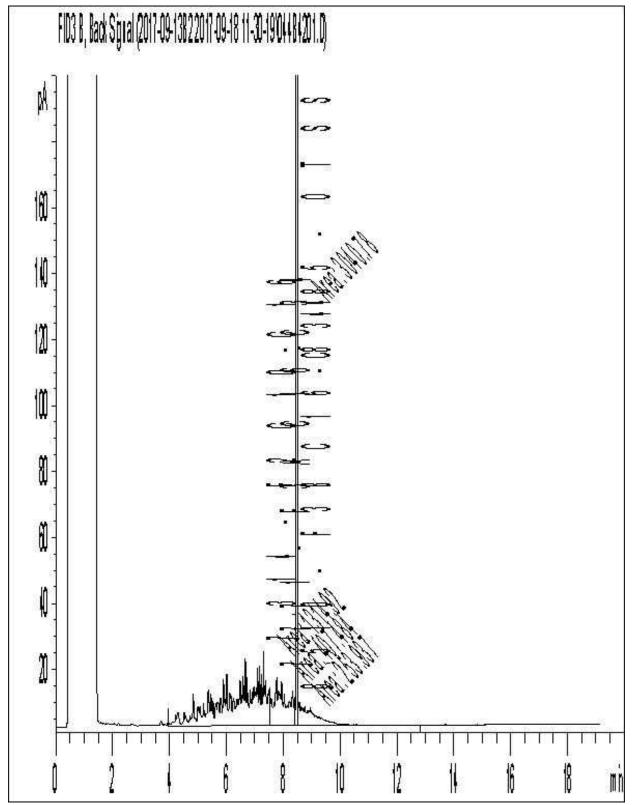
Cristina Carriere, Scientific Service Specialist

auth

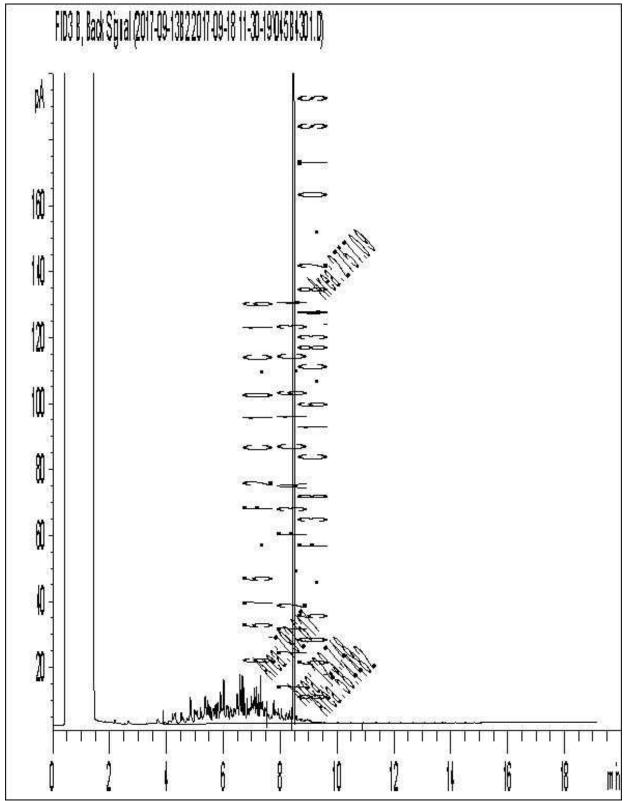

Paul Rubinato, Analyst, Maxxam Analytics

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

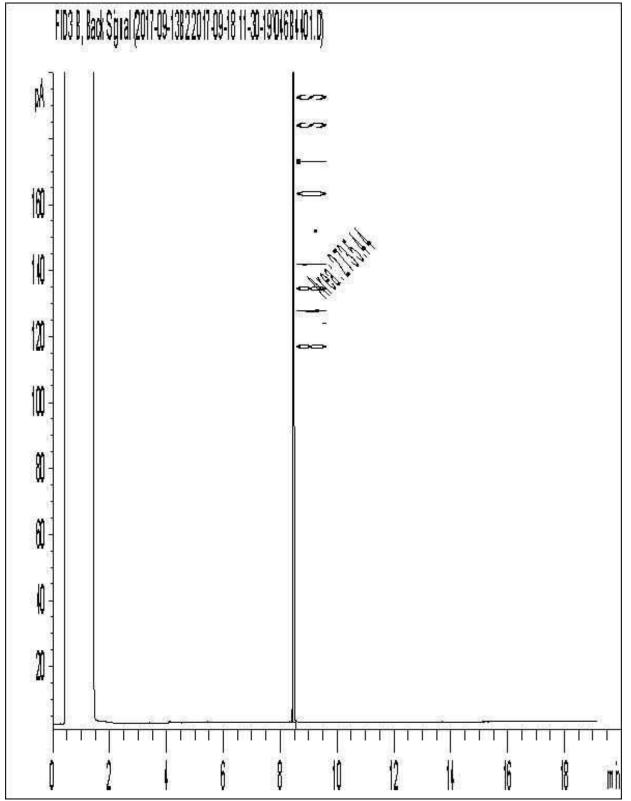
ABureau	-	Maxxam Analytics Internation 6740 Campobello Road, Miss	ssauga, Onta	rio Canada L5N 2L	Tel:(905) 817-570	REPOR	T TO:					1	PROJECT IN	FORMAT	ION:				Laboratory Use C Maxxam Job #:	Bottle Order #:
		DICE TO:		Company	lama			Sec.			Quotation #:		B46066				-		Maxxam Job #:	
any Nami	#17497 exp Serv Accounts Payable		STATES.	Attention:	Jeffery C	Banion			1		P.O. #:		OTT-002	24605	-	-				628860
ion: ss:	100-2650 Queens			Address:	-						Project: Project Name:		011 001						COC #:	Project Manager
	Ottawa ON K2B 8	H6 (642)	205 7237	X Tel:		1.	Fax		1		Site #:		-	De			_		C#628850-03-01	Alison Cameron
	(613) 688-1899 x	Fax: (613)	e@exp.co	n; Email;	Jeffery.)'Banion@ex					Sampled By: ALYSIS REQUE				0.		-	-	Turnaround Time (TAT) R	equired:
Regul	and the second s	WATER OR WATER IN N THE MAXXAM DRINK Othe ffine CCME S Reg 558. S C MISA Muni	TENIDED E	OR HUMAN CC R CHAIN OF C Bylaw	NSUMPTION M JSTODY Special Ins		eld Fittered (please circle): Metals / Hg / Cr VI	roleum Hydrocarbons	VOCs (Water)	VOCs by HS & F1-F4	tomated Colourimetry						(will t Stand Pleas days Job	ular (Sta be applied i dard TAT = se note: Sta - contact yo Specific F	Prease provide advance notice fr ndard) TAT: Roush TAT is not specified): 5-7 Working days for most tests. S-7 Working days for most tests and advard TAT for centrish tests such as I sur Project Manager for details. Rush TAT (H applies to entire sub	IOD and Dioxins/Furans a
ible _	-	Dewoo					d Filtere Metals	153 Pet	153 VO	153 VO	by Au		-					Required: h Confirmat	Al	call lab for #)
	Include Calteria	on Certificate of Analysi	s (Y/N)?			11111	Field	Reg 15 (ater)	Reg 15	O.Reg 15 (Water)	loride				- 1		# of	Bottles	Comr	and the second se
Sa	mple Barcode Label	Sample (Location) Identif		Date Sampled	Time Sampled	Matrix		Sol	0.6	10N	5	-	-		-					
		MU 302		09.14.2017	16:15	GW		1		-		-		-						
		MW 307	5		11:00				1	-		-		-	-		-		RECEIVED IN O	TAWA
		MU 206			11:25			1	1	-	++	-							RECEIVEDING	LANA
		MW 207	4		11:45					-	+	-		14	-Sep-	17 15:55	5			
		MW 15-	-1		12:00		12121	1	-	-	-		Δ1	ison (Came	ron				
1		MWIS	-		1:00				1				1111	NINI NI	1181818	ron 18	_			
									1	1			3772	B7]	aro.				on ice	_
		MWIS	7		3:12			-	~	4			VI	V I	OT'	T noi		1		01.44
		MW15-	9	*	3:45	*	1	-	1	-									ignore Ti	p placks
			1					-	-	-								-	please proc	as joh
	5-15-12			1.1										fliam	used and			Labora	tory Use Only	U
	* RELINQUISHED BY: (Signature/Print)	Date: (YY	() minimum /	Ime		BY: (Signatu		-		2709/14	15	1 : 5 G	not s	ubmitted	Time Sen	sitive		ure (°C) on Recei Custod	ent
		an		01.11	sistem	1.1.	na Sou										1.5	15'1	2,12 Intz	ct White: Maxxa Yell
	00	WRITING, WORK SUBMITTED C E OF OUR TERMS WHICH ARE	IN THRE CLIME	NOF CUSTODY IS S	UBJECT TO MAXX	M'S STANDARD	TERMS AND CO	ONDITIONS.	SIGNING	OF THIS	CHAIN OF CUST	ODY DOG	CUMENT IS		Teners.		1		C) FROM TIME OF SAMPLING MAXXAM	


Maxxam Analytics International Corporation o/a Maxxam Analytics

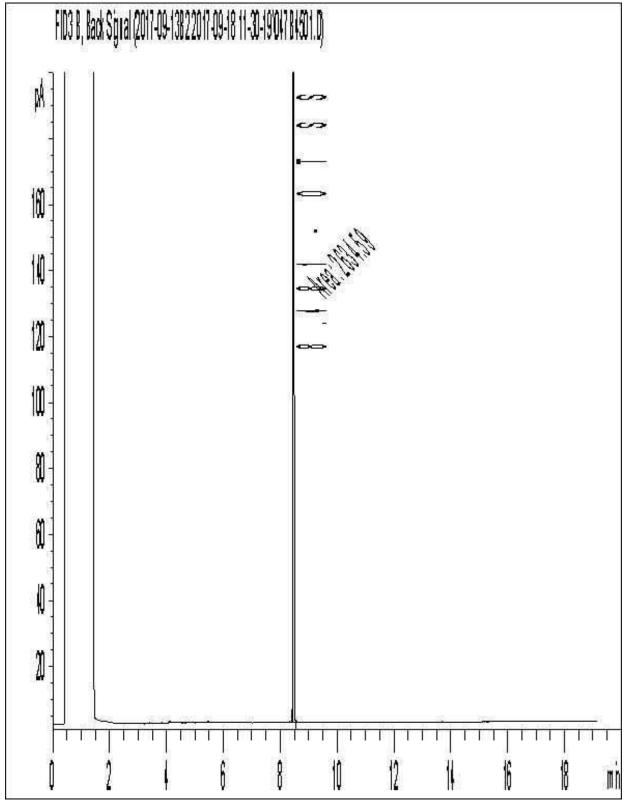
exp Services Inc Client Project #: OTT-00224605 Client ID: MW 302



Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.


exp Services Inc Client Project #: OTT-00224605 Client ID: MW 303

Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.



Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.

Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.

exp Services Inc Client Project #: OTT-00224605 Client ID: MW 15-1

Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.

Your Project #: OTT-00224605 Your C.O.C. #: 628860-02-01, 628860-01-01

Attention:Jeffery O'Banion

exp Services Inc 100-2650 Queensview Drive Ottawa, ON K2B 8H6

> Report Date: 2017/09/22 Report #: R4726864 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B7K2764

Received: 2017/09/15, 17:20

Sample Matrix: Water # Samples Received: 14

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
1,3-Dichloropropene Sum (1)	7	N/A	2017/09/21		EPA 8260C m
1,3-Dichloropropene Sum (1)	7	N/A	2017/09/22		EPA 8260C m
Chloride by Automated Colourimetry (1)	8	N/A	2017/09/21	CAM SOP-00463	EPA 325.2 m
Petroleum Hydro. CCME F1 & BTEX in Water	1	N/A	2017/09/22	OTT SOP-00002	CCME CWS
Petroleum Hydrocarbons F2-F4 in Water (2)	7	2017/09/18	2017/09/19	OTT SOP-00001	CCME Hydrocarbons
Petroleum Hydrocarbons F2-F4 in Water (2)	1	2017/09/19	2017/09/19	OTT SOP-00001	CCME Hydrocarbons
Volatile Organic Compounds and F1 PHCs (1)	7	N/A	2017/09/21	CAM SOP-00230	EPA 8260C m
Volatile Organic Compounds in Water (1)	7	N/A	2017/09/20	CAM SOP-00226	EPA 8260C m

Remarks:

Maxxam Analytics' laboratories are accredited to ISO/IEC 17025:2005 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Maxxam are based upon recognized Provincial, Federal or US method compendia such as CCME, MDDELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Maxxam's profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Maxxam in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported: unless indicated otherwise, associated sample data are not blank corrected.

Maxxam Analytics' liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Maxxam has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Maxxam, unless otherwise agreed in writing.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) This test was performed by Maxxam Analytics Mississauga

(2) All CCME PHC results met required criteria unless otherwise stated in the report. The CWS PHC methods employed by Maxxam conform to all prescribed elements of the reference method and performance based elements have been validated. All modifications have been validated and proven equivalent following "Alberta Environment's Interpretation of the Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil Validation of Performance-Based Alternative Methods September 2003". Documentation is available upon request. Modifications from Reference Method for the Canada-wide Standard for Petroleum Hydrocarbons in Soil-Tier 1 Method: F2/F3/F4 data reported using validated cold solvent extraction instead of Soxhlet extraction.

Page 1 of 31

Your Project #: OTT-00224605 Your C.O.C. #: 628860-02-01, 628860-01-01

Attention:Jeffery O'Banion

exp Services Inc 100-2650 Queensview Drive Ottawa, ON K2B 8H6

> Report Date: 2017/09/22 Report #: R4726864 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B7K2764 Received: 2017/09/15, 17:20

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Alison Cameron, Project Manager Email: ACameron@maxxam.ca Phone# (613) 274-0573

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

exp Services Inc Client Project #: OTT-00224605 Sampler Initials: JB

RESULTS OF ANALYSES OF WATER

		UNITS N	W312	RDL	M/M	/311	MW313	RDL		BLANK	RDL	QC Bat	ch
COC Number		6288	60-02-0	1	62886	0-02-0:	1 628860-02-0	1	628860)-01-01			
Sampling Date		201	7/09/15	;	2017/	/09/15	2017/09/15	5	2017/	09/15			
Maxxam ID		FI	DH373		FDF	1374	FDH375		FDH	1383			
Dissolved Chloride (Cl) RDL = Reportable Detection I QC Batch = Quality Control B Lab-Dup = Laboratory Initiate	atch	2900 cate	30	23	00	25	1900	14	.00	13	800	20	5174501
Inorganics	UNITS	MW307	RDL	MM	/308	RDL	MW309	MM	/310		/310 -Dup	RDL	QC Batc
COC Number		628860-02-0	1	628860	0-02-01		628860-02-01	628860	0-02-01	62886		L	
Sampling Date		2017/09/15		2017/	09/15		2017/09/15	2017/	/09/15	2017/	/09/15		
Maxxam ID		FDH369		FDF	1370		FDH371	FDF	1372	FDF	1372		

inorganics												
Dissolved Chloride (Cl)	mg/L	460	5.0	1300	1300	15	<1.0	1.0	5174501			
RDL = Reportable Detection Limit												
QC Batch = Quality Control Ba	atch											

exp Services Inc Client Project #: OTT-00224605 Sampler Initials: JB

O.REG 153 PETROLEUM HYDROCARBONS (WATER)

Maxxam ID		FDH383		
Sampling Date		2017/09/15		
COC Number		628860-01-01		
	UNITS	TRIP BLANK	RDL	QC Batch
BTEX & F1 Hydrocarbons				
Benzene	ug/L	<0.20	0.20	5173727
Toluene	ug/L	<0.20	0.20	5173727
Ethylbenzene	ug/L	<0.20	0.20	5173727
o-Xylene	ug/L	<0.20	0.20	5173727
p+m-Xylene	ug/L	<0.40	0.40	5173727
Total Xylenes	ug/L	<0.40	0.40	5173727
F1 (C6-C10)	ug/L	<25	25	5173727
F1 (C6-C10) - BTEX	ug/L	<25	25	5173727
F2-F4 Hydrocarbons				
F2 (C10-C16 Hydrocarbons)	ug/L	<100	100	5171049
F3 (C16-C34 Hydrocarbons)	ug/L	<200	200	5171049
F4 (C34-C50 Hydrocarbons)	ug/L	<200	200	5171049
Reached Baseline at C50	ug/L	Yes		5171049
Surrogate Recovery (%)				
1,4-Difluorobenzene	%	95		5173727
4-Bromofluorobenzene	%	106		5173727
D10-Ethylbenzene	%	109		5173727
D4-1,2-Dichloroethane	%	93		5173727
o-Terphenyl	%	95		5171049
RDL = Reportable Detection L				
QC Batch = Quality Control Ba	atch			

exp Services Inc Client Project #: OTT-00224605 Sampler Initials: JB

O.REG 153 VOCS BY HS & F1-F4 (WATER)

Maxxam ID		FDH366	FDH372	FDH372	FDH374	FDH375		
Sampling Date		2017/09/15	2017/09/15	2017/09/15	2017/09/15	2017/09/15		
COC Number		628860-02-01	628860-02-01	628860-02-01	628860-02-01	628860-02-01		
	UNITS	MW15-10	MW310	MW310 Lab-Dup	MW311	MW313	RDL	QC Batc
Calculated Parameters								
1,3-Dichloropropene (cis+trans)	ug/L	<0.50	<0.50		<0.50	<0.50	0.50	516882
Volatile Organics		•	•	•				
Acetone (2-Propanone)	ug/L	<10	<10	<10	10	<10	10	515517
Benzene	ug/L	<0.20	<0.20	<0.20	<0.20	<0.20	0.20	515517
Bromodichloromethane	ug/L	<0.50	<0.50	<0.50	<0.50	<0.50	0.50	515517
Bromoform	ug/L	<1.0	<1.0	<1.0	<1.0	<1.0	1.0	515517
Bromomethane	ug/L	<0.50	<0.50	<0.50	<0.50	<0.50	0.50	5155174
Carbon Tetrachloride	ug/L	<0.20	<0.20	<0.20	<0.20	<0.20	0.20	5155174
Chlorobenzene	ug/L	<0.20	<0.20	<0.20	<0.20	<0.20	0.20	515517
Chloroform	ug/L	1.9	<0.20	<0.20	<0.20	<0.20	0.20	515517
Dibromochloromethane	ug/L	<0.50	<0.50	<0.50	<0.50	<0.50	0.50	515517
1,2-Dichlorobenzene	ug/L	<0.50	<0.50	<0.50	<0.50	<0.50	0.50	515517
1,3-Dichlorobenzene	ug/L	<0.50	<0.50	<0.50	<0.50	<0.50	0.50	515517
1,4-Dichlorobenzene	ug/L	<0.50	<0.50	<0.50	<0.50	<0.50	0.50	515517
Dichlorodifluoromethane (FREON 12)	ug/L	<1.0	<1.0	<1.0	<1.0	<1.0	1.0	515517
1,1-Dichloroethane	ug/L	<0.20	<0.20	<0.20	<0.20	<0.20	0.20	515517
1,2-Dichloroethane	ug/L	<0.50	<0.50	<0.50	<0.50	<0.50	0.50	515517
1,1-Dichloroethylene	ug/L	<0.20	<0.20	<0.20	<0.20	<0.20	0.20	
cis-1,2-Dichloroethylene	ug/L	<0.50	<0.50	<0.50	<0.50	<0.50	0.50	515517
trans-1,2-Dichloroethylene	ug/L	<0.50	<0.50	<0.50	<0.50	<0.50	0.50	515517
1,2-Dichloropropane	ug/L	<0.20	<0.20	<0.20	<0.20	<0.20	0.20	
cis-1,3-Dichloropropene	ug/L	<0.30	<0.30	<0.30	<0.30	<0.30	0.30	
trans-1,3-Dichloropropene	ug/L	<0.40	<0.40	<0.40	<0.40	<0.40	0.40	515517
Ethylbenzene	ug/L	<0.20	<0.20	<0.20	1.7	1.7	0.20	515517
Ethylene Dibromide	ug/L	<0.20	<0.20	<0.20	<0.20	<0.20	0.20	515517
Hexane	ug/L	<1.0	<1.0	<1.0	<1.0	<1.0	1.0	515517
Methylene Chloride(Dichloromethane)	ug/L	<2.0	<2.0	<2.0	<2.0	<2.0	2.0	515517
Methyl Ethyl Ketone (2-Butanone)	ug/L	<10	<10	<10	<10	<10	10	515517
Methyl Isobutyl Ketone	ug/L	<5.0	<5.0	<5.0	<5.0	<5.0	5.0	515517
Methyl t-butyl ether (MTBE)	ug/L	<0.50	<0.50	<0.50	<0.50	<0.50	0.50	515517
Styrene	ug/L	< 0.50	<0.50	<0.50	<0.50	<0.50	0.50	
, 1,1,1,2-Tetrachloroethane	ug/L	<0.50	<0.50	<0.50	<0.50	<0.50	0.50	
1,1,2,2-Tetrachloroethane	ug/L	< 0.50	< 0.50	<0.50	<0.50	<0.50	0.50	
Tetrachloroethylene	ug/L	120	0.38	0.40	0.47	0.49	0.20	
Toluene	ug/L	<0.20	<0.20	<0.20	<0.20	<0.20		515517

Lab-Dup = Laboratory Initiated Duplicate

exp Services Inc Client Project #: OTT-00224605 Sampler Initials: JB

O.REG 153 VOCS BY HS & F1-F4 (WATER)

Maxxam ID		FDH366	FDH372	FDH372	FDH374	FDH375		
Sampling Date		2017/09/15	2017/09/15	2017/09/15	2017/09/15	2017/09/15		
COC Number		628860-02-01	628860-02-01	628860-02-01	628860-02-01	628860-02-01		
	UNITS	MW15-10	MW310	MW310 Lab-Dup	MW311	MW313	RDL	QC Batch
1,1,1-Trichloroethane	ug/L	<0.20	<0.20	<0.20	<0.20	<0.20	0.20	5155174
1,1,2-Trichloroethane	ug/L	<0.50	<0.50	<0.50	<0.50	<0.50	0.50	5155174
Trichloroethylene	ug/L	0.86	<0.20	<0.20	<0.20	<0.20	0.20	5155174
Trichlorofluoromethane (FREON 11)	ug/L	<0.50	<0.50	<0.50	<0.50	<0.50	0.50	5155174
Vinyl Chloride	ug/L	<0.20	<0.20	<0.20	<0.20	<0.20	0.20	5155174
p+m-Xylene	ug/L	<0.20	<0.20	<0.20	5.0	5.0	0.20	5155174
o-Xylene	ug/L	<0.20	<0.20	<0.20	0.76	0.64	0.20	5155174
Total Xylenes	ug/L	<0.20	<0.20	<0.20	5.7	5.6	0.20	5155174
F1 (C6-C10)	ug/L	28 (1)	<25	<25	79	84	25	5155174
F1 (C6-C10) - BTEX	ug/L	28	<25	<25	72	76	25	5155174
F2-F4 Hydrocarbons		•	•	•	•	•		
F2 (C10-C16 Hydrocarbons)	ug/L	<100	<100		360	450	100	5168983
F3 (C16-C34 Hydrocarbons)	ug/L	<200	<200		<200	<200	200	5168983
F4 (C34-C50 Hydrocarbons)	ug/L	<200	<200		<200	<200	200	5168983
Reached Baseline at C50	ug/L	Yes	Yes		Yes	Yes		5168983
Surrogate Recovery (%)		•	•	•	•	•		
o-Terphenyl	%	87	89		89	89		5168983
4-Bromofluorobenzene	%	90	91	90	91	91		5155174
D4-1,2-Dichloroethane	%	116	115	113	115	115		5155174
D8-Toluene	%	97	97	98	97	96		5155174
RDL = Reportable Detection Limit				•	•	•		

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

(1) Result reported was due to chlorinated compounds eluting inside the F1 range.

exp Services Inc Client Project #: OTT-00224605 Sampler Initials: JB

O.REG 153 VOCS BY HS & F1-F4 (WATER)

	I					
Maxxam ID		FDH380	FDH381	FDH382		
Sampling Date		2017/09/15	2017/09/15	2017/09/15		
COC Number		628860-01-01	628860-01-01	628860-01-01		
	UNITS	MW301	MW304	MW305	RDL	QC Batch
Calculated Parameters						
1,3-Dichloropropene (cis+trans)	ug/L	<0.50	<0.50	<0.50	0.50	5168826
Volatile Organics						
Acetone (2-Propanone)	ug/L	<10	<10	<10	10	5155174
Benzene	ug/L	<0.20	<0.20	<0.20	0.20	5155174
Bromodichloromethane	ug/L	<0.50	<0.50	<0.50	0.50	5155174
Bromoform	ug/L	<1.0	<1.0	<1.0	1.0	5155174
Bromomethane	ug/L	<0.50	<0.50	<0.50	0.50	5155174
Carbon Tetrachloride	ug/L	<0.20	<0.20	<0.20	0.20	5155174
Chlorobenzene	ug/L	<0.20	<0.20	<0.20	0.20	5155174
Chloroform	ug/L	0.84	2.0	2.8	0.20	5155174
Dibromochloromethane	ug/L	<0.50	<0.50	<0.50	0.50	5155174
1,2-Dichlorobenzene	ug/L	<0.50	<0.50	<0.50	0.50	5155174
1,3-Dichlorobenzene	ug/L	<0.50	<0.50	<0.50	0.50	5155174
1,4-Dichlorobenzene	ug/L	<0.50	<0.50	<0.50	0.50	5155174
Dichlorodifluoromethane (FREON 12)	ug/L	<1.0	<1.0	<1.0	1.0	5155174
1,1-Dichloroethane	ug/L	<0.20	<0.20	<0.20	0.20	5155174
1,2-Dichloroethane	ug/L	<0.50	<0.50	<0.50	0.50	5155174
1,1-Dichloroethylene	ug/L	<0.20	<0.20	<0.20	0.20	5155174
cis-1,2-Dichloroethylene	ug/L	<0.50	<0.50	<0.50	0.50	5155174
trans-1,2-Dichloroethylene	ug/L	<0.50	<0.50	<0.50	0.50	5155174
1,2-Dichloropropane	ug/L	<0.20	<0.20	<0.20	0.20	5155174
cis-1,3-Dichloropropene	ug/L	<0.30	<0.30	<0.30	0.30	5155174
trans-1,3-Dichloropropene	ug/L	<0.40	<0.40	<0.40	0.40	5155174
Ethylbenzene	ug/L	<0.20	<0.20	<0.20	0.20	5155174
Ethylene Dibromide	ug/L	<0.20	<0.20	<0.20	0.20	5155174
Hexane	ug/L	<1.0	<1.0	<1.0	1.0	5155174
Methylene Chloride(Dichloromethane)	ug/L	<2.0	<2.0	<2.0	2.0	5155174
Methyl Ethyl Ketone (2-Butanone)	ug/L	<10	<10	<10	10	5155174
Methyl Isobutyl Ketone	ug/L	<5.0	<5.0	<5.0	5.0	5155174
Methyl t-butyl ether (MTBE)	ug/L	<0.50	<0.50	<0.50	0.50	5155174
Styrene	ug/L	<0.50	<0.50	<0.50	0.50	5155174
1,1,1,2-Tetrachloroethane	ug/L	<0.50	<0.50	<0.50	0.50	5155174
1,1,2,2-Tetrachloroethane	ug/L	<0.50	<0.50	<0.50	0.50	5155174
Tetrachloroethylene	ug/L	<0.20	0.96	110	0.20	5155174
Toluene	ug/L	<0.20	<0.20	<0.20	0.20	5155174
1,1,1-Trichloroethane	ug/L	<0.20	<0.20	<0.20	0.20	5155174
RDL = Reportable Detection Limit QC Batch = Quality Control Batch					1	

exp Services Inc Client Project #: OTT-00224605 Sampler Initials: JB

O.REG 153 VOCS BY HS & F1-F4 (WATER)

Maxxam ID		FDH380	FDH381	FDH382		
Sampling Date		2017/09/15	2017/09/15	2017/09/15		
COC Number		628860-01-01	628860-01-01	628860-01-01		
	UNITS	MW301	MW304	MW305	RDL	QC Batch
1,1,2-Trichloroethane	ug/L	<0.50	<0.50	<0.50	0.50	5155174
Trichloroethylene	ug/L	<0.20	<0.20	1.6	0.20	5155174
Trichlorofluoromethane (FREON 11)	ug/L	<0.50	<0.50	<0.50	0.50	5155174
Vinyl Chloride	ug/L	<0.20	<0.20	<0.20	0.20	5155174
p+m-Xylene	ug/L	<0.20	<0.20	<0.20	0.20	5155174
o-Xylene	ug/L	<0.20	<0.20	<0.20	0.20	5155174
Total Xylenes	ug/L	<0.20	<0.20	<0.20	0.20	5155174
F1 (C6-C10)	ug/L	<25	<25	26	25	5155174
F1 (C6-C10) - BTEX	ug/L	<25	<25	26	25	5155174
F2-F4 Hydrocarbons			•			
F2 (C10-C16 Hydrocarbons)	ug/L	<100	<100	<100	100	5168983
F3 (C16-C34 Hydrocarbons)	ug/L	<200	<200	<200	200	5168983
F4 (C34-C50 Hydrocarbons)	ug/L	<200	<200	<200	200	5168983
Reached Baseline at C50	ug/L	Yes	Yes	Yes		5168983
Surrogate Recovery (%)			•			
o-Terphenyl	%	89	89	90		5168983
4-Bromofluorobenzene	%	89	91	91		5155174
D4-1,2-Dichloroethane	%	115	115	115		5155174
D8-Toluene	%	97	96	95		5155174
RDL = Reportable Detection Limit QC Batch = Quality Control Batch	·				·	

exp Services Inc Client Project #: OTT-00224605 Sampler Initials: JB

O.REG 153 VOCS (WATER)

Maxxam ID		FDH367	FDH368	FDH369	FDH370	FDH371	_	
Sampling Date		2017/09/15	2017/09/15	2017/09/15	2017/09/15	2017/09/15		
COC Number		628860-02-01	628860-02-01	628860-02-01	628860-02-01	628860-02-01		
	UNITS	MW15-6	MW15-8	MW307	MW308	MW309	RDL	QC Batch
Calculated Parameters								
1,3-Dichloropropene (cis+trans)	ug/L	<0.28	<0.28	<0.28	<0.28	<0.28	0.28	5168826
Volatile Organics		•		•				
Acetone (2-Propanone)	ug/L	<10	<10	<10	<10	<10	10	5162263
Benzene	ug/L	<0.10	<0.10	<0.10	<0.10	<0.10	0.10	5162263
Bromodichloromethane	ug/L	<0.10	<0.10	<0.10	<0.10	<0.10	0.10	5162263
Bromoform	ug/L	<0.20	<0.20	<0.20	<0.20	<0.20	0.20	5162263
Bromomethane	ug/L	<0.50	<0.50	<0.50	<0.50	<0.50	0.50	5162263
Carbon Tetrachloride	ug/L	<0.10	<0.10	<0.10	<0.10	<0.10	0.10	5162263
Chlorobenzene	ug/L	<0.10	<0.10	<0.10	<0.10	<0.10	0.10	5162263
Chloroform	ug/L	<0.10	<0.10	<0.10	<0.10	<0.10	0.10	5162263
Dibromochloromethane	ug/L	<0.20	<0.20	<0.20	<0.20	<0.20	0.20	5162263
1,2-Dichlorobenzene	ug/L	<0.20	<0.20	<0.20	<0.20	<0.20	0.20	5162263
1,3-Dichlorobenzene	ug/L	<0.20	<0.20	<0.20	<0.20	<0.20	0.20	5162263
1,4-Dichlorobenzene	ug/L	<0.20	<0.20	<0.20	<0.20	<0.20	0.20	5162263
Dichlorodifluoromethane (FREON 12)	ug/L	<0.50	<0.50	<0.50	<0.50	<0.50	0.50	5162263
1,1-Dichloroethane	ug/L	<0.10	<0.10	<0.10	<0.10	<0.10	0.10	5162263
1,2-Dichloroethane	ug/L	<0.20	<0.20	<0.20	<0.20	0.29	0.20	5162263
1,1-Dichloroethylene	ug/L	<0.10	<0.10	<0.10	<0.10	<0.10	0.10	5162263
cis-1,2-Dichloroethylene	ug/L	<0.10	<0.10	<0.10	<0.10	<0.10	0.10	516226
trans-1,2-Dichloroethylene	ug/L	<0.10	<0.10	<0.10	<0.10	<0.10	0.10	516226
1,2-Dichloropropane	ug/L	<0.10	<0.10	<0.10	<0.10	<0.10	0.10	5162263
cis-1,3-Dichloropropene	ug/L	<0.20	<0.20	<0.20	<0.20	<0.20	0.20	5162263
trans-1,3-Dichloropropene	ug/L	<0.20	<0.20	<0.20	<0.20	<0.20	0.20	5162263
Ethylbenzene	ug/L	<0.10	<0.10	<0.10	<0.10	<0.10	0.10	516226
Ethylene Dibromide	ug/L	<0.20	<0.20	<0.20	<0.20	<0.20	0.20	5162263
Hexane	ug/L	<0.50	<0.50	<0.50	<0.50	<0.50	0.50	5162263
Methylene Chloride(Dichloromethane)	ug/L	<0.50	<0.50	<0.50	<0.50	<0.50	0.50	516226
Methyl Ethyl Ketone (2-Butanone)	ug/L	<5.0	<5.0	<5.0	<5.0	<5.0	5.0	516226
Methyl Isobutyl Ketone	ug/L	<5.0	<5.0	<5.0	<5.0	<5.0	5.0	516226
Methyl t-butyl ether (MTBE)	ug/L	<0.20	<0.20	<0.20	<0.20	<0.20	0.20	516226
Styrene	ug/L	<0.20	<0.20	<0.20	<0.20	<0.20	0.20	516226
1,1,1,2-Tetrachloroethane	ug/L	<0.20	<0.20	<0.20	<0.20	<0.20	0.20	516226
1,1,2,2-Tetrachloroethane	ug/L	<0.20	<0.20	<0.20	<0.20	<0.20	0.20	516226
Tetrachloroethylene	ug/L	0.46	<0.10	0.31	0.30	<0.10	0.10	516226
Toluene	ug/L	<0.20	<0.20	<0.20	<0.20	<0.20	0.20	516226
1,1,1-Trichloroethane	ug/L	<0.10	<0.10	<0.10	<0.10	<0.10		5162263

exp Services Inc Client Project #: OTT-00224605 Sampler Initials: JB

O.REG 153 VOCS (WATER)

Maxxam ID		FDH367	FDH368	FDH369	FDH370	FDH371		
Sampling Date		2017/09/15	2017/09/15	2017/09/15	2017/09/15	2017/09/15		
COC Number		628860-02-01	628860-02-01	628860-02-01	628860-02-01	628860-02-01		
	UNITS	MW15-6	MW15-8	MW307	MW308	MW309	RDL	QC Batch
1,1,2-Trichloroethane	ug/L	<0.20	<0.20	<0.20	<0.20	<0.20	0.20	5162263
Trichloroethylene	ug/L	<0.10	<0.10	<0.10	<0.10	<0.10	0.10	5162263
Trichlorofluoromethane (FREON 11)	ug/L	<0.20	<0.20	<0.20	<0.20	<0.20	0.20	5162263
Vinyl Chloride	ug/L	<0.20	<0.20	<0.20	<0.20	<0.20	0.20	5162263
p+m-Xylene	ug/L	<0.10	<0.10	<0.10	<0.10	<0.10	0.10	5162263
o-Xylene	ug/L	<0.10	<0.10	<0.10	<0.10	<0.10	0.10	5162263
Total Xylenes	ug/L	<0.10	<0.10	<0.10	<0.10	<0.10	0.10	5162263
Surrogate Recovery (%)		•	•					
4-Bromofluorobenzene	%	101	103	103	101	99		5162263
D4-1,2-Dichloroethane	%	106	107	107	106	105		5162263
D8-Toluene	%	96	96	96	96	95		5162263
RDL = Reportable Detection Limit								
QC Batch = Quality Control Batch								

exp Services Inc Client Project #: OTT-00224605 Sampler Initials: JB

O.REG 153 VOCS (WATER)

Maxxam ID		FDH373		FDH383		
Sampling Date		2017/09/15		2017/09/15		
COC Number		628860-02-01		628860-01-01		
	UNITS	MW312	RDL	TRIP BLANK	RDL	QC Batch
Calculated Parameters						
1,3-Dichloropropene (cis+trans)	ug/L	<2.8	2.8	<0.28	0.28	5168826
Volatile Organics	···8/ =	-110		10120	0.20	0100010
Acetone (2-Propanone)	ug/L	<100	100	<10	10	5162263
Benzene	ug/L	1.0	1.0	<0.10	0.10	
Bromodichloromethane	ug/L	<1.0	1.0	<0.10	0.10	5162263
Bromoform	ug/L	<2.0	2.0	<0.20	0.20	
Bromomethane	ug/L	<5.0	5.0	<0.50	0.50	5162263
Carbon Tetrachloride	ug/L	<1.0	1.0	<0.10	0.10	5162263
Chlorobenzene	ug/L	<1.0	1.0	<0.10	0.10	5162263
Chloroform	ug/L	<1.0	1.0	<0.10	0.10	5162263
Dibromochloromethane	ug/L	<2.0	2.0	<0.20	0.20	5162263
1,2-Dichlorobenzene	ug/L	<2.0	2.0	<0.20	0.20	5162263
1,3-Dichlorobenzene	ug/L	<2.0	2.0	<0.20	0.20	5162263
1,4-Dichlorobenzene	ug/L	<2.0	2.0	<0.20	0.20	5162263
Dichlorodifluoromethane (FREON 12)	ug/L	<5.0	5.0	<0.50	0.50	5162263
1,1-Dichloroethane	ug/L	<1.0	1.0	<0.10	0.10	5162263
1,2-Dichloroethane	ug/L	<2.0	2.0	<0.20	0.20	5162263
1,1-Dichloroethylene	ug/L	<1.0	1.0	<0.10	0.10	5162263
cis-1,2-Dichloroethylene	ug/L	150	1.0	<0.10	0.10	5162263
trans-1,2-Dichloroethylene	ug/L	<1.0	1.0	<0.10	0.10	5162263
1,2-Dichloropropane	ug/L	<1.0	1.0	<0.10	0.10	5162263
cis-1,3-Dichloropropene	ug/L	<2.0	2.0	<0.20	0.20	5162263
trans-1,3-Dichloropropene	ug/L	<2.0	2.0	<0.20	0.20	5162263
Ethylbenzene	ug/L	<1.0	1.0	<0.10	0.10	5162263
Ethylene Dibromide	ug/L	<2.0	2.0	<0.20	0.20	5162263
Hexane	ug/L	<5.0	5.0	<0.50	0.50	5162263
Methylene Chloride(Dichloromethane)	ug/L	<5.0	5.0	<0.50	0.50	5162263
Methyl Ethyl Ketone (2-Butanone)	ug/L	<50	50	<5.0	5.0	5162263
Methyl Isobutyl Ketone	ug/L	<50	50	<5.0	5.0	5162263
Methyl t-butyl ether (MTBE)	ug/L	<2.0	2.0	<0.20	0.20	5162263
Styrene	ug/L	<2.0	2.0	<0.20	0.20	5162263
1,1,1,2-Tetrachloroethane	ug/L	<2.0	2.0	<0.20	0.20	5162263
1,1,2,2-Tetrachloroethane	ug/L	<2.0	2.0	<0.20	0.20	5162263
Tetrachloroethylene	ug/L	2.9	1.0	<0.10	0.10	5162263
Toluene	ug/L	<2.0	2.0	<0.20	0.20	5162263
1,1,1-Trichloroethane	ug/L	<1.0	1.0	<0.10	0.10	5162263
RDL = Reportable Detection Limit QC Batch = Quality Control Batch						
Quality control batch						

exp Services Inc Client Project #: OTT-00224605 Sampler Initials: JB

O.REG 153 VOCS (WATER)

Maxxam ID		FDH373		FDH383		
Sampling Date		2017/09/15		2017/09/15		
COC Number		628860-02-01		628860-01-01		
	UNITS	MW312	RDL	TRIP BLANK	RDL	QC Batch
1,1,2-Trichloroethane	ug/L	<2.0	2.0	<0.20	0.20	5162263
Trichloroethylene	ug/L	73	1.0	<0.10	0.10	5162263
Trichlorofluoromethane (FREON 11)	ug/L	<2.0	2.0	<0.20	0.20	5162263
Vinyl Chloride	ug/L	4.0	2.0	<0.20	0.20	5162263
p+m-Xylene	ug/L	<1.0	1.0	<0.10	0.10	5162263
o-Xylene	ug/L	<1.0	1.0	<0.10	0.10	5162263
Total Xylenes	ug/L	<1.0	1.0	<0.10	0.10	5162263
Surrogate Recovery (%)						
4-Bromofluorobenzene	%	100		100		5162263
D4-1,2-Dichloroethane	%	104		102		5162263
D8-Toluene	%	98		99		5162263
RDL = Reportable Detection Limit						
QC Batch = Quality Control Batch						

exp Services Inc Client Project #: OTT-00224605 Sampler Initials: JB

TEST SUMMARY

Maxxam ID: FDH366 Sample ID: MW15-10 Matrix: Water					Collected: 2017/09/15 Shipped: Received: 2017/09/15
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
1,3-Dichloropropene Sum	CALC	5168826	N/A	2017/09/22	Automated Statchk
Petroleum Hydrocarbons F2-F4 in Water	GC/FID	5168983	2017/09/18	2017/09/19	Arezoo Habibagahi
Volatile Organic Compounds and F1 PHCs	GC/MSFD	5155174	N/A	2017/09/21	Denis Reid
Maxxam ID: FDH367 Sample ID: MW15-6 Matrix: Water					Collected: 2017/09/15 Shipped: Received: 2017/09/15
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
1,3-Dichloropropene Sum	CALC	5168826	N/A	2017/09/21	Automated Statchk
Volatile Organic Compounds in Water	P&T/MS	5162263	N/A	2017/09/20	Dina Wang
Maxxam ID: FDH368 Sample ID: MW15-8 Matrix: Water					Collected: 2017/09/15 Shipped: Received: 2017/09/15
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
1,3-Dichloropropene Sum	CALC	5168826	N/A	2017/09/21	Automated Statchk
Volatile Organic Compounds in Water	P&T/MS	5162263	N/A	2017/09/20	Dina Wang
Sample ID: MW307 Matrix: Water					Shipped: Received: 2017/09/15
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
1,3-Dichloropropene Sum	CALC	5168826	N/A	2017/09/21	Automated Statchk
Chloride by Automated Colourimetry	KONE	5174501	N/A	2017/09/21	Alina Dobreanu
Volatile Organic Compounds in Water	P&T/MS	5162263	N/A	2017/09/20	Dina Wang
Maxxam ID: FDH370 Sample ID: MW308 Matrix: Water					Collected: 2017/09/15 Shipped: Received: 2017/09/15
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
1,3-Dichloropropene Sum	CALC	5168826	N/A	2017/09/21	Automated Statchk
Chloride by Automated Colourimetry	KONE	5174501	N/A	2017/09/21	Alina Dobreanu
Volatile Organic Compounds in Water	P&T/MS	5162263	N/A	2017/09/20	Dina Wang
Maxxam ID: FDH371 Sample ID: MW309 Matrix: Water					Collected: 2017/09/15 Shipped: Received: 2017/09/15
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
1,3-Dichloropropene Sum	CALC	5168826	N/A	2017/09/21	Automated Statchk
	KONE	5174501	N/A	2017/09/21	Alina Dobreanu
Chloride by Automated Colourimetry	KONL	517 1501	1.,,,,	2017/03/21	

Page 13 of 31

Maxxam Analytics International Corporation o/a Maxxam Analytics 32 Colonnade Rd, Unit #1000, Nepean, ON K2E 7J6 Phone: 613 274-0573 Fax: 613 274-0574 Website: www.maxxam.ca

exp Services Inc Client Project #: OTT-00224605 Sampler Initials: JB

TEST SUMMARY

Maxxam ID: FDH372 Sample ID: MW310 Matrix: Water					Collected: Shipped: Received:	2017/09/15 2017/09/15
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
1,3-Dichloropropene Sum	CALC	5168826	N/A	2017/09/22	Automated	l Statchk
Chloride by Automated Colourimetry	KONE	5174501	N/A	2017/09/21	Alina Dobre	eanu
Petroleum Hydrocarbons F2-F4 in Water	GC/FID	5168983	2017/09/18	2017/09/19	Arezoo Hat	pibagahi
Volatile Organic Compounds and F1 PHCs	GC/MSFD	5155174	N/A	2017/09/21	Denis Reid	
Maxxam ID: FDH372 Dup Sample ID: MW310 Matrix: Water					Collected: Shipped: Received:	2017/09/15 2017/09/15
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Chloride by Automated Colourimetry	KONE	5174501	N/A	2017/09/21	Alina Dobro	eanu
Volatile Organic Compounds and F1 PHCs	GC/MSFD	5155174	N/A	2017/09/21	Denis Reid	
Maxxam ID: FDH373 Sample ID: MW312 Matrix: Water					Collected: Shipped: Received:	2017/09/15 2017/09/15
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
1,3-Dichloropropene Sum	CALC	5168826	N/A	2017/09/21	Automated	l Statchk
Chloride by Automated Colourimetry	KONE	5174501	N/A	2017/09/21	Alina Dobre	eanu
Volatile Organic Compounds in Water	P&T/MS	5162263	N/A	2017/09/20	Dina Wang	
Maxxam ID: FDH374 Sample ID: MW311 Matrix: Water					Collected: Shipped: Received:	2017/09/15 2017/09/15
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
1,3-Dichloropropene Sum	CALC	5168826	N/A	2017/09/22	Automated	l Statchk
Chloride by Automated Colourimetry	KONE	5174501	N/A	2017/09/21	Alina Dobre	eanu
Petroleum Hydrocarbons F2-F4 in Water	GC/FID	5168983	2017/09/18	2017/09/19	Arezoo Hat	pibagahi
Volatile Organic Compounds and F1 PHCs	GC/MSFD	5155174	N/A	2017/09/21	Denis Reid	
Maxxam ID: FDH375 Sample ID: MW313 Matrix: Water					Collected: Shipped: Received:	2017/09/15 2017/09/15
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
1,3-Dichloropropene Sum	CALC	5168826	N/A	2017/09/22	Automated	
Chloride by Automated Colourimetry	KONE	5174501	N/A	2017/09/21	Alina Dobro	eanu
, , ,						
Petroleum Hydrocarbons F2-F4 in Water Volatile Organic Compounds and F1 PHCs	GC/FID GC/MSFD	5168983 5155174	2017/09/18 N/A	2017/09/19 2017/09/21	Arezoo Hal Denis Reid	5

exp Services Inc Client Project #: OTT-00224605 Sampler Initials: JB

TEST SUMMARY

Maxxam ID: FDH380 Sample ID: MW301 Matrix: Water					Collected: 2017/09/15 Shipped: Received: 2017/09/15
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
1,3-Dichloropropene Sum	CALC	5168826	N/A	2017/09/22	Automated Statchk
Petroleum Hydrocarbons F2-F4 in Water	GC/FID	5168983	2017/09/18	2017/09/19	Arezoo Habibagahi
Volatile Organic Compounds and F1 PHCs	GC/MSFD	5155174	N/A	2017/09/21	Denis Reid
Maxxam ID: FDH381 Sample ID: MW304 Matrix: Water					Collected: 2017/09/15 Shipped: Received: 2017/09/15
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
1,3-Dichloropropene Sum	CALC	5168826	N/A	2017/09/22	Automated Statchk
Petroleum Hydrocarbons F2-F4 in Water	GC/FID	5168983	2017/09/18	2017/09/19	Arezoo Habibagahi
Volatile Organic Compounds and F1 PHCs	GC/MSFD	5155174	N/A	2017/09/21	Denis Reid
Maxxam ID: FDH382 Sample ID: MW305 Matrix: Water					Collected: 2017/09/15 Shipped: Received: 2017/09/15
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
1,3-Dichloropropene Sum	CALC	5168826	N/A	2017/09/22	Automated Statchk
Petroleum Hydrocarbons F2-F4 in Water	GC/FID	5168983	2017/09/18	2017/09/19	Arezoo Habibagahi
Volatile Organic Compounds and F1 PHCs	GC/MSFD	5155174	N/A	2017/09/21	Denis Reid
					0 -llastad 2017/00/45
Maxxam ID: FDH383 Sample ID: TRIP BLANK Matrix: Water					Collected: 2017/09/15 Shipped: Received: 2017/09/15
Sample ID: TRIP BLANK	Instrumentation	Batch	Extracted	Date Analyzed	Shipped:
Sample ID: TRIP BLANK Matrix: Water	Instrumentation CALC	Batch 5168826	Extracted N/A	Date Analyzed 2017/09/21	Shipped: Received: 2017/09/15
Sample ID: TRIP BLANK Matrix: Water Fest Description					Shipped: Received: 2017/09/15 Analyst
Sample ID: TRIP BLANK Matrix: Water Test Description 1,3-Dichloropropene Sum	CALC	5168826	N/A	2017/09/21	Shipped: Received: 2017/09/15 Analyst Automated Statchk
Sample ID: TRIP BLANK Matrix: Water Test Description 1,3-Dichloropropene Sum Chloride by Automated Colourimetry	CALC KONE	5168826 5174501	N/A N/A	2017/09/21 2017/09/21	Shipped: Received: 2017/09/15 Analyst Automated Statchk Alina Dobreanu

exp Services Inc Client Project #: OTT-00224605 Sampler Initials: JB

GENERAL COMMENTS

Each te	mperature is the	e average of up to	three cooler temperatures taken at receipt
	Package 1	9.7°C	
Sample accordi	-	12] :VOC Analysi	s: Due to high concentrations of target analytes, sample required dilution. Detection limits were adjusted
Results	relate only to th	ne items tested.	

QUALITY ASSURANCE REPORT

exp Services Inc Client Project #: OTT-00224605 Sampler Initials: JB

			Matrix	Spike	SPIKED	BLANK	Method I	Blank	RPI	D
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
5155174	4-Bromofluorobenzene	2017/09/21	94	70 - 130	95	70 - 130	90	%		
5155174	D4-1,2-Dichloroethane	2017/09/21	113	70 - 130	108	70 - 130	109	%		
5155174	D8-Toluene	2017/09/21	102	70 - 130	104	70 - 130	98	%		
5162263	4-Bromofluorobenzene	2017/09/20	104	70 - 130	104	70 - 130	99	%		
5162263	D4-1,2-Dichloroethane	2017/09/20	104	70 - 130	105	70 - 130	104	%		
5162263	D8-Toluene	2017/09/20	100	70 - 130	101	70 - 130	98	%		
5168983	o-Terphenyl	2017/09/19	94	30 - 130	92	30 - 130	90	%		
5171049	o-Terphenyl	2017/09/19	99	30 - 130	104	30 - 130	100	%		
5173727	1,4-Difluorobenzene	2017/09/21	96	70 - 130	94	70 - 130	100	%		
5173727	4-Bromofluorobenzene	2017/09/21	114	70 - 130	115	70 - 130	104	%		
5173727	D10-Ethylbenzene	2017/09/21	91	70 - 130	112	70 - 130	90	%		
5173727	D4-1,2-Dichloroethane	2017/09/21	99	70 - 130	104	70 - 130	95	%		
5155174	1,1,1,2-Tetrachloroethane	2017/09/21	101	70 - 130	107	70 - 130	<0.50	ug/L	NC	30
5155174	1,1,1-Trichloroethane	2017/09/21	92	70 - 130	100	70 - 130	<0.20	ug/L	NC	30
5155174	1,1,2,2-Tetrachloroethane	2017/09/21	111	70 - 130	109	70 - 130	<0.50	ug/L	NC	30
5155174	1,1,2-Trichloroethane	2017/09/21	112	70 - 130	112	70 - 130	<0.50	ug/L	NC	30
5155174	1,1-Dichloroethane	2017/09/21	106	70 - 130	113	70 - 130	<0.20	ug/L	NC	30
5155174	1,1-Dichloroethylene	2017/09/21	107	70 - 130	118	70 - 130	<0.20	ug/L	NC	30
5155174	1,2-Dichlorobenzene	2017/09/21	89	70 - 130	94	70 - 130	<0.50	ug/L	NC	30
5155174	1,2-Dichloroethane	2017/09/21	106	70 - 130	106	70 - 130	<0.50	ug/L	NC	30
5155174	1,2-Dichloropropane	2017/09/21	128	70 - 130	101	70 - 130	<0.20	ug/L	NC	30
5155174	1,3-Dichlorobenzene	2017/09/21	90	70 - 130	96	70 - 130	<0.50	ug/L	NC	30
5155174	1,4-Dichlorobenzene	2017/09/21	87	70 - 130	94	70 - 130	<0.50	ug/L	NC	30
5155174	Acetone (2-Propanone)	2017/09/21	122	60 - 140	113	60 - 140	<10	ug/L	NC	30
5155174	Benzene	2017/09/21	100	70 - 130	107	70 - 130	<0.20	ug/L	NC	30
5155174	Bromodichloromethane	2017/09/21	123	70 - 130	104	70 - 130	<0.50	ug/L	NC	30
5155174	Bromoform	2017/09/21	102	70 - 130	101	70 - 130	<1.0	ug/L	NC	30
5155174	Bromomethane	2017/09/21	113	60 - 140	121	60 - 140	<0.50	ug/L	NC	30
5155174	Carbon Tetrachloride	2017/09/21	91	70 - 130	99	70 - 130	<0.20	ug/L	NC	30
5155174	Chlorobenzene	2017/09/21	91	70 - 130	97	70 - 130	<0.20	ug/L	NC	30
5155174	Chloroform	2017/09/21	102	70 - 130	108	70 - 130	<0.20	ug/L	NC	30

Page 17 of 31

Maxxam Analytics International Corporation o/a Maxxam Analytics 32 Colonnade Rd, Unit #1000, Nepean, ON K2E 7J6 Phone: 613 274-0573 Fax: 613 274-0574 Website: www.maxxam.ca

QUALITY ASSURANCE REPORT(CONT'D)

exp Services Inc Client Project #: OTT-00224605 Sampler Initials: JB

			Matrix	Spike	SPIKED	BLANK	Method	Blank	RP	D
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
5155174	cis-1,2-Dichloroethylene	2017/09/21	98	70 - 130	102	70 - 130	<0.50	ug/L	NC	30
5155174	cis-1,3-Dichloropropene	2017/09/21	88	70 - 130	89	70 - 130	<0.30	ug/L	NC	30
5155174	Dibromochloromethane	2017/09/21	124	70 - 130	101	70 - 130	<0.50	ug/L	NC	30
5155174	Dichlorodifluoromethane (FREON 12)	2017/09/21	120	60 - 140	133	60 - 140	<1.0	ug/L	NC	30
5155174	Ethylbenzene	2017/09/21	81	70 - 130	89	70 - 130	<0.20	ug/L	NC	30
5155174	Ethylene Dibromide	2017/09/21	108	70 - 130	107	70 - 130	<0.20	ug/L	NC	30
5155174	F1 (C6-C10) - BTEX	2017/09/21					<25	ug/L	NC	30
5155174	F1 (C6-C10)	2017/09/21	98	60 - 140	101	60 - 140	<25	ug/L	NC	30
5155174	Hexane	2017/09/21	97	70 - 130	109	70 - 130	<1.0	ug/L	NC	30
5155174	Methyl Ethyl Ketone (2-Butanone)	2017/09/21	112	60 - 140	104	60 - 140	<10	ug/L	NC	30
5155174	Methyl Isobutyl Ketone	2017/09/21	97	70 - 130	94	70 - 130	<5.0	ug/L	NC	30
5155174	Methyl t-butyl ether (MTBE)	2017/09/21	92	70 - 130	93	70 - 130	<0.50	ug/L	NC	30
5155174	Methylene Chloride(Dichloromethane)	2017/09/21	96	70 - 130	99	70 - 130	<2.0	ug/L	NC	30
5155174	o-Xylene	2017/09/21	83	70 - 130	90	70 - 130	<0.20	ug/L	NC	30
5155174	p+m-Xylene	2017/09/21	82	70 - 130	90	70 - 130	<0.20	ug/L	NC	30
5155174	Styrene	2017/09/21	81	70 - 130	87	70 - 130	<0.50	ug/L	NC	30
5155174	Tetrachloroethylene	2017/09/21	77	70 - 130	98	70 - 130	<0.20	ug/L	3.3	30
5155174	Toluene	2017/09/21	90	70 - 130	97	70 - 130	<0.20	ug/L	NC	30
5155174	Total Xylenes	2017/09/21					<0.20	ug/L	NC	30
5155174	trans-1,2-Dichloroethylene	2017/09/21	100	70 - 130	109	70 - 130	<0.50	ug/L	NC	30
5155174	trans-1,3-Dichloropropene	2017/09/21	94	70 - 130	94	70 - 130	<0.40	ug/L	NC	30
5155174	Trichloroethylene	2017/09/21	91	70 - 130	99	70 - 130	<0.20	ug/L	NC	30
5155174	Trichlorofluoromethane (FREON 11)	2017/09/21	104	70 - 130	114	70 - 130	<0.50	ug/L	NC	30
5155174	Vinyl Chloride	2017/09/21	108	70 - 130	120	70 - 130	<0.20	ug/L	NC	30
5162263	1,1,1,2-Tetrachloroethane	2017/09/21	112	70 - 130	113	70 - 130	<0.20	ug/L	NC	30
5162263	1,1,1-Trichloroethane	2017/09/21	99	70 - 130	96	70 - 130	<0.10	ug/L	NC	30
5162263	1,1,2,2-Tetrachloroethane	2017/09/21	111	70 - 130	116	70 - 130	<0.20	ug/L	NC	30
5162263	1,1,2-Trichloroethane	2017/09/21	104	70 - 130	109	70 - 130	<0.20	ug/L	NC	30
5162263	1,1-Dichloroethane	2017/09/21	102	70 - 130	102	70 - 130	<0.10	ug/L	NC	30
5162263	1,1-Dichloroethylene	2017/09/21	108	70 - 130	104	70 - 130	<0.10	ug/L	NC	30
5162263	1,2-Dichlorobenzene	2017/09/21	100	70 - 130	100	70 - 130	<0.20	ug/L	NC	30

QUALITY ASSURANCE REPORT(CONT'D)

exp Services Inc Client Project #: OTT-00224605 Sampler Initials: JB

			Matrix	Spike	SPIKED	BLANK	Method	Blank	RP	D
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
5162263	1,2-Dichloroethane	2017/09/21	102	70 - 130	104	70 - 130	<0.20	ug/L	NC	30
5162263	1,2-Dichloropropane	2017/09/21	98	70 - 130	98	70 - 130	<0.10	ug/L	NC	30
5162263	1,3-Dichlorobenzene	2017/09/21	103	70 - 130	101	70 - 130	<0.20	ug/L	NC	30
5162263	1,4-Dichlorobenzene	2017/09/21	102	70 - 130	100	70 - 130	<0.20	ug/L	NC	30
5162263	Acetone (2-Propanone)	2017/09/21	99	60 - 140	103	60 - 140	<10	ug/L	NC	30
5162263	Benzene	2017/09/21	101	70 - 130	100	70 - 130	<0.10	ug/L	3.9	30
5162263	Bromodichloromethane	2017/09/21	103	70 - 130	103	70 - 130	<0.10	ug/L	NC	30
5162263	Bromoform	2017/09/21	118	70 - 130	123	70 - 130	<0.20	ug/L	NC	30
5162263	Bromomethane	2017/09/21	107	60 - 140	105	60 - 140	<0.50	ug/L	NC	30
5162263	Carbon Tetrachloride	2017/09/21	102	70 - 130	101	70 - 130	<0.10	ug/L	NC	30
5162263	Chlorobenzene	2017/09/21	102	70 - 130	102	70 - 130	<0.10	ug/L	NC	30
5162263	Chloroform	2017/09/21	100	70 - 130	99	70 - 130	<0.10	ug/L	NC	30
5162263	cis-1,2-Dichloroethylene	2017/09/21	99	70 - 130	98	70 - 130	<0.10	ug/L	NC	30
5162263	cis-1,3-Dichloropropene	2017/09/21	100	70 - 130	99	70 - 130	<0.20	ug/L	NC	30
5162263	Dibromochloromethane	2017/09/21	112	70 - 130	116	70 - 130	<0.20	ug/L	NC	30
5162263	Dichlorodifluoromethane (FREON 12)	2017/09/21	103	60 - 140	103	60 - 140	<0.50	ug/L	NC	30
5162263	Ethylbenzene	2017/09/21	101	70 - 130	100	70 - 130	<0.10	ug/L	3.3	30
5162263	Ethylene Dibromide	2017/09/21	108	70 - 130	113	70 - 130	<0.20	ug/L	NC	30
5162263	Hexane	2017/09/21	114	70 - 130	109	70 - 130	<0.50	ug/L	NC	30
5162263	Methyl Ethyl Ketone (2-Butanone)	2017/09/21	99	60 - 140	104	60 - 140	<5.0	ug/L	NC	30
5162263	Methyl Isobutyl Ketone	2017/09/21	104	70 - 130	107	70 - 130	<5.0	ug/L	NC	30
5162263	Methyl t-butyl ether (MTBE)	2017/09/21	96	70 - 130	100	70 - 130	<0.20	ug/L	NC	30
5162263	Methylene Chloride(Dichloromethane)	2017/09/21	92	70 - 130	92	70 - 130	<0.50	ug/L	NC	30
5162263	o-Xylene	2017/09/21	101	70 - 130	102	70 - 130	<0.10	ug/L	1.9	30
5162263	p+m-Xylene	2017/09/21	105	70 - 130	104	70 - 130	<0.10	ug/L	3.1	30
5162263	Styrene	2017/09/21	105	70 - 130	104	70 - 130	<0.20	ug/L	NC	30
5162263	Tetrachloroethylene	2017/09/21	99	70 - 130	98	70 - 130	<0.10	ug/L	NC	30
5162263	Toluene	2017/09/21	100	70 - 130	98	70 - 130	<0.20	ug/L	NC	30
5162263	Total Xylenes	2017/09/21					<0.10	ug/L	3.1	30
5162263	trans-1,2-Dichloroethylene	2017/09/21	103	70 - 130	98	70 - 130	<0.10	ug/L	NC	30
5162263	trans-1,3-Dichloropropene	2017/09/21	107	70 - 130	109	70 - 130	<0.20	ug/L	NC	30

Page 19 of 31

Maxxam Analytics International Corporation o/a Maxxam Analytics 32 Colonnade Rd, Unit #1000, Nepean, ON K2E 7J6 Phone: 613 274-0573 Fax: 613 274-0574 Website: www.maxxam.ca

QUALITY ASSURANCE REPORT(CONT'D)

exp Services Inc Client Project #: OTT-00224605 Sampler Initials: JB

			Matrix	Spike	SPIKED	BLANK	Method I	Blank	RPI)
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
5162263	Trichloroethylene	2017/09/21	101	70 - 130	96	70 - 130	<0.10	ug/L	NC	30
5162263	Trichlorofluoromethane (FREON 11)	2017/09/21	106	70 - 130	105	70 - 130	<0.20	ug/L	NC	30
5162263	Vinyl Chloride	2017/09/21	103	70 - 130	100	70 - 130	<0.20	ug/L	NC	30
5168983	F2 (C10-C16 Hydrocarbons)	2017/09/19	94	50 - 130	96	80 - 120	<100	ug/L	2.2	50
5168983	F3 (C16-C34 Hydrocarbons)	2017/09/19	94	50 - 130	96	80 - 120	<200	ug/L	NC	50
5168983	F4 (C34-C50 Hydrocarbons)	2017/09/19	94	50 - 130	96	80 - 120	<200	ug/L	NC	50
5171049	F2 (C10-C16 Hydrocarbons)	2017/09/20	109	50 - 130	105	80 - 120	<100	ug/L	NC	50
5171049	F3 (C16-C34 Hydrocarbons)	2017/09/20	109	50 - 130	105	80 - 120	<200	ug/L	NC	50
5171049	F4 (C34-C50 Hydrocarbons)	2017/09/20	109	50 - 130	105	80 - 120	<200	ug/L	NC	50
5173727	Benzene	2017/09/21	77	70 - 130	92	70 - 130	<0.20	ug/L	NC	40
5173727	Ethylbenzene	2017/09/21	89	70 - 130	104	70 - 130	<0.20	ug/L	11	40
5173727	F1 (C6-C10) - BTEX	2017/09/21					<25	ug/L	9.2	40
5173727	F1 (C6-C10)	2017/09/21	99	70 - 130	91	70 - 130	<25	ug/L	9.3	40
5173727	o-Xylene	2017/09/21	88	70 - 130	105	70 - 130	<0.20	ug/L	NC	40
5173727	p+m-Xylene	2017/09/21	87	70 - 130	99	70 - 130	<0.40	ug/L	16	40
5173727	Toluene	2017/09/21	92	70 - 130	98	70 - 130	<0.20	ug/L	NC	40
5173727	Total Xylenes	2017/09/21					<0.40	ug/L	16	40
5174501	Dissolved Chloride (Cl)	2017/09/21	NC	80 - 120	102	80 - 120	<1.0	mg/L	3.3	20

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

exp Services Inc Client Project #: OTT-00224605 Sampler Initials: JB

VALIDATION SIGNATURE PAGE

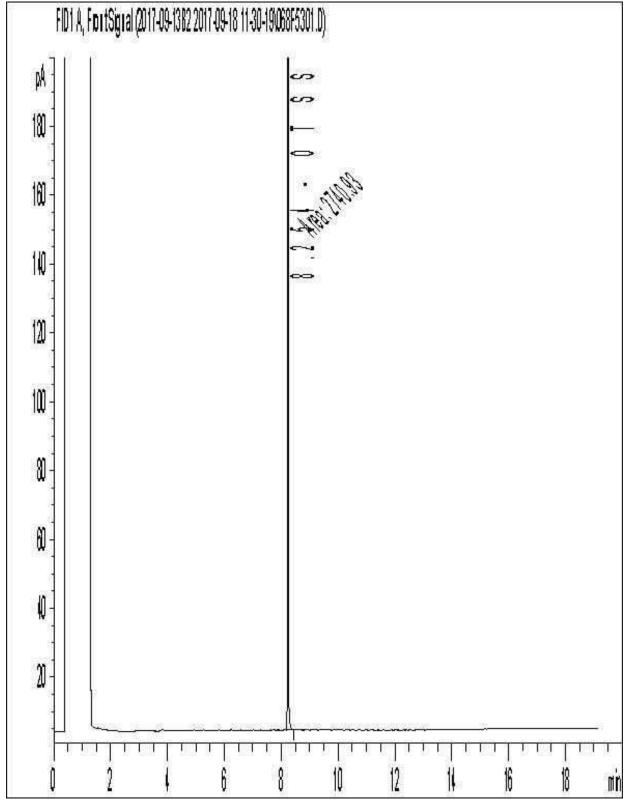
The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Brad Newman, Scientific Service Specialist

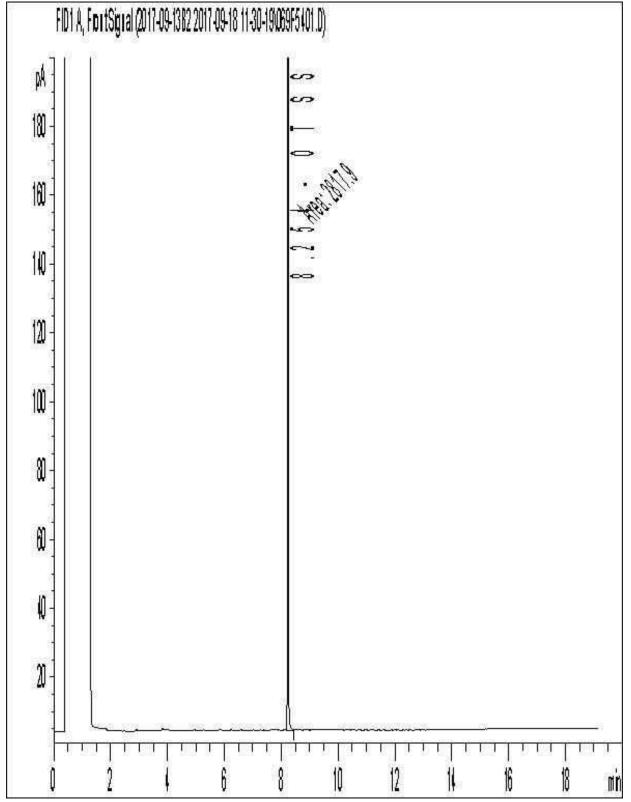
aulk

Paul Rubinato, Analyst, Maxxam Analytics

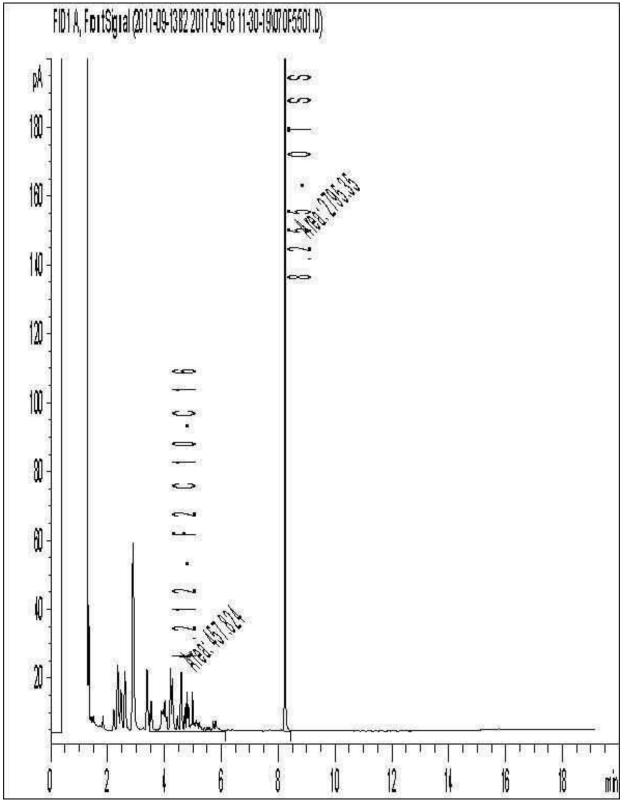
Steve Roberts, Ottawa Lab Manager

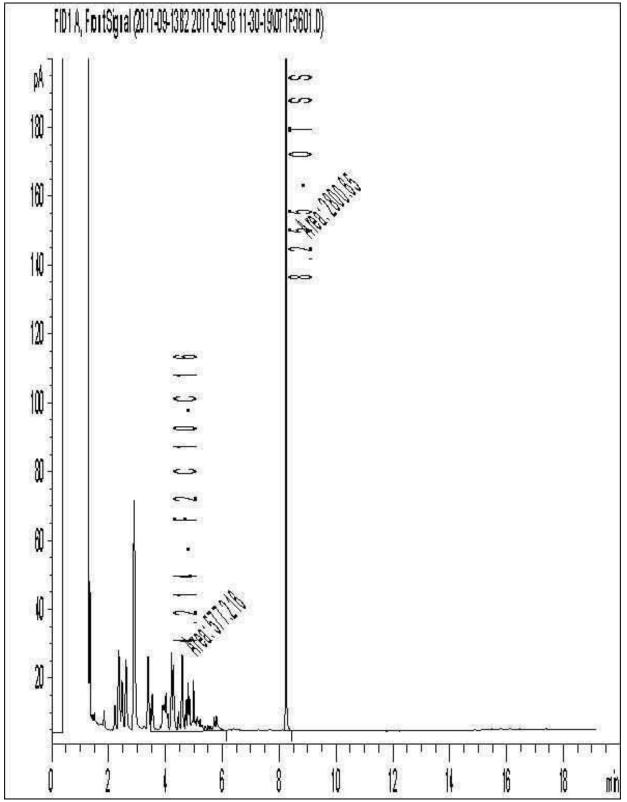

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

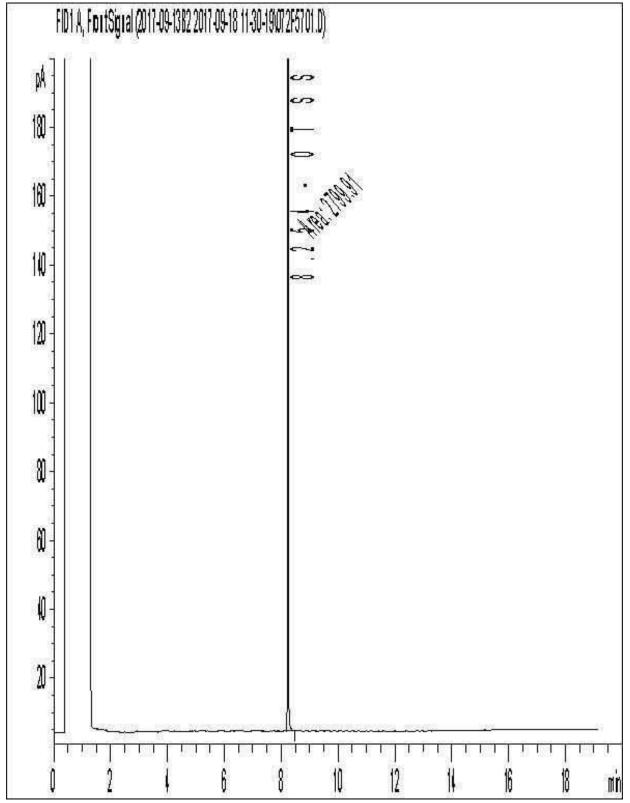
	INVOICE TO:			REPO	RT TO;			-				INFORMAT	TION:		_		boratory Use (
pany Name: #17497 exp S	Services Inc	Company	/ Name:						Quotation #:		B46066	6			-	Maxxam Jol	o#:	Bottle Order
Accounts Paya	ible	Attention	Inthem	O'Banion	11.5	-	-	_	P.O. #:		OTT-00	0224605						628860
100-2650 Que		Address:							Project		011-01	0224005	-	-		COC #:		
Ottawa ON K2 (613) 688-189		337 x Tel: xp.com; Email:	Jeffen	.O'Banion@e	Fax:				Project Name Site #: Sampled By:			2	eff	0.		C#628860-02	2-01	Alison Camero
	NO WATER OR WATER INTEND	ED FOR HUMAN C	ONSUMPTION				-	AN	ALYSIS REQU		PLEASE BE	E SPECIFIC)	-			round Time (TAT) R de advance notice fe	
MOE REGULATED DRINK SUBMITTE	D ON THE MAXXAM DRINKING V	VATER CHAIN OF (CUSTODY		ä	2	1		~			1			Regular	(Standard) TAT		or rush projects
Regulation 153 (2011)	Other Regul			nstructions	t circle): VI	arbor		14	rimet			1.1			2	plied if Rush TAT is n		
able 1 Res/Park Me					ase	lydroc	8	1L 40	Colou	_						TAT = 5-7 Working di te: Stendard TAT for		OD and Dioxins/Furana
able 2 Ind/Comm Col able 3 Agri/Other For					d (pie Hg /	H H	(Wate	by HS	bated			-	-	1	days - cor	tact your Project Mar	ager for details.	
able			-		Field Filtered Metals / H	etrole	VOCs	VOCs	Autor						Job Spe Date Reg		pplies to entire subr	nission) ne Required:
	Deher				Id Fil	153 F	153	3	le bý						Rush Cor	firmation Number:	1	all lab for #)
and the second se	Include Criteria on Certificate of Analysis (Y/N)?		Time Republic	Matrix	- E	Fiel O.Reg O.Reg O.Reg (Water)			thiorid					# of Bots	88	Comm		
Sample Barcode Label	Sample (Location) Identification	Date Sampled	Time Sampled	Maurix		50	0/	202	0	-								
	MW15-10	09.15.200	AM	GW		-	-	-		_			-					Charles .
	MWIS-6		AA		P. S.		\lor	-				_			-	_		
	MU15- 8		AM				1	-					_	-	-	-	-	
	MW307		AM				1		\checkmark					1	_			
	MW308		AM				1		\checkmark				_					
	MW 309		en				1		1					FTAWA		15	-Sep-17 17:	20
	112-01		0.0			0	1		1			NED	INO			Alison C	ameron	
	MW310		(M				V	-	1		REC	EINE					2764	I
	MW312		IM				~		V					_	_		OTT 001	
	MW311.		BM			V	1		1						-		a novelbáci nadvojáč	
	MW313		PM			1	1		1									ON 1-4
* RELINQUISHED B	r: (Signature/Print) Date		Time		BY: (Signature	and the second se		Date: (Y			ime	# jars u not aut		Time Sens	1	oratory Use Only	Custody S	ical Yes
	11.	09.15 5	315 10	mur c	Funge	~ h	5 3	1710	915	11	- 20	-		The sector	temp	erature (°C) on Re	Present	
	N WRITING, WORK SUBMITTED ON THIS			ANIS STANDARD	CERMS AND COL	DITIONS	SIGNING O	F THIS CH	AIN OF CUSTO	DDY DOC	UMENT IS	_	1	-			-	hita: Maxxa Yellov

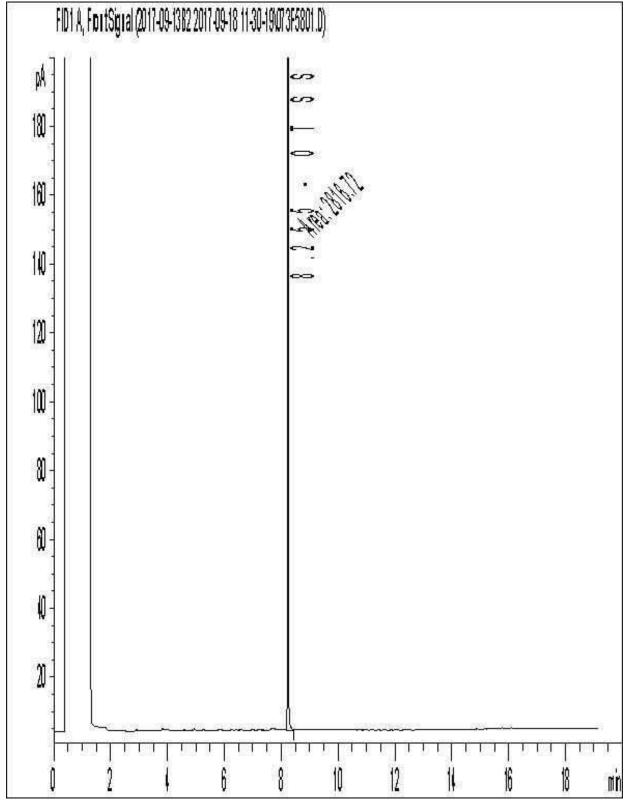

Maxxam Analytics International Corporation o/a Maxxam Analytics

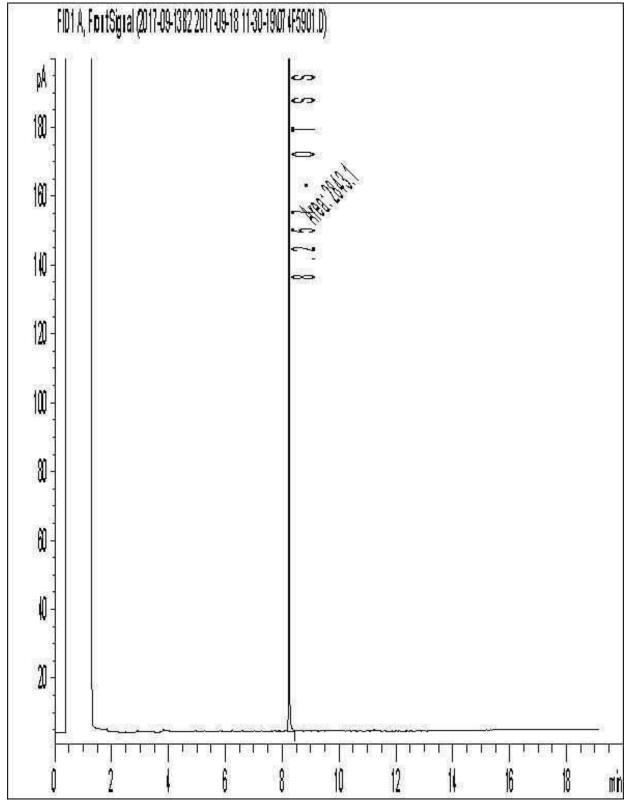
a	Xam	Maxxam Analytics International 6740 Campobello Road, Missist	sauga, Ontario C	anada L5N 2L8	Tel:(905) 817-570	00 Toll-free:800-5	63-6265 Fax:(9	05) 617-57	11 444.55	accanicos		PROJECT IN	FORMATION:			Laboratory Use (Maxxam Job #:	Bottle Order#
Bureau		OICE TO:				REPOR	r to:			201	Quotation #:	B46066				Maxiam 300 #.	
any Nam	#17497 exp Ser	vices Inc		Company N	ame:)'Banion					P.O. #:	OTT-002	24605				628860 Project Manage
on:	Accounts Payable)	-	Attention: Address:							Project:	011-002	24000			COC #:	
s:	100-2650 Queens Ottawa ON K2B 8	SVIEW Drive		- Multiose.				-			Project Name: Site #:					C#628860-01-01	Alison Camero
	(040) C00 1900 V	East (613) 2	25-7337 x	Tel:	Tellent	O'Banion@ex	Fax:	-	-		Sampled By:		Tett	0.	-	Turner Time (TAT)	Required:
	and the second second	a ava com Karen Burke	@exp.com;	Email:						AN	ALYSIS REQUES	TED (PLEASE BE	SPECIFIC)			Please provide advance notice	for rush projects
OE R	EGULATED DRINKING	G WATER OR WATER INT ON THE MAXXAM DRINKI	ENDED FOR	HUMAN CO	ISTODY	NO31 DE	*	2	1.1		No.		1. 20		Regular (Standard) TAT: led if Rush TAT is not specified):	
	SUBMITTED		Regulations		Special Int		circle): VI	arbor	1.0	F1-F4	urime					T - E 7 Morking days for most tests.	
	lation 153 (2011)		nitary Sewer Byla	mw			ase cl	Hydrood	8	HS&F	Colo		-		Piease note days - conta	Standard TAT for cartain tests such as ict your Project Manager for details.	BOD and Dioxin.9-Dram
le 1 le 2	Res/Park Medium		orm Sewer Bylaw				0 -	E E	(Wate	E .	nated				Job Speci	fic Rush TAT (If applies to entire sul	bmission)
ole 3	Agri/Other For Rt	SC MISA Munic	ipality				ered ls / l	atroie	VOCs	vocs	Auton				Date Requir	red:	(ime Reduced.
ole _		PWQ0					d Filtered (pl Metals / Hg	6	153 V	23	de by						(call lab for #) ruments
		ia on Certificate of Analysis	(Y/N)?			-	Field	O.Reg (Water)	Reg	O.Reg 1 (Water)	hlorid				# of Bottles	Con	(menus
c.	ample Barcode Label	Sample (Location) Identifi	cation D	ate Sampled	Time Sampled	Matrix		30	0	30	0						
		MU301	0	A.15.2017	en	62		1	-	/							
		ALDER ZILL)	en			1	1	-			-				-
		nun 304			nn		-	1	11								
		MW305			101			-		1	1						
		Trip Blank				-		V	10	-							
-		Thep want															
		100 102															THE ALL A
								1	-	-	+++	-	15-Sep-17	17:20		RECEIVED	IN OT LAVA
-				617										*3			
				-	-	-	1	-				Alise		1 101 011			
1		12 12			1000					_		- 1111 m	7K2764				
													OTT	001			
		1. Constant						-		-		- KIV					ONS
1		1.11									00(11000)	Time	# jars used	and	u	aboratory Use Only	ody Seal Yes
	* RELINQUISHED BY	(Elemeture/Print)	Date: (YY/N	IM/DD)	Time	RECEIVE	D BY: (Signati	ure/Print)	20	Date:	(YY/MM/DD)	17=2e	not submit	Time	Sensitive Tem	perature (°C) on Recei Pri	resent
	V.	My	09,1	5.2017 5	111	cm	Juy		15	-	(((1S	1		1	(19,10	White: Maxxa
-	M	N WRITING, WORK SUBMITTED C				WANTE STANDAR	D TERMS AND	ONDITION	IS. SIGNIN	G OF THIS	CHAIN OF CUST	ODY DOCUMENT IS			THE KERT COOL (< 10° C) FROM TIME OF SAMPLING	
NI ESS	OTHERWISE AGREED TO	N WRITING, WORK SUBMITTED (NCE OF OUR TERMS WHICH ARE RELINQUISHER TO ENSURE THI	N THIS CHAIN C	R VIEWING AT W	SUBJECT TO MAX	TERMS.		CCC Distances of the	Lucester H		VTICAL TAT DEL	AYS.	1	SAMPLES MUS	UNTIL DELIVE	< 10° C) FROM TIME OF SAMPLING RY TO MAXXAM	10 m


Maxxam Analytics International Corporation o/a Maxxam Analytics


Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.


Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.


Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.


Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.


Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.

Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.

Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.

Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.

Your Project #: OTT-00224605 Your C.O.C. #: 628860-04-01

Attention:Jeffery O'Banion

exp Services Inc 100-2650 Queensview Drive Ottawa, ON K2B 8H6

> Report Date: 2017/09/25 Report #: R4733241 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B7K3897 Received: 2017/09/18, 15:50

Received: 2017/09/18, 15.50

Sample Matrix: Water # Samples Received: 2

		Date	Date		
Analyses	Quantit	y Extracted	Analyzed	Laboratory Method	Reference
1,3-Dichloropropene Sum (1)	2	N/A	2017/09/22	2	EPA 8260C m
Volatile Organic Compounds in Water (1)	2	N/A	2017/09/22	2 CAM SOP-00226	EPA 8260C m

Remarks:

Maxxam Analytics' laboratories are accredited to ISO/IEC 17025:2005 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Maxxam are based upon recognized Provincial, Federal or US method compendia such as CCME, MDDELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Maxxam's profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Maxxam in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported: unless indicated otherwise, associated sample data are not blank corrected.

Maxxam Analytics' liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Maxxam has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Maxxam, unless otherwise agreed in writing.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) This test was performed by Maxxam Analytics Mississauga

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Alison Cameron, Project Manager Email: ACameron@maxxam.ca Phone# (613) 274-0573

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Total Cover Pages : 1 Page 1 of 9

exp Services Inc Client Project #: OTT-00224605

O.REG 153 VOCS (WATER)

Maxxam ID		FDO218	FDO219		
Sampling Date		2017/09/18 14:30	2017/09/18 15:15		
COC Number		628860-04-01	628860-04-01		
	UNITS	MW306	MW15-11	RDL	QC Batch
Calculated Parameters			1		
1,3-Dichloropropene (cis+trans)	ug/L	<0.71	<0.71	0.71	5170654
Volatile Organics	46/ L			0.71	51,0051
Acetone (2-Propanone)	ug/L	<25	<25	25	5169438
Benzene	ug/L	<0.25	<0.25	0.25	5169438
Bromodichloromethane	ug/L	<0.25	<0.25	0.25	5169438
Bromoform	ug/L	<0.50	<0.50	0.50	5169438
Bromomethane	ug/L	<1.3	<1.3	1.3	5169438
Carbon Tetrachloride	ug/L	<0.25	<0.25	0.25	5169438
Chlorobenzene	ug/L	<0.25	<0.25	0.25	5169438
Chloroform	ug/L	0.56	0.56	0.25	5169438
Dibromochloromethane	ug/L	<0.50	<0.50	0.50	5169438
1,2-Dichlorobenzene	ug/L	<0.50	<0.50	0.50	5169438
1,3-Dichlorobenzene	ug/L	< 0.50	<0.50	0.50	5169438
1,4-Dichlorobenzene	ug/L	<0.50	< 0.50	0.50	5169438
Dichlorodifluoromethane (FREON 12)	ug/L	<1.3	<1.3	1.3	5169438
1,1-Dichloroethane	ug/L	<0.25	<0.25	0.25	5169438
1,2-Dichloroethane	ug/L	< 0.50	<0.50	0.50	5169438
1,1-Dichloroethylene	ug/L	<0.25	<0.25	0.25	5169438
cis-1,2-Dichloroethylene	ug/L	1.3	1.5	0.25	5169438
trans-1,2-Dichloroethylene	ug/L	<0.25	<0.25	0.25	5169438
1,2-Dichloropropane	ug/L	<0.25	<0.25	0.25	5169438
cis-1,3-Dichloropropene	ug/L	<0.50	<0.50	0.50	5169438
trans-1,3-Dichloropropene	ug/L	<0.50	<0.50	0.50	5169438
Ethylbenzene	ug/L	<0.25	<0.25	0.25	5169438
Ethylene Dibromide	ug/L	<0.50	<0.50	0.50	5169438
Hexane	ug/L	<1.3	<1.3	1.3	5169438
Methylene Chloride(Dichloromethane)	ug/L	<1.3	<1.3	1.3	5169438
Methyl Ethyl Ketone (2-Butanone)	ug/L	<13	<13	13	5169438
Methyl Isobutyl Ketone	ug/L	<13	<13	13	5169438
Methyl t-butyl ether (MTBE)	ug/L	<0.50	<0.50	0.50	5169438
Styrene	ug/L	<0.50	<0.50	0.50	5169438
1,1,1,2-Tetrachloroethane	ug/L	<0.50	<0.50	0.50	5169438
1,1,2,2-Tetrachloroethane	ug/L	<0.50	<0.50	0.50	5169438
Tetrachloroethylene	ug/L	62	63	0.25	5169438
Toluene	ug/L	<0.50	<0.50	0.50	5169438
RDL = Reportable Detection Limit			+		
QC Batch = Quality Control Batch					

exp Services Inc Client Project #: OTT-00224605

O.REG 153 VOCS (WATER)

Maxxam ID		FDO218	FDO219		
Sampling Date		2017/09/18 14:30	2017/09/18 15:15		
COC Number		628860-04-01	628860-04-01		
	UNITS	MW306	MW15-11	RDL	QC Batch
1,1,1-Trichloroethane	ug/L	<0.25	<0.25	0.25	5169438
1,1,2-Trichloroethane	ug/L	<0.50	<0.50	0.50	5169438
Trichloroethylene	ug/L	1.8	1.8	0.25	5169438
Trichlorofluoromethane (FREON 11)	ug/L	<0.50	<0.50	0.50	5169438
Vinyl Chloride	ug/L	<0.50	<0.50	0.50	5169438
p+m-Xylene	ug/L	<0.25	<0.25	0.25	5169438
o-Xylene	ug/L	<0.25	<0.25	0.25	5169438
Total Xylenes	ug/L	<0.25	<0.25	0.25	5169438
Surrogate Recovery (%)					
4-Bromofluorobenzene	%	98	98		5169438
D4-1,2-Dichloroethane	%	107	106		5169438
D8-Toluene	%	96	96		5169438
RDL = Reportable Detection Limit	•				
QC Batch = Quality Control Batch					

exp Services Inc Client Project #: OTT-00224605

TEST SUMMARY

Maxxam ID: FDO218 Sample ID: MW306					Collected: Shipped:	2017/09/18
Matrix: Water					Received:	2017/09/18
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
1,3-Dichloropropene Sum	CALC	5170654	N/A	2017/09/22	Automated	l Statchk
Volatile Organic Compounds in Water	P&T/MS	5169438	N/A	2017/09/22	Dina Wang	
Maxxam ID: FDO219 Sample ID: MW15-11 Matrix: Water					Collected: Shipped: Received:	2017/09/18 2017/09/18
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
1,3-Dichloropropene Sum	CALC	5170654	N/A	2017/09/22	Automated	l Statchk
Volatile Organic Compounds in Water	P&T/MS	5169438	N/A	2017/09/22	Dina Wang	

exp Services Inc Client Project #: OTT-00224605

GENERAL COMMENTS

Each t	emperature is the	average of up to	three cooler temperatures taken at receipt
	Package 1	18.7°C	
All 40n	nL vials for VOC an	alysis contained v	visible sediment.
/OC A	nalysis: Due to high	n concentrations	of target analytes, sample required dilution. Detection limits were adjusted accordingly.
Resul	ts relate only to th	e items tested.	

QUALITY ASSURANCE REPORT

exp Services Inc Client Project #: OTT-00224605

			Matrix	Spike	SPIKED	BLANK	Method E	Blank	RP	D
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
5169438	4-Bromofluorobenzene	2017/09/22	102	70 - 130	102	70 - 130	99	%		
5169438	D4-1,2-Dichloroethane	2017/09/22	102	70 - 130	103	70 - 130	102	%		
5169438	D8-Toluene	2017/09/22	101	70 - 130	101	70 - 130	99	%		
5169438	1,1,1,2-Tetrachloroethane	2017/09/22	110	70 - 130	113	70 - 130	<0.20	ug/L	NC	30
5169438	1,1,1-Trichloroethane	2017/09/22	97	70 - 130	100	70 - 130	<0.10	ug/L	NC	30
5169438	1,1,2,2-Tetrachloroethane	2017/09/22	107	70 - 130	111	70 - 130	<0.20	ug/L	NC	30
5169438	1,1,2-Trichloroethane	2017/09/22	103	70 - 130	106	70 - 130	<0.20	ug/L	NC	30
5169438	1,1-Dichloroethane	2017/09/22	101	70 - 130	103	70 - 130	<0.10	ug/L	NC	30
5169438	1,1-Dichloroethylene	2017/09/22	103	70 - 130	107	70 - 130	<0.10	ug/L	NC	30
5169438	1,2-Dichlorobenzene	2017/09/22	98	70 - 130	101	70 - 130	<0.20	ug/L	NC	30
5169438	1,2-Dichloroethane	2017/09/22	99	70 - 130	103	70 - 130	<0.20	ug/L	NC	30
5169438	1,2-Dichloropropane	2017/09/22	95	70 - 130	98	70 - 130	<0.10	ug/L	NC	30
5169438	1,3-Dichlorobenzene	2017/09/22	99	70 - 130	102	70 - 130	<0.20	ug/L	NC	30
5169438	1,4-Dichlorobenzene	2017/09/22	98	70 - 130	102	70 - 130	<0.20	ug/L	NC	30
5169438	Acetone (2-Propanone)	2017/09/22	96	60 - 140	98	60 - 140	<10	ug/L	NC	30
5169438	Benzene	2017/09/22	99	70 - 130	101	70 - 130	<0.10	ug/L	27	30
5169438	Bromodichloromethane	2017/09/22	100	70 - 130	104	70 - 130	<0.10	ug/L	NC	30
5169438	Bromoform	2017/09/22	113	70 - 130	118	70 - 130	<0.20	ug/L	NC	30
5169438	Bromomethane	2017/09/22	94	60 - 140	96	60 - 140	<0.50	ug/L	NC	30
5169438	Carbon Tetrachloride	2017/09/22	100	70 - 130	104	70 - 130	<0.10	ug/L	NC	30
5169438	Chlorobenzene	2017/09/22	99	70 - 130	103	70 - 130	<0.10	ug/L	NC	30
5169438	Chloroform	2017/09/22	98	70 - 130	101	70 - 130	<0.10	ug/L	NC	30
5169438	cis-1,2-Dichloroethylene	2017/09/22	97	70 - 130	100	70 - 130	<0.10	ug/L	NC	30
5169438	cis-1,3-Dichloropropene	2017/09/22	91	70 - 130	94	70 - 130	<0.20	ug/L	NC	30
5169438	Dibromochloromethane	2017/09/22	110	70 - 130	113	70 - 130	<0.20	ug/L	NC	30
5169438	Dichlorodifluoromethane (FREON 12)	2017/09/22	94	60 - 140	104	60 - 140	<0.50	ug/L	NC	30
5169438	Ethylbenzene	2017/09/22	98	70 - 130	101	70 - 130	<0.10	ug/L	NC	30
5169438	Ethylene Dibromide	2017/09/22	105	70 - 130	109	70 - 130	<0.20	ug/L	NC	30
5169438	Hexane	2017/09/22	86	70 - 130	99	70 - 130	<0.50	ug/L	NC	30
5169438	Methyl Ethyl Ketone (2-Butanone)	2017/09/22	95	60 - 140	98	60 - 140	<5.0	ug/L	NC	30
5169438	Methyl Isobutyl Ketone	2017/09/22	96	70 - 130	101	70 - 130	<5.0	ug/L	NC	30
5169438	Methyl t-butyl ether (MTBE)	2017/09/22	91	70 - 130	94	70 - 130	<0.20	ug/L	NC	30

Page 6 of 9

Maxxam Analytics International Corporation o/a Maxxam Analytics 32 Colonnade Rd, Unit #1000, Nepean, ON K2E 7J6 Phone: 613 274-0573 Fax: 613 274-0574 Website: www.maxxam.ca

Maxxam Job #: B7K3897

Report Date: 2017/09/25

QUALITY ASSURANCE REPORT(CONT'D)

exp Services Inc Client Project #: OTT-00224605

			Matrix	Spike	SPIKED	BLANK	Method	Blank	RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
5169438	Methylene Chloride(Dichloromethane)	2017/09/22	89	70 - 130	92	70 - 130	<0.50	ug/L	NC	30
5169438	o-Xylene	2017/09/22	99	70 - 130	102	70 - 130	<0.10	ug/L	NC	30
5169438	p+m-Xylene	2017/09/22	101	70 - 130	105	70 - 130	<0.10	ug/L	29	30
5169438	Styrene	2017/09/22	102	70 - 130	106	70 - 130	<0.20	ug/L	NC	30
5169438	Tetrachloroethylene	2017/09/22	95	70 - 130	99	70 - 130	<0.10	ug/L	NC	30
5169438	Toluene	2017/09/22	97	70 - 130	100	70 - 130	<0.20	ug/L	5.3	30
5169438	Total Xylenes	2017/09/22					<0.10	ug/L	29	30
5169438	trans-1,2-Dichloroethylene	2017/09/22	97	70 - 130	101	70 - 130	<0.10	ug/L	NC	30
5169438	trans-1,3-Dichloropropene	2017/09/22	96	70 - 130	101	70 - 130	<0.20	ug/L	NC	30
5169438	Trichloroethylene	2017/09/22	96	70 - 130	99	70 - 130	<0.10	ug/L	NC	30
5169438	Trichlorofluoromethane (FREON 11)	2017/09/22	102	70 - 130	107	70 - 130	<0.20	ug/L	NC	30
5169438	Vinyl Chloride	2017/09/22	100	70 - 130	103	70 - 130	<0.20	ug/L	NC	30

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

exp Services Inc Client Project #: OTT-00224605

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

auistin Camiere

Cristina Carriere, Scientific Service Specialist

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

		6740 Campobello Ros			2017-10-10-10-10-10-10-10-10-10-10-10-10-10-			RT TO:	and the second	3447 X 12576X	outores de	1		PROJEC	CT INFORMATION		-	Laboratory Use	Page of Only:
	#17497 exp Se						nur u	KI IO.			_			B460		-		Maxxam Job #:	Bottle Order #:
pany Name	Accounts Payab				any Name:	leffery (D'Banion					Quotation	<i>R</i> .	0400			-		
ess	100-2650 Queer			Attent Addre			o bonnon			-		P.O.#		OTT-	00224605		-		628860
035	Ottawa ON K2B			Addre	694)		~					Project Na	-					COC #:	Project Manager:
	(613) 688-1899 :	Fax (613) 225-7337	7 X Tol		_		Fax				Site #:					110B		11
a;	accounting.ottav	a@exp.com; Karer				Jeffery.	D'Banion@e					Sampled B	By:					C#628860-04-01	Alison Cameron
MOE REG	ULATED DRINKIN	G WATER OR WAT	ER INTENDED	FOR HUMAN	CONSU	MPTION N	UST BE		-		AM	ALYSIS REC	QUESTED	PLEASE	BE SPECIFIC)	1 1		Turnaround Time (TAT) R Please provide advance notice f	
	and the state of the	ON THE MAXXAM D	Additional and a second second second	a second second second second	and the second second	New York		(e)	2			à.					Regular (S	Standard) TAT:	or rush projects
the local data was to be a set of the set of	on 153 (2011)		Other Regulation		-	Special Ins	tructions *	VI circl	Sarth		1.5.4	- Line						ed it Rush TAT is not specified):	N
() () () () () () () () () () () () () (Res/Park Mediu	And all the second s	Sanitary Sewe					Scr	ydro	-	50 10	Colds						T = 5-7 Working days for most tests	7
	Agri/Other For R		Municipality	byiaw				ed (please / Hg / Cr	H	(Wate	by HS	2					Please note: days - contac	Standard TAT for certain tests such as E I your Project Manager for details	IOO and Dioxins/Furans are > 5
able			manopany _						tole	vocs (VOCs b	amp					Job Specifi	c Rush TAT (if applies to entire subr	nission) ·
		Other			- 1			eld Filtere Metals	53 Pu	ON E	DA ES	A Pr					Date Require		ne Required
	Include Criteri	a on Certificate of Ar	nalysis (Y/N)?		-			M	1 m	Reg 153	Reg 15 (ater)	ide					Rush Confirm	nation Number:(6	tab for #)
Sample	e Barcode Labei	Sample (Location)	Identification	Date Sample	d Time	Sampled	Matrix	1 4	O. Reg (Water	O.R.	O.R.	Chia					# of Bottles	Comm	writs
							1.											18-Sen	-17 15:50
		MW 306		09.18 2	17 2	:30pm	GV				1				10	-	_		
					2	Sen				1								Alison Came	ron
		MUIT-1	1	69.18.201	7 3	20 pm	1		-	-	-		-				-		
					1													B7K389	/
					_						-			-		+ +		SEL ENV	-1138
												1 1						SEL LAN	1100
					-				+	1	+								
1							_										_	RECEIVED IN	OTTAWA
			×																
			_		-				-	-	-						-		
					-													0	
					_													Oni	Cer
					-				-	-	-						-		
		5*																	
3.43	RELINQUISHED BY: (S	iggature/Print)	Date: (YY/	MM/DD)	Time	1	RECEIVED 6	BY: (Signature)	Print)	1	Date: (YY	(MM/DD)	т	ime	Ø jars used a		Labora	tory Use Only	
	VA AL	r	17/09	1/18 3	:50	Man	iana v	ascan	Van	a	FIOS	81160	15	.50	not submitte	d Time Sensitiv	142(1) per au	ure (°C) on Recei Custody S Present	eal Yes No
	0		/			Tomari	the Tome	151Ng.		-	2017	9/18		2:15		-	20, 1	\$118 Intact	9
	WISE ACREED TO IN W	RITING, WORK SUBMITTE	ED ON THIS CHAIN	OF CUSTODY IS	SUBJECT T	TO MAXXAM	S STANDARD TE	RMS AND CON	DITIONS. S	IGNING O						The second second	and the second		nite: Maxxa Yellow: Clie

Maxxam Analytics International Corporation o/a Maxxam Analytics.

Your Project #: OTT-00224605-C Site Location: MERIVALE RD Your C.O.C. #: 102616

Attention: Mark Devlin

exp Services Inc 100-2650 Queensview Drive Ottawa, ON K2B 8H6

> Report Date: 2018/01/30 Report #: R4958809 Version: 2 - Revision

CERTIFICATE OF ANALYSIS – REVISED REPORT

MAXXAM JOB #: B819557 Received: 2018/01/26, 13:10

Sample Matrix: Water # Samples Received: 2

		Date	Date		
Analyses	Quantit	y Extracted	Analyzed	Laboratory Method	Reference
1,3-Dichloropropene Sum (1)	2	N/A	2018/01/29	9	EPA 8260C m
Volatile Organic Compounds in Water (1)	2	N/A	2018/01/29	OCAM SOP-00228	EPA 8260C m

Remarks:

Maxxam Analytics' laboratories are accredited to ISO/IEC 17025:2005 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Maxxam are based upon recognized Provincial, Federal or US method compendia such as CCME, MDDELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Maxxam's profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Maxxam in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected.

Maxxam Analytics' liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Maxxam has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Maxxam, unless otherwise agreed in writing.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) This test was performed by Maxxam Analytics Mississauga

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Fatemeh Habibagahi, Project Manager Assistant Email: FHabibagahi@maxxam.ca Phone# (613) 274-0573

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Total Cover Pages : 1 Page 1 of 9

exp Services Inc Client Project #: OTT-00224605-C Site Location: MERIVALE RD Sampler Initials: MAD

O.REG 153 VOCS BY HS (WATER)

Maxxam ID			FZG283	FZG284		
Sampling Date			2018/01/26	2018/01/26		
			12:30	13:00		
COC Number			102616	102616		
	UNITS	Criteria	MW15-5	MW18-1	RDL	QC Batch
Calculated Parameters						
1,3-Dichloropropene (cis+trans)	ug/L	0.5	<0.50	<0.50	0.50	5371175
Volatile Organics					-	
Acetone (2-Propanone)	ug/L	100000	<250	<250	250	5372389
Benzene	ug/L	0.5	<0.20	<0.20	0.20	5372389
Bromodichloromethane	ug/L	67000	<13	<13	13	5372389
Bromoform	ug/L	5	<1.0	<1.0	1.0	5372389
Bromomethane	ug/L	0.89	<0.50	<0.50	0.50	5372389
Carbon Tetrachloride	ug/L	0.2	<0.20	<0.20	0.20	5372389
Chlorobenzene	ug/L	140	<5.0	<5.0	5.0	5372389
Chloroform	ug/L	2	0.41	0.39	0.20	5372389
Dibromochloromethane	ug/L	65000	<13	<13	13	5372389
1,2-Dichlorobenzene	ug/L	150	<0.50	<0.50	0.50	5372389
1,3-Dichlorobenzene	ug/L	7600	<13	<13	13	5372389
1,4-Dichlorobenzene	ug/L	0.5	<0.50	<0.50	0.50	5372389
Dichlorodifluoromethane (FREON 12)	ug/L	3500	<25	<25	25	5372389
1,1-Dichloroethane	ug/L	11	<5.0	<5.0	5.0	5372389
1,2-Dichloroethane	ug/L	0.5	<0.50	<0.50	0.50	5372389
1,1-Dichloroethylene	ug/L	0.5	<0.20	<0.20	0.20	5372389
cis-1,2-Dichloroethylene	ug/L	1.6	5.9	6.0	0.50	5372389
trans-1,2-Dichloroethylene	ug/L	1.6	<0.50	<0.50	0.50	5372389
1,2-Dichloropropane	ug/L	0.58	<0.20	<0.20	0.20	5372389
cis-1,3-Dichloropropene	ug/L	0.5	<0.30	<0.30	0.30	5372389
trans-1,3-Dichloropropene	ug/L	0.5	<0.40	<0.40	0.40	5372389
Ethylbenzene	ug/L	54	<0.20	<0.20	0.20	5372389
Ethylene Dibromide	ug/L	0.2	<0.20	<0.20	0.20	5372389
Hexane	ug/L	5	<1.0	<1.0	1.0	5372389
Methylene Chloride(Dichloromethane)	ug/L	26	<2.0	<2.0	2.0	5372389
Methyl Ethyl Ketone (2-Butanone)	ug/L	21000	<250	<250	250	5372389
Methyl Isobutyl Ketone	ug/L	5200	<130	<130	130	5372389
Methyl t-butyl ether (MTBE)	ug/L	15	<13	<13	13	5372389
RDL = Reportable Detection Limit QC Batch = Quality Control Batch				•		
Criteria: Ontario Reg. 153/04 (Amended Table 7: Generic Site Condition Standard	•	•	s in a Non-Po	table Ground	Wate	r

Table 7: Generic Site Condition Standards for Shallow Soils in a Non-Potable Ground Water Condition

exp Services Inc Client Project #: OTT-00224605-C Site Location: MERIVALE RD Sampler Initials: MAD

O.REG 153 VOCS BY HS (WATER)

Maxxam ID			FZG283	FZG284		
Sampling Date			2018/01/26	2018/01/26		
			12:30	13:00		
COC Number			102616	102616		
	UNITS	Criteria	MW15-5	MW18-1	RDL	QC Batch
Styrene	ug/L	43	<0.50	<0.50	0.50	5372389
1,1,1,2-Tetrachloroethane	ug/L	1.1	<0.50	<0.50	0.50	5372389
1,1,2,2-Tetrachloroethane	ug/L	0.5	<0.50	<0.50	0.50	5372389
Tetrachloroethylene	ug/L	0.5	710	740	5.0	5372389
Toluene	ug/L	320	<5.0	<5.0	5.0	5372389
1,1,1-Trichloroethane	ug/L	23	<5.0	<5.0	5.0	5372389
1,1,2-Trichloroethane	ug/L	0.5	<0.50	<0.50	0.50	5372389
Trichloroethylene	ug/L	0.5	90	91	5.0	5372389
Trichlorofluoromethane (FREON 11)	ug/L	2000	<13	<13	13	5372389
Vinyl Chloride	ug/L	0.5	<0.20	<0.20	0.20	5372389
p+m-Xylene	ug/L	-	<5.0	<5.0	5.0	5372389
o-Xylene	ug/L	-	<5.0	<5.0	5.0	5372389
Total Xylenes	ug/L	72	<5.0	<5.0	5.0	5372389
Surrogate Recovery (%)						
4-Bromofluorobenzene	%	-	94	93		5372389
D4-1,2-Dichloroethane	%	-	101	97		5372389
D8-Toluene	%	-	97	99		5372389
RDL = Reportable Detection Limit				-	•	
QC Batch = Quality Control Batch						

Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 7: Generic Site Condition Standards for Shallow Soils in a Non-Potable Ground Water Condition

Maxxam Job #: B819557 Report Date: 2018/01/30 exp Services Inc Client Project #: OTT-00224605-C Site Location: MERIVALE RD Sampler Initials: MAD

TEST SUMMARY

				Collected: 2018/01/26 Shipped: Received: 2018/01/26
Instrumentation	Batch	Extracted	Date Analyzed	Analyst
CALC	5371175	N/A	2018/01/29	Automated Statchk
GC/MS	5372389	N/A	2018/01/29	Manpreet Sarao
				Collected: 2018/01/26 Shipped: Received: 2018/01/26
Instrumentation	Batch	Extracted	Date Analyzed	Analyst
CALC	5371175	N/A	2018/01/29	Automated Statchk
GC/MS	5372389	N/A	2018/01/29	Manpreet Sarao
	CALC GC/MS Instrumentation CALC	CALC 5371175 GC/MS 5372389 Instrumentation Batch CALC 5371175	CALC5371175N/AGC/MS5372389N/AInstrumentationBatchExtractedCALC5371175N/A	CALC 5371175 N/A 2018/01/29 GC/MS 5372389 N/A 2018/01/29 Instrumentation Batch Extracted Date Analyzed CALC 5371175 N/A 2018/01/29

exp Services Inc Client Project #: OTT-00224605-C Site Location: MERIVALE RD Sampler Initials: MAD

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt									
Package 14.7°C									
Revised Report (2018/01/30): Requested regulatory criteria have been updated as per client request.									
Sample FZG283 [MW15-5] : VOC Analysis: Due to high concentrations of target analytes, sample required dilution. Detection limits were adjusted accordingly. In order to meet required regulatory criteria or to achieve lower reporting limits, results for selected compounds (obtained by a separate analysis using an appropriate low dilution) are included in the report.									
Sample FZG284 [MW18-1] : VOC Analysis: Due to high concentrations of target analytes, sample required dilution. Detection limits were adjusted accordingly. In order to meet required regulatory criteria or to achieve lower reporting limits, results for selected compounds (obtained by a separate analysis using an appropriate low dilution) are included in the report.									
Results relate only to the items tested.									

Maxxam Job #: B819557 Report Date: 2018/01/30

QUALITY ASSURANCE REPORT

exp Services Inc Client Project #: OTT-00224605-C

Site Location: MERIVALE RD Sampler Initials: MAD

			Matrix Spike		SPIKED BLANK		Method Blank		RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
5372389	4-Bromofluorobenzene	2018/01/29	98	70 - 130	97	70 - 130	97	%		
5372389	D4-1,2-Dichloroethane	2018/01/29	101	70 - 130	99	70 - 130	99	%		
5372389	D8-Toluene	2018/01/29	100	70 - 130	102	70 - 130	98	%		
5372389	1,1,1,2-Tetrachloroethane	2018/01/29	91	70 - 130	96	70 - 130	<0.50	ug/L	NC	30
5372389	1,1,1-Trichloroethane	2018/01/29	87	70 - 130	93	70 - 130	<0.20	ug/L	NC	30
5372389	1,1,2,2-Tetrachloroethane	2018/01/29	94	70 - 130	98	70 - 130	<0.50	ug/L	NC	30
5372389	1,1,2-Trichloroethane	2018/01/29	93	70 - 130	96	70 - 130	<0.50	ug/L	NC	30
5372389	1,1-Dichloroethane	2018/01/29	90	70 - 130	95	70 - 130	<0.20	ug/L	NC	30
5372389	1,1-Dichloroethylene	2018/01/29	90	70 - 130	96	70 - 130	<0.20	ug/L	NC	30
5372389	1,2-Dichlorobenzene	2018/01/29	88	70 - 130	93	70 - 130	<0.50	ug/L	NC	30
5372389	1,2-Dichloroethane	2018/01/29	86	70 - 130	89	70 - 130	<0.50	ug/L	NC	30
5372389	1,2-Dichloropropane	2018/01/29	90	70 - 130	94	70 - 130	<0.20	ug/L	NC	30
5372389	1,3-Dichlorobenzene	2018/01/29	90	70 - 130	95	70 - 130	<0.50	ug/L	NC	30
5372389	1,4-Dichlorobenzene	2018/01/29	90	70 - 130	95	70 - 130	<0.50	ug/L	NC	30
5372389	Acetone (2-Propanone)	2018/01/29	72	60 - 140	90	60 - 140	<10	ug/L	NC	30
5372389	Benzene	2018/01/29	87	70 - 130	92	70 - 130	<0.20	ug/L	NC	30
5372389	Bromodichloromethane	2018/01/29	91	70 - 130	95	70 - 130	<0.50	ug/L	3.9	30
5372389	Bromoform	2018/01/29	94	70 - 130	98	70 - 130	<1.0	ug/L	NC	30
5372389	Bromomethane	2018/01/29	92	60 - 140	98	60 - 140	<0.50	ug/L	NC	30
5372389	Carbon Tetrachloride	2018/01/29	88	70 - 130	95	70 - 130	<0.20	ug/L	NC	30
5372389	Chlorobenzene	2018/01/29	90	70 - 130	95	70 - 130	<0.20	ug/L	NC	30
5372389	Chloroform	2018/01/29	91	70 - 130	95	70 - 130	<0.20	ug/L	1.3	30
5372389	cis-1,2-Dichloroethylene	2018/01/29	91	70 - 130	95	70 - 130	<0.50	ug/L	NC	30
5372389	cis-1,3-Dichloropropene	2018/01/29	92	70 - 130	94	70 - 130	<0.30	ug/L	NC	30
5372389	Dibromochloromethane	2018/01/29	94	70 - 130	98	70 - 130	<0.50	ug/L	NC	30
5372389	Dichlorodifluoromethane (FREON 12)	2018/01/29	91	60 - 140	108	60 - 140	<1.0	ug/L	NC	30
5372389	Ethylbenzene	2018/01/29	88	70 - 130	95	70 - 130	<0.20	ug/L	NC	30
5372389	Ethylene Dibromide	2018/01/29	91	70 - 130	94	70 - 130	<0.20	ug/L	NC	30
5372389	Hexane	2018/01/29	87	70 - 130	94	70 - 130	<1.0	ug/L	NC	30
5372389	Methyl Ethyl Ketone (2-Butanone)	2018/01/29	83	60 - 140	98	60 - 140	<10	ug/L	NC	30
5372389	Methyl Isobutyl Ketone	2018/01/29	88	70 - 130	94	70 - 130	<5.0	ug/L	NC	30

Maxxam Job #: B819557 Report Date: 2018/01/30

QUALITY ASSURANCE REPORT(CONT'D)

exp Services Inc Client Project #: OTT-00224605-C

Site Location: MERIVALE RD Sampler Initials: MAD

			Matrix	Spike	SPIKED	BLANK	Method	Blank	RPI	D	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	
5372389	Methyl t-butyl ether (MTBE)	2018/01/29	86	70 - 130	90	70 - 130	<0.50	ug/L	NC	30	
5372389	Methylene Chloride(Dichloromethane)	2018/01/29	93	70 - 130	96	70 - 130	<2.0	ug/L	NC	30	
5372389	o-Xylene	2018/01/29	85	70 - 130	92	70 - 130	<0.20	ug/L	NC	30	
5372389	p+m-Xylene	2018/01/29	87	70 - 130	94	70 - 130	<0.20	ug/L	NC	30	
5372389	Styrene	2018/01/29	87	70 - 130	94	70 - 130	<0.50	ug/L	NC	30	
5372389	Tetrachloroethylene	2018/01/29	88	70 - 130	94	70 - 130	<0.20	ug/L	1.1	30	
5372389	Toluene	2018/01/29	86	70 - 130	92	70 - 130	<0.20	ug/L	NC	30	
5372389	Total Xylenes	2018/01/29					<0.20	ug/L	NC	30	
5372389	trans-1,2-Dichloroethylene	2018/01/29	90	70 - 130	95	70 - 130	<0.50	ug/L	NC	30	
5372389	trans-1,3-Dichloropropene	2018/01/29	95	70 - 130	96	70 - 130	<0.40	ug/L	NC	30	
5372389	Trichloroethylene	2018/01/29	86	70 - 130	91	70 - 130	<0.20	ug/L	0.28	30	
5372389	Trichlorofluoromethane (FREON 11)	2018/01/29	85	70 - 130	93	70 - 130	<0.50	ug/L	NC	30	
5372389	Vinyl Chloride	2018/01/29	90	70 - 130	100	70 - 130	<0.20	ug/L	NC	30	
Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement. Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.											

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

Report Date: 2018/01/30

exp Services Inc Client Project #: OTT-00224605-C Site Location: MERIVALE RD Sampler Initials: MAD

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

avisting Carriere

Cristina Carriere, Scientific Service Specialist

Eve F Eva Pro

Ewa Pranjic, M.Sc., C.Chem, Scientific Specialist

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Invoice Information		Report	Information	(if diffe	ers from	n invo	oice)			a characteristic	AIN OF CUSTOD Project Information (where		102616 Page of	
mpany Name: EXPSorviteS	Offici A Company	Name:					Constant Designed			Quotation #:			Regular TAT (5-7 days) Most analyses	
ntact Name: Mark Devin			uik D	a l	10/	41.	ik !	1. Ca	11.	P.O. #/ AFE#:			PLEASE PROVIDE ADVANCE NOTICE FOR RUSH PROJE	
dress: 100-2650 Quero	SVIEW Dr. Address:		don to U	101/1	17	<u>n</u> un	1120	4CHA	14	Project #:	077-0022	14605-C	Rush TAT (Surcharges will be applied)	
Otterra										Site Location:			1 Day 2 Days 3-4 Days	
one: (613) 4966 19919 Fax:	Phone:	Sell and			Fax:				149.0	Site #:				
all:	Email:	Ser harris						-		Sampled By:	MAD)	Date Required:	
Weight assess for the vertice of	VATER OR WATER INTENDED FO		UMPTION M	UST BE	SUBM	иттес	ON TH	IE MAXX	AM DR		and service and service and the service of	The last	Rush Confirmation #:	
Regulation 153	Other Reg	ulations ry Sewer Bylaw				-	-	-	T	Analysis Rei	quested		LABORATORY USE ONLY	
Itable 2 Ind/Comm Coarse Itable 3 Agri/ Uther Itable FOR RSC (PLEASE CIRCLE) (y)/ N		Sewer Bylaw		TED	etals / Hg / CrVI			ANICS	1.49	(8 - SM			CUSTOBY SEAL COOLER TEMPERATU Present Intact J J 4, 5, 6	
ude Criteria on Certificate of Analysis: Y N				INME	M (HI			NORGA	ALS	tals, H		20		
SAMPLES MUST BE KEPT COOL (< 10 °C) FROM T	IME OF SAMPLING UNTIL DELIV	ERY TO MAXXAN	И	NERS SI	ED (CIRC			ALS & I	AS MET	AETALS ICPMS Me	10 10 19	ACT AMALVER	 Exercise and an exercise and an e	
SAMPLE IDENTIFICATION	DATE SAMPLED (YYYY/MM/DD)	TIME SAMPLED (HH:MM)	MATRIX	# OF CONTAI	FIELD FILTERED	BTEX/ PHC F1	PHCs F2 - F4	VOC3 REG 153 ME1	REG 153 ICPMS	REG 153 MET (Hg. Cr VI, ICI		More no w	3	
MW15-5	2018/01/26	12:30	GW	3				X					Please saughte run	
MIN (8-1	2015/01/26	1:00pm	Gu	3			/	X					Songlo by headsi	
	10.1										1 1		(refer to email	
										26	Jan-18 13:10		vol + lolus) - 1	
										Fatemel	n Habibagahi		reg unred	
			120.00						II.		IN IN IN INCHINIS IN MIN		Varia	
										B91	19557			
								1	L T	TV	OTT OFT		Onice	
CONTRACTOR OF STREET	and the second													
		1.1.16												
RELINQUISHED BY: (Signature/Print)	DATE: (YYYY/MM/DD)	TIME: (HH:N	IM) N	10	RECE	IVED	BY: (Sig	nature/f	Print)	-	DATE: (YYYY/MM/DD)	TIME: (HH:MM)	RECEIVMANAMIDSPTTAV	

Unless otherwise agreed to in writing, work submitted on this Chain of Custody is subject to Maxxam's standard Terms and Conditions. Signing of this Chain of Custody document is acknowledgment and acceptance of our terms which are available for viewing at www.maxxam.ca/terms. Sample container, preservation, hold time and packages information can be viewed at http://maxxam.ca/wp-content/uploads/Ontario-COC.pdf.

COC-1004 (03/17)

Your Project #: OTT-00224605 Site Location: MERIVALE Your C.O.C. #: 633993-03-01

Attention: Jeffery O'Banion

exp Services Inc 100-2650 Queensview Drive Ottawa, ON CANADA K2B 8H6

> Report Date: 2018/06/04 Report #: R5204666 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B8D1518

Received: 2018/06/01, 11:45

Sample Matrix: Water # Samples Received: 2

		Date	Date		
Analyses	Quantity	/ Extracted	Analyzed	Laboratory Method	Reference
Chloride by Automated Colourimetry (1)	2	N/A	2018/06/04	1 CAM SOP-00463	EPA 325.2 m

Remarks:

Maxxam Analytics' laboratories are accredited to ISO/IEC 17025:2005 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Maxxam are based upon recognized Provincial, Federal or US method compendia such as CCME, MDDELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Maxxam's profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Maxxam in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected.

Maxxam Analytics' liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Maxxam has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Maxxam, unless otherwise agreed in writing.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) This test was performed by Maxxam Analytics Mississauga

Encryption Key

Sara Singh Senior Project 05 Jun 2018 13

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Jonathan Urben, Senior Project Manager Email: jurben@maxxam.ca Phone# (613) 274-0573

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Total Cover Pages : 1 Page 1 of 7

Report Date: 2018/06/04

exp Services Inc Client Project #: OTT-00224605 Site Location: MERIVALE Sampler Initials: JO

RESULTS OF ANALYSES OF WATER

Maxxam ID		GVQ763	GVQ764								
Sampling Date		2018/06/01 12:00	2018/06/01 12:30								
COC Number		633993-03-01	633993-03-01								
	UNITS	MW 208	MW 222	RDL	QC Batch						
Inorganics											
Dissolved Chloride (Cl)	mg/L	4900	4500	40	5561638						
RDL = Reportable Detection Limit											
QC Batch = Quality Control Batch											

Maxxam Job #: B8D1518 Report Date: 2018/06/04

exp Services Inc Client Project #: OTT-00224605 Site Location: MERIVALE Sampler Initials: JO

TEST SUMMARY

Sample ID: M	VQ763 IW 208 /ater					Collected: Shipped: Received:	2018/06/01 2018/06/01
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Chloride by Automated Colou	urimetry	KONE	5561638	N/A	2018/06/04	Deonarine	e Ramnarine
	VQ764 IW 222					Collected: Shipped:	2018/06/01
Matrix: W	/ater					Received:	2018/06/01
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Chloride by Automated Colou	urimetry	KONE	5561638	N/A	2018/06/04	Deonarine	e Ramnarine

Report Date: 2018/06/04

exp Services Inc Client Project #: OTT-00224605 Site Location: MERIVALE Sampler Initials: JO

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1

18.7°C

Results relate only to the items tested.

Maxxam Job #: B8D1518 Report Date: 2018/06/04

QUALITY ASSURANCE REPORT

exp Services Inc Client Project #: OTT-00224605

Site Location: MERIVALE Sampler Initials: JO

			Matrix	Spike	SPIKED	BLANK	Method Blank		RPD			
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits		
5561638 Dissolved Chloride (Cl) 2018/06/04 86 80 - 120 104 80 - 120 <1.0 mg/L 0.24 20										20		
Duplicate: Pai	Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.											
Matrix Spike:	A sample to which a known amount of the analyte of in	terest has been ad	dded. Used to e	valuate sampl	e matrix interfe	erence.						
Spiked Blank:	Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.											
Method Blank	Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.											

Maxxam Job #: B8D1518 Report Date: 2018/06/04 exp Services Inc Client Project #: OTT-00224605 Site Location: MERIVALE Sampler Initials: JO

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

austin Camere

Cristina Carriere, Scientific Service Specialist

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

A Bureau Vernas Group Cumpany	6740 Campobello Road, Mississaug	a, Untario Canada L5N	2L8 Tel:(905) 817-			(905) 817-	5777 www.ma	xam.ca						Several and the	Page
	VOICE TO:		1	Anter	DRT TO:		-	-		PROJEC	T INFORMATION:			Laboratory Use	Only:
any Name: #17497 exp Ser		Compar	ny Nathe)7114 14				Quotati	on#:	B4600	66 Sta	cam 2		Maxxam Job #:	Bottle Order
ion Accounts Payabl 100-2650 Queen		Attentio					-	P.O.#							
Ottawa ON K2B		Address	E					Project				5	-	COC #:	633993
(613) 688-1899 x	C16.07	337 x Tet	Tell	or hh	min the	e.l.	cosh	Project Name Mecivale					Project Manag		
accounting.ottaw	a@exp.com; Karen.Burke@e		-1-3-1	-1. × 19	the later	-apr		Site #:	d By:	and the second	Jeff	12 .		C#633993-03-01	Alison Camero
	G WATER OR WATER INTEND			MUST BE	10180					D (PLEASE E	BE SPECIFIC)	0		Turnaround Time (TAT) F	Required:
SUBMITTED (ON THE MAXXAM DRINKING V	VATER CHAIN OF	CUSTODY	and the second		+							_	Please provide advance notice f	for rush projects
Regulation 153 (2011)	Other Regul	ations	Special I	nstructions	dircle):	atte								tandard) TAT: d if Rush TAT is not specified):	
le 1 Res/Park Medium	in the second se				d (please o	dec				1				= 5-7 Working days for most tests	
ale 2 Ind/Comm Coarse ale 3 Agri/Other For RS		wer Bylaw			(plea	1				-		-	Please note: 1	Standard TAT for certain tests such as E your Project Manager for details.	30D and Dioxine/Funans
ble	PWQ0				red (pic		0							Rush TAT (if applies to entire subr	W.T. URWC.
	Other	11			Lite	Tel 1	10:0				1.1.1			t De of ok 2414 AT	
Include Criteria	a on Certificate of Analysis (Y/N)	?			Field Filte	10	Chlorid						Rush Confirm		call lab for #)
Sample Barcode Label	Sample (Location) Identification	Date Sampled	Time Sampled	Matrix	"da	O-Re	0						# of Bottles	Comm	
-	1011200	01.06.2018	12	-611	1		1						1	0	in an
	WM908	Curocade	Riagen	-OW	110		V	-					1	fush 48h	1
	MU 222	01.06.2018	2.30	GN	K		V	1					10.		Erne Ma
	110 0000	01.06.2010	12.1011	0.0	JAT		~	-					-	A. D. Stranger	1.2.2.1
										6 (C ¹					
				-	-	-						1	-		
					102.08				1000	1.1.1.1		100	3		
								1							
		1.													
		4			Bitemon		100	1.		01-3	Jun-18 11:4	5			
March Call State	al and the second second	1000							Ali	Son Ca.		.5	Laboration of	and the second second	Y.
		2.45					100	36.11			I BBIBIBIBER MIN		-		
		-		-	-			-	1	B8D1	518		-		2.3
		1	1	5-2110	Section 14				KIV						
	the second second second						-			1 07	יןחח דב		_		14.5
		1.2							1000					Onlice	BIS -
							1-1								A STATE AND
	MA						200								
	grature/Print) Date:	YY/MM/DED / T	ing Sam		BY: (Signature/P			: (YY/MM/DD)		îme	# jars used and not submitted		1	ory Use Only	
* RELINQUISHED BY: (\$	5000	-	- Jug	oriane 1	autor 1	base	25 10	12105101	11.2	45	_	Time Sensitive	Temperatu	re (°C) on Recei Custody Se Present	oal Yes
* RELINQUISHED BY: (S	- JER C.								La Contra de la Co				1811		

Your Project #: OTT-00224605-CO Your C.O.C. #: 102989

Attention: Mark McCalla

exp Services Inc 100-2650 Queensview Drive Ottawa, ON CANADA K2B 8H6

> Report Date: 2018/06/07 Report #: R5219991 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B8D5633 Received: 2018/06/06, 10:00

Sample Matrix: Water # Samples Received: 2

		Date	Date		
Analyses	Quantity	y Extracted	Analyzed	Laboratory Method	Reference
Chloride by Automated Colourimetry (1)	2	N/A	2018/06/07	' CAM SOP-00463	EPA 325.2 m

Remarks:

Maxxam Analytics' laboratories are accredited to ISO/IEC 17025:2005 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Maxxam are based upon recognized Provincial, Federal or US method compendia such as CCME, MDDELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Maxxam's profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Maxxam in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected.

Maxxam Analytics' liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Maxxam has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Maxxam, unless otherwise agreed in writing.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) This test was performed by Maxxam Analytics Mississauga

Encryption Key

Jonathan Urben Senior Project Manager 07 Jun 2018 16:27:03

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Jonathan Urben, Senior Project Manager Email: jurben@maxxam.ca Phone# (613) 274-0573

. the

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Total Cover Pages : 1 Page 1 of 7

Report Date: 2018/06/07

exp Services Inc Client Project #: OTT-00224605-CO Sampler Initials: MM

RESULTS OF ANALYSES OF WATER

Maxxam ID		GWN965	GWN966								
Sampling Date		2018/06/06 09:40	2018/06/06 09:40								
COC Number		102989	102989								
	UNITS	MW 208	MW 222	RDL	QC Batch						
Inorganics											
Dissolved Chloride (Cl)	mg/L	4300	4500	60	5567622						
RDL = Reportable Detection Limit											
QC Batch = Quality Control Batch											

Report Date: 2018/06/07

exp Services Inc Client Project #: OTT-00224605-CO Sampler Initials: MM

TEST SUMMARY

Maxxam ID: GWN965 Sample ID: MW 208 Matrix: Water					Collected: Shipped: Received:	2018/06/06 2018/06/06
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Chloride by Automated Colourimetry	KONE	5567622	N/A	2018/06/07	Alina Dobi	eanu
Maxxam ID: GWN966 Sample ID: MW 222 Matrix: Water					Collected: Shipped: Received:	2018/06/06 2018/06/06
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst	2018/00/00
Chloride by Automated Colourimetry	KONE	5567622	N/A	2018/06/07	Alina Dobi	eanu

Page 3 of 7

Maxxam Job #: B8D5633 Report Date: 2018/06/07

exp Services Inc Client Project #: OTT-00224605-CO Sampler Initials: MM

GENERAL COMMENTS

Each te	emperature is the	e average of up to th
	Package 1	12.0°C
Custod	y seal was not pre	esent on the cooler.
Result	s relate only to th	ne items tested.

Maxxam Job #: B8D5633 Report Date: 2018/06/07

QUALITY ASSURANCE REPORT

exp Services Inc Client Project #: OTT-00224605-CO Sampler Initials: MM

			Matrix	Spike	SPIKED	BLANK	Method Blank		RPD		
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	
5567622	5567622 Dissolved Chloride (Cl) 2018/06/07 97 80 - 120 101 80 - 120 <1.0 mg/L 1.2 20										
Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.											
Matrix Spike:	A sample to which a known amount of the analyte of in	terest has been a	dded. Used to e	valuate sampl	e matrix interfe	erence.					
Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.											
Method Blank	Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.										

Maxxam Job #: B8D5633 Report Date: 2018/06/07 exp Services Inc Client Project #: OTT-00224605-CO Sampler Initials: MM

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Eve 6 Eva Pra

Ewa Pranjic, M.Sc., C.Chem, Scientific Specialist

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

	Invoice Information		Report I	nformation	(if differ	s from	invoic	e)	15.11				OF CUSTODY t Information (where ap		-	Page of Turnaround Time (TAT) Required
ompany Name:	EXP Services	AC . Company	Name:	1912					1928	1	Quotation					Regular TAT (5-7 days) Most analyses
ontact Name:		ALCONTRACTOR AND A REPORT OF A		1					12211	10.3	P.O. #/ AF		NELLISE DE			PLEASE PROVIDE ADVANCE NOTICE FOR RUSH PROJ
ddress:	MARK MCCALL 2650 Queensview	Address:	-		191	5	-			-	Project #:		017-0022	4605-1	0	Rush TAT (Surcharges will be applied)
	Oftawa				Sec.	ie.		BÍL.	1.33		Site Locat		STREA	m 2		1 Day 2 Days 3-4 Days
hone: 613	688-1899 Fax:	Phone:	i direct		F	ax:		1314		1	Site #:		1		13.0	
nail:	nark mccolla Ce	XQ. COM Email:									Sampled	Ву:		R. S.E.		Date Required:
	MOE REGULATED DRINKING WATER	OR WATER INTENDED FOR	HUMAN CONSU	IMPTION MI	UST BE S	SUBMI	TTED (ON THE	MAXX	AM DR	INKING WA	TER CHAIN	OF CUSTODY		100	Rush Confirmation #:
Table 1	Regulation 153	Other Regu	lations y Sewer Bylaw	1022		-		-			Analysi	s Requeste	ed			LABORATORY USE ONLY
	Agri/ Other	PWQO Region Other (Specify) REG 558 (MIN. 3 DAY				Metals / Hg / CrVI			RGANICS		s, HWS - B)	de				Y./N CODLER TEMPERATUR Present Intact N N IZ, IZ, IZ
lude Criteria on Cer				-	IS SUBA	CIRCLE	I.		QNI %	VIS METALS	5 Metal	1			ANALYZE	
SAMPLES	MUST BE KEPT COOL (< 10 °C) FROM TIME (ITAINE	TERED (CFI	Z	METALS	8	METALL	46			DO NOT	COOLING MEDIA PRESENT: Y / N
	SAMPLE IDENTIFICATION	DATE SAMPLED (YYYY/MM/DD)	TIME SAMPLED (HH:MM)	MATRIX	OF COI	IELD FIU	ITEX/ PI	HCs P2	EG 153	EG 153	IEG 153 Hg. Cr V	0			OLD-D	COMMENTS
MWZ	-08	2018/06/01	9:40	W	1	1				-	H. C	X			-	
MW 2	of the second	11		11	1-	Ł						×				
			The second			8	1									
				12.21					-	-		1				
			10.00	1							06-J	un-18	10:00		1.61	
											than U	Jrben				The Party of the Party of the
									1111		PODE		10 1 010			RECEIVED IN OTTAWA
										D	8D50	033				RECEIVED IN OTTAWA
			5.1.1.1					-	Fr	Y	0	TT AA				A State of the second sec
0																
RELINOU	ISHED BY: (Signature/Print)	DATE: (YYYY/MM/DD)	TIME: (HH:M	(N		RECEN	VED B	r: (Sign	ature/P	rint)	1.00	DATE	: (YYYY/MM/DD)	TIME: (HH:	MM)	MAXXAM JOB #

Unless otherwise agreed to in writing, work submitted on this Chain of Custody is subject to Maxxam's standard Terms and Conditions. Signing of this Chain of Custody document is acknowledgment and acceptance of our terms which are available for viewing at www.maxxam.ca/terms. Sample container, preservation, hold time and packages information can be viewed at http://maxxam.ca/wp-content/uploads/Ontario-COC.pdf.

COC-1004 (03/17)

White: Maxxam - Yellow: Client

Your Project #: OTT-00224605-C Site Location: MERIVALE RD Your C.O.C. #: 102616

Attention: Mark Devlin

exp Services Inc 100-2650 Queensview Drive Ottawa, ON K2B 8H6

> Report Date: 2018/01/30 Report #: R4958809 Version: 2 - Revision

CERTIFICATE OF ANALYSIS – REVISED REPORT

MAXXAM JOB #: B819557 Received: 2018/01/26, 13:10

Sample Matrix: Water # Samples Received: 2

		Date	Date		
Analyses	Quantit	y Extracted	Analyzed	Laboratory Method	Reference
1,3-Dichloropropene Sum (1)	2	N/A	2018/01/29)	EPA 8260C m
Volatile Organic Compounds in Water (1)	2	N/A	2018/01/29) CAM SOP-00228	EPA 8260C m

Remarks:

Maxxam Analytics' laboratories are accredited to ISO/IEC 17025:2005 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Maxxam are based upon recognized Provincial, Federal or US method compendia such as CCME, MDDELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Maxxam's profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Maxxam in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected.

Maxxam Analytics' liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Maxxam has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Maxxam, unless otherwise agreed in writing.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) This test was performed by Maxxam Analytics Mississauga

Encryption Key

Fatemeh Habibagahi Project Manager Assistant 30 Jan 2018 13:36:42

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Fatemeh Habibagahi, Project Manager Assistant Email: FHabibagahi@maxxam.ca Phone# (613) 274-0573

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Total Cover Pages : 1 Page 1 of 9

Report Date: 2018/01/30

exp Services Inc Client Project #: OTT-00224605-C Site Location: MERIVALE RD Sampler Initials: MAD

O.REG 153 VOCS BY HS (WATER)

Maxxam ID			FZG283	FZG284		
Sampling Date			2018/01/26	2018/01/26		
			12:30	13:00		
COC Number			102616	102616		
	UNITS	Criteria	MW15-5	MW18-1	RDL	QC Batch
Calculated Parameters						
1,3-Dichloropropene (cis+trans)	ug/L	0.5	<0.50	<0.50	0.50	5371175
Volatile Organics						
Acetone (2-Propanone)	ug/L	100000	<250	<250	250	5372389
Benzene	ug/L	0.5	<0.20	<0.20	0.20	5372389
Bromodichloromethane	ug/L	67000	<13	<13	13	5372389
Bromoform	ug/L	5	<1.0	<1.0	1.0	5372389
Bromomethane	ug/L	0.89	<0.50	<0.50	0.50	5372389
Carbon Tetrachloride	ug/L	0.2	<0.20	<0.20	0.20	5372389
Chlorobenzene	ug/L	140	<5.0	<5.0	5.0	5372389
Chloroform	ug/L	2	0.41	0.39	0.20	5372389
Dibromochloromethane	ug/L	65000	<13	<13	13	5372389
1,2-Dichlorobenzene	ug/L	150	<0.50	<0.50	0.50	5372389
1,3-Dichlorobenzene	ug/L	7600	<13	<13	13	5372389
1,4-Dichlorobenzene	ug/L	0.5	<0.50	<0.50	0.50	5372389
Dichlorodifluoromethane (FREON 12)	ug/L	3500	<25	<25	25	5372389
1,1-Dichloroethane	ug/L	11	<5.0	<5.0	5.0	5372389
1,2-Dichloroethane	ug/L	0.5	<0.50	<0.50	0.50	5372389
1,1-Dichloroethylene	ug/L	0.5	<0.20	<0.20	0.20	5372389
cis-1,2-Dichloroethylene	ug/L	1.6	5.9	6.0	0.50	5372389
trans-1,2-Dichloroethylene	ug/L	1.6	<0.50	<0.50	0.50	5372389
1,2-Dichloropropane	ug/L	0.58	<0.20	<0.20	0.20	5372389
cis-1,3-Dichloropropene	ug/L	0.5	<0.30	<0.30	0.30	5372389
trans-1,3-Dichloropropene	ug/L	0.5	<0.40	<0.40	0.40	5372389
Ethylbenzene	ug/L	54	<0.20	<0.20	0.20	5372389
Ethylene Dibromide	ug/L	0.2	<0.20	<0.20	0.20	5372389
Hexane	ug/L	5	<1.0	<1.0	1.0	5372389
Methylene Chloride(Dichloromethane)	ug/L	26	<2.0	<2.0	2.0	5372389
Methyl Ethyl Ketone (2-Butanone)	ug/L	21000	<250	<250	250	5372389
Methyl Isobutyl Ketone	ug/L	5200	<130	<130	130	5372389
Methyl t-butyl ether (MTBE)	ug/L	15	<13	<13	13	5372389
RDL = Reportable Detection Limit						
QC Batch = Quality Control Batch						
Criteria: Ontario Reg. 153/04 (Amended	April 15	, 2011)				

Table 7: Generic Site Condition Standards for Shallow Soils in a Non-Potable Ground Water Condition

Report Date: 2018/01/30

exp Services Inc Client Project #: OTT-00224605-C Site Location: MERIVALE RD Sampler Initials: MAD

O.REG 153 VOCS BY HS (WATER)

Maxxam ID			FZG283	FZG284		
Sampling Date			2018/01/26	2018/01/26		
			12:30	13:00		
COC Number			102616	102616		
	UNITS	Criteria	MW15-5	MW18-1	RDL	QC Batch
Styrene	ug/L	43	<0.50	<0.50	0.50	5372389
1,1,1,2-Tetrachloroethane	ug/L	1.1	<0.50	<0.50	0.50	5372389
1,1,2,2-Tetrachloroethane	ug/L	0.5	<0.50	<0.50	0.50	5372389
Tetrachloroethylene	ug/L	0.5	710	740	5.0	5372389
Toluene	ug/L	320	<5.0	<5.0	5.0	5372389
1,1,1-Trichloroethane	ug/L	23	<5.0	<5.0	5.0	5372389
1,1,2-Trichloroethane	ug/L	0.5	<0.50	<0.50	0.50	5372389
Trichloroethylene	ug/L	0.5	90	91	5.0	5372389
Trichlorofluoromethane (FREON 11)	ug/L	2000	<13	<13	13	5372389
Vinyl Chloride	ug/L	0.5	<0.20	<0.20	0.20	5372389
p+m-Xylene	ug/L	-	<5.0	<5.0	5.0	5372389
o-Xylene	ug/L	-	<5.0	<5.0	5.0	5372389
Total Xylenes	ug/L	72	<5.0	<5.0	5.0	5372389
Surrogate Recovery (%)						
4-Bromofluorobenzene	%	-	94	93		5372389
D4-1,2-Dichloroethane	%	-	101	97		5372389
D8-Toluene	%	-	97	99		5372389
RDL = Reportable Detection Limit				-	•	
QC Batch = Quality Control Batch						

Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 7: Generic Site Condition Standards for Shallow Soils in a Non-Potable Ground Water Condition

Maxxam Job #: B819557 Report Date: 2018/01/30 exp Services Inc Client Project #: OTT-00224605-C Site Location: MERIVALE RD Sampler Initials: MAD

TEST SUMMARY

				Collected: 2018/01/26 Shipped: Received: 2018/01/26
Instrumentation	Batch	Extracted	Date Analyzed	Analyst
CALC	5371175	N/A	2018/01/29	Automated Statchk
GC/MS	5372389	N/A	2018/01/29	Manpreet Sarao
				Collected: 2018/01/26 Shipped: Received: 2018/01/26
Instrumentation	Batch	Extracted	Date Analyzed	Analyst
CALC	5371175	N/A	2018/01/29	Automated Statchk
GC/MS	5372389	N/A	2018/01/29	Manpreet Sarao
	CALC GC/MS Instrumentation CALC	CALC 5371175 GC/MS 5372389 Instrumentation Batch CALC 5371175	CALC5371175N/AGC/MS5372389N/AInstrumentationBatchExtractedCALC5371175N/A	CALC 5371175 N/A 2018/01/29 GC/MS 5372389 N/A 2018/01/29 Instrumentation Batch Extracted Date Analyzed CALC 5371175 N/A 2018/01/29

Report Date: 2018/01/30

exp Services Inc Client Project #: OTT-00224605-C Site Location: MERIVALE RD Sampler Initials: MAD

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt										
Package 14.7°C										
Revised Report (2018/01/30): Requested regulatory criteria have been updated as per client request.										
Sample FZG283 [MW15-5] : VOC Analysis: Due to high concentrations of target analytes, sample required dilution. Detection limits were adjusted accordingly. In order to meet required regulatory criteria or to achieve lower reporting limits, results for selected compounds (obtained by a separate analysis using an appropriate low dilution) are included in the report.										
Sample FZG284 [MW18-1] : VOC Analysis: Due to high concentrations of target analytes, sample required dilution. Detection limits were adjusted accordingly. In order to meet required regulatory criteria or to achieve lower reporting limits, results for selected compounds (obtained by a separate analysis using an appropriate low dilution) are included in the report.										
Results relate only to the items tested.										

Maxxam Job #: B819557 Report Date: 2018/01/30

QUALITY ASSURANCE REPORT

exp Services Inc Client Project #: OTT-00224605-C

Site Location: MERIVALE RD Sampler Initials: MAD

			Matrix	Spike	SPIKED	BLANK	Method I	Blank	RPI	D
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
5372389	4-Bromofluorobenzene	2018/01/29	98	70 - 130	97	70 - 130	97	%		
5372389	D4-1,2-Dichloroethane	2018/01/29	101	70 - 130	99	70 - 130	99	%		
5372389	D8-Toluene	2018/01/29	100	70 - 130	102	70 - 130	98	%		
5372389	1,1,1,2-Tetrachloroethane	2018/01/29	91	70 - 130	96	70 - 130	<0.50	ug/L	NC	30
5372389	1,1,1-Trichloroethane	2018/01/29	87	70 - 130	93	70 - 130	<0.20	ug/L	NC	30
5372389	1,1,2,2-Tetrachloroethane	2018/01/29	94	70 - 130	98	70 - 130	<0.50	ug/L	NC	30
5372389	1,1,2-Trichloroethane	2018/01/29	93	70 - 130	96	70 - 130	<0.50	ug/L	NC	30
5372389	1,1-Dichloroethane	2018/01/29	90	70 - 130	95	70 - 130	<0.20	ug/L	NC	30
5372389	1,1-Dichloroethylene	2018/01/29	90	70 - 130	96	70 - 130	<0.20	ug/L	NC	30
5372389	1,2-Dichlorobenzene	2018/01/29	88	70 - 130	93	70 - 130	<0.50	ug/L	NC	30
5372389	1,2-Dichloroethane	2018/01/29	86	70 - 130	89	70 - 130	<0.50	ug/L	NC	30
5372389	1,2-Dichloropropane	2018/01/29	90	70 - 130	94	70 - 130	<0.20	ug/L	NC	30
5372389	1,3-Dichlorobenzene	2018/01/29	90	70 - 130	95	70 - 130	<0.50	ug/L	NC	30
5372389	1,4-Dichlorobenzene	2018/01/29	90	70 - 130	95	70 - 130	<0.50	ug/L	NC	30
5372389	Acetone (2-Propanone)	2018/01/29	72	60 - 140	90	60 - 140	<10	ug/L	NC	30
5372389	Benzene	2018/01/29	87	70 - 130	92	70 - 130	<0.20	ug/L	NC	30
5372389	Bromodichloromethane	2018/01/29	91	70 - 130	95	70 - 130	<0.50	ug/L	3.9	30
5372389	Bromoform	2018/01/29	94	70 - 130	98	70 - 130	<1.0	ug/L	NC	30
5372389	Bromomethane	2018/01/29	92	60 - 140	98	60 - 140	<0.50	ug/L	NC	30
5372389	Carbon Tetrachloride	2018/01/29	88	70 - 130	95	70 - 130	<0.20	ug/L	NC	30
5372389	Chlorobenzene	2018/01/29	90	70 - 130	95	70 - 130	<0.20	ug/L	NC	30
5372389	Chloroform	2018/01/29	91	70 - 130	95	70 - 130	<0.20	ug/L	1.3	30
5372389	cis-1,2-Dichloroethylene	2018/01/29	91	70 - 130	95	70 - 130	<0.50	ug/L	NC	30
5372389	cis-1,3-Dichloropropene	2018/01/29	92	70 - 130	94	70 - 130	<0.30	ug/L	NC	30
5372389	Dibromochloromethane	2018/01/29	94	70 - 130	98	70 - 130	<0.50	ug/L	NC	30
5372389	Dichlorodifluoromethane (FREON 12)	2018/01/29	91	60 - 140	108	60 - 140	<1.0	ug/L	NC	30
5372389	Ethylbenzene	2018/01/29	88	70 - 130	95	70 - 130	<0.20	ug/L	NC	30
5372389	Ethylene Dibromide	2018/01/29	91	70 - 130	94	70 - 130	<0.20	ug/L	NC	30
5372389	Hexane	2018/01/29	87	70 - 130	94	70 - 130	<1.0	ug/L	NC	30
5372389	Methyl Ethyl Ketone (2-Butanone)	2018/01/29	83	60 - 140	98	60 - 140	<10	ug/L	NC	30
5372389	Methyl Isobutyl Ketone	2018/01/29	88	70 - 130	94	70 - 130	<5.0	ug/L	NC	30

Maxxam Job #: B819557 Report Date: 2018/01/30

QUALITY ASSURANCE REPORT(CONT'D)

exp Services Inc Client Project #: OTT-00224605-C

Site Location: MERIVALE RD Sampler Initials: MAD

			Matrix	Spike	SPIKED	BLANK	Method	Blank	RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
5372389	Methyl t-butyl ether (MTBE)	2018/01/29	86	70 - 130	90	70 - 130	<0.50	ug/L	NC	30
5372389	Methylene Chloride(Dichloromethane)	2018/01/29	93	70 - 130	96	70 - 130	<2.0	ug/L	NC	30
5372389	o-Xylene	2018/01/29	85	70 - 130	92	70 - 130	<0.20	ug/L	NC	30
5372389	p+m-Xylene	2018/01/29	87	70 - 130	94	70 - 130	<0.20	ug/L	NC	30
5372389	Styrene	2018/01/29	87	70 - 130	94	70 - 130	<0.50	ug/L	NC	30
5372389	Tetrachloroethylene	2018/01/29	88	70 - 130	94	70 - 130	<0.20	ug/L	1.1	30
5372389	Toluene	2018/01/29	86	70 - 130	92	70 - 130	<0.20	ug/L	NC	30
5372389	Total Xylenes	2018/01/29					<0.20	ug/L	NC	30
5372389	trans-1,2-Dichloroethylene	2018/01/29	90	70 - 130	95	70 - 130	<0.50	ug/L	NC	30
5372389	trans-1,3-Dichloropropene	2018/01/29	95	70 - 130	96	70 - 130	<0.40	ug/L	NC	30
5372389	Trichloroethylene	2018/01/29	86	70 - 130	91	70 - 130	<0.20	ug/L	0.28	30
5372389	Trichlorofluoromethane (FREON 11)	2018/01/29	85	70 - 130	93	70 - 130	<0.50	ug/L	NC	30
5372389	Vinyl Chloride	2018/01/29	90	70 - 130	100	70 - 130	<0.20	ug/L	NC	30
•	aired analysis of a separate portion of the same sample : A sample to which a known amount of the analyte of					erence.				

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

Report Date: 2018/01/30

exp Services Inc Client Project #: OTT-00224605-C Site Location: MERIVALE RD Sampler Initials: MAD

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

avisting Carriere

Cristina Carriere, Scientific Service Specialist

Eve F Eva Pro

Ewa Pranjic, M.Sc., C.Chem, Scientific Specialist

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Invoice Information		Report	Information	(if diffe	ers from	n invo	oice)			a characteristic	AIN OF CUSTOD Project Information (where		102616 Page of
mpany Name: EXPSorviteS	Offici A Company	Name:					Constant Designed			Quotation #:			Regular TAT (5-7 days) Most analyses
ntact Name: Mark Devin			uik D	a l	10/	41.	ik !	1. Ca	11.	P.O. #/ AFE#:			PLEASE PROVIDE ADVANCE NOTICE FOR RUSH PROJE
dress: 100-2650 Quero	SVIEW Dr. Address:		don to U	101/1	17	<u>n</u> un	1120	4044	14	Project #:	077-0022	14605-C	Rush TAT (Surcharges will be applied)
Otterra										Site Location:			1 Day 2 Days 3-4 Days
one: (613) 4966 19919 Fax:	Phone:	Sell and			Fax:				149.0	Site #:			
all:	Email:	Ser harris						-		Sampled By:	MAD)	Date Required:
Weight assess for the vertice of	VATER OR WATER INTENDED FO		UMPTION M	UST BE	SUBM	иттес	ON TH	IE MAXX	AM DR		and service and service and the service of	The last	Rush Confirmation #:
Regulation 153	Other Reg	ulations ry Sewer Bylaw				-	-	-	T	Analysis Rei	quested		LABORATORY USE ONLY
Itable 2 Ind/Comm Coarse Itable 3 Agri/ Uther Itable FOR RSC (PLEASE CIRCLE) (y)/ N		Sewer Bylaw		TED	etals / Hg / CrVI			ANICS	1.49	(8 - SM			CUSTOBY SEAL COOLER TEMPERATU Present Intact J J 4, 5, 6
ude Criteria on Certificate of Analysis: Y N				INME	M (HI			NORGA	ALS	tals, H		20	
SAMPLES MUST BE KEPT COOL (< 10 °C) FROM T	IME OF SAMPLING UNTIL DELIV	ERY TO MAXXAN	И	NERS SI	ED (CIRC			ALS & I	AS MET	AETALS ICPMS Me	10 10 19	ACT AMALVER	 Exercise and an exercise and an e
SAMPLE IDENTIFICATION	DATE SAMPLED (YYYY/MM/DD)	TIME SAMPLED (HH:MM)	MATRIX	# OF CONTAI	FIELD FILTERED	BTEX/ PHC F1	PHCs F2 - F4	VOC3 REG 153 ME1	REG 153 ICPMS	REG 153 MET (Hg. Cr VI, ICI		More no w	3
MW15-5	2018/01/26	12:30	GW	3				X					Please saughte run
MIN (8-1	2015/01/26	1:00pm	Gu	3			/	X					Songlo by headsi
	10.1										1 1		(refer to email
										26	Jan-18 13:10		vol + lolus) - 1
										Fatemel	n Habibagahi		reg unred
			120.00						II.		IN IN IN INCHINIS IN MIN		Varia
										B91	19557		
								1	, t	TV	OTT OFT		Onice
CONTRACTOR OF STREET	and Paral St.												
		1.1.16											
RELINQUISHED BY: (Signature/Print)	DATE: (YYYY/MM/DD)	TIME: (HH:N	IM) N	10	RECE	IVED	BY: (Sig	nature/f	Print)	-	DATE: (YYYY/MM/DD)	TIME: (HH:MM)	RECEIVMANAMIDSPTTAV

Unless otherwise agreed to in writing, work submitted on this Chain of Custody is subject to Maxxam's standard Terms and Conditions. Signing of this Chain of Custody document is acknowledgment and acceptance of our terms which are available for viewing at www.maxxam.ca/terms. Sample container, preservation, hold time and packages information can be viewed at http://maxxam.ca/wp-content/uploads/Ontario-COC.pdf.

COC-1004 (03/17)

Phase Two Environmental Site Assessment Update 1509 -1531 Merivale Road, Ottawa, Ontario Project Number: OTT-00224605-D0 April 13, 2020 December 20, 2021

Appendix F – Phase II Conceptual Site Model

Phase Two Conceptual Site Model – 1509 – 1531 Merivale Road, Ottawa, Ontario

1. Introduction

This section presents the Phase Two Conceptual Site Model (P2CSM) providing a narrative, graphical and tabulated description integrating information related to the Site geologic and hydrogeologic conditions, areas of potential environmental concern/potential contaminating activities, the presence and distribution of potential contaminants of concern, contaminant fate and transport, and potential exposure pathways. The P2CSM was completed in accordance with Ontario Regulation 153/04, as amended (O.Reg.153/04), as defined by the Ontario Ministry of Environment, Conservation, and Parks (MECP).

The Site consists of one (1) parcel of land with a municipal address of 1509-1531 Merivale Road, in the City of Ottawa, Ontario. The Site is situated within a mixed commercial and residential area of Ottawa and is located on the east side of Merivale Road, west of Kerry Crescent. Refer to Figure 1 for the Site Location Plan, and Figure 2 for the Surrounding Property Land Use Plan.

The Site is currently developed with a multi-tenant commercial building (Lancaster Mall). The Site is occupied by asphalt parking located to the east and west of the building and sparse vegetation located along the southern and eastern property boundaries.

Refer to Table 1 for the Site identification information.

Table 1: Site Identification Information

NAuniainal Addussa	1500 1521 Marinala David Ottawa Ontaria
Municipal Address	1509-1531 Merivale Road, Ottawa, Ontario
Current Land Use	Commercial
Proposed Land Use	Residential
Legal Description	PT BLK A, PL 313132, as in CR609052; LTS 34, 35 & 36, PL 313132, Except the ELY 1 FT as in CR615684; T/W CR615684; S/T CR486816 Nepean
Property Identification Number (PIN) and Assessment Roll Number (ARN)	ARN: 0614-120-540-11900-0000 PIN: 04685-0003 (LT)
Universal Transverse Mercator (UTM) coordinates (appox.)	Zone 18T Easting 442313, Northing 5022870
Accuracy Estimate of UTM	10-15 m
Measurement Method	Georeferenced aerial photograph
Site Area	0.89 hectares (2.20 acres)
Property Owners, Owner Contact and Address	10198447 CANADA INC. Contact: Mr. Sam Choweiri Address: 69 rue Jean-Proulx

Gatineau, QC, J8Z 1W2

2. Potentially Contaminating Activities & Areas of Potential Environmental Concern

2.1 Potentially Contaminating Activities

A Phase One ESA Update, in accordance with O.Reg.153/04, was conducted by EXP in March 2020 for the Phase One Property. Several potentially contaminating activities (PCAs) were identified on-Site and within 250 m from the Phase One Property site boundaries. All PCAs that were identified within 250 m property are shown on Figure 4. Each PCA was further evaluated to determine if the activity may be contributing to an area of potential environmental concern (APEC) at the Phase One Property.

The QP determined that select PCAs may contribute to an APEC for the property, while several PCAs were determined to not contribute to an APEC at the Phase One Property/Site due to various factors including, but not limited to, relative distance to the Phase One Property/Site, orientation to the Phase One Property/Site; degree and nature of PCA operations, potentially impacted media, etc. Refer to Table 2 for the evaluation of the PCAs in the Phase One Study Area.

PCA Identifier	Address	Location of Activity (in relation to Site) ⁽¹⁾	Potentially Contaminating Activity (PCA) ⁽²⁾	Description and Approximate timeline that PCA occurred	Contribution to APEC at the Site
On-Site					
1	1509 – 1531 Merivale Road	On-Site	PCA #37 – Operation of Dry Cleaning Equipment (where chemicals used)	Based on various sources and the site visit, a dry cleaners has operated at the site since at at least 1964.	Confirmed - Previous investigations have identified groundwater impacted with VOC.
2	1509 – 1531 Merivale Road	On-Site	PCA #28 – Gasoline and Associated Products Stored in Fixed Tanks	Based on previous reports, there was a furnace oil UST on the Site that was removed in 1998. Impacted soil and groundwater was removed from the area.	Confirmed - Previous investigations have identified soil impacted with PHC.
3	1509 – 1531 Merivale Road	On-Site	PCA #30: Importation of Fill Material of Unknown Quality	Based on previous reports, there was a furnace oil UST on the Site that was removed in 1998. Impacted soil and groundwater was removed from the area and was backfilled with soil of unknown quality.	Possible - Given that this PCA is located on the Site, it was considered possible that this PCA has contributed or may contribute to an APEC.
Off-Site					

Table 2: Potentially Contaminating Activities in the Phase One Study Area

PCA Identifier	Address	Location of Activity (in relation to Site) ⁽¹⁾	Potentially Contaminating Activity (PCA) ⁽²⁾	Description and Approximate timeline that PCA occurred	Contribution to APEC at the Site
4	1507 Merivale Road	5 m north	PCA #28 – Gasoline and Associated Products Stored in Fixed Tanks	According to the 1965 FIP, this was a gasoline retail outlet and a UST was located on this property.	Yes, given the close proximity to the Site.
5	1507 Merivale Road	5 m north	PCA #27 – Garages and Maintenance and Repair of Railcars, Marine Vehicles, and Aviation Vehicles	Based on the Phase One Site visit, the property is used as an automobile repair garage.	Yes, given the close proximity to the Site.
6	1533 Merivale Road	5 m south	PCA #28 – Gasoline and Associated Products Stored in Fixed Tanks	According to the 1965 FIP, this was a gasoline retail outlet and a UST was located on this property.	Yes, given the close proximity to the Site.
7	1533 Merivale Road	5 m south	PCA #27 – Garages and Maintenance and Repair of Railcars, Marine Vehicles, and Aviation Vehicles	According to the EcoLog ERIS report, this property was formerly occupied by a Pennzoil Ten Minute Oil Change Facility. Based on the Phase One Site visit, this property is now a Jiffy Lube automotive servicing centre.	Possible - Given that this PCA neighbours the Site to the north, it was considered possible that this PCA has contributed or may contribute to an APEC.
8	1537 Merivale Road	45 m south	PCA #28 – Gasoline and Associated Products Stored in Fixed Tanks, PCA "Other" - Known Impacts in Soil.	According to the 1965 FIP, this was a gasoline retail outlet and a UST was located on this property. Air photos show this site was decommissioned after 2010.	Possible - Given that this PCA neighbours the Site to the north, it was considered possible that this PCA has contributed or may contribute to an APEC.
9	1537 Merivale Road	45 m south	PCA "Other" - Spills and Leaks	70 L of gasoline to the ground in 2004	Possible - Given that this PCA neighbours the Site to the south, it was considered possible that this PCA has contributed or may contribute to an APEC.
10	1543 Merivale Road	165 m south	PCA #28 – Gasoline and Associated Products Stored in Fixed Tanks	According to the city directories and Ecolog ERIS report, this has been a gasoline retail outlet from 1970 to the present.	Possible - Given that this PCA neighbours the Site to the south, it was considered possible that this PCA has contributed or may contribute to an APEC.
11	1541 Merivale Road	130 south	PCA #37 – Operation of Dry Cleaning Equipment (where chemicals used)	According to the city directory search this was a dry cleaners between 1990 and 2000.	Possible - Given that this PCA is approximatley 45 m to the south, it was considered possible that this PCA has contributed or may contribute to an APEC.
12	1545 Merivale Road	200 m south	PCA #28 – Gasoline and Associated Products Stored in Fixed Tanks	According to the city directory search, this was a retail fuel outlet between 1970 and 1984.	Unlikely - Given the distance , it was considered unlikley that this PCA has contributed or may contribute to an APEC.

PCA Identifier	Address	Location of Activity (in relation to Site) ⁽¹⁾	Potentially Contaminating Activity (PCA) ⁽²⁾	Description and Approximate timeline that PCA occurred	Contribution to APEC at the Site
13	1545 Merivale Road	200 m south	PCA "Other" - Spills and Leaks	250 L of furnace oil to the ground due to a leak from an underground storage tank	Unlikely - Given the separation distance between this PCA and the Site, it was considered unlikley that this PCA has contributed or may contribute to an APEC.
14	1548 Merivale Road	215 m south	PCA #28 – Gasoline and Associated Products Stored in Fixed Tanks	According to the aerials, site visit and Ecolog ERIS report, this has been a gasoline retail outlet from 1970 to the present.	Unlikely - Given the distance and that the operation was only in place for a short period of time, it was considered unlikley that this PCA has contributed or may contribute to an APEC.
15	1516 Merivale Road	50 m west	PCA #37 – Operation of Dry Cleaning Equipment (where chemicals used)	According to the city directory search, this was a retail fuel outlet between 1965 and 1975.	Unlikely - Given the distance and that the operation was only in place for a short period of time, it was considered unlikley that this PCA has contributed or may contribute to an APEC.
16	1504 Merivale Road	85 m north	PCA #28 – Gasoline and Associated Products Stored in Fixed Tanks	According to the 1965 FIP, this property was occupied by a gasoline station with one (1) UST.	Unlikely - Given the distance , it was considered unlikley that this PCA has contributed or may contribute to an APEC.
17	1493 Merivale Road	105 m northeast	PCA #28 – Gasoline and Associated Products Stored in Fixed Tanks	According to the City Directories, this property was a retail fuel outlet from 1965 to 1970.	Unlikely - Given the separation distance between this PCA and the Site, it was considered unlikley that this PCA has contributed or may contribute to an APEC.

(1 a) Distances are approximately only. Precise distances are not possible due to the age of some listings and the aggregation and/or loss of addresses.

(2) Potentially contaminating activity means a use or activity set out in Column A of Table 2 of Schedule D (O.Reg 153/04, as amended) that is occurring or had occurred in a phase one study area

2.2 Areas of Potential Environmental Concern

Based on the evaluation of the PCAs located within the Phase One Study Area, areas of potential environmental concern (APECs) were identified, as presented in Figure 5, and summarized in Table 3 below.

Table 3: Areas of Potential Environmental Concern (APECs)

Area of Potential Environmental Concern (APEC)	Location of APEC on Phase One Property	Potentially Contaminating Activity (PCA) ⁽¹⁾	Location of PCA (on-Site or off-Site)	Contaminants of Potential Concern	Media Potentially Impacted (Groundwater, soil and/or sediment)
1: Dry cleaners	Central portion of the Site	#37: Potential Operation of Dry Cleaning Equipment (where chemicals are used)	on-Site	VOCs	Soil + Groundwater

EXP Services Inc. 5

1509-1531 Merivale Road, Ottawa, Ontario Project Number: OTT-00224605-D0

Area of Potential Environmental Concern (APEC)	Location of APEC on Phase One Property	Potentially Contaminating Activity (PCA) ⁽¹⁾	Location of PCA (on-Site or off-Site)	Contaminants of Potential Concern	Media Potentially Impacted (Groundwater, soil and/or sediment)
2: Former heating oil UST	Central/ east portion of the Site	#28: Gasoline and Associated Products Storage in Fixed Tanks	on-Site	PHCs, BTEX	Soil + Groundwater
3. Former backfill of UST excavation	Southeastern portion of the Site (area of UST excavation)	#30: Importation of Fill Material of Unknown Quality	on-Site	Metals	Soil
4: Former gasoline retail outlet and UST	North portion of the Site	#28: Gasoline and Associated Products Storage in Fixed Tanks	1507 Merivale Road	PHCs, BTEX, VOCs and metals	Groundwater
5: Automobile service station	North portion of the Site	#27: Garages and Maintenance and Repair of Railcars, Marine Vehicles and Aviation Vehicles	1507 Merivale Road	PHCs, BTEX, VOCs and metals	Groundwater
6: Former gasoline retail outlet and UST	South portion of the Site	#28: Gasoline and Associated Products Storage in Fixed Tanks	1533 Merivale Road	PHCs, BTEX, VOCs and metals	Groundwater
7: Oil changing facility	South portion of the Site	#27: Garages and Maintenance and Repair of Railcars, Marine Vehicles and Aviation Vehicles	1533 Merivale Road	PHCs, BTEX, VOCs and metals	Groundwater
8: Gasoline station	South portion of the Site	#28: Gasoline and Associated Products Storage in Fixed Tanks	1537 Merivale Road	PHCs, BTEX	Groundwater
9: Gasoline spill	South portion of the Site	#Other: Spills (70 L gasoline spill)	1537 Merivale Road	PHCs, BTEX	Groundwater
10: Gasoline station	South portion of the Site	#28: Gasoline and Associated Products Storage in Fixed Tanks	1543 Merivale Road	PHCs, BTEX	Groundwater
11: Former dry cleaners	South portion of the Site	#37: Potential Operation of Dry Cleaning Equipment (where chemicals are used)	1541 Merivale Road	VOCs	Groundwater
12: Gasoline station	South portion of the Site	#28: Gasoline and Associated Products Storage in Fixed Tanks	1545 Merivale Road	PHCs, BTEX	Groundwater
13: Gasoline spill	South portion of the Site	#Other: Spills (250 L furnace oil spill)	1545 Merivale Road	PHCs, BTEX	Groundwater
14: Gasoline station	South portion of the Site	#28: Gasoline and Associated Products Storage in Fixed Tanks	1548 Merivale Road	PHCs, BTEX	Groundwater

Notes:

- Area of Potential Environmental Concern means the area on, in or under a phase one study area where one or more contaminants are potentially present, as determined through the PI ESA, including through (a) identification of post or present uses on, in or under the phase one property, and (b) identification of potentially contaminating activities.
- (2) Potentially contaminating activity means a use or activity set out in Column A of Table 2 of Schedule D (O.Reg.153/04, as amended) that is occurring or has occurred in a phase one Study area.
- (3) Distances are approximately only. Precise distances are not possible due to the age of some listings and the aggregation and/or loss of addresses.

BTEX = benzene, toluene, ethylbenzene, xylenes; PHC = petroleum hydrocarbon; VOC = volatile organic compound; EC/SAR = electrical conductivity/sodium absorption ratio.

*Chloride has been removed for consideration as a COPC

Refer to Figure 5 for the location of APECs on the Site. Boreholes/monitoring wells advanced on the Site to investigate the identified APECs are shown on Figures 6.

2.3 Underground Utilities

Two (2) water lines are located on the Site. One line runs northwest to southeast along the northern property boundary. The second water line enters the Site on the eastern property boundary and enters the east side of the property building.

One (1) gas line enters the Site at the northwestern property boundary and extends eastwards where it then extends southwards along the eastern side of the building. The gas line then splits, one end of the line enters the Site building on the east and the second line extends southwards before also entering the Site building on the east.

Two (2) Bell lines are located on the Site, the lines enter on the northern property boundary and run alongside each other to the southern property boundary.

One (1) underground street light cable is located on the property, it enters on the southern property boundary where is extends northwards.

One (1) storm water sewer line is located on the property to the south of the Site building. The storm sewer line is connected to two (2) catch basins.

One (1) old water line is located on the property in the southwestern portion of the Site and enters the Site building.

One (1) electricity line is located in the western portion of the Site, the electricity line is connected to a sign, it then extends eastwards and enters the Site building on the east.

Refer to Figure 3 for the Underground Utilities Plan.

3. Physical Site Description

3.1 Geological and Hydrogeological Conditions

The Site and surrounding areas are dominated by till, stone-poor, sandy silt to silty sand textured till on Paleozoic terrain.

The bedrock in the general area of the Site is part of a group belonging to the Rockcliffe Formation on the northern portion of the Site, and the Gull River Formation on the Central and Southern Portion of the Site. A fault transects the Site just north of the site building.

The Site and surrounding areas slope to the north / northwest, towards the Ottawa River. Nepean Creek is located approximately 1.75 km south of the Site, the Rideau River is located approximately 2.5 km east of the Site and the Ottawa River is located approximately 4.1 km northwest of the Site. While the inferred regional groundwater flow direction is to the south based on the location and distance of Nepean Creek to the Site, results of the groundwater monitoring conducted during EXP's Phase Two ESA Update suggest that the groundwater flow direction is actually to the north-northeast, towards the Rideau River. EXP notes that the direction of localized groundwater flow may be influenced by disturbed soil (fill), underground utilities and/or underground building structures in the area. As such, the measured groundwater flow direction may not be representative of the regional area.

According to the MNRF Land Use Natural Heritage map, no woodlands, conservation reserves, provincial parks or natural heritage systems were observed on the Site or within the Phase One study area.

The soil investigation conducted at the Site during this Phase Two ESA Update consisted of the advancement of twelve (12) boreholes into the surficial fill material and the underlying native soil to a maximum depth of 4.6 m bgs. Including boreholes advanced during the original 2016 Phase Two ESA, shale limestone bedrock has been observed to a maximum depth of 10.8 m bgs. The borehole logs describing geologic details of the soil cores recovered during the Site drilling activities conducted during the 2016 Phase Two ESA as well as this Phase Two ESA Update are presented in Appendix C. Boundaries of soil indicated on the log sheets are intended to reflect transition zones for the purpose of environmental assessment and should not be interpreted as exact planes of geological change.

The general stratigraphy at the Site, as observed in the boreholes, consisted of asphalt, followed by sand and gravel fill underlain by sandy silt over sand and gravel glacial till and limestone bedrock. A brief description of the soil stratigraphy at the Site, in order of depth, is summarized in the following sections.

6.1.1 Surface Material

The surface material at majority of the boreholes consisted of asphalt, with a thickness of approximately 50 mm.

6.1.2 Fill Material

A layer of fill material was encountered in all boreholes. The thickness of the fill ranged from 1.7 m in BH205 to 2.2 m in BH/MW302 and 303, both located in the area of the former heating oil UST excavation. The fill material generally consisted of brown to grey sand and gravel.

6.1.3 Native Material

The native soil encountered at the Site generally consisted of sandy silt, overlying silty sand and gravel glacial till. The silt till extended to the bedrock surface.

6.1.4 Bedrock

Bedrock was at depths ranging from 2.1 to 2.4 m over 90% of the site. The depth to rock in the northeast corner of the site was 1.1 m. The bedrock consisted of shale limestone.

3.2 Hydrogeology

Based on the groundwater contour map delineated for the Site, the regional groundwater is anticipated to flow in a northnortheasterly direction. Based on the static water level data collected in January 2019, the groundwater flow direction across the site is northeast. Refer to Table 4 for the Site hydrogeology characteristics based on groundwater monitoring observations. The minimum depth to groundwater at the Site is 1.17 m bgs. Refer to Figures 9A and 9B for visual representations of groundwater contours, elevations and inferred flow directions for both the shallow bedrock groundwater and the deep bedrock groundwater.

Table 4: Site Hydrogeology Characteristics

Descriptor	Shallow Bedrock/Overburden Contour	Deep Bedrock Contour
Depth to Groundwater	1.17 m bgs	1.92 m bgs
Groundwater Elevation	93.97 m asl	93.11 m asl
Direction of Groundwater Flow	North-northeast	Northeast
Horizontal Hydraulic Gradient	0.015 m/m	0.028 m/m
Aquifer Hydraulic Conductivity	2.83 x 10 ⁻⁵ m/s	1.26 x 10 ⁻⁵ m/s

m bgs - Meters below ground surface

m asl - meters above sea level

*Shallow bedrock/overburden groundwater and bedrock groundwater are considered as a single water bearing unit, as EXP has established that since no confining layer was identified within bedrock the (2) two groundwater units are hydraulically connected.

3.3 Site Sensitivity

The Site Sensitivity classification with respect to the conditions set out under Section 41 and 43.1 of O.Reg.153/04 were evaluated to determine if the Site is sensitive, as presented in Table 5.

Table 5: Site Sensitivity

Sensitivity	Classification	Does Sensitivity Apply to Site?
Section 41	(i) property is within an area of natural significance	No
applies if	(ii) property includes or is adjacent to an area of natural significance or part of such an area	No
	(iii) property includes land that is within 30 m of an area of natural significance or part of such an area	No
	(iv) soil at property has a pH value for surface soil less than 5 or greater than 9	No
	(v) soil at property has a pH value for sub-surface soil less than 5 or greater than 11	No
	(vi) a qualified person is of the opinion that, given the characteristics of the property and the certifications the qualified person would be required to make in a record of site condition in relation to the property as specified in Schedule A, it is appropriate to apply this section to the property	No
Section 43.1	(i) property is a shallow soil property	No
applies if	(ii) property includes all or part of a water body or is adjacent to a water body or includes land that is within 30 m of a water body	No

3.3.1 Remediation and Management Activities

3.3.1.1 Underground Furnace Oil Tank Excavation

On November 9, 1998 one (1) 2,270 litre underground heating oil tank was removed from the Site by George. W. Drummond Ltd. Prior to the tank removal, 1,250 litres of oil were removed from the tank by Drain-All Ltd. Once the underground storage tank (UST) had been excavated and removed from the Site, John D. Paterson and Associates conducted a Site inspection which identified the presence of petroleum hydrocarbon contamination in soil at the base and walls of the tank excavation. A small test hole was excavated at the base of the excavation and shortly after liquid phase petroleum hydrocarbons were observed.

The remediation program was carried out from November 12 to 17, 1998 and petroleum hydrocarbon contaminated soils were excavated and removed from the Site. A total of 440.48 tonnes of contaminated soil were removed. The excavation extended down to the bedrock surface which was located at approximately 2.1 to 2.2 metres below grade. When the bedrock surface was stripped of soil it was observed that small quantities of liquid phase petroleum hydrocarbons were present in the bedrock fractures. Over a two-day period, 150 mm of water accumulated at the base of the excavation which had a thin layer of free product on the surface. Prior to backfilling the excavation, the free product and water were removed from the excavation and disposed of by a licensed waste contractor.

In order to ensure that all of the free product had been removed from the excavation area, three (3) recovery wells were installed. The recovery wells were installed into the bedrock surface at depths ranging from 2.72 to 2.8 meters below ground surface (bgs). In addition to the recovery wells, a thin layer of 20 mm clear gravel was placed at the base of the excavation and around the wells to allow contaminants to flow freely to the recovery wells.

The excavation was backfilled with segregated clean soil and sand, gravel fill up to the underside of the asphalt. John D. Paterson and Associates were not present on the Site for all of the backfilling operations and compaction testing was not requested.

A total of four (4) soil samples were collected from the excavation and were submitted for chemical analysis of total petroleum hydrocarbons (TPH) and BTEX. One (1) sample from the west wall of the excavation (G7) exceeded the MECP Cleanup Criteria for TPHs. This area of contamination could not be excavated without endangering the structural integrity of the building, and therefore some TPH impacted soil remains at the Site. It was noted that there may have been a small quantity of liquid phase petroleum hydrocarbons present at the base of the remediation excavation and in the area of the recovery wells since the groundwater table is located at a depth equal to the upper surface of the bedrock.

On February 5, 1999, the recovery wells were pumped out by Sewer Matic Environmental Services Inc. and following this, groundwater samples were recovered for laboratory analysis. In total 4,135 litres were removed from the recovery wells disposed of as contaminated liquid waste. The groundwater samples were submitted for chemical analysis of BTEX and TPH, the analytical results were all below the MECP guidelines for the subject Site.

Current conditions at the Site are such that there is no free product present, however there are some exceedances of petroleum hydrocarbons (PHCs) in soil and groundwater in the area of the former UST.

3.4 Land Use

It is understood that the Site is intended to be further developed for residential / commercial land use.

4. Contaminants of Concern

For assessment purposes, EXP selected the MECP (2011) Table 3: Full Depth Generic Site condition Standards in a Non-Potable Ground Water Condition for Residential/Parkland/Institutional Property Use and coarse textured soil was considered applicable for determining contaminants of concern (COCs), based on the rationale presented in Table 6.

Table 6: Site specific Condition

Description	Site Specific Condition
Section 41 Site Sensitivity	 Not applicable The soil at the Site has pH values between 5 and 9 for surficial soil; and, between 5 and 11 for subsurface soil. (Refer to Table 5 for further details). The Site is not located within a Significant Area, and/or located adjacent to an area of natural significance/an environmentally sensitive area.
Section 43.1 Site Sensitivity	 Not applicable The Site is not considered a shallow soil property, based on the recovered soil cores, which indicated that more than two-thirds of the Site has an overburden thickness in excess of 2 m. The Site is not located within 30 m of a surface water body; the nearest surface water body, Nepean Creek, is located 1.75 km southeast of the Site.
Ground Water	 Non-Potable The Site and surrounding properties within 250 m of the Site are supplied by a municipal drinking water system. No potable water wells are located on the Site or within 250 m of the Site.
Land Use	Residential/Parkland/Institutional The proposed future use of the Site is for mixed commercial and residential use.
Soil Texture	• The predominant texture of soils at the Site is considered to be coarse textured, based on soil characteristics identified in the borehole logs.

A chemical constituent was selected as a COC if it was detected in soil or groundwater samples obtained from the Site at a concentration in excess of the applicable Table 3 SCS.

Based on the Table 3 SCS exceedances identified during this Phase Two ESA Update and historically, the following are considered COCs:

<u>Soil</u>

PHCs - F1

VOCs - Tetrachloroethylene and 1,3,5-trimethylbenzene

It is noted that salt related parameters were identified in both soil (electrical conductivity and sodium adsorption ratio) and groundwater (sodium and chloride) in exceedance of the applicable Table 3 SCS and therefore assessed as a potential COC at the Site. However, due to recent amendments to O.Reg. 153 which exclude salt related impacts as areas of concern for properties where salt in soil and groundwater can be attributed to the salting of pavement for de-icing purposes, salt parameters are not identified as contaminants of concern at this Site and are not considered further.

Groundwater

PHCs – F2 and F3

VOCs - Chloroform, cis-1,2-dichloroethylene, tetrachloroethylene, trichloroethylene, and vinyl chloride

Metals and Inorganics - Chlorinate

4.1 Soil and Groundwater Impacts

A chemical constituent was selected as a COC if it was detected in soil or groundwater samples obtained from the Site at a concentration in excess of the applicable Table 3 SCS.

Soil samples were submitted for the analysis of metals and select inorganics, petroleum hydrocarbons (PHCs), benzene, toluene, ethylbenzene and xylenes (BTEX), and/or volatile organic compounds (VOCs). While no exceedances of the MECP Table 3 SCS were identified in soil during this Phase Two ESA Update investigation, historical soil data reviewed as part of this Phase Two ESA Update identified some parameters were measured above the Table 3 SCS. The following COCs were identified:

Parameter Group and Media	Parameters	Horizontal Delineation	Associated Drawings	Vertical Delineation	Associated Drawings
PHCs	F1	Southern portion of the Site, area of the former UST excavation	16	Clean sample obtained in gravelly sand ~2.3 m bgs (MW15-3) and ~3.1 m bgs (MW-6)	10B, 11B, 13B, 15B
VOCs	Tetrachloroethylene and 1,3,5- trimethylbenzene	Central portion of the Site, in the area of the dry- cleaners and along the southern Site boundary	18	Impacts assumed to extend to bedrock	10C, 11C

Table 7: Delineation of Soil Impacts

All remaining tested parameters for PAHs, PHC, metals and select inorganics, and VOC in the soil samples were either nondetected or detected below their applicable MECP (2011) Table 3 SCS.

Groundwater samples were submitted for the analysis of metals and select inorganics, petroleum hydrocarbons (PHCs), benzene, toluene, ethylbenzene and xylenes (BTEX), and/or volatile organic compounds (VOCs). Some parameters were measured above the Table 3 SCS, and the following COCs were identified:

Table 8: Delineation of Groundwater Impacts

Parameter Group and Media	Parameters	Horizontal Delineation	Associated Drawings	Vertical Delineation	Associated Drawings
PHCs	F2 and F3	Southern portion of the Site, in the area of the former UST excavation and along the	21	Clean sample obtained in bedrock unit ~7.6 m below grade (MW15- 3) and ~9.2 m below grade (BH/MW207)	10E, 11D

		southern Site boundary			
VOCs	Chloroform, cis-1,2- dichloroethylene, tetrachloroethylene, trichloroethylene and vinyl chloride	Central portion of the Site, extending northeast to the northeastern property boundary	23	Clean sample obtained in bedrock unit ~7.6 m below grade (MW15- 3), ~9.15 m below grade (BH/MW207) and ~9.3 m below grade (BH/MW208)	10F, 11E, 12B

All remaining tested parameters for PHC, metals and select inorganics, and VOC in the groundwater samples were either nondetected or detected below their applicable MECP (2011) Table 3 SCS.

4.2 Contaminant Fate and Transport

4.2.1 Soil Media

The exceedance of the PHC parameters (PHC F1) are likely associated with on-Site activities within APEC #2, PCA#28 Gasoline and Associated Products Storage in Fixed Tanks, as a result of the former heating oil UST previously removed from the Site. The exceedance of the VOC parameters (PCE and 1,3,5-TMB) are likely associated with APEC #1, PCA #37 Operation of Dry Cleaning Equipment (where chemicals are used), as a result of the dry cleaners located on the Site.

4.2.2 Groundwater Media

The exceedance of the PHC parameters (PHC F2 and F3) are likely associated with on-Site activities within APEC #2, PCA#28 Gasoline and Associated Products Storage in Fixed Tanks, as a result of the former heating oil UST previously removed from the Site. The exceedance of the VOC parameters (PCE and 1,3,5-TMB) are likely associated with APEC #1, PCA #37 Operation of Dry Cleaning Equipment (where chemicals are used), as a result of the dry cleaners located on the Site.

4.2.2 Preferential Pathways

The preferential pathways for contaminants present in soil and groundwater media, include various underground utilities, building footings and subsurface features.

Underground utilities were identified at the Site. As such, there is a potential for underground utilities to affect the distribution and transport of groundwater and soil vapour contaminants located on the Site.

Details on the preferential pathways for the impacts are summarized in Table 9.

Table 9: Preferential Pathways

Anything known about migration of the contaminants present on, in or under the phase two property at a concentration greater than the applicable site condition standard away from any area of potential environmental concern,	Current utilities may affect groundwater and soil vapour migration. Future utilities may affect groundwater and soil vapour migration. Current and future building footings may affect groundwater and soil vapour and migration.
---	--

[®]ехр.

including the identification of any preferential	
pathways.	

4.2.3 Climatic Conditions

It is noted that climatic or meteorological conditions may influence the distribution and migration of COCs at the Site. Seasonal fluctuations in groundwater due to cyclical increases and decreases in precipitation can affect groundwater recharge. Groundwater levels may be elevated in the spring and fall due to snow melt and/or increases in precipitation; and, groundwater levels may be lowered in the winter and summer due to snow storage and/or increased evaporation. Such fluctuations can increase the vertical distribution of COCs in the capillary zone, as well as alter the direction of groundwater flow paths based on changes in infiltration rates. However, based on the conditions observed at the Site, it is not anticipated that the climatic or meteorological changes will result in significant alterations in the distribution of contaminants.

4.2.4 Soil Vapour Migration

Given the presence of volatile COCs in groundwater, vapour intrusion is a potential contaminant transport mechanism for volatile COCs in groundwater. Intrusion of vapour-phase contaminants into the indoor air occurs from volatilization of chemicals from the dissolved or non-aqueous phases in the subsurface.

The relevant mechanisms for vapour intrusion are soil gas advection and vapour migration from diffusion through the building foundation. Soil gas advection is the dominant mechanism when the pressure gradient is greater than 1 Pascal (MECP 2011b), as is the case in many residential buildings due to building depressurization. Soil gas advection can occur through any unsealed entry points, cracks or openings present in the building foundation.

Soil vapour flow is greatest within 1 m to 2 m below the building foundation (MECP 2011b); as such, the soil permeability of backfill beneath the building foundation will affect the soil vapour flow rate. Furthermore, pressure gradients (i.e. depressurization of the indoor airspace of the building) created by temperature differences between indoor and outdoor air may affect soil gas flow rate by creating a "stack effect" where, as warm air rises, it is replaced by air infiltrating through doors and windows, and soil gas migrating through the foundation.

As such, in the event that the vapour intrusion pathway is present there may be potential for unacceptable health risks to building occupants via inhalation of indoor air.

Details on soil vapour migration are summarized in Table 10.

If applicable, information concerning soil vapour intrusion of the contaminants into buildings including,	There is a potential for soil vapors to be present within the subsurface (sourced from groundwater); to migrate along preferential pathways such as underground utility services; and, eventually to migrate into the atmosphere or overlying buildings.
1. relevant construction features of a building, such as a basement or crawl space,	The Site is currently developed with five (5) commercial buildings (multi-storey commercial buildings with basements). The proposed future development plans consist of multi-storey residential / commercial building. Residential units are planned to be constructed on the upper floors, while commercial operations will occupy the main floors and basements. Soil vapours may contact the building slab and migrate through cracks in the basement or floor.
2. building heating, ventilating and air conditioning design and operation, and	HVAC units are equipped to the roof tops of each individual building. HVAC units were in good condition and operating correctly at the time of EXPs Phase One Site visit.

Table 10: Soil Vapour Migration

2	l f	
3.	subsurface	utilities

Underground utilities could affect soil vapour migration, given that several lines are currently connected to the on-Site buildings.

5 Exposure Pathways

5.1 Human Health Receptors and Exposure Pathways

The Site is proposed to be redeveloped for residential / commercial purposes. Based on future residential land use of the Site, the receptors that are anticipated to be present include property residents and visitors/trespassers (all ages), indoor long-term workers (adult (i.e., maintenance worker, concierge) and outdoor long-term workers (adult (i.e., landscaper). Subsurface (construction) workers are also considered potential receptors where future utilities or site renovations are planned.

Groundwater at the Site is considered non-potable. Drinking water for the City of Ottawa is municipally serviced. The minimum depth to groundwater at the Site is 1.17 m bgs. Sub-surface structures are expected to be present on-Site after development.

The potentially complete on-Site human health receptor exposure pathways for the future residential land use are presented in Table 11.

Scenario	Receptor	Exposure Pathways
Property Residents	Adult (including pregnant female), Teen, Child, Toddler, Infant	 Soil ingestion, dermal contact, and particulate inhalation; Ingestion of garden produce; Indoor air inhalation, vapour skin contact, and outdoor air inhalation.
Property Visitors	Adult (including pregnant female), Teen, Child, Toddler, Infant	 Soil ingestion, dermal contact, and particulate inhalation; Ingestion of garden produce; Indoor air inhalation, vapour skin contact, and outdoor air inhalation.
Indoor Long-term Worker	Adult (including pregnant female)	• Indoor air inhalation and vapour skin contact.
Outdoor Long-term Worker	Adult (including pregnant female)	 Soil ingestion, dermal contact, and particulate inhalation; Vapour skin contact and outdoor air inhalation.
Subsurface Worker	Adult (including pregnant female)	 Soil ingestion, dermal contact, and particulate inhalation; Vapour skin contact and outdoor/trench air inhalation.

Table 11: Human Health Conceptual Exposure Model

Refer to Appendix G for the human health conceptual exposure model.

°ехр.

5.2 Ecological Receptors and Exposure Pathways

The Site is proposed to be developed as residential / commercial lands. The Site is located in an urban environment capable of supporting select terrestrial ecological receptors. There are no on-Site waterbodies. The nearest waterbody is Nepean Creek, located approximately 1.75 km southeast of the Site. Consistent with the MECP (2011b), the potential on-Site ecological receptors include those found within urban environments including terrestrial vegetation such as trees, grasses and shrubs; soil invertebrates such as earthworms; terrestrial birds such as woodcocks and blackbirds; and, terrestrial mammals such as voles and shrews.

The shallowest depth to groundwater measured on-Site relative to the ground surface was 1.17 m bgs. The direction of groundwater flow was determined to be towards the north/northeast, towards the Rideau River. As the minimum depth to groundwater is determined to be 1.17 m bgs, the direct contact pathways for ecological receptors (i.e. root uptake/contact for terrestrial plants, and dermal contact and ingestion for terrestrial mammals/birds) are considered to be complete for the Site.

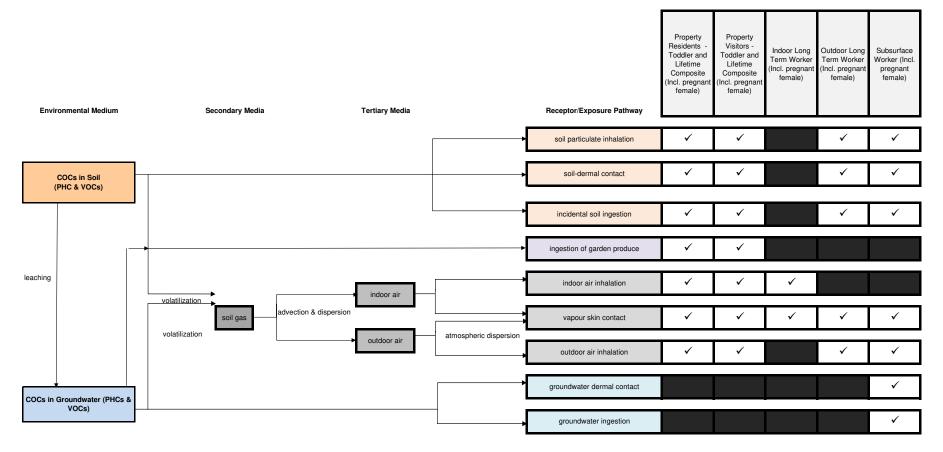
Refer to Appendix G for the Ecological Conceptual Exposure Model.

The MECP evaluates exposure to aquatic receptors at properties within 5 km of a surface waterbody. COCs in soil may leach to groundwater and be discharged to surface water bodies within proximity of the Site. Given the distance to Lake Ontario is within ~1 km of the Site, off-Site aquatic receptors are also considered. Aquatic receptors include aquatic vegetation, aquatic invertebrates, and fish.

The potentially complete off-Site ecological receptor exposure pathways for Lake Ontario are presented in Table 12.

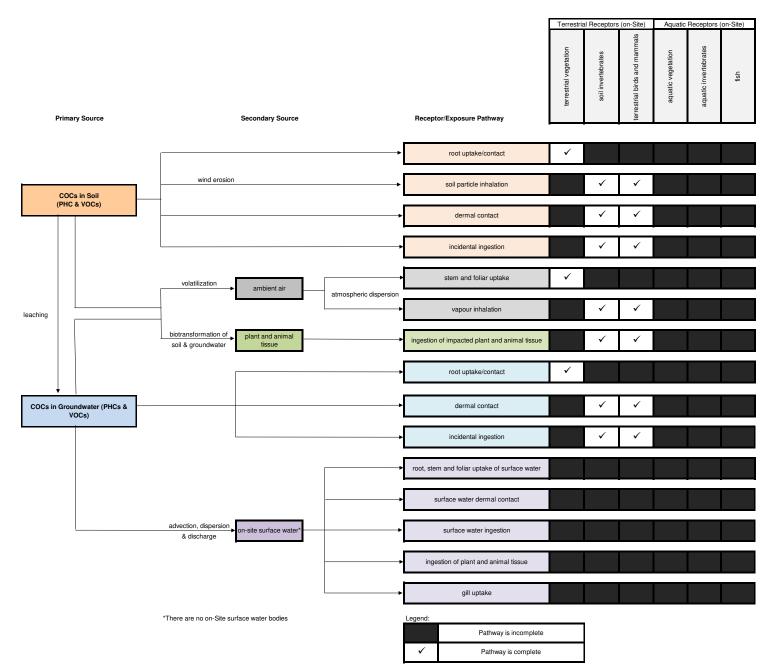
Primary Source	Secondary Source	Receptor	Exposure Route
		Aquatic Vegetation	Root, Stem and Foliar Uptake of Surface Water
	Surface water (<i>via</i>	Aquatic Invertebrates	Surface Water Dermal Contact, Ingestion, and Gill Uptake
Impacted Soil or Groundwater	Groundwater Discharge)	Fish	Surface Water Dermal Contact, Ingestion, Gill Uptake and Ingestion of Impacted Plant and Animal Tissue
Groundwater	Sediment (via Sedimentation in Surface Water)	Aquatic Vegetation	Root Uptake and Contact
		Aquatic Invertebrates	Dermal Contact and Incidental Ingestion
		Fish	Dermal Contact, Incidental Ingestion, and Ingestion of Impacted Plant and Animal Tissue

Table 12: Ecological Off-Site Conceptual Model



EXP Services Inc.

Phase Two Environmental Site Assessment Update 1509 -1531 Merivale Road, Ottawa, Ontario Project Number: OTT-00224605-D0 April 13, 2020 December 20, 2021


Appendix G – Conceptual Exposure Model

Legend:	
	Pathway is incomplete
~	Pathway is complete

*exp.