QUEENSWOOD UNITED CHURCH

# 360 KENNEDY LANE EAST STORMWATER MANAGEMENT REPORT

NOVEMBER 30, 2021





## 360 KENNEDY LANE EAST STORMWATER MANAGEMENT REPORT

QUEENSWOOD UNITED CURCH

1<sup>ST</sup> SUBMISSION

PROJECT NO.: 211-12127-00 CLIENT REF: DATE: NOVEMBER 30, 2021

WSP SUITE 300 2611 QUEENSVIEW DRIVE OTTAWA, ON, CANADA K2B 8K2

T: +1 613 829-2800 F: +1 613 829-8299 WSP.COM

WSP Canada Inc.

## REVISION HISTORY

FIRST ISSUE

| November 30 <sup>th</sup> , 2021 | Draft SWM Report |             |  |
|----------------------------------|------------------|-------------|--|
| Prepared by                      | Reviewed by      | Approved By |  |
| МО                               | AJ               | AJ          |  |

### SIGNATURES

PREPARED BY

Meaghan O'Neill

Meaghan O'Neill Designer, Water Resources November 30<sup>th</sup>, 2021

APPROVED<sup>1</sup> BY



Ayham Jadallah, M.Eng., P.Eng. Project Engineer, Water Resources

November 30<sup>th</sup>, 2021

WSP Canada Inc. ("WSP") prepared this report solely for the use of the intended recipient, Queenswood United Church, in accordance with the professional services agreement. The intended recipient is solely responsible for the disclosure of any information contained in this report. The content and opinions contained in the present report are based on the observations and/or information available to WSP at the time of preparation. If a third party makes use of, relies on, or makes decisions in accordance with this report, said third party is solely responsible for such use, reliance or decisions. WSP does not accept responsibility for damages, if any, suffered by any third party as a result of decisions made or actions taken by said third party based on this report. This limitations statement is considered an integral part of this report.

The original of this digital file will be conserved by WSP for a period of not less than 10 years. As the digital file transmitted to the intended recipient is no longer under the control of WSP, its integrity cannot be assured. As such, WSP does not guarantee any modifications made to this digital file subsequent to its transmission to the intended recipient.

<sup>&</sup>lt;sup>1</sup> Approval of this document is an administrative function indicating readiness for release and does not impart legal liability on to the Approver for any technical content contained herein. Technical accuracy and fit-for-purpose of this content is obtained through the review process. The Approver shall ensure the applicable review process has occurred prior to signing the document.

### CONTRIBUTORS

#### CLIENT

Oueenswood United Church.

#### **WSP**

Water Resources, Designer

Meaghan O'Neill

Water Resources, Project Engineer

Ayham Jadallah

# wsp

# TABLE OF CONTENTS

| 1        | INTRODUCTION                          | 1      |
|----------|---------------------------------------|--------|
| 1.1      | Scope                                 | 1      |
| 1.2      | Site Location                         | 1      |
| 1.3      | Stormwater Management Plan Objectives | 2      |
| 1.4      | Design Criteria                       | 2      |
| 2        | PRE-DEVELOPMENT CONDITIONS            | 3      |
| 2.1      | General                               | 3      |
| 2.2      | Rainfall Information                  | 3      |
| 2.3      | Allowable Flow Rates                  | 3      |
|          |                                       |        |
| 3        | POST-DEVELOPMENT CONDITIONS           | 4      |
| 3<br>3.1 | POST-DEVELOPMENT CONDITIONS           |        |
| -        |                                       | 4      |
| 3.1      | General                               | 4<br>5 |

# wsp

#### **TABLES**

#### FIGURES

FIGURE 1: SITE LOCATION .....1

#### **APPENDICES**

A PRE-CONSULTATION MEETING MINUTES AND TECHNICAL COMMENTS

- B EXHIBITS
- C CALCULATIONS & PCSWMM OUTPUT
- D SUPPORTING DOCUMENTS

# **1 INTRODUCTION**

#### 1.1 SCOPE

WSP Canada Inc. was retained by Queenswood United Church to prepare a Stormwater Management (SWM) report for the proposed development at 360 Kennedy Lane in Ottawa, Ontario. This SWM report examines the potential water quality and quantity impacts of the proposed residential development and summarizes how each will be addressed in accordance with applicable guidelines.

#### **1.2 SITE LOCATION**

The site of the proposed development is located at 360 Kennedy Lane East, Ottawa, Ontario. The subject site is bounded by Queenwood United Church to the north, Queenwood Ridge Park to the east and south, and residential homes along Mountainside Crescent to the west. The site is accessed via Kennedy Lane East on the north-east end of the property. The site location is shown in Figure 1.

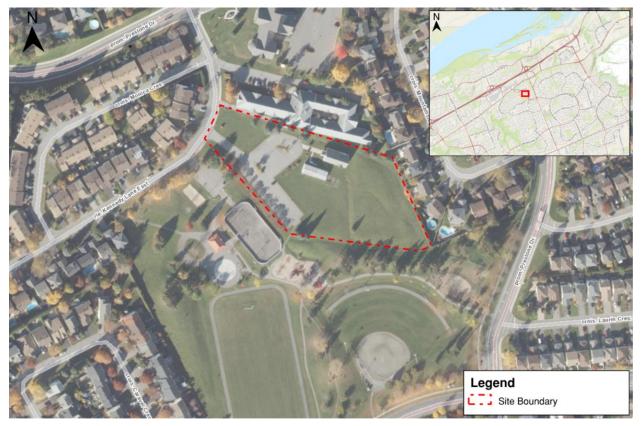



Figure 1: Site Location

#### **1.3 STORMWATER MANAGEMENT PLAN OBJECTIVES**

The objectives of the stormwater management plan are as follows:

- → Collect and review background information
- → Determine the site-specific stormwater management requirements to ensure that the proposals are in conformance with the applicable Provincial, Municipal and Conservation Authority stormwater management and development guidelines.
- $\rightarrow$  Evaluate various stormwater management practices that meet the applicable SWM and development requirements and recommend a preferred strategy.
- → Prepare a stormwater management report documenting the strategy along with the technical information necessary for the justification and sizing of the proposed stormwater management facilities.

#### **1.4 DESIGN CRITERIA**

Design criteria were obtained through the Site Plan Pre-Application Consultation Notes provided by the City of Ottawa on May 19<sup>th</sup>, 2021 (pre consultation notes in **Appendix A**). Criteria for 360 Kennedy Lane East are as follows:

- $\rightarrow$  Stormwater Quantity- control the 100-year post-development flows to the pre-development levels for the 5-year storm events. Allowable runoff coefficient (C) shall be the lesser of the pre-development conditions to a maximum of 0.5.
- → Storm Quality- enhanced level of protection per the Rideau Valley Conservation Authority (RVCA) is required (80% TSS Removal).

# **2 PRE-DEVELOPMENT CONDITIONS**

#### 2.1 GENERAL

The subject site is a 1.22 ha parcel of land comprised of primarily landscaped grass area, with an impervious paved parking area and two small building structures. Vehicular access to the site is via an entrance off of Kennedy Lane East. Existing drainage patterns for the site were determined using topographic survey information and arial imagery. Under pre-development conditions the entire 1.22 ha site ultimately discharges to the 900 mm concrete storm sewer on Kennedy Lane East. The pre-development imperviousness and runoff coefficient was determined using the PCSWMM area weighting tool. The existing conditions drainage area and runoff coefficient is summarized in Table 1, existing conditions drainage mosaic and land use figure are shown in Exhibit 1 and Exhibit 2 found in **Appendix B**.

#### **Table 1: Existing Drainage Areas**

| AREA ID | AREA (HA) | IMPERVIOUS AREA<br>(HA) | IMPERVIOUSNESS<br>(%) | RUNOFF<br>COEFFICENT |
|---------|-----------|-------------------------|-----------------------|----------------------|
| EX-001  | 1.22      | 0.34                    | 28                    | 0.37                 |

#### 2.2 RAINFALL INFORMATION

The rainfall intensity is calculated in accordance with Section 5.4.2 of the Ottawa Sewer Design Guidelines (October, 2012):

Where;

$$i = \left[\frac{A}{(Td+C)^B}\right]$$

- A, B, C = regression constants for each return period (defined in section 5.4.2)
- i = rainfall intensity (mm/hour)
- Td = storm duration (minutes)

The IDF parameters/regression constants are per the Ottawa Sewer Design Guidelines (October, 2012).

#### 2.3 ALLOWABLE FLOW RATES

As noted in section 1.4, relevant policies from the OSDG for a re-development and the Site Plan Pre-Application Consultation notes require the 100-year post-development discharge rate from the site be controlled to the pre-development levels for the 5-year storm event, where pre-development conditions are analyzed using the lesser of the actual runoff coefficient and a runoff coefficient of 0.5. As previously discussed, under existing conditions the subject site has a runoff coefficient on 0.37 and therefore the actual runoff coefficient was used for existing conditions analysis.

PCSWMM was used to evaluate pre-development peak flow rates. Detailed model output can be found in **Appendix** C.

#### **Table 2: Pre-Development Peak Flow Rate**

|         | PEAK FLOW RATE (m <sup>3</sup> /s) |        |         |         |         |          |
|---------|------------------------------------|--------|---------|---------|---------|----------|
| AREA ID | 2-Year                             | 5-Year | 10-Year | 25-Year | 50-Year | 100-Year |
| EX-001  | 0.08                               | 0.12   | 0.16    | 0.22    | 0.26    | 0.31     |

# **3 POST-DEVELOPMENT CONDITIONS**

#### 3.1 GENERAL

The proposed Kennedy Lane E project is a residential development in Ottawa. Post development conditions drainage areas and runoff coefficients are shown in on Exhibit 3 in **Appendix B** and summarized in Table 3.

The proposed development includes the construction of 84 stacked residential units on the approximately 1.22 ha parcel of land. Vehicular access to the site will be via the one existing entrance off of Kennedy Lane E. Similar to existing conditions, all stormwater runoff will ultimately discharge via one outlet to the 900 mm concrete sewer on Kennedy Lane E.

An estimated area breakdown for the new layout is provided in Table 3.

**Table 3: Area Breakdown** 

| CATCHMENT ID AREA (ha)       |       | % COVERAGE OF<br>PROJECT AREA | RUNOFF<br>COEFFICIENT |
|------------------------------|-------|-------------------------------|-----------------------|
| Controlled Drainage Areas    |       |                               |                       |
| S-001                        | 0.082 | 6.7%                          | 0.83                  |
| S-002                        | 0.047 | 3.8%                          | 0.84                  |
| S-003                        | 0.077 | 6.3%                          | 0.72                  |
| S-004                        | 0.036 | 2.9%                          | 0.78                  |
| S-005                        | 0.028 | 2.3%                          | 0.70                  |
| S-006                        | 0.062 | 5.1%                          | 0.71                  |
| S-007                        | 0.123 | 10.0%                         | 0.66                  |
| S-008                        | 0.126 | 10.3%                         | 0.74                  |
| S-009                        | 0.105 | 8.6%                          | 0.77                  |
| S-010                        | 0.114 | 9.3%                          | 0.49                  |
| S-011                        | 0.098 | 8.0%                          | 0.53                  |
| S-012                        | 0.051 | 4.2%                          | 0.83                  |
| S-013                        | 0.079 | 6.5%                          | 0.84                  |
| S-014                        | 0.113 | 9.2%                          | 0.40                  |
| Un-Controlled Drainage Areas | •     |                               |                       |
| S-015                        | 0.056 | 4.6%                          | 0.40                  |
| S-016                        | 0.006 | 0.5%                          | 0.20                  |
| S-017                        | 0.021 | 1.7%                          | 0.83                  |
| TOTAL PROJECT AREA           | 1.22  | 100%                          | 0.66                  |

#### 3.2 WATER QUANTITY

As noted previously, it is required that the 100-year post-development discharge rate from the site not exceed the 5-year pre-development level. As shown in Table 2, this means the 100-year post development flow must be controlled to  $0.12 \text{ m}^3$ /s or less.

Proposed features to achieve these targets include;

- → Surface storage with inlet control devices (ICDs) (HYDROVEX VHV or equivalent)
- → Stormtech (or equivalent) subsurface storage chambers with ICDs on outlets (HYDROVEX VHV or equivalent).

PCSWMM software was used to model the behaviour of the proposed SWM system. Storage areas were defined using storage nodes with the appropriate stage-storage relationships. Outflow controls from each storage node were defined using the appropriate Hydrovex VHV head-discharge curve at catchbasin lead pipes. Specified Hydrovex models are shown in Table 4.

| LOCATION | ICD       |
|----------|-----------|
| CB01     | 150-VHV-2 |
| CB04     | 200-VHV-2 |
| CB06     | 75-VHV-1  |
| Tank A   | 75-VHV-1  |
| Tank B   | 75-VHV-1  |
| Tank C   | 75-VHV-1  |
| Tank D   | 75-VHV-1  |
| Tank F   | 75-VHV-1  |
| Tank G   | 75-VHV-1  |

#### **Table 4: Catchbasin Outflow Control**

A summary of modeling results is provided in Table 5 and detailed modelling output is included in Appendix C.

|                                              | RETURN PERIOD |        |         |         |         |          |
|----------------------------------------------|---------------|--------|---------|---------|---------|----------|
|                                              | 2-Year        | 5-Year | 10-Year | 25-Year | 50-Year | 100-Year |
| Peak Discharge<br>Rate (m <sup>3</sup> /s)   | 0.044         | 0.067  | 0.081   | 0.097   | 0.11    | 0.12     |
| Storage Utilized in Tank A (m <sup>3</sup> ) | 12.90         | 18.72  | 22.64   | 27.73   | 31.67   | 35.76    |
| Storage Utilized in Tank B (m <sup>3</sup> ) | 9.71          | 14.72  | 18.13   | 22.69   | 26.21   | 29.81    |
| Storage Utilized in Tank C (m <sup>3</sup> ) | 35.34         | 52.71  | 65.69   | 83.17   | 96.63   | 110.60   |
| Storage Utilized in Tank D (m <sup>3</sup> ) | 16.61*        | 24.21* | 29.37*  | 36.23*  | 41.50*  | 43.69*   |
| Storage Utilized in Tank F (m <sup>3</sup> ) | 42.78         | 62.69  | 76.24   | 94.23   | 108     | 122.20   |
| Storage Utilized in Tank G (m <sup>3</sup> ) | 15.95         | 23.72  | 29.00   | 35.98   | 41.34   | 46.87    |

#### Table 5: Summary of PCSWMM Modelling Results

\*Includes surface storage – maximum underground storage 42 m<sup>3</sup>

To avoid risk of flooding to the proposed homes, surface ponding has only been proposed where sufficient freeboard is provided between the 100-year ponding elevation and the finish floor elevation of surrounding homes, all other storage will be provided via underground storage as summarized in Table 5. To determine peak surface ponding depths at catchbasin locations, reference has been made to model output at each respective storage node where surface storage is utilized. Ponding depths have been simulated in the model by routing runoff from the contributing sub-catchment area to a storage node defined with a stage-storage relationship describing the ponding volume available on the surface (based on proposed grading), and with outflow controlled by a stage-discharge rating curve based on a standard 600 mm square CB grate (per City of Ottawa standards) with a Hydrovex VHV ICD on the CB lead.

As shown in Table 6, the model results provide maximum ponding elevation and volume at each location, maximum anticipated extents of ponding are shown on the Civil Grading Plan C04.

| AREA ID | LOCATION | INVERT<br>(M) | 100-YEAR<br>ELEV. (M) | HEAD<br>(M) | Q <sub>100</sub><br>(L/SEC) | MAX VOLUME<br>(M <sup>3</sup> ) |
|---------|----------|---------------|-----------------------|-------------|-----------------------------|---------------------------------|
| S-009   | CB07     | 85.27         | 87.53                 | 2.26        | 5.3                         | 1.69                            |
| S-010   | CB01     | 84.21         | 87.15                 | 2.94        | 35.6                        | 1.29                            |
| S-011   | CB04     | 84.11         | 87.15                 | 3.04        | 61.3                        | 1.21                            |
| S-012   | CB06     | 85.32         | 87.72                 | 2.40        | 5.3                         | 12.33                           |

#### **Table 6: Summary of Surface Ponding Analysis**

#### 3.3 WATER QUALITY

As outlined in Section 1.4, it is required that post development runoff be treated to achieve 80% TSS removal.

Proposed features to achieve these targets include;

- $\rightarrow$  Suitably sized oil and grit separator (OGS) unit (FDC-3HC or equivalent)
- $\rightarrow$  Stormtech Isolator Row Plus
- $\rightarrow$  Grass swales

As noted previously, a single outlet location into the Kennedy Lane East sewer is proposed. A suitably sized OGS unit is proposed to achieve a minimum 80% TSS removal. Hydro First Defense (FDC-3HC, or equivalent) is proposed to meet the requirements, details on the proposed unit can be found in **Appendix D**.

The majority of roadway and parking lot runoff will be routed to one of six proposed underground Stormtech (or equivalent) storage units. The units are proposed to include a Stormtech Isolator Row Plus filtration devices to further improve the water quality through a treatment train approach. ETV Canada testing on Stormtech Isolator Row Plus units verified the filtration device is capable of achieving an average 82% TSS removal.

It is assumed that the runoff from pervious rear yard areas will be free of typical sediment-generating activities and therefore runoff will leave them effectively unchanged and can be considered clean for the purposes of water quality assessment. Additionally, it should be noted that runoff from the rear yards along the property line of the site will be captured and conveyed towards the outlet (and OGS) via grass swales. Grass swales are vegetated open channels that convey, treat and attenuate stormwater runoff.

# **4 CONCLUSIONS**

A stormwater management report has been prepared to support the proposed development at 360 Kennedy Lane East in the City of Ottawa. The key points are summarized below.

#### WATER QUALITY

An OGS unit (Hydro First Defense FD-3HC, or equivalent) is proposed at the outlet to the Kennedey Lane East Sewer meet MOE Enhanced treatment standards (80% TSS removal). In addition, the enhanced grass swales will provide additional quality control.

#### WATER QUANTITY

Runoff will be controlled on the surface using ICDs on catch basin lead pipes and the outlet of the proposed underground chambers.



# PRE-CONSULTATION MEETING MINUTES AND TECHNICAL COMMENTS



Planning, Infrastructure and Economic Development Department Services de la planification, de l'infrastructure et du développement économique

#### Site Plan Pre- Application Consultation Notes

Date: Wednesday, May 19, 2021
Site Location: 360 Kennedy Lane E
Type of Development: ⊠ Residential (⊠ townhomes, ⊠ stacked, □ singles, □ apartments), □ Office Space, □ Commercial, □ Retail, □ Institutional, □ Industrial, Other: N/A

#### Infrastructure

#### Water

- Existing public services:
- Kennedy Lane E 203mm DI



Watermain Frontage Fees to be paid (\$190.00 per metre) on Woodroffe Avenue 
Ves

#### Boundary conditions:

Civil consultant must request boundary conditions from the City's assigned Project Manager prior to first submission.

- Water boundary condition requests must include the location of the service(s) and the expected loads required by the proposed developments. Please provide all the following information:
  - Location of service(s)
  - Type of development and the amount of fire flow required (as per FUS, 1999)
  - Average daily demand: \_\_\_\_ L/s
  - Maximum daily demand: \_\_\_\_\_ L/s
  - Maximum hourly daily demand: \_\_\_\_\_L/s
  - Fire protection (Fire demand, Hydrant Locations)
- Please submit sanitary demands with the water boundary conditions

#### **General comments**

- Service areas with a basic demand greater than 50 m<sup>3</sup>/day shall be connected with a minimum of two water services, separated by an isolation valve, to avoid creation of vulnerable service area.
- A District Metering Area Chamber (DMA) is required for new services 150mm or greater in diameter.

#### **Sanitary Sewer**

Existing public services:

• Kennedy Lane E – 250mm PVC



 $\Box$  No

Is a monitoring manhole required on private property? I Yes

#### **General comments**

- Please submit sanitary demands with the water boundary conditions
- For infill developments within older neighbourhoods there is not an allotment for the sanitary capacity. As part of the rezoning application the consultant is required to demonstrate that there is sufficient capacity in the pipe network and system for the proposed sanitary demands.

#### Storm Sewer

Existing public services:

• Kennedy Lane E – 900mm Conc R



#### **Stormwater Management**

Quality Control:

- Rideau Valley Conservation Authority to confirm quality control requirements.
- Quantity Control:
- LID features are strongly encouraged as the development is going from mostly pervious to impervious.
- Time of concentration (Tc): Tc = pre-development; maximum Tc = 10 min
- Allowable run-off coefficient: 0.5
- Allowable flowrate: Allowable flowrate: Control the 100-year storm events to the 5-year storm event.

#### Ministry of Environment, Conservation and Parks (MECEP)

All development applications should be considered for an Environmental Compliance Approval, under MECP regulations.

- a. Consultants are required to determines if an approval for sewage works under Section 53 of OWRA is required.
- b. ECA applications are required to be submitted online through the MECP portal. A business account required to submit ECA application. For more information visit https://www.ontario.ca/page/environmental-compliance-approval
- c. If the consultants determines the site does not meet the definition of industrial site the consultant may request the MECP to exempt the works. The following information must be provided to the City Project Manager:
  - (i) is designed to service one lot or parcel of land;
  - (ii) discharges into a storm sewer that is not a combined sewer;
  - (iii) does not service industrial land or a structure located on industrial land; and
  - (iv) is not located on industrial land.

## NOTE: Site Plan Approval, or Draft Approval, is required before any Ministry of the Environment and Climate Change (MOECC) application is sent

#### **General Service Design Comments**

- Existing sewers or watermains that are not reused must be decommissioned as per City Standards.
- The City of Ottawa Standard Detail Drawings should be referenced where possible for all work within the Public Right-of-Way.

#### Other

Capital Works Projects within proximity to application? Yes 
No

#### **References and Resources**

- As per section 53 of the Professional Engineers Act, O. Reg 941/40, R.S.O. 1990, all documents prepared by engineers must be signed and dated on the seal.
- All required plans & reports are to be provided in \*.pdf format (at application submission and for any, and all, re-submissions)
- Please find relevant City of Ottawa Links to Preparing Studies and Plans below: <u>https://ottawa.ca/en/city-hall/planning-and-development/information-developers/development-application-review-process/development-application-submission/guide-preparing-studies-and-plans#standards-policies-and-guidelines</u>
- To request City of Ottawa plan(s) or report information please contact the City of Ottawa Information Centre: <u>InformationCentre@ottawa.ca<mailto:InformationCentre@ottawa.ca</u>> (613) 580-2424 ext. 44455
- geoOttawa <u>http://maps.ottawa.ca/geoOttawa/</u>

#### SITE PLAN APPLICATION – Municipal servicing

For information on preparing required studies and plans refer to:

http://ottawa.ca/en/development-application-review-process-0/guide-preparing-studies-and-plans

| S/A | Number<br>of<br>copies | ENGINEERING                                                                           |                                                                                                                                                                               |                | Number<br>of<br>copies |
|-----|------------------------|---------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|------------------------|
| S   |                        | 1. Site Servicing Plan                                                                | 2. Site Servicing Report                                                                                                                                                      | <mark>S</mark> |                        |
| S   |                        | 3. Grade Control and<br>Drainage Plan                                                 | <ol> <li>Geotechnical Study<br/>Alternatively, existing report with<br/>memo providing recommendations<br/>for works based on current<br/>geotechnical guidelines.</li> </ol> | S              |                        |
|     |                        | 5. Composite Utility Plan                                                             | 6. Groundwater Impact Study                                                                                                                                                   |                |                        |
|     |                        | <ol> <li>Servicing Options<br/>Report</li> </ol>                                      | 8. Wellhead Protection Study                                                                                                                                                  |                |                        |
|     |                        | 9. Community<br>Transportation Study<br>and/or Transportation<br>Impact Study / Brief | 10. Erosion and Sediment Control<br>Plan / Brief                                                                                                                              | S              |                        |
| S   |                        | 11. Storm water<br>Management Report                                                  | 12. Hydro-geological and Terrain<br>Analysis                                                                                                                                  |                |                        |
|     |                        | 13. Water main Analysis                                                               | 14. Noise / Vibration Study                                                                                                                                                   | S              |                        |
|     |                        | 15. Roadway Modification<br>Design Plan                                               | 16. Confederation Line Proximity<br>Study                                                                                                                                     |                |                        |

It is important to note that the need for additional studies and plans may result during application review. If following the submission of your application, it is determined that material that is not identified in this checklist is required to achieve complete application status, in accordance with the Planning Act and Official Plan requirements, City Planning will notify you of outstanding material required within the required 30 day period. Mandatory pre-application consultation will not shorten the City's standard processing timelines, or guarantee that an application will be approved. It is intended to help educate and inform the applicant about submission requirements as well as municipal processes, policies, and key issues in advance of submitting a formal development application. This list is valid for one year following the meeting date. If the application is not submitted within this timeframe the applicant must again pre-consult with the City.

#### Notes:

4. Geotechnical Study / Slope Stability Study – required as per Official Plan section 4.8.3. All site plan applications need to demonstrate the soils are suitable for development. A Slope Stability Study may be required with unique circumstances (Schedule K or topography may define slope stability concerns).

10. Erosion and Sediment Control Plan – required with all site plan applications as per Official Plan section 4.7.3.

11. Stormwater Management Report/Brief - required with all site plan applications as per Official Plan section 4.7.6.

#### **REZONING APPLICATION – Municipal servicing**

#### For information on preparing required studies and plans refer to:

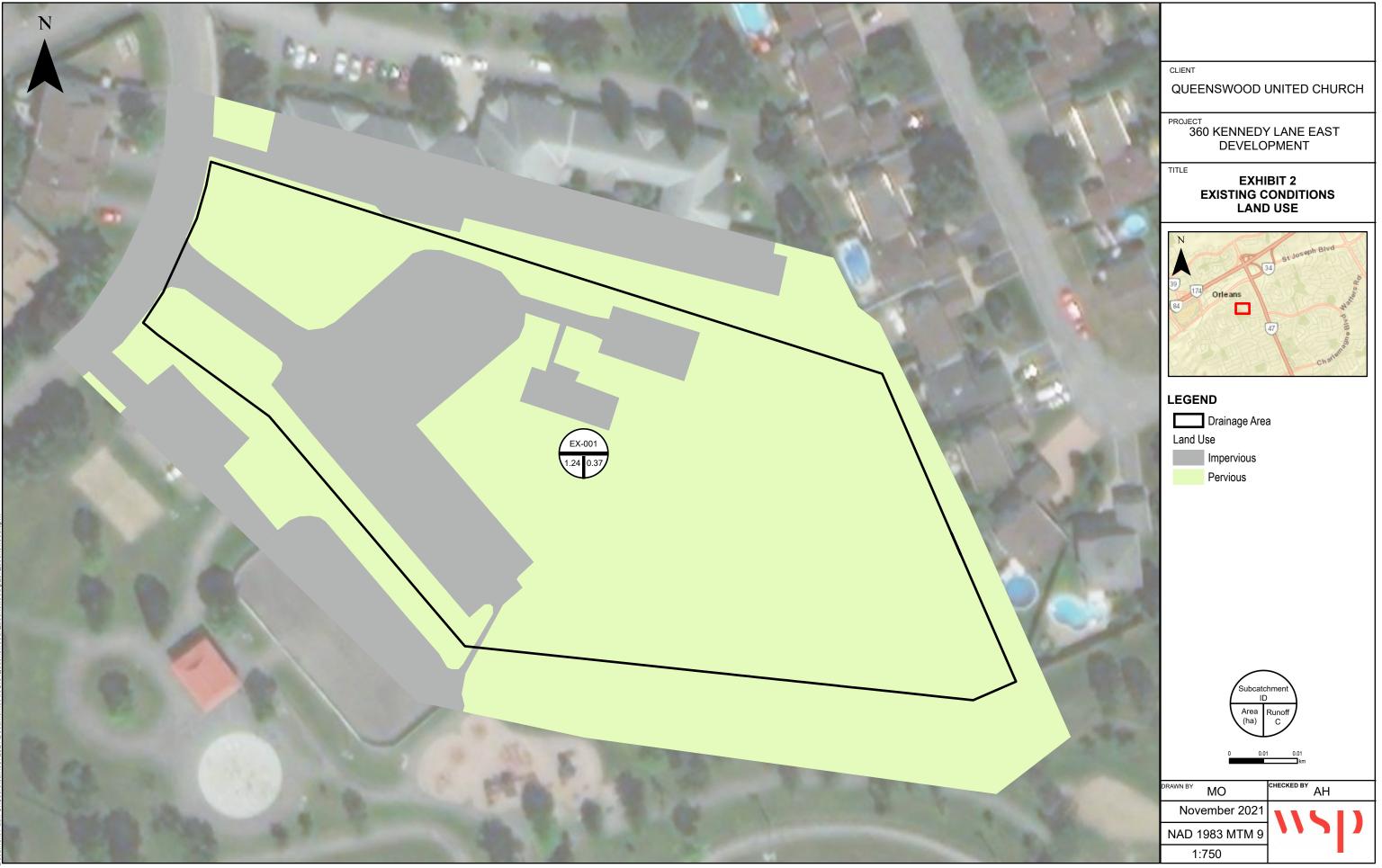
http://ottawa.ca/en/development-application-review-process-0/guide-preparing-studies-and-plans

| S/A | Number<br>of<br>copies | ENGINEERING                                                                                               |                                                                                                                                                          |     | Number<br>of<br>copies |
|-----|------------------------|-----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------------------------|
| S   |                        | 1. Site Servicing Plan                                                                                    | 2. Site Servicing Report                                                                                                                                 | S S |                        |
| S   |                        | 3. Grade Control and<br>Drainage Plan                                                                     | 4. Geotechnical Study<br>Alternatively, existing report with<br>memo providing recommendations<br>for works based on current<br>geotechnical guidelines. | S   |                        |
|     |                        | 5. Composite Utility Plan                                                                                 | 6. Groundwater Impact Study                                                                                                                              |     |                        |
|     |                        | <ol> <li>Servicing Options<br/>Report</li> </ol>                                                          | 8. Wellhead Protection Study                                                                                                                             |     |                        |
|     |                        | <ol> <li>Community<br/>Transportation Study<br/>and/or Transportation<br/>Impact Study / Brief</li> </ol> | 10. Erosion and Sediment Control<br>Plan / Brief                                                                                                         | S   |                        |
| S   |                        | 11. Storm water<br>Management Report                                                                      | 12. Hydro-geological and Terrain<br>Analysis                                                                                                             |     |                        |
|     |                        | 13. Water main Analysis                                                                                   | 14. Noise / Vibration Study                                                                                                                              | S   |                        |
|     |                        | 15. Roadway Modification<br>Design Plan                                                                   | 16. Confederation Line Proximity<br>Study                                                                                                                |     |                        |

It is important to note that the need for additional studies and plans may result during application review. If following the submission of your application, it is determined that material that is not identified in this checklist is required to achieve complete application status, in accordance with the Planning Act and Official Plan requirements, City Planning will notify you of outstanding material required within the required 30 day period. Mandatory pre-application consultation will not shorten the City's standard processing timelines, or guarantee that an application will be approved. It is intended to help educate and inform the applicant about submission requirements as well as municipal processes, policies, and key issues in advance of submitting a formal development application. This list is valid for one year following the meeting date. If the application is not submitted within this timeframe the applicant must again pre-consult with the City.

#### Notes:

4. Geotechnical Study / Slope Stability Study – required as per Official Plan section 4.8.3. All site plan applications need to demonstrate the soils are suitable for development. A Slope Stability Study may be required with unique circumstances (Schedule K or topography may define slope stability concerns).


10. Erosion and Sediment Control Plan – required with all site plan applications as per Official Plan section 4.7.3.


11. Stormwater Management Report/Brief - required with all site plan applications as per Official Plan section 4.7.6.





# **B** EXHIBITS













# C CALCULATIONS & PCSWMM OUTPUT

#### 5-Year Pre-Development

EPA STORM WATER MANAGEMENT MODEL - VERSION 5.1 (Build 5.1.012)

\*\*\*\*\* Element Count

Number of rain gages ..... 16 Number of subcatchments ... 2 Number of nodes ...... 1 Number of links ..... 0 Number of pollutants ..... 0 Number of land uses ..... 0

#### \*\*\*\*\*

| Rai | ngage | Summary |
|-----|-------|---------|
| +++ | +++++ |         |

| Name                                      | Data Source                                                      | Data<br>Type           | Recording<br>Interval                |
|-------------------------------------------|------------------------------------------------------------------|------------------------|--------------------------------------|
|                                           | 100yr_3hr_Chicago                                                | INTENSITY              | 10 min.                              |
| 100yr_Shr_Chicago_C1<br>100yr_6hr_Chicago | <pre>imate_Change 100yr_3hr_Chicago_<br/>100yr_6hr_Chicago</pre> | INTENSITY              | percent INTENSITY 10 min.<br>10 min. |
| 100yr_6hr_Chicago_Cl<br>10yr_3hr_Chicago  | <pre>imate_Change 100yr_6hr_Chicago_<br/>10yr_3hr_Chicago</pre>  | Increase_20            | percent INTENSITY 10 min.<br>10 min. |
| 10yr_6hr_Chicago                          | 10yr_6hr_Chicago                                                 | INTENSITY              | 10 min.                              |
| 25mm_3hr_Chicago<br>25mm_4hr_Chicago      | 25mm_3hr_Chicago<br>25mm_4hr_Chicago                             | INTENSITY              |                                      |
| 25yr_3hr_Chicago                          | 25yr_3hr_Chicago                                                 | INTENSITY              | 10 min.                              |
| 25yr_6hr_Chicago<br>2yr_3hr_Chicago       | 25yr_6hr_Chicago<br>2yr_3hr_Chicago                              | INTENSITY<br>INTENSITY | 10 min.<br>10 min.                   |
| 2yr_6hr_Chicago<br>50yr_3hr_Chicago       | 2yr_6hr_Chicago<br>50yr_3hr_Chicago                              | INTENSITY<br>INTENSITY | 10 min.<br>10 min.                   |
| 50yr_6hr_Chicago                          | 50yr_6hr_Chicago                                                 | INTENSITY              | 10 min.                              |
| 5yr_3hr_Chicago<br>5yr_6hr_Chicago        | 5yr_3hr_Chicago<br>5yr_6hr_Chicago                               | INTENSITY<br>INTENSITY | 10 min.<br>10 min.                   |

#### \*\*\*\*\* Subcatchment Summary

| ******       |              |                |         |                                                  |            |
|--------------|--------------|----------------|---------|--------------------------------------------------|------------|
| Name         | Area         | Width          | %Imperv | %Slope Rain Gage                                 | Outlet     |
| s1_1<br>s1_2 | 0.51<br>0.72 | 68.63<br>60.33 |         | 7.7320 5yr_3hr_Chicago<br>3.4980 5yr_3hr_Chicago | OF1<br>OF1 |

#### \*\*\*\*\*

Node Summary

\*\*\*\*

| Name | Туре    | Invert<br>Elev. | Max.<br>Depth | Ponded<br>Area | External<br>Inflow |
|------|---------|-----------------|---------------|----------------|--------------------|
| OF1  | OUTFALL | 83.72           | 0.00          | 0.0            |                    |

\*\*\*\*\*\*\* NOTE: The summary statistics displayed in this report are based on results found at every computational time step, not just on results from each reporting time step.

Analysis Options Flow Units ..... CMS Process Models: Rainfall/Runoff ..... YES Rainfall/Runoff ... YES RDII ... NO Snowmelt ... NO Groundwater ... NO Flow Routing ... NO Water Quality ... NO Infiltration Method ... HOROM Traction Bethod ... 10/0/07 
 inititration Method
 HORTON

 Starting Date
 11/10/2013 00:00:00

 Ending Date
 11/10/2013 00:00:00

 Antecedent Dry Days
 0.0

 Report Time Step
 00:05:00

 Wet Time Step
 00:05:00

 Dry Time Step
 00:05:00
 Dry Time Step ..... 00:05:00 \*\*\*\*\* Volume Depth

| Depth | vorume    |                            |
|-------|-----------|----------------------------|
| mm    | hectare-m | Runoff Quantity Continuity |
|       |           | *******                    |

| Total Precipitation  | 0.053  | 42.514 |
|----------------------|--------|--------|
| Evaporation Loss     | 0.000  | 0.000  |
| Infiltration Loss    | 0.035  | 28.029 |
| Surface Runoff       | 0.018  | 14.194 |
| Final Storage        | 0.001  | 0.449  |
| Continuity Error (%) | -0.373 |        |
|                      |        |        |

| ************        | * * * * * * * | Volume    | Volume   |
|---------------------|---------------|-----------|----------|
| Flow Routing Contin | uity          | hectare-m | 10^6 ltr |
| ******              | * * * * * * * |           |          |
| Dry Weather Inflow  |               | 0.000     | 0.000    |
| Wet Weather Inflow  |               | 0.018     | 0.176    |
| Groundwater Inflow  |               | 0.000     | 0.000    |
| RDII Inflow         |               | 0.000     | 0.000    |
| External Inflow     |               | 0.000     | 0.000    |
| External Outflow    |               | 0.018     | 0.176    |
| Flooding Loss       |               | 0.000     | 0.000    |
| Evaporation Loss    |               | 0.000     | 0.000    |
| Exfiltration Loss . |               | 0.000     | 0.000    |
| Initial Stored Volu | me            | 0.000     | 0.000    |
| Final Stored Volume |               | 0.000     | 0.000    |
| Continuity Error (% | )             | 0.000     |          |
|                     |               |           |          |

\*\*\*\*\* Subcatchment Runoff Summary

| Subcatchment | Total<br>Precip<br>mm | Total<br>Runon<br>mm | Total<br>Evap<br>mm | Total<br>Infil<br>mm | Total<br>Runoff<br>mm | Total<br>Runoff<br>10^6 ltr | Peak<br>Runoff<br>CMS | Runoff<br>Coeff |
|--------------|-----------------------|----------------------|---------------------|----------------------|-----------------------|-----------------------------|-----------------------|-----------------|
| S1_1<br>S1_2 | 42.51<br>42.51        | 0.00<br>0.00         | 0.00                | 36.36<br>22.11       | 6.17<br>19.90         | 0.03<br>0.14                | 0.02                  | 0.145           |

Analysis begun on: Mon Nov 29 16:03:21 2021 Analysis ended on: Mon Nov 29 16:03:21 2021 Total elapsed time: < 1 sec

#### 100-Year Post Development

EPA STORM WATER MANAGEMENT MODEL - VERSION 5.1 (Build 5.1.012)

#### \*\*\*\*\*

Element Count Number of rain gages ..... 16 Number of subcatchments ... 17 Number of nodes ...... 33 Number of links ..... 32 Number of land uses ..... 0

#### \*\*\*\*\* Raingage Summary

| *******              |                                |              |                   |         |
|----------------------|--------------------------------|--------------|-------------------|---------|
|                      |                                | Data         | Recording         |         |
| Name                 | Data Source                    | Type         | Interval          |         |
| 100yr_3hr_Chicago    | 100ur 3hr Chicago              | INTENSITY    | 10 min.           |         |
|                      | imate_Change 100yr_3hr_Chicago |              |                   | 10 min. |
| 100yr_6hr_Chicago    | 100yr_6hr_Chicago              | INTENSITY    | 10 min.           |         |
| 100yr_6hr_Chicago_Cl | imate_Change 100yr_6hr_Chicago | _Increase_20 | percent INTENSITY | 10 min. |
| 10yr_3hr_Chicago     | 10yr_3hr_Chicago               | INTENSITY    | 10 min.           |         |
| 10yr_6hr_Chicago     | 10yr_6hr_Chicago               | INTENSITY    | 10 min.           |         |
| 25mm_3hr_Chicago     | 25mm_3hr_Chicago               | INTENSITY    | 10 min.           |         |
| 25mm_4hr_Chicago     | 25mm_4hr_Chicago               | INTENSITY    | 10 min.           |         |
| 25yr_3hr_Chicago     | 25yr_3hr_Chicago               | INTENSITY    | 10 min.           |         |
| 25yr_6hr_Chicago     | 25yr_6hr_Chicago               | INTENSITY    | 10 min.           |         |
| 2yr_3hr_Chicago      | 2yr_3hr_Chicago                | INTENSITY    | 10 min.           |         |
| 2yr_6hr_Chicago      | 2yr_6hr_Chicago                | INTENSITY    | 10 min.           |         |
| 50yr_3hr_Chicago     | 50yr_3hr_Chicago               | INTENSITY    | 10 min.           |         |
| 50yr_6hr_Chicago     | 50yr_6hr_Chicago               | INTENSITY    | 10 min.           |         |
| 5yr_3hr_Chicago      | 5yr_3hr_Chicago                | INTENSITY    | 10 min.           |         |
| 5yr_6hr_Chicago      | 5yr_6hr_Chicago                | INTENSITY    | 10 min.           |         |

#### \*\*\*\*\* Subcatchment Summary

| Name  | Area | Width | %Imperv | %Slope  | Rain Gage         | Outlet     |
|-------|------|-------|---------|---------|-------------------|------------|
| S-001 | 0.08 | 40.24 | 90.16   | 2.9480  | 100yr_3hr_Chicago | CB012      |
| S-002 | 0.05 | 24.89 | 92.17   | 2.6160  | 100yr_3hr_Chicago | CB011      |
| S-003 | 0.08 | 38.07 | 79.02   | 2.6610  | 100yr_3hr_Chicago | CB010      |
| S-004 | 0.04 | 14.42 | 92.79   | 2.6880  | 100yr_3hr_Chicago | CB08       |
| S-005 | 0.03 | 24.00 | 85.78   | 3.6100  | 100yr_3hr_Chicago | CB014      |
| S-006 | 0.06 | 34.00 | 75.03   | 2.8970  | 100yr_3hr_Chicago | CB02       |
| S-007 | 0.12 | 46.60 | 79.01   | 2.7540  | 100yr_3hr_Chicago | CB03       |
| S-008 | 0.13 | 46.67 | 78.52   | 2.2900  | 100yr_3hr_Chicago | CB05       |
| S-009 | 0.11 | 40.72 | 83.90   | 2.6420  | 100yr_3hr_Chicago | TankD_CB07 |
| S-010 | 0.11 | 11.44 | 45.25   | 5.6740  | 100yr_3hr_Chicago | CB01       |
| S-011 | 0.10 | 12.38 | 49.68   | 6.4410  | 100yr_3hr_Chicago | CB04       |
| S-012 | 0.05 | 32.06 | 91.67   | 4.3700  | 100yr_3hr_Chicago | CB06       |
| S-013 | 0.08 | 31.60 | 93.42   | 2.3870  | 100yr_3hr_Chicago | СВ09       |
| S-014 | 0.11 | 10.24 | 34.92   | 6.3810  | 100yr_3hr_Chicago | CB08       |
| S-015 | 0.06 | 58.86 | 29.92   | 16.1910 | 100yr_3hr_Chicago | OF1        |
| S-016 | 0.01 | 59.16 | 5.84    | 2.0000  | 100yr_3hr_Chicago | OF1        |
| S-017 | 0.04 | 18.64 | 61.38   | 3.4660  | 100yr_3hr_Chicago | OF1        |
|       |      |       |         |         |                   |            |

\*\*\*\*\* Node Summary

| ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ |          |                 |      |                |  |
|---------------------------|----------|-----------------|------|----------------|--|
| Name                      | Туре     | Invert<br>Elev. |      | Ponded<br>Area |  |
| СВ010                     | JUNCTION | 84.10           | 3.25 | 0.0            |  |
| CB011                     | JUNCTION | 84.09           | 3.17 | 0.0            |  |
| CB012                     | JUNCTION | 83.90           | 3.36 | 0.0            |  |
| CB014                     | JUNCTION | 84.25           | 3.07 | 0.0            |  |
| CB02                      | JUNCTION | 84.15           | 3.14 | 0.0            |  |
| CB03                      | JUNCTION | 85.15           | 2.50 | 0.0            |  |
| CB05                      | JUNCTION | 85.19           | 2.50 | 0.0            |  |
| CB08                      | JUNCTION | 84.30           | 2.99 | 0.0            |  |
| CB09                      | JUNCTION | 84.50           | 2.90 | 0.0            |  |
| J1                        | JUNCTION | 83.73           | 3.76 | 0.0            |  |
| J2                        | JUNCTION | 83.66           | 3.89 | 0.0            |  |
| J3                        | JUNCTION | 83.51           | 4.08 | 0.0            |  |
| J4                        | JUNCTION | 83.82           | 3.89 | 0.0            |  |
| J5                        | JUNCTION | 83.71           | 3.96 | 0.0            |  |
| STMH101                   | JUNCTION | 82.87           | 4.49 | 0.0            |  |
| STMH102                   | JUNCTION | 83.53           | 4.08 | 0.0            |  |
| STMH103                   | JUNCTION | 83.74           | 3.75 | 0.0            |  |
| STMH104                   | JUNCTION | 83.84           | 3.78 | 0.0            |  |
|                           |          |                 |      |                |  |

| STMH105    | JUNCTION | 84.12 | 3.66 | 0.0 |
|------------|----------|-------|------|-----|
| STMH106    | JUNCTION | 84.20 | 3.41 | 0.0 |
| STMH107    | JUNCTION | 84.35 | 3.05 | 0.0 |
| STMH108    | JUNCTION | 83.90 | 3.84 | 0.0 |
| STMH109    | JUNCTION | 84.14 | 3.34 | 0.0 |
| OF1        | OUTFALL  | 82.20 | 0.45 | 0.0 |
| CB01       | STORAGE  | 84.21 | 2.98 | 0.0 |
| CB04       | STORAGE  | 84.11 | 3.08 | 0.0 |
| CB06       | STORAGE  | 84.45 | 3.37 | 0.0 |
| TankA      | STORAGE  | 83.73 | 3.53 | 0.0 |
| TankB      | STORAGE  | 83.98 | 3.37 | 0.0 |
| TankC      | STORAGE  | 84.15 | 3.25 | 0.0 |
| TankD_CB07 | STORAGE  | 84.16 | 3.61 | 0.0 |
| TankF      | STORAGE  | 85.00 | 2.35 | 0.0 |
| TankG      | STORAGE  | 83.98 | 3.31 | 0.0 |
|            |          |       |      |     |

#### \*\*\*\*\*\*

Link Summary

| Name          | From Node       |         | Type    | Length | %Slope | Roughness                  |
|---------------|-----------------|---------|---------|--------|--------|----------------------------|
| C1_1          | STMH102         | J3      | CONDUIT | 1.8    | 0.9837 | 0.0130                     |
| C1_2          | J3              |         | CONDUIT |        |        | 0.0130                     |
| C10           | STMH109         | STMH108 | CONDUIT | 11.7   | 1.0268 | 0.0130                     |
| C11_1         | STMH108         | J4      | CONDUIT | 25.6   | 0.3010 | 0.0130                     |
| C11_3         | J4              | J5      | CONDUIT | 38.5   | 0.3016 | 0.0130                     |
| C11_4         | J5              | STMH102 | CONDUIT | 48.6   | 0.3024 | 0.0130                     |
| C2            | STMH107         | STMH106 | CONDUIT | 25.8   | 0.4647 | 0.0130                     |
| C3            | STMH106         | STMH105 | CONDUIT | 13.1   | 0.4577 | 0.0130                     |
| C4            | STMH101         | OF1     | CONDUIT | 16.8   | 3.9941 | 0.0100                     |
| C4_2          | STMH105         | STMH104 | CONDUIT | 51.5   | 0.4462 | 0.0130                     |
| C5            | STMH104         | STMH103 | CONDUIT | 10.1   | 0.2977 | 0.0130                     |
| C6_1          | STMH103         | J1      | CONDUIT | 1.8    | 0.3343 | 0.0130                     |
| C6_3          | J1              | J2      | CONDUIT | 25.4   | 0.3070 | 0.0130                     |
| C6_4          | J2              | STMH102 | CONDUIT | 34.7   | 0.3053 | 0.0130                     |
| CB011         | CB011           | TankG   | CONDUIT | 8.5    | 1.2984 | 0.0130                     |
| CB012         | CB012           | TankA   | CONDUIT | 5.6    | 3.0601 | 0.0130<br>0.0130<br>0.0130 |
| CB014         | CB014           | TankC   | CONDUIT | 8.7    | 1.1535 | 0.0130                     |
| CB02          | CB02            | TankG   | CONDUIT |        |        | 0.0130                     |
| CB08          | CB08            | TankC   | CONDUIT | 14.9   | 1.0064 | 0.0130                     |
| CB09          | CB09            | TankC   | CONDUIT |        |        | 0.0130                     |
| ICD_010       | CB010           | TankB   | CONDUIT | 6.5    | 1.2237 | 0.0130                     |
| ICD_03        | CB03            | TankF   | CONDUIT | 8.4    | 1.7907 | 0.0130                     |
| ICD_05        | CB05            | TankF   | CONDUIT | 24.4   |        |                            |
| ICD_06        | CB06            | STMH107 | OUTLET  |        |        |                            |
| ICD_A         | TankA<br>TankB  | J3      | OUTLET  |        |        |                            |
| ICD_B         | TankB           | J5      | OUTLET  |        |        |                            |
| ICD_C         | TankC           | J4      | OUTLET  |        |        |                            |
| ICD_CB01      | CB01            | CB04    | OUTLET  |        |        |                            |
| ICD_CB04      | CB04            | STMH104 | OUTLET  |        |        |                            |
| ICD_D         | TankD_CB07      | STMH109 | OUTLET  |        |        |                            |
| ICD_F         | TankF           | J1      | OUTLET  |        |        |                            |
| ICD_G         | TankG           | J2      | OUTLET  |        |        |                            |
|               |                 |         |         |        |        |                            |
| ********      |                 |         |         |        |        |                            |
| Cross Section |                 |         |         |        |        |                            |
| *******       | * * * * * * * * |         |         |        |        |                            |

| Conduit | Shape    | Full<br>Depth | Full<br>Area | Hyd.<br>Rad. | Max.<br>Width | No. of<br>Barrels | Full<br>Flow |
|---------|----------|---------------|--------------|--------------|---------------|-------------------|--------------|
| C1_1    | CIRCULAR | 0.45          | 0.16         | 0.11         | 0.45          | 1                 | 0.28         |
| C1_2    | CIRCULAR | 0.45          | 0.16         | 0.11         | 0.45          | 1                 | 0.29         |
| C10     | CIRCULAR | 0.25          | 0.05         | 0.06         | 0.25          | 1                 | 0.06         |
| C11_1   | CIRCULAR | 0.35          | 0.10         | 0.09         | 0.35          | 1                 | 0.08         |
| C11_3   | CIRCULAR | 0.35          | 0.10         | 0.09         | 0.35          | 1                 | 0.08         |
| C11_4   | CIRCULAR | 0.35          | 0.10         | 0.09         | 0.35          | 1                 | 0.08         |
| C2      | CIRCULAR | 0.25          | 0.05         | 0.06         | 0.25          | 1                 | 0.04         |
| C3      | CIRCULAR | 0.25          | 0.05         | 0.06         | 0.25          | 1                 | 0.04         |
| C4      | CIRCULAR | 0.45          | 0.16         | 0.11         | 0.45          | 1                 | 0.74         |
| C4_2    | CIRCULAR | 0.25          | 0.05         | 0.06         | 0.25          | 1                 | 0.04         |
| C5      | CIRCULAR | 0.30          | 0.07         | 0.07         | 0.30          | 1                 | 0.05         |
| C6_1    | CIRCULAR | 0.35          | 0.10         | 0.09         | 0.35          | 1                 | 0.08         |
| C6_3    | CIRCULAR | 0.35          | 0.10         | 0.09         | 0.35          | 1                 | 0.08         |
| C6_4    | CIRCULAR | 0.35          | 0.10         | 0.09         | 0.35          | 1                 | 0.08         |
| CB011   | CIRCULAR | 0.20          | 0.03         | 0.05         | 0.20          | 1                 | 0.04         |
| CB012   | CIRCULAR | 0.20          | 0.03         | 0.05         | 0.20          | 1                 | 0.06         |
| CB014   | CIRCULAR | 0.20          | 0.03         | 0.05         | 0.20          | 1                 | 0.04         |
| CB02    | CIRCULAR | 0.20          | 0.03         | 0.05         | 0.20          | 1                 | 0.05         |
| CB08    | CIRCULAR | 0.20          | 0.03         | 0.05         | 0.20          | 1                 | 0.03         |
| CB09    | CIRCULAR | 0.20          | 0.03         | 0.05         | 0.20          | 1                 | 0.05         |
| ICD_010 | CIRCULAR | 0.20          | 0.03         | 0.05         | 0.20          | 1                 | 0.04         |
| ICD_03  | CIRCULAR | 0.20          | 0.03         | 0.05         | 0.20          | 1                 | 0.04         |
| ICD_05  | CIRCULAR | 0.20          | 0.03         | 0.05         | 0.20          | 1                 | 0.03         |
|         |          |               |              |              |               |                   |              |

\*\*\*\*\*

NOTE: The summary statistics displayed in this report are

based on results found at every computational time step, not just on results from each reporting time step.

| CMS                 |
|---------------------|
|                     |
| YES                 |
| NO                  |
| NO                  |
| NO                  |
| YES                 |
| YES                 |
| NO                  |
| HORTON              |
| DYNWAVE             |
| 11/10/2013 00:00:00 |
| 11/10/2013 06:00:00 |
| 0.0                 |
| 00:05:00            |
| 00:05:00            |
| 00:05:00            |
| 1.00 sec            |
| YES                 |
| 20                  |
| 2                   |
| 0.001500 m          |
|                     |

| *****                      | Volume    | Depth    |
|----------------------------|-----------|----------|
| Runoff Quantity Continuity | hectare-m | mm       |
| ********                   |           |          |
| Total Precipitation        | 0.089     | 71.677   |
| Evaporation Loss           | 0.000     | 0.000    |
| Infiltration Loss          | 0.017     | 13.640   |
| Surface Runoff             | 0.071     | 57.651   |
| Final Storage              | 0.001     | 1.100    |
| Continuity Error (%)       | -0.995    |          |
|                            |           |          |
| *****                      | Volume    | Volume   |
| Flow Routing Continuity    | hectare-m | 10^6 ltr |
| *****                      |           |          |
| Dry Weather Inflow         | 0.000     | 0.000    |
| Wet Weather Inflow         | 0.071     | 0.714    |
| Groundwater Inflow         | 0.000     | 0.000    |
| RDII Inflow                | 0.000     | 0.000    |
| External Inflow            | 0.000     | 0.000    |
| External Outflow           | 0.051     | 0.511    |
| Flooding Loss              | 0.000     | 0.000    |
| Evaporation Loss           | 0.000     | 0.000    |
| Exfiltration Loss          | 0.000     | 0.000    |
| Initial Stored Volume      | 0.000     | 0.000    |
| Final Stored Volume        | 0.020     | 0.199    |

0.646

Final Stored Volume ..... Continuity Error (%) .....

#### 

#### Highest Flow Instability Indexes Link ICD\_CB01 (32) Link ICD\_CB04 (12)

#### 

| Minimum Time Step           | : | 0.50 sec |
|-----------------------------|---|----------|
| Average Time Step           | : | 0.84 sec |
| Maximum Time Step           | : | 1.00 sec |
| Percent in Steady State     | : | -0.00    |
| Average Iterations per Step | : | 2.10     |
| Percent Not Converging      | : | 0.02     |

| * * * * * * * * * * * * * * * * * * * * | ******  |
|-----------------------------------------|---------|
| Subcatchment Runoff                     | Summary |
|                                         | ******  |

| Subcatchment | Total<br>Precip<br>mm | Total<br>Runon<br>mm | Total<br>Evap<br>mm | Total<br>Infil<br>mm | Total<br>Runoff<br>mm | Total<br>Runoff<br>10^6 ltr | Peak<br>Runoff<br>CMS | Runof<br>Coef |
|--------------|-----------------------|----------------------|---------------------|----------------------|-----------------------|-----------------------------|-----------------------|---------------|
| s-001        | 71.68                 | 0.00                 | 0.00                | 4.32                 | 66.49                 | 0.05                        | 0.04                  | 0.92          |
| S-002        | 71.68                 | 0.00                 | 0.00                | 3.43                 | 67.29                 | 0.03                        | 0.02                  | 0.93          |
| S-003        | 71.68                 | 0.00                 | 0.00                | 9.24                 | 61.92                 | 0.05                        | 0.04                  | 0.80          |
| S-004        | 71.68                 | 0.00                 | 0.00                | 3.16                 | 67.56                 | 0.02                        | 0.02                  | 0.9           |
| S-005        | 71.68                 | 0.00                 | 0.00                | 6.23                 | 64.81                 | 0.02                        | 0.01                  | 0.9           |
| S-006        | 71.68                 | 0.00                 | 0.00                | 11.00                | 60.30                 | 0.04                        | 0.03                  | 0.8           |
| S-007        | 71.68                 | 0.00                 | 0.00                | 9.27                 | 61.84                 | 0.08                        | 0.06                  | 0.8           |
| S-008        | 71.68                 | 0.00                 | 0.00                | 9.50                 | 61.61                 | 0.08                        | 0.06                  | 0.8           |
| S-009        | 71.68                 | 0.00                 | 0.00                | 7.09                 | 63.91                 | 0.07                        | 0.05                  | 0.8           |
| S-010        | 71.68                 | 0.00                 | 0.00                | 25.49                | 45.96                 | 0.05                        | 0.04                  | 0.6           |
| S-011        | 71.68                 | 0.00                 | 0.00                | 23.03                | 48.42                 | 0.05                        | 0.04                  | 0.6           |
| S-012        | 71.68                 | 0.00                 | 0.00                | 3.65                 | 67.15                 | 0.03                        | 0.02                  | 0.9           |
| S-013        | 71.68                 | 0.00                 | 0.00                | 2.88                 | 67.82                 | 0.05                        | 0.04                  | 0.9           |
| S-014        | 71.68                 | 0.00                 | 0.00                | 30.71                | 40.84                 | 0.05                        | 0.03                  | 0.5           |
| s-015        | 71.68                 | 0.00                 | 0.00                | 30.78                | 43.05                 | 0.02                        | 0.03                  | 0.6           |
| S-016        | 71.68                 | 0.00                 | 0.00                | 41.22                | 34.75                 | 0.00                        | 0.00                  | 0.4           |
| S-017        | 71.68                 | 0.00                 | 0.00                | 17.11                | 54.53                 | 0.02                        | 0.02                  | 0.7           |

\*\*\*\*\*

Node Depth Summary \*\*\*\*\*\*

| ode       | Туре     |      | Depth | HGL   | Occu | irrence | Reported<br>Max Depth<br>Meters |
|-----------|----------|------|-------|-------|------|---------|---------------------------------|
| B010      | JUNCTION | 0.70 |       | 85.64 |      | 01:33   | 1.54                            |
| B011      | JUNCTION | 0.87 |       | 85.54 |      | 01:45   | 1.45                            |
| B012      | JUNCTION | 0.69 |       | 85.22 |      | 01:41   | 1.32                            |
| B014      | JUNCTION | 1.15 |       |       |      | 02:22   | 1.58                            |
| B02       | JUNCTION | 0.82 |       |       |      | 01:45   | 1.39                            |
| B03       | JUNCTION | 1.11 | 1.48  | 86.63 | 0    | 02:32   | 1.48                            |
| B05       | JUNCTION | 1.10 | 1.53  | 86.72 | 0    | 01:10   | 1.53                            |
| B08       | JUNCTION | 1.12 | 1.53  | 85.83 | 0    | 02:22   | 1.53                            |
| B09       | JUNCTION | 0.94 | 1.33  | 85.83 |      | 02:22   | 1.33                            |
| 1         | JUNCTION | 0.08 | 0.25  | 83.98 | 0    | 01:12   | 0.24                            |
| 2         | JUNCTION | 0.09 | 0.24  | 83.90 |      | 01:12   | 0.23                            |
| 3         | JUNCTION | 0.08 | 0.17  | 83.68 |      | 01:13   | 0.17                            |
| 4         | JUNCTION | 0.06 | 0.08  | 83.90 | 0    | 01:47   | 0.08                            |
| 5         | JUNCTION | 0.07 | 0.10  | 83.80 | 0    | 01:45   | 0.10                            |
| TMH101    | JUNCTION | 0.05 | 0.10  | 82.97 | 0    | 01:13   | 0.10                            |
| TMH102    | JUNCTION | 0.08 | 0.17  | 83.70 | 0    | 01:13   | 0.16                            |
| TMH103    | JUNCTION | 0.07 | 0.25  | 83.99 | 0    | 01:12   | 0.24                            |
| TMH104    | JUNCTION | 0.05 | 0.23  | 84.07 | 0    | 01:11   | 0.23                            |
| TMH105    | JUNCTION | 0.03 | 0.06  | 84.18 | 0    | 01:39   | 0.06                            |
| TMH106    | JUNCTION | 0.03 | 0.06  | 84.26 | 0    | 01:23   | 0.06                            |
| TMH107    | JUNCTION | 0.03 | 0.06  | 84.41 | 0    | 01:23   | 0.06                            |
| TMH108    | JUNCTION | 0.04 | 0.06  | 83.96 | 0    | 01:34   | 0.06                            |
| TMH109    | JUNCTION | 0.03 | 0.05  | 84.19 | 0    | 01:34   | 0.05                            |
| F1        | OUTFALL  | 0.05 | 0.10  | 82.30 | 0    | 01:13   | 0.10                            |
| B01       | STORAGE  | 0.33 | 2.94  | 87.15 | 0    | 01:11   | 2.89                            |
| B04       | STORAGE  | 0.40 | 3.04  | 87.15 | 0    | 01:11   | 2.99                            |
| B06       | STORAGE  | 1.03 | 3.27  | 87.72 | 0    | 01:22   | 3.27                            |
| ankA      | STORAGE  | 0.83 | 1.49  | 85.22 | 0    | 01:41   | 1.49                            |
| ankB      | STORAGE  | 0.80 | 1.66  | 85.64 | 0    | 01:34   | 1.66                            |
| ankC      | STORAGE  | 1.24 | 1.68  | 85.83 | 0    | 02:22   | 1.68                            |
| ankD_CB07 | STORAGE  | 1.17 | 3.37  | 87.53 | 0    | 01:34   | 3.36                            |
| ankF      | STORAGE  | 1.23 | 1.63  | 86.63 | 0    | 02:32   | 1.63                            |
| ankG      | STORAGE  | 0.97 | 1.56  | 85.54 | Ó    | 01:45   | 1.56                            |

| Node  | Туре     | Maximum<br>Lateral<br>Inflow<br>CMS | Maximum<br>Total<br>Inflow<br>CMS | Time o<br>Occur<br>days f | rrence | Lateral<br>Inflow<br>Volume<br>10^6 ltr | Total<br>Inflow<br>Volume<br>10^6 ltr | Flow<br>Balance<br>Error<br>Percent |
|-------|----------|-------------------------------------|-----------------------------------|---------------------------|--------|-----------------------------------------|---------------------------------------|-------------------------------------|
| CB010 | JUNCTION | 0.037                               | 0.037                             |                           | 01:10  | 0.0476                                  | 0.0475                                | -0.068                              |
| CB011 | JUNCTION | 0.023                               | 0.023                             | 0                         | 01:10  | 0.0319                                  | 0.0319                                | 1.101                               |
| CB012 | JUNCTION | 0.040                               | 0.040                             | 0                         | 01:10  | 0.0548                                  | 0.0548                                | 0.022                               |
| CB014 | JUNCTION | 0.013                               | 0.013                             | 0                         | 01:10  | 0.018                                   | 0.018                                 | 2.083                               |
| CB02  | JUNCTION | 0.029                               | 0.029                             | 0                         | 01:10  | 0.0372                                  | 0.0372                                | 0.952                               |
| CB03  | JUNCTION | 0.058                               | 0.058                             | 0                         | 01:10  | 0.0758                                  | 0.0758                                | 0.474                               |
| CB05  | JUNCTION | 0.060                               | 0.060                             | 0                         | 01:10  | 0.0776                                  | 0.0776                                | 0.774                               |

| CB08       | JUNCTION | 0.049 | 0.049 | 0 | 01:10 | 0.0701 | 0.0701 | 0.651  |
|------------|----------|-------|-------|---|-------|--------|--------|--------|
| СВ09       | JUNCTION | 0.039 | 0.039 | 0 | 01:10 | 0.0537 | 0.0537 | 0.937  |
| J1         | JUNCTION | 0.000 | 0.070 | 0 | 01:12 | 0      | 0.195  | 0.078  |
| J2         | JUNCTION | 0.000 | 0.073 | 0 | 01:12 | 0      | 0.25   | 0.240  |
| J3         | JUNCTION | 0.000 | 0.086 | 0 | 01:13 | 0      | 0.464  | 0.080  |
| J4         | JUNCTION | 0.000 | 0.009 | 0 | 01:46 | 0      | 0.12   | 0.344  |
| J5         | JUNCTION | 0.000 | 0.013 | 0 | 01:44 | 0      | 0.166  | 0.332  |
| STMH101    | JUNCTION | 0.000 | 0.086 | 0 | 01:13 | 0      | 0.463  | 0.023  |
| STMH102    | JUNCTION | 0.000 | 0.082 | 0 | 01:13 | 0      | 0.414  | 0.078  |
| STMH103    | JUNCTION | 0.000 | 0.067 | 0 | 01:11 | 0      | 0.132  | 0.041  |
| STMH104    | JUNCTION | 0.000 | 0.067 | 0 | 01:11 | 0      | 0.133  | 0.096  |
| STMH105    | JUNCTION | 0.000 | 0.005 | 0 | 01:23 | 0      | 0.0342 | -0.351 |
| STMH106    | JUNCTION | 0.000 | 0.005 | 0 | 01:23 | 0      | 0.0342 | 0.002  |
| STMH107    | JUNCTION | 0.000 | 0.005 | 0 | 01:22 | 0      | 0.0342 | 0.001  |
| STMH108    | JUNCTION | 0.000 | 0.005 | 0 | 01:34 | 0      | 0.0569 | 0.194  |
| STMH109    | JUNCTION | 0.000 | 0.005 | 0 | 01:34 | 0      | 0.057  | 0.127  |
| OF1        | OUTFALL  | 0.045 | 0.121 | 0 | 01:10 | 0.0476 | 0.511  | 0.000  |
| CB01       | STORAGE  | 0.037 | 0.037 | 0 | 01:10 | 0.0512 | 0.0512 | 2.434  |
| CB04       | STORAGE  | 0.036 | 0.074 | 0 | 01:10 | 0.0472 | 0.0972 | -1.199 |
| CB06       | STORAGE  | 0.025 | 0.025 | 0 | 01:05 | 0.0342 | 0.0342 | 0.024  |
| TankA      | STORAGE  | 0.000 | 0.040 | 0 | 01:10 | 0      | 0.0548 | 0.173  |
| TankB      | STORAGE  | 0.000 | 0.037 | 0 | 01:10 | 0      | 0.0476 | -0.007 |
| TankC      | STORAGE  | 0.000 | 0.101 | 0 | 01:10 | 0      | 0.141  | 1.683  |
| TankD_CB07 | STORAGE  | 0.051 | 0.051 | 0 | 01:10 | 0.0674 | 0.0674 | 0.002  |
| TankF      | STORAGE  | 0.000 | 0.118 | 0 | 01:10 | 0      | 0.152  | 1.231  |
| TankG      | STORAGE  | 0.000 | 0.053 | 0 | 01:10 | 0      | 0.0684 | 0.728  |
|            |          |       |       |   |       |        |        |        |

#### \*\*\*\*\* Node Surcharge Summary

Surcharging occurs when water rises above the top of the highest conduit.

| Node  | Туре     | Hours<br>Surcharged | Max. Height<br>Above Crown<br>Meters | Min. Depth<br>Below Rim<br>Meters |  |
|-------|----------|---------------------|--------------------------------------|-----------------------------------|--|
| СВ010 | JUNCTION | 3.79                | 1.338                                | 1.712                             |  |
| CB011 | JUNCTION | 4.96                | 1.253                                | 1.717                             |  |
| CB012 | JUNCTION | 4.26                | 1.122                                | 2.038                             |  |
| CB014 | JUNCTION | 4.95                | 1.376                                | 1.494                             |  |
| CB02  | JUNCTION | 4.95                | 1.193                                | 1.747                             |  |
| СВ03  | JUNCTION | 4.96                | 1.280                                | 1.020                             |  |
| CB05  | JUNCTION | 4.97                | 1.326                                | 0.974                             |  |
| CB08  | JUNCTION | 4.96                | 1.326                                | 1.464                             |  |
| CB09  | JUNCTION | 4.93                | 1.126                                | 1.574                             |  |

#### \*\*\*\*\*

Node Flooding Summary

No nodes were flooded.

#### \*\*\*\*\* Storage Volume Summary

| Storage Unit | Average<br>Volume<br>1000 m3 | Avg<br>Pont<br>Full | Evap<br>Pcnt<br>Loss | Exfil<br>Pcnt<br>Loss | Maximum<br>Volume<br>1000 m3 | Max<br>Pont<br>Full | Occu | of Max<br>rrence<br>hr:min | Maximum<br>Outflow<br>CMS |
|--------------|------------------------------|---------------------|----------------------|-----------------------|------------------------------|---------------------|------|----------------------------|---------------------------|
| CB01         | 0.000                        | 7                   | 0                    | 0                     | 0.001                        | 75                  | 0    | 01:11                      | 0.039                     |
| CB04         | 0.000                        | 10                  | 0                    | 0                     | 0.001                        | 83                  | 0    | 01:11                      | 0.062                     |
| CB06         | 0.002                        | 6                   | 0                    | 0                     | 0.012                        | 33                  | 0    | 01:22                      | 0.005                     |
| TankA        | 0.020                        | 24                  | 0                    | 0                     | 0.036                        | 42                  | 0    | 01:41                      | 0.003                     |
| TankB        | 0.014                        | 24                  | 0                    | 0                     | 0.030                        | 49                  | 0    | 01:34                      | 0.004                     |
| TankC        | 0.082                        | 38                  | 0                    | 0                     | 0.111                        | 52                  | 0    | 02:22                      | 0.004                     |
| TankD_CB07   | 0.026                        | 30                  | 0                    | 0                     | 0.044                        | 50                  | 0    | 01:34                      | 0.005                     |
| TankF        | 0.092                        | 52                  | 0                    | 0                     | 0.122                        | 69                  | 0    | 02:32                      | 0.004                     |
| TankG        | 0.029                        | 29                  | 0                    | 0                     | 0.047                        | 47                  | 0    | 01:45                      | 0.004                     |

#### \*\*\*\*

Outfall Loading Summary

|              | Flow  | Avg   | Max   | Tot  |
|--------------|-------|-------|-------|------|
|              | Freq  | Flow  | Flow  | Volu |
| Outfall Node | Pont  | CMS   | CMS   | 10^6 |
|              |       |       |       |      |
| OF1          | 95.17 | 0.028 | 0.121 | 0.5  |

|              | Flow<br>Freq | Avg<br>Flow | Max<br>Flow | Total<br>Volume |
|--------------|--------------|-------------|-------------|-----------------|
| Outfall Node | Pont         | CMS         | CMS         | 10^6 ltr        |
| OF1          | 95.17        | 0.028       | 0.121       | 0.511           |
| System       | 95.17        | 0.028       | 0.121       | 0.511           |

| **** | **** | * * * * * * * * * * |
|------|------|---------------------|
| Link | Flow | Summary             |
| **** | **** | *******             |

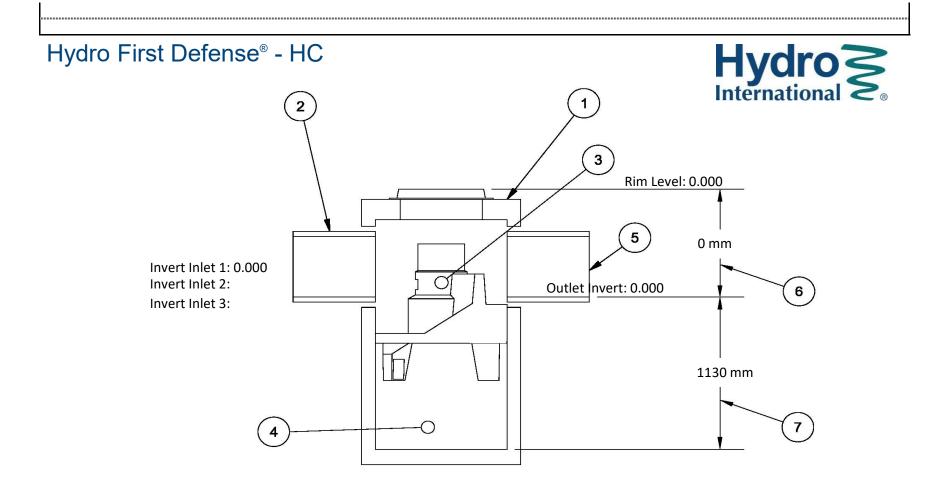
| Link     | Туре           | Flow <br>CMS | Occu<br>days | rrence<br>hr:min | Maximum<br> Veloc <br>m/sec | Full<br>Flow | Full<br>Depti |
|----------|----------------|--------------|--------------|------------------|-----------------------------|--------------|---------------|
| c1_1     | CONDUIT        |              |              |                  |                             |              |               |
| C1_2     | CONDUIT        |              |              |                  |                             |              |               |
| C10      | CONDUIT        | 0.005        | 0            | 01:34            | 0.76                        | 0.09         | 0.20          |
| C11_1    | CONDUIT        |              |              |                  |                             |              |               |
| C11_3    | CONDUIT        |              |              |                  |                             |              |               |
| C11_4    | CONDUIT        |              |              |                  |                             |              |               |
| C2       | CONDUIT        | 0.005        | 0            | 01:23            | 0.60                        | 0.13         | 0.24          |
| C3       | CONDUIT        |              |              |                  |                             |              |               |
| C4       | CONDUIT        | 0.086        | 0            | 01:13            | 3.11                        | 0.12         | 0.23          |
| C4_2     | CONDUIT        | 0.005        | 0            | 01:24            | 0.59                        | 0.13         | 0.49          |
| C5       |                |              |              |                  | 1.23                        |              |               |
| C6_1     | CONDUIT        | 0.067        | 0            | 01:11            | 0.93                        | 0.80         | 0.71          |
| C6_3     | CONDUIT        |              |              |                  |                             |              |               |
| C6_4     | CONDUIT        | 0.073        | 0            | 01:12            | 1.14                        | 0.91         | 0.6           |
| CB011    | CONDUIT        |              |              |                  |                             |              |               |
| CB012    | CONDUIT        |              |              |                  |                             |              |               |
| CB014    | CONDUIT        | 0.013        | 0            | 01:10            | 0.62                        | 0.38         | 1.00          |
| CB02     | CONDUIT        |              |              |                  |                             |              |               |
| CB08     | CONDUIT        | 0.049        | 0            | 01:10            | 1.55                        | 1.48         | 1.00          |
| CB09     | CONDUIT        | 0.039        | 0            | 01:10            | 1.24                        | 0.85         | 1.00          |
| ICD_010  | CONDUIT        | 0.037        | 0            | 01:10            | 1.17                        | 1.01         | 1.00          |
| ICD_03   | CONDUIT        | 0.058        | 0            | 01:10            | 1.86                        | 1.33         | 1.00          |
| ICD_05   | CONDUIT        | 0.060        | 0            | 01:10            | 1.90                        | 2.06         | 1.00          |
| ICD_06   | DUMMY          | 0.005        | 0            | 01:22            |                             |              |               |
| ICD_A    | DUMMY          | 0.003        | 0            | 01:41            |                             |              |               |
| ICD_B    | DUMMY<br>DUMMY | 0.004        | 0            | 01:34            |                             |              |               |
| ICD_C    | DUMMY<br>DUMMY | 0.004        | 0            | 02:22            |                             |              |               |
| ICD_CB01 | DUMMY          | 0.039        | 0            | 01:11            |                             |              |               |
| ICD_CB04 | DUMMY<br>DUMMY | 0.062        | 0            | 01:11            |                             |              |               |
| ICD_D    | DUMMY          | 0.005        | 0            | 01:34            |                             |              |               |
| ICD_F    | DUMMY          | 0.005        | 0            | 02:32            |                             |              |               |
| ICD_G    | DUMMY          | 0.004        | 0            | 01:45            |                             |              |               |

\*\*\*\* Flow Classification Summary

|         | Adjusted |      |      | Fract | ion of | Time | in Flo | w Clas | s    |       |
|---------|----------|------|------|-------|--------|------|--------|--------|------|-------|
|         | /Actual  |      | Up   | Down  | Sub    | Sup  | Up     | Down   | Norm | Inlet |
| Conduit | Length   | Dry  |      | Dry   | Crit   | Crit | Crit   | Crit   | Ltd  | Ctrl  |
| c1_1    | 1.00     | 0.06 | 0.01 | 0.00  | 0.02   | 0.92 | 0.00   | 0.00   | 0.03 | 0.00  |
| C1_2    | 1.00     | 0.06 | 0.00 | 0.00  | 0.00   | 0.00 | 0.00   | 0.94   | 0.00 | 0.00  |
| C10     | 1.00     | 0.05 | 0.00 | 0.00  | 0.00   | 0.00 | 0.00   | 0.95   | 0.00 | 0.00  |
| C11_1   | 1.00     | 0.06 | 0.00 | 0.00  | 0.94   | 0.00 | 0.00   | 0.00   | 0.91 | 0.00  |
| C11_3   | 1.00     | 0.06 | 0.00 | 0.00  | 0.94   | 0.00 | 0.00   | 0.00   | 0.92 | 0.00  |
| C11_4   | 1.00     | 0.06 | 0.00 | 0.00  | 0.16   | 0.00 | 0.00   | 0.78   | 0.07 | 0.00  |
| C2      | 1.00     | 0.05 | 0.00 | 0.00  | 0.00   | 0.00 | 0.00   | 0.95   | 0.00 | 0.00  |
| C3      | 1.00     | 0.06 | 0.00 | 0.00  | 0.00   | 0.00 | 0.00   | 0.94   | 0.00 | 0.00  |
| C4      | 1.00     | 0.06 | 0.00 | 0.00  | 0.00   | 0.93 | 0.00   | 0.00   | 0.05 | 0.00  |
| C4_2    | 1.00     | 0.06 | 0.00 | 0.00  | 0.16   | 0.00 | 0.00   | 0.78   | 0.11 | 0.00  |
| C5      | 1.00     | 0.05 | 0.00 | 0.00  | 0.00   | 0.00 | 0.00   | 0.95   | 0.00 | 0.00  |
| C6_1    | 1.00     | 0.06 | 0.01 | 0.00  | 0.93   | 0.00 | 0.00   | 0.00   | 0.01 | 0.00  |
| C6_3    | 1.00     | 0.06 | 0.00 | 0.00  | 0.94   | 0.00 | 0.00   | 0.00   | 0.77 | 0.00  |
| C6_4    | 1.00     | 0.06 | 0.00 | 0.00  | 0.00   | 0.00 | 0.00   | 0.94   | 0.00 | 0.00  |
| CB011   | 1.00     | 0.05 | 0.00 | 0.00  | 0.92   | 0.03 | 0.00   | 0.00   | 0.05 | 0.00  |
| CB012   | 1.00     | 0.05 | 0.00 | 0.00  | 0.91   | 0.05 | 0.00   | 0.00   | 0.06 | 0.00  |
| CB014   | 1.00     | 0.05 | 0.00 | 0.00  | 0.92   | 0.03 | 0.00   | 0.00   | 0.05 | 0.00  |
| CB02    | 1.00     | 0.05 | 0.00 | 0.00  | 0.92   | 0.04 | 0.00   | 0.00   | 0.07 | 0.00  |
| CB08    | 1.00     | 0.05 | 0.00 | 0.00  | 0.91   | 0.04 | 0.00   | 0.00   | 0.06 | 0.00  |
| CB09    | 1.00     | 0.05 | 0.00 | 0.00  | 0.90   | 0.05 | 0.00   | 0.00   | 0.07 | 0.00  |
| ICD_010 | 1.00     | 0.05 | 0.00 | 0.00  | 0.89   | 0.00 | 0.00   | 0.06   | 0.10 | 0.00  |
| ICD_03  | 1.00     | 0.05 | 0.00 | 0.00  | 0.90   | 0.06 | 0.00   | 0.00   | 0.06 | 0.00  |
| ICD_05  | 1.00     | 0.05 | 0.00 | 0.00  | 0.91   | 0.05 | 0.00   | 0.00   | 0.05 | 0.00  |
|         |          |      |      |       |        |      |        |        |      |       |

#### \*\*\*\*\* Conduit Surcharge Summary

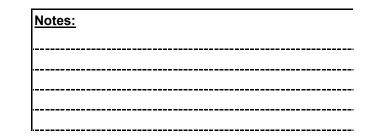
|         |           |            |          | Hours       | Hours    |
|---------|-----------|------------|----------|-------------|----------|
|         |           | Hours Full |          | Above Full  | Capacity |
| Conduit | Both Ends | Upstream   | Dnstream | Normal Flow | Limited  |
|         |           |            |          |             |          |
| C5      | 0.01      | 0.01       | 0.01     | 0.15        | 0.01     |
| CB011   | 4.96      | 4.96       | 5.04     | 0.01        | 0.01     |
| CB012   | 4.26      | 4.26       | 5.05     | 0.01        | 0.01     |
| CB014   | 4.95      | 4.95       | 5.02     | 0.01        | 0.01     |


| CB02    | 4.95 | 4.95 | 5.04 | 0.01 | 0.01 |
|---------|------|------|------|------|------|
| CB08    | 4.96 | 4.96 | 5.02 | 0.15 | 0.15 |
| CB09    | 4.93 | 4.93 | 5.02 | 0.01 | 0.01 |
| ICD_010 | 3.79 | 3.79 | 4.09 | 0.02 | 0.02 |
| ICD_03  | 4.96 | 4.96 | 5.03 | 0.13 | 0.13 |
| ICD_05  | 4.97 | 4.97 | 5.03 | 0.20 | 0.20 |

Analysis begun on: Mon Nov 29 16:04:59 2021 Analysis ended on: Mon Nov 29 16:05:00 2021 Total elapsed time: 00:00:01



# D SUPPORTING DOCUMENTS

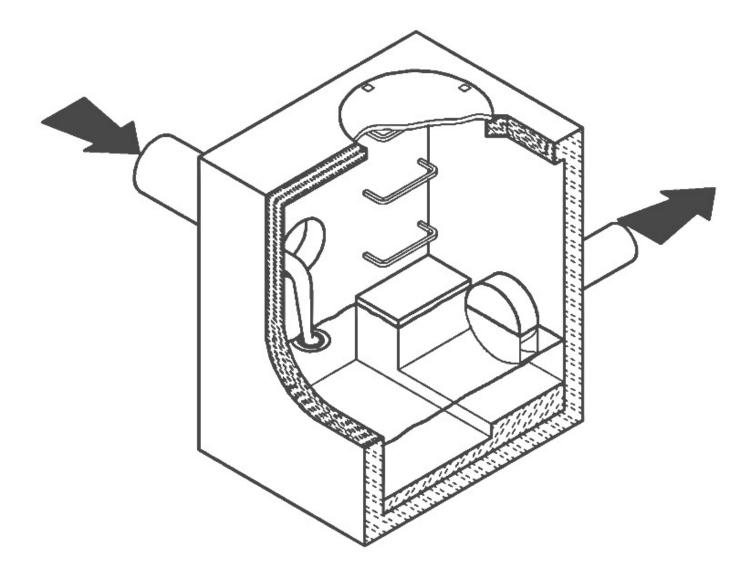

| Net Annual Water Quality Worksl                                                       |        |                                                                         |          |         | Net                      | Annual Remo                            | val Model: FD-                                  | 3HC                                 |
|---------------------------------------------------------------------------------------|--------|-------------------------------------------------------------------------|----------|---------|--------------------------|----------------------------------------|-------------------------------------------------|-------------------------------------|
| Project Name: <b>360 Kennedy Lane</b><br>Street: -<br>Province: <b>ON</b>             | City:  | Report Date: <u>3/22/2021</u><br>City: <u>Ottawa</u><br>Country: Canada |          | Paste   | Intensity <sup>(1)</sup> | Fraction of<br>Rainfall <sup>(1)</sup> | FD-3HC<br>Removal<br>Efficiency <sup>(2)</sup>  | Weighted Ne<br>Annual<br>Efficiency |
| Designer: Meaghan O'Neill                                                             | email: | Meaghan                                                                 | .Oneill@ | wsp.com | (mm/hr)                  | (%)                                    | (%)                                             | (%)                                 |
|                                                                                       |        |                                                                         |          |         | 0.50                     | 0.1%                                   | 98.0%                                           | 0.1%                                |
| reatment Parameters:                                                                  |        | DESIII                                                                  | .TS SUM  |         | 1.00                     | 14.1%                                  | 91.9%                                           | 13.0%                               |
| Structure ID: OGS                                                                     |        | RE30E                                                                   | .13 301  |         | 1.50                     | 14.2%                                  | 88.5%                                           | 12.6%                               |
| TSS Goal: 80 % Removal                                                                |        | Model                                                                   | TSS      | Volume  | 2.00                     | 14.1%                                  | 86.1%                                           | 12.2%                               |
| TSS Particle Size: Fine                                                               |        | FD-3HC                                                                  | 81.7%    | 97.6%   | 2.50                     | 4.2%                                   | 84.4%                                           | 3.5%                                |
| Area: 1.2 ha                                                                          |        | FD-4HC                                                                  | 86.2%    | 99.5%   | 3.00                     | 1.5%                                   | 82.9%                                           | 1.2%                                |
| Percent Impervious: 65%                                                               | -      | FD-5HC                                                                  | 90.1%    | 99.9%   | 3.50                     | 8.5%                                   | 81.8%                                           | 7.0%                                |
| Rational C value: 0.64 Calc. Cn                                                       |        | FD-6HC                                                                  | 92.3%    | 100.0%  | 4.00                     | 5.4%                                   | 80.7%                                           | 4.4%                                |
| Rainfall Station: Ottawa, ONT                                                         | MAP    | FD-8HC                                                                  | 95.2%    | 99.9%   | 4.50                     | 1.2%                                   | 79.9%                                           | 0.9%                                |
| Peak Storm Flow: - L/s                                                                |        |                                                                         |          |         | 5.00                     | 5.5%                                   | 79.1%                                           | 4.4%                                |
|                                                                                       |        |                                                                         |          |         | 6.00                     | 4.3%                                   | 77.8%                                           | 3.4%                                |
| lodel Specification:                                                                  |        |                                                                         |          |         | 7.00                     | 4.5%                                   | 76.7%                                           | 3.5%                                |
|                                                                                       |        |                                                                         |          |         | 8.00                     | 3.1%                                   | 75.7%                                           | 2.3%                                |
| Model: FD-3HC                                                                         |        |                                                                         |          |         | 9.00                     | 2.3%                                   | 74.9%                                           | 1.7%                                |
| Diameter: 900 mm                                                                      |        |                                                                         |          |         | 10.00                    | 2.6%                                   | 74.2%                                           | 1.9%                                |
|                                                                                       |        |                                                                         |          |         | 20.00                    | 9.2%                                   | 69.5%                                           | 6.4%                                |
| Peak Flow Capacity: 425.00 L/s                                                        |        |                                                                         |          |         | 30.00                    | 2.6%                                   | 67.0%                                           | 1.8%                                |
| Sediment Storage: 0.31 m <sup>3</sup>                                                 |        |                                                                         |          |         | 40.00                    | 1.2%                                   | 65.2%                                           | 0.8%                                |
| <i>Oil Storage:</i> 473.00 L                                                          |        |                                                                         |          |         | 50.00                    | 0.5%                                   | 63.8%                                           | 0.3%                                |
|                                                                                       |        |                                                                         |          |         | 100.00                   | 0.7%                                   | 59.9%                                           | 0.4%                                |
| nstallation Configuration:                                                            |        |                                                                         |          |         | 150.00                   | 0.1%                                   | 57.6%                                           | 0.0%                                |
| Placement: Online                                                                     |        |                                                                         |          |         | 200.00                   | 0.0%                                   | 56.1%                                           | 0.0%                                |
| Outlet Pipe Size: mm OK                                                               |        |                                                                         |          |         |                          |                                        |                                                 |                                     |
| Inlet Pipe 1 Size: mm OK                                                              |        |                                                                         |          |         | Total Net                | Annual Remo                            | val Efficiency:                                 | 81.7%                               |
| Inlet Pipe 2 Size: mm OK                                                              |        |                                                                         |          |         | Total Anr                | ual Runoff Vo                          | lume Treated:                                   | 97.6%                               |
| Inlet Pipe 3 Size: mm OK                                                              |        |                                                                         |          |         | 1. Rainfall Data: 196    | 0:2007, HLY03, Ottawa                  | a, ONT, 6105976 & 610                           | .5978.                              |
| Rim Level:mCalc InvsOutlet Pipe Invert:mInvert Pipe 1:mInvert Pipe 2:mInvert Pipe 3:m | 1      |                                                                         |          |         | the STC Fine distribut   | tion                                   | poximating the remova<br>based on hourly averac |                                     |



All drawing elevations are metres.

#### **FD-3HC Specification**

| 1 | Vortex Chamber Diameter                 | 900 mm              |
|---|-----------------------------------------|---------------------|
| 2 | Inlet Pipe Diameter                     | <u>0</u> mm         |
| 3 | Oil Storage Capacity                    | 473.00 L            |
| 4 | Min. Provided Sediment Storage Capacity | 0.31 m <sup>3</sup> |
| 5 | Outlet Pipe Diameter                    | 0 mm                |
| 6 | Height(Final Grade to Outlet Invert)    | 0 mm                |




| 7 Sump Depth(Outlet Invert to Sump) | 1130 mm |  |
|-------------------------------------|---------|--|
| Total Depth                         | 1130 mm |  |

### CSO/STORMWATER MANAGEMENT

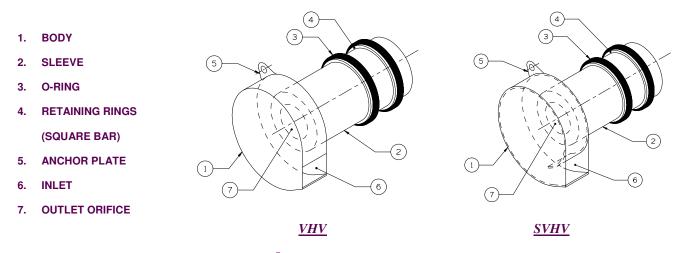


# <sup>®</sup> HYDROVEX<sup>®</sup> VHV / SVHV Vertical Vortex Flow Regulator



# JOHN MEUNIER

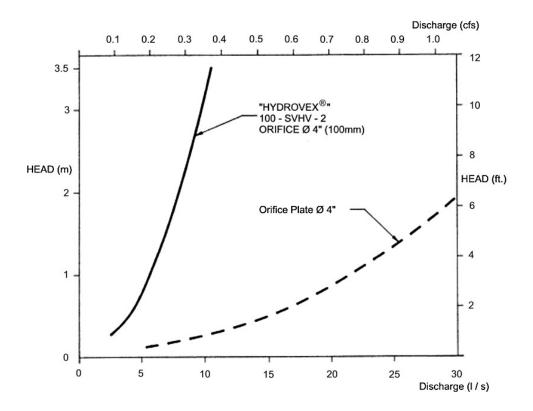
### HYDROVEX® VHV / SVHV VERTICAL VORTEX FLOW REGULATOR


### APPLICATIONS

One of the major problems of urban wet weather flow management is the runoff generated after a heavy rainfall. During a storm, uncontrolled flows may overload the drainage system and cause flooding. Due to increased velocities, sewer pipe wear is increased dramatically and results in network deterioration. In a combined sewer system, the wastewater treatment plant may also experience significant increases in flows during storms, thereby losing its treatment efficiency.

A simple means of controlling excessive water runoff is by controlling excessive flows at their origin (manholes). John Meunier Inc. manufactures the HYDROVEX<sup>®</sup> VHV / SVHV line of vortex flow regulators to control stormwater flows in sewer networks, as well as manholes.

The vortex flow regulator design is based on the fluid mechanics principle of the forced vortex. This grants flow regulation without any moving parts, thus reducing maintenance. The operation of the regulator, depending on the upstream head and discharge, switches between orifice flow (gravity flow) and vortex flow. Although the concept is quite simple, over 12 years of research have been carried out in order to get a high performance.


The HYDROVEX<sup>®</sup> VHV / SVHV Vertical Vortex Flow Regulators (refer to Figure 1) are manufactured entirely of stainless steel, and consist of a hollow body (1) (in which flow control takes place) and an outlet orifice (7). Two rubber "O" rings (3) seal and retain the unit inside the outlet pipe. Two stainless steel retaining rings (4) are welded on the outlet sleeve to ensure that there is no shifting of the "O" rings during installation and use.



### FIGURE 1: HYDROVEX<sup>®</sup> VHV-SVHV VERTICAL VORTREX FLOW REGULATORS

### ADVANTAGES

- The **HYDROVEX<sup>®</sup> VHV / SVHV** line of flow regulators are manufactured entirely of stainless steel, making them durable and corrosion resistant.
- Having no moving parts, they require minimal maintenance.
- The geometry of the **HYDROVEX**<sup>®</sup> **VHV** / **SVHV** flow regulators allows a control equal to an orifice plate, having a cross section area 4 to 6 times smaller. This decreases the chance of blockage of the regulator, due to sediments and debris found in stormwater flows. **Figure 2** illustrates the comparison between a regulator model 100 SVHV-2 and an equivalent orifice plate. One can see that for the same height of water, the regulator controls a flow approximately four times smaller than an equivalent orifice plate.
- Installation of the **HYDROVEX**<sup>®</sup> **VHV** / **SVHV** flow regulators is quick and straightforward and is performed after all civil works are completed.
- Installation requires no special tools or equipment and may be carried out by any contractor.
- Installation may be carried out in existing structures.



### FIGURE 2: DISCHARGE CURVE SHOWING A HYDROVEX® FLOW REGULATOR VS AN ORIFICE PLATE

### SELECTION

Selection of a VHV or SVHV regulator can be easily made using the selection charts found at the back of this brochure (see Figure 3). These charts are a graphical representation of the maximum upstream water pressure (head) and the maximum discharge at the manhole outlet. The maximum design head is the difference between the maximum upstream water level and the invert of the outlet pipe. All selections should be verified by John Meunier Inc. personnel prior to fabrication.

#### **Example:**

- 2m (6.56 ft.) ✓ Maximum design head
- ✓ Maximum discharge ✓ Using **Figure 3** - VHV

6 L/s (0.2 cfs) model required is a 75 VHV-1

### **INSTALLATION REQUIREMENTS**

All HYDROVEX<sup>®</sup> VHV / SVHV flow regulators can be installed in circular or square manholes. Figure 4 gives the various minimum dimensions required for a given regulator. It is imperative to respect the minimum clearances shown to ensure easy installation and proper functioning of the regulator.

### **SPECIFICATIONS**

In order to specify a **HYDROVEX**<sup>®</sup> regulator, the following parameters must be defined:

- The model number (ex: 75-VHV-1)
- The diameter and type of outlet pipe (ex: 6" diam. SDR 35)
- The desired discharge (ex: 6 l/s or 0.21 CFS)
- The upstream head (ex: 2 m or 6.56 ft.) \*
- The manhole diameter (ex: 36" diam.)
- The minimum clearance "H" (ex: 10 inches)
- The material type (ex: 304 s/s, 11 Ga. standard)
- \* Upstream head is defined as the difference in elevation between the maximum upstream water level and the invert of the outlet pipe where the HYDROVEX<sup>®</sup> flow regulator is to be installed.

### PLEASE NOTE THAT WHEN REQUESTING A PROPOSAL, WE SIMPLY REQUIRE THAT YOU PROVIDE US WITH THE FOLLOWING:

- project design flow rate
- > pressure head
- chamber's outlet pipe diameter and type



Typical VHV model in factory




VHV-1-O (standard model with odour control inlet)



VHV with Gooseneck assembly in existing chamber without minimum release at the bottom



FV – SVHV (mounted on sliding plate)



*FV* – *VHV-O* (mounted on sliding plate with odour control inlet)



VHV with air vent for minimal slopes



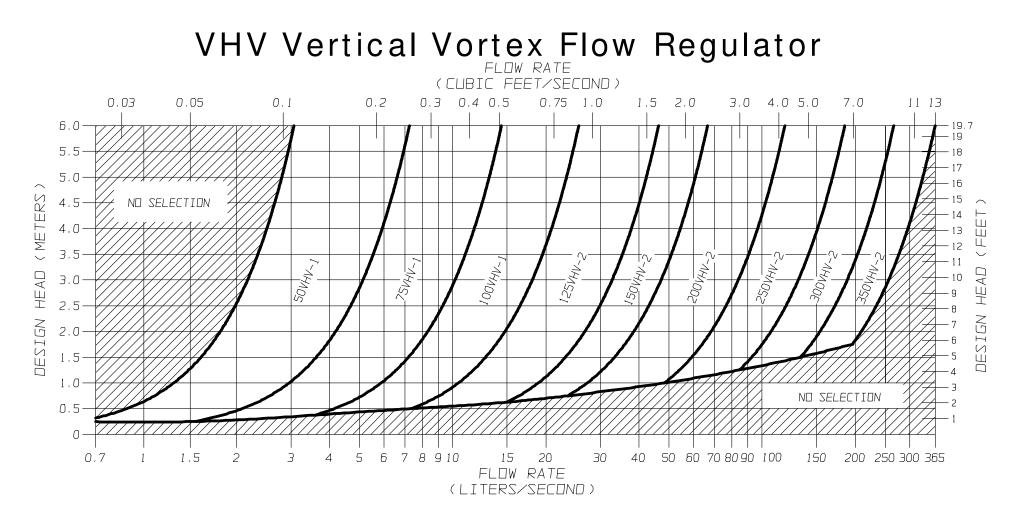
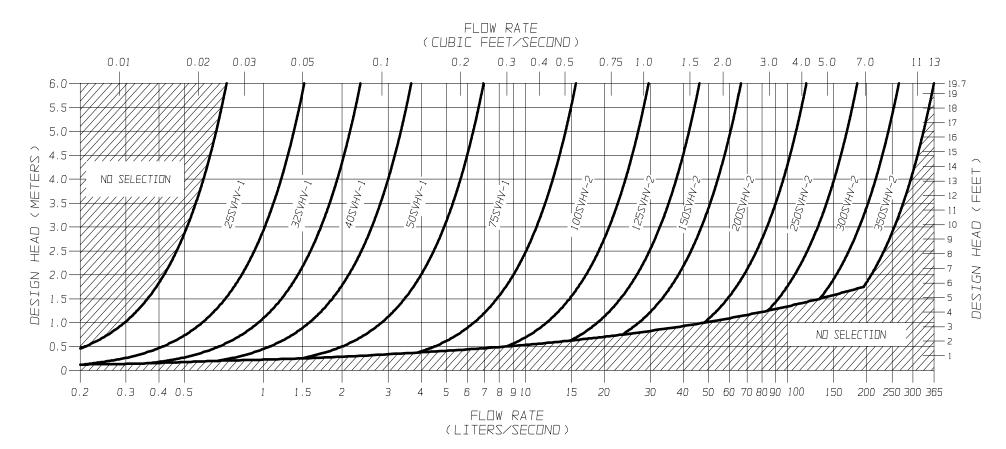
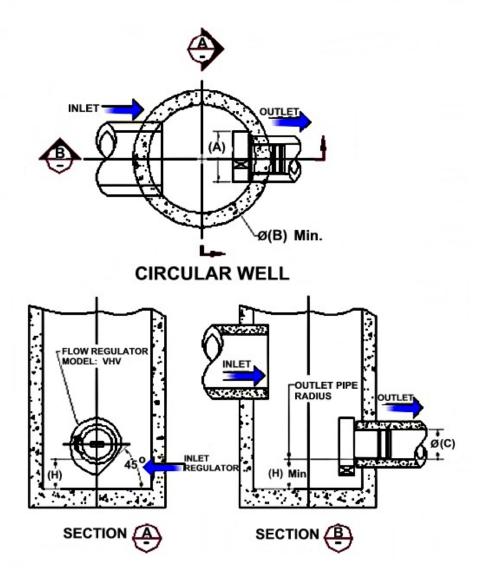




FIGURE 3 - VHV

# JOHN MEUNIER

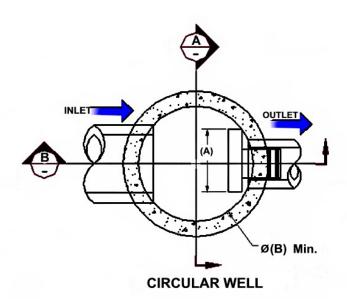


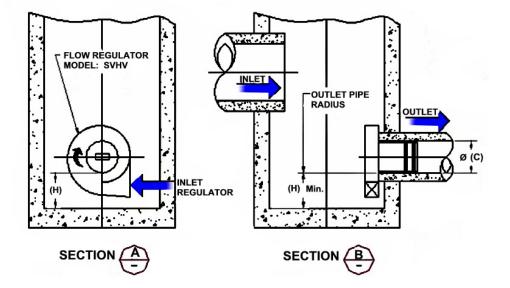
## SVHV Vertical Vortex Flow Regulator




**FIGURE 3 - SVHV** 

## **JOHN MEUNIER**

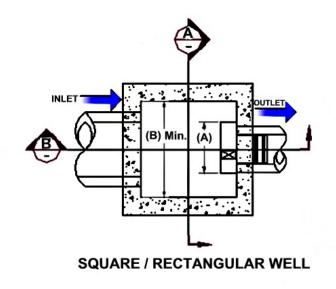

| Model<br>Number | Regulator<br>Diameter |                | Minimum Manhole<br>Diameter |                | Minimum Outlet<br>Pipe Diameter |                | Minimum<br>Clearance |                |
|-----------------|-----------------------|----------------|-----------------------------|----------------|---------------------------------|----------------|----------------------|----------------|
|                 | <b>A</b> (mm)         | <b>A</b> (in.) | <b>B</b> (mm)               | <b>B</b> (in.) | <b>C</b> (mm)                   | <b>C</b> (in.) | <b>H</b> (mm)        | <b>H</b> (in.) |
| 50VHV-1         | 150                   | 6              | 600                         | 24             | 150                             | 6              | 150                  | 6              |
| 75VHV-1         | 250                   | 10             | 600                         | 24             | 150                             | 6              | 150                  | 6              |
| 100VHV-1        | 325                   | 13             | 900                         | 36             | 150                             | 6              | 200                  | 8              |
| 125VHV-2        | 275                   | 11             | 900                         | 36             | 150                             | 6              | 200                  | 8              |
| 150VHV-2        | 350                   | 14             | 900                         | 36             | 150                             | 6              | 225                  | 9              |
| 200VHV-2        | 450                   | 18             | 1200                        | 48             | 200                             | 8              | 300                  | 12             |
| 250VHV-2        | 575                   | 23             | 1200                        | 48             | 250                             | 10             | 350                  | 14             |
| 300VHV-2        | 675                   | 27             | 1600                        | 64             | 250                             | 10             | 400                  | 16             |
| 350VHV-2        | 800                   | 32             | 1800                        | 72             | 300                             | 12             | 500                  | 20             |

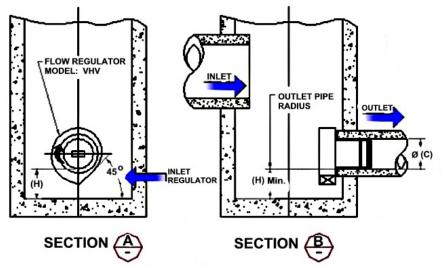

### FLOW REGULATOR TYPICAL INSTALLATION IN CIRCULAR MANHOLE FIGURE 4 (MODEL VHV)



| FLOW REGULATOR TYPICAL INSTALLATION IN CIRCULAR MANHOLE |
|---------------------------------------------------------|
| FIGURE 4 (MODEL SVHV)                                   |

| Model<br>Number | Regulator<br>Diameter |                | Minimum Manhole<br>Diameter |                | Minimum Outlet<br>Pipe Diameter |                | Minimum<br>Clearance |                |
|-----------------|-----------------------|----------------|-----------------------------|----------------|---------------------------------|----------------|----------------------|----------------|
|                 | <b>A</b> (mm)         | <b>A</b> (in.) | <b>B</b> (mm)               | <b>B</b> (in.) | <b>C</b> (mm)                   | <b>C</b> (in.) | <b>H</b> (mm)        | <b>H</b> (in.) |
| 25 SVHV-1       | 125                   | 5              | 600                         | 24             | 150                             | 6              | 150                  | 6              |
| 32 SVHV-1       | 150                   | 6              | 600                         | 24             | 150                             | 6              | 150                  | 6              |
| 40 SVHV-1       | 200                   | 8              | 600                         | 24             | 150                             | 6              | 150                  | 6              |
| 50 SVHV-1       | 250                   | 10             | 600                         | 24             | 150                             | 6              | 150                  | 6              |
| 75 SVHV-1       | 375                   | 15             | 900                         | 36             | 150                             | 6              | 275                  | 11             |
| 100 SVHV-2      | 275                   | 11             | 900                         | 36             | 150                             | 6              | 250                  | 10             |
| 125 SVHV-2      | 350                   | 14             | 900                         | 36             | 150                             | 6              | 300                  | 12             |
| 150 SVHV-2      | 425                   | 17             | 1200                        | 48             | 150                             | 6              | 350                  | 14             |
| 200 SVHV-2      | 575                   | 23             | 1600                        | 64             | 200                             | 8              | 450                  | 18             |
| 250 SVHV-2      | 700                   | 28             | 1800                        | 72             | 250                             | 10             | 550                  | 22             |
| 300 SVHV-2      | 850                   | 34             | 2400                        | 96             | 250                             | 10             | 650                  | 26             |
| 350 SVHV-2      | 1000                  | 40             | 2400                        | 96             | 250                             | 10             | 700                  | 28             |




| Model<br>Number | Regulator<br>Diameter |                | Minimum Chamber<br>Width |                | Minimum Outlet<br>Pipe Diameter |                | Minimum<br>Clearance |                |
|-----------------|-----------------------|----------------|--------------------------|----------------|---------------------------------|----------------|----------------------|----------------|
|                 | <b>A</b> (mm)         | <b>A</b> (in.) | <b>B</b> (mm)            | <b>B</b> (in.) | <b>C</b> (mm)                   | <b>C</b> (in.) | <b>H</b> (mm)        | <b>H</b> (in.) |
| 50VHV-1         | 150                   | 6              | 600                      | 24             | 150                             | 6              | 150                  | 6              |
| 75VHV-1         | 250                   | 10             | 600                      | 24             | 150                             | 6              | 150                  | 6              |
| 100VHV-1        | 325                   | 13             | 600                      | 24             | 150                             | 6              | 200                  | 8              |
| 125VHV-2        | 275                   | 11             | 600                      | 24             | 150                             | 6              | 200                  | 8              |
| 150VHV-2        | 350                   | 14             | 600                      | 24             | 150                             | 6              | 225                  | 9              |
| 200VHV-2        | 450                   | 18             | 900                      | 36             | 200                             | 8              | 300                  | 12             |
| 250VHV-2        | 575                   | 23             | 900                      | 36             | 250                             | 10             | 350                  | 14             |
| 300VHV-2        | 675                   | 27             | 1200                     | 48             | 250                             | 10             | 400                  | 16             |
| 350VHV-2        | 800                   | 32             | 1200                     | 48             | 300                             | 12             | 500                  | 20             |

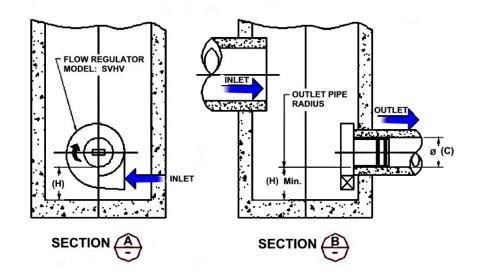
### FLOW REGULATOR TYPICAL INSTALLATION IN SQUARE MANHOLE FIGURE 4 (MODEL VHV)

*NOTE:* In the case of a square manhole, the outlet flow pipe must be centered on the wall to ensure enough clearance for the unit.






| Model<br>Number | Regulator<br>Diameter |                | Minimum Chamber<br>Width |                | Minimum Outlet<br>Pipe Diameter |                | Minimum<br>Clearance |                |
|-----------------|-----------------------|----------------|--------------------------|----------------|---------------------------------|----------------|----------------------|----------------|
|                 | <b>A</b> (mm)         | <b>A</b> (in.) | <b>B</b> (mm)            | <b>B</b> (in.) | <b>C</b> (mm)                   | <b>C</b> (in.) | <b>H</b> (mm)        | <b>H</b> (in.) |
| 25 SVHV-1       | 125                   | 5              | 600                      | 24             | 150                             | 6              | 150                  | 6              |
| 32 SVHV-1       | 150                   | 6              | 600                      | 24             | 150                             | 6              | 150                  | 6              |
| 40 SVHV-1       | 200                   | 8              | 600                      | 24             | 150                             | 6              | 150                  | 6              |
| 50 SVHV-1       | 250                   | 10             | 600                      | 24             | 150                             | 6              | 150                  | 6              |
| 75 SVHV-1       | 375                   | 15             | 600                      | 24             | 150                             | 6              | 275                  | 11             |
| 100 SVHV-2      | 275                   | 11             | 600                      | 24             | 150                             | 6              | 250                  | 10             |
| 125 SVHV-2      | 350                   | 14             | 600                      | 24             | 150                             | 6              | 300                  | 12             |
| 150 SVHV-2      | 425                   | 17             | 600                      | 24             | 150                             | 6              | 350                  | 14             |
| 200 SVHV-2      | 575                   | 23             | 900                      | 36             | 200                             | 8              | 450                  | 18             |
| 250 SVHV-2      | 700                   | 28             | 900                      | 36             | 250                             | 10             | 550                  | 22             |
| 300 SVHV-2      | 850                   | 34             | 1200                     | 48             | 250                             | 10             | 650                  | 26             |
| 350 SVHV-2      | 1000                  | 40             | 1200                     | 48             | 250                             | 10             | 700                  | 28             |


### FLOW REGULATOR TYPICAL INSTALLATION IN SQUARE MANHOLE FIGURE 4 (MODEL SVHV)

NOTE:

In the case of a square manhole, the outlet flow pipe must be centered on the wall to ensure enough clearance for the unit.







### INSTALLATION

The installation of a HYDROVEX<sup>®</sup> regulator may be undertaken once the manhole and piping is in place. Installation consists of simply fitting the regulator into the outlet pipe of the manhole. John Meunier Inc. recommends the use of a lubricant on the outlet pipe, in order to facilitate the insertion and orientation of the flow controller.

### MAINTENANCE

HYDROVEX<sup>®</sup> regulators are manufactured in such a way as to be maintenance free; however, a periodic inspection (every 3-6 months) is suggested in order to ensure that neither the inlet nor the outlet has become blocked with debris. The manhole should undergo periodically, particularly after major storms, inspection and cleaning as established by the municipality

### **GUARANTY**

The HYDROVEX<sup>®</sup> line of VHV / SVHV regulators are guaranteed against both design and manufacturing defects for a period of 5 years. Should a unit be defective, John Meunier Inc. is solely responsible for either modification or replacement of the unit.

John Meunier Inc. ISO 9001 : 2008 Head Office 4105 Sartelon Saint-Laurent (Quebec) Canada H4S 2B3 Tel.: 514-334-7230 www.johnmeunier.com Fax: 514-334-5070 cso@johnmeunier.com

**Ontario Office** 

2000 Argentia Road, Plaza 4, Unit 430 Mississauga (Ontario) Canada L5N 1W1 Tel.: 905-286-4846 www.johnmeunier.com Fax: 905-286-0488 ontario@johnmeunier.com Fax: 215-885-4741 asteele@johnmeunier.com

USA Office 2209 Menlo Avenue Glenside, PA USA 19038 Tel.: 412-417-6614 www.johnmeunier.com

