Site Servicing and Stormwater Management Report, Holland Cross Ottawa, ON

File: 160410274

Prepared for: LaSalle Investment Management

Prepared by: Stantec Consulting Ltd. 1331 Clyde Avenue, Suite 400 Ottawa, ON K2C 3G4

November 25, 2022

Revision	Description	Prepared by	Checked by
0	Site Servicing and Stormwater	Thakshika August 11, 2020	Kris Kilborn
	Management Report	Rathnasooriya	
1	Report Updates for Detailed Design Site	Sara Kardash January 28, 2022	Neal Cody
	Plan Approval Submission		
2	Site Servicing and Stormwater	Ashmeet Singh Muker November 25, 2022	Neal Cody
	Management Report	-	

Sign-off Sheet

This document entitled Site Servicing and Stormwater Management Report, Holland Cross Ottawa, ON was prepared by Stantec Consulting Ltd. ("Stantec") for the account of LaSalle Investment Management (the "Client"). Any reliance on this document by any third party is strictly prohibited. The material in it reflects Stantec's professional judgment in light of the scope, schedule and other limitations stated in the document and in the contract between Stantec and the Client. The opinions in the document are based on conditions and information existing at the time the document was published and do not take into account any subsequent changes. In preparing the document, Stantec did not verify information supplied to it by others. Any use which a third party makes of this document is the responsibility of such third party. Such third party agrees that Stantec shall not be responsible for costs or damages of any kind, if any, suffered by it or any other third party as a result of decisions made or actions taken based on this document.

Prepared by

(signature)

Ashmeet Singh Muker, EIT

Reviewed by:

(signature)

Kris Kilborn, P.Eng.

Approved by _____

(signature)

Neal Cody, P.Eng

Table of Contents

1.0		1.1
2.0	BACKGROUND	2.1
3.0 3.1 3.2 3.3 3.4	WATER SUPPLY SERVICING BACKGROUND WATER DEMANDS PROPOSED SERVICING SUMMARY OF FINDINGS	3.1 3.1 3.2
4.0 4.1 4.2 4.3	WASTEWATER SERVICING BACKGROUND DESIGN CRITERIA PROPOSED SERVICING	4.1 4.1
5.0 5.1 5.2 5.3	STORMWATER MANAGEMENTOBJECTIVESSWM CRITERIA AND CONSTRAINTSSTORMWATER MANAGEMENT5.3.1Allowable Release Rate5.3.2Storage Requirements5.3.3Results	
6.0	GRADING AND DRAINAGE	6.1
7.0	UTILITIES	7.1
8.0	APPROVALS	8.1
9.0	GEOTECHNICAL INVESTIGATION	9.1
10.0 10.1 10.2 10.3 10.4 10.5 10.6	CONCLUSIONS WATER SERVICING SANITARY SERVICING STORMWATER SERVICING GRADING UTILITIES APPROVALS/PERMITS	

LIST OF TABLES

Table 3.1: Estimated Water Demands	3.1
Table 3.2: Boundary Conditions	3.2
Table 3.3: Hydrant and Fire Flow Demands	
Table 5.1: Target Release Rate	

Table 5.2: 100 Year Summary of Roof Controls	5.4
Table 5.3: Subsurface Storage Area (L101A)	
Table 5.4: Uncontrolled Non-Tributary Area (UNC-1)	
Table 5.5: Summary 100 Year Event Release Rates	

LIST OF FIGURES

Figure 1.1: Location Plan	1.1
---------------------------	-----

LIST OF APPENDICES

APPEN	IDIX A	WATER SUPPLY SERVICING	A.1
A.1		Water Demand Estimate	
A.2		IC ANALYSIS SHEET	
A.3	Fire Flow F	Requirements per FUS	A.3
A.4	Fire Flow F	Requirements Per OBC	A.4
A.5	Boundary	Conditions	A.5
APPEN	IDIX B	WASTEWATER SERVICING	В.1
B.1	Sanitary S	ewer Design Sheet	B.1
APPEN	IDIX C	STORMWATER MANAGEMENT	C.1
C.1	Storm Sev	ver Design Sheet	C.1
C.2	Rational <i>N</i>	Method Calculations	C.2
APPEN	IDIX D	GEOTECHNICAL INVESTIGATION	D.1
APPEN	IDIX E	DESIGN CRITERIA AND REPORT EXCERPTS	E.1
APPEN		DRAWINGS	F.1

INTRODUCTION November 25, 2022

1.0 INTRODUCTION

This Site Servicing and Stormwater Management Report has been prepared to support an application for Zoning Amendment for a property known municipally as 1560 Scott Street. The site is currently zoned Mixed-Use Centre Zone (MC) and is located in the City of Ottawa in the northwest quadrant of the intersection of Hamilton Avenue and Bullman Street and is illustrated on **Figure 1.1**. The proposed mixed-use development comprises a single 25 storey building with retail on the first floor and 281 residential apartment units above. The 0.30ha (0.74 acre) site is currently designated as office space.

The intent of this report is to provide a servicing scenario for the site that is free of conflicts, provides on-site servicing in accordance with City of Ottawa design guidelines, and utilizes the existing local infrastructure in accordance with the guidelines outlined per consultation with City of Ottawa staff.

Figure 1.1: Location Plan

 $\label{eq:label_loss} $$ 160410274\design\report\servicing\rpt_2022-11-24_servicing_nc.docx $$ 160410274\design\report\servicing_rpt_2022-11-24_servicing_nc.docx $$ 160410274\design\report\servicing_rpt_2022-11-24_servicing_nc.docx $$ 160410274\design\report\servicing_rpt_2022-11-24_servicing_nc.docx $$ 160410274\design\report\servicing_rpt_2022-11-24_servicing_nc.docx $$ 160410274\design\report\servicing_rpt_2022-11-24_servicing_nc.docx $$ 160410274\design\report\servicing_rpt_2022-11-24_servicing_rpt_2022-11-24_servicing_nc.docx $$ 160410274\design\report\servicing_rpt_2022-11-24_servicing_nc.docx $$ 160410274\design\report\servicing_rpt_2022-11-24_servicing_nc.docx $$ 160410274\design\report\servicing_rpt_2022-11-24_servicing_nc.docx $$ 160410274\design\report\servicing_rpt_2022-11-24_servicing_rpt_2022-11-24_servicing_nc.docx $$ 160410274\design\report\servicing_rpt_2022-11-24_servicing_nc.docx $$ 160410274\design\report\servicing_rpt_2022-11-24_servicing_nc.docx $$ 160410274\design\report\servicing_rpt_2022-11-24_servicing_rpt_2022-11-24_servicing_rpt_2022-11-24_servicing_rpt_2022-11-24_servicing_rpt_2022-11-24_servicing_nc.docx $$ 160410274\design\report\servicing_rpt_2022-11-24_servicing_rpt_2$

BACKGROUND November 25, 2022

2.0 BACKGROUND

The following background studies have been referenced during the servicing and stormwater management design of the proposed site:

- Geotechnical Engineering Design Input Holland Cross Expansion, 1560 Scott Street, Ottawa, ON, Golder Associates Inc., May 2020
- Servicing & Stormwater Management Report, Holland Cross Expansion, Ottawa, ON, Novatech Engineers, Planners & Landscape Architects, August 2014
- City of Ottawa Design Guidelines Water Distribution, Infrastructure Services Department, City of Ottawa, First Edition, July 2010
- City of Ottawa Sewer Design Guidelines, 2nd Ed., City of Ottawa, October 2012
- Technical Bulletin ISTB-2018-01 Revision to Ottawa Design Guidelines Sewer, City of Ottawa, March 2018
- Technical Bulletin ISTB-2018-02 Revision to Ottawa Design Guidelines Water Distribution, City of Ottawa, March 2018

WATER SUPPLY SERVICING November 25, 2022

3.0 WATER SUPPLY SERVICING

3.1 BACKGROUND

The proposed mixed use development is located on the north-western side of the intersection of Bullman Street and Hamilton Avenue in the Hintonburg community of the City of Ottawa. The property is located within the City's Pressure Zone 1W. Average ground elevations of the site are approximately 61.95m. Under normal operating conditions, hydraulic grade lines vary from approximately 107.9m to 114.6m as confirmed through boundary conditions as provided by the City of Ottawa (see **Appendix A**).

According to City of Ottawa District Plans, existing water infrastructure present on the proposed site is a 150 mm diameter PVC watermain branching off a 200 mm PVC watermain running along Hamilton Avenue. Given the size of the development and domestic demand requirements for the proposed high-rise buildings, two separate connections to the main are required separated by a valve for redundancy. The proposed site will be serviced via a dual 150mm building service TVS connection to the existing 200 mm watermain along Hamilton Avenue as shown on the Site Servicing Plan (see **Drawing SSGP-1**).

3.2 WATER DEMANDS

Water demands for the development were estimated using the Ministry of Environment's Design Guidelines for Drinking Water Systems (2008) and the Ottawa Design Guidelines – Water Distribution (2010). A daily rate of 350 L/cap/day has been applied for the population of the proposed site. Population densities have been assumed 2.1 pers./two-bedroom and 1 bedroom plus den apartment units, and 1.4 pers./studio and one-bedroom apartment units. See **Appendix A.1** for detailed domestic water demand estimates. Additionally, commercial and retail domestic demands have been estimated at 28,000L/ha/day of floor area.

The average day demand (AVDY) for the entire site was determined to be 2.07 L/s. The maximum daily demand (MXDY) is 2.5 times the AVDY for residential areas and 1.5 times the AVDY for commercial areas, which sums to 5.12 L/s. The peak hour demand (PKHR) is 2.2 times the MXDY for residential areas and 1.8 times the MXDY for commercial areas, totaling 11.25 L/s. The estimated demands are summarized in **Table 3.1** below.

Demand Scenario	Head (m)	Pressure (psi)
Minimum HGL	107.9	153.4
Maximum HGL	114.6	162.9
Max Day + Fire Flow	104.4	148.5

Table 3.1: Estimated Water Demands

\\ca0218-ppfss01\01-604\active\1 planning_landscape\1604 projects\160410274\design\report\servicing\rpt_2022-11-24_servicing_nc.docx

WATER SUPPLY SERVICING November 25, 2022

According to the FUS Guidelines, a building of wood frame construction is considered for the assessment. Additionally, it is anticipated that the building will be sprinklered, with final sprinkler design to conform to the NFPA 13 standards. An occupancy charge for limited combustible material as well as the extraneous fire flows required for the building exposures were considered in the assessment as per the FUS Guidelines. As per the results, the minimum fire flow required is 116.7 L/s (7,000L/min, see **Appendix A.3**).

Furthermore, non-combustible with fire-resistance ratings was considered in the assessment for fire flow requirements according to the Ontario Building Code (OBC) Guidelines. As a residential apartment the building falls under occupancy Class C. Based on calculations per the OBC Guidelines. The minimum required fire flows for this development are 150 L/s (9,000L/min, see **Appendix A.4**).

Therefore, the required fire flow according to FUS methodology is calculated to be 7,000 L/min which is less than the calculated fire flow as per OBC methodology. Thus, to be conservative in approach the fire flow requirement of 9,000 L/min from OBC methodology would be considered for the proposed development.

3.3 PROPOSED SERVICING

Per the boundary conditions provided by the City of Ottawa (**Table 3.2**: Boundary Conditions and based on the elevation on-site of 62.95m, adequate flows are available for the subject site with pressures ranging from 44.95m (63.9psi) to 51.65m (73.4psi).

Demand Type	Population	Area (m²)	AVDY (L/s)	MXDY (L/s)	PKHR (L/s)
Residential	500	-	2.02	5.06	11.14
Commercial, Lobby, and Amenity Space	-	1282	0.04	0.06	0.11
Total Site:	500	-	2.07	5.12	11.25

Table 3.2: Boundary Conditions

This pressure range is within the guidelines of 50-80 psi based on Ottawa's Design Guidelines for Water Distribution, therefore pressure reducing valves (PRVs) would not be required to protect from municipal system pressures, but they are required within high pressure zones of the building water distribution system. This is because based on the Hydraulic Analysis calculation sheet attached in **Appendix A.2**, pressures at the 25th level of the building will be below the required 40psi, and as such, booster and fire pumps are to be designed by the mechanical engineering consultant to service the upper levels of the development.

WATER SUPPLY SERVICING November 25, 2022

Therefore, any fixtures placed within the high-pressure zones (i.e., fed by the booster pump) and anything connected 5m below ground level fed by the municipal pressure will need PRVs.

Therefore, using boundary conditions for the proposed development under maximum day demands and a fire flow requirement of 9,000L/min per the OBC methodology, it can be confirmed that the system will maintain a residual pressure of approximately 58.9 psi; which is in excess of the required 140 kPa (20 psi). The above demonstrates that the existing watermain within Hamilton Avenue can provide adequate fire and domestic flows in excess of flow requirements for the subject site. An existing hydrant is located east of the subject site and is within 80m of the proposed building siamese connection per OBC requirements.

Two proposed watermain services (sized at 150 mm in diameter) separated by an isolation valve to the existing 203 mm water main in front of the building on Hamilton Avenue North will provide the basic day demand to the building.

As per Technical Bulletin ISTB 2021-03, hydrant classification was done to calculate the overall fire flow demand. The distances between the site and the fire hydrants are shown in **Table 3.3**.

Location	Distance to Building (m)	Fire Flow Demand (L/min)	Fire Flow Demand (L/s)	
Hamilton Ave N	104.1	3800	63.33	
Courtyard	Local	5700	95.00	
Total		9500	158.33	

As can be seen from the table above, the fire flow demand from the hydrants is more than sufficient for the required Fire Flow requirement of 9,000 L/min for the proposed development.

3.4 SUMMARY OF FINDINGS

The proposed development is located in an area of the City's water distribution system that has sufficient capacity to provide both the required domestic and emergency fire flows. Based on boundary conditions as provided by City of Ottawa staff, fire flows are available for this development based on FUS and OBC guidelines and as per the City of Ottawa water distribution guidelines. Pumps to service the upper levels will need to be designed by the mechanical consultant.

Wastewater Servicing November 25, 2022

4.0 WASTEWATER SERVICING

4.1 BACKGROUND

The site will be serviced via an existing 250 mm diameter sanitary service lateral running east along the site which ultimately discharges into the 250 mm diameter sanitary sewer within Hamilton Avenue ROW (see **Drawing SSGP-1**).

4.2 DESIGN CRITERIA

As outlined in the City of Ottawa Sewer Design Guidelines and the MECP's Design Guidelines for Sewage Works, the following criteria were used to calculate estimated wastewater flow rates and to size the sanitary sewers:

- Minimum Velocity 0.6 m/s (0.8 m/s for upstream sections)
- Maximum Velocity 3.0 m/s
- Manning roughness coefficient for all smooth wall pipes 0.013
- Minimum size 200mm dia. for residential areas
- Average Wastewater Generation 280L/cap/day
- Peak Factor 4.0 (Harmon's)
- Extraneous Flow Allowance 0.33 l/s/ha (conservative value)
- Manhole Spacing 120 m
- Minimum Cover 2.5m
- Population density for studio and single-bedroom apartments 1.4 pers./apartment
- Population density for one-bedroom plus den and two-bedroom apartments 2.1 pers./bedroom

4.3 **PROPOSED SERVICING**

The proposed site will be serviced by gravity sewers which will direct the wastewater flows (approx. 8.3 L/s with allowance for infiltration) to the existing 250 mm diameter sanitary sewer. A sanitary sewer design sheet for the proposed sanitary sewers is included in **Appendix B.1**. Capacity in the downstream sanitary sewer system will be assessed during detailed design. Full port backwater valves are to be installed on all sanitary services within the site to prevent any surcharge from the downstream sewer main from impacting the proposed property.

STORMWATER MANAGEMENT November 25, 2022

5.0 STORMWATER MANAGEMENT

5.1 **OBJECTIVES**

The objective of this stormwater management plan is to determine the measures necessary to control the quantity/quality of stormwater released from the proposed development to criteria established during the pre-consultation/zoning process, and to provide sufficient detail for approval and construction.

5.2 SWM CRITERIA AND CONSTRAINTS

Criteria were established by combining current design practices outlined by the City of Ottawa Design Guidelines (2012), and through consultation with City of Ottawa staff. The following summarizes the criteria, with the source of each criterion indicated in brackets:

General

- Use of the dual drainage principle (City of Ottawa).
- Wherever feasible and practical, site-level measures should be used to reduce and control the volume and rate of runoff. (City of Ottawa)
- Assess impact of 100-year event outlined in the City of Ottawa Sewer Design Guidelines on major & minor drainage system (City of Ottawa)
- The proposed site is not subject to quality control criteria due to the small site size and land usage of the development (City of Ottawa).

Storm Sewer & Inlet Controls

- All stormwater runoff from the proposed site up to and including the 100-year event to be stored on site and released into the minor system at a maximum rate equivalent to 51.5 L/s calculated based on 2-year pre-development rates.
- Proposed site to discharge to the proposed 200mm diameter storm service, directly connecting to the 450mm storm sewer on Hamilton Avenue ROW at the boundary of the subject site (City of Ottawa).
- 100-year Storm HGL to be a minimum of 0.30 m below building foundation footing (City of Ottawa).

Surface Storage & Overland Flow

- Building openings to be minimum of 0.15m above the 100-year water level (City of Ottawa)
- Maximum depth of flow under either static or dynamic conditions shall be less than 0.35m in the 100-year event (City of Ottawa)
- Provide adequate emergency overflow conveyance off-site (City of Ottawa)

STORMWATER MANAGEMENT November 25, 2022

The areas which were examined for stormwater management include BLDG (Building), L101A (Underground Storage Area), and UNC-1 (Uncontrolled Area). Although the drawings show a fourth area, EXT-1, this area has not been considered in the Modified Rational Method (MRM) calculations as this area will remain as it is other than an addition of a small amount of grass, reducing its runoff coefficient slightly.

5.3 STORMWATER MANAGEMENT

The intent of the stormwater management plan presented herein is to mitigate any negative impact that the proposed development will have on the existing storm sewer infrastructure, while providing adequate capacity to service the proposed buildings, parking and access areas. The proposed stormwater management plan is designed to detain runoff on the roof area to ensure that peak flows after construction will not exceed the allowable site release rate detailed below.

Stormwater runoff from the proposed development will be directed to an existing 200 mm diameter storm sewer running east along the site and then south along 450mm diameter storm sewer on Hamilton Avenue.

A summary of subareas and runoff coefficients is provided in **Appendix C**, and **Drawing SD-1** indicates the stormwater management sub catchments.

5.3.1 Allowable Release Rate

Available topographic information the existing conditions drainage elevations for the site are shown on **Drawing EX-1**; existing drainage areas and runoff coefficients are presented in **Drawing EXSD-1**.

The Modified Rational Method was employed to assess the rate of runoff generated during predevelopment conditions. The City of Ottawa Sewer Design Guidelines identify the modified rational method as an acceptable method for determining underground storage requirements for a site of less than 2 ha in area.

The peak 100-year post-development discharge from the subject site is to be limited to the 2year pre-development rate. The predevelopment release rate for the area has been determined using the rational method and existing runoff coefficient C values for varying surface treatments per below:

- Asphalt/Hard Surface areas C=0.90
- Gravel areas C=0.70
- Grassed/Pervious areas C=0.20

A time of concentration for the predevelopment area (10 minutes) was assigned based on the relatively small site and its proximity to the existing drainage outlet for the site. C coefficient values

STORMWATER MANAGEMENT November 25, 2022

have been increased by 25% for the post-development 100-year storm event based on MTO Drainage Manual recommendations. Peak flow rates have been calculated using the rational method as follows:

Q = 2.78 CiA

Where: Q = peak flow rate, L/s A = drainage area, ha I = rainfall intensity, mm/hr (per Ottawa IDF curves) C = site runoff coefficient

The target release rate for the site is summarized in Table 5.1 below:

Table 5.1: Target Release Rate

Design Storm	Target Flow Rate (L/s)	
2-Year and 100-Year (Pre-development Conditions)	51.5	

5.3.2 Storage Requirements

To meet the restrictive stormwater release criteria for the proposed development, rooftop storage will be used to promote stormwater detention on building roof tops and reduce the peak outflow from the site. Additionally, an underground stormwater storage (cistern) system is proposed in conjunction with an inlet control device (ICD) to control flows to the target rate. The proposed ponding areas, and underground storage tank details are specified in **Drawing SD-1**.

5.3.2.1 Rooftop Storage

It is proposed to retain stormwater on the building rooftop by installing restricted flow roof drains. The following calculations assume the roofs will be equipped with standard Watts Model RD-100_A_ADJ Accuflow Roof Drains which will be 100% closed.

Watts Drainage "Accutrol" roof drain weir data has been used to calculate a practical roof release rate and detention storage volume for the rooftops. It should be noted that the "Accutrol" weir has been used as an example only, and that other products may be specified for use, provided that the total roof drain release rate is restricted to match the maximum rate of release indicated in **Table 5.2**, and that sufficient roof storage is provided to meet (or exceed) the resulting volume of detained stormwater. Storage volume and controlled release rate are summarized in **Table 5.2**:

STORMWATER MANAGEMENT November 25, 2022

Area ID	Design Storm	Depth (mm)	Discharge (L/s)	Volume Stored (m ³)	Drawdown Time (hr)
Roof	2-Year	83	9.46	9.31	0.3
	100-Year	139	9.46	42.73	1.3

Table 5.2: 100 Year Summary of Roof Controls

The total roof area of the proposed building is approx. 1,300 m² with 80% (1,040 m²) of the roof area assumed to be available for storage, with the runoff coefficient for the roof area as C = 0.90. The roof area drains have been designed to optimize the maximum allowable ponding depth of 0.15m as per the Ontario Building Code. Drain drawdown times for the 2 and 100-year storm event are also shown in **Table 5.2**. Drainage from the roof will directly discharge to the existing 450mm diameter storm sewer on Hamilton Avenue North with the proposed new 200mm storm service.

A Flow Control Roof Drainage Declaration letter has been prepared and will be reviewed and signed by mechanical and structural engineers after reviewing this report. The letter will be submitted under separate cover to the City.

5.3.2.2 Subsurface Storage

Per the modified rational method calculations included as part of **Appendix C.2**, the remainder of the site is to be directed towards the catch basins on L101A complete with IPEX Tempest HF or LMF Orifice ICD to meet the target peak discharge rate during the 100-year event. The existing catch basins will be relocated including all associated ICD's and would be reconnected to the existing outlet.

The required 19m³ of storage will be detained on the proposed site through a cistern within the underground parking. Controlled release rates and storage volumes required are summarized in **Table 5.3: Subsurface Storage Area (L101A)**

Tributary Area	Design Storm	Design Head (m)	Discharge (L/s)	Orifice Type	V _{required} (m ³)
L101A	2-Year	0.25	18.77	IPEX Tempest HF	0.3
	100-Year	0.25	18.77	133mm Orifice	18.5

Table 5.3: Subsurface Storage Area (L101A)

STORMWATER MANAGEMENT November 25, 2022

5.3.2.3 Uncontrolled Area

Due to grading restrictions, one sub catchment area has been designed without a storage component. The existing catchment area also discharges off-site uncontrolled to the adjacent Hamilton Avenue. Peak discharges from uncontrolled areas have been considered in the overall SWM plan and have been balanced through overcontrolling proposed site discharge rates to meet target levels and are shown in **Table 5.4**.

Table 5.4: Uncontrolled Non-Tributary Area (UNC-1)

Design Storm	Discharge (L/s)				
2-Year	8.0				
100-Year	23.3				

5.3.3 Results

Table 5.5 demonstrates that the proposed stormwater management plan provides adequate attenuation storage to control post-development flows to the target peak outflow rate of the site.

 Table 5.5: Summary 100 Year Event Release Rates

Catchment Area	100-Year Peak Discharge (L/s)		
Uncontrolled	23.3		
Controlled – Subsurface & Roof	28.2		
Total	51.5		
Target	51.5		

GRADING AND DRAINAGE November 25, 2022

6.0 GRADING AND DRAINAGE

The proposed development site measures approximately 0.3ha in area. The topography across the site is relatively flat on the northern boundary with a marginally increased slope on the southern boundary of the proposed building, and currently drains from west to east, with overland flow generally being directed to the adjacent Hamilton Avenue ROW. A grading plan (see **Drawing SSGP-1**) has been provided to satisfy the stormwater management requirements, adhere to any geotechnical restrictions for the site, and provide for minimum cover requirements for storm and sanitary sewers where possible. Site grading has been established to provide emergency overland flow routes required for stormwater management in accordance with City of Ottawa requirements.

The subject site maintains emergency overland flow routes for flows deriving from storm events in excess of the maximum design event to the existing Hamilton Avenue as depicted in **Drawing SSGP-1**.

UTILITIES November 25, 2022

7.0 UTILITIES

Hydro, Bell, Gas and Cable servicing for the proposed development should be readily available within subsurface utility infrastructure within the Hamilton Avenue ROW. Exact size, location and routing of utilities, along with determination of any off-site works required for redevelopment, will be finalized after design circulation.

Enbridge has a plant within the vicinity of the site which will likely have sufficient capacity, however, only after receiving the detail loading criteria will they be able to provide their final design.

Detailed design of the required utility services will be completed by the respective utility companies.

Approvals November 25, 2022

8.0 APPROVALS

An Ontario Ministry of the Environment, Conservation and Parks (MECP) Environmental Compliance Approval (ECAs, formerly Certificates of Approval C of A) under the Ontario Water Resources Act maybe a requirement if existing sewers are shared to outlet onto Hamilton Avenue as the proposed site is expected to be severed into a separate parcel of land.

Requirement for a MECP Permit to Take Water (PTTW) for pumping during construction of the underground parking levels will be confirmed by the geotechnical consultant.

GEOTECHNICAL Investigation November 25, 2022

9.0 GEOTECHNICAL INVESTIGATION

A geotechnical investigation was conducted by Golder Associates Ltd. in May 2020. Subsurface soil conditions within the boundaries of the proposed site were determined by 4 test pits distributed across the site. Some investigations were previously completed in 1986 by McRostie. The subsurface profile across the site described by the previous investigation consists of 2.3m of fill material made up by topsoil, sand gravel, clay, bricks, wood, metal and concrete below the original ground surface and underlain by glacial till.

An organic layer was found to be 0.3m to 0.8m thick near the building in test pits M120/E120 and N150/E120 at depths of 1.7m and 1.35m below ground surface. It is anticipated that during construction of the existing building the noted materials above were removed.

Bedrock elevations were previously encountered at elevations of 59.8 to 61.0m. Groundwater levels have altered since previous investigation and current water levels are influenced by existing building drainage systems.

CONCLUSIONS November 25, 2022

10.0 CONCLUSIONS

10.1 WATER SERVICING

Based on the supplied boundary conditions for existing watermains and estimated domestic and fire flow demands for the subject site, it is anticipated that the proposed servicing in this development will provide sufficient capacity to sustain both the required domestic demands and emergency fire flow demands of the proposed site. Pumps to service the upper levels and PRVs to protect fixtures from the high pressures will need to be designed by the mechanical consultant.

10.2 SANITARY SERVICING

The existing sanitary sewer network is sufficiently sized to provide gravity drainage of the proposed site. The subjected site will be serviced by a new proposed 250mm dia. gravity sewer service lateral which will direct wastewater flows (approx. 8.3 L/s) to the 250mm dia. sewer along Hamilton Avenue at the eastern boundary of the property. The existing drainage outlet has sufficient capacity to receive sanitary discharge from the site.

10.3 STORMWATER SERVICING

The proposed stormwater management plan is in compliance with local and provincial standards. Rooftop storage and minimal surface storage has been controlled to meet the allowable release rate to the existing 450mm diameter storm sewer within Hamilton Avenue ROW. The downstream receiving sewer has sufficient capacity to receive runoff volumes from the site.

10.4 GRADING

Grading for the site has been designed to provide an emergency overland flow route as per City requirements and reflects the recommendations in the Geotechnical Investigation Report prepared by Golder Associates Ltd. Erosion and sediment control measures will be implemented during construction to reduce the impact on existing facilities.

10.5 UTILITIES

Utility infrastructure exists within the Hamilton Avenue ROW at the eastern boundary of the proposed site. It is anticipated that existing infrastructure will be sufficient to provide a means of distribution for the proposed site. Exact size, location and routing of utilities will be finalized after design circulation.

CONCLUSIONS November 25, 2022

10.6 APPROVALS/PERMITS

An Ontario Ministry of the Environment, Conservation and Parks (MECP) Environmental Compliance Approval (ECAs, formerly Certificates of Approval C of A) under the Ontario Water Resources Act maybe a requirement if existing sewers are shared to outlet onto Hamilton Avenue as the proposed site is expected to be severed into a separate parcel of land. Requirement for a MECP Permit to Take Water (PTTW) for sewer and building construction will be confirmed by the geotechnical consultant.

Appendix A November 24, 2022

WATER SUPPLY SERVICING

A.1 DOMESTIC WATER DEMAND ESTIMATE

Appendix A

		Number of		
Holland Cross Phase 3 Residential		Units	Density	Population
Project #160410274	Studio	24.0	1.4	33.6
July 24 2020	1 BR	66.0	1.4	92.4
1	1BR + Den	115.0	2.1	241.5
	2 BR	132.0	2.1	277.2

Building ID	Area	Population				Max Day I	Demand ^{3,4}	Peak Hour Demand 3,4	
	(m ²)		Demand ^{1 2} (L/m ² /day)	(L/min)	(L/s)	(L/min)	(L/s)	(L/min)	(L/s)
Residential		045	250	450.7	0.04	391.7	0.50	001.0	14.36
Residential		645	350	156.7	2.61	391.7	6.53	861.8	14.30
Lobby and Amenity Space	474		28000	0.9	0.02	1.4	0.02	2.5	0.04
Total Site :				157.6	2.63	393.1	6.55	864.3	14.41

1 Average day water demand for residential areas are equal to 350 L/cap/d 2 28,000 L/gross ha/day is used to calculate water demand for commercial facilities.

3 Water demand criteria used to estimate peak demand rates for residential areas are as follows:

maximum day demand rate = 2.5 x average day demand rate

peak hour demand rate = 2.2 x maximum day demand rate

4 Water demand criteria used to estimate peak demand rates for commercial and institutional areas are as follows: maximum day demand rate = 1.5 x average day demand rate

peak hour demand rate = 1.8 x maximum day demand rate

Appendix A Water Supply Servicing November 24, 2022

A.2 HYDRAULIC ANALYSIS SHEET

Project:	Holland Cross	No. 160410274
	SITE PLAN HYDRAULIC AN	IALYSIS
Revision:	00	Prepared By: AM
Revision Date:	24-Nov-2022	Checked By: NC

BOUNDARY CONDITIONS (BC)						
Connection at Hamilton Avenue						
Site Plan Revision Date 14-Oct-2022						
Min. HGL (m)	107.9					
Max. HGL (m)	114.6					
Max. Day + Fire Flow (150 L/s)	104.4					

Ground Floor Elevation (GFE) (Level 01) (m)

GROUND FLOOR (GF) PRESSURE RANGE GF Pressure GF Pressure GF HGL Outcome (m) (kPa) (psi) = BC HGL (m) - FFE (m) = GF HGL (m) x 9.804 (kPa/m) = GF Pressure (kPA) x 0.145 (psi/kPa) If min <50 psi: booster pump If max >100 psi: pressure reducer Minimum Normal 44.95 440.7 63.9 No Booster Pump Required Maximum Normal 51.65 506.4 73.4 No Pressure Reducer Required

62.95

Number of Floors Not Below Ground	25
Approximate Height of One Storey (m)	3.21
Pressure Drop Per Floor (kPa)	31.5
Pressure Drop Per Floor (psi)	4.6

RESIDUAL PRESSURE RANGE IN MULTI-LEVEL BUILDINGS								
	Residual Pressure (kPa)	Residual Pressure (psi)	Outcome					
Top Floor Min	-314.6	-45.6						
Top Floor Max	-248.9	-36.1						
Maximum Number of Floors Above Ground at Minimum Pressure	loors Above 5		Booster Pump Required					

RESIDUAL PRESSURE FROM FIRE FLOW									
Residual HGL (m) Residual Pressure (kPa) Residual Pressure (psi) Outcome									
Ground Floor	41.45	406.4	58.9	Fire Pump Required					
Top Floor	-35.59	-348.9	-50.6						

Pressure Check							
	Pressure (kPa)	Pressure (psi)					
Pressure Below Minimum	<138	<20					
Pressure Below Normal	138-345	20-50					
Pressure Within Normal Range	345-552	50-80					
Pressure Above Normal Range	552-690	80-100					
Pressure Above Maximum	>690	>100					

Appendix A Water Supply Servicing November 24, 2022

A.3 FIRE FLOW REQUIREMENTS PER FUS

FUS Fire Flow Calculation Sheet - 2020 FUS Guidelines

Stantec Project #: 160410274 Project Name: Holland Cross Date: 11/8/2022 Fire Flow Calculation #: 1 Description: 25 Floor Apartment Building with Fire Separations between floors

Notes: 1356m2 Floorplate

Step	Task	Notes							Value Used	Req'd Fire Flow (L/min)
1	Determine Type of Construction	Type III - Ordinary Construction / Type IV-C - Mass Timber Construction							1	-
2	Determine Effective Floor Area		Sum	of All Floor A	reas				-	-
2	Determine Litective Hoor Ared	1282							1282	-
3	Determine Required Fire Flow			(F = 220 x C	x A ^{1/2}). Roun	d to nearest	1000 L/min		-	8000
4	Determine Occupancy Charge				Limited Co	mbustible			-15%	6800
					Conforms t	o NFPA 13			-30%	-2720
5	Determine Sprinkler Reduction				Standard Wo	ater Supply			-10%	
		Not Fully Supervised or N/A							0%	-2720
		% Coverage of Sprinkler System						100%		
		Direction	Exposure Distance (m)	Exposed Length (m)	Exposed Height (Stories)	Length-Height Factor (m x stories)	Construction of Adjacent Wall	Firewall / Sprinklered ?	-	-
	Determine la sue sue far Europaure	North	0 to 3	49.3	1	41-60	Type III-IV - Unprotected Openings	NO	17%	
6	Determine Increase for Exposures (Max. 75%)	East	20.1 to 30	26.5	5	> 100	Type III-IV - Unprotected Openings	NO	5%	3264
		South	20.1 to 30	49.8	3	> 100	Туре V	NO	10%	5204
		West	0 to 3	23.1	1	21-49	Type III-IV - Unprotected Openings	NO	16%	
		Total Required Fire Flow in L/min, Rounded to Nearest 1000L/min								7000
7	Determine Final Required Fire	Total Required Fire Flow in L/s								116.7
Ĺ	Flow				Required	Duration of F	ire Flow (hrs)			2.00
					Required	Volume of F	ire Flow (m ³)			840

Appendix A Water Supply Servicing November 24, 2022

A.4 FIRE FLOW REQUIREMENTS PER OBC

Fire Flow Calculations as per Ontario Building Code (Appendix A)

Job#	1604-10274	Designed by:	TKR
Date	12-Aug-20	Checked by:	КК
		Description:	29 Floor Ap

 $Q = KVS_{tot}$

- Q = Volume of water required (L)
- V = Total building volume (m3)

K = Water supply coefficient from Table 1

Sotal of spatial coefficeint values from property line exposures on all sides as obtained from the formula

 $S_{tot} = 1.0 + [S_{side1} + S_{side2} + S_{side3} + S_{side4}]$

1	Type of construction	Building Classification		Water Supply Coefficient
	Non-Combustible with Fire- Resistance Ratings	A-2, B-1, B-2, B-3, C, D		10
	•			
2	Area of one floor	number of floors	height of ceiling	Total Building Volume
	(m ²)		(m)	(m ³)
	1370.5	29	3.0	119,919
3	Side	Exposure		Total Spatial
		Distance (m)	Spatial Coefficient	Coeffiecient
	North	0	0.5	
	East	6.5	0.35	2
	South	16.0	0	2
	West	0	0.5	
4	Established Fire	Reduction in		Total Volume
	Safety Plan?	Volume (%)		Reduction
	no	0%		0%
5				Total Volume 'Q' (L)
				2,398,380
				Minimum Required
				Fire Flow (L/min)
				9,000

Appendix A Water Supply Servicing November 24, 2022

A.5 BOUNDARY CONDITIONS

From:	Wu, John
To:	Rathnasooriya, Thakshika
Subject:	RE: Boundary Conditions
Date:	Thursday, July 30, 2020 4:07:21 PM
Attachments:	Hamilton Avenue July 2020.pdf

Here is the result:

The following are boundary conditions, HGL, for hydraulic analysis on Hamilton Avenue (zone 1E) assumed to be connected to the 203mm on Hamilton Avenue (see attached PDF for location).

Minimum HGL = 107.9m

Maximum HGL = 114.6m

Max Day + FF = 104.4m

These are for current conditions and are based on computer model simulation.

Disclaimer: The boundary condition information is based on current operation of the city water distribution system. The computer model simulation is based on the best information available at the time. The operation of the water distribution system can change on a regular basis, resulting in a variation in boundary conditions. The physical properties of watermains deteriorate over time, as such must be assumed in the absence of actual field test data. The variation in physical watermain properties can therefore alter the results of the computer model simulation.

John

From: Rathnasooriya, Thakshika <Thakshika.Rathnasooriya@stantec.com> Sent: July 29, 2020 2:46 PM To: Wu, John <John.Wu@ottawa.ca> Cc: Kilborn, Kris <kris.kilborn@stantec.com> Subject: Boundary Conditions

CAUTION: This email originated from an External Sender. Please do not click links or open attachments unless you recognize the source.

ATTENTION : Ce courriel provient d'un expéditeur externe. Ne cliquez sur aucun lien et n'ouvrez pas de pièce jointe, excepté si vous connaissez l'expéditeur.

Hi John,

I am looking for watermain hydraulic boundary conditions for Holland Cross Phase 3 residential. The proposed residential building consists of 29 storeys. We anticipate connecting to the existing 150mm watermain service in addition to constructing a secondary connection(basic day demand is greater than 50 m3/day). The service is connected to the exiting 200mm diameter watermains on Hamilton Avenue North and Bullman Street. (please see attached figure).

 Please see the estimated domestic demands and fire flow requirements for the site as mentioned below:

 Average Day Demand
 - 2.63 L/s

 Max Day Demand
 - 6.55 L/s

 Peak Hour Demand
 - 1.4.1 L/s

 Fire Flow Requirement per OBC were used for the apartment building - 150 L/s (9.000 L/min)

?

Thank you,

Shika Rathnasooriya , P.Eng. Direct: 613 724-4081 Thakshika.Rathnasooriya@stantec.com Stantec 400 - 1331 Clyde Avenue Ottawa ON K2C 3G4


The content of this email is the

,

ment of the semile is the confidential property of Stantec and should not be copied, modified, retransmitted, or used for any purpose except with Stantec's written authorization. If you are not the intended recipient, please delete all copies and notify us immediately.

This e-mail originates from the City of Ottawa e-mail system. Any distribution, use or copying of this e-mail or the information it contains by other than the intended recipient(s) is unauthorized. Thank you.

Le présent courriel a été expédié par le système de courriels de la Ville d'Ottawa. Toute distribution, utilisation ou reproduction du courriel ou des renseignements qui s'y trouvent par une personne autre que son destinataire prévu est interdite. Je vous remercie de votre collaboration.

Appendix B Wastewater Servicing November 24, 2022

WASTEWATER SERVICING

B.1 SANITARY SEWER DESIGN SHEET

Appendix B

		SUBDIVISION		AND CROSS	3	SANITARY SEWER								DESIGN SHEET																						
	-									ity of Otta	awa)					MAX PEAK F	ACTOR (RES.)=	4.0		AVG. DAILY F	LOW / PERSO	ON	28) L/p/day		MINIMUM V	ELOCITY		0.60	m/s					
Stai	ntec	DATE:		8/12	/2020				•	-						MIN PEAK FA	ACTOR (RES.)	=	2.0		COMMERCIAL	-		28,00) L/ha/day		MAXIMUM \	ELOCITY		3.00	m/s					
		REVISION:			1								PEAKING FACTOR (INDUSTRIAL): 2.4 INDUSTRIAL (HEAVY) 55,000							0 L/ha/day MANNINGS n					0.013											
		DESIGNED		W	/AJ	FILE NUMBER: 160410274										PEAKING FACTOR (ICI >20%): 1.5 INDUSTRIAL (LIGHT)								35,000 L/ha/day BEDDING CLASS						В						
		CHECKED	BY:													PERSONS / S	STUDIO		1.4	1	INSTITUTION	NL.		28,00) L/ha/day		MINIMUM C	OVER		2.50	m					
																PERSONS / 1	BEDROOM		1.4	1																
						1									PERSONS / 1	BEDROOM +	DEN	2.1	1	INFILTRATION	1		0.3	3 L/s/ha		HARMON C	ORRECTION F	ACTOR	0.8							
																PERSONS / 2	BEDROOM		2.1	1																
LOCA	CATION					RESIDEN	NTIAL AREA AND F	POPULATION					COMM	ERCIAL	INDUST	RIAL (L)	INDUST	RIAL (H)	INSTITU	UTIONAL	GREEN / U	JNUSED	C+I+I		INFILTRATIO	N	TOTAL				PIPE					
AREA ID	FROM	то	AREA	STUDIO	1 BEDROOM	1 BEDROOM +	2 BEDROOM	POP.	CUMUL		PEAK	PEAK	AREA	ACCU.	AREA	ACCU.	AREA	ACCU.	AREA	ACCU.	AREA	ACCU.	PEAK	TOTAL	ACCU.	INFILT.	FLOW	LENGTH	DIA	MATERIAL	CLASS	SLOPE	CAP.	CAP. V	VEL.	VEL.
NUMBER	M.H.	M.H.				DEN			AREA	POP.	FACT.	FLOW		AREA		AREA		AREA		AREA		AREA	FLOW	AREA	AREA	FLOW							(FULL) F		. ,	(ACT.)
			(ha)						(ha)			(L/s)	(ha)	(ha)	(ha)	(ha)	(ha)	(ha)	(ha)	(ha)	(ha)	(ha)	(L/s)	(ha)	(ha)	(L/s)	(L/s)	(m)	(mm)			(%)	(l/s)	(%)	(m/s)	(m/s)
SITE	BLDG	EX. TEE	0.360	24	66	115	132	645	0.360	645	3.91	8.18	0.000	0.000	0.000	0.00	0.000	0.00	0.000	0.00	0.000	0.00	0.00	0.360	0.360	0.12	8.30	16.1	250	PVC	SDR 35	1.00	60.6	13.69%	1.22	0.71

MINIMUM VELOCITY	0.60 m/s
MAXIMUM VELOCITY	3.00 m/s
MANNINGS n	0.013
BEDDING CLASS	В
MINIMUM COVER	2.50 m
	0.8

SITE SERVICING AND STORMWATER MANAGEMENT REPORT, HOLLAND CROSS OTTAWA, ON

Appendix A November 24, 2022

STORMWATER MANAGEMENT

C.1 STORM SEWER DESIGN SHEET Appendix C

Chambre e	НС	DLLAND	CROSS			S	ORM	SEWE	R		DESIG	N PARAN	ETERS																								
Stantec						D	ESIGN	SHEE	Т		l = a / (†	t+b) ^c		(As per C	ity of Otta	awa Guide	lines, 2012)																				
	DATE:		2022-01-1	9		(City of	Ottawa)			1:2 yr	1:5 yr	1:10 yr	1:100 yr																						
	REVISION	۷:	2								a =	732.951	998.071	1174.184	1735.688	B MANNIN	G'Sn=	0.013		BEDDIN	G CLASS	В															
	DESIGNE	D BY:	WAJ	F	ILE NUME	BER:	1604102	74			b =	6.199	6.053	6.014	6.014	MINIMUN	I COVER:	2.00	m																		
	CHECKEI	DBY:									C =	0.810	0.814	0.816	0.820	TIME OF	ENTRY	10	min																		
LOCATIO	ON													I	DRAINAGE	AREA																PIPE	SELECTI	DN .			
AREA ID	FROM	то	AREA AR	EA	AREA A	AREA	AREA	С	С	С	С	AxC	ACCUM	AxC	ACCUM.	AxC	ACCUM.	AxC	ACCUM.	T of C	I _{2-YEAR}	I _{5-YEAR}	I _{10-YEAR}	I _{100-YEAR}	Q _{CONTROL}	ACCUM.	Q _{ACT}	LENGTH	PIPE WIDTH	PIPE	PIPE	MATERIA	L CLASS	SLOPE Q	AP % FULL	VEL.	VEL. TIME OF
NUMBER	M.H.	M.H.	(2-YEAR) (5-YI	EAR) (1	10-YEAR)(100)-YEAR	(ROOF)	(2-YEAR)	(5-YEAR)	(10-YEA	AR)(100-YEAF	(2-YEAR)	AxC (2YR)	(5-YEAR)	AxC (5YR)) (10-YEAR)) AxC (10YR)	(100-YEAR)	AxC (100YR)							Q _{CONTROL}	(CIA/360)	0	R DIAMETE	HEIGHT	SHAPE			(FU	LL)	(FULL)	(ACT) FLOW
			(ha) (h	a)	(ha)	(ha)	(ha)	(-)	(-)	(-)	(-)	(ha)	(ha)	(ha)	(ha)	(ha)	(ha)	(ha)	(ha)	(min)	(mm/h)	(mm/h)	(mm/h)	(mm/h)	(L/s)	(L/s)	(L/s)	(m)	(mm)	(mm)	(-)	(-)	(-)	% (L	s) (-)		(m/s) (min)
BLDG, L101A	BLDG	MAIN	0.100 0.	00	0.00	0.00	0.13	0.90	0.00	0.00	0.00	0.090	0.090	0.000	0.000	0.000	0.000	0.000	0.000	10.00	76.81	104.19	122.14	178.56	9.5	9.5	28.7	14.0	200	200	CIRCULA	R PVC	SDR 28	1.00 33	.3 86.0%	1.05	1.05 0.22
	1																			10.22									200	200							
L	1																																				

SITE SERVICING AND STORMWATER MANAGEMENT REPORT, HOLLAND CROSS OTTAWA, ON

Appendix C Stormwater Management November 24, 2022

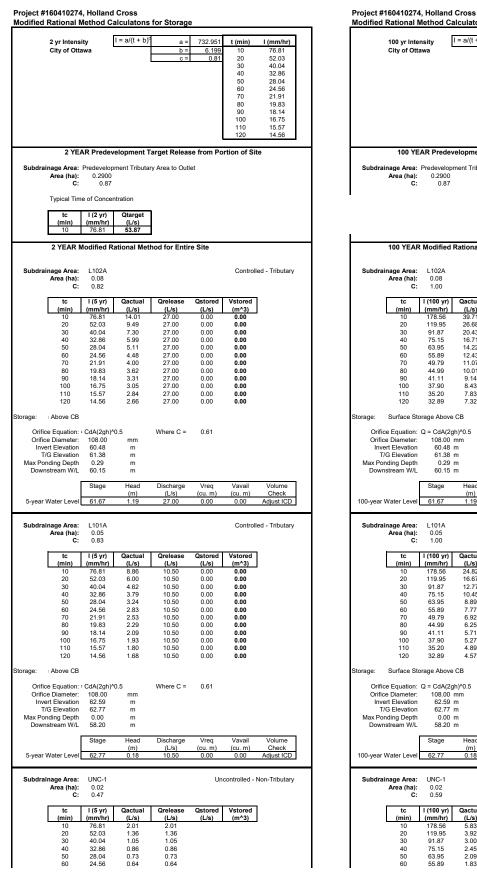
C.2 RATIONAL METHOD CALCULATIONS

 File No:
 160410274

 Project:
 Holland Cross

 Date:
 05-Aug-20

SWM Approach: Post-development to Pre-development flows


Post-Development Site Conditions:

Overall Runoff Coefficient for Site and Sub-Catchment Areas

Sub-catch	mont	Runoff C	oefficient Table Area		Runoff			Overall
Area Catchment Type	ID / Description		(ha) "A"		Coefficient "C"	"A	x C"	Runoff Coefficien
Controlled - Tributary	L102A	Hard Soft ubtotal	0.071 0.009	0.08	0.9 0.2	0.064 0.002	0.0656	0.820
Controlled - Tributary	L101A	Hard Soft ubtotal	0.045 0.005	0.05	0.9 0.2	0.041 0.001	0.0415	0.830
Uncontrolled - Non-Tributary	UNC-1 Su	Hard Soft ubtotal	0.008 0.012	0.02	0.9 0.2	0.007 0.002	0.0094	0.470
Roof	BLDG Su	Hard Soft ubtotal	0.140 0.000	0.14	0.9 0.2	0.126 0.000	0.126	0.900
Total verall Runoff Coefficient= C:				0.290			0.243	0.84
otal Roof Areas otal Tributary Surface Areas (Co otal Tributary Area to Outlet	ntrolled and Uncontrol	led)	0.140 h <u>0.130 h</u> 0.270 h	a				
otal Uncontrolled Areas (Non-Tri	butary)		0.020 h	a				

Total Site	0.290 ha

Stormwater Management Calculations

Modified	Rational M	lethod C	alculatons	for Storag	e		
	100 yr Inte	neitv	I = a/(t + b)	a =	1735.688	t (min)	l (mm/hr)
	City of Otta			b =	6.014	10	178.56
				c =	0.820	20 30	119.95 91.87
						40	75.15
						50 60	63.95 55.89
						60 70	55.89 49.79
						80	44.99
						90 100	41.11 37.90
						110	35.20
					l	120	32.89
	100 YE	AR Prede	velopment	Target Relea	ase from Po	ortion of S	ite
Cubdroi							
Suboral	Area (ha):	0.2900		ry Area to Out	let		
	C:	0.87	,				
		Modifie	Dational	ethod for En	tiro Sito		
	100 TEAR	moamed	Rational M	ethod for En	itire Site		
0		L102A				Ocentra in	ad Tribut
Suboral	nage Area: Area (ha):	0.08				Control	ed - Tributary
	C:	1.00					
	tc	l (100 yr)	Qactual	Qrelease	Qstored	Vstored	ľ
	(min)	(mm/hr)	(L/s)	(L/s)	(L/s)	(m^3)	L
	10 20	178.56 119.95	39.71 26.68	27.00 27.00	12.71 0.00	7.63 0.00	
	30	91.87	20.43	27.00	0.00	0.00	
	40 50	75.15 63.95	16.71 14.22	27.00 27.00	0.00	0.00 0.00	
	60	55.89	12.43	27.00	0.00	0.00	
	70	49.79	11.07	27.00	0.00	0.00	
	80 90	44.99 41.11	10.01 9.14	27.00 27.00	0.00	0.00 0.00	
	100	37.90	8.43	27.00	0.00	0.00	
	110 120	35.20 32.89	7.83 7.32	27.00 27.00	0.00	0.00	
					5.00	5.00	
Storage:	Surface Sto	orage Abov	e CB				
	e Equation:			Where C =	0.61		
	e Diameter:	108.00					
	ort Elevation G Elevation	60.48 61.38					
Max Por	nding Depth	0.29	m				
Down	stream W/L	60.15	10				
		Stage	Head (m)	Discharge (L/s)	Vreq (cu.m)	Vavail (cu.m)	Volume Check
100-year \	Water Level	61.67	1.19	27.00	7.63	0.00	Adjust ICD
						-7.63	
Subdrai	nage Area:	L101A				Control	ed - Tributary
	Area (ha): C:	0.05 1.00					
							_
	tc	I (100 yr)	Qactual	Qrelease	Qstored	Vstored	
	(min) 10	(mm/hr) 178.56	(L/s) 24.82	(L/s) 10.50	(L/s) 14.32	(m^3) 8.59	
	20	119.95	16.67	10.50	6.17	7.41	
	30 40	91.87 75.15	12.77 10.45	10.50 10.50	2.27 0.00	4.08 0.00	
	50	63.95	8.89	10.50	0.00	0.00	
	60 70	55.89 49.79	7.77 6.92	10.50 10.50	0.00	0.00	
	80	44.99	6.25	10.50	0.00	0.00	
	90 100	41.11 37.90	5.71 5.27	10.50 10.50	0.00	0.00	
	110	35.20	4.89	10.50	0.00	0.00	
	120	32.89	4.57	10.50	0.00	0.00	
Storage:	Surface Sto	orage Abov	e CB				
				Where C -	0.61		
	e Equation: e Diameter:	Q = CdA(2 108.00		Where C =	0.61		
Inve	ert Elevation	62.59	m				
Τ/	G Elevation	62.77 0.00					
Max Por		58.20					
	stream W/L			Discharge	Vreq	Vavail	Volume
	stream W/L	Stare	Hood				Check
Down	1	Stage	Head (m)	(L/s)	(cu. m)	(cu. m)	
Down	stream W/L Water Level	Stage 62.77				0.00	Adjust ICD
Down	1		(m)	(L/s)	(cu. m)		
Down 100-year \	Water Level	62.77 UNC-1	(m)	(L/s)	(cu. m) 8.59	0.00 -8.59	
Down 100-year \	Water Level inage Area: Area (ha):	62.77 UNC-1 0.02	(m)	(L/s)	(cu. m) 8.59	0.00 -8.59	Adjust ICD
Down 100-year \	Water Level inage Area: Area (ha): C:	62.77 UNC-1 0.02 0.59	(m) 0.18	(L/s) 10.50	(cu. m) 8.59 Unc	0.00 -8.59 ontrolled -	Adjust ICD
Down 100-year \	Water Level Inage Area: Area (ha): C: tc	62.77 UNC-1 0.02 0.59	(m) 0.18 Qactual	(L/s) 10.50 Qrelease	(cu. m) 8.59 Unc	0.00 -8.59 ontrolled - Vstored	Adjust ICD
Down 100-year \	Water Level inage Area: Area (ha): C: tc (min) 10	62.77 UNC-1 0.02 0.59 I (100 yr) (mm/hr) 178.56	(m) 0.18 Qactual (L/s) 5.83	(L/s) 10.50 Qrelease (L/s) 5.83	(cu. m) 8.59 Unc	0.00 -8.59 ontrolled -	Adjust ICD
Down 100-year \	Water Level inage Area: Area (ha): C: tc (min) 10 20	62.77 UNC-1 0.02 0.59 I (100 yr) (mm/hr) 178.56 119.95	(m) 0.18 Qactual (L/s) 5.83 3.92	(L/s) 10.50 Qrelease (L/s) 5.83 3.92	(cu. m) 8.59 Unc	0.00 -8.59 ontrolled - Vstored	Adjust ICD
Down 100-year \	Water Level inage Area: Area (ha): C: tc (min) 10	62.77 UNC-1 0.02 0.59 I (100 yr) (mm/hr) 178.56	(m) 0.18 Qactual (L/s) 5.83	(L/s) 10.50 Qrelease (L/s) 5.83	(cu. m) 8.59 Unc	0.00 -8.59 ontrolled - Vstored	Adjust ICD
Down 100-year \	Water Level inage Area: Area (ha): C: tc (min) 10 20 30	62.77 UNC-1 0.02 0.59 I (100 yr) (mm/hr) 178.56 119.95 91.87	(m) 0.18 Qactual (L/s) 5.83 3.92 3.00	(L/s) 10.50 Qrelease (L/s) 5.83 3.92 3.00	(cu. m) 8.59 Unc	0.00 -8.59 ontrolled - Vstored	Adjust ICD

Stormwater Management Calculations

Project #160410274	Holland C	ross
--------------------	-----------	------

noumeu	Rational N	lethod C	alculatons	for Storage	3			
	70	21.91	0.57	0.57				
	80	19.83	0.52	0.52				
	90	18.14	0.47	0.47				
	100	16.75	0.44	0.44				
	110	15.57	0.41	0.41				
	120	14.56	0.38	0.38				
Subdra	inage Area:	BLDG					Roof	
	Area (ha):	0.14		м	aximum Sto	orage Depth:	150	mm
	C:	0.90				5 .		
	tc (min)	l (5 yr) (mm/hr)	Qactual (L/s)	Qrelease (L/s)	Qstored (L/s)	Vstored (m ³)	Depth (mm)	
	10	76.81	26.90	4.16	22.74	13.65	92.3	0.33
	20	52.03	18.23	4.47	13.75	16.50	99.8	0.35
	30	40.04	14.03	4.63	9.40	16.92	100.5	0.12
	40	32.86	11.51	4.70	6.81	16.34	99.4	0.01
	50	28.04	9.82	4.73	5.09	15.27	96.5	-0.11
	60	24.56	8.60	4.74	3.86	13.91	93.0	-0.23
	70	21.91	7.68	4.73	2.94	12.37	89.0	-0.35
	80	19.83	6.95	4.71	2.24	10.73	84.7	-0.46
	90	18.14	6.36	4.68	1.68	9.05	80.3	-0.57
	100	16.75	5.87	4.64	1.22	7.33	75.9	-0.67
	110	15.57	5.45	4.61	0.85	5.60	67.9	-0.89
	120	14.56	5.10	4.56	0.54	3.87	59.1	-1.12
torage:	Roof Storag	je						
	Ī	Depth	Head	Discharge	Vreq	Vavail	Discharge	1
		(mm)	(m)	(L/s)	(cu. m)	(cu. m)	Check	
5-year	Water Level	100.52	0.10	4.75	16.92	56.00	0.20	
UMMARY	TO OUTLET					Vrequired	Vavailable*	
UMMARY		Tr	ibutary Area	0.270	ha			
UMMARY		Tr	ibutary Area ow to Sewer	0.270 42.3		Vrequired 0		m ³
UMMARY		Tr Total 2yr Fl			L/s			m ³
UMMARY	т	Tr otal 2yr Fl Non-Tr	ow to Sewer	42.3	L/s ha			m ³
UMMARY	т	Tr Total 2yr Fl Non-Tr 2yr Flow U	ow to Sewer ibutary Area Incontrolled Total Area	42.3 0.020 2.0 0.290	L/s ha L/s ha			m³
UMMARY	т	Tr Total 2yr Fl Non-Tr 2yr Flow U	bw to Sewer ibutary Area Incontrolled	42.3 0.020 2.0	L/s ha L/s ha L/s			m³

	70	49.79	1.63	1.63				
	80	44.99	1.03	1.47				
	90	41.11	1.34	1.34				
	100	37.90	1.24	1.24				
	110	35.20	1.15	1.15				
	120	32.89	1.07	1.07				
Subdrai	nage Area:	BLDG					Roo	F
	Area (ha):	0.14		Ma	aximum Sto	rage Depth:	150	mm
	C:	1.00						
	tc	l (100 yr)	Qactual	Qrelease	Qstored		Depth	
	(min)	(mm/hr)	(L/s)	(L/s)	(L/s)	(m^3)	(mm)	
	10 20	178.56 119.95	69.50 46.68	5.72 6.07	63.78 40.62	38.27 48.74	131.2 142.3	0.00
	20	119.95 91.87	46.68	6.07	40.62 29.54	48.74 53.17	142.3 147.0	0.00
	30 40	75.15	29.25	6.21	29.54 22.97	55.12	147.0	0.00
	40 50	75.15 63.95	29.25	6.30	22.97	55.12 55.77	149.1	0.00
	50 60	55.89	24.89	6.30	15.46	55.65	149.8	0.00
	70	49.79	19.38	6.28	13.40	55.03	149.0	0.00
	80	44.99	17.51	6.24	11.27	54.08	148.0	0.00
	90	41.11	16.00	6.24	9.80	52.89	146.7	0.00
	100	37.90	14.75	6.16	8.59	51.55	146.7	0.00
	110	35.20	14.75	6.10	7.59	50.09	143.3	0.00
	120	32.89	12.80	6.06	6.74	48.55	143.7	0.00
orage:	Roof Storag	ge						
		Depth	Head	Discharge	Vreq	Vavail	Discharge	ר ו
		(mm)	(m)	(L/s)	(cu. m)	(cu. m)	Check	
100-year V	Vater Level	149.76	0.15	6.30	55.77	56.00	0.00	
UMMARY	TO OUTLET					Vrequired	Vavailable*	
	Tot		butary Area	0.270 43.8		. 0		m ³
	101	-				U	ι ι	, m
	Total 10		butary Area ncontrolled	0.020 5.8	ha L/s			
			Total Area 100yr Flow	0.290 49.6				

Project #160410274, Holland Cross Roof Drain Design Sheet, Area BLDG Standard Watts Model R1100 Accutrol Roof Drain

	Rating	Curve			Volume E	stimation				
Elevation	Discharge Rate	Outlet Discharge	Storage	Elevation	Area	Volume	e (cu. m)	Water Depth		
(m)	(cu.m/s)	(cu.m/s)	(cu. m)	(m)	(sq. m)	Increment	Accumulated	(m)		
0.000	0.0000	0.0000	0	0.000	0	0	0	0.000		
0.025	0.0003	0.0016	0	0.025	31	0	0	0.025		
0.050	0.0006	0.0032	2	0.050	124	2	2	0.050		
0.075	0.0008	0.0039	7	0.075	280	5	7	0.075		
0.100	0.0009	0.0047	17	0.100	498	10	17	0.100		
0.125	0.0011	0.0055	32	0.125	778	16	32	0.125		
0.150	0.0013	0.0063	56	0.150	1120	24	56	0.150		

	Drawdowr	n Estimate	
Total	Total		
Volume	Time	Vol	Detention
(cu.m)	(sec)	(cu.m)	Time (hr)
0.0	0.0	0.0	0
1.8	575.3	1.8	0.15981
6.7	1249.2	4.9	0.50682
16.3	2027.3	9.6	1.06995
32.1	2864.8	15.8	1.86573
55.7	3739.5	23.6	2.90448

Rooftop Storage Summary

Total Building Area (sq.m)		1400	
Assume Available Roof Area (sq.	80%	1120	
Roof Imperviousness		0.99	
Roof Drain Requirement (sq.m/Notch)		232	
Number of Roof Notches*		5	
Max. Allowable Depth of Roof Ponding (m)		0.15	* As per Ontario Building Code section OBC 7.4.10.4.(2)(c).
Max. Allowable Storage (cu.m)		56	
Estimated 100 Year Drawdown Time (h)		2.9	

From Watts Drain Catalogue

Head (m)	L/s						
	Open	0.75	0.5	0.25 Closed			
0.025	0.3155	0.3155	0.3155	0.3155	0.3155		
0.05	0.6309	0.6309	0.6309	0.6309	0.6309		
0.075	0.9464	0.8675	0.7886	0.7098	0.6309		
0.1	1.2618	1.1041	0.9464	0.7886	0.6309		
0.125	1.5773	1.3407	1.1041	0.8675	0.6309		
0.15	1.8927	1.5773	1.2618	0.9464	0.6309		

* Note: Number of drains can be reduced if multiple-notch drain used.

Calculation Result	ts	5yr	100yr	Available
Qr	Qresult (cu.m/s)		0.006	-
De	epth (m)	0.101	0.150	0.150
Vo	olume (cu.m)	16.9	55.8	56.0
Dra	aintime (hrs)	1.1	2.9	

SITE SERVICING AND STORMWATER MANAGEMENT REPORT, HOLLAND CROSS OTTAWA, ON

Appendix D Geotechnical Investigation November 24, 2022

GEOTECHNICAL INVESTIGATION

Appendix D

REPORT

Geotechnical Engineering Design Input Holland Cross Expansion

1560 Scott Street, Ottawa, Ontario

Submitted to:

Pomerleau

220-343 Preston Street Ottawa, ON, K1S 1N4

Submitted by:

Golder Associates Ltd. 1931 Robertson Road, Ottawa, Ontario, K2H 5B7

20141578

May 2020

Distribution List

1 - e-copy Pomerleau

1 - e-copy Golder

Table of Contents

1.0	INTRO	DDUCTION	.4
2.0	BACK	GROUND INFORMATION	.4
	2.1	Site and Project Descriptions	.4
	2.2	Available Subsurface Information	.5
3.0	SUBS	URFACE CONDITIONS	.5
	3.1	General	.5
	3.2	Surficial Fill Materials, Organic Material and Glacial Till	.6
	3.3	Bedrock	.6
	3.4	Groundwater	.6
4.0	DISCU	JSSION	.6
	4.1	General	.6
	4.2	Excavations	.7
	4.3	Foundations	.8
	4.4	Seismic Design	.8
	4.5	Basement Floor Slab	.8
	4.6	Frost Protection	.9
	4.7	Basement Walls	.9
	4.7.1	Open Cut Excavations	.9
	4.7.2	Excavations in Bedrock	.9
	4.7.3	Lateral Earth Pressures	10
	4.8	Impacts on Adjacent Development	12
	4.9	Environmental Considerations	12
5.0		TIONAL CONSIDERATIONS	13
6.0	CLOS	SURE	13
Imp	ortant	Information and Limitations of This Report	

DRAWINGS

Figure 1 Key Plan Figure 2 Site Plan

APPENDICES

Appendix A

Borehole and Test Pit Records Previous Investigation (McRostie Genest Middlemiss & Associates, Report No. SF-2687)

1.0 INTRODUCTION

Golder Associates Ltd. (Golder) previously carried out a geotechnical desktop review as part of a Site Plan Agreement application to the City of Ottawa for the proposed expansion to the Holland Cross facility, located at 1560 Scott Street in Ottawa, Ontario. The results of that desktop review were provided in the Golder report dated December 2013 (Report Number 13-1121-0176).

The purpose of that previous report was to assess the subsurface conditions at the site by means of review of existing geotechnical information and, based on an interpretation of the factual information available, to provide preliminary engineering input on the geotechnical design aspects of the project, including comments on construction considerations which could influence design decisions. The foundation engineering guidelines provided in that previous report were consistent with the procedures outlined in the 2006 Ontario Building Code (OBC). At that time, the proposed expansion consisted of development of a 12 storey low-rise building with two basement/below grade levels.

It is understood that the proposed building design has subsequently been modified to comprise a 23 storey building, also with two basement/below grade levels.

The purpose of this report is to provide updated geotechnical recommendations in accordance with the current 2012 OBC to reflect the changes in the proposed design.

The reader is referred to the "Important Information and Limitations of This Report" which follows the text but forms an integral part of this document.

2.0 BACKGROUND INFORMATION

2.1 Site and Project Descriptions

Consideration is being given to the design and construction of a 23 storey building to be located at 1560 Scott Street in Ottawa, Ontario (see Key Plan, Figure 1).

The following is known about the existing property:

- The proposed building will be located in the southeast corner of an overall site that is bordered to the north by Scott Street, to the west by Holland Avenue, to the south by multi-storey residential buildings and to the east by Hamilton Avenue.
- The overall site measures about 140 m by 140 m in plan area and contains two 7 storey office buildings, one along the northern perimeter and one on the western perimeter border, and a 2 storey building in the southern part of the site. A single storey building covers most of the remainder of the site footprint.
- The existing facility in the area of the proposed 23 storey building consists of a low-rise building with two basement levels. These building areas will be demolished to allow for construction of the expansion.

The current development plans indicate:

- The proposed building footprint is identified on the Site Plan, see Figure 2.
- The proposed building will be 23 storeys in height and encompass a plan area of about 36 m by 47 m.
- Similar to the existing structure at the site, the proposed structure will have 2 basement/below-grade levels.

Additional details on finished floor slab levels were not available at the time of preparation of this report.

2.2 Available Subsurface Information

Previous subsurface investigations at or near the site were carried out by Golder, and also by McRostie Genest Middlemiss and Associates (McRostie) who have since joined Golder. The following reports were reviewed in the assessment of site conditions for this study, which include the investigations for the existing development:

- 1) Report to J.L. Richards & Associates Ltd. by Golder titled "*Geotechnical Investigation, Proposed Watermain and Sanitary Sewer Replacement, Holland Avenue, Scott Street to Tyndall Street, Ottawa, Ontario*" dated June 2012 (Report No. 11-1121-0281).
- 2) Letter to Laurnic Investments by McRostie titled "*Holland and Spencer Avenues, Beech Foundry Site, Rock Elevations*" dated June 6, 1984 (Report No. SF-2481).
- Report to Citicom Inc., Brisbin Brooke Beynon, Architects and Carwood Leclair Inc. Consulting Engineers by McRostie titled "*Holland Cross Project, Holland Ave., Spencer St. & Scott St., Ottawa*" dated July 3, 1986 (Report No. SF-2687).

Golder also previously carried Vertical Seismic Profiling (VSP) geophysical testing on a nearby Tunney's Pasture site for Public Works and Government Services Canada in 2011 and that information has also been reviewed in preparation of this report.

Based on the available information, the subsurface conditions are anticipated to consist surficial fill material overlying glacial till and then by bedrock with the bedrock surface located at depths varying from about 0.5 to 2.8 m below the original ground surface.

Published bedrock geology mapping indicates that the site is underlain by dolomite and limestone of the Bobcaygeon Formation.

3.0 SUBSURFACE CONDITIONS

3.1 General

The approximate locations of the boreholes and test pits previously advanced at the site are identified on Figure 2. Relevant borehole and test pit records from the previous investigations by McRostie in the immediate vicinity of the proposed building are provided in Appendix A.

The following provides an overview of the subsurface conditions encountered in the test pits and boreholes previously advanced at the site followed by more detailed descriptions of the major soil strata and shallow groundwater conditions. It should be noted that the previous investigations pre-dated development of the site and, as such, the near surface conditions are anticipated to have been altered by the existing development (e.g., removal of materials to permit construction of the existing below-grade structures) including bedrock excavations.

In general, the subsurface conditions consist of up to approximately 2.8 m of surficial fill materials overlying limestone bedrock. Organic materials and/or glacial till deposits were present between the fill materials and bedrock at some locations on the site.

3.2 Surficial Fill Materials, Organic Material and Glacial Till

The records for the McRostie test pits and boreholes encountered a concrete slab at ground surface with a thickness ranging between about 60 to 150 mm in test pits numbered 2 to 11, inclusively. Topsoil was encountered in some test pits over the site ranging in thickness from about 200 to 300 mm. A layer of fill material was present underlying the concrete slab, topsoil or at surface, within or near the proposed building footprint; the fill extended to depths of up to about 2.3 m below the original ground surface (but was locally thinner). The past investigations generally describe the fill material as being comprised of a variety of materials including topsoil, sand, gravel, clay, bricks, wood, metal, concrete and other debris.

A 0.3 to 0.8 m thick organic layer was encountered at or near the proposed building footprint (i.e., in borehole 86-8 and at test pits N120/E120 and N150/E120) at depths of 0.40, 1.7 and 1.35 m below the ground surface, respectively.

The previous geotechnical investigations carried out on this site indicate that the fill and/or organic materials were underlain by glacial till at or near the proposed building footprint. The glacial till consists of a heterogeneous mixture of gravel, cobbles, and boulders in a silty sand matrix.

As the proposed building footprint currently contains two below grade levels, it is anticipated that the most if not all of the above noted materials were removed during construction of the existing building.

3.3 Bedrock

The near surface materials described above are underlain by bedrock. Records for the McRostie boreholes indicate that limestone bedrock was encountered at depths ranging between 0.52 and 2.8 m below ground surface (Elevation 59.6 to 61.2 m) within the overall site. At test pits and boreholes advanced within or near the footprint of the proposed tower, the bedrock surface was encountered at elevations of about 59.8 to 61.0 m.

The upper portion of the rock was noted to be slightly weathered and soil filled seams within the bedrock were identified in the core drilling program.

3.4 Groundwater

The existing groundwater data indicates that, at least seasonally, the groundwater level was near ground surface. Groundwater levels are expected to fluctuate seasonally. Higher groundwater levels are expected during wet periods of the year, such as spring, and during and following periods of sustained precipitation.

However, it is noted that the groundwater levels at this site have likely been altered as a result of the existing development (e.g., current water levels are anticipated to be influenced by existing building drainage systems).

4.0 DISCUSSION

4.1 General

This section of the report provides preliminary engineering input on the geotechnical design aspects of the proposed development, based on our interpretation of available information described herein and the project requirements.

The foundation engineering guidelines presented in this section of the report have been developed in a manner consistent with the procedures outlined in 2012 OBC for Limit States Design.

4.2 Excavations

Details on the finished floor elevations for the proposed building were not available at the time of preparation of this report. However, it is understood that the proposed building will be constructed within a portion of the existing building footprint which contains two below-grade levels and which will be demolished prior to construction of the new building. The proposed building will also incorporate two below-grade levels. As the proposed and existing buildings both have two underground levels, it is anticipated that excavations will be limited primarily to new footing areas.

The available subsurface information suggests that the bedrock surface in the immediate vicinity of the proposed building was located at shallow depth (i.e., at depths ranging between about 1.6 and 2.5 m below ground surface at the time of the previous investigations). The founding levels for new building foundations are therefore expected to be within limestone bedrock.

In general, the subsurface conditions on this site consisted of topsoil and fill overlying glacial till, with the bedrock surface located at depths varying from about 1.6 to 2.5 m below the ground surface at the time of the previous investigations. In accordance with the Occupational Health and Safety Act (OHSA) of Ontario, the soils above the water table at this site would generally be classified as Type 3 soils and side slopes in the overburden <u>above the water table</u> may therefore be sloped at a minimum of 1H:1V. However, in accordance with the OHSA of Ontario, the soils below the water table would generally be classified as Type 4 soils, and excavation side slopes must be sloped at a minimum of 3H:1V if dewatering of these materials is not carried out. This condition is not, however, anticipated to exist.

Depending on the final excavation geometry, some shoring/temporary support may be needed for the excavation adjacent to the loading dock facility located immediately north of the proposed building and/or adjacent to Hamilton Avenue to prevent undermining of the roadways.

It is expected that near vertical walls may be developed in the bedrock for the shallow excavations needed for new footing construction. However, the exposed bedrock should be inspected by qualified geotechnical personnel at the time of excavation to confirm this assessment.

Similarly, if/where the existing foundation walls are removed; vertical bedrock excavation walls are anticipated to be feasible.

Shallow depths of bedrock removal for this project, such as those required for localized excavations for footings, could be accomplished using mechanical methods (such as hoe ramming in conjunction with line drilling). Care will need to be taken to protect the adjacent structures/foundations from damage during bedrock excavation. It is expected/assumed that blasting will not be required.

It is assumed that there is an existing drainage system below the existing building floor slab which has lowered the groundwater level to below the base of the existing building. Provided that the bulk excavation for the new building does not extend substantially below the current below-grade building levels, groundwater inflow into the foundation excavations can probably be handled by pumping from properly constructed and filtered sumps located within the excavations.

4.3 Foundations

It is understood that the proposed building will have two basement levels. It is expected that the excavation will extend about 1 to 2 m below the basement floor level to accommodate footing construction. At these levels, new building foundations are expected to be founded within limestone bedrock.

For initial assessment purposes, it is expected that footings founded on or within the competent limestone bedrock would be sized using an Ultimate Limit States (ULS) factored bearing resistance in the range of 2 to 4 MPa; additional site-specific investigation will be required prior to detailed design to further assess and optimize design bearing pressures.

Provided the bedrock surface is acceptably cleaned of loose or broken bedrock, the settlement of footings at the corresponding service (unfactored) load is considered negligible therefore the SLS condition will not govern the design.

The ultimate resistance of the footings to lateral loading may be calculated using an ULS friction value of 0.7 (unfactored) across the interface between the footing and the bedrock. If greater resistance is required, the footings could be provided with shear keys or prestressed rock anchors could be used to increase the normal stress level across the interface. Further guidance on this issue can be provided, if required.

The available information from previous investigations at the site typically does not include detailed descriptions of bedrock weathering conditions but did identify the presence of soil filled seams within the bedrock. Based on these conditions, it is recommended that probe holes (50 mm diameter drilled holes) be advanced within the footing areas to depths of about 2 m below founding level. These probe holes should be inspected by the geotechnical engineer and would be used to confirm that the weathered bedrock has been entirely removed and no soil filled seams are present beneath the footings. Contract drawings should include provision for making variations in footing sizes or founding elevations in the event that weathered or other poor quality rock or soil infilled seams are encountered.

4.4 Seismic Design

The seismic design provisions of the 2012 OBC depend, in part, on the shear wave velocity of the upper 30 m of soil and/or rock below founding level.

Site specific shear wave velocity profiling, using the Vertical Seismic Profiling (VSP) method (down-hole geophysical method), was carried out in a borehole on an adjacent Tunney's Pasture site for Public Works and Government Services Canada in 2011.

A review of the borehole information indicates that both sites are underlain by similar overburden conditions (i.e., less than about 1 m of fill material) and similar bedrock conditions (i.e., limestone of the Bobcaygeon Formation). The results of the nearby VSP testing would therefore also be applicable to this site as permitted by the OBC. The results of the VSP testing indicated an average shear-wave velocity for the bedrock of 2,200 m/s. As such, this site can be assigned a Seismic Site Class A.

4.5 Basement Floor Slab

In preparation for the construction of the basement floor slab, all loose, wet, and disturbed material should be removed from beneath the floor slab. The feasibility of reusing existing underslab granular fill materials can also be evaluated.

Provision should be made for at least 300 mm of 16 mm clear crushed stone to form the base of the floor slab. To prevent hydrostatic pressure build up beneath the floor slab, it is suggested that the granular base for the floor slab be drained. This should be achieved by installing rigid 100 mm diameter perforated pipes in the floor slab bedding at 6 m centres. The perforated pipes should discharge to a positive outlet such as a storm sewer or a sump from which the water is pumped.

If or where an asphalt surface will be provided for the basement level, a thickness of at least 150 mm of OPSS Granular A base materials should be provided above the clear stone. The Granular A should be compacted to at least 100 percent of the material's Standard Proctor Maximum Dry Density (SPMDD).

4.6 Frost Protection

All perimeter and exterior foundation elements or interior foundation elements in unheated areas should be provided with a minimum of 1.5 m of earth cover for frost protection purposes. Isolated, unheated exterior footings adjacent to surfaces which are cleared of snow cover during winter months should be provided with a minimum of 1.8 m of earth cover.

It is expected that these requirements will be satisfied for all of the structure footings due to the deep founding levels required to accommodate the below-grade parking.

4.7 Basement Walls

The backfill and drainage requirements for basement walls, as well as the lateral earth pressures will depend on the type of excavation that is made to construct the basement levels.

The following sections assume that water-tight construction will not be required. If it is determined that water-tight construction is needed, additional design guidelines will be required.

4.7.1 Open Cut Excavations

The soils at this site are frost susceptible and should not be used as backfill against exterior, unheated, or well insulated foundation elements within the depth of potential frost penetration (1.5 m) to avoid problems with frost adhesion and heaving. Free draining backfill materials are also required if hydrostatic water pressure against the basement walls (and potential leakage) is to be avoided. The foundation and basement walls therefore should be backfilled with non-frost susceptible sand or sand and gravel conforming to the requirements for OPSS Granular B Type I.

To avoid ground settlements around the basement walls which could affect site grading and drainage, all of the backfill materials should be placed in 0.3 m thick lifts and compacted to at least 95 percent of the material's SPMDD.

The basement wall backfill should be drained by means of a perforated pipe subdrain in a surround of 19 mm clear stone, fully wrapped in a geotextile, which leads by positive drainage to a storm sewer or to a sump from which the water is pumped.

4.7.2 Excavations in Bedrock

Where basement walls will be poured against bedrock, vertical drainage such as Miradrain or equivalent must be installed on the face of the bedrock to provide the necessary drainage. The top edge of the vertical drainage should be sealed or covered with a geotextile to prevent the loss of soil into the void between the sheet and geotextile of the drainage system.

Where the basement walls will be constructed using formwork, it will be necessary to backfill a narrow gallery with free draining backfill between the shoring or bedrock face and the outside of the walls. The backfill should consist of 6 mm clear stone 'chip', placed by a stone slinger or chute.

In no case should the clear stone chip be placed in direct contact with other soils. For example, surface landscaping or backfill soils placed near the top of the clear stone back fill should be separated from the clear stone with a geotextile.

Both the drain pipe for the wall backfill and/or the drainage system should be connected to a perimeter drain at the base of the excavation which is connected to a sump pump.

4.7.3 Lateral Earth Pressures

It is considered that three design conditions exist with regards to the lateral earth pressures that will be exerted on the basement walls:

- 1) Walls cast directly against the bedrock face.
- Walls cast against formwork with a narrow backfilled gallery provided between the basement wall and the adjacent excavation bedrock face.
- 3) Walls cast against formwork with a wide backfilled gallery provided between the basement wall and the adjacent excavation face.

For Case 1 there will be no effective lateral earth pressures on the basement wall under static conditions.

For Case 2, the magnitude of the lateral earth pressure depends on the magnitude of the arching which can develop in the backfill and therefore depends on the width of the backfill, its angle of internal friction, as well as the interface friction angles between the backfill and both the rock face and the basement wall. The magnitude of the lateral earth pressure can be calculated as:

$$\sigma_h(z) = \frac{\gamma B}{2\tan\delta} \left(1 - e^{-2K\frac{Z}{B}\tan\delta} \right) + K q$$

Where: $\sigma_h(z)$ = Lateral earth pressure on the basement wall at depth z, in kPa;

K = Earth pressure coefficient, use 0.6;

- γ = Unit weight of retained soil, use 20 kN/m³ for clear stone chip;
- B = Width of backfill (between basement wall and bedrock face), m;
- δ = Average interface friction angle at backfill-basement wall and backfill-rock face interfaces, use 15°;
- z = Depth below top of formwork, m; and,
- q = Uniform surcharge at ground surface to account for traffic, equipment, or stock piled materials (use 15 kPa).

For Case 3, the basement walls should be designed to resist lateral earth pressures calculated as:

 $\sigma_h(z) = K_0 (\gamma z + q)$ Where: $\sigma_h(z)$ = Lateral earth pressure on the wall at depth z, in kPa; K_o At-rest earth pressure coefficient, use 0.5; =

> Unit weight of retained soil, use 22 kN/m³; γ

Depth below top of wall, m; and, z =

=

Conventional damp proofing of the basement walls is appropriate with the above design approach. For concrete walls poured against shoring or bedrock, damp proofing using a crystalline barrier such as Crystal Lok, Xypex or equivalent could be used. The use of a concrete additive that provides reduced permeability could also be considered.

For all cases, hydrostatic groundwater pressures would also need to be considered if the structure is designed to be water-tight.

The lateral earth pressures acting on the below-grade walls as a result of seismic events will be highly dependent on the backfill types and methods. For Case 3, the lateral earth pressures noted above would increase under seismic loading conditions. The earthquake-induced dynamic pressure distribution, which is to be added to the static earth pressure distribution, is a linear distribution with maximum pressure at the top of the wall and minimum pressure at its toe (i.e., an inverted triangular pressure distribution).

The combined pressure distribution (static plus seismic) may be determined as follows:

 $\sigma_h(z) = K_o \gamma z + (K_{AE} - K_A) \gamma (H-z);$ non-yielding walls

Where: K_{AE} = The seismic earth pressure coefficient, use 0.42;

Ka = The static active earth pressure coefficient

Н = The total depth to the bottom of the foundation wall (m).

For the other backfill design conditions, design lateral pressures resulting from seismic loading should be assessed during the next design stage once further details on building and backfill configuration are available.

Hydrodynamic groundwater pressures would also need to be considered if the structure is designed to be water-tight. However, more sophisticated analyses may need to be carried out at the detailed design stage.

All of the lateral earth pressure equations are given in an unfactored format and will need to be factored for Limit States Design purposes.

It has been assumed that the underground parking levels will be maintained at minimum temperatures but will not be permitted to freeze. If these areas are to be unheated, additional guidelines for the design of the basement walls and foundations will be required.

In areas where pavement or other hard surfacing will abut the building, differential frost heaving could occur between the granular fill immediately adjacent to the building and the more frost susceptible backfill placed beyond the wall backfill. To reduce the severity of this differential heaving, the backfill adjacent to the wall should be placed to form a frost taper. The frost taper should be brought up to pavement subgrade level from 1.5 m below finished exterior grade at a slope of 3 horizontal to 1 vertical, or flatter, away from the wall. The granular fill should be placed in maximum 300 mm thick lifts and should be compacted to at least 95 percent of the material's SPMDD using suitable vibratory compaction equipment.

4.8 Impacts on Adjacent Development

Possible impacts on adjacent developments could result from:

- Ground movement around the perimeter of the excavation.
- Ground settlements due to the planned temporary and permanent groundwater level lowering, if sensitive and compressible clay soils exist within the expected zone of influence of the groundwater level lowering (which, as discussed below, it not the case for this development).

A preconstruction survey of all structures located within close proximity to this site should be carried out prior to commencement of the excavation.

The structures that are mostly at risk of being impacted by ground movements associated with construction of the new building are the portions of the existing structure that are located immediately adjacent to the excavation (e.g., the parkade structure ramps to the south and the single storey building located in the central portion of the site. It is understood that these structures also contain two below-grade levels and are anticipated to be supported on spread footings on bedrock.

As a general guideline for excavation planning, the excavation for the new structure should not come within 0.5 m of the edge of the footings of the existing buildings. To avoid undermining of the rock and/or disturbance of the rock, careful line drilling of the excavation limits in this area must be undertaken.

Given the relatively shallow depth of additional bedrock excavation, no rock reinforcement is anticipated to be required for this excavation. However, the exposed bedrock should be inspected by qualified geotechnical personnel at the time of excavation to confirm that assessment particularly in areas where excavations will be developed in close proximity to existing foundations.

Temporary and permanent groundwater level lowering would be an issue with regards to surrounding ground settlements if sensitive and compressible clay soils exist within the expected zone of influence of the groundwater level lowering (both during construction and in the long term due to the foundation drainage system). It is noted that the lowest level of the new structure is expected to be at or close to the lowest level of the existing structure; therefore, provided similar drainage systems are used for the new building, the construction of this building is not anticipated to result in a significant permanent groundwater lowering compared to existing conditions. Furthermore, the review of information from investigations at and nearby the site as well as published geologic mapping does not indicate that compressible soils are present near this zone. Based on these conditions, groundwater level lowering will not be an issue with regards to ground settlements due to overstressing sensitive and compressible clay soils.

4.9 Environmental Considerations

The site is located in an area of the City that is known to contain contaminated groundwater; therefore, the development of deep excavations or the installation of dewatering systems that could cause substantial changes to groundwater flow patterns (either during construction or in the long term) should be avoided.

5.0 ADDITIONAL CONSIDERATIONS

Additional site specific investigation will be required prior to finalising the design of the building in order to more accurately assess the bedrock characteristics immediately beneath the building footprint; this information would be used as input to geotechnical aspects of detailed design (e.g., confirming design bearing pressures for foundations, providing information for use in assessing rock anchors that could be required to resist seismic loading, etc.).

All footing and subgrade areas should be inspected by experienced geotechnical personnel prior to filling or concreting to ensure that bedrock having adequate bearing capacity has been reached and that the bearing surfaces have been properly prepared. The placing and compaction of any engineered fill should be inspected to ensure that the materials used conform to the specifications from both a grading and compaction viewpoint.

Pumping from the excavation will result in groundwater flow from the surrounding properties towards this site. Therefore, groundwater contamination beneath adjacent properties, if present, could be drawn towards this site. If any such pumping is planned, additional chemical testing should be carried out prior to construction to determine the groundwater quality so that disposal requirements can be confirmed. The inflow of contaminated groundwater during construction could result in increased groundwater disposal costs.

At the time of the writing of this report, only preliminary details for the proposed development were available. Golder should be retained to review the detailed drawings and specifications for this project prior to tendering to ensure that the guidelines in this report have been adequately interpreted.

6.0 CLOSURE

We trust this report meets with your current requirements. If you have any questions regarding this report, please contact the undersigned.

Golder Associates Ltd.

Kenton Power, P.Eng., MASc. *Geotechnical Engineer*

KCP/MJK/hdw

Matt S

Matt Kennedy, M.Sc.(Eng.), P.Eng. Senior Geotechnical Engineer

Golder and the G logo are trademarks of Golder Associates Corporation

https://golderassociates.sharepoint.com/sites/125056/project files/6 deliverables pomerleau/20141578-rev0-holland cross 0405_20.docx

IMPORTANT INFORMATION AND LIMITATIONS OF THIS REPORT

Standard of Care: Golder Associates Ltd. (Golder) has prepared this report in a manner consistent with that level of care and skill ordinarily exercised by members of the engineering and science professions currently practicing under similar conditions in the jurisdiction in which the services are provided, subject to the time limits and physical constraints applicable to this report. No other warranty, expressed or implied is made.

Basis and Use of the Report: This report has been prepared for the specific site, design objective, development and purpose described to Golder by the Client, **Pomerleau.** The factual data, interpretations and recommendations pertain to a specific project as described in this report and are not applicable to any other project or site location. Any change of site conditions, purpose, development plans or if the project is not initiated within eighteen months of the date of the report may alter the validity of the report. Golder cannot be responsible for use of this report, or portions thereof, unless Golder is requested to review and, if necessary, revise the report.

The information, recommendations and opinions expressed in this report are for the sole benefit of the Client. No other party may use or rely on this report or any portion thereof without Golder's express written consent. If the report was prepared to be included for a specific permit application process, then the client may authorize the use of this report for such purpose by the regulatory agency as an Approved User for the specific and identified purpose of the applicable permit review process, provided this report is not noted to be a draft or preliminary report, and is specifically relevant to the project for which the application is being made. Any other use of this report by others is prohibited and is without responsibility to Golder. The report, all plans, data, drawings and other documents as well as all electronic media prepared by Golder are considered its professional work product and shall remain the copyright property of Golder, who authorizes only the Client and Approved Users to make copies of the report, but only in such quantities as are reasonably necessary for the use of the report by those parties. The Client and Approved Users may not give, lend, sell, or otherwise make available the report or any portion thereof to any other party without the express written permission of Golder. The Client acknowledges that electronic media is susceptible to unauthorized modification, deterioration and incompatibility and therefore the Client cannot rely upon the electronic media versions of Golder's report or other work products.

The report is of a summary nature and is not intended to stand alone without reference to the instructions given to Golder by the Client, communications between Golder and the Client, and to any other reports prepared by Golder for the Client relative to the specific site described in the report. In order to properly understand the suggestions, recommendations and opinions expressed in this report, reference must be made to the whole of the report. Golder cannot be responsible for use of portions of the report without reference to the entire report.

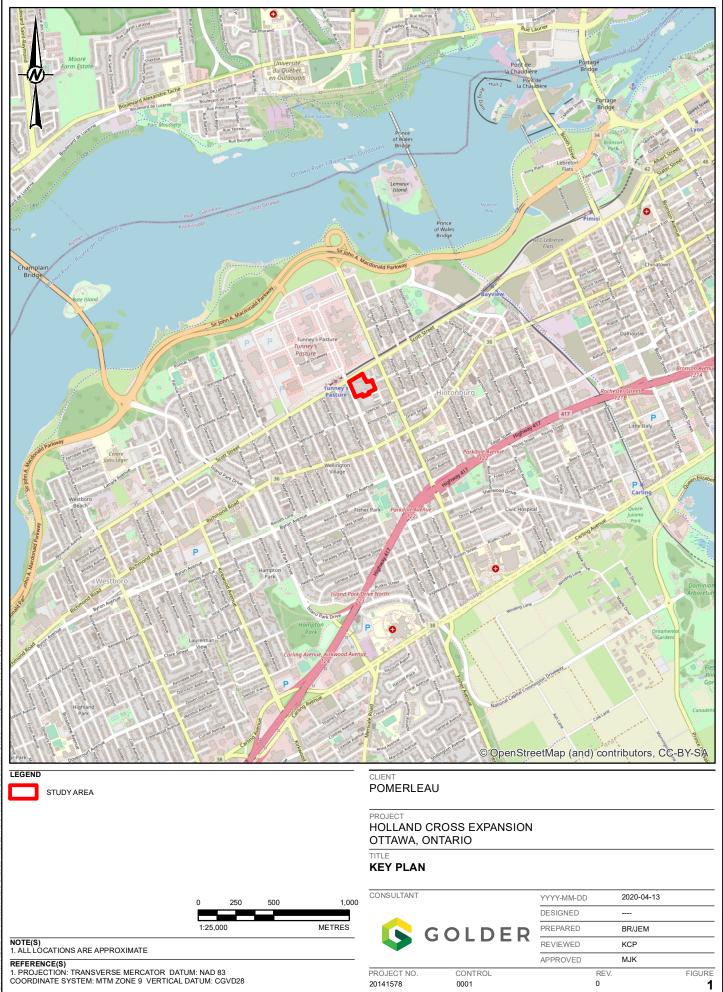
Unless otherwise stated, the suggestions, recommendations and opinions given in this report are intended only for the guidance of the Client in the design of the specific project. The extent and detail of investigations, including the number of test holes, necessary to determine all of the relevant conditions which may affect construction costs would normally be greater than has been carried out for design purposes. Contractors bidding on, or undertaking the work, should rely on their own investigations, as well as their own interpretations of the factual data presented in the report, as to how subsurface conditions may affect their work, including but not limited to proposed construction techniques, schedule, safety and equipment capabilities.

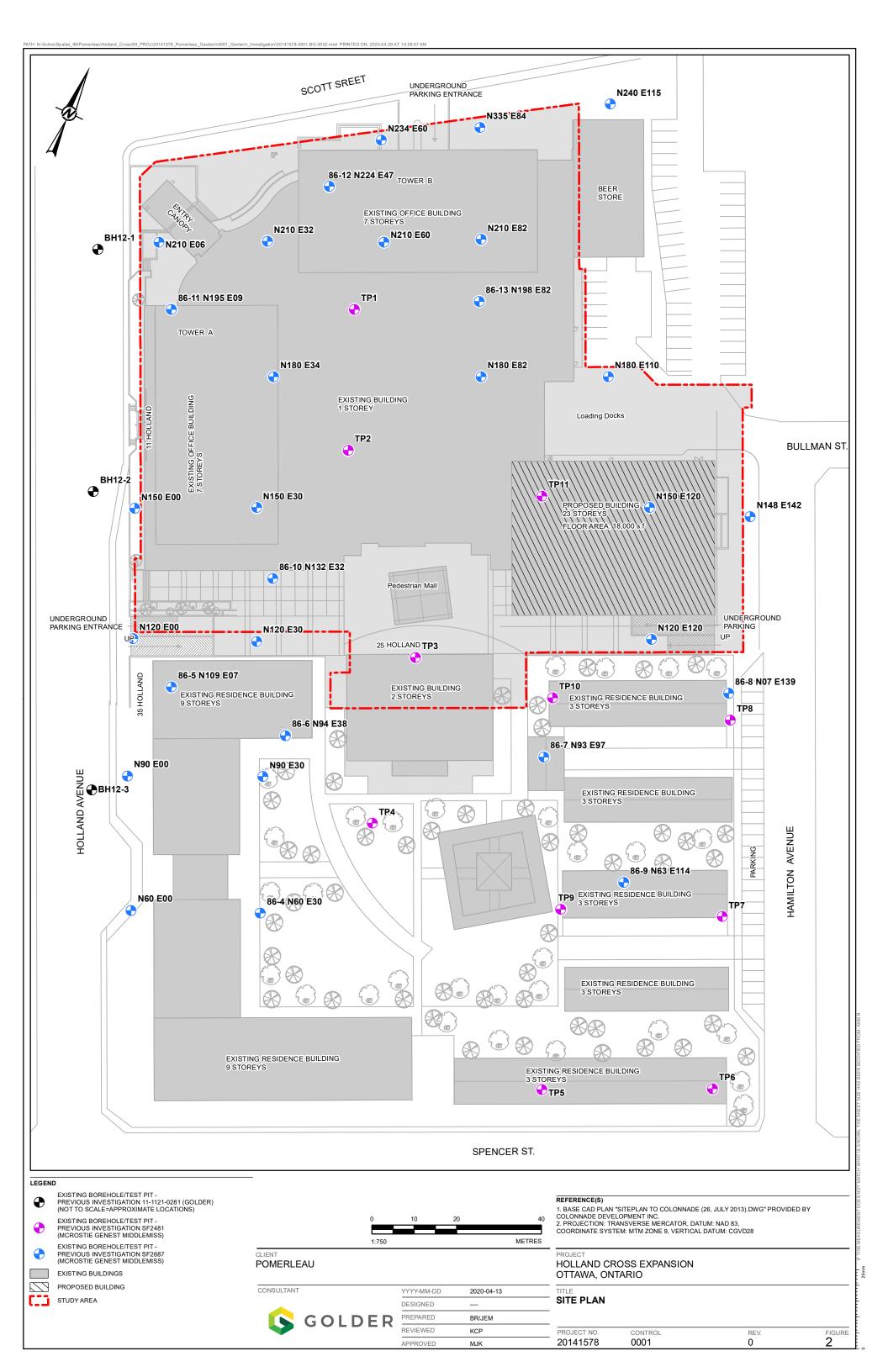
Soil, Rock and Groundwater Conditions: Classification and identification of soils, rocks, and geologic units have been based on commonly accepted methods employed in the practice of geotechnical engineering and related disciplines. Classification and identification of the type and condition of these materials or units involves judgment, and boundaries between different soil, rock or geologic types or units may be transitional rather than abrupt. Accordingly, Golder does not warrant or guarantee the exactness of the descriptions.

IMPORTANT INFORMATION AND LIMITATIONS OF THIS REPORT (cont'd)

Special risks occur whenever engineering or related disciplines are applied to identify subsurface conditions and even a comprehensive investigation, sampling and testing program may fail to detect all or certain subsurface conditions. The environmental, geologic, geotechnical, geochemical and hydrogeologic conditions that Golder interprets to exist between and beyond sampling points may differ from those that actually exist. In addition to soil variability, fill of variable physical and chemical composition can be present over portions of the site or on adjacent properties. The professional services retained for this project include only the geotechnical aspects of the subsurface conditions at the site, unless otherwise specifically stated and identified in the report. The presence or implication(s) of possible surface and/or subsurface contamination resulting from previous activities or uses of the site and/or resulting from the introduction onto the site of materials from off-site sources are outside the terms of reference for this project and have not been investigated or addressed.

Soil and groundwater conditions shown in the factual data and described in the report are the observed conditions at the time of their determination or measurement. Unless otherwise noted, those conditions form the basis of the recommendations in the report. Groundwater conditions may vary between and beyond reported locations and can be affected by annual, seasonal and meteorological conditions. The condition of the soil, rock and groundwater may be significantly altered by construction activities (traffic, excavation, groundwater level lowering, pile driving, blasting, etc.) on the site or on adjacent sites. Excavation may expose the soils to changes due to wetting, drying or frost. Unless otherwise indicated the soil must be protected from these changes during construction.

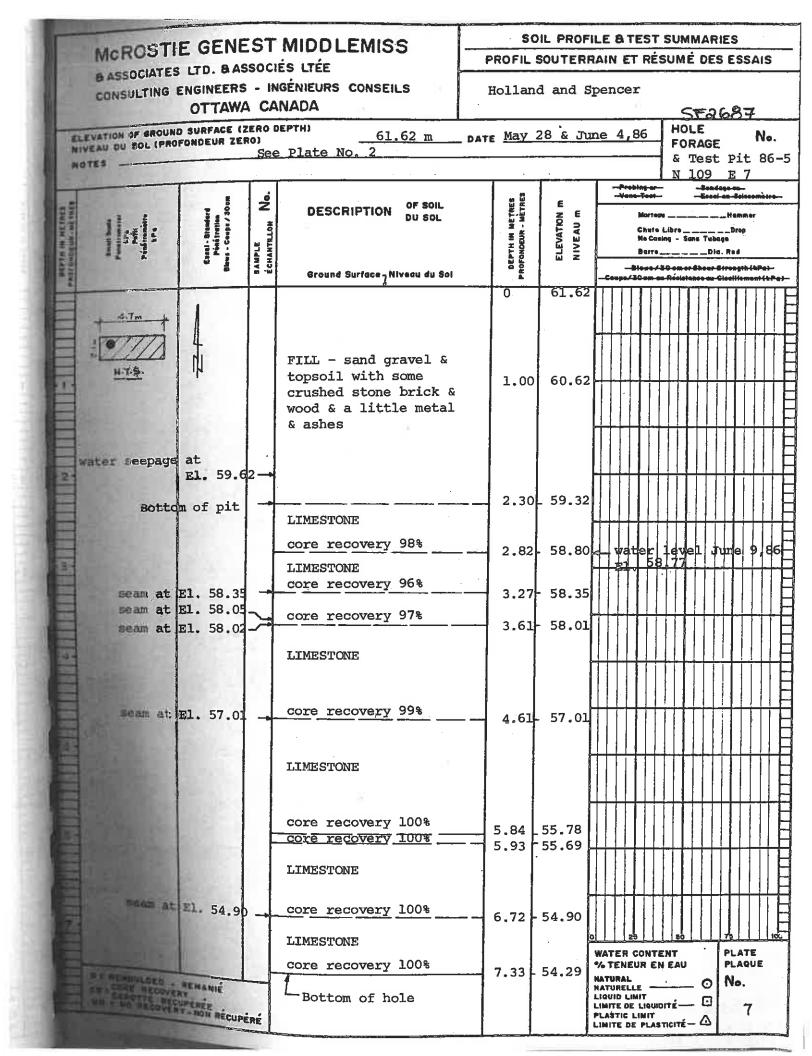

Sample Disposal: Golder will dispose of all uncontaminated soil and/or rock samples 90 days following issue of this report or, upon written request of the Client, will store uncontaminated samples and materials at the Client's expense. In the event that actual contaminated soils, fills or groundwater are encountered or are inferred to be present, all contaminated samples shall remain the property and responsibility of the Client for proper disposal.


Follow-Up and Construction Services: All details of the design were not known at the time of submission of Golder's report. Golder should be retained to review the final design, project plans and documents prior to construction, to confirm that they are consistent with the intent of Golder's report.

During construction, Golder should be retained to perform sufficient and timely observations of encountered conditions to confirm and document that the subsurface conditions do not materially differ from those interpreted conditions considered in the preparation of Golder's report and to confirm and document that construction activities do not adversely affect the suggestions, recommendations and opinions contained in Golder's report. Adequate field review, observation and testing during construction are necessary for Golder to be able to provide letters of assurance, in accordance with the requirements of many regulatory authorities. In cases where this recommendation is not followed, Golder's responsibility is limited to interpreting accurately the information encountered at the borehole locations, at the time of their initial determination or measurement during the preparation of the Report.

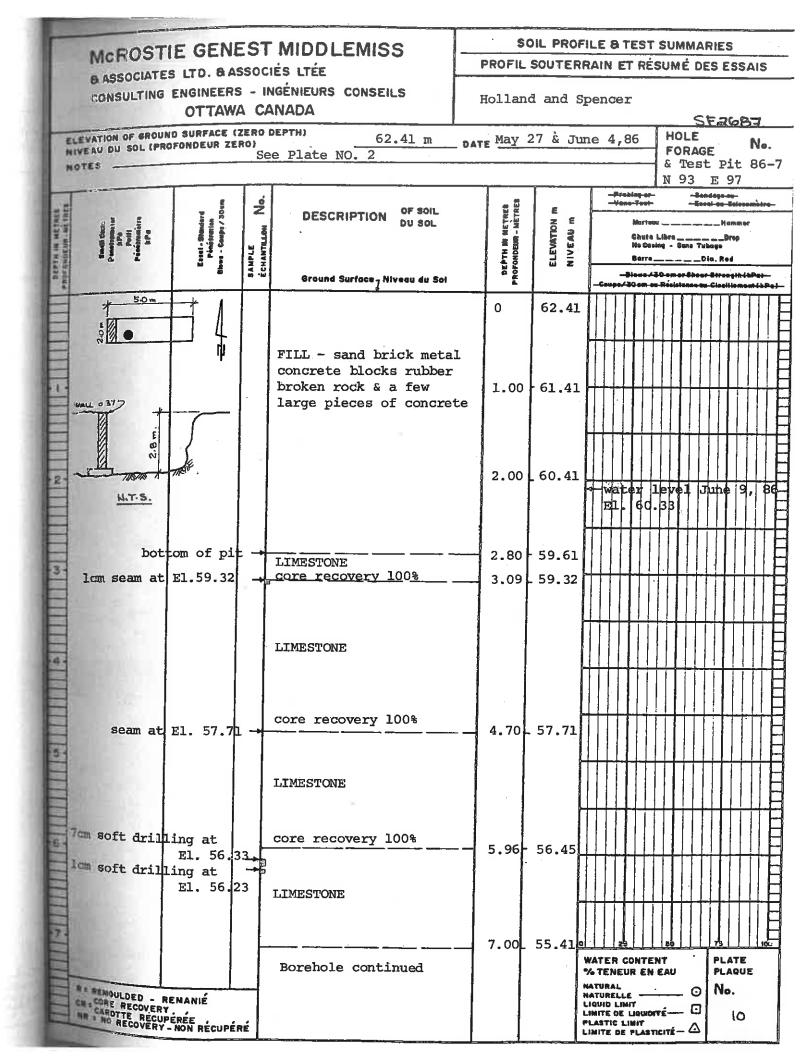
Changed Conditions and Drainage: Where conditions encountered at the site differ significantly from those anticipated in this report, either due to natural variability of subsurface conditions or construction activities, it is a condition of this report that Golder be notified of any changes and be provided with an opportunity to review or revise the recommendations within this report. Recognition of changed soil and rock conditions requires experience and it is recommended that Golder be employed to visit the site with sufficient frequency to detect if conditions have changed significantly.

Drainage of subsurface water is commonly required either for temporary or permanent installations for the project. Improper design or construction of drainage or dewatering can have serious consequences. Golder takes no responsibility for the effects of drainage unless specifically involved in the detailed design and construction monitoring of the system.



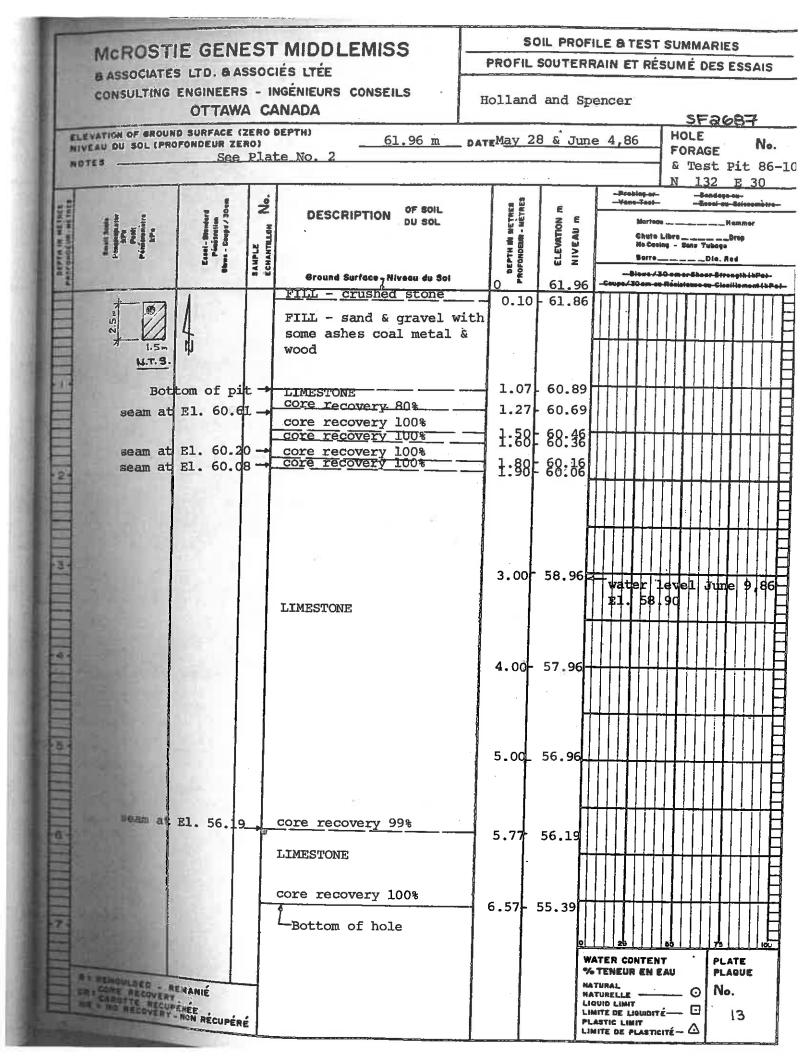
APPENDIX A

Borehole and Test Pit Records Previous Investigation (McRostie Genest Middlemiss & Associates Ltd., Report No. SF-2687)

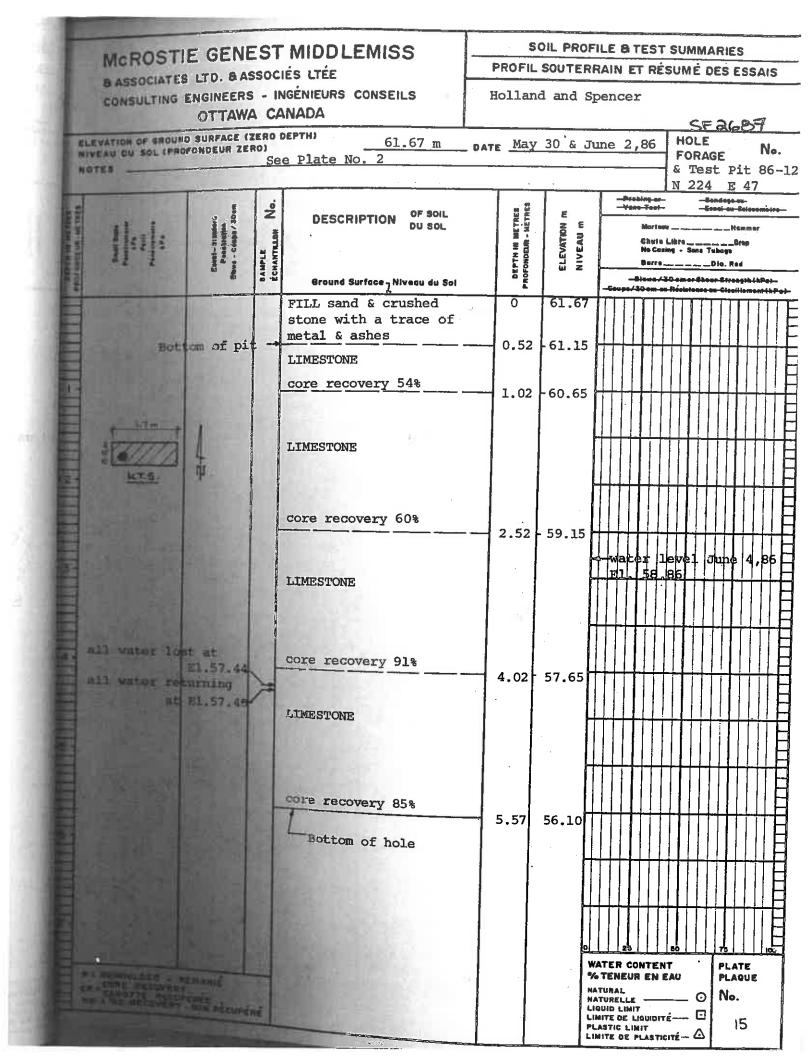

	McROSTI	SOIL PROFILE & TEST SUMMARIES												
			IÉS LTÉE NGÉNIEURS CONSEILS	PROFIL SOUTERRAIN ET RÉSUMÉ DES ESSAIS										
	CONSULTING	OTTAWA			Н	lollan	d and s	pencer	SE	7825				
E	LEVATION OF GROUN	FONDEUR ZEI	RO)	<u>_62.03</u> m	DATI	May	26 & J1	ne 2,86	HOLE		0.			
	OTES	Se	e Pl	ate No. 2						t Pit 8				
							-	Presing-or-	30	<u>N 60 E 30</u>				
NETNES L-NETNE		ndard Non • / 30e	l °	DESCRIPTION OF SOIL DU SOL		NETRES R - METRES	EZE		······	Hemmor				
TH IN N	Real for Sector	Essel - Silandord Pónötrallon Dhes - Conps / 30cm	SAMPLE Échamtalon			- United	ELEVATION		Chute Libre Drep No Casing - Bana Tubago					
DEPTH IN METRES			SAMPLE ÉCHANTI	Ground Surface , Niveau du Sai		C DEFTH IN D		-Blows /	Dia. Rad / 30 emor Shear Strength (hBa). na Revisionee on Cleallioment (hBa)					
	* 2.0 m /						62.03		- Resistance of	-Clealillement (
H	1 177			FILL - sand gravel meta	al		ļ							
	N.S.	4		wood concrete & brick							TE			
	*	ιμ				1.00	61.03				ĿĦ			
	water a	El. 60.	73 →						level ;	June 4,	B6 🗄			
						1		ET' 60	.83		48			
			- 4											
-2-	Bott	m of pit	_			2.20	- 59.83				$+ \square$			
E				LIMESTONE		2.20	JJ.03				1			
											TH			
-3-			⊦	core recovery 98%		2.95	59.08				ЦЩ			
				LIMESTONE		1	• .				日			
E														
-				core recovery 99%		3.94	58.09				H			
E	1.00		1	LIMESTONE		3.94	56.05				Ϊ			
E				core recovery 100%		4.36	57.67							
E				LIMESTONE										
						i					E			
B	8.0													
		1		core recovery 100%		5.64	56.39		┽╂┼┼┧	┿╊┿┽┥				
6 -											E			
				LIMESTONE							日			
			ĺ				ļ				Ħ			
				core recovery 100%							Ħ			
			F	LIMESTONE	1	6.91	55.12			73				
-				L Bottom of hole		7.20	54.93	WATER CONTE: % TENEUR EN		PLATE PLAQUE	ľ			
	RENOULDED - RE CORE RECOVERY	MANIÉ		Second of WAR				NATURELLE	0 vi 0	No.				
	CAROTTE RECUPERY	NON RECUPER	é					PLASTIC LIMIT LIMITE DE PLAST		6	ļ			

ľ

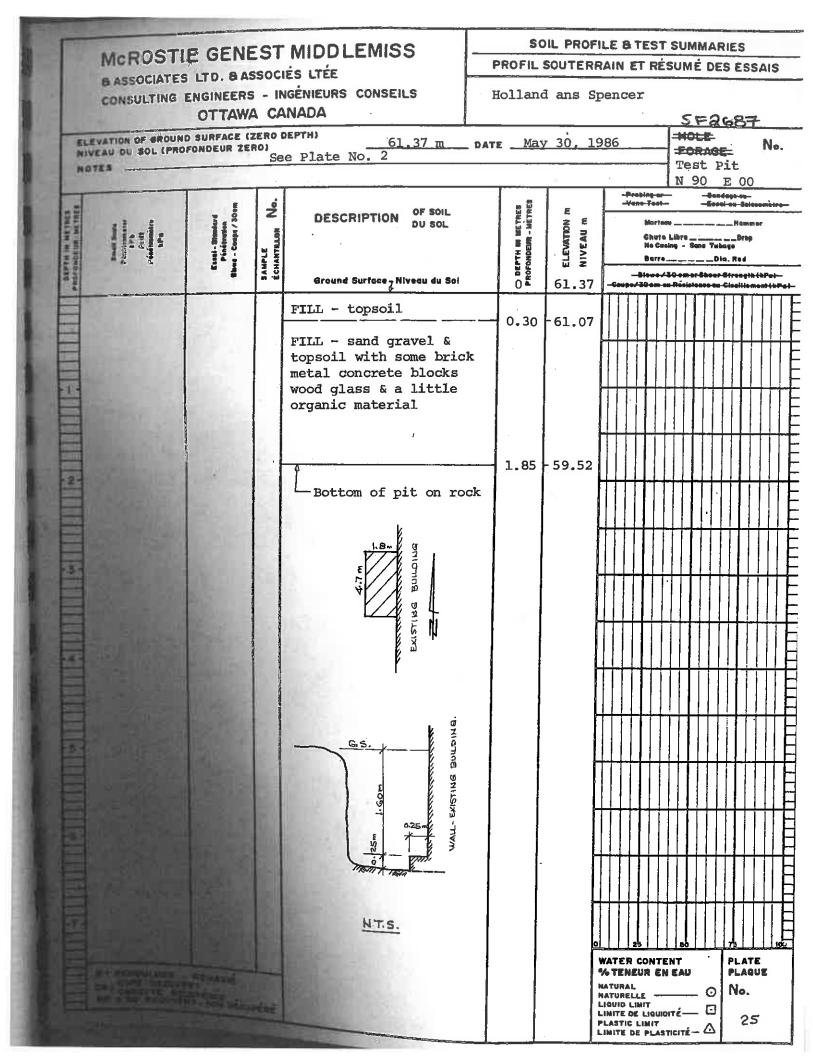



	A APPROCIATES	LTD. 8 AS	SOCI	MIDDLEMISS	SOIL PROFILE & TEST SUMMARIES PROFIL SOUTERRAIN ET RÉSUMÉ DES ESSAIS									
100	CONSULTING E	NGINEERS OTTAWA	- IN - CA	IGENIEURS CONSEILS	Holl	and	l and S <u>r</u>	pencer SF2687						
NIV	TES	SURFACE (2 ONDEUR ZEI	1 4 8	ee Plate No. 2	DATE M	ay	27 & Ju		N₀. 86-					
antique actives		Ecost - Himmourd Pénitrostan Bhus - Coupe / 30 cm	sample échantrlon No.	DESCRIPTION OF SOL	EPTH IN METRES	PROFONDEUR - METRES	ELEVATION M NIVEAU M	Probing ar Sendaga eu Veno Test Esaci eu Scisso MarteauHennior Chuta Libre Brep Ho Casing - Suns Tubago Barre Dia, Red	r Sundaga ou 1 Esadi ou Scissemetra ousHammer ra LibraBrap asing - Suns Tubage					
COR.	11 mile 15	P	<u>9</u> .9	Bround Surface - Nivacu du Sol		_		Biore / 30 cm or Skor Strangth (k Coops/30 cm ou Résistance un Cisciliertes						
				FILL - sand gravel ashes brick wood and boulders up to 0.60 m dia.	0		62.21		ve.					
	Botto	m of git		LIMESTONE	2.	40	59.81							
			a ta na sala sa	core recovery 97%	3.8	0	58.41							
	¥76			CORE recovery 98%	5.3	2	56.89							
intransmitter		change and advant	-	COTE RECOVERY 100% LIMESTONE COTE RECOVERY 100% Bottom of hole	6.8		54.86	ATURAL ATURA ATURAL ATURA AT						

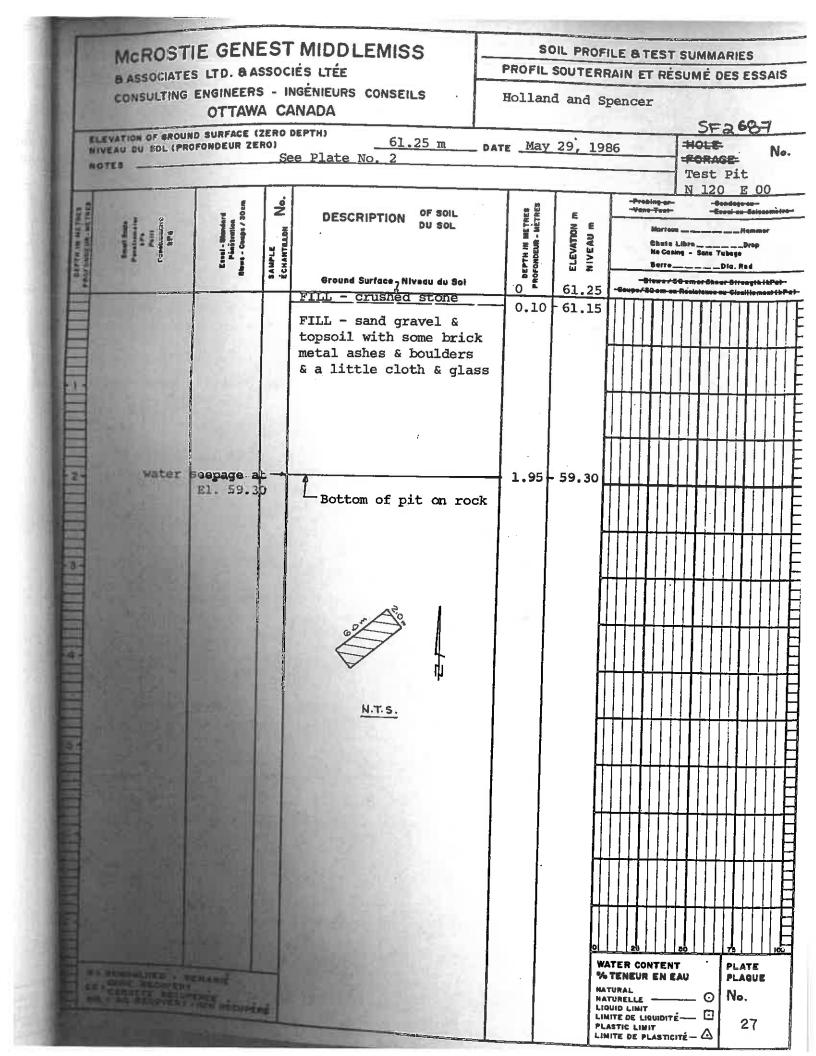
MCROSTIE GENEST MIDDLEMISS						SOIL PROFILE & TEST SUMMARIES PROFIL SOUTERRAIN ET RÉSUMÉ DES ESSA									SAI	IS	
BASSOCIATES LTD. BASSOCIES LTEE CONSULTING ENGINEERS - INGÉNIEURS CONSEILS						Holland and Spencer						182 II.					
OTTAWA CANADA								_					SF	X	<u>28</u> -	7	
NIV	TATION OF GROUND EAU DU SOL (PROP TEB	DATE May 27 & June 4,86 FORAGE							GE	Pit 86-							
T			No.						 ¥e	ns-Ti					an Bai		-
CUR-HAYNE	1611:	Gatti-Brandara Pénistrájian Bitra - Coupa / 30 a	NOT	DESCRIPTION OF SOIL DU SOL		DEPTH IN METRES PROFONDEUR - METRES	ELEVATION m NIVEAU m			Ch No	ute I Cesi	lbra. Ng - I	Sane 1	Tubu			
	*1 2	3	SAMPLE ÉCHANTI	- Ground Surface - Niveou du Sel-	-	DEFI		L		-Bilan	4/3						
		Street Street				7.00	55.41	\mathbf{T}	Π				Π	Π	TT		Π
				core recovery 99%		7.37	55.04										
	1cm seam at	E1. 54.	9	core recovery 94%		7.83	-54.58										
				- Bottom of hole													
	5 12 2												,				
	Ser Car			1 A													$\frac{1}{1}$
	Sec. 1																
1																	
	1.22																
1	State of			-													
	ALC: Y																
													T				
							F										
							<u>a</u>		2 2	5		66	11	1			ĸ
	I MEANINGES . IN SCALE RECOVERY SCALETE RECOVERY A VIEN RECOVERY	INANIÉ NON RÉCUPÉ	RÉ					WATER CONTENT * TENEUR EN EAU NATURAL NATURAL LIQUID LIMIT LIMITE DE LIQUIDITÉ									

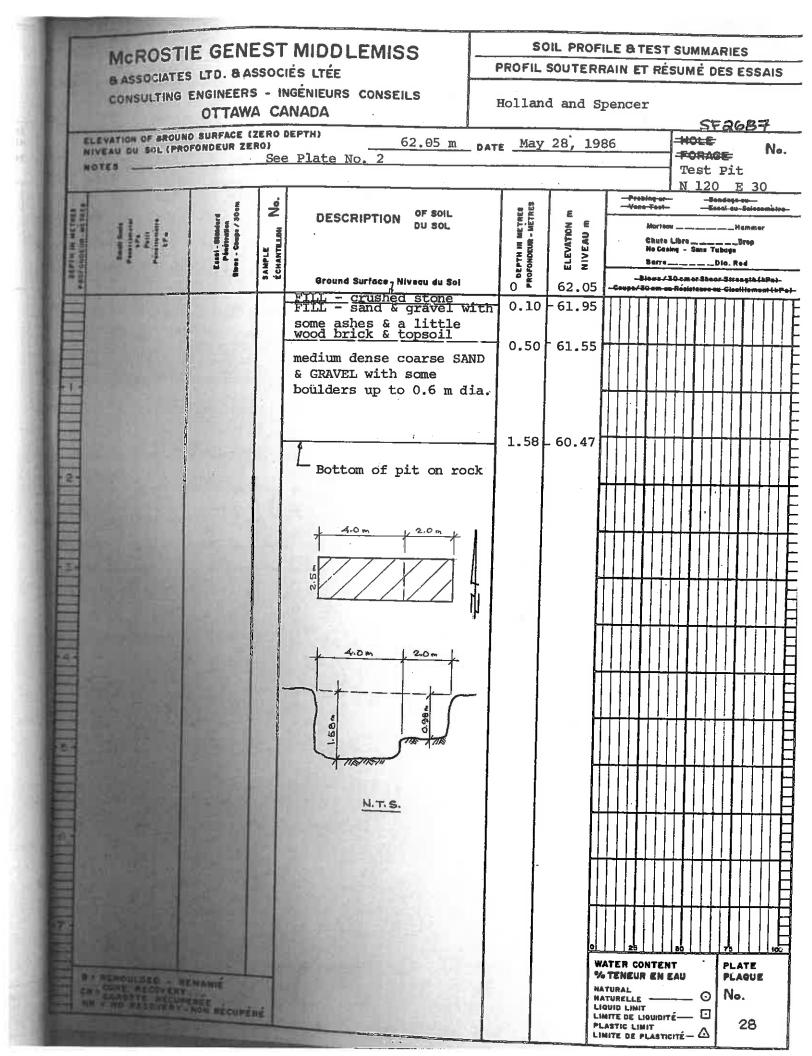


MCROSTIE GENEST MIDDLEMISS											
MCROSTIE GENE	ST MIDULEMISS	PROFIL SOUTERRAIN ET RÉSUMÉ DES ESSAIS									
BASSOCIATES LTD. BAS	- INGÉNIEURS CONSEILS	LINE DES ESSAIS									
CONSULTING ENGINEERS	SF2687										
Click of BROUND SURFACE (ZERO DEPTH) 61.67 m DATE May 27 & June 3,86 HOLE											
I HARASON AND AND AND AND AND AND AND AND AND AN	e Plate No. 2	DATE May 27 & JU		FORAGE Ne.							
NOTES				& Test Pit 86-8 N 107 E 139							
	Z DESCRIPTION OF SOIL	S E E	-Probing or-	Bandaya au Essai-se - Beispomètre							
	DESCRIPTION DU SOL	L META		Hemmer							
	A ANPLE	EPTH BIL METT FONDEUR - MET FONDEUR - MET FONDE - METT FONDE - METT FO		bre Drep - Sans Tubage Dig. Red							
	역 년 1		-Blows/30	emerSheer Strength (hPe)-							
HITS JAN	FILL - crushed stone FILL - fine sand & ash		Coupe/30 am au f	Téolstense au Cisallie ment (LPa)-							
E	FILL - Tine sand & ash	0.40-61.27		ht water level							
	ORGANIC material		E1. 61.								
Bottom of pit	LIMESTONE core recovery 913	0.72 60.95									
		0.97 60.70	╏┥┥╴╴╴╸╸╸╸								
	LIMESTONE										
	core recovery 100%		╏								
	LIMESTONE	1.73-59.94									
	core recovery 100%	2.14-59.53									
	LIMESTONE core recovery 94%										
	COLE LECOVELY 548	2.52_59.15	┝┾╍┿╍┼┛┼┼┼	┿╉┊╍╁┊╌┨╷┾┼┼╋╼╣							
	LIMESTONE										
E											
4											
	<u>core recovery 100%</u>	- 4.14-57.53									
E Alexandre La Contra	LIMESTONE										
31											
Mean at #1.56.38											
	core recovery 99%	5.78 55.89									
	Bottom of hole										
		0	89								
			NATER CONTENT % TENEUR EN E/								
CR. CONC. RECART			O No.								
CAR CARE A SCOVERY MEL			IQUID LIMIT IMITE DE LIQUIDITÉ LASTIC LIMIT	1 1 1 1 1							
			INITE DE PLASTICI	τέ – Δ							



		فالمتحي كالتراجع				
MCROSTIE GENEST	MIDDLEMISS			OFILE & TEST	SUMMARIES	
BARROCIATES LTD. 8 ASSOC					JUME DES ESSAIS	_
CONSULTING ENGINEERS - I	NGENIEURS CONSEILS	Holla	and and	Spencer		1
IN EVALUON OF SEDUND BURFACE (ZERO		May	28 8	June 3,86	SF2687	
NIVEAU DU SOL (PROFONDEUR ZENOT	See Plate No. 2	DATE			FORAGE No. & Test Pit 86-	
NOTES					N 195 E 9	
Z.	OF SOL		E	-Probing-or- -Vono-Tool-	-Sondays-eu-	_
E Sur Sur	DESCRIPTION	DEPTH ON NETRES	NO	E Martec	N	
Tasti - Specie			ELEVATION	Chute No Gai	LibreDrop Jog - Sana Tubaga	4
and a second sec	Bround Surface ₇ Niveau du Sol	0691	L L Z		Dia, Red	
	FILL - crushed stone			3: -Coupe/30em-e	Besistence ou Ciscillement (bPe	₩- -
ASPHALT	FILL - sand & ashes wit	- 0.2		3		E
	some metal wood & piece			┣┽┽┽┥		Ħ
	of electric wire	1				H
					<u>╃╎╉┟┼╞┼╋┼┾┽</u>	H
Bottom of pit -			5 60.5	8		B
all water lost at				┠┽┽┼┼╀┼┤	+++++++++++++++++++++++++++++++++++++++	Ħ
E1.60.08	LIMESTONE					E
					ight water level	H.
				E 1	59.69	Ħ
	core recovery 95%			╺╹╏┥┥┥┥┥┥		B
	······································	2.60	5 59.0	1111111		Ħ
	LIMESTONE			· <mark> </mark>		H
MITS.						Ħ
			1		┟┥┫┝╴┥┥┥┥╴╴╴╴╴	
	core recovery 100%			┠┿┽┼┦┼┼┿		
	· · · · · · · · · · · · · · · · · · ·	7 4.16	57.57	7		
					┥┫╎╎╎╞	╡
	LIMESTONE					Ĩ
	HIMESIONE			┢╈┼┽┽┥	┽╂┼┼┼╎┨╷╷╷╷╴	∄
		1	l I			
	core recovery 93%				┽╉┽┽┿┽╋┿┿┿╋	7
		5.68	56.05			
	LIMESTONE			┣┽┽┼┼┦┼┼┽	┽┫┥┥╿┊┫┥┥╎╿┣╸]
	core recovery 100%	- 6.20	55.53		\ ! !!!!!!!!E	1
	L-Bottom of hole		1	┠┽┼┼╏┼╎┦	┿╋┽┝┼┊╋╎╎╎╽┣╸	
						1
- Marillan I				0 25		1
				WATER CONTEN	1	
RECOVER SECONE				NATURAL	O No.	
NON RÉCUPÉRÉ				LIQUID LIMIT LIMITE DE LIQUIDIT PLASTIC LIMIT	14	Į
Martine Contraction				LIMITE DE PLASTI	cité - 🛆	I




	49 ⁴⁰ 5 ⁴ 1 ⁷³	SOIL PROFILE O TEOR OWNER
MCROSTIE GENE	EST MIDDLEMISS	SOIL PROFILE & TEST SUMMARIES PROFIL SOUTERRAIN ET RÉSUMÉ DES ESSAIS
OTTAW	S - INGÉNIEURS CONSEILS A CANADA	Holland and Spencer
ELEVATION OF CROUND SURFACE (S HIVERU DU SOL (PROFONDEUR ZEI NOTES	See Plate No. 2	DATE May 30 & June 4,86 HOLE FORAGE No. & Test Pit 86-1: % Test Pit 86-1: % No. N 198 E 82 82 13A
A rest of the second se	DESCRIPTION OF SOIL DU SOL	Surger
	FILL - topsoil	0 61.73 -Cauper/30 am as Résidence au Citadifio ment (1)
Bottom of pit	FILL - sand & gravel w a trace of ashes & met	
	LIMESTONE	EL. 60,73
	Core recovery 86%	2.32 59.41
	core recovery 100%	
	Core recovery 61%	4.72-57.01
	Core recovery 94%	5.80 - 55.93
		Q 20 75 100 WATER CONTENT PLATE
N - MEMORIALO I MEMANIÉ CALORAE HEIRO LATANIÉ NA E NO RECOVERSE RECUPÉR	né	% TENEUR EN EAU PLAQUE NATURAL O NATURAL O LIQUID LIMIT I LIMITE DE LIQUIDITÉ I PLASTIC LIMIT I LIMITE DE PLASTICITÉ I

B ASSOCIATES LTD.	A5500	NGENIEURS CONSELES	PROF	IL :	SOUTER	OFILE & TEST RRAIN ET RE			S
OTTA ELEVATION OF BROUND SURFAC HIVEAU DU SOL SPROFONDEUR HOTES	E (ZERO	ANADA DEPTH) <u>61.43 m</u> See Plate No. 2	DATE Ma	y	<u>30, 19</u>	986	Test	GE N	ο,
The is activity and the set local programmer Programmer Control of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of	RAMPLE No.	DESCRIPTION OF SOIL	DEPTH IN INCTREE		ELEVATION M NIVEAU m	Problem Veno Teol Morte Chute No Ce Barre		endago cu- nosi na Seissomo 	ira
	E .	Bround Surface ₇ Niveau du Soi	0		61.43	Biewe-/	20 em er Eko 19 Résistense	e r Strongth LkPe m -Ciscillomont (1	} kPq}
MARCOVERY - NON RECU		FILL - topsoil FILL - sand & gravel wi some topsoil brick & concrete blocks with a little metal ashes & gl Bottom of pit on row	th ass 2.0 ck		-61.13		EAU	PLATE PLAQUE No. 24	

	MCROSTI	E GENE	ST	MIDDLEMISS		S	DIL PROF	LE & TEST		RIES
	- ACCOCIATES	LTD. & AS	SOCI	IES LTEE	PF	ROFIL	SOUTERF	AIN ET RÉ	SUMĖ DE	S ESSAIS
		OTTAWA	CA		He	ollan	d and S	pencer	<u>SF</u>	1687
ELS NIV	CAU OU SOL PROF	SURFACE (ZI		61.91 m e Plate No. 2	DATE	May	26, 198	6	FORAG Test P	
-			No.	<u></u>				-Probing or		daga.au_
Tarrista.	11.1.	Mandar 4 Notion		DESCRIPTION DU SOL		DEPTH M METRES Rofondeur - Métres			M	
Pla as a	11:21:		SAMFLE ÉCHANTILIÓN			PTH IN	ELEVATION NIVEAU m	No Can	Libre ing - Sans Tul	ale
100		- 1	N N N N N N N N	Bround Surface 7 Niveau du Sol		PROFI		Blows/	10 om er Sheer 1 Réciptence av	Strength ikPez Clouillement thf
				FILL - sand & organic material with some ash		0	61.91			
-	water at 1	-1 60 71		brick broken rock & boulders	•					
	sater at t	ST. 00.71		:						
		12.6	·			2.05	59.86			
				Bottom of pit on roo						
	Real Providence			E IST	e e					
				N.T. S.						
		1								
	Sec.					-				
4.4	C. 000 C. 004	NANIÉ NIR NĚCUPĒRI	14				MA NA Lit Lit	ATER CONTEN TENEUR EN I TURAL TURELLE JUID LIMIT ATTE DE LIQUIDIT ASTIC LIMIT ATTE DE PLASTIC	EAU O -é I	PLATE PLAQUE No. 26

-										 .
1	McROSTI	E GENE	:51	MIDDLEMISS	PROFIL	OIL PROF	ILE & TEST	SUMM	ARIES	
5-1		ENGINEERS OTTAW		NGÉNIEURS CONSEILS		d and Sp	RAIN ET RÉ			
ELEV	TION OF GROUNI	SURFACE (2	ERO (БЕРТН) <u>62.24 m</u>	Max	7 26 10	96	SE HOLE	<u>a687</u>	
MIVE			Se	ee Plate No. 2				Test	GE-	No. 20
No.			2°	DESCRIPTION OF SOIL	8 H	ε	-Probing ar-		ondago ou Indiago ou	anii tra-
MOCTO - NE	A PARTY A	Essal - Standard Pônótraitu Bhua - Coupo / 30	SAMPLE Échantil i on	DU SOL	O DEPTH IM METRES PROPONDEUR - METRES	ELEVATION NIVEAU m	Chute No Can	Libre Ing - Sans T	, sipeže	•
			5 AN	Ground Surface ₇ Niveau du Soi	D DEP		-81000.43	lū om er She	an Strength (19e)
-						62.24	-Coupe/30 sm at	Resistance	He Classifians	#157a]-
				FILL - sand & clay with some wood brick & concrete	h					
	water see	page at E1, 60.5	4	ORGANIC material	- 1.70	- 60.54				
			-	1	2.45	- 59.79				
	613			Bottom of pit on rock						
	RE			184						
				\$						
				и <u>ч.т.</u> s.						
	and i									
	Circle 1									
		Brei				0	25	80		
8 1. 85 CR - CG 400 7 1	HOULDED - ACI RE RECOVERY BOTTE RECUPE IO RECEVERT - S	HANIÉ RÉE DN RÉCUPÉRI	-			% NA LIQ LIN PL	NTER CONTEN TENEUR EN E FURAL FURELLE	UA O []	PLATE PLAQUE No. 29	

	MCROSTI	E GENE	EST	MIDDLEMISS -			ILE & TEST		
16		LTD. 8 AS	SSOC	IES LTÉE			RAIN ET RÉ	SUME DE	S ESSAIS
24	CONSULTING E	OTTAW/	5 - 11 4 CA	IGÉNIEURS CONSEILS	Holland	d and S	pencer		
	VATION OF EROUND	SURFACE (ZERO		Masz	30 198	6	HOLE	2687
NIN	EAU DU SOL (PHOI	FONDEUR ZE		e Plate No. 2	ATE May	50, 190		Test	_
NO			1			r	1	N 150	E 00
NT5			Š	DESCRIPTION OF SOIL	RES CTRES	E	-Probing or -Vano Tost	-fee	daga ay- di ay Salapashaira-
A NCT		Escal - Standard Pánásration Blove - Coupe / 30e	HOI	DUSOL	DEPTH HI METRES PROFONDEUR - METRES	ELEVATION NIVEAU m	Chute	Libre	Drep
OHDE	11.1		SAMPLE ÉCHANTIL ion		HL43	ELEVATIO	Barre	D	la. Red
1044		•	<u>.</u>	Ground Surface ₂ Niveau du Sol F1LL - CTUSNed stone		61.74			Strength (hPe) Cleallioment (hPe
				FILL - sand gravel &	0.10	61.64			
				topsoil with some brick			┟┼┼┼┟╽		
				& ashes & a little metal & glass					
1									
				1	1.25	60.49			
				Bottom of pit on rock					
				·					
				A A					
	11631-			h i					
	K Referred			<u>H.T.S.</u>					
	31.5								
	and the second second						┿┼┼┼╏╎╎	┿╍┝╏╎┨	
	al and								
			ě (
	Sec. 1								
				E .		ļ		╎╷╹╵╷╷	╺╈┨╍┝╸┥┥┥
	Arrian 1				1				
					.	ŀ	┼┼┼┼┟┼┼		┼╏┼╎┼
	and the state								
	- 1236					ŀ	╞┾┼┼┟┼		
	AND		-			o	23	80	75 10
			T	24			WATER CONTI % TENEUR EI		PLATE
	A ATARCHINED :	THANK		100 C 100 C 10			NATURAL Naturelle		No.
-1 1	R. C. MO. RECUIRE BY	- Secur	ÉRÉ	The state of the s			LIQUID LIMIT LIMITE DE LIQUIS PLASTIC LIMIT	_	30
		the state	-				LIMITE DE PLAS	TICITÉ - 🛆	

	B ASSOCIATES	LTD. &A	SSOC	MIDDLEMISS	SI PROFIL	OIL PROI	TILE & TEST RAIN ET RÉ	SUMM	ARIES DES ESSAIS	s
ELI	EVATION OF BROUND	OTTAW	A CA	DEPTH) 61.96 m DA		and S		S	Fa687	_
NO	TEA		ž	See Plate No. 2			-Probing as			o.
PER IN METHER	The second secon	Essil - Shoniard Pinitration Bhes - Coups / 30cm	SAMPLE ÉCHANTILLON N	DESCRIPTION OF SOIL DU SOL	TH IN NETRES Noeum - Netres	ELEVATION III NIVEAU III	-Vene-Test- Martes Chute No Cas	Libre	Nammer Drep Tubage	**
Photo		- 1	9AN ÉCH	Ground Surface, Niveau du Soi FILL - Crustied scone	O BEPTH IN A PROFONDEUR	ਛੋ ਡੋ 61.96	-Bierer	30 om or 86	_Dia. Red tar Strength (kRe) ta Ciccli la mont i k	
				FILL - sand & gravel with some wood ashes metal & brick		61.86				T
				rock removed by shovel		-60.96 -60.82				T
2-										
				un an						_
				The second		ŀ				
				<u>N.T.S.</u>	=	F				
			The second							
n - M DR=00 NA -	ANDULOES - BEN ONT RECOVERY AMOUNT RECOVERY	Anië Se nécurén	6			9% NA LIC LIC PL	ATER CONTEN TENEUR EN E TURAL TURELLE	AU () [()	PLATE PLAQUE No. 31	

F	B ASSOCIATE	S LTD. BAS	SOCI	MIDDLEMISS	SO PROFIL S	IL PROFI	LE & TEST	SUMM/	ARIES DES ESSAIS	
		OTTAW	A CA		Holland			SI	=2687	
BUN	EVATION OF EROUN	FONDEUR ZEI	See	61.50 m 0/ Plate No. 2	ATE May	26, 198	6	Tes	t Pit	•
PTH IN METHER Distriction and The h	A LEASE AND A LEAS	Eseti - Standerd Pésősertia Dissa - Coapa / 300m	sample échantillen No.	DESCRIPTION OF SOIL DU SOL	BEPTH IN METRES PROFONDEUR - MÈTRES	ELEVATION m NIVEAU m				
10.00			4 U 8 U	Bround Surface ₇ Niveau du Sot	P P P		-Bloss-A	10-sm or the	er Strength (kPa)	
	ater scepage	at		FILL - topsoil sand gravel bricks & pieces of wood	0	61.50				
2	ater scepag	El. 60.2		ORGANIC material L Bottom of pit on roc	1.60	60.25 59.95				
				S.C.						
				<u>NTTS.</u>						
AND AND REST										<u> </u>
57	REMODULDED - AN CORE ASCONTRY CUADTTE ROCUP - NO REZOVERY -	(Manié Mér nicorén	-			NAT NAT LIQU LIM PLA	TER CONTEN TENEUR EN I URAL UTELLE UID LIMIT ITE DE LIGUIDIT ITE DE PLASTIC	ί Αυ ⊙ έ ⊡	PLATE PLAQUE No. 32	

Γ	McROSTI	E GEN	EST	MIDDLEMISS				LE A TEST			· · · ·
	B ASSOCIATES	LTD. 8A	SSOCI S - IN	IÉS LTÉE IGÉNIEURS CONSEILS		-	and Sp	AIN ET RÉ encer			15
NIV	TATION OF SROUND	D SURFACE (ZERO		DATE	May	29, 19	86	HOLE FORM Test	Pit (Vo.
Fr					Т			Probing or-		0 E 15	
N METRES		East- Standard Pánáireitun Bhus - Coupe / 30m	No. No.	DESCRIPTION DU SOL		O DEPTH IN METRES PROFONDEUR - METRES	ELEVATION M NIVEAU M	Chute		Hammer	• i * • •
NOTE L	41 1		SAMPLE ÉCHANTILLÓN			E PTH	ELEV	Barre,		Dia. Red	
4 0 4			1 · · ·	ALOUND SALIDCA J MIAADA CA 201			61.67	-Biews/3 -Coupe/30cm at		u Cleaillement	
				FILL - crushed stone FILL - topsoil & sand with some broken rock		0.10	61.57				
1.				ashes metal & glass		1.80	60.87				
			·	Bottom of pit on rock	k						
							ĺ				
							F				
				ψ							
				<u>N.T.S.</u>							
						28					
	S.C.							┼┼┽┦╎┼┥			
	re-jobin										
	tin an a			>							
							ļ				
							0	28	50		
H I	ADMOULOED - A CORE RECOVERY CAROTYE RECOVERY	EHANIÉ ERÉE MON RÉCUPÉ	,TE				NA NA Lii Lii Pl	ATER CONTEN TURAL TURELLE TURELLE AUTO LIMIT MITE DE LIQUIDIT ASTIC LIMIT AITE DE PLASTI	EAU © ré E	PLATE PLAQUE No. 33	

		MCROSTI		EST		S	OIL PROF	ILE & TEST	SUMM	ARIES	
		CONSULTING E	OTTAW	S - 11 A C/	NGÉNIEURS CONSEILS			pencer		a687	
1	NIV	EAU DU SOL (PROP	SURFACE (RUI	62.37 m Plate No. 2	DATE May	28, 19	86	HOLE FORM Test	e N GE N Pit	lo.
1000	A IN WETTER	1 62 6	Elasi - Standard Pánětrajion Blava - Caupu / 30om	SAMPLE ÉCHANTELON No.	DESCRIPTION OF SOIL DU SOL	DEPTH IM METRES Rofondeur - METRES	ELEVATION m NIVEAU m	Ghute		80 E 30 Iondage au Innel de Tolscomè Hammor Brop	
	REP 14	+1 2	1×1	SAMPLE ÉCHANTI	Ground Surface ₇ Niveau du Sol	DEPTH Rofowd	NIN	Borre.			
	-				FILL - crushed stone	0	62.37	-Coupe/30 em a	Résistance	au Ciselliement (*Pe)
					FILL - sand gravel & topsoil with some ashes brick broken rock metal & wood Bottom of pit on rock N.T. S.		1 14				
	All a	Charles and a series of the se	n akcuréa	ŧ			944 111 111 111	TURELLE		№. 34	

	BASSOCIATES	LTD. 8 A	SSOC S - II A CA	NGÉNIEURS CONSEILS		SOUTERF	ILE & TEST RAIN ET RÉ encer	SUMĖ D		5
NIV	TES	SURFACE (Fondeur Ze	ROI	CEPTH)61.73 m C ee Plate No. 2	ATE May	<u>30, 198</u>	6	-HOLE FORM Test	Pit No	e .
A DIA ON OF DIA DIA		Essel-Standard Pénétation Blows - Ceaper/30 cm	SAMPLE ÉCHANTULON NO.	DESCRIPTION OF SOIL DU SOL	D DEPTH IN INCTRES	ELEVATION M NIVEAU M	Chuta No Car	-81	Drep ubaye	ita
Part		- <u>f</u>	S AL	Ground Surface , Niveau du Sai	PROF(<u>61.7</u> 3	Biewer	10 em er Eken	u Strength (kPe) • Ciselliement (k	
				FILL - topsoil FILL - fine sand with a little metal & brick Bottom of pit on rock <u>Junces</u> <u>Junces</u>	0.70				PLATE	
282	REMOILER - AF	twanié tvře non něcupé	nê			NA NA Li Li PL	TENEUR EN : TURAL ATURAL QUID LIMIT MITE DE LIQUIDIT ASTIC LIMIT NITE DE PLASTI	6AU O ré D	PLAQUE No. 35	

MCROSTIE GENEST MIDDLEMISS

CONSULTING ENGINEERS - INGENIEURS CONSEILS

BASSOCIATES LTD. BASSOCIES LTEE

SOIL PROFILE & TEST SUMMARIES

PROFIL SOUTERRAIN ET RÉSUME DES ESSAIS

Holland ans Spencer

OTTAWA CANADA SF26B7 ELEVATION OF GROUND SURFACE (ZERO DEPTH) HOLE NIVEAU (NU SOL (PROFONDEUR ZERO) 62.06 m ___ DATE May 29, 1986 No. FORAGE. See Plate No. 2 NOTES Test Pit N 180 E 110 -Brebl -Send å DEPTH IN METRES PROFONDEUR - METRES Mana Tant MC TRUE Essel - Standard Pánátrakian Bibwa - Coups / 30on Sec.1 HUTHER OF SOIL DESCRIPTION ε E DU SOL ELEVATION SAMPLE ÉCHANTILLON Marteau ____Hemmer NIVEAU 263 Chuta Libre No Casing - Sans Tubaya z _Drop Barra____Dia, Red Blows / 30 cm or Shear Strength (bPa)-Ground Surface, Niveau du Sol 0 62.06 430 n Ch FILL - topsoil 0.25 61.81 FILL - fine sand 0.50 -61.56 TOPSOIL 0.58 100se coarse SAND & 61.48 GRAVEL 0.90 - 61.16 medium dense sandy TILL with a few boulders up to 0.45 m dia. water seepage at . EL 59.95 2.30 59.76 -Bottom of pit on rock N.T.S. WATER CONTENT PLATE ST STREET, - STREET, % TENEUR EN EAU PLAQUE NATURAL No. - 0 NATURELLE -LIQUID LIMIT _ 🖸 LIMITE DE LIQUIDITE 36 PLASTIC LIMIT LINITE DE PLASTICITÉ -

MICROSTI			MIDDLEMISS -			ILE & TEST		
CONSULTING E	ENGINEERS	s - IN A CA	IGÉNIEURS CONSEILS	Holland				2687
ELEVATION OF GROUND HIVE AU DU SOL (PROF HOTES) SURFACE (Fondeur Ze	NOT	DEPTH) <u>61.14 m</u> DA	TE May	29, 198	36	-HOLE -FORM Test	No.
	Essel - Standard Péaésesta Bbws - Coops / 30 cm	LLON No.	DESCRIPTION OF SOIL DU SOL	l NETRES R - NETRES	ELEVATION m NIVEAU m	Chate		ndege eu- sel an Seissemètre- Hammer Drie
11.1	Essal-	SAMPLE ÉCHANTILLON	Bround Surface Niveau du Sol	O DEPTH MI	NIVEAU 01.14	Borre Borre	ling - Sane Ty f 30-marSkee	ipaða
			<u>FILL - crushed stone</u> FILL - sand & gravel wit some ashes broken rock brick & metal	- F	- 61.04			
			Bottom of pit on rock	1.00	60.14			
	57	e	1.3m					
			in Q in the second seco					
			<u>ы.т. s.</u>					
		10000						
A + RENFLATED + 1 CA - CONC ALCOVER CA - CONC ALCOVER NN / KO ALCOVER NN / KO ALCOVER	REMARKE ANDE NETWO	tai			9 N/ Li Li	ATER CONTE ATURAL ATURAL ATURAL IQUID LIMIT IMITE DE LIQUID LASTIC LIMIT IMITE DE PLAST	EAU	PLATE PLAQUE No. 37

	MCROSTII B ASSOCIATES	E GENI	EST ssoci	MIDDLEMISS	PR	SO OFIL S	IL PROFI	ILE & TEST RAIN ET RÉ	SUMMA	RIES ES ESSAIS		
	CONSULTING E		s - In A ca	IGÈNIEURS CONSEILS	Но	lland	l and S	pencer		2687		
ELE NIV NOT	ATION OF BROUND AU DU SOL (PROF	SURFACE C	HV1	<u>62.38</u> ee Plate No. 2	DATE	May 2	8, 198	6	Test	HE No.		
CUR METRES	isiii	Essel-Strandord Pénébration Bitens - Coapy / 30cm	SAMPLE ÉCHANTREON NO.	DESCRIPTION OF SOL		DEPTH III HETRES PROFONDEUR - HÉTRES	ELEVATION M NIVEAU M	Chute Ne Car	Libra			
PAGFOND	*t t		SAMPLE Échanti	Ground Surface ₇ Niveau du Sol		PROFON	62.38	-Biene/	30 em or Choe	Dia, Rod Ir Strongth (LPa) 4 Cisalliomaat (LP		
				FILL - topsoil			- 62.08					
				FILL - sand & gravel with some broken rock brick metal wood glass								
				& topsoil								
2		4.				L.80	60,58					
				- Bottom of pit on ro	ck							
				i					┥╽╏╽			
						-'			┼╎╢╎			
4-				N.T.S.								
							ŀ					
							ļ					
				54			ŀ					
	Tex S		1				┣					
									80			
R (2	REMONILIED - A CORE RECOVERY GANGTER MECOVERY	ENAMIÉ MARE - NON RÉCUS	-					WATER CONTE % TENEUR EN NATURAL LIGUID LIMIT LIMITE DE LIGUID PLASTIC LIMIT DIMITE DE PLAST	0			

	S LTD. & A ENGINEERS OTTAW	SSO	NGÉNIEURS CONSEILS	SOIL PROFILE & TEST SUMMARIES PROFIL SOUTERRAIN ET RÉSUMÉ DES ESSA Holland and Spencer SF2687				
NOTES	FONDEUR ZE	RO)	<u>61.73 m</u> Plate No. 2	DATE Ma	<u>y 30, 19</u>	86	Test Pit	
Perfection in any parts provide the angle of the second se	Earal - Annadord Pianitreation Bloos - Compa / 30 cm	SAMPLE ÉCHANTILLON NO.	DESCRIPTION OF SOIL DU SOL Ground Surface 7 Niveau du Soi	O DEPTH IN NETRES PROFONDEUR - NETRES	ELEVATION IN NIVEAU IN	Chute Ne Gas	N 210 E 60 	
		5	FILL - topsoil FILL - till with a trace of brick & metal Bottom of pit on rock N.T.S.	0.47	-61.48 -61.26 -60.87			
A = HEMOULDED - HEMU CB = CORC ARTOVERY DATE OF CONCENT	ARGUPERE				% TER NATUR NATUR LIQUID LIMITE		_ O No.	

8 AS CONS	SOCIATES	NGINEER	SSOC S - II A C/ ZERO	DEPTHI	Hollan	SUMMARIES UMĖ DES ESSAI SF2687	IS		
NOTES _	SOL (PROP		Se	61.82 m DA	TE May	30, 198		Test Pit	le.
REFERENCE ALTERE	Earl - Coopy / 30m	SAMPLE ÉCHANTILION NO.	DESCRIPTION OF SOIL DU SOL	O DEPTH IN METRICS PROFONDEUR - METRICS	ELEVATION M NIVEAU M	Probling-as- Vano-Tays- Marrows Churto Lib Ho Casing Barro Biowo / 200	N 210 E 82 -Bondage-au- Ersel as Balanser Mammer ''sDrop - Sans Tubage Dia. Rod Dia. Rod 		
				FILL - topsoil FILL - medium sand with a piece of concrete pipe & a trace of metal Bottom of pit on rock <u>bottom of pit on rock</u> <u>N.T.S.</u>		- 61.62 60.72			

ſ	B ASSOCIA	TES LTD. 8A	SSOC	MIDDLEMISS	F	SC	UL PROFI	LE & TEST	SUMN SUMÉ	ARIES DES ESSAI	IS	
	CONSULTIN	G ENGINEER	s - II	NGÉNIEURS CONSEILS			and Sp					
NIX	EVATION OF JRO	UND SURFACE (Profondeur Ze	ROJ	рертн) <u>61.71 m</u> e Plate No. 2	DATE	May	30, 1980	5	-NOL	AGE: N	lo.	
H								-Probing of	N23	t Pit 4 E 60		
N METHER	lsils	Beneficial Beneficial Beneficial	Lon No.	DESCRIPTION OF SOIL DU SOL		METRES 1 - METRES	E NOL	-Vine-Test-	rtenHammer			
0127794 10	11	Essti-Bunderd Paniorothin Bans - Coupe / 30	SAMPLE Échamtadh	Ground Surface ₇ Niveau du Soi		O DEPTH IN A	ELEVATION NIVEAU m	Chute Libre Drep No Cauloy - Same Tubege Warre Dig. Red				
Ē	9. 			······································		0 =	61.71	Coupe/30en an	Résistana	eer Strangth (bPe Ter Ciselilement (₩ ₩₽₽₩ -	
				FILL - topsoil & sand with a trace of metal brick & ashes			ļ					
				L Bottom of pit on rock	k	0.75	60.96					
					-							
				<u>N.T.S.</u>								
									┤║╎╎ ┽┨┼┾┾			
*												
											Ħ	
		E VIE	<u>u</u>								H	
				R. A. S. S. S.								
	18.11						┣┿┿		╏		H	
		T the				.		╋╋			Ħ	
							┟╽╽					
200			-				<u>o</u>	25		73 10		
# x 3	COME ARCONE		-				%T	ER CONTENT ENEUR EN EA	U	PLATE PLAQUE No.		
	NO RECOVERY	EMARIE - NON RÉCUPERE					LIQU	RELLE		4.		

F	McROST 6 ASSOCIATE			MIDDLEMISS -	S	SOIL PROFILE & TEST SUMMARIES PROFIL SOUTERRAIN ET RÉSUME DES ESSAIS						
	CONSULTING	ENGINEER: OTTAW	S - II A CA	NGÉNIEURS CONSEILS	Holland and Spencer							
NSA	EVATION OF GROU TEAU OU SOL (PR	ND SURFACE (RO)	62.17 m 0	ATE May	30, 198	6	HOLE FORAGE Test Pit N 235 E	Nø.			
LIN IN METHER		Etail-Shankerd Findination Nives - Coops / 30 am	sample échantilion No.	DESCRIPTION OF SOL	O DEPTH IN METRES PROFONDEUM - METRES	ELEVATION M Niveau m		- Bandana	soomètre			
PASSFUL			SAMPLE Échanti	Ground Surface 7 Nivecu du Sol	O DEPT	∃ ¥ 62.17	Berre_	— Dia. Red 10 em er Skeur Strangel Rösistunge av Gleviller				
				FILL - topsoil FILL - sand gravel & topsoil with a trace of brick & metal Bottom of pit on rock <u></u> <u>N.T.S.</u>	0.30	61.07						
AL BU	CHURLOND . BE BRE RECOVERT HD RECUVERY	Namié née min mécuréné				% T NATU NATU LIQUI LIMIT PLAS	ER CONTENT ENEUR EN EA RAL RELLE D LIMIT E DE LIQUIDITÉ- TIC LIMIT E DE PLASTICIT	U PLAQUE O No. 0 42				

T		E CENI	12	MIDDLEMISS	· <u>-</u>	S	DIL PROF	ILE & TEST	SUMM	RIFS	-
	B ASSOCIATE	E GENI	SSOC		PF					ES ESSAIS	_
	CONSULTING	ENGINEERS	i – I	IGENIEURS CONSEILS	Ho	llan	d and Sj	pencer			-
		OTTAW				_				2687	_
EN	LEVATION OF SROUN	OFONDEUR ZE	RUJ .	62.11 m	DATE	May	30, 198	36	HOLE		
N	OTES			11400 100 2					Test	Pit E 115	
		E	No.	OFFCOIDTION OF SOIL		5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	E	-Probing or- Vane Test-	-Bondess sp-		
11.00-1	11, 1;	002 / miles		DESCRIPTION DU SOL		O DEPTH IN METRES PROFONDEURI - METRES	ZE		4	Hemmer	
PT 4 18	11.1.	East - the Péadre	SAMPLE Échantrilon			PTH NG ONDEUR	ELEVATION NIVEAU m	Ho Ces	ing - Sans Ti	npade	
PROF			8 A	Ground Surface ₇ Niveau du Sol		PROF	62.11	Biere/i	i Comor Sher	v Strangth (kPq)	_
				FILL - topsoil		0.20	61.91		TTT		E
				FILL - sand & gravel wit some ashes brick wood	5h						
				metal asphalt & glass							
-					1	0.95	61.16		┽┼╂┼┼		
				boulders up to 0.6 m dia in dense sandy TILL	2.						=
E		The state						┼┽┼┼╂┼┼	┼┼╂┼┼		
				1	ï	1.80	60.31				
E		A ROLL		Bottom of pit on rock		[
E							ļ				
											1
-3-	6 7 2 -			2.4m			-	<mark>╎╷╷╷</mark>	┝┼┨┼┼		
										E]
	Sec. 1			i i i i i i i i i i i i i i i i i i i			┢		╺┼╂┼┼╸		1
4.				N.T.S.			=				Į
				<u></u>							ļ
壽	and in which	R. C.			ĺ						
								┼┼┼┠┼┾┼	┼╂╎┼┤	┿╏┽┽┟╡	ļ
	ف الذي ال	100	1								
	Astron.	Sec.					ŀ	┦╎┥╏┊┊┥	┥╋┊┊┊	┿╂┼┼┼┟╴┣╴┫	
0	South Las										
						-	I				
	613 280	0.01					ļ	<u> </u>			
3-	C. S. Law	Charles -			1						
H		10th					0	ATER CONTEN		73 100	
	TOPE STORE	ENANIE	-					TENEUR EN E	AU	PLATE PLAQUE	
	A CONCEPTOR ACCOVERY	ENCE	N#				N/	QUID LIMIT	0 ; 0	No.	
			-				1 PL	ASTIC LIMIT MITE DE PLASTIC		43	

Holland and Spencer Avenues, Beech Foundry Site, Rock Elevations

McRostie Genest Middlemiss

June 6, 1984

(Report No. SF-2481)

McROS	STIE GEN	VEST	M	IDDLEMISS	SOIL PROFILE & TEST SUMMARIES							
& ASSOC	IATES LTD	. & .	ASSO	CIÉS LTÉE	PRC	FIL SOL	JTERRAIN ET F	RÉSUMÉ	DES ESS	AIS		
CONSUL				NGÉNIEURS CONSEILS			SPENCER	57.				
FLEVATI		-		ANADA	_				SF 248	31		
NIVEAU D	U SOL (PRO	FOND	EUR	CE (ZERO DEPTH) 20. ZERO)			DATE MAY 16		HOLE-	No		
GYROSCO	E BLDG	AT	Seen	C CITY OF ATTAWA PLATE ON A	KDA.	LE ISA	Y AICER		TEST. PIT			
S. T.		Essai - Standard Pepetration	No.	DUG BY TRACE MOUNTED SHOWE DESCRIPTION OF SOIL DU SOL	10.0		-PROBING OR	E6:	SAL AU MOU	LINE		
Compressive Strength K.S.F. Résistance à la Compression K/Pd.2	Small Scale Penetrometer K.S.F. Petit K/Pd.2	- Star	illon		Depth in Fe Profondeur - F	E levation Niveau	MARTEAUHA CHUTE LIBRE		NO CASIN SANS TUBA			
Stren Ren Kos	Pens K	Essai Pedel	Sample Echantillon	Ground Surface - Niveau du Sot	Depth	ч.й Ш	BLOWS/FOOT OF					
		<u> </u>	wШ		0	205.2		CISAILL	MCE AU. *	/ • •••		
				- FILL-								
			-			-						
				SAND, GRAVEL	·							
				& ASHES, WITH		_						
				Cara and		-						
				SOME METAL,	1							
			-	WOOD, GLASS,		-						
				& BRICK								
				F BRICK		_						
	GE AT	6			6	- 199.2			,			
Sec. 1	199.2			BOTTOM OF PIT		- / 77,2						
			-	ON ROCK								
			-			-						
	199											
			-									
				S								
			-	. 1/4 /		-						
				8 1 5		_						
				14-								
			-									
544	2.00		-			-						
	1-											
			-				WATER CONTE	NT	PLATE	N_		
							%TENEUR EN EA		- O	- N O.		
CORE REC	ED-RE MANIE OVER Y RECUPEREE						LIQUID LIMIT LIMITE DE LIQUID PLASTIC LIMIT LIMITE DE PLASTI					

MCROSTIE (ENEST	MI	DDLEMISS					ST SUM	
& ASSOCIATES L	TD. & ASS	SOC	IÉS LTEE	PRO	IL SOU	TERRA	IN ET	RÉSUMÉ	DES E
			GÉNIEURS CONSEILS		51	ENCO	e K	57.	
		-	NADA						SFJ
NIVEAU DU SOL (ROFONDEU		E (ZERO DEPTH) 20 ERO) SEE PLATE No.2	3.9		DATE	MAY 10	84	FORA
		-			_		BINC OR		TEST
S.F. Ce d Ze ion Ze ion	2 2 midard tion oups /	No.	DESCRIPTION OF SOIL	Pied	e .	-**	AUH	66	SAI AU NO CA
Compressive Strength K.S.F. Résistence à la Compression K/Pd.2 Saull Scale Penetrometer K.S.F.	Penetrometre K/Pds2 Essai - Syandard Blows/fts-Coups/pd Sample	Echantillon		Depth in Feet Profondeur - Pied	E levation Niveau	CHUTE	LIBRE	DROP BA	RRE
Strer Strer	Esaci Esaci Blows A	Echan	Ground Surface – Niveau du Sol	Profor	u z	-BLOWS	/FOOT O	R SHEAR :	ANCE A
		-	CONCRETTS SLAG	0.2'	203.9		1		
			- FILL-						
			SAND WITH						
			Some CLAY						
-		+	METAL, BRICK		-				
			ASHES & WOOD.						
-		-							<u> </u>
					1000				i v
		T	BOTTOM OF PIT	-5	198.9				+
			ON ROCK						-
古新市 流行主									
-		-							
			in 1						
			∇ / λ_2						
		1	Ko'						
-		_	-NI-		.				
-		-		-					
		-							
]							
		_		~					
						%TENE	R CONTI	ENT AU	P
R = RE MOULDED-RE MAN						NATURA NATURE			-0
CORE RECOVERY		1				LIMITE I PLASTIC LIMITE I	DE LIQUIC	лте	

10.0 - 84					1			
MCRU & ASSOC	State of the second	ATES LTD.		IDDLEMISS	PRO		PROFILE & TEST SUM JTERRAIN ET RÉSUMÉ	
CONSUL		ING ENGINE	ERS – I	NGÉNIEURS CONSEILS			NCER ST.	
ELEVATI	ELEVATION	OTTAW		ANADA CE (ZERO DEPTH)	07.5	<u></u>	11001	SF2481
NIVEAU I	NIVEAU DU			CE (ZERO DEPTH) 20 ZERO) SEE PLATE No.2	22.0		DATE MAY 16, 1984	I OKAGE II
			2		1	1	PROBING-OR-	TEST PIT 3
r Coulors of Coulors o	Compressive Strength K.S.F. Résistance à le Compression S-oll Scolo	Panetro Scere Pertrometer R.S.F. Pertro K/Pd.2 Essai-Stondard	HCoups/p	DESCRIPTION OF SOIL DU SOL	Depth in Feet Profondeur - Pied	Elevation Niveau	WARTEAUHAMMER CHUTE LIBREDROP	SAL AU MOULINET
1º Con See 2000	Streng Streng Rési Rési		Blows/ttC Sample Echantillon	Ground Surface – Niveau du S	Dept	₽ Z W	BLOWS/FOOT OR SHEAR	
				CONCRETE SLAB		203.3	CISATE	EEMENT
				-FILL- SAND & GRAVEL WITH SOME WOOD, M		-		
				BRICK & BROKEN LOCK	1.5	- 202.0		
				DENSE				
	-			SANDY TILL		-		
								1 •
					50	- 197.7		
				BOTTOM OF PIT	1	1 2 1 - 1		
						_		
				ies /		-		
				- 25-	-	-		
			-			-		
	T					-		
	-							
1						- 0	WATER CONTENT %TENEUR EN EAU NATURELLE	
Revou	R TRE MOULDED						LIQUID LIMIT LIMITE DE LIQUIDITÉ PLASTIC LIMIT LIMITE DE PLASTICITÉ	

McRO	MCROSTIE GENES	ST MIDDLEMISS	SOIL	PROFILE & TEST SUM	MARIES
& ASSOC	& ASSOCIATES LTD. 8		PROFIL SO	UTERRAIN ET RÉSUMÉ	DES ESSAIS
CONSUL.		ERS – INGÉNIEURS CONSEILS	5,	PENCER ST.	
ELEVAT		A CANADA			SF2481
NIVEAU	NIVEAU DU SOL (PROFOI	SURFACE (ZERO DEPTH) 2 NDEUR ZERO) SEE PLATE No.2	:04,1	-DATE MAY 16, 1984	HOLE No.
					TEST PIT 4
le Combuesion Bésterand g Bisadigit K12-1-1- Coublestore	Compressive Strength K.S.F. Résistence à K/Pd.2 Small Scale Panétromètre K.S.F. Petit Penétromètre K./Pd.2 Esgi - Standard	DESCRIPTION OF SOIL DU SOL united and Surface Niveau du So	Depth in Feet Profondeur - Pied Elevation Niveau	MARTEAUHAMMER CHUTELIBREDROP	SONDAGE OU GAI AU MOULINET NO CASING SANS TUBAGE ARREDIA. ROD TRENGTH K.S.F. ANCE AUCK/PD.2 STRENT-
		CONCRETE SLAB	0 204.1		
		-FILL- SAND & GRAVEL WITH SOME META ASHES, WOOD, & BRICK, WITH A FEW BOULDER UP TO 24" & BOTTOM OF PIT ON ROCK	84,		
оман::В 1 3002 10 ак≠ЯС	R TRE MOULDED-RE MANIE CONE RECOVER Y CR TAR OTTE RECUPEREE			WATER CONTENT %TENEUR EN EAU NATURELLE LIQUID LIMIT LIMITE DE LIQUIDITÉ MITE DE PLASTICITÉ	PLATE PLAQUE 00

MeROS	M-00		NEO	-		-				_		
READ & ASSOC					IDDLEMISS	PRO			E & TE			5416
CONSUL					NGÉNIEURS CONSEILS							JAIJ
1707-A-1200 - 200					ANADA				ER S		SF2	481
ELEVATH HIVEAU 0 NOTES	ELEVAT	ON OF GROUDU SOL (PRO	UND S	URFA	CE (ZERO DEPTH) 20	01.5		DATE	MAY 16	, 1984	HOLE No.	
	NOTES			.5.	EE PLATE No.2	· · · · · · · · · · · · · · · · · · ·					TEST	
Connection Series are by Connection of Connection of Connection of Connection	Compressive Strength K.S.F. Résistance à la Compression K/P4.2	Small Scale Penetrometer K.S.F. Pénétromètre K / Pu 2	Essai - Standard Pepetration Blows/ft-Coups/pd	Sample Echantillon No.	DESCRIPTION OF SOIL DU SOL	h in Feet deur - Pied	E levation Niveau	MARTE	NE TEST			ING IAGE DIA. ROD
2 2 2 2	Stree C. Stree	S C C	E ss Blows	Sampl	Ground Surface 🕫 Niveau du Sol	Depth in F Profondeur	<u> </u>	4	VFOOT-OR	SHEAR S	HRENOTH	K.S.F.
					ASPHALT -FILL-	10	201.5 201.2	1		CINATER		
	-			-	SAND & GRAVEL		_					
					TOPSOIL	-1.5	2090					
						- 2'	. 199.5					
4	-			-	DENSE							
					SANDY TILL							
				-								
100	-				WITH SOME							
					Boulders up To 18" &							
	+			-	70 18 2							
_				Ī	BOTTOM OF PIT	5.5	195.0					
					ON ROCK							
	+			-								
				1	6 1		ŀ					
-	-			-			-					
					5			· .				
2				-								
	-			-		-						
				1		F	-					
				_								
									CONTEN	T J	PLAT	E 10.
R SHELL	R TREMOULDE CORE RECO CR TAR OTTE R							IATURAL IATUREL IQUID LI IMITE DI LASTIC	LE MIT E LIQUIDIT LIMIT E PLASTIC	é	0 0 0	

Mursue Law									
McROS	MCROSTIE G		The second se	000			& TEST SU		
& ASSOCI CONSULT	& ASSOCIATES LT		CIÉS LTÉE NGÉNIEURS CONSEILS	PRO	FIL SOL	TERRAIN	ET RÉSUN	E DES ES	SAIS
			ANADA		SP	PENCEI	e 57.		
ELEVATIO			CE (ZERO DEPTH) 20 ZERO)	21				SF24	181
NOTEST	NIVEAU DU SOL (PR	ROFONDEUR	SEE PLATE NO.2			DATE	14 16, 198	FORAG	e_ 10.
1				1	1	-2000	ING OR	TEST P	-
KAbera Biga pombinasion Biga pombinasion Standap kra-k-	Compressive Srength K.S.F. Srength K.S.F. Résistance à I.a Compression K./Pd.2 Small Scale Penstromète K.S.F. Pénétomètre	K/Pd.2 Essa:-Standard Blows/H:-Coups/pd Sample Echantillon No.	DESCRIPTION OF SOIL	Depth in Feet Profendeur - Pied	. 5 .	VANE		NO CASI SANS TUB	ULINET
KAb Could Selete	mpres mpres K/Pc K.S. Pet Pet	K / Pd Essai - St Pagetro Blows/ttC Sample Echantillon		th in ndeur	E levetion Niveau	CHUTEL	BREDROP	BARRED	NA. ROD
ENSO	Star of the start	Essai Essai Blows/ Sample Echanti	Ground Surface 7 Niveau du So		w -	OUTS/P	HED OU RESIL	A STRENGTH	K.S.F . K/PD.2
			CONCRETE SLAB	-02	203.1 202.9				9 9.9
			-FILL-						
			SAND & GRAVEL						
	+	-	WITH SONIE METRO		-			_	
			E WOOD, E A TRAC						
1	-		OF BRICK & TORSOIL						
1			BOTTOM OF PIT	3.6	-199.5				
			ON ROCK						
		_							
		-			-				
			. 1						
			ا ا						
			144 4						
			-14-		Ĩ			1	
	-	-							
		-			ŀ				
		-			ŀ			+	
	-						ľ		
					Ī				
-					Ļ				
					9	WATER C	ONTENT EN EAU	PLATE	E No.
NON 3 152 19	R =RE MOULDED-RE MANIE				11	ATURAL		-0	
	CR CAR OFTE RECUPEREE					INITE DE L LASTIC LI	IQUIDITE		

			-										
McR0S	McROSTIE	GENEST	M	IDDI FMISS	SOIL PROFILE & TEST SUMMARIES								
& ASSOCI	& ASSOCIATES				PROFIL SOUTERRAIN ET RÉSUMÉ DES ESSAIS								
CONSUL1				GÉNIEURS CONSEILS									
		TTAWA				SK	ENC	ER	57.				
ELEVATIO											2481		
NIVEAU DI				E (ZERO DEPTH) 2 ERO) SEE PLATE No.2			DATE-	MAY 16	1984	HOLI	OE- No.		
	NOT ES		TEST	AT 7									
		s /pd	No.	DECODUCTION OF SOIL				BINC OR		SONDA	CE OU-		
KNATS to controver guaranty (*27) controver	Compressive Strength K.S.F. Résistance à la Compression K/Pd.2 Small Scale Penetrometer K.S.F.	Penéremère K/Pd_2 Essuis Standard Blows/At-Coups/p	12	DESCRIPTION OF SOIL DU SOL	Feet Pied	6 7	MARTE	AUHA	MMER	NO C.	UBAGE		
KVE Combo Lot in in Lot in in Lot in in	Mpres public for the second se	K/P	le tri lio		Depth in Fe Profondeur - F	E levation Nivequ					DIA. ROD		
10 at 10	Strer Strer	Ess Bows	Ground Surface B Niveau du So			<u> </u>		PIED OU					
			01 1	CONCRETE SLAB	0.3	2038		1	USATE				
				-FILL-	10.3	- 203.3							
	1		-	pro y la la									
a de la compañía de l				SAND, GRAVEL,									
	-		-	& BROKEN ROCK		-							
	-		-	WITH A LITTLE	7	-							
lui lui			1312	BRICK & METAL									
	SLIGHT WATE	ER	-	DECEMPT		-				_			
	SBEPAGE EL. M		2	D AF DIT	4.4	- 199.4				÷ •			
		9.4		BOTTOM OF PIT ON ROCK	/	-							
				ON ROCF									
			_			_							
							L						
				6. 1		-		~					
				-0/1 4	_	—							
		0124	5	4- N	<u>l</u> -								
	Bargh Star		-										
						-							
			-			-							
1													
			-			-					+		
						-	WATE		NT	1			
							%TENE	R CONTE UR EN EA	U	P	LATE O.		
J	R REMOULDED-REMA						NATURA NATURE			-0			
ICIUCM 2月1日日 2月月日日日 1月月日日日	CRE RECOVER Y						LIMITE	DE LIQUID		- <u>A</u>			
							and the second s						

			_											
209 July					IDDLEMISS	SOIL PROFILE & TEST SUMMARIES								
& ASSOC		IATES LTD				PROFIL SOUTERRAIN ET RÉSUMÉ DES ESSAIS								
CONSULT	CONSUL				NGÉNIEURS CONSEILS	SPENCER ST.								
REVATI	EL EVATU				NADA						SF2			
NIVEAU 0		OU SOL (PRO	FOND	EUR 2	CE (ZERO DEPTH) ZO ZERO) SEE PLATE No.2	3.5		DATE	1AY 16	1984	HOLE FORA			
NOTES	NOTES			No.	DEE MERIE NO'Z	ĩ					16571	_		
No. 2 - 1 - 2 - 1 - 2 - 1 - 2 - 1 - 2 - 1 - 2 - 1 - 2 - 1 - 2 - 1 - 2 - 1 - 2 - 1 - 2 - 1 - 2 - 2	Compressive Strength K.S.F. Résistance à le Compression K/Pd.2	Compression Strength K.S.F. Résistonce à la Compression K/Pd.2 Perti Perti Perti Perti Perti K/Pd.2			DESCRIPTION OF SOIL DU SOL	Depth in Feet Profondeur - Pied	E levation Niveau	WARTEAUHAMMER			SONDAGE OU			
ra Countrie Berteration Enteretto Countrie	Compr hrengt Résis K/	Essai - Standard Penetration Blows/ftCoups/pd	Sample Echantillon		0epth ofond	Elev	1	FOOT OR	SHEAR S	TRENST	H K.S.F.			
2 - W			8	м С С С	Ground Surface 7 Niveau du So CONCRETE SLAB	10	203.5	-COUFS/	TIED OU	-CISAILL		- K/PB. 2		
					-F1LL-	-0.3	- 203.2							
	F			-	SAND, GRAVEL,		-							
1					& BROKEN ROCK									
	Ī			-	WITH SOME META	2	-							
1 - 1			6.5		& BRICK, & ATRA	1	_							
					OF WOOD									
SUGHT	-			-		7 4	- 199.5							
56672				22	BOTTOMOFPIT ON ROCK						ş. •			
	-			-			_							
	-						-							
							_							
	-						-							
				-	20'		-							
					· · · / /////	.								
	-	1		-	N		-							
					ľ					ŀ				
							-							
	-						-							
		4								T				
	-			-	-		-							
	-			-				WATER	CONTE			ATE M		
	Solls The							WATER %TENEU NATURAL			- ()	AQUE O.		
Restourn		ED-RE MANIE									- 🖸			
DAH BADO BAYNG BU 30 PRD	CR TAR OTTE	RECUPEREE						PLASTIC LIMITE D	E PLASTI	CITÉ	Δ			

12095M	McROST	IF GFN	IFST	M	IDDLEMISS		SOIL F	ROFILE &	TEST SUM	UMMARIES						
& ASSERT						PROFIL SOUTERRAIN ET RÉSUMÉ DES ESSAIS										
CONSULTI	CONSULTING ENGINEERS - INGÉNIEURS CONSEILS SPENCER ST.															
		OTT	AWA	C	NADA		01			SF	2481					
ELEVATION NVBAU DU	ELEVATION NIVEAU DU	SOL (PRO	ND SL	IRFAC	CE (ZERO DEPTH) 20	0.50		DATE MAY	16, 1984	HOLE	ee No.					
NOTES	NOTES				SEE PLATE No.2						PIT 9					
Barina			ard a /pd	No.	DESODUCTION OF SOIL			PROBINC	-SONDA							
all and the second	Compressive Strength K.S.F. Résistance à la Compression K/Pd.2	Penetrometer K.S.F. Petit K/Pd.2	Essai - Standard Penetration Blows/ftCoups/pd		DESCRIPTION OF SOIL DU SOL	n Feet ur-Pied	tion Adu	MARTEAU	-HAMMER	NO CA	SING					
La Louis a	Compressive trength K.S. Résistance a Compressi Small Scalt	K/F	Pene Pene	Sample Echantillon		Depth in F Profondeur	É levation Niveau		EDROP BA							
10,00,00	UFA - N	α α	B lov	Sample Echanti				COUPS/PIED	OU RESIST	ANCE A	* */PD.2 -					
					CONCRETE SLAB	0,2	202.8									
	-			_	-FILL-		-									
					SAND & GRAVEL											
	-				WITH SOME BRICK	5	-									
	-				BROKEN ROCK,		-									
				27	METAL, WOOD, \$											
Trenate	-			-	TOPSOIL		-			· ·						
10000						47	198.3			1 .						
-	-			1	BOTTOM OF PIT		-									
					ON ROCK											
				1			-				1					
	-															
				-	6 1											
1																
	-															
1					-N-											
		1405		-												
				1												
				_												
				-						·						
				-				WATER CON		P						
								NATURAL NATURELLE		-0	LAQUE 0.					
Золион за≎ Fi рэдя 3803 а-зтло ва 71503	R TRE MOULDED	ARE MANIE						LIQUID LIMIT LIMITE DE LIC PLASTIC LIMIT LIMITE DE PL	UIDITÉ	- 🖸 📔						

1790544											
HCHUSTI E ASSOCIAL	MCROSTIE GEI			SOIL PROFILE & TEST SUMMARIES PROFIL SOUTERRAIN ET RÉSUMÉ DES ESSAIS							
CONSULTIN	& ASSOCIATES LTE		CIES LTEE								
	OTT.		ANADA		5	PENCER	57.				
NOLTAVE			CE (ZERO DEPTH) 20 ZERO)	14.9	SF2481						
INTERN DUT	NOTES		SEE PLATE NO.2			DATE MAY 16	1764	FORAGE NO.			
				1) 		TEST PIT 10				
Scele Prof. Prof.	Compressive rength K.S.F. Kesistance à Compression Small Scale Penetrometer K.S.F. Petit	Essan Standard Essan Standard Blows MtCeups /pd Sample Echantillon No.	DESCRIPTION OF SOIL	Piet Biet	E	TROBING OR	E55	SONDAGE OU-			
gurell 2cele K/bq's Couloressi gestatores seudur (c's	Compressive Strength K.S.F. Résistance à la Compression K/Pd.2 Small Scale Penetrometer K.S.F. Pén étromète	Essa: - Sto Essa: - Sto Blows/ftCo Sample Echantillon		Depth in Feet Profondeur - Pied	Elevation Niveau	MARTEAUHA CHUTE LIBRE	NO CASING SANS TUBAGE RREDIA. ROI				
2 m B	Pen	Essai Blows/ Sample Echanti	Ground Surface Z Niveau du So			COUPS/PIED-OU	RÉGISTA	TRENSTH K.S.P.			
			CONCRETE SLAB	0.3	204.9		CISAILLI				
1 1			-FILL-		24.6						
			SAND, GRAVEL,		-						
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	36 65	& BROKEN ROCK								
	al and a s		WITH SOME BER								
1			METAL & WOOD		_						
1	and a starter	レート	MEIAL & WOS								
		-	TOPSOIL	1 1	201.0						
				-4.3	200.6		,	j •			
			DENSE		-						
		14									
		4 51	SANDY TILL		-						
1											
			2.4		197.4						
-			BOTTOM OF PIT	-7.5	191.4						
1			ON ROCK								
+											
The second se			Λ		.						
			17' 5.								
1		-	F 4		ŀ						
-			M								
					ŀ						
1											
				[Γ						
-					Ļ						
						WATER CONTEN	IT U	PLATE NO.			
R.MOMPHER	R =RE MOULDED-RE MANIE				11	NATURAL NATURELLE -IQUID LIMIT -IMITE DE LIQUIDI'		0			
	R CORE RECOVERY					-IMITE DE LIQUIDI PLASTIC LIMIT -IMITE DE PLASTIC	ге — L зіте́ — /				

IT209aM	McRO	STIE GF	NFSI	M	IDDLEMISS	SOIL PROFILE & TEST SUMMARIES								
ASSOCIAT						PROFIL SOUTERRAIN ET RÉSUMÉ DES ESSAIS								
CONSULTIN					NGÉNIEURS CONSEILS									
		OTT			ANADA		SA	ENC	ŒR	57.				
HOLTAYELL	ELEVATI		-	-		5.0			100111	1000	SF2	481		
OVEAU DUI	and the second second	OU SOL (PRO	FOND		SEE PLATE No.2	3.0		DATE-2	MAY 16,	1784	FORA	E No.		
in the second se	NOTES				JEE PLATE NO.L						TEST	PIT II		
"是…"			Essai - Standard Penetration Blows /ttCoups/pd	No.	DESCRIPTION OF SOIL			-VANE-TEST- ES			SONDAGE OU-			
Zunii zenie kezionen en kezionen en zienete gruut	Compressive Strength K.S.F. Résistance à la Compression K/Pd.2	Small Scale Penetrometer K.S.F. Petit Penetrometre K./P.J.2	Stan	5	DU SOL	Depth in Feet Profondeur - Pied	É levation Niveau		AUHAI		NO CA SANS TU			
Zuell KN6 Breet Breet		K.S.	Pegi-	Sample Echantillon		pth .	levation Niveau		LIBREI			DIA. ROD		
12 19 19 19 19 19 19 19 19 19 19 19 19 19	O T R P	NUU	Blow	Sample Echanti	Ground Surface – Niveau du Sol	X		ł	PIED-OU	RÉSIST	NCE AU	K/PD,2		
			2.2		CONCRETE SLAB	0.3	205.0							
	1.22			12	-FILL-									
					The second se		-							
					SAND, GRAVEL									
				-	\$ BROKEN ROCK		-							
					WITH SOME BRICK & METAL									
	-				TOPSOIL	3.1								
		美名名				3.4	- 201.6							
-	1	Sec. 1		-	DENSE		-							
				57	SANDY TILL						¢ →			
	-		911	-			-							
				-	2 = 1.= 1	5.4	- 199.6							
					BOTTOM OF PIT		-							
	AN GAR				ON ROOM									
	-													
1					.1									
					ETA 1					[
	12000			1	χ/Λ									
	Sec.				-a)/// 4									
	1000				-1/1/ -1-		-							
		32		-		-	•							
	2.10													
				-		-	•							
										,				
				-		+	┝							
1	marine.			-		-	┡	MI 4 77						
								WATER TENEL	R CONTER	U	PU	QUE NO.		
Rachouses	R =RE MOULD	ED-RE MANIE					[]	NATURE	LLE IMIT E LIQUIDI		0			
NOTION SHOT	CR TEAR OTTE	OVER Y REC UPEREE						LIMITE D PLASTIC LIMITE D	E LIQUIDI	TE CITÉ				

golder.com

SITE SERVICING AND STORMWATER MANAGEMENT REPORT, HOLLAND CROSS OTTAWA, ON

Appendix E Design Criteria and Report Excerpts November 24, 2022

DESIGN CRITERIA AND REPORT EXCERPTS

Appendix E

Engineers, Planners & Landscape Architects

Engineering

Land / Site Development

Municipal Infrastructure

Environmental / Water Resources

Traffic/ Transportation

Structural

Recreational

Planning

Land/Site Development

Planning Application Management

Municipal

Planning Documents & Studies

Expert Witness (OMB)

Wireless Industry

Landscape

Architecture

Urban Design & Streetscapes

Recreation & Parks Planning

Environmental Restoration

Sustainable Design

HOLLAND CROSS EXPANSION CITY OF OTTAWA

SERVICING & STORMWATER MANAGEMENT REPORT

HOLLAND CROSS EXPANSION CITY OF OTTAWA

SERVICING & STORMWATER MANAGEMENT REPORT

Prepared For:

Colonnade Development Ltd. 16 Concourse Gate, Suite 200 Ottawa, Ontario K2E 7S8

Prepared By:

NOVATECH Suite 200, 240 Michael Cowpland Drive Ottawa, Ontario K2M 1P6

> December 2013 Revised August 2014

Novatech File: 113150 Ref: R-2013-108

August 25, 2014

City of Ottawa Planning and Growth Management Department Development Review (Urban) Services Branch Infrastructure Approvals Division 110 Laurier Avenue West Ottawa, ON K1P 1J1

Attention: Kristin Bazinet

Dear Madam:

Re: 1560 Scott Street – Holland Cross Expansion Servicing Design Brief Our File No.: 113150

Please find enclosed six (6) copies of the Holland Cross Expansion – Servicing and Stormwater Management Report, dated August 2014. This report has been revised per City comments and is hereby submitted for approval.

If you have any questions, please contact the undersigned.

Yours truly,

NOVATECH

Cara Ruddle, P.Eng. Project Manager

cc: Kelly Rhodenizer, Colonnade Development Ltd.

M:\2013\113150\DATA\Reports\Design Brief\201408 - Rev 2\113150 Servicing and Swm Report.doc

TABLE OF CONTENTS

1.0	INTRODUCTION	1
2.0	EXISTING AND PROPOSED DEVELOPMENT	1
3.0	WATERMAIN SERVICING	1
3.1 3.2	Domestic Water Demand Fire Demand	
4.0	SANITARY SERVICING	2
5.0	STORM SERVICING	2
5.1 5.2 5.3	Existing Drainage and Servicing Proposed Site Drainage Stormwater Management	3
6.0	EROSION AND SEDIMENT CONTROL MEASURES	3
6.1	Temporary Measures	3
7.0	CONCLUSIONS AND RECOMMENDATIONS	4
1:-4	f Flauma a	

List of Figures

Figure	1	Key	Plan	

- Figure 2 Existing Site Conditions
- Figure 3 Proposed Site Plan
- Figure 4 Existing Servicing
- Figure 5 Downstream Sanitary Drainage Areas
- Figure 6 General Plan of Grading and Servicing
- Figure 7 Erosion and Sediment Control Plan

List of Appendices

- Appendix A Watermain Information
- Appendix B Sanitary Sewer Information
- Appendix C Engineering Figures
- Appendix D City of Ottawa Checklist

1.0 INTRODUCTION

Novatech Engineering Consultants Ltd. has been retained by Colonnade Development Ltd. to prepare a Servicing and Stormwater Management Report in support of the rezoning and site plan applications. The site is located at 1560 Scott Street on the southeast corner of the intersection of Scott Street and Holland Street in the City of Ottawa. Figure 1 is a Key Plan showing the site location.

2.0 EXISTING AND PROPOSED DEVELOPMENT

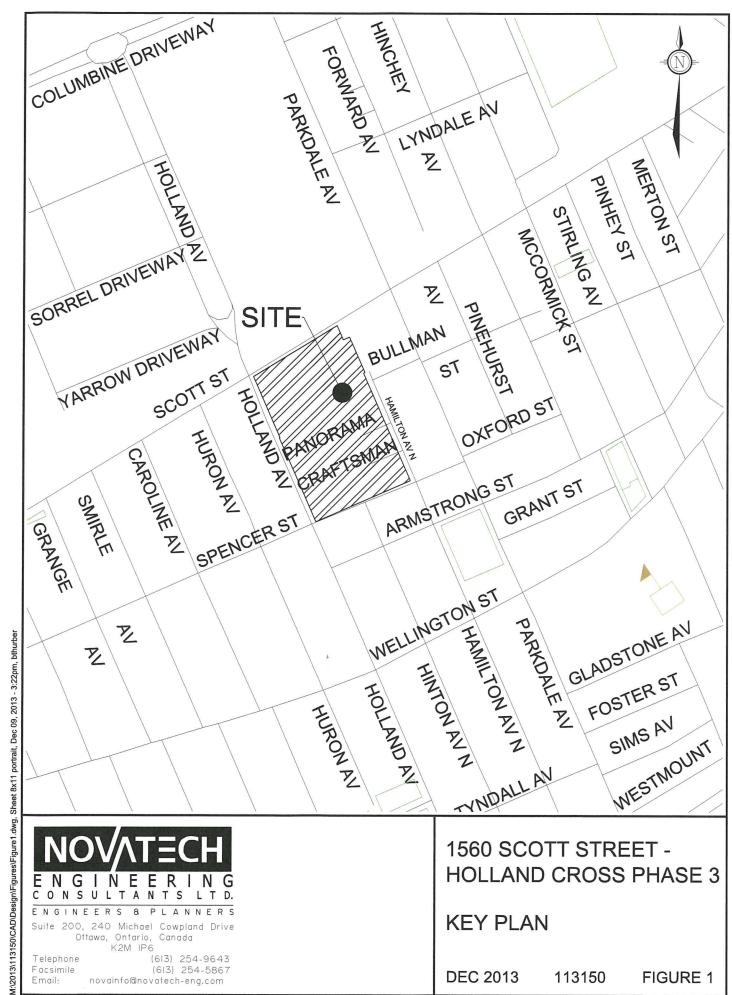
The property is approximately 3.2 hectares in size and is currently occupied by an existing seven storey tall complex consisting of two six storey office towers on top of a 1 storey retail podium. The site is bounded by office buildings to the north (Holland Cross), residential housing to the east and west, and residential condominiums to the south. Figure 2 shows the existing conditions of the site.

It is proposed to demolish part of the existing 1 storey retail building, and to construct a 12 storey office building (approximately 18,000ft² per floor) over the existing parking garage. Therefore, the building footprint will remain the same. Underground parking is already provided as part of the previous development. Refer to Figure 3 – Proposed Site Plan for details.

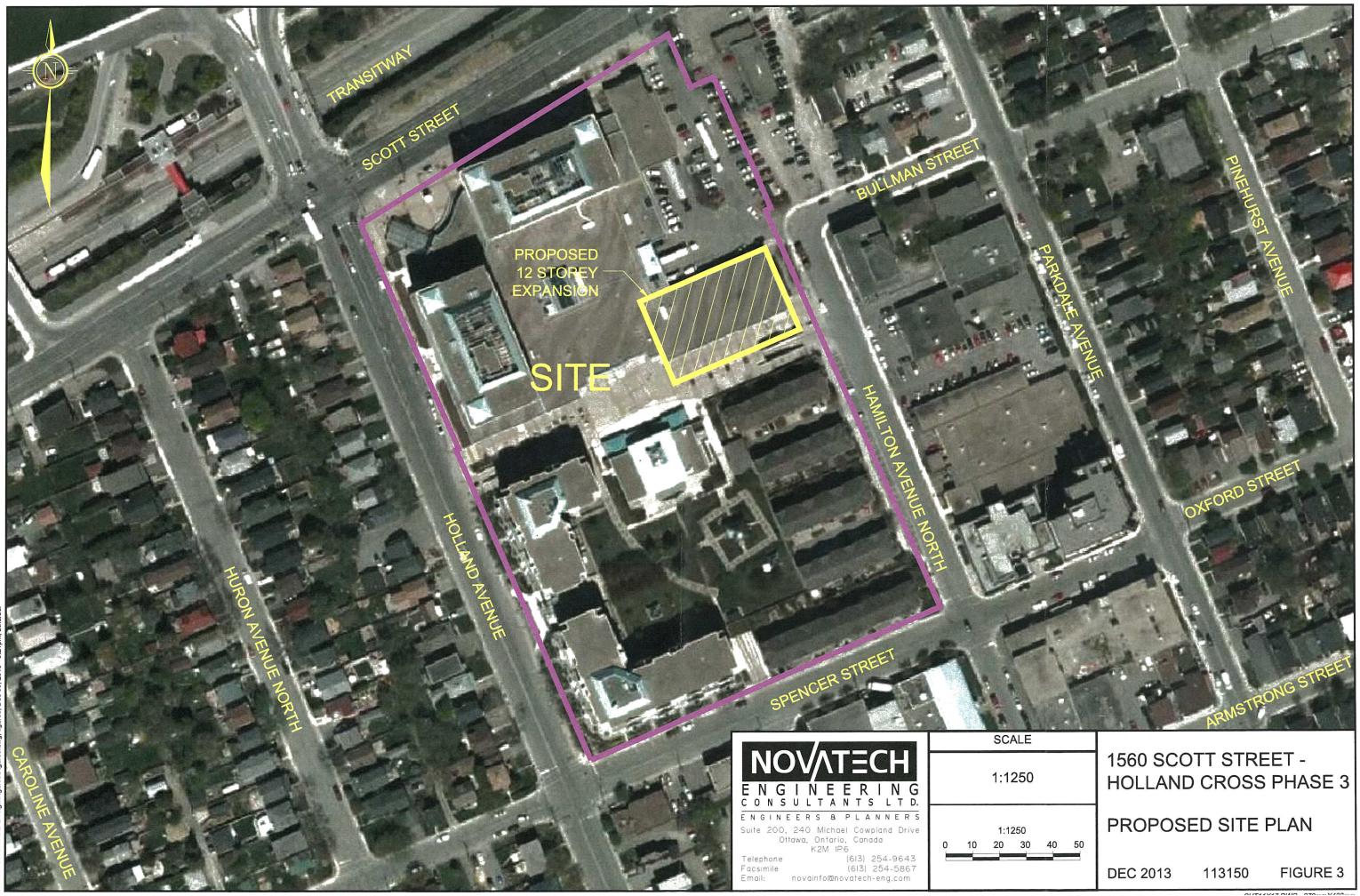
3.0 WATERMAIN SERVICING

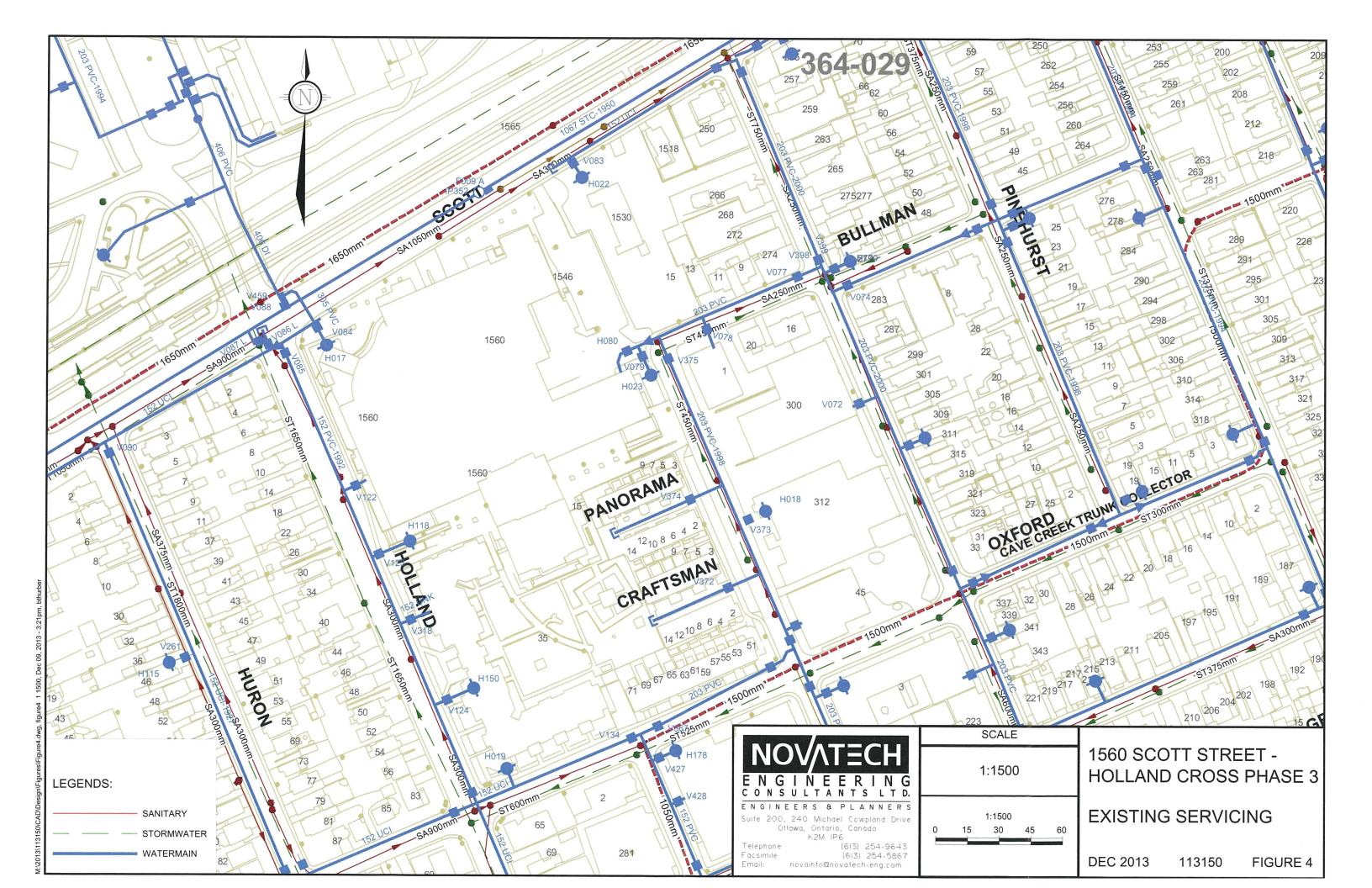
The existing building complex is serviced by two 150mm diameter water services from Holland Ave and Bullman St, and one 50mm diameter water service from Scott Street. These existing water services connect to the municipal water system surrounding the existing development. The internal building water system will be extended to service the proposed development. Refer to Figure 4 – Existing Services for details on the existing water system.

Hydraulic boundary conditions were provided by the City of Ottawa and are as follows:


Minimum HGL = 107.4m Maximum HGL = 115.8m Max Day + FF = 77.5m

3.1 Domestic Water Demand


The following domestic water demands are based on the City of Ottawa Water Distribution Guidelines (Gross Site Area), and the Ontario Building Code, OBC, (Gross Floor Area). The Gross Floor Area method results in a more conservative value, which is used for this report. Refer to Appendix A for detailed calculations.


Estimated water demands for the entire complex including the proposed expansion are as follows:

Q_{avg day} = (47,409m² / 9.3 m²/pers) x 75L/pers/day Q_{avg day} = **382,331L/day = 4.43 L/s**

3.2 Fire Demand

For this type of building, the existing underground parking garage is classified as "Ordinary Hazard" (Group 1), and the new office building is classified as "Light Hazard." The calculations for required fire flow are based on the existing garage; therefore there is only a marginal increase in the required fire flow for the new addition.

The required fire demand is calculated using the Fire Underwriters Survey (FUS) Guidelines. The required fire demand is calculated to be 100L/s using the FUS method. Using the National Fire Protection Association (NFPA) Standard for Sprinkler Systems the supply requirement is 41.0L/s for the sprinklers and hoses. Refer to Appendix A for detailed calculations.

According to the hydraulic boundary conditions provided by the City, the existing 200mm dia. watermain on Hamilton Street and Bullman Avenue has a hydraulic grade line of 77.5m at the maximum day demand plus a fire demand of 92.7L/s. This results in 92.7L/s of fire flow available at 22.4psi. Therefore the existing municipal watermain can provide the fire demand at a pressure greater than 20 psi.

4.0 SANITARY SERVICING

The existing building is serviced by a 150mm diameter sanitary which connects to an existing 250mm diameter sanitary sewer within the Hamilton Street right-of-way. It is proposed to extend the internal plumbing to service the proposed development.

A review of the existing downstream sewer system is required to ensure there are no capacity issues. The sanitary flows from the proposed development are calculated to be 2.8L/s. Drainage areas and flows have been calculated for the downstream area and input into a sanitary sewer design sheet. There appears to be no issue with capacity in the existing sanitary sewer system due to the proposed development. Refer to Appendix B for flow calculations, the drainage area plan and sanitary sewer design sheet.

5.0 STORM SERVICING

5.1 Existing Drainage and Servicing

As indicated previously, the site is currently developed with single storey building as part of an existing office and retail development. The existing building is serviced by an existing 200mm storm service that connects to a 450mm diameter storm sewer at the Hamilton Avenue / Bullman Street intersection.

Stormwater from the building areas flow into roof drains and outlets to storm services which connect to the City storm sewer system along Scott Street, Holland Avenue and Hamilton Avenue. The remaining parking area sheet drains to catchbasins which outlet to the City storm sewer system on Scott Street.

5.2 Proposed Site Drainage

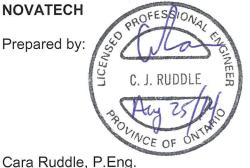
Stormwater from the proposed development will drain to roof drains and outlet to the existing storm service per existing conditions and continue to outlet to the existing storm sewer on Hamilton Avenue.

5.3 Stormwater Management

The building footprint will not change from existing conditions. Therefore, there is no increase in storm flows from the proposed development and stormwater management is not required.

6.0 EROSION AND SEDIMENT CONTROL MEASURES

6.1 Temporary Measures


Temporary erosion and sediment control measures will be implemented during construction. Silt fence and filter cloth catches will be used as erosion and sediment control measures. Details are provided on Figure 7.

Filter cloth catches should be inspected daily, and after every rain event to determine maintenance, repair or replacement requirements. Sediments or granulars that enter site sewers shall be removed immediately by the contractor. These measures will be implemented prior to the commencement of construction and maintained in good order until vegetation has been established.

7.0 CONCLUSIONS AND RECOMMENDATIONS

The conclusions of this report are as follows:

- Water servicing, including both domestic and fire protection, can be provided by connection to the existing watermain infrastructure along Bullman Street.
- Sanitary flows for the proposed development have been calculated and there is sufficient capacity within the existing City sanitary sewer system along Bullman Street to service the development.
- Quantity and quality control of stormwater is not required, as there will be no change to the existing stormwater drainage.
- The existing overland flow route will be maintained.
- Erosion and sediment control measures will be implemented during construction.

Cara Ruddle, P.Eng. Project Manager Reviewed by:

J. Lee Sheets, CET Sr. Project Manager

APPENDIX A

Watermain Information

.

The following are boundary conditions (provided by the City of Ottawa), HGL, for hydraulic analysis at 150 Holland Avenue assumed to be connected to the 200mm on Hamilton Street and Bullman Avenue.

Minimum HGL = 107.4m

Maximum HGL = 115.8m

Max Day + FF (92.7 L/s) = 77.5m

These are for current conditions and are based on computer model simulation.

Pressure Check:

Centreline of road at the intersection of Hamilton Street and Bullman Avenue = 61.7m (refer to the City as-built drawings)

2.31ft = 1 psi

Maximum HGL = (115.8m - 61.7m) x 3.281ft/m ÷ 2.31ft/1psi = 76.8psi

Minimum HGL = (107.4m - 61.7m) x 3.281ft/m ÷ 2.31ft/1psi = 64.9psi

• The system has adequate pressure under peak hour demand condition.

Fire Flow Check

Max Day + FF (92.7L/s) = (77.5m - 61.7m) x 3.281ft/m ÷ 2.31ft/1psi = 22.4psi

• The system has adequate pressure for fire flow conditions.

1560 Scott Street HYDRAULIC ANALYSIS

	12 Storey New Expansion										
	Water Demand										
Node Area Demand (L/s)											
Node	Alca	Average Day	Max. Daily	Peak Hour							
Gross Flo	or Area (m ²	²)									
New	19564	1.83	2.74	3.29							
Existing	27845	2.60	3.90	7.02							
Total	47409	4.43	6.64	10.30							
Gross Site	Area (ha)										
New	0.0	0.00	0.00	0.00							
Existing	1.7	0.53	0.80	1.44							
Total	1.7	0.53	0.80	1.44							

Notes:

- 1. All water demand calculations based on the City of Ottawa Design Guidelines for Water Distribution Table 4.2.
- 2. Water Demand is based assuming all lands to be Other Commercial with a demand of 28,000L/gross ha/d.
- 3. Peaking Factors: Maximum Daily Demand = 1.5 average daily demand ; Peak Hour = 1.8 max daily demand.
- Gross Floor Area demand calculations based on Ontario Building Code; 9.3 m²/pers and 75 L/pers/day

12 Storey Office Building Fire Flow Calculations - Holland Cross Expansion

As per Fire Underwriter's Survey Guidelines

)B	DECT: Holland Cross Expansion #: 113150	DATE: December 12, 2013						
2	Coefficient related to type of construction	[yes/no]	addhadh / an huir an huirte an Ainean a					
	Wood frame	[yeano]	1.5					
	Ordinary construction		1.0					
	Non-combustible construction		0.8					
	 Fire resistive construction (> 3 hrs) 	yes	0.6					
	 Interpolation (Using FUS Tables) 	,						
	Foot Print of New Tower			18,610				
	Gross Floor area of Expanded Common Podium			99,060				
	Gross Floor area of Existing Garage			129,920	ft ²			
	Area of structure considered (m ²) (All floors excluding Basement, under 2-Storeys)	5,320	<==>	57,269	ft ²			
	*Note: This assumes protected openings, and cons podium, plus 25% of the GFA of each of the two ac Garage)							
	Required fire flow (L/min)							
	$F = 220 C (A)^{0.5}$		-	10,000	L/min			
	Occupancy hazard reduction of surcharge	[yes/no]						
	 Non-combustible 		-25%					
	Limited combustible	yes		* Due to Pa	arking Ga	ara		
	Combustible		0%					
	Free burning		15%					
	 Rapid burning 		25%	0 500	I /min	('		
			-	8,500	L/IIIII			
	Sprinkler Reduction		-	8,500	L/IIIII			
	 Sprinkler Reduction Non-combustible - Fire Resistive (3) 	yes	50% <u>-</u>		L/min	(2		
	Non-combustible - Fire Resistive (3) Exposure surcharge (cumulative (%))	yes [yes/no]	-			(2		
	 Non-combustible - Fire Resistive (3) <i>Exposure surcharge (cumulative (%))</i> 0 - 3 m 		25%			(2		
	 Non-combustible - Fire Resistive (3) <i>Exposure surcharge (cumulative (%))</i> 0 - 3 m 3.1 - 10 m 	[yes/no]	- 25% 20%	4,250	L/min	(2		
	 Non-combustible - Fire Resistive (3) <i>Exposure surcharge (cumulative (%))</i> 0 - 3 m 3.1 - 10 m 10.1 - 20 m 	[yes/no] yes	- 25% 20% 15%	4,250 1 side	<i>L/min</i> 15%	(2		
	 Non-combustible - Fire Resistive (3) <i>Exposure surcharge (cumulative (%))</i> 0 - 3 m 3.1 - 10 m 10.1 - 20 m 20.1 - 30 m 	[yes/no] yes yes	25% 20% 15% 10%	4,250 1 side 1 side	L/min	(2		
	 Non-combustible - Fire Resistive (3) <i>Exposure surcharge (cumulative (%))</i> 0 - 3 m 3.1 - 10 m 10.1 - 20 m 	[yes/no] yes	25% 20% 15% 10% 5%	4,250 1 side	<i>L/min</i> 15%	(2		
	 Non-combustible - Fire Resistive (3) <i>Exposure surcharge (cumulative (%))</i> 0 - 3 m 3.1 - 10 m 10.1 - 20 m 20.1 - 30 m 	[yes/no] yes yes	25% 20% 15% 10% 5%	4,250 1 side 1 side 1 side	<i>L/min</i> 15% 10% 25%	(2		
	 Non-combustible - Fire Resistive (3) <i>Exposure surcharge (cumulative (%))</i> 0 - 3 m 3.1 - 10 m 10.1 - 20 m 20.1 - 30 m 30.1 - 45 m <i>Fire Wall Separation</i> 	[yes/no] yes yes	25% 20% 15% 10% 5%	4,250 1 side 1 side 1 side ative Total	<i>L/min</i> 15% 10% 25%	(2		
	 Non-combustible - Fire Resistive (3) <i>Exposure surcharge (cumulative (%))</i> 0 - 3 m 3.1 - 10 m 10.1 - 20 m 20.1 - 30 m 30.1- 45 m 	[yes/no] yes yes	25% 20% 15% 10% 5%	4,250 1 side 1 side 1 side ative Total	<i>L/min</i> 15% 10% 25%	(2		
	 Non-combustible - Fire Resistive (3) <i>Exposure surcharge (cumulative (%))</i> 0 - 3 m 3.1 - 10 m 10.1 - 20 m 20.1 - 30 m 30.1 - 45 m <i>Fire Wall Separation</i> 	[yes/no] yes yes	25% 20% 15% 10% 5%	<i>4,250</i> 1 side 1 side 1 side ative Total 2,125	<i>L/min</i> 15% 10% 25%	(2		
	 Non-combustible - Fire Resistive (3) <i>Exposure surcharge (cumulative (%))</i> 0 - 3 m 3.1 - 10 m 10.1 - 20 m 20.1 - 30 m 30.1 - 45 m <i>Fire Wall Separation</i> Number of Party Walls * 1000 L/min 	[yes/no] yes yes no	25% 20% 15% 10% 5%	4,250 1 side 1 side 1 side ative Total 2,125 2,125	L/min 15% 10% 25% L/min L/min			

64.5.9* For individual fasteners, the loads determined in 64.5.6 shall not exceed the allowable loads provided in Figure 64.5.9.

The type of fasteners used to secure the bracing assembly to the structure shall be limited to those shown in Figure 6-4.5.9. For connections to wood, through bolts with washers on each end shall be used. Holes for through bolts shall be $1/_{16}$ in. (1.6 mm) greater than the diameter of the bolt.

Exception No. 1: Where it is not practical to install through bolts due to the thickness of the member or inaccessibility, lag screws shall be permitted. Holes shall be pre-drilled $\frac{1}{8}$ in. (3.2 mm) smaller than the maximum root diameter of the lag screw.

Exception No. 2: Other fastening methods are acceptable for use if certified by a registered professional engineer to support the loads determined in accordance with the criteria in 6-4.5.9. Calculations shall be permitted where required by the authority having jurisdiction.

6-4.5.10 Sway bracing assemblies shall be listed for a maximum load rating. The loads shall be reduced as shown in Table 6-4.5.10 for loads that are less than 90 degrees from vertical.

Exception: Where sway bracing utilizing pipe, angles, flats, or rods as shown in Table 6-4.5.8 is used, the components do not require listing. Bracing fittings and connections used with those specific materials shall be listed.

Table 6-4.5.10 Allowable Horizontal Load on Brace AssembliesBased on the Weakest Component of the Brace Assembly

Brace Angle	Allowable Horizontal Load
30-40 degrees from vertical	Listed load rating divided by 2.000
45–59 degrees from vertical	Listed load rating divided by 1.414
60–89 degrees from vertical	Listed load rating divided by 1.155
90 degrees from vertical	Listed load rating

6-4.5.11 Bracing shall be attached directly to feed and cross mains. Each run of pipe between changes in direction shall be provided with both lateral and longitudinal bracing.

Exception: Pipe runs less than 12 ft (3.6 m) in length shall be permitted to be supported by the braces on adjacent runs of pipe.

6-4.5.12 A length of pipe shall not be braced to sections of the building that will move differentially.

6-4.6 Restraint of Branch Lines.

64.6.1* Restraint is considered a lesser degree of resisting loads than bracing and shall be provided by use of one of the following:

- (1) A listed sway brace assembly
- (2) A wraparound U-hook satisfying the requirements of 6-4.5.3, Exception No. 3
- (3) No. 12, 440-lb (200-kg) wire installed at least 45 degrees from the vertical plane and anchored on both sides of the pipe
- (4) Other approved means

Wire used for restraint shall be located within 2 ft (610 mm) of a hanger. The hanger closest to a wire restraint shall be of a type that resists upward movement of a branch line.

64.6.2 The end sprinkler on a line shall be restrained against excessive vertical and lateral movement.

6-4.6.3* Where upward or lateral movement would result in an impact against the building structure, equipment, or finish materials, branch lines shall be restrained at intervals not exceeding 30 ft (9 m).

64.6.4* Sprig-ups 4 ft (1.2 m) or longer shall be restrained against lateral movement.

6-4.7 Hangers and Fasteners Subject to Earthquakes.

64.7.1 C-type clamps (including beam and large flange clamps) used to attach hangers to the building structure in areas subject to earthquakes shall be equipped with a restraining strap. The restraining strap shall be listed for use with a C-type clamp or shall be a steel strap of not less than 16 gauge thickness and not less than 1 in. (25.4 mm) wide for pipe diameters 8 in. (203 mm) or less and 14 gauge thickness and not less than $1^{1}/_{4}$ in. (31.7 mm) wide for pipe diameters greater than 8 in. (203 mm). The restraining strap shall wrap around the beam flange not less than 1 in. (25.4 mm). A lock nut on a C-type clamp shall not be used as a method of restraint. A lip on a "C" or "Z" purlin shall not be used as a method of restraint.

Where purlins or beams do not provide an adequate lip to be secured by a restraining strap, the strap shall be throughbolted or secured by a self-tapping screw.

64.7.2 C-type clamps (including beam and large flange clamps), with or without restraining straps, shall not be used to attach braces to the building structure.

6-4.7.3 Powder-driven fasteners shall not be used to attach braces to the building structure.

Exception: Powder-driven fasteners shall be permitted where they are specifically listed for service in resisting lateral loads in areas subject to earthquakes.

6-4.7.4 Powder-driven fasteners shall not be used to attach hangers to the building structure where the systems are required to be protected against earthquakes using a horizon-tal force factor exceeding 0.50 W_{p} , where W_{p} is the weight of the water-filled pipe.

Exception: Powder-driven fasteners shall be permitted where they are specifically listed for horizontal force factors in excess of 0.50 W_p .

Chapter 7 Design Approaches

7-1 General.

7-1.1 Water demand requirements shall be determined from the occupancy hazard fire control approach of Section 7-2.

Exception: Special design approaches as permitted in Section 7-9.

7-1.2 For buildings with two or more adjacent occupancies that are not physically separated by a barrier or partition capable of delaying heat from a fire in one area from fusing sprinklers in the adjacent area, the required sprinkler protection for the more demanding occupancy shall extend 15 ft (4.6 m) beyond its perimeter.

7-2 Occupancy Hazard Fire Control Approach.

7-2.1 Occupancy Classifications.

7-2.1.1 Occupancy classifications for this standard relate to sprinkler installations and their water supplies only. They shall not be used as a general classification of occupancy hazards.

7-2.1.2 Occupancies or portions of occupancies shall be classified according to the quantity and combustibility of contents, the expected rates of heat release, the total potential for energy release, the heights of stockpiles, and the presence of flammable and combustible liquids, using the definitions contained in Section 1-4. Classifications are as follows:

Light hazard

Ordinary hazard (Groups 1 and 2)

Extra hazard (Groups 1 and 2)

Special occupancy hazard (see Section 7-10)

7-2.2 Water Demand Requirements — Pipe Schedule Method.

7-2.2.1 Table 7-2.2.1 shall be used in determining the minimum water supply requirements for light and ordinary hazard occupancies protected by systems with pipe sized according to the pipe schedules of Section 8-5. Pressure and flow requirements for extra hazard occupancies shall be based on the hydraulic calculation methods of 7-2.3. The pipe schedule method shall be permitted only for new installations of 5000 ft² (465 m²) or less or for additions or modifications to existing pipe schedule systems sized according to the pipe schedules of Section 8-5. Table 7-2.2.1 shall be used in determining the minimum water supply requirements.

Exception No. 1: The pipe schedule method shall be permitted for use in systems exceeding 5000 fl^2 (465 m^2) where the flows required in Table 7-2.2.1 are available at a minimum residual pressure of 50 psi (3.4 bar) at the highest elevation of sprinkler.

Exception No. 2: The pipe schedule method shall be permitted for additions or modifications to existing extra hazard pipe schedule systems.

7-2.2.2 The lower duration value of Table 7-2.2.1 shall be acceptable only where remote station or central station waterflow alarm service is provided.

7-2.2.3* The residual pressure requirement of Table 7-2.2.1 shall be met at the elevation of the highest sprinkler. (*See the Exceptions to 7-2.2.1*).

7-2.2.4 The lower flow figure of Table 7-2.2.1 shall be permitted only where the building is of noncombustible construction or the potential areas of fire are limited by building size or compartmentation such that no open areas exceed $3000 \text{ ft}^2 (279 \text{ m}^2)$ for light hazard or $4000 \text{ ft}^2 (372 \text{ m}^2)$ for ordinary hazard.

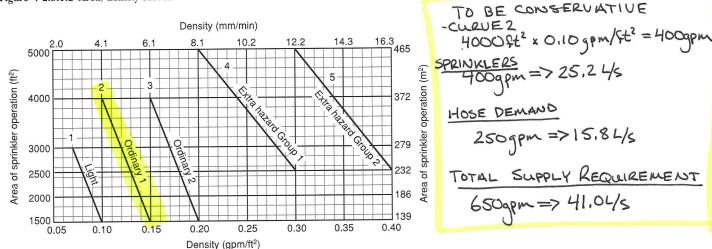
Table 7-2.2.1	Water Supply Requirements for Pipe Schedule
Sprinkler Syst	ems

Occupancy Classification	Minimum Residual Pressure Required (psi)	Acceptable Flow at Base of Riser (Including Hose Stream Allowance) (gpm)	Duration (minutes)
Light hazard	15	500-750	30-60
Ordinary hazard	20	850-1500	60–90

For SI units, 1 gpm = 3.785 L/min; 1 psi = 0.0689 bar.

7-2.3 Water Demand Requirements — Hydraulic Calculation Methods.

7-2.3.1 General.


7-2.3.1.1* The minimum water supply requirements for a hydraulically designed occupancy hazard fire control sprinkler system shall be determined by adding the hose stream demand from Table 7-2.3.1.1 to the water supply for sprinklers determined in 7-2.3.1.2. This supply shall be available for the minimum duration specified in Table 7-2.3.1.1.

Exception No. 1: An allowance for inside and outside hose shall not be required where tanks supply sprinklers only.

Exception No. 2: Where pumps taking suction from a private fire service main supply sprinklers only, the pump need not be sized to accommodate inside and outside hose. Such hose allowance shall be considered in evaluating the available water supplies.

7-2.3.1.2 The water supply for sprinklers only shall be determined either from the area/density curves of Figure 7-2.3.1.2 in accordance with the method of 7-2.3.2 or be based upon the room design method in accordance with 7-2.3.3, at the discretion of the designer. For special areas under consideration, as described in 7-2.3.4, separate hydraulic calculations shall be required in addition to those required by 7-2.3.2 or 7-2.3.3.

Figure 7-2.3.1.2 Area/density curves.

7-2.3.1.3 Regardless of which of the two methods is used, the following restrictions shall apply:

(a) For areas of sprinkler operation less than $1500 \text{ ft}^2 (139 \text{ m}^2)$ used for light and ordinary hazard occupancies, the density for 1500 ft² (139 m²) shall be used. For areas of sprinkler operation less than 2500 ft² (232 m²) for extra hazard occupancies, the density for 2500 ft² (232 m²) shall be used.

(b) *For buildings having unsprinklered combustible concealed spaces (as described in 5-13.1.1 and 5-13.7), the minimum area of sprinkler operation shall be $3000 \text{ ft}^2 (279 \text{ m}^2)$.

Exception No. 1: Combustible concealed spaces filled entirely with noncombustible insulation.

Exception No. 2: *Light or ordinary hazard occupancies where noncombustible or limited combustible ceilings are directly attached to the bottom of solid wood joists so as to create enclosed joist spaces 160 ft^3 (4.8 m³) or less in volume.

Exception No. 3: *Concealed spaces where the exposed surfaces have a flame spread rating of 25 or less and the materials have been demonstrated to not propagate fire in the form in which they are installed in the space.

(c) Water demand of sprinklers installed in racks or water curtains shall be added to the ceiling sprinkler water demand at the point of connection. Demands shall be balanced to the higher pressure. (See Chapter 8.)

(d) Water demand of sprinklers installed in concealed spaces or under obstructions such as ducts and cutting tables need not be added to ceiling demand.

(e) Where inside hose stations are planned or are required, a total water allowance of 50 gpm (189 L/min) for a single hose station installation or 100 gpm (378 L/min) for a multiple hose station installation shall be added to the sprinkler requirements. The water allowance shall be added in 50gpm (189-L/min) increments beginning at the most remote hose station, with each increment added at the pressure required by the sprinkler system design at that point.

(f) When hose valves for fire department use are attached to wet pipe sprinkler system risers in accordance with 5-15.5.2, the water supply shall not be required to be added to standpipe demand as determined from NFPA 14, *Standard for the Installation of Standpipe and Hose Systems.* Exception No. 1: Where the combined sprinkler system demand and hose stream allowance of Table 7-2.3.1.1 exceeds the requirements of NFPA 14, Standard for the Installation of Standpipe and Hose Systems, this higher demand shall be used.

Exception No. 2: For partially sprinklered buildings, the sprinkler demand, not including hose stream allowance, as indicated in Table 7-2.3.1.1 shall be added to the requirements given in NFPA 14, Standard for the Installation of Standpipe and Hose Systems.

(g) Water allowance for outside hose shall be added to the sprinkler and inside hose requirement at the connection to the city water main or a yard hydrant, whichever is closer to the system riser.

(h) The lower duration values in Table 7-2.3.1.1 shall be permitted where remote station or central station waterflow alarm service is provided.

(i) Where pumps, gravity tanks, or pressure tanks supply sprinklers only, requirements for inside and outside hose need not be considered in determining the size of such pumps or tanks.

7-2.3.1.4 Total system water supply requirements shall be determined in accordance with the hydraulic calculation procedures of Section 8-4.

7-2.3.2 Area/Density Method.

7-2.3.2.1 The water supply requirement for sprinklers only shall be calculated from the area/density curves in Figure 7-2.3.1.2 or from Section 7-10 where area/density criteria is specified for special occupancy hazards. When using Figure 7-2.3.1.2, the calculations shall satisfy any single point on the appropriate area/density curve as follows:

- (1) Light hazard area/density curve 1
- (2) Ordinary hazard (Group 1) area/density curve 2
- (3) Ordinary hazard (Group 2) area/density curve 3
- (4) Extra hazard (Group 1) area/density curve 4
- (5) Extra hazard (Group 2) area/density curve 5 It shall not be necessary to meet all points on the selected curve.

Exception: Sprinkler demand for storage occupancies as determined in Sections 7-3 through 7-8.

7-2.3.2.2 For protection of miscellaneous storage, miscellaneous tire storage, and storage up to 12 ft (3.7 m) in height, the discharge criteria in Table 7-2.3.2.2 shall apply.

Occupancy or Commodity Classification	Inside Hose (gpm)	Total Combined Inside and Outside Hose (gpm)	Duration (minutes)
Light hazard	0, 50, or 100	100	30
Ordinary hazard	0, 50, or 100	250	60-90
Extra hazard	0, 50, or 100	500	90-120
Rack storage, Class I, II, and III commodities up to 12 ft (3.7 m) in height	0, 50, or 100	250	90
Rack storage, Class IV commodities up to 10 ft (3.1 m) in height	0, 50, or 100	250	90
Rack storage, Class IV commodities up to 12 ft (3.7 m) in height	0, 50, or 100	500	90
Rack storage, Class I, II, and III commodities over 12 ft (3.7 m) in height	0, 50, or 100	500	90
Rack storage, Class IV commodities over 12 ft (3.7 m) in height and plastic commodities	0, 50, or 100	500	120
General storage, Class I, II, and III commodities over 12 ft (3.7 m) up to 20 ft (6.1 m)	0, 50, or 100	500	90
General storage, Class IV commodities over 12 ft (3.7 m) up to 20 ft (6.1 m)	0, 50, or 100	500	120
General storage, Class I, II, and III commodities over 20 ft (6.1 m) up to 30 ft (9.1 m) $$	0, 50, or 100	500	120
General storage, Class IV commodities over 20 ft (6.1 m) up to 30 ft (9.1 m)	0, 50, or 100	500	150
General storage, Group A plastics ≤ 5 ft (1.5 m)	0, 50, or 100	250	90
General storage, Group A plastics over 5 ft (1.5 m) up to 20 ft (6.1 m)	0, 50, or 100	500	120
General storage, Group A plastics over 20 ft (6.1 m) up to 25 ft (7.6 m)	0, 50, or 100	500	150

Table	7-2.3.1.1+	Hose Stream Demand and	Water Supply I	Duration Requirements	for Hydraulically	Calculated Systems

For SI units, 1 gpm = 3.785 L/min.

Alex McAuley

From:White, Joshua <Joshua.White@ottawa.ca>Sent:October-29-13 3:49 PMTo:Alex McAuleyCc:Cara RuddleSubject:RE: Holland Cross - 1560 Scott Street

Good eye Alex. There was a mistake in the model. We are looking into it please find the revision below to the HGL.

The Max Day + FF HGL is actually 77.5m, not 112.2m.

Cheers

Josh

From: Alex McAuley [mailto:a.mcauley@novatech-eng.com] Sent: October 11, 2013 11:28 AM To: White, Joshua Cc: Cara Ruddle Subject: RE: Holland Cross - 1560 Scott Street

Josh,

Can you please double check the HGL below? The Max Day + Fire Flow is 4.8m above the Min HGL, which is unusual.

Thank you,

Novatech Engineering Consultants Ltd 200-240 Michael Cowpland Drive Ottawa . Ontario . Canada . K2M 1P6

Office: 613-254-9643 Fax: 613-254-5867

The information contained in this email message is confidential and is for exclusive use of the addressee.

From: Alex McAuley Sent: October-11-13 11:22 AM To: 'White, Joshua' Cc: Cara Ruddle Subject: RE: Holland Cross - 1560 Scott Street

Thank you Josh,

Regards,

Novatech Engineering Consultants Ltd 200-240 Michael Cowpland Drive Ottawa . Ontario . Canada . K2M 1P6

Office: 613-254-9643 Fax: 613-254-5867

The information contained in this email message is confidential and is for exclusive use of the addressee.

From: White, Joshua [mailto:Joshua.White@ottawa.ca] Sent: October-11-13 9:44 AM To: Alex McAuley Cc: Cara Ruddle Subject: RE: Holland Cross - 1560 Scott Street

Hi Alex,

I have received the revised boundary conditions.

Cheers

Josh

Please find attached the revised boundary conditions for the above noted

****The following information may be passed on to the consultant, but do NOT forward this e-mail directly.****

The following are boundary conditions, HGL, for hydraulic analysis at 1560 Scott Street (zone 1W) assumed to be connected to the existing 152mm on Bullman (see attached PDF for location).

Minimum HGL = 107.4 m

Maximum HGL = 115.8 m

Max Day + FF (92.7 L/s) = 112.2 m

These are for current conditions and are based on computer model simulation.

Disclaimer: The boundary condition information is based on current operation of the city water distribution system. The computer model simulation is based on the best information available at the time. The operation of the water distribution system can change on a regular basis, resulting in a variation in boundary conditions. The physical properties of watermains deteriorate over time, as such must be assumed in the absence of actual field test data. The variation in physical watermain properties can therefore alter the results of the computer model simulation. From: Alex McAuley [mailto:a.mcauley@novatech-eng.com] Sent: October 08, 2013 10:04 AM To: White, Joshua Cc: Cara Ruddle Subject: RE: Holland Cross - 1560 Scott Street

Hi Josh,

Thank you for the information.

We will be reusing the existing 150mm diameter water service that is fed from the corner of Bullman Street and Hamilton Ave N. The information provided below is for the Holland Street service, and gives us approximately 22.8psi during fire flow conditions which is sufficient. We are close to the Scott Street trunk watermain, so I wouldn't anticipate a major drop, but will there be any change to the HGL at that location?

I attached a sketch with the location of the service we are proposing to use.

Regards,

Novatech Engineering Consultants Ltd 200-240 Michael Cowpland Drive Ottawa . Ontario . Canada . K2M 1P6

Office: 613-254-9643 Fax: 613-254-5867

The information contained in this email message is confidential and is for exclusive use of the addressee.

From: White, Joshua [mailto:Joshua.White@ottawa.ca] Sent: October-07-13 11:10 AM To: Alex McAuley Subject: RE: Holland Cross - 1560 Scott Street

Hi Alex,

Here is the results of the water boundary condition modeling.

Cheers

Josh

The following are boundary conditions, HGL, for hydraulic analysis at 1560 Scott Street (zone 1W) assumed to be connected to the existing 152mm on Holland Avenue (see attached PDF for location).

Minimum HGL = 108.8 m Maximum HGL = 115.3 m Max Day + FF (92.7 L/s) = 77.0 m

These are for current conditions and are based on computer model simulation.

Disclaimer: The boundary condition information is based on current operation of the city water distribution system. The computer model simulation is based on the best information available at the time. The operation of the water distribution system can change on a regular basis, resulting in a variation in boundary conditions. The physical properties of watermains deteriorate over time, as such must be assumed in the absence of actual field test data. The variation in physical watermain properties can therefore alter the results of the computer model simulation.

From: Alex McAuley [mailto:a.mcauley@novatech-eng.com] Sent: September 27, 2013 10:36 AM To: White, Joshua Subject: RE: Holland Cross - 1560 Scott Street

Hi Josh,

We will be reusing the existing water connection.

Novatech Engineering Consultants Ltd 200-240 Michael Cowpland Drive Ottawa . Ontario . Canada . K2M 1P6

Office: 613-254-9643 Fax: 613-254-5867

The information contained in this email message is confidential and is for exclusive use of the addressee.

From: White, Joshua [mailto:Joshua.White@ottawa.ca] Sent: September-26-13 1:19 PM To: Alex McAuley Subject: RE: Holland Cross - 1560 Scott Street

Hi Alex,

Just to confirm the water connection will be from the internal private water main, or are you planning on installing a connection to the water main in the street.

Cheers

Josh

From: Alex McAuley [mailto:a.mcauley@novatech-eng.com] Sent: September 26, 2013 11:44 AM To: White, Joshua Cc: Cara Ruddle Subject: RE: Holland Cross - 1560 Scott Street

Josh,

Per our phone conversation yesterday, I have revised our fire flow calculations for the new addition based on FUS for a sprinklered office building with fire resistive construction.

I have calculated the fire flows and demands based on the new expansion only, as the existing two towers have independent services.

Fire Flow (FUS) = 92.7 L/s Average Daily Flow = 1.88 L/s Max Day Flow = 2.81 L/s Max hourly Flow = 3.38 L/s

Please let me know if you require additional information.

Regards,

Novatech Engineering Consultants Ltd 200-240 Michael Cowpland Drive Ottawa . Ontario . Canada . K2M 1P6

Office: 613-254-9643 Fax: 613-254-5867

The information contained in this email message is confidential and is for exclusive use of the addressee.

From: Cara Ruddle Sent: September-19-13 11:02 AM To: Alex McAuley Subject: FW: Holland Cross - 1560 Scott Street

Novatech Engineering Consultants Ltd 200-240 Michael Cowpland Drive Ottawa . Ontario . Canada . K2M 1P6

Office: 613-254-9643 x 220 Fax: 613-254-5867 The information contained in this email message is confidential and is for exclusive use of the addressee.

From: White, Joshua [mailto:Joshua.White@ottawa.ca] Sent: September-19-13 11:05 AM To: Cara Ruddle Subject: RE: Holland Cross - 1560 Scott Street

Hi Cara,

The fire flow should be based off of the Fire Under Writers Survey. Also the may I please have the following information;

Average Daily Flow: I/s Max Day Flow: I/s Max hourly Flow: I/s

I have put in a request to our ISD regarding possible servicing constraints in the area and I will relay them to you once I have received them.

Cheers

Josh

From: Cara Ruddle [mailto:c.ruddle@novatech-eng.com] Sent: September 19, 2013 10:43 AM To: White, Joshua Subject: Holland Cross - 1560 Scott Street

Josh:

Using the NFPA 13 Sprinkler/Hose demands and a max day office demand we have calculated a fire flow requirement of 650gpm (43.82L/s) for the new 12 storey building. We would use the existing 150mm water service at the corner of Bullman and Hamilton.

Sanitary flows are calculated to be just less than 3.0 L/s. The sanitary connection for the building is also by the intersection of Bullman and Hamilton.

As discussed, please provide boundary conditions for the water system and any servicing constraints that you are aware of for this development.

Please call or email if you have any questions. Thanks.

Novatech Engineering Consultants Ltd 200-240 Michael Cowpland Drive Ottawa . Ontario . Canada . K2M 1P6

Office: 613-254-9643 x 220 Fax: 613-254-5867 The information contained in this email message is confidential and is for exclusive use of the addressee.

This e-mail originates from the City of Ottawa e-mail system. Any distribution, use or copying of this e-mail or the information it contains by other than the intended recipient(s) is unauthorized. If you are not the intended recipient, please notify me at the telephone number shown above or by return e-mail and delete this communication and any copy immediately. Thank you.

Le présent courriel a été expédié par le système de courriels de la Ville d'Ottawa. Toute distribution, utilisation ou reproduction du courriel ou des renseignements qui s'y trouvent par une personne autre que son destinataire prévu est interdite. Si vous avez reçu le message par erreur, veuillez m'en aviser par téléphone (au numéro précité) ou par courriel, puis supprimer sans délai la version originale de la communication ainsi que toutes ses copies. Je vous remercie de votre collaboration.

This e-mail originates from the City of Ottawa e-mail system. Any distribution, use or copying of this e-mail or the information it contains by other than the intended recipient(s) is unauthorized. If you are not the intended recipient, please notify me at the telephone number shown above or by return e-mail and delete this communication and any copy immediately. Thank you.

Le présent courriel a été expédié par le système de courriels de la Ville d'Ottawa. Toute distribution, utilisation ou reproduction du courriel ou des renseignements qui s'y trouvent par une personne autre que son destinataire prévu est interdite. Si vous avez reçu le message par erreur, veuillez m'en aviser par téléphone (au numéro précité) ou par courriel, puis supprimer sans délai la version originale de la communication ainsi que toutes ses copies. Je vous remercie de votre collaboration.

This e-mail originates from the City of Ottawa e-mail system. Any distribution, use or copying of this e-mail or the information it contains by other than the intended recipient(s) is unauthorized. If you are not the intended recipient, please notify me at the telephone number shown above or by return e-mail and delete this communication and any copy immediately. Thank you.

Le présent courriel a été expédié par le système de courriels de la Ville d'Ottawa. Toute distribution, utilisation ou reproduction du courriel ou des renseignements qui s'y trouvent par une personne autre que son destinataire prévu est interdite. Si vous avez reçu le message par erreur, veuillez m'en aviser par téléphone (au numéro précité) ou par courriel, puis supprimer sans délai la version originale de la communication ainsi que toutes ses copies. Je vous remercie de votre collaboration.

This e-mail originates from the City of Ottawa e-mail system. Any distribution, use or copying of this e-mail or the information it contains by other than the intended recipient(s) is unauthorized. If you are not the intended recipient, please notify me at the telephone number shown above or by return e-mail and delete this communication and any copy immediately. Thank you.

Le présent courriel a été expédié par le système de courriels de la Ville d'Ottawa. Toute distribution, utilisation ou reproduction du courriel ou des renseignements qui s'y trouvent par une personne autre que son destinataire prévu est interdite. Si vous avez reçu le message par erreur, veuillez m'en aviser par téléphone (au numéro précité) ou par courriel, puis supprimer sans délai la version originale de la communication ainsi que toutes ses copies. Je vous remercie de votre collaboration.

This e-mail originates from the City of Ottawa e-mail system. Any distribution, use or copying of this e-mail or the information it contains by other than the intended recipient(s) is unauthorized. If you are not the intended recipient, please notify me at the telephone number shown above or by return e-mail and delete this communication and any copy immediately. Thank you.

Le présent courriel a été expédié par le système de courriels de la Ville d'Ottawa. Toute distribution, utilisation ou reproduction du courriel ou des renseignements qui s'y trouvent par une personne autre que son destinataire prévu est interdite. Si vous avez reçu le message par erreur, veuillez m'en aviser par téléphone (au numéro précité) ou par courriel, puis supprimer sans délai la version originale de la communication ainsi que toutes ses copies. Je vous remercie de votre collaboration.

APPENDIX B

Sanitary Sewer Information

SANITARY SEWER DESIGN SHEET

PROJECT : 113150 DESIGNED BY: ARM CHECKED BY: CJR DATE: 09-Dec-13 DATE REVISED:

	LOCATIO	Л						JOI	3S & POPULA	TION							PROPOSED	SEWER PIPE			CHECK
				Jobs	Population		CUMULATIVE		Jobs/Co	mmercial	Рори	lation	PEAK EXTRAN.	PEAK DESIGN		PIPE ID	TYPE OF		CAPACITY	FULL FLOW	Qpeak/
STREET	FROM	то	AREA (ha)	(per ha) 207	(per ha)	Jobs	POP.	AREA (ha)	PEAK FACTOR (M)	FLOW Q(p) (L/s)	PEAK FACTOR (M)	POP. FLOW Q(p) (L/s)	FLOW Q(i) (L/s) 0.28	FLOW Q(d) (L/s)	DIA. (mm)	(mm)	PIPE	SLOPE (%)	(L/s)	VELOCITY (m/s)	Qcap
Hamilton Av N	Orford	Dullaraa	4.05	047									The first								
Hamilton Av N	Oxford	Bullman	1.05	217	50	217	50	1.05	1.50	0.28	4.00	0.81	0.29	1.39	250	251.5	DR 35	0.24	29.6	0.60	4.7%
12 Storey Office	Bullman			2161	0	2161	0	1.05	1.50	2.81	4.00	0.00	0.29	3.11	250	251.5	DR 35	0.24	29.6	0.60	10.5%
Bullman	Hamilton	Parkdale	0.36	75	17	2453	67	2.46	1.50	3.19	4.00	1.09	0.69	4.97	250	251.5	DR 35	0.24	29.6	0.60	16.8%
Parkdale	Oxford	Bullman	1.30	269	62	2722	129	3.76	1.50	3.54	4.00	2.09	1.05	6.69	250	251.5	DR 35	0.24	29.6	0.60	22.6%
Parkdale	Bullman	Scott	0.75	155	36	2877	165	4.51	1.50	3.75	4.00	2.67	1.26	7.68	250	251.5	DR 35	0.24	29.6	0.60	26.0%
Scott		Parkdale	1.62	335	78	335	78	1.62	1.50	0.44	4.00	1.26	0.45	2.15	250	251.5	DR 35	0.24	29.6	0.60	7.3%
Scott	Parkdale	Pinehurst	0.17	35	8	3247	251	6.30	1.50	4.23	4.00	4.07	1.76	10.06	250	251.5	DR 35	0.24	29.6	0.60	34.0%
Scott	Pinehurst		2.25	466	108	3713	359	8.55	1.50	4.83	4.00	5.82	2.39	13.05	300	299.4	DR 35	0.19	41.9	0.60	31.1%
Scott		Carruthers	1.50	311	72	4024	431	10.05	1.50	5.24	4.00	6.98	2.81	15.04	300	299.4	DR 35	0.19	41.9	0.60	35.9%
Scott	Carruthers	Stirling	1.40	290	67	4314	498	11.45	1.50	5.62	3.98	8.02	3.21	16.84	300	299.4	DR 35	0.19	41.9	0.60	40.2%
Scott Scott	Stirling Pinhey	Pinhey Merton	1.47 1.72	304	71	4618	569	12.92	1.50	6.01	3.94	9.09	3.62	18.72	300	299.4	DR 35	0.19	41.9	0.60	44.7%
30011	Finney	werton	1.72	356	83	4974	652	14.64	1.50	6.48	3.91	10.33	4.10	20.91	300	299.4	DR 35	0.19	41.9	0.60	49.9%

Notes:

1. Q(d) = Q(p) + Q(i) , where

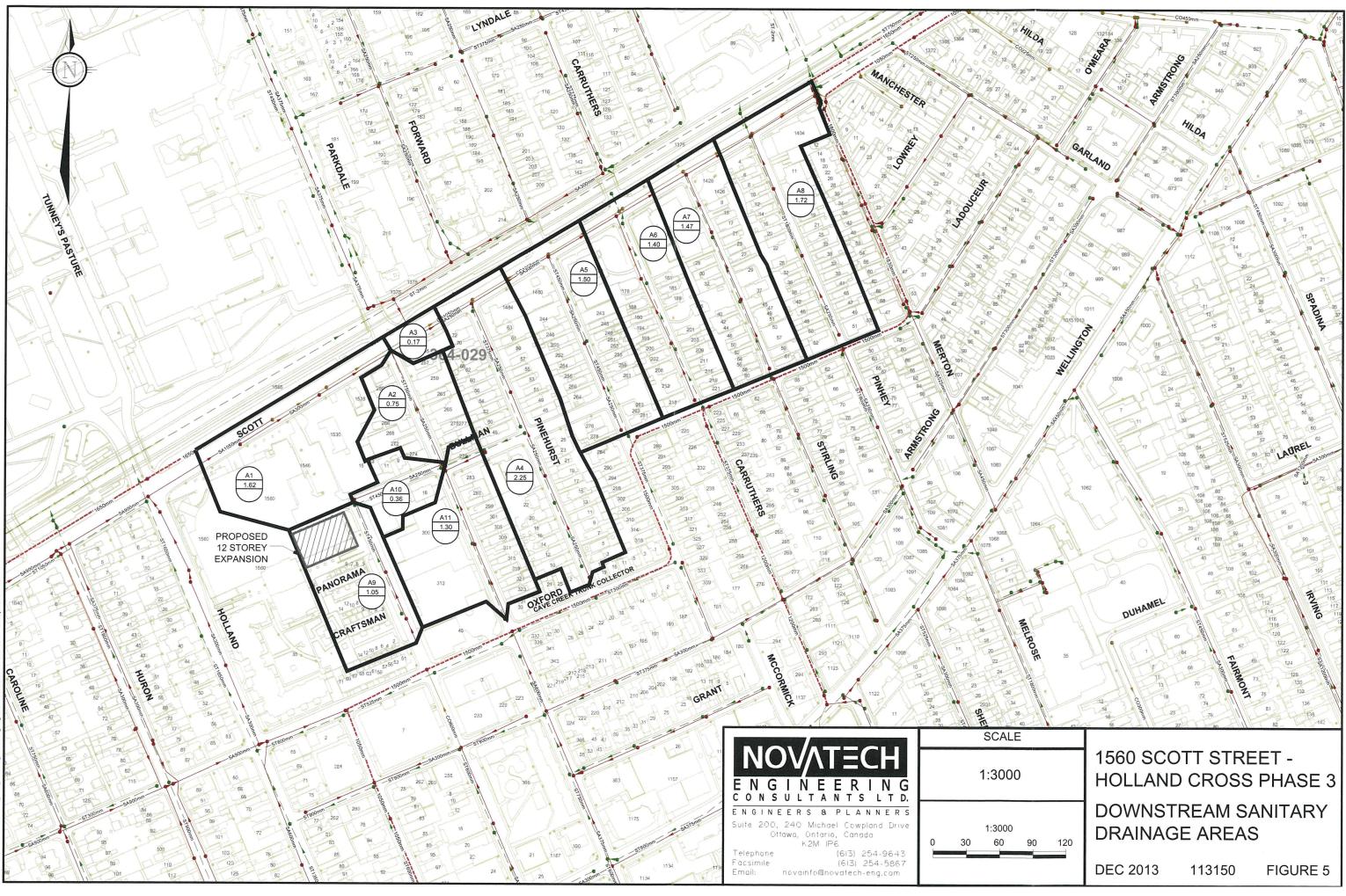
2. Q(i) = 0.28 L/sec/ha

Q(d) = Design Flow (L/sec) Q(p) = Population Flow (L/sec)

Q(i) = Extraneous Flow (L/sec)

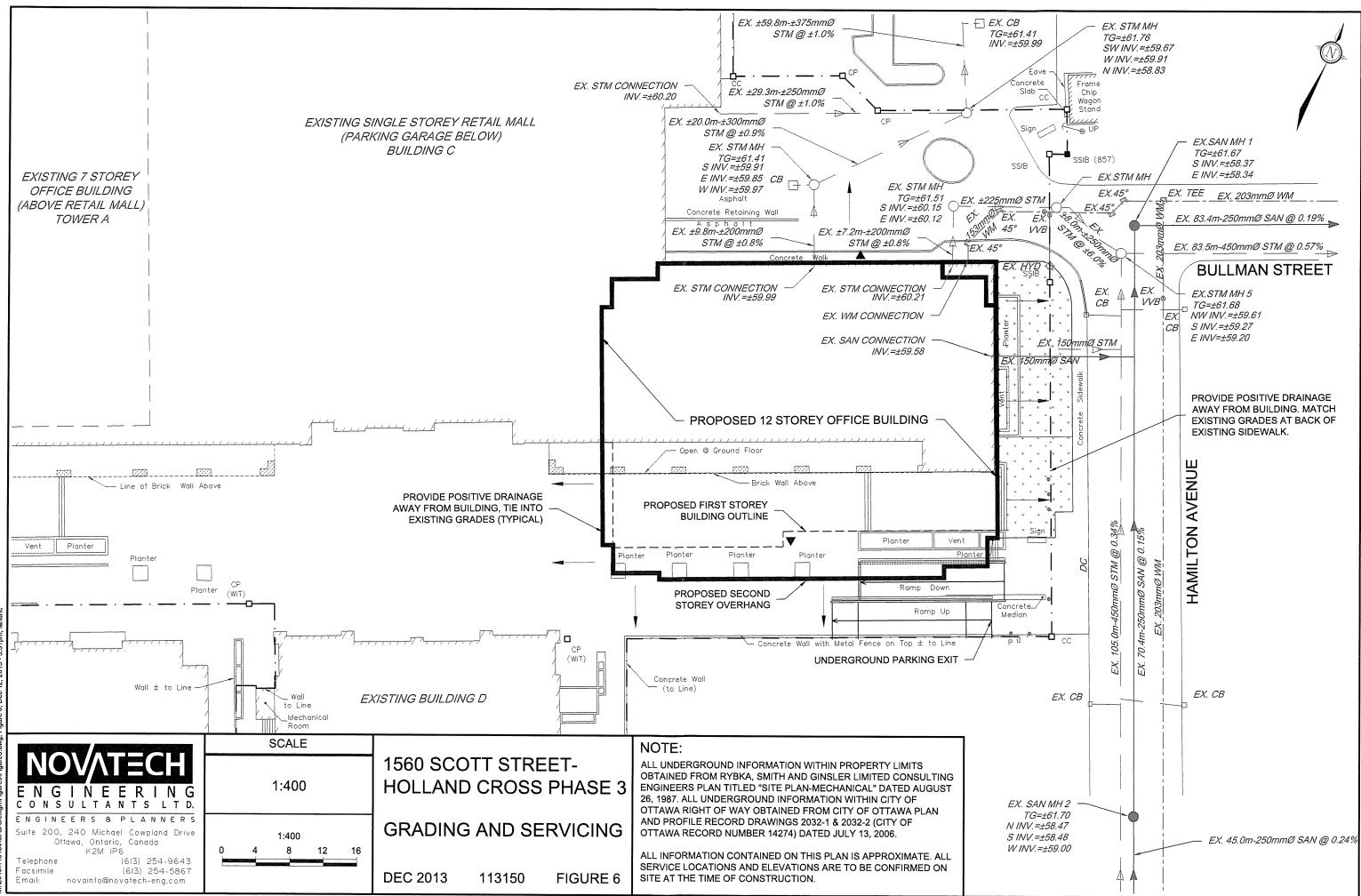
3. Q(p) = (PxqxM/86.4), where

P = Persons (Population = 48/ha, Jobs=207/ha) q = Average per capita flow = 350 L/cap/day M = Harmon Formula (maximum of 4.0)

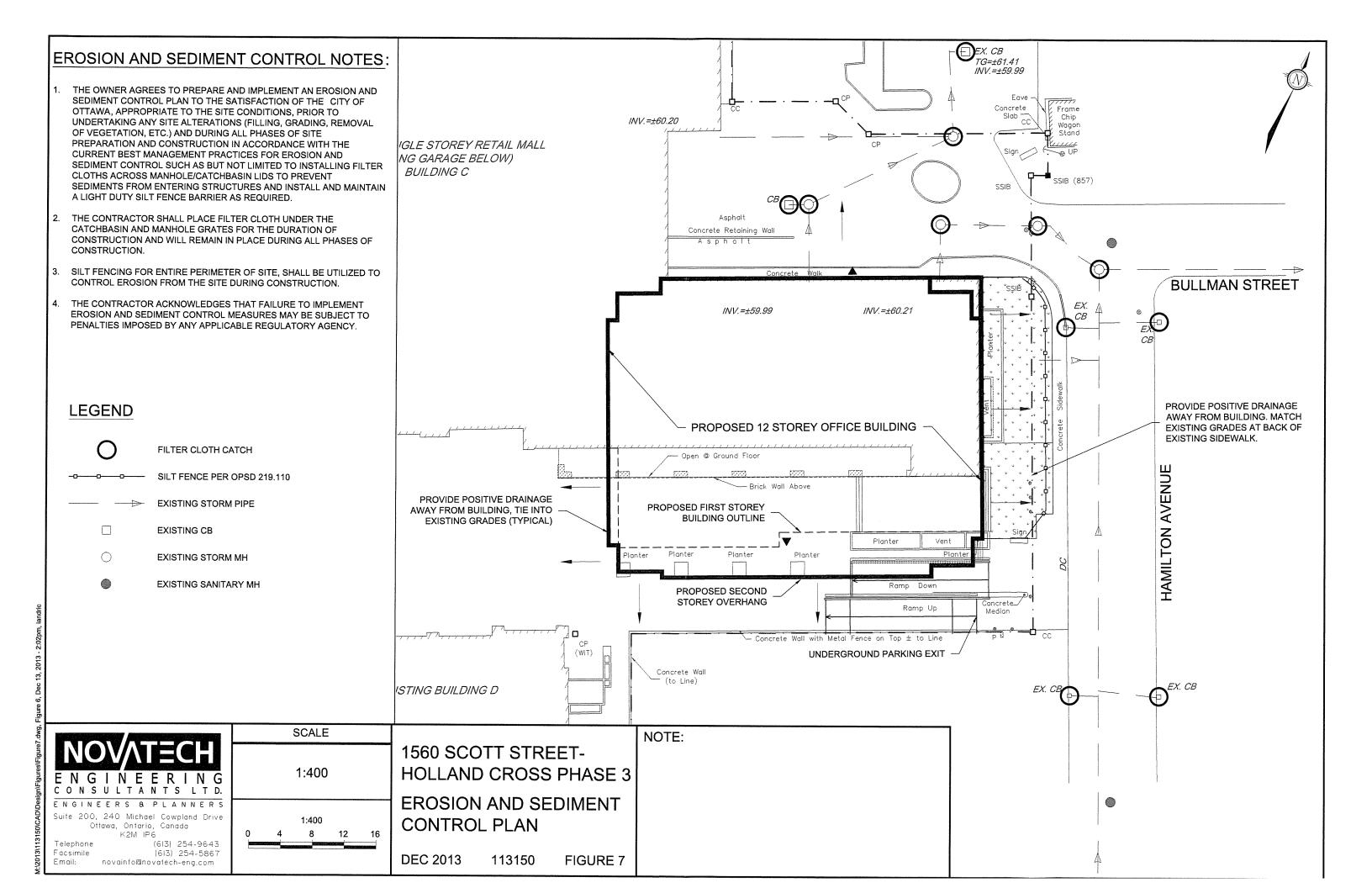

4. Depth of flow/Diameter from Hydraulic properties of circular pipes flowing partially full

5. Population/Jobs Target Density 2031 = 250/ha (17915 jobs, 4204 pop = 255/ha density at 2031) per Figure 30 for Tunney's-Quad area (Residential Land Strategy for Ottawa 2006-2031, City of Ottawa Feb 2009)

Breakdown	Jobs	Population
Projected	17915	4204
Percentage	81.0%	19.0%
At 255/ha =	207	48



* Note: Assumed minimum slope



APPENDIX C

Engineering Figures

13\113150\CAD\Design\Figures\Figure6.dwg. Figure 6. Dec 12. 2013

APPENDIX D

City of Ottawa Checklist

4.1 General Content	Addressed (Y/N/NA)	Section	Comments
Executive Summary (for larger reports only).	NA		
Date and revision number of the report.	Y		
Location map and plan showing municipal address, boundary, and	Y		
layout of proposed development.	Ť		
Plan showing the site and location of all existing services.	Y		
Development statistics, land use, density, adherence to zoning and			
official plan, and reference to applicable subwatershed and	N		Defente Dismine Detionals
watershed plans that provide context to which individual	N		Refer to Planning Rationale
developments must adhere.			
Summary of Pre-consultation Meetings with City and other approval	N		
agencies.	N		
Reference and confirm conformance to higher level studies and			
reports (Master Servicing Studies, Environmental Assessments,			
Community Design Plans), or in the case where it is not in	NA		
conformance, the proponent must provide justification and develop a			
defendable design criteria.			
Statement of objectives and servicing criteria.	Y		
Identification of existing and proposed infrastructure available in the immediate area.	Y		
Identification of Environmentally Significant Areas, watercourses and Municipal Drains potentially impacted by the proposed development (Reference can be made to the Natural Heritage Studies, if available).	NA		
Concept level master grading plan to confirm existing and proposed grades in the development. This is required to confirm the feasibility of proposed stormwater management and drainage, soil removal and fill constraints, and potential impacts to neighboring properties. This is also required to confirm that the proposed grading will not impede existing major system flow paths.	NA		The proposed building will occupy the majority of the site.

4.1 General Content	Addressed (Y/N/NA)	Section	Comments
Identification of potential impacts of proposed piped services on private services (such as wells and septic fields on adjacent lands) and mitigation required to address potential impacts.	NA		
Proposed phasing of the development, if applicable.	NA		
Reference to geotechnical studies and recommendations concerning servicing.	NA		
All preliminary and formal site plan submissions should have the following information:			
Metric scale	Y		
North arrow (including construction North)	Y		
Key plan	Y		
Name and contact information of applicant and property owner	Y		
Property limits including bearings and dimensions	Y		
Existing and proposed structures and parking areas	Y		
Easements, road widening and rights-of-way	Y		
Adjacent street names	Y		

4.2 Water	Addressed (Y/N/NA)	Section	Comments
Confirm consistency with Master Servicing Study, if available.	N		None Known
Availability of public infrastructure to service proposed development.	Y		
Identification of system constraints.	N		None Known
Identify boundary conditions.	Y		City supplied
Confirmation of adequate domestic supply and pressure.	Y		
Confirmation of adequate fire flow protection and confirmation that fire flow is calculated as per the Fire Underwriter's Survey. Output should show available fire flow at locations throughout the development.	Y		
Provide a check of high pressures. If pressure is found to be high, an assessment is required to confirm the application of pressure reducing valves.	Y		
Definition of phasing constraints. Hydraulic modeling is required to confirm servicing for all defined phases of the project including the ultimate design.	NA		No phasing planned
Address reliability requirements such as appropriate location of shut- off valves.	Y		
Check on the necessity of a pressure zone boundary modification.	NA		
Reference to water supply analysis to show that major infrastructure is capable of delivering sufficient water for the proposed land use. This includes data that shows that the expected demands under average day, peak hour and fire flow conditions provide water within the required pressure range.	Y		
Description of the proposed water distribution network, including locations of proposed connections to the existing system, provisions for necessary looping, and appurtenances (valves, pressure reducing valves, valve chambers, and fire hydrants) including special metering provisions.	Y		
Description of off-site required feedermains, booster pumping stations, and other water infrastructure that will be ultimately required to service proposed development, including financing, interim facilities, and timing of implementation.	NA		
Confirmation that water demands are calculated based on the City of Ottawa Design Guidelines.	Y		
Provision of a model schematic showing the boundary conditions locations, streets, parcels, and building locations for reference.	NA		

4.3 Wastewater	Addressed (Y/N/NA)	Section	Comments
Summary of proposed design criteria (Note: Wet-weather flow criteria should not deviate from the City of Ottawa Sewer Design			
Guidelines. Monitored flow data from relatively new infrastructure cannot be used to justify capacity requirements for proposed infrastructure).	Y		
Confirm consistency with Master Servicing Study and/or justifications for deviations.	N		
Consideration of local conditions that may contribute to extraneous flows that are higher than the recommended flows in the guidelines. This includes groundwater and soil conditions, and age and condition of sewers.	N		
Description of existing sanitary sewer available for discharge of wastewater from proposed development.	Y		
Verify available capacity in downstream sanitary sewer and/or identification of upgrades necessary to service the proposed development. (Reference can be made to previously completed Master Servicing Study if applicable)	Y		
Calculations related to dry-weather and wet-weather flow rates from the development in standard MOE sanitary sewer design table (Appendix 'C') format.	Y		
Description of proposed sewer network including sewers, pumping stations, and forcemains.	Y		
Discussion of previously identified environmental constraints and impact on servicing (environmental constraints are related to limitations imposed on the development in order to preserve the physical condition of watercourses, vegetation, soil cover, as well as protecting against water quantity and quality).	NA		
Pumping stations: impacts of proposed development on existing pumping stations or requirements for new pumping station to service development.	NA		
Forcemain capacity in terms of operational redundancy, surge pressure and maximum flow velocity.	NA		
Identification and implementation of the emergency overflow from sanitary pumping stations in relation to the hydraulic grade line to protect against basement flooding.	NA		
Special considerations such as contamination, corrosive environment etc.	NA		

4.4 Stormwater	Addressed (Y/N/NA)	Section	Comments
Description of drainage outlets and downstream constraints including legality of outlet (i.e. municipal drain, right-of-way, watercourse, or private property).	Y		
Analysis of the available capacity in existing public infrastructure.	Ν		Hard surface areas and theferore, storm flows are not being increased.
A drawing showing the subject lands, its surroundings, the receiving watercourse, existing drainage patterns and proposed drainage patterns.	Ν		Drainage patterns are not being altered.
Water quantity control objective (e.g. controlling post-development peak flows to pre-development level for storm events ranging from the 2 or 5 year event (dependent on the receiving sewer design) to 100 year return period); if other objectives are being applied, a rationale must be included with reference to hydrologic analyses of the potentially affected subwatersheds, taking into account long-term cumulative effects.	Y		
Water Quality control objective (basic, normal or enhanced level of protection based on the sensitivities of the receiving watercourse) and storage requirements.	N		The site will be roof and underground parking (sanitary sewer)
Description of stormwater management concept with facility locations and descriptions with references and supporting information.	Y		
Set-back from private sewage disposal systems.	NA		
Watercourse and hazard lands setbacks.	NA		
Record of pre-consultation with the Ontario Ministry of Environment and the Conservation Authority that has jurisdiction on the affected watershed.	NA		
Confirm consistency with sub-watershed and Master Servicing Study, if applicable study exists.	NA		
Storage requirements (complete with calcs) and conveyance capacity for 5 yr and 100 yr events.	Y		
Identification of watercourse within the proposed development and how watercourses will be protected, or, if necessary, altered by the proposed development with applicable approvals.	NA		
Calculate pre and post development peak flow rates including a description of existing site conditions and proposed impervious areas and drainage catchments in comparison to existing conditions.	NA		
Any proposed diversion of drainage catchment areas from one outlet to another.	NA		
Proposed minor and major systems including locations and sizes of stormwater trunk sewers, and SWM facilities.	NA		
If quantity control is not proposed, demonstration that downstream system has adequate capacity for the post-development flows up to and including the 100-year return period storm event.	NA		

4.4 Stormwater	Addressed (Y/N/NA)	Section	Comments
Identification of municipal drains and related approval requirements.	NA		
Description of how the conveyance and storage capacity will be achieved for the development.	NA		
100 year flood levels and major flow routing to protect proposed development from flooding for establishing minimum building elevations (MBE) and overall grading.	NA		
Inclusion of hydraulic analysis including HGL elevations.	NA		
Description of approach to erosion and sediment control during construction for the protection of receiving watercourse or drainage corridors.	NA		
Identification of floodplains – proponent to obtain relevant floodplain information from the appropriate Conservation Authority. The proponent may be required to delineate floodplain elevations to the satisfaction of the Conservation Authority if such information is not available or if information does not match current conditions.	NA		
Identification of fill constrains related to floodplain and geotechnical investigation.	NA		

4.5 Approval and Permit Requirements	Addressed (Y/N/NA)	Section	Comments
Conservation Authority as the designated approval agency for modification of floodplain, potential impact on fish habitat, proposed works in or adjacent to a watercourse, cut/fill permits and Approval under Lakes and Rivers Improvement Act. The Conservation Authority is not the approval authority for the Lakes and Rivers Improvement Act. Where there are Conservation Authority regulations in place, approval under the Lakes and Rivers Improvement Act is not required, except in cases of dams as defined in the Act.	NA		
Application for Certificate of Approval (CofA) under the Ontario Water Resources Act.	NA		
Changes to Municipal Drains.	NA		
Other permits (National Capital Commission, Parks Canada, Public Works and Government Services Canada, Ministry of Transportation etc.)	NA		

4.6 Conclusion	Addressed (Y/N/NA)	Section	Comments
Clearly stated conclusions and recommendations.	Y		
Comments received from review agencies including the City of Ottawa and information on how the comments were addressed. Final sign-off from the responsible reviewing agency.	Y		
All draft and final reports shall be signed and stamped by a professional Engineer registered in Ontario.	Y		

SITE SERVICING AND STORMWATER MANAGEMENT REPORT, HOLLAND CROSS OTTAWA, ON

Appendix F Drawings November 24, 2022

DRAWINGS

Appendix F

