403 Richmond Road

Transportation Impact Assessment

April 7, 2022

CIMA+ file number: A001046

403 Richmond Road

Transportation Impact Assessment

Prepared for: Starwood Group Inc.

115 Champagne Ave, South

Ottawa, Ontario

240 Catherine Street, Suite 110 Ottawa, Ontario, Canada K2P 2G8

CIMA+ file number: A001046 Lastest Revision: April 7, 2022

i

TIA Plan Reports

On 14 June 2017, the Council of the City of Ottawa adopted new Transportation Impact Assessment (TIA) Guidelines. In adopting the guidelines, Council established a requirement for those preparing and delivering transportation impact assessments and reports to sign a letter of certification.

Individuals submitting TIA reports will be responsible for all aspects of development-related transportation assessment and reporting, and undertaking such work, in accordance and compliance with the City of Ottawa's Official Plan, the Transportation Master Plan and the Transportation Impact Assessment (2017) Guidelines.

By submitting the attached TIA report (and any associated documents) and signing this document, the individual acknowledges that s/he meets the four criteria listed below.

CERTIFICATION

- 1. I have reviewed and have a sound understanding of the objectives, needs and requirements of the City of Ottawa's Official Plan, Transportation Master Plan and the Transportation Impact Assessment (2017) Guidelines;
- 2. I have a sound knowledge of industry standard practice with respect to the preparation of transportation impact assessment reports, including multi modal level of service review;
- 3. I have substantial experience (more than 5 years) in undertaking and delivering transportation impact studies (analysis, reporting and geometric design) with strong background knowledge in transportation planning, engineering or traffic operations; and
- 4. I am either a licensed¹ or registered² professional in good standing, whose field of expertise [check $\sqrt{\text{appropriate field(s)}}$] is either transportation engineering \square or transportation planning \square .
- License of registration body that oversees the profession is required to have a code of conduct and ethics guidelines that will ensure appropriate conduct and representation for transportation planning and/or transportation engineering works.

City Of Ottawa Infrastructure Services and Community Sustainability Planning and Growth Management 110 Laurier Avenue West, 4th fl. Ottawa, ON K1P 1J1

Tel.: 613-580-2424 Fax: 613-560-6006 Ville d'Ottawa Services d'infrastructure et Viabilité des collectivités Urbanisme et Gestion de la croissance 110, avenue Laurier Ouest Ottawa (Ontario) K1P 1J1 Tél.: 613-580-2424 Télécopieur: 613-560-6006

Dated at	Burlington	this	7th	day of	April	, 2022 _.
	(City)					
Name:	Ste	phen Ke	en			
rvarre.	<u> </u>	риси ке	<u> </u>	(Please Print)	
Professional	Title: <u>Ser</u>	ior Dire	ctor, C	IMA Cana	da Inc.	
		6	Kes	34		
		-				

Office Contact Information (Please Print)				
Address:	400–3027 Harvester Road			
City / Postal Code:	Burlington, ON L7N 3G7			
Telephone / Extension:	289-288-0287 ext. 6834			
E-Mail Address:	stephen.keen@cima.ca			

Signature of Individual certifier that s/he meets the above four criteria

Stamp

Table of Contents

1.	Step 1 - Screening Form	1
2.	Step 2 - Scoping	1
2.1	Existing and Planned Conditions	
	Description of Proposed Development	
	Existing Conditions	
	Area Road Network	4
	Study Area Intersections	
	Existing Driveways to Adjacent Development	6
	Pedestrian/Cycling Network	9
	Transit Network	
	Area Traffic Management	
	Peak Hour Travel Demands	
	Existing Road Safety Conditions	
	Planned Conditions	21
	Study Area Transportation Network Changes	
	Other Area Development	
2.2 S	Study Area and Time Periods	24
	Study Area	
	Time Periods	
	Horizon Years	
2.3 E	Exemptions Review	25
3.	Step 3 – Forecasting	26
3.1	Development-Generated Travel Demand	26
	Trip Generation	
	Travel Mode Shares	
	Trip Distribution	28
	Trip Assignment	
3.2	Background Network Travel Demands	
	Transportation Network Plans	
	Other Area Developments	
	Background Growth	
3.3	Demand Rationalization	
	Existing and Background Conditions	
	Adjustments to Background Network Demands	
	Total Projected Conditions	
Cton	Adjustments to Site-Generated Demand	
Step	4 – Analysis	40
4.1	Development Design	
	Design for Sustainable Modes	
	Circulation and Access	
	New Street Networks	
4.2	Parking	
	Parking Supply	
	Vehicular parking	
	Bike Parking	
4.0	Spillover parking	
4.3	Boundary Street Design	
	Mobility	
	Segment MMLOS Summary	
	Pedestrian LOS	
	Bike LOS Transit LOS	
	Truck LOS	
	Truck LOS	

	Road Safety	
1 1	Neighbourhood Traffic Management (NTM)	
4.4	Access Intersection Design	
	Intersection Control	
	Intersection Design	
	Intersection MMLOS Summary	
	Pedestrian LOSBike LOS	
	Transit LOS	
	Truck LOS	
	Auto LOS	49
4.5	Transportation Demand Management	
4.6	Neighbourhood Traffic Management	
4.7	Transit	
	Transit Priority	
4.8	Review of Network Concept	
4.9	Intersection Design	
	Intersection Control	
5.	Findings and Recommendations	
	t of Tables	
	1: OC Transpo Stop Information	
	2: OC Transpo Route Information	
	3: Area Development	
	4: Module Exemption Review	
	5: ITE Trip Generation Rates	
	6: Modified Person Site Trip Generation (Phase 1 & Phase 2)	
	7: Projected Vehicular Site Trip Generation	
	8: Study Area Intersection Operations - Existing Conditions	
	9: Study Area Intersection Operations - 2025 and Beyond Background Conditions	
Table	10: Study Area Intersection Operations - Total Projected Conditions (2025, 2030)	37
	11: Existing Transit Facilities	
	12: Vehicular Parking Supply	
	13: Bike Parking Supply	
	14: Segment MMLOS – Existing LOS(Target LOS)	
Table	15: Historical Collision Data Summary by Road Segment	46
	16: Historical Collision Data Summary by Intersection	
Table	17: Summary of Pedestrian Collisions	47
Table	18: Intersection MMLOS – Existing LOS(Target LOS)	49
Lis	t of Figures	
	e 1: Local Context	2
_	e 2: Proposed Development Concept Plan	
_	e 3: Adjacent Driveways	
	e 4: Existing Pedestrian Network	
_	e 5: Existing Cycling Network	
. Igaic	, og ojomig i totto it	1 1

Figure 6: Transit Routes Within Study Area (Source: OC Transpo System Map)	13
Figure 7: Transit Stops Within Study Area	14
Figure 8: Area Traffic Management	15
Figure 9: Existing Vehicular Volumes AM(PM)	17
Figure 10: Existing Volumes AM(PM) - Non-motorists	18
Figure 11: Collision Frequency	20
Figure 12: Connectivity Projects Near Dominion Station	21
Figure 13: Upcoming Constructions and Infrastructure Projects	23
Figure 14: 'New' Projected Site-Generated Traffic	29
Figure 15: 'Pass-by' Projected Site-Generated Traffic	30
Figure 16: Combined Volumes from Adjacent TIA Studies	31
Figure 17: Background Traffic Volumes (2025, 2030)	32
Figure 18: Total Projected Traffic Volumes (2025,2030)	37
Figure 19: Circulation and Access	42
Figure 20: Road Classification	44

List of Appendices

Appendix A - Traffic Count Data

Appendix B - Collision Data

Appendix C – Excerpts from 371 Richmond Road, 386 Richmond Road, 319 - 327 Richmond Road and Byron-Ravenhill Complex

Appendix D – Existing and Background Conditions Output Data

Appendix E – Total Projected Conditions Output Data

Appendix F – Transportation Demand Management (TDM) Supportive Development Design and Infrastructure Checklist

Appendix G – Segment MMLOS

Appendix H - Collision Analysis

Appendix I – Intersection MMLOS

Appendix J – TDM Checklist

Appendix K - Transit Map

Appendix L - Transit Ridership Data

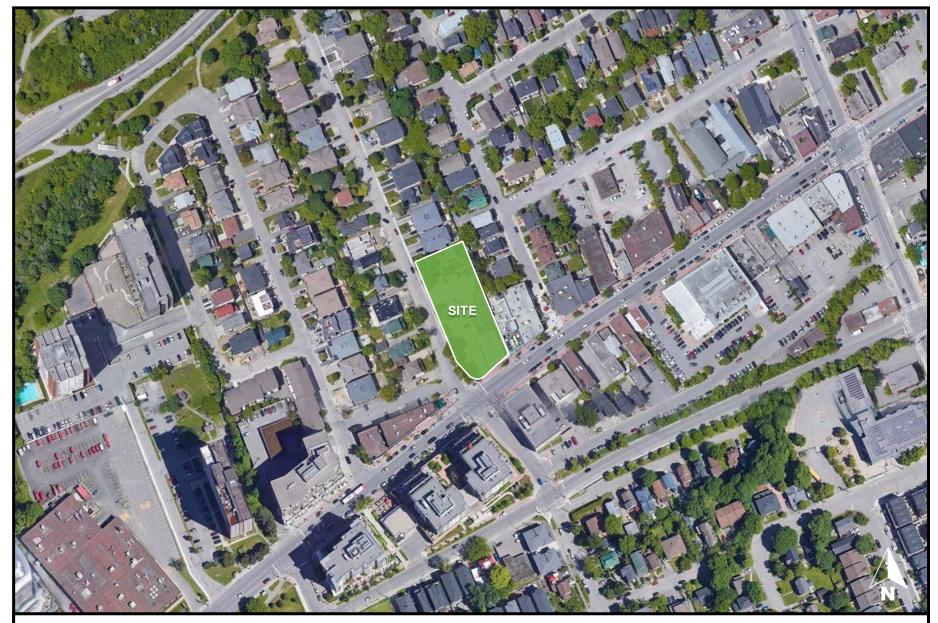
1. Step 1 - Screening Form

With respect to the City of Ottawa's 2017 Transportation Impact Assessment (TIA) Guidelines, the proposed development (described below in Section 2.1) triggered the trip generation, location, and the safety criteria outlined in the City's TIA Step 1 – Screening form. Given these three (3) triggers were met, a formal TIA (i.e. completed Steps 1-5) must accompany the subject development application.

2. Step 2 - Scoping

2.1 Existing and Planned Conditions

Description of Proposed Development


The subject site is municipally known as 403 Richmond Road and 389 Roosevelt Avenue, and is currently bound by Richmond Road to the south, Roosevelt Avenue to the west, commercial/residential land uses to the east and residential land uses to the north. Based on the available/provided information, the subject site is currently occupied by a funeral home (403 Richmond Road) and a single family home (389 Roosevelt Avenue) and is planned to be replaced by a 9 storey mix-used building with 141 residential units, a 10th floor amenity space and 5,283 ft² of ground floor commercial space. The development will be constructed in a single phase, with an estimated build-out year of 2025.

The latest Concept Plan depicts that the development will have one vehicular full-movement access point utilizing the existing driveway connection at Roosevelt Avenue, which is to the west of the site. All parking will be provided in an underground parking facility with access/egress located on the back side of the building. There will be no vehicular access point from Richmond Road (i.e. the existing driveway connection to Richmond Road will be closed).

Pedestrians will have direct access to existing sidewalks along both Roosevelt Avenue and Richmond Road, which connects with a well-developed surrounding pedestrian network. Cyclists will be able to use the dedicated cycling network along Scott Street to the north, or Byron Avenue to the south to access the City's established off-road cycling network. The surrounding active transportation network also provides convenient access to/from the public transit via the existing BRT Dominion station, as well as local bus service along Richmond Road and Churchill Avenue.

The local context of the subject development site is provided in the following **Figure 1**, and the proposed Concept Plan is provided in the subsequent **Figure 2**.

Figure 1: Local Context

rla/architecture

3D VIEW LOOKING FROM ROOSEVELET AVE. SCALE

26/07/2021

PLOT DATE: 2022-03-25 3:19:35 PM

PLOT SCALE: 1:1

403 Richmond Road and 389 Roosevelt Ave. The Hazelton Westboro

D401

SHEET#

Existing Conditions

Area Road Network

Richmond Road is a two-lane arterial roadway (i.e. one travel lane per direction) south of the subjected site. It extends from the Island Park Drive in the east and continue as Robertson Road in the west. Within the vicinity of the subject site, the speed limit is not posted (the statutory speed limit is 50 km/h), and on-street parking is permitted along both sides of the roadway between Golden Avenue and Churchill Avenue.

Roosevelt Avenue is a two-lane local roadway (i.e. one travel lane per direction) west of the subject site. It extends from the Cole Avenue South in the south and terminates south of the Transitway. Within the vicinity of the subject site, the posted speed limit is 40 km/h, and on-street parking is not permitted along either side of the roadway between Richmond Road and Byron Avenue, on the west side of the road north of Richmond Road, and in addition, that on-street parking is not permitted on either side of the roadway adjacent to the site (i.e. from Richmond Road to approximately 80 m north of Richmond Road).

Churchill Avenue North is a two-lane major collector roadway (i.e. one travel lane per direction), which extends north-south from Ferndale Avenue in the north and it terminates at the HWY 417 in the south. Its classified as arterial roadway between Richmond Road and Scott Street, a major collector between Richmond Road and HWY 417 and it is a local road between Scott Street and Ferndale Avenue. Within the vicinity of the subject site, the speed limit is not posted (the statutory speed limit is 50 km/h), and on-street parking is generally permitted along both sides of the roadway.

Byron Avenue is a two-lane collector roadway (i.e. one travel lane per direction), which extends from the Richardson Avenue in the west to Holland Avenue in the east. Within the vicinity of the subject site, the speed limit is not posted (the statutory speed limit is 50 km/h), and on-street parking is not permitted along either side of the roadway between Golden Avenue and Churchill Avenue.

Golden Avenue is a two-lane local roadway (i.e. one travel lane per direction), it extends from Tillbury Avenue in the south to Richmond Road in the north. Within the vicinity of the subject site, the speed limit is not posted (the statutory speed limit is 50 km/h), and on-street parking is permitted along the east side of the roadway between Richmond Road and Byron Avenue.

Study Area Intersections

Richmond/Golden

The Richmond/Golden intersection is a signalized, four-legged intersection. The eastbound approach consists of one shared through and left turn lane and an exclusive right-turn lane. The remaining north, south and westbound approaches consist of a single shared lane that accommodates all movements. It should be noted that the southbound approach is a private driveway connection.

All movements are permitted at this location. The crosswalk type is standard transverse marking, and a bike box is provided on the northbound approach.

Richmond/Roosevelt

The Richmond/Roosevelt intersection is a signalized four-legged intersection. All approaches consist of a single shared lane that accommodates all movements.

All movements are permitted at this location. However, it should be noted that heavy vehicles are not permitted on Roosevelt Avenue, south of Richmond Road. The crosswalk type is standard transverse marking, and no cycling accommodation.

Richmond/Churchill

The Richmond/Churchill intersection is a signalized four-legged intersection. The north and southbound approaches consist of a single lane that accommodates all movements. The east and westbound approaches consist of a single shared through/right-turn lane and a single auxiliary left-turn lane.

All movements are permitted at this location. The crosswalk type is zebra stripe high visibility marking, and no cycling accommodation.

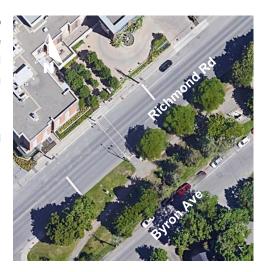
Byron/Roosevelt

The Byron/Roosevelt intersection is a signalized four-legged intersection. All approaches consist of a single lane that accommodates all possible movements.

All movements are permitted at this location. The crosswalk type is standard transverse marking. The eastbound cycling lane is painted green through the intersection with respect to cycling accommodation.

Byron/Churchill

The Byron/Churchill intersection is a signalized four-legged intersection. The east and westbound approaches consist of a single lane that accommodates all movements. The north and southbound approaches consist of a single shared through/right-turn lane and a single left-turn lane.


All movements are permitted at this location. However, it should be noted that heavy vehicles are not permitted on Byron Avenue, east of Churchill Avenue North. The crosswalk type is zebra stripe high visibility marking, and no cycling accommodation. The eastbound cycling lane is painted in dashed lines through the intersection with respect to cycling accommodation.

Richmond/Pedestrian Crossing

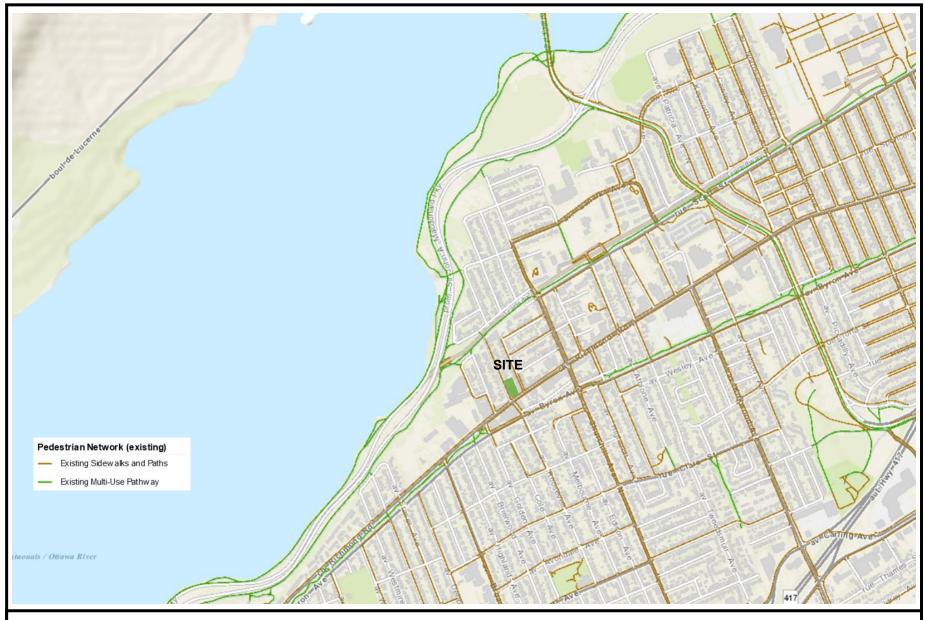
The Richmond Road signalized pedestrian crosswalk connects to pedestrian sidewalks and the Byron Multi-use Pathway (MUP). The eastbound approach consists of two through lanes, and the westbound approach one through lane. This signal is activated by a pedestrian pushbutton.

The crosswalk type is standard transverse marking, and no cycling accommodation.

Existing Driveways to Adjacent Development

There are approximately 162 driveways within a 200 m boundary of the site. Approximately 90% of the driveways provide access/egress for private, low-rise residential land uses, such as single-family homes and townhouses, and no driveways are provided directly to Richmond Road within the study area, with the exception to the MEC Ottawa

store and a Scotia Bank (both stores have a full-movement driveway connection, west of their store fronts). The majority of land uses along Richmond Road have rear yard access/egress (i.e. no direct access to/from Richmond Road). Detailed driveway location and associated land uses are depicted in the following **Figure 3**.


Figure 3: Adjacent Driveways

Pedestrian/Cycling Network

The network for active transportation modes in the vicinity of the subject site is fairly well developed. Sidewalks on Richmond Road, Churchill Avenue North, Golden Avenue (between Richmond and Byron), and Byron Avenue (between Golden and Roosevelt) are provided along both sides of the roadway. Along Roosevelt Avenue, sidewalks are only provided on the east side of the roadway, along the subject site's frontage. Along Byron Avenue, between Roosevelt and Churchill Avenue North, a sidewalk is only provided on the south side of the roadway. A bi-directional multi-use pathway (MUP) is provided along the north side of Byron Avenue west past Golden Avenue and east past Eden Avenue. In addition to the Byron Avenue MUP, there is an existing eastbound bike lane on the south side of Byron Avenue beginning at Golden Avenue, connecting the MUP and the cycle tracks on Churchill Avenue, south of Byron Avenue. To the north of the site, there is an entrance to the MUP network at the north end of Roosevelt Avenue. This provides connections to the City's extensive MUP network (e.g. NCC MUPs, MUP along Scott Street, etc.).

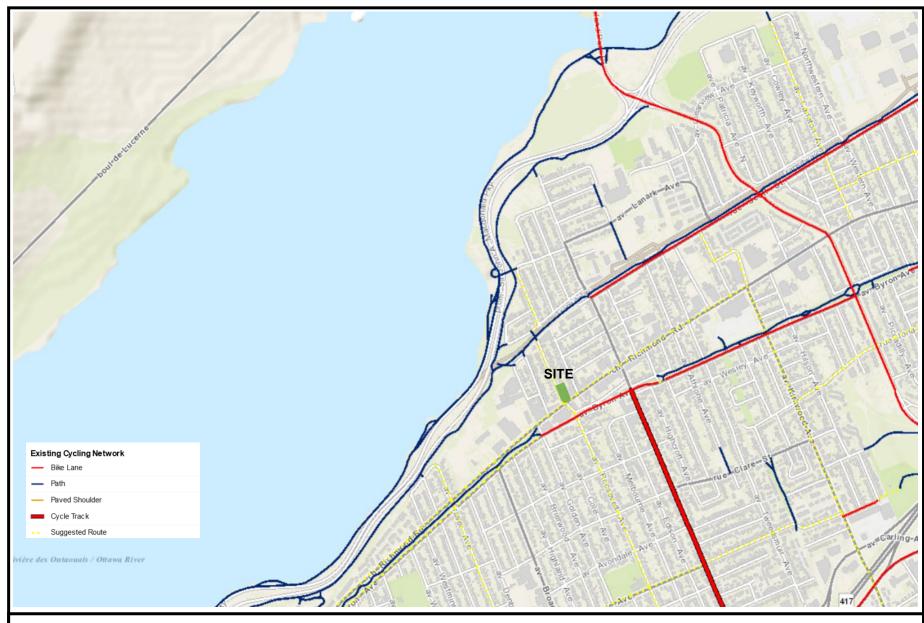

The existing pedestrian/cycling network within the vicinity of the subject site, and how it connects to the greater network for active modes is depicted as **Figure 4** and **Figure 5**, as sourced from the City's online maps (i.e. GeoOttawa).

Figure 4: Existing Pedestrian Network

Figure 5: Existing Cycling Network

Transit Network

OC Transpo currently provides high-order BRT transit service within the vicinity of the subject site. The Dominion BRT Station, located in the north, is approximately 500 m (approximate 6 min) walking distance to/from the proposed development site. Given this close proximity, the subject development will benefit from convenient access to/from OC Transpo's Rapid Transit network, which will reduce the reliance on the private automobile.

In addition to the BRT service, there are eight (8) OC Transpo local transit bus stops that are located within walking distance to/from the subject development site. The following **Table 1** summarizes existing bus stops, their associated routes and direction of travel.

Table 1: OC Transpo Stop Information

Stop #	Location	Route Identifier	Direction
#3013	500 m of (6 min) walking distance north west from the site	57,61,62,63,74,75,83,87	East/Westbound
#7406	Immediately east of Richmond/Roosevelt	11,153	Westbound
#2436	Immediately east of Richmond/Roosevelt	11,153	Eastbound
#4876	Immediately west of Richmond/Churchill	11,153	Westbound
#4987	Immediately north of Richmond/Churchill	153	Northbound
#5616	Immediately north of Richmond/Churchill	153	Southbound
#4870	Immediately east of Richmond/Churchill	11	Eastbound
#4922	Immediately west of Richmond/Golden	11,153,57,61,62,63,74,75,83,87	Westbound
#4941	Immediately west of Richmond/Golden	11,153	Eastbound
Note:	Routes in red were detoured from Sir John A. I The detour schedule is every Saturday and Su		

The following **Figure 6** depicts the OC Transpo routes within the vicinity of the development, and **Table 2** provides additional information with respect OC Transpo service identified in **Table 1**.

Figure 6: Transit Routes Within Study Area (Source: OC Transpo System Map)

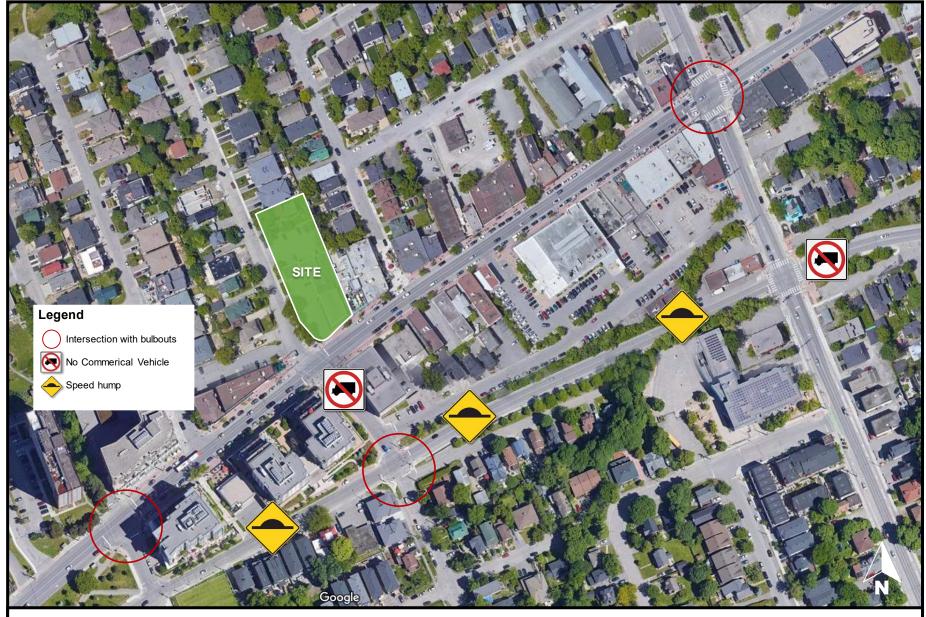
Table 2: OC Transpo Route Information

Route	Origin/Destination	Service Type	Peak Hour Headway
11	Bayshore ↔ Parliament	Frequent	15 min
153	Tunney's Pasture ↔ Lincoln Field	Local	1 schedule
57	Tunney's Pasture/N Rideau/Gatineau ↔ Bells Corners	Frequent	10 - 20 min
61	Tunney's Pasture/N Rideau/Gatineau ↔ Stittsville	Rapid	15 min
62	Tunney's Pasture ↔ Stittsville &Terry Fox	Rapid	30 min
63	Briarbrook ↔ Tunney's Pasture	Rapid	15 min
74	Tunney's Pasture ↔ Riverview	Rapid	15 min
75	Barrhaven Centre ↔ Gatineau	Rapid	15 min
83	Tunney's Pasture ↔ Viewmount	Local	15 min
87	Tunney's Pasture ↔ Baseline	Frequent	15 - 30 min

Based on information provided by the City, it should be noted that the main local transit service within the study area is provided by the Route 11 and Route 153, which utilize transit stops along Richmond Road. The two closest regular transit stops, #7406 and #2436 are immediately south to the site, 3 m (approx. <1 min) and 35 m (approx. <1 min) of walking distance from the subject development, respectively. Stop #7406 provides transit service for westbound buses that connect to Bayshore Station and stop #2436 provides transit service for eastbound buses that connect to Tunney's Pasture LRT station. The Dominion BRT station provides transit access to the city's BRT network, with a nearby transfer to the Confederation LRT line at Tunney's Pasture. Additionally, the BRT network west of Tunney's Pasture will be converted to LRT as a part of the City's Stage 2 LRT project (including the study area Dominion BRT station), to be completed by the year 2025 (before the completion of 403 Richmond).

The following Figure 7 identifies transit stop locations with the vicinity of the subject development site.

Figure 7: Transit Stops Within Study Area


Area Traffic Management

Within the study area, the following traffic measures are provided:

- Bulb outs at the following intersections:
 - + Richmond/Golden;
 - + Byron/Roosevelt; and
 - Richmond/Churchill.
- Speed humps and speed limit signs between the Byron/Churchill and Byron/Golden intersections
- Prohibition of heavy vehicles to enter south leg of the Roosevelt/Richmond intersection and the east leg of the Byron/Churchill intersection

The following Figure 8 highlights some of the traffic calming measures provided within the study area.

Figure 8: Area Traffic Management

Peak Hour Travel Demands

For the purpose of this assessment and based on discussions with City Staff, the following study area intersections have been identified for intersection capacity analysis:

- Richmond/Golden
- + Richmond/Roosevelt
- + Richmond/Churchill
- + Byron/Roosevelt
- + Byron/Churchill
- Richmond/Pedestrian Crossing

The following **Figure 9** depicts observed weekday morning and afternoon peak hour vehicle volumes at the study area intersections and **Figure 10** depicts pedestrian and cyclist volumes over the same peak hours. Detailed traffic volume data is provided in **Appendix A**. It should be noted that, no volume balancing was applied to the network as the volume imbalances falls within/around 10% between adjacent intersections. One outlier is the eastbound volume from Richmond/Golden to Richmond/Roosevelt during AM peak hour, where the imbalance is 17%. However, since both upstream and downsteam intersection volumes remain within 10%, and there is a unsignalized intersection in between (Richmond/Berkley), volume imbalances can be explained by people tuning southbound left out of Berkley Avenue during the AM peak. As such, no volume balancing was applied in order to preserve the count observations.

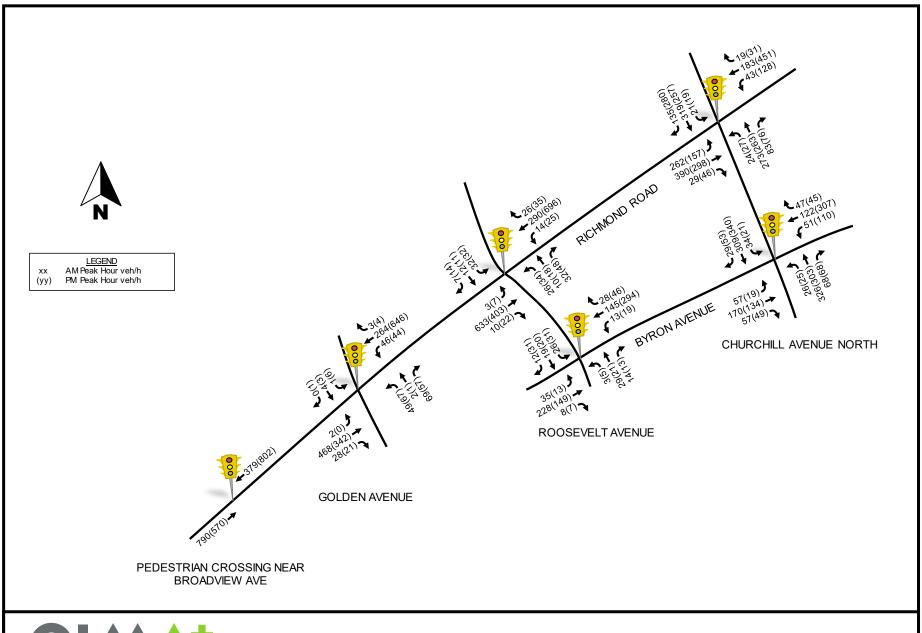


Figure 9: Existing Vehicular Volumes AM(PM)

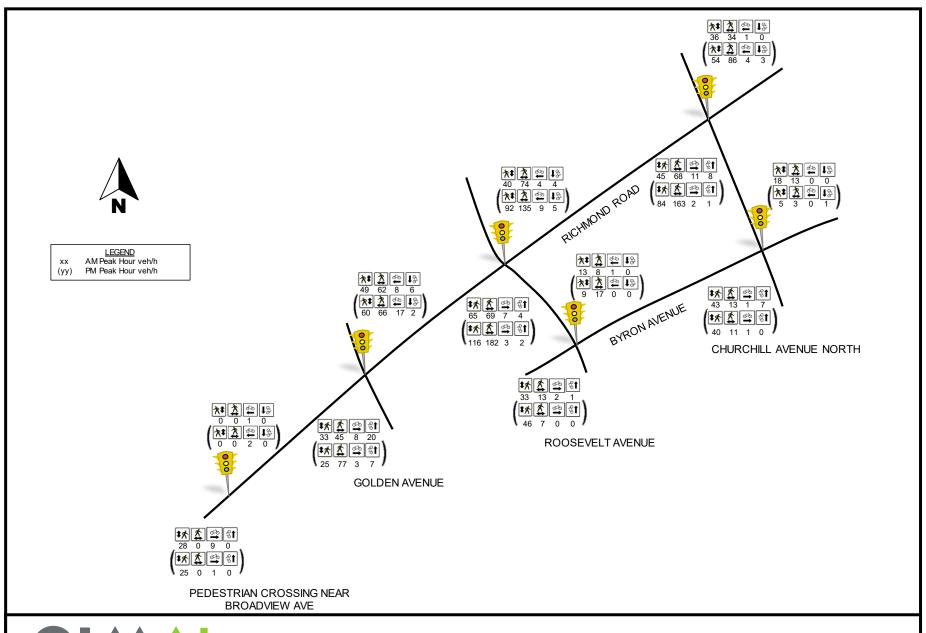
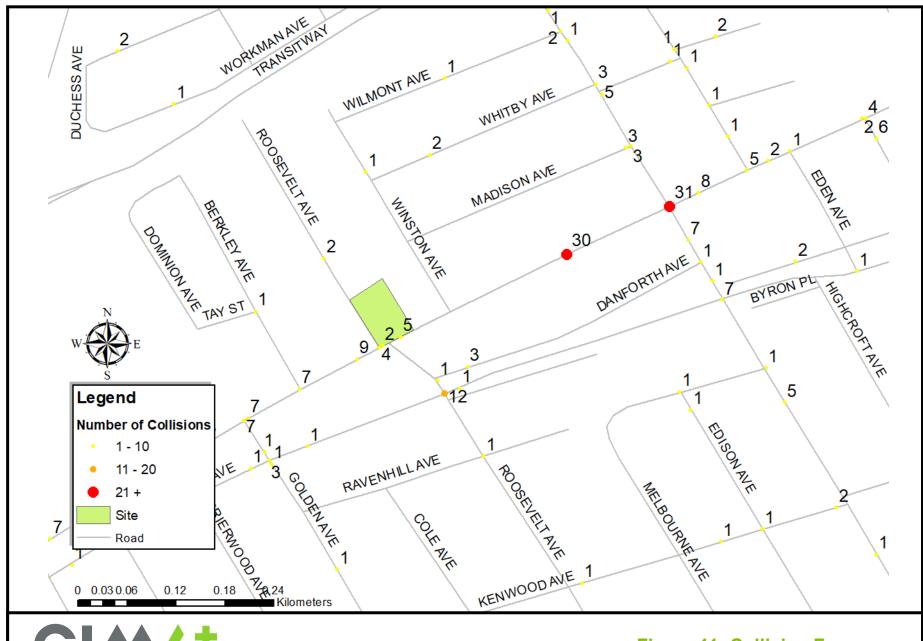


Figure 10: Existing Volumes AM(PM) – Non-motorists

Existing Road Safety Conditions


The most recent collision history for the past five (5) years was obtained from the City (i.e. available collision data for the years 2014 – 2018, inclusive). The collision data includes all collisions occurring at intersections and roadway segments within the study area surrounding the subject development site.

Based on the most recent available historical collision data, the five-year total number of recorded collisions within the study area is 131. Most collisions within the study area (a total of 117 collisions, or 82%) resulted in property damage only, and the remaining collisions resulted in personal injuries (a total of 25 collisions, or 18%). The most frequent types of collisions, as cited by police, were rear-end (23%), SMV (20%) and angle (19%) type collisions. The following **Figure 11** is a map that depicts the locations and total number of collisions within the study area.

It should be noted that within the five (5) years of recorded collision data, there were seven (7) collisions involving pedestrians. These reported collisions involving pedestrians were non-fatal; however, personal injuries were reported for all collisions.

The source collision data is provided in **Appendix B**, and a more detail collision analysis is included in the subsequent *Step 4 - Analysis* section of this report.

Figure 11: Collision Frequency

Planned Conditions

Study Area Transportation Network Changes

Transit Projects

According to City's Transportation Master Plan (TMP), transit signal priority and queue jump lanes are planned for selected intersections along Richmond Road between Woodroffe Avenue and Bank Street. This network change is identified as part of the City's planned 2031 Affordable Network.

The existing Ottawa West BRT route will be upgrade to LRT as part of the City's Stage 2 LRT extension project, with a planned completion date of 2025. This upgrade will include the reconstruction of the Dominion Station and enhanced active mobility infrastructure through the Byron-Richmond Corridor. The following **Figure 12** depicts the planned construction and upgrades, near the Dominion Station¹.

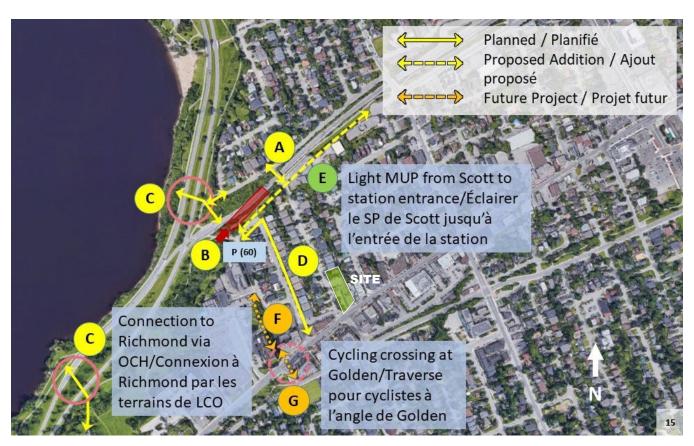


Figure 12: Connectivity Projects Near Dominion Station

As depicted in **Figure 12**, the following should be noted:

Planned

- A. Replacement of pedestrian bridge over rail corridor at Roosevelt Street.
- B. Station plaza with three (3) Passenger Pick-up and Drop-off (PPUDO) parking spaces and bicycle parking for 60 bikes with space allocated to double in future when required.

¹ Stage 2 LRT Station Connectivity Enhancement Study, City of Ottawa

- C. New at-grade pedestrian signalized crosswalk at Sir John A. Macdonald Parkway and Rochester Field and at Dominion Station with a pedestrian connection to Workman Avenue.
- D. New sidewalk along Dominion Avenue and Berkley Avenue to connect to Richmond Road sidewalk.

Proposed Enhancements

E. Multi-use Pathway (MUP)with lighting along south side of alignment between Dominion Station and Churchill Street.

Feasibility Assessment

- F. Provide MUP connection through Ottawa the Community Housing Lands.
- G. Provide signalized cycling crossing at Golden Avenue and Richmond Road.

Cycling Projects

City of Ottawa is planning to divert the Crosstown Bikeway #2 alignment from Churchill (Scott to Richmond) and Richmond (Churchill to Golden) due to the insufficient space in the roadways for dedicated cycling infrastructure due to existing commercial buildouts and well-established on-street parking. The planned alternate route would be along Scott Street west of Churchill and along Dominion and through the 445 Richmond property. The plan will be presented to the public and formalized after the new Active Transportation Plan is approved by Council, expected in 2022-3.

Richmond and Roosevelt will remain a designated cycling route after the relocation of the Crosstown Bikeway. Cycling enhancements may applied to Roosevelt Avenue, including markings such as sharrows and bike route signage.

A new bikeway route would follow the east-west MUP to be built as part of the Stage 2 LRT implementation from Churchill to Dominion. Although cyclists could continue west of the new station and reach the Ottawa River Pathway on a new MUP crossing of SJAM Parkway, the bikeway would turn south onto Dominion Street, travel south along this quiet street for 150 m. then across the 445 property to reach the intersection of Golden/Richmond. The bikeway is then to continue west along Richmond. Status of the project is that the planning process should be initiated soon.

Road Projects

Referencing the City's Construction and Infrastructure Projects website, new road construction projects are not anticipated to impact the study area network. However, it should be noted that segments of Richmond Road and Byron Avenue, fringing the study area, are scheduled for construction this year (2020) and within the next two years, respectively. The linear construction projects are shown below by year of planned construction in **Figure 13**.

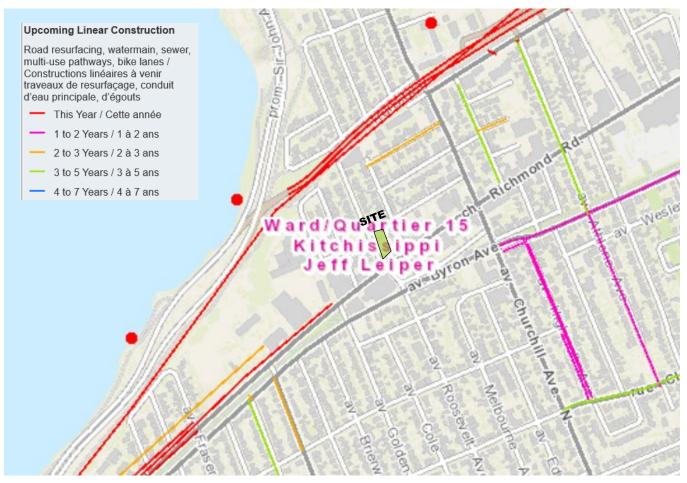


Figure 13: Upcoming Constructions and Infrastructure Projects

Other Area Development

Planned developments within the vicinity of the subject site have been identified using the City's online Development Application Search Tool. The following **Table 3** below summarizes registered developments within the vicinity of the subject development lands.

Table 3: Area Development

Location	Anticipated Build-Out Year	Size	Land Use
576,570,566 Byron Ave 425,419,417,415,411 Ravenhill Ave 440,436 Roosevelt Ave	2019	64 units (replacing 34 units)	Apartments
386 Richmond	2020	16 apartment units 230 m² office	Mixed-Used Development
371 Richmond	TBD	100 units	Condominium
319 - 327 Richmond Road, 380 Winona Avenue, 381 Churchill Avenue	2022	184 apartment units 1738 m² retail	Mixed-Used Development
335 Roosevelt Avenue	2026	336 units	Apartments

349 Danforth Avenue	2021	13 residential units 2 commercial units	Mixed-Used Development
2070 Scott Street	2022	241 condo units 5,500 ft² retail	Mixed-Used Development
Byron Place Apartments 433-435 Churchill Avenue and 468-472 Byron Place	2021	72 apartment units 3660 ft² retail	Mixed-Used Development

It should be noted that the projected impact of the developments summarized in **Table 3** has been included in the subsequent *Step 3 - Forecasting* section of this report.

2.2 Study Area and Time Periods

Study Area

As previously mentioned, City staff confirmed the following study area intersections for the purpose of this assessment:

- Richmond/Golden
- + Richmond/Roosevelt
- + Richmond/Churchill
- + Byron/Roosevelt
- + Byron/Churchill
- + Richmond/Pedestrian Crossing

Time Periods

Given that the surrounding road network (e.g. Richmond Road, Roosevelt Avenue, etc.) typically experiences the heaviest traffic volumes during the weekday morning and afternoon peak hours, this assessment considered weekday morning and afternoon peak hours for analysis purposes only.

Horizon Years

For the purpose of this assessment, the following development timeline was assumed:

- + 2025: Estimated full build-out of the subject development; and
- + 2030: 5-years beyond full build-out, consistent with the City's TIA Guidelines.

2.3 Exemptions Review

Given the size and nature of the proposed development lands, **Table 4** highlights which elements identified in the 2017 Transportation Impact Assessment Guidelines can be exempt from this analysis.

Table 4: Module Exemption Review

Module	Element	Exemption Criteria	Exemption Status	
Design Review				
4.1 Development	4.1.2 Circulation and Access	Required for Site Plans	Not Exempt	
Design	4.1.3 New Street Network	Required for Site Plans Parking Required for Site Plans Required for Site Plans Required for Site Plans Required for Site Plans where parking supply will be 15% below unconstrained demand Not required for non-residential Site Plans expected to have fewer than 60 employees and/or students on location at any given time Required when the development relies on local or collector streets for access and total volumes exceed ATM capacity thresholds Required when development is projected to	Exempt	
4.2 Darking	4.2.1 Parking Supply	Required for Site Plans	Not Exempt	
4.2 Parking	4.2.2 Spillover Parking	ng supply will be 15% below unconstrained		
Network Impact				
4.5 Transportation Demand Management	All Elements	expected to have fewer than 60 employees and/or students on location at any given	Not Exempt	
4.6 Neighbourhood Traffic Management	All Elements	local or collector streets for access and total volumes exceed ATM capacity	Not Exempt	
4.8 Network Concept	All Elements	Required when development is projected to generate more than 200 person-trips during the peak hour, in excess of the equivalent volume permitted by the established zoning	Exempt	

3. Step 3 - Forecasting

3.1 Development-Generated Travel Demand

Trip Generation

As previously described, the subject site is currently occupied by a funeral home, which is currently envisioned to be replaced by a 9-storey mixed use building, including 143 dwelling units and a 10th floor amenity space, with ground floor retail space of approximately 5,283 ft² GFA. The proposed development will be built in a single phase, with an anticipated buildout year in 2025.

For the purpose of this assessment, projected site-generated traffic was estimated using appropriate trip generation rates from the 10th Edition of the Institute of Transportation Engineers (ITE) Trip Generation Manual and the Ottawaspecific TRANS Trip Generation Study Report from 2009. Based on the location and type of the development envisioned, the following Table 5 summarizes appropriate trip generation rates for estimating projected sitegenerated traffic.

Land Use	ITE Land Use Code	AM Peak Hour	PM Peak Hour
Apartment	TRANS Study Table 6.3 & 3.13 Person Trips	T = 0.65(X);	T = 0.70 (X);
Ground Floor Retail	ITE 814 General Urban/Suburban Vehicle Trips	T = 3.18 (X);	T = 6.84 (X);

Table 5: ITE Trip Generation Rates

X = 1,000 ft² of Gross Floor Area / Apartment dwelling units

With respect to ITE trip generation rates, the data used to develop these rates only include vehicle trips (i.e. walking, cycling and transit trips are not captured in this data). To properly consider the multi-modal trips generated by the proposed development, projected site-generated traffic (estimated using ITE trip generation rates) are converted to projected site-generated person trips, which can then be subdivided into different transportation modes based on area travel patterns and available facilities/network connections (e.g. the availability of transit, walking and cycling facilities).

To convert projected ITE vehicle trips to person trips, an auto occupancy factor and non-auto trip factor is applied to the ITE trip generation rates. With respect to the City's TIA Guidelines, and based on available American Census data, the typical modal share of non-auto person trips is approximately 10% and the typical auto occupancy is 1.15. Therefore, when combined, a factor of 1.28 is used to convert vehicle trips to person trips.

Based on the foregoing, the projected weekday morning and afternoon peak hour person trip generation for the proposed development is summarized in Table 6.

Table 6: Modified Person Site Trip Generation (Phase 1 & Phase 2)

Land Use	Units/Area (ft²)	AM Peak (Person Trips/h)			PM Peak (Person Trips/h)		
		ln	Out	Total	ln	Out	Total
Apartment	143 units	22	70	92	60	39	99
Ground Floor Commercial	5,283 ft ²	12	10	22	23	23	46
Total 'New' Person Trips		34	80	114	83	62	145

As summarized in **Table 6**, the proposed development is projected to generate an approximate two-way total of 114 and 145 person trips/h during weekday morning and afternoon peak hours, respectively. Directional distribution (i.e. inbound vs outbound trips) was obtained from the ITE Trip Generation Manual and the TRANS Trip Generation Study Report.

To determine the number of person trips arriving/departing by travel mode, total projected person trips are subdivided by mode share values, derived from the 2011 TRANS National Capital Region (NCR) Origin-Destination (OD) survey data, the nature/context of the proposed development and local area knowledge. Key factors that are taken into consideration, beyond NCR OD survey data, include; proximity and quality of transit, pedestrian and cycling facilities, purpose of trips, etc.

It should be noted that a small percentage of the projected site-generated trips can be attributed to 'pass-by' traffic (i.e. a quick diversion to/from the new development on someone's normal daily commute). This does not impact overall network capacity, as 'pass-by' trips is traffic already using the adjacent transportation network; however, 'pass-by' trips do impact the performance of turning movements at intersections, typically where development site access/egress is provided.

Travel Mode Shares

Following discussions with City staff regarding the subject site's proximity/connectivity to higher order transit (i.e. its proximity to bus rapid transit/BRT service), it was agreed that the proposed development will likely have a travel mode share similar to the City's 2014 Transit Oriented Development (TOD) Plans. As such, the following summarizes the projected modal split of site-generated traffic for the subject development:

15% Auto Driver;
5% Auto Passenger;
65% Transit; and
+ 15% Walk and Cycling.

100%

Based on the foregoing, the vehicle trips generated by the proposed development was calculated and summarized in **Table 7** below.

AM Peak (Person Trips/hr) Mode PM Peak (Person Trips/hr) **Travel Mode** Share Out Total Out Total **Auto Driver** 15% 6 13 23 13 19 10 Auto Passenger 5% 2 5 7 5 4 9 65% 22 51 73 53 40 93 Transit 15 12 Non-motorized 15% 4 11 8 20 34 83 **Total Person Trips** 100% 80 114 62 145 0 0 -2 Less Pass-by (34%, PM only) 0 -1 -1 19 12 9 **Total 'New' Auto Trips** 6 13 21

Table 7: Projected Vehicular Site Trip Generation

As shown in **Table 7**, the proposed development is projected to generate approximate two-way vehicle volumes of 19 veh/h and 21 veh/h during weekday morning and afternoon peak hours, respectively.

With regard to active modes, the proposed development is projected to generate approximate two-way person trips in the order of 15 trips/h and 20 trips/h, during weekday morning and afternoon peak hours, respectively.

With regard to transit trips during weekday morning and afternoon peak hours, the proposed development is projected to generate approximately two-way person trips in the order of 73 trips/h and 93 trips/h, respectively. It should be noted that given most transit trips begin or end as an active mode, it can be expected that approximately 88 trips/h and 113 trips/h will be made to/from the subject development as an active mode during weekday morning and afternoon peak hours, respectively.

It should be noted that, due to the low trip generation from the commercial site (4 and 6 'new' auto trips generated by the site during AM and PM peak hour, respectively), the internal trip reduction between the residential portion and the commercial portion of the development was not considered.

Trip Distribution

The projected distribution of site-generated traffic was derived based on existing travel patterns, the site's connections to/from the surrounding road network, our local area knowledge (e.g. the location and proximity of other area shopping, communities, recreational opportunities, etc.). For analysis purposes and to be consistent with other area studies, the following approximate distribution of projected site-generated traffic was assumed:

50% to/from the east via Richmond Road;

20% to/from the west via Richmond Road;

10% to/from the north via Churchill Avenue North;

10% to/from the south via Churchill Avenue North; and,

+ 10% to/from the south via Roosevelt Avenue.

100%

Trip Assignment

Based on the above assumed distribution, projected 'new' site-generated traffic was assigned to the study area network and is depicted in the following **Figure 14**. Similarly, projected 'pass-by' site-generated traffic, which represents existing traffic temporarily diverted to/from the subject site, is depicted in the following **Figure 15**.

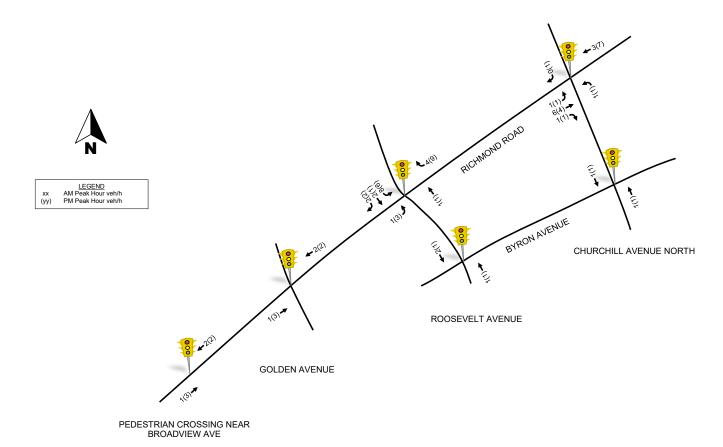


Figure 14: 'New' Projected Site-Generated Traffic

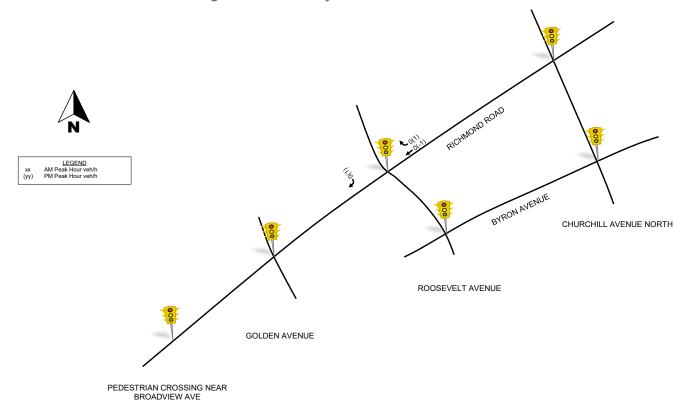


Figure 15: 'Pass-by' Projected Site-Generated Traffic

3.2 Background Network Travel Demands

Transportation Network Plans

At this time, and according to Ottawa's Transportation Master Plan (TMP), there are no expected road reconstruction projects within the vicinity of the subject site.

Other Area Developments

Using the City's online Development Application Tool, there are three (3) proposed developments identified as having potential impacts on the study area network. As such, the projected site-generated traffic for the proposed developments at the following location will be included in the subsequent analysis:

- + 371 Richmond Road;
- + 386 Richmond Road;
- 319 327 Richmond Road;
- + 335 Roosevelt Avenue;
- + 349 Danforth Avenue;
- + 2070 Scott Street;
- + Byron Place Apartments; and
- Byron-Ravenhill Complex.

For the purpose of this assessment, all developments have been assumed to be fully built-out by the horizon year 2025. Excerpts from the development's TIA reports, depicting projected site-generated traffic, are included as **Appendix C**. The combined new trips generated by the identified development sites are depicted as **Figure 16**.

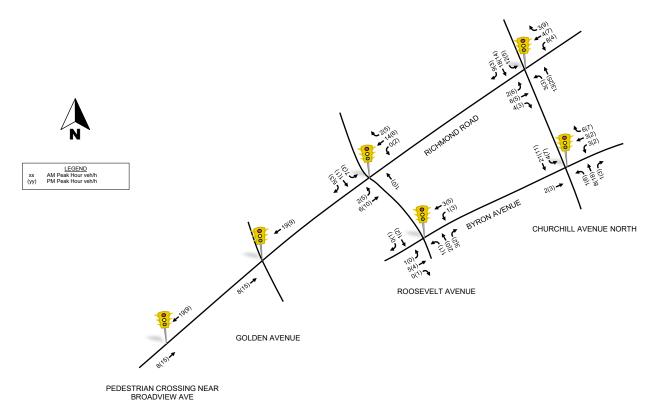


Figure 16: Combined Volumes from Adjacent TIA Studies

It should be noted that, aside from the above-mentioned developments, there are also proposed developments at 342 Roosevelt Avenue, 300 Elmgrove Avenue, and 349 Danforth Avenue. However, 342 Roosevelt Avenue and 300 Elmgrove Avenue does not have TIAs available at the time of this report. As such, developments at 342 Roosevelt Avenue, and 300 Elmgrove Avenue would not be included in this report.

Background Growth

All adjacent TIA studies mentioned previously (published between 2014 - 2018) had recommended a background traffic growth rate of 0%. Therefore, to be consistent with previous studies in the immediate vicinity of the subject site, the rate of background traffic growth for this study has been assumed to be 0%.

Given a 0% growth rate for general background traffic and given all area development is assumed to be fully builtout by the horizon year 2025, projected background traffic volumes for the horizon years 2030 will be the same as the background traffic volumes for the 2025 horizon year. Therefore and in the absence of the site development, the following **Figure 17** depicts total projected 'background' traffic volumes for the 2025 horizon year and beyond, which is the combination of existing volumes depicted as **Figure 9** and the projected area development traffic previously depicted in **Figure 16**.

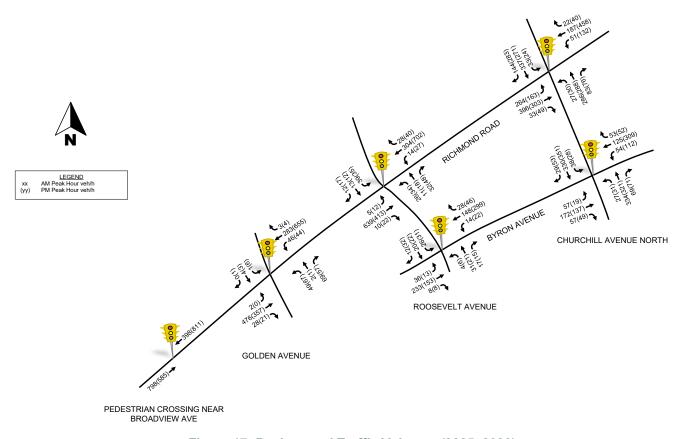


Figure 17: Background Traffic Volumes (2025, 2030)

3.3 Demand Rationalization

The following section summarizes the vehicular intersection capacity analysis of existing, future background and future total volume scenarios.

Using the intersection capacity analysis software Synchro (v10), study area intersections were assessed in terms of vehicle delay (seconds), 95th percentile queues (metres), a volume-to-capacity ratio (V/C ratio) and a corresponding Auto Level of Service (Auto-LOS). It should be noted that the overall performance of a signalized intersection is calculated as a weighted V/C ratio and assigned a corresponding Auto-LOS, and individual vehicular movements are assigned a LOS based on their respective V/C ratio. The analysis results were recorded using the percentile method, results from HCM 2000 were also provided in the appendix for reference.

Existing and Background Conditions

The following **Table 8** and **Table 9** summarize existing and projected background conditions at study area intersections, in the absence of the proposed development. The objective of this analysis is to determine if network improvements are or will be required to support background traffic. Detailed Synchro output data for existing and future background conditions are provided in **Appendix D**.

It should be noted that given the frequency of transit service along Richmond Road is low (i.e. a single bus every 15 min during peak hours), the advanced transit only signal phasing was not coded in Synchro for the Golden/Richmond intersection because this phase is only activated on average four times during peak hours, which

cannot be explicitly coded in Synchro due to its limited capabilities. If transit service was more frequent (e.g. a single bus every 1 to 2 min), the advanced transit only signal phase could be coded as a phase that is triggered every signal cycle. This assumption was carried through all future conditions.

Additionally, given the exceptionally wide north and southbound approaches at the Richmond/Churchill intersection, a single shared through/left-turn lane and a single right-turn lane was coded in Synchro, which is reflective of how this intersection operates in the field, despite the lack of lane markings. This assumption was carried through all future conditions.

Table 8: Study Area Intersection Operations - Existing Conditions

		Storage		AM Pe	ak Hour		PM Peak Hour							
Movement	Lanes	Length / Distance to upstream intersection (m)	v/c	Delay (s)	LOS	95 th %ile Queue (m)	v/c	Delay (s)	LOS	95 th %ile Queue (m)				
		Churchill A	venue No	rth/Byron /	Avenue - A	ctuated-Coc	ordinated	Signal						
EBL/T/R	1 L/T/R	250	0.72	33.0	С	61	0.34	17.2	Α	39				
WBL/T/R	1 L/T/R	620	0.60	27.7	Α	47	0.86	39.2	D	117				
NBL	1 L	30	0.06	8.7	Α	6	0.08	14.4	Α	8				
NBT/R	1 T/R	440	0.42	10.4	Α	66	0.47	17.1	Α	77				
SBL	1 L	30	0.08	3.4	Α	3	0.06	11.9	Α	4				
SBT/R	1 T/R	90	0.35	3.6	Α	19	0.50	15.2	Α	71				
	Overall		0.48	16.4	Α	-	0.59	23.6	Α	-				
		Roose	velt Aveni	ue/Byron A	venue - Se	mi Act-Unc	oord Signa	al						
EBL/T/R	1 L/T/R	250	0.22	3.9	Α	25	0.15	4.2	Α	15				
WBL/T/R	1 L/T/R	150	0.15	3.3	Α	15	0.31	5.0	Α	33				
NBL/T/R	1 L/T/R	60	0.16	18.8	Α	12	0.14	18.0	Α	11				
SBL/T/R	1 L/T/R	240	0.23	21.9	Α	15	0.30	19.2	Α	18				
	Overall		0.18	6.8	Α	-	0.25	7.4	Α	-				
		Goldei	n Avenue/	Richmond	Rd - Actua	ted-Coordin	ated Signa	al						
EBL/T	1 T	175	0.47	11.5	Α	73	0.33	8.2	Α	46				
EBR	1 R	175	0.04	2.5	Α	3	0.03	1.8	Α	2				
WBL/T/R	1 L/T/R	130	0.35	10.2	Α	46	0.70	15.1	В	136				
NBL/T/R	1 L/T/R	30	0.29	8.5	Α	15	0.39	16.8	Α	24				
SBL/T/R	1 L/T/R	50	0.01	12.2	Α	2	0.03	18.5	Α	5				
	Overall		0.38	10.4	Α	-	0.55	13.7	Α	-				
		Roosev	elt Avenue	/Richmon	d Rd - Actu	ated-Coord	inated Sig	nal						
EBL/T/R	1 L/T/R	130	0.58	10.7	Α	99	0.37	6.4	Α	52				
WBL/T/R	1 L/T/R	270	0.31	7.0	Α	38	0.66	11.1	В	134				
NBL/T/R	1 L/T/R	60	0.22	13.2	Α	13	0.40	20.5	Α	23				
SBL/T/R	1 L/T/R	300	0.18	18.3	Α	13	0.25	24.0	Α	17				
	Overall		0.44	10.2	Α	-	0.51	11.0	Α	-				
		Churchill A	venue No	rth/Richmo	ond Rd - A	ctuated-Coo	rdinated S	Signal						
EBL	1 L	50	0.55	29.1	Α	77	0.51	39.7	Α	61				
EBT/R	1 T/R	270	0.42	9.1	Α	63	0.35	8.3	Α	52				
WBL	1 L	45	0.22	25.5	Α	15	0.46	25.7	Α	38				
WBT/R	1 T/R	245	0.47	27.3	Α	50	0.74	29.9	С	124				
NBT	1 T/L & 1 T/R	90	0.57	20.3	А	28	0.66	23.6	В	23				
SBT	1 T/L & 1 T/R	300	0.68	26.6	В	45	0.77	23.3	С	46				
	Overall 0.54 21.6 A - 0.67 23.9 B -													
	Ped Crossing/Richmond Rd - Actuated-Coordinated Signal													
EBT	2 T	280	0.47	9.8	Α	45	0.34	8.6	А	31				
WBT	1 T	175	0.43	10.2	Α	47	0.91	29.5	E	174				

		Storage Length / Distance to upstream intersection (m)		AM Pe	ak Hour		PM Peak Hour					
Movement	Lanes		v/c	Delay (s)	LOS	95 th %ile Queue (m)	v/c	Delay (s)	LOS	95 th %ile Queue (m)		
	Overall		0.46	10.0	Α	-	0.67	20.8	В	-		

As shown in **Table 8**, study area intersections are currently operating with an acceptable overall Auto-LOS 'B' or better during weekday morning and afternoon peak hours.

While the overall Auto-LOS for each intersection is within acceptable standards, there are some individual movements exceeding available capacity: The eastbound left-turn movement at the Churchill/Richmond intersection is exceeding the available storage lane capacity during both AM and PM peak hours. At the Richmond Road signalized pedestrian crossing, the westbound movement is operating near capacity with a LOS 'E' and a V/C ratio of 0.91, and the 95th percentile queue is approaching the upstream intersection during the PM peak hour. At the Golden/Richmond intersection, the westbound 95th percentile queue is estimated to spillback to the upstream Roosevelt/Richmond intersection during the PM peak hour.

Potential measures to improve these individual movements that are operating near or over capacity during weekday AM and PM peak hours, include:

- Lengthen the eastbound left-turn storage lane from 50 m to 80 m at Richmond/Churchill intersection, or reduce eastbound left-turn volumes by at least 130 veh/h during the AM peak and 20 veh/h during the PM peak; and
- Widen Richmond Road from two to four lanes or reduce westbound through volumes by at least 30 veh/h during the PM peak.

The suggested improvement measures mentioned above are only provided for information/decision making purposes only and will not be assumed in the subsequent analysis. If any of these possible measures are desirable by the City, further investigation of their feasibility may be required to support their justification.

It should be noted that the current issue with the network is concerns queuing at certain intersection (i.e.: projected 95 percentile queues exceeding the storage area or the length of the road segment). However, all intersections have low delays and excellent overall v/c ratio (<D), meaning that the intersections along Richmond are busy but working efficiently. There is no real solution to the storage problem besides road widening, diverting vehicle trips to other modes or changing the modeling standard. Removing existing traffic may not be reasonable since the v/c and delay remain low, and removing new generated vehicle trips and assigning to the already high transit/active mode share (80% combined) isn't deemed reasonable from the same perspective.

The following **Table 9** summarizes intersection operations for future scenarios with the addition of background traffic volumes only for the 2025 horizon year and beyond. This future background scenario assumes no intersection improvements from the existing scenario.

Table 9: Study Area Intersection Operations - 2025 and Beyond Background Conditions

		Storage		AM Pe	ak Hour		PM Peak Hour					
Movement	Lanes	Length / Distance to upstream intersection (m)	v/c	Delay (s)	LOS	95 th %ile Queue (m)	v/c	Delay (s)	LOS	95 th %ile Queue (m)		
		Churchill Av	venue Nor	th/Byron A	Avenue - A	ctuated-Coo	ordinated	Signal				
EBL/T/R	1 L/T/R	250	0.73	33.4	С	62	0.34	17.0	Α	39		
WBL/T/R	1 L/T/R	620	0.63	28.6	В	49	0.87	39.9	D	126		
NBL	1 L	30	0.06	8.8	Α	7	0.10	14.8	Α	10		
NBT/R	1 T/R	440	0.43	10.6	Α	68	0.50	17.9	Α	83		
SBL	1 L	30	0.09	3.7	Α	3	0.09	11.8	Α	5		
SBT/R	1 T/R	90	0.37	3.8	Α	22	0.52	15.0	Α	69		
	Overall		0.48	16.6	Α	-	0.60	23.9	В	-		
		Roose	velt Avenu	ie/Byron A	venue - Se	mi Act-Unco	oord Signa	ıl				
EBL/T/R	1 L/T/R	250	0.23	4.0	Α	26	0.15	4.3	Α	15		
WBL/T/R	1 L/T/R	150	0.16	3.4	Α	16	0.32	5.1	Α	34		
NBL/T/R	1 L/T/R	60	0.18	18.4	Α	13	0.15	17.4	Α	11		
SBL/T/R	1 L/T/R	240	0.23	21.7	Α	15	0.31	19.1	Α	18		
	Overall		0.18	6.8	Α	-	0.25	7.4	Α	-		
		Golder	Avenue/	Richmond	Rd - Actua	ted-Coordin	ated Signa	al				
EBL/T	1 T	175	0.48	11.6	Α	75	0.34	8.4	Α	48		
EBR	1 R	175	0.04	2.5	Α	3	0.03	1.8	Α	2		
WBL/T/R	1 L/T/R	130	0.37	10.4	Α	49	0.71	15.5	С	140		
NBL/T/R	1 L/T/R	30	0.29	8.5	Α	15	0.39	16.8	Α	24		
SBL/T/R	1 L/T/R	50	0.01	12.2	Α	2	0.03	18.5	Α	5		
	Overall		0.39	10.6	Α	-	0.56	13.9	Α	-		
		Rooseve	lt Avenue	/Richmond	l Rd - Actu	ated-Coordi	inated Sigi	nal				
EBL/T/R	1 L/T/R	130	0.59	10.9	Α	102	0.39	6.6	Α	54		
WBL/T/R	1 L/T/R	270	0.33	7.1	Α	41	0.68	11.5	В	140		
NBL/T/R	1 L/T/R	60	0.22	13.4	Α	14	0.40	20.5	Α	23		
SBL/T/R	1 L/T/R	300	0.22	18.2	Α	15	0.28	24.0	Α	18		
	Overall		0.45	10.4	Α	-	0.53	11.3	Α	-		
		Churchill A	venue No	rth/Richmo	ond Rd - Ad	tuated-Coo	rdinated S	Signal				
EBL	1 L	50	0.59	32.0	Α	84	0.53	40.7	Α	64		
EBT/R	1 T/R	270	0.44	10.3	Α	69	0.36	8.8	Α	53		
WBL	1 L	45	0.26	26.5	Α	17	0.49	27.1	Α	39		
WBT/R	1 T/R	245	0.48	27.6	Α	51	0.79	33.1	С	141		
NBT	1 T/L & 1 T/R	90	0.56	19.3	Α	28	0.69	24.2	В	27		
SBT	1 T/L & 1 T/R	300	0.70	26.8	В	49	0.79	25.0	С	51		
	Overall		0.56 22.2 A - 0.70 25.5 B							-		
		Ped C	rossing/R	ichmond R	d - Actuate	d-Coordina	ted Signal					
EBT	2 T	280	0.48	9.9	Α	46	0.35	8.7	Α	31		
WBT	1 T	175	0.45	10.5	Α	50	0.92	30.9	E	177		
	Overall		0.47	10.1	Α	-	0.68	21.6	В	-		

As shown in **Table 9**, study area intersections are projected to operate with an acceptable overall Auto-LOS 'B' or better during weekday morning and afternoon peak hours.

Similar to existing conditions, there are some individual movements approaching/exceeding available capacity, including the eastbound left-turn movement at the Churchill/Richmond intersection exceeding the available storage

lane capacity during both AM and PM peak hours; Richmond Road signalized pedestrian crossing westbound movement operates with a LOS 'E' and a V/C ratio of 0.92, and the 95th percentile queue is exceeding the upstream intersection during the PM peak hour; Golden/Richmond intersection westbound 95th percentile queue is estimated to spillback to the upstream Roosevelt/Richmond intersection during the PM peak hours. All of them can be improved with the measures mentioned previously.

Adjustments to Background Network Demands

Given study area intersections are projected to have overall spare capacity during future background conditions, it is not considered necessary to adjust background demands at this time. However, it should be noted that with the planned Stage 2 LRT extension that will replace the nearby BRT line, it is anticipated that there will be an increase in the number of area transit users, which has the potential to free up capacity at the study intersections.

Total Projected Conditions

The following section summarizes the intersection capacity analysis of 'total' projected volume scenarios for the 2025 horizon year. It should be noted that since background traffic growth has been assumed to be 0%, total projected scenario for the 2030 horizon year is expected to yield the same results as the 2025 horizon year.

The following **Figure 18** depicts the future 'total' volumes, which were derived by superimposing site-generated traffic volumes onto projected background traffic volumes (e.g. summing volumes together from **Figure 14**, **Figure 15** and **Figure 17**, resulting in **Figure 18**).

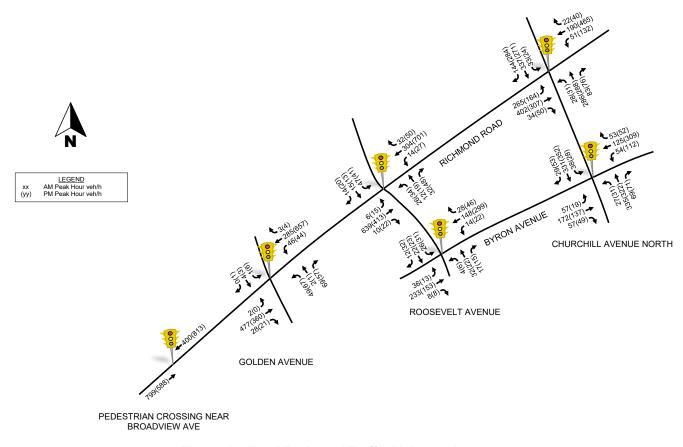


Figure 18: Total Projected Traffic Volumes (2025,2030)

Similar to existing and future background conditions, total projected conditions were assessed using the intersection capacity analysis software Synchro (v10). Metrics such as Auto-LOS, V/C Ratio, 95th percentile queue (metres) and vehicular delay (seconds) were analyzed. Assuming no intersection improvements, the following **Table 10** summarizes the intersection operational analysis of the study area intersections for the total projected 2025 horizon year and beyond. Detailed Synchro output data for future total projected conditions is provided in **Appendix E**.

Table 10: Study Area Intersection Operations - Total Projected Conditions (2025, 2030)

		Storage Length /		AM Pe	ak Hour		PM Peak Hour					
Movement	Lanes	Distance to upstream intersection (m)	v/c	Delay (s)	LOS	Queue (m)	v/c	Delay (s)	LOS	Queue (m)		
		Churchill A	venue Nor	th/Byron A	venue - Ac	pordinated Signal						
EBL/T/R	1 L/T/R	250	0.73	33.3	С	61	0.34	17.0	Α	39		
WBL/T/R	1 L/T/R	620	0.63	28.5	В	49	0.87	39.9	D	126		
NBL	1 L	30	0.06	8.9	Α	7	0.10	14.8	Α	10		
NBT/R	1 T/R	440	0.43	10.7	Α	68	0.50	17.9	Α	83		
SBL	1 L	30	0.09	3.7	Α	3	0.09	11.9	Α	5		
SBT/R	1 T/R	90	0.38	3.9	Α	22	0.52	15.1	Α	71		
	Overall	·	0.48	16.6	Α	-	0.60	23.9	В	-		
		Roose	velt Avenu	ie/Byron A	venue - Ser	ni Act-Unco	ord Signal					
EBL/T/R	1 L/T/R	250	0.23	4.0	Α	26	0.15	4.3	Α	15		

		Storage Length /		AM Pea	ak Hour			PM Pea	k Hour			
Movement	Lanes	Distance to upstream intersection (m)	v/c	Delay (s)	LOS	Queue (m)	v/c	Delay (s)	LOS	Queue (m)		
WBL/T/R	1 L/T/R	150	0.16	3.4	Α	16	0.32	5.1	Α	34		
NBL/T/R	1 L/T/R	60	0.18	18.6	Α	13	0.15	17.6	Α	11		
SBL/T/R	1 L/T/R	240	0.23	21.7	Α	16	0.32	19.2	Α	19		
	Overall		0.18	6.9	Α	-	0.26	7.5	Α	-		
		Golder	Avenue/	Richmond F	Rd - Actuat	ed-Coordin	ated Signa	l				
EBT	1 T	175	0.48	11.6	Α	75	0.35	8.4	Α	49		
EBR	1 R	175	0.04	2.5	Α	3	0.03	1.8	Α	2		
WBT	1 L/T/R	130	0.37	10.5	Α	50	0.71	15.6	С	141		
NBT	1 L/T/R	30	0.29	8.5	Α	15	0.39	16.8	Α	24		
SBT	1 L/T/R	50	0.01	12.2	Α	2	0.03	18.5	Α	5		
	Overall		0.39	10.6	Α	-	0.56	14.0	Α	-		
		Rooseve	elt Avenue	Avenue/Richmond Rd - Actuated-Coordinated Signal								
EBT	1 L/T/R	130	0.59	10.9	Α	102	0.40	6.7	Α	55		
WBT	1 L/T/R	270	0.33	7.1	Α	41	0.69	11.9	В	145		
NBT	1 L/T/R	60	0.22	13.5	Α	14	14 0.40		Α	23		
SBT	1 L/T/R	300	0.26	18.8	Α	18	0.33	25.1	Α	21		
	Overall		0.44	10.6	Α	-	0.53	11.6	Α	-		
		Churchill A	venue No	rth/Richmo	nd Rd - Ac	tuated-Coo	rdinated S	ignal				
EBL	1 L	50	0.59	32.1	Α	84	0.53	40.7	Α	65		
EBT	1 T/R	270	0.45	10.4	Α	70	0.37	8.9	Α	54		
WBL	1 L	45	0.26	26.5	А	17	0.50	27.3	Α	39		
WBT	1 T/R	245	0.49	27.7	Α	52	0.80	34.1	С	145		
NBT	1 T/L & 1 T/R	90	0.57	19.4	Α	28	0.70	24.3	В	27		
SBT	1 T/L & 1 T/R	300	0.70	26.8	В	49	0.79	24.9	С	51		
	Overall		0.56	22.3	Α	-	0.70	25.7	В	-		
		Ped C	rossing/Ri	ichmond Ro	d - Actuate	d-Coordinat	ed Signal					
EBT	2 T	280	0.48	9.9	А	46	0.35	8.7	Α	32		
WBT	1 T	175	0.45	10.5	Α	50	0.92	31.2	E	178		
	Overall		0.47	10.1	Α	-	0.68	21.7	В	-		

As shown in **Table 10**, assuming no intersection improvements from the 2025 future background scenario, study area intersection are projected to continue operating with an acceptable overall Auto-LOS 'B' or better during weekday morning and afternoon peak hours.

With the additional traffic generated by the subject site, the eastbound left-turn movement at the Churchill/Richmond intersection is will continue to exceed the available storage lane capacity during both AM and PM peak hours. The Richmond Road signalized pedestrian crossing, the westbound movement is projected to operate with an Auto-LOS 'E' and a V/C ratio of 0.92, and the 95th percentile queue is projected to spillback to the upstream signalized intersection during the PM peak hour. At the Golden/Richmond intersection, the westbound 95th percentile queue is projected to spillback to the upstream Roosevelt/Richmond intersection during the PM peak hour.

Similar to the assessment of background conditions, the individual movements approaching/exceeding available capacity mentioned above can be improved with measures mentioned previously. However, the suggested improvement measures are only provided for information/decision making purposes only. If any of the possible measures are desirable by the City, further investigation of their feasibility may be required to support their justification.

Adjustments to Site-Generated Demand

With respect to projected site-generated traffic for the subject development lands and other area developments, adjusting modal splits away from projected auto trips further, is difficult to justify, as certain individuals will ultimately be required to drive for one reason or another (e.g. distance between origin/destination is too great, travel is a requirement for employment, physical disabilities limit travel options to personal vehicle, etc.). Additionally, adjusting the auto modal share for site-generated traffic much lower will have a negligible affect on the performance of study area network (note: study area intersections are projected to continue operating similar to background conditions, only with minor increases in volumes and delays).

Step 4 - Analysis

With respect to the City of Ottawa TIA Guidelines, this module reviews the proposed transportation network elements within the development study area to ensure that they provide effective access for all users while creating an environment that encourages walking, cycling and transit use and prioritizes safety.

4.1 Development Design

Design for Sustainable Modes

The subject development is conveniently located within 600 m of the Dominion BRT station, which is planned to be converted to an LRT station as part of the City's Stage 2 LRT expansion project. Residents and visitors to/from the subject development also have nearby access to wide sidewalks along both sides of Richmond Road, and an extensive MUP network (e.g. the Ottawa River Pathway/Trans Canada Trail, etc.)

Pedestrian Facilities: Continuous sidewalks exist along both sides of Richmond Road, and on the east side of Roosevelt Avenue. No additional sidewalks are planned; however, the proposed development will be fully integrated with the existing surrounding pedestrian network.

Cycle Facilities: As mentioned in the *Section 2 - Scoping* section, the subject site currently benefits from a number of excellent cycling facilities. During the subsequent Site Plan Application process, on-site cycling facilities will be determined (e.g. number and location of bike parking, secure storage, change facilities, etc.).

Transit Facilities: The following **Table 11** summarizes available OC Transpo routes and their associated stop numbers and location, the direction of each route, and the approximate walking distances between main the proposed main entrance and existing transit stops/stations.

Table 11: Existing Transit Facilities

Stop#	Location	Operating Route	Direction	Approximate Walking Distance in Metres (m) to/from Building Entrances
#3013	500 m walking distance north west from the site	57,61,62,63, 74,75,83,87	Inbound/ Outbound	500
#7406	Immediately east of Richmond/Roosevelt	11,153	Outbound	70
#2436	Immediately east of Richmond/Roosevelt	11,153	Inbound	105
#4876	Immediately west of Richmond/Churchill	11,153	Outbound	300
#4987	Immediately north of Richmond/Churchill	153	Inbound	395
#5616	Immediately north of Richmond/Churchill	153	Outbound	385
#4870	Immediately east of Richmond/Churchill	11	Inbound	410
#4922	Immediately west of Richmond/Golden	11,153,57,61, 62,63,74,75, 83,87	Outbound	260
#4941	Immediately west of Richmond/Golden	11,153	Inbound	270
Note:	Routes in red were detoured from	n Sir John A. Macd	onald Parkway	due to the partial closure of the parkway. The

Routes in red were detoured from Sir John A. Macdonald Parkway due to the partial closure of the parkway. The detour schedule is every Saturday and Sunday until September 6, 2020, from 8 am to 4 pm.

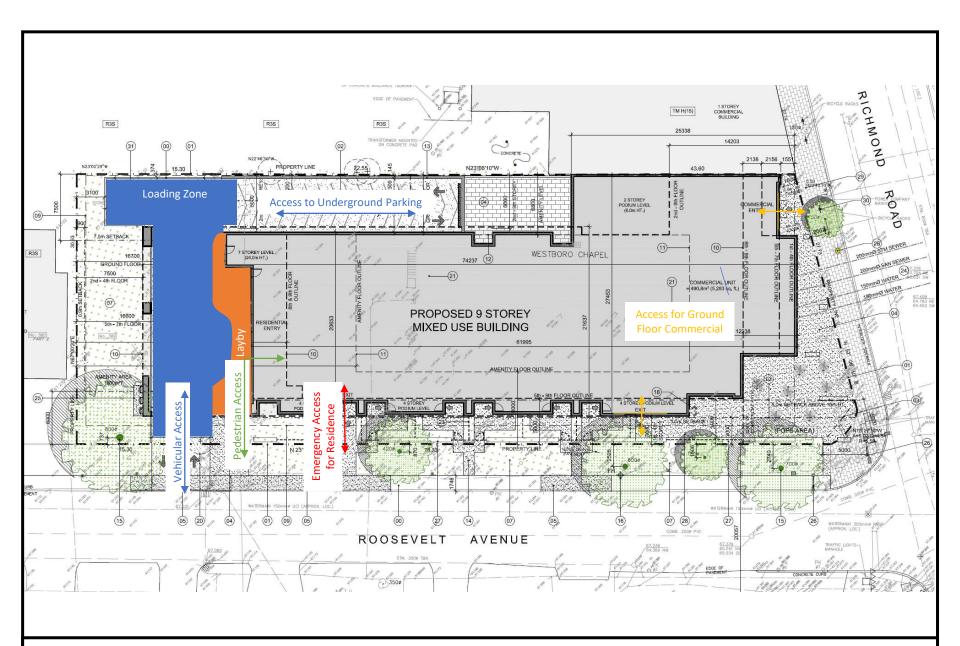
It should be noted that most transit stops (78%) listed in **Table 11** are located within the OC Transpo's service design guideline of 400 m to/from the subject development site.

A Transportation Demand Management (TDM) Supportive Development Design and Infrastructure Checklist, which includes strategies to promote transit use, was provided as **Appendix F**. Both the retail and residential were considered in the checklist. Walking & Cycling routes satisfy all required and most basic categories. Parking satisfy all required categories. Bike parking for the apartment remains undetermined. Other items, including transit, ridesharing, carsharing and bikesharing are subject to change and agreement with the future tenant, therefore not considered in this checklist.

Circulation and Access

The width of proposed site driveway access to underground parking is proposed to be 6 m, which satisfies the City's Zoning By-Law provisions for "Aisles and Driveways". The following **Figure 19** depicts the current access/egress design for the development.

As shown in **Figure 19**, the main entrance for residents is located near the northwest corner of the building and along the west side of the building for individual ground floor units. The plan for the ground floor commercial will be to provide pedestrian access/egress along the Richmond Road and/or Roosevelt Avenue frontage of the building.


A layby/loading zone is planned along the northern frontage of the building, which includes space for a "hammerhead" vehicle turnaround and with respect to emergency vehicle access, a clear 6m wide fire route will be provided, which satisfies Building Code requirements. During the subsequent Site Plan Application process, a trucking turning analysis will be conducted to ensure sufficient turning radii will be provided.

The proposed underground parking lot will be accessed via Roosevelt Avenue (i.e. there is no plan to provide vehicular access/egress to Richmond Road).

New Street Networks

With respect to the City's TIA Guidelines, this module is exempt.

Figure 19: Circulation and Access

4.2 Parking

With respect to the City's TIA guidelines, this module reviews the development's planned parking supply to ensure a balance between operational needs, the encouragement of sustainable travel modes, and the desire to minimize neighbourhood impacts.

Parking Supply

Vehicular parking

The proposed development is located in Area Y (Inner Urban Mainstreet), identified in Schedule 1A of the City's Zoning By-law, which identifies areas near Ottawa traditional main street.

The following **Table 12** summarizes the minimum residence and Visitor parking space requirements, in accordance with the City's Zoning By-law, Section 101, and 102.

Туре	Zoning Requirement	GFA	Minimum parking Requirement
Residence Parking ²	0.5 per dwelling unit for mid-rise apartment	141 units of Apartment	65
Visitor Parking ³	0.1 per dwelling unit for mid-rise apartment	141 units of Apartment	13
		Total Required	78
	Provi	ded (As shown in the site plan)	150

Table 12: Vehicular Parking Supply

As summarized in Table 12, the amount of provided auto parking will satisfy Zoning By-law requirements.

Bike Parking

The following **Table 13** summarizes the minimum bike parking space requirements, in accordance with the City's Zoning By-law, Section 111, Table 111A. It should be noted that, the bike parking for the residential component of the site is unknown at this stage, and will be determined during the subsequent development applications.

Minimum parking **Type Zoning Requirement GFA** Requirement 0.5 per dwelling unit for 141 units of Apartment 71 for Apartment Bike Apartment 490.8 m² GFA of Retail 2 for Ground Floor Commercial Parking 1 per 250 m² GFA for Retail 73 **Total Required** Provided (As shown in the site plan) 148

Table 13: Bike Parking Supply

³ Section 101 of Zoning (By-law No. 2008-250), subsection (2): "Despite (1), within Areas B, X, Y and Z, no visitor parking spaces are required for the first twelve dwelling units on a lot. (By-law 2016-249)"

² Section 101 of Zoning (By-law No. 2008-250), subsection (4) (a): "where a residential use is located within a building of four or fewer storeys, no off-street motor vehicle parking is required to be provided under this section for the residential use"

As summarized in **Table 13**, the amount of provided ground floor commercial bike parking will satisfy Zoning Bylaw requirements.

Spillover parking

Given the proponent will not be seeking a reduction in minimum supply of parking for the subject development, this module is exempt, with respect to the City's TIA Guidelines.

4.3 Boundary Street Design

With respect to the City's TIA guidelines, this module determines design elements of boundary streets required to accommodate the proposed development, consistent with the City's complete streets philosophy and its urban design objectives for the development area. The identified boundary streets for the subject site are Richmond Road and Roosevelt Avenue, which are both owned and maintained by the City of Ottawa.

Mobility

A Multi-Modal Level of Service (MMLOS) assessment was conducted for the subject site's boundary streets, which is a measure of risk, comfort and stress for active modes and a measure of impedance, delay and reliability for trucks/buses. With respect to the City of Ottawa's MMLOS guidelines, target MMLOS values were obtained from Exhibit 22 of the MMLOS guidelines and are identified in brackets in the following **Table 14**. The detailed assessment is included as **Appendix G**.

Segment MMLOS Summary

The following **Figure 20** depicts the road classification from the City's Geo Ottawa website. It should be noted that Richmond Road and Churchill Avenue North are designated as a truck routes.

Figure 20: Road Classification

The following **Table 14** is a MMLOS summary for existing conditions for all modes (i.e. Pedestrian, Cycling, Transit and Truck) along the road segments described above. LOS results highlighted in red indicate that the target MMLOS was not met for that segment.

It should be noted that MMLOS segment analysis focuses on local transit provided along the boundary streets only, as there is no mechanism to explicitly consider near-by BRT service within the City's MMLOS analysis tools.

Segment **Road Name PLOS BLOS TLOS TkLOS** No. Between Churchill & Richmond Rd B(A) D(D) B(D) 1 D(A)Roosevelt Roosevelt & 2 Richmond Rd D(D) B(D) B(A) D(A)Golden Richmond & 3 Roosevelt Ave B(B) B(C) - (D) - (-) Byron Churchill & 4 Churchill Ave N B(C) D(C)D(D) B(D) Roosevelt South Side Byron Ave C(C) B(B) - (D) B(-) Churchill & 5 Roosevelt North Side Byron Ave - (C) B(B) - (D) B(-) South Side Richmond Rd B(B) D(D) C(D) A(A)Golden & 6 **Broadview PXO** North Side Richmond Rd B(B) D(A)D(D) C(D) Note: '-' denotes No Target/ No facility/ No service

Table 14: Segment MMLOS – Existing LOS(Target LOS)

Based on the results summarized in **Table 14**, the following should be noted/considered:

Pedestrian LOS

- Both segments on Richmond Road do not meet the PLOS targets; however, are considered to very good Levels of Service; and
- The segments of Richmond Road that fail to meet targets can be attributed to high volumes of vehicular traffic. Based on the existing MMLOS guidelines, there are limited measures that can be implemented to improve the PLOS.

Bike LOS

- Segments along Richmond Road and Churchill Avenue North do not meet the BLOS targets; and
- Introducing dedicated bike lanes can improve the BLOS.

Transit LOS

+ Boundary street segments meet TLOS targets.

Truck LOS

Boundary street segments meet TLOS targets.

It should be noted that although the above network modifications are all technically possible, they may not be feasible due to physical, economical, political or other technical constraints. Therefore, the possible measures to improve the performance of study area road segments, mentioned above, are only provided for information/decision making purposes only. If any of these possible measures are desirable, further analysis may be required to support their justification.

Given road improvement projects are not planned for study area road segments, a future segment MMLOS analysis will yield the same LOS results summarized in **Table 14**.

Road Safety

For the purpose of an engineering review, collision records for boundary streets are examined to determine if locations exhibit any collision trends that might be mitigated by engineering intervention. If there is a collision trend that is outside the norm of what is expected, then the potential exists to reduce the collision experience by addressing the over-represented collision trend. Whenever changes are being made to the road environment, it is an opportunity to examine whether a safety intervention could result in meaningful safety benefits. Where there are identifiable safety trends, it is worthwhile to mitigate those, such that the added traffic from a new development does not increase the risk of new collisions.

Based on a review of the most recent five (5) years of historical collision data (collected from January 1st, 2014 to December 31st, 2018), the following **Table 15** summarizes the number and rate (i.e. collisions per million vehicle kilometres) of collisions within the vicinity of the subject development lands.

It should be noted that, there are four (4) collisions on Danforth Avenue near Roosevelt Avenue. All four of these collisions were included as Roosevelt Avenue for summary purposes. It should also be noted that the impact of intersection modifications to Richmond/Churchill (westbound approach bulb out extension) and Richmond/Golden (additional bike box on the northbound approach) will not be captured since those projects were completed more recently. It is also worth noting that the Richmond/Churchill intersection was reconstructed between late 2018 and early 2019 to install bulb outs on all approaches, and relocate the traffic signal heads; the Byron/Roosevelt intersection was modified between late 2014 and early 2015 to convert it from an Intersection Pedestrian Signal (IPS) to a full, four-way traffic signal. Therefore, some contributing factors to collisions may no longer be present at those intersections..

Table 15: Historical Collision Data Summary by Road Segment

		Total Collisions	Rate	Classification						
Segment	Between	(5 Year Total)	(C/MVK)	Property Damage	Non-fatal Injury	Fatal Injury				
Richmond	Churchill & Roosevelt	37	1.45	34	3	0				
Richmond	Roosevelt & Golden	23	1.23	19	4	0				
Richmond	Golden & Broadview	7	0.30	6	1	0				
Roosevelt	Richmond & Byron (Including Danforth)	4	1.11	4	0	0				
Byron	Roosevelt & Churchill	1	0.11	1	0	0				
Churchill	Richmond & Byron	9	0.47	7	2	0				
	Total	81	-	71	10	0				
	Denotes data was not available IVK = Collisions per Million Vehic	le Kilometers		1	ı	I				

As shown in **Table 15**, based on the available data, segments on Richmond Road between Churchill and Richmond have a considerably higher collision rate compare to other road segments within the study area. Regarding the collision types, mostly rear end and single motor vehicle collisions were cited.

Based on the same most recent five (5) years of historical collision data (collected from January 1st, 2014 to December 31st, 2018), the following **Table 16** summarizes the number and rate (i.e. collisions per million entering vehicles) of collisions within the vicinity of the subject development lands, at study area intersections. As previously mentioned, Richmond/Churchill may not be representative of current conditions, since bulb outs was installed at all approach, and the traffic signal heads were relocated between late 2018 and early 2019.

Table 16: Historical Collision Data Summary by Intersection

	Total Collisions	Rate	Classification						
Intersection	(5 Year Total)	(C/MEK)	Property Damage	Non-fatal Injury	Fatal Injury				
Richmond/Churchill	31	0.73	24	7	0				
Richmond/Roosevelt	4	0.14	2	2	0				
Richmond/Golden	7	0.33	5	2	0				
Richmond/Broadview	0	0	0	0	0				
Byron/Roosevelt	12	1.01 (0.53)	8	4	0				
Byron/Churchill	7	0.24	7	0	0				
Total	61	-	46	15	0				
Notes: C/MEK = Collisions per Million Enter The numbers in brackets indicate the		ersection reconstruction	on in 2014/2015.						

Based on the available data, Byron/Roosevelt has a notable collision rate compared to the rest of the intersections in the study area. It also has a high proportion of angle collisions (8 out of 12, or 67%), however this high proportion occurred predominantly under the previous intersection control (IPS). Seven (7) collisions were reported in 2014 alone, all of which were angle collisions. Due to the high frequency of angle collisions, city staff installed a full, fourway traffic signal in 2015 and trimmed vegetation on the southwest corner (northbound approach). Since the traffic signal installation, collisions were reduced from 7 in 2014 to 1.25 per year (5 collisions between 2015 and 2018). The frequency of angle collisions was also reduced from 100% (7 out of 7) to 20% (1 out of 5).

Within the five (5) years of recorded collision data, there were seven (7) collisions involving pedestrians. The following **Table 17** summarizes the time and location of the collisions. All of the reported collisions involving pedestrians were non-fatal; however, personal injuries were reported.

Table 17: Summary of Pedestrian Collisions

Intersection /Segments	Total Collisions (5 Year Total)	Number of Involved Pedestrians	Date of Collision
Dishmond @		1	2014-05-01, 12:54 AM
Richmond @ Churchill	4	1	2016-06-02, 7:22 PM
Intersection	4	1	2016-12-31, 5:01 PM
Intersection		2	2018-10-27, 9:39 PM
Richmond @ Golden Intersection	1	1	2018-02-27, 6:59 PM
Richmond @ Roosevelt Intersection	1	1	2014-06-29, 3:07 PM
Churchill btwn Richmond & Byron	1	1	2016-12-16, 8:45 PM
Total	7	8	-

Collisions involving pedestrians within the study area predominantly (5 out of 7) happened at night; enhancing the street lighting may help prevent these collisions in the future. No other collision patterns could be identified relating to environment or road surface conditions, and additional collision details, such as vehicle maneuver or driver action, were not provided in the dataset.

A more detailed collision analysis for road segments and intersections within the study area are included in **Appendix H**. As previously mentioned, source collision data is included in **Appendix B**.

Neighbourhood Traffic Management (NTM)

The subject development site will have a single connection to/from Roosevelt Avenue. Given projected traffic volumes on Roosevelt Avenue are currently, and are projected to continue to remain under the volume threshold for a local street classification (i.e. 120 veh/h during peak hours). Therefore, the with respect to the City's TIA Guidelines, a review of potential neighbourhood traffic management strategies is not required.

It should be noted that Churchill Avenue North will be a major route for travel to/from the south and the subject site, and the existing and projected traffic volumes on Churchill Avenue North are currently, and are anticipated to continue to exceed the threshold for a major collector street classification (i.e. vehicle volumes currently exceed 600 veh/h during peak hours). However, given the proposed development is projected to generate very low peak hour traffic volumes, any neighbourhood traffic management strategies to mitigate volumes on Churchill Avenue North should not be a condition of approval for the subject development application.

4.4 Access Intersection Design

With respect to the City's TIA guidelines, this module determines design elements of the points of access to the development, consistent with the City's complete streets philosophy, MMLOS guidelines, and its urban design objectives for the development area.

Location and Design of Access

The location of main access to/from the subjected development is a single two-way approach, located around 90 m north of the Richmond/Roosevelt intersection, as shown in **Figure 2**. With respect to the City's Private Approach By-Law No. 2003-447, the new proposed driveway connection will satisfy By-Law requirements.

Intersection Control

Main access points to/from the development are proposed to be full movement and YIELD controlled on the minor approach will be sufficient.

Intersection Design

The following is a MMLOS analysis at signalized study area intersections. As previously mentioned, MMLOS is a measure of risk, comfort and stress for active modes and a measure of impedance, delay and reliability for trucks/buses. With respect to the City of Ottawa's MMLOS guidelines, target MMLOS values were obtained from Exhibit 22 of the MMLOS guidelines and are identified in brackets in the following **Table 18**.

Intersection MMLOS Summary

Similar to the MMLOS analysis conducted for the Boundary Street Design, the following **Table 18** summarize existing and projected MMLOS analysis completed for all modes, at study area signalized intersections. The detailed intersection MMLOS analysis is provided in **Appendix I**.

No. **PLOS BLOS TLOS TkLOS AutoLOS** Intersection 1 Richmond/Churchill D(B) D(A)D(D) E(D) C(D) Richmond/Roosevelt 2 D(A)D(A)B(D) E(D) A(D) 3 Richmond/Golden D(A)D(A)B(D) E(D) B(D) Byron/Roosevelt 4 C(C)D(B) -(D) E(-) A(D) 5 Byron/Churchill C(C) E(C) C(D) E(D) A(D) B(D) 6 Richmond/Broadview PXO B(B) D(A)-(D) A(D) '-' denotes No Target/No facility/No service Note:

Table 18: Intersection MMLOS – Existing LOS(Target LOS)

Based on the results summarized in **Table 18**, the following should be noted/considered:

Pedestrian LOS

- Richmond/Churchill, Richmond/Roosevelt and Richmond/Golden intersections do not meet PLOS targets.
- + Failing PLOS at Richmond/Golden is a combination of the size (e.g. the more vehicle travel lanes pedestrians have to cross increases their/exposure to potential collisions), and lack of pedestrian comfort measures such as leading pedestrian intervals (LPI), and "Zebra" pavement markings. Failing PLOS at Richmond/Roosevelt is mainly due to the lack of pedestrian comfort measures.
- + Possible measures to improve PLOS:
 - Implement pedestrian leading intervals (LPI);
 - "Zebra" pavement markings on all crosswalks;
 - Provide median pedestrian refuges; and
 - Prohibit right-turn-on-red.

Bike LOS

- + All study area intersections do not meet BLOS targets.
- + Failing BLOS is mainly attributed to the lack of cycling infrastructure and the number of lanes that are required to cross to perform a left-turn (without a 2-stage left turn or bike box).
- Possible measures to improve BLOS:
 - Implement cycling lanes on Richmond Road, and extend the cycling lanes on Churchill Avenue North to Richmond Road; and
 - Implement two stage left-turn bike boxes on all intersections.

Transit LOS

+ All intersections meet TLOS targets.

Truck LOS

+ All intersections do not meet TkLOS targets due to small turning corner radii.

Auto LOS

All intersections are expected to meet or exceed AutoLOS targets.

It should be noted that although the above network modifications are all technically possible, they may not be feasible due to physical, economical, political or other technical constraints. Therefore, the possible measures to improve the performance of study area intersections, mentioned above, are only provided for information/decision making purposes only. If any of these possible measures are desirable, further analysis may be required to support their justification.

Given road improvement projects are not planned for study area intersections, a future intersection MMLOS analysis will yield the same LOS results summarized in **Table 18**, with the exception of minor changes in AutoLOS (e.g. the existing LOS 'B' at the Richmond/Churchill intersection during the afternoon peak is projected to operate with a LOS 'C' with increased traffic volumes).

4.5 Transportation Demand Management

With respect to the City's TIA Guidelines, an analysis of Transportation Demand Management (TDM) measures is required for this development. As such, a formal TDM Checklist (provided by the City) was completed to determine if TDM measures should be implemented, based on available information.

Although it is anticipated that the proponent will maintain the ownership of the property, future tenants will determine what TDM measures can be implemented. Therefore, it is recommended that the TDM measures checklist be discussed with future tenant(s). The City's TDM checklist is attached as **Appendix J**.

4.6 Neighbourhood Traffic Management

With respect to the City's TIA guidelines, this module reviews significant access routes to/from the development and identifies any required neighbourhood traffic management (NTM) measures to mitigate impacts on collector and local roads.

As mentioned in the *Step 3 - Forecasting* section of this report, the proposed development is projected to generate very low site-generated traffic volumes, and therefore, additional NTM measures are not recommended.

4.7 Transit

Transit stops that serve the development site were previously summarized in **Table 11**, which included stop information, routes, and the distance to/from the development site. The transit route information, including peak hour headway and service type, were previously summarized in **Table 2** in the *Step 2 - Scoping* section of this report. Detailed transit maps are included in **Appendix K**.

Route Capacity

Current transit ridership data for bus stops listed in **Table 11** was provided by the City and is included as **Appendix L**. Based the projected modal split of site-generated traffic, it is anticipated that 65% of the trips generated by the site will be accommodated by transit (i.e. a two-way total of 72 to 80 trips/hr during peak hours), and that the majority of transit trips to/from the subject development will be completed by the future LRT.

Based upon the analysis provided in the *Step 3 - Forecasting* section, there will be approximately 72 to 80 additional transit trips for each peak hour generated by the subject development at full build-out, most of which can be assumed to be accommodated by the planned future LRT system (the current BRT is planned to upgrade to LRT before the full buildout of the subjected development). According available information provided by OC Transpo,

the City is expecting an increase in the current planned LRT capacity of 21,400 passengers per hour to 36,000 passengers per hour by the year 2031, and 48,000 passengers per hour at the ultimate build out⁴.

With respect to local transit, the study area is serviced by 40ft buses on approximate 15 min headways, which have a person capacity of approximately 50 passengers per bus. According to passenger on/off data provided by the City, there are approximately 10 to 20 passengers per bus that arrive/depart the bus stops within the vicinity of the subject development during peak hours.

Assuming projected site-generated transit trips to/from the subject development will be spread between the many number of local bus stops and the Dominion transitway station, future transit users will be easily accommodated.

Transit Priority

Given the highest order transit is within the vicinity of the subject development lands, transit travel times should be unimpeded. Additionally, transit signal priority and queue jump lanes are planned for selected intersections along Richmond Road between Woodroffe Avenue and Bank Street by 2031. Therefore, additional transit priority measures will not be required.

4.8 Review of Network Concept

With respect to the City's TIA Guidelines, this module is exempt.

4.9 Intersection Design

With respect to the City's TIA Guidelines, this module determines the design elements of study area intersections required to accommodate the proposed development, consistent with the City's complete street philosophy and MMLOS practices.

Intersection Control

Based on intersection capacity analysis in the *Step 3 - Forecasting* section, and consistent with City's policies, goals and objectives, additional signal or intersection control will not be warranted.

Intersection Design

Based on intersection capacity analysis in the *Step 3 - Forecasting* section, and the consistent with City's policies, goals and objectives, additional intersection or road widenings will not be warranted.

⁴ https://www.octranspo.com/en/ready-for-rail/o train confederation line system faqs

5. Findings and Recommendations

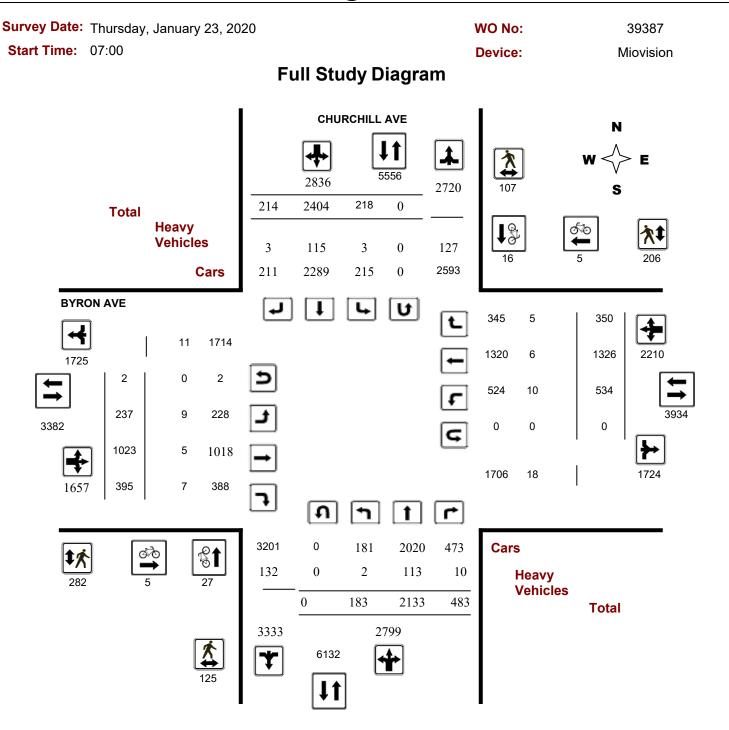
As is typical of infill developments, the introduction of mid- to high-density intensification will have impacts on the surrounding transportation network. CIMA+ has completed a review of these impacts and summarized the findings within this transportation assessment, which follows the format of a Traffic Impact Assessment (TIA) Study, as requested by the City of Ottawa. At this stage, and with respect to the City's Transportation Impact Assessment Guidelines, the following findings and conclusions are offered:

- + Study area intersections are currently operating with spare capacity and there are no prevailing safety concerns, based on historical collision data. However, some queues may exceed available storage.
- + Transit is assumed to be the primary mode of travel with a 65% mode share target for the proposed development, which is consistent with the City's goals and objectives, given the context of the study area.
- With additional traffic generated by area development and the subject development itself, both the local bus and nearby BRT routes (future LRT), and study area intersections are projected to continue operating acceptably.

The proposed development fits well into the context of the surrounding area and it is projected to have a minimal impact on the surrounding transportation network. The design and location of the proposed development serves the City of Ottawa's polices, goals and objectives by providing facilities and connectivity to help promote active and transit modes.

Based on the foregoing, the proposed development located at 403 Richmond Road is recommended from a transportation perspective.

Appendix A – Traffic Count Data

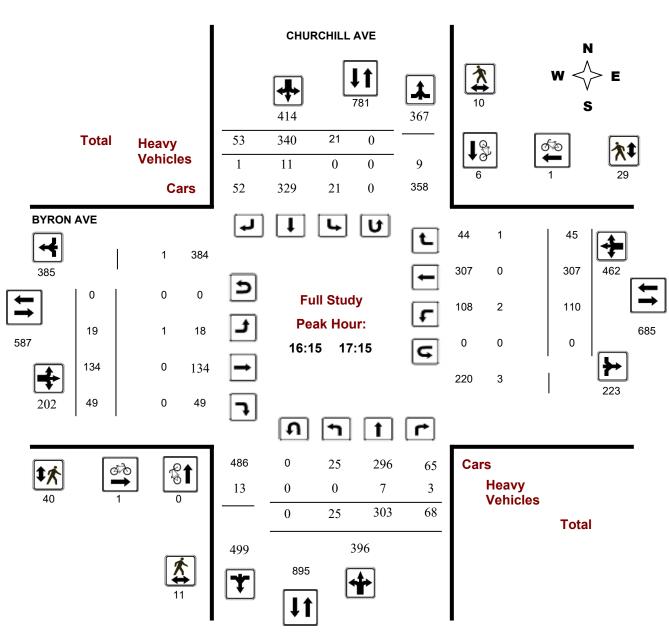


Turning Movement Count - Study Results

BYRON AVE @ CHURCHILL AVE

5472205 - THU JAN 23, 2020 - 8HRS - LORETTA

May 21, 2020 Page 1 of 8

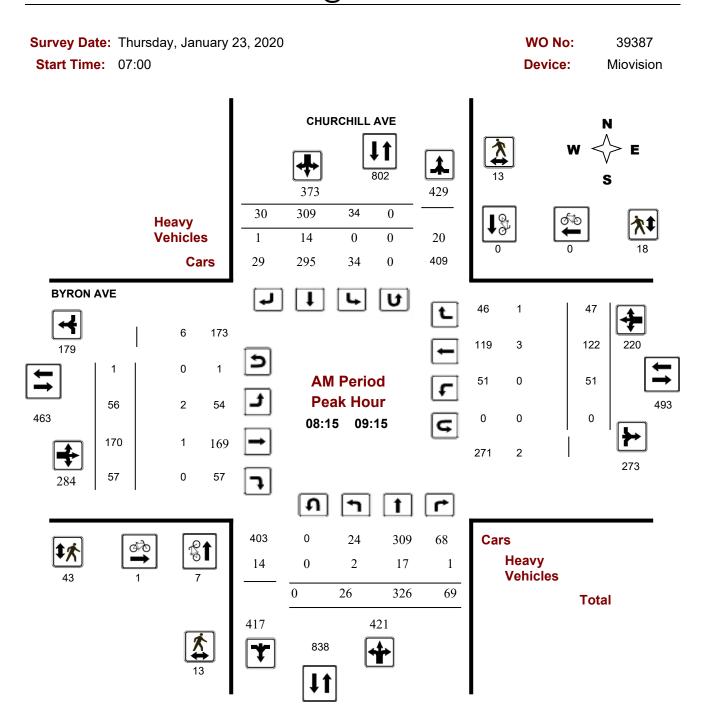

Turning Movement Count - Study Results

BYRON AVE @ CHURCHILL AVE

Survey Date: Thursday, January 23, 2020 WO No: 39387

Start Time: 07:00 Device: Miovision

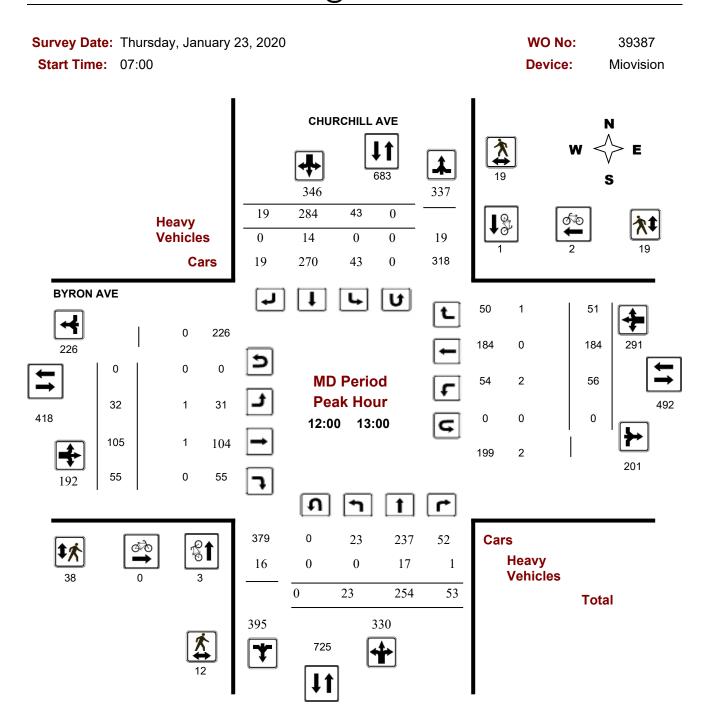
Full Study Peak Hour Diagram


5472205 - THU JAN 23, 2020 - 8HRS - LORETTA

May 21, 2020 Page 2 of 8

Turning Movement Count - Peak Hour Diagram

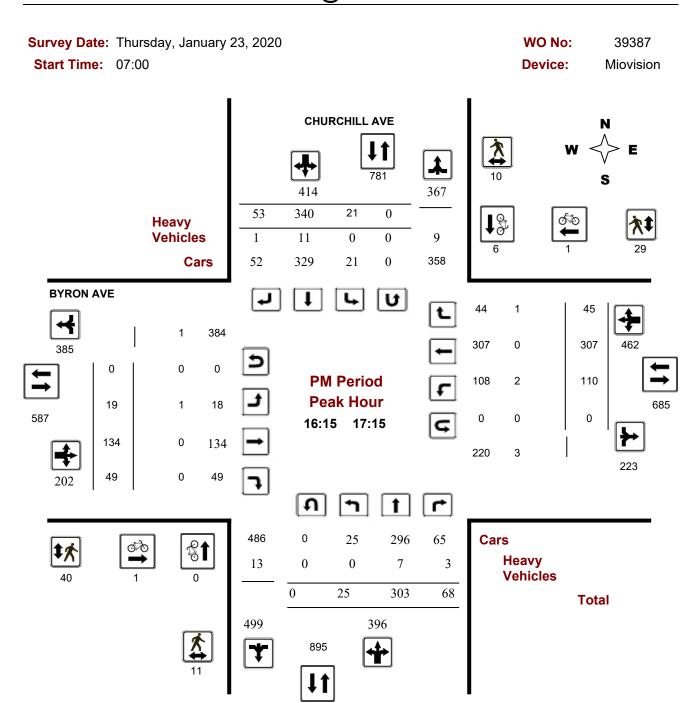
BYRON AVE @ CHURCHILL AVE


Comments 5472205 - THU JAN 23, 2020 - 8HRS - LORETTA

2020-May-21 Page 1 of 3

Turning Movement Count - Peak Hour Diagram

BYRON AVE @ CHURCHILL AVE


Comments 5472205 - THU JAN 23, 2020 - 8HRS - LORETTA

2020-May-21 Page 2 of 3

Turning Movement Count - Peak Hour Diagram

BYRON AVE @ CHURCHILL AVE

Comments 5472205 - THU JAN 23, 2020 - 8HRS - LORETTA

2020-May-21 Page 3 of 3

Turning Movement Count - Study Results

BYRON AVE @ CHURCHILL AVE

Survey Date: Thursday, January 23, 2020 WO No: 39387

Start Time: 07:00 **Device:** Miovision

Full Study Summary (8 HR Standard)

Survey Date: Thursday, January 23, 2020 **Total Observed U-Turns AADT Factor**

2

Southbound: Northbound: Westbound:

1.00

Eastbound: CHURCHILL AVE BYRON AVE

			CHUR	KCHILL	- AVE							BY	KON /	AVE					
	No	rthbou	nd		So	uthbou	ınd			Е	astbou	ınd		٧	Vestbo	und			
Period	LT	ST	RT	NB TOT	LT	ST	RT	SB TOT	STR TOT	LT	ST	RT	EB TOT	LT	ST	RT	WB TOT	STR TOT	Grand Total
07:00 08:00	12	215	42	269	18	255	3	276	545	20	89	34	143	42	70	22	134	277	822
08:00 09:00	25	325	62	412	32	293	25	350	762	53	165	53	271	50	108	43	201	472	1234
09:00 10:00	23	273	65	361	19	257	25	301	662	36	125	51	212	32	99	48	179	391	1053
11:30 12:30	25	240	73	338	40	275	17	332	670	24	126	46	196	58	153	59	270	466	1136
12:30 13:30	23	240	49	312	39	284	26	349	661	27	105	48	180	56	192	39	287	467	1128
15:00 16:00	23	257	52	332	25	373	30	428	760	24	150	70	244	85	213	46	344	588	1348
16:00 17:00	22	293	72	387	22	346	50	418	805	25	122	46	193	111	280	49	440	633	1438
17:00 18:00	30	290	68	388	23	321	38	382	770	28	141	47	216	100	211	44	355	571	1341
Sub Total	183	2133	483	2799	218	2404	214	2836	5635	237	1023	395	1655	534	1326	350	2210	3865	9500
U Turns				0				0	0				2				0	2	2
Total	183	2133	483	2799	218	2404	214	2836	5635	237	1023	395	1657	534	1326	350	2210	3867	9502
EQ 12Hr	254	2965	671	3891	303	3342	297	3942	7833	329	1422	549	2303	742	1843	486	3072	5375	13208
Note: These	values a	re calcu	lated by	y multiply	ying the	totals b	y the a	ppropriate	e expans	ion fac	tor.			1.39					
AVG 12Hr	240	2794	633	3667	286	3149	280	3715	7833	310	1340	517	2171	700	1737	458	2895	5375	13208
Note: These	volumes	are calc	culated	by multi	plying t	he Equiv	alent 1	2 hr. tota	ls by the	AADT	factor.			1					
AVG 24Hr	314	3660	829	4803	374	4126	367	4867	9670	407	1756	678	2844	916	2276	601	3793	6637	16307
Note: These	volumes	are calc	culated	by multi	plying tl	he Avera	age Dai	ly 12 hr. 1	totals by	12 to 2	4 expans	sion fac	ctor.	1.31					

Note: U-Turns provided for approach totals. Refer to 'U-Turn' Report for specific breakdown.

May 21, 2020 Page 3 of 8

Turning Movement Count - Study Results

BYRON AVE @ CHURCHILL AVE

Survey Date: Thursday, January 23, 2020 WO No: 39387

Start Time: 07:00 Device: Miovision

Full Study 15 Minute Increments

CHURCHILL AVE BYRON AVE

		No	orthbou	ınd		Sc	outhbou	nd			Е	astbour	nd		We	estboun	ıd			
Time I	Period	LT	ST	RT	N TOT	LT	ST	RT	S TOT	STR TOT	LT	ST	RT	E TOT	LT	ST	RT	W TOT	STR TOT	Grand Total
07:00	07:15	2	40	10	52	4	53	0	57	4	1	15	7	23	5	3	7	15	4	147
07:15	07:30	0	32	7	39	5	56	1	62	4	4	31	10	45	6	20	1	27	4	173
07:30	07:45	6	62	11	79	3	64	2	69	10	3	17	12	32	17	15	6	38	10	218
07:45	08:00	4	81	14	99	6	82	0	88	7	12	26	5	43	14	32	8	54	7	284
08:00	08:15	7	80	9	96	5	66	6	77	7	8	38	8	54	10	12	9	31	7	258
08:15	08:30	6	89	14	109	16	83	3	102	7	13	38	15	66	10	17	15	42	7	319
08:30	08:45	5	85	22	112	8	67	11	86	8	20	45	14	79	15	31	9	55	8	332
08:45	09:00	7	71	17	95	3	77	5	85	8	12	44	16	73	15	48	10	73	8	326
09:00	09:15	8	81	16	105	7	82	11	100	12	11	43	12	66	11	26	13	50	12	321
09:15	09:30	2	62	15	79	5	69	5	79	16	14	37	13	64	8	24	12	44	16	266
09:30	09:45	4	71	14	89	4	53	7	64	12	4	18	16	38	4	19	9	32	12	223
09:45	10:00	9	59	20	88	3	53	2	58	10	7	27	10	44	9	30	14	53	10	243
11:30	11:45	6	54	27	87	6	75	3	84	19	2	37	9	48	11	24	14	49	19	268
11:45	12:00	7	71	20	98	9	56	7	72	13	6	37	9	52	17	42	14	73	13	295
12:00	12:15	6	62	15	83	14	77	2	93	12	9	26	13	48	15	43	16	74	12	298
12:15	12:30	6	53	11	70	11	67	5	83	5	7	26	15	48	15	44	15	74	5	275
12:30	12:45	5	68	11	84	11	74	4	89	10	7	28	14	49	13	34	8	55	10	277
12:45	13:00	6	71	16	93	7	66	8	81	5	9	25	13	47	13	63	12	88	5	309
13:00	13:15	7	52	11	70	6	77	10	93	9	5	28	11	44	17	45	8	70	9	277
13:15	13:30	5	49	11	65	15	67	4	86	11	6	24	10	40	13	50	11	74	11	265
15:00	15:15	5	65	11	81	7	103	4	114	9	5	45	23	73	18	47	12	77	9	345
15:15	15:30	5	64	10	79	5	99	8	112	5	8	50	17	76	21	55	14	90	5	357
15:30	15:45	7	60	18	85	9	81	7	97	3	5	25	14	44	18	50	9	77	3	303
15:45	16:00	6	68	13	87	4	90	11	105	3	6	30	16	52	28	61	11	100	3	344
16:00	16:15	10	71	25	106	4	91	5	100	5	7	30	11	48	25	53	13	91	5	345
16:15	16:30	7	82	17	106	6	73	18	97	8	7	33	16	56	30	78	9	117	8	376
16:30	16:45	3	73	14	90	6	93	13	112	7	4	23	10	37	25	77	13	115	7	354
16:45	17:00	2	67	16	85	6	89	14	109	5	7	36	9	52	31	72	14	117	5	363
17:00	17:15	13	81	21	115	3	85	8	96	2	1	42	14	57	24	80	9	113	2	381
17:15	17:30	5	76	14	95	4	86	10	100	4	10	35	9	54	28	48	7	83	4	332
17:30	17:45	7	63	16	86	8	80	10	98	5	8	36	13	57	18	52	13	83	5	324
17:45	18:00	5	70	17	92	8	70	10	88	1	9	28	11	48	30	31	15	76	1	304
Total:		183	2133	483	2799	218	2404	214	2836	246	237	1023	395	1657	534	1326	350	2210	246	9,502

Note: U-Turns are included in Totals.

May 21, 2020 Page 4 of 8

Turning Movement Count - Study Results

BYRON AVE @ CHURCHILL AVE

Survey Date: Thursday, January 23, 2020 WO No: 39387

Start Time: 07:00 Device: Miovision

Full Study Cyclist Volume

CHURCHILL AVE BYRON AVE

	•	SHUKCHILL AV	_				
Time Period	Northbound	Southbound	Street Total	Eastbound	Westbound	Street Total	Grand Total
07:00 07:15	1	0	1	0	0	0	1
07:15 07:30	1	1	2	0	0	0	2
07:30 07:45	1	0	1	1	1	2	3
07:45 08:00	4	0	4	0	0	0	4
08:00 08:15	6	0	6	0	0	0	6
08:15 08:30	4	0	4	0	0	0	4
08:30 08:45	1	0	1	1	0	1	2
08:45 09:00	0	0	0	0	0	0	0
09:00 09:15	2	0	2	0	0	0	2
09:15 09:30	0	0	0	1	0	1	1
09:30 09:45	0	0	0	0	0	0	0
09:45 10:00	1	0	1	0	0	0	1
11:30 11:45	0	0	0	0	0	0	0
11:45 12:00	1	0	1	0	0	0	1
12:00 12:15	2	1	3	0	0	0	3
12:15 12:30	0	0	0	0	0	0	0
12:30 12:45	0	0	0	0	1	1	1
12:45 13:00	1	0	1	0	1	1	2
13:00 13:15	0	0	0	0	0	0	0
13:15 13:30	0	0	0	0	0	0	0
15:00 15:15	0	0	0	0	0	0	0
15:15 15:30	0	0	0	0	0	0	0
15:30 15:45	0	0	0	0	0	0	0
15:45 16:00	0	1	1	1	0	1	2
16:00 16:15	0	1	1	0	0	0	1
16:15 16:30	0	0	0	0	0	0	0
16:30 16:45	0	1	1	0	0	0	1
16:45 17:00	0	0	0	0	0	0	0
17:00 17:15	0	5	5	1	1	2	7
17:15 17:30	0	3	3	0	0	0	3
17:30 17:45	0	3	3	0	1	1	4
17:45 18:00	2	0	2	0	0	0	2
Total	27	16	43	5	5	10	53

May 21, 2020 Page 5 of 8

Turning Movement Count - Study Results

BYRON AVE @ CHURCHILL AVE

Survey Date: Thursday, January 23, 2020 WO No: 39387

Start Time: 07:00 Device: Miovision

Full Study Pedestrian Volume

CHURCHILL AVE BYRON AVE

Time Period	NB Approach (E or W Crossing)	SB Approach (E or W Crossing)	Total	EB Approach (N or S Crossing)	WB Approach (N or S Crossing)	Total	Grand Total
07:00 07:15	0	0	0	2	1	3	3
07:15 07:30	6	0	6	1	6	7	13
07:30 07:45	5	3	8	7	3	10	18
07:45 08:00	11	5	16	22	5	27	43
08:00 08:15	18	6	24	18	6	24	48
08:15 08:30	2	5	7	12	2	14	21
08:30 08:45	6	0	6	11	6	17	23
08:45 09:00	2	3	5	13	4	17	22
09:00 09:15	3	5	8	7	6	13	21
09:15 09:30	2	4	6	3	7	10	16
09:30 09:45	2	2	4	3	3	6	10
09:45 10:00	6	6	12	7	7	14	26
11:30 11:45	3	2	5	6	1	7	12
11:45 12:00	4	2	6	10	7	17	23
12:00 12:15	4	9	13	8	2	10	23
12:15 12:30	3	5	8	10	4	14	22
12:30 12:45	3	1	4	13	3	16	20
12:45 13:00	2	4	6	7	10	17	23
13:00 13:15	2	1	3	6	7	13	16
13:15 13:30	3	2	5	4	6	10	15
15:00 15:15	2	2	4	8	10	18	22
15:15 15:30	2	5	7	13	6	19	26
15:30 15:45	4	10	14	13	17	30	44
15:45 16:00	4	4	8	7	7	14	22
16:00 16:15	5	3	8	10	7	17	25
16:15 16:30	2	4	6	18	10	28	34
16:30 16:45	2	1	3	6	5	11	14
16:45 17:00	4	3	7	11	11	22	29
17:00 17:15	3	2	5	5	3	8	13
17:15 17:30	8	2	10	8	13	21	31
17:30 17:45	1	2	3	9	10	19	22
17:45 18:00	1	4	5	4	11	15	20
Total	125	107	232	282	206	488	720

5472205 - THU JAN 23, 2020 - 8HRS - LORETTA

May 21, 2020 Page 6 of 8

Turning Movement Count - Study Results

BYRON AVE @ CHURCHILL AVE

Survey Date: Thursday, January 23, 2020 WO No: 39387

Start Time: 07:00 Device: Miovision

Full Study Heavy Vehicles

CHURCHILL AVE BYRON AVE

		No	orthbou	und		Sc	uthbou	nd		Eastbound			Westbound							
Time Peri	iod	LT	ST	RT	N TOT	LT	ST	RT	S TOT	STR TOT	LT	ST	RT	E TOT	LT	ST	RT	W TOT	STR TOT	Grand Total
07:00 07	7:15	0	2	1	3	0	1	0	1	4	0	0	1	1	0	0	0	0	1	5
07:15 07	7:30	0	2	0	2	0	2	0	2	4	1	0	0	1	0	1	0	1	2	6
07:30 07	7:45	0	6	0	6	0	4	0	4	10	1	0	1	2	3	0	0	3	5	15
07:45 08	3:00	0	3	0	3	0	4	0	4	7	0	0	1	1	0	0	0	0	1	8
08:00 08	3:15	0	6	0	6	0	1	0	1	7	0	0	0	0	0	0	0	0	0	7
08:15 08	3:30	1	2	0	3	0	4	0	4	7	0	0	0	0	0	1	0	1	1	8
08:30 08	3:45	0	7	0	7	0	1	0	1	8	2	0	0	2	0	0	0	0	2	10
08:45 09	9:00	1	4	1	6	0	1	1	2	8	0	0	0	0	0	0	1	1	1	9
09:00 09	9:15	0	4	0	4	0	8	0	8	12	0	1	0	1	0	2	0	2	3	15
09:15 09	9:30	0	8	0	8	0	8	0	8	16	0	0	0	0	0	0	0	0	0	16
09:30 09	9:45	0	10	0	10	0	2	0	2	12	0	0	0	0	0	0	1	1	1	13
09:45 10	0:00	0	5	0	5	0	5	0	5	10	1	0	1	2	0	0	0	0	2	12
11:30 11	1:45	0	5	2	7	0	12	0	12	19	0	0	0	0	0	0	0	0	0	19
11:45 12	2:00	0	10	0	10	0	3	0	3	13	0	0	1	1	0	1	0	1	2	15
12:00 12	2:15	0	6	0	6	0	6	0	6	12	0	0	0	0	0	0	0	0	0	12
12:15 12	2:30	0	0	1	1	0	4	0	4	5	1	1	0	2	0	0	0	0	2	7
12:30 12	2:45	0	7	0	7	0	3	0	3	10	0	0	0	0	2	0	0	2	2	12
12:45 13	3:00	0	4	0	4	0	1	0	1	5	0	0	0	0	0	0	1	1	1	6
13:00 13	3:15	0	4	0	4	1	4	0	5	9	0	0	0	0	0	0	0	0	0	9
13:15 13	3:30	0	0	0	0	1	10	0	11	11	0	1	0	1	0	0	1	1	2	13
15:00 15	5:15	0	3	0	3	1	5	0	6	9	1	1	0	2	1	0	0	1	3	12
15:15 15	5:30	0	1	0	1	0	4	0	4	5	0	1	0	1	0	0	0	0	1	6
15:30 15	5:45	0	0	0	0	0	2	1	3	3	0	0	0	0	0	0	0	0	0	3
15:45 16	3:00	0	1	1	2	0	1	0	1	3	0	0	1	1	0	0	0	0	1	4
	3:15	0	2	1	3	0	2	0	2	5	1	0	1	2	2	0	0	2	4	9
	3:30	0	3	1	4	0	3	1	4	8	1	0	0	1	1	0	0	1	2	10
16:30 16	6:45	0	1	1	2	0	5	0	5	7	0	0	0	0	1	0	0	1	1	8
16:45 17	7:00	0	1	1	2	0	3	0	3	5	0	0	0	0	0	0	1	1	1	6
17:00 17	7:15	0	2	0	2	0	0	0	0	2	0	0	0	0	0	0	0	0	0	2
17:15 17	7:30	0	2	0	2	0	2	0	2	4	0	0	0	0	0	1	0	1	1	5
17:30 17	7:45	0	2	0	2	0	3	0	3	5	0	0	0	0	0	0	0	0	0	5
17:45 18	3:00	0	0	0	0	0	1	0	1	1	0	0	0	0	0	0	0	0	0	1
Total: No	one	2	113	10	125	3	115	3	121	246	9	5	7	21	10	6	5	21	42	288

May 21, 2020 Page 7 of 8

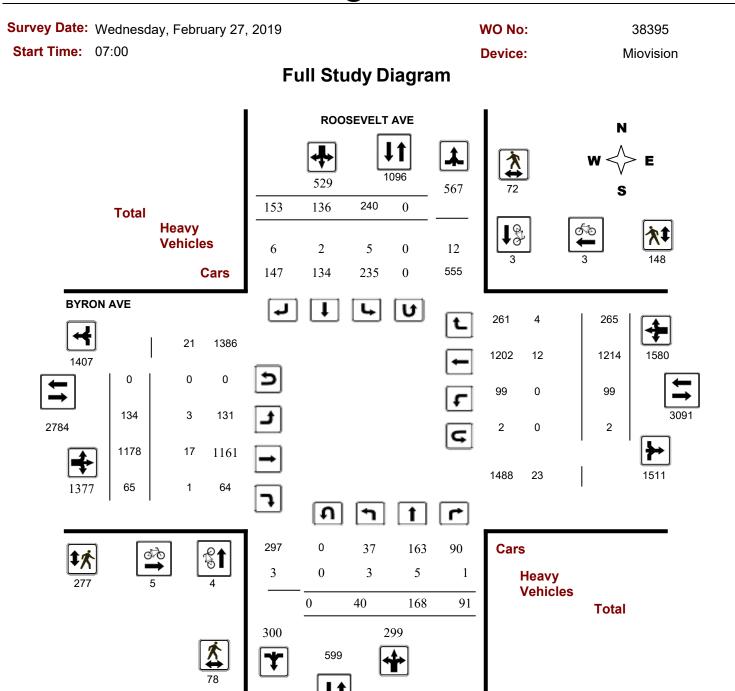
Turning Movement Count - Study Results

BYRON AVE @ CHURCHILL AVE

Survey Date: Thursday, January 23, 2020 WO No: 39387

Start Time: 07:00 Device: Miovision

Full Study 15 Minute U-Turn Total CHURCHILL AVE BYRON AVE

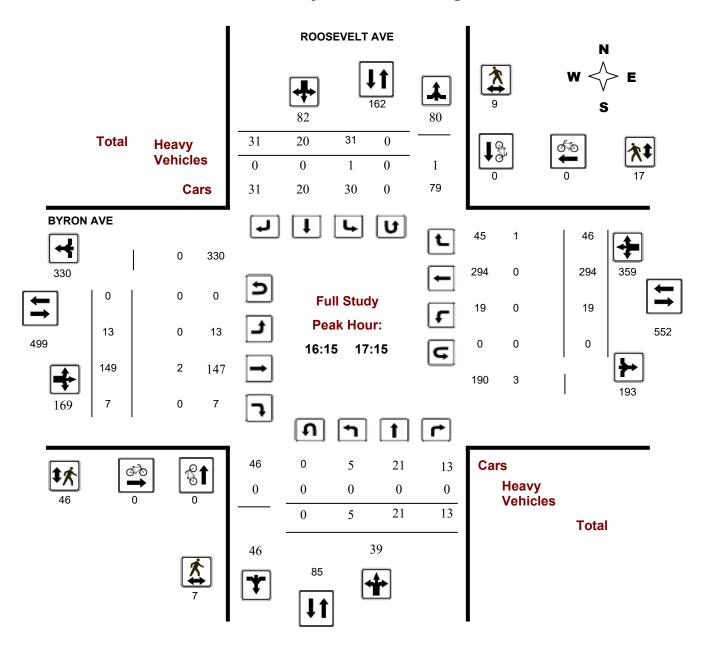

Time F	Period	Northbound U-Turn Total	Southbound U-Turn Total	Eastbound U-Turn Total	Westbound U-Turn Total	Total	
07:00	07:15	0	0	0	0	0	
07:15	07:30	0	0	0	0	0	
07:30	07:45	0	0	0	0	0	
07:45	08:00	0	0	0	0	0	
08:00	08:15	0	0	0	0	0	
08:15	08:30	0	0	0	0	0	
08:30	08:45	0	0	0	0	0	
08:45	09:00	0	0	1	0	1	
09:00	09:15	0	0	0	0	0	
09:15	09:30	0	0	0	0	0	
09:30	09:45	0	0	0	0	0	
09:45	10:00	0	0	0	0	0	
11:30	11:45	0	0	0	0	0	
11:45	12:00	0	0	0	0	0	
12:00	12:15	0	0	0	0	0	
12:15	12:30	0	0	0	0	0	
12:30	12:45	0	0	0	0	0	
12:45	13:00	0	0	0	0	0	
13:00	13:15	0	0	0	0	0	
13:15	13:30	0	0	0	0	0	
15:00	15:15	0	0	0	0	0	
15:15	15:30	0	0	1	0	1	
15:30	15:45	0	0	0	0	0	
15:45	16:00	0	0	0	0	0	
16:00	16:15	0	0	0	0	0	
16:15	16:30	0	0	0	0	0	
16:30	16:45	0	0	0	0	0	
16:45	17:00	0	0	0	0	0	
17:00	17:15	0	0	0	0	0	
17:15	17:30	0	0	0	0	0	
17:30	17:45	0	0	0	0	0	
17:45	18:00	0	0	0	0	0	
To	otal	0	0	2	0	2	

May 21, 2020 Page 8 of 8

Turning Movement Count - Study Results

BYRON AVE @ ROOSEVELT AVE

June 22, 2020 Page 1 of 8

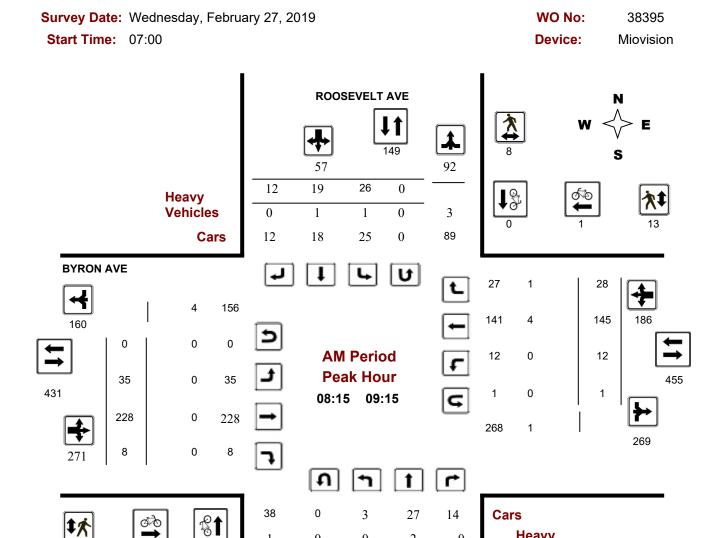

Turning Movement Count - Study Results

BYRON AVE @ ROOSEVELT AVE

Survey Date: Wednesday, February 27, 2019 WO No: 38395

Start Time: 07:00 Device: Miovision

Full Study Peak Hour Diagram



June 22, 2020 Page 2 of 8

Turning Movement Count - Peak Hour Diagram

BYRON AVE @ ROOSEVELT AVE

0

3

85

2

29

46

0

14

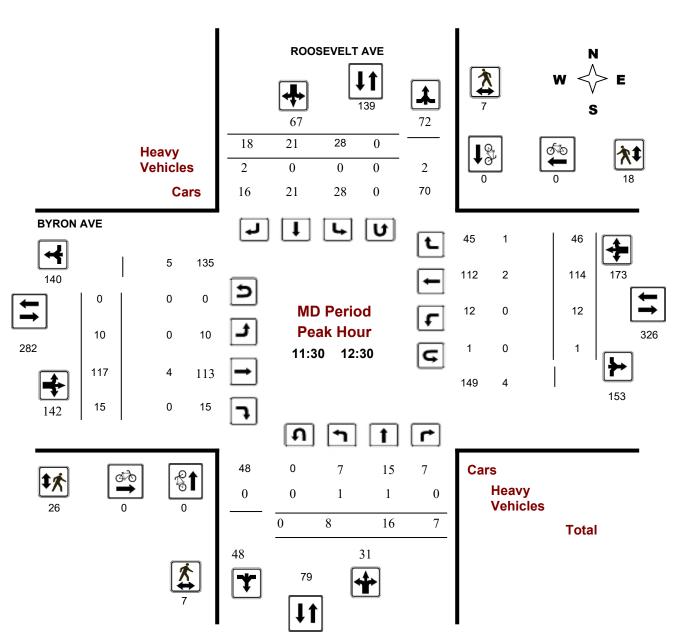
Heavy

Vehicles

Total

2020-Jun-22 Page 1 of 3

1

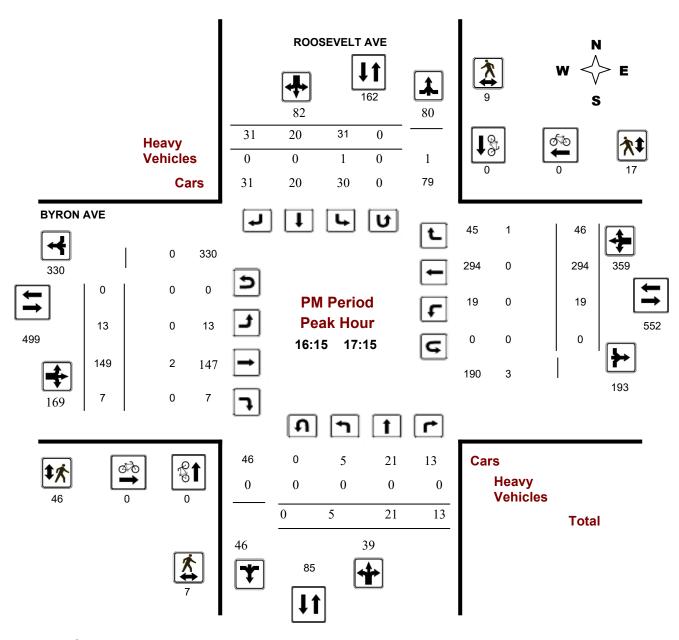

39

Turning Movement Count - Peak Hour Diagram

BYRON AVE @ ROOSEVELT AVE

Survey Date: Wednesday, February 27, 2019 WO No: 38395
Start Time: 07:00 Device: Miovision

Comments


2020-Jun-22 Page 2 of 3

Turning Movement Count - Peak Hour Diagram

BYRON AVE @ ROOSEVELT AVE

Survey Date: Wednesday, February 27, 2019 WO No: 38395
Start Time: 07:00 Device: Miovision

Comments

2020-Jun-22 Page 3 of 3

Turning Movement Count - Study Results

BYRON AVE @ ROOSEVELT AVE

Survey Date: Wednesday, February 27, 2019 WO No: 38395

Start Time: 07:00 Device: Miovision

Full Study Summary (8 HR Standard)

Survey Date: Wednesday, February 27, Total Observed U-Turns AADT Factor

2019 Northbound: 0 Southbound: (

Eastbound: 0 Westbound: 2

		ı	ROOS	SEVEL ⁻	ΓAVE							ВУ	RON .	AVE					
	Nor	thbou	nd		So	uthbou	ınd			Е	astbou	ınd		V	/estbo	und			
Period	LT	ST	RT	NB TOT	LT	ST	RT	SB TOT	STR TOT	LT	ST	RT	EB TOT	LT	ST	RT	WB TOT	STR TOT	Grand Total
07:00 08:00	3	19	17	39	14	9	7	30	69	9	161	7	177	5	54	17	76	253	322
08:00 09:00	3	32	17	52	27	15	12	54	106	28	247	2	277	10	138	28	176	453	559
09:00 10:00	0	25	13	38	21	15	12	48	86	28	152	12	192	12	104	30	146	338	424
11:30 12:30	8	16	7	31	28	21	18	67	98	10	117	15	142	12	114	46	172	314	412
12:30 13:30	11	18	6	35	37	20	24	81	116	17	101	4	122	13	111	30	154	276	392
15:00 16:00	8	14	9	31	38	19	22	79	110	16	133	5	154	12	189	31	232	386	496
16:00 17:00	6	23	9	38	30	21	29	80	118	12	137	12	161	14	253	47	314	475	593
17:00 18:00	1	21	13	35	45	16	29	90	125	14	130	8	152	21	251	36	308	460	585
Sub Total	40	168	91	299	240	136	153	529	828	134	1178	65	1377	99	1214	265	1578	2955	3783
U Turns				0				0	0				0				2	2	2
Total	40	168	91	299	240	136	153	529	828	134	1178	65	1377	99	1214	265	1580	2957	3785
EQ 12Hr	56	234	126	416	334	189	213	735	1151	186	1637	90	1914	138	1687	368	2196	4110	5261
Note: These v	alues ar	re calcu	lated by	/ multiply	ing the	totals b	y the ap	opropriate	e expans	ion fac	tor.			1.39					
AVG 12Hr	52	220	119	392	314	178	200	693	1151	176	1543	85	1804	130	1590	347	2070	4110	5261
Note: These v	olumes	are calc	culated	by multip	olying th	ne Equiv	alent 1	2 hr. tota	ls by the	AADT	factor.			1					
AVG 24Hr	69	288	156	513	412	233	263	908	1421	230	2022	112	2363	170	2083	455	2711	5074	6495
Note: These v	olumes	are calc	culated	by multip	olying th	ne Avera	ige Dail	y 12 hr. t	totals by	12 to 2	4 expans	sion fac	ctor.	1.31					

Note: U-Turns provided for approach totals. Refer to 'U-Turn' Report for specific breakdown.

June 22, 2020 Page 3 of 8

Turning Movement Count - Study Results

BYRON AVE @ ROOSEVELT AVE

Survey Date: Wednesday, February 27, 2019 WO No: 38395

Start Time: 07:00 Device: Miovision

Full Study 15 Minute Increments

ROOSEVELT AVE BYRON AVE

		No	orthbou	und		Sc	uthbou	nd			E	astbour	nd		W	estbour	nd			
Time I	Period	LT	ST	RT	N TOT	LT	ST	RT	S TOT	STR TOT	LT	ST	RT	E TOT	LT	ST	RT	W TOT	STR TOT	Grand Total
07:00	07:15	0	5	3	8	3	2	1	6	0	1	17	0	18	0	4	2	6	0	38
07:15	07:30	2	4	4	10	3	2	0	5	0	1	45	0	46	1	14	2	17	0	78
07:30	07:45	0	6	2	8	4	2	3	9	0	2	41	2	45	2	14	5	21	0	83
07:45	08:00	1	4	8	13	4	3	3	10	0	5	58	5	68	2	22	8	32	0	123
08:00	08:15	0	11	7	18	7	3	2	12	2	5	66	0	71	3	30	5	38	2	139
08:15	08:30	1	13	5	19	6	4	4	14	1	7	69	0	76	2	25	8	36	1	145
08:30	08:45	0	6	2	8	10	1	5	16	1	9	60	1	70	2	32	11	45	1	139
08:45	09:00	2	2	3	7	4	7	1	12	0	7	52	1	60	3	51	4	58	0	137
09:00	09:15	0	8	4	12	6	7	2	15	2	12	47	6	65	5	37	5	47	2	139
09:15	09:30	0	6	3	9	5	2	1	8	0	10	40	3	53	2	23	7	32	0	102
09:30	09:45	0	5	3	8	4	1	2	7	0	3	37	2	42	2	25	8	35	0	92
09:45	10:00	0	6	3	9	6	5	7	18	1	3	28	1	32	3	19	10	32	1	91
11:30	11:45	2	3	0	5	8	4	4	16	2	3	35	7	45	2	26	10	38	2	104
11:45	12:00	3	6	2	11	5	5	5	15	2	3	27	4	34	5	30	11	46	2	106
12:00	12:15	2	3	2	7	6	8	7	21	0	2	27	0	29	0	32	12	44	0	101
12:15	12:30	1	4	3	8	9	4	2	15	0	2	28	4	34	5	26	13	45	0	102
12:30	12:45	5	4	2	11	9	3	7	19	1	4	21	0	25	1	33	8	42	1	97
12:45	13:00	0	5	2	7	10	5	5	20	1	7	29	1	37	3	29	7	39	1	103
13:00	13:15	3	6	2	11	12	3	2	17	0	5	23	2	30	7	24	9	40	0	98
13:15	13:30	3	3	0	6	6	9	10	25	0	1	28	1	30	2	25	6	33	0	94
15:00	15:15	4	3	2	9	7	5	6	18	3	7	24	0	31	4	36	7	47	3	105
15:15	15:30	3	4	1	8	14	6	7	27	2	3	36	4	43	2	44	11	57	2	135
15:30	15:45	1	3	0	4	7	4	6	17	1	2	38	0	40	3	51	7	61	1	122
15:45	16:00	0	4	6	10	10	4	3	17	1	4	35	1	40	3	58	6	67	1	134
16:00	16:15	1	10	2	13	9	4	6	19	1	4	30	5	39	2	46	15	63	1	134
16:15	16:30	1	3	3	7	3	7	2	12	0	3	33	0	36	4	77	13	94	0	149
16:30	16:45	1	7	3	11	8	5	12	25	1	1	24	1	26	4	57	8	69	1	131
16:45	17:00	3	3	1	7	10	5	9	24	0	4	50	6	60	4	73	11	88	0	179
17:00	17:15	0	8	6	14	10	3	8	21	0	5	42	0	47	7	87	14	108	0	190
17:15	17:30	1	3	3	7	7	4	8	19	0	5	27	3	35	9	72	5	86	0	147
17:30	17:45	0	6	1	7	12	4	8	24	0	4	31	2	37	2	53	8	63	0	131
17:45	18:00	0	4	3	7	16	5	5	26	0	0	30	3	33	3	39	9	51	0	117
Total:		40	168	91	299	240	136	153	529	22	134	1178	65	1377	99	1214	265	1580	22	3,785

Note: U-Turns are included in Totals.

June 22, 2020 Page 4 of 8

Turning Movement Count - Study Results

BYRON AVE @ ROOSEVELT AVE

Survey Date: Wednesday, February 27, 2019 **WO No:** 38395

Start Time: 07:00 Device: Miovision

Full Study Cyclist Volume

ROOSEVELT AVE BYRON AVE

		(OOOLVEEL A			DINONATE		<u> </u>
Time Period	Northbound	Southbound	Street Total	Eastbound	Westbound	Street Total	Grand Total
07:00 07:15	0	0	0	0	0	0	0
07:15 07:30	1	0	1	1	0	1	2
07:30 07:45	0	0	0	0	0	0	0
07:45 08:00	1	0	1	0	0	0	1
08:00 08:15	1	0	1	2	0	2	3
08:15 08:30	0	0	0	1	0	1	1
08:30 08:45	1	0	1	0	0	0	1
08:45 09:00	0	0	0	1	1	2	2
09:00 09:15	0	0	0	0	0	0	0
09:15 09:30	0	0	0	0	0	0	0
09:30 09:45	0	0	0	0	2	2	2
09:45 10:00	0	0	0	0	0	0	0
11:30 11:45	0	0	0	0	0	0	0
11:45 12:00	0	0	0	0	0	0	0
12:00 12:15	0	0	0	0	0	0	0
12:15 12:30	0	0	0	0	0	0	0
12:30 12:45	0	0	0	0	0	0	0
12:45 13:00	0	0	0	0	0	0	0
13:00 13:15	0	0	0	0	0	0	0
13:15 13:30	0	0	0	0	0	0	0
15:00 15:15	0	0	0	0	0	0	0
15:15 15:30	0	0	0	0	0	0	0
15:30 15:45	0	0	0	0	0	0	0
15:45 16:00	0	0	0	0	0	0	0
16:00 16:15	0	1	1	0	0	0	1
16:15 16:30	0	0	0	0	0	0	0
16:30 16:45	0	0	0	0	0	0	0
16:45 17:00	0	0	0	0	0	0	0
17:00 17:15	0	0	0	0	0	0	0
17:15 17:30	0	0	0	0	0	0	0
17:30 17:45	0	1	1	0	0	0	1
17:45 18:00	0	1	1	0	0	0	1
Total	4	3	7	5	3	8	15

June 22, 2020 Page 5 of 8

Turning Movement Count - Study Results

BYRON AVE @ ROOSEVELT AVE

Survey Date: Wednesday, February 27, 2019 WO No: 38395

Start Time: 07:00 Device: Miovision

Full Study Pedestrian Volume

ROOSEVELT AVE BYRON AVE

Time Period	NB Approach (E or W Crossing)	SB Approach (E or W Crossing)	Total	EB Approach (N or S Crossing)	WB Approach (N or S Crossing)	Total	Grand Total
07:00 07:15	2	0	2	4	1	5	7
07:15 07:30	2	1	3	7	2	9	12
07:30 07:45	1	0	1	5	2	7	8
07:45 08:00	2	0	2	13	4	17	19
08:00 08:15	2	1	3	9	5	14	17
08:15 08:30	5	2	7	12	2	14	21
08:30 08:45	4	3	7	7	4	11	18
08:45 09:00	3	3	6	10	5	15	21
09:00 09:15	1	0	1	4	2	6	7
09:15 09:30	2	3	5	9	0	9	14
09:30 09:45	1	1	2	3	3	6	8
09:45 10:00	1	0	1	0	3	3	4
11:30 11:45	1	0	1	6	1	7	8
11:45 12:00	1	4	5	10	8	18	23
12:00 12:15	2	1	3	7	6	13	16
12:15 12:30	3	2	5	3	3	6	11
12:30 12:45	16	17	33	26	18	44	77
12:45 13:00	1	0	1	10	7	17	18
13:00 13:15	2	3	5	12	8	20	25
13:15 13:30	1	2	3	6	2	8	11
15:00 15:15	6	4	10	4	8	12	22
15:15 15:30	0	1	1	0	6	6	7
15:30 15:45	1	3	4	9	7	16	20
15:45 16:00	2	5	7	14	5	19	26
16:00 16:15	3	2	5	14	6	20	25
16:15 16:30	0	1	1	9	8	17	18
16:30 16:45	0	4	4	11	1	12	16
16:45 17:00	3	4	7	11	4	15	22
17:00 17:15	4	0	4	15	4	19	23
17:15 17:30	4	2	6	10	6	16	22
17:30 17:45	1	1	2	13	3	16	18
17:45 18:00	1	2	3	4	4	8	11
Total	78	72	150	277	148	425	575

June 22, 2020 Page 6 of 8

Turning Movement Count - Study Results

BYRON AVE @ ROOSEVELT AVE

Survey Date: Wednesday, February 27, 2019 WO No: 38395

Start Time: 07:00 Device: Miovision

Full Study Heavy Vehicles

ROOSEVELT AVE BYRON AVE

	N	orthbou	und		Sc	uthbou	ınd			Е	astbour	nd		We	estbour	nd			
Time Period	LT	ST	RT	N TOT	LT	ST	RT	S TOT	STR TOT	LT	ST	RT	E TOT	LT	ST	RT	W TOT	STR TOT	Grand Total
07:00 07:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
07:15 07:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
07:30 07:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	1	1
07:45 08:00	0	0	0	0	0	0	0	0	0	0	2	0	2	0	0	0	0	2	2
08:00 08:15	0	0	0	0	0	0	2	2	2	0	0	0	0	0	1	0	1	1	3
08:15 08:30	0	1	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	1
08:30 08:45	0	0	0	0	1	0	0	1	1	0	0	0	0	0	1	1	2	2	3
08:45 09:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	2	2	2
09:00 09:15	0	1	0	1	0	1	0	1	2	0	0	0	0	0	1	0	1	1	3
09:15 09:30	0	0	0	0	0	0	0	0	0	1	1	0	2	0	0	0	0	2	2
09:30 09:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
09:45 10:00	0	0	0	0	0	1	0	1	1	0	0	0	0	0	0	0	0	0	1
11:30 11:45	0	1	0	1	0	0	1	1	2	0	2	0	2	0	1	0	1	3	5
11:45 12:00	1	0	0	1	0	0	1	1	2	0	2	0	2	0	0	0	0	2	4
12:00 12:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	1	1
12:15 12:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1
12:30 12:45	0	1	0	1	0	0	0	0	1	0	1	0	1	0	0	0	0	1	2
12:45 13:00	0	0	0	0	1	0	0	1	1	0	1	0	1	0	0	0	0	1	2
13:00 13:15	0	0	0	0	0	0	0	0	0	1	1	1	3	0	0	0	0	3	3
13:15 13:30	0	0	0	0	0	0	0	0	0	0	2	0	2	0	0	0	0	2	2
15:00 15:15	2	0	0	2	1	0	0	1	3	1	2	0	3	0	0	1	1	4	7
15:15 15:30	0	0	0	0	0	0	2	2	2	0	0	0	0	0	2	0	2	2	4
15:30 15:45	0	0	0	0	1	0	0	1	1	0	0	0	0	0	0	0	0	0	1
15:45 16:00	0	0	1	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	1
16:00 16:15	0	1	0	1	0	0	0	0	1	0	1	0	1	0	1	0	1	2	3
16:15 16:30	0	0	0	0	0	0	0	0	0	0	2	0	2	0	0	1	1	3	3
16:30 16:45	0	0	0	0	1	0	0	1	1	0	0	0	0	0	0	0	0	0	1
16:45 17:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
17:00 17:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
17:15 17:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	1	1
17:30 17:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
17:45 18:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total: None	3	5	1	9	5	2	6	13	22	3	17	1	21	0	12	4	16	37	59

June 22, 2020 Page 7 of 8

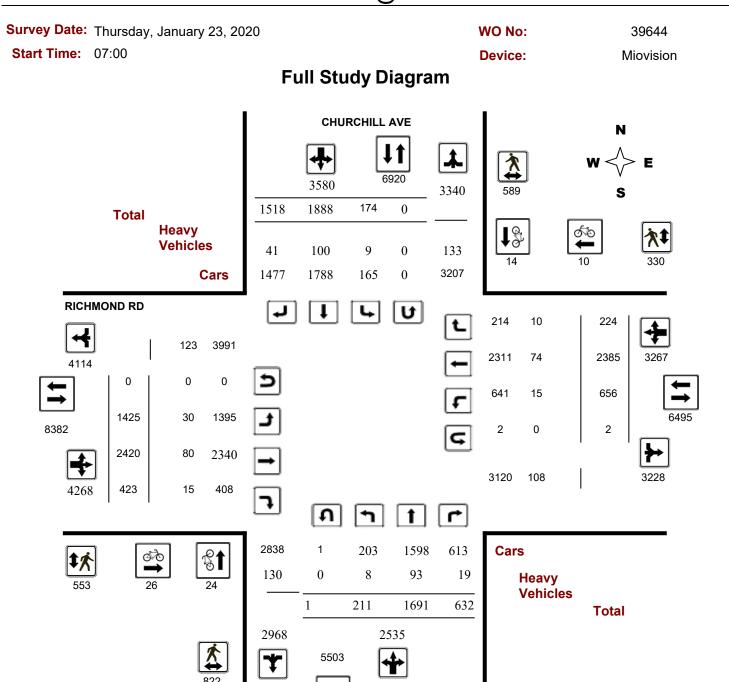
Turning Movement Count - Study Results

BYRON AVE @ ROOSEVELT AVE

Survey Date: Wednesday, February 27, 2019 WO No: 38395

Start Time: 07:00 Device: Miovision

Full Study 15 Minute U-Turn Total ROOSEVELT AVE BYRON AVE

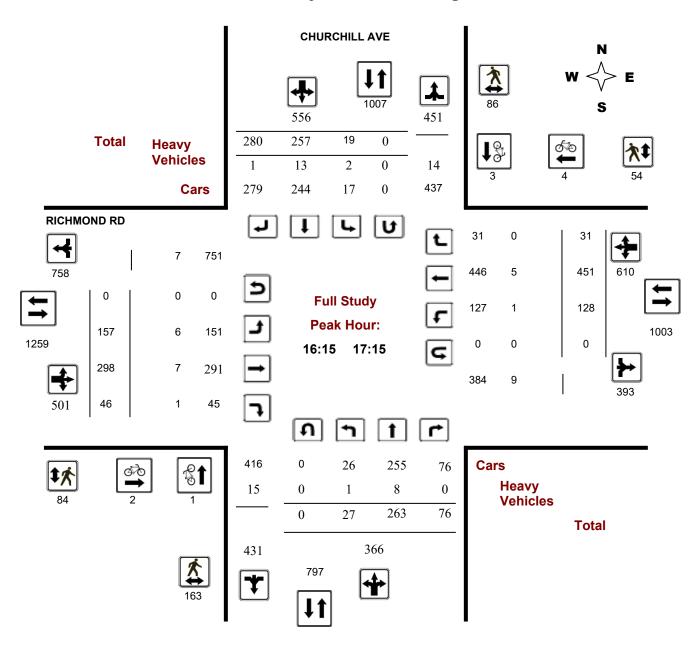

Time P	eriod	Northbound U-Turn Total	Southbound U-Turn Total	Eastbound U-Turn Total	Westbound U-Turn Total	Total
07:00	07:15	0	0	0	0	0
07:15	07:30	0	0	0	0	0
07:30	07:45	0	0	0	0	0
07:45	08:00	0	0	0	0	0
08:00	08:15	0	0	0	0	0
08:15	08:30	0	0	0	1	1
08:30	08:45	0	0	0	0	0
08:45	09:00	0	0	0	0	0
09:00	09:15	0	0	0	0	0
09:15	09:30	0	0	0	0	0
09:30	09:45	0	0	0	0	0
09:45	10:00	0	0	0	0	0
11:30	11:45	0	0	0	0	0
11:45	12:00	0	0	0	0	0
12:00	12:15	0	0	0	0	0
12:15	12:30	0	0	0	1	1
12:30	12:45	0	0	0	0	0
12:45	13:00	0	0	0	0	0
13:00	13:15	0	0	0	0	0
13:15	13:30	0	0	0	0	0
15:00	15:15	0	0	0	0	0
15:15	15:30	0	0	0	0	0
15:30	15:45	0	0	0	0	0
15:45	16:00	0	0	0	0	0
16:00	16:15	0	0	0	0	0
16:15	16:30	0	0	0	0	0
16:30	16:45	0	0	0	0	0
16:45	17:00	0	0	0	0	0
17:00	17:15	0	0	0	0	0
17:15	17:30	0	0	0	0	0
17:30	17:45	0	0	0	0	0
17:45	18:00	0	0	0	0	0
То	tal	0	0	0	2	2

June 22, 2020 Page 8 of 8

Turning Movement Count - Study Results

CHURCHILL AVE @ RICHMOND RD

June 9, 2020 Page 1 of 8


Turning Movement Count - Study Results

CHURCHILL AVE @ RICHMOND RD

Survey Date: Thursday, January 23, 2020 WO No: 39644

Start Time: 07:00 Device: Miovision

Full Study Peak Hour Diagram

June 9, 2020 Page 2 of 8

Turning Movement Count - Study Results

CHURCHILL AVE @ RICHMOND RD

Survey Date: Thursday, January 23, 2020 WO No: 39644

Start Time: 07:00 Device: Miovision

Full Study Summary (8 HR Standard)

Survey Date: Thursday, January 23, 2020 Total Observed U-Turns AADT Factor

Northbound: 1 Southbound: 0

1.00

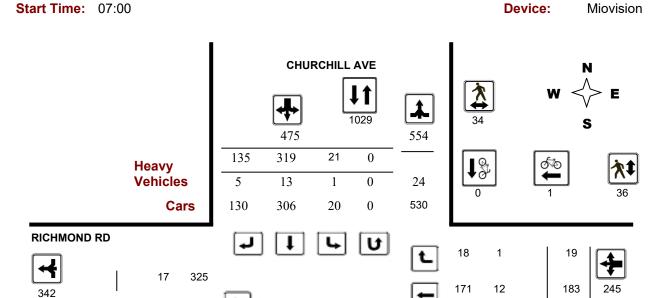
Eastbound: 0 Westbound: 2

			CHUF	RCHILL	_AVE							RIC	HMON	D RD					
	No	rthbou	nd		So	uthbo	und			Е	astbou	ınd		V	Vestbo	und			
Period	LT	ST	RT	NB TOT	LT	ST	RT	SB TOT	STR TOT	LT	ST	RT	EB TOT	LT	ST	RT	WB TOT	STR TOT	Grand Total
07:00 08:00	14	161	59	234	16	226	90	332	566	274	347	24	645	35	126	22	183	828	1394
08:00 09:00	16	270	93	379	21	296	136	453	832	287	373	32	692	40	182	16	238	930	1762
09:00 10:00	27	205	81	313	18	219	137	374	687	162	329	35	526	64	173	33	270	796	1483
11:30 12:30	42	173	77	292	36	195	161	392	684	122	289	72	483	79	308	33	420	903	1587
12:30 13:30	31	183	83	297	30	215	187	432	729	128	254	83	465	73	340	27	440	905	1634
15:00 16:00	28	201	84	313	18	247	276	541	854	145	283	78	506	116	393	29	538	1044	1898
16:00 17:00	28	260	71	359	16	256	270	542	901	145	279	57	481	132	453	25	610	1091	1992
17:00 18:00	25	238	84	347	19	234	261	514	861	162	266	42	470	117	410	39	566	1036	1897
Sub Total	211	1691	632	2534	174	1888	1518	3580	6114	1425	2420	423	4268	656	2385	224	3265	7533	13647
U Turns				1				0	1				0				2	2	3
Total	211	1691	632	2535	174	1888	1518	3580	6115	1425	2420	423	4268	656	2385	224	3267	7535	13650
EQ 12Hr	293	2350	878	3524	242	2624	2110	4976	8500	1981	3364	588	5933	912	3315	311	4541	10474	18974
Note: These	values a	re calcu	ılated b	y multiply	ying the	totals b	y the a	opropriat	e expans	sion fac	tor.			1.39					
AVG 12Hr	276	2215	828	3321	228	2473	1989	4690	8500	1867	3170	554	5591	859	3124	293	4280	10474	18974
Note: These	volumes	are cal	culated	by multi	plying tl	he Equi	valent 1	2 hr. tota	als by the	AADT	factor.			1					
AVG 24Hr	362	2902	1085	4350	299	3240	2605	6144	10494	2445	4153	726	7324	1126	4093	384	5606	12930	23424
Note: These	volumes	are cal	culated	by multi	plying tl	he Aver	age Dai	ly 12 hr.	totals by	12 to 2	4 expans	sion fac	tor.	1.31					

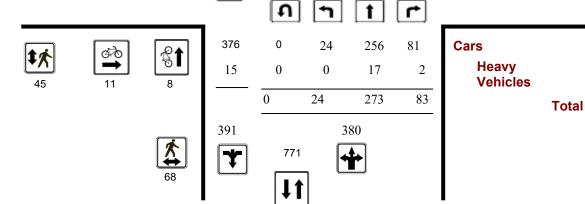
Note: U-Turns provided for approach totals. Refer to 'U-Turn' Report for specific breakdown.

June 9, 2020 Page 3 of 8

Survey Date: Thursday, January 23, 2020


Transportation Services - Traffic Services

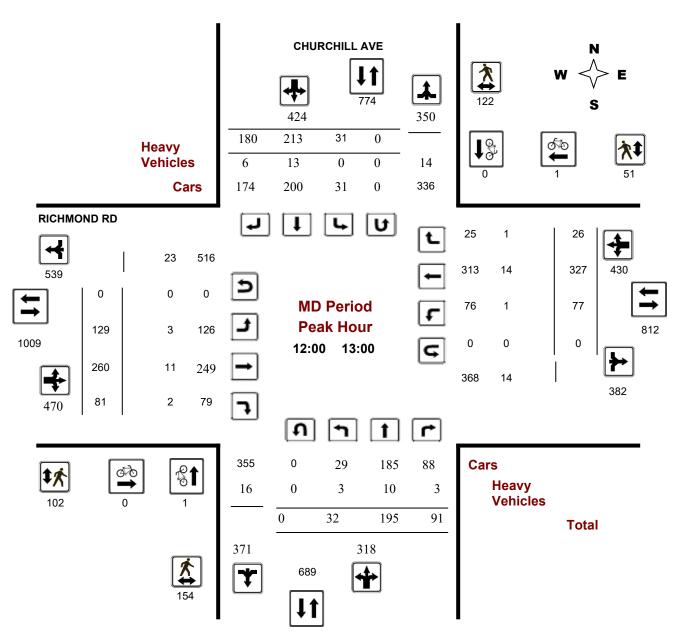
WO No:


39644

Turning Movement Count - Peak Hour Diagram

CHURCHILL AVE @ RICHMOND RD

Comments


2020-Jun-09 Page 1 of 3

Turning Movement Count - Peak Hour Diagram

CHURCHILL AVE @ RICHMOND RD

Survey Date:Thursday, January 23, 2020WO No:39644Start Time:07:00Device:Miovision

Comments

2020-Jun-09 Page 2 of 3

Turning Movement Count - Peak Hour Diagram

CHURCHILL AVE @ RICHMOND RD

Comments

2020-Jun-09 Page 3 of 3

CHURCHILL AVE

Transportation Services - Traffic Services

Turning Movement Count - Study Results

CHURCHILL AVE @ RICHMOND RD

Survey Date: Thursday, January 23, 2020 WO No: 39644

Start Time: 07:00 Device: Miovision

Full Study 15 Minute Increments RICHMOND RD

		No	orthbou	ınd		Sc	uthbou	nd			Е	astbour	nd		We	estboun	ıd			
Time I	Period	LT	ST	RT	N TOT	LT	ST	RT	S TOT	STR TOT	LT	ST	RT	E TOT	LT	ST	RT	W TOT	STR TOT	Grand Total
07:00	07:15	4	25	10	39	3	46	20	69	4	56	75	5	136	7	27	6	40	4	284
07:15	07:30	4	28	8	40	2	50	19	71	6	63	91	5	159	5	35	2	42	6	312
07:30	07:45	2	37	18	57	9	59	24	92	13	80	85	10	175	11	26	4	41	13	365
07:45	08:00	4	71	23	98	2	71	27	100	8	75	96	4	175	12	38	10	60	8	433
08:00	08:15	1	69	22	93	6	60	32	98	10	72	83	11	166	11	39	3	53	10	410
08:15	08:30	6	60	30	96	7	83	29	119	7	77	95	7	179	9	43	7	59	7	453
08:30	08:45	4	66	20	90	3	74	36	113	11	76	83	8	167	8	53	4	65	11	435
08:45	09:00	5	75	21	101	5	79	39	123	8	62	112	6	180	12	47	2	61	8	465
09:00	09:15	9	72	12	93	6	83	31	120	12	47	100	8	155	14	40	6	60	12	428
09:15	09:30	4	48	27	79	5	55	39	99	13	46	79	12	137	14	37	6	58	13	373
09:30	09:45	6	46	19	71	4	43	34	81	17	38	74	8	120	19	56	10	85	17	357
09:45	10:00	8	39	23	70	3	38	33	74	12	31	76	7	114	17	40	11	68	12	326
11:30	11:45	9	32	16	57	12	46	29	87	14	28	75	13	116	22	78	11	111	14	371
11:45	12:00	15	52	19	86	8	43	39	90	14	31	73	22	126	19	63	12	94	14	396
12:00	12:15	10	48	22	80	7	59	44	110	14	31	82	20	133	17	90	6	113	14	436
12:15	12:30	8	41	20	69	9	47	49	105	5	32	59	17	108	21	77	4	102	5	384
12:30	12:45	5	46	25	76	9	51	41	101	10	31	52	27	110	16	77	6	99	10	386
12:45	13:00	9	60	24	93	6	56	46	108	6	35	67	17	119	23	83	10	116	6	436
13:00	13:15	11	42	13	66	6	50	56	112	9	30	70	24	124	17	83	4	104	9	406
13:15	13:30	6	35	21	62	9	58	44	111	12	32	65	15	112	17	97	7	121	12	406
15:00	15:15	10	48	16	74	5	61	62	128	7	32	77	34	143	28	98	11	137	7	482
15:15	15:30	10	53	24	87	6	66	71	143	8	46	74	18	138	32	84	7	123	8	491
15:30	15:45	4	49	15	68	6	57	61	124	4	35	68	9	112	30	110	8	148	4	452
15:45	16:00	4	51	29	84	1	63	82	146	3	32	64	17	113	26	101	3	131	3	474
16:00	16:15	4	53	15	72	4	57	62	123	7	28	60	18	106	36	114	5	155	7	456
16:15	16:30	8	70	12	90	4	60	68	132	6	37	76	12	125	29	113	7	149	6	496
16:30	16:45	6	64	23	93	4	71	67	142	8	43	72	13	128	35	114	7	156	8	519
16:45	17:00	10	73	21	104	4	68	73	145	7	37	71	14	122	32	112	6	150	7	521
17:00	17:15	3	56	20	79	7	58	72	137	4	40	79	7	126	32	112	11	155	4	497
17:15	17:30	10	62	16	88	5	61	68	134	4	44	52	16	112	28	116	8	152	4	486
17:30	17:45	8	59	22	89	3	68	66	137	6	40	72	5	117	28	89	7	124	6	467
17:45	18:00	4	61	26	91	4	47	55	106	1	38	63	14	115	29	93	13	135	1	447
Total:		211	1691	632	2535	174	1888	1518	3580	270	1425	2420	423	4268	656	2385	224	3267	270	13,650

Note: U-Turns are included in Totals.

June 9, 2020 Page 4 of 8

Turning Movement Count - Study Results

CHURCHILL AVE @ RICHMOND RD

Survey Date: Thursday, January 23, 2020 WO No: 39644

Start Time: 07:00 Device: Miovision

Full Study Cyclist Volume

CHURCHILL AVE RICHMOND RD

Time Period	Northbound	Southbound	Street Total	Eastbound	Westbound	Street Total	 Grand Total
07:00 07:15	0	0	0	1	0	1	1
07:15 07:30	2	0	2	0	0	0	2
07:30 07:45	1	0	1	0	0	0	1
07:45 08:00	3	0	3	4	0	4	7
08:00 08:15	4	1	5	0	1	1	6
08:15 08:30	5	0	5	4	0	4	9
08:30 08:45	2	0	2	2	1	3	5
08:45 09:00	0	0	0	2	0	2	2
09:00 09:15	1	0	1	3	0	3	4
09:15 09:30	2	1	3	0	1	1	4
09:30 09:45	0	1	1	1	1	2	3
09:45 10:00	1	0	1	0	0	0	1
11:30 11:45	0	0	0	0	0	0	0
11:45 12:00	0	0	0	0	0	0	0
12:00 12:15	0	0	0	0	0	0	0
12:15 12:30	0	0	0	0	1	1	1
12:30 12:45	0	0	0	0	0	0	0
12:45 13:00	1	0	1	0	0	0	1
13:00 13:15	0	0	0	0	0	0	0
13:15 13:30	0	0	0	0	0	0	0
15:00 15:15	0	0	0	1	0	1	1
15:15 15:30	0	0	0	1	0	1	1
15:30 15:45	0	0	0	2	0	2	2
15:45 16:00	0	1	1	1	0	1	2
16:00 16:15	0	2	2	0	1	1	3
16:15 16:30	0	0	0	0	1	1	1
16:30 16:45	0	1	1	0	0	0	1
16:45 17:00	0	0	0	1	0	1	1
17:00 17:15	1	2	3	1	3	4	7
17:15 17:30	0	2	2	0	0	0	2
17:30 17:45	0	1	1	2	0	2	3
17:45 18:00	1	2	3	0	0	0	3
Total	24	14	38	26	10	36	74

June 9, 2020 Page 5 of 8

Turning Movement Count - Study Results

CHURCHILL AVE @ RICHMOND RD

Survey Date: Thursday, January 23, 2020 WO No: 39644

Start Time: 07:00 Device: Miovision

Full Study Pedestrian Volume

CHURCHILL AVE

RICHMOND RD

Time Period	NB Approach (E or W Crossing)	SB Approach (E or W Crossing)	Total	EB Approach (N or S Crossing)	WB Approach (N or S Crossing)	Total	Grand Total
07:00 07:15	3	2	5	2	2	4	9
07:15 07:30	4	3	7	6	3	9	16
07:30 07:45	10	8	18	4	2	6	24
07:45 08:00	17	4	21	14	4	18	39
08:00 08:15	11	9	20	6	3	9	29
08:15 08:30	18	5	23	10	11	21	44
08:30 08:45	19	15	34	18	10	28	62
08:45 09:00	15	7	22	8	10	18	40
09:00 09:15	16	7	23	9	5	14	37
09:15 09:30	8	16	24	6	4	10	34
09:30 09:45	14	8	22	12	6	18	40
09:45 10:00	14	9	23	10	7	17	40
11:30 11:45	26	24	50	19	7	26	76
11:45 12:00	23	28	51	24	14	38	89
12:00 12:15	46	21	67	31	12	43	110
12:15 12:30	34	35	69	20	16	36	105
12:30 12:45	32	34	66	24	8	32	98
12:45 13:00	42	32	74	27	15	42	116
13:00 13:15	37	19	56	18	11	29	85
13:15 13:30	35	28	63	33	14	47	110
15:00 15:15	33	27	60	26	14	40	100
15:15 15:30	28	20	48	24	12	36	84
15:30 15:45	23	28	51	17	18	35	86
15:45 16:00	28	24	52	16	12	28	80
16:00 16:15	27	16	43	24	5	29	72
16:15 16:30	29	23	52	16	15	31	83
16:30 16:45	48	20	68	24	11	35	103
16:45 17:00	48	25	73	18	17	35	108
17:00 17:15	38	18	56	26	11	37	93
17:15 17:30	31	27	58	27	11	38	96
17:30 17:45	33	24	57	17	16	33	90
17:45 18:00	32	23	55	17	24	41	96
Total	822	589	1411	553	330	883	2294

June 9, 2020 Page 6 of 8

Turning Movement Count - Study Results

CHURCHILL AVE @ RICHMOND RD

Survey Date: Thursday, January 23, 2020 WO No: 39644

Start Time: 07:00 Device: Miovision

Full Study Heavy Vehicles

CHURCHILL AVE

RICHMOND RD

		No	orthbou	und		Sc	uthbou	ınd			Е	astbour	nd		We	estbour	nd			
Time Pe	eriod	LT	ST	RT	N TOT	LT	ST	RT	S TOT	STR TOT	LT	ST	RT	E TOT	LT	ST	RT	W TOT	STR TOT	Grand Total
07:00 0	7:15	0	1	1	2	0	1	1	2	4	3	2	0	5	0	1	0	1	6	10
07:15 0	7:30	0	1	2	3	0	2	1	3	6	1	4	0	5	0	2	0	2	7	13
07:30 0	7:45	0	5	1	6	1	2	4	7	13	1	1	2	4	1	1	0	2	6	19
07:45 0	00:80	1	2	1	4	1	3	0	4	8	1	2	0	3	1	4	1	6	9	17
08:00	8:15	0	8	0	8	1	1	0	2	10	2	4	0	6	0	5	1	6	12	22
08:15 0	08:30	0	2	0	2	1	4	0	5	7	1	4	0	5	0	3	1	4	9	16
08:30 0	8:45	0	5	2	7	0	1	3	4	11	3	3	0	6	0	2	0	2	8	19
08:45 0	9:00	0	7	0	7	0	1	0	1	8	2	2	0	4	1	3	0	4	8	16
09:00 0	9:15	0	3	0	3	0	7	2	9	12	0	4	0	4	1	4	0	5	9	21
09:15 0	9:30	0	6	1	7	0	5	1	6	13	0	5	0	5	1	1	1	3	8	21
09:30 0	9:45	1	7	2	10	1	3	3	7	17	0	5	0	5	1	3	0	4	9	26
09:45 1	0:00	0	2	3	5	0	4	3	7	12	1	5	0	6	2	1	1	4	10	22
11:30 1	1:45	0	2	1	3	1	10	0	11	14	0	1	1	2	0	4	2	6	8	22
11:45 1:	2:00	1	7	2	10	0	2	2	4	14	0	3	0	3	0	2	1	3	6	20
12:00 1	2:15	0	4	2	6	0	6	2	8	14	0	4	2	6	0	4	1	5	11	25
12:15 1:	2:30	1	0	0	1	0	4	0	4	5	2	2	0	4	0	3	0	3	7	12
12:30 1	2:45	1	4	0	5	0	3	2	5	10	1	2	0	3	0	6	0	6	9	19
12:45 1	3:00	1	2	1	4	0	0	2	2	6	0	3	0	3	1	1	0	2	5	11
13:00 1	3:15	0	4	0	4	1	3	1	5	9	1	2	1	4	0	1	0	1	5	14
13:15 1	3:30	0	2	0	2	0	8	2	10	12	3	1	1	5	2	4	0	6	11	23
15:00 1	5:15	1	1	0	2	0	3	2	5	7	1	5	4	10	2	4	0	6	16	23
15:15 1	5:30	0	3	0	3	0	4	1	5	8	0	1	1	2	0	2	0	2	4	12
15:30 1	5:45	0	0	0	0	0	2	2	4	4	0	2	1	3	0	0	0	0	3	7
15:45 1	6:00	0	1	0	1	0	1	1	2	3	1	2	0	3	0	2	0	2	5	8
	6:15	0	2	0	2	0	1	4	5	7	0	2	0	2	1	3	1	5	7	14
16:15 1	6:30	0	2	0	2	0	4	0	4	6	1	1	1	3	0	2	0	2	5	11
16:30 1	6:45	1	2	0	3	1	4	0	5	8	3	1	0	4	0	0	0	0	4	12
16:45 1	7:00	0	2	0	2	0	5	0	5	7	1	3	0	4	1	0	0	1	5	12
17:00 1	7:15	0	2	0	2	1	0	1	2	4	1	2	0	3	0	3	0	3	6	10
17:15 1	7:30	0	2	0	2	0	1	1	2	4	0	1	1	2	0	1	0	1	3	7
17:30 1	7:45	0	2	0	2	0	4	0	4	6	0	0	0	0	0	1	0	1	1	7
17:45 1	8:00	0	0	0	0	0	1	0	1	1	0	1	0	1	0	1	0	1	2	3
Total: N	None	8	93	19	120	9	100	41	150	270	30	80	15	125	15	74	10	99	224	494

June 9, 2020 Page 7 of 8

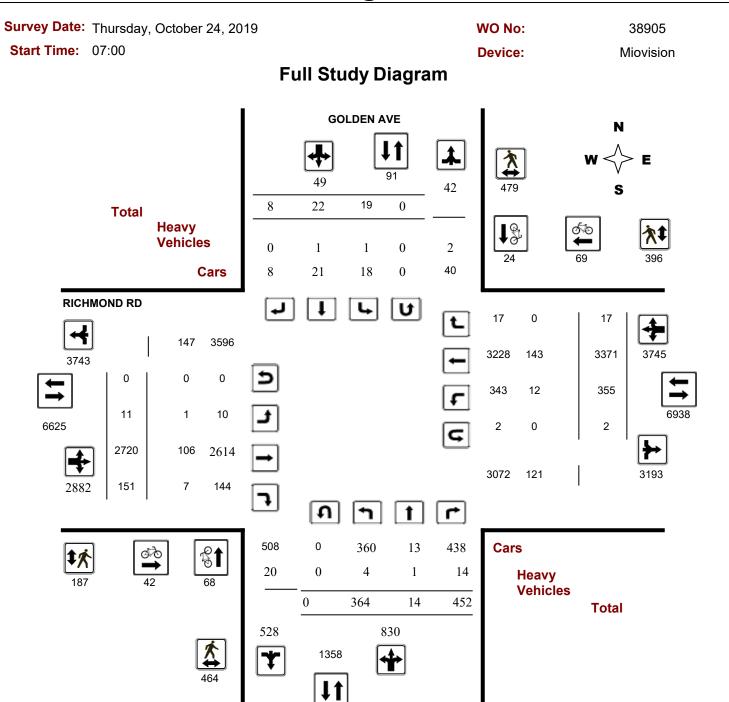
Turning Movement Count - Study Results

CHURCHILL AVE @ RICHMOND RD

Survey Date: Thursday, January 23, 2020 WO No: 39644

Start Time: 07:00 Device: Miovision

Full Study 15 Minute U-Turn Total CHURCHILL AVE RICHMOND RD

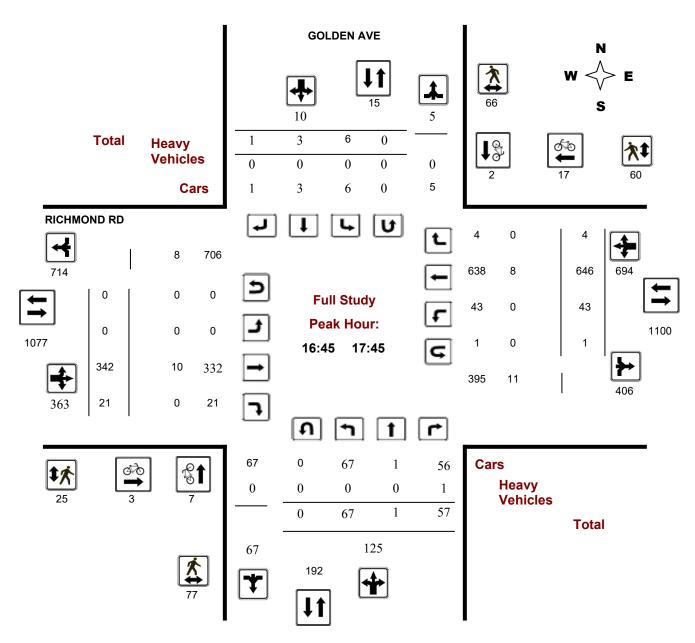

Time F	Period	Northbound U-Turn Total	Southbound U-Turn Total	Eastbound U-Turn Total	Westbound U-Turn Total	Total
07:00	07:15	0	0	0	0	0
07:15	07:30	0	0	0	0	0
07:30	07:45	0	0	0	0	0
07:45	08:00	0	0	0	0	0
08:00	08:15	1	0	0	0	1
08:15	08:30	0	0	0	0	0
08:30	08:45	0	0	0	0	0
08:45	09:00	0	0	0	0	0
09:00	09:15	0	0	0	0	0
09:15	09:30	0	0	0	1	1
09:30	09:45	0	0	0	0	0
09:45	10:00	0	0	0	0	0
11:30	11:45	0	0	0	0	0
11:45	12:00	0	0	0	0	0
12:00	12:15	0	0	0	0	0
12:15	12:30	0	0	0	0	0
12:30	12:45	0	0	0	0	0
12:45	13:00	0	0	0	0	0
13:00	13:15	0	0	0	0	0
13:15	13:30	0	0	0	0	0
15:00	15:15	0	0	0	0	0
15:15	15:30	0	0	0	0	0
15:30	15:45	0	0	0	0	0
15:45	16:00	0	0	0	1	1
16:00	16:15	0	0	0	0	0
16:15	16:30	0	0	0	0	0
16:30	16:45	0	0	0	0	0
16:45	17:00	0	0	0	0	0
17:00	17:15	0	0	0	0	0
17:15	17:30	0	0	0	0	0
17:30	17:45	0	0	0	0	0
17:45	18:00	0	0	0	0	0
To	otal	1	0	0	2	3

June 9, 2020 Page 8 of 8

Turning Movement Count - Study Results

GOLDEN AVE @ RICHMOND RD

June 22, 2020 Page 1 of 8

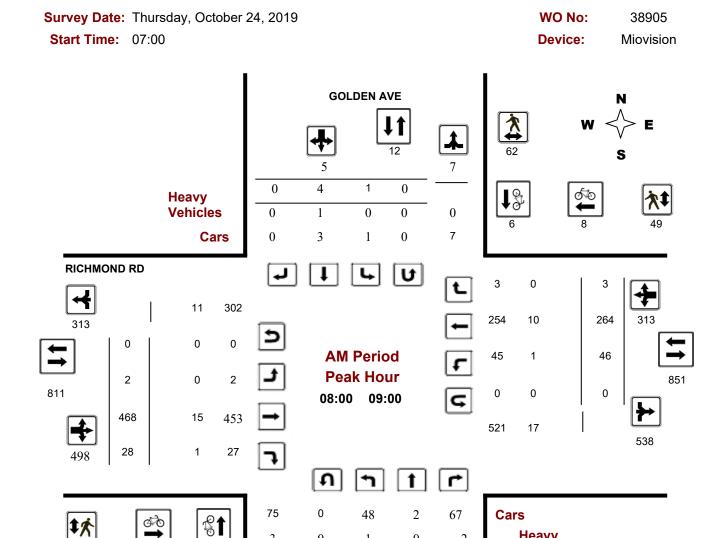

Turning Movement Count - Study Results

GOLDEN AVE @ RICHMOND RD

Survey Date: Thursday, October 24, 2019 WO No: 38905

Start Time: 07:00 Device: Miovision

Full Study Peak Hour Diagram



June 22, 2020 Page 2 of 8

Turning Movement Count - Peak Hour Diagram

GOLDEN AVE @ RICHMOND RD

1

49

198

0

2

120

#

2

69

3

78

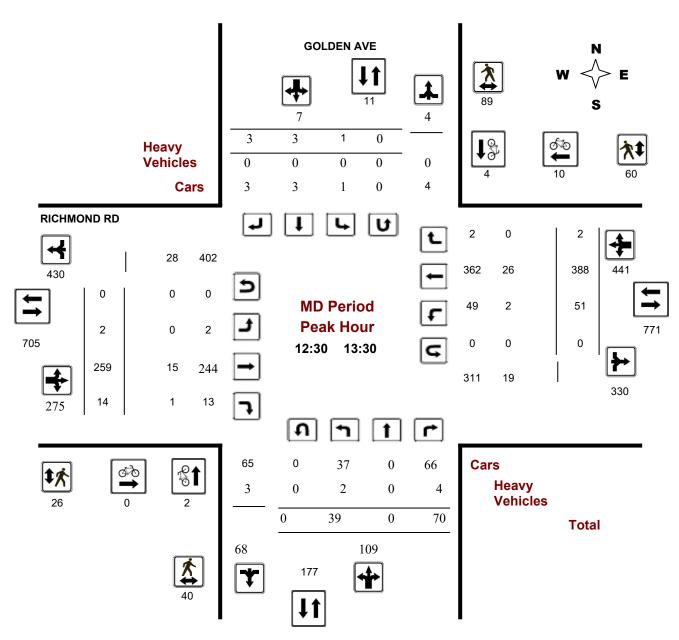
0

Heavy

Vehicles

Total

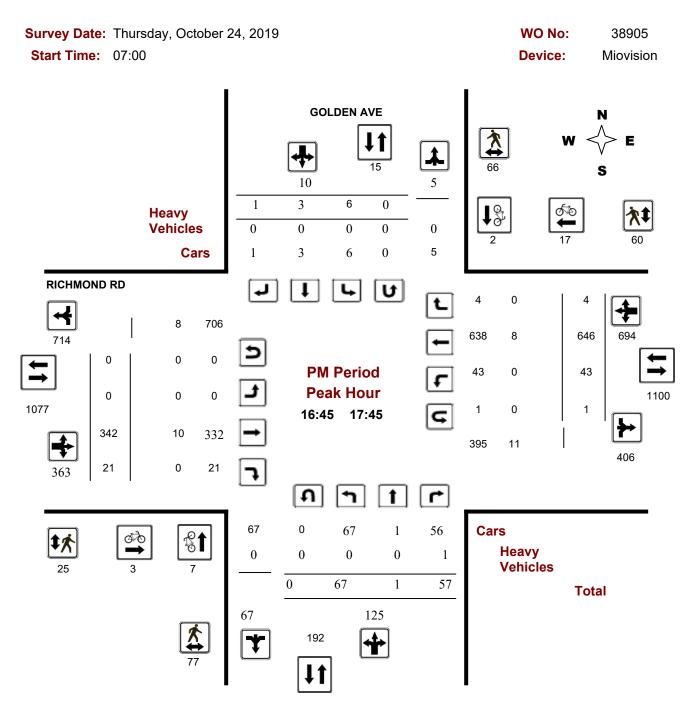
Comments


2020-Jun-22 Page 1 of 3

Turning Movement Count - Peak Hour Diagram

GOLDEN AVE @ RICHMOND RD

Survey Date:Thursday, October 24, 2019WO No:38905Start Time:07:00Device:Miovision


Comments

2020-Jun-22 Page 2 of 3

Turning Movement Count - Peak Hour Diagram

GOLDEN AVE @ RICHMOND RD

Comments

2020-Jun-22 Page 3 of 3

Turning Movement Count - Study Results

GOLDEN AVE @ RICHMOND RD

Survey Date: Thursday, October 24, 2019 WO No: 38905

Start Time: 07:00 Device: Miovision

Full Study Summary (8 HR Standard)

Survey Date: Thursday, October 24, 2019 Total Observed U-Turns AADT Factor

Northbound: 0 Southbound: 0 .90

Eastbound: 0 Westbound: 2

			GOI	_DEN A	VE							RIC	HMON	D RD					
	Nor	thbou	nd		Sou	uthbou	ınd			Е	astbou	ınd		٧	Vestbou	ınd			
Period	LT	ST	RT	NB TOT	LT	ST	RT	SB TOT	STR TOT	LT	ST	RT	EB TOT	LT	ST	RT	WB TOT	STR TOT	Grand Total
07:00 08:00	22	1	25	48	0	2	2	4	52	0	481	16	497	23	217	0	240	737	789
08:00 09:00	49	2	69	120	1	4	0	5	125	2	468	28	498	46	264	3	313	811	936
09:00 10:00	38	1	64	103	2	3	0	5	108	1	309	21	331	35	286	1	322	653	761
11:30 12:30	22	2	50	74	4	2	1	7	81	2	278	21	301	64	357	4	425	726	807
12:30 13:30	39	0	70	109	1	3	3	7	116	2	259	14	275	51	388	2	441	716	832
15:00 16:00	57	4	62	123	1	1	1	3	126	3	266	12	281	39	610	0	649	930	1056
16:00 17:00	70	2	69	141	3	3	0	6	147	1	333	18	352	47	626	2	675	1027	1174
17:00 18:00	67	2	43	112	7	4	1	12	124	0	326	21	347	50	623	5	678	1025	1149
Sub Total	364	14	452	830	19	22	8	49	879	11	2720	151	2882	355	3371	17	3743	6625	7504
U Turns				0				0	0				0				2	2	2
Total	364	14	452	830	19	22	8	49	879	11	2720	151	2882	355	3371	17	3745	6627	7506
EQ 12Hr	506	19	628	1154	26	31	11	68	1222	15	3781	210	4006	493	4686	24	5206	9212	10433
Note: These v	alues ar	e calcu	lated by	y multiply	ing the	totals b	y the ap	opropriate	e expans	ion fact	tor.			1.39					
AVG 12Hr	429	17	533	979	22	26	9	58	1100	13	3207	178	3398	419	3974	20	4415	8291	9390
Note: These v	olumes :	are calc	culated	by multip	lying th	e Equiv	alent 1	2 hr. tota	ls by the	AADT	factor.			0.9					
AVG 24Hr	562	22	698	1282	29	34	12	76	1358	17	4201	233	4451	548	5206	26	5784	10235	11593
Note: These v	olumes :	are calc	culated	by multip	olying th	ie Avera	ige Dail	ly 12 hr. t	totals by	12 to 2	4 expan	sion fac	ctor.	1.31					

Note: U-Turns provided for approach totals. Refer to 'U-Turn' Report for specific breakdown.

June 22, 2020 Page 3 of 8

Turning Movement Count - Study Results

GOLDEN AVE @ RICHMOND RD

Survey Date: Thursday, October 24, 2019 WO No: 38905

GOLDEN AVE

Start Time: 07:00 Device: Miovision

Full Study 15 Minute Increments RICHMOND RD

		Northbound				Southbound				Eastbound				Westbound						
Time I	Period	LT	ST	RT	N TOT	LT	ST	RT	S TOT	STR TOT	LT	ST	RT	E TOT	LT	ST	RT	W TOT	STR TOT	Grand Total
07:00	07:15	4	0	3	7	0	0	1	1	0	0	102	2	104	3	43	0	46	0	158
07:15	07:30	7	0	8	15	0	0	0	0	1	0	107	6	113	7	45	0	52	1	180
07:30	07:45	5	0	6	11	0	1	0	1	1	0	149	4	153	5	62	0	68	1	233
07:45	08:00	6	1	8	15	0	1	1	2	2	0	123	4	127	8	67	0	75	2	219
08:00	08:15	19	2	16	37	0	1	0	1	2	0	121	2	123	4	49	2	55	2	216
08:15	08:30	8	0	12	20	0	0	0	0	0	1	118	5	124	15	57	1	73	0	217
08:30	08:45	9	0	18	27	1	2	0	3	1	1	125	11	137	13	80	0	93	1	260
08:45	09:00	13	0	23	36	0	1	0	1	1	0	104	10	114	14	78	0	92	1	243
09:00	09:15	9	0	13	22	1	1	0	2	0	0	94	4	98	6	68	0	74	0	196
09:15	09:30	12	0	22	34	0	0	0	0	0	0	87	5	92	8	78	1	87	0	213
09:30	09:45	11	0	15	26	1	1	0	2	1	1	58	6	65	8	69	0	77	1	170
09:45	10:00	6	1	14	21	0	1	0	1	1	0	70	6	76	13	71	0	84	1	182
11:30	11:45	3	1	10	14	0	1	0	1	0	0	73	5	78	18	87	1	106	0	199
11:45	12:00	3	0	17	20	3	1	0	4	0	1	74	6	81	16	86	2	104	0	209
12:00	12:15	8	1	14	23	0	0	1	1	0	0	59	4	63	20	96	0	116	0	203
12:15	12:30	8	0	9	17	1	0	0	1	0	1	72	6	79	10	88	1	99	0	196
12:30	12:45	6	0	14	20	1	2	1	4	1	0	70	7	77	16	92	0	108	1	209
12:45	13:00	12	0	22	34	0	0	1	1	0	0	60	3	63	10	106	1	117	0	215
13:00	13:15	9	0	20	29	0	1	1	2	0	1	59	3	63	15	99	1	115	0	209
13:15	13:30	12	0	14	26	0	0	0	0	5	1	70	1	72	10	91	0	101	5	199
15:00	15:15	18	0	16	34	0	0	1	1	2	1	66	2	69	8	127	0	135	2	239
15:15	15:30	12	2	20	34	0	1	0	1	0	0	68	6	74	11	158	0	169	0	278
15:30	15:45	14	2	15	31	0	0	0	0	0	1	69	2	72	14	156	0	170	0	273
15:45	16:00	13	0	11	24	1	0	0	1	0	1	63	2	66	6	169	0	175	0	266
16:00	16:15	21	0	20	41	2	2	0	4	2	0	84	6	90	16	156	1	173	2	308
16:15	16:30	20	0	18	38	1	0	0	1	0	1	86	2	89	9	164	1	174	0	302
16:30	16:45	19	2	10	31	0	0	0	0	0	0	72	4	76	9	142	0	151	0	258
16:45	17:00	10	0	21	31	0	1	0	1	0	0	91	6	97	13	164	0	177	0	306
17:00	17:15	21	0	14	35	2	0	1	3	0	0	70	7	77	11	178	0	189	0	304
17:15	17:30	15	1	9	25	2	1	0	3	1	0	101	0	101	12	157	2	171	1	300
17:30	17:45	21	0	13	34	2	1	0	3	0	0	80	8	88	7	147	2	157	0	282
17:45	18:00	10	1	7	18	1	2	0	3	0	0	75	6	81	20	141	1	162	0	264
Total:		364	14	452	830	19	22	8	49	21	11	2720	151	2882	355	3371	17	3745	21	7,506

Note: U-Turns are included in Totals.

June 22, 2020 Page 4 of 8

Turning Movement Count - Study Results

GOLDEN AVE @ RICHMOND RD

Survey Date: Thursday, October 24, 2019 WO No: 38905

Start Time: 07:00 Device: Miovision

Full Study Cyclist Volume

GOLDEN AVE RICHMOND RD

-		OOLDENATE			_		
Time Period	Northbound	Southbound	Street Total	Eastbound	Westbound	Street Total	Grand Total
07:00 07:15	2	1	3	2	1	3	6
07:15 07:30	5	0	5	5	1	6	11
07:30 07:45	4	1	5	2	2	4	9
07:45 08:00	6	0	6	5	1	6	12
08:00 08:15	5	0	5	2	1	3	8
08:15 08:30	9	0	9	3	1	4	13
08:30 08:45	4	1	5	1	2	3	8
08:45 09:00	2	5	7	2	4	6	13
09:00 09:15	2	2	4	0	3	3	7
09:15 09:30	3	0	3	1	0	1	4
09:30 09:45	1	0	1	0	1	1	2
09:45 10:00	0	0	0	0	1	1	1
11:30 11:45	0	0	0	0	0	0	0
11:45 12:00	2	0	2	3	0	3	5
12:00 12:15	2	0	2	1	0	1	3
12:15 12:30	0	0	0	1	1	2	2
12:30 12:45	0	3	3	0	7	7	10
12:45 13:00	0	0	0	0	0	0	0
13:00 13:15	2	1	3	0	2	2	5
13:15 13:30	0	0	0	0	1	1	1
15:00 15:15	1	0	1	0	0	0	1
15:15 15:30	3	0	3	5	0	5	8
15:30 15:45	2	2	4	0	1	1	5
15:45 16:00	1	1	2	0	3	3	5
16:00 16:15	3	0	3	1	1	2	5
16:15 16:30	1	1	2	3	4	7	9
16:30 16:45	1	2	3	1	9	10	13
16:45 17:00	4	1	5	2	5	7	12
17:00 17:15	2	1	3	0	3	3	6
17:15 17:30	1	0	1	0	6	6	7
17:30 17:45	0	0	0	1	3	4	4
17:45 18:00	0	2	2	1	5	6	8
Total	68	24	92	42	69	111	203

June 22, 2020 Page 5 of 8

Turning Movement Count - Study Results

GOLDEN AVE @ RICHMOND RD

Survey Date: Thursday, October 24, 2019 WO No: 38905

Start Time: 07:00 Device: Miovision

Full Study Pedestrian Volume

GOLDEN AVE RICHMOND RD

Time Period	NB Approach (E or W Crossing)	SB Approach (E or W Crossing)	Total	EB Approach (N or S Crossing)	WB Approach (N or S Crossing)	Total	Grand Total
07:00 07:15	4	6	10	4	4	8	18
07:15 07:30	8	4	12	2	5	7	19
07:30 07:45	4	10	14	6	9	15	29
07:45 08:00	8	4	12	3	6	9	21
08:00 08:15	9	13	22	8	8	16	38
08:15 08:30	8	8	16	5	10	15	31
08:30 08:45	15	21	36	9	11	20	56
08:45 09:00	13	20	33	11	20	31	64
09:00 09:15	9	9	18	3	6	9	27
09:15 09:30	8	15	23	8	10	18	41
09:30 09:45	10	7	17	3	14	17	34
09:45 10:00	9	9	18	6	7	13	31
11:30 11:45	13	11	24	1	8	9	33
11:45 12:00	25	12	37	6	17	23	60
12:00 12:15	17	17	34	1	13	14	48
12:15 12:30	22	27	49	11	15	26	75
12:30 12:45	8	27	35	6	21	27	62
12:45 13:00	16	21	37	11	11	22	59
13:00 13:15	5	24	29	3	19	22	51
13:15 13:30	11	17	28	6	9	15	43
15:00 15:15	15	9	24	2	8	10	34
15:15 15:30	34	22	56	5	26	31	87
15:30 15:45	13	16	29	11	16	27	56
15:45 16:00	23	32	55	8	16	24	79
16:00 16:15	16	14	30	4	19	23	53
16:15 16:30	25	9	34	6	5	11	45
16:30 16:45	25	13	38	9	10	19	57
16:45 17:00	24	15	39	9	11	20	59
17:00 17:15	33	26	59	4	19	23	82
17:15 17:30	11	13	24	5	14	19	43
17:30 17:45	9	12	21	7	16	23	44
17:45 18:00	14	16	30	4	13	17	47
Total	464	479	943	187	396	583	1526

June 22, 2020 Page 6 of 8

Turning Movement Count - Study Results

GOLDEN AVE @ RICHMOND RD

Survey Date: Thursday, October 24, 2019 WO No: 38905

Start Time: 07:00 Device: Miovision

Full Study Heavy Vehicles

GOLDEN AVE RICHMOND RD

	N	orthbou	und		Sc	uthbou	nd		Eastbound					Westbound					
Time Period	LT	ST	RT	N TOT	LT	ST	RT	S TOT	STR TOT	LT	ST	RT	E TOT	LT	ST	RT	W TOT	STR TOT	Grand Total
07:00 07:15	0	0	0	0	0	0	0	0	0	0	2	1	3	0	6	0	6	9	9
07:15 07:30	1	0	0	1	0	0	0	0	1	0	4	0	4	1	6	0	7	11	12
07:30 07:45	0	0	1	1	0	0	0	0	1	0	5	1	6	1	5	0	6	12	13
07:45 08:00	0	1	1	2	0	0	0	0	2	0	5	0	5	1	1	0	2	7	9
08:00 08:15	0	0	1	1	0	1	0	1	2	0	4	0	4	0	2	0	2	6	8
08:15 08:30	0	0	0	0	0	0	0	0	0	0	4	0	4	0	2	0	2	6	6
08:30 08:45	1	0	0	1	0	0	0	0	1	0	6	1	7	0	1	0	1	8	9
08:45 09:00	0	0	1	1	0	0	0	0	1	0	1	0	1	1	5	0	6	7	8
09:00 09:15	0	0	0	0	0	0	0	0	0	0	7	0	7	0	8	0	8	15	15
09:15 09:30	0	0	0	0	0	0	0	0	0	0	8	0	8	0	6	0	6	14	14
09:30 09:45	0	0	0	0	1	0	0	1	1	1	4	0	5	1	8	0	9	14	15
09:45 10:00	0	0	1	1	0	0	0	0	1	0	5	0	5	1	4	0	5	10	11
11:30 11:45	0	0	0	0	0	0	0	0	0	0	2	0	2	0	6	0	6	8	8
11:45 12:00	0	0	0	0	0	0	0	0	0	0	4	0	4	0	4	0	4	8	8
12:00 12:15	0	0	0	0	0	0	0	0	0	0	1	1	2	1	6	0	7	9	9
12:15 12:30	0	0	0	0	0	0	0	0	0	0	5	0	5	1	2	0	3	8	8
12:30 12:45	0	0	1	1	0	0	0	0	1	0	3	1	4	1	7	0	8	12	13
12:45 13:00	0	0	0	0	0	0	0	0	0	0	3	0	3	1	4	0	5	8	8
13:00 13:15	0	0	0	0	0	0	0	0	0	0	3	0	3	0	7	0	7	10	10
13:15 13:30	2	0	3	5	0	0	0	0	5	0	6	0	6	0	8	0	8	14	19
15:00 15:15	0	0	2	2	0	0	0	0	2	0	2	0	2	0	8	0	8	10	12
15:15 15:30	0	0	0	0	0	0	0	0	0	0	2	0	2	0	6	0	6	8	8
15:30 15:45	0	0	0	0	0	0	0	0	0	0	2	0	2	0	5	0	5	7	7
15:45 16:00	0	0	0	0	0	0	0	0	0	0	2	0	2	0	5	0	5	7	7
16:00 16:15	0	0	2	2	0	0	0	0	2	0	1	2	3	2	7	0	9	12	14
16:15 16:30	0	0	0	0	0	0	0	0	0	0	3	0	3	0	4	0	4	7	7
16:30 16:45	0	0	0	0	0	0	0	0	0	0	2	0	2	0	2	0	2	4	4
16:45 17:00	0	0	0	0	0	0	0	0	0	0	3	0	3	0	3	0	3	6	6
17:00 17:15	0	0	0	0	0	0	0	0	0	0	1	0	1	0	2	0	2	3	3
17:15 17:30	0	0	1	1	0	0	0	0	1	0	5	0	5	0	1	0	1	6	7
17:30 17:45	0	0	0	0	0	0	0	0	0	0	1	0	1	0	2	0	2	3	3
17:45 18:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total: None	4	1	14	19	1	1	0	2	21	1	106	7	114	12	143	0	155	269	290

June 22, 2020 Page 7 of 8

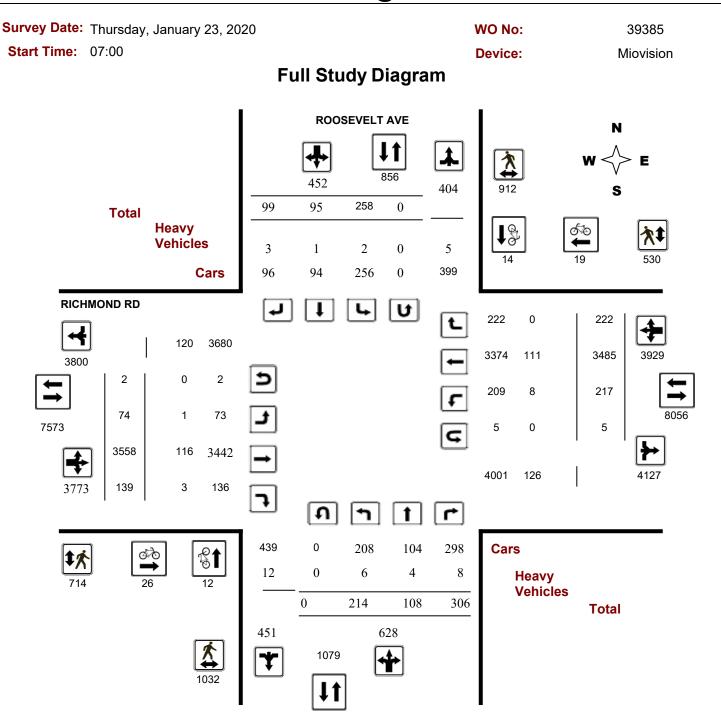
Turning Movement Count - Study Results

GOLDEN AVE @ RICHMOND RD

Survey Date: Thursday, October 24, 2019 WO No: 38905

Start Time: 07:00 Device: Miovision

Full Study 15 Minute U-Turn Total GOLDEN AVE RICHMOND RD


Time F	Period	Northbound U-Turn Total	Southbound U-Turn Total	Eastbound U-Turn Total	Westbound U-Turn Total	Total
07:00	07:15	0	0	0	0	0
07:15	07:30	0	0	0	0	0
07:30	07:45	0	0	0	1	1
07:45	08:00	0	0	0	0	0
08:00	08:15	0	0	0	0	0
08:15	08:30	0	0	0	0	0
08:30	08:45	0	0	0	0	0
08:45	09:00	0	0	0	0	0
09:00	09:15	0	0	0	0	0
09:15	09:30	0	0	0	0	0
09:30	09:45	0	0	0	0	0
09:45	10:00	0	0	0	0	0
11:30	11:45	0	0	0	0	0
11:45	12:00	0	0	0	0	0
12:00	12:15	0	0	0	0	0
12:15	12:30	0	0	0	0	0
12:30	12:45	0	0	0	0	0
12:45	13:00	0	0	0	0	0
13:00	13:15	0	0	0	0	0
13:15	13:30	0	0	0	0	0
15:00	15:15	0	0	0	0	0
15:15	15:30	0	0	0	0	0
15:30	15:45	0	0	0	0	0
15:45	16:00	0	0	0	0	0
16:00	16:15	0	0	0	0	0
16:15	16:30	0	0	0	0	0
16:30	16:45	0	0	0	0	0
16:45	17:00	0	0	0	0	0
17:00	17:15	0	0	0	0	0
17:15	17:30	0	0	0	0	0
17:30	17:45	0	0	0	1	1
17:45	18:00	0	0	0	0	0
То	tal	0	0	0	2	2

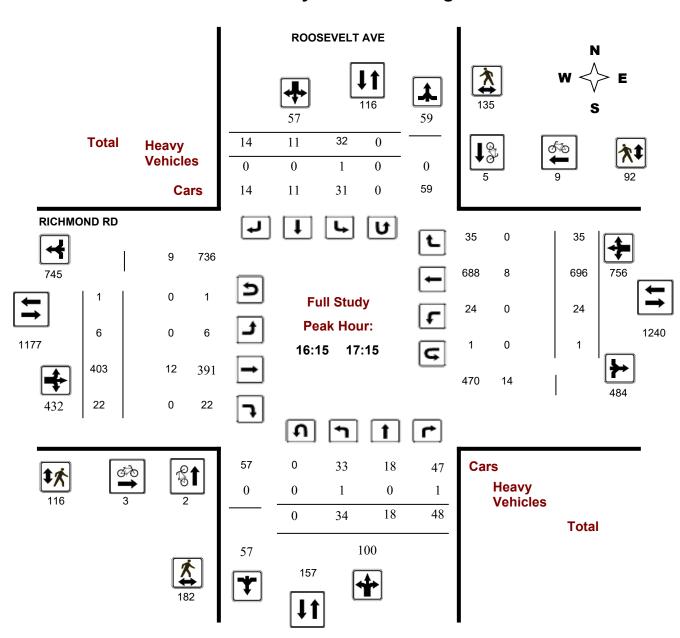
June 22, 2020 Page 8 of 8

Turning Movement Count - Study Results

ROOSEVELT AVE @ RICHMOND RD

5472203 - THU JAN 23, 2020 - 8HRS - LORETTA

February 18, 2020 Page 1 of 8

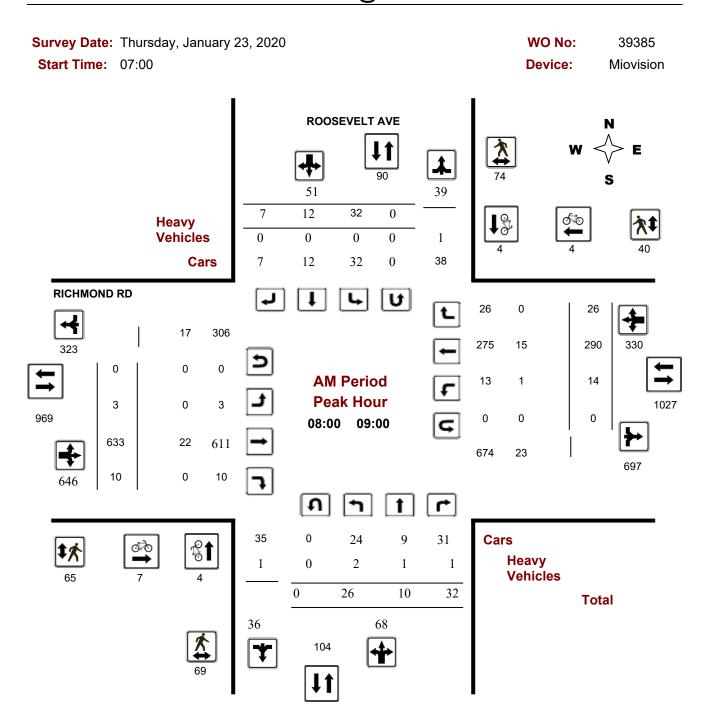

Turning Movement Count - Study Results

ROOSEVELT AVE @ RICHMOND RD

Survey Date: Thursday, January 23, 2020 WO No: 39385

Start Time: 07:00 Device: Miovision

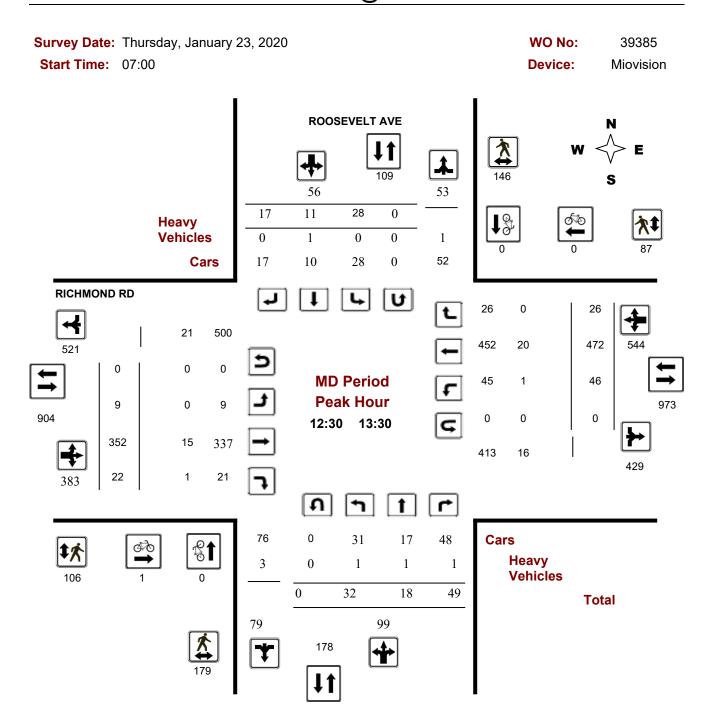
Full Study Peak Hour Diagram


5472203 - THU JAN 23, 2020 - 8HRS - LORETTA

February 18, 2020 Page 2 of 8

Turning Movement Count - Peak Hour Diagram

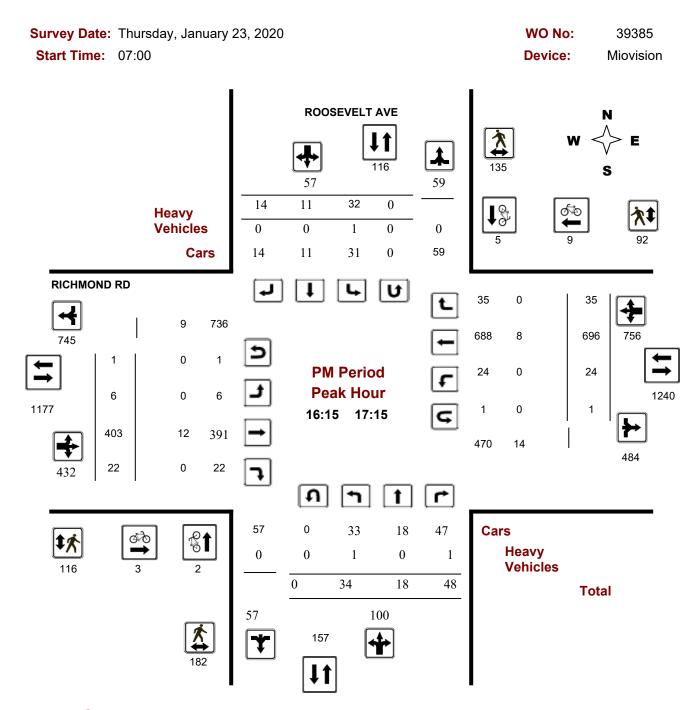
ROOSEVELT AVE @ RICHMOND RD


Comments 5472203 - THU JAN 23, 2020 - 8HRS - LORETTA

2020-Feb-18 Page 1 of 3

Turning Movement Count - Peak Hour Diagram

ROOSEVELT AVE @ RICHMOND RD


Comments 5472203 - THU JAN 23, 2020 - 8HRS - LORETTA

2020-Feb-18 Page 2 of 3

Turning Movement Count - Peak Hour Diagram

ROOSEVELT AVE @ RICHMOND RD

Comments 5472203 - THU JAN 23, 2020 - 8HRS - LORETTA

2020-Feb-18 Page 3 of 3

Turning Movement Count - Study Results

ROOSEVELT AVE @ RICHMOND RD

Survey Date: Thursday, January 23, 2020 WO No: 39385

Start Time: 07:00 Device: Miovision

Full Study Summary (8 HR Standard)

Survey Date: Thursday, January 23, 2020 Total Observed U-Turns AADT Factor

Northbound: 0 Southbound: 0 1.39

Eastbound: 2 Westbound: 5

		ı	ROOS	SEVEL	ΓAVE							RIC	HMON	D RD					
	Noi	thbou	nd		So	uthbou	ınd			Е	astbou	ınd		V	Vestbo	und			
Period	LT	ST	RT	NB TOT	LT	ST	RT	SB TOT	STR TOT	LT	ST	RT	EB TOT	LT	ST	RT	WB TOT	STR TOT	Grand Total
07:00 08:00	13	3	23	39	21	10	6	37	76	10	605	10	625	7	195	8	210	835	911
08:00 09:00	26	10	32	68	32	12	7	51	119	3	633	10	646	14	290	26	330	976	1095
09:00 10:00	20	18	27	65	34	15	8	57	122	4	462	12	478	25	263	21	309	787	909
11:30 12:30	30	16	62	108	39	15	16	70	178	15	359	20	394	41	375	48	464	858	1036
12:30 13:30	32	18	49	99	28	11	17	56	155	9	352	22	383	46	472	26	544	927	1082
15:00 16:00	31	14	27	72	36	10	21	67	139	16	401	27	444	32	603	27	662	1106	1245
16:00 17:00	27	18	50	95	27	13	13	53	148	8	376	22	406	17	670	37	724	1130	1278
17:00 18:00	35	11	36	82	41	9	11	61	143	9	370	16	395	35	617	29	681	1076	1219
Sub Total	214	108	306	628	258	95	99	452	1080	74	3558	139	3771	217	3485	222	3924	7695	8775
U Turns				0				0	0				2				5	7	7
Total	214	108	306	628	258	95	99	452	1080	74	3558	139	3773	217	3485	222	3929	7702	8782
EQ 12Hr	297	150	425	873	359	132	138	628	1501	103	4946	193	5244	302	4844	309	5461	10706	12207
Note: These	values ai	re calcu	lated by	y multiply	ing the	totals b	y the ap	opropriate	e expans	ion fac	tor.			1.39					
AVG 12Hr	297	150	425	873	359	132	138	628	1501	103	4946	193	5244	302	4844	309	5461	10706	12207
Note: These	volumes	are calc	culated	by multip	olying th	ne Equiv	alent 1	2 hr. tota	Is by the	AADT	factor.			1					
AVG 24Hr	390	197	557	1144	470	173	180	823	1967	135	6479	253	6870	395	6346	404	7154	14024	15991
Note: These	volumes	are calc	culated	by multip	olying th	ne Avera	age Dail	ly 12 hr. 1	totals by	12 to 2	4 expan	sion fac	ctor.	1.31					

Note: U-Turns provided for approach totals. Refer to 'U-Turn' Report for specific breakdown.

February 18, 2020 Page 3 of 8

Turning Movement Count - Study Results

ROOSEVELT AVE @ RICHMOND RD

Survey Date: Thursday, January 23, 2020 WO No: 39385

Start Time: 07:00 Device: Miovision

Full Study 15 Minute Increments

ROOSEVELT AVE Northbound Southbound Eastbound Westbound s STR W **STR** Grand Ε **Time Period** LT ST LT ST RT LT ST RT LT ST RT TOT TOT TOT TOT TOT TOT **Total** 07:00 07:15 07:15 07:30 07:30 07:45 07:45 08:00 08:00 08:15 08:15 08:30 08:30 08:45 08:45 09:00 09:15 09:00 09:15 09:30 09:30 09:45 09:45 10:00 11:30 11:45 11:45 12:00 12:00 12:15 12:15 12:30 12:30 12:45 12:45 13:00 13:00 13:15 13:15 13:30 15:00 15:15 15:15 15:30 15:30 15:45 15:45 16:00 16:00 16:15 16:15 16:30 16:30 16:45 16:45 17:00 17:00 17:15 17:30 17:15 17:30 17:45 17:45 18:00

Note: U-Turns are included in Totals.

8,782

Total:

February 18, 2020 Page 4 of 8

Turning Movement Count - Study Results

ROOSEVELT AVE @ RICHMOND RD

Survey Date: Thursday, January 23, 2020 WO No: 39385

Start Time: 07:00 Device: Miovision

Full Study Cyclist Volume

ROOSEVELT AVE

RICHMOND RD

	r	KOOSEVELI AV	L		KICHIMOND K	.U	
Time Period	Northbound	Southbound	Street Total	Eastbound	Westbound	Street Total	Grand Total
07:00 07:15	0	0	0	1	0	1	1
07:15 07:30	0	0	0	0	0	0	0
07:30 07:45	0	0	0	3	1	4	4
07:45 08:00	2	0	2	3	0	3	5
08:00 08:15	0	2	2	3	1	4	6
08:15 08:30	3	1	4	1	2	3	7
08:30 08:45	1	1	2	2	1	3	5
08:45 09:00	0	0	0	1	0	1	1
09:00 09:15	0	1	1	3	0	3	4
09:15 09:30	0	0	0	0	1	1	1
09:30 09:45	0	0	0	1	0	1	1
09:45 10:00	0	0	0	0	0	0	0
11:30 11:45	0	0	0	0	0	0	0
11:45 12:00	0	0	0	0	0	0	0
12:00 12:15	0	0	0	0	0	0	0
12:15 12:30	1	0	1	0	0	0	1
12:30 12:45	0	0	0	1	0	1	1
12:45 13:00	0	0	0	0	0	0	0
13:00 13:15	0	0	0	0	0	0	0
13:15 13:30	0	0	0	0	0	0	0
15:00 15:15	0	0	0	1	0	1	1
15:15 15:30	1	2	3	0	1	1	4
15:30 15:45	0	0	0	0	0	0	0
15:45 16:00	0	0	0	1	0	1	1
16:00 16:15	0	1	1	1	0	1	2
16:15 16:30	0	0	0	0	3	3	3
16:30 16:45	1	2	3	2	3	5	8
16:45 17:00	0	1	1	1	1	2	3
17:00 17:15	1	2	3	0	2	2	5
17:15 17:30	0	1	1	0	1	1	2
17:30 17:45	2	0	2	1	1	2	4
17:45 18:00	0	0	0	0	1	1	1
Total	12	14	26	26	19	45	71

February 18, 2020 Page 5 of 8

Turning Movement Count - Study Results

ROOSEVELT AVE @ RICHMOND RD

Survey Date: Thursday, January 23, 2020 WO No: 39385

Start Time: 07:00 Device: Miovision

Full Study Pedestrian Volume

ROOSEVELT AVE

RICHMOND RD

Time Period	NB Approach (E or W Crossing)	SB Approach (E or W Crossing)	Total	EB Approach (N or S Crossing)	WB Approach (N or S Crossing)	Total	Grand Total
07:00 07:15	3	7	10	5	3	8	18
07:15 07:30	6	7	13	10	4	14	27
07:30 07:45	9	10	19	18	6	24	43
07:45 08:00	10	13	23	8	9	17	40
08:00 08:15	9	10	19	13	8	21	40
08:15 08:30	14	15	29	20	4	24	53
08:30 08:45	29	17	46	18	13	31	77
08:45 09:00	17	32	49	14	15	29	78
09:00 09:15	9	18	27	16	15	31	58
09:15 09:30	23	8	31	11	7	18	49
09:30 09:45	15	20	35	5	15	20	55
09:45 10:00	28	25	53	19	12	31	84
11:30 11:45	39	26	65	16	14	30	95
11:45 12:00	50	39	89	33	32	65	154
12:00 12:15	42	66	108	31	22	53	161
12:15 12:30	34	45	79	29	13	42	121
12:30 12:45	36	32	68	31	23	54	122
12:45 13:00	43	31	74	21	25	46	120
13:00 13:15	51	32	83	15	19	34	117
13:15 13:30	49	51	100	39	20	59	159
15:00 15:15	35	39	74	20	26	46	120
15:15 15:30	52	34	86	31	20	51	137
15:30 15:45	57	39	96	23	17	40	136
15:45 16:00	48	46	94	36	26	62	156
16:00 16:15	38	41	79	39	24	63	142
16:15 16:30	39	37	76	24	23	47	123
16:30 16:45	56	34	90	29	23	52	142
16:45 17:00	34	25	59	38	23	61	120
17:00 17:15	53	39	92	25	23	48	140
17:15 17:30	33	21	54	17	14	31	85
17:30 17:45	39	31	70	35	17	52	122
17:45 18:00	32	22	54	25	15	40	94
Total	1032	912	1944	714	530	1244	3188

5472203 - THU JAN 23, 2020 - 8HRS - LORETTA

February 18, 2020 Page 6 of 8

Turning Movement Count - Study Results

ROOSEVELT AVE @ RICHMOND RD

Survey Date: Thursday, January 23, 2020 WO No: 39385

Start Time: 07:00 Device: Miovision

Full Study Heavy Vehicles

ROOSEVELT AVE RICHMOND RD

	Ν	lorthbo	und		Sc	uthbou	ınd			Е	astbour	nd		We	estbour	nd			
Time Period	LT	ST	RT	N TOT	LT	ST	RT	S TOT	STR TOT	LT	ST	RT	E TOT	LT	ST	RT	W TOT	STR TOT	Grand Total
07:00 07:1	5 0	0	0	0	0	0	0	0	0	0	5	0	7	0	2	0	7	14	7
07:15 07:3	0 0	0	0	2	0	0	0	0	2	0	4	1	8	1	3	0	8	16	9
07:30 07:4	5 0	0	1	1	0	0	0	0	1	0	3	0	8	0	5	0	9	17	9
07:45 08:0	0 0	0	0	0	0	0	0	0	0	0	2	0	5	0	3	0	5	10	5
08:00 08:1	5 0	0	0	0	0	0	0	0	0	0	7	0	12	0	5	0	12	24	12
08:15 08:3) 1	0	1	2	0	0	0	0	2	0	4	0	9	0	4	0	9	18	10
08:30 08:4	5 1	1	0	3	0	0	0	1	4	0	6	0	10	1	3	0	10	20	12
08:45 09:0	0 0	0	0	0	0	0	0	0	0	0	5	0	8	0	3	0	8	16	8
09:00 09:1	5 0	0	0	0	0	0	1	2	2	1	4	0	12	0	6	0	10	22	12
09:15 09:3	0 0	0	0	0	0	0	1	1	1	0	5	0	8	0	2	0	7	15	8
09:30 09:4	5 0	0	0	0	0	0	0	0	0	0	5	0	11	0	6	0	11	22	11
09:45 10:0	0 0	2	1	3	0	0	0	2	5	0	6	0	10	0	4	0	11	21	13
11:30 11:4	5 0	0	1	2	0	0	0	0	2	0	1	0	4	1	3	0	6	10	6
11:45 12:0	0 0	0	0	2	0	0	0	0	2	0	4	0	7	2	3	0	9	16	9
12:00 12:1	5 0	0	1	2	0	0	0	0	2	0	5	0	11	1	6	0	13	24	13
12:15 12:3	1	0	0	2	0	0	0	0	2	0	5	0	9	1	3	0	9	18	10
12:30 12:4	5 0	0	1	2	0	0	0	0	2	0	3	1	13	0	9	0	13	26	14
12:45 13:0	0 0	0	0	1	0	1	0	1	2	0	4	0	8	0	4	0	8	16	9
13:00 13:1	5 1	0	0	2	0	0	0	0	2	0	3	0	5	1	1	0	5	10	6
13:15 13:3	0 0	1	0	1	0	0	0	1	2	0	5	0	11	0	6	0	11	22	12
15:00 15:1	5 0	0	1	1	0	0	0	0	1	0	6	0	8	0	2	0	9	17	9
15:15 15:3	0 0	0	0	0	1	0	0	1	1	0	1	0	6	0	5	0	7	13	7
15:30 15:4	5 0	0	0	0	0	0	0	0	0	0	3	0	5	0	2	0	5	10	5
15:45 16:0	0 0	0	0	0	0	0	1	1	1	0	3	0	7	0	3	0	6	13	7
16:00 16:1	5 1	0	0	2	0	0	0	0	2	0	3	1	11	0	6	0	9	20	11
16:15 16:3	0 0	0	0	0	0	0	0	0	0	0	2	0	5	0	3	0	5	10	5
16:30 16:4	5 1	0	1	2	0	0	0	0	2	0	3	0	5	0	1	0	5	10	6
16:45 17:0	0 0	0	0	0	0	0	0	0	0	0	4	0	4	0	0	0	4	8	4
17:00 17:1	5 0	0	0	0	1	0	0	1	1	0	3	0	7	0	4	0	8	15	8
17:15 17:3	0 0	0	0	0	0	0	0	0	0	0	1	0	2	0	1	0	2	4	2
17:30 17:4	5 0	0	0	0	0	0	0	0	0	0	0	0	2	0	2	0	2	4	2
17:45 18:0	0 0	0	0	0	0	0	0	0	0	0	1	0	2	0	1	0	2	4	2
Total: None	6	4	8	30	2	1	3	11	41	1	116	3	240	8	111	0	245	485	263

February 18, 2020 Page 7 of 8

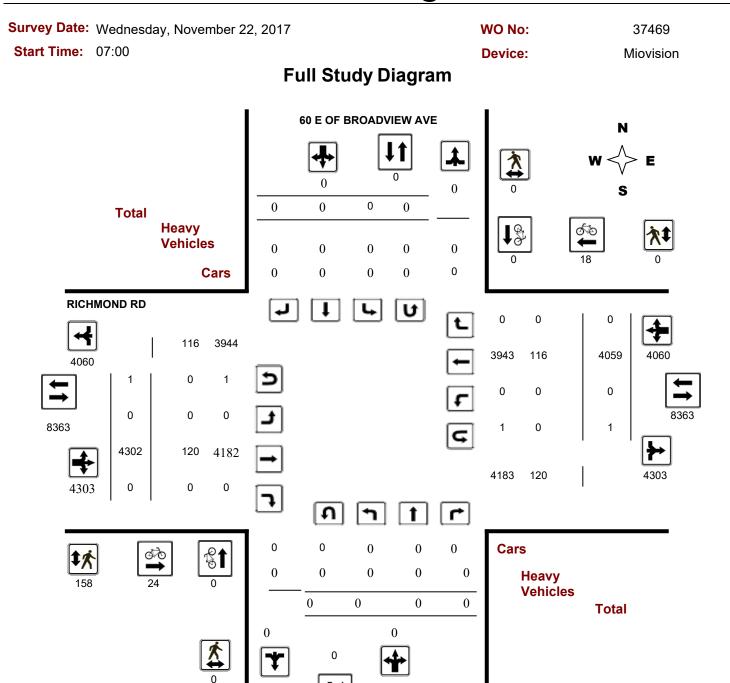
Turning Movement Count - Study Results

ROOSEVELT AVE @ RICHMOND RD

Survey Date: Thursday, January 23, 2020 WO No: 39385

Start Time: 07:00 Device: Miovision

Full Study 15 Minute U-Turn Total ROOSEVELT AVE RICHMOND RD

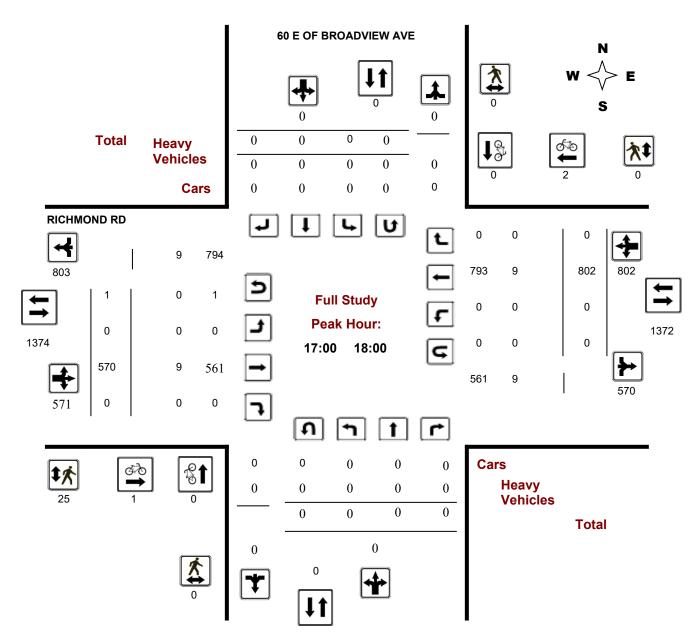

Time F	Period	Northbound U-Turn Total	Southbound U-Turn Total	Eastbound U-Turn Total	Westbound U-Turn Total	Total
07:00	07:15	0	0	0	0	0
07:15	07:30	0	0	0	0	0
07:30	07:45	0	0	0	0	0
07:45	08:00	0	0	0	0	0
08:00	08:15	0	0	0	0	0
08:15	08:30	0	0	0	0	0
08:30	08:45	0	0	0	0	0
08:45	09:00	0	0	0	0	0
09:00	09:15	0	0	0	0	0
09:15	09:30	0	0	0	1	1
09:30	09:45	0	0	1	0	1
09:45	10:00	0	0	0	0	0
11:30	11:45	0	0	0	0	0
11:45	12:00	0	0	0	0	0
12:00	12:15	0	0	0	1	1
12:15	12:30	0	0	0	0	0
12:30	12:45	0	0	0	0	0
12:45	13:00	0	0	0	0	0
13:00	13:15	0	0	0	0	0
13:15	13:30	0	0	0	0	0
15:00	15:15	0	0	0	0	0
15:15	15:30	0	0	0	0	0
15:30	15:45	0	0	0	0	0
15:45	16:00	0	0	0	0	0
16:00	16:15	0	0	0	1	1
16:15	16:30	0	0	0	0	0
16:30	16:45	0	0	0	0	0
16:45	17:00	0	0	1	1	2
17:00	17:15	0	0	0	0	0
17:15	17:30	0	0	0	0	0
17:30	17:45	0	0	0	1	1
17:45	18:00	0	0	0	0	0
To	otal	0	0	2	5	7

February 18, 2020 Page 8 of 8

Turning Movement Count - Study Results

60 E OF BROADVIEW AVE @ RICHMOND RD

July 31, 2020 Page 1 of 8

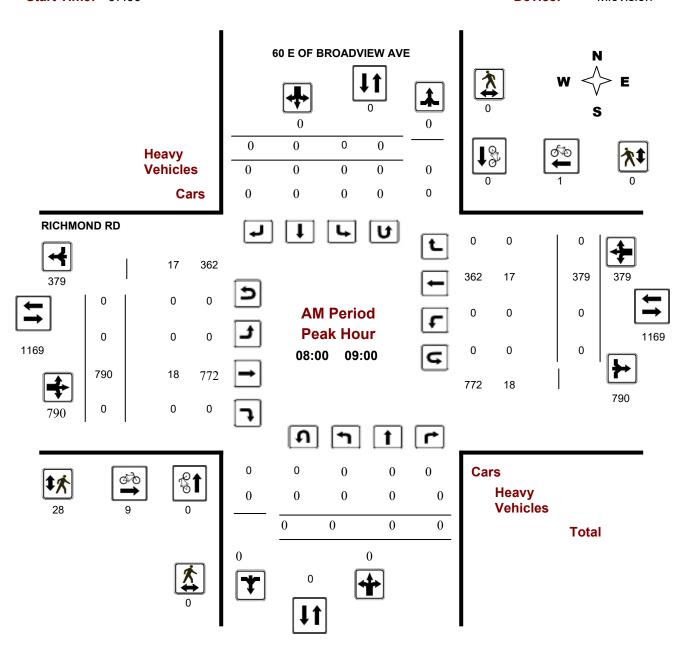

Turning Movement Count - Study Results

60 E OF BROADVIEW AVE @ RICHMOND RD

Survey Date: Wednesday, November 22, 2017 WO No: 37469

Start Time: 07:00 Device: Miovision

Full Study Peak Hour Diagram

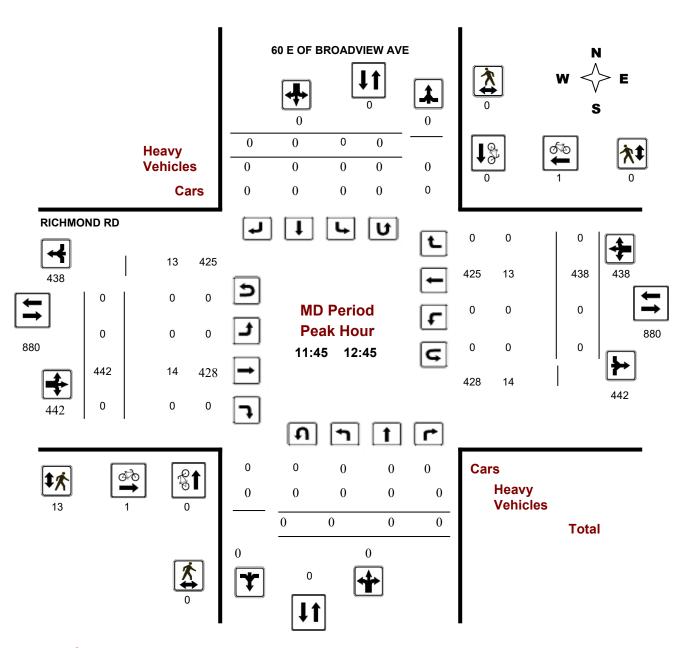

July 31, 2020 Page 2 of 8

Turning Movement Count - Peak Hour Diagram

60 E OF BROADVIEW AVE @ RICHMOND RD

Survey Date: Wednesday, November 22, 2017 WO No: 37469
Start Time: 07:00 Device: Miovision

Comments

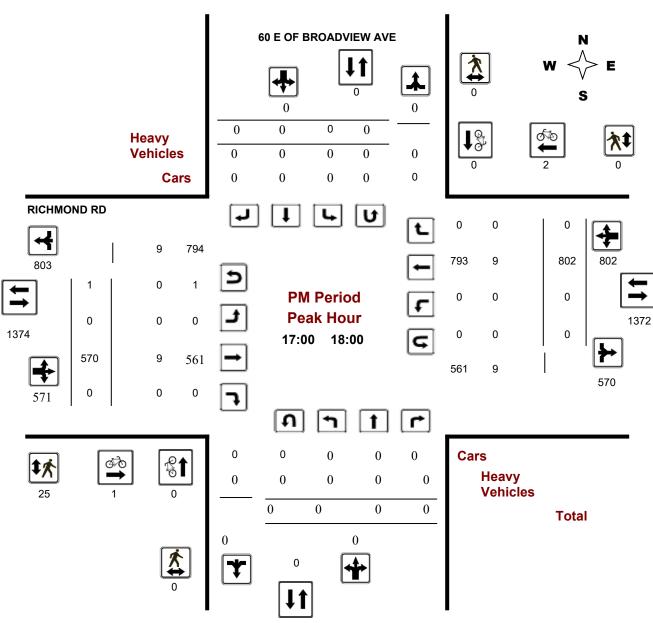

2020-Jul-31 Page 1 of 3

Turning Movement Count - Peak Hour Diagram

60 E OF BROADVIEW AVE @ RICHMOND RD

Survey Date: Wednesday, November 22, 2017 WO No: 37469
Start Time: 07:00 Device: Miovision

Comments


2020-Jul-31 Page 2 of 3

Turning Movement Count - Peak Hour Diagram

60 E OF BROADVIEW AVE @ RICHMOND RD

Survey Date:Wednesday, November 22, 2017WO No:37469Start Time:07:00Device:Miovision

Comments

2020-Jul-31 Page 3 of 3

Turning Movement Count - Study Results

60 E OF BROADVIEW AVE @ RICHMOND RD

Survey Date: Wednesday, November 22, 2017 WO No: 37469

Start Time: 07:00 Device: Miovision

Full Study Summary (8 HR Standard)

Survey Date: Wednesday, November 22, Total Observed U-Turns AADT Factor

2017 Northbound: 0 Southbound: 0

Eastbound: 1 Westbound: 1 .90

		60 E	OF BI	ROAD\	/IEW A	AVE						RIC	HMON	D RD					
	Nor	thbou	nd		Sou	ıthbou	nd			Е	astbou	ınd		٧	/estbou	und			
Period	LT	ST	RT	NB TOT	LT	ST	RT	SB TOT	STR TOT	LT	ST	RT	EB TOT	LT	ST	RT	WB TOT	STR TOT	Grand Total
07:00 08:00	0	0	0	0	0	0	0	0	0	0	642	0	642	0	246	0	246	888	888
08:00 09:00	0	0	0	0	0	0	0	0	0	0	790	0	790	0	379	0	379	1169	1169
09:00 10:00	0	0	0	0	0	0	0	0	0	0	570	0	570	0	314	0	314	884	884
11:30 12:30	0	0	0	0	0	0	0	0	0	0	433	0	433	0	441	0	441	874	874
12:30 13:30	0	0	0	0	0	0	0	0	0	0	469	0	469	0	409	0	409	878	878
15:00 16:00	0	0	0	0	0	0	0	0	0	0	427	0	427	0	678	0	678	1105	1105
16:00 17:00	0	0	0	0	0	0	0	0	0	0	401	0	401	0	790	0	790	1191	1191
17:00 18:00	0	0	0	0	0	0	0	0	0	0	570	0	570	0	802	0	802	1372	1372
Sub Total	0	0	0	0	0	0	0	0	0	0	4302	0	4302	0	4059	0	4059	8361	8361
U Turns				0				0	0				1				1	2	2
Total	0	0	0	0	0	0	0	0	0	0	4302	0	4303	0	4059	0	4060	8363	8363
EQ 12Hr	0	0	0	0	0	0	0	0	0	0	5980	0	5981	0	5642	0	5643	11625	11625
Note: These v	alues ar	e calcul	ated by	/ multiply	ing the	totals b	y the ap	opropriate	e expansi	ion fact	tor.			1.39					
AVG 12Hr	0	0	0	0	0	0	0	0	0	0	5072	0	5073	0	4786	0	4787	10462	10462
Note: These v	olumes	are calc	ulated	by multip	lying th	e Equiv	alent 1	2 hr. tota	ls by the	AADT	factor.			0.9					
AVG 24Hr	0	0	0	0	0	0	0	0	0	0	6644	0	6646	0	6269	0	6271	12917	12917

1.31

Note: These volumes are calculated by multiplying the Average Daily 12 hr. totals by 12 to 24 expansion factor.

Note: U-Turns provided for approach totals. Refer to 'U-Turn' Report for specific breakdown.

July 31, 2020 Page 3 of 8

Turning Movement Count - Study Results

60 E OF BROADVIEW AVE @ RICHMOND RD

Survey Date: Wednesday, November 22, 2017 WO No: 37469

Start Time: 07:00 Device: Miovision

Full Study 15 Minute Increments

60 E OF BROADVIEW AVE RICHMOND RD

		No	orthbou	und		Sc	uthbou	ınd			Е	astbour	nd		W	estboun	d			
Time F	Period	LT	ST	RT	N TOT	LT	ST	RT	S TOT	STR TOT	LT	ST	RT	E TOT	LT	ST	RT	W TOT	STR TOT	Grand Total
07:00	07:15	0	0	0	0	0	0	0	0	0	0	144	0	144	0	54	0	54	0	198
07:15	07:30	0	0	0	0	0	0	0	0	0	0	135	0	135	0	48	0	48	0	183
07:30	07:45	0	0	0	0	0	0	0	0	0	0	173	0	173	0	61	0	61	0	234
07:45	08:00	0	0	0	0	0	0	0	0	0	0	190	0	190	0	83	0	83	0	273
08:00	08:15	0	0	0	0	0	0	0	0	0	0	204	0	204	0	71	0	71	0	275
08:15	08:30	0	0	0	0	0	0	0	0	0	0	191	0	191	0	95	0	95	0	286
08:30	08:45	0	0	0	0	0	0	0	0	0	0	216	0	216	0	113	0	113	0	329
08:45	09:00	0	0	0	0	0	0	0	0	0	0	179	0	179	0	100	0	100	0	279
09:00	09:15	0	0	0	0	0	0	0	0	0	0	172	0	172	0	89	0	89	0	261
09:15	09:30	0	0	0	0	0	0	0	0	0	0	130	0	130	0	73	0	73	0	203
09:30	09:45	0	0	0	0	0	0	0	0	0	0	152	0	152	0	81	0	81	0	233
09:45	10:00	0	0	0	0	0	0	0	0	0	0	116	0	116	0	71	0	72	0	188
11:30	11:45	0	0	0	0	0	0	0	0	0	0	105	0	105	0	115	0	115	0	220
11:45	12:00	0	0	0	0	0	0	0	0	0	0	100	0	100	0	118	0	118	0	218
12:00	12:15	0	0	0	0	0	0	0	0	0	0	108	0	108	0	106	0	106	0	214
12:15	12:30	0	0	0	0	0	0	0	0	0	0	120	0	120	0	102	0	102	0	222
12:30	12:45	0	0	0	0	0	0	0	0	0	0	114	0	114	0	112	0	112	0	226
12:45	13:00	0	0	0	0	0	0	0	0	0	0	105	0	105	0	94	0	94	0	199
13:00	13:15	0	0	0	0	0	0	0	0	0	0	121	0	121	0	102	0	102	0	223
13:15	13:30	0	0	0	0	0	0	0	0	0	0	129	0	129	0	101	0	101	0	230
15:00	15:15	0	0	0	0	0	0	0	0	0	0	86	0	86	0	165	0	165	0	251
15:15	15:30	0	0	0	0	0	0	0	0	0	0	106	0	106	0	146	0	146	0	252
15:30	15:45	0	0	0	0	0	0	0	0	0	0	103	0	103	0	181	0	181	0	284
15:45	16:00	0	0	0	0	0	0	0	0	0	0	132	0	132	0	186	0	186	0	318
16:00	16:15	0	0	0	0	0	0	0	0	0	0	116	0	116	0	179	0	179	0	295
16:15	16:30	0	0	0	0	0	0	0	0	0	0	89	0	89	0	213	0	213	0	302
16:30	16:45	0	0	0	0	0	0	0	0	0	0	95	0	95	0	196	0	196	0	291
16:45	17:00	0	0	0	0	0	0	0	0	0	0	101	0	101	0	202	0	202	0	303
17:00	17:15	0	0	0	0	0	0	0	0	0	0	120	0	120	0	216	0	216	0	336
17:15	17:30	0	0	0	0	0	0	0	0	0	0	154	0	154	0	202	0	202	0	356
17:30	17:45	0	0	0	0	0	0	0	0	0	0	142	0	143	0	191	0	191	0	334
17:45	18:00	0	0	0	0	0	0	0	0	0	0	154	0	154	0	193	0	193	0	347
Total:		0	0	0	0	0	0	0	0	0	0	4302	0	4303	0	4059	0	4060	0	8,363

Note: U-Turns are included in Totals.

July 31, 2020 Page 4 of 8

Turning Movement Count - Study Results

60 E OF BROADVIEW AVE @ RICHMOND RD

Survey Date: Wednesday, November 22, 2017 WO No: 37469

Start Time: 07:00 Device: Miovision

Full Study Cyclist Volume

60 E OF BROADVIEW AVE RICHMOND RD

Time Period	Northbound						
	Northbound	Southbound	Street Total	Eastbound	Westbound	Street Total	Grand Total
07:00 07:15	0	0	0	1	2	3	3
07:15 07:30	0	0	0	1	0	1	1
07:30 07:45	0	0	0	4	1	5	5
07:45 08:00	0	0	0	1	2	3	3
08:00 08:15	0	0	0	1	0	1	1
08:15 08:30	0	0	0	4	0	4	4
08:30 08:45	0	0	0	2	1	3	3
08:45 09:00	0	0	0	2	0	2	2
09:00 09:15	0	0	0	0	1	1	1
09:15 09:30	0	0	0	0	0	0	0
09:30 09:45	0	0	0	2	1	3	3
09:45 10:00	0	0	0	0	0	0	0
11:30 11:45	0	0	0	0	0	0	0
11:45 12:00	0	0	0	1	1	2	2
12:00 12:15	0	0	0	0	0	0	0
12:15 12:30	0	0	0	0	0	0	0
12:30 12:45	0	0	0	0	0	0	0
12:45 13:00	0	0	0	0	1	1	1
13:00 13:15	0	0	0	0	0	0	0
13:15 13:30	0	0	0	0	0	0	0
15:00 15:15	0	0	0	2	0	2	2
15:15 15:30	0	0	0	0	0	0	0
15:30 15:45	0	0	0	0	1	1	1
15:45 16:00	0	0	0	0	1	1	1
16:00 16:15	0	0	0	0	0	0	0
16:15 16:30	0	0	0	1	0	1	1
16:30 16:45	0	0	0	1	4	5	5
16:45 17:00	0	0	0	0	0	0	0
17:00 17:15	0	0	0	0	0	0	0
17:15 17:30	0	0	0	1	0	1	1
17:30 17:45	0	0	0	0	2	2	2
17:45 18:00	0	0	0	0	0	0	0
Total	0	0	0	24	18	42	42

July 31, 2020 Page 5 of 8

Turning Movement Count - Study Results

60 E OF BROADVIEW AVE @ RICHMOND RD

Survey Date: Wednesday, November 22, 2017 WO No: 37469

Start Time: 07:00 Device: Miovision

Full Study Pedestrian Volume

60 E OF BROADVIEW AVE

RICHMOND RD

Time Period	NB Approach (E or W Crossing)	SB Approach (E or W Crossing)	Total	EB Approach (N or S Crossing)	WB Approach (N or S Crossing)	Total	Grand Total
07:00 07:15	0	0	0	0	0	0	0
07:15 07:30	0	0	0	1	0	1	1
07:30 07:45	0	0	0	4	0	4	4
07:45 08:00	0	0	0	7	0	7	7
08:00 08:15	0	0	0	9	0	9	9
08:15 08:30	0	0	0	7	0	7	7
08:30 08:45	0	0	0	5	0	5	5
08:45 09:00	0	0	0	7	0	7	7
09:00 09:15	0	0	0	6	0	6	6
09:15 09:30	0	0	0	5	0	5	5
09:30 09:45	0	0	0	2	0	2	2
09:45 10:00	0	0	0	11	0	11	11
11:30 11:45	0	0	0	0	0	0	0
11:45 12:00	0	0	0	6	0	6	6
12:00 12:15	0	0	0	1	0	1	1
12:15 12:30	0	0	0	5	0	5	5
12:30 12:45	0	0	0	1	0	1	1
12:45 13:00	0	0	0	6	0	6	6
13:00 13:15	0	0	0	3	0	3	3
13:15 13:30	0	0	0	2	0	2	2
15:00 15:15	0	0	0	6	0	6	6
15:15 15:30	0	0	0	20	0	20	20
15:30 15:45	0	0	0	3	0	3	3
15:45 16:00	0	0	0	3	0	3	3
16:00 16:15	0	0	0	4	0	4	4
16:15 16:30	0	0	0	3	0	3	3
16:30 16:45	0	0	0	4	0	4	4
16:45 17:00	0	0	0	2	0	2	2
17:00 17:15	0	0	0	4	0	4	4
17:15 17:30	0	0	0	17	0	17	17
17:30 17:45	0	0	0	3	0	3	3
17:45 18:00	0	0	0	1	0	1	1
Total	0	0	0	158	0	158	158

July 31, 2020 Page 6 of 8

Turning Movement Count - Study Results

60 E OF BROADVIEW AVE @ RICHMOND RD

Survey Date: Wednesday, November 22, 2017 WO No: 37469

Start Time: 07:00 Device: Miovision

Full Study Heavy Vehicles

60 E OF BROADVIEW AVE

RICHMOND RD

		No	orthbou	und		Sc	uthbou	nd			Е	astbour	nd		W	estbour	nd			
Time Peri	riod	LT	ST	RT	N TOT	LT	ST	RT	S TOT	STR TOT	LT	ST	RT	E TOT	LT	ST	RT	W TOT	STR TOT	Grand Total
07:00 07	7:15	0	0	0	0	0	0	0	0	0	0	6	0	6	0	3	0	3	9	9
07:15 07	7:30	0	0	0	0	0	0	0	0	0	0	1	0	1	0	2	0	2	3	3
07:30 07	7:45	0	0	0	0	0	0	0	0	0	0	6	0	6	0	3	0	3	9	9
07:45 08	3:00	0	0	0	0	0	0	0	0	0	0	1	0	1	0	3	0	3	4	4
08:00 08	3:15	0	0	0	0	0	0	0	0	0	0	4	0	4	0	2	0	2	6	6
08:15 08	3:30	0	0	0	0	0	0	0	0	0	0	4	0	4	0	4	0	4	8	8
08:30 08	3:45	0	0	0	0	0	0	0	0	0	0	6	0	6	0	6	0	6	12	12
08:45 09	9:00	0	0	0	0	0	0	0	0	0	0	4	0	4	0	5	0	5	9	9
09:00 09	9:15	0	0	0	0	0	0	0	0	0	0	1	0	1	0	3	0	3	4	4
09:15 09	9:30	0	0	0	0	0	0	0	0	0	0	9	0	9	0	2	0	2	11	11
09:30 09	9:45	0	0	0	0	0	0	0	0	0	0	5	0	5	0	2	0	2	7	7
09:45 10	0:00	0	0	0	0	0	0	0	0	0	0	4	0	4	0	8	0	8	12	12
11:30 11	1:45	0	0	0	0	0	0	0	0	0	0	6	0	6	0	4	0	4	10	10
11:45 12	2:00	0	0	0	0	0	0	0	0	0	0	2	0	2	0	7	0	7	9	9
	2:15	0	0	0	0	0	0	0	0	0	0	4	0	4	0	3	0	3	7	7
12:15 12	2:30	0	0	0	0	0	0	0	0	0	0	5	0	5	0	0	0	0	5	5
	2:45	0	0	0	0	0	0	0	0	0	0	3	0	3	0	3	0	3	6	6
	3:00	0	0	0	0	0	0	0	0	0	0	3	0	3	0	6	0	6	9	9
	3:15	0	0	0	0	0	0	0	0	0	0	6	0	6	0	8	0	8	14	14
	3:30	0	0	0	0	0	0	0	0	0	0	5	0	5	0	2	0	2	7	7
	5:15	0	0	0	0	0	0	0	0	0	0	5	0	5	0	4	0	4	9	9
	5:30	0	0	0	0	0	0	0	0	0	0	5	0	5	0	5	0	5	10	10
	5:45	0	0	0	0	0	0	0	0	0	0	3	0	3	0	3	0	3	6	6
	3:00	0	0	0	0	0	0	0	0	0	0	5	0	5	0	4	0	4	9	9
	3:15	0	0	0	0	0	0	0	0	0	0	3	0	3	0	4	0	4	7	7
	3:30	0	0	0	0	0	0	0	0	0	0	2	0	2	0	5	0	5	7	7
	6:45	0	0	0	0	0	0	0	0	0	0	2	0	2	0	0	0	0	2	2
	7:00	0	0	0	0	0	0	0	0	0	0	1	0	1	0	6	0	6	7	7
	7:15	0	0	0	0	0	0	0	0	0	0	2	0	2	0	2	0	2	4	4
	7:30	0	0	0	0	0	0	0	0	0	0	3	0	3	0	2	0	2	5	5
	7:45	0	0	0	0	0	0	0	0	0	0	3	0	3	0	4	0	4	7	7
	3:00	0	0	0	0	0	0	0	0	0	0	1	0	1	0	1	0	1	2	2
Total: No	one	0	0	0	0	0	0	0	0	0	0	120	0	120	0	116	0	116	236	236

July 31, 2020 Page 7 of 8

Turning Movement Count - Study Results

60 E OF BROADVIEW AVE @ RICHMOND RD

Survey Date: Wednesday, November 22, 2017 WO No: 37469

Start Time: 07:00 Device: Miovision

Full Study 15 Minute U-Turn Total 60 E OF BROADVIEW AVE RICHMOND RD

Time P	eriod	Northbound U-Turn Total	Southbound U-Turn Total	Eastbound U-Turn Total	Westbound U-Turn Total	Total
07:00	07:15	0	0	0	0	0
07:15	07:30	0	0	0	0	0
07:30	07:45	0	0	0	0	0
07:45	08:00	0	0	0	0	0
08:00	08:15	0	0	0	0	0
08:15	08:30	0	0	0	0	0
08:30	08:45	0	0	0	0	0
08:45	09:00	0	0	0	0	0
09:00	09:15	0	0	0	0	0
09:15	09:30	0	0	0	0	0
09:30	09:45	0	0	0	0	0
09:45	10:00	0	0	0	1	1
11:30	11:45	0	0	0	0	0
11:45	12:00	0	0	0	0	0
12:00	12:15	0	0	0	0	0
12:15	12:30	0	0	0	0	0
12:30	12:45	0	0	0	0	0
12:45	13:00	0	0	0	0	0
13:00	13:15	0	0	0	0	0
13:15	13:30	0	0	0	0	0
15:00	15:15	0	0	0	0	0
15:15	15:30	0	0	0	0	0
15:30	15:45	0	0	0	0	0
15:45	16:00	0	0	0	0	0
16:00	16:15	0	0	0	0	0
16:15	16:30	0	0	0	0	0
16:30	16:45	0	0	0	0	0
16:45	17:00	0	0	0	0	0
17:00	17:15	0	0	0	0	0
17:15	17:30	0	0	0	0	0
17:30	17:45	0	0	1	0	1
17:45	18:00	0	0	0	0	0
То	tal	0	0	1	1	2

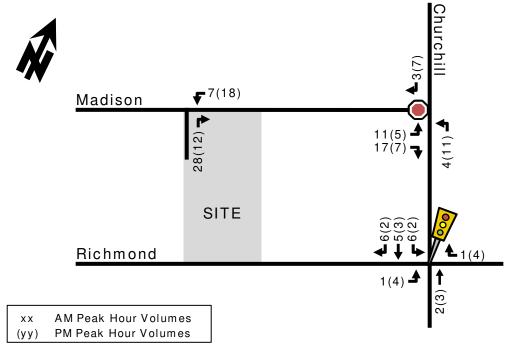
July 31, 2020 Page 8 of 8

B

Appendix B – Collision Data

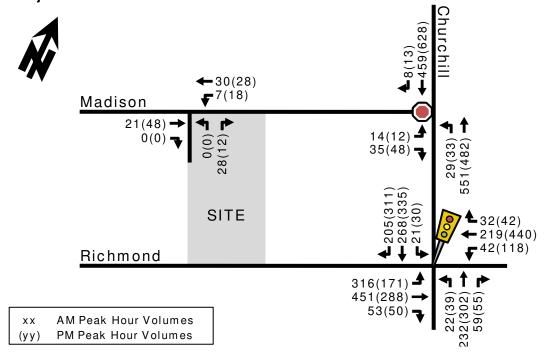
FID. Leader		D.t.	T:	d #1 4	Inches Ton	F		Decid Occide	T	T	No. of Bods
FID Location	Year	Date		lassficat	Impact_Typ	Environme		Road_Surfa	Traffic_Co	Traffic1	No_of_Peds
1316 GOLDEN AVE @ RICHMOND RD		5/11/2018 0:00			04 - Sideswipe	01 - Clear	01 - Daylight			01 - Functioning	0
1539 CHURCHILL AVE @ RICHMOND RD	2018		10:48:00 AM 0		02 - Angle	01 - Clear	01 - Daylight			01 - Functioning	0
2666 RICHMOND RD btwn WINSTON AVE & CHURCHILL AVE N	2018		12:45:00 PM 0		05 - Turning movement	01 - Clear	01 - Daylight		10 - No control		0
2935 ROOSEVELT AVE @ RICHMOND RD	2018		12:14:00 PM 0		03 - Rear end	03 - Snow				01 - Functioning	0
3802 CHURCHILL AVE @ RICHMOND RD				2 - Non-fatal injury		03 - Snow		02 - Wet		01 - Functioning	2
3923 RICHMOND RD btwn BROADVIEW AVE & GOLDEN AVE		10/22/2018 0:00			02 - Angle	01 - Clear	01 - Daylight		10 - No control		0
4052 RICHMOND RD btwn BROADVIEW AVE & GOLDEN AVE	2018		1:06:00 PM 0		99 - Other	01 - Clear	01 - Daylight		10 - No control		0
5078 RICHMOND RD btwn WINSTON AVE & CHURCHILL AVE N	2018		1:40:00 PM 0		03 - Rear end	01 - Clear	01 - Daylight		10 - No control		0
5216 CHURCHILL AVE @ RICHMOND RD	2018	9/11/2018 0:00	6:51:00 PM 0	3 - P.D. only	05 - Turning movement	01 - Clear	01 - Daylight	01 - Dry		01 - Functioning	0
5773 CHURCHILL AVE @ RICHMOND RD	2018	2/9/2018 0:00	12:45:00 PM 0	3 - P.D. only	04 - Sideswipe	01 - Clear	01 - Daylight	02 - Wet	01 - Traffic signal	01 - Functioning	0
6842 CHURCHILL AVE N btwn RICHMOND RD & DANFORTH AVE	2018	4/23/2018 0:00	3:30:00 PM 0	3 - P.D. only	05 - Turning movement	01 - Clear	01 - Daylight	01 - Dry	10 - No control		0
7008 BERKELEY AVE @ RICHMOND RD	2018	4/10/2018 0:00	4:13:00 PM 0	3 - P.D. only	99 - Other	01 - Clear	01 - Daylight	01 - Dry	02 - Stop sign	01 - Functioning	0
7050 RICHMOND RD btwn BERKLEY AVE & ROOSEVELT AVE	2018	4/4/2018 0:00	6:38:00 PM 0	3 - P.D. only	06 - SMV unattended vehicle	01 - Clear	05 - Dusk	01 - Dry	10 - No control	_	0
7150 RICHMOND RD btwn WINSTON AVE & CHURCHILL AVE N	2018	3/24/2018 0:00	12:19:00 PM 0	3 - P.D. only	99 - Other	01 - Clear	01 - Daylight	01 - Dry	10 - No control		0
7343 CHURCHILL AVE @ DANFORTH AVE	2018	3/21/2018 0:00	11:46:00 AM 0	3 - P.D. only	04 - Sideswipe	01 - Clear	01 - Daylight	01 - Dry	02 - Stop sign	01 - Functioning	0
7842 RICHMOND RD btwn BERKLEY AVE & ROOSEVELT AVE	2018	7/4/2018 0:00	3:26:00 PM 0:	2 - Non-fatal injury	03 - Rear end	01 - Clear	01 - Daylight	01 - Dry	10 - No control	_	0
9125 GOLDEN AVE @ RICHMOND RD	2018	2/27/2018 0:00	6:59:00 PM 0:	2 - Non-fatal injury	07 - SMV other	01 - Clear	07 - Dark	01 - Dry	01 - Traffic signal	01 - Functioning	1
9465 CHURCHILL AVE @ RICHMOND RD	2018	3/12/2018 0:00			05 - Turning movement	01 - Clear	01 - Daylight			01 - Functioning	0
12212 CHURCHILL AVE @ RICHMOND RD				2 - Non-fatal injury	03 - Rear end	02 - Rain	01 - Daylight			01 - Functioning	0
13510 CHURCHILL AVE @ RICHMOND RD		12/17/2018 0:00			04 - Sideswipe	01 - Clear	01 - Daylight			01 - Functioning	0
14413 DANFORTH AVE btwn ROOSEVELT AVE & CHURCHILL AVE N		12/21/2018 0:00			02 - Angle	01 - Clear	01 - Daylight		10 - No control		0
15571 BYRON AVE @ CHURCHILL AVE		9/12/2017 0:00		3 - P.D. only	05 - Turning movement	01 - Clear	01 - Daylight		01 - Traffic signal		0
15587 BYRON AVE @ ROOSEVELT AVE		10/12/2017 0:00		3 - P.D. only	05 - Turning movement	01 - Clear	01 - Daylight		01 - Traffic signal		0
15590 BYRON AVE @ ROOSEVELT AVE		2/11/2017 0:00		3 - P.D. only	99 - Other	01 - Clear	01 - Daylight				0
15599 BYRON AVE @ ROOSEVELT AVE	2017				99 - Other	03 - Snow					0
	2017			3 - P.D. only			01 - Daylight			l	0
17107 CHURCHILL AVE N btwn RICHMOND RD & DANFORTH AVE				3 - P.D. only	04 - Sideswipe	02 - Rain	01 - Daylight		10 - No control		-
17108 CHURCHILL AVE N btwn RICHMOND RD & DANFORTH AVE	2017			3 - P.D. only	06 - SMV unattended vehicle	01 - Clear	01 - Daylight		10 - No control		0
17113 CHURCHILL AVE @ RICHMOND RD	2017			3 - P.D. only	06 - SMV unattended vehicle	01 - Clear	00 - Unknow		01 - Traffic signal		0
17114 CHURCHILL AVE @ RICHMOND RD	2017				05 - Turning movement	01 - Clear	05 - Dusk	01 - Dry	01 - Traffic signal		0
17115 CHURCHILL AVE @ RICHMOND RD	2017			2 - Non-fatal injury		03 - Snow	01 - Daylight		01 - Traffic signal		0
18050 DANFORTH AVE @ ROOSEVELT AVE	2017			3 - P.D. only	99 - Other	01 - Clear	01 - Daylight		02 - Stop sign		0
21328 BERKELEY AVE @ RICHMOND RD	2017			3 - P.D. only	03 - Rear end	01 - Clear	07 - Dark	01 - Dry	02 - Stop sign		0
25889 RICHMOND RD btwn WINSTON AVE & CHURCHILL AVE N	2017			3 - P.D. only	02 - Angle	01 - Clear	01 - Daylight		10 - No control		0
25890 RICHMOND RD btwn WINSTON AVE & CHURCHILL AVE N	2017			3 - P.D. only	06 - SMV unattended vehicle	01 - Clear	01 - Daylight		10 - No control		0
25891 RICHMOND RD btwn WINSTON AVE & CHURCHILL AVE N	2017	8/21/2017 0:00	8:23 PM 0	3 - P.D. only	06 - SMV unattended vehicle	01 - Clear	01 - Daylight	01 - Dry	10 - No control		0
25892 RICHMOND RD btwn WINSTON AVE & CHURCHILL AVE N	2017	10/6/2017 0:00	9:39 PM 0	3 - P.D. only	04 - Sideswipe	01 - Clear	01 - Daylight	01 - Dry	10 - No control		0
25893 RICHMOND RD btwn WINSTON AVE & CHURCHILL AVE N	2017	10/19/2017 0:00	4:35 PM 0	3 - P.D. only	06 - SMV unattended vehicle	01 - Clear	01 - Daylight	01 - Dry	10 - No control		0
25896 RICHMOND RD btwn WINSTON AVE & CHURCHILL AVE N	2017	1/4/2017 0:00	12:38 AM 0	3 - P.D. only	05 - Turning movement	01 - Clear	07 - Dark	02 - Wet	10 - No control		0
25897 RICHMOND RD btwn WINSTON AVE & CHURCHILL AVE N	2017	2/25/2017 0:00	5:35 PM 0	3 - P.D. only	06 - SMV unattended vehicle	03 - Snow	01 - Daylight	02 - Wet	10 - No control		0
26279 RICHMOND RD btwn BERKLEY AVE & ROOSEVELT AVE	2017	10/19/2017 0:00	10:36 PM 0	3 - P.D. onlv	06 - SMV unattended vehicle	01 - Clear	01 - Daylight	01 - Dry	10 - No control		0
26280 RICHMOND RD btwn BROADVIEW AVE & GOLDEN AVE		12/1/2017 0:00		2 - Non-fatal injury		01 - Clear	07 - Dark	01 - Dry	10 - No control		0
26281 RICHMOND RD btwn BROADVIEW AVE & GOLDEN AVE	2017				02 - Angle	01 - Clear	01 - Daylight		10 - No control		0
26321 RICHMOND RD btwn ROOSEVELT AVE & WINSTON AVE	2017			3 - P.D. only		01 - Clear	00 - Unknow		10 - No control		Ō
28912 RICHMOND RD btwn WINSTON AVE & CHURCHILL AVE N	2016		5:16:00 PM 0		99 - Other	03 - Snow	01 - Daylight		10 - No control		0
28961 GOLDEN AVE @ RICHMOND RD	2016			2 - Non-fatal injury		01 - Clear	05 - Dusk	02 - Wet		01 - Functioning	0
29243 CHURCHILL AVE N btwn RICHMOND RD & DANFORTH AVE	2016				03 - Rear end	01 - Clear	01 - Daylight		10 - No control	01-1 unctioning	0
29747 GOLDEN AVE @ RICHMOND RD	2016				02 - Angle	01 - Clear	01 - Daylight			01 - Functioning	0
29801 RICHMOND RD btwn WINSTON AVE & CHURCHILL AVE N	2016		3:35:00 PM 0		06 - SMV unattended vehicle	01 - Clear	01 - Daylight		10 - No control	01 - 1 unctioning	0
30944 CHURCHILL AVE N btwn RICHMOND RD & DANFORTH AVE	2016					01 - Clear			10 - No control		0
	2016		4:23:00 PM 0:		04 - Sideswipe	01 - Clear	01 - Daylight			04 Funationina	0
30946 CHURCHILL AVE @ RICHMOND RD	20.0	17 172010 0.00	5:08:00 PM 0		03 - Rear end		01 - Daylight			01 - Functioning	0
31924 RICHMOND RD btwn WINSTON AVE & CHURCHILL AVE N	2016		8:45:00 PM 0		02 - Angle	02 - Rain 01 - Clear	01 - Daylight		10 - No control	04 5	0
32500 CHURCHILL AVE @ RICHMOND RD	2016		5:12:00 PM 0		03 - Rear end		01 - Daylight			01 - Functioning	0
32655 CHURCHILL AVE @ RICHMOND RD	2016		5:00:00 AM 0		06 - SMV unattended vehicle	01 - Clear	00 - Unknow		01 - Traffic signal		
33362 BERKELEY AVE @ RICHMOND RD	2016				05 - Turning movement	01 - Clear	07 - Dark	01 - Dry	02 - Stop sign	01 - Functioning	0
33824 RICHMOND RD btwn BERKLEY AVE & ROOSEVELT AVE	2016		5:46:00 PM 0		04 - Sideswipe	01 - Clear	01 - Daylight		10 - No control		0
34368 RICHMOND RD btwn WINSTON AVE & CHURCHILL AVE N	2016		6:30:00 PM 0		06 - SMV unattended vehicle	01 - Clear	01 - Daylight		10 - No control		0
34665 RICHMOND RD btwn WINSTON AVE & CHURCHILL AVE N	2016		10:12:00 PM 0		04 - Sideswipe	02 - Rain	05 - Dusk	02 - Wet	10 - No control		0
35273 BYRON AVE @ CHURCHILL AVE	2016		2:49:00 PM 0		05 - Turning movement	02 - Rain	01 - Daylight			01 - Functioning	0
35693 CHURCHILL AVE @ RICHMOND RD	2016			2 - Non-fatal injury		01 - Clear	01 - Daylight			01 - Functioning	1
35813 CHURCHILL AVE @ RICHMOND RD	2016	6/17/2016 0:00	10:29:00 AM 0	3 - P.D. only	02 - Angle	01 - Clear	03 - Dawn	01 - Dry	01 - Traffic signal	01 - Functioning	0
36151 ROOSEVELT AVE @ RICHMOND RD	2016	4/9/2016 0:00	3:57:00 PM 0	3 - P.D. only	03 - Rear end	01 - Clear	01 - Daylight	01 - Dry	01 - Traffic signal	01 - Functioning	0
36374 BYRON AVE @ CHURCHILL AVE	2016	3/26/2016 0:00	5:30:00 PM 0	3 - P.D. only	03 - Rear end	01 - Clear	01 - Daylight	01 - Dry	01 - Traffic signal	01 - Functioning	0
37308 RICHMOND RD btwn WINSTON AVE & CHURCHILL AVE N	2016	11/25/2016 0:00			04 - Sideswipe	01 - Clear	01 - Daylight		10 - No control	ū	0
37587 RICHMOND RD btwn GOLDEN AVE & BERKLEY AVE	2016				05 - Turning movement	02 - Rain	07 - Dark	02 - Wet	10 - No control		0
37818 GOLDEN AVE @ RICHMOND RD	2016	11/24/2016 0:00			03 - Rear end	03 - Snow	01 - Daylight			01 - Functioning	0
39310 RICHMOND RD btwn BERKLEY AVE & ROOSEVELT AVE	2016		4:52:00 PM 0		06 - SMV unattended vehicle	01 - Clear	01 - Daylight		10 - No control	3	0
39435 DANFORTH AVE btwn ROOSEVELT AVE & CHURCHILL AVE N	2016		8:51:00 PM 0		02 - Angle	01 - Clear	01 - Daylight		10 - No control		0
40075 CHURCHILL AVE @ RICHMOND RD	2016		1:40:00 PM 0		03 - Rear end	01 - Clear	01 - Daylight			01 - Functioning	0
40314 RICHMOND RD btwn WINSTON AVE & CHURCHILL AVE N		12/14/2016 0:00			04 - Sideswipe	01 - Clear	07 - Dark	01 - Dry	10 - No control		0
40719 RICHMOND RD btwn WINSTON AVE & CHURCHILL AVE N	2016			2 - Non-fatal injury		01 - Clear	01 - Daylight		10 - No control		0
42698 CHURCHILL AVE N btwn RICHMOND RD & DANFORTH AVE				2 - Non-fatal injury		01 - Clear	01 - Daylight		10 - No control		1
42851 CHURCHILL AVE @ RICHMOND RD				2 - Non-fatal injury 2 - Non-fatal injury		03 - Snow		03 - Loose snow		01 - Functioning	1
	2010	,0.,2010 0.00	3.5 50 1 141 0.			JO OHOW	51 - Dayngin	JO LOUGO SHOW	oigilai		'

42868 RICHMOND RD btwn ROOSEVELT AVE & WINSTON AVE	2016 12/31/2016 0:00	9:20:00 PM 03 - P.D. only	07 - SMV other	03 - Snow	05 - Dusk	03 - Loose snow	10 - No control	0
43015 CHURCHILL AVE @ RICHMOND RD	2015 1/25/2015 0:00	7:02 PM 02 - Non-fatal injury		01 - Clear	01 - Daylight		01 - Traffic signal 01 - Functioning	0
	2015 1/19/2015 0:00	11:23 PM 03 - P.D. only	03 - Rear end	01 - Clear	07 - Daylight	04 - Slush	01 - Traffic signal 01 - Functioning	0
43128 GOLDEN AVE @ RICHMOND RD								
43457 CHURCHILL AVE @ RICHMOND RD	2015 1/31/2015 0:00	1:21 AM 03 - P.D. only	05 - Turning movement	03 - Snow	07 - Dark		01 - Traffic signal 01 - Functioning	0
43643 BYRON AVE @ CHURCHILL AVE	2015 1/29/2015 0:00	9:00 PM 03 - P.D. only	02 - Angle	01 - Clear	01 - Daylight	06 - Ice	01 - Traffic signal 01 - Functioning	0
43987 GOLDEN AVE @ RICHMOND RD	2015 2/4/2015 0:00	8:37 PM 03 - P.D. only	03 - Rear end	03 - Snow	01 - Daylight	03 - Loose snow	01 - Traffic signal 01 - Functioning	0
44383 RICHMOND RD btwn BROADVIEW AVE & GOLDEN AVE	2015 2/10/2015 0:00	2:10 PM 03 - P.D. only	02 - Angle	01 - Clear	01 - Daylight		10 - No control	0
46091 BYRON AVE @ ROOSEVELT AVE	2015 9/18/2015 0:00		05 - Turning movement	01 - Clear	01 - Daylight		01 - Traffic signal 01 - Functioning	0
47660 CHURCHILL AVE @ RICHMOND RD	2015 6/18/2015 0:00	2:14 PM 03 - P.D. only	04 - Sideswipe	01 - Clear	01 - Daylight		01 - Traffic signal 01 - Functioning	0
47746 RICHMOND RD btwn GOLDEN AVE & BERKLEY AVE	2015 6/1/2015 0:00		03 - Rear end	01 - Clear	01 - Daylight	01 - Dry	10 - No control	0
47778 BYRON AVE @ CHURCHILL AVE	2015 6/9/2015 0:00	3:04 PM 03 - P.D. only	03 - Rear end	02 - Rain	01 - Daylight	02 - Wet	01 - Traffic signal 01 - Functioning	0
47798 RICHMOND RD btwn BERKLEY AVE & ROOSEVELT AVE	2015 6/5/2015 0:00	12:42 AM 03 - P.D. only	03 - Rear end	01 - Clear	01 - Daylight	01 - Dry	10 - No control	0
48843 RICHMOND RD btwn ROOSEVELT AVE & WINSTON AVE	2015 12/31/2015 0:00	2:47 PM 03 - P.D. only	01 - Approaching	01 - Clear	01 - Daylight		10 - No control	0
48994 RICHMOND RD btwn WINSTON AVE & CHURCHILL AVE N	2015 1/10/2015 0:00	2:30 AM 03 - P.D. only	06 - SMV unattended vehicle	03 - Snow	07 - Dark	04 - Slush	10 - No control	0
49626 CHURCHILL AVE @ RICHMOND RD	2015 1/16/2015 0:00	3:39 PM 03 - P.D. only	02 - Angle	01 - Clear	01 - Daylight		01 - Traffic signal 01 - Functioning	0
50031 BERKELEY AVE @ RICHMOND RD	2015 2/24/2015 0:00	10:30 PM 03 - P.D. only	03 - Rear end	01 - Clear	05 - Dusk	02 - Wet	02 - Stop sign 00 - Unknown	0
50214 RICHMOND RD btwn BROADVIEW AVE & GOLDEN AVE	2015 2/26/2015 0:00	6:02 PM 03 - P.D. only	06 - SMV unattended vehicle	01 - Clear	01 - Daylight	03 - Loose snow	10 - No control	0
50230 CHURCHILL AVE @ RICHMOND RD	2015 2/26/2015 0:00	10:03 PM 03 - P.D. only	02 - Angle	01 - Clear	01 - Daylight		01 - Traffic signal 01 - Functioning	0
51324 CHURCHILL AVE @ RICHMOND RD	2015 10/3/2015 0:00	4:00 PM 03 - P.D. only	03 - Rear end	01 - Clear	01 - Daylight		01 - Traffic signal 01 - Functioning	0
51910 RICHMOND RD btwn WINSTON AVE & CHURCHILL AVE N	2015 9/11/2015 0:00	5:00 PM 03 - P.D. only	03 - Rear end	01 - Clear	01 - Daylight		10 - No control	0
52317 RICHMOND RD btwn ROOSEVELT AVE & WINSTON AVE	2015 11/3/2015 0:00	9:00 PM 03 - P.D. only	06 - SMV unattended vehicle	01 - Clear	01 - Daylight	01 - Dry	10 - No control	0
52598 ROOSEVELT AVE @ RICHMOND RD	2015 11/7/2015 0:00	11:34 PM 02 - Non-fatal injury	05 - Turning movement	01 - Clear	07 - Dark	01 - Dry	01 - Traffic signal 01 - Functioning	0
52669 CHURCHILL AVE N btwn DANFORTH AVE & BYRON AVE	2015 11/17/2015 0:00	12:50 AM 03 - P.D. only	06 - SMV unattended vehicle	01 - Clear	07 - Dark	01 - Drv	10 - No control	0
52720 CHURCHILL AVE @ RICHMOND RD	2015 11/19/2015 0:00	3:56 PM 03 - P.D. only	03 - Rear end	01 - Clear	01 - Daylight		01 - Traffic signal 01 - Functioning	0
				01 - Clear		02 - Wet		0
54465 RICHMOND RD btwn BROADVIEW AVE & GOLDEN AVE	2015 12/3/2015 0:00	8:59 PM 03 - P.D. only	02 - Angle		05 - Dusk		10 - No control	
55321 RICHMOND RD btwn WINSTON AVE & CHURCHILL AVE N	2015 4/28/2015 0:00	3:10 AM 03 - P.D. only	06 - SMV unattended vehicle	01 - Clear	07 - Dark	01 - Dry	10 - No control	0
55534 RICHMOND RD btwn GOLDEN AVE & BERKLEY AVE	2015 4/28/2015 0:00	7:28 PM 03 - P.D. only	06 - SMV unattended vehicle	01 - Clear	01 - Daylight	01 - Dry	10 - No control	0
56079 CHURCHILL AVE @ RICHMOND RD	2015 4/11/2015 0:00	5:34 PM 03 - P.D. only	04 - Sideswipe	01 - Clear	01 - Daylight	01 - Dry	01 - Traffic signal 01 - Functioning	0
56158 RICHMOND RD btwn BERKLEY AVE & ROOSEVELT AVE	2015 4/16/2015 0:00	1:07 AM 03 - P.D. only	99 - Other	01 - Clear	07 - Dark	01 - Drv	10 - No control	0
56630 BYRON AVE @ ROOSEVELT AVE	2015 3/22/2015 0:00	3:47 PM 03 - P.D. only	02 - Angle	01 - Clear	01 - Daylight		01 - Traffic signal 01 - Functioning	0
56804 DANFORTH AVE btwn ROOSEVELT AVE & CHURCHILL AVE N	2015 3/24/2015 0:00	4:50 PM 03 - P.D. only	99 - Other	01 - Clear	01 - Daylight		10 - No control	0
57502 RICHMOND RD btwn ROOSEVELT AVE & WINSTON AVE	2015 8/4/2015 0:00	6:30 PM 03 - P.D. only	03 - Rear end	01 - Clear	01 - Daylight	01 - Dry	10 - No control	0
57820 CHURCHILL AVE @ RICHMOND RD	2015 7/24/2015 0:00	7:25 PM 03 - P.D. only	03 - Rear end	01 - Clear	01 - Daylight	01 - Dry	01 - Traffic signal 01 - Functioning	0
58550 BYRON AVE @ ROOSEVELT AVE	2014 1/18/2014 0:00	4:34 PM 03 - P.D. only	02 - Angle	01 - Clear	01 - Daylight	02 - Wet	01 - Traffic signal 01 - Functioning	0
59141 BYRON AVE @ ROOSEVELT AVE	2014 2/26/2014 0:00		02 - Angle	01 - Clear	01 - Daylight		01 - Traffic signal 01 - Functioning	0
				01 - Clear				0
59142 CHURCHILL AVE @ RICHMOND RD		7:52 PM 03 - P.D. only	02 - Angle		01 - Daylight		01 - Traffic signal 01 - Functioning	
59603 BYRON AVE @ ROOSEVELT AVE	2014 3/6/2014 0:00	9:43 PM 03 - P.D. only	02 - Angle	01 - Clear	01 - Daylight	01 - Dry	01 - Traffic signal 01 - Functioning	0
59859 RICHMOND RD btwn WINSTON AVE & CHURCHILL AVE N	2014 3/3/2014 0:00	4:00 PM 03 - P.D. only	04 - Sideswipe	01 - Clear	01 - Daylight	01 - Dry	10 - No control	0
60525 RICHMOND RD btwn WINSTON AVE & CHURCHILL AVE N	2014 2/6/2014 0:00	7:44 PM 03 - P.D. only	03 - Rear end	01 - Clear	01 - Daylight	01 - Dry	10 - No control	0
60907 RICHMOND RD btwn ROOSEVELT AVE & ROOSEVELT AVE	2014 2/8/2014 0:00	11:48 PM 03 - P.D. only	06 - SMV unattended vehicle	01 - Clear	07 - Dark	02 - Wet	10 - No control	0
61039 RICHMOND RD btwn WINSTON AVE & CHURCHILL AVE N	2014 4/9/2014 0:00	9:30 PM 03 - P.D. only	06 - SMV unattended vehicle	01 - Clear	01 - Daylight		10 - No control	0
								1
61395 CHURCHILL AVE @ RICHMOND RD	2014 5/1/2014 0:00	12:54 AM 02 - Non-fatal injury		01 - Clear	01 - Daylight		01 - Traffic signal 01 - Functioning	
62481 BERKELEY AVE @ RICHMOND RD	2014 3/27/2014 0:00	7:21 PM 03 - P.D. only	02 - Angle	01 - Clear	01 - Daylight	02 - Wet	02 - Stop sign 01 - Functioning	0
62603 RICHMOND RD btwn WINSTON AVE & CHURCHILL AVE N	2014 4/5/2014 0:00	6:40 PM 03 - P.D. only	03 - Rear end	01 - Clear	01 - Daylight	01 - Dry	10 - No control	0
62656 RICHMOND RD btwn WINSTON AVE & CHURCHILL AVE N	2014 3/28/2014 0:00	10:16 PM 03 - P.D. only	06 - SMV unattended vehicle	02 - Rain	01 - Daylight		10 - No control	0
63298 RICHMOND RD btwn GOLDEN AVE & BERKLEY AVE	2014 7/24/2014 0:00	5:00 AM 03 - P.D. only	06 - SMV unattended vehicle	01 - Clear	00 - Unknowr		10 - No control	0
			99 - Other	01 - Clear				0
63344 BYRON AVE @ CHURCHILL AVE		8:29 PM 03 - P.D. only					01 - Traffic signal 01 - Functioning	
64955 BYRON AVE @ ROOSEVELT AVE	2014 9/13/2014 0:00	6:00 PM 02 - Non-fatal injury		02 - Rain	01 - Daylight		01 - Traffic signal 01 - Functioning	0
65127 RICHMOND RD btwn GOLDEN AVE & BERKLEY AVE	2014 7/2/2014 0:00	11:47 PM 03 - P.D. only	04 - Sideswipe	01 - Clear	01 - Daylight	01 - Dry	10 - No control	0
65432 ROOSEVELT AVE @ RICHMOND RD	2014 6/29/2014 0:00	3:07 PM 02 - Non-fatal injury	07 - SMV other	01 - Clear	01 - Daylight	01 - Drv	01 - Traffic signal 01 - Functioning	1
65696 RICHMOND RD btwn WINSTON AVE & CHURCHILL AVE N	2014 7/8/2014 0:00	6:15 PM 02 - Non-fatal injury		01 - Clear	01 - Daylight		10 - No control	0
65864 BYRON AVE @ ROOSEVELT AVE	2014 6/24/2014 0:00	3:58 PM 03 - P.D. only	02 - Angle	02 - Rain	01 - Daylight		01 - Traffic signal 01 - Functioning	0
65983 BERKELEY AVE @ RICHMOND RD	2014 6/27/2014 0:00	6:17 PM 03 - P.D. only	04 - Sideswipe	01 - Clear	01 - Daylight		02 - Stop sign 01 - Functioning	0
66202 BYRON AVE @ CHURCHILL AVE	2014 10/2/2014 0:00	3:57 PM 03 - P.D. only	03 - Rear end	01 - Clear	01 - Daylight	01 - Dry	01 - Traffic signal 01 - Functioning	0
66235 BYRON AVE @ ROOSEVELT AVE	2014 9/17/2014 0:00	8:24 PM 03 - P.D. only	02 - Angle	01 - Clear	01 - Daylight	01 - Drv	01 - Traffic signal 01 - Functioning	0
66459 BYRON AVE @ ROOSEVELT AVE	2014 10/9/2014 0:00	5:31 PM 02 - Non-fatal injury	02 - Angle	01 - Clear	01 - Daylight		01 - Traffic signal 01 - Functioning	0
66835 CHURCHILL AVE @ RICHMOND RD			02 - Angle	01 - Clear		01 - Dry	01 - Traffic signal 01 - Functioning	0
	2014 10/6/2014 0:00						01 - Hamic Signal 01 - Functioning	
	2014 10/6/2014 0:00	5:46 AM 03 - P.D. only			07 - Dark			
69117 CHURCHILL AVE @ RICHMOND RD	2014 10/20/2014 0:00	2:40 PM 03 - P.D. only	04 - Sideswipe	01 - Clear	01 - Daylight	01 - Dry	01 - Traffic signal 01 - Functioning	0
69575 BERKELEY AVE @ RICHMOND RD	2014 10/20/2014 0:00 2014 10/16/2014 0:00	2:40 PM 03 - P.D. only 11:40 PM 02 - Non-fatal injury	04 - Sideswipe 03 - Rear end	01 - Clear 02 - Rain	01 - Daylight 07 - Dark	01 - Dry 02 - Wet	02 - Stop sign 00 - Unknown	0
69575 BERKELEY AVE @ RICHMOND RD 69579 RICHMOND RD blwn GOLDEN AVE & BERKLEY AVE	2014 10/20/2014 0:00 2014 10/16/2014 0:00 2014 10/16/2014 0:00	2:40 PM 03 - P.D. only	04 - Sideswipe 03 - Rear end 04 - Sideswipe	01 - Clear 02 - Rain 02 - Rain	01 - Daylight 07 - Dark 07 - Dark	01 - Dry	02 - Stop sign 00 - Unknown 10 - No control	
69575 BERKELEY AVE @ RICHMOND RD	2014 10/20/2014 0:00 2014 10/16/2014 0:00	2:40 PM 03 - P.D. only 11:40 PM 02 - Non-fatal injury	04 - Sideswipe 03 - Rear end	01 - Clear 02 - Rain	01 - Daylight 07 - Dark	01 - Dry 02 - Wet	02 - Stop sign 00 - Unknown	0
69575 BERKELEY AVE @ RICHMOND RD 69579 RICHMOND RD biwn GOLDEN AVE & BERKLEY AVE 69850 RICHMOND RD biwn BERKLEY AVE & ROOSEVELT AVE	2014 10/20/2014 0:00 2014 10/16/2014 0:00 2014 10/16/2014 0:00 2014 11/26/2014 0:00	2:40 PM 03 - P.D. only 11:40 PM 02 - Non-fatal injury 11:41 PM 03 - P.D. only 12:03 AM 03 - P.D. only	04 - Sideswipe 03 - Rear end 04 - Sideswipe 99 - Other	01 - Clear 02 - Rain 02 - Rain 01 - Clear	01 - Daylight 07 - Dark 07 - Dark 07 - Dark	01 - Dry 02 - Wet 02 - Wet 01 - Dry	02 - Stop sign 00 - Unknown 10 - No control 10 - No control	0 0
69575 BERKELEY AVE @ RICHMOND RD 69579 RICHMOND RD btwn GOLDEN AVE & BERKLEY AVE 69850 RICHMOND RD btwn BERKLEY AVE & ROOSEVELT AVE 69867 RICHMOND RD btwn ROOSEVELT AVE & ROOSEVELT AVE	2014 10/20/2014 0:00 2014 10/16/2014 0:00 2014 10/16/2014 0:00 2014 11/26/2014 0:00 2014 11/27/2014 0:00	2:40 PM 03 - P.D. only 11:40 PM 02 - Non-fatal injury 11:41 PM 03 - P.D. only 12:03 AM 03 - P.D. only 3:09 PM 02 - Non-fatal injury	04 - Sideswipe 03 - Rear end 04 - Sideswipe 99 - Other 05 - Turning movement	01 - Clear 02 - Rain 02 - Rain 01 - Clear 01 - Clear	01 - Daylight 07 - Dark 07 - Dark 07 - Dark 01 - Daylight	01 - Dry 02 - Wet 02 - Wet 01 - Dry 01 - Dry	02 - Stop sign 10 - No control 10 - No control 10 - No control	0 0 0 0
69575 BERKELEY AVE @ RICHMOND RD 69579 RICHMOND RD btwn GOLDEN AVE & BERKLEY AVE 69850 RICHMOND RD btwn BERKLEY AVE & ROOSEVELT AVE 69867 RICHMOND RD btwn ROOSEVELT AVE & ROOSEVELT AVE 70036 RICHMOND RD btwn BERKLEY AVE & ROOSEVELT AVE	2014 10/20/2014 0:00 2014 10/16/2014 0:00 2014 10/16/2014 0:00 2014 11/26/2014 0:00 2014 11/27/2014 0:00 2014 11/25/2014 0:00	2:40 PM 03 - P.D. only 11:40 PM 02 - Non-fatal injury 11:41 PM 03 - P.D. only 12:03 AM 03 - P.D. only 3:09 PM 02 - Non-fatal injury 6:50 PM 03 - P.D. only	04 - Sideswipe 03 - Rear end 04 - Sideswipe 99 - Other 05 - Turning movement 06 - SMV unattended vehicle	01 - Clear 02 - Rain 02 - Rain 01 - Clear 01 - Clear 01 - Clear	01 - Daylight 07 - Dark 07 - Dark 07 - Dark 01 - Daylight 01 - Daylight	01 - Dry 02 - Wet 02 - Wet 01 - Dry 01 - Dry 01 - Dry	02 - Stop sign	0 0 0 0
69575 BERKELEY AVE @ RICHMOND RD 69579 RICHMOND RD btwn GOLDEN AVE & BERKLEY AVE 69850 RICHMOND RD btwn BERKLEY AVE & ROOSEVELT AVE 69867 RICHMOND RD btwn ROOSEVELT AVE & ROOSEVELT AVE 70036 RICHMOND RD btwn BERKLEY AVE & ROOSEVELT AVE 70161 RICHMOND RD btwn WINSTON AVE & CHURCHILL AVE N	2014 10/20/2014 0:00 2014 10/16/2014 0:00 2014 10/16/2014 0:00 2014 11/26/2014 0:00 2014 11/27/2014 0:00 2014 11/25/2014 0:00 2014 11/16/2014 0:00	2:40 PM 03 - P.D. only 11:40 PM 02 - Non-fatal injury 11:41 PM 03 - P.D. only 12:03 AM 03 - P.D. only 3:09 PM 02 - Non-fatal injury 6:18 AM 03 - P.D. only 6:18 AM 03 - P.D. only	04 - Sideswipe 03 - Rear end 04 - Sideswipe 99 - Other 05 - Turning movement 06 - SMV unattended vehicle 06 - SMV unattended vehicle	01 - Clear 02 - Rain 02 - Rain 01 - Clear 01 - Clear 01 - Clear 01 - Clear	01 - Daylight 07 - Dark 07 - Dark 07 - Dark 01 - Daylight 01 - Daylight 07 - Dark	01 - Dry 02 - Wet 02 - Wet 01 - Dry 01 - Dry 01 - Dry 01 - Dry	02 - Stop sign 00 - Unknown 10 - No control	0 0 0 0 0
69575 BERKELEY AVE @ RICHMOND RD 69579 RICHMOND RD btwn GOLDEN AVE & BERKLEY AVE 69850 RICHMOND RD btwn BERKLEY AVE & ROOSEVELT AVE 69867 RICHMOND RD btwn ROOSEVELT AVE & ROOSEVELT AVE 70036 RICHMOND RD btwn BERKLEY AVE & ROOSEVELT AVE 70161 RICHMOND RD btwn WINSTON AVE & CHURCHILL AVE N 70532 CHURCHILL AVE N btwn RICHMOND RD & DANFORTH AVE	2014 10/20/2014 0:00 2014 10/16/2014 0:00 2014 10/16/2014 0:00 2014 11/26/2014 0:00 2014 11/27/2014 0:00 2014 11/25/2014 0:00 2014 11/16/2014 0:00 2014 11/16/2014 0:00	2:40 PM 03 - P.D. only 11:40 PM 02 - Non-fatal injury 11:41 PM 03 - P.D. only 12:03 AM 03 - P.D. only 3:09 PM 02 - Non-fatal injury 6:50 PM 03 - P.D. only 6:18 AM 03 - P.D. only 9:22 PM 02 - Non-fatal injury	04 - Sideswipe 03 - Rear end 04 - Sideswipe 99 - Other 05 - Turning movement 06 - SMV unattended vehicle 06 - SMV unattended vehicle 03 - Rear end	01 - Clear 02 - Rain 02 - Rain 01 - Clear 01 - Clear 01 - Clear 01 - Clear 01 - Clear	01 - Daylight 07 - Dark 07 - Dark 07 - Dark 01 - Daylight 01 - Daylight 07 - Dark 05 - Dusk	01 - Dry 02 - Wet 02 - Wet 01 - Dry 01 - Dry 01 - Dry 01 - Dry 01 - Dry	02 - Stop sign	0 0 0 0 0 0
69575 BERKELEY AVE @ RICHMOND RD 69579 RICHMOND RD biwn GOLDEN AVE & BERKLEY AVE 69850 RICHMOND RD biwn BERKLEY AVE & ROOSEVELT AVE 69867 RICHMOND RD biwn BERKLEY AVE & ROOSEVELT AVE 70036 RICHMOND RD biwn BERKLEY AVE & ROOSEVELT AVE 70161 RICHMOND RD biwn BERKLEY AVE & ROOSEVELT AVE 70161 RICHMOND RD biwn BERKLEY AVE & ROOSEVELT AVE 70532 CHURCHILL AVE N biwn RICHMOND RD & DANFORTH AVE 71347 BYRON AVE biwn ROOSEVELT AVE & CHURCHILL AVE N	2014 10/20/2014 0:00 2014 10/16/2014 0:00 2014 10/16/2014 0:00 2014 11/26/2014 0:00 2014 11/26/2014 0:00 2014 11/25/2014 0:00 2014 11/16/2014 0:00 2014 11/21/2014 0:00 2014 11/21/2014 0:00	2:40 PM 03 - P.D. only 11:40 PM 02 - Non-fatal injury 11:41 PM 03 - P.D. only 12:03 AM 03 - P.D. only 3:09 PM 02 - Non-fatal injury 6:50 PM 03 - P.D. only 6:18 AM 03 - P.D. only 9:22 PM 02 - Non-fatal injury 2:30 PM 03 - P.D. only	04 - Sideswipe 03 - Rear end 04 - Sideswipe 99 - Other 05 - Turning movement 06 - SMV unattended vehicle 06 - SMV unattended vehicle 03 - Rear end 06 - SMV unattended vehicle	01 - Clear 02 - Rain 02 - Rain 01 - Clear 01 - Clear 01 - Clear 01 - Clear 01 - Clear 01 - Clear	01 - Daylight 07 - Dark 07 - Dark 07 - Dark 01 - Daylight 01 - Daylight 07 - Dark 05 - Dusk 01 - Daylight	01 - Dry 02 - Wet 02 - Wet 01 - Dry 01 - Dry 01 - Dry 01 - Dry 01 - Dry 01 - Dry	02 - Stop sign 00 - Unknown 10 - No control	0 0 0 0 0 0
69575 BERKELEY AVE @ RICHMOND RD 69579 RICHMOND RD btwn GOLDEN AVE & BERKLEY AVE 69850 RICHMOND RD btwn BERKLEY AVE & ROOSEVELT AVE 69867 RICHMOND RD btwn ROOSEVELT AVE & ROOSEVELT AVE 70036 RICHMOND RD btwn BERKLEY AVE & ROOSEVELT AVE 70161 RICHMOND RD btwn WINSTON AVE & CHURCHILL AVE N 70532 CHURCHILL AVE N btwn RICHMOND RD & DANFORTH AVE	2014 10/20/2014 0:00 2014 10/16/2014 0:00 2014 10/16/2014 0:00 2014 11/26/2014 0:00 2014 11/27/2014 0:00 2014 11/25/2014 0:00 2014 11/16/2014 0:00 2014 11/16/2014 0:00	2:40 PM 03 - P.D. only 11:40 PM 02 - Non-fatal injury 11:41 PM 03 - P.D. only 12:03 AM 03 - P.D. only 3:09 PM 02 - Non-fatal injury 6:50 PM 03 - P.D. only 6:18 AM 03 - P.D. only 9:22 PM 02 - Non-fatal injury	04 - Sideswipe 03 - Rear end 04 - Sideswipe 99 - Other 05 - Turning movement 06 - SMV unattended vehicle 06 - SMV unattended vehicle 03 - Rear end	01 - Clear 02 - Rain 02 - Rain 01 - Clear 01 - Clear 01 - Clear 01 - Clear 01 - Clear	01 - Daylight 07 - Dark 07 - Dark 07 - Dark 01 - Daylight 01 - Daylight 07 - Dark 05 - Dusk	01 - Dry 02 - Wet 02 - Wet 01 - Dry 01 - Dry 01 - Dry 01 - Dry 01 - Dry 01 - Dry	02 - Stop sign	0 0 0 0 0 0
69575 BERKELEY AVE @ RICHMOND RD 69579 RICHMOND RD btwn GOLDEN AVE & BERKLEY AVE 69850 RICHMOND RD btwn BERKLEY AVE & ROOSEVELT AVE 69867 RICHMOND RD btwn ROOSEVELT AVE & ROOSEVELT AVE 70036 RICHMOND RD btwn BERKLEY AVE & ROOSEVELT AVE 70161 RICHMOND RD btwn WINSTON AVE & CHURCHILL AVE 70161 RICHMOND RD btwn WINSTON AVE & CHURCHILL AVE N 70532 CHURCHILL AVE N btwn RICHMOND RD & DANFORTH AVE 71347 BYRON AVE btwn ROOSEVELT AVE & CHURCHILL AVE N 71448 RICHMOND RD btwn WINSTON AVE & CHURCHILL AVE N	2014 10/20/2014 0:00 2014 10/16/2014 0:00 2014 10/16/2014 0:00 2014 11/26/2014 0:00 2014 11/26/2014 0:00 2014 11/25/2014 0:00 2014 11/16/2014 0:00 2014 11/21/2014 0:00 2014 11/21/2014 0:00	2:40 PM 03 - P.D. only 11:40 PM 02 - Non-fatal injury 11:41 PM 03 - P.D. only 12:03 AM 03 - P.D. only 3:09 PM 02 - Non-fatal injury 6:50 PM 03 - P.D. only 6:18 AM 03 - P.D. only 9:22 PM 02 - Non-fatal injury 2:30 PM 03 - P.D. only 7:20 PM 03 - P.D. only	04 - Sideswipe 03 - Rear end 04 - Sideswipe 99 - Other 05 - Turning movement 06 - SMV unattended vehicle 06 - SMV unattended vehicle 03 - Rear end 06 - SMV unattended vehicle	01 - Clear 02 - Rain 02 - Rain 01 - Clear 01 - Clear 01 - Clear 01 - Clear 01 - Clear 01 - Clear	01 - Daylight 07 - Dark 07 - Dark 07 - Dark 01 - Daylight 01 - Daylight 07 - Dark 05 - Dusk 01 - Daylight	01 - Dry 02 - Wet 02 - Wet 01 - Dry 01 - Dry 01 - Dry 01 - Dry 01 - Dry 01 - Dry	02 - Stop sign 00 - Unknown 10 - No control	0 0 0 0 0 0
69575 BERKELEY AVE @ RICHMOND RD 69579 RICHMOND RD btwn GOLDEN AVE & BERKLEY AVE 69850 RICHMOND RD btwn BERKLEY AVE & ROOSEVELT AVE 69867 RICHMOND RD btwn ROOSEVELT AVE & ROOSEVELT AVE 70036 RICHMOND RD btwn BERKLEY AVE & ROOSEVELT AVE 70161 RICHMOND RD btwn WINSTON AVE & CHURCHILL AVE N 70532 CHURCHILL AVE N btwn RICHMOND RD & DANFORTH AVE 71347 BYRON AVE btwn ROOSEVELT AVE & CHURCHILL AVE N 71448 RICHMOND RD btwn WINSTON AVE & CHURCHILL AVE N 71547 RICHMOND RD btwn WINSTON AVE & CHURCHILL AVE N	2014 10/20/2014 0:00 2014 10/16/2014 0:00 2014 10/16/2014 0:00 2014 11/26/2014 0:00 2014 11/27/2014 0:00 2014 11/27/2014 0:00 2014 11/12/2014 0:00 2014 11/21/2014 0:00 2014 12/12/2014 0:00 2014 12/12/2014 0:00 2014 12/12/2014 0:00	2:40 PM 03 - P.D. only 11:40 PM 02 - Non-fatal injury 11:41 PM 03 - P.D. only 12:03 AM 03 - P.D. only 3:09 PM 02 - Non-fatal injury 6:50 PM 03 - P.D. only 9:22 PM 02 - Non-fatal injury 2:30 PM 03 - P.D. only 7:20 PM 03 - P.D. only 2:26 AM 03 - P.D. only	04 - Sideswipe 03 - Rear end 04 - Sideswipe 99 - Other 05 - Turning movement 06 - SMV unattended vehicle 06 - SMV unattended vehicle 03 - Rear end 06 - SMV unattended vehicle 05 - Turning movement 06 - SMV unattended vehicle	01 - Clear 02 - Rain 02 - Rain 01 - Clear 01 - Clear 01 - Clear 01 - Clear 01 - Clear 01 - Clear 01 - Clear 03 - Snow	01 - Daylight 07 - Dark 07 - Dark 07 - Dark 01 - Daylight 01 - Daylight 07 - Dark 05 - Dusk 01 - Daylight 01 - Daylight 07 - Dark	01 - Drý 02 - Wet 02 - Wet 01 - Dry 01 - Dry 03 - Loose snow	02 - Stop sign	0 0 0 0 0 0 0
69575 BERKELEY AVE @ RICHMOND RD 69579 RICHMOND RD biwn GOLDEN AVE & BERKLEY AVE 69850 RICHMOND RD biwn BERKLEY AVE & ROOSEVELT AVE 69867 RICHMOND RD biwn BERKLEY AVE & ROOSEVELT AVE 70368 RICHMOND RD biwn BERKLEY AVE & ROOSEVELT AVE 70161 RICHMOND RD biwn BERKLEY AVE & ROOSEVELT AVE 70161 RICHMOND RD biwn BURKLEY AVE & CHORCHILL AVE N 70532 CHURCHILL AVE N biwn RICHMOND RD & DANFORTH AVE 71347 BYRON AVE BIWN ROOSEVELT AVE & CHURCHILL AVE N 71448 RICHMOND RD biwn WINSTON AVE & CHURCHILL AVE N 71547 RICHMOND RD biwn WINSTON AVE & BERKLEY AVE 71624 RICHMOND RD biwn WINSTON AVE & CHURCHILL AVE N	2014 10/20/2014 0:00 2014 10/16/2014 0:00 2014 10/16/2014 0:00 2014 11/26/2014 0:00 2014 11/25/2014 0:00 2014 11/25/2014 0:00 2014 11/16/2014 0:00 2014 11/21/2014 0:00 2014 12/17/2014 0:00 2014 12/10/2014 0:00 2014 12/10/2014 0:00 2014 12/10/2014 0:00 2014 12/10/2014 0:00	2:40 PM 03 - P.D. only 11:40 PM 02 - Non-fatal injury 11:41 PM 03 - P.D. only 12:03 AM 03 - P.D. only 3:09 PM 02 - Non-fatal injury 6:50 PM 03 - P.D. only 9:22 PM 03 - P.D. only 2:30 PM 03 - P.D. only 7:20 PM 03 - P.D. only 2:26 AM 03 - P.D. only 9:07 PM 03 - P.D. only	04 - Sideswipe 03 - Rear end 04 - Sideswipe 99 - Other 05 - Turning movement 06 - SMV unattended vehicle 06 - SMV unattended vehicle 03 - Rear end 06 - SMV unattended vehicle 05 - Turning movement 06 - SMV unattended vehicle 05 - Turning movement 06 - SMV unattended vehicle	01 - Clear 02 - Rain 02 - Rain 01 - Clear 01 - Snow 01 - Clear	01 - Daylight 07 - Dark 07 - Dark 07 - Dark 01 - Daylight 01 - Daylight 05 - Dusk 01 - Daylight 07 - Dark 07 - Dark 05 - Dusk	01 - Dry 02 - Wet 02 - Wet 01 - Dry	02 - Stop sign	0 0 0 0 0 0 0 0
69575 BERKELEY AVE @ RICHMOND RD 69579 RICHMOND RD btwn GOLDEN AVE & BERKLEY AVE 69850 RICHMOND RD btwn BERKLEY AVE & ROOSEVELT AVE 69867 RICHMOND RD btwn ROOSEVELT AVE & ROOSEVELT AVE 70036 RICHMOND RD btwn BERKLEY AVE & ROOSEVELT AVE 70161 RICHMOND RD btwn WINSTON AVE & CHURCHILL AVE N 70532 CHURCHILL AVE N btwn RICHMOND RD & DANFORTH AVE 71347 BYRON AVE btwn ROOSEVELT AVE & CHURCHILL AVE N 71448 RICHMOND RD btwn WINSTON AVE & CHURCHILL AVE N 71547 RICHMOND RD btwn WINSTON AVE & CHURCHILL AVE N	2014 10/20/2014 0:00 2014 10/16/2014 0:00 2014 10/16/2014 0:00 2014 11/26/2014 0:00 2014 11/27/2014 0:00 2014 11/27/2014 0:00 2014 11/12/2014 0:00 2014 11/21/2014 0:00 2014 12/12/2014 0:00 2014 12/12/2014 0:00 2014 12/12/2014 0:00	2:40 PM 03 - P.D. only 11:40 PM 02 - Non-fatal injury 11:41 PM 03 - P.D. only 12:03 AM 03 - P.D. only 3:09 PM 02 - Non-fatal injury 6:50 PM 03 - P.D. only 9:22 PM 02 - Non-fatal injury 2:30 PM 03 - P.D. only 7:20 PM 03 - P.D. only 2:26 AM 03 - P.D. only	04 - Sideswipe 03 - Rear end 04 - Sideswipe 99 - Other 05 - Turning movement 06 - SMV unattended vehicle 06 - SMV unattended vehicle 03 - Rear end 06 - SMV unattended vehicle 05 - Turning movement 06 - SMV unattended vehicle	01 - Clear 02 - Rain 02 - Rain 01 - Clear 01 - Clear 01 - Clear 01 - Clear 01 - Clear 01 - Clear 01 - Clear 03 - Snow	01 - Daylight 07 - Dark 07 - Dark 07 - Dark 01 - Daylight 01 - Daylight 07 - Dark 05 - Dusk 01 - Daylight 01 - Daylight 07 - Dark	01 - Dry 02 - Wet 02 - Wet 01 - Dry	02 - Stop sign	0 0 0 0 0 0 0



Appendix C - Excerpts from 371 Richmond Road, 386
Richmond Road, 319 - 327 Richmond Road and Byron-

Ravenhill Complex


Figure 4: 'New' Site-Generated Traffic Volumes

4. Future Traffic Operations

For the purpose of this study, the total projected traffic volumes were derived by superimposing 'new' site-generated traffic (Figure 4) onto existing volumes (Figure 3). As the amount of site traffic generation does not require any traffic analysis based on the City guidelines, we have not accounted for any potential background growth. The resulting total projected traffic volumes used in the subsequent analysis are illustrated as Figure 5

Figure 5: Projected Traffic Volumes

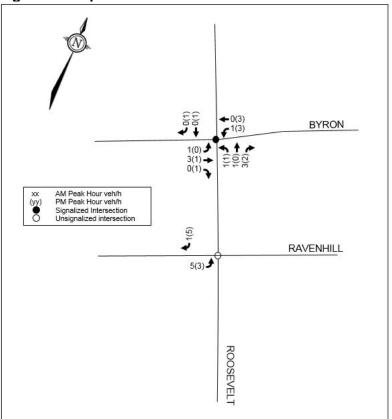


Figure 6: Proposed Site Generated Traffic Volumes

4.2 Background Traffic

Background growth rates were not reviewed due to the low volume of site generated traffic.

4.2.1 Other Area Development

It is our understanding that there are no other developments under construction, approved, or in the approval process within the study area.

The total existing, approved and proposed site generated traffic volumes are shown in **Figure 7** for the weekday a.m. and p.m. peak hours.

Novatech Page 13

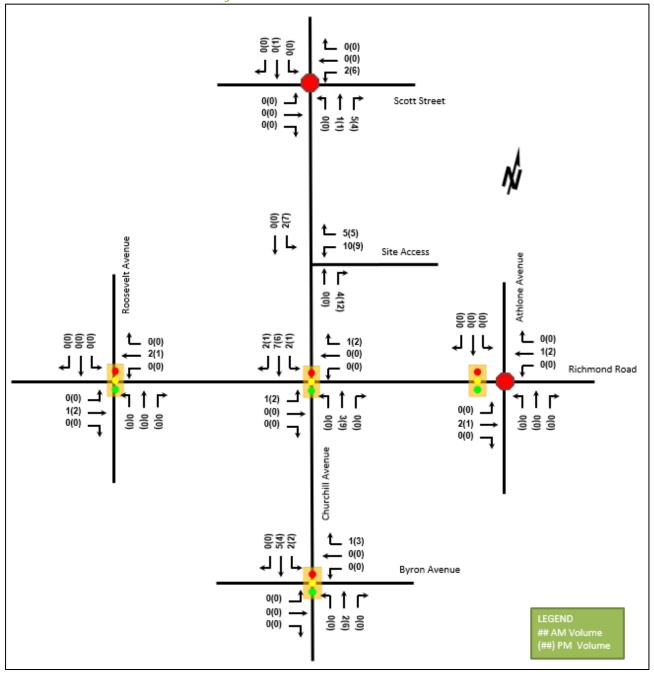


Figure 13: New Site Generation Auto Volumes

6 Background Network Travel Demands

6.1 Transportation Network Plans

The transportation network plans were discussed in Section 2.3.1. Both TOD policies and the opening of the Westboro LRT station and Dominion LRT station have been accounted for within the modal share assumptions. No road improvements are noted for this area with the exception of future road sewer, and water work along Winona Avenue.

PARSONS

Table 3: Mode Share Targets for the Development

Travel Mode	Mode Share Target	Rationale
Auto Driver	0%	See rationale below
Auto Passenger	0%	See rationale below
Transit	75%	See rationale below
Walking	10%	See rationale below
Cycling	15%	See rationale below

The modes shares presented in Table 3 have been estimated based on local knowledge, the proposed development context, as well as the proximity to the future Dominion LRT Station (approximately 400m north of the subject site).

Using the mode share and total person trips, both documented above, the person trips by mode were estimated. The person trips shown in Table 2 for the proposed site were reduced by modal share values for the 2019 scenario, with the total site-generated traffic summarized in Table 4.

Table 4: Total Site Trip Generation

Travel Mode	Mode Share	AM Peak	(Person Tri	ps/hr)	PM Peak (Person Trips/hr)			
Travel Woule	Widue Share	In	Out	Total	In	Out	Total	
Auto Driver	0%	0	0	0	0	0	0	
Auto Passenger	0%	0	0	0	0	0	0	
Transit	75%	6	9	15	10	13	23	
Non-motorized	25%	1	3	4	3	4	7	
Total Person Trips	100%	7	12	19	13	17	30	
1	0	0	0	0	0	0		

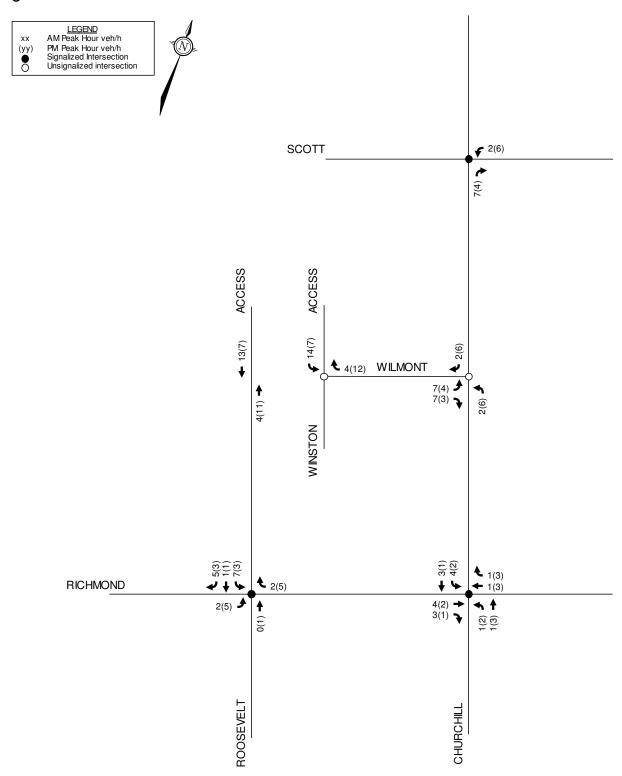
As shown in Table 4, no 'new' two-way vehicle trips are anticipated as a result of the proposed development.

5. DEVELOPMENT DESIGN

5.1. DESIGN FOR SUSTAINABLE MODES

5.1.1. BICYCLE PARKING

The proposed development includes 10 bicycle parking spaces including eight interior spaces and two exterior spaces.


5.1.2. PEDESTRIAN ROUTES AND FACILITIES

The building will have at-grade accesses directly on to Richmond Road providing access directly to the sidewalk. No internal walkways or site circulation is required.

5.1.3. LOACTION OF TRANSIT FACILITIES

As documented in Figure 5 below, the subject site is approximately 530m walking distance from the Dominion Future LRT Station. Additionally, there are eastbound and westbound transit stops located 80m and 60m to the east of the site, respectively.

Figure 10: Site Generated Traffic

Novatech Page 22

City of Ottawa 2017 TIA Guidelines Screening Form

1. Description of Proposed Development

Municipal Address	349 DANFORTH AVE.
Description of Location	LOT 3, RP 204
Land Use Classification	MALO USE
Development Size (units)	13 RES UNIB + 2 Comm UNITS
Development Size (m²)	1020 m²
Number of Accesses and Locations	0
Phase of Development	
Buildout Year	2021

If available, please attach a sketch of the development or site plan to this form.

2. Trip Generation Trigger

Considering the Development's Land Use type and Size (as filled out in the previous section), please refer to the Trip Generation Trigger checks below.

Land Use Type	Minimum Development Size
Single-family homes	40 units
Townhomes or apartments	90 units
Office	3,500 m ²
Industrial	5,000 m ²
Fast-food restaurant or coffee shop	100 m ²
Destination retail	1,000 m ²
Gas station or convenience market	75 m ²

^{*} If the development has a land use type other than what is presented in the table above, estimates of person-trip generation may be made based on average trip generation characteristics represented in the current edition of the Institute of Transportation Engineers (ITE) Trip Generation Manual.

If the proposed development size is greater than the sizes identified above, <u>the Trip Generation</u> Trigger is satisfied.

3. Location Triggers

	Yes	No
Does the development propose a new driveway to a boundary street that is designated as part of the City's Transit Priority, Rapid Transit or Spine Bicycle Networks?		
Is the development in a Design Priority Area (DPA) or Transit-oriented Development (TOD) zone?*		

^{*}DPA and TOD are identified in the City of Ottawa Official Plan (DPA in Section 2.5.1 and Schedules A and B; TOD in Annex 6). See Chapter 4 for a list of City of Ottawa Planning and Engineering documents that support the completion of TIA).

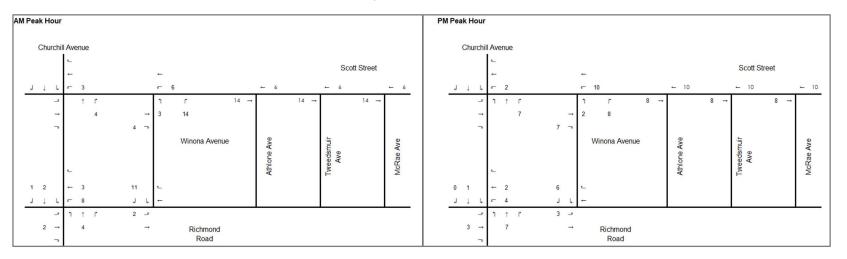
If any of the above questions were answered with 'Yes,' the Location Trigger is satisfied.

4. Safety Triggers

	Yes	No
Are posted speed limits on a boundary street are 80 km/hr or greater?	Water Williams	
Are there any horizontal/vertical curvatures on a boundary street limits sight lines at a proposed driveway?		/
Is the proposed driveway within the area of influence of an adjacent traffic signal or roundabout (i.e. within 300 m of intersection in rural conditions, or within 150 m of intersection in urban/ suburban conditions)?	:	/
Is the proposed driveway within auxiliary lanes of an intersection?		/
Does the proposed driveway make use of an existing median break that serves an existing site?		
Is there is a documented history of traffic operations or safety concerns on the boundary streets within 500 m of the development?		/
Does the development include a drive-thru facility?		/

If any of the above questions were answered with 'Yes,' the Safety Trigger is satisfied.

5. Summary

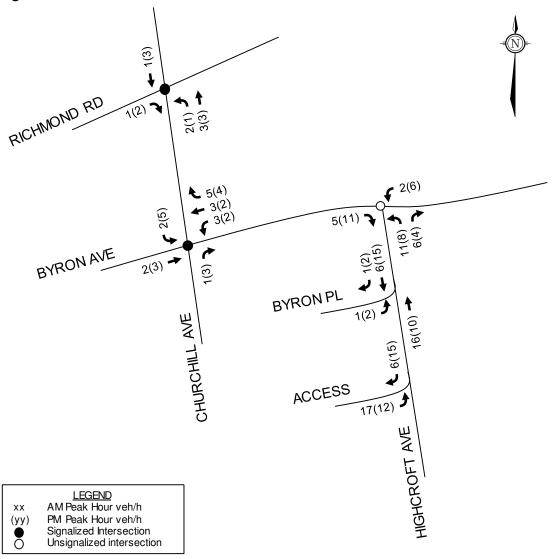

	Yes	No
Does the development satisfy the Trip Generation Trigger?	and the same of the same of	1
Does the development satisfy the Location Trigger?		
Does the development satisfy the Safety Trigger?		

If none of the triggers are satisfied, <u>the TIA Study is complete</u>. If one or more of the triggers is satisfied, <u>the TIA Study must continue into the next stage</u> (Screening and Scoping).

2070 SCOTT STREET TRANSPORTATION IMPACT ASSESSMENT

Final Report May 2020

Figure 12 - Site Trips


4.1.2 Trip Distribution

The assumed distribution of trips generated by the proposed development has been derived from existing traffic patterns on the roadways within the study area. As the proposed development is predominantly residential, the majority of peak hour trips are anticipated to be to/from work. It is appropriate for the assumed trip distribution to be based on the distribution of existing traffic volumes exiting the study area during the AM peak hour and arriving to the study area during the PM peak hour. The projected distribution of trips is summarized as follows:

- 35% to/from the east via either Byron Avenue or Richmond Road
- 30% to/from the west via either Byron Avenue or Richmond Road
- 20% to/from the north via Churchill Avenue
- 15% to/from the south via Churchill Avenue

Site generated traffic volumes are shown in Figure 4.

Figure 4: Site Generated Traffic

Novatech Page 13

Appendix D – Existing and Background Conditions
Output Data

1: Churchill Avenue North & Byron Avenue

	•	-	1	←	4	†	-	ļ	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	
Lane Configurations		4		4	*	T _a	*	T _a	
Traffic Volume (vph)	57	170	51	122	26	326	34	309	
Future Volume (vph)	57	170	51	122	26	326	34	309	
Lane Group Flow (vph)	0	315	0	245	29	438	38	375	
Turn Type	Perm	NA	Perm	NA	Perm	NA	Perm	NA	
Protected Phases		4		8		2		6	
Permitted Phases	4		8		2		6		
Detector Phase	4	4	8	8	2	2	6	6	
Switch Phase									
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	
Minimum Split (s)	30.6	30.6	30.6	30.6	26.4	26.4	26.4	26.4	
Total Split (s)	38.0	38.0	38.0	38.0	42.0	42.0	42.0	42.0	
Total Split (%)	47.5%	47.5%	47.5%	47.5%	52.5%	52.5%	52.5%	52.5%	
Yellow Time (s)	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	
All-Red Time (s)	2.3	2.3	2.3	2.3	2.1	2.1	2.1	2.1	
Lost Time Adjust (s)		-1.6		-1.6	-1.4	-1.4	-1.4	-1.4	
Total Lost Time (s)		4.0		4.0	4.0	4.0	4.0	4.0	
Lead/Lag									
Lead-Lag Optimize?									
Recall Mode	None	None	None	None	C-Max	C-Max	C-Max	C-Max	
Act Effct Green (s)		22.8		22.8	49.2	49.2	49.2	49.2	
Actuated g/C Ratio		0.28		0.28	0.62	0.62	0.62	0.62	
v/c Ratio		0.72		0.60	0.06	0.42	0.08	0.35	
Control Delay		32.9		27.6	8.7	10.4	3.4	3.6	
Queue Delay		0.0		0.0	0.0	0.0	0.0	0.3	
Total Delay		32.9		27.6	8.7	10.4	3.4	3.8	
LOS		С		С	Α	В	Α	Α	
Approach Delay		32.9		27.6		10.3		3.8	
Approach LOS		С		С		В		Α	
Queue Length 50th (m)		42.2		30.6	1.7	31.0	1.1	10.3	
Queue Length 95th (m)		60.9		46.5	6.4	65.6	m2.7	18.9	
Internal Link Dist (m)		244.6		113.6		126.7		100.0	
Turn Bay Length (m)					30.0		30.0		
Base Capacity (vph)		642		600	513	1052	468	1068	
Starvation Cap Reductn		0		0	0	0	0	246	
Spillback Cap Reductn		0		0	0	0	0	0	
Storage Cap Reductn		0		0	0	0	0	0	
Reduced v/c Ratio		0.49		0.41	0.06	0.42	0.08	0.46	
1.1									

Intersection Summary

Cycle Length: 80

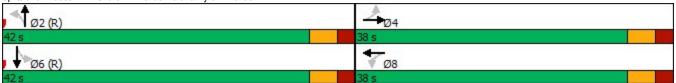
Actuated Cycle Length: 80

Offset: 74 (93%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 60 Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.72

Intersection Signal Delay: 16.3

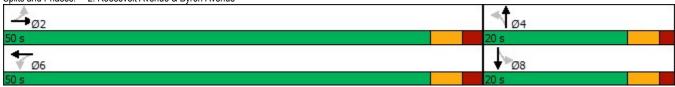

Intersection Capacity Utilization 57.8%

Intersection LOS: B ICU Level of Service B

Analysis Period (min) 15

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 1: Churchill Avenue North & Byron Avenue


CIMA+ Synchro 10 Report

	۶	→	+	1	←	1	1	†	-	1	Ţ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		43			4		*	î,		*	T _a	
Traffic Volume (vph)	57	170	57	51	122	47	26	326	68	34	309	29
Future Volume (vph)	57	170	57	51	122	47	26	326	68	34	309	29
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Total Lost time (s)		4.0			4.0		4.0	4.0		4.0	4.0	
Lane Util. Factor		1.00			1.00		1.00	1.00		1.00	1.00	
Frpb, ped/bikes		0.99			0.99		1.00	0.99		1.00	1.00	
Flpb, ped/bikes		1.00			1.00		0.96	1.00		0.96	1.00	
Frt		0.97			0.97		1.00	0.97		1.00	0.99	
Flt Protected		0.99			0.99		0.95	1.00		0.95	1.00	
Satd. Flow (prot)		1683			1682		1603	1702		1612	1734	
Flt Permitted		0.87			0.81		0.49	1.00		0.45	1.00	
Satd. Flow (perm)		1484			1386		833	1702		759	1734	
Peak-hour factor. PHF	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	63	189	63	57	136	52	29	362	76	38	343	32
RTOR Reduction (vph)	0	14	0	0	150	0	0	7	0	0	3	0
Lane Group Flow (vph)	0	301	0	0	230	0	29	431	0	38	372	0
Confl. Peds. (#/hr)	13	301	13	13	230	13	43	401	18	43	312	18
Confl. Bikes (#/hr)	13		1	13		13	40		7	40		10
Turn Type	Perm	NA	ı	Perm	NA		Perm	NA		Perm	NA	
Protected Phases	Fellii	4		Fellii	NA 8		reiiii	2		Fellili	6	
Permitted Phases	4	4		8	0		2			6	U	
Actuated Green, G (s)	4	21.2		0	21.2		47.8	47.8		47.8	47.8	
Effective Green, q (s)		22.8			22.8		49.2	49.2		49.2	49.2	
		0.29			0.29		0.62	0.62		0.62	0.62	
Actuated g/C Ratio		5.6			5.6		5.4	5.4		5.4	5.4	
Clearance Time (s)												
Vehicle Extension (s)		3.0			3.0		3.0	3.0		3.0	3.0	
Lane Grp Cap (vph) v/s Ratio Prot		422			395		512	1046 c0.25		466	1066 0.21	
v/s Ratio Perm		c0.20			0.17		0.03			0.05		
v/c Ratio		0.71			0.58		0.06	0.41		0.08	0.35	
Uniform Delay, d1		25.7			24.5		6.1	7.9		6.2	7.5	
Progression Factor		1.00			1.00		1.00	1.00		0.36	0.31	
Incremental Delay, d2		5.6			2.2		0.2	1.2		0.3	0.8	
Delay (s)		31.3			26.7		6.4	9.1		2.6	3.1	
Level of Service		С			С		Α	Α		Α	Α	
Approach Delay (s)		31.3			26.7			9.0			3.1	
Approach LOS		С			С			Α			Α	
Intersection Summary												
HCM 2000 Control Delay			15.2	H	CM 2000 Le	vel of Servi	ce		В			
HCM 2000 Volume to Capacity ratio			0.51									
Actuated Cycle Length (s)			80.0		ım of lost tin				8.0			
Intersection Capacity Utilization			57.8%	IC	U Level of S	ervice			В			
Analysis Period (min)			15									
c Critical Lane Group												

CIMA+ Synchro 10 Report

	۶	-	1	•	1	†	-	Ţ	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	
Lane Configurations				4					
Traffic Volume (vph)	35	228	13	145	3	4 29	26	4 19	
Future Volume (vph)	35	228	13	145	3	29	26	19	
Lane Group Flow (vph)	0	301	0	206	0	51	0	63	
Turn Type	Perm	NA	Perm	NA	Perm	NA	Perm	NA	
Protected Phases	1 01111	2	1 01111	6	1 01111	4	1 01111	8	
Permitted Phases	2	2	6	U	4	7	8	U	
Detector Phase	2	2	6	6	4	4	8	8	
Switch Phase	2	2	U	U	7	7	U	U	
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	
()	22.5	22.5	22.5	22.5	20.0		20.0	20.0	
Minimum Split (s)						20.0			
Total Split (s)	50.0	50.0	50.0	50.0	20.0	20.0	20.0	20.0	
Total Split (%)	71.4%	71.4%	71.4%	71.4%	28.6%	28.6%	28.6%	28.6%	
Yellow Time (s)	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	
All-Red Time (s)	2.2	2.2	2.2	2.2	1.7	1.7	1.7	1.7	
Lost Time Adjust (s)		-1.5		-1.5		-1.0		-1.0	
Total Lost Time (s)		4.0		4.0		4.0		4.0	
Lead/Lag									
Lead-Lag Optimize?									
Recall Mode	Max	Max	Max	Max	None	None	None	None	
Act Effct Green (s)		56.3		56.3		13.0		13.0	
Actuated g/C Ratio		0.81		0.81		0.19		0.19	
v/c Ratio		0.22		0.15		0.16		0.23	
Control Delay		3.9		3.3		18.8		21.9	
Queue Delay		0.0		0.0		0.0		0.0	
Total Delay		3.9		3.3		18.8		21.9	
LOS		Α		Α		В		C	
Approach Delay		3.9		3.3		18.8		21.9	
Approach LOS		A		A		В		C	
Queue Length 50th (m)		10.4		5.8		4.5		6.6	
Queue Length 95th (m)		24.8		15.3		12.1		15.1	
Internal Link Dist (m)		50.9		244.6		129.2		56.5	
Turn Bay Length (m)		30.9		274.0		123.2		30.3	
Base Capacity (vph)		1353		1369		389		335	
Starvation Cap Reductn		0		0		0		0	
Spillback Cap Reductn		0		0		0		0	
Storage Cap Reductn		0		0		0		0	
Storage Cap Reductin		0.22		0.15		0.13		0.19	
		U.ZZ		0.13		0.13		0.13	
Intersection Summary									
Cycle Length: 70									
Actuated Cycle Length: 69.2									
Natural Cycle: 45									
Control Type: Semi Act-Uncoord									
Maximum v/c Ratio: 0.23									
Intersection Signal Delay: 6.8					ersection L				
Intersection Capacity Utilization 42.8%	6			IC	U Level of S	Service A			
Analysis Period (min) 15									

Splits and Phases: 2: Roosevelt Avenue & Byron Avenue

CIMA+ Synchro 10 Report

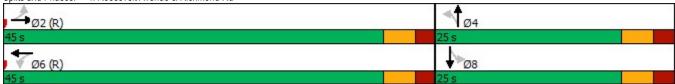
	۶	→	*	•	←	•	1	1	~	1	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4 19	
Traffic Volume (vph)	35	228	8	13	145	28	3	29	14	26		12
Future Volume (vph)	35	228	8	13	145	28	3	29	14	26	19	12
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Total Lost time (s)		4.0			4.0			4.0			4.0	
Lane Util. Factor		1.00			1.00			1.00			1.00	
Frpb, ped/bikes		1.00			0.99			0.98			0.98	
Flpb, ped/bikes		1.00			1.00			1.00			0.99	
Frt		1.00			0.98			0.96			0.97	
Flt Protected		0.99			1.00			1.00			0.98	
Satd. Flow (prot)		1741			1711			1652			1621	
Flt Permitted		0.95			0.98			0.98			0.85	
Satd. Flow (perm)		1663			1677			1626			1403	
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	39	253	9	14	161	31	3	32	16	29	21	13
RTOR Reduction (vph)	0	1	0	0	6	0	0	14	0	0	11	0
Lane Group Flow (vph)	0	300	0	0	200	0	0	37	0	0	52	0
Confl. Peds. (#/hr)	8	000	13	13	200	8	33	01	13	13	02	33
Confl. Bikes (#/hr)	O .		2	10		1	00		10	10		1
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases	1 Cilli	2		1 Cilli	6		1 Cilli	4		1 Cilli	8	
Permitted Phases	2			6			4	7		8		
Actuated Green, G (s)		53.0		U	53.0		7	7.7		U	7.7	
Effective Green, q (s)		54.5			54.5			8.7			8.7	
Actuated g/C Ratio		0.77			0.77			0.12			0.12	
Clearance Time (s)		5.5			5.5			5.0			5.0	
Vehicle Extension (s)		3.0			3.0			3.0			3.0	
Lane Grp Cap (vph)		1272			1283			198			171	
v/s Ratio Prot		1212			1200			190			17.1	
v/s Ratio Prot v/s Ratio Perm		c0.18			0.12			0.02			c0.04	
v/c Ratio		0.24			0.12			0.02			0.30	
Uniform Delay, d1		2.4			2.2			28.1			28.5	
Progression Factor		1.00			1.00			1.00			1.00	
Incremental Delay, d2		0.4			0.3			0.5			1.00	
Delay (s)		2.8			2.5			28.5			29.5	
, , ,		2.0 A			2.5 A			20.5 C			29.5 C	
Level of Service Approach Delay (s)		2.8			2.5			28.5			29.5	
Approach LOS		2.0 A			2.5 A			20.5 C			29.5 C	
Intersection Summary												
HCM 2000 Control Delay			7.5	нс	CM 2000 Le	vel of Service	ne .		A			
HCM 2000 Volume to Capacity ratio			0.24	110	JIVI ZUUU LG	VO. OI OOI VII			A			
Actuated Cycle Length (s)			71.2	Q ₁₁	m of lost tim	na (s)			8.0			
Intersection Capacity Utilization			42.8%		U Level of S	()			0.0 A			
Analysis Period (min)			15	101	O LOVE! 01 0	OI VIOG			^			
c Critical Lane Group			10									

CIMA+ Synchro 10 Report

Ø6 (R)

	۶	→	•	•	←	1	1	/	ļ
Lane Group	EBL	EBT	EBR	WBL	WBT	NBL	NBT	SBL	SBT
Lane Configurations		*	#		43		43		4
Traffic Volume (vph)	2	468	28	46	264	49	2	1	4
Future Volume (vph)	2	468	28	46	264	49	2	1	4
Lane Group Flow (vph)	0	522	31	0	347	0	133	0	5
Turn Type	Perm	NA	Perm	Perm	NA	Perm	NA	Perm	NA
Protected Phases		2		. •	6	. •	4		8
Permitted Phases	2	_	2	6	· ·	4	•	8	
Detector Phase	2	2	2	6	6	4	4	8	8
Switch Phase	_	_	=	•	•	•	•	•	
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
Minimum Split (s)	28.8	28.8	28.8	28.8	28.8	28.6	28.6	28.6	28.6
Total Split (s)	35.0	35.0	35.0	35.0	35.0	29.0	29.0	29.0	29.0
Total Split (%)	54.7%	54.7%	54.7%	54.7%	54.7%	45.3%	45.3%	45.3%	45.3%
Yellow Time (s)	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3
All-Red Time (s)	2.5	2.5	2.5	2.5	2.5	2.3	2.3	2.3	2.3
Lost Time Adjust (s)	2.0	-1.8	-1.8	2.0	-1.8	2.0	-1.6	2.0	-1.6
Total Lost Time (s)		4.0	4.0		4.0		4.0		4.0
Lead/Lag		т.0	7.0		т.0		т.0		٠.٠
Lead-Lag Optimize?									
Recall Mode	C-Max	C-Max	C-Max	C-Max	C-Max	None	None	None	None
Act Effct Green (s)	O Wax	40.5	40.5	OWIGA	40.5	TTOTIC	19.4	110110	19.4
Actuated g/C Ratio		0.63	0.63		0.63		0.30		0.30
v/c Ratio		0.03	0.03		0.35		0.29		0.01
Control Delay		11.5	2.5		10.2		8.5		12.2
Queue Delay		0.0	0.0		0.0		0.0		0.0
Total Delay		11.5	2.5		10.2		8.5		12.2
LOS		В	A.S		В		0.5 A		В
Approach Delay		11.0			10.2		8.5		12.3
Approach LOS		В			В		0.5 A		12.3 B
Queue Length 50th (m)		43.9	0.0		26.3		4.3		0.4
Queue Length 95th (m)		72.8	2.8		46.0		14.6		2.3
Internal Link Dist (m)		37.9	2.0		130.2		72.7		29.6
Turn Bay Length (m)		51.5			100.2		12.1		23.0
Base Capacity (vph)		1116	883		986		570		654
Starvation Cap Reductn		0	003		0		0		0.54
Spillback Cap Reductn		0	0		0		0		0
Storage Cap Reductn		0	0		0		0		0
Reduced v/c Ratio		0.47	0.04		0.35		0.23		0.01
		0.47	0.04		0.00		0.20		0.01
Intersection Summary									
Cycle Length: 64									
Actuated Cycle Length: 64									
Offset: 21 (33%), Referenced to phase	se 2:EBTL a	and 6:WBTL	., Start of G	reen					
Natural Cycle: 60									
Control Type: Actuated-Coordinated									
Maximum v/c Ratio: 0.47									
Intersection Signal Delay: 10.4					ersection Lo				
Intersection Capacity Utilization 73.96	%			IC	U Level of S	Service D			
Analysis Period (min) 15									
Splits and Phases: 3: Golden Aver	nue & Richr	nond Rd							
A					35				
★ Ø2 (R)						Ø4	ă.		
35 s						29 s			

CIMA+ Synchro 10 Report


Ø8

	۶	→	*	1	←	*	1	†	~	-	ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		*	7		4			4			4	
Traffic Volume (vph)	2	468	28	46	264	3	49	2	69	1	4	0
Future Volume (vph)	2	468	28	46	264	3	49	2	69	1	4	0
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Total Lost time (s)		4.0	4.0		4.0			4.0			4.0	
Lane Util. Factor		1.00	1.00		1.00			1.00			1.00	
Frpb, ped/bikes		1.00	0.91		1.00			0.95			1.00	
Flpb, ped/bikes		1.00	1.00		1.00			0.98			0.99	
Frt		1.00	0.85		1.00			0.92			1.00	
Flt Protected		1.00	1.00		0.99			0.98			0.99	
Satd. Flow (prot)		1764	1371		1741			1479			1729	
Flt Permitted		1.00	1.00		0.89			0.89			0.96	
Satd. Flow (perm)		1763	1371		1557			1340			1676	
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	2	520	31	51	293	3	54	2	77	1	4	0.50
RTOR Reduction (vph)	0	0	12	0	0	0	0	56	0	0	0	0
Lane Group Flow (vph)	0	522	19	0	347	0	0	77	0	0	5	0
Confl. Peds. (#/hr)	62	JZZ	45	45	347	62	33	11	49	49	J	33
	02		45 8	40		8	აა		49 6	49		20
Confl. Bikes (#/hr)		NIA			NIA.	0	_	NIA.	0		N1.A	20
Turn Type	Perm	NA	Perm	Perm	NA		Perm	NA		Perm	NA	
Protected Phases		2		_	6			4			8	
Permitted Phases	2		2	6	00.0		4	4= 0		8	4= 0	
Actuated Green, G (s)		36.8	36.8		36.8			15.8			15.8	
Effective Green, g (s)		38.6	38.6		38.6			17.4			17.4	
Actuated g/C Ratio		0.60	0.60		0.60			0.27			0.27	
Clearance Time (s)		5.8	5.8		5.8			5.6			5.6	
Vehicle Extension (s)		3.0	3.0		3.0			3.0			3.0	
Lane Grp Cap (vph) v/s Ratio Prot		1063	826		939			364			455	
v/s Ratio Perm		c0.30	0.01		0.22			c0.06			0.00	
v/c Ratio		0.49	0.02		0.37			0.21			0.01	
Uniform Delay, d1		7.2	5.1		6.5			18.0			17.0	
Progression Factor		1.00	1.00		1.00			1.00			1.00	
Incremental Delay, d2		1.6	0.1		1.1			0.3			0.0	
Delay (s)		8.8	5.2		7.6			18.3			17.0	
Level of Service		A	A		A			В			В	
Approach Delay (s)		8.6	Α.		7.6			18.3			17.0	
Approach LOS		A			A			В			В	
Intersection Summary												
HCM 2000 Control Delay			9.5	HC	CM 2000 Le	vel of Service	ce		Α			
HCM 2000 Volume to Capacity ratio			0.40									
Actuated Cycle Length (s)			64.0	Su	m of lost tim	ne (s)			8.0			
Intersection Capacity Utilization			73.9%	ICI	U Level of S	ervice			D			
Analysis Period (min)			15									
c Critical Lane Group												

·

Lanes, Volumes, Timings 4: Roosevelt Avenue & Richmond Rd

	۶	-	1	•	1	†	-	ļ	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	
Lane Configurations						4		Δ	
Traffic Volume (vph)	3	633	14	290	26	10	32	12	
Future Volume (vph)	3	633	14	290	26	10	32	12	
ane Group Flow (vph)	0	717	0	367	0	76	0	57	
Furn Type	Perm	NA	Perm	NA	Perm	NA	Perm	NA	
Protected Phases	1 01111	2	1 01111	6	1 01111	4	1 01111	8	
Permitted Phases	2	2	6	U	4	7	8	U	
Detector Phase	2	2	6	6	4	4	8	8	
Switch Phase	2	2	U	U	4	4	0	0	
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	
` ,	33.4	33.4	33.4	33.4	24.6	24.6	24.6	24.6	
Minimum Split (s)									
Total Split (s)	45.0	45.0	45.0	45.0	25.0	25.0	25.0	25.0	
otal Split (%)	64.3%	64.3%	64.3%	64.3%	35.7%	35.7%	35.7%	35.7%	
/ellow Time (s)	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	
All-Red Time (s)	2.1	2.1	2.1	2.1	2.3	2.3	2.3	2.3	
ost Time Adjust (s)		-1.4		-1.4		-1.6		-1.6	
otal Lost Time (s)		4.0		4.0		4.0		4.0	
ead/Lag									
ead-Lag Optimize?									
ecall Mode	C-Max	C-Max	C-Max	C-Max	None	None	None	None	
ct Effct Green (s)		48.9		48.9		17.0		17.0	
ctuated g/C Ratio		0.70		0.70		0.24		0.24	
c Ratio		0.58		0.31		0.22		0.18	
ontrol Delay		10.7		7.0		13.2		18.3	
ueue Delay		0.3		0.0		0.0		0.0	
otal Delay		10.9		7.0		13.2		18.3	
OS		В		Α		В		В	
pproach Delay		10.9		7.0		13.2		18.3	
pproach LOS		В		Α		В		В	
ueue Length 50th (m)		60.7		22.8		4.0		4.9	
Queue Length 95th (m)		99.2		38.4		13.3		13.1	
iternal Link Dist (m)		130.2		276.4		56.5		123.0	
urn Bay Length (m)									
ase Capacity (vph)		1227		1170		425		398	
tarvation Cap Reductn		117		0		0		0	
pillback Cap Reductn		0		0		0		0	
torage Cap Reductn		0		0		0		0	
educed v/c Ratio		0.65		0.31		0.18		0.14	
ersection Summary									
ycle Length: 70									
ctuated Cycle Length: 70									
Offset: 27 (39%), Referenced to phas	e 2:EBTI	and 6:WBTI	Start of G	reen					
latural Cycle: 60			,						
ontrol Type: Actuated-Coordinated									
aximum v/c Ratio: 0.58									
tersection Signal Delay: 10.2				Int	ersection L	OS: B			
tersection Capacity Utilization 58.6%	%				U Level of S				
nalysis Period (min) 15				10	C LOVOI 01 (201 VIOU D			
•									
olits and Phases: 4: Roosevelt Av	enue & Ri	chmond Rd							
A (22 (0)							46		

	۶	-	*	1	←	*	1	†	-	1	ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			43			43			4	
Traffic Volume (vph)	3	633	10	14	290	26	26	10	32	32	12	7
Future Volume (vph)	3	633	10	14	290	26	26	10	32	32	12	7
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Total Lost time (s)		4.0			4.0			4.0			4.0	
Lane Util. Factor		1.00			1.00			1.00			1.00	
Frpb, ped/bikes		1.00			0.99			0.95			0.98	
Flpb, ped/bikes		1.00			1.00			0.96			0.96	
Frt		1.00			0.99			0.94			0.98	
Flt Protected		1.00			1.00			0.98			0.97	
Satd. Flow (prot)		1757			1723			1480			1578	
Flt Permitted		1.00			0.97			0.88			0.81	
Satd. Flow (perm)		1756			1670			1333			1312	
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	3	703	11	16	322	29	29	11	36	36	13	8
RTOR Reduction (vph)	0	1	0	0	4	0	0	28	0	0	6	0
Lane Group Flow (vph)	0	716	0	0	363	0	0	48	0	0	51	0
Confl. Peds. (#/hr)	74		69	69		74	65		40	40	.	65
Confl. Bikes (#/hr)			7	00		4	00		4	10		4
Turn Type	Perm	NA		Perm	NA	<u> </u>	Perm	NA	•	Perm	NA	
Protected Phases	1 01111	2		1 01111	6		1 01111	4		1 01111	8	
Permitted Phases	2			6			4			8		
Actuated Green, G (s)		45.6		•	45.6		7	13.4		U	13.4	
Effective Green, g (s)		47.0			47.0			15.0			15.0	
Actuated g/C Ratio		0.67			0.67			0.21			0.21	
Clearance Time (s)		5.4			5.4			5.6			5.6	
Vehicle Extension (s)		3.0			3.0			3.0			3.0	
Lane Grp Cap (vph)		1179			1121			285			281	
v/s Ratio Prot		1119			1121			203			201	
v/s Ratio Perm		c0.41			0.22			0.04			c0.04	
v/c Ratio		0.61			0.22			0.04			0.18	
Uniform Delay, d1		6.4			4.8			22.4			22.5	
Progression Factor		1.00			1.00			1.00			1.00	
Incremental Delay, d2		2.3			0.8			0.3			0.3	
Delay (s)		8.7			5.6			22.7			22.8	
Level of Service		Α			J.0			C C			22.0 C	
Approach Delay (s)		8.7			5.6			22.7			22.8	
Approach LOS		Α.			J.0 A			C C			22.0 C	
•		А			A			U			U	
Intersection Summary			2.2	110	NA 0000 1	.1.(0						
HCM 2000 Control Delay			9.3	HC	CM 2000 Lev	el of Servic	ce		Α			
HCM 2000 Volume to Capacity ratio			0.50			()						
Actuated Cycle Length (s)			70.0		m of lost tim				8.0			
Intersection Capacity Utilization			58.6%	ICI	J Level of S	ervice			В			
Analysis Period (min)			15									

	۶	-	1	•	1	†	1	Ţ			
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	Ø9	Ø10	
Lane Configurations	*	1	1	1		473		473			
Traffic Volume (vph)	262	390	43	183	24	273	21	319			
Future Volume (vph)	262	390	43	183	24	273	21	319			
Lane Group Flow (vph)	291	465	48	224	0	422	0	527			
Turn Type	Prot	NA	Perm	NA	Perm	NA	Perm	NA			
Protected Phases	5	2		6		4		8	9	10	
Permitted Phases			6		4		8	8			
Detector Phase	5	2	6	6	4	4	8	8			
Switch Phase											
Minimum Initial (s)	5.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	1.0	1.0	
Minimum Split (s)	11.1	26.1	26.1	26.1	26.1	26.1	26.2	26.2	5.0	5.0	
Total Split (s)	14.0	40.0	26.0	26.0	30.0	30.0	30.0	30.0	5.0	5.0	
Total Split (%)	17.5%	50.0%	32.5%	32.5%	37.5%	37.5%	37.5%	37.5%	6%	6%	
Yellow Time (s)	3.3	3.3	3.3	3.3	3.6	3.6	3.6	3.6	2.0	2.0	
All-Red Time (s)	2.8	2.8	2.8	2.8	2.6	2.6	2.6	2.6	0.0	0.0	
Lost Time Adjust (s)	-2.1	-2.1	-2.1	-2.1		-2.2		-2.2			
Total Lost Time (s)	4.0	4.0	4.0	4.0		4.0		4.0			
Lead/Lag	Lead		Lag	Lag							
Lead-Lag Optimize?			Yes	Yes							
Recall Mode	None	C-Max	C-Max	C-Max	None	None	None	None	None	None	
Act Effct Green (s)	25.5	51.5	22.0	22.0		20.5		20.5			
Actuated g/C Ratio	0.32	0.64	0.28	0.28		0.26		0.26			
v/c Ratio	0.55	0.42	0.22	0.47		0.57		0.68			
Control Delay	29.1	9.1	25.5	27.3		20.3		26.6			
Queue Delay	0.0	0.0	0.0	0.0		0.0		0.0			
Total Delay	29.1	9.1	25.5	27.3		20.3		26.6			
LOS	С	Α	С	С		С		С			
Approach Delay		16.8		27.0		20.3		26.6			
Approach LOS		В		С		С		С			
Queue Length 50th (m)	38.0	31.3	5.9	28.8		18.3		33.7			
Queue Length 95th (m)	#76.6	62.6	15.0	49.8		28.2		45.4			
Internal Link Dist (m)		276.4		61.0		100.0		41.6			
Turn Bay Length (m)	50.0		45.0								
Base Capacity (vph)	533	1113	223	480		927		969			
Starvation Cap Reductn	0	0	0	0		0		0			
Spillback Cap Reductn	0	0	0	0		0		0			
Storage Cap Reductn	0	0	0	0		0		0			
Reduced v/c Ratio	0.55	0.42	0.22	0.47		0.46		0.54			

Intersection Summary

Cycle Length: 80

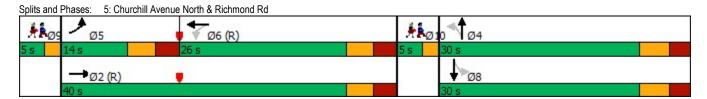
Actuated Cycle Length: 80

Offset: 43 (54%), Referenced to phase 6:WBTL and 2:EBT, Start of Green

Natural Cycle: 80 Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.68

Intersection Signal Delay: 21.6


Intersection Capacity Utilization 73.3%

Intersection LOS: C ICU Level of Service D

Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

	۶	→	*	1	+	1	1	†	~	1	Ţ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	Î.		*	Î.			414			414	
Traffic Volume (vph)	262	390	29	43	183	19	24	273	83	21	319	135
Future Volume (vph)	262	390	29	43	183	19	24	273	83	21	319	135
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Total Lost time (s)	4.0	4.0		4.0	4.0			4.0			4.0	
Lane Util. Factor	1.00	1.00		1.00	1.00			0.95			0.95	
Frpb, ped/bikes	1.00	0.99		1.00	1.00			0.97			0.95	
Flpb, ped/bikes	1.00	1.00		0.93	1.00			1.00			1.00	
Frt	1.00	0.99		1.00	0.99			0.97			0.96	
Flt Protected	0.95	1.00		0.95	1.00			1.00			1.00	
Satd. Flow (prot)	1676	1727		1557	1731			3132			3045	
FIt Permitted	0.95	1.00		0.50	1.00			0.88			0.92	
Satd. Flow (perm)	1676	1727		813	1731			2750			2810	
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	291	433	32	48	203	21	27	303	92	23	354	150
RTOR Reduction (vph)	0	2	0	0	4	0	0	35	0	0	59	0
Lane Group Flow (vph)	291	463	0	48	220	0	0	387	0	0	468	0
Confl. Peds. (#/hr)	34		68	68		34	45		36	36		45
Confl. Bikes (#/hr)			11			1						8
Turn Type	Prot	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases	5	2			6			4			8	
Permitted Phases				6	•		4	•		8	8	
Actuated Green, G (s)	23.4	49.4		19.9	19.9			18.3			18.3	
Effective Green, g (s)	25.5	51.5		22.0	22.0			20.5			20.5	
Actuated g/C Ratio	0.32	0.64		0.28	0.28			0.26			0.26	
Clearance Time (s)	6.1	6.1		6.1	6.1			6.2			6.2	
Vehicle Extension (s)	3.0	3.0		3.0	3.0			3.0			3.0	
Lane Grp Cap (vph)	534	1111		223	476			704			720	
v/s Ratio Prot	c0.17	c0.27		LLU	0.13			701			120	
v/s Ratio Perm		00.2.		0.06	00			0.14			c0.17	
v/c Ratio	0.54	0.42		0.22	0.46			0.55			0.65	
Uniform Delay, d1	22.5	6.9		22.3	24.1			25.8			26.6	
Progression Factor	1.00	1.00		1.00	1.00			0.78			1.00	
Incremental Delay, d2	1.1	1.2		2.2	3.2			0.8			2.1	
Delay (s)	23.6	8.1		24.5	27.3			21.0			28.7	
Level of Service	C	A		C	C			C			C	
Approach Delay (s)		14.1			26.8			21.0			28.7	
Approach LOS		В			С			С			С	
Intersection Summary												
HCM 2000 Control Delay			21.2	HC	CM 2000 Lev	el of Service	Э		С			
HCM 2000 Volume to Capacity ratio			0.58									
Actuated Cycle Length (s)			80.0	Su	m of lost tim	e (s)			16.0			
Intersection Capacity Utilization			73.3%	IC	U Level of S	ervice			D			
Analysis Period (min)			15									
o Critical Lano Group												

Ø6 (R)

	→	+					
ane Group	EBT	WBT	Ø4	Ø8			
ne Configurations	44	^					
fic Volume (vph)	790	379					
re Volume (vph)	790	379					
Group Flow (vph)	878	421					
	NA						
Туре		NA	4	0			
ected Phases	2	6	4	8			
nitted Phases							
ector Phase	2	6					
ch Phase							
mum Initial (s)	10.0	10.0	10.0	10.0			
imum Split (s)	15.1	15.1	25.0	25.0			
Split (s)	40.0	40.0	25.0	25.0			
Split (%)	61.5%	61.5%	38%	38%			
ow Time (s)	3.0	3.0	3.0	3.0			
ed Time (s)	2.1	2.1	1.0	1.0			
Time Adjust (s)	-1.1	-1.1	1.0	1.0			
Lost Time (s)	4.0	4.0					
	4.0	4.0					
/Lag							
-Lag Optimize?	0.11	0.11	ъ.	ъ.			
all Mode	C-Max	C-Max	Ped	Ped			
ffct Green (s)	36.0	36.0					
ated g/C Ratio	0.55	0.55					
atio	0.47	0.43					
rol Delay	9.8	10.2					
ue Delay	0.0	0.0					
Delay	9.8	10.2					
	A	В					
oach Delay	9.8	10.2					
oach LOS	Α	В					
ie Length 50th (m)	32.0	28.2					
	45.1	47.1					
ue Length 95th (m)							
ernal Link Dist (m)	41.2	106.6					
n Bay Length (m)							
Capacity (vph)	1857	977					
vation Cap Reductn	0	0					
llback Cap Reductn	0	0					
age Cap Reductn	0	0					
uced v/c Ratio	0.47	0.43					
section Summary							
e Length: 65							
ated Cycle Length: 65							
t: 11 (17%), Referenced to phas	se 2:EBT a	nd 6:WBT, S	tart of Greer	n			
ıral Cycle: 45							
rol Type: Actuated-Coordinated							
mum v/c Ratio: 0.47							
section Signal Delay: 10.0				Inte	ersection LOS: A		
section Capacity Utilization 26.49	%				Level of Service A		
lysis Period (min) 15	70			100	LEVELOI SELVICE A		
its and Phases: 6: Ped Crossing	g & Richmo	nd Rd					
→ø2 (R)						A Pø4	
- WZ (K)							
3						25 s	

	۶	→	•	1	—	1	1	1	~	1	↓	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		44			*							
Traffic Volume (vph)	0	790	0	0	379	0	0	0	0	0	0	0
Future Volume (vph)	0	790	0	0	379	0	0	0	0	0	0	0
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Total Lost time (s)		4.0			4.0							
Lane Util. Factor		0.95			1.00							
Frpb, ped/bikes		1.00			1.00							
Flpb, ped/bikes		1.00			1.00							
Frt		1.00			1.00							
Flt Protected		1.00			1.00							
Satd. Flow (prot)		3353			1765							
Flt Permitted		1.00			1.00							
Satd. Flow (perm)		3353			1765							
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	0	878	0	0	421	0	0	0	0	0	0	0
RTOR Reduction (vph)	0	0	0	0	0	0	0	0	0	0	0	0
Lane Group Flow (vph)	0	878	0	0	421	0	0	0	0	0	0	0
Confl. Peds. (#/hr)		0.0					14	<u> </u>	14	14		14
Confl. Bikes (#/hr)									1			9
Turn Type		NA			NA							
Protected Phases		2			6							
Permitted Phases					· ·							
Actuated Green, G (s)		34.9			34.9							
Effective Green, g (s)		36.0			36.0							
Actuated g/C Ratio		0.55			0.55							
Clearance Time (s)		5.1			5.1							
Vehicle Extension (s)		3.0			3.0							
Lane Grp Cap (vph)		1857			977							
v/s Ratio Prot		c0.26			0.24							
v/s Ratio Perm		00.20			0.24							
v/c Ratio		0.47			0.43							
Uniform Delay, d1		8.8			8.5							
Progression Factor		1.00			1.00							
		0.9			1.4							
Incremental Delay, d2		9.6			9.9							
Delay (s)		9.6 A			9.9 A							
Level of Service					9.9			0.0			0.0	
Approach Delay (s)		9.6			9.9 A			0.0 A				
Approach LOS		Α			А			А			Α	
Intersection Summary												
HCM 2000 Control Delay			9.7	НС	CM 2000 Leve	of Service	е		Α			
HCM 2000 Volume to Capacity ratio			0.30									
Actuated Cycle Length (s)			65.0	Su	m of lost time	(s)			8.0			
Intersection Capacity Utilization			26.4%	ICI	U Level of Se	rvice			Α			
Analysis Period (min)			15									
c Critical Lane Group												

1: Churchill Avenue North & Byron Avenue

	•	-	1	•	1	†	-	ļ	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	
Lane Configurations		4		4	*	T _a	*	T _a	
Traffic Volume (vph)	19	134	110	307	25	303	21	340	
Future Volume (vph)	19	134	110	307	25	303	21	340	
Lane Group Flow (vph)	0	224	0	513	28	413	23	437	
Turn Type	Perm	NA	Perm	NA	Perm	NA	Perm	NA	
Protected Phases		4		8		2		6	
Permitted Phases	4		8		2		6		
Detector Phase	4	4	8	8	2	2	6	6	
Switch Phase									
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	
Minimum Split (s)	30.6	30.6	30.6	30.6	26.4	26.4	26.4	26.4	
Total Split (s)	45.0	45.0	45.0	45.0	45.0	45.0	45.0	45.0	
Total Split (%)	50.0%	50.0%	50.0%	50.0%	50.0%	50.0%	50.0%	50.0%	
Yellow Time (s)	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	
All-Red Time (s)	2.3	2.3	2.3	2.3	2.1	2.1	2.1	2.1	
Lost Time Adjust (s)		-1.6		-1.6	-1.4	-1.4	-1.4	-1.4	
Total Lost Time (s)		4.0		4.0	4.0	4.0	4.0	4.0	
Lead/Lag									
Lead-Lag Optimize?									
Recall Mode	None	None	None	None	C-Max	C-Max	C-Max	C-Max	
Act Effct Green (s)		36.1		36.1	45.9	45.9	45.9	45.9	
Actuated g/C Ratio		0.40		0.40	0.51	0.51	0.51	0.51	
v/c Ratio		0.34		0.86	0.08	0.47	0.06	0.50	
Control Delay		17.2		39.2	14.3	17.0	11.8	15.2	
Queue Delay		0.0		0.0	0.0	0.0	0.0	0.9	
Total Delay		17.2		39.2	14.3	17.0	11.8	16.1	
LOS		В		D	В	В	В	В	
Approach Delay		17.2		39.2		16.9		15.9	
Approach LOS		В		D		В		В	
Queue Length 50th (m)		23.7		79.6	2.6	45.9	1.9	43.6	
Queue Length 95th (m)		38.5		116.9	8.1	77.4	m4.0	70.8	
Internal Link Dist (m)		244.6		113.6		126.7		100.0	
Turn Bay Length (m)					30.0		30.0		
Base Capacity (vph)		735		676	344	877	373	875	
Starvation Cap Reductn		0		0	0	0	0	207	
Spillback Cap Reductn		0		0	0	0	0	0	
Storage Cap Reductn		0		0	0	0	0	0	
Reduced v/c Ratio		0.30		0.76	0.08	0.47	0.06	0.65	
Intersection Summary									

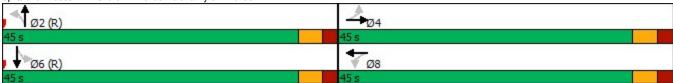
Cycle Length: 90 Actuated Cycle Length: 90

Offset: 40 (44%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 60 Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.86

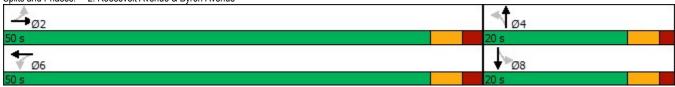
Intersection Signal Delay: 23.6


Intersection Capacity Utilization 73.8%

Intersection LOS: C ICU Level of Service D

Analysis Period (min) 15

m Volume for 95th percentile queue is metered by upstream signal.


Splits and Phases: 1: Churchill Avenue North & Byron Avenue

Movement	→	,	•	•	+	•	1	†	~	1	Ţ	4
Traffic Volume (vph) 19 134 49 110 307 45 25 303 68 Ideal Flow (vphppl) 1800 1800 1800 1800 1800 1800 1800 180	EBT	Movement E	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Traffic Volume (vph) 19 134 49 110 307 45 25 303 68 Ideal Flow (vphppl) 1800 1800 1800 1800 1800 1800 1800 180	A.	Lane Configurations			412		K	T _a		*	T _a	
Future Volume (vph) 19 134 49 110 307 45 25 303 68 Ideal Flow (vphpl) 1800 1800 1800 1800 1800 1800 1800 180	134	Traffic Volume (vph)	49	110		45	25		68	21	340	53
Total Lost time (s)	134		49	110	307	45	25	303	68	21	340	53
Total Lost time (s)	1800	Ideal Flow (vphpl) 18	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Frpb, ped/bikes	4.0				4.0		4.0	4.0		4.0	4.0	
Fight Poet	1.00	Lane Util. Factor			1.00		1.00	1.00		1.00	1.00	
Frit Protected 1.00 0.97 0.99 1.00 0.97 Fil Protected 1.00 0.99 0.95 1.00 Satd. Flow (prot) 1683 1713 1617 1706 Fit Permitted 0.94 0.85 0.40 1.00 Satd. Flow (perm) 1588 1475 675 1706 Fit Permitted 0.94 0.85 0.40 1.00 Satd. Flow (perm) 1588 1475 675 1706 Fit Permitted 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.9	0.99	Frpb, ped/bikes			1.00		1.00	0.99		1.00	0.99	
Fit Protected 1.00 0.99 0.95 1.00 Satu. Flow (prot) 1683 1713 1617 1706 Fit Permitted 0.94 0.85 0.40 1.00 Satu. Flow (perm) 1588 1475 675 1706 Peak-hour factor, PHF 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.9	1.00	Flpb, ped/bikes			1.00		0.96	1.00		1.00	1.00	
Satd. Flow (prot) 1683 1713 1617 1706 Fit Permitted 0.94 0.85 0.40 1.00 Satd. Flow (perm) 1588 1475 675 1706 Peak-hour factor, PHF 0.90 0	0.97				0.99		1.00	0.97		1.00	0.98	
Fit Permitted 0.94 0.85 0.40 1.00 Satd. Flow (perm) 1588 1475 675 1706 Flow (perm) 1588 1475 675 1706 Flow (perm) 1588 1475 675 1706 Flow (perm) 1489 0.90 0.	1.00	Flt Protected			0.99		0.95	1.00		0.95	1.00	
Fit Permitted 0.94 0.85 0.40 1.00 Satd. Flow (perm) 1588 1475 675 1706 Flow (perm) 1588 1475 675 1706 Flow (perm) 1588 1475 675 1706 Flow (perm) 1489 0.90 0.	1683	Satd. Flow (prot)			1713		1617	1706		1669	1705	
Satd. Flow (perm) 1588 1475 675 1706 Peak-hour factor, PHF 0.90	0.94				0.85		0.40	1.00		0.42	1.00	
Adj. Flow (vph) 21 149 54 122 341 50 28 337 76 RTOR Reduction (vph) 0 14 0 0 5 0 0 8 0 Lane Group Flow (vph) 0 210 0 0 508 0 28 405 0 Confl. Plows (#/hr) 3 11 11 3 40 5 Confl. Bikes (#/hr) 1 1 1 3 40 5 Confl. Bikes (#/hr) 1 1 1 3 40 5 Confl. Bikes (#/hr) 1 1 1 3 40 5 Confl. Bikes (#/hr) 1 1 1 1 1 1 Turn Type Perm NA Perm NA Perm NA Perm NA Perm NA 2 2 2 44.5 44.5 44.5 44.5 24.5 44.5 44.5 44.5		Satd. Flow (perm)					675			732	1705	
Adj. Flow (vph) 21 149 54 122 341 50 28 337 76 RTOR Reduction (vph) 0 14 0 0 5 0 0 8 0 Lane Group Flow (vph) 0 210 0 0 508 0 28 405 0 Confl. Plows (#/hr) 3 11 11 3 40 5 Confl. Bikes (#/hr) 1 1 1 3 40 5 Confl. Bikes (#/hr) 1 1 1 3 40 5 Confl. Bikes (#/hr) 1 1 1 3 40 5 Confl. Bikes (#/hr) 1 1 1 1 1 1 Turn Type Perm NA Perm NA Perm NA Perm NA Perm NA 2 2 2 44.5 44.5 44.5 44.5 24.5 44.5 44.5 44.5	0.90	Peak-hour factor, PHF 0.	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
RTOR Reduction (vph) 0 14 0 0 5 0 0 8 0 Lane Group Flow (vph) 0 210 0 0 508 0 28 405 0 Confl. Peds. (#/hr) 3 11 11 3 40 5 Confl. Bikes (#/hr) 1 1 1 3 40 5 Confl. Bikes (#/hr) 1 1 1 3 40 5 Confl. Bikes (#/hr) 1 1 1 3 40 5 Confl. Bikes (#/hr) 1 1 1 3 40 5 Tourned (*/hr) 8 2 2 2 2 2 Permitted Phases 4 8 2 2 2 44.5 45.5 34.5 44.5 44.5 24.5 44.5 24.5 45.9 45.9 45.9 45.9 45.9 45.9 45.9 45.9 45.9 45.9 45.9		•								23	378	59
Lane Group Flow (vph) 0 210 0 0 508 0 28 405 0 Confl. Peds. (#hr) 3 11 11 3 40 5 Confl. Bikes (#hr) 1 1 1 1 1 Turn Type Perm NA Perm NA Perm NA Protected Phases 4 8 2 2 Actualed Green, G (s) 34.5 34.5 44.5										0	5	0
Confl. Peds. (#/hr) 3 11 11 3 40 5 Confl. Bikes (#/hr) 1 1 1 1 1 1 Turn Type Perm NA Set 2 ACUate NA Set Set Set Set Set										23	432	0
Confl. Bikes (#/hr) 1 1 Turn Type Perm NA Perm NA Perm NA Protected Phases 4 8 2 Actuated Green, G (s) 34.5 34.5 44.5 44.5 45.9 45.9 Actuated Green, g (s) 36.1 36.1 45.9 45.9 Actuated g/C Ratio 0.40 0.40 0.51 0.51 0.51 Clearance Time (s) 5.6 5.6 5.6 5.4 5.4 Vehicle Extension (s) 3.0				11						5		40
Tum Type Perm NA Perm NA Perm NA Protected Phases 4 8 2 2 Permitted Phases 4 8 2 2 Actuated Green, G (s) 34.5 34.5 44.5 44.5 Effective Green, g (s) 36.1 36.1 45.9 45.9 Actuated g/C Ratio 0.40 0.40 0.51 0.51 Clearance Time (s) 5.6 5.6 5.4 5.4 Vehicle Extension (s) 3.0 3.0 3.0 3.0 Lane Grp Cap (vph) 636 591 344 870 v/s Ratio Prot 0.24 0.24 0.24 v/s Ratio Prot 0.13 c0.34 0.04 v/c Ratio 0.33 0.86 0.08 0.47 Uniform Delay, d1 18.6 24.6 11.3 14.2 Progression Factor 1.00 1.00 1.00 1.00 Incremental Delay, d2 0.3 11.9 0.						-						
Protected Phases 4 8 2 Permitted Phases 4 8 2 Actuated Green, G (s) 34.5 34.5 44.5 44.5 Effective Green, g (s) 36.1 36.1 45.9 45.9 Actuated g/C Ratio 0.40 0.40 0.51 0.51 Clearance Time (s) 5.6 5.6 5.4 5.4 Vehicle Extension (s) 3.0 3.0 3.0 3.0 Lane Grp Cap (vph) 636 591 344 870 v/s Ratio Prot 0.24 0.24 0.24 v/s Ratio Perm 0.13 c0.34 0.04 v/c Ratio 0.33 0.86 0.08 0.47 Uniform Delay, d1 18.6 24.6 11.3 14.2 Progression Factor 1.00 1.00 1.00 1.00 Incremental Delay, d2 0.3 11.9 0.5 1.8 Delay (s) 18.9 36.6 11.7 16.0 Level of Service	NA			Perm	NA		Perm	NA		Perm	NA	
Permitted Phases 4											6	
Actuated Green, G (s) 34.5 34.5 44.5 44.5 Effective Green, g (s) 36.1 36.1 36.1 45.9 45.9 Actuated g/C Ratio 0.40 0.40 0.51 0.51 0.51 Clearance Time (s) 5.6 5.6 5.4 5.4 Vehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 Lane Grp Cap (vph) 636 591 344 870 v/s Ratio Prot 0.24 v/s Ratio Perm 0.13 0.33 0.86 0.08 0.47 Uniform Delay, d1 18.6 24.6 11.3 14.2 Progression Factor 1.00 1.00 1.00 1.00 1.00 Incremental Delay, d2 0.3 11.9 0.5 1.8 Delay (s) 18.9 36.6 11.7 16.0 Level of Service B D B B Approach Delay (s) 18.9 36.6 15.7 Approach LOS B D B Intersection Summary HCM 2000 Control Delay 22.1 HCM 2000 Level of Service C HCM 2000 Volume to Capacity ratio 0.66				8			2	_		6	<u> </u>	
Effective Green, g (s) 36.1 36.1 45.9 45.9 Actuated g/C Ratio 0.40 0.40 0.51 0.51 Clearance Time (s) 5.6 5.6 5.4 5.4 Vehicle Extension (s) 3.0 3.0 3.0 3.0 Lane Grp Cap (vph) 636 591 344 870 v/s Ratio Prot 0.24 0.24 0.24 0.24 v/s Ratio Perm 0.13 c0.34 0.04	34.5				34.5			44.5		44.5	44.5	
Actuated g/C Ratio 0.40 0.40 0.51 0.51 Clearance Time (s) 5.6 5.6 5.4 5.4 Vehicle Extension (s) 3.0 3.0 3.0 3.0 Lane Grp Cap (vph) 636 591 344 870 v/s Ratio Prot 0.24 0.24 v/s Ratio Perm 0.13 c0.34 0.04 v/c Ratio 0.33 0.86 0.08 0.47 Uniform Delay, d1 18.6 24.6 11.3 14.2 Progression Factor 1.00 1.00 1.00 1.00 Incremental Delay, d2 0.3 11.9 0.5 1.8 Delay (s) 18.9 36.6 11.7 16.0 Level of Service B D B B Approach LOS B D B B Intersection Summary B D B B C HCM 2000 Volume to Capacity ratio 0.66 C C										45.9	45.9	
Clearance Time (s) 5.6 5.6 5.6 5.4 5.4 Vehicle Extension (s) 3.0 3.0 3.0 3.0 Lane Grp Cap (vph) 636 591 344 870 v/s Ratio Prot 0.24 0.24 0.24 v/s Ratio Perm 0.13 0.34 0.04 v/c Ratio 0.33 0.86 0.08 0.47 Uniform Delay, d1 18.6 24.6 11.3 14.2 Progression Factor 1.00 1.00 1.00 1.00 Incremental Delay, d2 0.3 11.9 0.5 1.8 Delay (s) 18.9 36.6 11.7 16.0 Level of Service B D B B Approach LOS B D B B Intersection Summary B D B B C HCM 2000 Control Delay 22.1 HCM 2000 Level of Service C HCM 2000 Volume to Capacity ratio 0.66 C C										0.51	0.51	
Vehicle Extension (s) 3.0 3.0 3.0 3.0 Lane Grp Cap (vph) 636 591 344 870 v/s Ratio Prot 0.24 0.24 v/s Ratio Perm 0.13 0.34 0.04 v/c Ratio 0.33 0.86 0.08 0.47 Uniform Delay, d1 18.6 24.6 11.3 14.2 Progression Factor 1.00 1.00 1.00 1.00 Incremental Delay, d2 0.3 11.9 0.5 1.8 Delay (s) 18.9 36.6 11.7 16.0 Level of Service B D B B Approach LOS B D B B Intersection Summary B D B B Intersection Summary 22.1 HCM 2000 Level of Service C HCM 2000 Volume to Capacity ratio 0.66 C										5.4	5.4	
Lane Grp Cap (vph) 636 591 344 870 v/s Ratio Prot 0.24 v/s Ratio Perm 0.13 c0.34 0.04 v/c Ratio 0.33 0.86 0.08 0.47 Uniform Delay, d1 18.6 24.6 11.3 14.2 Progression Factor 1.00 1.00 1.00 1.00 Incremental Delay, d2 0.3 11.9 0.5 1.8 Delay (s) 18.9 36.6 11.7 16.0 Level of Service B D B B Approach Delay (s) 18.9 36.6 15.7 Approach LOS B D B Intersection Summary B D B Intersection Summary 22.1 HCM 2000 Level of Service C HCM 2000 Volume to Capacity ratio 0.66 C							3.0	3.0		3.0	3.0	
v/s Ratio Prot 0.13 c0.34 0.04 v/c Ratio 0.33 0.86 0.08 0.47 Uniform Delay, d1 18.6 24.6 11.3 14.2 Progression Factor 1.00 1.00 1.00 1.00 Incremental Delay, d2 0.3 11.9 0.5 1.8 Delay (s) 18.9 36.6 11.7 16.0 Level of Service B D B B Approach Delay (s) 18.9 36.6 15.7 Approach LOS B D B Intersection Summary HCM 2000 Control Delay 22.1 HCM 2000 Level of Service C HCM 2000 Volume to Capacity ratio 0.66										373	869	
v/s Ratio Perm 0.13 c0.34 0.04 v/c Ratio 0.33 0.86 0.08 0.47 Uniform Delay, d1 18.6 24.6 11.3 14.2 Progression Factor 1.00 1.00 1.00 1.00 Incremental Delay, d2 0.3 11.9 0.5 1.8 Delay (s) 18.9 36.6 11.7 16.0 Level of Service B D B B Approach Delay (s) 18.9 36.6 15.7 Approach LOS B D B Intersection Summary HCM 2000 Control Delay 22.1 HCM 2000 Level of Service C HCM 2000 Volume to Capacity ratio 0.66							• • • • • • • • • • • • • • • • • • • •			0.0	c0.25	
v/c Ratio 0.33 0.86 0.08 0.47 Uniform Delay, d1 18.6 24.6 11.3 14.2 Progression Factor 1.00 1.00 1.00 1.00 Incremental Delay, d2 0.3 11.9 0.5 1.8 Delay (s) 18.9 36.6 11.7 16.0 Level of Service B D B B Approach Delay (s) 18.9 36.6 15.7 Approach LOS B D B Intersection Summary B HCM 2000 Control Delay 22.1 HCM 2000 Level of Service C HCM 2000 Volume to Capacity ratio 0.66 C C	0.13				c0 34		0.04	V.= .		0.03	00.20	
Uniform Delay, d1 18.6 24.6 11.3 14.2 Progression Factor 1.00 1.00 1.00 1.00 Incremental Delay, d2 0.3 11.9 0.5 1.8 Delay (s) 18.9 36.6 11.7 16.0 Level of Service B D B B Approach Delay (s) 18.9 36.6 15.7 Approach LOS B D B Intersection Summary HCM 2000 Control Delay 22.1 HCM 2000 Level of Service C HCM 2000 Volume to Capacity ratio 0.66								0.47		0.06	0.50	
Progression Factor 1.00 1.00 1.00 1.00 Incremental Delay, d2 0.3 11.9 0.5 1.8 Delay (s) 18.9 36.6 11.7 16.0 Level of Service B D B B Approach Delay (s) 18.9 36.6 15.7 Approach LOS B D B Intersection Summary HCM 2000 Control Delay 22.1 HCM 2000 Level of Service C HCM 2000 Volume to Capacity ratio 0.66 0.66 C										11.2	14.5	
Incremental Delay, d2										0.84	0.86	
Delay (s) 18.9 36.6 11.7 16.0 Level of Service B D B B Approach Delay (s) 18.9 36.6 15.7 Approach LOS B D B Intersection Summary HCM 2000 Control Delay 22.1 HCM 2000 Level of Service C HCM 2000 Volume to Capacity ratio 0.66 C										0.3	1.6	
Level of Service B D B B Approach Delay (s) 18.9 36.6 15.7 Approach LOS B D B Intersection Summary HCM 2000 Control Delay 22.1 HCM 2000 Level of Service C HCM 2000 Volume to Capacity ratio 0.66 C										9.7	14.0	
Approach Delay (s) 18.9 36.6 15.7 Approach LOS B D B Intersection Summary HCM 2000 Control Delay 22.1 HCM 2000 Level of Service C HCM 2000 Volume to Capacity ratio 0.66 C										Α	В	
Approach LOS B D B Intersection Summary HCM 2000 Control Delay 22.1 HCM 2000 Level of Service C HCM 2000 Volume to Capacity ratio 0.66											13.8	
HCM 2000 Control Delay 22.1 HCM 2000 Level of Service C HCM 2000 Volume to Capacity ratio 0.66		, ,						В			В	
HCM 2000 Control Delay 22.1 HCM 2000 Level of Service C HCM 2000 Volume to Capacity ratio 0.66		Intersection Summary										
HCM 2000 Volume to Capacity ratio 0.66			22.1	Н	CM 2000 Le	vel of Servi	ce		С			
Actuated Cycle Length (s) 90.0 Sum of lost time (s) 8.0				Sı	ım of lost tin	ne (s)			8.0			
Intersection Capacity Utilization 73.8% ICU Level of Service D						· /						
Analysis Period (min) 15												

	•	-	1	←	1	†	-	Ţ	
ane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	
ane Configurations									
raffic Volume (vph)	13	4 5 149	19	4 294	5	4 21	31	20	
uture Volume (vph)	13	149	19	294	5	21	31	20	
ane Group Flow (vph)	0	188	0	399	0	43	0	90	
urn Type	Perm	NA	Perm	NA	Perm	NA	Perm	NA	
rotected Phases	I CIIII	2	I CIIII	6	I CIIII	4	I CIIII	8	
ermitted Phases	2	2	6	U	4	4	8	0	
etector Phase	2	2	6	6	4	4	8	8	
	2	2	U	Ü	4	4	0	0	
witch Phase	40.0	40.0	40.0	40.0	40.0	40.0	10.0	40.0	
inimum Initial (s)	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	
inimum Split (s)	22.5	22.5	22.5	22.5	20.0	20.0	20.0	20.0	
otal Split (s)	50.0	50.0	50.0	50.0	20.0	20.0	20.0	20.0	
otal Split (%)	71.4%	71.4%	71.4%	71.4%	28.6%	28.6%	28.6%	28.6%	
ellow Time (s)	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	
l-Red Time (s)	2.2	2.2	2.2	2.2	1.7	1.7	1.7	1.7	
st Time Adjust (s)		-1.5		-1.5		-1.0		-1.0	
otal Lost Time (s)		4.0		4.0		4.0		4.0	
ead/Lag									
ad-Lag Optimize?									
call Mode	Max	Max	Max	Max	None	None	None	None	
Effct Green (s)		54.3		54.3		14.1		14.1	
uated g/C Ratio		0.75		0.75		0.20		0.20	
Ratio		0.15		0.70		0.14		0.30	
ntrol Delay		4.2		5.0		18.0		19.2	
leue Delay		0.0		0.0		0.0		0.0	
tal Delay		4.2		5.0		18.0		19.2	
OS				3.0 A		16.0 B		19.2 B	
		Α							
proach Delay		4.2		5.0		18.0		19.2	
proach LOS		A		A		В		В	
ueue Length 50th (m)		8.1		19.4		3.5		7.0	
ieue Length 95th (m)		15.1		32.8		10.7		17.7	
ernal Link Dist (m)		50.9		244.6		129.2		56.5	
rn Bay Length (m)									
ase Capacity (vph)		1277		1278		362		335	
arvation Cap Reductn		0		0		0		0	
pillback Cap Reductn		0		0		0		0	
orage Cap Reductn		0		0		0		0	
duced v/c Ratio		0.15		0.31		0.12		0.27	
ersection Summary									
cle Length: 70 tuated Cycle Length: 72.2 tural Cycle: 45									
ontrol Type: Semi Act-Uncoord									
aximum v/c Ratio: 0.31						20. 4			
ersection Signal Delay: 7.4					ersection L				
ersection Capacity Utilization 44.0%	4			IC	U Level of S	Service A			

Splits and Phases: 2: Roosevelt Avenue & Byron Avenue

	٠	→	•	-	•	*	4	†	-	-	Ţ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4						43-				
Traffic Volume (vph)	13	149	7	19	4 294	46	5	21	13	31	4 20	31
Future Volume (vph)	13	149	7	19	294	46	5	21	13	31	20	31
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Total Lost time (s)	.000	4.0	.000	.000	4.0			4.0	.000	.000	4.0	.000
Lane Util. Factor		1.00			1.00			1.00			1.00	
Frpb, ped/bikes		1.00			0.99			0.99			0.95	
Flpb, ped/bikes		1.00			1.00			0.99			0.99	
Frt		0.99			0.98			0.96			0.95	
Flt Protected		1.00			1.00			0.99			0.98	
Satd. Flow (prot)		1743			1716			1632			1551	
Flt Permitted		0.97			0.98			0.96			0.88	
Satd. Flow (perm)		1695			1692			1576			1383	
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	14	166	8	21	327	51	6	23	14	34	22	34
RTOR Reduction (vph)	0	2	0	0	6	0	0	12	0	0	29	0
Lane Group Flow (vph)	0	186	0	0	393	0	0	31	0	0	61	0
Confl. Peds. (#/hr)	17	100	7	7	333	17	46	JI	9	9	UI	46
Turn Type	Perm	NA	'	Perm	NA	17	Perm	NA	<u> </u>	Perm	NA	
Protected Phases	FEIIII	2		Feiiii	6		FEIIII	4		Fellii	8	
Permitted Phases	2	2		6	U		4	4		8	Ü	
Actuated Green, G (s)		51.9		U	51.9		7	10.8		U	10.8	
Effective Green, g (s)		53.4			53.4			11.8			11.8	
Actuated g/C Ratio		0.73			0.73			0.16			0.16	
Clearance Time (s)		5.5			5.5			5.0			5.0	
Vehicle Extension (s)		3.0			3.0			3.0			3.0	
Lane Grp Cap (vph)		1236			1234			254			222	
v/s Ratio Prot		1230			1234			254			222	
		0.11			c0.23			0.00			a0 04	
v/s Ratio Perm					0.32			0.02 0.12			c0.04 0.28	
v/c Ratio		0.15 3.0			3.5			26.3				
Uniform Delay, d1					1.00						27.0	
Progression Factor		1.00						1.00			1.00	
Incremental Delay, d2		0.3			0.7			0.2			0.7	
Delay (s)		3.3			4.2			26.5			27.6	
Level of Service		A			A			C			C	
Approach Delay (s)		3.3			4.2			26.5			27.6	
Approach LOS		Α			Α			С			С	
Intersection Summary												
HCM 2000 Control Delay			8.2	HC	CM 2000 Lev	vel of Servi	ce		Α			
HCM 2000 Volume to Capacity ratio			0.31									
Actuated Cycle Length (s)			73.2		m of lost tim	· /			8.0			
Intersection Capacity Utilization			44.0%	IC	U Level of S	ervice			Α			
Analysis Period (min)			15									
c Critical Lane Group												

	-	*	1	←	4	†	-	↓	
Lane Group	EBT	EBR	WBL	WBT	NBL	NBT	SBL	SBT	
Lane Configurations	री	7		43		43		4.	
Traffic Volume (vph)	342	21	44	646	67	1	6	3	
Future Volume (vph)	342	21	44	646	67	1	6	3	
Lane Group Flow (vph)	380	23	0	771	0	138	0	11	
Turn Type	NA	Perm	Perm	NA	Perm	NA	Perm	NA	
Protected Phases	2			6		4		8	
Permitted Phases		2	6		4		8		
Detector Phase	2	2	6	6	4	4	8	8	
Switch Phase									
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	
Minimum Split (s)	28.8	28.8	28.8	28.8	28.6	28.6	28.6	28.6	
Total Split (s)	50.0	50.0	50.0	50.0	29.0	29.0	29.0	29.0	
Total Split (%)	63.3%	63.3%	63.3%	63.3%	36.7%	36.7%	36.7%	36.7%	
Yellow Time (s)	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	
All-Red Time (s)	2.5	2.5	2.5	2.5	2.3	2.3	2.3	2.3	
Lost Time Adjust (s)	-1.8	-1.8		-1.8		-1.6		-1.6	
Total Lost Time (s)	4.0	4.0		4.0		4.0		4.0	
Lead/Lag									
Lead-Lag Optimize?									
Recall Mode	C-Max	C-Max	C-Max	C-Max	None	None	None	None	
Act Effct Green (s)	51.6	51.6		51.6		19.4		19.4	
Actuated g/C Ratio	0.65	0.65		0.65		0.25		0.25	
v/c Ratio	0.33	0.03		0.70		0.39		0.03	
Control Delay	8.2	1.8		15.1		16.8		18.5	
Queue Delay	0.0	0.0		0.9		0.0		0.0	
Total Delay	8.2	1.8		16.1		16.8		18.5	
LOS	Α	Α		В		В		В	
Approach Delay	7.8			16.1		16.8		18.5	
Approach LOS	Α			В		В		В	
Queue Length 50th (m)	28.7	0.0		84.3		9.4		1.1	
Queue Length 95th (m)	45.6	1.9		136.2		23.6		4.7	
Internal Link Dist (m)	37.9			130.2		72.7		29.6	
Turn Bay Length (m)				4.5.5					
Base Capacity (vph)	1152	844		1097		444		450	
Starvation Cap Reductn	0	0		126		0		0	
Spillback Cap Reductn	0	0		0		0		0	
Storage Cap Reductn	0	0		0		0		0	
Reduced v/c Ratio	0.33	0.03		0.79		0.31		0.02	
Intersection Summary									
Cycle Length: 79									
Actuated Cycle Length: 79									
Offset: 5 (6%), Referenced to phase	2:EBTL and	d 6:WBTL, S	Start of Gree	en					
Natural Cycle: 70									
Control Type: Actuated-Coordinated									
Maximum v/c Ratio: 0.70									
Intersection Signal Delay: 13.7					ersection Lo				
Intersection Capacity Utilization 86.0	%			IC	U Level of S	Service E			
Analysis Period (min) 15									
Splits and Phases: 3: Golden Aver	nue & Richr	nond Rd							
Opins and Friases. 3. Guiden Avei	IIUC & RICIII	nonu Ku							
Z							- I ≪ T		

Ø8

	۶	→	*	1	←	1	1	†	-	-	ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		र्ध	7		43			43			4	
Traffic Volume (vph)	0	342	21	44	646	4	67	1	57	6	4	1
Future Volume (vph)	0	342	21	44	646	4	67	1	57	6	3	1
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Total Lost time (s)		4.0	4.0		4.0			4.0			4.0	
Lane Util. Factor		1.00	1.00		1.00			1.00			1.00	
Frpb, ped/bikes		1.00	0.85		1.00			0.94			0.99	
Flpb, ped/bikes		1.00	1.00		1.00			0.98			0.95	
Frt		1.00	0.85		1.00			0.94			0.99	
Flt Protected		1.00	1.00		1.00			0.97			0.97	
Satd. Flow (prot)		1765	1273		1749			1487			1596	
Flt Permitted		1.00	1.00		0.96			0.84			0.86	
Satd. Flow (perm)		1765	1273		1680			1283			1421	
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	0.90	380	23	49	718	4	74	1	63	7	3	0.90
RTOR Reduction (vph)	0	0	8	0	0	0	0	42	03	0	1	0
Lane Group Flow (vph)	0	380	15	0	771	0	0	96	0	0	10	0
Confl. Peds. (#/hr)	66	300	77	77	771	66	25	90	60	60	10	25
Confl. Bikes (#/hr)	00		3	11		17	20		2	00		25 7
		NIA		D	NIA	17	D	NIA.		D	NIA	
Turn Type		NA	Perm	Perm	NA		Perm	NA		Perm	NA	
Protected Phases	_	2		_	6			4			8	
Permitted Phases	2		2	6			4			8		
Actuated Green, G (s)		49.8	49.8		49.8			17.8			17.8	
Effective Green, g (s)		51.6	51.6		51.6			19.4			19.4	
Actuated g/C Ratio		0.65	0.65		0.65			0.25			0.25	
Clearance Time (s)		5.8	5.8		5.8			5.6			5.6	
Vehicle Extension (s)		3.0	3.0		3.0			3.0			3.0	
Lane Grp Cap (vph) v/s Ratio Prot		1152 0.22	831		1097			315			348	
v/s Ratio Perm			0.01		c0.46			c0.07			0.01	
v/c Ratio		0.33	0.02		0.70			0.30			0.03	
Uniform Delay, d1		6.1	4.8		8.8			24.3			22.6	
Progression Factor		1.00	1.00		1.00			1.00			1.00	
Incremental Delay, d2		0.8	0.0		3.8			0.5			0.0	
Delay (s)		6.8	4.8		12.5			24.8			22.7	
Level of Service		Α	Α		В			С			С	
Approach Delay (s)		6.7			12.5			24.8			22.7	
Approach LOS		Α			В			С			С	
Intersection Summary												
HCM 2000 Control Delay			12.1	НС	CM 2000 Le	vel of Service	ce		В			
HCM 2000 Volume to Capacity ratio			0.59									
Actuated Cycle Length (s)			79.0	Su	m of lost tin	ne (s)			8.0			
Intersection Capacity Utilization			86.0%	ICI	U Level of S	ervice			Е			
Analysis Period (min)			15									
c Critical Lane Group												

	•	\rightarrow	1		1	Ť	-	↓	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	
Lane Configurations		4		A.		4		4	
Traffic Volume (vph)	7	403	25	696	34	18	32	11	
Future Volume (vph)	7	403	25	696	34	18	32	11	
Lane Group Flow (vph)	0	480	0	840	0	111	0	64	
Turn Type	Perm	NA	Perm	NA	Perm	NA	Perm	NA	
Protected Phases		2		6		4		8	
Permitted Phases	2	_	6	•	4	•	8	•	
Detector Phase	2	2	6	6	4	4	8	8	
Switch Phase	_	_	•	•	•	•	•	· ·	
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	
()	33.4	33.4	33.4	33.4	24.6	24.6	24.6	24.6	
Minimum Split (s)									
Total Split (s)	60.0	60.0	60.0	60.0	25.0	25.0	25.0	25.0	
Total Split (%)	70.6%	70.6%	70.6%	70.6%	29.4%	29.4%	29.4%	29.4%	
Yellow Time (s)	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	
All-Red Time (s)	2.1	2.1	2.1	2.1	2.3	2.3	2.3	2.3	
Lost Time Adjust (s)		-1.4		-1.4		-1.6		-1.6	
Total Lost Time (s)		4.0		4.0		4.0		4.0	
_ead/Lag									
Lead-Lag Optimize?									
Recall Mode	C-Max	C-Max	C-Max	C-Max	None	None	None	None	
Act Effct Green (s)		63.9		63.9		17.0		17.0	
Actuated g/C Ratio		0.75		0.75		0.20		0.20	
//c Ratio		0.37		0.66		0.40		0.25	
Control Delay		6.4		11.1		20.5		24.0	
Queue Delay		0.4		0.0		0.0		0.0	
Fotal Delay		6.7		11.1		20.5		24.0	
OS								24.0 C	
		A		B		C			
Approach Delay		6.7		11.1		20.5		24.0	
Approach LOS		A		В		С		C	
Queue Length 50th (m)		33.0		83.3		8.2		6.5	
Queue Length 95th (m)		51.5		133.8		22.8		17.2	
nternal Link Dist (m)		130.2		276.4		56.5		123.0	
Гurn Bay Length (m)									
Base Capacity (vph)		1282		1270		332		306	
Starvation Cap Reductn		309		0		0		0	
Spillback Cap Reductn		0		0		0		0	
Storage Cap Reductn		0		0		0		0	
Reduced v/c Ratio		0.49		0.66		0.33		0.21	
ntersection Summary									
Cycle Length: 85									
Actuated Cycle Length: 85									
Offset: 78 (92%), Referenced to phase	2.FRTI a	and 6·WRTI	Start of G	reen					
Natural Cycle: 65	~	U. VV D I L	., otali 0i 0						
Control Type: Actuated-Coordinated									
Maximum v/c Ratio: 0.66				1.1	orood!sl	20. D			
ntersection Signal Delay: 11.0	,				ersection L				
ntersection Capacity Utilization 78.2%	o			IC	U Level of S	ervice D			
Analysis Period (min) 15									
plits and Phases: 4: Roosevelt Ave	onuo O Dia	hmond Dd							
pins and Fhases. 4. Roosevelt Ave	enue & KIC	minoria Ka						1 .	

	۶	→	*	•	•	1	1	†	~	1	Ţ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4						43			43	
Traffic Volume (vph)	7	403	22	25	4 696	35	34	18	48	32	11	14
Future Volume (vph)	7	403	22	25	696	35	34	18	48	32	11	14
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Total Lost time (s)		4.0			4.0			4.0			4.0	
Lane Util. Factor		1.00			1.00			1.00			1.00	
Frpb, ped/bikes		0.98			0.99			0.89			0.93	
Flpb, ped/bikes		1.00			1.00			0.92			0.91	
Frt		0.99			0.99			0.94			0.97	
Flt Protected		1.00			1.00			0.98			0.97	
Satd. Flow (prot)		1722			1723			1332			1408	
Flt Permitted		0.99			0.98			0.88			0.83	
Satd. Flow (perm)		1703			1687			1191			1196	
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	8	448	24	28	773	39	38	20	53	36	12	16
RTOR Reduction (vph)	0	2	0	0	2	0	0	42	0	0	13	0
Lane Group Flow (vph)	0	478	0	0	838	0	0	69	0	0	51	0
Confl. Peds. (#/hr)	135		182	182		135	116		92	92	V .	116
Confl. Bikes (#/hr)			3	.02		9			5	V-		2
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases		2			6			4			8	
Permitted Phases	2			6			4			8		
Actuated Green, G (s)		60.6			60.6			13.4			13.4	
Effective Green, g (s)		62.0			62.0			15.0			15.0	
Actuated g/C Ratio		0.73			0.73			0.18			0.18	
Clearance Time (s)		5.4			5.4			5.6			5.6	
Vehicle Extension (s)		3.0			3.0			3.0			3.0	
Lane Grp Cap (vph)		1242			1230			210			211	
v/s Ratio Prot					.200			2.0				
v/s Ratio Perm		0.28			c0.50			c0.06			0.04	
v/c Ratio		0.38			0.68			0.33			0.24	
Uniform Delay, d1		4.3			6.2			30.6			30.1	
Progression Factor		1.00			1.00			1.00			1.00	
Incremental Delay, d2		0.9			3.1			0.9			0.6	
Delay (s)		5.2			9.3			31.5			30.7	
Level of Service		A			Α			С			С	
Approach Delay (s)		5.2			9.3			31.5			30.7	
Approach LOS		Α			Α			С			С	
Intersection Summary												
HCM 2000 Control Delay			10.5	НС	CM 2000 Le	vel of Service	ne ne		В			
HCM 2000 Volume to Capacity ratio			0.61	- 110	2.11. 2000 LU	TO, OI OOI VIC						
Actuated Cycle Length (s)			85.0	Q ₁₁	m of lost tim	ne (s)			8.0			
Intersection Capacity Utilization			78.2%		U Level of S	· /			0.0 D			
Analysis Period (min)			15	10	C 20101 01 0	0.7100						
raidiyolo i Gilou (iiliii)			10									

	٠	→	•	•	1	†	1	ļ			
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	Ø9	Ø10	
Lane Configurations	*	T _a	*	T _a		414		414			
Traffic Volume (vph)	157	298	128	451	27	263	19	257			
Future Volume (vph)	157	298	128	451	27	263	19	257			
Lane Group Flow (vph)	174	382	142	535	0	406	0	618			
Turn Type	Prot	NA	Perm	NA	Perm	NA	Perm	NA			
Protected Phases	5	2		6		4		8	9	10	
Permitted Phases			6		4		8	8			
Detector Phase	5	2	6	6	4	4	8	8			
Switch Phase											
Minimum Initial (s)	5.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	1.0	1.0	
Minimum Split (s)	11.1	26.1	26.1	26.1	26.1	26.1	26.2	26.2	5.0	5.0	
Total Split (s)	12.0	52.0	40.0	40.0	28.0	28.0	28.0	28.0	5.0	5.0	
Total Split (%)	13.3%	57.8%	44.4%	44.4%	31.1%	31.1%	31.1%	31.1%	6%	6%	
Yellow Time (s)	3.3	3.3	3.3	3.3	3.6	3.6	3.6	3.6	2.0	2.0	
All-Red Time (s)	2.8	2.8	2.8	2.8	2.6	2.6	2.6	2.6	0.0	0.0	
Lost Time Adjust (s)	-2.1	-2.1	-2.1	-2.1		-2.2		-2.2			
Total Lost Time (s)	4.0	4.0	4.0	4.0		4.0		4.0			
Lead/Lag	Lead		Lag	Lag							
Lead-Lag Optimize?			Yes	Yes							
Recall Mode	None	C-Max	C-Max	C-Max	None	None	None	None	None	None	
Act Effct Green (s)	18.5	60.1	37.6	37.6		21.9		21.9			
Actuated g/C Ratio	0.21	0.67	0.42	0.42		0.24		0.24			
v/c Ratio	0.51	0.35	0.46	0.74		0.67		0.77			
Control Delay	39.7	8.2	25.7	29.8		23.8		23.4			
Queue Delay	0.0	0.0	0.0	0.0		0.0		0.2			
Total Delay	39.7	8.2	25.7	29.8		23.8		23.6			
LOS	D	Α	С	С		С		С			
Approach Delay		18.1		28.9		23.8		23.6			
Approach LOS		В		С		С		С			
Queue Length 50th (m)	27.6	24.9	18.6	81.0		16.2		30.7			
Queue Length 95th (m)	#60.8	51.9	37.7	#124.4		m23.3		45.7			
Internal Link Dist (m)		276.4		61.0		100.0		41.6			
Turn Bay Length (m)	50.0		45.0								
Base Capacity (vph)	343	1100	309	727		696		883			
Starvation Cap Reductn	0	0	0	0		0		0			
Spillback Cap Reductn	0	0	0	0		0		25			
Storage Cap Reductn	0	0	0	0		0		0			
Reduced v/c Ratio	0.51	0.35	0.46	0.74		0.58		0.72			

Intersection Summary

Cycle Length: 90

Actuated Cycle Length: 90

Offset: 0 (0%), Referenced to phase 6:WBTL and 2:EBT, Start of Green

Natural Cycle: 80

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.77

Intersection Signal Delay: 23.9

Intersection Capacity Utilization 82.1%

Intersection LOS: C ICU Level of Service E

Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

Movement EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL		٠	→	*	•	←	1	4	†	~	1		4
Traffic Volume (vph) 157 298 46 128 451 31 27 263 76 19 Fluture Volume (vph) 157 298 46 128 451 31 27 263 76 19 Ideal Flow (vphpl) 1800 1800 1800 1800 1800 1800 1800 180	Movement		EBT	EBR	WBL	WBT	WBR	NBL		NBR	SBL	SBT	SBR
Future Volume (vph) 157 298 46 128 451 31 27 263 76 19 Ideal Flow (vphpl) 1800 1800 1800 1800 1800 1800 1800 180	Lane Configurations	75	D		*	T.			413			413	
Idea Flow (vphp)												257	280
Total Lost time (s)												257	280
Lane Util. Factor	Ideal Flow (vphpl)			1800			1800	1800		1800	1800	1800	1800
Frpb, ped/bikes 1.00 0.95 1.00 0.99 0.96 Fipb, ped/bikes 1.00 1.00 0.78 1.00 0.99 Fit Protected 0.95 1.00 0.95 1.00 0.99 Fit Protected 0.95 1.00 0.95 1.00 1.00 Satd. Flow (prot) 1676 1642 1315 1734 3082 Fit Protected 0.95 1.00 0.54 1.00 0.77 Satd. Flow (perm) 1676 1642 741 1734 2388 Peak-hour factor, PHF 0.90	. ,											4.0	
Figb. ped/bikes												0.95	
Frit 1.00 0.98 1.00 0.99 0.97 Fit Protected 0.95 1.00 0.95 1.00 1.00 Satd. Flow (prot) 1676 1642 1315 1734 3082 Fit Permitted 0.95 1.00 0.54 1.00 0.77 Satd. Flow (prom) 1676 1642 741 1734 2388 Peak-hour factor, PHF 0.90 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.85</td><td></td></t<>												0.85	
Fit Protected 0.95 1.00 0.95 1.00 1.00 Satd. Flow (prot) 1676 1642 1315 1734 3082 Flt Permitted 0.95 1.00 0.54 1.00 0.77 Satd. Flow (perm) 1676 1642 741 1734 2388 Peak-hour factor, PHF 0.90 0.9												1.00	
Satd. Flow (prot) 1676 1642 1315 1734 3082	• • •											0.92	
Fit Permitted	Flt Protected											1.00	
Satility Flow (perm) 1676 1642 741 1734 2388 Peak-hour factor, PHF 0.90	Satd. Flow (prot)											2610	
Peak-hour factor, PHF	Flt Permitted	0.95	1.00		0.54	1.00						0.93	
Adj. Flow (vph)	Satd. Flow (perm)	1676	1642		741	1734			2388			2429	
RTOR Reduction (vph)	Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Lane Group Flow (rph)	Adj. Flow (vph)	174	331	51	142	501	34	30		84	21	286	311
Confil Bikes (#/hr) 86	RTOR Reduction (vph)	0	4	0	0	3	0	0	26	0	0	210	0
Confl. Bikes (#/hr) 2 4 3 Tum Type Prot NA Perm NA Perm NA Perm Perm NA Perm Perm NA Perm Perm NA Perm NA Perm Perm NA Sex 8 8 A Ca Ca Ca Ca Ca NA NB Ca	Lane Group Flow (vph)	174	378	0	142	532	0	0	380	0	0	408	0
Turn Type Prot NA Perm NA Perm NA Perm NA Perm Protected Phases 5 2 6 4 8 Actuated Green, G (s) 16.4 58.0 35.5 35.5 19.7 Effective Green, g (s) 18.5 60.1 37.6 37.6 21.9 Actuated g/C Ratio 0.21 0.67 0.42 0.42 0.24 Clearance Time (s) 6.1 6.1 6.1 6.1 6.2 Vehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 Lane Grp Cap (vph) 344 1096 309 724 581 v/s Ratio Prot c0.10 0.23 c0.31 c0.31 v/s Ratio Perm 0.19 0.16 0.16 v/s Ratio Perm 0.19 0.16 0.65 Uniform Delay, d1 31.7 6.5 18.9 22.0 30.6 Progression Factor 1.00 1.00 1.00 1.00	Confl. Peds. (#/hr)	86		163	163		86	84		54	54		84
Protected Phases 5 2 6 4 8	Confl. Bikes (#/hr)			2			4			3			1
Permitted Phases	Turn Type	Prot	NA		Perm	NA		Perm	NA		Perm	NA	
Actuated Green, G (s) 16.4 58.0 35.5 35.5 19.7 Effective Green, g (s) 18.5 60.1 37.6 37.6 21.9 Actuated g/C Ratio 0.21 0.67 0.42 0.42 0.24 Clearance Time (s) 6.1 6.1 6.1 6.1 6.2 Vehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 Lane Grp Cap (vph) 344 1096 309 724 581 v/s Ratio Prot c0.10 0.23 c0.31 v/s Ratio Perm 0.19 0.16 v/c Ratio 0.51 0.34 0.46 0.73 0.65 Uniform Delay, d1 31.7 6.5 18.9 22.0 30.6 Progression Factor 1.00 1.00 1.00 1.00 1.00 0.69 Incremental Delay, d2 1.2 0.9 4.9 6.5 2.3 Delay (s) 32.9 7.3 23.7 28.5 23.4 Level of Service C A C C C Approach Delay (s) 15.3 27.5 23.4 Approach LOS B C C Intersection Summary HCM 2000 Control Delay	Protected Phases	5	2			6			4			8	
Effective Green, g (s) 18.5 60.1 37.6 37.6 21.9 Actuated g/C Ratio 0.21 0.67 0.42 0.42 0.24 Clearance Time (s) 6.1 6.1 6.1 6.1 6.2 Vehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 3.0 Lane Grp Cap (vph) 344 1096 309 724 581 v/s Ratio Prot c0.10 0.23 c0.31 v/s Ratio Perm 0.19 0.16 v/c Ratio 0.51 0.34 0.46 0.73 0.65 Uniform Delay, d1 31.7 6.5 18.9 22.0 30.6 Progression Factor 1.00 1.00 1.00 1.00 0.69 Incremental Delay, d2 1.2 0.9 4.9 6.5 2.3 Delay (s) 32.9 7.3 23.7 28.5 23.4 Level of Service C A C C C Approach Delay (s) 15.3 27.5 23.4 Approach LOS B C HCM 2000 Level of Service C Intersection Summary HCM 2000 Control Delay	Permitted Phases				6			4			8	8	
Actuated g/C Ratio 0.21 0.67 0.42 0.42 0.24 Clearance Time (s) 6.1 6.1 6.1 6.1 6.2 Vehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 3.0 Lane Grp Cap (vph) 344 1096 309 724 581 v/s Ratio Prot c0.10 0.23 c0.31 v/s Ratio Perm 0.19 0.16 v/c Ratio 0.51 0.34 0.46 0.73 0.65 Uniform Delay, d1 31.7 6.5 18.9 22.0 30.6 Progression Factor 1.00 1.00 1.00 1.00 0.69 Incremental Delay, d2 1.2 0.9 4.9 6.5 2.3 Delay (s) 32.9 7.3 23.7 28.5 23.4 Level of Service C A C C C Approach Delay (s) 15.3 27.5 23.4 Approach LOS B C C Intersection Summary HCM 2000 Control Delay 25.6 HCM 2000 Level of Service C HCM 2000 Volume to Capacity ratio Actuated Cycle Length (s) 90.0 Sum of lost time (s) 16.0	Actuated Green, G (s)	16.4	58.0		35.5	35.5			19.7			19.7	
Clearance Time (s) 6.1 6.1 6.1 6.1 6.2 Vehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 Lane Grp Cap (vph) 344 1096 309 724 581 v/s Ratio Prot c0.10 0.23 c0.31 v/s Ratio Perm 0.19 0.16 v/c Ratio 0.51 0.34 0.46 0.73 0.65 Uniform Delay, d1 31.7 6.5 18.9 22.0 30.6 Progression Factor 1.00 1.00 1.00 0.69 Incremental Delay, d2 1.2 0.9 4.9 6.5 2.3 Delay (s) 32.9 7.3 23.7 28.5 23.4 Level of Service C A C C C Approach LOS B C C C Intersection Summary B C C C Intersection Summary C C C C Inters	Effective Green, g (s)	18.5	60.1		37.6	37.6			21.9			21.9	
Vehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 Lane Grp Cap (vph) 344 1096 309 724 581 v/s Ratio Prot c0.10 0.23 c0.31 v/s Ratio Perm 0.19 0.16 v/c Ratio 0.51 0.34 0.46 0.73 0.65 Uniform Delay, d1 31.7 6.5 18.9 22.0 30.6 Progression Factor 1.00 1.00 1.00 0.69 Incremental Delay, d2 1.2 0.9 4.9 6.5 2.3 Delay (s) 32.9 7.3 23.7 28.5 23.4 Level of Service C A C C C Approach LOS B C C C Intersection Summary V 25.6 HCM 2000 Level of Service C HCM 2000 Volume to Capacity ratio 0.70 Actuated Cycle Length (s) Sum of lost time (s) 16.0		0.21	0.67		0.42	0.42			0.24			0.24	
Lane Grp Cap (vph) 344 1096 309 724 581 V/s Ratio Prot c0.10 0.23 c0.31 V/s Ratio Perm 0.19 0.16 V/c Ratio 0.51 0.34 0.46 0.73 0.65 Uniform Delay, d1 31.7 6.5 18.9 22.0 30.6 Progression Factor 1.00 1.00 1.00 1.00 0.69 Incremental Delay, d2 1.2 0.9 4.9 6.5 2.3 Delay (s) 32.9 7.3 23.7 28.5 23.4 Level of Service C A C C C Approach LoS B C C Intersection Summary HCM 2000 Control Delay 25.6 HCM 2000 Level of Service C Actuated Cycle Length (s) 90.0 Sum of lost time (s) 16.0 Total Control Delay 16.	Clearance Time (s)	6.1	6.1		6.1	6.1			6.2			6.2	
v/s Ratio Prot c0.10 0.23 c0.31 v/s Ratio Perm 0.19 0.16 v/c Ratio 0.51 0.34 0.46 0.73 0.65 Uniform Delay, d1 31.7 6.5 18.9 22.0 30.6 Progression Factor 1.00 1.00 1.00 0.69 Incremental Delay, d2 1.2 0.9 4.9 6.5 2.3 Delay (s) 32.9 7.3 23.7 28.5 23.4 Level of Service C A C C C Approach Delay (s) 15.3 27.5 23.4 Approach LOS B C C Intersection Summary HCM 2000 Control Delay 25.6 HCM 2000 Level of Service C HCM 2000 Volume to Capacity ratio 0.70 Actuated Cycle Length (s) 90.0 Sum of lost time (s) 16.0	Vehicle Extension (s)	3.0	3.0		3.0	3.0			3.0			3.0	
v/s Ratio Perm 0.19 0.16 v/c Ratio 0.51 0.34 0.46 0.73 0.65 Uniform Delay, d1 31.7 6.5 18.9 22.0 30.6 Progression Factor 1.00 1.00 1.00 0.69 Incremental Delay, d2 1.2 0.9 4.9 6.5 2.3 Delay (s) 32.9 7.3 23.7 28.5 23.4 Level of Service C A C C C Approach Delay (s) 15.3 27.5 23.4 Approach LOS B C C Intersection Summary HCM 2000 Control Delay 25.6 HCM 2000 Level of Service C HCM 2000 Volume to Capacity ratio 0.70 Actuated Cycle Length (s) 90.0 Sum of lost time (s) 16.0	Lane Grp Cap (vph)	344	1096		309	724			581			591	
v/c Ratio 0.51 0.34 0.46 0.73 0.65 Uniform Delay, d1 31.7 6.5 18.9 22.0 30.6 Progression Factor 1.00 1.00 1.00 0.69 Incremental Delay, d2 1.2 0.9 4.9 6.5 2.3 Delay (s) 32.9 7.3 23.7 28.5 23.4 Level of Service C A C C C Approach Delay (s) 15.3 27.5 23.4 Approach LOS B C C Intersection Summary C C C HCM 2000 Control Delay 25.6 HCM 2000 Level of Service C HCM 2000 Volume to Capacity ratio 0.70 Actuated Cycle Length (s) Sum of lost time (s) 16.0	v/s Ratio Prot	c0.10	0.23			c0.31							
Uniform Delay, d1 31.7 6.5 18.9 22.0 30.6 Progression Factor 1.00 1.00 1.00 0.69 Incremental Delay, d2 1.2 0.9 4.9 6.5 2.3 Delay (s) 32.9 7.3 23.7 28.5 23.4 Level of Service C A C C C Approach Delay (s) 15.3 27.5 23.4 Approach LOS B C C Intersection Summary HCM 2000 Control Delay 25.6 HCM 2000 Level of Service C HCM 2000 Volume to Capacity ratio 0.70 Actuated Cycle Length (s) 90.0 Sum of lost time (s) 16.0	v/s Ratio Perm				0.19				0.16			c0.17	
Progression Factor 1.00 1.00 1.00 0.69 Incremental Delay, d2 1.2 0.9 4.9 6.5 2.3 Delay (s) 32.9 7.3 23.7 28.5 23.4 Level of Service C A C C C Approach Delay (s) 15.3 27.5 23.4 Approach LOS B C C Intersection Summary C C C HCM 2000 Control Delay 25.6 HCM 2000 Level of Service C HCM 2000 Volume to Capacity ratio 0.70 Actuated Cycle Length (s) Sum of lost time (s) 16.0	v/c Ratio	0.51	0.34		0.46	0.73			0.65			0.69	
Progression Factor 1.00 1.00 1.00 1.00 0.69 Incremental Delay, d2 1.2 0.9 4.9 6.5 2.3 Delay (s) 32.9 7.3 23.7 28.5 23.4 Level of Service C A C C C Approach Delay (s) 15.3 27.5 23.4 Approach LOS B C C Intersection Summary C C C HCM 2000 Control Delay 25.6 HCM 2000 Level of Service C HCM 2000 Volume to Capacity ratio 0.70 Sum of lost time (s) 16.0	Uniform Delay, d1	31.7	6.5		18.9	22.0			30.6			31.0	
Incremental Delay, d2		1.00	1.00		1.00	1.00			0.69			1.00	
Delay (s) 32.9 7.3 23.7 28.5 23.4 Level of Service C A C C C Approach Delay (s) 15.3 27.5 23.4 Approach LOS B C C Intersection Summary HCM 2000 Control Delay 25.6 HCM 2000 Level of Service C HCM 2000 Volume to Capacity ratio 0.70 O.70 Actuated Cycle Length (s) 90.0 Sum of lost time (s) 16.0		1.2	0.9		4.9	6.5			2.3			3.4	
Level of Service C A C C C Approach Delay (s) 15.3 27.5 23.4 Approach LOS B C C Intersection Summary HCM 2000 Control Delay 25.6 HCM 2000 Level of Service C HCM 2000 Volume to Capacity ratio 0.70 Actuated Cycle Length (s) 90.0 Sum of lost time (s) 16.0		32.9	7.3		23.7	28.5			23.4			34.3	
Approach LOS B C C Intersection Summary		С	Α		С	С			С			С	
Intersection Summary HCM 2000 Control Delay 25.6 HCM 2000 Level of Service C HCM 2000 Volume to Capacity ratio 0.70 Actuated Cycle Length (s) 90.0 Sum of lost time (s) 16.0	Approach Delay (s)		15.3			27.5			23.4			34.3	
HCM 2000 Control Delay 25.6 HCM 2000 Level of Service C HCM 2000 Volume to Capacity ratio 0.70 Actuated Cycle Length (s) 90.0 Sum of lost time (s) 16.0	Approach LOS		В			С			С			С	
HCM 2000 Volume to Capacity ratio Actuated Cycle Length (s) 0.70 Sum of lost time (s) 16.0	Intersection Summary												
Actuated Cycle Length (s) 90.0 Sum of lost time (s) 16.0					HC	CM 2000 Lev	el of Service	ce		С			
		atio											
	Actuated Cycle Length (s)				Su	m of lost tim	ie (s)			16.0			
	. ,			82.1%	ICI	U Level of S	ervice			Е			
Analysis Period (min) 15	Analysis Period (min)			15									

Ø6 (R)

	\rightarrow	•			
Lane Group	EBT	WBT	Ø4	Ø8	
Lane Configurations	44	*			
Traffic Volume (vph)	570	802			
Future Volume (vph)	570	802			
Lane Group Flow (vph)	633	891			
Turn Type	NA	NA			
Protected Phases	2	6	4	8	
Permitted Phases					
Detector Phase	2	6			
Switch Phase					
Minimum Initial (s)	10.0	10.0	10.0	10.0	
Minimum Split (s)	23.1	23.1	25.0	25.0	
Total Split (s)	40.0	40.0	25.0	25.0	
Total Split (%)	61.5%	61.5%	38%	38%	
Yellow Time (s)	3.0	3.0	3.0	3.0	
All-Red Time (s)	2.1	2.1	1.0	1.0	
Lost Time Adjust (s)	-1.1	-1.1			
Total Lost Time (s)	4.0	4.0			
Lead/Lag					
Lead-Lag Optimize?					
Recall Mode	C-Max	C-Max	Ped	Ped	
Act Effct Green (s)	36.0	36.0			
Actuated g/C Ratio	0.55	0.55			
v/c Ratio	0.34	0.91			
Control Delay	8.6	29.5			
Queue Delay	0.0	0.0			
Total Delay	8.6	29.5			
LOS	Α	С			
Approach Delay	8.6	29.5			
Approach LOS	Α	С			
Queue Length 50th (m)	21.0	92.2			
Queue Length 95th (m)	30.5	#174.0			
Internal Link Dist (m)	41.2	106.6			
Turn Bay Length (m)					
Base Capacity (vph)	1857	977			
Starvation Cap Reductn	0	0			
Spillback Cap Reductn	0	0			
Storage Cap Reductn	0	0			
Reduced v/c Ratio	0.34	0.91			
Intersection Summary					
Cycle Length: 65					
Actuated Cycle Length: 65					
Offset: 40 (62%), Referenced to phase	se 2:EBT ar	nd 6:WBT, S	tart of Greer	1	
Natural Cycle: 70					
Control Type: Actuated-Coordinated					
Maximum v/c Ratio: 0.91					
Intersection Signal Delay: 20.8				li	ntersection LOS: C
Intersection Capacity Utilization 47.99	%			10	CU Level of Service A
Analysis Period (min) 15					
# 95th percentile volume exceeds of	capacity, qu	eue may be	longer.		
Queue shown is maximum after to		,	ū		
Splits and Phases: 6: Ped Crossing	g & Richmo	nd Rd			
→ Ø2 (R)					# k @4
10 - WZ (N)					7.5-7/7

CIMA+ Synchro 10 Report

FR_{Ø8}

	۶	→	*	1	←	•	1	†	1	-	↓	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		44			*							
Traffic Volume (vph)	0	570	0	0	802	0	0	0	0	0	0	0
Future Volume (vph)	0	570	0	0	802	0	0	0	0	0	0	0
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Total Lost time (s)		4.0			4.0							
Lane Util. Factor		0.95			1.00							
Frpb, ped/bikes		1.00			1.00							
Flpb, ped/bikes		1.00			1.00							
Frt		1.00			1.00							
Flt Protected		1.00			1.00							
Satd. Flow (prot)		3353			1765							
Flt Permitted		1.00			1.00							
Satd. Flow (perm)		3353			1765							
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	0	633	0	0	891	0	0	0	0	0	0	0
RTOR Reduction (vph)	0	0	0	0	0	0	0	0	0	0	0	0
Lane Group Flow (vph)	0	633	0	0	891	0	0	0	0	0	0	0
Confl. Peds. (#/hr)	<u> </u>			<u> </u>			13		12	12		13
Confl. Bikes (#/hr)							.0		2			1
Turn Type		NA			NA							
Protected Phases		2			6							
Permitted Phases												
Actuated Green, G (s)		34.9			34.9							
Effective Green, g (s)		36.0			36.0							
Actuated g/C Ratio		0.55			0.55							
Clearance Time (s)		5.1			5.1							
Vehicle Extension (s)		3.0			3.0							
Lane Grp Cap (vph)		1857			977							
v/s Ratio Prot		0.19			c0.50							
v/s Ratio Perm												
v/c Ratio		0.34			0.91							
Uniform Delay, d1		8.0			13.1							
Progression Factor		1.00			1.00							
Incremental Delay, d2		0.5			14.1							
Delay (s)		8.5			27.2							
Level of Service		А			С							
Approach Delay (s)		8.5			27.2			0.0			0.0	
Approach LOS		Α			С			Α			Α	
Intersection Summary												
HCM 2000 Control Delay			19.4	НС	M 2000 Lev	el of Service)		В			
HCM 2000 Volume to Capacity ratio			0.58									
Actuated Cycle Length (s)			65.0	Su	m of lost tim	e (s)			8.0			
Intersection Capacity Utilization			47.9%		J Level of S	()			A			
Analysis Period (min)			15									
c Critical Lane Group												

1: Churchill Avenue North & Byron Avenue

	۶	→	1	←	4	†	-	ļ	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	
Lane Configurations		4		4	*	T _a	*	1	Ī
Traffic Volume (vph)	57	172	54	125	27	334	38	330	
Future Volume (vph)	57	172	54	125	27	334	38	330	
Lane Group Flow (vph)	0	317	0	258	30	448	42	399	
Turn Type	Perm	NA	Perm	NA	Perm	NA	Perm	NA	
Protected Phases		4		8		2		6	
Permitted Phases	4		8		2		6		
Detector Phase	4	4	8	8	2	2	6	6	
Switch Phase									
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	
Minimum Split (s)	30.6	30.6	30.6	30.6	26.4	26.4	26.4	26.4	
Total Split (s)	38.0	38.0	38.0	38.0	42.0	42.0	42.0	42.0	
Total Split (%)	47.5%	47.5%	47.5%	47.5%	52.5%	52.5%	52.5%	52.5%	
Yellow Time (s)	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	
All-Red Time (s)	2.3	2.3	2.3	2.3	2.1	2.1	2.1	2.1	
Lost Time Adjust (s)		-1.6		-1.6	-1.4	-1.4	-1.4	-1.4	
Total Lost Time (s)		4.0		4.0	4.0	4.0	4.0	4.0	
Lead/Lag									
Lead-Lag Optimize?									
Recall Mode	None	None	None	None	C-Max	C-Max	C-Max	C-Max	
Act Effct Green (s)		22.9		22.9	49.1	49.1	49.1	49.1	
Actuated g/C Ratio		0.29		0.29	0.61	0.61	0.61	0.61	
v/c Ratio		0.73		0.63	0.06	0.43	0.09	0.37	
Control Delay		33.4		28.6	8.8	10.6	3.7	3.8	
Queue Delay		0.0		0.0	0.0	0.0	0.0	0.3	
Total Delay		33.4		28.6	8.8	10.6	3.7	4.1	
LOS		С		С	Α	В	Α	Α	
Approach Delay		33.4		28.6		10.5		4.1	
Approach LOS		С		С		В		Α	
Queue Length 50th (m)		42.7		32.4	1.8	32.3	1.2	12.1	
Queue Length 95th (m)		61.5		49.0	6.6	68.0	m2.9	21.7	
Internal Link Dist (m)		244.6		113.6		126.7		100.0	
Turn Bay Length (m)					30.0		30.0		
Base Capacity (vph)		636		596	493	1050	460	1067	
Starvation Cap Reductn		0		0	0	0	0	228	
Spillback Cap Reductn		0		0	0	0	0	0	
Storage Cap Reductn		0		0	0	0	0	0	
Reduced v/c Ratio		0.50		0.43	0.06	0.43	0.09	0.48	
Intersection Summary									

Intersection Summary

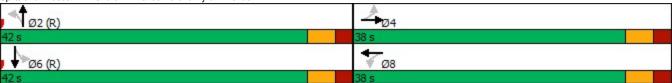
Cycle Length: 80

Actuated Cycle Length: 80

Offset: 74 (93%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 60 Control Type: Actuated-Coordinated

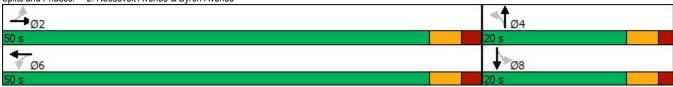
Maximum v/c Ratio: 0.73


Intersection Signal Delay: 16.6 Intersection Capacity Utilization 61.3%

Intersection LOS: B ICU Level of Service B

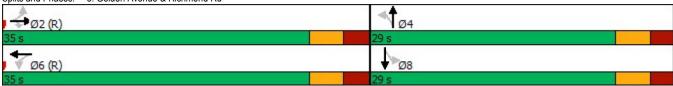
Analysis Period (min) 15

m Volume for 95th percentile queue is metered by upstream signal.


Splits and Phases: 1: Churchill Avenue North & Byron Avenue

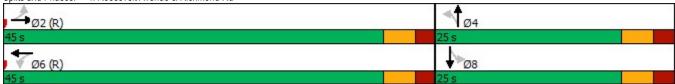
1. Gharchiii Avende Nord	<u> </u> →	JII AVEI	_		+	4	_	*		7		1
		-	*	▼			7				*	•
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4 172			125		1	T ₂		7	1	
Traffic Volume (vph)	57	172	57	54	125	53	27	334	69	38	330	29
Future Volume (vph)	57	172	57	54	125	53	27	334	69	38	330	29
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Total Lost time (s)		4.0			4.0		4.0	4.0		4.0	4.0	
Lane Util. Factor		1.00			1.00		1.00	1.00		1.00	1.00	
Frpb, ped/bikes		0.99			0.99		1.00	0.99		1.00	1.00	
Flpb, ped/bikes		1.00			1.00		0.96	1.00		0.96	1.00	
Frt		0.97			0.97		1.00	0.97		1.00	0.99	
Flt Protected		0.99			0.99		0.95	1.00		0.95	1.00	
Satd. Flow (prot)		1684			1677		1607	1702		1614	1736	
Flt Permitted		0.87			0.81		0.48	1.00		0.44	1.00	
Satd. Flow (perm)		1473			1372		804	1702		747	1736	
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	63	191	63	60	139	59	30	371	77	42	367	32
RTOR Reduction (vph)	0	14	0	0	16	0	0	7	0	0	3	0
Lane Group Flow (vph)	0	303	0	0	242	0	30	441	0	42	396	0
Confl. Peds. (#/hr)	13		13	13		13	43		18	43		18
Confl. Bikes (#/hr)	10		1	10		10	10		7	10		10
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases		4			8			2			6	
Permitted Phases	4			8			2			6		
Actuated Green, G (s)		21.3			21.3		47.7	47.7		47.7	47.7	
Effective Green, g (s)		22.9			22.9		49.1	49.1		49.1	49.1	
Actuated g/C Ratio		0.29			0.29		0.61	0.61		0.61	0.61	
Clearance Time (s)		5.6			5.6		5.4	5.4		5.4	5.4	
Vehicle Extension (s)		3.0			3.0		3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)		421			392		493	1044		458	1065	
v/s Ratio Prot		121			002		100	c0.26		100	0.23	
v/s Ratio Perm		c0.21			0.18		0.04	00.20		0.06	0.20	
v/c Ratio		0.72			0.62		0.06	0.42		0.09	0.37	
Uniform Delay, d1		25.7			24.7		6.2	8.1		6.3	7.7	
Progression Factor		1.00			1.00		1.00	1.00		0.38	0.33	
Incremental Delay, d2		6.0			2.9		0.2	1.3		0.3	0.8	
Delay (s)		31.7			27.6		6.4	9.3		2.8	3.4	
Level of Service		C			C C		A	Α.		Α.	A	
Approach Delay (s)		31.7			27.6		А	9.1		А	3.3	
Approach LOS		C			C C			A			Α	
• •								- '			,,	
Intersection Summary			45.4	114	200001							
HCM 2000 Control Delay			15.4	HC	CM 2000 Le	vei of Servi	ce		В			
HCM 2000 Volume to Capacity ratio			0.52	_		()			2.2			
Actuated Cycle Length (s)			80.0		ım of lost tim	()			8.0			
Intersection Capacity Utilization			61.3%	IC	U Level of S	ervice			В			
Analysis Period (min)			15									

	۶	-	•	•	1	†	1	ļ	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	
Lane Configurations		£Î.		43		43		412	
Traffic Volume (vph)	36	233	14	148	4	31	26	20	
Future Volume (vph)	36	233	14	148	4	31	26	20	
Lane Group Flow (vph)	0	308	0	211	0	57	0	64	
Turn Type	Perm	NA	Perm	NA	Perm	NA	Perm	NA	
Protected Phases		2		6		4		8	
Permitted Phases	2		6		4		8		
Detector Phase	2	2	6	6	4	4	8	8	
Switch Phase									
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	
Minimum Split (s)	22.5	22.5	22.5	22.5	20.0	20.0	20.0	20.0	
Total Split (s)	50.0	50.0	50.0	50.0	20.0	20.0	20.0	20.0	
Total Split (%)	71.4%	71.4%	71.4%	71.4%	28.6%	28.6%	28.6%	28.6%	
Yellow Time (s)	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	
All-Red Time (s)	2.2	2.2	2.2	2.2	1.7	1.7	1.7	1.7	
Lost Time Adjust (s)		-1.5		-1.5		-1.0		-1.0	
Total Lost Time (s)		4.0		4.0		4.0		4.0	
Lead/Lag									
Lead-Lag Optimize?									
Recall Mode	Max	Max	Max	Max	None	None	None	None	
Act Effct Green (s)		55.8		55.8		13.0		13.0	
Actuated g/C Ratio		0.81		0.81		0.19		0.19	
v/c Ratio		0.23		0.16		0.18		0.23	
Control Delay		4.0		3.4		18.4		21.7	
Queue Delay		0.0		0.0		0.0		0.0	
Total Delay		4.0		3.4		18.4		21.7	
LOS		A		A		В		C	
Approach Delay		4.0		3.4		18.4		21.7	
Approach LOS		A		A		В		C	
Queue Length 50th (m)		10.8		6.0		4.8		6.6	
Queue Length 95th (m)		25.5		15.7		12.8		15.1	
Internal Link Dist (m)		50.9		244.6		129.2		56.5	
Turn Bay Length (m)		30.0				v.=		50.5	
Base Capacity (vph)		1349		1360		389		346	
Starvation Cap Reductn		0		0		0		0	
Spillback Cap Reductn		0		0		0		0	
Storage Cap Reductn		0		0		0		0	
Reduced v/c Ratio		0.23		0.16		0.15		0.18	
Intersection Summary									
Cycle Length: 70									
Actuated Cycle Length: 68.8									
Natural Cycle: 45									
Control Type: Semi Act-Uncoord									
Maximum v/c Ratio: 0.23									
Intersection Signal Delay: 6.8				Int	ersection L	OS: A			
Intersection Capacity Utilization 43.0%	6				U Level of S				
Analysis Period (min) 15	U			10	O LOVOI OI C	JOI VICE A			


Splits and Phases: 2: Roosevelt Avenue & Byron Avenue

۶	-	*	1	•	•	1	†	1	1	Ţ	1
EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
	₫ ₂			412			412			412	
36	233	8	14	148	28	4	31	17	26	20	12
36		8	14	148	28	4	31	17	26	20	12
1800		1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
							4.0			4.0	
							1.00			1.00	
n an		0 00	0 00		n an	0.00		n an	0 00		0.90
											13
											0
					-	-					0
	307			203			40			55	33
ŏ			13			33		13	13		აა 1
	N.1.A			N.I.A	ı		NIA			N1.0	ı
Perm			Perm			Perm			Perm		
•	2		•	ь			4		•	8	
2	=0.0		6	=0.0		4			8		
				1276			197			177	
	c0.18			0.12			0.03			c0.04	
	0.24			0.16			0.20			0.30	
	2.4			2.2			27.9			28.3	
	1.00			1.00			1.00			1.00	
	0.5			0.3			0.5			0.9	
	2.9			2.5			28.5			29.2	
	Α			Α			С			С	
	2.9			2.5			28.5			29.2	
	Α			Α			С			С	
			НС	CM 2000 Le	vel of Service	се		Α			
								8.0			
			ICI	J Level of S	ervice			Α			
		15									
	EBL 36	BBL EBT 36 233 36 233 1800 1800 4.0 1.00 1.00 1.00 1.00 0.99 1741 0.95 1661 0.90 0.90 40 259 0 1 0 307 8 Perm NA 2 2 52.6 54.1 0.76 5.5 3.0 1269 c0.18 0.24 2.4 1.00 0.5 2.9 A 2.9	BBL EBT EBR 36 233 8 36 233 8 1800 1800 1800 4.0 1.00 1.00 1.00 1.00 0.99 1741 0.95 1661 0.90 0.90 0.90 40 259 9 0 1 0 0 307 0 8 13 2 Perm NA 2 2 2 52.6 54.1 0.76 5.5 3.0 1269 c0.18 0.24 2.4 1.00 0.5 2.9 A 2.9 A 2.9 A 2.9 A 43.0%	BBL EBT EBR WBL 36 233 8 14 36 233 8 14 1800 1800 1800 1800 4.0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1741 0.95 1661 0.90 0.90 0.90 0.90 40 259 9 16 0 1 0 0 0 0 307 0 0 0 8 13 13 13 2 Perm NA Perm 2 2 6 52.6 54.1 0.76 5.5 3.0 1269 c0.18 0.24 2.4 1.00 0.5 2.9 A 2.9 A 2.9 A 2.9 A 2.9 A 2.9 A 43.0% ICI	BEL EBT EBR WBL WBT 36 233 8 14 148 36 233 8 14 148 1800 1800 1800 1800 1800 4.0 4.0 4.0 1.00 1.00 1.00 1.00 0.99 1.00 0.99 1.00 0.99 1.00 1741 1712 0.95 0.97 1661 1671 0.90 0.90 0.90 0.90 0.90 40 259 9 16 164 0 1 0 0 6 6 0 307 0 0 205 8 13 13 2 Perm NA Perm NA 2 6 6 2 6 52.6 52.6 52.6 54.1 54.1 0.76 0.76 5.5 5.5 3.0 3.0 3.0 1269 1276 co.18 0.12 0.24 0.16 2.4 2.2 1.00 1.00 0.5 0.3 2.9 2.5 A A A 2.9 2.5 A A A 7.7 HCM 2000 Level of S FINAL A Sum of lost tim 43.0% ICU Level of S	BEL EBT EBR WBL WBT WBR 36 233 8 14 148 28 1800 1800 1800 1800 1800 1800 4.0 4.0 1.00 1.00 1.00 0.99 1.00 0.99 1.00 1.00 1.00 0.98 0.99 1.00 1741 1712 0.95 0.97 1661 1671 0.90 0.90 0.90 0.90 0.90 0.90 40 259 9 16 164 31 0 1 0 0 6 0 0 307 0 0 205 0 8 13 13 8 2 1 Perm NA Perm NA 2 6 2 6 52.6 52.6 54.1 54.1 0.76 0.76 5.5 5.5 3.0 3.0 3.0 1269 1276 c0.18 0.12 0.24 0.16 2.4 2.2 1.00 1.00 0.5 0.3 2.9 2.5 A A A 2.9 2.5 A A A 7.7 HCM 2000 Level of Service 1CU Level of Service	### Company of the co	EBL EBT EBR WBL WBT WBR NBL NBT 36 233 8 14 148 28 4 31 36 233 8 14 148 28 4 31 1800 1800 1800 1800 1800 1800 1800 180	EBL EBT EBR WBL WBT WBR NBL NBT NBR 36 233 8 14 148 28 4 31 17 36 233 8 14 148 28 4 31 17 1800 1800 1800 1800 1800 1800 1800 1800 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.99 0.98 0.95 0.95 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1741 1712 1643 1.00 <td< td=""><td>EBL EBR WBL WBT WBR NBL NBT NBR SBL 36 233 8 14 148 28 4 31 17 26 36 233 8 14 148 28 4 31 17 26 1800</td><td>EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL SBT</td></td<>	EBL EBR WBL WBT WBR NBL NBT NBR SBL 36 233 8 14 148 28 4 31 17 26 36 233 8 14 148 28 4 31 17 26 1800	EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL SBT

	۶	-	*	1	←	4	†	1	Ţ
Lane Group	EBL	EBT	EBR	WBL	WBT	NBL	NBT	SBL	SBT
Lane Configurations		*	7		4 283		A.		43
Traffic Volume (vph)	2	476	28	46	283	49	4	1	4
Future Volume (vph)	2	476	28	46	283	49	2	1	4
Lane Group Flow (vph)	0	531	31	0	368	0	133	0	5
Turn Type	Perm	NA	Perm	Perm	NA	Perm	NA	Perm	NA
Protected Phases		2			6		4		8
Permitted Phases	2		2	6		4		8	
Detector Phase	2	2	2	6	6	4	4	8	8
Switch Phase									
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
Minimum Split (s)	28.8	28.8	28.8	28.8	28.8	28.6	28.6	28.6	28.6
Total Split (s)	35.0	35.0	35.0	35.0	35.0	29.0	29.0	29.0	29.0
Total Split (%)	54.7%	54.7%	54.7%	54.7%	54.7%	45.3%	45.3%	45.3%	45.3%
Yellow Time (s)	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3
All-Red Time (s)	2.5	2.5	2.5	2.5	2.5	2.3	2.3	2.3	2.3
Lost Time Adjust (s)		-1.8	-1.8		-1.8		-1.6		-1.6
Total Lost Time (s)		4.0	4.0		4.0		4.0		4.0
Lead/Lag									
Lead-Lag Optimize?									
Recall Mode	C-Max	C-Max	C-Max	C-Max	C-Max	None	None	None	None
Act Effct Green (s)		40.5	40.5		40.5		19.4		19.4
Actuated g/C Ratio		0.63	0.63		0.63		0.30		0.30
v/c Ratio		0.48	0.04		0.37		0.29		0.01
Control Delay		11.6	2.5		10.4		8.5		12.2
Queue Delay		0.0	0.0		0.0		0.0		0.0
Total Delay		11.6	2.5		10.4		8.5		12.2
-OS		В	A		В		A		В
Approach Delay		11.1			10.4		8.5		12.3
Approach LOS		В			В		A		В
Queue Length 50th (m)		45.0	0.0		28.3		4.3		0.4
Queue Length 95th (m)		74.5	2.8		49.3		14.6		2.3
Internal Link Dist (m)		37.9			130.2		72.7		29.6
Turn Bay Length (m)									
Base Capacity (vph)		1116	883		991		570		654
Starvation Cap Reductn		0	0		0		0		0
Spillback Cap Reductn		0	0		0		0		0
Storage Cap Reductn		0	0		0		0		0
Reduced v/c Ratio		0.48	0.04		0.37		0.23		0.01
ntersection Summary									
Cycle Length: 64									
Actuated Cycle Length: 64									
Offset: 21 (33%), Referenced to phas	e 2 FRTL	and 6·WRTI	Start of G	reen					
Natural Cycle: 60	- L.LD L (0.11011	., 5.6.1.010						
Control Type: Actuated-Coordinated									
Maximum v/c Ratio: 0.48									
Intersection Signal Delay: 10.6				Inf	tersection Lo	OS: B			
Intersection Capacity Utilization 74.3%	6				U Level of S				
Analysis Period (min) 15				10	5 E0 101 01 C	751 VIOO D			
miarysis i Gilou (IIIIII) 13									


Splits and Phases: 3: Golden Avenue & Richmond Rd

	۶	→	*	1	←	•	1	†	-	1	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		*	7		4			4			4	
Traffic Volume (vph)	2	476	28	46	283	3	49		69	1	4	0
Future Volume (vph)	2	476	28	46	283	3	49	2	69	1	4	0
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Total Lost time (s)		4.0	4.0		4.0			4.0			4.0	
Lane Util. Factor		1.00	1.00		1.00			1.00			1.00	
Frpb, ped/bikes		1.00	0.91		1.00			0.95			1.00	
Flpb, ped/bikes		1.00	1.00		1.00			0.98			0.99	
Frt		1.00	0.85		1.00			0.92			1.00	
Flt Protected		1.00	1.00		0.99			0.98			0.99	
Satd. Flow (prot)		1764	1371		1743			1479			1729	
Flt Permitted		1.00	1.00		0.89			0.89			0.96	
Satd. Flow (perm)		1763	1371		1565			1340			1676	
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	2	529	31	51	314	3	54	2	77	1	4	0
RTOR Reduction (vph)	0	0	12	0	0	0	0	56	0	0	0	0
Lane Group Flow (vph)	0	531	19	0	368	0	0	77	0	0	5	0
Confl. Peds. (#/hr)	62	001	45	45	000	62	33		49	49		33
Confl. Bikes (#/hr)	UL.		8	40		8	00		6	40		20
Turn Type	Perm	NA	Perm	Perm	NA		Perm	NA		Perm	NA	
Protected Phases	1 Cilli	2	1 Cilli	1 Cilli	6		1 Cilli	4		1 Cilli	8	
Permitted Phases	2		2	6	0		4	7		8	U	
Actuated Green, G (s)	2	36.8	36.8	U	36.8		7	15.8		U	15.8	
Effective Green, q (s)		38.6	38.6		38.6			17.4			17.4	
Actuated g/C Ratio		0.60	0.60		0.60			0.27			0.27	
Clearance Time (s)		5.8	5.8		5.8			5.6			5.6	
Vehicle Extension (s)		3.0	3.0		3.0			3.0			3.0	
		1063	826		943			364			455	
Lane Grp Cap (vph) v/s Ratio Prot		1003	020		943			304			400	
v/s Ratio Perm		c0.30	0.01		0.23			c0.06			0.00	
			0.01					0.21			0.00	
v/c Ratio		0.50 7.2	5.1		0.39 6.6			18.0			17.0	
Uniform Delay, d1			1.00		1.00			1.00			1.00	
Progression Factor		1.00 1.7	0.1		1.00			0.3			0.0	
Incremental Delay, d2		8.9	5.2		7.8			18.3			17.0	
Delay (s)											17.0 B	
Level of Service		Α	Α		A			B 18.3			_	
Approach Delay (s) Approach LOS		8.7 A			7.8 A			18.3 B			17.0 B	
Intersection Summary												
HCM 2000 Control Delay			9.6	нс	CM 2000 Lev	el of Service	2		A			
HCM 2000 Volume to Capacity ratio			0.41	110	JIVI ZUUU LE	ICI OI OCIVIL						
Actuated Cycle Length (s)			64.0	Ç.,	m of lost tim	no (c)			8.0			
Intersection Capacity Utilization			74.3%		U Level of S	()			0.0 D			
Analysis Period (min)			14.5%	101	O LEVELUI S	CI VICE			U			
c Critical Lane Group			10									

Lanes, Volumes, Timings 4: Roosevelt Avenue & Richmond Rd

Lane Group EBL EBT WBL WBT NBL NBT SBL SBT Lane Configurations Tartific Volume (vph) 5 639 14 304 26 11 39 13 Lane Corrigoration (vph) 5 639 14 304 26 11 39 13 Lane Group Flow (vph) 0 727 0 385 0 77 0 70 Turn Type Perm NA Pe			\rightarrow	1		1	Ī	-	¥	
Tuture Viph)	Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	
Tuture Volume (vph)	ane Configurations		4		4		4		4	
vilure Volume (vph) 5 639 14 304 26 11 39 13 anne Group Flow (vph) 0 7272 0 385 0 77 0 70 furn Type Permit NA Perm NA Perm NA Perm NA Permit NA Perm NA Permit NA		5	639	14	304	26	11	39	13	
ane Group Flow (vph)				14						
Turn Type	ane Group Flow (vph)	0		0	385				70	
Protected Phases 2 6 6 4 8 8 Promitted Phases 2 2 6 6 4 4 8 8 Promitted Phases 2 2 2 6 6 6 4 4 8 8 Promitted Phases 2 2 2 6 6 6 4 4 8 8 8 Promitted Phases Promitted Phases 2 2 2 6 6 6 4 4 8 8 8 Promitted Phases Promitt								Perm		
Permitted Phases 2 6 6 4 4 8 8 elected Phase 2 2 6 6 6 4 4 4 8 8 elected Phase 2 2 6 6 6 4 4 4 8 8 elected Phase 2 2 6 6 6 4 4 4 8 8 elected Phase Witch Phase 9 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10										
Detector Phase 2 2 6 6 4 4 8 8 8		2	_	6		4	•	8		
Switch Phase diminium Initial (s)			2		6		4		8	
Minimum Spit (s)				U	0	-	7	U	U	
Minimum Spilt (s)		10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	
Total Split (s)	()									
Total Spiti (%)										
Vellow Time (s) 3.3 3.5 3.5 3.5 3.0										
All-Red Time (s)										
Cotal Lost Time Adjust (s)										
Total Lost Time (s)		۷.۱		۷.۱		2.3		2.3		
Lead/Lag Optimize? Recall Mode										
Read-I Mode			4.0		4.0		4.0		4.0	
Recall Mode C-Max C-Max C-Max C-Max None Non										
Act Effect Green (s)										
Actuated g/C Ratio 0.70 0.70 0.24 0.24		C-Max		C-Max		None		None		
	. ,									
Control Delay										
Caucie Delay 0.3 0.0 0							0.22			
Total Delay	Control Delay									
Approach LoS										
Approach Delay 11.2 7.1 13.4 18.2 Approach LOS B A B B B Queue Length 50th (m) 62.3 24.2 4.1 5.8 Queue Length 95th (m) 102.2 40.6 13.5 15.0 Internal Link Dist (m) 130.2 276.4 56.5 123.0 Furn Bay Length (m) Base Capacity (vph) 1225 1171 425 396 Starvation Cap Reductn 114 0 0 0 0 Spillback Cap Reductn 0 0 0 0 0 Spillback Cap Reductn 0 0 0 0 0 Reduced Vc Ratio 0.65 0.33 0.18 0.18 Intersection Summary Cycle Length: 70 Actuated Cycle Length: 70 Offset: 27 (39%), Referenced to phase 2:EBTL and 6:WBTL, Start of Green Vatural Cycle: 60 Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.59 Intersection Signal Delay: 10.4 Intersection LOS: B Intersection Capacity Utilization 59.8% ICU Level of Service B			11.2		7.1		13.4		18.2	
Approach LOS B A B B A B B Queue Length 50th (m) 62.3 24.2 4.1 5.8 Queue Length 95th (m) 102.2 40.6 13.5 15.0 Internal Link Dist (m) 130.2 276.4 56.5 123.0 Internal Link Dist (m) 130.2 276.4 56.5 123.0 Internal Link Dist (m) 1225 1171 425 396 Starvation Cap Reducth 114 0 0 0 0 0 0 Storage Cap Reducth 0 0 0 0 0 0 O O O O O O O O O O O O O	_OS		В		Α		В		В	
Course Length 50th (m) 62.3 24.2 4.1 5.8	Approach Delay		11.2		7.1		13.4		18.2	
Queue Length 95th (m) 102.2 40.6 13.5 15.0 Internal Link Dist (m) 130.2 276.4 56.5 123.0 Furn Bay Length (m) 33.2 276.4 56.5 123.0 Base Capacity (vph) 1225 1171 425 396 Starvation Cap Reductn 0 0 0 0 Spillback Cap Reductn 0 0 0 0 Reduced v/c Ratio 0 0 0 0 Reduced v/c Ratio 0.65 0.33 0.18 0.18 **Proceed of the Cycle Length: 70 **Countrol Type: Actuated Cycle Length: 70 **Countrol Type: Actuated-Coordinated Maximum v/c Ratio: 0.59 Intersection Signal Delay: 10.4 Intersection LOS: B Intersection Capacity Utilization 59.8% ICU Level of Service B	Approach LOS		В		Α		В		В	
Queue Length 95th (m) 102.2 40.6 13.5 15.0 Internal Link Dist (m) 130.2 276.4 56.5 123.0 Furn Bay Length (m) 3ase Capacity (vph) 1225 1171 425 396 Starvation Cap Reductn 114 0 0 0 Spillback Cap Reductn 0 0 0 0 Storage Cap Reductn 0 0 0 0 Reduced v/c Ratio 0.65 0.33 0.18 0.18 **Proceed on Summary **Cycle Length: 70 **Actuated Cycle Length: 70 **Offset: 27 (39%), Referenced to phase 2:EBTL and 6:WBTL, Start of Green **Natural Cycle: 60 **Control Type: Actuated-Coordinated **Maximum v/c Ratio: 0.59 **Intersection Signal Delay: 10.4 Intersection LOS: B Intersection Capacity Utilization 59.8% ICU Level of Service B	Queue Length 50th (m)		62.3		24.2		4.1		5.8	
New York 1997	Queue Length 95th (m)		102.2		40.6		13.5		15.0	
Furn Bay Length (m) Base Capacity (vph) 1225 1171 425 396 Starvation Cap Reductn 114 0 0 0 0 Spillback Cap Reductn 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 0 Reduced v/c Ratio 0.65 0.33 0.18 0.18 Intersection Summary Cycle Length: 70 Actuated Cycle Length: 70 Cycle Length: 70 Cycle Length: 70 Cycle Length: 70 Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.59 Intersection Signal Delay: 10.4 Intersection LOS: B Intersection Capacity Utilization 59.8% Intersection Service B			130.2		276.4		56.5		123.0	
Base Capacity (vph) 1225 1171 425 396 Starvation Cap Reductn 114 0 0 0 0 Spillback Cap Reductn 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 0 Reduced v/c Ratio 0.65 0.33 0.18 0.18 Intersection Summary Cycle Length: 70 Actuated Cycle Length: 70 Offset: 27 (39%), Referenced to phase 2:EBTL and 6:WBTL, Start of Green Vatural Cycle: 60 Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.59 Intersection Signal Delay: 10.4 Intersection LOS: B Intersection Capacity Utilization 59.8% Intersection Service B										
Starvation Cap Reductn 114 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			1225		1171		425		396	
Spillback Cap Reductn 0 0 0 0 0 0 0 0 0			114				0		0	
Storage Cap Reductn 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			0		0		0		0	
Reduced v/c Ratio 0.65 0.33 0.18 0.18 Intersection Summary Cycle Length: 70 Actuated Cycle Length: 70 Offset: 27 (39%), Referenced to phase 2:EBTL and 6:WBTL, Start of Green Natural Cycle: 60 Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.59 Intersection Signal Delay: 10.4 Intersection LOS: B Intersection Capacity Utilization 59.8%										
Cycle Length: 70 Actuated Cycle Length: 70 Offset: 27 (39%), Referenced to phase 2:EBTL and 6:WBTL, Start of Green Natural Cycle: 60 Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.59 Intersection Signal Delay: 10.4 Intersection LOS: B Intersection Capacity Utilization 59.8%										
Cycle Length: 70 Actuated Cycle Length: 70 Offset: 27 (39%), Referenced to phase 2:EBTL and 6:WBTL, Start of Green Natural Cycle: 60 Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.59 Intersection Signal Delay: 10.4 Intersection LOS: B Intersection Capacity Utilization 59.8%	ntersection Summary									
Actuated Cycle Length: 70 Offset: 27 (39%), Referenced to phase 2:EBTL and 6:WBTL, Start of Green Natural Cycle: 60 Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.59 Intersection Signal Delay: 10.4 Intersection Capacity Utilization 59.8% ICU Level of Service B										
Offset: 27 (39%), Referenced to phase 2:EBTL and 6:WBTL, Start of Green Natural Cycle: 60 Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.59 Intersection Signal Delay: 10.4 Intersection Capacity Utilization 59.8% ICU Level of Service B										
Natural Cycle: 60 Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.59 Intersection Signal Delay: 10.4 Intersection Capacity Utilization 59.8% ICU Level of Service B	, ,	se 2:EBTL a	and 6:WBTI	. Start of G	reen					
Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.59 Intersection Signal Delay: 10.4 Intersection Capacity Utilization 59.8% ICU Level of Service B				,						
Maximum v/c Ratio: 0.59 Intersection Signal Delay: 10.4 Intersection LOS: B ICU Level of Service B										
ntersection Signal Delay: 10.4 Intersection LOS: B ntersection Capacity Utilization 59.8% ICU Level of Service B										
ntersection Capacity Utilization 59.8% ICU Level of Service B					Int	ersection L	OS∙ B			
		0/2								
		70			101	J LEVELUI 3	OUNIOS D			
	ananjono i oniou (mini) io									

	۶	→	7	1	—	1	1	1	~	1		1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Volume (vph)	5	639	10	14	304	28	26	11	32	39	13	12
Future Volume (vph)	5	639	10	14	304	28	26	11	32	39	13	12
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Total Lost time (s)		4.0			4.0			4.0			4.0	
Lane Util. Factor		1.00			1.00			1.00			1.00	
Frpb, ped/bikes		1.00			0.99			0.95			0.97	
Flpb, ped/bikes		1.00			1.00			0.96			0.96	
Frt		1.00			0.99			0.94			0.97	
Flt Protected		1.00			1.00			0.98			0.97	
Satd. Flow (prot)		1757			1723			1486			1561	
Flt Permitted		1.00			0.97			0.88			0.80	
Satd. Flow (perm)		1753			1671			1333			1290	
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	6	710	11	16	338	31	29	12	36	43	14	13
RTOR Reduction (vph)	0	1	0	0	4	0	0	28	0	0	10	0
Lane Group Flow (vph)	0	726	0	0	381	0	0	49	0	0	60	0
Confl. Peds. (#/hr)	74		69	69		74	65		40	40		65
Confl. Bikes (#/hr)			7			4			4			4
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases		2			6			4		. •	8	
Permitted Phases	2			6			4	•		8		
Actuated Green, G (s)	_	45.6		•	45.6		•	13.4		-	13.4	
Effective Green, g (s)		47.0			47.0			15.0			15.0	
Actuated g/C Ratio		0.67			0.67			0.21			0.21	
Clearance Time (s)		5.4			5.4			5.6			5.6	
Vehicle Extension (s)		3.0			3.0			3.0			3.0	
Lane Grp Cap (vph)		1177			1121			285			276	
v/s Ratio Prot		1177			1121			200			210	
v/s Ratio Perm		c0.41			0.23			0.04			c0.05	
v/c Ratio		0.62			0.34			0.17			0.22	
Uniform Delay, d1		6.5			4.9			22.4			22.7	
Progression Factor		1.00			1.00			1.00			1.00	
Incremental Delay, d2		2.4			0.8			0.3			0.4	
Delay (s)		8.9			5.7			22.7			23.1	
Level of Service		A			A			C			C	
Approach Delay (s)		8.9			5.7			22.7			23.1	
Approach LOS		A			A			C			C	
•		, ,			,,							
Intersection Summary HCM 2000 Control Delay			9.6	шс	CM 2000 Lev	al of Consid	20		A			
HCM 2000 Control Delay HCM 2000 Volume to Capacity ratio			0.52	п	JIVI ZUUU LEV	VELOI OFIVIO)C		А			
Actuated Cycle Length (s)			70.0	c	m of lost tim	no (c)			8.0			
			70.0 59.8%		m of lost tim U Level of S				8.0 B			
Intersection Capacity Utilization Analysis Period (min)			59.8% 15	IU	o reading 2	CI VICE			D			
Analysis Pellou (IIIIII)			10									

	•	-	•	—	1	1	-	↓			
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	Ø9	Ø10	
Lane Configurations	1	T _a	*	T _a		413		414			
Traffic Volume (vph)	264	396	51	187	27	286	33	337			
Future Volume (vph)	264	396	51	187	27	286	33	337			
Lane Group Flow (vph)	293	477	57	232	0	440	0	571			
Turn Type	Prot	NA	Perm	NA	Perm	NA	Perm	NA			
Protected Phases	5	2		6		4		8	9	10	
Permitted Phases			6		4		8	8			
Detector Phase	5	2	6	6	4	4	8	8			
Switch Phase											
Minimum Initial (s)	5.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	1.0	1.0	
Minimum Split (s)	11.1	26.1	26.1	26.1	26.1	26.1	26.2	26.2	5.0	5.0	
Total Split (s)	14.0	40.0	26.0	26.0	30.0	30.0	30.0	30.0	5.0	5.0	
Total Split (%)	17.5%	50.0%	32.5%	32.5%	37.5%	37.5%	37.5%	37.5%	6%	6%	
Yellow Time (s)	3.3	3.3	3.3	3.3	3.6	3.6	3.6	3.6	2.0	2.0	
All-Red Time (s)	2.8	2.8	2.8	2.8	2.6	2.6	2.6	2.6	0.0	0.0	
Lost Time Adjust (s)	-2.1	-2.1	-2.1	-2.1		-2.2		-2.2			
Total Lost Time (s)	4.0	4.0	4.0	4.0		4.0		4.0			
Lead/Lag	Lead		Lag	Lag							
Lead-Lag Optimize?			Yes	Yes							
Recall Mode	None	C-Max	C-Max	C-Max	None	None	None	None	None	None	
Act Effct Green (s)	23.9	49.9	22.0	22.0		22.1		22.1			
Actuated g/C Ratio	0.30	0.62	0.28	0.28		0.28		0.28			
v/c Ratio	0.59	0.44	0.26	0.48		0.56		0.70			
Control Delay	32.0	10.3	26.5	27.6		19.3		26.8			
Queue Delay	0.0	0.0	0.0	0.0		0.0		0.0			
Total Delay	32.0	10.3	26.5	27.6		19.3		26.8			
LOS	С	В	С	С		В		С			
Approach Delay		18.6		27.3		19.3		26.8			
Approach LOS		В		С		В		С			
Queue Length 50th (m)	39.6	34.7	7.1	30.0		19.0		37.3			
Queue Length 95th (m)	#84.0	68.7	17.3	51.4		27.6		49.0			
Internal Link Dist (m)		276.4		61.0		100.0		41.6			
Turn Bay Length (m)	40.0		45.0								
Base Capacity (vph)	499	1075	221	480		925		956			
Starvation Cap Reductn	0	0	0	0		0		0			
Spillback Cap Reductn	0	0	0	0		0		0			
Storage Cap Reductn	0	0	0	0		0		0			
Reduced v/c Ratio	0.59	0.44	0.26	0.48		0.48		0.60			

Intersection Summary

Cycle Length: 80

Actuated Cycle Length: 80

Offset: 43 (54%), Referenced to phase 6:WBTL and 2:EBT, Start of Green

Natural Cycle: 80 Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.70 Intersection Signal Delay: 22.2

Intersection Capacity Utilization 75.5%

Intersection LOS: C ICU Level of Service D

Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

	۶	→	7	1	+	1	1	1	~	1		1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	T ₂		*	Î.			414			414	
Traffic Volume (vph)	264	396	33	51	187	22	27	286	83	33	337	144
Future Volume (vph)	264	396	33	51	187	22	27	286	83	33	337	144
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Total Lost time (s)	4.0	4.0		4.0	4.0			4.0			4.0	
Lane Util. Factor	1.00	1.00		1.00	1.00			0.95			0.95	
Frpb, ped/bikes	1.00	0.99		1.00	0.99			0.97			0.95	
Flpb, ped/bikes	1.00	1.00		0.93	1.00			1.00			1.00	
Frt	1.00	0.99		1.00	0.98			0.97			0.96	
Flt Protected	0.95	1.00		0.95	1.00			1.00			1.00	
Satd. Flow (prot)	1676	1723		1559	1728			3140			3044	
Flt Permitted	0.95	1.00		0.49	1.00			0.86			0.90	
Satd. Flow (perm)	1676	1723		805	1728			2710			2738	
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	293	440	37	57	208	24	30	318	92	37	374	160
RTOR Reduction (vph)	0	3	0	0	5	0	0	32	0	0	55	0
Lane Group Flow (vph)	293	474	0	57	227	0	0	408	0	0	516	0
Confl. Peds. (#/hr)	34		68	68		34	45		36	36		45
Confl. Bikes (#/hr)			11			1						8
Turn Type	Prot	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases	5	2			6			4			8	
Permitted Phases				6			4			8	8	
Actuated Green, G (s)	21.8	47.8		19.9	19.9			19.9			19.9	
Effective Green, g (s)	23.9	49.9		22.0	22.0			22.1			22.1	
Actuated g/C Ratio	0.30	0.62		0.28	0.28			0.28			0.28	
Clearance Time (s)	6.1	6.1		6.1	6.1			6.2			6.2	
Vehicle Extension (s)	3.0	3.0		3.0	3.0			3.0			3.0	
Lane Grp Cap (vph)	500	1074		221	475			748			756	
v/s Ratio Prot	c0.17	c0.28			0.13							
v/s Ratio Perm				0.07				0.15			c0.19	
v/c Ratio	0.59	0.44		0.26	0.48			0.55			0.68	
Uniform Delay, d1	23.8	7.8		22.6	24.2			24.7			25.8	
Progression Factor	1.00	1.00		1.00	1.00			0.77			1.00	
Incremental Delay, d2	1.8	1.3		2.8	3.4			0.7			2.6	
Delay (s)	25.6	9.1		25.4	27.6			19.8			28.4	
Level of Service	С	Α		С	С			В			С	
Approach Delay (s)		15.4			27.2			19.8			28.4	
Approach LOS		В			С			В			С	
Intersection Summary												
HCM 2000 Control Delay			21.6	HC	CM 2000 Lev	el of Service)		С			
HCM 2000 Volume to Capacity ratio			0.62									
Actuated Cycle Length (s)			80.0		m of lost tim	()			16.0			
Intersection Capacity Utilization			75.5%	IC	U Level of S	ervice			D			
Analysis Period (min)			15									
a Critical Lana Croup												

Ø6 (R)

	-	←			
ane Group	EBT	WBT	Ø4	Ø8	
ane Configurations	44	*			
Fraffic Volume (vph)	798	398			
Future Volume (vph)	798	398			
ane Group Flow (vph)	887	442			
Furn Type	NA	NA			
Protected Phases	2	6	4	8	
Permitted Phases	_	•		•	
Detector Phase	2	6			
Switch Phase		- 0			
Minimum Initial (s)	10.0	10.0	10.0	10.0	
Minimum Split (s)	15.1	15.1	25.0	25.0	
Fotal Split (s)	40.0	40.0	25.0	25.0	
Fotal Split (%)	61.5%	61.5%	38%	38%	
	3.0		3.0	3.0	
Yellow Time (s)	2.1	3.0 2.1	1.0	1.0	
All-Red Time (s)			1.0	1.0	
Lost Time Adjust (s)	-1.1	-1.1			
Total Lost Time (s)	4.0	4.0			
_ead/Lag					
_ead-Lag Optimize?	0.14	0.14	Б.	Б.	
Recall Mode	C-Max	C-Max	Ped	Ped	
Act Effct Green (s)	36.0	36.0			
Actuated g/C Ratio	0.55	0.55			
//c Ratio	0.48	0.45			
Control Delay	9.9	10.5			
Queue Delay	0.0	0.0			
Γotal Delay	9.9	10.5			
LOS	Α	В			
Approach Delay	9.9	10.5			
Approach LOS	Α	В			
Queue Length 50th (m)	32.5	30.1			
Queue Length 95th (m)	45.6	50.0			
nternal Link Dist (m)	41.2	106.6			
Turn Bay Length (m)					
Base Capacity (vph)	1857	977			
Starvation Cap Reductn	0	0			
Spillback Cap Reductn	0	0			
Storage Cap Reductn	0	0			
Reduced v/c Ratio	0.48	0.45			
ntersection Summary					
Cycle Length: 65					
Actuated Cycle Length: 65	0.555	101477			
Offset: 11 (17%), Referenced to pha	ise 2:EBT ai	nd 6:WBT, S	art of Greei	n	
Natural Cycle: 50					
Control Type: Actuated-Coordinated					
Maximum v/c Ratio: 0.48					
ntersection Signal Delay: 10.1					rsection LOS: B
ntersection Capacity Utilization 26.6	5%			ICU	Level of Service A
Analysis Period (min) 15					
Splits and Phases: 6: Ped Crossin	ng & Richmo	nd Rd			
→ø2 (R)					# R Ø4
DZ (IV)					217

CIMA+ Synchro 10 Report

FRØ8

	۶	→	*	1	←	•	1	†	1	1	↓	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		44			•							
Traffic Volume (vph)	0	798	0	0	398	0	0	0	0	0	0	0
Future Volume (vph)	0	798	0	0	398	0	0	0	0	0	0	0
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Total Lost time (s)		4.0			4.0							
Lane Util. Factor		0.95			1.00							
Frpb, ped/bikes		1.00			1.00							
Flpb, ped/bikes		1.00			1.00							
Frt		1.00			1.00							
Flt Protected		1.00			1.00							
Satd. Flow (prot)		3353			1765							
Flt Permitted		1.00			1.00							
Satd. Flow (perm)		3353			1765							
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	0	887	0	0	442	0	0	0	0	0	0	0
RTOR Reduction (vph)	0	0	0	0	0	0	0	0	0	0	0	0
Lane Group Flow (vph)	0	887	0	0	442	0	0	0	0	0	0	0
Confl. Peds. (#/hr)	<u> </u>						14		14	14		14
Confl. Bikes (#/hr)							• •		1	• •		9
Turn Type		NA			NA							
Protected Phases		2			6							
Permitted Phases												
Actuated Green, G (s)		34.9			34.9							
Effective Green, g (s)		36.0			36.0							
Actuated g/C Ratio		0.55			0.55							
Clearance Time (s)		5.1			5.1							
Vehicle Extension (s)		3.0			3.0							
Lane Grp Cap (vph)		1857			977							
v/s Ratio Prot		c0.26			0.25							
v/s Ratio Perm		00.20			0.20							
v/c Ratio		0.48			0.45							
Uniform Delay, d1		8.8			8.6							
Progression Factor		1.00			1.00							
Incremental Delay, d2		0.9			1.5							
Delay (s)		9.7			10.1							
Level of Service		A			В							
Approach Delay (s)		9.7			10.1			0.0			0.0	
Approach LOS		Α			В			А			А	
Intersection Summary												
HCM 2000 Control Delay			9.8	НС	CM 2000 Lev	el of Service	:		А			
HCM 2000 Volume to Capacity ratio			0.30		20							
Actuated Cycle Length (s)			65.0	Su	m of lost tim	ie (s)			8.0			
Intersection Capacity Utilization			26.6%		U Level of S	\ /			A			
Analysis Period (min)			15									
c Critical Lane Group												

	۶	-	1	•	1	†	-	ļ	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	
Lane Configurations		4		4	*	T _a	×	T _a	
Traffic Volume (vph)	19	137	112	309	31	321	28	351	
Future Volume (vph)	19	137	112	309	31	321	28	351	
Lane Group Flow (vph)	0	227	0	525	34	436	31	449	
Turn Type	Perm	NA	Perm	NA	Perm	NA	Perm	NA	
Protected Phases		4		8		2		6	
Permitted Phases	4		8		2		6		
Detector Phase	4	4	8	8	2	2	6	6	
Switch Phase									
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	
Minimum Split (s)	30.6	30.6	30.6	30.6	26.4	26.4	26.4	26.4	
Total Split (s)	45.0	45.0	45.0	45.0	45.0	45.0	45.0	45.0	
Total Split (%)	50.0%	50.0%	50.0%	50.0%	50.0%	50.0%	50.0%	50.0%	
Yellow Time (s)	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	
All-Red Time (s)	2.3	2.3	2.3	2.3	2.1	2.1	2.1	2.1	
Lost Time Adjust (s)		-1.6		-1.6	-1.4	-1.4	-1.4	-1.4	
Total Lost Time (s)		4.0		4.0	4.0	4.0	4.0	4.0	
Lead/Lag									
Lead-Lag Optimize?									
Recall Mode	None	None	None	None	C-Max	C-Max	C-Max	C-Max	
Act Effct Green (s)		36.6		36.6	45.4	45.4	45.4	45.4	
Actuated g/C Ratio		0.41		0.41	0.50	0.50	0.50	0.50	
v/c Ratio		0.34		0.87	0.10	0.50	0.09	0.52	
Control Delay		17.0		39.9	14.8	17.9	11.8	15.0	
Queue Delay		0.0		0.0	0.0	0.0	0.0	0.9	
Total Delay		17.0		39.9	14.8	17.9	11.8	16.0	
LOS		В		D	В	В	В	В	
Approach Delay		17.0		39.9		17.7		15.7	
Approach LOS		В		D		В		В	
Queue Length 50th (m)		23.6		80.8	3.2	50.6	2.7	44.9	
Queue Length 95th (m)		39.1		#125.9	9.5	83.1	m4.9	69.3	
Internal Link Dist (m)		244.6		113.6		126.7		100.0	
Turn Bay Length (m)					30.0		30.0		
Base Capacity (vph)		736		675	329	869	349	866	
Starvation Cap Reductn		0		0	0	0	0	195	
Spillback Cap Reductn		0		0	0	0	0	0	
Storage Cap Reductn		0		0	0	0	0	0	
Reduced v/c Ratio		0.31		0.78	0.10	0.50	0.09	0.67	
Intersection Summary									

Cycle Length: 90
Actuated Cycle Length: 90

Offset: 40 (44%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

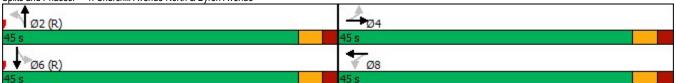
Natural Cycle: 60 Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.87

Intersection Signal Delay: 23.9

Intersection Capacity Utilization 79.1%

Intersection LOS: C ICU Level of Service D


Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 1: Churchill Avenue North & Byron Avenue

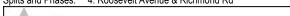
	۶	-	*	1	•	•	1	†	-	1	ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		đ,			43		*	T _a		*	T _a	
Traffic Volume (vph)	19	137	49	112	309	52	31	321	71	28	351	53
Future Volume (vph)	19	137	49	112	309	52	31	321	71	28	351	53
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Total Lost time (s)		4.0			4.0		4.0	4.0		4.0	4.0	
Lane Util. Factor		1.00			1.00		1.00	1.00		1.00	1.00	
Frpb, ped/bikes		0.99			1.00		1.00	0.99		1.00	0.99	
Flpb, ped/bikes		1.00			1.00		0.97	1.00		1.00	1.00	
Frt		0.97			0.99		1.00	0.97		1.00	0.98	
Flt Protected		1.00			0.99		0.95	1.00		0.95	1.00	
Satd. Flow (prot)		1684			1710		1619	1707		1669	1706	
Flt Permitted		0.94			0.85		0.38	1.00		0.39	1.00	
Satd. Flow (perm)		1588			1472		653	1707		693	1706	
Peak-hour factor. PHF	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	21	152	54	124	343	58	34	357	79	31	390	59
RTOR Reduction (vph)	0	14	0	0	5	0	0	8	0	0	5	0
Lane Group Flow (vph)	0	213	0	0	520	0	34	428	0	31	444	0
Confl. Peds. (#/hr)	3	210	11	11	520	3	40	720	5	5	777	40
Confl. Bikes (#/hr)	3		1	11		J	40		1	3		40
Turn Type	Perm	NA	<u>'</u>	Perm	NA		Perm	NA	<u>'</u>	Perm	NA	
Protected Phases	I CIIII	4		I CIIII	8		I CIIII	2		i Giiii	6	
Permitted Phases	4			8	· ·		2			6	U	
Actuated Green, G (s)	7	35.0		U	35.0		44.0	44.0		44.0	44.0	
Effective Green, g (s)		36.6			36.6		45.4	45.4		45.4	45.4	
Actuated g/C Ratio		0.41			0.41		0.50	0.50		0.50	0.50	
Clearance Time (s)		5.6			5.6		5.4	5.4		5.4	5.4	
Vehicle Extension (s)		3.0			3.0		3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)		645			598		329	861		349	860	
v/s Ratio Prot		040			290		329	0.25		349	c0.26	
v/s Ratio Perm		0.13			c0.35		0.05	0.25		0.04	CU.20	
							0.05	0.50		0.04	0.50	
v/c Ratio Uniform Delay, d1		0.33 18.3			0.87 24.5		11.7	0.50 14.8		11.6	0.52 14.9	
		1.00			1.00		1.00	1.00		0.81	0.82	
Progression Factor		0.3			1.00		0.6	2.0		0.61	1.7	
Incremental Delay, d2		18.6			37.2		12.3	16.8		9.8	13.9	
Delay (s)		10.0 B			37.2 D		12.3 B	10.0 B			13.9 B	
Level of Service		18.6			37.2		В	16.5		Α	13.7	
Approach Delay (s) Approach LOS		10.0 B			37.2 D			10.5 B			13.7 B	
''												
Intersection Summary			00.4		11.0000:	1 (0)						
HCM 2000 Control Delay			22.4	HC	CM 2000 Le	vel of Service	ce		С			
HCM 2000 Volume to Capacity ratio			0.67									
Actuated Cycle Length (s)			90.0		m of lost tim				8.0			
Intersection Capacity Utilization			79.1%	ICI	J Level of S	ervice			D			
Analysis Period (min)			15									

	•	-	1	•	1	†	-	Ţ	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	
ane Configurations		43		43		43		412	
raffic Volume (vph)	13	153	22	299	6	21	31	4 22	
uture Volume (vph)	13	153	22	299	6	21	31	22	
ane Group Flow (vph)	0	193	0	407	0	47	0	94	
urn Type	Perm	NA	Perm	NA	Perm	NA	Perm	NA	
Protected Phases		2		6		4		8	
Permitted Phases	2		6		4		8		
Detector Phase	2	2	6	6	4	4	8	8	
witch Phase									
finimum Initial (s)	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	
finimum Split (s)	22.5	22.5	22.5	22.5	20.0	20.0	20.0	20.0	
otal Split (s)	50.0	50.0	50.0	50.0	20.0	20.0	20.0	20.0	
otal Split (%)	71.4%	71.4%	71.4%	71.4%	28.6%	28.6%	28.6%	28.6%	
'ellow Time (s)	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	
II-Red Time (s)	2.2	2.2	2.2	2.2	1.7	1.7	1.7	1.7	
ost Time Adjust (s)		-1.5		-1.5	1.,	-1.0		-1.0	
otal Lost Time (s)		4.0		4.0		4.0		4.0	
ead/Lag		7.0		7.0		7.0		7.0	
ead-Lag Optimize?									
Recall Mode	Max	Max	Max	Max	None	None	None	None	
ct Effct Green (s)	Max	54.1	Max	54.1	110110	14.1	110110	14.1	
actuated g/C Ratio		0.75		0.75		0.20		0.20	
/c Ratio		0.15		0.32		0.15		0.31	
Control Delay		4.3		5.1		17.4		19.1	
Queue Delay		0.0		0.0		0.0		0.0	
otal Delay		4.3		5.1		17.4		19.1	
OS OS		4.5 A		Α		В		В	
Approach Delay		4.3		5.1		17.4		19.1	
pproach LOS		4.5 A		Α		В		В	
Queue Length 50th (m)		8.4		20.0		3.6		7.1	
Queue Length 95th (m)		15.4		33.8		11.2		18.1	
nternal Link Dist (m)		50.9		244.6		129.2		56.5	
urn Bay Length (m)		30.3		244.0		123.2		30.3	
Base Capacity (vph)		1275		1272		361		338	
starvation Cap Reductn		0		0		0		0	
pillback Cap Reductn		0		0		0		0	
Storage Cap Reductn		0		0		0		0	
Reduced v/c Ratio		0.15		0.32		0.13		0.28	
		0.13		0.52		0.13		0.20	
ntersection Summary Cycle Length: 70									
Actuated Cycle Length: 72									
latural Cycle: 45									
ontrol Type: Semi Act-Uncoord									
flaximum v/c Ratio: 0.32									

Intersection Signal Delay: 7.4
Intersection Capacity Utilization 45.1%
Analysis Period (min) 15

Intersection LOS: A ICU Level of Service A

Splits and Phases: 2: Roosevelt Avenue & Byron Avenue


	•	→	-		•		•	†	-	-	Ţ	1
Mayamant	EBL	EBT	EBR	₩BL	WBT	WBR	NBL	NBT	NBR	SBL	¥ SBT	SBR
Movement Lane Configurations	EDL		EDR	VVDL		WDK	INDL		INDIX	SDL		SDR
Traffic Volume (vph)	13	153	8	22	299	46	6	4 21	15	31	22	32
Future Volume (vph)	13	153	8	22	299	46	6	21	15	31	22	32
	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Ideal Flow (vphpl) Total Lost time (s)	1000	4.0	1000	1000	4.0	1000	1000	4.0	1000	1000	4.0	1000
Lane Util. Factor		1.00			1.00			1.00			1.00	
Frpb, ped/bikes		1.00			0.99			0.98			0.95	
Flpb, ped/bikes		1.00			1.00			0.98			0.99	
Frt		0.99			0.98			0.99			0.99	
Flt Protected		1.00			1.00			0.99			0.98	
Satd. Flow (prot)		1742			1716			1619			1550	
		0.97			0.98			0.96			0.88	
Flt Permitted		1695			1687							
Satd. Flow (perm)	0.00		0.00	0.00		0.00	0.00	1558	0.00	0.00	1387	0.00
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	14	170	9	24	332	51	7	23	17	34	24	36
RTOR Reduction (vph)	0	2	0	0	6	0	0	14	0	0	30	0
Lane Group Flow (vph)	0	191	0	0	401	0	0	33	0	0	64	0
Confl. Peds. (#/hr)	17		7	7		17	46		9	9		46
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases		2			6			4			8	
Permitted Phases	2			6			4			8		
Actuated Green, G (s)		51.7			51.7			10.9			10.9	
Effective Green, g (s)		53.2			53.2			11.9			11.9	
Actuated g/C Ratio		0.73			0.73			0.16			0.16	
Clearance Time (s)		5.5			5.5			5.0			5.0	
Vehicle Extension (s)		3.0			3.0			3.0			3.0	
Lane Grp Cap (vph)		1233			1227			253			225	
v/s Ratio Prot												
v/s Ratio Perm		0.11			c0.24			0.02			c0.05	
v/c Ratio		0.15			0.33			0.13			0.28	
Uniform Delay, d1		3.1			3.6			26.2			26.9	
Progression Factor		1.00			1.00			1.00			1.00	
Incremental Delay, d2		0.3			0.7			0.2			0.7	
Delay (s)		3.3			4.3			26.4			27.6	
Level of Service		Α			Α			С			С	
Approach Delay (s)		3.3			4.3			26.4			27.6	
Approach LOS		Α			Α			С			С	
Intersection Summary												
HCM 2000 Control Delay			8.4	HC	CM 2000 Lev	vel of Service	ce		Α			
HCM 2000 Volume to Capacity ratio			0.32									
Actuated Cycle Length (s)			73.1	Su	ım of lost tim	ne (s)			8.0			
Intersection Capacity Utilization			45.1%	IC	U Level of S	ervice			Α			
Analysis Period (min)			15									
c Critical Lane Group												


	→	•	1	+	1	†	1	ļ	
ane Group	EBT	EBR	WBL	WBT	NBL	NBT	SBL	SBT	
ane Configurations	र्ध	7		43		43		43	
Fraffic Volume (vph)	357	21	44	655	67	1	6	3	
uture Volume (vph)	357	21	44	655	67	1	6	3	
ane Group Flow (vph)	397	23	0	781	0	138	0	11	
Furn Type	NA	Perm	Perm	NA	Perm	NA	Perm	NA	
Protected Phases	2			6		4		8	
Permitted Phases		2	6		4		8		
Detector Phase	2	2	6	6	4	4	8	8	
Switch Phase									
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	
Minimum Split (s)	28.8	28.8	28.8	28.8	28.6	28.6	28.6	28.6	
Total Split (s)	50.0	50.0	50.0	50.0	29.0	29.0	29.0	29.0	
Total Split (%)	63.3%	63.3%	63.3%	63.3%	36.7%	36.7%	36.7%	36.7%	
rellow Time (s)	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	
All-Red Time (s)	2.5	2.5	2.5	2.5	2.3	2.3	2.3	2.3	
ost Time Adjust (s)	-1.8	-1.8		-1.8		-1.6		-1.6	
Total Lost Time (s)	4.0	4.0		4.0		4.0		4.0	
_ead/Lag									
_ead-Lag Optimize?									
Recall Mode	C-Max	C-Max	C-Max	C-Max	None	None	None	None	
Act Effct Green (s)	51.6	51.6		51.6		19.4		19.4	
Actuated g/C Ratio	0.65	0.65		0.65		0.25		0.25	
/c Ratio	0.34	0.03		0.71		0.39		0.03	
Control Delay	8.4	1.8		15.5		16.8		18.5	
Queue Delay	0.0	0.0		1.0		0.0		0.0	
Total Delay	8.4	1.8		16.5		16.8		18.5	
_OS	Α	Α		В		В		В	
Approach Delay	8.0			16.5		16.8		18.5	
Approach LOS	Α			В		В		В	
Queue Length 50th (m)	30.3	0.0		86.3		9.4		1.1	
Queue Length 95th (m)	48.0	1.9		139.9		23.6		4.7	
nternal Link Dist (m)	37.9			130.2		72.7		29.6	
Γurn Bay Length (m)									
Base Capacity (vph)	1152	844		1096		444		450	
Starvation Cap Reductn	0	0		124		0		0	
Spillback Cap Reductn	0	0		0		0		0	
Storage Cap Reductn	0	0		0		0		0	
Reduced v/c Ratio	0.34	0.03		0.80		0.31		0.02	
ntersection Summary									
Cycle Length: 79									
Actuated Cycle Length: 79									
Offset: 5 (6%), Referenced to phase 2	:EBTL and	6:WBTL. S	Start of Gree	en					
Natural Cycle: 70									
Control Type: Actuated-Coordinated									
Maximum v/c Ratio: 0.71									
ntersection Signal Delay: 13.9				Int	tersection L	OS: B			
ntersection Capacity Utilization 87.1%	, 0				U Level of S				
Analysis Period (min) 15	•			.0					
Splits and Phases: 3: Golden Avenu	ue & Richr	nond Rd							
							-4		
→ Ø2 (R)							1	04	

Ø8

	۶	→	*	1	←	*	1	†	~	1	ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		र्स	7		4			4			A.	
Traffic Volume (vph)	0	357	21	44	655	4	67	1	57	6	4 3	1
Future Volume (vph)	0	357	21	44	655	4	67	1	57	6	3	1
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Total Lost time (s)		4.0	4.0		4.0			4.0			4.0	
Lane Util. Factor		1.00	1.00		1.00			1.00			1.00	
Frpb, ped/bikes		1.00	0.85		1.00			0.94			0.99	
Flpb, ped/bikes		1.00	1.00		1.00			0.98			0.95	
Frt		1.00	0.85		1.00			0.94			0.99	
Flt Protected		1.00	1.00		1.00			0.97			0.97	
Satd. Flow (prot)		1765	1273		1749			1487			1596	
Flt Permitted		1.00	1.00		0.96			0.84			0.86	
Satd. Flow (perm)		1765	1273		1679			1283			1421	
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	0	397	23	49	728	4	74	1	63	7	3	1
RTOR Reduction (vph)	0	0	8	0	0	0	0	42	0	0	1	0
Lane Group Flow (vph)	0	397	15	0	781	0	0	96	0	0	10	0
Confl. Peds. (#/hr)	66		77	77		66	25		60	60		25
Confl. Bikes (#/hr)			3			17			2			7
Turn Type		NA	Perm	Perm	NA		Perm	NA		Perm	NA	
Protected Phases		2			6			4			8	
Permitted Phases	2		2	6			4			8		
Actuated Green, G (s)		49.8	49.8		49.8			17.8			17.8	
Effective Green, q (s)		51.6	51.6		51.6			19.4			19.4	
Actuated g/C Ratio		0.65	0.65		0.65			0.25			0.25	
Clearance Time (s)		5.8	5.8		5.8			5.6			5.6	
Vehicle Extension (s)		3.0	3.0		3.0			3.0			3.0	
Lane Grp Cap (vph)		1152	831		1096			315			348	
v/s Ratio Prot		0.22	001		1000			010			010	
v/s Ratio Perm		V	0.01		c0.47			c0.07			0.01	
v/c Ratio		0.34	0.02		0.71			0.30			0.03	
Uniform Delay, d1		6.1	4.8		8.9			24.3			22.6	
Progression Factor		1.00	1.00		1.00			1.00			1.00	
Incremental Delay, d2		0.8	0.0		3.9			0.5			0.0	
Delay (s)		7.0	4.8		12.8			24.8			22.7	
Level of Service		A	A		В			C			C	
Approach Delay (s)		6.8	• •		12.8			24.8			22.7	
Approach LOS		Α			В			С			C	
Intersection Summary												
HCM 2000 Control Delay			12.3	НС	CM 2000 Le	vel of Service	се		В			
HCM 2000 Volume to Capacity ratio			0.60									
Actuated Cycle Length (s)			79.0	Şu	m of lost tim	ne (s)			8.0			
Intersection Capacity Utilization			87.1%		U Level of S	()			E E			
Analysis Period (min)			15									
c Critical Lane Group												

	۶	-	1	←	1	†	1	Ţ	
ane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	
ane Configurations		A.		4		4		4	
raffic Volume (vph)	12	413	27	702	34	18	35	12	
uture Volume (vph)	12	413	27	702	34	18	35	12	
ane Group Flow (vph)	0	496	0	854	0	111	0	71	
urn Type	Perm	NA	Perm	NA	Perm	NA	Perm	NA	
Protected Phases		2		6		4		8	
Permitted Phases	2		6		4		8		
Detector Phase	2	2	6	6	4	4	8	8	
Switch Phase									
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	
/linimum Split (s)	33.4	33.4	33.4	33.4	24.6	24.6	24.6	24.6	
otal Split (s)	60.0	60.0	60.0	60.0	25.0	25.0	25.0	25.0	
otal Split (%)	70.6%	70.6%	70.6%	70.6%	29.4%	29.4%	29.4%	29.4%	
'ellow Time (s)	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	
All-Red Time (s)	2.1	2.1	2.1	2.1	2.3	2.3	2.3	2.3	
ost Time Adjust (s)		-1.4		-1.4		-1.6	2.0	-1.6	
otal Lost Time (s)		4.0		4.0		4.0		4.0	
ead/Lag		7.0		7.0		7.0		4.0	
ead-Lag Optimize?									
Recall Mode	C-Max	C-Max	C-Max	C-Max	None	None	None	None	
act Effct Green (s)	O-IVIAX	63.9	O-IVIAX	63.9	NOTIC	17.0	INOTIC	17.0	
actuated g/C Ratio		0.75		0.75		0.20		0.20	
/c Ratio		0.73		0.73		0.40		0.28	
Control Delay		6.6		11.5		20.5		24.0	
Queue Delay		0.0		0.0		0.0		0.0	
otal Delay		6.9		11.5		20.5		24.0	
.OS		0.9 A		11.3 B		20.3 C		24.0 C	
Approach Delay		6.9		11.5		20.5		24.0	
Approach LOS		0.9 A		11.3 B		20.5 C		24.0 C	
Queue Length 50th (m)		34.7		86.6		8.2		7.1	
Queue Length 95th (m)		54.7		139.7		22.8		18.4	
		130.2				56.5		123.0	
nternal Link Dist (m)		130.2		276.4		30.3		123.0	
Turn Bay Length (m) Base Capacity (vph)		1268		1265		332		306	
Starvation Cap Reductn		293		1205		332		0	
Spillback Cap Reductn		293		0		0		0	
		0		0		0		0	
Storage Cap Reductn Reduced v/c Ratio		0.51		0.68		0.33		0.23	
ntersection Summary		0.01		0.00		0.00		0.20	
ycle Length: 85									
ctuated Cycle Length: 85									
Offset: 78 (92%), Referenced to phase	2:EBTL a	and 6:WBTL	., Start of G	reen					
atural Cycle: 70									
Control Type: Actuated-Coordinated									
laximum v/c Ratio: 0.68									
ntersection Signal Delay: 11.3				Int	ersection Lo	OS: B			
ntersection Capacity Utilization 77.3%					U Level of S				
Analysis Period (min) 15				.0.					
. , ,									

	۶	→	*	1	—	•	1	†	-	1	Ţ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		41			43			43			43	
Traffic Volume (vph)	12	413	22	27	702	40	34	18	48	35	12	17
Future Volume (vph)	12	413	22	27	702	40	34	18	48	35	12	17
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Total Lost time (s)		4.0			4.0			4.0			4.0	
Lane Util. Factor		1.00			1.00			1.00			1.00	
Frpb, ped/bikes		0.98			0.99			0.89			0.93	
Flpb, ped/bikes		1.00			1.00			0.92			0.91	
Frt		0.99			0.99			0.94			0.96	
Flt Protected		1.00			1.00			0.98			0.97	
Satd. Flow (prot)		1722			1719			1335			1401	
Flt Permitted		0.98			0.98			0.88			0.82	
Satd. Flow (perm)		1684			1679			1190			1183	
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	13	459	24	30	780	44	38	20	53	39	13	19
RTOR Reduction (vph)	0	2	0	0	2	0	0	42	0	0	16	0
Lane Group Flow (vph)	0	494	0	0	852	0	0	69	0	0	55	0
Confl. Peds. (#/hr)	135		182	182		135	116		92	92		116
Confl. Bikes (#/hr)			3			9			5			2
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases		2			6			4			8	
Permitted Phases	2			6			4	•		8		
Actuated Green, G (s)	_	60.6		•	60.6		•	13.4			13.4	
Effective Green, g (s)		62.0			62.0			15.0			15.0	
Actuated g/C Ratio		0.73			0.73			0.18			0.18	
Clearance Time (s)		5.4			5.4			5.6			5.6	
Vehicle Extension (s)		3.0			3.0			3.0			3.0	
Lane Grp Cap (vph)		1228			1224			210			208	
v/s Ratio Prot		1220			ILLT			210			200	
v/s Ratio Perm		0.29			c0.51			c0.06			0.05	
v/c Ratio		0.40			0.70			0.33			0.27	
Uniform Delay, d1		4.4			6.3			30.6			30.2	
Progression Factor		1.00			1.00			1.00			1.00	
Incremental Delay, d2		1.0			3.3			0.9			0.7	
Delay (s)		5.4			9.6			31.5			30.9	
Level of Service		A			A			C			C	
Approach Delay (s)		5.4			9.6			31.5			30.9	
Approach LOS		A			Α			C			C	
•		,,			,,							
Intersection Summary HCM 2000 Control Delay			10.8	ш	CM 2000 Lev	ol of Conic	20		В			
HCM 2000 Control Delay HCM 2000 Volume to Capacity ratio			0.62	п	JIVI ZUUU LE\	rei ui Seivic) C		D			
Actuated Cycle Length (s)			85.0	c	m of lost tim	no (c)			8.0			
			77.3%		m of lost tim U Level of S				8.0 D			
Intersection Capacity Utilization Analysis Period (min)				IU	o reading 2	CI VICE			U			
Analysis Pellou (IIIIII)			15									

c Critical Lane Group

	٠	-	1	←	1	†	-	↓			
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	Ø9	Ø10	
Lane Configurations	*	T ₂	1	T ₂		473		414			
Traffic Volume (vph)	163	303	132	458	30	288	24	271			
Future Volume (vph)	163	303	132	458	30	288	24	271			
Lane Group Flow (vph)	181	391	147	553	0	437	0	642			
Turn Type	Prot	NA	Perm	NA	Perm	NA	Perm	NA			
Protected Phases	5	2		6		4		8	9	10	
Permitted Phases			6		4		8	8			
Detector Phase	5	2	6	6	4	4	8	8			
Switch Phase											
Minimum Initial (s)	5.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	1.0	1.0	
Minimum Split (s)	11.1	26.1	26.1	26.1	26.1	26.1	26.2	26.2	5.0	5.0	
Total Split (s)	12.0	52.0	40.0	40.0	28.0	28.0	28.0	28.0	5.0	5.0	
Total Split (%)	13.3%	57.8%	44.4%	44.4%	31.1%	31.1%	31.1%	31.1%	6%	6%	
Yellow Time (s)	3.3	3.3	3.3	3.3	3.6	3.6	3.6	3.6	2.0	2.0	
All-Red Time (s)	2.8	2.8	2.8	2.8	2.6	2.6	2.6	2.6	0.0	0.0	
Lost Time Adjust (s)	-2.1	-2.1	-2.1	-2.1		-2.2		-2.2			
Total Lost Time (s)	4.0	4.0	4.0	4.0		4.0		4.0			
Lead/Lag	Lead		Lag	Lag							
Lead-Lag Optimize?			Yes	Yes							
Recall Mode	None	C-Max	C-Max	C-Max	None	None	None	None	None	None	
Act Effct Green (s)	18.5	58.9	36.5	36.5		23.1		23.1			
Actuated g/C Ratio	0.21	0.65	0.41	0.41		0.26		0.26			
v/c Ratio	0.53	0.36	0.49	0.79		0.69		0.79			
Control Delay	40.7	8.8	27.1	33.1		24.2		25.0			
Queue Delay	0.0	0.0	0.0	0.0		0.0		0.2			
Total Delay	40.7	8.8	27.1	33.1		24.2		25.3			
LOS	D	Α	С	С		С		С			
Approach Delay		18.9		31.8		24.2		25.3			
Approach LOS		В		С		С		С			
Queue Length 50th (m)	29.4	27.4	19.6	85.8		17.5		34.2			
Queue Length 95th (m)	#64.2	53.3	39.4	#141.4		m27.1		50.7			
Internal Link Dist (m)		276.4		61.0		100.0		41.6			
Turn Bay Length (m)	40.0		45.0								
Base Capacity (vph)	344	1076	298	703		699		876			
Starvation Cap Reductn	0	0	0	0		0		0			
Spillback Cap Reductn	0	0	0	0		0		24			
Storage Cap Reductn	0	0	0	0		0		0			
Reduced v/c Ratio	0.53	0.36	0.49	0.79		0.63		0.75			

Intersection Summary

Cycle Length: 90

Actuated Cycle Length: 90

Offset: 0 (0%), Referenced to phase 6:WBTL and 2:EBT, Start of Green

Natural Cycle: 90

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.79

Intersection Signal Delay: 25.5

Intersection Capacity Utilization 84.9%

Intersection LOS: C ICU Level of Service E

Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

	۶	→	*	•	—	•	4	1	~	1	ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	1	T.		*	1			414			414	
Traffic Volume (vph)	163	303	49	132	458	40	30	288	76	24	271	283
Future Volume (vph)	163	303	49	132	458	40	30	288	76	24	271	283
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Total Lost time (s)	4.0	4.0		4.0	4.0			4.0			4.0	
Lane Util. Factor	1.00	1.00		1.00	1.00			0.95			0.95	
Frpb, ped/bikes	1.00	0.95		1.00	0.99			0.96			0.85	
Flpb, ped/bikes	1.00	1.00		0.79	1.00			0.99			1.00	
Frt	1.00	0.98		1.00	0.99			0.97			0.93	
Flt Protected	0.95	1.00		0.95	1.00			1.00			1.00	
Satd. Flow (prot)	1676	1637		1319	1726			3099			2628	
Flt Permitted	0.95	1.00		0.53	1.00			0.77			0.92	
Satd. Flow (perm)	1676	1637		737	1726			2382			2419	
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	181	337	54	147	509	44	33	320	84	27	301	314
RTOR Reduction (vph)	0	5	0	0	4	0	0	23	0	0	195	0
Lane Group Flow (vph)	181	386	0	147	549	0	0	414	0	0	447	0
Confl. Peds. (#/hr)	86		163	163		86	84		54	54		84
Confl. Bikes (#/hr)			2			4			3			1
Turn Type	Prot	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases	5	2			6			4			8	
Permitted Phases				6			4			8	8	
Actuated Green, G (s)	16.4	56.8		34.3	34.3			20.9			20.9	
Effective Green, g (s)	18.5	58.9		36.4	36.4			23.1			23.1	
Actuated g/C Ratio	0.21	0.65		0.40	0.40			0.26			0.26	
Clearance Time (s)	6.1	6.1		6.1	6.1			6.2			6.2	
Vehicle Extension (s)	3.0	3.0		3.0	3.0			3.0			3.0	
Lane Grp Cap (vph)	344	1071		298	698			611			620	
v/s Ratio Prot	c0.11	0.24			c0.32							
v/s Ratio Perm				0.20				0.17			c0.18	
v/c Ratio	0.53	0.36		0.49	0.79			0.68			0.72	
Uniform Delay, d1	31.8	7.0		19.9	23.4			30.1			30.5	
Progression Factor	1.00	1.00		1.00	1.00			0.69			1.00	
Incremental Delay, d2	1.5	0.9		5.7	8.7			2.6			4.1	
Delay (s)	33.3	8.0		25.7	32.2			23.4			34.6	
Level of Service	С	Α		С	С			С			С	
Approach Delay (s)	-	16.0			30.8			23.4			34.6	
Approach LOS		В			С			С			С	
Intersection Summary												
HCM 2000 Control Delay			26.9	НС	CM 2000 Lev	el of Servic	e		С			
HCM 2000 Volume to Capacity ratio			0.74									
Actuated Cycle Length (s)			90.0	Su	m of lost tim	e (s)			16.0			
Intersection Capacity Utilization			84.9%		U Level of S	()			E			
Analysis Period (min)			15									
, 5.5 . 5.15 . ()			10									

c Critical Lane Group

Ø6 (R)

	-	←					
Lane Group	EBT	WBT	Ø4	Ø8			
Lane Configurations	44	*					
Traffic Volume (vph)	585	811					
Future Volume (vph)	585	811					
Lane Group Flow (vph)	650	901					
Turn Type	NA	NA					
Protected Phases	2	6	4	8			
Permitted Phases							
Detector Phase	2	6					
Switch Phase							
Minimum Initial (s)	10.0	10.0	10.0	10.0			
Minimum Split (s)	23.1	23.1	25.0	25.0			
Total Split (s)	40.0	40.0	25.0	25.0			
Total Split (%)	61.5%	61.5%	38%	38%			
Yellow Time (s)	3.0	3.0	3.0	3.0			
All-Red Time (s)	2.1	2.1	1.0	1.0			
Lost Time Adjust (s)	-1.1	-1.1					
Total Lost Time (s)	4.0	4.0					
Lead/Lag	1.0	1.0					
Lead-Lag Optimize?							
Recall Mode	C-Max	C-Max	Ped	Ped			
Act Effct Green (s)	36.0	36.0	1 00	1 00			
Actuated g/C Ratio	0.55	0.55					
v/c Ratio	0.35	0.92					
Control Delay	8.7	30.9					
Queue Delay	0.0	0.0					
Total Delay	8.7	30.9					
LOS	Α	C					
Approach Delay	8.7	30.9					
Approach LOS	A	C					
Queue Length 50th (m)	21.7	94.2					
Queue Length 95th (m)	31.4	#177.0					
Internal Link Dist (m)	41.2	106.6					
Turn Bay Length (m)	41.2	100.0					
Base Capacity (vph)	1857	977					
Starvation Cap Reductn	0	0					
Spillback Cap Reductn	0	0					
Storage Cap Reductin	0	0					
Reduced v/c Ratio	0.35	0.92					
	0.00	0.32					
Intersection Summary							
Cycle Length: 65							
Actuated Cycle Length: 65	o OLEDT -	nd CAMPT O	tort of O				
Offset: 40 (62%), Referenced to phase	e z:EBT a	na o:WBT, S	tart of Greet	1			
Natural Cycle: 70							
Control Type: Actuated-Coordinated							
Maximum v/c Ratio: 0.92				Lat			
Intersection Signal Delay: 21.6	,				section LOS: C		
Intersection Capacity Utilization 48.4%	'o			ICU	Level of Service A		
Analysis Period (min) 15			l				
# 95th percentile volume exceeds ca		leue may be	ionger.				
Queue shown is maximum after two	o cycles.						
Splits and Phases: 6: Ped Crossing	& Richmo	ond Rd					
74 was 127 maga					V	#1 ₀₄	
→ Ø2 (R)						21 CM 4	

CIMA+ Synchro 10 Report

FRØ8

	٠	→	*	1	+	•	1	†	1	/	↓	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		44			*							
Traffic Volume (vph)	0	585	0	0	811	0	0	0	0	0	0	0
Future Volume (vph)	0	585	0	0	811	0	0	0	0	0	0	0
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Total Lost time (s)		4.0			4.0							
Lane Util. Factor		0.95			1.00							
Frpb, ped/bikes		1.00			1.00							
Flpb, ped/bikes		1.00			1.00							
Frt		1.00			1.00							
Flt Protected		1.00			1.00							
Satd. Flow (prot)		3353			1765							
Flt Permitted		1.00			1.00							
Satd. Flow (perm)		3353			1765							
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	0	650	0	0	901	0	0	0	0	0	0	0
RTOR Reduction (vph)	0	0	0	0	0	0	0	0	0	0	0	0
Lane Group Flow (vph)	0	650	0	0	901	0	0	0	0	0	0	0
Confl. Peds. (#/hr)	<u> </u>			<u> </u>			13		12	12	<u> </u>	13
Confl. Bikes (#/hr)							.0		2	•=		1
Turn Type		NA			NA							
Protected Phases		2			6							
Permitted Phases												
Actuated Green, G (s)		34.9			34.9							
Effective Green, g (s)		36.0			36.0							
Actuated g/C Ratio		0.55			0.55							
Clearance Time (s)		5.1			5.1							
Vehicle Extension (s)		3.0			3.0							
Lane Grp Cap (vph)		1857			977							
v/s Ratio Prot		0.19			c0.51							
v/s Ratio Perm												
v/c Ratio		0.35			0.92							
Uniform Delay, d1		8.0			13.2							
Progression Factor		1.00			1.00							
Incremental Delay, d2		0.5			15.2							
Delay (s)		8.5			28.4							
Level of Service		Α			С							
Approach Delay (s)		8.5			28.4			0.0			0.0	
Approach LOS		Α			С			Α			Α	
Intersection Summary												
HCM 2000 Control Delay			20.1	НС	M 2000 Lev	el of Service)		С			
HCM 2000 Volume to Capacity ratio			0.58									
Actuated Cycle Length (s)			65.0	Su	m of lost tim	ie (s)			8.0			
Intersection Capacity Utilization			48.4%		J Level of S	\ <i>\</i>			A			
Analysis Period (min)			15									
c Critical Lane Group												

Appendix E – Total Projected Conditions Output Data

1: Churchill Avenue North & Byron Avenue

Lane Group EBL EBT WBL WBT NBL NBT SBL SBT
Lane Configurations 🔥 🐧 🏌
Traffic Volume (vph) 57 172 54 125 27 335 38 331
Future Volume (vph) 57 172 54 125 27 335 38 331
Lane Group Flow (vph) 0 317 0 258 30 449 42 400
Turn Type Perm NA Perm NA Perm NA Perm NA
Protected Phases 4 8 2 6
Permitted Phases 4 8 2 6
Detector Phase 4 4 8 8 2 2 6 6
Switch Phase
Minimum Initial (s) 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.
Minimum Split (s) 30.6 30.6 30.6 26.4 26.4 26.4 26.4
Total Split (s) 38.0 38.0 38.0 42.0 42.0 42.0 42.0
Total Split (%) 47.5% 47.5% 47.5% 52.5% 52.5% 52.5% 52.5%
Yellow Time (s) 3.3 3.3 3.3 3.3 3.3 3.3 3.3
All-Red Time (s) 2.3 2.3 2.3 2.1 2.1 2.1 2.1
Lost Time Adjust (s) -1.6 -1.6 -1.4 -1.4 -1.4
Total Lost Time (s) 4.0 4.0 4.0 4.0 4.0
Lead/Lag
Lead-Lag Optimize?
Recall Mode None None None C-Max C-Max C-Max
Act Effct Green (s) 23.0 23.0 49.0 49.0 49.0 49.0
Actuated g/C Ratio 0.29 0.29 0.61 0.61 0.61
v/c Ratio 0.73 0.63 0.06 0.43 0.09 0.38
Control Delay 33.3 28.5 8.9 10.7 3.7 3.9
Queue Delay 0.0 0.0 0.0 0.0 0.0 0.3
Total Delay 33.3 28.5 8.9 10.7 3.7 4.2
LOS C C A B A A
Approach Delay 33.3 28.5 10.6 4.1
Approach LOS C C B A
Queue Length 50th (m) 42.7 32.3 1.8 32.4 1.2 12.2
Queue Length 95th (m) 61.3 48.9 6.6 68.4 m2.9 22.0
Internal Link Dist (m) 244.6 113.6 126.7 100.0
Turn Bay Length (m) 30.0 30.0
Base Capacity (vph) 637 597 493 1049 458 1066
Starvation Cap Reductn 0 0 0 0 0 228
Spillback Cap Reductn 0 0 0 0 0
Storage Cap Reductn 0 0 0 0 0
Reduced v/c Ratio 0.50 0.43 0.06 0.43 0.09 0.48
Intersection Summary

Intersection Summary

Cycle Length: 80

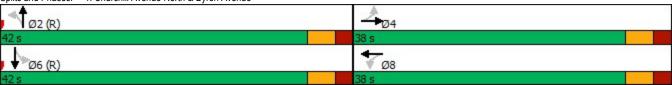
Actuated Cycle Length: 80

Offset: 74 (93%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 60 Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.73

Analysis Period (min) 15

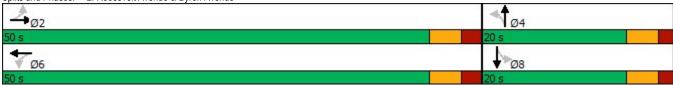

Intersection Signal Delay: 16.6

Intersection LOS: B ICU Level of Service B

Intersection Capacity Utilization 61.3%

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 1: Churchill Avenue North & Byron Avenue



1. Charchill Avenue Norti	I & Dyl		iuc							2020	Total Troje	7010071111
	۶	→	*	1	-	•	1	†	1	-	ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		AT.			43		*	T _a		×	₽.	
Traffic Volume (vph)	57	172	57	54	125	53	27	335	69	38	331	29
Future Volume (vph)	57	172	57	54	125	53	27	335	69	38	331	29
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Total Lost time (s)		4.0			4.0		4.0	4.0		4.0	4.0	
Lane Util. Factor		1.00			1.00		1.00	1.00		1.00	1.00	
Frpb, ped/bikes		0.99			0.99		1.00	0.99		1.00	1.00	
Flpb, ped/bikes		1.00			1.00		0.96	1.00		0.96	1.00	
Frt		0.97			0.97		1.00	0.97		1.00	0.99	
Flt Protected		0.99			0.99		0.95	1.00		0.95	1.00	
Satd. Flow (prot)		1684			1677		1607	1702		1614	1736	
Flt Permitted		0.87			0.81		0.47	1.00		0.44	1.00	
Satd. Flow (perm)		1475			1374		802	1702		745	1736	
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	63	191	63	60	139	59	30	372	77	42	368	32
RTOR Reduction (vph)	0	14	0	0	16	0	0	7	0	0	3	0
Lane Group Flow (vph)	0	303	0	0	242	0	30	442	0	42	397	0
Confl. Peds. (#/hr)	13	303	13	13	242	13	43	442	18	43	331	18
Confl. Bikes (#/hr)	13		13	13		10	40		7	40		10
Turn Type	Perm	NA	<u>'</u>	Perm	NA		Perm	NA	<u>'</u>	Perm	NA	
Protected Phases	Fellii	NA 4		reiiii	NA 8		reiiii	2		reiiii	6	
Permitted Phases	4	4		8	0		2	2		6	0	
	4	21.4		0	21.4		47.6	47 C			47 G	
Actuated Green, G (s)								47.6		47.6 49.0	47.6	
Effective Green, g (s)		23.0			23.0 0.29		49.0	49.0			49.0	
Actuated g/C Ratio		0.29					0.61	0.61		0.61	0.61	
Clearance Time (s)		5.6			5.6		5.4	5.4		5.4	5.4	
Vehicle Extension (s)		3.0			3.0		3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)		424			395		491	1042		456	1063	
v/s Ratio Prot								c0.26			0.23	
v/s Ratio Perm		c0.21			0.18		0.04			0.06		
v/c Ratio		0.72			0.61		0.06	0.42		0.09	0.37	
Uniform Delay, d1		25.6			24.6		6.2	8.1		6.4	7.8	
Progression Factor		1.00			1.00		1.00	1.00		0.39	0.33	
Incremental Delay, d2		5.7			2.8		0.2	1.3		0.3	0.9	
Delay (s)		31.2			27.4		6.5	9.4		2.8	3.4	
Level of Service		С			С		Α	Α		Α	Α	
Approach Delay (s)		31.2			27.4			9.2			3.4	
Approach LOS		С			С			Α			Α	
Intersection Summary												
HCM 2000 Control Delay			15.3	HC	CM 2000 Lev	el of Service	ce		В			
HCM 2000 Volume to Capacity ratio			0.52									
Actuated Cycle Length (s)			80.0	Su	ım of lost tim	ie (s)			8.0			
Intersection Capacity Utilization			61.3%	IC	U Level of S	ervice			В			
Analysis Pariod (min)			15									

Analysis Period (min) c Critical Lane Group

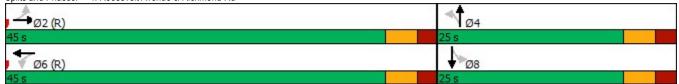
	۶	-	•	←	1	†	-	ļ	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	
Lane Configurations		4		4		4		4	
Traffic Volume (vph)	36	233	14	148	4	32	26	1	
Future Volume (vph)	36	233	14	148	4	32	26	22	
Lane Group Flow (vph)	0	308	0	211	0	59	0	66	
Turn Type	Perm	NA	Perm	NA	Perm	NA	Perm	NA	
Protected Phases		2		6		4		8	
Permitted Phases	2		6		4		8		
Detector Phase	2	2	6	6	4	4	8	8	
Switch Phase									
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	
Minimum Split (s)	22.5	22.5	22.5	22.5	20.0	20.0	20.0	20.0	
Total Split (s)	50.0	50.0	50.0	50.0	20.0	20.0	20.0	20.0	
Total Split (%)	71.4%	71.4%	71.4%	71.4%	28.6%	28.6%	28.6%	28.6%	
Yellow Time (s)	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	
All-Red Time (s)	2.2	2.2	2.2	2.2	1.7	1.7	1.7	1.7	
Lost Time Adjust (s)		-1.5		-1.5		-1.0		-1.0	
Total Lost Time (s)		4.0		4.0		4.0		4.0	
Lead/Lag									
Lead-Lag Optimize?									
Recall Mode	Max	Max	Max	Max	None	None	None	None	
Act Effct Green (s)		55.6		55.6		13.0		13.0	
Actuated g/C Ratio		0.81		0.81		0.19		0.19	
v/c Ratio		0.23		0.16		0.18		0.23	
Control Delay		4.0		3.4		18.6		21.7	
Queue Delay		0.0		0.0		0.0		0.0	
Total Delay		4.0		3.4		18.6		21.7	
LOS		Α		Α		В		С	
Approach Delay		4.0		3.4		18.6		21.7	
Approach LOS		Α		Α		В		С	
Queue Length 50th (m)		10.8		6.0		5.0		6.8	
Queue Length 95th (m)		25.5		15.7		13.4		15.6	
Internal Link Dist (m)		50.9		244.6		129.2		56.5	
Turn Bay Length (m)									
Base Capacity (vph)		1347		1359		392		350	
Starvation Cap Reductn		0		0		0		0	
Spillback Cap Reductn		0		0		0		0	
Storage Cap Reductn		0		0		0		0	
Reduced v/c Ratio		0.23		0.16		0.15		0.19	
Intersection Summary									
Cycle Length: 70									
Actuated Cycle Length: 68.6									
Natural Cycle: 45									
Control Type: Semi Act-Uncoord									
Maximum v/c Ratio: 0.23									
Intersection Signal Delay: 6.9				Int	ersection Lo	OS: A			
Intersection Capacity Utilization 43.0%	0				U Level of S				
Analysis Period (min) 15									

Splits and Phases: 2: Roosevelt Avenue & Byron Avenue

	۶	→	•	1	←	1	1	†	-	-	ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		43			43			4 32			43	
Traffic Volume (vph)	36	233	8	14	148	28	4	32	17	26	22	12
Future Volume (vph)	36	233	8	14	148	28	4	32	17	26	22	12
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Total Lost time (s)		4.0			4.0			4.0			4.0	
Lane Util. Factor		1.00			1.00			1.00			1.00	
Frpb, ped/bikes		1.00			0.99			0.98			0.98	
Flpb, ped/bikes		1.00			1.00			1.00			0.99	
Frt		1.00			0.98			0.96			0.97	
Flt Protected		0.99			1.00			1.00			0.98	
Satd. Flow (prot)		1741			1712			1648			1628	
Flt Permitted		0.95			0.97			0.98			0.88	
Satd. Flow (perm)		1661			1671			1616			1458	
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	40	259	9	16	164	31	4	36	19	29	24	13
RTOR Reduction (vph)	0	1	0	0	6	0	0	17	0	0	11	0
Lane Group Flow (vph)	0	307	0	0	205	0	0	42	0	0	55	0
Confl. Peds. (#/hr)	8	307	13	13	203	8	33	42	13	13	55	33
	ŏ		2	13		1	33		13	13		33 1
Confl. Bikes (#/hr)		N.1.A			N1A	ı		NIA			N.I.A.	
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases	•	2		•	6			4		•	8	
Permitted Phases	2	=0.4		6	50 4		4			8		
Actuated Green, G (s)		52.4			52.4			7.7			7.7	
Effective Green, g (s)		53.9			53.9			8.7			8.7	
Actuated g/C Ratio		0.76			0.76			0.12			0.12	
Clearance Time (s)		5.5			5.5			5.0			5.0	
Vehicle Extension (s)		3.0			3.0			3.0			3.0	
Lane Grp Cap (vph) v/s Ratio Prot		1268			1275			199			179	
v/s Ratio Perm		c0.18			0.12			0.03			c0.04	
v/c Ratio		0.24			0.16			0.21			0.31	
Uniform Delay, d1		2.4			2.3			27.9			28.2	
Progression Factor		1.00			1.00			1.00			1.00	
Incremental Delay, d2		0.5			0.3			0.5			1.0	
Delay (s)		2.9			2.5			28.4			29.2	
Level of Service		Α			Α			С			С	
Approach Delay (s)		2.9			2.5			28.4			29.2	
Approach LOS		Α			Α			С			С	
Intersection Summary												
HCM 2000 Control Delay			7.8	HC	CM 2000 Le	vel of Service	ce		Α			
HCM 2000 Volume to Capacity ratio			0.25									
Actuated Cycle Length (s)			70.6	Su	m of lost tim	ne (s)			8.0			
Intersection Capacity Utilization			43.0%	ICI	J Level of S	ervice			Α			
Analysis Period (min)			15									
c Critical Lane Group												

CIMA+

Synchro 10 Report


Lane Configurations		۶	→	*	•	←	4	1	-	Ţ
Traffic Volume (vph)	Lane Group	EBL	EBT	EBR	WBL	WBT	NBL	NBT	SBL	SBT
Traffic Volume (vph)	Lane Configurations		*	7		∆		A.		412
Future Volume (vph) 2 477 28 46 285 49 2 1 4 Alane Group Flow (vph) 0 532 31 0 371 0 133 0 5 Furm Type Perm NA Perm Perm NA		2			46	285	49	2	1	4
Lane Group Flow (vph) Na Perm Na			477	28	46			2	1	4
Turn Type	\ \ \ \ \ \		532	31				133	0	5
Permitted Phases 2 2 2 6 6 4 4 8 8 eDelector Phase 2 2 2 2 6 6 6 4 4 4 8 8 8 eDelector Phase 4 2 2 2 2 6 6 6 4 4 4 8 8 8 8 eDelector Phase 4 2 2 2 2 6 6 6 4 4 4 8 8 8 8 eDelector Phase 4 8 eDelector Phase 4 8 8 eDelector Phase 4 9 eDelector Phase 5 eDelector Phase 5 eDelector Phase 5 eDelector Phase 6 2 2 2 2 6 6 6 4 4 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8	Turn Type	Perm	NA		Perm	NA	Perm		Perm	NA
Defector Phase 2 2 2 6 6 4 4 8 8 8 8	Protected Phases					6		4		8
Switch Phase Minimum Initial (s)	Permitted Phases	2		2	6		4		8	
Minimum Initial (s)	Detector Phase	2	2	2	6	6	4	4	8	8
Minimum Split (s)	Switch Phase									
Total Split (s)	Minimum Initial (s)	10.0	10.0	10.0	10.0		10.0		10.0	10.0
Total Spiti (%)	Minimum Split (s)	28.8		28.8		28.8	28.6		28.6	
Vellow Time (s) 3.3 3.5	Total Split (s)	35.0	35.0	35.0	35.0	35.0	29.0	29.0	29.0	29.0
All-Red Time (s)	Total Split (%)	54.7%	54.7%	54.7%	54.7%	54.7%	45.3%	45.3%	45.3%	45.3%
Lost Time Adjust (s)	Yellow Time (s)	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	
Total Lost Time (s)	All-Red Time (s)	2.5		2.5	2.5	2.5	2.3		2.3	
Lead-Lag Optimize? Recail Mode	Lost Time Adjust (s)		-1.8	-1.8		-1.8		-1.6		-1.6
Lead-Lag Optimize? Recall Mode	Total Lost Time (s)		4.0	4.0		4.0		4.0		4.0
Recall Mode	Lead/Lag									
Act Effet Green (s)										
Actuated g/C Ratio 0.63 0.63 0.63 0.30 0.30 0.30 v/c Ratio 0.48 0.04 0.37 0.29 0.01 0.01 0.01 0.01 0.02 0.01 0.01 0.02 0.00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0		C-Max			C-Max		None		None	
w/c Ratio 0.48 0.04 0.37 0.29 0.01 Control Delay 11.6 2.5 10.5 8.5 12.2 Queue Delay 0.0 0.0 0.0 0.0 0.0 Total Delay 11.6 2.5 10.5 8.5 12.2 LOS B A B A B Approach Delay 11.1 10.5 8.5 12.3 Approach LOS B B A B Queue Length 50th (m) 45.1 0.0 28.7 4.3 0.4 Queue Length 95th (m) 74.6 2.8 49.8 14.6 2.3 Internal Link Dist (m) 37.9 130.2 72.7 29.6 Turn Bay Length (m) 2.8 49.8 14.6 2.3 Base Capacity (vph) 1116 883 99.1 570 654 Starvation Cap Reductn 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 Reduced v/c Ratio 0.48 0.04 0.37 0.23 0.01 Intersection Summary Cycle Length: 64 Offset: 21 (33%), Referenced to phase 2:E	Act Effct Green (s)									
Control Delay 11.6 2.5 10.5 8.5 12.2 Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.										
Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Total Delay 11.6 2.5 10.5 8.5 12.2 LOS B A B A B A B A B A B A B A A B Approach Delay 11.1 10.5 8.5 12.3 Approach LOS B B B A B B A B B A B B A B B A B B A B B A B B A B B A B B A B B A B B A B B A B B A B B A B B A B B A B B A B B A B B B A B										
Total Delay										
B A B A B A B A B A B A B A A										
Approach Delay 11.1 10.5 8.5 12.3 Approach LOS B B B A B B B A B B A B B A B B A B B A B B A B B A B B A B B A B B A B B B A B B A B B A B B A B B A B B A B B B A B B B A B B B A B B B A B B B A B B B A B B B A B B B B A B B B B A B B B B A B B B B A B B B B A B B B B A B B B B A B B B B A B B B B B A B B B B B A B B B B B A B B B B B A B B B B B B A B B B B B B B B B B B B B A B										
Approach LOS B B B A B A B Queue Length 50th (m) 45.1 0.0 28.7 4.3 0.4 Queue Length 95th (m) 74.6 2.8 49.8 14.6 2.3 Internal Link Dist (m) 37.9 130.2 72.7 29.6 Turn Bay Length (m) 8 883 991 570 654 888				A						
Queue Length 50th (m)										
Queue Length 95th (m) 74.6 2.8 49.8 14.6 2.3 Internal Link Dist (m) 37.9 130.2 72.7 29.6 Turn Bay Length (m) 883 991 570 654 Starvation Cap Reductn 0 0 0 0 0 Spillback Cap Reductn 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 Reduced v/c Ratio 0.48 0.04 0.37 0.23 0.01 Intersection Summary Cycle Length: 64 Actuated Cycle Length: 64 Offset: 21 (33%), Referenced to phase 2:EBTL and 6:WBTL, Start of Green Natural Cycle: 60 Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.48 Intersection Signal Delay: 10.6 Intersection LOS: B Intersection Capacity Utilization 74.4% ICU Level of Service D Analysis Period (min) 15										
Internal Link Dist (m) 37.9 130.2 72.7 29.6 Turn Bay Length (m) Base Capacity (vph) 1116 883 991 570 654 Starvation Cap Reductn 0 0 0 0 0 0 0 Spillback Cap Reductn 0 0 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 0 0 0 Reduced v/c Ratio 0.48 0.04 0.37 0.23 0.01 Intersection Summary Cycle Length: 64 Actuated Cycle Length: 64 Offset: 21 (33%), Referenced to phase 2:EBTL and 6:WBTL, Start of Green Natural Cycle: 60 Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.48 Intersection Signal Delay: 10.6 Intersection LOS: B Intersection Capacity Utilization 74.4% ICU Level of Service D Analysis Period (min) 15										
Turn Bay Length (m) Base Capacity (vph) 1116 883 991 570 654 Starvation Cap Reductn 0 0 0 0 0 0 0 Spillback Cap Reductn 0 0 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 0 0 0 Reduced v/c Ratio 0.48 0.04 0.37 0.23 0.01 Intersection Summary Cycle Length: 64 Actuated Cycle Length: 64 Offset: 21 (33%), Referenced to phase 2:EBTL and 6:WBTL, Start of Green Natural Cycle: 60 Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.48 Intersection Signal Delay: 10.6 Intersection LOS: B Intersection Capacity Utilization 74.4% ICU Level of Service D Analysis Period (min) 15				2.8						
Base Capacity (vph)			37.9			130.2		72.7		29.6
Starvation Cap Reductn 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			1110	000		004		F70		CEA
Spillback Cap Reductn 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0										
Storage Cap Reductn 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0										
Reduced v/c Ratio 0.48 0.04 0.37 0.23 0.01 Intersection Summary Cycle Length: 64 Actuated Cycle Length: 64 Offset: 21 (33%), Referenced to phase 2:EBTL and 6:WBTL, Start of Green Natural Cycle: 60 Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.48 Intersection Signal Delay: 10.6 Intersection LOS: B Intersection Capacity Utilization 74.4% ICU Level of Service D Analysis Period (min) 15										
Intersection Summary Cycle Length: 64 Actuated Cycle Length: 64 Offset: 21 (33%), Referenced to phase 2:EBTL and 6:WBTL, Start of Green Natural Cycle: 60 Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.48 Intersection Signal Delay: 10.6 Intersection Capacity Utilization 74.4% Analysis Period (min) 15										
Cycle Length: 64 Actuated Cycle Length: 64 Offset: 21 (33%), Referenced to phase 2:EBTL and 6:WBTL, Start of Green Natural Cycle: 60 Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.48 Intersection Signal Delay: 10.6 Intersection Capacity Utilization 74.4% Analysis Period (min) 15			0.40	0.04		0.51		0.23		0.01
Actuated Čycle Length: 64 Offset: 21 (33%), Referenced to phase 2:EBTL and 6:WBTL, Start of Green Natural Cycle: 60 Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.48 Intersection Signal Delay: 10.6 Intersection Capacity Utilization 74.4% Analysis Period (min) 15	Intersection Summary									
Offset: 21 (33%), Referenced to phase 2:EBTL and 6:WBTL, Start of Green Natural Cycle: 60 Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.48 Intersection Signal Delay: 10.6 Intersection Capacity Utilization 74.4% Analysis Period (min) 15	Cycle Length: 64									
Natural Cycle: 60 Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.48 Intersection Signal Delay: 10.6 Intersection Capacity Utilization 74.4% Analysis Period (min) 15										
Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.48 Intersection Signal Delay: 10.6 Intersection Capacity Utilization 74.4% Analysis Period (min) 15		ase 2:EBTL a	and 6:WBTL	., Start of G	reen					
Maximum v/c Ratio: 0.48 Intersection Signal Delay: 10.6 Intersection Capacity Utilization 74.4% Intersection Capacity Utilization 74.4% Analysis Period (min) 15										
Intersection Signal Delay: 10.6 Intersection LOS: B Intersection Capacity Utilization 74.4% ICU Level of Service D Analysis Period (min) 15		d								
ntersection Capacity Utilization 74.4% ICU Level of Service D Analysis Period (min) 15										
Analysis Period (min) 15										
		4%			IC	U Level of S	Service D			
Splits and Phases: 3: Golden Avenue & Richmond Rd	Analysis Period (min) 15									
A	Splits and Phases: 3: Golden Ave	enue & Richr	nond Rd							
	A					35	-4			
Ø2 (R)	₩ Ø2 (R)						Ø4	ă,		

Ø8

	۶	→	•	1	←	•	4	†	-	-	ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		•	7		4			4			4	
Traffic Volume (vph)	2	477	28	46	285	3	49		69	1	4	0
Future Volume (vph)	2	477	28	46	285	3	49	2	69	1	4	0
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Total Lost time (s)		4.0	4.0		4.0			4.0			4.0	
Lane Util. Factor		1.00	1.00		1.00			1.00			1.00	
Frpb, ped/bikes		1.00	0.91		1.00			0.95			1.00	
Flpb, ped/bikes		1.00	1.00		1.00			0.98			0.99	
Frt		1.00	0.85		1.00			0.92			1.00	
Flt Protected		1.00	1.00		0.99			0.98			0.99	
Satd. Flow (prot)		1764	1371		1743			1479			1729	
Flt Permitted		1.00	1.00		0.89			0.89			0.96	
Satd. Flow (perm)		1763	1371		1566			1340			1676	
Peak-hour factor. PHF	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	2	530	31	51	317	3	54	2	77	1	4	0
RTOR Reduction (vph)	0	0	12	0	0	0	0	56	0	0	0	0
Lane Group Flow (vph)	0	532	19	0	371	0	0	77	0	0	5	0
Confl. Peds. (#/hr)	62	002	45	45	07.1	62	33		49	49		33
Confl. Bikes (#/hr)	UL.		8	40		8	00		6	40		20
Turn Type	Perm	NA	Perm	Perm	NA		Perm	NA		Perm	NA	
Protected Phases	1 Cilli	2	1 Cilli	1 Cilli	6		1 Cilli	4		1 Cilli	8	
Permitted Phases	2		2	6	- U		4	7		8	U	
Actuated Green, G (s)		36.8	36.8	U	36.8		7	15.8		U	15.8	
Effective Green, q (s)		38.6	38.6		38.6			17.4			17.4	
Actuated g/C Ratio		0.60	0.60		0.60			0.27			0.27	
Clearance Time (s)		5.8	5.8		5.8			5.6			5.6	
Vehicle Extension (s)		3.0	3.0		3.0			3.0			3.0	
		1063	826		944			364			455	
Lane Grp Cap (vph) v/s Ratio Prot		1003	020		944			304			400	
v/s Ratio Perm		c0.30	0.01		0.24			c0.06			0.00	
			0.01					0.21			0.00	
v/c Ratio		0.50 7.2	5.1		0.39 6.6			18.0			17.0	
Uniform Delay, d1			1.00		1.00			1.00			1.00	
Progression Factor		1.00			1.00			0.3				
Incremental Delay, d2		1.7	0.1								0.0	
Delay (s)		8.9	5.2		7.8			18.3			17.0	
Level of Service		A	Α		Α 7.0			B			B	
Approach Delay (s) Approach LOS		8.7 A			7.8 A			18.3 B			17.0 B	
Intersection Summary												
HCM 2000 Control Delay			9.6	LIC	M 2000 Lev	rol of Comit	20		A			
			9.6 0.41	HC	INI ZUUU LE	ei oi Servic	æ		А			
HCM 2000 Volume to Capacity ratio				^	as afterstive	(-)			0.0			
Actuated Cycle Length (s)			64.0		m of lost tim	()			8.0			
Intersection Capacity Utilization Analysis Period (min)			74.4%	iCi	J Level of S	ervice			D			
Analysis Period (min)			15									

	۶	-	1	•	1	†	-	ļ	
ane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	
ane Configurations		4 639	<u>-</u>	4		12		4 15	
raffic Volume (vph)	6	639	14	304	26	12	47	15	
uture Volume (vph)	6	639	14	304	26	12	47	15	
ane Group Flow (vph)	0	728	0	390	0	78	0	85	
Turn Type	Perm	NA	Perm	NA	Perm	NA	Perm	NA	
Protected Phases		2		6		4		8	
Permitted Phases	2		6		4		8		
Detector Phase	2	2	6	6	4	4	8	8	
Switch Phase									
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	
Minimum Split (s)	33.4	33.4	33.4	33.4	24.6	24.6	24.6	24.6	
Total Split (s)	45.0	45.0	45.0	45.0	25.0	25.0	25.0	25.0	
Total Split (%)	64.3%	64.3%	64.3%	64.3%	35.7%	35.7%	35.7%	35.7%	
/ellow Time (s)	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	
All-Red Time (s)	2.1	2.1	2.1	2.1	2.3	2.3	2.3	2.3	
Lost Time Adjust (s)		-1.4		-1.4	2.0	-1.6		-1.6	
Total Lost Time (s)		4.0		4.0		4.0		4.0	
Lead/Lag		т.0		т.0		٠.٠		т.0	
_ead-Lag Optimize?									
Recall Mode	C-Max	C-Max	C-Max	C-Max	None	None	None	None	
Act Effct Green (s)	O-IVIAX	48.9	O-IVIAX	48.9	NONE	17.0	INOTIC	17.0	
Actuated g/C Ratio		0.70		0.70		0.24		0.24	
/c Ratio		0.70		0.70		0.24		0.24	
Control Delay		10.9		7.1		13.5		18.8	
Queue Delay		0.3		0.0		0.0		0.0	
Total Delay		11.2		7.1		13.5		18.8	
LOS		11.2 B		7.1 A		13.3 B		10.0 B	
Approach Delay		11.2		7.1		13.5		18.8	
Approach LOS		11.2 B		7.1 A		13.3 B		10.0 B	
		62.4		24.5		4.2		7.0	
Queue Length 50th (m)		102.2		41.2		13.7		17.6	
Queue Length 95th (m)									
nternal Link Dist (m)		130.2		276.4		56.5		123.0	
Turn Bay Length (m)		1005		1400		405		393	
Base Capacity (vph)		1225 114		1169 0		425 0		393	
Starvation Cap Reductn		114		0		0		0	
Spillback Cap Reductn								-	
Storage Cap Reductn Reduced v/c Ratio		0.66		0		0		0	
		0.00		0.33		0.18		0.22	
ntersection Summary									
Cycle Length: 70									
Actuated Cycle Length: 70			_						
Offset: 27 (39%), Referenced to phase	e 2:EBTL a	and 6:WBTL	., Start of G	reen					
latural Cycle: 60									
Control Type: Actuated-Coordinated									
/laximum v/c Ratio: 0.59									
ntersection Signal Delay: 10.6					ersection Lo				
ntersection Capacity Utilization 60.2%	6			IC	U Level of S	Service B			
Analysis Period (min) 15									

Splits and Phases: 4: Roosevelt Avenue & Richmond Rd

	•	→	•	-	•	*	4	†	-	1	Ţ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	• NBR	SBL	SBT	SBR
Lane Configurations		4			412			412			Δħ	
Traffic Volume (vph)	6	639	10	14	304	32	26	12	32	47	4 15	14
Future Volume (vph)	6	639	10	14	304	32	26	12	32	47	15	14
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Total Lost time (s)		4.0			4.0			4.0			4.0	
Lane Util. Factor		1.00			1.00			1.00			1.00	
Frpb, ped/bikes		1.00			0.99			0.95			0.97	
Flpb, ped/bikes		1.00			1.00			0.96			0.96	
Frt		1.00			0.99			0.94			0.97	
Flt Protected		1.00			1.00			0.98			0.97	
Satd. Flow (prot)		1756			1718			1492			1560	
Flt Permitted		1.00			0.97			0.88			0.79	
Satd. Flow (perm)		1751			1667			1333			1275	
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	7	710	11	16	338	36	29	13	36	52	17	16
RTOR Reduction (vph)	0	1	0	0	4	0	0	28	0	0	13	0
Lane Group Flow (vph)	0	727	0	0	386	0	0	50	0	0	72	0
Confl. Peds. (#/hr)	74		69	69		74	65		40	40		65
Confl. Bikes (#/hr)			7	-		4			4			4
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases		2			6			4		. •	8	
Permitted Phases	2	_		6			4	•		8		
Actuated Green, G (s)	_	45.6		· ·	45.6		•	13.4			13.4	
Effective Green, g (s)		47.0			47.0			15.0			15.0	
Actuated g/C Ratio		0.67			0.67			0.21			0.21	
Clearance Time (s)		5.4			5.4			5.6			5.6	
Vehicle Extension (s)		3.0			3.0			3.0			3.0	
Lane Grp Cap (vph)		1175			1119			285			273	
v/s Ratio Prot		1170			1110			200			210	
v/s Ratio Perm		c0.42			0.23			0.04			c0.06	
v/c Ratio		0.62			0.34			0.17			0.27	
Uniform Delay, d1		6.5			4.9			22.4			22.9	
Progression Factor		1.00			1.00			1.00			1.00	
Incremental Delay, d2		2.5			0.8			0.3			0.5	
Delay (s)		8.9			5.8			22.7			23.4	
Level of Service		Α			A			C			C	
Approach Delay (s)		8.9			5.8			22.7			23.4	
Approach LOS		A			A			C			C	
Intersection Summary												
HCM 2000 Control Delay			9.8	Н	CM 2000 Lev	el of Servic	e		A			
HCM 2000 Volume to Capacity ratio			0.53	110	JIVI 2000 LG	OF OF OCTAIN			A			
Actuated Cycle Length (s)			70.0	Çı	um of lost tim	a (e)			8.0			
Intersection Capacity Utilization			60.2%		U Level of S				0.0 B			
Analysis Period (min)			15	10	C L0101010	U. VIOU						
Critical Lang Croup			10									

c Critical Lane Group

	۶	-	1	•	1	†	1	Ţ			
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	Ø9	Ø10	
Lane Configurations	7	1	*	T ₂		473		473			
Traffic Volume (vph)	265	402	51	190	28	286	33	337			
Future Volume (vph)	265	402	51	190	28	286	33	337			
Lane Group Flow (vph)	294	485	57	235	0	441	0	571			
Turn Type	Prot	NA	Perm	NA	Perm	NA	Perm	NA			
Protected Phases	5	2		6		4		8	9	10	
Permitted Phases			6		4		8	8			
Detector Phase	5	2	6	6	4	4	8	8			
Switch Phase											
Minimum Initial (s)	5.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	1.0	1.0	
Minimum Split (s)	11.1	26.1	26.1	26.1	26.1	26.1	26.2	26.2	5.0	5.0	
Total Split (s)	14.0	40.0	26.0	26.0	30.0	30.0	30.0	30.0	5.0	5.0	
Total Split (%)	17.5%	50.0%	32.5%	32.5%	37.5%	37.5%	37.5%	37.5%	6%	6%	
Yellow Time (s)	3.3	3.3	3.3	3.3	3.6	3.6	3.6	3.6	2.0	2.0	
All-Red Time (s)	2.8	2.8	2.8	2.8	2.6	2.6	2.6	2.6	0.0	0.0	
Lost Time Adjust (s)	-2.1	-2.1	-2.1	-2.1		-2.2		-2.2			
Total Lost Time (s)	4.0	4.0	4.0	4.0		4.0		4.0			
Lead/Lag	Lead		Lag	Lag							
Lead-Lag Optimize?			Yes	Yes							
Recall Mode	None	C-Max	C-Max	C-Max	None	None	None	None	None	None	
Act Effct Green (s)	23.9	49.9	22.0	22.0		22.1		22.1			
Actuated g/C Ratio	0.30	0.62	0.28	0.28		0.28		0.28			
v/c Ratio	0.59	0.45	0.26	0.49		0.57		0.70			
Control Delay	32.1	10.4	26.5	27.7		19.4		26.8			
Queue Delay	0.0	0.0	0.0	0.0		0.0		0.0			
Total Delay	32.1	10.4	26.5	27.7		19.4		26.8			
LOS	С	В	С	С		В		С			
Approach Delay		18.6		27.5		19.4		26.8			
Approach LOS		В		С		В		С			
Queue Length 50th (m)	39.7	35.6	7.1	30.4		19.0		37.3			
Queue Length 95th (m)	#84.4	70.2	17.3	52.1		27.9		49.0			
Internal Link Dist (m)		276.4		61.0		100.0		41.6			
Turn Bay Length (m)	40.0		45.0								
Base Capacity (vph)	499	1075	220	480		920		956			
Starvation Cap Reductn	0	0	0	0		0		0			
Spillback Cap Reductn	0	0	0	0		0		0			
Storage Cap Reductn	0	0	0	0		0		0			
Reduced v/c Ratio	0.59	0.45	0.26	0.49		0.48		0.60			

Intersection Summary

Cycle Length: 80

Actuated Cycle Length: 80

Offset: 43 (54%), Referenced to phase 6:WBTL and 2:EBT, Start of Green

Natural Cycle: 80 Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.70 Intersection Signal Delay: 22.3

Intersection Capacity Utilization 75.9%

Intersection LOS: C ICU Level of Service D

Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

	۶	→	*	1	+	1	1	1	~	1	Ţ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	T _a		*	Î.			414			413	
Traffic Volume (vph)	265	402	34	51	190	22	28	286	83	33	337	144
Future Volume (vph)	265	402	34	51	190	22	28	286	83	33	337	144
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Total Lost time (s)	4.0	4.0		4.0	4.0			4.0			4.0	
Lane Util. Factor	1.00	1.00		1.00	1.00			0.95			0.95	
Frpb, ped/bikes	1.00	0.99		1.00	0.99			0.97			0.95	
Flpb, ped/bikes	1.00	1.00		0.93	1.00			1.00			1.00	
Frt	1.00	0.99		1.00	0.98			0.97			0.96	
Flt Protected	0.95	1.00		0.95	1.00			1.00			1.00	
Satd. Flow (prot)	1676	1722		1560	1728			3140			3044	
FIt Permitted	0.95	1.00		0.49	1.00			0.85			0.90	
Satd. Flow (perm)	1676	1722		800	1728			2693			2738	
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	294	447	38	57	211	24	31	318	92	37	374	160
RTOR Reduction (vph)	0	3	0	0	5	0	0	32	0	0	55	0
Lane Group Flow (vph)	294	482	0	57	230	0	0	409	0	0	516	0
Confl. Peds. (#/hr)	34		68	68		34	45		36	36		45
Confl. Bikes (#/hr)			11			1						8
Turn Type	Prot	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases	5	2			6			4			8	
Permitted Phases				6			4			8	8	
Actuated Green, G (s)	21.8	47.8		19.9	19.9			19.9			19.9	
Effective Green, g (s)	23.9	49.9		22.0	22.0			22.1			22.1	
Actuated g/C Ratio	0.30	0.62		0.28	0.28			0.28			0.28	
Clearance Time (s)	6.1	6.1		6.1	6.1			6.2			6.2	
Vehicle Extension (s)	3.0	3.0		3.0	3.0			3.0			3.0	
Lane Grp Cap (vph)	500	1074		220	475			743			756	
v/s Ratio Prot	c0.18	c0.28			0.13							
v/s Ratio Perm				0.07				0.15			c0.19	
v/c Ratio	0.59	0.45		0.26	0.48			0.55			0.68	
Uniform Delay, d1	23.9	7.9		22.6	24.3			24.7			25.8	
Progression Factor	1.00	1.00		1.00	1.00			0.77			1.00	
Incremental Delay, d2	1.8	1.4		2.8	3.5			0.8			2.6	
Delay (s)	25.6	9.2		25.5	27.8			19.9			28.4	
Level of Service	С	Α		С	С			В			С	
Approach Delay (s)		15.4			27.3			19.9			28.4	
Approach LOS		В			С			В			С	
Intersection Summary												
HCM 2000 Control Delay			21.6	HC	CM 2000 Lev	el of Service)		С			
HCM 2000 Volume to Capacity ratio			0.63									
Actuated Cycle Length (s)			80.0		m of lost tim	()			16.0			
Intersection Capacity Utilization			75.9%	IC	U Level of S	ervice			D			
Analysis Period (min)			15									
o Critical Lana Croup												

c Critical Lane Group

Ø6 (R)

Traffic Volume (vph) 799 40 Future Volume (vph) 799 40 Lane Group Flow (vph) 888 44 Turn Type NA N Protected Phases 2 Permitted Phases Detector Phase 2 Switch Phase Minimum Initial (s) 10.0 10. Minimum Split (s) 15.1 15. Total Split (s) 40.0 40. Total Split (%) 61.5% 61.5% Yellow Time (s) 3.0 3. All-Red Time (s) 2.1 2. Lost Time Adjust (s) -1.1 -1. Total Lost Time (s) 4.0 4. Lead/Lag Lead-Lag Optimize? Recall Mode C-Max C-Max Act Effet Green (s) 36.0 36. Actuated g/C Ratio 0.55 0.5 v/c Ratio 0.48 0.4 Control Delay 9.9 10. Queue Delay 0.0 0. Total Lost Time (s) <th>100 00 00 00 00 00 00 00 00 00 00 00 00</th> <th>8 .0 .0 .0 .0 .0 .0</th>	100 00 00 00 00 00 00 00 00 00 00 00 00	8 .0 .0 .0 .0 .0 .0
Lane Configurations ↑↑ Traffic Volume (vph) 799 40 Future Volume (vph) 799 40 Future Volume (vph) 888 44 Turn Type NA N Protected Phases 2 Detector Phase 2 Switch Phase 2 Minimum Initial (s) 10.0 10. Minimum Split (s) 15.1 15. Total Split (%) 61.5% 61.5% Yellow Time (s) 3.0 3. All-Red Time (s) 2.1 2. Lost Time Adjust (s) -1.1 -1. Total Lost Time (s) 4.0 4. Lead/Lag 4.0 4. Lead/Lag 4.0 4. Lead/Lag Doptimize? Recall Mode C-Max C-Max Act Effet Green (s) 36.0 36. 36. Act Effet Green (s) 36.0 36. 36. Act Effet Green (s) 36.0 36. 36. Act Effet Green (s	100 00 00 00 00 00 00 00 00 00 00 00 00	8 .0 .0 .0 .0 .0 .0
Traffic Volume (vph) 799 40 Future Volume (vph) 799 40 Lane Group Flow (vph) 888 44 Turn Type NA N Protected Phases 2 Permitted Phases 2 Detector Phase 2 Switch Phase 3 Minimum Initial (s) 10.0 Minimum Split (s) 15.1 Total Split (s) 40.0 Yellow Time (s) 3.0 All-Red Time (s) 2.1 Lost Time Adjust (s) -1.1 Total Lost Time (s) 4.0 Lead/Lag 4.0 Lead-Lag Optimize? Recall Mode C-Max Act Effct Green (s) 36.0 Act Effct Green (s) 36.0 Actuated g/C Ratio 0.55 v/c Ratio 0.48 Control Delay 9.9 Queue Delay 0.0 Total Delay 9.9 LOS A Approach Delay 9.9 <t< td=""><td>00 00 00 00 00 00 00 00 00 00 00 00 00</td><td>.0 .0 .0 .0 %</td></t<>	00 00 00 00 00 00 00 00 00 00 00 00 00	.0 .0 .0 .0 %
Future Volume (vph) 799 40 Lane Group Flow (vph) 888 44 Turn Type NA N Protected Phases 2 Permitted Phases Detector Phase Switch Phase Minimum Initial (s) 10.0 10. Minimum Split (s) 15.1 15. Total Split (s) 40.0 40. Total Split (%) 61.5% 61.5% Yellow Time (s) 3.0 3. All-Red Time (s) 2.1 2. Lost Time Adjust (s) -1.1 -1. Total Lost Time (s) 4.0 4.0 Lead/Lag Lead-Lag Optimize? Recall Mode C-Max C-Max Act Effet Green (s) 36.0 36. Actuated g/C Ratio 0.55 0.5 V/c Ratio 0.48 0.4 Control Delay 9.9 10. Control Delay 9.9 10. Queue Delay 0.0 0. Total Delay 9.9 10. LOS A Approach Delay 9.9 10. Queue Length 50th (m) 32.5 30. Queue Length 95th (m) 45.8 50. Internal Link Dist (m) 41.2 106. Turn Bay Length (m) Base Capacity (vph) 1857 97 Starvation Cap Reductn 0 Storage Cap Reductn 0 Reduced v/c Ratio 0.48 0.4	00	.0 .0 .0 .0 %
Lane Group Flow (vph) 888 44 Tum Type NA N Protected Phases 2 Permitted Phases 2 Detector Phase 2 Switch Phase Minimum Initial (s) Minimum Split (s) 10.0 Total Split (s) 40.0 Total Split (s) 40.0 Yellow Time (s) 3.0 All-Red Time (s) 2.1 Lost Time Adjust (s) -1.1 Total Lost Time (s) 4.0 Lead/Lag 4.0 Lead-Lag Optimize? Recall Mode Recall Mode C-Max Act Effect Green (s) 36.0 Act Lasted g/C Ratio 0.55 v/c Ratio 0.48 Control Delay 9.9 Queue Delay 0.0 Total Delay 9.9 LOS A Approach Delay 9.9 Approach LOS A Queue Length 95th (m) 45.8 Approach LOS A Queue Leng	14 A 6 4 8 6 6 10.0 10.0 10.0 1.1 25.0 25.0 25.0 25.0 38% 38% 38% 11 1.0 1.0 1.0 1.0 12	.0 .0 .0 .0 %
Turn Type NA N Protected Phases 2 Permitted Phases Detector Phase 2 Switch Phase Minimum Initial (s) 10.0 10. Minimum Split (s) 15.1 15. Total Split (s) 40.0 40. Total Split (%) 61.5% 61.5% 61.5% Itotal Split (s) 2.1 2. Lost Time (s) 2.1 2. Lost Time Adjust (s) -1.1 -1. Total Lost Time (s) 4.0 4.0 Lead/Lag Lead-Lag Optimize? Recall Mode C-Max C-Max Act Effect Green (s) 36.0 36. Actuated g/C Ratio 0.55 0.5 V/c Ratio 0.48 0.4 Control Delay 9.9 10. Queue Delay 0.0 0. Total Delay 9.9 10. Approach LOS A Approach LOS A Approach LOS A Queue Length 95th (m) 32.5 30. Queue Length 95th (m) 45.8 50. Internal Link Dist (m) 41.2 106. Storage Cap Reductn 0 Storage Cap Reductn 0 Reduced v/c Ratio 0.48 0.48	A 6 4 8 6 10.0 10.0 10.0 1.1 25.0 25.0 25.0 25.0 38% 38% 38% 0 3.0 3.0 1.1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	.0 .0 .0 .0 %
Protected Phases 2 Permitted Phases 2 Detector Phase 2 Switch Phase 4 Minimum Initial (s) 10.0 Minimum Split (s) 15.1 Total Split (s) 40.0 Total Split (s) 40.0 Total Split (%) 61.5% Yellow Time (s) 3.0 All-Red Time (s) 2.1 Lost Time Adjust (s) -1.1 Total Lost Time (s) 4.0 Lead/Lag 4.0 Lead-Lag Optimize? 2 Recall Mode C-Max C-Max Act Effet Green (s) 36.0 36. Act Effet Green (s) 36.0 36. Actuated g/C Ratio 0.55 0.5 v/c Ratio 0.48 0.4 Control Delay 9.9 10. Queue Delay 0.0 0. Total Delay 9.9 10. Approach LOS A Approach LOS A Queue Length 95th (m)	6 4 8 6 .0 10.0 10.0 10.0 .1 25.0 25.0 .0 25.0 25.0 .38% 38% 38% .0 3.0 3.0 1.0 .1 1.0 1.0 .1 .0 .1	.0 .0 .0 .0 %
Permitted Phases Detector Phase 2 Switch Phase Minimum Initial (s) 10.0 10. Minimum Split (s) 15.1 15. Total Split (s) 40.0 40. Total Split (%) 61.5% 61.5% 61.5% All-Red Time (s) 2.1 2. Lost Time Adjust (s) -1.1 -1. Total Lost Time (s) 4.0 4. Lead/Lag Lead-Lag Optimize? Recall Mode C-Max C-Max Act Effct Green (s) 36.0 36. Actuated g/C Ratio 0.55 0.5 V/c Ratio 0.48 0.4 Control Delay 9.9 10. Queue Delay 0.0 0. Total Delay 9.9 10. Approach Delay 9.9 10. Approach LOS A Approach Delay 9.9 10. Queue Length 50th (m) 32.5 30. Queue Length 95th (m) 45.8 50. Internal Link Dist (m) 41.2 106. Storage Cap Reductn 0 Storage Cap Reductn 0 Reduced v/c Ratio 0.48 0.48 Capedocter 10.48 0.48 Capedocter 10.48 0.49	6	.0 .0 .0 .0 %
Detector Phase 2 Switch Phase 3 Minimum Initial (s) 10.0 10.0 Minimum Split (s) 15.1 15.1 Total Split (s) 40.0 40.0 Total Split (%) 61.5% 61.5% Yellow Time (s) 3.0 3. All-Red Time (s) 2.1 2. Lost Time Adjust (s) -1.1 -1. Total Lost Time (s) 4.0 4. Lead/Lag Lead-Lag Optimize? Recall Mode C-Max C-Max Recall Mode C-Max C-Max C-Max Act Effet Green (s) 36.0 36. Act Effet Green (s) 36.0 <td>.0 10.0 10.0 .1 25.0 25.0 .0 25.0 25.0 % 38% 38% .0 3.0 3.0 .1 1.0 1.0 .1 .0 Ped Ped .5 .5 .8 .8 .9 .</td> <td>0.0 0.0 % 0.0 0.0</td>	.0 10.0 10.0 .1 25.0 25.0 .0 25.0 25.0 % 38% 38% .0 3.0 3.0 .1 1.0 1.0 .1 .0 Ped Ped .5 .5 .8 .8 .9 .	0.0 0.0 % 0.0 0.0
Switch Phase Minimum Initial (s) 10.0 10. Minimum Split (s) 15.1 15. Total Split (s) 40.0 40. Total Split (%) 61.5% 61.5% Yellow Time (s) 3.0 3. All-Red Time (s) 2.1 2. Lost Time Adjust (s) -1.1 -1. Total Lost Time (s) 4.0 4. Lead/Lag Lead/Lag C-Max C-Max Lead-Lag Optimize? Recall Mode C-Max C-Max Act Effet Green (s) 36.0 36. 36. Actuated g/C Ratio 0.55 0.5 0.5 v/c Ratio 0.48 0.4 Control Delay 9.9 10. Queue Delay 0.0 0. Total Delay 9.9 10. Approach LOS A Approach LOS A Queue Length 95th (m) 32.5 30. Queue Length 95th (m) 45.8 50. Internal Link Dist (m) 41.2 106. Turm Bay Length (m) 8as	.0 10.0 10.0 .1 25.0 25.0 .0 25.0 25.0 % 38% 38% .0 3.0 3.0 .1 1.0 1.0 .1 .0 Ped Ped .5 .5 .8 .8 .9 .	0.0 0.0 % 0.0 0.0
Minimum Initial (s) 10.0 10.0 Minimum Split (s) 15.1 15.1 Total Split (s) 40.0 40.0 Total Split (%) 61.5% 61.5% Yellow Time (s) 3.0 3. All-Red Time (s) 2.1 2. Lost Time Adjust (s) -1.1 -1. Total Lost Time (s) 4.0 4. Lead/Lag Lead-Lag Optimize? C-Max Recall Mode C-Max C-Max Act Effet Green (s) 36.0 36.0 Act Effet Green (s) 40.4	.1 25.0 25.0 .0 25.0 25.0 % 38% 38% .0 3.0 3.0 .1 1.0 1.0 .1 .0 Ax Ped Ped .5 .5 .6 .7 .8 .8 .9 .	0.0 0.0 % 0.0 0.0
Minimum Split (s) 15.1 15. Total Split (s) 40.0 40. Total Split (%) 61.5% 61.5% Yellow Time (s) 3.0 3. All-Red Time (s) 2.1 2. Lost Time Adjust (s) -1.1 -1. Total Lost Time (s) 4.0 4. Lead/Lag Lead/Lag Lead-Lag Optimize? Recall Mode C-Max C-Max Act Effct Green (s) 36.0 36. Act Effct Green (s) 36.0 36. Actuated g/C Ratio 0.55 0.5 v/c Ratio 0.48 0.4 Control Delay 9.9 10. Queue Delay 0.0 0. Total Delay 9.9 10. Approach LOS A A Approach LOS A A Queue Length 95th (m) 32.5 30. Queue Length 95th (m) 45.8 50. Internal Link Dist (m) 41.2 106. Turn Bay Length (m) 8ase Capacity (vph) 1857 97 Star	.1 25.0 25.0 .0 25.0 25.0 % 38% 38% .0 3.0 3.0 .1 1.0 1.0 .1 .0 Ax Ped Ped .5 .5 .6 .7 .8 .8 .9 .	0.0 0.0 % 0.0 0.0
Total Split (s) 40.0 40. Total Split (%) 61.5% 61.5% Yellow Time (s) 3.0 3. All-Red Time (s) 2.1 2. Lost Time Adjust (s) -1.1 -1. Total Lost Time (s) 4.0 4. Lead/Lag Lead-Lag Optimize? Recall Mode C-Max C-Max Act Effct Green (s) 36.0 36.0 36.0 Act Effct Green (s) 36.0 0.55 0.5 v/c Ratio 0.55 0.5 0.5 v/c Ratio 0.48 0.4 Control Delay 9.9 10. Queue Delay 0.0 0. Total Delay 9.9 10. Approach Delay 9.9 10. Approach LOS A A Queue Length 50th (m) 32.5 30. Queue Length 95th (m) 45.8 50. Internal Link Dist (m) 41.2 106. Turn Bay Length (m) 85 7 <	.0 25.0 25.0 38% 38% 38% .0 3.0 3.0 .1 1.0 1.0 .1 .0 .0 .2 Ped Ped Ped .0 .0 .5 .5 .0 .0 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5	.0 % .0 .0
Total Split (%) 61.5% 61.5% Yellow Time (s) 3.0 3. All-Red Time (s) 2.1 2. Lost Time Adjust (s) -1.1 -1. Total Lost Time (s) 4.0 4. Lead/Lag Lead-Lag Optimize? Recall Mode C-Max C-Max Act Effct Green (s) 36.0 36. Actuated g/C Ratio 0.55 0.5 V _C Ratio 0.48 0.4 Control Delay 9.9 10. Queue Delay 0.0 0. Total Delay 9.9 10. LOS A A Approach Delay 9.9 10. Approach LOS A A Queue Length 50th (m) 32.5 30. Queue Length 95th (m) 45.8 50. Internal Link Dist (m) 41.2 106. Turn Bay Length (m) 8 50. Base Capacity (vph) 1857 97 Starvation Cap Reductn 0	% 38% 38% 38% 3.0 3.0 3.0 3.0 1.1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1	% .0 .0
Yellow Time (s) 3.0 3. All-Red Time (s) 2.1 2. Lost Time Adjust (s) -1.1 -1. Total Lost Time (s) 4.0 4. Lead/Lag Lead-Lag Optimize? Recall Mode C-Max C-Max Act Effct Green (s) 36.0 36. Actuated g/C Ratio 0.55 0.5 V _C Ratio 0.48 0.4 Control Delay 9.9 10. Queue Delay 0.0 0. Total Delay 9.9 10. LOS A Approach Delay 9.9 10. Approach LOS A Queue Length 50th (m) 32.5 30. Queue Length 95th (m) 45.8 50. Internal Link Dist (m) 41.2 106. Turn Bay Length (m) 8ase Capacity (vph) 1857 97 Starvation Cap Reductn 0 0 0 Spillback Cap Reductn 0 0 0 0 Reduced v/c Ratio 0.48 0.48 0	.0 3.0 3.0 .1 1.0 1.0 .1 .0 .0 ax Ped Ped .0.0 .5 .5 .0 .0 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5	.0 .0
All-Red Time (s) 2.1 2. Lost Time Adjust (s) -1.1 -1. Total Lost Time (s) 4.0 4. Lead/Lag Lead-Lag Optimize? Recall Mode C-Max C-Max Act Effet Green (s) 36.0 36. Actuated g/C Ratio 0.55 0.5 V/c Ratio 0.48 0.4 Control Delay 9.9 10. Queue Delay 0.0 0. Total Delay 9.9 10. LOS A Approach Delay 9.9 10. Approach LOS A Approach LOS A Queue Length 50th (m) 32.5 30. Queue Length 95th (m) 45.8 50. Internal Link Dist (m) 41.2 106. Tum Bay Length (m) Base Capacity (vph) 1857 97 Starvation Cap Reductn 0 Storage Cap Reductn 0 Reduced v/c Ratio 0.48 0.4	.1 1.0 1.0 .1 .0 .0 .0	.0
Lost Time Adjust (s) -1.1 -1. Total Lost Time (s) 4.0 4. Lead/Lag Lead-Lag Optimize? Recall Mode C-Max C-Max Act Effet Green (s) 36.0 36. Actuated g/C Ratio 0.55 0.5 v/c Ratio 0.48 0.4 Control Delay 9.9 10. Queue Delay 0.0 0. Total Delay 9.9 10. LOS A Approach Delay 9.9 10. Approach LOS A Queue Length 50th (m) 32.5 30. Queue Length 95th (m) 45.8 50. Internal Link Dist (m) 41.2 106. Turn Bay Length (m) Base Capacity (vph) 1857 97 Starvation Cap Reductn 0 Spillback Cap Reductn 0 Storage Cap Reductn 0 Reduced v/c Ratio 0.48 0.4	.1 .0	
Total Lost Time (s) 4.0 4. Lead/Lag Lead-Lag Optimize? Recall Mode C-Max C-Max Act Effct Green (s) 36.0 36. Actuated g/C Ratio 0.55 0.5 v/c Ratio 0.48 0.4 Control Delay 9.9 10. Queue Delay 9.9 10. Total Delay 9.9 10. Approach Delay 9.9 10. Approach LOS A Approach LOS A Queue Length 50th (m) 32.5 30. Queue Length 95th (m) 45.8 50. Internal Link Dist (m) 41.2 106. Tum Bay Length (m) Base Capacity (vph) 1857 97 Starvation Cap Reductn 0 Spillback Cap Reductn 0 Storage Cap Reductn 0 Reduced v/c Ratio 0.48 0.4	.0 Ped Ped .0 .5 .5 .5 .5 .5 .5 .8 .5 .5 .8 .4	ed
Lead/Lag Lead-Lag Optimize? Recall Mode C-Max C-Max Act Effct Green (s) 36.0 36. Actuated g/C Ratio 0.55 0.5 v/c Ratio 0.48 0.4 Control Delay 9.9 10. Queue Delay 0.0 0. Total Delay 9.9 10. LOS A Approach Delay 9.9 10. Approach LOS A A Approach LOS A Queue Length 50th (m) 32.5 30. 30. Queue Length 95th (m) 45.8 50. Internal Link Dist (m) 41.2 106. Turn Bay Length (m) Base Capacity (vph) 1857 97 Starvation Cap Reductn 0 Spillback Cap Reductn 0 Storage Cap Reductn 0 0.48 0.48	ex Ped Ped .0 .5 .5 .5 .5 .0 .5 .5 .8 .5 .8	ed
Lead-Lag Optimize? C-Max C-Max Recall Mode C-Max C-Max Act Effct Green (s) 36.0 36. Actuated g/C Ratio 0.55 0.5 v/c Ratio 0.48 0.4 Control Delay 9.9 10. Queue Delay 0.0 0. Total Delay 9.9 10. LOS A Approach Delay 9.9 10. Approach LOS A Augueue Length 50th (m) 32.5 30. Queue Length 95th (m) 45.8 50. 10. Internal Link Dist (m) 41.2 106. Turn Bay Length (m) 1857 97 Starvation Cap Reductn 0 Spillback Cap Reductn 0 Storage Cap Reductn 0 0.48 0.48	.0 55 55 .5 .0 .5 B .5 B	ed
Recall Mode C-Max C-Max Act Effct Green (s) 36.0 36. Actuated g/C Ratio 0.55 0.5 v/c Ratio 0.48 0.4 Control Delay 9.9 10. Queue Delay 0.0 0. Total Delay 9.9 10. LOS A A Approach Delay 9.9 10. Approach LOS A A Queue Length 50th (m) 32.5 30. Queue Length 95th (m) 45.8 50. Internal Link Dist (m) 41.2 106. Turn Bay Length (m) 1857 97 Starvation Cap Reductn 0 Spillback Cap Reductn 0 Storage Cap Reductn 0 0.48 0.4	.0 55 55 .5 .0 .5 B .5 B	ed
Act Effct Green (s) 36.0 36.0 Actuated g/C Ratio 0.55 0.5 v/c Ratio 0.48 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4	.0 55 55 .5 .0 .5 B .5 B	ed
Actuated g/C Ratio 0.55 0.5 v/c Ratio 0.48 0.4 Control Delay 9.9 10. Queue Delay 0.0 0. Total Delay 9.9 10. LOS A Approach Delay 9.9 10. Approach LOS A Queue Length 50th (m) 32.5 30. Queue Length 95th (m) 45.8 50. Internal Link Dist (m) 41.2 106. Turn Bay Length (m) Base Capacity (vph) 1857 97 Starvation Cap Reductn 0 Spillback Cap Reductn 0 Storage Cap Reductn 0 Reduced v/c Ratio 0.48 0.4	55 15 .5 .0 .5 B .5 B	
v/c Ratio 0.48 0.4 Control Delay 9.9 10. Queue Delay 0.0 0. Total Delay 9.9 10. LOS A Approach Delay 9.9 10. Approach LOS A Queue Length 50th (m) 32.5 30. Queue Length 95th (m) 45.8 50. Internal Link Dist (m) 41.2 106. Turn Bay Length (m) Base Capacity (vph) 1857 97 Starvation Cap Reductn 0 Spillback Cap Reductn 0 Storage Cap Reductn 0 Reduced v/c Ratio 0.48 0.4	15 .5 .0 .5 B .5 B	
Control Delay 9.9 10. Queue Delay 0.0 0. Total Delay 9.9 10. LOS A Approach Delay 9.9 10. Approach LOS A 0. Queue Length 50th (m) 32.5 30. Queue Length 95th (m) 45.8 50. Internal Link Dist (m) 41.2 106. Turn Bay Length (m) 1857 97 Starvation Cap Reductn 0 Spillback Cap Reductn 0 Spillback Cap Reductn 0 Storage Cap Reductn 0 Reduced v/c Ratio 0.48 0.4	.5 .0 .5 B .5 B	
Queue Delay 0.0 0. Total Delay 9.9 10. LOS A Approach Delay 9.9 10. Approach LOS A Queue Length 50th (m) 32.5 30. Queue Length 95th (m) 45.8 50. Internal Link Dist (m) 41.2 106. Turn Bay Length (m) 88se Capacity (vph) 1857 97 Starvation Cap Reductn 0 Spillback Cap Reductn 0 Storage Cap Reductn 0 Reduced v/c Ratio 0.48 0.4	.0 .5 B .5 B	
Total Delay 9.9 10. LOS A Approach Delay 9.9 10. Approach LOS A Queue Length 50th (m) 32.5 30. Queue Length 95th (m) 45.8 50. Internal Link Dist (m) 41.2 106. Turn Bay Length (m) 8ese Capacity (vph) 1857 97 Starvation Cap Reductn 0 Spillback Cap Reductn 0 Storage Cap Reductn 0 0 0.48 0.4	.5 B .5 B .4	
LOS A Approach Delay 9.9 10. Approach LOS A Queue Length 50th (m) 32.5 30. Queue Length 95th (m) 45.8 50. Internal Link Dist (m) 41.2 106. Turn Bay Length (m) 8ase Capacity (vph) 1857 97 Starvation Cap Reductn 0 Spillback Cap Reductn 0 Storage Cap Reductn 0 0 Reduced v/c Ratio 0.48 0.4	B .5 B .4	
Approach Delay 9.9 10. Approach LOS A Queue Length 50th (m) 32.5 30. Queue Length 95th (m) 45.8 50. Internal Link Dist (m) 41.2 106. Turn Bay Length (m) 1857 97 Starvation Cap Reductn 0 Spillback Cap Reductn 0 Storage Cap Reductn 0 Reduced v/c Ratio 0.48 0.4	.5 B .4	
Approach LOS A Queue Length 50th (m) 32.5 30. Queue Length 95th (m) 45.8 50. Internal Link Dist (m) 41.2 106. Turn Bay Length (m) Base Capacity (vph) 1857 97 Starvation Cap Reductn 0 Spillback Cap Reductn 0 Storage Cap Reductn 0 Reduced v/c Ratio 0.48 0.4	B .4	
Approach LOS A Queue Length 50th (m) 32.5 30. Queue Length 95th (m) 45.8 50. Internal Link Dist (m) 41.2 106. Turn Bay Length (m) 1857 97 Starvation Cap Reductn 0 Spillback Cap Reductn 0 Storage Cap Reductn 0 Reduced v/c Ratio 0.48 0.4	.4	
Queue Length 50th (m) 32.5 30. Queue Length 95th (m) 45.8 50. Internal Link Dist (m) 41.2 106. Turn Bay Length (m) 1857 97 Base Capacity (vph) 1857 97 Starvation Cap Reductn 0 0 Spillback Cap Reductn 0 0 Storage Cap Reductn 0 0 Reduced v/c Ratio 0.48 0.4	.4	
Queue Length 95th (m) 45.8 50. Internal Link Dist (m) 41.2 106. Turn Bay Length (m) 1857 97 Starvation Cap Reductn 0 0 Spillback Cap Reductn 0 0 Storage Cap Reductn 0 0 Reduced v/c Ratio 0.48 0.4		
Internal Link Dist (m)	.4	
Turn Bay Length (m) 1857 97 Base Capacity (vph) 1857 97 Starvation Cap Reductn 0 Spillback Cap Reductn 0 Storage Cap Reductn 0 Reduced v/c Ratio 0.48 0.4		
Base Capacity (vph) 1857 97 Starvation Cap Reductn 0 0 Spillback Cap Reductn 0 0 Storage Cap Reductn 0 0 Reduced v/c Ratio 0.48 0.4		
Starvation Cap Reductn 0 Spillback Cap Reductn 0 Storage Cap Reductn 0 Reduced v/c Ratio 0.48 0.4	7	
Spillback Cap Reductn 0 Storage Cap Reductn 0 Reduced v/c Ratio 0.48 0.4	0	
Storage Cap Reductn 0 Reduced v/c Ratio 0.48 0.4	0	
Reduced v/c Ratio 0.48 0.4	0	
	•	
Cycle Length: 65		
Cycle Length: 65 Actuated Cycle Length: 65		
nctuated Cycle Letigit. 00 Officet: 11 (1791) Deferenced to phase O.EDT and C.W.D.	T Ctart of Cross	
Offset: 11 (17%), Referenced to phase 2:EBT and 6:WB	or, start or Green	
Natural Cycle: 50		
Control Type: Actuated-Coordinated		
Maximum v/c Ratio: 0.48		lateracetica LOC: B
ntersection Signal Delay: 10.1		Intersection LOS: B
Intersection Capacity Utilization 26.6%		ICU Level of Service A
Analysis Period (min) 15		
Splits and Phases: 6: Ped Crossing & Richmond Rd		
→ø2 (R)		
40 s		A104

CIMA+ Synchro 10 Report

FR_{Ø8}

	۶	→	*	•	—	1	1	1	~	1	↓	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		44			*							
Traffic Volume (vph)	0	799	0	0	400	0	0	0	0	0	0	0
Future Volume (vph)	0	799	0	0	400	0	0	0	0	0	0	0
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Total Lost time (s)		4.0			4.0							
Lane Util. Factor		0.95			1.00							
Frpb, ped/bikes		1.00			1.00							
Flpb, ped/bikes		1.00			1.00							
Frt		1.00			1.00							
Flt Protected		1.00			1.00							
Satd. Flow (prot)		3353			1765							
Flt Permitted		1.00			1.00							
Satd. Flow (perm)		3353			1765							
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	0	888	0	0	444	0	0	0	0	0	0	0
RTOR Reduction (vph)	0	0	0	0	0	0	0	0	0	0	0	0
Lane Group Flow (vph)	0	888	0	0	444	0	0	0	0	0	0	0
Confl. Peds. (#/hr)						<u> </u>	14		14	14		14
Confl. Bikes (#/hr)							• • •		1			9
Turn Type		NA			NA				<u> </u>			
Protected Phases		2			6							
Permitted Phases					U							
Actuated Green, G (s)		34.9			34.9							
Effective Green, g (s)		36.0			36.0							
Actuated g/C Ratio		0.55			0.55							
Clearance Time (s)		5.1			5.1							
Vehicle Extension (s)		3.0			3.0							
Lane Grp Cap (vph)		1857			977							
v/s Ratio Prot		c0.26			0.25							
v/s Ratio Prot v/s Ratio Perm		00.20			0.25							
		0.40			0.45							
v/c Ratio		0.48 8.8			0.45 8.6							
Uniform Delay, d1												
Progression Factor		1.00 0.9			1.00 1.5							
Incremental Delay, d2												
Delay (s)		9.7			10.2							
Level of Service		A			В			0.0			0.0	
Approach Delay (s)		9.7			10.2			0.0			0.0	
Approach LOS		Α			В			Α			Α	
Intersection Summary												
HCM 2000 Control Delay			9.8	HC	CM 2000 Leve	of Servic	е		Α			
HCM 2000 Volume to Capacity ratio			0.30									
Actuated Cycle Length (s)			65.0	Su	m of lost time	(s)			8.0			
Intersection Capacity Utilization			26.6%	IC	U Level of Se	rvice			Α			
Analysis Period (min)			15									
c Critical Lane Group												

c Critical Lane Group

1: Churchill Avenue North & Byron Avenue

	٠	→	1	•	1	†	-	Į.
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT
Lane Configurations		4.		4	*	T _a	*	T ₂
Traffic Volume (vph)	19	137	112	309	31	322	28	352
Future Volume (vph)	19	137	112	309	31	322	28	352
Lane Group Flow (vph)	0	227	0	525	34	437	31	450
Turn Type	Perm	NA	Perm	NA	Perm	NA	Perm	NA
Protected Phases		4		8		2		6
Permitted Phases	4		8		2		6	
Detector Phase	4	4	8	8	2	2	6	6
Switch Phase								
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
Minimum Split (s)	30.6	30.6	30.6	30.6	26.4	26.4	26.4	26.4
Total Split (s)	45.0	45.0	45.0	45.0	45.0	45.0	45.0	45.0
Total Split (%)	50.0%	50.0%	50.0%	50.0%	50.0%	50.0%	50.0%	50.0%
Yellow Time (s)	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3
All-Red Time (s)	2.3	2.3	2.3	2.3	2.1	2.1	2.1	2.1
Lost Time Adjust (s)		-1.6		-1.6	-1.4	-1.4	-1.4	-1.4
Total Lost Time (s)		4.0		4.0	4.0	4.0	4.0	4.0
Lead/Lag								
Lead-Lag Optimize?								
Recall Mode	None	None	None	None	C-Max	C-Max	C-Max	C-Max
Act Effct Green (s)		36.6		36.6	45.4	45.4	45.4	45.4
Actuated g/C Ratio		0.41		0.41	0.50	0.50	0.50	0.50
v/c Ratio		0.34		0.87	0.10	0.50	0.09	0.52
Control Delay		17.0		39.9	14.8	17.9	11.9	15.1
Queue Delay		0.0		0.0	0.0	0.0	0.0	0.9
Total Delay		17.0		39.9	14.8	17.9	11.9	16.0
LOS		В		D	В	В	В	В
Approach Delay		17.0		39.9		17.7		15.8
Approach LOS		В		D		В		В
Queue Length 50th (m)		23.6		80.8	3.2	50.8	2.7	45.1
Queue Length 95th (m)		39.1		#125.9	9.5	83.4	m4.9	70.5
Internal Link Dist (m)		244.6		113.6		126.7		100.0
Turn Bay Length (m)					30.0		30.0	
Base Capacity (vph)		736		675	329	869	348	866
Starvation Cap Reductn		0		0	0	0	0	195
Spillback Cap Reductn		0		0	0	0	0	0
Storage Cap Reductn		0		0	0	0	0	0
Reduced v/c Ratio		0.31		0.78	0.10	0.50	0.09	0.67
Intersection Summary								

Intersection Summary

Cycle Length: 90

Actuated Cycle Length: 90

Offset: 40 (44%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 60

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.87

Intersection Signal Delay: 23.9

Intersection Capacity Utilization 79.1%

Intersection LOS: C ICU Level of Service D

Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 1: Churchill Avenue North & Byron Avenue

	•	→	•	-	←		4	†	-	1	Ţ	1
Movement	EBL	EBT	EBR	₩BL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	LDL	4	LDIX	VVDL		WDIX	NDE N	1	NDIX) j	₽	ODIV
Traffic Volume (vph)	19	137	49	112	309	52	31	322	71	28	352	53
Future Volume (vph)	19	137	49	112	309	52	31	322	71	28	352	53
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Total Lost time (s)	1000	4.0	1000	1000	4.0	1000	4.0	4.0	1000	4.0	4.0	1000
Lane Util. Factor		1.00			1.00		1.00	1.00		1.00	1.00	
Frpb, ped/bikes		0.99			1.00		1.00	0.99		1.00	0.99	
Flpb, ped/bikes		1.00			1.00		0.97	1.00		1.00	1.00	
Frt		0.97			0.99		1.00	0.97		1.00	0.98	
Flt Protected		1.00			0.99		0.95	1.00		0.95	1.00	
Satd. Flow (prot)		1684			1710		1619	1707		1669	1706	
Flt Permitted		0.94			0.85		0.38	1.00		0.39	1.00	
Satd. Flow (perm)		1588			1472		652	1707		691	1706	
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
	21	152	54	124	343	58	34	358	79	31	391	59
Adj. Flow (vph) RTOR Reduction (vph)	0	152	0	0	545 5	0	0	330 8	0	0	5 5	
	0	213	0	0	520	-	34	429	0	31	445	0
Lane Group Flow (vph)	3	213			520	0	40	429	5		445	
Confl. Peds. (#/hr)	3		11 1	11		3	40		5 1	5		40
Confl. Bikes (#/hr)	D	NIA.	ı	D	NI A		D	NIA.	l	D	NIA	
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases		4		^	8		^	2		•	6	
Permitted Phases	4	25.0		8	25.0		2	44.0		6	44.0	
Actuated Green, G (s)		35.0			35.0		44.0	44.0		44.0	44.0	
Effective Green, g (s)		36.6			36.6		45.4	45.4		45.4	45.4	
Actuated g/C Ratio		0.41			0.41		0.50	0.50		0.50	0.50	
Clearance Time (s)		5.6			5.6		5.4	5.4		5.4	5.4	
Vehicle Extension (s)		3.0			3.0		3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)		645			598		328	861		348	860	
v/s Ratio Prot								0.25			c0.26	
v/s Ratio Perm		0.13			c0.35		0.05			0.04		
v/c Ratio		0.33			0.87		0.10	0.50		0.09	0.52	
Uniform Delay, d1		18.3			24.5		11.7	14.8		11.6	14.9	
Progression Factor		1.00			1.00		1.00	1.00		0.82	0.82	
Incremental Delay, d2		0.3			12.7		0.6	2.1		0.4	1.7	
Delay (s)		18.6			37.2		12.3	16.8		9.9	14.0	
Level of Service		В			D		В	В		Α	В	
Approach Delay (s)		18.6			37.2			16.5			13.7	
Approach LOS		В			D			В			В	
Intersection Summary												
HCM 2000 Control Delay			22.4	HO	CM 2000 Lev	vel of Servi	ce		С			
HCM 2000 Volume to Capacity ratio			0.67									
Actuated Cycle Length (s)			90.0	Su	ım of lost tim	ne (s)			8.0			
Intersection Capacity Utilization			79.1%	IC	U Level of S	ervice			D			
Analysis Period (min)			15									
o Critical Lana Croup												

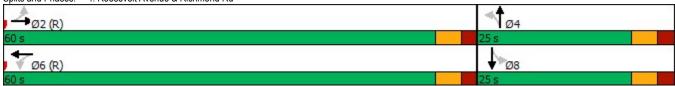
c Critical Lane Group

	۶	→	•	+	1	†	1	Ţ
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT
Lane Configurations		412		412		412		£
Traffic Volume (vph)	13	1 53	22	4 299	6	4 22	31	23
Future Volume (vph)	13	153	22	299	6	22	31	23
Lane Group Flow (vph)	0	193	0	407	0	48	0	96
Turn Type	Perm	NA	Perm	NA	Perm	NA	Perm	NA
Protected Phases		2		6		4		8
Permitted Phases	2		6		4		8	
Detector Phase	2	2	6	6	4	4	8	8
Switch Phase								
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
Minimum Split (s)	22.5	22.5	22.5	22.5	20.0	20.0	20.0	20.0
Total Split (s)	50.0	50.0	50.0	50.0	20.0	20.0	20.0	20.0
Total Split (%)	71.4%	71.4%	71.4%	71.4%	28.6%	28.6%	28.6%	28.6%
Yellow Time (s)	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3
All-Red Time (s)	2.2	2.2	2.2	2.2	1.7	1.7	1.7	1.7
Lost Time Adjust (s)		-1.5		-1.5	1.7	-1.0	1.7	-1.0
Total Lost Time (s)		4.0		4.0		4.0		4.0
Lead/Lag		7.0		7.0		7.0		7.0
Lead-Lag Optimize?								
Recall Mode	Max	Max	Max	Max	None	None	None	None
Act Effct Green (s)	WILL	54.0	WILL	54.0	110110	14.1	110110	14.1
Actuated g/C Ratio		0.75		0.75		0.20		0.20
v/c Ratio		0.75		0.73		0.20		0.20
Control Delay		4.3		5.1		17.6		19.2
Queue Delay		0.0		0.0		0.0		0.0
Total Delay		4.3		5.1		17.6		19.2
LOS		4.5 A		J. 1		17.0 B		19.2 B
Approach Delay		4.3		5.1		17.6		19.2
Approach LOS		4.3 A		3.1 A		17.0 B		19.2 B
Queue Length 50th (m)		8.4		20.0		3.7		7.3
Queue Length 95th (m)		15.4		33.8		11.4		18.6
Internal Link Dist (m)		50.9		244.6		129.2		56.5
\ /		50.9		244.0		129.2		00.0
Turn Bay Length (m)		1274		1272		362		340
Base Capacity (vph)		1274		1272		362 0		340
Starvation Cap Reductn		0		0		0		0
Spillback Cap Reductn								-
Storage Cap Reductn		0		0		0		0
Reduced v/c Ratio		0.15		0.32		0.13		0.28
Intersection Summary								
Cycle Length: 70 Actuated Cycle Length: 71.9								
Natural Cycle: 45								
Control Type: Semi Act-Uncoord Maximum v/c Ratio: 0.32								
Intersection Signal Delay: 7.5				la4	ersection L	0C- V		
)/				ersection Li U Level of S			
Intersection Capacity Utilization 45.19	/0			10	D Level of S	DELVICE A		
Analysis Period (min) 15								

Splits and Phases: 2: Roosevelt Avenue & Byron Avenue

	۶	→	*	1	←	1	1	†	1	1	ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			413			4			43	
Traffic Volume (vph)	13	153	8	22	299	46	6	22	15	31	23	32
Future Volume (vph)	13	153	8	22	299	46	6	22	15	31	23	32
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Total Lost time (s)		4.0			4.0			4.0			4.0	
Lane Util. Factor		1.00			1.00			1.00			1.00	
Frpb, ped/bikes		1.00			0.99			0.99			0.95	
Flpb, ped/bikes		1.00			1.00			0.99			0.99	
Frt		0.99			0.98			0.95			0.95	
Flt Protected		1.00			1.00			0.99			0.98	
Satd. Flow (prot)		1742			1717			1622			1555	
Flt Permitted		0.97			0.98			0.96			0.88	
Satd. Flow (perm)		1695			1687			1562			1393	
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	14	170	9	24	332	51	7	24	17	34	26	36
RTOR Reduction (vph)	0	2	0	0	6	0	0	14	0	0	30	0
Lane Group Flow (vph)	0	191	0	0	401	0	0	34	0	0	66	0
Confl. Peds. (#/hr)	17		7	7		17	46		9	9		46
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases	7 01111	2		1 01111	6		1 01111	4		1 01111	8	
Permitted Phases	2	_		6			4	•		8		
Actuated Green, G (s)	_	51.6			51.6			10.9			10.9	
Effective Green, g (s)		53.1			53.1			11.9			11.9	
Actuated g/C Ratio		0.73			0.73			0.16			0.16	
Clearance Time (s)		5.5			5.5			5.0			5.0	
Vehicle Extension (s)		3.0			3.0			3.0			3.0	
Lane Grp Cap (vph)		1232			1227			254			227	
v/s Ratio Prot		1202			ILLI			201			221	
v/s Ratio Perm		0.11			c0.24			0.02			c0.05	
v/c Ratio		0.16			0.33			0.13			0.29	
Uniform Delay, d1		3.1			3.6			26.1			26.8	
Progression Factor		1.00			1.00			1.00			1.00	
Incremental Delay, d2		0.3			0.7			0.2			0.7	
Delay (s)		3.3			4.3			26.4			27.6	
Level of Service		Α.			A			C			C	
Approach Delay (s)		3.3			4.3			26.4			27.6	
Approach LOS		A			Α.			C			C C	
Intersection Summary												
HCM 2000 Control Delay			8.5	HC	CM 2000 Le	vel of Service	ce		Α			
HCM 2000 Volume to Capacity ratio			0.32									
Actuated Cycle Length (s)			73.0	Su	m of lost tim	ne (s)			8.0			
Intersection Capacity Utilization			45.1%	ICI	J Level of S	ervice			Α			
Analysis Period (min)			15									
c Critical Lane Group												

	-	•	1	•	1	†	-	↓	
Lane Group	EBT	EBR	WBL	WBT	NBL	NBT	SBL	SBT	
Lane Configurations	र्ध	1		43.		43		4.	
Traffic Volume (vph)	360	21	44	657	67	1	6	3	
Future Volume (vph)	360	21	44	657	67	1	6	3	
Lane Group Flow (vph)	400	23	0	783	0	138	0	11	
Turn Type	NA	Perm	Perm	NA	Perm	NA	Perm	NA	
Protected Phases	2			6		4		8	
Permitted Phases	-	2	6		4	•	8		
Detector Phase	2	2	6	6	4	4	8	8	
Switch Phase									
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	
Minimum Split (s)	28.8	28.8	28.8	28.8	28.6	28.6	28.6	28.6	
Total Split (s)	50.0	50.0	50.0	50.0	29.0	29.0	29.0	29.0	
Total Split (%)	63.3%	63.3%	63.3%	63.3%	36.7%	36.7%	36.7%	36.7%	
Yellow Time (s)	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	
All-Red Time (s)	2.5	2.5	2.5	2.5	2.3	2.3	2.3	2.3	
Lost Time Adjust (s)	-1.8	-1.8		-1.8		-1.6		-1.6	
Total Lost Time (s)	4.0	4.0		4.0		4.0		4.0	
Lead/Lag				•					
Lead-Lag Optimize?									
Recall Mode	C-Max	C-Max	C-Max	C-Max	None	None	None	None	
Act Effct Green (s)	51.6	51.6		51.6		19.4		19.4	
Actuated g/C Ratio	0.65	0.65		0.65		0.25		0.25	
v/c Ratio	0.35	0.03		0.71		0.39		0.03	
Control Delay	8.4	1.8		15.6		16.8		18.5	
Queue Delay	0.0	0.0		1.0		0.0		0.0	
Total Delay	8.4	1.8		16.6		16.8		18.5	
LOS	Α	A		В		В		В	
Approach Delay	8.0			16.6		16.8		18.5	
Approach LOS	Α			В		В		В	
Queue Length 50th (m)	30.6	0.0		86.7		9.4		1.1	
Queue Length 95th (m)	48.6	1.9		140.8		23.6		4.7	
Internal Link Dist (m)	37.9			130.2		72.7		29.6	
Turn Bay Length (m)									
Base Capacity (vph)	1152	844		1096		444		450	
Starvation Cap Reductn	0	0		124		0		0	
Spillback Cap Reductn	0	0		0		0		0	
Storage Cap Reductn	0	0		0		0		0	
Reduced v/c Ratio	0.35	0.03		0.81		0.31		0.02	
Intersection Summary									
Cycle Length: 79									
Actuated Cycle Length: 79 Offset: 5 (6%), Referenced to phase	a O.FDTL and	I CAMPTI (Hart of Cra						
	e z.Ebil and	JO.WDIL, S	start of Gree	2 11					
Natural Cycle: 70	d								
Control Type: Actuated-Coordinate Maximum v/c Ratio: 0.71	u								
Intersection Signal Delay: 14.0				Int	tersection L	∩c∙ B			
Intersection Signal Delay, 14.0 Intersection Capacity Utilization 87.	10/				U Level of S				
	· + /0			IC	o Level of S	DEI VICE E			
Analysis Period (min) 15									
Splits and Phases: 3: Golden Ave	enue & Richn	nond Rd							
							⊸. ↑		
Ø2 (R)							7	04	


Ø8

CIMA+

Synchro 10 Report

	۶	→	*	1	←	1	1	†	~	1	Ţ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		र्स	7		4			4			3	
Traffic Volume (vph)	0	360	21	44	657	4	67	1	57	6	3	1
Future Volume (vph)	0	360	21	44	657	4	67	1	57	6	3	1
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Total Lost time (s)		4.0	4.0		4.0			4.0			4.0	
Lane Util. Factor		1.00	1.00		1.00			1.00			1.00	
Frpb, ped/bikes		1.00	0.85		1.00			0.94			0.99	
Flpb, ped/bikes		1.00	1.00		1.00			0.98			0.95	
Frt		1.00	0.85		1.00			0.94			0.99	
Flt Protected		1.00	1.00		1.00			0.97			0.97	
Satd. Flow (prot)		1765	1273		1749			1487			1596	
Flt Permitted		1.00	1.00		0.96			0.84			0.86	
Satd. Flow (perm)		1765	1273		1678			1283			1421	
Peak-hour factor. PHF	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	0.50	400	23	49	730	4	74	1	63	7	3	1
RTOR Reduction (vph)	0	0	8	0	0	0	0	42	0	0	1	0
Lane Group Flow (vph)	0	400	15	0	783	0	0	96	0	0	10	0
Confl. Peds. (#/hr)	66	400	77	77	700	66	25	30	60	60	10	25
Confl. Bikes (#/hr)	00		3	11		17	20		2	00		7
Turn Type		NA	Perm	Perm	NA	17	Perm	NA		Perm	NA	
Protected Phases		2	Pellii	Pellii	NA 6		Pelili	NA 4		Pellii	NA 8	
	0	2	^	^	b		4	4		0	ð	
Permitted Phases	2	40.0	2	6	40.0		4	47.0		8	47.0	
Actuated Green, G (s)		49.8	49.8		49.8			17.8			17.8	
Effective Green, g (s)		51.6	51.6		51.6			19.4			19.4	
Actuated g/C Ratio		0.65	0.65		0.65			0.25			0.25	
Clearance Time (s)		5.8	5.8		5.8			5.6			5.6	
Vehicle Extension (s)		3.0	3.0		3.0			3.0			3.0	
Lane Grp Cap (vph)		1152	831		1096			315			348	
v/s Ratio Prot		0.23										
v/s Ratio Perm			0.01		c0.47			c0.07			0.01	
v/c Ratio		0.35	0.02		0.71			0.30			0.03	
Uniform Delay, d1		6.1	4.8		8.9			24.3			22.6	
Progression Factor		1.00	1.00		1.00			1.00			1.00	
Incremental Delay, d2		0.8	0.0		4.0			0.5			0.0	
Delay (s)		7.0	4.8		12.9			24.8			22.7	
Level of Service		Α	Α		В			С			С	
Approach Delay (s)		6.9			12.9			24.8			22.7	
Approach LOS		Α			В			С			С	
Intersection Summary												
HCM 2000 Control Delay			12.3	НС	CM 2000 Le	vel of Service	ce		В			
HCM 2000 Volume to Capacity ratio			0.60									
Actuated Cycle Length (s)			79.0	Su	m of lost tim	ne (s)			8.0			
Intersection Capacity Utilization			87.4%	ICI	U Level of S	ervice			Е			
Analysis Period (min)			15									
c Critical Lane Group												

	۶	-	1	•	1	†	1	↓
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT
Lane Configurations		₽		43		AT.		A.
Traffic Volume (vph)	15	413	27	701	34	4 19	41	13
Future Volume (vph)	15	413	27	701	34	19	41	13
Lane Group Flow (vph)	0	500	0	865	0	112	0	82
Turn Type	Perm	NA	Perm	NA	Perm	NA	Perm	NA
Protected Phases		2		6		4		8
Permitted Phases	2		6		4		8	
Detector Phase	2	2	6	6	4	4	8	8
Switch Phase								
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
Minimum Split (s)	33.4	33.4	33.4	33.4	24.6	24.6	24.6	24.6
Total Split (s)	60.0	60.0	60.0	60.0	25.0	25.0	25.0	25.0
Total Split (%)	70.6%	70.6%	70.6%	70.6%	29.4%	29.4%	29.4%	29.4%
Yellow Time (s)	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3
All-Red Time (s)	2.1	2.1	2.1	2.1	2.3	2.3	2.3	2.3
Lost Time Adjust (s)		-1.4		-1.4		-1.6		-1.6
Total Lost Time (s)		4.0		4.0		4.0		4.0
Lead/Lag								
Lead-Lag Optimize?								
Recall Mode	C-Max	C-Max	C-Max	C-Max	None	None	None	None
Act Effct Green (s)		63.9		63.9		17.0		17.0
Actuated g/C Ratio		0.75		0.75		0.20		0.20
v/c Ratio		0.40		0.69		0.40		0.33
Control Delay		6.7		11.9		20.4		25.1
Queue Delay		0.3		0.0		0.0		0.0
Total Delay		7.0		11.9		20.4		25.1
LOS		Α		В		С		С
Approach Delay		7.0		11.9		20.4		25.1
Approach LOS		Α		В		С		С
Queue Length 50th (m)		35.4		89.1		8.3		8.4
Queue Length 95th (m)		55.0		145.2		22.9		20.8
Internal Link Dist (m)		130.2		276.4		56.5		123.0
Turn Bay Length (m)								
Base Capacity (vph)		1255		1258		338		298
Starvation Cap Reductn		284		0		0		0
Spillback Cap Reductn		0		0		0		0
Storage Cap Reductn		0		0		0		0
Reduced v/c Ratio		0.51		0.69		0.33		0.28
Intersection Summary								
Cycle Length: 85								
Actuated Cycle Length: 85								
Offset: 78 (92%), Referenced to ph	ase 2:EBTL	and 6:WBTL	., Start of G	reen				
Natural Cycle: 70			,					
Control Type: Actuated-Coordinate	ed							
Maximum v/c Ratio: 0.69								
Intersection Signal Delay: 11.6				Int	tersection L	OS: B		
Intersection Capacity Utilization 76.	.8%				U Level of S			
Analysis Period (min) 15								
Splits and Phases: 4: Roosevelt	Avenue & Ri	chmond Rd						
A								46
Ø2 (R)								-

	۶	→	*	1	←	1	1	†	1	-	↓	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			41.			43			4	
Traffic Volume (vph)	15	413	22	27	701	50	34	19	48	41	13	20
Future Volume (vph)	15	413	22	27	701	50	34	19	48	41	13	20
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Total Lost time (s)		4.0			4.0			4.0			4.0	
Lane Util. Factor		1.00			1.00			1.00			1.00	
Frpb, ped/bikes		0.98			0.98			0.89			0.93	
Flpb, ped/bikes		1.00			1.00			0.93			0.91	
Frt		0.99			0.99			0.94			0.96	
Flt Protected		1.00			1.00			0.98			0.97	
Satd. Flow (prot)		1721			1711			1342			1398	
Flt Permitted		0.97			0.98			0.89			0.80	
Satd. Flow (perm)		1666			1671			1216			1149	
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	17	459	24	30	779	56	38	21	53	46	14	22
RTOR Reduction (vph)	0	2	0	0	2	0	0	42	0	0	17	0
	0	498	0	0	863	0	0	70	0	0	65	0
Lane Group Flow (vph)	135	490	182	182	003	135	116	70	92	92	00	
Confl. Peds. (#/hr)	135			102			110			92		116
Confl. Bikes (#/hr)		N.1.0	3		N1.0	9		N1A	5		N1A	2
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases	•	2		•	6			4		•	8	
Permitted Phases	2	20.0		6	00.0		4	40.4		8	40.4	
Actuated Green, G (s)		60.6			60.6			13.4			13.4	
Effective Green, g (s)		62.0			62.0			15.0			15.0	
Actuated g/C Ratio		0.73			0.73			0.18			0.18	
Clearance Time (s)		5.4			5.4			5.6			5.6	
Vehicle Extension (s)		3.0			3.0			3.0			3.0	
Lane Grp Cap (vph) v/s Ratio Prot		1215			1218			214			202	
v/s Ratio Perm		0.30			c0.52			c0.06			0.06	
v/c Ratio		0.41			0.71			0.33			0.32	
Uniform Delay, d1		4.4			6.4			30.6			30.6	
Progression Factor		1.00			1.00			1.00			1.00	
Incremental Delay, d2		1.0			3.5			0.9			0.9	
Delay (s)		5.5			9.9			31.5			31.5	
Level of Service		Α			Α			С			С	
Approach Delay (s)		5.5			9.9			31.5			31.5	
Approach LOS		Α			Α			С			С	
Intersection Summary												
HCM 2000 Control Delay			11.2	HC	CM 2000 Le	vel of Service	се		В			
HCM 2000 Volume to Capacity ratio			0.63									
Actuated Cycle Length (s)			85.0	Su	m of lost tim	ne (s)			8.0			
Intersection Capacity Utilization			76.8%	ICI	U Level of S	ervice			D			
Analysis Period (min)			15									
c Critical Lane Group												

	•	-	1	←	1	1	1	↓			
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	Ø9	Ø10	
Lane Configurations	*	1	1	1		473		414			
Traffic Volume (vph)	164	307	132	465	31	288	24	271			
Future Volume (vph)	164	307	132	465	31	288	24	271			
Lane Group Flow (vph)	182	397	147	561	0	438	0	644			
Turn Type	Prot	NA	Perm	NA	Perm	NA	Perm	NA			
Protected Phases	5	2		6		4		8	9	10	
Permitted Phases			6		4		8	8			
Detector Phase	5	2	6	6	4	4	8	8			
Switch Phase											
Minimum Initial (s)	5.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	1.0	1.0	
Minimum Split (s)	11.1	26.1	26.1	26.1	26.1	26.1	26.2	26.2	5.0	5.0	
Total Split (s)	12.0	52.0	40.0	40.0	28.0	28.0	28.0	28.0	5.0	5.0	
Total Split (%)	13.3%	57.8%	44.4%	44.4%	31.1%	31.1%	31.1%	31.1%	6%	6%	
Yellow Time (s)	3.3	3.3	3.3	3.3	3.6	3.6	3.6	3.6	2.0	2.0	
All-Red Time (s)	2.8	2.8	2.8	2.8	2.6	2.6	2.6	2.6	0.0	0.0	
Lost Time Adjust (s)	-2.1	-2.1	-2.1	-2.1		-2.2		-2.2			
Total Lost Time (s)	4.0	4.0	4.0	4.0		4.0		4.0			
Lead/Lag	Lead		Lag	Lag							
Lead-Lag Optimize?			Yes	Yes							
Recall Mode	None	C-Max	C-Max	C-Max	None	None	None	None	None	None	
Act Effct Green (s)	18.5	58.9	36.3	36.3		23.1		23.1			
Actuated g/C Ratio	0.21	0.65	0.40	0.40		0.26		0.26			
v/c Ratio	0.53	0.37	0.50	0.80		0.70		0.79			
Control Delay	40.7	8.9	27.3	34.1		24.3		24.9			
Queue Delay	0.0	0.0	0.0	0.0		0.0		0.2			
Total Delay	40.7	8.9	27.3	34.1		24.3		25.2			
LOS	D	Α	С	С		С		С			
Approach Delay		18.9		32.7		24.3		25.2			
Approach LOS		В		С		С		С			
Queue Length 50th (m)	29.6	28.1	19.6	87.6		17.5		34.2			
Queue Length 95th (m)	#64.6	54.4	39.4	#144.5		m27.3		50.8			
Internal Link Dist (m)		276.4		61.0		100.0		41.6			
Turn Bay Length (m)	40.0		45.0								
Base Capacity (vph)	345	1074	296	700		693		876			
Starvation Cap Reductn	0	0	0	0		0		0			
Spillback Cap Reductn	0	0	0	0		0		24			
Storage Cap Reductn	0	0	0	0		0		0			
Reduced v/c Ratio	0.53	0.37	0.50	0.80		0.63		0.76			

Intersection Summary

Cycle Length: 90

Actuated Cycle Length: 90

Offset: 0 (0%), Referenced to phase 6:WBTL and 2:EBT, Start of Green

Natural Cycle: 90

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.80

Intersection Signal Delay: 25.7

Intersection Capacity Utilization 85.4%

Intersection LOS: C ICU Level of Service E

Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

	۶	→	•	•	•	•	1	†	-	-	Ţ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	1	T ₂		*	T _a			41			413	
Traffic Volume (vph)	164	307	50	132	465	40	31	288	76	24	271	284
Future Volume (vph)	164	307	50	132	465	40	31	288	76	24	271	284
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Total Lost time (s)	4.0	4.0		4.0	4.0			4.0			4.0	
Lane Util. Factor	1.00	1.00		1.00	1.00			0.95			0.95	
Frpb, ped/bikes	1.00	0.95		1.00	0.99			0.96			0.85	
Flpb, ped/bikes	1.00	1.00		0.79	1.00			0.99			1.00	
Frt	1.00	0.98		1.00	0.99			0.97			0.93	
Flt Protected	0.95	1.00		0.95	1.00			1.00			1.00	
Satd. Flow (prot)	1676	1635		1322	1726			3099			2626	
Flt Permitted	0.95	1.00		0.53	1.00			0.76			0.92	
Satd. Flow (perm)	1676	1635		735	1726			2363			2417	
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	182	341	56	147	517	44	34	320	84	27	301	316
RTOR Reduction (vph)	0	5	0	0	4	0	0	23	0	0	197	0
Lane Group Flow (vph)	182	392	0	147	557	0	0	415	0	0	447	0
Confl. Peds. (#/hr)	86		163	163		86	84		54	54		84
Confl. Bikes (#/hr)			2			4			3			1
Turn Type	Prot	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases	5	2			6			4			8	
Permitted Phases				6			4			8	8	
Actuated Green, G (s)	16.4	56.8		34.3	34.3			20.9			20.9	
Effective Green, g (s)	18.5	58.9		36.4	36.4			23.1			23.1	
Actuated g/C Ratio	0.21	0.65		0.40	0.40			0.26			0.26	
Clearance Time (s)	6.1	6.1		6.1	6.1			6.2			6.2	
Vehicle Extension (s)	3.0	3.0		3.0	3.0			3.0			3.0	
Lane Grp Cap (vph)	344	1070		297	698			606			620	
v/s Ratio Prot	c0.11	0.24			c0.32						020	
v/s Ratio Perm		V.= .		0.20	00.02			0.18			c0.18	
v/c Ratio	0.53	0.37		0.49	0.80			0.68			0.72	
Uniform Delay, d1	31.9	7.1		20.0	23.6			30.2			30.5	
Progression Factor	1.00	1.00		1.00	1.00			0.69			1.00	
Incremental Delay, d2	1.5	1.0		5.8	9.3			2.8			4.1	
Delay (s)	33.3	8.0		25.7	32.9			23.6			34.6	
Level of Service	C	A		C	C			C			C	
Approach Delay (s)	U	16.0		U	31.4			23.6			34.6	
Approach LOS		В			C			C			C	
Intersection Summary												
HCM 2000 Control Delay			27.1	HC	CM 2000 Lev	el of Service	Э		С			
HCM 2000 Volume to Capacity ratio			0.75									
Actuated Cycle Length (s)			90.0	Su	m of lost tim	ie (s)			16.0			
Intersection Capacity Utilization			85.4%		U Level of S	· /			E			
Analysis Period (min)			15									
c Critical Lane Group												

Ø6 (R)

	-	←			
Lane Group	EBT	WBT	Ø4	Ø8	
Lane Configurations	44	*			
Traffic Volume (vph)	588	813			
Future Volume (vph)	588	813			
Lane Group Flow (vph)	653	903			
Turn Type	NA	NA			
Protected Phases	2	6	4	8	
Permitted Phases	2	U	7	U	
Detector Phase	2	6			
Switch Phase	2	U			
Minimum Initial (s)	10.0	10.0	10.0	10.0	
Minimum Split (s)	23.1	23.1	25.0	25.0	
	40.0	40.0	25.0	25.0	
Total Split (s)			38%	38%	
Total Split (%)	61.5%	61.5%			
Yellow Time (s)	3.0	3.0	3.0	3.0	
All-Red Time (s)	2.1	2.1	1.0	1.0	
Lost Time Adjust (s)	-1.1	-1.1			
Total Lost Time (s)	4.0	4.0			
Lead/Lag					
Lead-Lag Optimize?	0.14	0.11			
Recall Mode	C-Max	C-Max	Ped	Ped	
Act Effct Green (s)	36.0	36.0			
Actuated g/C Ratio	0.55	0.55			
v/c Ratio	0.35	0.92			
Control Delay	8.7	31.2			
Queue Delay	0.0	0.0			
Total Delay	8.7	31.2			
LOS	Α	С			
Approach Delay	8.7	31.2			
Approach LOS	Α	С			
Queue Length 50th (m)	21.8	94.6			
Queue Length 95th (m)	31.5	#177.8			
Internal Link Dist (m)	41.2	106.6			
Turn Bay Length (m)					
Base Capacity (vph)	1857	977			
Starvation Cap Reductn	0	0			
Spillback Cap Reductn	0	0			
Storage Cap Reductn	0	0			
Reduced v/c Ratio	0.35	0.92			
Intersection Summary					
Cycle Length: 65					
Actuated Cycle Length: 65					
Offset: 40 (62%), Referenced to phase	e 2:EBT a	nd 6:WBT. S	tart of Greer	า	
Natural Cycle: 70	_ . u				
Control Type: Actuated-Coordinated					
Maximum v/c Ratio: 0.92					
Intersection Signal Delay: 21.7				Inter	section LOS: C
Intersection Capacity Utilization 48.5%	6				Level of Service A
Analysis Period (min) 15				100	
# 95th percentile volume exceeds ca	anacity o	ielie mav he	longer		
Queue shown is maximum after tw		acuc may be	iongor.		
	•				
Splits and Phases: 6: Ped Crossing	& Richmo	ond Rd			1 ***
→ Ø2 (R)					Åå Ø4

CIMA+ Synchro 10 Report

FRØ8

	۶	→	*	•	←	1	1	1	~	1	↓	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		44			*							
Traffic Volume (vph)	0	588	0	0	813	0	0	0	0	0	0	0
Future Volume (vph)	0	588	0	0	813	0	0	0	0	0	0	0
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Total Lost time (s)		4.0			4.0							
Lane Util. Factor		0.95			1.00							
Frpb, ped/bikes		1.00			1.00							
Flpb, ped/bikes		1.00			1.00							
Frt		1.00			1.00							
Flt Protected		1.00			1.00							
Satd. Flow (prot)		3353			1765							
Flt Permitted		1.00			1.00							
Satd. Flow (perm)		3353			1765							
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	0	653	0	0	903	0	0	0	0	0	0	0
RTOR Reduction (vph)	0	0	0	0	0	0	0	0	0	0	0	0
Lane Group Flow (vph)	0	653	0	0	903	0	0	0	0	0	0	0
Confl. Peds. (#/hr)		000		•	000		13		12	12		13
Confl. Bikes (#/hr)							10		2			1
Turn Type		NA			NA							·
Protected Phases		2			6							
Permitted Phases					· ·							
Actuated Green, G (s)		34.9			34.9							
Effective Green, g (s)		36.0			36.0							
Actuated g/C Ratio		0.55			0.55							
Clearance Time (s)		5.1			5.1							
Vehicle Extension (s)		3.0			3.0							
Lane Grp Cap (vph)		1857			977							
v/s Ratio Prot		0.19			c0.51							
v/s Ratio Prot v/s Ratio Perm		0.19			CU.5 I							
		0.05			0.92							
v/c Ratio		0.35 8.0										
Uniform Delay, d1		1.00			13.3 1.00							
Progression Factor		0.5			15.5							
Incremental Delay, d2												
Delay (s)		8.6			28.7							
Level of Service		A			C			0.0			0.0	
Approach Delay (s)		8.6			28.7			0.0			0.0	
Approach LOS		Α			С			Α			Α	
Intersection Summary												
HCM 2000 Control Delay			20.3	HC	CM 2000 Leve	el of Service)		С			
HCM 2000 Volume to Capacity ratio			0.58									
Actuated Cycle Length (s)			65.0	Su	m of lost time	e (s)			8.0			
Intersection Capacity Utilization			48.5%	IC	U Level of Se	rvice			Α			
Analysis Period (min)			15									
c Critical Lane Group												

c Critical Lane Group

F

Appendix F - Transportation Demand Management (TDM) Supportive Development Design and Infrastructure Checklist

Introduction

The City of Ottawa's *Transportation Impact Assessment (TIA) Guidelines* (specifically Module 4.1—Development Design) requires proponents of qualifying developments to use the City's **TDM-Supportive Development Design and Infrastructure Checklist** to assess the opportunity to implement design elements that are supportive of sustainable modes. The goal of this assessment is to ensure that the development provides safe and efficient access for all users, while creating an environment that encourages walking, cycling and transit use.

The remaining sections of this document are:

- Using the Checklist
- Glossary
- TDM-Supportive Development Design and Infrastructure Checklist: Non-Residential Developments
- TDM-Supportive Development Design and Infrastructure Checklist: Residential Developments

Readers are encouraged to contact the City of Ottawa's TDM Officer for any guidance and assistance they require to complete this checklist.

Using the Checklist

This **TDM-Supportive Development Design and Infrastructure Checklist** document includes two actual checklists, one for non-residential developments (office, institutional, retail or industrial) and one for residential developments (multi-family or condominium only; subdivisions are exempt). Readers may download the applicable checklist in electronic format and complete it electronically, or print it out and complete it by hand. As an alternative, they may create a freestanding document that lists the design and infrastructure measures being proposed and provides additional detail on them.

Each measure in the checklist is numbered for easy reference. Each measure is also flagged as:

- REQUIRED —The Official Plan or Zoning By-law provides related guidance that must be followed.
- BASIC —The measure is generally feasible and effective, and in most cases would benefit the development and its users.
- BETTER —The measure could maximize support for users of sustainable modes, and optimize development performance.

Glossary

This glossary defines and describes the following measures that are identified in the TDM-Supportive Development Design and Infrastructure Checklist:

Walking & cycling: Routes

- Building location & access points
- Facilities for walking & cycling
- Amenities for walking & cycling

Walking & cycling: End-of-trip facilities

- Bicycle parking
- Secure bicycle parking
- Shower & change facilities
- Bicycle repair station

Transit

- Walking routes to transit
- Customer amenities

Ridesharing

- Pick-up & drop-off facilities
- Carpool parking

Carsharing & bikesharing

- Carshare parking spaces
- Bikeshare station location

Parking

- Number of parking spaces
- Separate long-term & short-term parking areas

Other

On-site amenities to minimize off-site trips

In addition to specific references made in this glossary, readers should consult the City of Ottawa's design and planning guidelines for a variety of different land uses and contexts, available on the City's website at www.ottawa.ca. Readers may also find the following resources to be helpful:

- Promoting Sustainable Transportation through Site Design, Institute of Transportation
 Engineers, 2004 (www.cite7.org/wpdm-package/iterp-promoting-sustainable-transportation)
- Bicycle End-of-Trip Facilities: A Guide for Canadian Municipalities and Employers, Transport Canada, 2010 (www.fcm.ca/Documents/tools/GMF/Transport Canada/BikeEndofTrip EN.pdf)

► Walking & cycling: Routes

Building location & access points. Correctly positioning buildings and their entrances can help make walking convenient, comfortable and safe. Minimizing travel distances and maximizing visibility are key.

Facilities for walking & cycling. The Official Plan gives clear direction on the provision and design of walking and cycling facilities for both access and circulation. On larger, busier sites (e.g. multi-building campuses) the inclusion of sidewalks, pathways, marked crossings, stop signs and traffic calming features can create a safer and more supportive environment for active transportation.

Amenities for walking & cycling. Lighting, landscaping, benches and wayfinding can make walking and cycling safer and more secure, comfortable and accessible.

Walking & cycling: End-of-trip facilities

Bicycle parking. The Official Plan and Zoning By-law both address the need for adequate bicycle parking at developments. Weather protection and theft prevention are major concerns for commuters who spend hundreds or thousands of dollars on a quality bicycle. Bicycle racks should have a design that enables secure locking while preventing damage to wheels. They should be located within sight of busy areas such as main building entrances or staffed parking kiosks.

Secure bicycle parking. Ottawa's Zoning By-law requires a secure area for bicycles at office or residential developments having more than 50 bicycle parking spaces. Lockable outdoor bike cages or indoor storage rooms that limit access to registered users are ideal.

Shower & change facilities. Longer-distance cyclists, joggers and even pedestrians can need a place to shower and change at work; the lack of such facilities is a major barrier to active commuting. Lockers and drying racks provide a place to store gear away from workspaces, and showers and grooming stations allow commuters to make themselves presentable for the office.

Bicycle repair station. Cycling commuters can experience maintenance issues that make the homeward trip difficult or impossible. A small supply of tools (e.g. air pump, Allen keys, wrenches) and supplies (e.g. inner tube patches, chain lubricant) in the workplace can help.

► Transit

Customer amenities. Larger developments that feature an on-site transit stop can make transit use more attractive by providing shelters, lighting and benches. Even better, they could integrate the passenger waiting area into a building entrance.

Ridesharing

Pick-up & drop-off facilities. Having a safe place to load or unload passengers (for carpools as well as taxis and ride-hailing services) without obstructing pedestrians, cyclists or other vehicles can help make carpooling work.

Carpool parking. At destinations with large parking lots (or lots that regularly fill to capacity), signed priority carpool parking spaces can be an effective ridesharing incentive. Priority spaces are frequently abused by non-carpoolers, so a system to provide registered users with vehicle identification tags is recommended.

Carsharing & bikesharing

Carshare parking spaces. For developments where carsharing could be an attractive option for employees, visitors or residents, ensuring an attractive location for future carshare parking spaces can avoid challenges associated with future retrofits.

Bikeshare station location. For developments where bikesharing could be an attractive option for employees, visitor or residents, ensuring an attractive location for a future bikeshare station can avoid challenges associated with future retrofits.

Parking

Number of parking spaces. Parking capacity is an important variable in development design, as it can either support or subvert the mode share targets set during the transportation impact analysis (TIA). While the Zoning By-law establishes any minimum and/or maximum requirements for parking capacity, it also allows a reduction in any minimum to reflect the existence of on-site shower, change and locker rooms provided for cyclists.

Separate long-term & short-term parking areas. Because access to unused parking spaces can be a powerful incentive to drive, developments can better manage their parking supply and travel behaviours by separating long-term from short-term parking through the use of landscaping, gated controls or signs. Doing so makes it difficult for long-term parkers (e.g. commuters) to park in short-term areas (e.g. for visitors) as long as enforcement occurs; it also protects long-term parking capacity for its intended users.

Other

On-site amenities to minimize off-site trips. Developments that offer facilities to limit employees' need for a car during their commute (e.g. to drop off children at daycare) or during their workday (e.g. to hit the gym) can free employees to make the commuting decision that otherwise works best for them.

TDM-Supportive Development Design and Infrastructure Checklist:

Non-Residential Developments (office, institutional, retail or industrial)

Legend						
REQUIRED	The Official Plan or Zoning By-law provides related guidance that must be followed					
BASIC	The measure is generally feasible and effective, and in most cases would benefit the development and its users					
BETTER	The measure could maximize support for users of sustainable modes, and optimize development performance					

	TDM-s	supportive design & infrastructure measures: Non-residential developments	Check if completed & add descriptions, explanations or plan/drawing references
	1.	WALKING & CYCLING: ROUTES	
	1.1	Building location & access points	
BASIC	1.1.1	Locate building close to the street, and do not locate parking areas between the street and building entrances	\checkmark
BASIC	1.1.2	Locate building entrances in order to minimize walking distances to sidewalks and transit stops/stations	\checkmark
BASIC	1.1.3	Locate building doors and windows to ensure visibility of pedestrians from the building, for their security and comfort	✓
	1.2	Facilities for walking & cycling	
REQUIRED	1.2.1	Provide convenient, direct access to stations or major stops along rapid transit routes within 600 metres; minimize walking distances from buildings to rapid transit; provide pedestrian-friendly, weather-protected (where possible) environment between rapid transit accesses and building entrances; ensure quality linkages from sidewalks through building entrances to integrated stops/stations (see Official Plan policy 4.3.3)	
REQUIRED	1.2.2	Provide safe, direct and attractive pedestrian access from public sidewalks to building entrances through such measures as: reducing distances between public sidewalks and major building entrances; providing walkways from public streets to major building entrances; within a site, providing walkways along the front of adjoining buildings, between adjacent buildings, and connecting areas where people may congregate, such as courtyards and transit stops; and providing weather protection through canopies, colonnades, and other design elements wherever possible (see Official Plan policy 4.3.12)	

	TDM-s	supportive design & infrastructure measures: Non-residential developments	Check if completed & add descriptions, explanations or plan/drawing references
REQUIRED	1.2.3	Provide sidewalks of smooth, well-drained walking surfaces of contrasting materials or treatments to differentiate pedestrian areas from vehicle areas, and provide marked pedestrian crosswalks at intersection sidewalks (see Official Plan policy 4.3.10)	
REQUIRED	1.2.4	Make sidewalks and open space areas easily accessible through features such as gradual grade transition, depressed curbs at street corners and convenient access to extra-wide parking spaces and ramps (see Official Plan policy 4.3.10)	
REQUIRED	1.2.5	Include adequately spaced inter-block/street cycling and pedestrian connections to facilitate travel by active transportation. Provide links to the existing or planned network of public sidewalks, multi-use pathways and onroad cycle routes. Where public sidewalks and multi-use pathways intersect with roads, consider providing traffic control devices to give priority to cyclists and pedestrians (see Official Plan policy 4.3.11)	
BASIC	1.2.6	Provide safe, direct and attractive walking routes from building entrances to nearby transit stops	✓
BASIC	1.2.7	Ensure that walking routes to transit stops are secure, visible, lighted, shaded and wind-protected wherever possible	✓
BASIC	1.2.8	Design roads used for access or circulation by cyclists using a target operating speed of no more than 30 km/h, or provide a separated cycling facility	
	1.3	Amenities for walking & cycling	
BASIC	1.3.1	Provide lighting, landscaping and benches along walking and cycling routes between building entrances and streets, sidewalks and trails	
BASIC	1.3.2	Provide wayfinding signage for site access (where required, e.g. when multiple buildings or entrances exist) and egress (where warranted, such as when directions to reach transit stops/stations, trails or other common destinations are not obvious)	

	TDM-s	supportive design & infrastructure measures: Non-residential developments	Check if completed & add descriptions, explanations or plan/drawing references
	2.	WALKING & CYCLING: END-OF-TRIP FACILI	TIES
	2.1	Bicycle parking	
REQUIRED	2.1.1	Provide bicycle parking in highly visible and lighted areas, sheltered from the weather wherever possible (see Official Plan policy 4.3.6)	✓
REQUIRED	2.1.2	Provide the number of bicycle parking spaces specified for various land uses in different parts of Ottawa; provide convenient access to main entrances or well-used areas (see Zoning By-law Section 111)	✓
REQUIRED	2.1.3	Ensure that bicycle parking spaces and access aisles meet minimum dimensions; that no more than 50% of spaces are vertical spaces; and that parking racks are securely anchored (see Zoning By-law Section 111)	
BASIC	2.1.4	Provide bicycle parking spaces equivalent to the expected number of commuter cyclists (assuming the cycling mode share target is met), plus the expected peak number of customer/visitor cyclists	
BETTER	2.1.5	Provide bicycle parking spaces equivalent to the expected number of commuter and customer/visitor cyclists, plus an additional buffer (e.g. 25 percent extra) to encourage other cyclists and ensure adequate capacity in peak cycling season	
	2.2	Secure bicycle parking	
REQUIRED	2.2.1	Where more than 50 bicycle parking spaces are provided for a single office building, locate at least 25% of spaces within a building/structure, a secure area (e.g. supervised parking lot or enclosure) or bicycle lockers (see Zoning By-law Section 111)	
BETTER	2.2.2	Provide secure bicycle parking spaces equivalent to the expected number of commuter cyclists (assuming the cycling mode share target is met)	
	2.3	Shower & change facilities	
BASIC	2.3.1	Provide shower and change facilities for the use of active commuters	
BETTER	2.3.2	In addition to shower and change facilities, provide dedicated lockers, grooming stations, drying racks and laundry facilities for the use of active commuters	
	2.4	Bicycle repair station	
BETTER	2.4.1	Provide a permanent bike repair station, with commonly used tools and an air pump, adjacent to the main bicycle parking area (or secure bicycle parking area, if provided)	

	TDM-s	supportive design & infrastructure measures: Non-residential developments	Check if completed & add descriptions, explanations or plan/drawing references
	3.	TRANSIT	
	3.1	Customer amenities	
BASIC	3.1.1	Provide shelters, lighting and benches at any on-site transit stops	
BASIC	3.1.2	Where the site abuts an off-site transit stop and insufficient space exists for a transit shelter in the public right-of-way, protect land for a shelter and/or install a shelter	
BETTER	3.1.3	Provide a secure and comfortable interior waiting area by integrating any on-site transit stops into the building	
	4.	RIDESHARING	
	4.1	Pick-up & drop-off facilities	
BASIC	4.1.1	Provide a designated area for carpool drivers (plus taxis and ride-hailing services) to drop off or pick up passengers without using fire lanes or other no-stopping zones	
	4.2	Carpool parking	
BASIC	4.2.1	Provide signed parking spaces for carpools in a priority location close to a major building entrance, sufficient in number to accommodate the mode share target for carpools	
BETTER	4.2.2	At large developments, provide spaces for carpools in a separate, access-controlled parking area to simplify enforcement	
	5.	CARSHARING & BIKESHARING	
	5.1	Carshare parking spaces	
BETTER	5.1.1	Provide carshare parking spaces in permitted non-residential zones, occupying either required or provided parking spaces (see Zoning By-law Section 94)	
	5.2	Bikeshare station location	
BETTER	5.2.1	Provide a designated bikeshare station area near a major building entrance, preferably lighted and sheltered with a direct walkway connection	

	TDM-s	supportive design & infrastructure measures: Non-residential developments	Check if completed & add descriptions, explanations or plan/drawing references
	6.	PARKING	
	6.1	Number of parking spaces	
REQUIRED	6.1.1	Do not provide more parking than permitted by zoning, nor less than required by zoning, unless a variance is being applied for	
BASIC	6.1.2	Provide parking for long-term and short-term users that is consistent with mode share targets, considering the potential for visitors to use off-site public parking	
BASIC	6.1.3	Where a site features more than one use, provide shared parking and reduce the cumulative number of parking spaces accordingly (see Zoning By-law Section 104)	
BETTER	6.1.4	Reduce the minimum number of parking spaces required by zoning by one space for each 13 square metres of gross floor area provided as shower rooms, change rooms, locker rooms and other facilities for cyclists in conjunction with bicycle parking (see Zoning By-law Section 111)	
	6.2	Separate long-term & short-term parking areas	
BETTER	6.2.1	Separate short-term and long-term parking areas using signage or physical barriers, to permit access controls and simplify enforcement (i.e. to discourage employees from parking in visitor spaces, and vice versa)	
	7.	OTHER	
	7.1	On-site amenities to minimize off-site trips	
BETTER	7.1.1	Provide on-site amenities to minimize mid-day or mid-commute errands	

TDM-Supportive Development Design and Infrastructure Checklist:

Residential Developments (multi-family or condominium)

Legend						
REQUIRED	The Official Plan or Zoning By-law provides related guidance that must be followed					
BASIC	The measure is generally feasible and effective, and in most cases would benefit the development and its users					
BETTER	The measure could maximize support for users of sustainable modes, and optimize development performance					

	TDM-s	supportive design & infrastructure measures: Residential developments	Check if completed & add descriptions, explanations or plan/drawing references
	1.	WALKING & CYCLING: ROUTES	
	1.1	Building location & access points	
BASIC	1.1.1	Locate building close to the street, and do not locate parking areas between the street and building entrances	\checkmark
BASIC	1.1.2	Locate building entrances in order to minimize walking distances to sidewalks and transit stops/stations	✓
BASIC	1.1.3	Locate building doors and windows to ensure visibility of pedestrians from the building, for their security and comfort	✓
	1.2	Facilities for walking & cycling	
REQUIRED	1.2.1	Provide convenient, direct access to stations or major stops along rapid transit routes within 600 metres; minimize walking distances from buildings to rapid transit; provide pedestrian-friendly, weather-protected (where possible) environment between rapid transit accesses and building entrances; ensure quality linkages from sidewalks through building entrances to integrated stops/stations (see Official Plan policy 4.3.3)	
REQUIRED	1.2.2	Provide safe, direct and attractive pedestrian access from public sidewalks to building entrances through such measures as: reducing distances between public sidewalks and major building entrances; providing walkways from public streets to major building entrances; within a site, providing walkways along the front of adjoining buildings, between adjacent buildings, and connecting areas where people may congregate, such as courtyards and transit stops; and providing weather protection through canopies, colonnades, and other design elements wherever possible (see Official Plan policy 4.3.12)	

	TDM-s	supportive design & infrastructure measures: Residential developments	Check if completed & add descriptions, explanations or plan/drawing references
REQUIRED	1.2.3	Provide sidewalks of smooth, well-drained walking surfaces of contrasting materials or treatments to differentiate pedestrian areas from vehicle areas, and provide marked pedestrian crosswalks at intersection sidewalks (see Official Plan policy 4.3.10)	
REQUIRED	1.2.4	Make sidewalks and open space areas easily accessible through features such as gradual grade transition, depressed curbs at street corners and convenient access to extra-wide parking spaces and ramps (see Official Plan policy 4.3.10)	
REQUIRED	1.2.5	Include adequately spaced inter-block/street cycling and pedestrian connections to facilitate travel by active transportation. Provide links to the existing or planned network of public sidewalks, multi-use pathways and onroad cycle routes. Where public sidewalks and multi-use pathways intersect with roads, consider providing traffic control devices to give priority to cyclists and pedestrians (see Official Plan policy 4.3.11)	
BASIC	1.2.6	Provide safe, direct and attractive walking routes from building entrances to nearby transit stops	
BASIC	1.2.7	Ensure that walking routes to transit stops are secure, visible, lighted, shaded and wind-protected wherever possible	✓
BASIC	1.2.8	Design roads used for access or circulation by cyclists using a target operating speed of no more than 30 km/h, or provide a separated cycling facility	
	1.3	Amenities for walking & cycling	
BASIC	1.3.1	Provide lighting, landscaping and benches along walking and cycling routes between building entrances and streets, sidewalks and trails	✓
BASIC	1.3.2	Provide wayfinding signage for site access (where required, e.g. when multiple buildings or entrances exist) and egress (where warranted, such as when directions to reach transit stops/stations, trails or other common destinations are not obvious)	

	TDM-s	supportive design & infrastructure measures: Residential developments	Check if completed & add descriptions, explanations or plan/drawing references
	2.	WALKING & CYCLING: END-OF-TRIP FACILITY	TIES
	2.1	Bicycle parking	
REQUIRED	2.1.1	Provide bicycle parking in highly visible and lighted areas, sheltered from the weather wherever possible (see Official Plan policy 4.3.6)	✓
REQUIRED	2.1.2	Provide the number of bicycle parking spaces specified for various land uses in different parts of Ottawa; provide convenient access to main entrances or well-used areas (see Zoning By-law Section 111)	
REQUIRED	2.1.3	Ensure that bicycle parking spaces and access aisles meet minimum dimensions; that no more than 50% of spaces are vertical spaces; and that parking racks are securely anchored (see Zoning By-law Section 111)	
BASIC	2.1.4	Provide bicycle parking spaces equivalent to the expected number of resident-owned bicycles, plus the expected peak number of visitor cyclists	
	2.2	Secure bicycle parking	
REQUIRED	2.2.1	Where more than 50 bicycle parking spaces are provided for a single residential building, locate at least 25% of spaces within a building/structure, a secure area (e.g. supervised parking lot or enclosure) or bicycle lockers (see Zoning By-law Section 111)	
BETTER	2.2.2	Provide secure bicycle parking spaces equivalent to at least the number of units at condominiums or multifamily residential developments	
	2.3	Bicycle repair station	
BETTER	2.3.1	Provide a permanent bike repair station, with commonly used tools and an air pump, adjacent to the main bicycle parking area (or secure bicycle parking area, if provided)	
	3.	TRANSIT	
	3.1	Customer amenities	
BASIC	3.1.1	Provide shelters, lighting and benches at any on-site transit stops	
BASIC	3.1.2	Where the site abuts an off-site transit stop and insufficient space exists for a transit shelter in the public right-of-way, protect land for a shelter and/or install a shelter	
BETTER	3.1.3	Provide a secure and comfortable interior waiting area by integrating any on-site transit stops into the building	

	TDM-s	supportive design & infrastructure measures: Residential developments	Check if completed & add descriptions, explanations or plan/drawing references
	4.	RIDESHARING	
	4.1	Pick-up & drop-off facilities	
BASIC	4.1.1	Provide a designated area for carpool drivers (plus taxis and ride-hailing services) to drop off or pick up passengers without using fire lanes or other no-stopping zones	
	5.	CARSHARING & BIKESHARING	
	5.1	Carshare parking spaces	
BETTER	5.1.1	Provide up to three carshare parking spaces in an R3, R4 or R5 Zone for specified residential uses (see Zoning By-law Section 94)	
	5.2	Bikeshare station location	
BETTER	5.2.1	Provide a designated bikeshare station area near a major building entrance, preferably lighted and sheltered with a direct walkway connection	
	6.	PARKING	
	6.1	Number of parking spaces	
REQUIRED	6.1.1	Do not provide more parking than permitted by zoning, nor less than required by zoning, unless a variance is being applied for	✓
BASIC	6.1.2	Provide parking for long-term and short-term users that is consistent with mode share targets, considering the potential for visitors to use off-site public parking	
BASIC	6.1.3	Where a site features more than one use, provide shared parking and reduce the cumulative number of parking spaces accordingly (see Zoning By-law Section 104)	
BETTER	6.1.4	Reduce the minimum number of parking spaces required by zoning by one space for each 13 square metres of gross floor area provided as shower rooms, change rooms, locker rooms and other facilities for cyclists in conjunction with bicycle parking (see Zoning By-law Section 111)	
	6.2	Separate long-term & short-term parking areas	
BETTER	6.2.1	Provide separate areas for short-term and long-term parking (using signage or physical barriers) to permit access controls and simplify enforcement (i.e. to discourage residents from parking in visitor spaces, and vice versa)	

G

Appendix G - Segment MMLOS

CECMENTO		1.00	Richmond	Richmond	Roosevelt	Churchill	Byron S	Byron N	Richmond S	Richmond N
SEGMENTS		LOS	Chur/Roos	Roos/Gold	Rich/Byro	Rich/Byro	Chur/Roos	Chur/Roos	Gold/Ped	Gold/Ped
	Sidewalk Width		≥ 2 m	≥ 2 m	≥ 2 m	≥ 2 m	1.5 m	no sidewalk	≥ 2 m	≥ 2 m
	Boulevard Width		< 0.5	< 0.5	< 0.5	< 0.5	0.5 - 2 m	n/a	> 2 m	< 0.5
	Avg Daily Curb Lane Traffic Volume		> 3000	> 3000	≤ 3000	≤ 3000	≤ 3000	≤ 3000	> 3000	> 3000
Ę	Operating Speed		> 30 to 50 km/h	> 30 to 50 km/h	> 30 to 50 km/h	> 30 to 50 km/h	> 30 to 50 km/h	> 30 to 50 km/h	> 30 to 50 km/h	> 30 to 50 km/h
Ë	On-Street Parking		yes	yes	no	yes	no	no	no	yes
Pedestrian	Exposure to Traffic PLoS	С	В	В	В	В	С	F	В	В
ğ	Effective Sidewalk Width		2.5 m	2.5 m	2.0 m	2.0 m	1.5 m		2.5 m	2.0 m
Pe	Pedestrian Volume		500 ped /hr	500 ped /hr	250 ped/hr	250 ped/hr	250 ped/hr		250 ped/hr	250 ped/hr
	Crowding PLoS		В	В	В	В	В	-	В	В
	Level of Service		В	В	В	В	С	-	В	В
	Type of Cycling Facility		Mixed Traffic	Mixed Traffic	Mixed Traffic	Mixed Traffic	Curbside Bike Lane	Mixed Traffic	Physically Separated	Mixed Traffic
	Number of Travel Lanes		2-3 lanes total	2-3 lanes total	≤ 2 (no centreline)	2-3 lanes total	≤ 1 each direction	≤ 2 (no centreline)		2-3 lanes total
	Operating Speed		>40 to <50 km/h	>40 to <50 km/h	>40 to <50 km/h	>40 to <50 km/h	≤ 50 km/h	>40 to <50 km/h		>40 to <50 km/h
	# of Lanes & Operating Speed LoS		D	D	В	D	Α	В	-	D
Bicycle	Bike Lane (+ Parking Lane) Width						≥1.5 to <1.8 m			
Š	Bike Lane Width LoS	D	-	-	-	-	В	-	-	-
) Sign	Bike Lane Blockages						Rare			
_	Blockage LoS		-	-	-	-	Α	-	-	-
	Median Refuge Width (no median = < 1.8 m)		< 1.8 m refuge	< 1.8 m refuge	< 1.8 m refuge	< 1.8 m refuge	< 1.8 m refuge	< 1.8 m refuge		< 1.8 m refuge
	No. of Lanes at Unsignalized Crossing		≤ 3 lanes	≤ 3 lanes	≤ 3 lanes	≤ 3 lanes	≤ 3 lanes	≤ 3 lanes		≤ 3 lanes
	Sidestreet Operating Speed		≤ 40 km/h	≤ 40 km/h	>40 to 50 km/h	>40 to 50 km/h	≤ 40 km/h	>40 to 50 km/h		≤ 40 km/h
	Unsignalized Crossing - Lowest LoS		Α	Α	В	В	Α	В	A	Α
	Level of Service		D	D	В	D	В	В	Α	D
=	Facility Type		Mixed Traffic	Mixed Traffic		Mixed Traffic			Mixed Traffic	Mixed Traffic
Transit	Friction or Ratio Transit:Posted Speed	D	Vt/Vp ≥ 0.8	Vt/Vp ≥ 0.8		Vt/Vp ≥ 0.8			Vt/Vp ≥ 0.8	Vt/Vp ≥ 0.8
F	Level of Service		D	D	-	D	-	-	D	D
	Truck Lane Width		> 3.7 m	> 3.7 m		> 3.7 m	> 3.7 m	> 3.7 m	≤ 3.5 m	≤ 3.5 m
2	Travel Lanes per Direction		1	1		1	1	1	1	1
Truck	Level of Service	С	В	В	-	В	В	В	С	С
Auto	Level of Service				No	ot Applicat	ole			

Н

Appendix H - Collision Analysis

Classification of Accident	01 - Approaching	02 - Angle	03 - Rear end	04 - Sideswipe	05 - Turning movement	06 - SMV unattended vehicle	07 - SMV other	99 - Other	Total	
03 - P.D. only	1	23	23	19	12	27	1	11	117	
02 - Non-fatal inju	0	4	9	0	4	1	7	0	25	
01 - Fatal injury	0	0	0	0	0	0	0	0	0	1
Total	1	27	32	19	16	28	8	11	142] 1
	#8 or 1%	#3 or 19%	#1 or 23%	#4 or 13%	#5 or 11%	#2 or 20%	#7 or 6%	#6 or 8%		-

82% 18% 0% 100%

GOLDEN AVE @ RICHMOND RD

Years	Total # Collisions	24 Hr AADT Veh Volume	Days	Collisions/MEV
2014-2018	7	11.593	1825	0.33

Classification of Accident	01 - Approaching	02 - Angle	03 - Rear end	04 - Sideswipe	05 - Turning movement	06 - SMV unattended vehicle	07 - SMV other	99 - Other	Total
03 - P.D. only	0	1	3	1	0	0	0	0	5
02 - Non-fatal inji	0	0	1	0	0	0	1	0	2
01 - Fatal injury	0	0	0	0	0	0	0	0	0
Total	0	1	4	1	0	0	1	0	7
	0.0/-	1.40/-	570/-	1/10/-	00/-	00/-	1/10/-	00/-	

71% 29% 0% 100%

CHURCHILL AVE @ RICHMOND RD

Years	Total # Collisions	24 Hr AADT Veh Volume	Days	Collisions/MEV
2014-2018	31	23,424	1825	0.73

Classification of Accident	01 - Approaching	02 - Angle	03 - Rear end	04 - Sideswipe	05 - Turning movement	06 - SMV unattended vehicle	07 - SMV other	99 - Other	Total
03 - P.D. only	0	7	6	5	4	2	0	0	24
02 - Non-fatal inji	0	0	3	0	0	0	4	0	7
01 - Fatal injury	0	0	0	0	0	0	0	0	0
Total	0	7	9	5	4	2	4	0	31
	0%	23%	29%	16%	13%	6%	13%	0%	

77% 23% 0% 100%

RICHMOND RD btwn ROOSEVELT AVE & CHURCHILL AVE N

Years	Total # Collisions	24 Hr AADT Veh Volume	Days	Collisions/MEV
2014-2018	37	14.024	1825	1.45

Classification of Accident	01 - Approaching	02 - Angle	03 - Rear end	04 - Sideswipe	05 - Turning movement	06 - SMV unattended vehicle	07 - SMV other	99 - Other	Total
03 - P.D. only	1	2	5	6	3	14	1	2	34
02 - Non-fatal inji	0	1	1	0	1	0	0	0	3
01 - Fatal injury	0	0	0	0	0	0	0	0	0
Total	1	3	6	6	4	14	1	2	37
	3%	8%	16%	16%	11%	38%	3%	5%	

92% 8% 0% 100%

ROOSEVELT AVE @ RICHMOND RD

Years	Total #	24 Hr AADT	Days	Collisions/MEV
	Collisions	Veh Volume	,	
2014-2018	4	15 001	1825	0.14

Classification of Accident	01 - Approaching	02 - Angle	03 - Rear end	04 - Sideswipe	05 - Turning movement	06 - SMV unattended vehicle	07 - SMV other	99 - Other	Total
03 - P.D. only	0	0	2	0	0	0	0	0	2
02 - Non-fatal inji	0	0	0	0	1	0	1	0	2
01 - Fatal injury	0	0	0	0	0	0	0	0	0
Total	0	0	2	0	1	0	1	0	4
	0%	0%	50%	0%	25%	0%	25%	0%	

50% 50% 0% 100%

RICHMOND RD btwn BROADVIEW AVE & GOLDEN AVE

Years	ars Total # 24 Hr Collisions Veh V		Days	Collisions/MEV
2014-2018	2014-2018 7		1825	0.30

Classification of Accident	01 - Approaching	02 - Angle	03 - Rear end	04 - Sideswipe	05 - Turning movement	06 - SMV unattended vehicle	07 - SMV other	99 - Other	Total
03 - P.D. only	0	4	0	0	0	1	0	1	6
02 - Non-fatal inju	0	0	0	0	0	1	0	0	1
01 - Fatal injury	0	0	0	0	0	0	0	0	0
Total	0	4	0	0	0	2	0	1	7
	0%	57%	0%	0%	0%	29%	0%	14%	

86% 14% 0% 100%

CHURCHILL AVE N btwn RICHMOND RD & BYRON AVE

Years	Total # Collisions	24 Hr AADT Veh Volume	Days	Collisions/MEV
2014-2018	9	10,494	1825	0.47

Classification of Accident	01 - Approaching	02 - Angle	03 - Rear end	03 - Rear end 04 - Sideswipe 05 -		06 - SMV unattended vehicle	07 - SMV other	99 - Other	Total
03 - P.D. only	0	0	1	3	1	2	0	0	7
02 - Non-fatal inju	0	0	1	0	0	0	1	0	2
01 - Fatal injury	0	0	0	0	0	0	0	0	0
Total	0	0	0 2 3		1	2	1	0	9
	0%	0%	29%	29%	14%	14%	14%	0%	

78% 22% 0% 100%

RICHMOND RD btwn GOLDEN AVE & ROOSEVELT AVE

Years	Total #	24 Hr AADT	Days	Collisions/MEV
i cais	Collisions	Veh Volume	Days	CONISIONS/ MLV
2014-2018	23	10 235	1825	1 22

Classification of Accident	01 - Approaching	02 - Angle	03 - Rear end	04 - Sideswipe	05 - Turning movement	06 - SMV unattended vehicle	07 - SMV other	99 - Other	Total
03 - P.D. only	0	1	3	4	1	7	0	3	19
02 - Non-fatal inji	0	0	3	0	1	0	0	0	4
01 - Fatal injury	0	0	0	0	0	0	0	0	0
Total	0	1	6 4		2	7	0	3	23
	0%	4%	26%	17%	9%	30%	0%	13%	

83% 17% 0% 100%

BYRON AVE @ CHURCHILL AVE

Years	Total # Collisions	24 Hr AADT Veh Volume	Days	Collisions/MEV
2014-2018	7	16,307	1825	0.24

Classification of Accident	01 - Approaching	02 - Angle	03 - Rear end	03 - Rear end 04 - Sideswipe 05 - mov		06 - SMV unattended vehicle	07 - SMV other	99 - Other	Total
03 - P.D. only	0	1	3	0	2	0	0	1	7
02 - Non-fatal inji	0	0	0	0	0	0	0	0	0
01 - Fatal injury	0	0	0	0	0	0	0	0	0
Total	0	1	3 0		2	0	0	1	7
	0%	14%	43%	0%	29%	0%	0%	14%	

100% 0% 0% 100%

BYRON AVE @ ROOSEVELT AVE

DIRORATE	@ NOOSETEE			
Years	Total #	24 Hr AADT	Davs	Collisions/MEV
I Cais	Collisions	Veh Volume	Days	CONISIONS/ PIL V
2014-2019	12	6.405	1025	1.01

Classification of Accident	01 - Approaching	02 - Angle	03 - Rear end	04 - Sideswipe	05 - Turning movement	06 - SMV unattended vehicle	07 - SMV other	99 - Other	Total	
03 - P.D. only	0	5	0	0	1	0	0	2	8	7 6
02 - Non-fatal inju	0	3	0	0	1	0	0	0	4] 3
01 - Fatal injury	0	0	0	0	0	0	0	0	0]
Total	0	8	0	0	2	0	0	2	12	1
	0%	67%	0%	0%	17%	0%	0%	17%	-	-

67% 33% 0% 100%

BYRON AVE btwn ROOSEVELT AVE & CHURCHILL AVE N

Years	Total # Collisions	24 Hr AADT Veh Volume	Days	Collisions/MEV
2014-2018	1	5,074	1825	0.11

Classification of Accident	01 - Approaching	02 - Angle	03 - Rear end	3 - Rear end $\begin{bmatrix} 0.4 - Sideswipe \end{bmatrix}$ $\begin{bmatrix} 0.5 \\ m \end{bmatrix}$		06 - SMV unattended vehicle	07 - SMV other	99 - Other	Total
03 - P.D. only	0	0	0	0	0	1	0	0	1
02 - Non-fatal inji	0	0	0	0	0	0	0	0	0
01 - Fatal injury	0	0 0		0 0		0 0		0	0
Total	0	0	0 0		0	1	0	0	1
	0%	0%	0%	0%	0%	100%	0%	0%	

100% 0% 0% 100%

ROOSEVELT AVE btwn BYRON AVE & RICHMOND RD

Years	Total # Collisions	24 Hr AADT Veh Volume	Days	Collisions/MEV
2014-2018	4	1,967	1825	1.11

Classification of Accident	01 - Approaching	02 - Angle	03 - Rear end	03 - Rear end 04 - Sideswipe 05 - mo		06 - SMV unattended vehicle	07 - SMV other	99 - Other	Total
03 - P.D. only	0	2	0	0	0	0	0	2	4
02 - Non-fatal inji	0 0 0		0	0	0	0	0	0	0
01 - Fatal injury	0	0	0	0	0	0	0	0	0
Total	0 2 0		0	0	0	0	2	4	
	0%	50%	0%	0%	0%	0%	0%	50%	

100% 0% 0% 100%

Appendix I - Intersection MMLOS

	INTERSECTIONS		Richmon	d/Churchill			Richmond/Roosevelt Richmond/Golden			Byron/Roosevelt				Byron/Churchill				Richmond/Broadview Ped Crossing							
	Crossing Side	NORTH	SOUTH	EAST	WEST	NORTH	SOUTH	FAST	WFST	NORTH	SOUTH	FAST	WFST	NORTH	SOUTH	FAST	WEST	NORTH	SOUTH	FAST	WEST	NORTH	SOUTH	FAST	WEST
	Lanes	4	4	4	4	0 - 2	0 - 2	4	4	0 - 2	3	4	4	3	3	0 - 2	0 - 2	3	3	0 - 2	0 - 2	4	4	0	0
	Median	No Median - 2.4 m		No Median - 2.4 m	No Median - 2.4 m	No Median - 2.4 m		No Median - 2.4 m			No Median - 2.4 m	No Median - 2.4 m			No Median - 2.4 m	No Median - 2.4 m	No Median - 2.4 m	No Median - 2.4 m							
		Dorminaiva	Dorminaiva	Drotostad	Drotostod	Dorminaivo	Dorminoivo	Dorminaiva	Dorminaivo	Dorminaivo	Dorminaiva	Dorminaivo	Dorminaiva	Dorminaivo	Dorminaivo	Dorminaiva	Dorminaiva	Dorminaiva	Dorminaivo	Dorminaiva	Dorminaiva	No loft turn / Drobib	No left turn / Drobib	No loft turn / Drobib	. No left turn / Prohib.
	Conflicting Left Turns	Permissive	Permissive	Protected	Protected	Permissive	Permissive	Permissive	Permissive	Permissive	Permissive	Permissive	Permissive	Permissive	Permissive	Permissive	Permissive	Permissive	Permissive	Permissive	Permissive	No left turn / Profilb.	NO IER (UM) PROMID.	No lett turn/ Profilb.	. No left turn/ Profile.
	Conflicting Right Turns	Permissive or yield control	Permissive or yield control	Permissive or yield control	Permissive or yield control	Permissive or yield control	Permissive or yield control	Permissive or yield control	Permissive or yield control	Permissive or yield control	Permissive or yield control	Permissive or yield control	Permissive or yield control	Permissive or yield control	d Permissive or yield control	Permissive or yield control	No right turn	No right turn	No right turn	No right turn					
	Right Turns on Red (RToR) ?	RTOR allowed	RTOR allowed	RTOR allowed	RTOR allowed	RTOR allowed	RTOR allowed	RTOR allowed	RTOR allowed	RTOR allowed	RTOR allowed	RTOR allowed	RTOR allowed	RTOR allowed	RTOR allowed	RTOR allowed	RTOR prohibited	RTOR prohibited	RTOR prohibited	RTOR prohibited					
	Ped Signal Leading Interval?	Yes	Yes	Yes	Yes	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No
ian	Right Turn Channel	No Channel	No Channel	No Channel	No Channel	No Channel	No Channel	No Channel	No Channel	No Channel	No Channel	No Channel	No Channel	No Channel	No Channel	No Channel	No Channel	No Channel	No Channel	No Channel	No Channel	No Right Turn	No Right Turn	No Right Turn	No Right Turn
str	Corner Radius	10-15m	10-15m	10-15m	10-15m	10-15m	10-15m	10-15m	10-15m	10-15m	10-15m	10-15m	10-15m	10-15m	10-15m	10-15m	10-15m	10-15m	10-15m	10-15m	10-15m	No Right Turn	No Right Turn	No Right Turn	No Right Turn
ě	Crosswalk Type	Zebra stripe hi-vis	Zebra stripe hi-vis	Zebra stripe hi-vis	Zebra stripe hi-vis	Std transverse	Std transverse	Std transverse	Std transverse	Std transverse	Std transverse	Std transverse	Std transverse	Std transverse	Std transverse	Std transverse	Std transverse	Zebra stripe hi-vis	Zebra stripe hi-vis	Zebra stripe hi-vis	Zebra stripe hi-vis	Std transverse	Std transverse		
Pe		markings	markings	markings	markings	markings	markings	markings	markings	markings	markings	markings	markings	markings	markings	markings	markings	markings	markings	markings	markings	markings	markings		
	PETSI Score	58	58	66	66	85	85	53	53	85	70	53	53	70	70	85	85	73	73	88	88	79	79		
	Ped. Exposure to Traffic LoS	D	D	С	С	В	В	D	D	В	С	D	D	С	С	В	В	С	С	В	В	В	В	-	-
	Cycle Length	30	30	40	40	25	25	45	45	29	29	35	35	20	20	50	50	42	42	38	38	25	25	40	40
	Effective Walk Time	7	7	14	14	9	9	18	18	9	9	7	7	7	7	7	7	10	10	10	10	7	7	40	40
	Average Pedestrian Delay	9	9	8	8	5	5	8	8	7	7	11	11	4	4	18	18	12	12	10	10	6	6	0	0
	Pedestrian Delay LoS	A	A	A	A	A	A	Α	A	A	A	В	В	A	A	В	В	В	В	В	В	A	A	A	A
		D	D	С	С	В	В	D	D	В	С	D	D	С	С	В	В	С	С	В	В	В	В	Α	Α
	Level of Service			D			[ס			I	D			(С				C				В	
	Approach From	NORTH	SOUTH	EAST	WEST	NORTH	SOUTH	EAST	WEST	NORTH	SOUTH	EAST	WEST	NORTH	SOUTH	EAST	WEST	NORTH	SOUTH	EAST	WEST	NORTH	SOUTH	EAST	WEST
	Bicycle Lane Arrangement on Approach	Mixed Traffic	Mixed Traffic	Mixed Traffic	Mixed Traffic	Mixed Traffic	Mixed Traffic	Pocket Bike Lane	Mixed Traffic	Mixed Traffic	Pocket Bike Lane	Pocket Bike Lane	Mixed Traffic	Mixed Traffic	Pocket Bike Lane	Pocket Bike Lane			Mixed Traffic	Mixed Traffic					
	Bioyole Lane Arrangement on Approach	Wilked Frame	Wilked Traine	Wilked Traffic	wince Traine	Wilked Traffic	WIIACG TTGTTIC	Wilked Traffic	WIIACA TTAITIC	Wilked Frame	Wilked Traffic	WIIXCG TTGITIC	1 Ochet Bine Lane	Wilked Traffic	Wilked Traille	1 ochet blike Lane	1 ooket blike Lake	WIIXCO TTOTIC	Wilked Hallie	1 OOKET BIKE LANC	1 ochet blic Lane			Wixed Traine	Wilked Traine
	Right Turn Lane Configuration	≤ 50 m	≤ 50 m	≤ 50 m	≤ 50 m	≤ 50 m	≤ 50 m	≤ 50 m Introduced	≤ 50 m	≤ 50 m	≤ 50 m Introduced		≤ 50 m	≤ 50 m	> 50 m Introduced	> 50 m Introduced			≤ 50 m	≤ 50 m					
		4.05 lm.//s	4 OF L //-	4.05 L/l.									right turn lane			right turn lane	right turn lane			right turn lane	right turn lane				
	Right Turning Speed	≤ 25 km/h	≤ 25 km/h	≤ 25 km/h	≤ 25 km/h	≤ 25 km/h	≤ 25 km/h	≤ 25 km/h	≤ 25 km/h	≤ 25 km/h	≤ 25 km/h	≤ 25 km/h	≤ 25 km/h	≤ 25 km/h	≤ 25 km/h	≤ 25 km/h			≤ 25 km/h	≤ 25 km/h					
<u>e</u>	Cyclist relative to RT motorists Separated or Mixed Traffic	D Mixed Treffic	D Mixed Treffic	D Mixed Treffic	D Missad Treffic	D Missad Treffie	D Missad Traffic	D Missad Traffia	D Mixed Treffic	D Mixed Treffie	D Missad Troffia	D Missad Treffic	Consisted	D Mixed Treffic	D Missad Treffic	Concreted	Congreted	D Mixed Treffie	D Mixed Treffic	D	Congreted	<u> </u>	<u> </u>	D Mixed Treffic	D Mixed Treffic
S S	Separated or Mixed Trailic	Mixed Traffic	міхеа і гапіс	Mixed Traffic	Mixed Traffic	IMIXEG I ramic	Mixed Traffic	Mixed Traffic	Mixed Traffic	Mixed Traffic	Mixed Traffic	Mixed Traffic	Separated	Mixed Traffic	Mixed Traffic	Separated	Separated	Mixed Traffic	Mixed Traffic	Separated	Separated	-	-	Mixed Traffic	Mixed Traffic
Bi	Left Turn Approach	One lane crossed	One lane crossed	One lane crossed	One lane crossed	No lane crossed	One lane crossed	One lane crossed	One lane crossed	One lane crossed	One lane crossed	One lane crossed	1 lane crossed	One lane crossed	One lane crossed	1 lane crossed	1 lane crossed	One lane crossed	One lane crossed	≥ 2 lanes crossed	≥ 2 lanes crossed			No lane crossed	No lane crossed
	Operating Speed	> 40 to ≤ 50 km/h	> 40 to ≤ 50 km/h	> 40 to ≤ 50 km/h	> 40 to ≤ 50 km/h	> 40 to ≤ 50 km/h	> 40 to ≤ 50 km/h	> 40 to ≤ 50 km/h	≤ 40 km/h	≤ 40 km/h	> 40 to ≤ 50 km/h	> 40 to ≤ 50 km/h	> 40 to ≤ 50 km/h	> 40 to ≤ 50 km/h	> 40 to ≤ 50 km/h	> 40 to ≤ 50 km/h			> 40 to ≤ 50 km/h	> 40 to ≤ 50 km/h					
	Left Turning Cyclist	D	D	D	D	В	D	D	D	D	D	D	С	В	В	С	С	D	D	E	E	-	-	В	В
		D	D	D	D	D	D	D	D	D	D	D	С	D	D	С	С	D	D	E	E			D	D
	Level of Service			 D				<u> </u>				 D				D C				E				 D	
	Average Signal Delay	≤ 30 sec	≤ 30 sec	≤ 30 sec	≤ 30 sec			≤ 10 sec	≤ 10 sec			≤ 10 sec	≤ 10 sec					≤ 20 sec	≤ 10 sec					≤ 10 sec	≤ 10 sec
sit	Average digital belay	_ 00 300	<u> </u>	<u> </u>	<u> </u>		_	<u> </u>	<u> </u>		_	2 10 3CC	<u> </u>				_	20300	= 10 3CC	_		_		<u> </u>	= 10 3cc
Tran	Level of Service		<u> </u>	<u> </u>	<u> </u>			 3	В			<u> </u>	ь	-		<u> </u>		C	<u> </u>	<u>-</u>		-		<u> </u>	В
•	Effective Compan Destina	10. 45	40.45	40.45	40.45	40.45	40.45	40.45	40.45	40.45	10 15	40.45	10 15			40.45	40.45	40.45	40.45		10 15				
	Effective Corner Radius Number of Receiving Lanes on Departure	10 - 15 m	10 - 15 m	10 - 15 m	10 - 15 m	10 - 15 m	10 - 15 m	10 - 15 m			10 - 15 m	10 - 15 m	10 - 15 m	10 - 15 m		10 - 15 m									
r ck	from Intersection	1	1	1	1	1	1	1	1	1	1	1	1			1	1	1	1		1				
Ë		E	E	E	Е	E	Е	E	E	E	E	E	E	-	-	E	E	E	Е	-	E	-	-	-	-
	Level of Service			E				Ē.				E				E				E				-	
0	Volume to Capacity Ratio	0.71 - 0.80			0.61 - 0.70				0.0 - 0.60				0.0 - 0.60												
Aut	Level of Service			C				<u> </u>				 B				Α				A				Α	

J

Appendix J - TDM Checklist

Introduction

The City of Ottawa's *Transportation Impact Assessment (TIA) Guidelines* (specifically Module 4.3—Transportation Demand Management) requires proponents of qualifying developments to assess the context, need and opportunity for transportation demand management (TDM) measures at their development. The guidelines require that proponents complete the City's **TDM Measures Checklist**, at a minimum, to identify any TDM measures being proposed.

The remaining sections of this document are:

- Using the Checklist
- Glossary
- TDM Measures Checklist: Non-Residential Developments
- TDM Measures Checklist: Residential developments

Readers are encouraged to contact the City of Ottawa's TDM Officer for any guidance and assistance they require to complete this checklist.

Using the Checklist

The City's *TIA Guidelines* are designed so that *Module 3.1—Development-Generated Travel Demand*, *Module 4.1—Development Design*, and *Module 4.2—Parking* are complete before a proponent begins *Module 4.3—Transportation Demand Management*.

Within Module 4.3, *Element 4.3.1—Context for TDM* and *Element 4.3.2—Need and Opportunity* are intended to create an understanding of the need for any TDM measures, and of the results they are expected to achieve or support. Once those two elements are complete, proponents begin *Element 4.3.3—TDM Program* that requires proponents to identify proposed TDM measures using the **TDM Measures Checklist**, at a minimum. The *TIA Guidelines* note that the City may require additional analysis for large or complex development proposals, or those that represent a higher degree of performance risk; as well, proponents proposing TDM measures for a new development must also propose an implementation plan that addresses planning and coordination, funding and human resources, timelines for action, performance targets and monitoring requirements.

This **TDM Measures Checklist** document includes two actual checklists, one for non-residential developments (office, institutional, retail or industrial) and one for residential developments (multifamily, condominium or subdivision). Readers may download the applicable checklist in electronic format and complete it electronically, or print it out and complete it by hand. As an alternative, they may create a freestanding document that lists the TDM measures being proposed and provides additional detail on them, including an implementation plan as required by the City's *TIA Guidelines*.

Each measure in the checklist is numbered for easy reference. Each measure is also flagged as:

- BASIC —The measure is generally feasible and effective, and in most cases would benefit the development and its users.
- BETTER —The measure could maximize support for users of sustainable modes, and optimize development performance.
- —The measure is one of the most dependably effective tools to encourage the use of sustainable modes.

Glossary

This glossary defines and describes the following measures that are identified in the **TDM Measures Checklist**:

TDM program management

- Program coordinator
- Travel surveys

Parking

Priced parking

Walking & cycling

- Information on walking/cycling routes & destinations
- Bicycle skills training
- Valet bike parking

Transit

- Transit information
- Transit fare incentives
- Enhanced public transit service
- Private transit service

Ridesharing

- Ridematching service
- Carpool parking price incentives
- Vanpool service

Carsharing & bikesharing

- Bikeshare stations & memberships
- Carshare vehicles & memberships

TDM marketing & communications

- Multimodal travel information
- Personalized trip planning
- Promotions

Other incentives & amenities

- Emergency ride home
- Alternative work arrangements
- Local business travel options
- Commuter incentives
- On-site amenities

For further information on selecting and implementing TDM measures (particularly as they apply to non-residential developments, with a focus on workplaces), readers may find it helpful to consult Transport Canada's *Workplace Travel Plans: Guidance for Canadian Employers*, which can be downloaded in English and French from the ACT Canada website at

www.actcanada.com/resources/act-resources.

► TDM program management

While some TDM measures can be implemented with a minimum of effort through routine channels (e.g. parking or human resources), more complex measures or a larger development site may warrant assigning responsibility for TDM program coordination to a designated person either inside or outside the implementing organization. Similarly, some TDM measures are more effective if they are targeted or customized for specific audiences, and would benefit from the collection of related information.

Program coordinator. This person is charged with day-to-day TDM program development and implementation. Only in very large employers with thousands of workers is this likely to be a full-time, dedicated position. Usually, it is added to an existing role in parking, real estate, human resources or environmental management. In practice, this role may be called TDM coordinator, commute trip reduction coordinator or employee transportation coordinator. The City of Ottawa can identify external resources (e.g. non-profit organizations or consultants) that could provide these services.

Travel surveys. Travel surveys are most commonly conducted at workplaces, but can be helpful in other settings. They identify how and why people travel the way they do, and what barriers and opportunities exist for different behaviours. They usually capture the following information:

- Personal data including home address or postal code, destination, job type or function, employment status (full-time, part-time and/or teleworker), gender, age and hours of work
- Commute information including distance or time for the trip between home and work, usual methods of commuting, and reasons for choosing them
- Barriers and opportunities including why other commuting methods are unattractive, willingness to consider other options, and what improvements to other options could make them more attractive

► Parking

Priced parking. Charging for parking is typically among the most effective ways of getting drivers to consider other travel options. While drivers may not support parking fees, they can be more accepting if the revenues are used to improve other travel options (e.g. new showers and change rooms, improved bicycle parking or subsidized transit passes). At workplaces or daytime destinations, parking discounts (e.g. early bird specials, daily passes that cost significantly less than the equivalent hourly charge, monthly passes that cost significantly less than the equivalent daily charge) encourage long-term parking and discourage the use of other travel options. For residential uses, unbundling parking costs from dwelling purchase, lease or rental costs provides an incentive for residents to own fewer cars, and can reduce car use and the costs of parking provision.

► Walking & cycling

Active transportation options like cycling and walking are particularly attractive for short trips (typically up to 5 km and 2 km, respectively). Other supportive factors include an active, health-conscious audience, and development proximity to high-quality walking and cycling networks. Common challenges to active transportation include rain, darkness, snowy or icy conditions, personal safety concerns, the potential for bicycle theft, and a lack of shower and change facilities for those making longer trips.

Information on walking/cycling routes & destinations. Ottawa, Gatineau and the National Capital Commission all publish maps to help people identify the most convenient and comfortable walking or cycling routes.

Bicycle skills training. Potential cyclists can be intimidated by the need to ride on roads shared with motor vehicles. This barrier can be reduced or eliminated by offering cycling skills training to interested cyclists (e.g. CAN-BIKE certification courses).

Valet bike parking. For large events, temporary "valet parking" areas can be easily set up to maximize convenience and security for cyclists. Experienced local non-profit groups can help.

► Transit

Transit information. Difficulty in finding or understanding basic information on transit fares, routes and schedules can prevent people from trying transit. Employers can help by providing online links to OC Transpo and STO websites. Transit users also appreciate visible maps and schedules of transit routes that serve the site; even better, a screen that shows real-time transit arrival information is particularly useful at sites with many transit users and an adjacent transit stop or station.

Transit fare incentives. Free or subsidized transit fares are an attractive incentive for non-transit riders to try transit. Many non-users are unsure of how to pay a fare, and providing tickets or a preloaded PRESTO card (or, for special events, pre-arranging with OC Transpo that transit fares are included with event tickets) overcome that barrier.

Enhanced public transit service. OC Transpo may adjust transit routes, stop locations, service hours or frequencies for an agreed fee under contract, or at no cost where warranted by the potential ridership increase. Information provided by a survey of people who travel to a given development can support these decisions.

Private transit service. At remote suburban or rural workplaces, a poor transit connection to the nearest rapid transit station can be an obstacle for potential transit users, and an employer in this situation could initiate a private shuttle service to make transit use more feasible or attractive. Other circumstances where a shuttle makes sense include large special events, or a residential development for people with limited independent mobility who still require regular access to shops and services.

► Ridesharing

Ridesharing's potential is greatest in situations where transit ridership is low, where parking costs are high, and/or where large numbers of car commuters (e.g. employees or full-time students) live reasonably far from the workplace.

Ridematching service. Potential carpoolers in Ottawa are served by www.OttawaRideMatch.com, an online service to help people find carpool partners. Employers can arrange for a dedicated portal where their employees can search for potential carpool partners only among their colleagues, if they desire. Some very large employers may establish internal ridematching services, to maximize employee uptake and corporate control. Ridematching service providers typically include a waiver to relieve employers of liability when their employees start carpooling through a ridematching service. Ridesharing with co-workers also tends to eliminate security concerns.

Carpool parking price incentives. Discounted parking fees for carpools can be an extra incentive to rideshare.

Vanpool service. Vanpools operate in the Toronto and Vancouver metropolitan areas, where vans that carry up to about ten occupants are driven by one of the vanpool members. Vanpools tend to operate on a cost-recovery basis, and are most practical for long-distance commutes where transit is not an option. Current legislation in Ontario does not permit third-party (i.e. private or non-profit) vanpool services, but does permit employers to operate internal vanpools.

► Carsharing & bikesharing

Bikeshare station & memberships. VeloGO Bike Share and Right Bike both operate bikesharing services in Ottawa. Developments that would benefit from having a bikeshare station installed at or near their development may negotiate directly with either service provider.

Carshare vehicles & memberships. VRTUCAR and Zipcar both operate carsharing services in Ottawa, for use by the general public or by businesses as an alternative to corporate fleets. Carsharing services offer 24-hour access, self-serve reservation systems, itemized monthly billings, and outsourcing of all financing, insurance, maintenance and administrative responsibilities.

► TDM marketing & communications

Multimodal travel information. Aside from mode-specific information discussed elsewhere in this document, multimodal information that identifies and explains the full range of travel options available to people can be very influential—especially when provided at times and locations where individuals are actively choosing among those options. Examples include: employees when their employer is relocating, or when they are joining a new employer; students when they are starting a program at a new institution; visitors or customers travelling to an unfamiliar destination, or when faced with new options (e.g. shuttle services or parking restrictions); and residents when they purchase or occupy a residence that is new to them.

Personalized trip planning. As an extension to the simple provision of information, this technique (also known as *individualized marketing*) is effective in helping people make more sustainable travel choices. The approach involves identifying who is most likely to change their travel choices (notably relocating employees, students or residents) giving them customized information, training and incentives to support them in making that change. It may be conducted with assistance from an external service provider with the necessary skills, and delivered in a variety of settings including workplaces and homes.

Promotions. Special events and incentives can raise awareness and encourage individuals to examine and try new travel options.

- Special events can help attract attention, build participation and celebrate successes. Events that have been held in Ottawa include Earth Day (in April) Bike to Work Month (in May), Environment Week (early June), International Car Free Day (September 22), and Canadian Ridesharing Week (October). At workplaces or educational institutions, similarly effective internal events could include workshops, lunch-and-learns, inter-departmental challenges, pancake breakfasts, and so on.
- Incentives can encourage trial of sustainable modes, and might include loyalty rewards for duration or consistency of activity (e.g. 1,000 km commuted by bicycle), participation prizes (e.g. for completing a survey or joining a special event), or personal recognition that highlights individual accomplishments.

► Other incentives & amenities

Emergency ride home. This measure assures non-driving commuters that they will be able to get home quickly and conveniently in case of family emergency (or in some workplaces, in case of unexpected overtime, severe weather conditions, or the early departure of a carpool driver) by offering a chit or reimbursement for taxi, carshare or rental car usage. Limits on annual usage or cost per employee may be set, although across North America the actual rates of usage are typically very low.

Alternative work arrangements. A number of alternatives to the standard 9-to-5, Monday-to-Friday workweek can support sustainable commuting (and work-life balance) at workplaces:

- Flexible working hours allow transit commuters to take advantage of the fastest and most convenient transit services, and allow potential carpoolers to include people who work slightly different schedules in their search for carpool partners. They also allow active commuters to travel at least one direction in daylight, either in the morning or the afternoon, during the winter.
- Compressed workweeks allow employees to work their required hours over fewer days (e.g. five days in four, or ten days in nine), eliminating the need to commute on certain days. For employees, this can promote work-life balance and gives flexibility for appointments. For employers, this can permit extended service hours as well as reduced parking demands if employees stagger their days off.
- Telework is a normal part of many workplaces. It helps reduce commuting activity, and can lead to significant cost savings through workspace sharing. Telework initiatives involve many stakeholders, and may face as much resistance as support within an organization. Consultation, education and training are helpful.

Local business travel options. A common obstacle for people who might prefer to not drive to work is that their employer requires them to bring a car to work so they can make business trips during the day. Giving employees convenient alternatives to private cars for local business travel during the workday makes walking, cycling, transit or carpooling in someone else's car more practical.

- Walking and cycling—Active transportation can be a convenient and enjoyable way to make short business trips. They can also reduce employer expenses, although they may require extra travel time. Providing a fleet of shared bikes, or reimbursing cyclists for the kilometres they ride, are inexpensive ways to validate their choice.
- Public transit—Transit can be convenient and inexpensive compared to driving.
 OC Transpo's PRESTO cards are transferable among employees and automatically reloadable, making them the perfect tool for enabling transit use during the day.
- *Ridesharing*—When multiple employees attend the same off-site meeting or event, they can be reminded to carpool whenever possible.
- Taxis or ride-hailing—Taxis and ride-hailing can eliminate parking costs, save time and eliminate collision liability concerns. Taxi chits eliminate cash transactions and minimize paperwork.
 - Fleet vehicles or carsharing—Fleet vehicles can be cost-effective for high travel volumes, while carsharing is a great option for less frequent trips.
 - o *Interoffice shuttles*—Employers with multiple worksites in the region could use a shuttle service to move people as well as mail or supplies.
 - Videoconferencing—New technologies mean that staying in the office to hold meetings electronically is more viable, affordable and productive than ever.

Commuter incentives. Financial incentives can help create a level playing field and support commuting by sustainable modes. A "commuting allowance" given to all employees as a taxable benefit is one such incentive; employees who choose to drive could then be charged for parking, while other employees could use the allowance for transit fares or cycling equipment, or for spending or saving. (Note that in the United States this practice is known as "parking cash-out," and is popular because commuting allowances are not taxable up to a certain limit). Alternatively, a monthly commuting allowance for non-driving employees would give drivers an incentive to choose a different commuting mode. Another practical incentive for active commuters or transit users is to offer them discounted "rainy day" parking passes for a small number of days each month.

On-site amenities. Developments that offer services to limit employees' need for a car during their commute (e.g. to drop off clothing at the dry cleaners) or during their workday (e.g. to buy lunch) can free employees to make the commuting decision that otherwise works best for them.

TDM Measures Checklist:

Non-Residential Developments (office, institutional, retail or industrial)

The measure is generally feasible and effective, and in most cases would benefit the development and its users The measure could maximize support for users of sustainable modes, and optimize development performance The measure is one of the most dependably effective tools to encourage the use of sustainable modes

	TDM	measures: Non-residential developments	Check if proposed & add descriptions				
	1.	TDM PROGRAM MANAGEMENT					
	1.1	Program coordinator					
BASIC	★ 1.1.1	Designate an internal coordinator, or contract with an external coordinator					
	1.2	Travel surveys					
BETTER	1.2.1	Conduct periodic surveys to identify travel-related behaviours, attitudes, challenges and solutions, and to track progress					
	2.	WALKING AND CYCLING					
	2.1	Information on walking/cycling routes & destin	ations				
BASIC	2.1.1	Display local area maps with walking/cycling access routes and key destinations at major entrances					
	2.2	Bicycle skills training					
		Commuter travel					
BETTER	★ 2.2.1	Offer on-site cycling courses for commuters, or subsidize off-site courses					
	2.3	Valet bike parking					
		Visitor travel					
BETTER	2.3.1	Offer secure valet bike parking during public events when demand exceeds fixed supply (e.g. for festivals, concerts, games)					

	TDM	measures: Non-residential developments	Check if proposed & add descriptions				
	3.	TRANSIT					
	3.1	Transit information					
BASIC	3.1.1	Display relevant transit schedules and route maps at entrances					
BASIC	3.1.2	Provide online links to OC Transpo and STO information					
BETTER	3.1.3	Provide real-time arrival information display at entrances					
	3.2	Transit fare incentives					
		Commuter travel					
BETTER	3.2.1	Offer preloaded PRESTO cards to encourage commuters to use transit					
BETTER 🖈	3.2.2	Subsidize or reimburse monthly transit pass purchases by employees					
		Visitor travel					
BETTER	3.2.3	Arrange inclusion of same-day transit fare in price of tickets (e.g. for festivals, concerts, games)					
	3.3	Enhanced public transit service					
		Commuter travel					
BETTER	3.3.1	Contract with OC Transpo to provide enhanced transit services (e.g. for shift changes, weekends)					
		Visitor travel					
BETTER	3.3.2	Contract with OC Transpo to provide enhanced transit services (e.g. for festivals, concerts, games)					
	3.4	Private transit service					
		Commuter travel					
BETTER	3.4.1	Provide shuttle service when OC Transpo cannot offer sufficient quality or capacity to serve demand (e.g. for shift changes, weekends)					
		Visitor travel					
BETTER	3.4.2	Provide shuttle service when OC Transpo cannot offer sufficient quality or capacity to serve demand (e.g. for festivals, concerts, games)					

	TDM	measures: Non-residential developments	Check if proposed & add descriptions				
	4.	RIDESHARING					
	4.1	Ridematching service					
	_	Commuter travel					
BASIC ★	4.1.1	Provide a dedicated ridematching portal at OttawaRideMatch.com					
	4.2	Carpool parking price incentives					
		Commuter travel					
BETTER	4.2.1	Provide discounts on parking costs for registered carpools					
	4.3	Vanpool service					
		Commuter travel					
BETTER	4.3.1	Provide a vanpooling service for long-distance commuters					
	5.	CARSHARING & BIKESHARING					
	5.1	Bikeshare stations & memberships					
BETTER	5.1.1	Contract with provider to install on-site bikeshare station for use by commuters and visitors					
		Commuter travel					
BETTER	5.1.2	Provide employees with bikeshare memberships for local business travel					
	5.2	Carshare vehicles & memberships					
		Commuter travel					
BETTER	5.2.1	Contract with provider to install on-site carshare vehicles and promote their use by tenants					
BETTER	5.2.2	Provide employees with carshare memberships for local business travel					
	6.	PARKING					
	6.1	Priced parking					
		Commuter travel					
BASIC *	6.1.1	Charge for long-term parking (daily, weekly, monthly)					
BASIC	6.1.2	Unbundle parking cost from lease rates at multi-tenant sites					
		Visitor travel					
BETTER	6.1.3	Charge for short-term parking (hourly)					

	TDM	measures: Non-residential developments	Check if proposed & add descriptions					
	7.	TDM MARKETING & COMMUNICATIONS						
	7.1	Multimodal travel information						
		Commuter travel						
BASIC *	7.1.1	Provide a multimodal travel option information package to new/relocating employees and students						
		Visitor travel						
BETTER ★	7.1.2	Include multimodal travel option information in invitations or advertising that attract visitors or customers (e.g. for festivals, concerts, games)						
	7.2	Personalized trip planning						
		Commuter travel						
BETTER ★	7.2.1	Offer personalized trip planning to new/relocating employees						
	7.3	Promotions						
		Commuter travel						
BETTER	7.3.1	Deliver promotions and incentives to maintain awareness, build understanding, and encourage trial of sustainable modes						
	8.	OTHER INCENTIVES & AMENITIES						
	8.1	Emergency ride home						
		Commuter travel						
BETTER ★	8.1.1	Provide emergency ride home service to non-driving commuters						
	8.2	Alternative work arrangements						
		Commuter travel						
BASIC ★	8.2.1	Encourage flexible work hours						
BETTER	8.2.2	Encourage compressed workweeks						
BETTER 🛨	8.2.3	Encourage telework						
	8.3	Local business travel options						
		Commuter travel						
BASIC *	8.3.1	Provide local business travel options that minimize the need for employees to bring a personal car to work						
	8.4	Commuter incentives						
		Commuter travel						
BETTER	8.4.1	Offer employees a taxable, mode-neutral commuting allowance						
	8.5	On-site amenities						
		Commuter travel						
BETTER	8.5.1	Provide on-site amenities/services to minimize mid-day or mid-commute errands						

TDM Measures Checklist:

Residential Developments (multi-family, condominium or subdivision)

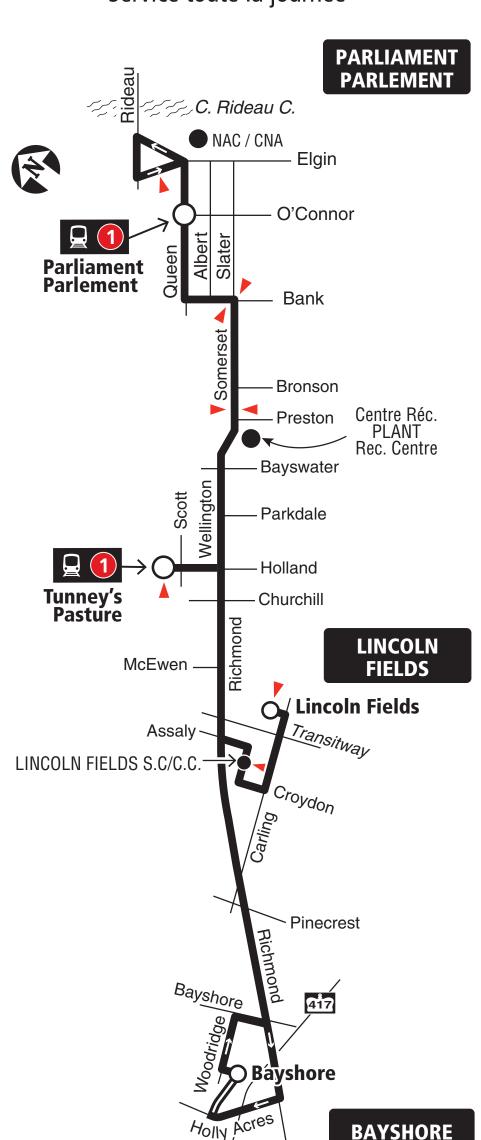
EASIC The measure is generally feasible and effective, and in most cases would benefit the development and its users The measure could maximize support for users of sustainable modes, and optimize development performance The measure is one of the most dependably effective tools to encourage the use of sustainable modes

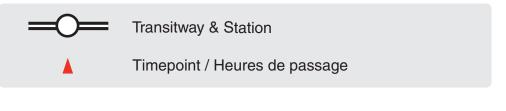
	TDM	measures: Residential developments	Check if proposed & add descriptions
	1.	TDM PROGRAM MANAGEMENT	
	1.1	Program coordinator	
BASIC ★	1.1.1	Designate an internal coordinator, or contract with an external coordinator	
	1.2	Travel surveys	
BETTER	1.2.1	Conduct periodic surveys to identify travel-related behaviours, attitudes, challenges and solutions, and to track progress	
	2.	WALKING AND CYCLING	
	2.1	Information on walking/cycling routes & des	tinations
BASIC	2.1.1	Display local area maps with walking/cycling access routes and key destinations at major entrances (multi-family, condominium)	
	2.2	Bicycle skills training	
BETTER	2.2.1	Offer on-site cycling courses for residents, or subsidize off-site courses	

		TDM	measures: Residential developments	Check if proposed & add descriptions				
		3.	TRANSIT					
		3.1	Transit information					
BASIC		3.1.1	Display relevant transit schedules and route maps at entrances (multi-family, condominium)					
BETTER		3.1.2	Provide real-time arrival information display at entrances (multi-family, condominium)					
		3.2	Transit fare incentives					
BASIC	★ 3.2.1 Offer PRESTO cards preloaded with one monthly transit pass on residence purchase/move-in, to encourage residents to use transit							
BETTER		3.2.2	Offer at least one year of free monthly transit passes on residence purchase/move-in					
		3.3	Enhanced public transit service					
BETTER 3.3.1 Contract with OC Transpo to provide early transit services until regular services are warranted by occupancy levels (subdivision)								
		3.4	Private transit service					
BETTER		3.4.1	Provide shuttle service for seniors homes or lifestyle communities (e.g. scheduled mall or supermarket runs)					
		4.	CARSHARING & BIKESHARING					
		4.1	Bikeshare stations & memberships					
BETTER		4.1.1	Contract with provider to install on-site bikeshare station (<i>multi-family</i>)					
BETTER		4.1.2	Provide residents with bikeshare memberships, either free or subsidized <i>(multi-family)</i>					
		4.2	Carshare vehicles & memberships					
BETTER		4.2.1	Contract with provider to install on-site carshare vehicles and promote their use by residents					
BETTER		4.2.2	Provide residents with carshare memberships, either free or subsidized					
		5.	PARKING					
		5.1	Priced parking					
BASIC	*	5.1.1	Unbundle parking cost from purchase price (condominium)					
BASIC	*	5.1.2	Unbundle parking cost from monthly rent (multi-family)					

	TDM	measures: Residential developments	Check if proposed & add descriptions				
	6.	TDM MARKETING & COMMUNICATIONS					
	6.1	Multimodal travel information					
BASIC *	6.1.1	Provide a multimodal travel option information package to new residents					
	6.2	Personalized trip planning					
BETTER ★	6.2.1	Offer personalized trip planning to new residents					

Appendix K - Transit Map




LINCOLN FIELDS BAYSHORE

PARLIAMENT PARLEMENT

7 days a week / 7 jours par semaine

All day service Service toute la journée

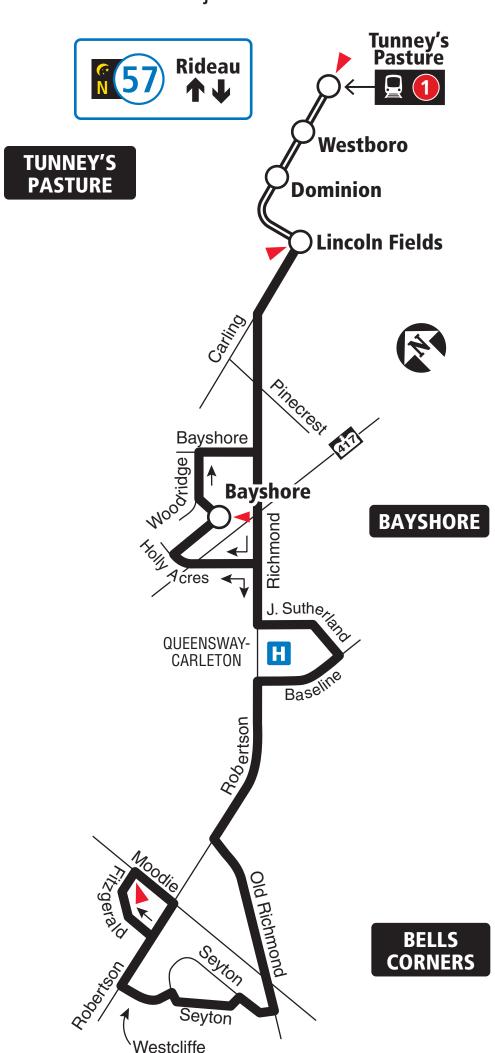
2019.07

Future route after O-Train Line 1 is open Trajet du circuit après l'ouverture de la Ligne 1 de l'O-Train

Lost and Found / Objets perdus..... **613-563-4011**Security / Sécurité...... **613-741-2478**

CC Transpo

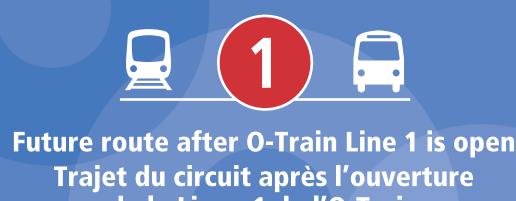
INFO 613-741-4390 octranspo.com



BAYSHORE BELLS CORNERS TUNNEY'S PASTURE

7 days a week / 7 jours par semaine

All day and limited overnight service Service toute la journée et limité la nuit


Transitway & Station

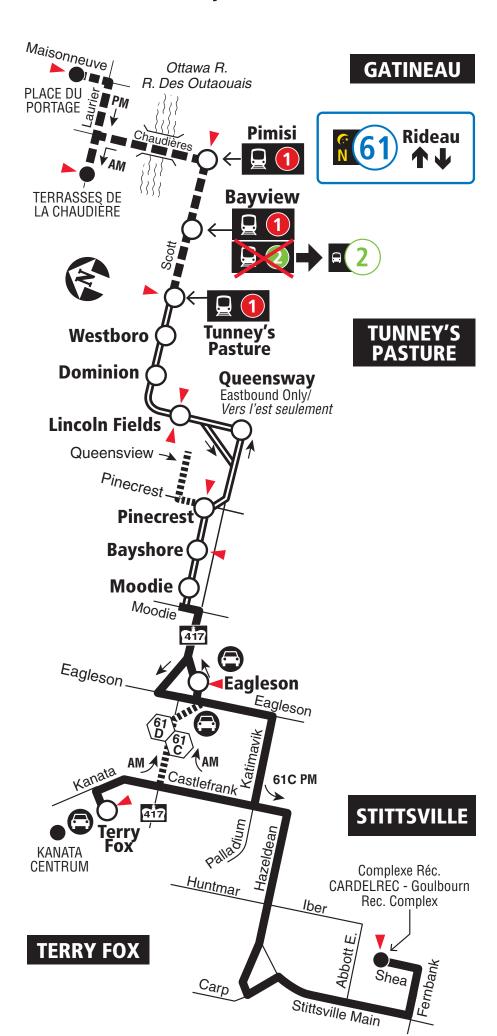
Timepoint | Heures de passage

When O-Train Line 1 is not running overnight, Route 57 will be extended downtown to Rideau Station. / Lorsque la ligne 1 de l'O-Train ne circule pas la nuit, le circuit 57 sera prolongée au centre-ville jusqu'à la station Rideau.

2019.07

de la Ligne 1 de l'O-Train

Lost and Found / Objets perdus...... 613-563-4011



TERRY FOX STITTSVILLE TUNNEY'S PASTURE GATINEAU

7 days a week / 7 jours par semaine

All day service and limited overnight Service toute la journée et limité la nuit

Transitway & Station

Peak trips / Trajets de pointe

Selected time periods / Périodes sélectionnées

Park & Ride / Parc-o-bus

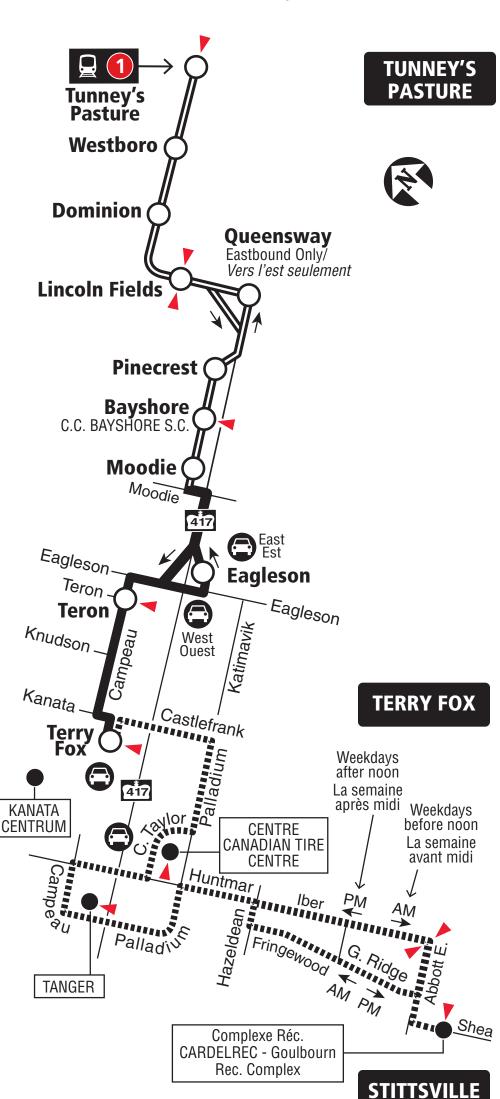
Timepoint / Heures de passage

When O-Train Line 1 is not running overnight, Route 61 will be extended downtown to Rideau Station. / Lorsque la ligne 1 de l'O-Train ne circule pas la nuit, le circuit 61 sera prolongée au centre-ville jusqu'à la station Rideau.

2020.05

En vigueur 3 mai 2020

CC Transpo


INFO 613-741-4390 octranspo.com

TERRY FOX STITTSVILLE TUNNEY'S PASTURE

7 days a week / 7 jours par semaine

All day service Service toute la journée

Transitway & Station

.....

Monday to Friday only (limited evening service) Lundi au vendredi seulement (service de soirée limité)

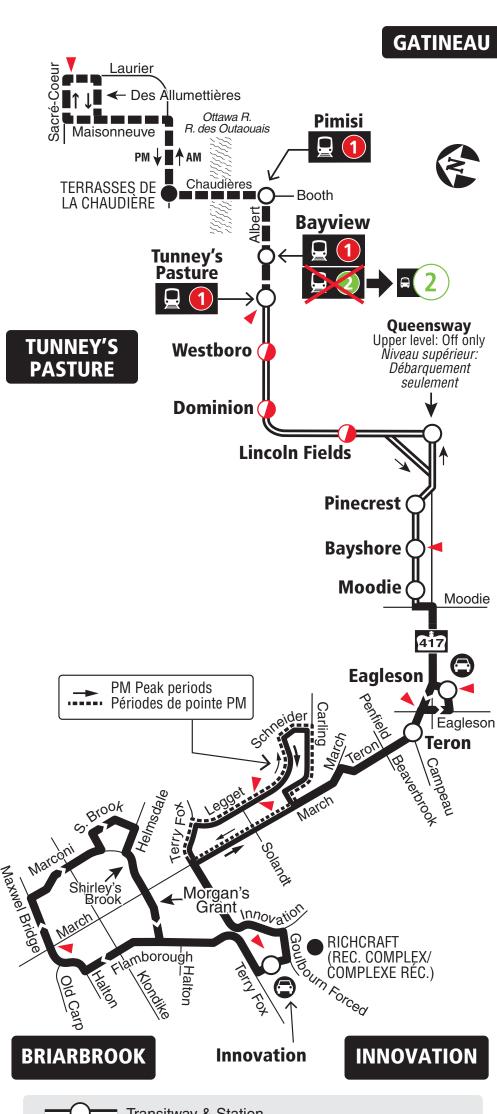
Park & Ride / Parc-o-bus

Timepoint / Heures de passage

2019.07

Starting July 14, 2019 À partir du 14 juillet 2019

Lost and Found / Objets perdus..... **613-563-4011**Security / Sécurité...... **613-741-2478**


INFO 613-741-4390 octranspo.com

INNOVATION BRIARBROOK TUNNEY'S PASTURE GATINEAU

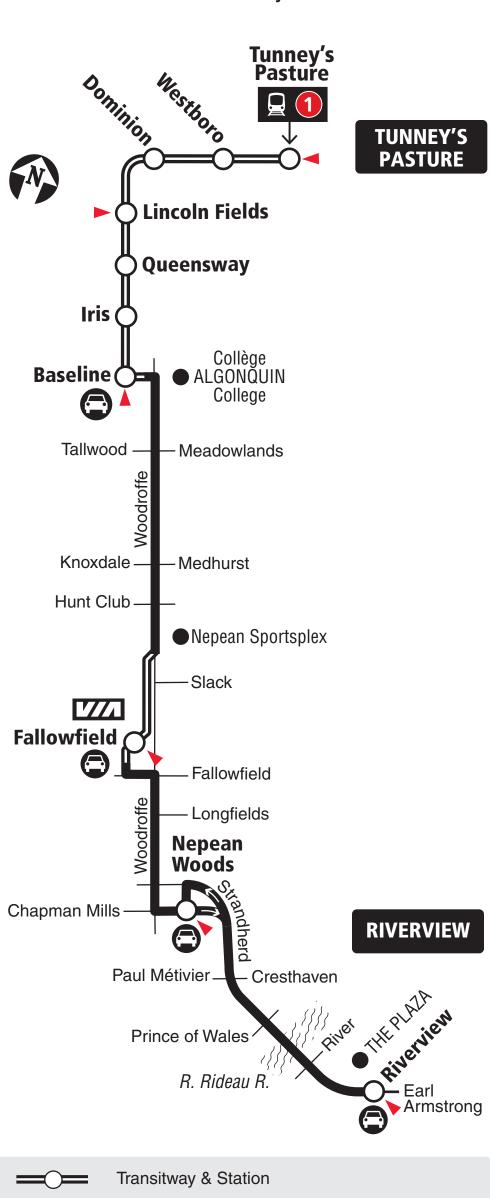
7 days a week / 7 jours par semaine

All day service Service toute la journée

Transitway & Station Peak Periods Only / Périodes de pointe seulement Eastbound: AM Off only - Westbound: Full Service Vers l'est AM: Débarquement seulement Vers l'ouest: Service complet Park & Ride / Parc-o-bus Timepoint / Heures de passage

2020.04

INFO 613-741-4390 **CC** Transpo octranspo.com



RIVERVIEW TUNNEY'S PASTURE

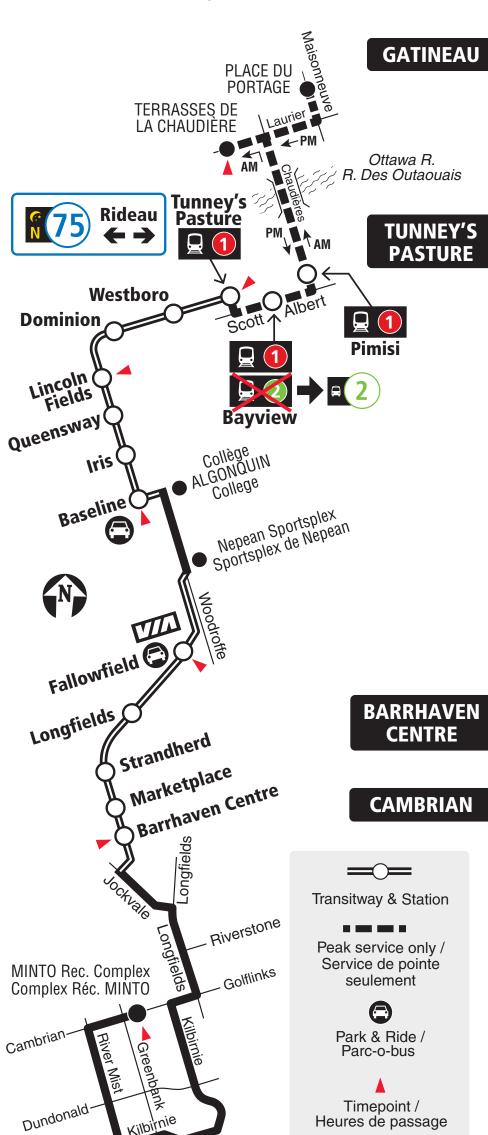
7 days a week / 7 jours par semaine

All day service Service toute la journée

2019.07

Future route after O-Train Line 1 is open Trajet du circuit après l'ouverture de la Ligne 1 de l'O-Train

INFO 613-741-4390 octranspo.com



CAMBRIAN BARRHAVEN C.

TUNNEY'S PASTURE GATINEAU

7 days a week / 7 jours par semaine

All day service and limited overnight Service toute la journée et limité la nuit

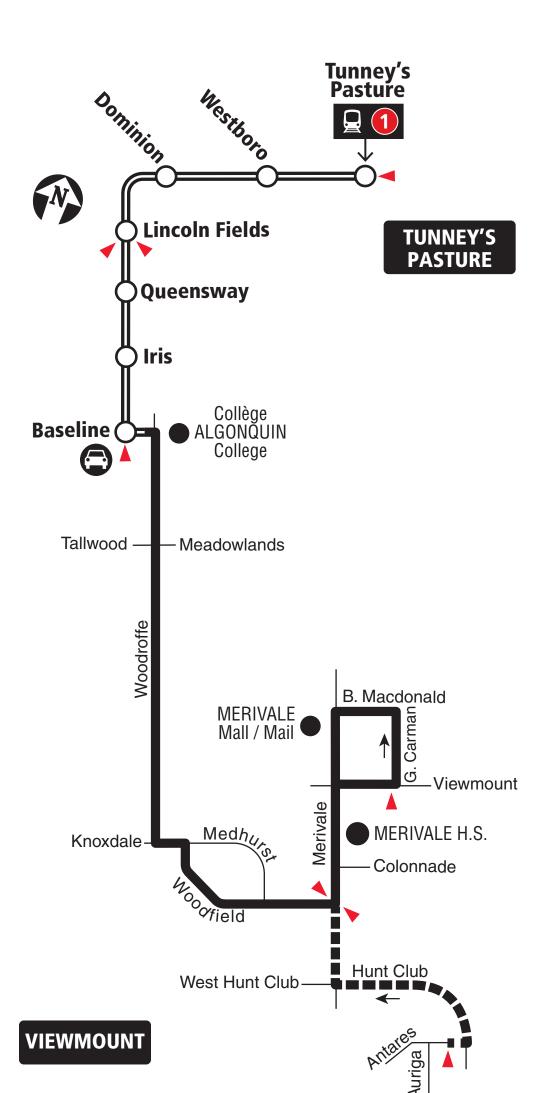
When O-Train Line 1 is not running overnight, Route 75 will be extended downtown to Rideau Station. / Lorsque la ligne 1 de l'O-Train ne circule pas la nuit, le circuit 75 sera prolongée au centre-ville jusqu'à la station Rideau.

2020.04

C Transpo

INFO 613-741-4390

octranspo.com


83

VIEWMOUNT TUNNEY'S PASTURE

Local

7 days a week / 7 jours par semaine

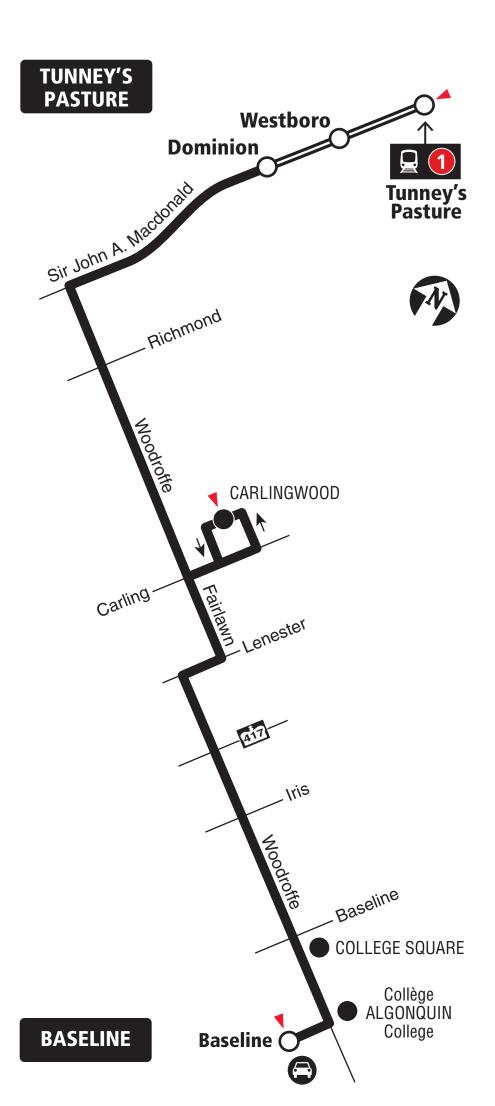
All day service Service toute la journée

Future route after O-Train Line 1 is open
Trajet du circuit après l'ouverture
de la Ligne 1 de l'O-Train

Lost and Found / Objets perdus......613-563-4011

octranspo.com

C Transpo



BASELINE TUNNEY'S PASTURE

7 days a week / 7 jours par semaine

All day service Service toute la journée

Transitway & Station

Park & Ride / Parc-o-bus

Timepoint / Heures de passage

2019.07

Future route after O-Train Line 1 is open Trajet du circuit après l'ouverture de la Ligne 1 de l'O-Train

Lost and Found / Objets perdus..... **613-563-4011**Security / Sécurité...... **613-741-2478**

INFO 613-741-4390 octranspo.com

LINCOLN FIELDS TUNNEY'S PASTURE CARLINGWOOD

Local

7 days a week / 7 jours par semaine

Selected time periods only Périodes sélectionnées seulement

StationSome trips / Quelques trajetsTimepoint / Heures de passage

C Transpo

2019.10

octranspo.com

Appendix L - Transit Ridership Data

Winter 2020 (5 Jan 2020 - 7 Mar 2020)

Stop No	. Location	Route	Direction	Boardings	AM Alightings	Avg Load at	Boardings	PM Alightings	Avg Load at	Boardings	24-HR Alightings	Avg Load at
4007		50	WB	0	4	Departure 11	1	3	Departure 11	8	16	Departure 9
4987	CHURCHILL / RICHMOND	153	WB	-	-	-	0	0	5	2	0	3
3013	CHURCHILL / RICHMOND	50	EB	3	1	20	2	3	7	5	8	10
4876	RICHMOND / CHURCHILL	153 11	EB EB	7	6	- 14	0 17	2	4 11	0 66	1 28	3 11
5616	RICHMOND / CHURCHILL	11	WB	1	9	6	9	23	18	24	83	11
3010	TRIOTINIOI VD / OFFICIALE	153	WB	-	-	-	0	0	7	0	0	4
2436	RICHMOND / ROOSEVELT	11 153	WB WB	2	13	5	11 2	29 0	17 7	28 4	85 0	10 5
4870	RICHMOND / ROOSEVELT	11	EB	12	17	14	25	10	10	90	65	10
4070	THOMMOND / TOOOLVEET	153	EB	-	9	-	2	1	6	2	1 74	3
4941	RICHMOND / GOLDEN	11 153	WB WB	6	-	5 -	13 2	23 1	16 6	29 4	71 3	10 4
7406	RICHMOND / GOLDEN	11	EB	8	4	14	7	11	9	52	29	10
		153	EB	- 0	7	4	9	0	5	0	7	3
		57 58	WB EB	2	0	4 7	9	32 0	29 15	20 11	63 0	15 11
		61	WB	6	4	8	20	88	31	32	124	21
		62	WB	0	0	10	4	17	22	12	25	16
		63 64	IB IB	3 6	7 6	8 11	4 29	33 17	29 18	12 36	55 41	15 13
		66	WB	6	11	30	-	-	-	6	13	18
		73	SB	0	0	5	-	-	-	0	0	3
3013	DOMINION 1A	74	SB	2	2	3	3	2	10	76	20	10
		75 82	SB WB	0 0	0 0	10 9	40 16	33 2	17 16	69 16	58 2	14 9
		83	NB	2	0	6	1	1	10	3	1	7
		84	WB	4	0	15	2	2	6	6	4	9
		87	NB	3	0	3	2	1	17	14	2	9
		164 258	SB OB	0	0	2	- 0	0	6	0	0 0	2 6
		282	OB	-	-	-	0	1	24	0	1	18
		284	SB	-	-	-	2	0	7	2	0	6
		57	EB	12	5	30	3	1	10	20	12	16
		58 61	WB EB	9 23	0 7	27 26	0 2	1 7	10 20	10 39	2 22	15 19
		62	EB	0	0	4	0	4	21	5	7	12
		63	OB	4	0	34	2	4	17	11	10	19
		64	OB	9	1	25	1	15	9	13	17	14
		66 73	EB NB	-	-	-	6 9	8 9	27 10	8 9	9 9	19 10
		74	NB	16	5	20	6	15	15	49	33	19
		75	NB	32	9	33	9	8	33	64	47	28
		82	EB	9	3	24	0	5	11	9	9	14
		83 84	SB EB	9 5	4 0	17 27	1 9	0 0	8 13	18 17	17 3	13 17
		87	SB	10	0	14	8	2	9	30	9	9
		164	NB	-	-	-	-	-	0	0	0	0
3013	DOMINION 2A	251 252	IB IB	-	0 4	9 16	-	-	-	-	0 4	8 16
		256	IB	-	0	31	_	-	-	-	0	40
		257	IB	-	7	30	-	-	-	-	7	30
		258	IB	8	2	13	-	-	-	8	2	18
		261 262	IB IB	-	0 0	28 19	-	-	-	-	0 0	28 19
		263	IB	-	0	25	_	-	-	-	0	25
		264	IB	-	0	22	-	-	-	-	0	22
		265	IB	-	0	25	-	-	-	-	0	25
		266 267	IB IB	-	0	16 37	_	-	-	- -	0 1	16 35
		268	IB	-	3	36	-	-	-	_	3	35 37
		282	IB	7	1	28	-	-	-	7	1	14
		283	IB	-	0	2	-	-	-	-	0	2
		284 270	NB IB	12	3 0	14 38	-	-	-	12	3 0	8 40
		271	IB	-	1	54	-	-	-	-	1	54
		272	IB	-	2	49	-	-	-	-	2	42
3013	DOMINION STN OFF ONLY	273	IB	-	2	48	-	-	-	-	2	38
		275 277	IB IB	-	3 5	58 57	-	-	-	-	3 5	56 61
		278	IB IB	-	5 1	57 33	_	-	-	_	5 1	28